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1  Summary 

 

Allogeneic hematopoietic cell transplantation (HCT) is an effective treatment for 

patients with hematologic malignancies, aplastic anaemia, and congenital 

immunodeficiency disorders. One of the major serious morbidities associated with 

HCT is the development of acute or chronic graft-versus-host disease (GvHD). The 

pathophysiology of GvHD is complex and not fully understood. The role of Th17 cells 

during GvHD is discussed controversially and still remains unclear. In this study, the 

induction of Th17 cells by monocytes of patients with GvHD in vitro was analysed 

demonstrating that monocytes isolated from patients with acute skin and intestinal 

GvHD stage I-IV or chronic GvHD induce significantly increased levels of Th17 cells 

compared to patients without GvHD after HCT and healthy controls. Several studies 

suggest using the determined levels of regulatory (Treg) cells and the ratio of Th17 

cells to Treg cells in the peripheral blood of patients as diagnostic markers for GvHD. 

However, the data of the present study have demonstrated that the determined 

percentages of Treg cells in peripheral blood mononuclear cells (PBMCs) isolated 

from patients with acute GvHD do not differ from the assessed percentages of Treg 

cells in PBMCs of healthy donors and patients without GvHD after HCT. By contrast, 

the percentages of Treg cells in PBMCs from patients with extensive chronic GvHD 

seem to be increased in comparison to the healthy controls and the non-GvHD 

group. The results of the present work further indicate that the calculated ratios of 

Th17 cells to Treg cells are not altered in patients with acute or chronic GvHD 

compared to patients without GvHD after HCT. Development and progression of 

GvHD is mediated by multiple cellular and inflammatory effectors. However, several 

of these molecules are still unknown. Previous studies have demonstrated that S100 

proteins act as innate amplifier of inflammation and play an important role in many 

inflammatory diseases such as inflammatory bowel disease or rheumatoid arthritis. 

These proinflammatory S100 proteins belong to the group of Damage Associated 

Molecular Pattern (DAMP) molecules and are released by activated or damaged 

phagocytes under conditions of cell stress during infections and autoimmune 

diseases. Therefore, expression levels of S100 proteins in monocytes and the 

presence of S100 proteins in the stool, serum and bowel tissue were investigated in 

patients with acute or chronic GvHD and compared to healthy controls and patients 
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without GvHD after HCT. Additionally, the influence of S100 proteins on monocyte-

mediated induction of Th17 cells was analysed. The data of this study demonstrate 

that the expression of S100 proteins is increased in monocytes from patients with 

GvHD compared to the controls. Overall, elevated levels of S100 proteins can be 

detected in the serum, stool and bowel tissue of patients with GvHD demonstrating 

the release of these phagocyte-specific proteins during GvHD. Furthermore, S100 

proteins were found to bind to toll-like receptor 4 (TLR4) on monocytes resulting in 

the promotion of monocyte-induced Th17 development. These data emphasize the 

role of S100 proteins in Th17 triggered inflammation. Additionally, it was investigated 

if the induction of Th17 cells is mediated by proinflammatory cytokines released by 

monocytes or by cell contact between monocytes and CD4+ T cells. The data of the 

present study have revealed that monocyte-mediated Th17 development occurs in a 

cell-cell-contact dependent manner with the involvement of proinflammatory 

cytokines secreted by in vitro or in vivo activated monocytes. A further part of this 

thesis examined the influence of heat shock protein 90 (Hsp90) in monocyte-

mediated induction of Th17 cells. Hsp90 is a ubiquitously expressed molecular 

chaperon that is known to play an important role in signal transduction, transcription 

regulation and survival of the cell. The data of this work have demonstrated that 

Hsp90 inhibition in in vivo activated monocytes by the geldanamycin derivative 17-

DMAG decreases Th17 responses. Further results have shown that the stimulatory 

effects of proinflammatory S100 proteins on monocyte-induced Th17 development 

can be blocked by chemical inhibition of Hsp90 using 17-DMAG or by specific siRNA-

mediated knockdown of the stress-inducible Hsp90α in monocytes. In contrast to 

dexamethasone which is a potent synthetic member of the glucocorticoid class of 

steroids that are widely used drugs for the treatment of acute and chronic GvHD, the 

chemical Hsp90 inhibitor 17-DMAG does not seem to induce the development of 

proinflammatory Th17 cells expressing the multi-drug resistance protein 1 (MDR1).  

MDR1 is an ATP-dependent efflux pump that plays a crucial role in the bioavailability 

of a wide range of drugs and xenobiotics. Altogether, the results of the present work 

indicate that levels of proinflammatory S100 proteins are increased in the serum, 

stool and bowel tissue of patients with GvHD and might promote monocyte-induced 

development of Th17 cells during GvHD. Specific inhibition of Hsp90 might prevent 

the induction of inflammation-promoting Th17 cells. Therefore, Hsp90 could be a 

novel, critical target for the treatment of GvHD.  
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Zusammenfassung 

 

Die allogene hämatopoetische Stammzelltransplantation stellt eine effektive 

Behandlungsmöglichkeit für Patienten mit hämatologischen Erkrankungen, 

aplastischen Anämien und angeborenen Immunerkrankungen dar. Eine der 

Hauptursachen für Morbidität und Mortalität nach allogener Stammzelltransplantation 

stellt die Spender-gegen-Empfänger Reaktion (Graft-versus-Host Disease (GvHD)) 

dar.  Allerdings ist die Pathophysiologie der GvHD sehr komplex und noch nicht 

vollständig aufgeklärt. Die Rolle von Th17 Zellen während der GvHD wird derzeit 

kontrovers diskutiert und ist immer noch unklar. In dieser Studie wurde die Induktion 

von Th17 Zellen durch Monozyten von Patienten mit GvHD in vitro untersucht und es 

konnte gezeigt werden, dass Monozyten, die aus dem peripheren Blut von Patienten 

mit akuter Haut oder Darm GvHD Grad I-IV oder mit chronischer GvHD isoliert 

wurden, signifikant höhere Anteile an Th17 Zellen induzieren verglichen mit 

Monozyten von gesunden Spendern und Patienten nach Stammzelltransplantation 

ohne GvHD. Einige Studien schlagen vor, die Anteile an regulatorischen T Zellen 

oder das Verhältnis von Th17 Zellen zu regulatorischen Zellen im peripheren Blut von 

Patienten als diagnostische Marker für eine GvHD einzusetzen. Die Daten der 

vorliegenden Arbeit hingegen haben gezeigt, dass es keine Unterschiede in den 

Anteilen an regulatorischen T Zellen in den peripheren mononukleären Blutzellen 

(PBMCs) von Patienten mit einer akuter GvHD, von gesunden Spendern sowie 

Patienten ohne GvHD nach allogener Stammzelltransplantation gibt. Jedoch 

scheinen die Anteile an regulatorischen T Zellen in PBMCs von Patienten mit 

extensiver chronischer GvHD erhöht zu sein, verglichen mit gesunden Spendern und 

Patienten ohne GvHD nach Stammzelltransplantation. Die Ergebnisse dieser Arbeit 

zeigen außerdem, dass sich die Verhältnisse von Th17 Zellen zu regulatorischen T 

Zellen bei Patienten mit akuter oder chronischer GvHD und Patienten ohne GvHD 

nach Stammzelltransplantation nicht unterscheiden. Das Entstehen und Fortschreiten 

einer GvHD wird durch viele zelluläre und inflammatorische Effektoren vermittelt. 

Viele dieser Moleküle sind jedoch noch unbekannt. Bisherige Studien haben gezeigt, 

dass S100 Proteine als angeborene Verstärker einer Entzündung fungieren und eine 

wichtige Rolle bei vielen entzündlichen Erkrankungen wie bei inflammatorischen 

Darmerkrankungen oder bei der Rheumatoiden Arthritis spielen. Diese S100 Proteine 

gehören zur Gruppe der „Damage Associated Molecular Pattern“ (DAMP) Moleküle 
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und werden von aktivierten oder beschädigten Phagozyten bei Zellstress im Rahmen 

von Infektionen und Autoimmunerkrankungen freigesetzt. Aufgrund dieser Tatsachen 

wurden S100 Expressionslevel in Monozyten sowie das Vorkommen von S100 

Proteinen im Stuhl, Serum und Darmgewebe bei Patienten mit akuter oder 

chronischer GvHD untersucht und mit gesunden Spendern sowie Patienten ohne 

GvHD nach allogener Stammzelltransplantation verglichen. Zusätzlich wurde der 

Einfluss von S100 Proteinen hinsichtlich der Monozyten-vermittelten Induktion von 

Th17 Zellen analysiert. Die Ergebnisse dieser Arbeit haben gezeigt, dass die 

Expression der S100 Proteine in Monozyten von Patienten mit einer GvHD im 

Vergleich zu den Kontrollen erhöht ist. Insgesamt ist das S100 Proteinlevel im 

Serum, Stuhl sowie im Darmgewebe von Patienten mit einer GvHD erhöht, was 

darauf hindeutet, dass diese Phagozyten-spezifischen Proteine während einer GvHD 

freigesetzt werden. Des Weiteren führt eine Stimulation von Monozyten mit S100 

Proteinen, welche an den toll-like Rezeptor 4 (TLR4) auf Monozyten binden, zu einer 

verstärkten Induktion an Th17 Zellen, was die Rolle von S100 Proteinen bei einer 

durch Th17 Zellen ausgelösten Inflammation betont. Außerdem wurde untersucht, ob 

die Induktion von Th17 Zellen zytokinvermittelt oder über Zellkontakt zwischen 

Monozyten und CD4+ T Zellen erfolgt. Die Daten dieser Studie haben gezeigt, dass 

die Monozyten-vermittelte Induktion von Th17 Zellen durch Zell-Zell-Kontakt, aber 

unter Beteiligung von proinflammatorischen Zytokinen, welche von in vitro und in vivo 

aktivierten Monozyten sezerniert werden, erfolgt. Ein weiterer Teil dieser Arbeit 

beschäftigte sich mit der Untersuchung des Einflusses des Hitzeschockproteins 90 

(Hsp90) auf die Monozyten-induzierten Entstehung von Th17 Zellen. Hsp90 ist ein 

ubiquitär exprimiertes molekulares Chaperon, das bei der Signaltransduktion, 

Transkriptionsregulation und dem Überleben der Zelle eine wichtige Rolle spielt. Die 

Ergebnisse dieser Arbeit haben gezeigt, dass eine Hsp90 Inhibition in in vivo 

aktivierten Monozyten mittels Geldanamycin Derivat 17-DMAG dazu führt, dass die 

Th17 Antwort verringert wird. Weitere Daten legen dar, dass der stimulatorische 

Effekt der proinflammatorischen S100 Proteine hinsichtlich der Induktion von Th17 

Zellen durch chemische Inhibition von Hsp90 mittels 17-DMAG sowie durch 

spezifisches siRNA-vermitteltes Ausschalten des Stress-induzierbaren Hsp90α in 

Monozyten gehemmt werden kann. Im Gegensatz zu Dexamethason, welches zur 

Gruppe der künstlichen Glucocorticoide gehört, welche sehr häufig zur Behandlung 

der akuten und chronischen GvHD eingesetzt werden, fördert der chemische Hsp90 
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Inhibitor 17-DMAG nicht die Entstehung von proinflammatorischen Th17 Zellen, 

welche das „multi-drug resistance protein 1“ (MDR1) exprimieren. Dieses MDR1 ist 

eine ATP-abhängige Effluxpumpe, welche eine wichtige Rolle bei der 

Bioverfügbarkeit vieler Medikamente und Xenobiotika spielt. Zusammenfassend 

deuten die Ergebnisse dieser Arbeit darauf hin, dass der Gehalt an 

proinflammatorischen S100 Proteinen im Serum, Stuhl und Darmgewebe von 

Patienten mit GvHD erhöht ist und somit die Monozyten-vermittelte Th17 Induktion 

während der GvHD fördern könnte. Eine spezifische Hemmung von Hsp90 könnte 

die Induktion von entzündungsfördernden Th17 Zellen verhindern. Daher könnte 

Hsp90 einen entscheidenden Angriffspunkt bei der Behandlung einer GvHD 

darstellen.  
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2 Introduction 

 

2.1 Allogeneic hematopoietic stem cell transplantation 

Allogeneic hematopoietic cell transplantation (HCT) is an effective treatment for 

patients with hematologic malignancies, aplastic anemia, and congenital 

immunodeficiency disorders.1,2 The first successful allogeneic hematopoietic stem 

cell transplantation was done in 1968 using bone marrow as source of hematopoietic 

stem cells.3 In the following years, bone marrow was used as source of stem cells for 

transplantation. In the 1960s, experiments have shown that peripheral blood contains 

a small number of stem cells4,5, which can be enriched by treatment with 

chemotherapeutic drugs and hematopoietic growth factors like the granulocyte 

colony-stimulating factor prior to stem cell infusion.6-8 Thus, mobilized peripheral 

blood stem cells became an alternative stem cell source for HCT. In 1978, cord blood 

was found to be a rich source of stem cells and was therefore used for allogeneic 

HCT.9,10 
 

2.1.1 Types of allogeneic hematopoietic stem cell transplantation 

The ability to perform an allogeneic HCT depends on the availability of a suitable 

donor. The best donor for HCT is a HLA-matched sibling or unrelated donor.11 

However, the presence of these donors is limited as only approximately 30% of the 

patients requiring transplantation have a HLA-matched sibling.12 Additionally, the 

probability of identifying a HLA-matched unrelated donor in a worldwide donor 

registries is dependent on the diversity of HLA antigens within a population and on 

the patient`s race.13 Furthermore, the search for a HLA-matched unrelated donor is 

time-consuming and the time from the initiation of the search for a donor to 

transplantation is four month or longer.14 In this time period, the patient`s disease 

stage often deteriorates seriously so that allogeneic HCT will no longer be a 

therapeutic option.15 Therefore, alternative donors such as a partially HLA-

mismatched unrelated donor, a three-loci mismatched haploidentical family donor or 

an umbilical cord blood stem cell product are increasingly used as sources of 
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hematopoietic stem cells.11,15  In the case of transplantation of stem cells from 

unrelated donors, HLA-matching at HLA-A, -B, -C and -DRB1 between donors and 

recipients is associated with best survival.16 A single mismatch for HLA-A or -B or 

HLA-DR, determined by serologic typing, increases the risk of acute graft-versus-host 

disease (GvHD) and decreases overall survival.17-19 Umbilical cord blood stem cell 

products are HLA mismatched at 1 to 6 antigens or alleles and the minimal number of 

T cells in the umbilical cord blood product allows its use across HLA barriers. 

However, using umbilical cord blood as stem cell source entail several disadvantages 

like the small stem cell number in the product which limits the stem cell dose in adults 

and often requires the use of a second umbilical cord blood product.11 Additionally, 

HLA-mismatched cord blood transplants often induce a high transplant-related 

mortality.20 Furthermore, umbilical cord blood products are usually not immediately 

available in comparison to haploidentical stem cell sources.15 These haploidentical 

transplants have the advantage of speed as relatives are usually easy to contact for 

stem cell collection.11 These transplants from parents, children, or other family 

members are matched for one of the patient`s two HLA haplotypes and are well 

tolerated.21 Another advantage of haploidentical stem cell transplants over umbilical 

cord blood products is the large numbers of haploidentical stem cells can be 

collected from the donor by repeated collections and these large stem cell numbers 

allow the engraftment across the HLA-barrier even after reduced conditioning 

regimens.22,23 Furthermore, haploidentical transplantation is associated with a low 

transplant-related toxicity and an acceptable rate of rejection.22  

 

2.1.2  Conditioning regimens before allogeneic hematopoietic stem cell 

transplantation 

The conditioning or preparative regimen to the recipient is essential for the success 

of a HCT. Effective conditioning protocols should provide sufficient immunoablation to 

prevent graft rejection, eliminate malignant cells, minimise the risk of GvHD 

development without reducing engraftment or graft-versus-tumour effects and to 

minimise tissue toxicity.24,25  The selection of a conditioning regimen for any given 

patient depends on disease-related factors including the diagnosis or remission 

status and also patient-related factors such as age and availability of a stem cell 
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donor.25 The intensity of conditioning regimens can be classified in myeloablative and 

reduced intensity conditioning as described by Bacigalupo et al.26 High-dose 

myeloablative conditioning (MAC) consists of typically one or more alkylating agents 

and may contain whole-body irradiation.24,25 The increase of the intensity of host 

conditioning results in the reduction of immunocompetent cells in the recipient and 

permits stem cell transplantation of even unrelated, mismatched donors.27 However, 

high-dose conditioning also leads to increased tissue toxicity.28 Reduced intensity 

conditioning (RIC) uses a dose of alkylating agents that is reduced by approximately 

30%. This conditioning regimen incorporates more directed immunosuppressive 

agents including the purine analogue fludarabine to provide anti-tumour activity and 

to inhibit T-cell proliferation and mixed lymphocyte reaction.29-31 RIC regimens may 

also include the use of total lymphoid irradiation and the application of T-cell-

depleting antibodies.32,33 Therefore, RIC regimen offers the possibility to transplant 

older patients with reduced toxicity and side effects and without a compromise in 

overall survival in comparison to high-dose conditioning regimen.34,35  
 

2.2 Graft-versus-host disease 

2.2.1  Pathophysiology of acute GvHD  

The pathophysiology of acute GvHD can be divided into three phases (Figure 1).36 In 

the first phase, conditioning regimen induces the damage to the intestinal mucosa 

and liver resulting in the activation of host cells and the release of proinflammatory 

cytokines such as TNFα and IL-1β and danger signals such as adenosine-5`-

triphosphate (ATP), nicotine adenine dinucleotide and extracellular matrix proteins 

such as biglycan that promote the expression of adhesion molecules, MHC antigens 

and costimulatory molecules on host antigen presenting cells (APCs).37-41 This 

activation and maturation of APCs enhances their recognition by donor T cells.42-45 

Damage of the gastrointestinal tract from the conditioning allows the translocation of 

lipopolysaccharide (LPS) which can activate innate immunity through toll-like 

receptors (TLRs) promoting the cytokine cascade.37,38 In the second phase, donor T 

cell activation is induced by recipient antigens presented by host APCs and is 

intensified by donor APCs.46,47 This is mediated by HLA proteins which are encoded 

by the MHC on chromosome 6. MHC compatibility determines the risk of developing 
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an acute GvHD and the frequency of an acute GvHD can be correlated with the 

mismatch at HLA-A, -B, -C, and -DRB1.48 However, despite full 8 of 8 or even 12 of 

12 match, 40% of stem cell recipients still develop an acute GvHD due to 

mismatches of minor histocompatibility antigens between HLA-identical donors and 

recipients.36,49 The minor histocompatibility antigens are peptides derived from 

genetically polymorphic genes, whose difference between the donor and stem cell 

recipient results in donor T-lymphocyte-mediated immune responses towards the 

recipient.50  In addition to the interaction between the T cell receptor and MHC 

molecules, activation of T cells requires a second costimulatory signal such as 

interaction between CD28 (present on the T cell) and CD80 or CD86 (present on 

APCs). The absence of these costimulatory signals leads to T cell anergy. Thus, 

blockade of these costimulatory interactions can prevent acute GvHD.51 The third 

phase which also called the effector phase is a complex cascade of both cellular 

mediators such as cytotoxic T lymphocytes and natural killer cells and soluble 

inflammatory mediators such as TNFα, IFNγ and IL-1 leading to target tissue 

destruction.24,52 In detail, activated T cells proliferate and differentiate into naïve, 

effector, memory, regulatory T cells, Th1, Th2, Th17 cells, and other subsets.53-56 

These activated T cells migrate from secondary lymphoid organs to target tissues 

(skin, liver, gut and lung) through chemokine-receptor, selectin-ligand and integrin-

ligand interactions.57 Once T cells have reached the target organs, T cells induce the 

destruction of the target tissue mediated by direct cytotoxic activity or by recruitment 

of other leukocytes.58 Cytotoxic T cells that use the Fas/Fas ligand pathway for target 

lysis appear to be important for liver damage whereas cytotoxic T cells that use the 

perforin/granzyme pathways predominate in skin and intestinal GvHD.24,59 Microbial 

products such as LPS that leak through the damaged intestinal mucosa or skin can 

promote the secretion of proinflammatory cytokines such as TNFα and IL-1 by 

monocytes. Released TNFα can damage tissue directly by inducing necrosis and 

apoptosis in the skin and gastrointestinal tract mediated either through TNF receptors 

or the Fas pathway. IL-1 also induces target cell apoptosis.38,60,61 Tissue damage 

then leads to the increased inflammatory signals promoting the disease process by 

contributing to the cytokine storm.24 
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Figure 1: Pathophysiology of acute GvHD  
Adapted from Ferrara et al.36 Copyright by Elsevier 

The pathophysiology of acute GvHD can be divided into three phases. In the first phase, the 

conditioning regimen leads to the damage of host tissue resulting in the release of proinflammatory 

cytokines that activate host APCs. In the second phase, host APCs activate mature donor T cells 

which proliferate, differentiate and produce additional effectors including cytotoxic T cells, natural killer 

cells, TNFα and IL-1 that mediate tissue damage. In the third phase, LPS leaks through the damaged 

intestinal mucosa and triggers the production of additional TNFα. TNFα leads to tissue damage in the 

skin and gastrointestinal tract. 

 

2.2.2  Pathophysiology of chronic GvHD  

The immune mechanisms leading to the development of a chronic GvHD are still not 

completely understood. However, it is known that a chronic GvHD develops due to a 

complex pathology involving donor B cells and T cells as well as other cells. 

Regarding B cells, it is known that patients with chronic GvHD have circulating 

antibodies that can react with the cells from the recipient.62,63 It has been found that 

two classes of recipient antibodies are associated with chronic GvHD. The first class 

includes antibodies specific for antigens in the recipient that are not present in the 

donor. Examples for this class of alloantibodies are antibodies that are directed 

against Y-chromosome-encoded (HY) proteins (DBY, UTY, ZFY, RPS4Y, and 

EIF1AY). Alloantibodies specific for HY could be detected in more than 80% of male 
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patients with chronic GvHD who had female stem cell donors whereas anti-HY 

antibodies very seldom develop in male recipients who have male donors.64-66 

Additionally, the presence of HY antibodies seems to predict the subsequent 

development of chronic GvHD and is associated with maintenance of disease 

remission.64 The second class of antibodies that is frequently present in patients with 

chronic GvHD includes antibodies that are directed against nonpolymorphic 

autoantigens such as the platelet-derived growth factor receptor (PDGFR). It has 

been demonstrated that higher levels of stimulatory autoantibodies directed against 

PDGFR could be detected in the serum of patients with extensive chronic GvHD with 

skin involvement and/or lung fibrosis in comparison to patients without chronic GvHD. 

These antibodies are known to induce tyrosine phosphorylation and accumulation of 

reactive oxygen species and stimulate type 1 collagen gene expression through the 

Ha-Ras-ERK1/2-ROS signalling pathway. Therefore, theses autoantibodies might 

play a causal role in the pathogenesis of chronic GvHD, ultimately leading to 

fibroblast activation.67 In addition to antibody production, B cells contribute to the 

immune response by antibody-independent mechanisms including antigen 

presentation, production of cytokines and chemokines, as well as by acting as 

immunoregulatory cells.63 It has been reported that low total B cell counts with high 

infection rate are associated with chronic GvHD.68,69 Furthermore, it is known that 

chronic GvHD is associated with perturbed B-cell homeostasis. Patients with chronic 

GvHD have reduced levels of naïve B cells and high numbers of activated memory B 

cells.70-73 Furthermore, increased levels of B cell activation factor (BAFF) can be 

correlated with the development and severity of GvHD. Thus, high levels of BAFF in 

the presence of low numbers of naïve B cells are supposed to foster the survival of 

activated alloreactive and autoreactive B cells.73-75 Therefore, it was a logical step to 

introduce the treatment with rituximab in chronic GvHD which is a chimeric 

monoclonal antibody directed against CD20 expressed on the surface of B cells.75   

In addition to B cells, donor T cells play an important role in the immune pathology of 

chronic GvHD. A recent study has demonstrated that immune responses occurring in 

patients with chronic lichenoid GvHD show a mixed Th1/Th17 signature that is 

accompanied by upregulated Th1/Th17 cytokine/chemokine transcripts as well as 

increased numbers of IFNγ and IL-17 producing CD8+ T cells.76,77 Furthermore, 

patients with active chronic GvHD have a lower frequency of regulatory T cells 
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compared to patients without chronic GvHD and healthy individuals.78 Analysis of 

reconstitution of regulatory T cells and CD4+ conventional T cells in patients who 

underwent allogeneic HCT after MAC showed that thymic generation of naïve 

regulatory T cells is affected and that reconstituting regulatory T cells have mainly an 

activated/memory phenotype. In response to CD4+ lymphopenia after stem cell 

transplantation, regulatory T cells exhibit higher proliferation rates compared to 

conventional T cells, but regulatory T cells undergoing homeostatic proliferation are 

more susceptible to Fas-mediated apoptosis.79 

 

2.2.3  Epidemiology of GvHD 

Despite prophylactic treatments with immunosuppressive agents, approximately 50% 

of transplantation recipients develop a GvHD.80 Epidemiological investigations have 

shown that despite GvHD prophylaxis, matched sibling transplants have a 40% 

incidence of an acute GvHD grade II-IV and 50% risk of extensive chronic GvHD.81 

The risk is increased for matched unrelated donor transplants. The incidence for 

acute GvHD grade II-IV and extensive chronic GvHD is 75% and 55%, respectively.82 

Comparing the GvHD risks in patients receiving stem cells from matched or 

mismatched donors, the cumulative incidences of acute grades II-IV, grades III-IV 

and chronic GvHD in recipients of matched and mismatched stem cell transplants 

were 32 versus 40%, 11 versus 16% and 56 versus 55%. The work of another group 

could demonstrate that blood and marrow transplantation can achieve comparable 

outcomes with HLA-identical sibling and HLA-haploidentical transplantation as the 

cumulative incidences of grades II to IV acute GvHD in the HLA-matched and HLA-

haploidentical cohorts were 32% versus 40%, respectively.83 Other studies have 

shown that umbilical cord blood transplants are associated with a lower incidence of 

GvHD than marrow or mobilized peripheral blood stem cell transplants.84,85  

 

2.2.4  Clinical features of GvHD 

Acute GvHD initially affects the skin (81% of patients with GvHD) followed by 

gastrointestinal tract (54%) and liver (50%).86 Lesions of the skin are usually the first 

manifestations and occur during white cell engraftment. Affected patients typically 
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have a maculopapular rash starting around neck and shoulders.36 Severe forms of 

acute skin GvHD include the formation of dermal ulcerating blisters or bullae and 

toxic epidermal necrolysis.87 Pathologic findings include dyskeratotic epidermal 

keratinocytes, lymphocytic exocytosis, perivascular lymphocytic infiltration and 

apoptosis at the crypts.88 Gastrointestinal manifestations include abdominal 

cramping, diarrhoea, ileus, anorexia or nausea.52 Severity of intestinal GvHD is 

determined by the volume of diarrhoea.52,89 Histologic characteristics include 

apoptotic bodies in the base of crypts, crypt abscesses, loss and flattening of surface 

epithelium.90 Acute GvHD that includes liver disease is induced by the damage to bile 

canaliculi leading to hyperbilirubinemia and increased alkaline phosphatase.91 The 

severity of the disease is determined by measurement of serum bilirubin.89 Histologic 

features of bile damage include the bile duct destruction, epithelial cell dropout and 

lymphocytic infiltration of bile ducts.92 

 

2.2.5  Grading of GvHD 

Grading of GvHD is based on dermal, gastrointestinal, and hepatic involvement and 

most centres use the Keystone criteria (table 1) for grading of acute GvHD. This 

grading is based on the extent of skin rash, level of bilirubin and volume of 

diarrhoea.61,89 While acute GvHD grade I is defined as skin rash that may not require 

treatment, grade II disease is symptomatic and acute GvHD grade III and IV is 

severe with less than 25% survival.93 Chronic GvHD can be divided into limited and 

extensive disease (table 2). While limited chronic GvHD is characterized by localised 

skin involvement and/or hepatic dysfunction, extensive disease includes generalised 

skin disease, or limited chronic GvHD with other organ involvement or unfavourable 

liver histology.93-95 
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Table 1 Clinical staging and grading of acute GvHD 
Adapted from Glucksberg et al.96  
Stage Skin Liver Gut

1 Rash on <25% of skin Billirubin 2-3 mg/dl Diarrhoea >500 ml/day or persistent nausea with positive biopsy
2 Rash on 25-50% of skin Billirubin 3-6 mg/dl Diarrhoea >1000 ml/day 
3 Rash on >50% of skin Billirubin 6-15 mg/dl Diarrhoea >1500 ml/day 
4 Generalised erythroderma with bulla formation Billirubin >15 mg/dl severe abdominal pain with or without ileus

Grade
1 Stage 1-2 None None
2 Stage 3 or Stage 1 or Stage 1
3 - Stage 2-3 or Stage 2-4
4 Stage 4 or Stage 4 -  

