Algorithms for Mori Dream Spaces

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)
vorgelegt von
Simon Keicher
aus Oberndorf a. N.

Tübingen
2014

Tag der mündlichen Qualifikation: Dekan:

1. Berichterstatter:
2. Berichterstatter:
27.06.2014

Prof. Dr. Wolfgang Rosenstiel
Prof. Dr. Jürgen Hausen
Prof. Dr. Antonio Laface

Contents

Introduction 1
1 Preliminaries 9

1. GIT and good quotients 9
2. Cox rings 12
3. Bunched rings and Mori dream spaces 15
4. Modifications and surfaces 20
5. Complexity-one T-varieties and \mathbb{K}^{*}-surfaces 23
2 Basic algorithms for Mori dream spaces 29
6. Finitely generated abelian groups and homomorisms 29
7. Graded rings 37
8. Mori dream spaces 44
9. Complexity-one T-varieties 55
10. Application: Combinatorially minimal \mathbb{K}^{*}-surfaces 62
3 Computing the Mori chamber decomposition 75
11. Computing \mathfrak{F}-faces 75
12. Computing the GIT-fan 80
13. Generalization to $(H, 2)$-maximal sets: 85
4 Modifications of Mori dream spaces 89
14. Modifications and H-factoriality 89
15. Toric ambient modifications 93
16. Computing modifications of Mori dream spaces 98
17. Application: Gorenstein log del Pezzo surfaces 101
18. The lattice ideal method 105
19. Linear generation 113
5 Smooth rational surfaces 119
20. Point configurations on \mathbb{P}_{2} and \mathbb{F}_{a} 119
21. Smooth rational surfaces with $\varrho(X) \leq 4$ 126
22. Smooth rational surfaces with $\varrho(X)=5$ 136
23. Smooth rational surfaces with $\varrho(X)=6$ 156
Appendix A Procedures of the MDSpackage 225
24. Procedures on finitely generated abelian groups 225
25. Procedures on graded rings 236
26. Procedures on Mori dream spaces 243
27. Procedures on complexity-one T-varieties 253
28. Miscellaneá 257
Danksagung 263
Index 265
Bibliography 269

Introduction

The central objects of this thesis are Mori dream spaces as introduced by Y. Hu and S. Keel [60], i.e., algebraic varieties such that the cone of effective divisors has a polyhedral Mori chamber decomposition. Well-known examples are toric varieties, spherical varieties or smooth Fano varieties. Hu and Keel have shown that the Mori dream spaces X are characterized by finite generation of the Cox ring $\mathcal{R}(X)$. There are strong relations between the geometry of X and its Cox ring. In fact, a Mori dream space X can be retrieved from the spectrum \bar{X} of $\mathcal{R}(X)$ as a quotient $X=\widehat{X} / / H$ of an open subset $\widehat{X} \subseteq \bar{X}$ by a quasitorus H with the class group $\mathrm{Cl}(X)$ as its characters. F. Berchtold and J. Hausen [19, 51] proposed an explicit description of Mori dream spaces X in terms of bunched rings, i.e., pairs (R, Φ) consisting of a factorially K-graded ring R given by generators and relations and a collection (bunch) Φ of overlapping polyhedral cones in $K \otimes \mathbb{Q}$. Then R determines $\bar{X}=$ Spec R, the K-grading gives rise to the H-action on \bar{X} and the open subset $\widehat{X} \subseteq \bar{X}$ is constructed from Φ by geometric invariant theory. Building on the approach via bunched rings $[19,51 ; 5 ; 18,6]$, our main focus lies on the development, implementation and application of explicit algorithms for general Mori dream spaces.
We now give a summary of the results of this thesis. A first series of results is a toolkit for basic computations with (not only projective) Mori dream spaces. We present algorithms for

- basics on finitely generated abelian groups and algebras graded by them,
- Picard group, local class groups, the cones of effective, movable or semiample divisor classes,
- canonical toric ambient variety, stratification, irrelevant ideal,
- tests for being quasismooth, smooth, (\mathbb{Q}-) factorial, complete, (quasi-) projective, singularities (in terms of strata),
- for complete intersection Cox rings: intersection numbers, graph of exceptional divisors, anticanonical divisor class, test for (\mathbb{Q}-) Gorenstein and Fano properties, Gorenstein index,
- for varieties with the action of a torus of codimension one: resolution of singularities, test for being almost-homogeneous, roots of the automorphism group.

We have implemented these algorithms in a software package, called MDSpackage, see $[54 ; 55]$. This extends packages for toric varieties, for example [20, 47, 66, 69; 99]. As an application of our algorithms, we study del Pezzo surfaces, i.e., Fano surfaces, with a non-trivial \mathbb{K}^{*}-action. Recall that V. Alexeev and V. Nikulin [2] classified the log-terminal del Pezzos surfaces of Picard number one and Gorenstein index at most two. More is known for del Pezzos surfaces with torus action. A. Kasprzyk, M. Kreuzer and B. Nill [68] classified the toric del Pezzo surfaces with Gorensteinindex $n \leq 16$ and at most log-terminal singularities. H. Süß [94, Ch. 6] listed the non-toric, log-terminal del Pezzo \mathbb{K}^{*}-surfaces with $n \leq 3$ and Picard number $\varrho(X) \leq 2$ and E. Huggenberger [61; Ch. 5] classified the non-toric, log-terminal cases
with $n=1$. Using our algorithms, we classify the (not necessarily log-terminal) nontoric del Pezzo \mathbb{K}^{*}-surfaces with $n \leq 6$, Picard number two and hypersurface Cox ring that are combinatorially minimal, i.e., those without contractible curves.

Theorem. The following table lists the non-toric, combinatorially minimal del Pezzo \mathbb{K}^{*}-surfaces of Picard number two with hypersurface Cox ring and Gorenstein index $n \leq 6$.

Cox ring $\mathcal{R}(X)$	$\mathrm{Cl}(X)$	$[\mathrm{Cl}(X): \operatorname{Pic}(X)]$	n	degree
$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}+T_{3}^{2} T_{4}^{2}+T_{5}^{2}\right\rangle$	$\mathbb{Z}^{2} \oplus \mathbb{Z} / 2 \mathbb{Z}$	32	2	2
$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}+T_{3}^{2} T_{4}^{2}+T_{5}^{2}\right\rangle$	$\mathbb{Z}^{2} \oplus \mathbb{Z} / 4 \mathbb{Z}$	256	4	1
$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}+T_{3}^{2} T_{4}^{2}+T_{5}^{2}\right\rangle$	$\mathbb{Z}^{2} \oplus \mathbb{Z} / 6 \mathbb{Z}$	864	6	$\frac{2}{3}$
$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}^{2}+T_{3} T_{4}^{2}+T_{5}^{2}\right\rangle$	$\mathbb{Z}^{2} \oplus \mathbb{Z} / 3 \mathbb{Z}$	108	3	$\frac{4}{3}$
$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}^{3}+T_{3} T_{4}^{3}+T_{5}^{3}\right\rangle$	$\mathbb{Z} 2$	9	3	$\frac{8}{3}$
$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}^{3}+T_{3} T_{4}^{3}+T_{5}^{3}\right\rangle$	$\mathbb{Z}^{2} \oplus \mathbb{Z} / 2 \mathbb{Z}$	72	3	$\frac{4}{3}$
$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}^{2}+T_{3} T_{4}^{2}+T_{5}^{2}\right\rangle$	$\mathbb{Z}^{2} \oplus \mathbb{Z} / 5 \mathbb{Z}$	500	5	$\frac{4}{5}$
$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}^{5}+T_{3} T_{4}^{5}+T_{5}^{5}\right\rangle$	\mathbb{Z}^{2}	25	5	$\frac{8}{5}$
$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}^{5}+T_{3} T_{4}^{5}+T_{5}^{5}\right\rangle$	$\mathbb{Z}^{2} \oplus \mathbb{Z} / 2 \mathbb{Z}$	200	5	$\frac{4}{5}$
$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}^{3}+T_{3} T_{4}^{3}+T_{5}^{3}\right\rangle$	$\mathbb{Z}^{2} \oplus \mathbb{Z} / 4 \mathbb{Z}$	576	6	$\frac{2}{3}$
$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}^{4}+T_{3} T_{4}^{4}+T_{5}^{4}\right\rangle$	$\mathbb{Z}^{2} \oplus \mathbb{Z} / 3 \mathbb{Z}$	432	6	$\frac{2}{3}$
$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1}^{2} T_{2}+T_{3}^{2} T_{4}+T_{5}^{2}\right\rangle$	$\mathbb{Z} 2$	4	1	4

The explicit $\mathrm{Cl}(X)$-grading of the Cox ring $\mathcal{R}(X)$ and further geometric properties of the surfaces are listed in Theorem:2.5.1:

As a first advanced algorithm we show how to compute the Mori chamber decomposition of a given Mori dream space. More generally, we provide a method to compute the GIT-fan of torus-actions on affine varieties. The GIT-fan is a polyhedral fan parameterizing quotients from D. Mumford's [83] geometric invariant theory (GIT). For quotients associated to ample bundles the fan structure has been described by I. Dolgachev, Y. Hu and M. Thaddeus [35, 97]. F. Berchtold and J. Hausen [18] then provided an explicit construction of the GIT-fan of an affine variety. Building on the latter, Algorithm 3.2.9: computes the maximal GIT-cones by traversing a spanning tree of the implicitly given dual graph of the GIT-fan. We have published our algorithm in [71].
A next series of advanced algorithms concerns the impact of modifications on Cox rings. More precisely, given a modification $X_{2} \rightarrow X_{1}$ of projective varieties where one of the Cox rings $\mathcal{R}\left(X_{i}\right)$ is known, we present methods to compute the other Cox ring in terms of generators and relations. The methods and results have been published jointly with J. Hausen and A. Laface in [57]. The case of a contraction $X_{2} \rightarrow X_{1}$ of a Mori dream space X_{2} can be answered purely theoretically, see Proposition 4.2.3. The case of a blow up $X_{2} \rightarrow X_{1}$ of a Mori dream space X_{1} is more delicate; we may even lose finite generation of $\mathcal{R}\left(X_{2}\right)$. We develop algorithms to

- verify finite generation of $\mathcal{R}\left(X_{2}\right)$,
- verify a guess of generators for $\mathcal{R}\left(X_{2}\right)$,
- produce a guess of generators for $\mathcal{R}\left(X_{2}\right)$,
- determine the ideal of relations.

Our starting point are toric ambient modifications as developed by J. Hausen in [51]. More precisely, given a Mori dream space X_{1}, there is a canonical embedding $X_{1} \subseteq Z_{1}$ into a toric variety Z_{1}. Each toric modification $\pi: Z_{2} \rightarrow Z_{1}$ induces a modification $X_{2} \rightarrow X_{1}$ of the embedded variety where $X_{2} \subseteq Z_{2}$ is the proper transform under π. Hausen has given a list of geometric criteria under which we can describe the Cox ring of X_{2}. A key step is to reduce these criteria to a series
of primality tests, see Theorem 4.1.3 and the joint paper [10] with H. Bäker and J. Hausen. As a first consequence, we obtain algorithms for items two and four, i.e., to verify a guess of generators and to determine the ideal of relations.

As an application, we explicitly compute the Cox rings of the Gorenstein logterminal del Pezzo surfaces of Picard number one without \mathbb{K}^{*}-action. See [2] for a classification of these surfaces in terms of singularity types. The Cox rings of the non-toric cases with \mathbb{K}^{*}-action have been determined by J. Hausen and H. Süß [59], the toric ones are well-known, see, e.g., R. Koelmann [72]. Our result completes the list. The idea is to present the surfaces X as $\mathbb{P}_{2} \leftarrow X^{\prime} \rightarrow X$ where enough information on the Cox ring of X^{\prime} is known by the work of B. Hassett, Y. Tschinkel, U. Derenthal, M. Artebani, A. Garbagnati and A. Laface [49, 33, 4].

Theorem. The following table lists the Cox rings of the Gorenstein log-terminal del Pezzo surfaces X of Picard number one that do not admit a non-trivial \mathbb{K}^{*}-action.

$\mathrm{S}(X)$	\sharp gen.s of $\mathcal{R}(X)$	\sharp relations	$\mathrm{Cl}(X)$
$2 A_{4}$	6	5	$\mathbb{Z} \oplus \mathbb{Z} / 5 \mathbb{Z}$
D_{8}	4	1	$\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$
$D_{5} A_{3}$	5	2	$\mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$
$D_{6} 2 A_{1}$	5	2	$\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$
$E_{6} A_{2}$	4	1	$\mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$
$E_{7} A_{1}$	4	1	$\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$
E_{8}	4	1	\mathbb{Z}
A_{7}	4	1	$\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$
A_{8}	4	1	$\mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$
$A_{7} A_{1}$	5	2	$\mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$
$A_{5} A_{2} A_{1}$	7	9	$\mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}$
$2 A_{3} A_{1}$	9	20	$\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$
$4 A_{2}$	10	27	$\mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$

Moreover, an explicit description of each Cox ring in terms of generators and relations is listed in Theorem:4.1.

A more elaborate algorithm addresses items one and three in the enumeration on page '2, i.e., given a blow up $X_{2} \rightarrow X_{1}$ of a Mori dream space X_{1} our Algorithm :4.5.12 provides a systematic guess for generators of $\mathcal{R}\left(X_{2}\right)$ and verifies its result. The idea is to show that $\mathcal{R}\left(X_{2}\right)$ is isomorphic to a certain saturated Rees algebra. Generators for $\mathcal{R}\left(X_{2}\right)$ can then be obtained by a traversal of the components of the Rees algebra. This is a complete answer to the problem as it terminates if and only if $\mathcal{R}\left(X_{2}\right)$ is finitely generated. Furthermore, we present an algorithm that verifies finite generation of $\mathcal{R}\left(X_{2}\right)$ for the case of infeasible computation.
As an application of our algorithms, we consider certain blow ups of the projective space \mathbb{P}_{3}. A.-M. Castravet and J. Tevelev [24] provided generators of the Cox ring of blow ups of \mathbb{P}_{n} at points that lie on a rational normal curve. Relations have been determined by B. Sturmfels and Z. Xu [93]. Moreover, in [92] Sturmfels and M. Velasco computed for $n \leq 8$ the Cox rings of blow ups of \mathbb{P}_{n} at $n+3$ points in general position. Applying a specialized version of our algorithm, we explicitly determine the Cox rings of blow ups of \mathbb{P}_{3} in six points in edge-special position, i.e., four points are general and at least one point lies in two hyperplanes spanned by the others.

Theorem. Let $x_{1}, \ldots, x_{4} \in \mathbb{P}_{3}$ be the standard toric fixed points. The following table lists the \mathbb{Z}^{7}-graded Cox rings of the blow up of \mathbb{P}_{3} in the following typical edge-special configurations x_{1}, \ldots, x_{6}.

x_{5}	x_{6}	\sharp gen.s of $\mathcal{R}(X)$	\sharp relations
$[1,1,0,0]$	$[0,1,1,1]$	16	15

$[2,1,0,0]$	$[1,1,0,1]$	15	10
$[1,0,0,1]$	$[0,1,0,1]$	13	5
$[1,0,0,1]$	$[0,1,1,0]$	12	2
$[2,1,0,0]$	$[1,2,0,0]$	12	2

Moreover, an explicit description of each Cox ring in terms of generators and relations is listed in Theorem:4.6.

As the major result of this thesis, we determine the Cox rings of the smooth rational surfaces X with Picard number $\varrho(X) \leq 6$; for $\varrho(X)=6$, we restrict ourselves to the non- \mathbb{K}^{*}-cases. The corollary that each smooth rational surface with $\varrho(X) \leq 6$ is a Mori dream space was also observed by Testa, Várilly-Alvarado and Velasco in [95]. So far, Cox rings of smooth rational surfaces have only been determined systematically for the special class of (weak) del Pezzo surfaces, i.e., blow ups of \mathbb{P}_{2} in points in (almost) general position; see the work of V. Batyrev, U. Derenthal, O. Popov, M. Stillman, D. Testa and M. Velasco [13, 33, 32, 89].

Our approach makes use of the fact that each smooth rational surface X can be obtained as a blow up of the projective plane \mathbb{P}_{2} in up to five points or as a blow up of the a-th Hirzebruch surface \mathbb{F}_{a} in up to four points where $a \in \mathbb{Z}_{\geq 0}$. This enables us to use our methods for Cox ring computations of blow ups of Mori dream spaces: the blow ups of \mathbb{P}_{2} can be handled in a purely computational way whereas the blow ups of \mathbb{F}_{a} require a theoretical treatment. Here, we use our methods in a formal way to deal with the parameter $a \in \mathbb{Z}_{\geq 0}$. We give a complete classification of all surfaces X with $\varrho(X) \leq 5$ and list the generators and relations of the Cox rings of each class. For Picard number six we explicitly determine the Cox rings of the surfaces that do not admit a non-trivial \mathbb{K}^{*}-action; the remaining surfaces are known to be Mori dream spaces and their Cox rings can be obtained by combinatorial methods, see $[59,61]$.
Theorem. Each smooth rational surface X with Picard number $\varrho(X) \leq 6$ is a Mori dream space. Moreover, the following statements hold.
(i) If $\varrho(X) \leq 5$ holds, then X is isomorphic to \mathbb{P}_{2} or exactly one of the surfaces listed in Propositions 5.2.4, 5.2.5, 5.2.8: or Theorem,5.3.1. There, the Cox ring $\mathcal{R}(X)$ is listed explicitly in terms of generators and relations.
(ii) If $\varrho(X)=6$ holds, then X admits a non-trivial \mathbb{K}^{*}-action or is isomorphic to exactly one of the following surfaces where $a \in \mathbb{Z}_{\geq 3}$.

Cox ring $\mathcal{R}(X)$
$\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I$
with I generatee matrix
$T_{3}^{2} T_{4}-T_{1} T_{2}-T_{6} T_{7} T_{8} T_{10}$,
$T_{1} T_{2}^{2} T_{3} T_{4} T_{5}-T_{6}^{2} T_{7}-T_{9} T_{10}$

0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 3 \& 0 \& 5 \& -2

0 \& 0 \& 1 \& -2 \& 0 \& 0 \& -1 \& 0 \& -2 \& 1

0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 2 \& -1

0 \& 0 \& 0 \& 0 \& 0 \& 1 \& -2 \& 0 \& -1 \& 1

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& -1\end{array}\right]\)

$$
\begin{aligned}
& \mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I \\
& \text { with I generated by } \\
& T_{3} T_{5} T_{8}-T_{2} T_{6}-T_{9} T_{10} \\
& T_{1} T_{5}+T_{7} T_{8}-T_{2} T_{6}^{2} T_{4} T_{10}
\end{aligned} \quad\left[\begin{array}{llllllrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & -1 & 1 & 2 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & 2 & -1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & 3 & -2
\end{array}\right]
$$

```
\(\mathbb{K}\left[T_{1}, \ldots, T_{11}\right] / I\)
```

with I generated by
$T_{3}^{2} T_{4} T_{5}^{2} T_{8}-T_{2} T_{7}-T_{11} T_{10}$, $T_{2}^{2} T_{4} T_{6}^{2} T_{11}-T_{5} T_{9}+T_{8} T_{10}$, $T_{1} T_{5}+T_{7} T_{8}-T_{2} T_{4} T_{6}^{2} T_{11}^{2}$, $T_{3}^{2} T_{4} T_{5} T_{8}^{2}+T_{1} T_{2}-T_{9} T_{11}$, $T_{3}^{2} T_{4}^{2} T_{5} T_{8} T_{2} T_{6}^{2} T_{11}-T_{7} T_{9}$ $\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right.$ $\left.\begin{array}{rrrrr}2 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 2 & 0 \\ 1 & -1 & 0 & 1 & 0 \\ 2 & -1 & 0 & 2 & 0 \\ 3 & -1 & -1 & 2 & 1 \\ 0 & 0 & 1 & 1 & -1\end{array}\right]$ $-T_{1} T_{10}$

$$
\begin{aligned}
& \mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I \\
& \text { with I generated by } \\
& T_{1} T_{5}+T_{7} T_{8}-T_{2} T_{4} T_{6} T_{10}, \\
& T_{3} T_{5} T_{7} T_{8}^{2}-T_{2}^{2} T_{4}-T_{9} T_{10}
\end{aligned} \quad\left[\begin{array}{llllllrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 2 & -1 & -1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & -2 & 2 & 3 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & 2 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & 3 & -2 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -1
\end{array}\right]
$$

$$
\begin{aligned}
& \mathbb{K}\left[T_{1}, \ldots, T_{13}\right] / I \\
& \text { with I generated by } \\
& T_{1} T_{11}-T_{4} T_{3} T_{9}-T_{8} T_{12}, \\
& T_{1} T_{7}-T_{2} T_{8}+T_{3} T_{9} T_{13}, \\
& T_{2} T_{6}+T_{7} T_{10}-T_{3} T_{5} T_{13}, \\
& T_{1} T_{6}+T_{8} T_{10}-T_{3} T_{4} T_{13},
\end{aligned}
$$

$T_{2} T_{11}-\lambda T_{5} T_{3} T_{9}-T_{7} T_{12}$
$(\lambda-1) T_{1} T_{5}-T_{10} T_{9}-T_{12} T_{13}$
$(\lambda-1) T_{5} T_{8}+T_{6} T_{9}-T_{11} T_{13}$,
$T_{10} T_{11}-(\lambda-1) T_{4} T_{3} T_{5}+T_{6} T_{12}$,
$(\lambda-1) T_{4} T_{7}+\lambda T_{6} T_{9}-T_{11} T_{13}$,
$(\lambda-1) T_{2} T_{4}-\lambda T_{10} T_{9}-T_{12} T_{13}$,
where $\lambda \in \mathbb{K}^{*} \backslash\{1\}$.
$\left[\begin{array}{rrrrrrrrrrrrr}1 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 2 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & -1 & 1 & 0 & 0\end{array}\right]$
$\mathbb{K}\left[T_{1}, \ldots, T_{11}\right] / I$
with I generated by
$T_{6} T_{2} T_{4}+T_{5} T_{9}-T_{8} T_{10}$,
$T_{3} T_{4} T_{8}-T_{1} T_{6}-T_{9} T_{11}$,
$T_{3} T_{4} T_{5}+T_{6} T_{7}-T_{11} T_{10}$
$T_{1} T_{5}+T_{7} T_{8}-T_{2} T_{4} T_{11}$,
$T_{3} T_{4}^{2} T_{2}-T_{7} T_{9}-T_{1} T_{10}$
$\left[\begin{array}{rrrrrrrrrrr}1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & -1 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & 1 & 0 & 0\end{array}\right]$

$$
\begin{aligned}
& \mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I \\
& \text { with I generated by } \\
& T_{3} T_{5} T_{8}-T_{2} T_{6}-T_{9} T_{10}, \\
& T_{1} T_{5}+T_{7} T_{8}-T_{2} T_{4} T_{10}
\end{aligned} \quad\left[\begin{array}{llllllrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & -1 & 1 & 2 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & 2 & -1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & 1 & 0
\end{array}\right]
$$

$\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I$
with I generated by
$T_{1} T_{5} T_{10}-T_{2} T_{6}-T_{7} T_{8}$,
$T_{2} T_{4} T_{7}^{a-1} T_{8}^{a-2}-T_{3} T_{5}$
$-T_{9} T_{10}$$\quad\left[\begin{array}{llllllrrrr}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0 & 0 & 0 & -a+1 & a & -1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -a+2 & a-1 & -1 & 1\end{array}\right]$

In this table, the first 12 classes do not admit a non-trivial \mathbb{K}^{*}-action. In the $\dagger \dagger$ case, the listed ring is the Cox ring for $a \leq 15$ whereas for $a>15$ the Cox ring is finitely generated and given by the equivariant normalization of $\mathbb{K}\left[T_{1}, \ldots, T_{11}\right] /(I$: $\left.\left(T_{1} \cdots T_{11}\right)^{\infty}\right)$.

This thesis is divided into five chapters and an appendix. We now give a brief overview.
In the first chapter, for the convenience of the reader, we recall the fundamental theory of Cox rings, GIT, bunched rings and Mori dream spaces. Also, we recapitulate basics on surfaces, of modifications and of complexity-one T-varieties. This chapter is mainly taken from $[5,32 ; 61]$.
In Chapter 2 ; based on $[19,51 ; 5]$, we present an algorithmic toolkit for explicit computations with Mori dream spaces. We introduce the required data types and provide basic algorithms for finitely generated abelian groups, algebras that are graded by a finitely generated abelian group, for general Mori dream spaces as well as for the special class of complexity-one varieties; see Sections $1,2,3$ and 4.4 . As an application, we classify in Section 5 the combinatorially minimal \mathbb{K}^{*}-surfaces of Picard number two of Gorenstein index at most six whose Cox ring has a single relation.
Using the construction [19], we develop in Chapter 3an algorithm to compute the GIT-fan for affine varieties $V(\mathfrak{a}) \subseteq \mathbb{K}^{r}$ with torus action. As a first step, we need to determine the torus orbits of \mathbb{K}^{r} meeting $V(\mathfrak{a})$, the so-called \mathfrak{a}-faces or \mathfrak{F}-faces of the positive orthant $\mathbb{Q}_{\geq 0}^{r}$, see Section:1; We then show how to compute GIT-cones
and the GIT-fan in Section 2 : A special case is the Mori chamber decomposition. In Section of Chapter we give a direct algorithm to determine the ($H, 2$)-maximal subsets [51], certain more general open subsets admitting a good quotient.
Given a modification $X_{2} \rightarrow X_{1}$ of projective varieties where one of the Cox rings $\mathcal{R}\left(X_{i}\right)$ is known, we show in Chapter 4 how to determine the other one. As a first step, we translate in Sections 1: and the methods of toric ambient modifications developed in [51] to a computable version. We also present a theoretical solution to compute the Cox ring of a contraction. In Section 3 , we then are in position to present algorithms to verify a guess of generators and to determine relations. Based on [2], we apply these algorithms in Section 4 to compute the Cox rings of the Gorenstein, log-terminal del Pezzo surfaces of Picard number one that do not admit a non-trivial \mathbb{K}^{*}-action. In Section 5 ; we develop an algorithm to explicitly compute the Cox ring $\mathcal{R}\left(X_{2}\right)$ of a blow up $X_{2} \rightarrow X_{1}$ of a Mori dream space X_{1} along an irreducible subvariety inside the smooth locus. Moreover, for the case of infeasible computation, we present an algorithm that verifies finite generation of $\mathcal{R}\left(X_{2}\right)$. Specializing to blow ups $X_{2} \rightarrow \mathbb{P}_{n}$ of point configurations in a projective space \mathbb{P}_{n}, in Section 6; we provide an algorithm that verifies that $\mathcal{R}\left(X_{2}\right)$ is generated by transforms of hyperplanes in \mathbb{P}_{n}. We explore some relations to the underlying combinatorial structures. Using our algorithm, we determine the Cox rings of blow ups of \mathbb{P}_{3} in point configurations consisting of six distinct points in edge-special position.
In Chapter '5, we explicitly compute the Cox rings of the smooth rational surfaces X with Picard number $\varrho(X) \leq 6$. Our classification is complete for $\varrho(X) \leq 5$ and contains the non- \mathbb{K}^{*}-cases for $\varrho(X)=6$. As X is obtained as a sequence of blow ups of \mathbb{P}_{2} or the Hirzebruch surface \mathbb{F}_{a}, we can use the techniques developed in Chapter 4: We first classify the point configurations on \mathbb{P}_{2} and \mathbb{F}_{a} that we need to consider to obtain X as a blow up, see Section'1. Afterwards, in Sections 2; and we iteratively blow up a point of a surface of lower Picard number $\varrho(X)$ until we arrive at $\varrho(X)=6$. In each step, we remove redundancies.
In Appendix'A; we describe an implementation of the algorithms developed throughout this thesis. It is aimed towards usability and computations of up to medium examples. The appendix serves as a manual.
Throughout this thesis we made extensive use of the software systems gfan, Macaulay2, magma, Maple, polymake and Singular for computer algebra or polyhedral computations, see $[63,45,23,79,43,31]$.

CHAPTER 1

Preliminaries

We recall basic notions from algebraic geometry and thereby fix our notation for the subsequent chapters. This chapter is a summary of the sources referenced at the beginning of each section and does not contain results by the author. Our primary reference is the book by Ivan Arzhantsev, Ulrich Derenthal, Jürgen Hausen and Antonio Laface [5].
Basics on geometric invariant theory for affine quasitorus actions can be found in the first section. In Section ' 2 , we introduce Cox rings and toric varieties. We recall the theory of bunched rings and the correspondence to Mori dream spaces in Section '3. Section :4 deals with fundamental surface geometry and modifications, e.g., blow ups. In the final section, i.e., Section 5 ; we recall the construction and basic properties of \mathbb{K}^{*}-surfaces and complexity-one T-varieties.
Throughout this document, we work over an algebraically closed field \mathbb{K} of characteristic zero. By a variety, we always mean a separated prevariety over \mathbb{K}.

1. GIT and good quotients

We recall basics on good quotients, the correspondence between graded affine algebras and affine varieties with quasitorus action as well as the GIT-fan. This section is a summary of mainly Sections III. 1 and I. 2 of [5]; see also [7, 18].
An affine algebraic group is an affine variety G together with a group structure such that the group operations are morphisms. A variety X with the action $G \times X \rightarrow X$ of an affine algebraic group G is called a G-variety. Given an affine algebraic group G, denote its group of characters, i.e., homomorphisms $G \rightarrow \mathbb{K}^{*}$ of algebraic groups, by $\mathbb{X}(G)$.
Definition 1.1.1. A quasitorus is an affine algebraic group H with its algebra of regular functions $\Gamma(H, \mathcal{O})$ generated by the characters $\chi \in \mathbb{X}(H)$. A connected quasitorus is a torus.

Each quasitorus is isomorphic to a product of a torus and a finite abelian group. The standard torus is the torus $\mathbb{T}^{n}:=\left(\mathbb{K}^{*}\right)^{n}$. Homomorphic images of tori are again tori. Note that homomorphisms of tori correspond to integral matrices.

Remark 1.1.2. There are exact functors between finitely generated abelian groups and quasitori that are essentially inverse to each other; the assignments are

$$
K \mapsto \operatorname{Spec} \mathbb{K}[K], \quad \psi \mapsto \operatorname{Spec} \mathbb{K}[\psi], \quad \mathbb{X}(H) \leftrightarrow H, \quad \varphi^{*} \leftarrow \varphi
$$

We now briefly recall the correspondence between affine varieties with quasitorus action and affine algebras that are graded by a finitely generated abelian group. Given such an affine variety X with the action of a quasitorus H, we obtain a $\mathbb{X}(H)$-graded algebra
$\Gamma(X, \mathcal{O})=\bigoplus_{\chi \in \mathbb{X}(H)} \Gamma(X, \mathcal{O})_{\chi}, \quad \Gamma(X, \mathcal{O})_{\chi}:=\{f \in \Gamma(X, \mathcal{O}) ; f(h \cdot x)=\chi(h) f(x)\}$.

Vice versa, consider a finitely generated abelian group K and a K-graded, affine \mathbb{K}-algebra R. Set $X:=\operatorname{Spec} R$ and choose K-homogeneous generators f_{1}, \ldots, f_{r} for R. We have an embedding

$$
X \rightarrow \mathbb{K}^{r}, \quad x \mapsto\left(f_{1}(x), \ldots, f_{r}(x)\right)
$$

and $X \subseteq \mathbb{K}^{r}$ is invariant under the diagonal action of the quasitorus $H:=\operatorname{Spec} \mathbb{K}[K]$ on \mathbb{K}^{r} with comorphism

$$
R \rightarrow \mathbb{K}[K] \otimes_{\mathbb{K}} R, \quad R_{w} \ni f \mapsto \chi^{w} \otimes f
$$

Moreover, a morphism of affine H_{i}-varieties X_{1} and X_{2} with quasitori H_{i} is a pair $(\varphi, \widetilde{\varphi})$ consisting of a morphism of varieties $\varphi: X_{1} \rightarrow X_{2}$ and a homomorphism of algebraic groups $\widetilde{\varphi}: H_{1} \rightarrow H_{2}$ such that

$$
\varphi(h \cdot x)=\widetilde{\varphi}(h) \cdot \varphi(x) \quad \text { for all } x \in X_{1}, h \in H_{1} .
$$

Proposition 1.1.3. We have contravariant, exact functors that are essentially inverse to each other between the categories of affine \mathbb{K}-algebras that are graded by a finitely generated abelian group and affine varieties with the action of a quasitorus

$$
\begin{aligned}
R & \mapsto \operatorname{Spec} R, & \Gamma(X, \mathcal{O}) & \leftrightarrow X, \\
(\psi, \widetilde{\psi}) & \mapsto(\operatorname{Spec} \psi, \operatorname{Spec} \mathbb{K}[\widetilde{\psi}]), & \left(\varphi^{*}, \widetilde{\varphi}^{*}\right) & \leftrightarrow(\varphi, \widetilde{\varphi}) .
\end{aligned}
$$

By a reductive algebraic group we mean an affine algebraic group G such that every rational representation of G splits into irreducible ones. Examples of reductive groups include $\mathrm{SL}(n, \mathbb{Z}), \mathrm{GL}(n, \mathbb{Z})$, all finite groups and quasitori.
Consider a reductive algebraic group G and a G-variety X. A morphism $\varphi: X \rightarrow Y$ is G-invariant if $\varphi(x)=\varphi(g \cdot x)$ for all $x \in X$ and $g \in G$. We call φ affine if preimages of open affine subsets are again affine. The ring of invariants is the algebra

$$
\mathcal{O}(X)^{G}:=\{f \in \Gamma(X, \mathcal{O}) ; f(g \cdot x)=f(x) \text { for each } x \in X, g \in G\}
$$

Definition 1.1.4. A good quotient for the G-action on X is an affine, G-invariant morphism $\pi: X \rightarrow Y$ such that $\mathcal{O}_{Y} \rightarrow\left(\pi_{*} \mathcal{O}_{X}\right)^{G}$ is an isomorphism.

The quotient space Y of a good quotient $X \rightarrow Y$ for the G-action on X is unique up to isomorphism; we denote it by $X / / G$. Note that good quotients need not exist. However, for an affine G-variety X with reductive group G, by a theorem of David Hilbert, the ring of invariants $\mathcal{O}(X)^{G}$ is finitely generated. Then the inclusion $\mathcal{O}(X)^{G} \subseteq \mathcal{O}(X)$ yields the good quotient

$$
X \rightarrow X / / G=\operatorname{Spec} \mathcal{O}(X)^{G}
$$

If X is not affine, good quotients can be obtained by gluing together quotients of an affine covering.

Example 1.1.5. Define $G:=\mathbb{K}^{*}$ and $X:=\mathbb{K}^{2}$ as well as $U:=\mathbb{K}^{2} \backslash\{0\}$. The varieties X and U are G-varieties with the G-action given by $t \cdot(x, y):=(t x, t y)$. The quotient space $X / / G$ is isomorphic to a point and $U / / G$ is isomorphic to \mathbb{P}_{1}.

The following proposition subsumes some basic properties of good quotients. A subset $U \subseteq X$ of a G-variety X is G-invariant if $G \cdot U \subseteq U$.

Proposition 1.1.6. Let X be a G-variety with a reductive group G and let $p: X \rightarrow$ Y be a good quotient for the G-action.
(i) The image of a closed, G-invariant subset is again closed.
(ii) The images of two closed, G-invariant, disjoint subsets are again disjoint.
(iii) For each point $y \in Y$, the fiber $p^{-1}(y)$ contains a closed G-orbit.

A task of GIT is to construct good G-sets of a G-variety X, i.e., open subsets $U \subseteq X$ that admit a good quotient $U \rightarrow U / / G$. We will concentrate on the affine case, i.e., assume $X=\operatorname{Spec} R$ with an affine, K-graded algebra R and the action of the quasitorus $H:=\operatorname{Spec} \mathbb{K}[K]$. Let $K_{\mathbb{Q}}:=K \otimes_{\mathbb{Z}} \mathbb{Q}$. The weight cone and the orbit cone of a point $x \in X$ are the convex polyhedral cones

$$
\begin{gathered}
\vartheta_{X}:=\operatorname{cone}\left(w \in K ; R_{w} \neq\{0\}\right) \subseteq K_{\mathbb{Q}} \\
\vartheta_{x}:=\operatorname{cone}\left(w \in K ; f(x) \neq 0 \text { for some } f \in R_{w}\right) \subseteq K_{\mathbb{Q}} .
\end{gathered}
$$

It turns out that there are only finitely many orbit cones. Given a vector $w \in K_{\mathbb{Q}}$, we assign to w a set of semistable points, i.e., the open, H-invariant subset

$$
X^{\mathrm{ss}}(w):=\left\{x \in X ; f(x) \neq 0 \text { with some } f \in R_{n w} \text { and } n \in \mathbb{Z}_{\geq 1}\right\} \subseteq X
$$

Proposition 1.1.7. In the above setting, $X^{\mathrm{ss}}(w) \neq \emptyset$ holds if and only if $w \in \vartheta_{X}$. In this case, the H-action on $X^{\mathrm{ss}}(w)$ admits a good quotient and $X^{\mathrm{ss}}(w) / / H$ is projective over $X / / H$. Moreover, given $w_{1}, w_{2} \in \vartheta_{X}$ with $X^{\mathrm{ss}}\left(w_{1}\right) \subseteq X^{\mathrm{ss}}\left(w_{2}\right)$, we have a commutative diagram

with $\varphi_{w_{2}}^{w_{1}}$ projective and surjective. Furthermore, given a third vector $w_{3} \in \vartheta_{X}$ with $X^{\mathrm{ss}}\left(w_{2}\right) \subseteq X^{\mathrm{ss}}\left(w_{3}\right)$, we have $\varphi_{w_{3}}^{w_{1}}=\varphi_{w_{3}}^{w_{2}} \circ \varphi_{w_{2}}^{w_{1}}$.

A quasifan in a rational vector space $N_{\mathbb{Q}}$ is a finite collection Σ of polyhedral, convex cones in $N_{\mathbb{Q}}$ such that for each $\sigma \in \Sigma$, also all faces $\tau \preceq \sigma$ are elements of Σ and given $\sigma, \sigma^{\prime} \in \Sigma$ the cone $\sigma \cap \sigma^{\prime}$ is a face in both σ and σ^{\prime}. A fan is a quasifan consisting of pointed cones. We write $\Sigma \subseteq N_{\mathbb{Q}}$ if the cones of Σ lie in $N_{\mathbb{Q}}$.
Definition 1.1.8. Given $w \in \vartheta_{X}$, the corresponding GIT-cone or GIT-chamber is the nonempty polyhedral cone

$$
\lambda(w):=\bigcap_{\substack{x \in X, w \in \vartheta_{x}}} \vartheta_{x} \subseteq K_{\mathbb{Q}}
$$

We call the collection $\Lambda(X, H):=\left\{\lambda(w) ; w \in \vartheta_{X}\right\}$ of all GIT-cones the GIT-fan of the H-action on X.

The term "fan" is justified by the following theorem which also relates GIT-cones to sets of semistable points. In particular, the number of GIT-cones is finite.

Theorem 1.1.9. In the above setting, the GIT-fan $\Lambda(X, H)$ is a pure quasifan in $K_{\mathbb{Q}}$ with support ϑ_{X}. Furthermore, given $w_{1}, w_{2} \in \vartheta_{X}$, we have

$$
\begin{array}{lll}
\lambda\left(w_{1}\right) \subseteq \lambda\left(w_{2}\right) & \Longleftrightarrow & X^{\mathrm{ss}}\left(w_{1}\right) \supseteq X^{\mathrm{ss}}\left(w_{2}\right), \\
\lambda\left(w_{1}\right)=\lambda\left(w_{2}\right) & \Longleftrightarrow & X^{\mathrm{ss}}\left(w_{1}\right)=X^{\mathrm{ss}}\left(w_{2}\right) .
\end{array}
$$

It then makes sense to define $X^{\mathrm{ss}}(\lambda):=X^{\mathrm{ss}}(w)$ with any element w in the relative interior of the given GIT-cone λ. Theorem 1.1.9 tells us that the structure of $\Lambda(X, H)$ reflects the variation of GIT-quotients; they form the GIT-system given
by the quotients $Y(\lambda):=X^{\mathrm{ss}}(\lambda) / / H$ and morphisms $\varphi_{\lambda_{j}}^{\lambda_{i}}$ of Proposition 1.1.7

If X is H-factorial, i.e., it is irreducible, normal and each H-invariant Weil divisor is the divisor of a rational homogeneous function, the GIT-fan gives a correspondence to good H-sets. A subset U_{0} of a good H-set $U \subseteq X$ is H-saturated if $U_{0}=$ $p^{-1}\left(p\left(U_{0}\right)\right)$ with the good quotient $p: U \rightarrow U / / H$. By a qp-maximal subset of X we mean a good H-set $U \subseteq X$ with quasiprojective quotient space and U is maximal with respect to H-saturated inclusion among the good H-sets with quasiprojective quotient space.

Theorem 1.1.10. In the above setting, assume that X is H-factorial. We have mutually inverse order-reversing bijections

$$
\begin{aligned}
\Lambda(X, H) & \longleftrightarrow\{\text { qp-maximal subsets of } X\} \\
\lambda & \mapsto X^{\mathrm{ss}}(\lambda), \\
\bigcap_{x \in U} \vartheta_{x} & \longleftrightarrow U .
\end{aligned}
$$

Example 1.1.11. In Example 1.1.5; X and U are good \mathbb{K}^{*}-sets: the GIT-fan $\Lambda\left(X, \mathbb{K}^{*}\right)$ consists of cone(1) and cone (0). They correspond to the good \mathbb{K}^{*}-sets

$$
\begin{aligned}
X & =X^{\mathrm{ss}}(0)=\left\{x \in X ; f(x) \neq 0 \text { for a } f \in \mathbb{K}\left[T_{1}, T_{2}\right]_{0}\right\} \\
U & =X^{\mathrm{ss}}(1)=\left\{x \in X ; f(x) \neq 0 \text { for a } f \in \mathbb{K}\left[T_{1}, T_{2}\right]_{n \cdot 1}, n>0\right\}
\end{aligned}
$$

2. Cox rings

We recall the basic theory of Cox rings and toric varieties. This section summarizes parts of [5], mainly Chapter I, and [51; 61].
Consider an irreducible variety X that is normal, i.e., every local ring $\mathcal{O}_{X, x}$ integral and integrally closed in its quotient field. A prime divisor on X is an irreducible hypersurface $D \subseteq X$. The group generated by the prime divisors is the free abelian group $\operatorname{WDiv}(X)$, its elements are called Weil divisors. Let $\operatorname{ord}_{D}(f)$ be the order of vanishing of a rational function $f \in \mathbb{K}(X)^{*}$ along a prime divisor D. The principal divisor of f is

$$
\operatorname{div}(f):=\sum_{D \text { prime }} \operatorname{ord}_{D}(f) \cdot D \in \operatorname{WDiv}(X) .
$$

Note that $f \mapsto \operatorname{div}(f)$ is a homomorphism $\mathbb{K}(X)^{*} \rightarrow \operatorname{WDiv}(X)$ with the subgroup of principal divisors $\operatorname{PDiv}(X) \leq \mathrm{WDiv}(X)$ as its image. The divisor class group is the factor group

$$
\mathrm{Cl}(X):=\operatorname{WDiv}(X) / \operatorname{PDiv}(X)
$$

A Weil divisor is a Cartier divisor if it is locally principal; we write $\operatorname{CDiv}(X) \leq$ $\operatorname{WDiv}(X)$ for the group of all Cartier divisors. Moreover, a Weil divisor $D=$ $a_{1} D_{1}+\ldots+a_{n} D_{n} \in \operatorname{WDiv}(X)$ is effective if all a_{i} are non-negative; we then write $D \geq 0$. Given an open subset $U \subseteq X$, the restriction of a Weil divisor $D \in \mathrm{WDiv}(X)$ is the Weil divisor $D_{\mid U} \in \operatorname{WDiv}(U)$ where $D_{\mid U}:=D \cap U$ if D intersects U non-trivially and $D_{\mid U}:=0$ otherwise.

Construction 1.2.1. To a Weil divisor $D \in \operatorname{WDiv}(X)$ we assign the sheaf $\mathcal{O}_{X}(D)$ of \mathcal{O}_{X}-modules where the sections over open subsets $U \subseteq X$ are

$$
\Gamma\left(U, \mathcal{O}_{X}(D)\right):=\left\{f \in \mathbb{K}(X)^{*} ;(\operatorname{div}(f)+D)_{\mid U} \geq 0\right\} \cup\{0\}
$$

Note that given $f_{1} \in \Gamma\left(U, \mathcal{O}_{X}\left(D_{1}\right)\right)$ and $f_{2} \in \Gamma\left(U, \mathcal{O}_{X}\left(D_{2}\right)\right)$, we have $f_{1} f_{2} \in$ $\Gamma\left(U, \mathcal{O}_{X}\left(D_{1}+D_{2}\right)\right)$. To a subgroup $K \leq \operatorname{WDiv}(X)$ we associate the sheaf of divisorial algebras

$$
\mathcal{S}:=\bigoplus_{D \in K} \mathcal{S}_{D}, \quad \mathcal{S}_{D}:=\mathcal{O}_{X}(D)
$$

The multiplication in \mathcal{S} is defined by multiplying elements in the field of rational functions $\mathbb{K}(X)$.
Construction 1.2.2 (Cox ring). Let X be an irreducible normal variety with finitely generated class group $\mathrm{Cl}(X)$ and $\mathbb{K}^{*}=\Gamma\left(X, \mathcal{O}^{*}\right)$, e.g., X is complete. Fix a subgroup $K \leq \mathrm{WDiv}(X)$ such that the homomorphism $c: K \rightarrow \mathrm{Cl}(X)$ mapping $D \in K$ to its class $[D] \in \mathrm{Cl}(X)$ is surjective. Set $K^{0}:=\operatorname{ker}(c)$. Choose a group homomorphism

$$
\chi: K^{0} \rightarrow \mathbb{K}(X)^{*} \quad \text { with } \quad \operatorname{div}(\chi(E))=E, \quad E \in K^{0}
$$

Let \mathcal{S} be the sheaf of divisorial algebras associated to K as in Construction 1.1. Consider the sheaf \mathcal{I} of radical ideals that is locally defined by $1-\chi(E)$ where E runs through K^{0}. On open subsets $U \subseteq X$, this means we have an ideal

$$
\begin{aligned}
\Gamma(U, \mathcal{I}) & =\left\{f \in \Gamma(U, \mathcal{S}) ; \text { locally } f=\sum_{E \in K^{0}} h_{E}(1-\chi(E)) \text { with } h_{E} \in \Gamma(U, \mathcal{S})\right\} \\
& =\left\langle 1-\chi\left(E_{i}\right) ; 1 \leq i \leq s\right\rangle_{\Gamma(U, \mathcal{S})}
\end{aligned}
$$

where E_{1}, \ldots, E_{s} is a basis for K^{0}. Note that $1 \in \Gamma\left(U, \mathcal{S}_{0}\right)$ whereas $E \in \Gamma\left(U, \mathcal{S}_{-E}\right)$. The Cox sheaf is the quotient sheaf $\mathcal{R}:=\mathcal{S} / \mathcal{I}$ with the $\mathrm{Cl}(X)$-grading

$$
\mathcal{R}=\bigoplus_{[D] \in \mathrm{Cl}(X)} \mathcal{R}_{[D]}, \quad \mathcal{R}_{[D]}:=\pi\left(\bigoplus_{D^{\prime} \in c^{-1}([D])} \mathcal{O}_{X}\left(D^{\prime}\right)\right)
$$

and the projection $\pi: \mathcal{S} \rightarrow \mathcal{R}$. It is a quasicoherent sheaf of $\mathrm{Cl}(X)$-graded, reduced \mathcal{O}_{X}-algebras. The Cox ring of X is the ring of global sections of the Cox sheaf

$$
\mathcal{R}(X):=\bigoplus_{[D] \in \mathrm{Cl}(X)} \Gamma\left(X, \mathcal{R}_{[D]}\right) \cong \Gamma(X, \mathcal{S}) / \Gamma(X, \mathcal{I})
$$

One can show that the construction of the Cox ring in 1.2.2 does not depend on the choices made.

Remark 1.2.3. If in Construction 1.2 .2 the class group $\mathrm{Cl}(X)$ is free, one can directly define $\mathcal{R}_{[D]}:=\mathcal{O}_{X}(D)$.

In the situation of Construction 1.2.2, let $R:=\mathcal{R}(X)$ be the Cox ring of X. A nonzero homogeneous element $f \in R \backslash \dot{R}^{*}$ is $\mathrm{Cl}(X)$-prime if $f \mid g h$ with homogeneous elements g, h implies $f \mid g$ or $f \mid h$. We say that R is $\mathrm{Cl}(X)$-factorial if every homogeneous non-zero element $f \in R \backslash R^{*}$ is a product of $\mathrm{Cl}(X)$-primes.
Theorem 1.2.4. In the above setting, the Cox ring $\mathcal{R}(X)$ is a $\mathrm{Cl}(X)$-factorial ring. If $\mathrm{Cl}(X)$ is free, then $\mathcal{R}(X)$ is a UFD.

We turn to the geometric counterpart of the Cox sheaf. Let X be as before but assume additionally that $\mathcal{R}(X)$ is finitely generated. Then the Cox sheaf \mathcal{R} is locally of finite type.

Construction 1.2.5. Let the setting be as above. Taking the relative spectrum we obtain an irreducible, normal variety $\widehat{X}:=\operatorname{Spec}_{X} \mathcal{R}$ that is contained in $\bar{X}:=$ Spec $\mathcal{R}(X)$. The affine variety \bar{X}, called the total coordinate space of X, is invariant with respect to the action of the characteristic quasitorus $H_{X}:=\operatorname{Spec} \mathbb{K}[\mathrm{Cl}(X)]$. Then the embedding $\widehat{X} \subseteq \bar{X}$ is H_{X}-equivariant and X can be retrieved as a quotient

of the quasiaffine, good H_{X}-set $\widehat{X} \subseteq \bar{X}$ by H_{X}. The good quotient $p: \widehat{X} \rightarrow X$ is called the characteristic space of X.

In Construction 1.2.5; we call $z=\left(z_{1}, \ldots, z_{r}\right) \in \widehat{X} \subseteq \mathbb{K}^{r}$ Cox coordinates for the point $x:=p(z) \in X$. We write $x=[z]$ or $x=\left[z_{1}, \ldots, z_{r}\right]$. Note that Cox coordinates are not unique, see 5.1.1;

Example 1.2.6. In Construction 1.2.5; $X=\mathbb{P}_{2}$ arises as a \mathbb{K}^{*}-quotient of the open subset $\widehat{X}=\mathbb{K}^{2} \backslash\{0\}$ of $\bar{X}=\mathbb{K}^{3}$. Cox coordinates are the usual homogeneous coordinates.

A toric variety is an irreducible, normal variety Z with a basepoint $z_{0} \in Z$ and the action $\mathbb{T}_{Z} \times Z \rightarrow Z$ of the torus \mathbb{T}_{Z} such that the map $\mathbb{T}_{Z} \rightarrow Z$ defined by $t \mapsto t \cdot z_{0}$ is an open embedding. We then speak of the dense torus \mathbb{T}_{Z} of Z. We briefly recall the connection to lattice fans, i.e., pairs (N, Σ) with a lattice N and a fan $\Sigma \subseteq N_{\mathbb{Q}}=N \otimes_{\mathbb{Z}} \mathbb{Q}$. Given a lattice fan (N, Σ) and a cone $\sigma \in \Sigma$, let $\sigma^{\vee} \subseteq N_{\mathbb{Q}}^{*}:=N^{*} \otimes_{\mathbb{Z}} \mathbb{Q}$ be the dual cone. We obtain an affine toric variety

$$
Z_{\sigma}:=\operatorname{Spec} \mathbb{K}\left[\sigma^{\vee} \cap N^{*}\right]=\operatorname{Spec} \bigoplus_{u \in \sigma^{\vee} \cap N^{*}} \mathbb{K} \cdot \chi^{u}
$$

with dense torus $\mathbb{T}_{N}:=\operatorname{Spec} \mathbb{K}\left[N^{*}\right]$. Gluing together the affine toric varieties Z_{σ} with $\sigma \in \Sigma$ produces the toric variety Z_{Σ}. For the other direction, it turns out that a toric variety Z can be covered by finitely many invariant open, affine toric subvarieties Z_{1}, \ldots, Z_{s}. The cones $\sigma_{Z_{1}}, \ldots, \sigma_{Z_{s}}$ of convergent one-parameter subgroups $\mathbb{K}^{*} \rightarrow Z_{i}$ of the Z_{i} then form a lattice fan $\left(\Sigma_{Z}, \Lambda\left(\mathbb{T}_{Z}\right)\right)$ where $\Lambda\left(\mathbb{T}_{Z}\right)$ is the cone of convergent one-parameter subgroups of the dense torus \mathbb{T}_{Z}. Moreover, given a toric variety Z with fan Σ, note that to each cone $\sigma \in \Sigma$ one can assign a distinguished point $z(\sigma) \in Z$ such that the orbits $\mathbb{T}_{Z} \cdot z\left(\sigma^{\prime}\right)$ correspond bijectively to the cones $\sigma^{\prime} \in \Sigma$.
A morphism of toric varieties Z and Z^{\prime} is a pair $(\varphi, \widetilde{\varphi})$ consisting of a morphism of varieties $\varphi: Z \rightarrow Z^{\prime}$ and a morphism of tori $\widetilde{\varphi}: \mathbb{T}_{Z} \rightarrow \mathbb{T}_{Z^{\prime}}$ such that φ maps the basepoint of Z to the basepoint of Z^{\prime} and $\varphi(t \cdot z)=\widetilde{\varphi}(t) \cdot \varphi(z)$ holds for all $t \in \mathbb{T}_{Z}$, $z \in Z$. Moreover, a map of lattice fans (Σ, N) and (Ω, M) is a lattice homomorphism $F: N \rightarrow M$ such that for each cone $\sigma \in \Sigma$ there is a cone $\omega \in \Omega$ such that $F(\sigma) \subseteq \omega$. To each such F one can assign a toric morphism $\left(\varphi_{F}, \widetilde{\varphi}_{F}\right): Z_{\Sigma} \rightarrow Z_{\Omega}$, see [5; Ch. 2] or [42, 28] for details.

Proposition 1.2.7. We have covariant functors that are essentially inverse to each other between the categories of lattice fans and toric varieties given by

$$
\begin{aligned}
(\Sigma, N) & \mapsto\left(Z_{\Sigma}, \mathbb{T}_{N}, z_{0}\right), & \left(\Sigma_{Z}, \Lambda\left(\mathbb{T}_{Z}\right)\right) & \leftrightarrow\left(Z, \mathbb{T}_{Z}, z_{0}\right), \\
F & \mapsto\left(\varphi_{F}, \widetilde{\varphi}_{F}\right), & \widetilde{\varphi}_{*} & \leftrightarrow(\varphi, \widetilde{\varphi})
\end{aligned}
$$

Remark 1.2.8. An irreducible, normal variety is toric if and only if its Cox ring is isomorphic to a polynomial ring.

3. Bunched rings and Mori dream spaces

We recall the basic theory of Mori dream spaces and bunched rings developed by F. Berchtold and J. Hausen in [19; 51]. This section is taken from [5], mainly Chapter III.
Let R be an integral affine \mathbb{K}-algebra that is graded by a finitely generated abelian group K, i.e.,

$$
R=\bigoplus_{w \in K} R_{w}
$$

Similar to Section 2 , a homogeneous element $f \in R \backslash\{0\}$ is called K-prime if $f \notin R^{*}$ and $f \mid g h$ with homogeneous g, h implies $f \mid g$ or $f \mid h$. We say that R is factorially K-graded or is K-factorial if each homogeneous element $f \in R \backslash\{0\}$ with $f \notin R^{*}$ is a product of K-prime elements.
If R is factorially K-graded, one can choose a system $\mathfrak{F}=\left(f_{1}, \ldots, f_{r}\right)$ of K-prime pairwise non-associated generators. We then encode the K-grading of R in a degree map, i.e., a homomorphism $Q: \mathbb{Z}^{r} \rightarrow K$ of finitely generated abelian groups mapping the canonical basis vector $e_{i} \in \mathbb{Z}^{r}$ to $\operatorname{deg}\left(f_{i}\right) \in K$. Denote the positive orthant by $\gamma:=\mathbb{Q}_{\geq 0}^{r}$.
Definition 1.3.1. An \mathfrak{F}-face is a face $\gamma_{0} \preceq \gamma$ such that the product $\prod_{e_{i} \in \gamma_{0}} f_{i}$ is not an element of the radical of $\left\langle f_{j} ; e_{j} \notin \gamma_{0}\right\rangle \subseteq R$.
Remark 1.3.2. The set of orbit cones $\Omega_{\bar{X}}$ of $\bar{X}:=\operatorname{Spec} R$ as defined in Section 1 : equals the collection of all images $Q\left(\gamma_{0}\right)$ such that $\gamma_{0} \preceq \gamma$ is an \mathfrak{F}-face.

The \mathfrak{F}-faces store the algebraic information of R, see Chapter 3 for the computational aspects. We now turn to combinatorial data in $K_{\mathbb{Q}}:=K \dot{\otimes_{\mathbb{Z}}} \mathbb{Q}$. The grading is almost free if $Q\left(\gamma_{0} \cap \mathbb{Z}^{r}\right)$ generates the abelian group K for every facet $\gamma_{0} \preceq \gamma$.
Definition 1.3.3. (i) Let Ω be the set of orbit cones, i.e., the set of all cones $Q\left(\gamma_{0}\right) \subseteq K_{\mathbb{Q}}$ such that γ_{0} is an \mathfrak{F}-face. An \mathfrak{F}-bunch is a non-empty collection $\Phi \subseteq \Omega$ such that

- each two $\vartheta_{1}, \vartheta_{2} \in \Phi$ overlap, i.e., $\vartheta_{1}^{\circ} \cap \vartheta_{2}^{\circ} \neq \emptyset$.
- given $\vartheta_{2} \in \Omega$ and $\vartheta_{1} \in \Phi$ with $\vartheta_{1}^{\circ} \subseteq \vartheta_{2}^{\circ}$ then also $\vartheta_{2} \in \Phi$.
(ii) An \mathfrak{F}-bunch Φ is true if $Q\left(\gamma_{0}\right) \in \Phi$ for each facet $\gamma_{0} \preceq \gamma$.
(iii) An \mathfrak{F}-bunch Φ is maximal if no further projected \mathfrak{F}-face $Q\left(\gamma_{0}\right)$ can be added to Φ.

Example 1.3.4. Denote by $\vartheta:=\operatorname{cone}\left(\operatorname{deg}\left(f_{1}\right), \ldots, \operatorname{deg}\left(f_{r}\right)\right) \subseteq K_{\mathbb{Q}}$ the weight cone of R. Each vector $w \in \vartheta$ defines an \mathfrak{F}-bunch

$$
\Phi(w):=\left\{\vartheta_{0} \in \Omega ; w \in \vartheta_{0}^{\circ}\right\}
$$

We call the K-grading of R pointed if $R_{0}=\mathbb{K}$ and the weight cone ϑ is pointed. The following notion will be of central interest in Chapter 2
Definition 1.3.5. A bunched ring is a triple (R, \mathfrak{F}, Φ) where R is an almost freely factorially K-graded, integral, normal, affine \mathbb{K}-algebra with \mathbb{K}^{*} as its group of homogeneous units. Moreover, \mathfrak{F} is a system of pairwise non-associated K-prime generators for R and Φ is a true \mathfrak{F}-bunch in $K_{\mathbb{Q}}$.

To each bunched ring (R, \mathfrak{F}, Φ) we implicitly assign the degree map $Q: \mathbb{Z}^{r} \rightarrow K$ and the positive orthant $\gamma=\mathbb{Q}_{\geq 0}^{r}$. The relevant algebraic data of a bunched ring is
stored in the collection of relevant \mathfrak{F}-faces and the covering collection given by

$$
\begin{aligned}
\operatorname{rlv}(\Phi) & :=\left\{\gamma_{0} \preceq \gamma ; \gamma_{0} \text { is an } \mathfrak{F} \text {-face and } Q\left(\gamma_{0}\right) \in \Phi\right\} \\
\operatorname{cov}(\Phi) & :=\left\{\gamma_{0} \in \operatorname{rlv}(\Phi) ; \gamma_{0} \text { minimal }\right\} .
\end{aligned}
$$

Recall that a variety X is called an A_{2}-variety if for each two points $x, x^{\prime} \in X$ there is an affine, open neighborhood $U \subseteq X$ such that $x, x^{\prime} \in U$. A normal variety is A_{2} if and only if there is a closed embedding into a toric variety. The following construction is essential.

Construction 1.3.6. Let (R, \mathfrak{F}, Φ) be a bunched ring. Write $\mathfrak{F}=\left(f_{1}, \ldots, f_{r}\right)$. Consider the action of the quasitorus $H:=$ Spec $\mathbb{K}[K]$ on the affine variety $\bar{X}:=$ Spec R. We assign to each \mathfrak{F}-face $\gamma_{0} \preceq \gamma$ the open affine variety

$$
\bar{X}_{\gamma_{0}}:=\bar{X}_{f_{1}^{u_{1}} \ldots f_{r}^{u_{r}}} \quad \text { with } u=\left(u_{1}, \ldots, u_{r}\right) \in \gamma_{0}^{\circ} .
$$

This is independent of the choice of $u \in \gamma_{0}^{\circ}$. We then obtain an open H-invariant subset

$$
\widehat{X}(R, \mathfrak{F}, \Phi):=\widehat{X}:=\bigcup_{\gamma_{0} \in \operatorname{rlv}(\Phi)} \bar{X}_{\gamma_{0}}=\bigcup_{\gamma_{0} \in \operatorname{cov}(\Phi)} \bar{X}_{\gamma_{0}} \subseteq \bar{X}
$$

The H-action on \widehat{X} admits a good quotient p. This means we have an irreducible normal A_{2}-variety $X(R, \mathfrak{F}, \Phi):=X:=\widehat{X} / / H$ with

$$
\operatorname{Spec} R=\bar{X} \quad \supseteq \quad \widehat{X} \xrightarrow{p} X
$$

Then X is of dimension $\operatorname{dim}(R)-\operatorname{dim}\left(K_{\mathbb{Q}}\right)$. Moreover, the Cox ring of X is isomorphic to R, we have $\Gamma\left(X, \mathcal{O}^{*}\right)=\mathbb{K}^{*}$ and there is an isomorphism

$$
\mathrm{Cl}(X) \rightarrow K, \quad\left[D_{i}\right] \mapsto \operatorname{deg}\left(f_{i}\right) \quad \text { where } D_{i}:=p\left(V\left(\widehat{X} ; f_{i}\right)\right)
$$

and the $D_{i} \subseteq X$ are prime divisors. Furthermore, the affine open subsets $\bar{X}_{\gamma_{0}} \subseteq \widehat{X}$ with $\gamma_{0} \in \operatorname{rlv}(\Phi)$ are H-saturated and we have an affine cover

$$
X=\bigcup_{\gamma_{0} \in \operatorname{rlv}(\Phi)} X_{\gamma_{0}}, \quad X_{\gamma_{0}}:=p\left(\bar{X}_{\gamma_{0}}\right) \subseteq X
$$

We call an embedding of varieties $\iota: X \rightarrow X^{\prime}$ big if the codimension of $X^{\prime} \backslash \iota(X)$ is at least two. Moreover, an A_{2}-variety X is called A_{2}-maximal if for each big open embedding $\iota: X \rightarrow X^{\prime}$ with an A_{2}-variety X^{\prime}, we have $\iota(X)=X^{\prime}$. Projective varieties are A_{2}-maximal.
Theorem 1.3.7. Consider an irreducible, normal A_{2}-variety with finitely generated class group $\mathrm{Cl}(X)$ and finitely generated Cox ring $R:=\mathcal{R}(X)$. Suppose $\Gamma\left(X, \mathcal{O}^{*}\right)=$ \mathbb{K}^{*}. Fix a system \mathfrak{F} of pairwise non-associated $\operatorname{Cl}(X)$-prime generators for $\mathcal{R}(X)$.
(i) There is a maximal \mathfrak{F}-bunch Φ and a big open embedding $X \rightarrow X(R, \mathfrak{F}, \Phi)$.
(ii) If, in (i), X is A_{2}-maximal, then $X \cong X(R, \mathfrak{F}, \Phi)$.

Definition 1.3.8. A Mori dream space is an irreducible, complete, normal variety X with finitely generated class group $\mathrm{Cl}(X)$ and finitely generated Cox $\operatorname{ring} \mathcal{R}(X)$.

We will use the term Mori dream space in a slightly more general setting in Chapter 2 , An \mathfrak{F}-bunch Φ of cones in $K_{\mathbb{Q}}$ is called projective if $\Phi=\Phi(w)$ for a vector $w \in K_{\mathbb{Q}}$ as in Example 1.3.4; The following corollary states the correspondence to bunched rings.

Corollary 1.3.9. For each Mori dream space X there is a bunched ring (R, \mathfrak{F}, Φ) such that $X \cong X(R, \mathfrak{F}, \Phi)$. Moreover, there is a bijection

$$
\left\{\begin{array}{c}
\text { projective Mori } \\
\text { dream spaces }
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { bunched rings with a } \\
\text { projective bunch of cones }
\end{array}\right\}
$$

Observe that the GIT-fan presents the possible choices for the ample class w defining the projective bunch $\Phi(w)$. The moving cone of R is the polyhedral cone

$$
\operatorname{Mov}(R):=\bigcap_{i=1}^{r} \operatorname{cone}\left(f_{j} ; j \neq i\right) \subseteq K_{\mathbb{Q}}
$$

Remark 1.3.10. Fix a finitely generated abelian group K and a factorially K graded, integral, normal, affine \mathbb{K}-algebra R with K-prime generators f_{1}, \ldots, f_{r} and \mathbb{K}^{*} as its homogeneous units. Let $H:=\operatorname{Spec} \mathbb{K}[K]$ act on $\bar{X}:=\operatorname{Spec} R$. Consider a projective Mori dream space Y with Cox ring $\mathcal{R}(Y) \cong R$ and class group $\mathrm{Cl}(Y) \cong K$. Then

$$
Y \cong X(R, \mathfrak{F}, \Phi(w)) \quad \text { for some } \quad \lambda \in \Lambda(\bar{X}, H), \quad w \in \lambda^{\circ} \subseteq \operatorname{Mov}(R)^{\circ} .
$$

Let X be an irreducible normal variety and Z a toric variety with dense torus \mathbb{T}_{Z}, basepoint $z_{0} \in Z$ and invariant prime divisors $D_{Z}^{1}, \ldots, D_{Z}^{r}$. Write $D_{Z}^{i}=\overline{\mathbb{T}_{Z} \cdot z_{i}}$ with $z_{i} \in Z$. Let $\varphi: X \rightarrow Z$ be a morphism. Assume $\varphi^{-1}\left(D_{Z}^{i}\right) \subseteq X$ are pairwise different irreducible hypersurfaces for each $1 \leq i \leq r$. Define

$$
Z^{\prime}:=\mathbb{T}_{Z} \cdot z_{0} \cup \ldots \cup \mathbb{T}_{Z} \cdot z_{r} \subseteq Z
$$

Then the codimension of $X \backslash \varphi^{-1}\left(Z^{\prime}\right)$ in X is at least two and there is a canonical pullback homomorphism

where $\mathrm{WDiv}^{\mathbb{T}_{Z}}\left(Z^{\prime}\right)$ and $\operatorname{CDiv}^{\mathbb{T}_{Z}}\left(Z^{\prime}\right)$ denote the respective \mathbb{T}_{Z}-invariant divisors. Since principal divisors are mapped to principal divisors, φ^{*} induces the map in the lower row which we denote again by $\varphi^{*}: \mathrm{Cl}(Z) \rightarrow \mathrm{Cl}(X)$.

Definition 1.3.11. Let X be an irreducible, normal variety and Z a toric variety with dense torus \mathbb{T}_{Z} and invariant prime divisors $D_{Z}^{1}, \ldots, D_{Z}^{r}$. A closed embedding $\iota: X \rightarrow Z$ is a neat embedding if

$$
\iota^{-1}\left(D_{Z}^{1}\right), \quad \ldots, \quad \iota^{-1}\left(D_{Z}^{r}\right) \subseteq X
$$

are pairwise different irreducible hypersurfaces and the homomorphism $\iota^{*}: \mathrm{Cl}(Z) \rightarrow$ $\mathrm{Cl}(X)$ is an isomorphism.

Construction 1.3.12 (Canonical toric ambient variety). Consider a bunched ring (R, \mathfrak{F}, Φ) with degree map $Q: \mathbb{Z}^{r} \rightarrow K$ and positive orthant $\gamma=\mathbb{Q}_{\geq 0}^{r}$. Setting $M:=\operatorname{ker}(Q)$ we have exact sequences

For each face $\gamma_{0} \preceq \gamma$, let $\gamma_{0}^{*}:=\gamma_{0}^{\perp} \cap \delta$ be the dual face where $\delta:=\gamma^{\vee}$. Consider the collection of faces Θ and the fans $\widehat{\Sigma} \subseteq \mathbb{Q}^{r}$ and $\Sigma \subseteq N_{\mathbb{Q}}:=N \otimes_{\mathbb{Z}} \mathbb{Q}$ given by

$$
\begin{aligned}
\Theta & :=\left\{\gamma_{0} \preceq \gamma ; \text { there is } \gamma_{1} \in \operatorname{rlv}(\Phi) \text { with } \gamma_{1} \preceq \gamma_{0} \text { and } Q\left(\gamma_{1}\right)^{\circ} \subseteq Q\left(\gamma_{0}\right)^{\circ}\right\}, \\
\widehat{\Sigma} & :=\left\{\delta_{0} \preceq \delta ; \text { there is } \gamma_{0} \in \Theta \text { with } \delta_{0} \preceq \gamma_{0}^{*}\right\}, \\
\Sigma & :=\left\{P\left(\gamma_{0}^{*}\right) ; \gamma_{0} \in \Theta\right\} .
\end{aligned}
$$

As in Construction 1.3.6; let $\widehat{X}:=\widehat{X}(R, \mathfrak{F}, \Phi)$ and $X:=X(R, \mathfrak{F}, \Phi)$. Consider the action of the quasitorus $H:=\operatorname{Spec} \mathbb{K}[K]$ on $\bar{X}:=\operatorname{Spec} R$. Let $\bar{Z}:=\mathbb{K}^{r}$ be the toric variety corresponding to the cone δ. The generators $\mathfrak{F}=\left(f_{1}, \ldots, f_{r}\right)$ for R provide a closed embedding

$$
\bar{\iota}: \bar{X} \rightarrow \bar{Z}, \quad z \mapsto\left(f_{1}(z), \ldots, f_{r}(z)\right)
$$

which is H-equivariant if we install the diagonal H-action on \bar{Z} given by the characters $\chi^{w_{1}}, \ldots, \chi^{w_{r}}$ with $w_{i}:=\operatorname{deg}\left(f_{i}\right) \in K$. We have a diagram

where \widehat{Z} and Z are the toric varieties corresponding to $\widehat{\Sigma}$ and Σ respectively, $\hat{\iota}$ is the restriction of $\bar{\iota}$, the induced map of quotients ι is a neat embedding and the toric morphism $\widehat{Z} \rightarrow Z$, the Cox construction, corresponds to the matrix P.
Definition 1.3.13. In the setting of Construction 1.3.12, we call $\iota: X \rightarrow Z$ the canonical toric embedding and Z the canonical toric ambient variety of X.

We now give a short survey of the basic geometry of varieties arising from bunched rings. A first step is the decomposition into strata.

Construction 1.3.14. Let the situation be as in Construction To an \mathfrak{F}-face $\gamma_{0} \preceq \gamma$ we assign the locally closed set

$$
\bar{X}\left(\gamma_{0}\right):=\left\{z \in \bar{X} ; f_{i}(z) \neq 0 \Leftrightarrow e_{i} \in \gamma_{0} \text { for each } 1 \leq i \leq r\right\} \subseteq \bar{X}
$$

Their union gives a disjoint covering of \bar{X}. We obtain a disjoint decomposition into locally closed strata as

$$
X=\bigcup_{\gamma_{0} \in \operatorname{rlv}(\Phi)} X\left(\gamma_{0}\right), \quad X\left(\gamma_{0}\right):=p\left(\bar{X}\left(\gamma_{0}\right)\right)=X_{\gamma_{0}} \backslash \bigcup_{\substack{\gamma_{1} \in \operatorname{rlv}(\Phi), \gamma_{0} \prec \gamma_{1}}} X_{\gamma_{1}}
$$

Let X be normal and irreducible. Given $x \in X$, the local class group $\mathrm{Cl}(X, x)$ is the factor group of $\operatorname{WDiv}(X)$ by the group of all divisors that are principal in a neighborhood of x. The Picard group $\operatorname{Pic}(X)$ is the group $\operatorname{CDiv}(X) / \operatorname{PDiv}(X)$ of Cartier divisors modulo principal divisors. Moreover, a point $x \in X$ is factorial if near x each Weil divisor is principal. Similarly, $x \in X$ is \mathbb{Q}-factorial if near x, for each Weil divisor $D \in \operatorname{WDiv}(X)$, there is $n \in \mathbb{Z}_{\geq 1}$ such that $n D$ is principal. If each point is \mathbb{Q}-factorial, the variety X is \mathbb{Q}-factorial.

Proposition 1.3.15. Consider the setting of Construction:1.3.6, and let $Q: \mathbb{Z}^{r} \rightarrow$ K be the degree matrix. For each $\gamma_{0} \in \operatorname{rlv}(\Phi)$ and each point $x \in X\left(\gamma_{0}\right)$ we have a
diagram

It is independent of the choice of $x \in X\left(\gamma_{0}\right)$. The following claims hold.
(i) The point x is factorial if and only if $Q\left(\operatorname{lin}\left(\gamma_{0}\right) \cap \mathbb{Z}^{r}\right)$ equals K.
(ii) The point x is \mathbb{Q}-factorial if and only if $Q\left(\gamma_{0}\right)$ is of full dimension.
(iii) The point x is smooth if and only if it is factorial and there is a smooth point $z \in p^{-1}(x) \subseteq \widehat{X}$.

Moreover, $\operatorname{Pic}(X)$ is isomorphic to the Picard group of the canonical toric ambient variety Z and it is free if Z has a toric fixed point. Within $K \cong \mathrm{Cl}(X)$ it is given by

$$
\operatorname{Pic}(X)=\bigcap_{\gamma_{0} \in \operatorname{cov}(\Phi)} Q\left(\operatorname{lin}\left(\gamma_{0}\right) \cap \mathbb{Z}^{r}\right)
$$

The effective cone is the convex polyhedral cone $\operatorname{Eff}(X)$ in $\operatorname{Cl}(X)_{\mathbb{Q}}:=\mathrm{Cl}(X) \otimes_{\mathbb{Z}} \mathbb{Q}$ generated by the divisor classes of effective divisors. The stable base locus of a divisor $D \in \operatorname{WDiv}(X)$ is

$$
\bigcap_{n \in \mathbb{Z} \geq 1} \bigcap_{f \in \Gamma(X, \mathcal{O}(n D))} \operatorname{Supp}\left(\operatorname{div}_{n D}(f)\right) \text {. }
$$

We call a divisor $D \in \operatorname{WDiv}(X)$ movable if its stable base locus is of codimension at least two. The moving cone $\operatorname{Mov}(X) \subseteq \mathrm{Cl}(X)_{\mathbb{Q}}$ is the convex polyhedral cone consisting of all movable divisor classes. Furthermore, a divisor $D \in \operatorname{WDiv}(X)$ with empty stable base locus is called semiample. It is ample if there is a covering of X by affine sets $X \backslash \operatorname{Supp}\left(\operatorname{div}_{n D}(f)\right)$ with $n \in \mathbb{Z}_{\geq 1}$. The convex cones $\operatorname{SAmple}(X)$ and Ample $(X) \subseteq \mathrm{Cl}(X)_{\mathbb{Q}}$ consist of all semiample or ample divisor classes, respectively.

Proposition 1.3.16. Consider the situation of Construction1.3. with degree map $Q: \mathbb{Z}^{r} \rightarrow K$ and $\gamma=\mathbb{Q}_{\geq 0}^{r}$. Within $K_{\mathbb{Q}}=\operatorname{Cl}(X)_{\mathbb{Q}}$ we have the cones

$$
\begin{aligned}
\operatorname{Eff}(X) & =Q(\gamma), & \operatorname{SAmple}(X) & =\bigcap_{\tau \in \Phi} \tau \\
\operatorname{Mov}(X) & =\bigcap_{\substack{\gamma_{0} \underline{\gamma} \\
\text { facet }}} Q\left(\gamma_{0}\right), & \operatorname{Ample}(X) & =\bigcap_{\tau \in \Phi} \tau^{\circ} .
\end{aligned}
$$

We now treat the case of a variety $X=X(R, \mathfrak{F}, \Phi)$ arising from a bunched ring (R, \mathfrak{F}, Φ) with $\mathfrak{F}=\left(f_{1}, \ldots, f_{r}\right)$ and grading group K where R is a complete intersection, i.e., there are $d:=r-\operatorname{dim}(R)$ polynomials g_{1}, \ldots, g_{d} that are K-homogeneous and generate the kernel of

$$
\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] \rightarrow R, \quad T_{i} \mapsto f_{i} .
$$

We write $u_{1}, \ldots, u_{d} \in K$ for the degrees of g_{1}, \ldots, g_{d} and $w_{1}, \ldots, w_{r} \in K$ for the degrees of $f_{1}, \ldots, f_{r} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$. Recall that a variety X is Gorenstein if its anticanonical divisor is Cartier. If some positive multiple of its anticanonical divisor is Cartier, X is called \mathbb{Q}-Gorenstein. The variety X is Fano if it is irreducible, normal, projective and its anticanonical divisor is ample.

Proposition 1.3.17. In the situation of Construction 1. 6 , assume (R, \mathfrak{F}, Φ) is a complete intersection bunched ring. Within $K=\mathrm{Cl}(X)$, the anticanonical divisor
class of X is

$$
-w_{X}^{\mathrm{can}}=\sum_{i=1}^{r} w_{i}-\sum_{i=1}^{d} u_{i} \in K
$$

Moreover, the following properties hold.
(i) X is Gorenstein if and only if $-w_{X}^{\mathrm{can}} \in \operatorname{Pic}(X)$.
(ii) X is \mathbb{Q}-Gorenstein if and only if $-w_{X}^{\text {can }} \in \operatorname{lin}(\tau)$ for each $\tau \in \Phi$.
(iii) X is Fano if and only if $-w_{X}^{\text {can }} \in \operatorname{Ample}(X)$.

In the setting of Proposition 1.3.17; we say that the variety X is n-Gorenstein if $n \in \mathbb{Z}_{\geq 1}$ is minimal with $-n w_{X}^{\text {can }} \in \operatorname{Pic}(X)$.

4. Modifications and surfaces

We recapitulate some basic geometry of surfaces, i.e., two-dimensional irreducible varieties. Also, the notions of contractions and blow ups of a variety are being recalled. This section is a summary of [5], mainly Chapter V, the thesis of U. Derenthal [33], mostly Chapter 1, and Chapters II. 7 and V of R. Hartshorne's book [48]. Compare also [51, Sec. 6] and Beauville's book [14; Ch. II].
Consider a smooth, projective surface X and two distinct curves D_{1}, D_{2} on X, i.e., irreducible subvarieties of dimension one. In other words, $D_{1}, D_{2} \in \operatorname{WDiv}(X)=$ $\operatorname{CaDiv}(X)$ are prime divisors with coefficient one. Their intersection number $D_{1} \cdot D_{2}$ is the sum over all intersection multiplicities m_{x}, that is

$$
D_{1} \cdot D_{2}:=\sum_{x \in D_{1} \cap D_{2}} m_{x}, \quad m_{x}:=\operatorname{dim}_{\mathbb{K}}\left(\mathcal{O}_{X, x} /\left\langle f_{x}^{(1)}, f_{x}^{(2)}\right\rangle\right)
$$

where $f_{x}^{(i)} \in \mathcal{O}_{X, x}$ is a germ of a generator for the ideal $I\left(D_{i}\right)$ near x. Note that if D_{1} and D_{2} intersect transversally and are smooth, $D_{1} \cdot D_{2}$ is the number of intersection points. Taking intersection numbers extends to a symmetric \mathbb{Z}-valued bilinear form on $\mathrm{WDiv}(X)$ that only depends on the classes of the involved divisors. This means we have an intersection product

$$
\mathrm{Cl}(X) \times \mathrm{Cl}(X) \rightarrow \mathbb{Z}, \quad\left(\left[D_{1}\right],\left[D_{2}\right]\right) \mapsto D_{1} \cdot D_{2}
$$

Given $D \in \operatorname{WDiv}(X)$, its self-intersection number is $D^{2}:=D \cdot D$. We call a curve $D \subseteq X$ negative or non-negative if $D^{2}<0$ or $D^{2} \geq 0$, respectively. A $(-k)$-curve is an irreducible curve with $C^{2}=-k$ that is isomorphic to \mathbb{P}_{1}.
We turn to modifications, i.e., proper birational morphisms. Let X be a projective Mori dream space and $D \subseteq X$ a prime divisor. By a contraction of D, we mean a morphism $\pi: X \rightarrow X^{\prime}$ mapping D to a point such that the restriction $\pi: X \backslash D \rightarrow$ $X^{\prime} \backslash \pi(D)$ is an isomorphism. For surfaces, the contractible divisors are exactly the negative, rational curves.
Theorem 1.4.1 (Castelnuovo criterion). Let X be a projective, smooth surface and C an irreducible curve on X. Then C is a (-1)-curve if and only if there is a contraction $\pi: X \rightarrow X^{\prime}$ of C with a smooth, projective surface X^{\prime}.

For general Mori dream spaces, we use the following remark. Let R be a K-graded \mathbb{K}-algebra as in Construction 1.3.6.with pairwise non-associated K-prime generators f_{1}, \ldots, f_{r} and weight cone $\vartheta \subseteq K_{\mathbb{Q}}$. We say $w_{i}:=\operatorname{deg}\left(f_{i}\right) \in K$ is extremal if $\vartheta \neq \operatorname{cone}\left(w_{j} ; j \neq i\right)$. Note that this definition differs from the one in [5].
Remark 1.4.2. Let $X=X(R, \mathfrak{F}, \Phi)$ be a projective, \mathbb{Q}-factorial variety corresponding to a bunched ring as in Construction 1.3.6; Assume $\Phi=\Phi(w)$ holds for a full-dimensional GIT-cone $\lambda \in \Lambda(\bar{X}, H)$ with $w \in \lambda^{\circ}$. Let $D_{Z} \subseteq Z$ be a
prime divisor and $D_{X}:=D_{Z} \cap X$ the corresponding prime divisor on X. Writing $w^{\prime}:=\left[D_{Z}\right]=\left[D_{X}\right] \in K$ for their classes, the following are equivalent.
(i) The vector $w^{\prime} \in K$ is extremal and there is a full-dimensional cone $\lambda^{\prime} \in$ $\Lambda(\bar{X}, H)$ with $w^{\prime} \in \lambda^{\prime}$ such that $\lambda^{\prime} \cap \lambda$ is of codimension one.
(ii) There is a contraction $X \rightarrow X^{\prime}$ of D_{X} with a projective \mathbb{Q}-factorial variety X^{\prime}.

We come to the blow up of a variety in a subvariety. For the case of the blow up of a surface in a point x, this means replacing x by a curve isomorphic to \mathbb{P}_{1}.

Construction 1.4.3 (Blow up). Let $\iota: C \rightarrow X$ be a closed embedding of varieties. Then the ideal sheaf \mathcal{I}_{C} on C, i.e., the kernel of $\iota^{*}: \mathcal{O}_{X} \rightarrow \iota_{*} \mathcal{O}_{C}$, is coherent and we have a quasi-coherent sheaf of graded \mathcal{O}_{X}-algebras

$$
\mathcal{S}:=\bigoplus_{d \in \mathbb{Z}_{\geq 0}} \mathcal{I}_{C}^{d}, \quad \Gamma\left(U, \mathcal{I}_{C}^{d}\right):= \begin{cases}\Gamma\left(U, \mathcal{I}_{C}\right)^{d}, & d>0, \\ \Gamma\left(U, \mathcal{O}_{X}\right), & d=0 .\end{cases}
$$

It is possible to glue together the varieties $\operatorname{Proj} \Gamma(U, \mathcal{S})$ where $U \subseteq X$ is open and affine. We obtain a variety $X^{\prime}:=\operatorname{Proj} \mathcal{S}$ and a morphism $\pi: X^{\prime} \rightarrow X$ such that $\pi^{-1}(U) \cong \operatorname{Proj} \Gamma(U, \mathcal{S})$ for all open, affine subsets $U \subseteq X$. We call π the blow up of X along the center C.

Example 1.4.4. In Construction 1.4 , we blow up $X:=\mathbb{K}^{n}$ at the origin, i.e., at $C=V(I) \subseteq X$ with $I=\left\langle T_{1}, \ldots, T_{n}\right\rangle$ and $\mathcal{S}=\mathcal{O}_{X}(X) \oplus I \oplus I^{2} \oplus \ldots$ We have an epimorphism

$$
\psi: \mathcal{O}_{X}(X)\left[S_{1}, \ldots, S_{n}\right] \rightarrow \mathcal{S}, \quad S_{i} \mapsto T_{i} \in \mathcal{S}_{1}=I
$$

Taking the Proj, we obtain an embedding of the blow up X^{\prime} of X along C into $\operatorname{Proj} \mathcal{O}_{X}(X)\left[S_{1}, \ldots, S_{n}\right] \cong \mathbb{K}^{n} \times \mathbb{P}_{n-1}$. The homogeneous generators $T_{i} S_{j}-T_{j} S_{i}$ of $\operatorname{ker}(\psi)$ then give a description

$$
X^{\prime} \cong\left\{(x, y) \in \mathbb{K}^{n} \times \mathbb{P}_{n-1} ; x_{i} y_{j}=x_{j} y_{i} \text { for all } i \neq j\right\} \subseteq \mathbb{K}^{n} \times \mathbb{P}_{n-1}
$$

Given a morphism $\varphi: X \rightarrow Y$ of varieties and the ideal sheaf \mathcal{I}_{Y} on Y, the inverse image ideal sheaf $\varphi^{-1} \mathcal{I}_{Y} \cdot \mathcal{O}_{X}$ on X is the following: viewing φ as a map of topological spaces, we have the preimage sheaf $\varphi^{-1} \mathcal{I}_{Y}$ in the sheaf of rings $\varphi^{-1} \mathcal{O}_{Y}$ on X. We define $\varphi^{-1} \mathcal{I}_{Y} \cdot \mathcal{O}_{X}$ as the image of $\varphi^{-1} \mathcal{I}_{Y}$ under $\varphi^{-1} \mathcal{O}_{Y} \rightarrow \mathcal{O}_{X}$.
Proposition 1.4.5. Let $\pi: X^{\prime} \rightarrow X$ be the blow up of a variety X along a subvariety $C \subseteq X$ as in Construction 1.4.3:
(i) The morphism π is birational proper and surjective.
(ii) The restriction $\pi: \pi^{-1}(U) \rightarrow U$, where $U:=X \backslash C$, is an isomorphism.
(iii) If X is projective, then X^{\prime} is projective.

For a morphism $\varphi: W \rightarrow X$ of varieties, let $\pi^{\prime}: W^{\prime} \rightarrow W$ be the blow up of W at the inverse image ideal sheaf $\varphi^{-1} \mathcal{I}_{C} \cdot \mathcal{O}_{W}$. Then there is a unique morphism φ^{\prime} such that

is commutative. Moreover, if $\varphi: W \rightarrow X$ is an embedding, also $\varphi^{\prime}: W^{\prime} \rightarrow X^{\prime}$ is an embedding.

Given a blow up $\pi: X^{\prime} \rightarrow X$ along $C \subseteq X$ as in Construction 1.4.3; we frequently also call the variety X^{\prime} the blow up of X along C.

Definition 1.4.6. In Proposition 1.4.5, assume $W \subseteq X$. The proper transform of $W \subseteq X$ under $\pi: X^{\prime} \rightarrow X$ is the subvariety $W^{\prime} \subseteq X^{\prime}$. The subvariety $E \subseteq X^{\prime}$ defined by the inverse image ideal sheaf $\pi^{-1} \mathcal{I}_{C} \cdot \mathcal{O}_{X^{\prime}}$ is the exceptional divisor of the blow up $\pi: X^{\prime} \rightarrow X$.

Throughout this document we will mainly work with the blow up $\pi: X^{\prime} \rightarrow X$ of a smooth projective surface X at a point $x \in X$. Then the proper transform of a prime divisor $D \in \mathrm{WDiv}(X)$ is the closure $D^{\prime}:=\overline{\pi^{-1}(D \backslash\{x\})}$ in X^{\prime} and the exceptional divisor is the preimage $\pi^{-1}(x) \subseteq X^{\prime}$; it is isomorphic to \mathbb{P}_{1}.

Remark 1.4.7 (Toric blow up). Let Z be a toric variety with defining fan Σ. Then the blow up of Z at a toric fixed point $z_{\sigma} \in Z$ is the toric variety Z^{\prime} with its fan Σ^{\prime} obtained by the barycentric subdivision $\Sigma^{\prime} \rightarrow \Sigma$ of the cone $\sigma \in \Sigma$.

We define the Picard number $\varrho(X) \in \mathbb{Z}_{\geq 0}$ of a surface X as the rank of the Picard group $\operatorname{Pic}(X)$. Note that for \mathbb{Q}-factorial X the Picard number equals the rank of the class group. Moreover, given a point x on a smooth surface X and a principal divisor $D=V(f) \in \operatorname{WDiv}(X)$, we write $\mu(x, D) \in \mathbb{Z}_{\geq 0}$ for the multiplicity of x in D; this is the maximal integer $r \in \mathbb{Z}_{\geq 0}$ such that $f \in \mathfrak{m}_{x}^{r}$ with the maximal ideal $\mathfrak{m}_{x} \subseteq \mathcal{O}_{X, x}$. If $x \in D$, then $\mu(x, D) \geq 1$ and equality holds if D is smooth.
Proposition 1.4.8. Let $\pi: X^{\prime} \rightarrow X$ be the blow up of a smooth surface X at a point $x \in X$.
(i) The surface X^{\prime} is smooth. If X is projective, then so is X^{\prime}.
(ii) The class group $\mathrm{Cl}\left(X^{\prime}\right)$ is isomorphic to $\mathrm{Cl}(X) \oplus \mathbb{Z}$ and the Picard group $\operatorname{Pic}\left(X^{\prime}\right)$ is isomorphic to $\operatorname{Pic}(X) \oplus \mathbb{Z}$. In particular, the Picard number increases by one, i.e., $\varrho\left(X^{\prime}\right)=\varrho(X)+1$.
(iii) The self intersection number of the exceptional divisor $E \subseteq X^{\prime}$ is $E^{2}=-1$ and E does not intersect the proper transforms of prime divisors $D \in$ $\operatorname{WDiv}(X)$ with $x \notin D$.
(iv) Let $D \in \operatorname{WDiv}(X)$ be a prime divisor. Then the proper transform $D^{\prime} \in$ $\operatorname{WDiv}\left(X^{\prime}\right)$ of D has self-intersection number $\left(D^{\prime}\right)^{2}=D^{2}-\mu(x, D)^{2}$. In particular, if D is smooth and contains x then $\left(D^{\prime}\right)^{2}=D^{2}-1$.

Given surfaces X_{1}, \ldots, X_{n}, we call a sequence $\left(x_{1}, \ldots, x_{n}\right)$ of points $x_{i} \in X_{i}$ infinitely near if for all $2 \leq i \leq n$ the surface X_{i} is the blow up of X_{i-1} in x_{i-1} and $x_{i} \in X_{i}$ projects to x_{i-1} under $X_{i} \rightarrow X_{i-1}$. The union of the proper transforms of the n exceptional divisors is also called the exceptional divisor over x_{1}.
A resolution (of singularities) of a normal, projective variety X is a proper morphism $\pi: X^{\prime} \rightarrow X$ with a smooth, projective surface X^{\prime} such that the restriction

$$
\pi^{-1}(U) \rightarrow U, \quad U:=X \backslash X^{\text {sing }}
$$

is an isomorphism. If X is a surface, there is a unique minimal resolution $X^{\prime} \rightarrow X$, i.e., each other resolution $X^{\prime \prime} \rightarrow X$ factors through $X^{\prime} \rightarrow X$.

Construction 1.4.9 (Graph of exceptional curves). Let X be a smooth, projective surface. Consider the colored, undirected, simple graph $G_{X}=(V, E)$ where V is the set of negative curves of X and the edges E are defined by

$$
\left(D_{1}, D_{2}\right) \in E \quad: \Leftrightarrow \quad D_{1} \cdot D_{2}>0
$$

The color function $V \rightarrow \mathbb{Z}$ is given by $D \mapsto D^{2}$. We call G_{X} the graph of exceptional curves or the exceptional graph.

Note that isomorphic surfaces X_{1}, X_{2} have isomorphic graphs $G_{X_{1}}, G_{X_{2}}$. In particular, the number of $(-k)$-curves on X_{1} and on X_{2} must coincide for each $k \in \mathbb{Z}_{>0}$. Consider a singular point x on a normal surface X with the exceptional divisor E over x and the exceptional graph $G_{X^{\prime}}$ of the minimal resolution $X^{\prime} \rightarrow X$. Assume the only negative curves are (-1) - and (-2 -curves. If for some n, one of the graphs

is isomorphic to the subgraph $G_{X^{\prime},-2} \subseteq G_{X^{\prime}}$ of (-2)-curves occurring within E, then x is called an $A D E$-singularity of the type indicated below the fitting graph. The next remark recalls the fact that the Cox ring of a Mori dream surface X already contains all information about X.

Remark 1.4.10. Let X be a projective Mori dream surface. Then there is exactly one full-dimensional GIT-cone $\lambda \in \Lambda\left(\bar{X}, H_{X}\right)$ with $\lambda \subseteq \operatorname{Mov}(X)^{\circ}$. In particular, in Construction 1.3.6 the bunch Φ can be obtained from $\mathcal{R}(X)$, i.e., is redundant.

5. Complexity-one T-varieties and \mathbb{K}^{*}-surfaces

We recall the theory of rational varieties with a torus action of codimension one, so-called complexity-one varieties. This class of varieties can be handled purely in terms of matrices. We put special emphasis on the surface case. This section is a summary of [5], mainly Chapters V. 4 and III.4, and E. Huggenberger's thesis [61]. Compare also [53, 86]. We will work in the notation of [61]; the main difference to [5] is the ordering of the slopes in Construction 1.5.2,

Definition 1.5.1. A complexity-one ($T-$) variety is a rational, \mathbb{Q}-factorial, complete, normal variety X with an effective action of a torus T with $\operatorname{dim}(T)=$ $\operatorname{dim}(X)-1$. A \mathbb{K}^{*}-surface is a complexity-one T-surface.

We will first treat the important special case of \mathbb{K}^{*}-surfaces. Higher dimensional complexity-one T-varieties will be constructed at the end of this section. The defining data of a variety of complexity one, i.e., the bunched ring as in Section $\overline{3}$, is encoded in a P-matrix.

Construction 1.5.2 (P-matrix). Let $r \in \mathbb{Z}_{\geq 1}$ and $n_{0}, \ldots, n_{r} \in \mathbb{Z}_{\geq 1}$ be positive integers. For each $0 \leq i \leq r$, consider tuples $l_{i}:=\left(l_{i 1}, \ldots, l_{i n_{i}}\right) \in \mathbb{Z}_{\geq 1}^{n_{i}}$ and $d_{i}:=$
$\left(d_{i 1}, \ldots, d_{i n_{i}}\right) \in \mathbb{Z}^{n_{i}}$ such that

$$
\frac{d_{i 1}}{l_{i 1}}<\ldots<\frac{d_{i n_{i}}}{l_{i n_{i}}}, \quad \operatorname{gcd}\left(l_{i j}, d_{i j}\right)=1 \text { for all } i, j .
$$

Set $n:=n_{0}+\ldots+n_{r}$. We have an integral $r \times n$ block matrix L and an integral $1 \times n$ block matrix d

$$
L:=\left[\begin{array}{rrrr}
-l_{0} & l_{1} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
-l_{0} & 0 & \cdots & l_{r}
\end{array}\right], \quad d:=\left[\begin{array}{lll}
d_{0} & \cdots & d_{r}
\end{array}\right] .
$$

We define four types of P-matrices, namely the following integral $(r+1) \times(n+m)$ matrices where $m \in\{0,1,2\}$ counts the number of additional columns

$$
\begin{array}{ll}
\text { (ee) } P=\left[\begin{array}{c}
L \\
d
\end{array}\right], & (\mathrm{pp}) P=\left[\begin{array}{ccc}
L & 0 & 0 \\
d & 1 & -1
\end{array}\right], \\
\text { (pe) } P=\left[\begin{array}{ll}
L & 0 \\
d & 1
\end{array}\right], & \text { (ep) } P=\left[\begin{array}{cc}
L & 0 \\
d & -1
\end{array}\right] .
\end{array}
$$

We require the columns of P to be pairwise different and primitive and they must generate \mathbb{Q}^{r+1} as a cone. We denote by $v_{i j}$, where $0 \leq i \leq r$ and $1 \leq j \leq n_{i}$, the first n columns of P and by v_{k}, where $1 \leq k \leq m$, the last m columns of P. Accordingly, we write $e_{i j}, e_{k}$ for the canonical basis vectors of \mathbb{Q}^{n+m}.
Construction 1.5.3. Given $r \in \mathbb{Z}_{\geq 1}$, consider a $2 \times(r+1)$ matrix $A=\left[a_{0}, \ldots, a_{r}\right]$ over \mathbb{K} such that each two columns a_{i}, a_{j} are linearly independent for $i \neq j$. Let P be a $(r+1) \times(n+m)$ matrix as in Construction 1.5.2, Define

$$
g_{I}:=\operatorname{det}\left(\left[\begin{array}{rrr}
T_{i}^{l_{i}} & T_{i+1}^{l_{i+1}} & T_{i+2}^{l_{i+2}} \\
a_{i} & a_{i+1} & a_{i+2}
\end{array}\right]\right), \quad T_{j}^{l_{j}}:=T_{j 1}^{l_{j 1}} \cdots T_{j n_{j}}^{l_{j n_{j}}}, \quad I \in \mathfrak{J}
$$

where \mathfrak{J} is the set of all triples $I=(i, i+1, i+2)$ with $0 \leq i \leq r-2$. We obtain a \mathbb{K}-algebra $R(P, A)$ that is a complete intersection ring

$$
R(P, A):=\mathbb{K}\left[T_{i j}, S_{k} ; 0 \leq i \leq r, 1 \leq j \leq n_{i}, 1 \leq k \leq m\right] /\left\langle g_{I} ; I \in \mathfrak{J}\right\rangle
$$

Consider the projection $Q: \mathbb{Z}^{n+m} \rightarrow K$ with $K:=\mathbb{Z}^{n+m} / \operatorname{Im}\left(P^{*}\right)$. We install a K-grading on $R(P, A)$ by setting

$$
\operatorname{deg}\left(T_{i j}\right):=Q\left(e_{i j}\right), \quad \operatorname{deg}\left(S_{k}\right):=Q\left(e_{k}\right)
$$

Then the variables $T_{i j}, S_{k}$ form a system of K-prime generators of $R(P, A)$ and the grading is K-factorial and almost free.

Theorem 1.5.4. Each ring $R(P, A)$ is the Cox ring of a \mathbb{Q}-factorial, projective \mathbb{K}^{*}-surface $X(P, A)$. The surface $X(P, A)$ is determined by the matrices P and A up to isomorphism. Furthermore, each rational, normal, complete \mathbb{K}^{*}-surface is isomorphic to $X(P, A)$ for suitable matrices A and P.

Corollary 1.5.5. Let X be a surface with Cox ring $\mathbb{K}\left[T_{1}, \ldots, T_{n}\right] /\left\langle c_{1} T^{\nu_{1}}+c_{2} T^{\nu_{2}}+\right.$ $\left.c_{3} T^{\nu_{3}}\right\rangle$ where $c_{i} \in \mathbb{K}^{*}$ and $\nu_{i} \in \mathbb{Z}_{\geq 0}^{n}$ are such that the $T^{\nu_{i}}$ are pairwise coprime. Then X admits a non-trivial \mathbb{K}^{*}-action.

Remark 1.5.6. In Construction 1.5.3; the ideal $\left\langle g_{I} ; I \in \mathfrak{J}\right\rangle$ is prime. In particular, each ideal $I \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ generated by two polynomials

$$
T^{\nu_{1}}+T^{\nu_{2}}+T^{\nu_{3}}, \quad \lambda T^{\nu_{2}}+T^{\nu_{3}}+T^{\nu_{4}}, \quad \lambda \in \mathbb{K}^{*} \backslash\{1\}
$$

with exponent vectors $\nu_{i} \in \mathbb{Z}_{\geq 0}^{r}$ and pairwise coprime terms is a prime ideal.
We now construct the canonical toric ambient variety of a \mathbb{K}^{*}-surface explicitly, compare Construction 1.3.12.

Construction 1.5.7. Let P be a P-matrix as in Construction 1.5.2; write $v_{i j}$ for its first n columns and $v_{1}=(0, \ldots, 0,1)$ and $v_{2}=(0, \ldots, 0,-1)$ for its m possibly remaining columns. Define in \mathbb{Z}^{n+m} the cones

$$
\begin{array}{rlrl}
\sigma^{-} & :=\operatorname{cone}\left(v_{01}, \ldots, v_{r 1}\right), & & \\
\sigma^{+} & :=\operatorname{cone}\left(v_{0 n_{0}}, \ldots, v_{r n_{r}}\right), & \\
\tau_{i j} & :=\operatorname{cone}\left(v_{i j}, v_{i j+1}\right), & 0 \leq i \leq r, 1 \leq j \leq n_{i}-1, \\
\tau_{i}^{-} & :=\operatorname{cone}\left(v_{i 1}, v_{2}\right), & 0 \leq i \leq r, \\
\tau_{i}^{+} & :=\operatorname{cone}\left(v_{i n_{i}}, v_{1}\right), & 0 \leq i \leq r .
\end{array}
$$

Depending on the type (ee), (pp), (pe) or (ep) of the P-matrix, we have a fan $\Sigma(P)$ in \mathbb{Z}^{r+1} with the following maximal cones

Note that the drawings show the case $r=2$. Moreover, $\Sigma(P)$ is the fan of the canonical toric ambient variety $Z(P)$ of $X(P, A)$ of Construction:1.3.12 independent of A. The \mathbb{K}^{*}-action on $X(P, A)$ arises from the one-parameter subgroup $t \mapsto$ $(1, \ldots, 1, t)$ of the dense torus \mathbb{T}^{r+1} of $Z(P)$.

Consider a P-matrix P as in Construction 1.5 .2 with columns $v_{i j}$ and v_{1}, v_{2} if needed. A block of P is a $(r+1) \times n_{i}$ submatrix with columns $v_{i 1}, \ldots, v_{i n_{i}}$ for some $0 \leq i \leq r$ or, if present, the submatrix with all m occurring vectors v_{1}, v_{2} as its columns. We call $U \in \mathrm{GL}(n+m, \mathbb{Z})$ admissible if the matrix $P \cdot U$ arises from P by switching columns within a block or by interchanging whole blocks. Similarly, $S \in \mathrm{GL}(r+1, \mathbb{Z})$ is admissible if the matrix $S \cdot P$ arises from P by a sequence of the operations

- add ± 1-multiples of the upper r rows of P to the last row,
- add ± 1-multiples of the first r rows to one of the first r rows in order to achieve a block matrix shape as in Construction 1.5.2;
- multiply the last row by ± 1.

Proposition 1.5.8. Consider \mathbb{K}^{*}-surfaces $X_{1}=X\left(P_{1}, A_{1}\right)$ and $X_{2}=X\left(P_{2}, A_{2}\right)$ with P_{i} and A_{i} as in Construction:1.5.3: Then $X_{1} \cong X_{2}$ if and only if

$$
A_{2}=B \cdot A_{1} \cdot D \quad \text { and } \quad P_{2}=S \cdot P_{1} \cdot U
$$

for a matrix $B \in \mathrm{GL}(2, \mathbb{K})$, a diagonal matrix $D \in \mathrm{GL}(r+1, \mathbb{K})$ and admissible matrices $S \in \mathrm{GL}(r+1, \mathbb{Z})$ and $U \in \mathrm{GL}(n+m, \mathbb{Z})$.

Note that in Proposition 1.5.8 the condition on S can be directly seen by an inspection of the g_{I}. The next remark specializes to the case $r=2$.

Remark 1.5.9. If in Proposition 1.5 for both surfaces X_{i} we have $r=2$, then the condition on the A_{i} can be dropped, i.e., X_{1} is isomorphic to X_{2} if and only if $P_{2}=S \cdot P_{1} \cdot U$ with admissible matrices $S \in \mathrm{GL}(r+1, \mathbb{Z})$ and $U \in \mathrm{GL}(n+m, \mathbb{Z})$.

We turn to the properties of the \mathbb{K}^{*}-action on a normal, projective \mathbb{K}^{*}-surface $X=X(P, A)$. Given $x \in X$, the orbit map $\mathbb{K}^{*} \rightarrow X$ with $(t, x) \mapsto t \cdot x$ can be extended to a morphism $\bar{\mu}_{x}: \mathbb{P}_{1} \rightarrow X$. Define the limit points

$$
\lim _{t \rightarrow 0} t \cdot x:=\bar{\mu}_{x}(0), \quad \lim _{t \rightarrow \infty} t \cdot x:=\bar{\mu}_{x}(\infty)
$$

Then, the image of $\bar{\mu}_{x}$ is the closure of $\mathbb{K}^{*} \cdot x$ and the limit points are distinct fixed points. Each fixed point is either elliptic, i.e., it is isolated and lies in the closure of infinitely many \mathbb{K}^{*}-orbits, parabolic, i.e., it belongs to a fixed point curve or it is hyperbolic which means it is isolated and lies in the closure of exactly two \mathbb{K}^{*}-orbits. We call $F^{-} \subseteq X$ the source and $F^{+} \subseteq X$ the sink if there is a non-empty, open subset $U \subseteq X$ such that

$$
\lim _{t \rightarrow 0} t \cdot x \in F^{-}, \quad \lim _{t \rightarrow \infty} t \cdot x \in F^{+} \quad \text { for all } x \in U
$$

There always is exactly one source and sink and they are either single elliptic fixed points or curves of parabolic fixed points. Any fixed point outside of F^{+}and F^{-} is hyperbolic.

Proposition 1.5.10. Let $X=X(P, A)$ be as in Construction:1.5. Depending on the type of X, the following assertions hold.
(ee) Both sink F^{-}and source F^{+}consist of an elliptic fixed point.
(pp) Both sink F^{-}and source F^{+}are smooth rational curves consisting of parabolic fixed points.
(pe) The source F^{-}is a smooth rational curve consisting of parabolic fixed points whereas the sink F^{+}consists of an elliptic fixed point.
(ep) The source F^{-}consists of an elliptic fixed point whereas the sink F^{+}is a smooth rational curve consisting of parabolic fixed points.

Let $D_{i j} \subseteq X$ and $D_{k} \subseteq X$ be the toric divisors corresponding to the variables $T_{i j}$ and S_{k} of $R(P, A)$. Then $D_{i j}$ and D_{k} are rational curves. Let $Z(P)$ be the toric variety with fan $\Sigma(P)$ of Construction:1.5.\%:
(i) The toric orbit corresponding to the ray $\mathbb{Q}_{\geq 0} \cdot v_{i j} \in \Sigma(P)$ cuts out a non-trivial \mathbb{K}^{*}-orbit $B_{i j} \subseteq D_{i j}$.
(ii) The toric orbit corresponding to a cone $\tau_{i j} \in \Sigma(P)$ cuts out a hyperbolic fixed point $x_{i j} \in X$.
(iii) For each $0 \leq i \leq r$, the divisors $D_{i j}$ form a chain of rational curves connecting the source F^{-}with the sink F^{+}in the following sense: picking points $b_{i j} \in B_{i j}$, we have

$$
\begin{aligned}
\lim _{t \rightarrow \infty} t \cdot b_{i j}=x_{i j+1}= & \lim _{t \rightarrow 0} t \cdot b_{i j+1} \\
& \lim _{t \rightarrow \infty} t \cdot b_{i n_{i}} \in F^{+}
\end{aligned}
$$

(iv) Let $x \in X$ with $x \notin F^{+} \cup F^{-}$and $x \notin D_{i j}$ for all i, j. Then the limit points for $t \rightarrow 0$ and $t \rightarrow \infty$ are elements of F^{-}and F^{+}respectively.

We now rephrase Constructions 1.5.2 and 1.5 in order to cope with higher-dimensional complexity-one T-varieties.

Construction 1.5.11. Choose $r \in \mathbb{Z}_{\geq 1}$, integers $n_{0}, \ldots, n_{r} \in \mathbb{Z}_{\geq 1}$ and $m, s \in \mathbb{Z}_{\geq 0}$ such that $0<s<n+m-r$ where $n:=n_{0}+\ldots+n_{r}$. For each $0 \leq i \leq r$, pick a tuple $l_{i}:=\left(l_{i 1}, \ldots, l_{i n_{i}}\right) \in \mathbb{Z}_{\geq 1}^{n_{i}}$. Additionally, fix a $2 \times(r+1)$ matrix A over \mathbb{K} with pairwise linearly independent columns as well as integral $s \times n$ and $s \times m$ matrices d and d^{\prime} with the following property: in the $(r+s) \times(n+m)$ block matrix

$$
P:=\left[\begin{array}{cc}
L & 0 \\
d & d^{\prime}
\end{array}\right], \quad L:=\left[\begin{array}{rccc}
-l_{0} & l_{1} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
-l_{0} & 0 & \cdots & l_{r}
\end{array}\right]
$$

the columns are pairwise different, primitive and the cone generated by them equals \mathbb{Q}^{r+s}.

Construction 1.5.12. Let P and A be as in Construction 1.51 and consider the $\operatorname{ring} R:=R(P, A)$ obtained from Construction 1.5; The system $\mathfrak{F}=\left(T_{i j}, S_{k}\right)$ consists of homogeneous K-prime generators for \dot{R}. Given any true \mathfrak{F}-bunch Φ in $K_{\mathbb{Q}}$, we obtain a bunched ring (R, \mathfrak{F}, Φ). Construction 1.3.6: delivers $\bar{X}(P, A) \quad:=$ $\operatorname{Spec}(R)$ and

$$
\widehat{X}(P, A, \Phi):=\widehat{X}(R, \mathfrak{F}, \Phi), \quad X(P, A, \Phi):=X(R, \mathfrak{F}, \Phi) .
$$

Define $H_{0}:=$ Spec $\mathbb{K}\left[K_{0}\right]$ where $K_{0}:=\mathbb{Z}^{n+m} / \operatorname{Im}\left(P_{0}^{*}\right)$ and $P_{0}:=(L, 0)$ consists of the first r rows of P. Then H_{0} leaves $\widehat{X}(P, A, \Phi)$ invariant and there is an induced effective action of the torus $T:=H_{0} / H=\operatorname{Spec}\left(\mathbb{Z}^{s}\right)$ on X.
Theorem 1.5.13. In Construction 1.5.12, $X(P, A, \Phi)$ is an irreducible normal A_{2} variety of dimension $s+1$ with $\Gamma(X, \mathcal{O})=\mathbb{K}$ and the torus $T:=H_{0} / H$ acts effectively with maximal orbit dimension $\operatorname{dim}(X)-1$ on X. In turn, each A_{2}-variety with $\Gamma(X, \mathcal{O})=\mathbb{K}$ and torus action of complexity one arises from Construction:1.5.12;

See, e.g., Example 2.4.7 for a complexity one T-variety X that arises as $X=$ $X(P, A, \Phi)$ as in Theorem :1.5.13;

CHAPTER 2

Basic algorithms for Mori dream spaces

In this chapter, we present basic algorithms and data types needed to compute with Mori dream spaces. We use the correspondence between Mori dream spaces and bunched rings explained in Section 3: of Chapter 1:
Section 1 deals with gradings by a finitely generated abelian group, e.g., the $\mathrm{Cl}(X)$ grading of a Cox ring $\mathcal{R}(X)$. To this end, we introduce a data type for finitely generated abelian groups and their homomorphisms and show how to perform basic operations thereon. Afterwards, in Section'2', we show how to compute with rings that come with a grading by a finitely generated abelian group; this will be used to store the Cox ring of a Mori dream space. Section' then represents a Mori dream space X by its $\mathrm{Cl}(X)$-graded Cox ring and a bunch of cones. Several algorithms are given to explore the properties and geometry of X. Finally, Section 4 ' is concerned with algorithms that work in the more specialized setting of complexity one T varieties.

This section uses results of $[5 ; 17,6]$, see the explicit references below. All presented algorithms have been implemented in the MDSpackage [54; 55], see Appendix ${ }_{\mathrm{A}}^{\mathrm{A}}$: Throughout this chapter, we will mainly use the following example.

Example 2.0.14. Consider the finitely generated abelian group $K:=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$ and the factorially K-graded ring

$$
R:=\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] /\left\langle f_{1}\right\rangle, \quad f_{1}:=T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}
$$

where the K-grading is encoded in the degree matrix having $\operatorname{deg}\left(T_{1}\right), \ldots, \operatorname{deg}\left(T_{8}\right)$ as its columns

$$
Q=\left[\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\
0 & 1 & 1 & -1 & -1 & 0 & 1 & -1 \\
\frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0}
\end{array}\right]
$$

Choose in $K \otimes \mathbb{Q}=\mathbb{Q}^{3}$ the vector $w:=(0,0,2)$. This defines a projective \mathfrak{F}-bunch $\Phi=\Phi(w)$ in R, see Example 1.3.4. By Construction 1.3.6, these data determine a Mori dream space $X=X(R, \widetilde{\mathfrak{F}}, \Phi)$.

1. Finitely generated abelian groups and homomorphisms

In this section, we treat basic algorithms for finitely generated abelian groups and their homomorphisms. We will use them to work with gradings in subsequent sections. Some of these algorithms have also been implemented in [16] together with B. Bechtold, R. Birkner, L. Kastner, O. Motsak and A.-L. Winz. We assume that the reader is familiar with the basic algorithms on lattices as, e.g., used in [20]; compare the textbooks [75, 82]. We present the following algorithms:

- Compare groups: isomorphism test (Algorithm 2.1.4), test for containment (Algorithm 2.1.6), test for equality (Algorithm 2.1.8).
- Construct new groups: factor groups (Algorithm 2.1.9), product groups (Algorithm 2.1.10), free part (Algorithm 2.1.11), intersection (Algorithm 2.1.13).
- Image, kernel: image (Algorithm 2.1.17), preimage (Algorithm 2.1.18), kernel (Algorithm 2.19), test for being injective (Algorithm 2.1.20), test for being surjective (Algorithm 2.1.21), complete an exact sequence (Algorithm 2.1.22).
- Gale duality: compute the degree map Q out of P (Algorithm 2.1.24), compute P out of Q (Algorithm 2.1.2), compute the projection \ddot{Q}^{0} onto the free part out of Q (Algorithm 2.1.26).
- Homomorphisms as degree maps, etc.: gradiator (Algorithm 2.1.29), test for being homogeneous (Algorithm 2.1.31), test for being almost free (Algorithm 2.1.32), section (Algorithm 2.1.34).

Remark 2.1.1. Let K be a finitely generated abelian group with elementary divisors $a_{1}, \ldots, a_{k} \in \mathbb{Z}$. Recall, e.g., from [76, Sec. I.10], that there is a sublattice $L \leq \mathbb{Z}^{r}$ such that

$$
K \cong \mathbb{Z}^{r} / L \cong \mathbb{Z}^{d} \oplus \bigoplus_{i=1}^{k} \mathbb{Z} / a_{i} \mathbb{Z}
$$

with $d \in \mathbb{Z}_{\geq 0}$. Consider now a subgroup $H \leq K$. Then there is a sublattice $U \leq \mathbb{Z}^{r}$ such that

$$
H \cong U /(U \cap L) \cong(U+L) / L \leq \mathbb{Z}^{r} / L
$$

Definition 2.1.2. Let a finitely generated abelian group H be given with a description $H \cong(U+L) / L$ as in Remark 2.1.1; We call the pair (U, L) in this setting an $A G$, an abbreviation for abelian group.

We do not differentiate between an AG and the underlying finitely generated abelian group.
Example 2.1.3. In Example 2.014 , the grading group $K=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$ is given as an AG $K=\left(\mathbb{Z}^{4}, \operatorname{lin}_{\mathbb{Z}}((0,0,0,2))\right)$.

Writing generators into the columns of a matrix, we may consider sublattices of \mathbb{Z}^{r} as integral matrices. Given an integral $d \times r$ matrix A, write $^{\operatorname{lin}} \mathbb{Z}_{\mathbb{Z}}(A)$ for the sublattice of \mathbb{Z}^{r} generated by its columns and $\mu_{A}: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{d}$ for the multiplication map $z \mapsto A \cdot z$. Elements of an AG (U, L) are usually given as elements of $\operatorname{lin}_{\mathbb{Z}}(U) \leq \mathbb{Z}^{r}$. The name of each algorithm is given in parentheses beside its number.

Algorithm 2.1.4 (AGareisom). Input: AGs $G_{1}=\left(U_{1}, L_{1}\right)$ and $G_{2}=\left(U_{2}, L_{2}\right)$.

- Compute lattice bases for $\mu_{U_{i}}^{-1}\left(L_{i}\right)$ and write their elements in the columns of $d \times n_{i}$ matrices M_{i}.
- Compute Smith normal forms $S_{i}=\left(s_{k l}^{i}\right)_{k, l}$ of M_{i}. Denote by r_{i} the number of zero-rows of S_{i}. Return false if $r_{1} \neq r_{2}$.
- Return false if the two sets $\left\{\left|s_{j j}^{i}\right| ; 1 \leq j \leq \min \left(n_{i}, d\right)\right\}$ are different. Otherwise, return true.

Output: true if G_{1} is isomorphic to G_{2} and false otherwise.
Proof. The abelian groups are isomorphic if their decompositions $\mathbb{Z}^{r_{i}} \oplus \bigoplus_{j} \mathbb{Z} / a_{i j} \mathbb{Z}$ as \mathbb{Z}-modules coincide. To show that the algorithm computes these descriptions, let $\mathrm{pr}_{U_{i}}: U_{i} \rightarrow U_{i} / U_{i} \cap L_{i}$ be the canonical projection. Then $\operatorname{lin}_{\mathbb{Z}}\left(M_{i}\right)$ is the kernel of $\pi_{U_{i}}=\operatorname{pr}_{U_{i}} \circ \mu_{U_{i}}$ where

Remark 2.1.5. In Algorithm 2.1.4; the preimage can be computed as follows. Consider integral matrices A and \dot{B} of sizes $n \times r$ and $n \times r^{\prime}$. Compute a lattice basis L for the integral kernel of the concatenated matrix $[A,-B]$. A lattice basis of the projection of L onto the first r components delivers a basis for $\mu_{A}^{-1}\left(\operatorname{lin}_{\mathbb{Z}}(B)\right)$; see [20].
Algorithm 2.1.6 (AGcontains). Input: an AG $\left(U_{1}, L_{1}\right)$ and either an $\mathrm{AG}\left(U_{2}, L_{2}\right)$ or a vector $w \in \mathbb{Z}^{r_{1}}$. In the latter case, define $U_{2}:=\operatorname{lin}_{\mathbb{Z}}(w)$ and $L_{2}:=L_{1}$.

- Return false if $L_{1} \neq L_{2}$ or $U_{1}+L_{1} \nsubseteq U_{2}+L_{2}$. Return true otherwise.

Output: true if $\left(U_{1}, L_{1}\right)$ is a subgroup of $\left(U_{2}, L_{2}\right)$ or if $\left(U_{1}, L_{1}\right)$ contains $w+L_{1}$, respectively. Returns false if this is not the case.

Remark 2.1.7. In Algorithm 2.1.6; we can check containment of a vector $v \in \mathbb{Z}^{r}$ in a sublattice $L \leq \mathbb{Z}^{r}$ by the following steps. Compute a lattice basis K for the integral kernel of the enlarged matrix $[L, v]$. Then $v \in L$ if and only if the elements of the last row of K (considered as a matrix) are coprime; see [20].
Algorithm 2.1.8 (AGareequal). Input: either two AGs $G_{1}=\left(U_{1}, L_{1}\right)$ and $G_{2}=$ $\left(U_{2}, L_{2}\right)$ or two vectors $w, w^{\prime} \in \mathbb{Z}^{r}$ and an AG $G=(U, L)$.

- Using Algorithm 2.1.6, in the first input case, return true if $G_{1} \subseteq G_{2}$ and $G_{2} \subseteq G_{1}$. In the second input case, return true if $w-w^{\prime} \in L$. Otherwise, return false.

Output: depending on the input, true if $G_{1}=G_{2}$ or $w=w^{\prime}$ as elements of G. Otherwise, false is returned.
Algorithm 2.1.9 (AGfactgrp). Input: AGs $G_{1}=\left(U_{1}, L_{1}\right)$ and $G_{2}=\left(U_{2}, L_{2}\right)$ where $G_{2} \leq G_{1}$ is a subgroup.

- Return the AG $\left(U_{1}, U_{2}+L_{2}\right)$.

Output: an AG describing the factor group G_{1} / G_{2}.
Proof. Since $G_{2} \leq G_{1}$ we have $L_{1}=L_{2}$ and $U_{2} \subseteq U_{1}$. The second isomorphism theorem yields the claim

$$
\begin{aligned}
G_{1} / G_{2} & =\left(\left(U_{1}+L_{1}\right) / L_{1}\right) /\left(\left(U_{2}+L_{2}\right) / L_{2}\right) \\
& \cong\left(U_{1}+L_{2}\right) /\left(U_{2}+L_{2}\right) \\
& =\left(U_{1}+\left(U_{2}+L_{2}\right)\right) /\left(U_{2}+L_{2}\right)
\end{aligned}
$$

Algorithm 2.1.10 (AGprodgrp). Input: AGs $G_{1}=\left(U_{1}, L_{1}\right)$ and $G_{2}=\left(U_{2}, L_{2}\right)$.

- Consider U_{i}, L_{i} as matrices with generators for the respective lattices as their columns. Return the AG (U, L) where, for zero-matrices of fitting sizes, U and L are generated by the columns of

$$
\left[\begin{array}{cc}
U_{1} & 0 \\
0 & U_{2}
\end{array}\right], \quad\left[\begin{array}{cc}
L_{1} & 0 \\
0 & L_{2}
\end{array}\right] .
$$

Output: an AG describing the product group $G_{1} \times G_{2}$.
Given a finitely generated abelian group K, we denote by $K^{\text {tor }} \leq K$ the subgroup of torsion elements, i.e., elements $w \in K$ such that $k w=0$ for an integer $k \in \mathbb{Z}$. The free part is the factor group $K^{0}:=K / K^{\text {tor }}$. Moreover, recall that the saturation of a lattice $L \leq \mathbb{Z}^{r}$ is the sublattice $L^{\text {sat }} \leq \mathbb{Z}^{r}$ consisting of all $v \in \mathbb{Z}^{r}$ such that $k v \in L$ for a $k \in \mathbb{Z} \backslash\{0\}$.

Algorithm 2.1.11 (AGfreepart). Input: an AG $K=(U, L)$.

- Return the AG $\left(U, L^{\text {sat }}\right)$.

Output: an AG describing the free part $K / K^{\text {tor }}$.
Proof. The fact that the AG $\left(U, L^{\text {sat }}\right)$ is the free part can be seen by using the second isomorphism theorem in

Example 2.1.12. Consider the AGs $G:=\left(\mathbb{Z}^{4},\left\{0_{\mathbb{Z}^{4}}\right\}\right)$ and $H:=\left(L,\left\{0_{\mathbb{Z}^{4}}\right\}\right)$ with $L:=\operatorname{lin}_{\mathbb{Z}}((0,0,0,2))$. By Algorithm 2.1.6; we have $H \leq G$. Moreover, by 2.1.9; the factor group G / H equals the grading group $K=\left(\mathbb{Z}^{4}, \operatorname{lin}_{\mathbb{Z}}((0,0,0,2))\right)$ of Example 2.1.3: Using 2.1.11, we see that the free part of K is $K^{0}=\mathbb{Z}^{3}$.

Algorithm 2.1.13 (AGintersect). Input: AGs $G_{1}=\left(U_{1}, L\right)$ and $G_{2}=\left(U_{2}, L\right)$.

- Return the AG $\left(\left(U_{1}+L\right) \cap\left(U_{2}+L\right), L\right)$.

Output: an AG describing the intersection $G_{1} \cap G_{2}$.
Proof. The intersection $G_{1} \cap G_{2}$ is determined by intersecting the respective lattices as summarized by the following diagram; upward arrows stand for inclusion and downward arrows for projection.

Remark 2.1.14. In Algorithm 2.1.13: the intersection $L_{1} \cap L_{2}$ of two sublattices $L_{1}, L_{2} \leq \mathbb{Z}^{r}$ can be computed as follows. Write lattice bases for L_{i} into the columns of $r \times n_{i}$ matrices A_{i}. Compute a lattice basis K for the kernel of the matrix [$A_{1},-A_{2}$]. Denote by B the projection of K onto the first n_{1} coordinates. A Hermite normal form of $A_{1} B$ then has generators for $L_{1} \cap L_{2}$ as its columns; see [20].

We turn to homomorphisms of finitely generated abelian groups. A typical example are degree matrices of Cox rings.
Definition 2.1.15. Consider a homomorphism $\varphi: G_{1} \rightarrow G_{2}$ of finitely generated abelian groups. We encode φ in an $A G H$, i.e., a triple $\left(G_{1}, G_{2}, A\right)$ where $G_{i}=$ $\left(U_{i}, L_{i}\right)$ are AGs and A is an integral matrix satisfying

$$
\mu_{A}\left(U_{1}+L_{1}\right) \subseteq U_{2}+L_{2}, \quad \mu_{A}\left(L_{1}\right) \subseteq L_{2}
$$

This means we have a diagram

Example 2.1.16. In the situation of Examples 2.0.14; and consider the degree $\operatorname{map} Q: \mathbb{Z}^{8} \rightarrow K$ with $Q\left(e_{i}\right)=\operatorname{deg}\left(T_{i}\right)$ and grading group $K=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$. We encode Q as an AGH (F, K, A) with AGs F, K and a 4×8 matrix A given by
$F=\left(\mathbb{Z}^{8},\left\{0_{\mathbb{Z}^{8}}\right\}\right), \quad K=\left(\mathbb{Z}^{4}, \mathbb{Z} \cdot\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 2\end{array}\right)\right), \quad A=\left[\begin{array}{rrrrrrrr}1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\ 0 & 1 & 1 & -1 & -1 & 0 & 1 & -1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}\right]$.
Algorithm 2.1.17 (AGHim). Input: an AGH $\varphi=\left(G_{1}, G_{2}, A\right)$ with $G_{i}=\left(U_{i}, L_{i}\right)$ and an AG $H_{1}=\left(U_{1}^{\prime}, L_{1}\right)$ with $H_{1} \leq G_{1}$.

- Compute the lattice M generated by the image $\mu_{A}\left(U_{1}^{\prime}+L_{1}\right)$.
- Return the AG $\left(M, L_{2}\right)$.

Output: an AG describing the image $\varphi\left(H_{1}\right)$ as a subgroup of G_{2}.
Proof. Let $\pi_{i}: \mathbb{Z}^{r_{i}} \rightarrow \mathbb{Z}^{r_{i}} / L_{i}$ be the canonical projections. We are in the situation of the diagram

The correctness of the algorithm follows from the observation

$$
\varphi\left(H_{1}\right)=\left\{\varphi\left(\pi_{1}(v)\right) ; v \in U_{1}^{\prime}+L_{1}\right\}=\left\{\pi_{2}\left(\mu_{A}(v)\right) ; v \in U_{1}^{\prime}+L_{1}\right\}
$$

Algorithm 2.1.18 (AGHpreim). Input: an AGH $\varphi=\left(G_{1}, G_{2}, A\right)$ with $G_{i}=$ $\left(U_{i}, L_{i}\right)$ and an AG $H_{2}=\left(U_{2}^{\prime}, L_{2}\right)$ with $H_{2} \leq G_{2}$.

- Compute the sublattice $M:=\mu_{A}^{-1}\left(U_{2}^{\prime}+L_{2}\right)$ of $\mathbb{Z}^{r_{1}}$.
- Determine the sublattice $M^{\prime}:=M \cap\left(U_{1}+L_{1}\right)$ of $\mathbb{Z}^{r_{1}}$.

Output: the AG $\left(M^{\prime}, L_{1}\right)$ describing the preimage $\varphi^{-1}\left(H_{2}\right)$ as a subgroup of G_{1}.
Proof. Let $\pi_{i}: \mathbb{Z}^{r_{i}} \rightarrow \mathbb{Z}^{r_{i}} / L_{i}$ be the canonical projections. We are in the situation of the diagram

The correctness of the algorithm follows from the observation

$$
\begin{aligned}
\varphi^{-1}\left(H_{2}\right) & =\pi_{1}\left(\left\{v \in U_{1}+L_{1} ; \mu_{A}(v) \in U_{2}^{\prime}+L_{2}\right\}\right) \\
& =\pi_{1}\left(\mu_{A}^{-1}\left(U_{2}^{\prime}+L_{2}\right) \cap\left(U_{1}+L_{1}\right)\right)
\end{aligned}
$$

Algorithm 2.1.19 (AGHker). Input: an AGH $\varphi=\left(G_{1}, G_{2}, A\right)$ with $G_{i}=$ $\left(U_{i}, L_{i}\right)$.

- Call Algorithm 2.1.18 with input φ and the AG $\left(\{0\}, L_{2}\right)$.

Output: an AG describing $\varphi^{-1}(0)$ as a subgroup of G_{1}.
As a consequence of the previous algorithms, we can test a homomorphism of finitely generated abelian groups for being injective or surjective.

Algorithm 2.1.20 (AGHisinj). Input: an AGH $\varphi=\left(G_{1}, G_{2}, A\right)$.

- Use Algorithm 2.1.19 to compute $M:=\operatorname{ker}(\varphi)$.
- Return true if M equals the trivial subgroup of G_{1} and return false otherwise.

Output: true if φ is injective and false otherwise.
Algorithm 2.1.21 (AGHissurj). Input: an AGH $\varphi=\left(G_{1}, G_{2}, A\right)$.

- Use Algorithm 2.1.17 to compute $N:=\operatorname{Im}(\varphi)$.
- Return true if, by Algorithm 2.1.8, $N=G_{2}$. Return false otherwise.

Output: true if φ is surjective and false otherwise.
Algorithm 2.1.22 (AGHcompleteseq). Input: a surjective or injective AGH $\varphi=$ $\left(G, G^{\prime}, A\right)$ where $G=(U, L)$ and $G^{\prime}=\left(U^{\prime}, L^{\prime}\right)$ with sublattices $U, L \leq \mathbb{Z}^{r}$ and U^{\prime}, $L^{\prime} \leq \mathbb{Z}^{r^{\prime}}$.

- If, by Algorithm 2.1.21, φ is surjective
- use Algorithm 2.1.19 to compute the AG $M:=\operatorname{ker}(\varphi) \leq G$,
- return the AGH $\left(M, G, E_{r}\right)$ where E_{r} is the $r \times r$-unit matrix.
- If, by Algorithm 2.1.20, φ is injective
- compute the AG $K:=G / G^{\prime}$ with Algorithm 2.1.9;
- return the AGH ($G^{\prime}, K, E_{r^{\prime}}$) where $E_{r^{\prime}}$ is the $\dot{r}^{\prime} \times r^{\prime}$-unit matrix.

Output: if φ is surjective, an AGH $\iota=\left(M, G^{\prime}, B\right)$ is returned such that we have an exact sequence

$$
0 \leftarrow G^{\prime} \leftarrow \leftarrow_{\varphi} G<\iota_{\iota} M \leftarrow 0 .
$$

If φ is injective, an AGH $\pi=\left(G^{\prime}, K, B\right)$ is returned such that we have an exact sequence

$$
0 \lessdot-K<\varlimsup_{\pi} G^{\prime} \leftarrow_{\varphi} G \lessdot 0 .
$$

Example 2.1.23. We continue Example 2.1.16. Applying Algorithm 2.122 to the surjective AGH $\pi:=Q=\left(\mathbb{Z}^{8}, K, A\right)$, we obtain an injective AGH $\varphi:=\left(G, \dot{\mathbb{Z}}^{8}, E_{8}\right)$, where E_{8} is the 8×8 unit matrix and $G \leq \mathbb{Z}^{8}$ is isomorphic to \mathbb{Z}^{5} with

$$
G=\left(\operatorname{lin}_{\mathbb{Z}} B,\left\{0_{\mathbb{Z}^{8}}\right\}\right), \quad B:=\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 2 & 2 & 4 \\
1 & 0 & 0 & 4 & 4 \\
-1 & -1 & -1 & -2 & -2 \\
-1 & -1 & -2 & -5 & -6
\end{array}\right] .
$$

Consider an $n \times r$ matrix P of full rank, and a surjective homomorphism $Q: \mathbb{Z}^{r} \rightarrow K$ of finitely generated abelian groups fitting into the diagram of dual exact sequences of \mathbb{Z}-modules

We then call Q and P Gale dual. If K is free, Q is given by an integral matrix which we call a Gale dual matrix for P. Note that Gale dual homomorphisms or matrices are not unique.

Algorithm 2.1.24 (AGHP2Q). Input: an integral $n \times r$ matrix P of rank n.

- Compute a Smith normal form $S=V \cdot P^{*} \cdot W$ of the transpose P^{*} with invertible integral matrices V, W. Write $S=\left(S_{i j}\right)_{i, j}$.
- Let $v_{i_{1}}, \ldots, v_{i_{d}}$ be the rows of V with $i_{k}>\operatorname{rank}(S)$. Let $v_{j_{1}}, \ldots, v_{j_{s}}$ be the rows of V with $1<\left|S_{j_{1} j_{1}}\right|<\ldots<\left|S_{j_{s} j_{s}}\right|$. Define B as the matrix with rows $v_{i_{1}}, \ldots, v_{i_{d}}, v_{j_{1}}, \ldots, v_{j_{s}}$.
- Define the AG $K=\left(\mathbb{Z}^{r-l}, S^{\prime}\right)$ where S^{\prime} is obtained from S by removing the l rows i of S with $S_{i i}=1$. Then K is isomorphic to $\mathbb{Z}^{d} \oplus$ $\bigoplus_{i=1}^{s} \mathbb{Z} /\left|S_{j_{i} j_{i}}\right| \mathbb{Z}$.
Output: the AGH $\left(\mathbb{Z}^{r}, K, B\right)$. It represents a Gale dual homomorphism $Q: \mathbb{Z}^{r} \rightarrow$ $\mathbb{Z}^{r} / \operatorname{Im}\left(P^{*}\right)$ of P.

Proof. Assume that in S there are l entries of absolute value one. Let pr: $\mathbb{Z}^{r} \rightarrow \mathbb{Z}^{r-l}$ be the projection onto the other coordinates. By the diagram

the group K is equal to $\mathbb{Z}^{r-l} / \operatorname{Im}\left(\operatorname{pr} \circ \mu_{S}\right)$ up to row permutations and, hence, also to $\mathbb{Z}^{r} / \operatorname{Im}\left(\mu_{P^{*}}\right)$. By choice of B, the AGH $Q=\left(\mathbb{Z}^{r}, K, B\right)$ is surjective and $\pi \circ \mu_{B} \circ \mu_{P^{*}}=0$ since for each $a \in \mathbb{Z}^{n}$ we have

$$
\pi \circ \mu_{B} \circ \mu_{P^{*}}(a)=\pi \circ \operatorname{pr} \circ \mu_{S} \circ \mu_{W^{-1}}(a)=\overline{0} \in K
$$

We will see an application of Algorithm 2.1.24 in Example 2.1.30;
Algorithm 2.1.25 (AGHQ2P). Input: a surjective AGH $Q=\left(\mathbb{Z}^{r}, K, A\right)$.

- Use Algorithm 2.1.19 to compute $\operatorname{ker}(Q) \leq \mathbb{Z}^{r}$ as an $\operatorname{AG}(U, 0)$.
- Return the transpose U^{*}.

Output: an integral $r \times n$ matrix P that is a Gale dual matrix for Q.
Given a surjective AGH $Q=\left(\mathbb{Z}^{r}, K, A\right)$ we can compute the free part $K^{0}=K / K^{\text {tor }}$, compare Algorithm 2.1.11; Then there is an integral, surjective matrix Q^{0} fitting into the diagram

Algorithm 2.1.26 (AGHQ2Q0). Input: a surjective AGH $Q=\left(\mathbb{Z}^{r}, K, A\right)$ where $K=(U, L)$.

- Compute a matrix B satisfying $\operatorname{ker}(B)=L^{\text {sat }}$; see Remark 2.1.27;
- Define $Q^{0}:=B \cdot A$.

Output: the integral matrix Q^{0}. Considered as a map, we have pr $\circ Q=Q^{0}$ with the projection pr: $K \rightarrow K^{0}=K / K^{\text {tor }}$.

Proof. As an AG, we have $K^{0}=\left(U, L^{\text {sat }}\right)$, see Algorithm 2.1.11; Then the canonical projection $\mathbb{Z}^{r} \rightarrow \mathbb{Z}^{r} / L^{\text {sat }}$ is given by μ_{B}. The algorithm is correct by the diagram

Remark 2.1.27. In Algorithm $2.12 \dot{6}, B$ can be computed by first computing an invertible matrix U such that $U L$ is in Hermite normal form. Removing the first $\operatorname{rank}(L)$ rows of U yields a matrix B with $\operatorname{ker}(B)=L^{\text {sat }}$; see [20].

Example 2.1.28. Consider the AGH Q of Example 2.1.16. An application of Algorithms 2.1 .25 and 2.1 .26 yields the matrices

$$
P=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 1 & -1 & -1 \\
0 & 1 & 0 & 0 & 1 & 0 & -1 & -1 \\
0 & 0 & 1 & 0 & 2 & 0 & -1 & -2 \\
0 & 0 & 0 & 1 & 2 & 4 & -2 & -5 \\
0 & 0 & 0 & 0 & 4 & 4 & -2 & -6
\end{array}\right], \quad Q^{0}=\left[\begin{array}{llllllll}
1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\
0 & 1 & 1 & -1 & -1 & 0 & 1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] .
$$

Recall from [5; Con. III.2.4.2] that the gradiator of a list of polynomials $f_{1}, \ldots, f_{s} \in$ $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ is a homomorphism $\mathbb{Z}^{r} \rightarrow K$ of finitely generated abelian groups such that $H:=\operatorname{Spec} \mathbb{K}[K]$ is the maximal quasitorus in \mathbb{T}^{r} leaving $V\left(f_{1}, \ldots, f_{s}\right) \subseteq \mathbb{K}^{r}$ invariant.

Algorithm 2.1.29 (AGHgradiator). See [5; Constr. III.2.4.2]. Input: a list of polynomials $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$. Write $f_{i}=a_{i, 1} T^{\nu_{i, 1}}+\ldots+a_{i, n_{i}} T^{\nu_{i, n_{i}}}$ with $a_{i, j} \in \mathbb{K}^{*}$.

- For $1 \leq i \leq s$ let P_{i} be the $\left(n_{i}-1\right) \times r$ matrix with rows $\nu_{i, k}-\nu_{i, 1}$ where $2 \leq k \leq n_{i}$. Let P be the vertical concatenation of P_{1}, \ldots, P_{s}.
- Use Algorithm 2.1.24 to compute an AGH $Q: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{r} / \operatorname{Im}\left(P^{*}\right)$.

Output: the pair (Q, P) where $Q: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{r} / \operatorname{Im}\left(P^{*}\right)$ is the gradiator and P is a Gale dual matrix.

Example 2.1.30. We continue Example 2.0.14: Applying Algorithm 2.1.29 to $f_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$, we obtain a pair $\left(Q^{\prime}, P^{\prime}\right)$ with an AGH $Q^{\prime}=\left(\mathbb{Z}^{8}, \mathbb{Z}^{5}, A^{\prime}\right)$ where

$$
P^{\prime}=\left[\begin{array}{llllllll}
-1 & 1 & 0 & 0 & 1 & -1 & 0 & 0 \\
-1 & 0 & 1 & 1 & 0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & -1 & 1 & 1
\end{array}\right], \quad A^{\prime}=\left[\begin{array}{rrrrrrrr}
0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 1
\end{array}\right] .
$$

Note that, given an AGH $Q=\left(\mathbb{Z}^{r}, K, A\right)$ with $K=(U, L)$, the degree of a homogeneous polynomial $f \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ with respect to the grading $\operatorname{deg}\left(T_{i}\right)=Q\left(e_{i}\right)$ is $\operatorname{deg}(f)=A \cdot \nu+L \in K$ where T^{ν} is any non-zero monomial in f.
Algorithm 2.1.31 (AGHishomog). Input: an AGH $Q=\left(\mathbb{Z}^{r}, K, A\right)$ and polynomials $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$.

- For each $i=1, \ldots, s$ do
- if there are two monomials T^{ν}, T^{μ} of f_{i} such that, by Algorithm2.1.8, $\operatorname{deg}\left(T^{\nu}\right) \neq \operatorname{deg}\left(T^{\mu}\right)$ in K, then return false.
- Return true.

Output: true if all f_{i} are homogeneous with respect to the K-grading $\operatorname{deg}\left(T_{i}\right)=$ $Q\left(e_{i}\right)$. Returns false otherwise.
Algorithm 2.1.32 (AGHisalmostfree). Input: an AGH $Q=\left(\mathbb{Z}^{r}, K, A\right)$.

- For each facet $\gamma_{0} \preceq \mathbb{Q}_{\geq 0}^{r}$ do
- If, by Algorithm 2.1 .8 ; the subgroup $\left.\left\langle Q\left(e_{i}\right) ; e_{i} \in \gamma_{0}\right)\right\rangle \leq K$ is different from K, then return false.
- Return true.

Output: true if the K-grading of $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ given by $\operatorname{deg}\left(T_{i}\right)=Q\left(e_{i}\right)$ is almost free. Returns false otherwise.

Example 2.1.33. In Example 2.014 and 2.1.16, applying Algorithms 2.1.21, 23 , and 2.31 ; we see that Q is surjective, the grading defined by $\operatorname{deg}\left(T_{i}\right)=Q\left(e_{i}\right)$ is almost free and $f_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ is homogeneous of degree $(0,0,2, \overline{1}) \in K$. Moreover, Q has the AG G of Example 2.23 as its kernel.

Algorithm 2.1.34 (AGHsection). Input: a surjective AGH $\varphi=\left(G_{1}, G_{2}, A\right)$ with AGs $G_{i}=\left(U_{i}, L_{i}\right)$.

- By a Hermite normal form computation, determine an integral matrix S such that $A \cdot S$ is the unit matrix.
- Check if $\psi=\left(G_{2}, G_{1}, S\right)$ defines an AGH, i.e., use Algorithm 2.1.6 to check whether $\mu_{S}\left(U_{2}+L_{2}\right)$ is a subset of $U_{1}+L_{1}$ and $\mu_{S}\left(L_{2}\right) \subseteq L_{1}$.
- Return ψ if the checks were positive. Return false otherwise.

Output: if no section $G_{2} \rightarrow G_{1}$ for φ was found, false is returned. Otherwise, an AGH $\left(G_{2}, G_{1}, S\right)$ representing such a section is returned.

2. Graded rings

Using the correspondence 1.3.7; a Mori dream space is determined by its graded Cox ring and a bunch of cones. In this section, we encode the algebraic data of the Cox ring in a data type. We present the following algorithms on graded rings.

- Grading: integral points (Algorithmi.2.2), homogeneous component (Algorithm 2.2.3) and its dimension (Algorithm (2.2.5).
- Tropical algorithms: tropical variety for one equation (Algorithm 2.2.7), containment in the tropical variety (Algorithm 2.2.8).
- Primality check, modifying polynomials: check a variable for being K prime (Algorithm 2.2.10), pullback and pushforward of a Laurent polynomial (Algorithms 2.2.12 and 2.2.13), closure (Algorithm 2.2.14).

Let $Q: \mathbb{Z}^{r} \rightarrow K$ be a surjective AGH. Consider an integral, normal, affine \mathbb{K} algebra $R:=\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] / I$ with an ideal $I \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ that is homogeneous with respect to the K-grading

$$
\operatorname{deg}\left(T_{1}\right):=Q\left(e_{1}\right), \quad \ldots, \quad \operatorname{deg}\left(T_{r}\right):=Q\left(e_{r}\right)
$$

Assume R is factorially K-graded, has \mathbb{K}^{*} as its homogeneous units and the grading is almost free. Let $G \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ be a set of K-prime generators for I and consider the matrix Q^{0} fitting into

with the free part $K^{0}=K / K^{\text {tor }}$. Assume $\mathfrak{F}=\left(\bar{T}_{1}, \ldots, \bar{T}_{r}\right)$ is a system of pairwise non-associated K-prime generators for R. Fix a Gale dual matrix P for Q and store the \mathfrak{F}-faces in a list $F_{\mathfrak{F}}$.

Definition 2.2.1. In the above setting, we encode the graded ring R in the tuple $\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ and speak of a $G R$.

We do not differentiate between a GR and the underlying ring R. Note that G, $P, Q^{0}, F_{\mathfrak{F}}$ are all computable from a presentation $R=\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] / I$, see Algorithms 2.1.25, 2.126 , we will postpone the computational aspects of \mathfrak{F}-faces until Chapter 3: We implicitly assign the respective positive orthant $\gamma:=\mathbb{Q}_{\geq 0}^{r}$ to a GR. Some of the following algorithms need the list of lattice points $B \cap \mathbb{Z}^{r}$ or interior points $B^{\circ} \cap \mathbb{Z}^{r}$ of a polytope $B \subseteq \mathbb{Q}^{r}$. The following is an ad-hoc method using a bounding box; see, e.g., [11, 29] for advanced algorithms.

Algorithm 2.2 .2 (intpoints). Input: a polytope $B \subseteq \mathbb{Q}^{r}$.

- Compute for each $1 \leq i \leq r$ bounds b_{i}^{\bullet} and $b_{i} \bullet \in \mathbb{Z}^{r}$ such that for each vertex v of B, we have $b_{i} \bullet \leq v_{i} \leq b_{i}^{\bullet}$.
- Set $\mathcal{L}:=\emptyset$.
- For each $v \in \mathbb{Z}^{r}$ such that $b_{i} \bullet \leq v_{i} \leq b_{i}$ • for all i do
- if $v \in B$, then insert v into \mathcal{L}.

Output: the collection \mathcal{L} of lattice points $B \cap \mathbb{Z}^{r}$.

For a K-graded ring $R=\bigoplus_{w \in K} R_{w}$, the \mathbb{K}-vector space R_{w} is called the homogeneous component or the graded component of R of degree w. Note that, by the decomposition $K=K^{0} \oplus K^{\text {tor }}$, we can decompose each $w \in K$ uniquely into $w=w^{0}+w^{\mathrm{t}}$ with $w^{0} \in K^{0}$ and $w^{\mathrm{t}} \in K^{\text {tor }}$.

Algorithm 2.2.3 (GRgradedcomp). Input: a GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ and $w \in K$. Assume that the grading is pointed. Decompose $w=w^{0}+w^{\mathrm{t}}$ with $w^{0} \in K^{0}$ and $w^{\mathrm{t}} \in K^{\mathrm{tor}}$.

- Let $\mathcal{W}:=\emptyset$.
- For each $f \in G$ do
- Let $\Delta:=w^{0}-\operatorname{deg}(f)^{0} \in K^{0}$.
- Use Algorithm 2.2.2; to compute the lattice points $M_{\Delta}:=B_{\Delta} \cap \mathbb{Z}^{r}$ of the fiber polytope $B_{\Delta}:=\left(Q^{0}\right)^{-1}(\Delta) \cap \gamma$.
- For each $\nu \in M_{\Delta}$, insert the polynomial $T^{\nu} \cdot f$ into \mathcal{W} if $\operatorname{deg}\left(T^{\nu} \cdot f\right)=$ $w \in K$.
- Use Algorithm 2.2. to compute the lattice points $M_{w^{0}}:=B_{w^{0}} \cap \mathbb{Z}^{r}$ of the fiber polytope $B_{w^{0}}:=\left(Q^{0}\right)^{-1}\left(w^{0}\right) \cap \gamma$. Store the elements $\nu \in M_{w^{0}}$ with $\operatorname{deg}\left(T^{\nu}\right)=w \in K$ as ordered list $\left(\nu_{1}, \ldots, \nu_{k}\right)$.
- Given $g \in \mathcal{W}$, let $v_{g} \in \mathbb{K}^{k}$ be the image of g under $T^{\nu_{i}} \mapsto e_{i}$. Let A be the matrix with the v_{g} as its columns where g runs through \mathcal{W} in a fixed order.
- Compute a Smith normal form $S=U \cdot A \cdot V$ with integral, invertible matrices U, V. Write $s:=\operatorname{rank}(S)$.
- Return the list $\left(\sum_{j=1}^{k}\left(b_{i}\right)_{j} T^{\nu_{j}} ; 1 \leq i \leq s\right)$ where $b_{i}:=U^{-1} \cdot e_{i}$.

Output: a basis for $\langle G\rangle_{w}$ considered as a \mathbb{K}-vector space.

