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The cost function is the backbone of any archaeological least-cost analysis. In this paper, first the general properties  
of cost functions are outlined, for example all costs must be positive. It is shown that some of the functions used in  
archaeological  least-cost path (LCP) studies do not  fulfil  these requirements.  Nearly all  LCP studies are slope-
based. Therefore several slope-dependent cost functions for walkers and vehicles are discussed. Slope is often com­
bined with some other factor, so the different methods for combining cost components are compared. The theoretical  
concepts presented are applied to reconstruct part of an ancient trail. The study area is a hilly terrain in Rhineland,  
Germany, with many small rivers and creeks.
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1. Introduction

In prehistory, paths are often the result of centuries of 
experience with movement within a certain landscape. 
According to the implicit model of least-cost path ana­
lysis, the routes are improved gradually so that finally 
optimal paths result. With the increasing availability of 
GIS software, the number of archaeological studies try­
ing to reconstruct  prehistoric  routes by least-cost  path 
analysis (LCP) grows (e.g. FIZ et al., 2008; ZAKŠEK et  
al., 2008). Though pressing a few buttons in GIS soft­
ware  is  quite  easy,  the  choice  of  the  appropriate  al­
gorithm for the least-cost analysis is quite a complex is­
sue. 

The backbone of any archaeological least-cost analysis 
is the cost function. Other issues including the number 
of neighbours considered in the raster grid, the accuracy 
and resolution of the elevation data or the method deal­
ing with anisotropic data like slope are also important 
(HERZOG et al., 2011). However, the focus of this pub­
lication is on the choice of the cost function.

Nearly all LCP studies are slope-based, and slope is of­
ten  combined  with  some other  component.  Therefore 
several slope-dependent cost functions for walkers and 
vehicles are discussed. 

Whatever cost function is chosen, it  has to be kept in 
mind that the time and energy needed for a walk varies 
depending on weather, sex and fitness of the walker etc. 
but the LCP algorithm produces only one result. 

2. General properties of cost functions

The cost of traveling from location A to B at some dis­
tance always involves some positive costs in terms of 
time or energy required, i.e. CostDist(A,B) > 0, for all 
B≠A (WORBOYS  et al.,  2004,  124;  ERICSON  et al. 
1980). LCP software is typically based on Dijkstra’s al­
gorithm (e.g. WORBOYS et al., 2004, 215–216), which 
requires weighted graphs with positive weights. Only a 
cost  function  with  positive  values  ensures  that  the 
weights in the graph are positive.

In addition, the triangle inequality holds for the cost dis­
tance function, i.e. the LCPs created on the basis of a 
valid cost function. The triangle inequality implies that 
the costs of the direct LCP from A to B are smaller or 
equal to the sum total of the costs for the two LCPs from 
A to C and C to B, independently of the location of C. 
This means that a detour from the LCP will never save 
costs. 

Multiplication of the cost function values by a constant 
factor does not change the result of the LCP analysis. 
Such a multiplication is necessary when converting from 
one unit of measurement to another, e.g. from kilocalor­
ie to joule. It is obvious that the path connection which 
requires the minimum amount of kilocalories is also op­
timal with respect to joule consumption. 

But  a  transformation  by  a  monotonically  increasing 
function does make a difference: If crossing a barrier is 
n times as costly as walking in the surrounding area, a 
detour with a length below n cuts costs, if the barrier is 
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avoided by this detour. In this example, different values 
of n will bring about different LCP results. 

In general, only ratio-scale variables are appropriate for 
LCP analysis (e.g. CONOLLY et al., 2006: 255). If the 
analysis is based in part on intangibles, like the attrac­
tion to a center of worship, it is difficult to find an ad­
equate cost model.

Cost functions are expected to be continuous, i.e. small 
differences in the environment will result in small differ­
ences in cost estimates. For example, slight changes in 
slope should not produce sudden jumps in costs. An ex­
ception is the crossing of streams: Whereas small creeks 
can often be traversed  easily by jumping to the other 
side, with increasing breadth, a point is reached where 
jumping is no longer possible but significantly more ef­
fort is necessary to cross the stream. 

