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This paper describes an ongoing research focused on developing an automatic recognition system for the retrieval  
of archaeological 3D models. The aim of the project is to implement computer tools capable of exploring a database  
and retrieving those objects that are similar in shape to a given 3D ‘query model’. Such tools would be extremely  
useful to archaeologists who need to compare shape features between artefacts as part of their quantitative analysis.  
One interesting case is the comparison of stylistic similarities in anthropomorphic objects recovered from the re­
mains of the ancient city of Tenochtitlan (today’s Mexico City).
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1. Introduction

Thanks  to  recent  advances  in  scanning  technologies 
there has been an increase in the number of methods de­
veloped for digitizing three dimensional shapes.  Some 
of these are routinely applied to archaeological artefacts 
producing  vast  amounts  of  valuable  information  (LE­
VOY et al., 2000).

The most common products of such efforts are 3D mod­
els structured as surface meshes (Figure 1).  A surface 
mesh consists of a collection of vertices, edges and tri­
angular faces that approximate the shape of the real ob­
ject.

Unfortunately, once a collection of 3D models is stored 
in a computer repository, it is difficult to gain access to 
such data due to the lack of appropriate retrieval mech­
anisms. The conventional way to search for 3D models 
consists  in  composing a  query based  on  text  descrip­
tions. However, textual annotations are necessarily con­
strained by the database application domain, as well as 
by language and other factors. Consequently they are in­
adequate for general purpose searches.

In order to overcome such limitations and unleash the 
potential  of  3D  data  in  archaeological  research,  it  is 
worthwhile to explore ways of building an automatic re­
cognition system that searches,  retrieves and classifies 
3D models by comparing geometric features instead of 
text. 

This  paper  describes  an  ongoing research  focused  on 
that goal with a special attention to the specific require­
ments of archaeological applications.

2. Main goal

The main goal is to produce a system that takes a 3D 
surface mesh (i.e. the  query model) as input, and then 
compares  it  to  hundreds,  possibly  thousands  of  3D 
scanned objects in order to identify those that approxim­
ate the shape of the query model. The construction of 
this type of system has been the subject of intense re­
search since the 1980’s, especially in fields such as com­
puter vision and geometric modelling (BESL and JAIN, 
1985;  LONCARIC,  1998;  CAMPBELL and  FLYNN, 
2001).

A paper surveying recent proposals identifies the most 
common operations involved in the process of matching 
and  retrieving  3D  shapes  (TANGELDER  and 
VELTKAMP, 2004): 

Firstly,  each 3D model must be identified by a  shape 
descriptor. This is a measure of some geometric attrib­
ute -such as curvature, that characterizes the particular 
form  of  each  object.  By  analyzing  patterns  resulting 
from the aggregation and contrast  of  shape descriptor 
values,  we are able to obtain the so-called  shape fea­
tures, which  encode  local  topological  and  geometric 
properties of the model. In  turn, the analysis of shape 
features  allows us to discriminate differences between 
3D models. 
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Figure  1:  A sample of  3D models  obtained  from ‘Mezcala  
masks’ found in the Sacred Precinct of Tenochtitlan. The sur­
face meshes are rendered as solids in false colour.

Secondly, shape features must be stored within an index 
structure to facilitate search and matching operations. 

Thirdly, a special algorithm must be put in place for cal­
culating  a  dissimilarity  distance  between  a  particular 
query model and the rest of the objects in the database. 
Matching similar objects becomes a task of comparing 
the shape descriptors stored in the index structure. 

Fourthly,  a  fetching  algorithm  provides  functionality 
such as the ranking of objects according to their level of 
similarity. 

Finally, the fifth operation allows for efficient visualiza­
tion and/or interaction with the user. 

In the following pages we describe our efforts in imple­
menting  some  of  these  operations,  while  advancing 
some ideas on how to apply this to an archaeological 
collection.

3. Requirements

Any recognition system must comply with requirements 
such as efficiency and robustness, but in the case of ar­
chaeological applications it is necessary to satisfy extra 
demands. The first one is to be able to discover shape 
similarities between objects that are partially isometric, 
that is, objects that are not identical but share at least 
some common features. Partial matching is the task of 
finding  similar  sub-parts  among  objects,  and  it  is  a 
harder  problem  to  solve  than  measuring  similarity 
between entire models (i.e. global matching) (GAL and 
COHEN-OR, 2006).

Partial matching is particularly important in archaeolo­
gical situations where not all artefacts are complete. One 
may need to retrieve, for example, all instances of an­
thropomorphic figurines, without being affected by the 
fact that one of them lacks the head,  while another is 
missing one leg. Partial  matching is also useful to re­
trieve complete models of the same class, regardless if 
they differ in some details (Figure 2).

