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Abstract. The statistical prediction of archaeological site locations requires advanced methods that can model non-linear, 
discontinuous functions. While traditional statistical techniques can satisfy these requirements to some extent, recent progress in 
artificial intelligence research has made better tools available: artificial neural networks in particular stand out as efficient, easy-
to-use tools with a broad range of possible applications. This paper discusses design, organisation and use of artificial neural 
networks in archaeological predictive mapping tasks. 
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1 Introduction 
The work presented in this paper is part of an ongoing 

project that aims to create an efficient predictive modelling 
toolkit for archaeological resource management in the state of 
Brandenburg in north-eastern Germany (an area covering about 
300.000 sqkm; for more details, refer to the contribution of U. 
Münch in this volume and the project home page: 
http://www.uni-bamberg.de/~ba5vf99/index.html; also Kunow 
and Müller 2001). 

 
Fig. 1. Brandenburg in north-eastern Germany (left). The 
black outline indicates the city limits of Berlin. The sample 
area (right) that provided the data for this paper is circled in 
red. Its dimensions are 4x9 km. 

Archaeological predictive modelling (APM) tries to develop 
and establish methods suitable for predicting potential 
locations of archaeological sites in geographic space utilising 
regression and  classification techniques, spatial statistics and 
heuristic approaches. This paper outlines yet another, 
sophisticated approach to APM on a landscape scale based on 
GIS, geo-archaeological data sets and the capabilities of 
advanced symbolic processing. Geographic information 
systems (GIS) are an essential part of APM because they 
provide the tools for storage and analysis of spatial variables as 
well as the interface between geo-archaeological information 

and the advanced numerical processing underlying all 
archaeological predictive models.  

Obviously, all large scale aproaches to APM that are based 
on geo-archaeological information (such as Hudak et al. 2002, 
Zeidler 2001) must assume that settlement patterns are strongly 
determined by environmental characteristics (attributes) such 
as terrain geometry (height, slope and aspect angle), distance 
from surface water, ground water level, soil texture, soil quality 
etc. The attractiveness of different locations for prehistoric 
settlements is revealed by patterns in the spatial distribution of 
archaeological sites in surveyed areas. The specific nature and 
importance of location attributes may vary according to the 
type of landscape and archaeological culture under study. The 
area under study in this paper is part of the European 
Lowlands, a landscape that experienced its last phase of 
geomorphological shaping by glacial processes about 12000 
years ago. Throughout the Holocene period, its environmental 
setup was defined by broad, gentle slopes and dense stream 
networks that allowed for an indiscriminate use of land and 
nearly constant settlement patterns from the Neolithic to the 
Iron Age on a large scale (Bork et al. 1998). For this type of 
landscape, a predictive model may treat sites of various 
prehistoric periods indifferently. 

2 Artificial Neural Networks 
An ANN (Artificial Neural Network) is essentially a 

mathematical model that aims to capture the basic mechanisms 
of information processing in biological systems such as the 
human brain (Rojas 1996). A wide variety of ANN 
architectures have been implemented as computer programs 
such as SNNS (Stuttgart Neural Network Simulator), a freely 
available software package for use on Unix and Windows 
operating systems (the SNNS programs and accompanying 
documentation have been used extensively for obtaining the 
results presented in this paper: http://www-ra.informatik.uni-
tuebingen.de/SNNS). ANNs, being connectionist systems, are 
composed of many primitive units (equivalent to the neurons in 
the human brain, Fig. 2) that work in parallel and are linked via 
directed connections. In analogy to the dendrites and axons of 
biological neurons, each unit of an ANN has one or more in-
going connections and only one out-going connection. The 
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main principle of information processing in a neural network is 
the distribution of activation patterns across these connections. 

 

Fig. 2. Scheme of a biological neuron and a primitive unit of 
an artificial neural network. 

In analogy to the way that chemical transmitters transport 
signals across neurons in the human brain, a mathematical 
function (learning algorithm) controls the "transport" of 
numerical values through the connections of an ANN. If the 
strength of a signal arriving in a neuron exceeds a certain 
threshold-value, the neuron will itself become active and "fire", 
i.e. pass on the signal through its outgoing connection. In the 
case of an ANN, this process is modelled by primitive units 
which individually and independently form a weighted sum of 
incoming signal values, process them through a simple 
activation function and pass the output on to another unit. 
According to simple neuro-psychological models, this 
mechanism is sufficient to enable biological organisms to 
achieve highly complex cognitive tasks. In fact, the high 
performance of biological cognitive systems in tasks involving 
classification and pattern recognition has been one of the 
biggest motivations for the development of ANNs. 

