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Abstract

Understanding what is meant by terms like parameter space, attractor, and basin of attraction is prerequisite to an appreciation of how

agent-based models can be used to conduct experimental ethnoarchaeology. An argument that agent-based models should be used prin-

cipally as exploratory tools is couched within a brief review of some techniques used to investigate the nonlinear dynamics of complex

systems. To illustrate the archaeological utility of a modeling framework patterned after that which has been used to study such complex

systems, I present some of the results of a simple agent-based model that investigates the evolution of Plio-Pleistocene hominin food

sharing accordingly.

1 Introduction

The number of archaeologists who have applied techniques
used to investigate the nonlinear dynamics of complex sys-
tems to the study of human behavior is small, but grow-
ing (see Beekman and Baden 2005; Bentley and Maschner
2003a; Kohler and Gumerman 2000; McGlade and van der
Leeuw 1997). It is not altogether surprising that relatively
few archaeologists have looked to the likes of mathemati-
cians and physicists for help in their efforts to model the past,
as historical scientists and physical scientists have tradition-
ally gone about their modeling research in qualitatively dif-
ferent ways. One obvious difference stems from the fact that
many (but not all) physical scientists can act as their own
informants in ways that historical scientists cannot. That is,
a physical scientist can run a series of controlled, repeatable
experiments designed to explore how a wide range of initial
conditions affects the phenomenon of interest in a labora-
tory, while an archaeologist cannot travel back in time to
observe how subtle changes made to the subjects’ environ-
ment affect the archaeological record. Because we lack the
ability to conduct controlled, repeatable experiments on our
subjects directly, we are often tempted to use models to sim-
ulate (i.e., emulate, or imitate) the ways in which we think
our subjects behaved in the past. Unfortunately, the act of
merely operationalizing one’s preconceptions of a complex
system in silico (i.e., through a computer application or
computer simulation) does not guarantee that one will learn
anything new about that system. Agent-based emulation
will rarely contribute to a better understanding of unknown
phenomena because it bypasses the crucial process of test-
ing alternative assumptions against empirical data. Instead,
emulation projects often reinforce one or another untest-
able, verbal model, which more often than not then serves
as archaeological “explanation” by default rather than by
scientific merit.

Archaeologists cannot settle for models that begin with
untestable hypotheses and end in circular explanations.
Rather than merely replicating field data in silico, 1 argue

22

that archaeologists stand to improve their interpretations by
using simple models to explore numerous possible histories
and then testing with empirical data expectations generated
by a deeper understanding of the dynamics they exhibit. To
that end, this paper discusses how agent-based models pro-
vide tools for archaeologists to explore alternative cultural
histories in a manner reminiscent of how other scientists reg-
ularly explore the parameter spaces of nonlinear dynamical
systems. After reviewing the concept of alternative cultural
histories in the context of Stephen J. Gould’s famous “tape
of history” thought experiment, I briefly discuss some of
the terms that are central to modeling nonlinear dynamical
systems. Next, some of the results of an agent-based model
currently being used to study the evolution of altruistic food
sharing in Plio-Pleistocene hominins are presented to illus-
trate the archaeological utility of this methodology. The
paper concludes with some thoughts on how exploratory
agent-based models can be used to generate archacologi-
cal inferences from the null-up, and how they can move us
closer to an experimental ethnoarchaeology. The main thrust
of this paper is two-fold. First, archacological agent-based
models should be used principally as tools to explore alter-
native cultural histories. Second, such explorations should
be patterned after structured formal experiments, and those
used to investigate the behavior of nonlinear dynamical sys-
tems provide a useful example.

2 Why Use Exploratory Models?

One of the main goals of archaeology is to gain a sharper
understanding of how cultures change through time.
History—the singular sequence of events, which includes
every interaction, decision, and occurrence through time—
doubtlessly played an important role in shaping the way our
species looks and behaves today, but archacological recon-
structions that correctly identify each and every detail of



this singular evolutionary history are unattainable. In light
of this inherent limitation to the resolution of our data and
the fact that we cannot experiment with human societies
directly, our models of the past should utilize an exploratory
experimental design—one which allows archaeologists to
replay the so-called “tape of history” (Gould 1989) so that
we might observe how a wide range of plausible environ-
mental and behavioral scenarios affects artificial societies
and the archaeological records they create. Because this is
not the first time that an anthropologically-minded agent-
based modeler has drawn attention to Gould’s analogy, it
is deserving of a brief description here (see also Dean et al.
2000; Lansing 2002; Premo 2006, In press).

