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Abstract: Neural networks are data analysis tools well suited to archaeological applications. With both supervised and 
unsupervised architectures available, networks are flexible and complement existing multivariate analytical techniques. In the 
present application, networks were used to classify skeletal remains based on common osteological measurements. Both a 
contemporary (mid-1800s to 1970) and an older database (-1600-1800) were investigated to learn ifnehvorks could classify 
based on several different criteria including race, sex, timeframe, phase, and date of birth. Use of genetic algorithms and 
variable contribution measures allowed an evaluation of relative importance and predictive power of variables retained in the 
models. Results were compared with traditional multivariate techniques and while performance was not, in general, dramatically 
different, interesting and potentially significant differences in variable contribution measures were noted. This emphasizes the 
value of networks as complimentary tools for statistical analysis of archaeological data. 
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Introduction and Background 

Multivariate statistical techniques have been used to classify 
skeletal remains based on age at death, sex, and race. In the 
present example, results from such statistical analyses were 
compared to and contrasted with results obtained using back 
propagation neural networks coupled to genetic algorithms. 
Two different data sets, one an archaeological and the other a 
forensic, were used to evaluate the feasibility of classifying 
remains based on skeletal cranial measurements. Although 
specific applications and models varied, each study had four 
overriding goals: 

1 ) To determine if a neural network model could successfully 
predict the attribute in question. 

2) To determine which variables were the most and least 
important for classification and prediction. 

3) To evaluate trends and relationships among and between 
these critical variables 

4) To compare the results with those obtained using traditional 
multivariate analysis 

Although neural networks have becoming an increasingly com- 
mon tool in business, engineering, and sciences, few 
archaeological applications have been reported (for example, 
Barcelo 1993 and 1997,Bell 1998, Reëler. 1999). While a detailed 
description of network theory, design, and applications is 
beyond the scope of this paper, general references and texts are 
available in most university libraries. A good overview is 
presented by Wasserman (Wasserman 1989). 

Several characteristics lend networks to complex problems as 
often encountered in physical anthropology and archaeology. 
Networks are capable of uncovering intricate, non-linear 
relationships among variables that might be overlooked or 
missed by statistical techniques such as principle component 
analysis. Networks do not require that the underlying variable 
distributions be normal. Finally, a variety of network types are 
now available in commercial PC-based software, providing the 
investigator with a number of options in both supervised and 
unsupervised learning techniques. 

Datasets and Methods 

Two databases were examined, both containing cranial 
measurements exclusively. A contemporary database, spanning 
the years AD 1850-1970, was derived from anatomical and 
forensic investigations. This database was comprised of 
measurements from 885 individuals classified by sex and race 
(whites versus blacks). Most of the individuals with 19th 
century birth dates were obtained from the Terry and Todd 
anatomical collections, while those with 20th century birth dates 
were obtained from the Forensic Anthropology Data Bank 
(Ousley and Jantz 1997) Fifteen cranial measurements were 
reported for each. The second collection was archaeological, 
representing 559 individuals from various sites occupied by 
the Arikara Indians located in the Middle Missouri region of 
South Dakota (Key 1983 and McKeown 2000). Years represented 
ranged from AD 1600-1817 and data was collected from 25 
excavations. For each individual, 66 cranial measurements were 
reported. 

The archaeological data was classified by phase, time frame. 

205 



and bank of the river on which the site was located. For time 
frame, the identifier "Arikara" refers to the historic and 
protohistoric sites, while "EC" refers to the prehistoric. A 
summary is presented in Table 1. Although the data in the 
forensic database was evenly distributed, this archaeological 
database was not. When broken down by time frame, 392 of the 
skeletons were Arikara while 158 were EC. Similar imbalance 
was seen based on riverbank. with 403 skeletons representing 
the left bank and 147 representing the right bank. Further 
complications were introduced by the uneven distribution of 
site dates over time. For example, with right and left bank, only 
data from the right bank was dispersed enough over time to 
allow for an investigation of how cranial measures evolved. 
When considering phase, imbalances were even more 
significant. As a result, models created to predict phase were 
limited to distinguishing the Le Beau 3 phase from all others. 
While such imbalances in data distribution do not preclude 
statistical or neural network evaluation, it is important to keep it 
in mind when interpreting the models. 