Classifying can convert a continuous cost function into a 
non-continuous one (e.g. ZAKŠEK et al., 2008); though 
calculations might become easier this way, the classify­
ing approach is counter-intuitive and with modern com­
puters  such  a  simplification  is  no  longer  necessary. 
However, classifying a cost function into a large amount 
of small classes reduces the implementation effort of a 
least-cost algorithm if the resulting program is to sup­
port  many  different  cost  functions.  The  errors  intro­
duced this way are negligible. 

Isotropic costs are independent of the direction of move­
ment, typical isotropic costs are those based on vegeta­
tion,  soil  properties,  lakes,  barriers  like  large  rivers 
without fords,  taboos,  social attraction or visibility as­
pects. Anisotropic costs are dependent on the direction 
of movement. Slope is anisotropic, and slope is so im­
portant that sometimes the term anisotropic costs actu­
ally refers to costs based on slope (CONOLLY  et al., 
2006:  253).  With  anisotropic  costs,  CostDist(A,B)  ≠ 
CostDist(B,A),  where CostDist is the cost of the LCP 
connecting A and B. The cost function of a path taken in 
both directions becomes symmetric: 

Bicost(A,B) = CostDist(A,B) + CostDist(B,A) 

This assumption is only valid if similar conditions pre­
vailed  on  the  route  in  both  directions.  For  example, 
when coal was transported one way and the empty wag­
ons returned on the same route, the direction of move­
ment is important.

3. Slope-dependent cost functions

As mentioned above, slope is considered an important 
component in most LCP studies. For walkers, vehicles 
and pack animals, different slope-dependent cost func­
tions are appropriate.

3.1. The Tobler cost function

The Tobler hiking function seems to be the most popular 
cost  function  in  archaeological  LCP  calculations,  and 

has been applied in many studies. The velocity of walk­
ing is given by

V(s) = 6 e-3.5 |S+0.05|

where s is the slope (calculated by vertical change di­
vided by horizontal change). It  is easy to calculate the 
time (minutes) required for  walking a certain distance 
from the velocity of walking, and the time can be con­
sidered as cost.

Figure 1: The diagram published by IMHOF (1950, 218) and  
the Tobler isolines (dotted blue).

According to Tobler (1993), the hiking function was es­
timated  from  empirical  data  published  by  IMHOF 
(1950:  217–220).  Imhof’s text includes only very few 
numbers,  but  displays  a  diagram which visualizes  his 
cost  curve.  He  does  not  give  any information  on  the 
source of the data for the diagram. The Imhof diagram 
displays  the  time  required  for  walking  to  any  point 
which is up to 5 km in map distance from the origin, and 
involves up to 500 m of descent or up to 400 m in as­
cent. The diagram consists of the corresponding isolines 
in 10 minute intervals.

The Imhof diagram was compared with data generated 
on the basis of Tobler’s cost function (Figure 1). Only 
points reachable via gradients that are not steeper than 
100% (45°) were included in the calculation. Figure 1 
shows that the pointed nature of Tobler’s cost function 
is also visible in the isolines. However, the fit of the cost 
function to the Imhof diagram is not that perfect.

3.2. Backpacker’s equations

WHEATLEY  et  al.  (2002,  154) suggest  starting from 
the ‘backpackers  equations’  such as  that  proposed  by 
ERICSON et al. (1980): 

Δ_D + 3.168*Δ_H_up + 1.2*|Δ_H_down|

where Δ_D is the horizontal distance covered, Δ_H_up 
is positive and Δ_H_down negative height change. 

The minimum of this cost function is at a slope of 0%, 
i.e. walking on level ground. The cost formula does not 
take into account that many investigators found that the 
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lowest energy expenditure is on a 10% (5.7°) downslope 
gradient (e.g. MINETTI et al., 1993).

