
Towards Robust Visual-Controlled Flight of
Single and Multiple UAVs in GPS-Denied

Indoor Environments

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
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Abstract

Having had its origins in the minds of science fiction authors, mobile robot hardware has become
reality many years ago. However, most envisioned applications have yet remained fictional—a
fact that is likely to be caused by the lack of sufficient perception systems. In particular, mobile
robots need to be aware of their own location with respect to their environment at all times to
act in a reasonable manner. Nevertheless, a promising application for mobile robots in the near
future could be, e.g., search and rescue tasks on disaster sites. Here, small and agile flying robots
are an ideal tool to effectively create an overview of the scene since they are largely unaffected
by unstructured environments and blocked passageways.

In this respect, this thesis first explores the problem of ego-motion estimation for quadrotor
Unmanned Aerial Vehicles (UAVs) based entirely on onboard sensing and processing hardware.
To this end, cameras are an ideal choice as the major sensory modality. They are light, cheap,
and provide a dense amount of information on the environment. While the literature provides
camera-based algorithms to estimate and track the pose of UAVs over time, these solutions
lack the robustness required for many real-world applications due to their inability to recover a
loss of tracking fast. Therefore, in the first part of this thesis, a robust algorithm to estimate
the velocity of a quadrotor UAV based on optical flow is presented. Additionally, the influence
of the incorporated measurements from an Inertia Measurement Unit (IMU) on the precision
of the velocity estimates is discussed and experimentally validated. Finally, we introduce a
novel nonlinear observation scheme to recover the metric scale factor of the state estimate
through fusion with acceleration measurements. This nonlinear model allows now to predict
the convergence behavior of the presented filtering approach. All findings are experimentally
evaluated, including the first presented human-controlled closed-loop flights based entirely on
onboard velocity estimation.

In the second part of this thesis, we address the problem of collaborative multi robot operations
based on onboard visual perception. For instances of a direct line-of-sight between the robots,
we propose a distributed formation control based on ego-motion detection and visually detected
bearing angles between the members of the formation. To overcome the limited field of view
of real cameras, we add an artificial yaw-rotation to track robots that would be invisible to
static cameras. Afterwards, without the need for direct visual detections, we present a novel
contribution to the mutual localization problem. In particular, we demonstrate a precise global
localization of a monocular camera with respect to a dense 3D map. To this end, we propose an
iterative algorithm that aims to estimate the location of the camera for which the photometric
error between a synthesized view of the dense map and the real camera image is minimal.
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Zusammenfassung

Mobile Roboter sind schon länger zur Realität geworden, nachdem sie ursprünglich Sciencefiction
Romanen entstammen. Trotzdem sind viele der vorausgesagten Anwendungen bis heute nicht
Teil unseres täglichen Lebens geworden. Ein wichtiger Grund hierfür ist die noch immer un-
zureichende Fähigkeit der Roboter die vielen durch Sensoren gewonnenen Information über die
Umgebung sinnvoll zu verarbeiten. Dies betrifft insbesondere die Fähigkeit eines Roboters seine
eigene Position im Raum zu berechnen, ohne die sinnvolle Bewegungen oder eine Interaktion mit
der Umgebung nicht möglich sind. Erfolgversprechende Anwendungsgebiete für Mobile Roboter
könnten in naher Zukunft jedoch Einsätze zur Suche, Bergung und Rettung nach Katastrophen
sein. Für dieses Einsatzszenario eignen sich insbesondere kleine und agile Flugroboter, die nicht
durch am Boden liegende Trümmerteile behindert werden können.

Diese Arbeit befasst sich daher mit dem Problem der Erkennung der Eigenbewegung von
Quadrokoptern (hubschrauber-ähnliche Fluggeräte mit vier Propellern) ausschließlich auf Basis
von Systemen, deren Sensoren und Recheneinheiten vollständig auf dem Flugroboter instal-
liert sind. Als hauptsächliche Sensoren bieten sich hier insbesondere Kameras an, da sie leicht
und günstig sind und dabei umfassende Informationen über die Umgebung liefern. Während bis-
herige auf Kameras basierende Algorithmen hauptsächlich darauf ausgelegt sind die Position des
Quadrokopters zu bestimmen, sind diese Verfahren, auf Grund ihrer mangelnden Fähigkeit eine
einmal verlorene Positionsschätzung schnell wieder auszugleichen, für viele Anwendungsgebiete
ungeeignet. Der erste Teil dieser Arbeit befasst sich daher mit einem Verfahren um die ak-
tuelle Geschwindigkeit des Flugroboters auf Basis von Optischem Fluss zu berechnen. Darüber
hinaus wird untersucht, inwieweit die Einbeziehung von Messwerten der internen Rotations-
und Beschleunigungssensoren zu einer Verbesserung der Geschwindigkeitsschätzung führt. Ab-
schließend wird ein nicht-linearer Beobachter vorgestellt, der den metrischen Skalierfaktor mit
Hilfe der kamera-basierten Messungen sowie der Beschleunigungssensoren berechnet. Dieses
System erlaubt damit erstmals die Vorhersage der temporalen Eigenschaften des Filters. Die
anschließende ausführliche experimentelle Evaluierung beinhaltet zudem den ersten dokumen-
tierten Flug eines Quadrokopters basierend auf ausschließlich direkt auf dem Roboter berech-
neten Geschwindigkeitsinformationen.

Im zweiten Teil der Arbeit wird dann das Problem der Kollaboration von mehreren Robotern
basierend auf visuellen Sensoren untersucht. Für Fälle einer direkten Sichtverbindung zwi-
schen den Robotern wird ein Algorithmus zur Steuerung der Roboterformation vorgestellt, der
auf der visuellen Erkennung der Eigengeschwindigkeit und der Winkel zwischen den einzelnen
Robotern der Formation basiert. Um zudem Limitierungen realer Kameras bedingt durch ein
natürlicherweise beschränktes Sichtfeld auszugleichen, schlagen wir eine zusätzliche horizon-
tale Rotation des Quadrokopters vor um auch ansonsten außerhalb des Sichtfeldes befindliche
Roboter detektieren zu können. Anschließend, für den Fall, dass kein Sichtkontakt zwischen den
Robotern besteht, wird ein Verfahren zur präzisen Lokalisierung einer einzelnen Kamera in einer
dreidimensionalen Karte präsentiert. Unser iterativer Algorithmus versucht dabei die Position
der Kamera so zu bestimmen, dass der Unterschied zwischen dem Bild der Kamera sowie einem
synthetisierten Bild der Karte von der gleichen Position möglichst minimal ist.
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1. Introduction

While stationary robotic arms have already become an essential part of many factories, the
use of many mobile robots and in particular Unmanned Aerial Vehicles (UAVs) is still mostly
limited to academic research. Opposed to stationary robots, mobile robots have to master the
perception-to-action loop for a wide range of environments. Therefore, robust pose estimation
systems are an essential component for all mobile robot applications.

Overcoming current limited perception systems by human-in-the-loop setups, in the last years,
search and rescue robots became an application of increasing importance for civil mobile robots.
In these scenarios, e.g., those staged for the DARPA Robotics Challenge Trials in December
20131, a robot is remotely commanded through a hazardous environment that is unsafe for
direct human intervention. However, disaster sites might be challenging to navigate. A robot
would have to pass through narrow indoor passages, overcome debris, and potentially climb
stairs or ladders in multi story buildings. To overcome these challenges, small and agile flying
vehicles capable of hovering flight make an ideal choice for initial investigations. In fact, small-
size UAVs, such as quadrotors, have been used to examine disaster sites after earthquakes, such
as, Christchurch (New Zealand, 2011) and Emilia Romagna (Italy, 2012), and most prominently
at the Fukushima Daiichi power plant in Japan, 2011. Similarly, quadrotors have been used for
the inspection of otherwise inaccessible places, e.g., industrial scale furnaces.