 
Table 2 Clinical grading of chronic GvHD 
Adapted from Shulman et al.95 

Limited stage localized skin involvement and/or hepatic dysfunction
Extensive stage generalized skin involvement or limited skin involvement or hepatic involvement and any of the following

a) Liver histology 
b) Eye involvement (Schirmer`s test with <5 mm wetting)
c) Involvement of minor salivary glands or oral mucosa
d) Involvement of any other organ  

2.2.6  Prevention of GvHD   

Acute GvHD prophylaxis developed during the 1970s used the folate antagonist 

methotrexate (MTX) due to its ability to delete proliferating donor lymphocytes 

through inhibition of dihydrofolate reductase and production of thymidylate and 

purines.80,97  Initial MTX dosing regimens resulted in incidences of acute GvHD grade 

III-IV of approximately 25%.98 Progression in prevention of acute GvHD could be 

achieved by combining MTX with the calcineurin inhibitors Cyclosporine A (CSA) and 

Tacrolimus in patients receiving bone marrow transplants from matched siblings.98 

However, these regimens did not induce any improvements in chronic GvHD 

incidence.80 Additionally, the administration of these agents had numerous side 

effects including a delayed engraftment, an increased incidence of mucositis, renal 

impairment, thrombotic microangiopathy or demyelination.93,99 Therefore, new drugs 

were introduced into clinical practice for a better control of GvHD. Post-transplant 

cyclophosphamide is another method of eliminating rapidly dividing T cells that has 

shown promising outcomes in recent clinical trials.100,101 The inosine monophosphate 

dehydrogenase inhibitor mycophenolate mofetil (MMF) inhibits proliferation of 

lymphocytes via its metabolite mycophenolic acid and is synergistic with calcineurin 

inhibitors in preventing GvHD.80 Rapamycin (SirolimusTM) binds to the protein mTOR 
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required for G1 to S phase transition and induces the prevention of cytokine-driven T-

cell proliferation by causing cell cycle arrest.93,102-104 In addition to effector T-cell 

inhibition, Rapamycin preserves regulatory T cells after stem cell transplantation, 

thereby adding to GvHD control.80 Given the central role of T cells in GvHD, T cell 

depletion mediated by monoclonal antibodies has been explored as a preventative 

strategy of GvHD.80 Randomized studies have shown that T cell depletion 

successfully decreases the risk of GvHD. Patients receiving anti-thymocyte globulin 

(ATG)  showed significant reduction of grade II-IV and grade III-IV acute GvHD from 

51%-33% and from 24.5%-11.7%, respectively. ATG recipients had also a reduced 3-

year incidence of extensive chronic GvHD.105 

 

2.2.7  Treatment of GvHD 

Glucocorticoids are used as standard treatment of grade II-IV acute GvHD.106 

Glucocorticoids are potent inhibitors of the transcription factor NF-κB that activates 

many immunoregulatory genes in response to proinflammatory stimuli resulting in 

lymphocyte apoptosis, inhibition of the synthesis of lymphokines, and cell surface 

antigens required for immune functions.107 However, the application of 

glucocorticoids has severe side effects including hyperglycemia, psychosis, 

osteoporosis or avascular necrosis of bone.106 Additionally, only about half of patients 

respond to glucocorticoid treatment.108 Besides ATG, Tacrolimus, Rapamycin and 

MMF (see 2.2.6), specific monoclonal antibodies are essential for GvHD therapy.106 

Alemtuzumab is a humanized antibody that binds to CD52 expressed on normal and 

malignant T-cells, B-cells and monocytes and results in cell death in the presence or 

absence of complement. Basiliximab is a chimeric antibody which binds to CD25 that 

is upregulated on activated T cells and induces the inhibition of T cell proliferation.93 

The murine monoclonal antibody Muromonab binds to CD3 expressed on T cells 

resulting in the silencing of T cell allo-reactivity by inducing apoptosis.109 Additionally, 

Toclizumab, a humanized monoclonal antibody directed against the proinflammatory 

cytokine IL-6 shows promising effects in the treatment of refractory GvHD.110 The 

chimeric monoclonal antibody Infliximab is directed against TNFα and blocks the 

interaction of the cytokine with the corresponding receptor causing the lysis of cells 

that produce TNFα. A study investigating the use of Infliximab to treat GvHD has 
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demonstrated that the antibody is well tolerated and active for the treatment of 

steroid-resistant acute GvHD.111 Furthermore, many novel approaches have shown 

promising outcomes concerning GvHD incidence. Adoptive transfer of ex vivo 

expanded natural regulatory T cells has shown safety and decreased rates of GvHD 

compared to the controls.112 Extracorporeal photophoresis (ECP) that involves the ex 

vivo incubation of patient leukocytes with 8-methyoxypsoralen and ultraviolet A (UVA) 

irradiation and the reinfusion into the patient resulting in immunomodulatory effects 

including lymphocyte apoptosis, increasing regulatory T cell production and a shift 

from a Th1 to Th2 phenotype.113 Another strategy of GvHD treatment is the infusion 

of multipotent mesenchymal stem/stromal cells (MSCs) that have the potential of self-

renewal and multi-lineage differentiation.114 MSCs exert immunosuppressive effects 

on lymphocytes and APCs and have been used for GvHD treatment with promising 

response rates.115,116   

 

2.3 S100 proteins 

2.3.1  Protein structure of S100 proteins 

To date, the S100 protein family comprises more than 20 members and represents 

the largest subgroup within the Ca2+-binding EF-hand superfamily and are only 

present in vertebrates.117,118 EF hand motifs consist of two α-helices flanking a 

central calcium-biding loop, resulting in the characteristic helix-loop-helix motif.118 All 

S100 proteins have the same key structural motifs although their sequence homology 

does not exceed 65%.119 Monomeric forms have a molecular weight between 10 and 

13 kDa and two calcium-binding EF hands with different affinities for calcium 

connected by a central hinge region.  

 

2.3.2  Characterization of phagocyte-specific S100 proteins 

Three phagocyte-specific S100 proteins represent the group of calgranulins and 

express constitutively the genes S100A8 (also known as myeloid-related protein 8 

[Mrp8], calgranulin A), S100A9 (Mrp14, calgranulin B) and S100A12 (calgranulin C). 

The expression of these S100 proteins is restricted to phagocytic myeloid cells, in 

particular granulocytes and monocytes.120-122 Human S100A8 and S100A9 assemble 
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to heterodimers.123 These heterocomplexes are also referred to as calprotectin.124 

S100A8 and S100A9 are the most abundant proteins in neutrophilic granulocytes 

representing approximately 40% of the soluble cytosolic protein content and majorly 

contribute to calcium-binding capacity in these cells.125 S100A12 is expressed almost 

exclusively by granulocytes and comprises approximately 5% of cytosolic protein 

content in granulocytes.126 No S100 expression can be detected in B or T cells 

pointing towards a role of these proteins in innate rather than adaptive immune 

response.127 

 

2.3.3  Functions of phagocyte-specific S100 proteins 

2.3.3.1 Intracellular functions 

S100A8/S100A9 complexes interact with components of the cytoskeleton in a 

calcium-dependent manner.123 Elevation of intracellular calcium concentrations 

induces interactions of S100A8/S100A9 complexes and S100A8/S100A9 tetramers 

promote tubulin polymerization and bundle microtubules leading to the stabilization of 

tubulin filaments.128 Thereby, S100A9 represents the regulatory subunit in the 

S100A8/S100A9 heterocomplexes. S100A9 is phosphorylated by p38 mitogen-

activated protein kinase (MAPK) resulting in the inhibition of S100A8/S100A9-

induced tubulin polymerization. Phosphorylation of S100A9 is antagonistically 

regulated by binding of S100A8 and calcium.128,129 Thus, S100A8/S100A9 

heterocomplexes are critically involved in the tubulin-dependent cytoskeletal 

rearrangement and cell migration after activation of phagocytes. 

 

2.3.3.2 Release from phagocytes 

S100A8, A9 and A12 lack the leader sequence required for secretion via the 

endoplasmatic reticulum and Golgi complex.120 There is evidence that these S100 

proteins are released by activated cells via active non-classical secretion and by 

necrotic cells via passive release.128,130 Secretion of S100 proteins by phagocytes is 

an energy-dependent process requiring the activation of protein kinase C in 

combination with a second calcium-dependent signal and interactions with 

microtubules.128,130  
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2.3.3.3 Extracellular functions  

Secreted S100A8/S100A9 heterocomplexes can activate microvascular endothelium 

by interacting with heparan sulfate proteoglycans and carboxylated glycans 

expressed by endothelial cells.131,132 Thus, a proinflammatory and thrombogenic 

response is induced in endothelial cells characterized by the induction of 

proinflammatory cytokines and adhesion molecules resulting in a loss of cell-cell 

contacts and an increased permeability of endothelial monolayers is induced.133,134 

Additionally, the heterodimer S100A8/S100A9 and the homodimer S100A12 promote 

the expression and affinity of the integrin receptor CD11b/CD18 (Mac-1) on 

neutrophil granulocytes resulting in the adhesion of these cells to the endothelium.135 

Thus, the release of S100A8/S100A9 and/or S100A12 at sites of inflammation results 

in the interaction of primed phagocytes with endothelial cells facilitating the further 

recruitment of even more leukocytes which promote the inflammatory 

process.130,135,136 Furthermore, S100A8, S100A9 and S100A12 have antimicrobial 

properties providing evidence that these proteins participate in unspecific host 

defense mechanisms.124 Thus, S100 proteins have a tissue specific role in 

intracellular homeostasis, whereas they become proinflammatory mediators in the 

extracellular space.122   

 

2.3.3.4 Function as damage associated molecular patterns (DAMP)  

The innate immune system can be activated by microbial products which are referred 

to as pathogen associated molecular patterns (PAMPs) such as LPS or flagellin. 

These exogenous ligands bind to pattern recognition receptors on cells of the innate 

immune system leading to the activation of host defense mechanisms. Additionally, 

endogenous molecules released in the context of tissue injury and inflammation also 

initiate innate immune responses such as damage associated molecular patterns 

(DAMPs).122,137 The calcium-binding proteins S100A8, S100A9 and S100A12 belong 

to the group of DAMPs and are released by activated or damaged phagocytes under 

conditions of cell stress during infections and autoimmune diseases.120,138,139 The 

heterodimer S100A8/S100A9 and the homodimer S100A12 are endogenous ligands 

of the toll-like receptor 4 (TLR4) expressed on phagocytes and induce the 

translocation of myeloid differentiation primary response protein 88 (MyD88) from the 

cytosol to the receptor complex at the plasma membrane and hyperphosphorylation 
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of interleukin-1 receptor associated kinase-1 (IRAK-1) resulting in the activation of 

the transcription factor NF-κB and in the expression and release of proinflammatory 

cytokines including TNFα, IL-1β, IL-12, IL-8 and IL-6.138,140 S100A12 is also a ligand 

for the receptor for advanced glycation end products (RAGE) which is expressed on 

macrophages, endothelium and lymphocytes.141,142 Binding of S100A12 to RAGE 

results in the activation of NF-κB, an increased expression of vascular cell adhesion 

molecule 1 (VCAM-1) and intracellular adhesion molecule 1 (ICAM-1) on the surface 

of endothalial cells and the attraction of leukocytes.120,142 

 

2.3.3.5 Role of S100 proteins in inflammatory diseases 

Several studies have shown that proinflammatory S100 proteins contribute to the 

pathogenesis of several inflammatory diseases and therefore represent promising 

novel therapeutic targets. In patients suffering from arthritis, activated phagocytes 

expressing S100 proteins infiltrate inflammatory lesions in the synovium.143,144 

Concentrations of the heterodimer S100A8/S100A9 are increased in the serum and 

synovial fluid reflecting the release of these proteins from activated phagocytes within 

the synovium and synovial fluid.120,145,146 Serum levels of S100A8/S100A9 correlate 

better with disease activity and joint destruction in rheumatoid arthritis and psoriatic 

arthritis compared with classical markers of inflammation such as erythrocyte 

sedimentation rate and C-reactive protein (CRP).147-149 Furthermore, 

histopathological analysis demonstrated that the infiltration of neutrophils and 

monocytes and the general activation of cutaneous epithelium reflected by the 

expression of proinflammatory S100 proteins appear to be typical for the transient 

rash in systemic-onset idiopathic juvenile arthritis (SOJIA).150 Additionally, high local 

S100A12 expression levels are detectable in airway diseases like acute lung injury, 

respiratory distress syndrome and cystic fibrosis.151,152 Other studies have shown that 

fecal S100A12 levels from patients with inflammatory bowel disease are elevated and 

correlate with the histology score.139,151,153 Previous studies have demonstrated that 

levels of fecal S100A8/S100A9 are elevated in patients with severe intestinal GvHD 

in comparison to patients with acute GvHD without gastrointestinal symptoms and 

also patients with infective enteritis or diarrhoea after HCT indicating that calprotectin 

might be a new non-invasive marker of severe gastrointestinal GvHD.154,155  
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2.4 Heat shock proteins 

Heat shock proteins are the most abundant and ubiquitous soluble intracellular 

proteins that are present in the cytosol of prokaryotes, and the cytosol, nuclei, 

endoplasmatic reticulum, mitochondria and chloroplasts of eukaryotes.156 Genes 

encoding heat shock proteins were initially identified in 1962 in Drosophila 

melanogaster larvae that were advertently exposed to high temperatures resulting in 

a characteristic puffing pattern and gene activation profile in the polytene 

chromosomes of salivary glands.157 The first products of these genes were identified 

and characterized as heat shock proteins in 1974.158 Further investigations have 

demonstrated that the expression of heat shock proteins in mammalian cells is not 

only induced by hyperthermia but can also be induced by physical, biochemical or 

environmental influences including the exposure to heavy metals ultraviolet and 

gamma irradiation, amino acid analogues or cytotoxic drugs, glucose deprivation and 

virus infection.159 Heat shock proteins normally constitute up to 5% of the total 

intracellular proteins, but their levels can rise to 15% or more under stress 

exposure.160 While the expression of many heat shock proteins is induced by stress, 

some heat shock proteins are expressed constitutively.161 Heat shock proteins are 

divided into different families according to their molecular weight (i.e. hsp100, hsp90, 

hsp70, hsp60, hsp40 and small hsp).159 Since their discovery, an increasing number 

of diverse functions have been attributed to heat shock proteins.160 Major functions of 

heat shock proteins are the chaperoning of misfolded or newly synthesized 

polypeptides, the assembly, stabilization and intracellular translocation of proteins, 

the protection of cells from proteotoxic stress, and the processing of immunogenic 

agents.161-164  

 

2.5 Immunological properties of heat shock proteins 

Heat shock proteins have essential housekeeping and cytoprotective functions and 

are also involved in the innate and adaptive immune response.165-168 Heat shock 

proteins such as Hsp70, Hsp90, Gp96, Hsp110, Grp170 and Calreticulin associate 

with a broad range of peptides generated within the cells leading to the formation of 

HSP-peptide complexes that interact with APCs and promote the adaptive immune 
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response (Figure 2).169-171 In detail, HSP-peptide complexes interact with CD91 

expressed on macrophages and dendritic cells leading to the internalisation of these 

complexes into a non-acidic endosomal compartment, followed by the delivery of the 

complex or the peptide alone to the cytosol.172-174 The peptides are processed by 

proteasomes, transported to the endoplasmatic reticulum and loaded onto MHC class 

I molecules which are presented to CD8+ T cells.172 Alternatively, peptides can be 

loaded onto MHC class I molecules in the endosome without transfer through the 

cytosol and endoplasmatic reticulum.175  However, it has also been demonstrated 

that a small proportion of HSP-peptide complexes enters an acidic compartment after 

internalization via CD91 resulting in the interaction of peptides with MHC class II 

molecules that stimulate CD4+ T cells.176 Beside the involvement of heat shock 

proteins in the adaptive immune response, Gp96, Hsp70 and Hsp60 have been 

reported to participate in the innate immune response.177 The interaction of heat 

shock proteins with APCs also leads to the induction of several peptide-independent 

activities, including the maturation of dendritic cells, the activation of the NF-κB 

pathway in macrophages and dendritic cells resulting in the secretion of inflammatory 

cytokines such as TNFα, IL-1β, IL-12 and granulocyte-macrophage colony-

stimulating factor (GM-CSF).177-180  Additionally, heat shock proteins induce the 

production of nitric oxide by macrophages and dendritic cells and the secretion of 

chemokines such as monocyte chemoattractant protein-1 (MCP-1), macrophage 

inflammatory protein-2 (MIP-2) and RANTES (regulated upon activation, normal T 

cells expressed and secreted) by T cells.181-183  
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Figure 2: Role of heat shock proteins in the innate and adaptive immunity  
Adapted from Srivastava160. Copyright by Nature Publishing Group 

Heat shock proteins associate with a broad range of peptides generated within the cells leading to the 

formation of HSP-peptide complexes that interact with APCs and are internalized by receptor-

mediated endocytosis. The peptides are processed loaded onto MHC class I and MHC class II 

molecules that stimulate CD8+ and CD4+ T cell responses (adaptive immunity). The interaction of heat 

shock proteins with APCs also induces peptide-independent activities, including the maturation and 

activation of APCs resulting in the secretion of inflammatory cytokines such as TNFα, IL-1β, IL-12 and 

GM-CSF (innate immunity). 

 

2.6 Characterisation of heat shock protein 90  

The 90 kDa heat shock protein Hsp90 was initially identified as one of the highly 

conserved heat shock proteins involved in the stress response.157,184 Hsp90 is 

essential for the viability in eukaryotes by functioning as molecular chaperone that 

contributes to the folding, maintenance of structural integrity and proper regulation of 

cytosolic proteins.185 Many of its substrates are proteins that are essential for cell 

cycle control and signal transduction.185 Hsp90 acts with a multitude of Hsp90 co-

chaperones that modulate its substrate recognition, ATPase cycle and chaperone 

function resulting in a large conformational flexibility of Hsp90 that allows Hsp90 to 

assist a wide range of substrates.185 The chaperone cycle starts with the presentation 

of newly synthesized or misfolded client proteins to Hsp70 by its activator Hsp40 in 



23 | I n t r o d u c t i o n  

 

 

an ATP-dependent manner. The dimeric co-chaperone HOP binds to the Hsp40-

Hsp70-client complex to Hsp90, thereby forming the Hsp70-HOP-Hsp90 

complex.186,187 HOP inhibits the ATPase activity and promotes the client transfer of 

from Hsp70 to Hsp90.188-190 On ATP binding, Hsp90 forms a mature complex with 

p23 and other co-chaperones such as Cdc37 and immunophilins catalysing the 

conformational maturation of the client. Thus, the co-chaperone p23 and the 

immunophilins displace HOP and Hsp70 leading to the formation of the mature 

complex.191 Over the past years, over 200 client proteins of Hsp90 have been 

identified, covering almost all cellular processes such as cell growth, signal 

transduction, cell-cycle control, transcriptional regulation and apoptosis.192-198 For 

instance, these client proteins include transmembrane tyrosine kinases (Her-2, 

EGFR), metastable signalling proteins (Akt, Raf-1 and IKK), mutated signalling 

proteins (p53, v-Src), chimeric signalling proteins (Bcr-Abl), cell cycle regulators 

(Cdk4, Cdk6) and steroid receptors (androgen, estrogen, and progesterone 

receptors).199 Many of these proteins are mutated and/or overexpressed in cancer 

cells.187,200 Vertebrates express the two isoforms of cytosolic Hsp90 which are 

referred to as Hsp90α and Hsp90β.201,202 In comparison to Hsp90α, Hsp90β is 

expressed constitutively to a higher level in most tissues and is essential for long-

term cellular adaption, differentiation and evolution. The other isoform, Hsp90α is 

stress-inducible and may therefore be a more cytoprotective form of Hsp90.198 

Additionally, the expression of Hsp90α is upregulated in many cancers, as well as in 

the extracellular environment, where the induced effects on the metalloproteinase-2 

activity may be important in cancer cell metastasis.202-204 Several studies have 

demonstrated that Hsp90 is involved in multiple processes related to inflammation 

demonstrating that the inhibition of Hsp90 might be of benefit for treatment of 

inflammatory and autoimmune diseases. The severity and progression of these 

inflammatory and autoimmune disorders as well as cancer is associated with the 

activation of the NF-κB pathway.205,206 A variety of stimuli including cytokines, 

chemokines, bacterial and viral products, UV radiation and free radicals activate the 

NF-κB pathway by inducing the phosphorylation of IκB proteins. The increased 

phosphorylation of IκB by the IκB kinase complex (IKK) results in the ubiquitination 

and proteasomal degradation of IκB. The NF-κB proteins are, thus, liberated from IkB 

and translocate to the nucleus where they bind to the promoter regions of NF-κB-
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responsive genes resulting in increased gene expression.206,207 Natural product 

inhibitors of Hsp90 induce the blockade of mitogen-activated protein (MAP) kinases 

and the degradation of the Hsp90 client IKK leading to the loss of cytokine production 

in macrophages and other cell types.208-214 Additionally, the interleukin-1 receptor-

associated kinase is also a client protein of Hsp90, and consequently, inhibition of 

Hsp90 diminishes innate immune responses via toll-like receptor signalling.215  The 

relevance of Hsp90 inhibition in vitro could further be supported by preclinical models 

of rheumatoid arthritis, experimental allergic encephalomyelitis, uveitis and sepsis 

suggesting Hsp90 inhibitors as novel anti-inflammatory drugs.216-220 Another study 

demonstrated that the blockade Hsp90 can specifically eliminate alloreactive T cells 

and might therefore be a potential approach to prevent and treat GvHD in 

hematopoietic stem cell transplantation recipients without impairing pathogen- and 

disease-specific T cell immunity.221  

  

2.7 Hsp90 inhibitors for cancer treatment 

2.7.1 Hsp90 inhibitors targeting the ATP binding site 

2.7.1.1  Benzochinone ansamycins 

The prototypical class of Hsp90 inhibitors is represented by the natural product 

ansamycin, including geldanamycin and its derivatives 17-allylamino-17-

demethoxygeldanamycin (17-AAG) and 17-dimethylaminoethylamino-17- 

demethoxygeldanamycin (17-DMAG).222 These benzochinone ansamycins are 

competitive inhibitors of the ATP binding site of Hsp90 and their binding to the N-

terminal ATP binding pocket restrains Hsp90 in the ADP-bound conformation and 

prevents binding of the client protein.223-225 Thus, the client proteins are ubiquitinated 

and degraded by the proteasome.226 Geldanamycin has shown potent anti-cancer 

activity in preclinical studies, but the high hepatoxicity observed in animal models 

diminishes its clinical potential.227 The derivatives of geldanamycin 17-AAG and 17-

DMAG with better toxicological properties have been synthesised and have 

progressed to phase I and phase II clinical trials and have demonstrated anti-cancer 

activity in human epidermal growth factor receptor 2 (HER2)–positive, trastuzumab-

refractory breast cancer, melanoma and prostate cancer.228-230 Although 17-AAG is a 
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potent inhibitor of Hsp90, several pharmacological deficiencies have been described 

including poor water solubility and complex organic formulations, with patient safety 

concerns.231,232 Despite their clinical use, hepatotoxicity still remains a problem with 

the application of both 17-AAG and 17-DMAG.228,230 The toxicity of quinones is due 

to their ability to redox cycle and/or arylate cellular nucleophiles. The redox cycling 

results in the production of reactive oxygen species and reaction with thiols leading to 

the formation of glutathione conjugates and adducts with cellular proteins.233,234 The 

use of benzochinone ansamycins might be associated with additional drawbacks as 

their binding to Hsp90 does not only inhibit binding of ATP but also results in the 

induction of a stress response leading to the release, activation, nuclear localization 

and trimerization of heat shock factor-1 (HSF-1).235 This transcription factor induces 

the upregulation of Hsp70 expression resulting in the inhibition of apoptosis signalling 

and a reduced Hsp90-targeted drug efficacy.235-237 Thus, the clinical efficacy of 

ansamycins might be enhanced by a combination therapy using molecules that 

abrogate Hsp70 induction.238 Additionally, ansamycins are substrates of the multidrug 

resistance protein 1 (MDR1; P-glycoprotein 1) (see 2.9) that is an ATP-dependent 

efflux pump with broad substrate specificity leading to decreased drug 

accumulation.239  

 

2.7.1.2 Synthetic small molecules  

In the recent years, synthetic small molecule inhibitors have been designed in order 

to achieve more specific targeting of Hsp90 and better pharmacological effects. The 

first group of these molecules was developed based on the purine scaffold.240 These 

purine derivatives (PU-class) bind to the Hsp90-nucleotide binding pocket and have 

shown selective binding to Hsp90 in tumour cells.241,242 Furthermore, other studies 

have demonstrated anticancer activity in multiple animal models.243,244 6-Chloro-9-(4-

methoxy-3,5-dimethyl-pyridin-2-ylmethyl)-9H-purin-2-ylamine (BIIB021), is a synthetic 

HSP90 inhibitor that showed strong antitumor effects as a single agent and increased 

the efficacy of radiation in preclinical models.245,246 Furthermore, it could be 

demonstrated that BIIB021 is not a substrate of MDR1 and showed potent antitumor 

activity against a multidrug resistance expression cell line.247 A phase I study has 

been completed demonstrating that the drug was well-tolerated at doses that are 

pharmacodynamically active.248 A recently carried out phase II clinical study has 
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revealed that BIIB021 leads to objective responses in patients with gastrointestinal 

stromal tumours and pharmacodynamics studies confirmed Hsp90 inhibition.249   

Ganetespib (STA-9090) is a novel small-molecule inhibitor of Hsp90 with a unique 

triazolone-containing chemical structure that exhibits potent antitumor effects in a 

broad range of malignancies both in vitro and in vivo which is due to the rapid 

degradation of Hsp90 client proteins. Ganetespib has also shown strong antitumor 

activity in cell lines that confer drug resistance to agents currently in use in the clinic. 

In addition, ganetespib displays high tumour penetration and no evidence of cardiac 

or liver toxicity indicating a favourable drug safety profile.222,250   

 

2.7.2  Hsp90 inhibitors targeting co-chaperone/Hsp90 interactions 

Hsp90 requires multiple co-chaperones for its function. Thus, arresting the chaperone 

cycle by targeting co-chaperone-Hsp90 interactions offers a potential approach to 

inhibit Hsp90 activity.187,251,252 

 

2.7.2.1 Targeting the Cdc37/Hsp90 interaction 

The co-chaperone Cdc37 plays an important role in the maturation of several 

receptor tyrosine kinases that play a critical role in the development and progression 

in many types of cancer.251,253 Cdc37 acts as adaptor loading these kinases onto the 

Hsp90 complex resulting in the maturation of these proteins.251,254,255 Depletion of 

Cdc37 in human colon cancer cells diminishes the association of kinase clients with 

Hsp90 resulting in decreased levels of these clients and reduced cell proliferation.255 

In comparison to benzochinone ansamycins, silencing of Cdc37 does not induce an 

upregulation of Hsp70 expression.255  

 

2.7.2.2 Targeting the Hsp70/Hsp90 interaction 

Hsp90 can also be inhibited by targeting of the Hsp70/Hsp90 interaction. The 

assembly of Hsp70 and Hsp90 is achieved by association with the two 

tetratricopeptide repeat (TPR) domains (TPR1 and TPR2A) of Hop.256 A study has 

previously demonstrated that a designed TPR module, CTPR390+, binds to the 

Hsp90 C-terminus with higher affinity and specificity compared to TPRA2 leading to 
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the prevention of formation of the Hsp70/Hsp90 complex. This specific Hsp90 

inhibition results in decreased levels of the Hsp90-dependent client protein HER2 

and the inhibition of breast cancer cell proliferation.257 Another advantage of Hsp90 

inhibition via targeting of Hsp70/Hsp90 interactions is that this method does not lead 

to the induction of Hsp70 which is undesirable because its anti-apoptotic function 

counteracts the effect of Hsp90 inhibition.256,257 

 

2.7.3  Post-translational modifications of Hsp90 

Post-translational modifications including hyperacetylation, hyperphosphorylation or 

thiol oxidation can affect co-chaperone association and/or ATP binding and thereby 

regulate the chaperone function of Hsp90. 258 

 

2.7.3.1 Hsp90 hyperacetylation 

Histone deacetylases (HDACs) are promising targets in drug development for cancer 

therapy. Several studies have correlated HDACs with the function of the Hsp90 

chaperone. HDACs and histone acetyltransferases (HATs) are responsible for the 

reversible acetylation of lysine residues on Hsp90 and thereby regulate Hsp90 

activity.259 A recent study has demonstrated that knockdown of the HDAC6 by RNA 

interference enhances the degree of Hsp90 acetylation leading to a reduced binding 

capacity of ATP and co-chaperones to Hsp90 promoting the degradation of Hsp90 

client proteins.  

