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Geodetic and cartographic problems in archaeological 
data bases at and within the boundaries of some 

countries 

Irwin Scollar* 

25.1     Maps, archaeological databases and their uses 

25.1.1 Monument protection 

Geographic information systems for archaeology are now quite common. The largest 
of these are usually found in ancient monument protection organisations or air photo 
research groups, and thousands of sites over large areas are frequently recorded. 
Almost all western countries have readily available maps at scales of 1:25000 or 
larger, and the sites are usually referenced to the grid systems used on these maps. 
The database systems used for query and data entry are usually common commercial 
packages, occasionally with some specialised add-ons which provide supplementary 
functions. However, typical commercial database programs have very limited com- 
putational ability. 

Queries to the database which concern the coordinates of sites usually take the 
form of: 

1. Find all sites within a certain distance of a given site. 

2. Find all sites within a given polygon (perhaps the boundaries of a political 
division). 

3. Find all sites along some kind of linear feature, such as a road or river. 

25.1.2 Spatial statistics 

Evaluation of the geographic distribution of sites using spatial statistics requires 
the site coordinates. Typical methods used are Dirichlet tesselations (Voronoi or 
Theissen Polygons), or computations are carried on Euclidian distances between site 
coordinates or between sites and random points to determine degrees of randomness, 
clustering, and surface fitting, (Hodder & Orton 1976; Ripley 1981; Upton & Fingleton 
1985). Typical requirements are: 

1. All intersite distances 

2. All site-random point distances 

3. Relative Cartesian coordinates of all sites 
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25.1.3    Mapping from oblique aerial photographs 
Another use for map coordinates is for the geometric correction and mapping of 
sites visible in aerial photographs, (Scollar et al. 1989). For this purpose, three or 
more control points must be visible in an image whose coordinates on the ground 
are known. It is not usually very practical to measure these in the field, and the 
coordinates are taken from large scale maps (1:5000 or better) which are scanned 
and processed like images, (Scollar & Weidner 1979). 

Required are either: 

1. Relative coordinates on a single scanned map (pixel indices) 

2. Relative coordinates on up to four adjacent scanned maps if the airphoto has 
control points lying outside a single map sheet. 

3. Adjusted relative coordinates on up to two pairs of two maps each, when the 
adjacent map pairs are skewed relative to each other at the boundaries of 
meridian or latitude strips (see below). 

25.2    Mapping methods 

All would be quite harmless if it were not for the fact that geographic coordinates 
(latitude and longitude) are not the same as map coordinate systems in most coun- 
tries. Furthermore, grid references are often supplemented with map names or letter 
combinations. 

Maps are transformations of the surface of the Earth to a plane. Most are not 
projections although the word is commonly used for historical reasons. Rather, they 
are functions of two complex variables which describe the transformation from the 
surface of the ellipsoid to a plane. Mapping transformations were one of the most 
active research areas in late 18th and early 19th century mathematics, and many 
well known mathematicians contributed to the subject. The general introduction of 
computers in the 1960's revived interest in what was thought of as a long-solved 
problem, and many of the older methods have been revised or abandoned in recent 
years. 

25.2.1    Ellipsoids 
The shape of the Earth is approximated by an ellipsoid. It's real shape is obtained 
through accurate satellite measurements today, but the ellipsoid approximation is 
used in cartography. One of the early models was due to Bessel, director of the 
Prussian state mapping service in the early 19th century. The Bessel ellipsoid despite 
its errors survives to this day in the German, Austrian, Swiss, Dutch, Norwegian and 
Swedish mapping systems. 

There have been many ellipsoid models of the Earth made since the early 19th 
century, and different countries use different ellipsoids for their mapping systems 
(see for example Heitz 1985; Sigl & Torge 1981). The ellipsoid is defined as shown 
in Fig. 25.1. Constants for the most commonly used ones are given in Table 25.1. 
Although differences are small, they are significant enough so that latitudes and 
longitudes for the same point will differ somewhat when the ellipsoid is changed. 
National maps usually use an ellipsoid model which provides a best fit for the 
local system. Maps which extend over national boundaries usually use one of the 
international models. 
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Meridianellipse 

Figure 25.1: Notation for the ellipsoid 

Various ellipsoids and constants, the notation following Fig. 1.2: 

Name Year a h Used in 
Bessel 
Airy 
Clarke 
Clarke 
lUGG 1924 
Krassovsky 
lUGG 1980 

T84r 
1849 
1866 
1880 
1924 
1944 
1980 

 a 
6377397.2 
6377563.4 
6378206.4 
6378249.1 
6378388.0 
6378245.0 
6378137±2 

6356079.0 Germany, Austria, Switzerland, Norway, Sweden 
6356256.9 Great Britain, Ireland 
6356583.8 USA, Canada 
6356514.9 France 
6356911.9 Belgium, Denmark, Italy, Luxemburg 
6356863.0 Warsaw Pact countries 