In discussing the importance of historical contingency
to understanding evolutionary change, the late Stephen J.
Gould (1989) proposed an interesting thought experiment.
Imagine that Earth’s history had been captured on video-
tape. Now imagine replaying this tape of history, beginning
from any point in the past, while observing certain “char-
acters” (i.e., species). For the sake of the thought experi-
ment, Gould proposes the existence of a unique tape player
that can show different evolutionary outcomes, depending
on both the sequence and the types of historical events that
might occur during each replay of this tape of history: “the
divine tape player holds a million scenarios, each perfectly
sensible...the slightest early nudge contacts a different
groove, and history veers into another plausible channel”
(1989:320-321).

In their endeavor to retrace the trajectories of past soci-
eties, archaeologists have access to only two types of data
sets. The first is a frustratingly incomplete and biased mate-
rial record deposited during the one and only run of the
tape of history. The second is composed of the behaviors
and materials that are observable in the current “scene,” if
you will, of the evolutionary tape of history—these are the
details of human life as it exists today. Because we can-
not realistically expect to uncover all of the details of the
true tape of history given these data, archacologists might
do themselves a favor by more regularly asking questions
other than: What happened in region X during period Y?
Archaeologists might learn more about larger evolutionary
questions by instead asking: How likely is it that behavior
Q or trait Z would evolve in the population in region X dur-
ing period Y given a wide range of plausible environmental
conditions and alternative histories?

For example, we know from observations of con-
temporary societies all around the world that humans are
unparalleled food sharers, but what is the likelihood that
widespread altruistic food sharing would have evolved to
fixation in our lineage given a different historical scenario,
perhaps one that involved a slightly different climate or
social structure, for example? The answer to this question
lies in investigating the likelihood that qualitatively com-
parable evolutionary outcomes would occur in alternative
social and biological environmental scenarios. We cannot
rerun the real tape of history, but one of the major advan-
tages of a computer model is that we can rerun its tape of
history in silico, and we can even change many of its ini-
tial conditions while doing so. By observing the dynamics
and material records of artificial societies as they are placed

in a variety of experimental environments, one can build a
better understanding of which parameters might have been
important during the past as well as how small changes in
those key parameters could have influenced both the trajec-
tory of culture change and the archaeological signature it
left behind.

Gould’s cosmic tape player does not imitate the past;
rather, it introduces subtle historical anomalies, some of
which strongly affect the subjects and/or behaviors of inter-
est. This raises an important point about models that are built
to imitate the way we think people behaved in the past: sim-
ply emulating empirically-derived archaeological patterns
via computerized models does not (in fact, cannof) prove
that those ideas about the past are correct. But by allow-
ing one to control initial conditions while systematically
playing out multiple alternatives—to replay Gould’s tape
of history hundreds, or even tens of thousands, of times—
agent-based models permit experimentation with numerous
“what if” scenarios, many of which are likely to produce data
that does not look like what we find in the field, and this is
good. In fact, we often learn the most about the limits of our
own assumptions when simple model results fail to match
empirical patterns, or when we break our models. Thus, it
is important not only to understand why a model produces
data that looks like empirical data under certain conditions,
but also to explain why it does not under other conditions.
For the most part, archacologists are keen on the former but
neglect the latter. In short, the exploratory approach pro-
vides systematic tools for generating and testing alternative
hypotheses, and for learning about why some plausible sce-
narios provide data that do not match our expectations. A
basic understanding of how other scientists model nonlinear
dynamical systems further elucidates why this distinction
between emulation and exploration is important to archaeo-
logical agent-based modeling.

3 Dynamical Systems 101: Parameter Space,
Attractor, and Basin of Attraction

Over the last two decades, the study of nonlinear dynami-
cal systems has become increasingly popular as fields such
as chaos theory (see Gleick 1987 for a popular account)
and complexity theory (see Waldrop 1992 for a popular
account) have emerged from transdisciplinary collabora-
tions among scientists who are as dissatisfied with equilib-
rium-based systems theory modeling techniques as they are
with the hyper-relativistic post-Modern critiques leveled
at them (Bentley and Maschner 2003b). James McGlade
(1995; 2003) is especially noteworthy for his sophisticated
thoughts on how one might go about applying some of the
techniques used to study nonlinear dynamical systems to
archaeological problems. For those to whom this approach
is new, a few simple definitions should provide an adequate
orientation for the purposes of the following discussion (but
do check out McGlade’s work when you get the chance).

