New Formal Methods for
Automotive Configuration

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultat
der Eberhard Karls Universitét Tiibingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Dipl.-Inf. Univ. Christoph Zengler
aus Deggendorf

Tiibingen
2014

Tag der miindlichen Qualifikation: 17.10.2014

Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Wolfgang Kiichlin
2. Berichterstatter: Prof. Dr. Herbert Klaeren

Zusammenfassung

Die Komplexitédt der Automobilkonfiguration hat in den letzten Jahrzehnten extrem
zugenommen. Bei der Bestellung eines neuen Fahrzeugs konnte ein Kunde vor 25
Jahren nur zwischen wenigen Optionen fiir z.B. Lack, Polster oder Radio wiahlen.
Heutzutage kann man zwischen hunderten Optionen auswihlen und sein Fahrzeug
mit automatischer Einparkhilfe, Laserlicht oder einem High-End HiFi System ausstat-
ten. Ein typischer deutscher Premiumhersteller kann bis zu 108° Varianten eines
einzigen Fahrzeugmodells bauen. Dieser Variantenreichtum muss jedoch entlang
der gesamten Prozesskette—vom Produktentstehungsprozess bis hin zur Fertigung
im Werk—verwaltet und beherrscht werden.

Die Herausforderung beginnt bereits beim Dokumentieren der validen Fahrzeuge,
d.h. welche Optionen miteinander kombiniert werden kénnen oder sich gegenseitig
ausschliefSen. Jedes einzelne Teil des Fahrzeugs—Halter, Schrauben, Bleche—muss
mit einer Einbaubedingung versehen werden, unter welchen Umstdnden es in einem
Fahrzeug verbaut wird. Doch die Komplexitdt macht nicht bei den physikalischen
Materialen Halt, sondern zieht sich tiber die Steuergeréte bis zur Softwarekonfigura-
tion im Fahrzeug hin. In einem modernden Fahrzeug werden oft tiber 50 Steuergeréte
verbaut, jedes von diesen Steuergeréten verfiigt wiederum tiber tausende Software-
Parameter, die fiir jedes Fahrzeug individuell konfiguriert werden miissen.

Diese Komplexitét in der Produktkonfiguration und -dokumentation kann nur noch
mit Hilfe von Softwaresystemen beherrscht werden. Jedoch reicht es nicht, all diese
Regeln klassisch in einer Datenbank zu verwalten. Ahnlich wie eine moderne Pro-
grammieroberfliche viele Arten von Programmierfehlern bereits vor dem Kom-
pilieren und Testen der Software erkennen kann, kann man auch solche Regelsysteme
auf das Vorhandensein bestimmter Fehler untersuchen und diese dem Dokumenteur
melden.

Die vorliegende Arbeit fiihrt einen neuen generischen Formalismus fiir Konfigu-
rationsdaten in der Automobilindustrie ein und présentiert einen ausfiihrlichen
Uberblick iiber die in der Industrie vorkommenden Prifmoglichkeiten. In ver-
schiedenen Industriekooperationen mit z.B. Audi, BMW, Daimler, Opel und VW
wurde verifiziert, dass dieser Formalismus auf diese Hersteller {ibertragbar ist.

Viele der bestehenden Priifalgorithmen werden in dieser Dissertation entscheidend
optimiert und werden im Rahmen des neuen generischen Frameworks formuliert. Es
werden neue Priif- und Analysemdoglichkeiten auf Konfigurationsdaten vorgestellt.
Dies sind unter anderem das Zahlen baubarer Fahrzeuge, die Berechnung minimaler
und maximaler Kundenorders oder die Berechnung von direkten Zwéngen in der
Konfigurationsbasis.

Ein Hauptbeitrag dieser Arbeit ist die Einfiithrung der Booleschen Quantorenelimi-
nation in der Automobilkonfiguration. Wahrend die Quantorenelimination bisher
vor allem im Bereich des symbolischen Modelcheckings zu finden war, werden hier
zwei Anwendungen in der Automobilindustrie identifiziert, die grofies Interesse in
den industriellen Kooperationen erweckt haben. Es werden verschiedene Ansétze
zur Booleschen Quantorenelimination vorgestellt und beziiglich der Anwendungen
evaluiert.

Im Rahmen dieser Arbeit entstand die Softwarebibliothek AutoLib, die die vorgestell-
ten Algorithmen implementiert und vor allem einen neuen SAT Solver mit sich bringt,
der sowohl Inkrementalitdt und Dekrementalitat, als auch das sogenannte Proof Trac-
ing, also das Aufzeichnen von Beweisen bei Nicht-Erfiillbarkeit, implementiert. Nach
unserem Wissen ist dies der einzige SAT Solver, der diese beiden Funktionen auch in
Kombination unterstiitzt. AutoLib wird aktuell in einem Produktivsystem bei BMW
sowie in Prototypen bei Audi/VW und bei Daimler eingesetzt.

Alle Algorithmen, die in dieser Arbeit prasentiert werden, wurden in einer Mach-
barkeitsstudie bei BMW in den Jahren 2012 und 2013 implementiert und auf ihre
industrielle Einsetzbarkeit hin verifiziert. Ein Produktivsystem, das Teile dieser
Algorithmen umfasst und auf AutoLib basiert, hatte im Mai 2014 GoLive bei BMW.

Acknowledgements

First of all I want to thank my Ph.D. supervisor Prof. Dr. Wolfgang Kiichlin—not
only for giving me the opportunity to work and research in his group but also for his
trust in me to conduct the BMW case study and implementation of the production
system for his company, the STZ OIT Tiibingen. I also want to thank Prof. Dr. Herbert
Klaeren for being the second supervisor of my thesis.

My colleagues, both at the university and the STZ, were valuable discussion partners
and I appreciate their contributions to research and software. I especially want to
thank Andreas Kiibler who co-authored two papers and initiated the Warthog project
with me. Furthermore I want to thank Monika Kiimmerle, Steffen Hildebrandt,
Martin Rathgeber, and Rouven Walter.

Ilearned a lot about scientific working and writing from Dr. Thomas Sturm, Professor
Fairouz Kamareddine, and Dr. Joe Wells.

At BMW many people were positive about our approach and our methods and con-
tributed substantially to the success of the case study and the production system. I
especially want to thank Thorsten Halbhuber and Josef Westermaier (case study),
Johannes Schofmann (production system), and Jochen Geck for their great collabora-
tion. But I also want to mention Jutta Bremm, Andreja Jaksic, Ekaterina Klimenko,
Michail Schapiro, Hendrik Spila, and Markus Wolf. Whenever I had questions or
problems I could approach these people and they always had a sympathetic ear and
came up with solutions.

I'want to thank our partner for the implementation of the production system, NTT
Data. Thorsten Buckley, Gerhard Petschat, Tobias Scheffel, and Norbert Treichel: the
collaboration was always very professional and joyful.

Last but not least I want to thank all people who supported me on the way to my
Ph.D.—Dbe it family or friends. Sometimes it is just necessary to discuss about beef
olives, building grounds, or women’s rights—the world does not consist of zeros and
ones only!

1

Contents

Introduction

1.1
1.2

1.3

Motivation L
Contribution and Related Work
1.2.1 Product Configuration
122 New FormalMethods
1.2.3 Implementation and BMW Case Study
Structure of this Dissertation

Formal Methods

21

2.2

23

24

25

Propositional Logic
2.1.1 Syntaxand Semantics 0 0oL
212 NormalForms.
21.3 Cardinality Constraints
Satisfiability Solving L.
221 TheDPLL Algorithm
222 TheCDCL Algorithm
2.2.3 Implementation of a Modern CDCL SAT Solver
224 Incrementality and Decrementality
2.2.5 Unsatisfiable Cores and Proof Tracing
Knowledge Compilation Formats
2.3.1 Binary Decision Diagrams
2.3.2 Decomposable Negation Normal Form
ModelCounting
241 DPLL-Style Model Counting
2.4.2 Knowledge Compilation Based Model Counting
Quantified Propositional Logic
2.5.1 Syntax and Semantics of Quantified Propositional Logic . . .
2.5.2 Distinction of QPL Formulas
2.5.3 Satisfiability of QPL Formulas

O = W W W R~ =

N

2.6 Quantifier Elimination for QPL 42

2.6.1 Existential Quantifier Elimination for QPL 44
2.6.2 Full Quantifier Elimination for QPL 52
Automotive Configuration 57
3.1 ProductHierarchy 57
3.2 High Level Configuration 59
3.3 Low Level Configuration 62
331 BillofMaterials L o oL 62
3.3.2 Electrics and Electronics L. 64
3.4 The Product Description Formula 66
3.41 ModelingtheOptions 66
3.42 Modeling Option Families 67
343 ModelingRules L. 67
3.44 Manufacturer Specific Extensions 68
3.45 BuildingthePDF 68
35 Summary 69
Qualitative Analysis of Configuration Data 71
41 AnalysisApproaches L. 71
41.1 Knowledge Compilation 72
412 SATSolving 73
42 Verifying the High Level Configuration 74
42.1 Computing Inadmissible Equipment Options 75
422 Computing Necessary Equipment Options 76
423 Checking Specific Configuration Restrictions 77
424 Searching for RedundantRules 79
43 AnalyzingtheBOM 80
43.1 Computing Necessary and Superfluous Parts 81
4.3.2 Virtual Nodes and Completeness Constraints 84
43.3 Verifying Uniqueness of Virtual Nodes 86
434 Verifying Completeness of Virtual Nodes 94
435 Pre-ProcessingtheBOM 97
43.6 Computing Completeness Constraints for Nodes 98
44 Analysis of the E/E Configuration 101
4.4.1 Analysis of the Control Unit Configuration 102
4.42 Analysis of the Controller Software Configuration 102
4.5 Minimizing Counter Examples 104

46 SUMMATYot i e 107

5 AQuantitative Analysis of Configuration Data
51 Computing the Number of Constructible Vehicles
511 Counting Models in the Automotive Scenario
5.1.2 Projecting Formulas in the Automotive Scenario
5.1.3 Other Applications of Model Counting
5.2 Computing Option Influence and Connectedness
52.1 Equipment Option Influence
522 Equipment Option Connectedness
5.3 Computing the Minimal and Maximal Size of Orders
54 Summary

6 AutoLib—A Propositional Logic Library for Java and C#
6.1 TheCoreLayer
6.1.1 DataStructures
6.12 Algorithms
6.1.3 AutoProve
6.2 TheExecutionLayer
6.21 TheHighLevelTests
622 TheLowlLevelTests

7 Results from the BMW Case Study
71 System
72 Results
721 Qualitative Analysis 0L
722 Quantitative Analysis
7.3 Comparison of Different Approaches
7.3.1 Comparison of Knowledge Compilation Formats

7.3.2 Comparison of Quantifier Elimination Approaches
733 Results e

8 Summary

List of Algorithms

List of Figures

List of Tables

Reviewed Publications of the Author

Bibliography

109
109
110
111
113
113
114
115
117
118

121
122
122
123
125
127
128
128

129
129
130
131
134
136
136
139
140

145

147

149

151

153

157

1 Introduction

1.1 Motivation

1413685040455876608

A number with 19 digits. This is the number of different configurations a customer
in Germany can order a BMW 316i Touring. Of course, there are not only customers
in Germany, but all over the world, and of course there is not only the 316i Touring,
but also the 320i, 320i xDrive, 328i, 328i xDrive, 335i, 316d, 318d, 318d xDrive, 320d,
320d EfficientDynamics, 320d xDrive, 325d, 330d, 330d xDrive, 335d xDrive—all with
similar numbers of different configurations. Within the 3 Series, there is not only the
Touring, but also the Sedan, the ActiveHybrid, and the Gran Turismo. And finally, at
BMW, there is not only the 3 Series, but also the 1 Series, the 2 Series, the 4 Series, the
5 Series, the 6 Series, the 7 Series, the X Series, the Z Series, the M Series, and the i
Series.

This enormous variance is not unique to BMW, but is similar for all German pre-
mium car manufacturers like Daimler, Audi, or VW. It is a consequence of the mass
customization, a term coined in [Davis, 1987] and defined in [Tseng & Jiao, 1996] as

producing goods and services to meet individual customer’s needs with near mass
production efficiency.

25 years ago, a customer buying a car could choose between some paint finishes and
a number of bolster works. There were some configuration options like a coupling
device or an air conditioning system. Today, customers want Bluetooth connections to
mobile devices, professional navigation systems with real-time traffic data, entertain-
ment systems, park distance control, rear view cameras, or driving assistants. In the
aforementioned 316i the customer can choose between 18 different paint finishes, 21
different wheel rims, and 24 different bolster works. There are 86 different equipment
options, some of them also available in various packages. Figure 1.1 shows a small
excerpt of the available options in the online configuration system!.

All these different options are dependent on each other. It is obvious that there can

Taken from the BMW online configurator at http: //www . bmw .de

http://www.bmw.de

1 Introduction

Driving Assistant Parkassistent Speed Limit Info Automatic Getriebe
520,00 € oder 350,00 € oder 320,00 € oder Steptronic
5,24 € pro Monat 3,53 € pro Monat 3,22 € pro Monat 2.100,00 € oder

21,16 € pro Monat

@

_| Sport-Automatic _| Lenkradheizung _ Klimaautomatik _| Servotronic
Getriebe Steptronic 190,00 € oder 550,00 € oder 250,00 € oder
2.250,00 € oder 1,91 € pro Monat 5,54 € pro Monat 2,52 € pro Monat
22,67 € pro Monat
Anhédngerkupplung mit Lederlenkrad Sport-Lederlenkrad Alarmanlage
aK‘I’j';ee'l‘I:‘;‘:;’e"‘ -,-- € oder 110,00 € oder 480,00 € oder

-,-- € pro Monat 1,11 € pro Monat 4,84 € pro Monat
770,00 € oder

7,76 € pro Monat

Figure 1.1 | An excerpt of the options in a BMW vehicle

be only one steering wheel in a car, but there are more complex dependencies. E.g. a
rear view camera requires also rear park distance control, or the driving assistant
cannot be combined with a wind screen with grey shade band. For the 316i there
are over 200 such technical rules. Besides these technical rules there are also over
400 legal requirements in the different countries which must be complied to. All
these options, dependencies, and requirements must be created and maintained in a
configuration database by documentation experts.

Many other systems which are involved in the production process of a vehicle rely
on the data in this configuration database. Which physical parts are required for a specific
customer order? How has the software of a car’s control unit to be parametrized? Which
vehicles are constructed, when, in which plant, on which assembly line? All these questions
can only be answered knowing which vehicles can be built in which configurations.
Therefore errors in the configuration database propagate through all these systems
and can lead to a line stoppage in the worst case.

In order to be able to manufacture with near mass production efficiency as stated above,
it is therefore absolutely necessary to detect errors in the configuration base as soon
as possible in the process and to support documentation experts in the best possible
way to do their work. Formal methods of computer logic are one building block on
the way to achieve this goal.

1.2 Contribution and Related Work

1.2 Contribution and Related Work

1.2.1 Product Configuration

Since in 1978 DEC started to use R1/XCON [McDermott, 1982] to support computer
system configuration and assembly, product configuration systems have been among
the most prominent and successful applications of computer logic methods in prac-
tice [Sabin & Weigel, 1998; Forza & Salvador, 2002; Aldanondo & Vareilles, 2008].
As a result, computer aided configuration systems have been used in managing
complex software like Eclipse [LeBerre & Rapicault, 2009] or Linux [Post & Sinz, 2008;
Zengler & Kiichlin, 2010], but also hardware products like office furniture [Ariano &
Dagnino, 1996], telecommunication systems [Fleischanderl et al., 1998], window and
door designs [Hong et al., 2008], or even cement plants [Hvam et al., 2010].

Another application area of these configuration systems is the automotive industry.
Here they helped to realize the transition from the mass production paradigm to
present-day mass customization. The validation of the data in these automotive
configuration systems is an important problem. Sinz and Kiichlin introduced SAT
solving based formal methods for verification of the configuration data at Daim-
ler [Kiichlin & Sinz, 2000; Sinz et al., 2003]. Other companies like Ford [Rychtyckyj,
1996] or Renault [Pargamin, 2002; Astesana et al., 2010] use approaches based on
description logics or constraint logic and knowledge compilation respectively to
check their configuration data for consistency.

This thesis gives an extensive overview of the state of the art in the analysis of config-
uration data at automotive manufacturers. In contrast to Sinz’s dissertation [Sinz,
2003] this work focuses on proving propositional verification properties on the static
configuration data. Sinz—due to the special requirements of the Daimler product
structure and configuration system—treated the verification as program verification
and used propositional dynamic logic to model the configuration data and system.
This thesis introduces a new generic formulation of configuration data at an automo-
tive manufacturer. In various industrial cooperation projects it was verified that the
real-life configuration data of companies like Audi, BMW, Daimler, Opel, and VW
can be mapped to this generic description.

There exists work on unifying configuration knowledge bases, e.g. based on descrip-
tion logics [McGuinness & Wright, 1998], UML [Felfernig et al., 2001], or answer set
programming [Soininen et al., 2001; Friedrich et al., 2011]. All these approaches aimed
for arbitrary products and arbitrary configuration scenarios. The presentation in this
thesis is focused on the automotive industry and gathers the experience we made
with our collaboration with all major German car manufacturers.

1.2.2 New Formal Methods

We distinguish between quantitative analysis and qualitative analysis. Qualitative
analysis is the analogon to a decision problem in computer science. The output of

1 Introduction

qualitative analysis algorithms is yes or no, true or false. An example for a qualitative
analysis on a configuration base is e.g. if there is a vehicle which has both a naviga-
tion system and a board computer. Quantitative analysis summarizes algorithms
which yield numbers as result. E.g. the number at the beginning of this thesis—
1413685040455876608—is the result of a quantitative analysis algorithm: how many
different vehicles can be built according to the configuration base.

In the area of quantitative analysis this thesis introduces three new analysis tech-
niques. (Projected) model counting [Kiibler et al., 2010] of product formulas, comput-
ing minimal and maximal orders, and computing the influence and connectedness
of options was not introduced in the automotive industry before.

A large contribution of this work is the introduction of quantifier elimination as a new
formal method in the configuration analysis. In [Sturm & Zengler, 2010; Zengler et al.,
2011] the theoretical foundations and algorithms for existential and full quantifier
elimination for propositional formulas were introduced. In [Zengler & Kiichlin, 2013]
quantifier elimination was applied to problems encountered in our cooperations in
the automotive industry. In the production system at BMW a quantifier elimination
is implemented.

In quantifier elimination for propositional logic we have to distinguish three cases:
(1) fully quantified propositional sentences, (2) propositional formulas with only free
variables and existential quantifiers, and (3) propositional formulas with arbitrary
quantification. The first problem is also known as the QBF problem [Biining & Bubeck,
2009] in the literature and many practical algorithms and tools for its solution have
been proposed [Zhang & Malik, 2002; Ayari & Basin, 2002; Biere, 2005; Samulowitz &
Bacchus, 2005; Biere et al., 2011]. Quantifier elimination for propositional formulas
with only free variables and existential quantifiers is equivalent to the projection of
a propositional formula to a set of variables. Since this projection is one of the core
operations of symbolic model checking [McMillan, 1993; McMillan, 2002] in recent
years many algorithms were developed to tackle this problem [Abdulla et al., 2000;
Grumberg et al., 2004; Gebser et al., 2009; Brauer et al., 2011; Goldberg & Manolios,
2012]. Quantifier elimination for arbitrary quantified propositional formulas is known
under different names in the literature. [Benedetti & Mangassarian, 2008] call it open
QBF problem, in [Sturm & Zeng]ler, 2010] it is called Parametric QSAT. In this thesis
we will refer to it as quantifier elimination for quantified propositional logic (QPL).
A first algorithm based on virtual substitution [Weispfenning, 1988] was proposed
in [Seidl & Sturm, 2003].

1.2.3 Implementation and BMW Case Study

Due to requirements for production systems at large companies like BMW or Daimler,
all algorithms presented in this thesis had to be implemented in Java. Therefore a
SAT solver and logic library in Java were required. There is only one competitive SAT
solver written in Java: Sat4J [LeBerre, 2010]. But it was not suited for our purpose
since it has no incremental and decremental interface which is necessary for our
applications.

1.3 Structure of this Dissertation

Therefore the author of this thesis decided to implement a new generic logic library
and automotive test suite called AutoLib. This library includes AutoProve, a SAT
solver which has the ability to perform incremental and decremental proof tracing—
a feature no other solver has and which turned out to be very important for the
fast execution of the algorithms presented here. This library is currently in use in
production systems and prototypes at Audi/VW, BMW, and Daimler.

The author conducted a case study at BMW in 2012 and 2013 and implemented all
algorithms presented in this thesis in a prototype there. Based on this prototype, a
production system was implemented in cooperation with us in 2013 and 2014 which
went live in May 2014 with 400 initial users.

1.3 Structure of this Dissertation

Chapter 2 presents all prerequisites required for the rest of the chapters. Since all
relevant formal methods in this thesis” domain are based on propositional logic, a
short introduction with all the necessary definitions and notations is given in Sec-
tion 2.1. Section 2.2 gives an overview of modern SAT solving. Section 2.3 introduces
two knowledge compilation formats for propositional formulas—binary decision
diagrams and decomposable negation normal forms—which can be used for some
computations. Propositional model counting is the subject of Section 2.4. In Sec-
tion 2.5 a quantified extension of propositional logic (QPL) is presented. Section 2.6
gives an overview of different approaches and algorithms for quantifier elimination
for QPL. The different algorithms and applications for quantifier elimination are one
of the main contributions of this dissertation.

Chapter 3 introduces an abstract view of vehicle configuration. In Section 3.1 the
product hierarchy of a typical premium car manufacturer is described. The next two
sections distinguish two different levels of product configuration: Section 3.2 presents
the high level configuration visible to the customer. At this level the equipment
options the customer can choose during the order process are documented. In
Section 3.3 this view is extended to the low level configuration where the actual
assembly parts of the vehicle are modeled. Section 3.3.2 takes a look at a special
subset of the low level configuration, the configuration of electric and electronic
devices in a vehicle. Section 3.4 ends this chapter by defining the product description
formula—the formula which describes all valid orders of a vehicle series on the high
level. This formula is the basis for all following analysis algorithms.

Chapter 4 starts in Section 4.1 by comparing two different approaches to verify the
configuration base. Sections 4.2 introduces qualitative analysis algorithms on the
high level, among them the computation of inadmissible and necessary equipment
options. Sections 4.3 and 4.4 show the different qualitative analysis algorithms on
the bill of materials and the electric and electronic configuration respectively. Since
this thesis introduces the generic concept of virtual nodes, these two configuration
systems can be mapped to the same algorithms. Section 4.5 presents an approach to
minimize the counter examples generated by the algorithms.

1 Introduction

Chapter 5 presents three new quantitative analysis techniques which received special
management attention in our industrial cooperations. Section 5.1 shows different
approaches for computing the number of valid orders of a vehicle series. These num-
bers are often very high and surpass expected values by far. Section 5.2 introduces an
approach how to compute important or influential equipment options. Computing
the minimal and maximal numbers of selected equipment options in an order is the
topic of Section 5.3.

Chapter 6 introduces AutoLib, a propositional logic library for Java and C# which
was implemented by the author of this dissertation. It consists of two layers: (1) the
core layer (Section 6.1) which implements many of the data structures and algorithms
presented in the previous chapters and is used in prototypes and production systems
of major German car manufacturers, and (2) the execution layer (Section 6.2) where the
analysis algorithms presented in this thesis are implemented. AutoLib also includes
a SAT solver called AutoProve which is specialized for the automotive domain and
performs better than other solvers on many of our problems.

Chapter 7 presents a BMW case study using the algorithms and techniques described
in this thesis. Section 7.1 gives an overview of the system landscape at BMW. In
Section 7.2 the results of the case study are summarized and illustrated. Section 7.3
finally compares different approaches for knowledge compilation and quantifier
elimination described in this thesis.

Chapter 8 concludes this dissertation and summarizes the contributions.

2 Formal Methods

This chapter introduces all formal methods—old and new—which are required
by the verification and analysis algorithms of Chapter 4 and Chapter 5. All these
formal methods are based on propositional logic. In the first section propositional
logic, its syntax, semantics, and relevant laws are presented. Section 2.2 presents
the satisfiability problem and the two most prominent algorithms to solve it: the
DPLL algorithm and its modern extension, the CDCL algorithm. As an extension of a
classical CDCL solver, an incremental & decremental interface is introduced. Such an
interface is inevitable for the applications of this thesis” domain. Section 2.3 gives an
overview of two knowledge compilation formats: (1) binary decision diagrams and (2)
decomposable negation normal forms. Approaches for propositional model counting
are treated in Section 2.4. In Section 2.5 we look at an extension of propositional
logic: quantified propositional logic, QPL. One of the main contributions of this
dissertation, the quantifier elimination for QPL formulas, is subject of Section 2.6.

2.1 Propositional Logic

Propositional logic is a logical system with syntax, semantics, and a calculus which
tells how to compute semantical derivations from formulas. The modern version
of propositional logic was established by George Boole in his essay The mathematical
analysis of logic in 1847 [Boole, 1847]. In propositional logic, each atomic formula
represents a proposition which can be either true or false. Complex propositions can
then be built from simpler ones by combining them with logical junctors like not, and,
or or. The presentation in this section is loosely based on the second chapter of John
Harrison’s Handbook of Practical Logic and Automated Reasoning [Harrison, 2009].

2.1.1 Syntax and Semantics

Definition 2.1 | Syntax of Propositional Logic Symbols T and L denote the syntacti-
cal true and false. Propositional variables stem from an infinite set V. Negation
is denoted by —, conjunction by /A, disjunction by V, implication by —, and
(syntactical) equivalence by «+—.

2 Formal Methods

Remark | Notation Throughout this dissertation, we will denote propositional variables
with lower case Latin letters a,b,c,...,x,y,z, sets of variables with upper case Latin
letters A, B, C, ..., propositional formulas with lower case Greek letters @, \, ..., and
sets of formulas with upper case Greek letters T, A,

Definition 2.2 | Atomic Formulas, Literals In the context of propositional logic, atomic
formulas are propositional variables. A literal A is either an atomic formula—hence
a variable x—or its negation —x. If the variable of a literal is negated, the literal
has negative phase, otherwise it has positive phase. The variable of A is denoted by
var(A).

Definition 2.3 | Sets of Variables and Literals The set of all variables occurring in a
formula ¢ is denoted by vars(¢). The set of all literals occurring in ¢ is denoted
by lits(¢).

Definition 2.4 | Syntactical Substitution If we replace each occurrence of a variable
x in a formula ¢ by some formula {, we call this substituting x by ¢ and write

ohp/x].

Substitutions are a purely syntactic operation and are executed in parallel.

Definition 2.5 | Truth Values Since propositional logic is a two-valued logic, we have
two truth values true or false. The set of these both values is denoted by B.

These truth values can be assigned to propositional variables. A formula ¢ can then
be evaluated to a truth value wrt. such an assignment.

Definition 2.6 | Assignment An assignment is a mapping 3 : V — B from proposi-
tional variables of V to truth values of B, assigned to them. If an assignment covers
all variables vars(¢) of a formula ¢ it is called a fotal assignment of @; if it covers
only a subset of the variables, it is called partial.

If a variable x is assigned to a truth value t, we often denote this by x — t. An
assignment 3 can then be written as {x; + ti,...,xn — tn}. Often these assignments
are noted in a shorthand version by writing x for x — true and —x for x — false.

Example 2.1 | Assignment of a Formula The assignment {x — true,y > false,z —
false,w — true} can be written as {x, —y, =z, w}.

It is often required to represent an assignment as a formula. Following the usual
convention that empty conjunctions are T, the formula representation of assignment
{3 is defined as

ass2form(p) = /\ v|A /\ v

vedom(B) vedom(B)
B (v)—true B (v)—false

where dom() refers to the domain of the mapping 3.

2.1 Propositional Logic

Example 2.2 | Assignment as Formula
ass2form({x — true,y — false,z — true}) =x/A\—y Az
It is easy to see that for any assignments 3, 3’ we have ass2form(3) = ass2form(f3’)
ifand only if B = 3.
Given an assignment, we can evaluate formulas with respect to this assignment.

Definition 2.7 | Evaluation of Formulas Given a propositional formula ¢ and an as-
signment {3 total for ¢, we can compute the evaluation of ¢ under {3 by

true ifo=T

false ifo=_1

B(v) if o =vwithveV

if eval(y, f) then false else true if @ =—Y
eval(g,B) =4 .

if eval(ly, B) then eval(Yo, B) else false if @ =Py Ao

if eval({y, B) then true else eval (o, B) if @ =1 Vo

eval(—; Vs, B) if =191 — s

eval((pr — P2) A (b2 — 1), B) if @ =91 +— s

It is important to mention that if two assignments 3 and 3’ agree on the set vars(¢),
we have eval(g,) = eval(e,p’).

If we do not have a total assignment of ¢ but only a partial one, we cannot evaluate
formulas but restrict them to the partial assignment.

Definition 2.8 | Restriction of Formulas Given a propositional formula ¢ and a par-
tial assignment 3, we can compute the restriction of ¢ under (3 by

T ifo=T

il if =1

if B(v) then T else L if @ =vandv € dom(f)

Y if =vandv ¢ dom(f3)
rest(p,) = { ~rest(,) if o =—Y

rest(P1, B) Arest(a, B) if =101 Ao
rest(Py, B) V rest(z, B) ifo =10 Vi
rest(Py, B) — rest(P,B) if =91 — P>
rest(Py, B) «— rest(hs,B) if @ =1 +— P2

In contrast to the evaluation, the restriction does not yield true or false, but another
(restricted) propositional formula. Being able to evaluate formulas under assignments,
we can now define the terminology for the satisfiability of formulas.

Definition 2.9 | Satisfiability, Contradiction, Tautology A propositional formula ¢ is
satisfiable if there exists an assignment 3 : vars(¢@) — B with eval(g,) = true.

2 Formal Methods

In this case we call 3 a model of ¢ and write 3 |= ¢. If every possible assignment 3
is a model of @, we call ¢ a tautology and write |= ¢. If there exists no model {3 for
@, we call ¢ a contradiction.

Definition 2.10 | Entailment, Equivalence, Equisatisfiability A propositional formula
¢ (logically) entails \ if for all B we have that from | ¢ also follows 3 = V,
meaning each model of ¢ is also a model of . In this case we write ¢ = 1. Two
formulas ¢ and 1 are called (semantically) equivalent if ¢ =1 andp = ¢, meaning
they have exactly the same models. In this case we write ¢ = 1. Two formulas ¢
and 1 are equisatisfiable if they are both satsisfiable or they are both unsatisfiable.

Often a formula has more than one satisfying assighment. We distinguish two differ-
ent problems related with this number of satisfying assignments. Model enumeration
lists all possible models of a formula, whereas model counting computes the number
of satisfying assignments of a formula. A formula with n variables has a model count
between 0 (contradiction) and 2™ (tautology).

Definition 2.11 | Model Count Let{f1,..., n}be the set of all satisfying assignments
of a formula ¢ restricted to vars(¢). Then we refer to n as the model count of ¢
and denote it by n = #sat(¢).

Section 2.4 presents a short overview of different techniques for model counting.

2.1.2 Normal Forms

In propositional logic it is often convenient not to have to consider all kinds of input
formulas but only those with special syntactic restrictions. These are called normal
forms. Three normal forms are of special interest for our applications: 1) negation
normal form (NNF), 2) conjunctive normal form (CNF), and 3) disjunctive normal form
(DNF).

Definition 2.12 | Negation Normal Form (NNF) A propositional formula is in NNF if
it only uses the junctors —, A\, and V, and negation — only occurs immediately in
front of atomic formulas (i.e. variables).

Every formula can be transformed to NNF by first eliminating — and <— by their
equivalent representations in terms of —, /\, and V and afterwards applying the
DeMorgan Law. The NNF of ¢ is denoted by nnf(¢).

Conjunctive Normal Form (CNF)

By far the most important normal form in our context is the conjunctive normal form.
CNF is used as input for SAT solvers which are the main building blocks of our
algorithms in Chapter 4 and Chapter 5.

10

2.1 Propositional Logic

Definition 2.13 | Conjunctive Normal Form (CNF) A clause is a disjunction of literals.
A formula is in CNF, if it is a conjunction of clauses.

A CNF of a formula ¢ is denoted by cnf (). It is often convenient to identify a clause
as a set of its literals and a CNF as a set of its clauses, a so called clause set. For a
formula ¢ in CNF we denote the set of clauses of ¢ with clauses(¢) and for a clause
¢ we denote the set of literals of ¢ with 1its(c). A formula in CNF is unsatisfiable if
it contains the empty clause (a clause with no literals). The standard algorithm for
transforming a NNF into a CNF based on the application of the distributive law can
lead to an exponential blow-up of the formula. Therefore two alternative algorithms
are used to transform large formulas. 1) The approach by Tseitin [Tseitin, 1968], and
2) the approach by Plaisted and Greenbaum [Plaisted & Greenbaum, 1986]. Both
approaches introduce new variables for sub-formulas of the formula’s parse tree and
therefore avoid the exponential blow-up. However, due to the introduction of new
variables, the resulting formulas are not equivalent to the input formula but only
equisatisfiable.

To illustrate both approaches, we consider the syntax trees of the formula ¢ =
aV —(bV c) and its NNF as shown in Figure 2.1.

(-)"

@ e=aV—-(bVec) (b) nnf(@) =aV (=b A —c)

Figure 2.1 | Syntax trees for a formula and its NNF

Tseitin Transformation The Tseitin transformation works on the NNF of the for-
mula, so we look at the syntax tree in Figure 2.1 (b). Each internal node is replaced
by a new variable and a new equivalence is introduced between this new variable
and its sub-tree. Le. in the example, we introduce two new variables t4 and t; and
the respective equivalences t4 <— —b/\—c and t5 +— aV t4. Then the conjunction
of the equivalences and the variable of the root node is built:

tseitinCNF(@) = t5 A\ (tg +— "b A=) A (t5 «— aV t4)

11

2 Formal Methods

Each equivalence can then be transformed into CNF which requires at most three
clauses for binary and and or:

tseitinCNF(@) =t5 A\ (—ty VD) A (-t Vo)A (Ve Vi) A
(_‘t5 V a\/t4) A (_‘a\/ts) A (ﬁt4 \/t5).

Of course this approach can be optimized by e.g. not introducing new variables for
equal sub-trees but reusing the already introduced variables.

Plaisted-Greenbaum Transformation The transformation approach of Plaisted
and Greenbaum works on the original formula, so we look at the syntax tree in
Figure 2.1 (a). Plaisted & Greenbaum alter Tseitin’s approach in two aspects:

1. Since it works on the original formula, not the NNFE, they distinguish the polarity
of a sub-tree. The polarity of a node is positive, if there is an even number of
negations on the path from the root to the respective node, and the polarity is
negative if the number of negations is odd.

2. For each new variable, we do not introduce an equivalence, but only an impli-
cation whose direction is dependent on the polarity of the respective sub-tree.
For a sub-tree for the formula ¢ with positive polarity we introduce the new
variable t and the implication t — ¢, for a sub-tree with negative polarity the
implication ¢ — t is introduced.

The first point leads to the fact, that fewer new variables are introduced, because
for a sub-tree with formula ¢ and one with formula —~¢ only one new variable is
introduced. The second point leads to the fact, that the resulting CNF is smaller since
for each implication we yield fewer clauses than for the respective equivalence.

In our example, the sub-tree at node t; has negative polarity, so we introduce the
implication bV ¢ — t;; the sub-tree at node t3 has positive polarity, so we introduce
the implication t3 — a VvV —t; (nodes whose operator is the negation—like to—are
condensed with their child node). Then the conjunction of the implications and the
variable of the root node is built:

ngNF((p) =t3 /N (tg — a\/ﬁtl) A (b\/C — tl)

Each implication can then be transformed into CNF which requires at most two
clauses for binary and and or:

PECNF(@) = t3 A (—t3 V aV —t)) A (b V 1) A (—c V).

Obviously the Plaisted-Greenbaum transformation yields a smaller CNF. However,
in contrast to the Tseitin transformation it does not preserve the number of satisfying
assignments of the original formula. This can be easily seen in the example, since for
the node t; only the implication b V ¢ — t; is introduced, but not the backwards
direction t; — b V ¢, we find two models with b +— false and ¢ — false for
this sub-formula: (1) {t; — true,b — false,c — false}, and (2) {t; — false,b—
false, c — false} of which of course only (2) is a valid model in terms of the original

12

2.1 Propositional Logic

formula. In our example, the original formula and the Tseitin transformation have a
model count of 5, whereas the Plaisted-Greenbaum transformation has a model count
of 6. Therefore when using the Plaisted-Greenbaum transformation, the model count
of the original formula is not preserved. This gets especially interesting, when we
count models with methods which require a CNF formula as input (cf. Section 2.4).

It can be useful to visualize an abstraction of a CNF in a graph. The interesting
question is which variables are connected with other variables in the sense that they
occur in the same clause. Such a data structure is called a constraint graph.

Definition 2.14 | Constraint Graph Given a clause set C, a constraint graph cg(C) =
(V,E)isan undirected graph where the vertices are the variables of C, V = vars(C).
Two vertices v; and v, share an edge if they occur both in the same clause of C.

E ={{v1,v2}|v1 € vars(c) and v, € vars(c) and ¢ € clauses(C)}
Example 2.3 | Constraint Graph We consider the clause set
C ={{a,7b,c},{b,~d},{d, e, f}, 3

The corresponding constraint graph cg(C) is shown in Figure 2.2. The edges of
each clause are color-highlighted.

Figure 2.2 | An example for a constraint graph

In later sections we will use the resolvent of two clauses of a CNF.

Definition 2.15 | Resolvent Given two clausesc; = (xVA;V---VA,)and ¢c; = (—xV
Ant1 V- -V Ay) where a literal with variable x occurs with positive phase in ¢; and
with negative phase in ¢, and A; for i = 1...m are arbitrary literals. The resolvent
of ¢y and c; is defined as resolvent(cy,co) = A1V - VALV AL 1 V-V AR).

Example 2.4 | Resolvent Let¢c; = (x VyV —z)and ¢co = (—x V =z V a). Then
resolvent(cy,co) = (yV—zVa).

Disjunctive Normal Form (DNF)

The dual normal form to CNF is the disjunctive normal form (DNF).

Definition 2.16 | Disjunctive Normal Form (DNF) A minterm is a conjunction of literals.
A formula is in DNEF if it is a disjunction of minterms.

13

2 Formal Methods

A DNF is unsatisfiable if it contains no minterm or only minterms with contradicting
literals in it, i.e. two literals 1 and —1. Each minterm without contradicting literals
encodes one satisfying (but possible partial) assignment of the formula. Variables x
occurring in the formula but not in the minterm are called ‘don’t care” variables since
their assignment is irrelevant for the satisfaction of the minterm. A DNF is satisfiable,
if one minterm is satisfiable. If each minterm contains all variables of the formula,
we call it a canonical DNF. A DNF of a formula ¢ is denoted by dnf ().

As for CNF, an obvious algorithm for transforming a NNF into a DNF is based on the
application of the distributive law but can again lead to an exponential blow-up of the
formula. Another way for transforming an arbitrary formula into a canonical DNF is
to enumerate all models of the formula and convert each model into a minterm.

Example 2.5 | Transformation of a Formula into a Canonical DNF We consider
o =a/A(bV—c).

The formula has three models: {a, b, c}, {a, b, ~c}, and {a, —b, —c}. Converting each
model 3 to a minterm with ass2form(f3) and conjoining them yields the canonical
DNF

(aAbAc)V (aADA—=C)V (aAN—=bA—c).

2.1.3 Cardinality Constraints

Cardinality constraints play a big role in our applications. We introduce them here.

Definition 2.17 | Cardinality Constraint A cardinality constraint is a propositional for-
mula encoding a restriction on the number of variables assigned to true. Let A
be a set of variables and n an integer. We distinguish three different cardinality
constraints.

1. cc_(A,n) evaluates to true if and only if exactly n variables from the set A
are assigned to true.

2. cc=.(A,n) evaluates to true if and only if more than n variables from the set
A are assigned to true.

3. cc<(A,n) evaluates to true if and only if less than n variables from the set
A are assigned to true.

By far the most important constraints are cc_(A, 1) and cc. (A, 2) which encodes
the fact that exactly one variable is set to true or zero or one variables are set to true
respectively. We introduce shortcut notations cc_;(A) and ccg;(A) respectively.
These two constraints can be encoded straightly in CNF without the introduction of
auxiliary variables and with O(n?) clauses:

ceoiffar,..an) = \/ a|A A N\ CaV-g) @1

ie{l,...n} ig{l,..,n}jeli+1,...,n}

14

2.2 Satisfiability Solving

cecil{ar,...,an}) = /\ /\ (—ai V —aj) (2.2)

ie{l,...,n}je{i+1,...,n}

There is a lot of work [Warners, 1998; Bailleux & Boufkhad, 2003; Jackson & Sheri-
dan, 2004] on how to encode arbitrary cardinality constraints like in Definition 2.17.
A good overview can be found in [Sinz, 2005]. It is possible to encode arbitrary
constraints without introducing new variables. Usually this is done by explicitly
excluding all combinations which do not satisfy the constraint. E.g. in the case of a
cc<({ay,. .., an}, k) constraint this yields

CC< ({ah sy aTL}7 k') = /\ \/ —aj (23)
M C{1,...,n} M
IM| =k

All assignments with k (and thus also more) variables assigned to true are excluded.
However, this approach yields (}) clauses of length k, which in the worst case can

lead to O(2™/+/m/2) clauses [Sinz, 2005].

2.2 Satisfiability Solving

One of the big problems of propositional logic is the so called satisfiability (SAT)
problem.

Definition 2.18 | SAT Problem The SAT problem is the question whether a proposi-
tional formula ¢ is satisfiable or not. We have sat(¢) = true iff there is a model
such that § = ¢@. A SAT solver is an implementation of the function sat—hence a
tool that given a propositional formula ¢ returns SAT if ¢ is satisfiable or otherwise
UNSAT.

2.2.1 The DPLL Algorithm

The naive approach to solve the SAT problem is to test for all possible total assign-
ments (3 of vars(¢) if p = ¢. However, this approach has a worst-case complexity
of O(2vars(®)]) and therefore works only for very small formulas up to a few vari-
ables. In 1971 Stephen Cook proved that the SAT Problem is NP-hard [Cook, 1971].
Since then the search for efficient algorithms for the SAT problem is directly related
to the question whether P = NP. However, the first serious approach to tackle
the satisfiability problem goes back to 1960 and was introduced by Davis and Put-
nam [Davis & Putnam, 1960] which was two years later improved by Davis, Logeman,
and Loveland [Davis et al., 1962]. Both papers do not address the SAT problem itself
but were interested in semi-decision procedures for first order logic. The base for

15

2 Formal Methods

the first SAT solvers was the algorithm of the 1962 paper, however—to honour Put-
nam’s contribution in the original paper—the approach is often referred to as DPLL
algorithm.

The basic idea of the DPLL algorithm is the interweaving of a search and a deduction
phase. In the deduction phase we deduce new variable assignements from the given
formula and the current assignment. If no further assignments can be deduced
anymore, the search phase starts with heuristically choosing a variable and assigns it
to a truth value. The DPLL algorithm takes propositional formulas in CNF as input.
To understand the procedure, we need to to clarify two notions: empty clauses and
unit clauses.