6356752.3±1 recommended for new maps 

Values of second eccentricity and pole curvature for calculations of GK and UTM coefficients 
Name 
Bessel 
Airy 
lUGG 1924 
Krassovsky 1944 
lUGG 1980 

0.0067192188 
0.0067153391 
0.0067681848 
0.0067385314 
0.0067395013 

Co 
6398786.848 
6398941.320 
6399936.655 
6399698.921 
6399593.640 

go 
111120.6196 
111123.6231 
111136.5363 
111134.8609 
111132.9524 

g2 
15988.6384 
15979.8694 
16107.0692 
16036.4943 
16038.5193 

g4 
16.72997 
16.71117 
16.97630 
16.82811 
16.83265 

0.02178 
0.02174 
0.02226 
0.02197 
0.02198 

Table 25.1: Various ellipsoids and constants 
The lUGG 1980 ellipsoid is probably accurate to within the tolerances shown, so that 
later measurements will not modify these constants significantly. That is why its use 
is recommended for the future. The values of the coefficients have been computed 
here using 10 byte extended precision floating point for the most accurate published 
values of a and b which I could find. 
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Figure 25.2: Major projections used in large scale maps 

25.2.2    Common transformations for large scale maps 
Three major types of transformation or projection are used commonly in large scale 
mapping (Hake 1982; (Maling 1973; Snyder 1982). These are shown in Fig. 25.2. 

They are: 

1. Mapping to a cone with a transformation, the cone being then unrolled. 

2. Mapping to a cylinder which is then unrolled by means of a transformation 
formula which is not a geometric projection. 

3. True projection or transformation mapping to a tangent plane from the opposite 
side of the ellipsoid. 

The most commonly used mapping surface in most European countries is a trans- 
verse cylinder tangent to a meridian with axis east-west. This is the transverse 
Mercator mapping in English-speaking countries, and a Gauss-Krüger (GK) mapping 
elsewhere, (^auss earned his living as director of the mapping service of the Han- 
noverian Kingdom. Krüger (1912) systematised and revised the original Gauss (1822) 
design. It is used in the German-speaking and the Warsaw Pact countries, though with 
different ellipsoids. Meridian strips of either 3° or 6° are used as discussed below. 
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When the cylinder is made slightly smaller than the ellipsoid, it cuts two meridi- 
ans. This gives the Universal Transverse Mercator (UTM) system which is the NATO 
standard for military maps and is used for recent maps in Denmark and the U.S.A. 
The UTM system has an advantage over the GK method in that only half the number 
of map strips are required to cover the globe at low distortion. In the future, when 
and if the expense can be borne, it is likely to replace all the other systems. 

Both the GK and the UTM systems have the major virtue that angles are preserved 
locally, distance distorition is minimised, and the coordinate system is Cartesian on 
a given map sheet so that only a straight line drawn from border to border in each 
direction is needed to obtain the coordinates of any point on the sheet. 

A truncated cone is used for mapping in France, Belgium and some of the older 
U.S. maps among others. This is the Lambert Conformai projection (Snyder 1982; 
Boucher 1979). It has the advantage of being expressible in closed analytic form as 
opposed to the GK and UTM systems. Back in the 18th century when it was invented, 
this was important. In addition, angles are preserved, and distance distortion is not 
excessive. France uses four truncated cones with slightly different scale factors for 
the northern, central, southern parts of the country plus Corsica. This is a Lambert 
Polyconic Conformai projection. 

The Netherlands is one of the few countries in the world to use the Stereographic 
projection, a true projection to a plane from a point opposite The Hague on the other 
side of the ellipsoid. Stereographic projections are also standard for polar latitudes 
above 80° north and south. 

All of the common transformations preserve angles well enough and are of suffi- 
ciently low distortion so that linear distance measurements can be made on a map 
sheet of scales 1:25000 and larger. Preservation of angles was very important to 
surveyors since most measurements were made with theodolites before the invention 
of electronic distance measuring devices. Consistent mathematical treatment of 
these transformations can be found in (Großmann 1976;, Snyder 1982; and Kuntz 
1983) and a complete explanation from a theoretical geodetic point of view can be 
found in (Heitz 1985). Series expansions suitable for rapid computation are given 
for the GK and UTM systems by (Schödlbauer 1982). Transformations of small scale 
maps from one system to another are described by (Brandenberger 1985) and details 
of programs used by the US Geological Survey are given in (Snyder 1985). The 
mainframe program package GCTP for the cross-conversion of 17 different small 
scale projections based on an earlier CIA package was published by the US Geological 
Survey in 1981. The large scale maps which are of interest in archaeology have other 
problems. 