A dynamical system is a theoretical construct in which
an evolutionary rule (usually a mathematical algorithm)
uses the current state of a deterministic system to describe
the state it will display in the following time step. Although
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dynamical systems are commonly initialized in some kind
of “random” configuration, they usually settle into a single
state, or state cycle, eventually. This final state is called an
attractor, because it is one out of many possible states from
which a dynamical system cannot escape. Each attractor is
surrounded by its own basin of attraction, which includes
the region of the parameter space in which a deterministic
dynamical system will inevitably “flow” to an attractor. The
parameter space is defined by all of the values that could
possibly be used to initialize the model. A common bath-
tub provides a useful analogy for a dynamical system. For
example, think of the drain as the tub’s attractor, because
water cannot escape it upon entering; the porcelain reser-
voir as its basin of attraction, because it funnels water that
has been added to the system toward the drain; and the one
and only final state as empty, because no matter how much
water is added to an unplugged bathtub, it will eventually
return to the state in which it contains no water.

An interesting characteristic of nonlinear dynamical
systems is that they often possess not just one attractor, like
our simple bathtub example, but several attractors, each
of which is associated with its own uniquely shaped basin
of attraction. When studying the overall behavior of such
systems, the most pressing question is: In which attractor
will the system settle given different combinations of initial
parameter values? This question can be answered by explor-
ing the parameter space of initial conditions while recording
the sizes and shapes of the various basins of attraction. This
exploratory approach elucidates how a model’s behavior is
affected by systematic sweeps through experimental param-
eter values. This important information can be used to assess
model sensitivity to minor changes in initial conditions.

Figure 1 provides a graphical representation of a fic-
tional deterministic nonlinear dynamical system. The
parameter space is defined by two experimental parameters
(A and B), each of which can be assigned values ranging
from 1 through 10. Depending on which combination of
parameter values is used to initialize the model, the system
may flow into one of three attractors (X, Y, or Z). The basins
surrounding these attractors are indicated by irregular poly-
gons. Note that to understand the behavior of this nonlinear
system requires collecting data from a suite of experimental
runs that samples the entire parameter space rather than just
one small region.

Archaeologists have much to learn from this general
approach to modeling complex systems. Although cultures
are not truly analogous to dynamical systems (they are non-
linear, but they include stochasticity so they are decidedly
not deterministic, and this is an important distinction), mod-
els of culture change can be studied in a similar manner
because each unique combination of experimental param-
eter values and random number seeds provides an equally
unique evolutionary scenario. When one investigates only
that small region of a model’s parameter space that matches
preconceived expectations, many plausible evolutionary
scenarios are ignored. While a more exhaustive exploration
of a model’s parameter space often allows one to identify
the region(s) that yields artificial data that match some a
priori expectations, it also provides information about those
regions of the parameter space that do not. Thus, the simple

24

Parameter A
1 2 3 4 5 6 7 &8 9 10

1
Y

2 °
3

m 4

g

g 5

E

£ 6

B g
8
9 X
10 ®

Figure 1. Within the parameter space of this fictional dynamical
model are three attractors (X, Y, Z) with their respective basins of
attraction (grey, white, and black polygons). When initialized with
A=5 and B=3, this deterministic system will eventually settle into
state Y.

act of exploring many possibilities can identify basins that
lead to unexpected or even previously unknown attrac-
tors. Knowing not only where in the parameter space one’s
model matches expected values as well as where it does not,
but, also, why this occurs, leads to a more comprehensive
understanding of the unknown phenomenon of interest and,
ultimately, to better explanation. This is illustrated below
with the results of an exploratory agent-based model, called
the Simulated Hominin Altruism Research Environment
(SHARE). SHARE is programmed in Objective-C and
makes use of the Swarm object libraries (www.swarm.org).
SHARE’s source code is freely available from the author
upon request.

