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Zusammenfassung

In dieser Arbeit werden bosonische Vielteilchensysteme in drei Raumdimensionen
untersucht, die durch ein dufleres Potential in einer bzw. zwei Raumdimensionen
stark eingeschriankt sind. Das Ziel dieser Arbeit ist es, solche N-Teilchensysteme
durch eine effektive Einteilchengleichung zu approximieren. Im Gegensatz zu den
bestehenden Arbeiten in diesem Gebiet ist diese effektive Gleichung aufgrund des
starken dufleren Potentials zwei- bzw. eindimensional. Es wird bewiesen, dass diese
Approximation im thermodynamischen Limes N — oo exakt wird. Dariiber hinaus
werden fiir diese Approximation explizite Konvergenzgeschwindigkeiten angegeben.
Diese sind im Besonderen fiir die Anwendbarkeit der Ergebnisse auf physikalische
Experimente von Bedeutung. Im Folgenden werden die Inhalte der jeweiligen Ka-
pitel kurz zusammengefasst.

Kapitel 2 gibt einen Uberblick iiber die mathematische Beschreibung bosonischer
Vielteilchensysteme. Die dazu verwendete Schrodingergleichung mit Paarwechsel-
wirkung wird eingefithrt und die mathematischen Konzepte fiir die Beschreibung
von Bose-Einstein-Kondensation werden definiert. Dabei wird erkléirt, warum die
Existenz eines Bose-Einstein-Kondensates essentiell fiir die Beschreibung boson-
ischer Vielteilchensysteme durch eine effektive Einteilchengleichung ist. Des Weite-
ren werden die Mean-Field-, die Nichtlineare Schriodingergleichungs- und die Gross-
Piteavski Skalierung der Vielteilchen-Schrodingergleichung anhand von physikali-
schen Experimenten und den bestehenden mathematischen Ergebnissen beschrie-
ben.

In Kapitel 3 wird zuerst die mathematische Notation, in der die Ergebnisse for-
muliert und die Beweise dargestellt werden, festgelegt. Danach werden die zwei
positiven Funktionale o und § definiert, die von Pickl in [Picl] eingefiihrt wurden.
Mithilfe von « oder 8 kann die Dynamik eines Vielteilchensystems mit der Dyna-
mik eines Einteilchensystems verglichen werden. Dabei folgt aus der Konvergenz
von a — 0 oder § — 0 im thermodynamischen Limes eine gute Approximation der
Vielteilchendynamik durch die Einteilchendynamik. Dieses Kapitel schliefit mit der
Prasentation und Diskussion der Hauptresultate der Arbeit. Im Mean-Field-Fall
sind diese im Wesentlichen von der Form

at) < C(t)N 1,

wobei C(t) eine monoton steigende Funktion mit C'(0) = 0 ist. Fiir den Fall einer
Skalierung, die zu einer nichtlinearen Schrédingergleichung fithrt und die durch den
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Parameter 6 kontrolliert wird, erhalten wir das Ergebnis
B(t) < Ct)NT"O.

Hier bestimmt der Parameter n(6) > 0, dessen genaues Verhalten aus dem spéter
gefithrten Beweis folgt, die Konvergenzgeschwindigkeit.

Kapitel 4 stellt fiir einen einfachen Fall der Mean-Field-Skalierung eines Vielteil-
chensystems einen sehr ausfiihrlichen Beweis dar. Dieser dient zum einen dazu, die
Methode von Pickl [Picl, KP, Pic4] fiir stark eingeschrinkte Systeme zu veran-
schaulichen, wobei diese Methode in diesem Fall nur geringfiigig geéindert werden
muss. Zum anderen liefert dieser Beweis eine Vorlage fiir die folgenden, technisch
aufwindigeren Beweise.

In Kapitel 5 werden die beiden Funktionale o und § ausfiihrlich diskutiert. Die-
se Diskussion ist angelehnt an [Pic4, KP, PP|. Es wird der Zusammenhang der
beiden Funktionale mit dem fiir Mean-Field-Limiten gebraulicheren Konvergenzbe-
griff, der durch die Spurnorm gegeben ist, aufgezeigt. Danach werden grundlegende
Eigenschaften von a und 8 und der in ihnen enthaltenen Projektionen p,q und
Py, n dargestellt. Diese Eigenschaften werden fiir die in Kapitel 6 und 7 folgenden
Beweise benotigt. Zuletzt wird der Nutzen des Funktionals 8 im Vergleich zu «
thematisiert.

In Kapitel 6 wird der Beweis aus Kapitel 4 so erweitert, dass nun Paarwechsel-
wirkungen mit stirkeren Singularitidten zugelassen werden kénnen. Dazu werden im
Vergleich zu Kapitel 4 zusétzliche Abschidtzungen benétigt, die mit Hilfe von Ener-
gieerhaltung hergeleitet werden kénnen. Die dazu verwendeten Techniken werden
im Detail dargestellt, da sie in den folgenden Beweisen wiederverwendet werden.
AbschlieBend wird der Beweis analog zu Kapitel 4 durchgefiihrt.

In Kapitel 7 wird der Fall einer Skalierung, die zu einer nichtlinearen Schrédinger-
gleichung fiithrt, bewiesen. Dabei wird der Fall eines stark einschréankenden Potential
in zwei Richtungen betrachtet. Die Grundidee des Beweises bleibt die gleiche wie
in Kapitel 4 und 6. Es wird aber eine weitere Energieabschitzung bendtigt, um
die Wechselwirkung des Vielteichensystems mit der Wechselwirkung des effektiven
Systems vergleichen zu kénnen. Dariiber hinaus entsteht die Schwierigkeit, dass nun
die Konvergenzgeschwindigkeit von mehreren Termen der Form N/(?)¢9(%) abhiingt,
die miteinander in Konkurrenz stehen. Hier gibt € die Stérke des einschréinkenden
Potentials an. Die verschiedenen Terme der Form N/(®=9() fiihren dazu, dass die
Abschitzungen der vorigen Kapitel zusétzlich verfeinert werden miissen und nur
noch bestimmte Kombinationen der beiden Parameter /N und € méglich sind.
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1. Introduction

In physics it is important to be able to approximate complex systems and general
theories by effective theories or equations which are simpler to analyze and easier
to solve. Effective equations are used in every area of physics starting from the
description of gases to the description of gravitation in our solar system. It is
impossible to obtain quantitative or even just qualitative results directly from the
underlying microscopic or general theories without any insight on how to simplify
them. For example, in order to describe the behavior of a gas at room temperature,
one will use the thermodynamic variables pressure, temperature and volume rather
than the positions of the molecules which the gas is made of.

Mathematically the derivation of an effective equation implies proving that a
solution of the effective equation is close to a solution of the equation of the complex
system for suitable initial data. The sense in which these solutions are close depends
on the respective descriptions of the system and is determined by a norm or in
general by a suitable functional.

There are many different approaches to derivation of such an effective equation.
One important mathematical approach is to use the large number of microscopic
objects — as in the example of the gas — as a starting point for a statistical analysis
from which one obtains effective equations. Prominent examples of such effective
equations are the Navier-Stokes and Boltzmann equations for classical systems and
the Hartree and Hartree-Fock equations for quantum mechanical systems. A dif-
ferent approach is to identify the vastly different length scales inherent in a system
and to use separation of scales to reduce the number of physically relevant degrees
of freedom. The mathematical techniques used in this context come form adia-
batic theory. The most prominent example for such an effective equation is the
Born-Oppenheimer approximation, where the different masses of the nucleons and
the electrons lead to a separation of scales that can be exploited to derive effective
equations.

In this thesis we study the dynamics of cold Bose gases confined in a trap that
is strongly confining in one or two dimensions. Such a system is described by
N interacting particles, where N ~ 102 — 107 and is thus amenable to a statistical
analysis. At the same time, the strongly confining potential introduces a separation
of scales. These two aspects can be combined to derive effective dynamics for the
system. This system is physically interesting since it has become accessible by
experiments in the last years [GVL', SKCT]. From a mathematical point of view
this system is of interest because one has to adapt the methods used to derive
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effective equations for Bose gases in a way allowing exploitation of the adiabatic
structure of the problem.

In the last decade there has been much progress in obtaining rigorous results for
effective dynamics for cold Bose gases [EY, EESY, ESY2, RS, KP, Pic3, BDOS]
and the references therein. In general, these results state that the time evolution
of the N-particle wave function v; can be approximated by a product go?N , where
¢ is a solution of a nonlinear one-particle Schrédinger equation.

In the case of an additional strong confinement one expects 1 ~ cp;?N still to be
true. However, the particles should be in a stationary state in the confined directions
if the constraining potential is strong enough. Mathematically this implies y; has a
product structure ¢; = ®;y, where y is a time independent function in the confined
directions and the function ®; is expected to solve a nonlinear Schrodinger equation
in the unconfined directions.

The proof of this heuristic idea has recently been given in two papers by Chen
and Holmer [CH1, CH2|. However, they used techniques that make it impossible to
determine the rate of convergence of the approximation 1, ~ (p;?N which is partic-
ularly important for the physical interpretation. In this thesis we offer a derivation
of the approximation i, ~ (p?N that allows us to give explicit error bounds for the
convergence rates in terms of powers of the particle number N and the confinement
strength ¢! of the external potential. In the following we explain the considered
problem in more detail.

The dynamics of a Bose gas of N particles in R? is described by the Schrédinger
equation

10 = Hby (1.1)

for a symmetric complex-valued wave function (w1, -+ ,zy) € L*(R3N). The
Hamiltonian H of such a system is of the form

N N
H = Zhi + ZwN(ﬂﬁi — ),
i=1

1<j

where w : R® — R is a radial symmetric pair interaction. The subscript N denotes
a scaling which will be discussed in detail in Chapter 2. Each operator h; is a
one-particle operator acting only on the coordinate x; defined by

1 -1
Here the external potential e 2V + (s~ 'z+) describes the strong confinement in the

direction xt, where (x”,:cl) = x, and the parameter € < 1 controls the strength
of the confinement.



The effective dynamics that we are looking for are described by the time evolution
of a one-particle wave function ¢;. The function ¢, has a product structure ¢;(x) =
®y(2l)x(xF), where x is the eigenfunction to the smallest eigenvalue of the operator

—Ay e V(e et (1.2)
The function ®; solves
10,®; = (=A, +w® (), (1.3)

where w®* is a nonlinear potential. The exact form of w®* depends on the scaling
of wy and will be explained in Chapter 2.

The goal of this thesis is to justify for suitable initial data g ~ @?N the approx-
imation

iHt ~ AN
€ 1/)0 ~ Spt 9

where the components of ¢; are solutions of (1.2) and (1.3). Hereby one important
aspect is to obtain results for the deviation from this approximation for large but
finite NV and small but nonzero ¢.

To illustrate in which sense this approximation can be expected to hold, let
us consider the case ¢y = cp?N and wy = 0. In this case one directly obtains
P = gp?N . However, in the presence of an interaction potential this will in general
be false, since the interaction will lead to correlations between the particles. Note
that although there are correlations in the wave function v, a symmetric ¥ will stay
symmetric under the time evolution generated by H. As a result of the correlations
the statement ¢, ~ go?N can only hold as an approximation. For systems without
a strongly confining potential the regime and the sense in which this approximation
holds are well understood and are explained in the next chapter. Therefore the first
step of this thesis is to give precise mathematical meaning to the symbol = for the
case of a strongly confined system. For this we will use a method first introduced by
Pickl in [Picl] which focuses on measuring how many correlations have developed
and thus gives quantitative results on how much v; deviates from @?N .

Overview

In Chapter2 we explain the physical models and give a summary of the mathe-
matical results for cold Bose gases. We begin with some historical remarks and
then continue with the definition and results for Bose-Einstein condensation. This
serves as a physical justification for the choice of the special initial state ¥ =~ go%g)N .
At the same time this motivates the mathematical models and objects considered
in this thesis. They are defined in the first part of Chapter3. In the second part
of Chapter 3 we state our main results. In the next chapter we give a short proof
for a toy model which will provide a blueprint for the more technical proofs that
will follow. In Chapter5 we introduce some notation associated with the method
of Pickl. Finally we prove the two main theorems of this thesis in Chapter 6 and 7.






2. Physical Motivation and Overview of
Mathematical Results

In this chapter we explain the physical origin of the examined equations by sum-
marizing known mathematical results for the Bose gas and its dynamics. This
discussion is based on the book of Lieb, Seiringer, Solovej and Yngvason [LSSY]
and we refer to this book for more details.

2.1. Historical Overview of the Study of the Bose Gas

The analysis of the Bose gas goes back to S.N. Bose and A. Einstein. In 1924
Einstein predicted, based on a paper by Bose, that a homogeneous, noninteracting
Bose gas at low temperature would form a new state of matter today known as
Bose-Einstein condensate. This theory was first applied to explain the properties
of liquid helium, which had first been liquefied by Omnes in 1908. However, the
atoms in liquid helium are strongly interacting and it is still a mathematically open
problem to prove Bose-Einstein condensation in a weakly interacting system let
alone in a strongly interacting system.

The first steps to answer this question were taken by Bogoliubov in 1947 in a
semi-rigorous mathematical analysis of Bose-Einstein condensation. In the 1950’s
and 1960’s a renewed interest in the question gave rise to new theoretical insights.
However, there were no substantial advances in the mathematical understanding of
the problem.

Up to the beginning of the 1990’s there was neither significant experimental nor
theoretical nor mathematical progress in this field. This, however, suddenly changed
as experiments with ultracold gases became feasible and the first Bose-Einstein
condensate was obtained in 1995 [AEM™, DMA™] for which Cornell, Wieman and
Ketterle received the Nobel Price in 2001. In the subsequent years this discovery
had a strong impact on the physics community and a huge number of articles were
published.

Since the publication of the paper [LY2] by Lieb and Yngvason at the end of the
90’s there has been steady progress in the mathematical understanding of Bose-
Einstein condensation and in closely related fields as well.

Until today Bose-Einstein condensates have stayed a very active research area in
the branches of experimental, theoretical and mathematical physics.



2. Physical Motivation and Overview of Mathematical Results

2.2. The Mathematical Description of Interacting Bose
Gases

In the following we discuss the mathematical description of an interacting Bose
gas and its condensation. The starting point for the description of N interacting
Bosons in a large box A C R? with volume V = L? is the Hamiltonian

N
hQ
HN:Z—%Ai—f—Zw(xi—xj), (21)
~~

i=1 i<j
=iy

where w is a radial symmetric interaction potential. For an ideal Bose gas we have
w = 0, so the eigenfunctions of Hy are product functions. The system is said to be
in the state of Bose-Einstein condensation if a macroscopic part of the particles has
the same eigenfunction. For an ideal Bose gas in three dimensions Einstein proved
that beyond a critical temperature T, such a behavior indeed occurs. However,
in the case of nonzero w we have to introduce a new notion for Bose-Einstein
condensation since the eigenfunctions of Hy are no longer products of single particle
states. This was first done by Penrose and Onsager in [PO].

Definition. A system described by a wave function 1y € L?2(R3"V) is in the state of
Bose-Einstein condensation if

HWHL(B(R?))) = ¢ (2.2)

in the limit N — oo, L — oo with N/L3 fixed for a ¢ > 0.

Here the operator ¥ is the one-particle density matrix associated with ¢ and it
is defined by its kernel

’yq’z’(x,x') = /’lﬁ(SE,l‘g,"' ,ﬂfN)?/;(x,l??"‘ yxy)dxy - -dzy.

It turns out that proving (2.2) for a system with a Hamiltonian of the form (2.1)
with a genuine interaction w is a complicated problem and only few results exist.
Quoting page 5 of [LSSY]: ”In fact, BEC has, so far, never been proved for many-
body Hamiltonians with genuine interactions — except for one special case: hard
core bosons on a lattice at half-filling [DLS, KLS].” The only results that exist for
a general Hamiltonian of the form (2.1) prove that the Hamiltonian’s ground state
energy has in leading order the structure expected from a Bose-Einstein condensate.
These results are obtained for gases at low density and in the thermodynamic
limit. The proofs can be found in [LSSY] and in references therein. Here the
thermodynamic limit means to consider N Bosons in a box of length L and to let
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N and L tend to infinity with fixed density p = N/L3. The low density limit is
defined by

pPa < 1, (2.3)

where a is the scattering length of the potential w. Roughly speaking the scattering
length captures how the interaction behaves in low-energy interaction processes. For
a detailed explanation see the appendix of [LY3].

2.2.1. The Gross-Pitaevskii Scaling

In the experimental relevant situation of trapped, dilute Bose gases, however, there
exist proofs of Bose-Einstein condensation in an asymptotic limit. In this setting
the Hamiltonian of the system is complemented by the trap potential V'

N
Hy = —pdi+V(z)+ Y w(a; — ;). (2.4)

i=1 i<j

In addition to the scattering length of the interaction potential, the length scale
associated with the ground state energy hw of the one-particle operator —puA + V'
can be introduced. It is standard to define the so-called oscillator length by

h
ap = —_—.
mw
In experiments the number of trapped particles N is of order 10> — 107 and for a
positive scattering length a the ratio a/ag is typically of order 1073, Hence it is
mathematically reasonable to consider, in addition to the limit N — oo, the asymp-
totic of a/ag — 0 for a Hamiltonian of the form (2.4). If we keep the potentials V'
and w fixed, this asymptotic can be implemented in two mathematically equivalent
ways. Either we set V(x) = ag>V (z/ag) or w(z) = a 2w(z/a). Tt is standard to
use the latter and to set the scattering length of w equal to 1 so that

scat (1]}) =aqa.

In this limit the system is described by

N
Hy = —pAi +V(z:) + Y a *w(a™ (2 — 25)) (2.5)
i=1 i<j

for N — oo and a — 0. However, this asymptotic turns out to describe the
behavior of a Bose-Einstein condensate only if Na stays fixed. This fact can be
motivated by the scaling properties of the Gross-Pitaevskii (GP) energy functional.
Following from experimental evidence and theoretical prediction [Pit, Grol, Gro2],
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this functional should describe the ground state energy EQM of the Hamiltonian
(2.5). The Gross-Pitaevskii energy EST (N, a) is defined by

ESP(N,a) i= inf / UV (@) + V(@) (@) + dmpalp(a)'de (2.6)

with the normalization constraint

/ lo|?dz = N.

The Gross-Pitaevskii functional has the following scaling property
EYP(N,a) = NEYF(1, Na).

Since all terms of (2.6) are expected to contribute in the limit N — oo and a — 0,
the scaling property of ESY implies Na = const.

In the article [LSY1] Lieb, Seiringer and Yngvason gave the mathematically pre-
cise relation between EQM and ESP(N,a). They prove that for N — oo and fixed
g=4nNa

lim —EM(N, q) = E°P(g). (2.7)

N—oo

In the same limit Lieb and Seiringer [LS] proved Bose-Einstein condensation
Ty th . |SOGP><90GPH N—oo 0, (2.8)

where pCF is the minimizer of (2.6). Note that this result is stronger than (2.2) and
implies 100% condensation. There is a variety of mathematical ways to describe
100% condensation. We will discuss two of them in detail in Chapter 5 and refer to
[Mic] for a more detailed presentation.