Neural network analysis was conducted using two software 
packages: Neurogenetic Optimizer (NGO, Biocomp Systems, 
Redmond, WAUSA) and Statistica Neural Networks (Statsoft, 
Tulsa, OK USA). Both of these packages utilize genetic 
algorithms for network optimization and variable selection. 
Multivariate statistical analysis was conducted using Statistica. 
The databases were converted to Excel and comma-delimited 
text file format for network analysis. 

Neural networks are layered structures of interconnected 
mathematical processing elements linked together as shown in 
figure 1. Note that the first layer consists of one processing 
element per input variable and that these processing elements 
do not perform any mathematical operations. Rather, they pass 
the value of the variable on to each element in the hidden layer. 
Nodes in the hidden and output layers perform the mathematical 
operations illustrated in figure 2. Each of these nodes has 
associated with it a set of weights (equal to the number of 
inputs) that are initially set to small random values. The proces- 
sing element performs two operations. First, the input values 
are multiplied by their corresponding weight and the value 
summed. Second, this sum is passed onto a transfer or 
"squashing" function the compresses the value between 0 and 
1 or -1 and +1, depending on the transfer function selected. 
This is where the analogy to the nervous system can be seen; 
the processmg element, also called a neuron, will either "fire" or 
not fire (be activated or not) based on the sum of the inputs. A 
common feature of most transfer functions is the abrupt 
transition between a relatively large value (analogous to a nerve 
cell activating) and a relatively small value (analogous to an 
inactive neuron). If the node is in the hidden layer, the output 
from the transfer function is passed to the next layer. 

The size of the hidden layer is determined by optimization 
experiments but in general, the smaller this layer is. the better 
the model will generalize. Although any number of nodes can 
be used in the output layer, in the present case, all networks 
models utilized one. Outputs in these models could be 
continuous (such as year of birth for the forensic database) or 
discrete (such as which bank of the river the individual was 
recovered from). In such cases, a binary encoding was used. 

For example, 1 would encode for a skeleton recovered fi-om a 
site on the left bank while 0 would encode for a skeleton 
recovered on the right bank. Numerical results from the output 
node were scaled accordingly between 0 and 1. 

Training of a neural network involves iterative adjustment of 
the weights until all training data presented to the network results 
in a correct response within the error threshold specified by the 
user. Individually, inputs (here a set of cranial measurements 
for one individual) are presented to the network and calculations 
are performed. The result is compared to the desired value and 
the resulting error is back propagated through the weights and 
used to make corrections. In practice, error is usually 
accumulated over one complete pass through the training data 
(commonly called an epoch) before weights are adjusted. This 
process is repeated through hundreds or thousands of epochs 
until training is complete. Progress is monitored not by the 
training data itself, but by a representative cross section remo- 
ved prior to training. The traming process continues for a set 
number of epochs (for example 100), and then the test data is 
run through the network and an error calculated. Training is 
resumed for another 100 epochs and the test is repeated. 
Training is halted if one of three conditions is met: 1) test 
performance meets the user-defined threshold; 2) test 
performance is no longer improving; or 3 ) the maximum number 
of epochs has been reached. 

Note that the training and test data are both involved in the 
training process and as such do not provide an independent 
evaluation of network performance. For this, a separate set of 
validation data is needed, which consists of a representative 
cross-section removed from the original dataset before training. 
The performance of a network can be reliably measured using 
this validation data, and this is the metric reported throughout 
this paper. Figure 3 summarizes how data was divided, and how 
these subdivisions were used to generate the five replicates for 
each model constructed. Each replicate run represents a 
reshuffling of training, test, and validation data and these rep- 
licates were used to gauge the reproducibility and uncertainty 
(at the 95% confidence interval) of the models. 