Lemma 2.2.4. Consider a pointed grading $\bigoplus_{w \in K} \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]_{w}$ of the polynomial ring by a finitely generated abelian group K. Let $I \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ be an ideal with K-homogeneous generators g_{1}, \ldots, g_{s}. Then

$$
I_{w}=\operatorname{lin}_{\mathbb{K}}\left(T^{\nu} g_{i} ; 1 \leq i \leq s, \operatorname{deg}\left(T^{\nu}\right)+\operatorname{deg}\left(g_{i}\right)=w\right) \quad \text { for each } w \in K
$$

Proof. Given $f \in I_{w}$, write $f=h_{1} g_{1}+\ldots+h_{s} g_{s}$ with polynomials $h_{1}, \ldots, h_{s} \in$ $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$. By the direct sum decomposition, we may write each h_{i} uniquely as $h_{i}=\sum_{k} h_{i, k}$ with $h_{i, k} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]_{k}$. Since f equals its degree- w part f_{w}, we have

$$
f=\left(\sum_{i=1}^{s} h_{i} g_{i}\right)_{w}=\left(\sum_{i=1}^{s}\left(\sum_{k} h_{i, k}\right) g_{i}\right)_{w}=\sum_{i=1}^{s} h_{i, w-w_{i}} g_{i},
$$

where in the last step, we defined $w_{i}:=\operatorname{deg}\left(g_{i}\right)$. The other inclusion is obvious.
Proof of Algorithm 2.2.3; Note that since Q^{0} is pointed, B_{Δ} and $B_{w^{0}}$ are polytopes. Observe that the vector space $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]_{w}$ has the \mathbb{K}-basis $\left(T^{\nu_{1}}, \ldots, T^{\nu_{k}}\right)$ and $\operatorname{lin}_{\mathbb{K}}(\mathcal{W})=\langle G\rangle_{w}$ as a \mathbb{K}-vector space by Lemma 2.4 ; We now show that the remaining steps of the algorithm compute a basis for $\langle\dot{G}\rangle_{w}$. Consider the isomorphism of \mathbb{K}-vector spaces

$$
\varphi: \operatorname{lin}_{\mathbb{K}}\left(T^{\nu_{1}}, \ldots, T^{\nu_{k}}\right) \rightarrow \mathbb{K}^{k}, \quad T^{\nu_{i}} \mapsto e_{i}
$$

That is $\varphi(g)=v_{g}$ for each polynomial $g \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]_{w}$. Moreover, by construction, $\left(b_{1}, \ldots, b_{s}\right)$ is a basis for $\varphi\left(\operatorname{lin}_{\mathbb{K}}(\mathcal{W})\right)$. The last step in the algorithm applies the inverse map for φ, i.e., maps $b \in \mathbb{Q}^{k}$ to $\sum b_{i} T^{\nu_{i}}$. We summarize the situation by a diagram where rightward arrows are inclusions and the remaining arrows are isomorphisms.

Algorithm 2.2.5 (GRgradedcompdim). Input: a GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ and a vector $w \in Q^{0}(\gamma)$. Assume that the grading is pointed. Decompose $w=w^{0}+w^{\mathrm{t}}$ with $w^{0} \in K^{0}$ and $w^{\mathrm{t}} \in K^{\text {tor }}$.

- Use Algorithm 2.2 to compute the set $M_{w^{0}}:=B_{w^{0}} \cap \mathbb{Z}^{r}$ with the fiber polytope $B_{w^{0}}:=\left(Q^{0}\right)^{-1}\left(w^{0}\right) \cap \gamma$. Denote by $n \in \mathbb{Z}_{\geq 0}$ the number of elements $\nu \in M_{w^{0}}$ with $\operatorname{deg}\left(T^{\nu}\right)=w \in K$.
- Compute a basis \mathcal{B} for $\langle G\rangle_{w}$ with Algorithm 2.3 ; Write $d:=n-|\mathcal{B}|$.

Output: the dimension $d \in \mathbb{Z}_{\geq 0}$ of the graded component $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]_{w} /\langle G\rangle_{w}$.
Example 2.2.6. Consider in the setting of Example 2.14 the graded ring $R=$ $\left(\left\{f_{1}\right\}, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ where Q is as in Example 2.1.16: and P and Q^{0} are as in Example 2.1.28; We apply Algorithm 2.2 .3 to R and $\dot{w}:=(1,0,3, \overline{0}) \in K$. We have

$$
\mathbb{K}\left[T_{1}, \ldots, T_{8}\right]_{w}=\operatorname{lin}_{\mathbb{Q}}\left(T_{1} T_{7} T_{8}, T_{1} T_{3} T_{4}, T_{1} T_{2} T_{5}, T_{1}^{2} T_{6}\right),
$$

where basis elements correspond to a positive combinations of w over the columns q_{i} of Q^{0}; e.g., for $T_{1} T_{7} T_{8}$ and $T_{1} T_{2} T_{5}$, we have:

$(0,0,0)$
Moreover, Algorithm 2.2.3 returns the basis $\left(T_{1} f_{1}\right)$ for $\left\langle f_{1}\right\rangle_{w}$. As obtained with Algorithm 2.2.5, we have

$$
\begin{aligned}
& \operatorname{dim}\left(\mathbb{K}\left[T_{1}, \ldots, T_{8}\right]_{w} /\left\langle f_{1}\right\rangle_{w}\right) \\
= & \operatorname{dim}\left(\mathbb{K}\left[T_{1}, \ldots, T_{8}\right]_{w} / \operatorname{lin}_{\mathbb{Q}}\left(T_{1}^{2} T_{6}+T_{1} T_{2} T_{5}+T_{1} T_{3} T_{4}+T_{1} T_{7} T_{8}\right)\right) \\
= & 3
\end{aligned}
$$

Recall, e.g., from [78; 22], that given an affine variety $\bar{X}:=V(I) \subseteq \mathbb{K}^{r}$ with a monomial-free ideal $I \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, one assigns to I or to \bar{X} the tropical variety

$$
\operatorname{trop}(I):=\operatorname{trop}(\bar{X}):=\bigcap_{f \in I} \operatorname{trop}(f) \subseteq \mathbb{Q}^{r}
$$

where $\operatorname{trop}(f)$ is the support of the codimension one skeleton of the normal fan over the Newton polytope of f. There exists a fan $\Upsilon \subseteq \mathbb{Q}^{r}$ with support $|\Upsilon|=\operatorname{trop}(I)$; see [22] for its computation. This fan is a projectable fan, see [91; Prop. 2.8], so for the case of a Mori dream space $X=X(R, \mathfrak{F}, \Phi)$ as in Construction 1.3.6; we may define $\operatorname{trop}(X):=P(\operatorname{trop}(\bar{X}))$ where \bar{X} is the total coordinate space of X. For a single equation, we remark the following.
Algorithm 2.2.7 (GRtrop). Input: a GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ where $P: \mathbb{Z}^{r} \rightarrow$ N and G contains a single polynomial f.

- Let Σ be the normal fan over the Newton polytope of f.
- Let $\widehat{\Upsilon}$ be the $(\operatorname{dim}(\Sigma)-1)$-skeleton of Σ and $\Upsilon:=P(\widehat{\Upsilon})$.

Output: a fan Υ in $N_{\mathbb{Q}}$ with the tropical variety $\operatorname{trop}(\langle G\rangle)$ as its support.
Containment of a vector in the tropical variety can be done without computing the whole fan structure. For this, recall from [22; 41] that given a monomial-free ideal $I \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, the Gröbner cone of a vector $w \in \mathbb{Q}^{r}$ is the convex cone

$$
\mathcal{C}(w):=\operatorname{cone}\left(w^{\prime} \in \mathbb{Q}^{r} ; \operatorname{in}_{w}(I)=\operatorname{in}_{w^{\prime}}(I)\right) \subseteq \mathbb{Q}^{r}
$$

where $\operatorname{in}_{w}(I)$ denotes the ideal $\left\langle\operatorname{in}_{w}(f) ; f \in I\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$. Here, the initial form $\operatorname{in}_{w}(f)$ consists of all terms αT^{ν} of f that are maximal with respect to $\nu \mapsto$ $\langle w, \nu\rangle$. Moreover, we have a description of the tropical variety

$$
\operatorname{trop}(I)=\left\{w \in \mathbb{Q}^{r} ; \operatorname{in}_{w}(I) \text { is monomial-free }\right\} \subseteq \mathbb{Q}^{r} .
$$

If I is homogeneous, the Gröbner fan is the collection of all Gröbner cones $\{\mathcal{C}(w) ; w \in$ $\left.\mathbb{Q}^{r}\right\}$. It turns out to be a convex, polyhedral, complete fan in \mathbb{Q}^{r}. The tropical variety $\operatorname{trop}(I)$ then is the support of the subfan Υ of the Gröbner fan of I that consists of all Gröbner cones $\mathcal{C}(w)$ such that $\operatorname{in}_{w}(I)$ is monomial-free.
Fix a monomial ordering $>$ on $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$. Recall that for a vector $v \in \mathbb{Q}_{\geq 0}^{r}$, we obtain another monomial ordering $>_{v}$ on $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ given by

$$
T^{\nu}>_{v} T^{\mu} \quad: \Leftrightarrow \quad\langle v, \nu\rangle>\langle v, \mu\rangle \quad \text { or } \quad\left[\langle v, \nu\rangle=\langle v, \mu\rangle \text { and } T^{\nu}>T^{\mu}\right]
$$

Algorithm 2.2.8 (GRtropcontains). Input: a GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ and a vector $v \in N$ or $f \in \mathbb{Z}^{r}$ where $P: \mathbb{Z}^{r} \rightarrow N$. Assume that the cone ω over the columns q_{1}, \ldots, q_{r} of Q^{0} is pointed and no q_{i} is the zero-vector.

- If $v \in N$ was given, then choose $f \in \mathbb{Z}^{r}$ such that $P(f)=v$.
- Choose a linear form $u \in\left(\omega^{\vee}\right)^{\circ}$. Let $f^{+} \in \mathbb{Z}_{>0}^{r}$ be the vector with components $\left(f^{+}\right)_{i}:=u\left(q_{i}\right)$.
- Determine $a \in \mathbb{Z}_{\geq 0}$ such that $f^{\prime}:=f+a f^{+}$is an element of $\mathbb{Z}_{>0}^{r}$ and compute a Gröbner basis $\mathcal{G}_{\rangle_{f}}$ for $\langle G\rangle$ with respect to the monomial ordering $>_{f}$.
- Consider the ideal $\mathfrak{a}:=\left\langle\operatorname{in}_{f^{\prime}}(g) ; g \in \mathcal{G}_{>_{f^{\prime}}}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$.
- Return false if the radical membership test $T_{1} \cdots T_{r} \in \sqrt{\mathfrak{a}}$ succeeds and return true otherwise.

Output: returns true if $f \in \operatorname{trop}(\langle G\rangle)$ or $v \in P(\operatorname{trop}(\langle G\rangle))$, respectively. Returns false otherwise.

Proof. In the case of a given vector $v \in N$, since $P^{-1}(P(\operatorname{trop}(\langle G\rangle)))=\operatorname{trop}(\langle G\rangle)$, it suffices to choose any $f \in \mathbb{Z}^{r}$ such that $P(f)=v$. By the definition of the tropical variety, we have

$$
\begin{aligned}
f \in \operatorname{trop}(\langle G\rangle) & \Leftrightarrow T^{\nu} \notin \operatorname{in}_{f}(\langle G\rangle) \quad \text { for all } \nu \in \mathbb{Z}_{\geq 0}^{r} \\
& \Leftrightarrow T_{1} \cdots T_{r} \notin \sqrt{\operatorname{in}_{f}(\langle G\rangle)} .
\end{aligned}
$$

Note that since ω is pointed, $u_{\mid \omega \backslash\{0\}}>0$. Hence, we can coarsify the grading as claimed, i.e., we find the vector $f^{\prime} \in \mathbb{Z}_{>0}^{r}$. By [90, Prop. 1.12] and its proof, for each $g \in\langle G\rangle$ we have $\operatorname{in}_{f}(g)=\operatorname{in}_{f^{\prime}}(g)$. Since f^{\prime} is an element of the Gröbner cone of $\langle G\rangle$ with respect to the ordering $<_{f^{\prime}}$, by [41; Cor. 2.14], we conclude

$$
\operatorname{in}_{f}(\langle G\rangle)=\operatorname{in}_{f^{\prime}}(\langle G\rangle)=\left\langle\operatorname{in}_{f^{\prime}}(g) ; g \in \mathcal{G}_{>_{f^{\prime}}}\right\rangle .
$$

Example 2.2.9. Let Q^{\prime} and P^{\prime} be as in Example 2.1 .30 and compute $\left(Q^{\prime}\right)^{0}$ with Algorithm 2.1.26; Consider the GR $R^{\prime}=\left(\left\{f_{1}\right\}, Q^{\prime},\left(\dot{Q}^{0}\right)^{\prime}, P^{\prime}, F_{\mathfrak{F}}\right)$ where f_{1} is as in Example 20.14 , Algorithm 2.2 then returns a two-dimensional pure fan $P^{\prime}(\Upsilon)$ in \mathbb{Q}^{3} with support $\left|P^{\prime}(\Upsilon)\right|=\operatorname{trop}\left(f_{1}\right)$.

It is given as the codimension one skeleton of the normal fan over the standardsimplex. Moreover, using Algorithm 2.2.7, we verify that the vector $v:=(1,1,0) \in$ \mathbb{Q}^{3} is contained in $\operatorname{trop}\left(f_{1}\right)$.

In the definition of bunched rings 1.3 .5 , we required the variables to define K prime elements. We check this using the following direct method which was already published together with J. Hausen and A. Laface in [57; Alg. 4.2]. See [46; B.7] and $[21,25]$ for the computational background on how to compute the prime components \mathfrak{c}_{i} and number fields $\mathbb{Q}\left(\alpha_{i}\right)$.
Algorithm 2.2.10 (GRisKprime). Input: a GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ and an index $1 \leq k \leq r$ where we consider $Q: \mathbb{Z}^{r} \rightarrow K$ as a matrix and assume that the grading group is of shape $K=\mathbb{Z}^{s} \oplus \mathbb{Z} / a_{1} \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} / a_{l} \mathbb{Z}$. We further require that $G=\left\{f_{1}, \ldots, f_{s}\right\}$ is contained in $\mathbb{Q}\left[T_{1}, \ldots, T_{r}\right]$.

- If $\left\langle f_{1}, \ldots, f_{s}, T_{k}\right\rangle$ is not a radical ideal, return false.
- Compute a decomposition $\left\langle f_{1}, \ldots, f_{s}, T_{k}\right\rangle=\mathfrak{c}_{1} \cap \ldots \cap \mathfrak{c}_{m}$ with prime ideals \mathfrak{c}_{i} and number fields $\mathbb{Q}\left(\alpha_{i}\right)$ such that \mathfrak{c}_{i} is defined over $\mathbb{Q}\left(\alpha_{i}\right)$.
- Denote by q_{1}, \ldots, q_{l} the last l rows of Q and by $\zeta_{a_{i}}$ the primitive a_{i}-th root of unity. Consider for any $b \in \mathbb{Z}_{\geq 0}^{l}$ the map

$$
\varphi_{b}: \mathbb{Q}\left(\alpha_{i}\right)\left[T_{1}, \ldots, T_{r}\right] \rightarrow \mathbb{L}\left[T_{1}, \ldots, T_{r}\right], \quad T_{j} \mapsto \zeta_{a_{1}}^{b_{1} q_{1 j}} \cdots \zeta_{a_{l}}^{b_{l} q_{l j}} T_{j},
$$

where $\mathbb{L}:=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{m}, \zeta_{a_{1}}, \ldots, \zeta_{a_{l}}\right)$. If for each two $i \neq j$ there is $b \in \mathbb{Z}_{\geq 0}^{l}$ such that $\varphi_{b}\left(\mathfrak{c}_{i}\right)=\mathfrak{c}_{j}$ in \mathbb{L}, then return true. Return false otherwise.

Output: true if T_{k} is K-prime in $\overline{\mathbb{Q}}\left[T_{1}, \ldots, T_{r}\right] /\left\langle f_{1}, \ldots, f_{s}\right\rangle$ and false otherwise.
Proof. Let $I:=\langle G\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$. Consider the action of $H:=\operatorname{Spec} \mathbb{K}[K]$ on $Y:=V(I) \subseteq \mathbb{K}^{r}$. By [51, Prop. 3.2], T_{k} is K-prime in $R=\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] / I$ if and only if the divisor of T_{k} in Y is H-prime in the sense that it has only coefficients 0 or 1 and the prime divisors with coefficient 1 are transitively permuted by H.

Example 2.2.11. Consider the following factorially K-graded ring R where $K:=$ $\mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$; we will encounter R later as the Cox ring of the surface with singularity type $D_{5} A_{3}$ in Theorem 4.4.

$$
\begin{gathered}
R=\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] / I, \quad I=\left\langle T_{1} T_{3}-T_{4}^{2}-T_{5}^{2}, T_{1} T_{2}-T_{3}^{2}+T_{4} T_{5}\right\rangle \\
\operatorname{deg}\left(T_{1}\right)=(1, \overline{2}), \quad \operatorname{deg}\left(T_{2}\right)=(1, \overline{2}), \quad \operatorname{deg}\left(T_{3}\right)=(1, \overline{0}) \\
\operatorname{deg}\left(T_{4}\right)=(1, \overline{3}), \quad \operatorname{deg}\left(T_{5}\right)=(1, \overline{1}) .
\end{gathered}
$$

We show that the variable T_{1} defines a K-prime element in R albeit it is not prime. The ideal $I+\left\langle T_{1}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{5}\right]$ has the two prime components

$$
\mathfrak{c}_{1}=\left\langle T_{1}, T_{4}-T_{5} J, T_{3}^{2}-T_{4} T_{5}\right\rangle, \quad \mathfrak{c}_{2}=\left\langle T_{1}, T_{4}+T_{5} J, T_{3}^{2}-T_{4} T_{5}\right\rangle
$$

defined in $\mathbb{Q}(J)\left[T_{1}, \ldots, T_{5}\right]$ with the imaginary unit $J \in \mathbb{C}$. In the notation of Algorithm 2.2.10; we have $a_{1}=4, \zeta_{a_{1}}=J$ and $\mathbb{L}=\mathbb{Q}(J)$.

For $b:=1 \in \mathbb{Z}_{\geq 0}$, the torsion part of the degrees $\operatorname{deg}\left(T_{i}\right)$ defines the map

$$
\begin{array}{ll}
\varphi_{b}: \mathbb{Q}(J)\left[T_{1}, \ldots, T_{5}\right] \rightarrow \mathbb{L}\left[T_{1}, \ldots, T_{5}\right], \\
T_{1} \mapsto-T_{1}, & T_{2} \mapsto-T_{2}, \quad T_{3} \mapsto T_{3}, \quad T_{4} \mapsto-J T_{4}, \quad T_{5} \mapsto J T_{5} .
\end{array}
$$

Then, by the reasonsing of Algorithm 2.20, T_{1} is K-prime since φ_{b} permutes the ideals $\mathfrak{c}_{i} \subseteq \mathbb{Q}(J)\left[T_{1}, \ldots, T_{5}\right]$ transitively: their images are

$$
\left\langle T_{1},-J T_{4}+T_{5}, T_{3}^{2}-T_{4} T_{5}\right\rangle=\mathfrak{c}_{2}, \quad\left\langle T_{1},-J T_{4}-T_{5}, T_{3}^{2}-T_{4} T_{5}\right\rangle=\mathfrak{c}_{1}
$$

We come to basic modifications of polynomials; compare [57; 44] and Section 3 : of Chapter '4: Consider a homomorphism $p: \mathbb{T}^{r} \rightarrow \mathbb{T}^{n}$ of tori. Given a Laurent polynomial $g \in \mathbb{K}\left[S_{1}^{ \pm 1}, \ldots, S_{n}^{ \pm 1}\right]$, its \star-pull back is a polynomial $p^{\star} g \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ such that $p^{\star} g$ and $p^{*} g$ coincide in $\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{r}^{ \pm 1}\right]$ up to units and the monomials of $p^{\star} g$ are coprime. The \star-pull back always exists and is unique up to constants.

Algorithm 2.2.12 (pull). Input: a polynomial $f \in \mathbb{K}\left[S_{1}, \ldots, S_{n}\right]$ and an integral $n \times r$ matrix P of full rank.

- Let g^{\prime} be the image of f under the homomorphism

$$
\mathbb{K}\left[S_{1}, \ldots, S_{n}\right] \rightarrow \mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{r}^{ \pm 1}\right], \quad S_{i} \mapsto T^{P_{i *}}
$$

- Choose $\mu \in \mathbb{Z}_{\geq 0}^{r}$ such that $g:=T^{\mu} g^{\prime}$ is an element of $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$.
- While there is $1 \leq i \leq r$ such that $T_{i} \mid g$, replace g by $g T_{i}^{-1}$.

Output: $g \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ such that $g=p^{\star} g \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ is the star pull back with the morphism of tori $p: \mathbb{T}^{r} \rightarrow \mathbb{T}^{n}$ corresponding to P.

Consider a homomorphism $p: \mathbb{T}^{r} \rightarrow \mathbb{T}^{n}$ of tori with kernel $H \subseteq \mathbb{T}^{r}$. Given an H homogeneous polynomial $h \in \mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{r}^{ \pm 1}\right]$, its \star-push forward is a polynomial $p_{\star} h \in \mathbb{K}\left[S_{1}, \ldots, S_{n}\right]$ such that $p^{*} p_{\star} h$ and h coincide in $\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{r}^{ \pm 1}\right]$ up to units and the monomials of $p_{\star} g$ are coprime. The \star-push forward always exists and is unique up to constants.
Algorithm 2.2.13 (push). Input: a polynomial $h \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ and an integral $n \times r$ matrix P of full rank such that h is H-homogeneous where $H \subseteq \mathbb{T}^{r}$ is the kernel of the morphism of tori $p: \mathbb{T}^{r} \rightarrow \mathbb{T}^{n}$ corresponding to P.

- Compute a Smith normal form $D=U \cdot P \cdot V$ with integral invertible matrices U, V. Let $\varphi_{U}: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}, \varphi_{D}: \mathbb{T}^{r} \rightarrow \mathbb{T}^{n}$ and $\varphi_{V}: \mathbb{T}^{r} \rightarrow \mathbb{T}^{r}$ be the corresponding maps of tori.
- Use Algorithm 2.2.12 to compute $g:=\varphi_{V}^{\star} h \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$.
- Write $D=\left[D^{\prime}, 0\right]$ as a block matrix where D^{\prime} is a diagonal matrix with diagonal entries $d_{1}, \ldots, d_{n} \in \mathbb{Z} \backslash\{0\}$. Let $g^{\prime} \in \mathbb{K}\left[S_{1}, \ldots, S_{n}\right]$ be the image of g under the map

$$
\begin{array}{cl}
\mathbb{K}\left[T_{1}^{d_{1}}, \ldots, T_{n}^{d_{n}}, T_{n+1}, \ldots, T_{r}\right] \rightarrow & \mathbb{K}\left[S_{1}^{ \pm 1}, \ldots, S_{n}^{ \pm 1}\right] \\
T_{i}^{d_{i}} \mapsto S_{i} \text { for } 1 \leq i \leq n, & T_{i} \mapsto 0 \text { else. }
\end{array}
$$

- Use Algorithm 2.2 .12 to compute $f:=\varphi_{U}^{\star} g^{\prime} \in \mathbb{K}\left[S_{1}, \ldots, S_{n}\right]$.

Output: the \star-push forward $f=p_{\star} h \in \mathbb{K}\left[S_{1}, \ldots, S_{n}\right]$.
Proof. Note that D is indeed of the claimed form since P is of full rank. As V is invertible, we have $\left(\varphi_{V^{-1}}\right)_{\star} h=\varphi_{V}^{\star} h$. The same argument holds for U. The claim follows from the decomposition

$$
p_{\star} h=\left(\varphi_{U^{-1}}\right)_{\star}\left(\varphi_{D}\right)_{\star}\left(\varphi_{V^{-1}}\right)_{\star} h
$$

and the fact that the \star-push forward under D is $\left(\varphi_{D}\right)_{\star} g=g^{\prime}$ since $\varphi_{D}^{\star} g^{\prime}=g$. Observe that (the map used to obtain) g^{\prime} is well-defined. Since h is $\mathbb{Z}^{r} / \operatorname{Im}\left(P^{*}\right)$ homogeneous the pull back $\varphi_{V}^{\star} h$ is $\mathbb{Z}^{r} / \operatorname{Im}\left(D^{*}\right)$-homogeneous. This means that for each monomial T^{ν} in $\varphi_{V}^{\star} h$ we have $d_{i} \mid \nu_{i}$ for all $1 \leq i \leq n$.

Recall that the saturation of an ideal $I \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ with respect to a polynomial $f \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ is the ideal
$I: f^{\infty}:=\left\{g \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right] ; f^{k} g \in I\right.$ for some $\left.k \in \mathbb{Z}_{\geq 1}\right\} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$.
Algorithm 2.2.14 (closure). Compare [64; pp. 23-24]. Input: a list of generators f_{1}, \ldots, f_{s} for an ideal $I \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$.

- Compute generators $g_{1}, \ldots, g_{n} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ for $I:\left(T_{1} \cdots T_{r}\right)^{\infty}$.

Output: polynomials $g_{1}, \ldots, g_{m} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ such that $\overline{V\left(\mathbb{T}^{r} ; I\right)} \subseteq \mathbb{K}^{r}$ is given by $V\left(\mathbb{K}^{r} ; g_{1}, \ldots, g_{s}\right)$.

Proof. The associated primes of $J:=I:\left(T_{1} \cdots T_{r}\right)^{\infty}$ are the vanishing ideals $\mathfrak{p}_{i} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ of the irreducible components of $X:=V(J) \subseteq \mathbb{K}^{r}$, see [46; Thm. 4.1.5]. We have $\mathfrak{p}_{i}=\mathfrak{p}_{i}:\left(T_{1} \cdots T_{r}\right)^{\infty}$ for each i, see [64; Lem. 2.5.8]. In particular, no component of X is contained in a coordinate hyperplane. This shows that the closure in \mathbb{K}^{r} is $\overline{V(J) \cap \mathbb{T}^{r}}=V(J)$. We now show $V(J) \cap \mathbb{T}^{r}=V(I) \cap \mathbb{T}^{r}$. By construction, $V(J) \subseteq V(I)$. For the reverse containment, consider $x \in V(I) \cap \mathbb{T}^{r}$ and $f \in J$. Then $\left(f \cdot\left(T_{1} \cdots T_{r}\right)^{n}\right)(x)=0$ for some $n \in \mathbb{Z}_{\geq 0}$, i.e., $f(x)=0$.

3. Mori dream spaces

We provide first algorithms to explore the properties and geometry of a Mori dream space. This section contains material from [5] as indicated near the respective items below. Here is an overview of the algorithms of this section:

- Fundamental algorithms: dimension (Algorithm 2.3.4), covering collection (Algorithm 2.3.6), relevant \mathfrak{F}-faces (Algorithm 2.3.5), toric ambient variety and completions (Algorithm 2.3.9), irrelevant ideal (Algorithm 2.3.11).
- Cones of divisor classes: effective cone (Algorithm 2.3.13), moving cone (Algorithm 2.3.14), semiample cone (Algorithm 2.3.15).
- Groups: class group (Algorithm 2.17), local class groups (Algorithm 2.3.18), Picard group (Algorithm 2.3.20), Picard index (Algorithm 2.3.21).
- Singularities, properties: test for being quasismooth and smooth (Algorithms 2.3.23: and 2.3.24), singularities (Algorithm 2.3.25), exceptional graph (Algorithm 2.3.27), test for being (\mathbb{Q}-) factorial (Algorithms 2.30 and 2.31), test for being complete (Algorithm 2.33), test for being (quasi-) projective (Algorithms 2.3.35 and 2.3.36), strata (Algorithm 2.3.39).
- Complete intersection Cox rings: anticanonical divisor class (Algorithm 2.34), test for being (\mathbb{Q}-) Gorenstein (Algorithms 2.3.4. and Gorenstein index (Algorithm 2.45), test for being Fano (Algorithm 2.46), intersection numbers (Algorithm 2.3.48).

We work with Mori dream spaces by using the correspondence to bunched rings (R, \mathfrak{F}, Φ), compare Construction 1.3.6 and Corollary 1.3.9. To this end, we directly encode the true \mathfrak{F}-bunch Φ in a data type BUN and then define the central data type MDS. Let $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ be a GR. As before, we implicitly assign to R the grading group K, its free part K^{0} and the positive orthant $\gamma=\mathbb{Q}_{\geq 0}^{r}$.
Definition 2.3.1. A $B U N$ in R is a finite set $\Phi:=\left\{\vartheta_{1}, \ldots, \vartheta_{s}\right\}$ of polyhedral cones $\vartheta_{i} \subseteq K_{\mathbb{Q}}^{0}$ of the form $\vartheta_{i}=Q^{0}\left(\gamma_{i}\right)$ with an element $\gamma_{i} \in F_{\mathfrak{F}}$ such that
(i) for all i, j, we have $\vartheta_{i}^{\circ} \cap \vartheta_{j}^{\circ} \neq \emptyset$,
(ii) if $\vartheta_{i}^{\circ} \subseteq\left(Q^{0}\left(\gamma_{j}\right)\right)^{\circ}$ with $\gamma_{j} \in F_{\mathfrak{F}}$, then $Q^{0}\left(\gamma_{j}\right)$ belongs to Φ,
(iii) for each facet $\gamma_{0} \preceq \gamma$, the image $Q^{0}\left(\gamma_{0}\right)$ is an element of Φ.

Definition 2.3.2. Let R be a GR and Φ a BUN in R. We call the pair (R, Φ) a $M D S$.

We do not differentiate between a Mori dream space $X=X(R, \mathfrak{F}, \Phi)$ as in Construction 1.3.6 and its description as an MDS. For instance, we also write \bar{X} for the total coordinate space of (the underlying Mori dream space of) an MDS X.

Example 2.3.3. Consider the GR R of Example2.2.6: Then the Mori dream space X of Example 20.14 is given by the $\operatorname{MDS}(R, \Phi(w))$ where $w:=(0,0,2) \in K_{\mathbb{Q}}^{0}$.

Next, we treat essential algorithms like dimension, relevant \mathfrak{F}-faces, covering collection and the canonical toric ambient variety.

Algorithm 2.3.4 (MDSdim). See [5, Thm. III.2.1.4]. Input: an MDS $X=(R, \Phi)$ with $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$.

- Compute the dimension d_{G} of the ring R.
- Let $d:=d_{G}-d^{0}$ where d^{0} is the dimension of the rowspace of Q^{0}.

Output: the dimension $d=\operatorname{dim}(X)$.
Algorithm 2.3.5 (MDSrlv). See [5; Con. III.2.1.3]. Input: an MDS $X=(R, \Phi)$ with $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$.

- Compute the set L of all $\gamma_{0} \in F_{\mathfrak{F}}$ such that $Q^{0}\left(\gamma_{0}\right) \in \Phi$.

Output: the set $L=\operatorname{rlv}(\Phi)$ of relevant \mathfrak{F}-faces.
Algorithm 2.3.6 (MDScov). Compare [5; Con. III.2.1.3]. Input: an MDS $X=$ (R, Φ) with $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$.

- Compute $L:=\operatorname{rlv}(\Phi)$ with Algorithm 2.3.5;
- Set $L^{\mathrm{min}}:=\emptyset$.
- For each $\gamma_{0} \in L$ do
- insert γ_{0} into $L^{\text {min }}$ if there is no $\gamma_{1} \in L$ such that $\gamma_{1} \subsetneq \gamma_{0}$.

Output: the set $L^{\min }=\operatorname{cov}(\Phi)$ of all minimal relevant \mathfrak{F}-faces.
Example 2.3.7. The $\operatorname{MDS} X=(R, \Phi)$ of Example 2 is of dimension $\operatorname{dim}(R)-$ $3=4$. Among the 83 relevant \mathfrak{F}-faces $\operatorname{rlv}(\Phi)$ returned by Algorithm 2.3.5; there are 14 minimal ones, i.e.,

$$
\begin{gathered}
\operatorname{cov}(\Phi)=\{\{1,6,7,8\},\{2,5,7,8\},\{3,4,7,8\},\{1,2,5,6\},\{1,3,4,6\},\{2,3,4,5\} \\
\{2,4,8\},\{1,3,8\},\{1,2,8\},\{5,6,7\},\{4,6,7\},\{3,5,7\},\{2,4,6\},\{1,3,5\}\}
\end{gathered}
$$

where we used Algorithm 2.3 .6 and identify a subset $J \subseteq\{1, \ldots, 8\}$ with the face $\operatorname{cone}\left(e_{i} ; i \in J\right) \preceq \gamma=\mathbb{Q}_{\geq 0}^{8}$.
Algorithm 2.3.8 (MDSpointex). Input: an $\operatorname{MDS} X=(R, \Phi)$ and a vector $z \in \mathbb{K}^{r}$ where $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$.

- If $z \notin \bar{X}=V(G) \subseteq \mathbb{K}^{r}$, then return false.
- Compute $C:=\operatorname{rlv}(\Phi)$ with Algorithm 2.3.5;
- For each $\gamma_{0} \in C$ do
- if $z_{i} \neq 0$ for all $e_{i} \in \gamma_{0}$, then return true.
- Return false.

Output: true if $[z] \in X$, i.e., $z \in \widehat{X} \subseteq \mathbb{K}^{r}$, and false otherwise.
Proof. The correctness directly follows from [5; Constr. III.3.1.1] where

$$
\widehat{X}=\bigcup_{\gamma_{0} \in \operatorname{rlv}(\Phi)} \bar{X} \backslash V\left(\prod_{e_{i} \in \gamma_{0}} T_{i}\right)
$$

Given fans $\Sigma_{1}, \Sigma_{2} \subseteq \mathbb{Q}^{r}$, denote by $\Sigma_{1} \sqcap \Sigma_{2}$ their coarsest common refinement, i.e., the set of cone-wise intersections $\left\{\sigma_{1} \cap \sigma_{2} ; \sigma_{i} \in \Sigma_{i}\right\}$. The Gelfand Kapranov Zelevinsky decomposition of a matrix $Q^{0}=\left[q_{1}, \ldots, q_{r}\right]$ is the coarsest common refinement

$$
\operatorname{GKZ}\left(Q^{0}\right):=\prod \Lambda,
$$

where Λ runs through all normal fans having their rays among the $\mathbb{Q} \geq 0 \cdot q_{i}$ and with support $|\Lambda|=\operatorname{cone}\left(q_{1}, \ldots, q_{r}\right)$; see Chapter 3 for the computational aspects.
Given an MDS X, the following algorithm computes the canonical toric ambient variety $Z_{\Sigma} \supseteq X$ as defined in Construction 1.312. Here, by a completion we mean a toric variety Z^{\prime} with properties (i)-(iii) of [5, Prop. III.2.5.4]. That is, in the setting of 1.3.12, we have a toric characteristic space $p_{Z^{\prime}}: \widehat{Z}^{\prime} \rightarrow Z^{\prime}$ and a neat, closed embedding $\iota: X \rightarrow Z^{\prime}$ with $\widehat{X}=\bar{\iota}^{-1}\left(\widehat{Z}^{\prime}\right)$ such that $X_{\gamma_{0}}=\iota^{-1}\left(Z_{P\left(\gamma_{0}^{*}\right)}^{\prime}\right)$ for each $\gamma_{0} \in \operatorname{rlv}(\Phi)$. Moreover

$$
D_{X}^{i}=\iota^{*}\left(D_{Z^{\prime}}^{i}\right) \quad \text { where } \quad D_{X}^{i}:=p_{X}\left(V\left(\widehat{X} ; T_{i}\right)\right), \quad D_{Z^{\prime}}^{i}:=p_{Z^{\prime}}\left(V\left(\widehat{Z}^{\prime} ; T_{i}\right)\right)
$$

Algorithm 2.3.9 (MDSambtorvar). See [5; Prop. III.2.5.4, Con. III.2.5.7] and Construction 1.3.12, Input: an MDS $X=(R, \Phi)$ where $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$, $P: \mathbb{Z}^{r} \rightarrow N$ and $\gamma=\mathbb{Q}_{\geq 0}^{r}$. Option: completions is available if X is projective.

- If completions was asked
$-\operatorname{set} \mathcal{F}:=\emptyset$,
- compute $\lambda:=\operatorname{SAmple}(X)$ with Algorithm 2.15 ;
- compute the fan $\operatorname{GKZ}\left(Q^{0}\right)$ in $K_{\mathbb{Q}}^{0}$. This can be done using Algorithm 3.2 with input $\langle 0\rangle$ and Q^{0}.
- For each $\eta \in \Lambda\left(Q^{0}\right)$ such that $\eta^{\circ} \subseteq \lambda^{\circ}$ do
* insert the fan $\Sigma(\eta) \subseteq N_{\mathbb{Q}}$ into \mathcal{F} where

$$
\Sigma(\eta)=\left\{P\left(\gamma_{0}^{*}\right) ; \gamma_{0} \preceq \gamma \text { and } \eta^{\circ} \subseteq Q^{0}\left(\gamma_{0}\right)^{\circ}\right\}
$$

- Return \mathcal{F}.

- Compute $C:=\operatorname{cov}(\Phi)$ with Algorithm 2.3.6;
- Return the fan $\Sigma \subseteq N_{\mathbb{Q}}$ with maximal cones $\left\{P\left(\gamma_{0}^{*}\right) ; \gamma_{0} \in C\right\}$.

Output: the fan $\Sigma \subseteq N_{\mathbb{Q}}$ of the canonical toric ambient variety $Z_{\Sigma} \supseteq X$. If completions was given and X is projective, a list \mathcal{F} of complete fans $\Sigma_{1}, \ldots, \Sigma_{k} \subseteq$ $N_{\mathbb{Q}}$ is returned such that $Z_{\Sigma_{i}} \supseteq X$ is a completion of Z_{Σ}.

Example 2.3.10. In Example 2.3.3, by Algorithm 2.3.9; the fan $\Sigma \subseteq \mathbb{Q}^{5}$ of the canonical toric ambient variety Z_{Σ} of X has eight five-dimensional and six fourdimensional maximal cones. Its rays are generated by the columns of the matrix P of Example 2.128 : Moreover, the algorithm finds 17 completions since

$$
\left|\left\{\eta \in \operatorname{GKZ}\left(Q^{0}\right) ; \eta^{\circ} \subseteq \operatorname{SAmple}(X)^{\circ}\right\}\right|=17
$$

The irrelevant ideal of an MDS X is the ideal of the closed variety $\bar{X} \backslash \widehat{X}$. Let Σ be a fan in \mathbb{Q}^{n} and v_{1}, \ldots, v_{r} generators for the rays of Σ. As in [5; Prop. III.1.3.4], for each maximal cone $\sigma \in \Sigma$ we define

$$
\nu: \Sigma \rightarrow\{0,1\}^{r}, \quad \nu(\sigma)_{i}:= \begin{cases}1, & v_{i} \notin \sigma \\ 0, & v_{i} \in \sigma\end{cases}
$$

Algorithm 2.3.11 (MDSirrel). See [5; Prop. III.1.3.4]. Input: an MDS $X=$ (R, Φ) where $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$.

- Use Algorithm 2.3. to compute the canonical toric ambient variety Z_{Σ}.
- Compute the ideal $J:=\left\langle T^{\nu(\sigma)} ; \sigma \in \Sigma^{\max }\right\rangle+\langle G\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$.

Output: a list of generators for the vanishing ideal J of $\bar{X} \backslash \widehat{X}$.

Example 2.3.12. Consider the MDS X defined in Example 2.3.3: By Algorithm 2.3.11, we have

$$
\begin{aligned}
& \bar{X} \backslash \widehat{X}=V\left(\mathbb{K}^{8} ; T_{3} T_{5} T_{7}, T_{4} T_{6} T_{7}, T_{5} T_{6} T_{7}, T_{1} T_{2} T_{8}, T_{1} T_{3} T_{8}, T_{2} T_{4} T_{8},\right. \\
& T_{1} T_{3} T_{5}, T_{2} T_{4} T_{6}, T_{1} T_{6} T_{7} T_{8}, T_{3} T_{4} T_{7} T_{8}, T_{2} T_{5} T_{7} T_{8}, T_{2} T_{3} T_{4} T_{5}, \\
&\left.T_{1} T_{3} T_{4} T_{6}, T_{1} T_{2} T_{5} T_{6}, T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}\right) .
\end{aligned}
$$

We come to algorithms that compute cones of divisor classes, i.e., the cones of effective, semiample, movable divisor classes.

Algorithm 2.3.13 (MDSeff). See [5; Prop. III.3.2.9] and 1.3.16; Input: an MDS $X=(R, \Phi)$ with $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ where Q^{0} has the columns q_{1}, \ldots, q_{r}.

- Compute $\omega:=\operatorname{cone}\left(q_{1}, \ldots, q_{r}\right)$.

Output: the cone $\omega=\operatorname{Eff}(X)$ in the vector space $K_{\mathbb{Q}}$.
Algorithm 2.3.14 (MDSmov). See [5; Prop. III.3.2.9] and 1.3.16; Input: an MDS $X=(R, \Phi)$ with $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ where Q^{0} has the columns q_{1}, \ldots, q_{r}.

- Compute the cone

$$
\tau:=\bigcap_{i=1}^{r} \operatorname{cone}\left(q_{j} ; j \neq i\right) \subseteq K_{\mathbb{Q}} .
$$

Output: the cone $\tau=\operatorname{Mov}(X)$ in the vector space $K_{\mathbb{Q}}$.
Algorithm 2.3.15 (MDSsample). See [5; Prop. III.3.2.9] and 1.3.16; Input: an $\operatorname{MDS} X=(R, \Phi)$.

- Compute the cone $\tau:=\bigcap_{\tau \in \Phi} \tau \subseteq K_{\mathbb{Q}}$.

Output: the semiample cone $\tau=\operatorname{SAmple}(X)$ in the vector space $K_{\mathbb{Q}}$.
Example 2.3.16. Consider the MDS X of Example 2.3.3: By Algorithms 2.313 and 2.3 .14 ; the effective cone of X is $Q^{0}\left(\mathbb{Q}_{\geq 0}^{8}\right)$ and the moving cone of X is cone $\left(\dot{q}_{1}, \dot{q}_{5}, q_{6}, q_{2}\right)$, i.e.,

$(0,0,0)$

$(0,0,0)$

Moreover, using Algorithm 2.3.15; we see that the semiample cone of X equals the GIT cone $\lambda((0,0,2))$, i.e.

$$
\begin{array}{cc}
\operatorname{SAmple}(X)=\operatorname{cone}((2,1,3),(1,1,2),(-2,-1,3), \\
& (-1,-1,2),(-1,0,2),(1,0,2), \\
(0,-1,3),(0,1,3)) . & q_{8} \\
q_{6}
\end{array}
$$

We turn to groups associated to an MDS. Set $\gamma_{0} \preceq \gamma=\mathbb{Q}_{\geq 0}^{r}$. Given a canonical basis vector $e_{i} \in \mathbb{Z}^{r}$, set $\mathbb{Z}^{\chi_{\gamma_{0}}\left(e_{i}\right)}:=\mathbb{Z}$ if $e_{i} \in \gamma_{0}$ and $\{0\}$ otherwise. Define the subgroup

$$
\begin{equation*}
H_{\gamma_{0}}:=\operatorname{lin}_{\mathbb{Q}}\left(\gamma_{0}\right) \cap \mathbb{Z}^{r}=\bigoplus_{i=1}^{r} \mathbb{Z}^{\chi_{\gamma_{0}}\left(e_{i}\right)} \leq \mathbb{Z}^{r} \tag{1}
\end{equation*}
$$

Algorithm 2.3.17 (MDSclassgrp). See [5; Thm. III.2.1.4] and 1.3.6; Input: an $\operatorname{MDS} X=(R, \Phi)$ with degree map $Q: \mathbb{Z}^{r} \rightarrow K$.

- Return K.

Output: the AG K representing the class group $\mathrm{Cl}(X)$.
Algorithm 2.3.18 (MDSlocclassgrp). See [5, Prop. III.3.1.5] and 1.3.15, Input: an MDS $X=(R, \Phi)$ and Cox coordinates $z \in \mathbb{K}^{r}$ for a point $x \in X$. Let $Q: \mathbb{Z}^{r} \rightarrow K$ be the degree map and $\gamma=\mathbb{Q}_{\geq 0}^{r}$ the positive orthant.

- Let $\gamma_{0}:=\operatorname{cone}\left(e_{i} ; z_{i} \neq 0\right) \preceq \gamma$. Then $\gamma_{0} \in \operatorname{rlv}(\Phi)$ and $x \in X\left(\gamma_{0}\right)$.
- Compute $G_{x}:=K / Q\left(H_{\gamma_{0}}\right)$ using (1) and Algorithms 2.1.9 and 2.1.17.

Output: the AG G_{x} representing the local class group $\mathrm{Cl}(X, x)$.
Example 2.3.19. Consider the $\operatorname{MDS} X=(R, \Phi)$ of Example 2.3.3; Then $\gamma_{0}:=$ cone $\left(e_{3}, e_{5}, e_{7}\right) \preceq \mathbb{Q}_{\geq 0}^{8}$ is an element of $\operatorname{rlv}(\Phi)$, see Algorithm 2.3 By Algorithm 2.3.18, each $x \in X\left(\gamma_{0}\right)$ has the local class group

$$
\mathrm{Cl}(X, x)=\left(\mathbb{Z}^{4}, L\right) \leq \mathrm{Cl}(X), \quad L:=\operatorname{lin}_{\mathbb{Z}}\left(\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 1 & 4 & 0 \\
0 & 1 & 0 & 2
\end{array}\right]\right)
$$

given as an AG. In particular, the local class group $\mathrm{Cl}(X, x)$ is isomorphic to the finite group $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$.

Algorithm 2.3.20 (MDSpic). See [5, Cor. III.3.1.6] and 1.3.15; Input: an MDS $X=(R, \Phi)$ with degree map $Q: \mathbb{Z}^{r} \rightarrow K$.

- Define $G:=K$ and compute $C:=\operatorname{cov}(\Phi)$ using Algorithm 2.3.6,
- For each $\gamma_{0} \in C$ do
- use Algorithms 2113 and 2.17 to redefine G as $G \cap Q\left(H_{\gamma_{0}}\right)$ where $H_{\gamma_{0}} \leq \mathbb{Z}^{r}$ is as in (1).
Output: the Picard group $G=\operatorname{Pic}(X)$ as a subgroup of $\mathrm{Cl}(X)$.
Algorithm 2.3.21 (MDSpicind). Input: a \mathbb{Q}-factorial MDS $X=(R, \Phi)$ with degree map $Q: \mathbb{Z}^{r} \rightarrow K$.
- Use Algorithms 2.3.20 and 2.1.9 to compute the factor group $H:=$ $K / \operatorname{Pic}(X)$ and its isomorphism type $H \cong \mathbb{Z} / a_{1} \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} / a_{s} \mathbb{Z}$.
- Return $a_{1} \cdots a_{s}$.

Output: the index $[\mathrm{Cl}(X): \operatorname{Pic}(X)] \in \mathbb{Z}_{\geq 1}$.
Example 2.3.22. Continuing Example 2.3.3; we compute the Picard group of X with Algorithm 2.30 as the AG

$$
\operatorname{Pic}(X)=\left(\operatorname{lin}_{\mathbb{Z}}\left[\begin{array}{rrrr}
12 & 0 & 0 & 0 \\
0 & 12 & 0 & 0 \\
12 & 12 & 24 & 0 \\
0 & 0 & 0 & 2
\end{array}\right], \operatorname{lin}_{\mathbb{Z}}\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right) \leq \operatorname{Cl}(X) .
$$

Note that $\operatorname{Pic}(X)$ is isomorphic to \mathbb{Z}^{3}. The Picard index is $[\operatorname{Cl}(X): \operatorname{Pic}(X)]=6912$ by Algorithm 2.3.21;

We come to singularities and algorithms that determine further properties of X. An MDS X is called quasismooth if the open subset $\widehat{X} \subseteq \bar{X}$ is smooth. The following algorithm makes use of the computation of \mathfrak{a}-faces, i.e., faces $\gamma_{0} \preceq \mathbb{Q}_{\geq 0}^{r}$ such that $V\left(\mathbb{T}_{\gamma_{0}}^{r} ; \mathfrak{a}\right) \neq \emptyset$ where $\mathbb{T}_{\gamma_{0}}^{r} \subseteq \mathbb{K}^{r}$ is the collection of all $z \in \mathbb{K}^{r}$ such that $z_{i} \neq 0 \Leftrightarrow e_{i} \in \gamma_{0}$. We will treat \mathfrak{a}-faces and their computation in Section '1: of Chapter $\dot{3}$:

Algorithm 2.3.23 (MDSisquasismooth). Input: an MDS $X=(R, \Phi)$ with $R=$ $\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$. Write $G=\left\{f_{1}, \ldots, f_{s}\right\}$ with $f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$.

- Compute the Jacobian matrix, i.e., the $s \times r$ matrix $J:=\left(\partial f_{i} / \partial T_{j}\right)_{i, j}$ over the polynomial ring $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$.
- Let $\mathfrak{a} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ be the ideal generated by G and all $(r-d) \times(r-d)$ minors of J where d is the dimension of R.
- Compute $C:=\operatorname{rlv}(\Phi)$ with Algorithm :2.3.5;
- For each $\gamma_{0} \in C$ do
- if, by Algorithm 3.1.2; γ_{0} is an \mathfrak{a}-face, then return false.
- Return true.

Output: true if \widehat{X} is smooth and false otherwise.
Proof. Note that $V(\mathfrak{a}) \subseteq \bar{X}$ equals the singular locus $\bar{X}^{\text {sing }}$. Thus, the algorithm tests whether $\bar{X}^{\text {sing }} \cap \widetilde{X} \neq \emptyset$ with the constructible set

$$
\widetilde{X}:=\bigcup_{\gamma_{0} \in \operatorname{rlv}(\Phi)} \bar{X}\left(\gamma_{0}\right)=\bigcup_{\gamma_{0} \in \operatorname{rlv}(\Phi)} \bar{X} \cap \mathbb{T}_{\gamma_{0}}^{r} \subseteq \widehat{X}
$$

from [5; Con. III.3.1.1]. We now show that $\widetilde{X} \cap \bar{X}^{\text {sing }}$ is empty if and only if $\widehat{X} \cap \bar{X}^{\text {sing }}$ is empty. The reverse implication is obvious. For the direct one, suppose there were a point $x_{1} \in \widehat{X} \cap \bar{X}^{\text {sing }}$. Consider now the good quotient $p: \widehat{X} \rightarrow X$ by the characteristic quasitorus H. According to Proposition 1.1.6; the fiber $p^{-1}\left(p\left(x_{1}\right)\right)$ contains a closed orbit

$$
H \cdot x_{0} \subseteq \widehat{X} \quad \text { with } \quad x_{0} \in p^{-1}\left(p\left(x_{1}\right)\right) .
$$

Observe that $\left(H \cdot x_{0}\right) \cap\left(\overline{H \cdot x_{1}}\right)$ is non-empty. Since the images $p\left(H \cdot x_{0}\right)=\left\{p\left(x_{1}\right)\right\}$ and $p\left(\overline{H \cdot x_{1}}\right)$ are not disjoint, by Proposition 1.1.6; neither are $\left(H \cdot x_{0}\right)$ and $\overline{H \cdot x_{1}}$. Using the H-invariance of $\widehat{X}^{\text {sing }} \subseteq \bar{X}$, we have $\overline{H \cdot x_{1}} \subseteq \widehat{X}^{\text {sing }}$. Since \widetilde{X} equals the union of all closed H-orbits of \widehat{X} we conclude

$$
\emptyset \neq\left(H \cdot x_{0}\right) \cap\left(\overline{H \cdot x_{1}}\right) \subseteq \widetilde{X} \cap \bar{X}^{\text {sing }} .
$$

Algorithm 2.3.24 (MDSissmooth). See [5; Cor. III.3.1.12]. Input: an MDS X.

- Compute the fan Σ of the canonical toric ambient variety $Z_{\Sigma} \supseteq X$ with Algorithm 2.3.9;
- If Σ is not regular or \widehat{X} is not smooth by Algorithm 2.3 .23 , then return false. Return true otherwise.

Output: true if X is smooth and false otherwise.
Algorithm 2.3.25 (MDSsing). Input: an MDS $X=(R, \Phi)$ where $R=\left(G, Q, Q^{0}\right.$, $\left.P, F_{\mathfrak{F}}\right)$ with $G=\left\{f_{1}, \ldots, f_{s}\right\} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$.

- Compute the $s \times r$ Jacobian matrix $J:=\left(\partial f_{i} / \partial T_{j}\right)_{i, j}$.
- Let $\mathfrak{a} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ be the ideal generated by f_{1}, \ldots, f_{s} and all $(r-$ $d) \times(r-d)$ minors of J where $d \in \mathbb{Z}_{\geq 0}$ is the dimension of R.
- Compute $C:=\operatorname{rlv}(\Phi)$ with Algorithm :2.3.5;
- Store all $\gamma_{0} \in C$ which, by Algorithm 3.1.2, are \mathfrak{a}-faces and with $Q\left(\gamma_{0} \cap\right.$ $\left.\mathbb{Z}^{r}\right)=K$ in a list \mathcal{F}.

Output: the pair $(\mathfrak{a}, \mathcal{F})$. Then $\mathfrak{a} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ is the vanishing ideal of $\bar{X}^{\text {sing }} \subseteq \mathbb{K}^{r}$ and \mathcal{F} is the list of all relevant \mathfrak{F}-faces $\gamma_{1}, \ldots, \gamma_{l} \preceq \mathbb{Q}_{\geq 0}^{r}$ such that $X\left(\gamma_{i}\right)$ is singular.

Example 2.3.26. Consider the MDS $X=(R, \Phi)$ of Example 2.3.3; By Algorithm $2.3 .24, X$ is singular and Algorithm 2.3.25 provides us with $(\mathfrak{a}, \mathcal{F})$ where

$$
\bar{X}^{\text {sing }}=V\left(\mathbb{K}^{8} ; \mathfrak{a}\right)=V\left(\mathbb{K}^{8} ; T_{1}, \ldots, T_{8}\right)=\{0\}
$$

Moreover, identifying a subset $J \subseteq\{1, \ldots, 8\}$ with the face $\operatorname{cone}\left(e_{i} ; i \in J\right) \preceq \gamma=$ $\mathbb{Q}_{\geq 0}^{8}$, the list \mathcal{F} consists of the relevant \mathfrak{F}-faces $\gamma_{0} \preceq \gamma$ with singular stratum $X\left(\gamma_{0}\right)$.

It is

$$
\begin{aligned}
\mathcal{F}= & (\{3,5,7\},\{1,3,5,7\},\{2,3,4,5,7\},\{4,6,7\},\{1,3,4,6,7\},\{5,6,7\},\{3,5,6,7\}, \\
& \{1,6,7,8\},\{1,3,6,7,8\},\{1,4,6,7,8\},\{3,4,6,7,8\},\{1,3,4,6,7,8\},\{3,4,7,8\}, \\
& \{1,3,4,7,8\},\{2,3,4,7,8\},\{2,5,7,8\},\{2,3,5,7,8\},\{2,4,5,7,8\},\{3,4,5,7,8\}, \\
& \{2,3,4,5,7,8\},\{1,2,8\},\{1,3,8\},\{2,4,8\},\{1,2,4,8\},\{2,3,4,5,8\},\{2,4,6,8\}, \\
& \{1,3,4,6,8\},\{1,3,5\},\{2,3,4,5\},\{2,4,6\},\{1,3,4,6\},\{1,2,5,6\}) .
\end{aligned}
$$

We come to the graph of exceptional curves constructed in 1.4. We will use it primarily as an invariant. Note that Algorithm com be used to compute the self-intersection numbers of its vertices.

Algorithm 2.3.27 (MDSintersgraph). Input: a smooth, projective MDS $X=$ (R, Φ) of dimension two with $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$.

- Determine the extremal rays $\mathbb{Q}_{\geq 0} \cdot q_{i_{1}}, \ldots, \mathbb{Q}_{\geq 0} \cdot q_{i_{k}}$ of the effective cone cone $\left(q_{1}, \ldots, q_{r}\right)$ where q_{1}, \ldots, q_{r} are the columns of Q^{0}.
- Initialize $V:=\left\{D_{i_{1}}, \ldots, D_{i_{k}}\right\}$ where $D_{i_{j}}:=V\left(X ; T_{i_{j}}\right)$ and set $E:=\emptyset$.
- Compute $C:=\operatorname{rlv}(\Phi)$ with Algorithm 2.3.5;
- For each two distinct $i, j \in\left\{i_{1}, \ldots, i_{k}\right\}$ do
- if cone $\left(e_{k} ; k \notin\{i, j\}\right) \in C$, then insert $\left(D_{i}, D_{j}\right)$ into E.

Output: the graph of exceptional curves $G_{X}=(V, E)$ of X.
Proof. The negative curves $D_{i_{1}}, \ldots, D_{i_{k}} \subseteq X$ correspond to the extremal rays of the effective cone $\operatorname{Eff}(X)$, see [5; Ex. V.1] or [51; Prop. 6.7]. By basic properties [73; p. 96] of the good quotient p, we have

$$
\begin{aligned}
D_{i} \cap D_{j} \neq \emptyset & \Leftrightarrow p\left(V\left(\widehat{X} ; T_{i}, T_{j}\right)\right) \neq \emptyset \\
& \Leftrightarrow \operatorname{cone}\left(e_{k} ; k \notin\{i, j\}\right) \in \operatorname{rlv}(\Phi) .
\end{aligned}
$$

Remark 2.3.28. Algorithm 2.38 can also be carried out for projective, \mathbb{Q}-factorial Mori dream spaces. It then computes the graph of contractible divisors in the sense of Remark 1.4.2

Remark 2.3.29. Algorithm 2.38 can be used in conjunction with Algorithm 2.37 to compute the ADE-singularity type of the minimal resolution $X^{\prime} \rightarrow X$ of a Mori dream surface X.

Algorithm 2.3.30 (MDSisfact). Compare [5; Cor. III.1.4.5] and 1.3.15; Input: an MDS $X=(R, \Phi)$ with degree map $Q: \mathbb{Z}^{r} \rightarrow K$ and orthant $\gamma=\mathbb{Q} \geq 0$. Optional input: Cox coordinates $z \in \mathbb{K}^{r}$ for a point $x \in X$.

- If $z \in \mathbb{K}^{r}$ was given, then set $C:=\left\{\gamma_{0}\right\}$ with $\gamma_{0}:=\operatorname{cone}\left(e_{i} ; z_{i} \neq 0\right) \preceq \gamma$. Otherwise, compute $C:=\operatorname{rlv}(\Phi)$ using Algorithm:2.3.5;
- For each $\gamma_{0} \in C$ do
- if by Algorithms 2.1.8 and 2.1.17 the image $Q\left(H_{\gamma_{0}}\right)$ with $H_{\gamma_{0}}$ as in (1) does not generate K as a group, then return false.
- Return true.

Output: true if X is factorial and false otherwise. For the case of a given point $x \in X$, true is returned if x is factorial and false otherwise.

Proof. Let $\gamma_{0} \in \operatorname{rlv}(\Phi)$. By [5; Cor. III.1.4.5], a point $x \in X\left(\gamma_{0}\right)$ is factorial if and only if $Q\left(\operatorname{lin}_{\mathbb{Q}}\left(\gamma_{0}\right) \cap \mathbb{Z}^{r}\right)=Q\left(H_{\gamma_{0}}\right)$ generates K as a group. Use $X=\bigcup X\left(\gamma_{0}\right)$ where the union runs through all relevant \mathfrak{F}-faces.

Algorithm 2.3.31 (MDSisQfact). See [5; Cor. 3.1.9] and 1.3.15; Input: an MDS $X=(R, \Phi)$.

- If there is $\vartheta \in \Phi$ with $\operatorname{dim}(\vartheta) \neq \operatorname{dim}\left(K_{\mathbb{Q}}\right)$, then return false. Return true otherwise.

Output: true if X is \mathbb{Q}-factorial and false otherwise.
Example 2.3.32. By applications of Algorithms 2.30 and 2.31, the MDS $X=$ (R, Φ) of Example 2.3 is \mathbb{Q}-factorial but not factorial.

We defined an MDS to encode varieties arising from bunched rings and, hence, needs in general be neither projective nor complete. The following algorithm uses a result of J. Tevelev [96] to check for completeness.

Algorithm 2.3.33 (MDSiscomplete). Input: a projective MDS $X=(R, \Phi)$ with $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ and $P: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{n}$.

- Compute a fan $\Upsilon \subseteq \mathbb{Q}^{n}$ with support $|\Upsilon|=\operatorname{trop}(X)$. If $|G|=1$, Algorithm 2.2.7.can be used.
- Compute a complete fan Ω in \mathbb{Q}^{n} having Υ as a subfan. If $G=\{g\}$, one can define Ω as the normal fan over the Newton polytope of $p_{\star} g$, compare Algorithm 2.2.13;
- Use Algorithm 2.3.9 to compute the fans Σ and $\bar{\Sigma}$ of the canonical ambient toric variety Z_{Σ} and a completion $Z_{\bar{\Sigma}}$ of Z_{Σ}.
- Compute the coarsest common refinements $\Sigma^{\prime}:=\Sigma \sqcap \Omega$ and $\Upsilon^{\prime}:=\bar{\Sigma} \sqcap \Upsilon$.
- For each maximal cone $\tau^{\prime} \in \Upsilon^{\prime}$ do
- if $\tau^{\prime} \nsubseteq \sigma^{\prime}$ for each maximal cone $\sigma^{\prime} \in \Sigma^{\prime}$, then return false.
- Return true.

Output: true if X is complete and false otherwise.
Proof. First, note that in the case of $G=\{g\}, \Upsilon$ is the codimension-one skeleton of Ω and, therefore, Υ is a subfan of Ω. By [$96 ;$ Prop. 2.3], X is complete if and only if the support $|\Sigma|$ contains the tropical variety $\operatorname{trop}(X)=|\Upsilon|$. Note that we have $\left|\Upsilon^{\prime}\right|=\operatorname{trop}(X)$ and $|\Sigma|=\left|\Sigma^{\prime}\right|$. Hence, X is complete if and only if in the following diagram of fans the dashed arrow is an inclusion.

Since Υ is a subfan of Ω, each maximal cone τ^{\prime} of $\Upsilon^{\prime}=\Upsilon \sqcap \bar{\Sigma} \sqcap \Omega$ either is contained in Σ^{\prime} or $\tau^{\circ} \cap\left|\Sigma^{\prime}\right|=\emptyset$. This completes the proof.

Remark 2.3.34. In Algorithm 2.33 , the fan Υ with $|\Upsilon|=\operatorname{trop}(X)$ can be computed using [63]. See [88; 41] for how to find Ω.

Algorithm 2.3.35 (MDSisquasiproj). Compare [5; Cor. 1.4.5]. Input: an MDS $X=(R, \Phi)$. Write $\Phi=\left\{\vartheta_{1}, \ldots, \vartheta_{s}\right\}$.

- Define $\tau:=\vartheta_{1}$.
- For each $i=2,3, \ldots, s$ do
- if $\tau^{\circ} \cap \vartheta_{i}^{\circ}=\emptyset$, then return false. Otherwise, redefine τ as $\tau \cap \vartheta_{i}$.
- Return true.

Output: true if X is quasiprojective and false otherwise.

Proof. By [5; Cor. 1.4.5], X is quasiprojective if and only if $\vartheta_{1}^{\circ} \cap \ldots \cap \vartheta_{s}^{\circ}$ is nonempty. Clearly, if $\vartheta_{i}^{\circ} \cap \vartheta_{j}^{\circ}=\emptyset$ for some i, j, then X is not quasiprojective. Otherwise, by [87], the non-empty intersection $\vartheta_{1}^{\circ} \cap \ldots \cap \vartheta_{s}^{\circ}$ equals $\left(\vartheta_{1} \cap \ldots \cap \vartheta_{s}\right)^{\circ}$.

Algorithm 2.3.36 (MDSisproj). Input: an $\operatorname{MDS} X=(R, \Phi)$ with $R=\left(G, Q, Q^{0}\right.$, $P, F_{\mathfrak{F}}$. Assume that Q^{0} has no zero-columns.

- Return true if, by Algorithms 2.35 and 2.3.13; X is quasiprojective and $\mathrm{Eff}(X)$ is pointed. Return false otherwise.

Output: true if X is projective and false otherwise.
Lemma 2.3.37. Consider a surjective $k \times r$ matrix Q without zero-columns and the positive orthant $\gamma:=\mathbb{Q}_{\geq 0}^{r}$. Then $Q(\gamma)$ is pointed if and only if $\operatorname{ker}(Q) \cap \gamma=\{0\}$.

Proof. If $Q\left(\gamma_{0}\right)$ is pointed, clearly $Q(x)=0$ with $x \in \gamma$ implies $x=0$. On the other hand, if $Q(\gamma)$ contains $\operatorname{lin}_{\mathbb{Q}}(w)$ with a non-zero $w \in Q(\gamma)$, then there are $x, y \in \gamma \backslash\{0\}$ such that $Q(x)=w$ and $Q(y)=-w$. Thus, $0 \neq x+y \in \gamma \cap \operatorname{ker}(Q)$.

Proof of Algorithm 2.36 : Since X is quasiprojective, there is $w \in \operatorname{Mov}(X)^{\circ}$ such that $X=\bar{X}^{\mathrm{ss}}(w) / / H_{X}$, see [5]. By [5; Prop. III.1.2.2] or Proposition 1.1.7; X is projective over $\bar{X} / / H_{X}=\operatorname{Spec} R_{0}$. Set $\gamma:=\mathbb{Q}_{\geq 0}^{r}$. We now prove that $\dot{Q}^{0}(\gamma)$ is pointed if and only if $R_{0}=\mathbb{K}$. Since X is an MDS, the classes of T_{1}, \ldots, T_{r} are pairwise non-associated K-prime generators for R. By [52, Rem. 1.25], R_{0} is generated by the classes of products T^{ν} where $\nu \in \mathbb{Z}_{\geq 0}^{r}$ runs through the elements of a Hilbert basis U for $\operatorname{ker}\left(Q^{0}\right) \cap \gamma$. By Lemma 2.3.37; $U=\{0\}$ is equivalent to $Q^{0}(\gamma)$ being pointed. This shows that X is projective if and only if $Q^{0}(\gamma)$ is pointed.

Example 2.3.38. By Algorithm 2.36 , the MDS X of Example 2.3 is projective.
As in Section $1 ;$ of Chapter given $f \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ and $\gamma_{0} \preceq \mathbb{Q}_{>0}^{r}$, let $f^{\gamma_{0}} \in$ $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ be the polynomial obtained from f by substitution of $T_{i}=0$ for all $e_{i} \notin \gamma_{0}$. Define the \mathbb{T}^{r}-orbit $\mathbb{T}_{\gamma_{0}}^{r}$ as the set of elements $z \in \mathbb{K}^{r}$ such that $z_{i}=0 \Leftrightarrow e_{i} \notin \gamma_{0}$.
Algorithm 2.3.39 (MDSstrat). Compare Construction 1.314; Input: an MDS $X=(R, \Phi)$ where $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$.

- Compute the collection $G_{\gamma_{0}}:=\left\{f_{1}^{\gamma_{0}}, \ldots, f_{s}^{\gamma_{0}}\right\}$.
- Use Algorithm :2.2.13 to compute all $h_{i}:=p_{\star} f_{i}^{\gamma_{0}} \in \mathbb{K}\left[S_{1}, \ldots, S_{n}\right]$ where $p: \mathbb{T}^{r} \rightarrow \mathbb{T}^{n}$ is the homomorphism of tori corresponding to P.

Output: $h_{1}, \ldots, h_{s} \in \mathbb{K}\left[S_{1}, \ldots, S_{n}\right]$. Then the stratum $X\left(\gamma_{0}\right)$ is given by the zero set $V\left(h_{1}, \ldots, h_{s}\right) \subseteq \mathbb{T}^{n}$ where the h_{i} are considered as elements of $\mathbb{K}\left[S_{1}^{ \pm 1}, \ldots, S_{n}^{ \pm 1}\right]$.

Proof. Using standard properties of good quotients [73; p. 96], by [5; Con. III.3.1.1], we have

$$
p\left(\bar{X}\left(\gamma_{0}\right)\right)=p\left(\bar{X} \cap \mathbb{T}_{\gamma_{0}}^{r}\right)=p\left(V\left(\mathbb{T}_{\gamma_{0}}^{r} ; f_{1}^{\gamma_{0}}, \ldots, f_{s}^{\gamma_{0}}\right)\right)=V\left(\mathbb{T}^{n} ; h_{1}, \ldots, h_{s}\right) .
$$

Example 2.3.40. Let X be as in Example 2.3.3. For the following relevant \mathfrak{F}-face $\gamma_{0} \preceq \gamma=\mathbb{Q}_{\geq 0}^{8}$ Algorithm 2.3.39 delivers

$$
X\left(\gamma_{0}\right)=V\left(\mathbb{T}^{5} ; T_{1} T_{5}+T_{3} T_{4}\right), \quad \gamma_{0}:=\operatorname{cone}\left(e_{i} ; i \in\{1,3,4,6,7\}\right) \preceq \gamma
$$

We turn to algorithms on a complete intersection MDS $X=(R, \Phi)$, i.e., R is a complete intersection ring. Recall that this means that the kernel of $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] \rightarrow$ R with $T_{i} \mapsto f_{i}$ is generated by $r-\operatorname{dim}(R)$ polynomials.

Algorithm 2.3.41 (MDSantican). See [5; Thm. III.3.3.2] and 1.3.17; Input: a complete intersection MDS $X=(R, \Phi)$. Write $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ with $G=$ $\left\{g_{1}, \ldots, g_{d}\right\}$. Let the degree map be given by the AGH $Q=\left(\mathbb{Z}^{r}, K, A\right)$ with an AG $K=(U, L)$.

- Define $w:=\sum_{i=1}^{r} A_{* i}-\sum_{j=1}^{d} A \cdot \nu_{j} \in U+L$ where $T^{\nu_{j}}$ is a non-vanishing monomial in g_{j}.
Output: the vector $w \in U+L$. It represents the anticanonical divisor class $-w_{X}^{\text {can }} \in K$.

Example 2.3.42. Consider the complete intersection MDS X of Example 2.3.3: Using Algorithm 2.3.41; we obtain $-w_{X}^{\text {can }}=(0,0,6, \overline{1}) \in K$ since

$$
\begin{aligned}
\sum_{i=1}^{r} A_{* i}-\sum_{j=1}^{d} A \cdot \nu_{j} & =(0,0,8,4)-\left.(0,0,2,1) \quad q_{8} \cdot q_{q_{6}}^{q_{5}}\right|_{q_{2}} ^{q_{4}} q_{1}^{-w_{X}^{\mathrm{can}}} q_{7} \\
& =(0,0,6,3)
\end{aligned}
$$

Algorithm 2.3.43 (MDSisQgorenstein). See [5, Cor. III.3.3.3] and 1.3.17; Input: a complete intersection MDS $X=(R, \Phi)$.

- Compute the anticanonical divisor class $-w_{X}^{\text {can }} \in K$; see Algorithm 2.3.41;
- Determine the cone $\tau:=\bigcap_{\vartheta \in \Phi} \operatorname{lin}_{\mathbb{Q}}(\vartheta)$ in $K_{\mathbb{Q}}$.
- Let $\pi: K \rightarrow K^{0}$ be the canonical projection. Return true if $\pi\left(-w_{X}^{\text {can }}\right) \in \tau$ and false otherwise.

Output: true if X is \mathbb{Q}-Gorenstein and false otherwise.
Algorithm 2.3.44 (MDSisgorenstein). See [5, Cor. III.3.3.3] and1.3.17; Input: a complete intersection MDS X.

- Compute the anticanonical divisor class $-w_{X}^{\text {can }} \in K$; see Algorithm 2.3.41;
- Use Algorithm 2.3.20 to compute $G:=\operatorname{Pic}(X) \leq K$.
- Return true if $-\dot{w}_{X}^{\text {can }} \in G$ and false otherwise.

Output: true if X is Gorenstein and false otherwise.
For a complete intersection \mathbb{Q}-Gorenstein MDS X, the Gorenstein index is the smallest integer $n \in \mathbb{Z}_{>0}$ such that $n \cdot\left(-w_{X}^{\text {can }}\right) \in \operatorname{Pic}(X)$ where $-w_{X}^{\text {can }}$ is the class of the anticanonical divisor of X.

Algorithm 2.3.45 (MDSgorensteinind). Input: a complete intersection MDS X that is \mathbb{Q}-Gorenstein.

- Compute the anticanonical divisor class $-w_{X}^{\text {can }} \in K$; see Algorithm 2.3.41;
- Determine the Picard group $G:=\operatorname{Pic}(X) \leq K$ with Algorithm 2.30,
- For $n=1,2, \ldots$ do
- test with Algorithm 2.1.6, whether $n \cdot\left(-w_{X}^{\text {can }}\right) \in G$. Return n if this is the case.

Output: the Gorenstein index $n \in \mathbb{Z}_{>0}$ of X.
Algorithm 2.3.46 (MDSisfano). See [5; Cor. III.3.3.3] and 1.3.17; Input: a complete intersection MDS $X=(R, \Phi)$.

- Compute the anticanonical divisor class $-w_{X}^{\text {can }} \in K$; see Algorithmi.3.41;
- For each $\vartheta \in \Phi$ do
- return false if $-w_{X}^{\text {can }} \notin \vartheta^{\circ}$.
- Return true.

Output: true if X is Fano and false otherwise.
Example 2.3.47. By Algorithms and 2.35 , the $\operatorname{MDS} X=(R, \Phi)$ with $\Phi=\Phi(w)$ of Example 2.3 a Fano variety that is \mathbb{Q}-Gorenstein with Gorenstein index 4. Note that, by Examples 2.3.16 and 2.3.42, we would have lost the Fano property had we chosen $w \in \mathbb{Q}^{3}$ in a different GIT-cone within $\operatorname{Mov}(X)$ (the blue region).

For the surface case, we introduced intersection numbers in Section: \mathbf{q}^{\prime} of Chapter: 1 : We shortly recall from [5, Con. II.1.2.8] the construction for an n-dimensional complete toric variety Z with a lattice fan (Σ, N). Assume Σ is simplicial. Consider pairwise different, invariant prime divisors D_{1}, \ldots, D_{n} on Z that correspond to rays $\mathbb{Q} \geq 0 \cdot v_{1}, \ldots, \mathbb{Q} \geq 0 \cdot v_{n} \in \Sigma$ with primitive vectors $v_{i} \in N$. Their intersection number is

$$
D_{1} \cdots D_{n}:=v_{1} \cdots v_{n}:= \begin{cases}{\left[N \cap \operatorname{lin}_{\mathbb{Q}}(\sigma): \operatorname{lin}_{\mathbb{Z}}\left(v_{1}, \ldots, v_{n}\right)\right]^{-1},} & \sigma \in \Sigma \\ 0, & \sigma \notin \Sigma\end{cases}
$$

with $\sigma:=\operatorname{cone}\left(v_{1}, \ldots, v_{n}\right)$. If $X=X(R, \mathfrak{F}, \Phi)$ is a projective Mori dream space with complete intersection Cox ring R and canonical toric ambient variety Z, it inherits intersection theory. Given invariant prime divisors $D_{X}^{1}, \ldots, D_{X}^{n}$ on X with $D_{X}^{i}=D_{i} \cap X$, by [5; Con. III.3.3.4], their intersection number is the toric intersection number

$$
D_{X}^{1} \cdots D_{X}^{n}=v_{1} \cdots v_{n} \cdot u_{1} \cdots u_{d}
$$

where u_{1}, \ldots, u_{d} are the degrees of the generators of the kernel of the map $T_{i} \mapsto f_{i}$ with $\mathfrak{F}=\left(f_{1}, \ldots, f_{r}\right)$; see [5; Con. III.3.3.4] for details. We state the next algorithm for the case of one equation. It is also able to produce self intersection numbers.
Algorithm 2.3.48 (MDSintersno). Compare [5; Con. III.3.3.4]. Input: a quasiprojective $\operatorname{MDS} X=\left(R, \Phi\left(w_{0}\right)\right)$ and elements $w, w^{\prime} \in K$ where $R=(\{g\}, Q$, $\left.Q^{0}, P, F_{\mathfrak{F}}\right)$. Let $q_{1}, \ldots, q_{r} \in K$ be the degrees of the variables T_{1}, \ldots, T_{r} of R.

- Compute in $K_{\mathbb{Q}}$ the full-dimensional GIT-cone $\lambda\left(w_{0}\right)=\bigcap_{\vartheta \in \Phi} \vartheta$.
- Choose a random $w_{0}^{\prime} \in \lambda\left(w_{0}\right)^{\circ}$ until the cone $\eta \in \operatorname{GKZ}\left(Q^{0}\right)$ with $w_{0}^{\prime} \in \eta^{\circ}$ is of full dimension. See Algorithm 3.2.8 for how to compute η.
- Let $N=\left(n_{i j}\right)_{i, j}$ be the $r \times r$ zero-matrix.
- For each two distinct $1 \leq i, j \leq r$ do
- choose a non-zero monomial T^{ν} in g such that $\nu_{i}=\nu_{j}=0$,
- redefine $n_{i j}:=\sum_{k=1}^{r} \nu_{k}\left(q_{i} \cdot q_{j} \cdot q_{k}\right)$ where we use Algorithm 2.1.9 and the \mathbb{Z}-module representation as in Algorithm 2.1.4 to calculate

$$
q_{i} \cdot q_{j} \cdot q_{k}= \begin{cases}{\left[K: K_{i j k}\right]^{-1},} & \eta \subseteq \operatorname{cone}\left(q_{l} ; l \notin\{i, j, k\}\right) \\ 0, & \text { else }\end{cases}
$$

with the subgroup $K_{i, j, k}:=\left\langle q_{l} ; l \notin\{i, j, k\}\right\rangle$ of K for $1 \leq k \leq r$.

- For each $1 \leq i \leq r$ do
- compute a point $a^{\prime} \in Q_{i}^{-1}\left(q_{i}\right) \subseteq \mathbb{Q}^{r-1}$ where Q_{i} is the matrix obtained from Q by removing the i-th column.
- Adding another 0 -entry, we have $a:=\left(a_{1}^{\prime}, \ldots, a_{i-1}^{\prime}, 0, a_{i}^{\prime}, \ldots, a_{r-1}^{\prime}\right)$ in \mathbb{Q}^{r}. Redefine $n_{i i}$ as the sum $\sum_{j=1}^{r} a_{j} n_{i j}$.
- Compute α_{i} and $\beta_{j} \in \mathbb{Q} \geq 0$ such that $w=\sum_{i} \alpha_{i} q_{i}$ and $w^{\prime}=\sum_{j} \beta_{j} q_{j}$.
- Return $\sum_{i, j} \alpha_{i} \beta_{j} n_{i j} \in \mathbb{Q}$.

Output: the intersection number $D \cdot D^{\prime} \in \mathbb{Q}$ of divisors D, D^{\prime} on X with $[D]=w$ and $\left[D^{\prime}\right]=w^{\prime} \in K$.

Proof. This implements [5; Con. III.3.3.4]. Note that in line two, we have $\eta^{\circ} \subseteq$ $\lambda\left(w_{0}\right)^{\circ}$ and in the first line of the first loop, the monomial T^{ν} exists since, otherwise, the codimension of $V\left(X ; T_{i}, T_{j}\right)$ in X would be one. By construction and bilinearity of the intersection form, after the second loop, $n_{i j}=q_{i} \cdot q_{j} \cdot \operatorname{deg}(g)$ for all i, j. Then

$$
w \cdot w^{\prime} \cdot \operatorname{deg}(g)=\left(\sum_{i} \alpha_{i} q_{i}\right) \cdot\left(\sum_{j} \beta_{j} q_{j}\right) \cdot \operatorname{deg}(g)=\sum_{i, j} \alpha_{i} \beta_{j} n_{i j}
$$

4. Complexity-one T-varieties

This section describes algorithms for the special class of Mori dream spaces of complexity-one T-varieties; see Section 5 of Chapter 1 : for the background.
The algorithms concerning automorphisms have been developed by I. Arzhantsev, J. Hausen, E. Huggenberger and A. Liendo in [6]. The anticanonical complex and the related algorithms have been developed by B. Bechtold, J. Hausen and E. Huggenberger in [17]. See $[5 ; 61]$ for the resolution of singularities for complexityone T-varieties. Our Algorithm 2.4 works in a slightly more general setting. Here is an overview:

- Automorphisms: vertical and horizontal Demazure P-roots (Algorithms 2.4.1 and 2.4.2), roots of $\operatorname{Aut}(X)^{0}$ (Algorithm 2.4.6).
- Singularities: resolution of singularities (Algorithm 2.4.8).
- Anticanonical complex: anticanonical polytope (Algorithm 2.4.13), anticanonical complex (Algorithm 2.4.14), test for being (ϵ-log-) terminal (Algorithms '2.4.15; and '2.4.16).

Let $X=X(P, A, \Phi)$ be a complexity-one T-variety with matrices P, A and \mathfrak{F}-bunch Φ as in Construction 1.5.12; In order to compute the roots of the unit-component $\operatorname{Aut}(X)^{0}$, we first show how to calculate Demazure P-roots. Let $v_{i j}, v_{k} \in \mathbb{Z}^{r+s}$ be the columns of P and denote by M the dual lattice of \mathbb{Z}^{r+s}. Recall from [6; Def. 5.2] that a vertical Demazure P-root is a pair $\left(u, k_{0}\right) \in M \times\{1, \ldots, m\}$ such that

$$
\begin{gathered}
\left\langle u, v_{i j}\right\rangle \geq 0 \quad \text { for all } i, j, \quad\left\langle u, v_{k_{0}}\right\rangle=-1, \\
\left\langle u, v_{k}\right\rangle \geq 0 \quad \text { for all } k \neq k_{0} .
\end{gathered}
$$

A horizontal Demazure P-root is a tuple $\left(u, i_{0}, i_{1}, C\right)$ in the following sense. We have $u \in M$, distinct indices $i_{0}, i_{1} \in\{0, \ldots, r\}$ and $C=\left(c_{i}\right)_{i} \in \prod_{i=0}^{r}\left\{1, \ldots, n_{i}\right\}$ is such that $l_{i c_{i}}=1$ for all $i \notin\left\{i_{0}, i_{1}\right\}$. Moreover, the scalar product $\left\langle u, v_{k}\right\rangle$ is at least zero for all k and

$$
\left\langle u, v_{i c_{i}}\right\rangle=\left\{\begin{array}{rl}
0, & i \notin\left\{i_{0}, i_{1}\right\}, \\
-1, & i=i_{1},
\end{array}\left\langle u, v_{i j}\right\rangle \geq\left\{\begin{array}{rll}
l_{i j}, & i \notin\left\{i_{0}, i_{1}\right\}, & j \neq c_{i} \\
0, & i \in\left\{i_{0}, i_{1}\right\}, & j \neq c_{i} \\
0, & i=i_{0}, & j=c_{i}
\end{array}\right.\right.
$$

Given a horizontal or vertical Demazure P-root κ of the form $\kappa=\left(u, k_{0}\right)$ or $\kappa=$ $\left(u, i_{0}, i_{1}, C\right)$, the last s coordinates of $u \in M$ give the P-root $\alpha_{\kappa} \in \mathbb{Z}^{s}$.

Algorithm 2.4.1 (MDSvdemazure). See [6; Remark. 5.4]. Input: an MDS $X=$ (R, Φ) where $X=X(P, A, \Phi)$ is a complexity-one variety with a $r \times(n+m)$ matrix P and a $2 \times(r+1)$ matrix A as in Construction 1.5.11;

- In the sense of'1.5.11; read out the blocks $l_{i} \in \mathbb{Z}_{\geq 0}^{n_{i}}$ of P where $0 \leq i \leq r$. Let v_{1}, \ldots, v_{n+m} be the columns of P.
- Initialize $\mathcal{V}:=\emptyset$.
- For each $k_{0} \in\{1, \ldots, m\}$ do
- define $\zeta \in \mathbb{Z}^{n+m}$ by setting $\zeta_{n+k_{0}}:=-1$ and $\zeta_{i}:=0$ otherwise.
- Compute in $M_{\mathbb{Q}}=M \otimes \mathbb{Q}$ the affine subspace and polytope

$$
\begin{aligned}
\eta\left(k_{0}\right) & :=\left\{u \in M_{\mathbb{Q}} ;\left\langle u, v_{k_{0}}\right\rangle=-1\right\}, \\
B\left(k_{0}\right) & :=\left\{u \in \eta\left(k_{0}\right) ; P^{*} \cdot u \geq \zeta\right\} .
\end{aligned}
$$

- Use Algorithm 2.2 to compute the set $U:=B\left(k_{0}\right) \cap \mathbb{Z}^{r}$ of lattice points. Redefine \mathcal{V} as the set $\mathcal{V} \cup\left\{\left(u, k_{0}\right) ; u \in U\right\}$.

Output: the set \mathcal{V} of all vertical Demazure P-roots $\left(u, k_{0}\right) \in M \times\{1, \ldots, m\}$.
Algorithm 2.4.2 (MDShdemazure). See [6; Remark. 5.4]. Input: an MDS $X=$ (R, Φ) where $X=X(P, A, \Phi)$ is a complexity-one variety with a $r \times(n+m)$ matrix P and a $2 \times(r+1)$ matrix A as in Construction 1.5.11;

- In the sense of 1.5.11; read out the blocks $l_{i} \in \mathbb{Z}_{\geq 0}^{n_{i}}$ of P where $0 \leq i \leq r$. Write $n_{i}^{\prime}:=n_{0}+\ldots+n_{i-1}$ and let v_{1}, \ldots, v_{n+m} be the columns of P.
- Initialize $\mathcal{H}:=\emptyset$.
- For each two distinct $0 \leq i_{0}, i_{1} \leq r$ do
- for each $C=\left(c_{0}, \ldots, c_{r}\right) \in \prod_{i=0}^{r}\left\{1, \ldots, n_{i}\right\}$ such that we have $l_{i c_{i}}=$ 1 for all $i \in\{0, \ldots, r\} \backslash\left\{i_{0}, i_{1}\right\}$ do
* let $\zeta \in \mathbb{Z}^{n+m}$ with $\zeta_{n+i}:=0$ for all $1 \leq i \leq m$. For its remaining components ζ_{k} we write $k=n_{i}^{\prime}+j$ with $0 \leq i \leq r$ and $1 \leq j \leq n_{i}$ and define

$$
\zeta_{k}:=\left\{\begin{array}{rll}
-1, & i=i_{1} & \text { and } j=c_{i_{1}}, \\
l_{i j}, & i \notin\left\{i_{0}, i_{1}\right\} & \text { and } j \neq c_{i}, \\
0, & \text { otherwise } &
\end{array}\right.
$$

* Compute in $M_{\mathbb{Q}}=M \otimes \mathbb{Q}$ the affine subspace $\eta\left(i_{0}, i_{1}, C\right)$ which is given by

$$
\left\{u \in M_{\mathbb{Q}} ;\left\langle u, v_{n_{i}^{\prime}+c_{i}}\right\rangle=0 \text { for } i \notin\left\{i_{0}, i_{1}\right\},\left\langle u, v_{n_{i_{1}}+c_{i_{1}}}\right\rangle=-1\right\} .
$$

* Compute the polytope $B\left(i_{0}, i_{1}, C\right) \subseteq M_{\mathbb{Q}}$ given by

$$
B\left(i_{0}, i_{1}, C\right)=\left\{u \in \eta\left(i_{0}, i_{1}, C\right) ; P^{*} \cdot u \geq \zeta\right\} .
$$

* Use Algorithm 2.2.2 to compute the set $U:=B\left(i_{0}, i_{1}, C\right) \cap \mathbb{Z}^{r}$ of lattice points. Redefine \mathcal{H} as $\mathcal{H} \cup\left\{\left(u, i_{0}, i_{1}, C\right) ; u \in U\right\}$.
Output: the set \mathcal{H} of all horizontal Demazure P-roots $\left(u, i_{0}, i_{1}, C\right)$.
Remark 2.4.3. Algorithms 2.4.2 and 2.4.1 depend only on the $\operatorname{ring} R(P, A)$.
Remark 2.4.4. Algorithm 2.4 .2 can be used to test a normal complete complexityone T-variety for being almost homogeneous, i.e., its automorphism group acts with an open orbit. By [6; Thm. 6.1], this is equivalent to the existence of a horizontal Demazure P-root.

Example 2.4.5. We computationally verify [6; Ex. 5.3]. Consider the complexityone variety $X=X(P, A, \Phi)$ where Φ is any \mathfrak{F}-bunch and

$$
P=\left[\begin{array}{llll}
-1 & -3 & 3 & 0 \\
-1 & -3 & 0 & 2 \\
-1 & -2 & 1 & 1
\end{array}\right], \quad A=\left[\begin{array}{lll}
0 & -1 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

are as in Construction 1.5.2, Since $m=0$, Algorithm 2.4.1 returns the empty set. However, Algorithm 2.4.2 finds the single horizontal Demazure P-root

$$
(u, 1,2, C), \quad u=(-1,-2,3) \in M_{\mathbb{Q}}=\mathbb{Q}^{3}, \quad C=(1,1,1)
$$

Recall from [62; 6] that for a connected, semisimple linear algebraic group G there is a root system $\Phi_{G} \subseteq \mathbb{X}_{\mathbb{R}}(T)$ with respect to a given maximal torus $T \subseteq G$. Note that G is determined uniquely up to coverings by its root system. The following algorithm describes the roots of the unit component $\operatorname{Aut}(X)^{0}$ for a normal, complete complexity-one $\operatorname{MDS} X=X(P, A, \Phi)$. By [6], for the semisimple part of $\operatorname{Aut}(X)$, only (sums of) the following root systems may occur

$$
\begin{aligned}
& A_{n}:=\left\{e_{i}-e_{j} ; 1 \leq i, j \leq n+1, i \neq j\right\} \subseteq \mathbb{R}^{n+1} \\
& B_{2} \\
& :=\left\{ \pm e_{1}, \pm e_{2}, \pm\left(e_{1}+e_{2}\right), \pm\left(e_{1}-e_{2}\right)\right\} \subseteq \mathbb{R}^{2}
\end{aligned}
$$

Algorithm 2.4.6 (MDSautroots). See [6; Thm. 5.5]. Input: an MDS $X=(R, \Phi)$, where $X=X(P, A, \Phi)$ is a complexity-one variety with P, A as in Construction 1.5.11 of size $r \times(n+m)$ and $2 \times(r+1)$.

- Compute the sets $\mathcal{V} \subseteq \mathbb{Z}^{r+s}$ and $\mathcal{H} \subseteq \mathbb{Z}^{r+s}$ of vertical and horizontal Demazure P-roots with Algorithms 2.4.1: and 2.4.2.
- Determine the set $A:=\{\pi(u) ; u \in \mathcal{V} \cup \mathcal{H}\}$ where $\pi: \mathbb{Z}^{r+s} \rightarrow \mathbb{Z}^{s}$ is the projection onto the \mathbb{Z}^{s}-part.
Output: the set A of roots of the unit component $\operatorname{Aut}(X)^{0}$.
Example 2.4.7. Consider the complexity-one T-variety X arising from the data $P, A, \Phi=\Phi(1)$ as in Construction 1.5.12 where

$$
P=\left[\begin{array}{lllll}
-2 & 1 & 1 & 0 & 0 \\
-2 & 0 & 0 & 1 & 1 \\
-1 & 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0
\end{array}\right], \quad A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1
\end{array}\right]
$$

Then X is three-dimensional and its Cox ring and degree map $Q: \mathbb{Z}^{5} \rightarrow K:=$ $\mathbb{Z}^{5} / \operatorname{Im}\left(P^{*}\right)=\mathbb{Z}$ are

$$
R=\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{4} T_{5}+T_{3}^{2}+T_{1} T_{2}\right\rangle, \quad Q=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

We compute the roots of $\operatorname{Aut}(X)^{0}$ using Algorithm 2.4.6. As predicted in [6; Thm. 7.2], we obtain the root system

$$
\begin{aligned}
B_{2}= & \{(1,-1),(1,1),(-1,-1),(-1,1), \\
& (0,-1),(0,1),(1,0),(-1,0)\} \subseteq \mathbb{Z}^{2}
\end{aligned}
$$

We turn to resolutions of singularities; compare Section :4; of Chapter 1: The following algorithm has been developed for complexity-one \dot{T}-varieties, see the book by I. Arzhantsev, U. Derenthal, J. Hausen and A. Laface [5; Thm. III.4.4.9] and E. Huggenberger's thesis [61; Ch. 3]. For more general Mori dream spaces our algorithm computes a candidate for a resolution and tries to verify it. The algorithm uses the weak tropical resolution defined in [10].

Algorithm 2.4.8 (MDSresolvesing). Compare [5; Thm. III.4.4.9] and [61; Ch. 3]. Input: a projective, \mathbb{Q}-factorial MDS $X=(R, \Phi)$ with $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$. Write $G=\left\{f_{1}, \ldots, f_{s}\right\}$ and assume P is of size $n \times r$. Options: verify; minimal if X is a surface.

- Compute the fan $\bar{\Sigma}$ of a completion $Z_{\bar{\Sigma}}$ of the canonical toric ambient variety with Algorithm and a fan $\Upsilon \subseteq \mathbb{Q}^{n}$ with $\operatorname{support} \operatorname{trop}(X)$. If $s=1$, Algorithm 2.2.7.can be used.
- Compute the coarsest common refinement $\Sigma^{\prime}:=\bar{\Sigma} \sqcap \Upsilon$ and subdivide its singular cones until the resulting fan $\left(\Sigma^{\prime}\right)^{\mathrm{reg}}$ is regular. Write primitive generators for its rays into the columns of a $n \times r^{\prime}$ matrix $P^{\prime}=[P, B]$.
- Let $p: \mathbb{T}^{r} \rightarrow \mathbb{T}^{n}$ and $p^{\prime}: \mathbb{T}^{r^{\prime}} \rightarrow \mathbb{T}^{n}$ be the homomorphisms of tori corresponding to P and P^{\prime}. Use Algorithms 2.2.13 and 2.2.12 to compute the ideal $I \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r^{\prime}}\right]$ generated by $\left(p^{\prime}\right)^{\star} p_{\star} \dot{f}_{1}, \ldots,\left(p^{\prime}\right)^{\star} p_{\star} f_{s}$.
- Compute a set G^{\prime} of generators for the ideal $I:\left(T_{1} \cdots T_{r^{\prime}}\right)^{\infty}$.
- Use Algorithms 2.1.24 and 2.1.26: to compute the AGH $Q^{\prime}: \mathbb{Z}^{r^{\prime}} \rightarrow K^{\prime}$ where $K^{\prime}:=\mathbb{Z}^{r^{\prime}} / \operatorname{lin}_{\mathbb{Z}}\left(P^{\prime}\right)^{*}$ and the matrix $\left(Q^{\prime}\right)^{0}: \mathbb{Z}^{r^{\prime}} \rightarrow\left(K^{\prime}\right)^{0}$. Define

$$
\Phi^{\prime}:=\left\{\left(Q^{\prime}\right)^{0}\left(\delta_{0}^{*}\right) ; \delta_{0} \preceq \delta \text { and } P^{\prime}\left(\delta_{0}\right) \in \Sigma^{\prime}\right\}, \quad \delta:=\mathbb{Q}_{\geq 0}^{r^{\prime}}
$$

- Create the MDS $X^{\prime}=\left(R^{\prime}, \Phi^{\prime}\right)$ with $R^{\prime}=\left(G^{\prime}, Q^{\prime},\left(Q^{0}\right)^{\prime}, P^{\prime}, F^{\prime}\right)$ where F^{\prime} is the set of all $\delta_{0} \preceq \delta$ such that $\delta_{0}^{\circ} \cap \tau \neq \emptyset$ for a maximal cone $\tau \in P^{-1}(\Upsilon)$.
- If verify was requested, then
- use Algorithm 2.2.to check whether all variables $T_{1}, \ldots, T_{r^{\prime}}$ define K^{\prime}-primes in R^{\prime}.
- Check if $\operatorname{dim}\left(\left\langle G^{\prime}\right\rangle\right)-\operatorname{dim}\left(\left\langle G^{\prime}\right\rangle+\left\langle T_{i}, T_{j}\right\rangle\right) \geq 2$ for all $i \neq j$.
- If $s=1$, then check if $\operatorname{codim}_{\bar{X}^{\prime}}\left(\left(\bar{X}^{\prime}\right)^{\text {sing }}\right) \geq 2$ with Algorithm 2.3.25: Otherwise, check if R^{\prime} is normal.
- Check whether X^{\prime} is smooth with Algorithm 2.3.24;
- If minimal was requested and X is a surface, then redefine X^{\prime} as the result of Algorithm 2.4.9 with input r and X^{\prime}.

Output: $\quad X^{\prime}=\left(R^{\prime}, \Phi^{\prime}\right)$. If all verify-checks were successful or if X is a complexityone variety as in Construction 1.51: then X^{\prime} is a smooth MDS and $X^{\prime} \rightarrow X$ a resolution of singularities. The resolution is minimal if minimal was requested and X is a surface.

Algorithm 2.4.9 (minimize). Input: $r \in \mathbb{Z}_{\geq 0}$ and a two-dimensional smooth projective MDS $X^{\prime}=\left(R^{\prime}, \Phi^{\prime}\right)$ that arises from a two-dimensional MDS X as in Algorithm 2.4.8,

- If R^{\prime} is a complete intersection, then
- use Algorithm 2.38 to determine the indices i_{1}, \ldots, i_{k} such that $V\left(X^{\prime} ; T_{i_{j}}\right)$ is a (-1)-curve.
- If R^{\prime} is not a complete intersection, then
- Compute $\vartheta:=\operatorname{cone}\left(q_{1}, \ldots, q_{r^{\prime}}\right)$ where $q_{1}, \ldots, q_{r^{\prime}}$ are the columns of the matrix $\left(Q^{0}\right)^{\prime}$ representing the free part of the grading of R^{\prime}.
- Let i_{1}, \ldots, i_{k} be such that the $q_{i_{j}}$ are exactly the extremal vectors of ϑ with $i_{j}>r$ in the sense of Remark 1.4.2;
- Return X^{\prime} if $k=0$.
- For each $i \in\left\{i_{1}, \ldots, i_{k}\right\}$ do
- compute the contraction $X^{\prime} \rightarrow X_{i}$ of $V\left(X^{\prime} ; T_{i}\right)$ by an application of Algorithm 2.4.10.
- If, by Algorithm 2.3.24, X_{i} is smooth, then return the result of the recursive call to Algorithm 2.4.9 with input r and X_{i}.

Output: a smooth MDS X_{1} such that $X_{1} \rightarrow X$ is a minimal resolution.
Proof. By Theorem:1, exactly the (-1)-curves can be contracted smoothly. Since X^{\prime} is a surface the contractible divisors correspond to the extremal rays of $\vartheta=$ $\operatorname{Eff}\left(X^{\prime}\right)$, see Remark 1.4.2; As the minimal resolution of a surface is unique, it
suffices to consider any smooth contraction $X^{\prime} \rightarrow X_{i_{j}}$.

By choice of $i_{j}>r, X_{i_{j}} \rightarrow X$ is a resolution. Hence, the algorithm computes the minimal resolution in finitely many steps.

Algorithm 2.4.10 (MDScontract). Input: a projective, \mathbb{Q}-factorial, two-dimensional MDS $X=(R, \Phi)$ as in Algorithm 2.4.9: and a contractible curve $V\left(X ; T_{k}\right)$. Write $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ with $G=\left\{f_{1}, \ldots, f_{s}\right\}$.

- Let P^{\prime} be the matrix obtained by deleting the k-th column of P. Compute $Q^{\prime}: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{r} / \operatorname{Im}\left(\left(P^{\prime}\right)^{*}\right)$ and the matrix $\left(Q^{0}\right)^{\prime}$ using Algorithms 2.1.24: and 2.1.26:
- Set $G^{\prime}:=\left\{f_{1}^{\prime}, \ldots, f_{s}^{\prime}\right\}$ with the image f_{i}^{\prime} of f_{i} under the map

$$
\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{r-1}\right], \quad T_{i} \mapsto \begin{cases}T_{i-1}, & i>k \\ 1, & i=k \\ T_{i}, & i<k\end{cases}
$$

- Compute the list $\left(F_{\mathfrak{F}}\right)^{\prime}$ of $\left\langle G^{\prime}\right\rangle$-faces with Algorithm and define $R^{\prime}:=\left(G^{\prime}, Q^{\prime},\left(Q^{0}\right)^{\prime}, P^{\prime},\left(F_{\mathfrak{F}}\right)^{\prime}\right)$.
- Choose $w \in \operatorname{Mov}\left(R^{\prime}\right)^{\circ}$ and define the $\operatorname{MDS} X^{\prime}=\left(R^{\prime}, \Phi^{\prime}(w)\right)$, see Algorithm 2.3.14 and Example 1.3.4:
Output: the MDS X^{\prime}. Then $X \rightarrow X^{\prime}$ is the contraction of the divisor $V\left(X ; T_{k}\right)$.
Proof. We will prove a similar statement in Algorithm 4.3.7 of Chapter :4.
Proof of Algorithm:4.8: For complexity-one varieties, this is [5; Thm. III.4.4.9], see also [61; Ch. 3]. Hence, we only need to show that if the verify option was given and all tests succeed, then X^{\prime} is a smooth MDS. In particular, $X^{\prime} \rightarrow X$ then is an equivariant desingularization of X. Consider $\bar{X}^{\prime}=V\left(G^{\prime}\right) \subseteq \mathbb{K}^{r^{\prime}}$ and $H^{\prime}=\operatorname{Spec} \mathbb{K}\left[K^{\prime}\right]$. In the case of $s=1$, we required the open subset $U:=\bar{X}^{\prime} \backslash\left(\bar{X}^{\prime}\right)^{\text {sing }}$ to be of codimension at least two in \bar{X}^{\prime}. Thus, the ring R^{\prime} is normal by Serre's criterion [73; 6.2], see Lemma 5.4.3; Moreover, the grading

$$
Q^{\prime}\left(e_{1}\right)=\operatorname{deg}\left(T_{1}\right), \quad \ldots, \quad Q^{\prime}\left(e_{k}\right)=\operatorname{deg}\left(T_{k}\right)
$$

is almost free since, by construction, the columns of P^{\prime} generate the whole space as a cone, are pairwise different and primitive. Furthermore, the codimension test ensures that the variables are pairwise non-associated. By Theorem 4.2.6, R^{\prime} is the Cox ring of X^{\prime}. We conclude that X^{\prime} is a smooth MDS.

Remark 2.4.11. In Algorithm 2.4.8, for higher-dimensional X, it is not clear how to obtain a "minimal" resolution. However, one may use [51; Thm. 6.2] which states that X arises from a combinatorially minimimal MDS X_{0} by a finite sequence of small birationial maps and contractions.

In the following example, we apply Algorithm 2.4.8 to resolve the singularities of a surface X that does not admit a non-trivial \mathbb{K}^{*}-action. We will encounter X in Theorem 4.4.1 as the surface with singularity type $E_{6} A_{2}$.

Example 2.4.12. Consider the Mori dream surface X with class group $\mathrm{Cl}(X)=$ $\mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$ and the following Cox ring and degree matrix

$$
\mathcal{R}(X)=\mathbb{K}\left[T_{1}, \ldots, T_{4}\right] /\left\langle-T_{1} T_{4}^{2}+T_{2}^{3}+T_{2} T_{3} T_{4}+T_{3}^{3}\right\rangle, \quad Q=\left[\begin{array}{cccc}
\frac{1}{1} & \frac{1}{2} & \frac{1}{0} & \frac{1}{1}
\end{array}\right] .
$$

By Algorithm 2.3.24, X is singular. Using Algorithm 2.4.8 with options verify and minimal, we obtain a minimal resolution $X^{\prime} \rightarrow X$ with a smooth MDS X^{\prime}. Its Cox ring is

$$
\begin{gathered}
\mathcal{R}\left(X^{\prime}\right)=\mathbb{K}\left[T_{1}, \ldots, T_{12}\right] /\langle g\rangle \\
g:=-T_{1} T_{4}^{2} T_{5}+T_{2}^{3} T_{12} T_{7}^{2} T_{8}+T_{2} T_{3} T_{11} T_{4} T_{5} T_{6} T_{7} T_{8} T_{10}+T_{3}^{3} T_{9} T_{11}^{2} T_{10}
\end{gathered}
$$

Note that $\mathcal{R}\left(X^{\prime}\right)$ is as predicted in [33, p. 40, type $E_{6} A_{2}$]. The class group of X^{\prime} is \mathbb{Z}^{9} and the degree matrix is

$$
\left[\begin{array}{rrrrrrrrrrrr}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & -1 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & -1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] .
$$

Since X^{\prime} is a complete intersection we can compute the self intersection numbers of all $D_{i}:=V\left(X^{\prime} ; T_{i}\right)$ with Algorithm 2.3.48; they are

D_{1}^{2}	D_{2}^{2}	D_{3}^{2}	D_{4}^{2}	D_{5}^{2}	D_{6}^{2}	D_{7}^{2}	D_{8}^{2}	D_{9}^{2}	D_{10}^{2}	D_{11}^{2}	D_{12}^{2}
-1	-1	-1	-1	-2	-2	-2	-2	-2	-2	-2	-2

Observe that no further (-1)-curves D_{i} with $i>4$ exist since we provided the option minimal. Combined with Algorithm 2.327 , we obtain the exceptional graph $G_{X^{\prime}}$ and the subgraph of (-2)-curves which indeed has $E_{6} A_{2}$ singularity type:

We come to algorithms concerning the so-called anticanonical complex introduced by B. Bechtold, J. Hausen and E. Huggenberger in [17]. Let $X=X(P, A, \Phi)$ be a complexity-one T-variety as in Construction 11.51 with P-matrix P of size $n \times r$. Its Cox ring is $R(P, A)=\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] / I$ with an ideal $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ and assume the $\mathrm{Cl}(X)$-grading is pointed; compare Construction 1.5.3; Let Q^{0} be the degree matrix of the free part of the grading. In [17], the anticanonical polytope of X was defined as the polytope

$$
A_{X}:=B_{X}^{\vee}, \quad B_{X}:=\left(P^{*}\right)^{-1}\left(B_{w}+\sum_{i=1}^{s} \Delta\left(f_{i}\right)-(1, \ldots, 1)\right) \subseteq \mathbb{Q}^{n}
$$

with the Newton polytopes $\Delta\left(f_{i}\right) \subseteq \mathbb{Q}^{r}$ and the fiber-polytope $B_{w}:=\left(Q^{0}\right)^{-1}(w) \cap$ $\mathbb{Q}_{\geq 0}^{r}$ of the free part $w \in K^{0}$ of the anticanonical divisor class. Let Z_{Σ} be the canonical ambient toric variety of X as in Construction 1.7 and Υ a fan in \mathbb{Q}^{n} with support $\operatorname{trop}(X)$. The anticanonical complex is the polyhedral complex

$$
\mathcal{A}_{X}:=\operatorname{faces}\left(A_{X}\right) \sqcap \Upsilon \sqcap \Sigma \subseteq \mathbb{Q}^{n}
$$

where $\Upsilon \sqcap \Sigma$ is the coarsest common refinement and faces $\left(A_{X}\right) \sqcap \Upsilon$ denotes the conewise intersection with the polytope A_{X}. The computation is a direct consequence of the definition.

Algorithm 2.4.13 (MDSanticanpoly). See [17]. Input: an MDS $X=(R, \Phi)$ of complexity one. Let $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ with $G=\left\{f_{1}, \ldots, f_{s}\right\}$ and $P: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{n}$.

- Compute the free part $w:=\left(-w_{X}^{\text {can }}\right)^{0} \in K^{0}$ of the anticanonical divisor class with Algorithm 2.3.41: Determine $B_{w}:=\left(Q^{0}\right)^{-1}(w) \cap \mathbb{Q}_{\geq 0}^{r}$.
- Compute the Minkowski sum $B:=B_{w}+\Delta\left(f_{1}\right)+\ldots+\Delta\left(f_{s}\right) \subseteq \mathbb{Q}^{r}$ and the image $B_{X}:=\left(P^{*}\right)^{-1}(B-(1, \ldots, 1))$ in \mathbb{Q}^{n}. Let $A_{X}:=B_{X}^{\vee}$ be the dual.

Output: the anticanonical polytope $A_{X} \subseteq \mathbb{Q}^{n}$.
Algorithm 2.4.14 (MDSanticancomp). See [17]. Input: an MDS $X=(R, \Phi)$ of complexity one with $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$.

- Compute the anticanonical polytope $A_{X} \subseteq \mathbb{Q}^{n}$ with Algorithm 2.4.13:
- Compute a fan $\Upsilon \subseteq \mathbb{Q}^{n}$ with support $\operatorname{trop}(X)$, compare Algorithm 2.2.7;
- Compute the fan $\Sigma \subseteq \mathbb{Q}^{n}$ of the canonical toric ambient variety with Algorithm 2.3.9 and the coarsest common refinement $\Sigma^{\prime}:=\Upsilon \sqcap \Sigma$.
- Let \mathcal{A}_{X} be the polyhedral complex with maximal cells $\sigma^{\prime} \cap A_{X}$ where $\sigma^{\prime} \in \Sigma^{\prime}$ runs through the maximal cones of Σ^{\prime}.

Output: the anticanonical complex \mathcal{A}_{X} of X.
Consider a normal \mathbb{Q}-factorial variety X with Cartier canonical divisor $D_{X}^{\text {can }}$. Let $\varphi: X^{\prime} \rightarrow X$ be a resolution of singularities. Recall, e.g., from [61], that X is terminal if $a_{i}>0$ for all i in

$$
D_{X^{\prime}}^{\mathrm{can}}=\varphi^{*}\left(D_{X}^{\mathrm{can}}\right)+\sum_{i} a_{i} E_{i}
$$

with the exceptional divisors E_{i} of φ. We say that X is log-terminal if $a_{i}>1$ for all i. Similarly, given $0<\varepsilon<1$, we call $X \varepsilon$-log-terminal if we have $a_{i}>-1+\varepsilon$ for all i.

Algorithm 2.4.15 (MDSisepslogterminal). See [17]. Input: an MDS $X=(R, \Phi)$ of complexity one with $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ and a rational number $0<\varepsilon<1$.

- Compute the anticanonical complex \mathcal{A}_{X} of X using Algorithm 2.4.14:
- For each maximal cell $C \in \mathcal{A}_{X}$ do
- Let C_{ε} be the scaled cell $\varepsilon \cdot C$. Return false if C_{ε} is unbounded.
- Compute the set of lattice points $U:=C_{\varepsilon} \cap \mathbb{Z}^{r}$ with Algorithm 2.2.2;
- Let $V \subseteq \mathbb{Q}^{n}$ consist of the zero-vector, the columns of P and the vertices of \mathcal{A}_{X}. Return false if $U \backslash V \neq \emptyset$.
- Return true.

Output: true if X is ε-log-terminal and false otherwise.
Algorithm 2.4.16 (MDSisterminal). See [17]. Input: an MDS X of complexity one.

- Perform the same steps as in Algorithm 2.4.15 for $\varepsilon=1$.

Output: true if X is terminal and false otherwise.
Note that we can also test a \mathbb{K}^{*}-surface for being log-terminal by an inspection of its P-matrix, see Remark 2.5.6:

Example 2.4.17. By an application of Algorithm 2.4.16; the complexity-one T variety defined in Example 2.4 is terminal whereas the \mathbb{K}^{*}-surface of Example 2.4.5: is not. However, the latter is ε-log-terminal by Algorithm 2.15 for $\varepsilon:=1 / 2$.

5. Application: Combinatorially minimal \mathbb{K}^{*}-surfaces

In this section, we classify the non-toric, combinatorially minimal del Pezzo, i.e., Fano, \mathbb{K}^{*}-surfaces of Picard number two up to Gorenstein-index six. We apply the algorithms developed in the previous sections to study the resulting surfaces. This continues work of E. Huggenberger on the Gorenstein-case, see [61; Sec. 5.3].
We write d_{X} for the self-intersection number of the anticanonical divisor of the given surface X and denote the Picard index by $b:=[\mathrm{Cl}(X): \operatorname{Pic}(X)]$. We say that X has hypersurface Cox ring if the spectrum \bar{X} over the Cox ring is a hypersurface. Moreover, recall from [51, Sec. 6] that a variety X is combinatorially minimal if $\operatorname{Mov}(X)=\operatorname{Eff}(X)$. In the sense of Remark 1.4.2; this means that no further contraction is possible.
Theorem 2.5.1. Up to isomorphism, there are only finitely many non-toric, combinatorially minimal del Pezzo \mathbb{K}^{*}-surfaces of Picard number two with hypersurface Cox ring and with Gorenstein index $n \in \mathbb{Z}_{>0}$. The following table is a classification of all surfaces with $n \leq 6$. No two shown surfaces are isomorphic.

	Cox ring $\mathcal{R}(X)$	degree matrix	$\mathrm{Cl}(\mathrm{X})$	b	n	d_{X}
(1)	$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}+T_{3}^{2} T_{4}^{2}+T_{5}^{2}\right\rangle$	$\left[\begin{array}{rrrrr}2 & 0 & 0 & 1 & 1 \\ 0 & -\frac{2}{1} & -\frac{1}{1} & \frac{0}{1} & -\frac{1}{0}\end{array}\right]$	$\mathbb{Z}^{2} \oplus \mathbb{Z} / 2 \mathbb{Z}$	32	2	2
(2)	$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}+T_{3}^{2} T_{4}^{2}+T_{5}^{2}\right\rangle$	$\left[\begin{array}{rrrrr}2 & 0 & 0 & 1 & 1 \\ 0 & -\frac{2}{1} & -\frac{1}{2} & \frac{0}{1} & -\frac{1}{0}\end{array}\right]$	$\mathbb{Z}^{2} \oplus \mathbb{Z} / 4 \mathbb{Z}$	256	4	1
(3)	$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}+T_{3}^{2} T_{4}^{2}+T_{5}^{2}\right\rangle$	$\left[\begin{array}{rrrrr}2 & 0 & 0 & 1 & 1 \\ 0 & -\frac{2}{5} & -\frac{1}{3} & \frac{0}{0} & -\frac{1}{0}\end{array}\right]$	$\mathbb{Z}^{2} \oplus \mathbb{Z} / 6 \mathbb{Z}$	864	6	$\frac{2}{3}$
(4)	$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}^{2}+T_{3} T_{4}^{2}+T_{5}^{2}\right\rangle$	$\left[\begin{array}{rrrrr}2 & 0 & 0 & 1 & 1 \\ 0 & -\frac{1}{1} & -\frac{2}{1} & \frac{0}{1} & -\frac{1}{0} \\ \frac{1}{1} & & \\ 0\end{array}\right]$	$\mathbb{Z}^{2} \oplus \mathbb{Z} / 3 \mathbb{Z}$	108	3	$\frac{4}{3}$
(5)	$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}^{3}+T_{3} T_{4}^{3}+T_{5}^{3}\right\rangle$	$\left[\begin{array}{rrrrr}3 & 0 & 0 & 1 & 1 \\ 0 & -1 & -3 & 0 & -1\end{array}\right]$	\mathbb{Z}^{2}	9	3	$\frac{8}{3}$
(6)	$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}^{3}+T_{3} T_{4}^{3}+T_{5}^{3}\right\rangle$	$\left[\begin{array}{rrrrr}3 & 0 & 0 & 1 & 1 \\ 0 & -\frac{1}{1} & -\frac{3}{1} & \frac{0}{0} & -\frac{1}{0}\end{array}\right]$	$\mathbb{Z}^{2} \oplus \mathbb{Z} / 2 \mathbb{Z}$	72	3	$\frac{4}{3}$
(7)	$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}^{2}+T_{3} T_{4}^{2}+T_{5}^{2}\right\rangle$	$\left[\begin{array}{rrrrr}2 & 0 & 0 & 1 & 1 \\ \frac{0}{3} & -\frac{1}{1} & -\frac{2}{0} & \frac{0}{0} & -\frac{1}{0}\end{array}\right]$	$\mathbb{Z}^{2} \oplus \mathbb{Z} / 5 \mathbb{Z}$	500	5	$\frac{4}{5}$
(8)	$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}^{5}+T_{3} T_{4}^{5}+T_{5}^{5}\right\rangle$	$\left[\begin{array}{rrrrr}5 & 0 & 0 & 1 & 1 \\ 0 & -1 & -5 & 0 & -1\end{array}\right]$	\mathbb{Z}^{2}	25	5	$\frac{8}{5}$
(9)	$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}^{5}+T_{3} T_{4}^{5}+T_{5}^{5}\right\rangle$	$\left[\begin{array}{rrrrr}5 & 0 & 0 & 1 & 1 \\ 0 & -\frac{1}{1} & -5 & 0 & -\frac{1}{1} \\ \overline{1} & \frac{0}{0} & \\ \hline\end{array}\right]$	$\mathbb{Z}^{2} \oplus \mathbb{Z} / 2 \mathbb{Z}$	200	5	$\frac{4}{5}$
(10)	$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}^{3}+T_{3} T_{4}^{3}+T_{5}^{3}\right\rangle$	$\left[\begin{array}{rrrrr}3 & 0 & 0 & 1 & 1 \\ 0 & -\frac{1}{1} & -3 & 0 & -1 \\ \overline{1} & \overline{1} & \overline{0} & \overline{0} & \frac{1}{0}\end{array}\right]$	$\mathbb{Z}^{2} \oplus \mathbb{Z} / 4 \mathbb{Z}$	576	6	$\frac{2}{3}$

$$
\left.\begin{array}{l}
\text { (11) } \mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}^{4}+T_{3} T_{4}^{4}+T_{5}^{4}\right\rangle
\end{array}\left[\begin{array}{rrrrr}
4 & 0 & 0 & 1 & 1 \\
\frac{0}{2} & -\frac{1}{1} & -\frac{4}{0} & \frac{0}{0} & -\frac{1}{0}
\end{array}\right] \quad \mathbb{Z}^{2} \oplus \mathbb{Z} / 3 \mathbb{Z} \quad 432 \quad 6 \quad \frac{2}{3}\right)
$$

All surfaces are singular and exactly the surfaces of cases (5), (8) and (12) are almost-homogeneous. The log-terminal surfaces are (1), (2), (3), (4), (7) and (12). Moreover, in each case (i), the following P-matrices can be chosen such that the respective \mathbb{K}^{*}-surface X satisfies $X=X\left(P_{i}, A\right)$ as in Construction:1.5.2:

$$
\begin{aligned}
& P_{1}=\left[\begin{array}{rrrrr}
-1 & -1 & 2 & 2 & 0 \\
-1 & -1 & 0 & 0 & 2 \\
-1 & 0 & -1 & 1 & 1
\end{array}\right], \quad P_{2}=\left[\begin{array}{rrrrr}
-1 & -1 & 2 & 2 & 0 \\
-1 & -1 & 0 & 0 & 2 \\
-1 & 1 & -3 & 1 & 1
\end{array}\right] \text {, } \\
& P_{3}=\left[\begin{array}{rrrrr}
-1 & -1 & 2 & 2 & 0 \\
-1 & -1 & 0 & 0 & 2 \\
-1 & 2 & -5 & 1 & 1
\end{array}\right], \quad P_{4}=\left[\begin{array}{rrrrr}
-1 & -2 & 1 & 2 & 0 \\
-1 & -2 & 0 & 0 & 2 \\
-1 & 1 & -1 & 1 & 1
\end{array}\right] \text {, } \\
& P_{5}=\left[\begin{array}{lllll}
-1 & -3 & 1 & 3 & 0 \\
-1 & -3 & 0 & 0 & 3 \\
-1 & -2 & 0 & 1 & 2
\end{array}\right], \quad P_{6}=\left[\begin{array}{lllll}
-1 & -3 & 1 & 3 & 0 \\
-1 & -3 & 0 & 0 & 3 \\
-1 & -1 & 0 & 2 & 1
\end{array}\right], \\
& P_{7}=\left[\begin{array}{rrrrr}
-1 & -2 & 1 & 2 & 0 \\
-1 & -2 & 0 & 0 & 2 \\
-1 & 3 & -2 & 1 & 1
\end{array}\right], \quad P_{8}=\left[\begin{array}{lllll}
-1 & -5 & 1 & 5 & 0 \\
-1 & -5 & 0 & 0 & 5 \\
-1 & -4 & 0 & 1 & 4
\end{array}\right], \\
& P_{9}=\left[\begin{array}{lllll}
-1 & -5 & 1 & 5 & 0 \\
-1 & -5 & 0 & 0 & 5 \\
-1 & -3 & 0 & 2 & 3
\end{array}\right], \quad P_{10}=\left[\begin{array}{rrrrr}
-1 & -3 & 1 & 3 & 0 \\
-1 & -3 & 0 & 0 & 3 \\
-1 & 1 & -1 & 1 & 2
\end{array}\right] \text {, } \\
& P_{11}=\left[\begin{array}{lllll}
-1 & -4 & 1 & 4 & 0 \\
-1 & -4 & 0 & 0 & 4 \\
-1 & -1 & 0 & 3 & 1
\end{array}\right], \quad P_{12}=\left[\begin{array}{rrrrr}
-2 & -1 & 2 & 1 & 0 \\
-2 & -1 & 0 & 0 & 2 \\
-1 & 0 & -1 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Furthermore, for the respective minimal resolution of singularities $X^{\prime} \rightarrow X$, the subgraphs of $(-k)$-curves, $k \in \mathbb{Z}_{\geq 2}$, of the graphs $G_{X^{\prime}}$ of exceptional curves and the corresponding self-intersection numbers are

(1)

(3)

(5)

(7)

(2)

(4)

(6)

(8)

(9)

(10)

(11)

(12)

Remark 2.5.2. In Theorem 2.5.1, case (12) coincides with the Gorenstein surface with ADE-singularity type D_{4} found in [61; Thm. 5.26]. Surfaces (1), (4) and (12) also appear in [94; Satz 6.13].
Lemma 2.5.3. Let $w_{1}, \ldots, w_{4} \in \mathbb{Z}^{2}$ be such that $\mathbb{Q}_{\geq 0} \cdot w_{1}=\mathbb{Q}_{\geq 0} \cdot w_{2}$, we have $\mathbb{Q}_{\geq 0} \cdot w_{3}=\mathbb{Q}_{\geq 0} \cdot w_{4}$ and $\mathbb{Q}_{\geq 0} \cdot w_{1} \neq \mathbb{Q}_{\geq 0} \cdot w_{3}$. If $\operatorname{lin}_{\mathbb{Z}}\left(w_{1}, \ldots, w_{4}\right)=\mathbb{Z}^{2}$, then there is $S \in \mathrm{GL}(2, \overline{\mathbb{Z}})$ such that

$$
S \cdot\left[w_{1}, \ldots, w_{4}\right]=\left[\begin{array}{llll}
a & b & 0 & 0 \\
0 & 0 & c & d
\end{array}\right] \quad \text { with } a, b, c, d \in \mathbb{Z} .
$$

Proof. After computing a Hermite normal form, we may assume that there are integers $a, b, c, d \in \mathbb{Z}$ satisfying

$$
w_{1}=(a, 0), \quad w_{2}=(b, 0), \quad w_{3}=c \cdot v, \quad w_{4}=d \cdot v
$$

with a vector $v=\left(v_{1}, v_{2}\right) \in \mathbb{Z}^{2}$. Since the w_{i} generate \mathbb{Z}^{2}, we must have $v_{2}= \pm 1$; we may assume $v_{2}=1$. Adding $-v_{1}$ times the last row to the first one yields

$$
S \cdot\left[\begin{array}{llrr}
a & b & c \cdot v_{1} & d \cdot v_{1} \\
0 & 0 & c & d
\end{array}\right]=\left[\begin{array}{llll}
a & b & 0 & 0 \\
0 & 0 & c & d
\end{array}\right] \quad \text { with } S \in \operatorname{GL}(2, \mathbb{Z}) .
$$

Lemma 2.5.4. Let X be a combinatorially minimal \mathbb{K}^{*}-surface with hypersurface Cox ring and $\operatorname{rank}(\mathrm{Cl}(X))=2$. Then $X=X(P, A)$ with integral matrices

$$
P=\left[\begin{array}{ccccc}
-l_{01} & -l_{02} & l_{11} & l_{12} & 0 \\
-\frac{d_{12} 21}{-l_{01}} \\
-\frac{d_{21} l_{01}}{l_{12}}-\frac{d_{11}-l_{02}}{l_{21}} & -\frac{d_{11} l_{02}}{l_{11}}-\frac{d_{21} l_{02}}{l_{21}} & d_{11} & d_{12} & l_{21} \\
d_{21}
\end{array}\right], \quad A=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

as in Construction:2, satisfying $\operatorname{gcd}\left(l_{i j_{i}}, d_{i j_{i}}\right)=1$ for all $0 \leq i \leq 2$ and $1 \leq j_{i} \leq$ n_{i} and we have

$$
0 \leq d_{12}<l_{12}, \quad 0 \leq d_{21}<l_{21}, \quad \frac{d_{12}}{l_{12}}>\frac{d_{11}}{l_{11}}
$$

Furthermore, the fan $\Sigma(P)$ of the canonical toric ambient variety of X in Construction:1.5\% is of type (ee) with exactly two three-dimensional cones

$$
\begin{aligned}
\sigma^{+} & :=\operatorname{cone}\left(v_{02}, v_{12}, v_{21}\right) \\
\sigma^{-} & :=\operatorname{cone}\left(v_{01}, v_{11}, v_{21}\right)
\end{aligned}
$$

Moreover, the integral 2×5 matrix Q^{0} representing the free part of the degree map $\mathbb{Z}^{5} \rightarrow \mathrm{Cl}(X)$ is of shape

$$
Q^{0}=\left[\begin{array}{rrrrr}
a & 0 & 0 & \frac{l_{01} a}{l_{12}} & \frac{l_{01} a}{l_{12} 1} \\
0 & b & \frac{l_{02} b}{l_{11}} & 0 & \frac{l_{02} b}{l_{21}}
\end{array}\right], \quad a, b \in \mathbb{Z}_{>0}
$$

Proof. Since X is a surface and $\operatorname{rank}(\operatorname{Cl}(X))=2$, we have $\operatorname{dim}(\mathcal{R}(X))=4$. Together with the fact that the ideal of relations of $\mathcal{R}(X)$ is principal, the parameters in Construction 1.5 are $r=2, n=5$ and $m=0$. This means $X=X(P, A)$ arises from matrices P and A where

$$
P=\left[\begin{array}{rrrrr}
-l_{01} & -l_{02} & l_{11} & l_{12} & 0 \\
-l_{01} & -l_{02} & 0 & 0 & l_{21} \\
d_{01} & d_{02} & d_{11} & d_{12} & d_{21}
\end{array}\right], \quad A=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] .
$$

Let the 2×5 matrix $Q^{0}=\left[q_{01}, \ldots, q_{21}\right]$ represent the projection $\mathbb{Z}^{5} \rightarrow \mathbb{Z}^{2}$ onto the free part of $\mathrm{Cl}(X)$. Since X is combinatorially minimal, the columns q_{01}, \ldots, q_{21} generate a pointed, two-dimensional cone $\vartheta \subseteq \mathbb{Q}^{2}$ where each of the two extremal rays of ϑ contains exactly two $q_{i j}$ and $q_{21} \in \vartheta^{\circ}$ by homogenity of the defining equation $T_{01}^{l_{01}} T_{02}^{l_{02}}+T_{11}^{l_{11}} T_{12}^{l_{12}}+T_{21}^{l_{21}}$ of the Cox ring. Moreover, by Lemma 2.5 .3 ; there are $a, b, c, d, e, f \in \mathbb{Z}$ such that

$$
Q^{0}=\left[\begin{array}{lllll}
a & 0 & 0 & d & e \\
0 & b & c & 0 & f
\end{array}\right]=\left[\begin{array}{rrrrr}
a & 0 & 0 & \frac{l_{01} a}{l_{12}} & \frac{l_{01} a}{l_{21}} \\
0 & b & \frac{l_{02} b}{l_{11}} & 0 & \frac{l_{02}}{l_{21}}
\end{array}\right]
$$

where the last equality and the fact that all fractions are integers was obtained from $P \cdot\left(Q^{0}\right)^{t}=0$. Multiplying the rows by ± 1, we may assume $a, b \in \mathbb{Z}_{>0}$. Using again $P \cdot\left(Q^{0}\right)^{t}=0$, we have the additional conditions

$$
a d_{01}=-\frac{a d_{12} l_{01}}{l_{12}}-\frac{a d_{21} l_{01}}{l_{21}}, \quad b d_{02}=-\frac{b d_{11} l_{02}}{l_{11}}-\frac{b d_{21} l_{02}}{l_{21}}
$$

Division by a or b respectively gives the desired shape of P. The conditions $0 \leq$ $d_{12}<l_{12}$ and $0 \leq d_{21}<l_{21}$ come from according row operations in P (before fixing the $d_{0 i}$). Note that P is in the normal form of Construction 1.5 if we fix the ordering of the slopes of one block:

$$
\frac{d_{02}}{l_{02}}>\frac{d_{01}}{l_{01}} \quad \Leftrightarrow \quad \frac{d_{12}}{l_{12}}>\frac{d_{11}}{l_{11}}
$$

Lemma 2.5.5. Let $X=X(P, A)$ be as in Lemma 2.5. Then X is Fano if and only if the following inequalities hold

$$
1<\frac{1}{l_{21}}+\frac{1}{l_{12}}+\frac{1}{l_{01}}, \quad 1<\frac{1}{l_{21}}+\frac{1}{l_{11}}+\frac{1}{l_{02}}
$$

Proof. Let Q^{0} be the 2×5 matrix from Lemma 2.5 with columns $q_{i j}$. Also by Lemma 2.5.5 and Construction 1.5.3, the Cox ring of X is

$$
\mathcal{R}(X)=\mathbb{K}\left[T_{01}, T_{02}, T_{11}, T_{12}, T_{21}\right] /\langle g\rangle, \quad g:=T_{01}^{l_{01}} T_{02}^{l_{02}}+T_{11}^{l_{11}} T_{12}^{l_{12}}+T_{21}^{l_{21}}
$$

By Proposition 1.3.17, X is Fano if and only if the free part $\left(-w_{X}^{\text {can }}\right)^{0} \in \operatorname{Cl}(X)^{0}=\mathbb{Z}^{2}$ of the anticanonical divisor class of X is an element of the ample cone, i.e.

$$
\left.\begin{array}{rl}
\left(-w_{X}^{\mathrm{can}}\right)^{0} & =\left(\sum_{i, j} q_{i j}\right)-\operatorname{deg}(g) \\
& =\binom{a\left(\frac{l_{01}}{l_{21}}+\frac{l_{01}}{l_{12}}+1-l_{01}\right)}{b\left(\frac{l_{02}}{l_{21}}+\frac{l_{02}}{l_{11}}+1-l_{02}\right.}
\end{array}\right) .
$$

This means $\left(-w_{X}^{\text {can }}\right)_{i}^{0}>0$ for both $i=1,2$. Since $a, b \in \mathbb{Z}_{>0}$, division by l_{01} or $l_{02} \in \mathbb{Z}_{>0}$ respectively, gives the assertion.

The parameters occurring in the inequalities in Lemma 2.5 are platonic triples, i.e., triples $(a, b, c) \in \mathbb{Z}_{>0}^{3}$ such that $a^{-1}+b^{-1}+c^{-1}>1$. Up to permutation, the
only possible combinations are (compare [61, Ex. 3.20])
$(1, x, y)$,
$(2,2, z)$,
$(2,3,3), \quad(2,3,4)$,
$(2,3,5), \quad x, y \in \mathbb{Z}_{\geq 1}, \quad z \in \mathbb{Z}_{\geq 2}$.

Remark 2.5.6. The platonic triples occurring in Lemma 2.5.5 are similar to the ones occurring in [61, Prop. 3.19, Ex. 3.20]: X being log-terminal is equivalent to

$$
1<\frac{1}{l_{02}}+\frac{1}{l_{12}}+\frac{1}{l_{21}}, \quad 1<\frac{1}{l_{01}}+\frac{1}{l_{11}}+\frac{1}{l_{21}}
$$

Lemma 2.5.7. Let $X=X(P, A)$ be as in Lemma 2.5.4 and assume X is Fano. Then each possible choice of parameters $l_{i j}$ must simultaneously satisfy cases A_{k}, B_{l} for some $k, l \in\{1, \ldots, 20\}$ where

case	l_{01}	l_{12}	l_{21}
A_{1}	1	≥ 1	≥ 2
A_{2}	≥ 2	1	≥ 2
A_{3}	2	2	≥ 2
A_{4}	2	≥ 3	2
A_{5}	≥ 3	2	2
A_{6}	2	3	3
A_{7}	3	2	3
A_{8}	3	3	2
A_{9}	2	3	4
A_{10}	2	4	3
A_{11}	3	2	4
A_{12}	4	2	3
A_{13}	3	4	2
A_{14}	4	3	2
A_{15}	2	3	5
A_{16}	2	5	3
A_{17}	3	2	5
A_{18}	5	2	3
A_{19}	3	5	2
A_{20}	5	3	2

case	l_{02}	l_{11}	l_{21}
B_{1}	1	≥ 1	≥ 2
B_{2}	≥ 2	1	≥ 2
B_{3}	2	2	≥ 2
B_{4}	2	≥ 3	2
B_{5}	≥ 3	2	2
B_{6}	2	3	3
B_{7}	3	2	3
B_{8}	3	3	2
B_{9}	2	3	4
B_{10}	2	4	3
B_{11}	3	2	4
B_{12}	4	2	3
B_{13}	3	4	2
B_{14}	4	3	2
B_{15}	2	3	5
B_{16}	2	5	3
B_{17}	3	2	5
B_{18}	5	2	3
B_{19}	3	5	2
B_{20}	5	3	2

Proof. This is a direct application of Lemma 2.5 and the aforementioned possible choices for platonic triples.

Lemma 2.5.8. See [61, Prop. 5.2]. Let $X=X(P, A)$ be as in Lemma.2.5.4: Then X is n-Gorenstein if and only if $n \in \mathbb{Z}_{>0}$ is minimal such that all of the following divisibility constraints, called (a) to (j), are satisfied

$$
\begin{array}{r|l}
l_{11} l_{21} d_{01}+l_{01} l_{21} d_{11}+l_{01} l_{11} d_{21} & n\left(l_{01} l_{11} l_{21}-l_{11} l_{21}-l_{01} l_{21}-l_{01} l_{11}\right), \\
l_{12} l_{21} d_{02}+l_{02} l_{21} d_{12}+l_{02} l_{12} d_{21} & n\left(l_{02} l_{12} l_{21}-l_{12} l_{21}-l_{02} l_{21}-l_{02} l_{12}\right), \\
l_{11} l_{21} d_{01}+l_{01} l_{21} d_{11}+l_{01} l_{11} d_{21} & n\left(l_{01} l_{21} d_{11}+l_{21}\left(d_{01}-d_{11}\right)+l_{01}\left(d_{21}-d_{11}\right)\right), \\
l_{12} l_{21} d_{02}+l_{02} l_{21} d_{12}+l_{02} l_{12} d_{21} & n\left(l_{02} l_{21} d_{12}+l_{21}\left(d_{02}-d_{12}\right)+l_{02}\left(d_{21}-d_{12}\right)\right), \\
l_{11} l_{21} d_{01}+l_{01} l_{21} d_{11}+l_{01} l_{11} d_{21} & n\left(l_{01} l_{11} d_{21}+l_{11}\left(d_{01}-d_{21}\right)+l_{01}\left(d_{11}-d_{21}\right)\right), \\
l_{12} l_{21} d_{02}+l_{02} l_{21} d_{12}+l_{02} l_{12} d_{21} & n\left(l_{02} l_{12} d_{21}+l_{12}\left(d_{02}-d_{21}\right)+l_{02}\left(d_{12}-d_{21}\right)\right), \\
l_{01} d_{02}-l_{02} d_{01} & n\left(d_{02}-d_{01}\right), \\
l_{01} d_{02}-l_{02} d_{01} & n\left(l_{01}-l_{02}\right), \\
l_{11} d_{12}-l_{12} d_{11} & n\left(d_{12}-d_{11}\right), \\
l_{11} d_{12}-l_{12} d_{11} & n\left(l_{11}-l_{12}\right) .
\end{array}
$$

Lemma 2.5.9. Let $X=X(P, A)$ be as in Lemma:2.5: Set $q_{1}:=\operatorname{gcd}\left(l_{21} l_{12}, l_{01} l_{21}\right)$ and $q_{2}:=\operatorname{gcd}\left(l_{21} l_{11}, l_{02} l_{21}\right)$. If $q_{1} \mid l_{12} l_{01}$ and $q_{2} \mid l_{02} l_{11}$, then Q^{0} can be chosen as
the integral matrix

$$
Q^{0}=\left[\begin{array}{rrrrr}
\frac{l_{21} l_{12}}{q_{1}} & 0 & 0 & \frac{l_{01} l_{21}}{q_{1}} & \frac{l_{12} l_{01}}{q} \\
0 & \frac{l_{21} l_{11}}{q_{2}} & \frac{l_{02} l_{21}}{q_{2}} & 0 & \frac{l_{02} t_{11}}{q_{2}}
\end{array}\right]
$$

Proof. Consider the sublattice $L \leq \mathbb{Z}^{5}$ spanned by the two vectors $u_{1}, u_{2} \in \mathbb{Z}^{5}$ which are given by

$$
u_{1}:=\left(l_{21} l_{12}, 0,0, l_{01} l_{21}, l_{12} l_{01}\right), \quad u_{2}:=\left(0, l_{21} l_{11}, l_{02} l_{21}, 0, l_{02} l_{11}\right)
$$

Since $L \leq \operatorname{ker}(P)$ and $\operatorname{rank}(L)=2=\operatorname{rank}(\operatorname{ker}(P))$, the saturated lattice $L^{\text {sat }}$ equals $\operatorname{ker}(P)$. Swapping coordinates, we have

$$
\left\langle S_{1} \cdot u_{1}, S_{1} \cdot u_{2}\right\rangle=\left\langle\left(\begin{array}{r}
l_{21} l_{12} \\
l_{01} l_{21} \\
0 \\
0 \\
l_{12} l_{01}
\end{array}\right),\left(\begin{array}{r}
0 \\
0 \\
l_{02} l_{21} \\
l_{21} l_{11} \\
l_{02} l_{11}
\end{array}\right)\right\rangle=:\left\langle\left(\begin{array}{r}
v \\
0 \\
l_{12} l_{01}
\end{array}\right),\left(\begin{array}{r}
0 \\
v^{\prime} \\
l_{02} l_{11}
\end{array}\right)\right\rangle
$$

with $S_{1} \in \operatorname{GL}(5, \mathbb{Z})$ and $v, v^{\prime} \in \mathbb{Z}^{2}$. By basic algebra, given a primitive vector $w \in \mathbb{Z}^{2}$ and $d \in \mathbb{Z}$, there is $S \in \mathrm{GL}(2, \mathbb{Z})$ such that $S(d \cdot w)=(d, 0)$. Applying this to the primitive vectors $v q_{1}^{-1}$ and $v^{\prime} q_{2}^{-1}$, we have $S_{2} \cdot v=\left(q_{1}, 0\right)$ and $S_{2}^{\prime} \cdot v^{\prime}=\left(q_{2}, 0\right)$ with matrices $S_{2}, S_{2}^{\prime} \in \operatorname{GL}(2, \mathbb{Z})$. Then

$$
S \cdot L=\left\langle S u_{1}, S u_{2}\right\rangle=\left\langle\left(\begin{array}{r}
q_{1} \\
0 \\
0 \\
0 \\
l_{12} l_{01}
\end{array}\right),\left(\begin{array}{r}
0 \\
0 \\
q_{2} \\
0 \\
l_{02} l_{11}
\end{array}\right)\right\rangle, \quad S:=\left[\begin{array}{rr|r}
S_{2} & 0 \\
0 & S_{2}^{\prime} & \\
\hline & & 1
\end{array}\right] \cdot S_{1}
$$

with $S \in \operatorname{GL}(5, \mathbb{Z})$. Since $q_{1} \mid l_{12} l_{01}$ and $q_{2} \mid l_{02} l_{11}$, we have a sublattice $L^{\prime}:=$ $\left\langle q_{1}^{-1} S u_{1}, q_{2}^{-1} S u_{2}\right\rangle \leq \mathbb{Z}^{5}$. Since $L^{\prime}=\left(L^{\prime}\right)^{\text {sat }}$ and $L^{\prime} \subseteq(S \cdot L)^{\text {sat }}$ and both L^{\prime} and $S \cdot L$ are of rank two, we have $L^{\prime}=(S \cdot L)^{\text {sat }}$. Then the rows of Q^{0}, i.e., generators for $\operatorname{ker}(P)$, are obtained by

$$
\operatorname{ker}(P)=L^{\mathrm{sat}}=S^{-1}\left(L^{\prime}\right)=\left\langle q_{1}^{-1} u_{1}, q_{2}^{-1} u_{2}\right\rangle
$$

Lemma 2.5.10 $\left(A_{1} B_{1}\right)$. Consider in Lemma:2.5.\% case $A_{1} B_{1}$, i.e., $l_{01}=1=l_{02}$, and $l_{11} \geq 1, l_{12} \geq 1, l_{21} \geq 2$. If X is n-Gorenstein, then there are only finitely many possibilities for the matrix P of Lemma.5.4: More precisely, we obtain the following bounds

$$
2 \leq l_{21}=l_{11}=l_{12} \leq n, \quad-n<-d_{11}<2 n
$$

Proof. Note that by Lemma 2.5.4; we require d_{01} and d_{02} to be integers of the following form

$$
d_{01}=-\frac{d_{12}}{l_{12}}-\frac{d_{21}}{l_{21}} \in \mathbb{Z}, \quad d_{02}=-\frac{d_{11}}{l_{11}}-\frac{d_{21}}{l_{21}} \in \mathbb{Z}
$$

Since also $l_{12} d_{01} \in \mathbb{Z}$ and $l_{11} d_{02} \in \mathbb{Z}$, this means $l_{21} \mid d_{21} l_{12}$ and $l_{21} \mid d_{21} l_{11}$. As $\operatorname{gcd}\left(l_{21}, d_{21}\right)=1$, we have $l_{21} \mid l_{12}$ and $l_{21} \mid l_{11}$. Lemma 2.5.9: then allows us to choose the free part Q^{0} of the grading as

$$
Q^{0}=\left[\begin{array}{rrrrr}
l_{12} & 0 & 0 & 1 & \frac{l_{12}}{l_{21}} \\
0 & l_{11} & 1 & 0 & \frac{l_{11}}{l_{21}}
\end{array}\right]
$$

Since the grading must be almost free, each four columns must generate \mathbb{Z}^{2} as a lattice, i.e., both l_{11} and l_{11} / l_{21} as well as l_{12} and l_{12} / l_{21} have to be coprime. We obtain $l_{21}=l_{11}=l_{12}$. Now, condition (i) in Lemma 2.5.8 provides us with $l_{21} \mid n$ and, thus, $2 \leq l_{21}=l_{11}=l_{12} \leq n$. Moreover, by condition (a) of Lemma 2.5.8; we have $d_{11}-d_{12} \mid 2 n$. Together with the condition $d_{12}>d_{11}$ obtained by the requirements on the slopes in Lemma 2.5.4, this implies

$$
-n \leq-l_{12}<-d_{12}<-d_{11} \leq 2 n-d_{12}<2 n
$$

Lemma 2.5.11 $\left(A_{1} B_{2}\right)$. Consider in Lemmainis case $A_{1} B_{2}$, i.e., $l_{01}=1, l_{02} \geq$ $2, l_{11}=1, l_{12} \geq 1, l_{21} \geq 2$. If X is n-Gorenstein, then there are only finitely many possibilities for the matrix P of Lemma.2.5.4: More precisely, we obtain the following bounds

$$
2 \leq l_{21}=l_{02}=l_{12} \leq n, \quad-1<-d_{11}<\frac{3 n}{2}
$$

Proof. Note that by Lemma 2.54 ; we require d_{01} and d_{02} to be integers of the following form

$$
d_{01}=-\frac{d_{12}}{l_{12}}-\frac{d_{21}}{l_{21}} \in \mathbb{Z}, \quad d_{02}=-d_{11} l_{02}-\frac{d_{21} l_{02}}{l_{21}} \in \mathbb{Z}
$$

For $d_{02} \in \mathbb{Z}$, this means $l_{21} \mid d_{21} l_{02}$ and $l_{21} \mid l_{02}$ follows from $\operatorname{gcd}\left(d_{21}, l_{21}\right)=1$. Since also $l_{12} d_{01} \in \mathbb{Z}$ holds, we obtain $l_{21} \mid d_{21} l_{12}$. Using again $\operatorname{gcd}\left(d_{21}, l_{21}\right)=1$, we arrive at $l_{21} \mid l_{12}$. Lemma 2.5.9 then allows us to choose the free part Q^{0} of the grading as

$$
Q^{0}=\left[\begin{array}{rrrrr}
l_{12} & 0 & 0 & 1 & \frac{l_{12}}{l_{12}} \\
0 & 1 & l_{02} & 0 & \frac{l_{02}}{l_{21}}
\end{array}\right] .
$$

Since the grading must be almost free, each four columns must generate \mathbb{Z}^{2} as a lattice, i.e., both l_{02} and l_{02} / l_{21} as well as l_{12} and l_{12} / l_{21} have to be coprime. We obtain $l_{21}=l_{02}=l_{12}$. Now, condition (i) in Lemma 2.5.8 provides us with $l_{21} \mid n$ and, thus, $2 \leq l_{21}=l_{11}=l_{12} \leq n$. The requirements on the slopes in Lemma 2.5.4: and $0 \leq d_{21}<l_{21}$ gives us

$$
d_{11}<\frac{d_{12}}{l_{12}}<1
$$

Moreover, by condition (a) of Lemma 2.5. $-d_{11} l_{21}+d_{12}$ divides $n\left(l_{21}+1\right)$. Together, by division of $l_{21}=l_{12}$, we conclude

$$
\begin{aligned}
0 & \leq-d_{11}+\frac{d_{12}}{l_{21}} \leq \frac{n\left(l_{21}+1\right)}{l_{21}} \leq \frac{3 n}{2} \\
\Rightarrow-1 & <-\frac{d_{12}}{l_{12}} \leq-d_{11} \leq \frac{3 n}{2}-\frac{d_{12}}{l_{12}}<\frac{3 n}{2} .
\end{aligned}
$$

Several of the cases of Lemma 2.5 .7 can be directly left out by the following observation.

Lemma 2.5.12. In the situation of Lemma:2.5.\%; each case $A_{i} B_{j}$ in which at least one of the following conditions is satisfied, is not possible.

$$
\begin{array}{ll}
l_{21} \nmid l_{01} l_{12}, & l_{12} \nmid l_{01} l_{21}, \\
l_{21} \nmid l_{02} l_{11}, & l_{11} \nmid l_{02} l_{21}, \\
l_{21}=l_{01} \text { and } l_{12} \nmid l_{01}, & l_{12}=l_{01} \text { and } l_{21} \nmid l_{01}, \\
l_{21}=l_{02} \text { and } l_{11} \nmid l_{02}, & l_{11}=l_{02} \text { and } l_{21} \nmid l_{02}, \\
l_{01} \geq 2 \quad \text { and } l_{12}=l_{21} \text { and } l_{01} \nmid l_{21}, & l_{02} \geq 2 \quad \text { and } l_{11}=l_{21} \text { and } l_{02} \nmid l_{21} .
\end{array}
$$

In particular, this rules out all cases $A_{i} B_{j}$ with $i \geq 4$ or $j \geq 4$. Furthermore, in the cases $A_{3} B_{j}$ and $A_{i} B_{3}$, we have $l_{21}=2$, in the cases $A_{1} B_{j}$, we have $l_{12} \geq 2$ and in the cases $A_{i} B_{1}$, we have $l_{11} \geq 2$.

Proof. We enumerate the listed conditions row-wise from left to right and speak of conditions (i) to (x). In Lemma 2.5.4, we showed that the integers d_{01} and d_{02} are

$$
d_{01}=-\frac{d_{12} l_{01}}{l_{12}}-\frac{d_{21} l_{01}}{l_{21}} \in \mathbb{Z}, \quad d_{02}=-\frac{d_{11} l_{02}}{l_{11}}-\frac{d_{21} l_{02}}{l_{21}} \in \mathbb{Z}
$$

In particular, $l_{12} d_{01}$ and $l_{21} d_{01}$ as well as $l_{21} d_{02}$ and $l_{11} d_{02}$ are integers. Since $\operatorname{gcd}\left(l_{i j}, d_{i j}\right)=1$ for all $0 \leq i \leq 2$ and $1 \leq j \leq n_{i}$, this is equivalent to

$$
l_{21}\left|l_{01} l_{12}, \quad l_{12}\right| l_{01} l_{21}, \quad l_{21}\left|l_{02} l_{11}, \quad l_{11}\right| l_{02} l_{21}
$$

respectively. This proves cases (i) to $(i v)$. In the next four cases, i.e., (v) to (viii), ordered as in the claim, this becomes

$$
\begin{array}{ll}
d_{01}=-\frac{d_{12} l_{21}}{l_{12}}-d_{21} \in \mathbb{Z}, \quad d_{01}=-d_{12}-\frac{d_{21} l_{01}}{l_{21}} \in \mathbb{Z}, \\
d_{02}=-\frac{d_{11} l_{02}}{l_{11}}-d_{21} \in \mathbb{Z}, \quad d_{02}=-d_{11}-\frac{d_{21} l_{02}}{l_{21}} \in \mathbb{Z}
\end{array}
$$

Since we require the $d_{0 i}$ to be integers, all occurring fractions must be integers, i.e., , enumerated from left to right, we have respectively

$$
l_{12}\left|d_{12} l_{21}, \quad l_{21}\right| d_{21} l_{01}, \quad l_{11}\left|d_{11} l_{02}, \quad l_{21}\right| d_{21} l_{02}
$$

Since $l_{i j}$ and $d_{i j}$ are coprime for all $0 \leq i \leq 2$ and $1 \leq j \leq n_{i}$, all $d_{i j}$ can be removed from the above divisibility constraints, i.e., the respective claim follows from

$$
l_{12}\left|l_{21}, \quad l_{21}\right| l_{01}, \quad l_{11}\left|l_{02}, \quad l_{21}\right| l_{02}
$$

In the last two cases, we have respectively

$$
d_{01}=\frac{l_{01}\left(-d_{12}-d_{21}\right)}{l_{21}} \in \mathbb{Z}, \quad d_{02}=\frac{l_{02}\left(-d_{11}-d_{21}\right)}{l_{21}} \in \mathbb{Z}
$$

Since d_{01} and l_{01} as well as d_{02} and l_{02} are coprime, we must have $l_{01} \mid l_{21}$ and $l_{02} \mid l_{21}$ respectively. This completes the first part of the proof. The remaining assertions are direct consequences.