2.3. Connection of GP-Scaling with Mean Field Scaling

In this section we discuss how the GP-scaling is connected with the mean field
scaling. The mean field scaling of a system of N particles is defined by

N
1
=1 i<j

The reason for the name mean field is best explained by a heuristic argument. Let
all N particles be in the same state ¢ which implies that they are all distributed
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like |¢]?. Therefore the interaction potential w at the point z can be approximated
by the mean contribution coming from each particle

N; (@) Z/ (@ — 23l ey

Hence the interaction which one particle feels can in this situation be approximated
by the mean value of one particle.

Now we can explain how the GP-scaling of the Hamiltonian (2.5) can be inter-
preted as a ”singular mean field limit”. For mathematical convenience we neglect
the trap potential, set all physical constants equal to one and set a = N~!. Now
the Hamiltonian (2.5) can be rewritten

Hy = ZA + = ZwN (2.11)

i=1 z<g

where wy (z) := N3w(Nz) converges for N — oo in the weak sense of measures to
a delta function. By formally inserting this in the calculation (2.10) we obtain

(wn * |2 (@) 252 ()

which is except for the wrong constant the appropriate energy given in (2.6).
Now we introduce the parameter 6 € [0, 1] to be able to describe these two scaling
limits in the same framework. We define

wh(x) = N3%w(N%%) (2.12)

and subsequently the corresponding Hamiltonian

HN_ZA +NZ“’N (2.13)

1<j
In addition to the mean field regime # = 0 and the GP-scaling regime 6 = 1 we
obtain a third regime for # € (0,1). These regimes are characterized by the different
one-particle Hamiltonians h that describe the ground state energy and the dynamics
of the N-particle system in the limit N — oco. In all three regimes h has the form

h = —=Ap 4+ w,p. (2.14)

Note that due to the nonlinearity the ground state energy associated with h is
defined by

1
E? = inf (p,(—A+ zw,)p).
llell=1 2
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The question of whether

1
lim NEQM = E¥ (2.15)

N—o0

has been answered in all three regimes.

e For §# = 0 the interaction w, is equal to w * |p|?> as expected due to the
heuristic argument (2.10). The question posed by equation (2.15) was studied
with various assumptions on w in [FSV, BL, LY1, Wer, Sei, GS] and recently
in great generality in [LTR1]. In the last years the question of excitations
close to the the ground state E¥ was considered as well. For this question we
refer to [LTS] and the references therein.

e In the case § € (0,1) the nonlinearity is w, = [p|* [z w. This regime is
referred to as the nonlinear Schréodinger(NLS) limit. The question of (2.15)
has not been considered often in the literature but the results for the case
6 = 1 apply a fortiori. Recently the authors of [LTR2] proved error bounds
for the rate of convergence of (2.15) depending on the value of 6.

e For § = 1 we have w, = 87b|p|> with b = scatt(w) in accordance with
2.6. For completeness’ sake we restate the references for the proof of (2.15)
[LY2, LSY1, LSSY] and for a review [LSSY].

2.4. Dynamics of Bose Gases

For experiments with Bose gases the time evolution plays an important role. Thus
it is natural to consider the evolution which is generated by the Hamiltonian (2.5)
through the Schrodinger equation

i0r = Hve.

One expects that for all # € [0,1] and under the assumption, that the initial state
is a condensate, the system stays close to this condensate under the time evolution
in the sense of

Tr |48 O — (o)) (o (1)]] “3° 0. (2.16)

Here the time evolution of ¢ is generated by the appropriate form of the Hamiltonian
h defined in (2.14). These dynamics can be subdivided in the same three regimes
as above.

e For 0 = 0 the evolution equation is given by
i0rp = (—A+w x|y

and is called the Hartree equation. As in the case of the ground state energy
many different people contributed to the answer of (2.16). The following list
makes no claim to completeness [Spo, EY, RS, KP, Pic4].

10
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e For 6 € (0,1) the evolution equation is given by

i = (—A +/ wdx |<p|2)g0.
RS

The study of this case is often motivated by the desire to gain insights on how
to solve the case # = 1. We refer to [EESY, ESY1, Picl, Pic2] for various
results for these dynamics.

e For § =1 and scatt(w) = b the evolution equation is given by
100 = (—A + 87b|p|*)ep.

This problem was solved under various assumptions in [ESY3, ESY3, Pic3,
BDOS].

2.5. Bose Gases and Strong Confinement

In recent years it has become possible [GVLT, SKC*] to do experiments on cold,
trapped Bose gases that are confined strongly in one or two directions such that
the behavior of the gas can be described by an effective equation in two or one
dimension.

These experiments can be described by the Hamiltonian of equation (2.13) if we
add a strongly confining potential V-+

N
1 c
HYy =Y Ai+e2VEHEetaf) + ~ > wi (@i — ). (2.17)

i=1 i<j

Here the parameter € < 1 describes the strength of the confinement and z are the
coordinates of the strongly confined direction. We use the notation z; = (a:y,xf)
Note that now the scaling of the two-particle interaction w depends on € as well.
For the moment we will neglect this dependence and explain its origin later.

If we were to take € fixed, the results presented in the last two sections for the
ground state, the condensation and the dynamics of (2.13) would hold. However,
the effective theory would still be three-dimensional. This is of course not what
we intend and what the experiments suggest. Mathematically this reflects the fact
that the estimates used to obtain the results of the last sections are not uniform in
¢ and hence can not hold for € — 0.

From a physical point of view the most interesting case of (2.17) is § = 1.
However, to prove the existence of an effective equation for the dynamics generated
by (2.17), in the case § = 1, is a challenging problem which is still open. Thus we
will first discuss the relatively simple case 8 = 0 and then come to the case 6 > 0.

11



2. Physical Motivation and Overview of Mathematical Results

2.5.1. Strong Confinement for the Mean Field Scaling
In the mean field regime 6 = 0 the Hamiltonian (2.17) is given by

N
1
Hy = Z N+ e V(e e + N Zw(mz —xj), (2.18)

i=1 i<j

where there is no dependence of the two-particle interaction w on ¢ in this regime.
The analysis of the dynamics generated by (2.18) for different classes of interac-
tions w and their approximation by effective dynamics is the first part of this thesis.
We will measure the errors of this approximation with a functional defined by Pickl
which is equivalent to using the norm (2.16). To the knowledge of the author this
problem has not been considered before.
The results of this thesis for the mean field scaling are phrased for the Hamiltonian

N
1
Hy = Z —A i+ 572(—A5CZ; + V(&) + N Zw(az” a:lj!,s(a?f — a?j)) (2.19)

-
i=1 i<j

which originates from (2.18) by a coordinate transformation #+ = ezt. This is
done since the analysis of (2.19) is mathematically more convenient than (2.18).
For our analysis we make the assumption that the confining potential V* is a hard
wall potential outside a bounded set - € Q i.e.

Vi(z) =00 VzeQF, (2.20)

where Q€ is the complement of €2 in the direction of the confinement. This is only a
technical assumption to avoid the use of additional energy estimates for the strongly
excited modes in the confined direction.

We obtain our results with the help of a method developed by Pickl in [Picl,
Pic3, KP, Pic4]. These results are phrased for two functionals a and [ that are
explained in detail in Chapter 5. Translated to the trace norm setting of (2.16) our
results are

Tr [y?(t) = lp(O) ()| < CEHINT, (2.21)

where 77 = 1/2 if the interaction w has at most L?-singularities and 1 = % for
interactions w € L® with s € (6/5,2).

A paper related to this subject is [BAMP] in which the interaction potential
w = 4.
potential is described by a 2D/1D Hartree equation. Phrased in the setting of
this work this amounts to taking the limit N — oo first and afterwards doing an
asymptotic expansion in €. This does not describe the physical situation explained

above, where the asymptotics of NV and € must be considered simultaneously.

The authors show that the Hartree equation with a strong confining

12



2.5. Bose Gases and Strong Confinement

2.5.2. Strong Confinement for NLS-scaling and GP-scaling

Now we come to the case § > 0. Here one must be careful in defining a sensible
equivalent to (2.13) in the presence of a strongly confining potential, since now
we consider two asymptotic limits at the same time. The first one comes from
the strongly confining potential which is expressed by the parameter ¢ and the
second one from the derivation of the GP-scaling which was defined with the help
of the parameter a (2.5). To be able to identify the appropriate scaling we write
the Hamiltonian with the parameters €,a,60 in the way they were introduced in
(2.5),(2.12) and (2.17)

N
Hy' =) —Bite?ViETlal) +) ol @i-ap).  (222)
i=1 1<j

To determine a sensible scaling behavior of this Hamiltonian we use the existing
results for its ground state energy. In the case # = 1 and strong confinement in
one direction this result was obtained by Schnee and Yngvason in [SY] and for the
case of a strong confinement in two directions by Lieb, Seiringer and Yngvason in
[LSY2]. They showed that the Gross-Pitaevskii regime is given by N — oo and
a,e — 0 with Na/e fixed in the former case and Na/e? fixed in the latter case. In
this regime they both proved

EM(N,h,a) — Ne ?E+

G
E2]§’/1D(N7g)

lim 1, (2.23)

where E* is the ground state energy of the operator A1 +V+(z+). The parameter
g is a modified coupling parameter defined by

goDp = /x(wL)‘ldxla/e gip = /X(a:L)‘ldea/eQ,

where y(21) is the eigenfunction associated with E*.

Following from the above, the appropriate Hamiltonian which must be considered
in the case of strong confinement in two directions is

N 2
— _ € N _
HY = E A+ e 2V (zte 1)+N g (Ne™2)30w((Ne™) (2 — x5)),
i=1 i<j

where we set a = N~'¢? for mathematical convenience.
The study of the dynamics generated by this Hamiltonian is the second part of
this thesis. Our results are again, as in the case 6§ = 0, phrased for a rescaled

13



2. Physical Motivation and Overview of Mathematical Results

Hamiltonian, where we set &+ = ez and thus obtain

N
Hy=> —A+e (=0 + V(&)

i
=1

L& Z <Na )(xi'—xﬂ,s(i%—ivf)))-

’L<]

As before we assume the condition (2.20) for the confining potential V' in our
proofs.

As in the Mean Field case we use the method of Pickl to obtain our results.
Translated to the trace norm our results imply

Tr |7%(t) = () (p ()| < C(HHNT, (2.24)
where

21)
)-

The rate of convergence is at best of order 1/20. However, it should be possible to
improve this rate by combining ideas introduced in this work with methods used in
[Pic3]. For the proof of equation (2.24) we assume the interaction potential w to
be an element of L*>° with compact support.

460—1 1
1=30 for g e (l
g—18 O 24>

wH M\’

As already mentioned, very recently the same problem was considered by Chen
and Holmer in the case of confinement in one direction [CH1] and for a confinement
in two directions [CH2]. In these articles the authors used the techniques of the
BBGKY hierarchy to derive their results. For 0 < 6 < ¢ and under the assumption
that the interaction potential w is a Schwartz function they showed

Tr [4%(8) = () (e ()] = 0, (2.25)

where ¢ = 2/5 for confinement in one direction and ¢ = 3/7 for the confinement in
two directions. However, a disadvantage of using the BBGKY hierarchy is that it
only provides convergence of the left hand-side of (2.25) but no rate of convergence.

14
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3.1. A Concise Definition of the Mathematical Model

As motivated in the last section we state the mathematical description of the model
analyzed in this thesis. The N-particle system is described by a wave function
Vs, € AN, Here

AN =12 (N, dry - dry)

is the subspace of L2(QY,dr;---dry) consisting of wave functions ¥y (r1,...,7N)
which are symmetric under permutation of their arguments r1,...,ry € . The
parameter ¢ < 1 controls the strength of the confinement and the set Q C R?
encodes the shape of the confinement.

We consider the two cases of confinement in one and two directions. In the
former case Q := R? x [¢,d] with ¢,d € R, ¢ < d and 0 € (c,d). In the latter case
Q := R x  with @ a compact subset of R? with 0 € € and smooth boundary
0. To be able to treat both cases at the same time we introduce the notation
Q= Q¢ x Qe and r = (x,y), where y € Q are the coordinates of the ”confined”
direction and x € )¢ are the coordinates of the ”free” direction.

The equation which governs the behavior of % is the N-particle Schrodinger
equation

10 (t) = Hydn(t)  Wi(0) = W, (3.1)

where the Hamiltonian has the form

N N
H]EV = Z hf + Z WE’H’N(T'Z‘ — Tj).
=1

i<j
Here h$ is a one-particle Hamiltonian h® acting on the coordinate r; defined by
. 1
h®=—-A, — ?Ay +V(t,x,ey),
where V' is a time dependent external potential, A, is the Laplacian on )¢ and A,

is the Dirichlet Laplacian on .. The parameter 6 € [0, 1] controls the range of the
pair interaction W% (r; — r;) which consists of a spherical symmetric function
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3. Mathematical Results

w : R? — R combined with a scaling depending on the parameters. In the case
0 = 0 the interaction is scaled as

1

WeON(ry —rj) 1= Nw((wi —x5),e(yi — yj))- (3.2)
In the case 6 € (0, 1] we have
WE’H’N(TZ- —rj) = a3y (a_e (:UZ —xj,e(y — yj))). (3.3)

The value of a depends on the number of the confined directions. For a confinement
in one direction a = eN~! and in the case of confinement in two directions a =
e2N—L

We denote the one-particle wave function that will approximate W%, by ¢ €
L?(Q). Tt has always a product structure and consists of the two functions y(y)
and ®(z). For all values of 6 the function x is an eigenfunction of the e-dependent
Dirichlet Laplacian e72A,, on .. The function ®(z) lives on 2 and is a solution
of a nonlinear equation. One expects ®(z) to solve the Hartree equation for 6 = 0,
for # € (0,1) the nonlinear Schrodinger equation (NLS) and for # = 1 the Gross-
Pitaevskii (GP) equation. Here the use of the names NLS and GP has physical and
historical reasons since the only difference between both equations is the value of
the constant in front of the nonlinearity.

3.1.1. A Concise Definition of the Functional Comparing 5, with ¢

The functional we will use to determine convergence of U4, to ¢ was introduced by
Pickl in [KP, Pic4]. We give a thoroughly account of them in Chapter 5. Here we
limit ourselves to the mathematical definitions. We will use two different functionals
denoted by a and . The functional « is given by

a(e(t), ¥ () =1 = (p(t), 7"V o(t)) 120, (3-4)

where 4¥~® is the one-particle density matrix of Y% (t). To introduce 5 we first
define the projection operators

pi(t) = o, ri){p(t, 1), Y r2ary  Gt) =1 —pi(t) (3.5)
and
P n(t) == (1) - qe(t)prt1(t) - - PN (L))sym-
Now we can define

k

=i

N
Blet), vi(1) =

k=0

(WN (@), Pen ) Yi (1) L2 (am)
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3.2. Main Results

which can be viewed as a generalization of a®% (t) since written with the projections
PN (t)

N

a(e(t), v5 (1) = WR 0, a )R (D) 2n) = D %<¢§V(t)vPk,N(t)l/}?V(t)>L2(QN)-

k=0

For both « and S we define the shorthands

alp(t), vi(t) =a®N(t)  Ble(t), ¥i(1) = BN (1)

In Section 5.1 we discuss the relationship between o (t) and
Tr [y — [0 (1)) (" (1)
through the inequality
Tr |’y7’z’N(t )] < /8= N(t (3.6)

This inequality holds for 85V (t) as well since a®™ (t) < B&N(t).

3.2. Main Results

3.2.1. The Hartree Case: ¢ =0

In the case 0 = 0 the Hamiltonian which governs v%; takes the form

N N
1
HfV:th—i—NZwE(ri—rj), (3.7)
i=1 1<j
where
we(ry —rj) = w((azZ —xj),e(yi — yj)) (3.8)

For the ease of the presentation we work without an external potential in the one-
particle Hamiltonian

1
hE — _AZ‘ - ?Ay
The nonlinear Hartree equation that governs ®(t) is
10,0(t) = (—Ay + w° x|2(1)|*)2(t)  D(0) = Do,

where w? will be defined in the assumptions below. For an interaction with enough
regularity it can be defined by the restriction of w on (¢ x 0).
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3. Mathematical Results

Let the set {xm}°_, be an orthonormal basis of L?({2.) such that for all m
is an eigenfunction of the Dirichlet Laplacian e 2A on .. Furthermore let the
corresponding eigenvalues E;, fulfill

O<Ej<Ef<E;<---.

The eigenvalues E, satisfy the relation E5, = e 2E,,, where E,, are the eigenvalues
of A on .. We define the one-particle function ¢ by

p(t) = (t)x,

where Y = xm for a m € {0,1,2,...}. We define the set Q := Qs x Q., where
Qe :={y|Jy1,y2 € Qe : y = y1 — y2}. This set is introduced since we will have to

control the norm of the interaction w on LP(2).
Now we state the assumptions on the interaction potential w.

Al Let w = ws + ws such that for all € € (0, 1] there exists a C' € R™ such that
lwill 2@y €€ weoll oo @y < C.

There exists w?,wl : @y — R and a function f(e) : (0,1] — R* with
f(e) 2% 0 such that

Hwi_wguLl(Q) Sf(E) Hwio_w(o]oHLoo(Q) Sf({-:)’

where w(z,y) = wl(z), wl (z,y) = wl (z) for (z,y) € Q and let w? €
LY(Qy), wd, € L>®(§2). For short notation we define

0._,,0 0
W= Wy + Wy

Theorem 1. Let the assumption Al hold, t € [0,00), ¥5(0) € D(Hg) with
15 (O) 2y = 1. ®o € H?(Qy) with ||Pol| 2o,y = 1. Then

0N (1) < 0™V (0) exp(C(1) + (&) + )ep(C) ~ 1), (39)

where
O(t) = A [0 1 gy + Nl ey + 1052y + il

t
x /0 (L + 100 ey + 1B(5) | e )25

Remark 1. 1. The inequality (3.6) together with (3.9) implies for the one-particle
density matrix of 9% the bound

D=

e O = p(0)] < VEexp(oC(0) (T = po)) 4 f0)} + N 4),
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2. The appearance of «(0) in equation (3.9) is not surprising. If the functional
« is large for the initial states ¢(0) and ¢(0) we can not expect « to be small
for later times. From a mathematical standpoint we can take any sequence
Y5 (0) such that a(5(0),¢(0)) NS0 as an initial condition e.g. Y3(0) =
©(0)®N. From a physical standpoint one should take the state 15,(0) to be
the minimizer of the energy, where one adds a suitable trap potential in the

z-direction to the Hamiltonian. The question of a(¢5(0), ¢(0)) %0 for this
state is exactly the question of condensation discussed in Chapter 2. Without
a strongly confining potential this convergence is well known cf. [LTR1] and
references therein. The same question with a strongly confining potential is
to the authors knowledge still open. However, there is no reason to believe

a(5,(0),»(0)) % 0 should not hold for the ground state.