25.2.3   Grid reference in various countries 
Grid references are two numbers which are in the Cartesian coordinates of the map 
transformation used. In Britain, they are preceded by a two letter code which 
designates a 100 km side length square in a modified transverse Mercator system, 
(Harley 1975; Ordnance Survey 1967). In West Germany, Austria, Luxemburg, Italy, 
the Scandinavian countries and the Warsaw Pact, the coordinates may be given as 
X and y values (sometimes designated R and H) within a given 1:5000 or 1:25000 
map sheet. For historical reasons, cartographers outside France use x for north- 
south and y for east-west. In France, the kilometer digits of the Lambert coordinate 
system appear along the border of the map, but either the name or number or conic 
segment of the map must also be supplied to prevent ambiguity. The borders of the 
French 1:25000 maps give geographic coordinates in'gon', l/400th of acircle, but the 
conversion by multiplying by 0.9 to get degrees is trivial. The map border markings 
are based on the meridian of Paris rather than Greenwich on the older maps, so that 
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a constant has to be subtracted as well. Newer maps have both Greenwich and Paris 
meridian markings. 

25.2.4    Map naming conventions 
Maps at scales of 1:100000 or larger have widely different nomenclatures, depending 
on the country. The 1:25000 maps in Germany are bounded by 6' and 10' latitude 
and longitude. The 1:5000 maps use the GK grid as aborder and are numbered using 
the first four digits of the x and y coordinates in that system. The German 1:25000 
maps for historical reasons are numbered separately with four digits starting in the 
north and terminating in the south of the country. 

In France, the 1:50000 maps are numbered with arabic numerals for the rows and 
Roman numerals for the columns, and these are further divided into four sheets of 
two half-sheets each at 1:25000, numbered from 1 to 8, each bearing the name of the 
principal town in the 1:50000 sheet. 

In Britain, the maps are given the two letter combination from the 100 km national 
grid, plus the numbers of the lower left coordinates on that grid. 

In Belgium the newer 1:50000 maps are numbered sequentially from north to 
south on with 1:25000 subdivisions with subnumbering. The Lambert projection is a 
national one and is not compatible with the French projection. The 1924 international 
ellipsoid is used instead of the Clarke 1880 ellipsoid used in France. 

In Switzerland, maps at 1:100000 have two, 1:50000 three, and 1:25000 four 
digit numbers. The mapping transformation is a unique variant of GK (see below). 
Luxemburg numbers its maps from 1 to 30 and uses a GK system passing through 
the meridian of the city of Luxemburg. 

Austria bases the zero meridian of its GK mapping system according to the conven- 
tion of 1634 in the Habsburg monarchy in the westernmost Canary island Fero and 
numbers the 1:25000 maps in 1:50000 squares from 1 to 4. Since 1976, the 1:25000 
maps are merely enlargements of the 1:50000 and have the same numbering system. 

Denmark uses arabic numbers for the 1:100000, Roman numerals for the number- 
ing of the 1:50000, and for the 1:25000 subnumbers these as northwest, northeast, 
southwest and southeast, using a UTM model although the standarised UTM notation 
is not followed for the map names. 

Further details can be found in United Nations (1976), Ewald (1988), and in the 
excellent lists of large scale maps which are available commercially in the Geo-Katalog 
Volume 2 from GeoMap Center in Stuttgart. These catalogues also give overviews of 
the mapping systems of the other Scandinavian and various Mediterranean countries 
which will not be discussed here. The examples cited here give some idea of the 
variety of nomenclature and the resulting problems which may arise when this 
information is used in an archaeological database. 

25.2.5    Meridian and latitude strips 
Given this map maker's Tower of Babel, it is not surprising that archaeological 
databases on or across international boundaries are not easily implemented. Even 
within a given country, searches for sites on adjacent but non-numerically named 
maps is a major chore. The situation is made even more complicated by the fact 
that a given transformation may introduce too much distortion in a large country. 
Therefore both the transverse Mercator and the Lambert Conformai methods break 
the ellipsoidal surface up into a series of meridian or latitude strips. This is shown 
for the GK case in Fig. 25.3 for the whole globe. Seen in detail for a given country like 
West Germany, the strip boundaries at 3° intervals are shown in Fig. 25.4. The strips 
are numbered beginning at the Greenwich meridian according to the central meridian 
of the strip, so that West Germany has three strips numbered 2 to 4 corresponding 
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Figure 25.3: Gauss-Krüger Meridian Strips 

to the 6°, 9° and 12° strips. At the strip boundaries, the map coordinate numbers 
jump abruptly and no database query system can find adjacent map coordinates by 
simple arithmetic. In fact, none of the requirements stated above for distance and 
coordinate measurements can be met near such strip boundaries. Similarly, the UTM 
map has an overlapping wedge shaped boundary zone every 6° as shown in Fig. 25.5. 
Fortunately for the Danes, their country is contained entirely within one UTM strip. 
Britain is also fortunate in being elongated from north to south, so that only one 
strip is used tangentially to 2° west of Greenwich. Although computed using the 
UTM method, the map lettering is incompatible with standard UTM nomenclature. 
Austria has three strips, with the zero meridian at Fero as mentioned above and is 
compatible only with Spain (the Habsburg connection!). The Swiss system with a 
inclined transverse cylinder centered on the old Observatory in Bern is independent 
of all its European neighbours, (Bolliger 1967). Like that of the Netherlands, it is 
unique in Europe. Conversion formulae have been worked out to obtain conventional 
GK and UTM coordinates from the Swiss system (Benzing & Kimmig 1987b). These 
will not be discussed here. 