Definition 2.19 | Empty Clause A clause c is empty under the assignment f3 if it eval-
uates to false under this assignment, eval(c,) = false.

Definition 2.20 | Unit Clause A clause c is unit under an assignment (3 if all but one
variables of the clause are assigned in 3 and each literal 1 of c whose variable is
assigned evaluates to false under (3.

We illustrate these two concepts with an example.

Example 2.6 | Empty Clauses and Unit Clauses We consider the clauses
cp=xVyV-—z

and

co=xVuy.

Given the assignment {x — false,y — false}, the clause c; is unit, because all
variables but z are assigned and both literals x and y evaluate to false under
the assignment. The clause c; is empty because it evaluates to false under the
assignment.

Unit clauses are one way to deduce new knowledge from a formula and a given
assignment. The DPLL procedure searches for a satisfying assignment of a given
CNF. Therefore, if a unit clause is encountered, the unassigned variable must be
assigned in a way that the clause evaluates to true otherwise the clause and hence
the clause set would evaluate to false. The procedure of searching iterativeley for
unit clauses and assigning the respective variables is called unit propagation.

We can now present the DPLL procedure in Algorithm 2.1. For a clause set C the
procudure is initially called with dp11(C, ().

Obviously the largest impact in the otherwise deterministic procedure has the selec-
tion of the next branching variable in Line 6. Many heuristics have been developed for
good experimental results. An overview can be found in [Marques da Silva, 1999].

16

2.2 Satisfiability Solving

Algorithm 2.1 | The DPLL algorithm: dp11(C, 3)

Input: A clause set C and the current assignment 3
Output: SAT if C is satisfiable, UNSAT otherwise

1 unitpropagate(C, 3)

2 if § | C then

3 | return SAT

4 if C contains an empty clause under {3 then
| return UNSAT

choose x € vars(C) \ dom({3)

if dp11(C, p U{x — true}) = SAT then
| return SAT

else

10 | returndpll(C,B U{x — false})

Gl

© e N

2.2.2 The CDCL Algorithm

The largest drawback of the DPLL algorithm is that it cannot learn any new infor-
mation from unsatisfying assignments. Therefore it can happen that during the
execution of the algorithm the same conflict (empty clause) is encountered again
and again. In the mid-90s a huge improvement over DPLL was developed by two
research groups independently: Conflict-Driven Clause Learning (CDCL) [Marques da
Silva & Sakallah, 1996; Bayardo & Schrag, 1997]. The basic idea of CDCL is that
every time an empty clause is reached a new clause is “learned”, i.e. added to the
SAT solver’s problem clause set. This newly learned clause prevents the solver from
running into the same conflict again. This section gives a short introduction into the
CDCL algorithm. An extensive introduction can be found in [Marques da Silva et al.,
2009]. Algorithm 2.2 summarizes the basic CDCL algorithm.

The algorithm maintains a decision level which is initially set to zero (Line 1) and
which is increased with every variable decision for a new variable assignment
(Line 13). The level is decreased with every backtracking (Line 6). In each itera-
tion first unit propagation is performed (Line 4), i.e. all unit clauses are identified
and respective variables are assigned. If the clause set contains an empty clause, the
method analyzeConflict(e, C) is called (Line 6). This method is the crucial part of
the CDCL algorithm: it analyzes the conflict at hand, learns a new clause and returns
a new backtrack level. If the conflict is on level 0, the conflict analysis returns —1
and the formula is unsatisfiable (Lines 7/8). A conflict at level 0 means the formula
can be proven unsatisfiable by using only unit propagation. If the backtrack level
is > 0, all decisions down to this level are undone (Line 9). If there is no empty
clause in the current clause set (Lines 10-15), it is checked if the formula is already
satisfied. If so, SAT is returned (Lines 11/12). If not, the level is increased by one and
a new unassigned variable x and a truth value t are chosen by some strategy and x is
assigned to t before going back to Line 4.

17

2 Formal Methods

Algorithm 2.2 | The CDCL algorithm: cdc1(C)

Input: A clause set C
Output: SAT if C is satisfiable, UNSAT otherwise

1 level =0

2 B=0

3 while true do

4 unitpropagate(C, f3)

5 if C contains an empty clause e then
6 level = analyzeConflict(e, C)
7 if level = —1 then

8 | return UNSAT

9 backtrack(level)

10 else

11 if eval(C,) then

12 L return SAT

13 level =level +1

14 choose x € dom(f) and a truth value t
15 B=PUlx+— 1]

We now need to take a closer look at the conflict analysis procedure in Line 6. It can
be illustrated with the help an implication graph. An example of such an implication
graph is given in Figure 2.3.

Original clauses: level 1 @L»@\
1 =(uV-—-w)

To = (—UV —z)

s = (W —y) ol
T4 = (W Vv _‘X) T3

5=

xVyVz) level2 (—wW :@

Figure 2.3 | An example implication graph

A node x in the implication graph indicates an assignment x +— true, a node —x
indicates an assignment of x — false. Nodes without incoming edges (blue nodes)
are variables which were chosen by the algorithm in Line 14; they are referred to
as decision nodes. Nodes with incoming edges (white and red nodes) result from
unit propagations (Line 4). The clause annotated to each edge is the clause which
caused the unit propagation. For example when assigning u +— true the clause
T2 = (~uV—z)is the reason that z has to be assigned to false during unit propagation.
The two red nodes indicate conflicting nodes, i.e. x has to be assigned to true and
false at the same time.

18

2.2 Satisfiability Solving

From the implication graph the flow of the algorithm can be reconstructed: in the
example of Figure 2.3 first—on level 1—variable u was assigned to true. Because
of the clause 73 the variable z was propagated to false. No further propagations
were available, so on level 2 variable w was chosen as next decision and was assigned
to false. Because of this decision and the clause r4 variable x was propagated to
false. Variable y was propagated to false because of clause 3. Now z and y are
assigned to false and because of 15 the variable x would also have to be assigned to
true which yields a conflict because it is already assigned to false.

To learn a new clause which avoids this assignment in the future we have to find a
cut dividing the conflicting nodes (red) from the decision nodes (blue). Each node
which has an outgoing edge through the cut is in the newly learned clause. Figure 2.4
shows three examples for such a cut.

(a) decision clause (b) 1-UIP clause (c) first new clause

Figure 2.4 | Example for different cuts in an implication graph

The first cut which is always possible cuts the implication graph immediately after
the decision nodes. In this case only the edges from the decision nodes go through
the cut, therefore only these variables are in the newly learned clause. Looking at the
example in Figure 2.4 (a), the edges from u and —w go through the cut. In order to
avoid the conflict on x in the future, the simultaneous assignment of u — true and
w — false must be forbidden. This can be done by adding —=(u/A—w) = (—uVw) to
the solver—a new clause is learned. This clause is referred to as the decision clause.

Another possibility is shown in Figure 2.4 (c), where the graph is cut immediately
in front of the two conflicting nodes. In this case the nodes —z, —y, and —w have an
outgoing edge through the cut, so the newly learned clause is =(—z A~y A —w) =
(zVy Vw). The most common strategy to learn new clauses however is the first
unique intersection point (1-UIP clause) shown in Figure 2.4 (b). The 1-UIP is reached
when only one variable in the newly learned clause is at the highest level. In the
example graph, the 1-UIP clause is (z V w) where only one variable—w—is on the
highest level two.

If the 1-UIP strategy for learning new clauses is chosen, the backtrack level in Line 6
of Algorithm 2.2 can be computed by returning the second highest level in the newly
learned clause. In the example of Figure 2.4 after adding the 1-UIP clause (z V w),
the backtrack level is one. This leads to the effect that the variable at the highest
level (in this case w) is unit after backtracking. The algorithm backtracks to level one,

19

2 Formal Methods

and immediately w gets propagated to false because of the newly learned 1-UIP
clause.

There is a direct relation between the cuts in the implication graph and resolution
on the clauses involved in the conflict. Each cut corresponds to one resolution step.
Figure 2.5 illustrates the situation.

conflict reason 1 conflict reason 2

(wV —x) xVyVz)

reason for —y

first new clause (W V Y V Z) (W _‘y)

\ / reason for —z

V
1-UTP clause (W 'V z) (—uV —z)
V

N

decision clause (W V —u)

Figure 2.5 | Correspondence between cuts in the implication graph and resolution

The first new clause is the result of resolving the two reasons for the conflict. In our
example the two reasons for the conflict on x are the clauses r4 and r5 and therefore
resolvent(ry,75) = (WV y V z) is the first new clause. Then in each step the unit
propagation reason clause of one variable (in reverse order of their assignment) is
resolved with the current clause until a certain stop criterion is met. In the 1-UIP
case the stop criterion is that there is only one variable in the newly learned clause at
the highest level. If there are only decision variables in the learned clause, no more
resolution steps can be performed and the decision clause is reached.

Since the newly learned clause c is computed by resolution of the original clause set
(and other learned clauses), it does not change the semantics of the original clause
set C of the CDCL algorithm, i.e. C = CU{c}.

2.2.3 Implementation of a Modern CDCL SAT Solver

The SAT community benefitted to a great extent from the SAT competition! which
started in 2002. Researchers can submit their SAT solvers and compete with other
solvers on different sets of benchmarks (random, hand-crafted, industrial). Since it is
a requirement to open source the code of the submitted solver, other researchers can
quickly adopt new improvements in their solvers. Many successful solvers which are
used in industry today were winners in some of the categories in the SAT competition,
among them Chaff? [Moskewicz et al., 2001], MiniSAT® [Eén & Soérensson, 2004],

http://www.satcompetition.org
2http://www.princeton.edu/~chaff/zchaff.html
Snttp://minisat.se

20

http://www.satcompetition.org
http://www.princeton.edu/~chaff/zchaff.html
http://minisat.se

2.2 Satisfiability Solving

Rsat* [Pipatsrisawat & Darwiche, 2007], Picosat® [Biere, 2008], SATzilla® [Xu et al.,
2008], or glucose’ [Audemard & Simon, 2009]. All of these solvers are implemented
in C or C++. Especially MiniSAT was a big leap forward: this implementation of
the CDCL algorithm counts less then 1000 lines of code and is very clear and well
documented. It was the origin of many other solvers and improvements, among
them the Java implementation of MiniSAT, Sat4j®[LeBerre, 2010].

The key points of modern CDCL solvers are lazy data structures, conflict-driven
branching heuristics, search restarts, and clause deletion strategies [Marques da Silva
et al., 2009]. The following sections will briefly present these techniques before the
last section shows an example of an interface to a modern CDCL solver.

Lazy Data Structures

If you look at the CDCL algorithm, there are two lines which look harmless, but are
very difficult to implement efficiently. The first one is Line 11 where the formula is
evaluated. Evaluation of a large CNF means you have to look for a literal evaluating
to true in each clause. If you have to repeat this step in each iteration of CDCL it is
too time consuming. This problem is usually circumvented by not checking if the
formula is already satisfied, but by checking if there are still variables unassigned. If
there are no more variables unassigned and no conflict arose, the formula is satisfied.
But the more important problem lies in Line 4: the unit propagation. Modern SAT
solver spend up to 90% of their time in the unit propagation. If you implement unit
propagation naively you have to search all clauses for unit clauses among them. After
propagating one literal you have to repeat this step, because there can be new unit
clauses after assigning a variable.

The solver Chaff proposed a new data structure for efficiently finding unit clauses: the
watched literal scheme [Moskewicz et al., 2001]. The observation is that you only need
to watch two literals in each clause in order to be able to determine if it is satisfied,
unit, or empty—and only these three states matter. The situation is illustrated in
Figure 2.6.

We look at the clause (—aVV —b V ¢V d V e). For each clause we store pointers to
two literals, w; and wy, the watchers. As long as these watchers point to literals with
unassigned variables, the clause can be neither unit nor empty. First, variable e is
assigned to false, but since e is not watched in the clause, no action is performed.
Next, variable a is assigned to true, one of the watched literals is affected, it now
evaluates to false, therefore we have to search a new watched literal—the next in
line is chosen. At level three b is assigned to true and again we have to search for a
new watched literal for wo. When now on level four the variable c gets assigned and
the literal in the clause evaluates to false, we try to search for a new watched literal

4http://reasoning.cs.ucla.edu/rsat
Shttp://fmv.jku.at/picosat
®http://wuw.cs.ubc.ca/labs/beta/Projects/SATzilla
"http://wuw.labri.fr/perso/lsimon/glucose
Shttp://www.sat4j.org

21

http://reasoning.cs.ucla.edu/rsat
http://fmv.jku.at/picosat
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla
http://www.labri.fr/perso/lsimon/glucose
http://www.sat4j.org

2 Formal Methods

Q1 @2 @3
e[efefa]e] !ﬁa ﬁbl Idl - pnn *
W1 Wao W1 WQ Wa Wi W1 Wa

@2 @3 @4 @1 @2 @3 @4

unit satisfied

Figure 2.6 | The watched literal scheme

for wy but do not find another one which is not watched and not assigned. In this
case we look at the second watcher ws: if it points to a literal with an unassigned
variable, the clause is unit, if it points to a literal which evaluates to true, the clause
is satisfied, if it points to a literal which evaluates to false, the clause is empty. If
after an assignment a literal evaluates to true, the watcher does not have to be moved
(like in the next step). Also in case of backtracking, the watchers can stay at their
position.

The watched literal scheme can be implemented very efficiently. The solver internally
maintains two watch-lists for each variable: one where it is watched in positive literals,
and one where it is watched in negative literals. If a variable x gets assigned to true
only the watched clauses in the negative watch-list of x have to be processed—not
the whole set of clauses like in a naive apporach. Also, one has never to evaluate
the formula explicitly. If there is no empty clause, and all variables are assigned, the
CNF is satisfied. So Lines 11/12 of the algorithm can be deleted and SAT is returned
if there is no more variable left to assign.

The watched literal scheme also allows for a very efficient way of dealing with binary
clauses: for a binary clause (x; V x2) one does not need to explicitly store the clause;
it is sufficient to store only the positive and negative watch-list on x; and x since the
watchers can never move on binary clauses. This is especially interesting because we
often have to deal with large amounts of binary clauses stemming from cardinality
constraint encodings (cf. Section 2.1.3). This special treatment of binary clauses also
allows to propagate them first in unit propagation which leads to the effect that
cardinality constraints are always propagated first.

Conflict-Driven Branching Heuristics

We have already seen in Section 2.2.1 that the heuristics how to choose the next
variable in the DPLL algorithm prove crucial to the solving process. For the DPLL
algorithm these heuristics often based on sheer numbers: number of occurrences

22

2.2 Satisfiability Solving

of variables, number of occurrences of literals, or number of occurrences in short
clauses [Marques da Silva, 1999]. With the CDCL algorithm, a new criterion to take
into account for those heuristics arose: the activity of variables. In the CDCL case,
the activity is a measure how often a variable is used in conflict resolution. The idea
behind this is that variables that occur often in conflicts are important for the problem
and should be assigned early.

The first heuristic which was proposed using this measure was VSIDS (Variable State
Independent Decaying Sum) [Moskewicz et al., 2001]. VSIDS was designed with lazy
data structures in mind and has a very low computation overhead. Each variable
gets an initial activity which is increased whenever the variable is used in the 1-UIP
conflict resolution of the learning process. Recent solvers have improved this heuristic
and e.g. decrease the activity from time to time in order to favour variables which
occurred more often in recent conflicts.

Search Restarts

During the search for a satisfying assignment for the formula at hand, the CDCL
algorithm can sometimes hit a particulary hard partial assighment. To avoid such local
maxima in the search space, it has proved useful to restart the algorithm from time to
time. When restarting the SAT solver, all assignments to variables are deleted, watch-
lists are let untouched and also learned clauses are kept. Therefore the branching
heuristics can start from scratch and perhaps investigate another part of the search
tree.

This idea was first proposed at the end of the 90s for random instances [Gomes et al.,
1998] and it was also shown very efficient for large and hard industrial formulas [Bap-
tista & Marques da Silva, 2000]. Usually the solver is restarted after a certain number
of conflicts encountered. However, it is important to increase the interval between
restarts to guarantee completeness of the algorithm. In the early years of CDCL
SAT solvers, restarts were performed first after a certain number of conflicts and
then this interval was doubled at every restart, e.g. the first restart was performed
after 50 conflicts, the next after 100, and so on. Today, most implementations per-
form rapid restarts. In [Huang, 2007] it was shown that restarts according to Luby’s
strategy [Luby et al., 1993] perform best on industrial problem sets.

Clause Deletion

For large SAT instances, CDCL can learn millions of new clauses. This can lead to a
memory problem in implementations of SAT solvers. Already in [Marques da Silva &
Sakallah, 1996] it was observed that e.g. very large learned clauses are often not very
useful. In the early years, clauses were deleted when they were too large or when
the number of unassigned literals in the learned clause passed a certain threshold.
Today most SAT solvers use activity heuristics for clause deletion. Each clause gets an
initial activity which is increased with every conflict where this clause is used in the
conflict resolution of the 1-UIP clause. From time to time (e.g. after every restart or

23

2 Formal Methods

when the number of learned clauses passed a certain threshold) a certain percentage
of clauses with low activity is deleted. This activity based clause deletion was first
implemented in BerkMin and presented in [Goldberg & Novikov, 2002].

Interface for a Modern CDCL SAT Solver

The core methods of a modern CDCL solver include

S1) add, adds a clause to the solver,
S2) solve, solves the conjunction of all clauses currently added to the solver

S3) model, returns a model for the currently added clauses if there is any.

Usually add is overloaded so it can take also an arbitrary propositional formula ¢
which is not a clause or in CNF as input. The formula ¢ is then converted to CNF
before it is added to the solver. It is not necessary to use a CNF conversion which
produces an equivalent formula—equisatisfiability is obviously sufficient in the case
of a SAT solver. Mostly the Plaisted & Greenbaum transformation (cf. 2.1.2) is used
for this conversion. In this case the SAT solver needs to track the new variables which
are introduced during the transformation in order to avoid the double usage of new
variables. Special preprocessing techniques for CNF formulas have been developed
which try to identify subsets stemming from such Tseitin transformations and make
use of their structure [Biere & Eén, 2005].

The method solve executes the CDCL algorithm on the conjunction of all clauses
and formulas added by add. It returns SAT if the formula currently stored in the
solver is satisfiable and UNSAT in the case of a contradiction.

If the formula is satisfiable, the method model can return a model. This model is just
the current variable assignment of the CDCL algorithm which satisfied all clauses.

2.2.4 Incrementality and Decrementality

In many applications, the SAT solver gets a very large formula for which it computes
the satisfiability over hours. In this case the time for adding and storing the formulas
in the solver is vanishingly low compared to the solving time. However, in the
applications which will be presented in Chapter 4 and Chapter 5 we have a slightly
different scenario. A large formula (the product description formula, cf. 3.4) is added
to the solver. Then many small constraints are tested in conjunction with this formula.
Almost all freely available SAT solvers only support the addition of new formulas to
the solver, but not the deletion of old ones without resetting the whole solver state.
In the presented applications an incremental and decremental interface to the solver
is preferable. Such an interface can be realized with the help of an internal state stack
of the solver. A state on this stack can then be marked and be returned to. Two new
methods are added to the interface in order to do so:

24

2.2 Satisfiability Solving

S4) mark, marks the current solver state, and

S5) undo, returns the solver to the last marked state.

Before we go into detail of these two methods, we will have a look at a small execution
example of a solver with this interface.

Example 2.7 | Incremental & Decremental Interface of a SAT Solver The usage of the
incremental and decremental interface to a SAT solver is illustrated in Figure 2.7.

V= V=
add((aVb) Ac) add(d \/ —e) avme (. Ve
——————» | (aVb)A¢ |————— | (aVDb)Ac |— | (aVDb)Ac

bA—e
-a —a —a
add(—a) dV=e mark() dV=e add(b /A —e) dv—e solve()
——| (aVb)Ac |—»| (aVb)Ac¢ |—————» | (aVb)Ac |——— SAT
—-bAd
—a —a
dV—e dVv —e
undo() add(—b A d) solve()
—— | (aVb)Ac |— | (aVDb)Ac UNSAT
—-bAd
dVv —e A dV—e
d dd(— 1
wdol) | qvpae [2ERAD L (vpyac BOCl)

Figure 2.7 | Example for a usage of the incremental / decremental SAT Solver interface

First the formulas (a V b) A cand (d V —e) are added to the solver and the solver
state is marked (first line). Then the formula —a is added and the state is marked

once again. Now the formula b A —e is added and the solve method is called.

Obviously the conjunction of the formulas on the solver is satisfiable. In the next
line undo is called and the last marked solver state is restored. Then the formula
—b /A d is added to the solver. Now the formula beomes unsatisfiable (—a and —b
conflict with a V' b). In the next line the solver state is once again undone. The
formula —b /\ d is added and now the formulas on the solver are satisfiable (since
—a got deleted by the last undo).

Usually modern implementations of SAT solvers internally work with arrays to store
variables, clauses, and watch-lists. Among others, we have the following fields in a

SAT solver:

25

2 Formal Methods

1. status, the current solver status, i.e. whether the current formula contains a
conflict or not

2. original, an array containing pointers to the original clauses of the input
problem

3. learnts, an array containing pointers to the learned clauses
4. variables, an array containing pointers to the variables and their assignments

5. watchlists, an array double the size of the variable array, containing for each
literal a pointer to the clauses which it currently watches

If the solver maintains a stack as mentioned above to store the solver state, all these
arrays would have to be stored on the stack. This would be far too memory consuming.
Instead we use the fact that the solver can only add new clauses, but never delete old
ones (ignoring the fact that clause deletion could be implemented in the solver). This
particularly means that the arrays original, learnts, variables, and watchlists
can only grow in size. They only shrink when the solver state is undone to a former
state. If the solver does not change the order of clauses and variables stored in the
arrays, we only need to store the size of these data structures on the stack. When
undo is called, the arrays are shrunk to their last size stored on the stack. Of course,
if the solver uses clause deletion or stores binary clauses only in watch-lists, some
more bookkeeping is required.

2.2.5 Unsatisfiable Cores and Proof Tracing

If a formula is satisfiable, this can be easily verified: let the SAT solver produce a model
and evaluate the formula with this model. But what, if the formula is unsatisfiable?
The first idea which comes to mind is that it could be useful to extract the core of the
conflict, i.e. the set of clauses which really contributed to the unsatisfiability. This
core should not contain any clauses not relevant to the conflict. In the literature this
is often called unsatisfiable core or minimal unsatisfiable set (MUS). The second idea is
that if a formula is unsatisfiable there has to be a resolution derivation of the empty
clause. We call this a resolution proof. Both techniques can be found in theory and
practice of SAT solving.

Minimal Unsatisfiable Sets

When it comes to unsatisfiable cores or sets, two notations have to be distinguished:
(1) unsatsifiable cores/sets, and (2) minimal unsatisfiable cores/sets. Each minimal unsat-
isfiable set (MUS) is also an unsatisfiable set, but we have also the property that
removing one clause of the MUS renders it satisfiable.

Definition 2.21 | Unsatisfiable Core Given a CNF ¢ with its clause set clauses(@)
which is unsatisfiable. An unsatisfiable core of ¢, unsatCore(¢), is any subset
U C clauses(@), such that U is also unsatisfiable.

26

2.2 Satisfiability Solving

Definition 2.22 | Minimal Unsatsifiable Set (MUS) Given a CNF ¢ with its clause set
clauses(@) which is unsatisfiable. A minimal unsatisfiable set of ¢, mus(¢), is a
subset U C clauses(@), such that U is unsatisfiable and for any ¢ € U we have
that U \ {c} is satisfiable.

The naive algorithm to compute a MUS of an unsatisfiable clause set with the help
of a SAT solver with decremental interface (cf. Section 2.2.4) is presented in Algo-
rithm 2.3.

Algorithm 2.3 | Computing a MUS: mus(C)

Input: A clause set C which is unsatisfiable
Output: A MUS mus(C) of C
1 M=0
2 L = an ordered list of the clauses of C
3 solver = new incremental/decremental SAT solver
4 foreach clause c € L (in order) do
5 solver.mark()
6 solver.add(c)

7 foreach clause ¢ € L (in reverse order) do
8 solver.undo()

9 solver.mark()

10 solver.add (M)

11 if solver.solve() = SAT then

12 L M =MU{c}

13 solver.undo ()

14 return M

The MUS is stored in M. L is an ordered list of the clauses of C. First we add all
clauses of L in a given order to the solver and mark the solver state before each clause
(Lines 4-6). Now the clauses are processed in reverse order. Each clause is deleted
from the solver (Lines 8/9) and the current MUS is added temporarely to the solver
(Line 10). If now the formula currently held by the solver is satisfiable, the current
clause c (not on the solver) must be in the MUS because taking it away makes the
whole formula (including the current MUS) satisfiable. This step is repeated for each
clause.

Of course, in order to compute MUSes of large formulas, an improved algorithm
has to be used [Lynce & Marques da Silva, 2004; Liffiton & Sakallah, 2008]. It is also
important to notice that in general there can be a large number of different MUSes for
a formula. In [Liffiton & Sakallah, 2005] the authors compute MUSes for unsatisfiable
product formulas of Daimler vehicles. There are instances where there are > 100.000
MUSes. Therefore computing a MUS which has a global minimum number of clauses
is often not feasible.

27

2 Formal Methods

Example 2.8 | Unsatisfiable Core and MUS Consider the clause set
C={(aVbVec),(—a),(=b),(—c),(cVd),(—dVe),(—eVa)l
An example for an unsatisfiable core is
unsatCore(C) ={(aVbVc),(—a),(—b),(—c),(cVd)}

Obviously the clause (cV d) does not contribute to the conflict which is determined
by the first four clauses, but in an unsatisfiable core we do not have minimality. A
MUSof Cise.g.

mus(C) ={(aVbVc),(~a),(=b), (—c)}

Every clause in the MUS is required—removing one of them turns the clause set
satisfiable. Another example of a MUS is

mus(C) ={(—a), (=¢), (¢ V d), (~d Ve),(me V a)}.

Resolution Proofs

Instead of just computing a (minimal) unsatisfiable set, it is also possible to compute
a resolution proof deriving the empty clause. All clauses involved in the resolution
proof then form an unsatisfiable set. In [Zhang & Malik, 2003] it was shown that a
CDCL SAT solver can be used to generate such resolution proofs.

We have already seen how the conflict analysis of the CDCL algorithm computes new
clauses with resolution. For each variable which is assigned by unit propagation,
a reason is stored. If a formula is unsatisfiable, CDCL will at some point learn
enough clauses so that there is a conflict caused by unit propagation at level zero
and the algorithm returns UNSAT. The basic idea now is that the solver has to store
the resolution proof for each learned clause in terms of original clauses and learned
clauses. At the end of the algorithm the last conflict yields the empty clause which is
the root of the resolution proof. From there on we unwind the resolution proofs for
each involved clause until we have original clauses at each leaf. In order to efficiently
store the resolution proofs, each clause gets a unique ID. In [Zhang & Malik, 2003]
this procedure is summarized in three steps:

(1) Each time a learned clause is generated, the clause’s ID is recorded, together
with the IDs of the clauses that are involved in generating this clause.

(2) If the conflict analysis is called at level zero, the solver will record the IDs of
the clauses that are conflicting at the time before returning -1.

(3) Before returning UNSAT, the solver will record all the variables that are assigned
at decision level zero together with their values and the IDs of their reason
clauses.

This is enough information to compute a proof trace of the final conflict. The com-
putation of the proof trace can be realized with a depth first approach or a breadth

28

2.3 Knowledge Compilation Formats

first approach [Zhang & Malik, 2003]. A summary of current algorithms for memory
efficient proof tracing can be found in [Asin et al., 2010].

In order to generate a proof of an unsatisfiable formula, the interface of the solver is
extended with

S6) proof, returns a resolution proof if the current formula is unsatisfiable.

Combining the ability of proof tracing together with the decremental and incremental
interface of the last section yields a very powerful solver which can be used in many
industrial-critical applications. The author of this dissertation has implemented such
a solver which implements the methods S1) — S6) and which appears to be the only
solver which supports proof tracing in combination with an incremental / decremental
interface (cf. Section 6.1.3).

2.3 Knowledge Compilation Formats

If we look at a propositional formula as a knowledge base, we can query this base
with different types of questions. Is the formula satisfiable? How many models does
the formula have? Does this formula entail another formula? Is this formula equivalent to
another formula? As with programming languages, we can distinguish two major
approaches to solve these queries:

(1) We compute the answer to each question individually on the original formula
(analogous to an interpreted programming language)

(2) We compile the original formula into a more distinct format in which we can
answer the queries faster (analogous to a compiled programming language)

A SAT solver e.g. falls in category (1). If we choose approach (2), we call this (proposi-
tional) knowledge compilation. A generic overview of knowledge compilation can be
found in [Cadoli & Donini, 1997]. An overview of different knowledge compilation
formats for propositional logic (including normal forms like NNF) can be found
in [Darwiche, 2002; Pipatsrisawat & Darwiche, 2008].

An early and well studied knowledge compilation format are binary decision dia-
grams presented by Randal E. Bryant in 1986 which we will look at in Section 2.3.1.
In the last 15 years, Adnan Darwiche has developed many knowledge compilation
formats, among them the decomposable negation normal form and its successors.
We will take a look at this format in Section 2.3.2.

2.3.1 Binary Decision Diagrams

A binary decision diagram [Bryant, 1986] (BDD) is a directed acyclic graph which
represents a propositional formula. It has a single root; each inner node is labeled
with a propositional variable and has two outgoing edges for negative and positive

29

2 Formal Methods

assignment of the respective variable. The leaves are labeled with 1 and 0 representing
true and false. An assignment is represented by a path from the root node to a leaf
and its evaluation is the respective value of the leaf. Therefore all paths to a 1-leaf are
valid (possibly partial) models for the formula. Ordered reduced BDDs (ROBDDs)
are a subset with additional restrictions for the BDDs. Ordering guarantees the same
variable ordering on all paths through the BDD. Reduction guarantees that equivalent
sub-trees of the BDD are compactified and redundant nodes are deleted. An ROBDD
is a canonical representation of a propositional formula with respect to a variable
ordering, meaning the ROBDD of a formula is unique. From now on we will refer to
ROBDDs simply as BDDs and denote an (RO)BDD of a formula ¢ with bdd(¢).

Example 2.9 | BDD Figure 2.8 presents a BDD bdd(¢) for the formula
© = (x1 < x2) V x3.

Solid edges represent the positive assignment, dashed edges the negative assign-
ment.

Figure 2.8 | Example for a BDD

For the notion of algorithms we now present a more formal definition of BDDs and
its extensions.

Definition 2.23 | Binary Decision Diagram (BDD) A binary decision diagram is a tup-
ble (N, r) of a set of nodes N and a distinguished root node r € N. Each inter-
nal node n € N has a label var(n) which represents a propositional variable,
and two outgoing edges high(n) and low(n) which represents the assignments
var(n) — true and var(n) — false respectively. Leaf nodes do not have outgo-
ing edges, and have the two special labels 1 and 0 representing the propositional
values true and false respectively.

For the BDD in Example 2.9 we have the formal representation ({r,n, ns,ns, t, f},7)
with the following nodes:

Node var low high

T X1 nq, No
ny X2 t ns
Mo X9 ns t
ns3 X3 f t
t 1 - -
f 0 - -

30

2.3 Knowledge Compilation Formats

We can now formally define the concept of variable orderings on BDDs.

Definition 2.24 | Ordered Binary Decision Diagram (OBDD) Given a strict and total or-
dering < on a set of propositional variables, an ordered binary decision diagram
(OBDD) is a BDD (N, r) where on each path from the root r to a leaf the variables
comply with the order <. Le. for each node n we have var(n) < var(high(n)) and
var(n) < var(low(n)).

In Example 2.9 we have the variable ordering x; < x2 < X3.

Definition 2.25 | Reduced Ordered Binary Decision Diagram (ROBDD) A reduced or-
dered binary decision diagram is an OBDD with a given variable ordering where
two reduction properties hold:

(1) If there are to equal sub-graphs in the ROBDD, they can be reduced to one
instance.

(2) If the high edge and the low edge of a node n lead to the same node m, the
node n can be deleted.

Example 2.10 | ROBDD Reductions The two reduction rules are illustrated in Fig-
ure 2.9. We consider a BDD for the DNF formula

© = (%1 Ax2)V (%1 Axa Ax3) V (x1 Axa Ax3)V (x1 /A —xa)

A direct translation into a BDD can be seen 2.9 (a). There is an equal sub-graph
involving the nodes with labels x5, x3, and 1 which can be reduced to one instance
as shown in 2.9 (b). Now the root node has two equal successor nodes, so the
root node can be deleted as its assignment always yields the same successor. The
reduced BDD is shown in 2.9 (c). This BDD represents the formula

@' =(x2) V (x2 Ax3)

and ¢ = ¢’ holds.

©
RO
v
delete node with
reduce equal sub-graph (1) equal successors (2)
—_— —_—
(@) (b) ()

Figure 2.9 | Reduction rules in a ROBDD

Once compiled, BDDs allow a large number of polynomial time operations on the
represented formula. Among them are: satisfiability, general entailment, restriction

31

2 Formal Methods

or equivalence. Since satisfiability is a polynomial time operation on BDDs, it is
obvious, that it is NP-hard to transform a given propositional formula into a BDD.
The size (number of nodes) of a BDD is strongly dependent on the variable ordering.
There are many examples where bad orderings produce exponential size BDDs,
whereas a good ordering produces a linear size BDD. So finding a good variable
ordering is a crucial task in the compilation phase. Finding an optimal variable
ordering is an NP-complete problem [Bollig & Wegener, 1996].

2.3.2 Decomposable Negation Normal Form

The knowledge compilation format DNNF (decomposable negation normal form) is
considered more succinct than BDDs [Darwiche, 2001]. It thus might help alleviate
the ubiquitous memory explosion problem of BDDs for large formulas. Apart from
that, DNNF supports several polynomial time queries among which we will focus
our attention to counting the number of models of a DNNF formula in Section 2.4,
and the projection of DNNF formulas to a set of variables in Section 2.6.

Definition 2.26 | Decomposable Negation Normal Form (DNNF) A formula ¢ in NNF
is in decomposable negation normal form (DNNF) if the decompositional property
holds, i.e for each conjunctive sub-formula A; {; of ¢ it holds that vars({;) N
vars(\;) = 0 for all i # j. That means that the operands of a conjunction do not
share variables.

Example 2.11 | Decomposable Negation Normal Form (DNNF) The formula
(aAD)V (aA((—=bVe)Af))
is in DNNF. There are three conjcunctions in the formula
1) (aAb)with{a}n{b} =0,
2) (—bVe) Af) with{b,e}N{f} =0, and
3) aA((—bVe)Af)with{a}n{b,e, f} =0.

Each propositional formula can be transformed into a semantically equivalent DNNF.
This is not too obvious, but consider the canonical DNF of a formula where all unsat-
isfiable minterms are deleted. Such a formula is obviously a DNNF: the decomposi-
tional property has to hold for each minterm. Since all minterms are satisfiable, they
cannot contain conflicting literals, and therfore do not share any variables. Since each
formula can be transformed into such a canonical DNF by enumerating all models
and listing them as minterms, each formula can be transformed into a DNNEF.

There is another interesting property of DNNFs which we will require later: deter-
minism.

Definition 2.27 | Deterministic DNNF A DNNF o is called deterministic (d-DNNF) if
for each disjunctive sub-formula \/; \; the conjunction 1; /\ \; is unsatisfiable for
all i # j. This means that the operands of a disjunction do not share models.

32

2.4 Model Counting

Example 2.12 | Deterministic DNNF The DNNF of Example 2.11 is not deterministic,
since e.g. the two disjunction operands (a A'b) and (a /A ((—b V e) A f)) share the
model {a — true,b > true,e > true,f — true}. An example for a d-DNNF is

(FaAB)V (=bAa) A(lcANd)V (—cA—d)).

Obviously decompositionality holds: no conjunction operands share variables.
There are two disjunctions in the formula:

1) (—a/Ab)V (=b A a), where both operands do not share a model, and
2) (cAd)V (—c/\—d), where both operands do not share a model too.
Therefore the formula is also deterministic.
Again, each formula can be transformed into a d-DNNF. Reconsider the canonical

DNF example which was presented for DNNF: since the DNF is canonical, no two
minterms share a model, therefore it is also deterministic.

In order to compile a CNF input formula into d-DNNF, the first step is to construct
a decomposition tree (dtree) out of the CNF [Darwiche, 2004] and then in a second
step to convert this dtree into a DNNEF. A dtree for a given CNF is a full binary tree
whose leaves are tagged with the CNF clauses. Figure 2.10 shows an example of a
dtree for the CNF

@ = (x1 Vx2) A (%1 V x2) A (x2 V x3) A (%2 V =x3) A (X3 V x4) A (X3 V —xy).

’Xl\/XQ‘ ’ﬂxl\/ﬁm‘ ’xQ\/x;;‘ ’_‘XQ\/_‘Xg‘ ’xg\/m‘ ’—'x;;\/ﬂm‘

Figure 2.10 | Example of a dtree

Each leave represents a clause of ¢; each inner node represents the variables which
are shared by its children. The basic idea is now that the DNNF of an inner node is
the conjunction of the DNNF of its left child and the DNNF of its right child, given
that they do not share any variables. If they share variables, a case analysis has to be
performed on these variables in order to split the children. There are two popular
heuristics for constructing a dtree: (1) using hypergraph decomposition [Karypis &
Kumar, 2000] on a hypergraph constructed from the CNF, or (2) using a decomposition
induced by a variable elimination order, e.g. the min-fill heuristics [Darwiche &
Hopkins, 2001].

33

2 Formal Methods

2.4 Model Counting

Definition 2.11 stated the problem of model counting—counting the number of
satisfying assignments of a propositional formula ¢, denoted by #sat(¢). Analogous
to SAT, which is the canonical NP-complete problem, model counting is the canonical
#P-complete problem. The complexity class #P is the class of all problems p for
which there exists a non-deterministic polynomial-time bound Turing machine M(p)
such that for each instance I(p) of p there exist exactly as many computation paths
of M(p) as solutions for I(p). Intuitively #P is the class of counting problems for
polynomial-time decidable problems. According to [Valiant, 1979] even the counting
problems for polynomial-time solvable problems like 2-SAT, Horn-SAT, or DNF-SAT
can be #P-complete.

In [Kubler et al., 2010] we presented an overview of model counting and its applica-
tion in product configuration. In this paper we only dealt with exact model counting
(in contrast to approximative counting). We distinguish between two different ap-
proaches for exact counting: (1) DPLL-like exhaustive search and (2) knowledge
compilation.

2.4.1 DPLL-Style Model Counting

We have seen the DPLL approach to SAT solving in Section 2.2.2. DPLL is basically
a complete search in the search space of all 2™ variable assignments with early
cuts in the search tree when an unsatisfiable branch is detected. DPLL-style model
counters like sharpSAT® [Thurley, 2006], Re1Sat!? [Bayardo & Pehoushek, 2000], or
Cachet!! [Sang et al., 2004] are extensions to existing SAT solvers and require an input
formula in CNF.

If a formula ¢ with n variables is not satisfiable, the output is 0. If a satisfying (and
possibly partial) assignment {3 is found, the number of models for this (3 is computed
with 2"~Bl and the algorithm proceeds to explore the rest of the search tree. This
approach was first proposed in[Birnbaum & Lozinskii, 1999] and is sketched in
Algorithm 2.4.

There are two important improvements of this DPLL-based approach.The first one is
component analysis [Bayardo & Pehoushek, 2000] where one identifies different com-
ponents Cy, ..., Cy in the constraint graph G of a CNF formula ¢. Let @1, ..., ¢ be
the sub-formulas of ¢ corresponding to the components Cy, ..., Cy. Then the model
count #sat(@) is equal to #sat(@1)-. .. #sat(@n), thus we can calculate the model
count of each component independently. This identification of components can be
performed dynamically while descending into the search tree. The second improve-
ment is the model counting correspondence to clause learning in SAT: component
caching [Sang et al., 2004; Thurley, 2006]. Since during the counting process we often

‘https://sites.google.com/site/marcthurley/sharpsat
Whttps://code.google.com/p/relsat/
Unttp: //www.cs.rochester.edu/u/kautz/Cachet/index . htm

34

https://sites.google.com/site/marcthurley/sharpsat
https://code.google.com/p/relsat/
http://www.cs.rochester.edu/u/kautz/Cachet/index.htm

2.4 Model Counting

Algorithm 2.4 | The DPLL-based model counting algorithm: dpll_mc(¢)

Input: A clause set C and the current assignment 3
Output: The model count #sat(C) of C

1 unitpropagate(C, 3)

2 if § | C then

s | return 2vers(C)l—ldom(p)|

4 if C contains an empty clause under {3 then
5 | return0

6 choose x € vars(C) \ dom({3)
7 return dpll_mc(C, 3 U{x — true}) + dpll_mc(C, 3 U{x — false})

compute counts for the same sub-formulas multiple times, we cache signatures of
sub-formulas and their model count according to certain caching schemes. Variable
selection heuristics as known from SAT have to be adjusted for #sat wrt. component
analysis and caching: while in SAT one tries to narrow down the search to one specific
solution by intelligently choosing the branching variables, in model counting we
try to choose variables where the corresponding constraint graph is decomposed in
various components [Sang ef al., 2005].

2.4.2 Knowledge Compilation Based Model Counting

In the knowledge compilation based approach we convert the formula ¢ into another
logical representation such that #sat(¢) can be computed in polynomial time. We
have seen two popular knowledge compilation formats which allow this polynomial
time model counting: (1) BDDs in Section 2.3.1, and (2) DNNFs in Section 2.3.2.

Model Counting on BDDs

Once a formula ¢ is compiled into a BDD bdd(¢), we can count all paths from the
root node to the true labeled node to get the model count of the formula at hand.
Since not every variable has to be present on every path of the BDD, a single path can
represent more than one satisfying assignment. To be precise, if a path from the root
to the true node consists of n variables, it encodes 2/72r5(®)=" models. Counting
paths from the root to the true node and computing the respective model count of
the path is obviously feasable in polynomial time.

Model Counting on DNNFs

If the model count of a DNNF has to be computed in polynomial time, the DNNF has
to be deterministic. Standard DNNF does not support this operation in polynomial

35

2 Formal Methods

time [Pipatsrisawat & Darwiche, 2008]. For a d-DNNF there are two obvious rules
how to compute the model count:

1. Since in a conjunction A", f; of a d-DNNTF the operands must not share vari-
ables, we can just multiply the models of each operand:

#sat </”\ fi> = 12[#sat(fy).
i=0

i=0

2. Since in a disjunction \/i"_, gi of a d-DNNF the operands must not share models,
we can just sum up the models of each operand:

#fsat (\/ gi> = Z #sat(gi).
i=0

i=0

Example 2.13 | Model Counting on DNNFs We reconsider the d-DNNF from Exam-
ple 2.12:
©=((—aAND)V(=bAa)A((cANd)V (—cA—4d)).

Applying the above rules yields:

#sat(@) = ((1-1)+(1-1)-((1-1)+(1-1)) =4.

2.5 Quantified Propositional Logic

Until now we considered standard propositional logic without quantifiers. Quan-
tifiers “forall” ¥x and ’exists” Ix are well-known objects from first order logic. The
expression Vx[¢] with a propositional formula ¢ and x the name of a propositional
variable encodes the fact that for each assignment of x (true or false) ¢ holds. The
expression Ix[@] with a propositional formula ¢ and x the name of a propositional
variable encodes the fact that there exists an assignment of x (true or false) such
that ¢ holds. We refer to the extension of propositional logic with quantifiers as
Quantified Propositional Logic (QPL).

