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11.1    Introduction 

Over the last two decades a range of remote surveying techniques have been gaining 
steadily in importance as basic tools of archaeological site analysis. The basic 
theories behind most of these techniques, in particular magnetic and resistivity sur- 
veying, were established long ago (Aitken 1963, Clark 1963, Scollar 1969a, Linington 
1973) but only limited use has been made of the full theory of such approaches. 
This is due mainly to the considerable corruption and distortion of the experimental 
data which results from the practical and physical limitations of the survey process: 
there is little point in pursuing detailed mathematical simulations when it will be 
impossible to test the qualities of such simulations against field data. 

In recent years technological advances have changed not only the accuracy of 
the surveying equipment, but also the way in which the experimental data can be 
recorded. The use of portable computers has begun to replace the error-prone and 
laborious task of keeping hand-written records, allowing large quantities of field data 
to be gathered accurately and rapidly. This has led, in turn, to the possibility of 
subjecting data sets to mathematical analysis much more readily than in the past. 
Even two decades ago Linington (1968, 1969, 1970a, 1970b, 1971) and Scollar (Scollar 
& Krückeberg 1966, Scollar 1969b, Scollar 1970a, Scollar 1970b) made heavy use of 
computer filtering of archaeological site data, but found that the effort of entering 
the survey data into the computer was considerable. The ease and speed inherent 
in the use of digital data recorders has greatly eased the investigation of a range of 
possible algorithms for the automatic processing of site data. 

The speed, power and storage capabilities of battery-operated portable computers 
are increasing steadily. This, together with the ready availability of small and cheap 
internal hard disks for portable computers, means that there is now little difficulty in 
simultaneously storing data sets from resistivity or magnetic surveys, or possibly also 
results from electromagnetic surveys, terrain analysis or even ground-penetrating 
radar. 

This paper discusses some ways in which it is hoped that the clarity and inter- 
pretability of such pre-excavation survey data sets can be improved considerably. 
This work forms part of a joint project at York which is aimed at moving towards 
the concept of total mapping, whereby a large amount of useful information can 
be obtained for a given site without excavation and in a non-destructive and non- 
intrusive fashion. 
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11.2    'Classical' data processing 

Whatever survey technique is employed, the data are degraded by non linearities due 
to anisotropies in the surface soil, by convolution with an anisotropic and object- 
specific point-spread function, and by large amounts of different types of noise 
corruption. Most methods provide little quantitative information about even the 
coarser detail of depth of an archaeological artefact or feature, indicating only that a 
feature of some broad description may be found in a certain, fairly loosely defined, 
area. More specifically, the following problems are associated with the current remote 
sensing techniques: (a) The surveying technique itself can be slow and inaccurate, 
owing to the demands of making many measurements over a precisely defined grid 
on uneven terrain, (b) The resolution available with most approaches is very low. (c) 
Even major features can be lost in the high noise background and a number of false 
'ghost' images can be created by the noise itself, (d) The signal variations obtained are 
ill-defined and unspecific. (e) Any enhancement of the data is usually performed at 
a later stage using a mainframe computer. This can be a formidable task, involving 
large quantities of data being transferred from the on-site data logger (still often 
human!). This leads to overly long elapsed times between the initial survey and the 
presentation of the processed data, (f) It is difficult for a layman to understand a 
typical survey 'image', even after processing. 

Common /mear techniques of data manipulation include origin shifting and data- 
scaling for contrast enhancement; Fourier analysis and high- or low-pass frequency 
filtering; deconvolution of blurred data and cross-correlation for the extraction of 
characteristic signals from a background. These methods are efficacious under 
circumstances where the noise level is low or when the frequency spectrum of the 
noise/corruption process is well separated from that of the desired signal. In general, 
however, these approaches will tend to amplify the high-frequency noise present in 
the measured data and will give a less than satisfactory overall enhancement. 

Non-linear approaches such as spike removal, median filtering, and local averaging 
are widely used and are considerably more robust when used for the enhancement of 
noisy systems. The major deficiencies of these techniques are their arbitrary nature 
(there are a wide selection of different types of median filter, for example: see Arce 
et ai. 1986); the standard assumption that the data have been measured on a exact 
regular grid; and the asymmetric treatment of data at the edge of the grid. At a more 
advanced level, non-linear adaptive histogram equalization is a non-linear contrast 
enhancement approach which has been successfully used for the digital processing of 
medical images (Cocklin et al. 1983) among others, but which can introduce spurious 
features and higher noise levels into the processed image (Pizer et al. 1987). 