A second requirement is for the system to be able to de­
tect  similarities without being affected by model vari­
ations  in  rotation,  translation,  reflection  and  scale. 
Ideally, an arbitrary combination of translation, rotation 
and scale applied to one object should not affect its sim­
ilarity measure with respect to another object.

In summary, a specialized set of shape analysis methods 
is required. The challenge is to apply algorithms which 
identify and  rank  shape  similarities  efficiently,  within 
the limits of current computer power and discriminative 
enough to perform partial matching.

Figure  2:  Sculptures belonging to the same class of seated  
Aztec deities. Both should be retrieved during a general-pur­
pose query despite partial differences in head and body fea­
tures.

4. Approach

There are two classes of shape descriptors: global and 
local. As the term implies, global descriptors focus on 
measuring properties belonging to the entire 3D model, 
such as the statistical moments of the boundary of the 
model,  volume-to-surface  ratio,  and the Fourier  trans­
form of  the  boundary of  the  model  (check  more  ex­
amples in TANGELDER and VELTKAMP, 2004). 

Alternately,  the computation of local descriptors relies 
on selecting a certain number of points on the surface of 
the model in order to measure curvature or other proper­
ties  within the  neighbourhood  of  each  selected  point. 
The limits of such neighbourhood are commonly defined 
by a spherical kernel. 

There  are  many  approaches  to  obtain  local  shape 
descriptors. One is to compute shape index values over 
an entire mesh to produce a histogram that describes the 
local  features  of  the  3D  model  (ZAHARIA  and 
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PRETEUX, 2001). Another method is to compute point  
signatures that reveal surface information along a three-
dimensional  curve  in  the  neighbourhood  of  points 
(CHUA and  JARVIS,  1997).  A  third  approach  is  to 
define  patches  around  each  point  and  then  estimate 
curvature by fitting a quadric patch that  approximates 
the surface as best as possible (GAL and COHEN-OR, 
2006).

The approach followed in this project  is based on ex­
tracting local shape descriptors by measuring principal 
curvatures in local neighbourhoods defined at different 
scales. Analysing the aggregation and contrast of shape 
descriptors  enable  the  extraction  of  shape  features, 
which encode the topology and local geometry of the 3D 
model. In summary, our algorithm performs the follow­
ing steps: 

For each triangular surface mesh:

1.  Extract  local  shape descriptors  by estimating the 
so-called  principal curvature values.  This task is 
divided into two steps. The first one consists in de­
fining a region around each point using a spherical 
kernel.  Such  kernel  region  constitutes  a  local 
neighbourhood of a particular point. By using ker­
nels of different sizes it is possible to define local 
neighbourhoods at different scales, making the al­
gorithm multi-scale,  multi-resolution.  Afterwards, 
during the second step, we quantify how much the 
surface  bends  in  different  directions  from  the 
centre point of each local neighbourhood. This is 
done by computing two principal curvature meas­
ures (i.e. k1 and k2), as well as two derived meas­
ures  corresponding  to  mean  curvature  = 
(k1+k2)/2), and Gaussian curvature = (k1.k2) (DO 
CARMO 1976).

2. Project the 3D mesh of each object into a 2D em­
bedding  space  using  a  geometric  transformation 
called  locally linear  embedding (LLE),  proposed 
by ROWEIS and SAUL (2000).  This step is ex­
tremely important  because  enable  us  to  compare 
local geometric and topological properties between 
3D models.

3. Calculate how much  bending energy is necessary 
to transform the 2D LLE embedding of the query 
model into the 2D LLE embedding of the rest of 
the models.

4. Create an index structure with the values extracted 
in the previous step.

5. The fetching and visualization tools are still under 
construction and we will report  these in a  future 
paper.

4.1. Estimate curvature to extract shape descriptors

As mentioned earlier, the first step of this project is to 
extract  local  shape  descriptors  by  estimating  four 
curvature  values.  To  understand  the  process,  consider 

the simple situation represented in Figure 3, in which the 
level of bending of a 1D surface (i.e. the curved line) 
can be estimated by means of a straightforward proced­
ure. We would simply have to fit a ball to the curve and 
then calculate the inverse function of its radius with the 
formula c= 1/r; where r is the radius. 

Figure 3: Fitting a ball to measure curvature in an ideal situ­
ation: c = 1/r; where r is the radius.

Unfortunately, estimating curvature in triangular surface 
meshes is a more difficult problem to solve, mainly be­
cause curvature shows distinct  profiles along different 
directions. 