ANNs are being applied across a broad range of problem 
domains, in areas such as marketing, medicine, engineering, 
geology, physics and archaeology – anywhere that there are 
problems of prediction, classification or control. One of the 
reasons for their popularity is without a doubt the fact that 
ANNs are easy to use because, like their biological 
counterparts, they learn by example (White 1989). Although 
one needs to have some prior knowledge of how to select and 
prepare data, select and design an appropriate ANN, and how 
to interpret the results, the level of user knowledge needed to 
successfully apply ANNs is generally much lower than would 
be the case using more traditional statistical methods. Using an 
artificial neural network for classification is a procedure that 
consists of three basic steps (train, test, use). 

3 Artificial Neural Networks as Predictive 
Models 

For a basic understanding of the role of ANNs in APM, it is 
sufficient to think of an ANN as a statistical black box system 
that maps input cases (geographic locations) to output classes 
(e.g. “low”, “medium” or “high” site probabilities). For an in-
depth understanding of an ANN's statistical properties, many 
technical details have to be known, most of which can only be 
discussed superficially in this brief paper (an excellent, 
comprehensive overview of the applicability and statistical 
properties of the most popular ANN architectures is available 

online as part of the StatSoft Electronic Textbook at 
http://www.statsoftinc.com/textbook/stathome.html). From a 
general statistical perspective, ANNs can be used to replace 
traditional regression and classification methods with a more 
intuitively appealing design. Since the statistical problems       
of APM have already been tackled in an number of ways (for 
methodical reviews see e.g. Kohler and Parker 1986, Kvamme 
1990, Leusen 1996) the application of ANNs for APM could 
be considered just another blind use of technology. However, 
the specific value of ANNs for APM lies in their ability to 
efficiently handle the most severe problems that archaeological 
data usually suffers from: 

Missing or incomplete data Archaeological data is 
generally imperfect in that some information may not be 
available at the same level of quality for all objects under study 
or even missing completely. The data processed by an ANN 
does not have to be perfect because missing and incomplete 
data is approximated as part of the training process (see next 
section). 

Noisy data More often than not, archaeological data is 
distorted by influences of a statistically random nature (noise). 
The spatial distribution of archaeological sites, although 
primarily driven by environmental factors, might include 
political, social and religious motivations that originally had an 
influence on landscape usage by prehistoric settlers. Since 
these motivations remain blurred and the strength of their 
effect on site distributions cannot be quantified, there is no way 
to analytically compensate for them. However, ANNs, due to 
their non-analytical nature, behave robustly even if the input is 
noisy. In fact, with noise rising fast, the quality of the output 
degrades only slowly ("graceful degradation"). 

Non-linear relationships The probability that an 
archaeological site exists in a given location can be considered 
a function of that location's attributes. APM can then be 
defined as the task of finding the function that most accurately 
maps environmental parameters to find probabilities. Although 
an optimal function will in practice never be found, even a 
moderately accurate mapping function can be very complex 
and difficult to find in an analytical way. By learning from 
input cases alone, ANNs are capable of modelling extremely 
complex functions (ANNs themselves can be viewed as 
functions that map input cases to output cases). Although there 
are other ways to model non-linear relationships, ANNs are 
equalled by no other statistical tool in their ability to model 
non-linear functions with large numbers of variables. 
Classification with an ANN involves creating, training, testing 
and finally using the network. Each of these steps will be 
described briefly in the following subsections. 
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3.1 Designing an Artificial Neural Network 

 

 

 

Fig. 3. A simple multilayer perceptron network (top) and the 
error surface of a two-dimensional input vector (bottom). 

A peculiar property of ANN-based classification compared 
to traditional statistics is that there is no standardised way to 
take the user from unstructured input data to classified output 
data. Instead, the architecture of an ANN is always bound to 
the specific data (and the underlying distribution function) that 
constitutes the basis of the task at hand. The first step, 
therefore, is to find an individual ANN design. To illustrate the 
basic concepts involved, a very simple ANN architecture will 
suffice. The ANN shown in Fig. 3, a so-called "multilayer 
perceptron network", is one of the most basic architectures 
(Baum 1988). It was designed to achieve a simple classification 
of input locations as either "site present" or "no site present". 