Until recently, optimization of the many parameters and settings 
associated with a given neural network model, as well as the 
selection for variables to include, has been problematical. 
Settings such as number of hidden layers, number of nodes in 
the hidden layer, transfer functions, learning rates, etc. all must 
be determined, yet little more than experience and rules-of-thumb 
existed for guidance. In the last ten years, an increasing number 
of neural network packages have incorporated genetic 
algorithms, which have greatly increased the ufility of the 
technique. To implement a genetic algorithm optimization, the 
first step is to create a chromosome (figure 4), which is a binary 
encoding of all the parameters necessary to construct a neural 
network. This can include type of network, number of hidden 
layers, number of hidden nodes per layer, etc.. but also includes 
instructions as to which variables are to be included. Genetic 
algorithm optimization (figure 5) begins with the generation of a 
pool of such chromosomes, typically 30-50. For each genera- 
tion, a network is built according to the instructions encoded 
on each chromosome and the network is trained long enough 
to gauge its fitness relative to other networks.   Fitness takes 
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into account accuracy and size; smaller networks tend to 
generalize better and are favored. At the end of the training and 
comparison step, the fittest chromosomes (the ones generating 
the best performing networks) are allowed to pass to the next 
generation. The candidate pool is brought back to original size 
by allowing the fittest chromosomes to mate and mutate, and 
by adding additional, randomly generated chromosomes into 
the pool. The cycle repeats until one of three conditions is met: 
1) no further improvement in fitness is occurring; 2) a user- 
defined level of performance is achieved; or 3) the maximum 
number of allowed generations has elapsed. At the end of this 
process, the algorithm will have converged on an optimal solu- 
tion; however only replicate analyses (as described previously) 
will verify that the solution is reproducible and reliable. All 
network models discussed in this paper were obtained using 
genetic algorithm optimization as described here. 

Because the outputs of all the networks were binary, the issue 
of cutoff or threshold values must be addressed and is best 
illustrated through an example. With the archaeological 
database, one set of models was constmcted to predict bank of 
origin based on cranial measurements. Thus, each set of 
measurements was associated with either the right bank (coded 
as 1 ) or the left bank (coded as 0) of the Missouri river. 
Accordingly, the value of the output node varied continuously 
from 0 to 1. A decision must be reached as to what error threshold 
will be accepted as a correct response. Commonly, values of 
0.51 and above are considered to be 1. while values of 0.49 or 
less are considered to be 0, and the cutoff value in this case is 
0.50. Clearly, this is a generous threshold and may or may not 
be reasonable based on the problem at hand. Rather than set 
an absolute threshold to start with, results were evaluated for 
three thresholds: 0.90, 0.75, and 0.60. In all cases, the metric 
used to monitor network performance was the percentage of 
validation cases that were correctly classified by the model 
based on the threshold value selected. 

Once working models were constructed and optimized, the next 
step was to determine which cranial measurements were the 
most important, how much each contributed, how they were 
related to each other, and how they were changing over time. 
Terms such as variable contribution, sensitivity, weight, and 
importance are often cited in the literature, but there are no 
universally accepted definitions. Within this study, the methods 
of calculating variable contribution were used as defined below: 

1 ) Sensitivity: Determined using the trained network and 
validation data. The sensitivity of a variable is calculated 
by dithering its value +/- 10% of the original and 
averaging the change in network output across all 
validation cases. This measurement, while not truly 
multivariate. helps to identify variables than can have a 
large impact on network output. 

2) Number of occurrences: Each network model was built 
using five replicates as discussed above. Accordingly, the 
genetic algorithm was repeated five times as well. A 
variable that is important to achieving optimal network 
performance should be included in the model more often 
than variables that are not important. Accordingly, the 
number of occurrences of a variable (0-5) is one measure 

of its importance. Moreover, this metric is multivariate in 
that the genetic algorithm will converge on an optimal 
variable combination. 