In addition, triangular surface meshes representing real 
objects contain unpredictable levels of noise in the form 
of outlier points. Figure 4, for example, shows the dif­
ference between an ideal, expected curve (dotted line) 
and the real, imperfect profile produced by the scanning 
process (solid line). It  is clear that many points of the 
real  mesh lie outside the ideal  expected curve, produ­
cing a noisy zigzag profile. Fitting a ball to calculate the 
curvature around point p’ –which has an outlying neigh­
bour-, would lead to inaccurate measurements. 

Figure  4:  Real profile on the surface mesh of a 3D model.  
The dotted line represents the ideal shape, while the solid line  
corresponds to the real profile captured by a scanner.

Consequently,  such non-robust  procedure  of  curvature 
estimation is too sensitive to the quality of the mesh, to 
its  resolution,  and to the smoothness/roughness of the 
original surface. When applied to a real triangular sur­
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face mesh, like the one shown in Figure 5, the method 
fails to reveal any significant shape feature that can be 
used later to compare this mask with other 3D models.

Figure 5: Application of non-robust curvature measurement.  
Shades of colour correspond to curvature values for each loc­
al neighbourhood on the surface of this mask. Notice that ex­
treme values  (blue  and  red)  are  uniformly  distributed  and  
therefore  no  identifiable  features  could  be  found  during  a  
matching process.

To avoid that problem, we apply an alternative, more ro­
bust  method.  This  consists  in  estimating the principal 
curvatures -along principal  directions- of several  local 
neighbourhoods  around each  point  of  the  mesh.  Such 
local neighbourhoods are defined by kernels of different 
sizes. In this way, the estimation of curvature becomes 
multi-scale, multi-resolution.

As explained by one of the authors of this approach, the 
method works well for polyhedral approximations with a 
large number of small faces, such as a typical triangular 
surface mesh (TAUBIN, 1995).  More importantly,  the 
process allows for the identification of shape descriptors 
at different scales and with different levels of detail.

The two principal curvatures at a given point of a sur­
face mesh are the maximum and minimum values of the 
curvature. They measure how the surface bends by dif­
ferent amounts in different directions at that point. They 
are  denoted  k1 (i.e.  maximum curvature)  and k2 (i.e. 
minimum curvature) and correspond to the Eigenvalues 
of the extrinsic curve at that point (Figure 6). Eigenval­
ues  are  calculated  through  a  standard  application  of 
principal components analysis (PCA) using an algorithm 
developed by YANG et al. (2006).

Additionally,  we  derive  the  median  and  Gaussian 
curvatures  from  the  previously  computed  principal 
curvatures using the formulae:

Median curvature = (k1+k2)/2

Gaussian curvature = k1.k2

Once the four curvature  measures  are  estimated,  their 
distribution is statistically analysed in order to discover 
patterns that correspond to perceptually meaningful loc­
al  shape features.  Local  shape features  are,  therefore, 
aggregations of shape descriptor values.

A local shape feature is considered ‘salient’ (and poten­
tially significant)  if  the curvatures  of  the local  neigh­
bourhoods  result  highly unpredictable  with respect  to 
adjacent  neighbourhoods  after  testing  it  at  different 
scales.  Unpredictability is determined as a function of 
the local probability density function computed on every 
local neighbourhood of the point. Such definition of sa­
liency is inspired by the work of KADIR and BRADY 
(2002).

Such  features  are  frequently,  though  not  exclusively, 
characterized by contrasts between curvature values, in 
other words, sharp differences between convex and con­
cave ‘creases’ or ridges and ravines on the surface of the 
model. 

To  illustrate  the  results  from  this  task,  we  represent 
curvature values as different shades of colour (Figure 7). 
Notice how the image on the top left shows no signific­
ant  features.  This  is  not  surprising  because  it  corres­
ponds to the discarded non-robust method of curvature 
estimation. In contrast, the other three images illustrate 
results from the more robust method that  we propose. 
They correspond to k1, k3 and k4 (k2 is not included 
due to lack of space). It is clear that these measures re­
veal meaningful local shape features, especially in those 
areas corresponding to the eyebrows, eyes,  mouth and 
nose. The planarity in the remaining parts of the mask is 
also well extracted by the algorithm as a relatively uni­
form shade.