 

2.7.3.2 Hsp90 thiol oxidation 

Tubocapsenolide A is a withanolide-type steroid that inhibits the activity of Hsp90-

Hsp70 chaperone complex by a direct thiol oxidation, leading to the destabilization 

and depletion of Hsp90 client proteins and thus causes cell cycle arrest and 

apoptosis several human cancer cell lines.260 

 

2.7.3.3 Hsp90 phosphorylation  

It has been demonstrated that hyperphosphorylation of Hsp90 leads to an apparent 

decrease in the efficiency of the Hsp90 chaperone system. However, the role of site-
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specific phosphorylation in modulating Hsp90 function has not been fully elucidated 

yet.261,262 

 

2.8 CD4+ T cell subtypes 

CD4+ T cells are crucial components of an adaptive immune response. Upon 

antigenic stimulation and cytokine signalling, naïve CD4+ T cells are activated and 

differentiate into various CD4+ T cell subsets (Figure 3).263,264  

 

 
Figure 3: CD4+ T cell subsets 
Copyright by Oxford Journals 

Antigenic stimulation and specific cytokine signalling induce the differentiation of naïve T cells into 

various CD4+ T cell subsets including Th1, Th2, Th17 cells and regulatory T cells.263 

 

2.8.1  The Th1-Th2 paradigm 

The CD4+ T cell subsets were initially classified in 1986 by Mossman and Coffman 

proposing a Th1-Th2 paradigm of T cells.265 This hypothesis is based on the 

observation that CD4+ T cell subsets produce different cytokine pattern and thereby 

induce different effector functions.266 Thus, CD4+ T cells were categorized into two 

main subsets named type 1 helper T cells (Th1 cells) and type 2 helper T cells (Th2 

cells) due to their different cytokine production profiles.265,266 Differentiation of naïve 
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CD4+ T cells into effector cells is induced by antigenic stimulation and cytokine 

signalling.263,264 Signal transducer and activator of transcription (STAT) proteins are 

the key signalling transcription elements in the differentiation pathway of CD4+ T 

cells.263 The cytokines IFNγ and IL-12 induce the activation of STAT4 and STAT1 

resulting in the activation of T-bet (T-box expressed in T cells) which is the master 

transcription factor for Th1 cell differentiation.267,268 Differentiation of Th2 cells is 

induced by IL-4 which activates the transcription factors STAT-6 and GATA-binding 

protein 3 (GATA-3).269,270 Th1 cells secrete high levels of IFNγ and IL-2 that stimulate 

macrophages, induce delayed type hypersensitivity and the maturation of cytotoxic T 

cells, and are thus essential for cell-mediated immunity against intracellular 

pathogens.266,268 Additionally, Th1-dominant immune responses have been 

considered pathologic in organ-specific autoimmune and other chronic inflammatory 

diseases including Crohn’s disease, autoimmune thyroid disease or multiple 

sclerosis.268,271 Th2 cells secrete IL-4, IL-5, IL-10 and IL-13 which induce 

differentiation, activation and the in situ survival of eosinophils, promote the 

production of high amounts of antibodies, including IgE by B lymphocytes and the 

growth of mast cells and basophils, and are therefore required for the mediation of 

humoral immunity to clear extracellular pathogens.266,271-274 Furthermore, cytokines 

and chemokines produced by Th2 cells and those produced by other cell types in 

response to the Th2 specific cytokines or as a reaction to the tissue damage 

mediated by Th2 cells account for multiple pathophysiological aspects of allergic 

disorders such as the production of IgE antibodies or the recruitment or activation of 

mast cells.274   

 

2.8.2  Characterisation of Th17 cells 

The Th1-Th2 paradigm was subsequently extended to encompass a number of 

additional CD4+ T cell subsets including Th17 cells and regulatory T cells. In 2006 

three publications demonstrated that the immunoregulatory cytokine transforming 

growth factor β (TGF-β) in combination with IL-6 induce the differentiation of naïve 

CD4+ T cells into Th17 cells.275-277 The cytokine IL-23 is required for Th17 cell 

expansion and maintenance.277 Moreover, IL-1β and TNFα were found to amplify the 

Th17 response induced by TGF-β and IL-6.278 The cytokines contributing to the 

development of human Th17 cells were controversially discussed since several 
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studies in 2007 claimed that TGF-β is not required for the differentiation of human 

Th17 cells.279,280 However, recent studies demonstrated that low concentrations of 

the anti-inflammatory cytokine TGF-β in combination with IL-1β and IL-6, IL-21 or IL-

23 promote human Th17 differentiation from naïve CD4+ T cells.281-283 Although the 

differentiation of human and mouse Th17 cells is not identical, they express similar 

cytokines, such as IL-17A, IL-17F, IL-22 and IL-21, and cell surface receptors such 

as IL-23R and the C-C chemokine receptor type 6 (CCR6).284,285 Several studies 

identified Th17 cells as an independent lineage of T helper cells because they do not 

express any Th1 cell- (STAT-1, STAT-4 and T-bet) and Th2 cell-associated 

transcription factors (STAT-6 and GATA-3).286,287 IL-6, IL-21 and IL-23 induce the 

activation of STAT-3, regulating the expression of IL-23R and IL-21 which are both 

required for amplifying the generation of Th17 cells.288-290 Full expression of the Th17 

phenotype depends on the orphan nuclear receptor, retinoid-related orphan receptor 

γt (RORγt) which is upregulated in a STAT-3-dependent manner and induces the 

expression of IL-17A, IL-17F, contributes to the generation of IL-23R and mediates 

the production of IL-22. Furthermore, high levels of another related nuclear receptor, 

RORα, was found in Th17 cells. RORα is induced by a combination of TGFβ and IL-6 

in a STAT-3-dependent manner and synergizes with RORγt to promote differentiation 

and function of Th17 cells.291-294 Other data suggest that Runt-related transcription 

factor 1 (Runx1) induces RORγt expression by binding to and acting together with 

RORγt during IL-17 transcription.295 

Th17 cells secrete the cytokines IL-17A, IL-17F, IL-21 and IL-22. IL-17A and IL-17F 

can both bind to the IL-17 receptor broadly expressed on a variety of cells such as B 

cells, T cells, natural killer cells, monocytes, granulocytes, fibroblasts, epithelial cells 

endothelial cells, stromal cells and osteoblasts.296-301 This binding of the ligand to its 

receptor induces the activation of NF-κB and MAPK pathways resulting in the 

induction of the expression of proinflammatory cytokines including IL-1, IL-6 and 

TNFα as well as chemokines such as C-X-C motif chemokine (CXCL) 8 and matrix 

metalloproteinases, thereby leading to the recruitment, activation and migration of 

neutrophil granulocytes.298,302-304 The cytokine IL-21 seems to play an autocrine-

amplifying role on Th17 response as it is produced by Th17 cells and also acts as an 

activator of STAT-3 inducing the generation of Th17 cells.298 Upon binding to the IL-

22 receptor complex, IL-22 induces the activation of STAT-3 and, to a lesser extent, 
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STAT-1 and STAT-5. Additionally, IL-22 leads to the activation of MAPK pathways 

which plays an important role in complex cellular programs including proliferation, 

differentiation, development, transformation, and apoptosis.298,305 Thus, Th17 cells 

and Th17-asssociated cytokines are potent inducer of tissue inflammation and are 

known to play an important role in the development of several autoimmune diseases 

such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, 

systemic sclerosis and inflammatory bowel disorders.306-312 

Furthermore, it could be demonstrated that Th17 cells show a great degree of 

context-dependent plasticity.313 Several groups have reported that a remarkable 

number of Th17 cells express IFNγ in addition to IL-17A both in vivo and in vitro. 

Additionally, it has been shown that both Th17 cells and the IL-17- and IFNγ-

producing Th17/Th1 clones express the transcription factors RORγt and the Th1-

related transcription factor T-bet. Incubation of Th17 clones with IL-12 results in the 

production of IFNγ besides IL-17, and this effect is associated with a reduced RORγt 

and increased T-bet expression.285,314,315 

 

2.8.3  Characterisation of regulatory T cells 

Regulatory T (Treg) cells are characterized as a T cell subpopulation that modulates 

the immune system, retains tolerance to self-antigens and eliminates autoimmunity. 

These Treg cells comprise approximately 5-10% of the mature CD4+ T cells in mice 

and also in humans, and approximately 1-2% of Treg cells can be detected in the 

peripheral blood. Treg cells can be characterized by the expression of CD25 (alpha 

chain of the IL-2 receptor), CTLA-4 (CD152, cytotoxic T-lymphocyte antigen 4), and 

glucocorticoid-induced tumor-necrosis-factor-related protein (GITR). Furthermore, 

Treg cells express the transcription factor forkhead box P3 (FoxP3) which is essential 

for the development and function of Treg cells.316 The expression of FoxP3 is 

controlled by DNA-methylation and can be increased by TGF-β, IL-2, or T cell 

receptor stimulation of T cells.317 Treg cells can be divided into two main classes: 

naturally occurring Treg  (nTreg) cells and induced or adaptive Treg (iTreg) cells.316 

The nTreg cells develop as a distinct lineage in the thymus, from where they are 

exported and are responsible for the maintenance of self-tolerance.318 It is known 

that nTreg cells derived in the thymus are anergic in vitro, but show proliferation at 

steady state in vivo.319,320 The iTreg cells, however, are not formed in the thymus but 
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differentiate from mature naïve CD4+ T cells in peripheral lymphoid organs and other 

tissues upon cellular activation in the presence of TGF-β.321,322 Both nTreg and iTreg 

cells are essential for the maintenance of immune self-tolerance and homeostasis by 

suppressing various effector lymphocytes, especially the CD4+ T cell subsets such as 

Th1, Th2, Th17 and follicular T helper cells.316 Thereby, Treg cells produce cytokines 

including IL-10 and IL-35, sequester cytokines crucial for cell growth such as IL-2, 

and utilize the perforin-granzyme pathway to kill activated targets or tumour cells.323-

328 It could also be demonstrated that the cell numbers and suppressive activity of 

circulating Treg cells are significantly reduced in patients with autoimmune disorders 

such as juvenile idiopathic arthritis, psoriatic arthritis, multiple sclerosis, systemic 

lupus erythomatosus, autoimmune hepatitis, and type-1 diabetes.277   

 

2.8.4  Plasticity in the development of Th17 cells and regulatory T cells 

At early differentiation stages, each lineage can be reprogrammed to other directions. 

In contrast to Th1 and Th2 cells, which have been thought to represent terminal 

products of their respective developmental programs, Th17 cells and Tregs 

demonstrate considerable plasticity throughout the entire differentiation 

process.329,330 Several studies demonstrated that the induction of the key 

transcription factors of Th17 cell and Tregs, RORγt and FoxP3, share a dependence 

on TGFβ-signalling determining Th17 versus Treg lineage specification.329 It is known 

that nTreg cells develop during thymic selection through a mechanism that is 

independent of TGF-β, whereas the extrathymic development of iTreg cells is TGF-β-

dependent. Recent data have shown that TGF-β alone induces both FoxP3 and 

RORγt.329 The presence of IL-6, produced by dendritic cells that are activated by 

microbial products, or IL-21, produced by IL-6-stimulated T cells inhibits the induction 

of FoxP3 or eliminates the suppression that further potentiates the generation of 

Th17 cells thereby establishing an autocrine loop. While low dose TGF-β synergize 

with IL-6 and IL-21 to induce Th17 development, higher doses of TGF-β inhibit the 

expression of IL-23R and increases the expression of FoxP3, favouring the 

generation of iTreg. Thus, in the absence of proinflammatory signals from the innate 

immune system, priming of naïve CD4 T cells by antigen in a TGF-β rich environment 

induces the development of iTregs, whereas activation in an environment where both 

active TGF-β and IL-6 are available promotes the induction of Th17 cells.329,331  
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2.8.5  Role of T cells in the pathophysiology of GvHD  

The pathophysiology of GvHD is complex and not fully understood yet. The role of 

Th17 cells during GvHD is discussed controversially and still remains unclear. High 

levels of IFNγ producing T cells detected in the skin of patients with cutaneous acute 

GvHD after allogeneic stem cell transplantation and increased IFNγ expression in 

PBMCs gave rise to conclude that GvHD is mediated predominantly by 

proinflammatory Th1 cells.76,332 However, it could conversely be shown in mouse 

models that inhibition of Th1 cytokines results in the exacerbation of acute 

GvHD.333,334 Further investigations of T cell subsets involved in the pathomechanism 

of GvHD have been directed towards Th17 cells as several studies indicated a 

contribution of Th17 cells to GvHD disorders. In mice it could be demonstrated that 

infusion of in vitro-differentiated Th17 cells induces lethal GvHD with extensive 

pathologic lesions in the lung and skin.335 Another study showed that the 

development of GvHD is significantly delayed in an allogeneic bone marrow 

transplantation model when murine IL-17-/- CD4+ T cells are transferred compared to 

recipients of wild-type CD4+ T cells.336 In a haploindentical murine transplantation 

model it could be demonstrated that infusion of CD4+ T cells lacking the transcription 

factor RORγt diminishes the severity and lethality of acute GvHD.337 In patients 

receiving HCT the dose of IL-17-producing T cells in allografts was shown to be 

associated with an increased risk for acute GvHD.338 Additionally, Th17 cells and IL-

21 plasma levels were significantly elevated in patients at the onset of chronic GvHD 

and correlate with the clinical course.339 Another study could show increased 

numbers of Th17 cells in the skin of patients with acute GvHD and active chronic 

GvHD compared to control samples.340 Regarding the role of Treg cells during GvHD, 

several studies could demonstrate in different allogeneic hematopoietic cell 

transplantation animal models that addition of Treg cells results in the suppression of 

GvHD.341-344 Recently, clinical studies have been published reporting that adoptive 

transfer of Treg cells might prevent GvHD. By infusion of freshly isolated donor Treg 

cells after myeloablative conditioning and before infusion of a megadose of CD34+ 

cells and conventional CD4+ and CD8+ T cells, haploidentical transplantation was 

possible in the absence of any posttransplantation immunosuppression and occurred 

with a very low rate of acute and chronic GvHD. Furthermore, the adoptive transfer of 

Treg cells promotes lymphoid reconstitution, improves immunity to opportunistic 
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pathogens, and does not weaken the graft-versus-leukemia (GvL) effect.345 

Additionally, a second study demonstrated that umbilical cord third-party Treg cells 

can be expanded ex vivo and confirmed that the adoptive transfer of Treg cells can 

be performed without apparent toxicity and seems to reduce the risk of acute 

GvHD.112 A study published recently suggests that the ratio of Th17 to Treg cells 

(Th17/Treg) might be a novel, sensitive and specific pathologic in situ biomarker of 

GvHD as low Th17/Treg ratios seem to correlate with severe clinical and pathologic 

GvHD, apoptosis intensity, and TNFα expression.346 

 

2.9 The multi-drug resistance protein type 1  

The multi-drug resistance protein type (MDR1), which is also referred to as P-

glycoprotein plays an important role in bioavailability and cell-toxicity limitation of a 

wide range of drugs and xenobiotics.347 MDR1 is an ATP-dependent efflux pump that 

belongs to the family of ATP-binding cassette (ABC) transporters. The ATPase 

activity of MDR1 is stimulated by binding of hydrophobic drug substrates to 

transmembrane regions resulting in a conformational change that releases the 

substrate to either the outer leaflet of the membrane or the extracellular space.  

Thereby, two ATP hydrolysis events are needed to transport one drug molecule. 

MDR1 is expressed in many human cancers including leukaemias and solid tumours 

and promote tumour resistance to chemotherapy.348 In non-malignant cells, MDR1 is 

expressed on intestinal epithelium, endothelial cells of the blood-brain-barrier, and 

hepatocytes, where it is known to control the accumulation of xenobiotics and 

exogenous pharmacologic molecules.349 Furthermore, MDR1 is also expressed in 

progenitor cell types and might be involved in the survival and longevity of these 

cells.350,351 In a recent study, it could also be demonstrated that glucocorticoids 

promote the development of a subset of Th17 cells that stably expresses MDR1. 

These proinflammatory Th17 cells are further characterized by the expression of the 

chemokine receptors CCR6, CXCR3 and CCR4 on the cell surface. These 

MDR1+Th17 cells are CCR6+ and express CXCR3 at high levels and CCR4 at low 

levels. MDR1+ CCR6+CXCR3hiCCR4lo Th17.1 cells differ from the MDR1-Th17 cells 

which are CCR6+CXCR3loCCR4hi and MDR1-Th1 cells which are CCR6-

CXCR3hiCCR4lo. Proinflammatory MDR1+Th17.1 cells produce Th17-associated (IL-
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17A, IL-17F, IL-22) as well as Th1-associated cytokines (IFNγ) upon T cell receptor 

stimulation and do not express any anti-inflammatory molecules like IL-10. In vivo, 

these proinflammatory MDR1+ CCR6+CXCR3hiCCR4lo Th17 cells are enriched and 

activated in the gut of patients with Crohn`s disease.352 Glucocorticoids are usually 

administered to the patients with autoimmune disorders such as Crohn`s disease 

resulting in the modulation of the expression of several genes involved in the innate 

and adaptive immune response and the immunosuppression of peripheral T cells.352-

354 However, Ramesh et al. could also demonstrate that these proinflammatory 

MDR1+ CCR6+CXCR3hiCCR4lo Th17 cells are induced by and refractory to 

glucocorticoids.352    
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3 Materials 

 

3.1 Equipment 

equipment manufacturer 

Assistent Rotating Mixer RM 5 Karl Hecht GmbH & Co. KG 

autoMACS
®
 Pro Separator Miltenyi Biotec 

Axioskop20 Carl Zeiss AG 

AxioCam MR Carl Zeiss AG 

Bag sealer Petra-electric 

Bench-top centrifuge Micro 22R  Andreas Hettich GmbH & Co. KG 

Bench-top centrifuge Rotina 420R Andreas Hettich GmbH & Co. KG 

Bio-Plex Protein Array Bio-Rad Laboratories 

Clean bench HERAsafe Heraeus Holding GmbH 

CFX96 Real-Time PCR Detection System Bio-Rad Laboratories 

ELISA Reader ELx800 BioTek 

FACSCaliburTM BD Biosciences 

Floor-standing centrifuge Rotixa 50 RS Andreas Hettich GmbH & Co. KG 

GeneAmp PCR System 9700 Perkin Elmer 

Heating block Thermomixer 5436 Eppendorf AG 

Incubation/Inactivation Bath Model 1002 Gesellschaft für Labortechnik 

Incubator Hera cell Heraeus Holding GmbH 

Inverted Microscope IX50 Olympus 

Magnetic stirrer  Thermo Fisher Scientific 

Multichannel pipettes LABMATETM Abimed GmbH 

NanoDrop1000 Spectrophometer Thermo Fisher Scientific 

Neubauer counting chamber La Fontaine International GmbH 

Pipetboy acu 2 Integra Biosciences GmbH 

Pipettes LABMATETM Abimed GmbH 

Pipettes Eppendorf AG 

Pipettes  Gilson 

Power supply power Pac 1000 Bio-Rad Laboratories 

Precision balance MC1 Analytic AC 210 S Sartorius AG 



37 | M a t e r i a l s  

 

 

Rotating tube mixer Hecht-Assistent 

Shaker Polymax1040 Heidolph Instruments Gmbh & Co. KG 

Shaker Titramax1000 Heidolph Instruments Gmbh & Co. KG 

Trans-Blot
®
 SD Semi-Dry Apparatus Bio-Rad Laboratories 

Vortex shaker MS1 IKA-Werke-GmbH & Co. KG 

XCell Sure LockTM Mini-Cell Invitrogen 

 

3.2 Consumables 

consumable manufacturer 

4-20% precise protein gels (10-well, 12-
well) 

Thermo Fisher Scientific 

Cell culture plates (flat bottom, 6-well, 96-
well) 

BD Biosciences 

Cell culture plates (U-bottom, 96-well) Greiner Bio-One GmbH 

Cell scraper Corning Incorporated 

CL-XPosure film (clear blue X-ray film) Thermo Fisher Scientific 

Disposable pipettes (5 ml, 10 ml, 25 ml) Corning Incorporated 

Filter Paper sandwich Thermo Fisher Scientific 

Individual PCR TubesTM Bio-Rad Laboratories 

InvitrolonTM PVDF membranes (0.45 μm 
pore size) 

Invitrogen 

MACS Separation Columns (LS and MS 
Colums) 

Miltenyi Biotec 

Microplates (flat-bottom, 96-well) Greiner Bio-One GmbH 

MaxiSorpTM plates (96-well) Thermo Fisher Scientific 

PCR SingleCap 8er-SoftStrips Biozym 

PCR Tube Strips Biorad 

Pipette tips (10 μl) Abimed GmbH 

Pipette tips (200 μl) Sarstedt AG & Co. 

Pipette tips (1 ml) Sarstedt AG & Co. 

Polystyrene tubes (5 ml) Sarstedt AG & Co. 

Polypropylene tubes (15 ml) Greiner Bio-One GmbH 

Polypropylene tubes (50 ml) Greiner Bio-One GmbH 
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PrimariaTM 6-well flat bottom tissue 
culture plate 

BD Biosciences 

Reagent reservoir (100 ml) Corning Incorporated 

Safe-Lock tubes (0.5 ml, 1.5 ml, 2 ml) Eppendorf 

SafeSeal Tips
®
 premium (10 μl, 20 μl, 

100 μl, 200 μl, 1 ml) 

Biozym 

Sample Bags Perkin Elmer 

Sterile filter (0.2 μM) Sartorius AG 

 

3.3 Chemicals, reagents and solutions 

chemicals manufacturer 

17-DMAGH2 InvivoGen 

Albumin Fraction V Carl Roth GmbH & Co. KG 

Ampuwa
®
 Water Fresenius Kabi Deutschland GmbH 

Biocoll Separating Solution  Biochrom AG 

Dexamethasone  Sigma-Aldrich 

Dimethylsufoxid (DMSO) Carl Roth GmbH & Co. KG 

Ethanol Merck KGaA 

Ethylendiamintetraacetat (EDTA) Sigma-Aldrich 

FACS Clean
®
 BD Biosciences 

FACS Flow
®
 BD Biosciences 

FACS Rinse
®
 BD Biosciences 

Human Serum Albumin (HSA; 20% 
solution for infusion) 

CSL Behring GmbH 

Ionomycin Sigma-Aldrich 

LipofectamineTM  RNAiMAX Transfection 
Reagent 

Invitrogen 

Lipopolysaccharides (LPS) Sigma-Aldrich 

Methanol VWR 

Monensin eBioscience 

Nonfat Dry Milk Cell Signaling 

Phorbol myristate acetat (PMA) Sigma-Aldrich 
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Phosphate buffered saline (PBS)  Biochrom AG 

Propidium iodide BD Biosciences 

Protease Inhibitor Cocktail Tablets 
Complete, MINI, EDTA-free 

Roche 

Rhodamine123 Sigma-Aldrich 

TrackITTM 1 kb DNA Ladder Invitrogen 

Trypan blue Sigma-Aldrich 

Tween
®
 20 Carl Roth GmbH & Co. KG 

 

3.4 Reagent Kits 

kit manufacturer 

BCA Protein Assay Kit Thermo Fisher Scientific 

Bio-Plex Human Cytokine Group I 5-plex 
Assay 

Bio-Rad Laboratories 

KAPATM SYBR
®  

FAST (QPCR mastermix) PEQLAB Biotechnologie GmbH 

QuantiTect
®
 Reverse Transcription Kit Qiagen 

RNeasy Mini Kit Qiagen 

Super Signal
®
 West Pico 

Chemiluminescent Substrate 

Thermo Fisher Scientific 

 

3.5 Ready-to-use buffers 

buffer manufacturer 

10x eBioscience Permeabilization Buffer eBioscience 

autoMACSTM Pro Running Buffer Miltenyi Biotec 

autoMACSTM Pro Washing Buffer  Miltenyi Biotec 

BupH Tris-Glycine Buffer Packs Thermo Fisher Scientific 

BupH Tris-HEPES-SDS Running buffer Thermo Fisher Scientific 

eBioscience IC Fixation Buffer eBiosciece 

FOXP3 Fix/Perm Buffer Set Biolegend 

NuPAGE
®
 LDS Sample Buffer (4x) Invitrogen 

RIPA Buffer Sigma-Aldrich 
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RLT Buffer Qiagen 

RPE Buffer with β-mercaptoethanol Qiagen 

 

3.6 Composition of used buffers 

buffer composition 

Blotting buffer (pH8) 
(BupH Tris-Glycine Buffer Packs) 

25 nM Tris 

192 mM Glycine 

20% Methanol 

ELISA block buffer  PBS  

0.1% Tween
®
 20 

0.25% bovine serum albumin 

ELISA/western blot wash buffer PBS 

0.1%  Tween
®
 20 

FACS buffer PBS 

2% fetal bovine serum 

MACS buffer PBS 

0.5% human serum albumin 

2 mM EDTA 

RIPA Buffer 50 mM NaCl 

1.0% IGEPAL
® 

CA-630
 

0.5% sodium deoxycholate 

0.1% SDS 

50 mM Tris pH 8 

SDS PAGE Reducing Sample Buffer NuPAGE
®
 LDS Sample Buffer 

200 mM DTT 

SDS PAGE Running Buffer (pH8±0.5) 
(BupH Tris-HEPES-SDS Running buffer) 

100 mM Tris 

100 mM HEPES 

3 mM SDS 
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3.7 MACS
®
 cell separating reagents 

separation kit manufacturer 

CD14 MicroBeads, human  Miltenyi Biotec 

CD4+ T cell Isolation Kit II, human Miltenyi Biotec 

 

 

3.8 Cell culture media, sera, supplements  

Media/sera/supplements for cell culture manufacturer 

Fetal bovine serum (FCS) Biochrom AG 

HEPES buffer (1M) Biochrom AG 

L-glutamine (200 mM) Biochrom AG 

Opti-MEM
®
 I Reduced Serum Medium Invitrogen 

Penicillin/Streptomycin Biochrom AG 

Pooled human serum (PHS) Children’s Hospital Tuebingen 

VLE-RPMI 1640 Biochrom AG 

 

3.9 Composition of cell culture media 

media composition 

Antibiotic-free medium VLE-RPMI 1640 

2 mM Glutamine 

10 mM HEPES buffer 

10% heat-inactivated PHS 

Freezing medium 90% fetal bovine serum 

10% DMSO 

VLE-RPMI complete medium VLE-RPMI 1640 

2 mM Glutamine 

10 mM HEPES buffer 

10% heat-inactivated PHS 

penicillin/streptomycin (100 units/ml and 

100 µg/ml) 
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3.10 Antibodies 

3.10.1 Antibodies for flow cytometry 

specificity isotype clone format manufacturer 

anti-human 
CD3 

mouse IgG2a,κ HIT3a FITC Biolegend 

anti-human 
CD4 

mouse IgG1,κ RPA-T4 PE Biolegend 

Anti-human 
CD4 

mouse IgG1,κ SK3 PerCP BD Biosciences 

Anti-human 
CD8a 

mouse IgG1,κ HIT8a APC Biolegend 

Anti-human 
CD25 

mouse IgG1,κ M-A251 PE BD Biosciences 

Anti-human 
CD194 (CCR4) 

mouse IgG1,κ L291H4 PE Biolegend 

Anti-human 
CD196 (CCR6) 

mouse IgG2b,κ G034E3 APC Biolegend 

Anti-human 
CD183 
(CXCR3) 

mouse IgG1,κ G025H7 PerCP/Cy5.5 Biolegend 

Anti-human 
CD80 

mouse IgG1,κ L307.4 PE BD Biosciences 

Anti-human 
CD80 

mouse IgG1,κ 2D10 APC Biolegend 

Anti-human 
CD86 

mouse IgG1,κ 2331 (FUN-1) FITC BD Biosciences 

Anti-human 
CD86 

mouse IgG2b,κ IT2.2 PE Biolegend 

Anti-human 
CD14 

mouse IgG2a,κ M5E2 FITC Biolegend 

Anti-human 
CD11b 

mouse IgG1,κ ICRF44 FITC Biolegend 

Anti-human 
CD11c 

mouse IgG1,κ 3.9 PerCP/Cy5.5 Biolegend 
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Anti-human 
CD16  

mouse IgG1,κ 3G8 PE BD Biosciences 

Anti-human 
CX3CR1 

rat IgG2b,κ 2A9-1 APC Biolegend 

Anti-human 
CD54 

mouse IgG1,κ HA58 APC Biolegend 

Anti-human 
CD45 

mouse IgG1,κ HI30 PE Biolegend 

Anti-human 
HLA-DR 

mouse IgG2a,κ L243 PerCP Biolegend 

Anti-human IL-
17A 

mouse IgG1,κ eBio64DEC17 Alexa Fluor 647 eBioscience 

Anti-human IL-
17A  

mouse IgG1,κ eBio64DEC17 eFluor660 eBioscience 

Anti- human 
IFNγ 

mouse IgG1,κ 4S.B3 FITC eBioscience 

Anti-human 
Hsp90α 

mouse IgG2a K41009 PE Enzo Life 

Sciences 

Anti-human 
FOXP3 

mouse IgG1,κ 259D Alexa Fluor 647 Biolegend 

Isotype control mouse IgG1,κ MOPC-21 FITC Biolegend 

Isotype control mouse IgG2a,κ MOPC-173 FITC Biolegend 

Isotype control mouse IgG1,κ MOPC-21 PE Biolegend 

Isotype control mouse IgG2a,κ MOPC-173 PE Biolegend 

Isotype control mouse IgG2b,κ MPC-11 PE Biolegend 

Isotype control mouse IgG1,κ MOPC-21 PerCP Biolegend 

Isotype control mouse IgG2a,κ MOPC-173 PerCP Biolegend 

Isotype control mouse IgG1,κ MOPC-21 PerCP/Cy5.5 Biolegend 

Isotype control mouse IgG2b,κ MG2b-57 APC Biolegend 

Isotype control mouse IgG1,κ MOPC-21 APC Biolegend 

Isotype control rat IgG2b,κ RTK4530 APC Biolegend 

Isotype control mouse IgG1,κ MOPC-21 Alexa Fluor 647 Biolegend 

Isotype control mouse IgG1,κ MOPC-21 eFluor660 Biolegend 
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3.10.2 Antibodies for western blot 

specificity isotype clone format manufacturer 

Anti-human 
Hsp90α 

mouse IgG2a K41009 purified Enzo Life 

Sciences 

Anti-human 
Hsp90β  

mouse IgG1 MBH90B purified Abcam 

Anti-human 
GAPDH 

mouse IgG1 1D4  Enzo Life 

Sciences 

Anti-mouse 
IgG  

goat IgG  HRP Enzo Life 

Sciences 

 