2.5.1 Syntax and Semantics of Quantified Propositional Logic

We extend the syntax of propositional logic with the universal quantifier Vx and the
existential quantifier 3x. It is important to notice the difference of quantification in
propositional logic versus quantification in first order logic: in first order logic a
quantifier refers to a variable x from the universe of the formula. In quantified
propositional logic the quantifiers refer to propositional variables x and therefore
atomic formulas. However, it is possible to embed QPL in first order logic—various
approaches are discussed in [Seidl & Sturm, 2003].

36

2.5 Quantified Propositional Logic

Definition 2.28 | Bound and Free Variables For a QPL formula ¢ a variable x occurs
bound in @ if there is a quantifier Ix[\p] or ¥x[p] in ¢ with x € vars(\). In this case
we say x is in the scope of a quantifier. Variable x occurs free in ¢ if x occurs in ¢
without being bound. We denote the set of free variables of ¢ with free(¢) and
the set of bound variables with bound().

In an arbitrary QPL formula ¢ a variable x can occur both bound and free, e.g.
© =xAVx[xVyl.

The first occurrence of x is free, whereas the second occurrence is bound. As in first
order logic, bound variables can always be renamed, therefore it is always possible to
separate the set of free and bound variables. In the upper example, we could rename
the bound occurrence of x to x” and get the semantically equivalent formula

@ =x AW [x' Vyl.

We can now proceed to the evaluation of QPL formulas. It is important to notice that
only free variables of a QPL formula are assigned.

Definition 2.29 | Evaluation of QPL Formulas Given a formula ¢ in QPL and an as-
signment 3 total in free(¢), we can compute the evaluation of ¢ under (3 by

true ife=T

false if =1

B(v) if e =vwithveV
if eval(y, f) then false else true if @ =—Y

if eval({y, B) then eval(\o, B) else false if @ =P Ao
if eval(ly, B) then true else eval(\Po, B) if @ =P Vo

VOB = evar (s V s,) if @ =11 — s
eval((Pr — b2) A (b2 — 1), B) if @ =11 < P2
if eval(y, p U{x — true}) then
eval(\(, B U{x — false}) else false if @ = Vx[P]
if eval(\, p U{x — true}) then true
else eval(Y, p U{x — false}) if @ = 3Ix[P]

Example 2.14 | Evaluation of QPL Formulas Given the assignment
f ={x+— true,y — false,z — true},
we consider the two QPL formulas:
1. @1 =xAVa[(aVy) Az
2. @2 =xA3al(aVy) Az

We have eval(@i,3) = false because for a — false the formula evaluates
to false and a is universally quantified. However, @, evaluates to true, thus
eval(@s,) = true, because for a — true the formula evaluates to true and a is
existentially quantified.

37

2 Formal Methods

As for propositional formulas, we can identify several normal forms for QPL, the
most prominent being the prenex normal form.

Definition 2.30 | Prenex Normal Form (PNF) A QPL formula ¢ is in prenex normal
form (PNF) if it is of the form Q1%; ... Qnxn where Q; € {V,J} fori e {1,...,n}
and 1 is quantifier-free. The sequence of quantifiers at the beginning is referred
to as the quantifier prefix, the quantifier free part 1 is called the matrix of ¢ and is
denoted by mat(¢@).

Each QPL formula can be transformed into a semantically equivalent formula in PNF
by renaming bound variables and extracting quantifiers to the front of the formula.
We denote a prenex normal form of a formula ¢ with pnf(¢). In contrast to arbitrary
formulas, in a formula in PNF a variable can either be free or bound, but not both at
the same time because each variable is in the scope of each quantifier. The matrix of
a PNF is a purely propositional formula without quantifiers. Therefore it can be in
NNF, CNF, or DNFE.

2.5.2 Distinction of QPL Formulas

We can distinguish QPL formulas by two criteria: (1) which quantifiers are used
(only existential or also universal quantifiers), and (2) are all variables of the formula
quantified or are there also free variables.

Definition 2.31 | QPL Sentence A QPL formula ¢ in PNF is referred to as a QPL
sentence if free(@) = (), i.e. there are no free variables.

Definition 2.32 | Existential QPL Formula/Sentence A QPL formula ¢ in PNF is re-
ferred to as an existential QPL formula if there are only existential quantifiers in the
prefix of @, i.e. @ is of the form Jx; ... Ixy. If ¢ is additionally a QPL sentence,
it is referred to as existential QPL sentence

Table 2.1 summarizes the different kinds of QPL formulas.

Table 2.1 | Different kinds of QPL formulas ¢

¢ in PNF only 3 Jand ¥
free(p) =10 existential QPL sentence QPL sentence
free(@) # 0 existential QPL formula QPL formula

Example 2.15 | Different Kinds of QPL Formulas Consider these example formulas
for each entry in Table 2.1.

1. Existential QPL Sentence: Ix3yIz[x A (y V z)]
2. QPL Sentence: IxVyIzlx N (y V z)]
3. Existential QPL Formula: Ix3z[x N\ (y V z)]

4. QPL Formula: IxVzIx N\ (y V z)]

38

2.5 Quantified Propositional Logic

2.5.3 Satisfiability of QPL Formulas

In propositional logic we saw the concept of satisfiability. We can now extend this
concept to QPL formulas.

Definition 2.33 | QPL Satisfiability A QPL formula ¢ is satisfiable, if there exists an
assignment f3 : free(¢) — B of the free variables such that eval(¢,) = true. We
call B a model of ¢ and write & .

In first order logic, the satisfiability (or validity) of formulas is not decidable but only
semi-decidable. In QPL however, satisfiability is decidable. We distinguish two cases:
(1) sentences (purely existentially or fully quantified), and (2) arbitrary formulas.

Satisfiability of QPL Sentences

Taking the Definition 2.33 of QPL satisfiability, a formula is satisfiable if there is
an assignment to its free variables such that the formula evaluates to true. In a
QPL sentence there are no free variables, therefore it can be evaluated without any
assignment. Obviously the validity of a QPL sentence can be decided. Definition 2.29
already presents a recursive decision procedure. For a universal quantifier ¥x both
branches x — true and x — false must recursively evaluate to true. For an
existential quantifier 3x only one branch must evaluate to true. Figure 2.11 visualizes
the situation.

[eval(vx3yl(x Vy) A (x V=)L, 0) |

false true true

Figure 2.11 | Evaluation of a QPL sentence

We consider the formula ¢ = Vx3y[(x V y) A (—x V —y)]. In the quantifier prefix
of @ the first quantifier is a universal quantifier, i.e. both assignments of x need to
evaluate to true. We first consider x — true. The next quantifier 3y is an existential
quantifier, therefore a single branch evaluating to true is sufficient. We again first
consider y — true, thus we have eval((x Vy) /A (—xV —y),{x — true,y — true}) =

39

2 Formal Methods

false, meaning this branch is not satisfying, thus we have to consider y — false.
This branch now evaluates to true. But since the top level node was a universal
quantifier, we also have to consider the branch x — false. Here, the assignment
{x — false,y — true} satisfies the branch, therefore the whole formula ¢ evaluates
to true.

This decision procedure looks a lot like the DPLL algorithm. In fact, if we consider
an existential QPL sentence, the decision procedure is exactly the DPLL algorithm.
This is obvious, since the satisfiability of an existential QPL sentence is exactly the
SAT problem. All variables are existentially quantified, so the sentence evaluates to
true if and only if there exists an assignment of the variables such that the matrix of
the formula is satisfied. Since the matrix is an ordinary propositional formula, this
degenerates to the SAT problem as stated in Definition 2.18.

The satisfiability for arbitrary QPL sentences is also a well known problem: the
QBF problem (Quantified Boolean Formulas). An overview of QBF can be found in
[Biining & Bubeck, 2009]. One possible approach to QBF solving is the alteration
of the CDCL algorithm as presented in [Zhang & Malik, 2002]. As we have seen,
backtracking has to be performed not only in the case of an unsatisfying branch, but
also in the case of satisfying branches when there were universal quantifiers in the
prefix of this path. We state an altered version of the CDCL algorithm which reflects
the backtracking for universally quantified variables. Algorithm 2.5 sketches the
procedure and is for a QPL sentence ¢ initially called with gqbf (¢, 0).

The procedure analyzeConflict learns a new clause and returns a suitable backtrack
level very similar to CDCL for propositional logic. However, it has to be adjusted
to also consider universally quantified variables. During the procedure analyzeSAT
the value of the last universally quantified variable is flipped in order to search
both branches in the search tree. Notice that when replacing Lines 12-15 by return
true we obtain the original CDCL SAT algorithm. In fact if there are no universally
quantified variables then gbf proceeds exactly like cdcl.

For the variable selection in Line 18 there are essentially the same heuristics used as
with SAT. There is, however, one important restriction: successive quantifiers of the
same type are grouped like

Q1X1 . Qle1 Q2Xk1+1 e Q2Xk2 ...,

where Q; € {3,V}, Qi;1 # Qi, and x; € vars(@). The indexi € N of Q; is the
quantification level of the corresponding quantified variables xx, ,+1, ..., xx,. The
variable selection heuristics must choose a variable from the smallest quantification
level where there are still unassigned variables. Notice that in the worst case of
alternating quantifiers like 3x;Vx23x3Vx4 . . . @ one must successively pick xi, x2, X3,
X4, ..., 1.e. there is no choice at all.

It is noteworthy that in contrast to most existing implementations of a QBF decision
procedure, the version above does not only return the truth value T but also the
original formula ¢ extended with learned clauses and the last assignment 3. This
additional information is required for the full quantifier elimination algorithm for
QPL described in Section 2.6.2.

40

2.5 Quantified Propositional Logic

Algorithm 2.5 | Satisfiability of a QPL Sentence: qbf (¢, 3)

Input: A QPL sentence ¢ in PNF with mat(¢) in CNF and an optional
assignment (3 for variables existentially quantified in the outermost
block of ¢

Output: (1, @', '), with T € {true, false}, ¢’ = ¢ with additional learned

clauses, and 3’ the final variable assignment

1 label all assignments in 3 with level = —1
2 level =0

3 while true do

4 unitpropagate(@,3)

5 if @ contains an empty clause e then

6 level = analyzeConflict(e, @)

7 if level = —1 then

8 | return (false, @,)

9 backtrack(level)

10 else
11 if B = ¢ then
12 level = analyzeSAT()
13 if level = 0 then
14 | return (true, ¢, ()
15 backtrack(level)
16 else
17 level =level +1
18 choose x € vars(¢) \ dom(f3) wrt. the quantification level
19 B =pU{(x+— false)}

The satisfiability problem for QPL sentences is solvable in polynomial space and
complete for PSPACE [Biining & Bubeck, 2009].

Satisfiability of Arbitrary QPL Formulas

Considering the satisfiability of QPL formulas with free and bound variables, we
need to find an assignment to the free variables, such that the formula evaluates
to true. Therefore the question is, whether there exists an assignment to the free
variables. To answer the satisfiability problem, we can existentially quantify all free
variables at the outermost level and solve the corresponding satisfiability problem
for the resulting QPL sentence.

Example 2.16 | Reducing QPL Satisfiability to QPL Sentence Satisfiability Let
@ =IVylxVyV-uA(=xV-yVw)A (uVw].

The QPL formula ¢ is satisfiable if and only if there exists an assignment (3 of w
and u such that ¢ evaluates to true under this assignment, eval(g,) = true.

41

2 Formal Methods

This is equivalent to compute the solution of the QBF problem
@' =FuIwhxvyl(xVyV -u) A(—xV -y Vw) A (uVw)

which can be solved by the algorithm sketched in the last section. In fact, ¢’ is
satisfiable. If we consider e.g. the assignment {u — true, w — true,x — true},
the formula is already satisfied and the assignment of the universally quantified
variable y does not matter.

Since each satisfiability problem of arbitrary QPL formulas can be reduced to a
satisfiability problem of QPL sentences in linear time, the complexity of the satisfia-
bility problem for QPL formulas is again in polynomial space and is complete for
PSPACE.

2.6 Quantifier Elimination for QPL

Besides satisfiability, for QPL formulas ¢ with free variables there is another inter-
esting question: can we find a quantifier-free formula ¢’ which is equivalent to the
original quantified formula ¢. Such a quantifier-free equivalent formula ¢’ would
then express necessary and sufficient conditions to the free variables of ¢ such that ¢
can evaluate to true. Before we present the necessary definitions and go into detail,
we want to illustrate this problem with a small example.

Example 2.17 | Quantifier Elimination for QPL We consider the formula
© =IXVyYlxVyV-uA(—xV-yVvVw)A (uVw.

We saw in Example 2.16 that this formula is satisfiable. The question now is under
which conditions to the free variables u and w can this formula evaluate to true.
We see e.g. that if u and w are both assigned to false, the formula can never be
satisfied because the last clause always evaluates to false. If w is assigned to
false, u has to be assigned to true because of the last clause. Then the formula
can be reduced to IxVy[(x V y) A (—x V —y)] which evaluates to false. Therefore
we can establish the condition that w has to be assigned to true in order that ¢ can
evaluate to true. In fact, the formula ¢’ = w is the quantifier-free equivalent to ¢.

Before we can state the quantifier elimination problem formally, we need to define
what equivalence on QPL formula means.

Definition 2.34 | Entailment and Equivalence of QPL formulas A QPL formula ¢ en-
tails a QPL formula V, ¢ =1, if and only if for each model 3 = ¢ we have 3 = .
Two QPL formulas ¢ and 1 are equivalent, ¢ =1, if both ¢ =1 and } = ¢. Two
formulas are equisatisfiable if both are satisfiable or both are unsatisfiable.

Note that models on QPL formulas only cover the free variables. This means also that
two QPL sentences (not formulas) are equivalent if and only if they are equisatisfiable.

42

2.6 Quantifier Elimination for QPL

We can now revisit Example 2.17. We stated that
IVY[(xVyV-uwA(—xV-yvVwAuvw)=w

Obviously the formula w has a single model {w — true} which is also a model for
IVyYl(xVyV-u) A (—xV —yVw)A (uV w)]. The latter formula has two models:
{w — true,u — true}and {w — true,u — false} both of which are models of w.
Therefore the two formulas are equivalent.

We can now formally state the quantifier elimination problem for QPL.

Definition 2.35 | Quantifier Elimination Procedure for Quantified Propositional Logic
A quantifier elimination procedure (QE) for QPL computes for an arbitrary QPL input
formula ¢ a quantifier-free formula { with ¢ = 1.

Not every structure allows quantifier elimination. We have to assure that QPL allows
quantifier elimination.

Theorem 2.1 | Existence of QE for QPL QPL allows quantifier elimination.

Proof We prove the theorem by providing a quantifier elimination procedure for
QPL. This procedure is closely related to the one presented in [Seidl & Sturm,
2003]. There are only two possible values for variables in QPL, so we can ex-
tract each quantifier over these values. According to Definition 2.29 a formula
¢ = Vx[)] evaluates to true if and only if eval({, 3 U{x — true}) = true and
eval(y, 3 U{x — false}) = true. Instead of extending the assignment with
x — true and x — false, we can substitute the corresponding truth values in the
respective formula, i.e. ¢ evaluates to true if and only if eval ([T /x]) = true and
eval(Pp[L/x]) = true. This can be further simplified by looking at the evaluation
of /\: @ evaluates to true if and only if [T /x] AP[L/x] evaluates to true. Analo-
gously we replace an existential quantifier Ix[\p] with [T /x] V Pp[L/x]. Several
quantifiers are successively eliminated from a prenex input formula starting with
the innermost quantifier. m

Of course the procedure as stated above is not suited for large problems. But if we
introduce a simplification step after each elimination of a quantifier, experiments
show that we can already handle reasonably large formulas. We will look at this
quantifier elimination procedure in more detail in the next section and refer to it as
Substitute & Simplify. In [Seidl & Sturm, 2003] it is shown that for an input formula
@ = Q1x1 ... Qnxn] with Q; € {V, 3} and 1 quantifier-free the resulting quantifier-
free formula ¢’ has a length of

02" l) =201
where | - | denotes the word length.

In the next two sections we will take a closer look at different quantifier elimination
procedures for QPL. In Section 2.6.1 we will consider only existential QPL formulas.
In this case quantifier elimination is equivalent to projecting the formula to the set of
free variables. Section 2.6.2 then takes a look at quantifier elimination procedures for
arbitrary QPL formulas.

43

2 Formal Methods

2.6.1 Existential Quantifier Elimination for QPL

In this section we consider only existential formulas, i.e. formulas where each variable
is either free or existentially quantified. Eliminating the quantified variables of such
a formula is equivalent to projecting the formula to the set of free variables. This
projection is one of the core procedures of symbolic model checking [McMillan, 1993;
McMillan, 2002] and is therefore well-studied. The work in this section was presented
in [Zengler et al., 2011; Zengler & Kiichlin, 2013].

We present six different approaches for existential quantifier elimination:
(MEP) model enumeration with projection

(MEPI) model enumeration with generation of shortest prime implicants
(CD) variable elimination by clause distribution

(SUSI) substitute & simplify

(DNNF) DNNF computation with projection

(DDS) quantifier elimination by dependency sequents

There are many more approaches in the literature, but most of these are just minor
variants of the above mentioned. All six approaches yield a quantifier-free equivalent
for a given existential QPL formula as input, but the input and output formats differ.
Table 2.2 summarizes the respective formats of the input formula ¢ and its quantifier-
free equivalent ¢’ for the different approaches.

Table 2.2 | Comparison of the different approaches for existential quantifier elimination

Approach Format of mat(¢) Format of ¢’
(MEP) model enumeration & projection =~ CNF DNF
(MEPI) model enumeration CNF CNF

& prime implicants
(CD) clause distribution CNF CNF
(SUSI) substitute & simplify arbitrary arbitrary
(DNNF) DNNF compilation & projection CNF DNNF
(DDS) dependency sequents CNF CNF

Remark Theoretically (MEP) and (DNNF) do not require their input formula to be in CNF,
but the available algorithms and tools only take CNF inputs.

Model Enumeration with Projection (MEP)

Consider an existential formula ¢ = 3x4, ..., xn . Enumerating all models of mat(¢),
i.e. computing the set B = {f | f = 1V}, and afterwards restricting them to the set of
free variables free(@) of ¢ is an obvious way for eliminating existential quantifiers

44

2.6 Quantifier Elimination for QPL

of @. A quantifier-free equivalent ¢’ of ¢ is obtained as follows:

o' =\ A mrlit(B,x)

BEB xefree(p)

with mk1lit(p,x) = —x iff B(x) = false and mk1lit(f,x) = x iff B(x) = true. Obvi-
ously this formula is in DNF.

However, if the number of free variables is small in comparison with the total number
of variables in the formula, it is wasteful to compute the whole set of total assignments
in the first place, just to restrict it to a small set of partial assignments afterwards.
Modern projecting model enumeration tools heavily rely on this fact [Grumberg et al.,
2004; Gebser et al., 2009]. Current model enumerators are usually implemented on
top of CDCL solvers by modifying their backtracking procedures and/or tracking
blocking clauses in order to prevent the solver from detecting the same projected
solutions again and again. Algorithm 2.6 gives an outline of such an approach.

Algorithm 2.6 | The model enumeration based QE algorithm: ge_mep(¢)

Input: An existential QPL formula ¢ with mat(¢) in CNF
Output: A quantifier-free formula ¢’ in DNF with vars(¢’) = free(¢) and

P'=0
1@ =1
2 solver = new incremental/decremental CDCL SAT solver
3 solver.add(mat(@))
4 while solver.sat() = SAT do
5 B = solver.model()
6 P = Axctree(o) Me1it(B, %) // project model to free variables
7 o' =¢'Vp // add projected model to result
8 solver.add(—p) // add blocking clause to solver
9 return ¢’

Example 2.18 | Model Enumeration with Projection We consider the QPL formula
@ = IxFyYlxV-w) A (xVzZ)A\(=zVy) A\ (wVz)]].

Suppose the first model the solver finds is {—x,y, ~w, z}. The projected model
—w A z is disjoined to the result and the blocking clause w V —z is added to the
solver in order to avoid this projected model in the future. Now the solver finds
the model {x,y, w, z}. The projected model w A z is disjoined to the result and the
blocking clause —w V —z is added to the solver. Now the solver returns UNSAT and
the algorithm returns the result ¢’ = (—wAz)V (WA z) =z = o.

Model Enumeration and Generation of Shortest Prime Implicants (MEPI)

A variant of the (MEP) Approach was presented in [Brauer ef al., 2011]. In contrast
to adding arbitrary projected cubes found by the solver, their idea is to search for

45

2 Formal Methods

shortest prime implicants first. Therefore they use cardinality constraints based
on sorting networks to first find the shortest cubes and increase the length of the
implicants successively. They then apply dualisation to construct a CNF formula out
of the set of all implicants.

Variable Elimination by Clause Distribution (CD)

The ideas in this section go back to Davis and Putnam [Davis & Putnam, 1960]
(Affirmative-Negative Rule and Rule for Eliminating Atomic Formulas) and were
recently used for variable elimination e.g. in the QBF Solver Quantor [Biere, 2005].
To eliminate an existentially quantified variable x, we (1) compute all resolutions on
x and (2) remove all clauses containing x in either phase. In the special case that x
occurs only in one phase in the clause set, Step 1 is omitted.

Algorithm 2.7 | The clause distribution based QE algorithm: ge_cd(¢)

Input: An existential QPL formula ¢ with mat(¢) in CNF
Output: A quantifier-free formula ¢’ in CNF with vars(¢’) C free(¢) and

o' =9
19 =9
2 foreach x € bound(¢p’) do
3 clauses(@’)} ={c € clauses(¢@’) | x € 1lits(c)}
4 clauses(@’), ={c € clauses(¢’) | 7x € 1its(c)}
// Step 1
5 foreach ¢ € clauses(p); do
6 foreach ¢~ € clauses(@); do
7 T =resolvent(c™,c”) // compute resolvent of c' and c~
8 L clauses(@’) = clauses(@’) U{r} // add resolvent
// Step 2
9 clauses(@’) = clauses(¢’) \ (clauses(¢’)} Uclauses(¢’)y)
// remove all clauses with x

10 return ¢’

Algorithm 2.7 presents this procedure. For each existentially quantified variable x
we extract two subsets with the positive and negative occurrences of x (Lines 3/4).
Then we compute all resolutions on x and add the resolvents to the set of clauses
(Lines 5-8). Finally all clauses containing x are removed from the set of clauses (Line 9)
and the new formula is returned. At the end of the algorithm, all bound variables
are eliminated and the output formula is in CNF.

Example 2.19 | Variable Elimination by Clause Distribution We consider the QPL for-
mula

@ = IxY[(x VWA (xVzZ)A\(—zVy) A\ (wVz).

We first eliminate Jy. The variable y occurs only in positive phase, so every clause

46

2.6 Quantifier Elimination for QPL

with the literal y can be deleted:
@' =Ix[(xV-W)A(—xVz) AWV z).

To eliminate 3x, all resolutions on x are computed. In this case there is only one
resolvent (—w V z) which is added to the clause set (Step 1):

" =K[(xV-WA(xVZIAWwWVz)A(wVz).
In Step 2 all clauses containing x are removed:
" =WwWVz)A(—wVz).

The result ¢’ = z = @ is returned.

Substitute & Simplify (SUSI)

We already saw the substitute & simplify approach as canonical QE procedure for
QPL in Section 2.6. As stated above, we can eliminate a single existential quantifier
with

Ixe = @[T/x]V @[L/x]. (2.4)
This observation yields an existential quantifier elimination procedure qe_susi(¢)
as outlined in Algorithm 2.8.

Algorithm 2.8 | The Substitute & Simplify algorithm: ge_susi(¢)

Input: An existential QPL formula ¢
Output: A quantifier-free formula ¢’ with vars(¢’) C free(¢) and ¢’ = ¢

1o =9

2 foreach x € bound(@) do

3 o' =@ [T/X]V @'[L/x] // Substitute
4 simplify(p’) // Simplify
5 return @’

Example 2.20 | Substitute & Simplify We consider the QPL formula
@ = IXIY[xNAZ) A (Ty A (x Vw))].
First we substitute x and get the formula
@' =T A A (YA (T VW)V ((LAZ)A (Y A (LVw))).

Simplification yields
"

@" =3ylz/A\yl.

The substitution of y results in
" =E=ZAT)V (zA L).

Simplification yields z = ¢ which is returned by the algorithm.

47

2 Formal Methods

Seidl & Sturm observed that with sophisticated simplification routines the blow up
of the formula can be avoided and that often formulas or sub-formulas break down
to a truth value after elimination of only a fraction of the variables [Seidl & Sturm,
2003]. The simplification step can be further optimized for special applications. As
we will see in Section 3.4, our input formula is always a conjunction of constraints.
First we notice that the following lemma obviously holds:

Lemma 2.2 For QPL formulas ¢ and 1, it holds that
Ix[o APl = Ix[e] AP

if x ¢ vars(\).

The consequence of this lemma is that, when eliminating x from a conjunction of
constraints, we only have to eliminate it from the subset of conjunctions containing x.
All constraints not containing x can be left untouched. Furthermore, we can introduce
special rules if formula ¢ of Lemma 2.2 is of a special structure. We want to give
two examples of such structures which we often encountered in our application
examples.

Implications with a single-literal premise In our formulas for configuration prob-
lems we often find constraints of the form A — 1, i.e. an implication with a single
literal as premise. If the variable of this literal A is eliminated, we do not have to
perform the substitution step of (2.4), but can immediately return the formula T. In
one of the two branches of the substitution, the literal will evaluate to false and
therefore this branch evaluates to true, and so does the whole substitution.

Cardinality Constraints In our applications we often have cc¢; cardinality con-
straints (cf. Section 2.1.3). As stated above, such a cardinality constraint for a set of
variables x1, ..., Xy is encoded by a CNF encoding

©= /\ /\ (—xi V —x5).
ie{1,...n—1}je{i+1,...,n}

To eliminate one or more variables x; from this set of clauses, we just have to delete
all clauses containing x;. This is obviously equivalent to performing the substitution
of (2.4) and simplifying the resulting formula. But especially in the case where many
variables x; are eliminated from a cardinality constraint, this saves many substitution
and simplification steps.

Example 2.21 Consider a cardinality constraint for at most one of {x1,x2,y}:
@ = (7x1V=x) A(=x1 VyYy)A(—x2Vy).
We look at the computation

ge_susi(Fylo N (x1 — 2)]).

48

2.6 Quantifier Elimination for QPL

Since y ¢ vars(x; — z1), we can compute ge_susi(Jyle]) A (x; — z;) instead.
Since the input of qe_susi is a single cardinality constraint, we can just delete all
clauses containing y. Therefore the result

(—x1 V x2) A\ (x1 — 2)

can be computed without a single substitution step.

DNNF Computation & Projection (DNNF)

In Section 2.3.2 we have taken a look at the knowledge compilation format DNNF and
its variant d-DNNF. Projecting a formula to a set of variables is a polynomial-time
operation on DNNFs. We can elevate this fact to a quantifier elimination procedure.

After transforming a formula to its DNNF representation 1, a formula corresponding
to the strongest entailed formula of { in terms of some set A C vars({) can be
obtained in polynomial time in (p| by replacing each literal whose variable is in A
with T [Darwiche, 2001]. Algorithm 2.9 sketches the whole procedure. Projecting
DNNF formulas maintains decomposability, yet the resulting formula might not be
deterministic anymore if it was before.

Algorithm 2.9 | The DNNF based QE algorithm: ge_dnnf (¢)

Input: An existential QPL formula ¢ with mat(¢) in CNF
Output: A quantifier-free formula ¢’ in DNNF with vars(¢’) C free(o)
and @' = ¢
1 1 = dnnf(mat(p)) // Compile DNNF
2 @' =replace each literal A with var(A) € bound(¢) in{ with T
3 return ¢’

Example 2.22 | DNNF Computation & Projection We consider the QPL formula
@ =IxYlxV-wW)A(xV2Z) A\ (—zVy) A (wV z)].
A DNNF representation of mat (@) is e.g.
yAzA (xV (=x A —w)).
Substituting the literals with variables x and y by T yields
TAzZA(TV(ETA-W)=z=¢

which is returned as result.

Quantifier Elimination by Dependency Sequents (DDS)

A new approach to existential quantifier elimination was presented in 2012 by Gold-
berg and Manolios [Goldberg & Manolios, 2012]. The observation is that quantifier

49

2 Formal Methods

elimination on a formula ¢ = 3x[] is trivial if { does not depend on the quantified
variable x. However, if 1p depends on x, the plan is to add a set A of additional clauses
implied by { such that x becomes redundant. This basic idea is similar to the (CD)
approach. There, resolution is used to compute the additional clauses A. However,
resolution often computes too many additional clauses. As a running example in this
section we consider the formula

C1 C2 C3 Cq Cs Ce

— —— — Y —— N
@ =[x VY) ANxVy2) A(x Vysz) A(xVys) A (Y1 Vy2) A(ys V ya)l

The two clauses in red (c5, ¢g) do not contain x and therefore are not removed or
altered by either (CD) or (DDS). To eliminate x from ¢, the (CD) approach would
compute the set A of all resolvents on x which has cardinality 4, add it to the formula
and remove all clauses containing x, thus yielding the quantifier-free formula

@ =1 Vys) Alyr Vyd Aly2 Vys) A (y2 Vya) A (—ys Vyo) A (—ys Vys)

equivalent to ¢. This formula has five models:

1. {y1,9Y2,Y3,Ya},

2. {Yy1,Y2,7Y3, Y4l

3. {y1,Y2,7ys, 7yal,

4. {~Y1,Y2,Y3,ya}, and
5. {~y1,7Y2, Y3, y4}

However, one can verify that instead of adding four additional clauses like (CD), it
would be sufficient to add only the clause (y; V y3) and thus get the formula

©" =(y1 Vys) A (—y1 Vys) A (—ys V ya)

which has the same five models as ¢’ and is therefore equivalent. The question is
how we can find such small sets of additional clauses. (DDS) uses the notion of
boundary points and removable boundary points.

Definition 2.36 | {x}-Boundary Point Given a CNF C and a variable x € vars(C), an
{x}-boundary point of C is a total assignment (3 of C with eval(C, 3) = false and
for each clause ¢ € C with eval(c,) = false it holds that x € vars(c).

This means an {x}-boundary point of a CNF is an unsatisfying assignment (3 where
each clause falsified by (3 contains the variable x.

Example 2.23 | {x}-Boundary Point Considering the running example of this section,
the full assignment {—x, ~y1, Y2, ~Ys, ~ya4} is an {x}-boundary point of ¢ because
it falsifies ¢ and each clause falsified by the assignment (c; and c») contains the
variable x. The assignment {—x, —~y1, ™Yz, Y3, ~ya} e.g. is not an {x}-boundary point
because it also falsifies the last clause cg which does not contain x.

50

2.6 Quantifier Elimination for QPL

We can now define when a boundary point is removable.

Definition 2.37 | {x}-removable boundary point Given a CNF C and an {x}-boundary
point 3, 3 is removable in C if there exists a clause c such that

1. C — c¢,and
2. eval(c,) = false, and
3. x € vars(c).
Example 2.24 | {x}-removable boundary point The boundary point
B ={=%,7Y1,7Y2, Y3, 7ya}

of Example 2.23 is {x}-removable because there exists e.g. the clause ¢ =y; V ys
for which we have

1. C — c (c is the resolvent of ¢; and c3), and

2. eval(c,) = false, and

3. x ¢ {y1,y2} = vars(c).

There are also boundary points which are not removable, e.g. for the running
example {—x, ™Y1, Y2, Y3, Y4} is an {x}-boundary point but it is not removable
because we cannot find a clause c such that the three conditions hold.

The basic approach of (DDS) to eliminate x from 3x[\p] is now to compute a set of
clauses A which is implied by \{» and which eliminates all {x}-removable boundary
points of . After adding A to 1, all clauses containing x are dropped and a quantifier-
free equivalent formula is yielded.

Example 2.25 | Quantifier Elimination with (DDS) We conclude our running example
by presenting a truth table of ¢ and annotating which assignments are {x}-boundary
points and which of them are {x}-removable. Table 2.3 presents the result. If an
assignment {3 is no boundary point, the reason is stated. Either {3 is no boundary
point because it is a satisfying assignment or it is no boundary point because it
falsifies a clause which does not contain x. In this case the clauses are stated.

We see that for ¢ there are eight {x}-removable boundary points. By adding the
new clause ¢ = (y; V ys) = resolvent(cy,cs) to @, all these boundary points
vanish because all of them falsify ¢ which does not contain x. Therefore A = {c}
is a valid set to add to ¢ which is implied by ¢ and eliminates all {x}-removable
boundary points.

In [Goldberg & Manolios, 2012] the authors show how to compute such sets A with
the help of so-called dependency sequents. A dependency sequent is used to record the
fact that a set of quantified variables is redundant under a partial assignment. They
introduce an algorithm DDS (Derivation of Dependency Sequents) which starts by
computing simple dependency sequents and computes new dependency sequents
by joining old ones.

51

2 Formal Methods

Table 2.3 | Boundary points and removable boundary points

X Y1 Y2 Ys Ya eval(,B) {x}-boundary point {x}-removable
0 0 0 0 0 false yes yes
0 0 0 0 1 false yes yes
0 0 0 1 0 false no (cg) -
0 0 0 1 1 false yes no
0 0 1 0 0 false yes yes
0 0 1 0 1 false yes yes
0 0 1 1 0 false no (cg) -
0 o0 1 1 1 false yes no
0 1 0 0 0 false no (cs) -
0 1 0 0 1 false no (cs, Cg) -
0 1 0 1 0 false no (cs) -
0 1 0 1 1 false no (cs) -
0 1 1 0 0 true no (SAT) -
0 1 1 0 1 true no (SAT) -
0 1 1 1 0 false no (cg) -
0 1 1 1 1 true no (SAT) -
1 0 0 0 0 false yes yes
1 0 0 0 1 false yes yes
1 0 0 1 0 false no (cg) -
1 0 0 1 1 true no (SAT) -
1 0 1 0 0 false yes yes
1 0 1 0 1 false yes yes
1 0 1 1 0 false no (ce) -
1 0 1 1 1 true no (SAT) -
1 1 0 0 0 false no (cs) -
1 1 0 0 1 false no (cs) -
1 1 0 1 0 false no (cs, Cg) -
1 1 0 1 1 false no (cs) -
1 1 1 0 0 false yes no
1 1 1 0 1 false yes no
1 1 1 1 0 false no (cg) -
1 1 1 1 1 true no (SAT) -

2.6.2 Full Quantifier Elimination for QPL

The work in this section was presented in [Sturm & Zengler, 2010]. We present
an algorithm which can handle an arbitrary QPL formula as input—allowing free,
existentially, and universally quantified variables—and computes a quantifier-free
equivalent QPL formula in DNEF. This result formula establishes necessary and suf-
ficient conditions on the free variables for the existence of a satisfying assignment.
The basic idea is to reuse the idea of the DPLL algorithm: first all free variables are
assigned (using unit propagation if possible). If all free variables are assigned, we
have a QBF problem at hand, which can be solved with gbf. Depending on the output
of gbf—true or false—this assignment of the free variables is a valid model or not.
Valid models yield a minterm in the resulting DNF. This step is repeated for each
assignment of the free variables, again reusing the DPLL ideas of early cutting the

52

2.6 Quantifier Elimination for QPL

search tree and using efficient unit propagation in order to minimize the number of
assignments to inspect. In the special case that for all possible assignments of the free
variables the corresponding instances of gbf yield true, ge_full will return true as
well. Analogously, ge_full yields false if all QBF instances return false.

Algorithm 2.10 states the general quantifier elimination algorithm ge_full for QPL
formulas which is initially called with ge_full(¢,) for a formula ¢.

Algorithm 2.10 | The full quantifier algorithm: ge_full(¢, f3)

Input: An arbitrary QPL formula ¢ and an optional partial assignment 3 for
free()
Output: (7, ¢’) with T a quantifier-free formula with vars(t) C free(o),
and ¢’ = ¢ with additionally learned clauses

1 if free(@) \ dom(fB) = () then

2 | (0,9",B)=qbf(e,pB)

3 if 0 = true then

4 ‘ return (ass2form(B), ¢’)

5 else

6 | return (L, ¢’)

7 else

8 choose x from free(¢@) \ dom(f)
9 B’ =P U{x+— false}

10 P, =L

1 if no conflict is reached after unit propagation then

12 | (W1, 0) = qe_full(e,p’)

13 B"” =P U{x — true}

14 Vo =L

15 if no conflict is reached after unit propagation then
16 | (W2, 9) = qe_full(p,B”)

17 return (simplify(ih; V s), @)

In the degenerate case that there are no free variables at all, the qe_full algorithm
will reduce to one call to gbf. As shown in Section 2.5.3, the gbf algorithm in turn
reduces to a CDCL SAT algorithm in the more degenerate case of a purely existential
problem.

The main idea of qe_full is to use essentially the classical DPLL algorithm for the
free variables. Whenever in that course all free variables have been assigned, we have
got a QBF sub-problem for which we call qbf(¢) and obtain either (true, ¢’, 3) or
(false, @’,) (Lines 1-6).

In Line 2 we construct the existential closure 3 of ¢ in order to meet the specification
of gbf. The existential quantifiers introduced in this way are actually semantically
irrelevant as all corresponding variables are already assigned by f3.

53

2 Formal Methods

Observe in Line 12 that we save in ¢ the original input formula augmented by clauses
additionally learned during the first recursive qe_full call. This is propagated in
Line 16 to the second recursive ge_full call. This leads to the effect that we transport
learned clauses from one gbf call to the next and thus avoid repeatedly arriving at
the same conflicts. It is not hard to see that since learning happens via resolution and
resolution is compatible with substitution of truth values for variables, the learned
clauses in fact remain valid. The idea is visualized in Figure 2.12. In order to limit
the blow up of ¢ in that course it is useful to use activity heuristics after each run of
gbf to delete learned clauses that have not significantly produced new conflicts in
the past (cf. Section 2.2.3).

IVyYl(xVyV-u)A(—xV-yVw)

u+— false

Ixvy[(—x V =y V w)] IVYI(x Vy) A (—x V -y Vw)]
w +— false W true w > false W true
Ixvyl(—x V —y)] true IvyYl(x Vy) A (—x V —y)] Ixvyl(x V y)]
bf > gbf > gbf
4 transport learned clauses q$ d

true false true

Figure 2.12 | Example computation of qe_full

If ¥y or Yy is L in Line 17 then simplify(1{; V 13) eliminates one superfluous L.

When qge_full returns (true, @) we add the formula ass2form(f3) of the current
variable assignment {3 to the output formula and proceed with the algorithm.

Similar to CDCL after each assignment of a free variable in Line 9 or 13 we use
unit propagation with watched literals to propagate the current assignment. If we
encounter an empty clause, we cut the search tree.

To conclude this subsection, Figure 2.12 visualizes a computation of ge_full(¢, ()
with @ = IxVy((x Vy vV —u) A (—x V =y V w)). Since the call to gbf yields true for
the assignments

{u+ false,w > false}, {u+> false,w > true}, {u+ true,w true}.

one finally obtains T = (—u/A—w)V (—uAw) V (uAw).

54

2.6 Quantifier Elimination for QPL

Correctness and Termination

In this section we assume the correctness and termination of the CDCL based QBF
procedure as proved in [Zhang & Malik, 2002].

Lemma 2.3 | Universal Property of ass2form Let 3 be an assignment. Then the fol-
lowing holds:

i) vars(ass2form(f3)) = dom(f) and P = ass2form(f)

ii) If v is a conjunction of literals and vars(y) = dom(p) and k= v, then
Y = ass2form(f3) up to commutativity.

Consider with dom(3) = free(¢). Up to commutativity ass2form(f3) is the unique
conjunction of literals with vars(ass2form(f3)) = free(@) and = ass2form(f3).

Lemma 2.4 Let (7, @') be the return value of a call to ge_full. Then T is in DNF.

Proof If |[free(@)| = 0, then T = ass2form(f3). By definition this is either true
or a conjunction of literals, both of which are in DNF. For |[free(¢)| =n + 1 we
obtain essentially T = 1; Vs with [free({)| = [free({P2)| = n. According to the
induction hypothesis both 1\; and {5 are in DNF and so is {1 V . u

Lemma 2.5 Let ¢ be a formula in QPL. Consider

F'={p [free(¢) =dom(p), qpf(¢p,) = (true, @', B")}.

Then ¢ =/ ass2form(f).

Proof To start with, observe that for each f € I' we have free(ass2form(f)) =
dom(pB) = free(¢) and thus

free(\/ assQform([S)): free().
per

Let B¢ be an assignment with dom(f¢) = free(p). Assume that 3o = ¢. Then
qbf (@, Bo) = (true, @’,B’) for some @', p’. It follows that By € T'. Since By &
ass2form(f3¢) we obtain ¢ = ster ass2form(f3). Assume, vice versa, that 3¢ =
Vger ass2form(B). Then B¢ = ass2form(B;) for some B, € T. It follows that

vars(ass2form(f1)) = dom(p1) = free(@) = dom(fy).
By Lemma 2.3 ii) we obtain ass2form(f3;) = ass2form(f3¢), which in turn implies
B1 = Po. On the other hand we know gbf (@, 1) = (true, @', f’) for some @', B/,
and using the correctness of gbf it follows that o = 31 = @. n

Theorem 2.6 | Correctness of qe_full Let ¢ be an arbitrary formula in QPL and
qe_full(p, () = (7, @'). Then T is quantifier-free and T = .

55

2 Formal Methods

Proof By inspection of the algorithm we see that possible return values for T are
ass2form(f3) (Line 4) or L (Line 6) or disjunctions of these (Line 17), all of which
are quantifier-free.

Consider the special case that for all assignments 3 with dom(f3) = free(q)
the procedure gbf (¢, 3) has been called in Line 2. Then it is easy to see that
T =\/pger ass2form(p) as described in Lemma 2.5. Hence T = ¢ by Lemma 2.5.

Consider now a particular assignment 3o with dom(Bo) = free(¢) for which
gbf (@, Bo) has not been called. According to Lines 11 and 14 of ge_full then there
exists a partial assignment 3 C B causing a conflict, thatis 3} = ¢ = constraint.
It follows that ¢ = ¢ = false and accordingly gbf (@, o) = (false,@’,B’).
Hence that missing qbf call is irrelevant for the semantics of T. n

Theorem 2.7 | Termination of qe_full The algorithm ge_full terminates.

Proof We have to show that there is no infinite recursion. Since |free(¢@)\dom(p)| €
N decreases with every recursive call either in Line 12 or Line 16 due to the assign-
ments in Line 9 or Line 13, respectively, the condition free(¢) \ dom(p) = 0 in
Line 1 finally becomes true, and the algorithm returns in Line 4 or Line 6. n

Complexity

Theorem 2.8 | Complexity of ge_full We have complexity parameters f = |free(q)|
and b = [bound(¢)|. Then the asymptotic time complexity of qe_full is bounded
by 27+ in the worst case. In particular this complexity is bounded by 2'en&th(®),

Proof Consider an input formula ¢ and let f and b be as above. The algorithm gbf
is obviously bounded by 2°. In ge_full the gbf algorithm is called at most 2°
times. We hence obtain 2 - 2° = 2f+P, -

56

3 Automotive Configuration

This chapter presents a new generic formulation of automotive configuration. The
concepts shown here are not specific to one manufacturer but can be encountered in
many product documentations across different companies. First we have to take a
look at the product hierarchy of a typical car manufacturer in Section 3.1. After that
we present the high-level configuration which is visible to the customer in Section 3.2.
Section 3.3 showcases two configuration views on the low level: (1) the actual physical
parts of a vehicle—the bill of materials, and (2) the electric & electronics configuration
of hardware and software controllers. This distinction between high level and low
level is similar to the one given in [Haag, 1998] but Haag also includes the interactive
aspect of the high level configuration which we will not focus on in this work. The
last section introduces the product description formula—a propositional formula
built from the HLC which describes all valid orders of a product type in one formula.
This formula is the core of all analysis algorithms that follow.

