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Zusammenfassung 

Kognitiv anspruchsvolle Aufgaben erfordern, dass vielfältige verhaltensrelevante 

Information kodiert und verarbeitet wird. Dies geschieht im präfrontalen Kortex. In 

Aufgaben mit abstrakten, erlernten Kategorien, formen die kontextspezifischen 

Parameter das Antwortverhalten von PFC Neuronen. In dieser Doktorarbeit wurde 

untersucht ob und wie die Selektivität von PFC Neuronen für die „natürliche“ Kategorie 

„Menge“ durch den Einfluss des Kontexts verändert wird. 

Zwei Makaken wurden darauf trainiert visuelle Mengen (unterschiedliche Anzahlen an 

Punkten) in einer Delayed-Match-To-Sample Aufgabe (DMS) zu unterscheiden. 

Während sie die Aufgabe lösten, wurden Einzelzellableitungen im rechten, lateralen 

präfrontalen Kortex durchgeführt. Während jeder Ableitsitzung wurde die Mengen-

Aufgabe entweder alleine oder zufällig durchmischt mit Farben oder Linienlängen 

Aufgaben präsentiert. 

Der Kontext der Mengenunterscheidung hatte keinen Effekt auf das Antwortverhalten 

von „Zahlenzellen“. Die Abstimmkurven der mengenselektiven Zellen waren bleiben 

stabil undabhängig davon ob die Mengen im reinen oder im gemischten Block präsentiert 

wurden. Diese Daten legen nahe, dass Zahlenzellen des PFC ihre Antworteigenschaften 

nicht dem wechselnden Mengenkontext anpassen. Vielmehr scheint die Repräsentation 

von Mengen auf einem sparsamen, stabilen „labelled line“ Kode zu beruhen. Im 

Gegensatz zu erlernten Kategorien stellen Mengen eine “natürliche” Kategorie dar und 

könnten deswegen einen privilegierten Verarbeitungsweg im Gehirn einnehmen, der 

nicht zugunsten Verarbeitung anderer Inhalte adaptiert wird. 
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Abstract 

Cognitively demanding tasks require neurons of the prefrontal cortex (PFC) to encode 

divergent behaviourally-relevant information. In discrimination tasks with arbitrary and 

learned categories, context-specific parameters shape and adapt the tuning functions of 

PFC neurons. We explored if and how selectivity of PFC neurons to visual numerosities, 

a “natural” abstract category, may change depending on the magnitude context. Two 

monkeys discriminated visual numerosities (varying numbers of dot items) in a delayed 

match-to-sample task while single cell activity was recorded from the lateral PFC. During 

a recording session, the numerosity task was either presented in isolation or randomly 

intermixed with delayed match to sample tasks with line lengths and colours as 

discriminative stimuli. We found that the context for numerosity discriminations did not 

influence the response properties of numerosity detectors. The numerosity tuning curves 

of selective neurons, i.e. the preferred numerosity and the sharpness of tuning, remained 

stable, irrespective of whether the numerosity task was presented in a pure numerosity 

block or a mixed magnitude block. Our data suggest that numerosity detectors in the 

PFC do not adapt their response properties to code stimuli according to changing 

magnitude context, but rely on a sparse and stable “labelled line” code. In contrast to 

arbitrarily learned categories, numerosity as a “natural” category may possess a 

privileged position and their neuronal representations could thus remain unaffected by 

magnitude context. 
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1 Introduction 

The human brain has developed a variety of different specializations which allow us the 

uniquely human cognitive abilities such as language or higher mathematics. Humans 

have an especially enlarged frontal lobe within the cortex (Fuster, 2001; Petrides and 

Pandya, 1999). The frontal lobe contains the motor and premotor regions and lies 

directly anterior to the central sulcus and the prefrontal regions at the anterior pole of the 

brain (Zigmond et al., 1999). 

In this thesis I will first outline the importance of these prefrontal regions in primate 

evolution and their crucial role in cognition. I will describe the different models of 

cognition and prefrontal functions. The main concern of this thesis is the representation 

of magnitudes in the prefrontal cortex in non-human primates and the special role 

numerosities play in the primate cognition. 

 

1.1 Prefrontal cortex 

The evolutionary lines of humans and old world monkeys, which are frequently used in 

neurobiological research, diverged about 25 Mio years ago. Despite the long separation, 

and the fact that the human brain is 4.8 times larger than that expected for a monkey of 

comparable size (Passingham, 2009), both species share a lot of neuro-anatomical 

structures. The prefrontal cortex is the most recently evolved portion of the mammalian 

brain (Hendelman, 2000) and its dorso-lateral part is considered one of the true primate 

traits, not shared by other mammalian orders (Wise, 2008). It endows primates with the 

unprecedented cognitive abilities, they are able to display (Preuss, 1995). 
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1.1.1 Anatomy 

The prefrontal cortex lies at the apex of the frontal lobe, anterior to the premotor areas 

(Hendelman, 2000). The different subdivisions of the frontal lobe are illustrated in Figure 

1. The Brodmann areas 6, 24, 32 and parts of area 14 lack an internal granular layer IV 

and, hence, constitute the agranular cortex. These frontal areas are shared by primates 

and non-primate mammals. More anterior are the areas 8 and 14 that show a 

dysgranular cyto-architecture. At the rostral pole of the brain, anterior to the arcuate 

sulcus, lies the homotypical prefrontal cortex. This region exhibits a conspicuous 

granular input layer IV and, thus, is often termed the granular prefrontal cortex (Wise, 

2008).  

Different sources name different Brodmann areas as components of the PFC. In humans 

the medial section consists of the Brodmann areas 9-11 (Afifi and Bergman, 1998); the 

ventral section consists of the areas 12-14 and the dorsal section of 45-47 (Badre and 

D’Esposito, 2009; Miller and Cohen, 2001; Petrides and Pandya, 1999; Wise, 2008). 

Sometimes, the areas 8, 24, 32 and 44 are also considered to be a part of the prefrontal 

cortex (Fuster, 2001). 

In monkeys, the prefrontal cortex can be classified into three major parts: the lateral, the 

medial and the orbitofrontal prefrontal cortex. Those subregions differ in their 

cytoarchitecture as well as in the connectivity patterns (summarized in Tanji and Hoshi, 

2008). The granular dorso-lateral prefrontal cortex, the main object of this thesis, is the 

part of the brain which is only found in primates and the part that predominantly 

expanded through the primate evolution. About 30 % of the human neocortex is 

composed of the above prefrontal regions. By contrast, in old-world monkeys, such as 

rhesus macaques, the PFC only makes up about 11 % of the neocortical tissue 

(Passingham, 2009). 

The granular PFC is a highly interconnected area. There are extensive connections 

within the frontal lobe itself (Barbas and Pandya, 1989; Kritzer and Goldman-Rakic, 

1995), but in addition to those, the PFC receives a rich variety of inputs from all cortical 
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lobes. Higher sensory areas, including visual (Ungerleider et al., 1989), somatosensory 

(Preuss and Goldman-Rakic, 1989), auditory regions (Petrides and Pandya, 1988) send 

highly processed information into the prefrontal cortex, resulting in multimodal neurons in 

the PFC (Watanabe, 1992). Furthermore, resting state fMRI studies reveal that the 

prefrontal cortex and the parietal association cortex have a strong functional connectivity 

pattern and thus form a fronto-parietal network (Damoiseaux et al., 2006; Hutchison et 

al., 2011; Vincent, et al., 2008) 

 

 

Figure 1: Mid-sagittal view of the frontal lobe of the human (a) and the rhesus monkey (b) brain. 
Granular prefrontal cortex (in blue) dominates the frontal lobe. Numbers refer to Brodmann areas 
(lower case letters indicated subdivisions within the area). AC: anterior cingulate area, PL: prelimbic 
cortex, IL: infralimbic cortex, cc: corpus callosum. Adapted from (Wise, 2008) 

.  

Besides the neocortex, the PFC is also reciprocally connected to the limbic system, the 

basal ganglia and the thalamus (Barbas, 1995; Fuster, 2001). Historically, projections 

from the dorso-medial thalamic nucleus (MD) have been considered the characteristic of 
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the prefrontal cortex (Preuss, 1995). The MD nucleus is already highly integrative. It 

receives inputs from the amygdala, parts of the limbic system and the basal ganglia as 

well as hypothalamus and other thalamic nuclei (Hendelman, 2000). Additionally, the 

brainstem projects to the prefrontal cortex. This dopaminergic input has been shown to 

have regulatory effects on the coding properties of the prefrontal cortex (Jacob, et al., 

2013; Williams and Goldman-Rakic, 1998). 

The prefrontal cortex has connections to all sensory systems as well as the motor 

systems (Morecraft and Hoesen, 1993; Preuss and Goldman-Rakic, 1989) and the 

motivational and the reward systems. This gives the PFC its highly associative character 

and places it at the apex of cortical hierarchy. 

 

1.1.2 Executive Functions 

One of the first attempts to pin down the functions of various parts of the neocortex was 

by Eduard Hitzig and David Ferrier at the end of the 19th century. Hitzig and Ferrier tried 

to map the functions of different cortical areas by stimulating the brain of a dog with 

currents. The stimulation of most of the neocortex elicited either stereotypic motor 

responses or reactions of the animal which indicated sensory perception. The authors 

failed to elicit any consistent response by stimulation of the frontal lobe of the brain and 

coined the term “silent cortex” to describe it (Finger, 2000). Although, as discussed 

above, dogs do not possess the true granular prefrontal cortex of the primates, this 

finding indicated that the frontal lobe has a more subtle and complex function than just 

processing sensory input or preparing motor output. Later findings have showed that the 

PFC plays a role in cognitive and emotional behaviour (Goldman-Rakic, 1987). 

In 1931 Jacobsen showed that monkeys and chimpanzees, who could remember a cued 

food location for up to five seconds, lost this ability after focal frontal lesions (described in 

Fuster, 2001; Wise, 2008). Thus, it was assumed that the PFC plays a vital role in 

maintaining information online. In the 80s and 90s a lot of research focused on this 

hypothesis and working memory was considered, if not the only, but the most important 
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function of the PFC (Baddeley, 2003; Wise, 2008). In support of this idea, studies have 

shown that single cells in the PFC, once triggered by an appropriate stimulus, will show 

an elevated discharge rate while this stimulus has to be remembered by the subject, thus 

providing information about the stimulus in its subsequent absence (Fuster and 

Alexander, 1971). This particular discharge pattern was termed sustained firing. More 

importantly, the PFC has not only been shown to keep the information online, but also to 

play a role in the protection of relevant information from distortion by distracter stimuli 

(Malmo, 1942; Sakai, et al., 2002; Suzuki and Gottlieb, 2013). 

Though the PFC obviously plays an important role in working memory, with time it 

became apparent that the functions of the prefrontal cortex are more diverse. Lebedev 

and colleagues (2004) trained monkeys to remember a cued position but at the same 

time attend to another position. Under this protocol, a substantial proportion of the 

recorded PFC neurons were selective for the attended and not for the remembered 

position. This finding indicates that this sustained activity during the memory delay period 

may contribute to the process of attentional selection (Lebedev, et al., 2004). 

Attention is the process of focusing on one, relevant aspect of the environment, while 

ignoring the irrelevant distracters. Salient stimuli, such as loud noises or very colourful 

displays draw the attention of the subjects. This stimulus-driven process is called bottom-

up or exogenous attention and it relies on, among others, the parietal cortex. In the top-

down processing, the attention is goal-driven, and directed volitionally by the subject 

towards certain features, because they are relevant for a current task (e.g. metallic 

glimmer, when looking for keys). This more cognitive kind of attentional selection is 

mediated by the prefrontal cortex (Buschman and Miller, 2007). 

The prefrontal cortex has also been shown to play a role in goal oriented behaviour. 

Matsumoto and colleagues (2003) trained monkeys to select different actions in different 

stimulus conditions depending on the expected reward outcome. About 16 % of neurons 

in the lateral prefrontal cortex and 18 % of the medial PFC were selective for specific 

reward-action combinations indicating that the PFC plays a role in the process of action 

selection (Matsumoto, et al., 2003). 
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An important mechanism of behavioural control is the response inhibition. Response 

inhibition is defined as the “suppression of inappropriate responses” (Aron, et al., 2004). 

Early lesion studies have indicated that the frontal lobe might be involved in this process 

(Battig, et al., 1962; Iversen and Mishkin, 1970). More recent studies have shown 

specific activation in the ventral lateral PFC to stimuli which elicit two conflicting 

responses (Hazeltine, et al., 2003). Additionally, single cell recordings inside the principal 

sulcus revealed units, which discharge selectively in NoGo trials, when the response has 

to be suppressed in the classical Go/NoGo task (Sakagami et al., 2001).  

Successful behavioural control requires not only action selection when the actions and 

outcomes are clear but also a decision making process, when the alternatives are 

difficult to distinguish (Ridderinkhof et al., 2004). Different studies on decision making, 

while using different protocols and procedures, agree on the following vital elements. A 

decision can be broadly defined as a choice among several alternatives. It is a deliberate 

choice, in contrast to a stimulus reaction chain. It is goal directed and involves the 

gathering of evidence (for reviews see: Gold and Shadlen, 2007; Heekeren et al., 2004; 

Roitman and Shadlen, 2002) in support of various alternatives. Perceptual decisions 

usually involve choices based on noisy sensory information in detection tasks (“was 

there a stimulus?”) or discrimination tasks (“what stimulus was it?”) (Gold and Shadlen, 

2007). A recent electrophysiological study in monkeys has shown that neurons in the 

prefrontal cortex code for the monkey’s abstract decision, irrespective of stimulus 

features or the motor response, thus showing that non-human primates do not 

necessarily couple their decision making to a certain motor action but are endowed with 

the capability of abstract representation of decisions (Merten and Nieder, 2012).  

Another important prefrontal function is the representation of categorical information. 