3.10.3 Antibodies for ELISA 

specificity isotype  format manufacturer 

Anti-human 
S100A8/S100A9 

rabbit IgG Polyclonal 

affinity-purified 

rabbit antisera 

Institute of 

Immunology, 

University of 

Muenster 

Anti-human 
S100A12 

rabbit IgG Polyclonal 

affinity-purified 

rabbit antisera 

Institute of 

Immunology, 

University of 

Muenster 

 

3.10.4 Antibodies for cell culture 

specificity isotype clone format manufacturer 

Anti-human CD3 
(ORTHOCLONE 
OKT3, 
muromonab-
CD3) 

mouse IgG2a OKT3 purified Janssen-Cilag 

Anti-human 
CD28 
 

mouse IgG1,κ CD28.2 purified BD Biosciences 
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Anti-human IL-
17 

mouse IgG2b #41809 purified R&D Systems 

Anti-human 
TNFα 

mouse IgG1 #28401 purified R&D Systems 

Anti-human IL-
12/IL-23 p40 
Antibody 

mouse IgG1 #24901 purified R&D Systems 

Anti-human IL-
1β 

mouse IgG1 #8516 purified R&D Systems 

Anti-human IL-6 mouse IgG2b #1936 purified R&D Systems 

Isotype Control mouse IgG1 #11711 purified R&D Systems 

Isotype Control mouse IgG2b #20116 purified R&D Systems 

Anti-human 
TLR4 

mouse IgG2a HTA125 purified Abcam 

Isotype Control mouse IgG2a MOPC-173 purified Abcam 

 

3.11 siRNA 

3.11.1 Applied siRNAs 

siRNA manufacturer 

Hsp90α siRNA (ON-TARGETplus SMART 
pool, 5 nmol, L-005186-00-0005) 

GE Healthcare Dharmacon  

siRNA Control (ON-TARGETplus Non-
targeting Pool, 5 nmol, D-001810-10-05) 

GE Healthcare Dharmacon 

 

3.11.2 Sequence of Hsp90α targeting siRNA 

                  

siRNA sense/antisense strand 

Duplex 1 Sense         5’        GAAGUAGACUAAUCUCUGGUU 3’ 

Antisense    3’   UUCUUCAUCUGAUUAGAGACC      5' 

Duplex 2 Sense         5'        GACCAAAUCUUGUUAUUGAUU  3' 

Antisense    3'  UUCUGGUUUAGAACAAUAACU      5' 
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Duplex 3 Sense         5'        GUUCAGUACUCUACAAUUCUU  3' 

Antisense    3'  UUCAAGUCAUGAGAUGUUAAG       5' 

Duplex 4 Sense         5'        ACUAAGUGAUGCUGUGAUAUU  3' 

Antisense   3'   UUUGAUUCACUACGACACUAU        5' 

 

3.11.3 Sequence of non-targeting siRNA 

siRNA sense/antisense strand 

Duplex 1 Sense        5'         UGGUUUACAUGUCGACUAAUU  3' 

Antisense   3'    UUACCAAAUGUACAGCUGAUU         5' 

Duplex 2 Sense        5'         UGGUUUACAUGUUGUGUGAUU  3' 

Antisense   3'     UUACCAAAUGUACAACACACU        5' 

Duplex 3 Sense        5'         UGGUUUACAUGUUUUCUGAUU  3' 

Antisense   3'    UUACCAAAUGUACAAAAGACU        5' 

Duplex 4 Sense        5'         UGGUUUACAUGUUUUCCUAUU  3' 

Antisense   3'    UUACCAAAUGUACAAAAGGAU        5' 

 

3.12 Proteins 

protein expression organism expression vector Manufacturer 

S100A8 E.coli  pET11/20  expression 

vector containing 

S100A8 cDNA  

Institute of 

Immunology, 

University of 

Muenster 

S100A9 E.coli  pET11/20  expression 

vector containing 

S100A9 cDNA 

Institute of 

Immunology, 

University of 

Muenster 

S100A12 E.coli  pET11b vector 

encoding tag-free 

S100A12 cDNA 

Institute of 

Immunology, 

University of 

Muenster 
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3.13 Software 

software provider 

BD CellQuestTM Pro Version 4.0.2 BD Biosciences 

Bio-Plex ManagerTM  Bio-Rad Laboratories 

CFX ManagerTM Software Bio-Rad Laboratories 

Graph Pad Prism 5.0 GraphPad Software 

ImageJ Wayne Rasband 

Microsoft Word, Excel, Power Point Microsoft 

 

3.14 List of manufacturers 

manufacturer city, country 

Abcam  Abcam, Cambridge, UK  

ABIMED GmbH  Langenfeld, Germany  

Adobe Systems  San Jose, CA, USA  

Andreas Hettich GmbH & Co.KG  Tuttlingen, Germany  

BD Biosciences  San Jose, CA, USA  

Biochrom AG  Berlin, Germany  

Biolegend  San Diego, CA, USA  

Bio-Rad Laboratories  Munich, Germany  

Biozym Hessisch Oldendorf, Germany 

Carl Roth GmbH & Co. KG  Karlsruhe, Germany  

Cell Signaling Technology  Danvers, MA, USA  

Corning Incorporated  Corning, NY, USA  

eBioscience  San Diego, CA, USA  

Eppendorf  Hamburg, Germany  

Enzo Life Sciences Farmingdale, NY, USA 

Fresenius Kabi Deutschland GmbH  Bad Homburg, Germany  

GE Healthcare Garching, Germany 

Gesellschaft für Labortechnik  Burgwedel, Germany  

Gilson Middleton, WI, USA 

GraphPad Software  La Jolla, CA, USA  

Greiner Bio-One GmbH  Frickenhausen, Germany  
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Heidolph Instruments GmbH & Co. KG  Schwabach, Germany  

Heraeus Holding GmbH  Hanau, Germany  

Hettich AG Bäch, Switzerland 

Invitrogen  Carlsbad, CA, USA  

InvivoGen  San Diego, CA, USA  

Integra Biosciences Fernwald, Germany 

Janssen-Cilag  Neuss, Germany  

Karl Hecht GmbH & Co. KG  Sondheim, Germany  

La Fontaine International GmbH  Waghäusel, Germany  

Merck KGaA  Darmstadt, Germany  

Microsoft  Redmond, WA, USA  

Miltenyi Biotec  Bergisch Gladbach, Germany  

Olympus  Hamburg, Germany  

PEQLAB Biotechnologie GmbH  Erlangen, Germany  

PerkinElmer  Waltham, MA, USA  

Petra-electric  Burgau, Germany  

R&D Systems  Minneapolis, MN, USA  

Roche  Basel, Switzerland  

Sarstedt AG & Co.  Nümbrecht, Germany  

Sartorius AG  Göttingen, Germany  

Sigma-Aldrich  Saint Louis, MO, USA  

VWR International Darmstadt, Germany 

Thermo Fisher Scientific  Rockford, IL, USA  
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4 Methods 

 

4.1 Preparation of pooled human serum 

50-60 ml of peripheral venous blood was taken from healthy donors without addition 

of any anticoagulants and immediately transferred into 50 ml tubes. After incubating 

the tubes for 1 h at 37°C to allow coagulation, they were centrifuged at 2716 g for 

10 min at room temperature (RT). The supernatant serum was taken off, pooled and 

heat inactivated for 30 min at 56°C. The obtained pooled human serum (PHS) was 

aliquoted and frozen at -80°C. 

 

4.2 Isolation of mononuclear cells from human peripheral blood 

PBMCs were isolated from heparinized peripheral blood by Ficoll-Hypaque density 

gradient centrifugation. Therefore, two volume fractions of heparinized blood were 

slowly layered above one volume fraction of Ficoll-Hypaque in a 15 ml or 50 ml 

conical tube and centrifuged at 958 g for 20 min at 20°C without brake. The plasma 

was aspirated and the mononuclear cell layer was transferred into a new 15 ml or 

50 ml tube. The isolated cells were resuspended in PBS and centrifuged at 400 g for 

5 min. After removing the supernatant, two additional wash steps with PBS were 

carried out. Finally, cells were counted and stored in PBS on ice until further use. 

 

4.3 Immunomagnetic cell separation 

Subpopulations of PBMCs were isolated using magnetic-activated cell sorting 

(MACS). MACS technology is based on nanosized and superparamagnetic particles 

(MACS MicroBeads), which are conjugated to highly specific antibodies against a 

particular antigen on the cell surface. Functionality of isolated cells is preserved as 

MACS MircroBeads are non-toxic, biodegradable and do not saturate cell surface 

epitopes due to their small size. Cells magnetically labelled with MACS MicroBeads 

were applied to MACS Columns (composed of a spherical steel matrix) and placed in 
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a high-gradient magnetic field of a MACS separator. Unlabelled cells pass through 

while magnetically labelled cells are retained within the column. By removing the 

column from the magnetic field, the magnetically labelled cells can be flushed out.  

 

In the present study, CD4+ T cells were isolated from PBMC by negative selection 

using CD4+ T cell Isolation Kit II. Therefore, non-target cells were indirectly labelled 

with a cocktail consisting of several biotinylated monoclonal antibodies directed 

against CD8, CD14, CD16, CD19, CD36, CD56, CD123, TCRγ/δ, and Glycophorin A) 

and anti-biotin monoclonal antibodies conjugated to MicroBeads according to the 

manufacturer`s protocol. Cells were isolated by the autoMACS separator using the 

program “Depletes”. The purity of isolated CD4+ T cells, confirmed by flow cytometry 

using fluorochrome-conjugated antibodies directed against CD3 and CD4 and anti-

CD14 antibodies, was >90%. 

 

Additionally, CD14+ monocytes were isolated from PBMC by positive selection using 

CD14 MicroBeads. Therefore, CD14+ cells were magnetically labelled with CD14 

MicroBeads and isolated according to the manufacturer`s protocol using the program 

“Possel”. The purity of isolated CD14+ cells (>95%) was determined by flow 

cytometric analysis of CD14 surface expression.  

 

4.4 Determination of cell number 

Cell numbers and vitality were determined using a Neubauer chamber. Therefore, 

cell suspension was diluted with trypan blue and transferred into the chamber. 

Trypan blue is a diazo dye that is not absorbed by viable cells. However, it traverses 

the membrane of dead cells leading to the distinctive blue colouring under the 

microscope. Uncoloured living cells were counted in the four main squares. The cell 

concentration in the present cell suspension was calculated as indicated in the 

following formula:   

 

 
x = x 

ml 

number of cells number of counted cells 

number of main squares 
dilution factor 10.000 
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4.5 Expression and purification of S100 proteins 

Human S100A8, S100A9 and S100A12 were recombinantly expressed in E.coli and 

purified as described earlier.126,129,138,140 Briefly, E.coli BL21(DE3) bacteria were 

transformed with pET11/20  expression vector containing S100A8 or S100A9 cDNA. 

After growing bacteria at 37°C in 2x yeast extract and tryptone for 24 h, bacteria were 

harvested, lysed and the inclusion bodies were prepared. The inclusion body pellets 

were dissolved in 8M urea buffer and samples were adjusted to pH 2.0-2.5 first by 

adding hydrochloric acid. Samples were dialyzed to get adapted to pH 7.4 for proper 

refolding in the presence of 2 mM DTT. After centrifugation to pellet aggregated 

material, samples were further dialyzed and applied to anion exchange column and 

gel filtration chromatography. Recombinant human S100A12 was expressed in E.coli 

from the pET11b vector encoding tag-free S100A12. After inducing the protein 

expression with isopropyl-β-D-thiogalactopyranosid (IPTG), the pellet was lysed by 

sonication and the insoluble material was removed by centrifugation. The 

supernatant was adjusted up to 10 mM CaCl2 and applied onto a phenyl-sepharose 

column. After elution, S100A12 containing fractions were concentrated by 

ultrafiltration and loaded onto a ResQ column (Pharmacia). The protein was eluted 

using a 0-1M NaCl gradient using an AKTA purifier chromatography system 

(Amersham). All recombinant S100A12 preparations were purged over LPS-removal 

columns (Endotrap-Hyglos). Possible endotoxin contaminations in S100A8, S100A9 

and S100A12 preparations were determined by Limulus amoebocyte lysate (LAL) 

assay (Lonza) and confirmed to be lower than 1 pg LPS/μg S100 protein. 

 

4.6 Monocyte-T-cell co-culture experiments for analysis of induction of Th1, 
Th17/Th1, Th17 and Th17.1 cells 

Monocytes from healthy donors, from patients with or without GvHD after HCT and 

CD4+ T cells were isolated by magnetic cell separation as described in 4.3. CD4+ T 

cells from healthy donors were co-cultured with 100 ng/ml anti-CD3 mAb Orthoclone 

OKT3 and monocytes from healthy donors, patients with acute or chronic GvHD or 

patients before conditioning and at day 30, 60 and 100 post HCT (+/- 10 days) 

without GvHD at a monocyte:T cell ratio of 1:4 for 5 days in 96-well flat bottom plates 
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in VLE-RPMI medium containing 10% PHS, penicillin/streptomycin (100 units/ml and 

100 µg/ml), 2 mM L-glutamine, and 10 mM HEPES buffer. Where indicated, 

monocytes from healthy donors were additionally stimulated with 5 μg/ml S100A8, 

S100A9, S100A8/S100A9 or S100A12 for 4 hours before co-culturing with CD4+ T 

cells. Binding of S100 proteins to monocytes was inhibited by pre-incubation of 

monocytes with TLR4 antagonist (0.1 µg/ml) for 30 min followed by 4 h stimulation 

with S100 proteins. To investigate if Th17 induction occurred cell-contact dependent 

or cytokine mediated, monocytes were cultured in VLE-RPMI1640 complete medium 

for 24 h. The supernatant was added to the culture medium of freshly isolated CD4+ 

T cells at a ratio of 1:1. CD4+ T cells were cultured for 5 days in the presence of 

Orthoclone OKT3 (100 ng/ml) and anti-CD28 mAb (1 µg/ml). To analyse the effect of 

cytokine neutralisation on the induction of Th17 cells, monocytes from healthy donors 

were stimulated for 4 h with S100 proteins prior to co-culture with CD4+ T cells 

isolated from healthy donors in the presence of 100 ng/ml anti-CD3 mAb Orthoclone 

OKT3 and the neutralizing antibodies specific for the cytokines IL-17, TNFα, IL-1β, 

IL-6, IL-12/IL-23p40 (5 μg/ml) and the corresponding isotype controls (mouse IgG1 

and mouse IgG2B; 5 μg/ml). For inhibition of Hsp90 in monocytes, cells were treated 

with 17-DMAG for 16 h and washed before culturing with CD4+ T-cells. Optionally, 

physiological concentrations of dexamethasone (0.1 μM) were added to the co-

culture of monocytes and CD4+ T cells. Furthermore, monocytes were transfected 

optionally with siRNA targeting Hsp90α or non-targeting siRNA prior to the co-culture 

with CD4+ T cells. 

 

4.7 Immunofluorescent staining for flow cytometry 

Flow cytometry is used for immunophenotyping of a variety of specimens, including 

whole blood, bone marrow, serous cavity fluids, cerebrospinal fluid, urine, and solid 

tissues. This technique allows the measurement of multiple characteristics of 

individual microscopic particles such as cells by suspending them in a stream of fluid 

and passing them by an electronic detection apparatus. A beam of light (usually laser 

light) of a single wavelength is directed onto a hydrodynamically-focused stream of 

fluid. Cells passing through the beam scatter light, which is detected as forward 

scatter (FSC; proportional to the cell size) and side scatter (SSC; proportional to cell 
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granularity). Cells are labelled with fluorochromes emitting light when excited by the 

laser with corresponding excitation wavelength. The use of multiple fluorochromes 

allows several cell properties to be measured simultaneously.355 In this work, flow 

cytometric analysis was carried out using a 4-colour FACSCaliburTM flow cytometer, 

equipped with an air-cooled 488 nm argon laser and a 635 nm red diode laser. 

Following fluorochromes were used: FITC (detected in the FL-1 channel); PE 

(detected in the FL-2 channel); PerCP (detected in the FL-3 channel); APC and 

AlexaFluor 647 (detected in the FL-4 channel). Data acquisition and analysis were 

performed using BD CellQuestTM Pro software.   

 

4.7.1  Immunofluorescent staining of cell surface antigens  

Cells to be analyzed were aliquoted to polystyrene tubes (0.1-1 x 106 cells/tube) and 

washed by adding 2 ml PBS containing 2% FBS to each tubes. The tubes were 

centrifuged at 400 g for 5 min, the supernatant was discarded, and the cell pellet was 

resupended in the remaining liquid (50-100 µl). Fluorochrome labelled antibodies 

were added to final concentration of 1-5 µg/ml and incubated in the dark at 4°C for at 

least 15 min. 

 

4.7.2  Intracellular staining of cytokines 

For intracellular cytokine staining (ICC) of IL-17 and IFNγ in CD4+ T lymphocytes, 

cells were treated for 5 h with PMA (50 ng/ml) and ionomycin (750 ng/ml) to stimulate 

intracellular cytokine production. The calcium ionophore ionomycin and the phorbol 

ester synergistically enhance activation of protein kinase C inducing the 

phosphorylation of a number of cellular proteins and the initiation of the transcription 

of several genes resulting in the production of cytokines.356 Secretion of cytokines 

was blocked by adding the protein transport inhibitor monensin at a final 

concentration of 2 µM during the last 3 h of activation. Monensin is a carboxyl 

ionophore which interrupts the intracellular transport process leading to the 

accumulation of cytokines in the Golgi complex.357 After 5 h CD4+ T cells were 

harvested and transferred to polysterene tubes. Cells were initially stained for cell 

surface markers (4.7.1). For intracellular cytokine staining, cells were fixed by adding 
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100 µl of eBioscience IC Fixation Buffer to each tube. The Fixation Buffer containing 

4% paraformaldehyde (PFA) cross-links proteins preserving their native 3D 

structure.358 For fixation, cells were incubated in the dark at room temperature for 20 

min after vortexing the tubes. Cells were permeabilized by washing twice with 500 µl 

1x eBioscience Permeabilization Buffer (10x eBioscience Permeabilization Buffer 

was diluted 1:10 in MilliQ water). The Permeabilization Buffer contains saponin, an 

organic detergent which interacts with cholesterol of the cell membrane, making it 

permeable to antibodies.359 For intracellular cytokine staining, cells were 

resuspended in 100 µl Permeablization Buffer and incubated with the fluorochrome-

conjugated antibodies directed against IL-17A and IFNγ in the dark at room 

temperature for 20 min. Subsequently, cells were washed once with 500 µl 

Permeabilization Buffer. After another washing step with 2 ml PBS containing 2% 

FBS, the supernatant was discarded and cells were analyzed using the 

FACSCaliburTM flow cytometer.  

 

4.7.3  Intracellular staining of heat shock protein 90α 

Heat shock protein 90α was detected in monocytes by intracellular staining. After 

isolating PBMCs by Ficoll-Hypaque density gradient centrifugation, monocytes were 

obtained by immunomagnetic cell separation as described in 4.3. Monocytes were 

transferred to polysterene tubes and initially stained for cell surface markers (4.7.1). 

For intracellular staining of Hsp90α, monocytes were fixed by adding 100 µl of 

eBioscience IC Fixation Buffer to each tube and incubated in the dark at room 

temperature for 20 min after vortexing the tubes. Cells were permeabilized by 

washing twice with 500 µl 1x eBioscience Permeabilization Buffer (10x eBioscience 

Permeabilization Buffer was diluted 1:10 in MilliQ water). For intracellular staining of 

Hsp90α, monocytes were resuspended in 100 µl Permeablization Buffer and 

incubated with the fluorochrome-conjugated antibodies directed against Hsp90α in 

the dark at room temperature for 20 min. After washing the cells once with 500 µl 

Permeabilization Buffer, another washing step with 2 ml PBS containing 2% FBS was 

carried out. The supernatant was discarded and monocytes were analyzed using the 

FACSCaliburTM flow cytometer. 
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4.7.4  Intracellular staining of transcription factors  

Detection of CD4+CD25+FoxP3+ regulatory T cells in total CD4+ T cells was carried 

out according to the manufacturer`s protocol. Therefore, CD4+ T cells were 

transferred to polystyrene tubes and staining of surface markers (CD4, CD25) was 

performed (4.5.1). For fixation, cells were incubated with 1 ml of 1x FoxP3 Fix/Perm 

buffer (4x FoxP3 Fix/Perm buffer was diluted 1:4 in PBS) in the dark at room 

temperature for 20 min after vortexing. Subsequently, cells were centrifuged at 400g 

for 5 min and the supernatant was discarded. Thereafter, the cells were washed 

twice by adding 2 ml PBS containing 2% FBS and 1 ml 1x FoxP3 Perm buffer (10x 

FoxP3 Perm buffer was diluted 1:10 in PBS) to each tube. For permeabilization, cells 

were resuspended in 1 ml 1x FoxP3 Perm buffer and incubated in the dark at room 

temperature for 15 min. Tubes were centrifuged at 400g for 5 min and the 

supernatant was discarded. After resuspending the cells in 100 µl 1x FoxP3 Perm 

buffer, 2 µl fluorochrome-conjugated antibody directed against FoxP3 were added. 

After an incubation time of 30 min, cells were washed twice with PBS containing 2% 

FBS and analyzed on the FACSCaliburTM flow cytometer. 

 

4.7.5  Detection of multi-drug protein type1 (MDR1) 

A 1 mg/ml Rhodamine123 stock solution was prepared in DMSO. The aliquots were 

stored at -20°C until usage. For flow cytometric analysis, CD4+ T cells were 

resuspended in complete medium and loaded with Rhodamine123 at a final 

concentration of 1 µg/ml for 30 min on ice in the dark. Then, cells were washed in 

complete medium and moved to a 37°C incubator for 2 h. After this efflux period, 

cells were washed once in PBS, stained with the surface markers and washed again 

in PBS. Stained cells were kept on ice before flow cytometric analysis.  

 

4.7.6  Detection of necrosis 

Detection of necrosis was performed using propidium iodide (PI), a dye which 

penetrates damaged cellular membranes and forms intercalation complexes with 

double-stranded DNA inducing an amplification of the fluorescence. Thus, the 
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number of non-vital cells in the total cell population can be assessed. Initially, staining 

of surface markers was performed. Afterwards, 10 µl PI staining solution (composed 

of 50 µg PI/ml in PBS) were added to the cells right before flow cytometric analysis 

on the FACSCaliburTM flow cytometer.  

 

4.8 Cytokine measurements 

Secretion of proinflammatory cytokines by monocytes was analyzed using Human 

Cytokine Group 1 5-plex Assay from Bio-Rad. The Bio-Plex suspension array system 

is based on the covalent binding of fluorescently dyed beads, each with a distinct 

colour code, to specific monoclonal antibodies directed against the desired 

biomarkers. These coupled beads react with the sample containing the biomarker of 

interest. After several wash steps to remove unbound protein, a biotinylated detection 

antibody is added to create a sandwich complex. The final detection complex is 

formed by adding the streptavidin-phycoerythrin conjugate. Flow cytometric 

quantification was performed using the Bio-Plex Protein Array System. A red 

(635 nm) laser illuminates the fluorescent dyes within each bead to provide bead 

classification and thus identification of the particular cytokines. At the same time, a 

green (532 nm) laser excites phycoerythrin to generate a reporter signal, which is 

detected by a photomultiplier tube and enables the quantification of the cytokine 

amount.   

Therefore, 0.3 x 106 monocytes additionally pre-stimulated with 5 μg/ml S100A8, 

S100A9, S100A8/S100A9 or S100A12 for 4 hours were seeded in 180 μl VLE-RPMI 

complete medium in a 96-well-flat bottom plate. After an incubation time of 24 h the 

supernatant was removed and frozen at -80°C until analysis. Furthermore, serum 

samples of patients with GvHD and healthy donors were collected and stored until 

analysis at -80°C. The Bio-Plex assay was performed according to the 

manufacturer`s protocol. Therefore, the filter plate was pre-wetted with 100 μl assay 

buffer per well. After adding 50 μl of coupled beads the wells were washed twice with 

100 μl wash buffer using a vacuum manifold. Subsequently, 50 μl samples (serum 

samples 1:4 diluted in sample diluent; undiluted supernatants), standards and blank 

were added and incubated for 30 min in the dark while shaking. After three wash 

steps 25 μl biotinylated detection antibody was added to each well and incubated for 
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30 min in the dark on the shaker. The plate was washed three times and 50 μl 

streptavidin-PE was added to each well and incubated for 10 min while shaking in the 

dark. Unbound streptavidin-PE was removed by three wash steps and the beads 

were resuspended in 125 μl assay buffer. The plate was read and the cytokine profile 

of each sample was determined by referring to the standard curve using the Bio-Plex 

ManagerTM Software. 

 

4.9 siRNA transfection  

siRNA transfection was performed using LipofectamineTM RNAiMAX, a lipid-based 

transfection reagent developed for the delivery of siRNA into eukaryotic cells. This 

transfection method is based on the mechanism of lipofection. Lipid-based 

transfection reagents consist of specific cationic lipids that form micelles or liposomes 

that interact with negatively charged nucleic acids, fuse with the cell membrane and 

facilitate the delivery of nucleic acids into the cell.  

The main advantages of lipofection are its high efficiency, the ease of use, 

reproducibility, and low toxicity. In addition, this method is suitable for all transfection 

applications (transient, stable, co-transfection, reverse, sequential or multiple 

transfections).360  

 

Human monocytes were isolated by magnetic cell separation as described in 4.3. 

Subsequently, 1 x 106 monocytes were seeded in 2 ml antibiotic-free VLE-RPMI 

medium containing 10% PHS, 2 mM L-glutamine, and 10 mM HEPES buffer per well 

in a PrimariaTM 6-well flat bottom tissue culture plate. Monocytes were transfected 

with 20 nM, 50 nM or 120 nM Hsp90α targeting siRNA or non-targeting control siRNA 

using 5 μl LipofectamineTM RNAiMAX transfection reagent per well. Briefly, both 

siRNA duplexes and LipofectamineTM RNAiMAX transfection reagent were diluted 

with 200 μl Opti-MEM
® 

I Reduced Serum Medium per test. To allow the formation of 

siRNA-transfection reagent complexes, predilutions were mixed and incubated for 15 

min at room temperature. After adding 400 μl of formed RNAi duplex-LipofectamineTM 

RNAiMAX complexes to each well monocytes were incubated at 37°C and 5% CO2 

until they were analysed for gene knockdown at various time points (24, 48, 72, 96, 

140 or 168 h) by flow cytometry or immunoblotting. 
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4.10 Preparation of cell lysates 

For lysis of monocytes, cells were washed once with PBS to remove non-adherent 

cells. Adherent cells were detached from the tissue culture dish using a cell scraper 

and transferred to 1.5 ml tubes. Freshly isolated monocytes were directly transferred 

to 1.5 ml tubes and lysed. After resuspending 1*106 monocytes in 100 μl RIPA Lysis 

Buffer containing protease inhibitors, cells were incubated on ice for 15 min while 

vortexing several times. Tubes were centrifuged at 10.000 g for 15 min at 4°C and 

the cell lysates were stored at -80°C. 

 

4.11 Determination of protein concentration 

Cell lysates were obtained as described in 4.10. Total protein concentration in these 

cell lysates were determined using PierceTM BCA Protein Assay Kit which is a 

detergent-compatible formulation based on bicinchoninic acid (BCA) for the 

colorimetric detection and quantitation of total protein. This method combines the 

reduction of Cu2+ to Cu1+ by protein in an alkaline medium (biuret reaction) with the 

sensitive and selective colorimetric detection of the cuprous cation (Cu1+) using a 

reagent containing bicinchoninic acid.361 Chelation of two molecules of BCA with one 

cuprous ion results in the purple-colored reaction product of this assay.  This complex 

exhibits absorbance at 562 nm that is nearly linear with increasing protein 

concentrations over a wide working range (20-2000 μg/ml). The macromolecular 

structure of the protein, the number of peptide bonds and the presence of the amino 

acids cysteine, cysteine, tryptophan and tyrosine are reported to be responsible for 

the color formation with BCA.362  

Initially, diluted albumin standards at a concentration range of 0-2000 μg/ml were 

prepared. The cell lysates to be measured were diluted in RIPA Lysis Buffer at a ratio 

of 1:10. 25 μl of each calibration standard and of the diluted samples were pipetted 

into a 96-well flat-bottom microplate. After preparing the BCA working reagent by 

mixing BCA reagent A with BCA reagent B at a ratio of 50:1, 200 μl of this working 

solution were added to each well and mixed with the samples by placing the plate on 

the shaker for 30 sec. The plate was covered and incubated at 37°C for 30 min. After 

cooling the plate to RT, the absorbance was measured at 570 nm on the plate 
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reader. The assay was performed in duplicates or triplicates for each of the standards 

and samples. The 570 nm absorbance measurement of the Blank standard replicates 

was subtracted from the 570 nm measurements of the standard and sample 

replicates. A standard curve was prepared by plotting the average Blank-corrected 

570 nm measurement for each BSA standard against the protein concentration. The 

protein concentrations of the cell lysates were deduced from this calibration curve. 

