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Image segmentation techniques for archaeological 

geochemical data 

C. E. Buck* 

C. D. Littont 

14.1    Introduction 

There are many ways of displaying and analysing spatial data, ranging from relatively 
simple methods such as dot density plots and greyscales to the mathematically more 
sophisticated techniques of contouring and image processing. In what follows we 
shall describe the use of one of the more sophisticated techniques, namely image 
segmentation. In any situation, the choice of technique must depend upon the nature 
of the data and the questions posed by the archaeologist. Here we use for illustration 
the case of the analysis of soil phosphate data. We know that there is considerable 
variation in the background phosphate level well away from known archaeological 
sites (see Cavanagh et al. 1988); techniques such as dot density may depict this 
variation (which is of little archaeological importance) as well as describing the on- 
site variation in which the archaeologist is particularly interested. Moreover, the 
accuracy of the chemical analysis is important. Since the chemical analysis used for 
most archaeological soil phosphate surveys is of the quick, cheap but crude type, 
that is the measurements are relatively inaccurate, this should be borne in mind at 
the data analysis stage. Using a sophisticated technique such as contouring on data 
that are subject to relatively large measurement errors is not at all sensible and any 
results produced may be misleading or unreliable. This point about the high noise 
level relative to the difference between the on-site and off-site levels associated with 
phosphate data is often not appreciated by workers more accustomed to techniques 
such as soil resistivity survey. 

Another crucial point to be considered is that the data analysis can proceed by 
either of two routes. The first attempts to produce a description of observed data 
usually a visual image. The second postulates a statistical model of the spatial 
distribution of the phosphate levels and then proceeds, using statistical techniques, 
to estimate the parameters of the model and so to produce a visual image. The former 
approach only describes the data obtained whereas the latter provides a means of 
investigating the underlying process generating the data. Fieller and Flenley (1988) 
make a similar point in the context of soil particle sizes. 

In simple situations where the noise level is low or, equivalently, where there is 
little variation in the background level, dot density, contouring and greyscales can 
be very effective in aiding the interpretation. However, the choice of how many 
levels to display and what these levels should be, remains to be made. Usually, 
simple sample statistics, such as mean, standard deviation or percentiles of the raw 
data are used (perhaps after some simple transformation and/or filtering). However, 
these techniques do suffer from serious deficiencies which severely limit their use in' 
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more noisy and complex situations. For example, contouring is susceptible to noisy 
or anomalous data points and is not very suitable if fairly abrupt changes in level 
are to be expected; dot density and greyscales assume that any noise in the data is 
relatively small and therefore an observation is an accurate representation of (in our 
case) the true phosphate level. 

For these and other reasons we believe that dot density, greyscales, contouring 
and similar methods are not the most appropriate techniques for the spatial analysis 
of soil phosphate data arising from field surveys. Moreover, at this stage in the 
development of phosphate analysis for archaeology, since the chemical processes are 
little understood, it seems inappropriate to try to determine from the data anything 
more than areas or zones that have roughly the same phosphate level. If we accept 
this, then the problem becomes one of image segmentation. In a previous paper (Buck 
et al. 1988) we have described how change-point analysis may be used objectively 
to divide an area into regions of high or low phosphate concentrations. In the next 
section we discuss how other forms of image segmentation technique may be used 
to determine regions corresponding to more than two levels of phosphate. 

14.2   General methodology 

Consider a continuous two-dimensional region S which is partitioned into an M x TV 
rectangular array of cells labelled {i,i),i = 1,2,... M-j - 1,2,..., N. Each cell can take 
one of L levels, labelled 1,2,..., L where for the moment L is finite. An arbitrary scene 
of S will be denoted by a; = {x^, xi^,..., x^n), where Xij is the corresponding level of 
cell {i,j)- Let X* be the true but unknown scene where x* is a realisation of a random 
vector X. Let y,^ be the observed record at cell {i, j) and y be the corresponding vector, 
which is a realisation of the random vector y = (Yi^, ¥^2, -, Y^^)- Then given y, what 
can be inferred about the true scene x*l Besag (1986) describes a mathematical and 
statistical framework, based on Markov random field theory, for tackling this problem 
in a logical fashion which enables prior information to be properly incorporated into 
the analysis. In doing so, two assumptions are made. 