3. If we disregard the convergence rate of a(0) to 0, equation (3.9) does not
put any constraint on € and N. Hence, regardless of the convergence rate of
w® — w?, € can be chosen as a function of NV such that the rate of convergence
is N~ in (3.9).

4. In addition to the hard wall confinement we can add e 2V+(y) for any
bounded potential V1 in the N-particle Hamiltonian. The only difference
in this situation is that then y is an eigenfunction of the operator 6_2(—Ay +
V+(y)) on Q.

5. Beeing able to allow exited states in the confined direction seems quite un-
physical since one expects the excited states in the confined direction to decay
under the time evolution due to the high energy. This seems to be an artifact
of this toy model together with the condition Al on the interaction potential.
Since this artifact vanishes if we relax the condition A1 for the next theorem.

6. Other than in the indirect way in condition A1 the dimension of the confine-
ment does not play any roll in the theorem. For example in the case of a
confinement in one direction the potential w = |r|~9 with ¢ < 1 fulfills Al.
In the case of a confinement in two directions the potential w = |r|~¢ with
g < 1/2 fulfills Al.

7. The set  is only essential for the convergence of w® to w’. To assume

[wil 2y < C'is due to the rotational symmetry equivalent to [|w[| ;2q) < C-

8. The boundedness of [ (t)]| ;0 () and [|®(?)]] o0 () follows from the condition
on ¢(0). This is well known and is discussed in Appendix A.

To be able to formulate a theorem similar to the last one, however with weaker
assumptions on the interaction potential, we introduce the one-particle energies
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E¥(t) and E®(t) defined by

B (1) 1= W/ (0), Hk (D) 2 (310)
and
(1) = (p(0), (— Ba — 5y + 500 5 RO ey (311)

By direct calculation one finds that they are both independent of time, cf. Lemma6.1.
Now we state the assumptions which allow stronger singularities in the pair inter-
action.

Al’ Let w = ws + woo such that for all e € (0,1] there exists a C' € R such that
[will s € Nwiell ey < €

for a s € (s9,2) with sp = %.
There exists w?,wl, : Q; — R and a function f(e) : (0,1] — R* with

f(e) °3% 0 such that

Hwi_wSHLl(Q) Sf(z—:) ngo_wgoHLoo(Q) éf(‘s)a

where w?(z,y) = w?(z), W (z,y) := wl (z) for (z,y) € Q and let w? €
LY(Qy), wd, € L®(Qy).

A2’ Let H5 be self-adjoint with D(H%) € D(X 0, ).

A3’ Let the two-particle interaction w be nonnegative.

Theorem 2. Let the assumptions A1-A3" hold, t € [0,00), ®o € H?(y) with
[P0l 20,y = 1, ¥§(0) € D(Hy) with ||¢J€V(O)||L2(QN) =1 and x = xo, then there
exists a C € Rt depending only on w,w® such that

BN (t) < 87N (0) exp(Cy(t)) + (BY — E¥ + f(e) + N™")(exp(Cy(t)) — 1), (3.12)

where n = 554;6 and

9(t) :/0 (@) 20 + H‘P(tl)HLw(Q))?)dt/-

Remark 2. 1. Similar to Remark 1.1 and as a result of @ < [ equation (3.12)
implies a bound for the one-particle density matrix of 5, with the rate of
convergence given by the square root of the right-hand side of (3.12).

2. (See Remark 1.2) In addition to the condition «(0) — 0 we now also need
EY(0) — E¥(0) for e — 0 and N — oo to hold for the theorem to have any
predictive power. This is for example true if the initial wave function is a
product state given by ¢(0)®", then E¥ — E¥ for ¢ — 0 with the rate f(e).
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3. In addition to the hard wall confinement we can add e 2V=+(y) in the N-
particle Hamiltonian for any bounded potential V. The only difference in

this situation is that then x is an eigenfunction of the operator 6_2(—Ay +
V4 (y)) on Q.

4. If we combine Lemma 7.5.4 with Theorem 2 we can allow external potentials
V € C%(R%,R), where 9,V (t,x,y), 0,V (t,x,y) € Ce(R*) and

VOl oo (r) < C
for all ¢ € [0, 00).

5. The condition on y to be the ground state function in the confined direction
is, as physically expected, now necessary for our proof of (3.12).

6. The boundedness of [[¢(t)| g2(q) and [[¢(¢)[| o (q) follows from the condition
on ¢(0). This is well known and discussed in Appendix A.

7. We can allow the potential to be negative if there exists a constant x € (0, 1),
such that

0< (1 - K)(hl + hz) +wi2.

Example 1 (Coulomb Potential). Let the full pair interaction be the Coulomb
potential

1
wi= —
||
and w® the restriction of w on Qf x 0
w? = .
||

For a confinement in one direction the condition A1’ holds with f(¢) = ¢ and
s =2—09 V6 >0 thus

B(t) < exp(Cyg(t))(Bo + E¥ — E® + £+ N7 7).

This is a generalization of the results in [BAMP]. In this paper the authors consid-
ered the limit ¢ — 0 of the Hartree equation with ﬁ as the interaction potential.
In the case of a confinement in two directions the condition A1’ does not hold for
the Coulomb potential and it is an open questions if the simultaneous limit N — oo
and € — 0 is well defined in this case.
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3.2.2. The NLS Case with a Confinement in Two Directions

In the case # = (0,1) and a confinement of the system in two directions the wave
function % solves the Schrodinger equation with the Hamiltonian

N N
Hy =Y hi+> WoN(r —r)),
i=1 i<j
where
wedN (r; — rj) = (N*152)1*39w((N*1€2)*0((mi —xj),e(y; — y])))
and
1
h* = -Ay — 5 Ay + V(t,7,ey).
€
The one-particle wave function ¢ is as before defined by
o(t) := @(t)xo-

The function xg was defined as the ground state of —5_2Ay on {2.. The function
®(t) is governed by the NLS equation with external potential

10,®(t) = (—Ay + V(t,2,0) + b|@1#)|))®(t)  @(0) = Py,

b= [ [olwa.

To account for the external field V' we modify the functional § slightly. The one-

where

particle energy EY(t) is defined as before in equation (3.10) and the Gross-Pitaevskii
energy E¥(t) is defined in analogy to the Hartree case by

(1) = (p(0), (— Ba = 58y + V(62,00 + BP0 2y (313

Now we can define

FEN(8) = N (1) + BV (t) — B(1)]
and state our assumptions.

B1 Let the interaction potential w be a positive, radial symmetric function with
compact support and w € L>®(R3).
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B2 Let V € C?(R%,R) such that O,V (¢,z,v), 0,V (t,z,y) € Ce(R*) and
IV Ol oo (rey < €
for all t € [0, 00).

B3 Let the energy per particle away from the ground state in the y-direction be
bounded for t = 0:

E
sup N~ (R (0), (HR (0) = N 59 (02 < €

for a C € RT.

Theorem 3. Let the assumptions B1-B3 hold, t € [0,00) let &g € H?*(Q¢) with
1ol 120 = 1, ¥§(0) € D(Hy) with [|5(0)] 2 qny = 1 and x = xo. Let 6 €

(3.3) and (N) = N7 with § < v < & then for all such e(N) there exists a

n >0 and a C € R", which only depends on w, such that
52N (t) < BN(0) exp(Cy(t)) + N7 (exp(Cy(t)) — 1) (3.14)
with
t
g(t) = ’XH%OO(QC)/O (HSD(S)HHZ’(Q)nLoo(Q) +[|Ale() P[] L2 gy 1008l oo )
. 1/2
VO g VN ) ).

Remark 3. 1. The optimal value of 7 is given by

46-1 17

22— forf e (3,55
n(0) = {i’_;‘z " (47 2‘1‘]

iop forfe (515 5)-

However, 7 is at best of order 1/10. Using the same methods as Pickl in [Pic3]
it should be possible to improve this rate.

2. Similar to Remark 1.1 and as a result of a < ﬁN equation (3.14) implies a
bound for the one-particle density matrix of ¥5; with the rate of convergence
given by the square root of the right side of (3.14).

3. (See Remark 1.2) The theorem is only meaningful if
B(0)—=0 for e—=0 and N — ooc. (3.15)

From a mathematical standpoint we can take 1(0) = (0)®V, then (3.15)
holds. Physically 5(0) — 0 represents the question of condensation and was
shown for § = 1 for a confinement in two directions in [LSY2] and for a
confinement in one direction in [SY]. A fortiori these results hold for § € (0, 1)
as well, cf. [LTR2].
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4. The assumptions of Theorem 3 show that the two limits do not commute
in general but have to be taken in the subset defined in the assumptions.
The condition v < 1%029 is necessary for the support of the interaction to
scale in the NLS way and the condition v > 1/2 ensures that due to energy
conservation there are no exited states in the confined direction.

5. In addition to the hard wall confinement we can add e 2V*(y) for any
bounded potential V+ in the N-particle Hamiltonian. The only difference
in this situation is that then y is an eigenfunction of the operator 5_2(—Ay +
VL (y)) on Q.

6. With the help of the methods developed in [Pic3] it should be possible to
extend this result up to # < 2/3 maybe at a cost of v/log N in the exponential.
As Chen and Holmer conjectured in [CH1] for a confinement in one dimension
we expect the above theorem to hold for # € (0,1] with only the condition
v < %5 for § € (0,1/2) and no condition on v for § € [1/2,1].

7. The boundedness of [[¢(s)| g2y () and HA|<p(s)|2HL2(Q) [o(s) |l oo () fol-
lows from the condition on ¢(0). This is well known and discussed in Ap-
pendix A.

3.3. Outline of the Proofs

The proofs of the main results are given in Chapter 4-7. In Chapter 4 we prove
Theorem 1. This proof can be understood as a nontechnical blueprint for the
method used in the following ones. In Chapter 5 we develop the notation associated
with the measure (3, explain this measure in more detail and state inequalities we
often use in proofs. In the two remaining chapters we prove Theorem 2 and Theorem
3.

The general idea of all proofs is straight forward: First we calculate the derivative
of the measure and afterwards we try to bound this derivative by the measure itself
and by terms which turn to zero in the limit. Then the application of the Gronwall
lemma leads to the desired results. This process is depicted in great detail in the
nontechnical case of Theorem 1 in Chapter 4.

3.4. Outlook

There are several interesting questions beyond the scope of this thesis. The most
obvious questions are to prove results for the rate of convergence for 1/3 < 6 <1
in the case of strong confinement in two directions and for 6 € (0,1] in the case
of strong confinement in one direction. Another point is to enlarge the class of
allowed two-particle interactions for the above questions. Furthermore, one could
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3.5. Notation Used for the Proofs

try to improve the rates of convergence, possibly with the help of the methods used
in [BDOS] if they are applicable.

Apart from these questions there are more questions coming from the adiabatic
structure of the problem. Is it possible to obtain higher orders corrections in ¢ like
in adiabatic theory? Can one allow a strongly confining potential which depends
on the coordinates of the free directions?

3.5. Notation Used for the Proofs

We will drop the dependencies on ¢, € and N for better representation whenever
this does not lead to confusion. We abbreviate A < CB by A < B, where the
constant C' depends only on LP-norms of w and the number of confined directions
but never on t,e and N. For a function defined as a sum f = f; + fo we define the
shorthand

1l zpgra = IfillLe + [1f2ll o

and for any function f
1l zraza = [l e + 1 f 1 -
For the scaler product in L?(Q") we define the shorthand
() =z

and for the L2-norm on Q¥ we use

1= [l 22 vy -

We write w;; for w(r; — r;) and hence we write w{, for wg(r; — ;) and wi$ for
Woo (13 — 75). In the case where § = 0 we set for all calculations w(r; — r;) =
0 Vry,r; ¢ Q. This has no impact on the estimated terms since the terms are
always of the form

(¥, w(rs —rj)0)

which only depends on the values of w on the set . We sometimes regard p as a
function on R?® where we set ¢(r) = 0 for r ¢ Q. Where it is convenient we use the
Dirac notation for scalar products in L?(2) and for projections on a function

() (p(r)] = (r)(e(r), ) L2(.ar)-

We denote the Sobolev spaces by W*? and use H* for W*2. The space of the weak
LP-functions is denoted by L%,.
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4. Proof of Theorem1

This following proof can be seen as an illustration of Pickl’s method [KP, Pic4]| for
a model with a strongly confining potential.

The idea is to use a Gronwall argument for «, so the first step is to check that
a € CY(R) and then to control the derivative by terms that either become negligible
in the limit N — co,e — 0 or are bounded by Ca. It turns out that it is best to
calculate the time derivative of « in the form

a = (v, qp)

and then to decompose the derivative of « in terms that can be estimated one by
one. The decomposition is such that the part for which the mean field cancels the
full interaction is separated from the rest. This decomposition will recur in the
proofs of all theorems of this thesis and is essential to the method of Pickl.
Remark 4. To make the representation of the following calculation as clear as pos-
sible we replace the prefactor N~! in front of the interaction in equation (3.1) by
(N —1)~!. Thus the considered N-particle Hamiltonian is

N 1
Hy = th—i—iN_ 1 Zwa(m —rj).
i=1 1<j
This change clarifies the calculations significantly since no extra terms of order

O(N~1) appear in the calculations and at the same time this does not change the
dynamics generated by this Hamiltonian for large N.

We begin with the decomposition of the derivative of a.
Lemma 4.1. Control of the derivative of «

By < T+ 114111,

where
L :=2[{%, p1p2Wiq1p2v)))|
1T 2= 2[(v, prp2Wiaqiq29))|
I := 2|(v, p1a2Wiaq1G20) |
and

Wiy : = wiy — (w” |27 (21). (4.1)
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4. Proof of Theorem 1

In the first term the mean field cancels the full interaction and the term will thus
be small. The second and the third term will be controlled by «. The physically
intuition is that both of these terms are small for a v close to a product state, since
in this case q1q2% is small. However, making this idea rigorous via mathematical
estimates is the main work of the proof. The estimation results are summed up by
the next lemma.

Lemma 4.2. 1.

1< 2f(e)(1+ el (o)) (4.2)
. 1
< 2l o @y poe @y (1 0l poe () (@ + ) (4.3)

L < 200”1 gy ) + 10ty o) L 1] ey + [ [220 o
(4.4)

Finally we state a version of the Gronwall Lemma. Its application is the final
step in the proof of Theorem 1.

Lemma 4.3 (Gronwall). Let the function f : R — R for t € [0,00) satisfy the
inequality

f@) <C@)(f(#) +9),

where C': R — R and § is a real constant. Then fort € [0,00)
£(t) < el OO p(g) 1 (efi Cs _ 1)
Proof of Theorem 1. Lemma 4.1 and Lemma 4.2 lead to the following bound on &
& <Ct)(a+ % + f(g)),
where

C(t) : = 4( HwOHLl(Qf)+L°°(Qf) + ||w€”L2(Q)+L°°(Q))
t
x /0 (1 + 100 ey + 1B(5) e ) 2.

Now the claim follows with Lemma 4.3.
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Proof of the Lemmas

Proof of Lemma 4.1. Recall the definition of «

a:R—10,1],
t= (W), qu (1) (1))
The image of v is [0, 1] since ||¢|| = 1 and ¢(¢) is a orthonormal projection. The func-
tional « is an element of C''(IR) since the scalar product is linear, 1 (t) € C1(R, HY)

and ¢ (t) € CY(R, L(HYN)) which follows from o(t)(p(t),-) € C*(R, L(H)). For the

next calculation we note
01 (0)(p(0): ) 2001 ) = @upO)p(0): ) 1200) + ) Or#0) 0

= —ih®o(t)(p(t), ) r2() + ip(t)(o(t), h®) r2(0),

where h® = —A, +w® x |®(¢)|2. This equation can be written in a more compact
form for the operator ¢(t)

i0q(t) = [h*, q(t)]- (4.5)

With the above remarks we can calculate

Ora = Oy, )
= (b, q¥) + (v, ) + (¥, (Qeq1)v))
i(v, Hvaiv) — (v, o Hvo ) — i(v, [Hoy +Hyy 1))
(v, [Hy, q)v) — (v, [He, +Hy,, 1 ]00)
i((v, [Hy — hg,, q]e)), (4.6)

where we used equation (4.5). Since only the parts of Hy which act on the first
particle do not commute with ¢; we find

(0, [Hn, q]0) = (o, [-Aay — éAyl + Wiy, (i), (4.7)

where we used the symmetry of ¢ to write

1 N
7 D Wi = wia
j=2

Inserting (4 7) in equation (4.6) all one-particle operators vanish since —A, can-
cels and — Ayl commutes with a projection onto one of its eigenfunction and
hence with q1 We are left with

Ao = i({0, Wiy, q1]0)), (4.8)
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4. Proof of Theorem 1

where we recall that W5, is a shorthand for w$, — (w” * |®|?)(z1). The next step is
the decomposition of (4.8) to this end we insert 1 = p; + ¢; on both sides of the
commutator of (4.8) leading to

O = (v, Whav) — i{w, aWip1v) = —23(v, pi Wrq1e))).

Last we insert 1 = (p2 + ¢2) on each side of W,

o = =23((0, prpaWirqupath)) — 230, p1p2Wiaq120)))
— 23, P1eWiaq1 @20 ) — 23, praaWiagipath),

where S«w, pquszqlpgw» = 0 since it is the imaginary part of a self-adjoint
operator p1g2Wi,qip2 under exchange of particle 1 and 2. Taking the absolute
value of the right side proves the lemma. O

Proof of Lemma 4.2.1 . Here we show that the mean field interaction cancels the
full interaction. If we examine poW7i,p2 we find

p2Wiype = p2 (wig —w” * !<I>|2)>p2
= |p(r2)) {@(ro) lw®(r1 — r2) — (w” x [®*) (r1) | (r2)) (0 (r2)]
= o [ wri = ra)lptra)Para = (u” « [0P) ()

= pa((w® — w®) * [pl?) (r1), (4.9)

where we used the fact that (w®*|p|?)(z1) is constant in the y;-direction to rewrite
the term as (w® = |©[|x|?)(r1). If we enter (4.9) in the term I we obtain

I =2[(y, prp2Wiaqip2t)| = 2|(, pip2 ((w® — w°) * |[?) (r1) @)
< 2| || ((w® = w®) * |o]) (r1)pap2ed |
<20 ((w® = w®) * @]*) (r1)[| oo (@) (4.10)

This operator norm can be estimated with the help of Young’s inequality, where
we use supp w® =  and supp ¢ = €1,

0 = ) ]| ey < [l e = 08e) 12 oy + 1005 =) 0
< [lwke = whell ooy + 11605 = W oy P11z )
< FEO+ el (411)
Putting (4.10) and (4.11) together yields

I<2f(e)(1+ ||<P||2Loo(sz))'
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Proof of Lemma 4.2.2 . This term can be bounded by « since with the help of the
symmetry we can figuratively swap a ¢ with a p at a cost of a term which is of
order N~!. Before we swap we have to rewrite the term and then use Lemma 4.4
to swap. First notice that the mean field interaction vanishes since it only acts on
the first coordinate which results in pags = 0.