Inverse filtering or transfer function modification (Freiden 1975) employs a bandwidth- 
limited pseudo-inverse filter in Fourier space while Wiener filtering (Pratt 1978) 
constructs a restoration which optimises a mean-square measure of an inner-product 
form of error for the image. Both methods require some advance knowledge of the 
frequency spectrum of both the 'true' image and the corrupting noise processes. The 
main problem with such approaches is an inherent ill-conditioning which leads to 
a lack of smoothness in the processed results. They also, however, produce large 
negative regions in the enhanced image, which are physically impossible if, in reality, 
the measurements correspond to the intensity of some experimental quantity. 

In short, a wide range of well-established image- and data-processing algorithms 
of varying complexity are in common use: many require assumptions about the 
form of the desired image and the inherent noise component; all contain variable 
parameters which can vary wildly from application to application. This makes 
the automatic application of enhancement algorithms a less-than-straightforward 
process. Most importantly, however, these techniques tend to cope badly with high 
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levels of noise, and produce characteristic artefacts such as ripples and negative 
areas in the enhanced image. Overall, these facts make it difficult to subject a 
processed image to quantitative analysis: it may be easier to examine a processed 
image by eye, but it is also easy for information pertaining to fine structure to be 
suppressed and for completely spurious and misleading features to be introduced. 

Two methods are described below which perform rather better at the low signal- 
to-noise levels encountered typically in archaeological applications. Both methods 
are still imperfect in that they also require a range of assumptions and parameters, 
but they have the advantage of offering the potential for extracting interprétable 
information from archaeological data that would be difficult to enhance using more 
standard techniques. 

11.3   Simulated Annealing 

Simulated annealing (SA) (Kirkpatrick et al. 1983, Kirkpatrick 1984) is a novel 
technique of combinatorial optimisation which is based on the simultaneous use of 
ideas from probability theory, statistical mechanics, thermodynamics and condensed 
matter physics. In its basic form a data set is viewed as being equivalent to a physical 
system with a variable structure to which a structure dependent 'temperature' can be 
assigned. The measured data set is viewed as a single, non-equilibrium configuration 
within a vast set of possible configurations, known as an ensemble. 

In a practical sense, annealing is a process whereby a system in a highly non- 
equilibrium state (such as the surface of a freshly fractured crystal) is heated rapidly 
and then 'repaired' (allowed to settle into a low-energy stable configuration) by under- 
going a gradual controlled decrease in temperature. In the optimisation context, if 
it is possible to create a model which allows an effective temperature to be assigned 
to each possible configuration, then the optimal set can be viewed as that with the 
lowest temperature. Pictorially, the noise within the measured data can be viewed as 
thermal noise, or as particles which have 'evaporated' from the desired image: the 
algorithm then attempts to reverse the (statistical) process of evaporation of a solid 
and hence freeze out an enhanced image. 

Geman and Geman (1984) explain the algorithm in terms of the equivalence of 
the Gibbs functions of thermal physics and the Markov random fields of probability 
theory. They put the algorithm on a detailed mathematical footing as a stochastic 
relaxation approach, whereby random changes are made to the data set with a 
probability governed by the overall temperature of the image and by the local, 
environment-dependent, energy state of any pixel within the image. A potential 
function 

^  ^ ^ m - T\^ 

«     j t 

is set up where A^ is the number of pixels in the image; D, is the ith pixel of the 
measured image; ƒ, is the zth pixel of the conjectured enhancement; V{i,j) is negative 
for neighbouring pixels which are alike, positive for neighbouring pixels which are 
unlike, and zero otherwise; and cris the standard deviation of the (assumed Gaussian) 
noise. The image is assigned some starting temperature and random perturbations 
are applied on a pixel-by-pixel basis. The two terms of the potential function react 
very differently to any change in a pixel: the first term will encourage an explicit 
continuity of large areas of the enhanced image and will lower the potential energy 
function only when a pixel change is in line with this, while the second demands 
that there is a cost to any such change if it goes against the measured data. The two 
terms play off against each other: if the first were absent the enhanced image would 
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be identical to the measured data; if the second were absent the optimal enhancement 
would be a uniform shade. 

The annealing aspect of the algorithm arises with regard to ensuring that the 
process does not become trapped in a false, sub-optimal, solution due to some 
artefact of the data or calculation. This is achieved by also allowing changes which 
increase the energy function, but with a probability that is governed by the effective 
temperature. In a physical sense this means that large changes in the data can be 
made initially, while the system is 'hot', ensuring that the algorithm is able to sample 
a large volume of the multi-dimensional parameter space and avoid being deceived by 
purely local structure. As the temperature is lowered the system becomes less likely 
to make any changes which are energetically expensive, but continues to accept all 
moves with negative contributions. The net effect is slowly to freeze out an image 
which is more continuous in form: specular structure is far too costly energetically 
and is almost completely suppressed by the approach. An important aspect of this 
approach is the way in which the temperature is reduced: too quickly and the result 
will certainly be sub-optimal; too slowly and the algorithm becomes computationally 
unwieldy. Geman & Geman 1984 suggest a suitable temperature profile which cools 
the system rapidly at first, followed by a much longer and slower approach to the 
enhanced result. 

