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Abstract. At previous CAA conferences we have reported on the use of Kernel Density Estimates (KDEs) for 
data display in up to three dimensions. Issues of sample size and the associated "curse of dimensionality" have 
influenced much of our previous work. However, in this paper we investigate the possibilities of the methodol- 
ogy in cases where there is no shortage of data. In particular, we present a method of cluster identification based 
upon contouring two- or three-dimensional KDEs. If desired, this approach can be used as the starting point for 
more formal methods of cluster analysis. Our main application involves the analysis of data generated using im- 
age spectroscopy on works of art, though the utility of the technique for archaeological applications should be 
clear. Our aim is to identify non-homogeneity, represented by clusters, which could possibly be explained by 
forgery or earlier restoration. 
Keywords: Kernel Density Estimation; multivariate analysis; cluster analysis; image spectroscopy. 

1   Introduction 

When analysing multivariate statistical data of the kind 
that often arises in archaeology, archaeometry and re- 
lated areas, it is almost always usefiil to apply a battery 
of techniques, rather than one method in isolation. At 
previous CAA conferences we have reported on the use 
of Kernel Density Estimates (KDEs) for data display in 
up to three dimensions. (See Baxter et al., 1997, Bear- 
dah and Baxter, 1996, 1999 for examples.) KDEs pro- 
vide a simple method of looking for interesting struc- 
ture within a data set, often characterised by non- 
normality and very often represented by groupings 
within the data that may have some archaeological or 
other significance. Due to the "curse of dimensionality" 
and the usual problems presented by displaying high 
dimensional data, KDEs are of most utility when the 
data is of dimension three or less. However, higher 
dimensional data are often analysed by subjecting them 
to some dimension reduction technique such as princi- 
pal component analysis (PCA). KDE methods can then 
be applied to the first one, two or three components of 
the PCA scores in order to identify structure. Provided 
that the first few PCs explain a high percentage of the 
variation in the original data, there is every reason to 
suppose that the original data also exhibits this struc- 
ture. Of course, this combination of PCA and KDE 
techniques is rather informal and exploratory in nature. 
On the other hand, there is no reason why the potential 
clusters exhibited by such methodology should not be 
used as the starting point for more formal clustering 
techniques. 

The general idea of this suggested methodology is 
outlined below. 

1.  Data collection.   For the purposes of this paper we 
assume that the data are high dimensional. 

2. Application of a dimension reducing technique such 
as PCA. 

3. Visual analysis of the first one, two or three PCs 
using contouring (based upon KDEs) in an attempt 
to identify clusters of similar objects. 

4. If desirable, use of these clusters as the starting 
point for more formal clustering techniques. 

In the main application discussed here, the use of con- 
touring in point 3 above is vital. The reason is that data 
sets generated using image spectroscopy on works of 
art tend to consist of a very large number of observa- 
tions. This usually results in traditional PCA plots that 
are far too dense to interpret, even if there is clear struc- 
ture in the data. 

Of course, the really interesting questions are often 
post-analysis when we ask whether the clusters mean 
anything in the original context. 

1.1    KDEs for two- and three-dimensional data 

The interested reader is referred to Silverman, 1986 and 
Wand and Jones, 1995 for excellent general introduc- 
tions to the subject of KDEs. For a less mathematical, 
more archaeological treatment, see Baxter et ai., 1997 
and Beardah and Baxter, 1996. Archaeological applica- 
tions of two- and three-dimensional KDEs are also the 
subject of Beardah, 1998 and Beardah and Baxter, 
1999. 

Figures 1 and 2 show examples of KDEs based 
upon bivariate and trivariate data respectively. Note that 
for bivariate data, the KDE is three-dimensional, while 
contours are two-dimensional. Analogously, for trivari- 
ate data, the KDE is four-dimensional, while contours 
are three-dimensional. In both cases, contouring is 
based upon an idea by Bowman and Foster, 1993 
whereby contours enclose the p% most dense of the 
data. 
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Fig. 1. For data representing the spatial locations of «=276 
bone splinters (see Binford, 1978 and Blankholm, 1991), from 
the top: (a) a bivariate KDE; (b) a scatter plot overlaid with a 
75% contour, (c) a polygon enclosing one section of the 75% 
contour 