In particular the high agility of quadrotor UAVs as opposed to other flying vehicles has
attracted the scientific community in the last five years. Several control challenges have been
addressed, making the quadrotor are well studied platform for even aggressive and yet precise
maneuvers, e.g., sideways open-loop flights through narrow openings [Mellinger et al., 2012] or
complex closed-loop tasks [Müller et al., 2011].

However, in all these works, the perception problem was omitted by using stationary external
motion tracking systems with sub-millimeter accuracy. Without the availability of pre-calibrated
motion tracking systems at unstructured disaster sites, UAVs are often remotely controlled from
the save distance by highly trained human operators using visual feedback streamed from the
vehicle. While a human-in-the-loop design might be desirable for many applications given a
humans high situational awareness and superior reasoning, the need for extensive training to
operate a UAV clearly limits the range of applications for quadrotors.

Therefore, the development of onboard perception systems marks an essential requirement to
overcome the limitations of current computer or human controlled quadrotor systems. These
constraints have motivated the extensive use of onboard cameras as main sensory modality.
They combine a low weight and low costs with a rich sensory feedback. However, in general,
information obtained from optical systems lacks a metric scale and thus needs to be fused with
metric observations from other sensors.

In the last years, several camera-based pose estimation systems have been proposed that
make use of Simultaneous Localization And Mapping (SLAM) techniques to build and track

1http://www.theroboticschallenge.org/

1

http://www.theroboticschallenge.org/


1. Introduction

a map. However, these approaches require a reliable and constant tracking of optical features
over an extended amount of time. This requirement makes these systems susceptible to even
short tracking failures caused by occluded views, moving objects, or blurry camera images that,
if possible at all, cause a timely recovery of the last pose. During this time, the position of the
unstable quadrotor system cannot be regulated and the flight behavior becomes unpredictable.
On the contrary, this is not the case when relying on ego-motion estimation from optical-flow,
as, in this case, data extraction and association is performed on each two consecutively acquired
images. The resulting velocity estimates can be used for the implementation of a velocity based
controller that can be intuitively used by human operators.

Therefore, in this thesis, we first aim for the development of ego-motion estimation systems
based entirely on onboard perception. They allow even untrained humans to operate a quadrotor
UAV using low level velocity commands. In the second part of this thesis, several approaches
on the next step towards vision aided multi robot collaboration tasks are discussed.

1.1. Summary of Contributions

Our work mainly contributes to two aspects of academic research. In the following, we detail
the main contributions in both fields.

1.1.1. Ego-Motion Estimation from Optical Flow

For many years, control of quadrotor UAVs was mostly based on external state estimation
systems, such as GPS, or external processing on ground stations. In contrast, in this thesis, we
developed and tested algorithms for the control of UAVs relying purely on velocity estimation
from onboard sensors and processing. In fact, we were able to present the first results from a
closed-loop controlled flight of a quadrotor UAV based on velocity estimates from an all-onboard
vision system. For this purpose, we developed and compared three implementations to extract
velocity information from optical flow. Additionally, we presented algorithms to filter outlying
observations of the vision system to improve the state estimate. Finally, we also introduced
a novel non-linear sensor-fusion filter that allows to fully characterize the systems convergence
behavior. Thus, it is now possible to predict the error of the metric scale factor and therefore
also the velocity estimate for a given flight trajectory. Our publications inspired several other
research labs to engage in similar research activities.

Our contributions in this field have led to the following publications:

• Grabe, V., Scaramuzza, D., Robuffo Giordano, P. (2014). Nonlinear Ego-Motion Estima-
tion from Optical Flow for Online Control of a Quadrotor UAV. International Journal of
Robotics Research (under review).

• Grabe, V., Bülthoff, H. H., Robuffo Giordano, P. (2013). A Comparison of Scale Estima-
tion Schemes for a Quadrotor UAV based on Optical Flow and IMU Measurements. In
Proceedings of the International Conference on Intelligent Robots and Systems. Tokyo,
Japan.

• Grabe, V., Bülthoff, H. H., Robuffo Giordano, P. (2012). Robust Optical-Flow Based Self-
Motion Estimation for a Quadrotor UAV. In Proceedings of the International Conference
on Intelligent Robots and Systems. Vilamoura, Portugal.

2



1.2. Organization of the Thesis

• Grabe, V., Bülthoff, H. H., Robuffo Giordano, P. (2012). On-board Velocity Estimation
and Closed-loop Control of a Quadrotor UAV based on Optical Flow. In Proceedings of
the International Conference on Robotics and Automation. St. Paul, MN, USA.

1.1.2. Mutual Robot Localization based on Visual Observations

If available, mutual localization of several robots can be achieved using direct visual observations
among the robots. Otherwise, robots can localize themselves with respect to other robots in an
indirect way through the exchange of coordinates in a common reference frame. To the former,
we contributed a formation control that is based on the direct visual bearing observation of
other flying robots. To the latter, we presented a novel algorithm to precisely localize a camera
within a dense map using analysis-by-synthesis techniques. This novel approach of localization
of one sensor with respect to a different other is then extended with further project descriptions
in the future work section.

Our contributions in this field have led to the following publications:

• Grabe, V., Scaramuzza, D. (2014). Global Localization of a Monocular Camera in RGB
3D Maps through Photometric-Error Minimization. Technical Report.

• Franchi, A., Masone, C., Grabe, V., Ryll, M., Bulthoff, H. H., Rubuffo Giordano, P. (2012).
Modeling and Control of UAV Bearing Formations with Bilateral High-level Steering. The
International Journal of Robotics Research, 31(12), 1504–1525.

• Grabe, V., Masone, C., Ryll, M., Franchi, A., Bulthoff, H. H., Rubuffo Giordano, P. (2011).
Implementation of a Decentralized Formation Control based on Visual Bearing Angles for
Multiple UAVs. Technical Report.

1.1.3. Additional Contributions

Most of our work relies on the free TeleKyb framework that has been released to the public. This
contribution is not discussed in detail as part of this thesis since several authors were strongly
involved in the design and development of this software framework. It is documented in the
following publication:

• Grabe, V., Riedel, M., Bülthoff, H. H., Robuffo Giordano, P., Franchi, A. (2013). The
TeleKyb Framework for a Modular and Extendible ROS-based Quadrotor Control. In
Proceedings of the European Conference on Mobile Robots. Barcelona, Spain.

1.2. Organization of the Thesis

This thesis is organized along the two main topics highlighted in Sec. 1.1. Additionally, Figure 1.1
provides an overview of the addressed problems.

In Chapter 2, we first discuss approaches for the control of a single UAV based on metric
velocity observations by means of onboard cameras. In particular, we address the problem of
velocity estimation from optical flow in Sec. 2.2, outlier rejection approaches in Sec. 2.3, and
online scale estimation techniques in Sec. 2.4.

In Chapter 3, we then expand the state estimation problem to multiple UAVs and discuss
two selected approaches to deal with the mutual robot localization problem. In Sec. 3.2, we
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1. Introduction

State Estimation for UAVs
One UAV

Velocity Estimation No Line-of-SightDirect Line-of-Sight

Multiple UAVs
Pose Estimation

Chapter 2
[Grabe et al., ICRA 2012]
[Grabe et al., IROS 2012]
[Grabe et al., IROS 2013]
[Grabe et al., IJRR 2014]

Covered in literature
[Klein et al., ISMAR 2007]
[Weiss et al., JFR 2011]
[Forster et al., ICRA 2014]

Chapter 3.2
[Grabe et al., TR 2011]
[Franchi et al., IJRR 2012]

Chapter 3.3, 4.2.1
[Grabe et al., TR 2014]
[Grabe et al., 2014]

Software framework TeleKyb: [Grabe et al., ECMR 2013]

Figure 1.1.: Visualized organization of the thesis. The problem of onboard state estimation for
UAVs is investigated for both individual UAVs and groups of quadrotors. For the
first subproblem, we contribute to the field of velocity estimation while the problem
of pose estimation is extensively covered in the literature. Approaches to the mutual
localization problem are proposed for both an existing and an occluded line-of-sight
between the UAVs. Publications listed for 2014 were under review or in preparation
as of March 2014.

propose a formation controller based on the direct visual detection of other flying robots nearby.
Conversely, in Sec. 3.3, we present an indirect way of localization without the availability of
a direct line-of-sight between the robots. Here, one robot with a camera is localized within a
dense map created by a second robot.