Because of the recursive nature of the algorithm SA is computationally expensive. 
Each pixel potential has be calculated for an entire image and the entire process 
repeated hundreds of times in an iterative fashion. The results can be worth the 
effort, however: the approach can be applied successfully to quite general multi- 
level images with low signal-to-noise ratios. Geman and Geman show results for a 
series of test images which have been subjected to additive and multiplicative noise, 
blur and non-linear transformations. For illustrative purposes one of their results is 
reproduced in Fig. 11.1. This shows the effect of the above algorithm when applied to 
an image (Fig. 11.1a) corrupted by additive noise (Fig. 11.1b) to produce an enhanced 
image after 1000 iterations (Fig. 11.1c). Fig. 11.Id shows the effect of introducing a 
modification into the potential which allows for the introduction of explicit energy- 
dependent line processes into the calculation. These provide a way of introducing 
terms which incorporate simple explicit edge discontinuities into the image at no 
extra energy cost but which provide an energy penalty for the more complicated 
forms of edge structure relative to straight edges. 

The SA algorithm has been implemented successfully in a parallel formalism by 
Murray et al. 1986, bringing the time for a complete 64 x 64 calculation down from 
hours to only seconds. They found quantitative differences in the results due to 
the different updating procedures involved in the serial and parallel algorithms, but 
showed that the approach can be used for rapid image enhancement using existing 
hardware technology. 

The advantages of this stochastic algorithm are that it is very effective at suppress- 
ing specular noise, can cope with realistic grey-level images and does not produce 
any of the ripples or negative areas that are characteristic of some linear techniques. 
The disadvantages are that it is computationally expensive and has a very arbitrary 
mathematical formulation (for although the basic concept has a physical analogue, 
the quantitative nature of the potential function is based on a series of less secure 
assumptions about the nature of the desired image). 

1 1.4   Maximum Entropy 

The Maximum Entropy Method (MEM) was first applied to a range of image processing 
applications just over a decade ago by Gull & Daniell 1978, although its origins go 
back several decades further. Since then the method has been developed intensively 
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Figure 11.1: An illustration of image enhancement by simulated annealing, after 
Geman & Geman 1984. (a) the original image; (b) the image (a) corrupted by additive 
noise; (c) image (b) enhanced after 1000 iterations; (d) image (b) enhanced using a 
modified potential favourable to the presence of straight lines. 
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by a research group at Cambridge (Kemp & Skilling 1982, Gull & Skilling 1983, Skilling 
1984, Gull & Skilling 1985, Skilling & Gull 1985, Skilling 1986. Gull & Newton 1986) 
and has gained a considerable following. The approach considers a chi-squared 
statistic 

where A^, A and 7, are as defined above, and Ei is the noise variance at the fth pixel. 
For some preset value Xoit is possible to build a set of feasible images, each of which 
satisfy x^ < xî- Out of this huge set of images which are 'not too far' away from the 
original data it is necessary to select one image which is 'best' in some sense. The 
approach taken within this algorithm is to find the feasible image which possesses 
the largest configurational entropy 

N 
S =-J2pi\og 

771,- 
(11.3) 

where pi is the normalised intensity of the ith pixel and m, is some measure of 
initial (prior) information in this pixel. There has been some debate as to the 
appropriate form of the entropy expression but the Shannon formula of (11.3) has 
emerged as the most general (Gull & Skilling 1985). In effect, it is a measure of 
the information in the set of pixels {pj in the presence of some prior model set 
{mi}. The action of maximizing S subject to the image being chosen from the 
feasible set corresponds to choosing the image which makes least use of any further 
assumptions or information outside of that contained in the data and the prior 
information TTZ,. In this sense the MEM is said to be the maximally non-commital, 
or minimally informative, reconstruction: the chosen enhanced image should only 
contain structure for which there is some evidence in the measured data or prior 
data. Spurious, algorithm-dependent, artefacts should not appear. 

MEM is on a far more solid theoretical footing than SA and has a number of distinct 
advantages over all methods so far mentioned. Like SA, and unlike inverse and 
Wiener filters, MEM can only produce positive reconstructions. Also like SA, MEM 
will suppress strongly noise and spurious features. Further, MEM is capable of 
reconstructing finer detail than SA and does not require any prior assumptions about 
the nature of images and edges. If, however, it is desired to insert prior information 
into the algorithm, then MEM allows this in a natural fashion via the prior model 
m,. If nothing is previously known about the image, then the prior can merely be a 
uniform distribution: if facts are known about the expected form of image, perhaps 
from model data, these facts can be encoded consistently into the algorithm via the 
prior. Gull & Newton 1986 show the value of prior information when applied to a 
practical problem of tomographic imaging. 