Categories are subsets of stimuli, responses or concepts which, though they might differ 

strongly, serve the same function. In 2007, Shima and colleagues (2007) trained 

monkeys to perform motion sequences of two different categories: alternating (e.g. push-

pull-push-pull) or paired (e.g. push-push-pull-pull). During the planning of a movement 

sequence, neurons in the lateral prefrontal cortex differentiated between these two 
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behavioural categories (Shima et al., 2007). In another study, an adaptation of a delayed 

match to sample task was used to train rhesus monkeys to discriminate between morphs 

of cat and dog images. The monkeys learned to associate the stimuli either with the cat 

or with the dog category as the images ranged from being cat-like to dog-like in various 

characteristics. Single PFC neurons responded selectively to stimuli belonging to one of 

the two categories, irrespective of the visual dissimilarity of the displays. Intriguingly, 

when one of the monkeys was retrained to separate the same set of stimuli into three 

new categories instead of two, the neurons in the prefrontal cortex adapted their coding 

properties and now represented the three new categories instead of the two old ones 

(Freedman et al., 2001). This representation of arbitrary categories clearly emerged in 

the PFC due to extensive training. In contrast, categories, which are of vital biological 

importance for primates, seem not to have to be learned. One such “natural” category 

i. e. faces has been found to be represented in the prefrontal cortex as well (Tsao, et al., 

2008). 

This extensive, but by no means exhaustive list of prefrontal functions shows why it has 

proven so difficult for scientists to pin down the main function of the prefrontal cortex, 

which seems to be activated by a large variety of cognitive tasks. Currently, cognitive or 

executive control is considered the main function of the prefrontal cortex and the 

cognitive capacities described above, facets of this cognitive control. There are several 

models of executive control in existence and in the following paragraphs I will describe 

two of them. 

Over a decade ago, Miller and Cohen (2001) proposed an integrative theory of the 

prefrontal functions. They postulated that executive control is achieved via a bias signal, 

which is produced in the PFC. Consider Figure 2, where C1-C3 stand for representation 

of sensory signals, R1 and R2 for possible motor actions and N1 for a hypothetical PFC 

neuron. For example, if C2 were the feeling of hunger and C3 the view of food, then the 

adequate and predominant response R2 would be to approach this food. But if, in 

addition to C2 and C3, C1 were the vicinity of a predator, then the adequate response 

would be to flee (R1), despite the temptations of food. The PFC neuron N1 would 
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participate in both pathways and have information about all present stimuli and would 

enhance the processing along the appropriate pathway, while inhibiting the others. This 

process is considered especially important when one of the alternatives is stronger (more 

salient or habitual) but inappropriate in the current situation (Miller and Cohen, 2001). 

 

 

Figure 2: Schematic representation of cognitive control. The same stimulus (e.g. food) elicits 
different responses (e.g. R1: not approaching, R2: approaching) depending on the context in which 
the stimulus is presented (e.g. C1: predator in the vicinity; C2: hunger; C3: food). The prefrontal 
cortex chooses between the different possibilities by biasing one of the pathways. Hence, prefrontal 
cortex neurons (N1) can be part of different pathways, depending on the context. (adapted from 
Miller, 2000). 

 

In contrast to this model, Dehaene and Changeux proposed a two-layer cortical 

hierarchy where the prefrontal cortex neurons represent the “rules of the game” (Figure 

3). Level 1 neurons form the input-output layer, which can provide a stimulus-response 

chain. The second level consists of memory and rule neurons, which switches between 

the different motor responses (Dehaene and Changeux, 1989). 

N1

C1

C2

C3 R2

R1
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Figure 3: Two-layer cognitive hierarchy. Layer 1 consists of input and output neurons. Their activity 
is switched on and off by layer 2, which consists of memory and rule-coding neurons. (From 
Dehaene and Changeux, 1989) 

 

The main difference between those two models lies in the learning process. In the model 

by Miller and Cohen, the reward signal affects and strengthens the entire network 

including the PFC neuron and the appropriate sensory and motor representations. At the 

end of the learning process, the bias signal by the PFC becomes obsolete and gets 

reduced, as the appropriate action becomes the dominant one (Miller and Cohen, 2001). 

In contrast, under the assumptions of Dehaene and Changeux, the reward signal 

strengthens the connections between the rule-coding, the memory and the layer 1 units 

(Dehaene and Changeux, 1989). 
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1.2 Magnitudes in the Brain 

As described in section 1.1.2, the dorso-lateral prefrontal cortex plays an important role 

in the representation of categories. One of the most abstract categories are 

numerosities. Numerosity refers to the number of elements in a set and concern the 

question “How many?” (Nieder, 2005). Studies in humans and animals suggest that 

human numerical abilities are based on a phylogenetically older numerical precursor 

system, which can be found in many different species (Dehaene, 1997; Nieder, 2005). In 

the following chapter, I will review studies on human numerical cognition, focusing on the 

non-verbal magnitude system. Following this, I will consider the literature on numerical 

abilities of animals and the neural representations of numerosities in the brain with a 

strong focus on non-human primates. At the end of this chapter, I will review some of the 

literature concerning the representation of other magnitudes in the prefrontal cortex. 

 

1.2.2 Numerosity representation in humans 

Human numerical abilities are believed to rely on two separate systems. The language-

based precise system and the non-verbal magnitude system. The language-based 

system is based on our ability to use symbols (i. e. numbers) to represent quantities and 

operations and enables complex mathematics (Dehaene, 1997). The non-verbal system 

is thought to be composed of two subsystems: the object tracking and the analogue 

magnitude system. Object tracking is a mechanism by which each object is represented 

as an individual, distinct element and is kept within the attentional focus through space 

and time. A hallmark of the object tracking system is its limited capacity. Only three to 

four objects can be tracked at a given time. This system seems to be present in both 

animals (Hauser et al., 2000) and human infants (Feigenson et al., 2002), but its 

importance is still under debate (Piazza, 2010). 

The analogue magnitude system is underlies the language-based numerical 

representation. In contrast to the latter, the analogue magnitude system is approximate 

and can be understood as an estimation process. In humans, it is most evident in 
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subjects who are prevented from counting (Cordes et al., 2001; Merten and Nieder, 

2009), in pre-verbal children (Xu and Spelke, 2000) and in humans who lack the 

symbolic number words. The latter has been shown in works with Amazonian indigene 

groups. The Pirahã tribe uses a “one-two-many” counting system (Gordon, 2004). The 

Mundurukú people have numerical words for numbers until five, but only very crude 

notations above this number (“some”, “really many”) (Pica et al., 2004). Despite their 

limited ability to enumerate exact quantities, both tribes can compare higher numerosities 

far above chance. They estimate set size with increasing variability in their estimates as 

the set size increases. This behaviour shows the characteristic effects of the analogue 

magnitude system: the numerical size effect, also called the magnitude effect, and the 

numerical distance effect (Gordon, 2004; Pica et al., 2004). The numerical distance 

effect was first described by Moyer and Landauer (1967). When subjects were asked to 

compare two digits, their reactions were quicker when the numerical distance between 

the digits was large (e. g. the comparison 1 vs. 9 is faster than 4 vs. 5) (Moyer and 

Landauer, 1967). The numerical size effect was shown by Mechner (1957). When the 

numerical distance between two numbers being compared was the same, the 

comparison was easier for smaller numbers than for larger (e.g. 1 vs. 2 is easier, than 8 

vs. 9) (Mechner, 1957). These findings suggested that we represent magnitudes on a 

mental number line, which is compressed for larger numerosities, leading to magnitude 

perception that is in accordance with Weber’s law (Dehaene, 1997; Shepard, et al., 

1975; Whalen et al., 1999).  

Early neuropsychological studies showed that the parietal lobe is involved in calculation 

(Henschen, 1919). Lesions in the angular gyrus led to a deficit termed “acalculia” with 

patients unable to perform simple calculation tasks. Later studies showed that acalculia 

cannot be traced towards one single area, but rather seemed to depend on a network, 

which is composed of parietal (reviewed in Kahn and Whitaker, 1991) and prefrontal 

regions (Shallice and Evans, 1978). Modern functional magnetic resonance imaging 

(fMRI) studies showed that both exact and approximate calculations activate the 

prefrontal and the posterior parietal cortex (e. g. Dehaene et al., 1999; see Dehaene et 

al., 1998 for a review). 
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1.2.3 Numerosity representation in animals  

The ability to estimate magnitudes is of vital importance for animals in the wild. Knowing 

if a group of intruding animals is larger than their own or which location has more food 

sources can be crucial for the survival of an individual. Several studies showed in a 

conclusive manner that animals use numerical cues in their natural environment 

(Shettleworth, 2010). The obligate brood parasites, cowbirds, are able to estimate the 

rate at which their host lays its eggs to find the optimal time for their own egg laying. To 

do this the cowbirds keep track of the number of eggs added over time and are 

insensitive to non-numerical cues, such as the total area covered by the host’s eggs 

(White et al., 2009). In another study, lions have been shown to be able to estimate the 

size of the rival pride by their roars (McComb et al., 1994).  

These studies of animals in their natural environment often suffer from methodological 

shortcomings. In order to assess the animals’ numerical competence, it is important to 

exclude non-numerical cues, such as the density or the total area of the elements, that 

co-vary with the number which is supposed to be estimated. Laboratory conditions allow 

these controls. The first researcher who, under controlled conditions, trained different 

species of birds to discriminate displays with different numbers of dots was Otto Koehler. 

His birds reportedly mastered numerosities up to six (Koehler, 1941). Later, Platt and 

Johnson (1971) trained rats to press a lever a required number of times. The number of 

presses varied between 4 and 24 for different rats. The probability of actual lever presses 

that the rats made were beautifully described by normal distributions with the peak at the 

required number of presses. The distributions became increasingly wider, when more 

lever presses were required. These findings suggest that animals display the same 

hallmark effects of the analogue magnitude system as humans: the numerical size and 

the numerical distance effects (Platt and Johnson, 1971). 

A major part of the work on numerical cognition and the representation of numerosities in 

the brain has been done with non-human primates, mostly rhesus monkeys. These 

studies usually use a numerosity discrimination protocol, instead of sequential counting. 

A pioneering study was conducted by Brannon and Terrace (1998). They trained rhesus 
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monkeys to order visual displays with varying sets of objects according to the number of 

these objects. The displays were varied greatly so that the monkeys could not rely on 

non-numerical information such as density, shape or the total area of the elements. They 

were trained to do so with numerosities from one to four. In transfer tasks, the monkeys 

were able to order numerosities from five to nine, for which they had not received 

training. Interestingly, the errors the monkeys made were characteristic of the analogue 

magnitude system. They tended to assess wrongly the order of two numerosities more 

often if the numerosities very separated by a small numerical distance (e.g. numerosities 

3 and 4) than if the numerical distance was larger (e.g. numerosities 1 and 4) (Brannon 

and Terrace, 1998; Brannon and Terrace, 2000). 

 

 

Figure 4: Single neurons in the prefrontal cortex show a tuning to preferred numerosities. The tuning 
functions are increasingly wider with increasing preferred numerosity. The tuning is slightly 
asymmetrical, when the curves are plotted on a linear scale. The coding is very similar during (a) the 
sample presentation and (b) the memory delay period. From Nieder et al., 2002 

 

One of the first studies to investigate numerical representation in the monkey brain was 

done by Sawamura and colleagues (2002). Monkeys were trained to change their motor 

pattern after a certain number of repetitions. Neurons in the superior parietal lobule 

represented the ongoing number of motor actions. However, the numerical information 

could be confounded by motor preparation and the time spent in motion (Sawamura et 

a) b) 
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al., 2002). One study to overcome these shortcomings was done by Nieder and 

colleagues (2002). They trained rhesus monkeys on a delayed-match to sample task. 

The monkeys viewed a sample display with a certain number of dots, retained this 

information over a delay period and were then required to respond if a test display 

subsequently presented contained the same number of dots as the sample. A large 

proportion of cells in the dorso-lateral prefrontal cortex was shown to respond selectively 

to numerosities, both during the sample presentation and during the memory period. The 

selective cells were tuned to one numerosity, such that their discharge rates were 

highest to one preferred numerosity and decreased with increasing distance to that 

numerosity (Nieder et al., 2002). The same kind of coding was found in response to large 

visual numerosities (up to 30, Nieder and Merten, 2007) as well as to sequentially 

presented numerosities, in both the visual and the auditory modality (Nieder, 2012). 

These findings demonstrate that the PFC encodes the numerosity information in an 

abstract fashion, irrespective of set size or the manner of the presentation. Single cells 

signal specific numerosities via a labelled-line code (Nieder and Merten, 2007; Nieder, 

2012). 

Interestingly, it was not only the behavioural data that showed the distance and the 

magnitude effect under this protocol, but also the neuronal data. In a follow-up study 

(Nieder and Miller, 2003) it was shown that the tuning functions of the numerosity 

selective neurons became increasingly wider with increasing preferred numerosity 

(Figure 4). Additionally, the left slope of these tuning functions (response to smaller 

numerosities) was steeper than the right slope (response to larger numerosities). When 

converted to a logarithmically compressed scale, the tuning functions became more 

symmetrical and their width (measured by standard deviation) became constant for 

different preferred numerosities. These results illustrate that numerosities are processed 

in the brain in accordance to Weber’s law, suggesting that sensory and cognitive 

representations share this coding mechanism (Nieder and Miller, 2003; Nieder and 

Merten, 2007).  
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How these numerosity selective cells arise in the visual pathway is still debated. 

Dehaene and Changeux proposed a parallel numerosity processing mechanism 

containing four functional layers (Figure 5). Sensory input clusters (e.g. in the retina) 

encode each object as a Gaussian distribution of activation. In the second layer, on a 

location map, the objects are encoded as individual activation spots with normalized 

sizes. The location map units project down to all summation cluster units. These layer 3 

units differ in their threshold to activation. When the activation exceeds the threshold, 

these units respond in a linear fashion to increasing numerosity. Layer 4 contains units 

responding selectively to numerosity. They receive excitatory projects from one unit of 

the summation cluster and are controlled by lateral inhibition. This leads to tuning-like 

responses from the numerosity cluster cells (Dehaene and Changeux, 1993).  

