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Zusammenfassung

In dieser Arbeit werden bosonische Vielteilchensysteme in drei Raumdimensionen

untersucht, die durch ein äußeres Potential in einer bzw. zwei Raumdimensionen

stark eingeschränkt sind. Das Ziel dieser Arbeit ist es, solche N -Teilchensysteme

durch eine effektive Einteilchengleichung zu approximieren. Im Gegensatz zu den

bestehenden Arbeiten in diesem Gebiet ist diese effektive Gleichung aufgrund des

starken äußeren Potentials zwei- bzw. eindimensional. Es wird bewiesen, dass diese

Approximation im thermodynamischen Limes N →∞ exakt wird. Darüber hinaus

werden für diese Approximation explizite Konvergenzgeschwindigkeiten angegeben.

Diese sind im Besonderen für die Anwendbarkeit der Ergebnisse auf physikalische

Experimente von Bedeutung. Im Folgenden werden die Inhalte der jeweiligen Ka-

pitel kurz zusammengefasst.

Kapitel 2 gibt einen Überblick über die mathematische Beschreibung bosonischer

Vielteilchensysteme. Die dazu verwendete Schrödingergleichung mit Paarwechsel-

wirkung wird eingeführt und die mathematischen Konzepte für die Beschreibung

von Bose-Einstein-Kondensation werden definiert. Dabei wird erklärt, warum die

Existenz eines Bose-Einstein-Kondensates essentiell für die Beschreibung boson-

ischer Vielteilchensysteme durch eine effektive Einteilchengleichung ist. Des Weite-

ren werden die Mean-Field-, die Nichtlineare Schrödingergleichungs- und die Gross-

Piteavski Skalierung der Vielteilchen-Schrödingergleichung anhand von physikali-

schen Experimenten und den bestehenden mathematischen Ergebnissen beschrie-

ben.

In Kapitel 3 wird zuerst die mathematische Notation, in der die Ergebnisse for-

muliert und die Beweise dargestellt werden, festgelegt. Danach werden die zwei

positiven Funktionale α und β definiert, die von Pickl in [Pic1] eingeführt wurden.

Mithilfe von α oder β kann die Dynamik eines Vielteilchensystems mit der Dyna-

mik eines Einteilchensystems verglichen werden. Dabei folgt aus der Konvergenz

von α→ 0 oder β → 0 im thermodynamischen Limes eine gute Approximation der

Vielteilchendynamik durch die Einteilchendynamik. Dieses Kapitel schließt mit der

Präsentation und Diskussion der Hauptresultate der Arbeit. Im Mean-Field-Fall

sind diese im Wesentlichen von der Form

α(t) ≤ C(t)N−1,

wobei C(t) eine monoton steigende Funktion mit C(0) = 0 ist. Für den Fall einer

Skalierung, die zu einer nichtlinearen Schrödingergleichung führt und die durch den
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Parameter θ kontrolliert wird, erhalten wir das Ergebnis

β(t) ≤ C(t)N−η(θ).

Hier bestimmt der Parameter η(θ) > 0, dessen genaues Verhalten aus dem später

geführten Beweis folgt, die Konvergenzgeschwindigkeit.

Kapitel 4 stellt für einen einfachen Fall der Mean-Field-Skalierung eines Vielteil-

chensystems einen sehr ausführlichen Beweis dar. Dieser dient zum einen dazu, die

Methode von Pickl [Pic1, KP, Pic4] für stark eingeschränkte Systeme zu veran-

schaulichen, wobei diese Methode in diesem Fall nur geringfügig geändert werden

muss. Zum anderen liefert dieser Beweis eine Vorlage für die folgenden, technisch

aufwändigeren Beweise.

In Kapitel 5 werden die beiden Funktionale α und β ausführlich diskutiert. Die-

se Diskussion ist angelehnt an [Pic4, KP, PP]. Es wird der Zusammenhang der

beiden Funktionale mit dem für Mean-Field-Limiten gebräulicheren Konvergenzbe-

griff, der durch die Spurnorm gegeben ist, aufgezeigt. Danach werden grundlegende

Eigenschaften von α und β und der in ihnen enthaltenen Projektionen p, q und

Pk,N dargestellt. Diese Eigenschaften werden für die in Kapitel 6 und 7 folgenden

Beweise benötigt. Zuletzt wird der Nutzen des Funktionals β im Vergleich zu α

thematisiert.

In Kapitel 6 wird der Beweis aus Kapitel 4 so erweitert, dass nun Paarwechsel-

wirkungen mit stärkeren Singularitäten zugelassen werden können. Dazu werden im

Vergleich zu Kapitel 4 zusätzliche Abschätzungen benötigt, die mit Hilfe von Ener-

gieerhaltung hergeleitet werden können. Die dazu verwendeten Techniken werden

im Detail dargestellt, da sie in den folgenden Beweisen wiederverwendet werden.

Abschließend wird der Beweis analog zu Kapitel 4 durchgeführt.

In Kapitel 7 wird der Fall einer Skalierung, die zu einer nichtlinearen Schrödinger-

gleichung führt, bewiesen. Dabei wird der Fall eines stark einschränkenden Potential

in zwei Richtungen betrachtet. Die Grundidee des Beweises bleibt die gleiche wie

in Kapitel 4 und 6. Es wird aber eine weitere Energieabschätzung benötigt, um

die Wechselwirkung des Vielteichensystems mit der Wechselwirkung des effektiven

Systems vergleichen zu können. Darüber hinaus entsteht die Schwierigkeit, dass nun

die Konvergenzgeschwindigkeit von mehreren Termen der Form Nf(θ)εg(θ) abhängt,

die miteinander in Konkurrenz stehen. Hier gibt ε die Stärke des einschränkenden

Potentials an. Die verschiedenen Terme der Form Nf(θ)εg(θ) führen dazu, dass die

Abschätzungen der vorigen Kapitel zusätzlich verfeinert werden müssen und nur

noch bestimmte Kombinationen der beiden Parameter N und ε möglich sind.
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1. Introduction

In physics it is important to be able to approximate complex systems and general

theories by effective theories or equations which are simpler to analyze and easier

to solve. Effective equations are used in every area of physics starting from the

description of gases to the description of gravitation in our solar system. It is

impossible to obtain quantitative or even just qualitative results directly from the

underlying microscopic or general theories without any insight on how to simplify

them. For example, in order to describe the behavior of a gas at room temperature,

one will use the thermodynamic variables pressure, temperature and volume rather

than the positions of the molecules which the gas is made of.

Mathematically the derivation of an effective equation implies proving that a

solution of the effective equation is close to a solution of the equation of the complex

system for suitable initial data. The sense in which these solutions are close depends

on the respective descriptions of the system and is determined by a norm or in

general by a suitable functional.

There are many different approaches to derivation of such an effective equation.

One important mathematical approach is to use the large number of microscopic

objects – as in the example of the gas – as a starting point for a statistical analysis

from which one obtains effective equations. Prominent examples of such effective

equations are the Navier-Stokes and Boltzmann equations for classical systems and

the Hartree and Hartree-Fock equations for quantum mechanical systems. A dif-

ferent approach is to identify the vastly different length scales inherent in a system

and to use separation of scales to reduce the number of physically relevant degrees

of freedom. The mathematical techniques used in this context come form adia-

batic theory. The most prominent example for such an effective equation is the

Born-Oppenheimer approximation, where the different masses of the nucleons and

the electrons lead to a separation of scales that can be exploited to derive effective

equations.

In this thesis we study the dynamics of cold Bose gases confined in a trap that

is strongly confining in one or two dimensions. Such a system is described by

N interacting particles, where N ∼ 103 − 107 and is thus amenable to a statistical

analysis. At the same time, the strongly confining potential introduces a separation

of scales. These two aspects can be combined to derive effective dynamics for the

system. This system is physically interesting since it has become accessible by

experiments in the last years [GVL+, SKC+]. From a mathematical point of view

this system is of interest because one has to adapt the methods used to derive
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1. Introduction

effective equations for Bose gases in a way allowing exploitation of the adiabatic

structure of the problem.

In the last decade there has been much progress in obtaining rigorous results for

effective dynamics for cold Bose gases [EY, EESY, ESY2, RS, KP, Pic3, BDOS]

and the references therein. In general, these results state that the time evolution

of the N -particle wave function ψt can be approximated by a product ϕ⊗Nt , where

ϕt is a solution of a nonlinear one-particle Schrödinger equation.

In the case of an additional strong confinement one expects ψt ≈ ϕ⊗Nt still to be

true. However, the particles should be in a stationary state in the confined directions

if the constraining potential is strong enough. Mathematically this implies ϕt has a

product structure ϕt = Φtχ, where χ is a time independent function in the confined

directions and the function Φt is expected to solve a nonlinear Schrödinger equation

in the unconfined directions.

The proof of this heuristic idea has recently been given in two papers by Chen

and Holmer [CH1, CH2]. However, they used techniques that make it impossible to

determine the rate of convergence of the approximation ψt ≈ ϕ⊗Nt which is partic-

ularly important for the physical interpretation. In this thesis we offer a derivation

of the approximation ψt ≈ ϕ⊗Nt that allows us to give explicit error bounds for the

convergence rates in terms of powers of the particle number N and the confinement

strength ε−1 of the external potential. In the following we explain the considered

problem in more detail.

The dynamics of a Bose gas of N particles in R3 is described by the Schrödinger

equation

i∂tψt = Hψt (1.1)

for a symmetric complex-valued wave function ψt(x1, · · · , xN ) ∈ L2(R3N ). The

Hamiltonian H of such a system is of the form

H :=
N∑
i=1

hi +

N∑
i<j

wN (xi − xj),

where w : R3 → R is a radial symmetric pair interaction. The subscript N denotes

a scaling which will be discussed in detail in Chapter 2. Each operator hi is a

one-particle operator acting only on the coordinate xi defined by

h = −∆x +
1

ε2
V (ε−1x⊥).

Here the external potential ε−2V ⊥(ε−1x⊥) describes the strong confinement in the

direction x⊥, where (x‖, x⊥) = x, and the parameter ε � 1 controls the strength

of the confinement.
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The effective dynamics that we are looking for are described by the time evolution

of a one-particle wave function ϕt. The function ϕt has a product structure ϕt(x) =

Φt(x
‖)χ(x⊥), where χ is the eigenfunction to the smallest eigenvalue of the operator

−∆x⊥ + ε−2V (ε−1x⊥). (1.2)

The function Φt solves

i∂tΦt = (−∆x‖ + wΦt(x‖))Φt, (1.3)

where wΦt is a nonlinear potential. The exact form of wΦt depends on the scaling

of wN and will be explained in Chapter 2.

The goal of this thesis is to justify for suitable initial data ψ0 ≈ ϕ⊗N0 the approx-

imation

eiHtψ0 ≈ ϕ⊗Nt ,

where the components of ϕt are solutions of (1.2) and (1.3). Hereby one important

aspect is to obtain results for the deviation from this approximation for large but

finite N and small but nonzero ε.

To illustrate in which sense this approximation can be expected to hold, let

us consider the case ψ0 = ϕ⊗N0 and wN = 0. In this case one directly obtains

ψt = ϕ⊗Nt . However, in the presence of an interaction potential this will in general

be false, since the interaction will lead to correlations between the particles. Note

that although there are correlations in the wave function ψt, a symmetric ψ will stay

symmetric under the time evolution generated by H. As a result of the correlations

the statement ψt ≈ ϕ⊗Nt can only hold as an approximation. For systems without

a strongly confining potential the regime and the sense in which this approximation

holds are well understood and are explained in the next chapter. Therefore the first

step of this thesis is to give precise mathematical meaning to the symbol ≈ for the

case of a strongly confined system. For this we will use a method first introduced by

Pickl in [Pic1] which focuses on measuring how many correlations have developed

and thus gives quantitative results on how much ψt deviates from ϕ⊗Nt .

Overview

In Chapter 2 we explain the physical models and give a summary of the mathe-

matical results for cold Bose gases. We begin with some historical remarks and

then continue with the definition and results for Bose-Einstein condensation. This

serves as a physical justification for the choice of the special initial state ψ0 ≈ ϕ⊗N0 .

At the same time this motivates the mathematical models and objects considered

in this thesis. They are defined in the first part of Chapter 3. In the second part

of Chapter 3 we state our main results. In the next chapter we give a short proof

for a toy model which will provide a blueprint for the more technical proofs that

will follow. In Chapter 5 we introduce some notation associated with the method

of Pickl. Finally we prove the two main theorems of this thesis in Chapter 6 and 7.

3





2. Physical Motivation and Overview of
Mathematical Results

In this chapter we explain the physical origin of the examined equations by sum-

marizing known mathematical results for the Bose gas and its dynamics. This

discussion is based on the book of Lieb, Seiringer, Solovej and Yngvason [LSSY]

and we refer to this book for more details.

2.1. Historical Overview of the Study of the Bose Gas

The analysis of the Bose gas goes back to S.N. Bose and A. Einstein. In 1924

Einstein predicted, based on a paper by Bose, that a homogeneous, noninteracting

Bose gas at low temperature would form a new state of matter today known as

Bose-Einstein condensate. This theory was first applied to explain the properties

of liquid helium, which had first been liquefied by Omnes in 1908. However, the

atoms in liquid helium are strongly interacting and it is still a mathematically open

problem to prove Bose-Einstein condensation in a weakly interacting system let

alone in a strongly interacting system.

The first steps to answer this question were taken by Bogoliubov in 1947 in a

semi-rigorous mathematical analysis of Bose-Einstein condensation. In the 1950’s

and 1960’s a renewed interest in the question gave rise to new theoretical insights.

However, there were no substantial advances in the mathematical understanding of

the problem.

Up to the beginning of the 1990’s there was neither significant experimental nor

theoretical nor mathematical progress in this field. This, however, suddenly changed

as experiments with ultracold gases became feasible and the first Bose-Einstein

condensate was obtained in 1995 [AEM+, DMA+] for which Cornell, Wieman and

Ketterle received the Nobel Price in 2001. In the subsequent years this discovery

had a strong impact on the physics community and a huge number of articles were

published.

Since the publication of the paper [LY2] by Lieb and Yngvason at the end of the

90’s there has been steady progress in the mathematical understanding of Bose-

Einstein condensation and in closely related fields as well.

Until today Bose-Einstein condensates have stayed a very active research area in

the branches of experimental, theoretical and mathematical physics.
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2. Physical Motivation and Overview of Mathematical Results

2.2. The Mathematical Description of Interacting Bose

Gases

In the following we discuss the mathematical description of an interacting Bose

gas and its condensation. The starting point for the description of N interacting

Bosons in a large box Λ ⊂ R3 with volume V = L3 is the Hamiltonian

HN =

N∑
i=1

− ~2

2m︸︷︷︸
=:µ

∆i +
∑
i≤j

w(xi − xj), (2.1)

where w is a radial symmetric interaction potential. For an ideal Bose gas we have

w = 0, so the eigenfunctions of HN are product functions. The system is said to be

in the state of Bose-Einstein condensation if a macroscopic part of the particles has

the same eigenfunction. For an ideal Bose gas in three dimensions Einstein proved

that beyond a critical temperature Tc such a behavior indeed occurs. However,

in the case of nonzero w we have to introduce a new notion for Bose-Einstein

condensation since the eigenfunctions of HN are no longer products of single particle

states. This was first done by Penrose and Onsager in [PO].

Definition. A system described by a wave function ψ ∈ L2(R3N ) is in the state of

Bose-Einstein condensation if ∥∥∥γψ∥∥∥
L(L2(R3))

≥ c (2.2)

in the limit N →∞, L→∞ with N/L3 fixed for a c > 0.

Here the operator γψ is the one-particle density matrix associated with ψ and it

is defined by its kernel

γψ(x, x′) :=

∫
ψ(x, x2, · · · , xN )ψ̄(x, x2, · · · , xN )dx2 · · · dxN .

It turns out that proving (2.2) for a system with a Hamiltonian of the form (2.1)

with a genuine interaction w is a complicated problem and only few results exist.

Quoting page 5 of [LSSY]: ”In fact, BEC has, so far, never been proved for many-

body Hamiltonians with genuine interactions – except for one special case: hard

core bosons on a lattice at half-filling [DLS, KLS].” The only results that exist for

a general Hamiltonian of the form (2.1) prove that the Hamiltonian’s ground state

energy has in leading order the structure expected from a Bose-Einstein condensate.

These results are obtained for gases at low density and in the thermodynamic

limit. The proofs can be found in [LSSY] and in references therein. Here the

thermodynamic limit means to consider N Bosons in a box of length L and to let
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2.2. The Mathematical Description of Interacting Bose Gases

N and L tend to infinity with fixed density ρ = N/L3. The low density limit is

defined by

ρ1/3a� 1, (2.3)

where a is the scattering length of the potential w. Roughly speaking the scattering

length captures how the interaction behaves in low-energy interaction processes. For

a detailed explanation see the appendix of [LY3].

2.2.1. The Gross-Pitaevskii Scaling

In the experimental relevant situation of trapped, dilute Bose gases, however, there

exist proofs of Bose-Einstein condensation in an asymptotic limit. In this setting

the Hamiltonian of the system is complemented by the trap potential V

HN =

N∑
i=1

−µ∆i + V (xi) +
∑
i≤j

w(xi − xj). (2.4)

In addition to the scattering length of the interaction potential, the length scale

associated with the ground state energy ~ω of the one-particle operator −µ∆ + V

can be introduced. It is standard to define the so-called oscillator length by

a0 :=

√
~
mω

.

In experiments the number of trapped particles N is of order 103 − 107 and for a

positive scattering length a the ratio a/a0 is typically of order 10−3. Hence it is

mathematically reasonable to consider, in addition to the limit N →∞, the asymp-

totic of a/a0 → 0 for a Hamiltonian of the form (2.4). If we keep the potentials V

and w fixed, this asymptotic can be implemented in two mathematically equivalent

ways. Either we set Ṽ (x) = a−2
0 V (x/a0) or w̃(x) = a−2w(x/a). It is standard to

use the latter and to set the scattering length of w equal to 1 so that

scat
(
w̃
)

= a.

In this limit the system is described by

HN =

N∑
i=1

−µ∆i + V (xi) +
∑
i≤j

a−2w(a−1(xi − xj)) (2.5)

for N → ∞ and a → 0. However, this asymptotic turns out to describe the

behavior of a Bose-Einstein condensate only if Na stays fixed. This fact can be

motivated by the scaling properties of the Gross-Pitaevskii (GP) energy functional.

Following from experimental evidence and theoretical prediction [Pit, Gro1, Gro2],

7



2. Physical Motivation and Overview of Mathematical Results

this functional should describe the ground state energy EQM of the Hamiltonian

(2.5). The Gross-Pitaevskii energy EGP(N, a) is defined by

EGP(N, a) := inf
ϕ

∫
µ|∇ϕ(x)|2 + V (x)|ϕ(x)|2 + 4πµa|ϕ(x)|4dx (2.6)

with the normalization constraint∫
|ϕ|2dx = N.

The Gross-Pitaevskii functional has the following scaling property

EGP(N, a) = NEGP(1, Na).

Since all terms of (2.6) are expected to contribute in the limit N →∞ and a→ 0,

the scaling property of EGP implies Na = const.

In the article [LSY1] Lieb, Seiringer and Yngvason gave the mathematically pre-

cise relation between EQM and EGP(N, a). They prove that for N →∞ and fixed

g = 4πNa

lim
N→∞

1

N
EQM(N, a) = EGP(g). (2.7)

In the same limit Lieb and Seiringer [LS] proved Bose-Einstein condensation

Tr
∣∣γψN − |ϕGP〉〈ϕGP|

∣∣ N→∞−→ 0, (2.8)

where ϕGP is the minimizer of (2.6). Note that this result is stronger than (2.2) and

implies 100% condensation. There is a variety of mathematical ways to describe

100% condensation. We will discuss two of them in detail in Chapter 5 and refer to

[Mic] for a more detailed presentation.

2.3. Connection of GP-Scaling with Mean Field Scaling

In this section we discuss how the GP-scaling is connected with the mean field

scaling. The mean field scaling of a system of N particles is defined by

HN =

N∑
i=1

∆i +
1

N

∑
i≤j

w(xi − xj). (2.9)

The reason for the name mean field is best explained by a heuristic argument. Let

all N particles be in the same state ϕ which implies that they are all distributed
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like |ϕ|2. Therefore the interaction potential w at the point x can be approximated

by the mean contribution coming from each particle

1

N

N∑
j=1

w(x− xj) ≈
1

N

N∑
j=1

∫
R3

w(x− xj)|ϕ(xj)|2dxj

=

∫
R3

w(x− x1)|ϕ(x1)|2dx1 = (w ∗ |ϕ|2)(x). (2.10)

Hence the interaction which one particle feels can in this situation be approximated

by the mean value of one particle.

Now we can explain how the GP-scaling of the Hamiltonian (2.5) can be inter-

preted as a ”singular mean field limit”. For mathematical convenience we neglect

the trap potential, set all physical constants equal to one and set a = N−1. Now

the Hamiltonian (2.5) can be rewritten

HN =
N∑
i=1

∆i +
1

N

∑
i≤j

wN (xi − xj), (2.11)

where wN (x) := N3w(Nx) converges for N →∞ in the weak sense of measures to

a delta function. By formally inserting this in the calculation (2.10) we obtain

(wN ∗ |ϕ|2)(x)
N→∞−→ |ϕ(x)|2

which is except for the wrong constant the appropriate energy given in (2.6).

Now we introduce the parameter θ ∈ [0, 1] to be able to describe these two scaling

limits in the same framework. We define

wθN (x) = N3θw(N θx) (2.12)

and subsequently the corresponding Hamiltonian

Hθ
N =

N∑
i=1

∆i +
1

N

∑
i≤j

wθN (xi − xj). (2.13)

In addition to the mean field regime θ = 0 and the GP-scaling regime θ = 1 we

obtain a third regime for θ ∈ (0, 1). These regimes are characterized by the different

one-particle Hamiltonians h that describe the ground state energy and the dynamics

of the N -particle system in the limit N →∞. In all three regimes h has the form

h = −∆ϕ+ wϕϕ. (2.14)

Note that due to the nonlinearity the ground state energy associated with h is

defined by

Eϕ = inf
‖ϕ‖=1

〈ϕ, (−∆ +
1

2
wϕ)ϕ〉.

9



2. Physical Motivation and Overview of Mathematical Results

The question of whether

lim
N→∞

1

N
EQM = Eϕ (2.15)

has been answered in all three regimes.

• For θ = 0 the interaction wϕ is equal to w ∗ |ϕ|2 as expected due to the

heuristic argument (2.10). The question posed by equation (2.15) was studied

with various assumptions on w in [FSV, BL, LY1, Wer, Sei, GS] and recently

in great generality in [LTR1]. In the last years the question of excitations

close to the the ground state Eϕ was considered as well. For this question we

refer to [LTS] and the references therein.

• In the case θ ∈ (0, 1) the nonlinearity is wϕ = |ϕ|2
∫
R3 w. This regime is

referred to as the nonlinear Schrödinger(NLS) limit. The question of (2.15)

has not been considered often in the literature but the results for the case

θ = 1 apply a fortiori. Recently the authors of [LTR2] proved error bounds

for the rate of convergence of (2.15) depending on the value of θ.

• For θ = 1 we have wϕ = 8πb|ϕ|2 with b = scatt(w) in accordance with

2.6. For completeness’ sake we restate the references for the proof of (2.15)

[LY2, LSY1, LSSY] and for a review [LSSY].

2.4. Dynamics of Bose Gases

For experiments with Bose gases the time evolution plays an important role. Thus

it is natural to consider the evolution which is generated by the Hamiltonian (2.5)

through the Schrödinger equation

i∂tψt = Hθ
Nψt.

One expects that for all θ ∈ [0, 1] and under the assumption, that the initial state

is a condensate, the system stays close to this condensate under the time evolution

in the sense of

Tr
∣∣γψN (t) − |ϕ(t)〉〈ϕ(t)|

∣∣ N→∞−→ 0. (2.16)

Here the time evolution of ϕ is generated by the appropriate form of the Hamiltonian

h defined in (2.14). These dynamics can be subdivided in the same three regimes

as above.

• For θ = 0 the evolution equation is given by

i∂tϕ = (−∆ + w ∗ |ϕ|2)ϕ

and is called the Hartree equation. As in the case of the ground state energy

many different people contributed to the answer of (2.16). The following list

makes no claim to completeness [Spo, EY, RS, KP, Pic4].

10
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• For θ ∈ (0, 1) the evolution equation is given by

i∂tϕ = (−∆ +

∫
R3

w dx |ϕ|2)ϕ.

The study of this case is often motivated by the desire to gain insights on how

to solve the case θ = 1. We refer to [EESY, ESY1, Pic1, Pic2] for various

results for these dynamics.

• For θ = 1 and scatt(w) = b the evolution equation is given by

i∂tϕ = (−∆ + 8πb|ϕ|2)ϕ.

This problem was solved under various assumptions in [ESY3, ESY3, Pic3,

BDOS].

2.5. Bose Gases and Strong Confinement

In recent years it has become possible [GVL+, SKC+] to do experiments on cold,

trapped Bose gases that are confined strongly in one or two directions such that

the behavior of the gas can be described by an effective equation in two or one

dimension.

These experiments can be described by the Hamiltonian of equation (2.13) if we

add a strongly confining potential V ⊥

Hθ
N =

N∑
i=1

∆i + ε−2V ⊥(ε−1x⊥i ) +
1

N

∑
i≤j

wε,θN (xi − xj). (2.17)

Here the parameter ε� 1 describes the strength of the confinement and x⊥ are the

coordinates of the strongly confined direction. We use the notation xi = (x
‖
i , x
⊥
i ).

Note that now the scaling of the two-particle interaction w depends on ε as well.

For the moment we will neglect this dependence and explain its origin later.

If we were to take ε fixed, the results presented in the last two sections for the

ground state, the condensation and the dynamics of (2.13) would hold. However,

the effective theory would still be three-dimensional. This is of course not what

we intend and what the experiments suggest. Mathematically this reflects the fact

that the estimates used to obtain the results of the last sections are not uniform in

ε and hence can not hold for ε→ 0.

From a physical point of view the most interesting case of (2.17) is θ = 1.

However, to prove the existence of an effective equation for the dynamics generated

by (2.17), in the case θ = 1, is a challenging problem which is still open. Thus we

will first discuss the relatively simple case θ = 0 and then come to the case θ > 0.
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2.5.1. Strong Confinement for the Mean Field Scaling

In the mean field regime θ = 0 the Hamiltonian (2.17) is given by

HN =

N∑
i=1

−∆i + ε−2V (ε−1x⊥i ) +
1

N

∑
i≤j

w(xi − xj), (2.18)

where there is no dependence of the two-particle interaction w on ε in this regime.

The analysis of the dynamics generated by (2.18) for different classes of interac-

tions w and their approximation by effective dynamics is the first part of this thesis.

We will measure the errors of this approximation with a functional defined by Pickl

which is equivalent to using the norm (2.16). To the knowledge of the author this

problem has not been considered before.

The results of this thesis for the mean field scaling are phrased for the Hamiltonian

HN =
N∑
i=1

−∆
x
‖
i

+ ε−2(−∆x̃⊥i
+ V (x̃⊥i )) +

1

N

∑
i≤j

w(x
‖
i − x

‖
j , ε(x̃

⊥
i − x̃⊥j )) (2.19)

which originates from (2.18) by a coordinate transformation x̃⊥ = εx⊥. This is

done since the analysis of (2.19) is mathematically more convenient than (2.18).

