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10.1 INTRODUCTION

There is a two—fold purpose to this paper. The
first is to emphasize the need for spatial statistics.
The second is to suggest that Geographic Infor-
mation Systems (GIS) may be the ideal place to
implement these statistical procedures. By “spa-
tial statistics” I do not mean the application of the
conventional tests described in most statistics
books to data sets that are spatial in origin. Con-
ventional tests usually require independence
among observations, something that generally is
untrue of spatially distributed information, and
these procedures usually are aspatial in nature
and design. Spatial statistics, on the other hand,
take into account the locational component of the
data and, at the same time, allow for the resultant
interdependencies that occur between observa-
tions (Cliff & Ord 1981).

GIS, of course, are computer software de-
signed for the efficient and rapid retrieval, ma-
nipulation, processing, and display of spatially
referenced information (Burrough 1986). Conse-
quently, they are a logical place to implement
spatial statistical tests. Various GIS components,
such as sub-systems for encoding, manipulation,
and display, can greatly facilitate the spatial data
analysis and interpretation process. This is no
trivial matter. Moreover, recent work in spatial
analysis (e.g., Harris & Lock 1990) has empha-
sized the joint importance of the domains of visu-
alization and quantitative appraisal. They com-
plement each other and both are essential to
spatial inquiry. The excellent display capabilities
of GIS, together with embedded systems for
quantitative analysis, can provide an ideal envi-
ronment for spatial investigations.

A comprehensive overview of spatial statistics
is beyond the scope of this paper. What I hope to
offer is a demonstration of the weakness and falli-

bilities of conventional aspatial statistical tests
when applied to geographically distributed data.
By emphasizing weaknesses, the superiority of
procedures that incorporate spatial information
will be enhanced. I also hope to show some of the
inherent problems that arise when dealing with
the quantitative analysis of spatial information,
particularly those stemming from interdependen-
cies that occur among observations. This will be
accomplished initially through the presentation of
some simple example data sets pertaining to the
topic of spatial association—the relationship be-
tween two variables measured at identical loca-
tions over space. The discussion will ultimately
conclude, however, with a somewhat more com-
plex example: a modification of Student’s t—test
that allows for spatial data and exemplifies many
of the issues at hand. All of this will be under-
taken in contexts that employ the data retrieval,
manipulation, and display capabilities of GIS
demonstrating, I hope, the importance of GIS to
modern spatial analysis.

10.2 THE SPATIAL COMPONENT OF
INFORMATION

The topic of spatial association offers a conven-
ient way to illustrate many of the issues and diffi-
culties that arise when dealing with geographi-
cally distributed information. Spatial association
simply refers to the relationship between two
variables measured at identical locations over
space. Two artificial data sets are utilized, each
forming an 8 x 8 matrix for n=64 observations
(Figure 10.1a). The data in each matrix were ob-
tained from a random number generator, sam-
pling without replacement integers in the interval
1-64. The data might represent frequencies for
artifact types A versus B or perhaps the
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Figure 10.1: Spatial association between top and bottom images showing in column a) no association, in column b) positive
association, and in column c) negative association.

transformed results of magnetometer and soil re-
sistivity readings, respectively.

10.2.1 Conventional (aspatial) statistics

The point-to—point association between the two
matrices can be assessed through a conventional
correlation measure. Because the data in each ma-
trix represent a sequence of unique integers they
can be treated as ranks and Spearman’s r; or
Pearson’s r will give an identical result (Siegel
1956:203). Since the data in Figure 10.1a were de-
rived through random number generation we can
expect a correlation of about zero; actualy a large
number of these data sets were generated until a
pair was achieved with a correlation very near
zero, in fact r=r,=0.002. Visually, there does not
seem to be any spatial association between the
images. This is as it should be: visual impressions
and quantitative findings should agree.

It should be realized, however, and empha-
sized, that the foregoing conventional measures
of correlation, Pearson’s r and Spearman’s r;, are
aspatial in nature. That is, they measure correla-
tion strictly between common points and fail to
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consider the association that may exist between
nearby or even adjacent locations. Consequently,
commonalities that may exist between nearby
values cannot be detected making these statistics
solely measures of what has been termed “point—
to—point” association (Hubert et al. 1985). This can
be forcefully demonstrated through some simple
reshuffling exercises. If the 64 pairs of values in
the two images of Figure 10.1a are kept constant
and unchanged, but only their ordering or posi-
tion in the matrix is altered, we can restructure
the spatial arrangement of the data yet maintain
the same lack of correlation.