 

 

Figure 5: Parallel numerosity detector model. Single elements of a visual numerosity array are first 
represented as differently sized activation spots, then normalized for size and represented in a 
summation cluster with increasing activation for increasing numerosity. Finally, lateral inhibition 
leads to the formation of units with tuning properties, which allow a labelled-line code for 
numerosities (Dehaene and Changeux, 1993; Figure from Nieder and Dehaene, 2009). 

 



1 Introduction  

26 

 

In contrast, Meck and Church (1983) proposed a mode controlled pacemaker-

accumulator model. They suggested that every element in a set is added to an 

accumulator. At the end of the “counting” the accumulator level is read into working 

memory, where the representation of number is formed. This serial process is analogous 

to the accumulator model for time processing. The authors suggested that time and 

numerosity might be processed via the same mechanism on a shared neural substrate 

(Meck and Church, 1983). 

Although numerical information is abstract and extracted from highly variable visual 

displays, it seems to be extracted in an automatic way. A recent computational study has 

proposed that numerosity information emerges in deep networks as a statistical property 

of the image, suggesting the possibility that numerosity is directly processed in the visual 

system (Stoianov and Zorzi, 2012). Another study showed that numerosity judgments are 

independent from other visual features such as density or texture (Ross and Burr, 2010). 

Together with the finding that numerosity estimations are susceptible to adaption just like 

low-level visual features (Burr and Ross, 2008) and that even untrained rhesus monkeys 

have numerosity-tuned neurons in the prefrontal and the parietal cortices (Viswanathan 

and Nieder, 2013), these studies show how fundamental numerical processing is and 

support the notion of “number sense”. Number sense refers to the idea that humans and 

animals perceive numerosities intuitively, without any requirement for training. It was 

suggested, that numerosity is a natural sensory category, which is processed by a hard-

wired, designated network in the brain (Danzig, 1930; Dehaene, 1997). 

 

1.2.4 Coding of other magnitudes in the brain 

Numerosities are not the only sort of magnitude represented in the prefrontal cortex. 

Magnitudes can be sensory or more abstract. The frequency of vibrations is represented 

by tuned PFC neurons, which respond more strongly to one preferred frequency than to 

adjacent values (Romo et al., 1999; Romo and Salinas, 2003). Weak colour selectivity 

has also been shown in the PFC (Lara and Wallis, 2014).  
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The representation of continuous magnitudes such as size and spatial frequencies has 

also been studied in the PFC. Single cell recordings in rhesus monkeys have shown that 

PFC neurons are tuned to spatial frequencies and line lengths and represent those 

magnitudes in a similar fashion as numerosities (Eiselt, 2013; Tudusciuc and Nieder, 

2009). However, while one study reported strongly overlapping populations of neurons 

representing the two magnitude classes (line lengths and numerosities) (Tudusciuc and 

Nieder, 2009), another reported that the neurons representing the different magnitude 

classes were intermixed, but the amount of multi-tasking neurons did not exceed the 

number expected by chance (Eiselt, 2013). 

Psychophysical studies in humans also indicate that the processing of number and other 

magnitudes might be interconnected. In an early study Henik and Tzelgov (1982) 

showed, that presenting Arabic digits in different physical sizes influenced the speed of 

numerical size comparisons. The participants took longer to judge physically small, but 

numerically large digits as being greater than physically large, numerically small digits. 

Interestingly, this effect was symmetrical such that, when the numerical quantity was 

irrelevant, it still affected judgement of the physical size (Henik and Tzelgov, 1982). This 

result has since been replicated with digits and brightness levels (Cohen Kadosh et al., 

2008) and numerosities and area (Hurewitz et al., 2006). Physical size corresponds to 

the space a certain object takes up. The most famous interference effect of number and 

space is the spatial numerical association of response codes (SNARC) effect. When 

tested on parity judgments, subjects responded more readily with the left hand for small 

numbers and with the right hand for larger numbers (Dehaene et al.,1993).  

Behaivoural interference effects such as described above suggest that two kinds of 

information are processed, on the same neural substrate. Evidence from fMRI studies 

shows that different magnitudes are represented in at least partly overlapping regions in 

the human brain. Pinel and colleagues (2004) have found co-activation in the posterior 

parietal cortex in luminance, size and numerosity discrimination tasks (Pinel et al., 2004). 

Another study has shown neural interference in the PFC in time and numerosity 

judgments (Hayashi et al., 2013).  
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These results led to the proposition that continuous quantities (size, length, etc.) are 

processed by the same neural mechanism on the same neural substrate as discrete 

quantities (numerosities, numbers) (Gallistel and Gelman, 2000). Walsh (2003) proposed 

a theory of magnitude (ATOM). He suggested that time, space and quantity are part of 

one magnitude system, which is processed by a parieto-frontal network (Walsh, 2003). 

 

1.3 Aim of the study 

The studies described above illustrate that large proportions of prefrontal cortex neurons 

can be activated by a large variety of tasks, both in humans and monkeys. The encoding 

strategies that PFC employs are still elusive. John Duncan (2001) proposed the adaptive 

coding hypothesis, which posits that the neurons in the PFC are not inherently tuned to 

specific features of the environment, but rather adapt their discharge properties, to code 

whichever stimulus feature is relevant for the subject. As a result of this property, 

context-specific parameters shape the tuning functions of PFC neurons (Duncan, 2001). 

Consequently, changes in the context shift the way stimuli are encoded by single 

neurons within the PFC network. The support for adaptive coding comes from studies 

where monkeys learned to categorize stimuli (Cromer et al., 2010; Freedman et al., 

2002; Roy et al., 2010) and from decision making tasks (Bongard and Nieder, 2010; 

Eiselt and Nieder, 2013; Merten and Nieder, 2012; Stokes et al., 2013; Vallentin et al., 

2012; Wallis et al., 2001).. 

However, adaptive coding is only efficient in a very quickly changing environment. Some 

“natural” categories are always of high relevance for the primates and may possess a 

privileged position and their neuronal representations could remain in the dedicated 

network, unaffected by the context and insusepltible to adaptation process. Faces, are 

such natural category represented in the prefrontal cortex (Tsao et al., 2008). 

Numerical quantities are thought to be another natural category (Dehaene, 1997). 

Animals readily discriminate magnitudes in the wild. In a laboratory setting, when they 
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are trained to discriminate arrays by colour or shape of the items they also take the 

number of the items into account, without being specifically trained to do this (Cantlon 

and Brannon, 2007). These abstract numerical quantities are represented in a dedicated 

fronto-parietal network. Numerosity selective neurons have been found in numerically 

naïve monkeys, displaying all the characteristics of those in the fully trained animals 

(Viswanathan and Nieder, 2013).  

Numerosity does not seem to be a learned category, but rather a stimulus feature, which 

is spontaneously and naturally encoded within visual neural structures of the primate 

brain. If this is true, numerosity representations are expected to remain unaffected by 

changes of the magnitude context in which they need to be discriminated. This question 

is addressed in this thesis. The coding properties of numerosity selective PFC neurons 

were investigated in different magnitude contexts. Two monkeys were trained on a visual 

delayed match-to-numerosity task and single-cell recordings were done from the lateral 

PFC. Within a given recording session, the numerosity task was either presented in 

isolation (pure numerosity block condition) or embedded in equivalent delayed match to 

sample tasks with other magnitudes (line lengths and colours) as discriminative stimuli 

(mixed magnitude block condition). By comparing the proportion and tuning properties of 

numerosity selective neurons in the respective conditions, we test the outlined alternative 

coding hypotheses. 
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2 Materials and Methods 

2.1 Animals 

The subjects were two adult rhesus monkeys, Macaca mulatta (monkey H: 8 kg, monkey 

L: 7 kg). The monkeys were housed in small social groups. Both animals had experience 

with colour and numerical stimuli, monkey H also with line stimuli, from previous 

experiments. All procedures were in accordance with the guidelines for animal 

experimentation approved by the local authority, the Regierungspraesidium Tuebingen, 

Germany. 

 

2.2 Experimental Set-up 

At the beginning of every experimental session, the monkeys entered their primate chairs 

(custom build, University of Tuebingen) and were brought into the experimental set-up 

(Figure 6). The monkeys were placed in a darkened chamber, in front of a computer 

screen (TFT, 15 inch, Acer AL1511). The distance from the monkeys’ eyes to the screen 

was approximately 57 cm. The monkeys were head fixated throughout the experimental 

session.  

For behavioural responses, the monkeys were trained to use a touch sensitive bar inside 

their primate chairs. Their eye movements were monitored throughout the experimental 

session using the ISCAN system (ISCAN Inc., 2006). For reward delivery, a water tube 

reaching the monkey’s mouth was fastened on the primate chair. Visual stimuli were 

displayed using the two-computer Cortex System (Laboratory of Neuropsychology, 

NIMH, 2005), which was also used to collect behavioural data. During the recording of 

neural signals, the Cortex System was connected to the PLEXON system (Plexon inc., 

2004) with a parallel port to ensure synchronization of neural and behavioural data. 
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Figure 6: The experimental set-up. The monkeys sat in a darkened chamber in front of a computer 
screen. They used a touch sensitive bar inside their primate chairs to respond. A two-computer 
(sender and receiver) Cortex System was used for the acquisition of behavioural data. Eye 
movements were monitored via the ISCAN infra-red system. The Plexon system was used for single 
cell recordings. 

 

2.2 Behavioural protocol 

The monkeys were trained to perform a delayed match to sample task (DMS) with 

numerosities, lines of different lengths and colours as stimuli. The trial began when the 

monkeys grabbed a touch sensitive bar inside their primate chairs and faced the screen. 

With the start of the fixation period, the monkeys were required to fixate a white dot 

superimposed on a grey circle (fixation window: 3.5 ° visual angle). After a fixation of 

500 ms, a sample, either a numerosity, a line or a coloured ring (example with 

numerosity two in Figure 7), was presented for 800 ms. During a following 1000 ms delay 

period, the monkeys needed to maintain fixation and to keep the sample in mind. After 
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the delay period, a test image was presented. In half of the trials, the first test image 

(Test 1) matched the sample image and the monkeys were required to release the bar to 

receive a water reward. In 50 % of the trials, Test 1 did not match the sample. In this 

case, the monkeys were required to keep holding the bar until after 1200 ms, a second 

test image (Test 2) was presented, which always matched the sample. Thus, chance 

performance was 50 % correct trials. 

 

2.3 Stimuli 

Three different kinds of stimuli were used: dot numerosities, lines with different lengths 

and coloured rings (Figure 8). Every kind of stimuli was presented in two protocols: the 

standard and the control. The control stimulus protocol was used to prevent the monkeys 

from attending to low-level visual features of the stimuli, which could co-vary with the 

magnitude of interest (number, length and colour). 

Numerosity stimuli were one, two or four black dots superimposed on a grey circle 

(Figure 8). The individual item’s position and size were varied pseudo randomly. The 

dots in standard stimuli had diameters between 0.55 and 0.95 degrees of visual angle 

(°VA). The control dots had diameters between 0.7 °VA and 1.55 °VA. In these stimuli, 

the total area covered by the dots and their density were equalized between the three 

numerosities. 

Line stimuli consisted of horizontal lines of three different lengths (1.125 °VA, 2.625 °VA 

and 4.5 °VA) which were positioned pseudo randomly inside the grey circle. All the 

standard lines had the same thickness of 0.26 °VA. Control lines had the same area 

irrespective of their length and hence, they were varied in their thickness (0.525 °VA, 

0.225 °VA and 0.1312 °VA). 
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Figure 7: Delayed match to sample protocol. The monkey was required to respond to a test image 
which matched the sample image and to maintain fixation of the white dot through the fixation, the 
sample and the delay phases. Three kinds of magnitudes were used: numerosities, line lengths and 
colours. 
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Figure 8: Example stimuli from each set. Left: numerosity stimuli, middle: line length stimuli, right: 
colour stimuli with example for the two different sizes, small for sample, large for test displays. Left 
panels of the pairs: standard stimuli, right panels: control stimuli. 

 

The colour stimuli were coloured rings (annuli). They were always positioned in the 

middle of the grey circle. To prevent adaptation effects on the retina, two different ring 

sizes were used. Sample stimuli had rings with outer diameter of 1.575 °VA. The rings in 

test stimuli were bigger and had outer diameters of 2.1 °VA. We used used colours red, 

orange and yellow. The standard stimuli had bright colours which varied in their 

luminance (12, 15 and 35 cd/m² respectively). Control stimuli were adjusted to have the 

same luminance of 10.6 cd/m², measured with LS-100 luminance meter (Konica Minolta). 

To prevent the monkeys from memorizing the visual characteristics of the displays, the 

stimuli (numerosities and lines) with randomized features were generated anew every 

day (20 images per sample magnitude and stimulus protocol), for each experimental 

session. For any trial, the sample and test displays never showed the same image. Every 
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magnitude was presented in a balanced way as sample and as test in control and in 

standard conditions. 

 

2.4 Procedure 

The stimuli were presented in two different trial blocks, the “pure numerosity block” and 

the “mixed magnitude block” (Figure 9). Each of these blocks was preceded by a short 

warm-up block, which was later discarded from the analysis. During the pure numerosity 

block, only trials with numerosity stimuli (both control and standard) were presented. This 

block contained 48 trials, 16 for each sample numerosity, in pseudo random order. The 

mixed magnitudes block contained 144 pseudo randomized trials with all three 

magnitudes as stimuli. Again, 16 trials per sample magnitude were presented.  

 

 

Figure 9: Blocks of different trails within one experimental session. The pure numerosity block 
contained 48 numerosity trials. The mixed magnitude block contained 144 trials with all three 
magnitudes. The presentation started either with numerosity trials (upper panel), or with the mixed 
block (lower penal) on alternating days. The warm-up blocks were used to indicate to the monkey 
which block was about to start. The monkey was required to complete at least one cycle within one 
experimental session. 
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The warm-up blocks had six trials with standard stimuli each. The pure numerosity warm-

up block consisted of two trials with each sample numerosity. The mixed warm-up block 

had three line and three colour trials. The warm-up blocks were used to signal to the 

monkey whether it had to attend to only the numerosities (pure numerosity block) or to all 

possible stimulus magnitudes (mixed magnitude block). 