Assumption 1. The random variables Y^i,Yi2,... ,Ymn are mutually independent 
conditional on the scene x, that is the conditional density of y given x is 

m 
n 

p{y\x)=    n    f{y^^x,J), (14.1) 
i = 1 
i = 1 

where ƒ is assumed to be known. In archaeological terms this means that given the 
underlying phosphate level for two cells, the actual observed phosphate readings are 
independent of each other. 

Assumption 2. The true scene x* is a realisation of a locally dependent Markov 
random field with specified distribution p(x). In a Bayesian context p{x) is viewed 
as a prior distribution for the true scene x*. In practise, the likely form of p(x) for 
a particular archaeological site may be inferred as being that of other similar sites. 
Alternatively, p{x) may describe some particular features that are suspected of being 
present at the site. 

Besag demonstrates that the estimation of the true scene x* given the data y poses a 
huge computational problem. However, by introducing the idea of locally dependent 
Markov random fields, this problem may be substantially reduced.   Let cc^ denote 
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the phosphate levels of the subset A of S and a;^\ij, the phosphate levels of all cells 
except cell (i,j), then it is assumed that 

PiXij\Xs\ij) = P(x^J\xa^j), (14.2) 

where ö, is some local neighbourhood of cell {i,j). In other words, the level of cell 
{i, j) only depends upon other cells in its immediate vicinity. Then, using assumption 
1,' it is immediately clear as a consequence of Bayes Theorem that 

Pixij\y, x,\ij) a fiyiJ\x^J)pix,\x^^^), (14.3) 

where x, is our current estimate of the level at cell (i,j). Initially, x may be esti- 
mated using maximum likelihood applied to f(yij\xij). Then the algorithm is applied 
iteratively until convergence is obtained. 

14.3   Detailed methodology 

For a particular problem, /(t/,j|a;,j) and p{x) need to be specified. For soil phosphate 
data, a generally made assumption is that the natural logarithm of the phosphate 
concentration has a normal distribution (see Cavanagh et al. 1988). That is, if Z,j 
is the random variable representing the phosphate concentration in cell (i,j) then 
Yi = In(Zi) ~ N{xij,a'^) where x,^ is the true level for cell ii,j) and cr^ is the variance 
about this true level. 

The specification of p(a;) is more difficult, but Besag suggests that a suitable form, 
which takes into account local pairwise but not higher interactions, is 

p{x) oc exp ^ - Yin ßkinu \ , (14.4) 
[      I <k <l< L J 

where n^./ is the number of distinct neighbouring pairs of levels k and /, given a 
suitable definition of a neighbouring pair. 

Given this formulation we have to find the level k that maximises p{Xtj\y,Xs\,j), 
which reduces to finding the level k that minimises 

1 9 

^"^ \<k <l< L 

where Hk is the mean /n(phosphate) for level k, u,j{k, I) is the number of neighbours of 
cell ii,j) of level / and ßu is a weighting factor. The first term in the above expression 
can be thought of as allocating cell (z, j) to the level closest to y,j subject to the second 
term which is a "smoothness" factor. The choice of the parameters ßu should reflect 
our perception of how the phosphate is distributed. For example, let us consider a 
survey area in which there are three levels of phosphate. Does one expect an area 
of high phosphate (level 3) usually to be surrounded by a region of lower phosphate 
(level 2) before falling away to the background level (level 1), or is it conceivable 
that abrupt changes in the level from background to high are likely? The former 
case could be modelled by taking ß^^ = /?23 and ß^^ = 2ß^2\ the latter by taking 
Pl2  = P23 = Ml3- 

The interpretation of p(x) as representing our prior knowledge or belief about 
how the phosphate levels are distributed, will be illustrated by continuing these 
two examples. Before doing so it is convenient to note that equation (14.5) may 
be rewritten so that the problem becomes that of finding the level k that minimises 

{y^-ßk?^ E E lk^u^J{k,l), (14.6) 
1 < A; < / < L 
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where ju = 2aß^. 
Let us now consider the eight neighbour situation 

3 3 3 
3X3 
3     3     3 

where for the reasons explained above our prior belief is high that the unknown level 
of the central observation (represented by X) is also of level 3. In fact, using (14.4), 
it is easy to see that 

= P(X = l| other cells) = ce-*^'% 
= F(X = 2| other cells) = ce-^'^'^^ 

= P{X = 3| other cells) = c, 

= 1 + e"*i'" + e~^'^'Hs the normalising constant. 