For our analysis we make the assumption that the confining potential V ⊥ is a hard

wall potential outside a bounded set x⊥ ∈ Ω i.e.

V ⊥(x) =∞ ∀x ∈ Ωc, (2.20)

where Ωc is the complement of Ω in the direction of the confinement. This is only a

technical assumption to avoid the use of additional energy estimates for the strongly

excited modes in the confined direction.

We obtain our results with the help of a method developed by Pickl in [Pic1,

Pic3, KP, Pic4]. These results are phrased for two functionals α and β that are

explained in detail in Chapter 5. Translated to the trace norm setting of (2.16) our

results are

Tr
∣∣γψ(t)− |ϕ(t)〉〈ϕ(t)|

∣∣ ≤ C(t)N−η, (2.21)

where η = 1/2 if the interaction w has at most L2-singularities and η = 5s−6
8s for

interactions w ∈ Ls with s ∈ (6/5, 2).

A paper related to this subject is [BAMP] in which the interaction potential

w = 1
|x| . The authors show that the Hartree equation with a strong confining

potential is described by a 2D/1D Hartree equation. Phrased in the setting of

this work this amounts to taking the limit N → ∞ first and afterwards doing an

asymptotic expansion in ε. This does not describe the physical situation explained

above, where the asymptotics of N and ε must be considered simultaneously.
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2.5. Bose Gases and Strong Confinement

2.5.2. Strong Confinement for NLS-scaling and GP-scaling

Now we come to the case θ > 0. Here one must be careful in defining a sensible

equivalent to (2.13) in the presence of a strongly confining potential, since now

we consider two asymptotic limits at the same time. The first one comes from

the strongly confining potential which is expressed by the parameter ε and the

second one from the derivation of the GP-scaling which was defined with the help

of the parameter a (2.5). To be able to identify the appropriate scaling we write

the Hamiltonian with the parameters ε, a, θ in the way they were introduced in

(2.5),(2.12) and (2.17)

Hθ,ε
N =

N∑
i=1

−∆i + ε−2V ⊥(ε−1x⊥i ) +
∑
i≤j

a1−3θw(a−θ(xi − xj)). (2.22)

To determine a sensible scaling behavior of this Hamiltonian we use the existing

results for its ground state energy. In the case θ = 1 and strong confinement in

one direction this result was obtained by Schnee and Yngvason in [SY] and for the

case of a strong confinement in two directions by Lieb, Seiringer and Yngvason in

[LSY2]. They showed that the Gross-Pitaevskii regime is given by N → ∞ and

a, ε→ 0 with Na/ε fixed in the former case and Na/ε2 fixed in the latter case. In

this regime they both proved

lim
EQM(N,h, a)−Nε−2E⊥

EGP
2D/1D(N, g)

= 1, (2.23)

where E⊥ is the ground state energy of the operator ∆x⊥+V ⊥(x⊥). The parameter

g is a modified coupling parameter defined by

g2D =

∫
χ(x⊥)4dx⊥a/ε g1D =

∫
χ(x⊥)4dx⊥a/ε2,

where χ(x⊥) is the eigenfunction associated with E⊥.

Following from the above, the appropriate Hamiltonian which must be considered

in the case of strong confinement in two directions is

Hθ
N =

N∑
i=1

∆i + ε−2V ⊥(x⊥i ε
−1) +

ε2

N

∑
i≤j

(Nε−2)3θw
(
(Nε−2)θ(xi − xj)

)
,

where we set a = N−1ε2 for mathematical convenience.

The study of the dynamics generated by this Hamiltonian is the second part of

this thesis. Our results are again, as in the case θ = 0, phrased for a rescaled
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2. Physical Motivation and Overview of Mathematical Results

Hamiltonian, where we set x̃⊥ = εx⊥ and thus obtain

HN =
N∑
i=1

−∆
x
‖
i

+ ε−2(−∆x̃⊥i
+ V (x̃⊥i ))

+
ε2

N

∑
i≤j

(Nε−2)3θw
(

(Nε−2)θ
(
x
‖
i − x

‖
j , ε(x̃

⊥
i − x̃⊥j )

))
.

As before we assume the condition (2.20) for the confining potential V ⊥ in our

proofs.

As in the Mean Field case we use the method of Pickl to obtain our results.

Translated to the trace norm our results imply

Tr
∣∣γψ(t)− |ϕ(t)〉〈ϕ(t)|

∣∣ ≤ C(t)N−η, (2.24)

where

η(θ) =

{
4θ−1
6−8θ for θ ∈ (1

4 ,
7
24 ]

1−3θ
8−18θ for θ ∈ ( 7

24 ,
1
3).

The rate of convergence is at best of order 1/20. However, it should be possible to

improve this rate by combining ideas introduced in this work with methods used in

[Pic3]. For the proof of equation (2.24) we assume the interaction potential w to

be an element of L∞ with compact support.

As already mentioned, very recently the same problem was considered by Chen

and Holmer in the case of confinement in one direction [CH1] and for a confinement

in two directions [CH2]. In these articles the authors used the techniques of the

BBGKY hierarchy to derive their results. For 0 < θ < c and under the assumption

that the interaction potential w is a Schwartz function they showed

Tr
∣∣γψ(t)− |ϕ(t)〉〈ϕ(t)|

∣∣ N,ε−→ 0, (2.25)

where c = 2/5 for confinement in one direction and c = 3/7 for the confinement in

two directions. However, a disadvantage of using the BBGKY hierarchy is that it

only provides convergence of the left hand-side of (2.25) but no rate of convergence.
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3. Mathematical Results

3.1. A Concise Definition of the Mathematical Model

As motivated in the last section we state the mathematical description of the model

analyzed in this thesis. The N -particle system is described by a wave function

ψεN ∈H N . Here

H N := L2
+(ΩN , dr1 · · · drN )

is the subspace of L2(ΩN , dr1 · · · drN ) consisting of wave functions ψN (r1, . . . , rN )

which are symmetric under permutation of their arguments r1, . . . , rN ∈ Ω. The

parameter ε � 1 controls the strength of the confinement and the set Ω ⊂ R3

encodes the shape of the confinement.

We consider the two cases of confinement in one and two directions. In the

former case Ω := R2 × [c, d] with c, d ∈ R, c < d and 0 ∈ (c, d). In the latter case

Ω := R × Ω′ with Ω′ a compact subset of R2 with 0 ∈ Ω̊′ and smooth boundary

∂Ω′. To be able to treat both cases at the same time we introduce the notation

Ω = Ωf × Ωc and r = (x, y), where y ∈ Ωc are the coordinates of the ”confined”

direction and x ∈ Ωf are the coordinates of the ”free” direction.

The equation which governs the behavior of ψεN is the N -particle Schrödinger

equation

i∂tψ
ε
N (t) = Hε

Nψ
ε
N (t) Ψε

N (0) = Ψε
N,0, (3.1)

where the Hamiltonian has the form

Hε
N =

N∑
i=1

hεi +
N∑
i≤j

W ε,θ,N (ri − rj).

Here hεi is a one-particle Hamiltonian hε acting on the coordinate ri defined by

hε = −∆x −
1

ε2
∆y + V (t, x, εy),

where V is a time dependent external potential, ∆x is the Laplacian on Ωf and ∆y

is the Dirichlet Laplacian on Ωc. The parameter θ ∈ [0, 1] controls the range of the

pair interaction W ε,θ,N (ri − rj) which consists of a spherical symmetric function
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w : R3 → R combined with a scaling depending on the parameters. In the case

θ = 0 the interaction is scaled as

W ε,0,N (ri − rj) :=
1

N
w
(
(xi − xj), ε(yi − yj)

)
. (3.2)

In the case θ ∈ (0, 1] we have

W ε,θ,N (ri − rj) := a1−3θw
(
a−θ
(
xi − xj , ε(yi − yj)

))
. (3.3)

The value of a depends on the number of the confined directions. For a confinement

in one direction a = εN−1 and in the case of confinement in two directions a =

ε2N−1.

We denote the one-particle wave function that will approximate Ψε
N by ϕ ∈

L2(Ω). It has always a product structure and consists of the two functions χ(y)

and Φ(x). For all values of θ the function χ is an eigenfunction of the ε-dependent

Dirichlet Laplacian ε−2∆y on Ωc. The function Φ(x) lives on Ωf and is a solution

of a nonlinear equation. One expects Φ(x) to solve the Hartree equation for θ = 0,

for θ ∈ (0, 1) the nonlinear Schrödinger equation (NLS) and for θ = 1 the Gross-

Pitaevskii (GP) equation. Here the use of the names NLS and GP has physical and

historical reasons since the only difference between both equations is the value of

the constant in front of the nonlinearity.

3.1.1. A Concise Definition of the Functional Comparing ψεN with ϕ

The functional we will use to determine convergence of Ψε
N to ϕ was introduced by

Pickl in [KP, Pic4]. We give a thoroughly account of them in Chapter 5. Here we

limit ourselves to the mathematical definitions. We will use two different functionals

denoted by α and β. The functional α is given by

α
(
ϕ(t), ψεN (t)

)
:= 1− 〈ϕ(t), γψ

ε
N (t)ϕ(t)〉L2(Ω), (3.4)

where γψ
ε
N (t) is the one-particle density matrix of ψεN (t). To introduce β we first

define the projection operators

pi(t) := ϕ(t, ri)〈ϕ(t, ri), ·〉L2(Ω,dri) qi(t) := 1− pi(t) (3.5)

and

Pk,N (t) := (q1(t) · · · qk(t)pk+1(t) · · · pN (t))sym.

Now we can define

β
(
ϕ(t), ψεN (t)

)
:=

N∑
k=0

√
k

N
〈ψεN (t), Pk,N (t)ψεN (t)〉L2(ΩN )
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which can be viewed as a generalization of αε,N (t) since written with the projections

Pk,N (t)

α
(
ϕ(t), ψεN (t)

)
= 〈ψεN (t), q1(t)ψεN (t)〉L2(ΩN ) =

N∑
k=0

k

N
〈ψεN (t), Pk,N (t)ψεN (t)〉L2(ΩN ).

For both α and β we define the shorthands

α
(
ϕ(t), ψεN (t)

)
:= αε,N (t) β

(
ϕ(t), ψεN (t)

)
:= βε,N (t).

In Section 5.1 we discuss the relationship between αε,N (t) and

Tr
∣∣γψεN (t) − |ϕε(t)〉〈ϕε(t)|

∣∣
through the inequality

Tr
∣∣γψεN (t) − |ϕε(t)〉〈ϕε(t)|

∣∣ ≤√8αε,N (t). (3.6)

This inequality holds for βε,N (t) as well since αε,N (t) ≤ βε,N (t).

3.2. Main Results

3.2.1. The Hartree Case: θ = 0

In the case θ = 0 the Hamiltonian which governs ψεN takes the form

Hε
N =

N∑
i=1

hεi +
1

N

N∑
i≤j

wε(ri − rj), (3.7)

where

wε(ri − rj) := w
(
(xi − xj), ε(yi − yj)

)
. (3.8)

For the ease of the presentation we work without an external potential in the one-

particle Hamiltonian

hε = −∆x −
1

ε2
∆y.

The nonlinear Hartree equation that governs Φ(t) is

i∂tΦ(t) = (−∆x + w0 ∗ |Φ(t)|2)Φ(t) Φ(0) = Φ0,

where w0 will be defined in the assumptions below. For an interaction with enough

regularity it can be defined by the restriction of w on (Ωf × 0).
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Let the set {χm}∞m=0 be an orthonormal basis of L2(Ωc) such that for all m χm
is an eigenfunction of the Dirichlet Laplacian ε−2∆ on Ωc. Furthermore let the

corresponding eigenvalues Eεm fulfill

0 < Eε0 < Eε1 ≤ Eε2 ≤ · · · .

The eigenvalues Eεm satisfy the relation Eεm = ε−2Em, where Em are the eigenvalues

of ∆ on Ωc. We define the one-particle function ϕ by

ϕ(t) := Φ(t)χ,

where χ = χm for a m ∈ {0, 1, 2, . . . }. We define the set Ω̃ := Ωf × Ω̃c, where

Ω̃c := {y | ∃y1, y2 ∈ Ωc : y = y1 − y2}. This set is introduced since we will have to

control the norm of the interaction w on Lp(Ω̃).

Now we state the assumptions on the interaction potential w.

A1 Let w = ws + w∞ such that for all ε ∈ (0, 1] there exists a C ∈ R+ such that

‖wεs‖L2(Ω̃) ≤ C ‖wε∞‖L∞(Ω̃) ≤ C.

There exists w0
s , w

0
∞ : Ωf → R and a function f(ε) : (0, 1] → R+ with

f(ε)
ε→0→ 0 such that∥∥wεs − w0

s

∥∥
L1(Ω̃)

≤ f(ε)
∥∥wε∞ − w0

∞
∥∥
L∞(Ω̃)

≤ f(ε),

where w0
s(x, y) := w0

s(x), w0
∞(x, y) := w0

∞(x) for (x, y) ∈ Ω̃ and let w0
s ∈

L1(Ωf ), w0
∞ ∈ L∞(Ωf ). For short notation we define

w0 := w0
s + w0

∞.

Theorem 1. Let the assumption A1 hold, t ∈ [0,∞), ψεN (0) ∈ D(Hε
N ) with

‖ψεN (0)‖L2(ΩN ) = 1, Φ0 ∈ H2(Ωf ) with ‖Φ0‖L2(Ωf ) = 1. Then

αε,N (t) ≤ αε,N (0) exp(C(t)) + (f(ε) +
1

N
)(exp(C(t))− 1), (3.9)

where

C(t) := 4
( ∥∥w0

s

∥∥
L1(Ωf)

+
∥∥w0
∞
∥∥
L∞(Ωf)

+ ‖wεs‖L2(Ω̃) + ‖wε∞‖L∞(Ω̃)

)
×
∫ t

0
(1 + ‖ϕ(s)‖L∞(Ω) + ‖Φ(s)‖L∞(Ωf)

)2ds.

Remark 1. 1. The inequality (3.6) together with (3.9) implies for the one-particle

density matrix of ψεN the bound

Tr |γψεN (t) − p(t)| ≤
√

8 exp(
1

2
C(t))

((
Tr |γψεN (0) − p(0)|

) 1
2 + f(ε)

1
2 +N−

1
2

)
.
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2. The appearance of α(0) in equation (3.9) is not surprising. If the functional

α is large for the initial states ψ(0) and ϕ(0) we can not expect α to be small

for later times. From a mathematical standpoint we can take any sequence

ψεN (0) such that α(ψεN (0), ϕ(0))
N,ε−→ 0 as an initial condition e.g. ψεN (0) =

ϕ(0)⊗N . From a physical standpoint one should take the state ψεN (0) to be

the minimizer of the energy, where one adds a suitable trap potential in the

x-direction to the Hamiltonian. The question of α(ψεN (0), ϕ(0))
N,ε−→ 0 for this

state is exactly the question of condensation discussed in Chapter 2. Without

a strongly confining potential this convergence is well known cf. [LTR1] and

references therein. The same question with a strongly confining potential is

to the authors knowledge still open. However, there is no reason to believe

α(ψεN (0), ϕ(0))
N,ε−→ 0 should not hold for the ground state.

3. If we disregard the convergence rate of α(0) to 0, equation (3.9) does not

put any constraint on ε and N . Hence, regardless of the convergence rate of

wε → w0, ε can be chosen as a function of N such that the rate of convergence

is N−1 in (3.9).

4. In addition to the hard wall confinement we can add ε−2V ⊥(y) for any

bounded potential V ⊥ in the N -particle Hamiltonian. The only difference

in this situation is that then χ is an eigenfunction of the operator ε−2(−∆y +

V ⊥(y)) on Ωc.

5. Beeing able to allow exited states in the confined direction seems quite un-

physical since one expects the excited states in the confined direction to decay

under the time evolution due to the high energy. This seems to be an artifact

of this toy model together with the condition A1 on the interaction potential.

Since this artifact vanishes if we relax the condition A1 for the next theorem.

6. Other than in the indirect way in condition A1 the dimension of the confine-

ment does not play any roll in the theorem. For example in the case of a

confinement in one direction the potential w = |r|−q with q < 1 fulfills A1.

In the case of a confinement in two directions the potential w = |r|−q with

q < 1/2 fulfills A1.

7. The set Ω̃ is only essential for the convergence of wε to w0. To assume

‖wεs‖L2(Ω̃) ≤ C is due to the rotational symmetry equivalent to ‖wεs‖L2(Ω) ≤ C.

8. The boundedness of ‖ϕ(t)‖L∞(Ω) and ‖Φ(t)‖L∞(Ωf)
follows from the condition

on ϕ(0). This is well known and is discussed in Appendix A.

To be able to formulate a theorem similar to the last one, however with weaker

assumptions on the interaction potential, we introduce the one-particle energies
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Eψ(t) and Eϕ(t) defined by

Eψ(t) :=
1

N
〈ψεN (t), Hε

Nψ
ε
N (t)〉L2(ΩN ) (3.10)

and

Eϕ(t) : = 〈ϕ(t),
(
−∆x −

1

ε2
∆y +

1

2
w0 ∗ |Φ(t)|2

)
ϕ(t)〉L2(Ω). (3.11)

By direct calculation one finds that they are both independent of time, cf. Lemma 6.1.

Now we state the assumptions which allow stronger singularities in the pair inter-

action.

A1’ Let w = ws + w∞ such that for all ε ∈ (0, 1] there exists a C ∈ R such that

‖wεs‖Ls(Ω̃) ≤ C ‖wε∞‖L∞(Ω̃) ≤ C

for a s ∈ (s0, 2) with s0 = 6
5 .

There exists w0
s , w

0
∞ : Ωf → R and a function f(ε) : (0, 1] → R+ with

f(ε)
ε→0→ 0 such that∥∥wεs − w0

s

∥∥
L1(Ω̃)

≤ f(ε)
∥∥wε∞ − w0

∞
∥∥
L∞(Ω̃)

≤ f(ε),

where w0
s(x, y) := w0

s(x), w0
∞(x, y) := w0

∞(x) for (x, y) ∈ Ω̃ and let w0
s ∈

L1(Ωf ), w0
∞ ∈ L∞(Ωf ).

A2’ Let Hε
N be self-adjoint with D(Hε

N ) ⊂ D(
∑N

i=1 h
ε
i ).

A3’ Let the two-particle interaction w be nonnegative.

Theorem 2. Let the assumptions A1’-A3’ hold, t ∈ [0,∞), Φ0 ∈ H2(Ωf ) with

‖Φ0‖L2(Ωf)
= 1, ψεN (0) ∈ D(HN ) with ‖ψεN (0)‖L2(ΩN ) = 1 and χ = χ0, then there

exists a C ∈ R+ depending only on w,w0 such that

βε,N (t) ≤ βε,N (0) exp(Cg(t)) + (Eψ − Eϕ + f(ε) +N−η)(exp(Cg(t))− 1), (3.12)

where η = 5s−6
4s and

g(t) =

∫ t

0

( ∥∥ϕ(t′)
∥∥
H2(Ω)

+
∥∥ϕ(t′)

∥∥
L∞(Ω)

)3
dt′.

Remark 2. 1. Similar to Remark 1.1 and as a result of α ≤ β equation (3.12)

implies a bound for the one-particle density matrix of ψεN with the rate of

convergence given by the square root of the right-hand side of (3.12).

2. (See Remark 1.2) In addition to the condition α(0) → 0 we now also need

Eψ(0) → Eϕ(0) for ε → 0 and N → ∞ to hold for the theorem to have any

predictive power. This is for example true if the initial wave function is a

product state given by ϕ(0)⊗N , then Eψ → Eϕ for ε→ 0 with the rate f(ε).
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3. In addition to the hard wall confinement we can add ε−2V ⊥(y) in the N -

particle Hamiltonian for any bounded potential V ⊥. The only difference in

this situation is that then χ is an eigenfunction of the operator ε−2(−∆y +

V ⊥(y)) on Ωc.

4. If we combine Lemma 7.5.4 with Theorem 2 we can allow external potentials

V ∈ C2(R4,R), where ∂tV (t, x, y), ∂yV (t, x, y) ∈ Cc(R4) and

‖V (t)‖L∞(R3) ≤ C

for all t ∈ [0,∞).

5. The condition on χ to be the ground state function in the confined direction

is, as physically expected, now necessary for our proof of (3.12).

6. The boundedness of ‖ϕ(t)‖H2(Ω) and ‖ϕ(t)‖L∞(Ω) follows from the condition

on ϕ(0). This is well known and discussed in Appendix A.

7. We can allow the potential to be negative if there exists a constant κ ∈ (0, 1),

such that

0 ≤ (1− κ)(h1 + h2) + wε12.

Example 1 (Coulomb Potential). Let the full pair interaction be the Coulomb

potential

w :=
1

|r|

and w0 the restriction of w on Ωf × 0

w0 :=
1

|x|
.

For a confinement in one direction the condition A1′ holds with f(ε) = ε and

s = 2− δ ∀δ > 0 thus

β(t) ≤ exp(Cg(t))(β0 + Eψ − Eϕ + ε+N
1
2
−δ).

This is a generalization of the results in [BAMP]. In this paper the authors consid-

ered the limit ε→ 0 of the Hartree equation with 1
|rε| as the interaction potential.

In the case of a confinement in two directions the condition A1′ does not hold for

the Coulomb potential and it is an open questions if the simultaneous limit N →∞
and ε→ 0 is well defined in this case.
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3.2.2. The NLS Case with a Confinement in Two Directions

In the case θ = (0, 1) and a confinement of the system in two directions the wave

function ψεN solves the Schrödinger equation with the Hamiltonian

Hε
N =

N∑
i=1

hεi +
N∑
i≤j

W ε,θ,N (ri − rj),

where

W ε,θ,N (ri − rj) := (N−1ε2)1−3θw
(

(N−1ε2)−θ
(
(xi − xj), ε(yi − yj)

))
and

hε = −∆x −
1

ε2
∆y + V (t, x, εy).

The one-particle wave function ϕ is as before defined by

ϕ(t) := Φ(t)χ0.

The function χ0 was defined as the ground state of −ε−2∆y on Ωc. The function

Φ(t) is governed by the NLS equation with external potential

i∂tΦ(t) = (−∆x + V (t, x, 0) + b|Φ(t)|2)Φ(t) Φ(0) = Φ0,

where

b =

∫
R3

w

∫
|χ0|4(y) dy.

To account for the external field V we modify the functional β slightly. The one-

particle energy Eψ(t) is defined as before in equation (3.10) and the Gross-Pitaevskii

energy Eϕ(t) is defined in analogy to the Hartree case by

Eϕ(t) : = 〈ϕ(t),
(
−∆x −

1

ε2
∆y + V (t, x, 0) +

1

2
b|Φ(t)|2

)
ϕ(t)〉L2(Ω). (3.13)

Now we can define

β̃ε,N (t) := βε,N (t) + |Eψ(t)− Eϕ(t)|

and state our assumptions.

B1 Let the interaction potential w be a positive, radial symmetric function with

compact support and w ∈ L∞(R3).
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3.2. Main Results

B2 Let V ∈ C2(R4,R) such that ∂tV (t, x, y), ∂yV (t, x, y) ∈ Cc(R4) and

‖V (t)‖L∞(R3) ≤ C

for all t ∈ [0,∞).

B3 Let the energy per particle away from the ground state in the y-direction be

bounded for t = 0:

sup
N,ε

N−1〈ψεN (0), (Hε
N (0)−NE0

ε2
)ψεN (0)〉L2(ΩN ) ≤ C

for a C ∈ R+.

Theorem 3. Let the assumptions B1-B3 hold, t ∈ [0,∞) let Φ0 ∈ H2(Ωf) with

‖Φ0‖L2(Ωf)
= 1, ψεN (0) ∈ D(HN ) with ‖ψεN (0)‖L2(ΩN ) = 1 and χ = χ0. Let θ ∈

(1
4 ,

1
3) and ε(N) = N−ν with 1

2 < ν < θ
1−2θ then for all such ε(N) there exists a

η > 0 and a C ∈ R+, which only depends on w, such that

β̃ε,N (t) ≤ β̃ε,N (0) exp(Cg(t)) +N−η(exp(Cg(t))− 1) (3.14)

with

g(t) = ‖χ‖2L∞(Ωc)

∫ t

0

(
‖ϕ(s)‖H2(Ω)∩L∞(Ω) +

∥∥∆|ϕ(s)|2
∥∥
L2(Ω)

‖ϕ(s)‖L∞(Ω)

+
∥∥∥V̇ (s)

∥∥∥
L∞(Ω)

+ ‖V (s)‖1/2L∞(Ω)

)
ds.

Remark 3. 1. The optimal value of η is given by

η(θ) =

{
4θ−1
3−4θ for θ ∈ (1

4 ,
7
24 ]

1−3θ
4−9θ for θ ∈ ( 7

24 ,
1
3).

However, η is at best of order 1/10. Using the same methods as Pickl in [Pic3]

it should be possible to improve this rate.

2. Similar to Remark 1.1 and as a result of α ≤ β̃ equation (3.14) implies a

bound for the one-particle density matrix of ψεN with the rate of convergence

given by the square root of the right side of (3.14).

3. (See Remark 1.2) The theorem is only meaningful if

β̃(0)→ 0 for ε→ 0 and N →∞. (3.15)

From a mathematical standpoint we can take ψ(0) = ϕ(0)⊗N , then (3.15)

holds. Physically β̃(0) → 0 represents the question of condensation and was

shown for θ = 1 for a confinement in two directions in [LSY2] and for a

confinement in one direction in [SY]. A fortiori these results hold for θ ∈ (0, 1)

as well, cf. [LTR2].
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4. The assumptions of Theorem 3 show that the two limits do not commute

in general but have to be taken in the subset defined in the assumptions.

The condition ν < θ
1−2θ is necessary for the support of the interaction to

scale in the NLS way and the condition ν > 1/2 ensures that due to energy

conservation there are no exited states in the confined direction.

5. In addition to the hard wall confinement we can add ε−2V ⊥(y) for any

bounded potential V ⊥ in the N -particle Hamiltonian. The only difference

in this situation is that then χ is an eigenfunction of the operator ε−2(−∆y +

V ⊥(y)) on Ωc.

6. With the help of the methods developed in [Pic3] it should be possible to

extend this result up to θ < 2/3 maybe at a cost of
√

logN in the exponential.

As Chen and Holmer conjectured in [CH1] for a confinement in one dimension

we expect the above theorem to hold for θ ∈ (0, 1] with only the condition

ν < θ
1−2θ for θ ∈ (0, 1/2) and no condition on ν for θ ∈ [1/2, 1].

7. The boundedness of ‖ϕ(s)‖H2(Ω)∩L∞(Ω) and
∥∥∆|ϕ(s)|2

∥∥
L2(Ω)

‖ϕ(s)‖L∞(Ω) fol-

lows from the condition on ϕ(0). This is well known and discussed in Ap-

pendix A.

3.3. Outline of the Proofs

The proofs of the main results are given in Chapter 4-7. In Chapter 4 we prove

Theorem 1. This proof can be understood as a nontechnical blueprint for the

method used in the following ones. In Chapter 5 we develop the notation associated

with the measure β, explain this measure in more detail and state inequalities we

often use in proofs. In the two remaining chapters we prove Theorem 2 and Theorem

3.

The general idea of all proofs is straight forward: First we calculate the derivative

of the measure and afterwards we try to bound this derivative by the measure itself

and by terms which turn to zero in the limit. Then the application of the Grönwall

lemma leads to the desired results. This process is depicted in great detail in the

nontechnical case of Theorem 1 in Chapter 4.