The  formula implemented  by the  GRASS GIS  r.walk 
procedure (version 6.5) is a piecewise linear cost func­
tion based on a rule of thumb published by LANGMUIR 
(2004, 40) and calculates time in seconds:

a*Δ_D + b*Δ_H_up + c*Δ_H_gd + d*Δ_H_sd

where Δ_D and Δ_H_up are defined as above, Δ_H_gd 
and Δ_H_sd are gentle and steep downhill differences. 
All  distance  measurements  are  in  meters.  The  default 
values for the multipliers are: a=0.72, b=6.0, c=1.9998, 
d=-1.9998. Note that the downhill Δ_H values are neg­
ative as  they reflect  a  negative change in height.  The 
downhill default slope value threshold is at 21.25%, i.e. 
walking downhill for slopes up to 21.25% (12°) is con­
sidered  favorable,  for  steeper  descents  the  costs  in­
crease. The default r.walk cost function is not continu­
ous: According to the formula, walking a horizontal dis­
tance of 1 km on a downslope gradient of 21% requires 
6 minutes whereas the estimate for descending the same 
distance  at  a  slightly  steeper  slope  of  21.5%  is  19.2 
minutes. To create a continuous function, the constant c 
should be set to 0 or, alternatively, c and d should be 
identical.

Figure 2: Three slope-dependent bidirectional cost functions  
estimating time, depicted for mathematical slope in the range  
of –0.5 to +0.5 (i.e. –50% to +50%). 

Figure 2 compares the Tobler cost function and the two 
backpackers equations for return paths. The time estim­
ates  from  the  Ericson/Goldstein  equation  for  steep 
slopes are  significantly lower than with the other  two 
cost functions. 

3.3. Expert cost functions for walkers

Physiologists are experts in measuring energy expendit­
ure  in  humans and  animals,  and  for  this  reason,  cost 
functions  presented  by  physiologists  are  often  con­
sidered  more  appropriate  than  a  backpacker´s  rule  of 
thumb. However, the function for walkers suggested by 
MINETTI  et al.  (2002) is negative for steep downhill 
slopes (Figure 3). This problem can be avoided by ap­

plying the quartic polynomial cost function proposed by 
LLOBERA et al. (2007). But with the estimates derived 
from the Llobera and Sluckin cost curve, five out of 13 
values  are  not  within  the  range  of  the  mean  plus  or 
minus the standard deviation given in the MINETTI  et  
al.  (2002)  paper.  Another  disadvantage  of  both  the 
quartic and the quintic polynomials is that their minima 
are at downslope gradients of 17.7% (10°) and 15.25% 
(8.7°) respectively, whereas experiments suggest a min­
imum at about 10%.

Figure 3: Three cost functions estimating energy expenditure.  
Measurement data is available for the mathematical slope in  
the range of –0.45 to +0.45 (i.e. –45% to +45%). 

An alternative is to use a sixth degree polynomial ap­
proximation to the energy expenditure values found by 
MINETTI et al. (2002):

1337.8  s6 +  278.19  s5 -  517.39  s4 -  78.199  s3

+ 93.419 s2 + 19.825 s + 1.64

where s  is  the mathematical  slope.  This  cost  function 
shows none of the disadvantages discussed above, the 
minimum of the curve is at a downhill gradient of about 
10.5% (6°).

3.4. Cost functions for vehicles

With increased production and trade, the need for trans­
porting heavy and bulky goods grows. Humans or pack 
animals have only a limited capacity,  and it is for this 
reason that wheeled transport plays a more and more im­
portant  role  after  the  invention  of  wheeled  vehicles 
which first  appeared in the 4th millennium BC in the 
area between the Rhine and the Tigris (BURMEISTER, 
2004). Ever since their invention, wagons and carts have 
been used for ritual purposes and for prestige, so least-
cost  approaches in the context of wagon routes might 
not be appropriate in some situations.  