25.3   Transformations from geographic to grid reference and inversely 

25.3.1    Choice of an ellipsoid 
Transformation from a national grid system to geographic coordinates and back again 
requires the use of one of the ellipsoids in Table 25.1. For national use, it is sensible 
to use the ellipsoid chosen by the national mapping agency, but for international 
use with data crossing national boundaries, it is more sensible to use one of the 
international ellipsoids. That of 1924 is the basis for the UTM system and it is also 
usedforanumber of national maps. However, that of 1980 is not likely to change very 
much in the future, being the result of careful satellite measurement of the figure of 
the Earth (Sigl & Torge 1981). If databases are to be portable so that data from various 
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Figure 25.4: The Gauss-Krüger Meridian Strips in Germany 
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Figure 25.5: The UTM grid in West Germany 
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countries can be used by their neighbours, then agreement on a common elHpsoid 
and conversion of the national coordinate system prior to exchange saves a lot of 
calculation for the recipient. The general use of the 1980 ellipsoid parameters and 
geographic coordinates is recommended here for data exchange. 

The flattening f, first and second eccentricities e and e' and radius of curvature c at 
the pole of the ellipsoid using the notation of Fig. 25.1 are given by: 

ƒ = 
a — b 

a 
Va^ - 62 

a 

pi Va^ - b^ 

c    = 

b 

b 

(25.1) 

The squares of e and e' are used in most calculations, and the notation is e^ and e'^. 
The meridian arc length Gi 2 is the integral between two points of latitude Bj, B2 as 

a function of the meridian curvature M: 

f^^                                    c 
Gr2=  I      MdB, M =  r (25.2) 

This is an elliptic integral of the second kind. It can be expressed as the sum of a 
series with constants g(„) which depend upon the chosen ellipsoid. Table 25.1. The 
derivation is clearly described by Großmann (1976) and given by (Schödlbauer 1982, 
Vol.2, part 1, p.l4). 

25.3.2    From geographic coordinates to map coordinates 

The computation of the transformation from geographic coordinates to national map 
coordinates is tedious but straightforward. Methods for three of the major systems 
are given in the following section. The power series techniques are taken from 
Schödlbauer 1982. Appropriate modifications for the non-standard UTM system with 
its zero at latitude B = 49° and longitude L = 2^^ W. and the Airy ellipsoid coefficients 
in Table 25.1 should be used in Britain. 

25.3.2.1    Geographic to Gauss-Krüger or UTM 

The Gauss-Krüger coordinate H (north) is derived from the geographic latitude B and 
the meridian arclength G(B) following the notation of Fig. 25.6 with H=x: 

H=   G{B) + ^Ncos\B)tAL^ 2p 
 ./V 
24p + ^N cos2(ß)i(5 -t^ + 9e'2 cos~iB))AL^ 

with 
Ai —    L — LH as shown in Fig. 25.6, t — tan(iJ) 
N =        ,        '^ the radius of the curvature normal to the meridian at B 

c =     the radius of curvature at the pole, Table 25.1 and (Benzing & Kimmig 1987a) 
e ^      as given in Table 25.1 for the chosen ellipsoid 

(25.3) 
The GK R value is computed as: 
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Figure 25.6: Notation for the Geographic <=> GK & UTM transformations 

R=    ^»lO^ + k + y 
with 
and: 

A; = 5 • 10    to prevent negative values 

y=    ^Ncos{B)AL + ^Ncos^{B}(l -P + e'2cos^{B))AL^ 
+ l^Ncos^B)){5 - 18^2 ^ i4)^^5 

(25.4) 

The UTM northing N is derived from the geographic latitude B and the meridian 
arclength G(B) by a very similar expression to (4) with an extra 6th order term and 
a scale factor m//=.9996 which causes the cylinder to cut the ellipsoid along two 
meridians: 

H =    muGiB) + rn^N cos\B)tAL'' 

+ ^N cos\B)t{5 -t^ + 9 e'2 cos''iB))AL' 
-^i^Ncos^{B)ti61 -58^+ t^)AL^ 

c     and e'2 as given in Table 25.1 for tlie International 1924 ellipsoid 

The UTM easting E and Zone number are computed as: 

E=   y + k 
Zone =     ^^gt^° + 30 

and : 
y =    rnjLN cos(ß)AL + f^N cos3(.ß)(i - t'+ e'2 COS\B))AL^ 

+ Tlé^^œs'iB){5 - 18«^ + t'+ e'^ cos\B)iU - 58t')}AL' 

(25.5) 

(25.6) 
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25.3.2.2   Causs-Krüger or UTM to Ceographic coordinates 

The main item of interest here is the computation of geographic coordinates from 
various grid coordinates. For GK one uses the constants for the Bessel, and for UTM, 
the international ellipsoids in Table 25.1. For the GK and UTM mappings, the first 
step is to find a base latitude B^- from the meridian arc length G from which the actual 
latitude can be computed. One way to do this is with a Newton-Raphson approach 
to obtain the function G(B). Another is with a direct series expansion as given by 
(Schödlbauer 1982, Vol. 2, part 1, p. 15). The Newton-Raphson method is somewhat 
simpler (see appendix). 