(v, P2 Wiaq1q29) = (¥, p1p2wisqiq2v)))

sym. 1 al
= N =1) (. pipjwsqg)
=2

1

N
< —— || q;wi;p1p2t
(N -1) jz_; 771

1

44 1 1y2
< at lluiznilop (o + )

1
< [Jwiap1llop (a + N)

4.5 1
<Nl 2@y poe @) (1 + 1@l Lo () (@ + N)

O

Proof of Lemma 4.2.3 . In this term we have enough ¢s to get an « and the norm
of the interaction which remains can be bounded with Lemma 4.5.

(¥, reeWea12) < [Wepillop lla2?l] laraed|

(4'1) 0 2 &
< ([Juw® % |2, + llwfapillop )

45
< ( HwOHLl(Qf)JrLoo(Qf) (1+ H(I)H%m(ﬂf))

10 gy ey (1 + 120 ooy )

< (“wo“Ll(Qf)+Lw(Qf) + HwEHLQ(Q)—i—LW(Q))
(T + Nl poo ) + Hq’H%w(Qf) Jor

Lemma 4.4.

1

N

1 =
> agutpeas| < (V= 1) futpilog (a-+ )
=2
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4. Proof of Theorem 1

Proof.
N 2 N
> quippat| = D (¢, pipjwt g awipipd)
j=2 l,j=2
N N
= (. apipyws wipipg) + > (. pipjwsgwspipi)
I#] j=2

< (N = 1)(N = 2) gzl gt Sp o l1wSapi lop + (V = 1) ot I3,
< (V= 1) wip 3y, (N = 2)a+1)

1
2
< (N = 1)? luipi By, (o + 1 )

N
O
Lemma 4.5. 1.
Hwo * |(I)’2HL°°(Qf) = HWOHLl(Qf)Jer(Qf) (1+ H(I)H%OO(Qf)) (4.12)
2.
lewfapillop < 10 2y ooy (1 0l gy ) (4.13)

Proof. For the proof we use the assumptions on w®, w® and ¢ and Young’s inequal-
ity. The first estimate is obtained by

® 5 1P| ey < [0S # 1@ ey + 05 19| oy
< ngoHLOO(Qf) + HwSHLl(Qf) ||(I)Hi°°(9f)
= HWOHLI(Qf)JrLoo(Qf) (1+ H‘1)”%00(5%))'

The second statement follows with

€ €,8

lwiapillop < lwiy pillo, + llwizpillo, < lwicll e @) + iz pillo,

together with

lwiypillo, = Sup lwizle)(elpll 2oz
p =

(NI

= s (5 )l (WiE 1o (e10) 2o

1
< [l <1621 0

< Nwsll 2@y el oo o -
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Proof of Lemma 4.3. Let g : R — R be a continuous function in [0,7] and differ-
entiable in (0,7") with

g9(t) < C()g(t).
Define G(t) as

G(t) = ofs Cls,

Note that G(t) = C(t)G(t) and &gk = g(0).

9(t)\ _ G — g()G(t) _ Ctg)G(t) — C(t)g(t)G(t) _
“(Gw) =" amr S =0

Thus % < ¢(0) which implies

g(t) < elo C&ds ().
Now let g(t) = f(t) 4+ 6 with g(t) = f(t) < C(t)(f(t) + 0) = C(t)g(t). Hence
F(£) +6 < o €6 £(0) + 6)

and consequently

() < oo OO £(0) 4 (eJo C)ds _ )5,

33






5. Measures of Convergence: o and 3

In this section we discuss the properties of the functionals o and g and how they
relate to Tr |7¢ — |@){¢l|- The functional o and 3 were first introduced by Pickl
in [Picl, KP, Pic3] and the fermionic counterpart to a was recently used by Petrat
and Pickl to derive the mean field for fermions [PP]. In these papers the properties
of the functionals were developed and discussed in detail. Here we represent the
parts needed for a basic understanding and which are necessary for our further
calculations. For a complete presentation we also restate the proofs given by Pickl.
We first state the functional « in the way we defined it in equation (3.4)

a:=1—(0,70) 1200,

where ¢ € L?(Q) and ~¥ is the one-particle density matrix of ¢ € L?(2). The
one-particle density matrix is a positive trace class operator which is defined by its
kernel

fy¢(x'1,x1) = /w(fc'l,...,xN)w(ajl,...,xN)dwz---d:UN.

As seen in the last chapter it is helpful to work with a different representation of
a. To this end we define the following projections.

Definition 1. Let ¢ € L?(Q) with ol 2@ =1
(a) Foralli € {1,..., N} we define

pi=1®--@1@p(ri)(e(ri), )2 @1®---®1

i—1 times N—i times
and
¢ =1—p;.
(b) For any 0 < k < N we define
N
i 1—a;
Py n = <Q1"‘Qkpk+1"‘pN) = Z HQ? J 2R (5.1)

sym .
a;€{0,1}: =1

YL ai=k

where for k < 0 and k > N we set P, v = 0.
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5. Measures of Convergence: « and (8

Part (a) of this definition allows to rewrite a for a symmetric ¢ with [|9| 12 on) =
1 as

N

a=1-(p7Q) 2@ =1- = Z((%pzl/)» =1—(¢,;¥) = (L, qav). (5.2)

=1

The last representation of « is, as seen in the proof of Theorem 1, the most useful
one for calculating the derivative and applying the Gronwall Lemma. With part (b)
of the definition we can rewrite a further which will offer a way to generalize this
functional to apply the approximation scheme of Chapter 4 to stronger singularities
and to the derivation of the Gross-Pitaevskii equation.

Lemma 5.1. (a)

(b)

N
Z qiPe,N = kP N
i—1

The proofs are deferred to the end of this section. If we apply this Lemma to «
for a symmetric ) with L?-norm one

= (¢, ) = ZqZZPkNw = w,Z Punv).
=1 k=0

Now we can interpret « as a counting functional which counts with the weight %
the wave function’s norm in the image of the projections P . For a symmetric
product state one can read off the counting functional’s value: Let gojL € Span o+

and ¢ = (p®VH @ Q') of ), for a k with 0 <k < N then

N
.Y py = £
k=0

The following aspect is far more important: We can generalize the functional if we
use any positive function f(k) as a counting measure

ay = zb,Zf ) Pe ).

It turns out that the function 4/ % is in a sense explained at the end of this section
the optimal weight. Thus we define
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5.1. The Relationship between o« and Density Matrices

N
k
B = (v, kZ:O \/;Pk,Nw»-

Since & < (/% for k € {0,..., N} we have
a<p. (5.3)

Before we collect some facts for the use of o and 8 we discuss the relationship of
these functionals with

Tr |[v% — |o) (el |-

5.1. The Relationship between o« and Density Matrices

It turns out that convergence to zero of the functional « is equivalent to convergence
to zero of

Tr [ = o) (). (5.4)
This is encapsulated in the following lemma.

Lemma. Let 4¥ be a density matriz and ¢ € L? satisfy ||| = 1. Then
a < Tr|y? — o) (gl| < V8a. (5.5)

Proof. We restate the proof given in [PP] for fermions since it offers a nice interpre-
tation of the origin of the different rates of convergence. A proof for the statement
above which covers also a generalization can be found in [KP]. For the proof it is
convenient to define p := |p)(p| and ¢ :=1 — p.

a=1-(p,7%¢) =Tr(p—p") < llpllop, Trlp — 7" = Tr [7¥ — @) (|

For the second ” <” we notice that ¢yq and p—pyp are positive operators; the latter
since v < 1. Now we find

Y =Trlp—pvYp — av'a— av'p — pyVa|

< Trlp—py¥p| + Tr [g7¥q] + Tr [qv¥p| + Tr [pr¥q|
= Tr(p — py¥'p) + Tr(qvYq) + Tr |y’ p| + Tr [y

= 20+ Tr [gv/7%V/79p| + Tr [pv/72 /7]
v v
A R ™

=2a+ 2\/ Tr(qv¥q) Tr (p7¥p)

=2a+2va(l—a) < V8a,

Tr‘p—’y
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5. Measures of Convergence: « and (8

where the last inequality holds since 0 < o < 1 and the fact that the function

2z + 24/z(1 — ) — v/8x is not positive for = € [0, 1]. O

Although convergence to zero in one measure implies convergence to zero in the
other measure the rates of convergence differ in general. The reason for this is
the different treatment of py¥q in (5.4) and a. Since o controls only the diagonal
entries of 4% with respect to p and ¢ the cross terms have to be controlled by the
diagonal terms which is only possible at a the cost of taking the square root.

5.2. Elementary Properties for Working with

In this section we introduce some notation to be able to estimate expressions con-
taining the projections Py n. We also state some estimates which recur often in the

proof of the theorems and we explain why we use the weight 4/ %

Definition 2. (a) For any function f: {0,..., N} — C we define the operator
N
[= f(k) PN
k=0
(b) For any j € Z we define the shift operator on a function by
(i f) (k) = f(k+j),
where we set (7;f)(k) =0 for k+j ¢ {0,...,N}.
The function 4/ % will be used quite often in the proofs thus we define

n:{0,...,N} — [0, 1]
k
k —.
VN
Now we collect some properties of the operator f
Lemma 5.2. (a) For all functions f,g :{0,--- ,N} — C
fog=rfg=9f  fri=pif  fPen=PFcnN/[.

(b) Let f be a nonnegative function {0,...,N} — [0,00) and ¢ € L*(R3N) a
symmetric function, then for j € {1,...,N}

(W, Fagw) = (W, FA*0)
and forie {1,...N}, i #j

—~ N —~
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5.2. Elementary Properties for Working with 3

(¢) For any function f : {0,1,--- N} — C and any operator T acting on two
coordinates 7;, 1 of HN

FQTQr = QTQrr; 1] (5.6)
QiTQLS = T ; FQTQs (5.7)

for Qo = pipj, Q1 € {pigj, aip;}, Q2 := ¢ig;.

The second statement illustrates how the gs fit in the framework of the hatted
operators and the third statement is crucial for the use of general weights. The
reason for this is that the fact [Hy, q1] = O(1) used in equation (4.7) seems at first
untrue for arbitrary operators f. However, with (c) one can show that for suitable
f for example f = \/k/N the commutator [Hy, f] is still of order one.

To simplify the notation in the proofs we formally write n~! for

33
k=0

We will use this to estimate terms of the form Hﬁ_lqlw
we do not divide by 0.
To be able to compute the time derivative of (1, fi) we note:

}, where the ¢ ensures that

Lemma 5.3. Let p € CY(R, L?(2)), then
(a) Vk € {0,...,N}
Pn(t) € CHR, L(HY)).
Let ¢ = Oy, where x is an eigenfunction of —€2Ay on ¢, then
(b)

[_Ayvf] =0

i0.f = [H®, f],
where H® := ZZN he and h?® is the Hamiltonian associated with ®.

The next estimates are needed for the control of the terms emerging from the
derivation of o and 3.

Lemma 5.4. Let f € L*(R3) and p = |¢)(|.
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5. Measures of Convergence: « and (8

(a)
1f()pllop < 111l L2(msy 10l oo m)
(b)
1f(re = r2)pillop < 1f 1 p2msy 1€l oo 3y
(c) Let g € L'(R3).
Iprg(r1 = r2)pillop < 9l s I2lI7oe (ms)

Corollary 5.5. Let A1’ hold for w° and w®.

(a)

[wf 1o llop S (14 [l oo ()
()
2

[p2wiapalop S (1 + llell Lo ()

Lemma 5.6. For alll € N the expression

[(7 = 7m) 1
can be estimated,

(a) if m(k) = % by

~ l
[~ 7] < 5

() if mk) = /% by

|7~ )| <

Now we can explain why the weight \/% is special. On the one hand we will
have to find bounds of the form

(v, p1p2g(r1 — r2)ap2) < C(, fo) + O(N ) (5.8)
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5.3. Remaining Proofs of this Chapter

for suitable functions g. With the tools now developed we can estimate the left
hand side of (5.8) by

(0, D1p2g(r1 — r2)p2ai0) 2 (0, Tihpipag(r1 — ra)h~ qupath)

< [ || o e < o, Foy + ov,

where h is a suitable function. By the scaling behavior this implies

Hﬁ_lqw

| < | 720 + o, (5.9)
On the other hand we will need a bound of the form
|(F = ary]| = o).

If both conditions hold we indeed find that the function f is up to a positive constant

determined and given by
Ik
f=1—=.

We formulate this in the following lemma.

Lemma 5.7. If for a monotone function f :{0,...,N} — R with f(0) =0
H (f - E?)qﬂ/}H =O(N"Y) (5.10)
holds and 3h : {0,..., N} — R such that

i

H?flqw

by < || 772 (5.11)
holds, then up to a positive constant

k
-

The two properties (5.8) and (5.9) will be crucial in the proofs of Theorem 2 and
Theorem 3 thus we have to use the counting functional 8 to proof them with the
used method.

5.3. Remaining Proofs of this Chapter

Proof of Lemma 5.1. (a) This follows from the fact that ¢; + p; = 1.
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5. Measures of Convergence: « and (8

(b)

N N N
Yg=> a4 ZPkN ZZQij,N
=1 i=1 k=0 k=0 j=1

N N

:ZZ > Hngz pi

a; l—a;

vaﬂli:k %a 1% P

N
Sk Y Il

k=0 a;€{0,1}: i=1
Ef\il a;=k

N
=> kPyy

Proof of Lemma 5.2. (a) Using the definitions

F5=Y"tR)PN> 9PN =Y f(k)g(l) PunPin = fg =37
Zk: kNZl: LN %l: ENLI N

0,1 P, N

(b) The equality follows from symmetry of f¢ and Lemma 5.1(b).
For the proof of the inequality let without loss of generality i = 1,7 = 2:

W, faaw) = f (W, FY_ aa0)

i#]
1
< N(N_l)wvf%:%q]‘w
N o
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5.3. Remaining Proofs of this Chapter

N N
fO.TQ, = NP, NOTQ, = D) P_in_o QT
1Q;TQx ;m ' NQ;TQx gf() N2 QiTQy

onlyonx3..zxn

N

=3 QiTQrf()P_jn—2
=0
N+k—j

= Y QTQrf(I+j— k)P -2
I=k—j
N+k—j

= Z QiTQr(Ti—rf)() PN

I=k—j

N
=Y QTQi(rj k()P = QT QiTj 1]

=0

The converse direction follows in the same way.
O

Proof of Lemma 5.3. (a) This follows from the fact that for ¢ € C*(R, L3()) the
operator

o) {p(t), ) 20
is an element of C*(R, L(H)).

(b) This is the fact that an eigenfunction of an operator computes with this oper-
ator.

(c) Using i0;p;(t) = [hE, pi(t)], 10:qi(t) = [hE, ¢i(t)] and the product rule we get

N N
i0.f =10, > fk)Pon =Y f(R)iD > qu ipy %
k=0 k=0

a;€{0,1}: i=1
valai—k
N N
=> fBD_RE D qu pi %
k=0 =1 a;€{0,1}: i=1
S ai=k
N N
=D o> fR) D qu py
=1 k=0 a;€{0,1}: =1
YLiai=k
= [Hq),f]
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5. Measures of Convergence: « and (8

Proof of Lemma 5.4. (a) For any f € L?(R3)

15l = sup (.1 £ 10} e

= s (Vo) el el (o)

= (o)l Fra (i) sy e (4 lora) (ot

= ((r)|f (r1)?e(r1)) L2 (rs) IISIIE (¥, 1Y) 12(r3)-

L2 ()

L2(R3)

Using the Holder inequality for the first term and the fact that p; is a projection
we find

£ (r)p1llSp < llellzoe ey 1172 (ge) i 1172 @ey = Il Zo0 ey 1122 -

(v
£ (ri = r2)p1ldy = Sup, <¢ puf(r1 —r2) P1¢>L2 ®)
= s (eI 01 = r ) (P
= sup (eI = o))
< sup [l 7o) (@ ()£ (r1 = 72)* 1)) || o oy

Ili=1
= [[lel * 2| oo sy < Nl e ) 117209

(c) For any g € L?(R3)
[p19(r1 = r2)p1llo, = Sup [P19(r1 = 72)P1 | L2(Ro)
=1
= sup |lle(r))(e(r)lg(re = r2)[e(r)) (e (r) ]l 2 rs)

ll¥ll=1

= S (o (r)lg(r1 = r2)le () e (r)) (e (rO) Wl 2 goy

< Ke(rolg(re = r2)le(ri)l oo sy P 1P19[] 22 (o)

= H’SOP * gHLoo(RB) < H‘PH%"O(]}@) HgHLl(R?’) :
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5.3. Remaining Proofs of this Chapter

Proof of Corollary 5.5 . (a) With Young’s inequality and LP interpolation for ¢ we
get

[ = [l o < llws * 101 | oo sy + 11050 * 17| oo sy
< 0 ety 02—y + ool e e
A1’

S+ HSOHLOO(Q))2-

||p2w§2p2||op < ng * |902|HLoo R3) S+ HS0||L°°(Q))2
The first inequality follows from the proof of Lemmab5.4(c) and the second
inequality is part (a) of this corollary.
O
Proof of Lemma 5.6. We calculate

N
k
H( —Tlm qle \I’,Z ( k+l)> Pk,Nw»‘
k=1
(a) The difference of the weights squared is ]@—22 hence the result follows
(b) The difference of the weights squared is

VE-VETT) 2 2
- _

S -
(VE+Vk+1)2N ~ kN
Multiplying this with the remaining term

(5.12)

~ gives the desired result
O
Proof of Lemma 5.7 . Equation (5.10) implies with (5.12) the condition
(f(k) = f(k=1))* < (NK)™! (5.13)
and equation (5.11) with the Lemma 5.2 the condition

3h>0:h(k)? <

The first condition implies f(k) £ and the second one (/& < f(k) thus
the claim follows. The second implication follows by contradiction
implication we rewrite (5.13) as

. For the first

F(k) S (NE)TV2 4+ f(k - 1).
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5. Measures of Convergence: « and (8

This leads to
k k
< “1/2 9, [ 2
CEPICCREENS-

since f(0) = 0 and by estimating the sum by the integral of I='/2 on the interval
[0, k].
O
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6. Proof of Theorem 2

For stronger singularities it is clear that the method used in the proof of Theorem 1
has to be adopted since there we control

[wiapillop

by Lemma 5.4(b). This is only possible for w® € L?(R?). The main idea how to
treat the stronger singularities will be the introduction of a vector field £ which is
chosen such that V& = w. This vector field will have higher L? regularity then w
and hence we will be able to control

1€1201 [l

with Lemma 5.4(b). However, we can only make use of such an estimate after
partial integration which in turn means that we need to control Vp and Vq. For
the first term this is no problem since we have enough regularity since p is a solution
of a one-particle equation. For the second term we have to invest some effort but
with the help of energy conservation we are able to bound this term as well. Other
than this the proof uses the same ideas as in Chapter 4. We organize the proof by
showing the smallness of || Vqy¢||® first in a separate section. Afterwards we bound
the derivative of 8 in the following section.