Fig. 2. For the first three PCs of data representing the chemi- 
cal composition of «=105 specimens of Romano-British waste 
glass, from the top: (a) a scatter plot of the data; (b) three- 
dimensional slices through the trivariate KDE and (c) a 40% 
contour shell. (These data are extensively analysed in Baxter, 
1994.) 
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It should be clear from Figures 1 and 2 how simple it is 
to use contours based upon KDEs as an informal clus- 
tering technique. In order to do so, we need to identify 
the data points that lie within a certain contour. Mathe- 
matically, this is not quite as simple as it may appear. 
For example, consider Fig. lb. The 75% contour is split 
into three distinct parts enclosing separate subsets of the 
data. By identifying the data points with density higher 
than that defining the 75% contour level, we can easily 
identify all data points lying inside the union of these 
three contours. However, if we wish to separately iden- 
tify the data points lying inside the topmost contour of 
Fig. lb, for example, it is less obvious how this could 
be done, especially for large data sets where identifying 
each data point visually is not an option. The answer is 
to define a polygon surrounding the contour of interest 
and then to find data points that both lie inside the poly- 
gon and have density higher than that defining the 75% 
contour level. Fig. Ic shows this process. This tech- 
nique, though more difficult to implement, applies 
equally to the case of three-dimensional data. 

1.2   Clustering using Mahalanobis distance 

In the previous section we have seen that KDEs and 
contouring can be used to identify possible groupings 
within a data set. This technique could be applied to 
either raw data of low dimensionality, or to the first two 
or three PCs of data with high dimensionality. If the 
clusters are clear and well defined, then the preliminary 
analysis may end at this stage. However, if the cluster- 
ing is less clear, then it may be worthwhile to use the 
informal clustering given by the method of the section 
1.1 as the starting point for a more formal technique of 
cluster analysis. Such a technique is outlined in this 
section. 

The clustering method we have used is largely based 
upon the Mahalanobis distance between a point, x, in p- 
dimensional space, and a group with mean J^: and phy p 
CO variance matrix S. This is given by 

where x and j^ are represented by p by 1 vectors. 
In simple terms, new objects are added to an exist- 

ing cluster if they are "close" to the centre of the cluster. 
Clusters are iteratively "grown" from an initial cluster- 
ing which can be as small as just one object. (Contour- 
ing with KDEs will provide this initial clustering.) It 
should be noted that, in order for the Mahalanobis dis- 
tance to be used, the cluster size, «g, needs to be greater 
than the number of variables, p and preferably n^ » p. 
As we shall see in the next section, this restriction is not 
a problem for our main application, though it may be 
for archaeological applications where sample sizes are 
typically "small". Beier and Mommsen, 1994, extend 
the basic idea discussed above to include uncertainties 
in data measurement and "dilution" effects. 

2  Analysis of works of art using image 
spectroscopy 

2.1   Bacl^ground and introduction 

Our main application of the methodology described 
above will be in the analysis of data generated using 
image spectroscopy on works of art. Data representing 
the reflectance spectrum for a fine mesh of points cov- 
ering the surface of a painting can be subjected to PC A 
in an effort to identify non-homogeneity, represented by 
clusters. The first three PCA components typically ex- 
plain 95-99% of the variation in data of this type, and it 
is therefore natural to explore the structure exhibited by 
the PCs using KDE techniques. If desired, potential 
clusters so identified can be used as the starting point 
for more formal clustering techniques such as that out- 
lined in section 1.2. Post-analysis, elements within iden- 
tified clusters must be mapped back to spatial locations 
on the original image. 

One of the most important objectives in the scien- 
tific investigations of paintings (or more general works 
of art) is the characterisation of the materials constitut- 
ing the object under examination. This kind of informa- 
tion is useful, for example, in building knowledge of the 
painting technique used by the artist and for monitoring 
the status of conservation of the work of art. 

Non-destructive and non-invasive techniques should 
be the first step in the investigation of works of art. 
Such methods provide analytical information that is 
often less precise than so-called invasive analytical 
techniques, which on the other hand need sampling op- 
erations. The application of non-invasive techniques is 
recommended in order to obtain information which 
could be used to guide and limit the micro sampling 
required by invasive methods. Image Spectroscopy (IS) 
techniques (see Baronti et al., 1998, for further details) 
are particularly suitable to this purpose not only because 
they extend the measurement domain to a wide area of 
the painting, but also because the technique provides 
data that retain the visual representation of the object. 

For this paper, data associated with two paintings 
has been used, see Fig. 3. The first of these is a test tab- 
let painted with four known pigments. For each pigment 
three rectangular strips were homogeneously painted 
using (i) the pure pigment, (ii) a mixture of the pure 
pigment and 5% carbon black by weight, (iii) a mixture 
of the pure pigment and 10% carbon black by weight. 
Twelve zones of the same size were thus created differ- 
entiated by their dominant wavelength or their bright- 
ness resulting from the percentage of carbon black, see 
Fig. 3a. 