4 An Exploratory Agent-based Model of the
Evolution of Altruistic Food Sharing

Early studies of early hominin food sharing were heavily
influenced by observations of living human groups (Isaac
1978, Lovejoy 1981), but extant and historically-docu-
mented hunter-gatherers, bound by their own historical,
economic, and political contexts, represent but a small sub-
set of possible forager societies. In contrast to these referen-
tial modeling studies, I employ an agent-based model as an
exploratory behavioral laboratory to investigate how a wide
range of experimental behavioral and ecological scenarios
affect the evolution of altruistic food sharing traits in artifi-
cial societies of hominin agents.

To more accurately model the socio-ecological milieu
of Plio-Pleistocene hominins, I 1) refocus the traditional
savanna hypothesis away from open grasslands and toward
fragmented patches of closed habitat, and 2) enlarge



evolutionary ecological explanations of food sharing to
include the selective benefits bestowed upon hierarchical
levels that exist directly above that of the individual (i.e.,
at the level of the trait group). This approach yields a new
hypothesis that the altruistic phenotypic trait of sharing food
could have evolved in Plio-Pleistocene hominin populations
due to the benefits it bestowed upon the fitness of subsis-
tence-related trait groups competing with one another in an
increasingly patchy ecological environment. The current
research concerns itself mainly with the following ques-
tion: In what range of ecological and behavioral conditions
could food sharing have evolved in Plio-Pleistocene homi-
nin populations? Thus, I use SHARE to study the relation-
ship between ecological patchiness, altruistic food sharing,
and the formation of Lower Paleolithic archacological land-
scapes within the confines of an exploratory agent-based
model.

Even though SHARE is a nondeterministic model,
some of its results are best discussed in the parlance of
nonlinear dynamical systems. Its environmental param-
eter space is defined by two experimental variables, Gap
Size and Patch Size. Their combined values define vary-
ing levels of ecological patchiness, and by varying them I
conduct what Richardson (2003) calls “weak exploration.”
SHARE’s behavioral parameter space is defined by three
qualitatively different food sharing strategies including, in
order of increasing sophistication: Simple, Reciprocal, and
Omniscient. A Simple prospective donor will share food if
two conditions are met: 1) it possesses food in excess of its
lower food share threshold, and 2) a random number is less
than or equal to the value of its food sharing phenotype.
Sharing by this method is based entirely upon probabili-
ties, and, thus, it models interactions between “unintel-
ligent” hominin agents that have neither memory of past
actions nor the ability to recognize the identity of others.
A Reciprocal prospective donor, on the other hand, has the
ability to store and retrieve the unique individual identities
of hominin agents who cooperated with or defected against
it in past interactions. Reciprocal prospective donors rely
upon this memory of past interactions to make food shar-
ing decisions on an individual basis according to the fol-
lowing rule: share excess food with those who shared with
you, but refuse those who refused you (i.e., tit-for-tat). If a
prospective donor has no memory of a prospective recipi-
ent, then the initial decision about whether to share excess
food follows the Simple protocol. Finally, the Omniscient
strategy models the scenario in which hominin agents share
information—via gossip, for example—about past social
interactions so that they can correctly discern altruists
from cheaters upon their very first meeting. According to
Omniscient, prospective altruistic donors with excess food
will share only with the prospective recipients they recog-
nize as being altruistic, and they will choose not to share
with those they identify as selfish cheaters. By running the
model with each of these qualitatively different behaviors, I
conduct “strong exploration” (Richardson 2003).

In SHARE, artificial societies of hominin agents have
two mutually exclusive attractors: 1) the altruistic allele
evolves to fixation in the population of foragers, or 2)
the selfish allele evolves to fixation in the population of

foragers. In other words, starting from a mixed population,
which includes an equal number of altruists and egoists,
each artificial society might evolve to be composed entirely
of one type or the other, depending on initial conditions,
the vagaries of history introduced by the stochastic model,
and selection. Each of these attractors is associated with a
basin of attraction (of sorts) that describes the area of the
parameter space that facilitates one or the other state. In
SHARE, these regions do not fulfill the true definition of
basins of attraction because not every random number seed
run in them will inevitably lead to the same attractor; sto-
chastic events might bump the behavior of the model into
an adjacent “pseudo” basin of attraction. In this respect, the
analogy with deterministic dynamical systems research is
not perfect. Regardless of this subtle difference, the pseudo-
basins in stochastic nonlinear models provide clear indica-
tors of the regions of the parameter space that often facilitate
the evolution of altruistic food sharing as well as those that
seemingly never facilitate the evolution of altruism. This
coarser scale of analysis is adequate when studying trends
in stochastic models rather than laws in deterministic ones.