3.4. Outlook

There are several interesting questions beyond the scope of this thesis. The most

obvious questions are to prove results for the rate of convergence for 1/3 ≤ θ ≤ 1

in the case of strong confinement in two directions and for θ ∈ (0, 1] in the case

of strong confinement in one direction. Another point is to enlarge the class of

allowed two-particle interactions for the above questions. Furthermore, one could
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try to improve the rates of convergence, possibly with the help of the methods used

in [BDOS] if they are applicable.

Apart from these questions there are more questions coming from the adiabatic

structure of the problem. Is it possible to obtain higher orders corrections in ε like

in adiabatic theory? Can one allow a strongly confining potential which depends

on the coordinates of the free directions?

3.5. Notation Used for the Proofs

We will drop the dependencies on t, ε and N for better representation whenever

this does not lead to confusion. We abbreviate A ≤ CB by A . B, where the

constant C depends only on Lp-norms of w and the number of confined directions

but never on t, ε and N . For a function defined as a sum f = f1 + f2 we define the

shorthand

‖f‖Lp+Lq := ‖f1‖Lp + ‖f2‖Lq

and for any function f

‖f‖Lp∩Lq := ‖f‖Lp + ‖f‖Lq .

For the scaler product in L2(ΩN ) we define the shorthand

⟪·, ·⟫ := 〈·, ·〉L2(ΩN )

and for the L2-norm on ΩN we use

‖·‖ := ‖·‖L2(ΩN ) .

We write wij for w(ri − rj) and hence we write ws12 for ws(ri − rj) and w∞12 for

w∞(ri − rj). In the case where θ = 0 we set for all calculations w(ri − rj) =

0 ∀ri, rj /∈ Ω̃. This has no impact on the estimated terms since the terms are

always of the form

⟪ψ,w(ri − rj)ψ⟫

which only depends on the values of w on the set Ω̃. We sometimes regard ϕ as a

function on R3 where we set ϕ(r) = 0 for r /∈ Ω. Where it is convenient we use the

Dirac notation for scalar products in L2(Ω) and for projections on a function

|ϕ(r)〉〈ϕ(r)| := ϕ(r)〈ϕ(r), ·〉L2(Ω,dr).

We denote the Sobolev spaces by W k,p and use Hk for W k,2. The space of the weak

Lp-functions is denoted by Lpw.
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4. Proof of Theorem 1

This following proof can be seen as an illustration of Pickl’s method [KP, Pic4] for

a model with a strongly confining potential.

The idea is to use a Grönwall argument for α, so the first step is to check that

α ∈ C1(R) and then to control the derivative by terms that either become negligible

in the limit N → ∞, ε → 0 or are bounded by Cα. It turns out that it is best to

calculate the time derivative of α in the form

α = ⟪ψ, q1ψ⟫
and then to decompose the derivative of α in terms that can be estimated one by

one. The decomposition is such that the part for which the mean field cancels the

full interaction is separated from the rest. This decomposition will recur in the

proofs of all theorems of this thesis and is essential to the method of Pickl.

Remark 4. To make the representation of the following calculation as clear as pos-

sible we replace the prefactor N−1 in front of the interaction in equation (3.1) by

(N − 1)−1. Thus the considered N -particle Hamiltonian is

Hε
N =

N∑
i=1

hεi +
1

N − 1

N∑
i≤j

wε(ri − rj).

This change clarifies the calculations significantly since no extra terms of order

O(N−1) appear in the calculations and at the same time this does not change the

dynamics generated by this Hamiltonian for large N .

We begin with the decomposition of the derivative of α.

Lemma 4.1. Control of the derivative of α

∂tα ≤ I + II + III,

where

I := 2|⟪ψ, p1p2W
ε
12q1p2ψ⟫|

II := 2|⟪ψ, p1p2W
ε
12q1q2ψ⟫|

III := 2|⟪ψ, p1q2W
ε
12q1q2ψ⟫|

and

W ε
12 : = wε12 − (w0 ∗ |Φ|2)(x1). (4.1)
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4. Proof of Theorem 1

In the first term the mean field cancels the full interaction and the term will thus

be small. The second and the third term will be controlled by α. The physically

intuition is that both of these terms are small for a ψ close to a product state, since

in this case q1q2ψ is small. However, making this idea rigorous via mathematical

estimates is the main work of the proof. The estimation results are summed up by

the next lemma.

Lemma 4.2. 1.

I ≤ 2f(ε)(1 + ‖ϕ‖2L∞(Ω)) (4.2)

2.

II ≤ 2 ‖wε‖L2(Ω̃)+L∞(Ω̃) (1 + ‖ϕ‖L∞(Ω))(α+
1

N
) (4.3)

3.

III ≤ 2(
∥∥w0

∥∥
L1(Ωf)+L∞(Ωf)

+ ‖wε‖L2(Ω̃)+L∞(Ω̃))(1 + ‖ϕ‖L∞(Ω) + ‖Φ‖2L2(Ωf)
)α

(4.4)

Finally we state a version of the Grönwall Lemma. Its application is the final

step in the proof of Theorem 1.

Lemma 4.3 (Grönwall). Let the function f : R → R for t ∈ [0,∞) satisfy the

inequality

ḟ(t) ≤ C(t)(f(t) + δ),

where C : R→ R and δ is a real constant. Then for t ∈ [0,∞)

f(t) ≤ e
∫ t
0 C(s)dsf(0) +

(
e
∫ t
0 C(s)ds − 1

)
δ.

Proof of Theorem 1. Lemma 4.1 and Lemma 4.2 lead to the following bound on α̇

α̇ ≤ C(t)
(
α+

1

N
+ f(ε)

)
,

where

C(t) : = 4
( ∥∥w0

∥∥
L1(Ωf)+L∞(Ωf)

+ ‖wε‖L2(Ω̃)+L∞(Ω̃)

)
×
∫ t

0
(1 + ‖ϕ(s)‖L∞(Ω) + ‖Φ(s)‖L∞(Ωf)

)2ds.

Now the claim follows with Lemma 4.3.
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Proof of the Lemmas

Proof of Lemma 4.1. Recall the definition of α

α :R→ [0, 1],

t 7→ ⟪Ψ(t), q1(t)Ψ(t)⟫.
The image of α is [0, 1] since ‖ψ‖ = 1 and q(t) is a orthonormal projection. The func-

tional α is an element of C1(R) since the scalar product is linear, ψ(t) ∈ C1(R,HN )

and q1(t) ∈ C1(R,L(HN )) which follows from ϕ(t)〈ϕ(t), ·〉 ∈ C1(R,L(H)). For the

next calculation we note

∂t

(
ϕ(t)〈ϕ(t), ·〉L2(Ω)

)
= (∂tϕ(t))〈ϕ(t), ·〉L2(Ω) + ϕ(t)〈∂tϕ(t), ·〉L2(Ω)

= −ihΦϕ(t)〈ϕ(t), ·〉L2(Ω) + iϕ(t)〈ϕ(t), hΦ·〉L2(Ω),

where hΦ = −∆x + w0 ∗ |Φ(t)|2. This equation can be written in a more compact

form for the operator q(t)

i∂tq(t) = [hΦ, q(t)]. (4.5)

With the above remarks we can calculate

∂tα = ∂t⟪ψ, q1ψ⟫
= ⟪ψ̇, q1ψ⟫+ ⟪ψ, q1ψ̇⟫+ ⟪ψ, (∂tq1)ψ⟫
= i⟪ψ,HNq1ψ⟫− i⟪ψ, q1HNψ⟫− i⟪ψ, [Hx1+Hy1 , q1]ψ⟫
= i⟪ψ, [HN , q1]ψ⟫− i⟪ψ, [Hx1+Hy1 , q1]ψ⟫
= i(⟪ψ, [HN − hΦ

x1 , q1]ψ⟫, (4.6)

where we used equation (4.5). Since only the parts of HN which act on the first

particle do not commute with q1 we find

⟪ψ, [HN , q1]ψ⟫ = ⟪ψ, [−∆x1 −
1

ε2
∆y1 + wε12, q1]ψ⟫, (4.7)

where we used the symmetry of ψ to write

1

N − 1

N∑
j=2

wε1j = wε12.

Inserting (4.7) in equation (4.6) all one-particle operators vanish since −∆x can-

cels and − 1
ε2

∆y1 commutes with a projection onto one of its eigenfunction and

hence with q1. We are left with

∂tα = i⟪ψ, [W ε
12, q1]ψ⟫, (4.8)
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4. Proof of Theorem 1

where we recall that W ε
12 is a shorthand for wε12 − (w0 ∗ |Φ|2)(x1). The next step is

the decomposition of (4.8) to this end we insert 1 = p1 + q1 on both sides of the

commutator of (4.8) leading to

∂tα = i⟪ψ, p1W
ε
12q1ψ⟫− i⟪ψ, q1W

ε
12p1ψ⟫ = −2=⟪ψ, p1W

ε
12q1ψ⟫.

Last we insert 1 = (p2 + q2) on each side of W ε
12

∂tα = −2=⟪ψ, p1p2W
ε
12q1p2ψ⟫− 2=⟪ψ, p1p2W

ε
12q1q2ψ⟫

− 2=⟪ψ, p1q2W
ε
12q1q2ψ⟫− 2=⟪ψ, p1q2W

ε
12q1p2ψ⟫,

where =⟪ψ, p1q2W
ε
12q1p2ψ⟫ = 0 since it is the imaginary part of a self-adjoint

operator p1q2W
ε
12q1p2 under exchange of particle 1 and 2. Taking the absolute

value of the right side proves the lemma.

Proof of Lemma 4.2.1 . Here we show that the mean field interaction cancels the

full interaction. If we examine p2W
ε
12p2 we find

p2W
ε
12p2 = p2

(
wε12 − w0 ∗ |Φ|2)

)
p2

= |ϕ(r2)〉〈ϕ(r2)|wε(r1 − r2)− (w0 ∗ |Φ|2)(r1)|ϕ(r2)〉〈ϕ(r2)|

= p2

(∫
Ω
wε(r1 − r2)|ϕ(r2)|2dr2 −

(
w0 ∗ |Φ|2|χ|2)

)
(r1)

)
= p2

(
(wε − w0) ∗ |ϕ|2

)
(r1), (4.9)

where we used the fact that (w0 ∗ |ϕ|2)(x1) is constant in the y1-direction to rewrite

the term as (w0 ∗ |ϕ|2|χ|2)(r1). If we enter (4.9) in the term I we obtain

I = 2|⟪ψ, p1p2W̃12q1p2ψ⟫| = 2|⟪ψ, p1p2

(
(wε − w0) ∗ |ϕ|2

)
(r1)q1ψ⟫|

≤ 2 ‖q1ψ‖
∥∥((wε − w0) ∗ |ϕ|2

)
(r1)p1p2ψ

∥∥
≤ 2‖

(
(wε − w0) ∗ |ϕ|2

)
(r1)‖L∞(Ω). (4.10)

This operator norm can be estimated with the help of Young’s inequality, where

we use suppwε = Ω̃ and suppϕ = Ω,∥∥(wε − w0) ∗ |ϕ|2
∥∥
L∞(Ω)

≤
∥∥(wε∞ − w0

∞) ∗ |ϕ|2
∥∥
L∞(Ω)

+
∥∥(wεs − w0

s) ∗ |ϕ|2
∥∥
L∞(Ω)

≤
∥∥wε∞ − w0

∞
∥∥
L∞(Ω̃)

+
∥∥(wεs − w0

s)
∥∥
L1(Ω̃)

‖ϕ‖2L∞(Ω)

A1
≤ f(ε)(1 + ‖ϕ‖2L∞(Ω)). (4.11)

Putting (4.10) and (4.11) together yields

I ≤ 2f(ε)(1 + ‖ϕ‖2L∞(Ω)).
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Proof of Lemma 4.2.2 . This term can be bounded by α since with the help of the

symmetry we can figuratively swap a q with a p at a cost of a term which is of

order N−1. Before we swap we have to rewrite the term and then use Lemma 4.4

to swap. First notice that the mean field interaction vanishes since it only acts on

the first coordinate which results in p2q2 = 0.

⟪ψ, p1p2W
ε
12q1q2ψ⟫ = ⟪ψ, p1p2w

ε
12q1q2ψ⟫

sym.
=

1

(N − 1)
⟪ψ,

N∑
j=2

p1pjw
ε
1jq1qjψ⟫

≤ 1

(N − 1)
‖q1ψ‖

∥∥∥∥∥∥
N∑
j=2

qjw
ε
1jp1p2ψ

∥∥∥∥∥∥
4.4
≤ α

1
2 ‖wε12p1‖Op

(
α+

1

N

) 1
2

≤ ‖wε12p1‖Op (α+
1

N
)

4.5
≤ ‖wε‖L2(Ω̃)+L∞(Ω̃) (1 + ‖ϕ‖L∞(Ω))(α+

1

N
)

Proof of Lemma 4.2.3 . In this term we have enough qs to get an α and the norm

of the interaction which remains can be bounded with Lemma 4.5.

⟪ψ, p1q2W
εq1q2ψ⟫ ≤ ‖W εp1‖Op ‖q2ψ‖ ‖q1q2ψ‖

(4.1)

≤
( ∥∥w0 ∗ |Φ|2

∥∥
Op

+ ‖wε12p1‖Op

)
α

4.5
≤
(∥∥w0

∥∥
L1(Ωf)+L∞(Ωf)

(1 + ‖Φ‖2L∞(Ωf)
)

+ ‖wε‖L2(Ω̃)+L∞(Ω̃) (1 + ‖ϕ‖L∞(Ω)

)
α

≤
( ∥∥w0

∥∥
L1(Ωf)+L∞(Ωf)

+ ‖wε‖L2(Ω̃)+L∞(Ω̃)

)
(
1 + ‖ϕ‖L∞(Ω) + ‖Φ‖2L∞(Ωf)

)
α

Lemma 4.4. ∥∥∥∥ N∑
j=2

qjw
ε
1jp1p2ψ

∥∥∥∥ ≤ (N − 1) ‖wε12p1‖Op

(
α+

1

N

) 1
2
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4. Proof of Theorem 1

Proof.∥∥∥∥∥∥
N∑
j=2

qjw
ε
1jp1p2ψ

∥∥∥∥∥∥
2

=
N∑

l,j=2

⟪ψ, p1pjw
ε
1jqjqlw

ε
1lp1plψ⟫

=

N∑
l 6=j
⟪ψ, qlp1pjw

ε
1jw

ε
1lp1plqjψ⟫+

N∑
j=2

⟪ψ, p1pjw
ε
1jqjw

ε
1jp1pjψ⟫

≤ (N − 1)(N − 2) ‖q2ψ‖ ‖q3ψ‖ ‖wε13p1‖Op ‖w
ε
12p1‖Op + (N − 1) ‖wε12p1‖2Op

≤ (N − 1) ‖wε12p1‖2Op

(
(N − 2)α+ 1

)
≤ (N − 1)2 ‖wε12p1‖2Op

(
α+

1

N

)

Lemma 4.5. 1.∥∥w0 ∗ |Φ|2
∥∥
L∞(Ωf)

≤
∥∥w0

∥∥
L1(Ωf)+L∞(Ωf)

(1 + ‖Φ‖2L∞(Ωf)
) (4.12)

2.

‖wε12p1‖Op ≤ ‖w
ε‖L2(Ω̃)+L∞(Ω̃)

(
1 + ‖ϕ‖L∞(Ω)

)
(4.13)

Proof. For the proof we use the assumptions on wε, w0 and ϕ and Young’s inequal-

ity. The first estimate is obtained by

∥∥w0 ∗ |Φ|2
∥∥
L∞(Ωf)

≤
∥∥w0
∞ ∗ |Φ|2

∥∥
L∞(Ωf)

+
∥∥w0

s ∗ |Φ|2
∥∥
L∞(Ωf)

≤
∥∥w0
∞
∥∥
L∞(Ωf)

+
∥∥w0

s

∥∥
L1(Ωf)

‖Φ‖2L∞(Ωf)

=
∥∥w0

∥∥
L1(Ωf)+L∞(Ωf)

(1 + ‖Φ‖2L∞(Ωf)
).

The second statement follows with

‖wε12p1‖Op ≤ ‖w
ε,∞
12 p1‖Op + ‖wε,s12 p1‖Op ≤ ‖w

ε
∞‖L∞(Ω̃) + ‖wε,s12 p1‖Op

together with

‖wε,s12 p1‖Op = sup
‖ρ‖=1

‖wε,s12 |ϕ〉〈ϕ|ρ‖L2(Ω2)

= sup
‖ρ‖=1

(〈
ρ, |ϕ〉〈ϕ|(wε,s12 )2|ϕ〉〈ϕ|ρ

〉
L2(Ω2)

) 1
2

≤
∥∥(wεs)

2 ∗ |ϕ|2
∥∥ 1

2

L1(Ω)

≤ ‖wεs‖L2(Ω̃) ‖ϕ‖L∞(Ω) .
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Proof of Lemma 4.3. Let g : R → R be a continuous function in [0, T ] and differ-

entiable in (0, T ) with

ġ(t) ≤ C(t)g(t).

Define G(t) as

G(t) := e
∫ t
0 C(s)ds.

Note that Ġ(t) = C(t)G(t) and g(0)
G(0) = g(0).

∂t

( g(t)

G(t)

)
=
ġ(t)G(t)− g(t)Ġ(t)

G(t)2
≤ C(t)g(t)G(t)− C(t)g(t)G(t)

G(t)2
= 0

Thus g(t)
G(t) ≤ g(0) which implies

g(t) ≤ e
∫ t
0 C(s)dsg(0).

Now let g(t) = f(t) + δ with ġ(t) = ḟ(t) ≤ C(t)(f(t) + δ) = C(t)g(t). Hence

f(t) + δ ≤ e
∫ t
0 C(s)ds(f(0) + δ)

and consequently

f(t) ≤ e
∫ t
0 C(s)dsf(0) +

(
e
∫ t
0 C(s)ds − 1

)
δ.
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5. Measures of Convergence: α and β

In this section we discuss the properties of the functionals α and β and how they

relate to Tr
∣∣γψ − |ϕ〉〈ϕ|∣∣. The functional α and β were first introduced by Pickl

in [Pic1, KP, Pic3] and the fermionic counterpart to α was recently used by Petrat

and Pickl to derive the mean field for fermions [PP]. In these papers the properties

of the functionals were developed and discussed in detail. Here we represent the

parts needed for a basic understanding and which are necessary for our further

calculations. For a complete presentation we also restate the proofs given by Pickl.

We first state the functional α in the way we defined it in equation (3.4)

α := 1− 〈ϕ, γψϕ〉L2(Ω),

where ϕ ∈ L2(Ω) and γψ is the one-particle density matrix of ψ ∈ L2(ΩN ). The

one-particle density matrix is a positive trace class operator which is defined by its

kernel

γψ(x′1, x1) :=

∫
ψ(x′1, . . . , xN )ψ(x1, . . . , xN )dx2 · · · dxN .

As seen in the last chapter it is helpful to work with a different representation of

α. To this end we define the following projections.

Definition 1. Let ϕ ∈ L2(Ω) with ‖ϕ‖L2(Ω) = 1.

(a) For all i ∈ {1, . . . , N} we define

pi := 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i−1 times

⊗ϕ(ri)〈ϕ(ri), ·〉L2(Ω,dri) ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
N−i times

and

qi := 1− pi.

(b) For any 0 ≤ k ≤ N we define

Pk,N :=
(
q1 · · · qkpk+1 · · · pN

)
sym

=
∑

ai∈{0,1}:∑N
i=1 ai=k

N∏
i=1

qaii p
1−ai
i , (5.1)

where for k < 0 and k > N we set Pk,N = 0.
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5. Measures of Convergence: α and β

Part (a) of this definition allows to rewrite α for a symmetric ψ with ‖ψ‖L2(ΩN ) =

1 as

α = 1− 〈ϕ, γψϕ〉L2(Ω) = 1− 1

N

N∑
i=1

⟪ψ, piψ⟫ = 1− ⟪ψ, p1ψ⟫ = ⟪ψ, q1ψ⟫. (5.2)

The last representation of α is, as seen in the proof of Theorem 1, the most useful

one for calculating the derivative and applying the Grönwall Lemma. With part (b)

of the definition we can rewrite α further which will offer a way to generalize this

functional to apply the approximation scheme of Chapter 4 to stronger singularities

and to the derivation of the Gross-Pitaevskii equation.

Lemma 5.1. (a)

N∑
k=0

Pk,N = 1

(b)

N∑
i=1

qiPk,N = kPk,N

The proofs are deferred to the end of this section. If we apply this Lemma to α

for a symmetric ψ with L2-norm one

α = ⟪ψ, q1ψ⟫ = ⟪ψ, 1

N

N∑
i=1

qi

N∑
k=0

Pk,Nψ⟫ = ⟪ψ,
N∑
k=0

k

N
Pk,Nψ⟫.

Now we can interpret α as a counting functional which counts with the weight k
N

the wave function’s norm in the image of the projections Pk,N . For a symmetric

product state one can read off the counting functional’s value: Let ϕ⊥j ∈ Spanϕ⊥

and ψ =
(
ϕ⊗(N−k) ⊗

⊗k
j=1 ϕ

⊥
j

)
sym

for a k with 0 ≤ k ≤ N then

α = ⟪ψ,
N∑
k=0

k

N
Pk,Nψ⟫ =

k

N
.

The following aspect is far more important: We can generalize the functional if we

use any positive function f(k) as a counting measure

αf = ⟪ψ,
N∑
k=0

f(k)Pk,Nψ⟫.

It turns out that the function
√

k
N is in a sense explained at the end of this section

the optimal weight. Thus we define
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5.1. The Relationship between α and Density Matrices

β := ⟪ψ,
N∑
k=0

√
k

N
Pk,Nψ⟫.

Since k
N ≤

√
k
N for k ∈ {0, . . . , N} we have

α ≤ β. (5.3)

Before we collect some facts for the use of α and β we discuss the relationship of

these functionals with

Tr
∣∣γψ − |ϕ〉〈ϕ|∣∣.

5.1. The Relationship between α and Density Matrices

It turns out that convergence to zero of the functional α is equivalent to convergence

to zero of

Tr
∣∣γψ − |ϕ〉〈ϕ|∣∣. (5.4)

This is encapsulated in the following lemma.

Lemma. Let γψ be a density matrix and ϕ ∈ L2 satisfy ‖ϕ‖ = 1. Then

α ≤ Tr
∣∣γψ − |ϕ〉〈ϕ|∣∣ ≤ √8α. (5.5)

Proof. We restate the proof given in [PP] for fermions since it offers a nice interpre-

tation of the origin of the different rates of convergence. A proof for the statement

above which covers also a generalization can be found in [KP]. For the proof it is

convenient to define p := |ϕ〉〈ϕ| and q := 1− p.

α = 1− 〈ϕ, γψϕ〉 = Tr
(
p− pγψ

)
≤ ‖p‖Op Tr

∣∣p− γψ∣∣ = Tr
∣∣γψ − |ϕ〉〈ϕ|∣∣

For the second ”≤” we notice that qγq and p−pγp are positive operators; the latter

since γ ≤ 1. Now we find

Tr
∣∣p− γψ∣∣ = Tr

∣∣p− pγψp− qγψq − qγψp− pγψq∣∣
≤ Tr

∣∣p− pγψp∣∣+ Tr
∣∣qγψq∣∣+ Tr

∣∣qγψp∣∣+ Tr
∣∣pγψq∣∣

= Tr(p− pγψp) + Tr(qγψq) + Tr
∣∣qγψp∣∣+ Tr

∣∣pγψq∣∣
= 2α+ Tr

∣∣q√γψ√γψp∣∣+ Tr
∣∣p√γψ√γψq∣∣

≤ 2α+ 2
∥∥∥√γψq∥∥∥

HS

∥∥∥√γψp∥∥∥
HS

= 2α+ 2
√

Tr (qγψq) Tr (pγψp)

= 2α+ 2
√
α(1− α) ≤

√
8α,
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5. Measures of Convergence: α and β

where the last inequality holds since 0 ≤ α ≤ 1 and the fact that the function

2x+ 2
√
x(1− x)−

√
8x is not positive for x ∈ [0, 1].

Although convergence to zero in one measure implies convergence to zero in the

other measure the rates of convergence differ in general. The reason for this is

the different treatment of pγψq in (5.4) and α. Since α controls only the diagonal

entries of γψ with respect to p and q the cross terms have to be controlled by the

diagonal terms which is only possible at a the cost of taking the square root.

5.2. Elementary Properties for Working with β

In this section we introduce some notation to be able to estimate expressions con-

taining the projections Pk,N . We also state some estimates which recur often in the

proof of the theorems and we explain why we use the weight
√

k
N .

Definition 2. (a) For any function f : {0, . . . , N} → C we define the operator

f̂ :=

N∑
k=0

f(k)Pk,N .

(b) For any j ∈ Z we define the shift operator on a function by

(τjf)(k) = f(k + j),

where we set (τjf)(k) = 0 for k + j /∈ {0, . . . , N}.

The function
√

k
N will be used quite often in the proofs thus we define

n :{0, . . . , N} → [0, 1]

k 7→
√
k

N
.

Now we collect some properties of the operator f̂ .

Lemma 5.2. (a) For all functions f, g : {0, · · · , N} → C

f̂ ĝ = f̂g = ĝf̂ f̂pj = pj f̂ f̂Pk,N = Pk,N f̂ .

(b) Let f be a nonnegative function {0, . . . , N} → [0,∞) and ψ ∈ L2(R3N ) a

symmetric function, then for j ∈ {1, . . . , N}

〈ψ, f̂qjψ〉 = 〈ψ, f̂ n̂2ψ〉

and for i ∈ {1, . . . N}, i 6= j

〈ψ, f̂qiqjψ〉 ≤
N

N − 1
〈ψ, f̂ n̂4ψ〉.
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5.2. Elementary Properties for Working with β

(c) For any function f : {0, 1, · · · , N} → C and any operator T acting on two

coordinates ri, rj of HN

f̂QjTQk = QjTQkτ̂j−kf (5.6)

QjTQkf̂ = τ̂k−jfQjTQk (5.7)

for Q0 := pipj, Q1 ∈ {piqj , qipj}, Q2 := qiqj.

The second statement illustrates how the qs fit in the framework of the hatted

operators and the third statement is crucial for the use of general weights. The

reason for this is that the fact [HN , q1] = O(1) used in equation (4.7) seems at first

untrue for arbitrary operators f̂ . However, with (c) one can show that for suitable

f for example f =
√
k/N the commutator [HN , f̂ ] is still of order one.

To simplify the notation in the proofs we formally write n−1 for

N∑
k=0

( k
N

)−1/2
Pk,N .

We will use this to estimate terms of the form
∥∥n̂−1q1ψ

∥∥, where the q1 ensures that

we do not divide by 0.

To be able to compute the time derivative of 〈ψ, f̂ψ〉 we note:

Lemma 5.3. Let ϕ ∈ C1(R, L2(Ω)), then

(a) ∀k ∈ {0, . . . , N}

Pk,N (t) ∈ C1(R,L(HN )).

Let ϕ = Φχ, where χ is an eigenfunction of −ε2∆y on Ωc, then

(b)

[−∆y, f̂ ] = 0

(c)

i∂tf̂ = [HΦ, f̂ ],

where HΦ :=
∑N

i h
Φ
i and hΦ is the Hamiltonian associated with Φ.