It is important to note that a variable can be important and not 
sensitive and vice versa. Consider a variable that is included 
by the genetic algorithm m most of the models, but small changes 
in that variable do not result in large changes in network out- 
put. However, removal of this hypothetical variable results in 
dramatic degradation of network performance. Such a variable 
is an example of an important variable that is not sensitive. 

Both of these criteria (sensitivity and number of occurrences) 
were combined in a quantity called the variable score calculated 
as follows: 

Score = (0.33(normalized sensitivity) + 0.67(normalized 
number of occurrences))* 100 

The weighting factors were assigned somewhat arbitrarily but 
reflect the greater weight attributed to the multivariate measure. 
Since networks excel at finding complex, nonlinear, multivariate 
relationships among variables, the metric used to gauge variable 
importance should be slanted in favor of the multivariate 
measurement. 

Results and Discussion 

Results for the archaeological database are summarized in figures 
6-8. Not surprisingly, under the most stringent threshold (0.90), 
none of the models predicted their target characteristic as well 
as chance. However, at a threshold of 0.75, the models were 
able to predict time frame slightly better than chance (looking at 
the average % correctly classified). At the 0.60 threshold, all 
three characteristics were predicted better than chance (even 
considering uncertainties) and the difference in performance 
between networks predicting time frame and bank were 
statistically significantly. Across all models and all thresholds, 
there were no statistically significant differences when males 
and females were considered separately. Given the nature of 
the predictions and the inevitable uncertainties and 
inconsistencies that arise from different investigators collecting 
data, it was assumed that the 0.60 threshold was the most 
reasonable one from which to draw conclusions. Thus, results 
suggest that the river served was an effective barrier between 
sites and peoples since cranial measurements were sufficient to 
distinguish them. Certainly, other factors play a role and 
investigation is continuing. 

Once models were optimized, the next step was to evaluate 
variable contribution and importance. Using the variable score 
defined above, the ten most important variables for each of the 
three models (predict time frame, predict bank, and predict phase) 
were determined across five replicate networks. These variables 
were then examined to evaluate changes over time and to study 
the relationships between them. The ten most important 
variables for each model are summarized in Tables 2.3, and 4. 
For predicting time frame, the most important cranial 
measurement is Nlh, followed by a group of similar scores for 
Ocs, Aub, Ocr, Sos, Asb, Mis. and Xcb. The b-end listed in the 
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table is how the measurement appears to change over time and 
is discussed in detail below. Note that Ocs was also among the 
top ten for predicting phase. For predicting time frame, Occ 
was the most important variable with the next closest (Avr) 
nearly ten points lower. Finally, for predicting phase, Mdb was 
even more dominant than Occ was for predicting time frame. 
However, since the imbalanced dataset limited what could be 
done with phase, this finding has limited application. 

With important variables identified, the next step was to study 
how these variables are changing and how they are related to 
each other. Since the dates associated with the skeletons were 
discrete and not continuous, it was necessary to group individu- 
als into time spans as shown in Table 5. This grouping was 
used for plotting purposes only. Examples plots are presented 
in figures 9-11, with examples of increasing, decreasing, and 
indeterminate patterns. Several difficulties were encountered 
in this phase of the work. First, given the imbalance in the data 
set (as per Table 1 ), it was difficult to obtain a representative 
number of individuals in many of the time spans for a given 
subset. Thus, while the networks were able to create good 
predictive models, and important variables were clearly 
identified, the exact nature of the relationships among these 
cranial measures cannot be deciphered with sufficient 
confidence to draw firm conclusions. 

be sex-linked and more useful for predicting year of birth for 
females as opposed to males. In males, results suggested that 
Aub was a sensitive variable, but not an important one, a 
distinction that was discussed above. 