In Figure 10.1b one of the 64! possible order-
ings of the paired data is given that visually
points to strong positive spatial association be-
cause low, medium, and high values tend to oc-
cur in similar regions. Yet, the two values in each
grid square are the same 64 pairs of integers that
indicate zero correlation. All that is changed is
their spatial position. Figure 10.1c shows a spa-
tial arrangement that visually suggests strong
negative association with the same uncorrelated
data.



These reshuffling examples clearly indicate the
unsuitability of conventional statistics that fail to
consider the locational component of the data in
spatial contexts. The statistics uniformly point to
no correlation even though positive or negative
association is readily apparent in some of the ar-
rangements (Figure 10.1).

10.2.2 Spatial statistics

To illustrate the superiority of statistics that con-
sider spatial information we can turn to one of
the more commonly known ones, Moran’s I,
which has, in fact, been employed a great deal in
the archaeological literature (e.g., Hodder & Or-
ton 1976; Chadwick 1978; Whitley & Clark 1985;
Kvamme 1990a). The reason for selecting this sta-
tistic is that it is relatively easy to work with and
understand, a simple transformation allows it to
detect spatial association, and it is implemented
in several common GIS packages.

Moran’s I attempts to measure the strength of
correlation of a single variable with itself over
space, or what is known as spatial autocorrelation
(Cliff & Ord 1973). Consequently, it differs from
the previous correlation measures because it does
not assess the relationship between two variables,
and it explicitly incorporates spatial information.
It is defined as:

n )ZZ W (= —E)(xj -%)
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where X is the observed mean of the variate of
interest. Thus, each observation x; is compared
with each other observation x; considering the
spatial relationship between them expressed by
W . The latter can be regarded as a weight and
can take on many forms. Perhaps the simplest is a
binary scheme where W, =1 for adjacent loca-
tions; W; =0 otherwise. Another common
weighting scheme is W; =1/d;;, where d; is the
Euclidean distance between locations i and j. In
the latter nearby observations receive much more
weight than those widely separated, agreeing
with what Tobler (1970:234) has referred to as
«the first law of geography: everything is related
to everything else, but near things are more re-
lated than distant things.» Many other weighting
schemes are possible and can be based on explicit
knowledge of spatial relationships or interaction
(Cliff & Ord 1973; Hodder & Orton 1976:178). Im-
portantly, the sampling distribution of I is known
and well-documented, allowing construction of
significance tests (Cliff & Ord 1973, 1981).

10 Spatial statistics and GIS: an integrated approach

What has a measure of spatial autocorrelation,
the relationship of a single variable with itself
over a region, have to do with our problem of the
spatial association between two variables? Quite
simply, we can define a single new variable, z,
that characterizes the covariation between the
two original variables, x and y, location-by-loca-
tion in our three example data set pairs of Figure
10.1. If there is true (positive or negative) spatial
association between any of the image pairs then
similar values of z will tend to cluster, Moran’s [
should indicate significant spatial autocorrelation
in z, and therefore spatial association between x
and y. Several indices of covariation are possible
candidates 2such as z;=xy;, 2; = Ix,- - y,.| or
z,=(x,~y,) . In order to bear some similarity
with the previous correlation measures, the fol-
lowing is employed z; = (x, —E)(y,- - y)

With GIS it is quite easy to generate this new
variable using techniques often referred to as
“Map Algebra” (Berry 1987). The following steps
might be undertaken:

1) the mean of each map held within a GIS, repre-
senting the x and y variables, is first computed;

2) the means are subtracted from the respective
values of each location in the maps;

3) a new map representing z is generated by tak-
ing the product of the previous outcomes.

This process was undertaken for each of the map
pairs shown in Figure 10.1. The results, given in
Figure 10.2, suggest the success of this tactic. Fig-
ure 10.2a, derived from the initial random order
of Figure 10.1a, appears equally random with no
indication of spatial pattern in z. Yet, Figures
10.2b and 10.2¢, representing the spatial distribu-
tion of z resulting from apparent positive (Figure
10.1b) and negative (Figure 10.1c) spatial associa-
tion, respectively, clearly indicate pattern. That is,
high values of z, indicating large same—direction
deviations from the respective means of x and y,
cluster in similar regions, as do low values which
represent opposite—direction mean deviations in x
and y.