The next estimates are needed for the control of the terms emerging from the

derivation of α and β.

Lemma 5.4. Let f ∈ L2(R3) and p = |ϕ〉〈ϕ|.
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5. Measures of Convergence: α and β

(a)

‖f(r)p‖Op ≤ ‖f‖L2(R3) ‖ϕ‖L∞(R3)

(b)

‖f(r1 − r2)p1‖Op ≤ ‖f‖L2(R3) ‖ϕ‖L∞(R3)

(c) Let g ∈ L1(R3).

‖p1g(r1 − r2)p1‖Op ≤ ‖g‖L1(R3) ‖ϕ‖
2
L∞(R3)

Corollary 5.5. Let A1′ hold for w0 and wε.

(a) ∥∥wε ∗ |ϕ|2∥∥
Op

. (1 + ‖ϕ‖L∞(Ω))
2

(b)

‖p2w
ε
12p2‖Op . (1 + ‖ϕ‖L∞(Ω))

2

Lemma 5.6. For all l ∈ N the expression∥∥(m̂− τ̂lm)q1ψ
∥∥

can be estimated,

(a) if m(k) = k
N by

∥∥(m̂− τ̂lm)q1ψ
∥∥ ≤ l

N
,

(b) if m(k) =
√

k
N by

∥∥(m̂− τ̂lm)q1ψ
∥∥ ≤ l

N
.

Now we can explain why the weight
√

k
N is special. On the one hand we will

have to find bounds of the form

⟪ψ, p1p2g(r1 − r2)q1p2ψ⟫ ≤ C⟪ψ, f̂ψ⟫+O(N−1) (5.8)
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5.3. Remaining Proofs of this Chapter

for suitable functions g. With the tools now developed we can estimate the left

hand side of (5.8) by

⟪ψ, p1p2g(r1 − r2)p2q1ψ⟫ 5.2
= ⟪ψ, τ̂1hp1p2g(r1 − r2)ĥ−1q1p2ψ⟫

.
∥∥∥τ̂1hψ

∥∥∥∥∥∥ĥ−1q1ψ
∥∥∥ !
≤ C⟪ψ, f̂ψ⟫+O(N−1),

where h is a suitable function. By the scaling behavior this implies∥∥∥ĥ−1q1ψ
∥∥∥ ,∥∥∥τ̂1hψ

∥∥∥ ≤ ∥∥∥f̂1/2ψ
∥∥∥+O(N−1). (5.9)

On the other hand we will need a bound of the form∥∥∥(f̂ − τ̂1f
)
q1ψ
∥∥∥ = O(N−1).

If both conditions hold we indeed find that the function f is up to a positive constant

determined and given by

f =

√
k

N
.

We formulate this in the following lemma.

Lemma 5.7. If for a monotone function f : {0, . . . , N} → R with f(0) = 0∥∥∥(f̂ − τ̂1f
)
q1ψ
∥∥∥ = O(N−1) (5.10)

holds and ∃h : {0, . . . , N} → R such that∥∥∥ĥ−1q1ψ
∥∥∥ , ∥∥∥τ̂1hψ

∥∥∥ ≤ ∥∥∥f̂1/2ψ
∥∥∥ (5.11)

holds, then up to a positive constant

f =

√
k

N
.

The two properties (5.8) and (5.9) will be crucial in the proofs of Theorem 2 and

Theorem 3 thus we have to use the counting functional β to proof them with the

used method.

5.3. Remaining Proofs of this Chapter

Proof of Lemma 5.1. (a) This follows from the fact that qi + pi = 1.
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5. Measures of Convergence: α and β

(b)

N∑
j=1

qj =
N∑
j=1

qj

N∑
k=0

Pk,N =
N∑
k=0

N∑
j=1

qjPk,N

=
N∑
k=0

N∑
j=1

∑
ai∈{0,1}:∑N
i=1 ai=k

N∏
i=1

qjq
ai
i p

1−ai
i︸ ︷︷ ︸

δaj,1q
ai
i p

1−ai
i

=
N∑
k=0

k
∑

ai∈{0,1}:∑N
i=1 ai=k

N∏
i=1

qaii p
1−ai
i

=
N∑
k=0

kPk,N

Proof of Lemma 5.2. (a) Using the definitions

f̂ ĝ =
∑
k

f(k)Pk,N
∑
l

g(l)Pl,N =
∑
k,l

f(k)g(l)Pk,NPl,N︸ ︷︷ ︸
δk,lPk,N

= f̂g = ĝf̂ .

(b) The equality follows from symmetry of f̂ψ and Lemma 5.1(b).

For the proof of the inequality let without loss of generality i = 1, j = 2:

〈ψ, f̂q1q2ψ〉 =
1

N(N − 1)
〈ψ, f̂

∑
i 6=j

qiqjψ〉

≤ 1

N(N − 1)
〈ψ, f̂

∑
i,j

qiqjψ〉

=
N

(N − 1)
〈ψ, f̂ n̂4ψ〉.
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5.3. Remaining Proofs of this Chapter

(c)

f̂QjTQk =
N∑
l=0

f(l)Pl,NQjTQk =
N∑
l=0

f(l) Pl−j,N−2︸ ︷︷ ︸
only onx3..xN

QjTQk

=

N∑
l=0

QjTQkf(l)Pl−j,N−2

=

N+k−j∑
l=k−j

QjTQkf(l + j − k)Pl−k,N−2

=

N+k−j∑
l=k−j

QjTQk(τj−kf)(l)Pl,N

=
N∑
l=0

QjTQk(τj−kf)(l)Pl,N = QjTQkτ̂j−kf

The converse direction follows in the same way.

Proof of Lemma 5.3. (a) This follows from the fact that for ϕ ∈ C1(R, L2(Ω)) the

operator

ϕ(t)〈ϕ(t), ·〉L2(Ω)

is an element of C1(R,L(H)).

(b) This is the fact that an eigenfunction of an operator computes with this oper-

ator.

(c) Using i∂tpi(t) = [hΦ
i , pi(t)], i∂tqi(t) = [hΦ

i , qi(t)] and the product rule we get

i∂tf̂ = i∂t

N∑
k=0

f(k)Pk,N =
N∑
k=0

f(k)i∂t
∑

ai∈{0,1}:∑N
i=1 ai=k

N∏
i=1

qaii p
1−ai
i

=
N∑
k=0

f(k)[
N∑
l=1

hΦ
l ,

∑
ai∈{0,1}:∑N
i=1 ai=k

N∏
i=1

qaii p
1−ai
i ]

= [
N∑
l=1

hΦ
l ,

N∑
k=0

f(k)
∑

ai∈{0,1}:∑N
i=1 ai=k

N∏
i=1

qaii p
1−ai
i ]

=: [HΦ, f̂ ].
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5. Measures of Convergence: α and β

Proof of Lemma 5.4. (a) For any f ∈ L2(R3)

‖f(r1)p1‖2Op = sup
‖ψ‖=1

〈ψ, p1f(r1)2p1ψ〉L2(R3)

= sup
‖ψ‖=1

〈
ψ, |ϕ(r1)〉〈ϕ(r1)|f(r1)2|ϕ(r1)〉〈ϕ(r1)|ψ

〉
L2(R3)

= 〈ϕ(r1)|f(r1)2|ϕ(r1)〉L2(R3) sup
‖ψ‖=1

〈
ψ, |ϕ(r1)〉〈ϕ(r1)|ψ

〉
L2(R3)

= 〈ϕ(r1)|f(r1)2|ϕ(r1)〉L2(R3) sup
‖ψ‖=1

〈ψ, p1ψ〉L2(R3).

Using the Hölder inequality for the first term and the fact that p1 is a projection

we find

‖f(r1)p1‖2Op ≤ ‖ϕ‖
2
L∞(R3) ‖f‖

2
L2(R3) sup

‖ψ‖=1
‖ψ‖2L2(R3) = ‖ϕ‖2L∞(R3) ‖f‖

2
L2(R3) .

(b)

‖f(r1 − r2)p1‖2Op = sup
‖ψ‖=1

〈
ψ, p1f(r1 − r2)2p1ψ

〉
L2(R6)

= sup
‖ψ‖=1

〈
ψ, |ϕ(r1)〉〈ϕ(r1)|f(r1 − r2)2|ϕ(r1)〉〈ϕ(r1)|ψ

〉
L2(R6)

= sup
‖ψ‖=1

〈
ψ, |ϕ(r1)〉〈ϕ(r1)|〈ϕ(r1)|f(r1 − r2)2|ϕ(r1)〉ψ

〉
L2(R6)

≤ sup
‖ψ‖=1

‖ψ‖2L2(R6)

∥∥〈ϕ(r1)|f(r1 − r2)2|ϕ(r1)〉
∥∥
L∞(R3)

=
∥∥|ϕ|2 ∗ f2

∥∥
L∞(R3)

≤ ‖ϕ‖2L∞(R3) ‖f‖
2
L2(R3)

(c) For any g ∈ L2(R3)

‖p1g(r1 − r2)p1‖Op = sup
‖ψ‖=1

‖p1g(r1 − r2)p1Ψ‖L2(R6)

= sup
‖ψ‖=1

‖|ϕ(r1)〉〈ϕ(r1)|g(r1 − r2)|ϕ(r1)〉〈ϕ(r1)|Ψ‖L2(R6)

= sup
‖ψ‖=1

‖〈ϕ(r1)|g(r1 − r2)|ϕ(r1)〉|ϕ(r1)〉〈ϕ(r1)|Ψ‖L2(R6)

≤ ‖〈ϕ(r1)|g(r1 − r2)|ϕ(r1)〉‖L∞(R3) sup
‖ψ‖=1

‖p1ψ‖L2(R6)

=
∥∥|ϕ|2 ∗ g∥∥

L∞(R3)
≤ ‖ϕ‖2L∞(R3) ‖g‖L1(R3) .
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5.3. Remaining Proofs of this Chapter

Proof of Corollary 5.5 . (a) With Young’s inequality and Lp interpolation for ϕ we

get ∥∥wε ∗ |ϕ|2∥∥
Op
≤
∥∥wεs ∗ |ϕ|2∥∥L∞(R3)

+
∥∥wε∞ ∗ |ϕ|2∥∥L∞(R3)

≤ ‖wεs‖Ls(Ω̃) ‖ϕ‖
2
L2s/(s−1)(Ω) + ‖wε∞‖L∞(Ω̃)

A1′

. (1 + ‖ϕ‖L∞(Ω))
2.

(b)

‖p2w
ε
12p2‖Op ≤

∥∥wε ∗ |ϕ2|
∥∥
L∞(R3)

. (1 + ‖ϕ‖L∞(Ω))
2

The first inequality follows from the proof of Lemma 5.4(c) and the second

inequality is part (a) of this corollary.

Proof of Lemma 5.6. We calculate

∥∥(m̂− τ̂lm)q1ψ
∥∥2

= ⟪Ψ,
N∑
k=1

(
m(k)−m(k + l)

)2 k

N
Pk,Nψ⟫. (5.12)

(a) The difference of the weights squared is l2

N2 hence the result follows.

(b) The difference of the weights squared is(√
k −
√
k + l√

N

)2

=
l2

(
√
k +
√
k + l)2N

≤ l2

kN
.

Multiplying this with the remaining term k
N gives the desired result.

Proof of Lemma 5.7 . Equation (5.10) implies with (5.12) the condition

(f(k)− f(k − 1))2 . (Nk)−1 (5.13)

and equation (5.11) with the Lemma 5.2 the condition

∃h ≥ 0 : h(k)2 . f(k) , h(k)−2 k

N
. f(k).

The first condition implies f(k) .
√

k
N and the second one

√
k
N . f(k) thus

the claim follows. The second implication follows by contradiction. For the first

implication we rewrite (5.13) as

f(k) . (Nk)−1/2 + f(k − 1).
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5. Measures of Convergence: α and β

This leads to

f(k) .
k∑
l=1

(Nl)−1/2 ≤ 2

√
k

N

since f(0) = 0 and by estimating the sum by the integral of l−1/2 on the interval

[0, k].
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6. Proof of Theorem 2

For stronger singularities it is clear that the method used in the proof of Theorem 1

has to be adopted since there we control

‖wε12p1‖Op

by Lemma 5.4(b). This is only possible for wε ∈ L2(R3). The main idea how to

treat the stronger singularities will be the introduction of a vector field ξ which is

chosen such that ∇ξ = w. This vector field will have higher Lp regularity then w

and hence we will be able to control

‖ξ12p1‖Op

with Lemma 5.4(b). However, we can only make use of such an estimate after

partial integration which in turn means that we need to control ∇p and ∇q. For

the first term this is no problem since we have enough regularity since p is a solution

of a one-particle equation. For the second term we have to invest some effort but

with the help of energy conservation we are able to bound this term as well. Other

than this the proof uses the same ideas as in Chapter 4. We organize the proof by

showing the smallness of ‖∇q1ψ‖2 first in a separate section. Afterwards we bound

the derivative of β in the following section.

6.1. The Energy Lemma

This section is devoted to finding a bound for ‖∇q1ψ‖2. The main ingredients for

the proof are energy conservation, refining the weights and writing the interaction

as a divergence of a vector field.

We first recall the definitions and the assumptions which are necessary for the

formulation and prove of the Energy Lemma. Thereafter we state the lemma and

give a motivation and an outline of the proof. The last part of this section are some

auxiliary lemmas which prove the Energy Lemma and will be used again to prove

the smallness of β̇ in the next section.

6.1.1. Assumptions, Definitions and Preliminaries

For convenience we restate the assumptions of Theorem 2.
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6. Proof of Theorem 2

A1’ Let w = ws + w∞ such that for all ε ∈ (0, 1] there exists a C ∈ R such that

‖wεs‖Ls(Ω̃) ≤ C ‖wε∞‖L∞(Ω̃) ≤ C

for a s ∈ (6/5, 2). And there exist w0
s , w

0
∞ : Ωf → R and a function f(ε) :

(0, 1]→ R+ with f(ε)
ε→0→ 0 such that∥∥wεs − w0
s

∥∥
L1(Ω̃)

≤ f(ε)
∥∥wε∞ − w0

∞
∥∥
L∞(Ω̃)

≤ f(ε)

and w0
s ∈ L1(Ωf), w

0
∞ ∈ L∞(Ωf). For short notation we define

w0 := w0
s + w0

∞. (6.1)

A2’ Let Hε
N be self-adjoint with D(Hε

N ) ⊂ D(
∑N

i=1 h
ε
i ).

A3’ Let the two-particle interaction w be nonnegative.

Remark 5. The condition A3′ can be replaced by a weaker condition. Let the one-

particle Hamiltonian h be such that the potential energy can be bounded by a part

of the kinetic energy: There exists a constant κ ∈ (0, 1) such that

0 ≤ (1− κ)(h1 + h2) + wε12.

As defined in equation 3.10 and 3.11 the energy per particle Eψ(t) of ψ is

Eψ(t) :=
1

N
⟪ψεN (t), Hε

Nψ
ε
N (t)⟫

and the energy Eϕ(t) of the function ϕ is

Eϕ(t) : = 〈ϕ(t),
(
−∆x −

1

ε2
∆y +

1

2
(w0 ∗ |Φ(t)|2)

)
ϕ(t)〉L2(Ω)

= 〈Φ(t),
(
−∆x +

1

2
(w0 ∗ |Φ(t)|2)

)
Φ(t)〉L2(Ωf) + 〈χ,− 1

ε2
∆yχ〉L2(Ωc).

If we use symmetry of ψ we can rewrite Eψ as

Eψ =
1

N
⟪ΨN , H

ε
NΨN⟫ =

1

N
⟪ΨN , (−

∑
j=1

∆xj −
1

ε2
∆yj +

1

N

∑
i<j

wεij)ΨN⟫

= ⟪ψN , hε1ψN⟫+
1

N2

N

2
(N − 1)⟪ψN , wε12ψN⟫

= ⟪ψN , hε1ψN⟫+
N − 1

2N
⟪ψN , wε12ψN⟫.

Lemma 6.1. Both Eψ(t) and Eϕ(t) are constant in time:

d

dt
Eψ(t) = 0

d

dt
Eϕ(t) = 0.
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6.1. The Energy Lemma

Proof. This is proven by the calculation

d

dt
Eψ(t) =

1

N

(⟪−iHε
Nψ

ε
N (t), Hε

Nψ
ε
N (t)⟫+ ⟪ψεN (t),−iHε

NH
ε
Nψ

ε
N (t)⟫) = 0

and

d

dt
Eφ(t) =

d

dt
〈Φ(t),

(
−∆x +

1

2
(w0 ∗ |Φ(t)|2)

)
Φ(t)〉L2(Ωf)

+
d

dt
〈χε(t),− 1

ε2
∆yχ

ε(t)〉L2(Ωc)

= i〈Φ(t), [hΦ,−∆x +
1

2
(w0 ∗ |Φ(t)|2)]Φ〉L2(Ωf)

+
i

2
〈Φ(t), [hΦ, (w0 ∗ |Φ(t)|2)]Φ(t)〉L2(Ωf)

= i〈Φ(t), [hΦ,−∆x + (w0 ∗ |Φ(t)|2)]Φ(t)〉L2(Ωf)

= i〈Φ(t), [hΦ, hΦ]Φ(t)〉L2(Ωf) = 0,

where we introduced hΦ := −∆x + w0 ∗ |Φ|2 for short notation.

As a reminder the ground state energy of −∆y on Ωc was denoted by E0.

Lemma 6.2. The operator

h̃ := −∆x −
1

ε2
∆y −

E0

ε2

is a positive self-adjoint operator with

−∆ ≤ h̃+ E0

and ∥∥∥h̃p∥∥∥
Op
≤ ‖∆Φ‖L2(Ωf)

. (6.2)

Proof. The first statement follows from ∆− E0 ≤ h̃. The second one is derived as

Lemma 5.4 together with

〈ϕ, h̃2ϕ〉L2(Ω) = ‖∆Φ‖L2(Ωf)
,

where we used ( 1
ε2

∆y − E0
ε2

)χ(y) = 0.

6.1.2. The Energy Estimate and its Proof

Lemma 6.3 (Energy Lemma). Let the assumptions A1’-A3’ hold, then

‖∇q1Ψ‖2 . (Eψ − Eφ) + ‖ϕ‖2H2(Ω)∩L∞(Ω) (β +
1√
N

+ f(ε)).
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6. Proof of Theorem 2

The way we prove this is to first use Lemma 6.2 which implies

‖∇1q1ψ‖2 ≤
∥∥∥∥√h̃1q1ψ

∥∥∥∥2

+ E0 β. (6.3)

We find with q1 = 1− p1(p2 + q2) and equation (6.2) that∥∥∥∥√h̃1q1ψ

∥∥∥∥ ≤ ∥∥∥∥√h̃1(1− p1p2)ψ

∥∥∥∥+ ‖∆Φ‖L2(Ωf)

√
β (6.4)

this implies ∥∥∥∥√h̃1q1ψ

∥∥∥∥2

≤
∥∥∥∥√h̃1(1− p1p2)ψ

∥∥∥∥2

+ ‖∆Φ‖2L2(Ωf)
β (6.5)

hence we try to find a bound for
∥∥∥√h̃1(1− p1p2)ψ

∥∥∥2
to bound ‖∇1q1ψ‖2. The

necessary estimate is given in the next lemma.

Lemma 6.4.

⟪ψ, (1− p1p2)h̃1(1− p1p2)ψ⟫ . (Eψ − Eφ) + ‖ϕ‖2H2(Ω)∩L∞(Ω) (β +
1√
N

+ f(ε))

+ ‖ϕ‖L2(Ω)∩L∞(Ω)

√
β +

1

N
‖∇1q1ψ‖

Proof of the Energy Lemma. After rewriting the left-hand side of Lemma 6.4 we

find ∥∥∥∥√h̃1(1− p1p2)ψ

∥∥∥∥2

. (Eψ − Eφ) + ‖ϕ‖2H2(Ω)∩L(Ω)∞ (β +
1√
N

+ f(ε))

+ ‖ϕ‖L2(Ω)∩L∞(Ω)

√
β +

1

N
‖∇1q1ψ‖ . (6.6)

This leads to

∥∥∥∥√h̃1q1ψ

∥∥∥∥2 (6.5)

.

∥∥∥∥√h̃1(1− p1p2)ψ

∥∥∥∥2

+ ‖Φ‖2H2(Ωf)
β

(6.6)

. (Eψ − Eφ) + ‖ϕ‖2H2(Ω)∩L∞(Ω) (β +
1√
N

+ f(ε))

+ ‖ϕ‖L2(Ω)∩L∞(Ω)

√
β +

1

N
‖∇1q1ψ‖

(6.3)

. (Eψ − Eφ) + ‖ϕ‖2H2(Ω)∩L∞(Ω) (β +
1√
N

+ f(ε))

+ ‖ϕ‖L2(Ω)∩L∞(Ω)

√
β +

1

N

∥∥∥∥√h̃1q1ψ

∥∥∥∥ . (6.7)
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6.1. The Energy Lemma

Now we have an inequality of the form x2 ≤ C(R + ax) from which follows that

x2 ≤ 2CR + C2a2 since Cax ≤ 1
2C

2a2 + 1
2x

2. Applying this estimate to (6.7) we

find ∥∥∥∥√h̃1q1ψ

∥∥∥∥2

. (Eψ − Eφ) + ‖ϕ‖2H2(Ω)∩L∞(Ω) (β +
1√
N

+ f(ε))

and equation (6.3) yields

‖∇1q1ψ‖2 . (Eψ − Eφ) + ‖ϕ‖2H2(Ω)∩L∞(Ω) (β +
1√
N

+ f(ε))

which is exactly the claim of Lemma 6.3.

Proof of Lemma 6.4

The remaining part of this chapter is devoted to proving Lemma 6.4. To keep the

notation to a minimum we do not write, whenever it does not lead to confusion,

the underlying sets of the function spaces and write ‖·‖ and 〈·, ·〉 for the L2-norm

and scalar product on the appropriate set. As an example

‖Φ‖ = ‖Φ‖L2(Ωf)
‖ϕ‖H2∩L∞ = ‖ϕ‖H2(Ω)∩L∞(Ω) 〈χ, χ〉 = 〈χ, χ〉L2(Ωc).

Proof of Lemma 6.4 . The estimate of ⟪ψ, (1− p1p2)h̃1(1− p1p2)ψ⟫ is obtained by

rewriting the expression in terms of the energy difference Eψ−Eϕ and the remaining

parts. Since

Eψ − Eϕ = ⟪ψ, (p1p2 + 1− p1p2)h̃1(p1p2 + 1− p1p2)ψ⟫
+
N − 1

2N
⟪ψ, (p1p2 + 1− p1p2)wε12(p1p2 + 1− p1p2)ψ⟫

− 〈ϕ,−∆x −
1

ε2
(∆y + E)ϕ〉 − 〈Φ, 1

2
(w0 ∗ |Φ|2)Φ〉

After expanding the terms in the first row, isolating the term ⟪ψ, (1− p1p2)h1(1−
p1p2)ψ⟫ and subsequently arranging the terms in a convenient we find

⟪ψ, (1− p1p2)h̃1(1− p1p2)ψ⟫
= Eψ − Eφ

− ⟪ψ, p1p2h̃1p1p2ψ⟫+ 〈ϕ,−∆x −
1

ε2
(∆y + E)ϕ〉

− ⟪ψ, (1− p1p2)h̃1p1p2ψ⟫− ⟪ψ, p1p2h̃1(1− p1p2)ψ⟫
− N − 1

2N
⟪ψ, p1p2w

ε
12p1p2ψ⟫+ 〈Φ, 1

2
(w0 ∗ |Φ|2)Φ〉

− N − 1

2N
⟪ψ, (1− p1p2)wε12p1p2ψ⟫− N − 1

2N
⟪ψ, p1p2w

ε
12(1− p1p2)ψ⟫

− N − 1

2N
⟪ψ, (1− p1p2)wε12(1− p1p2)ψ⟫. (6.8)
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6. Proof of Theorem 2

After estimating the terms line by line we will obtain

⟪ψ, (1− p1p2)h̃1(1− p1p2)ψ⟫
.
(
Eψ − Eφ

)
+ ‖Φ‖2H1 β

+ ‖Φ‖H2 (β +
1√
N

)

+ (1 + ‖ϕ‖L∞)2(β +
1

N
+ f(ε))

+ ‖ϕ‖2H1∩L∞ (β +
1

N
) + (1 + ‖ϕ‖L∞)

√
β +

1

N
‖∇1q1ψ‖ . (6.9)

A finale simplification leads to the claimed result

⟪ψ, (1− p1p2)h̃1(1− p1p2)ψ⟫
. (Eψ − Eφ) + ‖ϕ‖2H2∩L∞ (β +

1√
N

+ f(ε))

+ ‖ϕ‖L2∩L∞

√
β +

1

N
‖∇1q1ψ‖ .

We prove the estimates that lead from equation (6.8) to (6.9) line by line. We do

not have to estimate the first line.

Line 2.

|〈ϕ, h̃1ϕ〉 − ⟪ψ, p1p2h̃1p1p2ψ⟫| = |〈ϕ, h̃1ϕ〉 − 〈ϕ, h̃1ϕ〉⟪ψ, p1p2ψ⟫|
= 〈ϕ, h̃1ϕ〉|⟪ψ, (1− p1p2)ψ⟫|
= 〈Φ,−∆xΦ〉|〈ψ, (p1q2 + q1p2 + q1q2)ψ〉|

(5.2)

≤ 3 ‖Φ‖2H1 α
(5.3)

. ‖Φ‖2H1 β

Line 3. The term

−⟪ψ, (1− p1p2)h̃1p1p2ψ⟫− ⟪ψ, p1p2h̃1(1− p1p2)ψ⟫

is bounded in absolute value by
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6.1. The Energy Lemma

2|⟪ψ, (1− p1p2)h̃1p1p2ψ⟫| = 2|⟪ψ, (q1 + p1q2)h̃1p1p2ψ⟫|
= 2|⟪ψ, q1h̃1p1p2ψ⟫|
= 2|⟪ψ, q1n̂

− 1
2 n̂

1
2 h̃1p1p2ψ⟫|

5.2
= 2|⟪ψ, q1n̂

− 1
2 h̃1τ̂1n

1
2 p1p2ψ⟫|

≤ 2
√
⟪ψ, n̂−1q1ψ⟫

√
⟪ψ, p1p2τ̂1n

1
2 h̃2

1τ̂1n
1
2 p1p2ψ⟫

5.2
= 2
√
⟪ψ, n̂ψ⟫

√
〈ϕ, h̃2ϕ〉

√
⟪ψ, τ̂1nψ⟫

(6.2)

≤ 2
√
β ‖Φ‖H2

√
⟪ψ, τ̂1nψ⟫

5.2
≤ 2

√
β ‖Φ‖H2

√
β +

1√
N

. ‖Φ‖H2 (β +
1√
N

). (6.10)

Line 4.

|〈Φ, 1

2
(w0 ∗ |Φ|2)Φ〉 − N − 1

2N
⟪ψ, p1p2w

ε
12p1p2ψ⟫|

(4.9)
=

1

2
|〈ϕ, (w0 ∗ |ϕ|2)ϕ〉 − (1 +

1

N
)〈ϕ, (wε ∗ |ϕ|2)ϕ〉⟪ψ, p1p2ψ⟫|

≤ 1

2
|〈ϕ, (w0 ∗ |ϕ|2 − wε ∗ |ϕ|2)ϕ〉|+ 1

2
|〈ϕ, (wε ∗ |ϕ|2)ϕ〉⟪ψ, (1− p1p2)ψ⟫|

+
1

2N
〈ϕ, (wε ∗ |ϕ|2)ϕ〉⟪ψ, p1p2ψ⟫|

≤
∥∥(w0 ∗ |ϕ|2 − wε ∗ |ϕ|2)

∥∥
∞ +

3

2

∥∥wε ∗ |ϕ|2∥∥∞ (β +
1

N
)

5.5,A1′

. ‖ϕ‖2L2∩L∞ (β +
1

N
+ f(ε)) = (1 + ‖ϕ‖L∞)2(β +

1

N
+ f(ε))

Line 5. This line is bounded in absolute value by

|⟪ψ, p1p2w
ε
12(1− p1p2)ψ⟫| = |⟪ψ, p1p2w

ε
12(q1p2 + p1q2 + q1q2)ψ⟫|

≤ 2|⟪ψ, p1p2w
ε
12q1p2ψ⟫|+ |⟪ψ, p1p2w

ε
12q1q2ψ⟫|. (6.11)
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6. Proof of Theorem 2

The first term is bounded by

|⟪ψ, p1p2w
ε
12q1p2ψ〉| = |⟪ψ, p1p2w

ε
12n̂
− 1

2 n̂
1
2 q1p2ψ⟫|

5.2
= |⟪ψ, p1p2τ̂1n

1
2wε12n̂

− 1
2 q1p2ψ⟫|

≤ ‖p2w
ε
12p2‖Op

∥∥∥τ̂1n
1
2ψ
∥∥∥∥∥∥n̂− 1

2 q1ψ
∥∥∥

5.2
≤ ‖p2w

ε
12p2‖Op

√
〈ψ, τ̂1nψ〉

√
ψ, n̂ψ〉

≤ ‖p2w
ε
12p2‖Op (β +

1√
N

)

5.5

. (1 + ‖ϕ‖∞)2(β +
1√
N

).