Summary and Conclusions 

The above studies illustrate the value of neural networks in 
archaeological and osteological applications, particularly when 
combined with traditional statistical methods. Networks excel 
at identifying complex, multivariate, and nonlinear relationships 
among variables and often identify important variables that other 
techniques such as regression analysis or principle component 
analysis overlook. However, because of the complex nature of 
the variable interactions, it is sometimes difficult to completefy 
characterize these relationships. In the present case, much of 
this difficulty arises not from the networks, but from the nature 
of the data itself. Nonetheless, neural networks, particularly 
using up-to-date PC software and genetic algorithms, represent 
a valuable addition to the mathematical toolbox available to 
archaeologists and physical anthropologists. 
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Tables 

Table 1. Distribution of archaeological data 

Time frame Phase River Bank Period n 

Arikara Arikara Right 1817 52 

Ankara Bad River 1 Right 1705-1707 10 

Arikara Bad River 2 Right 1766-1768 39 

Extended Coalescent (EC) La Roche Both 1612-1663 158 

Arikara Le Beau 1 Left 1687-1726 21 

Arikara Le Beau 2 Both 1700-1766 50 

Arikara Le Beau 3 Both 1688-1728 220 

Table 2.Ten most important variables for predicting bank Table 4. Ten most important variables for predicting phase 
Cranial measurement Score Trend' 

Nlh 87 Increasing 

Ocs' 80 Indeterminate 

Aub 78 Indeterminate 

Ocr 77 Decreasing 

Sos 76 Indeterminate 

Asb 76 Decreasing 

Mis 75 Increasing 

CJol 71 Decreasing 

Xcb 70 Increasing 

Fmb 62 Indeterminate 

1: Trend overtime; see text for discussion 
2: Inportant variable in more than one model 
(predict bank/phase/time frame) 

Table 3.Ten most important variables for predicting time frame 

Cranial measurement Score Trend' 
Occ 100 Indeterminate 

Avr 91 Indeterminate 

Frs 88 Increasing 

Sts 78 Decreasing 

Mdb 78 Decreasing 

Frf- 77 Indeterminate 

Nib 77 Indeterminate 

Jub 76 Increasing 

Frc 71 Indeterminate 

bnl 71 Indeterminate 

Cranial measurement Score 

Mdb' 100 

Prr 75 

Ocs 72 

Wmh 71 

Nar 62 

Nph 62 

Web 61 

Osr 61 

Lar 61 

Pac 60 
1: Important variable in more than one model 
(predict bank/phase/time frame) 
Note that trend is not included since there were not 
enough representative measurements from 
different groups 

Table 5: Grouping of time spans 

Period Midpoint used for 
graphing 

1612-1688 1650 

1700-1708 1704 

1725-1728 1726 

1766-1777 1766 

1817 1817 

1: Trend overtime; see text for discussion 
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Figure I.   Back propagation neural network. 
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Figure 3.  Division of data for network training and 
validation. 
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Figure 4.   "Chromosome" used for genetic algorithms. 
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Figure 5.  Application of a genetic algorithm to neural 
network optimization 
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Figure 6. Summary of results, archaeological database, 
0.90 threshold. From left to right, results are reported for 
models that predict hank (left vs. right): time frame (Arikara 
vs. EC); and Phase (Le Beau 3 vs. all others).  Data is 
reported for all data (A), females only (f), and males only 
(m). 
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Figure 7. Summary of results, archaeological database, 
0.75 threshold.  Labels as in Figure 6. 

Figure 8. Summary of results, archaeological database, 
0.60 threshold.  Labels as in Figure 6. 
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Figure 9.  Example variable plot. Nth (males only, right 
bank), predicting bank model.   Note that the trend is 
generally increasing, although with the large uncertainties 
(+/-I standard deviation), such observations are not 
conclusive.   The x-axis is the midpoint date as presented in 
Table 5 and they axis is the mean cranial measurement for 
that time period.   The line is the best fit regression through 
the average. 
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Figure JO.  Example variable plot, Ocr (males only, right 
bank), predicting bank model.   This is an example of a 
variable showing a general decrease.   The same plot for the 
corresponding females (not shown) also shows a general 
decrease but it is not as uniform or smooth. 
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Figure fJ. Examples variable plot, Frf(air), predicting time 
frame model. This is an example of a trend that was labeled 
as indeterminate. 
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