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Rule-based Dating of Artefacts 

Kazumasa Ozawa* 

34.1 Introduction 

Many types of expert systems have recently been developed. We face many tra- 
ditional problems to which expert systems seem applicable. Empirically acquired 
knowledge has played a key-role in solving such types of problems. A famous and 
successful example of an expert system is MYCIN which handles the problem of 
diagnosing blood diseases (Shortliffe 1976). 

Knowledge or expertise is basically regarded as a vague continuous body. The first 
step towards an expert system is to segment such a continuous body of expertise into 
unit rules. Then a knowledge-base is given by a collection of rules to solve problems 
in a given domain. 

Empirically acquired knowledge often plays a very important role in archaeological 
dating. When the dating objectives are limited to a small class of artefacts, a huge 
amount of knowledge is not necessarily required so that a computer may be used 
in rule-based dating operations instead of an archaeologist. An artefact invloves a 
large number of dating components, each of which manifests an individual trait of 
temporal change. Archaeological knowledge is approximately equivelent to a set of 
dating rules referring to those temporal changes. This paper presents a model of the 
archaeological dating process and its application to building a dating expert system. 

34.2 Modelling 

Archaeological dating methods can be classified into two types, i.e. absolute dating 
and relative dating. As is well-known, absolute dating methods have been established 
on the physical basis as seen in radio-carbon dating. On the contrary, most relative 
dating operations have been based on the knowledge and inference of archaeologists. 
In Japanese archaeology, relative dating such as seriation has also played a very 
important role in the understanding of temporial traits of artefacts along with abso- 
lute dating. This paper will address such relative dating as based on archaeological 
knowledge and inference, termed rule-based dating. 

Rule-based dating expert system should be designed referring to the typical process 
of archaeologists' dating operations. In the following, a model of the dating process 
is presented, which will be referred to for our system implementation. 

An artefact involves a number of dating components. Let x be an artefact belonging 
to such a properly limited class A as associated with a constant tuple of N dating 
components, designated 1 through N. Then we define x as 

a; = (xi,.T2,...,.x-Ar)- (34.1) 

where XI,X2,...,XN are values assigned to dating components i, 2,..., iV, respectively. 
Suppose that A is a properly limited class of pottery such that its dating compo- 

nents include decoration, colour, source material, technical skill, style, find spot and 
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Value of the n-th component 

Figure 34.1: A mapping function of a single variable 

others.  Let a pot x in A be written by (34.1).  Each of x,,.. .,XN is either numerical 
or non^numerical; e.g.  when a component n is non-nur^iericaPcolour'  i^s vZe ? 
would be red, brown or black. In general, the archaeological dating opera  on can be 

c a?s  For'x in n??;"" "';'.' "''"\' ^^'     ' ^^ '"^^ ' '''^' ^^"S^ a! sodated wi'hth class. For x m (34.1), we define such a mapping function fi,{k = 1,..., K) as 

fkixi, ...,a;yv) = tk in TA (34.2) 

Where i^ and T^ are an estimate of ƒ, and the time range of A, respectively 

ical'va?iblP r"''in'na \ti^i^ ^X ^'^P.'^y*"^ an assumed function A of a single numer- 
ical variab e ,T„. In Fig. 34.1, the estimate t, is presented by a point in the time range 
But t, would mostly be a time interval, termed a temporal segment, in the time range' 
for a non-numer.cal dating component like 'colour', ƒ, can be given by a set of rufe s 
such as'black ^ early','brown-> middle'and'red-. late' y d j,tii oi ruies 

For an artefact x with N values as is in (34.1), we have a tuple of K estimates through 
the mapping procedure defined in (34.2). Symbolically, we have 

M(Xi,,T2,...,.X-/v) = (ii,i2,...,^A- (34.3) 

Where M denotes an assumed operation that integrates the whole of individual 
operations by mapping functions A,..., A- »iiuiviuudi 

Another operation succeeding to M is the unification that balances or compromises 
all the estimates t t,, and, eventually, unifies them into a single valueT    iTthe 
estimated date of x. This operation can be written by ë      a ue r„ i.e. tne 

From (34.1), (34.3) and (34.4). we have a compact notation as follows: 

UMx =z t^ 

(34.4) 

(34.5) 
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Figure 34.2: A model of rule-based dating 

This model means that for a given artefact x in A, by operating M first and U second, 
we obtain its estimated date t^- Fig- 34.2 illustrates the model of rule-based dating 

Where, the knowledge-base F is nothing but a set of mapping given by (34.5). 
functions. Symbolically, 

F = {/i, ƒ2, • ••,/A}- (34.6) 

In principle, our model has been built on the basis of the tuple representation de- 
fined as (34.1). All the values .xi,..., .x/v should practically be evaluated by inspection 
or action on the artefact: This will be referred to as evaluation process. 