These impressions can be tested statistically
with Moran’s I. One sampling distribution for I
assumes that the variate of interest is normally
distributed; a second does not and is based on a
randomization assumption (Cliff & Ord 1973,
1981; see Kvamme 1990a for a worked example).
The latter is chosen here because the data are
treated as ranks. The results, using reciprocals of
Euclidean distances between cell centers as
weights, are pleasing. The z data in Figure 10.2a,
resulting from random data in random order,

93



Kenneth L. Kvamme

S
NN
0
N
N

AN,
AR AN
Nt &
LT

I ISP
rddd s
Ry

Figure 10.2: Bivariate transformation of the images in each column of Figure 10.1 showing a) no pattern and b,c) pattern,

or spatial autocorrelation.

exhibit no significant spatial autocorrelation
(I=-.029; p=.366). On the other hand, the z data in
Figures 10.2b and 10.2¢, representing the strong
spatial association shown in Figures 10.1b and
10.1c, yield highly significant levels of autocorrel-
ation (Ipos =.097; p<.001; I, =.028; p=.003).
Thus, a simple transformation of two variables,
coupled with a proper statistic that incorporates
spatial information, Moran’s I, is able to correctly
detect spatial association when it is present, as
well as indicate when it is not. This contrasts
quite dramatically with the conventional aspatial
correlation measures, Pearson’s r and Spearman’s
75, which completely failed to detect any associa-
tion when it was present, yielding in all cases val-
ues near Zero.

The approach summarized here for detecting
spatial association, although not described previ-
ously in the literature, was presented largely to
illustrate properties of spatial statistics using a
relatively well-known and simple spatial auto-
correlation measure, Moran'’s I. Much more rigor-
ous and insightful procedures exist for confront-
ing the spatial association problem which may be
found in the works of Hubert et al. (1985), Hubert
& Golledge (1982), Tjostheim (1978), and
Gorenflo & Gale (1986).

10.3 EFFECTIVE SAMPLE SIZE

A second important and related problem when
dealing with the analysis of spatially distributed
information is the effective sample size. This issue
is best illustrated by returning to the spatial asso-
ciation problem and a conventional measure of
correlation. Suppose one is working with a single
hectare, 100 x 100 m square, and is able to make
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systematic observations of two variables. The
variables might be slope angle, elevation, depth
to bedrock, or a magnetometer reading, for exam-
ple. A grid spacing of 50 m might be initially cho-
sen, yielding a 3 X 3 matrix of observations for
each variable. This situation is depicted in Figure
10.3a where each variable illustrates a weak
north-south trend (reflected by the gray levels).
Pearson’s r is a modest r=.32 that is nowhere near
significant with a sample size of only n=9

(p =.40).

Now suppose that it is important to show that
the two variables illustrate statistically significant
correlation through use of Pearson’s r. Even
though the relationship seems to be rather weak,
with r=.32, it is common knowledge that signifi-
cance is a function not only of r, but also of sam-
ple size, n. In fact, assuming bivariate normality
and independent observations, the statistic

n—2
1—#?

t=r

which is clearly a function of r and n, follows a t—
distribution with n-2 degrees of freedom.

These relationships can easily be exploited to
achieve the appearance of statistical significance.
Suppose that we return to the same 100 x 100 m
parcel, but decrease the grid spacing between ob-
servations from 50 m to 25 m, yielding 5 x 5 ma-
trices and n=25 observations (Figure 10.3b). If the
correlation stays about the same, at r=.32, the sig-
nificance of the relationship increases markedly,
with p=.12. By most standards this still would not
be regarded as a statistically significant outcome,
however. Consequently, the process might be
taken one step further by sampling the same re-
gion at 12.5 m intervals yielding 9 X 9 matrices
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by presenting a spatial statistical test that actually
estimates it from empirical data. The test does so
through a simple transformation of the apparent
sample size, n, and the strength of the observed
spatial autocorrelation, as measured by Moran’s
I. Consequently, it also provides additional in-
sight into the other spatial-statistical topic of this
paper, tests that incorporate the locational com-
ponent of the data.

10.4 A MODIFIED T-TEST FOR SPATIAL
DATA

A modified Student’s t-test, appropriate for the
comparison of means when samples consist of
spatially autocorrelated observations, was pre-
sented by Cliff & Ord in 1975. This test illustrates
many of the issues and concerns discussed previ-
ously and has achieved some attention as a point
of methodological interest (e.g., Haggett et al.
1977; Haining 1980; Cliff & Ord 1981), but little in
the way of actual application to empirical data
sets. The latter is probably true because it is
somewhat more complex than the conventional
(aspatial) t-test and, in any case, it is difficult to
implement without appropriate computer soft-
ware. There is also some question about the kinds
of spatial contexts to which it may be applied
(Haining 1980). The following material is derived
primarily from Cliff & Ord’s (1975) initial presen-
tation, and is greatly abridged. My intent in the
remainder of this paper is to:

1) present this relatively obscure test to a wider
and contemporary (archaeological) audience
because it is important in itself, but also as a
means to illustrate spatial autocorrelation is-
sues and problems;

2) clarify its role given several possible limita-
tions and shortcomings;

3) give an example application of the test in a GIS
context showing a possible archaeological use;
and

4) illustrate a recently created software imple-
mentation compatible with a popular GIS
package.