In the following sections we assume that all configuration rules are modeled using
propositional logic. This is common in the automotive industry. Nevertheless, there
are many other logical systems that can be used. Some of them are also in use in some
parts of automotive configuration. In Chapter 3 of his thesis [Sinz, 2003], Carsten Sinz
identified seven different common logical systems: description logics, feature logic,
first order logic, constraint logic, propositional logic, modal logics, and propositional
dynamic logic. However, in this thesis the focus is on propositional logic since it
is used by several major car manufacturers—among them Audi, BMW, Daimler,
GM/Opel, Renault, VW—for their main configuration systems.

3.1 Product Hierarchy

A typical European or US car manufacturer has a large variety of different models of
cars. Therefore it is necessary to organize these different products into a hierarchy.
We introduce a product hierarchy with three levels here. However, it is no problem to
extend this to more levels or restrict it to just two or even one level. Most companies
have product lines at the top level of the product hierarchy. Within a product line
there are different product series and within a product series there are finally different
product types.

3 Automotive Configuration

A product line aggregates vehicle types which share a large amount of parts or
processes within the manufacturing process. E.g. BMW has one product line for all
Rolls-Royce vehicles, one product line for all 3 Series and 4 Series vehicles, or one
product line for all the X5 and X6 Series vehicles. Usually, a product line consists of a
number of product series.

Within a product series we find different vehicle models which mostly share a com-
mon bodywork design and a common set of options the customer can chose from.
E.g. Mercedes-Benz has product series for the E-Class Saloon, the E-Class Cabriolet,
or the E-Class Coupé.

With a product series chosen, the customer can select the specific product type. A
product type fixes parameters like the steering type (left-hand or right-hand), the
engine type, or the transmission type. Examples are BMW 3 Series Sedan 320i, manual
transmission or Audi A4 Avant, 2.0 TFSI, automatic transmission. Since many algorithms
operate on the product type level of the hierarchy we define it more formally.

Definition 3.1 | Product Type A product type t is a basic vehicle model at the bottom
of the product hierarchy. Within a product type some major options are already
fixed. A product type t has a parent product series series(t) and product line
line(t). The set of all product types is denoted by 7.

A product type is characterized by a certain set of fixed options. These options usually
include among others: the motor, left- or right steering, or front-, rear-, or all-wheel
drive. A customer does not choose these options individually but indirectly selects
them by fixing a product type.

Definition 3.2 | Type Determining Option An option which is used to distinguish dif-
ferent product types from each other is referred to as type determining option (TDO).
A TDO is a tuple (c,v) of a TDO category c and a TDO value v. All TDOs of a
product type t € T are denoted by tdos(t). A product type is uniquely determined
by its TDOs. Le. for two product types t; and to we have that tdos(t;) = tdos(t2)
iff t; = ta. The set of values of TDOs of a type is denoted by tdovals(t) =
{v 1 (c,v) € tdos(t)}. The set of all possible values of all TDOs is denoted by
O1 = Ugeg tdovals(t).

Example 3.1 | Type Determining Options As an example we consider five different
product types with the TDOs engine type, steering type, and transmission type.

Type Series TDOs

t SER1 {(engine, MOT1), (steering, LH), (transmission, AUTO)}
to SER1 {(engine, MOT?2), (steering, RH), (transmission, AUTO)}
t3 SER1 {(engine, MOT1), (steering, LH), (transmission, MANUAL)}
ty SER2 {(engine, MOT3), (steering, LH), (transmission, AUTO)}
ts SER2 {(engine, MOT3), (steering, RH), (transmission, AUTO)}

One can clearly see that each product type is uniquely determined by its TDOs.
An example for the set of values is tdovals(t;) = {MOT1, LH, AUTO}. If T =
{t1,...,ts}, we have O1 = {MOT1, MOT2, MOT3, LH, RH, AUTO, MANUAL}.

58

3.2 High Level Configuration

The number of type determining options differs from manufacturer to manufacturer.
BMW e.g. has 29 different categories for TDOs, among them the kind of fuel of the
motor, the bodywork design, the technical revision of the motor, or the number
of doors of the car. Other manufacturers only have four or five TDO categories.
Technically there is also no need to treat TDOs in any kind differently. We could treat
them as regular equipment options—and some manufacturers do so. However in
our presentation, they will sometimes play a distinguished role, that is why we give
them this special syntax.

Finally we will look at a small excerpt from the product hierarchy at BMW.

Example 3.2 | Product Hierarchy at BMW Figure 3.1 shows a small excerpt from the
BMW product hierarchy. At BMW there are currently over 1000 product types in 98
product series within 17 different product lines. But not only current product types
are stored within the product data management system, but also past and future
products which need to be maintained. Overall, there are almost 2500 different
product types within the BMW system.

Product Line

PLO4 PLO7

Product Series

E70 F20 F21
X5 Series. 1 Series. 1 Series
Sports-Hatch Sports-Hatch
5 doors 3 doors

Product Type

ZwWe2 zval 1A11 1C72 D1 1E12
X5 xDrive40d X5 xDrive35i 116i 116d 116i 118d
right-hand left-hand left-hand right-hand right-hand right-hand

Figure 3.1 | A small excerpt from the BMW product hierarchy

3.2 High Level Configuration

In automotive (and many other products’) configuration we distinguish between
two different configuration levels. The customer who orders a car does not want to
choose between different screws and bolts for her vehicle, but she wants to choose
whether the car has an entertainment system or a rear-view camera. Therefore we
have a configuration system on the top level which describes these abstract parts like
entertainment system or rear-view camera and we have a configuration system on a lower
level which manages the physical parts or the software configuration of the vehicle.
The configuration system at the top level which describes abstract equipment options
is referred to as high level configuration (HLC). Each equipment option in the HLC
implies many physical materials in the actual vehicle. E.g. the option entertainment
system implies materials such as a head unit, cables, mounting material, or a software
configuration for the menu language, the navigation system maps, and so on. There

59

3 Automotive Configuration

are rules to model constraints between the different equipment options. All together
the HLC describes the set of all valid customer orders at the product type level,
e.g. each equipment option and each rule is defined for a single product type.

As mentioned above, the main building blocks of the HLC are equipment options.
Each equipment option represents an abstract part of the vehicle or a configuration
option of a software component, etc. We distinguish two different sets of options:
options which can be chosen by the customer, and options which are used by the
manufacturer to control certain aspects of the manufacturing process, configurations
for digital equipment, and so on. Typical customer selectable options are e.g. en-
tertainment system, navigation system, or heated front seats. An example for a
manufacturer option is e.g. the choice whether the speedometer shows the speed in
km/h or miles/h. This is an abstract configuration option of a vehicle but usually
the customer cannot choose between its different values but the car manufacturer
does, depending on the customer’s location.

Definition 3.3 | Equipment Option For a product type t € T the set O¢(t) contains all
options which are visible and selectable by the customer for this type. The set O (t)
of manufacturer options contains all options which are used by the manufacturer
to control certain processes during the manufacturing process of this product type.
The set of all options is denoted by O(t) = O¢(t) U Om(t)

Each option o € O(t) can have two different states: it can be selected or deselected in
the order of a vehicle (either by the customer or the manufacturer). Le. there is a one-
to-one correspondence between equipment options and propositional variables.

In general, options are packaged into option families. A valid order can select at most
one equipment option within one option family.

Definition 3.4 | Option Family An option family F ={o},..., ol } groups options o},
..., ol with the condition that at most one option of F can be selected in a valid
order at the same time. The set of all option families of a product type t is denoted

by JF(t).

A classical example for an option family is e.g. the family of equipment options for
steering wheels—there can be only one steering wheel in a vehicle. Some manufactur-
ers force every option to be in one family, some allow options without a family. Also
the question whether an option from each family has to be selected or can be selected
is handled differently in the various companies. In this dissertation we assume that
options can be in families but do not have to and that you can select at most one
option from a family but do not have to.

There are also rules describing constraints between the different options of O(t).

Definition 3.5 | Rule For a product type t € T the set R(t) contains all rules between
the different options of O(t). A rule is an arbitrary propositional formula with
variables from O(t) and propositional connectors —,V/, A\, — and <—. Each rule
has to evaluate to true for a valid customer order.

60

3.3 Low Level Configuration

Not all car manufacturers allow arbitrary propositional formulas as rules. Some
e.g. allow only implications at the top level or restrict the formulas to CNF. In this
work we allow arbitrary formulas and therefore include any restrictions found in the
industry. We conclude this section with an example of a high level configuration.

Example 3.3 | High Level Configuration We consider the five types T = {ti,..., ts5}
from Example 3.1. We assume that all types t; have the same HLC. There are two
option families:

1. G ={of, 05,05} for GPS systems, and
2. E ={ok, of} for entertainment systems,
and three options without a family:
1. og for support for Chinese characters in the headunits,
2. oy for special Japan support, and
3. og for speech assistance in the vehicle.

The equipment options og and o7 are not customer-selectable. Therefore we have:
Oc(ti) ={0%,05,05,0f, of, 0g} and Op(ti) = {06, 07}. The set of rules R(t;) =
{ry, 72,73, 74, 75} contains five rules:

— oG E
1. 11 =07 — o4

Ty = oF — —0§

T3 = 0f — —0F

2.
3.
4. vy = 06 < —O7
5.

Ts =08 — (01G/\0}f)

Of course, for real product types we have a large number of options and rules. For a
standard vehicle of a major German car manufacturer we have between 300 and 600
equipment options within over 100 option families and between 400 and 800 rules
for these options.

Some manufacturers extend the concepts for the HLC shown here. E.g. some of them
allow default values for option families or they declare some options which are present
in every vehicle of a certain product series or line. We will give some examples of
such extensions when we look at the modeling of the HLC as a propositional formula
in Section 3.4.

Note | Time Aspect Usually all equipment options, families, and rules are not static, but
change over time. So each piece of data within a configuration system has a point in time
when it becomes valid (SOP—start of production) and a point in time when it becomes
invalid (EOP—end of production). Within this dissertation we assume that we look at the
configuration database at a given point in time and the data is already filtered for this point
in time.

61

3 Automotive Configuration

3.3 Low Level Configuration

The second level of configuration is the low level configuration (LLC). At this level we
distinguish two different configuration systems: (1) the bill of materials (BOM) man-
ages the actual physical materials of a vehicle, meaning which option or combination
of options from the HLC implies which physical materials on the low level. E.g. the
choice of the product type together with the equipment options chosen by the cus-
tomer and the manufacturer decide which steering wheel is built in the car, which
brakeshoes are used, or if a trailer hitch is present. (2) The configuration system for
electrics and electronics (E/E) manages the configuration of the vehicle’s control
units and their software. Options from the HLC imply the presence or absence of
certain control units. Each of the control units must be parametrized with the correct
values for the vehicle at hand. E.g. if the customer chose an automatic park distance
control (PDC), there has to be a control unit for the PDC. This control unit’s software
needs to know e.g. the exact length of the car (which can be influenced e.g. by the
presence of a trailer hitch) or the turning circle of this vehicle. These parameters are
set depending on the customer’s specific order.

3.3.1 Bill of Materials

Once a customer selected the equipment options she wants in her vehicle and the
manufacturer selected the manufacturer options necessary for this order, we have
a complete valid order of a vehicle. The question now is, which physical parts are
requried for this order. At the end of this process, the manufacturer requires a bill of
materials (BOM) for each order. The BOM is a list of all physical parts required for
the specific customer order.

To decide which physical parts are used in a vehicle, the manufactures maintain a
Configurable BOM (sometimes referred to as Super BOM or 150% BOM) which stores
for each physical part the condition under which it is used in a vehicle. For a specific
customer order, each constraint is evaluated. If it evaluates to true, the respective
part is used in the ordered vehicle, otherwise it is not used.

In general, the automotive industry always maintains the configurable BOM. When
necessary, the BOM for an individual vehicle is then computed on-the-fly from
the order and the configurable BOM. From now on, we will therefore refer to the
configurable BOM simply as BOM, since this is common in the automotive industry.

The BOM usually is organized as a tree of physical parts. Inner nodes in this tree
are used to structure the parts into logical groups like steering wheels, brake shoes, or
head units. Within one logical group we have different nodes for physical parts (often
called materials). Each material node has (among many other parameters) a unique
number, a description, and a usage constraint. The usage constraint is a propositional
formula describing the condition for the usage of this material in a vehicle.

Definition 3.6 | Bill of Materials (BOM) A BOM is a tree. The inner nodes of this tree
are called structure nodes. Each structure node ns has a unique name name(ns) and

62

3.3 Low Level Configuration

a list of children nodes children(ns). The leaves of the BOM are referred to as
material nodes. Each material node naq has a unique material number matnum(nm),
a description, and a usage constraint constraint(nm). The usage constraint is
an arbitrary propositional formula. The set of all structure nodes of a BOM b is
denoted by Ng(b), the set of all material nodes is denoted by N (b). The set of
all material nodes of a structure node n is denoted by N (n). The set of product
types covered by b is denoted by types(b).

The set of equipment options which can be used in the usage constraint of a material
node depends on the level at which the BOM is modeled. If there is a BOM for each
product type, we do not need type determining options because the type is already
determined by the respective BOM. Since there are usually over 1000 product types,
it is not common to have a single BOM for each product type. Usually BOMs are
modeled at the product series or even product line level. In these cases it is necessary
to use also values of TDOs in the constraints because one needs to distinguish the
different product types. In this dissertation we assume a BOM b at the product line
level. Therefore, we have Utetypes (5 (O(t) U tdovals(t)) as set of variables for the
usage constraints.

Example 3.4 | Bill of Materials We consider the types from Example 3.1 and the HLC
from Example 3.3. Therefore we can use variables from the following set in the
usage constraints:

{08,05,05, 05, 0F, 06, 07, 05, MOT1, MOT2, MOT3, LH, RH, AUTO, MANUAL}

A small excerpt of a BOM is shown in Figure 3.2. As we can see it is not necessary
that all head units are located under the same structure node. In this case we have
different head units depending on whether we only have a navigation system or a
full entertainment system. It is also not necessary that a node has only material
nodes with the same type of material. E.g. the GPS system—head unit node has
head unit materials as well as a cable material. The following table presents the
usage constraints of each material node.

Number Description Usage Constraint
123451 Head Unit 1 (with speech support) (0f VoS V0§ Vof Vof) Aog
123452 Head Unit 2 (Asian language) (0§ VoS Vo§ Vof Vol A
(06 VV 07) A\ —0s
123453 Head Unit 3 (no GPS) (0f VoE) A—=(0f VoS VoS)A
—(06 V 07 V 03)
123454 Head Unit 4 (GPS LH) LHA (oS V 0§) A —(06 V 07 V 0g)
123455 Head Unit 5 (GPS RH) RHA (0§ V 0§) A—(06 V 07 V 0g)
123456 Special Cable 0§ Vo§

63

3 Automotive Configuration

123451 123452 123453 123454 123455 123456
Head Unit 1 Head Unit 2 Head Unit 3 Head Unit 4 Head Unit 5 Special Cable

Figure 3.2 | A small excerpt of a BOM

3.3.2 Electrics and Electronics

For the Electrics and Electronics (E/E) configuration we again distinguish two dif-
ferent configuration systems. The first is used to determine which control units or
control unit modules have to be present in a vehicle. We refer to this system as control
unit configuration (CUC). The second system is used to manage the software con-
figuration of these control units and is referred to as controller software configuration
(CSC).

Control Unit Configuration

The control unit configuration is very similar to the BOM. Indeed, at some companies
there is no special system for the configuration of the control units but they are
treated as ordinary physical materials. Some companies however treat them in an
own system because their usage is more restricted. E.g. a screw in a vehicle can
occur in many different positions: to secure a cable, to fix a steering wheel, or to fix
the driver’s seat. Therefore it can occur in many positions in the BOM and can be
used more than once in a vehicle. A control unit on the other hand can only be used
in special places in the vehicle. These special places are sometimes referred to as
diagnosis address. E.g. there is a diagnosis address in a vehicle for the entertainment
system control unit. Depending on the entertainment system chosen by the customer
there can be a control unit at this address (perhaps with different units for different
entertainment systems) or not.

Definition 3.7 | Diagnosis Address A diagnosis address a is a physical location in a
vehicle where a control unit can be used. A diagnosis address can have a propo-
sitional guard guard(a) which expresses the condition under which this address
is used in a vehicle. At a diagnosis address there can be different control units
units(a) which can be used at this address. Each control unit ¢ has a unique
material number matnum(c), a description, and a usage constraint constraint(c)
like physical parts in the BOM.

Example 3.5 | Diagnosis Address We consider the diagnosis address a; for the con-
trol unit for the entertainment system. We again use the options defined in Exam-
ple 3.3. We have guard(a;) = of Vv og, i.e. there should only be a control unit at

64

3.3 Low Level Configuration

this address if the customer has actually chosen an entertainment system. We have
three different control units (which can depend on more options than just the ones
of the entertainment system), therefore units(a;) ={c1, c2, c3}.

Control Unit Material Number Description Usage Constraint

c1 555551 Control Unit1 of A (of VoS Vo§)
co 555552 Control Unit2 of A—(of VoS Vof)
Cs3 555553 Control Unit 3 of

Le. control unit 1 is used if the customer chose entertainment system o} and did
choose a GPS system. Control unit 2 is used if she chose o} and did not select a
GPS system. Control unit 3 is used if she chose entertainment system of

5

A real vehicle at BMW has over 70 diagnosis addresses with over 2.500 different
control units to fill these addresses. The CUC manages all these addresses, their
guards, and their control units. As for the BOM, the control unit configuration is
usually at the product series or product line level. Therefore if the CUC covers types
T ={t1, ..., tn}, the propositional formulas for the guards and the usage constraints
can contain variables from ;. (O(t) U tdovals(t)).

Controller Software Configuration

If a control unit is used in a car (as determined by the CUC seen in the last section), its
software needs to be configured. E.g. the control unit of the board computer needs
to know if there is a GPS system available in order to display the respective choices
in the menu. It needs to know which language is selected by default depending on
the country of sale and so on. There are control units in real vehicles which have over
5000 configuration parameters. The controller software configuration (CSC) manages
these software configurations. Again, the structure of the CSC is very similar to the
BOM and the control unit configuration. Instead of diagnosis addresses we have
software parameters and instead of material numbers we have parameter values which
are usually hexadecimal values.

Definition 3.8 | Software Parameter A software parameter p is a parameter in the
software of a control unit which can take different hexadecimal values values(p).
A value v has a hexadecimal value hex(v), a description, and a usage constraint
constraint(v). There can be a default value default(p) € values(p) which is
chosen if no usage constraint of all other values in values(p) evaluates to true.

Example 3.6 | Software Parameter We consider two software parameters for a con-
trol unit for entertainment systems as seen in Example 3.5.

65

3 Automotive Configuration

Parameter Value Description Usage Constraint

PREMIUM_GPS_PRESENT

0x00 no default

0x01 yes o§ Vof
LANGUAGE

0x00 English default

0x01 Chinese 06

0x02 Japanese o7

The first parameter encodes whether a premium GPS system is present or not. The
second parameter encodes the language of the entertainment system’s menu.

For a single configuration parameter there can be hundreds of possible values. Again,
the software configuration is at the product series or product line level—at some
companies it is even global over all product types. Therefore if the CSC covers types
T = {t1,...,tn}, the propositional formulas for the usage constraints can contain
variables from (J 1 (O(t) U tdovals(t)).

3.4 The Product Description Formula

As we have seen in Section 3.2, the HLC is the basis for all other configuration systems.
The TDOs, the customer options, and the manufacturer options defined there are
used in all usage constraints in the BOM, the control unit configuration, and the
controller software configuration. Since the aim of the analysis algorithms in the next
chapters is to cover all constructible vehicles, we need to construct a propositional
formula which implicitly describes all valid customer orders at the high level by its
solution set.

We refer to this formula which models the HLC as product description formula (PDF).
We assume the product description formula at the product type level, i.e. a PDF
describes the HLC of a single product type.

Definition 3.9 | Product Description Formula (PDF) Let t € T be a product type, then
PDF(t) is the product description formula of t. The PDF describes all valid customer
orders of t. Therefore #sat(PDF(t)) is the number of different orderable cars of t.

3.4.1 Modeling the Options

We have seen three different types of options for a product type t: the values of type
determining options tdovals(t), user-selectable options O¢(t), and manufacturer
options O (t) with O(t) = O¢(t) UOm(t). Each option can be selected or deselected
in an order, therefore we can directly interpret the different equipment options as
propositional variables. Assuming the PDF at the product type level, we do not need
the type determining options since we have a different PDF for each type and do not
need to refer to its determining options which are fixed for the product type.

66

3.4 The Product Description Formula

3.4.2 Modeling Option Families

Within the options of an option family at most one can be selected at the same time in

a valid order. The natural propositional encoding of an option family is a cardinality

constraint cc<; (cf. Section 2.1.3). For an option family F with options o, ..., of, we

use the propositional encoding cc<; ({0}, ..., oL }). Some manufacturers allow the
use of the option family name in the rules. An option family name is equivalent to
the disjunction of its members. Therefore F «— (o} V-V ol).

Definition 3.10 | Encoding of an Option Family In the PDF an option family F with

options of, ..., of is translated with

encodeFamily(F) = cc<1({of, ey oi}) A (F+— (05 VeV ofl)).

Some manufacturers enforce that every option is in an option family and that there
has to be an option selected in every family. In this case we would translate the option
family F with cc—; ({of,...,0l}).

Example 3.7 | Encoding of Option Families We take the two option families from ex-
ample 3.3:

1. G ={0%,05,05}
2. E={of,0f}
This leads to the following encodings
1. cc<ci({of, 08,058 H A (G «— (0F V0§ Vof))
2. ccc1({of, 05 A (E <— (oF V of))
which can be translated easily to CNF:

1. (_‘Ole_'Og)a (_‘01G7_‘O?§)7 (_'oga_'o??)a (_'GaoleOQGvog)v
(—of, G), (—05, G), (—oF, G)

2. (—of,—of), (E, 0f, 0f), (o}, E), (—of, E)

Lemma 3.1 | Size of an Option Family Encoding We consider an option family F with
n options {of, ..., of }. The clause set of the encoding presented in Definition 3.10
has “2% + 1 clauses with n? + 2n + 1 literals in total. Therefore the encoding has
a size in O(n?).

Proof The CNF of cc<i({o},...,0}) has “2; = binary clauses (clauses of size two)

and therefore n? — n literals. The sub-formula (F <— (o} \V---\V of) has n binary
clauses and one clause of size n + 1 and therefore 3n + 1 literals. n

3.4.3 Modeling Rules

The HLC rules R(t) for a product type t € T are already propositional formulas.
Therefore no special treatment is necessary. However, since the rules are added to a

67

3 Automotive Configuration

CDCL solver later we need to convert them to CNF. Depending on the manufacturer,
the rules are already in CNF or are restricted in a way that they can be converted
easily by using the distributive law. If arbitrary propositional formulas are allowed,
it can be necessary to use one of the approaches by Tseitin or Plaisted & Greenbaum
as described in Section 2.1.2.

3.4.4 Manufacturer Specific Extensions

Some manufacturers have extensions in the HLC which we did not include in our
presentation in Section 3.2. We will look at two such examples: (1) The usage of
default values e.g. in option families, and (2) the usage of wildcards (place-holders)
in propositional formulas.

Default Values

An option family can have a default value which is selected if no other option of this
family is selected. E.g. a default steering wheel which is always present if the customer
has not chosen a special steering wheel. If in an option family F = {o}, 05, ...,0f}
we have the default value o!, we can add the following constraint to the encoding of
definition 3.10:

—(o5V---Vol) —of

So if no other option from the family is chosen, the default value of is selected.

Wildcards

Sometimes it can be useful for the users of configuration systems to use wildcards in
the option names. If for example we have options S1A4, S2A, S3A, and S4A which are
in no option family and the user wants to express the fact that any of these options
forces an option O1 to be selected, she can write SIA V S2A V S3A V §4A — O1
or—if wildcards are allowed—S*A — O1. In this case we must pattern match all
relevant option names to determine whether they match the wildcarded pattern. In
the case of S*A the set {S1A, S2A, S3A, S4A} matches the pattern. We extend this
to the disjunction S1IA V S2A V S3A V §4A and substitute it for S*A in the original
formula.

However, the arbitrary use of wildcards can be very dangerous since it can lead
to ambiguities. Therefore the usage is often restricted to a single character or only
pre/postfix of a name.

3.4.5 Building the PDF

We can now use the techniques of the last section to build the PDF for a product
type t. Therefore we have to translate all option families F € J(t) into propositional

68

3.5 Summary

formulas and add the rules R(t). Depending on the manufacturers, sometimes a rule
of R(t) can contain an option which is not in O(t), e.g. if the rules are maintained for
a variety of product types. In this case unknown options have to be added negated to
the PDF at the end to express the fact that hey can never be chosen by the customer
for this product type. For a product type t we have the PDF:

PDF(t) = | /\ encodeFamily(F)| A A r|A A —v
FeTF(t) TER(t) VE€unknownVars(t)

with
unknownVars(t) ={v|v € vars(r) withr € R(t) and v ¢ O(t)}.

We conclude this section with an example of a PDF.

Example 3.8 Given the HLC from Example 3.3, we model the PDF for type t;.

CCg = cc<1({olG, og, og}) A (G +— (01G Vv 02G Vv 036)) (option family G)

CCg = cc<1({0}f, og}) A (E +— (o] V OE)) (option family E)
R= (0% — 05) A (oF — —0§) A (0fF — —0$) A
(0g «— —07) /\ (0g —> (01G A\ oE)) (rules)
PDF(t;) = CCg ANCCg AR (PDF)

Real-life PDFs range between 500 and 10.000 variables and 5.000 and 100.000 clauses.
Of course these numbers heavily depend on the complexity of the modeled vehicle—a
Rolls-Royce with tens of options or a BMW 7 Series with hundreds of options—and
the restrictions on the propositional formulas of the rules. If they need to be converted
to CNF with the methods of Tseitin or Plaisted-Greenbaum, many new variables are
introduced which do not belong to the original problem.

3.5 Summary

In this chapter we had a look at the product hierarchy of a typical premium class
car manufacturer. At the top level we distinguish different product lines, followed
by product series and product types. A product type fixes certain choices about a
vehicle like engine, steering type, or transmission type. A product type is uniquely
determined by its type determining options (TDOs).

The high level configuration (HLC) manages the customer viewable configuration
options. It consists of equipment options (customer-selectable options and manufac-
turer options), option families, and rules. The HLC is usually at the product type
level and describes all customer-orderable vehicles of a this product type.

69

3 Automotive Configuration

At the low level configuration (LLC) we distinguish between (1) the bill of materials
(BOM) which describes the physical parts of vehicle and their constraints, and (2)
the electric and electronics configuration consisting of two parts: the control unit
configuration (CUC) describes which control units are used in a vehicle, whereas
the controller software configuration (CSC) models the software parameters of these
control units.

The product description formula (PDF) is constructed from the data in the HLC.
A PDF is a propositional formula implicitly describing all valid customer orders
for a product type by its solution set. This formula will be the base of all analysis
algorithms in the next two chapters.

70

4 Qualitative Analysis of
Configuration Data

This chapter gives an overview of different qualitative analysis techniques in auto-
motive configuration. Qualitative analysis summarizes all analysis algorithms which
yield a yes/no or true/false answer. Among these are e.g. the computation of whether
an option can be used in a given product type or whether a control unit can be used
at a given diagnosis address. They are equivalent to decision problems in computer
science. Algorithms which perform a quantitative analysis of the configuration base
are presented in the next chapter.

Section 4.1 presents the main approach taken by this dissertation—based on SAT
solving—and compares it with the approach based on knowledge compilation. Sec-
tion 4.2 presents qualitative analysis algorithms for the HLC. Especially inadmissible
options are of interest—options that can not occur in any valid configuration of a
product type. Section 4.3 addresses the analysis of the BOM. Here we need to define
additional concepts in order to be able to compute the uniqueness and complete-
ness of nodes in the BOM. Section 4.4 proceeds with the analysis of the electric and
electronics configuration, namely the CUC and the CSC. In Section 4.5 we look at a
technique to minimize counter examples which can be important to generate short
explanations for errors in the configuration base.

4.1 Analysis Approaches

The product description formula of Section 3.4 is the base for all qualitative and
quantitative analysis algorithms of this and the next chapter. Every property which
we want to analyze is checked against the PDF and therefore against the set of all
valid vehicle configurations of a product type. This is a classical scenario: we have
a knowledge base—the PDF of a product type t—and we query it with different
kinds of questions. These queries can be simple ones like is there any valid vehicle in
t, or can we build a vehicle of t with a certain option o, but also very complex ones like
Given a node in the BOM, is there any valid vehicle which does not select any part of this
node. Figure 4.1 illustrates the situation. For qualitative analysis algorithms (like

4 Qualitative Analysis of Configuration Data

the examples above) the answers are yes or no, for quantitative analysis algorithms
the answers are numerical values. However, often also the answers for qualitative
analysis algorithms contain additional information like examples, counterexamples,
or explanations for conflicts as we will see in the following sections.

Query —>| Answer

Product
Description
Formula
(PDF)

Query —>{ Answer

Query —>| Answer

Figure 4.1 | The PDF as knowledge base

Since the product description formula is a formula in propositional logic, the queries
have to be formulated in propositional logic, too. Given a propositional query q and
a PDF for a type t, PDF(t), we want to check if there is any valid vehicle satisfying
PDF(t) but violating q. Thus we formally check PDF(t) = q. If it holds, each model
(and therefore valid configuration) of t is also a model of q and therefore also satisfies
the query. If it does not hold, there is a valid vehicle of t that is not a model for q and
is therefore a counter example for the query. In the future we will refer to the query
q also as verification property. Instead of checking PDF(t) |= q one can also check the
formula PDF(t) /A —q for satisfiability. If the formula is not satisfiable, PDF(t) = q
holds. If the formula is satisfiable, any model of PDF(t) /A —q is a counter example.

As seen in Chapter 2, there are two basic ideas to solve the question whether PDF(t) =
q holds or not: (1) using a SAT solver to check the satisfiability of the formula
PDF(t) A —q (cf. Section 2.2), or (2) using knowledge compilation (cf. Section 2.3)
to check the logical entailment PDF(t) |= g. The next two sections will revisit both
approaches in the light of the scenario described above.

4.1.1 Knowledge Compilation

In theory, knowledge compilation should be well suited for the scenario described in
Figure 4.1. [Sinz, 2002] describes product configuration with knowledge compilation.
The idea is to separate the configuration problem into an instance-independent
and an instance-dependent part. In our case the instance-independent part is the
PDF—it stays the same for every query for the respective product type. The instance-
dependent part is the actual verification property at hand. The instance-independent
part PDF(t) can then be compiled into the respective knowledge compilation format
PDF(t)’ and we need to decide PDF(t)’ = ¢ where ¢ is the verification property. There
are two possibilities to compute the decision whether PDF(t)’ = ¢ or not: (1) using
clausal entailment (CE), or (2) using sentential entailment (SE) [Darwiche, 2002].

72

4.1 Analysis Approaches

Definition 4.1 | Clausal entailment (CE) A knowledge compilation format K supports
polynomial-time clausal entailment if there is a polynomial-time algorithm which
can decide K(¢) = ¢ where K(¢) is a propositional formula ¢ in the respective
knowledge compilation format K and c is a propositional clause.

Definition 4.2 | Sentential entailment (SE) A knowledge compilation format K sup-
ports polynomial-time sentential entailment if there is a polynomial-time algorithm
which can decide K(¢) = K({) where K(¢) and K(1p) are propositional formulas
¢ and 1 in the respective knowledge compilation format K.

Not every knowledge compilation format supports CE and SE in polynomial time.
ROBDD:s (cf. Section 2.3.1) support both CE and SE in polynomial time; DNNFs and d-
DNNFs (cf. Section 2.3.2) do only support CE in polynomial time. However, there are
special variants of DNNFs called d-DNNF+ [Pipatsrisawat & Darwiche, 2008] which
do also support SE in polynomial time. If a knowledge compilation format—Ilike
DNNFs—only supports polynomial time clausal entailment, the problem of deciding
PDF(t)’ = ¢ has to be split into n sub-problems PDF(t)’ = ¢; withi € {1,...,n}
where cnf(@) ={c1,...,cn}

In theory the knowledge compilation approach is a very elegant solution for the
analysis algorithms in this and the next chapter. However, there is one large problem:
in order for it to work, the product description formula has to be compiled into the
respective knowledge compilation format. This is not always possible in practice. The
PDFs are often too large to be compiled into a knowledge compilation format. This has
been tried for product descriptions of Daimler and BMW with BDDs [Narodytska &
Walsh, 2007; Matthes et al., 2012] and for the same manufacturers with DNNFs [Kiibler,
2009; Hildebrandt, 2012]. For both manufacturers and both knowledge compilation
formats there were always product types the PDF of which could not be compiled due
to time or space restrictions. Even if the tools improve or domain-specific variable
orderings or constraint orderings can be found to speedup the compilation process,
the big challenge is to provide a stable solution for the industry which always compiles
within certain time limits. This becomes especially important since the HLC often
changes on a daily basis, i.e. the compilations of the PDF have to be computed for all
product types each day. Since this is currently not possible, we did not implement
the knowledge compilation approach in our industrial solutions.

There are other manufacturers which have their own domain-specific knowledge
compilation format which can handle their specific verification properties. An exam-
ple for that approach are the cluster trees used by Renault [Pargamin, 2002; Astesana
et al., 2010].

4.1.2 SAT Solving

As mentioned above, instead of deciding PDF(t) = ¢ we can also compute the satisfi-
ability of PDF(t) /A —~¢@ with a CDCL SAT solver. This approach was first presented
for the Daimler vehicle configurations in [Kiichlin & Sinz, 2000; Sinz et al., 2003].

73

4 Qualitative Analysis of Configuration Data

The big disadvantage of this approach is that for each verification property ¢ one
has to solve the formula PDF(t) A\ —¢ again. A single analysis algorithm often has
to prove thousands, sometimes even millions, of verification properties. In this case
the incremental /decremental interface of Section 2.2.4 is a big advantage. Assuming
we have n verification properties {¢1, . .., @n}, we do not construct n CDCL Solvers
and solve the formulas PDF(t) A —¢@; with i1 € {1,...,n} n times. Instead we use the
schema presented in Algorithm 4.1.

Algorithm 4.1 | Verifying n verification properties with a SAT solver

Input: A product type t and a set of verification properties {@1, ..., ¢n}
Output: true if PDF(t) = @i holds for every i € {1, ...,n}, false otherwise
solver = new incremental /decremental CDCL SAT solver
solver.add (PDF(t))
foreach verification property @ € {@1,..., pn}do

solver.mark()

solver.add(—)

if solver.solve() = SAT then

| return false

NS Ul e WN

solver.undo ()

®

9 return true

The experience in our industrial projects with all major German car manufacturers is
that the SAT solver based approach works very well in practice. The results from the
BMW case study can be found in Section 7.2. Even complex tests which involve tens
of thousands of calls to the SAT solver require only seconds in practice. Therefore all
algorithms of the following sections will use this approach.

4.2 Verifying the High Level Configuration

Looking at the high level configuration of a vehicle, there are two important ques-
tions:

1) Are there equipment options which cannot be built in any vehicle?
2) Are there equipment options which must be built in every vehicle?

We call options which cannot be built in any vehicle inadmissible options and options
which must be built in every vehicle necessary options. Both questions were introduced
in [Kiichlin & Sinz, 2000] in the Daimler context. We present here a refined algorithmic
presentation suited to the definition of the HLC in Section 3.2.

Inadmissible options are almost always a real error—most manufacturers have a list
of options which are allowed for a certain product type. If one of the options there is
not orderable in any vehicle of this product type, it should either not be in the list of

74

4.2 Verifying the High Level Configuration

allowed options or there is a problem with the rules leading to the inadmissibility of
this option. Necessary options can be deliberate—but again: some manufacturers
have special mark-ups for such options and sometimes forget to mark a necessary
option. But usually both result types gets reviewed by documentation experts which
decide if the result is an error or not.

4.2.1 Computing Inadmissible Equipment Options

The inadmissible equipment options are computed per product type t € 7. Therefore
the base of the verification algorithm is the product description formula PDF(t). Since
PDF(t) describes all valid vehicles of t, we can easily check whether a certain option
o € O(t) can be built in any valid vehicle by computing the satisfiability of PDF(t) /\ o.
If sat(PDF(t) /\ o) = SAT, there is at least one valid vehicle configuration of t which
has option o selected (set to true); if the result is UNSAT, no valid vehicle of t can be
built with option o chosen—in this case o is an inadmissible option. Algorithm 4.2
presents the corresponding analysis algorithm.

Algorithm 4.2 | Compute the inadmissible options: inadmissibleOpts(t)

Input: A product type t
Output: A set E; of inadmissible options
1 Ei = @
2 solver = new incremental/decremental CDCL SAT solver
3 solver.add(PDF(t))
4 foreach option o € O(t) do
5 solver.mark()
6 solver.add(o)
7 if solver.solve() = UNSAT then
8 L Ei = E; U{o}
9 solver.undo ()

10 return E;

This algorithm follows the schema described in Section 4.1.2 and benefits a lot from
the incremental/decremental interface of the SAT solver—the product description
formula of t is added only once to the solver (Line 3) and via mark/undo each single
option o is tested in combination with the PDF (Lines 4-9).

Theorem 4.1 | Correctness of inadmissibleOpts The set E; contains exactly the inad-
missible options.

Proof An option o € O(t) is in E; (Line 8) if and only if sat(PDF(t) /\ 0) = UNSAT,
i.e. there is no model that satisfies the product description formula and has option
o set to true. Therefore no valid vehicle of t can be configured with option o and
thus o is an inadmissible option. =

Theorem 4.2 | Complexity of inadmissibleOpts Algorithm 4.2 takes |O(t)] calls to the
SAT solving algorithm.

75

4 Qualitative Analysis of Configuration Data

Proof The method solver.solve() is called only in Line 7 in Algorithm 4.2. The
surrounding loop is traversed |O(t)| times. n

Remark | Complexity of Algorithms Since almost all analysis algorithms in this and the
next chapter use SAT solving as a sub-procedure, they obviously are theoretically in NP.
Therefore we use the number of calls to the CDCL solving algorithm as practical complexity
measure. Given the termination of the CDCL algorithm [Zhang & Malik, 2003], this also
proves the termination of the algorithms.

Algorithm 4.2 can be extended to also include explanations for the inadmissible
options. Since an equipment option is inadmissible if the SAT solver returns UNSAT,
the techniques described in Section 2.2.5 can be used. For each option which is
inadmissible a MUS or a resolution proof can be recorded and returned with the
result. This can be especially helpful for documentation experts analyzing the result
of the algorithm.

Both techniques (MUS and resolution proof) have their advantages and disadvantages.
When computing the MUS for every inadmissible option, the SAT solver does not
have to support proof tracing and therefore does not have to record any resolution
information at runtime. On the other hand, for each inadmissible option a new
solver must be constructed and the complete PDF must be added to this new solver
(cf. Algorithm 2.3). Computing the resolution proof for each inadmissible option
with the help of a proof tracing solver avoids the construction of a new solver for each
conflict but the resolution information is recorded for each run of the solver—also for
the ones which do not yield an inadmissible option. However, the practical results in
Section 7.2 indicate that in general the overhead of recording the resolution proof is
smaller than the one of computing the MUS for each inadmissible option. Therefore
the usage of the proof-tracing SAT solver is preferred.

4.2.2 Computing Necessary Equipment Options

The computation of necessary options is very similar to Algorithm 4.2—in fact only
one line (Line 6) is changed. It is not tested if PDF(t) /\ o is satisfiable but if PDF(t) A—o
is satisfiable. If it is not satisfiable, no valid vehicle can be built without option o.
Therefore o is necessary in t. This altered procedure is presented in Algorithm 4.3.

Theorem 4.3 | Correctness of necessaryOpts The set E,, contains exactly the neces-
sary options.

Proof An option o € O(t) is in E;, (Line 8) if and only if sat(PDF(t) /A —0) = UNSAT,
i.e. there is no model that satisfies the product description formula and has option
o set to false. Therefore no valid vehicle of t can be configured without option o
and thus o is a necessary option. ™

Theorem 4.4 | Complexity of necessaryOpts Algorithm 4.3 takes exactly |O(t)| calls
to the SAT solving algorithm.

Proof The method solver.solve() is called only in Line 7 in Algorithm 4.3. The
surrounding loop is traversed |O(t)| times. n

76

4.2 Verifying the High Level Configuration

Algorithm 4.3 | Compute the necessary options: necessaryOpts(t)

Input: A product type t
Output: A set E,, of necessary options
E.=0
solver = new incremental/decremental CDCL SAT solver
solver.add (PDF(t))
foreach option o € O(t) do

solver.mark ()

solver.add(—o)

if solver.solve() = UNSAT then

| En =EnU{o}

9 solver.undo ()

@® NS U R W N =

10 return E,

4.2.3 Checking Specific Configuration Restrictions

Sometimes it can be very convenient to be able to check if a certain configuration
restriction is possible. E.g. a documentation specialist wants to be sure that there can
be no vehicle of a product type t with a GPS system g but no board computer c, so
she wants to check that PDF(t) /\ g /\ —c is unsatisfiable. Algorithm 4.4 provides such
a procedure.

Algorithm 4.4 | Check a (partial) configuration: checkConfiguration(t, @)

Input: A product type t and a propositional formula ¢
Output: true if there is a vehicle of t that satisfies restriction ¢, false
otherwise
solver = new incremental /decremental CDCL SAT solver
solver.add(PDF(t))
solver.add (o)
foreach v € vars(@) withv ¢ O(t) do
L solver.add(—v)

if solver.solve() = SAT then
| return true

else
L return false

gl B W N =

o 0 NN S

The algorithm does not only check PDF(t) /\ @ for satisfiability but performs an
important step in Lines 4/5: excluding unknown options. When an arbitrary formula
@ is checked against a product description formula, it has to be assured that options
that occur in ¢ but are no valid options in t are set to false since no valid vehicle
can contain them.

77

4 Qualitative Analysis of Configuration Data

Of course the result can be extended: in the case that a vehicle satisfying the re-
striction ¢ is possible (Lines 6/7) the current model of the solver can be returned
additionally—providing an example vehicle configuration satisfying ¢. In the case
that no such vehicle is possible (Lines 8/9) the MUS or resolution proof can be
returned additionally.

Theorem 4.5 | Correctness of checkConfiguration Algorithm 4.4 returns true if and
only if there exists a vehicle that satisfies both the PDF of t and the additional
restriction @.

Proof Both PDF(t) and ¢ are added to the solver (Lines 2/3). Additionally unknown
variables are added as negative literals (Lines 4/5). If the solver returns SAT, the
model found by the solver must satisfy the PDF(t) and the restriction ¢. If there is
no such model, the solver will return UNSAT. n

Theorem 4.6 | Complexity of necessaryOpts Algorithm 4.4 takes exactly one call to
the SAT solving algorithm.