The operation M is carried out in cooperation with the knowledge-base F. The 
relation between M and F can be compared to that of cooking and a cookbook; when 
given materials, cooking produces a course of dishes according to the cookbook. 
Practically, every mapping function can be given by a collection of if-then rules, so 
that F can also be regarded as a set of rules. 

All the mapping functions in F are necessaily not independent: Several functions 
are often related to the same aspect of artefacts. It follows that F should be parti- 
tioned into the blocks of functions each of which concerns a special aspect. Partition 
of F is closely related to the organisation of U. A possible understanding is that U may 
be in charge of two stages of unification; within-block and inter-block unification. At 
the stage of within-block unification, all estimates determined by mapping funcitons 
within a block may be mediated and reduced into a block-representative estimate, 
termed a B-estimate. Then all B-estimates may be compromised and unified into the 
final value t^; this stage is that of inter-block unification. Fig. 34.3 illustrates such 
two stages of unification. 

Another problem to be noted concerns the learning or self-organizing capability. 
Every archaeologist appears to be in a ceaseless learning process: Whenever a new 
fact occurs, his dating procedure may be revised and his knowledge may also be 
updated. When wrong knowledge is detected in practice it may immediately be 
corrected. On the other hand, good knowledge gradually gains in importance through 
practice. Such a special quality can be discussed in terms of our model in Fig. 34.2: 
The knowledge-base F is the pivot of learning . Functions or rules in F are constantly 
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Figure 34.3:  Two stages of unification.   • and o denote a B-estimate and the final 
conclusion, respectively. 
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Command    Function  
CREATE        Creation of a knowledge base ' 
APPEND        Additional     definition     of     rules     and 

appendices 
REDIT           Updating of a knowledge-base 
INFER Inference computing 
LIST List of all rules in a knowledge-base 
EXPL List of the effective rules in the last infer- 

ence computing 
TRAIN           Training of a knowledge-base 
HELP List of available commands 

Table 34.1: Main commands of ERAPS 

revised by new facts, knowledge or practice. Since M directly depends on F, M is 
immediately changed whenever revision occurs in F. Consequently, U is also changed, 
especially at the stage of within-block unification. In fact, learning capability plays a 
key-role in keeping up-to-date dating operatons. Our archaeological knowledge will 
never be constant, but will be in ceaseless change. 

34.3    System implementation 

An archaeological dating expert system, RAPS, built in 1983, provides the rule-based 
dating operations on a special type of Japanese ancient tombs, termed Keyhole tombs 
(Ozawa 1988). Since RAPS is, however, specialized only in the dating of the Keyhole 
tombs, it has never been applied to other dating problems. 

To make it extend to general use, ERAPS (the Essential core of RAPS) has been organ- 
ised (Ozawa 1986). In other words, ERAPS is an expert system building tool with the 
same inference engine as RAPS. Athough ERAPS provides a receptacle for knowledge it 
is scarcely an expert system until a knowledge-base is created. Hereafter, we discuss 
inplementation of a rule-based dating expert system using ERAPS in the light of our 
model stated previously. 

34.3.1    Knowledge-base 
ERAPS is available using the Franz Lisp interpreter or compiler under UNIX (4.2 bsd). 
Table 34.1 shows the main commands provided by ERAPS. The first step is building a 
dating expert system is to create a knowledge-base as a set of rules. Basically every 
rule should be written by 

if R then Q with p. (34.7) 

where R, Qand p are condition, conclusion and possibility, respectively. The possibil- 
ity p is given by a real constant between 0 and 1, which quantitatively indicates the 
confidence in the validity of Q when R is absolutely true. To make this clear, p will 
be referred to as P-constant. In this paper, the term 'possibility' will be used, instead 
of 'probability', to express a subjective measure of confidence or certainty. 

The condition R is given by a logical combination of dating components; for 
example, we have 

R = 'colour is red' and 'diameter is smaller than 20cm'. 

In most cases, Q is an estimate corresponding to (34.2), associating with the P- 
constant p. 
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Every original rule written by (34.7) is necessarily not stored in ERAPS as it is. 
Sometimes it is replaced with an equivalent collection of two or more rules in terms 
of optimization. A unit rule stored in ERAPS is written in the S-expression such as 

iIi{R)iiQ.p))).w). (34.8) 

Where I and w are rule-identifying number and weight, respectively. The weight w, 
discussed later, plays a very important role in the training process of ERAPS. 