The second painting used is a scene from the Holy 
Trinity Predella (on exhibit at the Uffizi gallery), 
painted by Luca Signorelli in the early sixteenth cen- 
tury. It is an oil-painted panel of 32 cm by 204 cm, 
divided into three scenes of Jesus's Passion. This study 
concentrates upon the flagellation scene, see Fig. 3b. 
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in the case of Signorelli's Predella) and the variables the 
wavelengths investigated. In the case of the Predella, 
this results in a data matrix of 237300 rows and 29 col- 
umns, where each entry of the matrix is a whole number 
in the range 0 to 255. 

Due to the high dimensionality of the data set, it is 
natural to apply PCA to compress this information (usu- 
ally two wavelengths close to each other are highly 
correlated) into fewer variables. Tables 1 and 2 show 
the amount of variation explained by the first 4 PCs in 
the case of the standardised test tablet data and the stan- 
dardised Predella data sets respectively. 

Table 1. PCA based on standardised test tablet data (86297 by 
29) 

Variance Cumulative Variance 
PCI 64.6% 64.6% 
PC2 20.0% 84.6% 
PC3 9.7% 94.3% 
PC4 4.0% 98.3% 

TabLe 2. PCA based on standardised Predella data (237300 by 
29) 

Variance Cumulative Variance 
PCI 76.1% 76.1% 
PC2 14.7% 90.8% 
PC3 4.8% 95.6% 
PC4 1.9% 97.5% 

Fig. 3. (a) test tablet, (b) Signorelli's Predella, flagellation 

2.2   The data 

For each painting, the data were collected using a vidi- 
con camera (with a PbO-PbS detector). The surface of 
the painting is illuminated by two projectors (150W 
quartz tungsten halogen lamps) oriented symmetrically 
at 45 degrees with respect to the painting's plane. 
Wavelength selection is achieved by means of a set of 
interferential filters with bandwidth of lOnm. The fdters 
are lodged in eight-slot filter wheels that are placed one 
at a time, on a wheel drive activated and timed by a 
personal computer. The acquisition of each image is the 
result of a real-time average on 100 frames. Again, see 
Baronti et al., 1998, for full details. 

The data set is a sequence of 29 images acquired at 
the following wavelengths (nm): 420 through 700 in 
steps of 20; 750 through 1200 in steps of 50; 1300, 
1400, 1450, 1550. Each image is characterised by a 
column of values in the range 0 to 255, one entry per 
pixel, which represent the grey scale values at each 
pixel (0 - black, to 255 - white). The grey scale levels of 
a pixel, across the whole sequence of the image, are the 
reflectance spectrum of that pixel. So following the 
usual statistical notation the objects are the pixels 
(around 86297 in the case of the test tablet and 237300 

For each principal component an image can be recon- 
structed, as in the case of each wavelength of the raw 
data. Clearly, it is easier to visually analyse four or five 
PC images instead of the whole sequence of 29 original 
images. In addition, the compression of information 
makes attractive the application of KDE techniques, 
which can be applied to the first one, two or three PCs 
for an informal selection of apparent clusters within the 
data. 

A further advantage of the combination of methods 
outlined here is in terms of computing time required. 
The application of clustering methods such as that 
based upon the Mahalanobis distance using all the 
measured variables would need very extensive com- 
puter resources (recall that the data matrix has dimen- 
sions 237300 by 29 in the case of Signorelli's Predella). 
Instead, we have applied the clustering technique of 
section 1.2 to the first four PC scores. In addition, due 
to the enormous size of the data set, it is often useful to 
use a randomly selected subset of pixels in order to fur- 
ther reduce computing time. Moreover, KDEs play a 
very important role as a guide for Mahalanobis distance 
clustering. The selection of initial clusters by KDE 
techniques makes the segmentation of the image more 
reliable and again reduces the computing time. 

Once a clustering has been made, pixels belonging 
to a particular cluster are "mapped back" by giving 
them a specified colour in the grey scale image, thus 
enabling different clusters to be examined in their origi- 
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nal context. Of course, the number of distinguishable 
colours limits the number of clusters that it is wise to 
map back simultaneously. 

