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Abstract. Testing archaeological predictive models has almost always relied upon evaluating the percentage of sites
“captured” versus the percentage of area defined as “high” potential. This is known as the “gain” statistic. Fundamentally
inherent in correlative models and the gain statistic, though, is the assumption that measuring the deviation from randomness
is the best method to evaluate the accuracy and precision of a model. This paper will show, in contrast, that the locations of
archaeological sites are always dependent upon the location of the previous instance of settlement and therefore can act only
like time-series dependent phenomena, never like random points. This calls for a fundamentally different means of testing
models which can account for spatial autocorrelation.

1. Introduction

In this paper I am not going to belabor the argument that
correlative (what might also be called inductive or regression-
based) predictive models are inadequate on both theoretical
and practical grounds. I have done so before (e.g. Whitley
2001; 2003a), and not wanting to beat a not-so-dead-yet
horse, I will pass on the opportunity to do so again. 
Instead, I would like to focus on an issue which has a direct
bearing on the way in which predictive models are employed,
but does not directly relate to the theoretical nature of their
construction. There is an indirect link, as I shall demonstrate,
but the focus of my discussion will be on how we test
predictive models, not build them. This relates to two terms
first discussed by Kvamme (1988), which have distinctive
uses and well-defined meanings in predictive modeling;
namely accuracy and precision. 
Accuracy, as defined in what we might loosely refer to as “the
field of predictive modeling,” means; how well does the
model (regardless of the nature of its development) capture
the sites used to test it? Put more simply, do most of the sites
(either known prior to the development and implementation of
the model, or located with a testing strategy afterward) fall
within areas of modeled high probability? Accurate predictive
models should theoretically capture a high proportion of
archaeological sites.
Precision, also known as specificity (cf. van Leusen et al.
2002), does not refer to the capture of sites, but the reduction
of space into useful categories of probability. In other words,
highly accurate models are of no use if they refer to all areas
as high potential. Precise models limit high potential areas in
some way to make them useful for focusing survey strategies
or research designs. Remember that the purpose of a
predictive model is to find areas likely to produce
archaeological sites for whatever reason (e.g. land
management, or explaining settlement location patterning).
In essence, accuracy is intended to refer to the confidence one
can have in the predictive ability of the formula, while

precision is supposed to be a measure of its utility. Because a
successful model should have both high accuracy and good
precision, Kvamme (1988:329) developed a means to
combine these two attributes and measure them. This is
known as the gain statistic. The formula for evaluating model
gain is expressed as:

1 – (% High Potential Area / % Known Sites Captured)

It is my argument, however, that the gain statistic, although
currently uniformly accepted and employed almost
ubiquitously as a measure of predictive model success, is
founded upon a faulty premise. It should also not be taken at
face value, nor assumed to be objective. Instead, we should
examine the way we verify predictive models and base our
confidence in them on their explanatory power. This entails
thinking of accuracy and precision in a different light. 

2. The Chimera of Randomness

When we initially produce a probability surface (through
whatever technique) our first instinct is to want to objectively
evaluate how well the model works. As trained scientists and
statisticians, we immediately verbalize this as “do the
patterns appear to be significant?” In other words, do our
observations significantly differ from our expectations. But
where do the expectations come from? The typical answer is
from an assumption that if all things were equal, archaeo -
logical sites would be distributed randomly across the study
area.
Using that assumption then, we can extrapolate for the study
area a random distribution of points and measure how
different the observed sites are from that random distribution.
Depending on how the model is constructed, there are
numerous ways of attaching a statistical significance value to
that difference. This, in fact, is at the root of how correlative
models are created. In the realm of model testing, though, the



main point is to find a significantly high proportion of sites
with high probability values.
That seems to make sense, but does it really? Can it be said
that (all things being equal) archaeological sites would
“behave” like random throws of a pair of dice? Would sites,
under those conditions, have an equal potential to fall
anywhere in the environment for each occurrence? Or, are
sites inherently autocorrelated with each other? And, if they
are, what does that mean for how we should test probability
models? First, let’s look at what archaeological sites actually
represent.

2.1 First-Order Autocorrelation

As we all know and understand quite well, archaeological
sites represent the remnants of human behavior. This means
that the primary mechanism for the distribution of
archaeological sites (regardless of the factors which promote
or inhibit use of some area) is the movement of people across
the landscape. So, let’s assume a spatial manifold (or study
area) of 40 to 50 kilometers in size. Furthermore, let’s assume
that this manifold is absolutely frictionless; meaning there are
no impediments to movement in any direction.
If we begin with someone, or a group of people, placed in the
exact middle of this manifold, there are no physical or cultural
factors which will push or pull them in any specific direction.
The only limitation on the placement of their next
archaeological site, is how far they can travel before they
deposit additional archaeological materials. Putting aside for
the moment the nature of what their activities may be (which
greatly determine what materials they are leaving behind, and
how frequently), let’s assume that artifacts are deposited at
regular time intervals (we can call them standard time units).
If those people travel at a speed of 1 km per standard time
unit, then the limits on the placement of the next
archaeological occurrence must be within a zone between 0 to
1 km from the point of origin. The next archaeological
occurrence must, as well, fall within 0 to 1 km of the previous
location (not the first). All of the subsequent site locations
must fall within that same buffer zone of each previous
occurrence. Figure 1 extrapolates this process for 500 such
simulated archaeological occurrences.