Apart from its general architecture, an ANN's statistical 
properties are defined by the layout of its units and 
connections. In most cases, an ANN consists of at least four 
components: 

1. An input layer with as many inputs as there are predictor 
variables (location attributes). This is the layer where the 
data to be learned and later classified is fed into the 
network. 

2. A so-called "hidden" layer with, in this simple example, 
four units. These hidden units are essentially responsible 
for determining the form of the mathematical function 
that the network represents. The number of hidden units 
is determined experimentally by adding or removing 
hidden units and checking how well the net performs 
afterwards. If one adds more hidden units, the function 
approximated by the network will fit the training data 
more perfectly. However, if the fit is too perfect, the 
network will lose its ability to generalise. This means that 

classification performance for unknown cases (those not 
presented to the network during training) will degrade. 
This condition is called over-learning. If the number of 
hidden units is too small, under-learning occurs and the 
network will never achieve a good performance. 

3. An output layer with just two units. These correspond to 
the two possible cases "site present" and "no site 
present". The output units have to functions: during 
training, they are set to predefined values by the user 
(supervised learning; see next subsection). During 
classification, the network uses them to store 
classification results for an input case. 

4. The final component is a full set of connections between 
the units. It is in these connections that the net stores its 
actual "knowledge". For this purpose, there is a weight 
attached to each connection that represents its activation 
strength. The weights change during the learning process. 
Setting them to their optimal values is a mathematical 
challenge addressed by a number of different learning 
algorithms, the most well-known (although in practice 
not the most useful) of which is the back propagation 
algorithm (Rumelhart, Hinton, Williams 1987). 

There is a vast number of ANN architectures and each of 
them allows for further variations in the number of units and 
layers, the number of connections between the units and the 
mathematical functions that control the signal passing. 
However, in practice only a few architectures are useful. 
Again, this paper cannot explain every technical aspect that one 
has to be aware of when trying to find the optimal network 
architecture, layout and learning function. A very helpful 
resource is the Neural Network FAQ (ftp://ftp.sas.com/ 
pub/neural/FAQ.html). 

Designing an ANN involves experimenting with a large 
number of different networks, training each one a number of 
times and observing individual performances. However, 
following the standard scientific motto that, all else being 
equal, a simple model is always preferable, one should always 
select a smaller, simpler network in preference to a larger one 
with a negligible improvement in performance. Recent 
advances in software development also include end user 
software packages that automate this process (e.g. 
http://www.statsoftinc.com/stat_nn.html). 

Fig. 4 shows the classification result of the simple design 
described above. Although it was able to achieve a rough 
classification, the overall picture gained from its output is 
rather noisy. Also, limiting the predictive model to just two 
output cases (“site present”, “no site present”), might not be 
what one expects of a useful model. 

http://www.statsoftinc.com/stat_nn.html


 
 

 
270 

    
Fig. 4. Classification output for the sample area using a 
multilayer perceptron network, superimposed on a digital 
elevation model. Red areas are those classified as "site 
present", yellow as "no site present". 

3.2 Training an Artificial Neural Network 
As was stated earlier, an ANN's knowledge (its ability to 

correctly classify objects) is stored in the weights of its 
connections. The weights are modified by training methods 
that replace traditional classification and regression techniques 
with "best match" conclusions. Training, being the second step 
in ANN-based classification, adjusts the weights of the 
connections in order to get the desired behaviour. The site 
attributes used to train the net are organised as patterns 
(vectors). For each individual geographic location, a 
corresponding pattern exists that contains all descriptive 
attributes (height, slope, aspect angle, soil texture...). 

The training process itself is one of supervised learning: 
patterns representing locations for which the archaeological 
classification ("site present" or "no site present") is already 
known (the training pattern set) are repeatedly presented to the 
ANN which then arranges the weights attached to its 
connections to map the input data (stored in the input units) to 
the given output classes (values of the output units). The 
degree of freedom the ANN has for finding a good mapping 
function depends largely on the number of units in the hidden 
layer in between the input and output layers. Pattern by pattern, 
the ANN then "learns" to recognise the characteristics of site 
locations and can later identify them in new, unclassified input 
patterns. To ensure correct training, the standard procedure is 
to split up the entire training pattern set into three separate 
parts: 

1. The actual training set used to train the ANN. The 
patterns that constitute this set may be available in the 
form of survey files, heritage management archives etc.  