6.1. The Energy Lemma

This section is devoted to finding a bound for ||[Vqi9|/*>. The main ingredients for
the proof are energy conservation, refining the weights and writing the interaction
as a divergence of a vector field.

We first recall the definitions and the assumptions which are necessary for the
formulation and prove of the Energy Lemma. Thereafter we state the lemma and
give a motivation and an outline of the proof. The last part of this section are some
auxiliary lemmas which prove the Energy Lemma and will be used again to prove
the smallness of B in the next section.

6.1.1. Assumptions, Definitions and Preliminaries

For convenience we restate the assumptions of Theorem 2.
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6. Proof of Theorem 2

Al’ Let w = ws + woo such that for all e € (0,1] there exists a C' € R such that
||w§”Ls(Q) <C HwooHLOO @ =C

for a s € (6/5,2). And there exist w¥,wd : Oy — R and a function f(e) :
(0,1] = RT with f(c) "=’ 0 such that

s = wdl gy < F&) ke = wlel ooy < f()
and w? € L1(Q), wd, € L>®(£). For short notation we define

w’ = w? 4+ wl. (6.1)

A2’ Let H5 be self-adjoint with D(H%) € D(3 N, ).
A3’ Let the two-particle interaction w be nonnegative.

Remark 5. The condition A3’ can be replaced by a weaker condition. Let the one-
particle Hamiltonian A be such that the potential energy can be bounded by a part
of the kinetic energy: There exists a constant x € (0,1) such that

0< (1 — K])(hl + hz) + wiQ.

As defined in equation 3.10 and 3.11 the energy per particle E¥(t) of v is

1
E¥(t) := ~ (N (@), Hy v (1)
and the energy E¥(t) of the function ¢ is

1

BR) = ((0), (= Ao — 58y + 5 (0 [2()P)) o(0) 2o

2
= (@(t), (~ Aa + 50" = [BOP) B(B) 120y + (6 5 X120

If we use symmetry of ¢ we can rewrite EV as

B¥ = (W, Hy ) = 1 (W Y- S8+ 5 S uE)x)
= (o, BN ) + 5 (N — Do, wyton)

22

= (0w B ) + L (v, wip).

2N
Lemma 6.1. Both E¥(t) and E¥(t) are constant in time:

d d
—E¥(t —E®(t .
dt (#)=0 dt (t) =0
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6.1. The Energy Lemma

Proof. This is proven by the calculation

D BU(0) = - (IR VR (0, BRUR (D) + (05 (1), —HR 0 (1)) = 0

and
d d 1
aEd)(t) = a@(t% (- Az + 5(100 * "I’(t)fz))q’(t»m(gf)
+ O~ A D)2
= (@), 11, A (0« [R(O)]P) 120
+-§< (£), [0, (" * [ 2()*)] @ (1)) 120
= 1(@(t), [h?, —Ag + (W * |2()|})](1)) £2(0y)
= 1(@(t), [h*, A%)@ (1)) 12(0y) = 0,
where we introduced h® := —A, + w® * |®|? for short notation. O

As a reminder the ground state energy of —A, on €. was denoted by Ej.

Lemma 6.2. The operator

~ 1 Ey
h = —Ax — ? y 572
s a positive self-adjoint operator with
~A<h+E
and
], < 1821520, (6.2)

Proof. The first statement follows from A — Ey < h. The second one is derived as
Lemma 5.4 together with

(o, E280>L2(Q) = HA@HL%Qf),

where we used (5% y — B)x(y) = 0. O

2

6.1.2. The Energy Estimate and its Proof
Lemma 6.3 (Energy Lemma). Let the assumptions A1-A3’ hold, then

1
IV ¥ |? S (BY — E?) + ”80||H2(Q L) (B + Vo + f(€)).
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6. Proof of Theorem 2

The way we prove this is to first use Lemma 6.2 which implies

2
1109l < ‘ BB, (63)

We find with ¢ = 1 — p1(p2 + ¢2) and equation (6.2) that

Viva| < |Vin = pmys | + 1801120, V5 (6.4

this implies

+[|A®| 720, B (6.5)

’\/iqw

hence we try to find a bound for ’

2 2
< H\/f;(l — p1p2) Y

- 2
Vhi(1 —ppo)wH to bound ||V1q1¢||®>. The
necessary estimate is given in the next lemma.

Lemma 6.4.
1
VN

1
el @nr=@ /8 + 5 IViadl

(1, (1 = p1p2)ha (1 = pip2)yp) S (BY — E?) + ”@H?‘IQ(Q)ﬂLOO(Q) (B+ + f(e))

Proof of the Energy Lemma. After rewriting the left-hand side of Lemma6.4 we

find
2
- 1
Vs = pmme| £ (B = B9+ ol 8+ + 16
1
Hllellra@nree) \[ 8 + 5 V@] (6.6)
This leads to
- 2 (6.5) - 2
H\/ hmav| < [V =pip2)e| + 19520, 8
€8 v 2 1
S (BY = E?) + el mz@)nne@) (B + N + f(e))
1
el a@nree(e) \[ B+ 5 IVia]
€2 v 1
S (BY = E?) + |1l @ni=@) B+ —= TN + f(e))

el i \ B+ = H\f qle 6.7)
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6.1. The Energy Lemma

Now we have an inequality of the form 22 < C(R + ax) from which follows that
2 < 2CR + C?a? since Cax < %C'Qa2 + %a:Q. Applying this estimate to (6.7) we

find
H\/iqm

and equation (6.3) yields

2

1
S (BY = E) + ||l iynpe(a) (B + N + f(€))

IVia19l® S (BY = B?) + el @nr(a) (6 + —= + f(€))

-

which is exactly the claim of Lemma 6.3. O

Proof of Lemma 6.4

The remaining part of this chapter is devoted to proving Lemma6.4. To keep the
notation to a minimum we do not write, whenever it does not lead to confusion,
the underlying sets of the function spaces and write ||| and (-,-) for the L%norm
and scalar product on the appropriate set. As an example

1@ = H(I)HLQ(Qf) el enpe = HQDHHQ(Q)HLOO(Q) o x) = <X7X>L2(Qo)'

Proof of Lemma 6.4 . The estimate of (¢, (1 — plpg)ﬁl(l — p1p2)¥) is obtained by
rewriting the expression in terms of the energy difference E¥ — E¥ and the remaining
parts. Since

EY — E¥ = (4, (p1p2 + 1 — p1p2)ha(p1pa + 1 — pip2)ib)
N1
2N
1 1 0 9
— (o, Ay — 5*Q(Ay + E)p) — (2, §(w * |®]) D)

(1, (P1p2 + 1 — p1p2)wis(p1p2 + 1 — p1p2)i)

After expanding the terms in the first row, isolating the term (%, (1 — p1p2)h1(1 —
p1p2)Y) and subsequently arranging the terms in a convenient we find

(v, (1 — pp2)ha (1 — p1p2)¥)
— Y _ ¢

— (w ppahppat) + (9, — 0 — 5 (By + E)9)
— (0. (1 = prp2)apipat) — (6, pipofa (1 = pra)is)

_ %«%Pﬂhwﬁplmd}» + (@, %(wo « [D2)®)
N-—-1 ) _ N1 .
— 5 (& (0 = pip2)wispip2th) — == (4, prp2wia(1 — pip2) )
N %«d), (1 — prp2)wiy(1 — pipa)t). (6.8)
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6. Proof of Theorem 2

After estimating the terms line by line we will obtain

(%, (1 — p1p2)ha (1 — p1p2)eh)

< (50— 2
+ @[5 B
1
+ || g2 (B + ﬁ)

(L el )28 + 75+ £(0))

1 1
+ el (8 + §) T At llele)y/ B+ 5 [IViay]. (6.9)
A finale simplification leads to the claimed result

(. (1 = p1p2)ha (1 — p1p2)e)

1
S(BY — E?) + [ll3r2nre (8 +

VN

1
+ el p2nze /B + N IVig1v]l -

+ f(€))

We prove the estimates that lead from equation (6.8) to (6.9) line by line. We do
not have to estimate the first line.

Line 2.

(o, i) — (0, prpahapipa)| = (. h1) — (0, ha@) (), prpat))]
= (¢, h@)|{(¥, (1 — p1p2)ih))|
= (D, —A,®)[(¥, (p1g2 + q1p2 + q142) V)|

(5.2) (5.3)
<3|®lpa S |10l 8

Line 3. The term

— (@, (1 — p1p2)up1pav) — (¥, pro2ha (1 — pip2)h)

is bounded in absolute value by
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6.1. The Energy Lemma

2%, (q1 + prg2)hapip2t))|
= 2|((%, qrhap1p2v)
2|

1 1=
(v, an 202 hipip2v))|

2, (1 — pip2) upipat )| =

ot
o

22 9| (b, uA 2 T FIRE prpath)|

< 2/ A ) (o, pupaT 3T pr )
22/, w0/ (g, h2o) /(. 7))

o B8l x /70

5.2 1
< 2v/B (1@l 4B+

VN
1
Sl (B + ﬁ) (6.10)
Line 4.
(@, 50 = [BP)2) = 2 (0, prpawlopipav)
191

S0 (005 o)) — (14 ), * [2)e) (6, prpa)
;Hso, (w” * |of? = w x o[*)p)| + %Im (w® *|e*)e) (¥, (1 = prp2)¥)|
+ il (0 % o)) pipa)

< [0 l? = # )|+ 5 o # o B+ )

5.5,A1' 1 5 1
S lllZanse (B+ 5 + 7€) = (1 + @l 1) (B + 5 + £(€)

Line 5. This line is bounded in absolute value by

[, prp2wis(1 — p1p2)Y)| = [, p1p2wis(qipe + P1a2 + q1q2) V)|
< 2[(¥, prpawisqip2p )| + [, prpewisqigay))

(6.11)
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6. Proof of Theorem 2

The first term is bounded by

— =~

1.1
[, prp2wiaqipay))| = [(¥, prp2wisn™ 2n2qipay)))|

5.2 11
= (¥, pr1p2Tinzwisn” 2qipat)))|

—1 ~_1
< llpzwSapallop |72 v | |2 ary |
5.2
< HpQwiQp?”Op \/<w77_1n¢> \/¢7m/1>

1
< [[p2wisp2llop (B + ﬁ)

5.5 1

<+ llello)* (B + Vi

Remark 6. As already mentioned at the end of Section 5.2 the estimation of this
term leads to the condition (5.8) and is thus the main reason why we need to use

).

B for stronger singularities.

The second term of equation (6.11) demands a more elaborate proof and is thus
treated separately in Lemma6.7.
Line 6. If assumption A3’ holds the interaction is nonnegative and we obtain

N-1
2N

(@, (1 = prp2)wis(1 — prpa)y) < 0.

In the case Remark 5 holds we can use the appropriate fraction of the kinetic energy
from the left-hand side of equation (6.8) to control this term

N -1

S (0, (@ =pip2)wir(1 = pip2)v) — (1 = w){¥, (1 — p1p2) (1 — p1p2)ib) < 0.

The only thing changed by this is the addition of the negligible constant £~! in
front of all terms of the right-hand side of equation (6.8). O

The following lemmas are necessary to provide the final bound for

(1, P1P2wisq1G29 )|

Since we need similar arguments in the estimations of the derivatives of 5 we give
a detailed account of the used techniques.

Lemma 6.5 (Writing a L® function as divergence of a vector field). Let D be a
domain of R with d > 3 and smooth boundary, f € L*(D) and

D(z) = ((d—2)[s%)) |z,

then

£(x) = /D V(- y)f(y)dy
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6.1. The Energy Lemma

is a well-defined function on D and solves

VE=f. (6.12)
Furthermore € € W45(D) and
H|€H’LG(D) < C(d,p) HfHLs(D) ) (6.13)
where % = % — é.

Proof. The fact that ¢ is well-defined and equation (6.12) follows directly from
Poisson’s equation for distributions e.g. Theorem 6.21 in [LL]. The fact that
¢ € WH5(D) follows e.g. from Theorem 9.9 and the remark at the end of its proof
in [GT]. Equation (6.13) is a result of the Generalized Young inequality and

19Tl <0H| = <cw
with r = %. Since
el oy < H 1] H Flen: < O £
La(D) | ’d ! L1(D) |95’d ! L7, (R3) L2(D) L)
With%:%+%—1:%—$for1<q,s<oo. O

Corollary 6.6. Let Al hold for w®* and define £ as the vector field from Lemma 6.5
= / VI (r —ry)w**(ry)dr,
Q
then

0P * €| sy S (1 + el o) (6.14)

Proof.

2. 2 5<5 2
o # &[] o 0y S 11671
(613
S w0l oy (1 + 1l g (@)
AY
s +||<P||LOO(Q))

@y 1+ lloll oo Q))2 < |H§|||%q(g) (1+ H‘P”LOO(Q))2

with 1/(2r) =1/g=1/s —1/3. O

Now we can estimate the second term of (6.11). This is done in the next lemma.
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6. Proof of Theorem 2

Lemma 6.7.

1 1
(¥, p1p2wlaa129)| S el inpree (B4 ) + A+ llellz)y /B + 7 Vi

Proof. First we write w® = w** 4 w*?®. This splitting gives two terms

< (v, prp2wiy g2 )| + [, ppawis uep )|, (6.15)

where the first can be estimated directly

|, pLp2wiaqiaav)

(4, prp2wTy a2t )| = (W, proawTy "R quaae) )|

ot
[\

= (4, prpamanwly i tqi1gath))|

< NS5l oo /(0 om0 B, P21 0]

5.2 2 N
2 il o+ oo

For the second term of (6.15) we use Lemma 6.5 and write w$ as the divergence of
a vector field £ and estimate this with the help of Corollary 6.6. For the following
estimates we suppress the e-dependents for better readability.

(4, prp2wiaqrqev )| = (¥, proawioni ™ qigar)))]
22 | (0, prpaTanwiyni qrga))|
& (0, prp2man(VEE ) 120 g,

where we sum over v = 1,2,3. Now we integrate by parts which is possible since
£ € WHs(Q), pipamanyy € HE(Q) and 7 1q1q2¢) € HE(Q). This also implies that
there are no boundary terms.
(@, prpaman(ViE) 120 qugeb)| < [(Vip1pemany, 5n™ ' q1gav))|
+ [(prpem2ane), €5,V q1g2)| (6.16)

The first term can be estimated by

[N

(€72 (Vip1)pamany, i qraew )| < ((Vip1)72my, pa€ly€iopa (Vip1)Tome)
b A 7
< [ qugay)| - (6.17)
A formal way to deal with this is to define .7 := L?(R3N) @ L2(R3V) @ L2(R3V).
So the first part is

1 1
(n, Am) % < lnllz 1Az #) -
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6.1. The Energy Lemma

Here
(6.18)

1Al 27y = (lel® % €2) (1) o
since an operator of the form vv!, where v is a vector, has the operator norm v?

and the entries of A are |¢|? * £&;. The vector 7 has the norm

3

171% = (s m)

uzl -
:;/Qvlkp(r)v"cp(r) dr (Tone, p1rany))

= IVl [l * (6.19)

The right-hand side of (6.17) can be bounded with the help of equation (6.18) and
(6.19) by
1 1
(n, An) % Hﬁ_lqmﬂbH < H|<P|2 * fQHEO Vel 2 m2nd|| Hﬁ_lqwﬂ/)H
5.2 1 2
S el )2 1Vl 2 /o + Ve

(6.14) 1
S el ginpe (B + N)'

Now there is only the second term of (6.16) left to be estimated. We claim that

[(p1pemant), VIR  quge)| = |(Eaprpamanty, ViR~ qrget))
n K

< [l Il

1
S+ plyfat + IViawl. (6.20)

This holds since
Inll* = (727, prpa&ioprpaTanieh)
4.9), —
WOz, pr (1l * €2) (21 )prparorivh)
< |lll? « €3] Iz
(6.14) ) 1
S (gl *(a+ ) (6.21)

and k is estimated by introducing 1 = p; + ¢1 to use Lemma5.2. We only present
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6. Proof of Theorem 2

the calculation for px; ¢1x follows in the same manner.

— 2 5.2 — 2
Ipisl?® = [ ViR || = HP1QQT171_1V1(11¢H

< ((Vl{f}lw,%ﬁn*zvlqu»

(<VVQ1¢7 qun Viay)

< {(Via, 5— Z%Tln Niqp)

=y TW%N 22V 1)
SAVIiay, Viay)
S Vg |? (6.22)
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6.2. Controlling the Derivative of 3

6.2. Controlling the Derivative of

We use the same basic idea as for the proof of Theorem 1. We start again by
calculating the derivative of the functional.

Lemma 6.8.
d
| — 5] < 2|1 4 2[11| + |I11],
dt
where

L:= (9, pip2[(N — 1wy — Nw{ — Nw3, n]p1ga1)))
IT:= (¢, p1g2[(N — Dwiy — Nwi — Nwy, ]q1q2¢)
T := (¢, p1p2[(N — Dwiy — Nwf — Nw§, nlqig29)

with wf := (WO x |]?)(r;) = (W° * (|21|x|*))(ri) = (w° x |®|?)(x:).

Since we now use the weight \/% in contrast to % the terms I — III now look a
bit different than in Theorem 1 but are essentially the same. It is more important

we can estimate them in a similar way.

Lemma 6.9. 1.

1S (76 + 30 Iy (6.2
2.
I S lell 2@z (B + IV1a9]?) (6.24)
3.
] S ol @nnee @) (B + N + 1@l IV 10191, (6.25)
where n = 7285//8300_—13 = —556,

The estimation of the term III is the most laborious out of the three terms. It
can be shortened substantially if an additional assumption on w*® holds.

Lemma 6.10. Let
el @y < F) (6.26)
for av € (2,00), then

1] S (14 [l oo )28 + NV2 ()2 4 N7112). (6.27)
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6. Proof of Theorem 2

Remark 7. Lemma6.10 is only meaningful if € can be chosen to depend on N such
that N—1/2f(g(N))? N=ee ., Although the rate of convergence of the estimate
(6.27) is always equal or slower than the rate in (6.25) we state its proof since it
is a byproduct of the proof of Lemma6.9.3 and it illustrates the used techniques
nicely.

Example 2. For the Coulomb interaction with confinement in one direction the
additional assumption required for Lemma 6.27 holds if ¢ is chosen to depend on N
as any negative power since

<loge™t.

1
Hm

L2(Q)+L>(Q)

For the calculation of this rate see Appendix B.

Proof of Theorem 2. If we combine Lemma6.9 with the Energy Lemma we can
bound S by

B S lelliz@nr=(o) (BY = E + 8+ f(e) + N").

Now the Gronwall Lemma 4.3 yields the claimed result. O

For the rest of this chapter we do not write the underlying sets of the function
spaces and write ||-|| and (-, -) for the L?-norm and scalar product on the appropriate
set.