The geographic coordinates are computed from the GK and UTM definitions: 

X = H or X — N 
Î/ = R - (di • 10^ + k) with k = 500, 000 and 

where d^ is the first digit of the R coordinate or (25.7) 
y = E-k 

LH = di» 3° for GK or LH = (Zone  - 30) • 6° - 3° for UTM 

and the series expansions given by (Schödlbauer 1982, Vol. 2, part 2, p. 80). In that 
reference, coeffcient [3]i is negative, not positive as printed. 

Two small subroutines with about a dozen statements each accomplish the trans- 
formations in both directions. They are given in the appendix for the Gauss-Kruger 
case in FORTRAN. These have been in use at Bonn since 1981. For GK some of the 
higher order coefficients which are required for UTM can be left out without serious 
loss of accuracy. The subroutines can be easily changed for the UTM and British 
cases by modifications which include the scale factor mpf as shown above. It would 
be easy to reprogram the routines in C or Pascal and use the code called from within 
a database. If done on an industry standard PC, a hardware coprocessor is highly 
recommended not so much for speed, but for the precision of the computation of 
the trigonometric functions and the availability of an extended floating point data 
type. 

25.3.2.3   Geographic to Lambert Polyconic Conformai 

In this section, the French system is used as an example. The Lambert Conformai 
mapping is applied in other countries with different parameters, but the principles 
are much the same. The ellipsoid is mapped conformally to a truncated cone which 
is then mathematically unwrapped. Local angles are preserved well enough, and to 
minimise linear distortion, strips are used for the same reasons as with GK and UTM. 
The cone has its apex at some point above the north or south pole, and in all but 
the smallest countries cuts the ellipsoid along two lines of latitude. The Clarke 1880 
ellipsoid used in France is divided into four equal zones defined by a central latitude 
Lo in gon with slightly different scale factors my. The Lambert calculation here is 
taken from Benzing & Kimmig 1987a. 

Zone    Name       Lpgon    rrij 
1 North 55.0 0.9998773 
II Central 52.0 0.9998774 
III South 49.0 0.9998775 
IV Corsica 46.85 0.9999447 

The longitude of Paris (2° 20' 14" E. of Greenwich) is used as the central meridian of 
the map system. Fig. 25.7. In the polar coordinate system the parameters are r and 7, 
as shown in Fig. 25.8. r is the radius, and 7 the angle relative to the central meridan. 
In contrast with the other mapping systems, X is used for the east-west and Y for 
the north-south directions. The central meridian is assigned the value 600 (Km) and 
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Figure 25.7: Latitude strips for the French Lambert Polyconic system 

20^ 

Figure 25.8: Notation for the Geographic <=> Lambert transformation in France 

that of each L^ 200 (Km) to avoid negative values. The French Lambert coordinates 
X (east), Y (north) of a point with Greenwich longitude A, and latitude 4> in decimal 
degrees are computed as: 
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M10(A-2.377222)r   _   10<f> 
-        ' 9 '        ^  -   ~9' 

U =    exp(arctanh(sin(L) — e arctanh(e sin(L)) 
Uo=    UiLo) 
7=    Msin(Lo) 

/TJ  \sin(Lo) 
r=    r,[^) (25.8) 

where: 
No 

X =    mj • rsin(7) + 600 
y =    TUf • (r^- r cos(7)) + 200 

Note that e^ is the square of the first, not the second eccentricity used so often in 
the GK and UTM formulae. The symbol 'exp' is used as for the base of the natural 
logarithms to prevent confusion with the traditional geodetic use of e for eccentricity. 

25.3.2.4   Lambert Polyconic Conformai to geographic coordinates 

The inverse transformation to obtain the geographic coordinates (f>, A from the 
Lambert coordinates X,Y is computed by: 

correct the origin in x and y 
_  (X-600)      _   y-200 

•^  ~        ruj       y ~      mj 
using To computed as in (Kuntz 1983) get 
7 = arctan ^ (25.9) 
r =     ^ ^ sin('7) 

then interate to get L using: 
sin(Lj) — tanh(ln U) as a starting value 
sin(L„+i) = tanh(ln Î7 + e arctanh(esin(Z/„)) 
until  |L„+i — L„| < 10 ^25 IQ\ 

then: ^     '     ' 
L = arcsin(sin(Z/„^i)) and finally 
A = 0.9M + 2.37722 
4)= 0.91 

The French 1:25000 map borders are at constant values of latitude and longitude 
in gon, so that the Lambert coordinates as printed are skewed relative to the map 
borders. This makes it somewhat inconvenient to determine site coordinates in X 
and Y at the same time using a T-Square or a drafting machine, since the map must be 
rotated. The same is true near the meridian boundaries in the GK and UTM systems. 