10.4.1 The conventional student’s t-test

Under a null hypothesis, H, of no difference be-
tween population means, p, and ,, Student’s t-
statistic:

[2 p=E
0;1_52
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follows a t—distribution with n, +n, —2 degrees of
freedom, when certain assumptions can be met.
These assumptions include normal populations,
homogeneity of variance, and independent obser-
vations. X, and ¥, are sample means from popul-
ations 1 and 2 and 6‘;1_;2 is the estimated standard
error of the difference between sample means
given by

JERECIn
1 2

The common variance assumption requires a
pooling of the individual sample variances (S?
and S?)

St(m —1)+S3(m, 1)

[4] 5 =
¢ 1y +1,—2

The independence assumption is what causes
problems in spatial contexts, since geographically
distributed data often are spatially autocorrel-
ated, as noted in previous sections.

Student’s t-test (Eqs. 2-4) generally is re-
garded as quite robust in the face of mild depar-
tures from normality, and corrections exist for the
case when the sample variances are assumed un-
equal (Hays 1988). However, the severe conse-
quences that can arise when the last assumption,
independence, is violated have been demon-
strated by Cliff & Ord (1975) through computer
simulation.

Cliff & Ord (1975) took artificial data sets spa-
tially autocorrelated by a known amount, p , and
through Monte Carlo methods obtained repeated
samples against which the performance of ¢ (Egs.
2—4) could be evaluated. Specifically, they as-
sumed a quadrilateral, or first-order, spatial
autoregressive process, usually regarded as the
simplest start—point in studies of this nature (Cliff
& Ord 1975,1981; Griffith 1987:28). That is, the
value of a variate x,, distributed in a lattice in
space, is determined by its four neighbors and the
strength of p, plus a random error term

[5] X; = PZ]- Vvi;xj +e

If we recall that W is a weight between the i*
and j* observations, then W is a scaled or stand-
ardized weight

l6] W =i
Z]_I’Vij



causing z W; =1 for all i and z z ;i =n.The
latter is a convenient normalizing fransformation

which assures that the sum of the weights associ-
ated with each observation is identical for all ob-
servations. The error term, ¢,, is simply a ran-
domly generated standard normal deviate, with
mean zero and variance one.

Cliff & Ord (1973,1975,1981), Haggett et al.
(1977), Whitley & Clark (1985), and others, show
that spatially autocorrelated x; may be generated
(in matrix notation) by

pW) e

where I is the identity matrix, W is the weighting
matrix, and e is the vector of error terms. When
p is greater than zero the vector x will contain n
positively spatially autocorrelated observations.

In the computer simulation spatially autocor-
related lattices were generated by Eq. 7 for a vari-
ety of sample sizes and mapped onto a torus to
remove undesirable edge effects. For each simula-
tion run the sample means and variances were
computed for each lattice (with p, =, =0 and
0, =0, =1, meeting the condition of the null hy-
pothesis) and Student’s t—statistic given by Egs.
2—4 was obtained, assuming independent obser-
vations. This process was repeated 1200 times for
specific sample sizes 375 ,1,) and levels of spatial
autocorrelation (p1 ,P2)- The results of one such
simulation that utilized 7 x 7 lattices (n, =n, =49;
df=96) is given in Table 10.1.

Itis generally the case that under positive spa-
tial autocorrelation conventional statistical tests
greatly overstate significance and increase the
probability of a Type I error (Haggett et al. 1977).
This clearly is the case here. The distribution of
the statistic is so different from the t-distribution
(Table 10.1) that without corrections serious infer-
ential errors can arise.

(71 x=(I—

10.4.2 A modified spatial #-test

When there is first-order spatial autocorrelation
in the variates x, and x,, Cliff & Ord (1975, 1981)
suggest that the estimated standard error of Eq. 2
should be given by

10 Spatial statistics and GIS: an integrated approach
and
A \2
[10] mk=nk(1—pk) , k=12

when the spatial weighting scheme is standard-
ized as in Eq. 6. The m, may thus be interpreted
as “an equivalent number of independent obser-
vations” (Cliff & Ord 1975:729). It should be clear
from Eq. 10 that when there is a high level of spa-
tial autocorrelation, p,, the effective sample size,
., is greatly reduced from the apparent sample
size n,. This aspect of the modified t-test there-
fore addresses the second spatial concern of this
paper.

The V. is given by
ﬁkw) (I -

vili=(1- W), k=1,2

which is the inverse of the covariance matrix of
the first-order spatial autoregression (see Egs. 5,
7). It denotes the spatial covariance structure
among the variates which, through Egs. 8-9, is
fed directly to the t-test formula (Eq. 2). Finally,
we note that when p, =p, =0, m, =n, (Eq. 10), as
it should, and the standard error given by Eq. 8
reduces to the form of the conventional t-test (Eq.
3), which assumes independent observations.