2. A validation set for testing the performance of the ANN 
on patterns not in the training set and to find the point at 
which to stop the training process. Just as an ANN's 
optimal design depends on the statistical properties of the 
data to be classified, its knowledge is bound to the input 
data. ANN performance will therefore only be acceptable 
if the training process is near optimal. The ANN's error 
rate (the ratio of correct to incorrect classifications) can 
always be lowered by training the same patterns many 

times. The danger is, however, that the ANN gets to 
highly tuned to the training patterns and loses its ability 
to generalise. This is another type of over-learning in 
which training only minimises the error function of the 
training data instead of the true error function which is 
sensitive to the complete data set. Therefore, training 
progress is repeatedly checked using the patterns in the 
validation set. As training progresses, the training error 
drops, and (providing training is minimising the true error 
function) the validation error drops, too. However, if the 
validation error stops dropping, or starts to rise, this 
indicates that the network is starting to over fit the data, 
and training should cease. 

3. A test set for finally checking the overall performance of 
the net with patterns the net has never "seen" during 
learning. 

Because three separate sets have to be supplied with 
patterns, it is preferable to have a large number of patterns 
available for training the net. The number of patterns needed 
also depends on the number of attributes used to describe each 
location. As a general rule, at least several hundred patterns are 
needed for moderately complex classification tasks. 

The objective of ANN training is to find a set of weights and 
thresholds that minimise the prediction error. A peculiarity 
about neural networks is that the error surface of the modelled 
function is very complex. Its dimensionality directly depends 
on the number of input units. For a very simple two-
dimensional input pattern, the error function can be visualised 
as a three-dimensional plane (Fig. 3, bottom). In this case, the 
minimum error can obviously be found in the deepest pit of the 
surface. Finding this global minimum is essentially the role of 
the learning algorithm that controls the actual training process 
by calculating and updating connection weights. In order to 
increase network performance, the learning algorithm has to 
descend into the deepest pit of the error surface without getting 
trapped in a local minimum. This is difficult, because the error 
surface, due to its complexity, cannot be scanned globally but 
must be traversed step by step with only limited information 
about the parts that can immediately be reached in the next 
training step. Therefore, one can never be sure that training has 
stopped at an optimal point. The only thing that helps is to train 
several times in order to avoid getting trapped in a local 
minimum. For training the ANN, a huge number of different 
learning algorithms exists and one possibly needs to 
experiment a bit for optimal results.  
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3.3 Using an Artificial Neural Network for APM 

    
Fig. 5. Classification output for the sample area using a 

probabilistic neural network, superimposed on a digital 
elevation model. White dots represent archaeological site 
locations. Site location probabilities are colour-coded with 
dark brown representing highest and light green representing 
lowest probabilities. 

The training process has essentially created a software 
expert that is able to discriminate between locations with 
potential sites and those without. In other words: the ANN has 
learned to model the unknown function which relates the input 
variables to the output variables, and can subsequently be used 
to make predictions for cases where the output is not known. A 
question that arises immediately is how to interpret the ANN's 
actual output values. Obviously, they could be interpreted as a 
degree of confidence in the classification. Formal mathematical 
proves (e.g. Richard and Lippmann 1991) show that an 
optimally trained ANN's outputs can be interpreted as true 
posterior probabilities (the ANN can then be considered a 
bayesian probability model). This is also generally true for 
probabilistic neural networks (PNNs), a special ANN 
architecture (MacKay 1992; Paas 1990). PNNs are essentially 
the ANN-based version of a statistical method called kernel 
density estimation, which uses kernel functions – simple 
functions which are added together, positioned at known data 
points – to approximate a sampled distribution (see Parzen, 
1962; Williams and Rasmussen 1996). Functionally seen, a 
PNN is able to estimate the true probability function 
underlying the input data. PNNs are a powerful concept and 
among the most popular ANN architectures.  