Finally, the thesis is concluded in Chapter 4 including a detailed outlook to future projects
that extend our work on multi robot cooperation.
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2. Ego-Motion Estimation from Optical Flow
for Online Control of a Quadrotor UAV

Summary

For the control of Unmanned Aerial Vehicles (UAVs) in GPS-denied environments, cameras have
been widely exploited as main sensory modality for a successful UAV state estimation. However,
the use of visual information for ego-motion estimation presents several theoretical and practical
difficulties, such as, data association, occlusions, and the lack of direct metric information when
relying on monocular cameras. In this chapter, we address all these issues in two ways. First,
we propose a robust ego-motion estimation algorithm to recover the (non-metric) linear and
angular UAV velocities from optical flow by exploiting the continuous homography constraint
in presence of planar regions. Then, we address the problem of retrieving the (unknown) metric
scale by fusing the visual information with the onboard Inertia Measurement Unit (IMU). To
this end, two different estimation strategies are proposed and critically compared: a first one
exploiting the classical Extended Kalman Filter (EKF) formulation, and a second one based
on a novel nonlinear estimation framework. The main advantage of the latter scheme lies
in the possibility of imposing a desired transient response to the estimation error, which is
typically not possible with an EKF due to its inherent linearization of the system dynamics.
We indeed show that the nonlinear scheme yields considerably superior performance in terms
of convergence rate and predictability of the estimation error behavior. The chapter is then
concluded by an extensive experimental validation, including all-onboard closed-loop control of
a real quadrotor UAV in real-world conditions.

The work described in this chapter has been published in:

• Grabe, V., Bülthoff, H. H., Robuffo Giordano, P. (2012). On-board Velocity Estimation
and Closed-loop Control of a Quadrotor UAV based on Optical Flow. In Proceedings of
the International Conference on Robotics and Automation. St. Paul, MN, USA.

• Grabe, V., Bülthoff, H. H., Robuffo Giordano, P. (2012). Robust Optical-Flow Based Self-
Motion Estimation for a Quadrotor UAV. In Proceedings of the International Conference
on Intelligent Robots and Systems. Vilamoura, Portugal.

• Grabe, V., Bülthoff, H. H., Robuffo Giordano, P. (2013). A Comparison of Scale Estima-
tion Schemes for a Quadrotor UAV based on Optical Flow and IMU Measurements. In
Proceedings of the International Conference on Intelligent Robots and Systems. Tokyo,
Japan.

• Grabe, V., Scaramuzza, D., Robuffo Giordano, P. (2014). Nonlinear Ego-Motion Estima-
tion from Optical Flow for Online Control of a Quadrotor UAV. International Journal of
Robotics Research (under review).
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2.1. Introduction

In recent years, inspection, search, and rescue tasks have become one of the most important
envisaged applications for Unmanned Aerial Vehicles (UAVs). For instance, small-size UAVs,
such as quadrotors, have been used to investigate disaster sites after earthquakes, e.g., the
Fukushima Daiichi power plant in Japan. Along similar lines, some large-scale research projects
have been recently funded on these and related topics, see, e.g., [EU Collaborative Project ICT-
248669; EU Collaborative Project ICT-287617; EU Collaborative Project ICT-600958]. Indeed,
thanks to their high agility, pervasiveness and customizability, quadrotors represent an ideal
robotic platform for navigating in harsh and cluttered environments, either when operating in
full autonomy, or under the (partial) remote control of skilled human operators.

In all cases, a widely-recognized key component for the successful deployment of such systems
is a reliable state estimation module able to deal with highly unstructured and/or GPS-denied
indoor environments. This typically imposes a major requirement on the system: since the
target environment for the considered applications cannot be prepared before the deployment of
the vehicle, the UAV is constrained to only rely on onboard sensing and processing capabilities.
These constraints have motivated, over the last years, the extensive use of onboard cameras as
main sensory modality for state estimation purposes, see [Weiss et al., 2013a; Scaramuzza et al.,
2014] for a recent overview. Vision indeed provides a rich sensory feedback which could, in
principle, yield a full understanding of the surrounding environment. However, an effective use
of the visual information also presents many theoretical and practical difficulties. For instance,
robust data extraction and association across multiple frames is often a major issue in real-
world scenarios, especially when comparing images from non-consecutive points of view. Also,
when relying on monocular onboard cameras, any position/velocity information can only be
retrieved up to an arbitrary scale factor, which must then be disambiguated by fusing the
visual information with independent metric measurements from other onboard sensors. This
has motivated many recent works on data fusion exploiting the concurrent metric measurements
from onboard accelerometers embedded in the Inertia Measurement Units (IMUs) present on
most flying robotic systems [Martinelli, 2012; Li and Mourikis, 2013; Omari and Ducard, 2013].

Existing work on metric camera-based state estimation mostly relies on SLAM techniques
to build and maintain a map of visual features while the position of the vehicle in the map is
estimated in parallel. Acceleration measurements are then used to reconstruct the metric scale of
the underlying map [Martinelli, 2012]. This has been achieved in [Nützi et al., 2011] for the well-
known Parallel Tracking and Mapping (PTAM) algorithm [Klein and Murray, 2007], and, even
more remarkably, from the observation of just a single feature over time by providing a closed-
form solution for the computation of the metric scale factor [Kneip et al., 2011a; Martinelli, 2012].
However, all these approaches depend on the possibility to continuously track features over an
extended period of time. Therefore, the level of robustness required for the UAV control cannot
be guaranteed as the visual system could be affected by, e.g., unexpected occlusions, blurry
images, or the need of heavy computations for a reliable feature matching. This is not the case,
however, when relying on motion estimation from optical flow, as, in this case, data extraction
and association is performed on consecutive (and thus spatially very near) acquired images.
Motivated by these considerations, a first contribution of this work is then the development of
an approach based on optical-flow decomposition for providing a reliable and robust ego-motion
estimation module for safe UAV operation in unstructured environments.
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Exploiting purely optical flow, a system capable of hovering and landing on a moving platform
was presented in [Herissé et al., 2012]. However, this work did not consider the issue of deter-
mining the unknown scene scale factor since the proposed control approach was implemented by
only relying on the non-metric linear velocity directly obtained from a monocular camera. An
approach combining optical flow decomposition and sensor fusion for metric scale estimation was
instead presented in [Honegger et al., 2013] by developing a small sensor for velocity estimation
onboard UAVs. However, the proposed sensor relied on a ground facing sonar for metric scale
estimation, thus limiting the vehicle to near ground operations within the range of the sonar.
Finally, by exploiting an EKF to fuse optical flow measurements with IMU readings, in [Weiss
et al., 2012b], the authors demonstrated the possibility of estimating the metric scale, sensor
biases, and the IMU/camera relative pose. This system was later extended in [Weiss et al.,
2013b]. However, the system was mainly designed to support the initialization of the PTAM
framework in near hovering mode rather than for closed-loop UAV control over an extended
period of time.