25.4   Searching databases containing grid references 

25.4.1    Incorporating grid reference—geographic coordinate transforma- 
tion at data entry 

The obvious solution to all of these problems is to use ellipsoidal geographic co- 
ordinates internally in all data base files, making the conversion from the local map 
coordinates automatically on data entry. This is done in the Bonn database which the 
author developed some years ago, (Scollar et al. 1986; Scollar 1988). This allows all 
distance measurements and area or polygon searching to be done without difficulty. 
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Since a commercial database program cannot do more than elementary arithmetic 
and that not very quickly, it is sensible to call an external routine written in a high 
level language like C, Pascal or FORTRAN which can handle the necessary mathematics 
and pass the result back to the database program for incorporation at the appropriate 
place in the record. In the Bonn database, the calculation is done in FORTRAN because 
adequate compilers for Pascal and C were not available when it was written, but doing 
it in C or Pascal would make more sense today. Most commercial database programs 
have an interface for C, and some can accept compiled object modules from any high 
level language or an assembler. The calculation load is not terribly heavy, and if 
one has a sufficiently fast machine, then even the primitive database math routines 
might be employed without a significant time penalty, though accuracy may not be 
satisfactory. 

25.4.2 Small area search and distance measurement on grid references 
For searches or distance measurement over a small region or if the search area 
is within a meridian or latitude strip, the Earth can be considered flat. Hence 
the simple Euclidean distance between pairs of Cartesian map coordinates can be 
used. Otherwise the distance must be computed using geographic coordinates. For 
Britain, the simplest method is to replace the two letter map code in the national 
grid reference with a two digit number to designate the 100 Km maps, starting 
from zero at the origin of the system, latitude 49° north, longitude 2° west. Then 
Euclidian distance will suffice and one need not worry about the map boundaries. 
The replacement table for the 50 odd map sheets which cover the whole of England 
and Scotland can be easily stored in a small database or in an array. This method 
can be used for most archaeological purposes even with the areas of considerable 
distortion quoted by Maling 1973. The method also applies to Denmark, Luxemburg 
and other countries which are entirely contained within a GK or UTM strip. 

With many database programs, small area searches within a strip can be signifi- 
cantly speeded up by using the first four digits of N & E (R & H) as a primary index, 
find all the sites within one to four adjacent maps in this range, and then search a 
secondary index on the coordinates in the reduced group of sites thus found. The 
eight digit number can be readily expressed as a four byte integer, one of the most 
efficient key forms in many database programs. 

^^index =    ^h • 65.536 + R^ 
where: H^ and R^ are the first four digits in two bytes each (25.11) 

and: •'^'^index '® ^ long integer 

This divide and conquer method works well for map sheets at 1:5000 in Germany. 
The Km search area is adequate for monuments protection and air photo needs where 
one wants to find neighbouring sites to a given coordinate pair or zone. The method 
could also be used with low precision decimal geographic coordinates for quick 
search over strip boundaries. For 1:25000 maps, use the map number or name of 
up to four adjacent sheets in a similar way. 

25.4.3 Large area search or distance measurements on geographic coor- 
dinates 

If a strip is crossed, then a simple spherical model of the Earth can be used with 
modest accuracy. From elementary spherical trigonometry, the distance D depends 
on the subtended arc 6 in Fig. 25.9 and is: 
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Figure 25.9: Distance calculation on a sphere 

D = arc((5)r 
cos((5) = sm{(f>fj) sin(^A') + cos((/>//) cos((/>/v) COS(AA) 

where (pi,4>\ =   latitudes at points H and N 
and AA =   difference in longitude at points 11 and N 

(25.12) 

For points with spacings likely to be of archaeological interest, this expression is 
numerically unstable. A better method due to Ehlert 1978 is to use: 

Til  = 

6 = 

where: 

cos(^)     cos^Z2 = -cos(^)sin(^) 

= sin (^) sin(fî)    «2 = sin (^) cos(ß) 

2iVarctan/gg4 
(25.13) 

Aß =    ^2 - Bi ^L-L^- Li 
N is the radius of the curvature at the average latitude {B^ + i?2)/2 : 

N = 

This method will yield results accurate to roughly 0.2% at middle latitudes which 
suffices for most statistical, plotting and database search purposes. Obtaining near- 
geodetic accuracy at moderate distances requires only a bit more computation. The 
ellipsoidal distance can be computed following the original Gauss-Helmert method 
(Helmert 1880, reformulated by Schödlbauer 1982, Vol. 2, part 1, p. 73) which is 
more than accurate enough for any archaeological application, ca. 13 cm at 535 km 
when compared with the high precision method described by Schödlbauer 1980. 