Proof The method solver.solve() is called only once in Line 6. n

We present an example which showcases all three presented algorithms.

Example 4.1 | High Level Verification We consider a product type t with the follow-
ing HLC. We have two option families

1. G ={o¥, 05,05} for GPS systems, and
2. E ={ok, of} for entertainment systems,
and three options without a family:
1. og for support for Chinese characters in the headunits,
2. oy for special Japan support, and
3. og for speech assistance in the vehicle.

Therefore we have: O(t) = {0f, 05,05, 0k, of, 06, 07, 03}. The set of rules R(t) =
{r1, 12, 73,74, T5} contains five rules:

1. 1y =0f — of

2. 19 =05 — 06V 07
_ G

T3 =06 V Oy — 707

T4 =0% VoS Vo§ — og

AR

5 = —0f — 0§ Vo

The result of inadmissibleOpts(t) is {of}. The option of forces of (rule 1); of
forces og or o7 (rule 13); 06 or o7 on the other hand force not o (rule r3)—a
contradiction; thus of can not be built in any valid vehicle of t.

78

4.2 Verifying the High Level Configuration

The result of necessaryOpts(t) is {og}. Rule 15 states that there has to be a GPS
system in the vehicle; rule r4 assures that any GPS system can only be built together
with og; therefore no vehicle of t can be built without og.

An example restriction which can be tested against PDF(t) is e.g. ¢ = o Ao$. The
result of checkConfiguration(t, @) is then false because of and o$ are in the
same option family and can therefore never occur in the same vehicle at the same

time. If we test e.g. @ = of /A o, the result of checkConfiguration(t, @) is true.

4.2.4 Searching for Redundant Rules

The HLC rules in R are often maintained from many different documentation experts.
Therefore it can happen that some rules are added redundantly to the configuration
database. If someone adds a rule which is already present in the system, this is easy
to determine. However, the situation is not always so clear. Consider that the rule

T1 =01 — 03 V 03
is already present in the system. If an expert now adds the rule
To =01 — 03 V03V 0y

to the system, the new rule 13 is redundant. Both r; and 15 have to evaluate to true for
each valid vehicle configuration. However, 15 always evaluates to true if r; evaluates
to true. Even worse, if someone looks at rule 15, it suggests that o4 can be forced by
01. But because of rule 1, this can never happen. Another example is if the rule

T3 = —09 /A 703 —> 04

is present in the system. This rule ensures that at least one of 0, 03, or 04 has to be
selected in the vehicle. If now another expert adds the rule

T‘4i01*>02\/03\/047

to the system, the new rule 1, is redundant because its conclusion must always
evaluate to true for a valid vehicle because of rule r3. Redundant rules are not
always a real error but are mostly considered as bad style and potential errors. If
someone added rule r; to the system, she thought that o4 can really be forced by
0;—if this is not the case, the user should be warned about this fact.

Formally speaking, a rule 73 is redundant wrt. to another rule r; if 11 |= r2. In this
case, each model of r; is also a model of 2. Since in a valid vehicle configuration
every single rule has to be satisfied, any additional models of v, which are not models
of r; are not relevant. There are two levels at which the redundancy of rules can be
checked:

1) Check the redundancy of each rule with respect to the whole PDF

2) Check if a single rule renders another rule redundant without looking at the
PDF

79

4 Qualitative Analysis of Configuration Data

To check the first case, for each rule r € R we construct the PDF without rule r. Then,
if PDF = 1 holds, rule r is redundant since it does not add any new restrictions to
the PDEF. To check this, we have to test the formula PDF(t) /A —r for satisfiability. If
the formula is satisfiable, rule r really adds some new restrictions to the PDF. If the
formula is not satisfiable, there is no valid vehicle which falsifies rule r, therefore
1 is redundant. In this case, the MUS also presents an explanation why rule r is
redundant.

The second case can be computed by comparing all disjoint pairs of rules r; and s in
R(t). For each pair we check the formula r; /A —r9. If this formula is unsatisfiable,
there are no models which satisfy v, but not v, and therefore v, is redundant with
respect to r;. Case 2) is a subset of Case 1), but since Case 2) does not include the
PDF in the redundancy check, it is usually much faster to compute than finding all
redundant rules with respect to the PDF. Also the explanation in Case 2) is very
simple: there is exactly one rule which renders another rule redundant. In the first
case it can be a combination of rules which makes a rule redundant. Depending on
the application scenario, the first or the second redundancy check is preferable.

4.3 Analyzing the BOM

In Section 3.3.1 the BOM was introduced. A BOM b is a tree which groups physical
materials and assigns them usage constraints which determine whether they are
built in a specific vehicle or not. A BOM usually covers many product types at once.
Therefore the usage constraints can use not only options from O(t) of each covered
product type t but also the values of the type determining options tdovals(t).

In this section we will look at different qualitative analysis algorithms which work
on the BOM. Section 4.3.1 presents algorithms which compute necessary and super-
fluous physical parts of a BOM. Section 4.3.2 introduces the concept of virtual nodes
and completeness constraints. Both these concepts are necessary to perform the
completeness and uniqueness analysis in Sections 4.3.3 and 4.3.4. In Section 4.3.5 we
look at a technique to pre-process the BOM independently of the PDF. Section 4.3.6
presents an application of quantifier elimination for existential QPL formulas: the
computation of completeness constraint proposals for nodes and virtual nodes.

Superfluous parts were introduced in [Kiichlin & Sinz, 2000]; also the uniqueness
of nodes was addressed there and was referred to as ambiguities in the parts list. The
test for necessary parts is common in the automotive industry and can e.g. be found
in [Astesana et al., 2010]. This thesis also introduces the concepts of virtual nodes
and completeness constraints which allow the dual verification: completeness of
nodes. As we will see in this and the next section, all low level configuration systems
can be mapped to this generic structure. We also present important performance
improvements to the existing algorithms.

80

4.3 Analyzing the BOM

4.3.1 Computing Necessary and Superfluous Parts

In Sections 4.2.1 and 4.2.2 we saw two algorithms to compute necessary and inadmis-
sible options in the high level configuration. These two algorithms can be adjusted to
work on physical parts instead of high level customer options. Each physical part
has a usage constraint which determines its usage in vehicles. It can happen that
such a usage constraint is not satisfiable for any constructible vehicle according to
the PDFs of the product types covered by the BOM at hand. In this case the physical
part is superfluous in the BOM since it can never be built in any vehicle. On the other
hand, the usage constraint may evaluate to true for any valid vehicle—in this case
the physical part is a necessary part and has to be built into every vehicle.

Definition 4.3 | Superfluous and Necessary parts Given a BOM b, a material node n
is superfluous if for every covered product type t € types(b) the usage constraint
constraint(n) evaluates to false for every valid vehicle according to PDF(t). The
node n is necessary if for every type t € types(b) the constraint constraint(n)
evaluates to true for any valid vehicle.

Besides the BOM b, both algorithms require the PDF of each covered product type
t € types(b). As for all following tests on the low level, the high level configuration is
always required in order to test only the valid configurations of each product type.

Algorithm 4.5 presents the procedure to compute the superfluous parts of a BOM
b. Each material node n € Npq(b) is tested against each covered product type t.
A material n is superfluous if its usage constraint cannot evaluate to true for any
product type t. Initially each material node is considered as a potentially superfluous
part (Line 1). Now each product type t is tested. Therefore a new CDCL solver is
created and the PDF(t) is added to the solver (Lines 3/4). We also need to add each
type determining option of t to the solver (Lines 5/6). Since type determining options
can be used in the usage constraints of the BOM, we need to know which TDOs the
product type at hand has selected. The inner loop (Line 7-14) tests each material
node n which can still be a superfluous part. Therefore the solver is marked and the
usage constraint of n is added to the solver (Lines 8/9). It is then important to add
the unknown variables of the usage constraint negatively to the solver (Lines 10/11).
Since a BOM covers many product types, its usage constraints may contain many
options which are not known in the product type at hand. Whenever a product
type t is found where there exists a valid vehicle for which the usage constraint
constraint(n) evaluates to true (Line 12), the respective node n is removed from
the set of potential superfluous parts. When the algorithm terminates, Ps contains
all superfluous parts.

Theorem 4.7 | Correctness of superfluousParts When Algorithm 4.5 terminates, the
set Ps contains exactly the superfluous parts of a given BOM b with respect to its
covered product types.

Proof Following the flow of Algorithm 4.5 each material node n is initially in Ps

(Line 1). The only alteration of Ps takes place in Line 13. A node n is removed
of Ps when the SAT solver call in Line 12 returns SAT. Since the usage constraint

81

4 Qualitative Analysis of Configuration Data

Algorithm 4.5 | Compute the superfluous parts: superfluousParts(b)

Input: ABOM b
Output: A set Ps of superfluous parts of b

1 Ps = Nm(b)

2 foreach product type t € types(b) do

3 solver = new incremental/decremental CDCL SAT solver
4 solver.add (PDF(t))

5 foreach o € tdovals(t) do

6 L solver.add (o)

7 foreach material node n € Ps do

8 solver.mark()

9 solver.add(constraint(n))

10 foreach v € vars(constraint(n)) withv ¢ O(t) U tdovals(t) do
11 L solver.add(—v)

12 if solver.solve() = SAT then

13 | Ps=Ps\{n}

14 solver.undo ()

15 return Ps

constraint(n) was added positively to the SAT solver (Line 9), this means that
there exists a valid vehicle configuration according to PDF(t) such that the usage
constraint evaluates to true and therefore the part of material node n is used
in this configuration. According to Definition 4.3 in this case the node n cannot
be a superfluous part. If a node n is never removed from Ps, there exists no
valid configuration for any covered product type t € types(b) such that the usage
constraint was satisfiable. In this case according to Definition 4.3 the node is indeed
superfluous. n

Theorem 4.8 | Complexity of superfluousParts Forabill of materials b Algorithm 4.5
takes |[types(b)| - [Nam(b)] calls to the SAT solving algorithm in the worst case. In
the best case it takes [Np1(b)[calls to the SAT solving algorithm.

Proof In the worst case each part n € Np4(b) is superfluous. In this case the method
solver.solve() never returns SAT and no node n € Np,(b) is removed from Ps.
In this case the inner loop (Lines 7-14) always loops over all material nodes for
each product type. Therefore we have [types(b)|-[Np(b)| calls to solver.solve ()
in Line 12. In the best case no part is superfluous and the first tested product type
t has for each node n a valid vehicle configuration according to PDF(t) such that
constraint(n) evaluates to true. In this case each node n is removed from Pg in
the first run of the outer loop (Lines 2-14) and for each subsequent run the inner
loop runs over an empty set Ps and therefore solver.solve() is not called again.
Then we have N, (b) calls to solver.solve() at all. =

82

4.3 Analyzing the BOM

The computation of the necessary parts proceeds completely analogously to Algo-
rithm 4.5. Only one line has to be altered. Instead of adding constraint(n) to the
solver in Line 9, the negated constraint —constraint(n) has to be added. In this case
the SAT solver call in Line 12 returns SAT if there is a valid vehicle of the currently
tested product type t for which the usage constraint of n evaluates to false. In
this case the part cannot be necessary according to Definition 4.3. The proofs of
correctness and complexity can be adopted literally. The altered algorithm is denoted
by necessaryParts(b) for a BOM b.

Remark For the computation of superfluous and necessary parts the tree structure of the
BOM b does not play a role. The inner nodes can be ignored and only the set of material
nodes Ny (b) is relevant for both algorithms.

This section is concluded by an example which demonstrates Algorithm 4.5.

Example 4.2 | Superfluous Parts We consider three product types t;, t2, and t3 with
the following type determining options:

Type TDOs

t {(engine, MOT?1), (steering, LH), (transmission, AUTO)}

to {(engine, MOT?2), (steering, RH), (transmission, AUTO)}

t3 {(engine, MOT1), (steering, LH), (transmission, MANUAL)}

For simplicity all product types have the same high level configuration. We have
two option families:

1. G ={of,0f, 0§} for GPS systems, and
2. E ={ok, of} for entertainment systems,

and three options without a family:
1. o¢ for support for Chinese characters in the headunits,
2. oy for special Japan support, and
3. og for speech assistance in the vehicle.

The set of rules R(t;) = {ry, T2, T3, T4, T5} contains five rules:
1. 1 =0f — of

—oF —nG
2. T9 =05 — T03

3. 13 =0f — —0$
4, T4 = ﬂ(06 AN 07)

5. 15 = 0g — (0 Aof)

83

4 Qualitative Analysis of Configuration Data

We consider a BOM b with types(b) = {ti, t2, t3} with the following six material
nodes:

Number Description Usage Constraint

n, Head Unit 1 og A oS

ny Head Unit 2 LHA (0§ V0§ V 0§)
ns Head Unit 3 RHA (0§ VoS Vo$)
ny Head Unit 4 MOT1 ARHA (07 V 0g)
ns Head Unit 5 MOT2 A ok

Mg Special Cable = MANUAL

We look at the execution of Algorithm 4.5: superfluousParts(b).

1) Initially we have Ps = {ny,ng, ns, n4,ns,ng}. In the first iteration of the
outer loop the product type t; is analyzed. The inner loop finds a satisfying
assignment for the node n,. All other nodes have no satisfying assignment
for t;. Therefore after this iteration we have Ps = {n, n3, ng, ns, ng}.

2) Now product type t; is tested. We find satisfying assignments for the nodes
n3 and ns which get deleted from Ps. After this iteration we have Ps =
{n1, my, me).

3) In the last iteration the type t3 is tested. We find a satisfying assignment
for the node ng which is deleted from Ps. The algorithm finally returns
Ps ={ni,n4} as superfluous parts.

The part n; can never be used because according to the HLC (rule r5 and the
option family G) there can be no vehicle with og and 029 Part ny4 can never be used
because there is no product type with MOT1 and RH in the covered product types.

4.3.2 Virtual Nodes and Completeness Constraints

In the next section two important tests are introduced: is a node in the BOM unique
and complete?

Definition 4.4 | Uniqueness and Completeness of Nodes Given a BOM b, a structure
node n € Ng(b) and its material nodes Ny (n) = {nq,...,nm}. The node n is
unique if for each valid vehicle of each covered product type at most one usage
constraint constraint(n;) with i € {1,..., m} evaluates to true. Le. there is no
constructible vehicle in which more than one part of this structural node can be
used at the same time. The node n is complete if for each valid vehicle of each
covered product type at least one usage constraint must evaluate to true. Le there
is no constructible vehicle in which no part of this structural node is used. If a
node is both unique and complete, we refer to it as a consistent node. In this case
exactly one part of this node is used in every vehicle.

84

4.3 Analyzing the BOM

The idea behind these tests is that one wants to assure that certain parts are used
exactly once in a vehicle. E.g. there should be only one steering wheel or exactly
one front-left door in each vehicle. In a typical BOM for a middle-sized product
line there are e.g. more than one hundred variants of steering wheels—each with
usage constraints with tens or hundreds of options. Therefore it is impossible for
the maintainers to guarantee that really each single possible vehicle gets exactly one
steering wheel. The tests for completeness and uniqueness which will be introduced
in the next section can automate this step and prove the consistency of nodes.

Structure
Nodes

GPS System

Entertainment System

ng

Head Units

.]

Head Units

l l M2

Material

123456 Nodes
HU Cable 2

123455
Head Unit 5

123451

123452
Head Unit 1

Head Unit 2

123453

123454
HU Cable 1

Head Unit 4

Figure 4.2 | A small excerpt of a BOM with non-complete nodes

However, there is a big problem in the real-life BOM of car manufacturers. Not every
manufacturer has already a hierarchy of structural nodes which allow these tests.
This means some manufacturers do not divide their physical parts into structural
nodes which guarantee consistency. Consider e.g. the excerpt of a BOM as presented
in Figure 4.2. Clearly each vehicle should have exactly one head unit but the head
unit material nodes are split across two structural nodes n; and ny—none of which
is intended to be complete. Also in both nodes n; and n, there are both head units
and cables. So in this case it could be intended that more than one material node of
M, or Ny is used in a vehicle. Therefore the nodes are not intended to be unique. If
a manufacturer structures its BOM in such a way, the automated tests cannot work,
since we do not know which parts should be used exactly once in a vehicle.

To circumvent this problem it is necessary to introduce virtual nodes. A virtual node
groups material nodes over different structural nodes and is intended to be consistent,
i.e. unique and complete. But that is usually not enough. Imagine e.g. a coupling
device. Clearly, in a vehicle there should be at most one coupling device. Therefore all
coupling devices should be in one virtual node n to guarantee uniqueness. However,
not every vehicle must have a coupling device—it should only be used if the customer
has specified so in her order. Therefore n does not necessarily have to be complete.
In this case it is necessary to introduce a completeness constraint—a propositional
formula which states the condition under which a part should be used in this virtual
node. In the example of the coupling device the completeness constraint should
state that there has to be only a physical coupling device if the customer selected the
equipment option for the coupling device.

Definition 4.5 | Virtual Node and Completeness Constraint A virtual node n is a set of
material nodes N = Np4(n). A virtual node can have a completeness constraint
constraint(n).

85

4 Qualitative Analysis of Configuration Data

Definition 4.6 | Uniqueness and Completeness of Virtual Nodes A virtual node n =
{n4,...,nm}of a BOM b is unique if for each valid vehicle of each covered product
type at most one usage constraint constraint(n;) with i € {1,..., m} evaluates
to true. The virtual node n is complete if for each valid vehicle of each covered
product type which satisfies constraint(n) af least one usage constraint evaluates
to true.

Structure
Nodes

Entertainment System GPS System

I l n2 I Head Units

mn I Head Units

.

123456
HU Cable 2

Material
123452 Nodes

Head Unit 2

123454

Head Unit 1 Head Unit 3

123451
HU Cable 1

’ 123453

123455
Head Unit 4

Virtual Node 1 Virtual Node 2

Figure 4.3 | A small excerpt of a BOM with virtual nodes

\
/ \
\
\
\
\
\
\
\
\
\
\
\
\

Figure 4.3 presents a partition of the BOM of Figure 4.2 in virtual nodes. Virtual node
1 groups all head units, whereas virtual node 2 groups all head unit cables. Both
nodes are intended to be consistent and therefore can be automatically tested by the
algorithms of the next section.

The introduction of virtual nodes and completeness constraints must be performed
by documentation experts. However, Section 4.3.6 introduces an algorithm which
automatically generates a proposal for a completeness constraint, given the material
nodes of a virtual node.

Remark There are some manufacturers which already have a BOM where each structural
node is intended to be unique and complete. These manufacturers introduce empty parts
which are used if no real physical part is used at a node. In this case the original nodes can
be used as virtual nodes and each completeness constraint is simply T.

4.3.3 Verifying Uniqueness of Virtual Nodes

In the last section virtual nodes and completeness constraints were introduced. Once
a manufacturer has structured its BOM in a way that every virtual node is intended
to be unique and complete, analysis algorithms can prove these two verification
properties. Algorithm 4.6 presents the procedure to prove the uniqueness of a virtual
node n. As for the tests for superfluous and necessary parts, we need all the high
level configuration data for every product type covered by the BOM.

86

4.3 Analyzing the BOM

The basic idea of the algorithm is to test all disjoint pairs of material nodes in Np4(n)
as to whether they can be used together in a valid vehicle according to the PDF at
hand. If so, n cannot be unique. The outermost loop (Lines 1-19) iterates over all
product types and initializes the CDCL SAT solver. The two inner loops (Lines 6-19
and Lines 11-19) iterate over the different pairs (i, n;) of materials from Na4(n) and
test if constraint(n;) /\ constraint(n;) is satisfiable together with the PDF of the
current product type at hand (Line 16). If so, a violation of the verification property
is found and false is returned (Line 17). If no product type violates the verification
property, true is returned (Line 20). The completeness constraint of n is not required
in this test since it is only used to restrict the completeness of the virtual node but
does not influence the uniqueness.

Algorithm 4.6 | Verify the uniqueness of a node: verifyUniquenessi(n)

Input: A virtual node n of a BOM b with Ny (n) ={nq,...,nn}
Output: true if n is unique for all covered product types, false otherwise

1 foreach product type t € types(b) do

2 solver = new incremental /decremental CDCL SAT solver

3 solver.add (PDF(t))

4 foreach o € tdovals(t) do

5 L solver.add (o)

6 fori«+ 1,...,mdo

7 prover .mark ()

8 prover.add(constraint(n;))

9 foreach v € vars(constraint(n;)) withv ¢ O(t) U tdovals(t) do
10 | solver.add(—v)

11 forj«<1i+1,...,mdo

12 prover .mark ()

13 prover.add(constraint(n;))

14 foreach v € vars(constraint(n;)) withv ¢ O(t) U tdovals(t) do
15 L solver.add(—v)

16 if solver.solve() = SAT then

17 L return false;

18 | solver.undo()

19 | solver.undo()

20 return true

Theorem 4.9 | Correctness of verifyUniquenessi Algorithm 4.6 returns true if and
only if the virtual node n is unique.

Proof There is only one line in the algorithm where false is returned (Line 17). In
this case the formula PDF(t) /\ constraint(n;) /\ constraint(n;) was satisfiable
for a product type t and two distinct material nodes n; and n;. This means there is
a valid vehicle where both the usage constraints of n; and n; evaluate to true at the
same time. According to Definition 4.6 the virtual node is not unique then. On the

87

4 Qualitative Analysis of Configuration Data

other hand, if true is returned (Line 20), for no product type t and no pair of distinct
material nodes n; and n; the formula PDF(t) /A constraint(n;) /A constraint(n;)
was satisfiable. In this case the virtual node n is unique. ™

Theorem 4.10 | Complexity of verifyUniquenesst For a virtual node n of a BOM b
with material nodes Ny (n) = {ny,...,ny,}, verifyUniqueness1 takes [types(b)|-
m(m—1) calls to the SAT solving algorithm in the worst case. In the best case it

takes one call to the SAT solving algorithm.

Proof In the best case the first tested product type t and the first tested pair of
material nodes n; and n, violates the uniqueness property of the virtual node.
In this case false is returned after one call to solver.solve(). In the worst case
the virtual node is unique. In this case for each product type the two inner loops
iterate over all possible pairs of material nodes which yields in W calls to

solver.solve() per product type. n

The version of the algorithm presented in Algorithm 4.6 just tests if a virtual node
is unique for all covered product types. It returns false as soon as the first product
type is discovered for which the node is not unique. The algorithm can easily be
adjusted to e.g. compute the uniqueness for every product type and return a list of
product types for which it is not unique. Often it is also useful not only to know
whether the virtual node is unique or not, but in the negative case also to know which
pairs of material nodes can occur together in a vehicle. Algorithm 4.7 presents an
altered procedure which not only yields true or false, but yields for each covered
product type t a set of material node pairs (ni,n;) which can be used together in a
valid vehicle according to PDF(t).

The algorithm is altered in Line 1 and Line 18. Initially the mapping is initialized
with an empty set of pairs for each product type in types(b) (Line 1). If a pair of
material nodes is found which violates the uniqueness property (Line 17) the set of
pairs for the respective product type is updated (Line 18). Since Algorithm 4.7 does
not abort early if a violation of the uniqueness property is found, both in the worst

case and in the best case it requires [types(b)] - W calls to the SAT solver.

The problem with Algorithms 4.6 and 4.7 is that they have their worst case time
complexity when a virtual node actually is unique. However, virtual nodes are
designed to be unique and therefore the case that they are unique should be much
more common in practice than that they are not unique (which is usually considered
an error). Considering also that the number of material nodes in a virtual node
may become quite big for some nodes—sometimes even hundreds of materials—it is
desirable that the algorithm could handle this case more efficiently.

To avoid this problem, the idea is first to check if there is the possibility of a violation
of the uniqueness property at all. If this is not the case, we do not have to check the
w pairs for the respective product type. This can be achieved by introducing
constraint selector variables to turn single constraints on and off. If a constraint ¢ is
altered to ¢ V —s where s is an unused variable, ¢ can be activated by setting s
to true—thus simplifying to ¢ again. However, if s is set to false, the constraint

simplifies to T and therefore is deactivated since it always evaluates to true.

88

4.3 Analyzing the BOM

Algorithm 4.7 | Compute all material node pairs violating the uniqueness
property of a virtual node: computeUniquenessViolationsi(n)

Input: A virtual node n of a BOM b with Ny (n) ={nq,...,nm}
Output: A mapping M from product types to sets of pairs of material nodes
which can occur together in a valid configuration of the product type

1 M ={(t,0) | t € types(b)}

2 foreach product type t € types(b) do

3 solver = new incremental /decremental CDCL SAT solver

4 solver.add(PDF(t))

5 foreach o € tdovals(t) do

6 L solver.add (o)

7 fori«+ 1,...,mdo

8 prover .mark ()

9 prover.add(constraint(n;))

10 foreach v € vars(constraint(ny)) withv ¢ O(t) U tdovals(t) do
11 L solver.add(—v)

12 forj«<1i+1,...,mdo

13 prover .mark()

14 prover.add(constraint(n;))

15 foreach v € vars(constraint(n;)) withv ¢ O(t) U tdovals(t) do
16 L solver.add(—v)

17 if solver.solve() = SAT then

18 [M= (M\{(t,X)}) U{(t, XU {(ni,n;)D}

19 solver.undo()

20 solver.undo()

21 return M

Taking our problem at hand, for a virutal node n with materials M = {ny,...,nn}
we want to know if there are two nodes n; and n; where both constraints can evaluate
to true at the same time. We introduce selector variables s, ..., s, and construct
the formula
/\ (constraint(ni) V —s;i).
ie{l,...,m}

The question now is if two variables s; and s;j can be set to true at the same time. If
so, the uniqueness property can be violated because two constraints can be satisfied
at the same time. If not, the uniqueness property must hold. We can use cardinality
constraints to verify this property. We extend the formula to

/\ (constraint(ni) V —s;i) | ANcc—({s1,...,sm},2).

ig{l,..., m}

If this formula evaluates to true together with PDF(t) for a given product type t, the

89

4 Qualitative Analysis of Configuration Data

uniqueness property does not hold for t. If it is unsatisfiable, there is no chance that
two constraints can be activated—the virtual node is unique. Algorithm 4.8 is an
improved version of Algorithm 4.7 incorporating this enhancement in Lines 7-11.

Algorithm 4.8 | Compute all material node pairs violating the uniqueness
property of a node (improved): computeUniquenessViolations2(n)

Input: A virtual node n of a BOM b with Npm(n) ={ny,...,nn}
Output: A mapping M from product types to sets of pairs of material nodes
which can occur together in a valid order of the product type

1 M ={(t,0) |t € types(b)}

2 foreach product type t € types(b) do

3 solver = new incremental /decremental CDCL SAT solver

4 solver.add (PDF(t))

5 foreach o € tdovals(t) do

6 L solver.add (o)

7 solver.mark()

8 solver.add((/\ie{lw}m}(constraint(ni) V —'si)> Nce—({s1,---,8m},2))

9 result = solver.solve()

10 solver.undo ()

11 if result = SAT then

12 fori«+ 1,...,mdo

13 prover .mark ()

14 prover.add(constraint(ny))

15 foreach v € vars(constraint(n;)) withv ¢ O(t) U tdovals(t) do

16 L solver.add(—v)

17 forj«<1i+1,...,mdo

18 prover .mark ()

19 prover.add(constraint(n;))

20 foreach v € vars(constraint(n;)) withv ¢ O(t) U tdovals(t)
do

21 L solver.add(—v)

22 if solver.solve() = SAT then

23 [M= (M\{(t,X)}) U{(t, XU {(ni,n;)))}

24 solver.undo()

25 solver.undo()

26 return M

Theorem 4.11 | Complexity of computeUniquenessViolations2 For a virtual node n of
a bill of materials b with material nodes Nyt(n) = {ni,...,ny}, the algorithm
computeUniquenessViolations2 takes [types(b)| - (W + 1) calls to the SAT
solving algorithm in the worst case. In the best case it takes [types(b)| calls to the
SAT solving algorithm.

90

4.3 Analyzing the BOM

Proof In the worst case the virtual node is not unique and the uniqueness property is
violated for each covered product type t € types(b). In this case for each product
type the test in Line 9 returns SAT and all distinct pairs of material nodes have to

be tested additionally. Thus we have ™™=1) 11 calls to solver.solve () for each

product type. In the best case the virtual node is unique and the test in Line 9 yields
false for each product type. In this case we only have one call to solver.solve()

for each t € types(b). []

We can take this improvement even one step further. Looking at Algorithm 4.8,
we determine if there are two usage constraints which can evaluate to true for a
valid vehicle configuration by checking the cardinality constraint in Line 8. However,
if this is the case, we still compare all pairwise disjoint material nodes if they can
yield a double selection (Lines 11-25). If we already have created and added the
cardinality constraint to the solver, we can just enumerate all models of the formula
on the SAT solver with respect to the constraint selector variables. In each model
there are exactly two constraint selector variables assigned to true—from them we
can deduce the respective usage constraints and therefore the material nodes which
were involved in the violation of the uniqueness constraint. Algorithm 4.9 presents
this last improvement of the procedure.

After adding the cardinality constraint to the solver (Line 7) it is necessary to add all
unknown variables from all constraints negated to the solver (Lines 8-10). Now we
can start a loop where we enumerate all different models with respect to the constraint
selector variables. If the formula is not satisfiable in Line 11, there can be no two
material nodes which occur together in the same vehicle. If the formula in Line 11 is
satisfiable, there is at least one model which selects exactly two constraint selector
variables s; and s;. From these two variables we deduce the respective material nodes
n; and ny (Lines 13/14) and add them to the result set (Line 15). Then we add a
blocking clause to the solver to avoid finding this uniqueness violation in the future
(Line 16). In Line 17 we execute the solver again. If the result is SAT again, there is
another uniqueness property violation and the loop (Lines 12-17) is traversed again.
This way, we enumerate all potential double selections of materials without explicitly
testing all possible combinations of materials.

Theorem 4.12 | Complexity of computeUniquenessViolations3 For a virtual node n of
a bill of materials b with material nodes Nyp(n) = {ni,...,nny}, the algorithm
computeUniquenessViolations3 takes [types(b)| - (w + 1) calls to the SAT
solving algorithm in the worst case. In the best case it takes [types(b)| calls to the

SAT solving algorithm.

Proof In the worst case the virtual node is not unique and the uniqueness prop-
erty is violated for each covered product type t € types(b) and for each possible
combination of material nodes. In this case the loop in Lines 12-17 has to enu-
merate W different uniqueness violations yielding in W + 1 calls to

solver.solve() for each product type. In the best case the virtual node is unique

and the test in Line 11 yields false for each product type. In this case we only

have one call to solver.solve() for each t € types(b). n

91

4 Qualitative Analysis of Configuration Data

Algorithm 4.9 | Compute all material node uniqueness property violations
(model enumeration version): computeUniquenessViolations3(n)

Input: A virtual node n of a BOM b with Npm(n) ={ny,...,nn}
Output: A mapping M from product types to sets of pairs of material nodes
which can occur together in a valid order of the product type
M ={(t,0) | t € types(b)}
foreach product type t € types(b) do
solver = new incremental/decremental CDCL SAT solver
solver.add (PDF(t))
foreach o € tdovals(t) do
L solver.add(o)

SN Ul B W N

7 solver.add((/\iaLMm}(constraint(ni) V ﬁsi)) NAce—({s1,...,8m},2))

8 foreachi<«+ 1,...,mdo

9 foreach v € vars(constraint(ni)) withv ¢ O(t) U tdovals(t) do
10 L solver.add(—v)

11 result = solver.solve()

12 while result = SAT do

13 3 = solver.model()

14 search for s; and s; with 3(s;) = (s;j) = true

15 M = (M\{(t, X)}) U{(t, X U{(ni,ny)H}

16 solver.add(—(s; /\'s;))

17 result = solver.solve()

18 return M

Although Algorithm 4.9 has the same theoretical complexity as Algorithm 4.8, in
practice it makes far fewer calls to the solver. Usually within a node there are only a
few potential double selections of materials. Section 7.2.1 will compare the implemen-
tations of Algorithms 4.7, 4.8 and 4.9 on real application problems of the BMW case
study. We will see there that Algorithm 4.9 outperforms the other two approaches.

Since we are using cardinality constraints, we can not only test if there are two nodes
which violate the uniqueness property, but also e.g. if it is possible to build three
material nodes of a virtual node in a vehicle at the same time. In the context of control
unit configurations this test was sometimes required because there are diagnosis
addresses which allow two control unit modules, but not three. Algorithm 4.10 states
a generic version of this analysis.

Obviously this algorithm takes [types(b)]| calls to the solver in the best and in the
worst case. If it is called with verifyUniqueness2(n,2) its output is equivalent to
verifyUniquenessi(n). It can also be altered in such a way that it also outputs which
constraint selector variables were assigned to true if the solver returns SAT in Line 10.
This yields an example of k nodes which can be used in a vehicle at the same time.

92

4.3 Analyzing the BOM

Algorithm 4.10 | Compute if more than n material nodes can be used at the

same time: verifyUniqueness2(n, k)

Input: A virtual node n of a BOM b with Ny (n) ={n4,...,nyn}and an

integer number k

Output: false if there is a valid vehicle in a type of types(b) where k
material nodes of Npq(n) can evaluate to true at the same time,

true otherwise
foreach product type t € types(b) do

foreach o € tdovals(t) do

1

2

3 solver.add (PDF(t))
4

5 | solver.add(o)

solver = new incremental /decremental CDCL SAT solver

6 solver.add((/\ie{lp'_’m}(constraint(ni) Vv ﬂsi))/\cc:({sl, e, Smh k)

7 foreachi«+ 1,...,mdo

8 foreach v € vars(constraint(n;)) withv ¢ O(t) U tdovals(t) do
9 | solver.add(—v)

10 if solver.solve() = SAT then

11 L return false;

12 return true

This section is concluded by an example illustrating the presented algorithms.

Example 4.3 | Proving the Uniqueness of Virtual Nodes We assume the three types
t1, t2, and t3 and the respective high level configuration from Example 4.2. We
consider the two virtual nodes n; and n, of a BOM b with types(b) = {ty, t2, t3}

as presented in the following table.

Virtual Node Number Description

Usage Constraint

n; niy Head Unit 1 —0g /\ 707 /\ —0g

n, N2 Head Unit 2 RH A —og

ny N3 Head Unit 3 LHA (0§ VoS Vo§)
ng 14 Head Unit 4 06 /\ 0g

gy o1 Cable 1 of

gy Moo Cable 2 o§

gy s Cable 3 o$

Calling verifyUniquenessi(n;) returns false since for t; both material nodes
11 and n;3 can occur at the same time in a valid vehicle, e.g. an order which

does not contain og, 07, or og, but does contain o

£. Obviously, also the call

to verifyUniqueness2(n,,2) returns false for the same argument. The call to
verifyUniqueness2(n, 3) however does return true because it is not possible

93

4 Qualitative Analysis of Configuration Data

to build three material nodes from n; simultaneously in a vehicle. The result of
verifyUniquenessi(ns) is true since, because of the family constraint on G, no
order can contain more than one option of 0, oS, or 0.

Following this, the result of both computeUniquenessViolations1(ny) and its
improved version computeUniquenessViolations2(nsy) is the mapping

{(t17 Q))v (t2a 0)7 (t3a (Z))}

The improved versions Algorithm 4.8 and Algorithm 4.9 require three calls to the
SAT solver for this result, whereas Algorithm 4.7 requires nine calls. For the node
n; the three algorithms yield the result mapping

tir {(n11,M13), (M3, Mg}
to: {(na1,Ma2)}
t3: {(n11,M3), (N3, naa)

The procedure computeUniquenessViolations1 requires 18 calls to the SAT solver
for this result. computeUniquenessViolations2 requires 21 calls, whereas the
model enumerating version procedure computeUniquenessViolations3 requires
only eight calls.

4.3.4 Verifying Completeness of Virtual Nodes

In analogy to the algorithms in the last section we can now state an algorithm which
computes whether the completeness property of a virtual node does hold for all
covered product types. In this case the completeness constraint has to be taken into
account since it restricts the set of valid vehicles for which we expect a constraint in
the virtual node at hand to evaluate to true. Algorithm 4.11 states such an analysis
procedure.

The completeness constraint is added in Lines 6-8. The property to verify is con-

structed in Line 9. For a virtual node n with material nodes Np (n) ={ni,...,nm},
we have to verify that there is no valid vehicle where each constraint constraint(n;)
with i € {1,..., m}evaluates to false. If there is such a vehicle, the formula

/\ —constraint(ni)
ie(l,...,m)

must be satisfiable in combination with PDF(t) for a covered product type t. In this
case false is returned (Line 14).

Theorem 4.13 | Correctness of verifyCompleteness Algorithm 4.11 returns true if
and only if the virtual node n is complete under constraint(n).

Proof There is only one line in the algorithm where false is returned (Line 14). In
this case the formula

PDF(t) /\ constraint(n) A /\ —constraint(n;)
ie{l,...,m}

94

4.3 Analyzing the BOM

Algorithm 4.11 | Verify the completeness property: verifyCompleteness(n)

Input: A virtual node n of a BOM b with Ny (n) ={nq,...,nn}
Output: true if n is complete for all covered product types, false otherwise
foreach product type t € types(b) do
solver = new incremental /decremental CDCL SAT solver
solver.add (PDF(t))
foreach o € tdovals(t) do
L solver.add(o)

gl e W N =

(=)}

solver.add(constraint(n))
7 foreach v € vars(constraint(n)) withv ¢ O(t) U tdovals(t) do
8 L solver.add(—v)

9 | property = A;c(; n —constraint(n;)

10 solver.add(property)

11 foreach v € vars(property) withv ¢ O(t) U tdovals(t) do
12 L solver.add(—v)

13 if solver.solve() = SAT then
14 | return false

15 return true

was satisfiable for a product type t. This means there is a valid vehicle of t which
satisfies the completeness constraint, but the usage constraints of all material nodes
evaluate to false. According to Definition 4.6 the virtual node is not complete then.
On the other hand, if true is returned (Line 15), no valid vehicle which satisfies
the completeness constraint violated the completeness property. In this case the
virtual node n is complete. m

Theorem 4.14 | Complexity of verifyUniquenessi For a virtual node n of a BOM b
with material nodes Ny (n) ={ny,...,ny} verifyCompleteness takes [types(b)]
calls to the SAT solving algorithm in the worst case. In the best case it takes one
call to the SAT solving algorithm.

Proof The completeness property \ic(;) “constraint(ni)is checked once for
each product type. In the worst case the virtual node is complete, then the solver
is called |[types(b)| times before true is returned. In the best case the first tested
product type violates the completeness property and false is returned after one
call to solver.solve(). -

As for the verification of the uniqueness property of virtual nodes in the last section,
also for the completeness of nodes it can be useful not only to return true or false
but to return the completeness of the virtual node at hand for every product type.
Algorithm 4.11 can be easily adjusted to do so. In this case the time complexity is
[types(b)| in all cases.

95

4 Qualitative Analysis of Configuration Data

Example 4.4 | Proving the Completeness of Virtual Nodes Consider the three prod-
uct types ti, t2, and t3 and the respective high level configuration from Exam-
ple 4.2. We consider the two virtual nodes n; and n, of a BOM b with types(b) =

{t1,t2, t3):

Virtual Node Number Description Usage Constraint
ng ni1 Head Unit 1 —0g /\ —07 /\ —0g
ny Nig Head Unit 2 0g /\ 07

ny N3 Head Unit 3 o7 N\ og

ny Nia Head Unit 4 06 /\ 0g

ny N5 Head Unit 5 0g /\—0g /\ —07
oy oy Cable 1 of

oy Tasy Cable 2 o§

o Tog Cable 3 o§

Ny o3 Cable Dummy —of A—0§ A—0§

Calling verifyCompleteness(n,) returns false since for t; there are valid vehicles
for which all constraint of the material nodes evaluate to false, e.g. a customer
order where only o7 is selected, but not os or 0og. We now take a closer look at
node n;. The following table illustrates which material node is chosen for which
possible customer order with respect to og, 07, and os.

06 o7 0g Selected Material Node

false false false Ny

false false true Nis

false true false no selection

false true true N3

true false false Nio

true false true Mg

true true false not possible because of HLC rule 14
true true true not possible because of HLC rule 4

We see that the above mentioned order where only o7 is selected, but not og or
0g, is the only order that does not select a material node. This can be an error
in the usage constraints. If it is intentional then there is the possibility to add
a completeness constraint to the node n; to exclude this configuration from the
analysis. In this case the completeness constraint is o VV —07 V og which rules
out the respective configuration. If this completeness constraint is added to n,,
verifyCompleteness(n;) returns true. Thus n; is complete with respect to the
completeness constraint.

The result of verifyCompleteness(ns) is true since a vehicle either has no GPS
system o, oS, or 0§ or exactly one of them—all four cases are covered by the
usage constraints. In fact, virtual node n, is also unique. This means n; is both

unique and complete and therefore consistent.

96

4.3 Analyzing the BOM

4.3.5 Pre-Processing the BOM

All algorithms presented in the last section test the verification property on the BOM
for each product type. Therefore it can be advantageous to pre-process the BOM
before testing it for each product type. Consider for example a virtual node n, in the
BOM with the following four material nodes:

Virtual Node Number Description Usage Constraint

ng nig Head Unit 1 01 /\ 0o

n ni2 Head Unit 2 01 /\ 02
n; ni3 Head Unit 3 —071 /\ 09
n; Nig Head Unit 4 —01 /\ —05

Obviously this node is consistent. Independent of the HLC, always exactly one
material is used in a vehicle. This means we do not need to check this node for each
single product type—it can never be non-unique or non-complete. Therefore we can
remove this node in a pre-processing step.

The main idea of the pre-processing phase of the BOM is to generate two sets: one
with nodes which are possibly non-unique and one with nodes which are possibly
non-complete. These two sets can be different from each other. Consider e.g. the
following virtual node ny which is unique for each possible product type, but it can
be incomplete depending on the HLC.

Virtual Node Number Description Usage Constraint
oy Noy Head Unit 1 01 /\ 09y

no TNog Head Unit 2 o1 /A —0y

Ny Na3 Head Unit 3 —0; A\ 0g

Algorithm 4.12 shows the procedure. For each structure node n of the BOM with
material nodes ny, ..., n., it computes if

1. (/\ie{lw’m}—'constraint(ni)) A constraint(n) and

2. (/\ieuym’m}(constraint(ni) Vv ﬁsi)) ANcc_({s1,...,8m}

are satisfiable where s; are constraint selector variables which are not present in
the rest of the constraints. If the first condition is satisfiable, the node 1 is possibly
non-complete. This node has therefore to be tested for completeness for each covered
product type. If the second condition is satisfiable, the node n is possibly non-unique
and has to be checked for the uniqueness property for each covered product type.

As we will see in Section 7.2.1 this pre-processing step often simplifies the qualitative
analysis to a great extent in practice.