To successfully complete an experimental session, the monkeys were required to 

complete all these four blocks at least once (one experimental cycle). Usually, monkey H 

completed two cycles and monkey L, three cycles per session. To prevent possible 

sequence effects, the session started with either the pure numerosity or the mixed block 

on alternating days. 

 

2.5 Electrophysiological recordings 

Before the experiment, the monkeys were implanted with a titanium head bar for head 

fixation and with a recording well enclosing a trepanation that was located over the right 

dorso-lateral prefrontal cortex (PFC) and centred over the principal sulcus. All surgical 

procedures were conducted under general anaesthesia.  

Extracellular single-cell activity was recorded using arrays of eight to twelve 1 MΩ glass-

insulated tungsten electrodes, which were lowered into the brain for each session. The 

recorded neurons were not preselected for task selectivity, but only selected for a good 

signal-to-noise ratio. Signals were amplified and digitized using the Multichannel 

Acquisition Processor (Plexon Inc.). 

All single units were sorted offline using the Plexon Offline Sorter (Plexon Inc.). The 

action potential waveforms were depicted as dots in a two-dimensional feature space (for 

example waveform peak against the waveform trough or principal components). 

Waveforms from a single unit always formed a cluster of dots (Figure 10) which could be 

graphically encircled and attributed to a specific cell. 
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Figure 10: Example session in the Offline Sorter. Left: waveforms aligned by their threshold. Right: 
the waveforms depicted as clouds in a two-dimensional space, the axes are defined as the first and 
the second principal components. Bottom: oscillogram, total length 450 s. Yellow, green, blue and 
red colours indicate the four single units, grey: unsorted noise 

 

2.6 Data analysis 

Overall, the two monkeys completed 60 recording sessions (monkey H: 32 sessions, 

monkey L: 28 sessions). The behaviour was analysed over this entire recording period. 

The analysis of neural and behavioural data was performed using custom-written MatLab 

software (version 2011b). Significance level for all tests was p<0.01. 

Percent correct performance for a given magnitude (e.g. numerosities) was averaged 

over all sessions. Paired Wilcoxon tests were conducted to compare the performances 

under the standard and control protocols, for numerosities, line lengths and colours 

respectively. For comparisons between blocks, the performance was averaged over the 

stimulus protocol and recording sessions. A two-way ANOVA (factors: sample 

numerosity and block type) was used for these comparisons.  
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For neural data, only single units with discharge rates above 1 Hz were analysed, that 

were present for at least one complete experimental cycle (Figure 9). If a cell was 

recorded for more than one complete cycle, the additional trials were truncated to have 

the same number in all conditions. Hence, for a given cell, the same number of trials was 

analysed for every sample condition. The analysis included only correct trials. 

The analysis of the neuronal data was conducted for two time periods, the sample and 

the delay phase. The sample phase began 100 ms after the sample onset and was 

800 ms long. The delay phase was also 800 ms long and began 200 ms after delay 

onset. The trial-wise average discharge per unit time (discharge rate) was calculated for 

these periods and used for analysis. To define magnitude selective cells, these data 

were analysed with 2-way-ANOVAs for the mixed block, with the factors being stimulus 

protocol and sample magnitude, for numerosity, line length and colour trials separately. A 

binomial test was used to determine whether the number of multi-tasking units exceeded 

the amount expected by chance. Numerosity selectivity and block effects were assessed 

in a separate 3-way-ANOVA with the factors sample size, block condition and stimulus 

protocol. Cells with a significant main effect of sample size were termed “numerosity 

cells”. Out of these, cells that showed a main effect of the protocol or interaction with it in 

either the sample or the delay phase were not analysed further for that phase.  

Visual and selectivity latencies were determined for all cells, which were numerosity 

selective in the sample phase. Visual response latency was defined by the first of five 

consecutive 10 ms time bins (slid in 1 ms increments) after sample onset where the cell’s 

discharge rate reached 3 standard deviations (SD) above baseline discharge rate 

(average activity during the period of 250 ms, starting at fixation onset). Latencies below 

50 ms and above 400 ms were discarded. The latency of numerosity selectivity was 

measured by a sliding Kruskal-Wallis test (kernel width 50 ms, slid in 1 ms increments). 

Numerosity selectivity latency was defined by the first time bin, at least 50 ms after 

sample onset, where the test showed significant differences (p<0.01) in response to one 

of the three numerosities. 
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To analyse numerosity selectivity, tuning functions were created for each cell in the two 

blocks and the two analysis windows by averaging the discharge rate over the trials for 

the different sample conditions. The sample magnitude, which elicited the highest 

discharge rate in a cell, was called the “preferred” sample of this neuron. 

A population analysis was conducted with all cells, which were determined as numerosity 

selective by the 3-way-ANOVA. Population peri-stimulus-time histogram (PSTH) was 

created using normalized discharge rates (normalization: difference between the base 

line and the trial discharge rate, divided by the SD of the baseline). For further analysis, 

numerical distance functions with normalized discharge rates were created (Figure 19). 

The discharge rate for the preferred numerosity during the pure block was defined as 

100 % and the lowest discharge rate as 0 %. Discharge rates to the second preferred 

sample and all samples in the mixed block were normalised according to these bpunds. 

These normalized discharge rates were plotted against the numerical distance to the 

preferred quantity of this cell and averaged over all numerosity selective cells. The 

numerical distance functions for the mixed and the pure block were compared by a 

Wilcoxon test for each numerical distance value (significance level was Bonferroni-

corrected). 

To assess possibly small, subthresholdal effects of block, numerosity selective neurons 

were assigned selectivity indices for the two blocks. The index was calculated as follows: 

 

    
                                                  

                                                  
 

 

To investigate the relationship of selectivity indices for individual neurons during the pure 

and mixed block, the selectivity of each cell in the pure block were plotted as a function 

of its selectivity in the mixed block. The distance of the cell to the bisection line was 

calculated. Cells above the bisection line (higher selectivity in the pure block than in the 
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mixed block) were assigned negative distance values and cells below the bisection line 

(higher selectivity in the mixed block than in the pure block) were assigned positive 

distance values. The symmetry of the distance distribution around zero was assessed by 

a signed rank test. Hartigan’s dip test (Hartigan and Hartigan, 1985) was used to test for 

bimodality in the distribution. 

To further assess possible subtle changes in the coding between the two contexts, two 

analyses were conducted on the entire set of recorded neurons, not preselected for task 

relevance. A receiver operating characteristic (ROC) analysis was used for the first 

analysis. The ROC-analysis quantifies how well the signal distribution is separated from 

the noise distribution (Green and Swets, 1966). The discharge rates of single neurons on 

trials with their preferred sample were defined as the signal distribution. The noise 

distribution contained the discharge rates to the non-preferred numerosity for the 

neurons. The values of the probability distributions were plotted against each other 

(signal vs. noise), resulting in the ROC-curve. The area under this ROC curve (AUROC) 

is a measure of how well the two distributions are separated. AUROC values that are 

close to one mean a perfect separation of the signal and the noise distributions. AUROC 

values of 0,5 mean that signal and noise are indistinguishable (Green and Swets, 1966). 

AUROC values were calculated for each cell in the pure and the mixed magnitude blocks 

and for the sample and the delay phases separately. The distributions of AUROC values 

were compared with a paired signed rank Wilcoxon test.  

Finally, population dynamics were assessed using a noise correlation analysis. The 

noise correlation coefficient is a measure of how strongly the fluctuations in the 

discharge rates of two neurons are coupled, when the influence of the stimulus is 

excluded. Cells closely connected in a network are expected to have stronger noise 

correlations than remotely connected pairs. To exclude the influence of the stimulus, the 

average discharge rates over the entire trial (from sample onset till the end of delay) for 

each cell and trial were z-scored. For z-scoring, the average discharge rate for each 

stimulus condition was substracted from the trial-wise data. This difference was divided 

by the respective standard deviation for each stimulus condition. The z-scored data was 

pooled over the different sample sizes and compared across the block conditions using 
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Pearson’s linear correlation, for each cell pair. The distributions of correlation coefficients 

were compared between the two blocks, using a paired t-test.  
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3 Results 

3.1 Behavioural data 

Two rhesus monkeys (Macaca mulata) were trained to perform a delayed match to 

sample task (DMS). Different magnitudes were used as stimuli. The monkeys learned to 

discriminate dot numerosities (1, 2 and 4), the lengths of horizontal lines (1.1, 2.6 and 

4.5 °VA) or the colour of annuli (red, orange and yellow). The stimuli were presented in 

two contexts: either the numerosity trials alone (the pure numerosity block) or with all 

magnitude trials pseudo randomly intermingled (the mixed magnitude block). 

Additionally, two protocols of stimuli per magnitude were used: the standards and the 

controls. In the standard protocol, the magnitude (numerosity, line length and colour) 

varied at the expense of some co-varying low-level visual features. In the control 

stimulus protocol, the parameters co-varying with magnitude (density and total dot area 

for numerosities, total area for line lengths and luminance for colours) were equalized for 

the different samples. 

 

Figure 11: Average performance of both monkeys in the mixed magnitude block under the standard 
and the control stimulus protocol. Num: numerosity, Lin: line length, Col: coloured rings as stimuli. 
Chance level: 50% correct. Error bars: standard error of the mean (SEM). n=32 session for monkey H 
and n=28 sessions for monkey L 

 

The monkeys were highly proficient in this task. The mean performance during the 

recording sessions was 93.03 % and 98.12 % for monkeys H and monkey L, 

respectively. Figure 11 shows the average performance of both monkeys during the 
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mixed block, separated for the three magnitudes and the standard and control stimulus 

protocols. For both monkeys, the performance was very similar for the standard and the 

control protocols. A paired Wilcoxon test showed a significant difference between the two 

protocols for line lengths, but not for numerosities or colours (T=3.98, p=0.0007; T=1.65, 

p=0.0998 and T=1.17, p=0.24 respectively) for monkey H and for monkey L (T=4.13, 

p=0.0004; T=1.86, p=0.0635; T=0.27, p=0.79). Despite the significant result, the 

difference in the performance was very low between the protocols. In line length trials, 

the stimulus protocol had an effect size of only 4.7 % for the monkey H and 2.6 % for the 

monkey L, showing that the monkeys were not relying on the low-level visual features for 

magnitude discrimination. 

As there was no significant protocol effect in the numerosity conditions, the data was 

pooled for further analysis. A comparison between the mixed block and the numerosity 

block (numerosity conditions only) and the three different sample numerosities (1, 2 and 

4) is shown in Figure 12. Both monkeys performed equally well with all three samples 

(two-way ANOVA, monkey H: F(2)=2.12, p=0.12; monkey L: F(2)=0.47, p=0.63). Monkey 

H performed slightly, but significantly better on trials during the pure numerosity block, 

than during the mixed magnitude block (F(1)=7.27, p=0.0076). Monkey L did not show 

any difference in performance between the two blocks (F(1)=1.04, p=0.31).  

Additionally, the reaction times on match-trials were analysed (Figure 13). Monkey H 

showed a steady increase in reaction times with increasing sample numerosity 

(F(2)=84.9, p<0.0001), and a slight increase of 5 ms from the pure block to the mixed 

magnitude block. Monkey L, on the other hand reacted faster to the border sample 

numerosities (1 and 4) than to the middle one (2) (F(2)=33.6, p<0.0001) but exhibited no 

difference between the two block conditions (F(1)<0.0001, p=0.42). 

All significant differences had effect sizes below 5 %. Thus, the performance for 

numerosity trials was comparable in both block types. This indicates that the addition of 

line and colour trials in the mixed magnitude block did not change task demands for the 

numerosity trials, but only changed the contextual framework of numerosity 

discriminations.  
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Figure 12: Average performance in numerosity trials, during the mixed magnitude block (left) and the 
pure numerosity block (right), for both monkeys.  

 

Figure 13: Average reaction times on match numerosity trials, during the mixed magnitude block 
(left) and the pure numerosity block (right), for both monkeys. 
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3.2 Coding of Different Magnitudes 

In total, 394 single neurons were recorded in the dorso lateral prefrontal cortex (monkey 

H: 220 and monkey L: 174). The activity of these single cells was analysed in two time 

windows: the sample phase, beginning 100 ms after the onset of the sample stimulus 

and the delay phase, beginning 200 ms after the offset of the sample stimulus. Both time 

windows were 800 ms long. The discharge rates were averaged for these time windows 

over the relevant trials and analysed separately for the sample and the delay phases. 

 

 

Figure 14: Distribution of magnitude selective neurons in the mixed block during the sample (left) 
and the delay phase. Most cells were selective for only one magnitude but a few showed mixed 
selectivity (intersections in the Figure). Large numbers indicate the proportion of selective cells in 
percent; numbers in brackets are the absolute values.  

 

In the mixed magnitude block, two-way ANOVAs were used separately for every 

magnitude type to determine whether a cell was selective for this magnitude and the 

stimulus protocol. A cell was defined as selective if it showed a significantly different 

discharge rate to one of the quantities as to the others, for each magnitude type (e.g. 

higher discharge rate for numerosity 2 than for numerosities 1 and 4). Additionally, cells 

were required to show no significant main effect with the stimulus protocol or an 

interaction with it (all significance levels: p<0.01).  
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Figure 14 shows the distribution of pure magnitude selective cells for the sample and 

delay phases. Overall 14.1 % (56/394) of the cells were magnitude selective during the 

sample phase and 18.4 % (77/394) during the delay phase. During the sample phase an 

equal number of cells was selective for the three magnitudes (one sample Chi² test; 

Chi²(2)=4.10, p=0.13). During the delay, the distribution of the selectivity shifted 

significantly (Chi²(2)=21.19, p<0.0001).A majority of these cells were selective for only 

one magnitude, a small proportion of cells showed selectivity for two, or even all three 

magnitudes. The number of multitasking cells in the sample phase was not higher than 

expected by chance (binomial test, p>0.01), but on the other hand, the number of cells 

encoding both, line lengths and numerosities during the delay phase was significantly 

higher than chance level (binomial test, p=0.0003). 