MINETTI (1995) notes that the locomotion of biologic­
al systems is less efficient than that of vehicles, because 
animals and humans spend some metabolic energy for 
braking the motion. MINETTI  et al. (1993) compare a 
walking human to the movement of  a  rimless spoked 

Issues in Least-Cost Analysis  
377



I. Herzog / Theory and Practice of Cost Functions

wheel. They found that humans do no longer accelerate 
if the downhill slope exceeds 15%, which is not true for 
vehicles.

Cost functions for wheeled vehicles do not agree with 
those  for  walkers  due  to  differences  in  critical  slope. 
The critical slope is the transition when it becomes more 
efficient to use switchbacks instead of the direct uphill 
or downhill route (LLOBERA et al., 2007). MINETTI 
(1995)  analyzed the metabolic expenditure of walking 
different gradients and found that the critical slope for 
pedestrians is at about 25% for both descending and as­
cending  paths;  this  value  is  a  compromise  between 
speed and energy optimization. This is a broad minim­
um, most of the gradients within the range of 15 to 40% 
are still fairly efficient.

In general, the critical slope for vehicles is less than that 
of walkers. Roman roads may serve as an example for 
wheeled traffic: GREWE (2004, 30) points out that for 
Roman roads the steep slopes were avoided in order to 
allow horse or oxen-drawn vehicles to proceed. Accord­
ing to Grewe, the slopes of Roman roads in the Rhine­
land normally do not exceed 8%, but at some exception­
al locations 16% to 20% were recorded.

LLOBERA  et al. (2007) calculate the critical slope of 
simple quadratic cost functions before addressing more 
complex problems. Based on their results, a symmetric 
quadratic cost function can be easily constructed for a 
given critical slope š: 

Cost(s) = 1 + (s / š)²

where š and s are percent slope values (or both are math­
ematical slope values). Typically, š is in the range of 8 
to 16. 

4. Combining Costs

In  general,  costs  for  traversing a landscape  consist  of 
two components: Anisotropic cost (slope), and isotropic 
cost. Different approaches for combining slope and oth­
er  components  have  been  suggested  in  archaeological 
LCP studies. 

4.1. Adding costs

An example of cost addition was presented by FIZ et al. 
(2008). They add the slope friction and a wetness avoid­
ance cost component after dividing each friction com­
ponent  by  its  maximum  value.  The  value  of  each 
weighted cost component depends on the maximum cost 
value, and this is typically disliked by statisticians. This 
disadvantage could be avoided by choosing some other 
method of weighting which is robust in the presence of 
outliers. But another problem cannot be fixed that eas­
ily:  Changing  the  extent  of  the  study area  may also 
change the cost function, for example if steeper slopes 
are found in the wider area included later. 

4.2. Multiplying costs

The study by Zakšek et al. (2008) is an example for cost 
multiplication. The authors multiply the slope by the vis­
ibility costs. Multiplication does not require any weight­
ing. In some physiological studies multipliers were de­
termined in order to account for certain features prevent­
ing fast progress, for example the terrain factor for loose 
sand  is  about  2.  However,  some experiments  suggest 
that the terrain factor on steep slopes is higher than on 
level ground. So multiplying is simple and more realistic 
than adding but does not provide a perfect model. 

5. Example: The Heerweg

It  is often difficult to assess the plausibility of archae­
ological route reconstructions based on the location of 
settlements because  no evidence  is  available  to  check 
the LCP results.  The ancient  route Heerweg (NICKE, 
2001:  85–88)  can  be  traced  on  historic  maps  created 
between 1840 and 1844 and therefore serves as a test 
case for evaluating the reliability of route reconstruction 
using LCP techniques. 