Lemma 2.5.13 $\left(A_{1} B_{3}\right)$. Consider in Lemma 2.5. case $A_{1} B_{3}$, i.e., $l_{01}=1, l_{02}=$ $2, l_{11}=2, l_{12} \geq 1, l_{21} \geq 2$. If X is n-Gorenstein, then there are only finitely many possibilities for the matrix P of Lemma:2.5.4: More precisely, we obtain the following bounds

$$
1 \leq l_{12} \leq 2, \quad l_{21}=2, \quad 0>d_{11} \geq-n-1
$$

Proof. We have $l_{21}=2$ by Lemma, 2.12 . Since $0 \leq d_{21}<l_{21}$ and $\operatorname{gcd}\left(l_{21}, d_{21}\right)=1$, we have $d_{21}=1$. Moreover, using Lemma 2.5.4; the requirement

$$
2 d_{01}=-\frac{2 d_{12}}{l_{12}}-1 \in \mathbb{Z}
$$

gives $l_{12} \mid 2 d_{12}$ which in turn delivers $l_{12} \mid 2$ since $\operatorname{gcd}\left(l_{12}, d_{12}\right)=1$. In particular $1 \leq l_{12} \leq 2$. Condition (h) in Lemma 2.5.8: supplies us with bounds

$$
\frac{2 d_{12}}{l_{12}}+1-d_{11}-2 \left\lvert\, n \quad \Rightarrow \quad-d_{11} \leq n+1-\frac{2 d_{12}}{l_{12}} \leq n+1 .\right.
$$

Lemma 2.5.14 $\left(A_{2} B_{1}\right)$. Consider in Lemma 2.5. case $A_{2} B_{1}$, i.e., $l_{01} \geq 2, l_{02}=$ $l_{12}=1, l_{21} \geq 2$ and $l_{11} \geq 1$. If X is n-Gorenstein, then there are only finitely many possibilities for the matrix P of Lemma:5.4: More precisely, we obtain the following bounds

$$
2 \leq l_{01}=l_{11}=l_{21}<4, \quad d_{12}=0, \quad 0<-d_{11} \leq 4 n
$$

Proof. Note that by Lemma 2.5.4; we have $0 \leq d_{12}<l_{12}=1$, i.e., $d_{12}=0$. we require d_{01} and d_{02} to be integers of the following form

$$
d_{01}=-\frac{d_{21} l_{01}}{l_{21}} \in \mathbb{Z}, \quad d_{02}=-\frac{d_{11}}{l_{11}}-\frac{d_{21}}{l_{21}} \in \mathbb{Z}
$$

For $d_{01} \in \mathbb{Z}$, this means $l_{21} \mid d_{21} l_{01}$ and $l_{21} \mid l_{01}$ follows from $\operatorname{gcd}\left(d_{21}, l_{21}\right)=1$. Since also $l_{11} d_{01} \in \mathbb{Z}$, we obtain $l_{21} \mid d_{21} l_{11}$. Using again $\operatorname{gcd}\left(d_{21}, l_{21}\right)=1$, we arrive at $l_{21} \mid l_{11}$. Lemma 2.5.9 then allows us to choose the free part Q^{0} of the grading as

$$
Q^{0}=\left[\begin{array}{rrrrr}
1 & 0 & 0 & l_{01} & \frac{l_{01}}{l_{21}} \\
0 & l_{11} & 1 & 0 & \frac{l_{11}}{l_{21}}
\end{array}\right] .
$$

Since the grading must be almost free, each four columns must generate \mathbb{Z}^{2} as a lattice, i.e., both l_{01} and l_{01} / l_{21} as well as l_{11} and l_{11} / l_{21} have to be coprime. We obtain $l_{21}=l_{01}=l_{11}$. By the requirements on the slopes in Lemma 2.5.4, we have $d_{11}<0$. Now, conditions (a) and (b) in Lemma 2.5.8 provide us with

$$
-d_{11}\left|n\left(l_{21}-3\right), \quad-d_{11}\right| n\left(l_{21}+1\right)
$$

Then $-d_{11}$ also divides the difference of the right hand sides, i.e., $-d_{11} \mid 4 n$. In particular, $0<-d_{11} \leq 4 n$. Applying condition (j) of Lemma 2.5.8; i.e., $-d_{11} \mid$ $n l_{21}-n$, we conclude

$$
\begin{aligned}
0<-d_{11} \leq n l_{21}-n & \Rightarrow-4 n \leq d_{11}<-n l_{21} \leq d_{11}-n \\
& \Rightarrow 4>l_{21} \geq-\frac{d_{11}}{n}+1>1
\end{aligned}
$$

Lemma 2.5.15 $\left(A_{2} B_{2}\right)$. Consider in Lemma, 2.5. case $A_{2} B_{2}$, i.e., $l_{01}, l_{02}, l_{21}, \geq 2$ and $l_{11}=l_{12}=1$. If X is n-Gorenstein, then there are only finitely many possibilities for the matrix P of Lemma 2.5 . 4 : More precisely, we obtain the following bounds

$$
2 \leq l_{01}=l_{02}=l_{21} \leq 2 n, \quad 0>d_{11} \geq-n
$$

Proof. Note that by Lemma 2.5.4, we have $0 \leq d_{12}<l_{12}=1$, i.e., $d_{12}=0$, and the condition on the slopes gives $0>d_{11}$. Also, both l_{02} and d_{02} as well as l_{01} and d_{01} must be coprime. Using the description of $d_{0 i}$ obtained in Lemma 2.5.4, we have

$$
d_{01}=-\frac{d_{21} l_{01}}{l_{21}} \in \mathbb{Z}, \quad d_{02}=l_{02}\left(-d_{11}\right)-\frac{d_{21} l_{02}}{l_{21}} \in \mathbb{Z}
$$

Since $d_{02} \in \mathbb{Z}$, we must have $l_{21} \mid d_{21} l_{02}$ and the condition $\operatorname{gcd}\left(d_{21}, l_{21}\right)=1$ then delivers $l_{21} \mid l_{02}$. Similarly, $l_{21} \mid d_{21} l_{01}$ implies $l_{21} \mid l_{01}$. Moreover, assume $l_{02} \nmid l_{21}$ or $l_{01} \nmid l_{21}$. Then there is a prime number $p \in \mathbb{Z}_{\geq 2}$ or a prime number $p^{\prime} \in \mathbb{Z}_{\geq 2}$ such that

$$
p \mid l_{02} \text { and } p \left\lvert\, \frac{d_{21} l_{02}}{l_{21}} \quad\right. \text { or } \quad p^{\prime} \mid l_{01} \quad \text { and } \quad p^{\prime} \left\lvert\, \frac{d_{21} l_{01}}{l_{21}}\right.
$$

which means $\operatorname{gcd}\left(l_{02}, d_{02}\right) \geq p>1$ or $\operatorname{gcd}\left(l_{01}, d_{01}\right) \geq p^{\prime}>1$, a contradiction. We obtain $l_{02}\left|l_{21}\right| l_{02}$ and $l_{01}\left|l_{21}\right| l_{01}$ and therefore $l_{01}=l_{21}=l_{02}$. Moreover, since X is n-Gorenstein, we have

$$
2 \leq\left(-d_{11}\right) l_{01} l_{21}=\left(-d_{11}\right) l_{01}^{2} \leq n\left(l_{21}+l_{01}\right)=2 n l_{01}
$$

by condition (a) of Lemma 2.5.8; In particular, we obtain $l_{01}=l_{02}=l_{21} \leq 2 n$ and $0<-d_{11} \leq n$. We conclude that all free parameters in Lemma 2.5.4 are bounded.

Lemma 2.5.16 $\left(A_{2} B_{3}\right)$. Consider in Lemma 2.5. case $A_{2} B_{3}$, i.e., $l_{01} \geq 2, l_{02}=$ $2, l_{11}=2, l_{12}=1$ and $l_{21} \geq 2$. If X is n-Gorenstein, then there are only finitely many possibilities for the matrix P of Lemma.5.5: More precisely, we obtain the following bounds

$$
l_{01}=2, \quad l_{21}=2, \quad 0>d_{11} \geq-n, \quad d_{12}=0, \quad d_{21}=1
$$

Proof. Note that by Lemma 2.5.4; we have $0 \leq d_{12}<l_{12}=1$, i.e., $d_{12}=0$, and the condition on the slopes gives $0>d_{11}$. Lemma 2.5.12 provides us with $l_{21}=2$. Thus, by Lemma 2.5.4; we have $d_{21}=1$. Moreover, using again Lemma 2.5.4, we have

$$
\operatorname{gcd}\left(l_{01}, d_{01}\right)=1, \quad d_{01}=-\frac{d_{21} l_{01}}{l_{21}} \in \mathbb{Z}
$$

Therefore, $2=l_{21} \mid d_{21} l_{01}$ implies $2 \mid l_{01}$. Since $l_{01} \geq 2$, this means $2=l_{01}$. Moreover, since X is n-Gorenstein, we have $0<-d_{11} \mid n$ by condition (j) of Lemma 2.5.8. In particular, $0>d_{11} \geq-n$.

Lemma 2.5.17. In the situation of Lemma 2.5.\% cases $A_{3} B_{1}, A_{3} B_{2}$ and $A_{3} B_{3}$ are not possible.

Proof. By Lemma 2.5.12; in all three cases, we have $l_{21}=2$ and, using Lemma 2.5.4, $d_{01}=-2$. This is a contradiction to $\operatorname{gcd}\left(d_{01}, l_{01}\right)=1$.

Proof of Theorem 2.5.1; By Theorem 1.5.4, each \mathbb{K}^{*}-surface X can be obtained as $X=X(P, A)$ where the matrices P and A are as in Lemma 2.5 ; compare Construction 1.5.2, Since X is a del Pezzo surface, Lemma 2.5.7 provides us with a finite list of cases $A_{i} B_{j}$ where $i, j \in\{1, \ldots, 20\}$. Lemma 2.5.12 then reduces this list to the cases $A_{i} B_{j}$ with $i, j \in\{1,2,3\}$.
Using the bounds obtained in Lemma 2.510 and neglecting matrices not satisfying the requirements of Lemma 2.5 , in case $A_{1} B_{1}$, the only possible P-matrices are

$$
\begin{gathered}
P_{1}=\left[\begin{array}{rrrrr}
-1 & -1 & 2 & 2 & 0 \\
-1 & -1 & 0 & 0 & 2 \\
-1 & 0 & -1 & 1 & 1
\end{array}\right], \quad P_{2}=\left[\begin{array}{rrrrrr}
-1 & -1 & 2 & 2 & 0 \\
-1 & -1 & 0 & 0 & 2 \\
-1 & 1 & -3 & 1 & 1
\end{array}\right], \\
P_{3}=\left[\begin{array}{rrrrr}
-1 & -1 & 2 & 2 & 0 \\
-1 & -1 & 0 & 0 & 2 \\
-1 & 2 & -5 & 1 & 1
\end{array}\right] .
\end{gathered}
$$

In a similar manner, in case $A_{1} B_{2}$, using the bounds given in Lemma 2.5.11; only the following P-matrices are possible:

$$
\begin{aligned}
& P_{4}=\left[\begin{array}{rrrrr}
-1 & -2 & 1 & 2 & 0 \\
-1 & -2 & 0 & 0 & 2 \\
-1 & 1 & -1 & 1 & 1
\end{array}\right], \quad P_{5}=\left[\begin{array}{lllll}
-1 & -3 & 1 & 3 & 0 \\
-1 & -3 & 0 & 0 & 3 \\
-1 & -2 & 0 & 1 & 2
\end{array}\right], \\
& P_{6}=\left[\begin{array}{lllll}
-1 & -3 & 1 & 3 & 0 \\
-1 & -3 & 0 & 0 & 3 \\
-1 & -1 & 0 & 2 & 1
\end{array}\right], \quad P_{7}=\left[\begin{array}{rrrrr}
-1 & -2 & 1 & 2 & 0 \\
-1 & -2 & 0 & 0 & 2 \\
-1 & 3 & -2 & 1 & 1
\end{array}\right], \\
& P_{8}=\left[\begin{array}{lllll}
-1 & -5 & 1 & 5 & 0 \\
-1 & -5 & 0 & 0 & 5 \\
-1 & -4 & 0 & 1 & 4
\end{array}\right], \quad P_{9}=\left[\begin{array}{lllll}
-1 & -5 & 1 & 5 & 0 \\
-1 & -5 & 0 & 0 & 5 \\
-1 & -3 & 0 & 2 & 3
\end{array}\right], \\
& P_{10}=\left[\begin{array}{rrrrr}
-1 & -3 & 1 & 3 & 0 \\
-1 & -3 & 0 & 0 & 3 \\
-1 & 1 & -1 & 1 & 2
\end{array}\right], \quad P_{11}=\left[\begin{array}{lllll}
-1 & -4 & 1 & 4 & 0 \\
-1 & -4 & 0 & 0 & 4 \\
-1 & -1 & 0 & 3 & 1
\end{array}\right] .
\end{aligned}
$$

Using again Lemma 2.5.i in conjunction with Lemma 2.5.13, no valid P-matrix can be obtained in case $A_{1} B_{3}$. Moreover, making use of Lemmas 2.5.14 and 2.5.4, case $A_{2} B_{1}$ provides us with

$$
\begin{array}{ll}
P_{12}=\left[\begin{array}{rrrrr}
-2 & -1 & 2 & 1 & 0 \\
-2 & -1 & 0 & 0 & 2 \\
-1 & 0 & -1 & 0 & 1
\end{array}\right], & P_{13}=\left[\begin{array}{rrrrr}
-2 & -1 & 2 & 1 & 0 \\
-2 & -1 & 0 & 0 & 2 \\
-1 & 1 & -3 & 0 & 1
\end{array}\right], \\
P_{14}=\left[\begin{array}{rrrrr}
-3 & -1 & 3 & 1 & 0 \\
-3 & -1 & 0 & 0 & 3 \\
-1 & 0 & -1 & 0 & 1
\end{array}\right], & P_{15}=\left[\begin{array}{rrrrr}
-3 & -1 & 3 & 1 & 0 \\
-3 & -1 & 0 & 0 & 3 \\
-2 & 0 & -2 & 0 & 2
\end{array}\right], \\
P_{16}=\left[\begin{array}{rrrrr}
-2 & -1 & 2 & 1 & 0 \\
-2 & -1 & 0 & 0 & 2 \\
-1 & 2 & -5 & 0 & 1
\end{array}\right], & P_{17}=\left[\begin{array}{rrrrr}
-3 & -1 & 3 & 1 & 0 \\
-3 & -1 & 0 & 0 & 3 \\
-1 & 1 & -4 & 0 & 1
\end{array}\right] .
\end{array}
$$

Combining Lemma 2.5.4 with Lemma 2.5.15 or 2.5.16, we see that case $A_{2} B_{3}$ does not yield valid P-matrices whereas we obtain from case $A_{2} B_{2}$ the P-matrices

$$
\begin{gathered}
P_{18}=\left[\begin{array}{rrrrr}
-2 & -2 & 1 & 1 & 0 \\
-2 & -2 & 0 & 0 & 2 \\
-1 & 1 & -1 & 0 & 1
\end{array}\right], \quad P_{19}=\left[\begin{array}{rrrrrr}
-2 & -2 & 1 & 1 & 0 \\
-2 & -2 & 0 & 0 & 2 \\
-1 & 3 & -2 & 0 & 1
\end{array}\right], \\
P_{20}=\left[\begin{array}{rrrrr}
-2 & -2 & 1 & 1 & 0 \\
-2 & -2 & 0 & 0 & 2 \\
-1 & 5 & -3 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

By Lemma 2.5 .17 ; the cases $A_{3} B_{j}$ do not produce any valid P-matrix. We now remove isomorphic \mathbb{K}^{*}-surfaces. In our case, Proposition 1.5.8 tells us that \mathbb{K}^{*} surfaces X_{1} and X_{2} with P-matrices P_{1} and P_{2} are isomorphic if and only if $P_{2}=$
$S P_{1} U$ with admissible matrices $S \in \mathrm{GL}(3, \mathbb{Z})$ and $U \in \mathrm{GL}(5, \mathbb{Z})$. The two invertible matrices

$$
S:=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 1 & -1
\end{array}\right], \quad U:=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

are admissible for all P-matrices P_{i} with $i>12$. Hence, each \mathbb{K}^{*}-surface $X\left(P_{i}, A\right)$ with $i>12$ is isomorphic to a \mathbb{K}^{*}-surface $X\left(P_{j}, A\right)$ with $1 \leq j \leq 12$ since

$$
\begin{gathered}
P_{13}=S P_{4} U, \quad P_{14}=S P_{5} U, \quad P_{15}=S P_{6} U \\
P_{16}=S P_{7} U, \quad P_{17}=S P_{10} U, \quad P_{18}=S P_{1} U, \\
P_{19}=S P_{2} U, \quad P_{20}=S P_{3} U
\end{gathered}
$$

The remaining data shown in the first table of the theorem are applications of Algorithms $2.124,2.31,2.45,2.34,2.34$ and 2.3.41, We come to the property of being almost-homogeneous. An application of Algorithm 2.4.2 shows that only in cases (5), (8) and (12) there are horizontal Demazure P-roots, namely

$$
\begin{gathered}
((-1,-2,3), 2,1,(1,1,1))), \quad((0,-4,5), 2,0,(1,1,1))), \\
((0,1,-2), 2,0,(2,2,1))) .
\end{gathered}
$$

By [6, Thm. 6.1], the existence of a horizontal Demazure P-root is equivalent to the surface being almost homogeneous. The statement about the log-terminal property is Remark 2.5.6: For the graphs of exceptional curves, we used Algorithm 2.4.8: to determine the minimal resolution $X^{\prime} \rightarrow X$ of each surface X of the previous table. Algorithm 2.3.27'then delivers the respective graphs of exceptional curves $G_{X^{\prime}}$; gray vertices stand for negative curves, white ones for nonnegative curves $V\left(X^{\prime} ; T_{i}\right)$.

(10)

(11)

(12)

The subgraph of $(-k)$-curves, $k \in \mathbb{Z}_{\geq 2}$, then yields the graphs listed in the theorem. The needed self-intersection numbers are obtained using Algorithm 2.3.4; we write $d_{i}:=V\left(X^{\prime} ; T_{i}\right)^{2}$.

case	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}	d_{7}	d_{8}	d_{9}	d_{10}	d_{11}	d_{12}	d_{13}	d_{14}	d_{15}
d_{16}															
(1)	-1	-1	-1	-1	-1	-4	-2	-2	-2	-2	-2	-2			
(2)	-1	-1	-1	-1	-1	-3	-3	-2	-3	-2	-3	-2	-2	-2	
(3)	-1	-1	-1	-1	-1	-2	-4	-3	-4	-2	-2	-2	-3	-2	-2
(4)	-1	-1	-1	-1	-1	-2	-3	-2	-2	-3	-2	-3	-2		
(5)	≥ 0	-1	≥ 0	-1	≥ 0	-2	-3	-2	-2	-2	-2				
(6)	-1	-1	-1	-1	-1	-2	-3	-2	-3	-2	-2	-2	-2		
(7)	-1	-1	-1	-1	-1	-2	-3	-3	-2	-2	-2	-2	-3	-2	-4
(8)	-4	-1	-4	-1	≥ 0	-2	-2	-5	-2	-2	-2	-2	-2	-2	-2
(9)	-1	-1	-1	-1	-1	-2	-2	-2	-2	-3	-2	-2	-3	-3	-2
(10)	-1	-1	-1	-1	-1	-3	-3	-2	-4	-2	-2	-2	-4	-2	-2
(11)	-1	-1	-1	-1	-1	-3	-2	-4	-2	-2	-2	-2	-2	-2	-4
(12)	-1	≥ 0	-1	≥ 0	≥ 0	-2	-2	-2	-2					-2	

For case (8), we computed a not necessarily minimal resolution $X^{\prime} \rightarrow X$. The graph $G_{X^{\prime}}$ and the self-intersection numbers $d_{i}:=V\left(X^{\prime} ; T_{i}\right)^{2}$ are

d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}	d_{7}	d_{8}	d_{9}	d_{10}	d_{11}
-5	-1	-5	-1	-1	-2	-2	-2	-1	-5	-2
d_{12}	d_{13}	d_{14}	d_{15}	d_{16}	d_{17}	d_{18}	d_{19}	d_{20}		
-2	-2	-2	-2	-2	-2	-2	-2	-2		

We apply the steps of Algorithm with $r=5$ formally to obtain the graph of exceptional curves of the minimal resolution. Since $d_{9}=-1$, we contract $V\left(X^{\prime} ; T_{9}\right)$, where we write again X^{\prime} for the contracted surface. This means we remove the corresponding vertex and edges and increase the self-intersection number of $V\left(X^{\prime} ; T_{1}\right)$, $V\left(X^{\prime} ; T_{3}\right)$ and $V\left(X^{\prime} ; T_{15}\right)$ by one. Iterating this procedure, we contract $V\left(X^{\prime} ; T_{i}\right)$ with $i=9,15,14,7,17$ and obtain the graph and intersection numbers shown above by shifting the indices of the remaining variables accordingly.

Remark 2.5.18. Using the same methods, Theorem 2.5.1.can easily be expanded to higher Gorenstein index.

CHAPTER 3

Computing the Mori chamber decomposition

Given an action of a connected reductive linear algebraic group H on an algebraic variety X, Mumford [83] constructed good H-sets $X^{\text {ss }}(\mathcal{L}) \subseteq X$ which depend on the choice of an ample, H-linearized line bundle \mathcal{L} on X. In general, there are several distinct quotients and this variation of GIT-quotients is described by the GIT-fan. See the work of Dolgachev, Hu [35] and Thaddeus [97] for ample bundles on a projective variety and Arzhantsev, Berchtold, Hausen [7; 18] for the affine case. Based on [18], we provide in this chapter an algorithm to compute the GIT-fan of torus actions on affine varieties. In Mumford's sense [83], it describes the possible linearizations of the trivial bundle. Note that the torus-case is essential as more general group actions can be reduced to it [7]. An import special case is the Mori chamber decomposition of a Mori dream space.
The structure of this chapter is as follows. In Section 1; we present algorithms to compute \mathfrak{F}-faces, i.e., faces corresponding to torus orbits that meet an affine variety. Not only is this the basis for the computation of the GIT-fan but it is also essential for computations with Mori dream spaces, see Chapter '2'. Section '2' is concerned with the computation of GIT-cones, the GIT-fan and the Mori chamber decomposition. The correspondence of the GIT-fan to qp-maximal good H-sets has been widened to the class of $(H, 2)$-maximal subsets in [51; 5]. In Section 3, we recall the correspondence and present a direct algorithm for their computation.
Most parts of Sections and (as well as part of this introduction) have been published in the author's paper Computing the GIT-fan, see [71]. The algorithms of this chapter have been implemented in Maple/convex [70, 54] and also in joint work with J. Böhm and Y. Ren in Singular [31].

1. Computing \mathfrak{F}-faces

Let X be a Mori dream space with Cox ring $\mathcal{R}(X)=\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] / \mathfrak{a}$ where $\mathfrak{a} \subseteq$ $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ is an ideal. Then the \mathfrak{F}-faces of X in the sense of Section 3 of Chapter: 1 are precisely the \mathfrak{a}-faces to be defined in Definition 3.1.1. In this section, we treat their computational aspects. Most of this section has appeared in [71, Sec. 2 and 3].

We will work with the following description of the toric orbits of \mathbb{K}^{r} in terms of faces of the orthant $\gamma:=\mathbb{Q}_{\geq 0}^{r}$: the standard torus $\mathbb{T}^{r}:=\left(\mathbb{K}^{*}\right)^{r}$ acts via

$$
\mathbb{T}^{r} \times \mathbb{K}^{r} \rightarrow \mathbb{K}^{r}, \quad t \cdot x=\left(t_{1} x_{1}, \ldots, t_{r} x_{r}\right)
$$

Given a face $\gamma_{0} \preceq \gamma$, define the reduction of an r-tuple z of, e.g., numbers along γ_{0} as

$$
z_{\gamma_{0}}:=\left(z_{1}^{\prime}, \ldots, z_{r}^{\prime}\right), \quad z_{i}^{\prime}:= \begin{cases}z_{i}, & e_{i} \in \gamma_{0} \\ 0, & e_{i} \notin \gamma_{0}\end{cases}
$$

where $e_{1}, \ldots, e_{r} \in \mathbb{Q}^{r}$ denote the canonical basis vectors. Then, one has a bijection

$$
\{\text { faces of } \gamma\} \leftrightarrow\left\{\mathbb{T}^{r} \text {-orbits }\right\}, \quad \gamma_{0} \mapsto \mathbb{T}_{\gamma_{0}}^{r}:=\left\{t_{\gamma_{0}} ; t \in \mathbb{T}^{r}\right\}
$$

Note that in the notation of [42], $\mathbb{T}_{\gamma_{0}}^{r}$ is the \mathbb{T}^{r}-orbit through the distinguished point corresponding to the dual face $\gamma_{0}^{*}:=\gamma^{\perp} \cap \gamma^{\vee} \preceq \gamma^{\vee}$.
Definition 3.1.1. Let $\mathfrak{a} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ be an ideal. A face γ_{0} of the positive orthant γ is an \mathfrak{a}-face if $V\left(\mathbb{T}_{\gamma_{0}}^{r} ; \mathfrak{a}\right) \neq \emptyset$.

Let $X \subseteq \mathbb{K}^{r}$ be the zero set of an ideal $\mathfrak{a} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$. Determining the torus orbits of \mathbb{K}^{r} intersecting X means calculating the \mathfrak{a}-faces $\gamma_{0} \preceq \gamma$.

Given a face $\gamma_{0} \preceq \gamma$ and a polynomial $f \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, we write $f_{\gamma_{0}}:=f\left(T_{\gamma_{0}}\right) \in$ $\mathbb{K}\left[T_{\gamma_{0}}\right]$ where $T:=\left(T_{1}, \ldots, T_{r}\right)$, i.e., we replace each T_{i} with zero if $e_{i} \notin \gamma_{0}$. Set $\mathfrak{a}_{\gamma_{0}}:=\left\langle f_{\gamma_{0}} ; f \in \mathfrak{a}\right\rangle \subseteq \mathbb{K}\left[T_{\gamma_{0}}\right]$. A direct \mathfrak{a}-face test is the following, based on a radical membership problem. This leads to a Gröbner based way to decide whether a given $\gamma_{0} \preceq \gamma$ is an \mathfrak{a}-face.

Algorithm 3.1.2 (a-face verification I). Input: a face $\gamma_{0} \preceq \gamma$ and an ideal $\mathfrak{a} \subseteq$ $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$.

- Return false if $\prod_{e_{i} \in \gamma_{0}} T_{i} \in \sqrt{\mathfrak{a}_{\gamma_{0}}}$ and return true otherwise.

Output: true if γ_{0} is an \mathfrak{a}-face and false otherwise.
Remark 3.1.3. The radical membership test in Algorithm 3.1.2 can be replaced by a saturation: a face $\gamma_{0} \preceq \gamma$ is an \mathfrak{a}-face if and only if $1 \notin \mathfrak{a}_{\gamma_{0}}:\left(T_{1} \cdots T_{r}\right)^{\infty}$.

The main aim of this section is to speed up this direct approach by dividing out all possible torus symmetry. This is done in Algorithm 3.1.6: Further possible improvements are discussed at the end of the section.
First, consider any torus \mathbb{T} and a monomial-free ideal $\mathfrak{c} \subseteq \mathcal{O}(\mathbb{T})$. Let $H \subseteq \mathbb{T}$ be the maximal subtorus leaving $V(\mathbb{T} ; \mathfrak{c})$ invariant; compare Algorithm 2.1.29 and [5; Con. III.2.4.2]. Denote by $\pi: \mathbb{T} \rightarrow \mathbb{T} / H$ the quotient map. Note that \mathbb{T} / H is again a torus. To describe π explicitly, we use the correspondence between integral matrices and homomorphisms of algebraic tori: every $n \times k$ matrix A defines a homomorphism $\alpha: \mathbb{T}^{k} \rightarrow \mathbb{T}^{n}$ by sending $t \in \mathbb{T}^{k}$ to $\left(t^{A_{1 *}}, \ldots, t^{A_{n *}}\right) \in \mathbb{T}^{n}$ where the $A_{i *}$ are the rows of A.
Remark 3.1.4. Let $\mathbb{T}=\mathbb{T}^{k}$ and $\mathbb{T} / H=\mathbb{T}^{n}$. The map π : $\mathbb{T}^{k} \rightarrow \mathbb{T}^{n}$ is given by any $n \times k$ matrix P of full rank satisfying

$$
\operatorname{ker}(P)=\bigcap_{g \in \mathfrak{c}} \operatorname{ker}\left(P_{g}\right)
$$

where to $g=a_{0} T^{\nu_{0}}+\ldots+a_{m} T^{\nu_{m}} \in \mathfrak{c}$ we assign the $m \times k$ matrix P_{g} with rows $\nu_{1}-\nu_{0}, \ldots, \nu_{m}-\nu_{0}$.
Remark 3.1.5. Let $\mathbb{T}=\mathbb{T}^{k}$. Fix a generating set $G:=\left(g_{1}, \ldots, g_{l}\right)$ of the ideal $\mathfrak{c} \subseteq \mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{k}^{ \pm 1}\right]$. Let P_{G} be the stack matrix, i.e., the vertical concatenation, of $P_{g_{1}}, \ldots, P_{g_{l}}$. Compute the Hermite normal form $D=U \cdot P_{G}$ with an invertible integral matrix U. Choose P as the matrix consisting of the upper non-zero rows of D. Then P describes $\pi: \mathbb{T} \rightarrow \mathbb{T} / H$.

Proof. Clearly, P is of full rank. Since the exponent vectors of each $g \in \mathfrak{c}$ are linear combinations of the exponent vectors of g_{1}, \ldots, g_{l}, we have

$$
\operatorname{ker}(P)=\operatorname{ker}\left(P_{G}\right)=\bigcap_{i=1}^{l} \operatorname{ker}\left(P_{g_{i}}\right)=\bigcap_{g \in \mathfrak{c}} \operatorname{ker}\left(P_{g}\right)
$$

A push forward of $g \in \mathfrak{c}$ under π is a $h \in \mathcal{O}(\mathbb{T} / H)$ satisfying $\pi^{*} h=T^{\mu} g$ for some monomial T^{μ}. Suitably scaling push forwards by a monomial, we obtain the \star-push forward of Algorithm 2.2 .13 on page 43 : We define

$$
\pi_{\star} \mathfrak{c}:=\left\langle\pi_{\star} g ; g \in \mathfrak{c}\right\rangle \subseteq \mathcal{O}(\mathbb{T} / H)
$$

We now specialize to the case of \mathfrak{a}-face-verification. Given $\gamma_{0} \preceq \gamma$, let $H\left(\gamma_{0}\right) \subseteq \mathbb{T}_{\gamma_{0}}^{r}$ be the maximal subgroup leaving $V\left(\mathbb{T}_{\gamma_{0}}^{r} ; \mathfrak{a}_{\gamma_{0}}\right)$ invariant. Our approach reduces the dimension of the problem by using

$$
V\left(\mathbb{T}_{\gamma_{0}}^{r} ; \mathfrak{a}\right) \neq \emptyset \quad \Leftrightarrow \quad V\left(\mathbb{T}_{\gamma_{0}}^{r} / H\left(\gamma_{0}\right) ; \pi_{\star} \mathfrak{a}_{\gamma_{0}}\right) \neq \emptyset
$$

Algorithm 3.1.6 (\mathfrak{a}-face verification II). Input: an ideal $\mathfrak{a}=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ in $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ and a face $\gamma_{0} \preceq \gamma$. Set $g_{i}:=\left(f_{i}\right)_{\gamma_{0}}$ and $G:=\left(g_{1}, \ldots, g_{s}\right)$.

- Compute with Remark3.1.5a matrix P representing $\pi: \mathbb{T}^{r} \rightarrow \mathbb{T}_{\gamma_{0}}^{r} / H\left(\gamma_{0}\right)$.
- Apply Algorithm 2.213 to P to obtain $\pi_{\star} G:=\left(\pi_{\star} g_{1}, \ldots, \pi_{\star} g_{s}\right)$.
- Test whether $T_{1} \cdots \vec{T}_{n} \in \sqrt{\left\langle\pi_{\star} G\right\rangle} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{n}\right]$. Return false if the test was successful. Return true otherwise.

Output: true if γ_{0} is an \mathfrak{a}-face and false otherwise.
Proof. The map π is a good quotient for the $H\left(\gamma_{0}\right)$-action on $\mathbb{T}_{\gamma_{0}}^{r}$. Consequently, we have

$$
\pi\left(\bigcap_{i=1}^{s} V\left(\mathbb{T}_{\gamma_{0}}^{r} ; g_{i}\right)\right)=\bigcap_{i=1}^{s} \pi\left(V\left(\mathbb{T}_{\gamma_{0}}^{r} ; g_{i}\right)\right)=V\left(\mathbb{T}^{n} ; \pi_{\star} g_{1}, \ldots, \pi_{\star} g_{s}\right)
$$

by standard properties of good quotients [73; p. 96]. This shows that $V\left(\mathbb{T}_{\gamma_{0}}^{r} ; \mathfrak{a}_{\gamma_{0}}\right) \neq$ \emptyset if and only if $\left.V\left(\mathbb{T}^{n} ; \pi_{\star} G\right)\right) \neq \emptyset$.

Remark 3.1.7. If the total number of terms occurring among the generators is small as compared to the number of variables in the sense that $P=P_{G}$ in the first line of Algorithm 3.1.6; then we might speed up the algorithm using linear algebra as follows. Each term $\pi_{\star} g_{i}$ is linear by construction. Solve the linear system of equations $\pi_{\star} G=0$. Then γ_{0} is an \mathfrak{a}-face if and only if there is a solution in \mathbb{T}^{n}.

Remark 3.1.8. The efficiency of Algorithm 3.1.6: depends on the algorithms used for both Gröbner bases and Smith normal forms. An implementation using the respective built in functions of Maple gave the following timings.

	Algorithm 3.1 .2	Algorithm $3.1 .6 \cdot$ with $3.1 .9($ ii $)$
\mathfrak{a}-faces of $\mathfrak{a}_{2,5}$	21 s	10 s
\mathfrak{a}-faces of $\mathfrak{a}_{2,6}$	16 min	76 s
\mathfrak{a}-faces of $\mathfrak{a}_{2,7}$	>3 days	24.8 h
\mathfrak{a}-faces of $\mathfrak{a}_{2,3,3}$	4.03 h	44.1 min

Here, $\mathfrak{a}_{2, n}$ stands for the respective Plücker ideal and $\mathfrak{a}_{2,3,3}$ denotes the defining ideal of the Cox ring of the space $X(2,3,3)$ of complete rank two collineations [58; Thm. 1].

Let us briefly recall the connection to tropical geometry, compare [22, 78]. As seen in Section 2; of Chapter 2 , we assign to a monomial-free ideal $\mathfrak{a} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ its
tropical variety

$$
\operatorname{trop}(\mathfrak{a}):=\bigcap_{f \in \mathfrak{a}} \operatorname{trop}(f) \subseteq \mathbb{Q}^{r}
$$

where $\operatorname{trop}(f)$ is the support of the codimension one skeleton of the normal fan of the Newton polytope of f. By [96],

$$
\begin{equation*}
\gamma_{0} \preceq \gamma \text { is an } \mathfrak{a} \text {-face } \quad \Leftrightarrow \quad \operatorname{trop}(\mathfrak{a}) \cap\left(\gamma_{0}^{*}\right)^{\circ} \neq \emptyset \tag{2}
\end{equation*}
$$

Fixing a fan structure on $\operatorname{trop}(\mathfrak{a})$, this can be turned into a computable criterion. Note however that trop (\mathfrak{a}) usually carries more information than needed to determine the \mathfrak{a}-faces and is in general harder to compute (see [22] for an algorithm).

Remark 3.1.9. To compute all \mathfrak{a}-faces, the number of calls to Algorithm 3.1 can be reduced by any of the following ideas.
(i) The tropical prevariety of a generating set $\left(f_{1}, \ldots, f_{s}\right)$ of \mathfrak{a} is the coarsest common refinement $\prod_{i} \operatorname{trop}\left(f_{i}\right)$. Then each face $\gamma_{0} \preceq \gamma$ whose dual face γ_{0}^{*} does not satisfy equation (2) with respect to $\Pi_{i} \operatorname{trop}\left(f_{i}\right)$ is not an \mathfrak{a}-face.
(ii) A face $\gamma_{0} \preceq \gamma$ is not an \mathfrak{a}-face if and only if there is $f \in \mathfrak{a}$ such that exactly one vertex of the Newton polytope of f lies in γ_{0}. Choosing any subset of \mathfrak{a}, we may identify some faces $\gamma_{0} \preceq \gamma$ that are no \mathfrak{a}-faces.
(iii) Filter faces using the Veronese embedding: Let $\gamma_{0} \preceq \gamma$ be such that there are (classically) homogeneous generators g_{1}, \ldots, g_{s} of $\mathfrak{a}_{\gamma_{0}}$ of degree $d \in \mathbb{Z}_{\geq 0}$. The images of the g_{i} under

$$
\mathbb{K}\left[T_{\gamma_{0}}\right] \rightarrow \mathbb{K}\left[S_{\mu} ; \mu_{1}+\ldots+\mu_{r}=d\right], \quad T^{\mu} \mapsto S_{\mu}
$$

give a linear system of equations with coefficient matrix A. If a GaussJordan normal form of A contains a row with exactly one non-zero entry, γ_{0} is no \mathfrak{a}-face. Adding redundant generators to $\mathfrak{a}_{\gamma_{0}}$ refines this procedure.
(iv) Let $\sigma \in S_{r}$ be a permutation of (the indices of) the variables T_{1}, \ldots, T_{r} such that for each $f \in \mathfrak{a}$ there is $g_{f} \in \mathfrak{a}$ with $f \circ \sigma=g_{f}$. Then

$$
\gamma_{0} \preceq \gamma \mathfrak{a} \text {-face } \quad \Leftrightarrow \quad \sigma\left(\gamma_{0}\right):=\operatorname{cone}\left(e_{\sigma(i)} ; e_{i} \in \gamma_{0}\right) \mathfrak{a} \text {-face } .
$$

Proof. We prove statements (ii) and (iv). For (ii), we directly generalize the proof of [19; Prop. 9.3]: Define $\nu\left(f, \gamma_{0}\right)$ to be the number of vertices of the Newton polytope of f that lie in the given face $\gamma_{0} \preceq \gamma$. Then γ_{0} is an \mathfrak{a}-face if and only if there is $x \in \mathbb{K}^{r}$ such that

$$
x_{i} \neq 0 \Leftrightarrow e_{i} \in \gamma_{0}, \quad f(x)=f_{\gamma_{0}}(x)=0 \quad \text { for all } f \in \mathfrak{a}
$$

Each polynomial $f_{\gamma_{0}}$ is a sum of $\nu\left(f, \gamma_{0}\right)$ monomials. Clearly, if there is $f \in \mathfrak{a}$ such that $\nu\left(f, \gamma_{0}\right)=1$ no such x can exists, i.e., γ_{0} is not an \mathfrak{a}-face. Conversely, assume γ_{0} is not an \mathfrak{a}-face. By definition

$$
\prod_{e_{i} \in \gamma_{0}} T_{i}^{n}=\sum_{j}\left(h_{j}\right)_{\gamma_{0}}\left(f_{j}\right)_{\gamma_{0}}=\left(\sum_{j} h_{j} f_{j}\right)_{\gamma_{0}}=: f_{\gamma_{0}} \in \mathfrak{a}_{\gamma_{0}}
$$

with a $n \in \mathbb{Z}_{>0}$ and polynomials $h_{j} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$. Since $f \in \mathfrak{a}$ and $\nu\left(f, \gamma_{0}\right)=1$ the proof is complete. For (iv), we only prove one direction. Assume $\gamma_{0} \preceq \gamma$ is an \mathfrak{a}-face. Then there is $x \in \mathbb{K}^{r}$ with $f_{i}(x)=0$ for all $f \in \mathfrak{a}$ and $x_{i} \neq 0$ if and only if $e_{i} \in \gamma_{0}$. Choose $y:=\left(x_{\sigma(1)}, \ldots, x_{\sigma(r)}\right) \in \mathbb{K}^{r}$. Then $y_{i} \neq 0$ if and only if $e_{i} \in \sigma\left(\gamma_{0}\right)$ and, by assumption, we have

$$
f(y)=f \circ \sigma(x)=g_{f}(x)=0 \quad \text { for all } f \in \mathfrak{a}
$$

In the fourth statement of Remark 3.1.9; a special case are permutations $\sigma \in S_{r}$ that leave a fixed generating set of \mathfrak{a} invariant. A naive approach for their detection
is to test all r ! permutations for this property. Instead, we sketch an algorithm that uses graph theory.

Algorithm 3.1.10 (Generator symmetries). Input: $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$. Let $\nu_{1}^{(i)}, \ldots, \nu_{m_{i}}^{(i)} \in \mathbb{Z}_{\geq 0}^{r}$ and $c_{1}^{(i)}, \ldots, c_{m_{i}}^{(i)} \in \mathbb{K}^{*}$ be such that the $c_{j}^{(i)} T^{\nu_{j}^{(i)}}$ are the non-zero monomials of f_{i}.

- Let $G=(V, E)$ be the simple, directed, finite, bipartite graph with its set of vertices V and its set of edges E defined by

$$
\begin{aligned}
V:= & \left\{1, T_{1}, \ldots, T_{r}\right\} \cup \bigcup_{i=1}^{s}\left\{\nu_{1}^{(i)}, \ldots, \nu_{m_{i}}^{(i)}\right\}, \\
& \left(\nu_{j}^{(i)}, T_{k}\right) \in E \quad: \Leftrightarrow \quad\left(\nu_{j}^{(i)}\right)_{k}>0 \\
& \left(\nu_{j}^{(i)}, 1\right) \in E \quad: \Leftrightarrow \quad \nu_{j}^{(i)}=(0, \ldots, 0) \\
& \left(\nu_{j}^{(i)}, \nu_{k}^{(i)}\right) \in E \quad \text { for all } i \neq j .
\end{aligned}
$$

- Assign to $\nu_{j}^{(i)} \in V$ the color $c_{j}^{(i)} \in \mathbb{K}^{*}$, to edges of type $\left(\bullet, T_{k}\right)$ the k-th entry of $\nu_{j}^{(i)}$, to edges of type $(\bullet, 1)$ the color $0 \in \mathbb{K}$ and to edges of the third type, we assign an unused color $c_{i} \in \mathbb{K}^{*}$.
- Compute the automorphism $\operatorname{group} \operatorname{Aut}(G) \leq S_{n}$ with $n:=|V|$, e.g., using [67, 81].
- Assume T_{1}, \ldots, T_{r} are the first r vertices in V. Return the set $\{\sigma \in$ $\left.S_{r} ;(\sigma, \omega) \in \operatorname{Aut}(G)\right\}$.

Output: permutations $\sigma \in S_{r}$ such that, for all i, we have $f_{i} \circ \sigma=f_{\tau(i)}$ with a bijection $\tau \in \operatorname{Sym}(\{1, \ldots, s\})$.
Proof. Note that we have $\operatorname{Aut}(G) \subseteq S_{r} \times S_{n-r}$ where n is the number of vertices. Each $(\sigma, \tau) \in \operatorname{Aut}(G)$ respects colors of edges and vertices. By construction, this means that each permutation $\sigma(T)$ of $T=\left(T_{1}, \ldots, T_{r}\right)$ respects the coefficients and monomials of each f_{i}, i.e., induces a permutation of f_{1}, \ldots, f_{s}.

Note that in order to use [67, 81] one first must translate G to an unweighted colored graph G^{\prime} with $\operatorname{Aut}\left(G^{\prime}\right) \cong \operatorname{Aut}(G)$ as explained in, e.g., [80]. We sketch the construction in the following example.
Example 3.1.11. Consider the ideal $\mathfrak{a} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{5}\right]$ that is generated by the two polynomials

$$
f_{1}:=T_{1} T_{2}-T_{3} T_{4}+T_{1} T_{5}^{2}, \quad f_{2}:=T_{1} T_{4}-T_{2} T_{3}+T_{1} T_{5}^{2}
$$

where we order the exponents $\nu_{j}^{(i)}$ from left to right. Applying the first and second step of Algorithm 3.10, we obtain the colored, weighted, bipartite, directed, simple graph $G=(V, E)$

where we left out the edges of type $\left(\nu_{j}^{(i)}, \nu_{k}^{(i)}\right)$ and the colors are drawn next to the vertices and edges (the shaded areas are only for highlighting purposes). We now transform G into a directed, colored, unweighted graph G^{\prime} as explained in [80]. The removal of the weights (i.e., 1 and 2) of edges is achieved by adding a "layer" of vertices for each occurring weight.

Edges within the shaded areas and the colors of the vertices are not drawn. Assume T_{1}, \ldots, T_{5} are the first five vertices. A direct inspection of G^{\prime} shows that there is an automorphism (we show only the relevant part σ)

$$
(\sigma, \tau):=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & \cdots \\
1 & 4 & 3 & 2 & 5 & \cdots
\end{array}\right] \in \operatorname{Aut}\left(G^{\prime}\right)
$$

which, interpreted as element of S_{5}, interchanges the variables T_{2} and T_{5}. Then $f_{1} \circ \sigma=f_{2}$. In particular, by Remark 3.1.9; $\gamma_{0} \preceq \mathbb{Q}_{\geq 0}^{5}$ is an \mathfrak{a}-face if and only if $\sigma\left(\gamma_{0}\right)$ is an \mathfrak{a}-face.

2. Computing the GIT-fan

In this section, we develop algorithms for the computation of GIT-cones and the GIT-fan. First, we recall the necessary concepts from [18; 5]. Aspects of efficiency are discussed at the end of this section. Most of this section has been published in [71, Sec. 2 and 4].
Remark 3.2.1. Let G be a connected reductive algebraic group and X an irreducible, factorial, affine G-variety. Similar to the case of a quasitorus, one can define GIT-cones in $M_{\mathbb{Q}}:=\mathbb{X}(G) \otimes_{\mathbb{Z}} \mathbb{Q}$ and the collection of GIT-cones $\Lambda(X, G)$ is a fan that is in bijection with the qp-maximal good G-sets of X, see Arzhantsev and Hausen [7., Sec. 3, Thm. 3.2]. Consider the good quotient

$$
\pi: X \rightarrow Y, \quad Y:=X / / G^{s}
$$

by the maximal connected semisimple subgroup $G^{s} \subseteq G$. Then $T:=G / G^{s}$ is a torus, we may identify $\mathbb{X}(G)=\mathbb{X}(T)$ and $X^{\mathrm{ss}}(w)=\pi^{-1}\left(Y^{\mathrm{ss}}(w)\right)$ holds for all $w \in M_{\mathbb{Q}}$, see [7, Lem. 3.3]. Moreover, there are methods to treat not necessarily affine G-varieties using torus actions on an affine variety, compare [7; Sec. 7].

Thus, by Remark 3.2, the case of torus actions on affine varieties is of special interest. Consider an affine variety $X \subseteq \mathbb{K}^{r}$ where we assume that its defining ideal $\mathfrak{a} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ is monomial-free and homogeneous with respect to a \mathbb{Z}^{k}-grading

$$
q_{i}:=\operatorname{deg}\left(T_{i}\right) \in \mathbb{Z}^{k}, \quad 1 \leq i \leq r .
$$

Then the corresponding action of the torus $H=\mathbb{T}^{k}$ on \mathbb{K}^{r} leaves the zero set $X=V\left(\mathbb{K}^{r} ; \mathfrak{a}\right) \subseteq \mathbb{K}^{r}$ invariant. Let Q be the $k \times r$ matrix with columns q_{1}, \ldots, q_{r}. We assume that the cone $Q(\gamma) \subseteq \mathbb{Q}^{k}$ is of dimension k where $\gamma:=\mathbb{Q}_{\geq 0}^{r}$. A projected \mathfrak{a}-face is a cone $Q\left(\gamma_{0}\right)$ with $\gamma_{0} \preceq \gamma$ an \mathfrak{a}-face. These are exactly the orbit cones in the sense of Section 1: in Chapter:1: Write $\Omega_{\mathfrak{a}}$ for the set of all projected \mathfrak{a}-faces.
Definition 3.2.2. The GIT-chamber of a vector $w \in Q(\gamma)=\operatorname{cone}\left(q_{1}, \ldots, q_{r}\right) \subseteq \mathbb{Q}^{k}$ is the convex, polyhedral cone

$$
\lambda(w):=\bigcap_{\substack{\vartheta \in \Omega_{\mathfrak{a}}, w \in \vartheta}} \vartheta \subseteq \mathbb{Q}^{k} .
$$

The GIT-fan of the H-action on $X=V\left(\mathbb{K}^{r} ; \mathfrak{a}\right)$ is the set $\Lambda(\mathfrak{a}, Q)=\{\lambda(w) ; w \in$ $Q(\gamma)\}$ of all GIT-chambers.

As the name suggests, $\Lambda(\mathfrak{a}, Q)$ is indeed a (quasi-)fan in \mathbb{Q}^{k} with $Q(\gamma)$ as its support, see [5; Thm. III.1.2.8]. However, note that the cones of the GIT-fan need not be pointed in general, compare [5; Ex. III.1.2.12]. The set of j-dimensional cones of $\Lambda(\mathfrak{a}, Q)$ will be denoted by $\Lambda(\mathfrak{a}, Q)^{(j)}$.
We turn to the computation of GIT-chambers. Let $\Omega:=\left\{Q\left(\gamma_{0}\right) ; \gamma_{0} \preceq \gamma\right\}$ be the set of projected faces of γ and let $\Omega^{(j)} \subseteq \Omega$ be the subset of j-dimensional cones. Similarly, $\Omega_{\mathfrak{a}}^{(j)} \subseteq \Omega_{\mathfrak{a}}$ is the subset of j-dimensional projected \mathfrak{a}-faces. We have

$$
\Omega_{\mathfrak{a}}^{(k)} \subseteq \Omega_{0}^{(k)}:=\left\{\vartheta \in \Omega^{(k)} ; \text { all facets of } \vartheta \text { are in } \Omega_{\mathfrak{a}}^{(k-1)}\right\} \subseteq \Omega^{(k)}
$$

where the first containment is due to the fact that faces of projected \mathfrak{a}-faces are again projected \mathfrak{a}-faces, see [18; Cor. 2.4]. Given a vector w in the relative interior $Q(\gamma)^{\circ}$, set $\Omega^{(k)}(w)$ for the collection of all $\vartheta \in \Omega^{(k)}$ that contain w. The next algorithm determines the associated GIT-chamber $\lambda=\lambda(w)$.
Remark 3.2.3. (i) The set $\Omega^{(j)}$ is computed directly by taking cones over suitable subsets of $\left\{q_{1}, \ldots, q_{r}\right\}$.
(ii) The computation of $\Omega^{(j)}(w)$ can be sped up via point location similar to [77], i.e., we only consider cones $\vartheta \in \Omega^{(k)}$ with at least one generator lying on the same side as w of a random hyperplane subdividing $Q(\gamma)$.
(iii) For an efficient computation of $\Omega_{\mathfrak{a}}^{(j)}$, one reduces the amount of \mathfrak{a}-face tests as follows. Check for any $\vartheta \in \Omega^{(j)}$ if some $\gamma_{0} \preceq \gamma$ with $Q\left(\gamma_{0}\right)=\vartheta$ is an \mathfrak{a}-face. As soon as such a face has been found, all other faces projecting to ϑ may be ignored in subsequent tests.
Algorithm 3.2.4 (GIT-chamber I). Input: a vector $w \in Q(\gamma)^{\circ}$ and $\Omega^{(k)}(w)$ as well as $\Omega_{\mathfrak{a}}^{(k-1)}$.

- Let $\lambda:=\mathbb{Q}^{k}$.
- For each $\vartheta \in \Omega^{(k)}(w)$ do
- if $\vartheta \nsupseteq \lambda$ and all facets of ϑ are in $\Omega_{\mathfrak{a}}^{(k-1)}$ then redefine λ as $\lambda \cap \vartheta$.

Output: the GIT-chamber $\lambda=\lambda(w)$ in \mathbb{Q}^{k}.
Example 3.2.5. The semiample cone computed in Example 2.36 is the GITchamber $\lambda(w)$ with $w=(0,0,1)$. It can be computed using only four orbit cones:

Lemma 3.2.6. Let $\Sigma \subseteq \mathbb{Q}^{k}$ be a pure k-dimensional fan with convex support $|\Sigma|$ and let $\tau \in \Sigma$ be such that $\tau \cap|\Sigma|^{\circ} \neq \emptyset$. Then τ is the intersection over all $\sigma \in \Sigma^{(k)}$ satisfying $\tau \preceq \sigma$.

Proof. Choose $\sigma \in \Sigma^{(k)}$ such that $\tau \preceq \sigma$. By [38; Thm. 1.11], we can write $\tau=$ $\eta_{1} \cap \ldots \cap \eta_{m}$ with facets $\eta_{i} \preceq \sigma$. Since $\tau^{\circ} \subseteq|\Sigma|^{\circ}$, also $\eta_{i}^{\circ} \subseteq|\Sigma|^{\circ}$ for all i. By convexity of $|\Sigma|$, for all i, there are cones $\sigma_{\eta_{i}}, \sigma_{\eta_{i}}^{\prime} \in \Sigma^{(k)}$ such that $\sigma_{\eta_{i}} \cap \sigma_{\eta_{i}}^{\prime}=\eta_{i}$. Note that $\tau \preceq \sigma_{\eta_{i}}$ and $\tau \preceq \sigma_{\eta_{i}}^{\prime}$. Therefore

$$
\tau=\bigcap_{i=1}^{m}\left(\sigma_{\eta_{i}} \cap \sigma_{\eta_{i}}^{\prime}\right) \supseteq \bigcap_{\substack{\sigma \in \Sigma^{(k)}, \tau \preceq \sigma}} \sigma \supseteq \tau .
$$

Lemma 3.2.7. Let $\lambda \in \Lambda(\mathfrak{a}, Q)^{(k)}$ and $\vartheta_{0} \in \Omega_{0}^{(k)}$. If $\vartheta_{0}^{\circ} \cap \lambda^{\circ} \neq \emptyset$ then $\lambda \subseteq \vartheta_{0}$.
Proof. Suppose $\lambda \nsubseteq \vartheta_{0}$. Choosing any $w \in \lambda^{\circ} \backslash \vartheta_{0}$ and $v \in \vartheta_{0}^{\circ} \cap \lambda^{\circ}$, the cone $\operatorname{cone}(v, w) \cap\left(\vartheta_{0} \backslash \vartheta_{0}^{\circ}\right)$ lies on some facet $\eta_{0} \preceq \vartheta_{0}$. By construction, $\eta_{0}^{\circ} \cap \lambda^{\circ} \neq \emptyset$. Since $\eta_{0} \in \Omega_{\mathfrak{a}}^{(k-1)}$ holds, λ is not a GIT-chamber; a contradiction.

Proof of Algorithm.3.2.4: The algorithm terminates with a cone $\lambda \subseteq \mathbb{Q}^{k}$ containing the given $w \in Q(\gamma)^{\circ}$ and our task is to show that $\lambda=\lambda(w)$ holds. For this we establish

$$
\lambda=\bigcap_{w \in \vartheta \in \Omega_{0}^{(k)}} \vartheta=\bigcap_{w \in \vartheta \in \Omega_{\mathrm{a}}^{(k)}} \vartheta=\lambda(w) .
$$

The first equality is due to the algorithm. The third one follows from Lemma 3.2.6: Moreover, in the middle one, the inclusion " \subseteq " follows from $\Omega_{0}^{(k)} \supseteq \Omega_{\mathfrak{a}}^{(k)}$. Thus we are left with verifying " \supseteq " of the middle equality.
First suppose that $\lambda(w)$ is of full dimension. Then, for any $\vartheta_{0} \in \Omega_{0}^{(k)}$ with $w \in \vartheta_{0}$, we obtain $\vartheta_{0}^{\circ} \cap \lambda(w)^{\circ} \neq \emptyset$, because $w \in \lambda(w)^{\circ}$ holds. Lemma 3.2.7 shows $\lambda(w) \subseteq \vartheta_{0}$. Thus, we obtain $\lambda \supseteq \lambda(w)$. The case of $\operatorname{dim}(\lambda(w))<k$ then follows from the observation that $\lambda(w)$ is the intersection over all fulldimensional chambers $\lambda\left(w^{\prime}\right)$ with $w \in \lambda\left(w^{\prime}\right)$, see Lemma 3.2.6;

Working with $(k-1)$-dimensional projected \mathfrak{a}-faces in Algorithm 3.2.4 simplifies the necessary \mathfrak{a}-face tests compared to the following naive variant of the algorithm using k-dimensional ones.

Algorithm 3.2.8 (GIT-chamber II). Input: a vector $w \in Q(\gamma)^{\circ}$ and $\Omega^{(k)}(w)$.

- Set $\lambda:=\mathbb{Q}^{k}$.
- For each $\vartheta \in \Omega^{(k)}(w)$ do
- if $\vartheta \nsupseteq \lambda$ and there is an \mathfrak{a}-face $\gamma_{0} \preceq \gamma$ with $Q\left(\gamma_{0}\right)=\vartheta$ then redefine λ as $\lambda \cap \vartheta$.

Output: the GIT-chamber $\lambda=\lambda(w)$ in \mathbb{Q}^{k}.
The naive variant 3.2 .8 ; in contrast, involves fewer convex geometric operations as 3.2. and thus can be more efficient if the latter ones are limiting the computation. See Remark 3.25 for a more concrete comparison of complexity aspects.
We turn to the GIT-fan. Given a full-dimensional cone $\lambda \subseteq \mathbb{Q}^{k}$, we denote by innerfacets (λ) the set of all facets of λ that intersect the relative interior $Q(\gamma)^{\circ}$. Moreover, for two sets A, B, we shortly write $A \ominus B$ for $(A \cup B) \backslash(A \cap B)$. The following algorithm computes the set of maximal cones of the GIT-fan $\Lambda(\mathfrak{a}, Q)$.
Algorithm 3.2.9 (GIT-fan). Input: an ideal $\mathfrak{a} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ and an integral matrix $Q=\left[q_{1}, \ldots, q_{r}\right]$ such that \mathfrak{a} does not contain a monomial and is homogeneous with respect to the grading $q_{i}=: \operatorname{deg}\left(T_{i}\right)$.

- Initialize $\Lambda:=\left\{\lambda_{0}\right\}$ with a random full-dimensional GIT-chamber λ_{0} using Algorithm 3.2.4 or 3.2.8.
- $\mathcal{F}:=$ innerfacets $\left(\lambda_{0}\right)$
- While there is $\eta \in \mathcal{F}$, do
- use Algorithm 3.2 or 3.2 to compute the full-dimensional GITchamber $\lambda^{\prime} \notin \Lambda$ with $\eta \preceq \lambda^{\prime}$.
- Redefine $\Lambda:=\Lambda \cup\left\{\lambda^{\prime}\right\}$ and $\mathcal{F}:=\mathcal{F} \ominus$ innerfacets $\left(\lambda^{\prime}\right)$.

Output: the collection Λ of maximal cones of the GIT-fan $\Lambda(\mathfrak{a}, Q)$.
Remark 3.2.10. (i) In the first line of Algorithm 3.2.9, λ_{0} can be found by successively testing whether $\lambda\left(w_{0}\right)$ is of full dimension where $w_{0}=$
$a_{1} q_{1}+\ldots+a_{r} q_{r}$ with random $a_{i} \in \mathbb{Q} \geq 0$. Alternatively, if $\lambda\left(w_{0}\right)$ is lowdimensional, one may iteratively redefine w_{0} as $w_{0}+\varepsilon \cdot v$ where $v \in \lambda\left(w_{0}\right)^{\perp}$ is a normal vector for some supporting hyperplane, $\varepsilon>0$.
(ii) In the first line in the loop in Algorithm 3.2.9, let $\lambda \in \Lambda$ be the already found GIT-chamber with facet η. Then $\lambda^{\prime}=\lambda\left(w^{\prime}\right)$ can be calculated with Algorithm 3.2.4; where $w^{\prime}:=w(\eta)-\varepsilon \cdot v$ for some $w(\eta) \in \eta^{\circ}$ and $v \in \lambda^{\vee} \cap \eta^{\perp}$ with a suitably small $\varepsilon>0$. One possibly must reduce ε until $\lambda\left(w^{\prime}\right) \cap \lambda=\eta$.

Proof of Algorithm 3.2.9: Write $|\Lambda|$ for the union over all $\lambda \in \Lambda$ and $|\mathcal{F}|$ for the union over all $\eta \in \mathcal{F}$. Then, in each passage of the loop, a full-dimensional chamber of $\Lambda(\mathfrak{a}, Q)$ is added to Λ and, after adapting, $|\mathcal{F}| \cap Q(\gamma)^{\circ}$ is the boundary of $|\Lambda| \cap Q(\gamma)^{\circ}$ with respect to $Q(\gamma)^{\circ}$. The set \mathcal{F} is empty if and only if $|\Lambda|$ equals $Q(\gamma)$. This shows that the algorithm terminates with the collection of maximal cones of $\Lambda(\mathfrak{a}, Q)$ as output.

We can directly use Algorithm 3.2.9 to compute the Mori chamber decomposition of a Mori dream space X, i.e., the GIT-fan of the action of the torus $\operatorname{Spec} \mathbb{K}\left[\operatorname{Cl}(X)^{0}\right]$ on \bar{X} where $\mathrm{Cl}(X)^{0}$ is the free part of the class group. The following algorithm is in the notation of Section 2

Algorithm 3.2.11 (MDSchambers). Input: an MDS $X=(R, \Phi)$ with a GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$.

- Return the output of Algorithm 3.2 called with parameters $\langle G\rangle$ and Q^{0}.

Output: the Mori chamber decomposition of X.
Example 3.2.12. We continue Example 2.014 ; i.e., we have a variety X with the $\mathrm{Cl}(X)=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$-graded Cox ring

$$
\mathcal{R}(X)=\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] /\left\langle f_{1}\right\rangle, \quad f_{1}:=T_{1} T_{6}+T_{2} T_{5}+T_{3} T_{4}+T_{7} T_{8}
$$

where the free parts of the degrees of the generators are given by the columns of the matrix

$$
Q:=\left[\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\
0 & 1 & 1 & -1 & -1 & 0 & 1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & -1
\end{array}\right] .
$$

Then Algorithm 3.2.11 returns the pure, three-dimensional fan $\Lambda(\mathfrak{a}, Q)$ with 37 maximal cones by the following steps:

Note that Algorithm 3.2.9 traverses a spanning tree of the (implicitly given) dual graph of $\Lambda(\mathfrak{a}, Q)$ with the maximal cones as its vertices; two vertices are connected by an edge if they share a common facet. Another traversal method for implicitly given graphs is reverse search by Avis and Fukuda [9]. By the following observation, it also can be applied to our problem.

Proposition 3.2.13. The GIT-fan $\Lambda(\mathfrak{a}, Q)$ is the normal fan of a polyhedron. If $\mathbb{Q}_{\geq 0}^{k} \subseteq Q(\gamma)$ then $\Lambda(\mathfrak{a}, Q)^{(k)}$ can be enumerated using reverse search.

Proof. The first statement is [3, Cor. 10.4]. The second claim follows from the first one and [41; Sec. 3].

If we allow \mathfrak{a} to contain monomials, the collection $\Lambda(\mathfrak{a}, Q)$ is not necessarily a quasifan and even if it is, Proposition 3.13 may not be valid any more.

Example 3.2.14. Consider the monomial ideal $\mathfrak{a}:=\left\langle T_{1} T_{6}, T_{2} T_{4}, T_{3} T_{5}\right\rangle$ in the ring $\mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ and the \mathbb{Z}^{3}-grading with degree matrix

$$
Q:=\left[q_{1}, \ldots, q_{6}\right]:=\left[\begin{array}{llllll}
2 & 0 & 0 & 3 & 1 & 1 \\
0 & 2 & 0 & 1 & 3 & 1 \\
0 & 0 & 2 & 1 & 1 & 3
\end{array}\right]
$$

Though \mathfrak{a} contains monomials, using Algorithm 3.2 with input \mathfrak{a} and Q returns the fan drawn on the right. It is not the normal fan of a polyhedron, see [30].

Remark 3.2.15. We compare the usage of Algorithm 3.2.4 (in 3.2.9) to that of 3.2 .8 : As a test, we compute the GIT-fans of the maximal torus action on the (affine cones over the) Grassmannians $G(2,5)$ and $G(2,6)$, using our Maple/convex implementation [70]. The following table lists the total number of \mathfrak{a}-face tests and the total number of cones ϑ entering the fourth line of Algorithms 3.2.4 and 3.2.8:

	Algorithm '3.2.9' with '3.2.4		Algorithm '3.2.9 with '3.2.8.	
	$\sharp \mathfrak{a}$-face-tests	\sharp cones \ddot{v}	$\#$ a-face-tests	$\#$ cones
$G(2,5)$	300	21	469	20
$G(2,6)$	6574	50	21012	52

Note that in Algorithm 3.2 .4 , the \mathfrak{a}-face tests concern faces of lower dimension than in Algorithm 3.2. and thus are even faster.

Remark 3.2.16. (i) Intermediate storage of occurring cones and their intersections in Algorithms 3.4 and 3.2 saves time in further computations.
(ii) The traversal of the GIT-fan can take advantage of symmetries: Assume we know a subgroup $G \leq S_{r}$ keeping the ideal $\mathfrak{a} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ invariant and each element of G induces a lattice isomorphism of \mathbb{Z}^{k}. Then in each step of Algorithm 3.9 , we insert instead of λ^{\prime} the orbit $G \cdot \lambda^{\prime}$ into Λ and adjust \mathcal{F} accordingly. See [65, Ch. 3.1] for a more thorough study of the traversal of symmetric fans.

To finish this section, we consider torus actions on the affine cone over the Grassmannian $G(2, n)$ induced by a diagonal action on the Plücker coordinate space \mathbb{K}^{r}, where $r=\binom{n}{2}$. Such actions will be encoded by assigning to the variable T_{i} the i-th column q_{i} of a matrix $Q=\left[q_{1}, \ldots, q_{r}\right]$. Moreover, we write $\mathfrak{a}_{2, n} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ for the Plücker ideal.
We compute both, the GIT-fan of the torus action on $V\left(\mathbb{K}^{r} ; \mathfrak{a}_{2, n}\right)$ as well as the GIT fan of the ambient space \mathbb{K}^{r}. The latter coincides with the so-called Gelfand Kapranov Zelevinsky decomposition $\operatorname{GKZ}(Q)$, i.e., the coarsest common refinement of all normal fans having their rays among the cones over the columns of Q and with support cone $\left(q_{1}, \ldots, q_{r}\right)$. In general, the Gelfand Kapranov Zelevinsky decomposition is a refinement of the GIT-fan. See [28] for a toric background.
Below, the drawings show (projections of) the intersections of the respective fans with the standard simplex.

Example 3.2.17. (i) For $n=4$, the ideal $\mathfrak{a}_{2,4}=\left\langle T_{1} T_{6}-T_{2} T_{5}+T_{3} T_{4}\right\rangle \subseteq$ $\mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ is homogeneous with respect to

$$
Q:=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

Using Algorithm 3.2, we obtain the four maximal GIT-chambers of $\Lambda\left(\mathfrak{a}_{2,4}, Q\right)$. The finer fan $\operatorname{GKZ}(Q)$ has twelve maximal cones.
(ii) For $n=5$, the ideal $\mathfrak{a}_{2,5} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ is homogeneous with respect to

By Algorithm 3.2.9, there are twelve four-dimensional cones in $\Lambda\left(\mathfrak{a}_{2,5}, Q\right)$ whereas GKZ (Q) contains 336 such cones.
(iii) For $n=6$, the ideal $\mathfrak{a}_{2,6} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{15}\right]$ is homogeneous with respect to

$$
Q=\left[\begin{array}{lllllllllllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] .
$$

Using Algorithm 3.2.9, we obtain the 81 five-dimensional cones of the GIT-fan $\Lambda\left(\mathfrak{a}_{2,6}, Q\right)$. The fan $\operatorname{GKZ}(Q)$ has 61920 such cones.

3. Generalization to $(H, 2)$-maximal sets

We present a direct algorithm to characterize more general good H-sets defined in $[51 ; 5]$. First, we recall the required notions and correspondences from [51; 5] and then treat the computational aspects.
Let K be a finitely generated abelian group and consider an affine, irreducible, normal variety $X:=\operatorname{Spec} A$ with an integral, normal, K-graded, affine algebra A. Then the quasitorus $H:=\operatorname{Spec} \mathbb{K}[K]$ acts on X. Write Ω_{X} for the set of orbit cones. To a collection $\Phi \subseteq \Omega_{X}$ we assign the a subset $U(\Phi) \subseteq X$ and to an H-invariant subset $U \subseteq X$ we assign a collection of orbit cones $\Phi(U) \subseteq \Omega_{X}$ where

$$
\begin{aligned}
& U(\Phi):=\left\{x \in X \text {; there is } \vartheta \in \Phi \text { with } \vartheta \preceq \vartheta_{x}\right\} \subseteq X, \\
& \Phi(U):=\left\{\vartheta_{x} ; x \in U \text { and } H \cdot x \text { closed in } U\right\} \subseteq \Omega_{X} .
\end{aligned}
$$

Recall that given a good H-set $U \subseteq X$ and an open subset $U^{\prime} \subseteq U$, the inclusion $U^{\prime} \subseteq U$ is H-saturated if $p^{-1}\left(p\left(U^{\prime}\right)\right)=U^{\prime}$ with the good quotient $p: U \rightarrow U / / H$.

Definition 3.3.1. We call a good H-set $U \subseteq X$ a ($H, 2$)-maximal subset if the quotient space $U / / H$ is an A_{2}-variety such that U is maximal with respect to H saturated inclusion amidst all good H-sets with an A_{2}-variety as quotient space.

Theorem 3.3.2. See [5; Thm. III.1.4.4]. In the above situation, assume that X is H-factorial. We have mutually inverse, order-reversing bijections

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { maximal bunches of } \\
\text { orbit cones in } \Omega_{X}
\end{array}\right\} & \longleftrightarrow\{(H, 2) \text {-maximal subsets of } X\} \\
\Phi & \mapsto U(\Phi), \\
\Phi(U) & \longleftrightarrow U .
\end{aligned}
$$

Under these maps, the qp-maximal subsets of X correspond to the sets of semistable points $U(\Phi(w))=X^{\mathrm{ss}}(w)$ where $w \in \lambda^{\circ}$ with $\lambda \in \Lambda(X, H)$.

In particular, if we can compute all maximal bunches of orbit cones in Ω_{X}, we also obtain (the information stored in) the GIT-fan. We now turn to their computation in the setting of Chapter 2, i.e., consider an $\operatorname{MDS} X=(R, \Phi)$ with $\Phi=\left\{\vartheta_{1}, \ldots, \vartheta_{s}\right\}$ and GR $R=\left(G, Q, Q^{0}, \dot{P}, F_{\mathfrak{F}}\right)$. Let Ω be the set of all orbit cones.
Definition 3.3.3. The overlapping graph is the finite, undirected, simple graph $G_{\Omega}=(V, E)$ with vertex set $V=\Omega$ and set of edges $E \subseteq V \times V$ given by

$$
\left(\vartheta_{1}, \vartheta_{2}\right) \in E \quad: \Leftrightarrow \quad \vartheta_{1}^{\circ} \cap \vartheta_{2}^{\circ} \neq \emptyset .
$$

Recall that a clique of a finite, directed, simple graph $G=(V, E)$ is a subset $C \subseteq V$ such that its induced subgraph is complete. A clique is maximal if it is maximal with respect to containment.
Algorithm 3.3.4 (GRH2max). Input: a GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$.

- Compute the collection $\Omega=\left\{\vartheta_{1}, \ldots, \vartheta_{m}\right\}$ of orbit cones, i.e., the set of all $Q^{0}\left(\gamma_{0}\right)$ where $\gamma_{0} \in F_{\mathfrak{F}}$.
- Calculate the overlapping graph $G_{\Omega}=(\Omega, E)$ by checking for each two orbit cones $\vartheta_{i}, \vartheta_{j} \in \Omega$ whether $\vartheta_{i}^{\circ} \cap \vartheta_{j}^{\circ} \neq \emptyset$.
- Determine the maximal cliques C_{1}, \ldots, C_{m} of G as subgraphs $C_{i}=$ (Φ_{i}, E_{i}). Interpret the $\Phi_{i} \subseteq \Omega$ as BUNs.

For the third step, we use the following algorithm $\operatorname{MaxCliques}\left(G, C^{\prime}, A^{\prime}, H^{\prime}\right)$ from Kreher and Stinson's book [74] with input $G:=G_{\Omega}=(V, E)$ and $C^{\prime}, A^{\prime}, H^{\prime} \subseteq V$ where we initialize $C^{\prime}:=A^{\prime}:=H^{\prime}:=\emptyset$. We assume the vertices of V are ordered with respect to a relation $>$.

- Set $R:=\emptyset$, define $V_{+}:=\left\{v \in V ; v>\max \left(x ; x \in C^{\prime}\right)\right\}$ and set

$$
H(C):= \begin{cases}V, & C^{\prime}=\emptyset \\ A^{\prime} \cap H^{\prime} \cap V_{+}, & C^{\prime} \neq \emptyset\end{cases}
$$

- If $H(C)=\emptyset$, then C^{\prime} is a maximal clique and we redefine $R:=\left\{C^{\prime}\right\}$.
- For each $v \in H(C)$ do
- define $C:=C^{\prime} \cup\{v\}$. Let $\operatorname{Adj}(v) \subseteq V$ be the neighbors of v in G.
- Insert into R the result returned by the recursive call to MaxCliques with input $G, C, \operatorname{Adj}(v)$, and $H(C)$.
- Return R.

Output: the list $\left(\Phi_{1}, \ldots, \Phi_{m}\right)$ of all maximal BUNs of orbit cones. They correspond to the ($H, 2$)-maximal subsets of $\operatorname{Spec} R$.

Proof. The correspondence to $(H, 2)$-maximal subsets of X is Theorem 3 The correctness of the algorithm MaxCliques is as in [74]: each maximal clique $\dot{C} \subseteq V$ is obtained by enlarging a smaller clique $C^{\prime} \subseteq C$ iteratively by an element $v \in$ $\bigcap_{c \in C^{\prime}} \operatorname{Adj}(c)$. To avoid repeated rediscoveries of the same clique, we may restrict to elements

$$
v \in V_{+} \cap \operatorname{Adj}\left(c^{\bullet}\right) \cap H\left(C^{\prime} \backslash\left\{c^{\bullet}\right\}\right), \quad c^{\bullet}:=\max \left(c ; c \in C^{\prime}\right)
$$

Thus, in each call, C^{\prime} is a clique that is maximal if and only if $H(C)=\emptyset$. Since in the first step, the algorithm starts with all subsets of V of cardinality one, this completes the proof.

Example 3.3.5. In the situation of Algorithm 3.3.4, assume we are given a GR $R=\left(\emptyset, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ with AGH $Q=\left(\mathbb{Z}^{4}, \mathbb{Z}^{3}, Q^{0}\right)$ where

$$
Q^{0}:=\left[q_{1}, \ldots, q_{4}\right]:=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Then there are precisely fifteen orbit cones $\Omega=\left\{\vartheta_{1}, \ldots, \vartheta_{15}\right\}$ which we order by $\vartheta_{i}>\vartheta_{j}$ if $i>j$. They are

$$
\begin{array}{ll}
\vartheta_{1}=\operatorname{cone}\left(q_{1}, q_{2}, q_{3}, q_{4}\right), & \vartheta_{2}=\operatorname{cone}\left(q_{1}, q_{2}, q_{3}\right), \\
\vartheta_{3}=\operatorname{cone}\left(q_{4}\right), & \vartheta_{4}=\operatorname{cone}\left(q_{3}\right), \\
\vartheta_{5}=\operatorname{cone}\left(q_{1}\right), & \vartheta_{6}=\operatorname{cone}\left(q_{2}, q_{3}, q_{4}\right), \\
\vartheta_{7}=\operatorname{cone}\left(q_{3}, q_{4}\right), & \vartheta_{8}=\operatorname{cone}\left(q_{1}, q_{3}, q_{4}\right), \\
\vartheta_{9}=\operatorname{cone}\left(q_{1}, q_{4}\right), & \vartheta_{10}=\operatorname{cone}\left(q_{2}, q_{4}\right), \\
\vartheta_{11}=\operatorname{cone}\left(q_{2}\right), & \vartheta_{12}=\operatorname{cone}\left(q_{1}, q_{2}\right), \\
\vartheta_{13}=\operatorname{cone}\left(q_{1}, q_{3}\right), & \vartheta_{14}=\operatorname{cone}\left(q_{2}, q_{3}\right), \\
\vartheta_{15}=\operatorname{cone}\left(q_{1}, q_{2}, q_{3}\right) . &
\end{array}
$$

The overlapping graph G_{Ω} is the following undirected, simple graph with nine components

Besides the maximal cliques $\left\{\vartheta_{i}\right\}$ with $i \in\{3,4,5,7,10,11,12,13\}$, Algorithm 3. 4 detects the following nine 3 -cliques (highlighted in black; isolated vertices are not drawn); in particular, there are seventeen ($H, 2$)-maximal subsets of Spec R.

Remark 3.3.6. In the situation of Algorithm3.3.4; set $s:=|\Omega|$. By [74; Sec. 4.3.1], the asymptotic worst case running time of the subroutine MaxCliques is $O(s \cdot n)$ where n is the number of (not necessarily maximal) cliques in G_{Ω}. Its average running time is $O\left(s^{\log _{2}(s)+1}\right)$.

CHAPTER 4

Modifications of Mori dream spaces

This chapter is about the computation of Cox rings of modified Mori dream spaces. More precisely, given a modification $X_{2} \rightarrow X_{1}$ of projective varieties, e.g., a sequence of blow ups, where one of the Cox rings $\mathcal{R}\left(X_{i}\right)$ is known, we provide computational methods to obtain information about the other Cox ring. To this end, we develop algorithms concerning the tasks

- verifying finite generation,
- producing a guess of generators,
- verifying a guess of generators,
- computing relations between generators.

Amongst others, we devise a technique to provide and verify a systematic guess for generators of the Cox ring of a blow up $X_{2} \rightarrow X_{1}$ of a Mori dream space X_{1}; it terminates if and only if $\mathcal{R}\left(X_{2}\right)$ is finitely generated.
Section develops the algebraic tools needed to relate the Cox rings $\mathcal{R}\left(X_{1}\right)$ and $\mathcal{R}\left(X_{2}\right)$. In Section 2: we adjust the methods of toric ambient modifications to our setting. Here, we also treat the contraction problem. We develop and present an algorithmic framework for modifications of Mori dream spaces in Section 3: This will enable us to compute explicit examples. As a first application, we compute in Section 4: the Cox rings of all Gorenstein log del Pezzo surfaces of Picard number one that do not admit a non-trivial \mathbb{K}^{*}-action. Section concerns the third item and presents an automated approach to compute the Cox rings of blow ups of Mori dream spaces along a subvariety in the smooth locus. The last section, Section ' 6 ', treats the special case where the Cox ring is generated by proper transforms of hyperplanes. As an application, we determine the Cox rings of blow ups of \mathbb{P}_{3} in certain special point configurations.
The first section has already been published in the paper On Chow quotients of torus actions [10] jointly with Hendrik Bäker and Jürgen Hausen. The remaining sections have been published in the paper Computing Cox rings [57] together with Jürgen Hausen and Antonio Laface. In an ongoing project with U. Derenthal, J. Hausen, A. Heim and A. Laface we have implemented the algorithms in the software system Singular [31] and plan to use it to compute Cox rings of cubic surfaces and smooth Fano threefolds [34].

1. Modifications and H-factoriality

In this section, we provide a general machinery to study the effect of modifications on the Cox ring. Similar to [51], we use toric embeddings. In contrast to the geometric criteria given there, our approach here is purely algebraic, based on results of Bechtold [15]. The crux of the matter is a construction of factorially graded rings out of given ones. This section has been published in [10; Sec. 3] together with H. Bäker and J. Hausen.

Let us recall from Sections and 2 of Chapter '1: the necessary algebraic concepts. Let K be a finitely generated abelian group and R a finitely generated integral K-graded \mathbb{K}-algebra. A homogeneous nonzero nonunit $f \in R$ is called K-prime
if $f \mid g h$ with homogeneous $g, h \in R$ always implies $f \mid g$ or $f \mid h$. The algebra R is called factorially K-graded if every homogeneous nonzero nonunit $f \in R$ is a product of K-primes.
We enter the construction of factorially graded rings. Consider a grading of the polynomial ring $\mathbb{K}\left[T_{1}, \ldots, T_{r_{1}}\right]$ by a finitely generated abelian group K_{1} such that the variables T_{i} are homogeneous. Then we have a pair of exact sequences

$$
\begin{aligned}
& 0 \longrightarrow \mathbb{Z}^{k_{1}} \stackrel{Q_{1}^{*}}{\longrightarrow} \mathbb{Z}^{r_{1}} \xrightarrow{P_{1}} \mathbb{Z}^{n} \\
& 0 \longleftarrow K_{1} \stackrel{ }{Q_{1}} \mathbb{Z}^{r_{1}} \stackrel{ }{\digamma_{P_{1}^{*}}} \mathbb{Z}^{n} \longleftarrow 0
\end{aligned}
$$

where $Q_{1}: \mathbb{Z}^{r_{1}} \rightarrow K_{1}$ is the degree map sending the i-th canonical basis vector e_{i} to $\operatorname{deg}\left(T_{i}\right) \in K_{1}$. We enlarge P_{1} to an $n \times r_{2}$ matrix P_{2} by concatenating further $r_{2}-r_{1}$ columns. This gives a new pair of exact sequences

$$
\begin{aligned}
& 0 \longrightarrow \mathbb{Z}^{k_{2}} \stackrel{Q_{2}^{*}}{\longrightarrow} \mathbb{Z}^{r_{2}} \stackrel{P_{2}}{\longrightarrow} \mathbb{Z}^{n} \\
& 0 \longleftarrow \quad K_{2}<\frac{Q_{2}}{\longleftarrow} \mathbb{Z}^{r_{2}} \underset{P_{2}^{*}}{ } \mathbb{Z}^{n} \longleftarrow 0
\end{aligned}
$$

Construction 4.1.1. Given a K_{1}-homogeneous ideal $I_{1} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r_{1}}\right]$, we transfer it to a K_{2}-homogeneous ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r_{2}}\right]$ by taking extensions and contractions according to the scheme

where \imath_{1}, \imath_{2} are the canonical embeddings and π_{i}^{*} are the homomorphisms of group algebras defined by $P_{i}^{*}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{r_{i}}$.

Remark 4.1.2. From a geometric point of view, the passage from the Laurent polynomial ring to the polynomial ring corresponds to taking the closure. Back on the algebraic side this means saturating the ideal, see Algorithm 2.2.14.

Now, let $I_{1} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r_{1}}\right]$ be a K_{1}-homogeneous ideal and $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r_{2}}\right]$ the transferred K_{2}-homogeneous ideal. Our result relates factoriality properties of the algebras $R_{1}:=\mathbb{K}\left[T_{1}, \ldots, T_{r_{1}}\right] / I_{1}$ and $R_{2}:=\mathbb{K}\left[T_{1}, \ldots, T_{r_{2}}\right] / I_{2}$ to each other.

Theorem 4.1.3. Assume R_{1}, R_{2} are integral, $T_{1}, \ldots, T_{r_{1}}$ define K_{1}-primes in R_{1} and $T_{1}, \ldots, T_{r_{2}}$ define K_{2}-primes in R_{2}. Then the following statements are equivalent.
(i) The algebra R_{1} is factorially K_{1}-graded.
(ii) The algebra R_{2} is factorially K_{2}-graded.

Proof. First, observe that the homomorphisms π_{j}^{*} embed $\mathbb{K}\left[S_{1}^{ \pm 1}, \ldots, S_{n}^{ \pm 1}\right]$ as the degree zero part of the respective K_{j}-grading and fit into a commutative diagram

The factor ring R_{1}^{\prime} of the extension $I_{1}^{\prime}:=\left\langle\imath_{1}\left(I_{1}\right)\right\rangle$ is obtained from R_{1} by the localization with respect to K_{1}-primes $T_{1}, \ldots, T_{r_{1}}$:

$$
R_{1}^{\prime}:=\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{r_{1}}^{ \pm 1}\right] / I_{1}^{\prime} \cong\left(R_{1}\right)_{T_{1} \cdots T_{r_{1}}}
$$

The ideal $I_{1}^{\prime \prime}$ is the degree zero part of I_{1}^{\prime}. Thus, its factor algebra is the degree zero part of R_{1}^{\prime} :

$$
R_{1}^{\prime \prime}:=\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{r_{1}}^{ \pm 1}\right]_{0} / I_{1}^{\prime \prime} \cong\left(R_{1}^{\prime}\right)_{0}
$$

Note that $\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{r_{1}}^{ \pm 1}\right]$ and hence R_{1}^{\prime} admit units in every degree. Thus, [15; Thm. 1.1] yields that R_{1} is factorially K_{1}-graded if and only if $R_{1}^{\prime \prime}$ is a UFD.
The homomorphism ψ restricts to an isomorphism ψ_{0} of the respective degree zero parts. Thus, the shifted ideal $I_{2}^{\prime \prime}:=\psi_{0}^{-1}\left(I_{1}^{\prime \prime}\right)$ defines an algebra $R_{2}^{\prime \prime}$ isomorphic to $R_{1}^{\prime \prime}$:

$$
R_{2}^{\prime \prime}:=\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{r_{2}}^{ \pm 1}\right]_{0} / I_{2}^{\prime \prime} \cong R_{1}^{\prime \prime}
$$

The ideal $I_{2}^{\prime}:=\left\langle\pi_{2}^{*}\left(\left(\pi_{1}^{*}\right)^{-1}\left(I_{1}^{\prime}\right)\right)\right\rangle$ has $I_{2}^{\prime \prime}$ as its degree zero part and $\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{r_{2}}^{ \pm 1}\right]$ admits units in every degree. The associated K_{2}-graded algebra

$$
R_{2}^{\prime}:=\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{r_{2}}^{ \pm 1}\right] / I_{2}^{\prime} \cong\left(R_{2}\right)_{T_{1} \cdots T_{r_{2}}}
$$

is the localization of R_{2} by the K_{2}-primes $T_{1}, \ldots, T_{r_{2}}$. Again by [15; Thm. 1.1] we obtain that $R_{2}^{\prime \prime} \cong R_{1}^{\prime \prime}$ is a UFD if and only if R_{2} is factorially K_{2}-graded. This proves the assertion.

The following observation is intended for practical purposes; it reduces, for example, the number of necessary primality tests.

Proposition 4.1.4. Assume that R_{1} is integral and the canonical map $K_{2} \rightarrow K_{1}$ admits a section (e.g., K_{1} is free).
(i) Let $T_{1}, \ldots, T_{r_{1}}$ define K_{1}-primes in R_{1} and $T_{r_{1}+1}, \ldots, T_{r_{2}}$ define K_{2-} primes in R_{2}. If no T_{j} with $j \geq r_{1}+1$ divides a T_{i} with $i \leq r_{1}$, then also $T_{1}, \ldots, T_{r_{1}}$ define K_{2}-primes in R_{2}.
(ii) The ring R_{2} is integral. Moreover, if R_{1} is normal and $T_{r_{1}+1}, \ldots, T_{r_{2}}$ define primes in R_{2} (e.g., they are K_{2}-prime and K_{2} is free), then R_{2} is normal.

Proof. The exact sequences involving the grading groups K_{1} and K_{2} fit into a commutative diagram where the upwards sequences are exact and $\mathbb{Z}^{r_{2}-r_{1}} \rightarrow K_{2}^{\prime}$ is
an isomorphism:

Moreover, denoting by $K_{1}^{\prime} \subseteq K_{2}$ the image of the section $K_{1} \rightarrow K_{2}$, there is a splitting $K_{2}=K_{2}^{\prime} \oplus K_{1}^{\prime}$. As $K_{2}^{\prime} \subseteq K_{2}$ is the subgroup generated by the degrees of $T_{r_{1}+1}, \ldots, T_{r_{2}}$, we obtain a commutative diagram

where the map μ denotes the embedding of the degree zero part with respect to the K_{2}^{\prime}-grading. By the splitting $K_{2}=K_{2}^{\prime} \oplus K_{1}^{\prime}$, the image of μ is precisely the Veronese subalgebra associated to the subgroup $K_{1}^{\prime} \subseteq K_{2}$. For the factor rings R_{2} and R_{1} by the ideals I_{2} and I_{1}, the above diagram leads to the following situation

To prove (i), consider a variable T_{i} with $1 \leq i \leq r_{1}$. We have to show that T_{i} defines a K_{2}-prime element in R_{2}. By the above diagram, T_{i} defines a K_{1}^{\prime}-prime element in $\left(\left(R_{2}\right)_{T_{r_{1}+1} \cdots T_{r_{2}}}\right)_{0}$, the Veronese subalgebra of R_{2} defined by $K_{1}^{\prime} \subseteq K_{2}$. Since every K_{2}-homogeneous element of $\left(R_{2}\right)_{T_{r_{1}+1} \cdots T_{r_{2}}}$ can be shifted by a homogeneous unit into $\left(\left(R_{2}\right)_{T_{r_{1}+1} \cdots T_{r_{2}}}\right)_{0}$, we see that T_{i} defines a K_{2}-prime in $\left(R_{2}\right)_{T_{r_{1}+1} \cdots T_{r_{2}}}$, see [5; Lem. III.4.1.9]. By assumption, $T_{r_{1}+1}, \ldots, T_{r_{2}}$ define K_{2}-primes in R_{2} and are all coprime to T_{i}. It follows from [5, Lem. III.4.1.7] that T_{i} defines a K_{2}-prime in R_{2}. We turn to assertion (ii). As just observed, the degree zero part $\left(\left(R_{2}\right)_{T_{r_{1}+1} \cdots T_{r_{2}}}\right)_{0}$ of the K_{2}^{\prime}-grading is isomorphic to R_{1} and thus integral (normal if R_{1} is so). Moreover, the K_{2}^{\prime}-grading is free in the sense that the associated torus Spec $\mathbb{K}\left[K_{2}^{\prime}\right]$ acts freely on $\operatorname{Spec}\left(R_{2}\right)_{T_{r_{1}+1} \cdots T_{r_{2}}}$. It follows that $\left(R_{2}\right)_{T_{r_{1}+1 \cdots T_{r_{2}}}}$ is integral (normal if R_{1} is so). Construction 4.1. gives that R_{2} is integral. Moreover, if $T_{r_{1}+1}, \ldots, T_{r_{2}}$ define primes in R_{2}, we can conclude that R_{2} is normal, see [5, Lem. IV.1.2.7].

Let us apply the results to Cox rings, see Section' 2 'in Chapter 1 'for the basic theory. In the setting fixed at the beginning of the section, we assume additionally that the
columns of P_{2} are pairwise different primitive vectors in \mathbb{Z}^{n} and those of P_{1} generate \mathbb{Q}^{n} as a convex cone. Suppose we have toric Cox constructions $\pi_{i}: \widehat{Z}_{i} \rightarrow Z_{i}$ where $\widehat{Z}_{i} \subseteq \mathbb{K}^{r_{i}}$ are open toric subvarieties and π_{i} are toric morphisms defined by P_{i}, see [27]. Then the canonical map $Z_{2} \rightarrow Z_{1}$ is a toric modification. Consider the ideal I_{1} as discussed before and the geometric data

$$
\bar{X}_{1}:=V\left(I_{1}\right) \subseteq \mathbb{K}^{r_{1}}, \quad \widehat{X}_{1}:=\bar{X}_{1} \cap \widehat{Z}_{1}, \quad X_{1}:=\pi_{1}\left(\widehat{X}_{1}\right) \subseteq Z_{1}
$$

Assume that R_{1} is factorially K_{1}-graded and $T_{1}, \ldots, T_{r_{1}}$ define pairwise non-associated K_{1}-prime elements in R_{1}. Then R_{1} is the Cox ring of X_{1}, see [5]. Our statement concerns the Cox ring of the proper transform $X_{2} \subseteq Z_{2}$ of $X_{1} \subseteq Z_{1}$ with respect to $Z_{2} \rightarrow Z_{1}$.
Corollary 4.1.5. In the above setting, assume that R_{2} is normal and the variables $T_{1}, \ldots, T_{r_{2}}$ define pairwise non-associated K_{2}-prime elements in R_{2}. Then the K_{2} graded ring R_{2} is the Cox ring of X_{2}.

Proof. According to Theorem 4.1.3; the ring R_{2} is factorially K_{2}-graded. Moreover, with the toric Cox construction $\pi_{2}: \widehat{Z}_{2} \rightarrow Z_{2}$, we obtain that R_{2} is the algebra of functions of the closure $\widehat{X}_{2} \subseteq \widehat{Z}_{2}$ of $\pi_{2}^{-1}\left(X_{2} \cap \mathbb{T}^{r_{2}}\right)$. Thus, [5] yields that R_{2} is the Cox ring of X_{2}.

Example 4.1.6. We start with the UFD $R_{1}=\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I_{1}$ where the ideal I_{1} is defined as

$$
I_{1}=\left\langle T_{1} T_{2}+T_{3} T_{4}+T_{5} T_{6}+T_{7} T_{8}\right\rangle
$$

Then I_{1} is homogeneous with respect to the standard $K_{1}=\mathbb{Z}$-grading given by $Q_{1}=$ $[1, \ldots, 1]$. Then $P_{1}=\left[e_{0}, e_{1}, \ldots, e_{7}\right]$ is Gale dual to Q_{1} where $e_{0}=-e_{1}-\ldots-e_{7}$ and the $e_{i} \in \mathbb{Z}^{7}$ are the canonical basis vectors. Concatenation of $e_{1}+e_{3}$ yields a matrix P_{2}. Applying Construction 4.1.1; we obtain $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I_{2}$ where

$$
I_{2}=\left\langle T_{1} T_{2} T_{9}+T_{3} T_{4} T_{9}+T_{5} T_{6}+T_{7} T_{8}\right\rangle
$$

together with a $K_{2}=\mathbb{Z}^{2}$-grading. As predicted by Theorem 4.1.3, R_{2} is again a UFD.

2. Toric ambient modifications

Using the tools of Section'1; we upgrade the technique of toric ambient modifications developed in [51]. It will serve as foundation for the algorithmic framework for modifications of Mori dream spaces presented in Section 3 . This section has been published together with J. Hausen and A. Laface, in [57, Sec. 2].
Recall from Section in Chapter 1 ithat a Mori dream space is a normal projective variety with finitely generated Cox ring $\mathcal{R}(X)$ and class group $\mathrm{Cl}(X)$. The characteristic quasitorus $H:=\operatorname{Spec} \mathbb{K}[\operatorname{Cl}(X)]$ acts on $\widehat{X}:=\operatorname{Spec}_{X} \mathcal{R}$ and the canonical map, the characteristic space over $X, p: \widehat{X} \rightarrow X$ is a good quotient for this action. One has the total coordinate space $\bar{X}:=\operatorname{Spec} \mathcal{R}(X)$ and a canonical H-equivariant open embedding $\widehat{X} \subseteq \bar{X}$.
For Mori dream spaces X, we obtain canonical embeddings into toric varieties Z relating the geometry of X to that of its ambient variety. Let $\mathfrak{F}=\left(f_{1}, \ldots, f_{r}\right)$ be a system of pairwise non-associated $\mathrm{Cl}(X)$-prime generators of the Cox ring $\mathcal{R}(X)$.

This gives rise to a commutative diagram

where the embedding $\bar{X} \subseteq \mathbb{K}^{r}$ of the total coordinate space is concretely given by $\bar{x} \mapsto\left(f_{1}(\bar{x}), \ldots, f_{r}(\bar{x})\right)$, we have $\widehat{X}=\bar{X} \cap \widehat{Z}$ and $p: \widehat{Z} \rightarrow Z$ is the toric characteristic space; compare Construction 1.2.5 and [27]. The induced embedding $X \subseteq Z$ of quotients is as wanted, see [5, Sec. III.2.5] for details.
Definition 4.2.1. In the above setting, we call $X \subseteq Z$ a canonically embedded Mori dream space (CEMDS).

Remark 4.2.2. For a projective toric variety Z with Cox ring $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, let $Q: \mathbb{Z}^{r} \rightarrow K:=\mathrm{Cl}(Z)$ denote the degree map sending the i-th canonical basis vector to the degree of the i-th variable T_{i} and $P: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{n}$ the Gale dual, i.e., P is dual to the inclusion $\operatorname{ker}(Q) \subseteq \mathbb{Z}^{r}$. If $w \in \mathrm{Cl}(Z)$ is an ample class, then the fans $\widehat{\Sigma}$ of \widehat{Z} and Σ of Z are

$$
\widehat{\Sigma}:=\left\{\widehat{\sigma} \preceq \mathbb{Q}_{\geq 0}^{r} ; w \in Q\left(\widehat{\sigma}^{\perp} \cap \mathbb{Q}_{\geq 0}^{r}\right)\right\}, \quad \Sigma^{\max }=\left\{P(\widehat{\sigma}) ; \widehat{\sigma} \in \widehat{\Sigma}^{\max }\right\}
$$

where we write \preceq for the face relation of cones and regard Q and P as maps of the corresponding rational vector spaces. If $X \subseteq Z$ is a CEMDS, then the ample class $w \in \mathrm{Cl}(Z)=\mathrm{Cl}(X)$ is also an ample class for X. Note that a different choice of the ample class $w^{\prime} \in \mathrm{Cl}(X)$ may lead to another CEMDS $X \subseteq Z^{\prime}$ according to the fact that the Mori chamber decomposition of Z refines the one of X.

We now consider modifications $\pi: X_{2} \rightarrow X_{1}$ of normal projective varieties. A first general statement describes the Cox ring of X_{1} in terms of the Cox ring of X_{2}.
Proposition 4.2.3. Let $\pi: X_{2} \rightarrow X_{1}$ be a proper birational morphism of normal projective varieties. Let $C \subseteq X_{1}$ be the center of the modification. Set $K_{i}:=\operatorname{Cl}\left(X_{i}\right)$ and $R_{i}:=\mathcal{R}\left(X_{i}\right)$ and identify $U:=X_{2} \backslash \pi^{-1}(C)$ with $X_{1} \backslash C$. Then we have canonical surjective push forward maps

$$
\begin{aligned}
& \pi_{*}: K_{2} \rightarrow K_{1}, {[D] \mapsto\left[\pi_{*} D\right] } \\
& \pi_{*}: R_{2} \rightarrow R_{1}, \quad\left(R_{2}\right)_{[D]} \ni f \mapsto f_{\mid U} \in\left(R_{1}\right)_{\left[\pi_{*} D\right]} .
\end{aligned}
$$

Now suppose that $\mathcal{R}\left(X_{2}\right)$ is finitely generated, let $E_{1}, \ldots, E_{l} \subseteq X_{2}$ denote the exceptional prime divisors and $f_{1}, \ldots, f_{l} \in \mathcal{R}\left(X_{2}\right)$ the corresponding canonical sections. Then we have a commutative diagram

of morphisms of graded algebras where λ is the canonical projection with the projection $K_{2} \rightarrow K_{2} /\left\langle\operatorname{deg}\left(f_{i}\right) ; 1 \leq i \leq l\right\rangle$ as accompanying homomorphism and the induced map ψ is an isomorphism.

Lemma 4.2.4. See [57, Lem. 2.3]. Let R be a K_{2}-graded domain, $f \in R_{w}$ with w of infinite order in K_{2} and consider the downgrading of R given by $K_{2} \rightarrow K_{1}:=$ $K_{2} /\langle w\rangle$. Then $f-1$ is K_{1}-prime.

Proof of Proposition:2.3: Let $x_{i} \in X_{i}$ be smooth points with $\pi\left(x_{2}\right)=x_{1}$ such that x_{2} is not contained in any of the exceptional divisors. Consider the divisorial sheaf $\mathcal{S}^{x_{i}}$ on X_{i} associated to the subgroup of divisors avoiding the point x_{i}, see [5, Constr. 4.2.3]. Then we have canonical morphisms of graded rings

$$
\Gamma\left(X_{2}, \mathcal{S}^{x_{2}}\right) \rightarrow \Gamma\left(U_{2}, \mathcal{S}^{x_{2}}\right) \rightarrow \Gamma\left(X_{1}, \mathcal{S}^{x_{1}}\right),
$$

where $U_{2} \subseteq X_{2}$ is the open subset obtained by removing the exceptional divisors of $\pi: X_{2} \rightarrow X_{1}$ and the accompanying homomorphisms of the grading groups are the respective push forwards of Weil divisors. The homomorphisms are compatible with the relations of the Cox sheaves $\mathcal{R}^{x_{i}}$, see again [5; Constr. 4.2.3], and thus induce canonical morphisms of graded rings

$$
\Gamma\left(X_{2}, \mathcal{R}^{x_{2}}\right) \rightarrow \Gamma\left(U_{2}, \mathcal{R}^{x_{2}}\right) \rightarrow \Gamma\left(X_{1}, \mathcal{R}^{x_{1}}\right)
$$

This establishes the surjection $\pi_{*}: R_{2} \rightarrow R_{1}$ with the canonical push forward of divisor class groups as accompanying homomorphism. Clearly, the canonical sections f_{i} of the exceptional divisors are sent to $1 \in R_{1}$.
We show that the induced map ψ is an isomorphism. As we may proceed by induction on l, it suffices to treat the case $l=1$. Lemma 4.2.tells us that $f_{1}-1$ is K_{1}-prime. From [51; Prop. 3.2] we infer that $\left\langle f_{1}-1\right\rangle$ is a radical ideal in R_{2}. Since $\operatorname{Spec}(\psi)$ is a closed embedding of varieties of the same dimension and equivariant with respect to the action of the quasitorus Spec $\mathbb{K}\left[K_{1}\right]$, the assertion follows.

As an immediate consequence, we obtain that X_{1} is a Mori dream space provided X_{2} is one; see also [85]. The converse question is in general delicate. The classical counterexample arises from the projective plane $X_{1}=\mathbb{P}_{2}$: for suitably general points $x_{1}, \ldots, x_{9} \in \mathbb{P}_{2}$, the blow up X_{1} at the first eight ones is a Mori dream surface and the blow up X_{2} of X_{1} at x_{9} is not.
We now upgrade the technique of toric ambient modifications developed in [51] and Section 1: according to our computational purposes. In the following setting, $\widehat{X}_{i} \rightarrow X_{i}$ needs (a priori) not be a characteristic space and \bar{X}_{i} not a total coordinate space.

Setting 4.2.5. Let $\pi: Z_{2} \rightarrow Z_{1}$ be a toric modification, i.e., Z_{1}, Z_{2} are complete toric varieties and π is a proper birational toric morphism. Moreover, let $X_{i} \subseteq Z_{i}$ be closed subvarieties, both intersecting the big n-torus $\mathbb{T}^{n} \subseteq Z_{i}$, such that $\pi\left(X_{2}\right)=X_{1}$ holds. Then we have a commutative diagram

where the downwards maps $p_{i}: \widehat{Z}_{i} \rightarrow Z_{i}$ are toric characteristic spaces and $\widehat{X}_{i} \subseteq \widehat{Z}_{i}$ are the closures of the inverse image $p_{i}^{-1}\left(X_{i} \cap \mathbb{T}^{n}\right)$. Let $I_{i} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r_{i}}\right]$ be the vanishing ideal of the closure $\bar{X}_{i} \subseteq \mathbb{K}^{r_{i}}$ of $\widehat{X}_{i} \subseteq \widehat{Z}_{i}$ and set $R_{i}:=\mathbb{K}\left[T_{1}, \ldots, T_{r_{i}}\right] / I_{i}$. Note that R_{i} is graded by $K_{i}:=\mathrm{Cl}\left(Z_{i}\right)$.
Theorem 4.2.6. Consider Setting 4.2.5:
(i) If $X_{1} \subseteq Z_{1}$ is a CEMDS, the ring R_{2} is normal and $T_{1}, \ldots, T_{r_{2}}$ define pairwise non-associated K_{2}-primes in R_{2}, then $X_{2} \subseteq Z_{2}$ is a CEMDS. In particular, K_{2} is the divisor class group of X_{2} and R_{2} is the Cox ring of X_{2}.
(ii) If $X_{2} \subseteq Z_{2}$ is a $C E M D S$, then $X_{1} \subseteq Z_{1}$ is a CEMDS. In particular, K_{1} is the divisor class group of X_{1} and R_{1} is the Cox ring of X_{1}.

Proof. First consider the lattice homomorphisms $P_{i}: \mathbb{Z}^{r_{i}} \rightarrow \mathbb{Z}^{n}$ associated to the toric morphisms $p_{i}: \widehat{Z}_{i} \rightarrow Z_{i}$. Viewing the P_{i} as matrices, we may assume that $P_{2}=\left[P_{1}, B\right]$ with a matrix B of size $n \times\left(r_{2}-r_{1}\right)$. We have a commutative diagram of lattice homomorphisms and the corresponding diagram of homomorphisms of tori:

where in the left diagram, the e_{i} are the first r_{1}, the e_{j} the last $r_{2}-r_{1}$ canonical basis vectors of $\mathbb{Z}^{r_{2}}$, the m_{j} are positive integers and $E_{n}, E_{r_{1}}$ denote the unit matrices of size n, r_{1} respectively and A is an integral $r_{1} \times\left(r_{2}-r_{1}\right)$ matrix.
We prove (i). We first show that R_{2} is integral. By construction, it suffices to show that $p_{2}^{-1}\left(X_{1} \cap \mathbb{T}^{n}\right)$ is irreducible, compare Lemma 4.3.6. By assumption, $\bar{X}_{1} \cap \mathbb{T}^{r_{1}}$ is irreducible. Since the Smith normal form of $\left[E_{r_{1}}, A\right]$ is simply $\left[E_{r_{1}}, 0\right]$, under α, preimages of irreducible subsets are again irreducible. This means $\alpha^{-1}\left(\bar{X}_{1} \cap \mathbb{T}^{r_{1}}\right)$ is irreducible. We conclude that $\bar{X}_{2} \cap \mathbb{T}^{r_{2}}=\mu\left(\alpha^{-1}\left(\bar{X}_{1} \cap \mathbb{T}^{r_{1}}\right)\right)$ is irreducible. Moreover, since X_{2} is complete and the K_{2}-grading of R_{2} has a pointed weight cone, we obtain that R_{2} has only constant units. Thus, Theorem yields that R_{2} is factorially K_{2}-graded. Since the T_{i} are pairwise non-associated \dot{K}_{2}-primes and R_{2} is normal, we conclude that R_{2} is the Cox ring of X_{2} and $X_{2} \subseteq Z_{2}$ is a CEMDS.
We turn to (ii). Observe that for every $f \in I_{2}$, the Laurent polynomials $\mu^{*}(f)$ and $\alpha^{*}\left(f\left(t_{1}, \ldots, t_{r_{1}}, 1, \ldots, 1\right)\right)$ differ by a monomial factor. We conclude

$$
\begin{aligned}
\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{r_{2}}^{ \pm 1}\right] \cdot I_{2} & =\left\langle\alpha^{*}\left(f\left(t_{1}, \ldots, t_{r_{1}}, 1, \ldots, 1\right)\right) ; f \in I_{2}\right\rangle \\
& \subseteq \mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{r_{2}}^{ \pm 1}\right]
\end{aligned}
$$

Now, Proposition 4.2.3 tells us that R_{1} is the Cox ring of X_{1}. Since $T_{1}, \ldots, T_{r_{1}}$ define also in X_{1} pairwise different prime divisors, we conclude that $X_{1} \subseteq Z_{1}$ is a CEMDS.

Remark 4.2.7. The verification of normality as well as the primality tests needed for Theorem 4.2.6 are computationally involved. Proposition 4.1.4: considerably reduces the effort in many cases.

As a consequence of Theorem 4.2.6; we obtain that the modifications preserving finite generation are exactly those arising from toric modifications as discussed. More precisely, let $Z_{2} \rightarrow Z_{1}$ be a toric modification mapping $X_{2} \subseteq Z_{2}$ onto $X_{1} \subseteq Z_{1}$. We call $Z_{2} \rightarrow Z_{1}$ a good toric ambient modification, if it is as in Theorem 4.2:(i).

Corollary 4.2.8. Let $X_{2} \rightarrow X_{1}$ be a birational morphism of normal, projective \mathbb{Q}-factorial varieties such that the Cox ring $\mathcal{R}\left(X_{1}\right)$ is finitely generated. Then the following statements are equivalent.
(i) The Cox ring $\mathcal{R}\left(X_{2}\right)$ is finitely generated.
(ii) The morphism $X_{2} \rightarrow X_{1}$ arises from a good toric ambient modification.

Proof. The implication "(ii) $\Rightarrow(\mathrm{i})$ " is Theorem 4.2.6; For the reverse direction, set $K_{i}:=\mathrm{Cl}\left(X_{i}\right)$ and $R_{i}:=\mathcal{R}\left(X_{i}\right)$. Let $f_{1}, \ldots, f_{r_{2}}$ be pairwise nonassociated $K_{2^{-}}$ prime generators for R_{2}. According to Proposition 4.2.3; we may assume, after suitably numbering, that $f_{1}, \ldots, f_{r_{1}}$ define generators of R_{1}, where $r_{1} \leq r_{2}$. Now take an ample class $w_{1} \in K_{1}$. Then the pullback $w_{2}^{\prime} \in K_{2}$ of w_{1} under $X_{2} \rightarrow X_{1}$ is semiample on X_{2}. Choose $w_{2} \in K_{2}$ such that w_{2} is ample on X_{2} and the toric ambient variety Z_{2} of X_{2} defined by w_{2} has an ample cone containing w_{2}^{\prime} in its closure. Then, with the sets of semistable points $\widehat{Z}_{2}, \widehat{Z}_{2}^{\prime} \subseteq \mathbb{K}^{r_{2}}$ defined by w_{2}, w_{2}^{\prime} respectively and $\widehat{Z}_{1} \subseteq \mathbb{K}^{r_{1}}$ the one defined by w_{1}. By [51; Lem. 6.7], we obtain morphisms

$$
Z_{2}=\widehat{Z}_{2} / / H_{2} \rightarrow \widehat{Z}_{2}^{\prime} / / H_{2} \cong \widehat{Z}_{1} / / H_{2}=Z_{1}
$$

where $H_{i}:=\operatorname{Spec} \mathbb{K}\left[K_{i}\right]$ denotes the characteristic quasitorus of Z_{i}; observe that $\widehat{Z}_{2}^{\prime} \rightarrow \widehat{Z}_{2}^{\prime} / / H_{2}$ is in general not a toric characteristic space. Thus, we arrive at Setting 4.2.5: and $Z_{2} \rightarrow Z_{1}$ is the desired good toric ambient modification inducing the morphism $X_{2} \rightarrow X_{1}$.

For a flexible use of Theorem: 4.6 we will have to adjust given embeddings of a Mori dream space, e.g., bring general points of a CEMDS into a more special position, or remove linear relations from a redundant presentation of the Cox ring. The formal framework is the following.

Setting 4.2.9. Let Z_{1} be a projective toric variety with toric characteristic space $p_{1}: \widehat{Z}_{1} \rightarrow Z_{1}$ and ample class $w \in K_{1}:=\mathrm{Cl}\left(Z_{1}\right)$. Consider K_{1}-homogeneous polynomials $h_{1}, \ldots, h_{l} \in \mathbb{K}\left[T_{1}, \ldots, T_{r_{1}}\right]$ and, with $r_{1}^{\prime}:=r_{1}+l$, the (in general nontoric) embedding

$$
\bar{\imath}: \mathbb{K}^{r_{1}} \rightarrow \mathbb{K}^{r_{1}^{\prime}}, \quad\left(z_{1}, \ldots, z_{r_{1}}\right) \mapsto\left(z_{1}, \ldots, z_{r_{1}}, h_{1}(z), \ldots, h_{l}(z)\right)
$$

Note that $\mathbb{K}\left[T_{1}, \ldots, T_{r_{1}^{\prime}}\right]$ is graded by $K_{1}^{\prime}:=K_{1}$ via attaching to $T_{1}, \ldots, T_{r_{1}}$ their former K_{1}-degrees and to $T_{r_{1}+i}$ the degree of h_{i}. The class $w \in K_{1}^{\prime}$ defines a toric variety Z_{1}^{\prime} and a toric characteristic space $p_{1}: \widehat{Z}_{1}^{\prime} \rightarrow Z_{1}^{\prime}$. Any closed subvariety $X_{1} \subseteq Z_{1}$ and its image $X_{1}^{\prime}:=\imath\left(X_{1}\right)$ lead to a commutative diagram

where $\widehat{X}_{1} \subseteq \widehat{Z}_{1}$ and $\widehat{X}_{1}^{\prime} \subseteq \widehat{Z}_{1}^{\prime}$ are the closures of the inverse image $p_{1}^{-1}\left(X_{1} \cap \mathbb{T}^{n}\right)$ and $\left(p_{1}^{\prime}\right)^{-1}\left(X_{1}^{\prime} \cap \mathbb{T}^{n^{\prime}}\right)$. Denote by I_{1} and I_{1}^{\prime} the respective vanishing ideals of the closures $\bar{X}_{1} \subseteq \mathbb{K}^{r_{1}}$ of $\widehat{X}_{1} \subseteq \widehat{Z}_{1}$ and $\bar{X}_{1}^{\prime} \subseteq \mathbb{K}_{1}^{r_{1}^{\prime}}$ of $\widehat{X}_{1}^{\prime} \subseteq \widehat{Z}_{1}^{\prime}$. Set $R_{1}:=\mathbb{K}\left[T_{1}, \ldots, T_{r_{1}}\right] / I_{1}$ and define $R_{1}^{\prime}:=\mathbb{K}\left[T_{1}, \ldots, T_{r_{1}^{\prime}}\right] / I_{1}^{\prime}$.
Remark 4.2.10. In Setting 4.2.5; the cone over the columns of the degree matrix Q_{2} is pointed if the cone over the columns of Q_{1} was pointed. Similarly, in Setting : 4.2.9, the cone over the columns of Q_{1}^{\prime} is pointed if the cone over the columns of Q_{1} is pointed.
Proposition 4.2.11. Consider Setting 4.2.9;
(i) If $X_{1} \subseteq Z_{1}$ is a CEMDS and $T_{1}, \ldots, T_{r_{1}}, h_{1}, \ldots, h_{l}$ define pairwise nonassociated K_{1}-primes in R_{1} then $X_{1}^{\prime} \subseteq Z_{1}^{\prime}$ is a CEMDS.
(ii) If R_{1}^{\prime} is normal, the localization $\left(R_{1}^{\prime}\right)_{T_{1} \cdots T_{r_{1}}}$ is factorially K_{1}^{\prime}-graded and $T_{1}, \ldots, T_{r_{1}}$ define pairwise non-associated K_{1}-primes in R_{1} such that K_{1} is generated by any $r_{1}-1$ of their degrees, then $X_{1} \subseteq Z_{1}$ is a CEMDS.
(iii) If $X_{1}^{\prime} \subseteq Z_{1}^{\prime}$ is a CEMDS, then $X_{1} \subseteq Z_{1}$ is a CEMDS.

Proof. First, observe that the ideal I_{1}^{\prime} equals $I_{1}+\left\langle T_{r_{1}+1}-h_{1}, \ldots, T_{r_{1}^{\prime}}-h_{l}\right\rangle$. Consequently, we have a canonical graded isomorphism $R_{1}^{\prime} \rightarrow R_{1}$ sending $T_{r_{1}+i}$ to h_{i}. Assertion (i) follows directly.
We prove (ii). Since $\left(R_{1}^{\prime}\right)_{T_{1} \cdots T_{r_{1}}}$ is factorially K_{1}^{\prime}-graded, we obtain that $\left(R_{1}\right)_{T_{1} \cdots T_{r_{1}}}$ is factorially K_{1}-graded. As $T_{1}, \ldots, T_{r_{1}}$ define K_{1}-primes in R_{1}, we can apply [15; Thm. 1.2] to see that R_{1} is factorially K_{1}-graded. Since $T_{1}, \ldots, T_{r_{1}}$ are pairwise non-associated we conclude that $X_{1} \subseteq Z_{1}$ is a CEMDS.
We turn to (iii). Note that by construction, $T_{1}, \ldots, T_{r_{1}}$ also define K_{1}-primes in R_{1}. According to (ii), we only have to show that any $r_{1}-1$ of the degrees of $T_{1}, \ldots, T_{r_{1}}$ generate K_{1}. For this, it suffices to show that each $\operatorname{deg}\left(T_{j}\right)$ for $j=r_{1}+1, \ldots, r_{1}+l$ is a linear combination of any $r_{1}-1$ of the first r_{1} degrees. Since $T_{1}, \ldots, T_{r_{1}}$ generate R_{1} and T_{j} is not a multiple of any T_{i}, we see that for any $i=1, \ldots, r_{1}$, there is a monomial in h_{j} not depending on T_{i}. The assertion follows.

3. Computing modifications of Mori dream spaces

Based on Section '2', we provide a general algorithmic framework for computations with modifications of Mori dream spaces. This section has been published together with J. Hausen and A. Laface in [57, Sec. 3].
In order to encode a canonically embedded Mori dream space $X_{i} \subseteq Z_{i}$ and its Cox ring R_{i}, we use the triple (P_{i}, Σ_{i}, G_{i}) where P_{i} and Σ_{i} are as in Remark and $G_{i}=\left(g_{1}, \ldots, g_{s}\right)$ is a system of generators of the defining ideal I_{i} of the Cox ring R_{i}. We call such a triple $\left(P_{i}, \Sigma_{i}, G_{i}\right)$ as well a CEMDS.

Remark 4.3.1. In the sense of Chapter 2 , each CEMDS (P, Σ, G) corresponds to a $\operatorname{MDS}(R, \Phi)$ where the $\mathrm{GR} R=\left(G, \dot{Q}, Q^{0}, P, F_{\mathfrak{F}}\right)$ is computed using Algorithms 2.1.24: and 2.126 . The BUN Φ is obtained from Σ by Gale duality

$$
\Phi=\left\{Q\left(\gamma_{0}\right) ; \gamma_{0} \preceq \gamma \mathfrak{F} \text {-face, } P\left(\gamma_{0}^{*}\right) \in \Sigma\right\}, \quad \gamma:=\mathbb{Q}_{\geq 0}^{r}
$$

In particular, given a $\operatorname{CEMDS}\left(P_{i}, \Sigma_{i}, G_{i}\right)$, the degree map $Q_{i}: \mathbb{Z}^{r_{i}} \rightarrow K_{i}$ and \bar{X}_{i} as well as $p_{i}: \widehat{X}_{i} \rightarrow X_{i}$ are directly computable. Then Q_{i} and P_{i} are Gale dual to each other, i.e., Q_{i} is surjective and P_{i} is the dual of the inclusion $\operatorname{ker}\left(Q_{i}\right) \subseteq \mathbb{Z}^{r_{i}}$. The following two algorithms implement Proposition 4.2.11,
Algorithm 4.3.2 (StretchCEMDS). Input: a $\operatorname{CEMDS}\left(P_{1}, \Sigma_{1}, G_{1}\right)$ and a list $\left(f_{1}, \ldots, f_{l}\right)$ of polynomials $f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r_{1}}\right]$ defining pairwise non-associated $K_{1^{-}}$ primes in R_{1}.

- Compute the Gale dual $Q_{1}: \mathbb{Z}^{r_{1}} \rightarrow K_{1}$ of P_{1} with Algorithm 2.1.24;
- Let $Q_{1}^{\prime}: \mathbb{Z}^{r_{1}+l} \rightarrow K_{1}$ be the extension of Q_{1} by the degrees of f_{1}, \ldots, f_{l}.
- Using Algorithm 2.1.25; compute the Gale dual $P_{1}^{\prime}: \mathbb{Z}^{r_{1}+l} \rightarrow \mathbb{Z}^{n^{\prime}}$ of Q_{1}^{\prime} and the fan Σ^{\prime} in $\mathbb{Z}^{n^{\prime \prime}}$ defined by P_{1}^{\prime} and the ample class $w \in K_{1}^{\prime}=K_{1}$ of Z_{1}.
- Set $G_{1}^{\prime}:=\left(g_{1}, \ldots, g_{s}, T_{r_{1}+1}-f_{1}, \ldots, T_{r_{2}}-f_{l}\right)$ where $G_{1}=\left(g_{1}, \ldots, g_{s}\right)$.

Output: the CEMDS $\left(P_{1}^{\prime}, \Sigma_{1}^{\prime}, G_{1}^{\prime}\right)$.
The input of the second algorithm is more generally an embedded space $X_{1} \subseteq Z_{1}$ that means just a closed normal subvariety intersecting the big torus. In particular, we do not care for the moment if R_{1} is the Cox ring of X_{1}. We encode $X_{1} \subseteq Z_{1}$ as
well by a triple $\left(P_{1}, \Sigma_{1}, G_{1}\right)$ and name it for short an ES. For notational reasons we write ($P_{1}^{\prime}, \Sigma_{1}^{\prime}, G_{1}^{\prime}$) for the input.

Algorithm 4.3.3 (CompressCEMDS). Input: an ES $\left(P_{1}^{\prime}, \Sigma_{1}^{\prime}, G_{1}^{\prime}\right)$ such that R_{1}^{\prime} is normal, the localization $\left(R_{1}^{\prime}\right)_{T_{1} \cdots T_{r_{1}}}$ is factorially K_{1}^{\prime}-graded and the last l relations in G_{1}^{\prime} are fake, i.e., of the form $f_{i}=T_{i}-h_{i}$ with h_{i} not depending on T_{i}. Option: verify.

- Successively substitute $T_{i}=h_{i}$ in G_{1}^{\prime}. Set $G_{1}:=\left(f_{1}, \ldots, f_{r_{1}}\right)$ where $G_{1}^{\prime}=\left(f_{1}, \ldots, f_{r_{1}^{\prime}}\right)$ and $r_{1}:=r_{1}^{\prime}-l$.
- Set $K_{1}:=K_{1}^{\prime}$ and let $Q_{1}: \mathbb{Z}^{r_{1}} \rightarrow K_{1}$ be the map sending e_{i} to $\operatorname{deg}\left(T_{i}\right)$ for $1 \leq i \leq r_{1}$.
- Compute a Gale dual $P_{1}: \mathbb{Z}^{r_{1}} \rightarrow \mathbb{Z}^{n}$ of Q_{1} with Algorithm 2.1.25: and the fan Σ_{1} in \mathbb{Z}^{n} defined by P_{1} and the ample class $w \in K_{1}=K_{1}^{\prime}$ of Z_{1}^{\prime}.
- If verify was asked then
- check if any $r_{1}-1$ of the degrees of $T_{1}, \ldots, T_{r_{1}}$ generate K_{1}; see Algorithm 2.1.32;
- check if $\operatorname{dim}\left(I_{1}\right)-\operatorname{dim}\left(I_{1}+\left\langle T_{i}, T_{j}\right\rangle\right) \geq 2$ for all $i \neq j$,
- check if $T_{1}, \ldots, T_{r_{1}}$ define K_{1}-primes in R_{1}; see Algorithm 2.2.10;

Output: the ES $\left(P_{1}, \Sigma_{1}, G_{1}\right)$. If $\left(P_{1}^{\prime}, \Sigma_{1}^{\prime}, G_{1}^{\prime}\right)$ is a CEMDS or all verifications were positive, then $\left(P_{1}, \Sigma_{1}, G_{1}\right)$ is a CEMDS. In particular, then R_{1} is the Cox ring of the corresponding subvariety $X_{1} \subseteq Z_{1}$.

Remark 4.3.4. In Algorithm 4.3.3; observe that it is no restriction to assume that each fake relation $T_{i}-h \in\left\langle\dot{G}_{1}^{\prime}\right\rangle$ already satisfies $T_{i}-h \in G^{\prime}$. Write $T_{i}-h=$ $h_{1} f_{1}+\ldots+h_{r_{1}} f_{r_{1}}$ with $h_{j} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$. Comparing the degrees of both sides with respect to a suitable monomial ordering, we obtain $T_{i}-h=f_{j}$ for some j.

We turn to the algorithmic version of Theorem 4.2.6. We will work with the saturation of an ideal $\mathfrak{a} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ with respect to an ideal $\mathfrak{b} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right] ;$ recall that this is the ideal

$$
\mathfrak{a}: \mathfrak{b}^{\infty}:=\left\{g \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right] ; g \mathfrak{b}^{k} \subseteq \mathfrak{a} \text { for some } k \in \mathbb{Z}_{\geq 0}\right\} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]
$$

In case of a principal ideal $\mathfrak{b}=\langle f\rangle$, we write $\mathfrak{a}: f^{\infty}$ instead of $\mathfrak{a}: \mathfrak{b}^{\infty}$. We say that an ideal $\mathfrak{a} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ is f-saturated if $\mathfrak{a}=\mathfrak{a}: f^{\infty}$ holds. We will only consider saturations with respect to $f=T_{1} \cdots T_{r} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$; we refer to [90; Chap. 12] for the computational aspect. Let us recall the basic properties, see also [64].
Lemma 4.3.5. Consider $\mathbb{K}\left[T, U^{ \pm 1}\right]$ with tupels of variables $T=\left(T_{1}, \ldots, T_{r_{1}}\right)$ and $U=\left(U_{1}, \ldots, U_{r_{2}-r_{1}}\right)$. For $f:=U_{1} \cdots U_{r_{2}-r_{1}} \in \mathbb{K}[U]$, one has mutually inverse bijections

$$
\begin{aligned}
&\left\{\text { ideals in } \mathbb{K}\left[T, U^{ \pm 1}\right]\right\} \longleftrightarrow \\
& \mathfrak{a} \mapsto \\
& \mathfrak{a} \cap \mathbb{K}[T, U] \\
&\langle\mathfrak{b}\rangle_{\mathbb{K}\left[T, U^{ \pm 1}\right]} \longleftrightarrow
\end{aligned}
$$

Under these maps, the prime ideals of $\mathbb{K}\left[T, U^{ \pm 1}\right]$ correspond to the f-saturated prime ideals of $\mathbb{K}[T, U]$.

For transferring polynomials from $\mathbb{K}\left[T_{1}, \ldots, T_{r_{1}}\right]$ to $\mathbb{K}\left[T_{1}, \ldots, T_{r_{2}}\right]$ and vice versa, recall from Chapter 2 the following operations; compare also [44]. Consider a homomorphism $\pi: \mathbb{T}^{n} \rightarrow \mathbb{T}^{m}$ of tori and its kernel $H \subseteq \mathbb{T}^{n}$.

- By a \star-pull back of $g \in \mathbb{K}\left[S_{1}^{ \pm 1}, \ldots, S_{m}^{ \pm 1}\right]$ we mean a polynomial $\pi^{\star} g \in$ $\mathbb{K}\left[T_{1}, \ldots, T_{n}\right]$ with coprime monomials such that $\pi^{*} g$ and $\pi^{\star} g$ are associated in $\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{n}^{ \pm 1}\right]$.
- By a \star-push forward of an H-homogeneous $h \in \mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{n}^{ \pm 1}\right]$ we mean a polynomial $\pi_{\star} h \in \mathbb{K}\left[S_{1}, \ldots, S_{m}\right]$ with coprime monomials such that h and $\pi^{*} \pi_{\star} h$ are associated in $\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{n}^{ \pm 1}\right]$.

Note that \star-pull backs and \star-push forwards always exist and are unique up to constants. The \star-pull back $\pi^{\star} g$ of a Laurent polynomial is its usual pull back $\pi^{*} g$ scaled with a suitable monomial. See Algorithm 2.2 on how to compute the *-push forward.

Lemma 4.3.6. Consider a monomial epimorphism $\pi: \mathbb{K}^{n_{1}} \times \mathbb{T}^{n_{2}} \rightarrow \mathbb{K}^{m}$. Write $T=\left(T_{1}, \ldots, T_{n_{1}}\right)$ and $U=\left(U_{1}, \ldots, U_{n_{2}}\right)$.
(i) If $\mathfrak{a} \subseteq \mathbb{K}\left[T, U^{ \pm 1}\right]$ is a prime ideal, then $\left\langle\pi_{\star} \mathfrak{a}\right\rangle \subseteq \mathbb{K}\left[S^{ \pm 1}\right]$ is a prime ideal.
(ii) If $\mathfrak{b} \subseteq \mathbb{K}\left[S^{ \pm 1}\right]$ is a radical ideal, then $\left\langle\pi^{\star} \mathfrak{b}\right\rangle \subseteq \mathbb{K}\left[T, U^{ \pm 1}\right]$ is a radical ideal.

Proof. The first statement follows from $\left\langle\pi_{\star} \mathfrak{a}\right\rangle=\left(\pi^{*}\right)^{-1}(\mathfrak{a})$. To prove (ii), let $f \in$ $\sqrt{\left\langle\pi^{\star} \mathfrak{b}\right\rangle}$. Since $\sqrt{\left\langle\pi^{*} \mathfrak{b}\right\rangle}=I\left(\pi^{-1}(V(\mathfrak{b}))\right)$ is invariant under $H:=\operatorname{ker}\left(\left.\pi\right|_{\mathbb{T}^{n_{1}+n_{2}}}\right)$, we may assume that f is H-homogeneous, i.e., $f(h \cdot z)=\chi(h) f(z)$ holds with some character $\chi \in \mathbb{X}(H)$. Choose $\eta \in \mathbb{X}\left(\mathbb{T}^{n_{1}+n_{2}}\right)$ with $\chi=\eta_{\mid H}$. Then $\eta^{-1} f$ is H-invariant and thus belongs to $\pi^{*}(I(V(\mathfrak{b}))$. Hilbert's Nullstellensatz and the assumption give $\pi^{*}\left(I(V(\mathfrak{b}))=\pi^{*}(\mathfrak{b})\right.$. We conclude $f \in\left\langle\pi^{\star} \mathfrak{b}\right\rangle$.

We are ready for the first algorithm, treating the contraction problem. We enter a weak CEMDS $\left(P_{2}, \Sigma_{2}, G_{2}\right)$ in the sense that G_{2} provides generators for the extension of I_{2} to $\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{r_{2}}^{ \pm 1}\right]$ and a toric contraction $Z_{2} \rightarrow Z_{1}$, encoded by $\left(P_{1}, \Sigma_{1}\right)$, and obtain a CEMDS $X_{1} \subseteq Z_{1}$.

Algorithm 4.3.7 (ContractCEMDS). Input: a weak CEMDS $\left(P_{2}, \Sigma_{2}, G_{2}\right)$ and a pair $\left(P_{1}, \Sigma_{1}\right)$ where $P_{2}=\left[P_{1}, B\right]$ and Σ_{1} is a coarsening of Σ_{2} removing the rays through the columns of B.

- For $G_{2}=\left(g_{1}, \ldots, g_{s}\right)$, set $h_{i}:=g_{i}\left(T_{1}, \ldots, T_{r_{1}}, 1, \ldots, 1\right) \in \mathbb{K}\left[T_{1}, \ldots, T_{r_{1}}\right]$.
- Compute a system of generators G_{1}^{\prime} for $I_{1}^{\prime}:=\left\langle h_{1}, \ldots, h_{s}\right\rangle:\left(T_{1} \cdots T_{r_{1}}\right)^{\infty}$.
- Set $\left(P_{1}^{\prime}, \Sigma_{1}^{\prime}, G_{1}^{\prime}\right):=\left(P_{1}, \Sigma_{1}, G_{1}^{\prime}\right)$ and reorder the variables such that the last l relations of G_{1}^{\prime} are as in Algorithm 4.3.3;
- Apply Algorithm 4.3 to $\left(P_{1}^{\prime}, \Sigma_{1}^{\prime}, G_{1}^{\prime}\right)$ and write $\left(P_{1}, \Sigma_{1}, G_{1}\right)$ for the output.

Output: $\left(P_{1}, \Sigma_{1}, G_{1}\right)$. This is a CEMDS. In particular, R_{1} is the Cox ring of the image $X_{1} \subseteq Z_{1}$ of $X_{2} \subseteq Z_{2}$ under $Z_{2} \rightarrow Z_{1}$.
Proof. First we claim that in $\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{r_{1}}^{ \pm 1}\right]$, the ideal generated by h_{1}, \ldots, h_{s} coincides with the ideal generated by $p_{1}^{\star}\left(p_{2}\right)_{\star} g_{1}, \ldots, p_{1}^{\star}\left(p_{2}\right)_{\star} g_{r}$. To see this, consider $p_{i}: \mathbb{T}^{r_{i}} \rightarrow \mathbb{T}^{n}$ and let S_{1}, \ldots, S_{n} be the variables on \mathbb{T}^{n}. Then the claim follows from $\left(P_{2}\right)_{i j}=\left(P_{1}\right)_{i j}$ for $j \leq r_{1}$ and

$$
p_{2}^{*}\left(S_{i}\right)=T_{1}^{\left(P_{2}\right)_{i 1}} \cdots T_{r_{2}}^{\left(P_{2}\right)_{i r_{2}}}, \quad \quad p_{1}^{*}\left(S_{i}\right)=T_{1}^{\left(P_{1}\right)_{i 1}} \cdots T_{r_{1}}^{\left(P_{1}\right)_{i r_{1}}}
$$

As a consequence of the claim, we may apply Lemma 4.6 and obtain that G_{1}^{\prime} defines a radical ideal in $\mathbb{K}\left[T_{1}^{ \pm}, \ldots, T_{r_{1}}^{ \pm}\right]$. Moreover, from Theorem 4.2.6 we infer that \widehat{X}_{1}^{\prime}, defined as in Setting 4.2 .5 , is irreducible. Since G_{1}^{\prime} has $\widehat{X}_{1}^{\prime} \cap \mathbb{T}^{r_{1}}$ as its zero set, it defines a prime ideal in $\mathbb{K}\left[T_{1}^{ \pm}, \ldots, T_{r_{1}}^{ \pm}\right]$. Lemma 4.3.5 then shows that $I_{1}^{\prime} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r_{1}}\right]$ is a prime ideal. Using Theorem 4.2.6 again, we see that $\left(P_{1}^{\prime}, \Sigma_{1}^{\prime}, G_{1}^{\prime}\right)$ as defined in the third step of the algorithm is a CEMDS. Thus, we may enter Algorithm and en up with a CEMDS.

We turn to the modification problem. Given a Mori dream space X_{1} with Cox ring R_{1} and a modification $X_{2} \rightarrow X_{1}$, we want to know if X_{2} is a Mori dream space, and if so, we ask for the Cox ring R_{2} of X_{2}. Our algorithm verifies a guess of
prospective generators for R_{2} and, if successful, computes the relations. In practice, the generators are added via Algorithm 4.3.2;

Algorithm 4.3.8 (ModifyCEMDS). Input: a weak CEMDS $\left(P_{1}, \Sigma_{1}, G_{1}\right)$, a pair $\left(P_{2}, \Sigma_{2}\right)$ with a matrix $P_{2}=\left[P_{1}, B\right]$ and a fan Σ_{2} having the columns of P_{2} as its primitive generators and refining Σ_{1}. Options: verify.

- Compute $G_{2}^{\prime}:=\left(h_{1}, \ldots, h_{s}\right)$ with $h_{i}=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(g_{i}\right)$ and $G_{1}=\left(g_{1}, \ldots, g_{s}\right)$.
- Compute a list of generators G_{2} for $I_{2}:=\left\langle h_{1}, \ldots, h_{s}\right\rangle:\left(T_{r_{1}+1} \cdots T_{r_{2}}\right)^{\infty}$.
- If verify was asked
- compute a Gale dual $Q_{2}: \mathbb{Z}^{r_{2}} \rightarrow K_{2}$ of P_{2} with Algorithm 2.1.24,
- check if $\operatorname{dim}\left(I_{2}\right)-\operatorname{dim}\left(I_{2}+\left\langle T_{i}, T_{j}\right\rangle\right) \geq 2$ for all $i \neq j$,
- check if $T_{1}, \ldots, T_{r_{2}}$ define K_{2}-primes in R_{2}; see Algorithm 2.2.10;
- check if R_{2} is normal, e.g., using Proposition4.1.4,

Output: $\quad\left(P_{2}, \Sigma_{2}, G_{2}\right)$, if the verify-checks were all positive, this is a CEMDS. In particular, R_{2} then is the Cox ring of the strict transform $X_{2} \subseteq Z_{2}$ of $X_{1} \subseteq Z_{1}$ with respect to $Z_{2} \rightarrow Z_{1}$.

Proof. We write shortly $\mathbb{K}\left[T, U^{ \pm 1}\right]$ with the tuples $T=\left(T_{1}, \ldots, T_{r_{1}}\right)$ and $U=$ $\left(U_{1}, \ldots, U_{r_{2}-r_{1}}\right)$ of variables. Lemma 4. ensures that G_{2} generates a radical ideal in $\mathbb{K}\left[T, U^{ \pm}\right]$. To see that the zero set $V\left(G_{2}\right) \subseteq \mathbb{K}^{r_{1}} \times \mathbb{T}^{r_{2}-r_{1}}$ is irreducible, consider the situation of equation (3) in the proof of Theorem 4.2.6. There, in the right hand side diagram, we may lift the homomorphisms of tori to

Observe that we have an isomorphism $\varphi=\alpha \times$ id given by

$$
\mathbb{K}^{r_{1}} \times \mathbb{T}^{r_{2}-r_{1}} \rightarrow \mathbb{K}^{r_{1}} \times \mathbb{T}^{r_{2}-r_{1}}, \quad\left(z, z^{\prime}\right) \mapsto\left(z_{1}\left(z^{\prime}\right)^{A_{1 *}}, \ldots, z_{r_{1}}\left(z^{\prime}\right)^{A_{r_{1} *}}, z^{\prime}\right)
$$

Since \bar{X}_{1} is irreducible, so is $\varphi^{-1}\left(\bar{X}_{1} \times \mathbb{T}^{r_{2}-r_{1}}\right)=\alpha^{-1}\left(\bar{X}_{1}\right)$. Hence, the image $\mu\left(\alpha^{-1}\left(\bar{X}_{1}\right)\right)=\bar{X}_{2} \cap \mathbb{K}^{r_{1}} \times \mathbb{T}^{r_{2}-r_{1}}=V\left(G_{2}\right)$ is irreducible as well. Moreover, Lemma 4.3.5 implies that G_{2} generates a prime ideal in $\mathbb{K}[T, U]$. If the verify-checks were all positive, then Theorem 4.2.6: tells us that (P_{2}, Σ_{2}, G_{2}) is a CEMDS.

Remark 4.3.9. If the canonical map $K_{2} \rightarrow K_{1}$ admits a section, e.g., if K_{1} is free, then, in the verification step of Algorithm 4.3.8, it suffices to check the variables $T_{r_{1}+1}, \ldots, T_{r_{2}}$ for being K_{2}-prime in R_{2}, see Proposition 4.1.4;

4. Application: Gorenstein log del Pezzo surfaces

As an application of the algorithms developed in Section'3, mainly Algorithm 4.3.7; we compute Cox rings of Gorenstein log-terminal del Pezzo surfaces X of Picard number one that do not admit a non-trivial \mathbb{K}^{*}-action. This section has been published with J. Hausen and A. Laface in [57.; Sec. 4].
Del Pezzo means that the anticanonical divisor $-\mathcal{K}_{X}$ is ample and the condition "Gorenstein log-terminal" implies that X has at most ADE-singularities. The idea is to present each such surface X, classified by Alekseev and Nikulin [2], as $\mathbb{P}_{2} \leftarrow \widetilde{X} \rightarrow$ X with smooth \widetilde{X} and information about $\mathcal{R}(\widetilde{X})$ is known from Hasset, Tschinkel,

Derenthal, Artebani, Garbagnati and Laface [49, 33, 4]. The Cox rings admitting a non-trivial \mathbb{K}^{*}-action have been computed in [59], the toric ones in, e.g., [72].
In [2, Theorem 8.3], the Gorenstein log-terminal del Pezzo surfaces X of Picard number one have been classified according to the singularity type, i.e., the configuration $\mathrm{S}(X)$ of singularities. Besides \mathbb{P}_{2}, there are four toric Gorenstein log-terminal surfaces del Pezzo surfaces X of Picard number one, namely the singularity types $A_{1}, A_{1} A_{2}, 2 A_{1} A_{3}$ and $3 A_{2}$. Moreover, there are thirteen (deformation types of) \mathbb{K}^{*} surfaces; they represent the singularity types $A_{4}, D_{5}, E_{6}, A_{1} 2 A_{3}, 3 A_{1} D_{4}, A_{1} D_{6}$, $A_{2} A_{5}, E_{7}, A_{1} E_{7}, A_{2} E_{6}, E_{8}, 2 D_{4}$ and their Cox rings have been determined in [59, Theorem 5.6].
We now compute the Cox rings of the remaining ones using Algorithm 4.3.2 and the knowledge of generators of their resolutions [33; 4]; note that the relations for Cox rings of the resolutions is still not known in all cases. In the sequel, we will write a Cox ring as a quotient $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] / I$ and specify generators for the ideal I. As before, the $\mathrm{Cl}(X)$-grading is encoded by a degree matrix, i.e., a matrix with $\operatorname{deg}\left(T_{1}\right), \ldots, \operatorname{deg}\left(T_{r}\right) \in \operatorname{Cl}(X)$ as columns.
Theorem 4.4.1. The following table lists the Cox rings of the Gorenstein logterminal del Pezzo surfaces X of Picard number one that do not allow a non-trivial \mathbb{K}^{*}-action.