Three example magnitude selective cells are shown in Figure 15. In these delay 

selective cells, the discharge rate increased in response to their preferred quantity, 

mainly during the delay phase when the monkeys had to memorise the seen sample. 

Numerosity and line selective cells often displayed a progressive drop in discharge rates 

with increasing distance to the preferred quantity. Colour selective cells tended to show a 

more digital on/off response pattern. 
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Figure 15: Three example magnitude selective cells for the different magnitudes tested, numerosities (a and d), line lengths (b and e) and colours (c and f). 
a-c: dot-raster histogram: each horizontal line represents one trial and each dot an action potential. d-f: peri-stimulus-time histograms: average discharge 
rates over time, smoothed with a Gaussian kernel in a 100 ms sliding window. The plot colours represent the different sample magnitudes (1,2,4 for 
numerosities, short, middle, long for line lengths and red, orange and yellow for colours). Inserts: average discharge rates for different magnitudes during 
the delay phase (800-1800 ms after sample onset). The numerosity and length selective cells display tuning properties (decreasing discharge rate with 
increasing distance to preferred quantity), the colour selective cells did not show these properties. Only trials from the mixed magnitude block are shown. 

a) 

d) 

b) 

e) 

c) 

f) 
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3.3 Numerosity coding 

3.3.1 Single Cells 

To assess the effect of magnitude context on the representation of numerosities, 

discharge rates of individual cells in the numerosity conditions were analysed across 

“pure numerosity” and “mixed magnitude” blocks, (three-way ANOVA, p<0.01, with main 

factors numerosity, stimulus protocol and block condition). Cells, which only showed a 

significant main effect of numerosity were called “pure numerosity” cells. All numerosity 

selective neurons, including the ones which, in addition to the main effect of numerosity, 

had a main effect of block or an interaction with it, were called “numerosity” cells. Cells, 

which showed a significant main effect of stimulus protocol or an interaction with it, were 

not treated as numerosity selective cells. 

Figure 16 shows the distribution of numerosity selective cells during the sample and the 

delay phase for the two monkeys. In monkey H, out of the approximately 7 % numerosity 

selective cells during the sample phase, 6 % were pure  numerosity detectors, without 

any other main effects or interaction. For monkey L, this proportion was about 12 %. 

During the delay phase, the proportion of pure numerosity selective cells increased to 

13 % in monkey H and 14 % in monkey L. 

Whether the monkeys were engaged in the pure numerosity block or the mixed 

magnitude block, seemed to have little effect on numerosity representation. During the 

sample phase, only two cells (monkey H) showed a significant main effect of the blocking 

condition (in addition to the main effect of numerosity). No neurons displayed a 

significant interaction between the factors block and sample numerosity. During the delay 

phase, a main effect of block could be found in 3 % of the cells in monkey H and in less 

than 1 % in monkey L. Two cells (monkey L) showed a significant interaction between 

the numerosity and the blocking condition. Thus, the context of numerosity discrimination 

hardly modulated the response properties of the numerosity detecting PFC cells. 
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Figure 16: distributions of numerosity selective cells in the sample (left) and the delay (right) phase 
for the two monkeys. Coloured segments: numerosity selective cells selected by a three-way 
ANOVA. Dark blue: cells with an additional main effect of stimulus protocol or an interaction with it; 
light blue: additional main effect of blocking codition; green: additional interaction between 
numerosity and block; red: purely numerosity selective cells without any other significant 
interactions or main effects; grey: not selective for numerosity.  

 

Figure 17 shows the response of an example cell, which was purely numerosity selective 

(no other main effects or interactions) during the delay phase. The peri-stimulus-time-

histogram (PSTH) shows the averaged and smoothed discharge rates (Gaussian kernel, 

100 ms sliding window) plotted over time. The different colours represent different 

sample numerosities. The cells that showed significantly different discharge rates to one  

numerosity than to the others were deemed to be numerosity selective. The numerosity, 

which elicited the highest discharge rate, was called the “preferred” numerosity of the 

cell. On average, the discharge rate decreased with increasing distance to the preferred 

quantity, thus resulting in a tuning curve for each cell. The example cell in Figure 17 

showed a preference for the sample numerosity four. This preference was the same in 

the mixed magnitude block and in the pure numerosity block. Panel e shows the cell’s 
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tuning curves, which were virtually identical in the pure numerosity and the mixed 

magnitude block. These results indicate that there was no influence of the blocking 

condition on the coding properties of single neurons in the prefrontal cortex. 

 

 

Figure 17: Example sample and delay numerosity selective cell in the pure (a, c) and the mixed 
magnitude block (b, d), selected by a three-way ANOVA. The cell exhibits very similar responses to 
different numerosities in the two context conditions. e) Tuning functions in the delay phase. c and d 
smoothed with a sliding average, using a Gaussian kernel with a width 100 ms. 

 

3.3.2 Population Responses 

To assess whether the magnitude context caused changes at the neuronal population 

level, the temporal and the discharge characteristics of numerosity selective neurons 

were analysed. To determine whether the time course of numerosity representation was 

altered as a function of the magnitude context, the visual response and selectivity 

latencies were calculated for all the cells that were numerosity selective during the 

sample phase. 

a) b) 

c) d) e) 
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The median latency of the visual response was 200 ms in the pure numerosity block and 

185 ms in the mixed magnitude block (Figure 18 a). The difference between the blocks 

was not significant (Mann-Whitney U test, Z=1.07, p=0.29). This indicates a similar onset 

of a visual response in the two block types.  

The latency of numerosity selectivity was defined as the first 50 ms window in which a 

sliding Kruskal-Wallis test showed significant difference in the discharge rates in 

response to different sample numerosities. This was done for each numerosity selective 

neuron during the sample phase. The median selectivity latencies were 299.5 ms for the 

pure numerosity and 260 ms for the mixed magnitude block conditions (Figure 18 b). 

There was no significant difference in the onset of selectivity between the two blocking 

conditions (Mann-Whitney U test, Z=0.76, p=0.491). Hence, the context of numerosity 

discrimination did not affect the time course of the numerical representations in the 

prefrontal cortex. 

 

 

Figure 18: latency distributions of numerosity selective cells. a) Latencies of visual responses, b) 
selectivity latency, determined by a sliding Kruskall-Wallis test. 

 

Next, the tuning properties of numerosity selective cells in the two different blocks were 

analysed. Figure 19 shows average peri-stimulus-time histograms of numerosity 

selective neurons. Panels in a and b show the population responses of sample selective 

a) b) 
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neurons in the mixed magnitude and the pure numerosity block, respectively. The 

population responses were very similar in the two contexts. In both blocks, the cells first 

displayed a clear visual response about 100 ms after sample onset and started 

differentiating between the preferred and the non-preferred numerosities about 200 ms 

after sample onset. Delay selective cells (panels d and e) showed similar discharge 

properties in the two blocks, as well. As a population, they differentiated between the 

numerosities from the beginning of the delay phase, reflecting the finding that a lot of 

sample selective cells show the same selectivity in the delay phase (for example: Figure 

15). 

To assess the sharpness of tuning (e.g. the width of the tuning curve) and thus how well 

the neurons discriminated between the numerosities in the two block conditions, the 

discharge rates of numerosity neurons were normalized and plotted against the 

numerical distance to the preferred numerosity of the cell. The highest average 

discharge rate during the pure numerosity block was defined as 100 %, the lowest as 

0 %. The intermediate discharge rate in the pure block and all values from the mixed 

magnitude block were normalized relative to these values. These normalized discharge 

rates were averaged over all cells for the two different blocks (Figure 19 c and f). For 

both blocking conditions, the discharge rates dropped monotonously with increasing 

numerical distance from the preferred quantity. The normalized discharge rates in the 

two blocks were compared separately for each distance to the preferred numerosity. 

There were no significant differences between the two blocks, neither in the sample nor 

in the delay phase, indicating the same sharpness of tuning remained, irrespective of the 

magnitude context (Wilcoxon test with Bonferroni correction, all comparisons p>0.01). 

To compare the strength of numerosity selectivity, a selectivity index (SI) was calculated 

for individual neurons in the pure numerosity and the mixed magnitude blocks (Figure 20 

a). This index is a measure of how much the discharge rates to the preferred numerosity 

differ from those in response to the least preferred numerosity. No difference between 

the blocks in SI values was detected in the sample phase (mean pure numerosity block 

SI=0.39; mean mixed magnitude block SI=0.35) (Wilcoxon test, Z=1.24, p=0.21; n=37). 
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Similarly, mean SI values were equal during the delay period for both blocks (mean pure 

numerosity block SI=0.42; mean mixed magnitude block SI=0.42) (Wilcoxon test, 

Z=0.23, p=0.82; n=61). 

 

Figure 19: average PSTHs for preferred, second and least preferred numerosities for all cells which 
were numerosity selective the in the sample (a and b) and the delay (d and e) phase. c and f: 
normalized response rates of numerosity selective neurons as a function of distance to the preferred 
numerosity in the pure numerosity and the mixed magnitude block, for sample and delay selective 
cells respectively. P: preferred numerosity of the respective cell. 
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Figure 20: Selectivity in the two blocks. a): Average 
selectivity indices of all numerosity selective 
neurons in the pure numerosity and the mixed 
magnitude blocks. Scatter plot of selectivity indices 
in the pure numerosity block as a function of the 
selectivity in the mixed magnitude block in sample 
(b) and delay selective (c) cells. Each dot represents 
one cell. Inserts: distance of the dots to the 
bisection line, positive values were assigned to dots 
below the line (higher selectivity in the mixed than in 
the pure block) and negative to the dots above the 
line (higher selectivity in the pure than in the mixed 
block) 
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Even if SI are equal on average, it might be possible that two separate neuron 

populations react differently in the two blocks, leading on average to indistinguishable 

differences between blocks. To address this question, the selectivity index in the pure 

numerosity block was plotted as a function of selectivity in the mixed magnitude block 

(Figure 20 b and c). The distance of the resulting points to the bisection line was 

calculated. The distribution of distances is depicted in the inserts. A skewed or a bimodal 

histogram would suggest two different populations of neurons. Hence, the distribution of 

distances was tested for symmetry around zero and bimodality. The distribution was not 

significantly different from a normal distribution, neither in the sample (signed rank test, 

Z=1.24, p=0.21) nor in the delay phase (signed rank test, Z=0.23, p=0.89). A potential 

bimodal distribution was tested with the Hartigan’s dip test for bimodality (Hartigan and 

Hartigan, 1985) and was also not significant (sample: p=0.78, delay: p=0.82). 

 

 

Figure 21: Distribution of AUROC values for all recorded neurons in the pure and the mixed block 
during the sample (left) and the delay phase (right). Values near 0.5 indicate that a cell did not 
distinguish between the preferred and the non-preferred numerosity; values close to 1 indicate 
perfect discrimination. n=394 neurons 
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Another possible way to detect subtle changes in the tuning properties of the population 

is to include all recorded cells and not to focus on numerosity selective cells exclusively. 

This was done using the receiver operating characteristic analysis (ROC). This analysis 

quantifies how well a cell differentiates between the stimuli and is applicable to the entire 

neural population irrespective of classical selectivity measures. AUROC values close to 

0.5 indicate that a cell does not differentiate between the numerosities and values close 

to 1 indicate a perfect discrimination.  

Figure 21 shows the distribution of AUROC values for all recorded cells during the 

sample and the delay phase for the two blocking conditions. The average AUROC values 

in the sample were 0.62±0.0041 in the pure and 0.54±0.0057 in the mixed block and 

0.64±0.0046 and 0.56±0.0066 during the delay phase. These differences were significant 

(paired t-test, p<0.0001 for both sample and delay) and were not attributable to simple 

differences in the mean firing rate (tested using paired Wilcoxon test, p=0.13 for sample 

and p=0.56 for delay) thus, indicating a better discrimination between the numerosities in 

the pure numerosity block than in the mixed magnitude block. 

Lastly, the population dynamics were analysed using noise correlations. The noise 

correlation analysis subtracts the influence of the stimulus from the neural response, 

leaving only the seemingly random fluctuations in discharge rates. Strong correlations of 

these fluctuations between neurons are indicative of common input within a neural 

network. In this study, 896 pairs of simultaneously recorded neurons were analysed. 

Figure 22 shows the distribution of noise correlation coefficients. The mean of correlation 

coefficients was 0.023±0.0062 in the mixed magnitude and 0.028±0.0063 in the pure 

numerosity block, indicating a very low correlation in the general population. There was 

no significant difference in noise correlations between the two blocks (paired t-test, 

p=0.53). 
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Figure 22: Histogram of the strength of noise correlation in the mixed and the pure block as 
measured by the Pearson’s linear correlation coefficient. n=896 pairs of simultaneously recorded 
single neurons 

 

Taken together, the neural results show little modulation by task context. There were no 

differences between the two blocks on the single cell level. The analysis of the 

population of numerosity selective neurons did not show any differences in the temporal 

or tuning properties of the neurons. Only when the entire population of prefrontal cortex 

neurons was analysed, a small increase in the strength of numerosity discrimination was 

found. 
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4 Discussion 

In this study, a delayed match to sample magnitude task was used to investigate the 

influence of magnitude context on the coding properties of numerosity selective neurons 

in the monkey prefrontal cortex. The numerosity discrimination task was presented in two 

different magnitude contexts. In the pure numerosity block, the monkeys solved the 

match to sample numerosity task exclusively. In the mixed magnitude block, the 

numerosity trials were randomly interleaved with match to sample line length and colour 

trials. Additionally, this design allowed for comparisons between the coding of different 

magnitudes. 

 

4.1 Task design and behavioural performance 

4.1.1 Low-level visual features 

In order to ensure that the monkeys were discriminating the intended magnitude 

dimensions, namely numerosities, line length and colour, and were not attending to low-

level visual features, the magnitudes were presented in two stimulus protocol: the 

standard and the control. Under the standard stimulus protocol the magnitudes were 

varied at the expense of co-varying low-level features (mainly total stimulus area and 

luminance). Under the control protocol these low-level features were equalized across 

sample magnitudes (Figure 8). 