It can be noted that most of the presented camera-based state estimation methods rely on
the classical EKF framework to fuse together the available sensor readings (e.g., from vision
and IMU) for then extracting the metric scale. However, despite being widespread, the use
of a EKF-based scheme presents two major (and often overlooked) drawbacks: (i) it neces-
sarily involves a linearization of the (nonlinear) system dynamics (such as when dealing with
visual-inertial estimation problems), and (ii) as a consequence, it does not allow for an explicit
characterization of the estimation error behavior. Therefore, we propose a novel visual-inertial
estimation scheme exploiting optical flow and IMU measurements based on a recently-developed
nonlinear observation framework for active structure from motion [Spica and Robuffo Giordano,
2013]. Compared to a classical EKF, the use of our nonlinear filter yields an estimation error
dynamics with a fully characterized convergence behavior, in particular equivalent to that of a
reference linear second-order system with assigned poles. It is then possible, for instance, to
actively impose a desired error transient response by suitably acting on the estimation gains and
on the UAV motion. Similarly, the convergence time of the estimation error can be predicted in
terms of percentages of the initial error. Finally, the reported results also show that the use of
the proposed nonlinear filter yields a substantial faster (and more controlled) error convergence
compared to a classical and ‘fully-informed’ EKF, thus making it a viable and robust alternative
to other consolidated schemes.

The rest of the chapter is then structured as follows: in Sec. 2.2 we first review the proposed
ego-motion estimation algorithm from optical flow which provides a (non-metric) estimation
of the UAV linear/angular velocity. Subsequently, Sec. 2.4 introduces two estimation schemes
meant to recover the unknown scale factor by fusing the visual information with the IMU
readings: a filter based on the standard EKF machinery, and a novel deterministic nonlinear
observer. The two filters are then compared by highlighting, for the latter, the possibility of
characterizing and actively shaping its error transient response. Afterwards, Sec. 2.5 reports and
discusses the results of several simulations and experiments aimed at validating and comparing
the two ego-motion estimation approaches, and, finally, some experiments of closed-loop control
on a quadrotor UAV are presented. Section 2.6 then concludes the chapter and discusses some
open points and future directions.
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2.2. Ego-Motion Estimation from Optical Flow

The adopted approach for ego-motion estimation from perceived optical flow is based on the
decomposition of the continuous homography matrix [Ma et al., 2004], complemented with the
angular velocity measurements obtainable from an onboard IMU.

A distinguishing feature of our method with respect to most of the previous literature is
the use of a continuous approach for motion recovery. In fact, the typical incremental ego-
motion estimation algorithms (e.g., the visual odometry [Scaramuzza and Fraundorfer, 2011])
assume presence of small but finite camera displacements over frames, and are thus based
on reconstruction methods involving the discrete epipolar/homography constraints. However,
since most cameras acquire images at high rates, we judged more appropriate the adoption of a
continuous approach to recover, at each step, the camera instantaneous linear/angular velocity
rather than a finite displacement over time.

In our experimental setup, we assume a down-facing camera in an approximately flat outdoor
or indoor scenario. Features on the ground are tracked between any two consecutive frames
to compute an optical flow field Φ = ((x1, u1), . . . , (xN , uN )) as function of N pairs (xi, ui)
of detected features xi ∈ R3 on the image plane and associated image velocities ui ∈ R3.
In indoor hallways as well as in many outdoor scenarios and during flight at greater heights,
one can safely assume that most tracked feature are located on a horizontal ground plane.
This assumption is exploited first by reviewing an algorithm to retrieve the linear and angular
velocities (v ∈ R3,ω ∈ R3) of a moving camera based on the continuous four-point algorithm
for planar scenes [Ma et al., 2004]. We then show how to extend it in the cases of (i) known
angular velocities from onboard gyroscopes, and (ii) additional known direction of the ground
plane normal vector n. This is motivated by the fact that, apart from a measurement of ω,
typical IMUs are also able to sense the local direction of gravity g which, given our assumptions,
coincides with the ground plane normal vector.

Consequently, we then present an experimental validation and thorough comparison of these
three methods against a known ground truth. Finally, we show the experimental results of using
our proposed solutions as a feedback term for closed loop control of a quadrotor UAV.

In a first step, we now review the classical reconstruction algorithm based on the continuous
homography constraint [Ma et al., 2004].

2.2.1. Review of the Continuous Homography Constraint

Seen from a moving camera, the apparent velocity of a static point in space X ∈ R3 as a result
of the camera motion is

Ẋ = [ω]×X + v (2.1)

where v ∈ R3, ω ∈ R3 are the camera linear/angular velocity (all expressed in the camera
frame), and [ω]× ∈ so(3) is the skew-symmetric matrix associated to vector ω ∈ R3 such that
[ω]×X = ω ×X where × denotes the cross product in R3.

Consider a set of point features located on a common plane of equation nTX = d where
n ∈ S2 is the unit normal vector to the plane, and d ∈ R the orthogonal distance of the plane
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to the camera frame. By rearranging the plane constraint as
1

d
nTX = 1, eq. (2.1) becomes

Ẋ = [ω]×X + v
1

d
nTX =

(
[ω]× +

1

d
vnT

)
X = HX. (2.2)

Matrix H ∈ R3×3 is commonly referred to as the continuous homography matrix : it encodes the
camera linear/angular velocity (v, ω), as well as the scene structure (n, d).

Defining λx = X for a scalar depth factor λ ∈ R as the image of a point X, and exploiting
the fact that Ẋ = λ̇x+ λu and ẋ = u, where u is the observed velocity of the point x on the
image plane, one obtains

u = Hx− λ̇

λ
x. (2.3)

The depth factor λ in (2.3) can be removed by pre-multiplication of [x]× (note that [x]×bx = 0
for any vector x ∈ R3 and scalar b ∈ R). This results in the so-called continuous homography
constraint [Ma et al., 2004]

[x]×Hx = [x]×u (2.4)

which involves the measured (x, u) and the (unknown) continuous homography matrix H.

2.2.2. The 4-Point Algorithm

Matrix H in (2.4) can be recovered from a set of N measured pairs (xi, ui) of detected features
xi ∈ R3 on the image plane and associated feature velocities ui ∈ R3. The elements of H are
stacked into a vector HS = [H11, H21, · · · , H33] ∈ R9 and one can rewrite (2.4) as

aTi H
S = [xi]×ui (2.5)

where ai = xi ⊗ [xi]× ∈ R9×3, and ⊗ stands for the Kronecker product. By then defining
A = [a1, · · · ,aN ]T ∈ R3N×9 and B = [[x1]×u1, · · · , [xN ]×uN ]T ∈ R3N , one obtains the linear
system

AHS = B. (2.6)

Assuming presence of at least N ≥ 4 detected feature pairs (xi, ui), system (2.6) can be solved
in a least-square sense as HS = A†B, with A† denoting the pseudo-inverse of matrix A.

After having recovered H, using standard techniques [Ma et al., 2004], it is further possible
to algebraically decompose it into the scaled linear velocity v/d, the angular velocity ω, and the
plane normal n. However, it can be shown that, in general, two physically-equivalent solutions
are compatible with a given homography matrix H [Ma et al., 2004].

This first algorithm then allows us to estimate the quantities (v/d, ω, n) from two consecutive
visual optical flow observations and without the use of additional sensor readings or previously
acquired data structures such as, e.g., a map. This first version of the ego-motion recovery
algorithm is referred to as V1 in all of the following developments.
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2.2.3. Exploiting a Known Angular Velocity

Since any typical onboard IMU can directly measure the angular velocity ωIMU , we can consider
ωm = ωIMU as known from external (i.e., not vision-based) sources. Knowledge of ω can then
be used to derotate the perceived optical flow field as[

u′x
u′y

]
=

[
ux

uy

]
−
[
−xxxy 1 + x2

x −xy
−(1 + xy)

2 xxxy xx

]
ωm, (2.7)

where the interaction matrix relating u to (v,ω) was exploited [Chaumette and Hutchinson,
2006]. This derotation step then reduces matrix H to

H =
1

d
vnT . (2.8)

Since n spans HT and ‖n‖ = 1, we can obtain n from the singular value decomposition
H = UΣV T as the first column of matrix V . The inherent sign ambiguity can be resolved by
enforcing nz > 0. Having retrieved n, we then obtain v/d = Hn.

This algorithm, which is referred to as V2 in the following, requires the observation of at least
three feature pairs (xi,ui) and yields a unique solution for v/d and n.