S (X)	Cox ring $\mathcal{R}(X)$	$\mathrm{Cl}(X)$ and degree matrix
$2 A_{4}$	$\mathbb{K}\left[T_{1}, \ldots, T_{6}\right] / I$ with I generated by $\begin{aligned} & -T_{2} T_{5}+T_{3} T_{4}+T_{6}^{2},-T_{2} T_{4}+T_{3}^{2}+T_{5} T_{6}, \\ & T_{1} T_{6}-T_{3} T_{5}+T_{4}^{2}, T_{1} T_{3}-T_{4} T_{6}+T_{5}^{2}, \\ & T_{1} T_{2}-T_{3} T_{6}+T_{4} T_{5} \end{aligned}$	$\begin{aligned} & \mathbb{Z} \oplus \mathbb{Z} / 5 \mathbb{Z} \\ & {\left[\begin{array}{llllll} \frac{1}{2} & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{0} & \frac{1}{1} \end{array}\right]} \end{aligned}$
D_{8}	$\mathbb{K}\left[T_{1}, \ldots, T_{4}\right] / I$ with I generated by $T_{1}^{2}-T_{4}^{2} T_{2} T_{3}+T_{4}^{4}+T_{3}^{4}$	$\begin{aligned} & \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \\ & {\left[\begin{array}{llll} \frac{2}{\overline{1}} & \frac{1}{1} & \frac{1}{1} & \frac{1}{0} \end{array}\right]} \end{aligned}$
$D_{5} A_{3}$	$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] / I$ with I generated by $T_{1} T_{3}-T_{4}^{2}-T_{5}^{2}, T_{1} T_{2}-T_{3}^{2}+T_{4} T_{5}$	$\begin{aligned} & \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z} \\ & {\left[\begin{array}{lllll} \frac{1}{2} & \frac{1}{2} & \frac{1}{0} & \frac{1}{3} & \frac{1}{1} \end{array}\right]} \end{aligned}$
$D_{6} 2 A_{1}$	$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] / I$ with I generated by $T_{5} T_{2}-T_{5}^{2}+T_{3}^{2}+T_{4}^{2},-T_{2}^{2}+T_{5} T_{2}+T_{1}^{2}-T_{4}^{2}$	$\begin{aligned} & \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \\ & {\left[\begin{array}{lllll} \frac{1}{1} & \frac{1}{0} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} \\ \frac{1}{0} & \frac{1}{1} & \overline{0} & \frac{1}{1} & \frac{1}{1} \end{array}\right]} \end{aligned}$
$E_{6} A_{2}$	$\mathbb{K}\left[T_{1}, \ldots, T_{4}\right] / I$ with I generated by $-T_{1} T_{4}^{2}+T_{2}^{3}+T_{2} T_{3} T_{4}+T_{3}^{3}$	$\begin{aligned} & \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} \\ & {\left[\begin{array}{llll} \frac{1}{1} & \frac{1}{2} & \frac{1}{0} & \frac{1}{1} \end{array}\right]} \end{aligned}$
$E_{7} A_{1}$	$\mathbb{K}\left[T_{1}, \ldots, T_{4}\right] / I$ with I generated by $-T_{1} T_{3}^{3}-T_{2}^{2}+T_{2} T_{3} T_{4}+T_{4}^{4}$	$\begin{aligned} & \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z} \\ & {\left[\begin{array}{llll} \frac{1}{1} & \frac{2}{1} & \frac{1}{1} & \frac{1}{0} \end{array}\right]} \end{aligned}$
E_{8}	$\mathbb{K}\left[T_{1}, \ldots, T_{4}\right] / I$ with I generated by $T_{1}^{3}+T_{1}^{2} T_{4}^{2}+T_{2}^{2}-T_{3} T_{4}^{5}$	$\begin{aligned} & \mathbb{Z} \\ & {\left[\begin{array}{llll} 2 & 3 & 1 & 1 \end{array}\right]} \end{aligned}$

	$\mathbb{K}\left[T_{1}, \ldots, T_{4}\right] / I$ with I generated by	$\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$
A_{7}	$T_{1}^{2}-T_{4} T_{2} T_{3}+T_{4}^{4}+T_{3}^{4}$	

A_{8}		$\begin{aligned} & \oplus \mathbb{Z} / 3 \mathbb{Z} \\ & \frac{1}{1} \\ & \frac{1}{1} \end{aligned} \quad \frac{1}{0}$
$A_{7} A_{1}$	$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] / I$ with I generated by $-T_{2} T_{3}+T_{4}^{2}-T_{5}^{2}, T_{1}^{2}-T_{3}^{2}+T_{4} T_{5}$	$\begin{aligned} & \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z} \\ & {\left[\begin{array}{llll} \frac{1}{2} & \frac{1}{2} & \frac{1}{0} & \frac{1}{3} \end{array}\right.} \end{aligned}$
$\begin{array}{lll} & \mathbb{K}\left[T_{1}, \ldots, T_{7}\right] / I \text { with I generated by } & \\ & T_{5}^{2}+T_{6}^{2}-T_{7} T_{1}, T_{4} T_{5}+T_{6} T_{3}+T_{1}-T_{2} T_{5}-T_{5}-T_{7}^{2}, & T_{4}, \\ & -T_{3} T_{6}-T_{5} T_{7}+T_{2}^{2}-T_{4}^{2}+T_{3} T_{5}, \\ , T_{3}^{2}-T_{6} T_{1}+T_{7}^{2}, & T_{1}^{2}-T_{2}^{2}-T_{4}^{2}+2 T_{3} T_{5}-T_{7} T_{6} \\ A_{5} A_{2} A_{1} & T_{1} T_{5}-T_{2} T_{5}-T_{4} T_{6}+T_{7} T_{3}, & \\ & T_{3} T_{4}-T_{6}^{2}+T_{7} T_{1}-T_{2} T_{7}, & \end{array}$ The class group and degree matrix are $\left[\begin{array}{ccccccc}\frac{1}{2} & \frac{1}{2} & \frac{1}{3} & \frac{1}{5} & \frac{1}{1} & \frac{1}{4} & \frac{1}{0}\end{array}\right]$ $\mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z}$ $\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I$ with I generated by $-\frac{1}{2} T_{4}^{2}+T_{5}^{2}+\frac{1}{2} T_{7} T_{9},$ $-\frac{1}{2} T_{3} T_{8}-\frac{1}{2} T_{4} T_{5}+T_{6}^{2}$ $-\frac{1}{2} T_{3} T_{4}+T_{5} T_{8}+\frac{1}{2} T_{6} T_{9}$ $T_{2} T_{6}-T_{7} T_{9}-4 T_{8}^{2}$ $T_{5} T_{2}-2 T_{3} T_{7}+T_{8} T_{9},$ $2 A_{3} A_{1} \quad-\frac{1}{4} T_{2} T_{4}+\frac{1}{4} T_{3} T_{9}+T_{7} T_{8},$ $T_{1} T_{7}+T_{2} T_{7}-4 T_{3} T_{4}+2 T_{6} T_{9},$ $T_{1} T_{6}-2 T_{4}^{2}+T_{7} T_{9},$ $\frac{1}{2} T_{1} T_{6}-\frac{1}{2} T_{2} T_{6}+T_{3}^{2}-T_{4}^{2},$ $\begin{aligned} & T_{1}^{2}-16 T_{4} T_{5}+8 T_{7}^{2}-T_{9}^{2}, \\ & T_{2}^{2}-16 T_{3} T_{8}+8 T_{7}^{2}-T_{9}^{2}, \\ & T_{2} T_{3}-T_{4} T_{9}+4 T_{5} T_{7}-8 T_{6} T_{8}, \\ & T_{1} T_{2}-8 T_{7}^{2}-T_{9}^{2}, \\ & T_{1} T_{5}+2 T_{3} T_{7}-4 T_{4} T_{6}+T_{8} T_{9}, \\ & T_{1} T_{3}-T_{4} T_{9}-4 T_{5} T_{7}, \\ & -\frac{1}{8} T_{4} T_{1}+\frac{1}{8} T_{2} T_{4}+T_{5} T_{6}-T_{7} T_{8}, \\ & -\frac{1}{16} T_{9} T_{1}+\frac{1}{16} T_{2} T_{9}-T_{4} T_{8}+T_{6} T_{7}, \\ & -\frac{1}{8} T_{9} T_{1}+\frac{1}{8} T_{2} T_{9}+T_{3} T_{5}-T_{4} T_{8}, \\ & \frac{1}{4} T_{1} T_{8}-\frac{1}{4} T_{2} T_{8}+T_{6} T_{3}-T_{4} T_{7}, \end{aligned}$ $T_{1} T_{8}-2 T_{4} T_{7}+T_{5} T_{9}$ The class group and degree matrix are $\left[\begin{array}{ccccccccc}\frac{1}{1} & \frac{1}{1} & \frac{1}{0} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{0} & \frac{1}{0} & \frac{1}{0} \\ \mathbb{Z} & \frac{1}{3} & \frac{0}{2} & \overline{1} & \frac{1}{2} & \frac{1}{1} & \frac{0}{3} & \overline{0} & \frac{0}{1}\end{array}\right]$		

$\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I$ with I generated by	$\begin{aligned} & (-\zeta-1) T_{1} T_{9}+(\zeta+1) T_{2} T_{9}-3 T_{8} T_{4}+3 T_{5} T_{6}, \\ & (-2 \zeta-1) T_{1} T_{8}+(\zeta-1) T_{2} T_{8}+3 T_{3}^{2}+(\zeta-1) T_{7} T_{10}, \end{aligned}$
$\begin{aligned} & 3 T_{3} T_{6}+3 T_{4} T_{7} \zeta+(-3 \zeta-3) T_{5} T_{8}, \\ & (\zeta-1) T_{2} T_{8}+3 T_{3}^{2}+(-\zeta-2) T_{6} T_{9}, \end{aligned}$	$\begin{aligned} & -3 T_{1} T_{6}+(3 \zeta+3) T_{2} T_{6}+(-3 \zeta-3) T_{7} T_{9}+3 T_{8} T_{10}, \\ & (-\zeta-2) T_{1} T_{7}+(2 \zeta+1) T_{2} T_{7}+3 T_{5}^{2}+(-\zeta-2) T_{8} T_{9}, \end{aligned}$
$3 T_{2} T_{7} \zeta+3 T_{6} T_{10}+(-3 \zeta-3) T_{8} T_{9}$,	$(-\zeta-2) T_{1} T_{6}+(2 \zeta+1) T_{2} T_{6}+3 T_{3} T_{5}+(-\zeta-2) T_{7} T_{9}$
$(-\zeta+1) T_{2} T_{5}+(\zeta-1) T_{4} T_{9}+3 T_{6} T_{8}$,	$(2 \zeta+1) T_{1} T_{6}+(-2 \zeta-1) T_{2} T_{6}-3 T_{3} T_{5}+3 T_{4}^{2}$,
$-\zeta T_{1} T_{10}+T_{2} T_{10} \zeta+3 T_{4} T_{7}-3 T_{5} T_{8}$,	$(-\zeta+1) T_{1} T_{5}+(-\zeta-2) T_{2} T_{5}+(2 \zeta+1) T_{3} T_{10}+3 T_{7}^{2}$,
$(\zeta+1) T_{1} T_{10}-T_{2} T_{10} \zeta+3 T_{5} T_{8}-T_{9}^{2}$,	$(-\zeta+1) T_{1} T_{5}+(\zeta-1) T_{2} T_{5}-3 T_{6} T_{8}+3 T_{7}^{2}$,
$-T_{1} T_{9} \zeta-T_{2} T_{9}+3 T_{3} T_{7}+(\zeta+1) T_{10}^{2}$	$-3 T_{1} T_{4}+(3 \zeta+3) T_{2} T_{4}+(-3 \zeta-3) T_{3} T_{9}+3 T_{5} T_{10}$
$-T_{1} T_{9} \zeta+T_{2} T_{9} \zeta+3 T_{3} T_{7}-3 T_{8} T_{4}$,	$(-2 \zeta-1) T_{1} T_{4}+(2 \zeta+1) T_{5} T_{10}+3 T_{6}^{2}$,
$(-\zeta+1) T_{1} T_{8}+(\zeta-1) T_{2} T_{8}+3 T_{3}^{2}-3 T_{4} T_{5}$,	$(\zeta+2) T_{1} T_{4}+(-2 \zeta-1) T_{2} T_{4}+(\zeta-1) T_{3} T_{9}+3 T_{7} T_{8}$,
$(\zeta+2) T_{1} T_{7}+(-\zeta-2) T_{2} T_{7}+3 T_{4} T_{3}-3 T_{5}^{2}$,	$(-\zeta+1) T_{1} T_{3}+(\zeta-1) T_{5} T_{9}+3 T_{6} T_{7}$,
$T_{2} T_{1}+(-\zeta-1) T_{2}^{2}+3 T_{8} T_{3}+T_{9} T_{10} \zeta$,	$3 \zeta T_{1} T_{3}+3 T_{4} T_{10}+(-3 \zeta-3) T_{5} T_{9}$,
$-\zeta T_{1} T_{2}+3 T_{4} T_{6}+T_{9} T_{10} \zeta$,	$(\zeta+2) T_{1} T_{3}+(-2 \zeta-1) T_{2} T_{3}+(\zeta-1) T_{5} T_{9}+3 T_{8}^{2}$,
$T_{1}^{2}+(-\zeta-1) T_{1} T_{2}+3 T_{5} T_{7}+T_{9} T_{10} \zeta$	where ζ is a primitive third root of unity.
The class group and degree matrix are	
$\mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$	$\left[\begin{array}{lllllllllll}\frac{1}{2} & \frac{1}{2} & \frac{1}{1} & \frac{1}{0} & \frac{1}{2} & \frac{1}{1} & \frac{1}{2} & \frac{1}{0} & \frac{1}{1} & \frac{1}{0} \\ 1 & 1 & 2 & 2 & & \end{array}\right.$
	$\left[\begin{array}{lllllllllll}\overline{1} & \overline{1} & \overline{2} & \overline{2} & \overline{2} & \overline{0} & \overline{0} & \overline{0} & \overline{1} & \overline{1}\end{array}\right]$

Proof. According to [2, Thm. 8.3], the Gorenstein \log del Pezzo surfaces X with $\varrho(X)=1$ have ADE-singularity types

$$
\begin{array}{rrrrrrrrrr}
A_{7}, & A_{8}, & A_{7} A_{1}, & A_{5} A_{2} A_{1}, & 2 A_{4}, \quad D_{8}, \quad D_{5} A_{3}, & D_{6} 2 A_{1}, & 2 A_{3} 2 A_{1}, & 4 A_{2}, \\
D_{4} 3 A_{1}, & 2 A_{3} A_{1}, & A_{4}, & A_{5} A_{1}, & A_{5} A_{2}, & D_{5}, & D_{6} A_{1}, & E_{6} A_{2}, & E_{6}, & E_{7} A_{1}, \\
\text { (4) } & E_{7}, & E_{8}, & 2 D_{4}, & A_{1}, & A_{2} A_{1}, & A_{3} 2 A_{1}, & 3 A_{2} . \tag{4}
\end{array}
$$

For each singularity type, up to isomorphism, there is exactly one such surface except for the cases $E_{6} A_{2}, E_{7} A_{1}$ and E_{8} where exactly two isomorphism classes occur, and case $2 D_{4}$ where there are infinitely many classes. As noted in the introduction, the singularity types shown in the last two rows of (4) are toric or are \mathbb{K}^{*}-surfaces; this includes all $2 D_{4}$ cases.
Each of the remaining surfaces X, is obtained by contracting curves of a smooth surface X_{2} arising as a blow up of \mathbb{P}_{2} with generators for the Cox ring known by [33, 4]. A direct application of Algorithms 4.3.8 and 4.3 .7 is not always feasible. However, we have enough information to present the blow ups of \mathbb{P}_{2} as a weak CEMDS. As an example, we treat the $D_{5} A_{3}$-case. By [4], with $X_{2}:=X_{141}$, additional generators for $\mathcal{R}\left(X_{2}\right)$ correspond in $\mathcal{R}\left(\mathbb{P}_{2}\right)$ to

$$
f_{1}:=T_{1}-T_{2}, \quad f_{2}:=T_{1} T_{2}-T_{2}^{2}+T_{1} T_{3}
$$

Using Algorithm 4.3.with input the CEMDS \mathbb{P}_{2} and $\left(f_{1}, f_{2}\right)$, we obtain a CEMDS X_{1}. Again by [4; Sec. 6], we know the degree matrix Q_{2} of X_{2}. Write $Q_{2}=[D, C]$ with submatrices D and C consisting of the first r_{1} and the last $r_{2}-r_{1}$ columns respectively. We compute a Gale dual matrix P_{2} of the form $P_{2}=\left[P_{1}, B\right]$ by solving $C B^{t}=-D P_{1}^{t}$. Let $p_{1}: \mathbb{T}^{5} \rightarrow \mathbb{T}^{4}$ and $p_{2}: \mathbb{T}^{14} \rightarrow \mathbb{T}^{4}$ be the maps of tori corresponding to P_{1} and P_{2}. Instead of using Algorithm 4.3.8, we directly produce the equations G_{2}^{\prime} for X_{2} on the torus:

$$
\begin{aligned}
& p_{2}^{\star}\left(p_{1}\right)_{\star} f_{1}=T_{1} T_{6} T_{7} T_{8} T_{14}-T_{2} T_{10} T_{11}^{2}-T_{3} T_{12} T_{13}^{2} \\
& p_{2}^{\star}\left(p_{1}\right)_{\star} f_{2}=T_{1} T_{4} T_{14}^{2}+T_{2} T_{3} T_{9} T_{11} T_{13}-T_{5} T_{6}^{2} T_{7}
\end{aligned}
$$

Note that by [4], the variables define pairwise non-associated $\mathrm{Cl}\left(X_{2}\right)$-prime generators for $\mathcal{R}\left(X_{2}\right)$. This makes X_{2} a weak CEMDS with data $\left(P_{2}, \Sigma_{2}, G_{2}^{\prime}\right)$ where Σ_{2} is the stellar subdivision of the fan Σ_{1} of the CEMDS X_{1} at the columns of B. We now use Algorithm 4.3 .7 to contract on X_{2} the curves corresponding to the variables T_{i} with $i \in\{2,3,5,7,8,9,10,12,14\}$. The resulting ring is the one listed in the table of the theorem.
Observe that the given surfaces do not admit a non-trivial \mathbb{K}^{*}-action. As noted before, we only have to treat cases $E_{6} A_{2}, E_{7} A_{1}$ and E_{8}. Here, using e.g., Algorithm 2.4; one computes the minimal resolution $X^{\prime} \rightarrow X$ and compares $\mathcal{R}\left(X^{\prime}\right)$ with the Cox ring given in [33, Sect. 3]. If the rings are isomorphic, again by [33, Sect. 3], X does not admit a non-trivial \mathbb{K}^{*}-action. See Example 2.4. for the $E_{6} A_{2}$ case.

Remark 4.4.2. Note that the resolutions of the surfaces with singularity type $E_{6} A_{2}, E_{7} A_{1}$ and E_{8} listed in Theorem 4.1: have a hypersurface as Cox ring; they have been computed in [33, Sect. 3, Table 9]. Moreover, these surfaces admit small degenerations into \mathbb{K}^{*}-surfaces. In fact, multiplying the monomials $T_{2} T_{3} T_{4}$ and $T_{1}^{2} T_{4}^{2}$ in the respective Cox rings with a parameter $\alpha \in \mathbb{K}$ gives rise to a flat family of Cox rings over \mathbb{K}. The induced flat family of surfaces over \mathbb{K} has a \mathbb{K}^{*}-surface as zero fiber, compare also the corresponding Cox rings listed in [59; Theorem 5.6].

5. The lattice ideal method

We consider the blow up X_{2} of a Mori dream space X_{1} with known Cox ring and develop a method for the systematic guess and verification of generators for the new Cox ring $\mathcal{R}\left(X_{2}\right)$. A description of $\mathcal{R}\left(X_{2}\right)$ as saturated Rees algebra is used. As examples, we compute the Cox ring of Cayley's cubic surface and the Cox ring of the blow up of a weighted projective space in its base point. This section has been published in [57, Sec. 5] together with J. Hausen and A. Laface.
Let X_{1} be a Mori dream space and $\pi: X_{2} \rightarrow X_{1}$ the blow up of an irreducible subvariety $C \subseteq X_{1}$ contained in the smooth locus of X_{1}. As before, write $K_{i}:=$ $\mathrm{Cl}\left(X_{i}\right)$ for the divisor class groups and $R_{i}:=\mathcal{R}\left(X_{i}\right)$ for the Cox rings. Then we have the canonical pullback maps

$$
\begin{gathered}
\pi^{*}: K_{1} \rightarrow K_{2}, \quad[D] \mapsto\left[\pi^{*} D\right], \\
\pi^{*}: R_{1} \rightarrow R_{2}, \quad\left(R_{1}\right)_{[D]} \ni f \mapsto \pi^{*} f \in\left(R_{2}\right)_{\left[\pi^{*} D\right]} .
\end{gathered}
$$

Moreover, identifying $U:=X_{2} \backslash \pi^{-1}(C)$ with $X_{1} \backslash C$, we obtain canonical push forward maps

$$
\begin{gathered}
\pi_{*}: K_{2} \rightarrow K_{1}, \quad[D] \mapsto\left[\pi_{*} D\right], \\
\pi_{*}: R_{2} \rightarrow R_{1}, \quad\left(R_{2}\right)_{[D]} \ni f \mapsto f_{\mid U} \in\left(R_{1}\right)_{\left[\pi_{*} D\right]} .
\end{gathered}
$$

Let $J \subseteq R_{1}$ be the irrelevant ideal, i.e., the vanishing ideal of $\bar{X}_{1} \backslash \widehat{X}_{1}$, and $I \subseteq R_{1}$ the vanishing ideal of $p_{1}^{-1}(C) \subseteq \bar{X}_{1}$ where $p_{1}: \widehat{X}_{1} \rightarrow X_{1}$ is the characteristic space. We define the saturated Rees algebra to be the subalgebra

$$
R_{1}[I]^{\text {sat }}:=\bigoplus_{d \in \mathbb{Z}}\left(I^{-d}: J^{\infty}\right) t^{d} \subseteq R_{1}\left[t^{ \pm 1}\right], \quad \text { where } I^{k}:=R_{1} \text { for } k \leq 0
$$

Note that this indeed makes $R_{1}[I]^{\text {sat }}$ a graded algebra. For all $n, m \in \mathbb{Z}$ we have containment of $\left(I^{n}: J^{\infty}\right)\left(I^{m}: J^{\infty}\right)$ in $I^{n+m}: J^{\infty}$.

Remark 4.5.1. The usual Rees algebra $R_{1}[I]=\bigoplus_{d \in \mathbb{Z}} I^{-d} t^{d}$ is a subalgebra of the saturated Rees algebra $R_{1}[I]^{\text {sat }}$. In the above situation, $I \subseteq R_{1}$ is a K_{1}-prime ideal. Since K_{1}-prime ideals are saturated with respect to K_{1}-homogeneous ideals, we have $I: J^{\infty}=I$. Consequently, $R_{1}[I]^{\text {sat }}$ equals $R_{1}[I]$ if and only if $R_{1}[I]^{\text {sat }}$ is generated in the \mathbb{Z}-degrees 0 and ± 1. In this case, $R_{1}[I]^{\text {sat }}$ is finitely generated because $R_{1}[I]$ is so.

Note that the saturated Rees algebra $R_{1}[I]^{\text {sat }}$ is naturally graded by $K_{1} \times \mathbb{Z}$ as R_{1} is K_{1}-graded and the ideals I, J are homogeneous. Let $E=\pi^{-1}(C)$ denote the exceptional divisor. Then we have a splitting $K_{2}=\pi^{*} K_{1} \times \mathbb{Z} \cdot[E] \cong K_{1} \times \mathbb{Z}$; compare Proposition 1.4.8:
Proposition 4.5.2. See [57, Prop. 5.2]. In the above situation, we have the following mutually inverse isomorphisms of graded algebras

$$
\begin{aligned}
& R_{2} \longleftrightarrow R_{1}[I]^{\mathrm{sat}}, \\
&\left(R_{2}\right)_{\left[\pi^{*} D\right]+d[E]} \ni f \mapsto \\
& \pi_{*} f \cdot t^{d} \in\left(R_{1}[I]^{\mathrm{sat}}\right)_{([D], d)}, \\
&\left(R_{2}\right)_{\left[\pi^{*} D\right]+d[E]} \ni \pi^{*} f \cdot 1_{E}^{d} \longleftrightarrow f \cdot t^{d} \in\left(R_{1}[I]^{\mathrm{sat}}\right)_{([D], d)} .
\end{aligned}
$$

For the computation of the Cox ring R_{2}, we work in the notation of Setting 4.2.5; in particular X_{1} comes as a CEMDS $X_{1} \subseteq Z_{1}$. As before, $C \subseteq X_{1}$ is an irreducible subvariety contained in the smooth locus of X_{1} and $\widehat{C} \subseteq \widehat{X}_{1}$ denotes its inverse image with respect to $p_{1}: \widehat{X}_{1} \rightarrow X_{1}$. The idea is to stretch the given embedding $X_{1} \subseteq Z_{1}$ by suitable generators of the vanishing ideal $I \subseteq R_{1}$ of $\widehat{C} \subseteq \bar{X}_{1}$ and then perform an ambient modification.

Algorithm 4.5.3 (BlowUpCEMDS). Input: a $\operatorname{CEMDS}\left(P_{1}, \Sigma_{1}, G_{1}\right)$, a K_{1}-prime ideal $I=\left\langle f_{1}, \ldots, f_{l}\right\rangle \subseteq R_{1}$ with pairwise non-associated K_{1}-primes $f_{i} \in R_{1}$ defining an irreducible subvariety $C \subseteq X_{1}$ inside the smooth locus and coprime positive integers d_{1}, \ldots, d_{l} with $f_{i} \in I^{d_{i}}: J^{\infty}$.

- Compute the stretched $\operatorname{CEMDS}\left(P_{1}^{\prime}, \Sigma_{1}^{\prime}, G_{1}^{\prime}\right)$ by applying Algorithm:4.3.2 to $\left(P_{1}, \Sigma_{1}, G_{1}\right)$ and $\left(f_{1}, \ldots, f_{l}\right)$.
- Define a multiplicity vector $v \in \mathbb{Z}^{r_{1}+l}$ by $v_{i}:=0$ for $1 \leq i \leq r_{1}$ and $v_{i}:=d_{i-r_{1}}$ for $r_{1}+1 \leq i \leq r_{1}+l$.
- Determine the stellar subdivision $\Sigma_{2} \rightarrow \Sigma_{1}^{\prime}$ of the fan Σ_{1}^{\prime} along the ray through $P_{1}^{\prime} \cdot v$. Write $P_{2}:=\left[P_{1}^{\prime}, P_{1}^{\prime} \cdot v\right]$.
- Compute $\left(P_{2}, \Sigma_{2}, G_{2}\right)$ by applying Algorithm 4.3.8: to $\left(P_{1}^{\prime}, \Sigma_{1}^{\prime}, G_{1}^{\prime}\right)$ and the pair $\left(P_{2}, \Sigma_{2}\right)$.
- Let T^{ν} be the product over all T_{i} with $C \nsubseteq D_{i}$ where $D_{i} \subseteq X_{1}$ is the divisor corresponding to T_{i}. Test whether $\operatorname{dim}\left(I_{2}+\left\langle T_{r_{2}}\right\rangle\right)>\operatorname{dim}\left(I_{2}+\right.$ $\left.\left\langle T_{r_{2}}, T^{\nu}\right\rangle\right)$.
- Set $\left(P_{2}^{\prime}, \Sigma_{2}^{\prime}, G_{2}^{\prime}\right):=\left(P_{2}, \Sigma_{2}, G_{2}\right)$. Eliminate all fake relations by applying Algorithm 4.3.3: Call the output $\left(P_{2}, \Sigma_{2}, G_{2}\right)$.

Output: $\quad\left(P_{2}, \Sigma_{2}, G_{2}\right)$. If the verification in the next to last step was positive, then $\left(P_{2}, \Sigma_{2}, G_{2}\right)$ is a CEMDS describing the blow up X_{2} of X_{1} along C. In particular then the K_{2}-graded algebra R_{2} is the Cox ring of X_{2}.

Lemma 4.5.4. Let $\mathfrak{a}, \mathfrak{b} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ be ideals and $f \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ a polynomial. Then taking the saturation commutes with taking the localization, i.e.,

$$
\mathfrak{a}_{f}:\left(\mathfrak{b}_{f}\right)^{\infty}=\left(\mathfrak{a}: \mathfrak{b}^{\infty}\right)_{f} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]_{f}
$$

Proof. Compare also [8; Cor. 3.15]. Consider $g \in\left(\mathfrak{a}: \mathfrak{b}^{\infty}\right)_{f}$. Then $g f^{-k} \in \mathfrak{a}: \mathfrak{b}^{s}$ for some $k \in \mathbb{Z}_{\geq 0}$ and an integer $s \geq 1$. This means $g \mathfrak{b}^{s} \subseteq \mathfrak{a}$. Since localizing commutes with taking products we obtain $g\left(\mathfrak{b}_{f}\right)^{s} \subseteq \mathfrak{a}_{f}$, see [8;, Prop. 3.11].
For the other inclusion, let $g \in \mathfrak{a}_{f}:\left(\mathfrak{b}_{f}\right)^{\infty}$. As before, $g\left(\mathfrak{b}^{s}\right)_{f} \subseteq \mathfrak{a}_{f}$ for an $s \in \mathbb{Z}_{\geq 1}$. In particular, $g \mathfrak{b}^{s} \subseteq \mathfrak{a}_{f}$. Write $\mathfrak{b}^{s}=\left\langle b_{1}, \ldots, b_{l}\right\rangle$. Then there are $a_{i} \in \mathfrak{a}$ and $m_{i} \in \mathbb{Z}$ such that $g b_{i}=a_{i} f^{m_{i}} \in \mathfrak{a}_{f}$ which means $g f^{-m_{i}} b_{i} \in \mathfrak{a}$. We obtain $g f^{k^{\prime}} \mathfrak{b}^{s} \subseteq \mathfrak{a}$ for suitable $k^{\prime} \in \mathbb{Z}$. We arrive at $g \in\left(\mathfrak{a}: \mathfrak{b}^{\infty}\right)_{f}$.

Lemma 4.5.5. In the situation of Algorithm:4.5.3, consider a monomial $T^{\nu} \in J \subseteq$ R_{1}. Then the localization $\left(R_{1}[I]^{\text {sat }}\right)_{T^{\nu}}$ is isomorphic to $\left(R_{1}[I]\right)_{T^{\nu}}$.

Proof. Set $f:=T^{\nu}$. Since the T_{i} with $1 \leq i \leq r_{1}$ are of \mathbb{Z}-degree zero, using Lemma 4.5.4, we obtain

$$
\begin{aligned}
\left(R_{1}[I]^{\mathrm{sat}}\right)_{f} & =\bigoplus_{k<0}\left(I^{-k}: J^{\infty}\right)_{f} t^{k} \oplus \bigoplus_{k \geq 0}\left(R_{1}\right)_{f} t^{k} \\
& =\bigoplus_{k<0}\left(\left(I^{-k}\right)_{f}: R_{1}\right) t^{k} \oplus \bigoplus_{k \geq 0}\left(R_{1}\right)_{f} t^{k} \\
& =\bigoplus_{k<0}\left(I^{-k}\right)_{f} t^{k} \oplus \bigoplus_{k \geq 0}\left(R_{1}\right)_{f} t^{k} \\
& =\left(R_{1}[I]\right)_{f} .
\end{aligned}
$$

Lemma 4.5.6. In the situation of Algorithm:4.5.3, let $R_{1}[I] \subseteq R_{2} \subseteq R_{1}[I]^{\text {sat }}$ be an inclusion of $K_{2}=K_{1} \times \mathbb{Z}$-graded algebras. Let $\dot{T}^{\dot{\nu}}$ be the product over all T_{i} such that $C \nsubseteq V\left(X_{1} ; T_{i}\right)$. Then $R_{2}=R_{1}[I]^{\text {sat }}$ holds if

$$
\operatorname{dim}\left(I_{2}+\left\langle T_{r_{2}}\right\rangle_{R_{2}}\right)>\operatorname{dim}\left(I_{2}+\left\langle T_{r_{2}}, T^{\nu}\right\rangle_{R_{2}}\right) .
$$

Proof. Denote by $\left(R_{2}\right)_{d}$ the degree d part of R_{2} with respect to the natural \mathbb{Z} grading. Assume that the inclusion $R_{2} \subseteq R_{1}[I]^{\text {sat }}$ is strict and let $n \in \mathbb{Z}_{\geq 1}$ be minimal such that there is $f t^{-n} \in R_{1}[I]_{-n}^{\text {sat }} \backslash\left(R_{2}\right)_{-n}$. Observe that $n>1$ by assumption. Moreover $f t^{-n+1} \in R_{2}$ since $f \in I^{n}: J^{\infty} \subseteq I^{n-1}: J^{\infty}$ and $\left(R_{2}\right)_{-n+1}=$ $\left(R_{1}[I]^{\text {sat }}\right)_{-n+1}$. Therefore

$$
f t^{-n+1} \in\langle t\rangle_{R_{1}[I]^{\text {sat }}} \cap R_{2}, \quad f t^{-n+1} \notin\langle t\rangle_{R_{2}}
$$

so that the ideal $\langle t\rangle_{R_{2}}$ is strictly contained in $\langle t\rangle_{R_{1}[I]^{\text {sat }}} \cap R_{2}$. Note that T^{ν} is an element of the irrelevant ideal J since

$$
T^{\nu} \in J \quad \Leftrightarrow \quad \bigcap_{\nu_{i}=0} D_{i} \neq \emptyset \quad \Leftrightarrow \quad \bigcap_{C \subseteq D_{i}} D_{i} \neq \emptyset .
$$

Moreover, localizing by T^{ν}, Lemma 4.5 delivers

$$
\left(\langle t\rangle_{R_{1}[I]^{\mathrm{sat}}} \cap R_{2}\right)_{T^{\nu}}=\langle t\rangle_{R_{1}[I]_{T^{\nu}}^{\text {sat }}} \cap\left(R_{2}\right)_{T^{\nu}}=\langle t\rangle_{R_{1}[I]_{T^{\nu}}}
$$

In particular, both ideals are of the same dimension in R_{2} and $\langle t\rangle_{R_{2}}$ equals the $K_{2^{-}}$ prime ideal $\langle t\rangle_{R_{1}[I]^{\text {sat }}} \cap R_{2}$ in $\left(R_{2}\right)_{T^{\nu}}$, i.e., t is K_{2}-prime in $\left(R_{2}\right)_{T^{\nu}}$. Observe that t is K_{2}-prime in R_{2}. Given K_{2}-homogeneous elements $h_{1}, h_{2} \in R_{2}$ with $t \mid h_{1} h_{2}$, considered as elements of $\left(R_{2}\right)_{T^{\nu}}$, we have $t \mid h_{1}$ or $t \mid h_{2}$, i.e.,

$$
h_{1}\left(T^{\nu}\right)^{k_{1}}=t \alpha_{1} \quad \text { or } \quad h_{2}\left(T^{\nu}\right)^{k_{2}}=t \alpha_{2}, \quad \alpha_{i} \in R_{2}, k_{i} \in \mathbb{Z}_{\geq 0}
$$

Since by the dimension requirement we know that t and T^{ν} are coprime in R_{2}, we obtain $t \mid h_{1}$ or $t \mid h_{2}$. Therefore, $\langle t\rangle_{R_{2}}=\langle t\rangle_{R_{1}[I] \text { sat }} \cap R_{2}$ in R_{2}, a contradiction.

Proof of Algorithm 4.5.3: Consider the K_{2}-graded ring $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{r_{2}}\right] / I_{2}$ associated to the output $\left(P_{2}, \Sigma_{2}, G_{2}\right)$. Assume all verifications were positive. The first step is to show that R_{2} is normal; then $\left(P_{2}, \Sigma_{2}, G_{2}\right)$ is a CEMDS and R_{2} is the Cox ring of the output variety X_{2}. In a second step we show that X_{2} equals the blow up of X_{1} along C.
Consider the output (P_{2}, Σ_{2}, G_{2}) of the fourth item, i.e., the situation before entering the last step. The variables $T_{r_{1}+1}, \ldots, T_{r_{2}-1}$ correspond to f_{1}, \ldots, f_{l} and $T_{r_{2}}$ to the exceptional divisor. Observe that we have a canonical K_{2}-graded homomorphism $R_{2} \rightarrow R_{1}[I]^{\text {sat }}$ induced by

$$
\mathbb{K}\left[T_{1}, \ldots, T_{r_{2}}\right] \rightarrow R_{1}[I]^{\mathrm{sat}}, \quad T_{i} \mapsto \begin{cases}T_{i}, & 1 \leq i \leq r_{1} \\ f_{i-r_{1}} t^{-v_{i}}, & r_{1}<i<r_{2} \\ t, & i=r_{2}\end{cases}
$$

Indeed, because C is contained in the smooth locus of X_{1}, the cone generated by the last l columns of P_{1}^{\prime} is regular and, because in addition d_{1}, \ldots, d_{l} are coprime, the vector $P_{1}^{\prime} \cdot v$ is primitive. Thus, the ideal I_{2} of X_{2} is the saturation with respect to $T_{r_{2}}$ of

$$
I_{1}+\left\langle T_{i} T_{r_{2}}^{v_{i}}-f_{i-r_{1}} ; r_{1}<i<r_{2}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r_{2}}\right] .
$$

Consequently, the above assignment induces a homomorphism $R_{2} \rightarrow R_{1}[I]^{\text {sat }}$. This homomorphism yields an isomorphism of the K_{2}-graded localizations

$$
\left(R_{2}\right)_{T_{r_{2}}}=\bigoplus_{d \in \mathbb{Z}} R_{1} T_{r_{2}}^{d} \cong \bigoplus_{d \in \mathbb{Z}} R_{1} t^{d}=\left(R_{1}[I]^{\text {sat }}\right)_{t}
$$

and hence is in particular injective. As the image $\varphi\left(R_{2}\right)$ contains generators

$$
\varphi\left(T_{r_{2}}\right)=t, \quad \varphi\left(T_{r_{1}+i} T_{r_{2}}^{v_{i}-1}\right)=f_{i} t^{-1}, \quad 1 \leq i \leq l
$$

for the Rees algebra $R_{1}[I]$, we obtain $R_{1}[I] \subseteq \varphi\left(R_{2}\right) \subseteq R_{1}[I]^{\text {sat }}$. In fact, by the dimension check in the last step and the definition of φ we may apply Lemma 4.5 which delivers $\varphi\left(R_{2}\right)=R_{1}[I]^{\text {sat }}$. By Proposition 4.5.2; $R_{1}[I]^{\text {sat }} \cong R_{2}$ is the Cox ring of the blow up X_{2}^{\prime} of X_{1} at C. In particular, $\dot{R}_{2} \cong R_{2}^{\prime}$ is normal and we may apply Algorithm 4.3.3: Note that there is no need to use the verify option
as the variables $T_{1}, \ldots, T_{r_{2}} \in R_{2}$ are K_{2}-prime and the generators surviving the elimination process are K_{2}-prime as well. As for any Cox ring, the K_{2}-grading is almost free.

We show that $X_{2} \cong X_{2}^{\prime}$ holds. Let $\lambda \subseteq \operatorname{Mov}\left(R_{2}\right)$ be the chamber representing X_{1}. Then λ is of codimension one in $\mathbb{Q} \otimes K_{2}$ and lies on the boundary of $\operatorname{Mov}\left(R_{2}\right)$. Since there are the contraction morphisms $X_{2} \rightarrow X_{1}$ and $X_{2}^{\prime} \rightarrow X_{1}$, the chambers $\lambda_{2}, \lambda_{2}^{\prime}$ corresponding to X_{2}, X_{2}^{\prime} both have λ as a face. We conclude $\lambda_{2}=\lambda_{2}^{\prime}$ and thus $X_{2} \cong X_{2}^{\prime}$.

An important special input case for Algorithm 4.5. is the blow up of a smooth point. The point $x_{1} \in X_{1}$ can be given in Cox coordinates, i.e., as a point $z \in \widehat{X}_{1} \subseteq \mathbb{K}^{r_{1}}$ with $x_{1}=p_{1}(z)$.
Definition 4.5.7. Let P be an $s \times r$ integer matrix and $z \in \mathbb{K}^{r}$. Let i_{1}, \ldots, i_{k} be the indices with $z_{i_{j}} \neq 0$ and $\nu_{1}, \ldots, \nu_{s} \in \mathbb{Z}^{r}$ a lattice basis for $\operatorname{im}\left(P^{*}\right) \cap \operatorname{lin}\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)$. Then the associated ideal to P and z is the saturation

$$
\begin{aligned}
I(P, z) & :=\left\langle z^{-\nu_{1}^{+}} T_{1}^{\nu_{1}^{+}}-z^{-\nu_{1}^{-}} T^{\nu_{1}^{-}}, \ldots, z^{-\nu_{s}^{+}} T^{\nu_{s}^{+}}-z^{-\nu_{s}^{-}} T^{\nu_{s}^{-}}\right\rangle:\left(T_{1} \cdots T_{r}\right)^{\infty} \\
& \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right],
\end{aligned}
$$

where $\nu_{i}=\nu_{i}^{+}-\nu_{i}^{-}$is the unique decomposition with nonnegative vectors $\nu_{i}^{+}, \nu_{i}^{-} \in$ \mathbb{Z}^{r} and we write $T^{\alpha}=T_{1}^{\alpha_{1}} \cdots T_{r}^{\alpha_{r}}$ and $z^{\alpha}=z_{1}^{\alpha_{1}} \cdots z_{r}^{\alpha_{r}}$ for any vector $\alpha \in \mathbb{Z}^{r}$.

Note that the ideal $I\left(P_{1}, z_{1}\right)+\left\langle T_{j} ; j \neq i_{1}, \ldots, i_{k}\right\rangle$ describes the closure of the orbit through z_{1} of the quasitorus $H=\operatorname{Spec}\left(\mathbb{K}\left[K_{1}\right]\right)$ acting on $\mathbb{K}^{r_{1}}$ via the grading $\operatorname{deg}\left(T_{i}\right)=Q_{1}\left(e_{i}\right)$ with the projection $Q_{1}: \mathbb{Z}^{r_{1}} \rightarrow K_{1}:=\mathbb{Z}^{r_{1}} / \mathrm{im}\left(P_{1}^{*}\right)$.
Remark 4.5.8. The ideal $I(P, z)$ is a so called lattice ideal. In particular it is generated by binomials, see [82].
Algorithm 4.5.9 (BlowUpCEMDSpoint). Input: a CEMDS $X_{1}=\left(P_{1}, \Sigma_{1}, G_{1}\right)$ and a smooth point $x \in X_{1}$ given in Cox coordinates $z \in \mathbb{K}^{r_{1}}$.

- Compute a list $\left(f_{1}, \ldots, f_{l}\right)$ of pairwise non-associated K_{1}-prime generators for for $I\left(P_{1}, z\right)+\left\langle T_{j} ; z_{j}=0\right\rangle \subseteq R_{1}$ and choose $d_{i} \in \mathbb{Z}_{\geq 1}$ such that $f_{i} \in I^{d_{i}}: J^{\infty}$.
- Call Algorithm 4.5.3 with input $X_{1},\left(f_{1}, \ldots, f_{l}\right)$ and $\left(d_{1}, \ldots, d_{l}\right)$. Denote the result by $\left(\dot{P_{2}}, \dot{\Sigma_{2}}, G_{2}\right)$.

Output: $\left(P_{2}, \Sigma_{2}, G_{2}\right)$. If the verification was positive, then $\left(P_{2}, \Sigma_{2}, G_{2}\right)$ is a CEMDS describing the blow up X_{2} of X_{1} in x. In particular then the K_{2}-graded algebra R_{2} is the Cox ring of X_{2}.

We will see in Algorithm 4.5 .12 how to choose the f_{i} more systematically. In the following example, we compute the Cox ring of Cayley's nodal cubic surface. We have published it in [56].
Example 4.5.10 (Cayley's cubic). Let X_{1} be the toric surface of Picard number two coming with four singularities of type A_{1}. So, X_{1} arises from the fan Σ_{1} in \mathbb{Z}^{2} as indicated below

We determine the Cox ring of the blow up X_{2} of X_{1} at the unit element of the big torus $\mathbb{T}^{2} \subseteq X_{1}$. Using Algorithm 4.5, all d_{i} are 1 and we obtain the Cox ring of X_{2} as $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I_{2}$ graded by $K_{2}=\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$ where generators of I_{2} and the degree matrix Q_{2} are

$$
\begin{aligned}
& T_{5}^{2}-T_{2}^{2}+T_{6} T_{8}, T_{2} T_{5}-T_{3} T_{6}+T_{4} T_{7}, \\
& T_{2}^{2}-T_{4}^{2}-T_{6} T_{9}, T_{3} T_{5}-T_{1} T_{7}+T_{2} T_{8}, \\
& T_{4} T_{5}-T_{1} T_{6}+T_{2} T_{7}, T_{1} T_{5} T_{3} T_{7}+T_{4} T_{8}, \\
& T_{2} T_{3}-T_{1} T_{4}-T_{5} T_{9}, T_{1} T_{2}-T_{3} T_{4}-T_{7} T_{9}, \\
& T_{1}^{2}-T_{3}^{2}-T_{8} T_{9}
\end{aligned} \quad\left[\begin{array}{rrrrrrrrr}
-1 & 1 & -1 & 1 & 0 & 2 & 0 & -2 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 2 & 0 \\
\overline{1} & 0 & \frac{1}{1} & 0 & 0 & -\frac{1}{\overline{1}} & 0 & \frac{1}{1} & \frac{1}{\overline{1}} \\
\overline{1} & \overline{\overline{0}} & \overline{0} & \overline{1} & \overline{0} & \overline{0} & \overline{0} & \overline{0}
\end{array}\right]
$$

Consider $w:=(0,1,1, \overline{1}) \in K_{2}$ which is in fact the anticanonical class in $K_{2}=$ $\mathrm{Cl}\left(X_{2}\right)$. Then the homogeneous component $\left(R_{2}\right)_{w}$ is of dimension 4 and it is generated by the classes

$$
z_{0}:=T_{6} T_{8} T_{9}, \quad z_{1}:=T_{4} T_{5} T_{6}, \quad z_{2}:=T_{4} T_{7} T_{9}, \quad z_{3}:=T_{5} T_{7} T_{8}
$$

compare Algorithm 2.2.5: The rational map $X_{2} \rightarrow \mathbb{P}_{3}$, given in Cox coordinates by $z \mapsto\left(z_{0}, z_{1}, z_{2}, z_{3}\right)$, is a closed embedding. We see that the image in \mathbb{P}_{3} is Cayley's cubic surface as we have in $\left(R_{2}\right)_{3 w}$ the relation

$$
z_{0} z_{1} z_{2}+z_{0} z_{1} z_{3}+z_{0} z_{2} z_{3}+z_{1} z_{2} z_{3}=0
$$

We now give an example where the Cox ring computation with Algorithm 4.3 fails depending on the input multiplicities $d_{i} \in \mathbb{Z}_{\geq 1}$. We will also see that the weighted ambient toric blow up induces a blow up of the embedded varieties. This serves also an example for the proof of the algorithm.

Example 4.5.11 (to the proof of Algorithm 4.5.3). Consider the smooth twodimensional CEMDS X_{1} with \mathbb{Z}^{5}-graded Cox ring, degree matrix and irrelevant ideal

$$
\begin{gathered}
R_{1}=\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] /\langle f\rangle, \\
f:=T_{3}^{3} T_{4}^{2} T_{5}-T_{1}^{2} T_{2}-T_{7} T_{8}, \quad Q_{1}:=\left[\begin{array}{rrrrrrrr}
1 & 0 & 0 & 0 & 2 & 0 & 3 & -1 \\
0 & 1 & 0 & 0 & 1 & 0 & 2 & -1 \\
0 & 0 & 1 & 0 & -3 & 0 & -2 & 2 \\
0 & 0 & 0 & 1 & -2 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & -1
\end{array}\right], \\
J=\left\langle\begin{array}{c}
T_{1} T_{2} T_{3} T_{4} T_{7}, T_{1} T_{3} T_{4} T_{5} T_{7}, T_{1} T_{2} T_{5} T_{6} T_{8}, \\
T_{2} T_{4} T_{5} T_{6} T_{8}, T_{1} T_{3} T_{4} T_{7} T_{8}, T_{2} T_{5} T_{6} T_{7} T_{8}, \\
T_{1} T_{2} T_{3} T_{6}, T_{3} T_{4} T_{5} T_{6}, T_{3} T_{6} T_{7} T_{8}
\end{array}\right\rangle \subseteq R_{1} .
\end{gathered}
$$

We want to blow up X_{1} in the point $x \in X_{1}$ having $z:=(0,1,0,1,1,1,0,1) \in \widehat{X}_{1} \subseteq$ \mathbb{K}^{8} as Cox coordinates. Set $I:=\left\langle T_{1}, T_{3}, T_{7}\right\rangle \subseteq R_{1}$. By a computation, we have prime elements $f_{i} \in R_{1}$ with multiplicities $d_{i} \in \mathbb{Z}_{>0}$ where

$$
\begin{aligned}
& f_{1}:=T_{1}, \quad f_{2}:=T_{3}, \quad f_{3}:=T_{7} \in R_{1} \\
& d_{1}=1, \quad d_{2}=1, \quad d_{3}=2
\end{aligned}
$$

Assume that we called Algorithm:4.5.3 instead with input X_{1}, I and lists $\left(f_{1}, f_{2}, f_{3}\right)$ $\left(d_{1}, d_{2}, d_{3}\right)$ where $d_{1}=d_{2}=d_{3}=1$. First, the call to Algorithm 4.3 provides the embedding

$$
\bar{\iota}: \mathbb{K}^{8} \rightarrow \mathbb{K}^{11}, \quad z \mapsto\left(z, f_{1}(z), f_{2}(z), f_{3}(z)\right)
$$

and the stretched CEMDS X_{1}^{\prime}. On X_{1}^{\prime}, we want to blow up the point $\iota(x)$ with Cox coordinates $(z, 0,0,0) \in \mathbb{K}^{11}$. The steps of 4.5.3 and its proof then are as follows.

Applying steps three and four, we obtain a modified ES X_{2} with a \mathbb{Z}^{6}-graded ring

$$
R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{12}\right] / I_{2}, \quad I_{2}=\left\langle\begin{array}{c}
T_{9} T_{12}-T_{1}, T_{10} T_{12}-T_{3}, T_{11} T_{12}-T_{7}, \\
T_{10}^{3} T_{12}^{2} T_{4}^{2} T_{5}-T_{9}^{2} T_{2} T_{12}-T_{8} T_{11}
\end{array}\right\rangle .
$$

Recall from the proof of Algorithm 4.3 the monomorphism $\varphi: R_{2} \rightarrow R_{1}[I]^{\text {sat }}$ induced by

$$
\mathbb{K}\left[T_{1}, \ldots, T_{12}\right] \rightarrow R_{1}[I]^{\mathrm{sat}}, \quad T_{i} \mapsto \begin{cases}T_{i}, & 1 \leq i \leq 8 \\ f_{i-r_{1}} t^{-v_{i}}, & 8<i<12 \\ t, & i=12\end{cases}
$$

As predicted, observe that we indeed obtain an inclusion $R_{1}[I] \subseteq \varphi\left(R_{2}\right) \subseteq R_{1}[I]^{\text {sat }}$ of algebras. By [98; Prop. 7.9, Prop. 7.10], the Rees algebra $R_{1}[I]$ and $\varphi\left(R_{2}\right)$ even coincide:

$$
\begin{gathered}
R_{1}[I] \cong \mathbb{K}\left[T_{1}, \ldots, T_{8}, U_{1}, U_{2}, U_{3}, t\right] /\left\langle g, U_{1} t-T_{1}, U_{2} t-T_{3}, U_{3} t-T_{7}\right\rangle \\
\varphi\left(R_{2}\right) \cong \mathbb{K}\left[T_{1}, \ldots, T_{8}, U_{1}, U_{2}, U_{3}, t\right] /\left\langle g, U_{1} t-T_{1}, U_{2} t-T_{3}, U_{3} t-T_{7}\right\rangle \\
g:=U_{2}^{3} T_{4}^{2} T_{5} t^{2}-U_{1}^{2} T_{2} t-U_{3} T_{8},
\end{gathered}
$$

Note that the inclusion $\varphi\left(R_{2}\right) \subsetneq R_{1}[I]^{\text {sat }}$ is proper as, by a direct computation, we have $T_{7} \in\left(I^{2}: J^{\infty}\right) \backslash I^{2}$. This means $T_{7} t^{-2}$ is an element of $\left(R_{1}[I]^{\text {sat }}\right)_{-2} \backslash \varphi\left(R_{2}\right)_{-2}$. Then $T_{7} t^{-1}$ is an element of $\langle t\rangle_{R_{1}[I]^{\text {sat }}} \cap \varphi\left(R_{2}\right)$ with $T_{7} t^{-1} \notin\langle t\rangle_{\varphi\left(R_{2}\right)}$. As predicted, the irrelevant ideal $J \subseteq R_{1}$ contains the product $T^{\nu}=T_{2} T_{4} T_{5} T_{6} T_{8}$ over all T_{i} with $x \notin V\left(X_{1} ; T_{i}\right)$. Passing to localizations, according to Lemma 4.5.5; we have the equality $R_{1}[I]_{T^{\nu}}=\varphi\left(R_{2}\right)_{T^{\nu}}=R_{1}[I]_{T^{\nu}}^{\text {sat }}$ of localized algebras. For instance, we now have

$$
T_{7}=T_{8}^{-1}\left(T_{3}^{3} T_{4}^{2} T_{5}-T_{1}^{2} T_{2}\right) \in\left(I^{2}: J^{\infty}\right)_{T^{\nu}}=\left(I^{2}\right)_{T^{\nu}}
$$

Then $\langle t\rangle_{R_{1}[I]_{T^{\nu}}^{\text {sat }}} \cap \varphi\left(R_{2}\right)_{T^{\nu}}$ equals $\langle t\rangle_{\varphi\left(R_{2}\right)_{T^{\nu}}}$ which implies that t is a prime element in $\varphi\left(R_{2}\right)_{T^{\nu}}$. Consequently, t and T^{ν} are coprime in $R_{1}[I]^{\text {sat }}$ but not in $\varphi\left(R_{2}\right)$ as

$$
\operatorname{dim}\left(I_{2}+\left\langle T_{12}, T_{8}\right\rangle_{R_{2}}\right)=\operatorname{dim}\left(I_{2}+\left\langle T_{12}\right\rangle_{R_{2}}\right)
$$

Thus, the verification step in Algorithm 4.5.9 with input $\left(f_{1}, f_{2}, f_{3}\right)$ and $(1,1,1)$ fails. Had we chosen $d_{3}=2$, we would have obtained $U_{2}^{3} T_{4}^{2} T_{5} t-U_{1}^{2} T_{2}-U_{3} T_{8}$ instead of g, the codimension test is successful and $\varphi\left(R_{2}\right)=R_{1}[I]^{\text {sat }}$. This means the Cox ring of the blow up is the \mathbb{Z}^{6}-graded ring

$$
\mathcal{R}\left(X_{2}\right)=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{3}^{3} T_{4}^{2} T_{5} T_{9}-T_{1}^{2} T_{2}-T_{7} T_{8}\right\rangle
$$

Albeit implied by the proof of Algorithm 4.59, we now show directly that the weighted ambient toric blow up induces a blow up of X_{1} in x. Let $P_{1}=\left[v_{1}, \ldots, v_{8}\right]$ be a Gale dual matrix of Q_{1}. Then $\mathbb{Q}_{\geq 0} \cdot v_{1}, \ldots, \mathbb{Q}_{\geq 0} \cdot v_{8}$ are the rays of the fan Σ_{1} of the canonical toric ambient variety Z_{1} of X_{1}. Choose coordinates

$$
S_{3}:=\frac{T_{7}}{T_{2}^{3} T_{4}^{2} T_{5}^{4} T_{6}^{6} T_{8}^{5}}, \quad S_{2}:=\frac{T_{3}}{T_{2} T_{5} T_{6}^{2} T_{8}^{2}}, \quad S_{1}:=\frac{T_{1}}{T_{2} T_{4} T_{5}^{2} T_{6}^{3} T_{8}^{3}}
$$

for the affine chart $\left(Z_{1}\right)_{\sigma}$ with the smooth cone $\sigma:=\operatorname{cone}\left(v_{1}, v_{3}, v_{7}\right) \in \Sigma_{1}$. Then

$$
\mathcal{O}\left(\left(Z_{1}\right)_{\sigma} \cap X_{1}\right)=\mathbb{K}\left[S_{1}, S_{2}, S_{3}\right] /\langle h\rangle, \quad h:=\left(p_{1}\right)_{\star} f=S_{2}^{3}-S_{1}^{2}-S_{3} .
$$

Since $d_{1}=d_{2}=1$ and $d_{3}=2$, the blow up of X_{1} in x is induced by a weighted blow $Z_{2} \rightarrow Z_{1}$ of the toric ambient variety. By [84, Ex. 2], we have to blow up the sheaf of ideals \mathcal{J} in $\mathcal{O}\left(\left(Z_{1}\right)_{\sigma} \cap X_{1}\right)$ generated by

$$
\left\langle S_{1}^{2}, S_{2}^{2}, S_{3}\right\rangle=\left\langle S_{1}^{2}, S_{2}^{2}, S_{2}^{3}-S_{1}^{2}\right\rangle=\left\langle S_{1}^{2}, S_{2}^{2}\right\rangle
$$

where we used the special shape of h. Taking the Proj, by Proposition 1.4.5, we see that this induces the usual blow up of X_{1} in x, i.e., $\operatorname{Proj} \mathcal{I}=\operatorname{Proj} \mathcal{J}$ where \mathcal{I} is the sheaf of ideals in $\mathcal{O}\left(\left(Z_{1}\right)_{\sigma} \cap X_{1}\right)$ generated by $\left\langle S_{1}, S_{2}\right\rangle$. Note that we blew up a bigger orbit in Z_{1} than anticipated; still, the insertion of the respective ray now cuts out $x \in X_{1}$.

The following algorithm produces a systematic guess for the generators and their multiplicities $d_{i} \in \mathbb{Z}_{\geq 1}$ of the Cox ring of a blow up of a Mori dream space.

Algorithm 4.5.12 (BlowUpCEMDS2). Input: a $\operatorname{CEMDS}\left(P_{1}, \Sigma_{1}, G_{1}\right)$, a K_{1-} prime ideal I defining an irreducible subvariety $C \subseteq X_{1}$ inside the smooth locus.

- Let F and D be empty lists.
- For each $k=1,2, \ldots \in \mathbb{Z}_{\geq 1}$ do
- compute a set G_{k} of generators for $A_{k}:=I^{k}: J^{\infty} \subseteq R_{1}$. Let $f_{k 1}, \ldots, f_{k l_{i}}$ be a maximal subset of pairwise non-associated elements of G_{k} with

$$
f_{k j} \notin A_{1} A_{k-1}+\ldots+A_{\left\lfloor\frac{k}{2}\right\rfloor} A_{\left\lceil\frac{k}{2}\right\rceil} \quad \text { if } \quad k>1
$$

- Determine integers $d_{k 1}, \ldots, d_{k l_{i}} \in \mathbb{Z}_{\geq k}$ such that $f_{k j} \in A_{d_{k i}} \backslash A_{d_{k i}+1}$.
- Add the elements of $f_{k 1}, \ldots, f_{k l_{i}}$ to F that are not associated to any other element of F. Add the respective integers among $d_{k 1}, \ldots, d_{k l_{i}}$ to D.
- Run Algorithm 4.5.9 with input $\left(P_{1}, \Sigma_{1}, G_{1}\right), F$ and D.
- If Algorithm 4.5.9 terminated with $\left(P_{2}, \Sigma_{2}, G_{2}\right)$ and positive verification, return $\left(P_{2}, \Sigma_{2}, G_{2}\right)$.
Output (if provided): the algorithm terminates if and only if X_{2} is a Mori dream space. In this case, the CEMDS $\left(P_{2}, \Sigma_{2}, G_{2}\right)$ describes the blow up X_{2} of X_{1} along C. In particular, then the K_{2}-graded algebra R_{2} is the Cox ring of X_{2}.

Proof. Note that each $f_{k i}$ is a K_{1}-prime element. Otherwise, $f_{k i}=f_{1} f_{2}$ with K_{1-} homogeneous elements $f_{i} \in R_{1}$. As I is K_{1}-prime, f_{1} or f_{2} lies in $A_{k^{\prime}}$ with $k^{\prime}<k$, i.e., $f_{k i} \in A_{k^{\prime}}$. This contradicts the choice of $f_{k i}$.

By Proposition 4.5.2, the Cox ring R_{2} of the blow up is isomorphic to the saturated Rees algebra $R_{1}[I]^{\text {sat }}$. After the k-th step, $\left(F, T_{1}, \ldots, T_{r_{1}}, t\right)$ are generators for a subalgebra $B_{k} \subseteq R_{1}[I]^{\text {sat }}$ such that

$$
\mathbb{K}\left[\{t\} \cup R_{1} \cup A_{1} t^{-1} \cup \ldots \cup A_{k} t^{-k}\right] \subseteq B_{k} \subseteq \bigoplus_{k \in \mathbb{Z}} A_{k} t^{-k}=R_{1}[I]^{\mathrm{sat}}
$$

If the algorithm stops, by the correctness of Algorithm 4.9, the output then is a CEMDS describing the blow X_{2} with Cox ring R_{2}. Vice versa, if X_{2} has finitely generated Cox ring, there is $k_{0} \geq 1$ with $R_{1}[I]^{\text {sat }}=B_{k_{0}}$. Then Algorithm :4.5.9: is called with K_{1}-prime non-associated generators for $\mathcal{R}\left(X_{2}\right) \cong R_{1}[I]^{\text {sat }}$ and thus terminates with positive verification.

Remark 4.5.13. Steps similar to the ones performed in Algorithm 4.5.12 can be used to determine generators and relations of each graded algebra $A=\bigoplus_{k \in \mathbb{Z} \geq 0} A_{k}$ if all A_{k} are finitely generated A_{0}-modules.

We now consider an example where an extra generator (found with Algorithm4.5.12) with $d_{i}>1$ is needed. Recall that given $a, b, c \in \mathbb{Z}_{\geq 1}$ with $\operatorname{gcd}(a, b, c)=1$, the weighted projective space $\mathbb{P}(a, b, c)$ is the complete toric surface with the $\mathrm{Cl}(X)=\mathbb{Z}$ grading of $\mathcal{R}(\mathbb{P}(a, b, c))=\mathbb{K}\left[T_{1}, \ldots, T_{3}\right]$ defined by the degree matrix

$$
Q=\left[\begin{array}{lll}
a & b & c
\end{array}\right] .
$$

Example 4.5.14 (Blow up of a weighted projective space). We want to compute the Cox ring of the blow up of $X_{1}:=\mathbb{P}(3,4,5)$ at the general point with Cox coordinates $z_{1}:=(1,1,1) \in \mathbb{K}^{3}$. The lattice ideal of z_{1} with respect to P_{1} is

$$
I\left(P_{1}, z_{1}\right)=\left\langle T_{2}^{2}-T_{1} T_{3}, T_{1}^{2} T_{2}-T_{3}^{2}, T_{1}^{3}-T_{2} T_{3}\right\rangle, \quad P_{1}:=\left[\begin{array}{rrr}
1 & -2 & 1 \\
-2 & -1 & 2
\end{array}\right]
$$

An application of Algorithm 4.5.9 with the three generators $\left(f_{1}, f_{2}, f_{3}\right)$ of $I:=$ $I\left(P_{1}, z_{1}\right)$ and $d_{i}:=1$ for all i is unsuccessful: the dimension check fails. However, adding the additional generator

$$
f_{4}:=T_{1}^{5}-3 T_{1}^{2} T_{2} T_{3}+T_{1} T_{2}^{3}+T_{3}^{3} \in I^{2}: J^{\infty}
$$

with $d_{4}:=2$ to the input, Algorithm 4.5. returns the $\mathrm{Cl}\left(X_{2}\right)=\mathbb{Z}^{2}$-graded Cox ring $R_{2}=\mathcal{R}\left(X_{2}\right)$ of the blow up X_{2} of X_{1} in $\left[z_{1}\right]$. All verifications are positive. The ring is given as $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I_{2}$ with generators for I_{2} and the degree matrix being

$$
\begin{array}{ll}
-T_{1} T_{7}+T_{4} T_{5}+T_{6}^{2}, & T_{1} T_{4}^{2}-T_{2} T_{7}+T_{5} T_{6}, \\
-T_{1} T_{4} T_{6}-T_{3} T_{7}+T_{5}^{2}, & -T_{1} T_{5}+T_{2} T_{6}+T_{3} T_{4}, \\
T_{2}^{2}-T_{1} T_{3}-T_{4} T_{8}, & T_{1}^{3}-T_{2} T_{3}-T_{6} T_{8}, \\
T_{1}^{2} T_{4}-T_{2} T_{5}+T_{3} T_{6}, & T_{1}^{2} T_{6}+T_{1} T_{2} T_{4}-T_{3} T_{5}-T_{7} T_{8}, \\
T_{1}^{2} T_{2}-T_{2}^{2}-T_{5} T_{8}
\end{array} \quad\left[\begin{array}{rrrrrrr}
3 & 4 & \\
0 & 4 & -1 & 1 & 0 & -3 & 9 \\
0 & 0 & 1 & 1 & 1 & 2 & -1
\end{array}\right] .
$$

In Algorithm:4.5.3, the saturation computation may become infeasible. In this case, the following variant can be used to, at least, obtain finite generation.

Algorithm 4.5.15 (Finite generation). Input: a $\operatorname{CEMDS}\left(P_{1}, \Sigma_{1}, G_{1}\right)$, a K_{1-} prime ideal $I=\left\langle f_{1}, \ldots, f_{l}\right\rangle \subseteq R_{1}$ with pairwise non-associated K_{1}-primes f_{i} defining an irreducible subvariety $C \subseteq X_{1}$ inside the smooth locus and coprime positive integers d_{1}, \ldots, d_{l} with $f_{i} \in I^{d_{i}}: J^{\infty}$.

- Compute the stretched CEMDS $\left(P_{1}^{\prime}, \Sigma_{1}^{\prime}, G_{1}^{\prime}\right)$ by applying Algorithm 4.3.2 to $\left(P_{1}, \Sigma_{1}, G_{1}\right)$ and $\left(f_{1}, \ldots, f_{l}\right)$.
- Define a multiplicity vector $v \in \mathbb{Z}^{r_{1}+l}$ by $v_{i}:=0$ if $1 \leq i \leq r_{1}$ and $v_{i}:=d_{i-r_{1}}$ for $r_{1}+1 \leq i \leq r_{1}+l$.
- Determine the stellar subdivision $\Sigma_{2} \rightarrow \Sigma_{1}^{\prime}$ of the fan Σ_{1}^{\prime} along the ray through $P_{1}^{\prime} \cdot v$. Set $P_{2}:=\left[P_{1}^{\prime}, P_{1}^{\prime} \cdot v\right]$.
- Use Algorithms 2.212 and 2.13 to compute $G_{2}^{\prime}:=\left(h_{1}, \ldots, h_{s}\right)$ where $h_{i}=p_{2}^{\star}\left(p_{1}^{\prime}\right)_{\star}\left(g_{i}\right)$ and $G_{1}^{\prime}=\left(g_{1}, \ldots, g_{s}\right)$.
- Choose a system of generators G_{2} of an ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r_{2}}\right]$ with $\left\langle G_{2}^{\prime}\right\rangle:\left(T_{1} \cdots T_{r_{2}}\right)^{\infty} \supseteq I_{2} \supseteq\left\langle G_{2}^{\prime}\right\rangle$.
- Check if $\operatorname{dim}\left(I_{2}\right)-\operatorname{dim}\left(I_{2}+\left\langle T_{i}, T_{j}\right\rangle\right) \geq 2$ for all $i \neq j$.
- Check if $T_{r_{2}}$ is prime in $\mathbb{K}\left[T_{j}^{ \pm 1} ; j \neq r_{2}\right]\left[T_{r_{2}}\right] / I_{2}$.

Output: $\left(P_{2}, \Sigma_{2}, G_{2}\right)$. The ES $\left(P_{2}, \Sigma_{2}, G_{2}\right)$ describes the blow up X_{2} of X_{1} along C. If all verifications in the last steps were positive, the Cox ring $\mathcal{R}\left(X_{2}\right)$ is finitely generated and is given by the H_{2}-equivariant normalization of $\mathbb{K}\left[T_{1}, \ldots, T_{r_{2}}\right] / I_{2}$: $\left(T_{1} \cdots T_{r_{2}}\right)^{\infty}$.

Proof. By the last verification, the exceptional divisor $D_{r_{2}} \subseteq X_{2}$ inherits a local defining equation from the toric ambient variety Z_{2}. Thus, the ambient modification is neat in the sense of [51, Def. 5.4]. By [51, Prop. 5.5], $X_{2} \subseteq Z_{2}$ is a neat embedding. In turn, the dimension checks enable us to use [51; Cor. 2.7]. This completes the proof.

We will make frequent use of Algorithm 4.9 both directly as well as formally in Chapter 5: To close this section, we now use the Cox ring computation 4.5.9: to present the Rees algebras associated to certain binomial ideals in terms of generators and relations; we retrieve [98; Prop. 7.10].
Definition 4.5.16. Consider a binomial ideal $I=\left\langle T^{\nu_{i}^{+}}-T^{\nu_{i}^{-}} ; i=1, \ldots, s\right\rangle$ in the polynomial ring $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ and let P be the $s \times r$ matrix with the rows $\nu_{i}^{+}-\nu_{i}^{-}$. Then $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ is graded by the associated abelian group $K_{I}:=\mathbb{Z}^{r} / \operatorname{Im}\left(P^{*}\right)$ via $\operatorname{deg}\left(T_{j}\right):=e_{j}+\operatorname{Im}\left(P^{*}\right)$. We say that I is general, if the following properties hold:
(i) $\operatorname{deg}\left(T_{1}\right), \ldots, \operatorname{deg}\left(T_{r}\right)$ generate a pointed cone in $K_{\mathbb{Q}}$,
(ii) any $r-1$ of the $\operatorname{deg}\left(T_{j}\right)$ generate K_{I} as a group,
(iii) the ideal I is K_{I}-prime,
(iv) every T_{j} defines a K_{I}-prime in $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] / I$.

Corollary 4.5.17. Compare [98; Prop. 7.10]. Let I be a general binomial ideal in $R:=\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ with K_{I}-prime generators f_{1}, \ldots, f_{s} and consider the ideal

$$
I^{\prime}:=\left\langle S U_{i}-f_{i} ; i=1, \ldots, s\right\rangle: S^{\infty} \subseteq \mathbb{K}\left[S, U_{1}, \ldots, U_{s}, T_{1}, \ldots, T_{r}\right]=: \quad R^{\prime}
$$

If S defines a K-prime element in R^{\prime} / I^{\prime}, not associated to any of the U_{k}, T_{j}, then the Rees algebra $R[I]$ is isomorphic to the factor algebra R^{\prime} / I^{\prime}.

Proof. Let X be any projective toric variety having the K-graded polynomial ring $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ as its Cox ring. Then, according to Algorithm 4.5.9, the ring R^{\prime} / I^{\prime} is the Cox ring of the blow up of X at the base point and thus, by Proposition 4.5.2, a saturated Rees algebra. Since R^{\prime} / I^{\prime} is generated in the Rees degrees $0, \pm 1$, it is the usual rees algebra.

6. Linear generation

In this section, we consider blow ups $X_{2} \rightarrow \mathbb{P}_{n}$ of the projective space \mathbb{P}_{n} in k distinct points where the Cox ring $\mathcal{R}\left(X_{2}\right)$ is generated by proper transforms of hyperplanes. Certain relations to the underlying incidence structures are discussed. As an application, we consider certain blow ups of six special points on \mathbb{P}_{3}. Most of this section has been published in [57, Sec. 7] in joint work with J. Hausen and A. Laface

We consider the blow up X of a projective space \mathbb{P}_{n} at k distinct points x_{1}, \ldots, x_{k} where $k>n+1$. Our focus is on special configurations in the sense that the Cox ring of X is generated by the exceptional divisors and the proper transforms of hyperplanes. We assume that x_{1}, \ldots, x_{n+1} are the standard toric fixed points, i.e., we have

$$
x_{1}=[1,0, \ldots, 0], \quad \ldots, \quad x_{n+1}=[0, \ldots, 0,1] .
$$

Now, write $\mathcal{P}:=\left\{x_{1}, \ldots, x_{k}\right\}$ and let \mathcal{L} denote the set of all hyperplanes $\ell \subseteq \mathbb{P}_{n}$ containing n (or more) points of \mathcal{P}. For every $\ell \in \mathcal{L}$, we fix a linear form $f_{\ell} \in$ $\mathbb{K}\left[T_{1}, \ldots, T_{n+1}\right]$ with $\ell=V\left(f_{\ell}\right)$. Note that the f_{ℓ} are homogeneous elements of degree one in the Cox ring of \mathbb{P}_{n}.
The idea is now to take all T_{ℓ} where $\ell \in \mathcal{L}$, as prospective generators of the Cox ring of the blow up X and then to compute the Cox ring using Algorithms 4.3.2, 4.3.8 and 4.3.3: Here comes the algorithmic formulation.

Algorithm 4.6.1 (LinearBlowUp). Input: a collection $x_{1}, \ldots, x_{k} \in \mathbb{P}_{n}$ of pairwise distinct points.

- Set $X_{1}:=\mathbb{P}_{n}$, let Σ_{1} be the fan of \mathbb{P}_{n} and P_{1} the matrix with columns e_{0}, \ldots, e_{n} where $e_{0}=-\left(e_{1}+\ldots+e_{n}\right)$.
- Compute the set \mathcal{L} of all hyperplanes through any n points of x_{1}, \ldots, x_{k}, let $\left(f_{\ell} ; \ell \in \mathcal{L}^{\prime}\right)$ be the collection of the f_{ℓ} different from all T_{i}.
- Compute the stretched $\operatorname{CEMDS}\left(P_{1}^{\prime}, \Sigma_{1}^{\prime}, G_{1}^{\prime}\right)$ by applying Algorithm:4.3.2 to $\left(P_{1}, \Sigma_{1}, G_{1}\right)$ and $\left(f_{\ell} ; \ell \in \mathcal{L}^{\prime}\right)$.
- Determine the Cox coordinates $z_{i}^{\prime} \in \mathbb{K}^{r_{1}^{\prime}}$ of the points $x_{i}^{\prime} \in X_{1}^{\prime}$ corresponding to $x_{i} \in X_{1}$.
- Let Σ_{2} be the barycentric subdivision of Σ_{1}^{\prime} at the cones σ_{i}^{\prime}, corresponding to the toric orbits containing $x_{i}^{\prime}=p_{1}^{\prime}\left(z_{i}^{\prime}\right)$. Write primitive generators for the rays of Σ_{2} into a matrix $P_{2}=\left[P_{1}, B\right]$.
- Compute $\left(P_{2}, \Sigma_{2}, G_{2}\right)$ by applying Algorithm 4.3.8 to ($P_{1}^{\prime}, \Sigma_{1}^{\prime}, G_{1}^{\prime}$) and the pair $\left(P_{2}, \Sigma_{2}\right)$
- Set $\left(P_{2}^{\prime}, \Sigma_{2}^{\prime}, G_{2}^{\prime}\right):=\left(P_{2}, \Sigma_{2}, G_{2}\right)$. Eliminate all fake relations by applying Algorithm 4.3.3 with option verify. Call the ouput $\left(P_{2}, \Sigma_{2}, G_{2}\right)$.

Output: $\quad\left(P_{2}, \Sigma_{2}, G_{2}\right)$. If the verifications in the last step were positive, this is a CEMDS describing the blow up of \mathbb{P}_{n} at the points x_{1}, \ldots, x_{k}. In particular, the K_{2}-graded algebra R_{2} is the Cox ring of X_{2}.

Besides for the proof of Algorithm4.6.1, the following lemma will primarily be used in Chapter 5; we have published it in [57, Lem. 6.3].
Lemma 4.6.2. Consider Setting 4.2.5; Assume that $X_{1} \subseteq Z_{1}$ is a CEMDS, $Z_{2} \rightarrow$ Z_{1} arises from a barycentric subdivision of a regular cone $\sigma \in \Sigma_{1}$ and $X_{2} \rightarrow X_{1}$ has as center a point $x \in X_{1} \cap \mathbb{T}^{n} \cdot z_{\sigma}$. Let f be the product over all T_{i} where $P_{1}\left(e_{i}\right) \notin \sigma$, and choose $z \in \mathbb{K}^{r_{1}}$ with $p_{1}(z)=x$. Then $X_{2} \rightarrow X_{1}$ is the blow up at x provided we have

$$
\left\langle T_{i} ; z_{i}=0\right\rangle_{f}+I\left(P_{1}, z\right)_{f}=\left\langle T_{i} ; e_{i} \in \widehat{\sigma}\right\rangle_{f}+I\left(\bar{X}_{1}\right)_{f} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r_{1}}\right]_{f}
$$

Proof. Compare also [39, Lem. 14.9]. Let $Z_{1, \sigma} \subseteq Z_{1}$ be the affine chart given by σ and set $X_{1, \sigma}:=X_{1} \cap Z_{1, \sigma}$. In order to see that the toric blow up $Z_{2} \rightarrow Z_{1}$ induces a blow up $X_{2} \rightarrow X_{1}$, we have to show

$$
\mathfrak{m}_{x}=I\left(\mathbb{T}^{n} \cdot z_{\sigma}\right)+I\left(X_{1, \sigma}\right) \subseteq \Gamma\left(Z_{1, \sigma}, \mathcal{O}\right)
$$

Consider the quotient map $p_{1}: \widehat{Z}_{1} \rightarrow Z_{1}$. Then we have $p_{1}^{-1}\left(Z_{1, \sigma}\right)=\mathbb{K}_{f}^{r_{1}}$ and, since σ is regular, $\Gamma\left(p_{1}^{-1}\left(Z_{1, \sigma}\right), \mathcal{O}\right)$ admits units in every K_{1}-degree. This implies

$$
\begin{gathered}
p_{1}^{*}\left(\mathfrak{m}_{x}\right)=\left\langle T_{i} ; z_{i}=0\right\rangle_{f}+I\left(P_{1}, z\right)_{f} \\
p_{1}^{*}\left(I\left(\mathbb{T}^{n} \cdot z_{\sigma}\right)\right)=\left\langle T_{i} ; e_{i} \in \widehat{\sigma}\right\rangle_{f}, \quad p_{1}^{*}\left(I\left(X_{1, \sigma}\right)\right)=I\left(\overline{X_{1}}\right)_{f} .
\end{gathered}
$$

Consequently, the assumption together with injectivity of the pullback map p_{1}^{*} give the assertion.

Lemma 4.6.3. In Algorithm 4.6.1; for each x_{i} the barycentric subdivision of σ_{i}^{\prime} induces a blow up of X_{1}^{\prime} in x_{i}^{\prime}.

Proof. Observe that since any point x_{i} can be mapped to a toric fixed point by an automorphism of \mathbb{P}_{n}, there are n hyperplanes in \mathcal{L} with intersection $\left\{x_{i}\right\} \subseteq \mathbb{P}_{n}$ for all i. Furthermore, note that is suffices to consider \mathcal{L}^{\prime} instead of \mathcal{L} since the T_{i} are already present in $\mathcal{R}\left(\mathbb{P}_{n}\right)$.
In Algorithm 4.6.1; write $G_{1}^{\prime}=\left\{T_{n+1+j}-f_{j} ; 1 \leq j \leq s\right\}$. Since the following left hand side is \dot{H}_{1}^{\prime}-invariant and contains z_{i}^{\prime}, we have

$$
\begin{equation*}
\bar{X}_{1}^{\prime} \cap V\left(T_{j} ; e_{j} \in \widehat{\sigma}_{i}^{\prime}\right) \supseteq V\left(I\left(P_{1}^{\prime}, z_{i}^{\prime}\right)+\left\langle T_{j} ;\left(z_{i}^{\prime}\right)_{j}=0\right\rangle\right)=\overline{H_{1}^{\prime} \cdot z_{i}^{\prime}} \tag{5}
\end{equation*}
$$

Assume that (5) is an equality. Taking ideals, this then implies that $I\left(\bar{X}_{1}^{\prime}\right)+$ $\left\langle T_{j} ; e_{j} \in \widehat{\sigma}_{i}^{\prime}\right\rangle$ is equal to $I\left(P_{1}^{\prime}, z_{i}^{\prime}\right)$ as the ideals are linear and thus radical; the claim then follows from Lemma 4.2 since σ_{i}^{\prime} is smooth. The remainder of this proof is concerned with showing that (5) is an equality. It suffices to compare their dimensions. Write the coefficients of the (linear) generators of $\mathfrak{b}_{i}:=I\left(\overline{X_{1}^{\prime}}\right)+$ $\left\langle T_{j} ; e_{j} \in \widehat{\sigma}_{i}^{\prime}\right\rangle$ into a matrix $A_{\mathfrak{b}_{i}}$. Then

$$
V\left(\mathbb{K}^{r_{1}^{\prime}} ; \mathfrak{b}_{i}\right)=\left\{x \in \mathbb{K}^{r_{1}^{\prime}} ; A_{\mathfrak{b}_{i}} \cdot x=0\right\}, \quad \operatorname{dim}\left(V\left(\mathbb{K}^{r_{1}^{\prime}} ; \mathfrak{b}_{i}\right)\right)=r_{1}^{\prime}-\operatorname{rank}\left(A_{\mathfrak{b}_{i}}\right) .
$$

Changing coordinates, we may assume that $x_{i}=[0, \ldots, 0,1] \in \mathbb{P}_{n}$, i.e., it is cut out by the n coordinate hyperplanes $V\left(T_{1}\right), \ldots, V\left(T_{n}\right) \subseteq \mathbb{P}_{n}$. Starting with the rows corresponding to these $V\left(T_{j}\right) \subseteq \mathbb{P}_{n}$ followed by the rows corresponding to the
elements of G_{1}^{\prime}, the matrix $A_{\mathfrak{b}_{i}}$ is of shape

$$
A_{\mathfrak{b}_{i}}=\left[\begin{array}{cc|c}
& 0 & \\
E_{n} & \vdots & 0 \\
& 0 & \\
\hline \bullet & \bullet \\
\hline \bullet & E_{s}
\end{array}\right]
$$

where 0 stands for a zero matrix and \bullet for an arbitrary matrix of fitting size. Then $\operatorname{rank}\left(A_{\mathfrak{b}_{i}}\right)=n+s$ and $r_{1}^{\prime}=n+1+s$ shows that $V\left(\mathbb{K}^{r_{1}^{\prime}} ; \mathfrak{b}_{i}\right)$ is one-dimensional. Let $n_{0} \in \mathbb{Z}_{\geq 0}$ be the number of vanishing coordinates of z_{i}^{\prime}. Then $B=\left(e_{1}, \ldots, e_{m}, e_{0}\right)$, where $m:=r_{1}^{\prime}-n_{0}-1$ and $e_{0}:=(-1, \ldots,-1)$, is a lattice basis for $\operatorname{Im}\left(\left(P_{1}^{\prime}\right)^{*}\right) \cap$ $\operatorname{lin}\left(e_{j} ;\left(z_{i}^{\prime}\right)_{j} \neq 0\right)$ as in Definition 4.5.7. Consequently, the lattice ideal $I\left(P_{1}^{\prime}, z_{i}^{\prime}\right)$ is linear and we conclude

$$
\operatorname{dim}\left(V\left(I\left(P_{1}^{\prime}, z_{i}^{\prime}\right)+\left\langle T_{j} ;\left(z_{i}^{\prime}\right)_{j}=0\right\rangle\right)\right)=r_{1}^{\prime}-\left(m+n_{0}\right)=1 .
$$

Proof of Algorithm 4.6.1: By Lemma 4.6.3, the modification $X_{2} \rightarrow X_{1}^{\prime}$ is the blow up at the points $x_{1}^{\prime}, \ldots, x_{k}^{\prime}$. It remains to show that the input ring R_{2}^{\prime} of the last step is normal; this is necessary for Algorithm 4.3.3: We only treat the case $k=1$. Consider the stretched ring R_{1}^{\prime} obtained from the third step and the ring R_{2} obtained after the sixth step

$$
R_{1}^{\prime}=\mathbb{K}\left[T_{1}, \ldots, T_{r_{1}^{\prime}}\right] /\left\langle G_{1}^{\prime}\right\rangle, \quad R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{r_{1}^{\prime}}, T_{r_{2}}\right] /\left\langle G_{2}\right\rangle
$$

where $T_{r_{2}}$ corresponds to the exceptional divisor. We assume that of the $r_{1}^{\prime}-r_{1}$ new equations $T_{i}-f_{i}$ in G_{1}^{\prime} the last l will result in fake relations in G_{2}. Localizing and passing to degree zero, we are in the situation

The upper left ring is K_{1}-factorial by assumption. By [15; Thm. 1.1] the middle ring in the lower row is a UFD and the ring on the upper right is K_{2}-factorial. Thus, R_{2} is K_{2}-factorial. Since K_{1} is free, also K_{2} is, so R_{2} is a UFD. In particular, R_{2} is normal and we may apply Algorithm 4.3.3:

Example 4.6.4. Let X be the blow up of \mathbb{P}_{2} in the seven points

$$
\begin{array}{ll}
x_{1}:=[1,0,0], & x_{2}:=[0,1,0], \quad x_{3}:=[0,0,1], \\
x_{4}:=[1,1,0], & x_{5}:=[1,0,-1], \quad x_{6}:=[0,1,1], \\
& x_{7}:=[1,1,1] .
\end{array}
$$

Write S_{i} for the variables corresponding to x_{i} and let T_{1}, \ldots, T_{9} correspond to the nine lines in \mathcal{L}. Algorithm 4.6.1: provides us with the Cox ring of X. It is given as the factor ring $\mathbb{K}\left[T_{1}, \ldots, T_{9}, S_{1}, \ldots, S_{7}\right] / I$ where I is generated by

$$
\begin{array}{lr}
2 T_{8} S_{4} S_{6}-T_{5} S_{2}+T_{9} S_{7}, & 2 T_{1} S_{3} S_{6}+T_{5} S_{5}-T_{6} S_{7}, \\
2 T_{4} S_{1} S_{6}+T_{6} S_{2}-T_{9} S_{5}, & -T_{1} S_{2} S_{6}+T_{2} S_{1} S_{5}-T_{7} S_{4} S_{7}, \\
2 T_{7} S_{3} S_{4}+T_{6} S_{2}+T_{9} S_{5}, & -T_{2} S_{5} S_{3}+T_{3} S_{4} S_{2}-T_{4} S_{7} S_{6}, \\
2 T_{3} S_{1} S_{4}+T_{5} S_{5}+T_{6} S_{7}, & T_{1} S_{2} S_{3}+T_{8} S_{4} S_{5}+T_{4} S_{1} S_{7}, \\
2 T_{2} S_{1} S_{3}+T_{5} S_{2}+T_{9} S_{7}, & T_{2} T_{6} S_{3}-T_{3} T_{9} S_{4}-T_{4} T_{5} S_{6}, \\
T_{3} S_{1} S_{2}+T_{8} S_{5} S_{6}-T_{7} S_{3} S_{7}, & T_{3} T_{9} S_{1}-T_{5} T_{7} S_{3}-T_{6} T_{8} S_{6}, \\
T_{2} T_{6} S_{1}-T_{5} T_{7} S_{4}+T_{1} T_{9} S_{6}, & T_{4} T_{5} S_{1}+T_{1} T_{9} S_{3}+T_{6} T_{8} S_{4}, \\
T_{3} T_{7} S_{4}^{2}+T_{1} T_{4} S_{6}^{2}+T_{2} T_{6} S_{5}, & T_{2} T_{7} S_{3}^{2}+T_{4} T_{8} S_{6}^{2}+T_{3} T_{9} S_{2}, \\
T_{1} T_{2} S_{3}^{2}+T_{3} T_{8} S_{4}^{2}-T_{4} T_{5} S_{7}, & T_{1} T_{3} S_{2}^{2}+T_{2} T_{8} S_{5}^{2}+T_{4} T_{7} S_{7}^{2}, \\
T_{3} T_{4} S_{1}^{2}+T_{1} T_{7} S_{3}^{2}-T_{6} T_{8} S_{5}, & T_{2} T_{4} S_{1}^{2}+T_{7} T_{8} S_{4}^{2}-T_{1} T_{9} S_{2},
\end{array}
$$

$$
T_{2} T_{3} S_{1}^{2}+T_{1} T_{8} S_{6}^{2}+T_{5} T_{7} S_{7}, \quad T_{4} T_{5}^{2} T_{7}+T_{2} T_{6}^{2} T_{8}+T_{1} T_{3} T_{9}^{2}
$$

and the \mathbb{Z}^{8}-grading is given by the degree matrix
$\left[\begin{array}{rrrrrrrrrrrrrrrr}0 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

Before eliminating fake relations, the ideal of the intersection of \bar{X}_{2} with the ambient big torus $\mathbb{T}^{r_{2}}$ admits the following description in terms of finite geometries. In our setting, similar to [12], we call the pair $\mathfrak{L}:=(\mathcal{P}, \mathcal{L})$ a finite linear space and the finite sets \mathcal{P} and \mathcal{L} points and lines, respectively. Note that each two points $p, p^{\prime} \in \mathcal{P}$ lie on a common line $\ell \in \mathcal{L}$ and, for $n \geq 2$, there are three points not lying on a common line. An element $\ell \in \mathcal{L}$ is an m-line if it contains exactly m points. We call \mathfrak{L} an (m-)design if each line is a m-line. Moreover, \mathfrak{L} is a near-pencil if there are distinct lines $\ell_{1}, \ldots, \ell_{n-1} \in \mathcal{L}$ such that all points except one are contained in $\bigcap \ell_{i}$. An m-arc is a subset of \mathcal{P} within which no three points lie on a common line.
Proposition 4.6.5. At the end of the fifth step in Algorithm :4. 6.1 ; the Cox ring of Z_{2} is the polynomial ring $\mathbb{K}\left[T_{\ell}, S_{p}\right]$ with indices $\ell \in \mathcal{L}$ and $p \in \mathcal{P}$. Consider the homomorphism

$$
\beta: \mathbb{K}\left[T_{\ell} ; \ell \in \mathcal{L}\right] \rightarrow \mathbb{K}\left[T_{\ell}, S_{p} ; \ell \in \mathcal{L}, p \in \mathcal{P}\right], \quad T_{\ell} \mapsto T_{\ell} \cdot \prod_{p \in \ell} S_{p}
$$

Then the extension of the ideal $I_{2} \subseteq \mathbb{K}\left[T_{\ell}, S_{p}\right]$ to the Laurent polynomial ring $\mathbb{K}\left[T_{\ell}^{ \pm}, S_{p}^{ \pm}\right]$is generated by $\beta\left(T_{\ell}-f_{\ell}\right)$ where $\ell \in \mathcal{L}^{\prime}$. Moreover, properties of the linear space $\mathfrak{L}=(\mathcal{P}, \mathcal{L})$ lead to properties of I_{2} as listed in the following table. The \dagger-cases require $n=2$.

\mathfrak{L}	property of R_{2} or X_{2}
design	I_{2} is classically homogeneous
near pencil	X_{2} admits a non-trivial \mathbb{K}^{*}-action
contains m-arc \dagger	X_{2} contains at least $\binom{m}{2}+k$ many (-1)-curves
complete graph \dagger	X_{2} is smooth
contains an m-line \dagger	X_{2} contains a $(1-m)$-curve

Proof. Denote the elements of \mathcal{L}^{\prime} by ℓ_{i}. The first statement is directly seen by providing a weak B-lifting $\left[E_{r_{1}^{\prime}}, A\right]$ in the sense of [10], i.e., we have a matrix A fitting into

$$
\left.\begin{aligned}
& \mathbb{Z}^{r_{2}} \xrightarrow{\left[E_{r_{1}^{\prime}}, A\right]} \longrightarrow \mathbb{Z}^{r_{1}^{\prime}} \\
& P_{2}=\left[P_{1}, B\right]
\end{aligned}\right|_{P_{1}} ^{{ }^{P_{1}}} \quad A=\left(a_{i j}\right)_{i j}, \quad a_{i j}:= \begin{cases}1, & x_{j} \in \ell_{i}, \\
0, & \text { else }\end{cases}
$$

and the corresponding morphism $\alpha: \mathbb{T}^{r_{2}} \rightarrow \mathbb{T}^{r_{1}^{\prime}}$ satisfies $\alpha^{*}(g)=p_{2}^{*}\left(p_{1}\right)_{*}(g)$ in $\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{r_{2}}^{ \pm 1}\right]$ for Laurent polynomials $g \in \mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{r_{1}^{\prime}}^{ \pm 1}\right]$.
We come to the claims listed in the table. For the first one, note that all $\beta\left(T_{\ell}-f_{\ell}\right)$ are homogeneous and I_{2}, as a saturation, is obtained by a Gröbner basis computation. Gröbner bases of homogeneous ideals are again homogeneous, see for example [1, Ex. 1.8.3]. The second statement is due to the fact that, up to monomial factors, the ideal generated by the $\beta\left(T_{\ell}-f_{\ell}\right)$ is already of the shape of Construction:1.5; Since it is prime, it equals its saturation and therefore I_{2}; hence, X_{2} admits a non-trivial \mathbb{K}^{*}-action by Theorem 1.5.13:

For the remaining three claims, as each $\ell \in \mathcal{L}$ has self-intersection number $\ell^{2}=1$, blowing up m different points on ℓ, the proper transform $\hat{\ell}$ has self-intersection number $\hat{\ell}^{2}=1-m$, see Proposition 1.4.8:

We now treat blow ups of \mathbb{P}_{3} in six distinct points x_{1}, \ldots, x_{6}. As before, we assume that x_{1}, \ldots, x_{4} are the standard toric fixed points. We call the point configuration edge-special if at least one point of $\left\{x_{5}, x_{6}\right\}$ is contained in two different hyperplanes spanned by the other points.
Theorem 4.6.6. Let X be the blow up of \mathbb{P}_{3} at distinct points x_{1}, \ldots, x_{6} not contained in a hyperplane. Then X is a Mori dream space. Moreover, for the following typical edge-special configurations, we obtain:
(i) For $x_{5}:=[1,1,0,0], x_{6}:=[0,1,1,1]$, the Cox ring of X is $\mathcal{R}(X)=$ $\mathbb{K}\left[T_{1}, \ldots, T_{16}\right] / I$ where I is generated by

$$
\begin{array}{lr}
2 T_{4} T_{13}-2 T_{5} T_{16}-2 T_{3} T_{14}, & T_{4} T_{12} T_{15}-T_{2} T_{14}-T_{6} T_{16}, \\
T_{5} T_{12} T_{15}-T_{6} T_{13}+T_{7} T_{14}, & T_{3} T_{12} T_{15}-T_{2} T_{13}-T_{7} T_{16}, \\
T_{5} T_{11} T_{12}-T_{9} T_{13}+T_{10} T_{14}, & T_{4} T_{11} T_{12}-T_{8} T_{14}-T_{9} T_{16}, \\
T_{3} T_{11} T_{12}-T_{8} T_{13}-T_{10} T_{16}, & T_{1} T_{12} T_{13}+T_{7} T_{11}-T_{10} T_{15}, \\
T_{1} T_{12} T_{14}+T_{6} T_{11}-T_{9} T_{15}, & T_{1} T_{12} T_{16}-T_{2} T_{11}+T_{8} T_{15}, \\
T_{5} T_{8}-T_{3} T_{9}+T_{4} T_{10}, & T_{2} T_{5}-T_{3} T_{6}+T_{4} T_{7}, \\
T_{1} T_{5} T_{12}^{2}+T_{7} T_{9}-T_{6} T_{10}, & T_{1} T_{3} T_{12}^{2}+T_{7} T_{8}-T_{2} T_{10}, \\
T_{1} T_{4} T_{12}^{2}+T_{6} T_{8}-T_{2} T_{9} &
\end{array}
$$

with the \mathbb{Z}^{7}-grading given by the degree matrix
$\left[\begin{array}{rrrrrrrrrrrrrrrr}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & -1 & 0 & -1 & 0 & -1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$.
(ii) For $x_{5}:=[2,1,0,0], x_{6}:=[1,1,0,1]$, the Cox ring of X is $\mathcal{R}(X)=$ $\mathbb{K}\left[T_{1}, \ldots, T_{15}\right] / I$ where I is generated by

with the \mathbb{Z}^{7}-grading given by the degree matrix
$\left[\begin{array}{rrrrrrrrrrrrrrr}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ -1 & -1 & -1 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$.
(iii) For $x_{5}:=[1,0,0,1], x_{6}:=[0,1,0,1]$, the Cox ring of X is $\mathcal{R}(X)=$ $\mathbb{K}\left[T_{1}, \ldots, T_{13}\right] / I$ where I is generated by

$T_{2} T_{8} T_{11}-T_{6} T_{9}+T_{7} T_{13}, T_{2} T_{11} T_{12}-T_{4} T_{9}+T_{5} T_{13}$,
$T_{1} T_{9} T_{11}-T_{5} T_{8}+T_{7} T_{12}, T_{1} T_{11} T_{13}-T_{4} T_{8}+T_{6} T_{12}$,
$T_{1} T_{2} T_{11}^{2}-T_{5} T_{6}+T_{4} T_{7}$
with the \mathbb{Z}^{7}-grading given by the degree matrix
$\left[\begin{array}{rrrrrrrrrrrrr}1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & -1 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$.
(iv) For $x_{5}:=[1,0,0,1], x_{6}:=[0,1,1,0]$, the Cox ring of X is $\mathcal{R}(X)=$ $\mathbb{K}\left[T_{1}, \ldots, T_{12}\right] / I$ where I is generated by

$$
\begin{aligned}
& T_{3} T_{8}-T_{5} T_{12}-T_{2} T_{9} \\
& T_{4} T_{7}-T_{6} T_{11}-T_{1} T_{10}
\end{aligned}
$$

with the \mathbb{Z}^{7}-grading given by the degree matrix

$$
\left[\begin{array}{rrrrrrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
-1 & -1 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & -1 & -1 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

(v) For $x_{5}:=[2,1,0,0], x_{6}:=[1,2,0,0]$, the Cox ring of X is $\mathcal{R}(X)=$ $\mathbb{K}\left[T_{1}, \ldots, T_{12}\right] / I$ where I is generated by

$$
\begin{aligned}
& 3 T_{2} T_{7}+2 T_{5} T_{11}+T_{6} T_{12} \\
& 3 T_{1} T_{8}+T_{5} T_{11}+2 T_{6} T_{12}
\end{aligned}
$$

with the \mathbb{Z}^{7}-grading given by the degree matrix

$$
\left[\begin{array}{rrrrrrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & -1 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Proof. See [57; Thm. 7.5] for the proof of the first statement. The second part of the theorem is an application of Algorithm 4.6.1:

Remark 4.6.7. Algorithm 4.6.1 usually is faster than the lattice ideal approach of Algorithm 4.5.9: For instance, some cases of Theorem 4.6.6.were only feasible using Algorithm 4.6.1,

CHAPTER 5

Smooth rational surfaces

In this chapter, we prove that each smooth rational surface of Picard number at most six is a Mori dream space. In terms of Cox rings, we present a complete classification for the case of Picard number at most five and a classification for the surfaces that do not admit a non-trivial \mathbb{K}^{*}-action for Picard number six. All Cox rings are listed explicitly in terms of generators and relations.
Using the fact that each smooth rational surface can be obtained as a blow up of the projective plane \mathbb{P}_{2} or the Hirzebruch surface \mathbb{F}_{a}, we proceed by the following steps. In Section 1 ; we classify the needed point configurations on \mathbb{P}_{2} and \mathbb{F}_{a}. Afterwards, we use Algorithm 4.5.9; to determine the Cox rings of the (possibly iterated) blow ups of these configurations. For blow ups of \mathbb{F}_{a}, we apply Algorithm in a formal way.
In Sections 2 and 3 , we classify the Cox rings of all families of smooth rational surfaces X of Picard number $\varrho(X) \leq 5$. Eliminating isomorphic surfaces, it turns out that besides $\bar{M}_{0,5}$ there are only surfaces with a non-trivial \mathbb{K}^{*}-action. In Section :4; we obtain the smooth rational surfaces of Picard number six as blow ups of the surfaces from the previous step. Here, we classify the Cox rings of the surfaces without a non-trivial \mathbb{K}^{*}-action. The result of Section 4 : (and the proof of one of the cases) has been published in the paper Computing Cox rings together with J. Hausen and A. Laface [57. Sec. 6].

1. Point configurations on \mathbb{P}_{2} and \mathbb{F}_{a}

In this section we classify the point configurations on the projective plane and the Hirzebruch surface which we need to blow up in order to obtain the smooth rational surfaces of Picard number at most six in Sections 2,3 and
Recall from [5; Rem. III.2.5.5] that we can identify points on a Mori dream space by their Cox coordinates. This generalizes homogeneous coordinates on \mathbb{P}_{n}.
Notation 5.1.1. Let X be a \mathbb{Q}-factorial Mori dream space with characteristic space $p: \widehat{X} \rightarrow X$ and characteristic quasitorus H. For any $z \in \widehat{X} \subseteq \mathbb{K}^{r}$ we write $[z]:=p(z) \in X$. Note that $[z]=\left[z^{\prime}\right]$ if and only if $z^{\prime} \in H \cdot z$. Furthermore, given an ideal $I \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ that is generated by $\mathrm{Cl}(X)$-homogeneous polynomials f_{1}, \ldots, f_{n}, we write

$$
V\left(X ; f_{1}, \ldots, f_{n}\right):=V(X ; I):=p(V(\widehat{X} ; I)) \subseteq X
$$

To symbolize point configurations, we draw \mathbb{P}_{2} as the big torus (gray) together with its boundary divisors $V\left(\mathbb{P}_{2} ; T_{i}\right)$ (the black bordering lines). Points are identified by their position on the torus or boundary divisors. For instance, the following picture symbolizes \mathbb{P}_{2} with the points $[1,0,0],[1,1,0]$ and $[0,1,0]$.

Proposition 5.1.2. Each configuration of at most five distinct points on \mathbb{P}_{2} can be moved by an automorphism of \mathbb{P}_{2} to one of the following configurations. Occurring parameters are distinct elements of $\mathbb{K}^{*} \backslash\{1\}$.

configuration	points	
$\mathbb{P}_{2}(\star)$	$\{[1,0,0]\}$	
$\mathbb{P}_{2}(\star \star)$	$\{[1,0,0],[0,1,0]\}$	
$\mathbb{P}_{2}(\star \star \star \star i)$	$\{[1,0,0],[0,1,0],[0,0,1]\}$	
$\mathbb{P}_{2}(* * * i i)$	$\{[1,0,0],[0,1,0],[1,1,0]\}$	
	$\{[1,0,0],[0,1,0],[0,0,1],[1,1,1]\}$	
$\mathbb{P}_{2}(\star \star \star \star \star$ i $)$	$\{[1,0,0],[0,1,0],[0,0,1],[1,1,0]\}$	
$\mathbb{P}_{2}(\star \star \star \star$ iii)	$\{[1,0,0],[0,1,0],[1,1,0],[1, \lambda, 0]\}$	
$\mathbb{P}_{2}(\star \star \star \star \star \star$ i $)$	$\{[1,0,0],[0,1,0],[0,0,1],[1,1,1],[1, \lambda, \mu]\}$	
$\mathbb{P}_{2}(\star \star \star \star \star<i i)$	$\{[1,0,0],[0,1,0],[0,0,1],[1,1,1],[1, \lambda, 0]\}$	
$\mathbb{P}_{2}(\star \star \star \star \star$ iii)	$\{[1,0,0],[0,1,0],[0,0,1],[1,1,0],[1,0,1]\}$	
$\mathbb{P}_{2}(\star \star \star \star \star \star i v)$	$\{[1,0,0],[0,1,0],[0,0,1],[1,1,0],[1, \lambda, 0]\}$	
$\mathbb{P}_{2}(\star \star \star \star \star \star v)$	$\{[1,0,0],[0,1,0],[1,1,0],[1, \lambda, 0],[1, \mu, 0]\}$	

Remark 5.1.3. Given triples $\left(p_{1}, p_{2}, p_{3}\right)$ and $\left(q_{1}, q_{2}, q_{3}\right)$ of non-collinear points in \mathbb{P}_{2}, there is exactly one projective linear transformation mapping the p_{i} to the q_{i}.

Proof of Proposition 5.1.2: Exemplarily, we treat the case of five distinct points $p_{1}, \ldots, p_{5} \in \mathbb{P}_{2}$. Case 1: There is no line in \mathbb{P}_{2} containing three of the points. By Remark 5.1.3, we can move p_{1}, p_{2} and p_{3} to the standard toric fixed points $[1,0,0]$,
$[0,1,0]$ and $[0,0,1] \in \mathbb{P}_{2}$. Applying a suitable torus element, we additionally achieve that p_{4} is as claimed in $\mathbb{P}_{2}(\star \star \star \star \star i)$.
Case 2: There is a line in \mathbb{P}_{2} containing exactly three of the points. Subcase A : No other line in \mathbb{P}_{2} contains three points. We may assume that the line contains p_{1}, p_{2} and p_{4}. After a projective transformation, we have

$$
p_{1}=[1,0,0], \quad p_{2}=[0,1,0], \quad p_{3}=[0,0,1], \quad p_{4}=[1, \lambda, 0], \quad p_{5}=[1, \mu, \nu] .
$$

Scaling p_{5} with a torus element, we arrive at the configuration $\mathbb{P}_{2}(\star \star \star \star \star i i)$. Subcase B: There is an additional line in \mathbb{P}_{2} containing three of the points. We may assume that p_{1}, p_{2} and p_{4} are elements of one line and p_{1}, p_{3} and p_{5} lie on the other line. After a projective transformation, we have

$$
p_{1}=[1,0,0], \quad p_{2}=[0,1,0], \quad p_{3}=[0,0,1], \quad p_{4}=[1, \lambda, 0], \quad p_{5}=[1,0, \mu] .
$$

Scaling p_{4} and p_{5} with a torus element leads to the configuration $\mathbb{P}_{2}(\star \star \star \star \star i i i)$.
Case 4: There is a line in \mathbb{P}_{2} containing exactly four of the points. We may assume that the line contains all points except p_{3}. After a projective transformation, we have

$$
p_{1}=[1,0,0], \quad p_{2}=[0,1,0], \quad p_{3}=[0,0,1], \quad p_{4}=[1, \lambda, 0], \quad p_{5}=[1, \mu, 0] .
$$

Scaling p_{5} with a torus element, we arrive at the configuration $\mathbb{P}_{2}(\star \star \star \star \star i v)$.
Case 5: There is a line in \mathbb{P}_{2} containing all points. After a projective transformation, we have

$$
p_{1}=[1,0,0], \quad p_{2}=[0,1,0], \quad p_{3}=[1, \lambda, 0], \quad p_{4}=[1, \mu, 0], \quad p_{5}=[1, \nu, 0] .
$$

Scaling p_{5} with a torus element, we arrive at the configuration $\mathbb{P}_{2}(\star \star \star \star \star v)$.
Recall that, given $a \in \mathbb{Z}_{\geq 0}$, the a-th Hirzebruch surface is the complete toric surface \mathbb{F}_{a} corresponding to the following complete fan with its rays generated by the columns of P

$$
\begin{aligned}
P & :=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
-a & 0 & 1 & -1
\end{array}\right], \\
Q & :=\left[\begin{array}{rrrr}
1 & 1 & 0 & -a \\
0 & 0 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

Then $\mathcal{R}\left(\mathbb{F}_{a}\right)=\mathbb{K}\left[T_{1}, \ldots, T_{4}\right]$ is graded by $\operatorname{Cl}\left(\mathbb{F}_{a}\right)=\mathbb{Z}^{2}$ via $\operatorname{deg}\left(T_{i}\right)=Q\left(e_{i}\right)$. Similar to \mathbb{P}_{2}, we draw \mathbb{F}_{a} as the big torus (gray) together with its boundary divisors $V\left(\mathbb{F}_{a} ; T_{i}\right)$ (the black bordering lines). Points are given in Cox coordinates as in:5.1.1: and are drawn according to their position on the torus or boundary divisors. For instance, the points $[0,1,0,1] \in \mathbb{F}_{a}$ and $[0,1,1,1] \in \mathbb{F}_{a}$ are drawn as follows.

$$
V\left(T_{1}\right) \overbrace{V\left(T_{4}\right)}^{V\left(T_{3}\right)} V\left(T_{2}\right)
$$

Note that the self-intersection numbers of the $V\left(\mathbb{F}_{a} ; T_{i}\right)$ are a for $i=3,-a$ for $i=4$ and zero for $i \in\{1,2\}$, see [28; Thm. 10.4.4].

Proposition 5.1.4. Let $a \geq 2$. Each configuration of at most $\min (a+1,4)$ distinct points on \mathbb{F}_{a} can be moved by an automorphism of \mathbb{F}_{a} to one of the following configurations. Occurring parameters are distinct elements of $\mathbb{K}^{*} \backslash\{1\}$.

configuration	points	
$\mathbb{F}_{a}(\star i)$	$\{[0,1,0,1]\}$	\bullet

5. SMOOTH RATIONAL SURFACES

$\mathbb{F}_{a}(\star i i)$	$\{[1,0,0,1]\}$	
$\mathbb{F}_{a}(\star \star$ i $)$	$\{[0,1,0,1],[1,0,0,1]\}$	
$\mathbb{F}_{a}(* * i i)$	$\{[0,1,0,1],[0,1,1,0]\}$	
$\mathbb{F}_{a}(\star \star$ iii)	$\{[0,1,0,1],[1,0,1,0]\}$	
$\mathbb{F}_{a}(\star \star$ iv)	$\{[0,1,1,0],[1,0,1,0]\}$	
$\mathbb{F}_{a}(\star \star v)$	$\{[0,1,0,1],[0,1,1,1]\}$	
$\mathbb{F}_{a}(* * * i)$	$\{[0,1,0,1],[1,0,0,1],[0,1,1,0]\}$	
$\mathbb{F}_{a}(* * * i i)$	$\{[0,1,0,1],[0,1,1,0],[1,0,1,0]\}$	
$\mathbb{F}_{a}(* * * i i i)$	$\{[0,1,0,1],[1,0,0,1],[1,1,0,1]\}$	
$\mathbb{F}_{a}(\star \star \star$ iv)	$\{[0,1,0,1],[1,0,0,1],[0,1,1,1]\}$	
$\mathbb{F}_{a}(\star \star \star \star v)$	$\{[0,1,0,1],[0,1,1,0],[0,1,1,1]\}$	
$\mathbb{F}_{a}(\star \star \star v i)$	$\{[0,1,0,1],[1,0,1,0],[0,1,1,1]\}$	
$\mathbb{F}_{a}(\star \star \star$ vii $)$	$\{[0,1,1,0],[1,0,1,0],[1,1,1,0]\}$	
$\mathbb{F}_{a}(\star \star \star$ viii)	$\{[0,1,0,1],[1,0,1,0],[1,1,1,0]\}$	
$\mathbb{F}_{a}(\star \star \star * i x)$	$\{[0,1,0,1],[0,1,1,1],[0,1,1, \lambda]\}$	
$\mathbb{F}_{a}\left(\star \star \star\right.$) ${ }^{\text {a }}$	$\{[0,1,0,1],[1,0,0,1],[1,1,1,0]\}$	
$\mathbb{F}_{a}(\star \star * x i)$	$\{[0,1,1,0],[1,0,1,0],[1,1,0,1]\}$	

$\mathbb{F}_{a}(\star \star \star$ xii)	$\{[0,1,0,1],[1,0,1,0],[1,1,0,1]\}$	
$\mathbb{F}_{a}(\star \star \star \star * i)$	$\{[0,1,0,1],[1,0,0,1],[1,1,0,1],[1, \lambda, 0,1]\}$	
$\mathbb{F}_{a}(* * * * * i i)$	$\{[0,1,0,1],[1,0,1,0],[1,1,0,1],[1, \lambda, 0,1]\}$	
$\mathbb{F}_{a}(\star \star \star \star \star i i i)$	$\{[0,1,0,1],[1,0,1,0],[1,1,0,1],[1, \lambda, 1,0]\}$	
$\mathbb{F}_{a}(\star * * * * i v)$	$\{[0,1,0,1],[1,0,1,0],[1,1,1,0],[\lambda, \lambda, 1,0]\}$	
$\mathbb{F}_{a}(* * * * *)$	$\{[0,1,1,0],[1,0,1,0],[1,1,1,0],[1, \lambda, 1,0]\}$	\ldots
$\mathbb{F}_{a}(\star * * * * i)$	$\{[0,1,0,1],[1,0,0,1],[1,1,0,1],[0,1,1,1]\}$	
$\mathbb{F}_{a}(\star * * *$ vii $)$	$\{[0,1,0,1],[1,0,0,1],[1,1,1,0],[0,1,1,1]\}$	$:$
$\mathbb{F}_{a}(* * * *$ viii)	$\{[0,1,0,1],[1,0,1,0],[1,1,1,0],[0,1,1,1]\}$	$\because .$
$\mathbb{F}_{a}(\star \star \star \star \star i x)$	$\{[0,1,0,1],[1,0,1,0],[1,1,0,1],[0,1,1,1]\}$	
$\mathbb{F}_{a}(* * * * *)$	$\{[0,1,0,1],[0,1,1,0],[1,0,1,0],[1,1,0,1]\}$	
$\mathbb{F}_{a}(* * * * x i)$	$\{[0,1,0,1],[1,0,1,0],[0,1,1,0],[1,1,1,0]\}$	$.$
$\mathbb{F}_{a}(\star \star \star \star \times x i i)$	$\{[0,1,0,1],[1,0,0,1],[0,1,1,0],[1,1,0,1]\}$	
$\mathbb{F}_{a}(* * * *$ xiii $)$	$\{[0,1,0,1],[1,0,0,1],[0,1,1,0],[1,1,1,0]\}$	
$\left.\underset{\substack{\mathbb{F}_{a}\left(\star \star \star \star \mathbb{K}^{*}\right.}}{ } x i v\right)$	$\{[0,1,0,1],[1,0,0,1],[0,1,1,1],[1,0,1, \kappa]\}$	
$\mathbb{F}_{a}(\star \star \star \star \star x v)$	$\{[0,1,0,1],[1,0,0,1],[0,1,1,0],[1,0,1,1]\}$	

$\mathbb{F}_{a}(\star \star \star \star$ xvi $)$	$\{[0,1,0,1],[1,0,0,1],[0,1,1,0],[1,0,1,0]\}$	
$\mathbb{F}_{a}(\star \star \star \star$ xvii $)$	$\{[0,1,0,1],[1,0,0,1],[0,1,1,1],[0,1,1, \lambda]\}$	
$\mathbb{F}_{a}(\star \star \star \star$ xviii $)$	$\{[0,1,0,1],[1,0,0,1],[0,1,1,1],[0,1,1,0]\}$	\vdots
$\mathbb{F}_{a}(\star \star \star \star$ xix $)$	$\{[0,1,0,1],[1,0,1,0],[0,1,1,1],[0,1,1, \lambda]\}$	\vdots
$\mathbb{F}_{a}(\star \star \star \star$ xx $)$	$\{[0,1,0,1],[0,1,1,0],[1,0,1,0],[0,1,1,1]\}$	\vdots
$\mathbb{F}_{a}(\star \star \star \star$ xxi $)$	$\{[0,1,0,1],[0,1,1,1],[0,1,1, \lambda],[0,1,1, \mu]\}$	
$\mathbb{F}_{a}(\star \star \star \star$ xxii)	$\{[0,1,0,1],[0,1,1,0],[0,1,1,1],[0,1,1, \lambda]\}$	

Lemma 5.1.5. Let X_{1}, X_{2} be Mori dream surfaces. Then the following statements are equivalent.
(i) X_{1} and X_{2} are isomorphic.
(ii) $\mathcal{R}\left(X_{1}\right)$ and $\mathcal{R}\left(X_{2}\right)$ are isomorphic as $\mathrm{Cl}\left(X_{i}\right)$-graded algebras.
(iii) The affine $H_{X_{i}}$-varieties \bar{X}_{1} and \bar{X}_{2} are isomorphic.

In particular, each H_{i}-equivariant automorphism of \bar{X}_{i} is an H_{i}-equivariant automorphism of \widehat{X}_{i}.

Proof. The equivalence between the last two statements is Proposition 1.1.3 or [5; Thm. I.2.2.4]. We only need to show that (iii) implies (i). Let ($\varphi, \widetilde{\varphi}$) be an isomorphism between the affine H_{i}-varieties \bar{X}_{1} and \bar{X}_{2}. Then both \widehat{X}_{2} and $\varphi\left(\widehat{X}_{1}\right)$ are open, H_{2}-invariant subsets of \bar{X}_{2} such that the complement in \bar{X}_{2} is of codimension at least two, the good quotient by H_{2} exists and is projective. Since X_{2} is a surface, we obtain $\varphi\left(\widehat{X}_{1}\right)=\widehat{X}_{2}$.

Lemma 5.1.6. Let H be the characteristic torus of \mathbb{F}_{a}.
(i) Given $A \in \mathrm{GL}(2, \mathbb{K})$, we have an H-equivariant automorphism of $\widehat{\mathbb{F}}_{a} \subseteq$ \mathbb{K}^{4} given by

$$
\varphi_{A}: \widehat{\mathbb{F}}_{a} \rightarrow \widehat{\mathbb{F}}_{a}, \quad\left(z_{1}, \ldots, z_{4}\right) \mapsto\left(y_{1}, y_{2}, z_{3}, z_{4}\right), \quad y:=A \cdot\left(z_{1}, z_{2}\right)
$$

(ii) For each $t:=\left(t_{a}, t_{a-1}, \ldots, t_{0}\right) \in \mathbb{K}^{a+1}$, we have an H-equivariant automorphism

$$
\varphi_{t}: \widehat{\mathbb{F}}_{a} \rightarrow \widehat{\mathbb{F}}_{a}, \quad z \mapsto\left(z_{1}, z_{2}, z_{3}+z_{4} \cdot \sum_{k=0}^{a} t_{k} z_{1}^{k} z_{2}^{a-k}, z_{4}\right)
$$

Proof. By Lemma 5.1.5; it suffices to show that φ_{A} and φ_{t} are H-equivariant automorphisms of $\mathbb{\mathbb { F }}_{a}$. Both φ_{A} and φ_{t} are H-equivariant since φ_{A}^{*} and φ_{t}^{*} are $\mathrm{Cl}\left(\mathbb{F}_{a}\right)$-graded; compare [6; Cor. 2.3]. The inverse map for (i) is given by $w \mapsto$
$\left(x_{1}, x_{2}, w_{3}, w_{4}\right)$ with $x:=A^{-1}\left(w_{1}, w_{2}\right)$. In (ii), given a vector $w \in \widehat{\mathbb{F}}_{a}$, the inverse map assigns $w_{3}-\left(t_{a} w_{1}^{a}+\ldots+t_{0} w_{2}^{a}\right)$ to w_{3} and is the identity on the other entries.

Proof of Proposition:5.1.4: We treat exemplarily the case of four points and $a \geq 3$. Let $p_{1}, \ldots, p_{4} \in \widehat{\mathbb{F}}_{a}$ be Cox coordinates for the four points on \mathbb{F}_{a}. Consider the 4×4 matrix $B:=\left[p_{1}, \ldots, p_{4}\right]$ where we may assume that $\operatorname{rank}\left(\left[p_{1}, p_{2}\right]\right)=\operatorname{rank}\left(\left[p_{i}, p_{j}\right]\right)$ for all i, j. In the case of $\operatorname{rank}\left(\left[p_{1}, p_{2}\right]\right)=2$ and $\operatorname{of} \operatorname{rank}\left(\left[p_{1}, p_{2}\right]\right)=1$, respectively, choose $A \in \mathrm{GL}(2, \mathbb{K})$ such that

$$
\left[\begin{array}{l|l}
A & \\
\hline & E_{2}
\end{array}\right] \cdot B=\left[\begin{array}{cccc}
0 & 1 & \bullet & : \\
1 & 0 & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{llll}
0 & 0 & \vdots & \vdots \\
1 & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right]
$$

where E_{2} is the 2×2 unit matrix and \bullet stands for an element of \mathbb{K}. By Lemma.1.6, the map corresponding to the above matrix multiplication is an automorphism. Write q_{1}, \ldots, q_{4} for the columns of the resulting matrix. It suffices to treat the case $a=3$ and $\operatorname{rank}\left(\left[q_{1}, q_{2}\right]\right)=2$, i.e., we have $q_{11}=q_{22}=0$ and $q_{12}=q_{21}=1$. We now look for $t=\left(t_{3}, \ldots, t_{0}\right) \in \mathbb{K}^{4}$ such that the automorphism φ_{t} defined in Lemma 5.1.6(ii) moves as many q_{i} to $V\left(\mathbb{F}_{a} ; T_{3}\right)$ as possible. Given $z \in \mathbb{K}^{4}$, we have

$$
\varphi_{t}(z) \in V\left(\widehat{\mathbb{F}}_{a} ; T_{3}\right) \quad \Leftrightarrow \quad-z_{3}=t_{3} z_{1}^{3} z_{4}+t_{2} z_{1}^{2} z_{2} z_{4}+t_{1} z_{1} z_{2}^{2} z_{4}+t_{0} z_{2}^{3} z_{4}
$$

by definition of φ_{t}. Thus, in the last equation, substituting q_{i} for z we look for solutions of the linear system of equations

$$
A \cdot t=b, \quad(A, b):=\left[\begin{array}{rrrr|r}
0 & 0 & 0 & q_{14} & -q_{13} \\
q_{24} & 0 & 0 & 0 & -q_{23} \\
q_{34} q_{31}^{3} & q_{34} q_{31}^{2} q_{32} & q_{34} q_{31} q_{32}^{2} & q_{34} q_{3}^{3} & -q_{33} \\
q_{44} q_{41}^{3} & q_{44} q_{41}^{2} q_{42} & q_{44} q_{41} q_{42}^{2} & q_{44} q_{42}^{2} & -q_{43}
\end{array}\right]
$$

We say that two points q_{i} and q_{j} lie in a fiber if $q_{i 1} q_{j 2}=q_{i 2} q_{j 1}$. If all $q_{i 4} \neq 0$, replacing $q_{i 3}$ by $q_{i 3} q_{i 4}^{-1}$, we may assume that $q_{i 4}=1$ for all i. Then the rank of A equals the number of different fibers the points lie in:
$\operatorname{rank}(A)=2+\operatorname{rank}\left(\left[\begin{array}{ll}q_{31}^{2} q_{32} & q_{31} q_{32}^{2} \\ q_{41} q_{42} & q_{41} q_{42}^{2}\end{array}\right]\right)= \begin{cases}4, & \text { exactly } 4 \text { fibers with one point, } \\ 3, & \text { exactly } 1 \text { fiber with two points, } \\ 2, & \text { exactly } 2 \text { fibers with two points. }\end{cases}$
In particular, the system $A t=b$ is solvable if there are four different fibers containing exactly one point and we can move $\operatorname{rank}(A)$ many points to $V\left(\mathbb{F}_{a} ; T_{3}\right)$ by an automorphism φ_{t}. To achieve the shown coordinates, one can move general points in $V\left(\mathbb{F}_{a} ; T_{3}\right)$ and $V\left(\mathbb{F}_{a} ; T_{4}\right)$ simultaneously or in all fibers simultaneously either by the automorphism φ_{A} of Lemma 5.1.6 or using a \mathbb{K}^{*}-action. We treat exemplarily configuration $\mathbb{F}_{a}(\star \star \star \star$ xiv $)$. Here, we are in the case $\operatorname{rank}(A)=2$, i.e., after the aforementioned transformation, the points are

$$
q_{1}=[0,1,0,1], \quad q_{2}=[1,0,0,1], \quad q_{3}=\left[0, b_{2}, b_{3}, b_{4}\right], \quad q_{4}=\left[c_{1}, 0, c_{2}, c_{3}\right]
$$

with $b_{i}, c_{j} \in \mathbb{K}^{*}$. Note that there are \mathbb{K}^{*}-actions

$$
\begin{array}{ll}
\mathbb{K}^{*} \times \widehat{\mathbb{F}}_{a} \rightarrow \widehat{\mathbb{F}}_{a}, & (t, z) \\
\mathbb{K}^{*} \times \widehat{\mathbb{F}}_{a} \rightarrow \widehat{\mathbb{F}}_{a}, & \mapsto\left(z_{1}, t z_{2}, z_{3}, t^{-a} z_{4}\right) \\
\end{array}
$$

In particular, we see that $q_{1}=\left[0, k_{2}, 0, k_{4}\right]$ and $q_{2}=\left[l_{1}, 0,0, l_{4}\right]$ for any $k_{i}, l_{j} \in \mathbb{K}^{*}$. Thus, scaling the last components of the listed Cox coordinates for q_{3} and the first component of the Cox coordinates for q_{4}, we obtain the points $\left\{q_{1}, q_{2}, q_{3}^{\prime}, q_{4}^{\prime}\right\}$ as shown in the table where

$$
q_{3}^{\prime}:=[0,1,1,1], \quad q_{4}^{\prime}:=\left[1,0, \frac{c_{3}}{b_{3}}, \frac{c_{4}}{b_{4}}\right]=[1,0,1, \kappa], \quad \kappa:=\frac{b_{3} c_{4}}{b_{4} c_{3}} \in \mathbb{K}^{*}
$$

2. Smooth rational surfaces with $\varrho(X) \leq 4$

Building on the classification of point configurations in Section 1; we classify the smooth rational surfaces of Picard number at most four in terms of their Cox rings. The idea is a stepwise application of Algorithm 4.3.8 in the following formal way.

Remark 5.2.1 (Formal blow up). Consider a smooth, two-dimensional CEMDS $X_{1}=\left(G_{1}, P_{1}, \Sigma_{1}\right)$ with free class group K_{1}. Let X_{2} be the blow up of X_{1} in a point $x \in X_{1}$ with Cox coordinates $z \in \mathbb{K}^{r_{1}}$. We guess and verify a candidate for $\mathcal{R}\left(X_{2}\right)$ by the following steps.

- Choose prime elements $f_{1}, \ldots, f_{l} \in I\left(P_{1}, z\right)+\left\langle T_{j} ; z_{j}=0\right\rangle$ in R_{1}.
- Compute the stretched CEMDS X_{1}^{\prime} by the steps of Algorithm 4.3.2 with input f_{1}, \ldots, f_{l}.
- Formally apply Algorithm 4.3 with option verify:
- compute the ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r_{2}}\right]$ and show that it is saturated with respect to $T_{r_{2}}$,
- show that $\left\langle T_{r_{2}}\right\rangle+I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r_{2}}\right]$ is a prime ideal,
- show that the codimension of $\bar{X}_{2} \cap V\left(T_{r_{2}}, T_{i}\right)$ is at least two for all $i<r_{2}$ and that T_{i} is not associated to T_{j} for $i \neq j$.
- Prove that the performed modification was a blow up.
- Remove redundant generators with Algorithm 4.3.3 if necessary.

For details and correctness of the steps we refer to the proofs of the respective algorithms in Chapter 4 , Theorem 4.2.6 and Proposition 4.1.4: In the following, we will only cite Theorem 4.2.6 when referring to the correctness of this procedure.

Notation 5.2.2. Denote by the prefix Bl the blow up of a point configuration. For instance, $\mathrm{Bl} \mathbb{P}_{2}(\star \star \star i i)$ is the blow up of \mathbb{P}_{2} in the configuration $\mathbb{P}_{2}(\star \star \star i i)$ defined in Proposition 5.1.2. Iterated blow ups are indicated by exponents and consecutive numbers; for example $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i\right)$ stands for (the second occurrence of) a blow up of \mathbb{P}_{2} in three infinitely near points.

Remark 5.2.3. Each smooth rational surface X can be obtained as a blow up of \mathbb{P}_{2} or as a blow up of the Hirzebruch surface \mathbb{F}_{a} where $a \in \mathbb{Z}_{\geq 0}$; see [14; Thm. V.10]. Note that $\mathbb{F}_{0}=\mathbb{P}_{1} \times \mathbb{P}_{1}$ and $\mathbb{F}_{1}=\operatorname{Bl} \mathbb{P}_{2}(\star)$. Moreover, each blow up of $\mathbb{P}_{1} \times \mathbb{P}_{1}$ is isomorphic to a blow up of \mathbb{F}_{1}. In particular, it is a blow up of \mathbb{P}_{2} in two points.

Proposition 5.2.4. Let X be a smooth rational surface with Picard number $\varrho(X)=$ 2. Then X is isomorphic to exactly one of the following.

X	Cox ring $\mathcal{R}(X)$	degree matrix
$\operatorname{Bl} \mathbb{P}_{2}(\star)$	$\mathbb{K}\left[T_{1}, \ldots, T_{4}\right]$	$\left[\begin{array}{rrrrr}1 & 1 & 1 & 0 \\ 0 & -1 & -1 & 1\end{array}\right]$
$\mathbb{F}_{a,}$,	$\mathbb{K}\left[T_{1}, \ldots, T_{4}\right]$	
$a \neq 1$		$\left[\begin{array}{rrrr}1 & 1 & 0 & -a \\ 0 & 0 & 1 & 1\end{array}\right]$

Proof. By Remark 5.2.3; the surface X can either be obtained as a blow up of \mathbb{P}_{2} in one point or we have $X=\mathbb{F}_{a}$ with $a \in \mathbb{Z}_{\geq 0}$. By Proposition 5.1.2; $\mathbb{P}_{2}(\star)$ is the only configuration we need to consider. Clearly, $\mathbb{F}_{1}=\mathrm{Bl} \mathbb{P}_{2}(\star)$ and \mathbb{F}_{a} is not isomorphic to the toric variety $\mathrm{Bl} \mathbb{P}_{2}(\star)$ for $a \neq 1$.

Proposition 5.2.5. Let X be a smooth rational surface with Picard number $\varrho(X)=$ 3. Then X is isomorphic to exactly one of the following.

X	Cox $\operatorname{ring} \mathcal{R}(X)$	degree matrix
Bl $\mathbb{P}_{2}\left(\star^{2}\right)$	$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right]$	$\left[\begin{array}{rrrrr}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & -2 & 1\end{array}\right]$
$\mathrm{Bl} \mathbb{P}_{2}(\star \star)$	$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right]$	$\left[\begin{array}{rrrrr}1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & -1\end{array}\right]$
$\begin{gathered} \mathrm{Bl} \mathbb{F}_{a}(\star i) \\ a \geq 3 \end{gathered}$	$\mathbb{K}\left[T_{1}, \ldots, T_{5}\right]$	$\left[\begin{array}{rrrrr}1 & 0 & 0 & -1 & -1 \\ 0 & 1 & 0 & -a+1 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right]$

The following lemma helps us to identify Gale dual matrices also for the case of formal parameters.
Lemma 5.2.6. Let P be an integral $n \times r$ matrix with $\operatorname{rank} P=n$ and $r>n$. Assume $\mathbb{Z}^{r} / \operatorname{Im}\left(P^{*}\right)$ is free. Then an integral $(r-n) \times r$ matrix Q is a Gale dual matrix of P if all of the following conditions hold.
(i) We have $\operatorname{rank}(Q)=r-n$.
(ii) Each row of Q is an element of $\operatorname{ker}(P)$.
(iii) For each $1 \leq k \leq n$, the $k \times k$-minors of Q are coprime.

Proof. By (ii), the lattice $L \leq \mathbb{Z}^{r}$ spanned by the rows of Q is contained in $\operatorname{ker}(P)$. Due to (i), the saturated lattice satisfies $L^{\text {sat }}=\operatorname{ker}(P)$. The third condition means that the elementary divisors of L are all equal to one, i.e., $L^{\text {sat }}=L$.

Remark 5.2.7. Let X be a smooth rational surface. By [14], each negative curve C on X is an exceptional divisor and therefore smooth. In particular, the proper transform of C under the blow up $X^{\prime} \rightarrow X$ of X in a point $x \in C$ is a ($C^{2}-1$)-curve, see Proposition 1.4.8:

Proof of Proposition 5.2.5: By Remark 5.2.3, each smooth rational surface X with Picard number $\varrho(X)=3$ can be obtained as a blow up of \mathbb{P}_{2} in two points or as the blow up of \mathbb{F}_{a} in one point where $a \in \mathbb{Z}_{\geq 2}$. The configurations we need to consider are listed in Propositions 5.1.2 and 5.1.4.
We now compute the Cox rings of the listed surfaces. The variety $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2}\right)$ is a blow up of $Z^{\prime}:=\mathrm{Bl} \mathbb{P}_{2}(\star)$ in a point in the exceptional divisor. As a toric variety, Z^{\prime} is given by a fan Σ^{\prime} with its rays generated by the columns of

$$
P:=\left[\begin{array}{llll}
-1 & 1 & 0 & 1 \\
-1 & 0 & 1 & 1
\end{array}\right]
$$

The exceptional divisor of Z^{\prime} is $V\left(Z^{\prime} ; T_{4}\right)$ which consists of the toric orbits through the points

$$
[1,0,1,0], \quad[1,1,0,0], \quad[1,1,1,0] \quad \in \quad Z^{\prime}
$$

Note that we can move both the third point and the second point to the first point by using the respective equivariant automorphisms

$$
z \mapsto\left(z_{1}, z_{2}-z_{3}, z_{3}, z_{4}\right), \quad z \mapsto\left(z_{1}, z_{3}, z_{2}, z_{4}\right)
$$

of \widehat{Z}^{\prime}, compare Lemma 5.1.5; Thus, $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2}\right)$ is the toric variety with its fan given by the stellar subdivision of Σ^{\prime} at $(2,1) \in \mathbb{Z}^{2}$.

The surfaces $\mathrm{Bl} \mathbb{F}_{a}(\star i)$ and $\mathrm{Bl} \mathbb{F}_{a}(\star i i)$ are obtained from \mathbb{F}_{a} by stellar subdivision of the fan of \mathbb{F}_{a} at $v \in \mathbb{Z}^{2}$ where $v=(-1,-a+1)$ or $v=(-1,-a-1)$, respectively. By Lemma 5.2 ; the degree matrices of the Cox rings $\mathbb{K}\left[T_{1}, \ldots, T_{5}\right]$ of $\mathrm{Bl} \mathbb{F}_{a}(\star i)$ and $\mathrm{Bl} \mathbb{F}_{a}(\star i i)$ are Gale dual matrices of

$$
[P, v], \quad P:=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
-a & 0 & 1 & -1
\end{array}\right] .
$$

Note that $\mathrm{Bl} \mathbb{F}_{a+1}(\star i)$ is isomorphic to $\mathrm{Bl} \mathbb{F}_{a}(\star i i)$ for each $a \geq 2$: as toric varieties both surfaces share the same fan

Hence, we may remove $\mathrm{Bl} \mathbb{F}_{a}(\star i i)$ from the list. Observe that we also may omit $\mathrm{Bl} \mathbb{F}_{2}(\star i)$. Let Z be the blow up of \mathbb{P}_{2} in the fixed point $[0,0,1]$. Blowing up the fixed point $[0,1,1,0] \in Z$, we obtain the toric variety $\mathrm{Bl} \mathbb{F}_{2}(\star i)$. Therefore, $\mathrm{Bl} \mathbb{F}_{2}(\star i)$ is isomorphic to $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2}\right)$.
To show that the remaining listed surfaces X are pairwise non-isomorphic, we compare the self-intersection numbers of negative curves. These come from toric divisors, i.e., are of the form $V\left(X ; T_{i}\right)$. See also Remark 5.2.7;

X	$V\left(T_{1}\right)^{2}$	$V\left(T_{2}\right)^{2}$	$V\left(T_{3}\right)^{2}$	$V\left(T_{4}\right)^{2}$	$V\left(T_{5}\right)^{2}$
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2}\right)$	≥ 0	-1	≥ 0	-2	-1
$\mathrm{Bl} \mathbb{P}_{2}(\star \star)$	≥ 0	≥ 0	-1	-1	-1
$\mathrm{Bl} \mathbb{F}_{a}(\star i), a \geq 3$	-1	≥ 0	≥ 0	$-a$	-1

Proposition 5.2.8. Let X be a smooth rational surface with Picard number $\varrho(X)=4$. Then X is isomorphic to exactly one of the following.

X	Cox ring $\mathcal{R}(X)$	degree matrix
Bl $\mathbb{P}_{2}\left(\star^{3} i\right)$	$\mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$	$\left[\begin{array}{rrrrrr}1 & 0 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & -3 & 2 \\ 0 & 0 & 0 & 1 & -2 & 1\end{array}\right]$
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i\right)$	$\mathbb{K}\left[T_{1}, \ldots, T_{7}\right] / I$ with I generated by $T_{3}^{2} T_{4}-T_{1} T_{2}-T_{6} T_{7}$	$\left[\begin{array}{rrrrrrr}1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 2 & -1 \\ 0 & 0 & 1 & -2 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1\end{array}\right]$
Bl $\mathbb{P}_{2}\left(\star^{2} \star i\right)$	$\mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$	$\left[\begin{array}{rrrrrr}1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & -2 & -1 \\ 0 & 0 & 0 & 1 & -1 & -1\end{array}\right]$
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star i i\right)$	$\mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$	$\left[\begin{array}{rrrrrr}1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 2 & 1 & -1\end{array}\right]$
Bl $\mathbb{P}_{2}(\star \star \star i)$	$\mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$	$\left[\begin{array}{rrrrrr}1 & 0 & 0 & 0 & -1 & -1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1\end{array}\right]$

	$\mathbb{K}\left[T_{1}, \ldots, T_{7}\right] / I$
Bl $\mathbb{P}_{2}(\star \star \star$ ii $)$	with I generated by
	$T_{2} T_{4}-T_{1} T_{5}-T_{6} T_{7}$

0 \& 1 \& 0 \& 0 \& 1 \& 1 \& 0

0 \& 0 \& 1 \& 0 \& 0 \& 1 \& -1

0 \& 0 \& 0 \& 1 \& 1 \& 2 \& -1\end{array}\right]\)
$\left.\begin{array}{c}\text { Bl } \mathbb{F}_{a}(\star \star i) \quad \mathbb{K}\left[T_{1}, \ldots, T_{6}\right] \quad\left[\begin{array}{rrrrrr}1 & 0 & 0 & a-3 & -2 & -1 \\ 0 \geq 3\end{array}\right. \\ 0 \\ 0 \\ 0\end{array}\right)$

	$\mathbb{K}\left[T_{1}, \ldots, T_{7}\right] / I$
Bl $\mathbb{F}_{a}(\star \star v)$	
$a \geq 3$	

0 \& 1 \& 0 \& 0 \& a \& 2 a-1 \& -a+1

0 \& 0 \& 1 \& 0 \& -1 \& -1 \& 1

0 \& 0 \& 0 \& 1 \& 1 \& 2 \& -1\end{array}\right]\)

$$
\begin{aligned}
& \mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} \quad \text { ii) } \quad \mathbb{K}\left[T_{1}, \ldots, T_{6}\right]\right. \\
& a \geq 3
\end{aligned}
$$

In particular, the cases $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3}\right.$ ii), $\mathrm{Bl} \mathbb{P}_{2}(\star \star \star i i)$ and $\mathrm{Bl} \mathbb{F}_{a}(\star \star v)$ are non-toric \mathbb{K}^{*}-surfaces. The remaining surfaces are toric.

For the proof of Proposition 5.8 , to avoid redundancies, we must be able to test surfaces for being isomorphic. We give a solution for toric and non-toric \mathbb{K}^{*}-surfaces. Afterwards, we provide easy to check conditions on whether an ambient modification was a blow up and on when a point in the total coordinate space is relevant.

Notation 5.2.9. Let A and B be $n \times r$ matrices. We write $A \risingdotseq B$ if A equals B up to permutation of the columns.
Remark 5.2.10. Let Z and Z^{\prime} be complete toric surfaces. Write primitive generators for the rays of their fans into the columns of matrices P_{Z} and $P_{Z^{\prime}}$. Then

$$
Z_{1} \cong Z_{2} \quad \Leftrightarrow \quad A \cdot P_{Z} \risingdotseq P_{Z^{\prime}} \quad \text { for some } A \in \mathrm{GL}(2, \mathbb{Z})
$$

Algorithm 5.2.11 (Toric surface isomorphism test). Input: $2 \times r$ matrices $P_{Z}=$ $\left[p_{1}, \ldots, p_{r}\right]$ and $P_{Z^{\prime}}=\left[p_{1}^{\prime}, \ldots, p_{r}^{\prime}\right]$ as in Remark 5.2.10 such that both the p_{1}, \ldots, p_{r} and $p_{1}^{\prime}, \ldots, p_{r}^{\prime}$ contain a lattice basis for \mathbb{Z}^{2}.

- Choose a lattice basis $\left(p_{i_{1}}, p_{i_{2}}\right)$ for \mathbb{Z}^{2}.
- If there is an ordered lattice basis $\left(p_{j_{1}}^{\prime}, p_{j_{2}}^{\prime}\right)$ for \mathbb{Z}^{2} such that $A_{j_{1} j_{2}} \cdot P_{Z} \risingdotseq$ $P_{Z^{\prime}}$ with the invertible matrix $A_{j_{1} j_{2}}:=\left[p_{j_{1}}^{\prime}, p_{j_{2}}^{\prime}\right] \cdot\left[p_{i_{1}}, p_{i_{2}}\right]^{-1}$, then return true. Otherwise, return false.

Output: true if Z is isomorphic to Z^{\prime} and false otherwise.
Proof. Each $A \in \mathrm{GL}(2, \mathbb{Z})$ maps a lattice basis to a lattice basis, i.e., $A \cdot\left[p_{i_{1}}, p_{i_{2}}\right] \risingdotseq$ [$p_{j_{1}}^{\prime}, p_{j_{2}}^{\prime}$] which means $A \risingdotseq A_{j_{1}, j_{2}}$. Thus, the algorithm runs through all possibilities of Remark 5. 20

Algorithm 5.2.12 (Classify toric blow ups). Input: the fan Σ_{0} of a complete toric surface Z_{0} and an integer $s \in \mathbb{Z}_{\geq 1}$.

- Initialize lists $L_{0}:=\left(\Sigma_{0}\right)$ and $L_{i}:=\emptyset$ for $i \in\{1, \ldots, s\}$.
- For each $i=0,1, \ldots, s-1$ do
- for each $\Sigma \in L_{i}$ do
* for each maximal cone $\sigma \in \Sigma$ do
- perform the barycentric subdivision $\Sigma^{\prime} \rightarrow \Sigma$ of Σ at σ.
- Use Algorithm 5.2.11 to test whether there is $\Sigma^{\prime \prime} \in L_{i+1}$ such that the toric variety $Z_{\Sigma^{\prime \prime}}$ is isomorphic to $Z_{\Sigma^{\prime}}$. Insert Σ^{\prime} into L_{i+1} if this is not the case.
Output: L_{s}. This is a list of the fans of all complete toric surfaces that can be obtained from Z_{0} by s blow up steps. Of these surfaces, no two are isomorphic.

We now turn to methods for testing whether two \mathbb{K}^{*}-surfaces are isomorphic. We use the fact that, in the sense of Proposition 1.5.8; admissible operations preserve the shape of the blocks of the P-matrices corresponding to the surfaces; compare Construction '1.52:

Remark 5.2.13. Consider \mathbb{K}^{*}-surfaces $X=X(P, A)$ and $X^{\prime}=X\left(P^{\prime}, A^{\prime}\right)$ as in Construction 1.5.2: Assume that the Cox rings are of shape

$$
\begin{aligned}
\mathcal{R}(X)=\mathbb{K}\left[T_{1}, \ldots, T_{n+m}\right] /\langle g\rangle, & g:=c_{0} T^{l_{0}}+c_{1} T^{l_{1}}+c_{2} T^{l_{2}}, \\
\mathcal{R}\left(X^{\prime}\right)=\mathbb{K}\left[T_{1}, \ldots, T_{n+m}\right] /\left\langle g^{\prime}\right\rangle, & g^{\prime}:=c_{0}^{\prime} T^{l_{0}^{\prime}}+c_{1}^{\prime} T^{l_{1}^{\prime}}+c_{2}^{\prime} T^{l_{2}^{\prime}}
\end{aligned}
$$

with $c_{i}, c_{i}^{\prime} \in \mathbb{K}^{*}$ and integral vectors $l_{i} \in \mathbb{Z}_{\geq 0}^{n_{i}}, l_{i}^{\prime} \in \mathbb{Z}_{\geq 0}^{n_{i}^{\prime}}$. By Remark 1.5.9; X and X^{\prime} are isomorphic if and only if $P^{\prime}=S \cdot P \cdot U$ with admissible matrices S, U. In particular, up to permutation, the sets of exponent vectors of g and of g^{\prime} coincide:

$$
\left\{\sigma_{0}\left(l_{0}\right), \sigma_{1}\left(l_{1}\right), \sigma_{2}\left(l_{2}\right)\right\}=\left\{l_{0}^{\prime}, l_{1}^{\prime}, l_{2}^{\prime}\right\} \quad \text { for some } \sigma_{i} \in \operatorname{Sym}\left(n_{i}\right)
$$

Algorithm 5.2.14 (\mathbb{K}^{*}-surface isomorphism test). Input: \mathbb{K}^{*}-surfaces X_{1}, X_{2} as in Remark 5.2.13 with $\mathrm{Cl}\left(X_{i}\right)=\mathbb{Z}^{k}$ for both i. Let Q_{i} be the $k \times(n+m)$ degree matrices of $\hat{\mathcal{R}}\left(X_{i}\right)$

- Return false if the criterion of Remark 5.2.13: fails.
- As in Algorithm 5.2.11; compute all matrices $A \in \mathrm{GL}(k, \mathbb{Z})$ such that $A \cdot Q_{1} \cdot U_{A}=Q_{2}$ with a permutation matrix $U_{A} \in \mathrm{GL}(n+m, \mathbb{Z})$.
- Return true if one of the matrices U_{A} is admissible and false otherwise.

Output: true if $X_{1} \cong X_{2}$ and false otherwise.
Proof. Let $X_{i}=X\left(P_{i}, A_{i}\right)$ be as in Construction 1.5.2; Then Q_{i} is a Gale dual matrix for P_{i}. Assume X_{1} is isomorphic to X_{2}. By Remark 1.5.9, there is an admissible matrix $S \in \mathrm{GL}(3, \mathbb{Z})$ and an admissible permutation matrix $U \in \mathrm{GL}(n+$ $m, \mathbb{Z})$ such that $P_{2}=S \cdot P_{1} \cdot U$. Then $Q_{2}^{\prime}:=Q_{1}\left(U^{-1}\right)^{t}=Q_{1} U$ satisfies $P_{2}\left(Q_{2}^{\prime}\right)^{t}=0$. Hence, both Q_{2} and Q_{2}^{\prime} have a basis for $\operatorname{ker}\left(P_{2}\right)$ as their rows, i.e.

$$
Q_{2}=A \cdot Q_{2}^{\prime}=A \cdot Q_{1} \cdot U \quad \text { for some } \quad A \in \mathrm{GL}(k, \mathbb{Z})
$$

Similarly, for the reverse implication, assume that $Q_{2}=A^{\prime} \cdot Q_{1} \cdot U^{\prime}$ with $A^{\prime} \in$ $\mathrm{GL}(k, \mathbb{Z})$ and an admissible permutation matrix $U^{\prime} \in \mathrm{GL}(n+m, \mathbb{Z})$. Then $P_{2}^{\prime}:=$ $P_{1} \cdot\left(\left(U^{\prime}\right)^{-1}\right)^{t}$ satisfies $P_{2}^{\prime} \cdot Q_{2}^{t}=0$, i.e.

$$
P_{2}=S^{\prime} \cdot P_{2}^{\prime} \quad \text { for some } \quad S^{\prime} \in \mathrm{GL}(n+m-k, \mathbb{Z})
$$

Since U^{\prime} is admissible, both P_{2}^{\prime} and $P_{2}=S^{\prime} \cdot P_{2}^{\prime}$ are in block shape as in Construction 1.5 .2 . Therefore, the only possible row operations performed by multiplying S^{\prime} from the left is adding multiples of the upper r rows to the lower ones, i.e., S^{\prime} is admissible.

Lemma 5.2.15. Consider Setting:4.5: Assume that $X_{1} \subseteq Z_{1}$ is a Mori dream space embedded in its canonical toric ambient variety, $Z_{2} \rightarrow Z_{1}$ arises from a
barycentric subdivision of a regular cone $\sigma \in \Sigma_{1}$ and $X_{2} \rightarrow X_{1}$ has as center a point $x \in X_{1} \cap\left(\mathbb{T}^{n} \cdot z(\sigma)\right)$ with Cox coordinates $z \in \mathbb{K}^{r}$. Then $X_{2} \rightarrow X_{1}$ is the blow up at x provided the following conditions are fulfilled.
(i) The grading group K_{1} is free.
(ii) The ideal $I\left(\bar{X}_{1}\right)+\left\langle T_{i} ; z_{i}=0\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r_{1}}\right]$ is prime.
(iii) The torus $H_{1}:=\operatorname{Spec} \mathbb{K}\left[K_{1}\right]$ and $\bar{X}_{1} \cap V\left(T_{i} ; z_{i}=0\right)$ are of the same dimension.

Proof. Write $J_{1}:=I\left(\bar{X}_{1}\right)+\left\langle T_{i} ; z_{i}=0\right\rangle$ and $Y:=V\left(\mathbb{K}^{r} ; J_{1}\right)$. Since $z \in Y$, also the orbit closure $\overline{H_{1} \cdot z}$ is contained in Y. It can be described as

$$
\overline{H_{1} \cdot z}=V\left(\mathbb{K}^{r} ; J_{2}\right), \quad J_{2}:=I\left(P_{1}, z\right)+\left\langle T_{i} ; z_{i}=0\right\rangle
$$

By conditions (ii) and (iii), Y is irreducible and of the same dimension as $V\left(\mathbb{K}^{r} ; J_{2}\right)$, which shows $Y=V\left(\mathbb{K}^{r} ; J_{2}\right)$. Again by (ii), we conclude $J_{1}=\sqrt{J_{2}}$. Since the grading group is free, by $[82 ;$ Thm. 7.4$], I\left(P_{1}, z\right)$ is a prime ideal in the ring $\mathbb{K}\left[T_{j} ; z_{j} \neq 0\right]$. The integral domain $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] / J_{2}$ is isomorphic to $\mathbb{K}\left[T_{j} ; z_{j} \neq 0\right] / I\left(P_{1}, z\right)$, so we arrive at $J_{1}=J_{2}$. An application of Lemma 4.6.2 concludes the proof.

Lemma 5.2.16. Consider Setting:4.2.9:
(i) Consider $z \in \bar{X}_{1} \subseteq \mathbb{K}^{r_{1}}$. If $z_{i}=0$ for exactly one $1 \leq i \leq r_{1}$, then $z \in \widehat{X}_{1}$.
(ii) If X_{1} is a surface, then $\widehat{X}_{1}^{\prime}=\bar{\iota}\left(\widehat{X}_{1}\right)$.

Proof. Let $\gamma:=\mathbb{Q}_{\geq 0}^{r_{1}}$. Given a face $\gamma_{0} \preceq \gamma$, write $T_{\gamma_{0}} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ for the product of all T_{i} with $e_{i} \in \gamma_{0}$. By the construction of bunched rings 1.3.6; each facet $\gamma_{0} \preceq \gamma$ is a relevant \mathfrak{F}-face and \widehat{X}_{1} equals the union of all $\bar{X}_{1} \backslash V\left(\bar{X}_{1} ; T_{\gamma_{0}}\right)$ where $\gamma_{0} \preceq \gamma$ runs through the relevant \mathfrak{F}-faces. Choosing $\gamma_{0}:=\operatorname{cone}\left(e_{i} ; z_{i} \neq 0\right)$ proves the first assertion. For (ii), consider the diagram

with the characteristic quasitorus H_{1} of X_{1}. Since X_{1} is a surface, $\widehat{X}_{1} \subseteq \bar{X}_{1}$ is the only open subset with its complement in \bar{X}_{1} of codimension at least two that admits a quasiprojective quotient by H_{1}. Thus, as $\bar{\imath}: \bar{X}_{1} \rightarrow \bar{X}_{1}^{\prime}$ is an isomorphism, so is $\iota: X_{1} \rightarrow X_{1}^{\prime}$ and we obtain $\bar{\iota}\left(\widehat{X}_{1}\right)=\widehat{X}_{1}^{\prime}$.

Lemma 5.2.17. Let $f \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ be such that $T_{j} \nmid f$ for all j. Assume there is a variable T_{i} dividing exactly one non-zero monomial T^{μ} of f and $T_{i}^{2} \nmid T^{\mu}$. Then f is prime.

Proof. By choice of f, each factorization must be of the form $f=\left(g_{1}+T_{i} g_{2}\right) h$ with $g_{i}, h \in \mathbb{K}\left[T_{j} ; j \neq i\right]$. By assumption, h is not a monomial. Since we allow only one term to depend on T_{i} we conclude $h \in \mathbb{K}^{*}$, i.e., f is irreducible.