The  focus  of  the  study is  on  the  western  part  of  the 
Heerweg which connects the Cologne district  of Mül­
heim  with  Lüdenscheid  in  North-Rhine-Westphalia, 
Germany.  According  to  the  description  of  Nicke,  the 
route starts close to the river Rhine in Cologne-Mülheim 
(47 m asl, no. 1 in Figures 4 and 6); the first five kilo­
meters  are  on  fairly  level  ground,  but  then  the  route 
reaches a hilly region and becomes steeper. The first in­
termediate stop is at Bechen (248 m asl, no. 2 in Figures 
4 and 6), though an alternative shorter route is also de­
scribed by Nicke. The place name Wipperfürth (272 m 
asl, no. 3 in Figures 4–6) alludes to the ford which is 
close to this town. Two bridges crossing the river Wup­
per can be found near Wipperfürth on the map published 
in 1840. Both bridges were most probably constructed at 
ancient  ford  locations  According  to  Nicke,  various 
routes were used over time by the Heerweg after cross­
ing the river Wupper. East of Wipperfürth, the Heerweg 
passes Halver (419 m asl, no. 4 in Figures 4 and 6), and 
the final  stop considered  in this study is Lüdenscheid 
(423 m asl, no. 5 in Figures 4 and 6). Unfortunately, the 
route description of Nicke lacks detail  for  the section 
between Halver and Lüdenscheid, which is why several 
possible routes were recorded on the basis of the historic 
maps. 

Another feature helps to identify the correct route loca­
tion: place names like “Obern Herweg” or “Dieves Her­
wege”.  Settlements  with  such  names  are  marked  by 
black triangles in Figures 4 and 6. The largest distance 
between a Heerweg place name and one of the routes 
described by Nicke is Küppersherweg, which is about 
1.6 km south of a Heerweg route. 

When the Heerweg starts to climb towards Bechen, it 
reaches  the  hilly region.  In  the  study area,  which in­
cludes parts of the fairly flat Rhine valley, only 25% of 
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Figure 4: The Heerweg (yellow) and LCPs based on slope costs only.

the  slopes  are  below 6%  (3.4°),  the  median  slope  is 
11.3%  (6.5°),  and  25%  of  the  slopes  exceed  17.9% 
(10.2°). Due to the prevailing western winds, precipita­
tion in the hilly region is significantly higher than in the 
Cologne area. The climatic and geologic conditions al­
low growing crops in only very few areas, whereas most 
farms  focus  on  stock  breeding.  Due  to  these  natural 
factors, the landscape remained nearly unoccupied for a 
long time. During the 11th to 13th century population 
growth in the area west of the river Rhine forced people 
to leave their home villages and to move east. This is re­
flected in the dates when the towns along the Heerweg 
were first mentioned in historic sources (NICKE, 2001, 
200–206):  Archbishop Friedrich I  referred to Wipper­
fürth in a deed dating from 1131 BC. Wipperfürth is not 
only at the intersection of two ancient roads (in addition 
to the Heerweg, the Eisenstraße from Kreuztal to Len­
nep), but also the end point of another old route named 
Polizeiweg by Nicke. The initial layout of Halver is a 
village  built  around  a  church,  and  the  town has  pre­
served much of this character  until today.  The village 
was  first  mentioned  in  connection  with  the  abbey of 
Werden near Essen around 900 BC. Halver is also an in­
termediate  stop  of  two other  ancient  routes,  the Zeit­
straße connecting Bonn with Dortmund and the Hileweg 
leading from Essen to Limburg. In a deed dated in 1067 
BC, the church of Lüdenscheid was first mentioned. 

Even today, the study area considered is not as densely 
occupied as the rest of the Rhineland. Nevertheless, the 
landscape underwent some changes by modern construc­
tion and mining activities. Some of these are already re­
corded on the historic maps of 1840–1844. For example, 
about  6  km after  leaving Mülheim, pits  and  artificial 
lakes are depicted in the area around the Heerweg. The 
digital elevation model supplied by the ordnance survey 

of North-Rhine Westphalia  with a  resolution of 50  m 
also  shows  some  large  pits  resulting  from  quarrying 
activities  or  from  extracting  other  bulk  material  like 
brick earth. However, it is not within the scope of this 
study to reconstruct the relief of the landscape of medi­
eval times or earlier. 