So far, it has been assumed that some knowledge about 
locations classified as both "site present" and "no site present" 
was available prior to the ANN-based classification. However, 
in most real world applications, there is only knowledge about 
the positive indication of site presence. Site absence is seldom 
recorded systematically and being sure about a site's absence is 
even more problematic than being sure about a site's presence. 
In the most general case, one simply wants to make predictions 
based on some sort of measure of environmental similarity. 
What is required in this case is an approach to APM that takes 

an "unbiased" look at the archaeological record by determining 
data structure exclusively from the data itself. The 
environmental features represented by the location attributes 
can then be correlated with the frequency of sites in different 
environmental feature sets to gain an estimation of 
archaeological potential for a specific landscape (Fig. 5). The 
ANN architecture appropriate for this is the self-organising 
feature map (SOM) as proposed by Kohonen (1982). SOMs are 
capable of unsupervised learning which means that no training 
patterns have to be provided. In this respect, SOMs share some 
properties with exploratory statistical techniques such as 
clustering analysis but are unique in that they preserve 
topological information in the data. The classification 
presented in the next section was achieved using Ainet 
(http://www.ainet-sp.si/), a public domain software that 
combines properties of both PNNs and SOMs in a 
mathematically efficient manner and also offers a graphical 
user interface for data entry. 

4 Performance of ANN-Based APM 
Fig. 5 shows the classification output of a PNN. The overall 

picture is quite homogeneous and thus easy to interpret. 
Archaeological site locations show a strong preference for 
valley-type environments and moderate slopes. For 
comparison, an archaeological predictive model for the same 
geographic area was processed using a more traditional 
statistical prediction technique. Using a standard clustering 
analysis, locations were grouped (clustered) into patches of 
similar environments according to their attributes. In this way, 
each group (cluster) represents a particular type of 
environment. After analysing the distribution of archaeological 
sites over these environment types, an estimation of 
archaeological potential could be gained for the rest of the area. 
A side-by-side visual comparison of PNN and clustering 
analysis outputs (Fig. 6) uncovers a few differences: 
Apparently, the clustering analysis tends to form connected 
patches with a certain degree of internal segmentation. The 
ANN, owing to its greater modelling power, has found a 
distribution that includes more unconnected areas (e.g. a patch 
at the bottom which the clustering analysis left out) and 
produced a "smooth" overall picture. Validation with split data 
sets has shown that both models produce acceptable results 
with about 75-85% of the validation data being correctly 
predicted. A more convincing but also much more costly field 
validation of these and other predictive models in altogether 
seven sampling areas (T1-7, Fig. 1) is still in progress but 
preliminary results seem to support the assumed validatiy of a 
geo-archaeological data-driven approach. 
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Fig. 6. Comparison of classification outputs from clustering 
analysis (left) and probabilistic neural network (right). 

There is one more aspect of great practical implications that 
has not been stressed yet: one of the biggest practical 
challenges in APM is the amount of data that has to be dealt 
with. The sample area shown in Fig. 1 (right) is 4x9 km in size. 
A model of site distribution using a resolution of 10 m 
generates 360.000 locations for input as classification patterns. 
The total input size is thus 360.000 multiplied by the number of 
location attributes. Input size is often a problem, because 
statistical techniques tend to have high demands on computing 
resources. Traditional statistics often include complex 
calculations which have to be carried out in a predefined order 
because each intermediate result depends on the preceding 
operation. In the case of clustering analysis, the input data 
needs to be sorted and since a set of data points cannot be 
sorted by considering isolated sub sets, all data has to be held 
in memory at the same time. In this way hardware limits are 
quickly reached. It is important to point out that this is not an 
issue of current PC technology but rather a fundamental 
mathematical problem (complexity), that many useful methods 
in traditional statistics will always suffer from, regardless of 
advances in technology. 

ANNs, on the other hand, process information much more 
efficiently. An ANN may consist of a lot of units, but each 
single one of them works in a very primitive way: calculations 
consist of simple signal passing and basic arithmetic operations 
(sum up all the input signals, process them through some 
simple activation function and output the result) which can be 
processed in any order. For the PNN to calculate its output, a 
PC with 128 MB of main memory was completely sufficient. 
The fact that such high-quality results can be achieved on 
inexpensive PCs relieves under-financed heritage management 
services of a great financial burden and makes high resolution 
APM for large areas possible. 
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