Taking 723 = 0.125 and 713 = 0.25, then these probabilities are 0.09, 0.25 and 0.66 
respectively. If this does not give sufficient weight to our prior belief that the 
centre cell should be of level 3, then we could increase 723 and 713 to 0.25 and 
0.5 respectively; in this case pi, pa and Ps are 0.02, 0.12 and 0.86 respectively. 
Conversely, decreasing 723 and 713 will decrease ^3. 

On the other hand, if we believe that the phosphate in the soil is not dispersed in 
any way, then it may be interpreted that an observation from level 1 or 2 is quite likely 
to be adjacent to observations from level 3. In this case, if we take 723 = 713 = 0.125 
then 

p\   = P(X = 1| other cells) = 0.21 
p'^   = P{X = 2| other cells) = 0.21 
p'^   = P{X = 3| other cells) = 0..58. 

Increasing 723 to 0.25 produces probabilities 0.11, 0.11 and 0.78 respectively. 
By considering other eight-neighbour configurations we can investigate how this 

formulation reflects our preconceptions about the phosphate levels. For example, 
the situation 

3 3 2 
3X2 
3     2     1 

yields 
Qi = Pi'^ = l| Other cells) = cexp{-47i3 - 3712}, 

Ç2 = P{X = 2| other cells) = cexp{-4723 - 712} 

and 
</3 = P(X = 3| other cells) = cexp{-3723 - 713}, 

where c is the normalising constant for this situation. 
Taking 712 = 723 = 0.125 and 713 = 0.25, then the values of 91,^2 and q^ are 0.2, 0.4 

and 0.4 respectively. Taking 712 = 723 = 713 = 0.125, they are 0.27, 0.35 and 0.38 
respectively. Thus, in the latter case, the prior probability that X = 1 is slightly 
higher than in the former case. 

In the above formulation all adjacent cells are treated equally, but an obvious refine- 
ment is to give lower weight to cells that are diagonally adjacent. In this case ßkin^i 
in equation (14.4) is replaced by ß'^n^i + ß'^iuli where n'^., and n'^i are the respective 
numbers of first and second-order neighbour pairs. Obvious modifications then have 
to be made to the conditional probabilities in the above examples. Typically ß'^.^ is 
taken as ß'ki/\ß (see Geman & McClure 1985). 
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14.4   Simulation 

In order to demonstrate the effect of the above methodology we consider two simple 
simulations which idealise common spatial distributions found in real data sets. Both 
simulations are carried out on a 40 x 40 grid.   The first arises out of work with 
field survey data where known archaeological sites have been further studied by 
the analysis of surface soil samples.   On such sites, areas of high phosphate are 
commonly surrounded by a lower, but still enhanced, level before decreasing to the 
background level. This is commonly interpreted as representing either the archaeo- 
logical spreading of phosphate-rich material around the outside of the occupied site 
or some form of post-depositional activity which has led to the movement of the 
phosphate outwards from its original position.  We represent such a situation as a 
concentration of high phosphate within a circle of radius 10 units with its centre at 
the centre of the grid.   Surrounding this circle we suppose that there is a region 
of lower phosphate level of width 15 units with the remainder of the grid being 
at the background phosphate level. We have chosen the high, low and background 
/n(phosphate) levels to be 2, 1,0 respectively and the resulting greyscale is shown 
in Fig. 14.1(a). To the /n(phosphate) in each cell we have added a noise component 
simulated from a normal distribution with mean zero and standard deviation 2/3. 
The greyscale representation using the 60, 70, 80 and 90 percentiles is given in 
Fig. 14.1(b). Assuming that the mean and standard deviation for each level are known, 
the image corresponding to the maximum likelihood estimate is given in Fig. 14.1(c). 
We now apply the image segmentation algorithm outlined above with the diagonally 
adjacent cells downweighted by a factor of l/\/2. The values of the prior probabilities 
for the level of X, pi, P2 and pa, are 0.19, 0.31 and 0.50 respectively. The resulting 
image is given in Fig. 14.1(d). The analysis is repeated but with Pi,P2 and p^ being 
0.03, 0.17 and 0.80 respectively, and the image is given in Fig. 14.1(e).   The final 
run of the algorithm with pi = 0.002, p^ - 0.048 and ps = 0.95 gives the image in 
Fig. 14.1(f). Figs. 14.1(d), 14.1(e) and 14.1(f) clearly demonstrate how changing the 
prior information about the scene affects the algorithm's ability to identify the true 
underlying scene. Even with the highest prior probability for the scene being smooth 
(P3 - 0.95) there are isolated cells allocated to the wrong level. With pg = 0.5 there are 
considerable patches of the background level wrongly designated to the intermediate 
level and some of these persist when pg = 0.8 is used. Obviously taking higher values 
of P3 will make the image even smoother. 