2.2.4. Exploiting a Known Angular Velocity and Plane Orienation

In most indoor environments and when considering UAVs with down-looking cameras, the dom-
inant plane can be safely taken as horizontal with, thus, its normal vector n parallel to the
gravity vector. Therefore, one can exploit the ability of onboard IMUs to estimate (via internal
filtering, see Sec. 2.5.6 for a detailed discussion and experimental validation) the local gravity
vector, thus allowing to consider nm ≈ nIMU as measured independently from the visual input.

Plugging (2.8) in (2.4) yields

[x]×
1

d
v =

[x]×u

nTmx
. (2.9)

where now nTmx is a known quantity. Letting b = ([x]×u)/(nTmx) ∈ R3, one then obtains the
following equation linear in v/d (the only unknown left)

[xi]×
v

d
= bi. (2.10)

A least-square approximation of v/d over all N tracked features can be obtained by stacking
all [xi]× into the matrix A = [[x1]×, · · · , [xN ]×]T ∈ R3N×3 and all bi into the vector B =
[b1, · · · , bN ]T ∈ R3N resulting in the linear system

A
v

d
= B (2.11)

which can be solved as v/d = A†B.

Note that any two distinct feature point vectors xi,xj are never parallel due to the perspective
projection of the camera. Thus, in principle, only two flow vectors are required to obtain a
solution for v/d. However, a more robust estimation is obtained by incorporating all observed
flow vectors.

This third algorithm is referred to as V3 in the following.
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2.2.5. Final Discussion

We conclude this first section with some final considerations on the choice of basing the pro-
posed ego-motion estimation algorithm upon the homography constraint instead of the epipolar
constraint that is often exploited in computer and robotic vision. In general, the applicability of
the homography vs. epipolar constraint depends on the structure of the environment: methods
relying on the epipolar constraint are more appropriate for highly unstructured scenes where a
collection of points in general position can always be detected. That is, the depth within the
scene should be considerably larger than the distance between the scene and the camera. On the
other hand, solutions based on the homography constraint should be favored when dealing with
approximately planar scenes or large distances between the camera and the scene in combina-
tion with wide angle lenses. Indeed, in the ideal case of features extracted from a perfect planar
scene, use of the epipolar constraint is not any longer guaranteed to yield a unique solution for
the ego-motion recovery [Ma et al., 2004].

Furthermore, compared to epipolar-based algorithms, the homography constraint remains bet-
ter conditioned also in case of stationary flight, e.g., with a small amount of translational motion
(indeed, the epipolar constraint vanishes for a zero translation/linear velocity). Therefore, while
the epipolar constraint can be more suited for persistently-translating maneuvers or vehicles
(e.g., fixed-wing UAVs), the homography constraint is more robust for typical indoor (close to
stationary) flight regimes of vertical take-off and landing vehicles such as quadrotor UAVs.

These considerations then motivated our choice of the homography constraint for dealing with
the ego-motion recovery. Indeed, as explained, in many scenarios, such as indoor hallways or
aerial coverage, one can safely assume presence of a dominant ground plane spanning most of
the observed features. Coupled with the RANdom SAmple Consensus (RANSAC)-based outlier
rejection described in the next Sec. 2.3, our proposed solution then proved to yield accurate
results as discussed in the experimental evaluation in Sec. 2.5.3.

2.3. Segmentation of Features

To further improve the robustness of the velocity estimation system, we developed a quantitative
measure of how well a given plane fits a set of observed features. In the following, we first propose
a criterion to discriminate between features on the plane and outliers. This method is then used
to obtain a real-time feature classification using onboard hardware as the quadrotor explores an
unknown environment.

2.3.1. Planarity Measures

To test whether a certain group of observed features belongs to a common plane, we considered
two different quantitative measures. We start noting that a pre-requisite for solving eq. (2.6) is
that B ∈ R(A) where R(A) denotes the range space of matrix A. This can be restated as

rank(A) = rank([A B]) = 8,

since rank(A) = 8 by construction. Let σi ≥ 0, i = 1 . . . 10, be the singular values of the
augmented matrix [A B] ∈ R3N×10 ordered from the largest to the smallest one. As a measure
of how well the condition rank(A) = 8 is satisfied by the given set of measured features/optical
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flow, one can monitor the value of σ9. In fact, σ9 = σ10 = 0 if rank(A) = 8 holds, i.e., if all
the observed points belong to a common plane, and σ9 > 0 otherwise. Therefore, the value of
σ9 ≥ 0 can be exploited as a measure of how well a certain set of features/optical flow meets
the planarity constraint.

However, it is also possible to obtain an equivalent information by resorting to a different
argument. Let HS = A†B represent the least-square solution of the linear system (2.6): in
order to obtain a measure of how well HS is actually solving system (2.6), one can consider the
‘reprojection’ vector E ∈ R3N

E = B −AHS = B −AA†B = (I3N −AA†)B

which should vanish if (2.6) admits an exact solution, i.e., if all the observed feature points
belong to the same plane. Therefore, another equivalent measure of the planarity assumption
besides the previously discussed σ9 can be taken as e = ‖E‖/N .

Although yielding similar information, we found in practice that e was much less sensitive
to noise issues compared to σ9. Additionally, the quantity e presents two advantages. First,
it does not require intense additional computations since the pseudo-inverse of matrix A, i.e.,
A†, is already computed when solving (2.6) for recovering the continuous homography matrix.
Secondly, this method can be used to test effectively whether a new feature could be added to an
already known plane made of other feature points. For this purpose, one can obtain HS = A†B
using only the features which are already known to form a plane. Then, by constructing a new
matrix A′ and B′ out of the new feature point as described in Sec. 2.2.2, one can decide the
membership to the given plane by testing ‖B′ −A′A†B‖/N against a threshold.

2.3.2. Algorithm for Robust Velocity Estimations

Having an effective measure to test both the plane hypothesis and the assignment of new features
to existing planes, we can then design an algorithm that is able to dynamically decide whether
an observed feature belongs to the dominant plane. Then, exploiting this clustering, we can
obtain a better estimation of both the scaled linear velocity and the plane normal when using
algorithm V2.

In the following, we sketch the algorithm that is used to process new images as they are
captured:

• Initialization. Before the flight or after the dominant plane was lost, a RANSAC inspired
approach is used to pick an initial set of features. The validity of the potential plane is
evaluated using our method described above.

• Update phase. As a first step, all features already known to be part of the plane are
updated to the current location as reported by the flow tracker. Additionally, all those
features which have not been observed in the current frame are deleted from the plane.

• Estimation step. The scaled linear velocity is estimated together with the plane normal
vector. Thus, the estimated linear velocity is independent of the particular plane orienta-
tion, allowing for a broader range of environments (algorithm V2 ). This linear velocity is
then taken as the best estimation of v/d.

• Integration of new features. Afterwards, the algorithm tests all other observed features
against the current model of the known plane that has been built and maintained during
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Figure 2.1.: Locations of the IMU (I), camera (C), body (B) and world frame (W) relative to each
other. Frames I,B and C are assumed to be rigidly linked to each other. The world
frame W is oriented horizontally with its z-axis pointing down, following the NED
(North-East-Down) convention commonly used in air/space scenarios.

the last steps. A threshold is used to decide whether a new feature is added to the feature
set using the generalized method to test individual features.

• Validation of the feature set. The performance of each feature in the set is monitored
periodically. Thus, initially trusted features that turned out to be outliers (since, e.g., the
camera has approached the scene from a far distance) are excluded from the set in this
step.

2.4. Online Scale Estimation

The ego-motion algorithm (in its three variants) presented in Sec. 2.2 allows us to obtain a
reliable estimation of the scaled camera linear velocity v/d. In this section, we discuss two esti-
mation schemes meant to recover the plane distance d by fusing the optical flow decomposition
with the onboard accelerometer measurements.