The computational problem amounts to a constrained maximization of the configu- 
rational entropy subject to the chi-squared measure of deviation from the experimen- 
tal results. This again requires a highly iterative approach and is computationally 
expensive. A numeric coprocessor or transputer is of considerable use in reducing 
the elapsed time for a reconstruction. 

Perhaps the greatest advantage of MEM from an archaeological point of view is that, 
unlike most other methods, it does not require that a full set of measurements be 
taken over an evenly-spaced rectangular grid. The approach treats all data points 
consistently from an information-theoretic point of view. In this sense MEM can 
be viewed as the approach which, given unevenly-spaced and sparsely-sampled 
data, will produce a fit to those data which does not treat end points or isolated 
measurements any differently from the rest:   it uses all the information implicit 
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in all measurements (including their stated positions) and no more. This point is 
illustrated in Figs. 11.2 and 11.3. These are reproduced from Skilling & Gull 1985. 
Fig. 11.2a shows an original photograph of 'Susie' and Fig. 11.2b, d show this image 
when degraded by convolution with a point spread function of radius six pixels and 
respectively subjected to heavy and light additive noise. The corresponding MEM 
reconstructions are shown in Figs. 11.2c and 11.2e. Fig. 11.3 then looks at the effect 
of sparse sampling on the MEM reconstruction of Fig. 11.2d. Figs. 11.3a,c,e show 
the degraded image 11.2d further corrupted by simply randomly discarding 50%, 
95% and 99% of the data respectively. Fig.ll.3b,d,f show the corresponding MEM 
reconstructions. It is, at first sight, amazing that a recognizable reconstruction can 
be obtained from only a few percent of noisy, blurred data. 

11.5   Overview 

Both SA and MEM are stochastic algorithms with roots in Bayesian statistics that 
operate on experimental data sets in a non-linear iterative fashion. Both algorithms 
offer significant advantages over linear and median filtering approaches with regard 
to noise suppression and positivity constraints. The interpretability of the enhanced 
images is also usually considerably improved. 

The main cost of both algorithms is processing power, but from an archaeological 
point of view the necessary expenditure may be well worthwhile. MEM, in particular, 
offers two extremely important advantages: (i) the ability to insert into the algorithm 
any model data via prior information; and (ii) the ability to cope with sparse and 
unevenly sampled noisy data. 

Feature (i) has potential for the consistent treatment of data arising from simulation 
models or multiple surveys. Bartlett 1987 has given a clear exposition of the need for 
increased work on the use of simulation models for archaeological surveys. Imai et al. 
1987 have employed simultaneous resistivity and ground-probing radar surveys to 
show the benefits of a comparative qualitative study of the two sets of data. With 
MEM it should be possible to go further and to use the results of one survey as the 
prior model for the enhancement of the results of a second: no other method offers 
the possibility of achieving this in any quantitative fashion. 

Given the usual circumstances of an archaeological site survey, feature (ii) of MEM 
has considerable potential in that it need not matter, say, if a modern road has 
been laid across the survey site: the algorithm can consistently combine survey 
data from either side of the obstacle to construct a reconstruction over the entire 
area. Neither is it necessary to produce a regular grid of measurements if this is 
inconvenient: as long as some accurate method of location (microwave position 
measurement, for example) is employed then the measurements can be located as 
desired. An important aspect of this is that it is possible to take an increased number 
of measurements in areas suspected to be of particular interest, thus increasing the 
local information density and the reliability of the enhanced results for that area. 

A joint project has been initiated at York, one aspect of which is to investigate the 
use of modern stochastic relaxation algorithms in an archaeological context. Early 
indications are that both the SA and MEM algorithms seem to have wide applicability 
in archaeological data enhancement. Particularly interesting areas for investigation 
are the use of archaeology-specific model simulations or multiple surveys to provide 
prior information for MEM. It is hoped in the future to develop a range of 'cut- 
down' stochastic algorithms, suitable for immediate preliminary on-site analysis 
using commonly available portable computers. 
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Figure 11.2: An illustration of image eniiancement by the Maximum Entropy Method 
(MEM), after Slcilling & Gull 1985. (a) the original image; (b) image (a) degraded by 
convolution and subjected to heavy additive noise; (c) image (b) reconstructed by 
MEM; (d) image (a) degraded by convolution and subjected to light additive noise; (e) 
image (d) reconstructed by MEM; 
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Figure 11.3: An illustration of the effect of sparse sampling on a MEM reconstruction, 
after Skilling & Gull 1985. (a), (c), (e): image 1.2(d) further corrupted by randomly 
discarding 50%, 95% and 99% of the data respectively; (b), (d), (f): the corresponding 
MEM reconstructions. 
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