Proof of Lemma 6.8. Because of Lemma5.3 8 € C1(R,R). Thus we can calculate

0,8 = O ) 2 iy, [Hy — H®, Aly)
i, [y Sug - Y wf )

= L0, [V — D, — Nuf — Nug, 7])
= %<<¢a (p1+q1)(p2 + @2)[(N — Dwiy — Nwi — Nws , n](p1 + ¢1)(p2 + q2)¢).

As a result of the Lemma 5.2(c) all terms with the same number of p and ¢ on each
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6.2. Controlling the Derivative of 3

side of the commutator vanish. Therefore we find
i P
§<<¢> (p1+@1) (P2 + @) (N = Dwiy — Nwi — Nws, n](p1 + q1)(p2 + q2)9)

1 PR
= §<<¢,P1p2[(N — Dwiy — Nwi — Nw§, nl(p1g2 + q1p2 + q1q2)v)

+ %((%Z), (P1a2 + qp2) (N — Dwiy — Nwf — Nws, 2] (pip2 + q1¢2))

1 R
+ 5«% 01¢2[(N — Dwi, — Nw{ — Nws, 2] (pip2 + q1p2 + p1¢2)¥)

i, pip2((N — Dwiy — Nof — Nwf, filpigav) + c.c.
+i(, prgo[(N = Dwiy — Nuf — Nwg, ilqugy) + c.c.

1 ~
+ §<<¢,p1pz[(N — wiy, — Nw{ — Nwg , nqig20) + c.c.

=il +cc +ill +c.c. + %IH + c.c.

= =231 — 2S1T — 111

O
Proof of Lemma 6.9.1. In this term the mean filed cancels the full interaction
1 = (a6, prpal(N — L)y — N, Alprgasd)
O, prpal(V — 1) * [p]2)(r2) — N(w® 5 [9[2) (r2), Alaid)
2|, proa(N = 1)((wF #[p)(r2) = N+ o) (r2) ) (7 = Tim)aztr) .
If we define
pi=Nn-71n)=VNWVk-Vk—-1)= VN VN (6.28)

VE+VE—1 = vE

we can write |I| as
P (N — 1) (0 % o) (r2) — N(w® x o) r2) ) gt
< (" % ol? = w® w o], + 37 10" * 0P, ) VT P02

< (= ol =« o) + 5 0" * 0P, ) VA 20260

5.5,A1' 1 9
S (f(e) + N) lell2nze -
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6. Proof of Theorem 2

]
Proof of Lemma 6.9.2.
| = (¢, p1g2[(N — Dwiy — Nwi — Nwf, i]qig2¢)
= (v, p1g2[(N — Dwi, — Nwi, n]qiga)|
< (¥, p1@2[(N — Dwiy, Algrge)| + [(, prga[NwT, 2]q1g29 )| (6.29)
The second term of (6.29) can be estimated by
(@, praaINw, Alarga )| 2|, prof N (@ - 7in)aga0)|
2| (g2, 1w Tigr g2
< a2l [w?ll o V{1, P arg22b)
5.2,5.5
S el p2npe o (6.30)

The first term of (6.29) is controlled by

[0, p1@2[(N = Dwis, nlq1g2¥)| < [, prgewiafiqr o))
(¥, praz(wiy + wiy ") fig1g20)]
|

< (0, prewid g2 )| + |, praowiy  Harge)|-
(6.31)

The second summand of (6.31) can be estimated by

5.2 AL
(v, 12wy g1 )| < 2[|w™> | o S o (6.32)

For the first summand of (6.31) we use the idea of writing w as a divergence of a
vector field as introduced in Lemma6.5 and estimate the terms as in Lemma6.7.
To be in the exact same setting as in Lemma 6.5 we changed the labeling of particle
1 and 2.

(4, poqrwis Tig1g20)| %2 (4, p2ar (VEE)12figr g2 )]
LUV 1, poafigr ) + (6, 2 VY Air g (6.33)

The first term of the sum (6.33) is smaller than

|(&Top2 Vi, Bgige))| < \/(<V'fq1¢,p2§1'/25i2p2viq1¢>> W, 2aad)
(6.18) A
< |IVia [ |[lel? « €]|2 vV

6.6
S llellanpe (@+ [Viaw]?). (6.34)
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6.2. Controlling the Derivative of 3

We deal with the second term of (6.33) as before

[(€Top2q1t), VY igraz )| < [Inl] [|]]
—_—— ———
n K
S ellrzape Va [ Viad|
S lellznre (@ +1V1010 ). (6.35)

Since similar to equation (6.21) we have

Il S el 2o Ve

and similar to equation (6.22) we have

&l < 1Vigull-

Now the bound for [II| follows from collecting all the different bounds from equations
(6.30),(6.32),(6.34) and (6.35).
O

We are left with proving the estimates of term III. We start with the part
Lemma6.9.3 and 6.10 have in common and continue with the easier proof for
Lemma 6.10 which will give an blueprint for the following proof of Lemma6.9.3.

Proof of Lemma 6.10 and Lemma 6.9.3 . Both mean field terms in term III do not
contribute since for both of them a p acts on a ¢ in the same coordinate.

I = [(, p1p2[(N — Dwiy — Nwf{ — Nwg,n]q1q29)|
= (%, p1p2[(N — 1)wi2,1]q162 )|

22| (b, prp2wia N (7 — 7_an) qrqotb)|
—

=1
< (¥, prpawis a1 )| + [{9, pro2wiy maigey), (6.36)
where 1
o VE  VE=20  2YN VN
m_N(\/N m)_¢mm§2¢%—2" VE>2.  (6.37)

The w®> part of (6.36) does not pose any problems and can be estimated by

11
(v, P1p2w s p1q1G20 )| = (¥, P1p2wTsN2 1™ 2 111629

52 1 1
= [(m2n24, prp2wian 2 [1q1q29)|

< (kS oo VA 720N (0, A1 A2 g2

5.2 1 1
S sl (8 + \/N)fx/ﬁ

Al 1
S B+ ﬁ)
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6. Proof of Theorem 2

However, the second summand of (6.36) is more complicated to handle. The leading
part of it could be dealt with the same methods as in the proof of Theorem 1. The
problem which occurs is that the resulting subleading term which is of order N~!
can only be bound by these methods if we have control of ||w®||, for a v > 2. If
this condition holds we can use the same idea as in Lemma4.2.2. The different
presentation of the proof here only arises from the different weight and from the
intention to reuse the calculation for the proof of Lemma 6.9.3.

11
Proof of Lemma 6.10. We split p1 = pipf and rewrite the second summand of
(6.36) as

N
—~ 1 !
(¢, prpawis lnqrget )| = m\«%Zplpjwi}SMf 1t q1g;)|
=2
) N
~5 E,8~ 15
S N1 ‘Mf (JWH > (b prpjw g gy prpith).
Ji=2
(6.38)
Since
1 2 5.2,(6.37) 1
prad| < (T ntY) =5
we can estimate
es5m VB JiTH
(¢, prp2wiy T | < A+ B, (6.39)

where A is the ”off-diagonal” term of the sum

A=Y [, pupwt) g qiqwsy pipitd)|
2<j#I<N

and B the ”diagonal” term

N
B =Y |, pipiw§ Mgiqrwi prpad )|
=2

(2
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6.2. Controlling the Derivative of 3

We continue by estimating B

N
B < |iallop Y lwipipite]?
=2
. N
1 2
< N2> |wipipit|

I
[\

(b, prpi(wi)) *p1piy))

I

s
[|
N

< N |[pr(wiy)pu
= N2 [[(w™)? |0
SN2 w2 (1 + [Jo]lo)?

(6.26) N 7 )
SN2f(E)(1+ [lello). (6.40)
For A we find
A= Z (4, prpjwyy g qiqrwy pipit)|
2<jAi<N
1 1
= > [ pipiaimni wil qwS] i qipipad ) (6.41)
2<j#i<N

In the last equation we write ¢ = 1 — p; and after using the triangle inequality for
the emerged sum, A can be estimated by two terms called A; and As. In the next

steps we use for negative w any branch of the complex square root and symmetry
to find

1 1
Al = > (W, papi g wilwi it gipipitd)|
3<jAISN

1 1
< Z |2, prpj@iTait] @\/@@\/ﬁmﬂf qip1piY))|

2<j#I<N
€,8 €,5——
wlj Wy,
2<];£1<N
H \/ wh Di wlj P1T2H
2<j#i<N

<N2le\w * 1)) (0, Tl i)
< [p1]wis |P1|| &4

SN+ lelloe)*s
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6. Proof of Theorem 2

We estimate As

1

1 1
Aol = ) (W, pipjaialii wi prws Tafis gpipind)
2<jAI<N
2
< N? [p1w™p1llo, B
55 A
SN+ lel)B

Collecting the estimates for A and B we have

(o, ity < L2 ¢N% (1 lollo)? + N2(1+ [l )8
< VBN % 3L+ lpll)? + (1 + ol )8
< N 2P ||<PH P (1t ol (6.42)
This ends the proof of Lemma 6.10. O

Proof of the remaining part of Lemma 6.9.3 Without the possibility of the esti-
mate in (6.40) the idea is to use an N-dependent splitting of the potential. This
separates the singularities from the rest in a suitable way to exploit the fact that
only the subleading term poses problems in the calculation and combine this with
the different scaling behaviors of LP-norms for different p. The splitting of w(y
which does the trick is

£,8

WS = ws,l _l_ws,Q

= WS L >} T W s <}

where ¢ is a positive N-dependent constant which we fix later by optimization of
the convergence rates. In the following we will neglect the dependence of w® on €.
Now we have for sg < s < 2

st’lez :/|w8’1‘50dx:/|w5‘5‘w5|50_51{ws|>c}d$§CSO_S/’wS|Sl{|ws>C}dJE

s/|ws’sdI:CSOS”w8”§

and

2 _ _
HwS’QH2:/|w5’2\2dx:/lws\s\ws|2 Sl{lws‘<c}d$§02 5/]w5\51{|ws<c}dx

_S/|w8’sdx ZCQ—S ”wst

R e T (6.43)

Thus

2|, < 5 [lw®2 (6.44)
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6.2. Controlling the Derivative of 3

Now the idea becomes more obvious since if we set ¢ = NV the L%-norm of w*!
becomes small for large N because 1 — s/sg < 0. On the other hand the L%norm
of w®? will diverge with some power of N but sine we only need the L?-norm of
w*? in the subleading part we can control this as long as N~1/2¢2~% = o(1). This
enables us to treat the part with w®! by writing it as a divergence and then use
integration by parts as done before. We define V&/ = w*J. Now we are in the same
setting as in Lemma 6.7 and go through the same estimation process.

(1, proawiy B1q1go¥ )] = [(¥, p1p2 VL Tiqrg2t)]

< (€13 P2V p1, T 2| + (P12, €13 VY Fiiqigat))]
(6.45)

The first term is estimated by

(&1 P2 Vi P1ed, aqrgat)| < \/«V’fpli%mﬁi’;ﬁ%’{ p2Vip1) [ ||
1
S el + (€22 Vel A a2
S NIE, lello Vel Ve

6.5

S |, IVel el Ve
(6.43) ) si L1s
<Vl el llw]ls® ¢ ™% va
Al o 2s

S IVel el (€750 +a),

where we refer to the proof Lemma 6.7 for the step from the first to the second line.
The second term is estimated similar to equation (6.20)

&y pipats, Vi Aaazo)| < \/ (0, pipa(Ely) 2papa) VY Arar ]
S Il V1019

6.5

S ], el V1@l
(6.43) s % 1—s

S lelloo Tw?lls® ¢ o [V1g12]]
Al 9_2s 9

S llells (€7 20 + Vi |7).

Collecting both estimates we find for the right-hand side of (6.45)

~ 920 9_2p
(v, prp2wiy i1 )] S IVl @l (€7 70 + B) + llell e (¢ 70 + [Vigred]?)

9_2s
<l IVl B+ lIellgr ¢ + [[Via|®).  (6.46)

Now we come to the term ]((1/J,p1p2w‘;’22ﬁ1q1q2w>)]. This term can be dealt with the
help of Lemma 6.10. The only difference is that ||w®?||, is bounded by 72 w2
instead of ||w®*||, being bounded by f(g). Thus we find
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6. Proof of Theorem 2

(6.42) B 3
R N\C1 VB (14 lgll)? + N2(1+ gl )48

S VBN 51+ ) + (1 + [l )8
SNT2ES (4 ollo)? + (L4 gl )26 (6.47)

|(<w,p1p2wf’22/71q1q2¢>>

Putting this together with (6.46) we can optimize in ¥ when setting ¢ = NV

~ 2—2s
(¥, prp2wis a1 at)| S llellos (VN B+ lellgi e o +[[Vigw]?)
+ N2 (14 o) + (1 + [leell o )28
Slelinaze B+ N + llollo Vig |

with
s/sp—1 55 — 6
- _ = _ 6.48
K 2s/s9 — s 4s (6.48)
This finishes the proof of Lemma 6.10. O

By introducing yet another splitting the estimate of (6.47) can be improved
slightly. We defer this to Appendix C.
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7. Proof of Theorem 3

For the Gross-Pitaevskii scaling the general ideas of the proof stay the same. First
we calculate the derivative of the functional, decompose this derivative in the same
way as done before and estimate the generated terms. However, there are several
new issues. For the estimation of the term I we have to adjust the method such
that the full interaction still cancels with the "mean field” interaction. This can
only be done with an additional energy estimate which is obtained with the help of
assumption B3. The second issue arises from the time dependent external potential
V and leads to the use of 3 instead of 3. For the terms II and III we have to make
only minor changes in the method compared to Chapter 6. In the next section we
provide two later required energy estimates and in the second section we estimate
the derivative of the functional 8 term by term.

7.1. Energy Estimates

7.1.1. Control of |Viq1 ||

As in the mean field case we can formulate a lemma that controls ||V1¢; V|| for the
Gross-Pitaevskii scaling.

Lemma 7.1 (Energy Lemma). Let B1-B3 hold, then

~ 1
IV ®1? < llellrz@ynpee o) (B + N +F(N,e) + Vo) B

F(N, ) := max(N~2010-2 N—1+30,-60+2)

The proof uses the same idea and runs along the same lines as in the Hartree
case. Because of that we postpone it until the end of this chapter.

7.1.2. Energy Conservation in the Confined Direction

We are looking for a condition that will guarantee there are no excited states in
the confined direction. To this end we introduce projections which measure these
excitations.
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7. Proof of Theorem 3

Definition 3. Let x € L?(€2.) and ® € L*(Qy), then we define the projections

Py =1@ [x(y;)) (x(y;)] g :=1-pf
py = |®(x)))(®(x;)| ®1 ¢ =1-py.

With these projections we can rewrite the projection ¢; as the sum
g = a/p} + q).
Now we can formulate the estimate we are looking for
(v, g o) <&
Indeed, condition B3 leads to the following Lemma.

Lemma 7.2. Let assumption B1-BS8 hold, then

(e, q@®)e®) < (7.1)
holds for t € [0,00).
For the proof of Theorem 3 we also need a different form of inequality (7.1).

Corollary 7.3. Let assumption B1-B3 hold, then

N
(), Y. Py (T(0) S 2N (7.2)
k=0

holds for t € [0, 00), where

N
1 ] —a;
Poy= > TI@)®e)—. (7.3)
a;€{0,1}: i=1
Zf‘vﬂai:k

This estimate is quite crude. To improve Theorem 3 one should try to find a way
to incorporate a tighter estimate for (7.2) in the proof.

Proof of Lemma 7.2. First we note with an Duhamel argument

1 EQ 1 EO

(@), (Hy (1) = N3) ¥ (1)) — ((0), (Hy(0) = N—3)¥(0))
= [ R e () = N w(e)as
t1 € € L ‘1 o
= [ U R ). 1y ) - N (s + OO MEOLCIE

- / ((s), Vi () T (s))ds.

0
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7.1. Energy Estimates

Thus

W), (P (1)~ N2 w(n) € / ((s), Vi ()W (s))lds + C
< |suppv<t>|sg;|v<t, M+C <L

Hence, the left-hand side of the next inequality is bounded uniform for all € € (0, 1]
and N € N and we can calculate

1 c EO ol €,0,N
0 (05~ NIy = (0 (30— 4 Vi S8+ B+ W )
=1 <i
JN 1 J
b (A i S + E0) ) )
7j=1
> (w, (Vi - jzmylwo))w»
= (. (Vi ~ (8, + B)ad)¥)
= (0, Vi0) + (T, ¢ ).
B2

With (¥, V;U) > —1 we deduce that

(T o) <&

O
Proof of Corollary 7.3. With the equality
NoLo
(w(), q¥(t) = (W(D), ) ~Een ¥ ()
k=0
which is Lemma 5.1 for the projections ¢X and pX the corollary follows.
O
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7. Proof of Theorem 3

7.2. Controlling the Derivative of 3

Now we come to the main part of the proof which has the well-known structure.
The additional term IV stems from the introduction of the external potential V.
For the ease of representation and to be in the same setting as in the proof of
Theorem 2 we define

wHON = NWEON = (N_152)_3952w((N_152)_9((:ci — ), ey — yj))). (7.4)
Lemma 7.4.
|1 < 201+ [T+ 210 41V,

where
I: )wi{’ N — Nb|D|*(w2), Alprgov)

II:= <<¢ pip2(N — Dwiy ™, Alqigow)

M= (9, praa((N >wi2” Nb|® (1), Alq1g21))

IV = (4, V(z1,ey1)¥) — (@, V(21,0)D) 12(qy)]

+ 2(, p1 N[V (z1,ey1) — V(21,0), 0] q1e).
Lemma 7.5. 1.
] S N~2eh2 A1l L2y ol ooy + Nze ol 7o (@)

2. For§ >0
~ 130 & _ _9d
11 S llpllfeo(y B+ N"2N2 Nae ™ |o|| oo ) + N 72 |0 200

] < el gz X120, (3+€4(N€_2)39+f(N,6))

1 2
+ Xl IV 112

N1 [7],.

Proof of Theorem 8. The Lemmas 7.4 and 7.5 together with the Gronwall argument

prove Theorem3. If § € (1,3) and e = N~ for v € (3, 7 929) then all error terms
converge to zero. The optimal rate is N~ "(9) with
40—1 17
for 0 € (7,55
ORE (75)
1280 for 6 e (L, 1)
4-90 2473

which follows by optimization of § and v.
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Remark 8. For 6 € (1, -] the optimal rate in (7.5) is determined by the terms

N~=20g40-2 4nd N2e. For 0 6 (2. 3) the optlmal rate is determined by N—20g40-2,

N7§N7N15_39+1 and NT. For 6 = ﬂ all four terms have the value I—ll if we

_ 2 — 13
choose § = i1 and v = 35,

7.3. Proofs of the Lemmas

In order to keep the notation in these proofs to a minimum we do not write, when-
ever it does not lead to confusion, the underlying sets of the function spaces and
write ||-|| and (-,-) for the L?-norm and scalar product on the appropriate set.