Proof of Proposition 5.2.8. By Remark 5.2.3, the surface X can be obtained as a blow up of \mathbb{P}_{2} in three points or as the blow up of \mathbb{F}_{a} in two points where $a \in \mathbb{Z}_{\geq 2}$. Propositions 5.1.2 and 5.1.4 list the configurations we need to consider. Moreover, X is a blow up of one of the surfaces classified in Proposition 5.2.5: See Remark 5.2.1 for the steps.
(I) Surfaces of type $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3}\right)$. The varieties of the form $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3}\right)$ are a blow up of $Z_{1}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2}\right)$ in a point in the exceptional divisor of the first or of the second
blow up. As a toric variety, Z_{1} is given by a fan Σ_{1} with its rays generated by the columns of

$$
P_{1}:=\left[\begin{array}{lllll}
-1 & 1 & 0 & 1 & 2 \\
-1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

The exceptional divisors of Z_{1} are $V\left(Z_{1} ; T_{4}\right)$ and $V\left(Z_{1} ; T_{5}\right)$. The union $V\left(Z_{1} ; T_{4}\right) \cup$ $V\left(Z_{1} ; T_{5}\right)$ consists of the toric orbits through the points

$$
\begin{array}{lll}
q_{1}:=[1,0,1,1,0], & q_{2}:=[1,1,1,1,0], & q_{3}:=[1,1,1,0,0] \\
q_{4}:=[1,1,1,0,1], & q_{5}:=[1,1,0,0,1] & \in Z_{1} .
\end{array}
$$

The equivariant automorphism $z \mapsto\left(z_{1}, z_{2}, z_{3}-z_{2} z_{5}, z_{4}, z_{5}\right)$ of \widehat{Z}_{1} maps q_{4} to q_{5}; compare Lemma 5.1.5. Thus, if we blow up Z_{1} in q_{1}, q_{3} or in one of the points q_{4}, q_{5} it is given by insertion of the respective rays

$$
\mathbb{Q} \geq 0 \cdot(3,1), \quad \mathbb{Q} \geq 0 \cdot(3,2), \quad \mathbb{Q} \geq 0 \cdot(1,2)
$$

into Σ_{1} by means of a stellar subdivision. This covers the cases $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i\right)$, $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i i\right)$ and $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i v\right)$. We now treat the case $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i\right)$ which is the blow up of Z_{1} in q_{2}. This is done by the steps explained in Remark 5.2.1. Note that the point exists by Lemma 5.2.16: In the situation of Setting 4.9, we have $Z_{1}=X_{1}$ and $K_{1}=\mathbb{Z}^{3}$. Consider the embedding

$$
\bar{\iota}: \mathbb{K}^{5} \rightarrow \mathbb{K}^{6}, \quad x \mapsto\left(x, h_{1}(x)\right), \quad h_{1}:=T_{3}^{2} T_{4}-T_{1} T_{2} \in \mathbb{K}\left[T_{1}, \ldots, T_{5}\right]
$$

Then $I_{1}^{\prime}=\left\langle T_{6}-h_{1}\right\rangle$ is the vanishing ideal of \bar{X}_{1}^{\prime}. The \mathbb{Z}^{3}-grading on $\mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ is given by the following degree matrix Q_{1}^{\prime}. The columns of P_{1}^{\prime}, a Gale dual matrix of Q_{1}^{\prime}, generate the rays of the fan Σ_{1}^{\prime} of the toric ambient variety Z_{1}^{\prime} where

$$
Q_{1}^{\prime}=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & -1 & 1 \\
0 & 0 & 1 & -2 & 1 & 0
\end{array}\right], \quad P_{1}^{\prime}:=\left[\begin{array}{rrrrrr}
1 & 0 & 1 & 0 & -1 & -1 \\
0 & 1 & 1 & 1 & 1 & -1 \\
0 & 0 & 2 & 1 & 0 & -1
\end{array}\right]
$$

We want to blow up $\iota\left(q_{2}\right)=[1,1,1,1,0,0] \in X_{1}^{\prime}$. Note that this point exists by Lemma 5.2.16; Consider now Setting 4.2.5 with the toric modification $\pi: Z_{2} \rightarrow Z_{1}^{\prime}$ given by insertion of the ray through the sum $v:=(-2,0,-1)$ of the fifth and sixth column of P_{1}^{\prime} into Σ_{1}^{\prime}. Thus, the fan of the toric variety Z_{2} has its rays generated by the columns of $P_{2}=\left[P_{1}^{\prime}, v\right]$. We obtain the ideal $I_{2}=\langle g\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$ of the closure of the inverse image \bar{X}_{2} by modifying the generator of I_{1} :

$$
g:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{6}-h_{1}\right)=T_{6} T_{7}-T_{3}^{2} T_{4}+T_{1} T_{2} \in \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]
$$

where p_{i} is the morphism of tori corresponding to P_{i}. Observe that g is already saturated with respect to T_{7}. All variables T_{i} define pairwise non-associated prime elements in $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{7}\right] /\langle g\rangle$ by Lemma 5.2.17. Moreover, $T_{7} \nmid T_{i}$ for all $i<7$ as

$$
\operatorname{dim}\left(V\left(\mathbb{K}^{7} ; T_{7}, T_{i}, g\right)\right)=4 \quad \text { for all } i<7
$$

Using Theorem 4.2(i) with Proposition 4.1.4, R_{2} is the Cox ring of the performed modification. Its degree matrix is a Gale dual matrix of P_{2} as listed in the table. We now show that the modification was the blow up of $\iota\left(q_{2}\right) \in X_{1}^{\prime}$. In $\mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$, the ideal $\left\langle T_{5}, T_{6}\right\rangle+I_{1}^{\prime}$ is prime by Lemma 5.2.17; its zero set is three-dimensional and the latter contains $\bar{l}((1,1,1,1,0))$. By Lemma 5.15 ; the modification was the claimed blow up.
(II) Surfaces of type $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star\right)$. The cases $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star i\right)$ and $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star i i\right)$ are blow ups of $Z_{1}:=\mathrm{Bl} \mathbb{P}_{2}(\star \star)$ in a point in one of the two exceptional divisors. As a toric
variety, Z_{1} is given by a fan with its rays generated by the columns of

$$
P_{1}:=\left[\begin{array}{rrrrr}
-1 & 1 & 0 & 1 & -1 \\
-1 & 0 & 1 & 1 & 0
\end{array}\right], \quad \underset{\substack{(-1,0) \\
(-1,-1)}}{(0,1)}{ }_{(1,0)}^{(1,1)}
$$

Of the exceptional divisors $V\left(Z_{1} ; T_{4}\right)$ and $V\left(Z_{1} ; T_{5}\right)$ we consider the first one. It consists of the toric orbits through the points

$$
q_{1}:=[1,0,1,0,1], \quad q_{2}:=[1,1,1,0,1], \quad q_{3}:=[1,1,0,0,1] \in Z_{1} .
$$

The automorphism $z \mapsto\left(z_{1}, z_{2}-z_{3} z_{5}, z_{3}, z_{4}, z_{5}\right)$ of \widehat{Z}_{1} maps q_{2} to q_{1}; compare Lemma 5.1.5. Thus, any blow up of Z_{1} in one of the points q_{i} is isomorphic to the toric blow up obtained by insertion of the ray $\mathbb{Q}_{\geq 0} \cdot(2,1)$ or $\mathbb{Q}_{\geq 0} \cdot(1,2)$ into the fan of Z_{1}.
(III) Surfaces of type $\mathrm{Bl} \mathbb{P}_{2}(\star \star \star)$. Surfaces of the form $\mathrm{Bl} \mathbb{P}_{2}(\star \star \star)$ are again blow ups of $Z_{1}:=\mathrm{Bl} \mathbb{P}_{2}(\star \star)$. By Proposition 5.1.2; we need to consider the following configurations.

If $X=\mathrm{Bl} \mathbb{P}_{2}(\star \star \star i)$ we have to perform the toric blow up of the fixed point $[0,0,1,1,1] \in Z_{1}$. This is done by the stellar subdivision of the fan of Z_{1} at $(0,-1)$. For $X=\mathrm{Bl} \mathbb{P}_{2}(\star \star \star i i)$ we blow up the point $q:=[1,1,0,1,1] \in Z_{1}$. Note that it exists by Lemma 5.2.16; The following steps are the same as in case $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i\right)$; compare Remark 5.1. We choose the embedding

$$
\bar{\iota}: \mathbb{K}^{5} \rightarrow \mathbb{K}^{6}, \quad x \mapsto\left(x, h_{1}(x)\right), \quad h_{1}:=T_{2} T_{4}-T_{1} T_{5} \in \mathbb{K}\left[T_{1}, \ldots, T_{5}\right]
$$

and obtain a CEMDS X_{1}^{\prime}. Its degree matrix Q_{1}^{\prime} and the matrix P_{1}^{\prime} of generators for the rays of the fan of the toric ambient variety Z_{1}^{\prime} of X_{1}^{\prime} are

$$
Q_{1}^{\prime}:=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1 & -1 & -1
\end{array}\right], \quad P_{1}^{\prime}:=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 1 & -1 \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1 & 1 & -1
\end{array}\right] .
$$

On X_{1}^{\prime}, to blow up $\iota(q)=[1,1,0,1,1,0]$, we perform the stellar subdivision of the fan of Z_{1}^{\prime} at $v:=(-1,-1,0)$. Set $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$ of \bar{X}_{2} is generated by

$$
g:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{6}-h_{1}\right)=T_{6} T_{7}-T_{2} T_{4}+T_{1} T_{5} \in \mathbb{K}\left[T_{1}, \ldots, T_{7}\right] .
$$

By the same arguments as in case $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i\right)$, using the simplifications of Proposition 4.1.4, we check that the requirements for Theorem 4. 6 (i) are fulfilled. Thus, $R_{2}=\mathbb{K}\left[\dot{T}_{1}, \ldots, T_{7}\right] / I_{2}$ is the Cox ring of the performed modification with the degree matrix as listed in the table. In $\mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$, the ideal $\left\langle T_{3}, T_{6}, h_{1}\right\rangle$ is prime by Lemma 5.217 ; its zero set is three-dimensional and it contains ($1,1,0,1,1,0$). Thus, Lemma 5.2 .15 can be applied.
(IV) Surfaces of type $\mathrm{Bl} \mathbb{F}_{a}(\star \star)$. Recall that the fan Σ_{a} of the toric variety \mathbb{F}_{a} has its rays generated by the columns of

$$
P_{1}:=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
-a & 0 & 1 & -1
\end{array}\right]
$$

The first four cases $\mathrm{Bl} \mathbb{F}_{a}(\star \star i)$ to $\mathrm{Bl} \mathbb{F}_{a}(\star \star i v)$ are blow ups of \mathbb{F}_{a} in the toric fixed points listed in Proposition 5.1.4 where $a \geq 2$. Each of these toric blow ups is a stellar subdivision $\Sigma_{2} \rightarrow \mathbb{F}_{a}$ at two vectors $v_{1}, v_{2} \in \mathbb{Z}^{2}$. The fan Σ_{2} has its rays generated by the columns of $P_{2}:=\left[P_{1}, v_{1}, v_{2}\right]$. The choices for v_{1} and v_{2} are as follows. The degree matrices of the Cox rings are obtained as Gale dual matrices of P_{2}, compare Lemma 5.2.6:

X	v_{1}	v_{2}
$\mathrm{Bl} \mathbb{F}_{a}(\star \star i)$	$(-1,-a+1)$	$(1,1)$
$\mathrm{Bl} \mathbb{F}_{a}(\star \star i i)$	$(-1,-a+1)$	$(-1,-a-1)$
$\mathrm{Bl} \mathbb{F}_{a}(\star \star i i i)$	$(-1,-a+1)$	$(1,-1)$
$\mathrm{Bl} \mathbb{F}_{a}(\star \star i v)$	$(-1,-a-1)$	$(1,-1)$

We come to $X=\mathrm{Bl} \mathbb{F}_{a}(\star \star v)$. Recall from Proposition 5.2.5 that the toric variety $Z_{1}:=\mathrm{Bl} \mathbb{F}_{a}(\star i)$ is the blow up of \mathbb{F}_{a} in the fixed point $[0,1,0,1]$, i.e., the toric variety with the rays of its fan Σ_{1} generated by the columns of

$$
P_{1}:=\left[\begin{array}{rrrrr}
-1 & 1 & 0 & 0 & -1 \\
-a & 0 & 1 & -1 & -a+1
\end{array}\right], \quad \underset{\substack{(-1,-a+1) \\
(-1,-a)}}{(0,-1)} .
$$

Then X is the blow up of Z_{1} in $q:=[0,1,1,1,1]$. Note that q exists by Lemma 5.2.16: and projects to $[0,1,1,1] \in \mathbb{F}_{a}$ under the first blow up $z \mapsto\left(z_{1} z_{5}, z_{2}, z_{3} z_{5}, z_{4}\right)$. The subsequent steps are as in case $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i\right)$, compare Remark 5.2.1: Using the embedding

$$
\bar{\iota}: \mathbb{K}^{5} \rightarrow \mathbb{K}^{6}, \quad x \mapsto\left(x, h_{1}(x)\right), \quad h_{1}:=T_{2}^{a} T_{4}-T_{3} T_{5} \in \mathbb{K}\left[T_{1}, \ldots, T_{5}\right]
$$

we obtain a CEMDS X_{1}^{\prime}. The degree matrix Q_{1}^{\prime} and the matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of the toric ambient variety Z_{1}^{\prime} of X_{1}^{\prime} are

$$
Q_{1}^{\prime}:=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & -1 & -1 & -1 \\
0 & 1 & 0 & -a+1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right], \quad P_{1}^{\prime}:=\left[\begin{array}{rrrrrr}
1 & a-1 & 0 & 1 & 1 & -1 \\
0 & a & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & 1 & -1
\end{array}\right]
$$

On X_{1}^{\prime}, for the blow up of the point $\iota(q)=[0,1,1,1,1,0]$, we perform the stellar subdivision $\Sigma_{2} \rightarrow \Sigma_{1}^{\prime}$ at $v:=(0,-1,-1)$. Write $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$ of \bar{X}_{2} is generated by

$$
g:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{6}-h_{1}\right)=T_{6} T_{7}-T_{2}^{a} T_{4}+T_{3} T_{5} \in \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]
$$

By the same methods as before, we verify the requirements for Theorem 4.6 and Proposition 4.1.4; Thus, $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{7}\right] / I_{2}$ is the Cox ring of the performed modification with the degree matrix listed in the table. By Lemma 5.2.15; we did perform a blow up as the ideal $\left\langle T_{3}, T_{6}, h_{1}\right\rangle$ in $\mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ is prime by Lemma 5.2.17 and its zero set contains $(0,1,1,1,1,0)$ while being three-dimensional.
(V) Surfaces of type $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2}\right)$. Define Z_{1} as in the previous case, i.e., Z_{1} is the blow up of \mathbb{F}_{a} in the fixed point $[0,1,0,1] \in \mathbb{F}_{a}$. We want to blow up a point in the exceptional divisor $V\left(Z_{1} ; T_{5}\right)$. It consists of the toric orbits through the points

$$
q_{1}:=[1,1,0,1,0], \quad q_{2}:=[1,1,1,1,0], \quad q_{3}:=[0,1,1,1,0] \in Z_{1} .
$$

The automorphism $z \mapsto\left(z_{1}, z_{2}, z_{3}-z_{1} z_{2}^{a-1} z_{4}, z_{4}, z_{5}\right)$ of \widehat{Z}_{1} maps q_{2} to q_{1}; compare Lemma 5.1.5: Thus, the remaining cases are the toric blow ups of Z_{1} in q_{1} and q_{3} and are carried out by insertion of the respective rays

$$
\mathbb{Q}_{\geq 0} \cdot v, \quad v:=(-1,-a+2) \quad \text { or } \quad v:=(-2,-2 a+1)
$$

into Σ_{1}. The degree matrix of the Cox ring $\mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ of X is a Gale dual matrix of the enlarged matrix $\left[P_{1}, v\right]$, compare Lemma 5.2.6. This covers the cases $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i\right)$ and $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i i\right)$.
We come to blow ups of the toric variety $\mathrm{Bl} \mathbb{F}_{a}(\star i i)$ in a point in the exceptional divisor. Recall that $Z_{1}:=\mathrm{Bl} \mathbb{F}_{a}(\star i i)$ has the rays of its fan Σ_{1} generated by the
columns of

$$
\left.P_{1}:=\left[\begin{array}{rrrrr}
-1 & 1 & 0 & 0 & -1 \\
-a & 0 & 1 & -1 & -a-1
\end{array}\right], \quad \begin{array}{c}
(0,1) \\
(-1,-a) \\
(0,-1)
\end{array}\right)
$$

The exceptional divisor of Z_{1} is $V\left(Z_{1} ; T_{5}\right)$ and consists of the toric orbits through the points

$$
q_{1}:=[0,1,1,1,0], \quad q_{2}:=[1,1,1,1,0], \quad q_{3}:=[1,1,1,0,0] \in Z_{1} .
$$

The blow ups of the toric fixed points q_{1} and q_{3} are carried out by stellar subdivisions of Σ_{1} at the rays

$$
\mathbb{Q} \geq 0 \cdot v, \quad v:=(-2,-2 a-1) \quad \text { or } \quad v:=(-1,-a-2)
$$

respectively. The degree matrix of the Cox ring $\mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ of X is a Gale dual matrix of the enlarged matrix $\left[P_{1}, v\right]$, see Lemma 5.2.6; This covers the cases $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i i i\right)$ and $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i v\right)$.
For $X=\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} v\right)$, we blow up Z_{1} in q_{2}. Note that q_{2} exists by Lemma 5.16 ; The steps are analogous to previous cases, e.g., $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i\right)$. Choose the embedding

$$
\bar{\iota}: \mathbb{K}^{5} \rightarrow \mathbb{K}^{6}, \quad x \mapsto\left(x, h_{1}(x)\right), \quad h_{1}:=T_{2}^{a+1} T_{4}-T_{1} T_{3} \in \mathbb{K}\left[T_{1}, \ldots, T_{5}\right] .
$$

We obtain a CEMDS X_{1}^{\prime}, a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}:=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 1 & -1 & 1 \\
0 & 1 & 0 & -a-1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right], \quad P_{1}^{\prime}:=\left[\begin{array}{rrrrrr}
1 & 0 & 1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0 & -1 & -1 \\
0 & 0 & a+1 & -1 & -a-1 & -a
\end{array}\right] .
$$

On X_{1}^{\prime}, for the blow up of $\iota\left(q_{2}\right)=[1,1,1,1,0,0]$, we perform the stellar subdivision of Σ_{1}^{\prime} at the vector $v:=(-1,-2,-2 a-1)$ in \mathbb{Z}^{3}. Set $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$ of \bar{X}_{2} is generated by

$$
p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{6}-h_{1}\right)=T_{6} T_{7}-T_{2}^{a+1} T_{4}+T_{1} T_{3} \in \mathbb{K}\left[T_{1}, \ldots, T_{7}\right] .
$$

As in previous cases, one directly verifies the requirements for Theorem4.2. Hence, the Cox ring of the performed modification is $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{7}\right] / I_{2}$. Its degree matrix is a Gale dual matrix of P_{2}, i.e.,

$$
Q_{2}=\left[\begin{array}{lllllrr}
1 & 0 & 0 & 1 & 0 & 2 & -1 \\
0 & 1 & 0 & -a-1 & 0 & -1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & -1
\end{array}\right] .
$$

By Lemma 5.2 .15 ; the modification was a blow up as the ideal $\left\langle T_{5}, T_{6}, h_{1}\right\rangle$ in $\mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ is prime by Lemma 5.27 and its zero set contains ($1,1,1,1,0,0$) while being three-dimensional.
Isomorphisms: We now show that the surfaces listed in the proposition are pairwise non-isomorphic. As seen in the proof of Proposition 5.2.5; $\mathrm{Bl} \mathbb{F}_{2}(\star i)$ is isomorphic to $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2}\right)$. Therefore, we have $a \geq 3$ in the cases

$$
\begin{array}{ccc}
\mathrm{Bl} \mathbb{F}_{a}(\star \star i), & \mathrm{Bl} \mathbb{F}_{a}(\star \star i i), & \mathrm{Bl} \mathbb{F}_{a}(\star \star i i i), \\
& \mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i\right), & \mathrm{Bl} \mathbb{F}_{a}\left(\star \star^{2} i i\right) .
\end{array}
$$

We first treat the toric and then the non-toric cases. We compare the self-intersection numbers of negative curves. These curves are of the form $V\left(X ; T_{i}\right)$, compare also 5.2.7.

a	X	$V\left(T_{1}\right)^{2}$	$V\left(T_{2}\right)^{2}$	$V\left(T_{3}\right)^{2}$	$V\left(T_{4}\right)^{2}$	$V\left(T_{5}\right)^{2}$	$V\left(T_{6}\right)^{2}$
	≥ 0	-2	≥ 0	-2	-2	-1	
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i\right)$	≥ 0	-1	≥ 0	-3	-2	-1	
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3}\right.$ iii)	≥ 0	-1	-1	-3	-1	-1	
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3}\right.$ iv iv	≥ 0	-1					

	Bl $\mathbb{P}_{2}\left(\star^{2} \star i\right)$	≥ 0	-1	-1	-2	-1	-1
	Bl $\mathbb{P}_{2}\left(\star^{2} \star i i\right)$	≥ 0	≥ 0	-2	-2	-1	-1
	Bl $\mathbb{P}_{2}(\star \star \star i)$	-1	-1	-1	-1	-1	-1
≥ 3	Bl $\mathbb{F}_{a}(\star \star i)$	-1	-1	≥ 0	$-a$	-1	-1
≥ 3	Bl $\mathbb{F}_{a}(\star \star i i)$	-2	≥ 0	≥ 0	$-a-1$	-1	-1
≥ 3	$\operatorname{Bl} \mathbb{F}_{a}(\star \star i i i)$	-1	-1	≥ 0	$-a-1$	-1	-1
≥ 2	$\operatorname{Bl} \mathbb{F}_{a}(\star \star i v)$	-1	-1	≥ 0	$-a-2$	-1	-1
≥ 3	Bl $\mathbb{F}_{a}\left(\star^{2} i\right)$	-1	≥ 0	≥ 0	$-a$	-2	-1
≥ 3	$\operatorname{Bl} \mathbb{F}_{a}\left(\star^{2} i i\right)$	-2	≥ 0	≥ 0	$-a$	-2	-1
≥ 2	$\operatorname{Bl} \mathbb{F}_{a}\left(\star^{2} i i i\right)$	-2	≥ 0	≥ 0	$-a-1$	-2	-1
≥ 2	$\operatorname{Bl} \mathbb{F}_{a}\left(\star^{2} i v\right)$	-1	≥ 0	≥ 0	$-a-2$	-2	-1

An inspection of the table shows that the listed surfaces are pairwise non-isomorphic except for the following. Using Algorithm 5.2.11 and Remark 5.2.10, we give isomorphisms

$$
\begin{array}{rllrll}
\mathrm{Bl} \mathbb{F}_{a+2}\left(\star^{2} i\right) & \rightarrow & \mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i v\right), & \mathrm{Bl} \mathbb{F}_{a+1}(\star \star i) & \rightarrow & \mathrm{Bl} \mathbb{F}_{a}(\star \star i i i), \\
\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i i\right) & \rightarrow & \mathrm{Bl} \mathbb{F}_{3}\left(\star^{2} i\right), & \mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i v\right) & \rightarrow & \mathrm{Bl} \mathbb{F}_{3}(\star \star i), \\
\mathrm{Bl} \mathbb{F}_{a+1}(\star \star i i i) & \rightarrow & \mathrm{Bl} \mathbb{F}_{a}(\star \star i v), & \mathrm{Bl} \mathbb{F}_{a+1}\left(\star^{2} i i\right) & \rightarrow & \mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i i i\right), \\
& & \mathrm{Bl} \mathbb{F}_{a+1}\left(\star^{2} i\right) & \rightarrow & \mathrm{Bl} \mathbb{F}_{a}(\star \star i i) . &
\end{array}
$$

For each surface, we write primitive generators for the rays of its corresponding fan into a matrix as in Remark 5.2.10, In the first and the two last cases, the respective matrices already are the same up to column permutations. For the second to fifth isomorphism, in the notation of 5.29 ; the surfaces are isomorphic by Remark 5.2 .10 since

$$
\begin{aligned}
{\left[\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & 0 & -1 & 1 \\
-a-1 & 0 & 1 & -1 & -a & 1
\end{array}\right] } & \risingdotseq\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & 0 & -1 & 1 \\
-a & 0 & 1 & -1 & -a+1 & -1
\end{array}\right], \\
{\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & 1 & 2 & 3 \\
-1 & 0 & 1 & 1 & 1 & 2
\end{array}\right] } & \risingdotseq\left[\begin{array}{rrrrr}
-1 & 1 & 0 & 0 & -1 \\
-1 \\
-3 & 0 & 1 & -1 & -2 \\
-1
\end{array}\right], \\
& {\left[\begin{array}{rr}
-1 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & 1 & 2 & 1 \\
-1 & 0 & 1 & 1 & 1 & 2
\end{array}\right] }
\end{aligned} \stackrel{\risingdotseq\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & 0 & -1 & 1 \\
-3 & 0 & 1 & -1 & -2 & 1
\end{array}\right],}{\left[\begin{array}{rr}
-1 & 0 \\
-a & 1
\end{array}\right]\left[\begin{array}{rrrrrrr}
-1 & 1 & 0 & 0 & -1 & 1 \\
-a-1 & 0 & 1 & -1 & -a & -1
\end{array}\right]} \stackrel{\risingdotseq\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & 0 & -1 & 1 \\
-a & 0 & 1 & -1 & -a-1 & -1
\end{array}\right] .}{ } .
$$

We come to isomorphisms between the \mathbb{K}^{*}-surfaces. This comprises the cases $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i\right), \mathrm{Bl} \mathbb{P}_{2}(\star \star \star i i), \mathrm{Bl} \mathbb{F}_{a}(\star \star v)$ and $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} v\right)$. Note that all these surfaces are non-toric since their total coordinate spaces have singularities. By Remark 5.2.13; no isomorphisms are possible except between $X_{1}:=\mathrm{Bl} \mathbb{F}_{a+1}(\star \star v)$ and $X_{2}:=\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} v\right)$. The degree matrices Q_{i} of $\mathcal{R}\left(X_{i}\right)$ coincide up to column permutations after applying the matrix $A \in \mathrm{GL}(4, \mathbb{Z})$:

$$
\begin{aligned}
A \cdot Q_{1} & =\left[\begin{array}{lllr}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & -a-1 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 1 & 0 & 0 & a+1 & 2 a+1 & -a \\
0 & 0 & 1 & 0 & -1 & -1 & 1 \\
0 & 0 & 0 & 1 & 1 & 2 & -1
\end{array}\right] \\
& =\left[\begin{array}{rrrrrr}
0 & 0 & 0 & 1 & 1 & 2 \\
0 & 1 & 0 & -a-1 & 0 & -1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 \\
-1
\end{array}\right] \\
& =Q_{2} \cdot U
\end{aligned}
$$

where $U \in \operatorname{GL}(7, \mathbb{Z})$ is the permutation matrix exchanging the first and fifth column. It is admissible in the sense of Proposition 1.5.8. By Algorithm 5.2.14, X_{1} is isomorphic to X_{2}.
3. Smooth rational surfaces with $\varrho(X)=5$

In this section, we classify the smooth rational surfaces of Picard number five up to isomorphism and present their Cox rings explicitly. Each such surface can be
obtained as a blow up of one of the smooth rational surfaces of Picard number four listed in Proposition 5.2.8; Whereas the Cox rings of blow ups of \mathbb{P}_{2} can be calculated in a purely computational manner with Algorithm 4.5.9; for blow ups of \mathbb{F}_{a}, we apply the algorithm in a formal way as explained in Remark 5.2.1;

Theorem 5.3.1. Let X be a smooth rational surface with Picard number $\varrho(X)=5$. Then X is isomorphic to exactly one of the following surfaces.

$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} i x\right) \quad \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$
$\left[\begin{array}{rllllrr}1 & 0 & 0 & 0 & 2 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 2 & -1 & -1 \\ 0 & 0 & 0 & 1 & 3 & -2 & -1 \\ 0 & 0 & 0 & 0 & 5 & -3 & -1\end{array}\right]$
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4}\right.$ xiii) $\mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$
$\left[\begin{array}{rrrrrrr}1 & 0 & 0 & 0 & 0 & -3 & 2 \\ 0 & 1 & 0 & 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 & 0 & 5 & -3 \\ 0 & 0 & 0 & 1 & 0 & 3 & -2 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1\end{array}\right]$

$\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I$	
Bl $\mathbb{P}_{2}\left(\star^{4}\right.$ xiv $)$	with I generated by
	$T_{3}^{3} T_{4}^{2} T_{5}-T_{1}^{2} T_{2}-T_{7} T_{8}$

0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 2 \& -1

0 \& 0 \& 1 \& 0 \& -3 \& 0 \& -2 \& 2

0 \& 0 \& 0 \& 1 \& -2 \& 0 \& -1 \& 1

0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& -1\end{array}\right]\)
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} x v\right) \quad \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$
$\left[\begin{array}{rrrrrrr}1 & 0 & 0 & 0 & 0 & 3 & -2 \\ 0 & 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & -4 & 3 \\ 0 & 0 & 0 & 1 & 0 & -3 & 2 \\ 0 & 0 & 0 & 0 & 1 & -2 & 1\end{array}\right]$
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star^{2} \quad \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]\right.$
iii)
$\left[\begin{array}{rllllrr}1 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 1 & 2 & -1 & -1 \\ 0 & 0 & 0 & 0 & 3 & -1 & -2\end{array}\right]$
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star^{2} \quad \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]\right.$
$i v)$
$\left[\begin{array}{rlllllr}1 & 0 & 0 & 0 & 1 & 1 & -1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 2 & 0 & -1 \\ 0 & 0 & 0 & 0 & 3 & 1 & -2\end{array}\right]$

$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \quad \mathbb{K}\left[T_{1}, \ldots, T_{7}\right] \quad\left[\right.\right.$| 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| $\mathbf{i})$ | 0 | 1 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| 0 | 0 | 0 | 0 | 2 | 1 | 1 |$]$

$\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} \star \quad \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]\right.$
i) $a \geq$
$\left[\begin{array}{llllrrr}1 & 0 & 0 & 0 & a-5 & -a+3 & -1 \\ 0 & 1 & 0 & 0 & a-4 & -a+3 & -2 \\ 0 & 0 & 1 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & a-4 & -a+3 & -1 \\ 0 & 0 & 0 & 0 & a-3 & -a+2 & -1\end{array}\right]$

	$\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I$
Bl $\mathbb{F}_{a}\left(\star^{2} \star\right.$	with I generated by
$i v) \quad a \geq 3$	$T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2}-T_{7} T_{8}$

-1 \& 0 \& -1 \& 0 \& 1 \& 0 \& 0 \& 0

-1 \& 0 \& -2 \& 0 \& 0 \& 1 \& 0 \& 0

0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 0

-1 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 1\end{array}\right]\)
$\begin{array}{ll}\mathrm{Bl} \\ \mathrm{F} & a\left(\star^{2} \star\right. \\ v) & a \geq 3\end{array} \quad \mathbb{K}\left[T_{1}, \ldots, T_{7}\right] \quad\left[\begin{array}{rrrrrrr}1 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & 2 & -1 & -1 \\ 0 & 0 & 1 & 0 & 2 a-4 & -a+3 & 1 \\ 0 & 0 & 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 2 a-3 & -a+2 & 1\end{array}\right]$

	$\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I$
Bl $\mathbb{F}_{a}\left(\star^{2} \star\right.$	with I generated by
viii $) a \geq 3$	$T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}-T_{7} T_{8}$

0 \& 1 \& 0 \& 0 \& 0 \& a \& 3 a-1 \& -2 a+1

0 \& 0 \& 1 \& 0 \& 0 \& -1 \& -2 \& 2

0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 3 \& -2

0 \& 0 \& 0 \& 0 \& 1 \& -1 \& -1 \& 1\end{array}\right]\)

```
Bl }\mp@subsup{\mathbb{F}}{a}{}(\mp@subsup{\star}{}{3}i)\quad\mathbb{K}[\mp@subsup{T}{1}{},\ldots,\mp@subsup{T}{7}{}
    a\geq3
```

$\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} i i i\right) \quad \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$
$\quad a \geq 3$
$\left[\begin{array}{lllllrr}1 & 0 & 0 & 0 & 0 & 3 & -2 \\ 0 & 1 & 0 & 0 & 0 & 2 a-3 & -a+2 \\ 0 & 0 & 1 & 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1\end{array}\right]$

	$\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I$
Bl $\mathbb{F}_{a}\left(\star^{3} i v\right)$	with I generated by
$a \geq 3$	

0 \& 1 \& 0 \& 0 \& 0 \& a-1 \& 2 a-3 \& -a+2

0 \& 0 \& 1 \& 0 \& 0 \& -1 \& -1 \& 1

0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 2 \& -1

0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& -1\end{array}\right]\)
$\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} v\right)$
$\quad a \geq 3$ $\mathbb{K}\left[T_{1}, \ldots, T_{7}\right] \quad\left[\begin{array}{rrrrrrr}1 & 0 & 0 & 0 & -2 & 1 & 0 \\ 0 & 1 & 0 & 0 & -a+2 & a-1 & 0 \\ 0 & 0 & 1 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 & 1 & 0 \\ -1 & 0 & 0 & 0 & -1 & 0 & 1\end{array}\right]$

	$\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I$
Bl $\mathbb{F}_{a}\left(\star^{3} i x\right)$	with I generated by
$a \geq 3$	$T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{3}^{2} T_{5}-T_{7} T_{8}$

0 \& 1 \& 0 \& 0 \& 2 a-1 \& 0 \& 3 a-2 \& -a+1

0 \& 0 \& 1 \& 0 \& -2 \& 0 \& -1 \& 1

0 \& 0 \& 0 \& 1 \& 2 \& 0 \& 3 \& -1

0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& -1\end{array}\right]\)

$$
\begin{aligned}
& \mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} x\right) \quad \mathbb{K}\left[T_{1}, \ldots, T_{7}\right] \\
& a \geq 3
\end{aligned}
$$

$\left[\begin{array}{lllllrr}1 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0 & 0 & 3 a-1 & -2 a+1 \\ 0 & 0 & 1 & 0 & 0 & -3 & 2 \\ 0 & 0 & 0 & 1 & 0 & 3 & -2 \\ 0 & 0 & 0 & 0 & 1 & -2 & 1\end{array}\right]$

In particular, each smooth rational surface of Picard number five either admits a non-trivial \mathbb{K}^{*}-action or is isomorphic to $\bar{M}_{0,5}$.
Remark 5.3.2. The \mathbb{K}^{*}-surfaces occurring in Theorem 5.3.1 are all embedded equivariantly into their canonical toric ambient varieties since the relations in the Cox rings are of trinomial shape as in Construction 1.5.3:

Lemma 5.3.3. In $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, consider binomials $f_{i}:=c_{i}^{+} T^{\nu_{i}^{+}}-c_{i}^{-} T^{\nu_{i}^{-}}$with $c_{i}^{ \pm} \in \mathbb{K}^{*}$ where $1 \leq i \leq s$. Let A be the $s \times r$ matrix with rows $\nu_{i}^{+}-\nu_{i}^{-}$. Then the dimension of $V\left(\mathbb{T}^{r} ; f_{1}, \ldots, f_{s}\right)$ is $r-\operatorname{rank}(A)$.

Proof. See [50, Satz 2.1.13]. Compute a Smith normal form $D=U \cdot A \cdot V$ with invertible matrices U, V and denote by $\varphi_{A}, \varphi_{D}, \varphi_{U}$ the corresponding morphisms of tori. Then there is a finite abelian group Γ such that

$$
\begin{aligned}
V\left(\mathbb{T}^{r} ; f_{1}, \ldots, f_{s}\right) & =\varphi_{A}^{-1}\left(-\frac{c_{1}^{-}}{c_{1}^{+}}, \ldots,-\frac{c_{s}^{-}}{c_{s}^{+}}\right) \\
& \cong \varphi_{D}^{-1}\left(\varphi_{U}\left(-\frac{c_{1}^{-}}{c_{1}^{+}}, \ldots,-\frac{c_{s}^{-}}{c_{s}^{+}}\right)\right) \\
& \cong \mathbb{T}^{r-\operatorname{rank} A} \times \Gamma
\end{aligned}
$$

When checking a variable for being prime (e.g., with Algorithm 2.2.10) we often encounter ideals of the form $I=I_{0}+I^{\prime}$ with a binomial ideal I_{0}. The following observation may then simplify the computation. We have published a similar version in [56, Lem. 4.3].

Lemma 5.3.4 (Binomial trick). Consider an ideal $I=I_{0}+I^{\prime} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ with a prime binomial ideal

$$
I_{0}=\left\langle T^{\nu_{1}^{+}}-T^{\nu_{1}^{-}}, \ldots, T^{\nu_{n}^{+}}-T^{\nu_{n}^{-}}\right\rangle \quad \text { where } \nu_{i}^{+}, \nu_{i}^{-} \in \mathbb{Z}_{\geq 0}^{r}
$$

Let B be the integral $n \times r$ matrix with rows $\nu_{i}^{+}-\nu_{i}^{-}$and A an integral $r \times s$ matrix the columns of which generate $\operatorname{ker}(B)$. We have a homomorphism

$$
\psi_{A}: \mathbb{K}\left[T_{1}, \ldots, T_{r}\right] \rightarrow \mathbb{K}\left[Y_{1}^{ \pm 1}, \ldots, Y_{s}^{ \pm 1}\right], \quad T^{\nu} \mapsto Y^{A^{t} \cdot \nu}
$$

Then $I \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ is prime if one of the following conditions is fulfilled.
(i) $\left\langle\psi_{A}\left(I^{\prime}\right)\right\rangle$ is a prime ideal in the Veronese subalgebra $R \subseteq \mathbb{K}\left[Y_{1}^{ \pm 1}, \ldots, Y_{s}^{ \pm 1}\right]$ given by the monoid $S \subseteq \mathbb{Z}^{s}$ generated by the rows of A.
(ii) $\operatorname{ker}(B) \cap \mathbb{Q}_{>0}^{r} \neq \emptyset$ and $\left\langle\psi_{A}\left(I^{\prime}\right)\right\rangle$ is a prime ideal in $\mathbb{K}\left[Y_{1}, \ldots, Y_{s}\right]$.

Proof. Since I_{0} is a prime binomial ideal, we have $I_{0}=\operatorname{ker}\left(\psi_{A}\right)$. Let s_{1}, \ldots, s_{r} be the rows of A. Then the image of ψ_{A} is the subalgebra

$$
R=\mathbb{K}\left[Y^{s_{1}}, \ldots, Y^{s_{r}}\right] \subseteq \mathbb{K}\left[Y_{1}^{ \pm 1}, \ldots, Y_{s}^{ \pm 1}\right]
$$

Thus, the map $\psi_{A}: \mathbb{K}\left[T_{1}, \ldots, T_{r}\right] \rightarrow R$ is surjective. As $I_{0}=\operatorname{ker}\left(\psi_{A}\right)$, by basic algebra, we obtain $I=\psi_{A}^{-1}\left(\left\langle\psi_{A}\left(I^{\prime}\right)\right\rangle\right)$. The first assertion follows. For (ii), choose $w \in \operatorname{ker}(B) \cap \mathbb{Q}_{>0}^{r}$. We may replace each generator w^{\prime} of $\operatorname{ker}(B)$ that does not lie in $\mathbb{Q}_{>0}^{r}$ with $w^{\prime \prime}:=b w+w^{\prime}$ where $b \in \mathbb{Z}$ is large enough such that $w^{\prime \prime} \in \operatorname{ker}(B) \cap \mathbb{Q}_{>0}^{r}$. In the above setting, the image R of ψ_{A} is contained in $\mathbb{K}\left[Y_{1}, \ldots, Y_{s}\right]$, i.e., $\left\langle\psi_{A}\left(I^{\prime}\right)\right\rangle$ is prime in R. The claim follows from (i).

In order to classify blow ups of \mathbb{P}_{2} and \mathbb{F}_{a}, in the proofs of Theorems.1.1. and we have to choose points for the next blow up step. The possible choices of these points frequently is reflected in parameters in their Cox coordinates. With regard to \mathbb{K}^{*}-surfaces, parameters only occur when blowing up points on fixed point curves.

Remark 5.3.5. Let X be a \mathbb{K}^{*}-surface that is embedded equivariantly into its canonical toric ambient variety. Consider points $x, x^{\prime} \in X$ belonging to exactly one of the divisors $V\left(X ; T_{i}\right)$. By Proposition 1.5.10, we have

$$
x=\lambda \cdot x^{\prime} \quad \text { with } \lambda \in \mathbb{K}^{*} \quad \Leftrightarrow \quad V\left(X ; T_{i}\right) \text { is not a fixed point curve. }
$$

Remark 5.3.6. Computations involving Gröbner bases, e.g., in Algorithm 4.5.9, can also be carried out for equations depending on parameters $\lambda_{1}, \ldots, \lambda_{s} \in \mathbb{K}$
by changing the base field to $\mathbb{Q}\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ and regard the λ_{i} as transcendental elements, see [46; p. 34].

Proof of Theorem:5.1: By Remark 5.2.3, the surface X can be obtained as a blow up of \mathbb{P}_{2} in four points or as the blow up of \mathbb{F}_{a} in three points where $a \in \mathbb{Z}_{\geq 2}$. This proof is structured as follows. We compute the resulting Cox rings grouped into originating point configurations; they are listed in Propositions 5.1.2 and 5.1.4. Each surface of Picard number five arises as a blow up of a surface of Picard number four as classified in Proposition 5.2.8. If necessary, we prove or disprove the existence of a \mathbb{K}^{*}-action. Finally, we sort out isomorphic surfaces.
(I) Surfaces of type $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4}\right)$. By Propositions 5.2.8 and 5.1.2, these are blow ups of the surface $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i\right)$ or $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i\right)$ in a point in one of the exceptional divisors.
(4)

Recall that (4) stands for a fourfold iterated blow up. We first consider blow ups of $X_{1}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i\right)$. As seen in the proof of Proposition 5.2.8; the exceptional divisors are

$$
V\left(X_{1} ; T_{4}\right), \quad V\left(X_{1} ; T_{5}\right), \quad V\left(X_{1} ; T_{7}\right)
$$

The curve $V\left(X_{1} ; T_{5}\right)$ is a parabolic fixed point curve. Consequently, by Remark:5.3; it suffices to consider the points

$$
\begin{aligned}
& q_{1}:=[-1,1,0,0,1,1,1], q_{2}:=[-1,1,1,0,1,1,1], \\
& q_{3}:=[-1,1,1,0,0,1,1], \\
& q_{4}:=[1,1,1, \lambda, 0, \lambda-1,1], \\
& q_{5}:=[1,1,1,1,0,1,0],
\end{aligned} \begin{array}{ll}
q_{6}:=[1,1,1,1,1,1,0], \\
q_{7} & :=[1,1,1,1,1,0,0],
\end{array} \quad q_{8}:=[1,0,1,1,0,1,1] \in X_{1} .
$$

where all points exist by Lemma 5.2 .16 or by application of Algorithm 2.3.8; Observe that we cover all necessary points on $V\left(X_{1} ; T_{5}\right)$. Pulling back generators for the irrelevant ideal of X_{1} we obtain $\langle T-1\rangle \subseteq \mathbb{K}[T]$, compare Algorithm 2.3.11; Hence, $q_{4} \in \widehat{X}_{1}$ for each $\lambda \in \mathbb{K} \backslash\{1\}$. Write $p: \widehat{X}_{1} \rightarrow X_{1}$ for the characteristic space and $\iota: \mathbb{K} \backslash\{1\} \rightarrow V\left(T_{5}\right)$ for the assignment $\lambda \mapsto(1,1,1, \lambda, 0, \lambda-1,1)$. Define $D:=V\left(X_{1} ; T_{5}\right)$ and $\varphi:=p \circ \iota$. We have a commutative diagram

where φ and the lifted morphism $\bar{\varphi}$ are non-constant. This means $\bar{\varphi}$ is surjective and the image of φ comprises D up to at most two points. Since $q_{5}, q_{8} \in D$ are distinct points not contained in $\operatorname{Im}(\varphi)$ it suffices to consider the listed points q_{i}.
Using Algorithm 4.5.9; we compute the Cox rings of the resulting surfaces which we call $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} i\right)$ to $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} v i i i\right)$. By Remark 5.3 .6 ; the computation could also be carried out for the case $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} i v\right)$. All obtained Cox rings are either listed in the table of Theorem 5.3. or in the following one; we will show at the end of this proof that the following ones are redundant.

X	Cox ring $\mathcal{R}(X)$	degree matrix		
	$\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I$	$\left[\begin{array}{rrrrrrrr}1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 2 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 3 & 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 & 0\end{array}\right]$		

$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} i i\right)$	$\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I$ with I generated by $T_{1} T_{2}+T_{5} T_{6}-T_{3} T_{7}^{2} T_{8}^{3}$	$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right.$	0	0 0 1 0 0	1 1 -2 0 0	0 0 0 1 0	0 0 0 0 1	1 3 -2 2 1	$\left.\begin{array}{r}0 \\ -1 \\ 1 \\ -1 \\ -1\end{array}\right]$
Bl $\mathbb{P}_{2}\left(\star^{4}{ }^{i i i}\right)$	$\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I$ with I generated by $-T_{3}^{2} T_{4} T_{8}+T_{1} T_{2}+T_{6} T_{7}$	$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right.$	0	0 0 1 0 0	0 0 0 1 0	0 0 0 0 1	2 3 -3 -1 1	-1 -2 3 1 -1	$\left.\begin{array}{r}1 \\ 1 \\ -2 \\ -1 \\ 0\end{array}\right]$
Bl $\mathbb{P}_{2}\left(\star^{4} v i i\right)$	$\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I$ with I generated by $T_{3}^{2} T_{4}-T_{1} T_{2}-T_{6} T_{7} T_{8}^{2}$	$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right.$	0	0 0 1 0 0	1 1 -2 0 0	0 0 0 1 0	0 0 0 0 1	-1 -3 2 -2 1	$\left.\begin{array}{r}1 \\ 2 \\ -1 \\ 1 \\ -1\end{array}\right]$
Bl $\mathbb{P}_{2}\left(\star^{4}\right.$ viii $)$	$\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I$ with I generated by $T_{3}^{2} T_{4}-T_{6} T_{7}-T_{1} T_{2} T_{8}$	$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right.$	0 1 0 0 0	0 0 1 0 0	0 0 0 1 0	0	-2 -1 5 3 1	2 1 -3 -2 -1	$\left.\begin{array}{r}-1 \\ -1 \\ 2 \\ 1 \\ 0\end{array}\right]$

However, for the surfaces $Y_{1}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} i i\right)$ and $Y_{1}^{\prime}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} v i\right)$ Algorithm 4.5.9: returned a ring different from the one listed in the table. We now prove that these rings are isomorphic. For Y_{1}, Algorithm returns the Cox ring and degree matrix

$$
\begin{gathered}
\mathcal{R}\left(Y_{1}\right)=\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] /\left\langle\begin{array}{r}
T_{1} T_{2}+T_{5} T_{6}-T_{8} T_{3} T_{2}^{2} T_{4}^{2} T_{6}^{2} \\
+2 T_{3} T_{2} T_{4} T_{6} T_{7} T_{8}^{2}-T_{3} T_{7}^{2} T_{8}^{3},
\end{array}\right\rangle, \\
Q_{1}=\left[\begin{array}{lllllrrr}
1 & 0 & 0 & 0 & 0 & 1 & 2 & -1 \\
0 & 1 & 0 & 0 & 0 & 1 & 5 & -3 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 3 & -2 \\
0 & 0 & 0 & 0 & 1 & -1 & -3 & -2
\end{array}\right] .
\end{gathered}
$$

We claim that Y_{1} is isomorphic to the \mathbb{K}^{*}-surface Y_{2} with the same degree matrix $Q_{2}:=Q_{1}$ and Cox ring

$$
\mathcal{R}\left(Y_{2}\right)=\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{1} T_{2}+T_{5} T_{6}-T_{3} T_{7}^{2} T_{8}^{3}\right\rangle
$$

By Lemma 5.5 ; it suffices to show that the Cox rings $\mathcal{R}\left(Y_{2}\right)$ and $\mathcal{R}\left(Y_{1}\right)$ are isomorphic as graded algebras. We choose the homomorphism $\psi: \mathcal{R}\left(Y_{2}\right) \rightarrow \mathcal{R}\left(Y_{1}\right)$ induced by the homomorphism $\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ with

$$
T_{i} \mapsto \begin{cases}T_{5}-T_{2}^{2} T_{3} T_{4}^{2} T_{6} T_{8}+2 T_{2} T_{3} T_{4} T_{7} T_{8}^{2}, & i=5 \\ T_{i}, & i \neq 5\end{cases}
$$

One directly verifies that (ψ, id) is an isomorphism of \mathbb{Z}^{5}-graded algebras. Hence, Y_{1} is isomorphic to the \mathbb{K}^{*}-surface Y_{2}. Similarly, for $Y_{1}^{\prime}=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} v i\right)$, Algorithm.4.5.9 delivers its Cox ring and degree matrix

$$
\begin{gathered}
\mathcal{R}\left(Y_{1}^{\prime}\right)=\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{3}^{2} T_{4}-T_{1} T_{2}-T_{6} T_{8} T_{2} T_{3} T_{4} T_{5}+T_{6} T_{8}^{2} T_{7}\right\rangle \\
Q_{1}^{\prime}=\left[\begin{array}{rrrrrrrr}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 3 & -1 \\
0 & 0 & 1 & -2 & 0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & -1
\end{array}\right]
\end{gathered}
$$

We have a \mathbb{Z}^{5}-graded isomorphism ($\psi^{\prime}, \mathrm{id}$) between the Cox ring $\mathcal{R}\left(Y_{2}^{\prime}\right)$ of a \mathbb{K}^{*} surface Y_{2}^{\prime} and $\mathcal{R}\left(Y_{1}^{\prime}\right)$ where

$$
\mathcal{R}\left(Y_{2}^{\prime}\right):=\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] /\left\langle T_{3}^{2} T_{4}-T_{1} T_{2}+T_{6} T_{8}^{2} T_{7}\right\rangle
$$

and the degree matrix is again Q_{1}^{\prime}. The graded homomorphism ψ^{\prime} is induced by the homomorphism $\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ assigning $T_{1}+T_{3} T_{4} T_{5} T_{6} T_{8}$ to T_{1} and $T_{i} \mapsto T_{i}$ otherwise. Thus, Y_{1}^{\prime} is isomorphic to Y_{2}^{\prime}.
We come to the blow up of the toric variety $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i\right)$ in a point in the union of the exceptional divisors. It is given by the toric orbits through the points

$$
\begin{array}{ll}
q_{1}:=[1,1,0,0,1,1], & q_{2}:=[1,1,1,0,1,1], \\
q_{3}:=[1,1,1,0,0,1], & q_{4}:=[1,1,1,1,0,1], \\
q_{5}:=[1,1,1,1,0,0], & q_{6}:=[1,1,1,1,1,0], \\
q_{7}:=[1,0,1,1,1,0] . &
\end{array}
$$

All points exist by Lemma 5.2.16 or by Algorithm 2.3.8. The fan of $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i\right)$ is drawn on the right. Observe that the equivariant automorphism

$$
\widehat{Z}_{1} \rightarrow \widehat{Z}_{1}, \quad z \mapsto\left(z_{1}, z_{2}, z_{3}-z_{2} z_{5} z_{6}^{2}, z_{4}, z_{5}, z_{6}\right)
$$

maps q_{2} to q_{1}; compare Lemma 5.1.5: Using Algorithm 4.5.9; we compute the Cox rings of the remaining surfaces. We denote the results by $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} i x\right)$ and $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} x i\right)$ to $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} x v\right)$. The results can be found in the table of Theorem:5.3.1: or in the following one.

X	Cox ring $\mathcal{R}(X)$	degree matrix
Bl $\mathbb{P}_{2}\left(\star^{4} x i\right)$	$\mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$	$\left[\begin{array}{rrrrrrr}1 & 0 & 0 & 0 & 2 & -1 & 0 \\ 0 & 1 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 3 & -1 & -1\end{array}\right]$
Bl $\mathbb{P}_{2}\left(\star^{4} x i i\right)$	$\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I$ with I generated by $T_{3}^{2} T_{4}-T_{1} T_{2} T_{6}-T_{7} T_{8}$	$\left[\begin{array}{rrrrrrrr}1 & 0 & 0 & 0 & 0 & -1 & -2 & 2 \\ 0 & 1 & 0 & 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 2 & 5 & -3 \\ 0 & 0 & 0 & 1 & 0 & 1 & 3 & -2 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & -1\end{array}\right]$

(II) Blow ups of type $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} \star\right)$. By Propositions 5.2.8: and 5.1.2; the surfaces of type $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} \star\right)$ are blow ups of $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i\right)$ or of $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i\right)$ in a point that maps to $[0,1,0] \in \mathbb{P}_{2}$ under the first three blow ups.

We first treat blow ups of $X_{1}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i\right)$. Recall from the proof of Proposition 5.2.8 the blow up sequence

$$
X_{1} \xrightarrow{\pi_{3}} \mathrm{Bl} \mathbb{P}_{2}\left(\star^{2}\right)^{\prime}<\stackrel{\iota_{1}}{\leftarrow} \mathrm{Bl} \mathbb{P}_{2}\left(\star^{2}\right) \xrightarrow{\pi_{2}} \mathrm{Bl} \mathbb{P}_{2}(\star) \xrightarrow{\pi_{1}} \mathbb{P}_{2}
$$

where, as in Setting 4.2.9; the embedding $\bar{\iota}_{1}: \mathbb{K}^{5} \rightarrow \mathbb{K}^{6}$ is given by $z \mapsto\left(z, h_{1}(z)\right)$ with the polynomial $h_{1}:=T_{3}^{2} T_{4}-T_{1} T_{2}$ in $\mathbb{K}\left[T_{1}, \ldots, T_{5}\right]$. The blow ups are

$$
\begin{gathered}
\pi_{3}([z])=\left[z_{1}, \ldots, z_{4}, z_{5} z_{7}, z_{6} z_{7}\right], \\
\pi_{2}([z])=\left[z_{1}, z_{2} z_{5}, z_{3}, z_{4} z_{5}\right], \quad \pi_{1}([z])=\left[z_{1}, z_{2} z_{4}, z_{3} z_{4}\right] .
\end{gathered}
$$

Using Algorithm 2.3.8, we see that the following point p exists on X_{1} and its blow up yields the desired surface:

$$
\pi_{1} \circ \pi_{2} \circ \iota_{1}^{-1} \circ \pi_{3}(p)=[0,1,0] \in \mathbb{P}_{2}, \quad p:=[0,1,0,1,1,0,1] \in X_{1}
$$

In a similar manner, for the toric variety $X_{1}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i\right)$ the point $[0,1,0,1,1,1] \in$ X_{1} exists and projects to $[0,1,0] \in \mathbb{P}_{2}$. In each of the two cases we use Algorithm 4.5.9 to blow up X_{1} in p. We obtain surfaces $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} \star i\right)$ and $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} \star i i\right)$ with the following Cox rings.

X	Cox ring $\mathcal{R}(X)$	degree matrix
	$\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I$	
Bl $\mathbb{P}_{2}\left(\star^{3} \star i\right)$	with I generated by	$\left[\begin{array}{rrrrrrrr}1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 1 & 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 & 0\end{array}\right]$

$$
\text { Bl } \mathbb{P}_{2}\left(\star^{3} \star i i\right) \quad \mathbb{K}\left[T_{1}, \ldots, T_{7}\right] \quad\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 0 & 1 & 2 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & -1 & -3 \\
0 & 0 & 0 & 1 & 0 & -1 & -2 \\
0 & 0 & 0 & 0 & 1 & -1 & -1
\end{array}\right]
$$

(III) Surfaces of type $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star^{2}\right)$. These are blow ups of $Z_{1}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star i\right)$ or $Z_{2}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star i i\right)$ in a point in the second exceptional divisor, i.e.

The toric varieties Z_{i} have the following fans and ray generators

with $v=(2,1)$ or $v=(1,2)$ respectively. On both Z_{1} and Z_{2} the second exceptional divisor is $V\left(Z_{i} ; T_{5}\right)$ and consists of the toric orbits through the points

$$
q_{1}:=[0,1,1,1,0,1], \quad q_{2}:=[1,1,1,1,0,1], \quad q_{3}:=[1,1,0,1,0,1] .
$$

For both i, the point $q_{2} \in Z_{i}$ is mapped to q_{1} by the respective equivariant automorphism

$$
\begin{array}{ll}
\widehat{Z}_{1} \rightarrow \widehat{Z}_{1}, & z \mapsto\left(z_{1}-z_{3} z_{4} z_{6}, z_{2}, \ldots, z_{6}\right), \\
\widehat{Z}_{2} \rightarrow \widehat{Z}_{2}, & z \mapsto\left(z_{1}-z_{3} z_{4} z_{6}^{2}, z_{2}, \ldots, z_{6}\right),
\end{array}
$$

compare Lemma 5.1.5 Denote by $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star^{2} i\right)$ and $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star^{2} i i\right)$ the surfaces obtained as blow up of Z_{1} in q_{1} and q_{3}. The blow ups of Z_{2} in q_{1} and q_{3} are called $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star^{2} i i i\right)$ and $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star^{2} i v\right)$. The table of the theorem lists the Cox rings of the latter two whereas the ones of the former two are as follows.

X	Cox ring $\mathcal{R}(X)$	degree matrix
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star^{2} i\right)$	$\mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$	$\left[\begin{array}{rrrrrrr}1 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$
Bl $\mathbb{P}_{2}\left(\star^{2} \star^{2} i i\right)$	$\mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$	$\left[\begin{array}{rrrrrrr}1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 2 & 0 & -1 \\ 0 & 0 & 0 & 0 & 3 & 1 & -1\end{array}\right]$

(IV) Surfaces of type $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \star\right)$. Let $Z_{1}=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star i\right)$ and $Z_{2}=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star i i\right)$ be as in the previous paragraph (III). By Proposition 5.1.2, we have to consider the configurations
(2)

(2)

By Proposition 5.2.8; this means that the surfaces of type $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \star\right)$ are blow ups of Z_{1} or Z_{2} in a point that maps to $[0,0,1] \in \mathbb{P}_{2}$ or to $[1,1,0] \in \mathbb{P}_{2}$ under the maps of the first three blow ups. Recall from the proof of Proposition 5.2.8 that the blow up sequence of both Z_{i} is

$$
Z_{i} \xrightarrow{\pi_{i, 3}} \mathrm{Bl} \mathbb{P}_{2}(\star \star) \xrightarrow{\pi_{2}} \mathrm{Bl} \mathbb{P}_{2}(\star) \xrightarrow{\pi_{1}} \mathbb{P}_{2}
$$

where the blow ups π_{1}, π_{2} and $\pi_{i, 3}$ are

$$
\begin{aligned}
\pi_{1,3}([z]) & =\left[z_{1}, z_{2} z_{6}, z_{3}, z_{4} z_{6}, z_{5}\right], & \pi_{2,3}([z]) & =\left[z_{1}, z_{2}, z_{3} z_{6}, z_{4} z_{6}, z_{5}\right], \\
\pi_{2}([z]) & =\left[z_{1} z_{5}, z_{2}, z_{3} z_{5}, z_{4}\right], & \pi_{1}([z]) & =\left[z_{1}, z_{2} z_{4}, z_{3} z_{4}\right] .
\end{aligned}
$$

In our case, the points $p:=[0,0,1,1,1,1] \in Z_{i}$ and $p^{\prime}:=[1,1,0,1,1,1] \in Z_{i}$ are directly seen to exist and satisfy

$$
\pi_{1} \circ \pi_{2} \circ \pi_{i, 3}(p)=[0,0,1] \in \mathbb{P}_{2}, \quad \pi_{1} \circ \pi_{2} \circ \pi_{i, 3}\left(p^{\prime}\right)=[1,1,0] \in \mathbb{P}_{2}
$$

The blow ups of Z_{1} in p and p^{\prime} are called $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \star i\right)$ and $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \star i i\right)$ whereas $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \star\right.$ iii $)$ and $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \star i v\right)$ are the blow ups of Z_{2} in p and p^{\prime}. The results are listed in the table except for the Cox ring and degree matrix

$$
\mathcal{R}\left(\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \star i i i\right)\right)=\mathbb{K}\left[T_{1}, \ldots, T_{7}\right], \quad\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & -1 & -2 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 1 & 1 & 2
\end{array}\right] .
$$

(V) Surfaces of type $\mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star)$. Proposition 5.1 .2 lists the three point configurations we have to consider, i.e.,

The blow ups of the first two configurations can be obtained as a blow up of $X_{1}:=$ $\mathrm{Bl} \mathbb{P}_{2}(\star \star \star i)$. As seen in the proof of Proposition 5.2.8; X_{1} was obtained as blow up

$$
\pi_{3,2,1}: X_{1} \rightarrow \mathbb{P}_{2}, \quad[z] \mapsto\left[z_{1} z_{5} z_{6}, z_{2} z_{4} z_{6}, z_{3} z_{4} z_{5}\right] .
$$

Under $\pi_{3,2,1}$, the points $[1, \ldots, 1]$ and $[1,1,0,1,1,1] \in X_{1}$ project to $[1,1,1] \in \mathbb{P}_{2}$ and $[1,1,0] \in \mathbb{P}_{2}$ respectively. Note that the second point exists by Lemma 5.2.16; The blow ups of X_{1} in these points with Algorithm 4.9.yield surfaces $\mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star i)$ and $\mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star i i)$. Their Cox rings can be found in the table.
For the third configuration, we want to blow up $X_{1}:=\mathrm{Bl} \mathbb{P}_{2}(\star \star \star i i)$ in a point projecting to $[1, \lambda, 0] \in \mathbb{P}_{2}$, where $\lambda \in \mathbb{K}^{*} \backslash\{1\}$, under the blow ups

$$
\begin{gathered}
X_{1} \xrightarrow{\pi_{3}} \mathrm{Bl} \mathbb{P}_{2}(\star \star i)^{\prime} \stackrel{\iota_{1}}{\longrightarrow} \mathrm{Bl} \mathbb{P}_{2}(\star \star i) \xrightarrow{\pi_{2,1}} \mathbb{P}_{2} \\
\pi_{3}([z])=\left[z_{1}, z_{2}, z_{3} z_{7}, z_{4}, z_{5}, z_{6} z_{7}\right], \quad \\
\pi_{2,1}([z])=\left[z_{1} z_{5}, z_{2} z_{4}, z_{3} z_{4} z_{5}\right]
\end{gathered}
$$

and the embedding ι_{1} is given by $[z] \mapsto\left[z, h_{1}(z)\right]$ with the polynomial $h_{1}:=T_{2} T_{4}-$ $T_{1} T_{5}$ in $\mathbb{K}\left[T_{1}, \ldots, T_{5}\right]$. We have

$$
\pi_{1} \circ \iota_{1}^{-1} \circ \pi_{2}(q)=[1, \lambda, 0] \quad q:=[1, \lambda, 0,1,1, \lambda-1,1] \in X_{1}
$$

and q exists in X_{1} by Lemma 5.2.16: Using Algorithm 4.59 with Remark 5.3.6, we obtain the listed surface $\mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star i i i)$.
(VI) Surfaces of type $\mathrm{Bl} \mathbb{F}_{a}(\star \star \star)$. We now treat the blow ups of the Hirzebruch surface \mathbb{F}_{a}. According to Proposition 5.2 , each blow up of type $\mathrm{Bl} \mathbb{F}_{a}(\star \star \star)$ is obtained by blowing up one of the surfaces

$$
\mathrm{Bl} \mathbb{F}_{a}(\star \star i), \quad \mathrm{Bl} \mathbb{F}_{a}(\star \star i i), \quad \mathrm{Bl} \mathbb{F}_{a}(\star \star v)
$$

in a point that is not contained in the union of the two exceptional divisors. This rules out the configurations

$$
\mathbb{F}_{a}(\star \star \star v i i), \quad \mathbb{F}_{a}(\star \star \star v i i i), \quad \mathbb{F}_{a}(\star \star \star x i), \quad \mathbb{F}_{a}(\star \star \star x i i)
$$

found in Proposition 5.1.4: Additionally, observe that we also need not consider $\mathbb{F}_{a}(\star \star \star v i)$. The blow up of this configuration is isomorphic to the blow up of $\mathrm{Bl} \mathbb{F}_{a}(\star \star$ iii) in a point projecting to $[0,1,1,1]$. As seen in the proof of Proposition 5.2.8, there is an isomorphism $\varphi: Z_{1} \rightarrow Z_{2}$ from the toric variety $Z_{1}:=\mathrm{Bl} \mathbb{F}_{a+1}(\star \star i)$ to the toric variety $Z_{2}:=\mathrm{Bl} \mathbb{F}_{a}(\star \star i i i)$. In terms of fans, φ is given by an invertible matrix sending the ray $\mathbb{Q} \geq 0 \cdot(-1,-a-1)$ corresponding to $V\left(Z_{1} ; T_{1}\right)$ to the ray $\mathbb{Q}_{\geq 0} \cdot(-1,-a)$ corresponding to $V\left(Z_{2} ; T_{1}\right)$. In particular, $\mathrm{Bl} \mathbb{F}_{a}(\star \star \star v i)$ is isomorphic to the blow up of $\mathbb{F}_{a}(\star \star \star i)$ in $[0,1,1,1]$, i.e., to $\mathrm{Bl} \mathbb{F}_{a}(\star \star \star i v)$. The remaining cases are

There are further reductions: as seen in the proof of Proposition:5.2.8; $\mathrm{Bl} \mathbb{F}_{a}(\star \star$ ii $)$ is isomorphic to the surface $\mathrm{Bl} \mathbb{F}_{a+1}\left(\star^{2} \star i\right)$. Therefore, the surfaces $\mathrm{Bl} \mathbb{F}_{a}(\star \star \star i)$, $\mathrm{Bl} \mathbb{F}_{a}(\star \star \star i i)$ and $\mathrm{Bl} \mathbb{F}_{a}(\star \star \star v)$ are redundant and do not appear in the table of the theorem.
We first consider blow ups of the toric variety $X_{1}:=\mathrm{Bl} \mathbb{F}_{a}(\star \star i)$. This includes $\mathrm{Bl} \mathbb{F}_{a}(\star \star \star i i i), \mathrm{Bl} \mathbb{F}_{a}(\star \star \star i v)$ and $\mathrm{Bl} \mathbb{F}_{a}(\star \star \star x)$. The rays of the fan Σ_{1} of X_{1} are generated by the columns of

$$
P_{1}:=\left[\begin{array}{rrrrrrr}
-1 & 1 & 0 & 0 & -1 & 1 \\
-a & 0 & 1 & -1 & -a+1 & 1
\end{array}\right], \quad \Sigma_{1}=\underset{\substack{(-1,-a+1) \\
(-1,-a)}}{(0,1)}
$$

For $\mathrm{Bl} \mathbb{F}_{a}(\star \star \star \star i i)$, we want to blow up X_{1} at $q:=[1,1,0,1,1,1]$, a point which exists by Lemma 5.2.16. The steps are the same as in, e.g., the proof of Proposition 5.2.8: for case $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i\right)$. In Setting 4.2.9; choose the embedding

$$
\bar{\iota}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{7}, \quad z \mapsto\left(z, h_{1}(z)\right), \quad h_{1}:=T_{1} T_{5}-T_{2} T_{6} \in \mathbb{K}\left[T_{1}, \ldots, T_{6}\right]
$$

As in Algorithm 4.32 we obtain a new CEMDS X_{1}^{\prime} with degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of the toric ambient variety Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & a-3 & -2 & -1 & -1 \\
0 & 1 & 0 & a-3 & -1 & -2 & -1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & a-2 & -1 & -1 & -1
\end{array}\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & -1 & 1 & 1 & -a
\end{array}\right]
$$

For the blow up of $\iota(q)=[1,1,0,1,1,1,0] \in X_{1}^{\prime}$ we work in Setting 4.2.5; We perform the stellar subdivision $\Sigma_{2} \rightarrow \Sigma_{1}^{\prime}$ of Σ_{1}^{\prime} at the sum $v:=(-1,-1,-a+1)$ of the third and seventh column of P_{1}^{\prime}; this determines the toric modification $\pi: Z_{2} \rightarrow$ Z_{1}^{\prime}. Set $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal I_{2} of \bar{X}_{2} is generated by

$$
g:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{7}-h_{1}\right)=T_{7} T_{8}-T_{1} T_{5}+T_{2} T_{6} \in \mathbb{K}\left[T_{1}, \ldots, T_{8}\right]
$$

By Lemma 5.2.17; g is prime, all variables define prime elements and one directly verifies that $\operatorname{dim} V\left(\mathbb{K}^{8} ; g, T_{i}, T_{j}\right)=5$ for all $i \neq j$. Hence, by Theorem.4.2.6; the Cox ring of the performed modification is $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] /\langle g\rangle$. The degree matrix
listed in the table is obtained as a Gale dual matrix of P_{2} using, e.g., Lemma 5.2.6; The ideal $\left\langle T_{3}, T_{7}, h_{1}\right\rangle$ of $\mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$ is prime by Lemma 5.2.17; its zero set contains $\bar{\iota}((1,1,0,1,1,1))$ and it is four-dimensional. Therefore, the modification was the desired blow up by Lemma 5.2.15;
The case $\mathrm{Bl} \mathbb{F}_{a}(\star \star \star i v)$ is similar to the previous one. Here, we want to blow up X_{1} in $q:=[0,1,1,1,1,1]$. By Lemma $5.2 .16 ; q \in X_{1}$ exists. Choose $h_{1}:=$ $T_{2}^{a} T_{4} T_{6}^{a-1}-T_{3} T_{5} \in \mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ for the embedding $\bar{\iota}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{7}$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :
$Q_{1}^{\prime}=\left[\begin{array}{rrrrrrr}1 & 0 & 0 & a-3 & -2 & -1 & -2 \\ 0 & 1 & 0 & a-3 & -1 & -2 & -1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & a-2 & -1 & -1 & -1\end{array}\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrr}1 & a-1 & 0 & 1 & 1 & a-2 & -1 \\ 0 & a & 0 & 1 & 0 & a-1 & -1 \\ 0 & 0 & 1 & 0 & 1 & 0 & -1\end{array}\right]$.
For the blow up of X_{1}^{\prime} in $\iota(q)=[0,1,1,1,1,1,0]$ we perform the stellar subdivision of Σ_{1}^{\prime} at the sum $v:=(0,-1,-1)$ of the first and seventh column of P_{1}^{\prime}. Set $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ of \bar{X}_{2} is generated by

$$
p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{7}-h_{1}\right)=T_{7} T_{8}-T_{2}^{a} T_{4} T_{6}^{a-1}+T_{3} T_{5} \in \mathbb{K}\left[T_{1}, \ldots, T_{8}\right] .
$$

Using Lemma 5.17 ; similar to before, the requirements for Theorem 4.6 are fulfilled. Hence, the Cox ring of the performed modification is $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I_{2}$. Its degree matrix is a a Gale dual matrix of P_{2}. By Lemma 5.2 .15 , we did perform a blow up since $\left\langle T_{1}, T_{7}, h_{1}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$ is prime by Lemma 5.2.17 and its vanishing set is of dimension four while containing $\bar{l}((0,1,1,1,1,1))$.
We proceed for $\mathrm{Bl} \mathbb{F}_{a}(\star \star \star x)$ in the same manner. Here, we want to blow up X_{1} in $q:=[1,1,1,0,1,1]$ which exists by Lemma 5.2.16; Choose $h_{1}:=T_{1} T_{5}-T_{2} T_{6} \in$ $\mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ for the embedding $\bar{\iota}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{7}$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[\begin{array}{llllrrr}
1 & 0 & 0 & a-3 & -2 & -1 & -1 \\
0 & 1 & 0 & a-3 & -1 & -2 & -1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & a-2 & -1 & -1 & -1
\end{array}\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & -1 & 1 & 1 & -a
\end{array}\right]
$$

For the blow up of $\iota(q)=[1,1,1,0,1,1,0] \in X_{1}^{\prime}$, we insert the ray through $v:=$ $(-1,-1,-a-1)$ into Σ_{1}^{\prime} by performing the stellar subdivision at v. Set $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ of \bar{X}_{2} is generated by

$$
p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{7}-h_{1}\right)=T_{7} T_{8}-T_{1} T_{5}+T_{2} T_{6} \in \mathbb{K}\left[T_{1}, \ldots, T_{8}\right] .
$$

Using Lemma 5.2.17, the requirements for Theorem 4.2.6 are fulfilled. Hence, the Cox ring of the performed modification is $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I_{2}$. Its degree matrix is as listed in the table. By Lemma 5.2.15, the modification was a blow up as $\left\langle T_{4}, T_{7}, h_{1}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$ is prime by Lemma 5.2 .17 ; its zero set contains $\bar{\iota}((1,1,1,0,1,1))$ and is four-dimensional.
We now consider blow ups of the variety $X_{1}:=\mathrm{Bl} \mathbb{F}_{a}(\star \star v)$. The surface $\mathrm{Bl} \mathbb{F}_{a}(\star \star$ $\star(x)$ is a blow up of X_{1} in a point q projecting to $[0,1,1, \lambda] \in \mathbb{F}_{a}$ under the previous blow ups where $\lambda \in \mathbb{K}^{*} \backslash\{1\}$. By the proof of Proposition 5.8 ; the blow up sequence is

$$
X_{1} \xrightarrow{\pi_{2}} \mathrm{Bl} \mathbb{F}_{a}(\star i)^{\prime}<\iota^{\iota_{1}} \mathrm{Bl} \mathbb{F}_{a}(\star i) \xrightarrow{\pi_{1}} \mathbb{F}_{a}
$$

where $\iota_{1}([z]):=\left[z, h_{1}(z)\right]$ with $h_{1}:=T_{2}^{a} T_{4}-T_{3} T_{5}$ and the blow ups π_{1} and π_{2} are given by

$$
\pi_{2}([z])=\left[z_{1} z_{7}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6} z_{7}\right], \quad \pi_{1}([z])=\left[z_{1} z_{5}, z_{2}, z_{3} z_{5}, z_{4}\right]
$$

In our case, the point $q:=[0,1,1, \lambda, 1, \lambda-1,1] \in X_{1}$ exists by Lemma 5.16 and satisfies $\pi_{1} \circ \iota_{1}^{-1} \circ \pi_{2}(q)=[0,1,1, \lambda]$. We now perform the same steps as in the previous cases. In $\mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$, choose $h_{2}:=(\lambda-1) T_{2}^{a} T_{4}-\lambda T_{6} T_{7}$ for the embedding $\bar{\iota}: \mathbb{K}^{7} \rightarrow \mathbb{K}^{8}$. Let Q_{1} be the degree matrix of X_{1}. We have a new degree
matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[Q_{1} \left\lvert\, \begin{array}{l}
0 \\
a \\
0 \\
0
\end{array}\right.\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrrr}
1 & a-1 & 0 & 1 & 1 & 0 & 1 & -1 \\
0 & a & 0 & 1 & 0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & -1
\end{array}\right] .
$$

For the blow up of $\iota(q)=[0,1,1, \lambda, 1, \lambda-1,1,0] \in X_{1}^{\prime}$, we consider the toric morphism corresponding to the stellar subdivision of Σ_{1}^{\prime} at the ray through $v:=$ $(0,-1,-1,-1)$. Set $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]$ of \bar{X}_{2} is generated by the modified equations defining \bar{X}_{1}^{\prime}, i.e.,

$$
\begin{gathered}
p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{6} T_{7}-T_{2}^{a} T_{4}+T_{3} T_{5}\right)=T_{6} T_{7}-T_{2}^{a} T_{4}+T_{3} T_{5}, \\
p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{8}-h_{2}\right)=T_{8} T_{9}-(\lambda-1) T_{2}^{a} T_{4}+\lambda T_{6} T_{7} .
\end{gathered}
$$

After scaling, e.g., T_{8} by a suitable element of \mathbb{K}^{*}, Remark 1.5.6:applies and, therefore, I_{2} is prime. In particular, $I_{2}=I_{2}: T_{9}^{\infty}$. We now show that the variable T_{9} defines a prime element in $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I_{2}$. Note that, by 1.5 , for suitable choices of P and A we have $R_{2}=R(P, A)$, i.e., R_{2} is the Cox ring of a \mathbb{K}^{*}-surface and T_{9} defines a prime element. Alternatively, we may show that the image of the ideal $I_{2}+\left\langle T_{9}\right\rangle$ under the isomorphism $T_{6} \mapsto T_{6}(\lambda-1) / \lambda$, namely

$$
I:=\left\langle T_{9},(\lambda-1) T_{6} T_{7}-\lambda T_{2}^{a} T_{4}+\lambda T_{3} T_{5},-T_{2}^{a} T_{4}+T_{6} T_{7}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
$$

is a prime ideal using the binomial trick 5.3.4: This means we consider the ideal generated by the image $\psi_{A}(I)$ under the homomorphism

$$
\begin{aligned}
\psi_{A}: \mathbb{K}\left[T_{1}, \ldots, T_{9}\right] & \rightarrow \mathbb{K}\left[Y_{1}, \ldots, Y_{9}\right] \quad \\
T^{\nu} & \mapsto Y^{A^{t} \cdot \nu},
\end{aligned} \quad\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & a & 1 & 0 & 0 \\
0 & 0 & 0 & a & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Then $\left\langle\psi_{A}(I)\right\rangle \subseteq \mathbb{K}\left[Y_{1}, \ldots, Y_{9}\right]$ is generated by Y_{9} and $-Y_{4}^{a} Y_{6}^{a} Y_{5} Y_{7}+\lambda Y_{2} Y_{3}$ and is a prime ideal by Lemma 5.2.17; In turn, since $-T_{2}^{a} T_{4}+T_{6} T_{7}$ is prime by Lemma 5.2.17; Lemma 5.3. tells us that T_{9} is a prime element in R_{2}. Furthermore, each two variables \dot{T}_{i}, T_{j} are pairwise non-associated since $\operatorname{deg}\left(T_{i}\right) \neq \operatorname{deg}\left(T_{j}\right)$ for $i \neq j$. Also, $T_{9} \nmid T_{i}$ for all $i<9$, since each of the following intersections is of codimension two in \bar{X}_{2} :

$$
\begin{aligned}
\bar{X}_{2} \cap V\left(T_{1}, T_{9}\right) & =V\left(T_{1}, T_{9}, T_{6} T_{7}-T_{2}^{a} T_{4}+T_{3} T_{5},(\lambda-1) T_{2}^{a} T_{4}-\lambda T_{6} T_{7}\right) \\
& =V\left(T_{1}, T_{9}, T_{2}^{a} T_{4}-\lambda T_{3} T_{5},(\lambda-1) T_{2}^{a} T_{4}-\lambda T_{6} T_{7}\right), \\
\bar{X}_{2} \cap V\left(T_{2}, T_{9}\right) & =V\left(T_{2}, T_{9}, T_{3} T_{5}, T_{6} T_{7}\right), \\
\bar{X}_{2} \cap V\left(T_{3}, T_{9}\right) & =V\left(T_{3}, T_{9}, T_{6} T_{7}, T_{2} T_{4}\right), \\
\bar{X}_{2} \cap V\left(T_{4}, T_{9}\right) & =V\left(T_{4}, T_{9}, T_{3} T_{5}, T_{6} T_{7}\right), \\
\bar{X}_{2} \cap V\left(T_{5}, T_{9}\right) & =V\left(T_{5}, T_{9}, T_{6} T_{7}, T_{2} T_{4}\right), \\
\bar{X}_{2} \cap V\left(T_{6}, T_{9}\right) & =V\left(T_{6}, T_{9}, T_{3} T_{5}, T_{2} T_{4}\right), \\
\bar{X}_{2} \cap V\left(T_{7}, T_{9}\right) & =V\left(T_{7}, T_{9}, T_{3} T_{5}, T_{2} T_{4}\right), \\
\bar{X}_{2} \cap V\left(T_{8}, T_{9}\right) & =V\left(T_{8}, T_{9}, T_{6} T_{7}-T_{2}^{a} T_{4}+T_{3} T_{5},(\lambda-1) T_{2}^{a} T_{4}-\lambda T_{6} T_{7}\right) \\
& =V\left(T_{8}, T_{9}, T_{2}^{a} T_{4}-\lambda T_{3} T_{5},(\lambda-1) T_{2}^{a} T_{4}-\lambda T_{6} T_{7}\right) .
\end{aligned}
$$

This can be seen directly or, for $i \in\{1,8\}$, we write the exponent vectors of the binomial generators into the rows of a matrix as in Lemma 5.3.3and obtain

$$
\left[\begin{array}{rrrrrrrrr}
0 & a & -1 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & a & 0 & 1 & 0 & -1 & -1 & 0 & 0
\end{array}\right]
$$

which is of rank two. Hence, by Lemma :5.3.3; the dimension of $\bar{X}_{2} \cap V\left(T_{i}, T_{9}\right)$ is five on $\mathbb{T}^{9} \cdot(0,1, \ldots, 1,0)$ or $\mathbb{T}^{9} \cdot(1, \ldots, 1,0,0)$ for $i=1,8$ respectively. One directly checks that on the smaller tori the dimension is also at most six. For instance setting the second component to zero, we obtain the variety $V\left(T_{i}, T_{9}, T_{2}, T_{3} T_{5}, T_{6} T_{7}\right)$ in \mathbb{K}^{9} of dimension four. By Theorem :4.2.6; $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I_{2}$ is the Cox ring of the performed modification with its degree matrix as listed in the table.
We now show that the modification was the desired blow up. Note that the factor ring $\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I^{\prime}$ with $I^{\prime}:=\left\langle T_{1}, T_{8}, g_{1}, g_{2}\right\rangle$ is isomorphic to the integral domain $\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left(I+\left\langle T_{9}\right\rangle\right)$. Hence, I^{\prime} is prime. Since $(0,1,1, \lambda, 1, \lambda-1,1,0) \in V\left(I^{\prime}\right)$, by Lemma 5.215 ; the performed modification was the claimed blow up using

$$
\operatorname{dim}\left(V\left(\mathbb{K}^{8} ; I^{\prime}\right)\right)=-1+\operatorname{dim}\left(\bar{X}_{2} \cap V\left(\mathbb{K}^{9} ; T_{8}, T_{9}\right)\right)=4
$$

(VII) Surfaces of type $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} \star\right)$. These are blow ups of a surface of type $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2}\right)$ in a point not belonging to one of the two exceptional divisors. By Proposition 5.2.8, the only such surfaces of Picard number four are $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i\right)$ and $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i i\right)$. As the contraction of the exceptional divisors must lead to a configuration listed in Proposition 5.1.4, we only have to take the configurations
(2)

(2)

into account where (2) stands for an iterated blow up. Let $X_{1}:=\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i\right)$. As a toric variety, the fan Σ_{1} of X_{1} has its rays generated by the columns of

$$
\left.\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & 0 & -1 & -1 \\
-a & 0 & 1 & -1 & -a+1 & -a+2
\end{array}\right], \quad \Sigma_{1}=\begin{array}{c}
(-1,-a+2) \\
(-1,-a+1) \\
(-1,-a)
\end{array}\right)
$$

and, by the proof of Proposition 5.2.8, the blow ups π_{i} are

$$
\begin{gathered}
X_{1} \xrightarrow{\pi_{2}} \mathrm{Bl} \mathbb{F}_{a}(\star i) \xrightarrow{\pi_{1}} \mathbb{F}_{a} \\
\pi_{2}([z])=\left[z_{1}, z_{2}, z_{3} z_{6}, z_{4}, z_{5} z_{6}\right], \quad \pi_{1}([z])=\left[z_{1} z_{5}, z_{2}, z_{3} z_{5}, z_{4}\right] .
\end{gathered}
$$

The surfaces $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} \star i\right)$ to $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} \star i v\right)$ are obtained as blow ups of X_{1} in points $q_{i} \in X_{1}$ such that

$$
\begin{array}{ll}
\pi_{1} \circ \pi_{2}\left(q_{1}\right)=[1,0,0,1], & \pi_{1} \circ \pi_{2}\left(q_{2}\right)=[0,1,1,0], \\
\pi_{1} \circ \pi_{2}\left(q_{3}\right)=[1,0,1,0], & \pi_{1} \circ \pi_{2}\left(q_{4}\right)=[0,1,1,1] \in \mathbb{F}_{a} .
\end{array}
$$

We may choose the following ones. Note that their existence can be seen by an inspection of Σ_{1} or by Lemma 5.2.16:

$$
\begin{array}{ll}
q_{1}:=[1,0,0,1,1,1], & q_{2}:=[0,1,1,0,1,1], \\
q_{3}:=[1,0,1,0,1,1], & q_{4}:=[0,1,1,1,1,1] \in X_{1} .
\end{array}
$$

Therefore, the first three blow ups are toric and hence are performed by the stellar subdivision $\Sigma_{2} \rightarrow \Sigma_{1}$ at $v \in \mathbb{Z}^{2}$ where the respective vectors are

$$
v=(1,1), \quad v=(-1,-a-1), \quad v=(1,-1) .
$$

We come to the blowup $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} \star i v\right)$ of X_{1} in q_{4}. The steps are as before. Choose in $\mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ the polynomial $h_{1}:=T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2}$ for the embedding $\bar{\iota}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{7}$. We obtain a new CEMDS X_{1}^{\prime} with degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[\begin{array}{llllrrr}
1 & 0 & 0 & 0 & -2 & 1 & 0 \\
0 & 1 & 0 & 0 & -a+2 & a-1 & a \\
0 & 0 & 1 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 1 & -1 & 1 & 1
\end{array}\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrr}
1 & a-1 & 0 & 1 & 1 & 1 & -1 \\
0 & a & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 1 & 2 & -1
\end{array}\right] .
$$

For the blow up of X_{1}^{\prime} at $\iota\left(q_{4}\right)=[0,1,1,1,1,1,0]$, we perform the stellar subdivision $\Sigma_{2} \rightarrow \Sigma_{1}^{\prime}$ at $v:=(0,-1,-1)$. Set $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ of \bar{X}_{2} is generated by

$$
p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{7}-h_{1}\right)=T_{7} T_{8}-T_{2}^{a} T_{4}+T_{3} T_{5} T_{6}^{2} \in \mathbb{K}\left[T_{1}, \ldots, T_{8}\right] .
$$

As before, one directly checks that the requirements for Theorem 4.2.6 are fulfilled. Hence, the Cox ring of the performed modification is $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I_{2}$. Its degree matrix is as listed in the table. By Lemma.5.2.15; we did perform the claimed blow up since $\left\langle T_{1}, T_{7}, h_{1}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$ is prime by Lemma,5.2.17 and its zero set contains $\bar{\iota}((0,1,1,1,1,1))$ while being four-dimensional.
We now treat the blow ups of $X_{1}:=\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i i\right)$. As a toric variety, the fan Σ_{1} of X_{1} has its rays generated by the columns of

$$
\left.\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & 0 & -1 & -2 \\
-a & 0 & 1 & -1 & -a+1 & -2 a+1
\end{array}\right], \quad \Sigma_{1}={ }_{(-1,-a+1)}^{(0,-2 a+1)}\right)_{(-1,-a)}^{(0,-1)}
$$

and, by the proof of Proposition 5.2.8, the previous blow ups π_{i} are

$$
\begin{gathered}
X_{1} \xrightarrow{\pi_{2}} \mathrm{Bl} \mathbb{F}_{a}(\star i) \xrightarrow{\pi_{1}} \mathbb{F}_{a} \\
\pi_{2}([z])=\left[z_{1} z_{6}, z_{2}, z_{3}, z_{4}, z_{5} z_{6}\right], \quad \pi_{1}([z])=\left[z_{1} z_{5}, z_{2}, z_{3} z_{5}, z_{4}\right] .
\end{gathered}
$$

The surfaces $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} \star v\right)$ to $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} \star v i i i\right)$ are the blow ups of X_{1} in the same points $q_{i} \in X_{1}$ as defined in the previous case, i.e.,

$$
\begin{array}{ll}
q_{1}:=[1,0,0,1,1,1], & q_{2}:=[0,1,1,0,1,1], \\
q_{3}:=[1,0,1,0,1,1], & q_{4}:=[0,1,1,1,1,1] \in X_{1} .
\end{array}
$$

Again, their existence can be seen by inspecting Σ_{1} or using Lemma 5.16 : Therefore, the first three blow ups are toric and hence are performed by stellar subdivision of Σ_{1} at $v \in \mathbb{Z}^{2}$ where the respective vectors are

$$
v=(1,1), \quad v=(-1,-a-1), \quad v=(1,-1)
$$

We now treat the blow up $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} \star\right.$ viii) of X_{1} in q_{4}. The steps are as in previous cases. Choose $h_{1}:=T_{2}^{a} T_{4}-T_{3} T_{5} T_{6} \in \mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ for the embedding $\bar{\iota}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{7}$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :
$Q_{1}^{\prime}=\left[\begin{array}{llllrrl}1 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & 2 a-1 & -a+1 & a \\ 0 & 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 & -1 & 1\end{array}\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrr}1 & a-1 & 0 & 1 & 1 & 2 & -1 \\ 0 & a & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 1 & 1 & -1\end{array}\right]$.
For the blow up of $\iota\left(q_{4}\right)=[0,1,1,1,1,1,0] \in X_{1}^{\prime}$, we perform the stellar subdivision of Σ_{1}^{\prime} at $v:=(0,-1,-1) \in \mathbb{Z}^{3}$. Set $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal I_{2} of \bar{X}_{2} is generated by

$$
p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{7}-h_{1}\right)=T_{7} T_{8}-T_{2}^{a} T_{4}+T_{3} T_{5} T_{6} \in \mathbb{K}\left[T_{1}, \ldots, T_{8}\right]
$$

By a direct check, using, e.g., Lemma 5.2.17, the requirements for Theorem 4.2 are fulfilled. Hence, the Cox ring of the performed modification is $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I_{2}$. Its degree matrix is as listed in the table. The performed modification was a blow up, for $\left\langle T_{1}, T_{7}, h_{1}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$ is prime by Lemma 5.17 and its zero set contains $\bar{\iota}((0,1,1,1,1,1))$ while being four-dimensional, see Lemma 5.2.15:
(VIII) Surfaces of type $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3}\right)$. Each surface $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3}\right)$ is a blow up of a surface of type $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2}\right)$ in a point in the union of the two exceptional divisors. By Proposition 5.1.4 and Proposition 5.2.8, we need only consider the following configurations where (3) stands for the threefold iterated blow up.
(3)

(3)

Thus, we blow up the two surfaces $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i\right)$ and $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i i\right)$ listed in Proposition 5.2.8 in a point in the union of the exceptional divisors. Let $X_{1}:=\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i\right)$. As a toric variety the fan Σ_{1} of X_{1} has its rays generated by the columns of

$$
\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & 0 & -1 & -1 \\
-a & 0 & 1 & -1 & -a+1 & -a+2
\end{array}\right], \quad \Sigma_{1}=\underset{\substack{(-1,-a+2) \\
(-1,-a+1) \\
(-1,-a)}}{(0,1)}
$$

The exceptional divisors are $V\left(X_{1} ; T_{5}\right)$ and $V\left(X_{1} ; T_{6}\right)$ and their union consists of the toric orbits through the points

$$
\begin{gathered}
q_{1}:=[1,1,0,1,1,0], \quad q_{2}:=[1,1,1,1,1,0], \quad q_{3}:=[1,1,1,1,0,0], \\
q_{4}:=[1,1,1,1,0,1], \quad q_{5}:=[0,1,1,1,0,1] \in X_{1} .
\end{gathered}
$$

Note that all points exist by Lemma $5.2 \overline{16}$ or by an inspection of Σ_{1}. The automorphism $z \mapsto\left(z_{1}, z_{2}, z_{3}-z_{1}^{2} z_{2}^{a-2} z_{4} z_{5}, z_{4}, \ldots, z_{6}\right)$ of $\widehat{X}_{1} \subseteq \mathbb{K}^{6}$ maps the point q_{2} to q_{1}; compare Lemma;5.1.5; The blow ups of X_{1} in q_{1} (and thus q_{2}), q_{3} as well as q_{5} are toric. They are determined by the stellar subdivision $\Sigma_{2} \rightarrow \Sigma_{1}$ at $v \in \mathbb{Z}^{2}$ where

$$
v=(-1,-a+3), \quad v=(-2,-2 a+3), \quad v=(-2,-2 a+1)
$$

respectively. The resulting toric surfaces are called $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} i\right), \mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} i i i\right)$ and $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} v\right)$; their Cox rings can be found in the table.
We now consider the blow up $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} i v\right)$ of X_{1} in q_{4}. The steps are as in previous cases. Choose in $\mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ the polynomial $h_{1}:=T_{1} T_{2}^{a-1} T_{4}-T_{3} T_{6}$ for the embedding $\bar{\iota}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{7}$. Let Q_{1} be the degree matrix of $\mathcal{R}\left(X_{1}\right)$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[\begin{array}{l|r}
Q_{1} & a-1 \\
0 \\
0 & 1
\end{array}\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrr}
1 & a-1 & 0 & 1 & 0 & 0 & -1 \\
0 & a & 0 & 1 & -1 & -1 & -1 \\
0 & 0 & 1 & 0 & 0 & 1 & -1
\end{array}\right] .
$$

For the blow up of X_{1}^{\prime} in the point $\iota(q)=[1,1,1,1,0,1,0]$ we perform the stellar subdivision $\Sigma_{2} \rightarrow \Sigma_{1}^{\prime}$ at $v:=(-1,-2,-1)$. Set $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal I_{2} of \bar{X}_{2} is generated by

$$
p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{7}-h_{1}\right)=T_{7} T_{8}-T_{1} T_{2}^{a-1} T_{4}+T_{3} T_{6} \in \mathbb{K}\left[T_{1}, \ldots, T_{8}\right] .
$$

Using Lemma 5.2 .17 , the requirements for Theorem 4.2 are fulfilled. Hence, the Cox ring of the performed modification is $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I_{2}$. Its degree matrix is as listed in the table. By Lemma 5.2 .15 , we have performed a blow up since $\left\langle T_{5}, T_{7}, h_{1}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$ is prime by Lemma 5.2 .17 and its zero set contains $\bar{\iota}((1,1,1,1,0,1))$ while being four-dimensional.
We now treat the blow ups of $X_{1}:=\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i i\right)$. Its fan Σ_{1} and generators for its rays are

$$
\left.\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & 0 & -1 & -2 \\
-a & 0 & 1 & -1 & -a+1 & -2 a+1
\end{array}\right], \quad \Sigma_{1}=\underset{(-1,-a+1)}{(0,-2 a+1)}\right)_{(-1,-a)}^{(0,-1)}
$$

The exceptional divisors are $V\left(X_{1} ; T_{5}\right)$ and $V\left(X_{1} ; T_{6}\right)$ and their union consists of the toric orbits through the points

$$
\begin{gathered}
q_{1}:=[1,1,0,1,0,1], \quad q_{2}:=[1,1,1,1,0,1], \quad q_{3}:=[1,1,1,1,0,0], \\
q_{4}:=[1,1,1,1,1,0], \quad q_{5}:=[0,1,1,1,1,0] \in X_{1} .
\end{gathered}
$$

Note that all points exist by Lemma 5.16 or by an inspection of Σ_{1}. The automorphism $z \mapsto\left(z_{1}, z_{2}, z_{3}-z_{1} z_{2}^{a-1} z_{4} z_{6}, z_{4}, \ldots, z_{6}\right)$ of $\widehat{X}_{1} \subseteq \mathbb{K}^{6}$ maps q_{2} to q_{1}. The blow ups of X_{1} in q_{1} (and hence q_{2}), q_{3} and q_{5} are toric. They are determined by the stellar subdivision of $\Sigma_{2} \rightarrow \Sigma_{1}$ at $v \in \mathbb{Z}^{2}$ where

$$
v=(-1,-a+2), \quad v=(-3,-3 a+2), \quad v=(-3,-3 a+1)
$$

respectively. The resulting toric surfaces are called $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} v i\right), \mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} v i i i\right)$ and $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} x\right)$. The latter two can be found in the table; the former will be isomorphic to another surface and sorted out at the end of this proof.
We now consider the blow up $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} i x\right)$ of X_{1} in q_{4}. The steps are the same as in previous cases. Choose in $\mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ the polynomial $h_{1}:=T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{3}^{2} T_{5}$ for the embedding $\bar{\iota}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{7}$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[\begin{array}{l|r}
Q_{1} & 2 a-1 \\
0 & 0
\end{array}\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrr}
1 & a-1 & 1 & 1 & 1 & 1 & -1 \\
0 & a & 1 & 1 & 0 & -1 & -1 \\
0 & 0 & 2 & 0 & 1 & 0 & -1
\end{array}\right] .
$$

For the blow up of X_{1}^{\prime} in the point $\iota\left(q_{4}\right)=[1,1,1,1,1,0,0]$ we insert the ray through $v:=(0,-2,-1)$ into Σ_{1}^{\prime} by performing the stellar subdivision at $v \in \mathbb{Z}^{3}$. Set $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal I_{2} of \bar{X}_{2} is generated by

$$
p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{7}-h_{1}\right)=T_{7} T_{8}-T_{1} T_{2}^{2 a-1} T_{4}^{2}+T_{3}^{2} T_{5} \in \mathbb{K}\left[T_{1}, \ldots, T_{8}\right]
$$

As before, one directly checks that the requirements for Theorem are fulfilled. This leaves us with the Cox ring $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I_{2}$ of the performed modification. Its degree matrix is as listed in the table. The ideal $\left\langle T_{6}, T_{7}, h_{1}\right\rangle \subseteq$ $\mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$ is prime by Lemma 5.2 .17 ; its zero set contains $\bar{\iota}((1,1,1,1,1,0))$ and is four-dimensional. By Lemma 5.2 .15 the modification was the wanted blow up.
Isomorphisms: We now remove redundancies between the obtained surfaces. More precisely, we will show that the surfaces not listed in the table of Theorem 5.3.1: are isomorphic to surfaces appearing in the table. Keep in mind that also these redundant Cox rings have been presented explicitly throughout this proof. We first treat the toric then the non-toric \mathbb{K}^{*}-surfaces. Note that, in our case, exactly the surfaces without a relation in their Cox ring are toric as the total coordinate spaces of the other ones are singular.
Given toric surfaces Z_{1}, Z_{2}, we write primitive generators for the rays of their fans into the columns of matrices $P_{Z_{1}}, P_{Z_{2}}$. By Remark 5.10; we then have

$$
Z_{1} \cong Z_{2} \quad \Leftrightarrow \quad A \cdot P_{Z_{1}} \risingdotseq P_{Z_{2}} \quad \text { with } \quad A \in \mathrm{GL}(2, \mathbb{Z})
$$

in the notation of 5.2.9, We will reuse the matrices $P_{Z_{i}}$ from the proof if possible. Otherwise, we will use Gale dual matrices computed with Algorithm 2.1.25 from the respective degree matrices.

$Z_{1} \cong Z_{2}$	$A P_{Z_{1}} \risingdotseq P_{Z_{2}}$ with $A \in \mathrm{GL}(2, \mathbb{Z})$
$\begin{gathered} \mathrm{B} 1 \mathbb{P}_{2}\left(\star^{4} x i\right) \\ \stackrel{\cong}{\cong} \mathbb{F}_{3}\left(\star^{3} i i i\right) \end{gathered}$	

$\begin{aligned} & \text { B1 } \mathbb{P}_{2}\left(\star^{3} \star i i\right) \\ & \text { B1 } \mathbb{P}_{2}\left(\star^{2} \star^{2} i i\right) \end{aligned}$	$\begin{aligned} & {\left[\begin{array}{rr} -1 & 2 \\ 0 & 1 \end{array}\right]\left[\begin{array}{rrrrrrr} -1 & 1 & 0 & 1 & 2 & 3 & -1 \\ -1 & 0 & 1 & 1 & 1 & 1 & 0 \end{array}\right]} \\ & \risingdotseq\left[\begin{array}{rrrrrr} -1 & 1 & 0 & 1 & -1 & 2 \\ -1 \\ -1 & 0 & 1 & 1 & 0 & 1 \end{array}\right] \end{aligned}$
$\begin{gathered} \mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star^{2} i\right) \\ \stackrel{(}{\cong} \mathbb{P}_{2}\left(\star^{2} \star \star i\right) \end{gathered}$	$\begin{aligned} & {\left[\begin{array}{ll} 0 & -1 \\ 1 & -1 \end{array}\right]\left[\begin{array}{rrrrrrr} -1 & 1 & 0 & 1 & -1 & 2 & -2 \\ -1 & 0 & 1 & 1 & 0 & 1 & -1 \end{array}\right]} \\ & \risingdotseq\left[\begin{array}{rrrrrr} 1 & 0 & -1 & -1 & 0 & -1 \\ 0 & -1 & 1 & 0 & 1 & -1 \end{array}\right] \end{aligned}$
$\begin{aligned} & \mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star^{2} i i\right) \\ & \text { B1 } \mathbb{P}_{2}\left(\star^{2} \star^{2} i i i\right) \end{aligned}$	$\left.\begin{array}{l} {\left[\begin{array}{ll} -1 & 0 \\ -1 & 1 \end{array}\right]\left[\begin{array}{rrrrrrr} -1 & 1 & 0 & 1 & -1 & 2 & -1 \\ -1 & 0 & 1 & 1 & 0 & 1 & 1 \end{array}\right]} \\ \risingdotseq\left[\begin{array}{rrrrrr} -1 & 1 & 0 & 1 & -1 & 1 \end{array}-2\right. \\ -1 \end{array} 0 \begin{array}{lrrrrr} 1 & 1 & 0 & 2 & -1 \end{array}\right]$
$\begin{gathered} \text { Bl } \mathbb{P}_{2}\left(\star^{2} \star \star i\right) \\ \text { B1 } \mathbb{P}_{2}\left(\star^{2} \star \star i i i\right) \end{gathered}$	$\begin{aligned} & {\left[\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right]\left[\begin{array}{rrrrrrr} -1 & 1 & 0 & 1 & -1 & 2 & 0 \\ -1 & 0 & 1 & 1 & 0 & 1 & -1 \end{array}\right]} \\ & \risingdotseq\left[\begin{array}{rrrrrr} -1 & 1 & 0 & 1 & -1 & 1 \\ -1 & 0 & 1 & 1 & 0 & 2 \end{array}\right] \end{aligned}$
$\begin{gathered} \text { B1 } \mathbb{F}_{a}\left(\star^{2} \star i\right) \\ \text { B1 } \mathbb{F}_{a-1}\left(\star^{2} \star i i i\right) \end{gathered}$	$\begin{aligned} & {\left[\begin{array}{rr} 1 & 0 \\ -1 & 1 \end{array}\right]\left[\begin{array}{rrrrrrr} -1 & 1 & 0 & 0 & -1 & -1 & 1 \\ -a & 0 & 1 & -1 & -a+1 & -a+2 & 1 \end{array}\right]} \\ & \risingdotseq\left[\begin{array}{rrrrrrr} -1 & 0 & 0 & -1 & -1 & 1 \\ -a+1 & 0 & 1 & -1 & -a+2 & -a+3 & -1 \end{array}\right] \end{aligned}$
$\begin{gathered} \mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} i\right) \\ \stackrel{\cong}{\approx} \mathbb{F}_{a-1}\left(\star^{2} \star i i\right) \end{gathered}$	$\begin{aligned} & {\left[\begin{array}{llllrrrr} -1 & 1 & 0 & 0 & -1 & -1 & -1 \\ -a & 0 & 1 & -1 & -a+1 & -a+2 & -a+3 \end{array}\right]} \\ & \risingdotseq\left[\begin{array}{rrrrrrr} -1 & 1 & 0 & 0 & -1 & -1 & -1 \\ -a+1 & 0 & 1 & -1 & -a+2 & -a+3 & -a \end{array}\right] \end{aligned}$
$\begin{gathered} \mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} i i i\right) \\ \stackrel{=}{\mathrm{Bl} \mathbb{F}_{a-1}\left(\star^{2} \star v i\right)} \end{gathered}$	$\begin{aligned} & {\left[\begin{array}{lllrrrr} -1 & 1 & 0 & 0 & -1 & -1 & -2 \\ -a & 0 & 1 & -1 & -a+1 & -a+2 & -2 a+3 \end{array}\right]} \\ & \risingdotseq\left[\begin{array}{rrrrrrr} -1 & 1 & 0 & 0 & -1 & -2 & -1 \\ -a+1 & 0 & 1 & -1 & -a+2 & -2 a+3 & -a \end{array}\right] \end{aligned}$
$\begin{gathered} \mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} v i\right) \\ \stackrel{=}{=} \mathbb{F}_{a-2}\left(\star^{3} x i i i\right) \end{gathered}$	$\begin{aligned} & {\left[\begin{array}{lllrrrrr} -1 & 1 & 0 & 0 & -1 & -2 & -1 \\ -a & 0 & -1 & -a+1 & -2 a+1 & -a+2 \end{array}\right]} \\ & \risingdotseq\left[\begin{array}{rrrrrrr} -1 & 1 & 0 & 0 & -1 & -1 & -2 \\ -a+2 & 0 & 1 & -1 & -a+1 & -a & -2 a+1 \end{array}\right] \end{aligned}$
$\begin{aligned} & \text { B1 } \mathbb{F}_{a+1}\left(\star^{2} \star v\right) \\ & \text { B1 } \mathbb{F}_{a}\left(\star^{2} \star v i i\right) \end{aligned}$	$\begin{aligned} & {\left[\begin{array}{ll} 1 & 0 \\ -1 & 1 \end{array}\right]\left[\begin{array}{rrrrrrr} -1 & 1 & 0 & 0 & -1 & -2 & 1 \\ -a-1 & 0 & 1 & -1 & -a & -2 a-1 & 1 \end{array}\right]} \\ & \risingdotseq\left[\begin{array}{rrrrrrr} -1 & 1 & 0 & 0 & -1 & -2 & 1 \\ -a & 0 & 1 & -1 & -a+1 & -2 a+1 & -1 \end{array}\right] \end{aligned}$
$\begin{aligned} & \mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} v\right) \\ & \stackrel{=}{\approx} \mathbb{F}_{a}\left(\star^{3} v i\right) \end{aligned}$	$\begin{aligned} & {\left[\begin{array}{lllrrrrr} -1 & 1 & 0 & 0 & -1 & -1 & -2 \\ -a & 0 & 1 & -1 & -a+1 & -a+2 & -2 a+1 \end{array}\right]} \\ & \risingdotseq\left[\begin{array}{llrrrrr} -1 & 1 & 0 & 0 & -1 & -2 & -1 \\ -a & 0 & 1 & -1 & -a+1 & -2 a+1 & -a+2 \end{array}\right] \end{aligned}$

We show that the listed toric surfaces are pairwise non-isomorphic by comparing the respective self intersection numbers D_{i}^{2} where $D_{i}:=V\left(X ; T_{i}\right)$.

X	D_{1}^{2}	D_{2}^{2}	D_{3}^{2}	D_{4}^{2}	D_{5}^{2}	D_{6}^{2}	D_{7}^{2}
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} i x\right)$	≥ 0	-2	-1	-3	-2	-1	-1
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} x i i i\right)$	≥ 0	-2	≥ 0	-2	-3	-2	-1
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} x v\right)$	≥ 0	-3	≥ 0	-2	-2	-2	-1
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star^{2} i i i\right)$	-1	≥ 0	-2	-2	-2	-1	-1
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star^{2} i v\right)$	≥ 0	≥ 0	-3	-2	-2	-1	-1
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \star i\right)$	-1	-2	-1	-2	-1	-1	-1
$\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} \star i\right)$	-1	-1	≥ 0	$-a$	-2	-1	-1
$\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} \star v\right)$	-2	-1	≥ 0	$-a$	-2	-1	-1
$\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} i\right)$	-1	≥ 0	≥ 0	$-a$	-2	-2	-1
$\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} i i i\right)$	-1	≥ 0	≥ 0	$-a$	-3	-2	-1
$\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} v\right)$	-2	≥ 0	≥ 0	$-a$	-3	-1	-1
$\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} v i i i\right)$	-2	≥ 0	≥ 0	$-a$	-3	-2	-1
$\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} x\right)$	-3	≥ 0	≥ 0	$-a$	-2	-2	-1

Counting the number of $(-k)$-curves we can rule out all isomorphisms except for the following.

$$
\begin{aligned}
& \mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} x i i i\right) & \rightarrow & \mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} x v\right) \\
\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} i x\right) & \rightarrow & \mathrm{Bl} \mathbb{F}_{3}\left(\star^{2} \star v\right), & \mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star^{2} i v\right) \\
\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} i i i\right) & \rightarrow & \rightarrow & \mathrm{Bl} \mathbb{F}_{3}\left(\star^{3} i\right), \\
\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} v\right), & \mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} v i i i\right) & \rightarrow & \mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} x\right) .
\end{aligned}
$$

The first three ones are not possible by Algorithm 5.2.11; To rule out the other isomorphisms we compare the intersection behavior of negative curves, i.e., their exceptional graphs. To this end, consider the fans $\Sigma\left(\star^{3} i i i\right)$ and $\Sigma\left(\star^{3} v\right)$ of the surfaces $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} i i i\right)$ and $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} v\right)$ where the self-intersection numbers of the divisors D_{ϱ} corresponding to rays ϱ are drawn beside the rays.

$$
\Sigma\left(\star^{3} i i i\right)=\left.\sum_{-1}^{-2}\right|_{-3} ^{\geq 0} \geq 0 \quad \pm\left(\star^{3} v\right)=\left.\right|_{-1} ^{\geq-1}=0
$$

Thus, on $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} v\right)$, a (-2)-curve has non-trivial intersection with a (-1)-curve and a $(-a)$-curve which is not the case on $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} i i i\right)$. We proceed similarly for $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3}\right.$ viii) and $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} x\right)$. Their fans $\Sigma\left(\star^{3}\right.$ viii) and $\Sigma\left(\star^{3} x\right)$ and selfintersection numbers of the D_{ϱ} are

On $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} \star x\right)$ there is a (-3)-curve that meets the $(-a)$-curve. This is not the case on the surface $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} \star v i i i\right)$.
We come to isomorphisms between the found non-toric \mathbb{K}^{*}-surfaces. By Algorithm 5.2.14, and Remark 5.2.13; two \mathbb{K}^{*}-surfaces X_{1}, X_{2} are isomorphic if and only if the degree matrices \dot{Q}_{i} of $\mathcal{R}\left(X_{i}\right)$ coincide up to multiplication by admissible matrices, i.e.,

$$
A \cdot Q_{1}=Q_{2} \cdot U \quad \text { with } \quad A \in \mathrm{GL}(5, \mathbb{Z})
$$

admissible and U is a block-invariant, admissible permutation matrix. We use the notation of 5.2.9: where U is given implicitly.

$X_{1} \cong X_{2}$	$A Q_{1} \risingdotseq Q_{2}$ with $A \in \mathrm{GL}(5, \mathbb{Z})$
$\begin{aligned} & \mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} i\right) \\ & \stackrel{\text { Bl } \mathbb{P}_{2}\left(\star^{4} i i\right)}{ } \end{aligned}$	
$\begin{gathered} \mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} v\right) \\ \stackrel{\cong}{\cong} \mathbb{P}_{2}\left(\star^{4} v i i i\right) \end{gathered}$	
$\begin{aligned} & \mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} v i\right) \\ & \stackrel{\approx}{=} \stackrel{\mathbb{P}_{2}\left(\star^{4} v i i\right)}{ } \end{aligned}$	$\left.\begin{array}{l} {\left[\begin{array}{rrrrr} 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right]\left[\begin{array}{rrrrrrrr} 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 3 & -1 \\ 0 & 0 & 1 & -2 & 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 \end{array}\right]} \\ \\ \risingdotseq\left[\begin{array}{rrrrrrr} 1 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -3 \\ 0 & 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -2 \end{array}\right] \\ 0 \end{array} 0 \begin{array}{l} 0 \\ 0 \end{array}\right)$
$\begin{gathered} \mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} i\right) \\ \mathrm{Bl} \mathbb{F}_{3}(\star \star \star i v) \end{gathered}$	$\begin{aligned} & {\left[\begin{array}{rrrrr} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 & 0 \\ 1 & 1 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & -1 & 0 \end{array}\right]\left[\begin{array}{rrrrrrrr} 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 2 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 3 & 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 & -1 & 0 \end{array}\right]} \\ & \\ & \risingdotseq\left[\begin{array}{rrrrrrrr} 1 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0 & 1 & -1 & 2 & -1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & 2 & 1 & 3 & -1 \end{array}\right] \end{aligned}$
$\begin{gathered} \mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} i i i\right) \\ \stackrel{\cong}{=} 1 \mathbb{F}_{3}\left(\star^{3} i v\right) \end{gathered}$	$\left[\begin{array}{rrrrr}0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{rrrrrrrr}1 & 0 & 0 & 0 & 0 & 2 & -1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 3 & -2 & 1 \\ 0 & 0 & 1 & 0 & 0 & -3 & 3 & -2 \\ 0 & 0 & 0 & 1 & 0 & -1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & -1 & 0\end{array}\right]$ $\risingdotseq\left[\begin{array}{rrrrrrrr}1 & 0 & 0 & 0 & 1 & 3 & -2 \\ 0 & 1 & 0 & 0 & 0 & 2 & 3 & -1 \\ 0 & 0 & 1 & 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & -1\end{array}\right]$
$\begin{gathered} \mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} x i i\right) \\ \stackrel{\cong}{=} \\ \mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} v\right) \end{gathered}$	$\left[\begin{array}{rrrrr}0 & 2 & 0 & 1 & 0 \\ 0 & 3 & 0 & 1 & 0 \\ 0 & -1 & 1 & -2 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & -2 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{rrrrrrrrr}1 & 0 & 0 & 0 & 0 & -1 & -2 & 2 \\ 0 & 1 & 0 & 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 2 & 5 & -3 \\ 0 & 0 & 0 & 1 & 0 & 1 & 3 & -2 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & -1\end{array}\right]$ $\risingdotseq\left[\begin{array}{rrrrrrrr}1 & 0 & 1 & 0 & 2 & 2 & -1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 3 & -2 \\ 0 & 0 & 1 & -2 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -2 & 1\end{array}\right]$

By Remark 5.13 , there are no further isomorphisms between the listed \mathbb{K}^{*}-surfaces except possibly between $\mathrm{Bl} \mathbb{P}_{2}\left(\star \star \star \star\right.$ ii) and $\mathrm{Bl} \mathbb{F}_{a}(\star \star \star i i i)$. However, this cannot be the case as, by the blow up sequence, the self intersection numbers of the $D_{i}:=V\left(X ; T_{i}\right)$ are different for each $a \geq 3$:

X	D_{1}^{2}	D_{2}^{2}	D_{3}^{2}	D_{4}^{2}	D_{5}^{2}	D_{6}^{2}	D_{7}^{2}	D_{8}^{2}
Bl $\mathbb{P}_{2}(\star \star \star \star i i)$	-1	-1	-2	-1	-1	-1	\bullet	-1
Bl $\mathbb{F}_{a}(\star \star \star i i i)$	-1	-1	≥ 0	$-a$	-1	-1	\bullet	-1

Remark 5.3.7. In the proof of Theorem 5.3.1, we presented the self-intersection numbers of all occurring toric surfaces. The self-intersection numbers for the \mathbb{K}^{*} surfaces X listed in Theorem 5.1 are as follows. Let $D_{i}:=V\left(X ; T_{i}\right)$. We write • if we do not know the value from the blow up sequence.

X	D_{1}^{2}	D_{2}^{2}	D_{3}^{2}	D_{4}^{2}	D_{5}^{2}	D_{6}^{2}	D_{7}^{2}	D_{8}^{2}	D_{9}^{2}
Bl $\mathbb{P}_{2}\left(\star^{4} i v\right)$	≥ 0	-1	≥ 0	-2	-3	\bullet	-1	\bullet	-1
Bl $\mathbb{P}_{2}\left(\star^{4} v\right)$	≥ 0	-1	≥ 0	-2	-3	\bullet	-2	-1	
Bl $\mathbb{P}_{2}\left(\star^{4} v i\right)$	≥ 0	-1	≥ 0	-2	-2	-2	\bullet	-1	
Bl $\mathbb{P}_{2}\left(\star^{4} x i v\right)$	≥ 0	-2	≥ 0	-2	-2	-2	\bullet	-1	
Bl $\mathbb{P}_{2}\left(\star^{2} \star \star i i\right)$	≥ 0	-1	-2	-2	-1	-1	\bullet	-1	
Bl $\mathbb{P}_{2}\left(\star^{2} \star \star i v\right)$	≥ 0	≥ 0	-3	-2	-1	-1	\bullet	-1	
Bl $\mathbb{P}_{2}(\star \star \star \star i i)$	-1	-1	-2	-1	-1	-1	\bullet	-1	
Bl $\mathbb{P}_{2}(\star \star \star \star i i i)$	≥ 0	≥ 0	-3	-1	-1	\bullet	-1	\bullet	-1
Bl $\mathbb{F}_{a}(\star \star \star i i i)$	-1	-1	≥ 0	$-a$	-1	-1	\bullet	-1	
Bl $\mathbb{F}_{a}(\star \star \star i v)$	-2	-1	≥ 0	$-a$	-1	-1	\bullet	-1	
Bl $\mathbb{F}_{a}(\star \star \star i x)$	-3	≥ 0	≥ 0	$-a$	-1	\bullet	-1	\bullet	-1
Bl $\mathbb{F}_{a}\left(\star^{2} \star i v\right)$	-2	≥ 0	≥ 0	$-a$	-2	-1	\bullet	-1	
Bl $\mathbb{F}_{a}\left(\star^{2} \star v i i i\right)$	-3	≥ 0	≥ 0	$-a$	-2	-1	\bullet	-1	
Bl $\mathbb{F}_{a}\left(\star^{3} i v\right)$	-1	≥ 0	≥ 0	$-a$	-3	-1	\bullet	-1	
Bl $\mathbb{F}_{a}\left(\star^{3} i x\right)$	-2	≥ 0	≥ 0	$-a$	-2	-2	\bullet	-1	

4. Smooth rational surfaces with $\varrho(X)=6$

In this section, building on Proposition 5.2.8 and Theorem 5.3. we present and prove the central theorem of this chapter, Theorem 5.4.1; We show that each smooth rational surface of Picard number six is a Mori dream space and classify the Cox rings of the families without a non-trivial \mathbb{K}^{*}-action. All Cox rings are given explicitly. Each such surface can be obtained as a blow up of a smooth rational surface of Picard number five as classified in Theorem 5.3.1; Theorem 5.4.1: (as well as the proof of one of the cases) has been stated together with J. Hausen and A. Laface in [57.; Sec. 6].

The Cox rings of blow ups of \mathbb{P}_{2} will be determined computationally using Algorithm 4.5.9: with option verify. For blow ups of \mathbb{F}_{a} we apply the algorithm in a formal way by the steps explained in Remark 5.2.1:

Theorem 5.4.1. Each smooth rational surface X with Picard number $\varrho(X) \leq 6$ is a Mori dream space. Moreover, the following statements hold.
(i) If $\varrho(X) \leq 5$ holds, then either X admits a non-trivial \mathbb{K}^{*}-action or is isomorphic to $\bar{M}_{0,5}$, the blow up of \mathbb{P}_{2} in four general points. The Cox ring of X is listed in Theorem 5.3.1 or Propositions 5.2.8, 5.2.5, 5.2.4:
(ii) If $\varrho(X)=6$ holds, then X admits a non-trivial \mathbb{K}^{*}-action or is isomorphic to exactly one of the following surfaces where $a \in \mathbb{Z}_{\geq 3}$.

	$\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I$
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} \star\right.$	with I generated by
$\star i)$	$T_{3} T_{5} T_{8}-T_{2} T_{6}-T_{9} T_{10}$,
	$T_{1} T_{5}+T_{7} T_{8}-T_{2} T_{6}^{2} T_{4} T_{10}$

0 \& 1 \& 0 \& 0 \& 0 \& 0 \& -1 \& 1 \& 2 \& -1

0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& -1 \& 0 \& 0

0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 1 \& -1

0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 2 \& -1 \& -1 \& 1

0 \& 0 \& 0 \& 0 \& 0 \& 1 \& -1 \& 1 \& 3 \& -2\end{array}\right]\)

	$\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I$
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} \star\right.$	with I generated by
\star iii $)$	$T_{1} T_{5}+T_{7} T_{8}-T_{2} T_{4} T_{6} T_{10}$
	$T_{3} T_{5} T_{7} T_{8}^{2}-T_{2}^{2} T_{4}-T_{9} T_{10}$

0 \& 1 \& 0 \& 0 \& 0 \& 0 \& -2 \& 2 \& 3 \& -1

0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& -1 \& 0 \& 0

0 \& 0 \& 0 \& 1 \& 0 \& 0 \& -1 \& 1 \& 2 \& -1

0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 3 \& -2 \& -1 \& 1

0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1 \& -1\end{array}\right]\)

	$\mathbb{K}\left[T_{1}, \ldots, T_{13}\right] / I$
	with I generated by
$\mathrm{Bl} \mathbb{P}_{2}(\star \star$	$T_{1} T_{11}-T_{4} T_{3} T_{9}-T_{8} T_{12}$,
$\star \star \star i)$	$T_{1} T_{7}-T_{2} T_{8}+T_{3} T_{9} T_{13}$,
$\lambda \in$	$T_{2} T_{6}+T_{7} T_{10}-T_{3} T_{5} T_{13}$,
$\mathbb{K}^{*} \backslash\{1\}$	$T_{1} T_{6}+T_{8} T_{10}-T_{3} T_{4} T_{13}$,

$$
\begin{aligned}
& T_{2} T_{11}-\lambda T_{5} T_{3} T_{9}-T_{7} T_{12} \\
& (\lambda-1) T_{1} T_{5}-T_{10} T_{9}-T_{12} T_{13} \\
& (\lambda-1) T_{5} T_{8}+T_{6} T_{9}-T_{11} T_{13} \\
& T_{10} T_{11}-(\lambda-1) T_{4} T_{3} T_{5}+T_{6} T_{12} \\
& (\lambda-1) T_{4} T_{7}+\lambda T_{6} T_{9}-T_{11} T_{13} \\
& (\lambda-1) T_{2} T_{4}-\lambda T_{10} T_{9}-T_{12} T_{13}
\end{aligned}
$$

$$
\left[\begin{array}{rrrrrrrrrrrrr}
1 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & -1 & -1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 2 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & -1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & -1 & 1 & 0 & 0
\end{array}\right]
$$

	$\mathbb{K}\left[T_{1}, \ldots, T_{11}\right] / I$
	with I generated by
	$T_{6} T_{2} T_{4}+T_{5} T_{9}-T_{8} T_{10}$,
$\mathrm{Bl} \mathbb{P}_{2}(\star \star$	$T_{3} T_{4} T_{8}-T_{1} T_{6}-T_{9} T_{11}$,
$\star \star \star i u i)$	$T_{3} T_{4} T_{5}+T_{6} T_{7}-T_{11} T_{10}$,
	$T_{1} T_{5}+T_{7} T_{8}-T_{2} T_{4} T_{11}$,
	$T_{3} T_{4}^{2} T_{2}-T_{7} T_{9}-T_{1} T_{10}$

0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& -1

0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 1 \& -1 \& 0 \& 1 \& 0

0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1 \& -1 \& 1 \& 2 \& -1

0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& -1 \& 0 \& 1

0 \& 0 \& 0 \& 0 \& 0 \& 1 \& -1 \& 1 \& 1 \& 0 \& 0\end{array}\right]\)
$\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I$
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star\right.$
with I generated by
$\star \star i v) \quad T_{3} T_{5} T_{8}-T_{2} T_{6}-T_{9} T_{10}$,
$T_{1} T_{5}+T_{7} T_{8}-T_{2} T_{4} T_{10}$
$\left[\begin{array}{llllllrrrr}1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & -1 & 1 & 2 & -1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 2 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & 1 & 0\end{array}\right]$
$\left.\begin{array}{ll} & \mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I \\ & \text { with I generated by } \\ \text { Bl } \mathbb{F}_{a}(\star \star & T_{1} T_{5} T_{10}-T_{2} T_{6}-T_{7} T_{8}, \\ \star \star v i) & T_{2} T_{4} T_{7}^{a-1} T_{8}^{a-2}-T_{3} T_{5} \\ & -T_{9} T_{10}\end{array} \quad\left[\begin{array}{rrrrrrrrr}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & -a+1 & a & -1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -a+2 & a-1 & -1\end{array}\right] 1\right]$

$\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I$
Bl $\mathbb{F}_{a}\left(\star^{3} \star\right.$
$\begin{array}{ll}\text { Bl } \mathbb{F}_{a}\left(\star^{3} \star\right. & T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2} T_{10}-T_{7} T_{8}, \\ & T_{1} T_{2}^{a-1} T_{4} T_{8}-T_{3} T_{6}-T_{9} T_{10}\end{array}$
$\left[\begin{array}{rlllllrrrr}1 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 2 a-1 & -a+1 & -a & a \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & 2 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 2 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & 3 & -2\end{array}\right]$

$\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I$ with I generated by $\begin{array}{ll} \mathrm{Bl} \mathbb{F}_{a\left(\star^{3} \star\right.} & T_{2}^{a} T_{4}-T_{3} T_{6} T_{10} T_{5}-T_{7} T_{8} \\ \text { ii) } & T_{1} T_{2}^{a-1} T_{4} T_{7} T_{8}^{2}-T_{3}^{2} T_{5} \\ & -T_{9} T_{10} \end{array}$			0 0 1 0 0 0	0 0 0 1 0 0	$\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}$	1 $3 a-1$ -2 3 -1 0	-1 $-2 a+1$ 2 -2 1 0	$\left.\begin{array}{rr}0 & 0 \\ -a & a \\ 3 & -1 \\ -1 & 1 \\ 2 & -1 \\ 1 & -1\end{array}\right]$
$\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I$ with I generated by $\begin{aligned} \mathrm{Bl} \mathbb{F}_{a\left(\star^{4} i\right)} & T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{3}^{2} T_{5} \\ \dagger & \\ & -T_{1} T_{2}^{a-1} T_{3} T_{4} T_{5} T_{6} T_{7} T_{9} \\ & +T_{7} T_{8} T_{9}^{2} \end{aligned}$			0 0 1 0 0 0	0 0 0 1 0	1 $2 a-1$ -2 2 0 0	$\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}$	3 $4 a$ -3 -2 4 2 1	$\left.\begin{array}{r}-1 \\ -a+1 \\ 1 \\ -1 \\ -1 \\ -1\end{array}\right]$

All surfaces except possibly the surfaces marked with a single \dagger do not admit a non-trivial \mathbb{K}^{*}-action. The surface marked with $\dagger \dagger$ has the listed ring as its Cox ring for $a \leq 15$; for $a>15$ it is a Mori dream surface having the H_{2}-equivariant normalization of $\mathbb{K}\left[T_{1}, \ldots, T_{11}\right] /\left(I:\left(T_{1} \cdots T_{11}\right)^{\infty}\right)$ as its Cox ring.

For the following remark, recall from [5; Thm. V.2.1.7] that a weak del Pezzo surface is a surface that is ismorphic to $\mathbb{P}_{1} \times \mathbb{P}_{1}$, to \mathbb{F}_{2} or to a blow up

$$
X_{r} \longrightarrow X_{r-1} \longrightarrow \cdots \longrightarrow X_{1} \longrightarrow X_{0}=\mathbb{P}_{2}
$$

of \mathbb{P}_{2} in $0 \leq r \leq 8$ points p_{1}, \ldots, p_{r} in almost general position, i.e., $p_{i} \in X_{i-1}$, no four points are mapped to the same line in \mathbb{P}_{2} and for each i, the total transform of the exceptional divisor over $p_{i} \in X_{i-1}$ is a chain of rational curves where the last one is a (-1)-curve and the remaining ones are (-2)-curves. The degree of a weak del Pezzo surface is $9-r$.

Remark 5.4.2. In Theorem 5.4.1, the weak del Pezzo surfaces of degree four, i.e., with $r=5$, are

$$
\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} \star \star i i\right), \quad \mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star \star i),
$$

$$
\mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star \star i i), \quad \mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star \star i i i), \quad \mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \star \star i v\right) .
$$

Their Cox rings have been predicted in [32; Sec 6.4]. All other surfaces listed in the table of Theorem 5.4. contain ($-k$)-curves with $k \geq 3$. This can be seen from Remark 5.3.7 and the blow up sequence shown in the proof of Theorem 5.4.1; Therefore, these surfaces do not appear in [32].

Lemma 5.4.3 (Serre's criterion). Let $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ be homogeneous polynomials with respect to a pointed grading of $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ by a lattice \mathbb{Z}^{n}. Write $I:=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ and $\bar{X}:=V\left(\mathbb{K}^{r} ; I\right)$. Then I is prime if there is an open subset $U \subseteq \bar{X}$ such that

$$
\operatorname{codim}_{\bar{X}}(\bar{X} \backslash U) \geq 2, \quad \operatorname{rank}\left(\frac{\partial f_{i}}{\partial T_{j}}(u)\right)_{i, j}=s \quad \text { for all } u \in U
$$

Proof. We first show that \bar{X} is connected. Let $w_{i} \in \mathbb{Z}^{n}$ be the degree of T_{i}. Write $\vartheta:=\operatorname{cone}\left(w_{1}, \ldots, w_{r}\right) \subseteq \mathbb{Q}^{n}$ for the weight cone and choose an element $u \in\left(\vartheta^{\vee}\right)^{\circ}$. Since ϑ is pointed, we obtain a $\mathbb{Z}_{\geq 0}$-grading of the polynomial ring $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ by
setting $\operatorname{deg}\left(T_{i}\right):=a_{i}$ where $a_{i}:=u\left(w_{i}\right)>0$. Note that I is homogeneous. For each two points $x, x^{\prime} \in \bar{X}$ there are one-parameter subgroups $\mathbb{K}^{*} \rightarrow \mathbb{T}^{r}$ given by

$$
t \mapsto\left(t^{a_{1}} x_{1}, \ldots, t^{a_{r}} x_{r}\right), \quad t \mapsto\left(t^{a_{1}} x_{1}^{\prime}, \ldots, t^{a_{r}} x_{r}^{\prime}\right),
$$

respectively, that leave \bar{X} invariant and have limit 0 for $t \rightarrow 0$ since $a_{i}>0$ for all i. This shows that \bar{X} is connected. By Serre's criterion [73; 6.2], I is radical, $R:=\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] / I$ a complete intersection and \bar{X} a normal variety. By [36; Thm. 18.15], R is a product of integral domains. Since \bar{X} is connected, R is an integral domain, i.e., $\sqrt{I}=I$ is prime.

Lemma 5.4.4. Let $I \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ be an ideal such that $T_{k}-f \in I$ for some $1 \leq k \leq r$ and $f \in \mathbb{K}\left[T_{i} ; i \neq k\right]=: R_{k}$. Let $I_{k} \subseteq R_{k}$ be the ideal generated by the image of I under

$$
\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] \rightarrow R_{k}, \quad T_{k} \mapsto f, \quad T_{i} \mapsto T_{i} \text { for } i \neq k
$$

Then $I \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ is prime if and only if $I_{k} \subseteq R_{k}$ is prime. Moreover, we have $\operatorname{dim}\left(V\left(\mathbb{K}^{r} ; I\right)\right)=\operatorname{dim}\left(V\left(\mathbb{K}^{r-1} ; I_{k}\right)\right)$.

Proof. This statement is due to the observation that $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] / I$ is isomorphic to R_{k} / I_{k}.

Amongst others, the following lemma describes the behavior of the irrelevant ideal under a toric blow up $Z_{2} \rightarrow Z_{1}$. Let $\Sigma_{i} \subseteq \mathbb{Q}^{d}$ be the fan corresponding to Z_{i}. Assume the rays of Σ_{i} are $\varrho_{1}^{i}, \ldots, \varrho_{r}^{i}$. Define

$$
\nu_{i}: \Sigma_{i} \rightarrow\{0,1\}^{r}, \quad \nu_{i}(\sigma)_{j}:= \begin{cases}1, & \varrho_{j}^{i} \nsubseteq \sigma \\ 0, & \varrho_{j}^{i} \subseteq \sigma\end{cases}
$$

Lemma 5.4.5. In Setting:4.2; let Z_{1} be a smooth toric variety with dense torus $\mathbb{T}_{Z_{1}}$ and fan Σ_{1} with rays $\varrho_{1}, \ldots, \varrho_{r}$. Assume $\pi: Z_{2} \rightarrow Z_{1}$ arises from the barycentric subdivision $\Sigma_{2} \rightarrow \Sigma_{1}$ of a cone $\sigma \in \Sigma_{1}$. Suppose $X_{1} \cap\left(\mathbb{T}_{Z_{1}} \cdot z(\sigma)\right)=\left\{\left[p_{1}\right]\right\}$ with $p_{1} \in \widehat{Z}_{1} \subseteq \mathbb{K}^{r}$ and π induces a blow up of X_{1} in $\left[p_{1}\right]$. Let $V\left(Z_{2} ; T_{r+1}\right)$ be the exceptional divisor of the blow up π.
(i) The ideal of $\bar{Z}_{2} \backslash \widehat{Z}_{2}$ in the ring $\mathbb{K}\left[T_{1}, \ldots, T_{r+1}\right]$ is

$$
\left\langle T^{\nu_{1}\left(\sigma^{\prime}\right)} T_{r+1} ; \sigma^{\prime} \in \Sigma_{1}^{\max } \backslash\{\sigma\}\right\rangle+\left\langle T^{\nu_{1}(\sigma)} T_{i} ; \varrho_{i} \subseteq \sigma, 1 \leq i \leq r\right\rangle
$$

(ii) The set $\left(\widehat{X}_{1} \times\{1\}\right) \cap \bar{X}_{2}$ is contained in \widehat{X}_{2}.
(iii) Let $p_{2} \in \bar{X}_{2} \subseteq \mathbb{K}^{r+1}$. Then p_{2} is contained in \widehat{X}_{2} if there is $1 \leq j \leq r$ with

$$
\left(p_{2}\right)_{j} \neq 0, \quad\left(p_{1}\right)_{j}=0, \quad \prod_{\left(p_{1}\right)_{i} \neq 0}\left(p_{2}\right)_{i} \neq 0
$$

Proof. First, recall from [5; Prop. II.1.3.3] that the vanishing ideal of $\bar{Z}_{i} \backslash \widehat{Z}_{i}$ in $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ is $J_{i}:=\left\langle T^{\nu_{i}\left(\sigma^{\prime}\right)} ; \sigma^{\prime} \in \Sigma_{i}^{\max }\right\rangle$. Let $\varrho_{r+1} \in \Sigma_{2}$ be the ray corresponding to the exceptional divisor $V\left(Z_{2} ; T_{r+1}\right)$. For the first statement, each maximal cone $\sigma^{\prime} \in \Sigma_{2}$ either is a maximal cone of Σ_{1} or contains ϱ_{r+1}. In the former case, $\nu_{2}\left(\sigma^{\prime}\right)=\left(\nu_{1}\left(\sigma^{\prime}\right), 1\right)$ whereas in the latter case $\sigma^{\prime} \subseteq \sigma$ which, by regularity of Σ_{i}, contains exactly one more of the rays ϱ_{i} than σ^{\prime} where $1 \leq i \leq r$. This shows (i).

For (ii), consider $q_{2}:=\left(q_{1}, 1\right) \in \bar{X}_{2} \subseteq \mathbb{K}^{r+1}$ with $q_{1} \in \widehat{X}_{1}$. Since $q_{1} \notin V\left(J_{1}\right)$, we have $T^{\nu_{1}\left(\sigma^{\prime}\right)}\left(q_{1}\right) \neq 0$ for a maximal cone $\sigma^{\prime} \in \Sigma_{1}$. If $\varrho_{r+1} \nsubseteq \sigma^{\prime}$, then $\left(q_{1}, 1\right) \notin V\left(J_{2}\right)$ as

$$
T^{\nu_{2}\left(\sigma^{\prime}\right)}\left(q_{1}, 1\right)=T^{\nu_{1}\left(\sigma^{\prime}\right)}\left(q_{1}\right) \neq 0
$$

by the first statement. On the other hand, if $\varrho_{r+1} \subseteq \sigma^{\prime}$, we have $\sigma^{\prime}=\sigma$. Assume $\left(T^{\nu_{1}(\sigma)} T_{i}\right)\left(q_{1}, 1\right)=0$ for all rays $\varrho_{i} \subseteq \sigma$ with $1 \leq i \leq r$. Since $T^{\nu_{1}(\sigma)}\left(q_{1}\right) \neq 0$, we have $\left(q_{1}\right)_{i}=0$ for all $\varrho_{i} \subseteq \sigma$. This means, q_{1} lies in the toric orbit $\mathbb{T}_{Z_{1}} \cdot z(\tau)$ corresponding to a cone $\tau \in \Sigma_{1}$ with $\sigma \preceq \tau$. By assumption, we have

$$
\left.\left\{\left[q_{1}\right]\right\} \subseteq X_{1} \cap\left(\mathbb{T}_{Z_{1}} \cdot z(\tau)\right) \subseteq X_{1} \cap\left(\mathbb{T}_{Z_{1}} \cdot z(\sigma)\right)\right)=\left\{\left[p_{1}\right]\right\}
$$

and thus $\left[p_{1}\right]=\left[q_{1}\right] \in X_{1}$. Because $\pi\left(\left[q_{1}, 1\right]\right)=\left[q_{1}\right]=\left[p_{1}\right]$ this implies that $\left[q_{1}, 1\right]$ is an element of the exceptional divisor $V\left(Z_{2} ; T_{r+1}\right)$, a contradiction.
We come to (iii). Since $\sigma \in \Sigma_{1}$, the monomial $T^{\nu_{1}(\sigma)}=\prod_{\left(p_{1}\right)_{i} \neq 0} T_{i}$ is an element of the ideal J_{1}. Since $\left(p_{1}\right)_{j}=0$, we have $\varrho_{j} \subseteq \sigma$. By (i) and the requirements on p_{2} we conclude

$$
T_{j} \cdot \prod_{\left(p_{1}\right)_{i} \neq 0} T_{i} \in J_{2}, \quad p_{2} \in \bar{X}_{2} \backslash V\left(\mathbb{K}^{r+1} ; J_{2}+I_{2}\right)=\widehat{X}_{2} .
$$

The following proposition will be used to identify non-isomorphic surfaces in the proof of Theorem :5.4.1; We call the Cox ring $\mathcal{R}(X)$ of a Mori dream space X minimally presented if the $\mathrm{Cl}(X)$-grading is pointed and no generator of $\mathcal{R}(X)$ may be omitted.

Proposition 5.4.6. Consider Mori dream spaces X_{1}, X_{2} sharing the same class group $\mathrm{Cl}\left(X_{i}\right)=\mathbb{Z}^{n}$. Assume both Cox rings $\mathcal{R}\left(X_{i}\right)$ are generated by $r \in \mathbb{Z}_{>0}$ elements and are minimally presented. If $X_{1} \cong X_{2}$, then the following assertions hold.
(i) There is a permutation $\sigma \in \operatorname{Sym}(r)$ such that for the corresponding permutation matrix $U_{\sigma} \in \mathrm{GL}(r, \mathbb{Z})$ the $n \times r$ degree matrices Q_{i} satisfy

$$
S \cdot Q_{1} \cdot U_{\sigma}=Q_{2} \quad \text { for some } \quad S \in \operatorname{GL}(n, \mathbb{Z})
$$

(ii) Let L_{i} be the lists consisting of the sorted absolute values of all $n \times n$ minors of the Q_{i}. Then $L_{1}=L_{2}$.
(iii) There is $\sigma \in \operatorname{Sym}(r)$ such that the Hermite normal forms of $Q_{1} \cdot U_{\sigma}$ and of Q_{2} are equal up to units.

The idea of the proof of Proposition 5.4.6: is to track the permutation of certain "minimal weight vectors"; this concept is used in an ongoing project together with J. Hausen. Let K be a finitely generated abelian group. Consider an affine \mathbb{K} algebra $R=\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] / I$ with a pointed K-grading $R=\bigoplus_{w \in K} R_{w}$ and a K homogeneous ideal $I \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$. We order the elements of K by

$$
\begin{equation*}
w \leq w^{\prime} \quad: \Leftrightarrow \quad w^{\prime}=w+w^{\prime \prime} \tag{6}
\end{equation*}
$$

for some $w^{\prime \prime} \in K$.

Definition 5.4.7. Let $S(R):=\left\{w \in K ; R_{w} \neq\{0\}\right\}$. A vector $w \in S(R)$ is originary if it is minimal in $S(R)$ with respect to the relation \leq defined in (6). We denote the set of originary vectors by orig $(R) \subseteq S(R)$.

For instance, if $w \in S(R)$ and w is an element of a Hilbert basis for the weight cone $\vartheta \subseteq K_{\mathbb{Q}}$ of R or w is a primitive generator of a ray $\varrho \preceq \vartheta$, then w is originary.

Remark 5.4.8. In Definition 5.7. the originary vectors are the elements $w \in S(R)$ such that

$$
f \notin \mathbb{K}\left[\bigcup_{w_{0}<w} R_{w_{0}}\right] \quad \text { for some } \quad f \in R_{w} .
$$

Let K_{1}, K_{2} be finitely generated abelian groups and R_{i} two \mathbb{K}-algebras that are graded by K_{i}. Recall, e.g., from [5; Sec. I.1.1], that an isomorphism of graded algebras is a pair (ψ, α) with an isomorphism $\psi: R_{1} \rightarrow R_{2}$ of algebras and an isomorphism $\alpha: K_{1} \rightarrow K_{2}$ of groups such that

$$
\psi\left(\left(R_{1}\right)_{w}\right)=\left(R_{2}\right)_{\alpha(w)} \quad \text { for all } \quad w \in K
$$

Moreover, a homomorphism $\psi: R_{1} \rightarrow R_{2}$ of algebras is called graded if there is a homomorphism $\alpha: K_{1} \rightarrow K_{2}$ of groups such that $\psi\left(\left(R_{1}\right)_{w}\right) \subseteq\left(R_{2}\right)_{\alpha(w)}$ for all $w \in K$.

Lemma 5.4.9. Let K, K^{\prime} be finitely generated abelian groups and R, R^{\prime} affine \mathbb{K} algebras with respective pointed K - and K^{\prime}-gradings. Each isomorphism $(\psi, \alpha): R \rightarrow$ R^{\prime} satisfies $\alpha(\operatorname{orig}(R))=\operatorname{orig}\left(R^{\prime}\right)$.

Proof. As (ψ, α) is an isomorphism, we have $\alpha\left(S\left(R_{1}\right)\right)=S\left(R_{2}\right)$. Note that α is an isomorphism of posets, i.e., $w \leq w^{\prime}$ in $S(R)$ if and only if $\alpha(w) \leq \alpha\left(w^{\prime}\right)$ in $S\left(R^{\prime}\right)$. In particular, the minimal elements of $S(R)$ are mapped to the minimal elements of $S\left(R^{\prime}\right)$, as claimed.

Lemma 5.4.10. Consider a Mori dream space X with Cox ring $\mathcal{R}(X)$ that is minimally presented by the generators f_{1}, \ldots, f_{s}. Then the set of originary vectors of $\mathcal{R}(X)$ is $\left\{\operatorname{deg}\left(f_{1}\right), \ldots, \operatorname{deg}\left(f_{s}\right)\right\}$.

Proof. We write $R:=\mathcal{R}(X)$. Assume there were $1 \leq j \leq s$ with $\operatorname{deg}\left(f_{j}\right)$ not originary. This means we have

$$
f_{j} \in \mathbb{K}\left[\bigcup_{w_{0}<\operatorname{deg}\left(f_{j}\right)} R_{w_{0}}\right]
$$

In particular, f_{j} can be removed from the presentation of $\mathcal{R}(X)$, a contradiction. For the reverse inclusion, assume $w \in \operatorname{orig}(R)$ is given such that $w \neq \operatorname{deg}\left(f_{j}\right)$ for all $1 \leq j \leq s$. Since no generator f_{j} is an element of R_{w}, any $0 \neq f \in R_{w}$ is a combination $f=\sum h_{i} f_{i}$ with $h_{i} \in R$. In particular, w is not originary.

Proof of Proposition 5.4. If X_{1} and X_{2} are isomorphic, there is an isomorphism (ψ, β) of \mathbb{Z}^{n}-graded \mathbb{K}-algebras $\mathcal{R}\left(X_{1}\right) \rightarrow \mathcal{R}\left(X_{2}\right)$; compare [5; 6]. Note that $\beta: \mathbb{Z}^{n} \rightarrow$ \mathbb{Z}^{n} is given by a matrix $S \in \operatorname{GL}(n, \mathbb{Z})$. Since $\mathcal{R}\left(X_{i}\right)$ is minimally presented, by Lemmas 5.4.10 and 5.4.9; generator degrees in $\mathrm{Cl}\left(X_{1}\right)$ are mapped to generator degrees in $\operatorname{Cl}\left(X_{2}\right)$ under β, i.e.,

$$
S \cdot Q_{1} \cdot U_{\sigma}=Q_{2} \quad \text { for some } \quad \sigma \in \operatorname{Sym}(r)
$$

In particular, the Hermite normal forms of $Q_{1} \cdot U_{\sigma}$ and Q_{2} coincide up to units. This shows (i) and (iii). Statement (ii) follows from (i) and the fact that up to sign the maximal minors of a matrix are invariant with respect to multiplication by an invertible matrix.

The following observations will be useful in the proof of Theorem 5.4.1; to identify surfaces that do admit a non-trivial \mathbb{K}^{*}-action. The next lemma uses a result from P. Orlik and P. Wagreich [86].

Lemma 5.4.11. Compare [86]. Consider a surface X_{1} admitting a non-trivial \mathbb{K}^{*} action. Let X_{2} be the blow up of a point $x \in X_{1}$ with Cox coordinates $z \in \widehat{X}_{1} \subseteq \mathbb{K}^{r}$.

If x is a fixed point, then X_{2} admits a non-trivial \mathbb{K}^{*}-action. In particular, this is the case if one of the following conditions hold.
(i) X_{1} is toric and x is not contained in in the big $\mathbb{T}_{X_{1}}$-orbit of X_{1}.
(ii) X_{1} is non-toric, embedded equivariantly into its canonical toric ambient variety and there are $i \neq j$ such that $z_{i}=z_{j}=0$.

Proof. If x is a fixed point, X_{2} admits again a non-trivial \mathbb{K}^{*}-action by [86]. For (ii), the intersection of the \mathbb{K}^{*}-invariant divisors $V\left(X_{1} ; T_{i}\right)$ and $V\left(X_{1} ; T_{j}\right)$ is again \mathbb{K}^{*} invariant, i.e., is a hyperbolic fixed point, see Proposition 1.5.10,
For the first statement, the dense torus $\mathbb{T}_{X_{1}}$ of X_{1} can be obtained as $\mathbb{T}_{X_{1}}=$ Spec $\mathbb{K}[E]$ with a lattice E, see Remark 1.1.2, By assumption, x belongs to a torus orbit $\mathbb{T} \cdot z(\sigma)$ with the distinguished point $z(\sigma) \in X_{1}$ of a cone $\{0\} \neq \sigma \subseteq \mathbb{Q} \otimes F$ of the fan of X_{1}. Consider the sublattice $L:=F \cap \operatorname{lin}_{\mathbb{Q}}(\sigma) \subseteq F$. The inclusion $L \rightarrow F$ corresponds to an epimorphism $Q: E \rightarrow K$ of the dual lattices. By [5; Prop. II.1.4.2], we have

$$
\operatorname{rank}\left(K_{\sigma}\right) \geq 1 \quad \text { where } \quad K_{\sigma}:=K / Q\left(\sigma^{\perp} \cap E\right)
$$

Hence, the isotropy group $H_{z(\sigma)}=\operatorname{Spec} \mathbb{K}\left[K_{\sigma}\right]$ is a subgroup of $\mathbb{T}_{X_{1}}$ of dimension at least one. This means, x lies on a fixed point curve of a \mathbb{K}^{*}-action and X_{2} is a \mathbb{K}^{*}-surface.

Lemma 5.4.12. Let X be a \mathbb{K}^{*}-surface. Consider negative curves $D, D^{\prime} \subseteq X$ that each intersect at least three other negative curves on X non-trivially. Given a negative curve $E \subseteq X$, we have

$$
D \cap E=\emptyset \quad \text { or } \quad D^{\prime} \cap E=\emptyset
$$

Proof. By Proposition 1.50; D and D^{\prime} must be sink and source of the \mathbb{K}^{*}-action on X. In particular, they must not meet, i.e., $D \cap D^{\prime}=\emptyset$. If $E \notin\left\{D, D^{\prime}\right\}$, then the contraction $X \rightarrow X^{\prime}$ of E yields again a \mathbb{K}^{*}-surface X^{\prime}. In terms of P-matrices as in 1.5.2 this means deleting a column. Let Z and Z^{\prime} be the canonical toric ambient varieties of X and X^{\prime} as in 1.5. Since the fan of Z^{\prime} is obtained by contraction of a ray of the fan of Z we have a toric contraction

$$
(\varphi, \tilde{\varphi}): Z \rightarrow Z^{\prime} \quad \text { where } \quad \tilde{\varphi}=\operatorname{id}: \mathbb{T}_{Z} \rightarrow \mathbb{T}_{Z^{\prime}}
$$

φ is proper and the contraction is equivariant. Thus, on X^{\prime}, sink and source have non-trivial intersection.

Remark 5.4.13. Let X be a smooth \mathbb{K}^{*}-surface. By Proposition 1.5.10, depending on the type of fixed points, the graph of exceptional curves G_{X} is of shape

(pe)

(

(ep)
where gray and black vertices are negative curves and white vertices form a complete subgraph of not necessarily negative curves. The graph of case (pp) is called the Orlik Wagreich graph defined in [86].