Equations 8-10, then, provide a correction to
the f-test formula that in theory will bring its dis-
tribution nearer to the Student form when it is ap-
plied to spatially autocorrelated or dependent
data.

10.4.2.1 Estimation of the p,

An obvious candidate for the estimation of the p,
is maximum likelihood, but multiple difficulties
arise with this method (see Griffith 1987; Cliff &
Ord 1975,1981). A far simpler estimator exists,

(8] Oy 5, = Sz[—1—+ij
my m,
where (in matrix notation)
[9] . ’
G2 _ (xl - X 1) Vl_l(xl =% 1) +(X2 "Ezl) V{l(xz _Ezl)
g n+n,—2

Tabulated Empirical t-values

o t 00 05 09 55 59 9.9
.10 129 1130 188 730 239 721 881
.05 166 [1.61 253 920 3.01 9.08 1098
025 198 (197 294 1090 3.63 11.05 12.88
01 236 |223 340 1322 4.05 1338 14.99
005 262 (242 371 1469 447 1663 1635

Table 10.1: Simulation results based on 1200 repetitions
showing the performance of the conventional Student’s t—
test under varying levels of positive spatial autocorrelation.
These results are from 7x7 lattices ( ny, =n, =49;df=96).
Values of p, and p, are given at the head of each column.
(Source: Cliff & Ord 1975:730.)
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however, that is based on Moran’s I statistic
(Eq. 1.

It is well-known that Moran’s I does not range
over the usual [-1,+1] interval, unlike most corre-
lation coefficients (Cliff & Ord 1973). When
standardized weights are employed (Eq. 6), how-
ever, it is possible to compute its maximum at-
tainable value for any given spatial lattice:

var[zj W (x]. = E)-‘

var(xj - E)

max|]|=

where “var” is the sample variance over all i ob-
servations. An estimate of p on the usual [-1,+1]
scale then is given by

[11] p=——=

Cliff & Ord (1975, 1981) show that this estimator
is not consistent and is generally biased down-
ward. Computer simulations indicate, however,
that despite the bias the estimator given in Eq. 11
is reasonable provided that 7 is large (1>25) and
p is not near unity (Cliff & Ord 1975:730). This
use of Moran’s I as a basis for estimating p satis-
fies the first spatial concern of this paper because
it explicitly incorporates the locational compo-
nent of the data.

10.4.2.2 Performance of the modified test

The Monte Carlo methods documented earlier
that were employed to evaluate the conventional
t—test when applied to spatial data also were used
by Cliff & Ord (1975) to assess the performance of
the modified f-test. That is, two samples autocor-
related by a known amount were generated (with
Y, =, agreeing with the null hypothesis), and
the performance of the modified test was evalu-
ated under different sample sizes and levels of
spatial autocorrelation. A number of important
modifications to the simulation were inserted,
however. First, in addition to the several sizes of
square lattices mapped onto a torus that were ap-
plied in the earlier simulation, an irregular, real-
world lattice representing the county system of
Ireland (excluding Dublin for n=25 counties) was
employed, also with binary, standardized
weights. Additionally, the pooled sample vari-
ance, S,f, was estimated first by the theoretically—
derived form of Eq.9, and then by its simpler
form, Eq. 4 of the conventional f-test, allowing a
comparison of the suitability of the two estima-
tors. The results for the simulation dealing with 7
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x 7 lattices (comparable with the conventional {—
test outcome of Table 10.1) are given in Table
10.2.

It is clear in Table 10.2 that the test statistic
with the pooled variance, S;, estimated by the
simpler form of Eq. 4, gives much better results
than the more complex estimator given by Eq. 9.
The latter is highly unstable and yields com-
pletely untrustworthy results even for moderate
levels of p . The modified t—statistic with $? in its

simpler form, however, performs remarkalgly

2
A.S, estimated by Eq. 4.

Tabulated Empirical t-values

o t .0,.0 05 .09 55 59 99
.10 129 (134 128 127 134 126 1.01
.05 166 |1.69 186 159 174 165 125
025 198 1194 217 212 209 214 145

.01 236 |235 261 328 249 260 1.84

005 262 [254 270 355 267 287 271

B. S: estimated by Eq. 9.
Tabulated

o t .0,.0 05 .09 5.5 59 99
.10 129 136 141 235 151 233 250
.05 1.66 (172 196 4.04 193 397 4.09
025 198 |196 234 6.08 234 634 634
.01 236 (234 276 1009 271 1092 9.88
005 262 |256 285 2034 298 11.00

Empirical t-values

12.17

Table 10.2: Simulation results based on 1200 repetitions
showing the performance of the modified spatial t—test un-
der two estimators of S: and varying levels of positive spa-
tial autocorrelation. These results are from 7 X 7 lattices
(ny =n,=49;df=96). Values p, and p, are given at the
head of each column. (Source: Cliff & Ord 1975:732)

well, particularly when the p, are not too close to
unity (Table 10.2).