The resulting distribution of “sites” does not resemble
randomness. The reason why is that each one is not an
independent occurrence. They are, in essence, time-series
autocorrelated. Each one is dependent not upon the extent of
the manifold, but the location of the previous site and the
maximum distance which can be spanned between
occurrences. The distribution illustrated here is in fact, a
random walk. Direction is chosen randomly but merely a
limitation on possible distance has eliminated the potential for
an appearance of randomness.
What happens though when you choose a larger distance
buffer? Figure 2 illustrates the same sequence of random
direction selection with a buffer of 2 km for 500
archaeological occurrences. As you can see by the result, the
spread of points increases, but a large number of the points
falls outside the manifold entirely (outside the boundary of the
figure). Increasing the buffer to 5 km adds additional spread
within the 40 to 50 km manifold (and reduces much more the
number of sites which fall within it). Even further increasing
the buffer to 10 km (Figure 3) adds dramatically to the spread,
but still does not simulate the appearance of randomness in
the few sites which can be found within the manifold.
But how do we know that sites are limited in this way? Is it
not likely that many activities are tied only to a few specific
sites, which themselves may fall much further apart; such as a
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Fig. 1. Results of extrapolation.

Fig. 2. Results of a larger distance buffer choice.

Fig. 3. Results with a 10 km buffer.



base camp-activity area type settlement strategy? Does that
sort of process result in greater randomness? Figure 4
illustrates just such an example. Each of the base camps
(shown as squares) is linked to a series of 10 activity locales
(triangles) by a buffer limit of 5 km. Each base camp is also
linked to the next by a buffer limit of 25 km. This results in
the appearance of clusters of associated sites (much like you
would find in an archaeological setting), but once again, they
do not suggest randomness.
Now, of course it is not likely that archaeological sites can be
considered to be deposited in regular intervals, however large
those intervals may be. But that doesn’t change the nature of
their creation as probabilistically dependent upon being some
distance and direction from the previous occurrence, or a base
camp. That probability can be considered inversely
proportional to distance. In other words, given the location of
a single site, the probability is very high that the next site will
be quite close, and diminishes as you get further and further
away; this is the very definition of spatial autocorrelation. The
appearance of randomness depends on the scale at which the
data is being viewed; even in cases where there is assumed to
be no restrictions on where people are likely to have traveled. 
To even approximate the appearance of randomness, you have
to assume a travel buffer much larger than the size of the
manifold. A palimpsest of thousands of years of settlement in
a frictionless surface in which the travel buffer is much larger
than the manifold of observation could eventually resemble a
random distribution.
But in that situation, the appearance of randomness does not
equate with a random distribution. The distribution of sites in
such a situation actually represents many different
applications of site selection and cannot be considered part of
a single predictive model. Each archaeological occurrence is
still linked to the previous, or to a base camp, in such a way
that I believe any test against randomness for archaeological
sites is inherently untenable.

2.2. Second-Order Autocorrelation

Now, the autocorrelation between sites themselves is not the
only autocorrelation inherent in models of site location. There
is the additional caveat that we do not live on a frictionless

surface, and neither did people in the past. Mitigators of
movement come in several forms; those which are specifically
chosen as variables upon which spatial decisions are made,
and those which are unconsciously employed at all times and
can be considered as second-order autocorrelates with site
location.
For example, imagine that we have the same 40 to 50 km
manifold as in the previous examples. Only this time, we have
a topographically variable surface. We can still employ a
standard time unit buffer between sites, or different site types.
But rather than assuming the cost of travel is equal in every
direction, we can employ a cost-surface to create the buffers.
Figure 5 illustrates such a cost surface based strictly on terrain
slope. 
The probability of site placement still diminishes with
distance, but that distance reflects the actual cost of travel
across the landscape. Importantly, such a surface is not strictly
a measure of the negative costs which increase friction, but
may include benefits which reduce it as well. These can be
conceptualized as attractors (spatial variables which reduce
friction) and repulsors (ones which increase it).
In this way there are some variables which elevate the cost of
travel to such a degree that the probability of any site
occurring in high cost areas is very minimal, even when there
has been no explicit strategy to employ them. This is best
exemplified by two very important variables in predictive
modeling; terrain slope and distance to water. Whenever these
two variables are employed in a predictive model they
typically work quite well as predictors of generic site location,
but only in areas of high relief or at least moderate aridity. 
Can we argue that extracting such variables as these in a
predictive model is realistically a measure of our
understanding of settlement strategies? I believe that de facto
variables which were not explicitly cognized as attractors or
repulsors to settlement (or other activity) should not be con -
sidered as a means to create confidence in a predictive model. 
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Fig. 4. Clusters of assoicated sites. Fig. 5. Cost surface based on terrain slope.