 

4.12 SDS-PAGE 

SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) is a 

technique to separate proteins according to their electrophoretic mobility. It allows the 

estimation of the relative molecular mass of proteins, the identification of major 

proteins in a sample and the determination of the distribution of proteins among 

fractions.363 The anionic detergent SDS, the reducing agent dithiothreitol (DTT) and 

heat are widely used to denature the native structure of proteins. Thereby, SDS 

breaks up secondary and non-disulfide-linked tertiary structures, and additionally 

applies a negative charge to each protein in proportion to its mass.  

Heating the samples to at least 60°C further allows SDS to bind to the hydrophobic 

regions of the proteins and further promotes the denaturation of the proteins. The 

reducing agent DTT denatures the protein by reducing disulfide linkages leading to 

the complete break-up of the tertiary and quartenary structure of the proteins.364-366 

 

Samples for SDS-PAGE were prepared by mixing 3 volumes of the cell lysates 

containing 5-20 μg of total protein with 1 volume of NuPAGE
® 

LDS Sample Buffer 

containing 200 mM DTT. The samples were denatured at 95°C for 10 min and loaded 

on Tris-HEPES-SDS 4-20% precast protein gels. For estimation of the protein size, 

PageRulerTM Prestained Protein Ladder was used. The gels were run at constant 

voltage of 120V for 50 min using a XCell SureLockTM Mini-Cell Gel Running 

apparatus and BupH Tris-HEPES-SDS Running buffer.  
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4.13 Western Blot and immunodetection 

Western blot or immunoblot is an analytical technique that allows the detection of 

specific proteins. Thereby, proteins are transferred from polyacrylamide gels to a 

membrane so that they are accessible for antibody detection.367,368 

After gel electrophoresis, the separated proteins were transferred to InvitrolonTM 

PVDF membranes (0.45 μm pore size) at constant amperage of 60 mA for 45 min 

using Trans-Blot
®
 SD Semi-Dry Apparatus and BupH Tris-Glycine Buffer Packs. 

Membranes were blocked using 5% skim milk in PBS-T (PBS with 0.1% Tween
® 

20) 

for at least 2 h at RT to prevent unspecific antibody binding to the membrane. The 

membranes were then incubated with the primary monoclonal antibodies directed 

against Hsp90α and the housekeeper glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) overnight at 4°C. These primary antibodies were diluted 1:1000 in 5% skim 

milk in PBS-T. The next day, the blots were washed three times in PBS-T before 

incubating with an anti-mouse horseradish peroxidase (HRP) conjugated secondary 

antibody (diluted 1:3500 in 5% skim milk). After three additional washing steps with 

PBS-T, bound HRP was detected utilizing SuperSignal
®
West Pico Chemiluminescent 

Substrate. Light emission was visualized using X-ray films (CL-XPosure Films). 

 

4.14 S100 ELISA 

S100 levels in stool and serum samples were detected by double sandwich enzyme-

linked immunosorbent assay (ELISA). This method allows the quantification of 

antigens between two layers of antibodies (i.e. capture and detection antibody). 

Quantification of this assay occurs by detecting the amount of labelled detection 

antibody using a chromogenic substrate. 

For determination of S100 concentrations, stool samples of 9 patients after HCT 

without GvHD and serum samples of 14 patients after HCT without GvHD were 

collected consecutively on day 7, 14, 21, 30, 60 and 100 (+/- 5 days) post HCT (stool 

sample size=24; serum sample size=62). Furthermore, stool samples of 9 patients 

and serum samples of 11 patients (stool sample size=10; serum sample size=34) 

were collected at the onset of GvHD and in the further progression of GvHD every 2 

to 14 days. Stool and serum samples were stored at -80°C. 
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S100A8/S100A9 concentrations in the stool were determined using Calprotectin-

Assay (Buehlmann). Thereby, a capture antibody specific to the S100A8/S100A9 

heterodimeric and polymeric complexes, respectively, was coated onto the microtiter 

plate. A second monoclonal detection antibody conjugated to horseradish peroxidase 

HRP was used to detect fecal S100A8/S100A9 molecules bound to the monoclonal 

antibody coated onto the plate after a washing step. After incubation and a further 

washing step, tetramethylbenzidine (TMB) was added (blue colour formation) 

followed by a stopping reaction (change to yellow color). The absorption is measured 

at 450 nm using an ELISA reader. 

Concentrations of S100A8/S100A9 in the serum and concentrations of S100A12 in 

the serum and in the stool were determined by sandwich ELISA as described in 

several studies.130,369-374 For detection of fecal S100A12 levels, approximately 

100 mg of stool samples were suspended in extraction buffer at 1:50 dilution for 

homogenisation as described and validated previously.371-373 Briefly, flat bottom 96-

well maxisorb microtitre plates were coated with 10 μg of monoclonal antibodies 

directed against human S100A12 or human S100A8/S100A9 per well (in 50 μl) and 

incubated for 16 h at 4°C. The plates were washed three times with PBS-T (wash 

buffer) and blocked with wash buffer containing 0.25% bovine serum albumin 

(blocking buffer) for one hour at 37°C. After washing the plates once with wash 

buffer, 50 μl of samples in three dilutions using block buffer were added and 

incubated for two hours at room temperature. The assay was calibrated using purified 

S100A12 in concentrations ranging from 0.016 to 125 ng/ml or different amounts 

(0.25-250 ng/ml) of the native complex of S100A8 and S100A9. After three washings 

biotinylated rabbit anti human-S100A12 or biotinylated rabbit anti human-

S100A8/S100A9 (10 μg/well) was added and incubated for 30 min at 37°C. After an 

additional washing step, the plates were washed and incubated with streptavidin-

horseradish peroxidase conjugate (1:5000 dilution) for 30 min at 37°C. The plates 

were washed three times and incubated with ABTS (2,2′-azinobis (3-

ethylbenzthiazoline sulphonic acid) and H2O2 in 0.05 M citrate buffer, pH 4.0, for 20 

min at room temperature. Absorbency at 405 nm was measured after 20 min using 

an ELISA reader. The assay has a linear range between 0.5 and 30 ng/ml and a 

sensitivity of <0.5 ng/ml.  
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4.15 Immunohistochemistry 

Immunochemistry refers to the process of binding of specific antibodies to antigens in 

cells of a tissue section.  This method is widely used in the diagnosis and prognosis 

of several diseases.375 S100A8, S100A9 and S100A12 were detected on paraffin-

embedded bowel specimens of healthy controls (n=2) and patients with acute 

intestinal GvHD stage I, II and III (n=3 in each group) as described 

previously.126,371,376 In brief, paraffin sections were prepared from bowel tissue of 

patients with intestinal GvHD and as controls from patients with no pathological 

findings. After inhibiting endogenous peroxidase using 1% NaN3 (1%) (w/v) and 0.1% 

H2O2 (v/v) in PBS, sections were blocked with 1% BSA in PBS and incubated with 

specific antibodies targeting S100A8, S100A9 or S100A12 (1 µg/ml). Following 

binding of the peroxidase-bound secondary antibody and reaction with the substrate 

3-Amino-9-ethyl-carbazol (AEC) resulted in a characteristic brown colouring. Cell 

nuclei were stained using haematoxylin. Images were captured using a Zeiss 

Axioskop connected to an Axiocam camera supplied with software Axiovision 3.0 

(original magnification x200 for all images). Percentage of S100A8, S100A9 or 

S100A12 stained areas in the individual sections were determined using ImageJ.  

 

4.16 Isolation of RNA from monocytes 

The extraction of RNA from human monocytes was carried out using the RNeasy
®
 

Mini Kit (Qiagen). This kit allows the efficient purification of RNA from small amounts 

of starting material by selective binding of RNA to the silica membranes in the spin 

columns. Therefore, monocytes from healthy donors (n=5), patients with diarrhoea 

caused by infectious gastroenteritis (n=5), patients after HCT without GvHD (n=6) 

and patients after HCT with acute or chronic GvHD (n=7) were isolated by magnetic 

cell separation (4.3). 0.1-5*106 monocytes were resuspended in 350 μl RLT buffer 

mixed with the reducing agent β-mercaptoethanol according to the manufacturer`s 

instructions. RLT buffer contains guanidine-thiocyanate which inactivates RNases to 

ensure purification of intact RNA. The lysate was directly pipetted into a QIAshredder 

spin column and centrifuged for 2 min at maximum speed (10.000 g) at RT to 

homogenize. The homogenized lysate was mixed with one volume fraction of 70% 
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ethanol. After applying the sample to an RNeasy Mini spin column where the total 

RNA binds to the membrane, it was centrifuged for 15 sec at 8000 g at RT. The flow-

through was discarded and two wash steps with 700 μl RW1 buffer and 500 μl RPE 

buffer for 15 sec at 8000 g were carried out to remove any contaminants. To 

eliminate any remaining ethanol, 500 μl RPE buffer were added to the RNeasy spin 

column and another centrifugation step for 2 min at 8000 g was carried out. RNA was 

eluted by addition of 30 μl RNase-free water and subsequent centrifugation for 1 min 

at 8000 g.  

 

4.17 Determination of RNA concentration 

The concentration of RNA samples was determined using NanoDrop 1000 

Spectrophotometer. The spectrometer determines the absorbance at 260 nm and 

calculates the RNA concentration using the Beer-Lambert equation: c = (A * e)/b. 

In this equation c stands for the nucleic acid concentration in ng/microliter, the 

absorbance in AU, e is the wavelength-dependent extinction coefficient in ng-

cm/microliter (for RNA: 40 ng-cm/μl) and b is the path length in cm. For the 

NanoDrop 1000 Spectrophotometer path lengths of 1.0 mm and 0.2 mm are used. 

RNase free water was used to blank the spectrophotometer before measuring the 

samples.  

Additionally, the spectrophotometer measures the absorbance at 280 nm to calculate 

the ratio of sample absorbance at 260 nm and 280 nm. This ratio is used to assess 

the purity of DNA and RNA. For RNA, the ratio should be ideally 2.0.   

 

4.18 Reverse Transcription (cDNA synthesis) 

Reverse transcription means the conversion of template RNA into a complementary 

DNA (cDNA) using a reverse transcriptase. This enzyme is an RNA-dependent DNA-

polymerase that generates cDNA from an RNA template. Thereby, cDNA was 

synthesized from 500 ng RNA using the QuantiTect
®
 Reverse Transcription Kit 

(Qiagen). As a first step contaminations with genomic DNA in the RNA sample were 

removed by adding 2 μl Wipeout Buffer to the template RNA. RNAse-free water was 
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added to the sample to obtain a total volume of 14 μl. After incubating the sample for 

5 min at 42°C, the sample was placed on ice and a mastermix consisting of 4 μl 

Quantiscript RT Buffer, 1 μl Quantiscript Reverse Transcriptase and 1 μl RT Primer 

Mix was added. The synthesis of cDNA was carried out by incubating the sample for 

30 min at 42°C using an GeneAmp PCR System 9700 (Perkin Elmer) The reverse 

transcriptase was then inactivated by heating up the sample to 95°C for 3 min. The 

obtained cDNA was stored at -20°C. 

 

4.19 Quantitative Real Time PCR 

The quantitative real-time polymerase chain reaction (RT-PCR) is a technique that is 

used to amplify and simultaneously quantify a targeted DNA molecule.377 This 

method is based on the binding of the cyanine dye SYBR
®
 Green I to double-

stranded DNA allowing the detection of the accumulation of the PCR product. An 

increase in DNA product during PCR therefore leads to an increased fluorescence 

intensity and is measured at each cycle, thus allowing DNA concentrations to be 

quantified in “real time”. The DNA-dye-complex absorbs blue light (λmax = 497 nm) 

and emits green light (λmax = 520 nm).378 The quantitative RT-PCR was carried out 

using the thermal cycler CFX96 Real-Time PCR Detection System (Biorad) that 

illuminates and detects fluorescence from each sample with high sensitivity and no 

cross talk. The cycle number at the threshold level of log-based fluorescence is 

defined as ct-value, which is the observed value in most RT-PCR experiments.379 

The gene expression can be quantified by normalization to one or more reference 

genes, the so-called housekeeping genes, which are stably expressed throughout 

the given experiment.380  

In this work, RNA expression levels of S100A8, S100A9 and S100A12 in monocytes 

isolated from different donors was further investigated. Therefore, RNA was extracted 

from isolated monocytes from healthy donors (n=5), patients with diarrhoea caused 

by infectious gastroenteritis (n=5), patients after HCT without GvHD (n=6) and 

patients after HCT with acute or chronic GvHD (n=7) using the RNeasy mini kit 

(Qiagen). First-strand cDNA was synthesized from 500 ng of total RNA using 

QuantiTect Reverse Transcription Kit as described in 4.18. Amplification of S100 

genes was performed using KAPA Sybr Fast QPCR MasterMix for Bio-Rad iCycler 
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(Peqlab) and specific primers for human S100A8, S100A9 and S100A12 as 

proposed by Yamaoka et al.381 5 µl of Sybr Mix was added to 2 µl of RNase-free 

water, 1 µl of cDNA and 1 µl of S100 specific primer (each 5 pmol, Eurofins MWG 

Operon), respectively. After an initial denaturation step for 1 min at 95°C, 40 PCR 

cycles with 3s at 95°C and 25s at 59°C were run. For analysis, ct-values normalized 

to the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

were calculated as 2(ct(GAPDH)-ct(S100))  as described by previously.382 Analysis of the 

obtained PCR-fragments was carried out by size fractionation using 2% agarose 

gels. 

4.20 Statistical analysis 

Data were tested for statistical significance with GraphPad Prism 5. For comparing 

more than two samples that were independent, or not related, a one-way analysis of 

variance (ANOVA) was used. In the case of a normal distribution of the residuals, the 

One-way ANOVA was followed by Bonferroni’s post-hoc test. The Kruskal-Wallis test 

(with Dunn’s post hoc test) was used if the residuals were not normally distributed.  

For comparison of two independent samples, the two-tailed Student`s t-test was 

used. Values of p<0.05 were considered significant. 

 

4.21 Patients and samples 

Blood from 32 healthy donors was obtained from the blood bank Tuebingen in the 

form of buffy coats.  52 patients were recruited at the University Children´s Hospital 

Tuebingen and the Medical Center Tuebingen of which 35 children (67%) and 12 

adults (23%) were treated with a HCT. Stem cells of HLA-matched related donors 

were used in 6 cases (13%), HLA-matched-unrelated donors in 19 cases (40%), 

HLA-haploidentical donors in 20 cases (43%) and HLA-mismatched unrelated donors 

in 2 cases (4%). Intensitiy of conditioning regimens were classified as described by 

Bacigalupo et al.26 In this study, samples of 17 children and 6 adults undergoing HCT 

were examined consecutively (before conditioning, day 7, 14, 21, 30, 60 and 100 

post HCT and on onset of GvHD) of which 8 children (47%) and 5 adults (83%) 

developed an acute GvHD. Among 2 children (12%) and 2 adults (33%) this acute 

GvHD was followed by a chronic GvHD. Furthermore, 2 children after HCT without 
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GvHD, 16 children with GvHD and 6 adults with GvHD were additionally included at 

the onset of GvHD. In total, 24 patients with acute GvHD, 5 patients with chronic 

GvHD and 6 patients with acute GvHD followed by chronic GvHD were included in 

this study. As controls, 5 patients with diarrhoea caused by infectious gastroenteritis 

were additionally included. Characteristics of these patients are shown in table 1 and 

2. Approval for this study was obtained from the independent ethics committee of the 

University of Tuebingen [336/2011BO1]. All donors have given informed consent to 

participate in this study.  
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Table 3 Patient characteristics 

MDS indicates myelodysplastic syndrome; ATG, anti-thymocyte globulin; MMF, mycophenolate mofetil; MTX, methotrexate; and 

MPA, mycophenolic acid 

 

Characteristic Patients without GvHD after 
HCT (control group) 

n=12 
(number in %) 

Patients with GvHD after 
HCT 
n=35 

(number in %) 

p-value

Sex 
 
male 
female 

 

 

10 (83) 

  2 (17) 

 

 

15 (43) 

20 (57) 

 

 

 

0.1350 

 

Age group in years 
 
 <5 
5-18 
>18 
 

 

 

2 (17) 

9 (75) 

    1 (8) 

 

 

 

3 (9) 

21 (60) 

11 (31) 

 

 

 

 

 

0.2556 

 

Disease 
 
Leukemia/MDS 
Lymphoma 
Solid tumors 
Non-malignant  
 

 

 

8 (66) 

0 

2 (17) 

2 (17) 

 

 

 

23 (66) 

  4 (11) 

3 (9) 

  5 (14) 

 

 

 

 

 

 

0.3002 

 

Transplantation type 
 
haploidentical 
matched unrelated donor 
matched related donor 
mismatched unrelated donor 

 

 

5 (42) 

5 (41) 

2 (17) 

0 

 

 

 

15 (43) 

14 (40) 

  4 (11) 

2 (6) 

 

 

 

 

 

 

0.3141 

 

Conditioning regimen 
 
reduced intensity regimen  
myeloablative regimen 
 

 

 

  2 (17) 

10 (83) 

 

 

 

  9 (26) 

26 (74) 

 

 

 

 

0.3455 

 

GvHD prophylaxis 
 
ATG 
MMF 
MTX 
Ciclosporin 
Tacrolimus 
Sirolimus 
MPA 

 

 

9 (75) 

5 (42) 

6 (50) 

5 (41) 

2 (17) 

0 

0 

 

 

 

25 (71) 

19 (54) 

11 (31) 

  9 (26) 

  8 (23) 

1 (8) 

1 (8) 

 

 

 

 

 

 

 

 

 

0.0853 
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Table 4 GvHD overview 

GvHD characteristic Patients with GvHD after HCT 
 

n=35* 
(number in %) 

Acute GvHD 
 
Skin  
stage I 
stage II 
stage III 
stage IV 
 
Gut 
stage I 
stage II 
stage III 
stage IV 
 
Liver 
stage I 
stage II 
stage III 
stage IV 
 

 

 

 

11 (31) 

  9 (26) 

  4 (11) 

1 (8) 

 

 

  5 (14) 

  4 (11)  

3 (9) 

1 (8) 

 

 

0 

 1 (8) 

0 

0 

Acute GvHD 
 
grade I 
grade II 
grade III 
grade IV 

 

 

14 (40) 

  7 (20) 

  8 (23) 

1 (8) 

 

Chronic GvHD 
 
limited 
extensive 

 

 

3 (9) 

8 (23) 

GvHD therapy 
 
Steroids (Prednisolon, Urbason) 
MMF 
Calcineurin inhibitors (Ciclosporin, Tacrolimus) 
Protopic, Soderm 
TNF-blocker (Etanercept, Infliximab,  
Phototherapy (ECP, PUVA) 
Sirolimus 
mAb (Basiliximab, Alemtuzumab, Toclizumab, Muromonab) 
MSC 
ATG 
Azathioprin 

 

 

28 (80) 

26 (74) 

21 (60) 

15 (43) 

10 (28) 

7 (20) 

5 (14) 

5 (14) 

3 (9) 

1 (8) 

1 (8) 
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MMF indicates mycophenolate mofetil; ECP, extracorporeal photopheresis; PUVA, psoralen and ultraviolet A irradiation; MSC, 

mesenchymal stem cells; and ATG, anti-thymocyte globulin 

 

* 35 patients with GvHD include 24 patients with acute GvHD, 5 patients with chronic 

GvHD and 6 patients with acute GvHD followed by chronic GvHD  
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5 Results 

 

5.1 Monocyte-induced Th17 development in healthy donors, patients with and 
without GvHD after HCT  

Like rheumatoid arthritis, GvHD is an inflammatory process which is driven by the 

release of TNFα, IL-1 and IL-6 and the activation of APCs leading to tissue 

damage.36,383-385 It is known that in vivo activated monocytes from the site of 

inflammation in humans specifically promote Th17 responses during rheumatoid 

arthritis.386 Thus, the influence of monocytes on the induction of Th17-, Th1- and 

Th17/Th1 cells in patients with acute or chronic GvHD, patients without GvHD and 

healthy donors was investigated. Monocytes were isolated from the peripheral blood 

of 9 patients with acute GvHD grade I-IV, 4 patients with chronic GvHD (2 patients 

with extensive chronic GvHD, 2 patients with limited chronic GvHD), 20 patients 

before conditioning, 21 patients at day 30, 60 and 100 post HCT (+/- 10 days) without 

GvHD and 32 healthy donors. These monocytes were co-cultured with anti-CD3 mAb 

Orthoclone OKT3 (100 ng/ml) and CD4+ T cells isolated from the peripheral blood of 

healthy donors at a monocyte:T cell ratio of 1:4 for 5 days. Non-adherent CD4+ T 

cells were harvested and the percentage of induced IL-17+, IL-17+IFNγ+ and IFNγ+ 

cells was assessed by flow cytometry. For analysis, total proliferating CD4+ T cells 

were gated (gate R1) and the percentages of induced Th17, Th17/Th1 and Th1 cells 

were determined (Figure 4A). Representative density plots are shown in figure 4A. 

The data represented in figure 4A-C demonstrate that monocytes isolated from the 

peripheral blood from patients with acute GvHD and patients with chronic GvHD 

induced significant higher levels of IL-17+ cells and IL-17+IFNγ+ cells compared to 

monocytes isolated from patients without GvHD after HCT and healthy donors 

(**p<0.01) (Figure 4A,B). Monocytes from patients with GvHD induced also elevated 

levels of Th1 cells (**p<0.01). However, the increase was lower compared to Th17- 

and Th17/Th1 cells (Figure 4A, D). Comparing the induced percentages of IL-17+-, 

IL-17+/IFNγ+-, IFNγ+-cells, it could be demonstrated that monocytes isolated from 

patients with GvHD have the strongest effects in vitro on the induction of Th17 cells. 
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Figure 4: Percentage of IL-17+, IL17+INFγ+ and IFNγ+ cells induced by monocytes isolated from 
patients with acute or chronic GvHD, without GvHD after HCT and healthy donors  
CD4+ T cells from healthy donors were co-cultured with anti-CD3 mAb Orthoclone OKT3 (100 ng/ml) 

and monocytes from healthy donors, from patients before conditioning, patients without GvHD on day 

30, 60 and 100 (+/- 10 days) post HCT and patients with acute and chronic GvHD at a monocyte:T cell 

ratio of 1:4 for 5 days. After 5 days of co-culture, cells were stimulated for 5 h with PMA (50 ng/ml) and 

ionomycin (750 ng/ml) in the presence of monensin (2 µM) during the last 3 h and flow cytometric 

analysis was performed. (A) Density plots representing Th17, Th17/Th1 and Th1 cells induced by 

monocytes from healthy donors, patients with GvHD and patients after HCT without GvHD. The dot 

plots represent the determined percentages of monocyte-induced (B) IL-17+ cells, (C) IL-17+IFNγ+ 
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cells and (D) IFNγ+ cells in the included healthy donors, patients without GvHD and patients with acute 

or chronic GvHD. Statistical significance was determined using Kruskal-Wallis Test (with Dunn’s post 

hoc test): *p<0.05; **p<0.01; ***p<0.001. Reinhardt et al.387 

 

5.2 Progression of Th17 induction in patients with and without GvHD after 
HCT  

It could be demonstrated that monocytes from patients with GvHD induced 

significantly elevated levels of Th17 cells compared to healthy donors and patients 

without GvHD (Figure 4A). To emphasize these data, the progression of monocyte-

mediated Th17 induction after HCT was analysed in patients with and without GvHD. 

The results of one patient with acute and chronic GvHD and one patient with no 

GvHD after HCT are exemplary represented in figure 5A and 5B. Monocytes isolated 

from these patients before conditioning induced low percentages of IL-17+ cells. At 

the onset of acute GvHD increased levels of Th17 cells were induced. After 

abatement of acute GvHD, monocyte-induced Th17 levels decreased and increased 

after clinical onset of the limited chronic GvHD (Figure 5A). On the contrary, 

monocytes isolated from the patient without GvHD at day 30, 60 and 100 (+/- 10 

days) after HCT induced almost consistent low levels of IL-17+ cells (Figure 5B).  

 

Figure 5: Progression of monocyte-induced Th17 induction in one patient with acute and 
chronic GvHD and one patient with no GvHD after HCT 
CD4+ T cells were isolated from a healthy donor were co-cultured with monocytes isolated from (A) 

one patient who developed an acute and chronic GvHD after HCT and (B) from another patient without 

GvHD after HCT at the indicated time points after HCT in the presence of anti-CD3 mAb Orthoclone 
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OKT3 (100 ng/ml) at a monocyte:T cell ratio of 1:4 for 5 days. After 5 days of co-culture, cells were 

restimulated with PMA/ionomycin, stained for IL-17 expression and analysed by flow cytometry. Bars 

represent the mean values of duplicates +SEM. 

 

5.3 Level of Treg cells and Th17/Treg ratios in the peripheral blood of healthy 
donors, patients with and without GvHD after HCT  

Several studies suggest using the assessed percentage of regulatory T cells and the 

ratio of Th17 cells to regulatory T cells in the peripheral blood of patients as markers 

for the development of GvHD.78,346,388-390 Thus, beside the monocyte-induced 

percentage of Th17 cells (Figure 6A) the percentage of regulatory T (Treg) cells 

within the PBMCs isolated from 20 healthy donors, 3 patients with acute GvHD grade 

I and II, 2 patients with extensive chronic GvHD and 21 patients before conditioning 

and at day 30, 60 and 100 post HCT (+/- 10 days) was determined by flow cytometry 

using the characteristic markers CD3, CD4, CD25 and FoxP3 (Figure 6B). As the 

percentage of CD3+CD4+ T cells in the peripheral blood of patients after HCT is 

relatively low a cut-off point of 1000 gated CD3+CD4+ T cells was defined for the 

determination of the CD25+FoxP3+ subpopulation. The determined percentages of 

CD3+CD4+CD25+FoxP3+ T cells in PBMCs isolated from patients with acute GvHD 

(n=3) did not differ from the determined percentages of Treg cells assessed in 

PBMCs of healthy donors (n=20), patients before conditioning (n=18) and patients 

without GvHD on day 30 (n=7), day 60 (n=8) and day 100 (n=6) (+/- 10 days) after 

HCT. On the contrary, the percentages of Treg cells in PBMCs from patients with 

chronic extensive GvHD (n=2) were increased compared to healthy donors, patients 

with acute GvHD, patients before conditioning and patients without GvHD after HCT 

on the indicated time points. However, the sample size of patients with chronic GvHD 

is too low to perform a statistical evaluation. Additionally, the ratio of Th17 cells to 

Treg cells was determined. The data in figure 6C demonstrate that there was no 

statistically significant difference between the calculated Th17/Treg ratios of healthy 

donors, patients with acute or chronic GvHD, patients before conditioning and 

patients without GvHD at day 30, 60 and 100 (+/- 10 days) after HCT.  
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Figure 6: Determined percentages of monocyte-induced Th17 cells, Treg cells in total PBMCs 
and Th17/Treg ratio in patients with acute or chronic GvHD, without GvHD after HCT and 
healthy donors 
(A) CD4+ T cells from healthy donors were co-cultured with anti-CD3 mAb Orthoclone OKT3 (100 

ng/ml) and monocytes from healthy donors, from patients before conditioning, patients without GvHD 

on day 30, 60 and 100 (+/- 10 days) post HCT and patients with acute and chronic GvHD at a 

monocyte:T cell ratio of 1:4 for 5 days. After 5 days of co-culture, cells were restimulated with 

PMA/ionomycin and stained for IL-17 expression. (B) The percentage of regulatory T cells in total 

PBMCs was determined by flow cytometry using antibodies specific for CD3, CD4, CD25 and FoxP3. 

(C) The ratios of Th17 cells to regulatory T cells of healthy donors, patients with acute or chronic 

GvHD, patients before conditioning and patients without GvHD at day 30, 60 and 100 (+/- 10 days) 

after HCT were calculated. 
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5.4 Phenotypical analysis of monocytes at the onset of acute GvHD  

As monocytes isolated from patients with acute or chronic GvHD induced elevated 

levels of Th17 cells, the expression pattern of several activation markers on 

monocytes was analysed. After isolating PBMCs from patients before conditioning, 

patients at the onset of acute GvHD and patients without GvHD at day 30, 60 and 

100 post HCT (+/- 10 days), monocytes were isolated by magnetic cell separation. 