Figure 11 shows that the performance of both monkeys was very high (over 90 % in all 

conditions) and very similar under the two stimulus protocols. The only significant 

difference between the protocols was found for line stimuli. Both monkeys were better at 

discriminating control lines than standard lines. The standard line stimuli had the same 

thickness and, thus, varied in the total area covered by the line. In contrast, the control 

lines were adjusted in their thickness to have equal total area, irrespective of the line 

length. The improvement in performance for control lines compared to standard lines is 

probably due to the additional information in the line thickness, suggesting that the total 
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area covered by the stimulus is a less salient feature than the line thickness. This effect 

was very small and low-level visual features did not influence the discrimination of 

colours and numerosities significantly. These findings are in line with the large body of 

evidence that show that monkeys readily discriminate magnitudes independent of low-

level features (Cantlon and Brannon, 2007; Nieder et al., 2002). 

 

4.1.2 Changing magnitude context 

The main goal of this study was to investigate the effect the magnitude context had on 

numerosity discrimination. Usually, the influence of context is studied in task switching 

protocols. These protocols require the subjects to switch between different rule sets, 

which are applied to the same stimulus set; for instance, the switching between a match 

to sample and a non-match to sample task with a given set of stimuli. Often, successful 

task switching is accompanied by switching costs. Subjects make more errors and/or 

show greater reaction times on trials directly following a switch than on task repetition 

trials (summarised in Monsell, 2003). Large parts of the frontal lobe, including the 

prefrontal cortex were found to be involved in the implementation of the new task set 

(Dove et al., 2000). Additionally, single cell studies have shown that individual PFC 

neurons represent task rules in an abstract way (Bongard and Nieder, 2010; Eiselt and 

Nieder, 2013; Vallentin et al., 2012).  

In these studies, the rules of the game change on a trial-by-trial basis, forcing the 

subjects to view the same stimuli under different task contexts. In the current study, the 

goal was not to find correlates of the task rules, but rather to see how the context 

changes the representation of numerosity stimuli. Thus, instead of changing the task 

applied to the same stimulus set, the task was held constant and the stimulus set was 

changing. By intermingling the numerosity stimuli with line length and colour stimuli while 

the task remained to match the various stimuli to the sample, it was possible to change 

the context of numerosity discrimination without influencing the actual task the monkeys 

were performing.  
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In order to keep the monkeys well motivated throughout both blocks, the samples for the 

different magnitude types were selected to produce the same, high level of performance. 

As shown in Figure 12, the monkeys performed with high proficiency in numerosity trials 

in both blocks. Monkey L did not show any differences between the two blocks, neither in 

the proportion of correct trials, nor in reaction times. Monkey H was slightly better in the 

pure block, than in the mixed magnitude block, but this increase in performance was 

accompanied by a slight increase in reaction times as well (Figure 13), indicating a 

change in strategy. This classical speed accuracy trade-off is well known and has been 

shown in humans and animals in a variety of tasks (Bogacz et al., 2010; Link and Tindall, 

1971; Reed, 1973). 

Taken together, these behavioural results showed that monkeys similarly discriminated 

numerosity in both contexts and were not significantly affected in their performance by 

the blocking condition. Thus, it was possible to change the context of magnitude 

discrimination, without affecting the difficulty level of the task at hand. 

 

4.2 Coding of multiple magnitudes 

During the mixed magnitude block, the monkeys solved numerosity, line length and 

colour match to sample tasks. Prefrontal cortex neurons represented all three 

magnitudes. During the sample phase, the number of selective neurons for the three 

magnitude types was comparable, but in the delay phase, there were significantly less 

neurons selective for colours. There was no significant overlap between the three neural 

populations in the sample phase but in the delay phase 14 PFC cells were selective for 

both, line lengths and numerosities.  

These, somewhat inconsistent results are in line with the current literature. It seems to 

depend greatly on the experimental environment, whether or not magnitudes are 

encoded in an overlapping fashion with multitasking cells. Several imaging studies in 

humans have found co-activation in the posterior parietal cortex (area which involved in 
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magnitude processing in humans) when subjects discriminated numbers and 

numerosities or numbers and physical size (Piazza et al., 2007; Pinel et al., 2004). Single 

cell studies in monkeys have also suggested that quantities, such as line lengths and 

numerosities, are not only encoded in the same way, but on the same neural substrate 

(Tudusciuc and Nieder, 2007, 2009). These findings have led to the proposition of 

ATOM, a theory of magnitude by Vincent Walsh. The theory poses, that all magnitudes 

are encoded via the same universal magnitude fronto-parietal network in the brain 

(Walsh, 2003) and thus are sesceptible to interefence effects. 

On the other hand some of the described interference effects are asymmetrical; i. e. the 

interfering influence of one dimension on another is directional and not equal to the 

reciprocal. This asymmetry was found using a Stroop-like test with line lengths and 

numerosities (Dormal and Pesenti, 2007). A lesion study with a patient with extensive 

damage to the right hemisphere, including the inferior parietal and inferior and lateral 

prefrontal regions, showed that the interaction between numerosity, space and time 

processing was asymmetrical. While time processing was impaired, numerosity and line 

length judgments remained unaffected (Cappelletti et al., 2009). Similar effects were 

found with space and time interactions in children (Casasanto et al., 2010). Another 

study showed, that while the left intraparietal sulcus seems to be involved exclusively in 

line length processing, the right IPS is activated by both spatial and numerical 

magnitudes (Dormal and Pesenti, 2009). A single cell study used the same line length 

and numerosity stimuli as, described above but in combination with spatial frequencies in 

a rule switching task. Here again no overlap in the representation of the three 

magnitudes was found, though the coding properties of the respective populations 

seemed to be very similar (Eiselt, 2013).  

These examples illustrate that it has been difficult to determine the existence of a 

common magnitude system in the brain. Something similar has also been found with 

non-numerical categories. Roy and colleagues (2010) trained rhesus monkeys on a 

match to category task where the animals responded to morphed pictures of cats and 

dogs. The monkeys were required to switch between two category schemes on a trial-by-
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trial basis. One category scheme (A) had the categories “cats” vs. “dogs”, the other one 

“cat1-dog1” and “cat2-dog2” (B) such that the category boundaries were seemingly 

arbitrary and had to be learned. The authors found neurons in the PFC, which 

differentiated either between the categories of the scheme (A) or those of scheme (B). 

These cells did not multitask and kept their categorical preference on trials, when this 

information was made irrelevant by the presence of an alternate category cue (namely 

representation of category scheme A, when B was cued) (Roy et al., 2010).  

On the other hand, when the monkeys switched between categorizing cats vs. dogs and 

categorizing sports cars vs. Sedans in a similar setting some of the prefrontal cortex 

neurons did multitask and switched from encoding one category set to the other on a 

trial-by-trial basis (Cromer et al., 2010). Thus, it seems that the prefrontal cortex uses 

multitasking cells, when two independent category sets have to be encoded, but when 

the category sets are similar and depend on the same stimulus set, two independent 

PFC populations emerge to prevent interference effects. 

These findings suggest, that whether or not the prefrontal cortex employs overlapping 

populations for encoding categories, strongly depends on the given task. It seems 

reasonable to assume that greater task demands, when the monkeys have to switch 

between categories based on the same stimuli (Roy et al., 2010), promote the 

employment of distinct neural populations, in contrast to easier tasks with two 

independent categories (Cromer et al., 2010).  

Perhaps the same holds true for magnitudes. In easier tasks, where only two 

independent magnitudes were used, PFC cells encoded line lengths and numerosities 

simultaneously (Tudusciuc and Nieder, 2007, 2009). In the current study, with a more 

complex task with three magnitudes, such multitasking cells could only be found in one 

task epoch. In another complex task, with three magnitudes and changing response 

rules, no such multitasking cells were found (Eiselt, 2013).  

However, it remains unclear whether numerosities are encoded in a stable way while 

other magnitudes co-activate the numerosity network when necessary or whether the 
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prefrontal cortex neurons also change their numerosity encoding properties as a function 

of the context. 

4.3 Stable vs. adaptive coding of numerosities 

As seen above, numerosity encoding cells sometimes also encode other magnitudes and 

at other times do not. Does this influence how the numerosities themselves are encoded 

by the prefrontal neurons? This question will be addressed in this chapter. Two 

possibilities have been outlined in the first chapter of this thesis: the adaptive coding 

hypothesis and the stable coding in number sense. 

The adaptive coding hypothesis was proposed by John Duncan and posits that prefrontal 

cortex neurons have the ability to encode any relevant feature of the environment and 

change their coding properties to adapt to changing demands. Within this framework, it is 

to be expected that numerosity encoding is influenced by the context of magnitude 

discrimination. Support for this hypothesis comes from studies with complex behavioural 

protocols, showing dynamic response properties of PFC neurons, which are not 

specialized for a single function but are highly adaptive (Stokes et al., 2013). Selectivity 

for arbitrary visual categories often emerges after explicit training to distinguish those 

categories. For example, Freedman and colleagues (2002) showed that monkeys trained 

to discriminate computer-generated stimuli into “cat” and ”dog” categories had PFC 

neurons selective for both categories. Subsequently, one of the monkeys was retrained 

to assign the same stimuli into three new categories (with the two new category 

boundaries orthogonal to the original two-category boundary). After this learning process, 

tuning to the previously learned, now-irrelevant, “cat” and “dog” categories was lost. 

Instead, information about the three-category scheme was evident in the population of 

PFC neurons (Freedman et al., 2002). Accordingly, it might be expected that PFC 

neurons change, at least to some extent, their tuning to numerosity and split or adapt 

their coding capacities according to the different magnitude contexts at hand. After all, 

encoding and switching between three magnitudes (numerosity, length and colour) in 

one block requires three times more coding capacity than representing only one quantity 

(numerosity).  
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While learning requires plasticity in the response properties of neurons, ubiquitously 

changing the selectivity of PFC neurons may not be the best computational strategy for 

all types of abstract information. Data from the literature suggests that numerosity 

representations in the PFC rely on a sparse code (Olshausen and Field, 2004). 

Alternatively, numerosities might be one of the natural categories, which are so important 

to primates that their coding is stable and unaffected by the environment. Stanislas 

Dehaene proposed the existence of a number sense. This hypothesis posits that visual 

numerosity-selective neurons may develop spontaneously and naturally within visual 

neural structures of the primate brain and that numerical information is encoded in a 

designated fronto-parietal network (Danzig, 1919; Dehaene, 1997). Support for this idea 

comes from the recent finding of numerosity-selective neurons in numerically-naïve 

monkeys (Viswanathan and Nieder, 2013). Neurons in the lateral PFC reliably encode 

the number of visual items in numerically-naïve monkeys, i. e. monkeys that have never 

been trained to discriminate numerosity. Based on their psychophysical findings, Burr 

and Ross (2008) suggested visual numerosity as a sensory attribute because perceived 

numerosity is susceptible to adaptation just like colour, contrast or speed (Burr and Ross, 

2008). It is, however, difficult to imagine numerosity to be represented at the level of the 

early visual cortex. There is indication that adaptation processes are not restricted to 

primary visual attributes, but also observed for high-level visual categories such as faces 

(Webster and MacLeod, 2011). Such adaptation processes suggests a specialized 

neural pathway with a limited number of units, which are recruited by the adaptive 

stimulus and are biased by it when the stimulus changes. Numerosity, being subject to 

adaptation process, could be a natural category encoded spontaneously and stably 

within dedicated pathways. 

To disentangle those two coding possibilities, stable and adaptive numerosity coding, a 

delayed match to sample task was used in two contexts. In the pure numerosity block, 

only numerosity trials were presented and in the mixed magnitude block, line length and 

colour match to sample were added to the numerosity match to sample trials.  
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If the prefrontal cortex does indeed follow the adaptive coding hypothesis, then in order 

to deal with increased coding demand in the mixed magnitude block, a single neuron 

might have to represent more than one magnitude simultaneously and become 

multitasking (Cromer et al., 2010). Alternatively, cells might switch from encoding line 

lengths or colours to encoding numerosities in the pure numerosity block, leading to an 

increased number of selective cells in the pure block. This was tested with a three-way 

ANOVA. Cells, which change their preferred numerosity or the strength of their selectivity 

(i. e. selective vs. not selective) would show an interaction between the main factors, 

numerosity and blocking condition. As depicted in Figure 16 this was the case for very 

few cells. A vast majority of PFC neurons showed stable preference (Roy et al., 2010) for 

a specific, preferred numerosity, irrespective of the magnitude context. 

Alternatively, under adaptive coding, a single population of neurons could have 

decreased the strength of their numerosity coding as a function of the increased stimulus 

space in the three-magnitude block condition. This was observed by Meyer and 

colleagues (2011), who examined the spatial and shape selectivity of neurons in the 

prefrontal cortex after training monkeys in various working memory tasks. Neurons were 

sampled during a spatial working memory task, a feature working memory task, and a 

spatial-feature conjunction working memory task. Relative to the selectivity found in the 

feature working memory task alone, the average neuronal selectivity decreased in the 

conjunction task (requiring both feature and spatial working memory). 

There were no differences in the temporal evolution of selectivity (Figure 18) or in the 

width of the tuning curves (Figure 19). The selectivity index (ratio of discharge rates to 

the preferred and the non-preferred samples) of individual numerosity selective neurons 

remained unchanged between the pure numerosity block and the mixed magnitude block 

(Figure 20). Thus, in contrast to simple spatial or feature discrimination task, the strength 

of numerosity representations remained stable irrespective of task context.  

Lastly, because the changes of coding properties could happen not on the level of single 

independent numerosity detecting neurons, but in a correlated fashion within the whole 

population. We examined this with an ROC and a noise correlation analysis. Classically, 
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the selectivity of a cell for a certain stimulus feature is detected with a statistical test, 

such as an ANOVA. Units, which fail to reach the significance criterion, still may carry 

some information about the presented stimuli or the task. To assess these subthreshold 

effects, a receiver operating characteristic analysis was conducted with the entire 

population of recorded prefrontal units. During the pure block, the AUROC values were 

higher than in the mixed block condition i. e. the population of prefrontal cells 

discriminated between the respective preferred from the non-preferred numerosities  

better in the pure than in the mixed block. This might be due to a contextual modification 

of the visual responses or indicate that, to some small extent, the magnitude context may 

influence the properties of even those cells that show only weak encoding of 

numerosities. Maybe, cells, which differentiated strongly between numerosities, could not 

be affected as strongly by the blocking condition, because their coding was already 

optimal while cells, which had only very weak numerosity effects or none at all could be 

enhanced by the context of magnitude discrimination. 