2.4.1. Equations of Motion

We start by deriving the equations of motion that are relevant to the case under consideration.
In the following, we denote with B, C, I andW the body, camera, IMU and inertial world frame,
respectively. The origin of frame B is assumed to be located at the quadrotor barycenter, while
frames C and I are rigidly attached to B, see Fig. 2.1. Throughout the text, left superscripts is
exploited to indicate the frames where quantities are expressed in. The symbol XRY ∈ SO(3)
is used to denote the rotation matrix from frame X to frame Y, and ZpXY ∈ R3 to represent
the vector from the origin of frame X to the origin of frame Y, expressed in frame Z. We also
introduce the following quantities instrumental for the next developments: g ∈ R3 as the gravity
vector, and If ∈ R3, Iω ∈ R3 as the specific acceleration and angular velocity at the origin
of I.
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We define Cv = CRW
WṗWC as the camera linear velocity in camera frame, and Bv =

BRW
WṗWB as the body linear velocity in body frame. Since BRC ,

BRI ,
BpBC and BpBI are

assumed to be constant, from standard kinematics the following relationships hold

Bv = BRC(
Cv + [ Cω]×

CpCB) = BRC
Cv + [Bω]×

BpCB, (2.12)
Cv̇ = CRI( Ia+ [ Iω̇]×

IpIC + [ Iω]2×
IpIC)− [ Cω]×

Cv

= CRI
Ia+ [ Cω̇]×

CpIC + [ Cω]2×
CpIC − [ Cω]×

Cv, (2.13)
Cω = CRI

Iω (2.14)
Cω̇ = CRI

Iω̇ (2.15)

where Ia = IRW
Wp̈WI is the linear acceleration experienced by the IMU. We note that

Ia = If + Ig and Ig = IRW [0, 0, g]T in case of a horizontal orientation of the world frame, see
Fig. 2.1.

In presence of a planar scene CnT CX + d = 0 holds and one also has (see, e.g., [Robuffo
Giordano et al., 2008])

Cṅ = −[ Cω]×
Cn (2.16)

ḋ = Cv
T Cn. (2.17)

Finally, according to this notation, the decomposition of the optical flow summarized in Sec. 2.2
allows us to directly measure the scaled linear velocity Cṽ = Cv/d. The estimation schemes
presented in the following are then meant to recover the (unmeasurable) value of the plane
distance d and the metric linear velocity vector Cv.

2.4.2. Scale Estimation based on the Extended Kalman Filter

As a first approach to estimate the distance to the planar scene d, we develop a classical EKF
upon the system equations of motion. In particular, we adopt the discrete version of the EKF,
and let index k ∈ N denote the k-th iteration step. For clarity, we append a right subscript m
to identify all those quantities that are directly available through one of the onboard sensors,
e.g., specific force Ifm and angular velocity Iωm from the IMU, and the scaled linear velocity
Cṽm = ( Cv/d)m from the camera.

We define the EKF state vector s to consist of the metric camera linear velocity in camera
frame Cv and the camera distance to the planar scene d:

s =

[
Cv

d

]
, Cv ∈ R3, d ∈ R. (2.18)

Given the high update rate and low latency of the onboard IMU, acceleration measurements
are available for all prediction steps. Therefore, we rewrite (2.13) in terms of the measurements
Ifm and Iωm obtained from the IMU in frame I:

Cv̇ = CRI(
Ia+ [ Iω̇]×

IpIC + [ Iωm]2×
IpIC)− [ Cωm]×

Cv

≈ CRI( Ifm + Ig + [ Iωm]2×
IpIC)− [ Cωm]×

Cv (2.19)
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2.4. Online Scale Estimation

Since no direct measurement of Iω̇ is available on most quadrotor setups, and Iω being typically
a noisy signal, we approximate Iω̇ ≈ 0 in (2.19) rather than attempting to recover Iω̇ via a
numerical differentiation. Consequently, using (2.17) and (2.19), the following equations govern
the predicted state s̄[k]:

Cv̄[k] = Cv̂[k − 1] + ∆t
Cv̇[k] (2.20)

d̄[k] = d̂[k − 1] + ∆t
Cv̂[k]T Cn[k] (2.21)

where ∆t denotes the sampling time of the filter.

Although most quantities derived in the following steps are time varying, from now on, for
the sake of exposition clarity, we omit the time dependency [k] wherever possible.

To compute the predicted covariance matrix of the system uncertainty Σ̄[k] ∈ R4×4, we first
derive the Jacobian matrix G[k] ∈ R4×4

G =


∂ Cv̄[k]

∂ Cv̂[k − 1]

∂ Cv̄[k]

∂d̂[k − 1]

∂d̄[k]

∂ Cv̂[k − 1]

∂d̄[k]

∂d̂[k − 1]


=

[
I3 −∆t[

Iωm]× 03×1

∆t
Cn

T
1

]
. (2.22)

Matrix Σ̂[k − 1] from the previous step is then propagated as:

Σ̄[k] = GΣ̂[k − 1]GT +R. (2.23)

Here, matrix R ∈ R4×4 is obtained from

R = V

[
cov( Ifm) 03×3

03×3 cov( Iωm)

]
V T (2.24)

where

V =


∂ Cv̄[k]

∂ Ifm

∂ Cv̄[k]

∂ Iωm

∂d̄[k]

∂ Ifm

∂d̄[k]

∂ Iωm


=

[
∆t
CRI ∆t(

CRIM + [ Cv̂[k]]×
CRI)

01×3 01×3

]
∈ R4×6 (2.25)

M = ( IωTm
IpIC)I3 + Iωm

IpTIC − 2 IpIC
IωTm, (2.26)

and cov( Ifm) ∈ R3×3, cov( Iωm) ∈ R3×3 are the covariance matrixes of the accelerome-
ters/gyroscopes sensors in the IMU, which can be experimentally determined.

The predicted state s̄ is then updated whenever a new scaled visual velocity estimate zm =
Cṽm =

( Cv/d)
m

becomes available from the optical flow decomposition. Let z̄ be the predicted
scaled visual velocity estimation based on the predicted state s̄

z̄ =
Cv̄

d̄
. (2.27)
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2. Ego-Motion Estimation from Optical Flow for Online Control of a Quadrotor UAV

The kalman gain K ∈ R4×3 is obtained as

K = Σ̄JT (JΣ̄JT + cov(zm))−1, (2.28)

where cov(zm) ∈ R3×3 is the covariance matrix of the scaled visual velocity measurement, and
the Jacobian J ∈ R3×4 is given by

J =

[
∂z̄[k]

∂ Cv̄[k]

∂z̄[k]

∂d̄[k]

]
=

[
I3

d̄
−
Cv̄

d̄2

]
. (2.29)

Finally, the predicted state s̄[k] is updated to the estimated state ŝ[k], together with uncer-
tainty matrix Σ̂[k], as

ŝ =

[
Cv̂

d̂

]
=

[
Cv̄

d̄

]
+K (zm − z̄) (2.30)

Σ̂ = (I4 −KJ)Σ̄. (2.31)

Discussion

Several quantities are needed for the implementation of the proposed EKF. Apart from the
estimated state ŝ[k], one needs knowledge of:

1 the constant IMU/camera rotation matrix IRC and displacement vector IpIC ;

2 the IMU angular velocity Iωm;

3 the scaled camera linear velocity Cṽm = ( Cv/d)m;

4 the IMU linear acceleration Ia = Ifm + Ig;

5 the plane normal Cn.

The quantities in item 1 are assumed to be known from a preliminary IMU/camera calibration
phase, see, e.g., [Lobo and Dias, 2007], while vector Iω in item 2 is available directly from the
IMU gyroscope readings. Similarly, vector Cṽm in item 3 is retrieved from the optical flow
decomposition described in Sec. 2.2.

Measurement of the linear acceleration Ia in item 3 requires the specific acceleration Ifm
(directly available through the IMU accelerometer readings) and knowledge of the gravity vector
Ig in IMU frame. An estimation of this latter quantity is also provided by standard IMUs
in near-hovering conditions, a fact largely exploited when recovering the UAV attitude from
onboard sensing, see, e.g., [Mahony et al., 2008]. In our case, we found the employed IMU able
to provide a reliable estimation of Ig even when undergoing non-negligible accelerations thanks
to an internal filtering scheme. A further discussion including an experimental validation of
these observations is provided in Sec. 2.5.6.