Proof of Lemma 7.4. Compare Lemma 6.8 for the terms I-ITI. The term IV stems
from the change of 3. The first summand of IV is the time derivative of |EY —
E?| and the second summand arises from the different external potentials in the
Hamiltonians of ¢ and ¢. O

Proof of Lemma 7.5.1 . The term I is small due to the cancellation of b|®|?> and
the full interaction. Before one can see this cancellation we have to separate this
term into a part which stays in the ground state of the confined direction and the
orthogonal complement. To this end we use the projections

Py = 1@ [x()) (x(;)] g = 1-pj
= |®(x;))(®(z5)| @ 1 qf =1-pj. (7.6)

With this projections we can rewrite

G=1-p=1-plnY = (P + (sl =g+ afpl (07
For later use we note that for any function f: Qf — C

paf(z2)gy = 0. (7.8)
Now with (7.7) and Lemma5.2
rn—wmeAMf Dwiy"™ = Nbo|@ [ (22), Alp120)|

2|, papa (V= Dy ™ = Nbl@[(z2) ) (7 — Zin)pigav)

mmm(-ﬂwiN NO|@ P (22) ) (7 — 7 m)p (Yag + @)

— 1w — Nbd(ay — 22) ) (3 — T (955 + a0,
(7.9)

¢7p1p2
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7. Proof of Theorem 3

where we use the idea of (4.9) to write |®|?(z2) as 6(z1 — 22). The cancellations
can be obtained by viewing the difference of both interactions as a right-hand side

of Poisson’s equation. To this end we define
- b
b= ————— = / wdr.
Jo. XM () Ay Jrs

Now we can rewrite the ¢ distribution

p1p2bd (21 — T2)p1gy Py

(7.6)
="p1pabd (1 — 22) (X (Y1) x (y2), X(Y1) X (Y2)) L2 (2 y, x 0., ) P12 PS

S(y1 — y2)

) HX4HL1(Q : X(yl)X(y2)>L2(Qc,y1 xQC,yQ)plqg)pg

= p1p2bd (1 — x2) (X (y1)x (y2)

7.6 -
(:)]9110255(7”1 — T2) P14y Py (7.10)

This term together with the full interaction will turn out to be small. Entering the

above calculation in I we get

11| = [{¥, p1p2 <(N — Dwiz™ — Nbd (w1 — 952)) (n — 7_1n)p1g2v)))|

(7.7)

< 1w, i (Nwi™ = Nbo(wr — 2) ) (3 = Fim)pipyad o)

14, prpo (Nwid N = Nvb(ar — 2) ) (7 = Tam)pra¥ o)
+ (1, prpawiy™ (A — T 1n)prgat))]
(7.8) CON o ‘@
<1, proo (Nwid™ = Nvb(ay — 2) ) (2 = Tam)prp¥al )]

+ (@, prpaNwiy ™ (7 — Tan)pray )|
+ (4, prpowst N (A — TiR)p1gath)

(7 0‘)

> 0N 7 ~ X &
< <<¢,p1pzN(w12 —bd(ry — 7"2)) (n — Tn)p1py gz )|

ON(~ 7.11
+ (v, prpeNwiy ™™ (7 — T-in)prgy )| (7.11)
ON,~ ——
+ {0, prpawTy”™ (A — Tim)p1gay) )
To estimate the first summand we first collect some properties of the difference

wON () = b (r) B (N2 YePw (Ne=) (w,ey) ) - bo(a,y).
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This illustrates the scaling of the first line of (7.11). We regard the above expression
as a right-hand side of Poisson’s equation for a function f. The idea is to use
Newton’s theorem to deduce that f has compact support. However, to use Newton’s
theorem we need rotational symmetry. Because of that we define f@,s :R3 - Rin
the unscaled coordinates y' = ey by

AfP(x,y) = (Ne7?)*w((Ne™?)’(2,y)) — %06 ((,y)) (7.12)
and the same function in the scaled coordinates by
5 (,y) o= 7% (2, y). (7.13)

Since w has compact support and b= f wdr we find after scaling z = (N 5_2)91’
and § = (Ne=2)fy/

/ (N5*2)39w((N£*2)9(37,y’)> — b8(x, 1y )dady’
R3

= / w(E, ) — bé(%,§)dEdg = 0.
supp w

Thus, we can indeed choose f such that it has compact support. Using the definition
(7.12) we find the following scaling behavior

Fe =(Ne ) 2 F((N=2)(2,9) ).

Since f is solution of Poisson’s equation f € LllOC (R3). This implies together with

the compact support f € LY(R3). So the L'(R3)-norm of f%¢ scales like

70, 2/ a7-—2\—20 || 7 2/ a7-—2—-20 || 7
: —2(N H ‘ = (N H ‘ . 7.14
17 ey =@ |y = D]y 19
It follows that the scaling of f%¢ is such that
0, (713) 1 H 70, (7.14)  —2\—20 ~’ [supp JI=C —2\-20
9 —_ — ’ = N N . .].
17y = 2 177y = N7y & N (715)

This is the ingredient with which we can estimate the first summand of (7.11). Let
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7. Proof of Theorem 3

A% := A, + LA, then

[ prpoN (wiy™ = b3(ry = r2) ) (3 = Zin)pras pi )|

722 N\«%MPQAEJM’E((% — x3),e(y1 — y2)) (M — T_1n)p1g3 Py )]

TN, prps (A £9° % p[2) (r2) (A — T TR)pra2 Py )|
= N[, pipa (£ % A%[p[2) (ra) (R — T 1R)prad i)
S R (S I (R P

5.2 0, €], 12 5.4 0,e €], 412
(195 %Pl | <[ 79 % A%10P | ol

(7.15)
1P| llellee < (Ne™2) 272 || Alpl?|| ]l

< NP2 Al || el o

IN

5.4
<

where Lemma 5.2 holds for ¢®¢X since ¢®¢X < ¢ in the sense of operators.
The second summand of (7.11) is estimated by

£,0,N

(4, prpa Nwif N (3 — 7 1) prgie))| < Hp1w2 p1H (v, (N — 7_1n))%q

N

<ol w,ZNZf v PkNZ PXy)?

(5~1)
(Vk — \/ T
i& %ZZNQ —U' NPIC,NP]?,‘N )>
k= 1] 1
1
S lellZ ZZ PkN ]N¢>>2
k= 1_] 1
1
S lell?, ZZPkN Nlb )2
k=1 j=1
2 Y X+ 173 2 Arl/2
= llell% (%, > Pvd? S llells, N 2%e.
j=1

(7.16)

Xob)

For the third summand |(1, p1pawiy ON(@ — 7 m)pigaw)| of (7.11) we again use
Lemma 5.4 and 5.6 and the fact that the L'-norm of w®%" is bounded to find

:07N o = > -
(4, prp2wiy ™ (R — T1in)prgad)] < N71lgl1%

Proof of Lemma 7.5.2 . We first note that for any function f
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2

N
2
301NA = -
S auiP N Foupss| S NP ol || Faw| + NN o2, sup |7k, )P,
= 1<k<N
(7.17)

To prove this we split the right-hand side of (7.17) into the ”diagonal” and the
”off-diagonal” term and find

2
N N
797N N N 797N 79’N N
g quiz fpip;v|| = E (v, plplfwil Qquwij fplpjw»

N ’97N 797N N
< Y (W gppfus N ol qfpipiv)
sIk=N (7.18)

~

2
+ (N —-1) ’ wi’ze’prmWH :
The first summand of (7.18) is bounded by

= 20N cON 7
(N = 1)(N = 2)(¢, gopips fwiy " wiy ™ g3 fpipay)
2
< N? \ ’wiée’N\/ wi’ge’N%fplml/f

2 £,0,N 0N 7
<N Wio " P2\/ Wis p1fasy

4 2
< N2 ||\ Jwiy Vps qung

5.2
2 €,0,N
<N P1wyy P1

2

A 2 ad || 7
S N2l | Fave| (7.19)
The second summand of (7.18) is bounded by

N<<¢p1p2f(wi§€’N)2fP1p2¢>>

2
< N i i ™| |17
< pl(w12 ) p1 op f Op

5.4
SNN¥760F2 1012 sup | f(k,N)|? (7.20)
1<k<N
since
2 N
€,0,N < (2130 2. 791
R I (7.21)
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Putting (7.19) and (7.20) together proves (7.17). To apply (7.17) to II we define
for any function f:{0,...,N} = RT and § >0

f(k) = (7.22)

flk) for k< N9
0 for k> N9

and f°:= f — f® Furthermore we define

2V N VN
< n

S\/E+\/m—\/E: Vk > 2 (7.23)

w:=(N—1)(n—71_29n)

and estimate II by

1| = N| (v, p1p2[(N — 1)wi§9’N7ﬁ]Q1Q2¢»‘
¥N‘<<¢,plp2(N — Dwiy ™ (A - T2n)q1q20)]

ON ~
= (v, prp2wiy” " Higrganh))|

(7.22) R
< (¢ vty Vit qqat))| (7.24)

0N ~
+ (@, prp2wly " Bl qrgev ).

We define the constant function g : {0,..., N} — 1 hence pu* = u®g®. Inserting this
in the first factor of (7.24) we get

0,N ~ 5.2 — 0N~
[(, 12wy " G qrae)| = (v, 29t pipewiy " Bt q1g20)|

1

N
- ,0,N ~
= 14w, Y mgtpipjuiy i qag)|

=2

N
1 0N — ~
< 5 |2 @i regt iy [0l
=2

5.2
Since ||[a*q19|| < 1 and in view of (7.17) this can be estimated by
m

2 ~ 1,30 _
(N lloll5 [1g8me | + N2N =z gl sup |g5(k)])
1<kE<N

==

5 — ]
SN2 ol + NZT N7 3 || . (7.25)

The second summand of (7.24) can be estimated in the following way
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}<<¢,p1p2w§’26’NﬁbQ1Q2¢»| [(%, prp2(Topt )% e N(ﬁb)%m%wﬂ
N
1 ——p\ 1 by L
= 51 20 @R 2pipery N gy (B) )
=2
1 @ 1 c 1
’SNH ") 2q1wH quwlfN (2i")2p1pi || . (7.26)

The first factor of (7.26) is estimated by

|@ | = (o ibaw) <o, (r27)

For the second factor we use (7.17). Since

(7.22)
(723)
sup (u(k)®)Y? < Ni (7.28)
1<k<N
and
1 12
H(TQM )Q?WH SB

we get

ON ~
(v, proowsy ™ B qrgav)]
(7.17)

_1..30 _
<f(||soHooH V|| + NTENE ol sup |(u(k)))
1<k<N

(7.28)
<llpl% B+ N"ENE NG+ |||, (7.29)

where we refrain from taking the square of the second term which results in slower
convergence rates but simplifies the next calculation. Combining (7.29) with the
estimate (7.25) and inserting them in (7.24) yields the claimed result

| S Jlol% o+ NTINT Nie 34 o] o+ N73 o2 + N7 NZe304 |||
2 _1 36 S _ _ 6 2
SllelP a+ NENT Nie ™ o]+ N3 o],

The optimal ¢ and therefore the optimal convergence rate of this term depends on 6
1 36 )
and v. For fixed 6 and v the optimal § can be found by setting N2 N2 Nig 30+l ~

N~% under the constraint 0 < 8. Such a & exists for 6 € (3. 3). O
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7. Proof of Theorem 3

Proof of Lemma 7.5.3 . For this term we can use the abundance of gs to extract
terms with enough negative power of N to get convergence. We will use the function

pi=Nn—-71_1n)=VNWVk—-Vk—-1)= VN <\/N:n_1 Vk > 1.

VE+VE—1" VE
(7.30)
We begin with the usual simplifications
[T} = (&, praz[(N — Dwiy™ — Nb|®|*(21), )q142)|
2|, pra (N = Dwit™Y = Noj@P (@) (3 — Fi0)a1ga0)]
7.30) N . ~
( |<<¢7P1Q2<N 1w120 N b|‘1>\2($1))MQ1Q2¢>>!
< £.0,N
S, praewiy  Higrgen))| (7.31)

+ {0, pLazbl®|* (1) qrgat) ) -

The second term of (7.31) can be estimated by

5.4 ,
(8, Praobl () Ea a2} S gl [Rqras]) < B.

For the first term of (7.31) we use ¢ = ¢X + pX¢® to obtain four terms

€,0,N 0,N ~
(¥, praowTy " Hgigev)| < (¥, pipyaswiy ™ fipYat pyas )|

+ (0, pra¥wiy N iigrgae)|
+ (@, praawsd N g qau)|
+’<<1/1,p1QQw1’20’ gy )| (7.32)

All terms but the first are easy to handle. The second term of (7.32) can be
estimated by

0,N 0,N ~
(v pra iy Anew)] < gl [uiy o IAaev]

S eNe)Fev/B gl < 9l (8+ £ (N2)), (7.33)

where we used Lemmas 5.2, 5.4 and 7.2 and equation (7.21) in the second step. The
third and the fourth term of (7.32) can be estimated in the same way if we use
gX < q. Hence we find

(0, praow’y N igt g )|, |, praewy N iy )| < llello (8 + e*(Nem2)3).
(7.34)

For the first term of (7.32) we have to use a different approach. Here we know that
the potential only acts on the function y in the confined direction. Thus, we can
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integrate the potential explicitly in this direction

€.0,N~
(v, prp¥aswiy ™ ipYat pXasv)|

¢7P1PZQQ// (Nem?)30e? ((N5_2)9($1—56275(y1—y2))>

x |x(y1) [ x(y2) | 2dyrdyapygF p¥ a3 i)

(7.35)

For short notation we define the function

G0N (21 — x9) / / 2)36¢2 ((N€_2)B($1 —x2,6(y1 — y2)))

x X (1)1 1x (y2)Pdy1dys

and since it lives in one dimension we can explicitly define its anti-derivative

T1—T2

WEON () — 1) = / @SN (z)da.

— 00

The next step is to estimate the operator norm of the multiplication operator We#-N
by scaling arguments. Set & = (Ne=2)%z, j = e(Ne=2)%y and Q. = e(Ne~2)%Q,, so
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T1—x2
HW€ ON () — asg)H = sup / =N (z)da

z1,x2€ER

= [ (6 et - )

x |x(y1)*x (y2)|*dyrdyada

(Ne=2)%(z1—22)
= sup / //(Ns_2)2952w(i,(N5_2)95(y1—yg))
x1,x2€R J — c c

[e.e]

< |x(y1)*[x (y2)|*dy1 dyodi

< /Z /Q /Q 2)%e? (x (Ne*) ey —y2)>!x(yl)\2lx(y2)|2dy1dyzdir
:/Z/ﬁ/ﬂ 2w <5a§1—ﬂ2>\x(8(1\i1_2)9)’2
x |x<€(z\,i2_2)g>|2dgldg2dsz

Y1 21~ 1~ 1~
<Dl s P

> =\ - —ov-20 — U1 o
< [ [ w(@a)d [ ove e ) P
< I, Tl (7.36)

where the last step holds since x is normed. To use this estimate for W we rewrite
term III by integrating by parts

(7.35) d
(&, pipyad sy N it et pXa )| =, pipy el . —WEON () — o) ipYX g pXad )|
d - R
< (v, p¥q2 (%pl)We’E(xl — zo)fipYal Y aS V)

d
+ (0, prpy gy WEON (2 — xz)d ipYatpsasv)).
(7.37)
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The first term of equation (7.37) is bounded by

d 17,6 ~
!((w,p§q§(7mp1)w SN (21 — a0)ipY T pXas )|

d ~ ~
< oyl oo = ntatosat ol
1%
52(73
vﬁH | I VB < 19l I . (739)

The second term of (7.37) we estimate by

d
(v, 1oy gy WO (21 — m)d fipXatpyas b))

5.2,(7.36)

S VBIIXIIE

(7.39)

To bound the last term we note

45
x
where the proof follows exactly the same pattern as the one for x in equation (6.22).
We continue by bounding the right-hand side

2

d
< || X2
~ de1p1Q1¢’

2

2
— Y

2
o
P>1<Q1 (G ‘

d X o
delplql ¢

<|

da;l
—d . _ 2

= (¥, pXq? - 2p1qlw>> <<¢7Qi‘d7ﬁﬁ‘w>>

2

—d
= (v, (p1Q1 +Q1)d (p1Q1 + q1)Y)
—d2? 2 )
=<<¢,q1d2q1¢>>=\ < [Vawl.
Ty

Finally this estimate together with the Energy Lemma
~ 1
IVapl* < lollzrzne (8 + Vol N €) + IVl oo 0y B

leads to

2

~ 1
< lelFrenr= (B + T TN Vi B (7:40)

d
~ X b, x P
H do, PRI P22 P
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Inserting (7.40) into (7.39) results in

N d
(0, pro¥ gy WEON (2q — xz)dfmuﬁq? PYay V)|

N

= 1
S VBN, (Ielanse (B4 -+ SN + 1V () )

~ 1
< ellnnee 1B B+ + FN.) + I VI 2 0 B

Combining this estimate with (7.33),(7.34) and (7.38) finishes this part of the
lemma.
[

Proof of Lemma 7.5.3 . For both summands in IV we expand the potential around
y1 = 0. The assumption B2 guarantees that in both cases the error is a bounded
operator. Therefore, we can write

V(z1,ey1) = V(z1,0) +eR V(x1,ey1) = V(z1,0) +eR
with || R[[o,, , |R|lop < C. Thus we find for the second part of IV
2/(, N[V (z1,e1) = V(21,0), g1}
=2|(¢, N[V (21,0) + eR = V(21,0), n]q19))
= 2|(¢, 1 NeR(A — T-17)q11)))]
S <IN - Fma]| L=
For the first part of IV we note that for f € L ()
(&, f(@)p) — (@, f(2)P)] S IIf [l B- (7.41)
Thus we can estimate
(0, V(@1 e91)) — (D, V (21,008)] = [(&, (V(21,0) +eR)¢p) — (P, V (21,0)®)]

S, (V(@1,0)¢) — (@, V(21,0)®)| + ¢
(7.41),, .
2ol o+

Equation (7.41) holds since

[, f(z)Y) — (@, f(2)®)| = [, prf(x1)p1Y0) — (P, f(2)®) + (¥, ¢ f (z1)p19)))
+ (. prf (@)@ + (¥, a f(z1) )
< (1= |pl*)(®, f(2)®)
+ 2|, 2 2py f(z)A 2 )| + [ £l B

5.2
S Il 8-
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7.4. Proof of Lemma?7.1

As the ideas in this proof are the same as in Lemma 6.3 we stay very brief here and
give little extra explanation. Let h be defined as in Lemma6.2. From Section 6.1.2

IViaw? < Hﬁqlw

we know

2
+ Eo B (7.42)

and

2
+|ve|?s (7.43)

H\/iqm 2 < H\/a(l — p1p2)¥

- 2
hence we bound H\/ hi(1 —plpg)d)H to prove Lemma 7.1.

Lemma 7.6.

(&, (1 = pip2)ha (1 = pip2)¥) S lelfrenze (B + —= + F(N,) + V| oo () B

1
VN
with

f(N,e) = max(N*%g‘w*?’ N*1+39€f69+2).