As previously discussed, a knowledge-base should be partitioned into blocks each 
of which consists of all the rules related to a common aspect. Practically we have 
a number of rules concerning an aspect such as 'technical skill'. In ERAPS we can 
define a knowledge-base so as to be partitioned into blocks. 

34.3.2    Inference computing 

The condition R of each rule is successively transformed into a question to be 
presented on the display. Through questions and answers, certainty factors of all the 
conditions are to be evaluated by a user of ERAPS. Certainty factor a is a real number 
m the interval [0, 1] that indicates quantified certainty of a condition R; when R is 
false, a is set to 0 and when R is absolutely true, a is set to 1. Frequently, the certainty 
factor takes an intermediate value between 0 and 1, because most artefacts are not 
complete so that dating involves uncertainty. The maximum uncertainty takes place 
when dating components related to R are absent; in this case, the certainty factor 
should be set to 0.5. 

Inference computing in ERAPS has been carried out, basically, in the same manner 
as EMYCIN (van Meile et al. 1981). Our inference computing has been divided into 
two stages, i.e. within-block and inter-block computing. The within-block computing 
eventually determines a block-representative estimate, termed a B-estimate. Practi- 
cally a B-estimate is not a single value, but a tuple of temporal segments with possi- 
bilities. For example, suppose that we have three temporal segments 'early', 'middle' 
and 'late' in the time range. Then a B-estimate can be written by (Pg, P^j, p'^y, in this 
case , PE, PM and PL denote the possiblilities of the three temporal segments each 
of which is derived from its related rules within the block. 

For simplicity, consider the within-block computing in relation to a temporal seg- 
ment in a B-estimate. Fig. 34.4 presents a very simple example to illustrate our 
computing procedure. From all rules concerning a common temporal segment an 
estimate of the possibility derived through AND/OR operations. AND operations'are 
mostly applied to condition parts of rules. On the other hand, OR operatins mainly 
act to mediate the estimates, providing possibilities of temporal segments. 

In case of rule A in Fig, 34.4, its condition part R is given by an AND combination 
of two conditions denoted by the two bottommost nodes. Suppose that for the two 
nodes, certainty factors a and o'are assigned as shown in Fig. 34.4. Then the estimate 
PA *, derived from rule A, is computed as follows: 

PA*  = PA  • WA  • Min {a, a'} (34.9) 

where PA and lu^ are the P-constant and weight of rule A, respectively. 'Min' denotes 
the AND operation that selects the minimum among certainty factors involved in the 
condition part of rule A. 

The concluding possibility of a temporal segment is determined by an OR operation 
for the three rules shown in Fi. 34.4, we have the following OR operation: 

P =   Max {pA *, PB *, Pc *} (.34.10) 

Namely OR operation selects the maximum among the estimates derived from all 
rules associated with a temporal segment. We call a sequence of the rules that provide 
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Figure 34.4; AND/OR operations in a simple block 
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••«••••••••••   DATING   MODE   •»•«•••••••«»• 
• • 
• DATING WITH POSSIBILITIES : • 
• • 
• /77/ - EARLY • 
• • 
• /39/ - MIDDLE • 
• • 
• /2B/ - LATE • 

C ANSWERING RATE  =  82/7. ] 

Wed Dec  7 15:58:03 1983 

Figure 34.5: An example of dating conclusion 

the maximum as effective rules. Possibilities of the other temporal segments are also 
computed in the same manner as above, so that the B-estimate may be determined. 

As the second stage, inter-block computing is carried out to determine the final 
conclusion from all the B-estimates. The operation which plays a key-role in the 
inter-block computing is BOR: Let P and P' be two possibilities. Then BOR operation 
for P and P' can be defined as 

BOR{P,P')  =  P + P'-PP'. (34.11) 

The BOR operation acts to mediate two possibilities P and P' more positively than 
OR as defined in (34.10). In the case of OR, all values other than the maximum 
are rejected, so that they never make any contribution to the final conclusion. In 
contrast, BOR operation takes all operands into consideration without rejection. Note 
that for three or more operands, BOR provides a constant conclusion independently 
of sequence of operations. Specifically, for P, P' and P', we have 

BORiP, BORiPii, P')) = BOR{BOR{P, P'), Pii). (34.12) 

Inter-block computing has practically been performed by iteration of the BOR 
operation which selects a set of possibilities associated with a temporal segment from 
all the B-estimates. Then, for the first two possibilities P and Pii in the set, the BOR 
operation is performed as in (34.11). Next, BORiP, P'), thus obtained, and another 
possibility Pn in the set are operated, as is seen in the right hand of (34.12). This 
procedure is to be iterated until all are finished, consequently, the final possibility 
of the temporal segment is determined. This iteration is also applied to the other 
temporal segments so that the final possibilities of all the temporal segments may 
eventually be determined. Fig. 34.5 shows an example of such dating conclusion 
presented by ERAPS; in this case, the time range consists of three temporal segments 
i.e. 'Early', 'Middle' and 'Late'. 