Finally, the normal of the planar scene Cn can be directly recovered from the optical flow
decomposition as discussed in Sects. 2.2.2–2.2.3 (this step can also be complemented by the use of
filtering techniques such as those discussed in [Eudes et al., 2013]). In case of a horizontal planar
scene often found in indoor environments, the direction of Cn can be additionally identified as
the direction of Ig. This latter possibility was exploited in all the experiments reported in
Sec. 2.5 that indeed involved a horizontal ground plane and thus a plane normal Cn parallel
to g.
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2.4. Online Scale Estimation

2.4.3. Scale Estimation based on a Nonlinear Estimation Scheme

In this Section, we summarize the derivations of an alternative nonlinear observer for retrieving
the plane distance d based on a framework originally proposed in [De Luca et al., 2008; Robuffo
Giordano et al., 2008] for dealing with structure from motion problems, and recently revisited
in [Spica and Robuffo Giordano, 2013] in the context of nonlinear active estimation.

Compared to the previously discussed EKF, this estimation scheme does not require any
linearization/approximation step of the system dynamics. This results in an overall cleaner
design which, following the analysis reported in [Spica and Robuffo Giordano, 2013], also allows
to fully characterize the estimation error transient response. In particular, we discuss how one
can impose to the estimation error a transient response equivalent to that of a reference linear
second-order system with desired poles by suitably acting on the estimation gains and on the UAV
motion. This possibility enables the designer, for instance, to choose the needed combination of
estimation gains/UAV motion yielding a desired estimation performance. Furthermore, it allows
to predict the convergence time of the filter in terms of percentages of the initial error1 in advance.
However, we also note that, as opposed to the EKF, the filter design assumes deterministic
dynamics. Therefore, it does not explicitly account for the noise present in the system concerning
state transitions and sensor measurements. This point is thoroughly addressed in Sec. 2.5.

For the sake of exposition, the following developments are here formulated in continuous time.
We first recall a classical result of the adaptive control literature, also known as the Persistency
of Excitation Lemma [Marino and Tomei, 1995], upon which the next developments are based.

Lemma 1 (Persistency of Excitation). Consider the system{
ξ̇ = −Dξ + ΩT (t)z,

ζ̇ = −ΛΩ(t)Pξ,
(2.32)

where ξ ∈ Rm, ζ ∈ Rp, D > 0, P = P T > 0 such that

DTP + PD = Q, with Q > 0,

and Λ = ΛT > 0. If ‖Ω(t)‖, ‖Ω̇(t)‖ are uniformly bounded and the persistency of excitation
(PE) condition is satisfied, i.e., there exist a ∆t > 0 and γ > 0 such that∫ t+∆t

t
Ω(τ)ΩT (τ)dτ ≥ γI > 0, ∀t ≥ t0, (2.33)

then (ξ, ζ) = (0, 0) is a globally exponentially stable equilibrium point.

This result can be exploited as follows: assume a vector s = [sT1 s
T
2 ]T ∈ Rm+p can be split

into a measurable component s1 and an unmeasurable component s2. Defining an estimation
vector ŝ = [ŝT1 ŝ

T
2 ]T ∈ Rm+p, and the corresponding estimation error

e =

[
ξ

ζ

]
=

[
s1 − ŝ1

s2 − ŝ2

]
,

1Therefore, given an upper bounded initial error d(t0)− d̂(t0), one can, for instance, plan in advance the duration
of the UAV motion so as to yield a guaranteed accuracy in the estimated plane distance.
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2. Ego-Motion Estimation from Optical Flow for Online Control of a Quadrotor UAV

the goal is to design an update rule for ŝ such that the closed-loop error dynamics matches
formulation (2.32). When this manipulation is possible, Lemma 1 ensures global exponential
convergence of the estimation error e = [ξT ζT ]T to 0, thus allowing to infer the unmeasurable
value of s2 from knowledge of s1. The PE condition (2.33) plays the role of an observability
constraint: estimation of s2 is possible iff matrix Ω(t) ∈ Rp×m is sufficiently exciting over time
in the sense of (2.33). We finally note that, being Ω(t) a generic (but known) time-varying
quantity, formulation (2.32) is not restricted to only span the class of linear systems, but it can
easily accommodate nonlinear terms as long as they are embedded in matrix Ω(t).

We now detail how to tailor (2.32) to the case under consideration. We start by defining

s2 =
1

d

and

s1 = Cṽ =
Cv

d
= Cvs2

with, therefore, m = 3 and p = 1. Exploiting (2.17), the dynamics of s2 is given by

ṡ2 = − ḋ

d2
= −

Cv
T Cn

d2
= −

Cṽ
T Cn

d
= −s2s

T
1
Cn. (2.34)

As for the dynamics of s1, using (2.13) we have

ṡ1 = Cv̇s2 + Cvṡ2 = Cv̇s2 − Cvs2s
T
1
Cn

= Cv̇s2 − s1s
T
1
Cn

= ( CRI
Ia+ [ Cω]2×

CpIC + [ Cω̇]×
CpIC)s2

− [ Cω]×s1 − s1s
T
1
Cn

= ΩT (t)s2 − [ Cω]×s1 − s1s
T
1
Cn (2.35)

with

ΩT (t) = CRI
Ia+ [ Cω]2×

CpIC + [ Cω̇]×
CpIC

≈ CRI Ia+ [ Cω]2×
CpIC ∈ R3. (2.36)

As with the EKF, we approximate Iω̇ ≈ 0 since no direct measurement of the UAV angular
acceleration is available on board.

We can then design the update rule for the estimated state ŝ as{
˙̂s1 = ΩT (t)ŝ2 − [ Cω]×s1 − s1s

T
1
Cn+Dξ

˙̂s2 = −ŝ2s
T
1
Cn+ ΛΩ(t)ξ

(2.37)

with D > 0 and Λ > 0 being symmetric and positive definite gain matrixes. Note that (2.37)
involves only measured quantities, including a feedback action on ξ = s1−ŝ1, i.e., the measurable
component of the error vector. With this choice, the dynamics of the estimation error e =
[ξT ζT ]T then becomes {

ξ̇ = −Dξ + ΩT (t)ζ

ζ̇ = −ΛΩ(t)ξ − ζsT1 Cn.
(2.38)
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It is easy to verify that, by letting P = I3, the formulation (2.32) is almost fully recovered apart
from the spurious scalar term

g(e, t) = −ζsT1 Cn (2.39)

in (2.38). Nevertheless, exponential convergence of the estimation error e(t) to 0 can still
be proven by resorting to Lyapunov theory and by noting that the spurious term g(e, t) is
a vanishing perturbation of an otherwise globally exponentially stable nominal system, i.e.,
g(0, t) = 0, ∀t. The reader is referred to [De Luca et al., 2008; Robuffo Giordano et al., 2008;
Spica and Robuffo Giordano, 2013] for additional discussions and proofs of these facts.

We note that the design of observer (2.37) did not require any linearization step as opposed to
the previously presented EKF thanks to the more general class of (nonlinear) systems spanned
by formulation (2.32). Instrumental, in this sense, is the choice of considering, as state variable
s2, the inverse of the plane distance d: this manipulation allows us to obtain linearity of the
state equations in s2, thus ultimately making it possible to apply the PE Lemma to the case
under consideration. Similar inverse parameterizations for the scene scale can also be found in
other works dealing with the issue of range estimation from moving cameras, see, e.g., [De Luca
et al., 2008; Civera et al., 2008].