2.3   Analysis of the test tablet 

If this methodology is to have any potential, then it 
must be expected to perform well on the test tablet, 
where, visually at least, we have twelve clearly separate 
areas of the painting. 
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Fig. 4. 25, 50, 75 and 90% contours for KDEs based upon (a) 
the whole data set (86297 pixels) and (b), a random sample of 
10050 pixels for the first two PCs of the test tablet data 

first strip in the test tablet. This is probably due to a 
very small non-homogeneity of the painted surface of 
this strip or to a non-homogeneity of lighting. When the 
first three, rather than two PCs are used, the results (not 
illustrated here) are just as clear, with twelve distinct 
contour shells corresponding to the twelve areas of the 
test tablet. 

2.4   Analysis of Signorelli's Predella 

Analysis of Signorelli's Predella has resulted in one of 
the first instances of data obtained using the Image 
Spectroscopy system developed at IROE. 
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For the first two PCs of the test tablet data set. Fig. 4 
shows contouring for a KDE based upon (a) the whole 
data set (86297 pixels) and (b), a random sample of 
10050 pixels. There are clearly twelve distinct clusters 
here. 

As expected, the twelve clusters visible correspond 
to the twelve strips of the original image. (Note that as 
the clusters for the test tablet are so clear, no Maha- 
lanobis distance clustering was undertaken.) For exam- 
ple, when mapped back to the original image, the clus- 
ter in the bottom right of the Fig. 4 corresponds to the 
fourth strip of the test tablet. The only question raised 
by this analysis is regarding the presence of the slightly 
split cluster on the extreme left of Fig. 4. The two parts 
of this split cluster are the upper and lower parts of the 

Fig. 5. (a) bivariate contours using (for illustration) varying 
levels of inclusion, and (b) trivariate 30% contour shells for a 
KDE based upon a random sample of about 10000 pixels for 
the first two and three PCs respectively of the Predella data 

As a result, this painting was not investigated to clarify 
particular issues regarding the history of the painting 
itself, rather to establish the feasibility of the methodol- 
ogy- 

Fig. 5 shows examples of bivariate and trivariate 
contouring based upon the first two and three PCs re- 
spectively, using a random sample of about 10000 pix- 
els. The regions of the original painting represented by 
the indicated clusters of Fig. 5a, b, after "growing" by 
means  of the  Mahalanobis   distance  algorithm,  are 
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shown in Fig. 6a, b respectively. It can be noted that 
part of the dress of the second person from the left is 
mapped with the same colour (light blue) as part of the 
bodies in the middle of the scene. In fact, such pixels 
belong to a very high-density area in the plot based 
upon the first two PCs (Fig. 5a). The trivariate 30% 
contour based upon a KDE of the first three PCs shows 
how this area in fact consists of two clusters (shown as 
red and green) which appear well split in Fig. 5b. These 
two clusters are mapped in Fig. 6b. 

3  Summary and conclusions 

Recall that clusters can be used for either or both of the 
following, in the context of the original painting. 

• Identification of inhomogeneities of spectral re- 
sponse and therefore of physical-chemical properties 
of the surface. The non-homogeneities may be due 
to under-drawings, retouching or restoration. Hid- 
den aspects could be highlighted especially when 
the data are acquired in the near-infrared region 
(NIR) since NIR radiafion has a relatively high 
penetration depth (the penetration depth depends, 
amongst other factors, on the absorbivity of the 
painted layer, the wavelength etc.). 

• Segmentation of the imaged scene into areas of 
similar spectral behaviour which help in investigat- 
ing the pigment distribution of paintings and in fa- 
cilitating successive analysis for the identification of 
the materials. 

We feel that the combination of PCA, KDEs with con- 
touring and a cluster analysis technique such as that 
based upon Mahalanobis distance is a powerful method 
that can be used to obtain a segmentation of the image 
into areas with homogeneous spectral behaviour. The 
segmentation is very good and clear using the test tab- 
let. Here there are four groups of three strips painted 
using the same pigment with a different carbon black 
content (so the strips are not completely different). The 
obtained segmentation for the Signorelli painting is 
reasonable and confirms the power of the methodology 
even in a (very) much more complex case. 

Fig. 6. The regions of the original painting represented by 
clusters "grown" from initial clusterings shown in Fig. 5a, b 
respectively (Mahalanobis distance clustering) 

3.1    Software 

The techniques discussed in this paper have been im- 
plemented in the MATLAB package by the first named 
author and are freely available (email: Chris- 
tian.beardah@ntu.ac.uk). The routines include the fa- 
cility to import and analyse the user's own data. All the 
illustrations were generated using this software. 
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