Remark 6. As already mentioned at the end of Section 5.2 the estimation of this

term leads to the condition (5.8) and is thus the main reason why we need to use

β for stronger singularities.

The second term of equation (6.11) demands a more elaborate proof and is thus

treated separately in Lemma 6.7.

Line 6. If assumption A3’ holds the interaction is nonnegative and we obtain

−N − 1

2N
⟪ψ, (1− p1p2)wε12(1− p1p2)ψ⟫ ≤ 0.

In the case Remark 5 holds we can use the appropriate fraction of the kinetic energy

from the left-hand side of equation (6.8) to control this term

−N − 1

2N
⟪ψ, (1− p1p2)wε12(1− p1p2)ψ⟫− (1− κ)⟪ψ, (1− p1p2)h̃1(1− p1p2)ψ⟫ ≤ 0.

The only thing changed by this is the addition of the negligible constant κ−1 in

front of all terms of the right-hand side of equation (6.8).

The following lemmas are necessary to provide the final bound for

|⟪ψ, p1p2w
ε
12q1q2ψ⟫|.

Since we need similar arguments in the estimations of the derivatives of β we give

a detailed account of the used techniques.

Lemma 6.5 (Writing a Ls function as divergence of a vector field). Let D be a

domain of Rd with d ≥ 3 and smooth boundary, f ∈ Ls(D) and

Γ(x) :=
(
(d− 2)|Sd−1|

)−1|x|2−d,

then

ξ(x) :=

∫
D
−∇Γ(x− y)f(y)dy
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6.1. The Energy Lemma

is a well-defined function on D and solves

∇ξ = f. (6.12)

Furthermore ξ ∈W 1,s(D) and

‖|ξ|‖Lq(D) ≤ C(d, p) ‖f‖Ls(D) , (6.13)

where 1
q = 1

s −
1
d .

Proof. The fact that ξ is well-defined and equation (6.12) follows directly from

Poisson’s equation for distributions e.g. Theorem 6.21 in [LL]. The fact that

ξ ∈ W 1,s(D) follows e.g. from Theorem 9.9 and the remark at the end of its proof

in [GT]. Equation (6.13) is a result of the Generalized Young inequality and

‖|∇Γ|‖Lrw ≤ C
∥∥∥∥ 1

|x|d−1

∥∥∥∥
Lrw

≤ C(d)

with r = d
d−1 . Since

‖|ξ|‖Lq(D) ≤
∥∥∥∥C 1

|x|d−1
∗ |f |

∥∥∥∥
Lq(D)

≤ C
∥∥∥∥ 1

|x|d−1

∥∥∥∥
Lrw(R3)

‖f‖Ls(D) ≤ C(d) ‖f‖Ls(D)

with 1
q = 1

s + 1
r − 1 = 1

s −
1
d for 1 < q, s <∞.

Corollary 6.6. Let A1′ hold for wε,s and define ξ as the vector field from Lemma 6.5

ξ(r) :=

∫
Ω̃
−∇Γ(r − r1)wε,s(r1)dr1,

then ∥∥|ϕ|2 ∗ ξ2
∥∥
L∞(R3)

. (1 + ‖ϕ‖L∞(Ω))
2. (6.14)

Proof.

∥∥|ϕ|2 ∗ ξ2
∥∥
L∞(Ω)

5.5

.
∥∥ξ2
∥∥
Lr(Ω̃)

(1 + ‖ϕ‖L∞(Ω))
2 ≤ ‖|ξ|‖2Lq(Ω) (1 + ‖ϕ‖L∞(Ω))

2

(6.13)

. ‖wε,s‖Lp(Ω) (1 + ‖ϕ‖L∞(Ω))
2

A1′

. (1 + ‖ϕ‖2L∞(Ω))

with 1/(2r) = 1/q = 1/s− 1/3.

Now we can estimate the second term of (6.11). This is done in the next lemma.
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Lemma 6.7.

|〈ψ, p1p2w
ε
12q1q2ψ〉| . ‖ϕ‖H1∩L∞ (β +

1

N
) + (1 + ‖ϕ‖L∞)

√
β +

1

N
‖∇1q1ψ‖

Proof. First we write wε = wε,∞ + wε,s. This splitting gives two terms

|⟪ψ, p1p2w
ε
12q1q2ψ⟫| ≤ |⟪ψ, p1p2w

ε,∞
12 q1q2ψ⟫|+ |⟪ψ, p1p2w

ε,s
12 q1q2ψ⟫|, (6.15)

where the first can be estimated directly

|⟪ψ, p1p2w
ε,∞
12 q1q2ψ⟫| = |⟪ψ, p1p2w

ε,∞
12 n̂n̂−1q1q2ψ⟫|

5.2
= |⟪ψ, p1p2τ̂2nw

ε,∞
12 n̂−1q1q2ψ⟫|

≤ ‖wε,∞12 ‖∞
√
⟪ψ, p1p2τ̂2n

2ψ⟫
√
⟪ψ, n̂−2q1q2ψ⟫

5.2
≤ ‖wε,∞12 ‖∞

√
α+

2

N

√
N

N − 1
α

. β +
1

N
.

For the second term of (6.15) we use Lemma 6.5 and write wεs as the divergence of

a vector field ξε and estimate this with the help of Corollary 6.6. For the following

estimates we suppress the ε-dependents for better readability.

|⟪ψ, p1p2w
s
12q1q2ψ⟫| = |⟪ψ, p1p2w

s
12n̂n̂

−1q1q2ψ⟫|
5.2
= |⟪ψ, p1p2τ̂2nw

s
12n̂
−1q1q2ψ⟫|

6.5
= |⟪ψ, p1p2τ̂2n(∇ν1ξν)12n̂

−1q1q2ψ⟫|,
where we sum over ν = 1, 2, 3. Now we integrate by parts which is possible since

ξε ∈ W 1,s(Ω̃), p1p2τ̂2nψ ∈ H1
0 (Ω) and n̂−1q1q2ψ ∈ H1

0 (Ω). This also implies that

there are no boundary terms.

⟪ψ, p1p2τ̂2n(∇ν1ξν)12n̂
−1q1q2ψ⟫| ≤ |⟪∇ν1p1p2τ̂2nψ, ξ

ν
12n̂
−1q1q2ψ⟫|

+ |⟪p1p2τ̂2nψ, ξ
ν
12∇ν1n̂−1q1q2ψ⟫| (6.16)

The first term can be estimated by

|⟪ξν12(∇ν1p1)p2τ̂2nψ, n̂
−1q1q2ψ⟫| ≤ ⟪(∇ν1p1)τ̂2nψ︸ ︷︷ ︸

η

, p2ξ
ν
12ξ

µ
12p2︸ ︷︷ ︸

A

(∇µ1p1)τ̂2nψ︸ ︷︷ ︸
η

⟫ 1
2

×
∥∥n̂−1q1q2ψ

∥∥ . (6.17)

A formal way to deal with this is to define F := L2(R3N )⊕L2(R3N )⊕L2(R3N ).

So the first part is

〈η,Aη〉
1
2
F ≤ ‖η‖F ‖A‖

1
2

L(F ) .
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6.1. The Energy Lemma

Here

‖A‖L(F ) =
∥∥(|ϕ|2 ∗ ξ2)(r1)

∥∥
∞ (6.18)

since an operator of the form vvt, where v is a vector, has the operator norm v2

and the entries of A are |ϕ|2 ∗ ξiξj . The vector η has the norm

‖η‖2F =
3∑

µ=1

⟪ηµ, ηµ⟫

=
3∑

µ=1

∫
Ω
∇µϕ(r)∇µϕ(r) dr ⟪τ̂2nψ, p1τ̂2nψ⟫

= ‖∇ϕ‖2 ‖τ̂2nψ‖2 . (6.19)

The right-hand side of (6.17) can be bounded with the help of equation (6.18) and

(6.19) by

〈η,Aη〉
1
2
F

∥∥n̂−1q1q2ψ
∥∥ ≤ ∥∥|ϕ|2 ∗ ξ2

∥∥ 1
2

∞ ‖∇ϕ‖L2 ‖τ̂2nψ‖
∥∥n̂−1q1q2ψ

∥∥
5.2

.
∥∥|ϕ|2 ∗ ξ2

∥∥ 1
2

∞ ‖∇ϕ‖L2

√
α+

2

N

√
α

(6.14)

. ‖ϕ‖H1∩L∞ (β +
1

N
).

Now there is only the second term of (6.16) left to be estimated. We claim that

|⟪p1p2τ̂2nψ, ξ
ν
12∇ν1n̂−1q1q2ψ⟫| = |⟪ξν12p1p2τ̂2nψ︸ ︷︷ ︸

η

,∇ν1n̂−1q1q2ψ︸ ︷︷ ︸
κ

⟫|

≤ ‖η‖ ‖κ‖

. (1 + ‖ϕ‖L∞)

√
α+

1

N
‖∇1q1ψ‖ . (6.20)

This holds since

‖η‖2 = ⟪τ̂2nψ, p1p2ξ
2
12p1p2τ̂2nψ⟫

(4.9)
= ⟪τ̂2nψ, p1(|ϕ|2 ∗ ξ2)(x1)p1p2τ̂2nψ⟫
≤
∥∥|ϕ|2 ∗ ξ2

∥∥
∞ ‖τ̂2nψ‖2

(6.14)

. (1 + ‖ϕ‖L∞)2(α+
1

N
) (6.21)

and κ is estimated by introducing 1 = p1 + q1 to use Lemma 5.2. We only present
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6. Proof of Theorem 2

the calculation for p1κ; q1κ follows in the same manner.

‖p1κ‖2 =
∥∥p1∇1n̂

−1q1q2ψ
∥∥2 5.2

=
∥∥∥p1q2τ̂1n−1∇1q1ψ

∥∥∥2

≤ ⟪∇ν1q1ψ, q2τ̂1n−2∇ν1q1ψ⟫

= ⟪∇ν1q1ψ,
1

N − 1

N∑
i=2

qiτ̂1n−2∇ν1q1ψ⟫

≤ ⟪∇ν1q1ψ,
1

N − 1

N∑
i=1

qiτ̂1n−2∇ν1q1ψ⟫

5.2
= ⟪∇ν1q1ψ,

N

N − 1
n̂2τ̂1n−2∇ν1q1ψ⟫

. ⟪∇ν1q1ψ,∇ν1q1ψ⟫

. ‖∇1q1ψ‖2 (6.22)
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6.2. Controlling the Derivative of β

We use the same basic idea as for the proof of Theorem 1. We start again by

calculating the derivative of the functional.

Lemma 6.8.

| d
dt
β| ≤ 2|I|+ 2|II|+ |III|,

where

I := ⟪ψ, p1p2[(N − 1)wε12 −Nw
ϕ
1 −Nw

ϕ
2 , n̂]p1q2ψ⟫

II := ⟪ψ, p1q2[(N − 1)wε12 −Nw
ϕ
1 −Nw

ϕ
2 , n̂]q1q2ψ⟫

III := ⟪ψ, p1p2[(N − 1)wε12 −Nw
ϕ
1 −Nw

ϕ
2 , n̂]q1q2ψ⟫

with wϕi := (w0 ∗ |ϕ|2)(ri) = (w0 ∗ (|Φ|2|χ|2))(ri) = (w0 ∗ |Φ|2)(xi).

Since we now use the weight
√

k
N in contrast to k

N the terms I− III now look a

bit different than in Theorem 1 but are essentially the same. It is more important

we can estimate them in a similar way.

Lemma 6.9. 1.

|I| . (f(ε) +
1

N
) ‖ϕ‖2L2(Ω)∩L∞(Ω) (6.23)

2.

|II| . ‖ϕ‖L2(Ω)∩L∞(Ω) (β + ‖∇1q1ψ‖2) (6.24)

3.

|III| . ‖ϕ‖3H1(Ω)∩L∞(Ω) (β +Nη) + ‖ϕ‖∞ ‖∇1q1ψ‖2 , (6.25)

where η = − s/s0−1
2s/s0−s = −5s−6

4s .

The estimation of the term III is the most laborious out of the three terms. It

can be shortened substantially if an additional assumption on wε holds.

Lemma 6.10. Let

‖wε‖Lv(Ω̃) ≤ f̃(ε) (6.26)

for a v ∈ (2,∞), then

|III| . (1 + ‖ϕ‖L∞(Ω))
2(β +N−1/2f̃(ε)2 +N−1/2). (6.27)
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Remark 7. Lemma 6.10 is only meaningful if ε can be chosen to depend on N such

that N−1/2f̃(ε(N))2 N→∞−→ 0. Although the rate of convergence of the estimate

(6.27) is always equal or slower than the rate in (6.25) we state its proof since it

is a byproduct of the proof of Lemma 6.9.3 and it illustrates the used techniques

nicely.

Example 2. For the Coulomb interaction with confinement in one direction the

additional assumption required for Lemma 6.27 holds if ε is chosen to depend on N

as any negative power since

∥∥∥∥∥ 1√
x2 + ε2y2

∥∥∥∥∥
L2(Ω̃)+L∞(Ω̃)

. log ε−1.

For the calculation of this rate see Appendix B.

Proof of Theorem 2. If we combine Lemma 6.9 with the Energy Lemma we can

bound β by

β̇ . ‖ϕ‖3H2(Ω)∩L∞(Ω)

(
Eψ − Eφ + β + f(ε) +Nη

)
.

Now the Grönwall Lemma 4.3 yields the claimed result.

For the rest of this chapter we do not write the underlying sets of the function

spaces and write ‖·‖ and 〈·, ·〉 for the L2-norm and scalar product on the appropriate

set.

Proof of Lemma 6.8. Because of Lemma 5.3 β ∈ C1(R,R). Thus we can calculate

∂tβ = ∂t⟪ψ, n̂ψ⟫ 5.3
= i⟪ψ, [Hε

N −HΦ, n̂]ψ⟫
5.3
= i⟪ψ, [ 1

N

∑
i<j

wεij −
∑
i

wϕi , n̂]ψ⟫

=
i

2
⟪ψ, [(N − 1)wε12 −Nw

ϕ
1 −Nw

ϕ
2 , n̂]ψ⟫

=
i

2
⟪ψ, (p1 + q1)(p2 + q2)[(N − 1)wε12 −Nw

ϕ
1 −Nw

ϕ
2 , n̂](p1 + q1)(p2 + q2)ψ⟫.

As a result of the Lemma 5.2(c) all terms with the same number of p and q on each
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side of the commutator vanish. Therefore we find

i

2
⟪ψ, (p1 + q1)(p2 + q2)[(N − 1)wε12 −Nw

ϕ
1 −Nw

ϕ
2 , n̂](p1 + q1)(p2 + q2)ψ⟫

=
i

2
⟪ψ, p1p2[(N − 1)wε12 −Nw

ϕ
1 −Nw

ϕ
2 , n̂](p1q2 + q1p2 + q1q2)ψ⟫

+
i

2
⟪ψ, (p1q2 + q1p2)[(N − 1)wε12 −Nw

ϕ
1 −Nw

ϕ
2 , n̂](p1p2 + q1q2)ψ⟫

+
i

2
⟪ψ, q1q2[(N − 1)wε12 −Nw

ϕ
1 −Nw

ϕ
2 , n̂](p1p2 + q1p2 + p1q2)ψ⟫

sym.
= i⟪ψ, p1p2[(N − 1)wε12 −Nw

ϕ
1 −Nw

ϕ
2 , n̂]p1q2ψ⟫+ c.c.

+ i⟪ψ, p1q2[(N − 1)wε12 −Nw
ϕ
1 −Nw

ϕ
2 , n̂]q1q2ψ⟫+ c.c.

+
i

2
⟪ψ, p1p2[(N − 1)wε12 −Nw

ϕ
1 −Nw

ϕ
2 , n̂]q1q2ψ⟫+ c.c.

= iI + c.c.+ iII + c.c.+
i

2
III + c.c.

= −2=I− 2=II−=III.

Proof of Lemma 6.9.1. In this term the mean filed cancels the full interaction

|I| = |⟪ψ, p1p2[(N − 1)wε12 −Nw
ϕ
2 , n̂]p1q2ψ⟫|

(4.9)
= |⟪ψ, p1p2[(N − 1)(wε ∗ |ϕ|2)(r2)−N(w0 ∗ |ϕ|2)(r2), n̂]q2ψ⟫|
5.2
= |⟪ψ, p1p2(N − 1)

(
(wε ∗ |ϕ|2)(r2)−N(w0 ∗ |ϕ|2)(r2)

)
(n̂− τ̂−1n)q2ψ⟫|.

If we define

µ := N(n− τ−1n) =
√
N(
√
k −
√
k − 1) =

√
N√

k +
√
k − 1

≤
√
N√
k

= n−1 (6.28)

we can write |I| as

1

N
|⟪ψ, p1p2(N − 1)

(
(wε ∗ |ϕ|2)(r2)−N(w0 ∗ |ϕ|2)(r2)

)
µ̂q2ψ⟫|

≤
( ∥∥(wε ∗ |ϕ|2 − w0 ∗ |ϕ|2)

∥∥
∞ +

1

N

∥∥wε ∗ |ϕ|2∥∥∞ )√⟪ψ, µ̂2q2ψ⟫

≤
( ∥∥(wε ∗ |ϕ|2 − w0 ∗ |ϕ|2)

∥∥
∞ +

1

N

∥∥wε ∗ |ϕ|2∥∥∞ )√⟪ψ, n−2q2ψ⟫
5.5,A1′

. (f(ε) +
1

N
) ‖ϕ‖2L2∩L∞ .
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Proof of Lemma 6.9.2.

|II| = |⟪ψ, p1q2[(N − 1)wε12 −Nw
ϕ
1 −Nw

ϕ
2 , n̂]q1q2ψ⟫|

= |⟪ψ, p1q2[(N − 1)wε12 −Nw
ϕ
1 , n̂]q1q2ψ⟫|

≤ |⟪ψ, p1q2[(N − 1)wε12, n̂]q1q2ψ⟫|+ |⟪ψ, p1q2[Nwϕ1 , n̂]q1q2ψ⟫| (6.29)

The second term of (6.29) can be estimated by

|⟪ψ, p1q2[Nwϕ1 , n̂]q1q2ψ⟫| 5.2= ||⟪ψ, p1w
ϕ
1N(n̂− τ̂−1n)q1q2ψ⟫|

6.28
= |⟪q2ψ, p1w

ϕ
1 µ̂q1q2ψ⟫|

≤ ‖q2ψ‖ ‖wϕ‖∞
√
⟪ψ, µ2q1q2ψ⟫

5.2,5.5

. ‖ϕ‖L2∩L∞ α. (6.30)

The first term of (6.29) is controlled by

|⟪ψ, p1q2[(N − 1)wε12, n̂]q1q2ψ⟫| ≤ |⟪ψ, p1q2w
ε
12µ̂q1q2ψ⟫|

= |⟪ψ, p1q2(wε,p12 + wε,∞12 )µ̂q1q2ψ⟫|
≤ |⟪ψ, p1q2w

ε,p
12 µ̂q1q2ψ⟫|+ |⟪ψ, p1q2w

ε,∞
12 µ̂q1q2ψ⟫|.

(6.31)

The second summand of (6.31) can be estimated by

|⟪ψ, p1q2w
ε,∞
12 µ̂q1q2ψ⟫|

5.2
≤ 2 ‖wε,∞‖∞ α

A1′

. α. (6.32)

For the first summand of (6.31) we use the idea of writing w as a divergence of a

vector field as introduced in Lemma 6.5 and estimate the terms as in Lemma 6.7.

To be in the exact same setting as in Lemma 6.5 we changed the labeling of particle

1 and 2.

|⟪ψ, p2q1w
ε,s
12 µ̂q1q2ψ⟫| 6.5= |⟪ψ, p2q1(∇ν1ξν)12µ̂q1q2ψ⟫|

6.16
≤ |⟪∇ν1q1ψ, p2ξ

ν
12µ̂q1q2ψ⟫|+ |⟪ψ, p2q1ξ

ν
12∇ν1µ̂q1q2ψ⟫| (6.33)

The first term of the sum (6.33) is smaller than

|⟪ξν12p2∇ν1q1ψ, µ̂q1q2ψ⟫| ≤
√
⟪∇ν1q1ψ, p2ξν12ξ

ι
12p2∇ι1q1ψ⟫

√
⟪ψ, µ2q1q2ψ⟫

(6.18)

≤ ‖∇ν1q1ψ‖
∥∥|ϕ|2 ∗ ξ2

∥∥ 1
2

∞
√
α

6.6

. ‖ϕ‖L2∩L∞ (α+ ‖∇1q1ψ‖2). (6.34)
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We deal with the second term of (6.33) as before

|⟪ξν12p2q1ψ︸ ︷︷ ︸
η

,∇ν1µ̂q1q2ψ︸ ︷︷ ︸
κ

⟫| ≤ ‖η‖ ‖κ‖

. ‖ϕ‖L2∩L∞
√
α ‖∇1q1ψ‖

. ‖ϕ‖L2∩L∞ (α+ ‖∇1q1ψ‖2). (6.35)

Since similar to equation (6.21) we have

‖η‖ . ‖ϕ‖L2∩L∞
√
α

and similar to equation (6.22) we have

‖κ‖ . ‖∇1q1ψ‖ .

Now the bound for |II| follows from collecting all the different bounds from equations

(6.30),(6.32),(6.34) and (6.35).

We are left with proving the estimates of term III. We start with the part

Lemma 6.9.3 and 6.10 have in common and continue with the easier proof for

Lemma 6.10 which will give an blueprint for the following proof of Lemma 6.9.3.

Proof of Lemma 6.10 and Lemma 6.9.3 . Both mean field terms in term III do not

contribute since for both of them a p acts on a q in the same coordinate.

III = |⟪ψ, p1p2[(N − 1)wε12 −Nw
ϕ
1 −Nw

ϕ
2 , n̂]q1q2ψ⟫|

= |⟪ψ, p1p2[(N − 1)w12, n̂]q1q2ψ⟫|
5.2
= |⟪ψ, p1p2w12N(n̂− τ̂−2n)︸ ︷︷ ︸

=:µ1

q1q2ψ⟫|

≤ |⟪ψ, p1p2w
ε,∞
12 µ1q1q2ψ⟫|+ |⟪ψ, p1p2w

ε,s
12 µ1q1q2ψ⟫|, (6.36)

where µ1

µ1 = N
( √k√

N
−
√
k − 2√
N

)
=

2
√
N√

k +
√
k − 2

≤ 2

√
N√
k

= 2n−1 ∀k ≥ 2. (6.37)

The wε,∞ part of (6.36) does not pose any problems and can be estimated by

|⟪ψ, p1p2w
∞
12µ1q1q2ψ⟫| = |⟪ψ, p1p2w

∞
12n̂

1
2 n̂−

1
2 µ̂1q1q2ψ⟫|

5.2
= |⟪τ̂2n

1
2ψ, p1p2w

∞
12n̂
− 1

2 µ̂1q1q2ψ⟫|
≤ ‖w∞12‖∞

√
⟪ψ, τ̂2nψ⟫

√
⟪ψ, n̂−1µ̂2

1q1q2ψ⟫
5.2

. ‖w∞12‖∞ (β +
1√
N

)
1
2

√
β

A1′

. (β +
1√
N

).
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However, the second summand of (6.36) is more complicated to handle. The leading

part of it could be dealt with the same methods as in the proof of Theorem 1. The

problem which occurs is that the resulting subleading term which is of order N−1

can only be bound by these methods if we have control of ‖wε‖v for a v ≥ 2. If

this condition holds we can use the same idea as in Lemma 4.2.2. The different

presentation of the proof here only arises from the different weight and from the

intention to reuse the calculation for the proof of Lemma 6.9.3.

Proof of Lemma 6.10. We split µ1 = µ
1
2
1 µ

1
2
1 and rewrite the second summand of

(6.36) as

|⟪ψ, p1p2w
ε,s
12 µ̂1q1q2ψ⟫| = 1

N − 1
|⟪ψ,

N∑
j=2

p1pjw
ε,s
1j µ̂

1
2
1 µ̂

1
2
1 q1qjψ⟫|

≤ 1

N − 1

∥∥∥∥µ̂ 1
2
1 q1ψ

∥∥∥∥
√√√√ N∑

j,i=2

⟪ψ, p1pjw
ε,s
1j µ̂1qjqiw

ε,s
1i p1piψ⟫.