34.3.3   Training procedure 

As seen in Fig. 34.5, for a given dating objective, ERAPS presents a tuple of temporal 
segments with possibilities as a conclusion. It should be noted that such a conclusion 
as provided by a dating expert system is not constantly reasonable. A reason for this 
problem is that the knowledge-base is not always properly controlled, especially as 
the initial setup often involves useless rules, false definition of P-constants and other 
irrelevances. The TRAIN command is available to tune up the existing knowledge- 
base, asymptotically, though the training procedure as follows:   prepare a set of 
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7.X7.y.7.7.X7.7.7.V.7.   TRAINING MODE 7.7.7.7.Xr.XXXXX7. 
X X 
X            SPECIFY THE POSSIBILITY X 
7.                                           TO BE CHANGED : X 
y- X 
X               I . EARLY X 
%      2. KIDDLE X 
7.               3. LATE % 
X % 
X   TYPE THE NUMBER IN X 
X         PARENTHESES ; (1),(2),(3). 7. 
X X 
XXr.7.XXXX7.7.X7.7.7.7.7.7.X7.7.7.XX7.7.X7.7.7.7.X7.y.7.XXXX7. 

TRAININGXl) 

7.X7.XXX7.7.y.7.7.X   TRAINING MODE 7.7.7.X7.7.XX7.X7.X 
X X 
X THE POSSIBILITY SHOULD X 
X X 
X I.  INCREASE X 
V. 2. DECREASE X 
X X 
7. TYPE THE NUMBER IN 7. 
X PARENTHESES ; <1) OR (2>. X 
X •/. 

XXXXXX7.XXXX7.X7.y.7.XX7.7.7.XX7.XXX7.XXX7.7.7.7.X7.X7. 
TRAININGX 1 ) 

### RULES TRAINED ### 

(rl05 ((rl03) ((befplc . 0.5)))  . 0.55) 
<PZ01 ((FMOI    FmOA   F.1.07) ((beffom . 0.8)))  . 0.55) 
<i-312 ((oiOG»  ((befout .  J.O)))  . 0.55) 
(P40J ((inOl  in2G)  ((bePini . Ö.G)))  . 0.55 » 
<r510 ((aaOS) ((befaru . 0.7)))  . 0.55) 

>> TRAINING COMPLETED 

Figure 34.6: A display image of a training action 

the known samples that cover all the temporal segments in the time range, termed 
training set of samples. Let S be the set and all the samples in S be designated in 
temporal order. 

First, select a sample x from S and make ERAPS perform its inference computing. 
Then we have a dating conclusion in terms of a tuple of temporal segments with 
possibilities. Here we can put TRAIN in action: If the conclusion is not resonable, for 
example, the possibility of the true temporal segment is relatively too small, then we 
can give such instruction as to increase it. On the contrary, sometimes, we give an 
instruction to decrease another possibility opposed to the truth. According to such 
instruction, ERAPS automatically modifies weights of the rules that were effective in 
the last inference computing. As a matter of course, if the conclusion is reasonable, 
we have nothing to do. Fig. 34.6 shows a display image just before the training action 
on the conclusion presented by Fig. 34.5. In the same way as above, our training 
actions are taken by the other samples one after another. A round of training actions 
is completed when all samples in S have been employed. 

From a technical point of view, a training instruction given to the system is to 
be executed by adding 0.05 or -0.05 to the weight of every rule effective in the 
last inference computing. Where weights of all rules are initially set with 0.5, it 
is prohibited that they increase or decrease beyond the interval [0, 1] thorugh the 
training process. 
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Practically It appears to be hopeful that a knowledge-base can properly be tuned 
through sufficient rounds of training actions. An experiment has been carried out 
to examine the learning capability of our system. The knowledge-base employed 
for our experiment has been constructed for dating the Japanese ancient tombs 
including 126 rules classified into five blocks. The time range extends for the 300 
l^^?J[TJ?^^^ to 600AD, which is partitioned into the three temporal segments 
Early, Middle , and 'Late' as is shown in Fig. 34.5. 