With (7.42) and (7.43) Lemma 7.6 proves

~ 1
IViar9l® S elltrznne (B + —m= + £(€) + IVl () 8

VN

which is Lemma 7.1. All that is left to do is to show the bound of Lemma 7.6.

Proof of Lemma 7.6 . After rearranging the energy difference EY — E® we arrive
at the same lengthy equation as in (6.8) with an additional term from the time
dependent external potential V.

(v, (1 = p1p2)ha (1 — pip2)tb) (7.44)
— Y _ g¢
— (4, prp2hapipat) + (0, —A — 8%(Ay + Ep)p)
— (¥, (1 = prp2)hap1po) — (0, prpaha (1 — pipa)eh)

- N ppai Vi) + (@, b+ 2)0)

- % (<<w, (1 — pip2)wiy N pipawb) + (W, prpowiy ™ (1 — p1p2)¢>>)
- %«m (1= prp2)wiy ™ (1 — pip2))

— (¥, V(z1,ey1)y) — (@, V(,0)®). (7.45)
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After estimating the terms line by line we obtain the claimed estimate
(1, (1 = p1p2)ha (1 = pip2))
S (5* - B
+ 1@l 8

1
+ (| @] g2 (B +

5

+ N21572 || Ao || el + N2 el + 12112, a
+lpl|% B+ N300+

V0 B+e

=1
< llellzraage (B + Nl fFN;€) + V(5 0) oo B- (7.46)

The line-by-line approximation turns out to be a little bit simpler than before but
some estimates have to be adjusted. We do not have to estimate the first line.
Line 2.

(0, hap) — (v, pipahaprpad)| = [{@, hap) — (@, hap) (b, prpat))]
= (¢, h1) | (¥, (1 — p1p2)¥))|

6.2
(:)@7 —AD) (2, (pra2 + qip2 + q192) )|
52
S @l B
Line 5.

— (¥, (1 = pip2)hapipaty) — (1, p1paha (1 — pip2)e)

is bounded in absolute value by

B (6.10)
2/(0. (1 = prp2spipe)| < [0l (5 + ).
Line 4. We first note that
1 1
(@, 5 (012)®) — (. prp2g (BB )prp2v)| S (|23, 8 (7.47)

(@, 5 (192)8) — (b, pips 5 (al B pipo)
= 1(®, S01D)B) — (o, 3 (alBP)o)) 0 prpav)
= (@, JO1BP)2) — (@, J(al®))) (1, prpa)

= (@, S (612 B)|(w, (1~ prpa)o)
< Jlo2. 6.
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Hence,

1 N -1
(@, *(blq’\Q)@ - 7<<w,p1p2w1’29’ p1p2t)))]
(747) 1 €,0,N 2
*|<<¢,plp2(b|‘1)| )p1p2) — (1 N)<<1/},p1]72w1’2’ pip2Y )| + [|@]|5, 8
L1, 20112 — wi N yprpa) | + — \<<w pip2wiy N pipa )| + | @)% 8
SN2 Ao ol + N7 ||<P||oo + @)%, 8,

[\)

where we used the estimate from equation (7.16) for the first summand and Lemma 5.4
for the second summand.

Line 5. Is bounded in absolute value by

(0, prpowiy ™ (1 — pip2))| = [, pip2wis ™ (q1p2 + p1gs + q1g2)0)]
< 2|(w, prpawiy N et )| + (0, prpawiy N qra)).

The first term is bounded by

7€7N 5 7N ~_11
(¥, p1p2wiy Q1P21/1>>\ = [{, prp2wiy T2 NZ qipay) )|
e, N~_1
22\, prparinz w2 qupatd)|

ko[-

797
< i o], |
P

5.2,5.4 9 1
S el (8 4+ )

For the second term we use a slightly altered version of Lemma 6.10. So in the first
step we use symmetry to write

=

(0, prpawiy ™ qrgev)| = Nl_ 7! Z«%m%%’f’ q14;9)|

=2

=l Zq]w?f’ oY
0
_7\f quwij’ pip;t| - (7.48)

Now the second factor of (7.48) is split in the ”diagonal” term and ”off-diagonal”
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term
N 2 N
O.N 0,N 0,N
> qiwiy Vpipi| = ) (W ppw) N agiwty Y pipi)
j=2 7,k=2

ON 0N
< Y (Wi ot N Y pXal pipv)
SksN (7.49)

2
+ (N -1) Hwif’NmpWH :
The first summand of (7.49) is bounded by

ON cO.N
(N = 1)(N = 2)(¢, gap1pswiy ™ wip " qspipat))

2
o.N o.N
< N? ||y wiz ™\ wiy " gspipa
o.N oN 2
< N2 |\ wiy ™ por/wiy prasid
v |
bl 2
< N?Wwiy pa| llgsvll
Op
2
o.N
< N?||pawiy’ p2H B
Op
5.4 2 4
SN ol B (7.50)

The second summand of (7.49) is bounded by

N (b, prpa(wiy™™ ) 2pipath)

O.N
< Nle(wig )2p1H
Op

5.4 2
< N el =N
— N1+39€f69+2 ||80Hio (751)

since HwE’Q’NH; < (Eﬂg)?’es? Now putting (7.50) and (7.51) together we find

2

N

,0,N 4 - 2
>_arwiy " ppg| S NP llelli B+ N2 o]
J=2

Inserting this in (7.48) yields the claimed result

0,N 1 -
1, 2N 1) S VBV N2l B+ llpl2, N1+30e-69+2

2 [, R -
< gl2 /BB + ll| 32 N30z —60+2

< )%, B+ N~1H30g=60+2
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Line 6. The interaction is nonnegative so we have

N -1
2N

— (0, (1= pip2)wiy" ™ (1 = pipo)yy) <0,
Line 6. With the methods used in the proof of Lemma 7.5.4 we find

(0, V(z1,ey1)9) = (@, V(2 0)2)[ S V(5 0)l| e 5+ €
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A. Properties of the Solutions to the
Considered Equations

In this section we summarize the well-known results for the regularity of solutions to
the considered equations. These results ensure that the estimates of Theorems 1-3
are meaningful.

A.1. Properties of the Solution to the N-particle Equation

The assumptions on the N-particle Hamiltonian Hy are for all cases, even with time
dependent external potential, such that Hy generates a unitary time evolution on
D(Hp). Thus for solutions 1 of the Schrodinger equation we have global existence
and conservation of the L?-norm and without a time depending external potential
conservation of energy.

A.2. Properties of the Solutions to the One-particle
Equations

The questions of well-posedness, global existence and conservation laws for the
Hartree and NLS/Gross-Pitaevskii equation in our setting are well understood.
The standard way of deriving the claimed results follows in two steps. The first
step is to prove local existence of solutions by approximating by the free evolution
for example with the help of variation of constants formula. The second step is
extending the local solutions with the help of conservation laws to global solutions.
We only state the results of the properties we use. For an overview on this topic
see for example the book of Tao [Tao] and literature therein.

A.2.1. The Hartree Equation

Lemma A.1. For ®(z,t) : R" xR — C and n € 1,2 consider the Cauchy-Problem
for the Hartree equation
10,®(x,t) = —A®(z,t) + (w * |®|?) (2, )P (x, 1) (A1)
‘I’(CL‘, 0) = (I)(), .

where w s spherically symmetric and w = wi + wy with w; € LPY and we € L™,
where p1 > 1.
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1. For ®, € H'(R™) the Cauchy-Problem has a unique weak solution ®(x,t) €
Co(R, HY(R™)) with | ®ol|, = | ®t]ly = 1 and ||®ol| ;1 = || ®t]| 1 for allt € RT,

2. If &y € HF(R") for k € N, k > 2 then the solution of (A.1) is in Cy(R, H')N
C(R, H*) N CY (R, H*2).

Proof. 1. and 2. are Proposition 2.2 and Theorem 3.1 in [GV]. O

A.2.2. The Gross-Pitaevskii/NLS Equation

Lemma A.2. For ®(z,t) : R" xR — C and n € 1,2 consider the Cauchy problem
for the Gross-Pitaevskii equation

{i@@(w,t) = —Ad®(z,t) + |®|*®(x,t) (A.2)

@(.ﬁ, 0) = @’0.

1. For ®; € HY(R") the Cauchy-Problem has a unique weak solution ®(z,t) €
Cy(R, HY(R™)) with ||®ol|, = |®:]| =1 for all t € RT.

2. If &y € H?(R™) the solution of (A.2) is in Co(R, HY)NC(R, H*)NCY(R, L?).

These results are summarized in Proposition 3.1 of [BDOS] for the more com-
plicated case n = 3. In the case n = 1 there are even stronger results. For k € N
let &9 € H(R) then ||®(t)||x < ||®(0)|| = Vt. This follows from exercise 3.36 in
[Tao.

A.2.3. Eigenfunctions of the Laplacian on a Bounded Domain
Last we summarize the well-known results for the boundary-value problem

Lw=Mv inU
w=20 on OU,

where U is open and bounded, L is a uniform elliptic, symmetric operator with
smooth coefficients which are elements of C*°(U). See for example [Eva] for the
following facts.

1. The eigenvalues {\;}22, of L can be ordered such that

0<)\1<)\2§)\3§...

2. There exists an orthonormal basis {w}72, of L*(U), where wy € C*®(U) is
an eigenfunction with eigenvalue Ay for each k. Furthermore, for smooth oU

we have w, € C*(U).
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B. Estimates for the Coulomb potential

In this section we show that the assumptions of Theorem 2 hold for

1 o 1

= — w = —
| x|’

if we have confinement in one direction. For the ease of the calculation we set
Q. = [—1, 1]. However, the following calculation holds for arbitrary intervals allowed
by the assumptions. We decompose the potentials in a part with the singularity

and a bounded part

1 1

ws = mxwl(o)x[—m]} Weo = mX{Bl(OPX[—M]}’

where y denotes, only in this section, the indicator function. The function w° is

understood as the constant function 1 in the y-direction

1 1

0 0
We = PABIOX11) Yo = TIX{BU0)C x (L1}

B.1. Approximation for Example 1

B.1.1. Convergence of |r°|~! to |z|™!

1

Ire]

We first show that in the sense of assumption A1’
the definition of L'(Q) + L>®(Q) we have

is approximated by ﬁ With

[ w® — wOHLl(QfoC)—i-LOO(QfXQC) = [|ws - ngLl(QfoC) +[Jws — wQOHLOO(QfXQC) :

We first approximate the L part

1

1
Va2 +e2y2 |7l

NN,
rm

After a Tayler expansion we find 74/1 + 52% =r(1+ 9€i§2) for a # € [0,1]. Thus
we obtain

| 1 1

Lo (B1(0)¢ x[-1,1]) Lo ((1,00)x[-1,1])

L>°((1,00)x[—1,1])
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B. Estimates for the Coulomb potential

1

IS S
Va2 +e2y2 o

9€2y2

r2 /T'2+€2y2

Lo (BE(0)x[—1,1]) Loo((1,00)x[—1,1])

For the L'-part we can solve the integral directly

1

1
VaZ+e2y2 o

1
— —|dzdy

1
1
= |7
LY(B1(0)x[~1,1]) /31(0)/—1 Vi +ezy? |
1

141 11
1 T

:271'/ / _ — ’I“d’l“dyZQﬂ'/ / 1— ———drdy

0o J-1 | r2 + £29)2 7"| 0o J-1 r2 4 22

1 1 1
r

= 47T/ / 1 — ————=drdy = 4n (1 +/ (ey — /1 +e2y?)dy

0o Jo r2 4+ &2y 0

1 .hfl 1 1 'hil
:1—|—€_|:2y €2y2+1+81n(6y):| :1+§_7@_M
0

2 2¢e 2 2 2e

EVE I S P A o S )

€
=14
+2 2 4 2e 6

Putting both estimates together we have

1 1

el |l

Lt (Qf XQC)+L°°(QfXQC)

B.1.2. Uniform Bound for |r¢|7? for p < 2

We consider ‘T—ls| on LP(y x Q) + L®(Q x Q). The L®-part does not pose any
problems. The singularity can be estimated for p < 2 by

1 1 L |
/ / ——— 5 dzdy < / / sdxdy
B1(0) J—1 (22 + e2y?)2 B1(0) J—1 (22)2
1 1

1
=4r | —rdr = 47r/ r7Pdr = 4x[r?7P)} = C.
o P 0

This estimate is sharp in p in the sense that for p = 2 it does not work since

1 1 1
————dxdy < 2/ ridr
/Bl(o) /1 (z2 + £%y?) 0

does diverge.
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B.2. Bound for Example 2

B.2. Bound for Example 2

The logarithmic divergence of |r¢|=2 follows from estimating

1 1 1 1
— dady < / / —— _dady
/Bl(o) /—1 x? 4 e2y? c(0) /-1 ¥ + %y?
1 1
+ / / ————5dzdy
Bi(0)\B; (0) J—1 ° + €2Y?
1

1 S| 1
< / / dedy+/ / —dedy
€ JBs(0) J—e T*t Y Bi(0)\B5(0) /-1 ¥

1 1 1
< / —d(r,0,9) —l—/ —dr
9 B:(0) r e T

S - —r°dr —loge $1+loge™ .
EJo T
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C. Improvement of the Convergence of
Theorem 2

We can slightly improve the rate of convergence of equation (6.25) by improving the
estimate of (6.47). We use the same idea as in the proof of Lemma 7.5.2. Therefore,
we split this term in a part, where at least a ”few particles” of 1 are in the state
p and the complement. This helps since the diagonal term and the off diagonal
term arising in the estimation can be treated differently. With the split we can
distinguish the behavior of the terms beforehand and estimate them accordingly.
Hence we gain a tiny bit of convergence speed in the estimation process.

We define the same splitting as in (7.22). However, to use the estimates from
the proof of Lemma6.10 we implement the splitting in a different way. Define
TH(k) = 1(p<n1-sy and T2(k) :== 1 — T' (k). We rewrite the term on the left-hand
side of (6.47)

|<<1/),p1pzwf’22ﬁ1q1qw>>l = !((%mpzwf’;(ﬁ + 1) g1 20

< [, proowis Tiinqrg2)| + (0, prp2wiy Tofirqigat )|
(C.1)

We start with estimating \((1/),plpgwffﬁﬁlqlqgw))]. Here we have cut the parts
with too many bad particles so we can squeeze out an N to some power of —d,
hence we do not have to try to get a 8. Except of writing u! = /ﬁu% and bringing
one of them on the other side of the interaction the calculation stays exactly the
same as in Lemma 6.10, so we only give a rough sketch of the proof here.

N
(), prpowiy T qrgat)| = (¥, > pipjwi i N gi)|

N -1 :
=2
) N
e
= N_l\«?/%jz_;pwjﬁnwfj miqg;)|
N
~ 52 2
<y o1 lmadl > (e, prpymliws gigws pipima 1)
ij=2
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C. Improvement of the Convergence of Theorem 2

Since ||f1q19]] < 1 similarly to (6.39)

(. pipreis T a2¥)] < — VAT B,
where
A= Z <<1/)7plpj72T1wifQjinisfplpiTQTlw»
2<i#j<N
N - A
B = Z«lﬁ,PlPﬂ?Tlwifqz'%wig%zplpﬂ?ﬂ¢>>'
i=2

We do not use the cutoff here. With (6.44) and similarly to (6.40) we get
B SN loll3 - (C.2)

Since there is no ¢; in the middle of the term A as in (6.41) we can estimate it
directly and get as before

AS N w3 (1 + [lelloo) (8 ame1e))
SN+ [glloe) (0, Ta%y),

where we have 17 still left in the expression. Since 17 = 1y, <n1-5y We get
Yn? < N?
and obtain
AL S N2 @l oo - (C3)

Collecting the estimates (C.2) and (C.3)
1

(4, proawE i) S —VA+ B
_3s s 1
< N2 @l Foonpz + ¢ TENTZ o]l - (C.4)

The second part of (C.1)
(¥, prpowss Tafiq1g2t))|

11
is dealt with splitting 13 = uipf to be able to get a 5. As in (6.39)

(. pipowi By < 22 VAT B
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with the same splitting as before

2/\ - )2
A= Z (<z/},p1pjwi;- Tofirgiqiqrwy; p1pih)
2<jAI<N
N
25 ~ 2
B = Z((w,plpiwf; TQMlQiQIwi% P1PiY).
i=2

With
Ty(k) = 1{k>N1—5}
we find Tou; < Yon~1 < N%. Hence
PPN S
HBM%%H < Nz
Op
and B can be estimated similar to (6.40) by
B S NWRE o],

whereas there only appears an N%/2 and not N 3. The term A can be estimated
exactly like the A of (6.41), the 75 does not help here and can be neglected

AS N1+ [|gl|%) 8-

Putting the estimates \<(¢,p1p2w‘f’22?2/71q1q2¢)>| together

5 VB 5
(¥, prp2ws afq1g2¥)| S 7_1\/N1+202_5 loll2, + N2 (@)l oo 2 B
_149 o_ 2 2
SN2 ol + el penss B-
Hence, this implies with (C.4) for the equation (C.1)
~ _3 s 1
(s 212wty 1)) S N2 @l foerss + ¢ ENTZ gl
149 9_
FNTEE o3 + el e B (C.5)
Finally we use (C.5) and (6.46) to obtain the improved estimate of (6.25)
_d _s .1 149 o
IS N7 ol goenpe + ¢ 72N 2 (gl + N2 0|5, + Il ooz B
2—2s 2
Hlleloo IVl B+l g e =0 +[Vigy|”).
After setting ¢ = NV and optimizing § and ¥ we find

LS el (8 + N + ¢llo IV1a19)®
with
s/sp—1
2s/sg —s/2—1

which is slightly better than the n given in equation (6.48).

77:
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List of symbols

Notation Description

S

-

Scaling parameter depending on the number of
confined directions

Coupling parameter in the NLS

Counting functional

Counting functional with weight function n
Confined, stationary part of the one-particle
wave function

Domain of the operator H5,

Parameter controlling the strength of the
confinement

Parameter controlling the rate of convergence
Function controlling the convergence of w® to w’
One-particle density matrix

Rescaled N-particle Hamiltonian

One-particle Hamiltonian

N-particle Hilbert space

Number of particles

Parameter controlling the dependence of € on IV
One-particle configuration space, subset of R3
Confined part of the one-particle configuration
space

Free part of the one-particle configuration space
Projection onto ¢

Free part of the one-particle wave function
governed by a nonlinear PDE

One-particle wave function element of L?()
Projection onto k£ "bad” particles

N-particle wave function element of J#V
Projection onto the orthogonal complement of ¢
Element of €2

Scaling parameter element of [0, 1]

External potential

Page
List
16

22
16
16
16

18
15

18, 20
16
15
15
15
15
23
15
15

15
16
16

16
16
15
16
15
15
15
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List of symbols

102

Notation

Description

Two-particle interaction potential

Hartree approximation to the two-particle
interaction potential w

Scaled two-particle interaction potential
Bounded part of the two-particle interaction
potential w

Singular part of the two-particle interaction
potential w

Element of Q¢

Element of Q.

Page
List
16

17

15
18, 20

18, 20

15
15
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