(6.38)

Since

∥∥∥∥µ̂ 1
2
1 q1ψ

∥∥∥∥2 5.2,(6.37)

≤ ⟪ψ, n̂−1n̂2ψ⟫ = β

we can estimate

|⟪ψ, p1p2w
ε,s
12 µ̂1q1q2ψ⟫| ≤

√
β

N − 1

√
A+B, (6.39)

where A is the ”off-diagonal” term of the sum

A :=
∑

2≤j 6=i≤N
|⟪ψ, p1pjw

ε,s
1j µ̂1qjqiq1w

ε,s
1i p1piψ⟫|

and B the ”diagonal” term

B :=
N∑
i=2

|⟪ψ, p1piw
ε,s
1i µ̂1qiq1w

ε,s
1i p1piψ⟫|.
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We continue by estimating B

B ≤ ‖µ̂1q1‖Op

N∑
i=2

‖wε,s1i p1piψ‖2

≤ N
1
2

N∑
i=2

‖wε,s1i p1piψ‖2

= N
1
2

N∑
i=2

〈ψ, p1pi(w
ε,s
1i )2p1piψ〉

≤ N
3
2

∥∥p1(wε,s1i )2p1

∥∥
= N

3
2

∥∥(wε,s)2 ∗ |ϕ|2
∥∥
∞

≤ N
3
2 ‖wε,s‖2v (1 + ‖ϕ‖∞)2

(6.26)

≤ N
3
2 f̃(ε)2(1 + ‖ϕ‖∞)2. (6.40)

For A we find

A =
∑

2≤j 6=i≤N
|⟪ψ, p1pjw

ε,s
1j µ̂1qjqiq1w

ε,s
1i p1piψ⟫|

=
∑

2≤j 6=i≤N
|⟪ψ, p1pjqiτ̂2µ

1
2
1w

ε,s
1j q1w

ε,s
1i τ̂2µ

1
2
1 qjp1piψ⟫|. (6.41)

In the last equation we write q1 = 1− p1 and after using the triangle inequality for

the emerged sum, A can be estimated by two terms called A1 and A2. In the next

steps we use for negative w any branch of the complex square root and symmetry

to find

|A1| =
∑

2≤j 6=i≤N
|⟪ψ, p1pjqiτ̂2µ

1
2
1w

ε,s
1j w

ε,s
1i τ̂2µ

1
2
1 qjp1piψ⟫|

≤
∑

2≤j 6=i≤N
|⟪ψ, p1pjqiτ̂2µ

1
2
1

√
wε,s1j

√
wε,s1i

√
wε,s1j

√
wε,s1i τ̂2µ

1
2
1 qjp1piψ⟫|

≤
∑

2≤j 6=i≤N

∥∥∥∥√wε,s1j

√
wε,s1i τ̂2µ

1
2
1 qjp1piψ

∥∥∥∥2

=
∑

2≤j 6=i≤N

∥∥∥∥√wε,s1i pi

√
wε,s1j p1τ̂2µ

1
2
1 qjψ

∥∥∥∥2

≤ N2 ‖p1|wε,s12 |p1‖2 ⟪ψ, τ̂2µ1q1ψ⟫
5.2
≤ ‖p1|wε,s12 |p1‖2 β
5.5

. N2(1 + ‖ϕ‖∞)4β.
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6. Proof of Theorem 2

We estimate A2

|A2| =
∑

2≤j 6=i≤N
⟪ψ, p1pjqiτ̂2µ

1
2
1w

ε,s
1j p1w

ε,s
1i τ̂2µ

1
2
1 qjp1piψ⟫

≤ N2 ‖p1w
ε,pp1‖2Op β

5.5

. N2(1 + ‖ϕ‖∞)4β.

Collecting the estimates for A and B we have

|⟪ψ, p1p2w
ε,s
12 µ̂1q1q2ψ⟫| .

√
β

N − 1

√
N

3
2 f̃(ε)2(1 + ‖ϕ‖∞)2 +N2(1 + ‖ϕ‖L∞)4β

.
√
β

√
N−

1
2 f̃(ε)2(1 + ‖ϕ‖∞)2 + (1 + ‖ϕ‖L∞)4β

. N−1/2f̃(ε)2(1 + ‖ϕ‖∞)2 + (1 + ‖ϕ‖L∞)2β. (6.42)

This ends the proof of Lemma 6.10.

Proof of the remaining part of Lemma 6.9.3 Without the possibility of the esti-

mate in (6.40) the idea is to use an N -dependent splitting of the potential. This

separates the singularities from the rest in a suitable way to exploit the fact that

only the subleading term poses problems in the calculation and combine this with

the different scaling behaviors of Lp-norms for different p. The splitting of wε,s12

which does the trick is

wε,s = ws,1 + ws,2 := wε,s1{|ws|>c} + wε,s1{|ws|≤c},

where c is a positive N -dependent constant which we fix later by optimization of

the convergence rates. In the following we will neglect the dependence of ws on ε.

Now we have for s0 < s < 2∥∥ws,1∥∥s0
s0

=

∫
|ws,1|s0dx =

∫
|ws|s|ws|s0−s1{|ws|>c}dx ≤ cs0−s

∫
|ws|s1{|ws|>c}dx

≤ cs0−s
∫
|ws|sdx = cs0−s ‖ws‖ss

and∥∥ws,2∥∥2

2
=

∫
|ws,2|2dx =

∫
|ws|s|ws|2−s1{|ws|<c}dx ≤ c2−s

∫
|ws|s1{|ws|<c}dx

≤ c2−s
∫
|ws|sdx = c2−s ‖ws‖ss .

Thus ∥∥ws,1∥∥
s0
≤ c1− s

s0 ‖ws‖
s
s0
s (6.43)∥∥ws,2∥∥

2
≤ c1− s

2 ‖ws‖
s
2
s . (6.44)
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Now the idea becomes more obvious since if we set c = Nϑ the Ls0-norm of ws,1

becomes small for large N because 1 − s/s0 < 0. On the other hand the L2-norm

of ws,2 will diverge with some power of N but sine we only need the L2-norm of

ws,2 in the subleading part we can control this as long as N−1/2c2−s = O(1). This

enables us to treat the part with ws,1 by writing it as a divergence and then use

integration by parts as done before. We define ∇ξj = ws,j . Now we are in the same

setting as in Lemma 6.7 and go through the same estimation process.

|⟪ψ, p1p2w
s,1
12 µ̂1q1q2ψ⟫| = |⟪ψ, p1p2∇ν1ξ

1,ν
12 µ̂1q1q2ψ⟫|

≤ |⟪ξ1,ν
12 p2∇ν1p1ψ, µ̂1q1q2ψ⟫|+ |⟪p1p2ψ, ξ

1,ν
12 ∇

ν
1µ̂1q1q2ψ⟫|

(6.45)

The first term is estimated by

|⟪ξ1,ν
12 p2∇ν1p1ψ, µ̂1q1q2ψ⟫| ≤

√
⟪∇ν1p1ψ, p2ξ

1,ν
12 ξ

1,ι
12 p2∇ι1p1ψ⟫ ‖µ̂1q1q2ψ‖

.
∥∥|ϕ|2 ∗ (ξ1)2

∥∥ 1
2

∞ ‖∇ϕ‖
∥∥n̂−1q1q2ψ

∥∥
.
∥∥|ξ1|

∥∥
2
‖ϕ‖∞ ‖∇ϕ‖

√
α

6.5

.
∥∥ws,1∥∥

s0
‖∇ϕ‖ ‖ϕ‖∞

√
α

(6.43)

. ‖∇ϕ‖ ‖ϕ‖∞ ‖w
s‖

s
s0
s c

1− 1s
s0
√
α

A1′

. ‖∇ϕ‖ ‖ϕ‖∞ (c
2− 2s

s0 + α),

where we refer to the proof Lemma 6.7 for the step from the first to the second line.

The second term is estimated similar to equation (6.20)

|⟪ξ1,ν
12 p1p2ψ,∇ν1µ̂1q1q2ψ⟫| ≤

√
⟪ψ, p1p2(ξ1

12)2p1p2ψ⟫ ‖∇ν1µ̂1q1q2ψ‖

.
∥∥|ξ1|

∥∥
2
‖ϕ‖∞ ‖∇1q1ψ‖

6.5

.
∥∥ws,1∥∥

s0
‖ϕ‖∞ ‖∇1q1ψ‖

(6.43)

. ‖ϕ‖∞ ‖w
s‖

s
s0
s c

1− s
s0 ‖∇1q1ψ‖

A1′

. ‖ϕ‖∞ (c
2− 2s

s0 + ‖∇1q1ψ‖2).

Collecting both estimates we find for the right-hand side of (6.45)

|⟪ψ, p1p2w
s,1
12 µ̂1q1q2ψ⟫| . ‖∇ϕ‖ ‖ϕ‖∞ (c

2− 2p
p0 + β) + ‖ϕ‖L∞ (c

2− 2p
p0 + ‖∇1q1ψ‖2)

≤ ‖ϕ‖∞
(
‖∇ϕ‖β + ‖ϕ‖H1 c

2− 2s
s0 + ‖∇1q1ψ‖2

)
. (6.46)

Now we come to the term |⟪ψ, p1p2w
s,2
12 µ̂1q1q2ψ⟫|. This term can be dealt with the

help of Lemma 6.10. The only difference is that
∥∥ws,2∥∥

2
is bounded by c1− s

2 ‖ws‖
s
2
s

instead of ‖wε,s‖v being bounded by f̃(ε). Thus we find
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6. Proof of Theorem 2

|⟪ψ, p1p2w
s,2
12 µ̂1q1q2ψ⟫|

(6.42)

.

√
β

N − 1

√
N

3
2 c2−s(1 + ‖ϕ‖∞)2 +N2(1 + ‖ϕ‖L∞)4β

.
√
β

√
N−

1
2 c2−s(1 + ‖ϕ‖∞)2 + (1 + ‖ϕ‖L∞)4β

. N−1/2c2−s(1 + ‖ϕ‖∞)2 + (1 + ‖ϕ‖L∞)2β. (6.47)

Putting this together with (6.46) we can optimize in ϑ when setting c = Nϑ

|⟪ψ, p1p2w
ε,s
12 µ̂1q1q2ψ⟫| . ‖ϕ‖∞

(
‖∇ϕ‖β + ‖ϕ‖H1 c

2− 2s
s0 + ‖∇1q1ψ‖2

)
+N−1/2c2−s(1 + ‖ϕ‖∞)2 + (1 + ‖ϕ‖L∞)2β

. ‖ϕ‖3H1∩L∞ (β +Nη) + ‖ϕ‖∞ ‖∇1q1ψ‖2

with

η = − s/s0 − 1

2s/s0 − s
= −5s− 6

4s
(6.48)

This finishes the proof of Lemma 6.10.

By introducing yet another splitting the estimate of (6.47) can be improved

slightly. We defer this to Appendix C.
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7. Proof of Theorem 3

For the Gross-Pitaevskii scaling the general ideas of the proof stay the same. First

we calculate the derivative of the functional, decompose this derivative in the same

way as done before and estimate the generated terms. However, there are several

new issues. For the estimation of the term I we have to adjust the method such

that the full interaction still cancels with the ”mean field” interaction. This can

only be done with an additional energy estimate which is obtained with the help of

assumption B3. The second issue arises from the time dependent external potential

V and leads to the use of β̃ instead of β. For the terms II and III we have to make

only minor changes in the method compared to Chapter 6. In the next section we

provide two later required energy estimates and in the second section we estimate

the derivative of the functional β̃ term by term.

7.1. Energy Estimates

7.1.1. Control of ‖∇1q1Ψ‖

As in the mean field case we can formulate a lemma that controls ‖∇1q1Ψ‖ for the

Gross-Pitaevskii scaling.

Lemma 7.1 (Energy Lemma). Let B1-B3 hold, then

‖∇q1Ψ‖2 . ‖ϕ‖2H2(Ω)∩L∞(Ω) (β̃ +
1√
N

+ f(N, ε)) + ‖V ‖L∞(Ω) β

f(N, ε) := max(N−2θε4θ−2, N−1+3θε−6θ+2).

The proof uses the same idea and runs along the same lines as in the Hartree

case. Because of that we postpone it until the end of this chapter.

7.1.2. Energy Conservation in the Confined Direction

We are looking for a condition that will guarantee there are no excited states in

the confined direction. To this end we introduce projections which measure these

excitations.
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7. Proof of Theorem 3

Definition 3. Let χ ∈ L2(Ωc) and Φ ∈ L2(Ωf ), then we define the projections

pχj := 1⊗ |χ(yj)〉〈χ(yj)| qχj := 1− pχj
pΦ
j := |Φ(xj)〉〈Φ(xj)| ⊗ 1 qΦ

j := 1− pΦ
j .

With these projections we can rewrite the projection qi as the sum

qi = qφi p
χ
i + qχi .

Now we can formulate the estimate we are looking for

⟪Ψ, qχ1 Ψ⟫ . ε2.

Indeed, condition B3 leads to the following Lemma.

Lemma 7.2. Let assumption B1-B3 hold, then

⟪Ψ(t), qχ1 (t)Ψ(t)⟫ . ε2 (7.1)

holds for t ∈ [0,∞).

For the proof of Theorem 3 we also need a different form of inequality (7.1).

Corollary 7.3. Let assumption B1-B3 hold, then

⟪Ψ(t),

N∑
k=0

Pχ
⊥

k,N (t)Ψ(t)⟫ . ε2N (7.2)

holds for t ∈ [0,∞), where

Pχ
⊥

k,N :=
∑

ai∈{0,1}:∑N
i=1 ai=k

N∏
i=1

(qχi )ai(pχi )1−ai . (7.3)

This estimate is quite crude. To improve Theorem 3 one should try to find a way

to incorporate a tighter estimate for (7.2) in the proof.

Proof of Lemma 7.2. First we note with an Duhamel argument

1

N
⟪Ψ(t), (Hε

N (t)−NE0

ε2
)Ψ(t)⟫− 1

N
⟪Ψ(0), (Hε

N (0)−NE0

ε2
)Ψ(0)⟫

=

∫ t

0

d

ds

1

N
⟪Ψ(s), (Hε

N (s)−NE0

ε2
)Ψ(s)⟫ds

=

∫ t

0

1

N
⟪Ψ(s), [Hε

N (s), Hε
N (s)−NE0

ε2
]Ψ(s)⟫ds+

∫ t

0

1

N
⟪Ψ(s),

N∑
i=1

V̇i(s)Ψ(s)⟫ds

=

∫ t

0
⟪Ψ(s), V̇1(s)Ψ(s)⟫ds.
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Thus

1

N
⟪Ψ(t), (Hβ,ε(t)−NE0

ε2
)Ψ(t)⟫B3

≤
∫ t

0
|⟪Ψ(s), V̇1(s)Ψ(s)⟫|ds+ C

≤ | supp V̇ (t)| sup
t,r
|V̇ (t, r)|+ C

B2

. 1.

Hence, the left-hand side of the next inequality is bounded uniform for all ε ∈ (0, 1]

and N ∈ N and we can calculate

1

N
⟪Ψ, (Hε

N −N
E0

ε2
)Ψ⟫ = ⟪Ψ, 1

N

( N∑
j=1

−∆xi + Vi −
1

ε2
(∆yi + E0) +

∑
j<i

W ε,θ,N
ij

)
Ψ⟫

B1
≥ ⟪Ψ, 1

N

( N∑
j=1

−∆xi + Vi −
1

ε2
((∆yi + E0)

)
Ψ⟫

≥ ⟪Ψ, (V1 −
1

ε2
(∆y1 + E0)

)
Ψ⟫

= ⟪Ψ, (V1 −
1

ε2
(∆y1 + E0)qχ1

)
Ψ⟫

= ⟪Ψ, V1Ψ⟫+
1

ε2
C⟪Ψ, qχ1 Ψ⟫.

With ⟪Ψ, V1Ψ⟫
B2

& −1 we deduce that

⟪Ψ, qχ1 Ψ⟫ . ε2.

Proof of Corollary 7.3. With the equality

⟪Ψ(t), qχ1 Ψ(t)〉 = 〈Ψ(t),

N∑
k=0

k

N
Pχ
⊥

k,N (t)Ψ(t)⟫

which is Lemma 5.1 for the projections qχ and pχ the corollary follows.
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7.2. Controlling the Derivative of β̃

Now we come to the main part of the proof which has the well-known structure.

The additional term IV stems from the introduction of the external potential V.

For the ease of representation and to be in the same setting as in the proof of

Theorem 2 we define

wε,θ,N := NW ε,θ,N = (N−1ε2)−3θε2w
(

(N−1ε2)−θ
(
(xi − xj), ε(yi − yj)

))
. (7.4)

Lemma 7.4.

| d
dt
β̃| ≤ 2|I|+ |II|+ 2|III|+ |IV|,

where

I := ⟪ψ, p1p2[(N − 1)wε,θ,N12 −Nb|Φ|2(x2), n̂]p1q2ψ⟫
II := ⟪ψ, p1p2[(N − 1)wε,θ,N12 , n̂]q1q2ψ⟫

III := ⟪ψ, p1q2[(N − 1)wε,θ,N12 −Nb|Φ|2(x1), n̂]q1q2ψ⟫
IV := |⟪ψ, V̇ (x1, εy1)ψ⟫− 〈Φ, V̇ (x1, 0)Φ〉L2(Ωf)|

+ 2⟪ψ, p1N [V (x1, εy1)− V (x1, 0), n̂]q1ψ⟫.
Lemma 7.5. 1.

|I| . N−2θε4θ−2
∥∥∆|ϕ|2

∥∥
L2(Ω)

‖ϕ‖L∞(Ω) +N
1
2 ε ‖ϕ‖2L∞(Ω)

2. For δ > 0

|II| . ‖ϕ‖2L∞(Ω) β̃ +N−
1
2N

3θ
2 N

δ
4 ε−3θ+1 ‖ϕ‖L∞(Ω) +N−

δ
2 ‖ϕ‖2L∞(Ω)

3.

|III| . ‖ϕ‖H2(Ω)∩L∞(Ω) ‖χ‖
2
L∞(Ωc)

(
β̃ + ε4(Nε−2)3θ + f(N, ε)

)
+ ‖χ‖2L∞(Ωc) ‖V ‖

1/2
L∞(Ω) β

4.

|IV| .
∥∥∥V̇ ∥∥∥

L∞(Ω)
β̃ + ε

Proof of Theorem 3. The Lemmas 7.4 and 7.5 together with the Grönwall argument

prove Theorem 3. If θ ∈ (1
4 ,

1
3) and ε = N−ν for ν ∈ (1

2 ,
θ

1−2θ ), then all error terms

converge to zero. The optimal rate is N−η(θ) with

η(θ) =

{
4θ−1
3−4θ for θ ∈ (1

4 ,
7
24 ]

1−3θ
4−9θ for θ ∈ ( 7

24 ,
1
3)

(7.5)

which follows by optimization of δ and ν.
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Remark 8. For θ ∈ (1
4 ,

7
24 ] the optimal rate in (7.5) is determined by the terms

N−2θε4θ−2 and N
1
2 ε. For θ ∈ ( 7

24 ,
1
3) the optimal rate is determined by N−2θε4θ−2,

N−
1
2N

3θ
2 N

δ
4 ε−3θ+1 and N

−δ
2 . For θ = 7

24 all four terms have the value −1
11 if we

choose δ = 2
11 and ν = 13

22 .

7.3. Proofs of the Lemmas

In order to keep the notation in these proofs to a minimum we do not write, when-

ever it does not lead to confusion, the underlying sets of the function spaces and

write ‖·‖ and 〈·, ·〉 for the L2-norm and scalar product on the appropriate set.

Proof of Lemma 7.4. Compare Lemma 6.8 for the terms I-III. The term IV stems

from the change of β. The first summand of IV is the time derivative of |EΨ −
Eϕ| and the second summand arises from the different external potentials in the

Hamiltonians of ψ and ϕ.

Proof of Lemma 7.5.1 . The term I is small due to the cancellation of b|Φ|2 and

the full interaction. Before one can see this cancellation we have to separate this

term into a part which stays in the ground state of the confined direction and the

orthogonal complement. To this end we use the projections

pχj := 1⊗ |χ(yj)〉〈χ(yj)| qχj := 1− pχj
pΦ
j := |Φ(xj)〉〈Φ(xj)| ⊗ 1 qΦ

j := 1− pΦ
j . (7.6)

With this projections we can rewrite

qj = 1− pj = 1− pΦ
j p

χ
j = (1− pχj ) + (1− pΦ

j )pχj = qχj + qφj p
χ
j . (7.7)

For later use we note that for any function f : Ωf → C

p2f(x2)qχ2 = 0. (7.8)

Now with (7.7) and Lemma 5.2

|I| = |⟪ψ, p1p2[(N − 1)wε,θ,N12 −Nb|Φ|2(x2), n̂]p1q2ψ⟫|
5.2
= |⟪ψ, p1p2

(
(N − 1)wε,θ,N12 −Nb|Φ|2(x2)

)
(n̂− τ̂−1n)p1q2ψ⟫|

(7.7)
= |⟪ψ, p1p2

(
(N − 1)wε,θ,N12 −Nb|Φ|2(x2)

)
(n̂− τ̂−1n)p1(pχ2 q

φ
2 + qχ2 )ψ⟫|

= |⟪ψ, p1p2

(
(N − 1)wε,θ,N12 −Nbδ(x1 − x2)

)
(n̂− τ̂−1n)p1(pχ2 q

φ
2 + qχ2 )ψ⟫|,

(7.9)
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where we use the idea of (4.9) to write |Φ|2(x2) as δ(x1 − x2). The cancellations

can be obtained by viewing the difference of both interactions as a right-hand side

of Poisson’s equation. To this end we define

b̃ :=
b∫

Ωc
|χ|4(y) dy

=

∫
R3

w dr.

Now we can rewrite the δ distribution

p1p2bδ(x1 − x2)p1q
Φ
2 p

χ
2

(7.6)
= p1p2bδ(x1 − x2)〈χ(y1)χ(y2), χ(y1)χ(y2)〉L2(Ωc,y1×Ωc,y2 )p1q

Φ
2 p

χ
2

= p1p2bδ(x1 − x2)〈χ(y1)χ(y2),
δ(y1 − y2)

‖χ4‖L1(Ωc)

χ(y1)χ(y2)〉L2(Ωc,y1×Ωc,y2 )p1q
Φ
2 p

χ
2

(7.6)
= p1p2b̃δ(r1 − r2)p1q

Φ
2 p

χ
2 . (7.10)

This term together with the full interaction will turn out to be small. Entering the

above calculation in I we get

|I| = |⟪ψ, p1p2

(
(N − 1)wε,θ,N12 −Nbδ(x1 − x2)

)
(n̂− τ̂−1n)p1q2ψ⟫|

(7.7)

≤ |⟪ψ, p1p2

(
Nwε,θ,N12 −Nbδ(x1 − x2)

)
(n̂− τ̂−1n)p1p

χ
2 q

Φ
2 ψ⟫|

+ |⟪ψ, p1p2

(
Nwε,θ,N12 −Nbδ(x1 − x2)

)
(n̂− τ̂−1n)p1q

χ
2ψ⟫|

+ |⟪ψ, p1p2w
ε,θ,N
12 (n̂− τ̂−1n)p1q2ψ⟫|

(7.8)

≤ |⟪ψ, p1p2

(
Nwε,θ,N12 −Nbδ(x1 − x2)

)
(n̂− τ̂−1n)p1p

χ
2 q

Φ
2 ψ⟫|

+ |⟪ψ, p1p2Nw
ε,θ,N
12 (n̂− τ̂−1n)p1q

χ
2ψ⟫|

+ |⟪ψ, p1p2w
ε,θ,N
12 (n̂− τ̂1n)p1q2ψ⟫

(7.10)

≤ |⟪ψ, p1p2N
(
wε,θ,N12 − b̃δ(r1 − r2)

)
(n̂− τ̂1n)p1p

χ
2 q

Φ
2 ψ⟫|

+ |⟪ψ, p1p2Nw
ε,θ,N
12 (n̂− τ̂−1n)p1q

χ
2ψ⟫|

+ |⟪ψ, p1p2w
ε,θ,N
12 (n̂− τ̂1n)p1q2ψ⟫|.

(7.11)

To estimate the first summand we first collect some properties of the difference

wε,θ,N (r)− b̃δ(r)(7.4)
= (Nε−2)3θε2w

(
(Nε−2)θ(x, εy)

)
− b̃δ(x, y).
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This illustrates the scaling of the first line of (7.11). We regard the above expression

as a right-hand side of Poisson’s equation for a function f . The idea is to use

Newton’s theorem to deduce that f has compact support. However, to use Newton’s

theorem we need rotational symmetry. Because of that we define f̃θ,ε : R3 → R in

the unscaled coordinates y′ = εy by

∆f̃θ,ε(x, y′) = (Nε−2)3θε2w((Nε−2)θ(x, y′))− ε2b̃δ((x, y′)) (7.12)

and the same function in the scaled coordinates by

fθ,ε(x, y) := f̃θ,ε(x, y′). (7.13)

Since w has compact support and b̃ =
∫
wdr we find after scaling x̃ = (Nε−2)θx

and ỹ = (Nε−2)θy′

∫
R3

(Nε−2)3θw
(

(Nε−2)θ(x, y′)
)
− b̃δ(x, y′)dxdy′

=

∫
suppw

w(x̃, ỹ)− b̃δ(x̃, ỹ)dx̃dỹ = 0.

Thus, we can indeed choose f̃ such that it has compact support. Using the definition

(7.12) we find the following scaling behavior

f̃θ,ε =(Nε−2)θε2f̃
(

(Nε−2)θ(x, y′)
)
.

Since f̃ is solution of Poisson’s equation f̃ ∈ L1
loc(R3). This implies together with

the compact support f̃ ∈ L1(R3). So the L1(R3)-norm of f̃θ,ε scales like

∥∥∥f̃θ,ε∥∥∥
L1(R3)

=ε2(Nε−2)−2θ
∥∥∥f̃∥∥∥

L1(R3)
= ε2(Nε−2)−2θ

∥∥∥f̃∥∥∥
L1(R3)

. (7.14)

It follows that the scaling of fθ,ε is such that

∥∥∥fθ,ε∥∥∥
L1(R3)

(7.13)
=

1

ε2

∥∥∥f̃θ,ε∥∥∥
L1(R3)

(7.14)
= (Nε−2)−2θ

∥∥∥f̃∥∥∥
L1(R3)

| supp f̃ |≤C
. (Nε−2)−2θ. (7.15)

This is the ingredient with which we can estimate the first summand of (7.11). Let
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∆ε := ∆x + 1
ε2

∆y, then

|⟪ψ, p1p2N
(
wε,θ,N12 − b̃δ(r1 − r2)

)
(n̂− τ̂−1n)p1q

Φ
2 p

χ
2ψ⟫|

(7.12)
= N |⟪ψ, p1p2∆ε

1f̃
θ,ε((x1 − x2), ε(y1 − y2))(n̂− τ̂−1n)p1q

Φ
2 p

χ
2ψ⟫|

(7.13)
= N |⟪ψ, p1p2(∆εfθ,ε ∗ |ϕ|2)(r2)(n̂− τ̂−1n)p1q

Φ
2 p

χ
2ψ⟫|

= N |⟪ψ, p1p2(fθ,ε ∗∆ε|ϕ|2)(r2)(n̂− τ̂−1n)p1q
Φ
2 p

χ
2ψ⟫|

≤
∥∥∥(fθ,ε ∗∆ε|ϕ|2)(r2)p2

∥∥∥
Op

∥∥N(n̂− τ̂−1n)qΦ
2 p

χ
2ψ
∥∥

5.2
≤
∥∥∥(fθ,ε ∗∆ε|ϕ|2)(r2)p2

∥∥∥
Op

5.4
≤
∥∥∥fθ,ε ∗∆ε|ϕ|2

∥∥∥ ‖ϕ‖∞
5.4
≤
∥∥∥fθ,ε∥∥∥

1

∥∥∆ε|ϕ|2
∥∥ ‖ϕ‖∞(7.15)

≤ (Nε−2)−2θε−2
∥∥∆|ϕ|2

∥∥ ‖ϕ‖∞
≤ N−2θε4θ−2

∥∥∆|ϕ|2
∥∥ ‖ϕ‖∞ , (7.16)

where Lemma 5.2 holds for qΦqχ since qΦqχ ≤ q in the sense of operators.