For rough distance estimates which may be adequate for some spatial statistical 
purposes, a spherical model of the Earth can be used for computing the geographic 
from the GK, UTM or Lambert coordinates. Given the relative complexity of the Ehlert 
formulae (Schödlbauer 1982) needed for spherical distances there is little gain in 
speed, and accuracy is lost compared with the Gauss-Helmert ellipsoidal distance. 
Even on a small PC the computation is nearly instantaneous, so that there is no reason 
to use spherical calculations as in the past when things were done by hand. 
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25.4.4   Database for map names or computation of map sheet numbers 
Site coordinates are usually incorporated in the database by grid reference. This may 
require the map sheet name or alphabetical identification. A separate small database 
with the coordinate reference of the lower left and upper right corners of the map 
indexed by the map name or identification is useful. If map names are to be found 
after locating sites, then the same information is also needed. This is quite a lot of 
work for France, where both the Roman numeral and map name identifiers are needed 
for the large number of map sheets. It is not worthwhile programming arithmetic for 
Roman numerals, although some may find this an amusing exercise. A not quite so 
complex database is required for the alphanumeric scheme used in the Netherlands. 
In Germany, there is a simple formula which will relate the numbering of the 1:25000 
map system to the geographic coordinates in latitude and longitude as well as its 
inverse. It is given in the appendix. 

Similar equations might be set up for the Swiss, Austrian, Belgian, Luxemburg, 
Spanish and Italian schemes. The Danish combination of numbering, Roman numer- 
als and orientation requires a database which is comparable to that of the French or 
Dutch systems. The British system requires a simple table or small database giving 
the letter combinations used. These range from HL to HY, NA to NZ, SC to SZ and TA 
to TV with a few gaps. 

25.5    A map independent storage convention for site and find recording 
for data exchange 

Since rounding errors in distance calculations which involve differences between 
very large nearly equal values are important, it seems best to store the ellipsoidal 
coordinates as two fixed point signed integers of four bytes each after computation 
in extended precision floating point. This permits resolution to 3 cm. anywhere on 
the Earth's surface, and it is even adequate for small scale find recording. Searching 
for eight bytes is very rapid with any database programme. An additional four byte 
integer is used at Bonn as a unique identifier for each item at a given coordinate. In 
the first record, a single four byte integer records the last unique number assigned. 
This is referenced before and after adding a record, and if the addition is successful, 
it is incremented by one. This technique allows erasure of records without requiring 
renumbering. Record locking in a network or on a shared system is essential to 
prevent duplicates. If data is entered independently at different physical locations, 
then blocks of reference numbers can be allocated to the different groups in advance. 
A further four byte integer is uses as a pointer to join up related sites or finds either 
dynamically as a result of a common search operation or statically as the result 
of a spatial clustering algorithm. Using this storage technique with values derived 
from the International Ellipsoid of 1980 would enable data interchange between all 
countries, and the notation uniquely identifies all archaeological finds and sites with 
only 20 bytes. 
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Appendix 

DEC (VAX, PDPll) Fortran subroutines for the calculation of German Map Sheet 
numbers, and converting between geographic and Gauss-Krüger coordinates 
c+  
c 
C TKTGEO  -  CONVERT TK NUMBER TO LONGITUDE/LATITUDE 
C 

C CALLING SEQUENCE: 
C 

C CALL rKTGEO{ITK,B,L,K) 
C 

C ITK - NUMBER OF THE "TOPOGRAPHIC MAP 1:25000" 
C B   - REAL*8 LATITUDE OF LOWER LEFT CORNER 

C L   - REAL*8 LONGITUDE OF LOWER LEFT CORNER 

C K   - NUMBER OF MERIDIAN STRIP FOR GK COORDINATES 
C 

C SIDE LENGTH IS 6' HEIGHT, 10' WIDTH 
C 
C  

SUBROUTINE TKTGEO(ITK,B,L,K) 
REAL*8 B,L 
I=ITK/100 
J=MOD(ITK,100) 

B=-1D-1*I+55.9D0 
L=(J-2)/6D0+6 

K=(J+7)/18+2 

RETURN 

END 

C +  

C 

C GEOTTK  -  FIND TK SHEET CONTAINING GIVEN COORDINATE 
C 

C CALLING SEQUENCE: 

C 

C CALL GEOTTK(ITK,B,L) 
C ITK - TK NUMBER RETURNED 

C B   - REAL*8 LATITUDE OF POINT 
C L   - REAL*8 LONGITUDE OF POINT 
C 
c  

SUBROUTINE GEOTTK(ITK,B,L) 
REAL* 8 B,L 
J=6.*( (L-DMOD(L, 1./6D0) ) - 6. ) + 2 
I=-10.*( (B-DMOD{B,lD-1)) - 55.9 ) 
ITK=100*I + J 
RETURN 
END 