To  demonstrate  the  multi-resolution  capacity  of  the 
method, Figure 8 shows principal curvature estimation 
for  a  figurine  using  kernels  of  different  sizes.  Local 
shape  features  detected  at  different  scales  and resolu­
tions are used later –during the matching phase- to com­
pare a particular surface mesh with the rest of the 3D 
models.
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Figure 6: Principal curvature measurement. Notice the kernel  
delimiting a local neighbourhood and the extraction of Eigen­
values to measure how much the surface bends in the hori­
zontal and vertical directions.
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Finally,  it  is worth mentioning that  the approach used 
for computing curvatures performs well regardless the 
density of the mesh. This is very convenient when one is 
trying to compare a coarse surface mesh against another 
mesh possessing higher resolution.

4.2. Mapping surface meshes into 2D embedding 
space

The next step is to project the surface mesh of each ob­
ject into a 2D embedding space. The strategy resembles 
the projection of geographic spherical coordinates of the 
Earth into a plane map. Both in the case of cartographic 
mapping and 3D models it is necessary to transform ob­
ject  descriptions from 3D to 2D space  but preserving 
important geometric properties, such as shape. 

For the purposes  of  this project,  the so-called  locally  
linear  embedding (LLE)  is  considered  an  appropriate 
methodology for performing the mapping (ROWEIS and 
SAUL, 2000; SAUL and ROWEIS, 2003; RIDDER and 

DUIN, 2002). This approach is based on the geometric 
intuition that each surface mesh point and its neighbours 
are expected to lie on or close to a locally linear patch. 
This observation holds both on the surface of the origin­
al  3D space  and on the surface of the embedding 2D 
space. This means that both 3D geometric information 
as  well  as  local  topological  properties  of  the original 
surface mesh are approximately preserved in the embed­
ding  2D space.  Therefore,  it  is  assumed  that  the  2D 
mapping provides enough information for the purpose of 
comparing the objects in search for similarity. Equally 
important is the fact that LLE allows reconstructing the 
original 3D model from its 2D embedding.

Figure 9, for example, shows the appearance of a mesh 
before and after been subjected to a locally linear em­
bedding. The shades of colour correspond to curvature 
values and are included in the image to show how the 
local shape features existent in 3D are preserved in the 
2D embedding. 

The advantage of this strategy is that assessing similarit­
ies between shapes becomes much easier when the sur­
face meshes are projected into 2D, mainly because the 
reduction in dimensionality facilities the comparison of 
geometric and local topological properties, as explained 
in section 4.3.

4.3. Comparing 2D surfaces for matching

The third step seeks to find a transformation that  de­
forms the 2D LLE projection of each surface mesh store 
in the database into the 2D LLE projection of the query 
model.  Such  transformation  is  called  global  deforma­
tion mapping.

The process of finding the global deformation mapping 
is aided by taking into consideration the previously com­
puted  values  of  curvature,  whose  statistical  variation 
patterns throw light on the most significant parts of the 
model. These are used as landmarks with which compar­
isons between models can be done.

Image Processing  

Figure  8:  The effect of applying kernels of different sizes in  
order to reveal features at different scales. The kernel radius  
is determined as a percentage of the longest distance from the  
mass center of the object to its surface. In this example, the  
kernels are 10%, 15% and 25%.

Figure 7: Comparison of results from the non-robust method  
(top-left) against three principal curvature measures. The res­
ults  are  ordered  as  follows:  top-right  maximum  curvature  
(k1); down-left mean-curvature (k3); and down-right Gaussi­
an curvature (k4).The last three are more effective to identify  
significant shape features, such as the eyebrows, eyes, mouth  
and nose, as well as the planar surface of the remaining parts  
of  this  mask.  In  contrast,  the  first  image  shows  too  much  
noise.

Figure 9: A 3D model (right) embedded into 2D space (left)  
by means of the locally linear transformation. The local shape  
features delimited by shades of colour (i.e. curvature meas­
ures) are preserved after the transformation.

329



D. Jiménez-Badillo et al. / Developing a Recognition System for the Retrieval of Archaeological 3D Models

The transformation must be such that landmark features 
from one surface mesh should approximately match sim­
ilar landmark features in the query surface mesh. In or­
der to assess similarity between the landmark features of 
the two meshes, an analysis of local neighbourhoods is 
performed using kernels at different scales as proposed 
by (SCHOLKOPF and SMOLA, 2002).

The global deformation mapping is computed applying 
numerical  analysis (NOCEDAL and WRIGHT,  2006). 
The process finds the mapping that minimizes the trans­
formation mean square  error  between surface  meshes. 
The output is  an error  term that  quantifies how much 
“energy” is required to deform one surface to fit it into 
another. Similar shapes lead to smaller energy deforma­
tion errors than shapes that are distinctively different. It 
is precisely this error term which is stored in an index 
structure to enable the ranking of objects by degree of 
similarity during the fetching stage.  As we mentioned 
above, the fetching and visualization algorithms are still 
work in progress.