The modern water layer includes many lakes resulting 
from the construction of a dam for creating water reser­
voirs (Figure 4). A polyline water layer is also available, 
which  includes  lines  within  modern  water  reservoirs. 
These lines are a smoothed representation of the streams 
depicted in the historic maps. Thus, for the route calcu­
lations including the streams these lines were used in­
stead of the lakes. Moreover,  two modern canals were 
deleted from the layer. 

5.1. Slope-dependent route calculations

The first LCP calculations focused on slope only (Figure 
4). None of the initial routes passes Halver. Therefore it 
was decided to calculate both the direct route from Mül­
heim to Lüdenscheid, as well as the route with a forced 
intermediate stop at Halver. The calculations are based 
on the assumption that the same route was used in both 
directions. The software used in this study was created 
by the author because none of the GIS LCP procedures 
currently available offers all the features required. The 
software  (HERZOG  et  al.,  2011)  models  anisotropic 
movements in a similar way as the r.walk approach of 
GRASS GIS. Moreover, for each step, 48 neighboring 
cells were considered, and long moves were subdivided 
to ensure that the long moves take the costs of crossing 
thin  barriers  into  account.  The  Dijkstra  algorithm in­
cluding backlinks was implemented.  
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Figure 4 shows that some of the LCPs based on different 
cost functions agree in some parts, but in general, sever­
al  LCP  corridors  are  found.  The  direct  Mülheim  to 
Lüdenscheid LCP created on the basis of the sixth de­
gree polynomial cost function runs south of the historic 
route and uses the valley of the Sülz creek. After passing 
Wipperfürth the LCP follows another creek valley, and 
after 4 km it runs south of the historic route again. Only 
on the last 6 km, the calculated route and one of the his­
toric alternatives agree quite well. The LCP created with 
the same cost function but the intermediate stop at Hal­
ver runs north of the historic route most of the time, also 
following creek valleys like the Dhünn (nowadays a wa­
ter reservoir). After crossing the Wupper north of Wip­
perfürth,  it  coincides with the historic route for a few 
kilometers, and on the final kilometers before reaching 
Lüdenscheid the LCP agrees well with one of the histor­
ic alternatives. 

Both the direct and the LCP through Halver based on 
the quadratic cost function with a critical slope of 10% 
follow the  same route  until  Wipperfürth,  which coin­
cides with the southern route found with the sixth degree 
polynomial cost function. The LCP with a critical slope 
of 10% from Halver to Lüdenscheid agrees quite well 
with the most southern historic alternative route. 

The first part  of the direct  Tobler LCP uses the same 
route  as  the  northern  LCP based  on  the  sixth degree 
polynomial,  coincides with the historic route on 7 km 
before  Wipperfürth,  but  the  agreement  on  the  final 
stretch of the road to Lüdenscheid is not as good as that 
of the two other LCPs discussed above. The Tobler LCP 
with intermediate stop at Halver is quite similar to the 
LCP  based  on  the  sixth  degree  polynomial  between 
Mülheim and Halver,  except  that  the Dhünn valley is 
avoided but a more direct connection is taken. The LCP 
between Halver and Lüdenscheid takes the northern his­
toric alternative. However, the southern historic alternat­
ive appears  to be the more probable  route,  since four 

place  names  referring  to  the  Heerweg  can  be  found 
along this route. 

The  LCPs  calculated  with  the  Ericson  and  Goldstein 
cost function coincide with the Tobler  LCPs with two 
exceptions: The Ericson and Goldstein LCP from Mül­
heim to Halver runs between the Tobler and the sixth 
degree polynomial LCPs in the area of the Dhünn val­
ley,  and  the Halver  to  Lüdenscheid  LCP is  straighter 
than  the  other  LCPs,  between  the  northern  and  the 
southern  historic  alternatives.  The  agreement  between 
the Tobler and the Langmuir LCPs is quite high as well. 
Differences can be found on the route from Mülheim to 
Halver north of Bechen, where the Langmuir LCP fol­
lows the Dhünn valley and joins part of the LCP based 
on the sixth degree polynomial. 