The second summand of (7.11) is estimated by

|⟪ψ, p1p2Nw
ε,θ,N
12 (n̂− τ̂−1n)p1q

χ
2ψ⟫| ≤

∥∥∥p1w
ε,θ,N
12 p1

∥∥∥
Op
⟪ψ, (N(n̂− τ̂−1n))2qχ2ψ⟫

1
2

5.4

. ‖ϕ‖2∞ ⟪ψ,
N∑
k=0

N2 (
√
k −
√
k − 1)2

N
Pk,N

N∑
j=1

j

N
Pχ
⊥

j,Nψ⟫
1
2

(5.1)
(7.3)
= ‖ϕ‖2∞ ⟪ψ,

N∑
k=1

k∑
j=1

N2 (
√
k −
√
k − 1)2

N

j

N
Pk,NP

χ⊥

j,Nψ⟫
1
2

. ‖ϕ‖2∞ ⟪ψ,
N∑
k=1

k∑
j=1

j

k
Pk,NP

χ⊥

j,Nψ⟫
1
2

. ‖ϕ‖2∞ ⟪ψ,
N∑
k=1

N∑
j=1

Pk,NP
χ⊥

j,Nψ⟫
1
2

= ‖ϕ‖2∞ ⟪ψ,
N∑
j=1

Pχ
⊥

j,Nψ⟫
1
2

7.3

. ‖ϕ‖2∞N
1/2ε.

For the third summand |〈ψ, p1p2w
ε,θ,N
12 (n̂ − τ̂−1n)p1q2ψ〉| of (7.11) we again use

Lemma 5.4 and 5.6 and the fact that the L1-norm of wε,θ,N is bounded to find

|⟪ψ, p1p2w
ε,θ,N
12 (n̂− τ̂−1n)p1q2ψ⟫| ≤ N−1 ‖ϕ‖2∞ .

Proof of Lemma 7.5.2 . We first note that for any function f
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∥∥∥∥∥∥
N∑
j=2

qjw
ε,θ,N
12 f̂p1pjψ

∥∥∥∥∥∥
2

. N2 ‖ϕ‖4∞
∥∥∥f̂ n̂ψ∥∥∥2

+NN3θε−6θ+2 ‖ϕ‖2∞ sup
1≤k≤N

|f(k,N)|2.

(7.17)

To prove this we split the right-hand side of (7.17) into the ”diagonal” and the

”off-diagonal” term and find

∥∥∥∥∥∥
N∑
j=2

qjw
ε,θ,N
12 f̂p1pjψ

∥∥∥∥∥∥
2

=
N∑

j,k=2

⟪ψ, p1plf̂w
ε,θ,N
1l qlqjw

ε,θ,N
1j f̂p1pjψ⟫

≤
∑

2≤j<k≤N
⟪ψ, qjp1plf̂w

ε,θ,N
1l wε,θ,N1j qlf̂p1pjψ⟫

+ (N − 1)
∥∥∥wε,θ,N12 f̂p1p2ψ

∥∥∥2
.

(7.18)

The first summand of (7.18) is bounded by

(N − 1)(N − 2)⟪ψ, q2p1p3f̂w
ε,θ,N
13 wε,θ,N12 q3f̂p1p2ψ⟫

≤ N2

∥∥∥∥√wε,θ,N13

√
wε,θ,N12 q3f̂p1p2ψ

∥∥∥∥2

≤ N2

∥∥∥∥√wε,θ,N12 p2

√
wε,θ,N13 p1f̂ q3ψ

∥∥∥∥2

≤ N2

∥∥∥∥√wε,θ,N12 p2

∥∥∥∥4

Op

∥∥∥f̂ q3ψ
∥∥∥2

5.2
≤ N2

∥∥∥p1w
ε,θ,N
12 p1

∥∥∥2

Op

∥∥∥f̂ n̂ψ∥∥∥2

5.4

. N2 ‖ϕ‖4∞
∥∥∥f̂ n̂ψ∥∥∥2

. (7.19)

The second summand of (7.18) is bounded by

N⟪ψp1p2f̂(wε,θ,N12 )2f̂p1p2ψ⟫
≤ N

∥∥∥p1(wε,θ,N12 )2p1

∥∥∥
Op

∥∥∥f̂∥∥∥2

Op

5.4

. NN3θε−6θ+2 ‖ϕ‖2∞ sup
1≤k≤N

|f(k,N)|2 (7.20)

since ∥∥∥wε,θ,N∥∥∥2

2
. (

N

ε2
)3θε2. (7.21)
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Putting (7.19) and (7.20) together proves (7.17). To apply (7.17) to II we define

for any function f : {0, . . . , N} → R+ and δ > 0

fa(k) :=

{
f(k) for k < N1−δ

0 for k ≥ N1−δ (7.22)

and f b := f − fa. Furthermore we define

µ := (N − 1)(n− τ−2n) ≤ 2
√
N√

k +
√
k − 2

≤
√
N√
k

= n−1 ∀k ≥ 2 (7.23)

and estimate II by

|II| = N
∣∣⟪ψ, p1p2[(N − 1)wε,θ,N12 , n̂]q1q2ψ⟫

∣∣
5.2
= N

∣∣⟪ψ, p1p2(N − 1)wε,θ,N12 (n̂− τ̂−2n)q1q2ψ⟫
∣∣

=
∣∣⟪ψ, p1p2w

ε,θ,N
12 µ̂q1q2ψ⟫

∣∣
(7.22)

≤
∣∣⟪ψ, p1p2w

ε,θ,N
12 µ̂aq1q2ψ⟫

∣∣
+
∣∣⟪ψ, p1p2w

ε,θ,N
12 µ̂bq1q2ψ⟫

∣∣. (7.24)

We define the constant function g : {0, . . . , N} → 1 hence µa = µaga. Inserting this

in the first factor of (7.24) we get

∣∣⟪ψ, p1p2w
ε,θ,N
12 µ̂aĝaq1q2ψ⟫

∣∣ 5.2
=
∣∣⟪ψ, τ̂2gap1p2w

ε,θ,N
12 µ̂aq1q2ψ⟫

∣∣
=

1

N

∣∣⟪ψ, N∑
j=2

τ̂2gap1pjw
ε,θ,N
1j µ̂aq1qjψ⟫

∣∣
≤ 1

N

∥∥∥∥∥∥
N∑
j=2

qjw
ε,θ,N
12 τ̂2gap1pjψ

∥∥∥∥∥∥ ‖µ̂aq1ψ‖ .

Since ‖µ̂aq1ψ‖
5.2
≤ 1 and in view of (7.17) this can be estimated by

1

N

(
N ‖ϕ‖2∞ ‖ĝ

a
2 n̂ψ‖+N

1
2N

3θ
2 ε−3θ+1 ‖ϕ‖∞ sup

1≤k≤N
|ga2(k)|

)
. N−

δ
2 ‖ϕ‖2∞ +N

−1
2 N

3θ
2 ε−3θ+1 ‖ϕ‖∞ . (7.25)

The second summand of (7.24) can be estimated in the following way
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∣∣⟪ψ, p1p2w
ε,θ,N
12 µ̂bq1q2ψ⟫

∣∣ 5.2
= |⟪ψ, p1p2(τ̂2µ

b)
1
2wε,θ,N12 (µ̂b)

1
2 q1q2ψ⟫|

=
1

N
|
N∑
j=2

⟪ψ, (τ̂2µ
b)

1
2 p1pjw

ε,θ,N
1j q1qj(µ̂

b)
1
2ψ⟫|

5.2

.
1

N

∥∥∥(µ̂b)
1
2 q1ψ

∥∥∥
∥∥∥∥∥∥
N∑
j=2

qjw
ε,θ,N
1j (τ̂2µ

b)
1
2 p1pjψ

∥∥∥∥∥∥ . (7.26)

The first factor of (7.26) is estimated by∥∥∥(µ̂b)
1
2 q1ψ

∥∥∥2
= ⟪ψ, µ̂bq1ψ⟫

5.2
≤ β. (7.27)

For the second factor we use (7.17). Since

sup
1≤k≤N

(µ(k)b)1/2

(7.22)
(7.23)

≤ N
δ
4 (7.28)

and

∥∥∥(τ̂2µ
b)

1
2 n̂ψ

∥∥∥2
. β

we get∣∣⟪ψ, p1p2w
ε,θ,N
12 µ̂bq1q2ψ⟫

∣∣
(7.17)

.
√
β
(
‖ϕ‖2∞

∥∥∥(µ̂b)
1
2 n̂ψ

∥∥∥+N−
1
2N

3θ
2 ε−3θ+1 ‖ϕ‖∞ sup

1≤k≤N
|(µ(k)b)1/2|

)
(7.28)

≤ ‖ϕ‖2∞ β +N−
1
2N

3θ
2 N

δ
4 ε−3θ+1 ‖ϕ‖∞ , (7.29)

where we refrain from taking the square of the second term which results in slower

convergence rates but simplifies the next calculation. Combining (7.29) with the

estimate (7.25) and inserting them in (7.24) yields the claimed result

|II| . ‖ϕ‖2∞ α+N−
1
2N

3θ
2 N

δ
4 ε−3θ+1 ‖ϕ‖∞ +N−

δ
2 ‖ϕ‖2∞ +N

−1
2 N

3θ
2 ε−3θ+1 ‖ϕ‖∞

. ‖ϕ‖2∞ α+N−
1
2N

3θ
2 N

δ
4 ε−3θ+1 ‖ϕ‖∞ +N−

δ
2 ‖ϕ‖2∞ .

The optimal δ and therefore the optimal convergence rate of this term depends on θ

and ν. For fixed θ and ν the optimal δ can be found by setting N−
1
2N

3θ
2 N

δ
4 ε−3θ+1 ∼

N−
δ
2 under the constraint 0 < δ. Such a δ exists for θ ∈ (1

4 ,
1
3).
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Proof of Lemma 7.5.3 . For this term we can use the abundance of qs to extract

terms with enough negative power of N to get convergence. We will use the function

µ := N(n− τ−1n) =
√
N(
√
k −
√
k − 1) =

√
N√

k +
√
k − 1

≤
√
N√
k

= n−1 ∀k ≥ 1.

(7.30)

We begin with the usual simplifications

|III| = |⟪ψ, p1q2[(N − 1)wε,θ,N12 −Nb|Φ|2(x1), n̂]q1q2ψ⟫|
5.2
= |⟪ψ, p1q2

(
(N − 1)wε,θ,N12 −Nb|Φ|2(x1)

)
(n̂− τ̂−1n)q1q2ψ⟫|

(7.30)
= |⟪ψ, p1q2

( N

N − 1
wε,θ,N12 − b|Φ|2(x1)

)
µ̂q1q2ψ⟫|

. |⟪ψ, p1q2w
ε,θ,N
12 µ̂q1q2ψ⟫|

+ |⟪ψ, p1q2b|Φ|2(x1)µ̂q1q2ψ⟫|.
(7.31)

The second term of (7.31) can be estimated by

|⟪ψ, p1q2b|Φ|2(x1)µ̂q1q2ψ⟫|
5.4

. ‖q2ψ‖ ‖µ̂q1q2ψ‖
5.2
≤ β.

For the first term of (7.31) we use q = qχ + pχqΦ to obtain four terms

|⟪ψ, p1q2w
ε,θ,N
12 µ̂q1q2ψ⟫| ≤ |⟪ψ, p1p

χ
2 q

Φ
2 w

ε,θ,N
12 µ̂pχ1 q

Φ
1 p

χ
2 q

Φ
2 ψ⟫|

+ |⟪ψ, p1q
χ
2w

ε,θ,N
12 µ̂q1q2ψ⟫|

+ |⟪ψ, p1q2w
ε,θ,N
12 µ̂qχ1 q2ψ⟫|

+ |⟪ψ, p1q2w
ε,θ,N
12 µ̂q1q

χ
2ψ⟫|. (7.32)

All terms but the first are easy to handle. The second term of (7.32) can be

estimated by

|⟪ψ, p1q
χ
2w

ε,θ,N
12 µ̂q1q2ψ⟫| ≤ ‖qχ2ψ‖

∥∥∥wε,θ,N12 p1

∥∥∥
Op
‖µ̂q1q2Ψ‖

. ε(Nε−2)
3θ
2 ε
√
β ‖ϕ‖∞ ≤ ‖ϕ‖∞

(
β + ε4(Nε−2)3θ

)
, (7.33)

where we used Lemmas 5.2, 5.4 and 7.2 and equation (7.21) in the second step. The

third and the fourth term of (7.32) can be estimated in the same way if we use

qχ ≤ q. Hence we find

|⟪ψ, p1q2w
ε,θ,N
12 µ̂qχ1 q2ψ⟫|, |⟪ψ, p1q2w

ε,θ,N
12 µ̂q1q

χ
2ψ⟫| . ‖ϕ‖∞

(
β + ε4(Nε−2)3θ

)
.

(7.34)

For the first term of (7.32) we have to use a different approach. Here we know that

the potential only acts on the function χ in the confined direction. Thus, we can
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integrate the potential explicitly in this direction

|⟪ψ, p1p
χ
2 q

Φ
2 w

ε,θ,N
12 µ̂pχ1 q

Φ
1 p

χ
2 q

Φ
2 ψ⟫|

= |⟪ψ, p1p
χ
2 q

Φ
2

∫
Ωc

∫
Ωc

(Nε−2)3θε2w
(

(Nε−2)θ
(
x1 − x2, ε(y1 − y2)

))
× |χ(y1)|2|χ(y2)|2dy1dy2p

χ
1 q

Φ
1 p

χ
2 q

Φ
2 µ̂ψ⟫|.

(7.35)

For short notation we define the function

w̃ε,θ,N (x1 − x2) : =

∫
Ωc

∫
Ωc

(Nε−2)3βε2w
(

(Nε−2)β
(
x1 − x2, ε(y1 − y2)

))
× |χ(y1)|2|χ(y2)|2dy1dy2

and since it lives in one dimension we can explicitly define its anti-derivative

W̃ ε,θ,N (x1 − x2) :=

∫ x1−x2

−∞
w̃ε,θ,N (x)dx.

The next step is to estimate the operator norm of the multiplication operator W̃ ε,θ,N

by scaling arguments. Set x̃ = (Nε−2)θx, ỹ = ε(Nε−2)θy and Ω̃c = ε(Nε−2)θΩc, so
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∥∥∥W̃ ε,θ,N (x1 − x2)
∥∥∥
∞

= sup
x1,x2∈R

∫ x1−x2

−∞
w̃ε,θ,N (x)dx

= sup
x1,x2∈R

∫ x1−x2

−∞

∫
Ωc

∫
Ωc

(Nε−2)3θε2w
(

(Nε−2)θ
(
x, ε(y1 − y2)

))
× |χ(y1)|2|χ(y2)|2dy1dy2dx

= sup
x1,x2∈R

∫ (Nε−2)θ(x1−x2)

−∞

∫
Ωc

∫
Ωc

(Nε−2)2θε2w
(
x̃, (Nε−2)θε(y1 − y2)

)
× |χ(y1)|2|χ(y2)|2dy1dy2dx̃

≤
∫ ∞
−∞

∫
Ωc

∫
Ωc

(Nε−2)2θε2w
(
x̃, (Nε−2)θε(y1 − y2)

)
|χ(y1)|2|χ(y2)|2dy1dy2dx̃

=

∫ ∞
−∞

∫
Ω̃c

∫
Ω̃c

(Nε−2)−2θε−2w
(
x̃, ỹ1 − ỹ2

)
|χ(

ỹ1

ε(Nε−2)θ
)|2

× |χ(
ỹ2

ε(Nε−2)θ
)|2dỹ1dỹ2dx̃

≤ sup
ỹ2

|χ(
ỹ2

ε(Nε−2)θ
)|2
∫ ∞
−∞

∫
R2

∫
R2

(Nε−2)−2θε−2w
(
x̃, ỹ1 − ỹ2

)
× |χ(

ỹ1

ε(Nε−2)θ
)|2dỹ1dỹ2dx̃

≤ ‖χ‖2∞
∫ ∞
−∞

∫
R2

w
(
x̃, ỹ
)

dỹ

∫
R2

(Nε−2)−2θε−2|χ(
ỹ1

ε(Nε−2)θ
)|2dỹdx̃

≤ ‖χ‖2∞ ‖w‖1 , (7.36)

where the last step holds since χ is normed. To use this estimate for W̃ we rewrite

term III by integrating by parts

|⟪ψ, p1p
χ
2 q

Φ
2 w

ε,θ,N
12 µ̂pχ1 q

Φ
1 p

χ
2 q

Φ
2 ψ⟫|

(7.35)
= |⟪ψ, p1p

χ
2 q

Φ
2

d

dx1
W̃ ε,θ,N (x1 − x2)µ̂pχ1 q

Φ
1 p

χ
2 q

Φ
2 ψ⟫|

≤ |⟪ψ, pχ2 qΦ
2 (

d

dx1
p1)W̃ θ,ε(x1 − x2)µ̂pχ1 q

Φ
1 p

χ
2 q

Φ
2 ψ⟫|

+ |⟪ψ, p1p
χ
2 q

Φ
2 W̃

ε,θ,N (x1 − x2)
d

dx1
µ̂pχ1 q

Φ
1 p

χ
2 q

Φ
2 ψ⟫|.
(7.37)
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The first term of equation (7.37) is bounded by

|⟪ψ, pχ2 qΦ
2 (

d

dx1
p1)W̃ ε,ε,N (x1 − x2)µ̂pχ1 q

Φ
1 p

χ
2 q

Φ
2 ψ⟫|

≤
∥∥pχ2 qΦ

2 ψ
∥∥∥∥∥∥ ddxp

∥∥∥∥
Op

∥∥∥W̃ ε,θ,N
∥∥∥
∞

∥∥µ̂pχ1 qΦ
1 p

χ
2 q

Φ
2 ψ
∥∥

5.2,(7.36)

.
√
β

∥∥∥∥ ddxΦ

∥∥∥∥ ‖χ‖2∞√β ≤ ‖Φ‖H1 ‖χ‖2∞ β. (7.38)

The second term of (7.37) we estimate by

|⟪ψ, p1p
χ
2 q

Φ
2 W̃

ε,θ,N (x1 − x2)
d

dx1
µ̂pχ1 q

Φ
1 p

χ
2 q

Φ
2 ψ⟫|

5.2,(7.36)

.
√
β ‖χ‖2∞

∥∥∥∥ d

dx1
µ̂pχ1 q

Φ
1 p

χ
2 q

Φ
2 ψ

∥∥∥∥ . (7.39)

To bound the last term we note∥∥∥∥ d

dx1
µ̂pχ1 q

Φ
1 p

χ
2 q

Φ
2 ψ

∥∥∥∥2

.

∥∥∥∥ d

dx1
pχ1 q

Φ
1 ψ

∥∥∥∥2

,

where the proof follows exactly the same pattern as the one for κ in equation (6.22).

We continue by bounding the right-hand side∥∥∥∥ d

dx1
pχ1 q

Φ
1 ψ

∥∥∥∥2

≤
∥∥∥∥ d

dx1
pχ1 q

Φ
1 ψ

∥∥∥∥2

+

∥∥∥∥ d

dx1
qχ1ψ

∥∥∥∥2

= ⟪ψ, pχ1 qΦ
1

−d2

dx2
1

pχ1 q
Φ
1 ψ⟫+ ⟪ψ, qχ1

−d2

dx2
1

qχ1ψ⟫

= ⟪ψ, (pχ1 qΦ
1 + qχ1 )

−d2

dx2
1

(pχ1 q
Φ
1 + qχ1 )ψ⟫

= ⟪ψ, q1
−d2

dx2
1

q1ψ⟫ =

∥∥∥∥ d

dx1
q1ψ

∥∥∥∥2

≤ ‖∇q1ψ‖2 .

Finally this estimate together with the Energy Lemma

‖∇q1ψ‖2 ≤ ‖ϕ‖2H2∩L∞ (β̃ +
1√
N

+ f(N, ε)) + ‖V ‖L∞(Ω) β

leads to∥∥∥∥ d

dx1
µ̂pχ1 q

Φ
1 p

χ
2 q

Φ
2 ψ

∥∥∥∥2

≤ ‖ϕ‖2H2∩L∞ (β̃ +
1√
N

+ f(N, ε)) + ‖V ‖L∞(Ω) β. (7.40)
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Inserting (7.40) into (7.39) results in

|⟪ψ, p1p
χ
2 q

Φ
2 W̃

ε,θ,N (x1 − x2)
d

dx1
µ̂pχ1 q

Φ
1 p

χ
2 q

Φ
2 ψ⟫|

.
√
β ‖χ‖2∞

(
‖ϕ‖2H2∩L∞ (β̃ +

1√
N

+ f(N, ε)) + ‖V ‖L∞(Ω) β
) 1

2

≤ ‖ϕ‖H2∩L∞ ‖χ‖
2
∞ (β̃ +

1√
N

+ f(N, ε)) + ‖χ‖2∞ ‖V ‖
1/2
L∞(Ω) β.

Combining this estimate with (7.33),(7.34) and (7.38) finishes this part of the

lemma.

Proof of Lemma 7.5.3 . For both summands in IV we expand the potential around

y1 = 0. The assumption B2 guarantees that in both cases the error is a bounded

operator. Therefore, we can write

V̇ (x1, εy1) = V̇ (x1, 0) + εR V (x1, εy1) = V (x1, 0) + εR̃

with ‖R‖Op , ‖R̃‖Op ≤ C. Thus we find for the second part of IV

2|⟪ψ, p1N [V (x1, εy1)− V (x1, 0), n̂]q1ψ⟫|
= 2|⟪ψ, p1N [V (x1, 0) + εR− V (x1, 0), n̂]q1ψ⟫|
= 2|⟪ψ, p1NεR(n̂− τ̂−1n)q1ψ⟫|
. ε

∥∥N(n̂− τ̂−1n)q1ψ
∥∥ 5.6
≤ ε.

For the first part of IV we note that for f ∈ L∞(Ωf)

|⟪ψ, f(x1)ψ⟫− 〈Φ, f(x)Φ〉| . ‖f‖∞ β. (7.41)

Thus we can estimate

|⟪ψ, V̇ (x1, εy1)ψ⟫− 〈Φ, V̇ (x1, 0)Φ〉| = |⟪ψ, (V̇ (x1, 0) + εR)ψ⟫− 〈Φ, V̇ (x1, 0)Φ〉|
. |⟪ψ, (V̇ (x1, 0)ψ⟫− 〈Φ, V̇ (x1, 0)Φ〉|+ ε

(7.41)

.
∥∥∥V̇ (·, 0)

∥∥∥
∞
β + ε.

Equation (7.41) holds since

|⟪ψ, f(x1)ψ⟫− 〈Φ, f(x)Φ〉| = |⟪ψ, p1f(x1)p1ψ⟫− 〈Φ, f(x)Φ〉+ ⟪ψ, q1f(x1)p1ψ⟫
+ ⟪ψ, p1f(x1)q1ψ⟫+ ⟪ψ, q1f(x1)q1ψ⟫|
≤ (1− ‖p1ψ‖2)〈Φ, f(x)Φ〉

+ 2|⟪ψ, n̂1/2p1f(x1)n̂−1/2q1ψ⟫|+ ‖f‖∞ β
5.2

. ‖f‖∞ β.
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7.4. Proof of Lemma 7.1

7.4. Proof of Lemma 7.1

As the ideas in this proof are the same as in Lemma 6.3 we stay very brief here and

give little extra explanation. Let h̃ be defined as in Lemma 6.2. From Section 6.1.2

we know

‖∇1q1ψ‖2 ≤
∥∥∥∥√h̃1q1ψ

∥∥∥∥2

+ E0 β (7.42)

and ∥∥∥∥√h̃1q1ψ

∥∥∥∥2

≤
∥∥∥∥√h̃1(1− p1p2)ψ

∥∥∥∥2

+ ‖∇Φ‖2 β (7.43)

hence we bound
∥∥∥√h̃1(1− p1p2)ψ

∥∥∥2
to prove Lemma 7.1.

Lemma 7.6.

⟪ψ, (1− p1p2)h̃1(1− p1p2)ψ⟫ . ‖ϕ‖2H2∩L∞ (β̃ +
1√
N

+ f(N, ε)) + ‖V ‖L∞(Ω) β

with

f(N, ε) = max(N−2θε4θ−2, N−1+3θε−6θ+2).

With (7.42) and (7.43) Lemma 7.6 proves

‖∇1q1ψ‖2 . ‖ϕ‖2H2∩L∞ (β̃ +
1√
N

+ f(ε)) + ‖V ‖L∞(Ω) β

which is Lemma 7.1. All that is left to do is to show the bound of Lemma 7.6.

Proof of Lemma 7.6 . After rearranging the energy difference Eψ − EΦ we arrive

at the same lengthy equation as in (6.8) with an additional term from the time

dependent external potential V.

⟪ψ, (1− p1p2)h̃1(1− p1p2)ψ⟫ (7.44)

= Eψ − Eφ

− ⟪ψ, p1p2h̃1p1p2ψ⟫+ 〈ϕ,−∆− 1

ε2
(∆y + E0)ϕ〉

− ⟪ψ, (1− p1p2)h̃1p1p2ψ⟫− ⟪ψ, p1p2h̃1(1− p1p2)ψ⟫
− N − 1

2N
⟪ψ, p1p2w

ε,θ,N
12 p1p2ψ⟫+ 〈Φ, 1

2
(b ∗ |Φ|2)Φ〉

− N − 1

2N

(
⟪ψ, (1− p1p2)wε,θ,N12 p1p2ψ⟫+ ⟪ψ, p1p2w

ε,θ,N
12 (1− p1p2)ψ⟫

)
− N − 1

2N
⟪ψ, (1− p1p2)wε,θ,N12 (1− p1p2)ψ⟫

− ⟪ψ, V (x1, εy1)ψ⟫− 〈Φ, V (x, 0)Φ〉. (7.45)
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7. Proof of Theorem 3

After estimating the terms line by line we obtain the claimed estimate

⟪ψ, (1− p1p2)h̃1(1− p1p2)ψ⟫
.
(
Eψ − Eφ

)
+ ‖Φ‖2H1 β

+ ‖Φ‖H2 (β +
1√
N

)

+N−2βε4β−2
∥∥∆|ϕ|2

∥∥ ‖ϕ‖∞ +N−1 ‖ϕ‖2∞ + ‖Φ‖2∞ α
+ ‖ϕ‖2∞ β +N−1+3βε−6β+2

+ ‖V (·, 0)‖L∞ β + ε

. ‖ϕ‖2H2∩L∞ (β̃ +
1√
N

+ f(N, ε)) + ‖V (·, 0)‖L∞ β. (7.46)

The line-by-line approximation turns out to be a little bit simpler than before but

some estimates have to be adjusted. We do not have to estimate the first line.

Line 2.

|〈ϕ, h̃1ϕ〉 − ⟪ψ, p1p2h̃1p1p2ψ⟫| = |〈ϕ, h̃1ϕ〉 − 〈ϕ, h̃1ϕ〉⟪ψ, p1p2ψ⟫|
= 〈ϕ, h̃1ϕ〉|⟪ψ, (1− p1p2)ψ⟫|

(6.2)
= 〈Φ,−∆Φ〉|⟪ψ, (p1q2 + q1p2 + q1q2)ψ⟫|
5.2

. ‖Φ‖2H1 β

Line 3.

−〈ψ, (1− p1p2)h̃1p1p2ψ〉 − 〈ψ, p1p2h̃1(1− p1p2)ψ〉

is bounded in absolute value by

2|⟪ψ, (1− p1p2)h̃1p1p2ψ⟫|
(6.10)

. ‖Φ‖H2 (β +
1√
N

).