Our second analysis, noise correlation is a measure for local, transient connectivity 

between pairs of cells. This connectivity changes as a function of task demands or 

encoded properties (Aertsen et al., 1989; Palm et al., 1988). Thus, it was hypothesized 

that the connections between neurons might be influenced by the changing stimulus 

space (one vs. three kinds of magnitudes in the pure and the mixed block). However, this 

was not the case. As shown in Figure 22 , the general noise correlation was rather weak 

and did not differ between the two blocking conditions. This indicates that the 

connectivity patterns stay stable, irrespective of magnitude context. 

In summary, this thesis shows that the magnitude context had a small effect on the 

discharge properties of numerosity selective neurons in the prefrontal cortex. Neither the 

sharpness of selectivity nor its time course was affected by the context of numerosity 

discrimination. To further test the notion of stable numerosity coding in PFC, it will be 

necessary to investigate the tuning properties of numerosity detectors in more radically 

changing contexts, such as genuine task switching protocols. For instance, it would be 

interesting to see whether or not switching from a delayed match to numerosity task 
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(Nieder et al., 2002; Nieder and Merten, 2007) to a rule switching task based on 

numerosities (Eiselt and Nieder, 2013; Vallentin et al., 2012) would modify the coding 

properties. In addition, it remains to be investigated whether long-term learning modifies 

the proportion or tuning functions of numerosity selective neurons.  



5 Summary and Conclusion 

68 

 

5 Summary and Conclusion 

In this thesis, the effect of magnitude context on the representation of numerosities was 

investigated. Additionally, the coding of different magnitudes was compared. 

The coding of numerosities was compared under two different blocking conditions. The 

magnitude context had very little effect on the coding properties of prefrontal cortex 

neurons. The behaviour of numerosity selective cells did not change with the context. 

These findings are in line with the notion of number sense. Only weakly numerosity 

coding cells seem to be enhanced in function during the pure block.  

In a second step, we found that sensory and abstract magnitudes such as colour, line 

length and numerosities are encoded in a similar way in the primate prefrontal cortex. 

Selective cells display tuning curves when discriminating between different stimuli. The 

ATOM hypothesis suggests that the brain has a circuit dedicated to the task of 

representing different kinds of magnitudes. The experimental data so far, however, is 

ambiguous in this respect. Some studies find significant overlap in the representation of 

magnitudes; others find asymmetrical interference effects or no overlap at all. Similarly, 

the data in this study reveal an inconsistent overlap in the populations coding for the 

different magnitudes, suggesting that the recruitment of multitasking cells depends on 

the current task and its demands. 

Taken together, these two results suggest that numerosities are indeed encoded 

spontaneously and naturally by a designated network. However, in addition to this 

population, there might be cells, which can adaptively code for numerosities and other 

magnitudes as well when recruited under certain conditions. 

 



  References 

69 

 

References 

Aertsen, a M., Gerstein, G. L., Habib, M. K., and Palm, G. (1989). Dynamics of neuronal 
firing correlation: modulation of “effective connectivity”. Journal of neurophysiology, 
61(5), 900–17.  

Afifi, A. K., and Bergman, R. A. (1998). Functional Neuroanatomy. McGraw-Hill. 

Aron, A. R., Robbins, T. W., and Poldrack, R. a. (2004). Inhibition and the right inferior 
frontal cortex. Trends in cognitive sciences, 8(4), 170–177.  

Baddeley, A. (2003). Working memory: looking back and looking forward. Nature 
reviews. Neuroscience, 4(10), 829–839.  

Badre, D., and D’Esposito, M. (2009). Is the rostro-caudal axis of the frontal lobe 
hierarchical? Nature reviews. Neuroscience, 10(9), 659–669.  

Barbas, H. (1995). Anatomic Basis of Cognitive-Emotional Interactions in the Primate 
Prefrontal Cortex. Neuroscience and Biobehavioural Reviews, 19(3), 499–510. 

Barbas, H., and Pandya, D. N. (1989). Architecture and intrinsic connections of the 
prefrontal cortex in the rhesus monkey. The Journal of comparative neurology, 
286(3), 353–75.  

Battig, K., Rosvold, H. E., and Mishkin, M. (1962). Comparison of the effects of frontal 
and caudate lesions on dicrimination learnung in monkeys. Journal of Comparative 
and Physiological Psychology, 55(4), 458–463. 

Bogacz, R., Wagenmakers, E.-J., Forstmann, B. U., and Nieuwenhuis, S. (2010). The 
neural basis of the speed-accuracy tradeoff. Trends in neurosciences, 33(1), 10–16.  

Bongard, S., and Nieder, A. (2010). Basic mathematical rules are encoded by primate 
prefrontal cortex neurons. Proceedings of the National Academy of Sciences of the 
United States of America, 107(5), 2277–2282.  

Brannon, E. M., and Terrace, H. S. (1998). Ordering of the Numerosities 1 to 9 by 
Monkeys. Science, 282(5389), 746–749.  

Brannon, Elizabeth M, and Terrace, H. S. (2000). Representation of the Numerosities 1-9 
by Rhesus Macaques (Macaca mulatta). Journal of experimental psychology. 
Animal behaviour processes, 26(1), 31–49. 

Burr, D., and Ross, J. (2008). A visual sense of number. Current biology, 18(6), 425–
428.  



References  

70 

 

Buschman, T. J., and Miller, E. K. (2007). Top-down versus bottom-up control of 
attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860–
1862.  

Cantlon, J. F., and Brannon, E. M. (2007). How much does number matter to a monkey 
(Macaca mulatta)? Journal of experimental psychology. Animal behaviour 
processes, 33(1), 32–41.  

Cappelletti, M., Freeman, E. D., and Cipolotti, L. (2009). Dissociations and interactions 
between time, numerosity and space processing. Neuropsychologia, 47(13), 2732–
2748.  

Casasanto, D., Fotakopoulou, O., and Boroditsky, L. (2010). Space and Time in the 
Child’s Mind: Evidence for a Cross-Dimensional Asymmetry. Cognitive science, 
34(3), 387–405.  

Cohen Kadosh, R., Cohen Kadosh, K., and Henik, A. (2008). When brightness counts: 
the neuronal correlate of numerical-luminance interference. Cerebral cortex, 18(2), 
337–343.  

Cordes, S., Gelman, R., Gallistel, C. R., and Whalen, J. (2001). Variability signatures 
distinguish verbal from nonverbal counting for both large and small numbers. 
Psychonomic bulletin and review, 8(4), 698–707.  

Cromer, J. a, Roy, J. E., and Miller, E. K. (2010). Representation of multiple, independent 
categories in the primate prefrontal cortex. Neuron, 66(5), 796–807.  

Damoiseaux, J. S., Rombouts, S. A. R. B., Barkhof, F., Scheltens, P., Stam, C. J., Smith, 
S. M., and Beckmann, C. F. (2006). Consistent resting-state networks across 
healthy subjects. Proceedings of the National Academy of Sciences of the United 
States of America, 103(37), 13848–13853. 

Danzig, T. (1930). Number the Language of Science. New York: The Free Press. 

Dehaene, S, and Changeux, J. (1993). Development of elementary numerical abilities: A 
neuronal model. Journal of Cognitive Neuroscience, 5(4), 390–407.  

Dehaene, S, and Changeux, J. P. (1989). A simple model of prefrontal cortex function in 
delayed-response tasks. Journal of cognitive neuroscience, 1(3), 244–261.  

Dehaene, S, Dehaene-Lambertz, G., and Cohen, L. (1998). Abstract representations of 
numbers in the animal and human brain. Trends in neurosciences, 21(8), 355–361.  



  References 

71 

 

Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., and Tsivkin, S. (1999). Sources of 
Mathematical Thinking: Behavioural and Brain-Imaging Evidence. Science, 
284(5416), 970–974.  

Dehaene, S. (1997). The number sense. How the mind creates mathematics. London: 
Allen Lane The Pinguin Press. 

Dehaene, S., Bossini, S., and Giraux, P. (1993). The mental representation of parity and 
number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396.  

Dormal, V., and Pesenti, M. (2007). Numerosity-Length Interference. Experimental 
Psychology, 54(4), 289–297.  

Dormal, V., and Pesenti, M. (2009). Common and specific contributions of the 
intraparietal sulci to numerosity and length processing. Human brain mapping, 
30(8), 2466–2476.  

Dove, A., Pollmann, S., Schubert, T., Wiggins, C. J., and Yves von Cramon, D. (2000). 
Prefrontal cortex activation in task switching: an event-related fMRI study. Cognitive 
Brain Research, 9(1), 103–109.  

Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. 
Nature reviews. Neuroscience, 2(11), 820–9.  

Eiselt, A.-K. (2013). Quantitative rules applied to multiple magnitudes in non-human 
primates. Eberhard Karls Universität Tübingen. 

Eiselt, A.-K., and Nieder, A. (2013). Representation of abstract quantitative rules applied 
to spatial and numerical magnitudes in primate prefrontal cortex. The Journal of 
neuroscience, 33(17), 7526–7534.  

Feigenson, L., Carey, S., and Hauser, M. D. (2002). The representation underlying 
infants’ choice of more: Object files versus analog magnitudes. Psychological 
Science, 13, 150-156. 

Finger, S. (2000). Minds Behind the Brain A History of the pioneers and their discoveries. 
New York: Oxford University Press, Inc. 

Freedman, D J, Riesenhuber, M., Poggio, T., and Miller, E. K. (2001). Categorical 
representation of visual stimuli in the primate prefrontal cortex. Science, 291(5502), 
312–6.  

Freedman, David J, Riesenhuber, M., Poggio, T., and Miller, E. K. (2002). Visual 
categorization and the primate prefrontal cortex: neurophysiology and behaviour. 
Journal of neurophysiology, 88(2), 929–941. 



References  

72 

 

Fuster, J. M. (2001). The Prefrontal Cortex — An Update: Time is of the Essence. 
Neuron, 30, 319–333. 

Fuster, J. M., and Alexander, G. E. (1971). Neural activity related to short term memory. 
Science, 173, 652–654. 

Gallistel, C., and Gelman, I. (2000). Non-verbal numerical cognition: from reals to 
integers. Trends in cognitive sciences, 4(2), 59–65.  

Green, D.M., and Swets, J. A. (1966). Signal Detection theory and Psychophysics. New 
York: Wiley.  

Gold, J. I., and Shadlen, M. N. (2007). The neural basis of decision making. Annual 
review of neuroscience, 30, 535–74.  

Goldman-Rakic, P. (1987). Circuitry of primate prefrontal cortex and regulation of 
behaviour by representational memory. In F. Plum and V. B. Mountcastle (Eds.), 
Handbook of Physiology. American. Physiological. Society., Bethesda.  

Gordon, P. (2004). Numerical cognition without words: evidence from Amazonia. 
Science, 306(5695), 496–499. 

Hartigan, J., and Hartigan, P. (1985). The dip test of unimodality. The Annals of 
Statistics, 13(1), 70–84. 

Hauser, M. D., Carey, S., and Hauser, L. B. (2000). Spontaneous number representation 
in semi-free-ranging rhesus monkeys. Proceedings of the Royal Society B, 270, 
829-833. 

Hayashi, M. J., Kanai, R., Tanabe, H. C., Yoshida, Y., Carlson, S., Walsh, V., and 
Sadato, N. (2013). Interaction of numerosity and time in prefrontal and parietal 
cortex. The Journal of neuroscience, 33(3), 883–893.  

Hazeltine, E., Bunge, S. a., Scanlon, M. D., and Gabrieli, J. D. E. (2003). Material-
dependent and material-independent selection processes in the frontal and parietal 
lobes: an event-related fMRI investigation of response competition. 
Neuropsychologia, 41(9), 1208–1217.  

Heekeren, H. R., Marrett, S., Bandettini, P. a, and Ungerleider, L. G. (2004). A general 
mechanism for perceptual decision-making in the human brain. Nature, 431(7010), 
859–62.  

Hendelman, W. J. (2000). Atlas of functional neuroanatomy. Boca Raton, Fla., [etc.]: 
CRC Press. 



  References 

73 

 

Henik, A., and Tzelgov, J. (1982). Is three greater than five: the relation between physical 
and semantic size in comparison tasks. Memory and cognition, 10(4), 389–395. 

Henschen, S. E. (1919). Über Sprach-, Musik und Rechenmechanismen und ihre 
Lokalisation im Großhirn. Zeitschrift für die gesamte Neurologie und Psychiatrie, 52, 
273-298. 

Hurewitz, F., Gelman, R., and Schnitzer, B. (2006). Sometimes area counts more than 
number. Proceedings of the National Academy of Sciences of the United States of 
America, 103(51), 19599–19604.  

Hutchison, R. M., Leung, L. S., Mirsattari, S. M., Gati, J. S., Menon, R. S., and Everling, 
S. (2011). Resting-state networks in the macaque at 7 T. NeuroImage, 56(3), 1546–
55.  

Iversen, S. D., and Mishkin, M. (1970). Perseverative interference in monkeys following 
selective lesions of the inferior prefrontal convexity. Experimental brain research, 
11(4), 376–86.  

Jacob, S. N., Ott, T., and Nieder, A. (2013). Dopamine regulates two classes of primate 
prefrontal neurons that represent sensory signals. The Journal of neuroscience, 
33(34), 13724–34.  

Kahn, H. J., and Whitaker, H. A. (1991). Acalculia: An Historical Review of Localozation. 
Brain and Cognition, 17, 102-115. 

Koehler, O. (1941). Vom erlernen unbenannter anzahlen bei Vögeln. Die 
Naturwissenschaften, 29, 201–218.  