97

4 Qualitative Analysis of Configuration Data

Algorithm 4.12 | Pre-processing the BOM: preprocessBOM(b)

Input: ABOM b
Output: Two sets of structure nodes Ny and N¢ where Ny contains all
nodes of b which are possibly non-unique and N¢ contains all
nodes of b which are possibly non-complete
Ny =10
Ne =10
solverComp = new incremental /decremental CDCL SAT solver
solverUniq = new incremental /decremental CDCL SAT solver
foreach structure node n € Ns(b) do
1i=0
foreach material node m € Njy(n) do
i=1i+1
solverComp.add(—constraint(m))
solverUniq.add(constraint(m) V —s;)

O 0 N Ul R WN -

=
(=]

11 solverComp.add(constraint(n))

12 solverUniq.add(cc—({s1,...,si},2))
13 if solverComp.solve() = SAT then

14 L Nc =Nc U{n}

15 if solverUniq.solve() = SAT then

16 | Nu=Nuu{n}

17 solverComp.reset ()
18 solverUniq.reset ()

19 return Ny and N¢

4.3.6 Computing Completeness Constraints for Nodes

As mentioned in Section 4.3.2 some car manufacturers must introduce virtual nodes
and completeness constraints in order to enable the fully automated qualitative
analysis of their BOM. Considering that a BOM can have tens of thousands of material
nodes, this can be a tedious process. Generation of virtual nodes can sometimes be
automated because usually there is additional information for the material nodes like
material family, material category, etc. But the generation of completeness constraints
is not as easy. This section presents an algorithm which was developed by this thesis’
author for generating completeness constraints for the BOM of BMW.

The usual process is that a documentation expert defines a new virtual node which
is intended to be consistent, i.e. she chooses a set of material nodes which should
occur exactly once in any valid vehicle. This set is then the input to the algorithm
that generates a proposal for a completeness constraint. We look at the flow of the
algorithm with the help of an example of a virtual node for different variants of a
switch for the radio system. The involved customer options are given in the following
table.

98

4.3 Analyzing the BOM

Option Description

T Radio System 1
T2 Radio System 2
T3 Radio System 3
b Board Computer

We also assume that there are two type determining options involved: the steering
side of the vehicle which can be left-hand (LH) or right-hand (RH), and the continent-
version of the car which can be USA (US), or Europe (EU).

The expert chose the following material nodes to be together in a virtual node:

Number Description Usage Constraint

ny Switch 1 (EU1) —bAri NAEUALH

P Switch 2 (EU2) —bA(r2 Vr3) NEUALH

ns Switch 3 (EU3) “bA(r1 VryVr3) AEUARH
ny Switch 4 (US1) —-bAr; AUS

ns Switch 5 (US2) —bA (ry Vr3) AUS

Looking at the usage constraints, in this easy example it is obvious when one of these
radio switches should be in the vehicle:

1. There has to be no board computer: —b
2. There has to be a radio: 1 V13 V 13

If there is a board computer chosen by the customer or if she did not choose a radio
system, we do not expect a switch of this virtual node. So an expert might come
up with a completeness constraint —=b A (11 V 12 V r3). The question is whether
an algorithm can generate such a completeness constraint automatically. The naive
approach isjust to use the disjunction of all involved usage constraints as completeness
constraint. Obviously we only expect a switch if one of the switches is really selected
by an order. So we could just use

(b AT AEUALH)V (b A (12 V13) AEUALH) V (b A (11 V19 V 13) A
EUARH)V (-bA1; AUS)V (b A (12 V 13) AUS)

as usage constraint. Even if we simplify this completeness constraint, it is not very
useful as it does not describe the real technical constraint. E.g. there are TDOs like US,
EU, RH, or LH in it, but they do not really play a role in the completeness constraint.
So the algorithm must in some way abstract of the details and try to get at the technical
core of the virtual node.

The algorithm which was implemented at BMW works in two steps:
1. Computation of necessary literals

2. Elimination of TDOs

99

4 Qualitative Analysis of Configuration Data

We illustrate both steps on the example. First, necessary literals are computed. This
means we search for literals with positive or negative phase which must be satisfied
for every single usage constraint in order that a material node is selected. In our
example we find the literal —b which must hold, otherwise no switch is selected.
The necessary literals are then propagated through the usage constraints in order
to eliminate them. After this step we have a completeness constraint —b and the
following usage constraints (where —b was propagated).

Number Description Usage Constraint

ng Switch 1 (EU1) 1 NEUALH

o Switch 2 (EU2) (r2Vr3) NEUALH

ns Switch 3 (EU3) (ry Vra Vr3) AEUARH
Ny Switch 4 (US1) 1 AUS

ns Switch 5 (US2) (ro V13) AUS

In the next step we eliminate the TDOs. The observation is that the values of TDOs
often do not influence whether a part of a node is selected but only influence which
part is selected. Our example is an illustration of such a case. We take the disjunction
of all usage constraints

@ =(m AEUALH)V ((ra Vr3) AEUALH) V ((r1 V1 V13) AEUARH) V
(ry AUS) V ((ro V 13) AUS)

and eliminate the variables EU, US, LH, and RH. Formally speaking we construct the
existential QPL formula

¢’ =3JEU3USILH 3RH [g]

and compute the quantifier free equivalent with one of the approaches presented in
Section 2.6.1. Since usually we do not have to eliminate more then 20 or 30 variables in
this step, the substitute & simplify (SUSI) approach is a good choice in practice. It is
the only approach which does not convert the input or the result into any normal form
and therefore the resemblance to the original input formulas is higher than with the
other approaches. Since the completeness constraint proposal of the algorithm has to
be verified by a documentation expert, this is a very important point. If we compute
ge_susi(¢@’) in our case, the resultis (11 V 12 V 13). Thus, together with the result
of Step 1, the algorithm computed the completeness constraint —b A (11 V 12V 13)
which is exactly the constraint which we found by hand earlier.

Of course the algorithm does not always work as perfectly as in this situation. Espe-
cially when there are very big virtual nodes with over 50 involved options and tens
of TDOs the proposals tend to become very big and cease to be helpful anymore. But
according to experts from BMW, the approach yields good proposals in many cases
and it was implemented in the production system.

Algorithm 4.13 summarizes the algorithm sketched above. Step 1 is performed in
Lines 1-16. The unit literals are determined with the help of a SAT solver. The units
are then propagated through the disjunction of usage constraints (Line 17). The

100

4.4 Analysis of the E/E Configuration

existential QPL formula is constructed in Line 18 and the elimination with the (SUSI)
approach is performed. The conjunction of the results of Step 1 and Step 2 is then
returned as proposal for the completeness constraint (Line 19).

Algorithm 4.13 | Compute a proposal for a completeness constraint for a
virtual node: computeProposal(n)

Input: A virtual node n of a BOM b with Np(n) ={ny,...,nn}
Output: A proposal for a completeness constraint for n

1 @ = Ve, m)constraint(n;)

2 units= 1T

3 solver = new incremental /decremental CDCL SAT solver

4 solver.add (o)

5 foreach v € vars(¢@) do

6 solver.mark()
7 solver.add(v)
8 if solver.solve() = UNSAT then
9 ‘ units = units A —v
10 else
11 prover .undo ()
12 solver.mark()
13 solver.add(—v)
14 if solver.solve() = UNSAT then
15 L units = units Av
16 prover .undo ()

17 @' = propagate unit literals of units in ¢
18 elimination = qe_susi(3{v|v e Ot}e’])
19 return units /\ elimination

4.4 Analysis of the E/E Configuration

As mentioned in Section 3.3.2 the Electrics and Electronics configuration is very
similar to the BOM. Also the questions which arise when analyzing it are the same as
for the BOM: Can two controllers be selected at the same time for a single diagnosis address?
Can no controller be selected for a diagnosis address although the guard evaluates to true?
Can a software parameter be assigned to two values at the same time? This section will not
introduce new algorithms but map the E/E data structures and analysis issues to the
algorithms presented in the last two sections. As we will see in Chapter 6 in AutoLib
too, all these algorithms are implemented generically and can be used both for the
BOM and the E/E configuration.

101

4 Qualitative Analysis of Configuration Data

4.4.1 Analysis of the Control Unit Configuration

Section 3.3.2 described the control unit configuration. Looking at Definition 3.7 of a
diagnosis address, we see that we can directly map a diagnosis address to a virtual
node. Since the diagnosis address is a physical location in the car, it is obvious that
there can be at most one control unit at a diagnosis address (however, there can be
exceptions, when we talk about control unit modules). Additionally, we have the
guard of a diagnosis address which expresses the condition under which we expect
a unit at this address. Therefore in terms of Definition 4.6 a diagnosis address has to
be unique and complete under the guard.

There is a one-to-one mapping between a unit at the diagnosis address and a material
node in the BOM. Both have a unique material number matnum, a textual description,
and a usage constraint constraint which describes the condition under which this
unit / material is used in a vehicle. For a diagnosis address a with units units(a),
we can construct a new virtual node n with nodes Naq(n) = units(a). The guard
guard(a) is equivalent to the completeness constraint of a virtual node, therefore
constraint(n) = guard(a). Now we can use all the algorithms of the last sections
to prove the uniqueness and the completeness of a diagnosis address.

Example 4.5 | Transformation Diagnosis Address to Virtual Node We consider the di-
agnosis address a presented in the following table with guard(a) = o V of.

Control Unit Material Number Description Usage Constraint

c1 555551 Control Unit1 of A (0f VoS V of)
Ca 555552 Control Unit2 of A—(0f VoS V 0§)
C3 555553 Control Unit 3 of

This can be transformed into a Virtual node n with constraint(n) = o§ Vo 5G and
the following nodes:

Number Description Usage Constraint

ny Control Unit1 of A (of VoS Vo§)
g Control Unit2 of A—(0f VoS V 09)
n3 Control Unit3 of

Taking the HLC data from Example 4.2 and assuming that diagnosis address a
covers the product types t;, t2, and ts, both algorithms verifyUniquenessi(n)
and verifyCompleteness(n) return true and we have proved that a is consistent.

4.4.2 Analysis of the Controller Software Configuration

The situation is quite similar with the controller software configuration. Definition 3.8
introduced the software parameter and its values. Obviously a parameter in a piece

102

4.4 Analysis of the E/E Configuration

of software has to be unique and complete—a variable must be assigned to a value
(complete) and can be assigned to only one value (unique). Therefore we have to
prove that each software parameter is consistent.

Again, we can look at a software parameter as a virtual node. The value of a software
parameter is equivalent to a material node of the BOM. Both have a unique number,
a textual description, and a usage constraint. The only difference is that a software
parameter can have a default value which the parameter is assigned to if no other
usage constraint evaluates to true for a given vehicle. Since default values are not
known in the BOM, we have to translate the default value to a regular material node.
Therefore we have to construct a proper usage constraint for the default value. Since
it is selected if no other usage constraint evaluates to true, we can just conjoin the
negated usage constraints of all other values of the parameter at hand. Since software
parameters must always be complete, the completeness constraint constraint can
always be set to T. Now again we can use the algorithms of the last sections to prove
the consistency of software parameters.

Example 4.6 | Transforming Software Parameters to Virtual Nodes Consider the soft-
ware parameters PREMIUM_GPS_PRESENT and LANGUAGE presented in the following
table, again assuming the HLC data from Example 4.2.

Parameter Value Description Usage Constraint

PREMIUM_GPS_PRESENT

0x00 no default

0x01 yes oS Vof
LANGUAGE

0x00 English default

0x01 Chinese 06

0x02 Japanese o7

The parameter PREMIUM_GPS_PRESENT is converted into a virtual node n; with the
following nodes:

Number Description Usage Constraint
P1 0x00 —(0§ V 0§)
P2 0x01 oS Vo§

Parameter LANGUAGE is converted into the virtual node ns:

Number Description Usage Constraint
Ps3 0x00 06 /\ 07

Pa 0x01 06

Ps 0x02 o7

Now verifyUniquenessi(n,)and verifyCompleteness(n;)bothreturn true and
thus the software parameter PREMIUM_GPS_PRESENT is consistent—for every vehicle

103

4 Qualitative Analysis of Configuration Data

it is assigned to exactly one parameter. Also algorithms verifyUniquenessi(ns)
and verifyCompleteness(ny) return true (because of HLC rule r4 option og and
o7 cannot be chosen at the same time) and therefore the parameter LANGUAGE is
also consistent.

If default values are used for every parameter, obviously each parameter is always
complete because the default parameter covers all configurations not covered by
the other parameters. However, often the default value symbolizes an error state,
for example a null value or undefined. Then it can be very helpful to decide if
this default value can ever be selected for a valid vehicle. Algorithm 4.4 allows
us to check an arbitrary configuration against a given product type. We can use
this algorithm to check if the usage constraint of a default value—constructed as
mentioned above—can ever evaluate to true for any valid vehicle. If so, we found a
counter example.

4.5 Minimizing Counter Examples

The algorithms which perform qualitative analyses on the BOM or the E/E config-
uration can be adjusted not only to return true or false, but e.g. also to yield an
example configuration which leads to the violation of a uniqueness or a completeness
property. E.g. looking at Algorithm 4.11 which checks the completeness of a virtual
node, we see that it returns false (so the node is not complete) in the case that the
SAT solver returned SAT. In this case we could fetch the satisfying model of the solver
via solver.model () and present it to the user. This model is a valid vehicle order
according to the PDF for which no material node in the respective virtual node is
selected.

Usually the user does not want to see the full model of the solver. There may be
variables introduced by the Tseitin or Plaisted-Greenbaum transformation or variables
introduced by cardinality constraints which are of no interest to the user. So it is
helpful to reduce the model to the variables which were actually used in the usage
constraints at hand. The semantics of this counter example is then: every order which
has this subset of options selected and deselected is a counter example for the completeness
of the node.

Virtual Node Number Description Usage Constraint
n; niy Head Unit 1 —0g /\ 707 /\ —0g
n, N2 Head Unit 2 0g /\ 07

ng ni3 Head Unit 3 o7 N\ og

ng 14 Head Unit 4 06 /\ 0g

n; N5 Head Unit 5 0g /\—0g /\ 07

We revisit Example 4.4 and look at virtual node n; again. We already know that
N, is not complete. When checking t; the solver finds a satisfying assignment for a

104

4.5 Minimizing Counter Examples

vehicle for which all usage constraints evaluate to false. Such an assignment could
bee.g.

{og +— false, 07 — true, og — false, 01G — true, 02G — false, 03G — false,

oy + true,of ~ false, MOT1 ~ true, LH + true, AUTO + true}

We do not want to present this complete assignment to the user. The only interesting
part is the assignment of the variables og, 07, and os. So we take this subset and
present the following message to the user:

Every valid vehicle of t, with option o7 selected but og and og not selected does not select
any material in node n;.

But sometimes this counter example can still be too large and contain options which
confuse the documentation experts. Consider the example of the following virtual
node:

Virtual Node Number Description Usage Constraint

ny 11 Head Unit 1 (06 A0S)V (0g Aof)
ny g Head Unit 2 (0g AN o$) V (07 No$)

Obviously 1, is not unique. There are valid vehicles which select both n;; and nys.
The above approach would e.g. yield the counter example

{0g +> true, 07 — false, 0og — true, 01G — true, 02G — false, 03G — false}

But this counter example could be further reduced to {og + true,0f ~ true}. If
both og and o? are selected, the selection of og, 07, og, and 03()3 does not matter any
more and just confuses the expert. If the counter example og and of is presented,
the situation is clear. Thus we want to eliminate variables which do not contribute to
the current counter example.

Formally speaking, we want to eliminate don't care variables. A don’t care variable
is a variable in a model which could also be assigned with negated phase and the
model would still be valid. E.g. consider the formula ¢ = a VbV ¢ and one of its
models {a — true,b — true,c +— false}. If ais assigned true, the formula already
evaluates to true—no matter how b and c are assigned. So for the case a — true
variables b and c are don’t care variables.

Considering the example of virtual node n,, the verification property that was satis-
fied was
¢ = ({06 A 053]V (05 A of)) A((0s o) V (07 A of))

Hence, there was a vehicle that satisfied the usage constraints of both n;; and n».
The model the solver found was

p ={og — true, o7 — false,0g — true, 01G — true, 02G — false, 03G — false}.

105

4 Qualitative Analysis of Configuration Data

So we have eval(@, 3) = true or equivalently rest(¢@, 3) = T. The question now
is if we can find a smaller subset 3’ of p where still rest(¢@,’) = T holds. In our
case B’ = {og + true,of + true} would be a suitable subset. We can compute
rest(@, ') and get the result
rest(@,B’) = ((0 N og) V(TATHA(TATIV (07 Aog))

= ({06 A0S)V T)A(TV (07 AoS))

=TAT

=T
Algorithm 4.14 presents an algorithm which eliminates don’t care variables for a
given formula ¢ and a given model (3.

Algorithm 4.14 | Eliminate don't care variables: eliminateDontCare(@,)

Input: A propositional formula ¢ and a model 3 with 3 = ¢
Output: Amodel 3’ C 3 with B’ = ¢
r_
foreafh v € dom(p) do
¢’ =rest(e, ' \{v— M)}
if ¢’ = T then
| B =B\ v B(v)}

6 return B’

Uglos W N -

The algorithm starts by setting 3’ to {3 initially (Line 1). Now for every variable v of
the model f it is tested if the formula @ restricted to the current model B’ without
the mapping for v still evaluates to true. If so, obviously the variable v is a don't care
variable and can be removed from f3’.

Example 4.7 | Elimination of Don’t Care Variables We unwind the loop in Lines 2-5
of Algorithm 4.14 for the formula

¢ = ((05 A\ 05') V (0s AoF)) A ((os AoF) V (07 Aog))
and the initial model B:
{06 > true, 07 — false,0g — true,o0l — true,oS — false, 0? — false}.

1. rest(@, P’ \{og — true}) = ((og AT)V T)AT) =T therefore og is don’t
care
B’ ={o7 + false,0g ++ true, 0¥ — true, oS - false, 0 ~ false}

2. rest(@, B’ \{o7 — false}) = ((og AT)VTIA(TV (07 AT))) =T therefore
o7 is don’t care
B’ ={og > true,0f + true, oS > false, oS + false}

3. rest(@, B’ \{og — true}) = ((0g AT)V (0s AT)A((0gAT)V (07AT))) =
(06 V 0g) A\ (0g V 07) £ T therefore og is not a don't care
B’ ={og +> true,of + true, oS > false, 0§ + false}

106

4.6 Summary

4. rest(@, B’ \{of = true}) = (06 AT)V(TAOSNA((T A0SV (07AT))) =
(06 V0L) A (0 Vo7) £ T therefore of is not a don't care
B’ ={os > true,0f s true, 0§ - false, 0§ > false}

5. rest(@, B’ \{oS + false}) = ((0 A0S)V TIA(TV (07AT)) = T therefore
oS isadon't care

B’ ={og > true,of + true,of ~ false}

6. rest(@, B’ \{0§ — false}) = ((06AN0S)IVTIA(TV (07/A\0F)) = T therefore
0§ isadon't care

B’ = {og ++ true,0f > true}

Algorithm 4.14 does not necessarily find a smallest model; it just eliminates the don’t
care variables for the model found by the solver. If the solver would have found
another model, the minimization could be smaller. Also the order in which the
variables of the model are eliminated may play a role. Consider the formula aVbVc.
Depending on the elimination order, the minimized models a or b or c are valid.

In our industrial cooperation the minimization of counter examples helped to a
great extent that documentation experts could handle the output of the algorithms
better. Especially for large virtual nodes with tens of variables involved in the usage
constraints this minimization could reduce the counter examples noticeably.

4.6 Summary

This chapter presented a number of qualitative analysis algorithms on the high level
configuration, the BOM, and the E/E configuration. We first introduced two different
approaches to analyzing configuration data: (1) SAT solving and (2) knowledge
compilation.

Next, we presented three qualitative analysis algorithms on the high level configura-
tion: the computation of inadmissible and necessary equipment options as well as
the possibility to check arbitrary configuration restrictions against a PDF.

On the BOM we presented algorithms which compute necessary and superfluous
physical parts. We introduced virtual nodes and completeness constraints: two
concepts necessary for checking the uniqueness and completeness of nodes in the
BOM. We showcased several algorithms to prove the uniqueness and completeness
of virtual nodes and introduced enhancements over existing algorithms. Also an
application of quantifier elimination for existential QPL formulas was introduced:
the computation of completeness constraint proposals for nodes.

Because of the generic approach of virtual nodes and completeness constraints, both
the control unit configuration and the controller software configuration of E/E can be
mapped to it. Therefore algorithms to analyze the BOM can also be used to analyze
E/E. Finally, we presented a technique to minimize counter examples.

107

5 Quantitative Analysis of
Configuration Data

The last chapter presented algorithms to perform qualitative analyses on the high and
low level configuration of automotive configuration data. We have seen in Section 4.1
that the high level configuration can be regarded as a knowledge base which is queried
with different kinds of verification properties. Of course, this knowledge base can not
only be queried with yes/no questions, but also with quantitative questions. How many
different vehicles of a product type can be built? How many options must a customer select
at least or at most? How connected is a single equipment option? This chapter presents
algorithms to compute three such quantitative parameters.

Section 5.1 presents approaches to count the number of constructible vehicles of a
certain product type. Here it is important to be able to project the number to a certain
set of variables which are customer-relevant. This is another application of quantifier
elimination for QPL formulas. In Section 5.2 we compute the influence of equipment
options. There are different measures to do so. One possible criteria for influence is
the number of variables which is directly dependent on an option; another criteria is
the number of other options which have connections to the option at hand via rules
in the HLC. Section 5.3 looks at the computation of minimal and maximal orders in
terms of chosen equipment options.

All these parameters can give meaningful insight to the management and experts
who design new product lines. Especially relating numbers to each other has proven
to be very valuable. If a new option is added, one can immediately see how this
influences the number of constructible vehicles or how it influences other options.
The results in Section 7.2.2 show some examples how interesting information can be
retrieved from these numbers.

5.1 Computing the Number of Constructible Vehicles

A requirement we heard very often from our industrial partners was to count the
number of constructible vehicles of a certain product type, i.e. computing the model

5 Quantitative Analysis of Configuration Data

count of the respective PDF. This gets especially interesting if combined with arbitrary
selection criteria. E.g. one can compute how many different cars of a certain product
type and a given color can be built for the US market. This information can be
combined with certain statistics and pick rates and yield important management
insight into the whole product variety.

However, one can not only count all satisfying assignments of the PDF—this number
would be far too large and not the number which the management is interested in.
The problem is that many options in a vehicle are not really customer-selectable but
are used to control the production process or to control other aspects of the vehicle.
E.g. there are special options for vehicles used in movie productions or vehicles for
display at a car dealer. The number which is of real interest however is the number
of vehicles a customer can actually order.

Speaking in terms of Section 3.2 the interesting question is how many valid ve-
hicles are there for a product type t restricted to the customer-selectable options
Oc¢. So we do not only want to compute the model count #sat(PDF(t)) but the
model count of the PDF where the options from Opm = {01, ..., 0n} are eliminated:

B | B = Jo1 ... JonPDF(t)}].

In Section 2.4 we have seen two different approaches to model counting: (1) the
DPLL like model counting, and (2) the knowledge compilation based model counting.
Also in Section 2.6 we have seen six different approaches to existential quantifier
elimination. In order to compute the projected model count we have to combine
these two techniques. First we have to compute the projected product description
formula before we can count its models. Figure 5.1 illustrates the situation.

PDF(t)
PDF(t) | eliminateJo,...30n | projected to compute #sat | projected
relevant options model count
.

Figure 5.1 | Computing the projected model count

5.1.1 Counting Models in the Automotive Scenario

If we take the approach described above, we have to assure that the output format
of the quantifier elimination and the input format of the model counting approach
are compatible. DPLL-style model counting (cf. Section 2.4.1) requires the input
formula in CNF. Knowledge compilation based model counting (cf. Section 2.4.2)
with BDDs can handle arbitrary input formulas. Since all available tools for d-DNNF
compilation can only handle CNF, we have to restrict input formulas for DNNF-based
model counting to CNF. Our own experiments with compiling automotive formulas
to DNNFs [Hildebrandt, 2012] were far better than BDDs [Matthes et al., 2012],
therefore we use d-DNNFs for the knowledge compilation based approach. Thus we
can restrict the format of the model counting input to CNF. Of course each formula ¢

110

5.1 Computing the Number of Constructible Vehicles

can be transformed to a CNF ¢, however, one has to take care that the transformation
method preserves the model count of the formula, i.e. [| B = @ =B | B = ¢’}
This is only the case for the Tseitin transformation (cf. Section 2.1.2).

In [Kiibler, 2009] the DPLL-style model counters Re1SAT, sharpSAT, and Cachet were
compared with the d-DNNF-based approach with c2d on product configuration
formulas of Daimler. The outcome was that all DPLL-style implementations have
large problems with the stability and correctness of the results. The model counts
of c2d and RelSAT were the same. However, since Re1SAT does not use component
caching, it could only handle very small formulas. The counts of sharpSAT and
Cachet often differed from the ones of Re1SAT and c2d and from each other. Verifying
the results of model counts on large formulas is often not possible, but the fact that
RelSAT and c2d yielded the same results is a strong argument in favor of these two
tools. Summarizing, only the d-DNNF-based approach with c2d was stable enough
to be used for industrial-size formulas. In Section 7.2.2 we will look at some results
from the BMW case study.

5.1.2 Projecting Formulas in the Automotive Scenario

In Section 2.6.1 six different approaches for existential quantifier elimination for QPL
formulas were summarized. Looking at Table 2.2 obviously (MEPI), (CD), and (DDS)
are possible choices for the projection step since their output format is already CNF
which is required for the model counting step. Of course also (MEP), (SUSI), and
(DNNF) could be used if the result is transformed to CNF with Tseitin. However,
the resulting formulas often contain thousands of newly introduced variables which
make the d-DNNF compilation very hard and often not possible. In the BMW case
study it turned out that the (MEPI) approach is not suited at all for our industrial-size
formulas, leaving only the clause distribution and the dependency sequences based
approaches as viable alternatives. With both approaches we could project large
formulas to their relevant options. A further insight in the results and benchmarks is
presented in Section 7.3.2.

PDF(t)
PDF(t) Quantifier Elimination projected to d-DNNF projected
with (CD) or (DDS) relevant options Compilation model count
.

Figure 5.2 | Computing the projected model count (refined solution)

Figure 5.2 shows a refined version of Figure 5.1 with the solution which proved to be
most stable and efficient. This section is concluded with an example.

Example 5.1 Consider the following HLC for a product type t. We have two families:
1. G ={of, 05,05} for GPS systems, and
2. E ={ok, of} for entertainment systems

and three options without a family:

111

5 Quantitative Analysis of Configuration Data

1. og for support for Chinese characters in the headunits,
2. oy for special Japan support, and
3. og for speech assistance in the vehicle.

o6 and o7 are not customer-selectable. Therefore we have: O¢(t) = {of,0$, 0§, ok,

of,0g}and Om(t) = {06, 07}. R(t) = {r1, T2, T3,T4,T5,Ts, T7} contains seven rules:

— oG E
1. 11 =07 — o4

2. 19 =05 — —0§

3. 13 =0f — —0§

4. vy = —(0g < 07)

5. 15 = 0g — (of Aof)
6. 16 =0 VoS VoS

7. 17 =05 Vof

The model count for PDF(t) is eight:
1. {OlG) OEa 06, 07, "0g},
2. {OlG) OE) 06, 07, 08},
3. {O?) OE, —0¢, 07, 708},
4. {O?) OE) —0¢, 07, 08},
5. {0§, 0, 06,07, —0g},
6. {0§,0F, 06,07, 70g},
7. {0, 0k, 06,707, ~0g}, and
8. {0?,05, —0g, 07, "0g}.
The formula JogJo7PDF has a model count of four:
1. {0?7 05) 08}/
2. {0f, 0k, —0g},
3. {0$, 05, —0g}, and

4. {0§, 0k, —0g}.

112

5.2 Computing Option Influence and Connectedness

5.1.3 Other Applications of Model Counting

In [Kibler et al., 2010] we identified two other interesting applications of model count-
ing in the automotive industry: (1) rating errors, and (2) measuring test coverage.

Rating Errors Quite important issues arise when reporting errors. Observations
from formal methods in software verification [Bessey et al., 2010] tell us that the more
bugs you report, the smaller the probability gets that they will eventually be fixed. De-
velopers as well as product documentation engineers tend to get overwhelmed quite
quickly by extensive error reports leaving them uncertain where to start correcting
defects.

Model counting might help classifying errors according to their severity. We consider
scenarios in which satisfiability of the input formula ¢ indicates error situations—
hence any satisfying assignment may be interpreted as a counterexample (cf. Sec-
tion 4.1). This is the case in the algorithms we presented in Chapter 4.

As an example consider two material nodes n;,n, of a virtual node. If, due to
the PDF(t), there is a constructible order selecting both, n; and n,, any assignment
3 with 3 = PDF(t) A constraint(n,) /\ constraint(ng) describes an erroneously
constructible order. Thus computing

#sat(PDF(t) /\ constraint(n;) /\ constraint(ns))

will return the total number of erroneously constructible orders which contain n; and
ny. Using those numbers retrieved by model counting one may intuitively classify
errors as follows: Errors leading to a high number of constructible orders (thus being
more likely to actually occur in production) are intuitively more severe than errors
featuring a negligible number. Experts concerned with fixing documentation flaws
may thus prioritize their work using results produced by model counting.

Measuring Test Coverage Before the introduction of formal methods in the auto-
motive industry the manufacturers implemented their own verification tests. These
tests mostly relied on an example-based approach. E.g. to test a new system or a
new process they test it with 1.000 or 10.000 different configurations. Knowing the
exact number of constructible vehicles makes it possible to calculate the test coverage
on a percentage base. However, since usually there are up to 10 different valid
vehicle configurations for a single product type, testing even millions of possible
configurations does not really result in statistical significance.

5.2 Computing Option Influence and Connectedness

Different equipment options can have different influence within the high level con-
figuration. There are some options which are completely independent of others

113

5 Quantitative Analysis of Configuration Data

and can be chosen by the customer without restrictions. Other options force many
other options also to be chosen, e.g. an automatic parking assistance forces a rear
view camera, a board computer, distance sensors in the front and in the back, etc.
We distinguish two different quantitative parameters: option influence, and option
connectedness.

5.2.1 Equipment Option Influence

The influence of an equipment option is the number of other equipment options
directly dependent on this option, i.e. if an option o; is selected by the customer,
how many options have to be selected or deselected as a direct consequence of this
choice. One way to compute the influence of an option o is to compute the number
of necessary and inadmissible options once for the PDF of the respective type t and
once for the formula PDF(t) /\ 0. The difference between those two numbers indicates
the number of options which are directly dependent on o. Algorithm 5.1 presents
the procedure to compute the influence of a single option o for a product type t.

Algorithm 5.1 | Compute the influence of an option: computeInfluence(o,t)

Input: An equipment option o and a product type t
Output: The number of options directly dependent on o
Told = |inadmissibleOpts(t)| 4 |necessaryOpts(t)]
Thew = 0
solver = new incremental /decremental CDCL SAT solver
solver.add (PDF(t))
solver.add (o)
if solver.solve() = UNSAT then

| return —1

foreach option p € O(t) \ {o} do

N o Uk WN =

@

9 solver.mark()
10 solver.add(p)
11 if solver.solve() = UNSAT then
12 ‘ Thhew = Tlnew 1 1
13 else
14 solver.undo ()
15 solver.mark()
16 solver.add(—p)
17 if solver.solve() = UNSAT then
18 L Mhew = Mnew T 1
19 solver.undo ()

20 return n,., — Ny

First the number of inadmissible and necessary options of the product type t is
computed and the respective sum is stored in nyq4 (Line 1). Then a new SAT solver is

114

5.2 Computing Option Influence and Connectedness

started and filled with the formula PDF(t) /A o. If the formula is now unsatisfiable
(meaning o was an inadmissible option), —1 is returned (Lines 6/7). Otherwise the
inadmissible and necessary options for PDF(t) /\ o are computed and their number
is stored in nyey (Lines 8-19). At the end the difference nyew — Noig is returned—
indicating the number of options which have to be directly selected or deselected if o
is chosen by the customer.

Example 5.2 | Computation of Option Influence We look at the HLC of Example 5.1.
If e.g. option of is chosen by the customer, 0§ and 0§ must be set to false because
they are in the same option family. Also of has to be chosen because of rule r; and
following that, of has to be set to false because it is in the same option family as
of. Initially there were no necessary or inadmissible options, so the influence of
0% is 4 — 0 = 4. The other influences are:

G. G G E E
1. 03 :5(—0y, —0g, 0y, 0, —0g)

. G G E LE
2. 03 . 5 (_'01 y _‘02 7 _‘05/ 04/ _|08)

3. of:2(—0§, —of)

4. of :5(—0f, 0F, -0, —of, —og)
5. 0g:1(—07)

6. 07 :1(—0g)

. G G G oE E
7. 0g:5 (o7, —03, 05,05, "0F)

We see that even for this very small example the numbers range between 1 and 5. In
real-life data we have observed single options which influence over 40 other options
and on the other hand independent options which influence no other option. This
data alone is not very meaningful, but has to be interpreted by a documentation
specialist. When prototyping this algorithm at BMW, we found some options which
had a suspiciously high influence or influenced options which we did not expect. If
e.g a bolster influences the navigation system, this could be an unwanted dependency
which should be removed.

5.2.2 Equipment Option Connectedness

Another quantitative parameter which can be computed is the option connectedness.
For an equipment option o this is the number of other options which are connected
by some rules in R. If option o and p occur in the same rule, they are connected. In
comparison to the influence, the connectedness of a node is mostly higher. Many
options are connected via rules but not directly influenced by an option 0. Consider
the rule o — (a Vb V ¢). The option o is connected with a, b, and ¢, but does
not influence any of them directly. On the other hand, an option can be influenced
directly without being connected. Consider the two rules 0o — p and p — q. Then
o is only connected to p, but influences p and q directly. The connectedness can be

115

5 Quantitative Analysis of Configuration Data

computed by constructing the constraint graph of the PDF (cf. Section 2.1.2) and
computing the degree for the node holding the respective option.

Example 5.3 | Connectedness of Options We consider the constraint graph for the
HLC given in Example 5.1 as given in Figure 5.3.

Figure 5.3 | Constraint graph for a PDF

Obviously og and o7 are only connected to each other and therefore have a con-
nectedness of 1. Option og has a connectedness of 2. The other options are all
connected with all other options in their option family. Here are the connectedness
numbers for the rest: of : 5, 05 : 4, 0§ : 4, 0f : 5, and of : 3. Taking these
numbers and the numbers from Example 5.2, one can deduce that og and o7 are
quite independent options which do not influence much. Options of or of are
quite influential options which are connected to many other options and influence

many other options.

Another interesting insight can be the partition of the constraint graph into con-
nected components. If two options are in two different connected components of the
constraint graph, they can never influence each other. This can be very important
e.g. for change management. If someone alters or deletes an option, only options
in the same constraint graph can be affected by this change. This can help to speed
up the runtime of algorithms (like the ones of the last section) when running after
changes. We reconsider Example 5.3. If someone e.g. deletes os and we want to
know if there are any new inadmissible options after this change, we do not have
to compute the inadmissibility of all options, but just of o;. All other options are in
a different connected component and can therefore not be affected by this change.
Section 7.2.2 presents an example of a real-life production data constraint graph.

As with the option influence, the connectedness numbers have to be interpreted by
an expert. But taking both information, option influence and option connectedness
can yield a helpful insight into the configuration database and help to detect errors,
simplify the configuration data, or visualize dependencies.

116

5.3 Computing the Minimal and Maximal Size of Orders

5.3 Computing the Minimal and Maximal Size of
Orders

The last quantitative parameter we will look at is the minimal and maximal size of
an order.

Definition 5.1 | Size of an Order For a product type t and a satisfying assignment
| PDF(t), the size of the order is [{v | v € O(t) and B(v) = true}, i.e. the number
of equipment options selected in the respective vehicle.

On the one hand, these numbers give an interesting insight into the configuration
database. What is the smallest order for a car which can be built; which is the largest
one? But on the other hand these numbers can become very important when it
comes to order systems. At some manufacturers the number of options in an order is
restricted. Old mainframe systems stem from a time where twenty options were very
much and no one could imagine that someday there will be hundreds of options in a
vehicle. Therefore there are some systems which can only handle a certain number
of options in an order. It is then important to compute whether this order size can be
exceeded or not.

Algorithm 5.2 | Compute the maximal order size: computeMaximalOrder(t)

Input: A product type t
Output: The size of the maximal order for a valid vehicle of t
solver = new incremental/decremental CDCL SAT solver
solver.add (PDF(t))
if solver.solve() = UNSAT then

| return 0

[= solver.model()

result =|{v|v e O(t) and B(v) = true}
start = result

end = |O(t)]

while start < end do

10 piv = start + (end — start)/2

11 B’ = solver.model (piv, O(t))

=W N =

© ®w N o G

12 if the solver returned a model B’ then
13 start =piv+1

14 result = piv

15 else

17 result =piv—1

16 L end = piv

18 return result

This number can be computed with the help of cardinality constraints and binary
search. The method model () of the SAT solver can be extended to model (k, V). This

117

5 Quantitative Analysis of Configuration Data

extended method does not return an arbitrary model, but a model where there are
exactly k variables of the variable set V assigned to true. This can be realized inside
the solver by adding the cardinality constraint cc_(V, k) to the solver. If the formula
on the solver is still satisfiable, there is a model with exactly k variables from V
assigned to true, otherwise it will return no model-—meaning there is no model of
this size.

We can now utilize this method using binary search to find the largest model. Algo-
rithm 5.2 states the procedure to find a model of maximal size for a product type t.
First, the PDF of t is added to the solver (Lines 1/2). If the formula is unsatisfiable,
there is no valid order at all and zero is returned (Lines 3/4). Otherwise, the model
found by the solver in the first run is taken and the number of variables of O(t) in it
which are assigned to true is the first temporary result (Line 6). In Lines 9-17 the
binary search is performed with the help of the extended method model (k, V) of the
SAT solver. The final result is returned in Line 18.

If this algorithm is implemented in the way described above, there is one small
problem: we assume that there are models of each size until the largest one. This
does not have to be the case. E.g. the largest models of a formula could have the size
90, 95, and 100. Binary search tries 99 which does not yield a model so it will never
try 100—although there would be a model. We can avoid this problem by adjusting
the method model (k, V) of the solver. It should not add a cardinality constraint for
exactly k variables of V, but for at least k variables—cc-.(k — 1, V). This way, binary
search would find a model for 99 because there is a model that has at least 99 variables
set to true and it would finally move to 100 and return the right result.

Of course, the algorithm can be easily adjusted to compute the minimal order of
a product type by adjusting the binary search. We conclude this section with an
example computation.

Example 5.4 | Minimal and Maximal Order Size We again consider the HLC of Exam-
ple 5.1. The maximal order has four options set to true (e.g. the order {0¥, 0§, —0g,
07, 0s}), the minimal order has size three (e.g. the order {0, ok, 06, ~07, —0s)).

For real-life production data the possible order sizes range from a minimal order size
of under 10 to a maximal order size of over 150 equipment options.

5.4 Summary

This chapter introduced three quantitative parameters and their computation on
the high level configuration. First we presented a way to count the number of con-
structible vehicles of a product type. Here it was important to be able to restrict the
set of variables which are of interest in the count. This can be realized with existential
quantifier elimination for QPL formulas. These numbers attracted high management
attention at our industrial partners.

In the next section the influence and connectedness of equipment options was in-

118

5.4 Summary

troduced. The influence is the number of other equipment options which have to
be selected or deselected if an equipment option is chosen by the customer. The
connectedness is a measure with how many other equipment options a given option
is connected via rules and option families. These two numbers can give valuable
insight in the configuration data base.

The last section presented an algorithm to compute the minimal and maximal size
of orders. These numbers can become important when there are restrictions on
the maximal size of orders in some systems involved in the production process.
Section 7.2.2 shows results for all these parameters from the BMW case study. There
we will see how we can relate these numbers and what they can tell us.

119

6 AutoLib—A Propositional
Logic Library for Java
and C#

AutoLib is a commercial logic library developed by the author of this thesis. It is
available in two versions: one written in Java for execution on the server, and one
written in C# for prototyping applications for Windows on the desktop. It is split
into two layers: (1) the core layer in which many of the formal methods of Chapter 2
are implemented. This layer provides a pure logic library—with no configuration
or automotive specific domain knowledge. (2) The execution layer implements the
qualitative analysis algorithms presented in Chapter 4. The quantitative analysis
algorithms of Chapter 5 were only implemented in the prototype application and are
not yet implemented in the commercial version of the library.

AutoLib is currently at version 1.5.9 and is in production use at BMW and in pro-
totypes at Audi and Daimler. AutoLib is a commercial derivate of the open source
library Warthog!, initiated by Andreas Kiibler and this thesis’ author. In contrast to
AutoLib, Warthog is written in Scala and aimed not only for propositional logic, but
also first order and higher order logic.

Auto/tib]

Core Layer Execution Layer

Auto/tlogic] | Autorjob]

Auto Auto/test]

Figure 6.1 | The structure of AutoLib

Figure 6.1 presents the high level view of AutoLib. Section 6.1 presents the core layer,
whereas Section 6.2 introduces the execution layer.

"https://github.com/warthog-logic/warthog

https://github.com/warthog-logic/warthog

6 AutoLib—A Propositional Logic Library for Java and C#

6.1 The Core Layer

The core layer of AutoLib implements many of the data structures and algorithms
presented in Chapter 2. As illustrated in Figure 6.1 the core layer consists of two
main packages: AutoLogic and AutoProve. In AutoLogic all the data structures
required to store propositional formulas and their normal forms are implemented.
Also, algorithms to manipulate and simplify formulas, to construct constraint graphs,
and to parse and pretty print formulas are implemented there. Table 6.1 gives an
overview of the implemented data structures and algorithms and relates them to
sections in this thesis.

Table 6.1 | Algorithms implemented in the core layer of AutoLib

Package Algorithms Section
formulas data structures for formulas, substitution, 2.1
transformations, evaluation, restriction,
elimination, projection with (SUSI) 26.1
clausesets data structures for CNF and DNF 2.1.2
transformations NNF and DNF transformations, CNF transfor- 2.1

mation with Tseitin and Plaisted-Greenbaum,
unit propagation, distributive law, removal of

constants
cardinalityconstraints cardinality constraints 2.1.3
explanations data structures for MUSes and resolution 225
proofs, MUS generation
constraintgraph data structure and generation of constraint 212

graphs, connected components

io parsers and file writers for formulas, Dimacs
files, constraint graphs

The package AutoProve implements a CDCL SAT solver with an incremental and
decremental interface as described in Section 2.2.4 which also supports proof trac-
ing (cf. Section 2.2.5).

6.1.1 Data Structures

There are two main data structures to store formulas in AutoLib: (1) recursive data
structures for immutable formulas, and (2) mutable data structures for clause sets.
The recursive formula classes have a class diagram as shown in Figure 6.2.

We have different classes for constants—Falsum and Verum—variables Variable,
negation Not, disjunction Or, conjunction And, and implication Implication. Dis-
junction and Conjunction are implemented as n-ary junctors and have a common
super type NaryOperator. Formulas are immutable, i.e. all manipulations on formu-

122

6.1 The Core Layer

Formula

I

Falsum Verum Variable Not Implication NaryOperator

AN

And Or

Figure 6.2 | The formula classes in AutoLib

las like normal form transformation, restriction, or substitution yield a new formula
as a result rather than altering the current instance. Such an implementation has
large advantages when it comes to parallelization. A developer never has to lock
a formula if it is accessed by different threads because it must always be the same
instance. There can be no read /write issues. Today, immutable data structures are
largely encouraged, even in the Java community (cf. Item 15 of [Bloch, 2008]).