Further insight into the performance of the spa-
tially modified test is gained in Table 10.3 where
three things are apparent: as expected the modi-
fied test works better as

1) n, and n, increase;
2) when p, and p, are not close to unity;
3) when both sample sizes are equal.

With regard to the first point, Cliff & Ord
(1981:189) suggest that the modified test should



Data Set Percent Observations Exceeding Tabled 5%
Level

(Sample 1,2) 00 W05 .09 55 59 99
3x3, 3x3 78 124 294 138 284 34.0
5x5, 5x5 5.3 73 112 8.2 8.5 7.7
Ireland,Ireland 6.2 6.8 8.7 7.2 6.7 2.5
7x7, 5x5 5.0 75 138 67 128 6.0
7x7,7x7 3:5 6.3 4.5 5.7 5.0 1.7
10x10, 10x10* 3.0 55 4.5 3.5 25 1.5

*Based on 400 repetitions

Tabel 10.3: Simulation results based on 1200 repetitions
showing the performance of the modified spatial t—test un-
der varying levels of positive spatial autocorrelation, sam-
ple sizes, and spatial configurations. Values of p, and p,
are given ath the head of each column. (Source: Cliff & Ord
1975:733)

only be applied when #, and #, both exceed 25. If
the p, are near unity the test becomes conserva-
tive causing results to be more significant than
they appear to be. Finally, and of some impor-
tance, the performance of the test on the Irish
data suggests that irregular spatial configurations
do not present a problem to the test.

10.4.2.3 Issues and concerns
In addition to the foregoing limitations of the spa-
tial t-test, a concern that may be more serious has
been emphasized by Haining (1980). Cliff & Ord’s
(1975) modifications of the t—test were initially
established assuming a first-order spatial autore-
gressive process (Eq. 5). Haining (1980:23) argues
that under some other spatial process, and the
first-order autoregressive is one of the simplest
compared to most real-world processes, different
modifications or corrections to the test would be
required. This point deserves closer attention.
Cliff & Ord (1975) did, indeed, establish their
modifications to the t-test based on corrections
theoretically derived from an assumed first-order
spatial autoregressive model. The corrections re-
sulted in the complex form S: given by Eq. 9. The
performance of the modified test based on this
statistic, however, was shown by simulation to be
very poor under the condition of positive spatial
autocorrelation (Table 10.2). Cliff & Ord (1975:
733, 1981:188-9) therefore recommend against its
use. They advocate, rather, that the simple aspa-
tial form of S}f (Eq. 4) be employed which yields
superior results (Tables 10.2-3). Consequently,
the test as it stands (Eq. 2,4,8,10) does not employ
a modification based on a first-order spatial auto-
regressive assumption.
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The single remaining modification to the test,
the correction of the apparent sample sizes to ef-
fective sample sizes (Eq. 10), is based on an em-
pirical estimate of the p, (Eq. 11) that is derived
entirely from Moran'’s [ statistic (Eq. 1). Moran’s
I, of course, is a general measure that allows as-
sessment of the strength and nature of empirical
spatial autocorrelation generated by any spatial
process. Consequently, proper application of Cliff
& Ord’s (1975) modified t—test may not be as lim-
ited as Haining (1980) suggests.

In any case, there is poor theoretical under-
standing of real-world spatial processes at
present, even by geographers who have been con-
fronting the issue for several decades (Cliff & Ord
1973,1981; Haining 1980; Griffith 1987). This is
particularly true in fields like archaeology where
little work has been caried out in this area. In
other words, we usually do not know, and can
barely guess, the true nature of the spatial proc-
esses that generated realized patterns in the ar-
chaeological spaces we deal with. In such situa-
tions a usual, and acceptable, procedure is to
assume the simplest form; in terms of spatial pro-
cesses this turns out to be the first-order spatial
autoregressive model (Griffith 1987:28). Cliff &
Ord’s (1975) modified t-test, then, might be ap-
plied to real-world situations when there is a
possibility that the data are spatially
autocorrelated. At worst, such applications will
give more correct results than use of the test in its
conventional aspatial form.