The  agreement  between  the  routes  calculated  on  the 
basis of slope only and the historic road is not overly 
convincing. According to NICKE (2001, 13) hardly any 
construction work was employed for the medieval routes 
in  the  area  considered  in  this  study.  Therefore,  these 
routes  could  not  follow the wet creek  valleys.  So the 
LCPs running through the creek valleys are not plaus­
ible. In modern times, road construction work started to 
enable transport of large amounts of heavy material, and 
nowadays roads run through the creek valleys. For ex­
ample the historic  map of 1893 already shows a road 
which coincides quite well with the two LCPs running 
through the Sülz valley. 

To reconstruct the historic routes, it seemed plausible to 
combine slope costs with the costs of moving in the wet 
areas surrounding the creeks. 

5.2. Combining slope and costs for water streams

As shown above, combination of costs by multiplication 
is a simple and intuitive choice. Buffers with a radius of 
50 m were created for each stream polyline and the mul­
tipliers for the cells within these buffers were set to 5. 

The black dotted line in Figure 5 shows the main prob­
lem incurred with this approach: The LCP based on the 
sixth degree cost function does not run through Wipper­
fürth but crosses the river Wupper at another location 
where no ford or bridge can be found. The river Wupper 
is the only major stream the Heerweg has to cross on the 
stretch between Mülheim and Lüdenscheid.  Therefore, 
the buffer of the river was assigned a multiplier of 20, 
whereas in the areas of the two bridges on the historic 
map, fords were modeled with a multiplier of 5.  This 
way the LCPs can be forced to cross the Wupper at the 
fords. Figure 5 shows also that some of the creeks depic­
ted on the 1840 map are not included in the modern wa­
ter layer (blue lines). For this reason, the LCPs deviate 
in some parts from the historic routes. 
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Figure 5: Map from 1840 with digitized ancient routes (Heer­
weg);  LCPs  based  on  models  including  multipliers  for  
streams, with and without fords.
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Figure 6 shows the LCPs based on the combined slope 
and water stream costs. Considering the western part of 
the Heerweg from Mülheim to Wipperfürth,  all  LCPs 
agree quite well with the historic route. The LCPs based 
on the sixth degree polynomial and the parabola with a 
critical slope of 10% run on the same route most of the 
time and come closest to the route described by Nicke. 
These two routes run via Bechen whereas the Tobler, 
the  Ericson/Goldstein  and  the  Langmuir  LCPs  take  a 
more direct route. Between Wipperfürth and Halver the 
agreement between the LCPs and the historic routes is 
not very accurate. As pointed out above, this might be 
due to creeks missing in the water layer. Between Hal­
ver and Lüdenscheid, the LCPs come closer to the his­
toric routes but the fit is by no means perfect. 

Conclusions and future work

The Heerweg example shows that a good model fit for 
the first part of a route does not necessarily mean that 
the model will hold for the second part as well. NICKE 
(2001, 13–19) lists some other factors which could be 
included  in  the  model:  ridgelines  were  preferred  and 
routes along contour lines were avoided because they re­
quired construction work. If ridgelines had too many ups 
and downs, a lower route preferably with south aspect – 
or  if  this was not available – east  aspect  was chosen. 
Though water streams were avoided most of the time, 
pack animals and the people needed fresh water at some 

time during the day, so that routes crossing a creek close 
to the source were selected. 

A better result is to be expected after updating the water 
layer and including the additional aspects listed above. 
Some problems may also arise from the 50 m resolution 
of the DEM. For example, some of the creek valleys are 
deeply incised and this will be smoothed by a low resol­
ution DEM. As mentioned above, changes in the land­
scape since medieval times may also account for devi­
ations between the LCPs and the true historic routes.

The Heerweg example and several other from the hilly 
region east of the river Rhine show that in areas of obvi­
ous natural paths the choice of the slope-dependent cost 
function is of minor importance in a moderately undulat­
ing landscape, but that other cost components, namely 
the costs  of  crossing streams,  often play a significant 
role.
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