Formulas are never constructed directly via a constructor, but are always instantiated
with the help of a static factory method (Item 1 of [Bloch, 2008]). The big advantage
is that a factory method can already perform simplifications which a constructor
cannot. Imagine e.g. the formula a /\ a. If you construct an And for this formula,
a constructor has to return an And instance. A static factory however can return a
simplified version; in this case the Variable a.

The immutability of formula classes can be a problem when very large formulas
are handled. Then each manipulation creates a new instance of the formula, poten-
tially leading to memory problems on the virtual machine. Especially cardinality
constraints or Tseitin transformations can yield very large CNF formulas. Therefore
the decision was to also implement a mutable data structure for clause sets (CNF or
DNF) in AutoLib. A clause set ClauseSet is a set of clauses Clause which in turn are
a set of literals Literal. A literal is just a Variable with a boolean phase. Formulas
can easily be converted into clause sets and vice versa.

Since formulas and clause sets share many common operations, there is a super class
Representation to both of them. Many algorithms can then be implemented with a
Representation as input and can choose—depending on the specific representation
at hand—the appropriate implementation. Figure 6.3 gives an overview of all data
structures for propositional formulas in AutoLib.

6.1.2 Algorithms

Many of the algorithms on propositional formulas described in Section 2.1 are imple-
mented in the core layer of AutoLib.

123

6 AutoLib—A Propositional Logic Library for Java and C#

Representation
v 7

Formula ClauseSet

Clause

Falsum

Verum Variable Implication NaryOperator

(]

1 AN

]) e

Literal

Figure 6.3 | Data structures for formulas in AutoLib

Formula Methods

The syntactical substitution of Definition 2.4 is implemented on formulas. Both eval-
uation (Definition 2.7) and restriction (Definition 2.8) are implemented. Restriction
also simplifies the resulting formula and removes any propositional constants ac-
cording to the Boolean laws. All representations support an equivalence and logical
entailment check (Definition 2.10) which use AutoProve under the hood.

Formulas can be transformed to NNF, DNF and CNF. CNF transformation can be per-
formed naively with usage of the distributivity law or with the approaches by Tseitin
and Plaisted-Greenbaum (cf. Section 2.1.2). There is also an intelligent CNF trans-
formation which tries for conjunctions of formulas first to transform each operand
with the naive approach. Only if the resulting formula gets larger than a user-
defined threshold during construction, an alternative approach (Tseitin / Plaisted-
Greenbaum) is used for this operand. This is especially helpful for large PDFs—which
are always conjunctions—where most of the single operands are already in CNF or
can be transformed easily and only some large rules require a more complex CNF
transformation.

As formula simplification, AutoLib supports the propagation of unit literals, the
usage of the distributivity law, and the removal of propositional constants.

Cardinality Constraints

Cardinality constraints as described in Section 2.1.3 are implemented in AutoLib.
Constraints cc_; and ccg; are implemented as described in that section in an op-
timal manner. For all other cardinality constraints, the approach of Bailleux and
Boufkhad [Bailleux & Boufkhad, 2003] was chosen.

124

6.1 The Core Layer

Explanations

Besides the data structures for MUSes and resolution proofs, also the MUS generation
algorithm of Section 2.2.5 is implemented in AutoLib.

Constraint Graph

Generation of the constraint graph (Definition 2.14) is implemented. Also methods
like the computation of connected components or the computation of the degree
for each node is implemented on the constraint graph. This is e.g. required for the
quantitative analysis algorithm described in Section 5.2.2. An excerpt of such a
constraint graph rendering is shown in Figure 6.4.

Figure 6.4 | An excerpt of a constraint graph from AutoLib

10

AutoLib supports reading and writing formulas in an own syntax format. It also
supports reading and writing of Dimacs files for CNF formulas®. Constraint graphs
can be written as Dot files which can then be visualized by GraphViz®.

6.1.3 AutoProve

AutoProve is the implementation of a CDCL SAT solver as described in Section 2.2.2.
It incorporates all modern implementation techniques as described in Section 2.2.3. It
has the incremental / decremental interface as pictured in Section 2.2.4 and supports
the in-memory proof tracing of Section 2.2.5. Since proof tracing requires many
changes in many methods of the solver, the proof-tracing solver ProofTracingProver
has its own class which inherits from the main SAT solver CoreProver. The core

2http://www.cs.ubc.ca/ hoos/SATLIB/Benchmarks/SAT/satformat.ps
Shttp://www.graphviz.org/

125

http://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps
http://www.graphviz.org/

6 AutoLib—A Propositional Logic Library for Java and C#

solvers are implemented in their own classes and wrapped by a rich solver interface
Prover and its specializations AutoProve and AutoProvePT. Figure 6.5 illustrates the
class hierarchy.

Prover

N

AutoProve AutoProvePT

| |

CoreProver [<+—— ProofTracingProver

Figure 6.5 | The class hierarchy of AutoProve

The Prover interface provides many convenience methods which simplify the usage
of the solver. Especially model generation has been improved. The solver has the
ability to generate a model with a certain number of variables assigned to true.
Using this functionality as base, it can also generate minimal and maximal models.
This was described in Section 5.3. One can request not only one model, but also a
certain number of models or all models (model enumeration) with respect to a set of
variables (as described in Algorithm 2.6). Models can be minimized by elimination
of don't care variables as described in Section 4.5.

Remark | PDF-Aware DNF Transformation A very interesting application of the model
enumeration with projection is the construction of a PDF-aware DNF of a formula. Some-
times users want to have a DNF representation of a usage constraint where all minterms
not satisfying the PDF are eliminated. Such a DNF represents all possible combinations of
options occurring in the usage constraint which select the respective material. The usual
way to compute such a DNF would be to transform the respective usage constraint c into
a DNF dnf (c) and then compute for each minterm m if PDF /\ ' m is satisfiable. If it is not
satisfiable, m is eliminated from dnf (c). The problem with this approach is that first the
whole DNF has to be computed which can become very large and afterwards non-satisfiable
minterms are deleted. The model enumeration with projection implemented in AutoLidb
allows a more efficient way to compute such a PDF-aware DNF.

Instead of computing the whole DNF and afterwards restricting it, we just compute the
minterms which already satisfy the PDF. Therefore, the PDF and the usage constraint c are
added to a solver and the model enumeration projected to the variables in c is computed.
Obviously transforming the model enumeration back into a DNF (as described in Sec-
tion 2.6.1) yields a PDF-aware DNF transformation. Since usually only a few minterms
per usage constraint are really satisfiable wrt. the PDEF, this yields the desired DNF much
faster than the naive approach.

Table 6.2 shows a benchmark of automotive PDFs of different German car manufactur-
ers. The standard and the proof-tracing version of AutoProve (Java) were compared
with Sat4J as another Java SAT solver and MiniSat as a standard C++ solver. All

126

6.2 The Execution Layer

benchmarks were executed on a MacBook Pro, with a 2.8 GHz Intel Core i7, 16 GB of
RAM (2 GB for the JVM), running OS X 10.9.2 and Java 1.7.0_45. All times are given
in seconds.

Table 6.2 | Benchmark of different SAT solvers on automotive formulas

Suite # Instances MiniSat Sat4J AutoProve AutoProvePT

2.2.0 2.3.5 1.5.9 1.5.9
audi 3 0.08 0.28 0.37 0.4
daimler 26 0.53 3.57 1.16 1.23
bmw 57 4.04 2.56 2.28 2.96
all 86 4.65 6.41 3.81 4.59

86 real-life production PDFs from the manufacturers Audi, Daimler, and BMW were
benchmarked. The times stated are pure solving times in seconds. Obviously Java
solvers cannot compete with C or C++ solvers, however for this suite of benchmarks,
AutoProve could outperform even MiniSat on the BMW benchmarks. AutoProve is
noticeably faster on almost all benchmarks than Sat4J. However, the benchmarks
in this suite are very small compared to benchmarks in e.g. the SAT competition.
But these are exactly the kinds of formulas which emerge in the real-life data of
automotive manufacturers, and many heuristic choices in AutoProve were chosen in
a way to optimize the solving time on such formulas.

Proof tracing yields a resolution proof as a tree as result. It also works for the
incremental and decremental interface. The proof tracing version of AutoProve
has to perform additional bookkeeping and maintain additional data structures as
described in Section 2.2.5, therefore it takes up to 30% more solving time than the
non proof-tracing version. To the best of our knowledge, AutoProve is the only SAT
solver which supports incremental /decremental proof tracing.

6.2 The Execution Layer

The execution layer of AutoLib implements the algorithms presented in Chapter 4.
On top of the algorithms there is a small job management framework which prepares
AutoLib to run on multi-core or multi-processor architectures. Every qualitative or
quantitative analysis on a product type is a single job. Jobs can then be spread across
threads or whole JVMs by some job management specific to the customer. The BMW
prototype used the actor paradigm [Hewitt et al., 1973] and the Akka* framework to
distribute single jobs. Jobs have a very simple API which allows to start them and to
retrieve their result and computation time.

The AutoTest package provides an interface for PDFs, ProductDescription, which
is then implemented specifically for the customer. A ProductDescription covers a
single product type t and provides methods for retrieving the PDF of the respective

4http://www.akka.io

127

http://www.akka.io

6 AutoLib—A Propositional Logic Library for Java and C#

product type PDF(t), the known options O(t), and the values of the type determining
options of the product type tdovals(t). When revisiting Chapter 4, these are all the
parameters that are required for a product type t in the presented algorithms.

6.2.1 The High Level Tests

Section 4.2 described the two important tests for a product type t on the high level:
inadmissibleOpts(t) and necessaryOpts(t). Which options are inadmissible for
t and which options are necessary for t. AutoLib implements both of these tests.
Their input is just the ProductDescription of the respective product type to test.
The algorithms are then implemented as shown in Algorithm 4.2 and Algorithm 4.3.
However, in contrast to the depicted algorithms, the implementation in AutoTest
does not only yield a set of inadmissible or necessary options, but also an expla-
nation for each option which is in the result set. The tests can be parametrized to
provide an explanation as a MUS or as a proof trace. As shown in Table 6.2 proof
tracing takes about 30% more time. So if it is expected that only a few options O
are inadmissible or necessary, it can be more efficient to use the standard version
of AutoProve and compute the MUS for each option in O instead of always using
the proof tracing version of AutoProve. However, our experiments in Section 7.2.1
suggest that the overhead of the proof tracing version is usually smaller than the
overhead of computing the MUS for each conflict separately.

6.2.2 The Low Level Tests

As already mentioned in Sections 4.3 and 4.4, the analysis algorithms for the BOM
and the E/E configuration can be reduced to algorithms on virtual nodes with
completeness constraints as described in Definition 4.6.

In AutoTest the verification of uniqueness and completeness of virtual nodes is
implemented. Therefore a superclass UniqueNode is implemented together with an
interface for material nodes—MaterialNode. The idea is again that the MaterialNode
interface is implemented for the specific client and adjusted to its data structures.
Most algorithms require the ProductDescription and the UniqueNode which should
be tested as input. Both algorithms computeUniquenessViolations1 (Algorithm 4.7)
and verifyCompleteness (Algorithm 4.11) are implemented like described in Sec-
tions 4.3.3 and 4.3.4.

As for the HLC tests, usually just the information that a node is not unique or not
complete is not enough for the user. Therefore AutoTest has the possibility to plug
different error analyzers into the test methods. Such an error analyzer can then
be implemented for the specific customer and yield exactly the information for a
virtual node violating a uniqueness or completeness property that the customer
needs. Usually at least a counter example for the property—often minimized—is
produced and returned.

128

7 Results from the BMW
Case Study

This chapter presents a case study and the implementation of a production system
which was conducted by the author of this thesis at BMW. The first Section 7.1 gives
a short overview of the system landscape at BMW and presents the involved systems.
Section 7.2 summarizes some of the results and shows computation times for the
algorithms presented in this thesis on real-life production data. In Section 7.3 different
approaches for quantifier elimination and knowledge compilation are compared.
Among those are results of experiments conducted in [Zengler & Kiichlin, 2013;
Matthes et al., 2012].

7.1 System

This section gives a short overview of the system landscape at BMW and shows
where the analysis algorithms presented in this thesis are integrated. The high level
configuration consists mainly of a system for managing the product hierarchy with
its product types as presented in Section 3.1. For each product type t the relevant
options O(t), the rules R(t), and the option families are stored and managed. This
system’s data contains all information about which vehicles BMW develops, builds,
and finally sells. Its rules are organized in three layers: (1) technical rules that every
vehicle has to satisfy, (2) legal rules for single countries, and (3) sales rules for the
different worldwide distributorships. The prototype and production system for the
qualitative high level analysis (cf. Section 4.2) only handle layer (1) and (2). Sales
rules are currently not evaluated.

The BOM (based on SAP’s iPPE)—referred to as PDM (Product Data Management)—
is the central data storage for all downstream systems for CAD, logistics, purchase,
or plant control. The data is organized hierarchically as shown in Section 3.3.1. The
structural nodes are not intended to be unique or complete, therefore a new data
structure for virtual nodes as described in Section 4.3.2 had to be created. At BMW,
the BOM is at the product line level of the product hierarchy and therefore a single
BOM can cover hundreds of product types.

7 Results from the BMW Case Study

The E/E configuration is managed in different systems. As described in Section 3.3.2
there are two systems: (1) for managing the control unit configuration (CUC), and (2)
for managing the controller software configuration (CSC). All three systems, PDM,
CUC, and CSC refer in their usage constraints to the options and the TDOs of the
HLC. At BMW the CUC and CSC are not really on the product line or product series
level of the product hierarchy. A single CUC or CSC file covers different product
series and often hundreds or even over thousand product types.

analyze

Inadmissible _ “"'*/v%

________ Necessary
Options

Options

A

A

N ’
1 N ’ 1
1 A ’ 1
1 AN , 1
' N , '
1 N ’ 1
1 N 1

x

Virtual ' S '
1 ’ N 1
Nodes - | ,/ AN |
~~-a_ 1 , \ 1
N = ! v’ N\ 1
T=~~ N Il
| AN |
| |

Virtual Nodes Virtual Nodes
Uniqueness Completeness

Figure 7.1 | The system architecture at BMW

Figure 7.1 illustrates the situation. The blue parts are systems already present at
BMW; the green parts are new systems introduced by the prototype and production
system in 2013/2014. A new data management system for managing the virtual nodes
and completeness constraints had to be introduced. For the high level configuration
inadmissible and necessary options are computed. For the PDM the uniqueness
and completeness of the newly introduced virtual nodes is checked. These parts
are implemented in a production system which went live in May 2014. For the CSC
and CUC part of the system, a prototype is in daily use and it is planned to be
implemented in a production system in November 2014.

All analysis procedures are integrated in an online web desktop system. Here the
user can fix all parameters for the analysis, filter the input data, run the analysis, and
inspect the result. Figure 7.2 shows a GUI screen-shot of the system.

7.2 Results

In this section some benchmarks of the analysis algorithms on real-life production
data of BMW are shown. The qualitative analysis results are taken from the produc-
tion system, implemented in 2013 and 2014, the quantitative analysis results stem
from the prototype, implemented in 2012 and 2013.

130

7.2 Results

Qv Priiffilter @ @
HLK P
Produktiinie: E-Baureihe: Typschlissel:
Lenkungsart: Motor: Typspektrum:

—(¥| Weitere HLK Prufkriteri

—[¥| Exper s

PDM Priiffilter T TAIS NAEL Priffilter T IPA-TAIS Priffilter | HLK Priiffilter]

r Kriterien

Bauphase: Produktart: | PKW v

Kundentyp: | *** v

— Weitere Kriterien Exper is

Daten aus HLK Priifkriterien bernehmen

Ausstattung Prifdatum:
PAK: Abweichungsdatum:
~ Ausgabe Lack & Polster
[¥] Nicht baubare Ausstattungen [] Ohne Lack prifen
[¥] Detailanalsyse der Auffalligkeiten [7] Ohne Polsterung priifen
[] zwingende Ausstattungen [] Ohne Polster prifen
a
Prafung
[Job Bezeichnung:

SchlieRen Favoriten auswahlen & speichern | Prufung ausflhren

Figure 7.2 | A screen shot of the HLC analysis procedure web desktop GUI

7.2.1 Qualitative Analysis
High Level Configuration

At first we look at the high level configuration analysis. As benchmark an excerpt
of seven different product lines with a total of 503 product types was chosen. All
product types are vehicles currently produced by BMW or Mini. Table 7.1 states the
results.

The first column states the product line, followed by the number of product types
in this product line and the number of SAT solver calls for the analysis algorithms.
Obviously, the number of SAT calls are the same for both inadmissibleOpts and
necessaryOpts. Both analysis algorithms were executed and times are stated in
seconds. The column |E;| and |En| state the size of the result set of inadmissible or
necessary options. It is important to notice that often a single result is not considered
an error—especially in the necessary options case. Most of the necessary options
are intended. E.g. it is not possible to configure a BMW with a manual window
opener anymore. Therefore the option for electrical window opener is necessary
in all vehicles (and the option is just kept in some old product lines for consistency
reasons with older vehicle types). All results have to be judged by a documentation
expert.

131

7 Results from the BMW Case Study

Table 7.1 | Benchmark of high level qualitative analysis at BMW

Product inadmissibleOpts mnecessaryOpts

line # Types # SAT calls Time in s [Ey] Timeins [En|
PL1 20 2,062 2.05 0 2.46 43
PL2 7 1,249 0.76 0 0.43 0
PL3 31 9,937 3.68 18 4.07 143
PL4 9 1,906 1.02 0 1.95 111
PL5 194 65,130 9.91 59 2211 2,017
PL6 223 75,645 6.87 18 20.55 1,422
PL7 19 6,334 4.69 9 492 90
all 503 162,263 28.98 104 56.49 3,826
all (proof-tracing) 503 162,263 22.66 104 23.16 3,826

Obviously, the computation times depend on the number of SAT calls, but also on the
number of options in the result set. The reason for this is that for each option in the
result set the MUS is computed. Therefore, if many options are in the result set, many
MUSes have to be computed which increases computation time. The computations
were repeated with the proof-tracing version of AutoProve as computation engine.
Computing all inadmissible options required 22.66 seconds—80% of the original
time with the standard SAT solver. Computing all necessary options require 23.16
seconds—only 41% of the time of the standard SAT solver. Since the resolution proof is
generated for each instance in memory, no additional MUS computation is necessary
and therefore the computation time is not dependent on the number of options in
the result set any more. This fact also explains that the times of inadmissibleOpts
and necessaryOpts do not differ by much. So when large result sets are expected
(as is the case for necessaryOpts), the proof-tracing SAT solver has a big advantage
compared to the non proof-tracing version.

Low Level Configuration

As testbed for the low level analysis, a BOM with over 30,000 material nodes was
chosen. A project at BMW which introduced virtual nodes identified 3,383 virtual
nodes within this BOM. The consistency of the virtual nodes was checked, i.e. both
uniqueness and completeness were verified in one run. If a virtual node is not
complete, a counter example is computed. All pairs of material nodes violating the
uniqueness of the node are computed, therefore Algorithm 4.7 was chosen. For each
pair the respective counter example is returned. Table 7.2 summarizes the results.
First the benchmark number is stated, then the number of tested virtual nodes, the
number of tested material nodes, the number of tested product types, and finally the
computation time in seconds.

In Benchmark 1 and 2 we tested a virtual node for steering wheels. It has 383 material
nodes and its usage constraints contain 19 different equipment options. The existing
methods at BMW have some difficulties with such nodes because in principal they are

132

7.2 Results

Table 7.2 | Benchmark of low level qualitative analysis at BMW

Benchmark # Virtual nodes # Material nodes # Types Timeins

1 1 383 1 0.87
2 1 383 106 7.55
3 3,383 31,778 1 1.57
4 3,383 31,778 106 29.54

based on computing all possible combinations of options (without even considering
the HLC) which are 219 = 524, 288 in this case. For nodes with over 40 or 50 options,
this method is not feasible in practice. Benchmark 1 verified the consistency of the
steering wheel node for one product type. This took under one second. Even testing
the node for over 100 different product types could be achieved in under 8 seconds.

In Benchmark 3 and 4 the complete BOM with all its 3,383 nodes was tested. For
a single product type the completeness of each virtual node could be verified in
1.57 seconds. The verification of the complete BOM for all 106 product types had
a computation time of under 30 seconds. Compared to the times the production
system needs to retrieve and filter the data from the different systems and databases,
the time for actually running the analysis is very small.

To show the effects of pre-processing the BOM (Section 4.3.5) and to evaluate the
different algorithms for computing uniqueness (Algorithms 4.7, 4.8, and 4.9) we look
at a large scale example from the CSC at BMW. We consider a controller software
configuration with 2,735 structural nodes and over 6,000 material nodes overall. This
CSC was tested for uniqueness and completeness for 606 product types. Table 7.3
states the results.

Table 7.3 | Effects of pre-processing and algorithmic improvements of the qualitative analysis
algorithms on a CSC benchmark

Approach Timeins # Solver Calls
Algorithms 4.7 and 4.11 no pre-processing 490.8 8,253,114
Algorithms 4.7 and 4.11 with pre-processing 311.4 2,983,767
Algorithms 4.8 and 4.11 with pre-processing 116.5 267,282
Algorithms 4.10 and 4.11 with pre-processing 95.4 143,640

Obviously pre-processing reduces the number of calls to the SAT solver significantly
and therefore also speeds up the verification process. The biggest leap however
is achieved when including the test whether a node can yield double selections of
materials at all before actually computing them (Algorithm 4.8). Using the model
enumeration approach of Algorithm 4.9 again speeds up the computation. Compar-
ing the naive approach in the first line of the table and the improved version in the
last line, we could speed up the verification time by a factor of five and reduce the
number of calls to the SAT solver by a factor of over 50.

133

7 Results from the BMW Case Study

7.2.2 Quantitative Analysis

The first prototype for BMW which was implemented in 2012 supported all the
quantitative analysis algorithms presented in Chapter 5. In this section some of the
results are presented.

Projected Model Count

The results of computing the projected model count as described in Section 5.1 can
be seen in the benchmarks of Table 7.8. The model counts of the original PDF of
a product type range in the magnitude between 10** and 10°3. But often only half
of the options are really customer selectable. The elimination of the manufacturer
options O of the PDF yields by far smaller model counts. They now range between
10" and 10'7. These are the numbers of different vehicles a customer can really
order for this product type. Of course this raises the question whether this large
number of manufacturer options is really the optimal way to steer certain production
processes.

Option Influence and Connectedness

For the analysis algorithms presented in Section 5.2 we consider a product type from
a Mini vehicle series. It has 303 options. Analyzing the option influence, the most
influential option directly selects or deselects 40 other options. And there are 23
options each of which directly influences over 20 other options.

Figure 7.3 shows a small excerpt of the constraint graph of the product type. The
constraint graph has a total of 45 connected components, 31 of which consist only of a
single option. These are completely independent options which do not influence any
other option. Besides some smaller connected components there are two large ones:
one with 60 options and one with 240 options. The depicted one is the latter one.
This visualization does not only give a vague idea of the complexity of the high level
configuration, but can also yield important insight. If a rule affecting only options
from one connected component is changed, one can be sure that no other options in
other connected components can be affected by this change.

This question becomes very important when it comes to change management. If
rules or options are changed, it is always the question which parts of the high level
configuration can be affected by this change. Of course not every option in the same
connected component must be affected, but we can say for sure that no options in other
connected components can be affected. Therefore a goal of a good documentation
can be to have many small connected components such that changes affect only a
small set of rules and options. This is closely related to the concept of loose coupling
in programming.

134

7.2 Results

Figure 7.3 | An excerpt of a connected component in the HLC of a product type

Minimal and Maximal Orders

To illustrate the minimal and maximal size of an order (cf. Section 5.3), we analyze a
small excerpt of a product series of Mini vehicles consisting of 8 product types. The
size of an order is the number of options in it which were selected by the customer or
the manufacturer. Table 7.4 presents the results. The table states the product type,
the number of options in the product type, and the number of rules for the respective
type. It is then followed by the model count of PDF(t), the minimal size an order
must have, and the maximal size an order can have.

135

7 Results from the BMW Case Study

Table 7.4 | Quantitative analysis on a Mini product series

Product type t [0(t)] |R(t)] Model count Min order Max order

PT1 322 160 1.6 - 1042 10 130
PT2 313 138 2.5-101 9 126
PT3 193 103 4.6 - 10%7 19 104
PT4 316 148 1.0- 1042 14 127
PT5 307 128 1.1-10% 13 123
PT6 191 94 1.5-10%7 22 101
PT7 312 116 1.7-10% 10 127
PT8 308 117 1.1-10% 9 125

Two product types stand out in this table: PT3 and PT6. They have noticeably fewer
options and rules, a by far smaller model count, larger minimal order, and smaller
maximal orders. These two types are US types and for the US many options are
already pre-selected and cannot be chosen by the customer. That explains the large
size of the minimal orders. E.g. PT1 has three and PT2 has two necessary options
(as computed by necessaryOpts), whereas PT3 has twelve necessary options. The
large number of necessary options also influences the model count of the product
type which explains the numbers. Exactly this kind of analysis can be performed by
documentation experts with the computed numbers.

7.3 Comparison of Different Approaches

In Section 2.3 two knowledge compilation formats were introduced: BDDs and
DNNFs. Section 2.6.1 presented six different approaches to quantifier elimination for
existential QPL formulas. In this section these different approaches are compared on
real-life production data of BMW. In Section 7.3.1 the knowledge compilation formats
are compared, in Section 7.3.2 the different approaches for quantifier elimination are
evaluated.

7.3.1 Comparison of Knowledge Compilation Formats

As already mentioned before, DNNFs are considered more succinct than BDDs. In the
course of our cooperation with car manufacturers we made many experiments which
confirm this assertion. In [Matthes et al., 2012] a new constraint ordering heuristic
was introduced which helped us to compile real-life production data formulas in
BDDs. However, the computation times are noticeable larger than the ones of DNNFs
and only small PDFs could be compiled.

As mentioned in Section 2.3.2, for compiling a CNF into a d-DNNF, a decomposition
tree (dtree) is required. There are different heuristics for compiling such a dtree. The
tool c2d which we used in our experiments knows three different kinds of heuristics:
(1) hyper-graph decomposition [Karypis & Kumar, 2000], (2) a natural elimination

136

7.3 Comparison of Different Approaches

order (1,2, ...,n) on the variables, and (3) the minfill elimination order [Darwiche &
Hopkins, 2001]. First we compare these heuristics on three different product series
of BMW. Table 7.5 and Table 7.6 compare the results wrt. compilation time and
compilation size respectively.

Table 7.5 | Comparison of DNNF dtree heuristic (compilation time)

Product Average Compile time in s

Series #Types #Vars # Clauses #sat Hypergr. Natural Minfill
PS1 25 365 2,807 1.7-10% 23.42 2.74 1.46
pPS2 32 492 4,614 1.7-10% 82.62 142.60 2.74
PS3 43 484 4,132 4.0-10% 193.42 1,368.28 15.48

Table 7.6 | Comparison of DNNF dtree heuristics (compilation size)

Product Average Average number of nodes

Series #Types #Vars # Clauses #sat Hypergr. Natural Minfill
PS1 25 365 2,807 1.7-10% 2,120 12,189 2,037
PS2 32 492 4,614 1.7-10%2 5,202 183, 879 3,171
PS3 43 484 4,132 4.0-10% 59,981 2,864,918 28,578

Both tables first state the product series, the number of product types in this series, the
average number of variables in PDF(t), the average number of clauses in PDF(t), and
the average model count of PDF(t). We observe an increasing complexity from PS1 to
PS3. The natural elimination order for the dtree is by far the worst heuristic, both with
respect to compilation time and number of nodes in the resulting DNNFs. Hyper-
graph decomposition performs noticeably better, but is still outperformed by the last
heuristic: the minfill heuristic yields the best compilation times (factor 13 to factor
40 faster than hyper-graph decomposition) and the smallest DNNF compilations.
Therefore we will use the minfill heuristic in the following experiments.

Next we want to compare the compilation time and size of d-DNNFs versus BDDs.
For this thesis we also evaluated a new knowledge compilation format introduced
in 2011: sentential decision diagrams (SDD) [Darwiche, 2011]. SDDs are a further
restriction of d-DNNFs, closer to ROBDDs (each ROBDD is a SDD). The big advantage
of SDDs compared to d-DNNFs is that they are canonical, the advantage compared
to ROBDDs is that they have a tighter upper bound for size. We included SDDs in
the comparison.

Table 7.7 presents benchmarks on a small product series of BMW with vehicles
with a low variance. After stating the instance, its number of variables, and its
number of clauses, the table compares the computation times for BDD compilation,
SDD compilation, and DNNF compilation. For BDD compilation many different
reordering heuristics were tried [Matthes et al., 2012]. The times stated here are the
ones of the winning heuristic for the respective instance. For DNNF compilation, as
mentioned above, the minfill heuristic was chosen for the dtree. Afterwards the sizes
in terms of number of nodes of each knowledge compilation format are compared.

137

7 Results from the BMW Case Study

Table 7.7 | Comparison of knowledge compilation times and sizes

Computation Time in s # Nodes
Type #Vars # Clauses BDD SDD DNNF BDD SDD DNNF
PTO01 352 2,796 36.4 4.29 0.1 6,133 1,895 2,159
PT02 344 2,712 62.2 3.75 0.1 3,837 1,687 1,986
PT03 350 2,759 28.3 3.43 0.1 1,974 1,824 2,016
PT04 344 2,715 48.6 2.80 0.1 12,016 1,663 1,969
PT05 322 2,519 3.4 418 0.1 1,820 2,220 2,125
PT06 316 2,482 1.0 424 0.1 2,878 1,615 1,776
PT07 331 2,583 76 11.58 0.2 2,539 2,909 4,089
PT08 322 2,519 8.2 6.12 0.1 1,411 2,573 2,826
PT09 240 638 1.0 1.77 0.1 844 1,077 1,194
PT10 349 2,769 455 3.09 0.1 4,229 1,675 1,935
PT11 339 2,670 33.4 2.35 0.1 2,883 1,303 1,535
PT12 325 2,575 182 10.26 0.1 1,781 3,408 2,511
PT13 317 2,511 10.9 8.27 0.1 2,702 2,302 2,669
PT14 236 641 0.6 1.62 0.1 1,345 1,039 1,179
PT15 326 2,580 3.5 9.47 0.1 1,343 2,316 2,925
PT16 318 2,514 9.0 5.60 0.1 2,407 2,219 2,425
PT17 236 641 0.6 1.66 0.1 1,345 1,110 1,178
PT18 319 2,514 2.6 2.73 0.1 1,165 1,555 1,716
PT19 315 2,476 0.9 3.54 0.1 1,313 1,432 1,686
PT20 327 2,560 13.2 3.35 0.1 3,587 1,493 1,791
PT21 321 2,510 3.1 3.57 0.1 2,029 1,608 1,964
PT22 326 2,551 10.9 2.93 0.1 1,853 1,443 1,757
PT23 321 2,512 6.2 3.14 0.1 1,898 1,329 1,964
PT24 349 2,763 37.9 3.45 0.1 2,308 1,652 1,851
PT25 339 2,676 347 3.59 0.1 2,233 1,354 1,689
all 4279 110.78 2.6 2,282 1,788 2,036

Again, for BDDs this is the smallest size any reordering heuristic yielded. This does
not necessarily have to be the one yielding the fastest compilation time.

For the BDD computation, the C/C++ BDD framework cuDD! was used, for SDD we
used the implementation of Darwiche?, for DNNF we used the DNNF compiler c2d°.
The tests were conducted on a 64-Bit Linux running on an AMD Athlon 64 X2 Dual
Core 4600+ with 4 GB of RAM.

The results confirm the theoretical expectations. DNNF compilation is considerably
faster (factor 42) than SDD compilation and (factor 164) than BDD compilation—
even when taking the best variable ordering heuristic for BDD compilation for each
instance. Larger formulas (e.g. the instances which are shown in Table 7.8) could not
be compiled into BDDs or SDDs within a time limit of 15 minutes per instance at all.
The average sizes of the compilations are similar for all three knowledge compilation
formats with a slight advantage for the SDDs.

Ihttp://vlsi.colorado.edu/ fabio/CUDD/
’http://reasoning.cs.ucla.edu/
Snttp://reasoning.cs.ucla.edu/c2d/

138

http://vlsi.colorado.edu/~fabio/CUDD/
http://reasoning.cs.ucla.edu/
http://reasoning.cs.ucla.edu/c2d/

7.3 Comparison of Different Approaches

The results of this section clearly indicate that DNNF is the only stable knowledge
compilation format which is suited for formulas of our application domain. However,
it is important to mention that the formulas we deal with in the BMW context are
considerably smaller compared to the ones e.g. stemming from Daimler. The reason
is that BMW and Daimler handle e.g. the encoding of different countries in the HLC
differently. Therefore, DNNF is only a stable solution for the BMW context. On
Daimler formulas, c2d often could not compile the formulas into DNNF [Kiibler,
2009].

7.3.2 Comparison of Quantifier Elimination Approaches

In [Zengler & Kiichlin, 2013] two applications for quantifier elimination in the auto-
motive context were introduced.

e (Application 1) The computation of projected model counts as described here
in Section 5.1. Therefore the variables Opq(t) have to be eliminated from PDF(t)
for a product type t.

o (Application 2) The projection of usage constraints to a certain set of variables
as introduced in Section 4.3.6.

There are two big differences between these two applications. In Application 1 a
large number of variables has to be eliminated from a large formula. The formula is
afterwards handled by model counting tools, but not by humans. In Application 2
only a few variables have to be eliminated from a small formula and the results have
to be processed by documentation experts afterwards.

Used Tools
The following listing summarizes the tools that were used for the different quantifier
elimination approaches:

Model enumeration with projection (MEP) We used clasp* 1.3.6 which imple-
ments the model enumeration approach as described in this thesis.

Model enumeration with prime implicants (MEPI) The authors’ implementation
of their algorithm® [Brauer et al., 2011] was used.

Clause distribution (CD) We extended the simplifying version of MiniSat 2° which
has the integrated ability to eliminate variables by clause distribution.

Substitute & Simplify (SUSI) The implementation of this approach in the core layer
of AutoLib was used.

4http://www.cs.uni-potsdam.de/clasp/
Shttp://www.cs.kent.ac.uk/people/staff/amk
®https://github.com/niklasso/minisat

139

http://www.cs.uni-potsdam.de/clasp/
http://www.cs.kent.ac.uk/people/staff/amk
https://github.com/niklasso/minisat

7 Results from the BMW Case Study

DNNF & projection (DNNF) The DNNF compiler c2d which takes Dimacs CNF as
an input and has the ability to perform quantifier elimination of existential
formulas as described above was used.

Dependency Sequents (DDS) The authors of [Goldberg & Manolios, 2012] pro-
vided us with a proof of concept implementation of their algorithm.

The (SUSI) approach could be implemented on top of BDDs which is often the
case in symbolic model checking [McMillan, 1993]. But as stated in the last section,
our experience is that the PDF is often too complex to be compiled into a BDD in
reasonable time. Therefore we chose the implementation in AutoLib to test this
approach.

7.3.3 Results

For all benchmarks we used a machine with an Intel dual-core i7 2.0 GHz (using
only one core), 8 GB of RAM, running Ubuntu 12.04. We chose a timeout of 3,600
seconds. Model enumeration with projection (MEP) and model enumeration with
generating shortest prime implicants (MEPI) could not solve a single instance within
this time limit. That is why they are not included in the overview of the results. After
3,600 seconds they enumerated between 500,000,000 and 700,000,000 models, which
is obviously only a small fraction of the model counts as stated in Table 7.8. This
does not mean that the approach is not suitable for quantifier elimination at all. For
other benchmarks [Zengler et al., 2011] this approach performed very well, especially
when the projected formulas have a small model count.

Table 7.8 summarizes the results of the benchmarks. Each line represents one product
type t. |O(t)| states the number of HLC options for the respective product type;
|Onm (t)] states the number of manufacturer options; |R(t)| states the number of HLC
rules. The number #sat orig represents the model count (number of constructible
vehicles) for the original PDF; the number #sat proj represents the model count for
PDF(t) where the options of O (t) were eliminated. The following five columns
show the computation times of the different approaches for eliminating all options
from Opm(t) from the respective PDF PDF(t). All times are stated in seconds. For
clause distribution, dependency sequents, and substitute & simplify, the stated time
covers the time for parsing the input, eliminating the quantifiers, and writing the
output. For the DNNF approach it covers also the DNNF compilation time. For DDS
we distinguish between the standard algorithm and a version where the resulting
CNF formulas are optimized afterwards. Table 7.9 summarizes the size of the output
CNF for the approaches (CD) and the standard and optimizing version of (DDS). The
results for each approach will be interpreted individually.

Model Enumeration with Projection (MEP) & Model Enumeration with Shortest
Prime Implicants (MEPI) were—as stated above—not suitable for eliminating the
options of O (t) from PDF(t) (Application 1). Nevertheless they can be very useful
for smaller constraints, e.g. the usage constraints of the BOM (Application 2). The

140

7.3 Comparison of Different Approaches

Table 7.8 | Benchmarks for a BMW product series with 30 product types

Instance QE time in s
(DDS)
Type [O(t)] [Om(t)] [R(1)] #sat orig #sat proj (CD) (DNNF) (SUSI stand. opt
PTO1 423 256 211 9.95-104% 2.95.10'6 0.07 0.14 0.92 0.01 1.08
PT02 403 237 190 1.20-10%*® 1.18.10'7 0.07 0.12 0.60 0.01 1.11
PT03 425 258 208 9.64-10*% 1.64-10'¢ 0.07 0.13 1.00 0.02 1.01
PT04 408 242 215 2.52-10%7 1.81-10'¢ 0.06 0.12 0.81 0.01 1.07
PTO05 223 85 122 1.59-103% 3.84-10!3 0.01 0.03 012 001 048
PT06 441 272 220 4.00-10%% 6.35-10'¢ 0.07 0.14 114 001 1.12
PT07 424 256 229 5.43-10%2 2.57-10'7 0.07 0.12 074 002 115
PTO8 220 83 122 7.78-10%2 1.99-1013 0.01 0.02 010 0.01 050
PT09 433 264 224 5.75-10%° 3.23.10'¢ 0.07 0.13 1.11 0.02 113
PT10 417 249 236 1.01-10%° 6.54-10'¢ 0.07 0.13 0.98 0.02 1.12
PT11 436 268 221 6.08-1052 7.99.10%6 0.07 0.15 1.19 0.01 1.11
PT12 420 253 228 3.09-10°2 3.22-107 0.07 0.14 0.92 0.02 1.14
PT13 420 254 215 2.53-10* 1.02-10'¢ 0.07 0.12 0.81 0.01 113
PT14 430 262 223 1.48-10%*° 1.63-10'¢ 0.01 0.13 0.84 002 117
PT15 421 254 207 5.85-10%*% 3.05-10'¢ 0.07 0.14 097 001 1.08
PT16 402 234 196 3.75-10%7 2.50-10%7 0.07 0.12 059 001 1.14
PT17 428 259 228 3.47-10%*° 6.35-10'¢ 0.06 0.14 123 0.02 112
PT18 405 237 215 1.57-104% 2.57.107 0.07 0.13 0.62 0.02 1.12
PT19 422 254 228 1.12-10%° 3.99.101¢ 0.07 0.13 0.93 0.03 1.15
PT20 405 238 191 1.81-10%° 1.57-10'7 0.07 0.12 0.57 0.01 1.13
PT21 418 251 210 1.21-10*® 1.53-10'¢ 0.06 0.12 0.79 0.02 1.06
PT22 398 232 196 6.82-10%% 5.64-10'6 0.06 0.12 055 0.01 1.07
PT23 421 254 202 2.15-10*® 6.32-10'¢ 0.06 0.12 0.91 0.01 1.10
PT24 400 234 180 1.32-10%7 2.54-10'7 0.06 0.12 0.61 0.01 1.11
PT25 398 253 202 2.41-10*% 6.31-10'° 0.06 0.12 056 001 0.62
PT26 377 233 181 8.17-10%6 2.53.1016 0.07 0.11 049 001 061
PT27 417 251 214 9.61-10%7 1.55-10%6 0.06 0.12 0.79 0.01 1.04
PT28 397 232 194 8.33-10%*% 5.68-10' 0.07 0.11 0.70 0.01 1.12
PT29 419 252 206 1.97-10%*8 1.24-10'¢ 0.06 0.12 0.78 0.01 1.10
PT30 399 233 185 2.33-10%*7 4.56-10'6 0.07 0.11 055 0.01 1.00
all 1.81 357 2292 041 30.89

big advantage of (MEP) is its output as DNF. In this context each minterm of the
DNF describes one combination of relevant options, such that the material is selected
for a vehicle. Therefore a DNF representation of a usage constraint is often human-
readable and can be easily converted e.g. into a table where all possible combinations
are recorded.

Clause Distribution (CD) performed very well on all benchmarks. It required less
than 100 ms for the elimination per product type. The approach is well suited for
calculating the projected model count (Application 1). The resulting formulas are
small enough to be processed by recent model counters [Kiibler et al., 2010] or by c2d
which can also perform model counting. For the projection of BOM usage constraints
(Application 2) this approach is not recommended. In most cases the resulting
formula in CNF has not much resemblance with the original usage constraint found
in the BOM. This makes it very hard for a maintainer to match input and output
constraints and find e.g. errors in the constraints.

Substitute & Simplify (SUSI) performed notably worse than clause distribution,
DNNF computation, or the unoptimizing (DDS), but it is still suited for Application 1.

141

7 Results from the BMW Case Study

The resulting formulas are small enough to be model counted by current tools. For
Application 2 this approach is particularly well suited. Since substitute & simplify
works on the original constraint with no need to convert it to a normal form, the
resemblance to the input formula is higher than in the other approaches. This simpli-
fies the task of matching input and output of the elimination process for a human
maintainer.

DNNF & Projection (DNNF) The times play in the same league as the times of (CD)
or unoptimizing (DDS). However, there is one big disadvantage: as stated above,
after projecting a DNNF, it is no longer guaranteed to be deterministic. However,
model counting on a DNNF works only in linear time on a deterministic DNNF as
described in Section 2.4.2. Therefore to compute the projected model count, one
would first have to compute the DNNF of the PDEF, project it, make it deterministic
again, and then count it. Unfortunately to the best of our knowledge, there is yet no
algorithm and especially no implemented tool which can convert an arbitrary DNNF
into a d-DNNF without the indirection of converting it to a CNF again. Therefore
this approach is not suited for Application 1. For Application 2 it is basically suited,
but as for the clause distribution approach, the problem is that the resulting formula
often has little resemblance with the input formula.

Dependency Sequents (DDS) without optimization of the result formula per-
forms best on all examples. All instances could be projected in less than 30 ms.
Looking at Table 7.9, we see that the resulting CNF are slightly larger than the ones
constructed by (CD). However, the version of (DDS) which optimizes the resulting
CNF yields the smallest CNF of all approaches. Therefore (DDS) is the best approach
for Application 1. The resulting formulas are small enough to be counted be recent
model counters. For Application 2 the same argument as for (CD) holds: the result-
ing CNF is not an ideal format for human maintainers which is why we would not
recommend it.

Summary

In order to count the number of constructible vehicles of a product type t wrt. to
the options in O¢(t) (Application 1), there are three approaches which are suitable:
clause distribution, substitute & simplify, and dependency sequents. All three require
an additional model counter. DNNF compilation and model counting proved to be
a stable solution: c2d was able to count the models in in less than one second for
each instance. Model enumeration with projection is not suitable because the model
counts of our application instances are too large. DNNF computation with projection
is not suitable because after variable elimination the output is no longer necessarily a
deterministic DNNF and therefore model counting cannot be performed in linear
time.