Line 4. We first note that

|〈Φ, 1

2
(b|Φ|2)Φ〉 − 〈ψ, p1p2

1

2
(b|Φ|2)p1p2ψ〉| . ‖Φ‖2∞ β (7.47)

since

|〈Φ, 1

2
(b|Φ|2)Φ〉 − 〈ψ, p1p2

1

2
(a|Φ|2)p1p2ψ〉|

= |〈Φ, 1

2
(b|Φ|2)Φ〉 − 〈ϕ, 1

2
(a|Φ|2)ϕ〉〉〈ψ, p1p2ψ〉|

= |〈Φ, 1

2
(b|Φ|2)Φ〉 − 〈Φ, 1

2
(a|Φ|2)Φ〉〉〈ψ, p1p2ψ〉|

= |〈Φ, 1

2
(b|Φ|2)Φ〉||〈ψ, (1− p1p2)ψ〉|

. ‖Φ‖2∞ β.
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Hence,

|〈Φ, 1

2
(b|Φ|2)Φ〉 − N − 1

2N
⟪ψ, p1p2w

ε,θ,N
12 p1p2ψ⟫|

(7.47)

.
1

2
|⟪ψ, p1p2(b|Φ|2)p1p2ψ⟫− (1 +

1

N
)⟪ψ, p1p2w

ε,θ,N
12 p1p2ψ⟫|+ ‖Φ‖2∞ β

≤ 1

2
|⟪ψ, p1p2(b|Φ|2 − wε,θ,N12 )p1p2ψ⟫|+ 1

N
|⟪ψ, p1p2w

ε,θ,N
12 p1p2ψ⟫|+ ‖Φ‖2∞ β

. N−2θε4θ−2
∥∥∆|ϕ|2

∥∥ ‖ϕ‖∞ +N−1 ‖ϕ‖2∞ + ‖Φ‖2∞ β,

where we used the estimate from equation (7.16) for the first summand and Lemma 5.4

for the second summand.

Line 5. Is bounded in absolute value by

|⟪ψ, p1p2w
ε,θ,N
12 (1− p1p2)ψ⟫| = |⟪ψ, p1p2w

ε,θ,N
12 (q1p2 + p1q2 + q1q2)ψ⟫|

≤ 2|⟪ψ, p1p2w
ε,θ,N
12 q1p2ψ⟫|+ |⟪ψ, p1p2w

ε,θ,N
12 q1q2ψ⟫|.

The first term is bounded by

|⟪ψ, p1p2w
ε,θ,N
12 q1p2ψ⟫| = |⟪ψ, p1p2w

ε,θ,N
12 n̂−

1
2 n̂

1
2 q1p2ψ⟫|

5.2
= |⟪ψ, p1p2τ̂1n

1
2wε,θ,N12 n̂−

1
2 q1p2ψ⟫|

≤
∥∥∥p2w

ε,θ,N
12 p2

∥∥∥
Op

∥∥∥τ̂1n
1
2ψ
∥∥∥∥∥∥n̂− 1

2 q1ψ
∥∥∥

5.2,5.4

. ‖ϕ‖2∞ (β +
1√
N

).

For the second term we use a slightly altered version of Lemma 6.10. So in the first

step we use symmetry to write

|⟪ψ, p1p2w
ε,θ,N
12 q1q2ψ⟫| = 1

N − 1
|
N∑
j=2

⟪ψ, p1pjw
ε,θ,N
1j q1qjψ⟫|

≤ 1

N − 1
‖q1ψ‖

∥∥∥∥∥∥
N∑
j=2

qjw
ε,θ,N
1j p1pjψ

∥∥∥∥∥∥
≤ 1

N − 1

√
β

∥∥∥∥∥∥
N∑
j=2

qjw
ε,θ,N
1j p1pjψ

∥∥∥∥∥∥ . (7.48)

Now the second factor of (7.48) is split in the ”diagonal” term and ”off-diagonal”
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term∥∥∥∥∥∥
N∑
j=2

qjw
ε,θ,N
12 p1pjψ

∥∥∥∥∥∥
2

=
N∑

j,k=2

⟪ψ, p1plw
ε,θ,N
1l qlqjw

ε,θ,N
1j p1pjψ⟫

≤
∑

2≤j<k≤N
⟪ψ, pχj qΦ

j p1plw
ε,θ,N
1l wε,θ,N1j pχl q

Φ
l p1pjψ⟫

+ (N − 1)
∥∥∥wε,θ,N12 p1p2ψ

∥∥∥2
.

(7.49)

The first summand of (7.49) is bounded by

(N − 1)(N − 2)〈ψ, q2p1p3w
ε,θ,N
13 wε,θ,N12 q3p1p2ψ〉

≤ N2

∥∥∥∥√wε,θ,N13

√
wε,θ,N12 q3p1p2ψ

∥∥∥∥2

≤ N2

∥∥∥∥√wε,θ,N12 p2

√
wε,θ,N13 p1q3ψ

∥∥∥∥2

≤ N2

∥∥∥∥√wε,θ,N12 p2

∥∥∥∥4

Op

‖q3ψ‖2

≤ N2
∥∥∥p2w

ε,θ,N
12 p2

∥∥∥2

Op
β

5.4

. N2 ‖ϕ‖4∞ β. (7.50)

The second summand of (7.49) is bounded by

N〈ψ, p1p2(wε,θ,N12 )2p1p2ψ〉

≤ N
∥∥∥p1(wε,θ,N12 )2p1

∥∥∥
Op

5.4
≤ N ‖ϕ‖2∞

∥∥∥wε,θ,N∥∥∥2

2

= N1+3θε−6θ+2 ‖ϕ‖2∞ (7.51)

since
∥∥wε,θ,N∥∥2

2
. (N

ε2
)3θε2. Now putting (7.50) and (7.51) together we find∥∥∥∥∥∥

N∑
j=2

qjw
ε,θ,N
12 p1pjψ

∥∥∥∥∥∥
2

. N2 ‖ϕ‖4∞ β +N1+3θε−6θ+2 ‖ϕ‖2∞ .

Inserting this in (7.48) yields the claimed result

|〈ψ, p1p2w
ε,θ,N
12 q1q2ψ〉| .

1

N

√
β

√
N2 ‖ϕ‖4∞ β + ‖ϕ‖2∞N1+3θε−6θ+2

. ‖ϕ‖2∞
√
β

√
β + ‖ϕ‖−2

∞ N−1+3θε−6θ+2

≤ ‖ϕ‖2∞ β +N−1+3θε−6θ+2.
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Line 6. The interaction is nonnegative so we have

−N − 1

2N
〈ψ, (1− p1p2)wε,θ,N12 (1− p1p2)ψ〉 ≤ 0.

Line 6. With the methods used in the proof of Lemma 7.5.4 we find

|⟪ψ, V (x1, εy1)ψ⟫− 〈Φ, V (x, 0)Φ〉| . ‖V (·, 0)‖L∞ β + ε.
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A. Properties of the Solutions to the
Considered Equations

In this section we summarize the well-known results for the regularity of solutions to

the considered equations. These results ensure that the estimates of Theorems 1-3

are meaningful.

A.1. Properties of the Solution to the N-particle Equation

The assumptions on the N -particle Hamiltonian HN are for all cases, even with time

dependent external potential, such that HN generates a unitary time evolution on

D(HN ). Thus for solutions ψ of the Schrödinger equation we have global existence

and conservation of the L2-norm and without a time depending external potential

conservation of energy.

A.2. Properties of the Solutions to the One-particle

Equations

The questions of well-posedness, global existence and conservation laws for the

Hartree and NLS/Gross-Pitaevskii equation in our setting are well understood.

The standard way of deriving the claimed results follows in two steps. The first

step is to prove local existence of solutions by approximating by the free evolution

for example with the help of variation of constants formula. The second step is

extending the local solutions with the help of conservation laws to global solutions.

We only state the results of the properties we use. For an overview on this topic

see for example the book of Tao [Tao] and literature therein.

A.2.1. The Hartree Equation

Lemma A.1. For Φ(x, t) : Rn×R→ C and n ∈ 1, 2 consider the Cauchy-Problem

for the Hartree equation{
i∂tΦ(x, t) = −∆Φ(x, t) + (w ∗ |Φ|2)(x, t)Φ(x, t)

Φ(x, 0) = Φ0,
(A.1)

where w is spherically symmetric and w = w1 + w2 with w1 ∈ Lp1 and w2 ∈ L∞,

where p1 > 1.
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1. For Φ0 ∈ H1(Rn) the Cauchy-Problem has a unique weak solution Φ(x, t) ∈
Cb(R, H1(Rn)) with ‖Φ0‖2 = ‖Φt‖2 = 1 and ‖Φ0‖H1 = ‖Φt‖H1 for all t ∈ R+.

2. If Φ0 ∈ Hk(Rn) for k ∈ N, k > 2 then the solution of (A.1) is in Cb(R, H1)∩
C(R, Hk) ∩ C1(R, Hk−2).

Proof. 1. and 2. are Proposition 2.2 and Theorem 3.1 in [GV].

A.2.2. The Gross-Pitaevskii/NLS Equation

Lemma A.2. For Φ(x, t) : Rn ×R→ C and n ∈ 1, 2 consider the Cauchy problem

for the Gross-Pitaevskii equation{
i∂tΦ(x, t) = −∆Φ(x, t) + |Φ|2Φ(x, t)

Φ(x, 0) = Φ0.
(A.2)

1. For Φ0 ∈ H1(Rn) the Cauchy-Problem has a unique weak solution Φ(x, t) ∈
Cb(R, H1(Rn)) with ‖Φ0‖2 = ‖Φt‖ = 1 for all t ∈ R+.

2. If Φ0 ∈ H2(Rn) the solution of (A.2) is in Cb(R, H1)∩C(R, H2)∩C1(R, L2).

These results are summarized in Proposition 3.1 of [BDOS] for the more com-

plicated case n = 3. In the case n = 1 there are even stronger results. For k ∈ N
let Φ0 ∈ Hk(R) then ‖Φ(t)‖Hk ≤ ‖Φ(0)‖Hk ∀t. This follows from exercise 3.36 in

[Tao].

A.2.3. Eigenfunctions of the Laplacian on a Bounded Domain

Last we summarize the well-known results for the boundary-value problem{
Lw = λw inU

w = 0 on ∂U,

where U is open and bounded, L is a uniform elliptic, symmetric operator with

smooth coefficients which are elements of C∞(U). See for example [Eva] for the

following facts.

1. The eigenvalues {λk}∞k=1 of L can be ordered such that

0 < λ1 < λ2 ≤ λ3 ≤ . . .

2. There exists an orthonormal basis {wk}∞k=1 of L2(U), where wk ∈ C∞(U) is

an eigenfunction with eigenvalue λk for each k. Furthermore, for smooth ∂U

we have wk ∈ C∞(Ū).
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B. Estimates for the Coulomb potential

In this section we show that the assumptions of Theorem 2 hold for

w =
1

|r|
w0 =

1

|x|
,

if we have confinement in one direction. For the ease of the calculation we set

Ω̃c = [−1, 1]. However, the following calculation holds for arbitrary intervals allowed

by the assumptions. We decompose the potentials in a part with the singularity

and a bounded part

ws =
1

|r|
χ{B1(0)×[−1,1]} w∞ =

1

|r|
χ{B1(0)C×[−1,1]},

where χ denotes, only in this section, the indicator function. The function w0 is

understood as the constant function 1 in the y-direction

w0
s =

1

|x|
χ{B1(0)×[−1,1]} w0

∞ =
1

|x|
χ{B1(0)C×[−1,1]}.

B.1. Approximation for Example 1

B.1.1. Convergence of |rε|−1 to |x|−1

We first show that in the sense of assumption A1’ 1
|rε| is approximated by 1

|x| . With

the definition of L1(Ω̃) + L∞(Ω̃) we have∥∥wε − w0
∥∥
L1(Ωf×Ω̃c)+L∞(Ωf×Ω̃c)

=
∥∥wεs − w0

s

∥∥
L1(Ωf×Ω̃c)

+
∥∥wε∞ − w0

∞
∥∥
L∞(Ωf×Ω̃c)

.

We first approximate the L∞ part∥∥∥∥∥ 1√
x2 + ε2y2

− 1

|x|

∥∥∥∥∥
L∞(B1(0)C×[−1,1])

=

∥∥∥∥∥ 1√
r2 + ε2y2

− 1

r

∥∥∥∥∥
L∞((1,∞)×[−1,1])

=

∥∥∥∥∥r −
√
r2 + ε2y2

r
√
r2 + ε2y2

∥∥∥∥∥
L∞((1,∞)×[−1,1])

.

After a Tayler expansion we find r
√

1 + ε2 y
2

r2
= r(1 + θ ε

2y2

r2
) for a θ ∈ [0, 1]. Thus

we obtain
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B. Estimates for the Coulomb potential

∥∥∥∥∥ 1√
x2 + ε2y2

− 1

|x|

∥∥∥∥∥
L∞(BC1 (0)×[−1,1])

=

∥∥∥∥∥ θε2y2

r2
√
r2 + ε2y2

∥∥∥∥∥
L∞((1,∞)×[−1,1])

≤ ε2.

For the L1-part we can solve the integral directly∥∥∥∥∥ 1√
x2 + ε2y2

− 1

|x|

∥∥∥∥∥
L1(B1(0)×[−1,1])

=

∫
B1(0)

∫ 1

−1
| 1√

x2 + ε2y2
− 1

|x|
|dxdy

= 2π

∫ 1

0

∫ 1

−1
| 1√

r2 + ε2y2
− 1

r
|rdrdy = 2π

∫ 1

0

∫ 1

−1
1− r√

r2 + ε2y2
drdy

= 4π

∫ 1

0

∫ 1

0
1− r√

r2 + ε2y2
drdy = 4π(1 +

∫ 1

0
(εy −

√
1 + ε2y2)dy

= 1 +
ε

2
−
[

1

2
y
√
ε2y2 + 1 +

sinh−1(εy)

2ε

]1

0

= 1 +
ε

2
− 1

2

√
ε2 + 1− sinh−1(ε)

2ε

= 1 +
ε

2
− (

1

2
+

1

4
ε2 + . . . )− 1

2ε
(ε− 1

6
ε3 + . . . ) =

ε

2
+O(ε2).

Putting both estimates together we have∥∥∥∥ 1

|rε|
− 1

|x|

∥∥∥∥
L1(Ωf×Ω̃c)+L∞(Ωf×Ω̃c)

. ε.

B.1.2. Uniform Bound for |rε|−p for p < 2

We consider 1
|rε| on Lp(Ωf × Ω̃c) + L∞(Ωf × Ω̃c). The L∞-part does not pose any

problems. The singularity can be estimated for p < 2 by∫
B1(0)

∫ 1

−1

1

(x2 + ε2y2)
p
2

dxdy ≤
∫
B1(0)

∫ 1

−1

1

(x2)
p
2

dxdy

= 4π

∫ 1

0

1

rp
rdr = 4π

∫ 1

0
r1−pdr = 4π[r2−p]10 = C.

This estimate is sharp in p in the sense that for p = 2 it does not work since∫
B1(0)

∫ 1

−1

1

(x2 + ε2y2)
dxdy ≤ 2

∫ 1

0
r−1dr

does diverge.
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B.2. Bound for Example 2

B.2. Bound for Example 2

The logarithmic divergence of |rε|−2 follows from estimating

∫
B1(0)

∫ 1

−1

1

x2 + ε2y2
dxdy ≤

∫
Bε1(0)

∫ 1

−1

1

x2 + ε2y2
dxdy

+

∫
B1(0)\Bε1(0)

∫ 1

−1

1

x2 + ε2y2
dxdy

≤ 1

ε

∫
Bε1(0)

∫ ε

−ε

1

x2 + y2
dxdy +

∫
B1(0)\Bε1(0)

∫ 1

−1

1

x2
dxdy

.
1

ε

∫
Bε1(0)

1

r2
d(r, θ, ϕ) +

∫ 1

ε

1

r
dr

.
1

ε

∫ ε

0

1

r2
r2dr − log ε . 1 + log ε−1.
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C. Improvement of the Convergence of
Theorem 2

We can slightly improve the rate of convergence of equation (6.25) by improving the

estimate of (6.47). We use the same idea as in the proof of Lemma 7.5.2. Therefore,

we split this term in a part, where at least a ”few particles” of ψ are in the state

p and the complement. This helps since the diagonal term and the off diagonal

term arising in the estimation can be treated differently. With the split we can

distinguish the behavior of the terms beforehand and estimate them accordingly.

Hence we gain a tiny bit of convergence speed in the estimation process.

We define the same splitting as in (7.22). However, to use the estimates from

the proof of Lemma 6.10 we implement the splitting in a different way. Define

Υ 1(k) = 1{k≤N1−δ} and Υ 2(k) := 1− Υ 1(k). We rewrite the term on the left-hand

side of (6.47)

|⟪ψ, p1p2w
s,2
12 µ̂1q1q2ψ⟫| = |⟪ψ, p1p2w

s,2
12 (Υ̂1 + Υ̂2)µ̂1q1q2ψ⟫|

≤ |⟪ψ, p1p2w
s,2
12 Υ̂1µ̂1q1q2ψ⟫|+ |⟪ψ, p1p2w

s,2
12 Υ̂2µ̂1q1q2ψ⟫|.

(C.1)

We start with estimating |⟪ψ, p1p2w
s,2
12 Υ̂1µ̂1q1q2ψ⟫|. Here we have cut the parts

with too many bad particles so we can squeeze out an N to some power of −δ,
hence we do not have to try to get a β. Except of writing µ1 = µ

1
2µ

1
2 and bringing

one of them on the other side of the interaction the calculation stays exactly the

same as in Lemma 6.10, so we only give a rough sketch of the proof here.

|⟪ψ, p1p2w
s,2
12 Υ̂1µ̂1q1q2ψ⟫| = 1

N − 1
|⟪ψ,

N∑
j=2

p1pjw
s,2
1j Υ̂1µ̂1q1qjψ⟫|

=
1

N − 1
|⟪ψ,

N∑
j=2

p1pj τ̂2Υ1w
s,2
1j µ̂1q1qjψ⟫|

≤ 1

N − 1
‖µ̂1q1ψ‖

√√√√ N∑
i,j=2

⟪ψ, p1pj τ̂2Υ1w
s,2
1j qjqiw

s,2
1i p1piτ̂2Υ1ψ⟫
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C. Improvement of the Convergence of Theorem 2

Since ‖µ̂1q1ψ‖ ≤ 1 similarly to (6.39)

|⟪ψ, p1p2w
s,2
12 Υ̂1µ̂1q1q2ψ⟫| ≤ 1

N − 1

√
A+B,

where

A :=
∑

2≤i 6=j≤N
⟪ψ, p1pj τ̂2Υ1w

s,2
1j qjqiw

s,2
1i p1piτ̂2Υ1ψ⟫

B :=
N∑
i=2

⟪ψ, p1piτ̂2Υ1w
s,2
1i qiqiw

s,2
1i p1piτ̂2Υ1ψ⟫.

We do not use the cutoff here. With (6.44) and similarly to (6.40) we get

B . Nc2−s ‖ϕ‖2∞ . (C.2)

Since there is no q1 in the middle of the term A as in (6.41) we can estimate it

directly and get as before

A . N2 ‖wε,s‖2s (1 + ‖ϕ‖∞)4⟪ψ, q1τ̂2Υ1ψ⟫
. N2(1 + ‖ϕ‖∞)4⟪ψ, τ̂2Υ1n̂

2ψ⟫,

where we have Υ1 still left in the expression. Since Υ1 = 1{k≤N1−δ} we get

τ2Υ1n
2 ≤ N−δ

and obtain

|A| . N2−δ ‖ϕ‖4L∞∩L2 . (C.3)

Collecting the estimates (C.2) and (C.3)

|⟪ψ, p1p2w
s,2
12 Υ̂1µ̂1q1q2ψ⟫| . 1

N

√
A+B

≤ N−
δ
2 ‖ϕ‖2L∞∩L2 + c1− s

2N−
1
2 ‖ϕ‖∞ . (C.4)

The second part of (C.1)

|⟪ψ, p1p2w
s,2
12 Υ̂2µ̂1q1q2ψ⟫|

is dealt with splitting µ1 = µ
1
2
1 µ

1
2
1 to be able to get a β. As in (6.39)

|⟪ψ, p1p2w
s,2
12 Υ̂2µ̂1q1q2ψ⟫| ≤

√
β

N − 1

√
A+B
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with the same splitting as before

A :=
∑

2≤j 6=i≤N
⟪ψ, p1pjw

s,2
1j Υ̂2µ̂1qjqiq1w

s,2
1i p1piψ⟫

B :=
N∑
i=2

⟪ψ, p1piw
s,2
1i Υ̂2µ̂1qiq1w

s,2
1i p1piψ⟫.

With

Υ2(k) = 1{k>N1−δ}

we find Υ2µ1 ≤ Υ2n
−1 ≤ N

δ
2 . Hence∥∥∥Υ̂2µ̂1qiq1

∥∥∥
Op
≤ N

δ
2

and B can be estimated similar to (6.40) by

B . N1+δ/2c2−s ‖ϕ‖2∞ ,

whereas there only appears an N δ/2 and not N
1
2 . The term A can be estimated

exactly like the A of (6.41), the Υ2 does not help here and can be neglected

A . N2(1 + ‖ϕ‖4∞)β.

Putting the estimates |⟪ψ, p1p2w
s,2
12 Υ̂2µ̂1q1q2ψ⟫| together

|⟪ψ, p1p2w
s,2
12 Υ̂2µ̂1q1q2ψ⟫| .

√
β

N − 1

√
N1+ δ

2 c2−s ‖ϕ‖2∞ +N2 ‖ϕ‖4L∞∩L2 β

. N−1+ δ
2 c2−s ‖ϕ‖2∞ + ‖ϕ‖2L∞∩L2 β.

Hence, this implies with (C.4) for the equation (C.1)

|⟪ψ, p1p2w
s,2
12 µ̂1q1q2ψ⟫| . N−

δ
2 ‖ϕ‖2L∞∩L2 + c1− s

2N−
1
2 ‖ϕ‖∞

+N−1+ δ
2 c2−s ‖ϕ‖2∞ + ‖ϕ‖2L∞∩L2 β. (C.5)

Finally we use (C.5) and (6.46) to obtain the improved estimate of (6.25)

III . N−
δ
2 ‖ϕ‖2L∞∩L2 + c1− s

2N−
1
2 ‖ϕ‖∞ +N−1+ δ

2 c2−s ‖ϕ‖2∞ + ‖ϕ‖2L∞∩L2 β

+ ‖ϕ‖∞
(
‖∇ϕ‖β + ‖ϕ‖H1 c

2− 2s
s0 + ‖∇1q1ψ‖2

)
.

After setting c = Nϑ and optimizing δ and ϑ we find

III . ‖ϕ‖3H1∩L∞ (β +Nη) + ‖ϕ‖∞ ‖∇1q1ψ‖2

with

η = − s/s0 − 1

2s/s0 − s/2− 1

which is slightly better than the η given in equation (6.48).
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List of symbols

Notation Description Page

List

a Scaling parameter depending on the number of

confined directions

16

b Coupling parameter in the NLS 22

α Counting functional 16

β Counting functional with weight function n 16

χ Confined, stationary part of the one-particle

wave function

16

D(Hε
N ) Domain of the operator Hε

N 18

ε Parameter controlling the strength of the

confinement

15

η Parameter controlling the rate of convergence 20

f(ε) Function controlling the convergence of wε to w0 18, 20

γ One-particle density matrix 16

Hε
N Rescaled N -particle Hamiltonian 15

h One-particle Hamiltonian 15

H N N -particle Hilbert space 15

N Number of particles 15

ν Parameter controlling the dependence of ε on N 23

Ω One-particle configuration space, subset of R3 15

Ωc Confined part of the one-particle configuration

space

15

Ωf Free part of the one-particle configuration space 15

p Projection onto ϕ 16

Φ Free part of the one-particle wave function

governed by a nonlinear PDE

16

ϕ One-particle wave function element of L2(Ω) 16

Pk,N Projection onto k ”bad” particles 16

ψεN N -particle wave function element of H N 15

q Projection onto the orthogonal complement of ϕ 16

r Element of Ω 15

θ Scaling parameter element of [0, 1] 15

V External potential 15
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List of symbols

Notation Description Page

List

w Two-particle interaction potential 16

w0 Hartree approximation to the two-particle

interaction potential w

17

W ε,θ,N Scaled two-particle interaction potential 15

w∞ Bounded part of the two-particle interaction

potential w

18, 20

ws Singular part of the two-particle interaction

potential w

18, 20

x Element of Ωf 15

y Element of Ωc 15
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[LTS] M. Lewin, P. Thành Nam, and B. Schlein. Fluctuations around Hartree

states in the mean-field regime. ArXiv e-prints, July 2013.

[LY1] E.H. Lieb and H.-T. Yau. The chandrasekhar theory of stellar collapse

as the limit of quantum mechanics. Communications in Mathematical

Physics, 112(1):147–174, 1987.

[LY2] E.H. Lieb and J. Yngvason. Ground state energy of the low density bose

gas. Phys. Rev. Lett., 80:2504–2507, Mar 1998.

[LY3] E.H. Lieb and J. Yngvason. The ground state energy of a dilute two-

dimensional bose gas. Journal of Statistical Physics, 103(3-4):509–526,

2001.

[Mic] A. Michelangeli. Equivalent definitions of asymptotic 100% B.E.C. Nuovo

Cimento B 123 (2008) 181-192, (SISSA;102/2007/MP), 2008.

[Pic1] P. Pickl. On the Time Dependent Gross-Pitaevskii- and Hartree Equation.

ArXiv e-prints, August 2008.

[Pic2] P. Pickl. Derivation of the time dependent Gross-Pitaevskii equation with-

out positivity condition on the interaction. Journal of Statistical Physics,

140(1):76–89, 2010.

105



Bibliography

[Pic3] P. Pickl. Derivation of the Time Dependent Gross-Pitaevskii Equation

with External Fields. ArXiv e-prints, January 2010.

[Pic4] P. Pickl. A simple derivation of mean field limits for quantum systems.

Letters in Mathematical Physics, 97(2):151–164, 2011.

[Pit] L.P. Pitaevskii. Vortex lines in an imperfect bose gas. Sov. Phys. JETP,

13(2):451–454, 1961.

[PO] O. Penrose and L. Onsager. Bose-einstein condensation and liquid helium.

Phys. Rev., 104:576–584, Nov 1956.

[PP] S. Petrat and P. Pickl. A New Method and a New Scaling For Deriving

Fermionic Mean-field Dynamics. ArXiv e-prints, September 2014.

[RS] I. Rodnianski and B. Schlein. Quantum fluctuations and rate of conver-

gence towards mean field dynamics. Comm. Math. Phys., 291(1):31–61,

2009.

[Sei] R. Seiringer. The excitation spectrum for weakly interacting bosons. Com-

munications in Mathematical Physics, 306(2):565–578, 2011.

[SKC+] F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cu-

bizolles, and C. Salomon. Quasipure bose-einstein condensate immersed

in a fermi sea. Phys. Rev. Lett., 87:080403, Aug 2001.

[Spo] H. Spohn. Kinetic equations from hamiltonian dynamics: Markovian lim-

its. Rev. Mod. Phys., 52:569–615, Jul 1980.

[SY] K. Schnee and J. Yngvason. Bosons in disc-shaped traps: From 3d to 2d.

Communications in Mathematical Physics, 269(3):659–691, 2007.

[Tao] T. Tao. Nonlinear dispersive equations. Local and global analysis. CBMS

Regional Conference Series in Mathematics, 106, volume 200. 2006.

[Wer] R.F. Werner. Large Deviations and Mean-Field Quantum Systems, chap-

ter 24, pages 349–381.

106