Only after charting the behavior of the model through-
out the environmental and behavioral parameter space does
the effect of ecological patchiness on the evolution of food
sharing become apparent. Altruistic alleles for Simple and
Reciprocal food sharing strategies (Figure 2) evolve to fixa-
tion predominantly in the region of the parameter space char-
acterized by the combination of intermediate Patch Sizes (4
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Figure 2. Analyzing the Simple and Reciprocal food sharing strat-
egies. The white region indicates the area of the parameter space
in which mixed populations of hominin foragers often evolve to
pure populations of altruists—this is the basin of attraction for the
evolution of simple altruistic food sharing strategies. The grey re-
gion of the parameter space leads to the evolution of pure popula-
tions of selfish foragers. The black region does not support viable
populations of either allele. This figure summarizes data collected
from 5,050 simulation runs.
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and 6) and intermediate-to-large Gap Sizes (4, 6, 8, and 10)
(see Premo 2006 for total counts). In other words, in the
case of these two sharing strategies, ecological patchiness
levels that support viable altruistic populations are found
only along the boundary between those that are uninhabit-
able (the black region of the parameter space) and those in
which selfish alleles are almost always successful (the grey
region). This pattern clearly echoes that found by Pepper
and Smuts (2000) for other altruistic traits, such as feeding
restraint and alarm calling, but why? The evolution of altru-
ism requires strong between-group selection (Sober and
Wilson 1998), and the strength of between-group selection
largely depends upon how genetic variation is partitioned
within and among trait groups. Resource patchiness can
structure the genetic variation of a population in a variety
of ways, many of which weaken between-group selection.
For instance, small patches result in trait groups that are too
ephemeral to compete as evolutionarily meaningful groups,
while large patches support large trait groups that often con-
tain a mix of forager types. In addition, small gaps between
patches do not pose deterrents for migration. Each of these
conditions effectively weakens between-group selection.
However, as Figure 2 illustrates, between these extremes
exists a transitional range of resource patchiness. The
experimental environments contained within this region of
the parameter space provide the structure necessary to form
internally homogenous and externally heterogeneous trait
groups of hominin agents. In the cases of the two simpler
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Figure 3. Analyzing the Omniscient food sharing strategy. The
white region indicates the area of the parameter space in which
mixed populations of hominin foragers often evolve to pure popu-
lations of altruists—this is the basin of attraction for the evolution
of the more sophisticated altruistic food sharing strategy. Note
that this basin has expanded significantly in comparison to that
depicted in Figure 2. The black region does not support viable
populations of either allele. This figure summarizes data collected
from 2,525 simulation runs using only the most sophisticated food
sharing strategy.
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food sharing strategies (Simple and Reciprocal), it is under
this rather restricted range of ecological conditions that eco-
logical patchiness enjoys its most influential between-group
selective power because of the way it non-randomly struc-
tures the interactions of an otherwise freely-mixing popula-
tion of socially inept foragers (Premo 2005, 2006).

Data collected from runs that include the most sophis-
ticated food sharing strategy (Omniscient) paint a different
picture (Figure 3). Although this picture bears the signa-
ture of the same uninhabitable region, it clearly shows that
greater behavioral sophistication allows the basin of attrac-
tion for altruistic food sharing to expand significantly. In
this case, the altruistic allele evolves to fixation often, but
by no means always, in all of the patchiness levels that are
able to support viable populations, not just along the transi-
tional diagonal. By refusing to share with individuals whom
they recognize as non-cooperators, altruistic donors use
their sense of prospective recipients’ phenotypes to protect
themselves and avoid being cheated out of valuable food.
These results illustrate an inverse relationship between eco-
logical selective power and behavioral sophistication: eco-
logical patchiness plays only a minor role in the evolution
of altruistic food sharing when more sophisticated strate-
gies, like Omniscient, are involved.