Monocytes from 11 patients without GvHD and from 10 patients at the onset of acute 

GvHD were investigated by flow cytometry regarding the expression of CD86, CD80, 

HLA-DR, CD16, CX3CR1, CD11b, CD11c, CD54. Expression levels of the activation 

markers CD86, CD80, HLA-DR, CD16, CD11b, CD11c and CD54 in monocytes 

isolated from patients at the onset of acute GvHD did not differ from the detected 

expression levels in patients without GvHD (Figure 7A-G).  By contrast, the 

percentage of CD14+CX3CR1+ cells was decreased in monocytes isolated from 

patients at the onset of acute GvHD compared to monocytes isolated from patients 

before conditioning and patients without GvHD after HCT (Figure 7H). 
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Figure 7: Expression levels of activation markers on monocytes isolated from patients before 
conditioning, at the onset of acute GvHD and without GvHD at day 30, 60 and 100 post HCT (+/- 
10 days)  
Monocytes were isolated from total PBMCs from patients before conditioning, at the onset of acute 

GvHD and without GvHD at day 30, 60 and 100 post HCT (+/- 10 days) by magnetic cell sorting. 

Monocytes were analysed by flow cytometry using antibodies specific for (A) CD86, (B) CD80, (C) 

HLA-DR, (D) CD16, (E) CD11b, (F) CD11c, (G) CD54 and (H) CX3CR1. Statistical significance was 

determined using Kruskal-Wallis Test (with Dunn’s post hoc test): *p<0.05; ***p<0.001. 

 

5.5 S100 expression in monocytes from healthy controls, patients with 
diarrhoea, and patients with or without GvHD after HCT 

A recent study has demonstrated that peripheral blood mRNA levels of 

proinflammatory S100 proteins are closely associated with inflammation.381 

Additionally, several works have shown that S100A8/S100A9 and S100A12 are over-

expressed during chronic active inflammatory bowel disease and act as inflammation 

markers.139,153,371 Like inflammatory bowel disease, GvHD is induced and promoted 

by several complex immune responses consisting of several inflammatory mediators 

leading to tissue necrosis.36,391 Therefore, RT-PCR analysis was carried out 

investigating expression levels of S100A8, S100A9 and S100A12 in monocytes 

isolated from patients without GvHD and patients with acute or chronic GvHD. As 

further controls healthy donors and patients with diarrhoea of other causes were 

included. Initially, amplification products of five healthy donors were loaded onto a 

2% agarose gel following RT-PCR. The estimated size of the amplification product in 

the gel corresponded with the expected calculated sizes (Figure 8A). The formation 

of primerdimers during RT-PCR could be excluded as only a single band for the 

appropriate amplification product could be detected. For RT-PCR analysis, ct-values 

of S100A8, S100A9 and S100A12 were normalized to the housekeeping gene 

GAPDH. As shown in figure 8B-D, normalized ct-values of S100A8, S100A9 and 

S100A12 from patients with GvHD (4 patients with acute GvHD grade I, 1 patient with 

acute GvHD grade II, 1 patient with acute GvHD grade III and 1 patient with 

extensive chronic GvHD) (n=7) were increased compared to healthy donors (n=5), 

patients with diarrhoea caused by infectious gastroenteritis (n=5) and patients after 

HCT without GvHD (n=6). Highest expression levels of S100A8, S100A9 and 

S100A12 could be detected in monocytes of patients with GvHD. However, S100 
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expression levels were also elevated in monocytes of patients without GvHD after 

HCT and patients with diarrhoea compared to healthy donors. While ct-values of 

S100A8 from patients with GvHD only differed significantly from the ct-values of 

healthy donors (p<0.01), S100A9 ct-values from patients with GvHD were 

significantly increased compared to the corresponding ct-values of healthy donors, 

patients without GvHD after HCT and patients with diarrhoea (p<0.001). Ct-values of 

S100A12 from patients with GvHD were significantly elevated compared to healthy 

donors and patients with diarrhoea (p<0.05). Averaged ct-values for S100A8, 

S100A9 and S100A12 were increased 13.8-, 5- and 3.2-fold higher in patients with 

GvHD compared to healthy donors. Equally, averaged ct-values for S100A8, S100A9 

and S100A12 were 2.9-, 2.8- and 2-fold higher in patients with GvHD compared to 

patients after HCT without GvHD. A 2.6-, 2- and 1.9-fold increase could be 

determined comparing ct-values for S100A8, S100A9 and S100A12 in patients with 

GvHD with corresponding ct-values in patients with diarrhoea (Figure 8B-D). 
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Figure 8: Normalized ct-values for S100A8, S100A9 and S100A12 from monocytes isolated from 
healthy donors, patients with diarrhoea, patients after HCT without GvHD and patients with 
acute or chronic GvHD 
Real-time PCR analysis was carried out using genomic DNA generated from monocytes isolated from 

healthy donors (n=5), patients with diarrhoea caused by infectious gastroenteritis (n=5), patients after 

HCT without GvHD and no diarrhoea (n=6) and patients with acute or extensive chronic GvHD (n=7). 
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(A) Amplification products of five healthy donors were loaded onto a 2% agarose gel following RT-

PCR using the primers for S100A8, S100A9, S100A12 and the housekeeping gene β2 microglobulin 

(β2M) and GAPDH. Ct-values for (B) S100A8, (C) S100A9 and (D) S100A12 were normalized to the 

housekeeping gene GAPDH. Statistical significance was determined using One-way ANOVA followed 

by Bonferroni’s post-hoc test: *p<0.05; **p<0.01;***p<0.001; ****p<0.0001. Reinhardt et al.387 
  

5.6 Comparison of S100 levels in the stool and serum in patients with or 
without GvHD 

Several studies have demonstrated that S100A8/S100A9 and S100A12 can act as 

inflammatory markers in the serum and stool for diseases like inflammatory bowel 

disease or rheumatoid arthritis.120,139,153,371,392 Furthermore, it has been shown 

previously that fecal S100A8/S100A9 levels are elevated in patients with intestinal 

GvHD.154,155 Thus, S100 levels were determined in the stool and serum of patients by 

sandwich ELISA as described in 4.14. For analysis, stool and serum samples were 

collected consecutively from patients on day 7, 14, 21, 30, 60 and 100 (+/- 5 days) 

post HCT. Stool and serum samples were collected immediately at the onset of 

GvHD and in the further progression of GvHD every 2 to 14 days depending on the 

duration of GvHD. Data points from the same patients are highlighted in one colour in 

figure 9. S100 concentrations in stool samples of 9 patients with intestinal GvHD (1 

patient with acute intestinal GvHD stage I, 1 patient with acute intestinal GvHD stage 

II, 3 patients with acute intestinal GvHD stage III and 4 patients with extensive 

chronic GvHD) and 9 patients without GvHD were compared. The data in figure 9A 

and 9B represent that S100A8/S100A9 and S100A12 levels were significantly 

increased in fecal samples of patients with acute intestinal GvHD (n=8) and also in 

the stool of patients with extensive chronic GvHD (n=4) compared to stool samples of 

patients without GvHD (n=24) (p<0.01). Furthermore, determined S100 

concentrations in the stool were correlated with the severity of intestinal GvHD. As 

shown in figure 9C and 9D, fecal S100 levels seem to increase with the severity of 

intestinal GvHD.  

In addition to the determined S100 levels in the stool, S100A8/S100A9 and S100A12 

concentrations were detected in the serum of 11 patients with acute or chronic GvHD 

(5 patients with acute GvHD grade I-IV, 2 patients with acute GvHD grade I/III and 

limited chronic GvHD, 2 patients with acute GvHD grade II/III and extensive chronic 
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GvHD, 2 patients with extensive chronic disease) and 14 patients after HCT without 

GvHD at the indicated time points after HCT. S100A8/S100A9 concentrations in 

serum samples of patients with acute GvHD (n=34) were significantly elevated 

compared to serum concentrations of samples of patients without GvHD (n=62) 

(p<0.01) (Figure 9E). In patients with chronic GvHD serum levels of S100A8/S100A9 

were not increased in 8 samples compared to patients without GvHD post HCT. 

However, the sample size of patients with chronic GvHD in this experiment was lower 

compared to the one of patients with acute GvHD. Similar results were obtained for 

S100A12 levels in the serum. S100A12 concentrations in serum samples of patients 

with acute GvHD (n=33) were significantly increased compared to patients without 

GvHD post HCT (n=53) (p<0.05). Serum levels of S100A12 did not differ in samples 

of patients with chronic GvHD (n=8) and patients without GvHD (Figure 9F). S100 

concentrations in the serum were also correlated with the grade of GvHD. On the 

contrary to fecal S100 levels, levels in the serum did not correlate with the severity of 

GvHD (Figure 9G,H).  
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Figure 9: S100 concentrations in the stool and serum of patients with acute or chronic GvHD 
and patients without GvHD after HCT  
Stool and serum samples were collected from the same patients on day 7, 14, 21, 30, 60 and 100 (+/- 

5 days) post HCT. Data points from the same patient are highlighted in the same colour. At the onset 

of GvHD, stool and serum samples were collected immediately and in the further progression of GvHD 

every 2 to 14 days. (A) Fecal S100A8/S100A9 and (B) S100A12 were determined in the stool of 

patients with acute intestinal and extensive chronic GvHD and patients without GvHD by Calprotectin-

Assay or double sandwich ELISA. (C) S100A8/S100A9 and (D) S100A12 levels in the stool were 

correlated with the severity intestinal GvHD. (E) S100A8/S100A9 and (F) S100A12 concentrations 

were determined in the serum of patients with acute skin or intestinal GvHD and patients with limited 

and extensive chronic GvHD and patients without GvHD by double-sandwich ELISA. Serum 

concentrations of (G) S100A8/S100A9 and (H) S100A12 were correlated with GvHD grade. Statistical 

significance was determined using student`s unpaired t-test: *p<0.05; **p<0.01; ***p<0.001. Reinhardt 

et al.387 

 

5.7 Immunohistochemical S100-staining in bowel tissue from patients with 
acute intestinal GvHD and healthy controls 

Previous experiments have shown that S100 levels in the serum and stool of patients 

with acute GvHD were elevated compared to patients without GvHD past HCT. Thus, 

the question was addressed whether proinflammatory S100 proteins are also present 

in inflamed bowel tissue of patients with acute intestinal GvHD. Therefore, 

immunohistochemical staining of S100A8, S100A9 and S100A12 in intestinal 

biopsies of healthy controls with no pathological findings (n=2), patients with acute 

intestinal GvHD stage I (n=3), stage II (n=3) and stage III (n=3) was performed.  

Representative image sets of stained sections of bowel tissue from individual healthy 

donors and patients with different stages of acute intestinal GvHD are shown in figure 

10A. In bowel tissue from patients with acute intestinal GvHD stage I, II and III, 

S100A8, S100A9 or S100A12 were present in an extracellular distribution 

surrounding S100A8-, S100A9- or S100A12-positive cells. Percentages of S100A8, 

S100A9 or S100A12 stained areas in individual sections were determined using 

ImageJ. Overall, determined percentages of S100A8, S100A9, and S100A12 stained 

areas were higher in sections of bowel tissue from patients with acute intestinal 

GvHD stage II-III compared to the patients with acute intestinal GvHD stage I (Figure 

10B-D). Significant differences could be detected comparing the S100A8 stained 

areas in bowel tissue of patients with acute intestinal GvHD stage II-III with the 
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stained areas in bowel specimens of patients with acute intestinal GvHD stage I or 

healthy controls (p<0.01) (Figure 10B). Furthermore, the percentages of S100A12 

stained areas in bowel specimens of patients with intestinal GvHD stage II-III were 

significantly increased (p<0.05) in comparison to the healthy controls (Figure 10D) 

whereas no statistical significance could be determined in S100A9 stained areas 

(Figure 10C). In intestinal tissue of healthy controls hardly any S100 staining was 

detected (Figure 10A-D). 
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Figure 10: Immunohistochemical staining of S100A8, S100A9 and S100A12 in bowel tissue 
from patients with acute intestinal GvHD  

S100A8, S100A9 and S100A12 were detected in bowel specimens from patients with acute intestinal 

GvHD stage I, II and III and healthy controls with no pathological findings by specific antibodies 

conjugated to horseradish peroxidase (1 µg/ml) and following reaction with the substrate Substrat AEC 

(3-Amino-9-ethyl-carbazole) leading to the characteristic brown colouring. Cell nuclei were stained with 

haematoxylin (blue). Images were captured using a Zeiss Axioskop connected to an Axiocam camera 

supplied with software Axiovision 3.0 (original magnification x200 for all images). (A) Image sets 

represent stained sections of bowel tissue from individual healthy controls and patients with acute 

intestinal GvHD stage I, II or III. Data bars represent the determined percentages of (B) S100A8, (C) 

S100A9 or (D) S100A12 stained areas + SD in sections of bowel tissue from healthy controls (n=2), 

patients with acute intestinal GvHD stage I (n=3), stage II (n=3) and stage III (n=3). Data analysis was 

performed using ImageJ. Statistical significance was determined using unpaired, two-tailed student`s 

t-test: *p<0.05; **p<0.01. Reinhardt et al.387 

 

5.8 Influence of S100 proteins on monocyte-induced Th17 development 

So far, the data of this work have demonstrated that monocytes isolated from the 

peripheral blood of patients with GvHD induce increased levels of IL-17+ cells and 

express elevated levels of the proinflammatory proteins S100A8, S100A9 and 

S100A12. Additionally, increased concentrations of S100 proteins could be detected 

in the serum, stool and bowel tissue of patients with GvHD. As a previous study has 

demonstrated that the TLR4 ligand LPS induces the activation of monocytes followed 

by the induction of elevated levels of IL-17+ cells393, it was investigated if the TLR4 

ligands S100A8, S100A9 and S100A12 have similar effects on monocyte-induced 

development of Th17 cells. Therefore, monocytes isolated from healthy donors were 

pre-stimulated with S100 proteins for 4 h before co-culturing with CD4+ T cells from 
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healthy donors. The results in figure 11A and 11B demonstrate that stimulation of 

monocytes with the TLR4 ligands S100A8, S100A9, the heterodimer 

S100A8/S100A9 or S100A12 induced significant higher percentages of IL-17+ cells 

compared to unstimulated monocytes (p<0.05). Stimulation of monocytes with S100 

proteins resulted in induced Th17 levels similar to the ones induced by monocytes 

from patients with GvHD (S100A8: 7.5±1.5; S100A9: 7.2±1.8; S100A8/S100A9: 

6.5±1.7; S100A12: 4.7±1.2; GvHD: 6.2±2.2) (Figure 4A,B and 11A,B). Furthermore, 

monocytes stimulated with S100A8 or S100A9 induced significantly increased 

percentages of Th17/Th1 cells (p<0.05). The heterodimer and S100A12 showed 

weaker stimulatory effects on monocyte-induced development of IL-17+IFNγ+ cells 

compared to S100A8 and S100A9. Overall, the stimulatory effects of S100 proteins 

on the induction of Th17/Th1 cells were less pronounced compared to Th17 cells 

(Figure 11A,C). Stimulation of monocytes with S100 proteins did not show any effect 

on Th1 cells (Figure 11A,D).  
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Figure 11: Influence of stimulation of monocytes with S100 proteins on the induction of Th17 
cells 
CD4+ T cells from healthy donors were co-cultured with anti-CD3 mAb (100 ng/ml) and monocytes 

from healthy donors at a monocyte:T cell ratio of 1:4 for 5 days. Monocytes remained unstimulated or 

were additionally stimulated with S100A8, S100A9, S100A8/S100A9 or S100A12 (5 μg/ml) for 4 h 

before co-culturing with CD4+ T cells. After 5 days of co-culture, cells were restimulated with 

PMA/ionomycin and flow cytometric analysis was performed. (A) Representative density plots 

demonstrating the effect of S100 proteins on the induction of Th17, Th17/Th1 and Th1 cells. 

Percentages of monocyte-induced (B) IL-17+ cells, (C) IL-17+IFNγ+ cells and (D) IFNγ+ cells after 

stimulation with S100 proteins in healthy donors were determined by flow cytometry. Statistical 

significance was determined using One-way ANOVA followed by Bonferroni’s post-hoc test: *p<0.05; 

****p<0.0001. Reinhardt et al.387 
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5.9 Effect of TLR4 blockade prior to stimulation of monocytes with S100 
proteins on Th17 development 

Several studies have demonstrated that S100 proteins are specific ligands of TLR4 

and induce the translocation of MyD88 from the cytosol to the receptor complex at 

the plasma membrane and the hyperphosphorylation of IRAK-1 leading to NF-κB-

dependent gene expression.138,140 The data shown above have demonstrated that 

stimulation of monocytes with S100 proteins induces increased levels of Th17 cells. 

To further investigate if these stimulatory effects occur in a TLR4-dependent manner, 

the receptor was blocked on monocytes using a TLR4 antagonist prior to incubation 

with S100 proteins. This specific blockade of S100-binding to TLR4 on monocytes 

resulted in significantly reduced levels of induced IL-17+ cells (p<0.05) (Figure 12A, 

B). Furthermore, levels of induced IL-17+IFNγ+ cells were also significantly reduced 

by incubation of monocytes with TLR4 antagonist (p<0.001) (Figure 12A, C). Any 

unspecific effects of TLR4 antagonist could be excluded as monocytes solely treated 

with the antagonist induced approximately the same levels of Th17 cells and 

Th17/Th1 cells compared to untreated monocytes. The TLR4 antagonist did not show 

any effects on Th1 cells (Figure 12A, D).  
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Figure 12: Influence of TLR4 blocking followed by stimulation of monocytes with S100 proteins 
on the induction of Th17, Th17/Th1 and Th1 cells 
Monocytes from healthy donors were pre-incubated for 30 min with 0.1 μg/ml TLR4 antagonist, 

followed by 4 h stimulation with S100 proteins (5 μg/ml) as indicated. Monocytes were co-cultured with 

CD4+ T cells isolated from healthy donors with anti-CD3 mAb (100 ng/ml) at a monocyte:T cell ratio of 

1:4 for 5 days. After 5 days of co-culture, cells were stimulated for 5 h with PMA (50 ng/ml) and 

ionomycin (750 ng/ml) in the presence of monensin (2 µM) during the last 3 h and flow cytometric 

analysis was performed. (A) Representative density plots demonstrating the effect of TLR4 blockade 

on the induced percentages of Th17, Th17/Th1 and Th1 cells. Density plots exemplary illustrate cell 

populations analysed in the corresponding graphs below. Bars represent the percentage of induced 
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(B) IL-17+ cells, (C) IL-17+IFNγ+ cells and (D) IFNγ+ cells from one of three independent experiments 

with similar outcomes. Data represent mean values of duplicates + SEM. Statistical significance was 

determined using One-way ANOVA followed by Bonferroni’s post-hoc test: *p<0.05; 

**p<0.01;***p<0.001. White bars: without TLR4 antagonist; black bars: with TLR4 antagonist. 

Reinhardt et al.387 

 

5.10 Impact of cytokine-neutralizing antibodies on the Th17 response 

Next, the question was addressed whether proinflammatory cytokines are involved in 

monocyte-induced development of Th17 cells. Therefore, monocytes from healthy 

donors were pre-stimulated with S100 proteins for 4 h. These monocytes were co-

cultured with CD4+ T cells isolated from healthy donors in the presence of 100 ng/ml 

anti-CD3 mAb Orthoclone OKT3 and the neutralizing antibodies specific for the 

cytokines IL-17, TNFα, IL-1β, IL-6, IL-12/IL-23p40 or the corresponding isotype 

controls. The antibodies were added to the culture either separately or together. As 

already shown in figure 11A and 11B, S100A8 and S100A9 had strong stimulatory 

effects on monocyte-induced development of Th17 cells. In this experiment, the 

heterodimer S100A8/S100A9 showed only weak effects on monocyte-mediated 

induction of IL-17+ cells (Figure 13A-G). Addition of one single antibody to the culture 

did not seem to have any neutralizing effect on the level of induced Th17 cells except 

for the anti-IL-1β monoclonal antibody (Figure 13A-E). This antibody showed weak 

neutralizing effects resulting in decreased percentages of induced IL-17+ cells in 

cultures with monocytes pre-stimulated with S100A9 (Figure 13E). The data also 

indicate that levels of induced Th17 cells could be decreased in co-cultures of 

monocytes pre-stimulated with S100A8 or S100A9 and CD4+ T cells by adding all 

five neutralizing antibodies (Figure 13F). The isotype controls mouse IgG1 or mouse 

IgG2b did not influence the induction of Th17 cells (Figure 13G,H).  
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Figure 13: Influence of neutralizing antibodies on the induction of Th17 cells 
CD4+ T cells isolated from a healthy donor were co-cultured with anti-CD3 mAb (100 ng/ml) and 

monocytes from a healthy donor at a monocyte:T cell ratio of 1:4 for 5 days. Monocytes remained 

unstimulated or were additionally stimulated with S100A8, S100A9 or S100A8/S100A9 (5 μg/ml) for 4h 

before co-culturing with CD4+ T cells. Neutralizing antibodies specific for (A) IL-17, (B) IL-6, (C) IL-

12/IL-23p40, (D) TNFα, (E) IL-1β, (F) all 5 neutralizing antibodies together or the corresponding 

isotype controls (G) mouse IgG1, (H) mouse IgG2b were added to the co-cultures. After 5 days, cells 
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were restimulated with PMA/ionomycin and flow cytometric analysis was performed determining the 

percentage of induced IL-17+ cells. Data represent mean values of duplicates + SEM of one 

experiment. 

 

5.11 Influence of cytokines on monocyte-mediated induction of Th17 cells  

As the data shown in figure 13 indicate that cytokines might be involved in the 

induction of Th17 cells, further experiments were performed to assess whether the 

induction of Th17 cells is mediated mainly via cytokines or whether cell-cell contact is 

essential for the efficient induction of IL-17+ cells.  Therefore, monocytes from healthy 

donors, optionally pre-stimulated with S100A8, S100A9, the heterodimer or 

S100A12, were seeded and incubated for 24 h. The supernatant was then added to 

the culture medium of CD4+ T cells freshly isolated from healthy donors at a ratio of 

1:1. CD4+ T cells were cultured as described above. Addition of supernatant of 

monocytes pre-stimulated with S100 proteins to CD4+ T cells induced significantly 

increased levels of IL-17+ cells compared to supernatant of unstimulated monocytes 

(p<0.05). S100A8, S100A9 and S100A12 showed stronger stimulatory effects on 

monocytes in comparison with the heterodimer S100A8/S100A9 (Figure 14A). 

Overall, percentages of induced IL-17+ cells in CD4+ cells were notably lower when 

only soluble factors were present compared to Th17 induction mediated via both cell-

contact and soluble factors (Figure 4B,11B,14A). Next, it was investigated which 

proinflammatory cytokines are released by monocytes and therefore promote the 

development of Th17 cells. Proinflammatory cytokine levels in the supernatant of 

monocytes were measured by Human Cytokine Group I 5-plex Assay as described in 

4.8. Therefore, monocytes isolated from healthy donors were optionally pre-

stimulated with S100A8, S100A9, the heterodimer S100A8/S100A9 or S100A12 for 4 

h before incubating for 24 h to determine cytokine release. Results are shown in 

figure 14B as n-fold increase relative to the detected cytokine levels in the 

supernatant of unstimulated monocytes. In case of cytokine levels in the supernatant 

of unstimulated monocytes below detection levels, results were expressed as n-fold 

of the quantification limit of the lowest standard. The data demonstrate that 

monocytes stimulated with S100A8, S100A9, S100A8/S100A9 or S100A12 released 

2-7200-fold increased levels of IL-1β, IL-6, IL-8, IL-10 and TNFα compared to 

unstimulated monocytes. Consistent with the data shown in figure 14A, stimulation of 
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monocytes with S100A8, S100A9 or S100A12 had stronger stimulatory effects on 

monocytes compared to the heterodimer S100A8/S100A9 resulting in increased 

levels of released proinflammatory cytokines (Figure 14B).   

 

 
Figure 14: Influence of cytokines on monocyte-induced development of Th17 cells and 
determination of cytokine levels released by monocytes 
Monocytes from healthy donors optionally pre-stimulated with S100A8, S100A9, S100A8/S100A9 or 

S100A12 (5 µg/ml) proteins for 4 h were seeded and incubated for 24 h. (A) The next day, the 

supernatant was added to the culture medium of freshly isolated CD4+ T cells at a ratio of 1:1.  CD4+ T 

cells were cultured for 5 days in the presence of OKT3 (100 ng/ml) and a monoclonal antibody 

directed against CD28 (1 µg/ml). After 5 days, cells were restimulated for 5 h with PMA (50 ng/ml) and 

ionomycin (750 ng/ml) in the presence of monensin (2 µM) during the last 3 h. The percentage of IL-

17+ cells in CD4+ T cells was assessed by flow cytometry. Statistical significance was determined 

using One-way ANOVA followed by Bonferroni’s post-hoc test: *p<0.05. (B) Levels of proinflammatory 

cytokines (IL-1β, IL-6, IL-8, IL-10 and TNFα) in the supernatant of monocytes optionally pre-stimulated 

with S100A8, S100A9, S100A8/S100A9 or S100A12 (5 µg/ml) were determined in duplicates by Bio-

Plex Human Cytokine Group I 5-plex Assay. Results are shown as n-fold increase relative to cytokine 

levels in the supernatant of unstimulated monocytes. Reinhardt et al.387 

 

5.12 Levels of proinflammatory cytokines in the serum of patients with GvHD 

In addition to the measurement of proinflammatory cytokine levels in the supernatant 

of monocytes, concentrations of IL-1β, TNFα, IL-8, IL-10 and IL-6 were determined in 

the serum of healthy donors (n=5), patients with acute GvHD (n=5) and patients with 

extensive chronic GvHD (n=3) using Human Cytokine Group I 5-plex Assay. In the 

event that serum cytokine concentrations were below detection levels, they were set 

to zero. Overall, proinflammatory cytokines were not detectable or negligibly low in 
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the serum of healthy donors. Regarding the measurement of IL-1β concentrations, 

only one patient with acute GvHD showed weakly elevated IL-1β levels in the serum 

compared to the healthy donors (Figure 15A). Similar results were obtained for the 

determination of TNFα levels in the serum. One patient with extensive chronic GvHD 

showed increased TNFα serum levels in comparison to healthy donors whereas 

TNFα concentrations were very low in the serum collected from the other patients 

with GvHD (Figure 15B). Overall, IL-8 levels in the serum of patients with acute or 

chronic GvHD were increased compared to the healthy donors except for one patient 

with acute GvHD (Figure 15C). IL-10 levels in the serum were elevated in patients 

with acute GvHD in comparison to healthy donors. Weakly elevated levels of IL-10 

could also be detected in the serum of patients with chronic GvHD (Figure 15D). 

Serum concentrations of IL-6 were elevated in individual patients with acute or 

chronic GvHD compared to the healthy donors (Figure 15E).  
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Figure 15: Proinflammatory cytokine levels in the serum of healthy donors and patients with 
acute or chronic GvHD  

Levels of (A) IL-1β, (B) TNFα, (C) IL-8, (D) IL-10 and (E) IL-6 were determined in the serum of healthy 

donors and patients with GvHD using Bio-Plex Human Cytokine Group I 5-plex Assay.  
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5.13 Impact of chemical inhibition of Hsp90 in monocytes on the induction of 
Th17 cells  

The heat shock protein 90 (Hsp90) is an ubiquitously expressed molecular chaperon 

which plays an important role in the folding, maturation and stabilization of lots of 

proteins that are involved in the signal transduction, transcription regulation and 

survival of the cell.394 It is also known that Hsp90 is involved in monocyte activation 

via the NF-κB pathway. Compounds targeting Hsp90 were found to inhibit the 

production of proinflammatory cytokines like IL-6 and IL-1β from activated 

macrophages, which are known to induce the development and expansion of IL-17+ 

cells.213,279,395  Therefore, it was investigated if Hsp90 is also involved in the induction 

of Th17 cells and thus in the pathogenesis of GvHD. Therefore, monocytes isolated 

from the peripheral blood of 3 healthy donors and 3 patients with acute GvHD grade 

II or III were incubated with the geldanamycin derivative 17-DMAG for 16 h to inhibit 

the function of Hsp90. Subsequently, monocytes were washed and co-cultured with 

CD4+ T cells from healthy donors and the percentage of induced Th17 cells was 

determined. Monocytes from healthy donors which were incubated with 17-DMAG 

induced lower percentages of IL-17+ cells compared to untreated monocytes. As 

already shown in figure 4A, the percentage of monocyte-induced Th17 cells was 

significantly elevated in patients with acute GvHD. Inhibition of Hsp90 in monocytes 

from patients with GvHD resulted in significantly decreased levels of induced IL-17+ 

cells which were approximately the same as in healthy donors (p<0.001) (Figure 

16A). Treatment of monocytes from healthy donors and from patients with acute 

GvHD with the Hsp90 inhibitor resulted in diminished percentages of induced IL-

17+IFNγ+ cells compared to untreated cells. However, this decrease in Th17/Th1 cells 

was not significant (Figure 16B). Incubation of monocytes with 17-DMAG did not 

show any significant effects on the percentages of IFNγ+ cells (Figure 16C). 