We have conducted a second simulation with two elliptical areas of phosphate above 
the background level. In contrast to the first simulation, the two areas are adjacent 
but not concentric, with one ellipse containing a region of high phosphate and the 
second a region of lower phosphate (but above the background level). Although this 
situation could arise from many activities, common archaeological interpretations 
include a site with two phases of occupation or alternatively a site with its associated 
midden. Fig. 14.2(a) and (b) show the regions before and after the addition of random 
noise from a normal distribution with zero mean and standard deviation 2/3. The 
maximum likelihood estimates of the regions are shown in Fig. 14.2(c). The results 
from three applications of the image segmentation algorithm (with parameters as 
in the previous example) are shown in Fig. 14.2(d), 14.2(e) and 14.2(f). Again the 
effect of the algorithm can be readily seen. Despite using prior information which 
strongly suggests that a region of high phosphate should be not be adjacent to the 
background level, the algorithm with pa = 0.95 captures the main features of of the 
underlying scene. However there is a tendency for a small region at the intermediate 
level to be erroneously found between the high and background zones. 
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Figure 14.1: Simulation with a circular area of high phosphate surrounded by an area 
of lower phosphate. 

(a) The original scene. 

(b) Greyscale representation of the original scene plus noise with percentiles at 60, 70, 80 and 90%. 

(c) Mciximum likelihood estimated image. 

(d) Image segmentation with pi = 0.19, p2 = o.3i and ps = 0.50. 

(e) Image segmentation with ;;] - o.03, p-2 = 0.17 and ps = 0.80. 

(f) Image segmentation with pi = 0.002, p2 = o.o-is and ps = 0.95. 
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(a) (b) 

(c) 

(e) 

(d) 

(f) 

Figure 14.2: Simulation with two overlapping elliptical areas, one of high phosphate 
and one of lower phosphate. 

(a) The original scene. 

(b) Greyscale representation of the original scene plus noise with percentiles at 60, 70, 80 and 90%. 

(c) Maximum likelihood estimated image. 

(d) Image segmentation with pi = 0.19, p^ = 0.31 and j)3 = 0.50. 

(e) Image segmentation with pi = o.03, p2 = o.i7 and ps = o.80. 

(f) Image segmentation with pi = 0.002, p2 = 0.048 and pz = 0.95. 
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14.5    Example 

In 1982 Adrian Olivier, under the auspices of the Cumbria and Lancashire Archaeolog- 
ical Unit, directed the excavation of the Bronze Age cairn at Manor Farm in advance 
of gravel quarrying. (See Olivier (1987) for a full discussion of the site, its excavation 
and its interpretation.) Following completion of the excavation, when inhumation 
and cremation graves had been revealed, the excavation team collected soil samples 
from the excavated surface. It was hoped that by phosphate analysis of these samples 
it might be possible to reveal the locations of any graves not recoverable through 
excavation, but still remaining as enhanced phosphate in the soil. With this aim in 
mind a survey interval of 0.5m was selected and samples were taken over the entire 
cairn, an area of approximately 25m x 25m. 

An initial greyscale plot of the /n(phosphate) is given in Fig. 14.3(a) and indicates 
enhanced levels at the centre and some more isolated spots elsewhere, but is very 
difficult to interpret further. In the first place it is far from clear how many levels 
should be distinguished. In the published analysis of the raw data (Olivier 1987) 
four levels were chosen. However, the histogram of the natural logarithm of the data 
suggests that there are three levels of phosphate concentration and this forms the 
basis of our analysis. 