Kritzer, M. F., and Goldman-Rakic, P. S. (1995). Intrinsic circuit organization of the major 
layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. The 
Journal of comparative neurology, 359(1), 131–43.  

Lara, A. H., and Wallis, J. D. (2014). Executive control processes underlying multi-item 
working memory. Nature neuroscience, 17, 876–883. 

Lebedev, M. a, Messinger, A., Kralik, J. D., and Wise, S. P. (2004). Representation of 
attended versus remembered locations in prefrontal cortex. PLoS biology, 2(11), 
e365.  

Link, S. W., and Tindall, A. D. (1971). Speed and accuracy in comparative judgments of 
line length. Perception and Psychophysics, 9, 284–288. 

Malmo, R. B. (1942). Interference factors in delayed response in monkeys after removal 
of frontal lobes. Journal of neurophysiology, 5, 295–308. 



References  

74 

 

Matsumoto, K., Suzuki, W., and Tanaka, K. (2003). Neuronal correlates of goal-based 
motor selection in the prefrontal cortex. Science, 301(5630), 229–232.  

McComb, K., Packer, C., and Pusey, A. (1994). Roaring and numerical assessment in 
contests between groups of female lions, Panthera leo. Animal Behaviour, 47, 379–
387.  

Mechner, F. (1957). Probablility relations within response sequences under ratio 
reinforcement. Journal of the Experimental Analysis of Behaviour, 1(2), 109–121. 

Meck, W. H., and Church, R. M. (1983). A mode control model of counting and timing 
processes. Journal of experimental psychology: Animal behaviour processes, 9(3), 
320–334.  

Merten, K., and Nieder, A. (2009). Compressed scaling of abstract numerosity 
representations in adult humans and monkeys. Journal of cognitive neuroscience, 
21(2), 333–346.  

Merten, K., and Nieder, A. (2012). Active encoding of decisions about stimulus absence 
in primate prefrontal cortex neurons. Proceedings of the National Academy of 
Sciences of the United States of America, 109(16), 6289–94.  

Meyer, T., Qi, X.-L., Stanford, T. R., and Constantinidis, C. (2011). Stimulus selectivity in 
dorsal and ventral prefrontal cortex after training in working memory tasks. The 
Journal of Neuroscience, 31(17), 6266-6276.  

Miller, E. K. (2000). The prefrontal cortex and cognitive control. Nature reviews. 
Neuroscience, 1(1), 59–65.  

Miller, E. K., and Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. 
Annual review of neuroscience, 24, 167–202. 

Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140.  

Morecraft, R. J., and Hoesen, G. W. V. A. N. (1993). Frontal Granular Cortex Input to the 
Primary ( Ml ) Motor Cortices in the Rhesus Monkey. Journal of Comparative 
Neurology, 337(4), 669–689. 

Moyer, R. S., and Landauer, T. K. (1967). Time required for Judgements of Numerical 
Inequality. Nature, 215, 1519–1520. 

Nieder, A. (2005). Counting on neurons: the neurobiology of numerical competence. 
Nature reviews. Neuroscience, 6(3), 177–190.  



  References 

75 

 

Nieder, A. (2012). Supramodal numerosity selectivity of neurons in primate prefrontal 
and posterior parietal cortices. Proceedings of the National Academy of Sciences, 
109(29), 11860 – 11865.  

Nieder, A., and Dehaene, S. (2009). Representation of number in the brain. Annual 
review of neuroscience, 32, 185–208.  

Nieder, A., Freedman, D. J., and Miller, E. K. (2002). Representation of the quantity of 
visual items in the primate prefrontal cortex. Science, 297(5587), 1708–1711. 

Nieder, A., and Merten, K. (2007). A labeled-line code for small and large numerosities in 
the monkey prefrontal cortex. The Journal of neuroscience, 27(22), 5986–5993.  

Nieder, A., and Miller, E. K. (2003). Coding of cognitive magnitude: compressed scaling 
of numerical information in the primate prefrontal cortex. Neuron, 37(1), 149–157. 

Olshausen, B. a, and Field, D. J. (2004). Sparse coding of sensory inputs. Current 
opinion in neurobiology, 14(4), 481–7.  

Palm, G., Aertsen, A. M. H. J., and Gerstein, G. L. (1988). Biological Cybernetics, 11, 1–
11. 

Passingham, R. (2009). How good is the macaque monkey model of the human brain? 
Current opinion in neurobiology, 19(1), 6–11.  

Petrides, M., and Pandya, D. N. (1988). Association fiber pathways to the frontal cortex 
from the superior temporal region in the rhesus monkey. Journal of Comparative 
Neurology, 273(1), 52–66. 

Petrides, M., and Pandya, D. N. (1999). Dorsolateral prefrontal cortex: comparative 
cytoarchitectonic analysis in the human and the macaque brain and corticocortical 
connection patterns. The European journal of neuroscience, 11(3), 1011–36.  

Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. 
Trends in Cognitive Sciences, 14(12), 542-551. 

Piazza, M., Pinel, P., Le Bihan, D., and Dehaene, S. (2007). A magnitude code common 
to numerosities and number symbols in human intraparietal cortex. Neuron, 53(2), 
293–305.  

Pica, P., Lemer, C., Izard, V., and Dehaene, S. (2004). Exact and approximate arithmetic 
in an Amazonian indigene group. Science, 306(5695), 499–503.  



References  

76 

 

Pinel, P., Piazza, M., Le Bihan, D., and Dehaene, S. (2004). Distributed and overlapping 
cerebral representations of number, size, and luminance during comparative 
judgments. Neuron, 41(6), 983–993.  

Platt, J., and Johnson, D. (1971). Localization of position within a homogeneous 
behaviour chain: Effects of error contingencies. Learning and Motivation, 2(4), 386–
414.  

Preuss, T. M. (1995). Do rats have prefrontal cortex? The rose-woolsey-akert program 
reconsidered. Journal of cognitive neuroscience, 7(1), 1–24.  

Preuss, T. M., and Goldman-Rakic, P. S. (1989). Connections of the ventral granular 
frontal cortex of macaques with perisylvian premotor and somatosensory areas: 
anatomical evidence for somatic representation in primate frontal association cortex. 
The Journal of comparative neurology, 282(2), 293–316.  

Reed, A. V. (1973). Speed-Accuracy Trade-Off in Recognition Memory. Science, 181, 
574–576. 

Ridderinkhof, K. R., van den Wildenberg, W. P. M., Segalowitz, S. J., and Carter, C. S. 
(2004). Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex 
in action selection, response inhibition, performance monitoring, and reward-based 
learning. Brain and cognition, 56(2), 129–40.  

Roitman, J. D., and Shadlen, M. N. (2002). Response of neurons in the lateral 
intraparietal area during a combined visual discrimination reaction time task. The 
Journal of neuroscience, 22(21), 9475–9489.  

Romo, R, Brody, C. D., Hernández, A., and Lemus, L. (1999). Neuronal correlates of 
parametric working memory in the prefrontal cortex. Nature, 399(6735), 470–473.  

Romo, Ranulfo, and Salinas, E. (2003). Flutter discrimination: neural codes, perception, 
memory and decision making. Nature reviews. Neuroscience, 4(3), 203–18.  

Ross, J., and Burr, D. (2010). Vision senses number directly. Journal of Vision, 10(2), 1–
8.  

Roy, J. E., Riesenhuber, M., Poggio, T., and Miller, E. K. (2010). Prefrontal cortex activity 
during flexible categorization. The Journal of neuroscience, 30(25), 8519–8528.  

Sakagami, M., Tsutsui Ki, Lauwereyns, J., Koizumi, M., Kobayashi, S., and Hikosaka, O. 
(2001). A code for behavioural inhibition on the basis of colour, but not motion, in 
ventrolateral prefrontal cortex of macaque monkey. The Journal of neuroscience, 
21(13), 4801–4808.  



  References 

77 

 

Sakai, K., Rowe, J. B., and Passingham, R. E. (2002). Active maintenance in prefrontal 
area 46 creates distractor-resistant memory. Nature neuroscience, 5(5), 479–484.  

Sawamura, H., Shima, K., and Tanji, J. (2002). Numerical representation for action in the 
parietal cortex of the monkey. Nature, 415, 918-922. 

Shallice, T., and Evans, M. E. (1978). The Involvement of the Frontal Lobes in Cognitive 
Estimation. Cortex, 14(2), 294-303. 

Shepard, R. N., Kilpatric, D. W., and Cunningham, J. P. (1975). The Internal 
Representation of Numbers. Cognitive Psychology, 7, 82–138. 

Shettleworth, S. J. (2010). Cognition, Evolution, and Behaviour. New York: Oxfrod 
University Press. 

Shima, K., Isoda, M., Mushiake, H., and Tanji, J. (2007). Categorization of behavioural 
sequences in the prefrontal cortex. Nature, 445(7125), 315–8.  

Stoianov, I., and Zorzi, M. (2012). Emergence of a “visual number sense” in hierarchical 
generative models. Nature neuroscience, 15(2), 194–196.  

Stokes, M. G., Kusunoki, M., Sigala, N., Nili, H., Gaffan, D., and Duncan, J. (2013). 
Dynamic coding for cognitive control in prefrontal cortex. Neuron, 78(2), 364–375.  

Suzuki, M., and Gottlieb, J. (2013). Distinct neural mechanisms of distractor suppression 
in the frontal and parietal lobe. Nature neuroscience, 16(1), 98–104. 
doi:10.1038/nn.3282 

Tanji, J., and Hoshi, E. (2008). Role of the Lateral Prefrontal Cortex in Executive 
Behavioural Control. Physiological Reviews, 88(140), 37–57.  

Tsao, D. Y., Schweers, N., Moeller, S., and Freiwald, W. (2008). Patches of face-
selective cortex in the macaque frontal lobe. Nature neuroscience, 11(8), 877–879.  

Tudusciuc, O., and Nieder, A. (2007). Neuronal population coding of continuous and 
discrete quantity in the primate posterior parietal cortex. Proceedings of the National 
Academy of Sciences of the United States of America, 104(36), 14513–8. 

Tudusciuc, O., and Nieder, A. (2009). Contributions of primate prefrontal and posterior 
parietal cortices to length and numerosity representation. Journal of 
neurophysiology, 101(6), 2984–2994.  

Ungerleider, L. G., Gaffan, D., and Pelak, V. S. (1989). Projections from inferior temporal 
cortex to prefrontal cortex via uncinate fascile in rhesus monkeys. Experimental 
brain research, 76, 473–484. 



References  

78 

 

Vallentin, D., Bongard, S., and Nieder, A. (2012). Numerical rule coding in the prefrontal, 
premotor, and posterior parietal cortices of macaques. The Journal of neuroscience, 
32(19), 6621–6630.  

Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., and Buckner, R. L. (2008). 
Evidence for a frontoparietal control system revealed by intrinsic functional 
connectivity. Journal of neurophysiology, 100(6), 3328–3342. 

Viswanathan, P., and Nieder, A. (2013). Neuronal correlates of a visual “sense of 
number” in primate parietal and prefrontal cortices. Proceedings of the National 
Academy of Sciences of the United States of America, 110(27), 11187–11192. 

Wallis, J. D., Anderson, K. C., and Miller, E. K. (2001). Single neurons in prefrontal 
cortex encode abstract rules. Nature, 411(6840), 953–6. 

Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and 
quantity. Trends in Cognitive Sciences, 7(11), 483–488. 

Watanabe, M. (1992). Frontal units of the monkey coding the associative significance of 
visual and auditory stimuli. Experimental brain research, 89(2), 233–47.  

Webster, M. a, and MacLeod, D. I. a. (2011). Visual adaptation and face perception. 
Philosophical transactions of the Royal Society of London. Series B, Biological 
sciences, 366(1571), 1702–1725. 

Whalen, J., Gallistel, C. R., and Gelman, R. (1999). Nonverbal Counting in Humans: The 
Psychophysics of Number Representation. Psychological Science, 10(2), 130–137.  

White, D. J., Ho, L., and Freed-Brown, G. (2009). Counting chicks before they hatch: 
female cowbirds can time readiness of a host nest for parasitism. Psychological 
science, 20(9), 1140–1145.  

Williams, S. M., and Goldman-Rakic, P. S. (1998). Widespread origin of the primate 
mesofrontal dopamine system. Cerebral Cortex , 8 (4 ), 321–345.  

Wise, S. P. (2008). Forward frontal fields: phylogeny and fundamental function. Trends in 
neurosciences, 31(12), 599–608. 

Xu, F., and Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. 
Cognition, 74(1), B1–B11.  

Zigmond, M. J., Bloom, F. E., Landis, S. C., Roberts, J. L., and Squire, L. R. (1999). 
Fundamental Neuroscience. San Diego: Academic Press. 

  



  Acknowledgements 

79 

 

Acknowledgements 

An dieser Stelle möchte ich mich bei allen bedanken, die zum Gelingen dieser Abreit 

beigetragen haben. Zu allererst möchte ich meinen Dank meinem Doktorvater Andreas 

Nieder ausdrücken, der mir dieses Projekt ermöglicht und mich auf allen Etappen 

begleitet hat. Ich danke ihm für sein Fachwissen, seine Kritik und Geduld und alles was 

er mir beigebracht hat. 

Ich danke auch meinen Kollegen aus dem Labor für ein tolles Arbeitsklima und die 

Ausflüge und Unternehmungen außerhalb der Uni. Ein besonderer Dank gilt Pooja 

Viswanathan, die diese Arbeit korrigiert und kommentiert hat, die mir immer geholfen hat, 

wenn die Computer und Affen gestreikt haben, wenn die Laune mies, oder der Knoten im 

Hirn zu groß war. Danke an Felix Moll für die Affen-Abbildung. Ein großer Dank gilt auch 

Natalja Gavrilov für die Spaziergänge und Diskussionen, für Kopf Einrenken und Sonne 

im Herzen. 

Ich möchte mich auch bei unseren Tierpflegern bedanken, dafür dass wir unsere Tiere 

jeden Morgen gesund und munter, gepflegt und gehegt vorfinden.  

 