C+  

c 
C  GEOTGK  -  CONVERT GEOGRAPHICAL TO GAUSS-KRUEGER COORDINATES 
C 
C  CALLING SEQUENCE: 
C 
C  CALL GEOTGK(B,L,K) 
C    B - REAL*8 LATITUDE OF POINT ON ENTRY, R ON EXIT 
C 
C    L - REAL*8 LONGITUDE OF POINT ON ENTRY, H ON EXIT 
C 
C    K - MERIDIAN STRIP NUMBER 
C 
C  

SUBROUTINE GEOTGK(B,L,K) 
C 
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C    B AND L ARE IN DECIMAL DEGREES 
C    K = MERIDIAN NUMBER 
C 

IMPLICIT REAL*8 (A-Z) 
INTEGER K 
PARAMETER E2=.0067192188D0    ! Second excentricity **2 
PARAMETER RHO=57.2957795131D0 ! Degrees -> Radians 
PARAMETER C=6398786.849D0     IRadius of curvature at the pole 
PARAMETER G0=111120.61962D0   !Coefficients for the meridian arc length 
PARAMETER G2=15988.63853D0 
PARAMETER G4=l6.72995D0 
PARAMETER G6=0.02178D0 
PARAMETER G8=0.00003DO 

C 
C    Arithmetic statement function for the meridian arc length 
C 

G(B)=G0*RHO*B-G2*DSIN(2*B)+G4*DSIN(4*B)-G6*DSIN(6*B)+G8*DSIN(8*B) 

B=B/RHO 
CO=DCOS(B) 
ETA2=E2*CO**2 
N=C/DSQRT(1+ETA2) 
T=DTAN(B) 
T2=T**2 

C 
C    Computation of the longitude difference 
C 

Z=CO*(L-3*K)/RHO 
Z2=Z**2 
X=G{B) + N*T*Z2*(0.5 + (5.-T2+9.*ETA2)*Z2/24. ) 

C 
C    Computation of latitude 
C 

Y=N*Z*( 1. + Z2*((1.-T2 + ETA2)/6. + ( 5.-18.*T2 + T2**2)*Z2/120. )) 
C 
C    Return results in the input variables 
C 

B=K*1D6+5D5+Y 
L=X 
RETURN 
END 

C+  
c 
C GKTGEO  -  CONVERT GAUSS-KRUEGER TO GEOGRAPHICAL COORDINATES 
C 
C CALLING SEQUENCE: 
C 
C CALL GKTGEO(R,H) 
C R - "R" VALUE, LATITUDE UPON RETURN 
C H - "H" VALUE, LONGITUDE UPON RETURN 
C 
C  

SUBROUTINE GKTGEO(R,H) 
IMPLICIT REAL*8 (A-Z) 
INTEGER K 
PARAMETER E2=.0067192188D0 
PARAMETER RHO=57.2957795131D0 
PARAMETER 0=6398786.849D0 
PARAMETER G0=111120.61962D0 
PARAMETER G2=15988.63853D0 
PARAMETER G4=l6.72995D0 
PARAMETER G6=0.0217 8D0 
PARAMETER G8=0.00003D0 

C 
C    Computation of the meridian arc length and its derivative with 

270 



25. GEODETIC AND CARTOGRAPHIC PROBLEMS IN ARCHAEOLOGICAL DATA BASES 

C    arithmetic statment functions 
C 

G(B)=G0*RHO*B-G2*DSIN(2*B)+G4*DSIN(4*B)-G6*DSIN(6*B)+G8*DSIN(8*B) 
DG(B)=G0*RHO-2.*G2*DCOS ( 2*B)+4 . *G'! *DCOS (4*3) -6.*G6*DCOS (6»B) +8.*G8*DCOS (8*B) 

C 
C    Newton - Raphson method for meridian arc -> BF 
C 

BF=H/C ! Starting value for the iterations 
10   BS=BF 

BF=BS- (G (BS) -H) /DG (BS) 
IF(DABS(BF-BS).GE.lD-9) GO TO 10 

C 
C    Decompose R 
C 

L=IFIX(SNGL(R*lD-6)) 
Y=R-L*1D6-5D5 
L=3*L 

C 
CO=DCOS(BF) 
ETA2F=E2*CO**2 
Z=Y/(C/DSQRT(1+ETA2F)) 
Z2=Z**2 
TF=DTAN(BF) 
T2F=TF**2 

C 
BS=BF-TF*Z2*( (1.+ETA2F)/2. + (5.+3.*T2F+6.*ETA2F-6.*ETA2F*T2F)*Z2/24. ) 
DL=RHO/CO*Z*( 1. - Z2*( (1.+2.»T2F+ETA2F)/6. + 

X (5.+28.*T2F+24.*T2F**2)*Z2/120. ) ) 
C 
C    An additional term may be included here for higher accuracy if desired. 
C    It must be included when modifying for UTM. 
C 
C    Return with results in the input variables 
C 

H=L+DL 
R=BS*RHO 
RETURN 
END 
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