It is the basic idea of our experiment that artificially embedded false rules would 
properly be controlled through rounds of training actions. The false rules have been 
created by changing P-constants of true rules to false values. Specifically we select 
two rules, designated P401 and P403, from the knowledge-base and puposely change 
their P-constants to false values as follows: 

P401    0.6(true) -^ OA{false) 

P403   0Aitrue)-*0.6( false) 

The knowledge-base including the two false rules has been trained by employing nine 
S^yi^ " ^^;. ?^' ^^' ^^" ^^^' ^^^' ^-' ^2 ^"d ^3 . Where, E, M and L means 'farly' 
Middle and Late , respectively. Namely we have prepared three samples for each 
temporal segment. Our training strategy includes: 

I. Whenever inference computing is finished for a sample x, give such instructions 
as to increase a possibility agreeing with the true temporal segement of x and as 
to decrease possibilities of the other temporal segments. Training by this series 
of instructions is referred to as a training unit. 

II. Define a round of training actions as nine training units determined bv such a 
sequence of samples as E„ M„ L„ E,, M,, L„ E,, M„ L,. 

Fig. 34.7 illustrates variations in weights of the false rules through five rounds of 
training (45 units). Note that the weight of P401 favourably increases in proportion 
to times of training. This means that based on (34.9), the system acts to compensate 
the false P-constant of P401 by increasing its weight. On the contrary for P403 
compensation is done by decreasing the weight P209, seen in the figure is one of 
the properly defined rules, of which weight is almost uniform except for periodical 
small spikes. 

Fig. 34.7 appears to suggest that the learning capability of our system is so 
favourable that the knowledge-base can properly be controlled through rounds of 
training actions. In fact, as is seen in Table 34.2, two different conclusions for each 
sample, computed respectively after and before five rounds of training suggest that 
our training actions have obvously improved the knowledge base, providing a better 
conclusion for each sample than before the training. 

34.4    Conclusion 

In this paper, emphasis has been placed on modeling of the archaeological rule- 
based dating operation and its application to an expert system implementation 
Archaeologists dating operation would actually involve more complicated processes 
than those of the proposed model. It follows that other types of modeling would be 
required and would also be possible independently of ours. Different models bring 
forth different expet systems. From this point of view. ERAPS can be regarded as a 
tool to build dating expert systems provided that the expertise can approximatelv be 
written in the form of'//R f^enQw/fAip'. ^ 

Two knowledge-bases. TOMB and E-HANIWA, have been established in ERAPS- TOMB 
serves for dating the Keyhole tombs, which are frequently referred to in this'paper. 
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Figure 34.7: Variations in weights of the rules 

Possibilities \ 
Tomb Early Middle Late 

El 0.95(72) 0.26(39) 0.21(39) 
E, 0.86(78) 0.72(67) 0.71(57) 
E3 0.93(68) 0.28(42) 0.26(35) 
Ml 0.38(52) 0.92(72) 0.46(64) 
M2 0.41(60) 0.97(81) 0.27(47) 
M3 0.38(52) 0.95(77) 0.34(59) 
Li 0.29(29) 0.26(48) 0.95(79) 
Lo 0.39(61) 0.38(48) 0.91(68) 
L3 0.14(14) 0.36(48) 0.78(55) 

Table 34.2: Two different conclusions for each sample. Every possibility computed 
before training is shown in parentheses 
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'Haniwa' are a set of all the terracotta figures which stand on the Keyhole tomb 
mounds. The knowledge-base E-HANIWA has been created for the dating of a special 
class of Haniwa, i.e. cylinder-shaped terracotta. 

As mentioned previously, ERAPS is available using the Franz Lisp interpreter or 
compiler running under UNIX 4.2 bsd. The system needs about 70 KB memory space 
excluding knowledge-bases. The experimental work presented in this paper has been 
done on a VAX 11-750 computer system. 

One of our future tasks is to link a dating expert system such as ERAPS with 
an archaeological database. An expert system is usually driven by data provided 
from the outside. On the other hand, a database is simply a collection of objective 
facts, independent of such an active function as inference. It appears that every 
archaeological database includes many null values due to uncertainty of attributes. 
However, when given an artefact, some of its unknown attributes can sometimes be 
evaluated based on their dependency on the other known attributes. Such evaluation 
is nothing but the inference that can possibly be performed by an expert system. It 
is hoped that unknown chronological attributes in an archaeological database could 
automatically be evaluated by linking with ERAPS. 
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