For the projection of usage constraints (Application 2), two suitable approaches
were identified: (1) model enumeration with projection and (2) substitute & simplify.

142

7.3 Comparison of Different Approaches

Table 7.9 | Sizes of projected CNF formulas

(CD) (DDS) (DDS) opt
Type #Vars # Clauses # Vars # Clauses # Vars # Clauses
PTO01 190 1,338 221 1,978 221 828
PT02 191 1,316 226 1,964 226 838
PT03 189 1,297 218 1,849 218 771
PT04 190 1,303 221 1,844 221 798
PT05 151 812 205 1,193 205 633
PT06 192 1,345 224 1,980 224 834
PT07 193 1,342 225 1,978 225 838
PTO08 150 807 204 1,192 204 629
PT09 191 1,356 222 1,968 222 863
PT10 191 1,349 223 1,943 223 828
PT11 193 1,351 226 2,053 226 838
PT12 194 1,348 227 2,013 227 815
PT13 188 1,312 218 1,841 218 797
PT14 190 1,366 221 1,956 221 876
PT15 190 1,336 220 1,950 220 819
PT16 193 1,323 226 1,943 226 837
PT17 192 1,345 218 1,967 218 826
PT18 193 1,342 223 1,975 223 838
PT19 191 1,349 219 2,044 219 836
PT20 192 1,328 227 2,050 227 826
PT21 189 1,301 220 1,871 220 777
PT22 190 1,276 225 1,842 225 794
PT23 192 1,336 221 1,969 221 824
PT24 193 1,314 226 1,955 226 834
PT25 168 1,049 216 1,374 216 661
PT26 169 1,052 219 1,375 219 663
PT27 190 1,313 221 1,846 221 770
PT28 191 1,274 228 1,832 228 855
PT29 189 1,296 219 1,851 219 770
PT30 190 1,271 224 1,821 224 787

(SUSI) yields a formula with a high resemblance to the original input formula which
can be advantageous for a human maintainer. Clause distribution, DNNF, and DDS
are not very well-fitted because their output formats are too distinct from the input
formula and therefore hard to process for human maintainers.

The prototype of the BMW case study used the (SUSI) approach of AutoLib together
with c2d for Application 1. The production system uses the (SUSI) approach of
AutoLib for Application 2.

143

8 Summary

This thesis gave an extensive overview of the state of the art in analysis of automotive
configuration data. These are the main contributions of this work:

A new generic formulation of product configuration in the automotive industry
was introduced for high level configuration, BOM, and E/E in Section 3. To-
gether with the notion of virtual nodes and completeness constraints in Sec-
tion 4.3.2 this allowed us to formulate all algorithms on this generic description.
It was verified that configuration data from Audi/VW, Daimler, and BMW can
be mapped to this generic structure. Many existing analysis algorithms were
significantly improved.

Quantifier elimination for QPL formulas was introduced in Sections 2.5 and 2.6. Ap-
plications for QE were presented in Sections 4.3.6 (computation of completeness
constraints) and 5.1 (computation of projected model counts).

New quantitative analysis algorithms were presented in Section 5. The computa-
tion of projected model counts, minimal and maximal orders, and influence and
connectedness of options were not introduced in the automotive configuration
analysis before.

The implementation of AutoLib , a logic library tailored for the needs of the auto-
motive industry, was shown in Section 6. It includes AutoProve, a SAT solver
which supports incremental and decremental proof tracing the big advantage
of which compared to conventional solvers was shown in Sections 6.1.3 and 7.2.
AutoLib is currently in use at prototypes at Audi/VW and Daimler as well as
in the production system at BMW.

Different Knowledge Compilation Formats were evaluated on automotive config-
uration data in Section 7.3.1. We compared DNNF, SDD, and BDD in terms of
compilation time and compilation size. DNNF was used in the BMW prototype
to perform model counting on the product types.

A case study at BMW was presented in Section 7. This two-year case study was
the basis of a production system introduced at BMW in 2014 with 400 initial
users. All algorithms mentioned in this thesis were implemented and tested in
the prototype of this case study by the author of this thesis.

21
2.2
23
24
25
2.6
27
2.8
29
2.10

4.1
4.2
4.3
44
4.5
4.6
4.7

4.8

49

4.10

411
4.12

List of Algorithms

The DPLL algorithm: dp11(C,f3) 17
The CDCL algorithm: cdcl(C) 18
ComputingaMUS:mus(C) 27
The DPLL-based model counting algorithm: dpll mc(¢) 35
Satisfiability of a QPL Sentence: gbf(¢,f3) 41
The model enumeration based QE algorithm: qe_mep(¢) 45
The clause distribution based QE algorithm: qe_cd(¢) 46
The Substitute & Simplify algorithm: qe_susi(¢) 47
The DNNF based QE algorithm: ge_dnnf(e@) 49
The full quantifier algorithm: qe_full(@,B) 53
Verifying n verification properties with a SAT solver 74
Compute the inadmissible options: inadmissibleOpts(t) 75
Compute the necessary options: necessaryOpts(t) 77
Check a (partial) configuration: checkConfiguration(t,@) 77
Compute the superfluous parts: superfluousParts(b) 82
Verify the uniqueness of a node: verifyUniquenessi(n) 87
Compute all material node pairs violating the uniqueness property of a

virtual node: computeUniquenessViolationsi(n). 89
Compute all material node pairs violating the uniqueness property of a

node (improved): computeUniquenessViolations2(n) 90
Compute all material node uniqueness property violations (model enu-

meration version): computeUniquenessViolations3(n) 92
Compute if more than n material nodes can be used at the same time:

verifyUniqueness2(n,k) L o 93
Verify the completeness property: verifyCompleteness(n) 95
Pre-processing the BOM: preprocessBOM(b) 98

LIST OF ALGORITHMS

4.13 Compute a proposal for a completeness constraint for a virtual node:

computeProposal(T)o 101
4.14 Eliminate don’t care variables: eliminateDontCare(@,p) 106
5.1 Compute the influence of an option: computeInfluence(o,t) 114
52 Compute the maximal order size: computeMaximalOrder(t) 117

148

1.1

21
2.2
2.3
24
25
2.6
2.7

2.8
29
2.10
211
212

3.1
3.2

4.1
42
43

5.1
52
5.3

6.1

List of Figures

An excerpt of the options ina BMW vehicle 2
Syntax trees for a formulaandits NNF 11
An example for a constraintgraph 00 13
An example implicationgraph 18
Example for different cuts in an implication graph 19
Correspondence between cuts in the implication graph and resolution 20

The watched literal scheme 22
Example for a usage of the incremental / decremental SAT Solver

interface 25
ExampleforaBDD 30
ReductionrulesinaROBDD 31
Exampleofadtree 33
EvaluationofaQPLsentence 39
Example computationof ge_full 54
A small excerpt from the BMW product hierarchy 59
AsmallexcerptofaBOM 64
The PDF as knowledgebase 72
A small excerpt of a BOM with non-completenodes 85
A small excerpt of a BOM with virtualnodes 86
Computing the projected modelcount 110
Computing the projected model count (refined solution) 111
Constraint graphforaPDF 116

The structure of AutoLib 121

LIST OF FIGURES

150

6.2
6.3
6.4
6.5

7.1
7.2
7.3

The formula classes in AutoLib 123
Data structures for formulas in AutoLib 124
An excerpt of a constraint graph from AutoLib 125
The class hierarchy of AutoProve 126
The system architectureat BMW 130
A screen shot of the HLC analysis procedure web desktop GUI. . . . 131

An excerpt of a connected component in the HLC of a product type . 135

21
2.2

23

6.1
6.2

7.1
7.2
7.3

7.4
7.5
7.6
7.7
7.8
79

List of Tables

Different kinds of QPL formulas @ 38
Comparison of the different approaches for existential quantifier elim-

ination L 44
Boundary points and removable boundary points 52
Algorithms implemented in the core layer of AutoLib 122
Benchmark of different SAT solvers on automotive formulas 127
Benchmark of high level qualitative analysisat BMW 132
Benchmark of low level qualitative analysisat BMW 133
Effects of pre-processing and algorithmic improvements of the quali-

tative analysis algorithms on a CSC benchmark 133
Quantitative analysis on a Mini productseries 136
Comparison of DNNF dtree heuristic (compilation time) 137
Comparison of DNNF dtree heuristics (compilation size) 137
Comparison of knowledge compilation times and sizes 138
Benchmarks for a BMW product series with 30 product types 141

Sizes of projected CNF formulas 143

Reviewed Publications of the
Author

2014

e Computerising Mathematical Text with Fairouz Kamareddine, Joe Wells, and
Henk Barendregt in The Handbook of the History of Logic, Vol. 9: Computational
Logic. Dov Gabbay, John Woods, and Jérg Siekmann (eds.) Elsevier, North-Holland,
2014 (to appear).

Abstract. Mathematical texts can be computerised in many ways that cap-
ture differing amounts of the mathematical meaning. At one end, there is
document imaging, which captures the arrangement of black marks on paper,
while at the other end there are proof assistants (e.g. Mizar, Isabelle, Coq, etc.),
which capture the full mathematical meaning and have proofs expressed in
a formal foundation of mathematics. In between, there are computer typeset-
ting systems (e.g. ISIEX and Presentation MathML) and semantically oriented
systems (e.g. Content MathML, OpenMath, OMDoc, etc.). In this paper we
advocate a style of computerisation of mathematical texts which is flexible
enough to connect the different approaches to computerisation, which allows
various degrees of formalisation, and which is compatible with different logi-
cal frameworks (e.g. set theory, category theory, type theory, etc.) and proof
systems. The basic idea is to allow a man-machine collaboration which weaves
human input with machine computation at every step in the way. We propose
that the huge step from informal mathematics to fully formalised mathematics
be divided into smaller steps, each of which is a fully developed method in
which human input is minimal.

Reviewed Publications of the Author

2013

¢ Boolean Quantifier Elimination for Automotive Configuration — A Case

Study with Wolfgang Kiichlin in Formal Methods for Industrial Critical Systems,
FMICS 2013, LNCS 8187, pages 48-62, Springer-Verlag 2013.

Abstract. This paper evaluates different algorithms for existential Boolean
quantifier elimination in the area of automotive configuration. We compare ap-
proaches based on model enumeration, on resolution, on dependency sequents,
on substitution, and on knowledge compilation with projection. We describe
two real-life applications: model counting on a set of customer-relevant options
and projection of BOM (bill of materials) constraints. Our work includes an
implementation of the presented techniques on top of state-of-the-art tools. We
evaluate the different approaches on real production data from our collabora-
tion with BMW.

Applications of MaxSAT in Automotive Configuration with Rouven Walter
and Wolfgang Kiichlin in Proceedings of the 15th Workshop on Configuration, 2013.

Abstract. We give an introduction to possible applications of MaxSAT solvers
in the area of automotive (re-)configuration. Where a SAT solver merely pro-
duces the answer “unsatisfiable” when given an inconsistent set of constraints,
a MaxSAT solver computes the maximum subset which can be satisfied. Hence,
a MaxSAT solver can compute repair suggestions, e.g. for non-constructible
vehicle orders or for inconsistent configuration constraints. We implemented
different state-of-the-art MaxSAT algorithms in a uniform setting within a logic
framework. We evaluate the different algorithms on (re-)configuration scenar-
ios which we encountered in the automotive industry from our collaboration
with German car manufacturer BMW.

2012

154

¢ An Improved Constraint Ordering Heuristics for Compiling Configuration

Problems with Benjamin Matthes and Wolfgang Kiichlin in Proceedings of the 14th
Workshop on Configuration, 2012.

Abstract. This paper is a case study on generating BDDs (binary decision
diagrams) for propositional encodings of industrial configuration problems.
As a testbed we use product configuration formulas arising in the automotive
industry. Our main contribution is the introduction of a new improved con-
straint ordering heuristics incorporating structure-specific knowledge of the
problem at hand. With the help of this constraint ordering, we were able to
compile all formulas of our testbed to BDDs which was not possible with an
arbitrary constraint order.

2011

e New Approaches to Boolean Quantifier Elimination with Andreas Kiibler and
Wolfgang Kiichlin, in ACM Communications in Computer Algebra, volume 45 1/2,
pages 139-140, ACM 2011.

Abstract. We present four different approaches for existential Boolean quanti-
fier elimination, based on model enumeration, resolution, knowledge compila-
tion with projection, and substitution. We point out possible applications in
the area of verification and we present preliminary benchmark results of the
different approaches.

e Boolean Grobner Bases in SAT Solving with Wolfgang Kiichlin, in ACM Com-
munications in Computer Algebra, volume 45 1/2, pages 141-142, ACM 2011.

Abstract. We want to incorporate the reasoning power of Boolean Grobner
bases into modern SAT solvers. There are many starting points where to plug
in the Grobner basis engine in the SAT solving process. As a first step we chose
the learning part where new consequences (lemmas) of the original formula
are deduced. This paper shows first promising results, also published at the
CASC 2010 in Armenia.

e Automated Deduction in Geometry (editor) with Thomas Sturm, LNAI 6301,
Springer-Verlag 2011.

2010

e Parametric Quantified SAT Solving with Thomas Sturm in Proceedings of the
35th International Symposium on Symbolic and Algebraic Computation, ISSAC 2010,
pages 77-84, ACM 2010.

Abstract. We generalize successful algorithmic ideas for quantified satisfi-
ability solving to the parametric case where there are parameters in the input
problem. The output is then not necessarily a truth value but more generally
a propositional formula in the parameters of the input. Since one can natu-
rally embed propositional logic into first-order logic over Boolean algebras,
our work amounts from a model-theoretic point of view to a quantifier elim-
ination procedure for initial Boolean algebras. Our work is completely and
efficiently implemented in the logic package Redlog contained in the open
source computer algebra system Reduce. We describe this implementation and
discuss computation examples pointing at possible applications of our work to
configuration problems in the automotive industry.

155

Reviewed Publications of the Author

o Extending Clause Learning of SAT Solvers with Boolean Grobner Bases

156

with Wolfgang Kiichlin in Computer Algebra in Scientific Computing, CASC 2010,
LNCS 6244, pages 293-302, Springer-Verlag 2010.

Abstract. We extend clause learning as performed by most modern SAT Solvers
by integrating the computation of Boolean Grobner bases into the conflict learn-
ing process. Instead of learning only one clause per conflict, we compute and
learn additional binary clauses from a Grébner basis of the current conflict.
We used the Grobner basis engine of the logic package Redlog contained in
the computer algebra system Reduce to extend the SAT solver MiniSAT with
Grobner basis learning. Our approach shows a significant reduction of conflicts
and a reduction of restarts and computation time on many hard problems from
the SAT 2009 competition.

Model Counting in Product Configuration with Andreas Kiibler and Wolfgang
Kiichlin in Proceedings of the First Workshop on Logics for Component Configuration,
LoCoCo '10, pages 44-53, 2010.

Abstract. We describe how to use propositional model counting for a quantita-
tive analysis of product configuration data. Our approach computes valuable
meta information such as the total number of valid configurations or the rel-
ative frequency of components. This information can be used to assess the
severity of documentation errors or to measure documentation quality. As an
application example we show how we apply these methods to product docu-
mentation formulas of the Mercedes-Benz line of vehicles. In order to process
these large formulas we developed and implemented a new model counter
for non-CNF formulas. Our model counter can process formulas, whose CNF
representations could not be processed up till now.

Encoding the Linux Kernel Configuration in Propositional Logic with Wolf-
gang Kiichlin in Proceedings of the 13th Workshop on Configuration, 2010.

Abstract. We present a formalization of the Linux Kernel configuration and
propose a set of rules how to encode this formalization in propositional logic.
The resulting propositional formulas describe all valid configurations of the
Linux Kernel with respect to one specific hardware architecture. The advan-
tage of a formula in propositional logic is that we can use all the elaborate
tools and techniques from the SAT community like SAT solvers, parametric
SAT solvers, or model counters. We show how we can use these available
tools to perform e.g. an automated search for redundant or necessary options
or automatically produce configuration variants. We have implemented our
approach and compiled the formulas for all available hardware architectures.
Based on this implementation, we show some experimental results on size and
complexity of the resulting formulas.

Bibliography

ABpULLA, PArROSH Aziz, Biessg, PEr, & EEN, NikLas. 2000. Symbolic reachability
analysis based on SAT-solvers. Pages 411425 of: Proceedings of the 6th international
conference on tools and algorithms for construction and analysis of systems: Held as part of
the European joint conferences on the theory and practice of software, ETAPS 2000. Lecture
Notes in Computer Science, vol. 1785. Berlin, Heidelberg, Germany: Springer-Verlag.

ALpANONDO, MICHEL, & VAREILLEs, ELisE. 2008. Configuration for mass customization:
how to extend product configuration towards requirements and process configura-
tion. Journal of intelligent manufacturing, 19(5), 521-535.

Ar1aNO, Marco, & DagNINO, ALpo. 1996. An intelligent order entry and dynamic bill
of materials system for manufacturing customized furniture. Computers & electrical
engineering, 22(1), 45-60.

AsiN, RoBerTO, NIEUWENHUIS, ROBERT, OLIVERAS, ALBERT, & RODRIGUEZ-CARBONELL,
Enric. 2010. Practical algorithms for unsatisfiability proof and core generation in
SAT solvers. Al communications, 23(2-3), 145-157.

AsTESANA, JEAN MARC, Bossu, Yvis, CosseraT, LAURENT, & Farcier, HeLeNe. 2010.
Constraint-based modeling and exploitation of a vehicle range at Renault’s: Require-
ment analysis and complexity study. Pages 33-39 of: Proceedings of the 13th workshop
on configuration.

AUDEMARD, GILLES, & SiMON, LaurenT. 2009. Predicting learnt clauses quality in mod-
ern SAT solvers. Pages 399-404 of: Proceedings of the 21st international joint conference
on artificial intelligence, I[CAI '09. Morgan Kaufmann Publishers Inc.

Avari, ABDELWAHEB, & BasiN, Davip. 2002. Qubos: Deciding quantified Boolean
logic using propositional satisfiability solvers. Pages 187-201 of: Formal methods in
computer-aided design, FMICAD 2002. Lecture Notes in Computer Science, vol. 2517.
Berlin, Heidelberg, Germany: Springer-Verlag.

BaILLEUX, OLIVIER, & BourkHAD, YacINE. 2003. Efficient CNF encoding of Boolean
cardinality constraints. Pages 108-122 of: Principles and practice of constraint program-

BIBLIOGRAPHY

ming, CP 2003. Lecture Notes in Computer Science, vol. 2833. Berlin, Heidelberg,
Germany: Springer-Verlag.

Bartista, Lufs, & MARQUES DA Siwva, JoZo P. 2000. Using randomization and learning
to solve hard real-world instances of satisfiability. Pages 489—494 of: Principles and
practice of constraint programming, CP 2000. Lecture Notes in Computer Science, vol.
1894. Berlin, Heidelberg, Germany: Springer-Verlag.

Bavarpo, Jr., RoBerto J., & PEHOUSHEK, JosepH DAaNIEL. 2000. Counting models
using connected components. Pages 157162 of: Proceedings of the 17th national con-
ference on artificial intelligence and 12th conference on innovative applications of artificial
intelligence, AAAI'00/IAAI'00. AAAI Press / The MIT Press.

BayarDO, JR., RoBERTO |, & ScHRAG, RoBERT C. 1997. Using CSP look-back techniques
to solve real-world SAT instances. Pages 203-208 of: Proceedings of the 14th national
conference on artificial intelligence and ninth conference on innovative applications of arti-
ficial intelligence, AAAI'97/IAAI'97. Menlo Park, CA, USA: AAAI Press.

BeNEDETTI, MARCO, & MANGASssaRIAN, HratcH. 2008. QBF-based formal verifica-
tion: Experience and perspectives. Journal on satisfiability, Boolean modelling and
computation, 5, 133-191.

Bessey, AL, BLock, KeN, CHELE, BEN, CHou, ANDY, FuLtON, BrRYAN, HALLEM, SETH,
Henri-Gros, CHaRLES, KaMsky, Asya, McPEak, Scort, & ENGLER, Dawson. 2010. A
few billion lines of code later: Using static analysis to find bugs in the real world.
Communications of the ACM, 53(2), 66-75.

Biere, ArRMIN. 2005. Resolve and expand. Pages 59-70 of: Theory and applications of
satisfiability testing, SAT 2004. Lecture Notes in Computer Science, vol. 3542. Berlin,
Heidelberg, Germany: Springer-Verlag.

Biere, ArMIN. 2008. PicoSAT essentials. Journal on satisfiability, Boolean modelling and
computation, 4, 75-97.

Bierg, ArRMIN, & EEN, NikrLas. 2005. Effective preprocessing in SAT through vari-
able and clause elimination. Pages 61-75 of: Theory and applications of satisfiability
testing, SAT 2005. Lecture Notes in Computer Science, vol. 3569. Berlin, Heidelberg,
Germany: Springer-Verlag.

Biere, ArMIN, HEULE, MARDN, vAN MAAREN, HaNns, & WaLsH, Tosy (eds). 2009. Hand-
book of satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185.
1OS Press.

Biere, ArRMIN, LONSING, FLORIAN, & SEIDL, MARTINA. 2011. Blocked clause elimina-
tion for QBF. Pages 101-115 of: Automated deduction - CADE-23. Lecture Notes in
Computer Science, vol. 6803. Berlin, Heidelberg, Germany: Springer-Verlag.

158

BIBLIOGRAPHY

BirnBauM, ELaZAR, & Lozinskir, ELiezer L. 1999. The good old Davis-Putnam proce-
dure helps counting models. Journal of artificial intelligence research, 10(1), 457-577.

Broch, JosHua. 2008. Effective Java. 2 edn. Upper Saddle River, NJ, USA: Addison-
Wesley.

BoLLig, BEaTE, & WEGENER, INGo. 1996. Improving the variable ordering of OBDDs
is NP-complete. IEEE transactions on computers, 45(9), 993-1002.

BooLg, GEORGE. 1847. The mathematical analysis of logic. Cambridge, Massachusetts
and London, England: Cambridge University Press.

BRAUER, JOrG, KING, ANDY, & KRIENER, JAEL. 2011. Existential quantification as incre-
mental SAT. Pages 191-207 of: Computer aided verification, CAV 2011. Lecture Notes
in Computer Science, vol. 6806. Berlin, Heidelberg, Germany: Springer-Verlag.

Bryant, RanpaL E. 1986. Graph-based algorithms for Boolean function manipulation.
IEEE transactions on computers, 35(8), 677-691.

Buning, Hans KLEINE, & Buseck, Uwe. 2009. Handbook of satisfiability. Vol. 185
of [Biere et al., 2009]. Chap. 23—Theory of Quantified Boolean Formulas, pages
735-760.

Capoti, Marco, & Donini, Francesco M. 1997. A survey on knowledge compilation.
Al communications, 10(3,4), 137-150.

Cook, StepHEN A. 1971. The complexity of theorem-proving procedures. Pages
151-158 of: STOC '71: Proceedings of the third annual ACM symposium on theory of
computing. New York, NY, USA: ACM Press.

DarwicHE, ApNaN. 2001. Decomposable negation normal form. Journal of the ACM,
48(4), 608-647.

DarwicHE, AbNaN. 2002. A knowledge compilation map. Journal of artificial intelli-
gence research, 17, 229-264.

DarwicHE, ADNAN. 2004. New advances in compiling CNF to decomposable negation
normal form. Pages 328-332 of: Proceedings of the 16th european conference on artificial
intelligence, ECAI 2004. 10S Press.

DarwichE, ApNan. 2011. SDD: A new canonical representation of propositional
knowledge bases. Pages 819-826 of: Proceedings of the 22nd international joint confer-
ence on artificial intelligence, I[CAI 2011. AAAI Press.

DarwicHe, AbNaN, & Horkins, Mark. 2001. Using recursive decomposition to
construct elimination orders, jointrees, and dtrees. Pages 180-191 of: Symbolic and
quantitative approaches to reasoning with uncertainty, ECSQARU 2001. Lecture Notes
in Artificial Intelligence, vol. 2143. Berlin, Heidelberg, Germany: Springer-Verlag.

159

BIBLIOGRAPHY

Davis, MarTIN, & Putnam, HiLary. 1960. A computing procedure for quantification
theory. Journal of the ACM, 7(3), 201-215.

Davis, MarTIN, LoGEMANN, GEORGE, & LovELAND, DoNALD. 1962. A machine program
for theorem-proving. Communications of the ACM, 5(7), 394-397.

Davis, Stan. 1987. Future perfect. Reading, MA: Addison-Wesley.

EEN, NikLas, & SOrRENssoN, NikLas. 2004. An extensible SAT-solver. Pages 502-518 of:
Theory and applications of satisfiability testing, SAT 2004. Lecture Notes in Computer
Science, vol. 2919. Berlin, Heidelberg, Germany: Springer-Verlag.

FELFERNIG, ALEXANDER, FRIEDRICH, GERHARD, & JANNACH, DiET™MAR. 2001. Conceptual
modeling for configuration of mass-customizable products. Artificial intelligence in
engineering, 15(2), 165-176.

FLEiscHANDERL, GERHARD, FriEDRICH, GERHARD E., HASELBOCK, ALOIS, SCHREINER,
Herwig, & STUMPINER, Markus. 1998. Configuring large systems using generative
constraint satisfaction. IEEE intelligent systems, 13(4), 59-68.

Forza, Cipr1ANO, & SALVADOR, FaBrizio. 2002. Managing for variety in the order ac-
quisition and fulfilment process: The contribution of product configuration systems.
International journal of production economics, 76(1), 87-98.

FriepricH, GERHARD, RyaBOkON, ANNA, FALKNER, ANDREAS A., HASELBOCK, ALOIS,
ScHENNER, GOTTFRIED, & SCHREINER, HERWIG. 2011. (re)configuration using answer
set programming. In: Proceedings of the 13th workshop on configuration.

GEBSER, MARTIN, KAUEMANN, BENjaMIN, & ScHAUB, TorsTEN. 2009. Solution enumera-
tion for projected Boolean search problems. Pages 71-86 of: Integration of Al and OR
techniques in constraint programming for combinatorial optimization problems, CPAIOR
2009. Lecture Notes in Computer Science, vol. 5547. Berlin, Heidelberg, Germany:
Springer-Verlag.

GoLDBERG, EUGENE, & MaNoLIOs, PaNnacrotis. 2012. Quantifier elimination by depen-
dency sequents. Pages 34-43 of: Proceedings of the FMCAD 2012. Washington, DC,
USA: IEEE Computer Society.

GoLDBERG, EvGuEent, & Novikov, Yakov. 2002. BerkMin: a fast and robust SAT-solver.
Pages 142-149 of: Proceedings of the conference on design, automation and test in Europe,
DATE’02. Washington, DC, USA: IEEE Computer Society.

Gowmes, Carra P, SELmaN, Bart, & Kautz, Henry. 1998. Boosting combinatorial
search through randomization. Pages 431437 of: Proceedings of the 15th national/tenth
conference on artificial intelligence/innovative applications of artificial intelligence, AAAI
"98/IAAI '98. Menlo Park, CA, USA: AAAI Press.

160

BIBLIOGRAPHY

GRUMBERG, ORNA, SCHUSTER, AssAF, & YADGAR, Avi. 2004. Memory efficient all-
solutions SAT solver and its application for reachability analysis. Pages 275-289 of:
Formal methods in computer-aided design, FMICAD 2004. Lecture Notes in Computer
Science, vol. 3312. Berlin, Heidelberg, Germany: Springer-Verlag.

Haag, Ausert. 1998. Sales configuration in business processes. IEEE intelligent
systems, 13(4), 78-85.

HarrisoN, Joun. 2009. Handbook of practical logic and automated reasoning. New York,
NY, USA: Cambridge University Press.

Hewitt, CArL, Bisnop, PETER, & STEIGER, RicHARD. 1973. A universal modular actor
formalism for artificial intelligence. Pages 235-245 of: Proceedings of the third inter-
national joint conference on artificial intelligence. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

HiLpEBRANDT, STEFFEN. 2012 (aug). Implementierung eines DNNF-Compilers fiir die
JVM. BSc thesis, WSI, Universitdt Tiibingen.

Hong, G., Hy, L., Xug, D., Ty, Y. L., & Xiong, Y. L. 2008. Identification of the optimal
product configuration and parameters based on individual customer requirements
on performance and costs in one-of-a-kind production. International journal of pro-
duction research, 46(12), 3297-3326.

Huang, Jinso. 2007. The effect of restarts on the efficiency of clause learning. Pages
2318-2323 of: Proceedings of the 20th international joint conference on artifical intelli-
gence, IJCAI'07. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Hvawm, Lars, HauG, ANDERS, & MorTENSEN, NieLs Henrik. 2010. Assessment of
benefits from product configuration systems. In: Proceedings of the 13th workshop on
configuration.

Jackson, PauL, & SHERIDAN, DANIEL. 2004. The optimality of a fast CNF conversion and
its use with SAT. Tech. rept. APES Research Group.

Karyris, GEORGE, & Kumar, Vipin. 2000. Multilevel k-way hypergraph partitioning.
VLSI design, 11(3), 285-300.

KuBLER, ANDREAs. 2009. Non-CNF Model Counting und Anwendungen in der
Fahrzeugkonfigurationspriifung. Diplomarbeit, WSI, Universitat Tiibingen.

KUBLER, ANDREAS, ZENGLER, CHRISTOPH, & KiicHLIN, WoLFGANG. 2010. Model counting
in product configuration. Pages 44-53 of: Proceedings of the first workshop on logics for
component configuration, LoCoCo "10, vol. 29. EPTCS.

KtcaLIN, WoLrGaNng, & Sinz, Carsten. 2000. Proving consistency assertions for
automotive product data management. Journal of automated reasoning, 24(1-2), 145-
163.

161

BIBLIOGRAPHY

LEBERRE, DaNieL. 2010. The Sat4j library, release 2.2. Journal on satisfiability, Boolean
modelling and computation, 7, 59-64.

LeBerre, DaniEL, & Raricaurr, PascaL. 2009. Dependency management for the
eclipse ecosystem: eclipse p2, metadata and resolution. Pages 21-30 of: Proceedings
of the first international workshop on open component ecosystems. New York, NY, USA:
ACM Press.

Lirriron, Mark H., & Sakarran, Karem A. 2005. On finding all minimally unsatisfi-
able subformulas. Pages 173-186 of: Theory and applications of satisfiability testing, SAT
2005. Lecture Notes in Computer Science, vol. 3569. Berlin, Heidelberg, Germany:
Springer-Verlag.

Lirriton, MaRk H., & Saxarran, Karem A. 2008. Algorithms for computing minimal
unsatisfiable subsets of constraints. Journal of automated reasoning, 40(1), 1-33.

LuBy, MICHAEL, SINCLAIR, ALISTAIR, & ZUCKERMAN, Davip. 1993. Optimal speedup of
Las Vegas algorithms. Information processing letters, 47(4), 173-180.

Lynce, INEs, & MARQUES DA Siiva, JoZo P. 2004. On computing minimum unsat-
isfiable cores. Pages 305-310 of: Theory and applications of satisfiability testing, SAT
2004. Lecture Notes in Computer Science, vol. 3542. Berlin, Heidelberg, Germany:
Springer-Verlag.

MaRrQuEs DA Stiva, JoAo P. 1999. The impact of branching heuristics in propositional
satisfiability algorithms. Pages 62-74 of: Proceedings of the ninth Portuguese confer-
ence on artificial intelligence: Progress in artificial intelligence, vol. 1695. London, UK:
Springer-Verlag.

MARQUES DA Siwva, Jodo P, & SakaLLan, Karem A. 1996. GRASP — a new search
algorithm for satisfiability. Pages 220-227 of: Proceedings of the 1996 IEEE/ACM inter-
national conference on computer-aided design, ICCAD "96. Washington, DC, USA: IEEE
Computer Society.

MARQUES DA Siva, JoAo P., Lynce, INEs, & MaLik, SHarAD. 2009. Handbook of satisfia-
bility. Vol. 185 of [Biere et al., 2009]. Chap. 4—CDCL Solvers, pages 131-154.

MarTHEs, BENJAMIN, ZENGLER, CHRIsTOPH, & KUcHLIN, WOLEGANG. 2012. An improved
constraint ordering heuristics for compiling configuration problems. Pages 36—
40 of: Maver, WoLrGaNG, & ALBERT, PatrICK (eds), Proceedings of the workshop on
configuration at ECAI 2012.

McDermorr, Jonn. 1982. R1: A rule-based configurer of computer systems. Artificial
intelligence, 19(1), 39-88.

McGuinness, DEBoraH L., & WRIGHT, JoN R. 1998. Conceptual modelling for con-

figuration: A description logic-based approach. Artificial intelligence for engineering
design, analysis, and manufactoring, 12(5), 333-344.

162

BIBLIOGRAPHY

McMiLLan, Kennern L. 1993. Symbolic model checking. Norwell, MA, USA: Kluwer
Academic Publishers.

McMiiean, Kenners L. 2002. Applying SAT methods in unbounded symbolic model
checking. Pages 250-264 of: Computer aided verification, CAV 2002. Lecture Notes in
Computer Science, vol. 2404. Berlin, Heidelberg, Germany: Springer-Verlag.

Moskewicz, MattHEW W., MaDIGAN, CoNoR F., ZHAO, YING, ZHANG, LINTAO, & MALIK,
Suarap. 2001. Chaff: Engineering an efficient SAT solver. Pages 530-535 of: Proceed-
ings of the 38th design automation conference, DAC 2001. New York, NY, USA: ACM
Press.

Narobyrska, NINa, & WatsH, Tosy. 2007. Constraint and variable ordering heuristics
for compiling configuration problems. Pages 149-154 of: Proceedings of the IJCAI'07.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

ParcamiN, BErNARrD. 2002. Vehicle sales configuration: The cluster tree approach.
In: Proceedings of the configuration workshop of ECAI 2002.

Prpatsrisawat, KnoT, & DarwicHE, ADNAN. 2007. RSat 2.0: SAT solver description. Tech.
rept. D-153. Computer Science Department, UCLA.

Preatsrisawat, Knot, & DarwicHE, AbNan. 2008. New compilation languages based
on structured decomposability. Pages 517-522 of: Proceedings of the 23rd national
conference on artificial intelligence, AAAI'08. AAAI Press.

Praistep, Davip A., & GREENBAUM, STEVEN. 1986. A structure-preserving clause form
translation. Journal of symbolic computation, 2(3), 293-304.

Post, HENDRIK, & Sinz, CarsTeN. 2008. Configuration lifting: Verification meets soft-
ware configuration. Pages 347-350 of: Proceedings of the 23rd IEEE/ACM international
conference on automated software engineering, ASE 2008. Washington, DC, USA: IEEE
Computer Society.

RycuTYCKY], NESTRO. 1996. DLMS: an evaluation of KL-ONE in the automobile
industry. Pages 60-69 of: Papers from the IDL workshop, vol. WS-96-05. AAAI Press.

SaBIN, DaNieL, & WEIGEL, RaINER. 1998. Product configuration frameworks-a survey.
IEEE intelligent systems, 13(4), 42-49.

Samurowrrz, Horst, & Bacchus, Faniem. 2005. Using SAT in QBF. Pages 578-592 of:
Principles and practice of constraint programming, CP 2005. Lecture Notes in Computer
Science, vol. 3709. Berlin, Heidelberg, Germany: Springer-Verlag.

Sang, TiaN, Baccuus, Faniem, BEamg, Paur, Kautz, HeENRy, & Prrassi, Tontann. 2004.
Combining component caching and clause learning for effective model counting. In:
Proceedings of the 7th international conference on theory and applications of satisfiability
testing, SAT 2004.

163

BIBLIOGRAPHY

SANG, TiaN, BEaME, Paut, & Kautz, Henry. 2005. Heuristics for fast exact model count-
ing. Pages 226240 of: Theory and applications of satisfiability testing, SAT 2005. Lecture
Notes in Computer Science, vol. 3569. Berlin, Heidelberg, Germany: Springer-Verlag.

SeL, ANDREAS M., & SturMm, THOMAS. 2003. Boolean quantification in a first-order
context. Pages 329-345 of: GanzHa, V. G., Mayr, E. W., & Vorozutsov, E. V. (eds),
Proceedings of the 6th international workshop on computer algebra in scientific computing,
CASC 2003. Garching: Institut fiir Informatik, Technische Universitdt Miinchen.

SiNz, CarsTEN. 2002. Knowledge compilation for product configuration. Pages 23—
26 of: Proceedings of the configuration workshop, 15th European conference on artificial
intelligence.

Sinz, CarsteN. 2003 (dec). Verifikation regelbasierter Konfigurationssysteme. Ph.D. the-
sis, Fakultét fiir Informations- und Kognitionswissenschaften, Universitdt Tiibingen,
Germany.

Sinz, Carsten. 2005. Towards an optimal CNF encoding of Boolean cardinality
constraints. Pages 827-831 of: Principles and practice of constraint programming, CP
2005. Lecture Notes in Computer Science, vol. 3709. Berlin, Heidelberg, Germany:
Springer-Verlag.

Sinz, CARsTEN, KA1ser, ANDREAS, & KiicHLIN, WoLFGaNG. 2003. Formal methods for
the validation of automotive product configuration data. Artificial intelligence for
engineering design, analysis, and manufactoring, 17(1), 75-97.

SomNiNeN, TiMo, NIEMELA, ILkka, TIIHONEN, JuHA, & SULONEN, Regjo. 2001. Represent-
ing configuration knowledge with weight constraint rules. In: Papers from the aaai
spring symposium answer set programming.

Sturm, THOMAS, & ZENGLER, CHRIsTOPH. 2010. Parametric quantified SAT solving. In:
Proceedings of the 35th international symposium on symbolic and algebraic computation,
ISSAC 2010. New York, NY, USA: ACM.

THURLEY, MARc. 2006. sharpSAT — counting models with advanced component
caching and implicit BCP. Pages 424429 of: Theory and applications of satisfiability
testing, SAT 2006. Lecture Notes in Computer Science, vol. 4121. Berlin, Heidelberg,
Germany: Springer-Verlag.

Tsemin, G. S. 1968. On the complexity of derivation in propositional calculus. Studies
in constructive mathematics and mathematical logic, 2(115-125), 10-13.

TsenG, MITcHELL M., & J1a0, JIANXIN. 1996. Design for mass customization. Annals of
the CIRP, 45(1), 153-156.

VaLIaNT, LesLIE G. 1979. The complexity of computing the permanent. Theoretical
computer science, 8(2), 189-201.

164

BIBLIOGRAPHY

WARNERS, Joost P. 1998. A linear-time transformation of linear inequalities into
conjunctive normal form. Information processing letters, 68(2).

WEISPFENNING, VOLKER. 1988. The complexity of linear problems in fields. Journal of
symbolic computation, 5(1-2), 3-27.

Xu, LiN, HutTER, FrRANK, Hoos, HoLGger H., & LEyToN-BrowN, KeviN. 2008. SATzilla:
Portfolio-based algorithm selection for SAT. Journal of artificial intelligence research,
32(1), 565-606.

ZENGLER, CHristoPH, & KUcHLIN, WoLrGanG. 2010. Encoding the linux kernel config-
uration in propositional logic. In: Proceedings of the 13th workshop on configuration.

ZENGLER, CHRIsTOPH, & KUcHLIN, WoLrGaNG. 2013. Boolean quantifier elimination for
automotive configuration—a case study. Pages 48-62 of: Formal methods for industrial
critical systems, FMICS 2013. Lecture Notes in Computer Science, vol. 8187. Berlin,
Heidelberg, Germany: Springer-Verlag.

ZENGLER, CHRrisToPH, KUBLER, ANDREAS, & KUcHLIN, WoLrGanG. 2011. New ap-
proaches to Boolean quantifier elimination. ACM communications in computer algebra,
45(1/2), 139-140.

ZHANG, LiNTAO, & MALIK, SHARAD. 2002. Conflict driven learning in a quantified
Boolean satisfiability solver. Pages 442—449 of: Proceedings of the 2002 IEEE/ACM
international conference on computer-aided design, ICCAD "02. New York, NY, USA:
ACM.

ZHANG, LINTAO, & MALIK, SHARAD. 2003. Validating SAT solvers using an independent
resolution- based checker: Practical implementations and other applications. Pages
10880-10885 of: Proceedings of the conference on design, automation and test in Europe,
DATE’03. Washington, DC, USA: IEEE Computer Society.

165

	Introduction
	Motivation
	Contribution and Related Work
	Product Configuration
	New Formal Methods
	Implementation and BMW Case Study

	Structure of this Dissertation

	Formal Methods
	Propositional Logic
	Syntax and Semantics
	Normal Forms
	Cardinality Constraints

	Satisfiability Solving
	The DPLL Algorithm
	The CDCL Algorithm
	Implementation of a Modern CDCL SAT Solver
	Incrementality and Decrementality
	Unsatisfiable Cores and Proof Tracing

	Knowledge Compilation Formats
	Binary Decision Diagrams
	Decomposable Negation Normal Form

	Model Counting
	DPLL-Style Model Counting
	Knowledge Compilation Based Model Counting

	Quantified Propositional Logic
	Syntax and Semantics of Quantified Propositional Logic
	Distinction of QPL Formulas
	Satisfiability of QPL Formulas

	Quantifier Elimination for QPL
	Existential Quantifier Elimination for QPL
	Full Quantifier Elimination for QPL

	Automotive Configuration
	Product Hierarchy
	High Level Configuration
	Low Level Configuration
	Bill of Materials
	Electrics and Electronics

	The Product Description Formula
	Modeling the Options
	Modeling Option Families
	Modeling Rules
	Manufacturer Specific Extensions
	Building the PDF

	Summary

	Qualitative Analysis of Configuration Data
	Analysis Approaches
	Knowledge Compilation
	SAT Solving

	Verifying the High Level Configuration
	Computing Inadmissible Equipment Options
	Computing Necessary Equipment Options
	Checking Specific Configuration Restrictions
	Searching for Redundant Rules

	Analyzing the BOM
	Computing Necessary and Superfluous Parts
	Virtual Nodes and Completeness Constraints
	Verifying Uniqueness of Virtual Nodes
	Verifying Completeness of Virtual Nodes
	Pre-Processing the BOM
	Computing Completeness Constraints for Nodes

	Analysis of the E/E Configuration
	Analysis of the Control Unit Configuration
	Analysis of the Controller Software Configuration

	Minimizing Counter Examples
	Summary

	Quantitative Analysis of Configuration Data
	Computing the Number of Constructible Vehicles
	Counting Models in the Automotive Scenario
	Projecting Formulas in the Automotive Scenario
	Other Applications of Model Counting

	Computing Option Influence and Connectedness
	Equipment Option Influence
	Equipment Option Connectedness

	Computing the Minimal and Maximal Size of Orders
	Summary

	AutoLib—A Propositional Logic Library for Java and C#
	The Core Layer
	Data Structures
	Algorithms
	AutoProve

	The Execution Layer
	The High Level Tests
	The Low Level Tests

	Results from the BMW Case Study
	System
	Results
	Qualitative Analysis
	Quantitative Analysis

	Comparison of Different Approaches
	Comparison of Knowledge Compilation Formats
	Comparison of Quantifier Elimination Approaches
	Results

	Summary
	List of Algorithms
	List of Figures
	List of Tables
	Reviewed Publications of the Author
	Bibliography