Remark 5.4.14. See [37, Cor. 2.6] and compare [64], [50, Kap. 2.1]. Given a binomial ideal $I \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, let $T_{i_{1}}, \ldots, T_{i_{s}}$ be the variables that are contained in I. Write the exponents of binomial generators of I into a matrix B as in Lemma 5.3.3: Then I is prime if and only if the entries of the Smith normal form of B are elements of $\{0, \pm 1\}$ and

$$
I=\left\langle T_{i_{1}}, \ldots, T_{i_{s}}\right\rangle+\left(I: f^{\infty}\right), \quad f:=\prod_{i \notin\left\{i_{1}, \ldots, i_{s}\right\}} T_{i} .
$$

Proof of Theorem 5.1: Each surface X of Picard number six can be obtained as blow up of a surface of Picard number five listed in Theorem 5.3.1 such that the contraction of the exceptional divisors on X leads to one of the configurations of Propositions 5.1.2 and 5.1.4, see Remark 5.2.3: We compute the resulting surfaces grouped into originating surface of Picard number five.
Blow ups that lead to (toric or non-toric) \mathbb{K}^{*}-surfaces will be omitted; they are known to be Mori dream spaces, see, e.g., [5; 61]. Algorithm 4.5.9 will be used directly for blow ups of \mathbb{P}_{2} and formally for blow ups of \mathbb{F}_{a}. We will prove or disprove the existence of a non-trivial \mathbb{K}^{*}-action directly when we encounter the surfaces. In the final step, we present or rule out isomorphisms between the listed surfaces.
(I) Blow ups of $X_{1}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} i v\right)$. As seen in the proofs of Proposition 5.2.8 and Theorem 5.3.1; the point configuration and blow up sequence for X_{1} are

$$
X_{1} \xrightarrow{\pi_{4}} \mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i\right)^{\prime}<{ }^{\iota_{2}} \mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i\right) \xrightarrow{\pi_{3}} \mathrm{Bl} \mathbb{P}_{2}\left(\star^{2}\right)^{\prime}<\iota_{1} \mathrm{Bl} \mathbb{P}_{2}\left(\star^{2}\right) \xrightarrow{\pi_{1} \circ \pi_{2}} \mathbb{P}_{2}
$$

The embeddings ι_{i} are as in Setting 4.2.9 with

$$
\begin{array}{lll}
\bar{\iota}_{1}: \mathbb{K}^{5} \rightarrow \mathbb{K}^{6}, & z \mapsto\left(z, h_{1}(z)\right), & h_{1}:=T_{3}^{2} T_{4}-T_{1} T_{2}, \\
\bar{\iota}_{2}: \mathbb{K}^{7} \rightarrow \mathbb{K}^{8}, & z \mapsto\left(z, h_{2}(z)\right), & h_{2}:=(\lambda-1) T_{3}^{2} T_{4}-\lambda T_{6} T_{7}
\end{array}
$$

where $\lambda \in \mathbb{K}^{*} \backslash\{1\}, h_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{5}\right]$ and $h_{2} \in \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$. The blow ups are given by

$$
\begin{array}{ll}
\pi_{4}([z])=\left[z_{1}, \ldots, z_{4}, z_{5} z_{9}, z_{6}, z_{7}, z_{8} z_{9}\right], & \pi_{3}([z])=\left[z_{1}, \ldots, z_{4}, z_{5} z_{7}, z_{6} z_{7}\right], \\
\pi_{2}([z])=\left[z_{1}, z_{2} z_{5}, z_{3}, z_{4} z_{5}\right], & \pi_{1}([z])=\left[z_{1}, z_{2} z_{4}, z_{3} z_{4}\right] .
\end{array}
$$

The exceptional divisors of the first, second, third and fourth blow up are

$$
V\left(X_{1} ; T_{4}\right), \quad V\left(X_{1} ; T_{5}\right), \quad V\left(X_{1} ; T_{7}\right), \quad V\left(X_{1} ; T_{9}\right)
$$

By Proposition 5.1.2 and Theorem 5.3.1, we want to blow up X_{1} in a point $q \in X_{1}$ which, together with the exceptional divisors, projects to one of the configurations

(5)

For the first configuration, we blow up X_{1} in the point q where

$$
q:=[0,1,0,1,1,0,1,0,1] \in X_{1}, \quad \pi_{1} \circ \pi_{2} \circ \iota_{1}^{-1} \circ \pi_{3} \circ \iota_{2}^{-1} \circ \pi_{4}(q)=[0,1,0] \in \mathbb{P}_{2}
$$

and the existence of q can be seen by an application of Algorithm 2.3. By an application of Algorithm 4.5.9 with Remark 5.3.6, the result is again a \mathbb{K}^{*}-surface; compare Lemma 5.4.11;
We come to the second configuration, i.e., blow ups of X_{1} of type $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{5}\right)$. Note that the curve $V\left(X_{1} ; T_{5}\right)$ is a parabolic fixed point curve. Therefore, by Lemma 5.4.11; blowing up any point q lying in $V\left(X_{1} ; T_{5}\right)$ or in the intersection of
two invariant divisors $V\left(X_{1} ; T_{i}\right)$ and $V\left(X_{1} ; T_{j}\right)$ leads to a surface with at least a \mathbb{K}^{*}-action and thus will be omitted. By Remark 5.3 .5 ; it suffices to consider

$$
\begin{aligned}
& q_{1}:=[-1,1,1,0,1,1,1,-\lambda, 1] \\
& q_{2}:=[1,1,1,1,1,1,0, \lambda-1,1] \\
& q_{3}:=[1,1,1, \lambda, 1, \lambda-1,1,1,0] .
\end{aligned}
$$

By Lemma 5.2.16; all points exist. Using Algorithm 4.5.9 with Remark 5.3.6; we obtain the following Cox rings.

q_{i}	Cox ring $\mathcal{R}(X)$	degree matrix										
q_{1}	$\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I$ with I generated by $\begin{aligned} & (\lambda-1) T_{1} T_{2}-T_{5} T_{6}-T_{7} T_{8}, \\ & (\lambda-1) T_{2}^{2} T_{3} T_{4}^{2} T_{6}^{2} T_{8}^{2} T_{10} \\ & +(-2 \lambda+2) T_{2} T_{3} T_{4} T_{6} T_{8} T_{9} T_{10}^{2} \\ & +(\lambda-1) T_{3} T_{9}^{2} T_{10}^{3}-\lambda T_{5} T_{6}-T_{7} T_{8} \end{aligned}$	$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right.$	0 1 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}$		$\begin{array}{r} 1 \\ 1 \\ 0 \\ 0 \\ -1 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	1 1 0 0 0 -1	5 8 1 3 -3 -3	$\left.\begin{array}{r}-3 \\ -5 \\ -1 \\ -2 \\ 2 \\ 2\end{array}\right]$
q_{2}	$\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I$ with I generated by $\begin{aligned} & T_{3}^{2} T_{4}-T_{1} T_{2} \lambda+T_{7} T_{8}, \\ & T_{6} T_{10} T_{2} T_{3} T_{4} T_{5} T_{8}-T_{6} T_{10}^{2} T_{9} \\ & +(-\lambda+1) T_{1} T_{2}+T_{7} T_{8} \end{aligned}$	$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right.$	0 1 0 0 0 0	0 0 1 0 0 0	1 1 -2 0 0 0	1 0 0	0 0 0 1 0 0	0 0 0 0 1 0	0 0 0 0 0 1	1 1 0 0 0 -1	3 5 -2 2 1 -2	$\left.\begin{array}{r}-1 \\ -2 \\ 1 \\ -1 \\ -1 \\ 1\end{array}\right]$
q_{3}	$\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I$ with I generated by $\begin{aligned} & T_{3}^{2} T_{4}-T_{1} T_{2}-T_{6} T_{7}, \\ & T_{8} T_{10} T_{2} T_{3} T_{4} T_{5} T_{7}-\lambda T_{8} T_{9} T_{10}^{2} \\ & +\left(-\lambda^{2}+\lambda\right) T_{1} T_{2}+\lambda T_{6} T_{7} \end{aligned}$		0 1 0 0 0 0	0 0 1 0 0 0	1 1 -2 0 0 0	1 0 0	0 0 0 1 0 0	0 0 0 0 1 0	1 1 0 0 -1 0	0 0 0 0 0 1	3 5 -2 2 -2 1	$\left.\begin{array}{r}-1 \\ -2 \\ 1 \\ -1 \\ 1 \\ -1\end{array}\right]$

We now show that all three surfaces are \mathbb{K}^{*}-surfaces since their Cox rings are isomorphic to the following Cox rings belonging to \mathbb{K}^{*}-surfaces with the same grading:

$$
\begin{aligned}
& \mathbb{K}\left[T_{1}, \ldots, T_{10}\right] /\left\langle\begin{array}{l}
(\lambda-1) T_{1} T_{2}-T_{5} T_{6}-T_{7} T_{8} \\
(\lambda-1) T_{3} T_{9}^{2} T_{10}^{3}-\lambda T_{5} T_{6}-T_{7} T_{8}
\end{array}\right\rangle \\
& \mathbb{K}\left[T_{1}, \ldots, T_{10}\right] /\left\langle\begin{array}{l}
T_{3}^{2} T_{4}-T_{1} T_{2} \lambda+T_{7} T_{8}, \\
-T_{6} T_{10}^{2} T_{9}+(-\lambda+1) T_{1} T_{2}+T_{7} T_{8}
\end{array}\right\rangle, \\
& \mathbb{K}\left[T_{1}, \ldots, T_{10}\right] /\left\langle\begin{array}{l}
T_{3}^{2} T_{4}-T_{1} T_{2}-T_{6} T_{7}, \\
-\lambda T_{8} T_{9} T_{10}^{2}+\left(-\lambda^{2}+\lambda\right) T_{1} T_{2}+\lambda T_{6} T_{7}
\end{array}\right\rangle .
\end{aligned}
$$

By Lemma 5.1 .5 , it suffices to provide \mathbb{Z}^{6}-graded isomorphisms $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] \rightarrow$ $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ that induce isomorphisms of the respective Cox rings. For q_{1}, q_{2} and q_{3} we respectively choose

$$
\begin{aligned}
& T_{i} \mapsto \begin{cases}T_{1}+T_{2} T_{3} T_{4}^{2} T_{6}^{2} T_{8}^{2} T_{10}-2 T_{3} T_{4} T_{6} T_{8} T_{9} T_{10}^{2}, & i=1, \\
T_{7}+(\lambda-1) T_{2}^{2} T_{3} T_{4}^{2} T_{6}^{2} T_{8} T_{10}-(2 \lambda-2) T_{2} T_{3} T_{4} T_{6} T_{9} T_{10}^{2}, & i=7, \\
T_{i}, & \text { else },\end{cases} \\
& T_{i} \mapsto \begin{cases}T_{1}-T_{6} T_{10} T_{3} T_{4} T_{5} T_{8}, & i=1, \\
T_{7}-\lambda T_{6} T_{10} T_{2} T_{3} T_{4} T_{5}, & i=7, \\
T_{i}, & \text { else },\end{cases}
\end{aligned}
$$

$$
T_{i} \mapsto \begin{cases}T_{1}+\lambda^{-2} T_{8} T_{10} T_{3} T_{4} T_{5} T_{7}, & i=1, \\ T_{6}-\lambda^{-2} T_{8} T_{10} T_{2} T_{3} T_{4} T_{5}, & i=6 \\ T_{i}, & \text { else }\end{cases}
$$

(II) Blow ups of $X_{1}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} v\right)$. As seen in the proofs of Proposition 5.2.8 and Theorem 5.3.1, the point configuration and blow up sequence for X_{1} are

where the embedding ι_{1} is as in Setting 4.2.9 with

$$
\bar{\iota}_{1}: \mathbb{K}^{5} \rightarrow \mathbb{K}^{6}, \quad z \mapsto\left(z, h_{1}(z)\right), \quad h_{1}:=T_{3}^{2} T_{4}-T_{1} T_{2}
$$

where $h_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{5}\right]$ and the blow ups are

$$
\begin{array}{ll}
\pi_{4}([z])=\left[z_{1}, \ldots, z_{4}, z_{5} z_{8}, z_{6}, z_{7} z_{8}\right], & \pi_{3}([z])=\left[z_{1}, \ldots, z_{4}, z_{5} z_{7}, z_{6} z_{7}\right] \\
\pi_{2}([z])=\left[z_{1}, z_{2} z_{5}, z_{3}, z_{4} z_{5}\right], & \pi_{1}([z])=\left[z_{1}, z_{2} z_{4}, z_{3} z_{4}\right]
\end{array}
$$

The exceptional divisors of the first, second, third and fourth blow up are

$$
V\left(X_{1} ; T_{4}\right), \quad V\left(X_{1} ; T_{5}\right), \quad V\left(X_{1} ; T_{7}\right), \quad V\left(X_{1} ; T_{8}\right)
$$

On X_{1}, we want to blow up a point which, together with the exceptional divisors, projects to one of the configurations
(4)

(5)

For the first configuration, we use Algorithm 4.5.9 to blow up X_{1} in the following point q; it exists by Algorithm 2.3 and we then obtain a \mathbb{K}^{*}-surface

$$
q:=[0,1,0,1,1,0,1,1] \in X_{1}, \quad \pi_{1} \circ \pi_{2} \circ \iota_{1}^{-1} \circ \pi_{3} \circ \pi_{4}(q)=[0,1,0] \in \mathbb{P}_{2}
$$

We come to the second configuration, i.e., blow ups of X_{1} of type $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{5}\right)$. On X_{1}, the curve $V\left(X_{1} ; T_{5}\right)$ is a parabolic fixed point curve. By Lemma 5.11 , blow ups of points lying in $V\left(X_{1} ; T_{5}\right)$ or in the intersection $V\left(X_{1} ; T_{i}\right) \cap \tilde{V}\left(X_{1} ; T_{j}\right)$ of two invariant divisors yield surfaces with a non-trivial \mathbb{K}^{*}-action and thus may be omitted. By Remark 5.3.5, it suffices to consider the following points.

$$
\begin{array}{ll}
q_{1}:=[1,1,1,0,1,1,1,-1], & \\
q_{2}:=[1,1,1,1,1,1,1,0], & T_{5} \\
q_{3}:=[1,1,1,1,1,1,0,1] . & \\
& \frac{T_{7}}{T_{8}} T_{6}
\end{array}
$$

By Lemma 5.2.16; all points exist. Using Algorithm 4.5.9, we computed the following Cox rings.

Both the blow up of X_{1} in q_{1} and the blow up of X_{1} in q_{3} are \mathbb{K}^{*}-surfaces since their Cox rings are isomorphic to the respective Cox rings

$$
\begin{aligned}
& \mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{5} T_{6} T_{7}+T_{1} T_{2}-T_{3} T_{9}^{3} T_{8}^{2}\right\rangle, \\
& \mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{3}^{2} T_{4}-T_{1} T_{2}+T_{6} T_{7} T_{9}^{2} T_{8}\right\rangle
\end{aligned}
$$

of \mathbb{K}^{*}-surfaces with the same degree matrices as listed in the table. By Lemma.5.1.5, it suffices to consider the isomorphisms induced by the \mathbb{Z}^{6}-graded homomorphisms $\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]$ given by

$$
\begin{array}{lll}
T_{5} \mapsto T_{5}+T_{3} T_{9} T_{2}^{2} T_{4}^{2} T_{6} T_{7}^{3}-2 T_{3} T_{9}^{2} T_{2} T_{4} T_{7} T_{8}, & T_{i} \mapsto T_{i} \text { for } i \neq 5, \\
T_{1} \mapsto T_{1}-T_{6} T_{7}^{2} T_{9} T_{3} T_{4} T_{5}, & T_{i} \mapsto T_{i} \text { for } i \neq 1,
\end{array}
$$

respectively. Denote by $X_{2}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{5} i\right)$ the blow up of X_{1} in q_{2}. By an application of Algorithm 2.327 ; its graph $G_{X_{2}}$ of exceptional curves is

where gray and black vertices stand for negative curves. Black vertices correspond to curves intersecting at least three other negative curves. By Lemma 5.4.12, X_{2} is not a \mathbb{K}^{*}-surface.
(III) Blow ups of $X_{1}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4} v i\right)$. As seen in the proofs of Proposition 5.2.8: and Theorem 5.3.1, the point configuration and blow up sequence for X_{1} are

Here, the embeddings ι_{i} are as in Setting 4.9 with

$$
\begin{array}{ll}
\bar{\iota}_{1}: \mathbb{K}^{5} \rightarrow \mathbb{K}^{6}, & z \mapsto\left(z, h_{1}(z)\right), \quad h_{1}:=T_{3}^{2} T_{4}-T_{1} T_{2}, \\
\bar{\iota}_{2}: \mathbb{K}^{7} \rightarrow \mathbb{K}^{8}, & z \mapsto\left(z, h_{2}(z)\right), \quad h_{2}:=T_{2} T_{3} T_{4} T_{5}-T_{6}, \\
\bar{\iota}_{3}: \mathbb{K}^{8} \rightarrow \mathbb{K}^{9}, & z \mapsto\left(z_{1}, \ldots, z_{5}, z_{2} z_{3} z_{4} z_{5}-z_{8} z_{9}, z_{6}, z_{7}, z_{8}\right)
\end{array}
$$

where $h_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{5}\right]$ and $h_{2} \in \mathbb{K}\left[T_{1}, \ldots, T_{6}\right], \bar{\iota}_{3}$ eliminates a fake relation as in Algorithm 4.3.3, the isomorphism φ maps $z \in \mathbb{K}^{8}$ to $\left(z_{1}+z_{3} z_{4} z_{5} z_{6} z_{8}, z_{2}, \ldots, z_{8}\right) \in$ \mathbb{K}^{8} and the blow ups are

$$
\begin{array}{ll}
\pi_{4}([z])=\left[z_{1}, \ldots, z_{4}, z_{5}, z_{6}, z_{7} z_{9}, z_{8} z_{9}\right], & \pi_{3}([z])=\left[z_{1}, \ldots, z_{4}, z_{5} z_{7}, z_{6} z_{7}\right], \\
\pi_{2}([z])=\left[z_{1}, z_{2} z_{5}, z_{3}, z_{4} z_{5}\right], & \pi_{1}([z])=\left[z_{1}, z_{2} z_{4}, z_{3} z_{4}\right] .
\end{array}
$$

Note that after having eliminated redundant equations with Algorithm 4.3.3: the exceptional divisors of the first, second, third and fourth blow up are

$$
V\left(X_{1} ; T_{4}\right), \quad V\left(X_{1} ; T_{5}\right), \quad V\left(X_{1} ; T_{6}\right), \quad V\left(X_{1} ; T_{8}\right)
$$

On X_{1}, we want to blow up a point which, together with the exceptional divisors, projects to one of the configurations
(4)

(5)

For the first configuration, Algorithm 4.5.9 returns a \mathbb{K}^{*}-surface where as input we used $q:=[0,1,0,1,1,1,0,1] \in X_{1}$, a point which exists by Algorithm 2 satisfies

$$
\pi_{1} \circ \pi_{2} \circ \iota_{1}^{-1} \circ \pi_{3} \circ \iota_{2}^{-1} \circ \pi_{4} \circ \iota_{3} \circ \varphi(q)=[0,1,0] \in \mathbb{P}_{2}
$$

We come to the second configuration, i.e., blow ups of X_{1} of type $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{5}\right)$. Note that the curve $V\left(X_{1} ; T_{5}\right)$ is a parabolic fixed point curve. This means that blowing up any point q lying in $V\left(X_{1} ; T_{5}\right)$ or in the intersection of two invariant divisors $V\left(X_{1} ; T_{i}\right) \cap V\left(X_{1} ; T_{j}\right)$ leads to a surface with a non-trivial \mathbb{K}^{*}-action and thus will be left out, see Lemma 5.4.11. By Remark 5.3.5, it suffices to consider the points

$$
\begin{aligned}
& q_{1}:=[1,1,1,0,1,1,1,1] \\
& q_{2}:=[1,1,1,1,1,0,1,1] \\
& q_{3}:=[1,1,1,1,1,1,1,0]
\end{aligned}
$$

All points exist by Lemma 5.2.16. Using Algorithm 4.5.9, we computed the following Cox rings.

q_{i}	Cox ring $\mathcal{R}(X)$	degree matrix										
q_{1}	$\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I$ with I generated by $\begin{aligned} & T_{5} T_{6} T_{7}^{2}-T_{1} T_{2}-T_{3} T_{9} T_{2}^{2} T_{4}^{2} T_{5}^{2} T_{7}^{2} \\ & +2 T_{3} T_{9}^{2} T_{2} T_{4} T_{5} T_{7} T_{8}-T_{3} T_{9}^{3} T_{8}^{2} \end{aligned}$	$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right.$	0 1 0 0 0 0	0 0 1 0 0 0	0 0 0 1 0 0	0 0 0 0 1 0		1	0 0 0 0 -1 -1	-1 2 1 3 0 -3	-	
q_{2}	$\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I$ with I generated by $\begin{aligned} & T_{2} T_{3} T_{4} T_{5}-T_{7} T_{8}-T_{9} T_{10}, \\ & T_{3}^{2} T_{4}-T_{1} T_{2}+T_{6} T_{7} T_{8}^{2} T_{10} \end{aligned}$	$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right.$	0 1 0 0 0 0	0 0 1 0 0 0	1 1 -2 0 0 0		0 0 0 1 0 0	0 0 0 0 1 0	0 0 0 0 0 1	1 -1 1 0 -1		$\left.\begin{array}{r}-1 \\ -3 \\ 2 \\ -2 \\ -1 \\ 1\end{array}\right]$

$\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I$	
q_{3}	with I generated by
$T_{3}^{2} T_{4}-T_{1} T_{2}+T_{6}^{2} T_{7}^{2} T_{9}^{2} T_{2}^{2} T_{4} T_{5}^{2} \quad\left[\begin{array}{rrrrrrrrr}1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 4 & -1 \\ 0 & 0 & 1 & -2 & 0 & 0 & 0 & -3 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1\end{array}\right] . T_{6} T_{7}^{2} T_{9}^{3} T_{8}$	

Both the blow up of X_{1} in q_{1} and the blow up of X_{1} in q_{3} are \mathbb{K}^{*}-surfaces since their respective Cox rings are isomorphic to the Cox rings

$$
\begin{aligned}
& \mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{5} T_{6} T_{7}^{2}-T_{1} T_{2}-T_{3} T_{9}^{3} T_{8}^{2}\right\rangle, \\
& \mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{3}^{2} T_{4}-T_{1} T_{2}-T_{6} T_{7}^{2} T_{9}^{3} T_{8}\right\rangle
\end{aligned}
$$

of \mathbb{K}^{*}-surfaces with the same degree matrices as listed in the table; see Lemma.1.5: The isomorphisms are induced by the graded homomorphisms $\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] \rightarrow$
$\mathbb{K}\left[T_{1}, \ldots, T_{9}\right]$ where

$$
\begin{array}{ll}
T_{1} \mapsto T_{1}-T_{2} T_{3} T_{4}^{2} T_{5}^{2} T_{7}^{2} T_{9}+2 T_{3} T_{4} T_{5} T_{7} T_{8} T_{9}^{2}, & T_{i} \mapsto T_{i} \text { for } i \neq 1, \\
T_{1} \mapsto T_{1}+T_{2} T_{4} T_{5}^{2} T_{6}^{2} T_{7}^{2} T_{9}^{2}, & T_{i} \mapsto T_{i} \text { for } i \neq 1,
\end{array}
$$

respectively. Denote by $X_{2}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{5} i i\right)$ the blow up of X_{1} in q_{2}. Using Algorithm 2.3.27 its graph of exceptional curves $G_{X_{2}}$ is

where gray and black vertices stand for negative curves. Black vertices stand for curves intersecting at least three other negative curves. Since both of them have non-trivial intersection, by Lemma $5.12, X_{2}$ is not a \mathbb{K}^{*}-surface.
(IV) Blow ups of $X_{1}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{4}\right.$ xiv $)$. As seen in the proofs of Proposition 5.2.8: and Theorem 5.3.1, the point configuration and blow up sequence for X_{1} are

Here, the embedding ι_{1} is as in Setting 4.9 with

$$
\bar{\iota}_{1}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{7}, \quad z \mapsto\left(z, h_{1}(z)\right), \quad h_{1}:=T_{1}^{2} T_{2}-T_{3}^{3} T_{4}^{2} T_{5}
$$

where $h_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ and the blow ups are

$$
\begin{array}{ll}
\pi_{4}([z])=\left[z_{1}, \ldots, z_{4}, z_{5}, z_{6} z_{8}, z_{7} z_{8}\right], & \pi_{3}([z])=\left[z_{1}, z_{2} z_{6}, z_{3}, z_{4}, z_{5} z_{6}\right], \\
\pi_{2}([z])=\left[z_{1}, z_{2} z_{5}, z_{3}, z_{4} z_{5}\right], & \pi_{1}([z])=\left[z_{1}, z_{2} z_{4}, z_{3} z_{4}\right] .
\end{array}
$$

The exceptional divisors of the first, second, third and fourth blow up are $V\left(X_{1} ; T_{i}\right)$ with $i=4,5,6,8$. On X_{1}, we want to blow up a point which, together with the exceptional divisors, projects to one of the configurations
(4)

(5)

For the first configuration, the direct blow up of X_{1} needs higher multiplicities in Algorithm 4.5.9, see Example 4.5.11 for this very instance. To keep our description concise, we instead blow up the toric variety Z_{1} with fan Σ_{1} and ray generators

$$
\left[\begin{array}{rrrrrrr}
-1 & 1 & 0 & 1 & 2 & 3 & -1 \\
-1 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right], \quad \Sigma_{1}=(-1,0)
$$

in a point q in the exceptional divisor $V\left(Z_{1} ; T_{6}\right)$. The choice $q:=[1,1,1,1,1,0] \in Z_{1}$ is viable by Lemma 5.2. Algorithm 4.5.9: then delivers the Cox ring of a \mathbb{K}^{*} surface.
Next, we treat the second configuration, i.e., blow ups of X_{1} of type $\operatorname{Bl} \mathbb{P}_{2}\left(\star^{5}\right)$. Note that the curve $V\left(X_{1} ; T_{6}\right)$ is a parabolic fixed point curve. This means that blowing up any point q lying in $V\left(X_{1} ; T_{6}\right)$ or in the intersection of two invariant divisors $V\left(X_{1} ; T_{i}\right) \cap V\left(X_{1} ; T_{j}\right)$ leads to a surface with a non-trivial \mathbb{K}^{*}-action and thus will
be left out, see Lemma 5.4.11. By Remark 5.3.5; it suffices to consider the points

$$
\begin{gathered}
q_{1}:=[1,1,1,1,1,1,1,0], \quad q_{2}:=[1,1,1,1,0,1,-1,1], \\
q_{3}:=[1,1,1,0,1,1,-1,1] \quad \in X_{1}
\end{gathered}
$$

all of which exist by Lemma 5.2.16: Using Algorithm 4.5.9; we computed the following Cox rings.

$$
\begin{array}{llllll}
\hline q_{i} & \text { Cox ring } \mathcal{R}(X) & \text { degree matrix } \\
\hline & \\
& \mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I & \\
& \text { with } I \text { generated by } \\
q_{1} & T_{3}^{3} T_{4}^{2} T_{5}-T_{1}^{2} T_{2}+T_{7} T_{9}^{2} T_{8} & {\left[\begin{array}{rrrrrrrrrr}
1 & 0 & 0 & 0 & 2 & 0 & 0 & 4 & -1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 3 & -1 \\
0 & 0 & 1 & 0 & -3 & 0 & 0 & -4 & 2 \\
0 & 0 & 0 & 1 & -2 & 0 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1
\end{array}\right]}
\end{array}
$$

$$
\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I
$$

with I generated by $T_{1} T_{2} T_{6} T_{8}-T_{3}^{2} T_{4}-T_{9} T_{10}$, $T_{1}^{2} T_{2}+T_{7} T_{8}-T_{3}^{3} T_{4}^{2} T_{5} T_{10}$
$\left[\begin{array}{rlllllrrrr}1 & 0 & 0 & 0 & 0 & 0 & 3 & -1 & -2 & 2 \\ 0 & 1 & 0 & 0 & 0 & 0 & 2 & -1 & -1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & -2 & 2 & 5 & -3 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & 3 & -2 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 & 0 & 0\end{array}\right]$
$\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I$
with I generated by
$q_{3} \quad T_{1}^{2} T_{2}+T_{6} T_{7}+T_{3}^{2} T_{4} T_{9}^{5} T_{8}^{3}$ $-T_{3}^{2} T_{4}^{4} T_{9}^{2} T_{2}^{3} T_{5}^{6} T_{7}^{6}$
$+3 T_{3}^{2} T_{4}^{3} T_{9}^{3} T_{2}^{2} T_{5}^{4}{ }_{7}^{4} T_{8}$
$-3 T_{3}^{2} T_{4}^{2} T_{9}^{4} T_{2} T_{5}^{2} T_{7}^{2} T_{8}^{2}$

Note that by the blow up sequence the blow up X_{2} of X_{1} in q_{1} is a weak del Pezzo surface. Using Algorithm 2.3. in conjunction with Algorithm 2.3.4; we obtain the graph of exceptional curves $G_{X_{2}}$. The subgraph of (-2)-curves is

In particular, X_{2} has ADE singularity type D_{5}. By [33; Sec. 5.5], the Cox ring of X_{2} is isomorphic to the Cox ring of a \mathbb{K}^{*}-surface

$$
\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{3}^{3} T_{4}^{2} T_{5}-T_{1}^{2} T_{2}+T_{7} T_{9}^{2} T_{8}\right\rangle .
$$

Also, the blow up of X_{1} in q_{1} is a \mathbb{K}^{*}-surface since its Cox ring is isomorphic to the Cox ring of a \mathbb{K}^{*}-surface Y_{2} where

$$
\mathcal{R}\left(Y_{2}\right)=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{1}^{2} T_{2}+T_{6} T_{7}+T_{3}^{2} T_{4} T_{9}^{5} T_{8}^{3}\right\rangle
$$

with the same \mathbb{Z}^{6}-grading as $\mathcal{R}\left(X_{2}\right)$, see Lemma.5.5; The isomorphism is induced by the \mathbb{Z}^{6}-graded isomorphism $\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]$ with

$$
T_{i} \mapsto \begin{cases}T_{6}+T_{3}^{2} T_{4}^{4} T_{9}^{2} T_{2}^{3} T_{5}^{6} T_{7}^{5}-3 T_{3}^{2} T_{4}^{3} T_{9}^{3} T_{2}^{2} T_{5}^{4} T_{7}^{3} T_{8} & i=6 \\ +3 T_{3}^{2} T_{4}^{2} T_{9}^{4} T_{2} T_{5}^{2} T_{7} T_{8}^{2} & \\ T_{i}, & i \neq 6\end{cases}
$$

Redefine $X_{2}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{5}\right.$ iii) as the blow up of X_{1} in q_{2}. Using Algorithm 2.3its graph of exceptional curves $G_{X_{2}}$ is

As before, gray and black vertices stand for negative curves. If X_{2} were a \mathbb{K}^{*} surface, the black vertices correspond to sink and source. Since they have non-trivial intersection, by Lemma $5.12, X_{2}$ is not a \mathbb{K}^{*}-surface.
(V) Blow ups of $X_{1}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \star i i\right)$. We recall from the proofs of Proposition 5.2.8 and Theorem 5.3. the point configuration and blow up sequence

$$
X_{1} \xrightarrow{\pi_{4}} \mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star i i\right)^{\prime}<\iota^{\iota_{1}} \mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star i i\right) \xrightarrow{\pi_{3}} \mathrm{Bl} \mathbb{P}_{2}(\star \star) \xrightarrow{\pi_{1} \circ \pi_{2}} \mathbb{P}_{2}
$$

where the embedding ι_{1} is as in Setting 4.2.9 with

$$
\bar{\iota}_{1}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{7}, \quad z \mapsto\left(z, h_{1}(z)\right), \quad h_{1}:=T_{2} T_{4} T_{6}^{2}-T_{1} T_{5}
$$

where $h_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ and the blow ups π_{i} are

$$
\begin{array}{ll}
\pi_{4}([z])=\left[z_{1}, z_{2}, z_{3} z_{8}, z_{4}, z_{5}, z_{6}, z_{7} z_{8}\right], & \pi_{3}([z])=\left[z_{1}, z_{2} z_{6}, z_{3}, z_{4} z_{6}, z_{5}\right] \\
\pi_{2}([z])=\left[z_{1} z_{5}, z_{2}, z_{3} z_{5}, z_{4}\right], & \pi_{1}([z])=\left[z_{1}, z_{2} z_{4}, z_{3} z_{4}\right]
\end{array}
$$

The exceptional divisors of the first, second, third and fourth blow up are

$$
V\left(X_{1} ; T_{4}\right), \quad V\left(X_{1} ; T_{5}\right), \quad V\left(X_{1} ; T_{6}\right), \quad V\left(X_{1} ; T_{8}\right)
$$

On X_{1}, we want to blow up a point which, together with the exceptional divisors, projects to one of the configurations
(2)

(2)

(2)

(3)

Let $\lambda \in \mathbb{K}^{*} \backslash\{1\}$. For the first and second configuration, we choose in X_{1} the following points q_{i} which exist by Algorithm 2.3.8:

$$
\begin{array}{ll}
q_{1}:=[1, \lambda, 0,1,1,1, \lambda-1,1], & \pi_{1} \circ \pi_{2} \circ \pi_{3} \circ \iota_{1}^{-1} \circ \pi_{4}\left(q_{1}\right)=[1, \lambda, 0] \in \mathbb{P}_{2}, \\
q_{2}:=[0,0,1,1,1,1,0,1], & \pi_{1} \circ \pi_{2} \circ \pi_{3} \circ \iota_{1}^{-1} \circ \pi_{4}\left(q_{2}\right)=[0,0,1] \in \mathbb{P}_{2} .
\end{array}
$$

Since $V\left(X_{1} ; T_{3}\right)$ is a parabolic fixed point curve, by Lemma 5.11 ; the blow up of X_{1} in q_{1} will be a toric surface or a \mathbb{K}^{*}-surface. Using Algorithm 4.5.9; we see that the same is true for the blow up in q_{2}.
For the third configuration, we want to blow up a point in the second exceptional divisor, i.e., $V\left(X_{1} ; T_{5}\right)$. By Lemma 5.4.11; we need not consider points whose Cox coordinates have two vanishing entries. By Remark 5.3.5; this leaves us with $q_{3}:=[1,1,1,1,0,1,1,1]$. It exists by Lemma 5.26; Algorithm 4.5.9; returns the ring and degree matrix

$$
\begin{gathered}
R_{2}:=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{1} T_{3} T_{5}^{2}-T_{4} T_{9} T_{2} T_{3} T_{5} T_{7}+T_{4} T_{9}^{2} T_{8}-T_{6} T_{7}\right\rangle \\
{\left[\begin{array}{rrrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 2 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 3 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & 2 & 4 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & -2 & 1
\end{array}\right]}
\end{gathered}
$$

Observe that the blow up of X_{1} in q_{3} is in fact a \mathbb{K}^{*}-surface; by Lemma 5.1.5; the graded homomorphism $T_{6} \mapsto T_{6}-T_{4} T_{9} T_{2} T_{3} T_{5}$ induces an isomorphism from the Cox ring R_{2}^{\prime} of a \mathbb{K}^{*}-surface with the same degree matrix to R_{2} where

$$
R_{2}^{\prime}:=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{1} T_{3} T_{5}^{2}+T_{4} T_{9}^{2} T_{8}-T_{6} T_{7}\right\rangle .
$$

We come to the fourth configuration, i.e., blow ups of X_{1} of type $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} \star \star\right)$. By Lemma 5.11; we need not consider points that lie in the fixed point curve $V\left(X_{1} ; T_{3}\right)$ or in the intersection of two invariant curves $V\left(X_{1} ; T_{i}\right) \cap V\left(X_{1} ; T_{j}\right)$. Thus, by Remark 5.3.5; it suffices to consider

$$
\begin{aligned}
& q_{1}:=[-1,1,1,0,1,1,1,1] \\
& q_{2}:=[-1,1,1,1,1,0,1,1]
\end{aligned}
$$

By Lemma 5.2.16, all points exist. Using Algorithm 4.5.9, we computed the following Cox rings.

q_{i}	Cox ring $\mathcal{R}(X)$	degree matrix												
q_{1}	$\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I$ with I generated by $\begin{aligned} & T_{3} T_{5} T_{8}-T_{2} T_{6}-T_{9} T_{10}, \\ & T_{1} T_{5}+T_{7} T_{8}-T_{2} T_{6}^{2} T_{4} T_{10} \end{aligned}$		1 0 0 0 0 0	0 1 0 0 0 0 0	0 0 1 0 0 0	0 0 0 1 0 0	0 0 0 0 1 0	0	0 0 0 0 0 1	1 -1 1 0 2 -1	0 1 -1 0 -1 1	-1 2 0 1 -1 3	1 -1 0 -1 1 -2	
q_{2}	$\mathbb{K}\left[T_{1}, \ldots, T_{11}\right] / I$ with I generated by $\begin{aligned} & T_{3}^{2} T_{4} T_{5}^{2} T_{8}-T_{2} T_{7}-T_{11} T_{10}, \\ & T_{2}^{2} T_{4} T_{6}^{2} T_{11}-T_{5} T_{9}+T_{8} T_{10}, \\ & T_{1} T_{5}+T_{7} T_{8}-T_{2} T_{4} T_{6}^{2} T_{11}^{2}, \\ & T_{3}^{2} T_{4} T_{5} T_{8}^{2}+T_{1} T_{2}-T_{9} T_{11}, \\ & T_{3}^{2} T_{4}^{2} T_{5} T_{8} T_{2} T_{6}^{2} T_{11}-T_{7} T_{9}- \end{aligned}$		$\begin{array}{ll}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 & \\ 0\end{array}$	0	0 0 1 0 0 0	0	1 1 0 1 2 0		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	2 1 1 2 3 0	0 0 -1 -1 -1 0	0 1 0 0 -1 1	$\begin{array}{ll}1 & \\ 2 & \\ 1 & \\ 2 & \\ 2 & \\ 1 & -\end{array}$	$\left.\begin{array}{c}1 \\ 0 \\ 0 \\ 0 \\ 1 \\ -1\end{array}\right]$

Denote by $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} \star \star i\right)$ and $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} \star \star i i\right)$ the blow ups of X_{1} in q_{2} and q_{4}. By an application of Algorithm 2.27 ; their respective graphs of exceptional curves are

where gray and black vertices stand for negative curves. Black vertices correspond to curves that meet at least three other negative curves. By Lemma 5.4.12, neither $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} \star \star i\right)$ nor $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} \star \star i i\right)$ is a \mathbb{K}^{*}-surface.
(VI) Blow ups of $X_{1}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \star i v\right)$. As in the previous case, we recall from the proofs of Proposition 5.2.8 and Theorem 5.3.1 the point configuration and blow up sequence

$$
X_{1} \xrightarrow{\pi_{4}} \mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star i i\right)^{\prime}{ }^{\iota_{1}} \mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star i i\right) \xrightarrow{\pi_{3}} \mathrm{Bl} \mathbb{P}_{2}(\star \star) \xrightarrow{\pi_{1} \circ \pi_{2}} \mathbb{P}_{2}
$$

where the embedding ι_{1} is as in Setting 4.2.9 with

$$
\bar{\iota}_{1}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{7}, \quad z \mapsto\left(z, h_{1}(z)\right), \quad h_{1}:=T_{2} T_{4} T_{6}-T_{1} T_{5}
$$

where $h_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ and the blow ups π_{i} are

$$
\begin{array}{ll}
\pi_{4}([z])=\left[z_{1}, z_{2}, z_{3} z_{8}, z_{4}, z_{5}, z_{6}, z_{7} z_{8}\right], & \pi_{3}([z])=\left[z_{1}, z_{2}, z_{3} z_{6}, z_{4} z_{6}, z_{5}\right] \\
\pi_{2}([z])=\left[z_{1} z_{5}, z_{2}, z_{3} z_{5}, z_{4}\right], & \pi_{1}([z])=\left[z_{1}, z_{2} z_{4}, z_{3} z_{4}\right]
\end{array}
$$

The exceptional divisors of the first, second, third and fourth blow up are

$$
V\left(X_{1} ; T_{4}\right), \quad V\left(X_{1} ; T_{5}\right), \quad V\left(X_{1} ; T_{6}\right), \quad V\left(X_{1} ; T_{8}\right)
$$

On X_{1}, we want to blow up a point which, together with the exceptional divisors, projects to one of the configurations
(2)

(2)

(2)

(3)

For the first and second configuration the following points $q_{i} \in X_{i}$ exist by an application of Algorithm 2.3 and satisfy

$$
\begin{array}{ll}
q_{1}:=[1, \lambda, 0,1,1,1, \lambda-1,1], & \pi_{1} \circ \pi_{2} \circ \pi_{3} \circ \iota_{1}^{-1} \circ \pi_{4}\left(q_{1}\right)=[1, \lambda, 0] \in \mathbb{P}_{2} \\
q_{2}:=[0,0,1,1,1,1,0,1], & \pi_{1} \circ \pi_{2} \circ \pi_{3} \circ \iota_{1}^{-1} \circ \pi_{4}\left(q_{2}\right)=[0,0,1] \in \mathbb{P}_{2}
\end{array}
$$

Since $V\left(X_{1} ; T_{3}\right)$ is a parabolic fixed point curve, by Lemma $5 . \dot{1}$; the blow up of X_{1} in q_{1} will be a toric surface or a \mathbb{K}^{*}-surface. Also, the blow up in q_{2} admits a nontrivial \mathbb{K}^{*}-action as can be seen by an inspection of the output of Algorithm 4.5.9, For the third configuration, we want to blow up a point in the second exceptional divisor, i.e., $V\left(X_{1} ; T_{5}\right)$. By Lemma 5.41, we need not consider points whose Cox coordinates have two vanishing entries. By Remark 5.3.5, this leaves us with $q_{3}:=$ $[1,1,1,1,0,1,1,1] \in X_{1}$ which exists by Lemma 5.16 , Algorithm 4.5 returns the ring and degree matrix

$$
R_{2}:=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{1} T_{3} T_{5}-T_{6} T_{7}+T_{4} T_{9}^{2} T_{8}-T_{4} T_{9} T_{2} T_{3} T_{5}^{2} T_{7}\right\rangle
$$

$\left[\begin{array}{rlllllrrr}1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 3 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 5 & -2 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & -2 & 1\end{array}\right]$.

Observe that the blow up of X_{1} in q_{3} is in fact a \mathbb{K}^{*}-surface: the graded homomorphism $T_{6} \mapsto T_{6}-T_{4} T_{9} T_{2} T_{3} T_{5}^{2}$ induces an isomorphism from the Cox ring R_{2}^{\prime} of a \mathbb{K}^{*}-surface with the same degree matrix to R_{2} where

$$
R_{2}^{\prime}=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{1} T_{3} T_{5}-T_{6} T_{7}+T_{4} T_{9}^{2} T_{8}\right\rangle
$$

see Lemma 5.1.5: We come to the fourth configuration, i.e., we consider blow ups of X_{1} of type Bl $\mathbb{P}_{2}\left(\star^{3} \star \star\right)$. By Lemma 5.41: we need not consider points that lie in the fixed point curve $V\left(X_{1} ; T_{3}\right)$ or in the intersection of two invariant curves. Thus, by Remark 5.3.5; it suffices to consider the points

$$
\begin{aligned}
& q_{1}:=[-1,1,1,1,1,0,1,1] \\
& q_{2}:=[-1,1,1,0,1,1,1,1]
\end{aligned}
$$

By Lemma 5.2.16; all points exist. Using Algorithm 4.5.9, we computed the following Cox rings.

| q_{i} | Cox ring $\mathcal{R}(X) \quad$ degree matrix |
| :--- | :--- | :--- |

$\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I$
with I generated by
$T_{1} T_{5}+T_{7} T_{8}-T_{2} T_{4} T_{6} T_{10}$,
$T_{3} T_{5} T_{7} T_{8}^{2}-T_{2}^{2} T_{4}-T_{9} T_{10}$
$\left[\begin{array}{llllllrrrr}1 & 0 & 0 & 0 & 0 & 0 & 2 & -1 & -1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & -2 & 2 & 3 & -1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 3 & -2 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -1\end{array}\right]$

$$
\begin{aligned}
& \mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I \\
& \text { with } I \text { generated by } \\
& T_{1} T_{4}+T_{6} T_{7}+T_{3} T_{5} T_{9}^{2} T_{8} \\
& -T_{3} T_{5}^{2} T_{9} T_{2} T_{4} T_{7}
\end{aligned} \quad\left[\begin{array}{rrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & -2 \\
0 & & & & & & & 1
\end{array}\right]
$$

The blow up of X_{1} in q_{2} is a \mathbb{K}^{*}-surface since its Cox ring is isomorphic to the Cox ring of a \mathbb{K}^{*}-surface

$$
\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{1} T_{4}+T_{6} T_{7}+T_{3} T_{5} T_{9}^{2} T_{8}\right\rangle
$$

with the same degree matrix as listed in the table, see Lemma 5.1.5: The isomorphism is induced by the \mathbb{Z}^{6}-graded homomorphism

$$
\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{9}\right], \quad T_{i} \mapsto \begin{cases}T_{1}+T_{3} T_{5}^{2} T_{9} T_{2} T_{7}, & i=1 \\ T_{i}, & i \neq 1\end{cases}
$$

Denote by $X_{2}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} \star \star\right.$ iii $)$ the blow up of X_{1} in q_{2}. Using Algorithm 2.3.27: we obtain the graph $G_{X_{2}}$ of exceptional curves

Gray and black vertices stand for negative curves where the latter correspond to curves intersecting at least three other negative curves; if X_{2} were a \mathbb{K}^{*}-surface they must be sink and source. By Lemma.5.42, $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} \star \star\right.$ iii) cannot be a \mathbb{K}^{*}-surface. (VII) Blow ups of $X_{1}:=\mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star i)$. Recall from Theorem 5.3.1 that X_{1} was obtained from the point configuration

By Proposition 5.1.2 and Theorem 5.3.1; we have to blow up the point configurations
(2)

For the first configuration, by Proposition 5.2 .8 , instead of blowing up X_{1} we may also blow up a general point in $Z_{1}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \star i\right)$ which we obtained as

$$
Z_{1} \xrightarrow{\pi_{4}} \mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star i\right) \xrightarrow{\pi_{3}} \mathrm{Bl} \mathbb{P}_{2}(\star \star) \xrightarrow{\pi_{2}} \mathrm{Bl} \mathbb{P}_{2}(\star) \xrightarrow{\pi_{1}} \mathbb{P}_{2}
$$

with the blow ups π_{i} given by

$$
\begin{array}{ll}
\pi_{4}([z])=\left[z_{1} z_{7}, z_{2} z_{7}, z_{3}, \ldots, z_{6}\right], & \pi_{3}([z])=\left[z_{1}, z_{2} z_{6}, z_{3}, z_{4} z_{6}, z_{5}\right] \\
\pi_{2}([z])=\left[z_{1} z_{5}, z_{2}, z_{3} z_{5}, z_{4}\right], & \pi_{1}([z])=\left[z_{1}, z_{2} z_{4}, z_{3} z_{4}\right]
\end{array}
$$

Clearly, the point $p_{1}:=[1,1,1,1,1,1,1] \in Z_{1}$ projects to $[1,1,1] \in \mathbb{P}_{2}$ under the map $\pi_{1} \circ \pi_{2} \circ \pi_{3} \circ \pi_{4}$. Algorithm4.5.9 then returns the surface $X_{2}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \star \star i\right)$ with Cox ring and degree matrix

$$
\mathbb{K}\left[T_{1}, \ldots, T_{11}\right] /\left\langle\begin{array}{l}
T_{4} T_{6} T_{8}+T_{5} T_{9}-T_{7} T_{10}, T_{2} T_{6} T_{9}+T_{1} T_{8}-T_{3} T_{10}, \\
T_{3} T_{4} T_{6}-T_{1} T_{7}-T_{9} T_{11}, T_{2} T_{6} T_{7}-T_{3} T_{5}-T_{8} T_{11}, \\
T_{2} T_{4} T_{6}^{2}-T_{1} T_{5}-T_{11} T_{10}
\end{array}\right\rangle
$$

$\left[\begin{array}{rlllllllrrr}1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 & 1 & 1 & 0 & -1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & -1\end{array}\right]$.

Since X_{2} can be obtained as a blow up of the surface $\mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star i)$ without \mathbb{K}^{*} action, X_{2} cannot be a \mathbb{K}^{*}-surface: equivariant contractions preserve \mathbb{K}^{*}-actions. Alternatively, this can be seen by an inspection of $G_{X_{2}}$ and Lemma 5.4.12;

where, in this case, all vertices are negative curves. If the surface were a \mathbb{K}^{*}-surface, each black vertex had to be sink or source, a contradiction to Lemma 5.4.12,
For the second and the third configuration we recall from the proofs of Theorem 5.3.1 and Proposition 5.2.8 the blow up sequence

$$
X_{1} \xrightarrow{\pi_{4}} \mathrm{Bl} \mathbb{P}_{2}(\star \star \star i)^{\prime}<\iota_{1} \mathrm{Bl} \mathbb{P}_{2}(\star \star \star i) \xrightarrow{\pi_{3,2,1}} \mathbb{P}_{2}
$$

where the embedding ι_{1} is as in Setting 4.9 with

$$
\begin{gathered}
\bar{\iota}_{1}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{9}, \quad z \mapsto\left(z, h_{1}(z), h_{2}(z), h_{3}(z)\right), \\
h_{1}:=T_{3} T_{5}-T_{2} T_{6}, \quad h_{2}:=T_{3} T_{4}-T_{1} T_{6}, \quad h_{3}:=T_{2} T_{4}-T_{1} T_{5}
\end{gathered}
$$

where $h_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ and the blow ups are

$$
\pi_{4}([z])=\left[z_{1}, \ldots, z_{6}, z_{7} z_{10}, z_{8} z_{10}, z_{9} z_{10}\right], \quad \pi_{3,2,1}([z])=\left[z_{1} z_{5} z_{6}, z_{2} z_{4} z_{6}, z_{3} z_{4} z_{5}\right]
$$

For the second configuration, for each $\lambda \in \mathbb{K}^{*} \backslash\{1\}$, the following point $q \in X_{1}$ exists by Lemma 5.2.16 where

$$
\pi_{3,2,1} \circ \iota_{1}^{-1} \circ \pi_{4}(q)=[1, \lambda, 0] \in \mathbb{P}_{2}, \quad q:=[1, \lambda, 0,1,1,1,-\lambda,-1, \lambda-1,1] .
$$

By an application of Algorithm 4.5.9' with Remark 5.3.6 we obtain the surface $X_{2}:=\mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star \star i)$ as listed in the table. By the same reasoning as before, X_{2} cannot be a \mathbb{K}^{*}-surface since it is a blow up of X_{1}. Alternatively, this can be seen by an inspection of $G_{X_{2}}$ and Lemma 5.4.12;

For the third configuration, let λ, μ be distinct elements of $\mathbb{K}^{*} \backslash\{1\}$. The following point $q \in X_{1}$ exists and satisfies
$\pi_{1,2,3} \circ \iota^{-1} \circ \pi_{4}(q)=[1, \lambda, \mu] \in \mathbb{P}_{2}, \quad q:=[1, \lambda, \mu, 1,1,1, \mu-\lambda, \mu-1, \lambda-1,1]$.

Using Algorithm 4.5.9, we obtain the surfaces $X_{2}:=\mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star \star$ ii) depending on λ and μ. By the same reasoning as before, X_{2} cannot be a \mathbb{K}^{*}-surface.
(VIII) Blow ups of $X_{1}:=\mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star$ ii). Recall from the proofs of Proposition 5.2.8: and Theorem 5.3.1 the point configuration and blow up sequence

where the embedding ι_{1} is as in Setting and the blow ups, in the situation of Setting 4.2.5; are

$$
\begin{aligned}
\bar{\iota}_{1}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{7}, \quad z \mapsto\left(z, h_{1}(z)\right), \quad h_{1}: & =T_{2} T_{4}-T_{1} T_{5}, \\
\pi_{4}([z])=\left[z_{1}, z_{2}, z_{3} z_{8}, z_{4}, z_{5}, z_{6}, z_{7} z_{8}\right], \quad \pi_{3,2,1}([z]) & =\left[z_{1} z_{5} z_{6}, z_{2} z_{4} z_{6}, z_{3} z_{4} z_{5}\right]
\end{aligned}
$$

with $h_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$. The exceptional divisors of the first, second, third and fourth blow up are

$$
V\left(X_{1} ; T_{4}\right), \quad V\left(X_{1} ; T_{5}\right), \quad V\left(X_{1} ; T_{6}\right), \quad V\left(X_{1} ; T_{8}\right)
$$

On X_{1}, we want to blow up a point which, together with the exceptional divisors, projects to one of the configurations

For the first configuration, the point $q_{1}:=[1,0,1,1,1,1,-1,1] \in X_{1}$ exists by Lemma 5.2 .16 and is mapped to $[1,0,1] \in \mathbb{P}_{2}$ under $\pi_{3,2,1} \circ \iota_{1}^{-1} \circ \pi_{4}$. Using Algorithm 4.5.9 we obtain the surface $X_{2}:=\mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star \star$ iii) listed in the table. An inspection of its graph of exceptional curves $G_{X_{2}}$, shows that Lemma 5.4.12;applies, compare Algorithm 2.37. This means that X_{2} cannot be a \mathbb{K}^{*}-surface as there are adjacent black vertices, i.e., sink and source would meet.

For the second configuration, we consider the points $q_{2}:=[1, \lambda, 0,1,1,1, \lambda-1,1]$ in X_{1} where for each $\lambda \in \mathbb{K}^{*} \backslash\{1\}$ the point exist by Lemma 5.2 .16 and is mapped to $[1, \lambda, 0] \in \mathbb{P}_{2}$ under $\pi_{3,2,1} \circ \iota_{1}^{-1} \circ \pi_{4}$. Since $V\left(X_{1} ; T_{3}\right)$ is a parabolic fixed point curve, by Lemma 5.4.11, the blow up of X_{1} in q_{2} will admit a non-trivial \mathbb{K}^{*}-action.
For the third configuration, we want to blow up a point in the first exceptional divisor $V\left(X_{1} ; T_{4}\right)$. By Lemma 5.41; we need not consider points whose Cox coordinates have two vanishing entries. By Remark 5.3.5; this leaves us with the point $[1,1,1,0,1,1,-1,1] \in X_{1}$. It exists by Lemma 5.2.16. Algorithm 4.5.9: delivers the Cox ring of the surface $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \star \star i v\right)$ listed in the table. Arguing as before, by Lemma 5.4.12; its graph of exceptional curves cannot belong to a \mathbb{K}^{*}-surface:

(IX) Blow ups of $X_{1}:=\mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star \star$ iii). Recall from the proofs of Proposition:5.8: and Theorem 5.3.1 the point configuration and blow up sequence

where the embeddings ι_{i} are as in Setting 4.2.9: with

$$
\begin{array}{lll}
\bar{\iota}_{1}: \mathbb{K}^{5} \rightarrow \mathbb{K}^{6}, & z \mapsto\left(z, h_{1}(z)\right), & h_{1}:=T_{2} T_{4}-T_{1} T_{5}, \\
\bar{\iota}_{2}: \mathbb{K}^{7} \rightarrow \mathbb{K}^{8}, & z \mapsto\left(z, h_{2}(z)\right), & h_{2}:=(\lambda-1) T_{2} T_{4}-\lambda T_{6} T_{7}
\end{array}
$$

where $h_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{5}\right]$ and $h_{2} \in \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$. The blow ups π_{i} are

$$
\begin{gathered}
\pi_{4}([z])=\left[z_{1}, z_{2}, z_{3} z_{9}, z_{4}, \ldots, z_{7}, z_{8} z_{9}\right] \\
\pi_{3}([z])=\left[z_{1}, z_{2}, z_{3} z_{7}, z_{4}, z_{5}, z_{6} z_{7}\right], \quad \pi_{2,1}([z])=\left[z_{1} z_{5}, z_{2} z_{4}, z_{3} z_{4} z_{5}\right] .
\end{gathered}
$$

The exceptional divisors of the first, second, third and fourth blow up are

$$
V\left(X_{1} ; T_{4}\right), \quad V\left(X_{1} ; T_{5}\right), \quad V\left(X_{1} ; T_{7}\right), \quad V\left(X_{1} ; T_{9}\right)
$$

On X_{1}, we want to blow up a point which, together with the exceptional divisors, projects to one of the configurations

The first configuration has already been dealt with in part (VIII) of this proof. For the second configuration, let $\mu \in \mathbb{K}^{*} \backslash\{1, \lambda\}$. Then each point

$$
q_{1}:=[1, \mu, 0,1,1, \mu-1,1, \lambda-\mu, 1] \in X_{1}
$$

exists by Lemma 5.26 and projects to $[1, \mu, 0] \in \mathbb{P}_{2}$ under the map $\pi_{2,1} \circ \iota_{1}^{-1} \circ \pi_{3} \circ$ $\iota_{2}^{-1} \circ \pi_{4}$. Since $\dot{V}\left(X_{1} ; T_{3}\right)$ is a parabolic fixed point curve, by Lemma 5.4.11; the blow up of X_{1} in q_{1} will admit a non-trivial \mathbb{K}^{*}-action.
For the third configuration, we want to blow up a point in the first exceptional divisor $V\left(X_{1} ; T_{4}\right)$. By Lemma 5.4.11 we need not consider points whose Cox coordinates have two vanishing entries. By Remark 5.3.5; this leaves us with the point $q_{3}:=[1,1,1,0,1,-1,1, \lambda, 1] \in X_{1}$ which exists by Lemma 5.2.16: Consider the following Cox rings R_{1} and R_{2} sharing the same degree matrix. The first one is returned by Algorithm 4.5.9 for the blow up X_{2} of X_{1} in q_{3} and the second one is the Cox ring of a \mathbb{K}^{*}-surface:

$$
\begin{gathered}
R_{1}:=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] /\left\langle\begin{array}{l}
T_{7} T_{8}-(\lambda-1) T_{3} T_{10} T_{2} T_{4} T_{6} T_{8}+(\lambda-1) T_{3} T_{10}^{2} T_{9}+\lambda T_{5} T_{6}, \\
\lambda T_{1} T_{4}-T_{7} T_{8}-T_{3} T_{10} T_{2} T_{4} T_{6} T_{8}+T_{3} T_{10}^{2} T_{9}
\end{array}\right\rangle, \\
R_{2}:=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] /\left\langle\begin{array}{rrrrrrrrrr}
T_{7} T_{8}+(\lambda-1) T_{3} T_{10}^{2} T_{9}+\lambda T_{5} T_{6}, \\
\lambda T_{1} T_{4}-T_{7} T_{8}+T_{3} T_{10}^{2} T_{9}
\end{array}\right\rangle, \\
{\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & -2 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{array}\right] .}
\end{gathered}
$$

Then X_{2} is a \mathbb{K}^{*}-surface, since R_{2} is the Cox ring of a \mathbb{K}^{*}-surface. From Lemma 5.1.5: we infer that also X_{1} admits a non-trivial \mathbb{K}^{*}-action since we have an isomorphism
between the two rings that is induced by the \mathbb{Z}^{6}-graded homomorphism

$$
\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{10}\right], \quad T_{i} \mapsto \begin{cases}T_{5}+T_{2} T_{3} T_{4} T_{8} T_{10}, & i=5 \\ T_{7}-T_{2} T_{3} T_{4} T_{6} T_{10}, & i=7 \\ T_{i}, & \text { else }\end{cases}
$$

(X) Blow ups of $X_{1}:=\mathrm{Bl} \mathbb{F}_{a}(\star \star \star i i i)$. Let $a \geq 3$. Recall from the proofs of Proposition 5.2. and Theorem 5.3. the point configuration and blow up sequence

where the embedding ι_{1} is as in Setting and the blow ups, in the situation of Setting 4.2.5; are

$$
\begin{aligned}
\bar{\iota}_{1}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{7}, \quad z \mapsto\left(z, h_{1}(z)\right), \quad h_{1} & :=T_{1} T_{5}-T_{2} T_{6}, \\
\pi_{3}([z])=\left[z_{1}, z_{2}, z_{3} z_{8}, z_{4}, \ldots, z_{6}, z_{7} z_{8}\right], \quad \pi_{2,1}([z]) & =\left[z_{1} z_{5}, z_{2} z_{6}, z_{3} z_{5} z_{6}, z_{4}\right]
\end{aligned}
$$

with $h_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$. The exceptional divisors of the first, second and third blow up are

$$
V\left(X_{1} ; T_{5}\right), \quad V\left(X_{1} ; T_{6}\right), \quad V\left(X_{1} ; T_{8}\right)
$$

On X_{1}, we want to blow up a point which, together with the exceptional divisors, projects to one of the configurations

For the first configuration, we want to blow up a point in the first exceptional divisor, i.e., $V\left(X_{1} ; T_{5}\right)$. By Lemma 5.4.11: we need not consider points whose Cox coordinates have two vanishing entries. By Remark 5.3.5, this leaves us with $q_{1}:=[1,1,1,1,0,-1,1,1] \in X_{1}$ which exists by Lemma 5.2.16; The \mathbb{Z}^{5}-graded homomorphism

$$
\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{8}\right], \quad T_{i} \mapsto \begin{cases}T_{3}+(-1)^{a} T_{1} T_{2}^{a-2} T_{4} T_{6}^{a-3} T_{7}, & i=3 \\ T_{i}, & i \neq 3\end{cases}
$$

induces an automorphism of $\mathcal{R}\left(X_{1}\right)$. Thus, instead of blowing up q_{1} we may blow up the point $[1,1,0,1,0,-1,1,1] \in X_{1}$. By Lemma 5.4.11; the blow up will be a \mathbb{K}^{*}-surface.
We need not consider the second configuration, since $V\left(X_{1} ; T_{3}\right)$ is a parabolic fixed point curve; by Lemma 5.4.11 the blow up will result in a surface with non-trivial \mathbb{K}^{*}-action. For the third configuration, the point $[0,1,1,0,1,1,-1,1] \in X_{1}$ projects to $[0,1,1,0] \in \mathbb{F}_{a}$ under $\pi_{2,1} \circ \iota_{1}^{-1} \circ \pi_{3}$ and exists by iteratively applying Lemma.5.4.5: and Lemma 5.2.16: By Lemma 5.11 , the blow up will admit a non-trivial \mathbb{K}^{*} action.
For the fourth configuration the steps are as in the proof of Theorem 5.3. for, e.g., case $\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} i i\right)$. Here, we want to blow up X_{1} in q_{4} where

$$
\pi_{2,1} \circ \iota_{1}^{-1} \circ \pi_{3}\left(q_{4}\right)=[0,1,1,1] \in \mathbb{F}_{a}, \quad q_{4}:=[0,1,1,1,1,1,-1,1] \in X_{1} .
$$

Note that $q_{4} \in X_{1}$ exists by, e.g., Lemma 5.2.16; Choose in $\mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ the polynomial $h_{2}:=T_{2} T_{4} T_{7}^{a-1} T_{8}^{a-2}-T_{3} T_{5}$ for the embedding $\bar{\iota}_{2}: \mathbb{K}^{8} \rightarrow \mathbb{K}^{9}$. Let Q_{1} be the degree matrix of $\mathcal{R}\left(X_{1}\right)$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime}
whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[Q_{1} \left\lvert\, \begin{array}{l}
0 \\
0 \\
1 \\
0 \\
1
\end{array}\right.\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrrrr}
1 & 0 & 0 & 0 & 1 & 0 & -1 & -1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & -1 & -1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & -1 & a & a-1 & -1
\end{array}\right] .
$$

For the blow up of X_{1}^{\prime} in $\iota\left(q_{4}\right)=[0,1,1,1,1,1,-1,1,0]$ we consider the stellar subdivision $\Sigma_{2} \rightarrow \Sigma_{1}^{\prime}$ at $v:=(1,0,-1,-1) \in \mathbb{Z}^{4}$. Let $P_{2}:=\left[P_{1}^{\prime}, v\right]$ be the enlarged matrix. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ of \bar{X}_{2} is generated by

$$
\begin{gathered}
g_{1}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{7} T_{8}-T_{1} T_{5}+T_{2} T_{6}\right)=T_{7} T_{8}-T_{1} T_{5} T_{10}+T_{2} T_{6}, \\
g_{2}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{9}-h_{2}\right)=T_{9} T_{10}-T_{2} T_{4} T_{7}^{a-1} T_{8}^{a-2}+T_{3} T_{5} .
\end{gathered}
$$

We show that I_{2} is saturated with respect to T_{10} by showing that I_{2} is prime. The grading is pointed by Remark 4.10 , Consider the open subset

$$
U:=\left\{x \in \bar{X}_{2} ; x_{5} x_{6} \neq 0 \text { or } x_{2} x_{10} \neq 0\right\} \subseteq \bar{X}_{2}=V\left(\mathbb{K}^{10} ; I_{2}\right)
$$

Let $J:=\left(\partial g_{i} / \partial T_{j}\right)_{i, j}$ be the Jacobian matrix. Inspecting the submatrices of J with indices $i=1,2$ and $j=2,3$ as well as $i=1,2$ and $j=6,9$, respectively, we see that the rank of $J(u)$ is two for all $u \in U$. Furthermore, $\bar{X}_{2} \backslash U$ is contained in the union of the 8 -dimensional subspaces

$$
V\left(\mathbb{K}^{10} ; T_{5}, T_{2}\right), \quad V\left(\mathbb{K}^{10} ; T_{5}, T_{10}\right), \quad V\left(\mathbb{K}^{10} ; T_{6}, T_{2}\right), \quad V\left(\mathbb{K}^{10} ; T_{6}, T_{10}\right)
$$

We claim that in \mathbb{K}^{10} each of the following intersections is of dimension six.

$$
\begin{aligned}
\bar{X}_{2} \cap V\left(T_{5}, T_{2}\right) & =V\left(T_{5}, T_{2}, T_{7} T_{8}, T_{9} T_{10}\right), \\
\bar{X}_{2} \cap V\left(T_{5}, T_{10}\right) & =V\left(T_{5}, T_{10}, T_{7} T_{8}+T_{2} T_{6}, T_{2} T_{4} T_{7}^{a-1} T_{8}^{a-2}-T_{3} T_{5}\right), \\
\bar{X}_{2} \cap V\left(T_{6}, T_{2}\right) & =V\left(T_{6}, T_{2}, T_{7} T_{8}-T_{1} T_{5} T_{10}, T_{9} T_{10}+T_{3} T_{5}\right), \\
\bar{X}_{2} \cap V\left(T_{6}, T_{10}\right) & =V\left(T_{6}, T_{10}, T_{7} T_{8}, T_{3} T_{5}\right),
\end{aligned}
$$

For all but the second one, this could be done computationally since the equations are independent of a. For $\bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)$, we used Lemma'5.3.3: with the matrix

$$
\left[\begin{array}{rrrrrrrrrr}
0 & -1 & 0 & 0 & 0 & -1 & 1 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & -1 & 0 & a-1 & a-2 & 0 & 0
\end{array}\right]
$$

of rank two to see that its dimension is six on the torus $\mathbb{T}^{10} \cdot(1,1,1,1,0,1,1,1,1,0)$. Also, on the smaller tori, the dimension does not exceed six; for instance, for $\mathbb{T}^{10} \cdot(1,0,1,1,0,1,1,1,1,0)$ we consider the zero set $V\left(\mathbb{K}^{10} ; T_{2}, T_{5}, T_{10}, T_{7} T_{8}, T_{3} T_{5}\right)$ which is of dimension five. Therefore, $\operatorname{dim}\left(\bar{X}_{2} \backslash U\right) \leq 6$ and, since \bar{X}_{2} is of dimension at least eight, the codimension of $\bar{X}_{2} \backslash U$ in \bar{X}_{2} is at least two. By Lemma 5.4.3; the ideal I_{2} is prime.
We now show that the variable T_{10} defines a prime element in the ring $R_{2}=$ $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$. Removing monomial generators and shifting variable indices, instead of showing that $I_{2}+\left\langle T_{10}\right\rangle$ is prime, we may show that I_{0} has the same property where

$$
\begin{gathered}
I_{2}+\left\langle T_{10}\right\rangle=\left\langle T_{10}, T_{2} T_{6}+T_{7} T_{8}, T_{2} T_{4} T_{7}^{a-1} T_{8}^{a-2}-T_{3} T_{5}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right] \\
I_{0}:=\left\langle T_{1} T_{5}+T_{6} T_{7}, T_{1} T_{3} T_{6}^{a-1} T_{7}^{a-2}-T_{2} T_{4}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{7}\right] .
\end{gathered}
$$

The extension of I_{0} to $\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{7}^{ \pm 1}\right]$ is prime since the matrix with the exponents of the binomial generators as its rows

$$
\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 & 0 & a-1 & a-2
\end{array}\right]
$$

has a Smith normal form of shape $\left[E_{2}, 0, \ldots, 0\right]$ where E_{2} is the 2×2 unit matrix, compare [37, Thm. 2.1]. Now, by Remark 5.4.14; I_{0} is prime if $I_{0}=I_{0}:\left(T_{1} \cdots T_{7}\right)^{\infty}$.

We will prove this by showing that

$$
\mathcal{G}:=\left\{f_{1}, f_{2}, f_{3}\right\}:=\left\{\begin{array}{ll}
\left\{\begin{array}{l}
T_{1} T_{5}+T_{6} T_{7}, \\
T_{1} T_{3} T_{6}^{a-1} T_{7}^{a-2}-T_{2} T_{4}, \\
T_{3} T_{6}^{a} T_{7}^{a-1}+T_{2} T_{4} T_{5}
\end{array}\right\}, & T_{1} T_{5}>T_{6} T_{7}, \\
T_{1} T_{5}+T_{6} T_{7}, \\
T_{1}^{a-1} T_{3} T_{6} T_{5}^{a-2}+(-1)^{a-1} T_{2} T_{4}, \\
T_{1}^{a} T_{3} T_{5}^{a-1}-(-1)^{a-1} T_{2} T_{4} T_{7}
\end{array}\right\}, ~ T_{1} T_{5}<T_{6} T_{7},
$$

is a Gröbner basis for I_{0} with respect to the degree reverse lexicographical ordering for any ordering $T_{1}>\ldots>T_{i-1}>T_{i+1}>\ldots>T_{7}>T_{i}$ with $1 \leq i \leq 7$. First, observe that in the case $T_{1} T_{5}>T_{6} T_{7}$ we have $I_{0}=\langle\mathcal{G}\rangle$ since $f_{3}=T_{3} T_{6}^{a-1} T_{7}^{a-2} f_{1}-$ $T_{5} f_{2}$. In the second case, let g_{1} and g_{2} be the generators for I_{0}. Using the relation $T_{1} T_{5}=-T_{6} T_{7}$, we have

$$
\begin{aligned}
f_{1} & =g_{1} \\
f_{2} & =T_{1}^{a-2} T_{3} T_{5}^{a-3} T_{6} g_{1}+(-1)^{a} g_{2} \\
f_{3} & =T_{1}^{a-1} T_{3} T_{5}^{a-2} g_{1}+(-1)^{a+1} T_{7} g_{2},
\end{aligned}
$$

i.e., $\langle\mathcal{G}\rangle \subseteq I_{0}$. The first and second equation also show $I_{0} \subseteq\langle\mathcal{G}\rangle$. We compute the S-polynomials. They are

$$
\begin{aligned}
& S\left(f_{1}, f_{2}\right)= \begin{cases}T_{3} T_{6}^{a} T_{7}^{a-1}+T_{2} T_{4} T_{5}, & T_{1} T_{5}>T_{6} T_{7}, \\
T_{1}^{a} T_{3} T_{5}^{a-1}-(-1)^{a-1} T_{2} T_{4} T_{7}, & T_{1} T_{5}<T_{6} T_{7},\end{cases} \\
& S\left(f_{1}, f_{3}\right)= \begin{cases}T_{3} T_{6}^{a+1} T_{7}^{a}-T_{1} T_{2} T_{4} T_{5}^{2}, & T_{1} T_{5}>T_{6} T_{7}, \\
T_{1}^{a+1} T_{3} T_{5}^{a}+(-1)^{a-1} T_{2} T_{4} T_{6} T_{7}^{2}, & T_{1} T_{5}<T_{6} T_{7},\end{cases} \\
& S\left(f_{2}, f_{3}\right)= \begin{cases}-T_{1} T_{2} T_{4} T_{5}-T_{2} T_{4} T_{6} T_{7}, & T_{1} T_{5}>T_{6} T_{7}, \\
(-1)^{a-1} T_{2} T_{4} T_{6} T_{7}+(-1)^{a-1} T_{1} T_{2} T_{4} T_{5}, & T_{1} T_{5}<T_{6} T_{7}\end{cases}
\end{aligned}
$$

Note that this holds for all $a \geq 3$. Applied to $S\left(f_{i}, f_{j}\right)$ and f_{1}, f_{2}, f_{3}, the division algorithm, see [26; Ch. 2, Thm. 3], returns the combinations

$$
\begin{aligned}
& S\left(f_{1}, f_{2}\right)= \begin{cases}f_{3}, & T_{1} T_{5}>T_{6} T_{7}, \\
f_{3}, & T_{1} T_{5}<T_{6} T_{7},\end{cases} \\
& S\left(f_{1}, f_{3}\right)= \begin{cases}-T_{2} T_{4} T_{5} f_{1}+T_{6} T_{7} f_{3}, & T_{1} T_{5}>T_{6} T_{7}, \\
T_{2} T_{4} T_{7} f_{1}+T_{1} T_{5} f_{3}, & T_{1} T_{5}<T_{6} T_{7},\end{cases} \\
& S\left(f_{2}, f_{3}\right)= \begin{cases}-T_{2} T_{4} f_{1}, & T_{1} T_{5}>T_{6} T_{7}, \\
(-1)^{a-1} T_{2} T_{4} f_{1}, & T_{1} T_{5}<T_{6} T_{7} .\end{cases}
\end{aligned}
$$

By the Buchberger criterion, see $[26 ; \mathrm{Ch} .2, \mathrm{Thm} .6], \mathcal{G}$ is a Gröbner basis for I_{0} with respect to the chosen ordering. From [90; Lem. 12.1], we infer that

$$
\left\{\frac{f}{T_{i}^{k_{i}(f)}} ; f \in \mathcal{G}\right\}=\mathcal{G}, \quad k_{i}(f):=\max \left(n \in \mathbb{Z}_{\geq 0} ; T_{i}^{n} \mid f\right)
$$

is a Gröbner basis for $I_{0}: T_{i}^{\infty}$ for each $1 \leq i \leq 7$. In particular, $I_{0}=I_{0}: T_{i}^{\infty}$ for each i. As observed in [90; p. 114], the claim follows from

$$
I_{0}:\left(T_{1} \cdots T_{7}\right)^{\infty}=\left(\left(\cdots\left(I_{0}: T_{1}^{\infty}\right) \cdots\right): T_{7}^{\infty}\right)=I_{0} .
$$

Moreover, no two variables T_{i}, T_{j} are associated since $\operatorname{deg}\left(T_{i}\right) \neq \operatorname{deg}\left(T_{j}\right)$ for all $i \neq j$. We have $T_{10} \nmid T_{i}$ for each $i<10$ because each of the following intersections
is six-dimensional:

$$
\begin{aligned}
& \bar{X}_{2} \cap V\left(T_{1}, T_{10}\right)=V\left(T_{10}, T_{1},-T_{2} T_{6}-T_{7} T_{8}, T_{2} T_{4} T_{7}^{a-1} T_{8}^{a-2}-T_{3} T_{5}\right), \\
& \bar{X}_{2} \cap V\left(T_{2}, T_{10}\right)=V\left(T_{10}, T_{2}, T_{7} T_{8}, T_{3} T_{5}\right), \\
& \bar{X}_{2} \cap V\left(T_{3}, T_{10}\right)=V\left(T_{10}, T_{3},-T_{2} T_{6}-T_{7} T_{8}, T_{2} T_{4} T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{4}, T_{10}\right)=V\left(T_{10}, T_{4}, T_{3} T_{5},-T_{2} T_{6}-T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{7}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{3} T_{5}, T_{2} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{8}, T_{10}\right)=V\left(T_{10}, T_{8}, T_{3} T_{5}, T_{2} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{9}, T_{10}\right)=V\left(T_{10}, T_{9},-T_{2} T_{6}-T_{7} T_{8}, T_{2} T_{4} T_{7}^{a-1} T_{8}^{a-2}-T_{3} T_{5}\right),
\end{aligned}
$$

where $\bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)$ and $\bar{X}_{2} \cap V\left(T_{6}, T_{10}\right)$ have already been treated above. To compute the dimension of $\bar{X}_{2} \cap V\left(T_{i}, T_{10}\right)$ for $i \in\{1,9\}$ we use Lemma 5.3.3: with the matrix

$$
\left[\begin{array}{rrrrrrrrrr}
0 & 1 & 0 & 0 & 0 & 1 & -1 & -1 & 0 & 0 \\
0 & 1 & -1 & 1 & -1 & 0 & a-1 & a-2 & 0 & 0
\end{array}\right]
$$

of rank two. This shows that on $\mathbb{T}^{10} \cdot(0,1, \ldots, 1,0)$ or $\mathbb{T}^{10} \cdot(1, \ldots, 1,0,0)$, respectively, the dimension is six. One directly checks that also on the smaller tori the dimension is at most six.
By Theorem 4.2.6, R_{2} is the Cox ring of the performed modification with its degree matrix as listed in the table. We now show that we performed the desired blow up. The factor ring $\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I^{\prime}$ where

$$
I^{\prime}:=\left\langle T_{1}, T_{9}, h_{2}, T_{7} T_{8}-T_{1} T_{5}+T_{2} T_{6}\right\rangle=\left\langle T_{1}, T_{9}, h_{2}, T_{2} T_{6}+T_{7} T_{8}\right\rangle
$$

is isomorphic to the integral domain $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] /\left(I_{2}+\left\langle T_{10}\right\rangle\right)$. Thus, I^{\prime} is prime. Given Cox coordinates $z:=(0,1,1,1,1,1,-1,1,0) \in \mathbb{K}^{9}$ for $\iota\left(q_{1}\right) \in X_{1}^{\prime}$ we have $z \in V\left(\mathbb{K}^{9} I^{\prime}\right)$. By the previous dimension computations

$$
\operatorname{dim}\left(V\left(\mathbb{K}^{9} ; I^{\prime}\right)\right)=-1+\operatorname{dim}\left(\bar{X}_{2} \cap V\left(T_{1}, T_{10}\right)\right)=5
$$

By Lemma 5.215 , the performed modification was the claimed blow up. The Cox ring and degree matrix of the resulting surface $X_{2}:=\mathrm{Bl} \mathbb{F}_{a}(\star \star \star \star v i)$ are listed in the table. Note that X_{2} is not a \mathbb{K}^{*}-surface by Lemma 5.12 if we can show that its graph of exceptional curves $G_{X_{2}}$ is

We prove only the part of the graph needed for the argument, i.e., the subgraph induced by the vertices T_{i} with $i \in\{1,2,4,5,7,10\}$. Note that this could be done using the blow up sequence and Remark 5.3.7; Instead, we give a direct argument. Write $w_{i}:=\operatorname{deg}\left(T_{i}\right)$ for the degrees of the generators of $\mathcal{R}\left(X_{2}\right)$ and $Q:=Q_{2}=$ $\left[w_{1}, \ldots, w_{10}\right]$ for its degree matrix. First, note that $\mathbb{Q} \geq 0 \cdot w_{3}$ and $\mathbb{Q} \geq 0 \cdot w_{9}$ are non-extremal rays of $Q\left(\mathbb{Q}_{\geq 0}^{10}\right)$:

$$
\begin{aligned}
& w_{3}=(a-2) w_{1}+w_{2}+w_{4}+(a-3) w_{5}+w_{7}+(a-2) w_{10} \\
& w_{9}=w_{1}+(a-2) w_{2}+w_{4}+w_{5}+(a-1) w_{6}+w_{7}
\end{aligned}
$$

All other rays $\mathbb{Q} \geq 0 \cdot w_{i}$ are extremal since w_{i} can be separated from the other w_{j} by the following linear forms $u_{i} \in \operatorname{Hom}\left(\mathbb{Z}^{6}, \mathbb{Z}\right) \cong \mathbb{Z}^{6}$:

i	$u_{i} \in \operatorname{Hom}\left(\mathbb{Z}^{6}, \mathbb{Z}\right)$	$u_{i}\left(w_{1}\right), \ldots, u_{i}\left(w_{10}\right)$
1	$(-2,0,0,1,1,0)$	$-2,0,0,1,1,0,0,0,0,1$
2	$(0,-1,0,1,0,1)$	$0,-1,0,1,0,1,0,0,0,0$
4	$(1,1,0,-a, 0,0)$	$1,1,0,-a, 0,0,1,0,0,0$
5	$(1,0,1,0,-1,0)$	$1,0,1,0,-1,0,0,0,0,0$
6	$(0,1,1,0,0,-1)$	$0,1,1,0,0,-1,0,0,1,0$
7	$(0,0,0,1,0,0)$	$0,0,0,1,0,0,-1,1,0,0$
8	$(0,0,1,0,0,0)$	$0,0,1,0,0,0,1,-1,1,0$
10	$(1,0,0,0,0,0)$	$1,0,0,0,0,0,0,0,1,-1$

We now claim that $w:=(4,6 a-3,6,6,6,6 a-3)$ is an element of the relative interior $\operatorname{Mov}(Q)^{\circ}$. It suffices to show that for each $1 \leq i \leq 10$ with $\mathbb{Q} \geq 0 \cdot w_{i}$ a ray of $Q\left(\mathbb{Q}_{>0}^{10}\right)$ we can find an expression

$$
\mathbb{Q}_{\geq 0} \cdot w=\mathbb{Q}_{\substack{ }} \cdot \sum_{\substack{j \neq i, \mathbb{Q}_{\geq 0} \cdot w_{j} \\ \text { extremal }}} \alpha_{j} w_{j}, \quad \alpha_{j} \in \mathbb{K}^{*},
$$

because then, by [87, Thm. 6.5], w is an element of

$$
\bigcap_{\substack{\mathbb{Q} \geq 0 \cdot w_{i} \\ \text { extremal }}} \operatorname{cone}\left(w_{j} ; j \neq i\right)^{\circ}=\left(\bigcap_{\substack{\mathbb{Q} \geq \cdot w_{i} \\ \text { extremal }}} \operatorname{cone}\left(w_{j} ; j \neq i\right)\right)^{\circ}=\operatorname{Mov}(Q)^{\circ} .
$$

Here, for $i \in\{1,2,4, \ldots, 8,10\}$, we found the following combinations.

$$
\begin{aligned}
& \mathbb{Q}_{\geq 0} \cdot w=\mathbb{Q}_{\geq 0} \cdot(Q \cdot(0,2,16,4,4,16,4 a+1,4 a+3+12,16,4), \\
& \mathbb{Q}_{\geq 0} \cdot w=\mathbb{Q}_{\geq 0} \cdot(Q \cdot(6 a+1,0,8,6,6 a-3,12,2,14,22,6 a+11)), \\
& \mathbb{Q}_{\geq 0} \cdot w=\mathbb{Q}_{\geq 0} \cdot(Q \cdot(2,2,34,0,8,44,3,45,50,24)), \\
& \mathbb{Q}_{\geq 0} \cdot w=\mathbb{Q}_{\geq 0} \cdot(Q \cdot(8,12 a-3,4,24,0,12 a-9,12 a-2,12 a-8,8,4)), \\
& \mathbb{Q}_{\geq 0} \cdot w=\mathbb{Q}_{\geq 0} \cdot(Q \cdot(12 a+6,6,6,24,12 a, 0,12 a-9,12 a-15,6,12 a)), \\
& \mathbb{Q}_{\geq 0} \cdot w=\mathbb{Q}_{\geq 0} \cdot(Q \cdot(6 a+1,1,4,6,6 a-3,7,0,6,14,6 a+7)), \\
& \mathbb{Q}_{\geq 0} \cdot w=\mathbb{Q}_{\geq 0} \cdot(Q \cdot(12 a+6,12 a-9,6,24,12 a, 12 a-15,6,0,6,12 a)), \\
& \mathbb{Q}_{\geq 0} \cdot w=\mathbb{Q}_{\geq 0} \cdot(Q \cdot(8,12 a-3,12,28,4,12 a-7,16 a-1,16 a-5,8,0)) .
\end{aligned}
$$

Now, we show that the edges

$$
\left(T_{4}, T_{1}\right), \quad\left(T_{4}, T_{2}\right), \quad\left(T_{4}, T_{7}\right), \quad\left(T_{1}, T_{5}\right), \quad\left(T_{1}, T_{10}\right)
$$

exist in $G_{X_{2}}$. Let $\gamma_{i, j}:=\operatorname{cone}\left(e_{k} ; k \notin\{i, j\}\right) \preceq \gamma$ with $\gamma:=\mathbb{Q}_{\geq 0}^{10}$. By Algorithm 2.3.27, this means we have to show that the faces

$$
\gamma_{1,4}, \gamma_{2,4}, \gamma_{7,4}, \gamma_{1,5}, \gamma_{1,10}, \quad \gamma_{i, j}:=\operatorname{cone}\left(e_{k} ; k \notin\{i, j\}\right) \preceq \gamma
$$

are I_{2}-faces in the sense of Chapter 3 and the respective projection $Q\left(\gamma_{i, j}\right)$ contains w in its relative interior. For the former, define as in Section '1' of Chapter '3' the torus and ideal

$$
\mathbb{T}_{\gamma_{i, j}}^{10}:=\left\{t_{\gamma_{i, j}} ; t \in \mathbb{T}^{10}\right\}, \quad I_{2}^{\gamma_{i, j}}:=\left\{f_{\gamma_{i, j}} ; f \in I_{2}\right\}
$$

where the k-th entry of $z_{\gamma_{i, j}}$ equals z_{k} if $e_{k} \in \gamma_{i, j}$ and zero otherwise. Then $\gamma_{i, j}$ is an I_{2}-face if and only if $V\left(\mathbb{T}_{\gamma_{i, j}}^{10} ; I_{2}^{\gamma_{i, j}}\right) \neq \emptyset$. We directly list elements of the respective vanishing sets.

i, j	$V\left(\mathbb{T}_{\gamma_{i, j}}^{10} ; I_{2}^{\gamma_{i, j}}\right)$	contained element
1,4	$V\left(-T_{2} T_{6}-T_{7} T_{8}\right.$, $\left.-T_{3} T_{5}-T_{9} T_{10}\right)$	$(0,-1,-1,0,1,1,1,1,1,1)$
2,4	$V\left(T_{1} T_{5} T_{10}-T_{7} T_{8}\right.$, $\left.-T_{3} T_{5}-T_{9} T_{10}\right)$	$(1,0,-1,0,1,1,1,1,1,1)$

7,4	$V\left(T_{1} T_{5} T_{10}-T_{2} T_{6}\right.$, $\left.-T_{3} T_{5}-T_{9} T_{10}\right)$	$(1,1,-1,0,1,1,0,1,1,1)$
1,5	$V\left(-T_{2} T_{6}-T_{7} T_{8}\right.$, $\left.T_{2} T_{4} T_{7}^{a-1} T_{8}^{a-2}-T_{9} T_{10}\right)$	$(0,1,1,1,0,-1,1,1,1,1)$
1,10	$V\left(-T_{2} T_{6}-T_{7} T_{8}\right.$, $\left.T_{2} T_{4} T_{7}^{a-1} T_{8}^{a-2}-T_{3} T_{5}\right)$	$(0,1,1,1,1,-1,1,1,1,0)$

We now show that for each $\gamma_{i, j}$ the relative interior $Q\left(\gamma_{i, j}\right)^{\circ}$ contains the vector $w=(4,6 a-3,6,6,6,6 a-3)$. For this, we present expressions

$$
\mathbb{Q}_{\geq 0} \cdot w=\mathbb{Q}_{\geq 0} \cdot \sum_{e_{k} \in \gamma_{i, j}} \alpha_{k} w_{k}, \quad \alpha_{k} \in \mathbb{K}^{*}
$$

For the respective $\gamma_{i, j}$ they are given by

$$
\begin{aligned}
& \mathbb{Q}_{\geq 0} \cdot w=\mathbb{Q}_{\geq 0} \cdot(Q \cdot(0,1,16,0,4,19,2,20,20,8)), \\
& \mathbb{Q}_{\geq 0} \cdot w=\mathbb{Q}_{\geq 0} \cdot(Q \cdot(1,0,15,0,4,18,2,20,21,10)), \\
& \mathbb{Q}_{\geq 0} \cdot w=\mathbb{Q}_{\geq 0} \cdot(Q \cdot(1,2,15,0,4,20,0,18,21,10)), \\
& \mathbb{Q}_{\geq 0} \cdot w=\mathbb{Q}_{\geq 0} \cdot(Q \cdot(0,1,12,4,0,15,4 a+2,4 a+16,20,8)), \\
& \mathbb{Q}_{\geq 0} \cdot w=\mathbb{Q}_{\geq 0} \cdot(Q \cdot(0,4 a+1,16,8,4,4 a+11,4 a+2,4 a+12,12,0)) .
\end{aligned}
$$

(XI) Blow ups of $X_{1}:=\mathrm{Bl} \mathbb{F}_{a}(\star \star \star i v)$. Let $a \geq 3$. Recall from the proofs of Proposition 5.2.8 and Theorem 5.3.1 the point configuration and blow up sequence

where the embedding ι_{1} is as in Setting 4.9 with

$$
\bar{\iota}_{1}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{7}, \quad z \mapsto\left(z, h_{1}(z)\right), \quad h_{1}:=T_{2}^{a} T_{4} T_{6}^{a-1}-T_{3} T_{5}
$$

where $h_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ and the blow ups π_{i} are given by

$$
\pi_{3}([z])=\left[z_{1} z_{8}, z_{2}, z_{3}, z_{4}, \ldots, z_{6}, z_{7} z_{8}\right], \quad \pi_{2,1}([z])=\left[z_{1} z_{5}, z_{2} z_{6}, z_{3} z_{5} z_{6}, z_{4}\right]
$$

The exceptional divisors of the first, second and third blow up are

$$
V\left(X_{1} ; T_{5}\right), \quad V\left(X_{1} ; T_{6}\right), \quad V\left(X_{1} ; T_{8}\right)
$$

On X_{1}, we want to blow up a point which, together with the exceptional divisors, projects to one of the configurations

For the first configuration, we want to blow up a point in the first exceptional divisor, i.e., $V\left(X_{1} ; T_{5}\right)$. By Lemma 5.4.11 and Remark 5.3.5 it suffices to consider the point $q:=[1,1,1,1,0,1,1,1] \in X_{1}$. It exists by Lemma 5.2.16; However, using Lemma 5.1.5, the existence of the automorphism of \widehat{X}_{1} induced by

$$
\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{8}\right], \quad T_{i} \mapsto \begin{cases}T_{3}-T_{1} T_{2}^{a-1} T_{4} T_{6}^{a-2} T_{8}, & i=3 \\ T_{i}, & \text { else }\end{cases}
$$

shows that the blow up of X_{1} in q is isomorphic to the blow up of X_{1} in the point $[1,1,0,1,0,1,1,1]$ which will result in a \mathbb{K}^{*}-surface by Lemma 5.4.11.
The second configuration has already been dealt with in part (X) of this proof. We now treat the third configuration which leads to the surface $\mathrm{Bl} \mathbb{F}_{a}(\star \star \star \star$ vii $)$. Here, the point $q_{3}:=[1,1,1,0,1,1,-1,1] \in X_{1}$ exists by Lemma 5.2.16; and projects to $[1,1,1,0] \in \mathbb{F}_{a}$ under $\pi_{2,1} \circ \iota_{1}^{-1} \circ \pi_{3}$. Blowing up X_{1} in q_{3} is done by the same
steps as before. Choose $h_{2}:=T_{1} T_{5} T_{8}-T_{2} T_{6} \in \mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ for the embedding $\bar{\iota}_{2}: \mathbb{K}^{8} \rightarrow \mathbb{K}^{9}$. Let Q_{1} be the degree matrix of $\mathcal{R}\left(X_{1}\right)$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[\begin{array}{l|l}
& Q_{1} \\
0 & 0 \\
1 \\
0 \\
1
\end{array}\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrrrr}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 1 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & -1 & -1 & a
\end{array}\right] .
$$

For the blow up of X_{1}^{\prime} in $\iota_{2}\left(q_{3}\right)=[1,1,1,0,1,1,-1,1,0]$ we perform the stellar subdivision of Σ_{1}^{\prime} at the vector $v:=(-1,-1,0, a+1) \in \mathbb{Z}^{4}$. Let $P_{2}:=\left[P_{1}^{\prime}, v\right]$ be the enlarged matrix. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ of \bar{X}_{2} is generated by

$$
\begin{gathered}
g_{1}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{7} T_{8}-T_{2}^{a} T_{4} T_{6}^{a-1}+T_{3} T_{5}\right)=T_{7} T_{8}-T_{2}^{a} T_{4} T_{6}^{a-1} T_{10}+T_{3} T_{5}, \\
g_{2}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{9}-h_{2}\right)=T_{9} T_{10}-T_{1} T_{5} T_{8}+T_{2} T_{6} .
\end{gathered}
$$

We show that I_{2} is saturated with respect to T_{10} by showing that I_{2} is prime. The grading is pointed by Remark 4.2.10. Consider the open subset

$$
U:=\left\{x \in \bar{X}_{2} ; x_{1} x_{5} \neq 0 \text { or } x_{3} x_{10} \neq 0\right\} \subseteq \bar{X}_{2}=V\left(\mathbb{K}^{10} ; I_{2}\right) .
$$

Inspecting the indices $i=1,2$ and $j=3,8$ as well as $i=1,2$ and $j=5,9$ we see that the rank of the Jacobian matrix $\left(\partial g_{i} / \partial T_{j}\right)_{i, j}(u)$ is two for all $u \in U$. Furthermore, $\bar{X}_{2} \backslash U$ is contained in the union of the 8-dimensional subspaces

$$
V\left(\mathbb{K}^{10} ; T_{1}, T_{3}\right), \quad V\left(\mathbb{K}^{10} ; T_{1}, T_{10}\right), \quad V\left(\mathbb{K}^{10} ; T_{5}, T_{3}\right), \quad V\left(\mathbb{K}^{10} ; T_{5}, T_{10}\right)
$$

Note that each of the following intersections is of dimension six

$$
\begin{aligned}
& \bar{X}_{2} \cap V\left(T_{1}, T_{3}\right)=V\left(T_{1}, T_{3}, T_{2} T_{6}+T_{9} T_{10}, T_{2}^{a} T_{6}^{a-1} T_{10} T_{4}-T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{1}, T_{10}\right)=V\left(T_{1}, T_{10}, T_{2} T_{6}, T_{3} T_{5}+T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{5}, T_{3}\right)=V\left(T_{5}, T_{3}, T_{2} T_{6}+T_{9} T_{10}, T_{2}^{a} T_{6}^{a-1} T_{10} T_{4}-T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)=V\left(T_{5}, T_{10}, T_{2} T_{6}, T_{7} T_{8}\right),
\end{aligned}
$$

where for the first and third variety we write the binomials into a matrix as in Lemma 5.3.3 and obtain the matrix

$$
\left[\begin{array}{lllllrrrrr}
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & -1 \\
0 & a & 0 & 1 & 0 & a-1 & -1 & -1 & 0 & 1
\end{array}\right]
$$

of rank two. By Lemma 5.3.3; the dimensions of $\bar{X}_{2} \cap \mathbb{T}^{10} \cdot(0,1,0,1, \ldots, 1)$ and of $\bar{X}_{2} \cap \mathbb{T}^{10} \cdot(1,1,0,1,0,1, \ldots, 1)$ are six respectively. Also, on the smaller tori, we are in dimension at most six. Therefore, $\operatorname{dim}\left(\bar{X}_{2} \backslash U\right) \leq 6$ and since \bar{X}_{2} is of dimension at least eight $\operatorname{codim}_{\bar{X}_{2}}\left(\bar{X}_{2} \backslash U\right) \geq 2$. By Lemma 5.4.3; the ideal I_{2} is prime. We now show that the variable T_{10} defines a prime element in $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$. This is the case since the ideal

$$
I_{2}+\left\langle T_{10}\right\rangle=\left\langle T_{10}, T_{1} T_{5} T_{8}-T_{2} T_{6}, T_{3} T_{5}+T_{7} T_{8}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]
$$

is prime by a computation, see Algorithm 2.10 . Moreover, no two variables T_{i}, T_{j} are associated since $\operatorname{deg}\left(T_{i}\right) \neq \operatorname{deg}\left(T_{j}\right)$ for all i, j. Also, $T_{i} \nmid T_{10}$ for all $i<10$ because the intersections

$$
\begin{aligned}
& \bar{X}_{2} \cap V\left(T_{2}, T_{10}\right)=V\left(T_{10}, T_{2}, T_{3} T_{5}+T_{7} T_{8},-T_{1} T_{5} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{3}, T_{10}\right)=V\left(T_{10}, T_{3}, T_{7} T_{8},-T_{1} T_{5} T_{8}+T_{2} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{4}, T_{10}\right)=V\left(T_{10}, T_{4}, T_{3} T_{5}+T_{7} T_{8},-T_{1} T_{5} T_{8}+T_{2} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{6}, T_{10}\right)=V\left(T_{10}, T_{6}, T_{3} T_{5}+T_{7} T_{8},-T_{1} T_{5} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{7}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{3} T_{5},-T_{1} T_{5} T_{8}+T_{2} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{8}, T_{10}\right)=V\left(T_{10}, T_{8}, T_{3} T_{5}, T_{2} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{9}, T_{10}\right)=V\left(T_{10}, T_{9}, T_{3} T_{5}+T_{7} T_{8},-T_{1} T_{5} T_{8}+T_{2} T_{6}\right)
\end{aligned}
$$

are all of dimension six as can be seen by computations. By Theorem 4.2.6, the Cox ring and degree matrix of the surface $X_{2}=\mathrm{Bl} \mathbb{F}_{a}(\star \star \star \star$ vii) are

$$
\begin{aligned}
\mathcal{R}\left(X_{2}\right)= & \mathbb{K}\left[T_{1}, \ldots, T_{10}\right] /\left\langle\begin{array}{r}
\text { T } \\
T_{1} T_{5} T_{8}-T_{2} T_{6}-T_{9} T_{10}, \\
T_{2}^{a} T_{6}^{a-1} T_{10} T_{4}-T_{3} T_{5}-T_{7} T_{8}
\end{array}\right\rangle, \\
& {\left[\begin{array}{rrrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & -1 & 1 & a+1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 2 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & -1 \\
-1 & -a+1
\end{array}\right] . }
\end{aligned}
$$

We now show that we have performed a blow up. Since we have an isomorphism from

$$
\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I^{\prime}, \quad I^{\prime}:=\left\langle T_{4}, T_{9}, h_{2}, T_{7} T_{8}+T_{3} T_{5}\right\rangle
$$

to the integral domain $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] /\left(I_{2}+\left\langle T_{10}\right\rangle\right)$ the ideal I^{\prime} is prime. Consider Cox coordinates $z:=(1,1,1,0,1,1,-1,1,0) \in \mathbb{K}^{9}$ for $\iota\left(q_{3}\right) \in X_{1}^{\prime}$. Then $z \in V\left(\mathbb{K}^{9} ; I^{\prime}\right)$ and $\operatorname{dim}\left(V\left(\mathbb{K}^{9} ; I^{\prime}\right)\right)=5$ by a computation. Using Lemma 5.2 .15 ; we see that the performed modification was the desired blow up. To show that X_{2} is not a \mathbb{K}^{*}-surface we claim that the graph of exceptional curves $G_{X_{2}}$ is as follows. The assertion then follows from Lemma 5.4.12.

It suffices to prove the existence of the subgraph induced by the vertices T_{i} with $i \in\{1,2,4,5,8,10\}$. By Remark 5.3.7: and the fact that $V\left(T_{10}\right)$ is the exceptional divisor of the last blow up, we know that the curves corresponding to the vertices are negative. The existence of the edges, i.e., the fact that the curves meet, is directly seen from the blow up sequence of X_{2} as explained above.
We come to the fourth and fifth configurations. Let $\lambda \in \mathbb{K}^{*} \backslash\{1\}$. For the following points q_{4} and $q_{5} \in X_{1}$ we have

$$
\begin{array}{ll}
\pi_{2,1} \circ \iota_{1}^{-1} \circ \pi_{3}\left(q_{4}\right)=[0,1,1, \lambda] \in \mathbb{F}_{a}, & q_{4}:=[0,1,1, \lambda, 1,1, \lambda-1,1], \\
\pi_{2,1} \circ \iota_{1}^{-1} \circ \pi_{3}\left(q_{5}\right)=[0,1,1,0] \in \mathbb{F}_{a}, & q_{5}:=[0,1,1,0,1,1,-1,1] .
\end{array}
$$

The point q_{4} exists by Lemma 5.2 .16 whereas for q_{5} we iteratively use Lemma 5.4.5 and Lemma 5.2.16. The blow ups of X_{1} in q_{4} and of X_{1} in q_{5} will admit again a \mathbb{K}^{*}-action by Lemma 5.41 ; for q_{4} this is due to the fact that $V\left(X_{1} ; T_{1}\right)$ is a parabolic fixed point curve.
For the sixth configuration, let $\kappa \in \mathbb{K}^{*}$. In X_{1}, the point $q_{6}:=[1,0,1, \kappa, 1,1,-1,1]$ exists by Lemma. 2.16 and projects to $[0,1,1, \kappa] \in \mathbb{F}_{a}$ under $\pi_{2,1} \circ \iota_{1}^{-1} \circ \pi_{3}$. We will perfom the blow up X_{1} in q_{6} by steps similar to before but we will only show finite generation of the Cox ring for $a>15$. This is done by carrying out Algorithm 4.5 in a formal way. Consider the embedding

$$
\begin{gathered}
\bar{\iota}_{2}: \mathbb{K}^{8} \rightarrow \mathbb{K}^{10}, \quad z \mapsto\left(z, h_{2}(z), h_{3}(z)\right), \\
h_{2}:=T_{1}^{a} T_{4} T_{5}^{a} T_{8}^{a-1}+\kappa T_{6} T_{7}, \quad h_{3}:=T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}-\kappa T_{3} T_{6}
\end{gathered}
$$

with $h_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$. Let Q_{1} be the degree matrix of $\mathcal{R}\left(X_{1}\right)$. We obtain a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the
fan Σ_{1}^{\prime} of Z_{1}^{\prime} :
$Q_{1}^{\prime}=\left[\begin{array}{r|rr}1 & 0 \\ 1 & -1 \\ 2 a-3 & 2 \\ 2 & 0 \\ 2 a-2 & 1\end{array}\right], P_{1}^{\prime}=\left[\begin{array}{rrrrrrrrrr}1 & a-1 & 0 & 1 & 0 & 0 & -a+1 & 1 & -1 & a-1 \\ 0 & a & 0 & 1 & 0 & 0 & -a & -1 & 0 & a-1 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & -1\end{array}\right]$.
For the blow up of X_{1}^{\prime} in $\iota_{2}\left(q_{6}\right)=[1,0,1, \kappa, 1,1,-1,1,0,0]$ we consider the stellar subdivision of Σ_{1}^{\prime} at the vector $v:=(2 a-3,2 a-1,0,0,-1) \in \mathbb{Z}^{5}$. Write P_{2} for the enlarged matrix $\left[P_{1}^{\prime}, v\right]$. The extension $I_{2}^{\prime} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}, T_{11}^{ \pm 1}\right]$ of the vanishing ideal of $\bar{X}_{2} \subseteq \mathbb{K}^{11}$ is generated by

$$
\begin{aligned}
g_{1} & :=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{7} T_{8}-h_{1}\right)=T_{7} T_{8}-T_{2}^{a} T_{4} T_{6}^{a-1} T_{11}^{a}+T_{3} T_{5}, \\
g_{2} & :=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{9}-h_{2}\right)=T_{9} T_{11}-T_{1}^{a} T_{4} T_{5}^{a} T_{8}^{a-1}-\kappa T_{6} T_{7}, \\
g_{3} & :=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{10}-h_{3}\right)=T_{10} T_{11}-T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}+\kappa T_{3} T_{6} .
\end{aligned}
$$

The next step is to compute the saturated ideal $I_{2}^{\prime}: T_{11}^{\infty} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{11}\right]$. We claim that it is given by

$$
\begin{aligned}
I_{2}^{\prime}:\left(T_{1} \cdots T_{11}\right)^{\infty}= & \left\langle g_{1}, g_{2}, g_{3},\right. \\
& -\kappa T_{2}^{a} T_{4} T_{6}^{a} T_{11}^{a-1}+T_{8} T_{9}-T_{5} T_{10}, \\
& \left.T_{1}^{a} T_{2}^{a} T_{4}^{2} T_{5}^{a-1} T_{6}^{a-1} T_{8}^{a-1} T_{11}^{a-1}-T_{3} T_{9}-T_{7} T_{10}\right\rangle \\
= & I_{2}
\end{aligned}
$$

For $3 \leq a \leq 15$ we verified algorithmically that this equality holds. Moreover, we checked that the ideal

$$
\begin{gathered}
I_{2}+\left\langle T_{11}\right\rangle=\left\langle T_{11},-T_{1}^{a} T_{4} T_{5}^{a} T_{8}^{a-1}-\kappa T_{6} T_{7},-T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}+\kappa T_{3} T_{6}\right. \\
\left.T_{7} T_{8}+T_{3} T_{5}, T_{8} T_{9}-T_{5} T_{10}, T_{3} T_{9}+T_{7} T_{10}\right\rangle
\end{gathered}
$$

in $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ is saturated with respect to $T_{1} \cdots T_{10}$ for $a \leq 15$. Since the exponent matrix as in Lemma 5.3

$$
\left[\begin{array}{rrrrrrrrrrr}
0 & 0 & -1 & 0 & -1 & 0 & 1 & 1 & 0 & 0 & 0 \\
a & 0 & 0 & 1 & a & -1 & -1 & a-1 & 0 & 0 & 0 \\
a & 0 & -1 & 1 & a-1 & -1 & 0 & a & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & -1 & 0
\end{array}\right]
$$

has a Smith normal form of shape $\left[E_{5}, 0\right]$ with the 5×5 unit matrix E_{5} Remark 5.4.14: tells us that T_{11} is a prime element for $3 \leq a \leq 15$. We will later compute $\operatorname{dim}\left(V\left(T_{i}, T_{j}\right) \cap \bar{X}_{2}\right)$ for all $i \neq j$. This will show that no two variables divide one another and are pairwise non-associated. Thus, the Cox ring of the performed modification is $\mathbb{K}\left[T_{1}, \ldots, T_{11}\right] / I_{2}$ for $3 \leq a \leq 15$ with its degree matrix as listed in the table. We now show that we did perform the desired blow up. The factor ring $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I^{\prime}$ where

$$
\begin{aligned}
I^{\prime}: & =\left\langle T_{2}, T_{9}, T_{10}, h_{2}, h_{3}, T_{7} T_{8}-h_{1}\right\rangle \\
& =\left\langle T_{2}, T_{9}, T_{10}, T_{7} T_{8}+T_{3} T_{5},-T_{1}^{a} T_{4} T_{5}^{a} T_{8}^{a-1}-\kappa T_{6} T_{7},\right. \\
& \left.\quad-T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}+\kappa T_{3} T_{6}\right\rangle
\end{aligned}
$$

is isomorphic to the integral domain $\mathbb{K}\left[T_{1}, \ldots, T_{11}\right] /\left(I_{2}+\left\langle T_{11}\right\rangle\right)$. Thus, I^{\prime} is prime. Given Cox coordinates

$$
z:=(1,0,1, \kappa, 1,1,-1,1,0,0) \in \mathbb{K}^{11} \quad \text { for } \quad \iota_{2}\left(q_{6}\right) \in X_{1}^{\prime}
$$

we have $z \in V\left(\mathbb{K}^{10} ; I^{\prime}\right)$. By a computation, $\operatorname{dim} V\left(\mathbb{K}^{10} ; I^{\prime}\right)=5$ and an application of Lemma 5.15 shows that the performed modification was the claimed blow up. We now show that $\mathcal{R}(X)$ is finitely generated for any $a \geq 3$ using Algorithm 4.5.15: in a formal way. To this end, we first have to show that T_{11} defines a prime element
in the ring $\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{10}^{ \pm 1}, T_{11}\right] / I_{2}$. Consider the ideal

$$
\begin{aligned}
J:= & \left\langle-T_{1}^{a} T_{4} T_{5}^{a} T_{8}^{a-1}-\kappa T_{6} T_{7},-T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}+\kappa T_{3} T_{6},\right. \\
& \left.T_{7} T_{8}+T_{3} T_{5}, T_{8} T_{9}-T_{5} T_{10}, T_{3} T_{9}+T_{7} T_{10}\right\rangle \\
\subseteq & \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]
\end{aligned}
$$

obtained from $I_{2}+\left\langle T_{11}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{11}\right]$ by removing the monomial generator T_{11}. Using the fifth and third generator, in the Laurent polynomial ring $\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{10}^{ \pm 1}\right]$, we substitute

$$
T_{10}=-\frac{T_{3} T_{9}}{T_{7}}, \quad T_{7}=-\frac{T_{3} T_{5}}{T_{8}}
$$

into the other generators of J and obtain in $\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{10}^{ \pm 1}\right]$ the ideal

$$
\begin{aligned}
J^{\prime}:= & \left\langle T_{5}\left(-T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}+\kappa T_{3} T_{6}\right),-T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}+\kappa T_{3} T_{6}\right. \\
& \left.T_{10}+\frac{T_{3} T_{9}}{T_{7}}, T_{7}+\frac{T_{3} T_{5}}{T_{8}}\right\rangle \\
= & \left\langle-T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}+\kappa T_{3} T_{6}, T_{10}+\frac{T_{3} T_{9}}{T_{7}}, T_{7}+\frac{T_{3} T_{5}}{T_{8}}\right\rangle .
\end{aligned}
$$

Then $J^{\prime} \subseteq \mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{10}^{ \pm 1}\right]$ is a prime ideal if $f:=-T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}+\kappa T_{3} T_{6}$ is a prime element in $\mathbb{K}\left[T_{i}^{ \pm 1} ; i \notin\{7,10\}\right]$ since

$$
\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{10}^{ \pm 1}\right] / J^{\prime} \cong \mathbb{K}\left[T_{i}^{ \pm 1} ; i \notin\{7,10\}\right] /\langle f\rangle
$$

By Lemma 4.3.5; $f \in \mathbb{K}\left[T_{i}^{ \pm 1} ; i \notin\{7,10\}\right]$, is a prime element because $\langle f\rangle$ is saturated with respect to the product over all variables and defines a prime ideal in $\mathbb{K}\left[T_{i} ; i \notin\{7,10\}\right]$ by Lemma 5.2 .17 ; In turn, this shows that T_{11} defines a prime element in $\mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{10}^{ \pm 1}, T_{11}\right] / I_{2}$. The next step in Algorithm 4.5.15 is to show that

$$
\operatorname{dim}\left(\bar{X}_{2} \cap V\left(\mathbb{K}^{11} ; T_{i}, T_{j}\right)\right) \leq \operatorname{dim}\left(\bar{X}_{2}\right)-2 \quad \text { for all } \quad i \neq j
$$

The dimension of $V\left(\mathbb{T}^{11} ; I_{2}^{\prime}\right)=V\left(\mathbb{T}^{11} ; I_{2}\right)$ is at least eight as it is defined by three equations. Therefore, $V\left(\mathbb{K}^{11} ; I_{2}\right)$ is of at least eight-dimensional and it suffices to show that the dimension of $\bar{X}_{2} \cap V\left(\mathbb{K}^{11} ; T_{i}, T_{j}\right)$ is at most six for all $i<j$. For $i=1$ and $j=2$, the variety

$$
\begin{aligned}
\bar{X}_{2} \cap V\left(T_{1}, T_{2}\right)=V(& T_{1}, T_{2}, T_{3} T_{5}+T_{7} T_{8},-\kappa T_{6} T_{7}+T_{9} T_{11} \\
& \left.-\kappa T_{3} T_{6}-T_{11} T_{10}, T_{8} T_{9}-T_{5} T_{10}, T_{3} T_{9}+T_{7} T_{10}\right)
\end{aligned}
$$

in \mathbb{K}^{11} is of dimension six by a computer check. For $i=1$ and $j=3$, we decompose the vanishing set

$$
\begin{gathered}
\bar{X}_{2} \cap V\left(T_{1}, T_{3}\right)=V\left(T_{1}, T_{3}, T_{2}^{a} T_{4} T_{11}^{a} T_{6}^{a-1}-T_{7} T_{8}, \kappa T_{6} T_{7}-T_{9} T_{11},\right. \\
\left.\quad T_{11} T_{10}, T_{7} T_{10},-\kappa T_{2}^{a} T_{4} T_{6}^{a} T_{11}^{a-1}+T_{8} T_{9}-T_{5} T_{10}\right) \\
=V\left(T_{1}, T_{3}, T_{7}, T_{11}, T_{8} T_{9}-T_{5} T_{10}\right) \cup \\
V\left(T_{1}, T_{3}, T_{10}, T_{2}^{a} T_{4} T_{11}^{a} T_{6}^{a-1}-T_{7} T_{8}\right. \\
\\
\left.\kappa T_{6} T_{7}-T_{9} T_{11},-\kappa T_{2}^{a} T_{4} T_{6}^{a} T_{11}^{a-1}+T_{8} T_{9}\right)
\end{gathered}
$$

in \mathbb{K}^{11} into two components. The first one clearly is of dimension six. For the second component, we consider the matrix with the exponent vectors of the three occurring binomials as its rows

$$
\left[\begin{array}{rrrrrrrrrrr}
0 & a & 0 & 1 & 0 & a-1 & -1 & -1 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & -1 & 0 & -1 \\
0 & a & 0 & 1 & 0 & a & 0 & -1 & -1 & 0 & a-1
\end{array}\right],
$$

which is of rank two. By Lemma 5.3.3, the component is of dimension six on $\mathbb{T}^{11} \cdot(0,1,0,1, \ldots, 1,0,1)$. Note that also on the smaller tori the dimension is at most six; e.g., for $\mathbb{T}^{11} \cdot(0,0,0,1, \ldots, 1,0,1)$ we receive the variety

$$
V\left(T_{1}, T_{2}, T_{3}, T_{10}, T_{7} T_{8}, \kappa T_{6} T_{7}-T_{9} T_{11}, T_{8} T_{9}\right) \subseteq \mathbb{K}^{11}
$$

of dimension five. The remaining dimension arguments are similar. We restrict ourselves to listing the vanishing sets and the exponent matrices of Lemma 5.3.3: for components with unclear dimension.

i, j	$\bar{X}_{2} \cap V\left(T_{i}, T_{j}\right)$	dimension argument (some components)
1,4	$\begin{aligned} & V\left(T_{1}, T_{4},-T_{3} T_{5}-T_{7} T_{8}\right. \\ & \kappa T_{6} T_{7}-T_{9} T_{11} \\ & -\kappa T_{3} T_{6}-T_{11} T_{10} \end{aligned}$	$\begin{aligned} & T_{8} T_{9}-T_{5} T_{10}, \\ & \left.-T_{3} T_{9}-T_{7} T_{10}\right) \end{aligned}$ Method: computation.
1,5	$\begin{aligned} & V\left(T_{1}, T_{5}, \kappa T_{6} T_{7}-T_{9} T_{11},\right. \\ & T_{2}^{a} T_{4} T_{11}^{a} T_{6}^{a-1}-T_{7} T_{8}, \\ & -\kappa T_{3} T_{6}-T_{11} T_{10}, \\ & \qquad\left[\begin{array}{llllrr} 0 & a & 0 & 1 & 0 & a-1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & a & 0 & 1 & 0 & a \\ 0 & 0 & 1 & 0 & 0 & 0 \end{array}\right. \end{aligned}$	
1,6	$\begin{aligned} & V\left(T_{1}, T_{6}, T_{9} T_{11}, T_{11} T_{10}\right. \\ & -T_{3} T_{5}-T_{7} T_{8} \end{aligned}$	$\begin{aligned} & T_{8} T_{9}-T_{5} T_{10}, \\ & \left.-T_{3} T_{9}-T_{7} T_{10}\right) \end{aligned}$ Method: computation.
1,7	$\begin{aligned} & V\left(T_{1}, T_{7}, T_{9},\right. \\ & -\kappa T_{3} T_{6}-T_{11} T_{10}, \\ & T_{2}^{a} T_{4} T_{11}^{a} T_{6}^{a-1}-T_{3} T_{5}, \\ & \qquad\left[\begin{array}{rrrrrr} 0 & a & -1 & 1 & -1 & a \\ 0 & 0 & 1 & 0 & 0 & \\ 0 & a & 0 & 1 & -1 \end{array}\right. \end{aligned}$	

$$
\begin{array}{llll}
& V\left(T_{1}, T_{8}, \kappa T_{6} T_{7}-T_{9} T_{11},\right. & & -\kappa T_{3} T_{6}-T_{11} T_{10}, \\
1,8 & T_{2}^{a} T_{4} T_{11}^{a} T_{6}^{a-1}-T_{3} T_{5}, & \left.-T_{3} T_{9}-T_{7} T_{10}\right) \\
-\kappa T_{2}^{a} T_{4} T_{6}^{a} T_{11}^{a-1}-T_{5} T_{10}, & & \\
& {\left[\begin{array}{rrrrrrrrrr}
0 & a & -1 & 1 & -1 & a-1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\
0 & a & 0 & 1 & -1 & a & 0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & -1 \\
0
\end{array}\right]}
\end{array}
$$

$$
\begin{array}{llll}
& V\left(T_{1}, T_{9}, T_{7},-\kappa T_{3} T_{6}-T_{11} T_{10},\right. & \cup V\left(T_{1}, T_{9}, T_{6}, T_{10},\right. \\
T_{2}^{a} T_{4} T_{11}^{a} T_{6}^{a-1}-T_{3} T_{5}, & & \left.-T_{3} T_{5}-T_{7} T_{8}\right) \\
\left.-\kappa T_{2}^{a} T_{4} T_{6}^{a} T_{11}^{a-1}-T_{5} T_{10}\right) \\
& {\left[\begin{array}{rrrrrrrrrr}
0 & a & -1 & 1 & -1 & a-1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\
0 & a & 0 & 1 & -1 & a & 0 & 0 & 0 & -1 \\
0 & a-1
\end{array}\right]}
\end{array}
$$

$$
\begin{array}{lll}
& V\left(T_{1}, T_{10}, T_{3}, \kappa T_{6} T_{7}-T_{9} T_{11},\right. & \cup V\left(T_{1}, T_{10}, T_{6}, T_{9}\right. \\
T_{2}^{a} T_{4} T_{11}^{a} T_{6}^{a-1}-T_{7} T_{8}, & \left.-T_{3} T_{5}-T_{7} T_{8}\right) \\
\left.-\kappa T_{2}^{a} T_{4} T_{6}^{a} T_{11}^{a-1}+T_{8} T_{9}\right) \\
& {\left[\begin{array}{rrrrrrrrrrr}
0 & a & 0 & 1 & 0 & a-1 & -1 & -1 & 0 & 0 & a \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & -1 & 0 & -1 \\
0 & a & 0 & 1 & 0 & a & 0 & -1 & -1 & 0 & a-1
\end{array}\right]}
\end{array}
$$

	$V\left(T_{1}, T_{11}, T_{6} T_{7}, T_{3} T_{6}\right.$,	$T_{8} T_{9}-T_{5} T_{10}$,
1,11	$T_{3} T_{5}+T_{7} T_{8}$,	$\left.T_{3} T_{9}+T_{7} T_{10}\right)$
		Method: computation.

$\begin{array}{llr} & V\left(T_{2}, T_{3}, T_{7}, T_{8} T_{9}-T_{5} T_{10},\right. & \cup V\left(T_{2}, T_{3}, T_{8},\right. \\ 2,3 & T_{1}^{a} T_{4} T_{5}^{a} T_{8}^{a-1}-T_{9} T_{11}, & \left.T_{9} T_{11}-\kappa T_{6} T_{7}\right) \\ \left.T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}-T_{11} T_{10}\right) & \end{array}$
$\left[\begin{array}{rrrrrrrrrrr}a & 0 & 0 & 1 & a & 0 & 0 & a-1 & -1 & 0 & -1 \\ a & 0 & 0 & 1 & a-1 & 0 & 0 & a & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 1 & -1 & 0\end{array}\right]$

2, 4	$\begin{aligned} & V\left(T_{2}, T_{4},-T_{3} T_{5}-T_{7} T_{8}\right. \\ & \kappa T_{6} T_{7}-T_{9} T_{11} \\ & -\kappa T_{3} T_{6}-T_{11} T_{10} \end{aligned}$		$\begin{aligned} & T_{8} T_{9}-T_{5} T_{10} \\ & \left.-T_{3} T_{9}-T_{7} T_{10}\right) \end{aligned}$ Method: computation.
2, 5	$\begin{aligned} & V\left(T_{2}, T_{5}, T_{7} T_{8},\right. \\ & \kappa T_{6} T_{7}-T_{9} T_{11} \\ & -\kappa T_{3} T_{6}-T_{11} T_{10} \end{aligned}$		$\left.T_{8} T_{9},-T_{3} T_{9}-T_{7} T_{10}\right)$ Method: computation.
2, 6			$\begin{aligned} & -T_{3} T_{5}-T_{7} T_{8} \\ & \left.-T_{3} T_{9}-T_{7} T_{10}\right) \end{aligned}$
	$\left[\begin{array}{rrrrr} 0 & 0 & 1 & 0 & 1 \\ a & 0 & 0 & 1 & a \\ a & 0 & 0 & 1 & a-1 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 \end{array}\right.$	0 0 0 0 0	$\left.\begin{array}{rrrrr}-1 & -1 & 0 & 0 & 0 \\ 0 & a-1 & -1 & 0 & -1 \\ 0 & a & 0 & -1 & -1 \\ 0 & 1 & 1 & -1 & 0 \\ -1 & 0 & 1 & -1 & 0\end{array}\right]$

$$
\begin{array}{llll}
& V\left(T_{2}, T_{7}, T_{3}, T_{8} T_{9}-T_{5} T_{10},\right. & \cup V\left(T_{2}, T_{7}, T_{5}, T_{9},\right. \\
T_{1}^{a} T_{4} T_{5}^{a} T_{8}^{a-1}-T_{9} T_{11}, & & \left.-\kappa T_{3} T_{6}-T_{11} T_{10}\right) \\
\left.T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}-T_{11} T_{10}\right) \\
& {\left[\begin{array}{rrrrrrrrrrr}
a & 0 & 0 & 1 & a & 0 & 0 & a-1 & -1 & 0 & -1 \\
a & 0 & 0 & 1 & a-1 & 0 & 0 & a & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 1 & -1 & 0
\end{array}\right]}
\end{array}
$$

$\quad V\left(T_{2}, T_{8}, T_{3} T_{5}\right.$
$2,8 \quad \kappa T_{6} T_{7}-T_{9} T_{11}$,
${ }_{-\kappa} T_{3} T_{6}-T_{11} T_{10}$,
$\left.T_{5} T_{10},-T_{3} T_{9}-T_{7} T_{10}\right)$
Method: computation.
$\begin{array}{llll} & V\left(T_{2}, T_{9}, T_{10},-T_{3} T_{5}-T_{7} T_{8},\right. & \cup V\left(T_{2}, T_{9}, T_{5}, T_{7},\right. \\ 2,9 & T_{1}^{a} T_{4} T_{5}^{a} T_{8}^{a-1}+\kappa T_{6} T_{7}, & \\ \left.T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}-\kappa T_{3} T_{6}\right) \\ & {\left[\begin{array}{rrrrrrrrrrr}0 & 0 & 1 & 0 & 1 & 0 & -1 & -1 & 0 & 0 & 0 \\ a & 0 & 0 & 1 & a & -1 & -1 & a-1 & 0 & 0 & 0 \\ a & 0 & -1 & 1 & a-1 & -1 & 0 & a & 0 & 0 & 0\end{array}\right]}\end{array}$

2,10

$$
\begin{array}{ll}
V\left(T_{2}, T_{10}, T_{9},-T_{3} T_{5}-T_{7} T_{8},\right. & \cup V\left(T_{2}, T_{10}, T_{8}, T_{3},\right. \\
T_{1}^{a} T_{4} T_{5}^{a} T_{8}^{a-1}+\kappa T_{6} T_{7}, & -\kappa T_{6} T_{7}-T_{9} T_{11}, \\
\left.T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}-\kappa T_{3} T_{6}\right) & \left.T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}\right) \\
\qquad\left[\begin{array}{rrrrrrrrrr}
0 & 0 & 1 & 0 & 1 & 0 & -1 & -1 & 0 & 0 \\
{ }^{a} & 0 & 0 & 1 & a & -1 & -1 & a-1 & 0 & 0 \\
{ }^{2} & 0 & -1 & 1 & a-1 & -1 & 0 & a & 0 & 0 \\
0
\end{array}\right]
\end{array}
$$

2, 11	$\begin{array}{lll} V\left(T_{2}, T_{11},-T_{3} T_{5}-T_{7} T_{8},\right. & T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}-\kappa T_{3} T_{6}, \\ T_{1}^{a} T_{4} T_{5}^{a} T_{8}^{a-1}+\kappa T_{6} T_{7}, & & \left.-T_{3} T_{9}-T_{7} T_{10}\right) \\ T_{8} T_{9}-T_{5} T_{10}, \\ \quad\left[\begin{array}{rrrrrrrrrr} 0 & 0 & 1 & 0 & 1 & 0 & -1 & -1 & 0 & 0 \\ a & 0 & 0 & 1 & a & -1 & -1 & a-1 & 0 & 0 \\ 0 \\ a & 0 & -1 & 1 & a-1 & -1 & 0 & a & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & -1 \\ 0 \end{array}\right] \end{array}$
3, 4	$\begin{array}{ll} V\left(T_{3}, T_{4}, T_{7} T_{8}, T_{7} T_{10},\right. & \left.T_{8} T_{9}-T_{5} T_{10}\right) \\ T_{11} T_{10}, \kappa T_{6} T_{7}-T_{9} T_{11}, & \text { Method: computation. } \end{array}$
3,5	$\left.\right] .$
3, 6	$\begin{array}{ll} V\left(T_{3}, T_{6}, T_{7}, T_{8} T_{9}-T_{5} T_{10},\right. \\ T_{1}^{a} T_{4} T_{5}^{a} T_{8}^{a-1}-T_{9} T_{11}, & \cup V\left(T_{3}, T_{6}, T_{8}, T_{10}, T_{9} T_{11}\right) \\ \left.T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}-T_{11} T_{10}\right) \\ \quad\left[\begin{array}{rrrrrrrrrrr} 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 1 & -1 & 0 \\ a & 0 & 0 & 1 & a & 0 & 0 & a-1 & -1 & 0 & -1 \\ a & 0 & 0 & 1 & a-1 & 0 & 0 & a & 0 & -1 & -1 \end{array}\right] \end{array}$
3,7	$\begin{array}{lll} V\left(T_{3}, T_{7}, T_{2} T_{4} T_{11} T_{6},\right. & T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}-T_{11} T_{10}, \\ T_{1}^{a} T_{4} T_{5}^{a} T_{8}^{a-1}-T_{9} T_{11}, & \left.T_{8} T_{9}-T_{5} T_{10}\right) \\ {\left[\begin{array}{rrrrrrrrrr} a & 0 & 0 & 1 & a & 0 & 0 & a-1 & -1 & 0 \\ a & 0 & 0 & 1 & a-1 & 0 & 0 & a & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 1 & -1 \\ -1 & 0 \end{array}\right]} \end{array}$
3, 8	$\begin{array}{lc} V\left(T_{3}, T_{8}, T_{10}, T_{2} T_{4} T_{11} T_{6},\right. & \cup V\left(T_{3}, T_{8}, T_{7}, T_{11}, T_{5}\right) \\ \left.-\kappa T_{6} T_{7}+T_{9} T_{11}\right) & \text { Method: computation. } \end{array}$
3, 9	
3,10	$\begin{aligned} & V\left(T_{10}, T_{3}, T_{1} T_{4} T_{5} T_{8},\right. \\ & -\kappa T_{6} T_{7}+T_{9} T_{11}, \end{aligned}$
3,11	$\begin{array}{lc} V\left(T_{11}, T_{3}, T_{7}, T_{1} T_{4} T_{5} T_{8},\right. & \cup V\left(T_{11}, T_{3}, T_{8}, T_{10}, T_{6}\right) \\ \left.T_{8} T_{9}-T_{5} T_{10}\right) & \text { Method: computation. } \end{array}$
4, 5	$\begin{array}{ll} V\left(T_{5}, T_{4}, T_{7} T_{8}, T_{8} T_{9},\right. & -\kappa T_{3} T_{6}-T_{11} T_{10} \\ -\kappa T_{6} T_{7}+T_{9} T_{11}, & \left.-T_{3} T_{9}-T_{7} T_{10}\right) \\ & \text { Method: computation. } \end{array}$

4,6	$V\left(T_{6}, T_{4}, T_{9} T_{11}, T_{11} T_{10}\right.$,	$T_{8} T_{9}-T_{5} T_{10}$
$T_{3} T_{5}+T_{7} T_{8}$,	$\left.T_{3} T_{9}-T_{7} T_{10}\right)$	
		Method: computation.

	$V\left(T_{7}, T_{4}, T_{3} T_{5}, T_{9} T_{11}\right.$,	
4,7	$\left.T_{3} T_{9},-\kappa T_{3}-T_{5} T_{10}\right)$	
		Method: computation.

	$V\left(T_{8}, T_{4}, T_{3} T_{5}\right.$,	$-\kappa T_{3} T_{6}-T_{11} T_{10}$
4,8	$T_{5} T_{10},-\kappa T_{6} T_{7}+T_{9} T_{11}$,	$\left.-T_{3} T_{9}-T_{7} T_{10}\right)$
		Method: computation.

4,9	$V\left(T_{9}, T_{4}, T_{6} T_{7}, T_{5} T_{10}\right.$,	$\left.-\kappa T_{3} T_{6}-T_{11} T_{10}\right)$
	$T_{7} T_{10}, T_{3} T_{5}+T_{7} T_{8}$,	Method: computation.

4,10	$V\left(T_{10}, T_{4}, T_{3} T_{9}, T_{8} T_{9}\right.$,	$\left.\kappa T_{6} T_{7}-T_{9} T_{11}\right)$
$T_{3} T_{6},-T_{3} T_{5}-T_{7} T_{8}$,	Method: computation.	

4,11	$V\left(T_{11}, T_{4}, T_{6} T_{7}, T_{3} T_{6}\right.$,	$T_{8} T_{9}-T_{5} T_{10}$,
		$\left.T_{3} T_{9}+T_{7} T_{10}\right)$
	Method: computation.	
5,6	$V\left(T_{6}, T_{5}, T_{7} T_{8}, T_{9} T_{11}\right.$,	$\left.T_{3} T_{9}+T_{7} T_{10}\right)$
	$T_{11} T_{10}, T_{8} T_{9}$,	Method: computation.

	$V\left(T_{7}, T_{5}, T_{3} T_{9}\right.$,	
5,7	$T_{2} T_{4} T_{6} T_{11}$	
$T_{9} T_{11}, T_{8} T_{9}$,	$\left.-\kappa T_{3} T_{6}-T_{11} T_{10}\right)$	
		Method: computation.

	$V\left(T_{8}, T_{5}, T_{2} T_{4} T_{6} T_{11}\right.$,	$-\kappa T_{3} T_{6}-T_{11} T_{10}$,
5,8	$-\kappa T_{6} T_{7}+T_{9} T_{11}$,	$\left.T_{3} T_{9}+T_{7} T_{10}\right)$
		Method: computation.

	$V\left(T_{9}, T_{5}, T_{6} T_{7}\right.$,	$T_{2} T_{4} T_{6} T_{11}$
5,9	$T_{7} T_{10}, T_{7} T_{8}$,	$\left.-\kappa T_{3} T_{6}-T_{11} T_{10}\right)$
		Method: computation.

5,10	$V\left(T_{10}, T_{5}, T_{3} T_{9}, T_{3} T_{6}\right.$,		$-\kappa T_{6} T_{7}+T_{9} T_{11}$,
$T_{2}^{a} T_{4} T_{11}^{a} T_{6}^{a-1}-T_{7} T_{8}$,		$\left.-\kappa T_{2}^{a} T_{4} T_{6}^{a} T_{11}^{a-1}+T_{8} T_{9}\right)$	
	$\left[\begin{array}{rrrrrrrrrr}0 & a & 0 & 1 & 0 & a-1 & -1 & -1 & 0 & 0 \\ 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & -1 & 0 \\ 0 & a & 0 & 1 & 0 & a & 0 & -1 & -1 & 0 \\ a-1\end{array}\right]$		

5,11	$V\left(T_{11}, T_{5}, T_{7} T_{8}\right.$,
	$T_{6} T_{7}, T_{3} T_{6}, T_{8} T_{9}$,

$\left.T_{3} T_{9}-T_{7} T_{10}\right)$
5,11 $T_{6} T_{7}, T_{3} T_{6}, T_{8} T_{9}, \quad$ Method: computation.

$$
\begin{array}{rll}
6,7 & V\left(T_{7}, T_{6}, T_{3} T_{5}, T_{3} T_{9},\right. & T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}-T_{11} T_{10} \\
T_{1}^{a} T_{4} T_{5}^{a} T_{8}^{a-1}-T_{9} T_{11}, & & \left.T_{8} T_{9}-T_{5} T_{10}\right) \\
& {\left[\begin{array}{rrrrrrrrrr}
a & 0 & 0 & 1 & a & 0 & 0 & a-1 & -1 & 0 \\
\hline a & 0 & 0 & 1 & a-1 & 0 & 0 & a & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 1 & -1 \\
0
\end{array}\right]}
\end{array}
$$

6, 8	$\begin{aligned} & V\left(T_{8}, T_{6}, T_{3} T_{5},\right. \\ & T_{9} T_{11}, T_{11} T_{10} \end{aligned}$	$\left.T_{5} T_{10}, T_{3} T_{9}-T_{7} T_{10}\right)$ Method: computation.
6, 9	$\begin{aligned} & V\left(T_{9}, T_{6}, T_{5} T_{10},\right. \\ & T_{1} T_{4} T_{5} T_{8}, T_{11} T_{10}, \end{aligned}$	$\left.T_{7} T_{10}, T_{3} T_{5}+T_{7} T_{8},\right)$ Method: computation.
6,10	$\begin{aligned} & V\left(T_{10}, T_{6}, T_{3} T_{5}+T_{7} T_{8},\right. \\ & T_{9} T_{11}, T_{1} T_{4} T_{5} T_{8} \end{aligned}$	$\left.T_{8} T_{9}, T_{3} T_{9}\right)$ Method: computation.
6,11	$\begin{aligned} & V\left(T_{11}, T_{6}, T_{1} T_{4} T_{5} T_{8},\right. \\ & T_{3} T_{5}+T_{7} T_{8} \end{aligned}$	$\begin{aligned} & T_{8} T_{9}-T_{5} T_{10}, \\ & \left.T_{3} T_{9}+T_{7} T_{10}\right) \end{aligned}$ Method: computation.
7, 8	$\begin{aligned} & V\left(T_{8}, T_{7}, T_{9} T_{11}, T_{3} T_{9},\right. \\ & -\kappa T_{3} T_{6}-T_{11} T_{10}, \\ & \quad\left[\begin{array}{rrrrr} 0 & a & -1 & 1 & - \\ 0 & 0 & 1 & 0 & \\ 0 & a & 0 & 1 & -1 \end{array}\right. \end{aligned}$	
7,9	$\begin{aligned} & V\left(T_{9}, T_{7}, T_{1} T_{4} T_{5} T_{8},\right. \\ & T_{2}^{a} T_{4} T_{11}^{a} T_{6}^{a-1}-T_{3} T_{5} \\ & \qquad\left[\begin{array}{rrrrr} 0 & a & -1 & 1 & -1 \\ 0 & 0 & 1 & 0 & \\ 0 & a & 0 & 1 & -1 \end{array}\right. \end{aligned}$	

| $V\left(T_{11}, T_{7}, T_{3} T_{5}\right.$, | $T_{1} T_{4} T_{5} T_{8}$ |
| :--- | :--- | :--- |
| $7,11 \quad T_{3} T_{9}, T_{3} T_{6}$, | $\left.T_{8} T_{9}-T_{5} T_{10}\right)$ |
| | Method: computation. |

$\begin{array}{cl}8,10 \quad & V\left(T_{10}, T_{8}, T_{3} T_{9},\right. \\ & T_{3} T_{6}, T_{2} T_{4} T_{6} T_{11},\end{array}$
$\left.T_{3} T_{5},-\kappa T_{6} T_{7}+T_{9} T_{11}\right)$

$$
\begin{aligned}
& 10,11 \quad \begin{array}{l}
V\left(T_{11}, T_{10}, T_{3} T_{9},\right. \\
T_{8} T_{9}, T_{3} T_{5}+T_{7} T_{8},
\end{array} \\
& \begin{array}{l}
T_{1}^{a} T_{4} T_{5}^{a} T_{8}^{a-1}+\kappa T_{6} T_{7}, \\
\left.T_{1}^{a} T_{4} T_{5}^{a-1} T_{8}^{a}-\kappa T_{3} T_{6}\right)
\end{array} \\
& {\left[\begin{array}{rrrrrrrrrrr}
0 & 0 & 1 & 0 & 1 & 0 & -1 & -1 & 0 & 0 & 0 \\
a & 0 & 0 & 1 & a & -1 & -1 & a-1 & 0 & 0 & 0 \\
a & 0 & -1 & 1 & a-1 & -1 & 0 & a & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Thus, by Algorithm 4.55 ; the surface X_{2} is a Mori dream surface and the statement about its Cox ring holds. The fact that it does not admit a \mathbb{K}^{*}-action can be seen from its graph $G_{X_{2}}$ of exceptional curves

where the subgraph induced by the vertices T_{i} with $i \in\{1,2,4,5,6,8,11\}$ exists by the blow up sequence, compare Remark 5.3.7. By Lemma 5.4.12; the surface cannot be a \mathbb{K}^{*}-surface because sink and source, marked black, meet in the common negative curve $V\left(X_{2} ; T_{4}\right)$.
(XII) Blow ups of $X_{1}:=\mathrm{Bl} \mathbb{F}_{a}(\star \star \star i x)$. Let $a \geq 3$. Recall from the proofs of Proposition 5.2.8 and Theorem 5.3.1 the point configuration and blow up sequence

$$
X_{1} \xrightarrow{\pi_{3}} \mathrm{Bl} \mathbb{F}_{a}(\star \star v)^{\prime}<\iota_{2}^{\iota_{2}} \mathrm{Bl} \mathbb{F}_{a}(\star \star v) \xrightarrow{\pi_{2}} \mathrm{Bl} \mathbb{F}_{a}(\star i)^{\prime} \iota^{\iota_{1}} \mathrm{Bl} \mathbb{F}_{a}(\star i) \xrightarrow{\pi_{1}} \mathbb{F}_{a}
$$

where the embeddings ι_{i} are as in Setting 4.9 with

$$
\begin{array}{lll}
\bar{\iota}_{1}: \mathbb{K}^{5} \rightarrow \mathbb{K}^{6}, & z \mapsto\left(z, h_{1}(z)\right), & h_{1}:=T_{2}^{a} T_{4}-T_{3} T_{5}, \\
\bar{\iota}_{2}: \mathbb{K}^{7} \rightarrow \mathbb{K}^{8}, & z \mapsto\left(z, h_{2}(z)\right), & \\
h_{2}:=(\lambda-1) T_{2}^{a} T_{4}-\lambda T_{6} T_{7}
\end{array}
$$

where $\lambda \in \mathbb{K}^{*} \backslash\{1\}$ and the blow ups π_{i} are

$$
\begin{gathered}
\pi_{3}([z])=\left[z_{1} z_{9}, z_{2}, \ldots, z_{7}, z_{8} z_{9}\right] \\
\pi_{2}([z])=\left[z_{1} z_{7}, z_{2}, \ldots, z_{5}, z_{6} z_{7}\right], \quad \pi_{1}([z])=\left[z_{1} z_{5}, z_{2}, z_{3} z_{5}, z_{4}\right]
\end{gathered}
$$

The exceptional divisors of the first, second and third blow up are

$$
V\left(X_{1} ; T_{5}\right), \quad V\left(X_{1} ; T_{7}\right), \quad V\left(X_{1} ; T_{9}\right)
$$

On X_{1}, we want to blow up a point which, together with the exceptional divisors, projects to one of the configurations

The first configuration has already been dealt with in part (XI) of this proof. For the second configuration, we choose the point

$$
q_{2}:=[0,1,1, \mu, 1, \mu-1,1, \lambda-\mu, 1] \in X_{1}, \quad \mu \in \mathbb{K}^{*} \backslash\{1, \lambda\}
$$

It exists by Lemma 5.2.16: and $\pi_{1} \circ \iota_{1}^{-1} \circ \pi_{2} \circ \iota_{2}^{-1} \circ \pi_{3}\left(q_{2}\right)$ equals $[0,1,1, \mu] \in \mathbb{F}_{a}$. Since $V\left(X_{1} ; T_{1}\right)$ is a parabolic fixed point curve, the blow up of X_{1} in q_{2} will admit a \mathbb{K}^{*}-action, see Lemma 5.11 . The blow ups of the third and fourth configurations are blow ups of X_{1} in the points

$$
q_{3}:=[1,0,1,0,1,-1,1, \lambda, 1], \quad q_{4}:=[0,1,1,0,1,-1,1, \lambda, 1] \in X_{1}
$$

which project to the respective points $[1,0,1,0]$ and $[0,1,1,0] \in \mathbb{F}_{a}$ under $\pi_{1} \circ \iota_{1}^{-1} \circ$ $\pi_{2} \circ \iota_{2}^{-1} \circ \pi_{3}$. Both points exist by an iterated application of Lemma 5.4.5 and Lemma 5.2.16; By Lemma 5.41; both the blow up of X_{1} in q_{3} and the blow up of X_{1} in q_{4} will admit non-trivial \mathbb{K}^{*}-actions.
The last configuration means blowing up X_{1} in a point in the exceptional divisor $V\left(X_{1} ; T_{5}\right)$. Since it can also be obtained as the blow up of $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} \star i v\right)$ or $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} \star v i i i\right)$ in the respective divisor $V\left(T_{1}\right)$ we will treat this case in parts (XIII) and (XIV) of this proof.
(XIII) Blow ups of $X_{1}:=\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} \star i v\right)$. Let $a \geq 3$. Recall from the proofs of Proposition 5.2.8 and Theorem 5.3.1 the point configuration and blow up sequence

$$
X_{1} \xrightarrow{\pi_{3}} \mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i\right)^{\prime} \stackrel{\iota_{1}}{\leftarrow} \mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i\right) \xrightarrow{\pi_{2}} \mathrm{Bl} \mathbb{F}_{a}(\star i) \xrightarrow{\pi_{1}} \mathbb{F}_{a}
$$

where the embedding ι_{1} is as in Setting 4.9 with

$$
\bar{\iota}_{1}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{7}, \quad z \mapsto\left(z, h_{1}(z)\right), \quad h_{1}:=T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2}
$$

where $h_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ and the blow ups π_{i} are given by

$$
\begin{gathered}
\pi_{3}([z])=\left[z_{1} z_{8}, z_{2}, \ldots, z_{6}, z_{7} z_{8}\right] \\
\pi_{2}([z])=\left[z_{1}, z_{2}, z_{3} z_{6}, z_{4}, z_{5} z_{6}\right], \quad \pi_{1}([z])=\left[z_{1} z_{5}, z_{2}, z_{3} z_{5}, z_{4}\right]
\end{gathered}
$$

The exceptional divisors of the first, second and third blow up are

$$
V\left(X_{1} ; T_{5}\right), \quad V\left(X_{1} ; T_{6}\right), \quad V\left(X_{1} ; T_{8}\right)
$$

On X_{1}, we want to blow up a point which, together with the exceptional divisors, projects to one of the configurations
(2)

(2)

(2)

(2)

(3)

For the first configuration, we choose in X_{1} the point $q_{1}:=[0,1,1, \lambda, 1,1, \lambda-1,1]$ with $\lambda \in \mathbb{K}^{*} \backslash\{1\}$. It exists by Lemma 5.2.16 and satisfies

$$
\pi_{1} \circ \pi_{2} \circ \iota_{1}^{-1} \circ \pi_{3}\left(q_{1}\right)=[0,1,1, \lambda] \in \mathbb{F}_{a}
$$

Since $V\left(X_{1} ; T_{1}\right)$ is a parabolic fixed point curve the blow up of X_{1} in q_{1} will admit a \mathbb{K}^{*}-action, see Lemma 5.11: For the second, third and fourth configurations, we
blow up the points

$$
\begin{gathered}
q_{2}:=[1,0,0,1,1,1,0,1], \quad q_{3}:=[1,0,1,0,1,1,-1,1] \\
q_{4}:=[0,1,1,0,1,1,-1,1] \in X_{1}
\end{gathered}
$$

which project to $[1,0,0,1],[1,0,1,0]$ and $[0,1,1,0] \in \mathbb{F}_{a}$ under $\pi_{1} \circ \pi_{2} \circ \iota_{1}^{-1} \circ \pi_{3}$. A stepwise application of Lemma 5.4.5 and Lemma 5.2.16: shows that all points exist. By Lemma 5.41 , all three surfaces will be \mathbb{K}^{*}-surfaces.
For the fifth configuration, we want to blow up a point in the union of the exceptional divisors $V\left(X_{1} ; T_{5}\right)$ and $V\left(X_{1} ; T_{6}\right)$. By Remark 5.3.5; it suffices to consider the points

$$
q_{5}:=[1,1,1,1,0,1,1,1], \quad q_{5}^{\prime}:=[1,1,1,1,1,0,1,1] \in X_{1}
$$

both of which exist by Lemma 5.16 : We first blow up X_{1} in q_{5}. The steps are as before, compare Remark 5.2.1; Choose in $\mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ the polynomial $h_{2}:=$ $T_{1} T_{2}^{a-1} T_{4} T_{8}-T_{3} T_{6}$ for the embedding $\bar{\iota}_{2}: \mathbb{K}^{8} \rightarrow \mathbb{K}^{9}$. Let Q_{1} be the degree matrix of $\mathcal{R}\left(X_{1}\right)$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

For the blow up of X_{1}^{\prime} in $\iota\left(q_{5}\right)=[1,1,1,1,0,1,1,1,0]$ we stellarly subdivide Σ_{1}^{\prime} at the vector $v:=(-1,0,-1,2)$. Write $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal $I_{2} \subseteq$ $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ of \bar{X}_{2} is generated by

$$
\begin{gathered}
g_{1}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2}-T_{7} T_{8}\right)=T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2} T_{10}-T_{7} T_{8}, \\
g_{2}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{9}-h_{2}\right)=T_{9} T_{10}-T_{1} T_{2}^{a-1} T_{4} T_{8}+T_{3} T_{6} .
\end{gathered}
$$

We show that I_{2} is prime. In particular, I_{2} is saturated with respect to T_{10}. The grading is pointed by Remark 4.2. Consider the open subset

$$
U:=\left\{x \in \bar{X}_{2} ; x_{8} x_{9} \neq 0 \text { or } x_{7} x_{10} \neq 0\right\} \subseteq \bar{X}_{2}=V\left(\mathbb{K}^{10} ; I_{2}\right) .
$$

Inspecting the indices $i=1,2$ and $j=7,10$ or $i=1,2$ and $j=8,9$ respectively we see that the rank of the Jacobian matrix $\left(\partial g_{i} / \partial T_{j}\right)_{i, j}(u)$ is two for all $u \in U$. Furthermore, $\bar{X}_{2} \backslash U$ is contained in the union of the 8-dimensional subspaces

$$
V\left(\mathbb{K}^{10} ; T_{8}, T_{7}\right), \quad V\left(\mathbb{K}^{10} ; T_{8}, T_{10}\right), \quad V\left(\mathbb{K}^{10} ; T_{9}, T_{7}\right), \quad V\left(\mathbb{K}^{10} ; T_{9}, T_{10}\right)
$$

We claim that in \mathbb{K}^{10} each of the following intersections is of dimension six.

$$
\begin{aligned}
\bar{X}_{2} \cap V\left(T_{8}, T_{7}\right) & =V\left(T_{8}, T_{7}, T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2} T_{10}, T_{9} T_{10}+T_{3} T_{6}\right), \\
\bar{X}_{2} \cap V\left(T_{8}, T_{10}\right) & =V\left(T_{8}, T_{10}, T_{2} T_{4}, T_{3} T_{6}\right), \\
\bar{X}_{2} \cap V\left(T_{9}, T_{7}\right) & =V\left(T_{9}, T_{7}, T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2} T_{10}, T_{1} T_{2}^{a-1} T_{4} T_{8}-T_{3} T_{6}\right), \\
\bar{X}_{2} \cap V\left(T_{9}, T_{10}\right) & =V\left(T_{9}, T_{10}, T_{2}^{a} T_{4}-T_{7} T_{8}, T_{1} T_{2}^{a-1} T_{4} T_{8}-T_{3} T_{6}\right) .
\end{aligned}
$$

The second one is clearly of dimension six whereas for the others, as in Lemma.5.3, we consider the exponent matrices

$$
\begin{aligned}
& {\left[\begin{array}{rrrrrrrrrr}
0 & a & -1 & 1 & -1 & -2 & 0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & -1 & -1
\end{array}\right]} \\
& {\left[\begin{array}{rrrrrrrrrr}
0 & a & -1 & 1 & -1 & -2 & 0 & 0 & 0 & -1 \\
1 & a-1 & -1 & 1 & 0 & -1 & 0 & 1 & 0 & 0
\end{array}\right],} \\
& {\left[\begin{array}{rrrrrrrrrr}
0 & a & 0 & 1 & 0 & 0 & -1 & -1 & 0 & 0 \\
1 & a-1 & -1 & 1 & 0 & -1 & 0 & 1 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

all of which are of rank two. Thus, on the respective tori, the dimension is six by Lemma 5.3.3: One directly checks that the dimension is at most six on the smaller tori. Therefore, $\operatorname{dim}\left(\bar{X}_{2} \backslash U\right) \leq 6$ and, since \bar{X}_{2} is of dimension at least eight, the
codimension of $\bar{X}_{2} \backslash U$ in \bar{X}_{2} is at least two. By Lemma.5.4; the ideal I_{2} is prime. Consider the ideals

$$
\begin{gathered}
I_{2}+\left\langle T_{10}\right\rangle=\left\langle T_{10}, T_{2}^{a} T_{4}-T_{7} T_{8}, T_{1} T_{2}^{a-1} T_{4} T_{8}-T_{3} T_{6}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right] \\
I_{0}:=\left\langle T_{2}^{a} T_{4}-T_{6} T_{7}, T_{1} T_{2}^{a-1} T_{4} T_{7}-T_{3} T_{5}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{7}\right] .
\end{gathered}
$$

Then the variable T_{10} defines a prime element in $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$, i.e., $I_{2}+$ $\left\langle T_{10}\right\rangle$ is prime, if and only if I_{0} is a prime ideal in $\mathbb{K}\left[T_{1}, \ldots, T_{7}\right]$. The matrix consisting of the exponents of the binomial generators

$$
\left[\begin{array}{rrrrrrr}
0 & a & 0 & 1 & 0 & -1 & -1 \\
1 & a-1 & -1 & 1 & -1 & 0 & 1
\end{array}\right]
$$

has a Smith normal form of shape $\left[E_{2}, 0, \ldots, 0\right]$ where E_{2} is the 2×2 unit matrix. Hence, the ideal $\left\langle I_{0}\right\rangle \subseteq \mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{7}^{ \pm 1}\right]$ is prime, compare [37]. By Remark 5.4.14; I_{0} is prime if $I_{0}=I_{0}: T_{1} \cdots T_{7}^{\infty}$. To this end we first prove that

$$
\begin{aligned}
\mathcal{G} & :=\left\{f_{1}, f_{2}, f_{3}\right\} \\
& :=\left\{T_{1} T_{6} T_{7}^{2}-T_{2} T_{3} T_{5}, T_{2}^{a} T_{4}-T_{6} T_{7}, T_{1} T_{2}^{a-1} T_{4} T_{7}-T_{3} T_{5}\right\}
\end{aligned}
$$

is a Gröbner basis for I_{0} with respect to any degree reverse lexicographical ordering with $T_{1}>\ldots>T_{i-1}>T_{i+1}>\ldots>T_{7}>T_{i}$ for a $1 \leq i \leq 7$. First, observe that we have $I_{0}=\langle\mathcal{G}\rangle$ since f_{2} and f_{3} are the generators of I_{0} and $f_{1}=-T_{1} T_{7} f_{2}+T_{2} f_{3}$. The S-polynomials are

$$
\begin{aligned}
S\left(f_{1}, f_{2}\right) & =-T_{2}^{a+1} T_{3} T_{4} T_{5}+T_{1} T_{6}^{2} T_{7}^{3} \\
S\left(f_{1}, f_{3}\right) & =-T_{2}^{a} T_{3} T_{4} T_{5}+T_{3} T_{5} T_{6} T_{7} \\
S\left(f_{2}, f_{3}\right) & =-T_{1} T_{6} T_{7}^{2}+T_{2} T_{3} T_{5}
\end{aligned}
$$

The division algorithm, see [26, Ch. 2, Thm. 3], returns the combinations

$$
S\left(f_{1}, f_{2}\right)=T_{6} T_{7} f_{1}-T_{2} T_{3} T_{5} f_{2}, \quad S\left(f_{1}, f_{3}\right)=-T_{3} T_{5} f_{2}, \quad S\left(f_{1}, f_{4}\right)=-f_{1}
$$

By the Buchberger criterion, see [26; Ch. 2, Thm. 6], \mathcal{G} is a Gröbner basis for I_{0} with respect to the chosen orderings. By [90; Lem. 12.1], we know that

$$
\left\{\frac{f}{T_{i}^{k_{i}(f)}} ; f \in \mathcal{G}\right\}=\mathcal{G}, \quad k_{i}(f):=\max \left(n \in \mathbb{Z}_{\geq 0} ; T_{i}^{n} \mid f\right)
$$

is a Gröbner basis for $I_{0}: T_{i}^{\infty}$. In particular, $I_{0}=I_{0}: T_{i}^{\infty}$ for each $1 \leq i \leq 7$. As in [90, p. 114], the claim follows from

$$
I_{0}:\left(T_{1} \cdots T_{7}\right)^{\infty}=\left(\left(\cdots\left(I_{0}: T_{1}^{\infty}\right) \cdots\right): T_{7}^{\infty}\right)=I_{0} .
$$

Moreover, no two variables T_{i}, T_{j} are associated since $\operatorname{deg}\left(T_{i}\right) \neq \operatorname{deg}\left(T_{j}\right)$ for all $i \neq j$ and we have $T_{10} \nmid T_{i}$ for all $i<10$ since

$$
\begin{aligned}
& \bar{X}_{2} \cap V\left(T_{1}, T_{10}\right)=V\left(T_{10}, T_{1}, T_{3} T_{6}, T_{2}^{a} T_{4}-T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{2}, T_{10}\right)=V\left(T_{10}, T_{2}, T_{7} T_{8}, T_{3} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{3}, T_{10}\right)=V\left(T_{10}, T_{3}, T_{2}^{a} T_{4}-T_{7} T_{8}, T_{1} T_{2}^{a-1} T_{4} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{4}, T_{10}\right)=V\left(T_{10}, T_{4}, T_{7} T_{8}, T_{3} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)=V\left(T_{10}, T_{5}, T_{2}^{a} T_{4}-T_{7} T_{8}, T_{1} T_{2}^{a-1} T_{4} T_{8}-T_{3} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{6}, T_{10}\right)=V\left(T_{10}, T_{6}, T_{2}^{a} T_{4}-T_{7} T_{8}, T_{1} T_{2} T_{4} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{7}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{2} T_{4}, T_{3} T_{6}\right)
\end{aligned}
$$

are all of dimension six; this can be seen as in the dimension computations of $\bar{X}_{2} \cap V\left(T_{8}, T_{10}\right)$ and $\bar{X}_{2} \cap V\left(T_{9}, T_{10}\right)$ above. By Theorem 4.2.6, R_{2} is the Cox ring
of the performed modification with its degree matrix as listed in the table. We now show that we performed the desired blow up. The ideal

$$
\begin{aligned}
I^{\prime} & :=\left\langle T_{5}, T_{9}, h_{2}, h_{1}-T_{7} T_{8}\right\rangle \\
& =\left\langle T_{5}, T_{9}, T_{2}^{a} T_{4}-T_{7} T_{8}, T_{1} T_{2}^{a-1} T_{4} T_{8}-T_{3} T_{6}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
\end{aligned}
$$

is a prime ideal since the ring $\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I^{\prime}$ is isomorphic to the integral domain $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] /\left(I_{2}+\left\langle T_{10}\right\rangle\right)$. Given Cox coordinates $z:=(1,1,1,1,0,1,1,1,0) \in \mathbb{K}^{9}$ for the point $\iota\left(q_{5}\right) \in X_{1}^{\prime}$ we have $z \in V\left(\mathbb{K}^{9} ; I^{\prime}\right)$ and by the previous dimension arguments

$$
\operatorname{dim}\left(V\left(\mathbb{K}^{9} ; I^{\prime}\right)\right)=-1+\operatorname{dim}\left(\bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)\right)=5
$$

An application of Lemma shows that the performed modification was the claimed blow up. The Cox ring and degree matrix of the resulting surface $X_{2}=$ $\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} \star i\right)$ are listed in the table. We claim that its graph of exceptional curves $G_{X_{2}}$ is as follows. By Lemma $5.12 ; X_{2}$ then cannot be a \mathbb{K}^{*}-surface.