In the final analysis, one must consider how the popu-
lation genetic results of SHARE inform our understanding
of how altruistic food sharing could have evolved in Plio-
Pleistocene hominin populations. In doing so, one must
keep in mind that SHARE is a null model of early homi-
nin behavior that for now purposefully excludes traits like
group-living and central place foraging to test their relevance
to the evolution of altruistic food sharing. The point in using
a null model is to demonstrate that these assumptions are
not necessary to the evolution of even the simplest altruis-
tic food sharing alleles under certain ecological conditions.
The fact that the results of the model would probably differ
had I expressly included group-living or central place forag-
ing is something I freely admit, but it does not detract from
the utility of the null model, which gives us a tool for identi-
fying superfluous presumptions and paring our assumption-
laden narrative reconstructions down to elegant explanatory
models. Although there is no guarantee that this null model
provides the most accurate explanation possible, this spar-
tan version provides the best place to start the heuristic pro-
cess we call modeling. During the course of this process,
one might choose to address related research questions
with other simple models. Alternatively, one might decide
to combine a number of individually-verified models into
a single, more complicated version. The potential danger
of the second approach is that individually-verified mod-
els may interact in unexpected ways when combined under
the umbrella of a single, overarching experimental frame-
work: when combined, they might display combinatorial
effects that are not the properties of any individual model.
Although such an effect is not inevitable and there may be
cases when more complicated models have something to
add to our understanding of a complex problem, one should
be aware of this potential problem when deciding whether
or not to move from a series of simple, self-contained mod-
els to a more complex model that subsumes them. Complex



models are not necessarily better than simple ones, and, in
many cases, complex models will teach us much less than
their simpler counterparts.

SHARE has taught us that food sharing behaviors need
not be overly complicated to evolve within the transitional
range of ecological patchiness. Under certain ecological
conditions, even socially-sophomoric food sharing strate-
gies could have evolved to fixation in hominin populations
during the Plio-Pleistocene. The premise that early homi-
nins displayed relatively simple food sharing strategies
is more parsimonious than the traditional application of
modern hunter-gatherer behaviors, and according to these
results, the more parsimonious hypothesis could also be
more accurate in the face of environmental fragmentation
during the Pliocene in East Africa. This finding yields an
interesting and conceivably testable hypothesis: if the ear-
liest food sharing behaviors were indeed simple, a strong
temporal correlation should exist between significant forest
fragmentation and the spread of this altruistic behavior.

Second, we have learned that cultural sophistication
liberates food sharing from a narrow, transitional range of
ecological patchiness, thereby allowing altruistic alleles to
evolve to fixation at higher frequencies in a larger propor-
tion of the environmental parameter space. This finding
implies that had early hominins been capable of a relatively
complex version of food sharing, one which involved gos-
sip and/or possibly even the punishment of social cheat-
ers (not tested here), woodland fragmentation would have
played a greatly diminished role in the biosocial evolution-
ary process. Therefore, if the earliest food sharing behaviors
were culturally sophisticated, paleoanthropologists should
not expect to find a strong temporal correlation between the
evolution of food sharing and the fragmentation of Pliocene
forests in East Africa. These are new hypotheses that can
be tested against the paleoenvironmental and archaeologi-
cal data collected from Lower Paleolithic localities in East
Africa.

5 Generating Archaeological Interpretations
from the Null-up

The goal of understanding early hominid life in
terms of itself can only be accomplished if we
have strongly contrastive yet plausible alterna-
tives. In this context, the intellectual challenge is
then shifted to the methods of inference justifica-
tion used by archaeologists rather than the skill
with which archaeologists are capable of accom-
modating facts to their beliefs. (Binford 1987:21)

Exploratory models, like SHARE, provide archaeologists
with the valuable opportunity to act as their own infor-
mants in building better archaeological inferences. In this
case, SHARE improves our understanding of how simple
cultural formation processes influence archaeological land-
scapes under a large variety of behavioral and ecological
scenarios. It also demonstrates how agent-based models can
provide powerful tools for testing the validity of archaeo-
logical inferences via experimentation with artificial societ-
ies. When employed as behavioral laboratories, agent-based

models provide forums for independently generating new
hypotheses. To explore alternative ways in which Lower
Paleolithic landscapes could have formed within a behav-
ioral laboratory, use that understanding to formulate
expectations of the real world, and then test those against
empirical data is to bootstrap our ideas of the past to the
data we recover in the present. Contrast this approach with
the subtle practice of fitting, or “tuning,” models to support
our ideas about the past with data we recover in the present.
As Binford warns, archaeologists must not “approach the
external world in search of verification for our ideas and slip
into the trap of accommodating experiences to fit what we
believe to be true” (1987:21, emphasis in original).