Representative density plots demonstrating the effect of monocyte treatment with 17-

DMAG on the induced percentages of Th17, Th17/Th1 and Th1 cells are shown in 

figure 16D. 
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Figure 16: Influence of Hsp90 inhibition in monocytes from healthy donors and patients with 
acute GvHD by 17-DMAG on the induction of Th17, Th17/Th1 and Th1 cells 
(A) Monocytes from 3 healthy donors, 3 patients with acute GvHD grade II or III were co-cultured with 
CD4+ T cells isolated from healthy donors in the presence of anti-CD3 mAb (100 ng/ml) at a 

monocyte:T cell ratio of 1:4 for 5 days. Monocytes remained untreated or were incubated with 17-

DMAG (5 μM) for 16 h before co-culturing with CD4+ T cells. After 5 days, the percentage of induced 

(A) IL-17+ (B) IL-17+IFNγ+ and (C) IFNγ+ cells was assessed by flow cytometry. Statistical significance 

was determined using One-way ANOVA followed by Bonferroni’s post-hoc test: ***p<0.001 (n=3; 

mean +SD). (D) Representative density plots demonstrating the effect of Hsp90 inhibition with 17-

DMAG in monocytes on the induction of Th17, Th17/Th1 and Th1 cells. 
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5.14 Influence of chemical inhibition of Hsp90 in monocytes on the stimulatory 
effect of S100 proteins on monocyte-induced Th17 development   

Previous results have shown that monocytes express elevated levels of S100A8, 

S100A9 and S100A12. Furthermore, increased concentrations of S100 proteins 

could be detected in the serum, stool and bowel tissue of patients with GvHD and it 

could be demonstrated that S100 proteins promote the induction of Th17 cells by 

binding to TLR4 on monocytes. Recently published studies indicate that Hsp90 plays 

an important role in the TLR4-mediated signalling pathway. De Nardo et al. could 

show that the inhibition of Hsp90 in murine macrophages with geldanamycin induced 

the degradation of IRAK-1 and the inhibition of the TLR4-induced expression of IL-

1β.215 This proinflammatory cytokine is involved in the initiation of the differentiation 

of IL-17-producing human T helper cells.279 To assess the question if the signalling 

pathways of Hsp90 and S100 proteins overlap, monocytes isolated from healthy 

donors were treated for 16 h with the Hsp90 inhibitor 17-DMAG before stimulating 

with S100A8, S100A9 or S100A8/S100A9. As already shown in figure 11, stimulation 

of monocytes with S100A8, S100A9, S100A8/S100A9 or S100A12 induced 

significantly increased percentages of Th17 and Th17/Th1 cells whereas levels of 

Th1 cells were not affected by stimulation of monocytes with S100 proteins via TLR4 

(Figure 17A-C). Treatment of monocytes with the Hsp90 inhibitor 17-DMAG prior to 

stimulation with S100 proteins resulted in significantly decreased levels of IL-17+ cells 

compared to monocytes that were not incubated with 17-DMAG before S100 

stimulation (p<0.01). Thus, S100 proteins did not show any stimulatory effect on 

monocyte-induced development of Th17 cells when monocytes were treated with the 

Hsp90 inhibitor before (Figure 17A). The data further indicate that monocytes 

incubated with 17-DMAG prior to S100 stimulation induced significantly decreased 

percentages of Th17/Th1 cells in comparison to monocytes with active Hsp90 that 

were stimulated via TLR4 (p<0.05) (Figure 17B). Regarding the determined levels of 

Th1 cells, monocytes with inactivated Hsp90 induced diminished levels of IFNγ+ cells 

compared to monocytes that were not treated with the Hsp90 inhibitor (p<0.001) 

(Figure 17C). Representative density plots demonstrating the effect of Hsp90 

inhibition in monocytes with 17-DMAG prior to S100 stimulation on the induced 

percentages of IL-17+, IL-17+IFNγ+ and IFNγ+ cells are shown in figure 17D. 
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Figure 17: Influence of Hsp90 inhibition in monocytes on the stimulatory effect of S100 
proteins on monocyte-induced development of Th17 cells.  

Monocytes from 3 healthy donors, 3 patients with acute GvHD grade II or III were co-cultured with 
CD4+ T cells isolated from healthy donors in the presence of anti-CD3 mAb (100 ng/ml) at a 

monocyte:T cell ratio of 1:4 for 5 days. Monocytes remained untreated or were incubated with 17-

DMAG for 16 h prior to stimulation with S100 proteins for 4 h. Monocytes were co-cultured with CD4+ T 

cells and anti-CD3 mAb (100 ng/ml) at a monocyte:T cell ratio of 1:4 for 5 days. The percentages of 

induced (A) Th17, (B) Th17/Th1 and (C) Th1 cells were determined by flow cytometry. Graph shows 

data from one of three independent experiments with similar outcomes. Data represent mean values 

of duplicates + SEM. Statistical significance was determined using One-way ANOVA followed by 

Bonferroni’s post-hoc test: *p<0.05;**p<0.01;***p<0.001;****p<0.0001. (D) Representative density 

plots demonstrating the effect of monocyte treatment with the Hsp90 inhibitor 17-DMAG prior to S100 

stimulation on the induced percentages of IL-17+, IL-17+IFNγ+ and IFNγ+ cells.  
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5.15 Depletion of HSP90α protein in monocytes by siRNA  

Previous results shown in figure 16 indicate that Hsp90 is involved in monocyte-

mediated development of Th17 cells during GvHD and in the TLR4-mediated 

signalling pathway. In order to confirm these findings, siRNA experiments were 

performed. Vertebrates express two isoforms of Hsp90, Hsp90α and Hsp90β. While 

Hsp90β is expressed constitutively to a high level in most tissues, Hsp90α is stress-

inducible.396 As the inflammatory processes during GvHD leading to tissue damage 

display enormous cellular stress for the human body, siRNA targeting the stress-

inducible isoform Hsp90α in monocytes was used in the experiments. Monocytes 

from healthy donors were transfected with Hsp90α-targeting siRNA using a liposome-

mediated transfection method. As negative control, non-targeting siRNA was used. In 

order to determine the silencing efficacy of the siRNA targeting Hsp90α, cells were 

assayed for knockdown at various time points over a period of 168 h after 

transfection. In immunoblots, a decrease of Hsp90α expression was detectable 96 h 

after transfection. No Hsp90α expression could be detected in the cells transfected 

with Hsp90α targeting siRNA 168 h after transfection. Overall, in monocytes treated 

with non-targeting siRNA and transfection reagent only, no decrease in Hsp90α 

expression could be detected in this period. However, freshly isolated monocytes 

from healthy donors did show any Hsp90α expression (Figure 18A). Time course 

analysis of Hsp90α silencing effect by flow cytometry displays a decrease in the 

expression of Hsp90α 72 h after transfection. Maximum silencing effect could be 

detected 168 h after transfection (Figure 18B and C). As already shown, flow 

cytometry is a more sensitive method for the detection of heat shock proteins 

compared to western blotting.397 72 h after transfection of human monocytes, Hsp90α 

expression was reduced to approximately 32% of the negative control. The effect 

was strongest 168 h after transfection with a more than 80% reduction of Hsp90α 

expression (Figure 18C).  

A time point of 140 h after transfection was chosen and the expression of Hsp90α 

was analysed by immunoblot and flow cytometry. As already shown in figure 18A, 

freshly isolated monocytes from healthy donors did not express Hsp90α. Monocytes 

that remained untreated and were cultured for 140 h showed marked Hsp90α 

expression levels as well as monocytes treated with transfection reagent alone or in 

combination with non-targeting siRNA. Monocytes transfected with Hsp90α targeting 
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siRNA before culturing for 140 h Hsp90α did not show any Hsp90α expression in the 

immunoblot (Figure 18D). Similar results were obtained by flow cytometric analysis 

shown in figure 18E. In this experiment, transfection of human monocytes with 

Hsp90α targeting siRNA resulted in a 70% reduction of the Hsp90α expression in 

comparison to the negative control (Figure 18E). 
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Figure 18: Depletion of Hsp90α protein expression in monocytes by siRNA 

(A) Immunoblot of lysed human lysates (5 μg per lane) were resolved by SDS-PAGE and immunoblot 

for Hsp90α expression (upper row) and GAPDH (as loading control; lower row). (B) Flow cytometric 

analysis of Hsp90α expression in human monocytes at the indicated time points after treatment with 

Hsp90α targeting siRNA (pink) or non-targeting siRNA (green). The gray shaded histograms represent 

staining of monocytes treated with Hsp90α targeting siRNA with isotype-matched negative control 

antibodies. M1 defines monocytes expressing Hsp90α. (C) Relative Hsp90α expression in monocytes 

after treatment with Hsp90α targeting siRNA or non-targeting siRNA was determined at the indicated 

time points. For analysis, the number of Hsp90α expressing monocytes treated with non-targeting 

siRNA (negative control) in M1 at the respective time points was set as 100%. (D) Immunoblot of lysed 

human monocytes that remained untreated or were optionally treated with 20 nM Hsp90α targeting 

siRNA, 20 nM non-targeting siRNA or transfection reagent alone. Lysates were prepared 140 h after 

transfection. Equal protein amounts of whole cell lysates (5 μg per lane) were analysed by SDS-PAGE 

and immunoblot for Hsp90α expression (upper row) and GAPDH (as loading control; lower row). (E) 

Relative Hsp90α expression levels in monocytes optionally treated with Hsp90α targeting siRNA, non-

targeting siRNA or transfection reagent alone were determined. Therefore, the number of Hsp90α 

expressing monocytes treated with non-targeting siRNA (negative control) in M1 at the respective time 

points was set as 100%. 

 

5.16 Impact of HSP90α knockdown in monocytes on Th17 development 

Previous results have shown that monocytes incubated with the chemical Hsp90 

inhibitor 17-DMAG prior to stimulation with S100 proteins induced significantly 

decreased levels of IL-17+ cells compared to untreated monocytes (Figure 17A and 

D). However, chemical inhibition of Hsp90 is known to have unspecific effects like the 

induction of other heat shock proteins, including Hsp40 and Hsp70, via activation of 

heat shock factor 1 (HSF-1).195,398-400 Therefore, the expression of stress-inducible 

Hsp90α was specifically silenced in monocytes from healthy donors (n=3) using 

Hsp90α targeting siRNA. As negative control, monocytes were treated with non-

targeting siRNA. Subsequently, monocytes were stimulated with S100 proteins, co-

cultured with CD4+ T cells and analysed regarding their potential to induce Th17 cells 

by flow cytometry. Overall, S100 proteins showed stimulatory effects on monocyte-

induced development of IL-17+ cells and IL-17+IFNγ+ cells as already demonstrated 

in figure 11 and 17. As shown in figure 19A, monocytes transfected with Hsp90α 

targeting siRNA prior to S100 stimulation induced decreased levels of IL-17+ cells in 

comparison to monocytes that were treated with non-targeting siRNA prior to TLR4-

mediated stimulation of monocytes. Furthermore, treatment of monocytes with 
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Hsp90α targeting siRNA before stimulation with S100 proteins resulted in weakly 

decreased levels of induced IL-17+IFNγ+ cells in comparison to monocytes 

transfected with non-targeting siRNA prior to monocytes stimulated via TLR4 (Figure 

19B). Overall, monocytes transfected with Hsp90α targeting siRNA induced similar 

levels of Th1 cells compared to monocytes treated with non-targeting siRNA (Figure 

19C). 

 

 
Figure 19: Influence of depletion of HSP90α protein in monocytes on the induction of IL-17+ 
cells 

Monocytes were isolated from healthy donors and transfected with 20 nM Hsp90α targeting siRNA or 

20 nM non-targeting siRNA. 140 h after transfection, monocytes were optionally stimulated with 

S100A8, S100A9 and S100A8/S100A9 for 4 h. Monocytes were washed and co-cultured with CD4+ T 

cells isolated from healthy donors in the presence of anti-CD3 mAb (100 ng/ml) at a monocyte:T cell 

ratio of 1:4 for 5 days. After 5 days of co-culture, cells were stimulated for 5 h with PMA (50 ng/ml) and 

ionomycin (750 ng/ml) in the presence of monensin (2 µM) during the last 3 h and flow cytometric 

analysis was performed to determine the percentages of (A) IL-17+ cells, (B) IL-17+IFNγ+ and (C) IFNγ+ 

cells within CD4+ T cells (n=3; mean +SD). Black bars: Hsp90α targeting siRNA; White bars: non-

targeting siRNA  
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5.17 Effect of dexamethasone and 17-DMAG on the induction of 
proinflammatory Th17 cells expressing MDR1 

Acute or chronic GvHD is usually treated with glucocorticoids.401 However, the use of 

glucocorticoids is associated with an increased susceptibility for infections, the 

toxicity of the drugs and an increased risk of relapse due to a diminished graft-

versus-tumour effect.402-404 Additionally, glucocorticoids induce the development of 

proinflammatory CCR6+CCR4loCXCR3hiTh17.1 cells expressing the multi-drug 

resistance protein type 1. These proinflammatory MDR1+Th17.1 cells are known to 

be resistant to immunosuppression mediated by glucocorticoids.352 We therefore 

investigated the influence of dexamethasone and the Hsp90 inhibitor 17-DMAG on 

the induction of MDR1+Th17.1 cells. Thus, monocytes isolated from healthy donors 

were optionally treated with 17-DMAG for 16 h. These monocytes were co-cultured 

with CD4+ T cells and anti-CD3 antibody at a monocyte:T cell ratio of 1:4. 

Additionally, 0.1 µM dexamethasone was added to the culture as indicated. After 5 

days of co-culture, the percentage of CCR6+MDR1+ cells within CD4+ T cells and the 

percentage of MDR1+CCR6+CCR4loCXCR3hiTh17.1 cells within these CCR6+MDR1+ 

cells were determined by flow cytometry as indicated in the density plots in figure 

20A. The results shown in figure 20B and 20C demonstrate that monocytes treated 

with dexamethasone induced increased levels of CCR6+MDR1+ cells and 

MDR1+CCR6+CCR4loCXCR3hiTh17.1 cells whereas monocytes that remained 

untreated or were incubated with the Hsp90 inhibitor 17-DMAG in monocytes induced 

similar low levels of MDR1+Th17.1 cells.  
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Figure 20: Influence of dexamethasone and 17-DMAG on the induction of MDR1+Th17.1 cells 
Monocytes from healthy donors were optionally treated with 5 µM 17-DMAG for 16 h. These 

monocytes were co-cultured with CD4+ T cells and anti-CD3 mAb (100 ng/ml) at a monocyte:T cell 

ratio of 1:4. Additionally, 0.1 µM dexamethasone was added to the culture as indicated. After 5 days of 

co-culture, the percentage of CCR6+MDR1+ cells and the percentage of MDR1+CCR6+CCR4loCXCR3hi 

cells within these CCR6+MDR1+ cells were determined by flow cytometry as exemplary indicated in 

the density plots in (A). Bars represent the determined percentages of (B) MDR1+CCR6+ cells within 

CD4+ T cells and (C) MDR1+CCR6+CCR4loCXCR3hi Th17.1 cells within MDR1+CCR6+ cells and are 

representative for two independent experiments. Data represent the mean values of duplicates +SEM. 
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6 Discussion 

 

6.1 Monocyte-induced Th17 cells play an important role in the 
pathophysiology of GvHD 

Various studies have demonstrated that Th17 cells are involved in several 

inflammatory autoimmune diseases such as rheumatoid arthritis, inflammatory bowel 

disease, and experimental autoimmune encephalomyelitis.405-408 However, the role of 

Th17 cells in the pathomechanism of GvHD is still discussed controversially. A 

previous study has concluded that the progression of GvHD is predominantly 

promoted by proinflammatory Th1 cells as the results demonstrate high levels of 

IFNγ producing T cells in the skin of patients with acute cutaneous GvHD.76 In a 

murine acute GvHD model, administration of IL-17-/- donor T cells to lethally irradiated 

MHC mismatched recipients induced enhanced GvHD as a result of robust Th1 

expansion.409 However, inhibition of Th1 cytokines in mice led to the exacerbation of 

acute GvHD.333,334 Furthermore, it could be demonstrated in mice that infusion of 

highly purified Th17 cells was capable to elicit lethal GvHD, hallmarked by extensive 

pathologic cutaneous and pulmonary lesions.335 Additionally, enhanced numbers of 

Th17 cells could be detected in the skin of patients with acute and chronic GvHD 

compared to controls and a strong correlation between Th17 levels and clinical status 

of patients with GvHD could be demonstrated.340 Consistent with these results 

representing the involvement of Th17 cells in the pathogenesis of GvHD, the data of 

the present study have shown that monocytes isolated from the peripheral blood of 

patients with acute or chronic GvHD induce significantly increased levels of IL-17+ 

cells in vitro compared to monocytes from patients without GvHD and healthy donors 

pointing towards a crucial role of activated monocytes in the initiation and 

progression of GvHD (Figure 4A and B). Furthermore, it could be demonstrated that 

levels of induced Th17 cells increase at the onset of acute GvHD and diminish after 

alleviation of GvHD indicating that induced Th17 levels might correlate with GvHD 

progression whereas the percentages of induced IL-17+ cells remain broadly constant 

in patients without GvHD after HCT (Figure 5A and B). In support to our 

observations, it has been demonstrated recently that in vivo activated monocytes 

derived from inflamed joints of patients with active rheumatoid arthritis specifically 
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induce a Th17 response in blood-derived CD4+ T cells.386  Th17 cells secrete the 

proinflammatory cytokines IL-17A, IL-17F, IL-21 and IL-22. The cytokines IL-17A and 

IL-17F are known to bind to the IL-17 receptor resulting in the activation of NF-κB and 

the MAPK pathways resulting in the production of proinflammatoy cytokines and 

chemokines and in the recruitment of leukocytes and neutrophils.298,302-304,337,410 IL-21 

plays an autocrine-amplifying role on the Th17 response as it activates the 

transcription factor STAT3 in naïve CD4+ T cells and promotes thereby the 

generation of further Th17 cells.298  Additionally, IL-22 induces the activation of the 

MAPK pathways which play an important role in cell proliferation, differentiation, 

development, transformation, and apoptosis.298,305 As our results demonstrate that 

levels of induced Th17 cells are elevated during GvHD, these Th17-associated 

cytokines might be further promote GvHD by the induction of tissue inflammation. In 

this study, it was also investigated if monocytes from patients induce a general 

increase in T cell activation. Therefore, the extent of Th1 responses was examined 

by analysing the percentage of IFNγ+ cells. It could be demonstrated that monocytes 

from patients with GvHD induce elevated levels of Th1 cells. However, the increase 

is notably lower compared to Th17 cells (Figure 4A and D). The results of the present 

study also reveal that monocytes from patients with active acute or chronic GvHD 

induce increased levels of IL-17+IFNγ+ cells (Figure 4A and C). These Th17/Th1 cells 

can also be found in increased levels in the gut of patients with Crohn’s disease. 

Th17 cells as well as these Th17/Th1 cells express the transcription factors RORγt 

and the Th1-transcription factor T-bet, and stimulation in the presence of IL-12 down-

regulates the expression of RORγt and the production of IL-17, but induces IFNγ 

expression suggesting that a functional relationship between Th17 and Th1 cells may 

exist.285  
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6.2 Th17/Treg ratios are not altered in the peripheral blood of patients with 
GvHD compared to patients without GvHD and healthy donors 

In animal models, it could be demonstrated that the application of ex vivo-expanded 

Treg cells delay or prevent lethal GvHD by suppressing the early expansion of 

alloreactive donor T cells, their interleukin-2-receptor-chain expression without 

abrogating the graft-versus-tumour effect of these donor T cells.341,342,344 Another 

study has demonstrated that the transfer of Treg cells that originate from the donor 

but not host, protect from lethal GvHD by secretion of IL-10. Additionally, it was 

stated that the balance of donor-type CD4+CD25+ Treg cells and conventional 

CD4+CD25− T cells can determine the outcome of an acute GVHD.343 Recently, the 

data of clinical studies have been published demonstrating that the application of 

freshly isolated donor Treg cells after myeloablative conditioning and before infusion 

of a megadose of CD34+ cells and conventional CD4+ and CD8+ T cells results in a 

very low rate of acute and chronic GvHD in the absence of any posttransplantation 

immunosuppression. Additionally, the adoptive transfer of Treg cells leads to a better 

lymphoid reconstitution, improves immunity to opportunistic pathogens and does not 

weaken the graft-versus-leukemia effect.345 Another clinical trial has shown that the 

adoptive transfer of ex vivo expanded Treg cells isolated from the umbilical cord 

blood seems to reduce the risk of acute GvHD and can be carried out without 

apparent toxicity.112 Altogether, these data of the murine models and the clinical 

studies indicate that Treg cells might play an important role in inducing and 

maintaining allogeneic tolerance and might inhibit GvHD after allogeneic HCT. Thus, 

it seems to be important to clarify the kinetics of Treg cell recovery and its correlation 

with the occurrence of GvHD in humans. The work of Li et al. has demonstrated that 

the frequency of Treg cells is reduced in patients with acute GvHD grade II-IV and 

extensive chronic GvHD in comparison to the healthy controls. Furthermore, it could 

be shown that the levels of Treg cells in the peripheral blood of these patients can be 

correlated with the severity of GvHD. However, levels of Treg cells in the peripheral 

blood of patients without GvHD are significantly higher compared to the healthy 

controls. Altogether, this study suggests that the measurement of Treg cell levels in 

the peripheral blood together with the determination of TGF-β and TNFα serum levels 

at the early reconstitution after allogeneic HCT might indicate the onset and severity 

of both acute and chronic GvHD.389 On the contrary, Arimoto et al. revealed that the 
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expression level of FoxP3 messenger RNA does not correlate with the occurrence of 

acute and chronic GvHD. The data of this study indicate that the level of FoxP3+ cells 

is normal relative to other cell types and their frequency in the peripheral blood 

relative to total leukocytes or T cells does not indicate the occurrence of an acute or 

chronic GvHD.411 The results of Arimoto et al. are consistent with the data of the 

present study demonstrating that the determined percentages of Treg cells in PBMCs 

isolated from the peripheral blood of patients with acute GvHD does not differ from 

the Treg levels determined in PBMCs isolated from healthy controls and the non-

GvHD group. However, the percentages of Treg cells in PBMCs from patients with 

chronic extensive GvHD are increased compared to the determined Treg cell levels 

in PBMCs from healthy donors, patients with acute GvHD, patients before 

conditioning and patients without GvHD after HCT, but the sample size of patients 

with chronic GvHD is too low to perform a statistical evaluation (Figure 6B). Thus, 

more samples need to be analysed to confirm these results.  Furthermore, Ratajczak 

et al. have demonstrated recently that low Th17/Treg ratios seem to correlate with 

severe clinical and pathological GvHD, apoptosis intensity of epithelial cells, Fas 

expression in the cellular infiltrate, and the expression of TNF and the TNF receptor. 

These data indicate that Th17/Treg ratio could be a sensitive and specific pathologic 

in situ biomarker of GVHD.346 On the contrary, Malard et al. evaluated the presence 

of Th17, Th1 and Treg cells in human liver biopsies and could show that levels of 

Th17 cells are elevated in the liver of patients with chronic GvHD whereas the 

numbers of Th1 cells and Treg cells are low. Furthermore, Th17/Teg ratios are 

significantly increased in the liver of patients with chronic GvHD suggesting a defect 

in the regulatory mechanism driven by Treg cells or an enhanced activation of 

effector cells, especially Th17 cells, or both mechanisms, in chronic liver GvHD in 

humans.390 Therefore, the Th17/Treg ratios were determined in the present study. 

However, the data of the present study confirms neither the results of the work of 

Ratajczak et al. nor the study of Malard et al. as Th17/Treg ratios from patients with 

acute or chronic GvHD do not differ from the ratios of healthy controls and patients 

without GvHD after HCT (Figure 6C). However, the sample size needs to be 

increased to validate these data. 
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6.3 The onset of an acute GvHD is not accompanied by an upregulation of the 
expression of activation markers on monocytes 

It has recently been reported by Arpinati et al. that monocytes of patients with chronic 

GvHD patients have greater CD86 mean fluorescence intensity in the marrow and 

peripheral blood indicating an increased activation of donor-derived marrow and 

blood monocytes in patients with chronic GvHD and suggesting the targeting of 

monocytes for the treatment of chronic GvHD.412 Additionally, Evans et al. have 

demonstrated that CD86, CD40, and CD54 is highly expressed on monocytes from 

the synovial fluid but blockade of a single costimulatory or adhesion pathway 

(CD80/CD86, CD54, or CD40) in co-cultures with either in vitro or in vivo activated 

monocytes does not lead to a decrease in the percentage of Th17 cells indicating 

that a certain level of redundancy exists in the cell membrane-derived signals 

required for Th17 responses or additional factors are involved that remain to be 

identified.386 Consistent with the data of Evans et al., the data of the present study 

demonstrate that monocytes isolated from both patients with acute or chronic GvHD, 

which is like rheumatoid arthritis an inflammatory disorder, induce increased levels of 

Th17 cells in a cell-contact dependent manner with the involvement of 

proinflammatory cytokines secreted by activated monocytes (Figure 14A). However, 

in contrast to the data of Arpinati et al.412 and Evans et al.386, the results of the 

present study reveal that the expression levels of the activation markers CD86, 

CD80, HLA-DR, CD16, CD11b, CD11c and CD54 on monocytes isolated from 

patients at the onset of acute GvHD do not differ from the assessed expression levels 

in the non-GvHD group indicating that costimulatory or adhesion pathways 

(CD80/CD86, CD54, or CD40) might play a minor role in the development of an acute 

GvHD (Figure 7A-G). These data further promote the hypothesis of Evans et al. 

suggesting the existence of a certain level of redundancy in the cell membrane-

derived signals required for monocyte-mediated induction of Th17 cells and the 

involvement of additional factors that still need to be identified.386 Furthermore, 

Namba et al. have demonstrated that the absolute number of CX3CR1+ monocytes in 

the peripheral blood is decreased in patients with severe chronic GvHD.413 These 

data are similar to the results of the present study revealing that the percentage of 

CD14+CX3CR1+ cells is significantly decreased in patients with acute GvHD 

compared to patients without GvHD after allogeneic HCT (Figure 7H). However, 
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more samples need to be analysed regarding the expression of the activation 

markers on monocytes in the progress of both acute and chronic GvHD and to further 

analyse the involvement of costimulatory or adhesion pathways in acute and chronic 

GvHD. 

 

6.4 S100 proteins seem to be promising novel biomarkers for the diagnosis of 
GvHD 

Development and progression of GvHD is mediated by numerous cellular and 

inflammatory effectors.414 Several studies have demonstrated that the expression of 

phagocyte-derived S100 proteins is strongly upregulated in several inflammatory 

diseases such as sepsis, rheumatoid arthritis, cryopyrin-associated periodic 

syndromes, inflammatory bowel disease, vasculitis and cancer.120,139,140,153,415 

Previous works have revealed that S100A12 and S100A8/S100A9 are over-

expressed during chronic active inflammatory bowel disease and serve as markers of 

inflammation in serum and stool.139,153,371,392 Furthermore, a study published recently 

has demonstrated for the first time that levels of fecal S100A8/S100A9 are elevated 

in patients with intestinal GvHD stage II-III compared to patients with acute GvHD 

without gastrointestinal symptoms. However, the sensitivity for the diagnosis of 

intestinal GvHD stage I was quite low and intestinal GvHD could not be discriminated 

from other causes of diarrhoea such as infectious gastroenteritis.155 On the contrary, 

Chiusolo et al. could show that fecal S100A8/S100A9 is elevated in patients with 

intestinal GvHD not only compared to patients with acute GvHD without 

gastrointestinal involvement but also compared to patients with infective enteritis and 

patients with diarrhoea after HCT.154 These results agree with our data demonstrating 

that S100A12 and S100A8/S100A9 levels are significantly increased in the stool of 

patients with acute intestinal GvHD and also in patients with extensive chronic GvHD 

compared to patients without GvHD after HCT (Figure 9A and B). Furthermore, our 

results point out that serum concentration of both S100A8/S100A9 and S100A12 are 

significantly increased in patients with acute GvHD compared to patients without 

GvHD whereas S100 levels are not elevated in the serum of patients with chronic 

GvHD (Figure 9E and F). However, it must be taken into account that the sample size 

of patients with chronic GvHD was lower compared to patients with acute GvHD. 

Furthermore, correlation of S100 levels in the serum and stool with the severity of 
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GvHD shows that determined S100 concentrations in the serum do not correlate with 

GvHD grade whereas S100 levels in the stool seem to increase with the stage of 

intestinal GvHD (Figure 9C-D and G-H). However, stool sample size needs to be 

increased to confirm this assumption. Altogether, these data indicate the release of 

S100 proteins by activated phagocytes during GvHD. Especially fecal 

S100A8/S100A9 and S100A12 might display an attractive biomarker as it provides a 

non-invasive examination and could be used for follow up progression of GvHD.   