It suffices to prove the existence of the subgraph induced by the vertices T_{i} with $i \in$ $\{1,4,5,6,8,10\}$. By Remark 5.3.7 and the fact that $V\left(X_{2} ; T_{10}\right)$ is the exceptional divisor of the last blow up, we know that the curves $V\left(X_{2} ; T_{i}\right)$ are negative. The existence of the edges, i.e., the fact that the curves meet, is directly seen from the blow up sequence of X_{2}.
We now blow up X_{1} in $q_{5}^{\prime}=[1,1,1,1,1,0,1,1]$ by the same steps. Choose in $\mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ the polynomial $h_{2}:=T_{1}^{2} T_{2}^{a-2} T_{4} T_{5} T_{8}^{2}-T_{3}$ for the embedding $\bar{\iota}_{2}: \mathbb{K}^{8} \rightarrow$ \mathbb{K}^{9}. Let Q_{1} be the degree matrix of $\mathcal{R}\left(X_{1}\right)$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime}, whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[\begin{array}{l|r}
& 0 \\
-1 \\
-2 \\
1 \\
1
\end{array}\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrrrr}
1 & a-1 & 0 & 1 & 0 & -1 & 0 & 1 & -1 \\
0 & a & 0 & 1 & 0 & 0 & -1 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 2 & -1 & -1 & 1
\end{array}\right] .
$$

For the blow up of X_{1}^{\prime} in the point $\iota\left(q_{5}^{\prime}\right)=[1,1,1,1,1,0,1,1,0]$ we determine the stellar subdivision of Σ_{1}^{\prime} at $v:=(-2,0,-1,3) \in \mathbb{Z}^{4}$ and write $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ of \bar{X}_{2} is generated by

$$
\begin{gathered}
g_{1}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2}-T_{7} T_{8}\right)=T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2} T_{10}^{2}-T_{7} T_{8}, \\
g_{2}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{9}-h_{2}\right)=T_{9} T_{10}-T_{1}^{2} T_{2}^{a-2} T_{4} T_{5} T_{8}^{2}+T_{3} .
\end{gathered}
$$

We show that I_{2} is saturated with respect to T_{10} by showing that I_{2} is prime. By Lemma 5.4.4, the ideal I_{2} is prime if the ideal

$$
I_{2}^{\prime}:=\left\langle T_{2}^{a} T_{3}-T_{9}^{2} T_{4}^{2} T_{5}^{2} T_{1}^{2} T_{2}^{a-2} T_{3} T_{7}^{2}+T_{9}^{3} T_{4} T_{5}^{2} T_{8}-T_{6} T_{7}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
$$

obtained by substitution of $T_{3}=-g_{2}+T_{3}$ in g_{1} and relabeling all T_{i} with $i>3$ by T_{i-1} is prime. The latter follows from Lemma 5.2.17; In similar manner, by Lemma 5.4.4, the variable T_{10} defines a prime element in $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$ since the ideal

$$
I_{2}^{\prime}+\left\langle T_{9}\right\rangle=\left\langle T_{9}, T_{2}^{a} T_{3}-T_{6} T_{7}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
$$

is prime by Lemma $5.17 ;$ Moreover, no two variables T_{i}, T_{j} are associated since $\operatorname{deg}\left(T_{i}\right) \neq \operatorname{deg}\left(T_{j}\right)$ for all $i \neq j$. Also, $T_{10} \nmid T_{i}$ for all $i<10$: the dimension of each
zero set

$$
\begin{aligned}
& \bar{X}_{2} \cap V\left(T_{1}, T_{10}\right)=V\left(T_{10}, T_{3}, T_{1}, T_{2}^{a} T_{4}-T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{2}, T_{10}\right)=V\left(T_{10}, T_{3}, T_{2}, T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{3}, T_{10}\right)=V\left(T_{10}, T_{3}, T_{2}^{a} T_{4}-T_{7} T_{8}, T_{1} T_{2} T_{4} T_{5} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{4}, T_{10}\right)=V\left(T_{10}, T_{4}, T_{3}, T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)=V\left(T_{10}, T_{5}, T_{3}, T_{2}^{a} T_{4}-T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{6}, T_{10}\right)=V\left(T_{10}, T_{6}, T_{2}^{a} T_{4}-T_{7} T_{8},-T_{1}^{2} T_{2}^{a-2} T_{4} T_{5} T_{8}^{2}+T_{3}\right), \\
& \bar{X}_{2} \cap V\left(T_{7}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{2} T_{4}, T_{3}\right), \\
& \bar{X}_{2} \cap V\left(T_{8}, T_{10}\right)=V\left(T_{10}, T_{8}, T_{3}, T_{2} T_{4}\right), \\
& \bar{X}_{2} \cap V\left(T_{9}, T_{10}\right)=V\left(T_{10}, T_{9}, T_{2}^{a} T_{4}-T_{7} T_{8},-T_{1}^{2} T_{2}^{a-2} T_{4} T_{5} T_{8}^{2}+T_{3}\right)
\end{aligned}
$$

is six. In the parameter-free cases this can be seen by computations whereas otherwise, Lemma 5.3 is used. By Theorem $4.2 ; R_{2}$ is the Cox ring of the performed modification with a Gale dual matrix of P_{2} as degree matrix. We now show that we have performed the desired blow up. The ideal

$$
\begin{aligned}
I^{\prime} & :=\left\langle T_{6}, T_{9}, h_{2}, h_{1}-T_{7} T_{8}\right\rangle \\
& =\left\langle T_{6}, T_{9}, T_{2}^{a} T_{4}-T_{7} T_{8},-T_{1}^{2} T_{2}^{a-2} T_{4} T_{5} T_{8}^{2}+T_{3}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
\end{aligned}
$$

is prime by Lemmas 5.4.4 and 5.2.17; Let $z:=(1,1,1,1,0,1,1,1,0) \in \mathbb{K}^{9}$ be Cox coordinates for $\iota\left(q_{5}^{\prime}\right) \in X_{1}^{\prime}$. Then $z \in V\left(\mathbb{K}^{9} ; I^{\prime}\right)$ and by the previous computations

$$
\operatorname{dim}\left(V\left(\mathbb{K}^{9} ; I^{\prime}\right)\right)=-1+\operatorname{dim}\left(\bar{X}_{2} \cap V\left(T_{6}, T_{10}\right)\right)=5
$$

By Lemma 5.2.15, the performed modification was the claimed blow up. As all requirements for Algorithm 4.3.3 are fulfilled we may eliminate the equation $T_{3}=$ $g_{2}+T_{3}$ from I_{2}. We obtain the Cox ring $R_{2}^{\prime}:=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I_{2}^{\prime}$ describing the blow up of X_{1}^{\prime} in $\iota\left(q_{5}^{\prime}\right)$ with the degree matrix Q_{2}^{\prime} given by

$$
Q_{2}^{\prime}=\left[\begin{array}{rrrrrrrrr}
1 & 1 & -a & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & -2 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
-2 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & -3 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Observe that the surface X_{2} is a \mathbb{K}^{*}-surface. Its Cox ring $\mathcal{R}\left(X_{2}\right)=R_{2}^{\prime}$ is isomorphic to the Cox ring of a \mathbb{K}^{*}-surface Y given by

$$
\mathcal{R}(Y)=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{2}^{a} T_{3}+T_{9}^{3} T_{4} T_{5}^{2} T_{8}-T_{6} T_{7}\right\rangle
$$

with the same degree matrix Q_{2}^{\prime}. Using Lemma 5.1.5; the isomorphism $\mathcal{R}(Y) \rightarrow$ $\mathcal{R}\left(X_{2}\right)$ is induced by the \mathbb{Z}^{6}-graded homomorphism

$$
\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{9}\right], \quad T_{i} \mapsto \begin{cases}T_{6}+T_{9}^{2} T_{4}^{2} T_{5}^{2} T_{1}^{2} T_{2}^{a-2} T_{3} T_{7}, & i=6 \\ T_{i}, & \text { else }\end{cases}
$$

We come to the blow up of the last configuration. This is the blow up of X_{1} in a point in the last exceptional divisor, i.e., $V\left(X_{1} ; T_{8}\right)$. By Remark 5.3.5, it suffices to consider the point $q_{6}:=[1,1,1,1,1,1,1,0] \in X_{1}$. As before, choose in $\mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ the polynomial $h_{2}:=T_{1} T_{2}^{a-1} T_{4} T_{5} T_{6}-T_{7}$ for the embedding $\bar{\iota}_{2}: \mathbb{K}^{8} \rightarrow \mathbb{K}^{9}$. Let Q_{1} be the degree matrix of $\mathcal{R}\left(X_{1}\right)$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[Q_{1} \left\lvert\, \begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1 \\
0
\end{array}\right.\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrrrr}
1 & a-1 & 0 & 1 & 1 & 1 & 0 & 0 & -1 \\
0 & a & 0 & 1 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & 1 & 0 & 1 & 2 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1
\end{array}\right] .
$$

For the blow up of $\iota_{2}\left(q_{6}\right)=[1,1,1,1,1,1,1,0,0] \in X_{1}^{\prime}$, we determine the stellar subdivision of Σ_{1}^{\prime} at the vector $v:=(-1,-2,-2,-1) \in \mathbb{Z}^{4}$ and write $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ of \bar{X}_{2} is generated by

$$
\begin{gathered}
g_{1}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2}-T_{7} T_{8}\right)=T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2}-T_{7} T_{8} T_{10}, \\
g_{2}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{9}-h_{2}\right)=T_{9} T_{10}-T_{1} T_{2}^{a-1} T_{4} T_{5} T_{6}+T_{7} .
\end{gathered}
$$

We show that I_{2} is prime. In particular, I_{2} then is saturated with respect to T_{10}. By Lemma 5.4.4, the ideal I_{2} is prime if the ideal

$$
I_{2}^{\prime}:=\left\langle T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2}-T_{7} T_{9} T_{1} T_{2}^{a-1} T_{4} T_{5} T_{6}+T_{7} T_{9}^{2} T_{8}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
$$

obtained by substitution of $T_{7}=-g_{2}+T_{7}$ in g_{1} and relabeling all T_{i} with $i>7$ by T_{i-1} is prime. The latter follows from Lemma 5.2.17: By the same reasoning, making again use of Lemma 5.4.4, the variable \dot{T}_{10} defines a prime element in $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$ since

$$
I_{2}^{\prime}+\left\langle T_{9}\right\rangle=\left\langle T_{9}, T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right] .
$$

is prime by Lemma 5.2.17: Moreover, no two variables T_{i}, T_{j} are associated because their degrees $\operatorname{deg}\left(T_{i}\right), \operatorname{deg}\left(T_{j}\right)$ are different for all $i \neq j$. Also, $T_{10} \nmid T_{i}$ for all $i<10$: the dimensions of all intersections

$$
\begin{aligned}
& \bar{X}_{2} \cap V\left(T_{1}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{1}, T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2}\right), \\
& \bar{X}_{2} \cap V\left(T_{2}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{2}, T_{3} T_{5} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{3}, T_{10}\right)=V\left(T_{10}, T_{3}, T_{2} T_{4}, T_{7}\right), \\
& \bar{X}_{2} \cap V\left(T_{4}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{4}, T_{3} T_{5} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{5}, T_{2} T_{4}\right), \\
& \bar{X}_{2} \cap V\left(T_{6}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{6}, T_{2} T_{4}\right), \\
& \bar{X}_{2} \cap V\left(T_{7}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2}, T_{1} T_{2} T_{4} T_{5} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{8}, T_{10}\right)=V\left(T_{10}, T_{8}, T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2},-T_{1} T_{2}^{a-1} T_{4} T_{5} T_{6}+T_{7}\right), \\
& \bar{X}_{2} \cap V\left(T_{9}, T_{10}\right)=V\left(T_{10}, T_{9}, T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2},-T_{1} T_{2}^{a-1} T_{4} T_{5} T_{6}+T_{7}\right)
\end{aligned}
$$

are six. This is done by computations or with Lemmas 5.3.3: and 5.4.4: By Theorem 4.2.6, $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$ is the Cox ring of the performed modification with a Gale dual matrix of P_{2} as degree matrix. We now show that we performed the desired blow up. The ideal

$$
\begin{aligned}
I^{\prime} & :=\left\langle T_{8}, T_{9}, h_{2}, h_{1}-T_{7} T_{8}\right\rangle \\
& =\left\langle T_{8}, T_{9}, T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2}, T_{1} T_{2}^{a-1} T_{4} T_{5} T_{6}-T_{7}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
\end{aligned}
$$

is prime by Lemmas 5.4.4 and 5.2.17; Let $z:=(1,1,1,1,1,1,1,0,0) \in \mathbb{K}^{9}$ be Cox coordinates for $\iota\left(q_{6}\right) \in \dot{X}_{1}^{\prime}$. Then $z \in V\left(\mathbb{K}^{9} ; I^{\prime}\right)$ and, as g_{2} is a fake relation, we have

$$
\operatorname{dim}\left(V\left(\mathbb{K}^{9} ; I^{\prime}\right)\right)=-1+\operatorname{dim}\left(V\left(\mathbb{K}^{9} ; T_{8}, T_{9}, T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}^{2}\right)\right)=5
$$

By Lemma 5.2.15; the performed modification was the claimed blow up. By Algorithm 4.3.3 we are allowed to remove the redundant equation $T_{7}=-g_{2}+T_{7}$. Hence, the Cox ring of the blow up X_{2} of X_{1} in q_{6} is $\mathcal{R}\left(X_{2}\right)=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I_{2}^{\prime}$. Its degree matrix is given by removing the seventh column of a Gale dual matrix of P_{2}. Note that at the moment we are uncertain whether X_{2} is a \mathbb{K}^{*}-surface or not.
(XIV) Blow ups of $X_{1}:=\mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} \star\right.$ viii). Let $a \geq 3$. Recall from the proofs of Proposition 5.2.8 and Theorem 5.3.1 the point configuration and blow up sequence

$$
X_{1} \xrightarrow{\pi_{3}} \mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i i\right)^{\prime} \stackrel{\iota_{1}}{\longleftrightarrow} \mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i i\right) \xrightarrow{\pi_{2}} \mathrm{Bl} \mathbb{F}_{a}(\star i) \xrightarrow{\pi_{1}} \mathbb{F}_{a}
$$

where the embedding ι_{1} is as in Setting 4.9 with

$$
\bar{\iota}_{1}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{7}, \quad z \mapsto\left(z, h_{1}(z)\right), \quad h_{1}:=T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}
$$

where $h_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ and the blow ups π_{i} are given by

$$
\begin{gathered}
\pi_{3}([z])=\left[z_{1} z_{8}, z_{2}, \ldots, z_{6}, z_{7} z_{8}\right] \\
\pi_{2}([z])=\left[z_{1} z_{6}, z_{2}, \ldots, z_{4}, z_{5} z_{6}\right], \quad \pi_{1}([z])=\left[z_{1} z_{5}, z_{2}, z_{3} z_{5}, z_{4}\right]
\end{gathered}
$$

The exceptional divisors of the first, second and third blow up are

$$
V\left(X_{1} ; T_{5}\right), \quad V\left(X_{1} ; T_{6}\right), \quad V\left(X_{1} ; T_{8}\right)
$$

On X_{1}, we want to blow up a point which, together with the exceptional divisors, projects to one of the configurations
(2) :

(2) \square
(2)
(3)

(2)

For the first configuration, we choose the point $q_{1}:=[0,1,1, \lambda, 1,1, \lambda-1,1]$ in X_{1} where $\lambda \in \mathbb{K}^{*} \backslash\{1\}$. It exists by Lemma 5.16 and satisfies

$$
\pi_{1} \circ \pi_{2} \circ \iota_{1}^{-1} \circ \pi_{3}\left(q_{1}\right)=[0,1,1, \lambda] \in \mathbb{F}_{a}
$$

Since $V\left(X_{1} ; T_{1}\right)$ is a parabolic fixed point curve the blow up of X_{1} in q_{1} will admit a \mathbb{K}^{*}-action, see Lemma 5.11 ; For the configurations two, three and four we want to blow up the points

$$
[1,0,0,1,1,1,0,1], \quad[1,0,1,0,1,1,-1,1], \quad[0,1,1,0,1,1,-1,1] \in X_{1}
$$

which project to $[1,0,0,1],[1,0,1,0]$ and $[0,1,1,0] \in \mathbb{F}_{a}$ under $\pi_{1} \circ \pi_{2} \circ \iota_{1}^{-1} \circ \pi_{3}$ respectively. By an iterative application of Lemma 5.4.5 and Lemma 5.2.16; we see that all points exist. By Lemma 5.41 , all three surfaces will be \mathbb{K}^{*}-surfaces.
For the fifth configuration, we want to blow up a point in the union of the exceptional divisors $V\left(X_{1} ; T_{5}\right)$ and $V\left(X_{1} ; T_{6}\right)$. By Remark 5.3.5 it suffices to consider the points

$$
q_{5}:=[1,1,1,1,0,1,1,1], \quad q_{5}^{\prime}:=[1,1,1,1,1,0,1,1] \in X_{1}
$$

both of which exist by Lemma 5.16 ; We first blow up X_{1} in q_{5}. Choose the polynomial $h_{2}:=T_{1} T_{2}^{a-1} T_{4} T_{6} T_{8}-T_{3} \in \mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ for the embedding $\bar{L}_{2}: \mathbb{K}^{8} \rightarrow$ \mathbb{K}^{9}. Let Q_{1} be the degree matrix of $\mathcal{R}\left(X_{1}\right)$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[Q_{1} \begin{array}{l|l}
0 \\
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrrrr}
1 & a-1 & 0 & 1 & 0 & 1 & 0 & 1 & -1 \\
0 & a & 0 & 1 & 0 & 0 & -1 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 1 & -1 & -1 & 1
\end{array}\right] .
$$

For the blow up of $\iota\left(q_{5}\right)=[1,1,1,1,0,1,1,1,0] \in X_{1}^{\prime}$ we determine the stellar subdivision $\Sigma_{2} \rightarrow \Sigma_{1}^{\prime}$ at $v:=(-1,0,-1,2) \in \mathbb{Z}^{4}$ and write $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ of \bar{X}_{2} is generated by

$$
\begin{gathered}
g_{1}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}-T_{7} T_{8}\right)=T_{2}^{a} T_{4}-T_{3} T_{5} T_{6} T_{10}-T_{7} T_{8}, \\
g_{2}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{9}-h_{2}\right)=T_{9} T_{10}-T_{1} T_{2}^{a-1} T_{4} T_{6} T_{8}+T_{3} .
\end{gathered}
$$

We show that I_{2} is prime. In particular, I_{2} is saturated with respect to T_{10}. By Lemma 5.4.4, the ideal I_{2} is prime if the ideal

$$
I_{2}^{\prime}:=\left\langle T_{2}^{a} T_{3}-T_{9} T_{4} T_{5}^{2} T_{1} T_{2}^{a-1} T_{3} T_{7}+T_{9}^{2} T_{4} T_{5} T_{8}-T_{6} T_{7}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
$$

obtained by substitution of $T_{3}=-g_{2}+T_{3}$ in g_{1} and replacing all T_{i} with T_{i-1} if $i>3$ is prime. The latter follows from Lemma 5.2.17: By the same reasoning,
using Lemmas 5.4.4 and 5.2.17; the variable T_{10} defines a prime element in $R_{2}=$ $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$ since we have a prime ideal

$$
I_{2}^{\prime}+\left\langle T_{9}\right\rangle=\left\langle T_{9}, T_{2}^{a} T_{3}-T_{6} T_{7}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right] .
$$

Moreover, no two variables T_{i}, T_{j} are associated since their degrees $\operatorname{deg}\left(T_{i}\right), \operatorname{deg}\left(T_{j}\right)$ are different for all $i \neq j$. Also, $T_{10} \nmid T_{i}$ for all $i<10$: each of the intersections

$$
\begin{aligned}
& \bar{X}_{2} \cap V\left(T_{1}, T_{10}\right)=V\left(T_{10}, T_{1}, T_{3}, T_{2}^{a} T_{4}-T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{2}, T_{10}\right)=V\left(T_{10}, T_{2}, T_{3}, T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{3}, T_{10}\right)=V\left(T_{10}, T_{3}, T_{2}^{a} T_{4}-T_{7} T_{8}, T_{1} T_{2} T_{4} T_{6} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{4}, T_{10}\right)=V\left(T_{10}, T_{4}, T_{3}, T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)=V\left(T_{10}, T_{5}, T_{2}^{a} T_{4}-T_{7} T_{8},-T_{1} T_{2}^{a-1} T_{4} T_{6} T_{8}+T_{3}\right), \\
& \bar{X}_{2} \cap V\left(T_{6}, T_{10}\right)=V\left(T_{10}, T_{6}, T_{3}, T_{2}^{a} T_{4}-T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{7}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{2} T_{4},-T_{1} T_{2}^{a-1} T_{4} T_{6} T_{8}+T_{3}\right), \\
& \bar{X}_{2} \cap V\left(T_{8}, T_{10}\right)=V\left(T_{10}, T_{8}, T_{3}, T_{2} T_{4}\right), \\
& \bar{X}_{2} \cap V\left(T_{9}, T_{10}\right)=V\left(T_{10}, T_{9}, T_{2}^{a} T_{4}-T_{7} T_{8},-T_{1} T_{2}^{a-1} T_{4} T_{6} T_{8}+T_{3}\right)
\end{aligned}
$$

is six-dimensional. This can be seen directly or with Lemma 5.4.4. By Theorem 4.2.6, R_{2} is the Cox ring of the performed modification with a Gale dual matrix of P_{2} as degree matrix. We now show that we have performed the desired blow up. The ideal

$$
\begin{aligned}
I^{\prime} & :=\left\langle T_{5}, T_{9}, h_{2}, h_{1}-T_{7} T_{8}\right\rangle \\
& =\left\langle T_{5}, T_{9}, T_{2}^{a} T_{4}-T_{7} T_{8}, T_{1} T_{2}^{a-1} T_{4} T_{6} T_{8}-T_{3}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
\end{aligned}
$$

is prime by Lemmas 5.4.4 and 5.2.17; Let $z:=(1,1,1,1,0,1,1,1,0) \in \mathbb{K}^{9}$ be Cox coordinates for $\iota\left(q_{5}\right) \notin \dot{X}_{1}^{\prime}$. Then $z \in V\left(\mathbb{K}^{9} ; I^{\prime}\right)$ and, as above, we have

$$
\operatorname{dim}\left(V\left(\mathbb{K}^{9} ; I^{\prime}\right)\right)=-1+\operatorname{dim}\left(\bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)\right)=5
$$

By Lemma 5.2.15; the performed modification was the claimed blow up. Using Algorithm 4.3, we eliminate the equation $T_{3}=-g_{2}+T_{3}$ and obtain the Cox ring $R_{2}^{\prime}:=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I_{2}^{\prime}$ of the blow up of X_{1} in q_{5}. Its degree matrix Q_{2}^{\prime} is given by removing the third column of a Gale dual matrix of P_{2}, i.e.,

$$
Q_{2}^{\prime}=\left[\begin{array}{lllllrrrr}
1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 2 a-1 & -a+1 & -a & a \\
0 & 0 & 0 & 0 & 0 & -1 & 1 & 2 & -1 \\
0 & 0 & 1 & 0 & 0 & 2 & -1 & -1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & 1 & -1 & 1 & -1
\end{array}\right]
$$

Observe that the blow up X_{2} is isomorphic to a \mathbb{K}^{*}-surface Y since its Cox ring $\mathcal{R}\left(X_{2}\right)=R_{2}^{\prime}$ is isomorphic to

$$
\mathcal{R}(Y):=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{2}^{a} T_{3}+T_{9}^{2} T_{4} T_{5} T_{8}-T_{6} T_{7}\right\rangle
$$

with the same degree matrix Q_{2}^{\prime}, compare Lemma;5.1.5; The isomorphism $\mathcal{R}(Y) \rightarrow$ $\mathcal{R}\left(X_{2}\right)$ is induced by the \mathbb{Z}^{6}-graded homomorphism

$$
\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{9}\right], \quad T_{i} \mapsto \begin{cases}T_{6}+T_{9} T_{4} T_{5}^{2} T_{1} T_{2}^{a-1} T_{3}, & i=6 \\ T_{i}, & \text { else }\end{cases}
$$

We now blow up X_{1} in q_{5}^{\prime} by similar steps. Choose in $\mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ the polynomial $h_{2}:=T_{1} T_{2}^{a-1} T_{4} T_{7} T_{8}^{2}-T_{3}^{2} T_{5}$ for the embedding $\bar{\iota}_{2}: \mathbb{K}^{8} \rightarrow \mathbb{K}^{9}$. Let Q_{1} be the degree matrix of $\mathcal{R}\left(X_{1}\right)$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns
are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[Q_{1} \left\lvert\, \begin{array}{l}
0 \\
0 \\
2 \\
0 \\
1
\end{array}\right.\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrrrr}
1 & a-1 & 0 & 1 & 0 & 0 & 1 & 2 & -1 \\
0 & a & 0 & 1 & 0 & 0 & -1 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & 2 & -2 & -2 & 1
\end{array}\right] .
$$

For the blow up of X_{1}^{\prime} in $\iota\left(q_{5}^{\prime}\right)=[1,1,1,1,1,0,1,1,0]$ we determine the stellar subdivision of Σ_{1}^{\prime} at $v:=(-1,0,-2,3) \in \mathbb{Z}^{4}$ and write $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ of \bar{X}_{2} is generated by

$$
\begin{gathered}
g_{1}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}-T_{7} T_{8}\right)=T_{2}^{a} T_{4}-T_{3} T_{5} T_{6} T_{10}-T_{7} T_{8}, \\
g_{2}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{9}-h_{2}\right)=T_{9} T_{10}-T_{1} T_{2}^{a-1} T_{4} T_{7} T_{8}^{2}+T_{3}^{2} T_{5} .
\end{gathered}
$$

We show that $I_{2}=I_{2}: T_{10}^{\infty}$ by showing that I_{2} is prime. The grading is pointed by Remark:4.10; Consider the open subset

$$
U:=\left\{x \in \bar{X}_{2} ; x_{2} x_{4} x_{7} x_{8} \neq 0 \text { or } x_{3} x_{5} x_{10} \neq 0\right\} \subseteq \bar{X}_{2}=V\left(\mathbb{K}^{10} ; I_{2}\right)
$$

Inspecting the entries with indices $i=1,2$ and $j=1,7$ as well as $i=1,2$ and $j=6,9$, we see that the rank of the Jacobian matrix $\left(\partial g_{i} / \partial T_{j}\right)_{i, j}(u)$ is two for all $u \in U$. Furthermore, $\bar{X}_{2} \backslash U$ is contained in the union of the 8-dimensional subspaces

$$
\begin{array}{llll}
V\left(\mathbb{K}^{10} ; T_{2}, T_{3}\right), & V\left(\mathbb{K}^{10} ; T_{2}, T_{5}\right), & V\left(\mathbb{K}^{10} ; T_{2}, T_{10}\right), & V\left(\mathbb{K}^{10} ; T_{4}, T_{3}\right) \\
V\left(\mathbb{K}^{10} ; T_{4}, T_{5}\right), & V\left(\mathbb{K}^{10} ; T_{4}, T_{10}\right), & V\left(\mathbb{K}^{10} ; T_{7}, T_{3}\right), & V\left(\mathbb{K}^{10} ; T_{7}, T_{5}\right) \\
V\left(\mathbb{K}^{10} ; T_{7}, T_{10}\right), & V\left(\mathbb{K}^{10} ; T_{8}, T_{3}\right), & V\left(\mathbb{K}^{10} ; T_{8}, T_{5}\right), & V\left(\mathbb{K}^{10} ; T_{8}, T_{10}\right)
\end{array}
$$

We directly see that each of the following intersections is of dimension six.

$$
\begin{aligned}
\bar{X}_{2} \cap V\left(T_{2}, T_{3}\right) & =V\left(T_{3}, T_{2}, T_{9} T_{10}, T_{7} T_{8}\right), \\
\bar{X}_{2} \cap V\left(T_{2}, T_{5}\right) & =V\left(T_{5}, T_{2}, T_{9} T_{10}, T_{7} T_{8}\right), \\
\bar{X}_{2} \cap V\left(T_{2}, T_{10}\right) & =V\left(T_{10}, T_{2}, T_{7} T_{8}, T_{3} T_{5}\right), \\
\bar{X}_{2} \cap V\left(T_{4}, T_{3}\right) & =V\left(T_{4}, T_{3}, T_{9} T_{10}, T_{7} T_{8}\right), \\
\bar{X}_{2} \cap V\left(T_{4}, T_{5}\right) & =V\left(T_{5}, T_{4}, T_{9} T_{10}, T_{7} T_{8}\right), \\
\bar{X}_{2} \cap V\left(T_{4}, T_{10}\right) & =V\left(T_{10}, T_{4}, T_{7} T_{8}, T_{3} T_{5}\right), \\
\bar{X}_{2} \cap V\left(T_{7}, T_{3}\right) & =V\left(T_{7}, T_{3}, T_{9} T_{10}, T_{2} T_{4}\right), \\
\bar{X}_{2} \cap V\left(T_{7}, T_{5}\right) & =V\left(T_{7}, T_{5}, T_{9} T_{10}, T_{2} T_{4}\right), \\
\bar{X}_{2} \cap V\left(T_{7}, T_{10}\right) & =V\left(T_{10}, T_{7}, T_{3} T_{5}, T_{2} T_{4}\right), \\
\bar{X}_{2} \cap V\left(T_{8}, T_{3}\right) & =V\left(T_{8}, T_{3}, T_{9} T_{10}, T_{2} T_{4}\right), \\
\bar{X}_{2} \cap V\left(T_{8}, T_{5}\right) & =V\left(T_{8}, T_{5}, T_{9} T_{10}, T_{2} T_{4}\right), \\
\bar{X}_{2} \cap V\left(T_{8}, T_{10}\right) & =V\left(T_{10}, T_{8}, T_{3} T_{5}, T_{2} T_{4}\right) .
\end{aligned}
$$

Therefore, $\operatorname{dim}\left(\bar{X}_{2} \backslash U\right) \leq 6$ and, since \bar{X}_{2} is of dimension at least eight, the codimension of $\bar{X}_{2} \backslash U$ in \bar{X}_{2} is at least two. By Lemma'5.4.3; the ideal I_{2} is prime. We now show that the variable T_{10} defines a prime element in $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$ by showing that the ideal

$$
I_{2}+\left\langle T_{10}\right\rangle=\left\langle T_{10}, T_{2}^{a} T_{4}-T_{7} T_{8}, T_{1} T_{2}^{a-1} T_{4} T_{7} T_{8}^{2}-T_{3}^{2} T_{5}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]
$$

is a prime ideal. Since $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] /\left(I_{2}+\left\langle T_{10}\right\rangle\right)$ is isomorphic to $\mathbb{K}\left[T_{1}, \ldots, T_{7}\right] / I_{0}$ this is equivalent to

$$
I_{0}:=\left\langle T_{2}^{a} T_{4}-T_{6} T_{7}, T_{1} T_{2}^{a-1} T_{4} T_{6} T_{7}^{2}-T_{3}^{2} T_{5}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]
$$

being prime. By a computation, we verified the cases $3 \leq a \leq 4$. Let $a \geq 5$. The ideal $\left\langle I_{0}\right\rangle \subseteq \mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{7}^{ \pm 1}\right]$ is prime since the matrix consisting of the exponents
of the binomial generators

$$
\left[\begin{array}{rrrrrrr}
0 & a & 0 & 1 & 0 & -1 & -1 \\
1 & a-1 & -2 & 1 & -1 & 1 & 2
\end{array}\right]
$$

has a Smith normal form of shape $\left[E_{2}, 0, \ldots, 0\right]$ where E_{2} is the 2×2 unit matrix, compare [37]. By Remark 5.14, I_{0} is prime if $I_{0}=I_{0}:\left(T_{1} \cdots T_{7}\right)^{\infty}$. To this end, we first show that

$$
\begin{aligned}
\mathcal{G} & :=\left\{f_{1}, f_{2}, f_{3}\right\} \\
& :=\left\{T_{1} T_{6}^{2} T_{7}^{3}-T_{2} T_{5} T_{3}^{2}, T_{2}^{a} T_{4}-T_{6} T_{7}, T_{1} T_{2}^{a-1} T_{4} T_{6} T_{7}^{2}-T_{5} T_{3}^{2}\right\}
\end{aligned}
$$

is a Gröbner basis for I_{0} with respect to any degree reverse lexicographical ordering with $T_{1}>\ldots>T_{i-1}>T_{i+1}>\ldots>T_{7}>T_{i}$ for a $1 \leq i \leq 7$. Since f_{2}, f_{3} are the generators of I_{0} and $f_{1}=-T_{1} T_{6} T_{7}^{2} f_{2}+T_{2} f_{3}$, we have $\langle\mathcal{G}\rangle=I_{0}$. The S-polynomials are

$$
\begin{aligned}
S\left(f_{1}, f_{2}\right) & =-T_{2}^{a+1} T_{3}^{2} T_{4} T_{5}+T_{1} T_{6}^{3} T_{7}^{4} \\
S\left(f_{1}, f_{3}\right) & =-T_{2}^{a} T_{3}^{2} T_{4} T_{5}+T_{3}^{2} T_{5} T_{6} T_{7} \\
S\left(f_{2}, f_{3}\right) & =-T_{1} T_{6}^{2} T_{7}^{3}+T_{2} T_{5} T_{3}^{2}
\end{aligned}
$$

The division algorithm, see [26; Ch. 2, Thm. 3], returns the combinations

$$
S\left(f_{1}, f_{2}\right)=T_{6} T_{7} f_{1}-T_{2} T_{3}^{2} T_{5} f_{2}, \quad S\left(f_{1}, f_{3}\right)=-T_{3}^{2} T_{5} f_{2}, \quad S\left(f_{2}, f_{3}\right)=-f_{1}
$$

By the Buchberger criterion, see $\left[26\right.$; Ch. 2, Thm. 6], \mathcal{G} is a Gröbner basis for I_{0} with respect to each of the chosen orderings. From [90, Lem. 12.1], we infer that

$$
\left\{\frac{f}{T_{i}^{k_{i}(f)}} ; f \in \mathcal{G}\right\}=\mathcal{G}, \quad k_{i}(f):=\max \left(n \in \mathbb{Z}_{\geq 0} ; T_{i}^{n} \mid f\right)
$$

is a Gröbner basis for $I_{0}: T_{i}^{\infty}$ for each $1 \leq i \leq 7$, i.e., we have $I_{0}=I_{0}: T_{i}^{\infty}$ for each i. As in $[90 ;$ p. 114] , the claim follows from

$$
I_{0}: T_{1} \cdots T_{7}^{\infty}=\left(\left(\cdots\left(I_{0}: T_{1}^{\infty}\right) \cdots\right): T_{7}^{\infty}\right)=I_{0}
$$

Furthermore, no two variables T_{i}, T_{j} are associated since $\operatorname{deg}\left(T_{i}\right) \neq \operatorname{deg}\left(T_{j}\right)$ for all $i \neq j$ and $T_{10} \nmid T_{i}$ for all $i<10$: each of the intersections

$$
\begin{aligned}
& \bar{X}_{2} \cap V\left(T_{1}, T_{10}\right)=V\left(T_{10}, T_{1}, T_{3} T_{5}, T_{2}^{a} T_{4}-T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{3}, T_{10}\right)=V\left(T_{10}, T_{3}, T_{2}^{a} T_{4}-T_{7} T_{8}, T_{1} T_{2} T_{4} T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)=V\left(T_{10}, T_{5}, T_{2}^{a} T_{4}-T_{7} T_{8}, T_{1} T_{2} T_{4} T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{6}, T_{10}\right)=V\left(T_{10}, T_{6}, T_{2}^{a} T_{4}-T_{7} T_{8}, T_{1} T_{2}^{a-1} T_{4} T_{7} T_{8}^{2}-T_{3}^{2} T_{5}\right), \\
& \bar{X}_{2} \cap V\left(T_{9}, T_{10}\right)=V\left(T_{10}, T_{9}, T_{2}^{a} T_{4}-T_{7} T_{8}, T_{1} T_{2}^{a-1} T_{4} T_{7} T_{8}^{2}-T_{3}^{2} T_{5}\right)
\end{aligned}
$$

is six-dimensional; here, one uses Lemma.3.3. The missing cases have been treated before. By Theorem 4.2.6, R_{2} is the Cox ring of the performed modification with its degree matrix as listed in the table. Observe that we performed the desired blow up. The factor ring $\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I^{\prime}$ where

$$
\begin{aligned}
I^{\prime} & :=\left\langle T_{6}, T_{9}, h_{2}, h_{1}-T_{7} T_{8}\right\rangle \\
& =\left\langle T_{6}, T_{9}, T_{2}^{a} T_{4}-T_{7} T_{8}, T_{1} T_{2}^{a-1} T_{4} T_{7} T_{8}^{2}-T_{3}^{2} T_{5}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
\end{aligned}
$$

is isomorphic to the integral domain $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] /\left(I_{2}+\left\langle T_{10}\right\rangle\right)$. Hence, the ideal I^{\prime} is prime. Let $z:=(1,1,1,1,1,0,1,1,0) \in \mathbb{K}^{9}$ be Cox coordinates for $\iota\left(q_{5}^{\prime}\right) \in X_{1}^{\prime}$. Then $z \in V\left(\mathbb{K}^{9} ; I^{\prime}\right)$ and by the previous dimension computations

$$
\operatorname{dim}\left(V\left(\mathbb{K}^{9} ; I^{\prime}\right)\right)=-1+\operatorname{dim}\left(\bar{X}_{2} \cap V\left(T_{6}, T_{10}\right)\right)=5
$$

The performed modification then was the claimed blow up, see Lemma 5.2.15: The Cox ring and degree matrix of the resulting surface $X_{2}=\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} \star i i\right)$ are listed
in the table of Theorem 5.4.1: We claim that the graph of exceptional curves $G_{X_{2}}$ is

By Lemma 5.4.12, X_{2} then cannot be a \mathbb{K}^{*}-surface. It suffices to prove the existence of the subgraph induced by the vertices T_{i} with $i \in\{1,4,5,6,8,10\}$. By Remark 5.3.7: and the fact that $V\left(X_{2} ; T_{10}\right)$ is the exceptional divisor of the last blow up, we know that the curves corresponding to the vertices are negative. The existence of the edges is directly seen from the blow up sequence.
We come to the last configuration. Here, we want to blow up a point in the last exceptional divisor $V\left(X_{1} ; T_{8}\right)$. By Remark 5.3 .5 ; it suffices to consider the point $q_{6}:=[1,1,1,1,1,1,1,0] \in X_{1}$. Similar to before, we choose in $\mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ the polynomial $h_{2}:=T_{1} T_{2}^{a-1} T_{4} T_{5} T_{6}^{2}-T_{7}$ for the embedding $\bar{\iota}_{2}: \mathbb{K}^{8} \rightarrow \mathbb{K}^{9}$. Let Q_{1} be the degree matrix of $\mathcal{R}\left(X_{1}\right)$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[Q_{1} \left\lvert\, \begin{array}{r}
1 \\
3 a-1 \\
-2 \\
3 \\
-1
\end{array}\right.\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrrrr}
1 & a-1 & 0 & 1 & 1 & 2 & 0 & 0 & -1 \\
0 & a & 0 & 1 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1
\end{array}\right] .
$$

For the blow up of X_{1}^{\prime} in $\iota\left(q_{6}\right)=[1,1,1,1,1,1,1,0,0]$ we determine the stellar subdivision of Σ_{1}^{\prime} at $v:=(-1,-2,-2,-1) \in \mathbb{Z}^{4}$ and write $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ of \bar{X}_{2} is generated by

$$
\begin{gathered}
g_{1}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}-T_{7} T_{8}\right)=T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}-T_{7} T_{8} T_{10}, \\
g_{2}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{9}-h_{2}\right)=T_{9} T_{10}-T_{1} T_{2}^{a-1} T_{4} T_{5} T_{6}^{2}+T_{7} .
\end{gathered}
$$

We show that I_{2} is saturated with respect to T_{10} by proving that I_{2} is prime. By Lemma 5.4.4, the latter is the case if the ideal

$$
I_{2}^{\prime}:=\left\langle T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}-T_{7} T_{9} T_{1} T_{2}^{a-1} T_{4} T_{5} T_{6}^{2}+T_{7} T_{9}^{2} T_{8}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
$$

obtained by substitution of $T_{7}=-g_{2}+T_{7}$ in g_{1} and replacing all T_{i} with $i>7$ by T_{i-1} is prime. By Lemma 5.217 , this is the case. In a similar manner, using Lemma 5.4.4, the variable T_{10} defines a prime element in $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$ since

$$
I_{2}^{\prime}+\left\langle T_{9}\right\rangle=\left\langle T_{9}, T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
$$

is prime by Lemma 5.2.17; Moreover, as the degrees $\operatorname{deg}\left(T_{i}\right)$ are pairwise different, no two variables T_{i}, \dot{T}_{j} are associated for $i \neq j$. Also, $T_{10} \nmid T_{i}$ for all $i<10$: each of the intersections

$$
\begin{aligned}
& \bar{X}_{2} \cap V\left(T_{1}, T_{10}\right)=V\left(T_{10}, T_{1}, T_{7}, T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{2}, T_{10}\right)=V\left(T_{10}, T_{2}, T_{7}, T_{3} T_{5} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{3}, T_{10}\right)=V\left(T_{10}, T_{3}, T_{2} T_{4}, T_{7}\right) \\
& \bar{X}_{2} \cap V\left(T_{4}, T_{10}\right)=V\left(T_{10}, T_{4}, T_{7}, T_{3} T_{5} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)=V\left(T_{10}, T_{5}, T_{7}, T_{2} T_{4}\right) \\
& \bar{X}_{2} \cap V\left(T_{6}, T_{10}\right)=V\left(T_{10}, T_{6}, T_{7}, T_{2} T_{4}\right) \\
& \bar{X}_{2} \cap V\left(T_{7}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}, T_{1} T_{2} T_{4} T_{5} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{8}, T_{10}\right)=V\left(T_{10}, T_{8}, T_{2}^{a} T_{4}-T_{3} T_{5} T_{6},-T_{1} T_{2}^{a-1} T_{4} T_{5} T_{6}^{2}+T_{7}\right),
\end{aligned}
$$

$$
\bar{X}_{2} \cap V\left(T_{9}, T_{10}\right)=V\left(T_{10}, T_{9}, T_{2}^{a} T_{4}-T_{3} T_{5} T_{6},-T_{1} T_{2}^{a-1} T_{4} T_{5} T_{6}^{2}+T_{7}\right)
$$

is of dimension six; here, Lemma 5.4.4 can be used. By Theorem 4.2.6, R_{2} is the Cox ring of the performed modification. Its degree matrix is a Gale dual matrix of P_{2}. Observe that we performed the desired blow up. The ideal

$$
\begin{aligned}
I^{\prime} & :=\left\langle T_{8}, T_{9}, h_{2}, h_{1}-T_{7} T_{8}\right\rangle \\
& =\left\langle T_{8}, T_{9}, T_{2}^{a} T_{4}-T_{3} T_{5} T_{6},-T_{1} T_{2}^{a-1} T_{4} T_{5} T_{6}^{2}+T_{7}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
\end{aligned}
$$

is prime by Lemmas 5.4.4 and 5.2 .17 ; Let $z:=(1,1,1,1,1,1,1,0,0) \in \mathbb{K}^{9}$ be Cox coordinates for $\iota\left(q_{6}\right) \in \bar{X}_{1}^{\prime}$. Then $z \in V\left(\mathbb{K}^{9} ; I^{\prime}\right)$. Moreover, since T_{7} is linear in g_{2} we have

$$
\operatorname{dim}\left(V\left(\mathbb{K}^{9} ; I^{\prime}\right)\right)=-1+\operatorname{dim}\left(V\left(\mathbb{K}^{9} ; T_{8}, T_{9}, T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}\right)\right)=5
$$

By Lemma 5.2 .15 , the performed modification was the claimed blow up. Using Algorithm 4.3.3; we substitute the equation $T_{7}=-g_{2}+T_{7}$ into g_{1}. We obtain the Cox ring $\mathcal{R}\left(X_{2}\right)=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I_{2}^{\prime}$ of the blow up X_{2} of X_{1} in q_{6}. Its degree matrix Q_{2}^{\prime} is given by removing the seventh column of a Gale dual matrix of P_{2}, i.e.,

$$
Q_{2}^{\prime}=\left[\begin{array}{lllllrlrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & -1 \\
0 & 1 & 0 & 0 & 0 & a & 0 & 5 a-2 & -2 a+1 \\
0 & 0 & 1 & 0 & 0 & -1 & 0 & -4 & 2 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 5 & -2 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & -2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1
\end{array}\right]
$$

Observe that X_{2} is isomorphic to a \mathbb{K}^{*}-surface Y. By Lemma 5.1.5. it suffices to show that $\mathcal{R}\left(X_{2}\right)$ is isomorphic to

$$
\mathcal{R}(Y):=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}+T_{7} T_{9}^{2} T_{8}\right\rangle
$$

where the degree matrix of $\mathcal{R}(Y)$ is again Q_{2}^{\prime}. The isomorphism $\mathcal{R}(Y) \rightarrow \mathcal{R}\left(X_{2}\right)$ is induced by the graded homomorphism

$$
\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{9}\right], \quad T_{i} \mapsto \begin{cases}T_{3}+T_{7} T_{9} T_{1} T_{2}^{a-1} T_{4} T_{6}, & i=3 \\ T_{i}, & \text { else }\end{cases}
$$

(XV) Blow ups of $X_{1}:=\operatorname{Bl} \mathbb{F}_{a}\left(\star^{3} i v\right)$. Let $a \geq 3$. Recall from the proofs of Proposition 5.2.8 and Theorem 5.3.1 the point configuration and blow up sequence

$$
X_{1} \xrightarrow{\pi_{3}} \mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i\right)^{\prime}<{ }^{\iota_{1}} \mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i\right) \xrightarrow{\pi_{2}} \mathrm{Bl} \mathbb{F}_{a}(\star i) \xrightarrow{\pi_{1}} \mathbb{F}_{a}
$$

where the embedding ι_{1} is as in Setting 4.9 with

$$
\bar{\iota}_{1}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{7}, \quad z \mapsto\left(z, h_{1}(z)\right), \quad h_{1}:=T_{1} T_{2}^{a-1} T_{4}-T_{3} T_{6}
$$

where $h_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ and the blow ups π_{i} are given by

$$
\begin{gathered}
\pi_{3}([z])=\left[z_{1}, \ldots, z_{4}, z_{5} z_{8}, z_{6}, z_{7} z_{8}\right], \\
\pi_{2}([z])=\left[z_{1}, z_{2}, z_{3} z_{6}, z_{4}, z_{5} z_{6}\right], \quad \pi_{1}([z])=\left[z_{1} z_{5}, z_{2}, z_{3} z_{5}, z_{4}\right] .
\end{gathered}
$$

The exceptional divisors of the first, second and third blow up are

$$
V\left(X_{1} ; T_{5}\right), \quad V\left(X_{1} ; T_{6}\right), \quad V\left(X_{1} ; T_{8}\right)
$$

On X_{1}, we want to blow up a point which, together with the exceptional divisors, projects to one of the configurations
(3)

(3)

(4)

The blow ups of the first three configurations are the blow ups of X_{1} in the points

$$
[1,0,0,1,1,1,0,1], \quad[0,1,1,0,1,1,-1,1], \quad[1,0,1,0,1,1,-1,1] \in X_{1}
$$

which project under $\pi_{1} \circ \pi_{2} \circ \iota_{1}^{-1} \circ \pi_{3}$ to $[1,0,0,1],[0,1,1,0]$ and $[1,0,1,0] \in \mathbb{F}_{a}$ respectively. Note that all points exist by a stepwise application of Lemmas 5.4.5: and 5.2.16. By Lemma 5.41; all three surfaces will be \mathbb{K}^{*}-surfaces.
We come to the fourth configuration. The main steps are as in previous cases. We want to blow up of X_{1} in the point

$$
q_{4}:=[0,1,1,1,1,1,-1,1] \in X_{1}, \quad \pi_{1} \circ \pi_{2} \circ \iota_{1}^{-1} \circ \pi_{3}\left(q_{4}\right)=[0,1,1,1] \in \mathbb{F}_{a} .
$$

Note that q_{4} exists by Lemma 5.2.16; Choose in $\mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ the polynomial $h_{2}:=T_{2}^{a} T_{4}+T_{5} T_{6} T_{7} T_{8}^{2}$ for the embedding $\bar{\iota}_{2}: \mathbb{K}^{8} \rightarrow \mathbb{K}^{9}$. Let Q_{1} be the degree matrix of $\mathcal{R}\left(X_{1}\right)$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[\begin{array}{l}
Q_{1} \\
\\
\\
\hline
\end{array}\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrrrr}
1 & a-1 & 0 & 1 & 0 & 0 & -1 & -1 & 0 \\
0 \\
0 & a & 0 & 1 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 & 1 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 2 & -1
\end{array}\right] .
$$

For the blow up of X_{1}^{\prime} in $\iota\left(q_{4}\right)=[0,1,1,1,1,1,-1,1,0]$, we determine the stellar subdivision $\Sigma_{2} \rightarrow \Sigma_{1}^{\prime}$ at $v:=(1,-1,0,-1) \in \mathbb{Z}^{4}$. Write $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ of \bar{X}_{2} is generated by

$$
\begin{gathered}
g_{1}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{1} T_{2}^{a-1} T_{4}-T_{3} T_{6}-T_{7} T_{8}\right)=T_{1} T_{2}^{a-1} T_{4} T_{10}-T_{3} T_{6}-T_{7} T_{8} \\
g_{2}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{9}-h_{2}\right)=T_{9} T_{10}-T_{2}^{a} T_{4}-T_{5} T_{6} T_{7} T_{8}^{2}
\end{gathered}
$$

We show that I_{2} is prime. In particular, I_{2} is saturated with respect to T_{10}. The grading is pointed by Remark 4.2. Consider the open subset

$$
U:=\left\{x \in \bar{X}_{2} ; x_{6} x_{9} \neq 0 \text { or } x_{7} x_{10} \neq 0\right\} \subseteq \bar{X}_{2}=V\left(\mathbb{K}^{10} ; I_{2}\right)
$$

Inspecting the indices $i=1,2$ and $j=3,10$ as well as $i=1,2$ and $j=8,9$ we see that the rank of the Jacobian matrix $\left(\partial g_{i} / \partial T_{j}\right)_{i, j}(u)$ is two for all $u \in U$. Furthermore, $\bar{X}_{2} \backslash U$ is contained in the union of the 8-dimensional subspaces

$$
V\left(\mathbb{K}^{10} ; T_{6}, T_{7}\right), \quad V\left(\mathbb{K}^{10} ; T_{6}, T_{10}\right), \quad V\left(\mathbb{K}^{10} ; T_{9}, T_{7}\right), \quad V\left(\mathbb{K}^{10} ; T_{9}, T_{10}\right)
$$

Furthermore, each of the following intersections is of dimension six.

$$
\begin{aligned}
\bar{X}_{2} \cap V\left(T_{6}, T_{7}\right) & =V\left(T_{7}, T_{6}, T_{2}^{a} T_{4}-T_{9} T_{10}, T_{1} T_{2} T_{4} T_{10}\right), \\
\bar{X}_{2} \cap V\left(T_{6}, T_{10}\right) & =V\left(T_{10}, T_{6}, T_{7} T_{8}, T_{2} T_{4}\right), \\
\bar{X}_{2} \cap V\left(T_{9}, T_{7}\right) & =V\left(T_{9}, T_{7}, T_{2} T_{4}, T_{3} T_{6}\right), \\
\bar{X}_{2} \cap V\left(T_{9}, T_{10}\right) & =V\left(T_{10}, T_{9}, T_{3} T_{6}-T_{7} T_{8}, T_{2}^{a} T_{4}+T_{5} T_{6} T_{7} T_{8}^{2}\right) .
\end{aligned}
$$

For $\bar{X}_{2} \cap V\left(T_{9}, T_{10}\right)$, we used Lemma 5.3.3 with the exponent matrix

$$
\left[\begin{array}{llllrrrrrr}
0 & 0 & 1 & 0 & 0 & 1 & -1 & -1 & 0 & 0 \\
0 & a & 0 & 1 & -1 & -1 & -1 & -2 & 0 & 0
\end{array}\right]
$$

to see that the dimension is six on $\mathbb{T}^{10} \cdot(1, \ldots, 1,0,0)$. One directly verifies that the dimension is at most six on all smaller tori. Therefore, $\operatorname{dim}\left(\bar{X}_{2} \backslash U\right) \leq 6$ and, since \bar{X}_{2} is of dimension at least eight, the codimension of $\bar{X}_{2} \backslash U$ in \bar{X}_{2} is at least two. By Lemma 5.3 , the ideal I_{2} is prime. We now show that the variable T_{10} defines a prime element in $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$ by proving that

$$
I_{2}+\left\langle T_{10}\right\rangle=\left\langle T_{10}, T_{3} T_{6}+T_{7} T_{8}, T_{2}^{a} T_{4}+T_{5} T_{6} T_{7} T_{8}^{2}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]
$$

is a prime ideal. Since $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] /\left(I_{2}+\left\langle T_{10}\right\rangle\right)$ is isomorphic to $\mathbb{K}\left[T_{1}, \ldots, T_{7}\right] / I_{0}$ this is equivalent to

$$
I_{0}:=\left\langle T_{2} T_{5}+T_{6} T_{7}, T_{1}^{a} T_{3}+T_{4} T_{5} T_{6} T_{7}^{2}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]
$$

being prime. By a computation, we verified the cases $3 \leq a \leq 4$. Assume $a \geq 5$. The ideal $\left\langle I_{0}\right\rangle \subseteq \mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{7}^{ \pm 1}\right]$ is prime since the matrix consisting of the exponents of the binomial generators

$$
\left[\begin{array}{rrrrrrr}
0 & 1 & 0 & 0 & 1 & -1 & -1 \\
a & 0 & 1 & -1 & -1 & -1 & -2
\end{array}\right]
$$

has a Smith normal form of shape $\left[E_{2}, 0, \ldots, 0\right]$ where E_{2} is the 2×2 unit matrix, compare [37]. By Remark 5.4.14, I_{0} is prime if $I_{0}=I_{0}:\left(T_{1} \cdots T_{7}\right)^{\infty}$. To show this, we first prove that

$$
\mathcal{G}:=\left\{f_{1}, f_{2}\right\}:= \begin{cases}\left\{\begin{array}{ll}
T_{2} T_{5}+T_{6} T_{7}, & T_{1}^{a} T_{3}+T_{4} T_{5} T_{6} T_{7}^{2} \\
T_{6} T_{7}+T_{5} T_{2}, & T_{1}^{a} T_{3}-T_{4} T_{5}^{2} T_{7} T_{2}
\end{array}\right\}, & T_{2} T_{5}>T_{6} T_{7}, \\
T_{2} T_{5}<T_{6} T_{7}\end{cases}
$$

is a Gröbner basis for I_{0} with respect to any degree reverse lexicographical ordering with $T_{1}>\ldots>T_{i-1}>T_{i+1}>\ldots>T_{7}>T_{i}$ for any $1 \leq i \leq 7$. Let g_{i}^{\prime} be the generators of I_{0}. In the case $T_{2} T_{5}<T_{6} T_{7}$ we have $f_{2}=-T_{4} T_{5} T_{7} g_{1}^{\prime}+g_{2}^{\prime}$. In particular, we have $\langle\mathcal{G}\rangle=I_{0}$ in both cases. The single S-polynomial is

$$
S\left(f_{1}, f_{2}\right)= \begin{cases}T_{1}^{a} T_{3} T_{6} T_{7}-T_{2} T_{4} T_{5}^{2} T_{6} T_{7}^{2}, & T_{2} T_{5}>T_{6} T_{7} \\ T_{1}^{a} T_{3} T_{5} T_{2}+T_{2} T_{4} T_{5}^{2} T_{6} T_{7}^{2}, & T_{2} T_{5}<T_{6} T_{7}\end{cases}
$$

The division algorithm, see [26; Ch. 2, Thm. 3], returns the combinations

$$
S\left(f_{1}, f_{2}\right)= \begin{cases}-T_{4} T_{5} T_{6} T_{7}^{2} f_{1}+T_{6} T_{7} f_{2}, & T_{2} T_{5}>T_{6} T_{7} \\ T_{4} T_{5}^{2} T_{7} T_{2} f_{1}+T_{5} T_{2} f_{2}, & T_{2} T_{5}<T_{6} T_{7}\end{cases}
$$

By the Buchberger criterion, see [26; Ch. 2, Thm. 6], \mathcal{G} is a Gröbner basis for I_{0} with respect to each of the chosen orderings. By [90; Lem. 12.1], we know that

$$
\left\{\frac{f}{T_{i}^{k_{i}(f)}} ; f \in \mathcal{G}\right\}=\mathcal{G}, \quad k_{i}(f):=\max \left(n \in \mathbb{Z}_{\geq 0} ; T_{i}^{n} \mid f\right)
$$

is a Gröbner basis for $I_{0}: T_{i}^{\infty}$ for each $1 \leq i \leq 7$. In particular, $I_{0}=I_{0}: T_{i}^{\infty}$ for each i. As in $[90$, p. 114] , the claim follows from

$$
I_{0}:\left(T_{1} \cdots T_{7}\right)^{\infty}=\left(\left(\cdots\left(I_{0}: T_{1}^{\infty}\right) \cdots\right): T_{7}^{\infty}\right)=I_{0}
$$

Moreover, no two variables T_{i}, T_{j} are associated since $\operatorname{deg}\left(T_{i}\right) \neq \operatorname{deg}\left(T_{j}\right)$ for all $i \neq j$. Also, $T_{10} \nmid T_{i}$ for all $i<10$ since each of the intersections

$$
\begin{aligned}
& \bar{X}_{2} \cap V\left(T_{1}, T_{10}\right)=V\left(T_{10}, T_{1}, T_{3} T_{6}+T_{7} T_{8}, T_{2}^{a} T_{4}+T_{5} T_{6} T_{7} T_{8}^{2}\right), \\
& \bar{X}_{2} \cap V\left(T_{2}, T_{10}\right)=V\left(T_{10}, T_{2}, T_{3} T_{6}+T_{7} T_{8}, T_{5} T_{6} T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{3}, T_{10}\right)=V\left(T_{10}, T_{3}, T_{7} T_{8}, T_{2} T_{4}\right), \\
& \bar{X}_{2} \cap V\left(T_{4}, T_{10}\right)=V\left(T_{10}, T_{4}, T_{3} T_{6}+T_{7} T_{8}, T_{5} T_{6} T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)=V\left(T_{10}, T_{5}, T_{3} T_{6}+T_{7} T_{8}, T_{2} T_{4}\right), \\
& \bar{X}_{2} \cap V\left(T_{7}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{3} T_{6}, T_{2} T_{4}\right), \\
& \bar{X}_{2} \cap V\left(T_{8}, T_{10}\right)=V\left(T_{10}, T_{8}, T_{3} T_{6}, T_{2} T_{4}\right)
\end{aligned}
$$

is of dimension six. As in previous cases, this is done by a computer check or using Lemma.5.3.3: The missing cases have been treated before. By Theorem 4.2.6, R_{2} is the Cox ring of the performed modification with a Gale dual matrix of P_{2} as degree matrix. Observe that we performed the desired blow up. The ideal

$$
\begin{aligned}
I^{\prime} & :=\left\langle T_{1}, T_{9}, h_{2}, h_{1}-T_{7} T_{8}\right\rangle \\
& =\left\langle T_{1}, T_{9}, T_{3} T_{6}+T_{7} T_{8}, T_{2}^{a} T_{4}+T_{5} T_{6} T_{7} T_{8}^{2}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
\end{aligned}
$$

is prime since $\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I^{\prime}$ is isomorphic to $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] /\left(I_{2}+\left\langle T_{10}\right\rangle\right)$ which is an integral domain. Let $z:=(0,1,1,1,1,1,-1,1,0) \in \mathbb{K}^{9}$ be Cox coordinates for $\iota\left(q_{4}\right) \in X_{1}^{\prime}$. Then $z \in V\left(\mathbb{K}^{9} ; I^{\prime}\right)$ and

$$
\operatorname{dim}\left(V\left(\mathbb{K}^{9} ; I^{\prime}\right)\right)=-1+\operatorname{dim}\left(\bar{X}_{2} \cap V\left(T_{1}, T_{10}\right)\right)=5
$$

by the previous dimension arguments. By Lemma 5.2 .15 , the performed modification was the claimed blow up. The Cox ring and degree matrix of the resulting surface $X_{2}=\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} \star i i i\right)$ are

$$
\left.\begin{array}{rl}
\mathcal{R}\left(X_{2}\right) & =\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] /\left\langle\begin{array}{r}
T_{1} T_{2}^{a-1} T_{4} T_{10}-T_{3} T_{6}-T_{7} T_{8}, \\
T_{2}^{a} T_{4}+T_{5} T_{6} T_{7} T_{8}^{2}-T_{9} T_{10}
\end{array}\right\rangle, \\
& {\left[\begin{array}{rrrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & -a & - \\
0 & 0 & 1 & 0 & 0 & 0 & 2 & -1 & 2 a-1 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 3 & -2 & 0
\end{array}\right]} \\
\hline 1
\end{array}\right] .
$$

Observe that X_{2} is not a \mathbb{K}^{*}-surface. To this end, we claim that the graph of exceptional curves $G_{X_{2}}$ is as follows. However, note that it suffices to prove the existence of the subgraph induced by the vertices T_{i} with $i \in\{1,4,5,6,8,10\}$.

By Remark 5.3.7: and the fact that $V\left(X_{2} ; T_{10}\right)$ is the exceptional divisor of the last blow up, we know that the curves corresponding to the vertices are negative. The existence of the edges, i.e., the fact that the curves meet, is directly seen from the blow up sequence. By Lemma $5.12, X_{2}$ cannot be a \mathbb{K}^{*}-surface.
For the fifth configuration, we treat blow ups of X_{1} in a point in the union of the exceptional divisors

$$
V\left(X_{1} ; T_{5}\right) \cup V\left(X_{1} ; T_{6}\right) \cup V\left(X_{1} ; T_{8}\right)
$$

Note that we do not have to blow up a point in the parabolic fixed point curve $V\left(X_{1} ; T_{5}\right)$ by Lemma 5.4.11; By Remark 5.3.5; it suffices to consider the points

$$
q_{5}:=[1,1,1,1,1,0,1,1], \quad q_{5}^{\prime}:=[1,1,1,1,1,1,1,0] \in X_{1}
$$

Lemma 5.2.16 ensures their existence. We first blow up X_{1} in q_{5}. Choose in $\mathbb{K}\left[T_{1}, \ldots, \bar{T}_{8}\right]$ the polynomial $h_{2}:=T_{1}^{2} T_{2}^{a-2} T_{4} T_{5} T_{8}-T_{3}$ for the embedding $\bar{\iota}_{2}: \mathbb{K}^{8} \rightarrow$ \mathbb{K}^{9}. Let Q_{1} be the degree matrix of $\mathcal{R}\left(X_{1}\right)$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[Q_{1} \left\lvert\, \begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right.\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrrrr}
1 & a-1 & 0 & 1 & 0 & 0 & -1 & -1 & 0 \\
0 & a & 0 & 1 & -1 & 0 & -2 & -3 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 & 1
\end{array}\right] .
$$

For the blow up of X_{1}^{\prime} in $\iota\left(q_{5}\right)=[1,1,1,1,1,0,1,1,0]$, we determine the stellar subdivision of Σ_{1}^{\prime} at $v:=(0,1,-1,2) \in \mathbb{Z}^{4}$. Write $P_{2}=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ of \bar{X}_{2} is generated by

$$
\begin{gathered}
g_{1}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{1} T_{2}^{a-1} T_{4}-T_{3} T_{6}-T_{7} T_{8}\right)=T_{1} T_{2}^{a-1} T_{4}-T_{3} T_{6} T_{10}-T_{7} T_{8}, \\
g_{2}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{9}-h_{2}\right)=T_{9} T_{10}-T_{1}^{2} T_{2}^{a-2} T_{4} T_{5} T_{8}+T_{3} .
\end{gathered}
$$

We show that I_{2} is saturated with respect to T_{10} by showing that I_{2} is prime. Consider the ideal

$$
I_{2}^{\prime}:=\left\langle T_{1} T_{2}^{a-1} T_{3}-T_{9} T_{5} T_{1}^{2} T_{2}^{a-2} T_{3} T_{4} T_{7}+T_{9}^{2} T_{5} T_{8}-T_{6} T_{7}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
$$

obtained by substitution of $T_{3}=-g_{2}+T_{3}$ in g_{1} and replacing all T_{i} with T_{i-1} if $i>3$. By Lemma 5.2.17; I_{0} is prime. This implies primality of I_{2}, see Lemma 5.4; Similarly, by Lemma 5.4.4; the variable T_{10} defines a prime element in $R_{2}=$ $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$ since the ideal

$$
I_{2}^{\prime}+\left\langle T_{9}\right\rangle=\left\langle T_{9}, T_{1} T_{2}^{a-1} T_{3}-T_{6} T_{7}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
$$

is prime by Lemma 5.17 ; Moreover, no two variables T_{i}, T_{j} are associated since $\operatorname{deg}\left(T_{i}\right) \neq \operatorname{deg}\left(T_{j}\right)$ for all $i \neq j$. Also, we have $T_{10} \nmid T_{i}$ for each $i<10$: all intersections

$$
\begin{aligned}
& \bar{X}_{2} \cap V\left(T_{1}, T_{10}\right)=V\left(T_{10}, T_{1}, T_{3}, T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{2}, T_{10}\right)=V\left(T_{10}, T_{2}, T_{3}, T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{3}, T_{10}\right)=V\left(T_{10}, T_{3}, T_{1} T_{2}^{a-1} T_{4}-T_{7} T_{8}, T_{1} T_{2} T_{4} T_{5} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{4}, T_{10}\right)=V\left(T_{10}, T_{4}, T_{3}, T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)=V\left(T_{10}, T_{5}, T_{3}, T_{1} T_{2}^{a-1} T_{4}-T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{6}, T_{10}\right)=V\left(T_{10}, T_{6}, T_{1} T_{2}^{a-1} T_{4}-T_{7} T_{8},-T_{1}^{2} T_{2}^{a-2} T_{4} T_{5} T_{8}+T_{3}\right), \\
& \bar{X}_{2} \cap V\left(T_{7}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{1} T_{2} T_{4}, T_{3}\right), \\
& \bar{X}_{2} \cap V\left(T_{8}, T_{10}\right)=V\left(T_{10}, T_{8}, T_{3}, T_{1} T_{2} T_{4}\right), \\
& \bar{X}_{2} \cap V\left(T_{9}, T_{10}\right)=V\left(T_{10}, T_{9}, T_{1} T_{2}^{a-1} T_{4}-T_{7} T_{8},-T_{1}^{2} T_{2}^{a-2} T_{4} T_{5} T_{8}+T_{3}\right)
\end{aligned}
$$

are six-dimensional; this can be seen using Lemmas 5.4.4 and Lemma 5.3.3: Theorem 4.2.6: shows that $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$ is the Cox ring of the performed modification with a Gale dual matrix of P_{2} as degree matrix. We now show that we performed the desired blow up. The ideal

$$
\begin{aligned}
I^{\prime} & :=\left\langle T_{6}, T_{9}, h_{2}, h_{1}-T_{7} T_{8}\right\rangle \\
& =\left\langle T_{6}, T_{9}, T_{1} T_{2}^{a-1} T_{4}-T_{7} T_{8}, T_{1}^{2} T_{2}^{a-2} T_{4} T_{5} T_{8}-T_{3}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
\end{aligned}
$$

is prime by Lemmas 5.4.4 and 5.17 , Let $z:=(1,1,1,1,1,0,1,1,0) \in \mathbb{K}^{9}$ be Cox coordinates for $\iota\left(q_{5}\right) \in X_{1}^{\prime}$. Then $z \in V\left(\mathbb{K}^{9} ; I^{\prime}\right)$ and

$$
\operatorname{dim}\left(V\left(\mathbb{K}^{9} ; I^{\prime}\right)\right)=-1+\operatorname{dim}\left(\bar{X}_{2} \cap V\left(T_{6}, T_{10}\right)\right)=5
$$

By Lemma 5.2 .15 , the performed modification was the claimed blow up. Using Algorithm 4.3.3; we eliminate the equation $T_{3}=-g_{2}+T_{3}$ and obtain the graded ring $R_{2}^{\prime}:=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I_{2}^{\prime}$ as Cox ring of the blow up X_{2} of X_{1} in q_{5}. Its degree matrix Q_{2}^{\prime} is obtained by removing the third column of a Gale dual matrix of P_{2}, i.e.,

$$
Q_{2}^{\prime}=\left[\begin{array}{lllllrrrr}
1 & 0 & 0 & 0 & 0 & 3 & -2 & -1 & 1 \\
0 & 1 & 0 & 0 & 0 & 2 a-3 & -a+2 & -a+1 & a-1 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 & 2 & -1 \\
0 & 0 & 1 & 0 & 0 & 2 & -1 & -1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -1
\end{array}\right]
$$

Note that X_{2} is isomorphic to a \mathbb{K}^{*}-surface Y. By Lemma 5.1 it suffices to show that $\mathcal{R}\left(X_{2}\right)$ is isomorphic to

$$
\mathcal{R}(Y):=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{1} T_{2}^{a-1} T_{3}+T_{9}^{2} T_{5} T_{8}-T_{6} T_{7}\right\rangle
$$

with the same degree matrix Q_{2}^{\prime}. The isomorphism $\mathcal{R}(Y) \rightarrow \mathcal{R}\left(X_{2}\right)$ is induced by the \mathbb{Z}^{6}-graded homomorphism

$$
\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{9}\right], \quad T_{i} \mapsto \begin{cases}T_{6}+T_{9} T_{5} T_{1}^{2} T_{2}^{a-2} T_{3} T_{4}, & i=6, \\ T_{i}, & \text { else } .\end{cases}
$$

For the blow up of X_{1} in q_{5}^{\prime} we choose in $\mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ the polynomial $h_{2}:=$ $T_{1}^{2} T_{2}^{a-2} T_{4} T_{5} T_{6}-T_{7}$ for the embedding $\bar{\iota}_{2}: \mathbb{K}^{8} \rightarrow \mathbb{K}^{9}$. Let Q_{1} be the degree matrix
of $\mathcal{R}\left(X_{1}\right)$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[Q_{1} \left\lvert\, \begin{array}{r}
3 \\
2 a-3 \\
-1 \\
2 \\
1
\end{array}\right.\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrrrr}
1 & a-1 & 0 & 1 & 0 & 0 & 0 & -1 & -1 \\
0 & a & 0 & 1 & -1 & -1 & 0 & -2 & -1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1
\end{array}\right]
$$

For the blow up of X_{1}^{\prime} in $\iota\left(q_{5}^{\prime}\right)=[1,1,1,1,1,1,1,0,0]$ we determine the stellar subdivision $\Sigma_{2} \rightarrow \Sigma_{1}^{\prime}$ at the sum $v:=(-2,-3,-2,-1) \in \mathbb{Z}^{4}$ of the last two columns of P_{1}^{\prime}. Define $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ of \bar{X}_{2} is generated by

$$
\begin{gathered}
g_{1}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{1} T_{2}^{a-1} T_{4}-T_{3} T_{6}-T_{7} T_{8}\right)=T_{1} T_{2}^{a-1} T_{4}-T_{3} T_{6}-T_{7} T_{8} T_{10}, \\
g_{2}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{9}-h_{2}\right)=T_{9} T_{10}-T_{1}^{2} T_{2}^{a-2} T_{4} T_{5} T_{6}+T_{7} .
\end{gathered}
$$

We show that I_{2} is prime. Note that this implies that I_{2} is saturated with respect to T_{10}. Consider the ideal

$$
I_{2}^{\prime}:=\left\langle T_{1} T_{2}^{a-1} T_{4}-T_{3} T_{6}-T_{7} T_{9} T_{1}^{2} T_{2}^{a-2} T_{4} T_{5} T_{6}+T_{7} T_{9}^{2} T_{8}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
$$

obtained by substitution of $T_{7}=-g_{2}+T_{7}$ in g_{1} and replacing all T_{i} with T_{i-1} if $i>7$. By Lemma 5.4.4; the ideal I_{2} is prime if the ideal I_{2}^{\prime} is. The latter follows from Lemma 5.2.17, Úsing again Lemma 5.4.4, the variable T_{10} defines a prime element in $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$ since the ideal

$$
I_{2}^{\prime}+\left\langle T_{9}\right\rangle=\left\langle T_{9}, T_{1} T_{2}^{a-1} T_{4}-T_{3} T_{6}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right] .
$$

is prime, see Lemma 5.17 ; Furthermore, as the degrees $\operatorname{deg}\left(T_{i}\right)$ are pairwise distinct, no two variables T_{i}, T_{j} are associated for $i \neq j$. Also, $T_{i} \nmid T_{10}$ for all $i<10$: the vanishing sets

$$
\begin{aligned}
& \bar{X}_{2} \cap V\left(T_{1}, T_{10}\right)=V\left(T_{10}, T_{1}, T_{7}, T_{3} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{2}, T_{10}\right)=V\left(T_{10}, T_{2}, T_{7}, T_{3} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{3}, T_{10}\right)=V\left(T_{10}, T_{3}, T_{1} T_{2} T_{4}, T_{7}\right), \\
& \bar{X}_{2} \cap V\left(T_{4}, T_{10}\right)=V\left(T_{10}, T_{4}, T_{7}, T_{3} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)=V\left(T_{10}, T_{5}, T_{7}, T_{1} T_{2}^{a-1} T_{4}-T_{3} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{6}, T_{10}\right)=V\left(T_{10}, T_{6}, T_{7}, T_{1} T_{2} T_{4}\right), \\
& \bar{X}_{2} \cap V\left(T_{7}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{1} T_{2}^{a-1} T_{4}-T_{3} T_{6}, T_{1} T_{2} T_{4} T_{5} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{8}, T_{10}\right)=V\left(T_{10}, T_{8}, T_{1} T_{2}^{a-1} T_{4}-T_{3} T_{6},-T_{1}^{2} T_{2}^{a-2} T_{4} T_{5} T_{6}+T_{7}\right), \\
& \bar{X}_{2} \cap V\left(T_{9}, T_{10}\right)=V\left(T_{10}, T_{9}, T_{1} T_{2}^{a-1} T_{4}-T_{3} T_{6},-T_{1}^{2} T_{2}^{a-2} T_{4} T_{5} T_{6}+T_{7}\right)
\end{aligned}
$$

are all six-dimensional; this can be seen using Lemmas 5.4.4 and 5.3.3. By Theorem $4.2, R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$ is the Cox ring of the performed modification with a Gale dual matrix of P_{2} as its degree matrix. We now show that we performed the desired blow up. The ideal

$$
\begin{aligned}
I^{\prime} & :=\left\langle T_{8}, T_{9}, h_{2}, h_{1}-T_{7} T_{8}\right\rangle \\
& =\left\langle T_{8}, T_{9}, T_{1} T_{2}^{a-1} T_{4}-T_{3} T_{6},-T_{1}^{2} T_{2}^{a-2} T_{4} T_{5} T_{6}+T_{7}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
\end{aligned}
$$

is prime by Lemmas 5.4.4 and 5.2.17; Let $z:=(1,1,1,1,1,1,1,0,0) \in \mathbb{K}^{9}$ be Cox coordinates for $\iota\left(q_{5}^{\prime}\right) \in X_{1}^{\prime}$. Then $z \in V\left(\mathbb{K}^{9} ; I^{\prime}\right)$ and

$$
\operatorname{dim}\left(V\left(\mathbb{K}^{9} ; I^{\prime}\right)\right)=-1+\operatorname{dim}\left(\bar{X}_{2} \cap V\left(T_{9}, T_{10}\right)\right)=5
$$

where we used the previous dimension computations. By Lemma 5.2.15; the performed modification was the claimed blow up. Using Algorithm 4.3.3, we eliminate the equation $T_{7}=-g_{2}+T_{7}$ and obtain the \mathbb{Z}^{6}-graded ring $R_{2}^{\prime}:=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I_{2}^{\prime}$ as

Cox ring of the blow up X_{2} of X_{1} in q_{5}^{\prime}. Its degree matrix Q_{2}^{\prime} is given by removing the seventh column of a Gale dual matrix of P_{2}, i.e.,

$$
Q_{2}^{\prime}=\left[\begin{array}{lllllrrrr}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 5 & -2 \\
0 & 1 & 0 & 0 & 0 & a-1 & 0 & 3 a-5 & -a+2 \\
0 & 0 & 1 & 0 & 0 & -1 & 0 & -2 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 3 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1
\end{array}\right]
$$

We show that X_{2} is isomorphic to a \mathbb{K}^{*}-surface Y. By Lemma 5.1.5 it suffices to given an isomorphism between $\mathcal{R}\left(X_{2}\right)$ and

$$
\mathcal{R}(Y):=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{1} T_{2}^{a-1} T_{4}-T_{3} T_{6}+T_{7} T_{9}^{2} T_{8}\right\rangle
$$

where the degree matrix of $\mathcal{R}(Y)$ is again Q_{2}^{\prime}. The isomorphism $\mathcal{R}(Y) \rightarrow \mathcal{R}\left(X_{2}\right)$ is induced by the \mathbb{Z}^{6}-graded homomorphism

$$
\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{9}\right], \quad T_{i} \mapsto \begin{cases}T_{3}+T_{7} T_{9} T_{1}^{2} T_{2}^{a-2} T_{4} T_{5}, & i=3 \\ T_{i}, & \text { else }\end{cases}
$$

(XVI) Blow ups of $X_{1}:=\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} i x\right)$. Let $a \geq 3$. Recall from the proofs of Proposition 5.2.8 and Theorem 5.3.1 the point configuration and blow up sequence

$$
X_{1} \xrightarrow{\pi_{3}} \mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i i\right)^{\prime} \stackrel{\iota_{1}}{\leftarrow} \mathrm{Bl} \mathbb{F}_{a}\left(\star^{2} i i\right) \xrightarrow{\pi_{2}} \mathrm{Bl} \mathbb{F}_{a}(\star i) \xrightarrow{\pi_{1}} \mathbb{F}_{a}
$$

where the embedding ι_{1} is as in Setting 4.2.9 with

$$
\bar{\iota}_{1}: \mathbb{K}^{6} \rightarrow \mathbb{K}^{7}, \quad z \mapsto\left(z, h_{1}(z)\right), \quad h_{1}:=T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{3}^{2} T_{5}
$$

where $h_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{6}\right]$ and the blow ups π_{i} are

$$
\begin{gathered}
\pi_{3}([z])=\left[z_{1}, \ldots, z_{5}, z_{6} z_{8}, z_{7} z_{8}\right] \\
\pi_{2}([z])=\left[z_{1} z_{6}, z_{2}, z_{3}, z_{4}, z_{5} z_{6}\right], \quad \pi_{1}([z])=\left[z_{1} z_{5}, z_{2}, z_{3} z_{5}, z_{4}\right] .
\end{gathered}
$$

The exceptional divisors of the first, second and third blow up are

$$
V\left(X_{1} ; T_{5}\right), \quad V\left(X_{1} ; T_{6}\right), \quad V\left(X_{1} ; T_{8}\right)
$$

On X_{1}, we want to blow up a point which, together with the exceptional divisors, projects to one of the configurations
(3)
${ }^{(3)} \square$
(3)
${ }^{(3)} \bullet \square$
(4)

For the first three configurations we blow up X_{1} in the points

$$
[1,0,0,1,1,1,0,1], \quad[0,1,1,0,1,1,-1,1], \quad[1,0,1,0,1,1,-1,1] \in X_{1}
$$

which project under $\pi_{1} \circ \pi_{2} \circ \iota_{1}^{-1} \circ \pi_{3}$ to $[1,0,0,1],[0,1,1,0]$ and $[1,0,1,0] \in \mathbb{F}_{a}$ respectively. By a stepwise application of Lemma 5.4.5: and Lemma 5.2.16; all points exist. By Lemma 5.11 , all three surfaces will be \mathbb{K}^{*}-surfaces.
The blow up of the fourth configuration is the blow up of X_{1} in the point

$$
q_{4}:=[0,1,1,1,1,1,-1,1] \in X_{1}, \quad \pi_{1} \circ \pi_{2} \circ \iota_{1}^{-1} \circ \pi_{3}\left(q_{4}\right)=[0,1,1,1] \in \mathbb{F}_{a} .
$$

Note that q_{4} exists by Lemma 5.2.16: The main steps are as in previous cases. Choose in $\mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ the polynomial $h_{2}:=T_{2}^{a} T_{4}-T_{3} T_{5} T_{6} T_{8}$ for the embedding $\bar{\iota}_{2}: \mathbb{K}^{8} \rightarrow \mathbb{K}^{9}$. Let Q_{1} be the degree matrix of $\mathcal{R}\left(X_{1}\right)$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[Q_{1} \begin{array}{l|l}
0 \\
a \\
0 \\
0 \\
1 \\
0
\end{array}\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrrrr}
1 & a-1 & 0 & 1 & 0 & 0 & -1 & -1 & 1 \\
0 & a & 0 & 1 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 & -1 & -1 & -2 & 1 \\
0 & 0 & 0 & 0 & 1 & 2 & 1 & 3 & -2
\end{array}\right] .
$$

For the blow up of X_{1}^{\prime} in the point $\iota\left(q_{4}\right)=[0,1,1,1,1,1,-1,1,0]$ we determine the stellar subdivision of Σ_{1}^{\prime} at $v:=(2,-1,1,-2) \in \mathbb{Z}^{4}$. Define the enlarged matrix $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ of \bar{X}_{2} is generated by

$$
\begin{gathered}
g_{1}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{3}^{2} T_{5}-T_{7} T_{8}\right)=T_{1} T_{2}^{2 a-1} T_{4}^{2} T_{10}-T_{3}^{2} T_{5}-T_{7} T_{8} \\
g_{2}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{9}-h_{2}\right)=T_{9} T_{10}-T_{2}^{a} T_{4}+T_{3} T_{5} T_{6} T_{8}
\end{gathered}
$$

We show that $I_{2}=I_{2}: T_{10}^{\infty}$ by proving that I_{2} is a prime ideal. The grading is pointed by Remark 4.10. Consider the open subset

$$
U:=\left\{x \in \bar{X}_{2} ; x_{8} x_{9} \neq 0 \text { or } x_{7} x_{10} \neq 0\right\} \subseteq \bar{X}_{2}=V\left(\mathbb{K}^{10} ; I_{2}\right)
$$

Inspecting the indices $i=1,2$ and $j=7,10$ as well as $i=1,2$ and $j=8,9$ we see that the rank of the Jacobian matrix $\left(\partial g_{i} / \partial T_{j}\right)_{i, j}(u)$ is two for all $u \in U$. The complement $\bar{X}_{2} \backslash U$ is contained in the union of the 8-dimensional subspaces

$$
V\left(\mathbb{K}^{10} ; T_{8}, T_{7}\right), \quad V\left(\mathbb{K}^{10} ; T_{8}, T_{10}\right), \quad V\left(\mathbb{K}^{10} ; T_{9}, T_{7}\right), \quad V\left(\mathbb{K}^{10} ; T_{9}, T_{10}\right)
$$

Each of the following intersections is of dimension six

$$
\begin{aligned}
\bar{X}_{2} \cap V\left(T_{8}, T_{7}\right) & =V\left(T_{8}, T_{7}, T_{1} T_{2}^{2 a-1} T_{4}^{2} T_{10}-T_{3}^{2} T_{5}, T_{9} T_{10}-T_{2}^{a} T_{4}\right), \\
\bar{X}_{2} \cap V\left(T_{8}, T_{10}\right) & =V\left(T_{8}, T_{10}, T_{3} T_{5}, T_{2} T_{4}\right), \\
\bar{X}_{2} \cap V\left(T_{9}, T_{7}\right) & =V\left(T_{9}, T_{7}, T_{1} T_{2}^{2 a-1} T_{4}^{2} T_{10}-T_{3}^{2} T_{5},-T_{2}^{a} T_{4}+T_{3} T_{5} T_{6} T_{8}\right), \\
\bar{X}_{2} \cap V\left(T_{9}, T_{10}\right) & =V\left(T_{9}, T_{10},-T_{3}^{2} T_{5}-T_{7} T_{8},-T_{2}^{a} T_{4}+T_{3} T_{5} T_{6} T_{8}\right)
\end{aligned}
$$

Note that for the first, third and fourth variety we used Lemma 5.3.3 with the respective exponent matrices

$$
\left.\begin{array}{l}
{\left[\begin{array}{rrrrrrrrrr}
1 & 2 a-1 & -2 & 2 & -1 & 0 & 0 & 0 & 0 & 1 \\
0 & -a & 0 & -1 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]} \\
{\left[\begin{array}{rrrrrrrrrr}
1 & 2 a-1 & -2 & 2 & -1 & 0 & 0 & 0 & 0 & 1 \\
0 & a & -1 & 1 & -1 & -1 & 0 & -1 & 0 & 0
\end{array}\right]} \\
{\left[\begin{array}{rrrrrrrrr}
0 & 0 & 2 & 0 & 1 & 0 & -1 & -1 & 0 \\
0 & a & -1 & 1 & -1 & -1 & 0 & -1 & 0
\end{array} 0\right.}
\end{array}\right]
$$

to see that the dimension is six on the respective tori

$$
\mathbb{T}^{10} \cdot(1, \ldots, 1,0,0,1,1), \quad \mathbb{T}^{10} \cdot(1, \ldots, 1,0,1,0), \quad \mathbb{T}^{10} \cdot(1, \ldots, 1,0,0)
$$

and then directly checks that the dimension is at most six on all smaller tori. Therefore, $\operatorname{dim}\left(\bar{X}_{2} \backslash U\right) \leq 6$. Since \bar{X}_{2} is of dimension at least eight, the codimension of $\bar{X}_{2} \backslash U$ in \bar{X}_{2} is at least two. By Lemma 5.4.3; this shows that I_{2} is prime. We now prove that the variable T_{10} defines a prime element in $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$. Consider the ideals

$$
\begin{aligned}
I_{2}+\left\langle T_{10}\right\rangle & =\left\langle T_{10},-T_{3}^{2} T_{5}-T_{7} T_{8},-T_{2}^{a} T_{4}+T_{3} T_{5} T_{6} T_{8}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right] \\
I_{0} & :=\left\langle T_{2}^{2} T_{4}+T_{6} T_{7}, T_{1}^{a} T_{3}-T_{2} T_{4} T_{5} T_{7}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{7}\right]
\end{aligned}
$$

Since $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] /\left(I_{2}+\left\langle T_{10}\right\rangle\right)$ is isomorphic to $\mathbb{K}\left[T_{1}, \ldots, T_{7}\right] / I_{0}$ it suffices to show that I_{0} is prime. The ideal $\left\langle I_{0}\right\rangle \subseteq \mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{7}^{ \pm 1}\right]$ is prime since the matrix consisting of the exponents of the binomial generators

$$
\left[\begin{array}{rrrrrrr}
0 & 2 & 0 & 1 & 0 & -1 & -1 \\
a & -1 & 1 & -1 & -1 & 0 & -1
\end{array}\right]
$$

has a Smith normal form of shape $\left[E_{2}, 0, \ldots, 0\right]$ where E_{2} is the 2×2 unit matrix, compare [37]. By Remark 5.4.14; I_{0} is prime if $I_{0}=I_{0}:\left(T_{1} \cdots T_{7}\right)^{\infty}$. In a first step we show that the set of generators

$$
\mathcal{G}:=\left\{f_{1}, f_{2}\right\}:=\left\{T_{2}^{2} T_{4}+T_{6} T_{7}, T_{1}^{a} T_{3}-T_{2} T_{4} T_{5} T_{7}\right\}
$$

already is a Gröbner basis for I_{0} with respect to the degree reverse lexicographical ordering for any ordering of the variables of the kind $T_{1}>\ldots>T_{i-1}>T_{i+1}>$
$\ldots>T_{7}>T_{i}$ with $1 \leq i \leq 7$. We verified the case $3 \leq a \leq 4$ by a computer check, so assume $a \geq 5$. The single S-polynomial is

$$
S\left(f_{1}, f_{2}\right)=T_{1}^{a} T_{3} T_{6} T_{7}+T_{2}^{3} T_{4}^{2} T_{5} T_{7}
$$

The division algorithm, see [26, Ch. 2, Thm. 3], returns the combination

$$
S\left(f_{1}, f_{2}\right)=T_{2} T_{4} T_{5} T_{7} f_{1}+T_{6} T_{7} f_{2}
$$

Using the Buchberger criterion, see [26, Ch. 2, Thm. 6], \mathcal{G} is a Gröbner basis for I_{0} with respect to each of the specified orderings. By [90; Lem. 12.1], we know that

$$
\left\{\frac{f}{T_{i}^{k_{i}(f)}} ; f \in \mathcal{G}\right\}=\mathcal{G}, \quad k_{i}(f):=\max \left(n \in \mathbb{Z}_{\geq 0} ; T_{i}^{n} \mid f\right)
$$

is a Gröbner basis for $I_{0}: T_{i}^{\infty}$ for each $1 \leq i \leq 7$. In particular $I_{0}=I_{0}: T_{i}^{\infty}$ for each i. As in $[90$, p. 114] , the claim follows from

$$
I_{0}: T_{1} \cdots T_{7}^{\infty}=\left(\left(\cdots\left(I_{0}: T_{1}^{\infty}\right) \cdots\right): T_{7}^{\infty}\right)=I_{0}
$$

We have shown that T_{10} is prime. Moreover, no two variables T_{i}, T_{j} are associated since $\operatorname{deg}\left(T_{i}\right) \neq \operatorname{deg}\left(T_{j}\right)$ for $i \neq j$. Also, observe that $T_{10} \nmid T_{i}$ for all $i<10$. The intersections

$$
\begin{aligned}
& \bar{X}_{2} \cap V\left(T_{1}, T_{10}\right)=V\left(T_{10}, T_{1},-T_{3}^{2} T_{5}-T_{7} T_{8},-T_{2}^{a} T_{4}+T_{3} T_{5} T_{6} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{2}, T_{10}\right)=V\left(T_{10}, T_{2},-T_{3}^{2} T_{5}-T_{7} T_{8}, T_{3} T_{5} T_{6} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{3}, T_{10}\right)=V\left(T_{10}, T_{3}, T_{7} T_{8}, T_{2} T_{4}\right), \\
& \bar{X}_{2} \cap V\left(T_{4}, T_{10}\right)=V\left(T_{10}, T_{4},-T_{3}^{2} T_{5}-T_{7} T_{8}, T_{3} T_{5} T_{6} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)=V\left(T_{10}, T_{5}, T_{7} T_{8}, T_{2} T_{4}\right), \\
& \bar{X}_{2} \cap V\left(T_{6}, T_{10}\right)=V\left(T_{10}, T_{6},-T_{3}^{2} T_{5}-T_{7} T_{8}, T_{2} T_{4}\right), \\
& \bar{X}_{2} \cap V\left(T_{7}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{3} T_{5}, T_{2} T_{4}\right)
\end{aligned}
$$

are all six-dimensional; as in previous cases, this can be seen by computer checks or using Lemma 5.3.3; The missing cases have been treated before. By Theorem 4.2 .6 , $R_{2}=\mathbb{K}\left[T_{1}, \ldots, \dot{T}_{10}\right] / I_{2}$ is the Cox ring of the performed modification. Its degree matrix is listed below. We now show that we performed the desired blow up. The ideal

$$
\begin{aligned}
I^{\prime} & :=\left\langle T_{1}, T_{9}, h_{2}, h_{1}-T_{7} T_{8}\right\rangle \\
& =\left\langle T_{1}, T_{9}, T_{3}^{2} T_{5}+T_{7} T_{8}, T_{2}^{a} T_{4}-T_{3} T_{5} T_{6} T_{8}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
\end{aligned}
$$

is prime since $\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I^{\prime}$ is isomorphic to $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] /\left(I_{2}+\left\langle T_{10}\right\rangle\right)$ which is an integral domain. Let $z:=(0,1,1,1,1,1,-1,1,0) \in \mathbb{K}^{9}$ be Cox coordinates for $\iota\left(q_{4}\right) \in X_{1}^{\prime}$. Then $z \in V\left(\mathbb{K}^{9} ; I^{\prime}\right)$ and

$$
\operatorname{dim}\left(V\left(\mathbb{K}^{9} ; I^{\prime}\right)\right)=-1+\operatorname{dim}\left(\bar{X}_{2} \cap V\left(T_{1}, T_{10}\right)\right)=5
$$

by the previous dimension computations. By Lemma 5.2.15; the performed modification was the claimed blow up. The Cox ring and degree matrix of the resulting surface $X_{2}=\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} \star i v\right)$ are

$$
\begin{aligned}
& \mathcal{R}\left(X_{2}\right)=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] /\left\langle\begin{array}{l}
T_{1} T_{2}^{2 a-1} T_{4}^{2} T_{10}-T_{3}^{2} T_{5}-T_{7} T_{8}, \\
T_{9} T_{10}-T_{2}^{a} T_{4}+T_{3} T_{5} T_{6} T_{8}
\end{array}\right\rangle, \\
& {\left[\begin{array}{rlllllrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 1 & 0 & 0 & 0 & 0 & -a & a & 3 a-1 & -2 a+1 \\
0 & 0 & 1 & 0 & 0 & 0 & 3 & -1 & -2 & 2 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & 3 & -2 \\
0 & 0 & 0 & 0 & 1 & 0 & 2 & -1 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 & 0 & 0
\end{array}\right] .}
\end{aligned}
$$

We claim that its graph $G_{X_{2}}$ of exceptional curves is as follows. Note that it suffices to prove the existence of the subgraph induced by the vertices T_{i} with $i \in\{1,4,5,6,8,10\}$.

By Remark 5. 7 and the fact that $V\left(X_{2} ; T_{10}\right)$ is the exceptional divisor of the last blow up, we know that the curves corresponding to the vertices are negative. The existence of the edges, i.e., the fact that the curves meet, is directly seen from the blow up sequence. By Lemma 5.4.12, X_{2} then cannot be a \mathbb{K}^{*}-surface.
For the fifth configuration we want to blow up a point in the union of the exceptional divisors

$$
V\left(X_{1} ; T_{5}\right) \cup V\left(X_{1} ; T_{6}\right) \cup V\left(X_{1} ; T_{8}\right)
$$

Note that we need not treat blow ups of points on the parabolic fixed point curve $V\left(X_{1} ; T_{6}\right)$, see Lemma 5.4. Hence, by Remark 5.3.5, it suffices to consider

$$
q_{5}:=[1,1,1,1,0,1,1,1], \quad q_{5}^{\prime}:=[1,1,1,1,1,1,1,0] \in X_{1} .
$$

Both points exist by Lemma 5.2.16: We first blow up X_{1} in q_{5}. Choose in $\mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ the polynomial $h_{2}:=\dot{T}_{1} T_{2}^{a-1} T_{4} T_{6} T_{8}-T_{3}$ for the embedding $\bar{\iota}_{2}: \mathbb{K}^{8} \rightarrow$ \mathbb{K}^{9}. Let Q_{1} be the degree matrix of $\mathcal{R}\left(X_{1}\right)$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[Q_{1} \left\lvert\, \begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right.\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrrrr}
1 & a-1 & 0 & 1 & 0 & 1 & 0 & 1 & -1 \\
0 & a & 0 & 1 & 0 & -1 & -1 & -2 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & -1 & 2
\end{array}\right] .
$$

For the blow up of X_{1}^{\prime} in $\iota\left(q_{5}\right)=[1,1,1,1,0,1,1,1,0]$ we perform the stellar subdivision of Σ_{1}^{\prime} at $v:=(-1,1,-1,3) \in \mathbb{Z}^{4}$. Define the enlarged matrix $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ of \bar{X}_{2} is generated by

$$
\begin{gathered}
g_{1}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{3}^{2} T_{5}-T_{7} T_{8}\right)=T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{3}^{2} T_{5} T_{10}-T_{7} T_{8}, \\
g_{2}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{9}-h_{2}\right)=T_{9} T_{10}-T_{1} T_{2}^{a-1} T_{4} T_{6} T_{8}+T_{3} .
\end{gathered}
$$

We show that I_{2} is prime. In particular, I_{2} is saturated with respect to T_{10}. By Lemma 5.4.4, the ideal I_{2} is prime if the ideal

$$
\begin{aligned}
I_{2}^{\prime}:=\langle & T_{1} T_{2}^{2 a-1} T_{3}^{2}-T_{9} T_{4} T_{1}^{2} T_{2}^{2 a-2} T_{3}^{2} T_{5}^{2} T_{7}^{2} \\
& \left.+2 T_{9}^{2} T_{4} T_{1} T_{2}^{a-1} T_{3} T_{5} T_{7} T_{8}-T_{9}^{3} T_{4} T_{8}^{2}-T_{6} T_{7}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
\end{aligned}
$$

obtained by substitution of $T_{3}=-g_{2}+T_{3}$ in g_{1} and replacing all T_{i} with T_{i-1} if $i>3$ is prime. This follows from Lemma 5.2.17; In a similar manner, by Lemma 5.4.4, the variable T_{10} defines a prime element in $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$ since the ideal

$$
I_{2}^{\prime}+\left\langle T_{9}\right\rangle=\left\langle T_{9}, T_{1} T_{2}^{2 a-1} T_{3}^{2}-T_{6} T_{7}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
$$

is prime, see Lemma 5.17 . Moreover, no two variables are associated because the degrees $\operatorname{deg}\left(T_{i}\right) \in \mathbb{Z}^{6}$ are pairwise different. Also, $T_{i} \nmid T_{10}$ for all $i<10$ since the
dimension of each of the intersections

$$
\begin{aligned}
& \bar{X}_{2} \cap V\left(T_{1}, T_{10}\right)=V\left(T_{10}, T_{1}, T_{3}, T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{2}, T_{10}\right)=V\left(T_{10}, T_{2}, T_{3}, T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{3}, T_{10}\right)=V\left(T_{10}, T_{3}, T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{7} T_{8}, T_{1} T_{2} T_{4} T_{6} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{4}, T_{10}\right)=V\left(T_{10}, T_{4}, T_{3}, T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)=V\left(T_{10}, T_{5}, T_{1} T_{2}^{a-1} T_{4} T_{6} T_{8}-T_{3}, T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{6}, T_{10}\right)=V\left(T_{10}, T_{6}, T_{3}, T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{7} T_{8}\right), \\
& \bar{X}_{2} \cap V\left(T_{7}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{3}, T_{1} T_{2} T_{4}\right), \\
& \bar{X}_{2} \cap V\left(T_{8}, T_{10}\right)=V\left(T_{10}, T_{8}, T_{3}, T_{1} T_{2} T_{4}\right), \\
& \bar{X}_{2} \cap V\left(T_{9}, T_{10}\right)=V\left(T_{10}, T_{9}, T_{1} T_{2}^{a-1} T_{4} T_{6} T_{8}-T_{3}, T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{7} T_{8}\right)
\end{aligned}
$$

is six. This can be seen using Lemma.5.4.4; By Theorem;4.2; $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$ is the Cox ring of the performed modification with a Gale dual matrix of P_{2} as degree matrix. We now show that we performed the desired blow up. The ideal

$$
\begin{aligned}
I^{\prime} & :=\left\langle T_{5}, T_{9}, h_{2}, h_{1}-T_{7} T_{8}\right\rangle \\
& =\left\langle T_{5}, T_{9}, T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{7} T_{8}, T_{1} T_{2}^{a-1} T_{4} T_{6} T_{8}-T_{3}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
\end{aligned}
$$

is prime by Lemmas 5.4.4 and 5.2.17; Let $z:=(1,1,1,1,0,1,1,1,0) \in \mathbb{K}^{9}$ be Cox coordinates for $\iota\left(q_{5}\right) \in X_{1}^{\prime}$. Then $z \in V\left(\mathbb{K}^{9} ; I^{\prime}\right)$. By the previous dimension arguments

$$
\operatorname{dim}\left(V\left(\mathbb{K}^{9} ; I^{\prime}\right)\right)=-1+\operatorname{dim}\left(\bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)\right)=5
$$

Thus, the performed modification was the claimed blow up, see Lemma 5.2.15: Using Algorithm 4.3.3, we substitute the equation $T_{3}=-g_{2}+T_{3}$ and obtain the graded ring $R_{2}^{\prime}:=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I_{2}^{\prime}$ as the Cox ring of the blow up X_{2} of X_{1} in q_{5}. Its degree matrix Q_{2}^{\prime} is given by removing the third column of a Gale dual matrix of P_{2}, i.e.,

$$
Q_{2}^{\prime}=\left[\begin{array}{lllllrrrr}
1 & 0 & 0 & 0 & 0 & 2 & -1 & -1 & 1 \\
0 & 1 & 0 & 0 & 0 & 3 a-2 & -a+1 & -2 a+1 & 2 a-1 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 & 3 & -2 \\
0 & 0 & 1 & 0 & 0 & 3 & -1 & -2 & 2 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1 & 1 & -1 & 0 & 0
\end{array}\right]
$$

Note that the blow up of X_{1} in q_{5} is isomorphic to a \mathbb{K}^{*}-surface Y. By Lemma 5.1.5: it suffices to show that $R_{2}^{\prime}=\mathcal{R}\left(X_{2}\right)$ is isomorphic to

$$
\mathcal{R}(Y):=\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] /\left\langle T_{1} T_{2}^{2 a-1} T_{3}^{2}-T_{9}^{3} T_{4} T_{8}^{2}-T_{6} T_{7}\right\rangle
$$

with the same degree matrix Q_{2}^{\prime}. The isomorphism $\mathcal{R}(Y) \rightarrow \mathcal{R}\left(X_{2}\right)$ is induced by the \mathbb{Z}^{6}-graded homomorphism

$$
\begin{gathered}
\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{9}\right], \\
T_{i} \mapsto \begin{cases}T_{6}+T_{9} T_{4} T_{1}^{2} T_{2}^{2 a-2} T_{3}^{2} T_{5}^{2} T_{7}-2 T_{9}^{2} T_{4} T_{1} T_{2}^{a-1} T_{3} T_{5} T_{8}, & i=6, \\
T_{i}, & \text { else. }\end{cases}
\end{gathered}
$$

For the blow up X_{1} in q_{5}^{\prime} we choose the polynomial $h_{2}:=T_{1} T_{2}^{a-1} T_{3} T_{4} T_{5} T_{6}-T_{7}$ in $\mathbb{K}\left[T_{1}, \ldots, T_{8}\right]$ for the embedding $\bar{\iota}_{2}: \mathbb{K}^{8} \rightarrow \mathbb{K}^{9}$. Let Q_{1} be the degree matrix of $\mathcal{R}\left(X_{1}\right)$. We have a new degree matrix Q_{1}^{\prime} and a matrix P_{1}^{\prime} whose columns are generators for the rays of the fan Σ_{1}^{\prime} of Z_{1}^{\prime} :

$$
Q_{1}^{\prime}=\left[\begin{array}{l|r}
Q_{1} & 3 a-2 \\
-1 \\
-1 \\
1
\end{array}\right], \quad P_{1}^{\prime}=\left[\begin{array}{rrrrrrrrr}
1 & a-1 & 1 & 1 & 1 & 1 & 0 & 0 & -1 \\
0 & a & 1 & 1 & 0 & -1 & 0 & -2 & -1 \\
0 & 0 & 2 & 0 & 1 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1
\end{array}\right] .
$$

For the blow up of X_{1}^{\prime} in $\iota\left(q_{5}^{\prime}\right)=[1,1,1,1,1,1,1,0,0]$, we determine the stellar subdivision $\Sigma_{2} \rightarrow \Sigma_{1}^{\prime}$ at $v:=(-1,-3,-2,-1) \in \mathbb{Z}^{4}$. Write $P_{2}:=\left[P_{1}^{\prime}, v\right]$. The vanishing ideal $I_{2} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ of \bar{X}_{2} is generated by

$$
\begin{gathered}
g_{1}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{3}^{2} T_{5}-T_{7} T_{8}\right)=T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{3}^{2} T_{5}-T_{7} T_{8} T_{10}, \\
g_{2}:=p_{2}^{\star}\left(p_{1}\right)_{\star}\left(T_{9}-h_{2}\right)=T_{9} T_{10}-T_{1} T_{2}^{a-1} T_{3} T_{4} T_{5} T_{6}+T_{7} .
\end{gathered}
$$

We show that I_{2} is saturated with respect to T_{10} by showing that I_{2} is prime. Consider the ideal

$$
I_{2}^{\prime}:=\left\langle T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{3}^{2} T_{5}-T_{1} T_{2}^{a-1} T_{3} T_{4} T_{5} T_{6} T_{7} T_{9}+T_{7} T_{8} T_{9}^{2}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
$$

obtained by substitution of $T_{7}=-g_{2}+T_{7}$ in g_{1} and replacing all T_{i} with T_{i-1} for $i>7$. By Lemma 54 , the ideal I_{2} is prime if I_{2}^{\prime} is prime. The latter follows from Lemma 5.2.17; In a similar manner, by Lemma 5.4.4, the variable T_{10} defines a prime element in $R_{2}=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$, since the ideal

$$
I_{2}^{\prime}+\left\langle T_{9}\right\rangle=\left\langle T_{9}, T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{3}^{2} T_{5}\right\rangle \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
$$

is prime by Lemma 5.2 .17 Moreover, no two variables T_{i}, T_{j} are associated since $\operatorname{deg}\left(T_{i}\right) \neq \operatorname{deg}\left(T_{j}\right)$ for all $i \neq j$. Also, $T_{10} \nmid T_{i}$ for all $i<10$ since each of the intersections

$$
\begin{aligned}
& \bar{X}_{2} \cap V\left(T_{1}, T_{10}\right)=V\left(T_{10}, T_{1}, T_{7}, T_{3} T_{5}\right), \\
& \bar{X}_{2} \cap V\left(T_{2}, T_{10}\right)=V\left(T_{10}, T_{2}, T_{7}, T_{3} T_{5}\right), \\
& \bar{X}_{2} \cap V\left(T_{3}, T_{10}\right)=V\left(T_{10}, T_{3}, T_{7}, T_{1} T_{2} T_{4}\right), \\
& \bar{X}_{2} \cap V\left(T_{4}, T_{10}\right)=V\left(T_{10}, T_{4}, T_{7}, T_{3} T_{5}\right), \\
& \bar{X}_{2} \cap V\left(T_{5}, T_{10}\right)=V\left(T_{10}, T_{5}, T_{7}, T_{1} T_{2} T_{4}\right), \\
& \bar{X}_{2} \cap V\left(T_{6}, T_{10}\right)=V\left(T_{10}, T_{6}, T_{7}, T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{3}^{2} T_{5}\right), \\
& \bar{X}_{2} \cap V\left(T_{7}, T_{10}\right)=V\left(T_{10}, T_{7}, T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{3}^{2} T_{5}, T_{1} T_{2} T_{3} T_{4} T_{5} T_{6}\right), \\
& \bar{X}_{2} \cap V\left(T_{8}, T_{10}\right)=V\left(T_{10}, T_{8}, T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{3}^{2} T_{5}, T_{1} T_{2}^{a-1} T_{3} T_{4} T_{5} T_{6}-T_{7}\right), \\
& \bar{X}_{2} \cap V\left(T_{9}, T_{10}\right)=V\left(T_{10}, T_{9}, T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{3}^{2} T_{5}, T_{1} T_{2}^{a-1} T_{3} T_{4} T_{5} T_{6}-T_{7}\right)
\end{aligned}
$$

is six-dimensional; here, Lemma 5.4.4 can be used. By Theorem 4.2.6, $R_{2}=$ $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}$ is the Cox ring of the performed modification with a Gale dual matrix of P_{2} as degree matrix. We now show that we performed the desired blow up. The ideal

$$
\begin{aligned}
I^{\prime} & :=\left\langle T_{8}, T_{9}, h_{2}, h_{1}-T_{7} T_{8}\right\rangle \\
& =\left\langle T_{8}, T_{9}, T_{1} T_{2}^{2 a-1} T_{4}^{2}-T_{3}^{2} T_{5},-T_{1} T_{2}^{a-1} T_{3} T_{4} T_{5} T_{6}+T_{7}\right\rangle \\
& \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{9}\right]
\end{aligned}
$$

is prime by Lemma 5.4.4 and Lemma 5.2.17; Let $z:=(1,1,1,1,1,1,1,0,0) \in \mathbb{K}^{9}$ be Cox coordinates for $i\left(q_{5}^{\prime}\right) \in X_{1}^{\prime}$. Then $z \in V\left(\mathbb{K}^{9} ; I^{\prime}\right)$ and

$$
\operatorname{dim}\left(V\left(\mathbb{K}^{9} ; I^{\prime}\right)\right)=-1+\operatorname{dim}\left(\bar{X}_{2} \cap V\left(T_{9}, T_{10}\right)\right)=5
$$

By Lemma 5.2 .15 , the performed modification was the claimed blow up. Using Algorithm 4.3.3, we eliminate the equation $T_{7}=-g_{2}+T_{7}$ and obtain the graded ring $R_{2}^{\prime}:=\overleftarrow{K}\left[\dot{T}_{1}, \ldots, T_{9}\right] / I_{2}^{\prime}$. The Cox ring of the blow up X_{2} of X_{1} in q_{5}^{\prime} then is $\mathcal{R}\left(X_{2}\right)=R_{2}^{\prime}$. Its degree matrix is given by removing the seventh column of a Gale dual matrix of P_{2}. Note that it is not obvious whether X_{2} is a \mathbb{K}^{*}-surface or not.
Isomorphisms: We now remove redundancies between the found surfaces without a non-trivial \mathbb{K}^{*}-action. Note that the Cox rings of all surfaces are either listed in the table of Theorem 5.4.1 or directly when encountered in this proof. To rule out isomorphisms, we will first apply Proposition 5.4.6 formally to compare the lists L_{i} of the absolute values of the maximal minors of the respective degree matrices. Note
that for blow ups of \mathbb{F}_{a}, the L_{i} also could be computed with symbolic parameter $a \in \mathbb{Z}_{\geq 3}$. For a concise presentation, given integers $k, n \in \mathbb{Z}$, we shortly write k^{n} for the sequence k, \ldots, k of n copies of k.

X	list of 6×6 minors
Bl $\mathbb{P}_{2}\left(*^{5} i\right)$	$0^{47}, 1^{70}, 2^{51}, 3^{17}, 4^{11}, 5^{7}, 6^{3}, 7^{1}, 8^{1}, 10^{1}, 11^{1}$
Bl $\mathbb{P}_{2}\left(\star^{5} i i\right)$	$0^{49}, 1^{97}, 2^{44}, 3^{13}, 4^{4}, 5^{1}, 6^{1}, 7^{1}$
Bl $\mathbb{P}_{2}\left(\star^{5}\right.$ iii)	$0^{47}, 1^{70}, 2^{51}, 3^{17}, 4^{11}, 5^{7}, 6^{3}, 7^{1}, 8^{1}, 10^{1}, 11^{1}$
Bl $\mathbb{P}_{2}\left(\star^{3} \star \star i\right)$	$0^{54}, 1^{127}, 2^{20}, 3^{8}, 5^{1}$
Bl $\mathbb{P}_{2}\left(\star^{3} \star \star i i\right)$	$0^{128}, 1^{202}, 2^{100}, 3^{28}, 4^{4}$
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} \star \star\right.$ iii)	$0^{49}, 1^{97}, 2^{44}, 3^{13}, 4^{4}, 5^{1}, 6^{1}, 7^{1}$
$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \star \star i\right)$	$0^{168}, 1^{266}, 2^{28}$
$\mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star \star i)$	$0^{756}, 1^{920}, 2^{40}$
$\mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star \star i i)$	$0^{3960}, 1^{4032}, 2^{16}$
$\mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star \star$ iii)	$0^{168}, 1^{266}, 2^{28}$
Bl $\mathbb{P}_{2}\left(\star^{2} \star \star \star i v\right)$	$0^{62}, 1^{135}, 2^{12}, 3^{1}$
$\mathrm{Bl} \mathbb{F}_{a}(\star \star \star \star v i)$	$\begin{aligned} & 0^{52}, 1^{116}, 2^{6},\|a-2\|^{10},\|-3+a\|^{2},\|2 a-1\|^{1},\|-5+2 a\|^{1},\|-3+2 a\|^{2}, \\ & \|a-1\|^{14},\|a\|^{6} \end{aligned}$
Bl $\mathbb{F}_{a}(\star \star \star \star$ vii)	$\begin{aligned} & 0^{52}, 1^{116}, 2^{6},\|a+1\|^{6},\|a-2\|^{2},\|a-1\|^{10},\|2 a-1\|^{2},\|a\|^{14}, \\ & \|1+2 a\|^{1},\|-3+2 a\|^{1} \end{aligned}$
$\begin{aligned} & \mathrm{Bl} \mathbb{F}_{a}(\star \star \star \star \text { xiii }), \\ & \dagger \dagger \end{aligned}$	$\begin{aligned} & 0^{124}, 1^{166}, 2^{28},\|a\|^{64},\|2 a-2\|^{8},\|-2+a\|^{4},\|a-1\|^{32},\|2 a-3\|^{4} \\ & \|-4+4 a\|^{4},\|2 a-1\|^{28} \end{aligned}$
$\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} \star i\right)$	$\begin{aligned} & 0^{47}, 1^{89}, 2^{17}, 3^{7}, 5^{1}, 3\|a\|^{1}, 2\|a\|^{2},\|-3+2 a\|^{1},\|2 a-1\|^{6},\|-2+3 a\|^{2} \\ & \|-3+5 a\|^{1},\|a-2\|^{2},\|a\|^{27},\|a-1\|^{7} \end{aligned}$
$\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} \star i i\right)$	$\begin{aligned} & 0^{47}, 1^{68}, 2^{30}, 3^{11}, 4^{2}, 5^{1}, 6^{1}, 7^{1},\|-3+7 a\|^{1},\|2 a-1\|^{6}, 3\|a\|^{1},\|-3+4 a\|^{1}, \\ & \|-2+6 a\|^{1},\|-2+4 a\|^{1},\|a-1\|^{2}, 2\|a\|^{8},\|a\|^{21},\|-2+5 a\|^{1},\|3 a-1\|^{5} \\ & \|-2+3 a\|^{1} \end{aligned}$
$\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} \star\right.$ iii $)$	$\begin{aligned} & 0^{47}, 1^{89}, 2^{17}, 3^{7}, 5^{1},\|a\|^{27},\|2 a-1\|^{6},\|-3+5 a\|^{1}, 2\|a\|^{2},\|a-2\|^{2}, \\ & \|-3+2 a\|^{1},\|-2+3 a\|^{2},\|a-1\|^{7}, 3\|a\|^{1} \end{aligned}$
Bl $\mathbb{F}_{a}\left(\star^{3} \star i v\right)$	$\begin{aligned} & 0^{47}, 1^{68}, 2^{30}, 3^{11}, 4^{2}, 5^{1}, 6^{1}, 7^{1},\|a-1\|^{2},\|-2+4 a\|^{1},\|a\|^{21},\|-3+7 a\|^{1}, \\ & 3\|a\|^{1},\|3 a-1\|^{5},\|2 a-1\|^{6},\|-2+6 a\|^{1},\|-2+5 a\|^{1}, 2\|a\|^{8},\|-3+4 a\|^{1}, \\ & \|-2+3 a\|^{1} \end{aligned}$
$\mathrm{Bl} \mathbb{F}_{a}\left(\star^{4} i\right), \dagger$	$\begin{aligned} & 0^{10}, 1^{24}, 2^{21}, 3^{3}, 4^{7},\|a-1\|^{1},\|-4+4 a\|^{1},\|4 a-3\|^{2}, 2\|a\|^{2},\|2 a-1\|^{7}, \\ & \|-2+3 a\|^{1},\|-2+4 a\|^{2},\|a\|^{3} \end{aligned}$
Bl $\mathbb{F}_{a}\left(\star^{2} \star^{2} i\right), \dagger$	$\begin{aligned} & 0^{10}, 1^{35}, 2^{15}, 3^{2}, 4^{2},\|-4+4 a\|^{1},\|-2+3 a\|^{2},\|2 a-1\|^{1},\|a\|^{10} \\ & \|a-1\|^{2},\|a-2\|^{2}, 2\|a\|^{2} \end{aligned}$

By the second statement of Proposition 5.4.6, only the following isomorphisms are possible. In fact, all of them turn out to be isomorphisms.

$$
\mathrm{Bl} \mathbb{P}_{2}\left(\star^{5} i\right) \rightarrow \mathrm{Bl} \mathbb{P}_{2}\left(\star^{5} i i i\right), \quad \mathrm{Bl} \mathbb{P}_{2}\left(\star^{5} i i\right) \rightarrow \mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} \star \star i i i\right)
$$

$\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \star \star i\right) \rightarrow \mathrm{Bl} \mathbb{P}_{2}(\star \star \star \star \star i i i), \quad \mathrm{Bl} \mathbb{F}_{a+1}(\star \star \star \star v i) \rightarrow \mathrm{Bl} \mathbb{F}_{a}(\star \star \star \star v i i)$,

$$
\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} \star i\right) \rightarrow \mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} \star i i i\right), \quad \mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} \star i i\right) \rightarrow \mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} \star i v\right) .
$$

For the first isomorphism, write $X_{1}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{5} i\right)$ and $X_{2}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{5}\right.$ iii). Recall from the beginning of this proof the Cox rings $\mathcal{R}\left(X_{i}\right)$ and their degree matrices Q_{i}.

| Y | Cox ring $\mathcal{R}(Y)$ | degree matrix |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | |
| | $\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{1}$ | |
| | with I_{1} generated by | |
| X_{1} | $T_{3}^{2} T_{4}-T_{1} T_{2}-T_{6} T_{7} T_{8} T_{10}$, | |
| | $T_{1} T_{2}^{2} T_{3} T_{4} T_{5}-T_{6}^{2} T_{7}-T_{9} T_{10}$ | |\(\quad\left[\begin{array}{rrrrrrrrrrr}1 \& 0 \& 0 \& 1 \& 0 \& 0 \& 2 \& 0 \& 3 \& -1

0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 3 \& 0 \& 5 \& -2

0 \& 0 \& 1 \& -2 \& 0 \& 0 \& -1 \& 0 \& -2 \& 1

0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 2 \& -1

0 \& 0 \& 0 \& 0 \& 0 \& 1 \& -2 \& 0 \& -1 \& 1

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 1 \& -1\end{array}\right]\)

$$
\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}
$$

X_{2}
with I_{2} generated by
$T_{1} T_{2} T_{6} T_{8}-T_{3}^{2} T_{4}-T_{9} T_{10}$, $T_{1}^{2} T_{2}+T_{7} T_{8}-T_{3}^{3} T_{4}^{2} T_{5} T_{10}$
$\left[\begin{array}{rlllllrrrr}1 & 0 & 0 & 0 & 0 & 0 & 3 & -1 & -2 & 2 \\ 0 & 1 & 0 & 0 & 0 & 0 & 2 & -1 & -1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & -2 & 2 & 5 & -3 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 & 3 & -2 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 & 0 & 0\end{array}\right]$

Write $I_{i} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ for the ideal of relations of $\mathcal{R}\left(X_{i}\right)$. Substituting $T_{3}^{2} T_{4}=$ $T_{1} T_{2} T_{6} T_{8}-T_{9} T_{10}$ into I_{2} does not change the ideal, i.e.,

$$
\begin{aligned}
I_{2}= & \left\langle T_{1} T_{2} T_{6} T_{8}-T_{3}^{2} T_{4}-T_{9} T_{10},\right. \\
& \left.T_{1}^{2} T_{2}+T_{7} T_{8}-T_{1} T_{2} T_{3} T_{4} T_{5} T_{6} T_{8} T_{10}+T_{3} T_{4} T_{5} T_{9} T_{10}^{2}\right\rangle .
\end{aligned}
$$

The \mathbb{Z}^{6}-graded homomorphism

$$
\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{10}\right], \quad T_{i} \mapsto \begin{cases}T_{7}-T_{1} T_{2} T_{3} T_{4} T_{5} T_{6} T_{10}, & i=7 \\ T_{i}, & \text { else }\end{cases}
$$

induces an isomorphism $R_{2}^{\prime} \rightarrow \mathcal{R}\left(X_{2}\right)$ of \mathbb{Z}^{6}-graded algebras where R_{2}^{\prime} also has Q_{2} as degree matrix and is given by

$$
R_{2}^{\prime}:=\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] / I_{2}^{\prime}, \quad I_{2}^{\prime}:=\left\langle\begin{array}{c}
T_{1} T_{2} T_{6} T_{8}-T_{3}^{2} T_{4}-T_{9} T_{10}, \\
T_{1}^{2} T_{2}+T_{7} T_{8}+T_{3} T_{4} T_{5} T_{9} T_{10}^{2}
\end{array}\right\rangle
$$

By Lemma 5.1.5; the surfaces X_{1} and X_{2} are isomorphic if R_{2}^{\prime} is isomorphic to $\mathcal{R}\left(X_{1}\right)$ as \mathbb{Z}^{6}-graded algebra. Consider the homomorphism of algebras $\psi: R_{2}^{\prime} \rightarrow$ $\mathcal{R}\left(X_{1}\right)$ induced by

\[

\]

Then $\left\langle\psi\left(I_{2}^{\prime}\right)\right\rangle=I_{1}$ and the homomorphism ψ is a well-defined isomorphism of \mathbb{K} algebras. To see that ψ is also an isomorphism of \mathbb{Z}^{6}-graded algebras we consider the homomorphism of abelian groups

$$
\alpha: \mathbb{Z}^{6} \rightarrow \mathbb{Z}^{6}, \quad e_{i} \mapsto A \cdot e_{i}, \quad A:=\left[\begin{array}{rrrrrr}
0 & 2 & 0 & 1 & 0 & 0 \\
0 & 3 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & -2 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \in \mathrm{GL}(6, \mathbb{Z}) .
$$

This turns the pair (ψ, α) into an isomorphism $\mathcal{R}\left(X_{1}\right) \rightarrow \mathcal{R}\left(X_{2}\right)$ of \mathbb{Z}^{6}-graded algebras: for all $w \in \mathbb{Z}^{6}$ the image $\psi\left(\left(R_{2}^{\prime}\right)_{w}\right)$ is contained in the component $\mathcal{R}\left(X_{1}\right)_{\alpha(w)}$ because

$$
A \cdot Q_{2}=\left[\begin{array}{rrrrrrrrrr}
0 & 2 & 0 & 1 & 0 & 0 & 3 & -1 & 1 & 0 \\
0 & 3 & 0 & 1 & 0 & 0 & 5 & -2 & 0 & 1 \\
0 & -1 & 1 & -2 & 0 & 0 & -2 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 2 & -1 & 0 & 0 \\
1 & -2 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 & 0 & 0
\end{array}\right] \quad Q_{1} \cdot
$$

For the second isomorphism, let $X_{1}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{5} i i\right)$ and $X_{2}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{3} \star \star i i i\right)$. We claim that we have an isomorphism given by

$$
\varphi: \bar{X}_{2} \rightarrow \bar{X}_{1}, \quad\left(z_{1}, \ldots, z_{10}\right) \mapsto\left(-z_{9}, z_{10}, z_{2}, z_{4}, z_{6}, z_{3},-z_{7}, z_{8}, z_{1}, z_{5}\right) .
$$

For this, by Lemma;5.5; it suffices to show that the comorphism $\psi:=\varphi^{*}: \mathcal{R}\left(X_{1}\right) \rightarrow$ $\mathcal{R}\left(X_{2}\right)$ is a \mathbb{Z}^{6}-graded isomorphism that is induced by

\[

\]

Write $I_{i} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{10}\right]$ for the ideal of relations of $\mathcal{R}\left(X_{i}\right)$. Then $\left\langle\psi\left(I_{1}\right)\right\rangle=I_{2}$ and the homomorphism ψ is a well-defined isomorphism of \mathbb{K}-algebras. Observe that ψ is also an isomorphism of \mathbb{Z}^{6}-graded algebras. Consider the homomorphism of abelian groups

$$
\alpha: \mathbb{Z}^{6} \rightarrow \mathbb{Z}^{6}, \quad e_{i} \mapsto A \cdot e_{i}, \quad A:=\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & 0 & 0 & 2 \\
3 & -1 & 1 & 0 & 0 & -2 \\
0 & 0 & 0 & 0 & 1 & 1 \\
2 & -1 & 0 & 0 & 0 & -1 \\
-1 & 1 & 0 & 0 & 0 & 3 \\
1 & -1 & 0 & 1 & 0 & 0
\end{array}\right] \in \operatorname{GL}(6, \mathbb{Z}) .
$$

This turns the pair (ψ, α) into an isomorphism $\mathcal{R}\left(X_{1}\right) \rightarrow \mathcal{R}\left(X_{2}\right)$ of \mathbb{Z}^{6}-graded algebras: for all $w \in \mathbb{Z}^{6}$ the image $\psi\left(\mathcal{R}\left(X_{1}\right)_{w}\right)$ is contained in the component $\mathcal{R}\left(X_{2}\right)_{\alpha(w)}$ because

$$
A \cdot Q_{1}=\left[\begin{array}{rrrrrrrrrr}
-1 & 1 & 0 & 0 & 0 & 0 & 2 & -1 & 1 & 0 \\
3 & -1 & 1 & 0 & 0 & 0 & -2 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 & 0 & 0 \\
2 & -1 & 0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 & 0 & 3 & -2 & 0 & 1 \\
1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \risingdotseq Q_{2} .
$$

For the third isomorphism define $X_{1}:=\mathrm{Bl} \mathbb{P}_{2}\left(\star^{2} \star \star \star i\right)$ and $X_{2}:=\mathbb{P}_{2}(\star \star \star \star \star i i i)$. As seen by the blow up sequences of the respective surfaces the curves $V\left(X_{1} ; T_{6}\right)$ and $V\left(X_{2} ; T_{4}\right)$ are (-1)-curves. Their respective contractions lead to surfaces X_{i}^{\prime} fitting into the diagram

where φ will be specified below. The Cox rings $\mathcal{R}\left(X_{i}^{\prime}\right)$ and their degree matrices Q_{i}^{\prime} are listed in the following table.

Note that \bar{X}_{1}^{\prime} is a subset of $\bigoplus_{i \neq 6} \mathbb{K} \cdot e_{i} \cong \mathbb{K}^{10}$ whereas \bar{X}_{2}^{\prime} is a subset of $\bigoplus_{i \neq 4} \mathbb{K} \cdot e_{i} \cong$ \mathbb{K}^{10}. We claim that the isomorphism $\varphi: \bar{X}_{2}^{\prime} \rightarrow \bar{X}_{1}^{\prime}$ of the total coordinate spaces of the contracted surfaces and its inverse φ^{-1} are given by

$$
\begin{aligned}
\bar{X}_{1}^{\prime} & \longleftrightarrow \bar{X}_{2}^{\prime} \\
\left(z_{1}, z_{8}, z_{2}, z_{3}, z_{6}, z_{10}, z_{5}, z_{7}, z_{11}, z_{9}\right) & \longleftrightarrow\left(z_{1}, z_{2}, z_{3}, z_{5}, \ldots, z_{11}\right) \\
\left(z_{1}, \ldots, z_{5}, z_{7}, \ldots, z_{11}\right) & \mapsto\left(z_{1}, z_{3}, z_{4}, z_{8}, z_{5}, z_{9}, z_{2}, z_{11}, z_{7}, z_{10}\right)
\end{aligned}
$$

To this end, it suffices to show that the comorphism $\psi:=\varphi^{*}: \mathcal{R}\left(X_{1}^{\prime}\right) \rightarrow \mathcal{R}\left(X_{2}^{\prime}\right)$ is a \mathbb{Z}^{5}-graded isomorphism induced by

$$
\begin{gathered}
\mathbb{K}\left[T_{1}, \ldots, T_{5}, T_{7}, \ldots, T_{11}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{3}, T_{5}, \ldots, T_{11}\right], \\
T_{i} \mapsto T_{\sigma(i)}, \quad \sigma:=\left[\begin{array}{rrrrrrrrrr}
1 & 2 & 3 & 4 & 5 & 7 & 8 & 9 & 10 & 11 \\
1 & 8 & 2 & 3 & 6 & 10 & 5 & 7 & 11 & 9
\end{array}\right]
\end{gathered}
$$

where σ stands for the bijective function $\{1, \ldots, 11\} \backslash\{6\} \rightarrow\{1, \ldots, 11\} \backslash\{4\}$ mapping the i-th element of the first row to the i-th element in the second row; see Lemma 5.1.5; Note that $\left\langle\psi\left(I_{1}^{\prime}\right)\right\rangle=I_{2}^{\prime}$ and ψ is a well-defined isomorphism of \mathbb{K}-algebras. Observe that ψ is also an isomorphism of \mathbb{Z}^{5}-graded algebras. For this purpose, consider the homomorphism of abelian groups

$$
\alpha: \mathbb{Z}^{5} \rightarrow \mathbb{Z}^{5}, \quad e_{i} \mapsto A \cdot e_{i}, \quad A:=\left[\begin{array}{rrrrr}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0
\end{array}\right] \in \operatorname{GL}(5, \mathbb{Z}) .
$$

This turns the pair (ψ, α) into an isomorphism $\mathcal{R}\left(X_{1}^{\prime}\right) \rightarrow \mathcal{R}\left(X_{2}^{\prime}\right)$ of \mathbb{Z}^{5}-graded algebras: for all $w \in \mathbb{Z}^{5}$, the image $\psi\left(\mathcal{R}\left(X_{1}^{\prime}\right)_{w}\right)$ is contained in the component $\mathcal{R}\left(X_{2}^{\prime}\right)_{\alpha(w)}$ as

$$
A \cdot Q_{1}^{\prime}=\left[\begin{array}{rrrrrrrrrr}
1 & 1 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & -1 & 1 \\
0 & -1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 \\
0
\end{array}\right] \risingdotseq Q_{2}^{\prime} .
$$

Switching back to the original surfaces X_{i}, X_{1} can be obtained as the blow up of X_{1}^{\prime} in the point p_{1} and X_{2} as the blow up of X_{2}^{\prime} in p_{2} where

$$
\begin{aligned}
& p_{1}:=[1,0,1,0,1,1,1,1,1,-1] \in X_{1}^{\prime} \\
& p_{2}:=[-1,0,0,1,1,1,1,1,1,1] \in X_{2}^{\prime}
\end{aligned}
$$

Both points exist by an application of Algorithm 2.8. We claim that we have an automorphism

$$
\begin{aligned}
\eta: \bar{X}_{2}^{\prime} & \rightarrow \bar{X}_{2}^{\prime} \\
\left(z_{1}, z_{2}, z_{3}, z_{5}, \ldots, z_{11}\right) & \mapsto\left(z_{9}, z_{8}, z_{3}, z_{5}, z_{7}, z_{6}, z_{2}, z_{1}, z_{11}, z_{10}\right)
\end{aligned}
$$

Then, by definition of φ^{-1} and η, we have

$$
\eta \circ \varphi^{-1}\left(p_{1}\right)=[\eta((1,1,0,1,1,1,0,-1,1,1))]=p_{2} \in X_{2}^{\prime}
$$

Since φ^{-1} is an isomorphism and η an automorphism, using uniqueness of the blow up we then may conclude that X_{1} is isomorphic to X_{2}, see Proposition 1.4.5 or [48]. By Lemma:5.1.5; it remains to show that the comorphism $\kappa:=\eta^{*}: \mathcal{R}\left(X_{2}^{\prime}\right) \rightarrow \mathcal{R}\left(X_{2}^{\prime}\right)$ is an isomorphism of \mathbb{Z}^{5}-graded algebras induced by

$$
\begin{gathered}
\mathbb{K}\left[T_{1}, \ldots, T_{3}, T_{5}, \ldots, T_{11}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{3}, T_{5}, \ldots, T_{11}\right], \\
T_{i} \mapsto T_{\sigma^{\prime}(i)}, \quad \sigma^{\prime}:=\left[\begin{array}{llllllllll}
1 & 2 & 3 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
9 & 8 & 3 & 5 & 7 & 6 & 2 & 1 & 11 & 10
\end{array}\right]
\end{gathered}
$$

where σ^{\prime} stands for the bijective function $\{1, \ldots, 11\} \backslash\{4\} \rightarrow\{1, \ldots, 11\} \backslash\{4\}$ mapping the i-th element of the first row to the i-th element of the second row.

Note that κ is well-defined since $\left\langle\kappa\left(I_{2}^{\prime}\right)\right\rangle=I_{2}^{\prime}$. Consider the homomorphism of abelian groups

$$
\beta: \mathbb{Z}^{5} \rightarrow \mathbb{Z}^{5}, \quad e_{i} \mapsto B \cdot e_{i}, \quad B:=\left[\begin{array}{rrrrr}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 1 \\
-1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & -1
\end{array}\right] \in \operatorname{GL}(5, \mathbb{Z}) .
$$

Similar to before, (κ, β) is an isomorphism $\mathcal{R}\left(X_{2}^{\prime}\right) \rightarrow \mathcal{R}\left(X_{2}^{\prime}\right)$ of \mathbb{Z}^{5}-graded algebras since we have $\kappa\left(\mathcal{R}\left(X_{2}^{\prime}\right)_{w}\right) \subseteq \mathcal{R}\left(X_{2}^{\prime}\right)_{\beta(w)}$ for all $w \in \mathbb{Z}^{5}$:

$$
B \cdot Q_{2}^{\prime}=\left[\begin{array}{rrrrrrrrrr}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 1 \\
0 & -1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0
\end{array}\right] \risingdotseq Q_{2}^{\prime} .
$$

We come to the fourth isomorphism. Let $a \geq 3$. Redefine $X_{1}:=\mathrm{Bl} \mathbb{F}_{a+1}(\star \star \star \star v i)$ and $X_{2}:=\mathrm{Bl} \mathbb{F}_{a}(\star \star \star \star$ vii $)$. We have an isomorphism of \mathbb{K}-algebras $\psi: \mathcal{R}\left(X_{1}\right) \rightarrow$ $\mathcal{R}\left(X_{2}\right)$ induced by

$$
\begin{gathered}
\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{10}\right], \\
T_{7} \mapsto T_{10}, \quad T_{8} \mapsto T_{9}, \quad T_{9} \mapsto T_{7}, \quad T_{10} \mapsto T_{8}, \quad T_{i} \mapsto T_{i} \text { else. }
\end{gathered}
$$

Comparing the degree matrices of $\mathcal{R}\left(X_{i}\right)$ we see that (ψ, id) is an isomorphism $\mathcal{R}\left(X_{1}\right) \rightarrow \mathcal{R}\left(X_{2}\right)$ of \mathbb{Z}^{6}-graded algebras. By Lemma 5.1 .5 ; this shows that X_{1} and X_{2} are isomorphic.

For the fifth isomorphism, write $X_{1}:=\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} \star i\right)$ and $X_{2}:=\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} \star i i i\right)$. Denote by Q_{i} the degree matrices of their Cox rings. We claim that we have an isomorphism $\varphi: \bar{X}_{1} \rightarrow \bar{X}_{2}$ with its comorphism $\psi:=\varphi^{*}: \mathcal{R}\left(X_{1}\right) \rightarrow \mathcal{R}\left(X_{2}\right)$ induced by

$$
\begin{gathered}
\mathbb{K}\left[T_{1}, \ldots, T_{10}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{10}\right], \\
T_{i} \mapsto T_{\sigma(i)}, \quad \sigma:=\left[\begin{array}{rrrrrrrrr}
1 & 2 & 3 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 & 2 & 7 & 4 & 5 & 8 & 9 & 10 & 3 \\
6
\end{array}\right] \in \operatorname{Sym}(10) .
\end{gathered}
$$

Note that the ideals of relations of $\mathcal{R}\left(X_{i}\right)$ are mapped to each other. Then ψ is an isomorphism of \mathbb{K}-algebras. To see that ψ is \mathbb{Z}^{6}-graded consider the homomorphism of abelian groups

$$
\gamma: \mathbb{Z}^{6} \rightarrow \mathbb{Z}^{6}, \quad e_{i} \mapsto C \cdot e_{i}, \quad C:=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -a & 0 & 0 & a \\
0 & 0 & 2 & 0 & 0 & -1 \\
0 & 0 & -1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & -1 \\
0 & 0 & 3 & 0 & 0 & -2
\end{array}\right] \in \operatorname{GL}(6, \mathbb{Z}) .
$$

Thus, (ψ, γ) is an isomorphism $\mathcal{R}\left(X_{1}\right) \rightarrow \mathcal{R}\left(X_{2}\right)$ of \mathbb{Z}^{6}-graded algebras since ψ maps the component $\mathcal{R}\left(X_{1}\right)_{w}$ into the component $\mathcal{R}\left(X_{2}\right)_{\gamma(w)}$ for all $w \in \mathbb{Z}^{6}$:

$$
C \cdot Q_{1}=\left[\begin{array}{rrrrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 1 & -a & 0 & 0 & a & 2 a-1 & -a+1 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & -1 & -1 & 1 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 & 1 & 2 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 & -2 & -1 & 1 & 0 & 1
\end{array}\right] \equiv Q_{2}
$$

Therefore, again by Lemma 5.1.5; we conclude that the surfaces X_{1} and X_{2} are isomorphic.
For the sixth isomorphism, let $X_{1}:=\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} \star i i\right)$ and $X_{2}:=\mathrm{Bl} \mathbb{F}_{a}\left(\star^{3} \star i v\right)$. As seen by the blow up sequences of the respective surfaces, the curves $V\left(X_{1} ; T_{10}\right)$ and $V\left(X_{2} ; T_{8}\right)$ are (-1)-curves. Their contraction leads to surfaces X_{1}^{\prime} and X_{2}^{\prime}. We
have a diagram

where we consider \bar{X}_{1}^{\prime} as a subset of $\bigoplus_{i=1}^{9} \mathbb{K} \cdot e_{i}$ and \bar{X}_{2}^{\prime} as a subset of $\bigoplus_{i \neq 8} \mathbb{K} \cdot e_{i} \cong$ \mathbb{K}^{9} ．Moreover，the embeddings $\bar{\iota}_{i}$ are as in Setting 4．2．9 and satisfy

$$
\begin{aligned}
& \bar{\iota}_{1}: \mathbb{K}^{8} \rightarrow \mathbb{K}^{9}, \quad\left(x_{1}, \ldots, x_{8}\right) \mapsto\left(x_{1}, \ldots, x_{8}, h_{1}(x)\right), \\
& \bar{\iota}_{2}: \mathbb{K}^{8} \rightarrow \mathbb{K}^{9}, \quad\left(x_{1}, \ldots, x_{6}, x_{9}, x_{10}\right) \mapsto\left(x_{1}, \ldots, x_{6}, h_{2}(x), x_{9}, x_{10}\right), \\
& h_{1}:=T_{1} T_{2}^{a-1} T_{4} T_{7} T_{8}^{2}-T_{3}^{2} T_{5} \in \mathbb{K}\left[T_{1}, \ldots, T_{8}\right], \\
& h_{2}:=T_{1} T_{2}^{2 a-1} T_{4}^{2} T_{10}-T_{3}^{2} T_{5} \in \mathbb{K}\left[T_{1}, \ldots, T_{8}\right] .
\end{aligned}
$$

The Cox rings and degree matrices Q_{i}^{\prime} and $Q_{i}^{\prime \prime}$ of the surfaces X_{i}^{\prime} and $X_{i}^{\prime \prime}$ are as follows．

Y	$\mathcal{R}(Y)$	degree matrix										
X_{1}^{\prime}	$\mathbb{K}\left[T_{1}, \ldots, T_{9}\right] / I$ with I generated by $T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}-T_{7} T_{8}, T_{9}-h_{1}$	$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right.$	1	0 1 0 0 0	0 0 1 0 0	0 0 0 1 0		析	0 a -1 1 -1	$\begin{array}{rrr}1 & \\ 3 a-1 & -2 \\ -2 & \\ 3 & \\ -1 & \end{array}$	-1 $-2 a+1$ 2 -2 1	$\left.\begin{array}{l}0 \\ 0 \\ 2 \\ 0 \\ 1\end{array}\right]$
X_{2}^{\prime}	$\mathbb{K}\left[T_{1}, \ldots, T_{7}, T_{9}, T_{10}\right] / I$ with I generated by $T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}-T_{9} T_{10}, T_{7}-h_{2}$	$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right.$	1		0 0 1 0 0	0 0 0 1 0		析	0 a -1 1 -1	$\begin{array}{lr}0 & \\ 0 & 1 \\ 0 & 3 a-1 \\ 2 & -2 \\ 0 & 3 \\ 1 & -1\end{array}$	$\begin{array}{lr}1 & - \\ 1 & -2 a+ \\ 2 & \\ 3 & - \\ 1 & \end{array}$	$\left.\begin{array}{r}-1 \\ 1 \\ 2 \\ -2 \\ 1\end{array}\right]$
$X_{1}^{\prime \prime}$	$\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I$ with I generated by $T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}-T_{7} T_{8}$		1 0 0 0 0		0 0 1 0 0	0 0 0 1 0		析	0 a -1 1 -1	$\begin{array}{rrr}1 & \\ 3 a-1 & -2 \\ -2 & \\ 3 & \\ -1 & \end{array}$	－ $\left.\begin{array}{r}-1 \\ -2 a+1 \\ 2 \\ -2 \\ 1\end{array}\right]$	
$X_{2}^{\prime \prime}$	$\mathbb{K}\left[T_{1}, \ldots, T_{6}, T_{9}, T_{10}\right] / I$ with I generated by $T_{2}^{a} T_{4}-T_{3} T_{5} T_{6}-T_{9} T_{10}$		$\begin{array}{ll}1 \\ 0 \\ 0 \\ 0 & \\ 0 & \\ 0\end{array}$		0 0 1 0 0	0 0 0 1 0			0 a -1 1 -1	$\begin{array}{rrr}1 & \\ 3 a-1 & -2 a \\ -2 & \\ 3 & \\ -1 & \end{array}$	［ $\left.\begin{array}{r}-1 \\ -2 a+1 \\ 2 \\ -2 \\ 1\end{array}\right]$	

Inspecting the degree matrices $Q_{i}^{\prime \prime}$ and the ideals of $\mathcal{R}\left(X_{i}^{\prime \prime}\right)$ ，we see that we have an isomorphism $\mathcal{R}\left(X_{1}^{\prime \prime}\right) \rightarrow \mathcal{R}\left(X_{2}^{\prime \prime}\right)$ of \mathbb{Z}^{5}－graded algebras that arises from

$$
\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] \rightarrow \mathbb{K}\left[T_{1}, \ldots, T_{6}, T_{9}, T_{10}\right], \quad T_{i} \mapsto \begin{cases}T_{9}, & i=7 \\ T_{10}, & i=8 \\ T_{i}, & i \neq 7,8\end{cases}
$$

This yields an isomorphism $\varphi: \bar{X}_{2}^{\prime \prime} \rightarrow \bar{X}_{1}^{\prime \prime}$ ．The surface X_{1} is obtained as the blow up of X_{1}^{\prime} at the point $\left[\bar{\iota}_{1}\left(q_{1}\right)\right] \in X_{1}^{\prime}$ where

$$
q_{1}:=(1,1,1,1,1,0,1,1) \in \widehat{X}_{1}^{\prime \prime}, \quad \bar{\iota}_{1}\left(q_{1}\right) \in \widehat{X}_{1}^{\prime},
$$

compare Lemmas 5.1.5 and 5.2.16, Then $\varphi^{-1}\left(q_{1}\right)=(1,1,1,1,1,0,1,1) \in \widehat{X}_{2}^{\prime \prime}$ and the blow up of X_{2}^{\prime} at the point $\left[\overline{\bar{l}}_{2}\left(\varphi^{-1}\left(q_{1}\right)\right)\right]$ delivers X_{2}. We conclude $X_{2} \cong X_{1}$.
Further note that no isomorphisms between cases with fixed discrete parameter $a \in \mathbb{Z}_{\geq 3}$ but different continuous parameters are possible. For the blow ups of \mathbb{P}_{2}, this is due to the fact that the respective originating point configurations are not isomorphic. For blow ups of \mathbb{F}_{a} we only need to show that the point configuration $\mathbb{F}_{a}(\star \star \star \star$ xiv $)$ of Proposition 5.1.4 with fixed $a \in \mathbb{Z}_{\geq 3}$ and fixed $\kappa \in \mathbb{K}^{*}$ cannot be moved to the same configuration with continuous parameter $\kappa^{\prime} \in \mathbb{K}^{*} \backslash\{\kappa\}$ by an automorphism. To this end, let

$$
v_{1}:=(-1,-a), \quad v_{2}:=(1,0), \quad v_{3}:=(0,1), \quad v_{4}:=(0,-1) \in \mathbb{Z}^{2}
$$

be primitive generators of the rays of the fan Σ_{a} of \mathbb{F}_{a}. Recall from [27] that a root of Σ_{a} is an element $u \in \mathbb{Z}^{2}$ such that there is $1 \leq i(u) \leq 4$ with

$$
\left\langle u, v_{i(u)}\right\rangle=1, \quad\left\langle u, v_{j}\right\rangle \leq 0 \quad \text { for } i(u) \neq j
$$

By [27; Cor. 4.7] the group of equivariant automorphisms of $\widehat{\mathbb{F}}_{a}$ is generated by the maximal torus, (certain) permutations of coordinates and automorphisms corresponding to one-parameter subgroups

$$
y_{u}(\lambda): \mathcal{R}\left(\mathbb{F}_{a}\right) \rightarrow \mathcal{R}\left(\mathbb{F}_{a}\right), \quad T_{j} \mapsto\left\{\begin{array}{ll}
T_{j}+\lambda \prod_{k \neq j} T_{k}^{\left\langle-u, v_{k}\right\rangle}, & j=i(u), \\
T_{j}, & j \neq i(u),
\end{array} \quad \lambda \in \mathbb{K}\right.
$$

of graded automorphisms of $\mathcal{R}\left(\mathbb{F}_{a}\right)=\mathbb{K}\left[T_{1}, \ldots, T_{4}\right]$ where $u \in \mathbb{Z}^{2}$ runs through all roots. Since the roots of \mathbb{F}_{a} are

$$
(-1,0),(1,0),(-b, 1) \quad \text { where } \quad 0 \leq b \leq a
$$

these automorphisms are as in Lemma 5.1.6: In particular, two configurations of type $\mathbb{F}_{a}(\star \star \star \star$ xiv $)$ with same $a \in \mathbb{Z}_{\geq 3}$ but different continuous parameter cannot be mapped to each other by an automorphism.