What I have described in this paper is a methodology
for building archaeological inferences with a computational
tool. Exploratory agent-based models start with theory.
They allow us to build a set of expectations that can then be
evaluated with observed empirical data. As a result, they can
facilitate tests (of our assumptions or of a particular hypoth-
esis) that do not suffer from the same pernicious circularity
that confounds studies that use the same set of archacologi-
cal data both to formulate hypotheses about archacologi-
cal formation processes and to test them. However, not all
agent-based modeling approaches are immune to circular-
ity. Those used explicitly to imitate real world archaeologi-
cal data inadvertently sacrifice independence in favor of
a higher degree of “realism” (as if that can be measured).
Because there are an infinite number of ways to program a
computer model in order to produce artificial archaeologi-
cal data that matches those we observe in the field, merely
aping partially understood systems in silico is neither dif-
ficult nor particularly informative (see discussions of equifi-
nality in modeling in Richardson 2003 and Premo In press).
It is more informative to take a holistic approach to model-
ing in which one also studies why experimental data do not
match those observed empirically.

The approach I have used demonstrates that question-
driven, null agent-based models can be especially helpful
when kept elegant. Although null models can teach us about
the regions of the behavioral and ecological state space that
are not addressed in overly-detailed verbal models or repre-
sented by observations of contemporary hunter-gatherers, a
null model should not be the one and only stop on the route
to better understanding via modeling. In the case of SHARE,
I am currently in the process of comparing the population
genetic and artificial archaeological results of a more com-
plicated version of the model—one that includes group-liv-
ing and zooarchaeological data—with the results obtained
from the null version reported here. It will be interesting to
see if this slightly more complex version of the model can
be used to address additional patterns in the empirical data
(Grimm et al. 2005). If so, it might be able to teach us some-
thing the null version could not. Research programs built on
simple exploratory agent-based models can be used in this
way to generate new archaeological inferences and to build
behavioral interpretations from the null-up.
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6 Conclusion: Towards an Experimental
Ethnoarchaeology

The title of this paper may be provocative, but it is not
naive. Experimental archaeology and ethnoarchaeology
have proven useful separately, but what if we could com-
bine them in an effort to build even better archacological
inferences? Consider what combinatorial effect might be
gained by doing so. By coining the term experimental eth-
noarchaeology 1 am not suggesting that we drop an experi-
mental group of tropical foragers in the Arctic Circle so that
we might first directly observe the assemblages they pro-
duce in a different setting and then compare them to assem-
blages produced by a control group back on the equator.
This is a ludicrous proposition. Rather, I am arguing that
exploratory agent-based models can provide a different kind
of behavioral laboratory, one in which archaeologists can
experiment with artificial societies by observing them in a
number of different behavioral and/or ecological scenarios.
Such ethically acceptable experiments allow archaeologists
to rerun the tape of history, learn about the nonlinear dynam-
ics of the evolutionary ecological models they create, and
possibly discover something new about the past behaviors
in question by testing hypotheses informed by an under-
standing of the model’s dynamics rather than simply match-
ing simulated data to observed data. Peck (2004) recently
described how this type of modeling approach benefits other
historical sciences, like ecology and evolutionary biology,
and [ feel it is equally relevant for use in archaeology.

In sum, the aim of this modeling approach is neither to
describe nor to imitate details of the one true tape of history,
for both are impossible goals. Rather, it is to explore a wide
range of possible explanations, and to use an understanding
of patterns found in artificial archaeological data, collected
from controlled, repeatable experiments, to formulate expec-
tations that can be tested with archacological data collected
from the field. One can use agent-based models in this way
to build archaeological inferences from the null-up. When
combined with the exploratory approach described here,
archaeological agent-based models can help us take the
crucial and necessary step from the realm of vague, untest-
able just-so stories to that of explicitly-defined, hypothesis-
generating tools.
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