10.5 ARCHAEOLOGICAL APPLICATION

An archaeological data set is employed that illus-
trates application of the modified t-test and many
of the issues discussed in this paper. The applica-
tion also shows the benefits that can be derived
when conducting spatial investigations of this na-
ture in a GIS setting. With regard to the latter, a
program called SPTTEST has been written by the
author that performs the modified spatial t—test
and which interfaces with several commonly
available microcomputer GIS programs, includ-
ing the IDRISI GIS (Eastman 1990). The data for
the application were obtained from an archaeo-
logical mapping project conducted on Seiber
Ridge, located in a remote wilderness area of
western Colorado, USA (Kvamme 1990b).

Seiber Ridge, lying at an altitude of nearly 2000
m, is a geologically deflated ridge, caused in part
by a century of overgrazing by the cattle indus-
try, but also by a forest fire that occurred in the
area more than 30 years ago. These circum-
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stances, together with the general high visibility
of the ground surface caused by the region’s arid-
ity and consequent lack of vegetation, have ena-
bled the detailed surface mapping of the abun-
dant artifacts that occur there. Over two field
seasons approximately 24,000 artifacts have been
mapped in an area of approximately 6.5 hectares.
The archaeology, spanning nearly 7000 years and
consisting entirely of lithic scatters, represents de-
posits left primarily by hunter—gatherers and pos-
sibly by roving bands of part-time
horticulturalists that frequented the area during a
brief 300 year period.

Much of the project data has been encoded
within a comprehensive GIS database to facilitate
data retrieval, analysis, and display. Most of the
database exists in a raster data structure with a
grid resolution of four meters. The nature of the
artifact density over the region and the ridge
upon which the artifacts occur is illustrated in
Figure 10.4 through simple GIS graphics.

The chief means of dating surface collections in
this region lies in projectile point styles. One of
the major artifact clusters, shown on the far right
of Figure 10.4, contains numerous early projectile
points, dating from the Archaic Period (ca. 7000
3000 BP). A second major concentration, located
along the lower left edge of the study area (Figure
10.4), contains many late projectile points, dating
primarily from the last 1000 years. Visual inspec-
tion of Figure 10.4 alone suggests that these arti-
fact clusters represent highly autocorrelated data
sets. A number of differences between these clus-
ters also are suggested by the data, which may be
examined by the spatial t-test.

The first analysis question pertains to artifact
density, computed as artifacts per square meter
in the GIS database. In Figure 10.4a it appears
that there may be some differences in artifact
density between the early and late clusters (indi-
cated by gray-level shading). To implement the
spatial t—test to assess the null hypothesis of no
mean difference between the two concentrations
the following GIS steps might be caried out:

1) A density cut-point might be employed to help
isolate the clusters by indicating, through map
reclassification, those localities at or above a
specified artifact density level. Alternatively,
simple on—screen digitizing can be used to
trace the perimeters of the clusters.

2) When the clusters are defined they are con-
verted to simple binary masks.

3) The primary image containing the variate to be
analyzed, here artifact density, together with
the two masks that indicate the artifact sample
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regions provide input to the spatial ftest. In
the raster data structure the masks indicate the
grid cell elements that constitute each sample.
Other software that exists in the GIS package
might be employed to offer basic descriptive
statistics, histograms, and other data about the
clusters.

The results of the spatial autocorrelation analysis
and basic descriptive statistics for each artifact
cluster, output by SPTTEST, are given in Table
10.4. These data indicate that the sample means
are indeed different between the clusters, with

X, =1.81/m? and %, =2.38/m?, for the Archaic
and Late Periods, respectively. The question is,
are these differences significant?

Assuming first (incorrectly) independent ob-
servations, and using the conventional (aspatial)
t-test of Eqs. 2—4 with the data in Table 104, a {-
statistic of t=-2.02 is achieved which, when com-
pared against Student’s t—distribution with
n, +n, —2=98+117 - 2= 213 degrees of freedom,
indicates a significant mean difference (p=.044).
This result is instructive, because when Cliff &
Ord’s (1975) spatial t—test is employed that recog-
nizes the interdependencies between these matri-
ces of related grid cells, a different conclusion is
reached. From Table 10.4 we note that the esti-
mated level of spatial autocorrelation, p , for each
sample is approximately 0.5, yielding effective

1. ARCHAIC 2. LATE PERIOD

IA. Artifact Density

X, = 18112 X, = 2.3830

$2 = 2.3887 S? = 5.8125

n, = 98 n, = 117

I, = .3014 (p<.00) I, = .3099 (p<.001)
p = .479 p, = .4982

m = 26.54 m, = 29.46

B. Slope

X, = b5.5185 X, = 7.9401

S: = 9.1707 S; = 6.2355

n, = 98 n, = 117

I, = .6688(p<.001) I, = .5990 (p<.001)
p, = .8809 p, = .8101

m = 139 m, = 4.22

Table 10.4: Descriptive statistics and spatial autocorrel-
ation test results for the Seiber Ridge archaeological data.