In other words, I am not particularly impressed when the ac -
curacy of some model is based primarily on the use of slope
and distance to water. It should be a given that people were
averse to living on steep hillsides and far from a water source.
There is no evidence to show that they cognized such vari -
ables and used them as the primary motivators for settlement. 
But what does it matter, if the precision of the model is good,
and therefore it has high utility? I would argue that in this
instance high accuracy and good precision is likely to instill a
false sense of security that significant archaeological
resources will always occur in high probability areas. And
secondly, that low probability areas are of the least concern
for archaeological purposes.
In fact, if a resource were to occur in a low potential area when
it has not been predicted, that should clearly raise a red flag that
perhaps such a site is unusual and consequently more signi -
ficant than if it had been found in a high potential zone. When
evaluated in a test against randomness, however, such a site
would be automatically thrown out as an outlier. The second-
order autocorrelative nature of some de facto variables has
over-ridden the interpretative potential of the sites themselves.

3. The Effect on Accuracy and Precision

What does this mean for significance testing of predictive
accuracy and precision? Putting aside for a moment the
problems with building models on false assumptions of
randomness, we need to rethink how we derive our expected
site distributions. Should we use random walk models (such
as those illustrated in the foregoing figures) to test our
predictive surfaces? I do not believe so. The nature of random
walks is such that you would need to be able to extract
specific sequences of archaeological occurrences in order to
evaluate a model’s accuracy. We know that it is extremely
difficult, if not impossible, to do so. Instead we need to
recognize that we already have a viable dataset for testing
predictive models that can be classified by behavioral
characteristics rather than specific temporal sequences.
To illustrate this concept, lets go back to the frictionless
manifold for a moment. The main problem with comparing
known sites against random points (or randomly expected
numbers of sites by probability area, even if actual points are
never used) is that the built-in autocorrelations cannot be
accounted for. The reason is that a random distribution has no
autocorrelations, yet as I have shown here, all archaeological
sites inherently have them on two different levels. Thus a
comparison between a pattern of sites (or a probability
surface) and an actual random distribution is like comparing
apples and oranges.
Instead we need to consider comparing a modeled probability
surface against the known dataset not an expected distribution
of sites. This means that we first need to develop an
explanatory model; one which addresses the causality of site
locations (cf. Whitley 2003b). Such a model may or may not be
based on a previously known set of archaeological occurrences,
but it should reflect distinctive behavioral characteristics and
not lump sites together merely because they are from the same
time period or have similar artifact contents.

Causal models build hypotheses about why certain areas were
explicitly and cognitively chosen for a particular behavior. The
spatial components are then broken down into manageable
quantitative surfaces and combined to develop a probability
surface which reflects those hypotheses. When compared with
the archaeological occurrences which we believe represent
those behaviors then we have a much more robust testing
strategy, because theoretically every one of those sites should
fall within land units which have a high probability value for
that behavior. If even a single one falls in a low potential zone,
it suggests that there is something wrong with the model (or
conversely that there is something wrong with the designation
of that site as representing the targeted behavior).
Ultimately, our confidence in the predictive model (i.e. its
accuracy) would be based on the statistical relevance of the
known archaeological sites (cf. Salmon 1971; 1998) not their
statistical propensity. This means we have the ability to build
models which address behaviors that are infrequent, and the
size of the dataset need not be large to do so. 
Instead, the model could be verified with just a few
archaeological occurrences of the modeled behavior, or even
the absence of such sites in low potential zones. Naturally, an
increased abundance of sites can generate higher confidence,
but with a test against randomness that abundance is required
from the beginning and the rejection of a faulty hypothesis is
not as robust. 
The model’s precision is much more dependent upon the scale
at which it is employed. Just like the traditional notion of
precision, if the study area is too small, precision is likely to
be greatly reduced. More importantly however, we need to
regard predictive precision as a concept intimately tied to
causality. An explanatory model may still be of great utility
even if it is quite imprecise (as long as it is also very accurate).
This is not the case for a model which may be accurate but has
no explanatory power (such as a correlative one).

4. Conclusions

My intent with this discussion has been primarily to introduce
the idea that we need to reconsider our notions of what makes
an archaeological predictive model successful. Our failure to
thoroughly integrate the very theoretical ideas so often
debated in archaeology with the methods of predictive
modeling have allowed us to latch onto faulty assumptions
and rely on an inadequate and non-robust testing strategy. By
rethinking how we envision accuracy and precision in a
predictive setting, we begin to recognize the drawbacks and
inadequacies of how we create the models in the first place.
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