Remark 5.4.15. To compute the Cox ring of the $\dagger \dagger$ case $\mathrm{Bl} \mathbb{F}_{a}(\star \star \star \star$ xiv) for $a>15$ one may proceed by the following steps.

- Prove that the ideal I_{2} shown in the table is saturated with respect to T_{11}. As in other cases, this can be done by providing a Gröbner basis depending on the parameter $a>15$.
- Show that the binomial ideal $I_{2}+\left\langle T_{11}\right\rangle$ is prime. Again, this can be done by providing a Gröbner basis and using Remark 5.4.14; see also Lemma 5.4

However, note that in experiments with fixed $a>15$, a Gröbner basis for the first step contained more than 800 elements.

APPENDIX A

Procedures of the MDSpackage

We describe an implementation of the algorithms that we have developed throughout this thesis. The MDSpackage is currently available for the computer algebra system Maple in joint work with J. Hausen [54; 55]. We make use of the convexpackage [40] by M. Franz. Some of the algorithms have already been implemented in [20, 70] and [16]. This appendix mainly serves as a manual.
The structure of this chapter will be similar to Chapter'2. Section'1. describes procedures on AGs and AGHs whereas Section'2'introduces functions on GRs. Section'3; 4: and 5: present procedures on MDSs, complexity-one T-varieties and miscellaneous functions. We first shortly recall the involved data types from Chapter '2': Corollary 1.3.9 and the description of Construction 1.3 serve as a theoretical foundation.
Data types A.0.16. We store a Mori dream space X in a $M D S$, i.e., a pair (R, Φ) where R is a graded ring, $G R$ for short, and Φ a collection of overlapping cones in $\operatorname{Cl}(X) \otimes \mathbb{Q}$, called a $B U N$. The $\mathrm{GR} R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ encodes the Cox ring $\mathcal{R}(X)$ in $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] /\langle G\rangle$ with a list of polynomials $G \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ and the grading of R by $K:=\mathrm{Cl}(X)$ in the form of a degree map, i.e., a homomorphism of finitely generated abelian groups

$$
Q: \mathbb{Z}^{r} \rightarrow K, \quad e_{i} \mapsto \operatorname{deg}\left(T_{i}\right)
$$

We encode Q in a data type $A G H$ and K in a data type $A G$ for finitely generated abelian groups. It is useful to also store the projection $Q^{0}: \mathbb{Z}^{r} \rightarrow K^{0}=K / K^{\text {tor }}$ onto the free part as a matrix as well as a Gale dual matrix P of the homomorphism Q.

1. Procedures on finitely generated abelian groups

In this section, we describe procedures on finitely generated abelian groups (AGs) and their homomorphisms (AGHs). This describes an implementation of the algorithms of Section of Chapter 2 . Here is an overview:

- Creation and stored data: create an AG (Procedure A.1.1.), return the stored data of an AG (Procedure A.1.2), create an AGH (Procedure A.1.3), return the stored data of an AGH (Procedure A.1.4).
- Compare AGs: test for isomorphy (Procedure A.1.5), test for containment (Procedure A.1.6), test for equality (ProcedureA.1.7).
- Construct new AGs: factor groups (Procedure A.1.8), product groups (Procedure A.1.9), free part (Procedure A.1.10), intersection (Procedure A.1.11).
- Image and kernel of AGHs: image (Procedure A.1.12), preimage (Procedure A.1.13), kernel (Procedure A.1.14), test for being injective (Procedure $\bar{A} 11.15$), test for being surjective (Procedure A.1.1.), complete an exact sequence (Procedure A.1.17).
- AGHs as degree maps, etc.: gradiator (ProcedureA.1.18), K-degree (Procedure A.1.19), test for being homogeneous (Procedure A.1.20), test for being almost free (Procedure A.1.21), section (ProcedureA.1.22).
- Gale duality: compute the degree map Q out of P (Procedure A.1.23), compute P out of Q (Procedure A.1.24), compute the projection \dot{Q}^{0} onto the free part out of Q (Procedure A.1.25).
Recall that given an integral $r \times n$ matrix A we $\operatorname{write~}_{\operatorname{lin}}^{\mathbb{Z}}(A)$ for the sublattice of \mathbb{Z}^{r} spanned by the n columns of A. In the following procedures one should use the option 'nocheck' if possible to speed up the computations.

Procedure A.1.1 (createAG). Constructor for the data type AG.
Input: there are four input types:

- An integer r. This will create the AG \mathbb{Z}^{r}.
- An integer r and a list $\left[a_{1}, \ldots, a_{k}\right]$ with $a_{i} \in \mathbb{Z}$. This will create the AG $\mathbb{Z}^{r} \oplus \bigoplus_{i} \mathbb{Z} / a_{i} \mathbb{Z}$.
- An integral $r \times s$ matrix L. This will create an AG representing $\mathbb{Z}^{r} / \operatorname{lin}_{\mathbb{Z}}(L)$.
- An integral $r \times n$ matrix U and an integral $r \times s$ matrix L. This will create an AG representing $\left(\operatorname{lin}_{\mathbb{Z}}(U)+\operatorname{lin}_{\mathbb{Z}}(L)\right) / \operatorname{lin}_{\mathbb{Z}}(L)$.
Output: an AG. Also prints an integer r and a list of integers $\left[a_{1}, \ldots, a_{k}\right]$ such that the returned group is isomorphic to $\mathbb{Z}^{r} \oplus \bigoplus_{i} \mathbb{Z} / a_{i} \mathbb{Z}$ as a \mathbb{Z}-module.

```
Example: > createAG(2, [3]); \# creates \(\mathbb{Z}^{2} \oplus \mathbb{Z} / 3 \mathbb{Z}\)
                                \(A G(2,[3])\)
> L := linalg[matrix] ([[0], [3]]):
\(>\) createAG \((\mathrm{L})\); \# creates \(\mathbb{Z}^{2} / \operatorname{lin}_{\mathbb{Z}}(L)\)
    AG(1, [3])
> U := linalg[matrix] ([[3,0], [0,3]]):
\(>\) createAG \((\mathrm{U}, \mathrm{L})\); \(\#\) creates \(\left(\operatorname{lin}_{\mathbb{Z}}(U)+\operatorname{lin}_{\mathbb{Z}}(L)\right) / \operatorname{lin}_{\mathbb{Z}}(L)\).
    \(A G(1,[])\)
```

Procedure A.1.2 (AGdata). Returns the stored information of the given AG G, i.e., a list $\left[U, L, r,\left[a_{1}, \ldots, a_{s}\right]\right]$ with integral matrices U, L and $r, a_{i} \in \mathbb{Z}_{\geq 0}$ such that

$$
G \cong\left(\operatorname{lin}_{\mathbb{Z}}(U)+\operatorname{lin}_{\mathbb{Z}}(L)\right) / \operatorname{lin}_{\mathbb{Z}}(L) \cong \mathbb{Z}^{r} \oplus \bigoplus_{i=1}^{s} \mathbb{Z} / a_{i} \mathbb{Z}
$$

Input: an $\mathrm{AG} G=(U, L)$.
Output: a list $\left[U, L, r,\left[a_{1}, \ldots, a_{s}\right]\right]$ with matrices U and L an integer r and integers $a_{i} \in \mathbb{Z}_{>0}$ as explained above.
Example: > U1 := linalg[matrix] ([[2, 0], [0, 3]]):
> L1 := linalg[matrix] ([[0], [3]]):
> H1 := createAG(U1, L1);

$$
H 1:=A G(1,[])
$$

```
AGdata(H1);
```

$$
\left[\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right],\left[\begin{array}{l}
0 \\
3
\end{array}\right], 1,[]\right]
$$

Procedure A.1.3 (createAGH). Constructor for the data type AGH. Represents a homomorphism $Q: G_{1} \rightarrow G_{2}$ of AGs G_{1} and G_{2}.
Input: an AG $G_{1}=\left(U_{1}, L_{1}\right)$, an AG $G_{2}=\left(U_{2}, L_{2}\right)$ and an integral matrix A. Throws an error if $A \cdot \operatorname{lin}_{\mathbb{Z}}\left(L_{1}\right) \nsubseteq \operatorname{lin}_{\mathbb{Z}}\left(L_{2}\right)$ or if $A \cdot\left(\operatorname{lin}_{\mathbb{Z}}\left(U_{1}\right)+\operatorname{lin}_{\mathbb{Z}}\left(L_{1}\right)\right)$ is not contained in $\operatorname{lin}_{\mathbb{Z}}\left(U_{2}\right)+\operatorname{lin}_{\mathbb{Z}}\left(L_{2}\right)$.
Output: the AGH $\left(G_{1}, G_{2}, A\right)$. Also prints integers r_{i} and lists $\left[a_{i 1}, \ldots, a_{i k_{i}}\right]$ of integers such that the G_{i} are isomorphic to $\mathbb{Z}^{r_{i}} \oplus \bigoplus_{j} \mathbb{Z} / a_{i j} \mathbb{Z}$ as \mathbb{Z}-modules.

```
Example: > G1 := createAG(3,[3]);
                                    \(G 1:=A G(3,[3])\)
> G2 := createAG(2,[2]);
                                \(G 2:=A G(2,[2])\)
> A := linalg[matrix] \(([[1,1,0,0],[0,1,0,0],[0,0,1,2]])\);
    \(A:=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2\end{array}\right]\)
> Q := createAGH(G1, G2, A);
    \(Q:=\operatorname{AGH}([3,[3]],[2,[2]])\)
```

Procedure A.1.4 (AGHdata). Returns the stored data of the given AGH $\varphi=$ $\left(G_{1}, G_{2}, A\right)$, i.e., returns a list $\left[G_{1}, G_{2}, A\right]$ with G_{i} AGs and A an integral matrix. Input: an AGH φ.
Output: a list $\left[G_{1}, G_{2}, A\right]$ with AGs G_{1}, G_{2} and a matrix A as explained above. Example: let Q be as in Procedure A.1.3:
> AGHdata(Q);

$$
\left[A G(3,[3]), A G(2,[2]),\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 2
\end{array}\right]\right]
$$

Procedure A.1.5 (AGareisom). Implements Algorithm 2.1.4,
Input: an $\mathrm{AG} G_{1}$ and an AG G_{2}.
Output: true if G_{1} is isomorphic to G_{2} and false otherwise.
Example: > U1 := linalg[matrix] ([[2, 0], [0, 3]]):
$>$ L1 := linalg[matrix] ([[0], [3]]):
> H1 := createAG(U1, L1);

$$
H 1:=A G(1,[])
$$

> H2 := createAG(1);

$$
H 2:=A G(1,[])
$$

> AGareisom(H1, H2);

> true

Procedure A.1.6 (AGcontains). Implements Algorithm 2.1.6;
Input: there are two input possibilities:

- An AG G_{1} and an AG G_{2}.
- An AG G and a vector w.

Output: true if G_{1} contains G_{2} or, for the second input type, if $w \in G$. Returns false otherwise.

```
Example: > L := linalg[matrix]([[0],[3]]);
    \(L:=\left[\begin{array}{l}0 \\ 3\end{array}\right]\)
> U1 := linalg[matrix] ([[2,0], [0,1]]);
    \(U 1:=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]\)
> H1 := createAG(U1, L);
    \(H 1:=A G(1,[3])\)
> U2 := linalg[matrix] ([[2,0], [0,3]]);
    \(U 2:=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]\)
> H2 := createAG(U2, L);
    \(H 2:=A G(1,[])\)
> AGcontains(H2, H1) ; AGcontains(H1, H2);
                                    true
                                    false
> AGcontains(H2, [2,0]);
true
```

Procedure A.1.7 (AGareequal). Implements Algorithm 2.1.8
Input: there are two input types:

- An AG G_{1} and an AG G_{2}.
- Vectors $w, w^{\prime} \in \mathbb{Z}^{r}$ and an AG $G=(U, L)$ such that $w+\operatorname{lin}_{\mathbb{Z}}(L)$ and $w^{\prime}+\operatorname{lin}_{\mathbb{Z}}(L)$ are elements of G.

Output: true if $G_{1}=G_{2}$ or, for the second input type, if $w=w^{\prime} \in G$. Returns false otherwise.

Options: 'nocheck': do not check whether $w, w^{\prime} \in G$.
Example: let H1 and H2 be as in Procedure A.1.6:
> AGareequal(H1, H1); AGareequal(H1, H2);
true
false
> AGareequal([2,4], [2,7], H1);
true

Procedure A.1.8 (AGfactgrp). Implements Algorithm 2.1.9.
Input: an AG G and an AG H such that $H \leq G$.
Output: an AG representing the factor group G / H.
Options: 'nocheck': do not check whether $H \leq G$.
Example: > U1 := linalg[matrix] ([[2, 0], [0, 3]]);

$$
U 1:=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]
$$

$$
\begin{aligned}
& \text { > U2 := linalg[matrix] ([[4, 0], [0, 3]]); } \\
& U 2:=\left[\begin{array}{ll}
4 & 0 \\
0 & 3
\end{array}\right] \\
& \text { > L := linalg[matrix]([[0],[3]]); } \\
& L:=\left[\begin{array}{l}
0 \\
3
\end{array}\right] \\
& \text { > } \mathrm{G}:=\text { createAG(U1, L); } \\
& G:=A G(1,[]) \\
& \text { > H := createAG(U2, L); } \\
& H:=A G(1,[]) \\
& \text { > GH := AGfactgrp(G, H); AGdata(GH); } \\
& G H:=A G(0,[2]) \\
& {\left[\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right],\left[\begin{array}{ll}
4 & 0 \\
0 & 3
\end{array}\right], 0,[2]\right]}
\end{aligned}
$$

Procedure A.1.9 (AGprodgrp). Implements Algorithm 2.1.10;
Input: an $\mathrm{AG} G_{1}$ and an $\mathrm{AG} G_{2}$.
Output: an AG representing the product $G_{1} \times G_{2}$.
Example: > U1 := linalg[matrix] ([[2, 0], [0, 2]]);

$$
U 1:=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

> L1 := linalg[matrix] ([[0], [3]]);

$$
L 1:=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

> G1 := createAG(U1, L1);

$$
G 1:=A G(1,[3])
$$

> U2 := linalg[matrix] ([[3,0], [0,2]]);

$$
U 2:=\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right]
$$

> L2 := linalg[matrix] ([[0], [3]]);

$$
L 2:=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

> G2 := createAG(U2, L2);

$$
G 2:=A G(1,[3])
$$

> G12 := AGprodgrp(G1, G2); AGdata(G12);

$$
\left.\begin{array}{l}
G 12:=A G(2,[3,3]) \\
{\left[\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 2
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
3 & 0 \\
0 & 0 \\
0 & 3
\end{array}\right], 2,[3,3]\right.}
\end{array}\right] .
$$

Procedure A.1.10 (AGfreered). Implements Algorithm 2.1.11;
Input: an AG G.
Output: an AG representing the free part of G, i.e., the lattice $G / G^{\text {tor }}$.
Example: > U := linalg[matrix] ([[2,0], [0,2]]);

$$
U:=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

> L := linalg[matrix] ([[0], [3]]);

$$
L:=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

> G := createAG(U, L);

$$
G:=A G(1,[3])
$$

> GO := AGfreered(G); AGdata(GO);

$$
G 0:=A G(1,[])
$$

$$
\left[\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right], 1,[]\right]
$$

Procedure A.1.11 (AGintersect). Implements Algorithm 2.13,
Input: an AG G_{1} and an AG G_{2}.
Output: an AG G representing the intersection $G_{1} \cap G_{2}$.
Options: 'nocheck' prevents checks for the groups to have the same torsion part.
Example: consider the AGs G1 and G2 defined in the example of Procedure A.1.9:
> G12 := AGintersect(G1, G2); AGdata(G12);
$G 12:=A G(1,[3])$
$\left[\left[\begin{array}{ll}6 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{l}0 \\ 3\end{array}\right], 1,[3]\right]$
Procedure A.1.12 (AGHim). Implements Algorithm 2.1.17,
Input: an AGH $Q=\left(G_{1}, G_{2}, A\right)$ and an AG $H_{1} \leq G_{1}$. If the subgroup H_{1} is left out, $H_{1}=G_{1}$ will be used.
Output: an AG representing $Q\left(H_{1}\right) \leq G_{2}$.
Example: > G1 := createAG(2);

$$
G 1:=A G(2,[])
$$

> G2 := createAG(1, [4]);

$$
G 2:=A G(1,[4])
$$

> A := linalg[matrix] ([[2,0], [0,2]]);

$$
A:=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

> Q := createAGH(G1, G2, A);

$$
Q:=A G H([2,[]],[1,[4]])
$$

> H1 := AGHim(Q) ; AGdata(H1); \# the image is $2 \mathbb{Z} \oplus 2 \mathbb{Z} / 4 \mathbb{Z}$

$$
H 1:=A G(1,[2]) ;
$$

$$
\left[\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right],\left[\begin{array}{l}
0 \\
4
\end{array}\right], 1,[2]\right]
$$

Procedure A.1.13 (AGHpreim). Implements Algorithm 2.1.18,
Input: an AGH $Q=\left(G_{1}, G_{2}, A\right)$ and an AG $H_{2} \leq G_{2}$.
Output: an AG representing the preimage $Q^{-1}\left(H_{2}\right) \leq G_{1}$.
Options: 'nocheck': do not check whether $H_{2} \leq G_{2}$.
Example: > G1 := createAG(2); G2 := createAG(1,[4]);

$$
\begin{aligned}
G 1 & :=A G(2,[]) \\
G 2 & :=A G(1,[4])
\end{aligned}
$$

```
> A := linalg[matrix]([[1,0],[0,1]]);
A := [ll}\begin{array}{ll}{1}&{0}\\{0}&{1}\end{array}
>Q := createAGH(G1, G2, A);
    Q:= AGH([2, []],[1, [4]])
> U := linalg[matrix]([[2,0],[0,3]]);
    U}:=[\begin{array}{ll}{2}&{0}\\{0}&{3}\end{array}
> L := linalg[matrix]([[0],[4]]);
    L:=[ [ 0
> H2 := createAG(U, L);
    H2 := AG(1,[4]);
> H1 := AGHpreim(Q, H2); AGdata(H1);
    H1:= AG(2, [])
    [[[\begin{array}{ll}{2}&{0}\\{0}&{1}\end{array}],[\begin{array}{l}{0}\\{0}\end{array}],2,[]}
```

Procedure A.1.14 (AGHker). Implements Algorithm 2.19; Input: an AGH $Q=\left(G_{1}, G_{2}, A\right)$.
Output: returns an AG representing $\operatorname{ker}(Q) \leq G_{1}$.
Example: define the AGH Q as in A.13:
> H1 := AGHker(Q); AGdata(H1);

$$
\begin{aligned}
& H 1:=A G(1,[]) \\
& {\left[\left[\begin{array}{l}
0 \\
4
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right], 1,[]\right]}
\end{aligned}
$$

Procedure A.1.15 (AGHisinj). Implements Algorithm:2.1.20,
Input: an AGH Q.
Output: returns true if Q is injective and false otherwise.
Example: > G1 := createAG(1, [2]); G2 := createAG(1, [4]);

$$
\begin{aligned}
& G 1:=A G(1,[2]) \\
& G 2:=A G(1,[4])
\end{aligned}
$$

> A1 := linalg[matrix] ([[1,0], [0,2]]);

$$
A 1:=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

> phi1 := createAGH(G1, G2, A1); phi1 := AGH([1, [2]], [1, [4]])
> AGHisinj(phi1);
true
> A2 := linalg[matrix] ([[1,0], [0,4]]);
$A 2:=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]$
> phi2 := createAGH(G1, G2, A2);
phi2 $:=\operatorname{AGH}([1,[2]],[1,[4]])$

```
AGHisinj(phi2);
```

false

Procedure A.1.16 (AGHissurj). Implements Algorithm 2.1.21;
Input: an AGH Q.
Output: returns true if Q is surjective and false otherwise.
Example: let phi1 and G1 be as in A.1.15:
> AGHissurj(phi1); false
> G3 := createAG(0, [2,2]);

$$
G 3:=A G(0,[2,2])
$$

> A2 := linalg[matrix] ([[1,0], [0,1]]);

$$
A 2:=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

> phi2 := createAGH(G1, G3, A2); phi $2:=\operatorname{AGH}([1,[2]],[0,[2,2]])$
> AGHissurj(phi2);
true

Procedure A.1.17 (AGHcompleteseq). Implements Algorithm 2.1.22,
Input: an $\mathrm{AGH} \varphi=\left(G_{1}, G_{2}, A\right)$ that is either injective or surjective.
Output: an AGH ψ completing the respective exact sequence

Options: 'inj' or 'surj' assumes φ is injective or surjective without further tests.
Example: > U1 := linalg[matrix] ([[0], [2]]);

$$
U 1:=\left[\begin{array}{l}
0 \\
2
\end{array}\right]
$$

> L1 := linalg[matrix] ([[0], [4]]);

$$
L 1:=\left[\begin{array}{l}
0 \\
4
\end{array}\right]
$$

> G1 := createAG(U1, L1); \# represents $\{0\} \oplus 2 \mathbb{Z} / 4 \mathbb{Z}$

$$
G 1:=A G(0,[2])
$$

> G2 := createAG(1, [4]); \# represents $\mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$

$$
G 2:=A G(1,[4])
$$

> U3 := linalg[matrix] ([[1,0], [0, 2]]);

$$
U 3:=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

> L3 := linalg[matrix]([[0], [4]]);

$$
L 3:=\left[\begin{array}{l}
0 \\
4
\end{array}\right]
$$

```
> G3 := createAG(U3, L3); # represents \mathbb{Z }\oplus2\mathbb{Z}/4\mathbb{Z}
    G3:= AG(1,[2])
> A := linalg[matrix]([[1,0],[0,2]]);
    A:=[\begin{array}{ll}{1}&{0}\\{0}&{2}\end{array}]
> phi := createAGH(G2, G3, A);
            phi:= AGH([1, [4]], [1, [2]])
> iota := AGHcompleteseq(phi, 'surj'); AGHdata(iota);
            iota := AGH([0, [2]], [1, [4]])
                            [AG(0,[2]),AG(1, [4]),[\begin{array}{ll}{1}&{0}\\{0}&{1}\end{array}]]
> pi := AGHcompleteseq(iota, 'inj'); AGHdata(pi);
        pi:= AGH([1, [4]],[1, [2]])
```

Procedure A.1.18 (AGHgradiator). Implements Algorithm 2.1.29:
Input: a list of polynomials $\left[f_{1}, \ldots, f_{s}\right]$ and a list of variables $\left[T_{1}, \ldots, T_{r}\right]$ such that $f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$.
Output: a list $[Q, P]$ with an AGH $Q: \mathbb{Z}^{r} \rightarrow K$ representing the gradiator, i.e., the maximal quasi-torus action keeping $V\left(f_{1}, \ldots, f_{s}\right)$ invariant. The second element is a Gale dual matrix P of Q.
Example: > RL := [T[1]*T[2] + T[3]*T[4] + T[5]*T[6], $\left.\mathrm{T}[1] * \mathrm{~T}[2]+\mathrm{T}[3]^{\wedge} 2+\mathrm{T}[5]^{\wedge} 2\right] ;$

$$
R L:=\left[T[1] T[2]+T[3] T[4]+T[5] T[6], T[1] T[2]+T[3]^{2}+T[5]^{2}\right]
$$

> $\mathrm{TT}:=\operatorname{vars}(6)$;

$$
T T:=[T[1], T[2], T[3], T[4], T[5], T[6]]
$$

> L := AGHgradiator(RL, TT);

$$
L:=\left[A G H([6,[]],[2,[2]]),\left[\begin{array}{cccccc}
-1 & -1 & 1 & 1 & 0 & 0 \\
-1 & -1 & 0 & 0 & 1 & 1 \\
-1 & -1 & 2 & 0 & 0 & 0 \\
-1 & -1 & 0 & 0 & 2 & 0
\end{array}\right]\right]
$$

> AGHdata(L[1]);

$$
\left[A G(6,[]), A G(2,[2]),\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & 0 & 0 & 0 \\
2 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]\right]
$$

Procedure A.1.19 (AGHdeg). Computes the K-degrees of a list of polynomials. Input: an AGH $Q=\left(\mathbb{Z}^{r}, K, A\right)$ with $K=(U, L)$, a list of polynomials $\left[f_{1}, \ldots, f_{s}\right.$], a list of variables $\left[T_{1}, \ldots, T_{r}\right]$ such that $f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$.
Output: a list of vectors $\left[w_{1}, \ldots, w_{s}\right]$ with $w_{i} \in \mathbb{Z}^{r}$ representing the degree $\operatorname{deg}\left(f_{i}\right)=$ $w_{i}+\operatorname{lin}_{\mathbb{Z}}(L) \in K$.
Example: > G1 := createAG(4);

$$
G 1:=A G(4,[])
$$

> $\mathrm{K}:=\operatorname{createAG}(1,[3])$;

$$
K:=A G(1,[3])
$$

> A := linalg[matrix] ([[1, 1,0,0],[1,1,1,1]]);

$$
A:=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

```
> Q := createAGH(G1, K, A);
    Q:= AGH([4, []], [1, [3]])
> TT := vars(4);
                TT := [T[1],T[2],T[3],T[4]]
> RL := [T[1]*T[3] + T[2]*T[4], T[1]^3 + T[2]^3];
    RL:= [T[1]T[3]+T[2]T[4],T[1] 3}+T[2\mp@subsup{]}{}{3}
> AGHdeg(Q, RL, TT); # interpreted as (1,\overline{2}) and (3,\overline{3})\inK:
\[
[[1,2],[3,3]]
\]
```

Procedure A.1.20 (AGHishomog). Implements Algorithm 2.1.31;
Input: an AGH or matrix Q, a list of polynomials $\left[f_{1}, \ldots, f_{s}\right]$ and a list of variables $\left[T_{1}, \ldots, T_{r}\right]$ such that $f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$.
Output: true if all f_{i} are homogeneous with respect to the grading $\operatorname{deg}\left(T_{i}\right)=Q\left(e_{i}\right)$. Returns false otherwise.

```
Example: > E := createAG(4); K := createAG(1, [3]);
                                    \(E:=A G(4,[])\)
                                    \(K:=A G(1,[3])\)
> \(\mathrm{B}:=\operatorname{linalg}[\) matrix \(]([[1,0,-1,2],[1,2,2,2]])\);
    \(B:=\left[\begin{array}{rrrr}1 & 0 & -1 & 2 \\ 1 & 2 & 2 & 2\end{array}\right]\)
> Q := createAGH(E, K, B);
    \(Q:=\operatorname{AGH}([4,[]],[1,[3]])\)
\(>\mathrm{RL}:=\left[\mathrm{T}[1] * \mathrm{~T}[3]+\mathrm{T}[2]^{\wedge} 3, \mathrm{~T}[3] * \mathrm{~T}[4]+\mathrm{T}[1]\right] ;\)
    \(R L:=\left[T[1] T[3]+T[2]^{3}, T[3] T[4]+T[1]\right] ;\)
\(>\mathrm{TT}:=[\mathrm{T}[1], \mathrm{T}[2], \mathrm{T}[3], \mathrm{T}[4]] ;\)
    \(T T:=[T[1], T[2], T[3], T[4]]\)
\(>\) AGHishomog(Q, RL, TT);
```

true

Procedure A.1.21 (AGHisalmostfree). Implements Algorithm 2.1.32,
Input: an AGH or a matrix Q.
Output: true if the grading of $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ given by $\operatorname{deg}\left(T_{i}\right)=Q\left(e_{i}\right)$ is almost free and false otherwise.
Example: > B := linalg[matrix] ([[1, 0, 1], [0, 2, 2]]);

$$
B:=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 2
\end{array}\right]
$$

> AGHisalmostfree(B) ; \# B is not surjective
false
> $\mathrm{E}:=\operatorname{createAG(3);~} \mathrm{K}:=\operatorname{createAG(1,~[3]);~\# ~} K=\mathbb{Z} \oplus \mathbb{Z} / 3 \mathbb{Z}$
$E:=A G(3,[])$
$K:=A G(1,[3])$
> Q := createAGH(E, K, B);

$$
Q:=\operatorname{AGH}([3,[]],[1,[3]])
$$

> AGHisalmostfree(Q);

Procedure A.1.22 (AGHsection). Implements Algorithm 2.1.34;
Input: a surjective AGH $Q=\left(G_{1}, G_{2}, A\right)$ or a surjective matrix.
Output: a pair $[b, \psi]$. If the algorithm found a section, then b is true and ψ a section. Otherwise, b is false and $\varphi=[]$. In the first case, ψ is given as AGH $\psi: G_{2} \rightarrow G_{1}$.
Example: > Q := createAGH(createAG(1), createAG(0,[2]), linalg[matrix](%5B%5B1%5D%5D));

$$
Q:=\operatorname{AGH}([1,[]],[0,[2]])
$$

> AGHsection(Q);\# no homomorphism $\mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z}$ exists:

$$
[\text { false, []] }
$$

> P := linalg[matrix] ([[1,0,1], [0,2,1]]);

$$
P:=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1
\end{array}\right]
$$

> S := AGHsection(P); AGHdata(S[2]);

$$
S:=[\text { true }, \operatorname{AGH}([2,[]],[3,[]])]
$$

$$
\left[A G(2,[]), A G(3,[]),\left[\begin{array}{rr}
1 & -1 \\
0 & 0 \\
0 & 1
\end{array}\right]\right]
$$

Procedure A.1.23 (AGHP2Q). Implements Algorithm 2.1.24;
Input: an integral $n \times r$ matrix P.
Output: an AGH $Q=\left(\mathbb{Z}^{r}, K, A\right)$ such that $K \cong \mathbb{Z}^{r} / \operatorname{Im}\left(P^{*}\right)$.
Options: 'nocheck': skip the test of Q being surjective.
Example: > P := linalg[matrix] ([[1, 0, 2], [0, 2, 2]]);

$$
P:=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 2
\end{array}\right]
$$

> $\mathrm{Q}:=\operatorname{AGHP} 2 \mathrm{Q}(\mathrm{P})$;

$$
Q:=\operatorname{AGH}([3,[]],[1,[2]])
$$

> AGHdata(Q);

$$
\left[A G(3,[]), A G(1,[2]),\left[\begin{array}{rrr}
-2 & -1 & 1 \\
0 & 1 & 0
\end{array}\right]\right]
$$

Procedure A.1.24 (AGHQ2P). Implements Algorithm 2.1.25;
Input: a surjective AGH $Q=\left(\mathbb{Z}^{r}, K, A\right)$.
Output: a Gale dual matrix P for Q, i.e., P is dual to the inclusion $\operatorname{ker}(Q) \rightarrow \mathbb{Z}^{r}$.
Example: > E := createAG(4); K := createAG(2, [2]);

$$
\begin{gathered}
E:=A G(4,[]) \\
K:=A G(2,[2])
\end{gathered}
$$

> $\mathrm{B}:=\operatorname{linalg}[$ matrix $]([[1,0,1,0],[0,1,0,1],[1,1,0,0]])$;

$$
B:=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

> Q := createAGH(E, K, B);

$$
Q:=A G H([4,[]],[2,[2]])
$$

> $\mathrm{P}:=\operatorname{AGHQ2P}(\mathrm{Q})$;

$$
P:=\left[\begin{array}{rrrr}
1 & 1 & -1 & -1 \\
0 & 2 & 0 & -2
\end{array}\right]
$$

Procedure A.1.25 (AGHQ2Q0). Implements Algorithm 2.1.26,
Input: a surjective AGH $Q=\left(\mathbb{Z}^{r}, K, A\right)$.
Output: a matrix Q^{0} representing the projection $\mathbb{Z}^{r} \rightarrow K / K^{\text {tor }}$.
Example: > E := createAG(4); K := createAG(2, [2]);

$$
E:=A G(4,[])
$$

$$
K:=A G(2,[2])
$$

> $\mathrm{B}:=\operatorname{linalg}[$ matrix $]([[1,0,1,0],[0,1,0,1],[1,1,0,0]])$;

$$
B:=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

> Q := createAGH(E, $\mathrm{K}, \mathrm{B})$;

$$
Q:=A G H([4,[]],[2,[2]])
$$

> QO := AGHQ2QO(Q);

$$
Q 0:=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

2. Procedures on graded rings

In this section, we describe the implementation of algorithms that work on rings that are graded by a finitely generated abelian group (GRs). See mainly Section 2: of Chapter 2 . Here is an overview:

- Creation on stored data: create a BUN (Procedure A.2.1), return the stored data of a BUN (Procedure A.2.2), create a GR (Procedure A.2.3), return the stored data of a GR (Procedure A.2.4).
- Grading: homogeneous components (Procedure A.2.5), dimension of a homogeneous component (Procedure A.2.6).
- GIT: GIT-fan (Procedure A.2.7), $(H, 2)$-maximal sets (Procedure A.2.8).
- Tropical algorithms: tropical variety for one equation (Procedure A.2.9.), containment in the tropical variety (Procedure A.2.10).
Procedure A.2.1 (createBUN). Constructor for the data type BUN. Represents a true \mathfrak{F}-bunch Φ in $K_{\mathbb{Q}}$.
Input: there are five types of input:
- A vector $w \in \operatorname{Mov}\left(Q^{0}\right)^{\circ} \subseteq K_{\mathbb{Q}}$ and a GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$.
- A vector $w \in \operatorname{Mov}\left(Q^{0}\right)^{\circ} \subseteq K_{\mathbb{Q}}$, a list of polynomials $G \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, a list of variables $\left[T_{1}, \ldots, T_{r}\right]$ and an integral matrix Q^{0}.
- A list of cones $\left[\vartheta_{1}, \ldots, \vartheta_{s}\right]$ in $K_{\mathbb{Q}}$, a GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$.
- A list of cones $\left[\vartheta_{1}, \ldots, \vartheta_{s}\right]$ in $K_{\mathbb{Q}}$, a list of polynomials $G \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, a list of variables $\left[T_{1}, \ldots, T_{r}\right]$ and an integral matrix Q^{0}.
- A list of cones $\left[\vartheta_{1}, \ldots, \vartheta_{s}\right]$ in $K_{\mathbb{Q}}$.

Output: a BUN Φ in $K_{\mathbb{Q}}$. The printed information is the number of stored cones. Depending on the input type, Φ is given by
$\Phi= \begin{cases}\left\{Q^{0}\left(\gamma_{0}\right) ; \gamma_{0} \mathfrak{F} \text {-face, } w \in\left(Q^{0}\left(\gamma_{0}\right)\right)^{\circ}\right\}, & \text { in case one or two, } \\ \left\{Q^{0}\left(\gamma_{0}\right) ; \gamma_{0} \mathfrak{F} \text {-face, } \vartheta_{i}^{\circ} \subseteq\left(Q^{0}\left(\gamma_{0}\right)\right)^{\circ} \text { for some } i\right\}, & \text { in case three or four, } \\ \left\{\vartheta_{1}, \ldots, \vartheta_{s}\right\}, & \text { in case five. }\end{cases}$
Options: 'nocheck': in cases four and five, do not check whether the cones satisfy $\vartheta_{i}^{\circ} \cap \vartheta_{j}^{\circ} \neq \emptyset$; in cases one and two, do not check whether $w \in \operatorname{Mov}\left(Q^{0}\right)^{\circ}$.

Example: In the following example B1 to B4 all define the same BUN. Its cones are the elements of CL3; compare Procedure A.2.2

```
> RL := [T[1]*T[2] + T[3]*T[4] + T[5]^2];
                RL:= [T[1]T[2]+T[3]T[4]+T[5\mp@subsup{]}{}{2}]
> TT := vars(5);
                                    TT := [T[1],T[2],T[3],T[4],T[5]]
> Q0 := linalg[matrix]([[-2, 2, -1, 1, 0],[1, 1, 1, 1, 1]]);
                                    Q0:=[ [rrrrrrrerrer
> w := [-1,2];
                                    w:= [-1,2]
R := createGR(RL, TT, [QO]);
                                    R:=GR(5, 1,[2,[]])
> B1 := createBUN(w, R);
                    B1:= BUN(5)
> B2 := createBUN(w, RL, TT, QO);
                    B2 := BUN(5)
> CL3 := [poshull([-2,1],[1,1]), poshull([-2,1],[2,1]),
poshull([2,1],[-1,1]), poshull([-1,1],[1,1]), poshull([-2,1],[1,1])];
    CL3 := [CONE(2, 2,0,2,2),CONE(2, 2, 0, 2, 2), CONE(2, 2, 0, 2, 2),
    CONE(2, 2, 0, 2, 2), CONE(2, 2, 0, 2, 2)]
> B3 := createBUN(CL3);
                                    B3 := BUN(5)
> CL4 := [poshull([-1,1],[1,1])];
                                    CL4 := [CONE (2, 2, 0, 2, 2)]
> B4 := createBUN(CL4, RL, TT, Q0);
B4:=BUN(5)
```

Procedure A.2.2 (BUNdata). Returns the data stored in a given BUN Φ.

Input: a BUN

Output: a list with its only entry a list of CONEs in $K_{\mathbb{Q}}$.
Example: Let B4 be the BUN defined in the example of Procedure A.2.1:
> L4 := BUNdata(B4);

$$
\begin{gathered}
L 4:=[[\operatorname{CON} E(2,2,0,2,2), \operatorname{CONE}(2,2,0,2,2), \operatorname{CONE}(2,2,0,2,2), \\
\operatorname{CONE}(2,2,0,2,2), \operatorname{CONE}(2,2,0,2,2)]]
\end{gathered}
$$

> map(b -> rays(b), L4[1]);

$$
\begin{gathered}
{[[[-2,1],[1,1]], \quad[[2,1],[-1,1]], \quad[[-2,1],[1,1]],} \\
[[-1,1],[1,1]], \quad[[-2,1],[2,1]]]
\end{gathered}
$$

Procedure A.2.3 (createGR). Constructor for the data type GR.
Input: there are multiple ways to use this function:

- a list of polynomials $\left[f_{1}, \ldots, f_{s}\right]$, a list of variables $\left[T_{1}, \ldots, T_{r}\right]$ such that $f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, a pair $\left[Q, Q^{0}\right]$ with an AGH $Q=\left(\mathbb{Z}^{r}, K, A\right)$ and a matrix Q^{0}, a matrix P.
- a list of polynomials $\left[f_{1}, \ldots, f_{s}\right]$, a list of variables $\left[T_{1}, \ldots, T_{r}\right]$ such that $f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, a list $[Q]$ with an AGH $Q=\left(\mathbb{Z}^{r}, K, A\right)$, a matrix P. Here, Q^{0} will be computed from Q using Algorithm :2.1.26;
- a list of polynomials $\left[f_{1}, \ldots, f_{s}\right]$, a list of variables $\left[\dot{T}_{1}, \ldots, T_{r}\right]$ such that $f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, a list $\left[Q^{0}\right]$ with a matrix Q^{0}, a matrix P. The AGH $Q:=Q^{0}: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{n}$ will be used.
- a list of polynomials $\left[f_{1}, \ldots, f_{s}\right]$, a list of variables $\left[T_{1}, \ldots, T_{r}\right]$ such that $f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, a list $[Q]$ with an AGH $Q=\left(\mathbb{Z}^{r}, K, A\right)$. Both Q^{0} and P will be computed from Q using Algorithms 2.1.25 and 2.1.26:
- a list of polynomials $\left[f_{1}, \ldots, f_{s}\right]$, a list of variables $\left[T_{1}, \ldots, T_{T}\right]$ such that $f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, a list $\left[Q^{0}\right]$ with a matrix Q^{0}. Here, $Q:=Q^{0}: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{n}$ will be used and P will be computed from Q using Algorithm 2.1.25,
- a list of polynomials $\left[f_{1}, \ldots, f_{s}\right]$, a list of variables $\left[T_{1}, \ldots, T_{r}\right]$ such that $f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, a list $[Q]$ with an AGH $Q: \mathbb{Z}^{r} \rightarrow K$. Here, both Q^{0} and P will be computed from Q using Algorithms 2.1.25: and 2.1.26;
- a list of polynomials $\left[f_{1}, \ldots, f_{s}\right]$, a list of variables $\left[\bar{T}_{1}, \ldots, T_{r}\right]$ such that $f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, a matrix P. Both Q and Q^{0} will be computed from P using Algorithms 2.1.24 and 2.1.26.
- An integral matrices P and A as in Construction 1.5.11. The procedure then returns the graded ring $R(P, A)$, see 1.5.3;

In each case, we require Q to be surjective, P to be of full rank, the grading of $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ given by $\operatorname{deg}\left(T_{i}\right)=Q\left(e_{i}\right)$ to be almost free and all f_{i} must be K homogeneous. Moreover, all variables must be K-prime, $P\left(Q^{0}\right)^{t}=0$ and $K \cong$ $\mathbb{Z}^{r} / \operatorname{Im}\left(P^{*}\right)$.
Output: a GR $R=\left(\left\{f_{1}, \ldots, f_{s}\right\}, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$. Then R represents the ring $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] / I$ with the ideal $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ and degree map $Q: \mathbb{Z}^{r} \rightarrow K$. It fixes matrices P, Q^{0} such that $K \cong \mathbb{Z}^{r} / \operatorname{Im}\left(P^{*}\right)$ and the matrix Q^{0} represents the projection $\mathbb{Z}^{r} \rightarrow K / K^{\text {tor }}$. See Chapter for details.
Internally, the list of all \mathfrak{F}-faces is stored unless the option 'noffaces' was given. The printed information is the number of variables, the number s of generators for the ideal of relations and information about the AG K.
Options:

- 'nocheck': skips tests for the parameters.
- 'noffaces': postpones the computation and storage of \mathfrak{F}-faces.
- 'Singular': use the software Singular for the computations of \mathfrak{F}-faces; this only possible on UNIX-based machines where Singular is available on the command line. Writes temporary files to the current directory.

```
Example: > RL := [T[1]*T[6] + T[2]*T[5] + T[3]*T[4] + T[7]*T[8]];
    RL:= [T[1]T[6] +T[2]T[5]+T[3]T[4]+T[7]T[8]]
> TT := vars(8);
    TT := [T[1],T[2],T[3],T[4],T[5],T[6],T[7],T[8]]
> A := linalg[matrix]([[1,1,0,0,-1,-1,2,-2], [0,1,1,-1,-1,0,1,-1],
[1,1,1,1,1,1,1,1], [1,0,1,0,1,0,1,0]]);
```

$$
A:=\left[\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\
0 & 1 & 1 & -1 & -1 & 0 & 1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

> $\mathrm{F}:=$ createAG(8); $\mathrm{K}:=$ createAG(3, [2]);

$$
\begin{aligned}
F & :=A G(8,[]) \\
K & :=A G(3,[2])
\end{aligned}
$$

```
> Q := createAGH(F, K, A);
    Q:=AGH([8, []],[3, [2]])
> QO := linalg[delrows](A, 4..4);
\[
Q 0:=\left[\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\
0 & 1 & 1 & -1 & -1 & 0 & 1 & -1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
\]
> P := AGHQ2P(Q);
\[
P:=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 1 & -1 & -1 \\
0 & 1 & 0 & 0 & 1 & 0 & -1 & -1 \\
0 & 0 & 1 & 0 & 2 & 0 & -1 & -2 \\
0 & 0 & 0 & 1 & 2 & 4 & -2 & -5 \\
0 & 0 & 0 & 0 & 4 & 4 & -2 & -6
\end{array}\right]
\]
> R1 := createGR(RL, TT, [Q, Q0], P);
\[
R 1:=G R(8,1,[3,[2]])
\]
```

The printed information means that R1 represents $\mathbb{K}\left[T_{1}, \ldots, T_{8}\right] / I$ with I generated by a single polynomial and the grading group K is isomorphic to $\mathbb{Z}^{3} \oplus \mathbb{Z} / 2 \mathbb{Z}$. The function GRdata in Procedure A. 2.4 shows all stored information. We enter another example with a free grading group:

```
> RL := [T[1]^2 + T[2]^2 - T[3]*T[4]];
    RL:= [T[1] 2}+T[2\mp@subsup{]}{}{2}-T[3]T[4]
> TT := vars(4);
        TT:= [T[1],T[2],T[3],T[4]]
> Q0 := linalg[matrix]([[0,0,-1, 1], [1,1, 1, 1]]);
    Q0:=[ [\begin{array}{rrrr}{0}&{0}&{-1}&{1}\\{1}&{1}&{1}&{1}\end{array}]
> R2 := createGR(RL, TT, [Q0], 'Singular');
    R2 :=GR(4, 1, [2, []])
```

In the next example, we enter a toric variety:

```
> RL := []; TT := vars(4);
```

$$
\begin{gathered}
R L:=[] \\
T T:=[T[1], T[2], T[3], T[4]]
\end{gathered}
$$

$$
>P:=\operatorname{linalg}[\text { matrix }]([[-1,1,0,1],[-1,0,1,1]]) ;
$$

$$
P:=\left[\begin{array}{llll}
-1 & 1 & 0 & 1 \\
-1 & 0 & 1 & 1
\end{array}\right]
$$

```
> R3 := createGR(RL, TT, P);
```

$$
R 3:=G R(4,0,[2,[]])
$$

We now enter a \mathbb{K}^{*}-surface with \mathbb{Z}^{4}-graded Cox ring $\mathbb{K}\left[T_{1}, \ldots, T_{6}\right] /\left\langle T_{1} T_{2}+T_{3} T_{4}+\right.$ $\left.T_{5} T_{6}\right\rangle$ by providing its P-matrix and a list A of integers:

$$
\begin{gathered}
>P:=\operatorname{matrix}([[-1,-1,1,1,0,0],[-1,-1,0,0,1,1]]) ; \\
\qquad P:=\left[\begin{array}{cccccc}
-1 & -1 & 1 & 1 & 0 & 0 \\
-1 & -1 & 0 & 0 & 1 & 1
\end{array}\right] \\
>A:=[[1,0],[1,1],[0,1]] ; \\
A:=[[1,0],[1,1],[0,1]]
\end{gathered}
$$

> R := createGR(P, A);

$$
R:=G R(6,1,[4,[]])
$$

Procedure A.2.4 (GRdata). Returns the stored information on the given GR R.
Input: a GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ with AGH $Q=\left(\mathbb{Z}^{r}, K, A\right)$.
Output: a list $\left[G,\left[T_{1}, \ldots, T_{r}\right],\left[Q, Q^{0}\right], P, F\right]$ with a list G of K-homogeneous polynomials in $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, integral matrices Q^{0} and P as well as a list of all \mathfrak{F}-faces F such that

$$
R=\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] /\left\langle f_{1}, \ldots, f_{s}\right\rangle,
$$

the matrix P is dual to the inclusion $\operatorname{ker}(Q) \rightarrow \mathbb{Z}^{r}$ and Q^{0} is a matrix describing the projection $\mathbb{Z}^{r} \rightarrow K / K^{\text {tor }}$. Moreover, Q is surjective and the grading given by $\operatorname{deg}\left(T_{i}\right)=Q\left(e_{i}\right)$ is almost free.
Example: we enter the GR R2 of the example of Procedure A.2.3:
> GRdata(R2);

$$
\begin{gathered}
{\left[\left[T[1]^{2}+T[2]^{2}-T[3] T[4]\right],[T[1], T[2], T[3], T[4]],\right.} \\
{\left[\operatorname{AGH}([4,[]],[2,[]]),\left[\begin{array}{rrrr}
0 & 0 & -1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]\right],\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
0 & -2 & 1 & 1
\end{array}\right]}
\end{gathered}
$$

$\{\},\{1,2,3\},\{3\},\{1,3,4\},\{4\},\{1,2,4\},\{1,2\},\{1,2,3,4\},\{2,3,4\}\}]$

Procedure A.2.5 (GRgradedcomp). Implements Algorithm 2.2.3;
Input: there are two possible input types:

- A graded ring $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ and a vector $w \in Q^{0}\left(\mathbb{Q}_{\geq 0}^{r}\right)$.
- A list $\left[f_{1}, \ldots, f_{s}\right]$ of polynomials $f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, a list of variables $\left[T_{1}, \ldots, T_{r}\right]$, a $r \times k$ matrix Q^{0} and $w \in Q^{0}\left(\mathbb{Q}_{\geq 0}^{r}\right)$ where the f_{i} are homogeneous with respect to the grading $\operatorname{deg}\left(T_{i}\right)=Q^{0}\left(e_{i}\right)$.
In both cases, the cone over the columns of Q^{0} must be pointed and Q^{0} must not contain zero-columns.
Output: a basis for the vector space $\langle G\rangle_{w}$ as a list of polynomials.
Example: > RL := [T[1]*T[2] + $\left.\mathrm{T}[3] * \mathrm{~T}[4]+\mathrm{T}[5]^{\wedge} 2\right]$;

$$
R L:=\left[T[1] T[2]+T[3] T[4]+T[5]^{2}\right]
$$

> TT := vars(5);

$$
T T:=[T[1], T[2], T[3], T[4], T[5]]
$$

> Q0 := linalg[matrix] ([[-2, 2, $-1,1,0],[1,1,1,1,1]])$;

$$
Q 0:=\left[\begin{array}{rrrrr}
-2 & 2 & -1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

```
> w := [-1,2];
```

$$
w:=[-1,2]
$$

> R := createGR(RL, TT, [QO]);

$$
R:=G R(5,1,[2,[]])
$$

> w := $[-1,3]$;

$$
w:=[-1,3]
$$

> C := GRgradedcomp(R, w);

$$
C:=\left[T[1] T[2] T[3]+T[3]^{2} T[4]+T[3] T[5]^{2}\right]
$$

Procedure A.2.6 (GRgradedcompdim). Implements Algorithm 2.2.5.
Input: there are two possible input types:

- A graded ring $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ and a vector $w \in Q^{0}\left(\mathbb{Q}_{\geq 0}^{r}\right)$.
- A list $\left[f_{1}, \ldots, f_{s}\right]$ of polynomials $f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$, a list of variables $\left[T_{1}, \ldots, T_{r}\right]$, a $r \times k$ matrix Q^{0} and $w \in Q^{0}\left(\mathbb{Q}_{>0}^{r}\right)$ where the f_{i} are homogeneous with respect to the grading $\operatorname{deg}\left(T_{i}\right)=Q^{0}\left(e_{i}\right)$.

In both cases, the cone over the columns of Q^{0} must be pointed and Q^{0} must not contain zero-columns.
Output: the dimension of the vector space $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]_{w} /\langle G\rangle_{w}$.
Example: enter the GR R from the example of Procedure A. 2.5

```
> w := [-1,3];
    w:=[-1,3]
> C := GRgradedcompdim(R, w);
```

Procedure A.2.7 (GRgitfan). Uses Algorithm 3.2.9 to compute the GIT-fan of the action of the torus $H^{0}:=\operatorname{Spec} \mathbb{K}\left[K^{0}\right]$ on $X:=\operatorname{Spec} R$. This procedure is as in [70].
Input: a GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$.
Output: the GIT-fan $\Lambda\left(X, H^{0}\right)$ given as a list of maximal CONEs.
Options: 'FAN': return a FAN instead of a list of its maximal CONEs.
Example: Consider the GR R1 as in the example of Procedure A. 2
> GRgitfan(R1, 'FAN');

$$
F A N(3,0,[0,0,37])
$$

Procedure A.2.8 (GRH2max). Implements Algorithm 3.3.4;

Input: a GR R or a MDS X.

Output: a list of BUNs. They correspond to the $(H, 2)$-maximal sets of X.
Example: > Q0 := linalg[matrix] ([[1,0,1,0], [0,1,0,1], [0,0,1,1]]);

$$
Q 0:=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

> $\mathrm{R}:=$ createGR([], vars(4), [Q0]);

$$
R:=G R(4,0,[3,[]])
$$

> GRH2max (R);
$[B U N(1), B U N(1)$, $B U N(1), B U N(3), B U N(3)$, $B U N(3), B U N(3), B U N(3)]$

Procedure A.2.9 (GRtrop). Implements Algorithm 2.2.7; Also works for arbitrary ideals if gfan [63] is available.

Input: There are three input possibilities:

- A GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$.
- A MDS $X=(R, \Phi)$ with a GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$.
- A list of polynomials $G=\left[f_{1}, \ldots, f_{s}\right]$ and a list of variables $\left[T_{1}, \ldots, T_{r}\right]$ such that $f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$.
In the first two cases, let P be the integral $n \times r$ matrix dual to the degree matrix Q. Output: a FAN in \mathbb{Q}^{n} with support $P(\operatorname{trop}(\langle G\rangle))$ or a FAN in \mathbb{Q}^{r} with support $\operatorname{trop}(\langle G\rangle)$ if the option ' F ' was specified or the third input type was used.

Options:

- ' F ': return a FAN in \mathbb{Q}^{r} with support $\operatorname{trop}(\langle G\rangle)$.
- 'CONEs': return a list of CONEs instead of a FAN. These represent the maximal cones of the fan.
- 'gfan': if the software gfan is installed on a UNIX-based machine, then arbitrary ideals may be entered. Writes temporary files in the current directory.

```
Example: > RL := [T[1]*T[2] + T[3]*T[4] + T[5] 2];
                                    \(R L:=\left[T[1] T[2]+T[3] T[4]+T[5]^{2}\right]\)
> TT := vars(5);
    \(T T:=[T[1], T[2], T[3], T[4], T[5]]\)
> Q0 := linalg[matrix] ([[-2, 2, -1, 1, 0],[1, 1, 1, 1, 1]]);
    \(Q 0:=\left[\begin{array}{rrrrr}-2 & 2 & -1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1\end{array}\right]\)
> R := createGR(RL, TT, [QO]);
    \(R:=\operatorname{GR}(5,1,[2,[]])\)
\(>\operatorname{GRtrop}(\mathrm{R})\); \# after projection under \(P: \mathbb{Z}^{5} \rightarrow \mathbb{Z}^{3}\).
    FAN \((3,1,[0,3,0])\)
> GRtrop(R, 'F', 'CONEs'); \# in \(\mathbb{Q}^{5}\).
    \([\operatorname{CONE}(5,4,3,1,1), \operatorname{CONE}(5,4,3,1,1), \operatorname{CONE}(5,4,3,1,1)]\)
\(>\mathrm{RL}:=\left[\mathrm{T}[2]^{\wedge} 3-3 * \mathrm{~T}[1]^{\wedge} 2 * \mathrm{~T}[2]^{\wedge} 3+1, \mathrm{~T}[2]+\mathrm{T}[1]+\mathrm{T}[1] * \mathrm{~T}[2]^{\wedge} 2-1\right] ;\)
    \(R L:=\left[T[2]^{3}-3 T[1]^{2} T[2]^{3}+1, T[2]+T[1]+T[1] T[2]^{2}-1\right]\)
> TT := vars(2);
    \(T T:=[T[1], T[2]]\)
> F := GRtrop(RL, TT, 'gfan');
    \(F:=F A N(2,1,[1,0])\)
```

Procedure A.2.10 (GRtropcontains). Implements Algorithm 2.2.8,
Input: there are two input types:

- A GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ or a $\operatorname{MDS} X=(R, \Phi)$ with P of size $n \times r$ and a vector $f \in \mathbb{Z}^{r}$.
- A GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ or a $\operatorname{MDS} X=(R, \Phi)$ with P of size $n \times r$ and a vector $v \in \mathbb{Z}^{n}$.

Output: true if $\mathbb{Q}_{\geq 0} \cdot v \subseteq P(\operatorname{trop}(\langle G\rangle))$ or if $\mathbb{Q}_{\geq 0} \cdot f \subseteq \operatorname{trop}(\langle G\rangle)$ respectively. Returns false otherwise.
Example: enter the GR R from the example of Procedure A.2.9:

```
> f := [0,0,0,-2,-1];
    f:= [0,0,0,-2,-1]
> GRtropcontains(R, f); # \mathbb{Q \geq0}\cdotf is contained in trop (\langleG\rangle).
                                    true
> v := [0, -2, -1];
    v:= [0,-2,-1]
> GRtropcontains(R, v); # \mathbb{Q }}>0\cdotv\mathrm{ is contained in P(trop (<G\)).
```


3. Procedures on Mori dream spaces

In this section, we describe an implementation of our algorithms that work on Mori dream spaces (MDS). The algorithms have been stated mainly in Section 3 : of Chapter '2: The special case of complexity-one T-varieties will be treated in the next section. Here is an overview:

- Creation and stored data: create an MDS (Procedure A.3.1), return the stored data of an MDS (Procedure A.3.2).
- Orbit data: relevant \mathfrak{F}-faces (Procedure A.3.3), covering collection (Procedure A.3.4.), toric ambient variety and completions (Procedure A.3.5).
- Miscellanea: Mori chamber decomposition (Procedure A.3.6), dimension (Procedure A.3.7), existence of points (Procedure A.3.8), irrelevant ideal (Procedure A.3.9), stratum (Procedure A.3.10), degree matrix (Procedure A.3.11), graph of exceptional curves (Procedure A.3.12).
- Cones of divisor classes: semiample cone (Procedure A.3.13), effective cone (Procedure A.3.14), moving cone (Procedure A.3.15).
- Groups: divisor class group (Procedure A.3.16), local divisor class groups (ProcedureA.3.17), Picard group (ProcedureA.3.18), Picard index (Procedure A.3.19).
- Complete intersection Cox rings: anticanonical divisor class (Procedure A. 3.20), test for being (\mathbb{Q})-Gorenstein (Procedures A.3.21 and A.3.22), Gorenstein index (Procedure A.3.23), test for being Fano (Procedure A.3.24), intersection numbers (Procedure A.3.25).
- Singularities, further properties: test for being (Q)-)factorial (Procedures A. 3.26 and A. 3.27), test for being quasismooth (Procedure A. 3.28), test for being smooth (Procedure A.3.29), singularities (Procedure A.3.30), test for being (quasi-) projective (Procedure A.3.3i and A.3.32), test for being complete (Procedure A.3.33).
Procedure A.3.1 (createMDS). Constructor for the data type MDS. Represents Mori dream spaces in terms of bunched rings.

Input: there are two types of input:

- A GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ and a vector $w \in K_{\mathbb{Q}}$. This input will return the result of createMDS with parameters R and the BUN

$$
\Phi(w)=\left\{Q^{0}\left(\gamma_{0}\right) ; \gamma_{0} \text { is an } \mathfrak{F} \text {-face and } w \in\left(Q^{0}\left(\gamma_{0}\right)\right)^{\circ}\right\}
$$

- a GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ and a BUN Φ in $K_{\mathbb{Q}}$.

Output: 'nocheck': do not perform checks. Use this option if you know that the input is valid.
Options: the MDS $X=(R, \Phi)$. The printed information of an MDS is the number of variables, the number of relations, its dimension and information about the grading group.
Example: We reenter the GR R, the BUN B1 and the vector w as in the example of Procedure A. 1; Then X and Y describe the same Mori dream surface:

```
> RL := [T[1]*T[2] + T[3]*T[4] + T[5]^2];
    RL:= [T[1]T[2]+T[3]T[4]+T[5] }\mp@subsup{}{}{2}
> TT := vars(5);
        TT := [T[1],T[2],T[3],T[4],T[5]]
> Q0 := linalg[matrix]([[-2, 2, -1, 1, 0],[1, 1, 1, 1, 1]]);
    Q0 :=[ [r-2
```

```
> W := [-1, 2];
    w:=[-1,2]
> R := createGR(RL, TT, [QO]);
    R:=GR(5, 1,[2,[]])
> B := createBUN(w, R);
    B:=BUN(5)
> X := createMDS(R, B);
    X:=MDS(5,1,2,[2,[]])
> Y := createMDS(R, w);
    Y:=MDS(5,1,2,[2,[]])
```

Procedure A.3.2 (MDSdata). Returns the stored data of the given MDS.
Input: an MDS $X=(R, \Phi)$.
Output: a list $[R, \Phi]$ with a GR R and a BUN Φ.
Example: consider the MDS X as in the example of Procedure A. 3.1
> MDSdata (X) ;
$[G R(5,1,[2,[]]), B U N(5)]$

Procedure A.3.3 (MDSrlv). Implements Algorithm 2.3.5;
Input: there are three types of input:

- An MDS $X=(R, \Phi)$.
- A BUN Φ, a matrix Q^{0}, a list F of \mathfrak{F}-faces.
- A BUN Φ, a matrix Q^{0}, a list of polynomials $\left[f_{1}, \ldots, f_{s}\right]$, a list of variables $\left[T_{1}, \ldots, T_{r}\right]$.
Output: in the first case, the list $\operatorname{rlv}(X)$ of all relevant \mathfrak{F}-faces is returned. In the second case, all $\gamma_{0} \in F$ such that $Q^{0}\left(\gamma_{0}\right) \in \Phi$ is returned. In the third case, all $\left\langle f_{1}, \ldots, f_{s}\right\rangle$-faces $\gamma_{0} \preceq \mathbb{Q}_{\geq 0}^{r}$ such that $Q^{0}\left(\gamma_{0}\right) \in \Phi$ are returned.
Example: consider the MDS X, the matrix Q0 and the BUN B as in Procedure: A. Then the lists FFr1 to FFr3 coincide:

```
> FFr1 := MDSrlv(X);
    FFr 1:=[{1,2,3,4,5},{2,3,4,5},{1,2,3,4},{3,4,5},{1,3,4,5},
        {1,2,4,5},{1,2,5},{1,2,3,5},{2,3},{1,4}]
> FFr2 := MDSrlv(B, Q0, RL, TT);
    FFr2:=[{1,2,3,4, 5},{2,3,4,5},{1,2,3,4},{3,4,5},{1,3,4,5},
        {1,2,4,5},{1,2,5},{1,2,3,5},{2,3},{1,4}]
> FFr3 := MDSrlv(B, Q0, ffaces(RL, TT));
        FFr3:=[{1,2,3,4,5},{2,3,4,5},{1,2,3,4},{3,4,5},{1,3,4,5},
            {1,2,4,5},{1,2,5},{1,2,3,5},{2,3},{1,4}]
```

Procedure A.3.4 (MDScov). Implements Algorithm 2.3.6;
Input: there are three types of input:

- An MDS $X=(R, \Phi)$.
- A BUN Φ, a matrix Q^{0}, a list of \mathfrak{F}-faces F.
- A BUN Φ, a matrix Q^{0}, a list of polynomials $\left[f_{1}, \ldots, f_{s}\right]$, a list of variables $\left[T_{1}, \ldots, T_{r}\right]$ such that $f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$.

Output: in the first, second, third input case, the algorithm returns

- the list $\operatorname{cov}(X)$ of all minimal relevant \mathfrak{F}-faces.
- all $\gamma_{0} \in F$ such that $Q^{0}\left(\gamma_{0}\right) \in \Phi$ and γ_{0} is minimal with this property.
- all $\left\langle f_{1}, \ldots, f_{s}\right\rangle$-faces $\gamma_{0} \preceq \mathbb{Q}_{\geq 0}^{r}$ such that $Q^{0}\left(\gamma_{0}\right) \in \Phi$ and γ_{0} is minimal with this property.

Example: consider the MDS X, the matrix Q0 and the BUN B as in Procedure A. 3.1 : Compare also Procedure A.3.3:

```
> C1 := MDScov(X);
    C1:=[{1,2,5},{3,4,5},{1,4},{2,3}]
> C2 := MDScov(B, Q0, RL, TT);
    C2 := [{1,2,5},{3,4,5},{1,4},{2,3}]
> C3 := MDScov(B, Q0, ffaces(RL, TT));
    C3:=[{1,2,5},{3,4,5},{1,4},{2,3}]
```

Procedure A.3.5 (MDSambtorvar). Implements Algorithm 2.3.9;
Input: an MDS X.
Output: a FAN or a list of FANs if 'completions' was given.
Options:

- 'completions': return a list of FANs representing all possible completions for projective X as in Algorithm 2.3.9:
- 'nocheck': do not test whether X is projective.
- 'CONEs': return lists of maximal cones, i.e., lists of CONEs, instead of FANs.

Example: consider the MDS X as in the example of Procedure A. 1
> Z := MDSambtorvar(X);

$$
Z:=F A N(3,0,[0,2,2])
$$

> ZL := MDSambtorvar(X, 'completions'); $Z L:=[F A N(3,0,[0,0,6]), F A N(3,0,[0,0,5]), F A N(3,0,[0,0,6])]$
$>\operatorname{map}(i s c o m p l e t e, ~ Z L) ; ~ Z L[1] ~ \&>=~ Z ; ~ Z L[2] ~ \&>=~ Z ; ~ Z L[3] ~ \&>=~ Z ; ~$
[true, true,true]
true
true
true

Procedure A.3.6 (MDSchambers). Implements Algorithm 3.21 to compute the Mori chamber decomposition; compare also [70].
Input: an MDS $X=(R, \Phi)$ with $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$.
Output: the Mori chamber decomposition as a list of maximal CONEs or a FAN if the option 'FAN' was used.
Options: 'FAN': return a FAN instead of a list of its maximal CONEs.
Example: consider the MDS X as in Procedure A.3.1
> MDSchambers(X, 'FAN');

$$
F A N(3,0,[0,0,37])
$$

Procedure A.3.7 (MDSdim). Implements Algorithm 2.3.4;
Input: an MDS $X=(R, \Phi)$.
Output: an integer $d \in \mathbb{Z}_{\geq 0}$ such that $\operatorname{dim}(X)=d$.
Example: consider the MDS X as in the example of Procedure A .1
> MDSdim(X);
2

Procedure A.3.8 (MDSpointex). Implements Algorithm 2.3.8;
Input: an MDS X and a vector $z \in \mathbb{K}^{r}$.
Output: true if $z \in \widehat{X}$ and false otherwise. This means $[z] \in X$.
Example: consider the MDS X as in the example of Procedure A. 3 .

```
> z := [1,1,-1,1,0];
    z:=[1,1, -1, 1,0]
```

> MDSpointex(X, z);
true

Procedure A.3.9 (MDSirrel). Implements Algorithm 2.3.11;
Input: an MDS $X=(R, \Phi)$.
Output: a list of generators $g_{1}, \ldots, g_{n} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ for the vanishing ideal of $\bar{X} \backslash \widehat{X}$ in \mathbb{K}^{r}.
Example: consider the MDS X as in Procedure A. A
> MDSirrel(X);

$$
\left[T[2] T[3], T[1] T[4], \quad T[3] T[4] T[5], \quad T[1] T[2] T[5], \quad T[1] T[2]+T[3] T[4]+T[5]^{2}\right]
$$

Procedure A.3.10 (MDSstrat). Implements Algorithm 2.3.39,
Input: an MDS $X=(R, \Phi)$. Optional: a relevant \mathfrak{F}-face $\gamma_{0} \preceq \mathbb{Q}_{\geq 0}^{r}$.
Output: Depending on the input type:

- If a second parameter γ_{0} was given: computes a list of generators $G_{\gamma_{0}} \subseteq$ $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ for the ideal $I_{\gamma_{0}} \subseteq \mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{n}^{ \pm 1}\right]$ of the stratum $X\left(\gamma_{0}\right) \subseteq$ X. Returns the pair $\left[G_{\gamma_{0}},\left[T_{1}, \ldots, T_{n}\right]\right]$.
- If no second parameter was given: generators $G_{\gamma_{0}} \subseteq \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ for the ideals $I_{\gamma_{0}} \subseteq \mathbb{K}\left[T_{1}^{ \pm 1}, \ldots, T_{n}^{ \pm 1}\right]$ of all strata $X\left(\gamma_{0}\right)$ are returned as a pair $\left[L,\left[T_{1}, \ldots, T_{n}\right]\right]$ where the list L consists of all pairs $\left.\left[\gamma_{0}, G_{\gamma_{0}}\right]\right]$ with γ_{0} running through $\operatorname{rlv}(X)$.
Example: consider the MDS X as in the example of Procedure A.
> gam0 $:=\{2,3,4,5\}$;

$$
\operatorname{gam} 0:=\{2,3,4,5\}
$$

> MDSstrat (X, gam0) ;

$$
\left[\left[T[2]+T[3]^{2}\right],[T[1], T[2], T[3]]\right]
$$

> MDSstrat (X) ;
$\left[\left[\left[3,4,5,\left[T[2]+T[3]^{2}\right]\right],\left[1,3,4,5,\left[T[2]+T[3]^{2}\right]\right],\left[1,2,4,5,\left[T[1]+T[3]^{2}\right]\right]\right.\right.$,
$\left[1,2,5,\left[T[1]+T[3]^{2}\right]\right],\left[1,2,3,5,\left[T[1]+T[3]^{2}\right]\right],\left[1,2,3,4,5,\left[T[1]+T[2]+T[3]^{2}\right]\right]$,
$\left.\left.\left[2,3,4,5,\left[T[2]+T[3]^{2}\right]\right],[2,3,[]],[1,4,[]],[1,2,3,4,[T[1]+T[2]]]\right],[T[1], T[2], T[3]]\right]$

Procedure A.3.11 (MDSdegmat). This is a special version of Procedure A.1.23: First, A.1.23 will be applied to the P-matrix of the given MDS X to obtain an AGH $Q^{\prime}=\left(\mathbb{Z}^{r}, K^{\prime}, A\right)$ where

$$
Q^{\prime}: \mathbb{Z}^{r} \rightarrow K^{\prime}, \quad K^{\prime}:=\mathbb{Z}^{d} \oplus \bigoplus_{i=1}^{k} \mathbb{Z} / a_{i} \mathbb{Z}
$$

and the columns of A represent the degrees $\operatorname{deg}\left(T_{i}\right) \in K^{\prime}$. Afterwards, A is returned together with the integers a_{1}, \ldots, a_{k}.
Input: an MDS $X=(R, \Phi)$ or a GR R where $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$.
Output: a pair $\left[A,\left[a_{1}, \ldots, a_{k}\right]\right]$ with an integral matrix A and $a_{i} \in \mathbb{Z}$. The entries of the last k rows of A must be interpreted as elements of $\mathbb{Z} / a_{i} \mathbb{Z}$; for this, Algorithm 2.1.24 is used.

```
Example: > A := linalg[matrix]([[ 1, 0, 1],[ 1, 1, 0]]);
    \(A:=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]\)
Q := createAGH (createAG(3), createAG(1, [3]), A);
    \(Q:=\operatorname{AGH}([3,[]],[1,[3]])\)
    \(\mathrm{R}:=\operatorname{createGR}([], \operatorname{vars}(3),[\mathrm{Q}])\);
        \(R:=G R(3,0,[1,[3]])\)
X := createMDS(R, [1]);
    \(X:=M D S(3,0,2,[1,[3]])\)
```

> MDSdegmat (X) ; \# the last row must be interpreted as elements of $\mathbb{Z} / 3 \mathbb{Z}$.

$$
\left[\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right],[3]\right]
$$

Procedure A.3.12 (MDSintersgraph). Implements Algorithm 2.3.27,
Input: an MDS $X=(R, \Phi)$ of dimension two.
Output: the graph of exceptional curves G_{X} (without intersection numbers).
Options: 'latex': prints $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ code to draw G_{X}. Gray vertices stand for negative curves and black vertices for negative curves which are incident with at least three other curves. Also, the non-negative curves among the $V\left(X ; T_{i}\right)$ are drawn in white. Example: consider the MDS X as in Procedure A. 3.1
> G := MDSintersgraph (X) ; \# also draws a representation of the graph.

$$
G:=G
$$

> networks [vertices] (G); \# shows the names of all vertices of G.

$$
\{" T 1 ", " T 2 "\}
$$

> networks[edges]("T1", "T2", G); \# there is an edge between the vertices representing $V\left(T_{1}\right)$ and $V\left(T_{2}\right)$
\{e1\}
> MDSintersgraph(X, 'latex'); \# prints code for G_{X}

Procedure A.3.13 (MDSsample). Implements Algorithm 2.3.15;
Input: an MDS X.
Output: the CONE SAmple (X) in the vector space $K_{\mathbb{Q}}$.
Example: consider the MDS X defined in Procedure A.3.1:
> c := MDSsample(X); rays(c);

$$
\begin{aligned}
c:= & \operatorname{CON} E(2,2,0,2,2) \\
& {[[1,1],[-1,1]] }
\end{aligned}
$$

Procedure A.3.14 (MDSeff). Implements Algorithm 2.313,
Input: an MDS $X=(R, \Phi)$.
Output: the CONE $\operatorname{Eff}(X)$ in the vector space $K_{\mathbb{Q}}$.
Example: consider the MDS X as in Procedure A. A :
> c := MDSeff(X) ; rays(c);

$$
\begin{gathered}
\operatorname{CONE}(2,2,0,2,2) \\
{[[-2,1],[2,1]]}
\end{gathered}
$$

Procedure A.3.15 (MDSmov). Implements Algorithm 2.3.14;
Input: there are three input possibilities:

- An MDS $X=(R, \Phi)$.
- A GR R where the matrix Q^{0} has columns $q_{1}, \ldots, q_{r} \in K_{\mathbb{Q}}$.
- An integral matrix with columns q_{1}, \ldots, q_{r}.

Output: the $\operatorname{CONE} \operatorname{Mov}(X) \subseteq K_{\mathbb{Q}}$ or, for the other input types, the CONE

$$
\bigcap_{i=1}^{r} \operatorname{cone}\left(q_{j} ; j \neq i\right) \subseteq K_{\mathbb{Q}} .
$$

Example: consider the MDS X and the matrix Q^{0} in the example of Procedure A. 3.1

```
> c1 := MDSmov(X); rays(c1);
    c1 := CONE(2, 2,0,2,2)
    [[-1, 1], [1, 1]]
> c2 := MDSmov(QO); c1 &= c2;
    c2 := CONE (2, 2,0,2,2)
    true
```

Procedure A.3.16 (MDSclassgrp). Returns the divisor class group.
Input: an MDS X.
Output: an AG representing the class group $\mathrm{Cl}(X)$.
Example: consider the MDS X defined in Procedure A. A .1
> MDSclassgrp(X);

$$
A G(2,[])
$$

Procedure A.3.17 (MDSlocclassgrp). Implements Algorithm 2.3.18
Input: an MDS $X=(R, \Phi)$ and a point $x \in X$ which is given either in Cox coordinates $z \in \mathbb{K}^{r}$ or as a relevant \mathfrak{F}-face $\gamma_{0} \preceq \mathbb{Q}_{\geq_{0}}^{r}$ such that $x \in X\left(\gamma_{0}\right)$.

Output: an AG representing the local class group $\mathrm{Cl}(X, x)$.

Example: we computationally verify part of [5; Ex. III.3.3.5]:

```
> RL := [T[1]*T[2] + T[3]^2 + T[4]*T[5]];
    \(R L:=\left[T[1] T[2]+T[3]^{2}+T[4] T[5]\right]\)
> TT := vars (5);
    \(T T:=[T[1], T[2], T[3], T[4], T[5]]\)
> Q0 := linalg[matrix] ([[1, -1, 0, -1, 1], [1, 1, 1, 0, 2]]);
    \(Q 0:=\left[\begin{array}{rrrrr}1 & -1 & 0 & -1 & 1 \\ 1 & 1 & 1 & 0 & 2\end{array}\right]\)
> R := createGR(RL, TT, [QO]);
                                \(R:=\operatorname{GR}(5,1,[2,[]])\)
\(>\mathrm{W}:=[0,3]\);
                                    \(w:=[0,3]\)
> Y := createMDS(R, w);
    \(Y:=M D S(5,1,2,[2,[]])\)
\(>\mathrm{x} 0:=[0,1,0,0,1] ;\) \# Cox coordinates for a point in \(X\left(\operatorname{cone}\left(e_{2}, e_{5}\right)\right)\).
    \(x 0:=[0,1,0,0,1]\)
> MDSlocclassgrp(Y, x0); \# will be \(\mathbb{Z} / 3 \mathbb{Z}\).
\(A G(0,[3])\)
\(>\operatorname{gam} 123:=\{1,2,3\} ;\)
gam123:=\{1,2,3\}
> MDSlocclassgrp(Y, gam123) ; \# will be the trivial group:
\(A G(0,[])\)
```

Procedure A.3.18 (MDSpic). Implements Algorithm 2.30;
Input: an MDS X.
Output: the $\mathrm{AG} \operatorname{Pic}(X)$ as a subgroup of $\mathrm{Cl}(X)$.
Example: consider the MDS X as in Procedure A.3.1:
> Pic := MDSpic(X) ; AGdata(Pic);

$$
\begin{gathered}
\text { Pic : }=A G(2,[]) \\
{\left[\left[\begin{array}{ll}
6 & 0 \\
0 & 3
\end{array}\right],\left[\begin{array}{l}
0 \\
0
\end{array}\right], 2,[]\right]}
\end{gathered}
$$

Procedure A.3.19 (MDSpicind). Implements Algorithm 2.3.21;
Input: an MDS X.
Output: the Picard index $[\mathrm{Cl}(X): \operatorname{Pic}(X)]$
Example: consider the MDS X as in Procedure A.3.1
> MDSpicind(X);

Procedure A.3.20 (MDSantican). Implements Algorithm 2.31
Input: an $\operatorname{MDS} X=(R, \Phi)$ such that R is a complete intersection.
Output: a vector $w \in \mathbb{Z}^{r}$. If $K=(U, L)$ is the grading group then the anticanonical divisor class $-w_{X}^{\text {can }} \in K$ satisfies $-w_{X}^{\text {can }}=w+\operatorname{lin}_{\mathbb{Z}}(L)$.
Example: consider the MDS X as in Procedure A.3.1:
> MDSantican(X); \# represents an element of $K=\mathbb{Z}^{2}$:

$$
[0,3]
$$

Procedure A.3.21 (MDSisgorenstein). Implements Algorithm 2.3.44,
Input: an MDS $X=(R, \Phi)$ such that R is a complete intersection.
Output: true if X is Gorenstein and false otherwise.
Example: let Y be as in the example of Procedure A.3.17: We computationally verify part of [5, Ex. III.3.3.5]:
> MDSisgorenstein(Y);

> true

Procedure A.3.22 (MDSisQgorenstein). Implements Algorithm 2.3.43;
Input: an MDS $X=(R, \Phi)$ such that R is a complete intersection.
Output: true if X is \mathbb{Q}-Gorenstein and false otherwise.
Example: let Y be as in the example of Procedure A.3.17: We computationally verify part of [5, Ex. III.3.3.5]:
> MDSisQgorenstein (Y); \# since $(0,5)-(0,2) \in Q\left(\operatorname{cone}\left(e_{2}, e_{5}\right)\right)$:
true

Procedure A.3.23 (MDSgorensteinind). Implements Algorithm 2.3.45;
Input: an MDS $X=(R, \Phi)$ such that R is a complete intersection.
Output: true if X is \mathbb{Q}-Gorenstein and false otherwise.
Example: let Y be as in the example of Procedure A.3.17: We computationally verify part of [5, Ex. III.3.3.5].
> MDSgorensteinind(Y) ; \# Y is Gorenstein:

Procedure A.3.24 (MDSisfano). Implements Algorithm 2.3.46;
Input: an MDS $X=(R, \Phi)$ such that R is a complete intersection.
Output: true if X is Fano and false otherwise.
Example: let Y be as in the example of Procedure A.3.17: We computationally verify part of [5, Ex. III.3.3.5]:
> MDSisfano (Y); \# since $(0,5)-(0,2) \in \vartheta^{\circ}$ for each $\vartheta \in \Phi$:
true

Procedure A.3.25 (MDSintersno). Implements Algorithm :2.3.48;
Input: a quasiprojective $\operatorname{MDS} X=(R, \Phi)$ with R having a principal ideal of relations and two elements $w, w^{\prime} \in K$.
Output: the intersection number $D \cdot D^{\prime} \in \mathbb{Q}$ where D, D^{\prime} are divisors on X with classes $[D]=w$ and $\left[D^{\prime}\right]=w^{\prime}$.
Options: 'allself ': return the list of all $V\left(X ; T_{i}\right)^{2}$.
Example: let Y be as in the example of Procedure A.3.17: We computationally verify [5, Ex. III.3.3.5]:

```
> w := -MDSantican(Y);
```

$$
w:=[0,-3]
$$

```
> n := MDSintersno(Y, w, w); # the self-intersection number ( wow
```

 \(n:=6\)
 Procedure A.3.26 (MDSisfact). Implements Algorithm
Input: an MDS $X=(R, \Phi)$. Optional second parameter: a point $x \in X$ given in Cox coordinates $z \in \mathbb{K}^{r}$ or as a relevant \mathfrak{F}-face $\gamma_{0} \preceq \mathbb{Q}_{\geq 0}^{r}$ such that $x \in X\left(\gamma_{0}\right)$.
Output: if only X was given: true if X is factorial and false otherwise. If a point $x \in X$ was given: true if $x \in X$ is factorial and false otherwise.
Example: consider the MDS X as in the example of Procedure A. 1
> MDSisfact (X); \# since $Q\left(\operatorname{lin}_{\mathbb{Z}}\left(\operatorname{cone}\left(e_{1}, e_{2}, e_{5}\right) \cap \mathbb{Z}^{8}\right)\right) \neq \mathbb{Z}^{2}$:
false
$>\operatorname{gam} 0:=\{1,2,5\} ;$

$$
\operatorname{gam} 0:=\{1,2,5\}
$$

> MDSisfact (X, gam0) ; \# no point $x \in X\left(\gamma_{0}\right)$ is factorial:
false
$>\operatorname{MDSisfact}(\mathrm{X},[-1,1,0,0,1])$; \# the point $[-1,1,0,0,1] \in X$ is not factorial: false

Procedure A.3.27 (MDSisQfact). Implements Algorithm 2.3.31;
Input: an MDS $X=(R, \Phi)$.
Output: true if X is \mathbb{Q}-factorial and false otherwise.
Example: consider the MDS X as defined in Procedure A.3.1:
> MDSisQfact (X) ; \# all cones of Φ are full-dimensional.

Procedure A.3.28 (MDSisquasismooth). Implements Algorithm 2.3.23;
Input: an MDS $X=(R, \Phi)$. Optional second parameter: a point $x \in X$ given in Cox coordinates $z \in \mathbb{K}^{r}$ or as a relevant \mathfrak{F}-face $\gamma_{0} \preceq \mathbb{Q}_{>0}^{r}$ such that $x \in X\left(\gamma_{0}\right)$.

Output: if only X was given: true if \widehat{X} is smooth and false otherwise. If also a point $x \in X$ was given, true if $x \in \widehat{X}^{\text {reg }}$ and false otherwise.
Example: consider the MDS X as in the example of Procedure A.
> MDSisquasismooth (X) ; \# \widehat{X} is smooth since $\bar{X}^{\text {sing }}=\{0\}$ in \mathbb{K}^{5} :
true
> MDSisquasismooth (X, $\{2,3\})$; \# this means $\overline{X\left(\operatorname{cone}\left(e_{2}, e_{3}\right)\right)} \cap \widehat{X}$ is smooth.
true
> MDSisquasismooth(X, [-2, $1,1,1,1]$); \# ($-2,1,1,1,1$) $\in \widehat{X}$ is smooth.
true

Procedure A.3.29 (MDSissmooth). Implements Algorithm 2.3.24;
Input: an MDS $X=(R, \Phi)$. Optional second parameter: a point $x \in X$ given in Cox coordinates $z \in \mathbb{K}^{r}$ or as a relevant \mathfrak{F}-face $\gamma_{0} \preceq \mathbb{Q}_{\geq 0}^{r}$ such that $x \in X\left(\gamma_{0}\right)$.
Output: if only X was given: true if X is smooth and false otherwise. If a point $x \in X$ was given, true if $x \in X$ is smooth and false otherwise.
Example: consider the MDS X as in the example of Procedure A.3.1

```
> MDSissmooth (X) ; \# \(\widehat{X}\) is smooth, the toric ambient variety is singular:
                    false
> MDSissmooth \((\mathrm{X},\{2,3\})\); \# the stratum \(X\left(\operatorname{cone}\left(e_{2}, e_{3}\right)\right)\) is singular:
                    false
> MDSissmooth (X, [-2, 1, 1, 1, 1]) ; \# the point \([-2,1,1,1,1] \in X\) is smooth:
                                    true
```

Procedure A.3.30 (MDSsing). Implements Algorithm 2.35,
Input: an MDS X.
Output: a list of lists $\left[\left[J,\left[T_{1}, \ldots, T_{r}\right]\right], F\right]$ where

- J is a list of polynomials in $\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]$ such that the vanishing set $V(J) \subseteq \mathbb{K}^{r}$ equals $\bar{X}^{\text {sing }}$,
- F is a list of all relevant \mathfrak{F}-faces such that $X\left(\gamma_{0}\right)$ is singular.

Example: $\begin{aligned} & \\ & \text { RL }:= {\left[2 * \mathrm{~T}[1]^{\wedge} 3 * \mathrm{~T}[2]^{\wedge} 2+\mathrm{T}[3]^{\wedge} 3 * \mathrm{~T}[4]^{\wedge} 2+\mathrm{T}[5]^{\wedge} 3 * \mathrm{~T}[6]^{\wedge} 2\right] ; } \\ & R L:=\left[2 T[1]^{3} T[2]^{2}+T[3]^{3} T[4]^{2}+T[5]^{3} T[6]^{2}\right]\end{aligned}$ $R L:=\left[2 T[1]^{3} T[2]^{2}+T[3]^{3} T[4]^{2}+T[5]^{3} T[6]^{2}\right]$

```
> TT := vars(6);
```

$$
T T:=[T[1], T[2], T[3], T[4], T[5], T[6]]
$$

> Q0 := linalg[matrix] ([[0, 1, 0, 1, 0, 1],[1, 0, 1, 0, 1, 0]]);

$$
Q 0:=\left[\begin{array}{llllll}
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

> R := createGR(RL, TT, [Q0]);

$$
R:=G R(6,1,[2,[]])
$$

> Y := createMDS(R, [2,3]);

$$
Y:=M D S(6,1,3,[2,[]])
$$

> MDSsing(Y) ; \# both \bar{X} and \widehat{X} are singular

$$
\begin{gathered}
{\left[\left[\left[6 T[1]^{2} T[2]^{2}, 4 T[1]^{3} T[2], 3 T[3]^{2} T[4]^{2}, 2 T[3]^{3} T[4], 3 T[5]^{2} T[6]^{2}, 2 T[5]^{3} T[6],\right.\right.\right.} \\
\left.\left.2 T[1]^{3} T[2]^{2}+T[3]^{3} T[4]^{2}+T[5]^{3} T[6]^{2}\right],[T[1], T[2], T[3], T[4], T[5], T[6]]\right], \\
\\
{[\{1,6\},\{3,6\},\{1,3,6\},\{2,3,6\},\{1,4,6\},\{2,5\},} \\
\{2,3,5\},\{4,5\},\{1,4,5\},\{2,4,5\},\{2,3\},\{1,4\}]]
\end{gathered}
$$

Procedure A.3.31 (MDSisquasiproj). Implements Algorithm 2.3.35,
Input: an MDS $X=(R, \Phi)$.
Output: true if X is quasiprojective and false otherwise.
Example: consider the MDS X as in Procedure A.3.1:
> MDSisquasiproj(X); \# Φ was defined by a vector $w \in K_{\mathbb{Q}}$:
true

Procedure A.3.32 (MDSisproj). Implements Algorithm 2.36;
Input: an MDS X.
Output: true if X is projective and false otherwise.
Example: consider the MDS X as in the example of Procedure A. 3 i:
> MDSisproj(X) ; \# X is quasiprojective and the grading is pointed

Procedure A.3.33 (MDSiscomplete). Implements Algorithm 2.3.33,
Input: an MDS $X=(R, \Phi)$ where the ideal of relations of R is principal.
Output: true if X is complete and false otherwise.
Example: consider the MDS X as in Procedure 'A.3.1
> MDSiscomplete (X) ; \# $|\Sigma| \supseteq \operatorname{trop}(f)$ where Z_{Σ} is as in Construction 1.3.12. true

4. Procedures on complexity-one T-varieties

In this section, we describe our implementation of algorithms for complexity-one T-varieties. See Section 4 of Chapter 2 for the algorithms. Here is an overview:

- Automorphisms: horizontal and vertical Demazure P-roots (Procedure A.4.1 and A.4.2), roots of $\operatorname{Aut}(X)^{0}$ (Procedure A.4.3).
- Singularities: resolution of singularities (Procedure A.4.4).
- Anticanonical complex: anticanonical polytope (Procedure A.4.5), anticanonical complex (Procedure A.4.6), test for being (ϵ-log-) terminal (Procedures A.4.7 and A.4.8).

In this section, we call an MDS $X=(R, \Phi)$ or also its GR R of complexity one if X is a complexity-one T-variety with Cox ring $R=R(P, A)$ as in Construction 1.5.3; This means the GR R was obtained by a call to Procedure A. 2 with input P and A.

Procedure A.4.1 (MDShdemazure). Implements Algorithm 2.4.2
Input: there are three input types:

- An MDS $X=(R, \Phi)$ of complexity one.
- A GR R of complexity one.
- Integral matrices P and A as in Construction 1.5.2. If instead of A the number of blocks of P is given, the procedure chooses A.

In the first two cases, we require that $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ has been entered as createGR (P, A).

Output: a list of all horizontal Demazure P-roots of $R=R(P, A)$.
Example: we computationally verify [6; Ex. 5.3]:

```
> P := cols2matrix([[-1,-1,-1],[-3,-3,-2],[3,0,1],[0,2,1]]);
    P:=[ [\begin{array}{llll}{-1}&{-3}&{3}&{0}\\{-1}&{-3}&{0}&{2}\\{-1}&{-2}&{1}&{1}\end{array}]
> A := [[0,1],[-1,-1],[1,0]];
    A := [[0, 1],[-1, -1],[1,0]];
    R := createGR(P, A);
        R:=GR(4, 1,[1,[]])
    HDEM := MDShdemazure(R);
        HDEM:= [[[[-1, -2,3]], 2, 3, [1, 1, 1]]]
```

Let us consider another example and input type:

```
P := cols2matrix([[-1,-1,-1],[-3,-3,-2],[2,0,1],[0,1,1],
```

[0, 0, 1], [0, 0, -1]]);

$$
P:=\left[\begin{array}{rrrrrr}
-1 & -3 & 2 & 0 & 0 & 0 \\
-1 & -3 & 0 & 1 & 0 & 0 \\
-1 & -2 & 1 & 1 & 1 & -1
\end{array}\right]
$$

> HDEM := MDShdemazure $(\mathrm{P}, 3)$; \# there are three blocks in P; no horizontal Demazure P-root exists:

$$
H D E M:=[[[], 1,2,[1,1,1]],[[], 1,2,[2,1,1]],[[], 2,3,[1,1,1]]]
$$

Procedure A.4.2 (MDSvdemazure). Implements Algorithm 2.4;
Input: there are three input types:

- An MDS $X=(R, \Phi)$ of complexity one.
- A GR R of complexity one.
- Integral matrices P and A as in Construction 1.5.2; If instead of A the number of blocks of P is given, the procedure chooses A.

In the first two cases, we require that $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ has been entered as createGR (P, A).
Output: a list of all vertical Demazure P-roots of $R=R(P, A)$.
Example: as in Procedure A.4.1; we continue the verification [6, Ex. 5.3]:

```
\(>P:=\operatorname{cols2matrix}([[-1,-1,-1],[-3,-3,-2],[3,0,1],[0,2,1]])\);
    \(P:=\left[\begin{array}{llll}-1 & -3 & 3 & 0 \\ -1 & -3 & 0 & 2 \\ -1 & -2 & 1 & 1\end{array}\right]\)
\(>\mathrm{A}:=[[0,1],[-1,-1],[1,0]] ;\)
    \(A:=[[0,1],[-1,-1],[1,0]] ;\)
> R := createGR(P, A);
    \(R:=G R(4,1,[1,[]])\)
> VDEM := MDSvdemazure (R) ; \# There are no vertical \(P\)-roots:
    \(V D E M:=[[[], 0]]\)
```

In the next example there are vertical P-roots. Note that we use another input type:
$>P:=$ cols2matrix $([[-1,-1,-1],[-3,-3,-2],[2,0,1],[0,1,1]$,
[0,0,1],[0,0, -1]]);

$$
P:=\left[\begin{array}{rrrrrr}
-1 & -3 & 2 & 0 & 0 & 0 \\
-1 & -3 & 0 & 1 & 0 & 0 \\
-1 & -2 & 1 & 1 & 1 & -1
\end{array}\right]
$$

> VDEM := MDSvdemazure ($\mathrm{P}, 3$) ; \# there are three blocks in $P ;(v, 2)$ with $v=$ $(0,-1,1)$ is the only vertical Demazure P-root:

$$
V D E M:=[[[], 1],[[[0,-1,1]], 2]]
$$

Procedure A.4.3 (MDSautroots). Implements Algorithm 2.4.6;
Input: there are two input types:

- An MDS $X=(R, \Phi)$ of complexity one.
- A GR R of complexity one.

In both cases, the GR $R=\left(G, Q, Q^{0}, P, F_{\mathfrak{F}}\right)$ must have been obtained from Procedure A. 2.3 as createGR (P, A).
Output: the roots of the unit component $\operatorname{Aut}(X)^{0}$ as a set of integral vectors. These are the P-roots of X.
Example: we verify Example 2.4.7:

```
> P := cols2matrix([[-2,-2,-1,-1], [1,0,0,0], [1,0,1,0], [0,1,0,1],
``` [0, 1, 0, 0]]);
\[
P:=\left[\begin{array}{lllll}
-2 & 1 & 1 & 0 & 0 \\
-2 & 0 & 0 & 1 & 1 \\
-1 & 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0
\end{array}\right]
\]
```

> A := [[1,0],[0,1],[-1,-1]];
A := [[1,0],[0, 1],[-1, -1]]
> R := createGR(P, A);

$$
R:=G R(5,1,[1,[]])
$$

Roots := autroots (R); \# root system $B_{2}$ :

$$
\text { Roots }:=\{[1,-1],[1,1],[-1,-1],[-1,1],[0,-1],[0,1],[1,0],[-1,0]\}
$$

```

Procedure A.4.4 (MDSresolvesing). Implements Algorithm 2.4.8;
Input: there are two input types:
- An MDS \(X=(R, \Phi)\) of complexity one, i.e., \(R=R(P, A)\) has been entered as createGR(P,A).
- An MDS \(X=(R, \Phi)\) where the ideal of relations of \(R\) is principal.

Output: a pair \(Y=\left(R^{\prime}, \Phi^{\prime}\right)\). If \(X\) is of complexity one or if in the second case the 'verify'-tests succeeded, \(Y\) is a smooth MDS such that \(Y \rightarrow X\) is a resolution of singularities.
Options:
- 'verify': tries to verify that \(Y\) is a smooth MDS; this is not needed if \(X\) is of complexity one.
- 'minimal': compute a minimal resolution if \(X\) is a surface.
- 'noffaces': skip the computation of \(\mathfrak{F}\)-faces.
- 'noMDS' : do not return a data type MDS but only a list of generators for the defining ideal, a list of variables and the new matrix \(P^{\prime}\); this usually is much quicker.

Example: we algorithmically verify [5; Ex. III.4.4.10]:
```

$>A:=[[0,1],[-1,-1],[1,0]]$;
$A:=[[0,1],[-1,-1],[1,0]] ;$
$>\mathrm{P}:=\operatorname{linalg}[$ matrix $]([[-3,-1,3,0],[-3,-1,0,2],[-2,-1,1,1]])$;
$P:=\left[\begin{array}{llll}-3 & -1 & 3 & 0 \\ -3 & -1 & 0 & 2 \\ -3 & -1 & 1 & 1\end{array}\right]$
> $\mathrm{R}:=$ createGR(P, A); GRdata(R);
$R:=G R(4,1,[1,[]])$
$\left[\left[T[4]^{2}+T[3]^{3}+T[1] T[2]\right],[T[1], T[2], T[3], T[4]],\left[\operatorname{AGH}([4,[]],[1,[]]),\left[\begin{array}{llll}1 & 3 & 2 & 3\end{array}\right]\right.\right.$,
$\left.\left[\begin{array}{cccc}-3 & -1 & 3 & 0 \\ -3 & -1 & 0 & 2 \\ -3 & -1 & 1 & 1\end{array}\right],[\{ \},\{1,2,4\},\{1,3,4\},\{1,2,3\},\{1\},\{2\},\{3,4\},\{1,2,3,4\},\{2,3,4\}]\right]$
> w := relint(MDSmov(R));
$w:=[1]$
> X := createMDS(R, w);
$X:=M D S(4,1,2,[1,[]])$
> Y := MDSresolvesing(X, 'noffaces');
$Y:=M D S(13,1,2,[10,[]])$
> GRdata(MDSdata(Y) [1]) [1]; \# print the defining equation:
$\left[T[5] T[8]^{3} T[10] T[11]^{2}+T[2] T[4]^{2} T[6] T[9]^{3}+T[7] T[12]^{2} T[13]\right]$

```

Procedure A.4.5 (MDSanticanpoly). Implements Algorithm 2.4.13;
Input: an MDS \(X=(R, \Phi)\) of complexity one, i.e., \(R=R(P, A)\) has been entered as createGR \((P, A)\).

Output: the anticanonical polytope \(A_{X}\).
Example: we enter the \(E_{6}\)-singular cubic, see [61; Ex. 7.3]:
```

> P := cols2matrix([[-3,-3,-2], [-1,-1,-1], [2, 0, 1] , [0, 3, 1] ]);
$P:=\left[\begin{array}{llll}-3 & -1 & 2 & 0 \\ -3 & -1 & 0 & 3 \\ -2 & -1 & 1 & 1\end{array}\right]$
$>\mathrm{A}:=[[-1,-1],[1,0],[0,1]]$
$A:=[[-1,-1],[1,0],[0,1]]$
> R := createGR(P, A);
$R:=G R(4,1,[1,[]])$
> $\mathrm{X}:=$ createMDS(R, relint(MDSmov(R)));
$X:=\operatorname{MDS}(4,1,2,[1,[]])$
> AX := MDSanticanpoly(X);
$A X:=P O L Y T O P E(3,3,6,8)$
> vertices(AX);
$[[-3,-3,-2],[-1,-1,-1],[2,0,1],[0,3,1],[0,0,-1 / 5],[0,0,1]]$

```

Procedure A.4.6 (MDSanticancomp). Implements Algorithm 2.4.14;
Input: an MDS \(X=(R, \Phi)\) of complexity one, i.e., \(R=R(P, A)\) has been entered as createGR (\(\mathrm{P}, \mathrm{A})\).
Output: the anticanonical complex \(\mathcal{A}_{X}\) of \(X\).
Example: enter the example of Procedure A.5: Then:
> AXC := MDSanticancomp(X);
\(A X C:=P C O M P L E X(3,[0,0,7,0])\)
> vertices(AXC);
\[
\{[0,0,-1 / 5],[0,0,0],[-3,-3,-2],[-1,-1,-1],[2,0,1],[0,3,1],[0,0,1]\}
\]

Procedure A.4.7 (MDSisterminal). Implements Algorithm 2.4.16.
Input: an MDS \(X=(R, \Phi)\) of complexity one, i.e., \(R=R(P, A)\) has been entered as createGR(P,A).
Output: true if \(X\) is terminal and false otherwise.
Example: enter the example of Procedure A.4.5: Then:
> MDSisterminal(X);
```

false

```

Procedure A.4.8 (MDSisepslogterminal). Implements Algorithm 2.4.15.
Input: an MDS \(X=(R, \Phi)\) of complexity one, i.e., \(R=R(P, A)\) has been entered as createGR (\(\mathrm{P}, \mathrm{A}\)) and a rational number \(0<\varepsilon \leq 1\).
Output: true if \(X\) is \(\varepsilon\)-log-terminal (for \(\varepsilon<1\)) and false otherwise.
Example: we continue the example of Procedure A.4.5:
> MDSisepslogterminal(X, 1/2);

\section*{5. Miscellanea}

This section contains information on several procedures that do not fit into one of the previous categories. Most of them have been described throughout Chapter 2 : Here is an overview:
- Algebraic operations: closure computation (Procedure A.5.1), primality test (Procedure A.5.2), prime variables (Procedure A.5.3).
- Polyhedral operations: dualize fans or bunches of cones (Procedures A.5.5 and A.5.4), fiber polyhedron (Procedure A.5.6), lattice points or interior points of a polytope (Procedure A.5.7).
- Modifying equations, etc.: *-pullback (Procedure A.5.8), *-pushforward (Procedure A.5.9), variables (Procedure A.5.10).
Procedure A.5.1 (closure). Implements Algorithm 2.2.14,
Input: a list of polynomials \(\left[f_{1}, \ldots, f_{s}\right]\) and a list of variables \(\left[T_{1}, \ldots, T_{r}\right]\) such that \(f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]\).
Output: a list \(\left[\left[g_{1}, \ldots, g_{m}\right],\left[T_{1}, \ldots, T_{r}\right]\right]\) such that \(g_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]\) and the closure \(\overline{V\left(\mathbb{T}^{r} ; f_{1}, \ldots, f_{s}\right)}\) in \(\mathbb{K}^{r}\) is given by \(V\left(\mathbb{K}^{r} ; g_{1}, \ldots, g_{s}\right)\).
Example: > RL \(:=[\mathrm{T}[1] * \mathrm{~T}[10]-\mathrm{T}[3] * \mathrm{~T}[7]+\mathrm{T}[4] * \mathrm{~T}[6], \mathrm{T}[1] * \mathrm{~T}[8]-\mathrm{T}[2] * \mathrm{~T}[6]\) \(+\mathrm{T}[3] * \mathrm{~T}[5], \mathrm{T}[1] * \mathrm{~T}[9]-\mathrm{T}[2] * \mathrm{~T}[7]+\mathrm{T}[4] * \mathrm{~T}[5]]\);
\[
R L:=\left[T_{1} T_{10}-T_{3} T_{7}+T_{4} T_{6}, T_{1} T_{8}-T_{2} T_{6}+T_{3} T_{5}, T_{1} T_{9}-T_{2} T_{7}+T_{4} T_{5}\right]
\]
> TT := vars(10);
\[
T T:=[T[1], T[2], T[3], T[4], T[5], T[6], T[7], T[8], T[9], T[10]]
\]
\(>\) closure (RL, TT) ; \# the affine cone over \(G(2,5)\).
\[
\left[\left[T_{7} T_{8}-T_{6} T_{9}+T_{5} T_{10}, T_{4} T_{8}-T_{3} T_{9}+T_{2} T_{10}, T_{1} T_{10}-T_{3} T_{7}+T_{4} T_{6}\right.\right.
\]
\[
\left.T_{1} T_{9}-T_{2} T_{7}+T_{4} T_{5}, T_{1} T_{8}-T_{2} T_{6}+T_{3} T_{5}\right]
\]
\([T[1], T[2], T[3], T[4], T[5], T[6], T[7], T[8], T[9], T[10]]]\)

Procedure A.5.2 (isprimeideal). Implements Algorithm 2.2.10 for the case of a free class group.
Input: a list \(\left[f_{1}, \ldots, f_{s}\right]\) of polynomials and a list of variables \(\left[T_{1}, \ldots, T_{r}\right]\) such that \(f_{i} \in \mathbb{Q}\left[T_{1}, \ldots, T_{r}\right]\).
Output: true if the ideal \(\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq \overline{\mathbb{Q}}\left[T_{1}, \ldots, T_{r}\right]\) is prime and false otherwise. Example: > RL := [T[1] \(2+1]\);
\[
\left[T[1]^{2}+1\right]
\]
> isprimeideal(RL, vars(1)); \# the ideal \(\left\langle T_{1}^{2}+1\right\rangle \subseteq \overline{\mathbb{Q}}\left[T_{1}\right]\) is not prime:

> false

Procedure A.5.3 (primevars). Successively applies Procedure A.5.2 to test whether \(T_{i}\) defines a prime element in \(R=\mathbb{K}\left[T_{1}, \ldots, T_{r}\right] /\left\langle f_{1}, \ldots, f_{s}\right\rangle\).
Input: a list \(\left[f_{1}, \ldots, f_{s}\right]\) of polynomials and a list of variables \(\left[T_{1}, \ldots, T_{r}\right]\) such that \(f_{i} \in \mathbb{Q}\left[T_{1}, \ldots, T_{r}\right]\).
Output: the set of all indices \(1 \leq i \leq r\) such that \(T_{i}\) defines a prime element in \(R\).
Example: > RL := [T[1] \(* \mathrm{~T}[2]+\mathrm{T}[2] * \mathrm{~T}[3]+\mathrm{T}[4] * \mathrm{~T}[5]]\);
\[
R L:=[T[1] T[2]+T[2] T[3]+T[4] T[5]]
\]
> primevars(RL, vars(5)); \# In \(\mathbb{K}\left[T_{1}, \ldots, T_{5}\right] /\left\langle T_{1} T_{2}+T_{2} T_{3}+T_{4} T_{5}\right\rangle\) only \(T_{1}\) and \(T_{3}\) define prime elements:

Procedure A.5.4 (w2fan). Consider a surjective integral \(k \times r\) matrix \(Q^{0}\) and a Gale dual matrix \(P\) of size \(n \times r\). Let either a vector \(w \in \operatorname{cone}\left(Q^{0}\right)\) or a BUN \(\Phi\) in \(\mathbb{Q}^{k}\) for the ring \(\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]\) with grading \(\operatorname{deg}\left(T_{i}\right):=Q\left(e_{i}\right)\) be given. In \(\mathbb{Q}^{n}\) we have fans
\[
\begin{aligned}
& \Sigma(w)=\left\{P\left(\gamma_{0}^{*}\right) ; \gamma_{0} \preceq \mathbb{Q}_{\geq 0}^{r} \text { and } w \in\left(Q^{0}\left(\gamma_{0}\right)\right)^{\circ}\right\}, \\
& \Sigma(\Phi)=\left\{P\left(\gamma_{0}^{*}\right) ; \gamma_{0} \preceq \mathbb{Q}_{\geq 0}^{r} \text { and } Q^{0}\left(\gamma_{0}\right) \in \Phi\right\} .
\end{aligned}
\]

Input: in the above notation, there are three input types:
- A vector \(w \in \mathbb{Q}^{k}\), a matrix \(Q^{0}\), a matrix \(P\).
- A CONE \(\lambda \subseteq \mathbb{Q}^{k}\), a matrix \(Q^{0}\), a matrix \(P\). Then \(w \in \lambda^{\circ}\) will be chosen.
- A BUN \(\Phi\) in \(\mathbb{Q}^{k}\), a matrix \(Q^{0}\), a matrix \(P\).

Output: a FAN \(\Sigma \subseteq \mathbb{Q}^{n}\). For the first two input cases, we have \(\Sigma=\Sigma(w)\) whereas \(\Sigma=\Sigma(\Phi)\) holds for the third input case.
Options: 'CONEs': return a list of maximal CONEs instead of a FAN.
Example: in the following example, the fans Sigw, Siglam and SigB coincide.
> QO := linalg[matrix] ([[-2, 2, \(-1,1,0],[1,1,1,1,1]])\);
\[
Q 0:=\left[\begin{array}{rrrrr}
-2 & 2 & -1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]
\]
> \(\mathrm{P}:=\operatorname{linalg}[\) matrix \(]([[3,1,-4,0,0],[2,0,-3,1,0]\), \([1,0,-2,0,1]])\);
\[
P:=\left[\begin{array}{lllll}
3 & 1 & -4 & 0 & 0 \\
2 & 0 & -3 & 1 & 0 \\
1 & 0 & -2 & 0 & 1
\end{array}\right]
\]
> w := [-1, 2];
\[
w:=[-1,2]
\]
> Sigw := w2fan(w, Q0, P);
Sigw \(:=F A N(3,0,[0,0,6])\)
> lam := poshull([-1,1], \([0,1])\);
lam \(:=\operatorname{CONE}(2,2,0,2,2)\)
> Siglam := w2fan(lam, Q0, P);
Siglam \(:=\operatorname{FAN}(3,0,[0,0,6])\)
> B := createBUN(w, [], vars(5), Q0); \(B:=B U N(8)\)
> SigB := w2fan(B, Q0, P);
\[
\operatorname{Sig} B:=F A N(3,0,[0,0,6])
\]

Procedure A.5.5 (fan2w). Let \(\Sigma \subseteq \mathbb{Q}^{n}\) be a fan and \(P\) an integral \(n \times r\) matrix such that the columns of \(P\) are pairwise different primitive generators for the rays of \(\Sigma\) and the columns of \(P\) generate \(\mathbb{Q}^{n}\) as a cone. Let \(Q^{0}\) be a matrix that describes the map \(\mathbb{Z}^{r} \rightarrow K^{0}\) that is dual to the inclusion \(\operatorname{ker}(P) \rightarrow \mathbb{Z}^{r}\). In \(K_{\mathbb{Q}}^{0}\), we have a BUN \(\Phi(\Sigma)\) in the ring \(\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]\) that is graded by \(\operatorname{deg}\left(T_{i}\right):=Q\left(e_{i}\right)\) where
\[
\Phi(\Sigma)=\left\{Q\left(\delta_{0}^{*}\right) ; \delta_{0} \preceq \mathbb{Q}_{\geq 0}^{r} \text { and } P\left(\delta_{0}\right) \in \Sigma\right\} .
\]

Input: a FAN \(\Sigma \subseteq \mathbb{Q}^{n}\) as well as integral matrices \(P\) and \(Q^{0}\) as explained above.
Output: the BUN \(\Phi(\Sigma)\) in \(K_{\mathbb{Q}}^{0}\).
Options: 'w': instead of a BUN return a vector \(w \in\left(\bigcap_{\vartheta} \vartheta\right)^{\circ}\) where \(\vartheta\) ranges over
the elements of \(\Phi(\Sigma)\).
Example: consider the setting of the example of Procedure A.5.4:
```

> w := fan2w(Sigw, P, QO, 'w');
w:= [-1,2]
> B := fan2w(Sigw, P, Q0);
B:= BUN(8)

```

Procedure A.5.6 (fiberpoly). Consider an integral surjective \(k \times r\) matrix \(Q^{0}\) and a vector \(w\) inside the cone over the columns of \(Q^{0}\). The fiber polyhedron is
\[
B_{w}:=\left(Q^{0}\right)^{-1}(w) \cap \mathbb{Q}_{\geq 0}^{r} \subseteq \mathbb{Q}^{r}
\]

Input: there are two input types:
- A matrix \(Q^{0}\) and a vector \(w \in \mathbb{Q}^{k}\).
- A matrix \(Q^{0}\) and a CONE \(\lambda \subseteq \mathbb{Q}^{k}\). Here, \(w \in \lambda^{\circ}\) will be chosen.

In both cases, a Gale dual matrix \(P\) of \(Q^{0}\) may be given as a third parameter.
Output: the POLYHEDRON \(B_{w} \subseteq \mathbb{Q}^{r}\). If a third parameter \(P\) was given then \(\left(P^{*}\right)^{-1}\left(B_{w}\right) \subseteq \mathbb{Q}^{n}\) will be returned.
Example: > QO := linalg[matrix] ([[-2, 2, \(-1,1,0]\), \([1,1,1,1,1]])\);
\[
Q 0:=\left[\begin{array}{rrrrr}
-2 & 2 & -1 & 1 & 0 \\
1 & 1 & 1 & 1 & 1
\end{array}\right]
\]
> \(\mathrm{P}:=\operatorname{linalg}[\) matrix \(]([[3,1,-4,0,0],[2,0,-3,1,0]\), [1, 0, -2, 0, 1]]);
\[
P:=\left[\begin{array}{lllll}
3 & 1 & -4 & 0 & 0 \\
2 & 0 & -3 & 1 & 0 \\
1 & 0 & -2 & 0 & 1
\end{array}\right]
\]
> w := [-1,2];
\[
w:=[-1,2]
\]
> Bw := fiberpoly(QO, W);
\(B w:=\operatorname{POLYTOPE}(5,3,6,5)\)
> MBw := fiberpoly(Q0, w, P);
\(M B w:=\operatorname{POLYTOPE}(3,3,6,5)\)

Procedure A.5.7 (intpoints). Implements Algorithm 2.2.2;
Input: a POLYTOPE \(B \subseteq \mathbb{Q}^{r}\).
Output: 'relint': return the list of elements of \(B^{\circ} \cap \mathbb{Z}^{r}\) instead of \(B \cap \mathbb{Z}^{r}\).
Options: a list of the elements of \(B \cap \mathbb{Z}^{r}\).
Example: > B := cube(3);
\[
B:=\operatorname{POLYTOPE}(3,3,8,6)
\]
> intpoints(B);
\([[-1,-1,-1],[-1,-1,0],[-1,-1,1],[-1,0,-1],[-1,0,0],[-1,0,1],[-1,1,-1]\),
\([-1,1,0],[-1,1,1],[0,-1,-1],[0,-1,0],[0,-1,1],[0,0,-1],[0,0,0],[0,0,1]\),
\([0,1,-1],[0,1,0],[0,1,1],[1,-1,-1],[1,-1,0],[1,-1,1],[1,0,-1],[1,0,0],[1,0,1]\),
\[
[1,1,-1],[1,1,0],[1,1,1]]
\]
> intpoints(B, 'relint');

Procedure A.5.8 (pull). Implements Algorithm 2.2.12,
Input: there are two input types:
- A list of polynomials \(\left[f_{1}, \ldots, f_{s}\right]\), a list of variables \(\left[T_{1}, \ldots, T_{n}\right]\) with \(f_{i} \in\) \(\mathbb{K}\left[T_{1}, \ldots, T_{n}\right]\), an integral \(n \times r\) matrix \(P\).
- A polynomial \(f_{1}\), a list of variables \(\left[T_{1}, \ldots, T_{n}\right]\) with \(f_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{n}\right]\), an integral \(n \times r\) matrix \(P\).

Output: a list \(\left[G,\left[T_{1}, \ldots, T_{r}\right]\right]\) where
- for the first input type, \(G=\left[p^{\star} f_{1}, \ldots, p^{\star} f_{s}\right]\) with \(p^{\star} f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]\),
- for the second input type, \(G=p^{\star} f_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]\).
```

Example: > f := T[1]*T[2] + 3*T[3] 2 ;
$f:=T[1] T[2]+3 T[3]^{2}$
> TT := vars(3);

$$
T T:=[T[1], T[2], T[3]]
$$

$$
>P:=\operatorname{linalg}[\text { matrix }]([[1,0,3,0],[0,1,0,4],[1,1,1,1]]) ;
$$

$$
P:=\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 0 & 4 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

```
> pull (f, TT, P);
\[
\left[T_{1} T_{3}^{3} T_{2} T_{4}^{4}+3 T_{1}^{2} T_{2}^{2} T_{3}^{2} T_{4}^{2},[T[1], T[2], T[3], T[4]]\right]
\]
\(>\operatorname{pull}([\mathrm{T}[1]+\mathrm{T}[2], \mathrm{T}[2]+\mathrm{T}[3]], \mathrm{TT}, \mathrm{P})\);
\[
\left[\left[T_{1} T_{3}^{3}+T_{2} T_{4}^{4}, T_{2} T_{4}^{4}-3 T_{1} T_{2} T_{3} T_{4}\right],[T[1], T[2], T[3], T[4]]\right]
\]

Procedure A.5.9 (push). Implements Algorithm 2.2.13;
Input: there are two input types:
- A list of polynomials \(\left[f_{1}, \ldots, f_{s}\right]\), a list of variables \(\left[T_{1}, \ldots, T_{r}\right]\) with \(f_{i} \in\) \(\mathbb{K}\left[T_{1}, \ldots, T_{r}\right]\), an integral \(n \times r\) matrix \(P\) of rank \(n\).
- A polynomial \(f_{1}\), a list of variables \(\left[T_{1}, \ldots, T_{r}\right]\) with \(f_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{r}\right]\), an integral \(n \times r\) matrix \(P\) of rank \(n\).
We require the polynomials \(f_{i}\) to be \(K\)-homogeneous with respect to the \(K:=\) \(\mathbb{Z}^{r} / \operatorname{Im}\left(P^{*}\right)\)-grading \(\operatorname{deg}\left(T_{i}\right)=Q\left(e_{i}\right)\) where \(Q: \mathbb{Z}^{r} \rightarrow K\) is as in Algorithm 2.1.
Output: a list \(\left[G,\left[T_{1}, \ldots, T_{n}\right]\right]\) where
- for the first input case, \(G=\left[p_{\star} f_{1}, \ldots, p_{\star} f_{s}\right]\) with \(p_{\star} f_{i} \in \mathbb{K}\left[T_{1}, \ldots, T_{n}\right]\),
- for the second input case, \(G=p_{\star} f_{1} \in \mathbb{K}\left[T_{1}, \ldots, T_{n}\right]\).

Example: > \(\mathrm{f} 1:=\mathrm{T}[1] * \mathrm{~T}[2]+\mathrm{T}[3] * \mathrm{~T}[5]\);
\(f 1:=T[1] T[2]+T[3] T[5]\)
> f2 := T[1]^2 + T[2]^2 + T[3]*T[4]*T[5]^2;
\(f 2:=T[1]^{2}+T[2]^{2}+T[3] T[4] T[5]^{2}\)
```

> TT := vars(5);
TT:= [T[1],T[2],T[3],T[4],T[5]]
> P := linalg[matrix]([[-1,1,0,0,0], [2,0,-1,1,0],[-2,0,1,0,1]]);
P:=[$$
\begin{array}{rrrrrr}{-1}&{1}&{0}&{0}&{0}\\{2}&{0}&{-1}&{1}&{0}\\{-2}&{0}&{1}&{0}&{1}\end{array}
$$]
> push(f1, TT, P);
[T[1]+T[3],1+T[1] 2 +T[2]T[3] 2, [T[1],T[2],T[3]]]
> push([f1, f2], TT, P);
[[T[1] +T[3],1+T[1\mp@subsup{]}{}{2}+T[2]T[3\mp@subsup{]}{}{2}],[T[1],T[2],T[3]]]

```

Procedure A.5.10 (vars). Returns a list of variables.
Input: an integer \(r \in \mathbb{Z}_{\geq 1}\) or a list of polynomials \(\left[f_{1}, \ldots, f_{s}\right]\).
Output: the list \(\left[T_{1}, \ldots, T_{r}\right]\) if an integer \(r\) was given; assumes that \(T\) has not yet been assigned. If a list of polynomials was given, then a list of all found variables is returned.
Example: > TT := \(\operatorname{vars}(3)\);
\[
T T:=[T[1], T[2], T[3]]
\]
\(>\operatorname{TTf}:=\operatorname{vars}\left(\left[\mathrm{T}[1] * \mathrm{Y}[3]^{\wedge} 2+7 * \mathrm{~S}[2]+1,-2 * \mathrm{~S}[1]-9\right]\right)\);
\(T T f:=[S[1], T[1], S[2], Y[3]]\)

\section*{Danksagung}

Zunächst will ich mich bei allen Kollegen, Mitarbeitern und Freunden des Arbeitsbereiches Algebra für die schöne Zeit bedanken. Sei es bei fachlichen oder bei weniger fachlichen Fragen - immer ist man bei euch auf offene Ohren gestoßen. Vielen Dank hierfür!
Bedanken möchte ich mich auch bei Prof. Dr. Antonio Laface für viele hilfreiche und inspirierende Diskussionen.
Besonderer Dank gebührt meinem Doktorvater, Prof. Dr. Jürgen Hausen. Die Betreuung lässt sich nur mit dem Wort "hervorragend" beschreiben; selbst fernab jeglicher Sprechstunden hatte er nicht nur immer zielführenden Rat zur Hand, auch schaffte er es immerfort - sogar in mathematisch aussichtslos erscheinenden Situationen - die Begeisterung in einem zu wecken. Auch die Möglichkeit zur Promotion in diesem speziellen Bereich der Algebraischen Geometrie ist nicht selbstverständlich.
Ein ganz dickes Dankeschön geht an meine Eltern, die mich über all die Jahre unbeirrbar unterstützt haben. Herzlichen Dank dafür! Ebenso möchte ich meiner Schwester und meinem Schwager für viele lustige Abende danken. Ein Lob auch an meine Freunde; ohne euren Rückhalt wäre diese Arbeit deutlich ärmer ausgefallen.
Zu guter Letzt möchte ich auch meinen Geldgebern danken, die diese Dissertation möglich gemacht haben: dem Promotionsverbund der Universität Tübingen sowie dem DFG Schwerpunktprogramm 1489.

\section*{Index}
\((H, 2)\)-maximal subset, \(85 ; 86\)
\(A_{2}\)
-maximal, 16
-variety, '16
G
-invariant, '10
-variety, 9 .
H
-factorial, 12, 89
-saturated, 12,85
K
-factorial, 13 see factorially \(K\)-graded
-prime, '13; '15
\(K^{0}, 35\)
\(P\)
-matrix, '24
-root, '55'
\(Q^{0}, 35\)
\(X(R, \mathfrak{F}, \Phi), 16\)
Bl, \(12 \dot{12}\)
\(\mathbb{F}_{a}\), see Hirzebruch surface
\(\mathbb{K}^{*}\)-surface, \({ }^{\prime} 23\)
combinatorially minimal, 62 \(\mathbb{Q}\)
-Gorenstein, 53
-factorial point, 18
-factorial variety, 18
a-face, 48,76
\(\gamma_{0}^{*},{ }^{\prime}{ }^{18}\)
\(\mathfrak{F}\)
-bunch, 15,44
maximal, 15
projective, 16
true, '15
-face, 15,76
covering collection, 45
projected, \(: 80\)
relevant, \(16,45^{\prime}\)
verification, 76,77
\(\risingdotseq, 129\)
\(\varepsilon\)-log-terminal, \(61 ; 256\)
\(\varrho(X)\), see Picard number
\(m\)-line, 116
ADE-singularity, '23; '50; :101
admissible, '25, '130
AG, \(\cdot 30^{-}\)
AGareequal, 31,228
AGareisom, 30,227
AGcontains, 31,227

AGdata, \(: \overline{2} \dot{2} \bar{\sigma}^{-}\)
AGfactgrp, \(31 ; 228\)
AGfreepart, 31
AGfreered, 229
AGH, 32
AGHcompleteseq, \(34 ; 232\)
AGHdata,, \(227^{\circ}\)
AGHdeg, 233 :
AGHgradiator, '36; '233'
AGHim, \(33 ; 230\)
AGHisalmostfree, 37, , 2344
AGHishomog, 36,234
AGHisinj, \(.34,231\)
AGHissurj, 34,23
AGHker, 34,231
AGHP2Q, \(25 ; 25\)
AGHpreim, 33; '230
AGHQ2P, \(35 ; 235\)
AGHQ2Q0, 35,236
AGHsection, 273
AGintersect, \(32 ;\), \(230^{\prime}\)
AGprodgrp, \(31 ; 2 \overline{2}\)
algebraic group
affine linear, 9
reductive, 10 .
almost free grading, .37
almost general position, 159
almost homogeneous, \({ }^{\prime} 5^{\prime}\) '
ambient
canonical toric ambient variety, 18
ample cone, 19
anticanonical
complex, '60;'61; :256'
divisor class, 52
polytope, 60, 61,25
associated
abelian group, 112
ideal, 108
automorphism group
roots, \({ }^{6} 57\) :
binomial trick, ' 140
block, \(\cdot 25\)
blow up, 21
along a subvariety, \(21 ; 105\)
center, '21"
Cox ring of, 95
linear, '113'
of \(\mathbb{P}_{3}, 117\)
of a point, 108

BlowUpCEMDS, 105
BlowUpCEMDSpoint, 108
BUN,. 44
bunch
\(\mathfrak{F}-, 15 ; 44\)
bunched ring, 15; 37,225:
BUNdata, 237 :
canonical
ambient toric variety, \({ }^{46}\).
toric ambient variety, 18
toric embedding, 18
canonically embedded Mori dream space, see CEMDS
Cayley's nodal cubic surface, '10 8 .
CEMDS, '94:98:
weak, 100
character, 9 :
characteristic
quasitorus, '14
space, 14
class group, see divisor class group
local, see local class group
closure, \(43 ; 257\)
coarsest common refinement,, \(45 ; \cdot 84\)
combinatorially minimal, 59, 62
complete, 51 :
complete intersection, 19; 52:
complexity-one \(T\)-variety, \(23,55,253\) :
compress, 98 :
CompressCEMDS, see compress
ContractCEMDS, 100
contraction, 20; 96; 100
Cox ring of, 95
covering collection, 16
Cox
construction, '18
coordinates, 14
ring, '13
hypersurface-, 62
sheaf, '13
createA \(2 \dot{G}\)
createAGH, 227 :
createBUN, 236
createGR, 237
createMDS, 243
curve, 20
\((-k)-, 20\).
negative, 20 .
non-negative, 20
degree map, 15
degree matrix, 29
del Pezzo surface, "62; 101
weak, 159 :
Demazure \(P\)-root
horizontal, '55:
vertical, 55
diagonal action, 10
dimension
of a Mori dream space, 45
divisor
Cartier, '12'
class group, 12
effective, ' 47 '
movable, 47 .
prime, 12
restriction, 12
semiample, \(\mathbf{4 7}^{\prime}\)
Weil, '12'
divisor class group, 48
local, 48 '
effective cone, \(19 ; 47\)
embedded space, 98
embedding
big, 16
compress, ' 97
neat, see neat embedding
stretch, '97; '98'
ES, see embedded space
exceptional divisor, 22
over a point, 22
exceptional graph, 60.
extremal, 20
face
\(\mathfrak{a}\), see \(\mathfrak{a}\)-face
\(\mathfrak{F}, 15,75\)
factorial
\(K\)-grading, \(89 ; 90\)
point, 18
factorial variety, '50
factorially \(K\)-graded, 15
fake relation, 99 .
fan
coarsest common refinement, see coarsest common refinement
GIT-, '.82'
GKZ, 84
lattice-, 14
normal, 8
quasi-, 11
fan \(2 \mathrm{w}, 258\)
Fano, 19,53
fiberpoly, 259
fiberpolyhedron, 259 .
fiberpolytope, see fiberpolyhedron
finite geometry, : 116 .
\(m\)-arc, 116 .
complete graph, 'i16'
design, '116
near pencil, 116
finite linear space, 116
finitely generated abelian group
containment, \(31^{\circ}\)
equality, \(\mathbf{B 1}_{1}^{\prime}\).
factor group, \({ }^{\prime} 31\).
free part, 31,35
free resolution, 31
homomorphism of, .32
intersection, .32
isomorphic, 30
product group, 31
fixed point
elliptic, \(26^{\circ}\)
hyperbolic, 26
parabolic, \(26^{\prime}\)
Gale duality, '30, '35, 226

Gelfand Kapranov Zelevinsky
decomposition, 45; 84
general ideal, '112'
GIT
-chamber, \(80 \div 82\)
-cone, 11; 81.
-fan, 11, 81,:82
GKZ-fan, 45 ; see Gelfand Kapranov Zelevinsky decomposition
good
\(G\)-set, 11
quotient, 10
Gorenstein, 19,\(53 ; 101\).
\(\mathbb{Q}-, .19\)
\(n-, 20\)
index, 53
GR, '38'
Gröbner
cone, 40
fan, 40
graded component, ' 38 '
graded ring, ' 38
graded component, see graded component dimension, .39
homogeneous component, see graded component
gradiator, '36; 233
grading
almost free, \({ }^{\prime} 15\) '
pointed, '15'
graph
automorphism group, \({ }^{\prime} 79^{\circ}\)
clique, \({ }^{8} 8 \mathbf{8}^{\circ}\)
maximal, 86
of a fan, 83 '
of exceptional curves, 23
Orlik Wagreich-, \(1 \dot{1} \dot{4}\)
overlapping, see overlapping graph
GRdata, \({ }^{2} \dot{2} 0_{0}^{\prime}\)
GRgitfan, '241'
GRgradedcomp,, \(38 ; 2 \overline{4} 0^{\circ}\)
GRgradedcompdim, 39
GRH2max, '86, \(2 \overline{4} 1\)
GRtrop, '40; 241 .
GRtropcontains, 40,242
Hirzebruch surface, \(121^{\circ}\)
homogeneous, \({ }^{3}\)
classically, 116
homogeneous component, see graded component
homomorphism of finitely generated abelian groups
almost free, \(: 37\).
dual, .35
exact sequence, \(: 34\)
free part of grading, 35
gradiator, ' 36 '
image, 33
injective, 34 .
kernel, '34'
preimage, 33
section, 37 .
surjective, , 34
ideal
irrelevant, see irrelevant ideal
saturation, ' 43
infinitely near, 22
interior points
of a polytope, \(38 ; 259\)
intersection
number, self-, .54'
form, 54
graph, 50247
multiplicity, 20
number, \(20,54,250\)
number, self-, see self intersection number
product, 20
intpoints, '259'
invariants
ring of, 10
irrelevant ideal, . 46
isaface, '76;.77
isomorphism
of graded algebras, \(1 \times 2\)
isprimeideal, 257 ;
lattice ideal, 108.
lattice points
of a polytope, ' 38
LinearBlowup, \(11 \overline{3}\)
local class group, 18
log-terminal, '61'
MDS, ' \({ }^{\prime} 44, .98\)
MDSambtorvar, 46; 245
MDSantican, 52,24
MDSanticancomp, \(61 ; 256\)
MDSanticanpoly, 6125
MDSautroots, 57,254
MDSchambers, 834
MDSclassgrp, 48,248
MDScov, '45; 24
MDSdata, 244
MDSdegmat, 247
MDSdim, 45,246
MDSeff, 47,248
MDSgorensteinind, 53,250
MDShdemazure, 56,253
MDSintersgraph, 50,247
MDSintersno, 54,250
MDSirrel, 46,246
MDSiscomplete, \(51 ; 253\)
MDSisepslogterminal, \(61 ; 256\)
MDSisfact, \(.50,{ }^{\prime}, 251\)
MDSisfano, 5350
MDSisgorenstein, 53,250
MDSisproj, 52,252
MDSisQfact, 50,251
MDSisQgorenstein, \(53 ; 250\)
MDSisquasiproj, '51,'252
MDSisquasismooth, 48,251
MDSissmooth, \({ }^{\prime \prime} 49,251\)
MDSisterminal, 61,25
MDSlocclassgre, 48,24
MDSmov, 47,248
MDSpackage, 29

MDSpic,.48, 249
MDSpicind, 48, 249
MDSpointex,.45; ,246
MDSresolvesing, 57255
MDSrlv, '45; :244
MDSsample, 47,248
MDSsing, 49
MDSstrat, \(22 ; 2\)
MDSvdemazure, \(56 ; 254\)
minimal
combinatorially, 62
minimally presented, 161 .
modification,' 20 '. 89
of a CEMDS 100
of Mori dream spaces, \(.98^{\circ}\)
toric, .95
toric ambient, 93
ModifyCEMDS, 10
Mori chamber decomposition, 83
Mori dream space, \(16 ; 44^{\prime}\)
moving cone, '17,'19;47.
multiplicity, \(22^{\circ}\)
neat embedding, 17.
orbit cone, '11,'15; \(\cdot 80\)
originary, 161
Orlik Wagreich graph, 164:
overlapping graph,,\(' 86\)
parameter, ' 140 '
Picard group, 18, '48
Picard index, 48,24
Picard number, 22 101
platonic triple, 65
point configuration
edge special, 116
point location, 81
polytope
interior points, 259
primevars, 257 :
projective, 52
proper transform, 22
pull, 43,260
pull back
*-, . \({ }^{42} ; \quad\) '99
push, \(43 ; 26\)
push forward, 77 :
*-, ' \(43 ; ' 99^{\circ}\)
qp-maximal subset, 12
quasiprojective, '.51
quasismooth, 48 '
quasitorus, 9
reduction along \(\gamma_{0}, 75\)
Rees algebra, \(105^{\circ}\)
of a binomial ideal, 112
saturated, 105
resolution of singularities, 22
minimal, 22
reverse search, 83
root system,, 57
saturated, \({ }^{\prime} 99\)
saturation
of a lattice, 31
of an ideal, 99
self intersection number,, 20
semiample cone, '19; '47'
semiample divisor, 19 -
semistable points, 11
Serre's criterion, '159'
sheaf of divisorial algebras, 13
singularity, '48;': '49
resolution, see resolution of singularities
sink, ' \(26^{\prime}\)
smooth, 49
rational surface, 119
source, '26'
stratum, 18; '52'
StretchCEMDS, '98:
surface, 20
combinatorially minimal \(\mathbb{K}^{*}-, 62\)
del Pezzo, see del Pezzo surface
exceptional graph, 50
smooth rational-, 119
symmetries, '788; : 79
terminal, 61; 256
toric ambient modification
good, '96
toric ambient modifications, '93
toric variety, '14
canonical ambient, .94
torus, 9
quasi-, 9
standard, 9
total coordinate space, 14
tropical
prevariety, 78:
variety, '78.
weak tropical resolution,.'57
tropical variety, \(40 ; 51^{\circ}\)
containment, \({ }^{\prime} 40\)
variation of GIT-quotients, ' \(75^{\prime}\)
variety, 9
with complexity-one torus action, '23'
vars, \(26{ }^{2} 1\) '
Veronese embedding, 78
w2fan, 258
weak tropical resolution, '57
weight cone, 11,15
weighted projective space, 111
blow up of, '111'

\section*{Bibliography}
[1] W. W. Adams and P. Loustaunau. An introduction to Gröbner bases, volume 3 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1994.
[2] V. A. Alekseev and V. V. Nikulin. Classification of del Pezzo surfaces with log-terminal singularities of index \(\leq 2\). MSJ Memoirs, 15, 2006. Preprint version: arXiv:math.AG/0406536.
[3] K. Altmann and J. Hausen. Polyhedral divisors and algebraic torus actions. Math. Ann., 334(3):557-607, 2006.
[4] M. Artebani, A. Garbagnati, and A. Laface. Cox rings of extremal rational elliptic surfaces. 2013. Preprint, arXiv:1302.4361.
[5] I. Arzhantsev, U. Derenthal, J. Hausen, and A. Laface. Cox rings. Cambridge Studies in Advanced Mathematics. To appear. See also arXiv:1003.4229 and the authors' web pages.
[6] I. Arzhantsev, J. Hausen, E. Herppich, and A. Liendo. The automorphism group of a variety with torus action of complexity one. Mosc. Math. J. To appear.
[7] I. V. Arzhantsev and J. Hausen. Geometric Invariant Theory via Cox Rings. Journal of Pure and Applied Algebra, 213:154-172, 2009.
[8] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
[9] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Appl. Math., 65(1-3):21-46, 1996. First International Colloquium on Graphs and Optimization (GOI), 1992 (Grimentz).
[10] H. Bäker, J. Hausen, and S. Keicher. On Chow quotients of torus actions. Preprint, 2012. arXiv:1203.3759.
[11] A. I. Barvinok. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res., 19(4):769-779, 1994.
[12] L. M. Batten and A. Beutelspacher. The theory of finite linear spaces. Cambridge University Press, Cambridge, 1993. Combinatorics of points and lines.
[13] V. V. Batyrev and O. N. Popov. The Cox ring of a del Pezzo surface. In Arithmetic of higherdimensional algebraic varieties (Palo Alto, CA, 2002), volume 226 of Progr. Math., pages 85-103. Birkhäuser Boston, Boston, MA, 2004.
[14] A. Beauville. Complex algebraic surfaces, volume 34 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, second edition, 1996. Translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid.
[15] B. Bechtold. Factorially graded rings and Cox rings. J. Algebra, 369:351-359, 2012.
[16] B. Bechtold, R. Birkner, L. Kastner, S. Keicher, O. Motsak, and A.-L. Winz. multigrading.lib. A Singular library for multigraded rings, 2011. http://www.singular.uni-kl.de/Manual/ 3-1-5/sing_1901.htm:
[17] B. Bechtold, J. Hausen, and E. Huggenberger. Complexity-one varieties and polyhedral complexes. In preparation.
[18] F. Berchtold and J. Hausen. GIT-Equivalence beyond the ample cone. Michigan Mathematical Journal, 54(3):483-515, 2006.
[19] F. Berchtold and J. Hausen. Cox rings and combinatorics. Trans. Amer. Math. Soc., 359(3):1205-1252 (electronic), 2007.
[20] F. Berchtold, J. Hausen, S. Keicher, R. Vollmert, and M. Widmann. Tordiv 1.4 - a Maple Package on Toric Geometry and Geometric Invariant Theory. Available at http: //www.mathematik.uni-tuebingen.de/~hausen/.
[21] C. Bertone. Modular absolute decomposition of equidimensional polynomial ideals. Preprint. arXiv:1012.5210.
[22] T. Bogart, A. N. Jensen, D. Speyer, B. Sturmfels, and R. R. Thomas. Computing tropical varieties. J. Symbolic Comput., 42(1-2):54-73, 2007.
[23] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997. Computational algebra and number theory (London, 1993).
[24] A.-M. Castravet and J. Tevelev. Hilbert's 14th problem and Cox rings. Compos. Math., 142(6):1479-1498, 2006.
[25] G. Chèze and G. Lecerf. Lifting and recombination techniques for absolute factorization. \(J\). Complexity, 23(3):380-420, 2007.
[26] D. Cox, J. Little, and D. O'Shea. Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1992. An introduction to computational algebraic geometry and commutative algebra.
[27] D. A. Cox. The homogeneous coordinate ring of a toric variety. J. Algebraic Geom., 4(1):1750, 1995.
[28] D. A. Cox, J. B. Little, and H. K. Schenck. Toric varieties, volume 124 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011.
[29] J. A. De Loera, R. Hemmecke, J. Tauzer, and R. Yoshida. Effective lattice point counting in rational convex polytopes. J. Symbolic Comput., 38(4):1273-1302, 2004.
[30] J. A. De Loera, J. Rambau, and F. Santos. Triangulations, volume 25 of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 2010. Structures for algorithms and applications.
[31] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3-1-6 - A computer algebra system for polynomial computations. 2012. Available at http://www.singular.uni-ki.de:
[32] U. Derenthal. Geometry of Universal Torsors. PhD thesis, Universität Göttingen, 2006.
[33] U. Derenthal. Singular del Pezzo surfaces whose universal torsors are hypersurfaces. Proc. Lond. Math. Soc., 108(3):638-681, 2014.
[34] U. Derenthal, J. Hausen, A. Heim, S. Keicher, and A. Laface. Cox rings of cubic surfaces and smooth Fano threefolds. In preparation.
[35] I. V. Dolgachev and Y. Hu. Variation of geometric invariant theory quotients. Inst. Hautes Études Sci. Publ. Math., (87):5-56, 1998. With an appendix by Nicolas Ressayre.
[36] D. Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. SpringerVerlag, New York, 1995. With a view toward algebraic geometry.
[37] D. Eisenbud and B. Sturmfels. Binomial ideals. Duke Math. J., 84(1):1-45, 1996.
[38] G. Ewald. Combinatorial convexity and algebraic geometry, volume 168 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1996.
[39] K.-H. Fieseler and L. Kaup. Algebraische Geometrie: Grundlagen. Berliner Studienreihe zur Mathematik 13. Heldermann, Lemgo, 2005.
[40] M. Franz. Convex 1.1.3 - a Maple package for convex geometry. http://www.math.uwo.ca/ ~mfranz/convex/:
[41] K. Fukuda, A. N. Jensen, and R. R. Thomas. Computing Gröbner fans. Math. Comp., 76(260):2189-2212 (electronic), 2007.
[42] W. Fulton. Introduction to toric varieties, volume 131 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry.
[43] E. Gawrilow and M. Joswig. polymake: a Framework for Analyzing Convex Polytopes. In G. Kalai and G. M. Ziegler, editors, Polytopes - Combinatorics and Computation, pages 43-74. Birkhäuser, 2000.
[44] A. Gibney and D. Maclagan. Equations for Chow and Hilbert quotients. Algebra Number Theory, 4(7):855-885, 2010.
[45] D. Grayson and M. Stillman. Macaulay2 - a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/:
[46] G.-M. Greuel and G. Pfister. A Singular introduction to commutative algebra. Springer, Berlin, extended edition, 2008. With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann.
[47] S. Gutsche. GAP package ToricVarieties. Available at http://www.gap-system.org// Packages/toricvarieties.html.
[48] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. Springer, 1977.
[49] B. Hassett and Y. Tschinkel. Universal torsors and Cox rings. In Arithmetic of higherdimensional algebraic varieties (Palo Alto, CA, 2002), volume 226 of Progr. Math., pages 149-173. Birkhäuser Boston, Boston, MA, 2004.
[50] J. Hausen. Kommutative Algebra. Lecture notes for a course hold in 2011/12 at the Universität Tübingen.
[51] J. Hausen. Cox rings and combinatorics. II. Mosc. Math. J., 8(4):711-757, 847, 2008.
[52] J. Hausen. Three lectures on Cox rings. Torsors, étale homotopy and applications to rational points. London Mathematical Society Lecture Note Series, 405:3-60, 2013.
[53] J. Hausen and E. Herppich. Factorially graded rings of complexity one. Torsors, étale homotopy and applications to rational points. Proceedings of the ICMS workshop in Edinburgh 10-14 January 2011. London Mathematical Society Lecture Note Series, pages 414-428, 2011.
[54] J. Hausen and S. Keicher. MDSpackage - a package for computations with Mori dream spaces. Available at http://www.math.uni-tuebingen.de/user/keicher/MDS/:
[55] J. Hausen and S. Keicher. MDSpackage - a package for computations with Mori dream spaces. In preparation.
[56] J. Hausen, S. Keicher, and A. Laface. Computing Cox rings. Preprint, first version, 2013. arXiv:1305.4343v1.
[57] J. Hausen, S. Keicher, and A. Laface. Computing Cox rings. Preprint, third version, 2014. arXiv:1305.4343.
[58] J. Hausen and M. Liebendörfer. The Cox ring of the space of complete rank two collineations. Math. Nachr., 285(8-9):974-980, 2012.
[59] J. Hausen and H. Süß. The Cox ring of an algebraic variety with torus action. Adv. Math., 225(2):977-1012, 2010.
[60] Y. Hu and S. Keel. Mori dream spaces and GIT. Michigan Math. J., 48:331-348, 2000. Dedicated to William Fulton on the occasion of his 60th birthday.
[61] E. Huggenberger. Fano Varieties with Torus Action of Complexity One. PhD thesis, Universität Tübingen, Wilhelmstr. 32, 72074 Tübingen, 2013.
[62] J. E. Humphreys. Linear algebraic groups. Springer-Verlag, New York, 1975. Graduate Texts in Mathematics, No. 21.
[63] A. N. Jensen. Gfan, a software system for Gröbner fans and tropical varieties. Available at http://home.imf.au.dk/jensen/software/gfan/gfan.html
[64] A. N. Jensen. Algorithmic aspects of Gröbner fans and tropical varieties. PhD thesis, Aarhus University, 2007.
[65] A. N. Jensen. Traversing symmetric polyhedral fans. In K. Fukuda, J. van der Hoeven, M. Joswig, and N. Takayama, editors, ICMS, volume 6327 of Lecture Notes in Computer Science, pages 282-294. Springer, 2010.
[66] D. Joyner. GAP package toric, 2006. Available at http://www.gap-system.org/Packages/ toric.html.
[67] T. Junttila and P. Kaski. Engineering an efficient canonical labeling tool for large and sparse graphs. In D. Applegate, G. S. Brodal, D. Panario, and R. Sedgewick, editors, Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and the Fourth Workshop on Analytic Algorithms and Combinatorics, pages 135-149. SIAM, 2007.
[68] A. M. Kasprzyk, M. Kreuzer, and B. Nill. On the combinatorial classification of toric log del Pezzo surfaces. LMS J. Comput. Math., 13:33-46, 2010.
[69] L. Kastner, B. Lorenz, A. Paffenholz, and A.-L. Winz. polymake_toric. Available at https: //github.com/ikastner/polymake_toric:
[70] S. Keicher. gitfanlib - a package for GIT-fans. Available at http://www.math.uni-tuebingen. de/user/keicher/gitfanlib/.
[71] S. Keicher. Computing the GIT-fan. Internat. J. Algebra Comput., 22(7):1250064, 11, 2012.
[72] R. Koelman. The number of moduli of families of curves on toric surfaces. PhD thesis, Katholieke Universiteit Nijmegen, 1991.
[73] H. Kraft. Geometrische Methoden in der Invariantentheorie. Aspects of Mathematics, D1. Friedr. Vieweg \& Sohn, Braunschweig, 1984.
[74] D. L. Kreher and D. R. Stinson. Combinatorial Algorithms: Generation, Enumeration, and Search. Discrete Mathematics and Its Applications. Taylor \& Francis, 1998.
[75] M. Kreuzer and L. Robbiano. Computational Commutative Algebra 2. Computational commutative algebra. Springer, 2005.
[76] S. Lang. Algebra. Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965.
[77] D. Liu. A note on point location in arrangements of hyperplanes. Inf. Process. Lett., (2):93-95, 2004.
[78] D. Maclagan and B. Sturmfels. Introduction to Tropical Geometry. To appear in American Mathematical Society. See also the authors' web pages.
[79] Maplesoft. Maple 10. A division of Waterloo Maple Inc., Waterloo, Ontario. See http://www. maplesoft.com/.
[80] B. McKay. Nauty - a program for computing automorphism groups of graphs and digraphs, user guide. http://cs.anu. edu.au/~bdm/nauty/nug.pdf.
[81] B. D. McKay and A. Piperno. Practical graph isomorphism, II. J. of Symbolic Computation, 60(0):94-112, 2014.
[82] E. Miller and B. Sturmfels. Combinatorial commutative algebra, volume 227 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2005.
[83] D. Mumford, J. Fogarty, and F. Kirwan. Geometric invariant theory, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)]. Springer-Verlag, Berlin, third edition, 1994.
[84] M. Mustaţă. Lecture notes on toric varieties. Chapter 5. Available at http://www.math.lsa. umich.edu/~mmustata/toric_var.html.
[85] S. Okawa. On images of Mori dream spaces. 2011. Preprint, arXiv:1104.1326.

\section*{BIBLIOGRAPHY}
[86] P. Orlik and P. Wagreich. Algebraic surfaces with \(k^{*}\)-action. Acta Math., 138(1-2):43-81, 1977.
[87] R. T. Rockafellar. Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J., 1970.
[88] F. Rohrer. Completions of fans. J. Geom., 100(1-2):147-169, 2011.
[89] M. Stillman, D. Testa, and M. Velasco. Gröbner bases, monomial group actions, and the Cox rings of del Pezzo surfaces. J. Algebra, 316(2):777-801, 2007.
[90] B. Sturmfels. Gröbner bases and convex polytopes, volume 8 of University Lecture Series. American Mathematical Society, Providence, RI, 1996.
[91] B. Sturmfels and J. Tevelev. Elimination theory for tropical varieties. Math. Res. Lett., 15(3):543-562, 2008.
[92] B. Sturmfels and M. Velasco. Blow-ups of \(\mathbb{P}^{n-3}\) at \(n\) points and spinor varieties. J. Commut. Algebra, 2(2):223-244, 2010.
[93] B. Sturmfels and Z. Xu. Sagbi bases of Cox-Nagata rings. J. Eur. Math. Soc. (JEMS), 12(2):429-459, 2010.
[94] H. Süß. Drei Klassifikationsprobleme für Varietäten mit Toruswirkung der Komplexität eins. PhD thesis, BTU Cottbus, 2010.
[95] D. Testa, A. Várilly-Alvarado, and M. Velasco. Big rational surfaces. Math. Ann., 351(1):95107, 2011.
[96] J. Tevelev. Compactifications of subvarieties of tori. Amer. J. Math., 129(4):1087-1104, 2007.
[97] M. Thaddeus. Geometric invariant theory and flips. J. Amer. Math. Soc., 9(3):691-723, 1996.
[98] W. V. Vasconcelos. Computational methods in commutative algebra and algebraic geometry, volume 2 of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 1998. With chapters by David Eisenbud, Daniel R. Grayson, Jürgen Herzog and Michael Stillman.
[99] H. Verrill and D. Joyner. Computing with toric varieties. J. Symbolic Comput., 42(5):511-532, 2007.```