Further results of this study demonstrate that S100A8, S100A9 and S100A12 can be 

detected in the extracellular distribution surrounding S100-positive cells in bowel 

tissue of patients with acute intestinal GvHD stage I, II and III promoting the 

hypothesis that these proinflammatory molecules are secreted by phagocytes during 

GvHD (Figure 10A-D). Staining of S100 proteins was more pronounced in bowel 

tissue of patients with acute intestinal GvHD stage II and III compared to bowel tissue 

of patients with acute intestinal GvHD stage I indicating that phagocyte-specific S100 

proteins are released at sites of intestinal inflammation during acute GvHD with 

gastrointestinal involvement. A large multicentre study should be carried out to further 

verify the obtained results and to investigate if the severity of intestinal GvHD can be 

correlated with the area of stained S100A8, S100A9 and S100A12. However, overall 

our findings give first evidence that S100 proteins could be novel pathological 

markers for the diagnosis of acute intestinal GvHD. Similar results were obtained in 

studies investigating the release of S100A12 and S100A8/S100A9 in inflammatory 

bowel disease. These works have demonstrated the direct release of phagocyte-

derived S100 proteins from inflamed tissues reflecting the secretion from infiltrating 

neutrophils (S100A12) and also monocytes or epithelial cells (S100A8/S100A9). 

These released proteins are found to promote inflammation in intestinal tissue via 

activation of pattern recognition receptors.139,153  

Furthermore, the present data have revealed that monocytes isolated from patients 

with acute or chronic GvHD express elevated mRNA levels of S100A8, S100A9 and 

S100A12 compared to monocytes isolated from healthy donors, patients with 

diarrhoea caused by infectious gastroenteritis and patients after HCT without GvHD 

(Figure 8B-D). However, S100 expression levels in monocytes of patients with 

diarrhoea and patients after HCT are higher compared to healthy donors. These 

results are not surprising as diarrhoea and HCT represent enormous cell stress for 

the human body and S100 proteins are DAMP molecules released by activated or 
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damaged phagocytes under conditions of cell stress during infections.120,139 

Therefore, a cut-off point for S100 expression levels in monocytes of patients with 

GvHD must be determined so that S100A8, S100A9 and S100A12 expression levels 

in monocytes can be used as another tool for the diagnosis and follow up of acute or 

chronic GvHD and to discriminate intestinal GvHD from other causes of diarrhoea like 

infectious gastroenteritis. A recent study demonstrating that peripheral blood mRNA 

levels of S100 family are closely associated with inflammation confirms our finding.381 

Furthermore, our data are consistent with the findings of other studies demonstrating 

that S100A12 shows an enriched expression in PBMC and monocytes on mRNA 

level whereas S100A12 expression on protein level is restricted to 

granulocytes.126,416,417 In the contrast to S100A12, S100A8 and S100A9 are 

expressed and secreted by both granulocytes and monocytes.126,376 Overall, the data 

of this study indicate that determination of S100 levels in the serum, stool or 

gastrointestinal tissue as well as the analysis of S100 expression levels in monocytes 

might be novel tools for the diagnosis and follow-up of GvHD.  

 

6.5 S100 proteins can promote monocyte-induced development of Th17 cells  

According to the results of this study, the release of S100 proteins by activated 

phagocytes and the induction of Th17 cells solely mediated by monocytes seem to 

play an important role in the pathomechanism of GvHD. It is known that S100 

proteins are endogenous TLR4 ligands which activate phagocytes by binding to 

TLR4 resulting in the translocation of MyD88 from the cytosol to the receptor complex 

at the plasma membrane and the hyperphosphorylation of IRAK-1 leading finally to 

the activation of NF-κB and the following expression and release of proinflammatory 

cytokines such as TNFα, IL-1β, IL-12, IL-6 and IL-8.138,140 As it is known that the 

cytokine IL-6 is involved in the induction of Th17 differentiation and that TGF-β and 

IL-1β amplify the Th17 response276-278, it was investigated in this study if stimulation 

of monocytes with phagocyte-specific S100 proteins promotes the induction of Th17 

cells. It could be demonstrated that in comparison to unstimulated monocytes, 

stimulation of monocytes with S100A8, S100A9, S100A8/S100A9 or S100A12 results 

in significantly increased levels of Th17 cells which were similar to the ones induced 

by monocytes isolated from patients with GvHD (Figure 4A,B and 11A,B). 

Furthermore, stimulation of monocytes with S100 proteins also promotes the 
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induction of IL-17+IFNγ+ cells (Figure 11A,C). However, S100A8 and S100A9 showed 

stronger stimulatory effects concerning the induction of Th17 and Th17/Th1 cells in 

comparison to the heterodimer S100A8/S100A9 and S100A12 (Figure 11A-D). 

S100A8 and S100A9 mainly exist under physiological conditions in the form of 

heterodimers and the amount of S100A8 and S100A9 homodimers is unknown but 

can be classified as relatively low. On the contrary, S100A12 is only present as 

homodimer and seems to induce a weaker immune activation due to any 

pathophysiological reasons. Additionally, it has to be kept in mind that the 

preparation method of S100A12 and S100A8/S100A9 differs as described in 4.5. 

Furthermore, the activity of the S100 protein preparations varies from batch to batch. 

In this study, it was further investigated if S100 proteins promote the induction of 

Th17 and Th17/Th1 cells in a TLR4-dependent manner. Therefore, TLR4 on 

monocytes was blocked prior to stimulation with S100 proteins by using a TLR4 

antagonist. The data have shown that the specific blockade of S100-binding to TLR4 

on monocytes results in significantly decreased levels of Th17 and Th17/Th1 cells 

(Figure 12A-C). These results point out that S100 proteins induce elevated levels of 

IL-17+ and  IL-17+IFNγ+ cells by binding to TLR4 on monocytes and are conform with 

the data of a previous study revealing that levels of induced Th17 cells could further 

be enhanced by stimulation of monocytes with the TLR4 ligand lipopolysaccharide 

(LPS) in vitro.393 The data of the present study also demonstrate that stimulation of 

monocytes with S100 proteins does not have any effect on Th1 cells (Figure 11 A,D 

and 12 A,D). These findings may be attributed to the fact that monocytes isolated 

from human PBMC produce large amounts of IL-1, IL-6 but not IL-12, which is 

essential for the activation of the transcription factor T-bet, in response to various 

TLR stimulants including LPS, and are therefore potent inducers of Th17 but not Th1 

cells.279 In mice it is reported that IFNγ has down-regulating effects on the 

development of autoimmune diseases such as experimental autoimmune 

encephalomyelitis and experimental autoimmune uveitis.418,419 Thus, the results of 

the present study indicate that Th17 and Th17/Th1 cells and not Th1 cells might 

promote the development and progression of GvHD.  
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6.6 Induction of Th17 cells occurs in a cell-contact dependent manner with 
the involvement of monocyte-associated proinflammatory cytokines  

In this study, it was also examined if the induction of Th17 cells is mediated by 

proinflammatory cytokines released by monocytes or by cell contact between 

monocytes and CD4+ T cells. It is known that S100 proteins can induce the activation 

of the transcription factor NF-κB by binding on TLR4 on phagocytes resulting in the 

expression and release of proinflammatory cytokines such as TNFα, IL-1β, IL-12, IL-

6 and IL-8.138,140 Thus, monocytes were stimulated with S100 proteins before 

incubating for 24 h. The supernatant containing the released cytokines was added to 

CD4+ T cells and seems to promote the induction of Th17 cells (Figure 14A). 

However, the percentages of induced IL-17+ cells in CD4+ T cells are lower when 

only soluble factors are present in comparison to the Th17 levels induced by both 

cell-contact and soluble factors (Figure 4B,11B, 14A). These results could further be 

confirmed by the data of another experiment demonstrating that the addition of five 

cytokine-neutralizing antibodies (anti IL-17, anti-TNFα, anti-IL-1β, anti-IL-6, anti-IL-

12/IL-23p40) to the co-culture consisting of monocytes pre-stimulated with S100 

proteins and CD4+ T cells results in diminished levels of induced Th17 cells in 

comparison to co-cultures set up without cytokine-neutralizing antibodies. However, 

addition of a single neutralizing antibody to the culture does not show any 

neutralizing effects (Figure 13). These results are similar to the data of Evans et al. 

demonstrating that blocking of either IL-1β or TNFα by neutralizing antibodies at the 

start of the co-culture does not prevent the increase in the percentage of IL-17+ T 

cells induced by LPS-stimulated monocytes in vitro, whereas blocking both IL-1β and 

TNFα leads to the reduction of the percentage of IL-17+ T cells.386 In support to our 

observations, other studies have demonstrated that the induction of IL-17+ cells in the 

presence of in vitro activated monocytes requires both cell contact and APC-derived 

proinflammatory cytokines. Kryczek et al. could demonstrate that myeloid APCs 

potently support the induction of IL-17+ T cells during psoriasis which secrete IL-1β, 

IL-23 and CCL20.420 Another study showed that in vivo activated monocytes from 

patients with type 1 diabetes secrete the proinflammatory cytokines IL-1β and IL-6 

and induce more IL-17-secreting cells from memory T cells compared to monocytes 

from healthy controls. This induction of IL-17-secreting T cells by monocytes isolated 

from patients with type 1 diabetes can be reduced in vitro with a combination of an IL-
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6-blocking antibody and IL-1 receptor antagonist.395 Additionally, Evans et al. have 

reported recently that in vivo activated monocytes derived from the inflamed joints of 

patients with active rheumatoid arthritis promote Th17, but not Th1 or Th2 responses. 

Furthermore, it could be shown that in vitro activated monocytes induce Th17 

responses in co-cultured CD4+ T cells in an IL-1β/TNF-α-dependent manner whereas 

in vivo activated monocytes from the site of inflammation in rheumatoid arthritis 

induce increased Th17 responses in a cell-contact dependent.386 Altogether, these 

multiple reports and the results of the present study indicate that the development of 

Th17 cells is induced by activated APC in a manner that relies on direct cell-contact 

and soluble factors in the form of proinflammatory cytokines especially IL-6, IL-23 

and IL-1β.  

As our results demonstrate that the release of S100 proteins and their stimulatory 

effect on monocyte-mediated induction of Th17 cells might play an important role in 

the development and progression of GvHD, it was investigated if monocytes 

stimulated via TLR4 with S100 proteins release increased levels of proinflammatory 

cytokines which might be involved in the Th17 cell development. The data of the 

present study demonstrate that in vitro stimulation of monocytes with S100A8, 

S100A9, S100A8/A9 or S100A12 results in increased release of IL-1β, IL-6, IL-8, IL-

10 or TNFα (Figure 14B) and are therefore consistent with the results of a previous 

study demonstrating that stimulation of monocytes with S100A8 results in 

significantly increased secretion of IL-1β and TNFα.140 Furthermore, it could be 

shown that monocytes stimulated with S100A12 release elevated levels of IL-1β, 

TNFα and IL-6.138 Thus, our findings indicate that binding of S100 proteins to TLR4 

on monocytes may activate the TLR4 signalling pathway resulting in the activation of 

the transcription factor NF-κB and the expression and secretion of proinflammatory 

cytokines including IL-6 promoting the differentiation of Th17 cells and IL-1β and 

TNFα which are involved in the amplification of the Th17 response.140,276-278 Taken 

together, immune intervention targeting proinflammatory S100 proteins might be an 

attractive strategy to inhibit uncontrolled inflammatory processes during GvHD. 
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6.7 Serum levels of proinflammatory cytokines are elevated in patients with 
GvHD 

It is known that many cytokines are involved in the development of acute GvHD. 

Inflammatory cytokines released during conditioning regimen play a primary role in 

the activation of T cells, e.g. TNFα, IL-1 and IL-6 and there is strong evidence that 

these cytokines and the cell-mediated cytotoxicity induce target tissue destruction 

during acute GvHD.421 Several studies have demonstrated that the serum level of 

TNFα can be correlated with acute and chronic GvHD and might therefore be a 

sensitive and specific parameter for GvHD.421-423 The data of another work indicates 

that IL-1 may be a critical mediator of GvHD as the administration of IL-1 receptor to 

patients with steroid-resistant acute GvHD results in an improvement of GvHD.424 

However, the results of the present study show that TNFα and IL-1β serum levels are 

only elevated in one single patient with GvHD in comparison to the appropriate serum 

levels in healthy donors (Figure 15A, B). These results might be due to the high 

sample dilution according to the manufacturer’s advices resulting in the fact that 

many samples were below detection levels and were therefore set to zero so that no 

differences could be detected in these serum samples. Another study could show 

that IL-8 concentrations in the serum of patients with GvHD are higher in comparison 

to patients with no complications after HCT and patients with graft rejection.425  

These published results are consistent with the data of the present study revealing 

that serum levels of IL-8 are increased in patients with acute or chronic GvHD (Figure 

15C). Furthermore, anti-inflammatory cytokines such as IL-10 have also been 

associated to GvHD in several studies. Min et al. studied the relationship between the 

serum concentrations of the pro- and anti-inflammatory cytokines IL-6, TNFα, IL-8 

and IL-10 and transplantation-related complications in patients undergoing allogeneic 

HCT and could demonstrate that IL-6 and IL-10 correlate with early complications 

including fever, severe stomatitis and acute GvHD.426 Consistent with these results, 

the data of the present study have also shown that IL-10 levels are increased in the 

serum of patients with acute GvHD in comparison to the determined IL-10 serum 

levels of healthy donors. Weakly elevated levels of IL-10 can also be detected in the 

serum of patients with chronic GvHD (Figure 15D). Additionally, IL-6 serum levels are 

elevated in individual patients with acute GvHD (Figure 15E).  However, more serum 

samples should be collected and examined to further confirm the results of the 



120 | D i s c u s s i o n  

 

 

present study. It should be investigated if the measurement of cytokine levels in the 

serum of patients with acute or chronic GvHD is a sensitive and specific method for 

the prognosis, diagnosis and follow-up of GvHD. 

 

6.8 Hsp90 plays a critical role in monocyte-mediated induction of Th17 cells 
during GvHD 

The binding of S100 proteins or LPS to TLR4 on phagocytes leads to the activation 

of NF-κB and MAPK pathways resulting in the expression and release of 

proinflammatory cytokines such as TNFα, IL-1β and IL-6 which play a major role in 

the differentiation and expansion of Th17 cells.138,140 TLR4 signalling and the 

constitutive activation of the NF-κB pathway result in the persistent increase of 

multiple inflammatory effector molecules and is associated with several inflammatory 

and autoimmune diseases such as rheumatoid arthritis, respiratory distress 

syndrome or inflammatory bowel disease.139,147,148,152,153,206 The molecular chaperone 

Hsp90 is critically involved in the activation of monocytes via the NF-κB and MAPK 

pathways by maintaining the conformational stability of several key signalling 

proteins.208,211,213,214,427 Several studies have demonstrated that targeting of Hsp90 

with specific inhibitors results in the degradation of its client proteins such as IκB 

kinase complex or the interleukin-1 receptor-associated kinase diminishing innate 

immune responses via TLR signalling.208-211,213,215 In the present study, the 

geldanamycin derivative 17-DMAG was used to inhibit the function of Hsp90. 

Geldanamyin is a naturally occurring benzochinone ansamycin with anti-proliferative 

anti-inflammatory effects which is produced by Streptomyces hygroscopicus.225,428 

Geldanamycin has demonstrated potent anti-tumor activity in preclinical studies, but 

the high hepatoxicity observed in animal models and the poor aqueous solubility 

diminished its clinical potential.227 These findings resulted in the generation of 

geldanamycin derivatives differing only in the 17-substituent. 17-allylamino-17-

demethoxygeldanamycin (17-AAG) and the water-soluble 17-

dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) with better 

toxicological properties have been generated and progressed to phase I and phase II 

clinical trials demonstrating potent anti-cancer activity in breast cancer, melanoma 

and prostate cancer.228-230  In the present study, it could be demonstrated that 

treatment of in vivo activated monocytes isolated from patients with acute GvHD with 
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the Hsp90 inhibitor 17-DMAG results in significantly decreased levels of induced 

Th17 cells which are similar to those achieved with monocytes from healthy donors 

(Figure 16A). Furthermore, treatment of monocytes from healthy donors and from 

patients with acute GvHD with 17-DAMG leads to diminished percentages of 

Th17/Th1 cells in comparison to untreated cells (Figure 16B) whereas incubation of 

monocytes with the Hsp90 inhibitor does not seem to influence Th1 development 

(Figure 16C). Additionally, it could be demonstrated in this work that treatment of 

monocytes with the Hsp90 inhibitor 17-DMAG prior to stimulation with 

proinflammatory S100 proteins results in reduced levels of IL-17+ and IL-17+IFNγ+ 

cells compared to monocytes that are not treated with 17-DMAG (Figure 17A, B). 

However, in this experimental set-up incubation of monocytes with the Hsp90 

inhibitor prior to TLR4-mediated stimulation also results in decreased levels of IFNγ+ 

cells in comparison to monocytes with functional Hsp90 stimulated with S100 

proteins (Figure 17C). As it is known that chemical inhibition of Hsp90 can induce 

unspecific effects like the induction of other heat shock proteins such as Hsp40 and 

Hsp70195,398-400, the expression of stress-inducible Hsp90α was silenced in 

monocytes from healthy donors using Hsp90α targeting siRNA. The data 

demonstrate that treatment of monocytes with Hsp90α targeting siRNA prior to S100 

stimulation leads to diminished levels of Th17 (Figure 19A) and Th17/Th1 (Figure 

19B) cells in comparison to monocytes treated with non-targeting control siRNA prior 

to monocyte stimulation via TLR4. Monocytes transfected with Hsp90α targeting 

siRNA induce similar percentages of Th1 cells (Figure 19C) in comparison to 

monocytes treated with the control siRNA. Overall, these experiments reveal that the 

inhibition of Hsp90 in monocytes induces decreased levels of both Th17 and 

Th17/Th1 cells whereas Th1 cells seem not be influenced. Altogether, these results 

indicate that targeting Hsp90, and thereby NF-κB and MAPK pathways429, might 

dampen the induction of Th17 responses mediated by in vivo activated monocytes. 

Additionally, Hsp90 inhibition involves that these pathways cannot be activated any 

more by IL-17 and other proinflammatory cytokines including IL-1β, IL-6 and TNFα 

released during GvHD36,52,429-431. Additionally, it could be demonstrated that the 

application of Hsp90 inhibitors leads to the selective depletion of alloreactive T cells 

without impairing antiviral T cell immunity.221 Thus, targeting Hsp90 might be an 

attractive novel therapy for the treatment of acute or chronic GvHD. However, 

hepatoxicity still remains a problem with the application of the geldanamycin 
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derivatives 17-AAG and 17-DMAG.228,230 Therefore, novel synthetic small molecule 

inhibitors have been generated in the recent years in order to achieve a more specific 

targeting of Hsp90, better pharmacological effects and better tolerance. Ganetespib 

(STA-9090) is a novel small molecule inhibitor of Hsp90 which induces the rapid 

degradation of Hsp90 client proteins resulting in potent anti-tumour effects in a broad 

range of malignancies both in vitro and in vivo. Additionally, Ganetespib overcomes 

drug resistance in multiple tumor types and does not show any cardiac or liver 

toxicity.222,250 Additionally, targeting the interactions between Hsp90 and its co-

chaperones might be alternative approaches for the inhibition of Hsp90. In in vitro 

and in vivo studies, it could be demonstrated that celastrol, a quinone methide 

triterpene isolated from the Chinese medicinal plant Tripterygium wilfordii, blocks the 

binding of the adaptor Cdc37 to Hsp90 resulting in the degradation of Hsp90 client 

proteins and the exhibition of potent anticancer activity against pancreatic cancer 

cells.252 Another study could show that the prevention of the Hsp70/Hsp90 complex 

formation by the peptide CTPR390+ induces the decrease of the Hsp90 client protein 

HER2 and the inhibition of breast cancer cell proliferation in vitro.256,257 Additionally, 

in comparison to benzochinone ansamycins, targeting of Cdc37/Hsp90 and 

Hsp70/Hsp90 interactions does not induce an upregulation of the expression of 

Hsp70 which is undesirable as its anti-apoptotic effects counter the effects mediated 

by the inhibition of Hsp90.255-257 Thus, targeting the co-chaperone-Hsp90 interactions 

are very promising tools for the inhibition of Hsp90 but their further investigation and 

validation will be required.  

 

6.9 Monocytes induce elevated levels of proinflammatory Th17 cells 
expressing MDR1 in the presence of glucocorticoids  

Glucocorticoids are usually used for the treatment of acute or chronic GvHD.401 

Glucocorticoids are small lipophilic compounds that mediate their biological effects by 

binding to the intracellular glucocorticoid receptor that translocates to the nucleus 

and directly or indirectly regulates the transcription of several genes involved in the 

innate and adaptive immune response. Glucocorticoids have immunosuppressive 

effects on peripheral T cells which are due to inhibition of expression of a wide variety 

of activation induced gene products including a great number of cytokines (IL-1, TNF, 

IL-6, IL-8 etc.) and multiple chemokines. Additionally, these compounds suppress the 
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cellular (Th1) immunity and promote the humoral (Th2) immunity. Additionally, 

glucocorticoids induce apoptosis in CD4+CD8+ thymocytes whereas resting 

peripheral T cells are resistant to glucocorticoid-induced death.353,354 However, the 

application of glucocorticoids is accompanied by an increased susceptibility for 

infections, the toxicity of the drugs and an enhanced risk of relapse due to a 

diminished graft-versus-tumour effect which is mainly mediated by donor T cells.402-

404 Recently, it could also be demonstrated that glucocorticoids promote the 

development of a subset of Th17 cells that stably expresses the ATP-dependent 

efflux pump MDR1 which transports a wide range of drugs and xenobiotics to either 

the outer leaflet of the membrane or the extracellular space.347,348,352 These so-called 

proinflammatory Th17.1 cells can be further characterized by the expression of the 

chemokine receptors CCR6, CXCR3 and CCR4 on their cell surface. These 

MDR1+Th17.1 cells are CCR6+ and express CXCR3 at high levels and CCR4 at low 

levels. In comparison to these MDR1+ CCR6+CXCR3hiCCR4lo Th17.1 cells, MDR1-

Th17 cells are CCR6+CXCR3loCCR4hi and MDR1-Th1 cells are CCR6-

CXCR3hiCCR4lo. Additionally, Ramesh et al. could show that these proinflammatory 

MDR1+Th17.1 cells are refractory to glucocorticoids.352 Based on these data, the 

influence of the glucocorticoid dexamethasone on the induction of MDR1+Th17.1 

cells was compared with the effect of the Hsp90 inhibitor 17-DMAG in the present 

study. Consistent with the data of Ramesh et al. it could be demonstrated that 

treatment of monocytes with dexamethasone results in the induction of increased 

levels of CCR6+MDR1+ cells and MDR1+ CCR6+CXCR3hiCCR4lo Th17.1 cells 

whereas monocytes that remained untreated or were alternatively incubated with the 

Hsp90 inhibitor 17-DMAG induce low levels of MDR1+ Th17.1 cells (Figure 20A, B). 

The data of several studies demonstrating the potent antitumor activity of 17-

DMAG228-230 together with the results of the present study indicating that 17-DMAG 

does not promote the development of proinflammatoy Th17.1 cells expressing MDR1 

suggest that Hsp90 might be a novel target for the treatment of GvHD. 

 

6.10 Hypothesis for the pathomechanism of GvHD 

Based on the results of the present study the following hypothesis can be proposed 

for the pathomechanism of GvHD. Cell stress induces the expression and release of 

the heterodimer S100A8/S100A9 and the homodimer S100A12 by activated 
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monocytes and granulocytes during GvHD. These S100 proteins act as endogenous 

ligands of TLR4 and induce the activation of monocytes, the expression and release 

of proinflammatory cytokines including TNFα, IL-1β, IL-12, IL-8 and IL-6 and thereby 

promote the development of Th17 cells. These Th17 cells release proinflammatory 

cytokines such as IL-17A, IL-17F, IL-21 and IL-22 leading to the activation of the NF-

κB and MAPK pathways which further promote GvHD (Figure 21). 
 

 
Figure 21: Hypothesis for the pathomechanism of GvHD 

At the onset of GvHD, S100A8/S100A9 and S100A12 are released by activated phagocytes and act 

as endogenous ligands of TLR4. Subsequent activation of monocytes induces the expression and 

release of proinflammatory cytokines and the development of Th17 cells. Th17 cells release 

proinflammatory cytokines which further promote GvHD. 
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8 Supplement 

8.1 Abbreviations 

°C  degree Celsius 

17-AAG 17-allylamino-17-demethoxygeldanamycin 

17-DMAG 17-dimethylaminoethylamino-17-demethoxygeldanamycin 

APC  antigen presenting cell 

APC  allophycocyanin 

ATG  anti-thymocyte globulin 

ATP  adenosine-5’-triphosphate 

BAFF  B cell activation factor 

BCA  bicinchoninic acid 

CCR  CC chemokine receptor 

CD  cluster of differentiation 

cDNA  complementary deoxyribonucleic acid 

CRP  C-reactive protein 

CSA  cyclosporine A 

CXC  chemokine with cysteine separated by an amino acid defined as X 

CXCR  CXC chemokine receptor 

DAMP  damage associated molecular pattern 

DC  dendritic cell 

DNA  deoxyribonucleic acid 

DTT  dithiothreitol 

ECP  extracorporeal photophoresis 

ELISA  enzyme-linked immunosorbent assay 

ERK  extracellular signal-regulated protein kinase 

EU  endotoxin units 

FBS  fetal bovine serum 

FITC  fluorescein isothiocyanate 

Fox  forkhead box 

FSC  forward scatter 

g  g-force 

GAPDH glycerinaldehyde 3-phosphate dehydrogenase 

GATA-3 GATA-binding protein 3 
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GITR  glucocorticoid-induced tumour-necrosis-factor-related protein 

Gp96  96-kilodalton glycoprotein 

Grp170 170-kilodalton glucose-regulated protein 

GvHD  graft-versus-host disease 

GvL  graft-versus-leukemia 

h  hour(s) 

HAT  histone acetyltransferase 

HCT  hematopoietic cell transplantation 

HDAC  histone deacetylase 

HLA  human leukocyte antigen 

HRP  horseradish peroxidase 

HSF-1  heat shock factor-1 

Hsp  heat shock protein 

Hsp70  70-kilodalton heat shock protein 

Hsp90  90-kilodalton heat shock protein 

IκB  inhibitor of κB 

ICAM-1 intracellular adhesion molecule 1 

ICC  intracellular cytokine staining 

IFN  interferon 

Ig  immunoglobulin 

IKK  IκB kinase complex 

IL  interleukin 

IPTG  Isopropyl-β-D-thiogalactopyranosid 

IRAK-1 interleukin-1 receptor associated kinase-1 

iTreg  induced regulatory T cell 

JIA  juvenile idiopathic arthritis 

kDa  kilodalton 

LPS  lipopolysaccharides 

MAC  myeloablative conditioning 

MACS  magnetic-activated cell sorting 

MAP  mitogen-activated protein 

MAPK  mitogen-activated protein kinase(s) 

MCP-1 monocyte-chemoattractant protein-1 

MDR1  multi-drug resistance protein 1 
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MDS  myelodysplastic syndrome 

MHC  major histocompatibility complex 

min  minute(s) 

MIP-2  macrophage inflammatory protein-2 

ml  millilitre(s) 

mm  millimetre(s) 

mM  millimolar 

MMF  mycophenolate mofetil 

MPA  mycophenolic acid 

MSC  mesenchymal stem cells 

MTX  methotrexate 

MyD88 myeloid differentiation primary response protein 88 

NF-κB  nuclear factor kappa-light-chain-enhancer of activated B cells 

NK  natural killer cell 

nm  nanometre(s) 

nM  nanomolar 

nTreg  naturally occurring regulatory T cell 

OD  optical density 

PAMP  pathogen associated molecular pattern 

PBMC  peripheral blood mononuclear cell(s) 

PBS  phosphate-buffered saline 

PDGRF platelet-derived growth factor receptor 

PCR  polymerase chain reaction 

PE  phycoerythrin 

PerCP  peridinin-chlorophyll-protein 

PHS  pooled human serum 

PI  propidium iodide 

PMA  phorbol-12-myristate-13-acetate 

PRR  pattern recognition receptor 

PUVA  psoralen and ultraviolet A irradiation 

RA  rheumatoid arthritis 

RAGE  receptor for advanced glycation end products 

RANTES regulated upon activation, normal T cells expressed and secreted 

RIC  reduced intensity conditioning 
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RNA  ribonucleic acid 

RNAi  RNA interference 

ROR  retinoic acid receptor-related orphan nuclear receptor 

RT  room temperature 

RT-PCR real-time polymerase chain reaction 

Runx1  Runt-related transcription factor 

SDS  sodium dodecyl sulphate 

SDS-PAGE sodium dodecyl sulphatepolyacrylamide gel electrophoresis 

siRNA  small interfering RNA 

SSC  side scatter 

STAT  signal transducer and activator of transcription 

T-bet  T-box expressed in T cells 

TCR  T cell receptor 

TGF  transforming growth factor 

Th  T helper 

TLR  toll like receptor 

TMB  tetramethylbenzidine 

TNF  tumour necrosis factor 

TPR  tetratricopeptide 

Treg cell regulatory T cell 

U  units 

UVA  ultraviolet A 

V  volts 

VCAM-1 vascular cell adhesion molecule 1 

VLE  very low endotoxin 

µg  microgram(s) 

µl  microliter(s) 

µM  micromolar 
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