5. Study case

The idea for  this project  came from the need to rank 
similarities in hundreds of anthropomorphic stone figur­
ines and masks found in the remains of the Sacred Pre­
cinct of Tenochtitlan, the main ceremonial Aztec com­
plex, located in Mexico City (Figure 1). 

The schematic features of these objects set them apart 
from other  artefacts  with more naturalistic  style.  This 
has attracted the attention of many specialists and during 
the last three decades these items have been the subject 
of intense debate for two main reasons:

First, the 220 figurines and 162 masks were located in 
14 Aztec offerings dating from 1390 to 1469 A.C., yet 
they do not show typical “Aztec features”. Indeed, their 
appearance resembles artefacts from the southern State 
of  Guerrero,  particularly  from  the  Mezcala  region, 
which is hundreds of kilometres away from the ancient 
Tenochtitlan. Such origin would not be rare,  as it was 
common for the Aztecs to import goods from other re­
gions  either  by  trade  or  by  extracting  tribute  from 
conquered  towns. The style of  the masks and figures, 
however, is more difficult to explain. It is similar, if not 
identical,  to  the  style  of  objects  manufactured  in 
Mezcala  and  other  places  of  Guerrero  during  much 
earlier times, probably during Classic (200-1000 A.C.) 
or even Preclassic times (2000 B.C. to 200 A.C.), while 
the offerings correspond to a Late Postclassic contexts 
(1340-1521 A.C.).  This leads to the question: Did the 
Aztecs collecte ‘antique’ objects to re-use them in their 
own offerings? Or did the Guerrero/Mezcala styles sur­
vive till the late Postclassic period and therefore the of­
ferings objects were produced during Aztec times? It is 
worth noticing that before the finding of these Aztec of­
ferings very few Mezcala style artefacts were found in 
Postclassic  contexts.  Unfortunately,  not  enough strati­
graphic information is available for the collections from 

Guerrero, so specialists rely purely on stylistic consider­
ations to explain the afiliation and chronology of these 
artefacts.

Second,  it  is  not  clear  how  many  Guerrero/Mezcala 
styles exist. Some specialists believe there are at least 
five different traditions (COVARRUBIAS, 1948, 1961; 
OLMEDO and  GONZALEZ,  1986;  GONZALEZ and 
OLMEDO,  1990),  while  others  recognize  only  four 
(GAY, 1967) or two (SERRA PUCHE, 1975). The di­
versity of views is due, in part, to a lack of contextual 
information available for the majority of artefacts found 
in Guerrero,  but  it  also reflects  the subjective criteria 
used to classify such artefacts.

Clearly,  more objective methods are needed to answer 
questions such as: how many styles were developed in 
the  Guerrero/Mezcala  regions?  How  many  of  these 
styles coexisted? Were some styles contemporary with 
the Aztecs? Which specific styles are represented among 
the 382 offering objects found in the Sacred Precinct of 
Tenochtitlan?

Previous studies have tried to solve some of these ques­
tions by classifying object  shapes with heuristic meth­
ods.  In  one  of  these  studies,  due  to  OLMEDO  and 
GONZALEZ (1986),  the  forms of  faces,  eyes,  noses, 
etc. are used to rank object similarities in order to define 
several object types (Figure 10). We believe that a more 
objective classification could be achieved by further ex­
panding the functionality of our matching tools in order 
to compare salient features discovered automatically by 
our recognition system. As illustrated above (Figure 7) 
our  method is  able to  distinguish mask features  (eye­
brows, nose, eyes, mouth, etc.) relevant for this kind of 
application.

CAA2010  Fusion of Cultures 

Figure  10:  Typology  of  nose-shapes  taken  from  the  
Mezcala  collection  studied  by  OLMEDO  and  GONZALEZ  
(1986). Recognizing such features would be easier by using  
an automatic  3D shape recognition system like the one we  
propose here.
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Conclusion

Computer tools for shape matching and retrieval that are 
designed specifically for archaeological  research could 
provide new capabilities for classifying correspondences 
among artefact collections and may help to resolve some 
stylistic  questions.  We  are  currently  testing  our  al­
gorithms with the Mezcala collection and the results are 
encouraging. As the tools developed in this project are 
generic, we expect that they would prove useful in the 
analysis of other archaeological collections.

Especially  important  is  the  capacity of  our  system to 
perform partial matching through a) a robust method of 
curvature estimation and b) the comparison of local to­
pological  and geometrical  features  using the so-called 
local linear embedding. Once the remaining modules of 
our  system  are  completed,  we  expect  to  perform   a 
benchmark analysis, whose results would be published.
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