10 Spatial statistics and GIS: an integrated approach

74
Bay

v SR
4‘.'1/?‘:: 2
R R
iy e AR
LTS

24

Figure 10.4: Seiber Ridge, Colorado, USA, showing a)
artifact density and b) gradient (slope) data. Darkest gray
tones represent high values in both images. The site
clusters of interest are highlighted.
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sample sizes of only m, =26.54 and m, =29.46
for the Archaic and Late Periods, respectively
(down from their apparent sample sizes of 1, =98
and n, =117, Table 10.4). These moderate levels
of spatial autocorrelation have reduced the effec-
tive sample sizes to one—quarter of their initial
level. A modified f-statistic of t=-1.036 results
that with 213 df clearly is not significant (p=.301).
Thus, the modified spatial —test, by considering
the spatial relationships and removing the redun-
dancies in the data, has allowed a more realistic
and correct inference by indicating no significant
mean difference.

A second analysis indicates how pronounced
the difference between the two tests can be and,
consequently, the magnitude of the inferential er-
ror that can result when employing conventional
tests in spatial contexts. This analysis examines
mean differences in ground steepness, or slope,
between the two site clusters. The GIS graphic in
Figure 10.4b indicates that the Archaic cluster oc-
curs primarily on the broad and level ridge crest
while the Late Period concentration is scattered
somewhat down the slope of one of the ridges.
Descriptive statistics, output by SPTTEST and
given in Table 10.4, indicate that there are differ-
ences in mean slope, with x; =5.52 and x, =7.94
percent grade (subscripts as before).

Slope was computed using a common GIS al-
gorithm that fits a least-squares plane toa 3 x 3
window centered on a grid element in the eleva-
tion layer; the maximum slope on that plane is
obtained and stored in a corresponding grid ele-
ment in a slope layer. The 3x3 window then is
moved, and centered, on the next grid cell ele-
ment and the process is repeated until an entire
matrix of slope values is obtained (Kvamme
1990c). Obviously, six of the nine elevations in
each 3 X 3 window also occur in each previous
window. With this commonality we might expect
a raster slope surface to exhibit high levels of spa-
tial autocorrelation. This indeed is the case in the
current analysis (Table 10.4). Both Moran’s I and
the estimates of p are high and statistically sig-
nificant. The contrast between the f-tests is dra-
matic: for the Archaic class the apparent sample
size of n; =98 drops to an effective sample size of
only m;, =1.39; for the Late Period n, =117 drops
to only m, = 4.22! Although the conventional -
test yields a highly significant result under the
independence assumption (t=-6.43; p<.001), the
pronounced spatial autocorrelation yields a
modified spatial ¢-statistic of only #=-.89, clearly a
non-significant result (p=.37).
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10.6 CONCLUSIONS

Conventional statistical tests generally are
aspatial in nature and therefore do not consider
the locational component of information when
applied to geographically distributed data. Their
use in spatial contexts can lead to erroneous and
misleading findings. Spatial statistical tests that
incorporate the locational component of data are
necessary to make correct inferences in spatial
contexts. The latter, however, are difficult to un-
dertake without specialized software and efficient
means to input, organize, retrieve, and display
the data. GIS methods therefore greatly facilitate
spatial investigations because they provide gen-
eral data input, retrieval, manipulation, and dis-
play capabilities, but also a vehicle for incorpora-
tion of specialized spatial—statistical software, like
the SPTTEST program. Moreover, the advanced
computer graphics common to most GIS allows
ready visualization of pattern in data, an essential
adjunct to quantitative analysis.

The modified t—test of Cliff & Ord (1975) is a
good example of a spatial statistical test because
it illustrates two key domains of concern in spa-
tial analysis. The first is the incorporation of the
locational component of the data which was
achieved through use of Moran’s I. The second is
correcting for spatial dependencies in the data,
obtained through estimation of effective sample
sizes. Although some researchers (e.g., Haining
1980) have claimed restrictions to the test’s gen-
eral applicability because it was initially estab-
lished assuming a particular type of spatial proc-
ess (the first-order spatial autoregressive), the
test as ultimately presented relies only on modifi-
cations obtained from a general measure of spa-
tial autocorrelation, Moran’s I. This issue may be
a moot point, however. The nature of the spatial
processes that formed the archaeological record
we deal with is so poorly understood at present
that typically we must rely on the simplest proc-
esses as models, such as the first-order spatial
autoregressive (Griffith 1987). Consequently, the
spatial t—test might be considered a useful alter-
native that can provide superior results in spatial
contexts when autocorrelation is present.
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