Although the phosphate survey was motivated by a desire to locate burials not 
detected during excavation, we see a preliminary step towards this aim to be gaining 
an understanding of the general spatial distribution of the phosphate over the whole 
site. In such a burial cairn it is not implausible that there exist regions of high 
phosphate associated with maximum archaeological activity and, surrounding these, 
regions of lower but nevertheless enhanced phosphate. Thus the data were processed 
using the methodology described earlier. Initial estimates of the means for each of 
the three levels were taken as 2.7, 3.3 and 4.2; the standard deviation of the noise 
for each level was set equal to 0.5. Shown in Fig. 14.3(b), 14.3(c) and 14.3(d) are the 
resulting images when ps is 0.5, 0.8 and 0.95 respectively. 

These images show the locations of the main areas of phosphate enhancement on 
the site. In fact, changing the prior specification to increase the chance that a high- 
level region abutts a background region does not alter the general picture. Further 
discussion of the data processing and the archaeological interpretation of Manor 
Farm are given in Buck et al. forthcoming. 

14.6   Discussion 

The simulated examples given above are very simple and based upon very naive 
archaeological models, but we hope that they do illustrate how the image seg- 
mentation algorithm works and, in particular, how prior information is clearly and 
unambiguously incorporated into the analysis. Workers used to dot density and 
greyscales may find this concept difficult to contemplate. However producing images 
by these other methods leaves much of the interpretation to the eye and to the 
prejudices of the beholder. At least the Bayesian analysis used in this paper ensures 
that any external information used is explicitly stated. Of course it is possible to 
experiment with different prior probabilities. This is perfectly reasonable and will 
clearly demonstrate how changing the prior information changes the resulting image 
and so gives some impression of the strength of evidence supporting a particular 
interpretation. 

One strong impression arising from these examples and from our experiences 
with other simulations and real data sets is that an isolated high phosphate reading 
(or perhaps a small group) is not very meaningful without any other supporting 
archaeological evidence.   This is undoubtedly due to the high noise level in the 
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Figure 14.3: Phosphate data from Manor Farm after Olivier 1987 

(a) Greyscales representation of the Manor Farm data with percentiles at 60, 70, 80 and 90%. 

(b) Image segmentation with pt = 0.19, p2 = 0.31 and pi = 0.5Ü. 

(c) Image segmentation with pi = o.o,3, p2 = 0.17 and p^ = o.80. 

(d) Image segmentation with pi = 0.002, p2 = 0.048 and ps = 0.95. 
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data. In the simulations above the Standard deviation of the noise relative to the 
differences between the underlying levels is realistic but perhaps a little on the low 
side. Several real data sets that we examined appear to have a slightly higher noise 
level and so the resulting images from the algorithm are not as good. 

The major problem confronting us in the analysis of real data sets is that of decidmg 
the number of levels to use. Furthermore it is our experience that having made this 
decision good estimates of the mean (but not the standard deviation) of each level are 
needed Both of these pose considerable problems but may be tackled by examining 
histograms (perhaps after some form of smoothing), probability plots and crude 
greyscale plots of the data. Experience with simulated data suggests that incorrect 
specification of the number of levels and/or their means is usually typified by the 
algorithm being very slow to converge, if in fact it does converge. 

In these examples we have used an eight-neighbourhood prior. Obvious modifi- 
cations are to vary this; four-neighbourhood priors are more suitable for detecting 
rectangular shapes whereas eight-neighbourhood priors are better for curved objects 
or zones. The general methodology may be modified to search for other more 
complicated areas by increasing the size of the neighbourhood. For example, Imear 
features (e.g. walls or ditches in resistivity data) may be searched for by selectmg a 
suitable neighbourhood and specifying a corresponding prior distribution. 

Finally the algorithm is easy to implement and is suitable for either a PC or a 
main-frame computer. Furthermore it is relatively fast; for instance time needed 
to produce the results shown in Fig. 1.3(d) was about four minutes on a Zenith Z-200 
PC and about seventeen seconds of CPU time on a Micro-Vax 3500. 
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