It is also worth to analyze, in our specific case, the implication of the PE condition (2.33) for
obtaining a converging estimation. With ΩT (t) ∈ R3 being a vector, condition (2.33) requires
that ‖Ω(t)‖ (i.e., at least one component) does not ultimately vanish over time. Since vector
ΩT (t) represents the camera linear acceleration through space with respect to the inertial world
frame W, we recover the well-known condition that the estimation of d is possible if and only if
the camera undergoes a physical acceleration. Consequently, moving at constant velocity with
respect to W does not allow the estimation to converge. Note, however, that the estimation of
the up-to-scale velocity remains still possible.

Finally, as done in the previous Sec. 2.4.2, we list the quantities that are necessary for the
implementation of the proposed observer (2.37). In addition to the estimated state ŝ, these are:

1 the constant IMU/camera rotation matrix IRC and displacement vector IpIC ;

2 the IMU angular velocity Iωm;

3 the scaled camera linear velocity s1 = Cṽm;

4 the IMU linear acceleration Ia = Ifm + Ig;

5 the plane normal Cn.

Thus, apart from the same quantities as discussed in Sec. 2.4.2 for the EKF, no additional
measurements are required for the nonlinear estimation scheme (2.37).

Shaping the Estimation Transient Response

We now apply the theoretical analysis developed in Sec. 2.4.3 to the case at hand. Thereby,
we aimed at characterizing the transient response of the error system (2.38) in the unperturbed
case, i.e., with g(e, t) = 0.

Let UΣV T = Ω be the singular value decomposition of matrix Ω where Σ = [S 0] ∈ Rp×m,
S = diag(σi) ∈ Rp×p, and 0 ≤ σ1 ≤ . . . ≤ σp are the singular values of Ω. In the case under
consideration (p = 1, m = 3), it is U = 1 and σ1 = ‖Ω‖. Let also Λ = KαI, Kα > 0 (scalar
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gain Λ). By then designing the gain D ∈ R3×3 as

D = V

[
D1 01×2

02×1 D2

]
V T (2.40)

with D1 ∈ R > 0 andD2 ∈ R2×2 > 0, it is possible to show that, under the change of coordinates

η =
1√
Kασ1

ζ (2.41)

and in the approximation σ1(t) = ‖Ω(t)‖ ≈ const, the estimation error ζ(t) (when expressed in
the coordinates η(t)) obeys the following second-order linear dynamics

η̈ = −D1η̇ −Kασ
2
1η, (2.42)

that is, a (unit-)mass-spring-damper system with stiffness Kασ
2
1 and damping D1.

The transient response of the estimation error ζ(t) = s2(t)− ŝ2(t) = 1/d(t)− 1/d̂(t) can then
be imposed by properly ‘placing the poles’ of system (2.42). This can be achieved by:

1. taking D1 = 2
√
Kασ1 so as to obtain a critically-damped state evolution for (2.42) (real

and coincident poles). Note that this choice univocally determines D1 as a function of the
system state (the current value of σ1 = ‖Ω‖);

2. actively enforcing Kασ
2
1(t) = Kα‖Ω(t)‖2 = σ2

d = const over time for some desired σ2
d 6= 0,

that is, by flying with a given non-zero and constant norm of the camera linear acceleration
Ω scaled by gain Kα (a free parameter whose role is detailed in the following).

From standard linear system theory, these choices then result in the following behavior for the
estimation error ζ(t) = 1/d(t)− 1/d̂(t)

ζ(t) = (1 + σdt)e
−σdtζ(t0). (2.43)

We conclude noting that, in general, equation (2.43) represents a reference evolution for ζ(t)
since (i) in real-word conditions it may be hard to maintain exactly a ‖Ω(t)‖ = const over time
(condition also needed to render exactly valid the change of coordinates (2.41)), and (ii) this
analysis omits the effect of the (vanishing) disturbance g(e, t) in (2.39). Nevertheless, Sec. 2.5
shows a good match between the reported results and the reference behavior (2.43).

Finally, we comment on the role of gain Kα (the only free parameter of the nonlinear observer):
being σd =

√
Kα‖Ω‖, the same convergence rate for ζ(t) (dictated by the value of σd, see (2.43))

can be equivalently obtained by either accelerating faster or by increasing gain Kα. While
increasing gain Kα may always appear more convenient in terms of reduced control effort,
practical issues such as noise, discretization or quantization errors, may impose an upper limit
on the possible value of Kα, thus necessarily requiring a larger ‖Ω‖ (larger acceleration norm)
for obtaining the desired convergence speed. More details on this aspect are presented in the
following Sec. 2.5.

2.5. Experimental Evaluation

This section reports the results of several experiments meant to illustrate and validate the
proposed framework for ego-motion estimation on simulated and real scenarios. After a brief
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Figure 2.2.: The influence of high frame rates on the quality of the computed optical flow. An
observation made in a short time frame is subject to more noise than an observation
which was made over an extended period of time. The center of a feature might be
located on the edge of a pixel and is thus assigned to one of the adjacent pixels. The
influence of this discretization artifact increases as the vector shortens due to higher
sampling rates.

discussions of some considerations when implementing the optical flow extraction in Sec. 2.5.1
and the description of the experimental setup in Sec. 2.5.2, we replicate the structure of the pre-
vious sections by first comparing in Sec. 2.5.3 the three different variants discussed in Sec. 2.2
for retrieving the scaled linear and angular velocity from optical flow decomposition. Then, we
proceed to present two experiments in Sec. 2.5.4 on the outlier rejection techniques demonstrated
in Sec. 2.3. Afterwards, in Sec. 2.5.5, we analyze a series of experiments involving the two scale
estimation techniques illustrated in Sec. 2.4. An assessment of the ability of the employed IMU
in estimating the gravity direction while the quadrotor undergoes the accelerations needed to
recover the unknown scale is also presented in Sec. 2.5.6. Further considerations about the pos-
sibility of predicting (and imposing) an estimation transient behavior on the nonlinear observer
of Sec. 2.4.3, and about its robustness against noise, are then discussed in Sects. 2.5.7 and 2.5.8,
respectively. The experimental evaluation is finally concluded in Sec. 2.5.9 by reporting the
results of a closed-loop velocity control on a real quadrotor UAV with all the computations
performed on board.

2.5.1. Considerations on the Extraction of Optical Flow

We mostly made use of the established implementations provided with OpenCV2 to process the
incoming frames. In particular, we extracted an initial set of FAST (Features from Accelerated
Segment Test) features [Rosten and Drummond, 2005] from the first image and tracked the
features on consecutive images using the pyramidal version [Bouguet, 1999] of the Lukas-Kanade
tracker [Lucas and Kanade, 1981]. We limited the number of maintained features to reduce the
computational load caused by the tracking process. Whenever the size of the feature set dropped
below a threshold, new FAST features were sampled and added to the set. Since both the floor
and the walls of our flight arena are uniformly white, for most experiments, we placed structured
carpets on the ground and posters on the walls to provide a sufficient amount of texture. No
special lighting conditions were used apart from the default ceiling lights.
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Interleaved Optical Flow Extraction

The comparison of velocity estimation techniques described in Sec. 2.5.3 was carried out on less
powerful hardware that reached a frame rate of only 17 Hz for image acquisition and processing.
In that work, we were computing the optical flow by means of subtraction of feature locations on
any two consecutive frames scaled by the elapsed time. However, more powerful hardware, such
as the more recent onboard computer described in Sec. 2.5 and App. A.5, supports considerably
higher frame rates. Since efficient feature tracking is always carried out in the discrete pixel
space, a certain rounding error to the next pixel coordinate cannot be avoided. An increased
frame rate, however, results in the observation of even shorter optical flow vectors prone to an
highly increased rounding error as explained in Fig. 2.2.

Software solutions or hardware improvements, such as sub-pixel refinement or an increased
resolution of the sensor, can help to reduce the effect this problem. However, both solutions
increase the computational load. While we do use sub-pixel refinement, we also extended the
temporal baseline between the compared feature sets to allow for the observation of longer
optical flow vectors. Implemented in an interleaved manner, the system can still make use of
the benefits of an increased frame rate. Thus, we developed a method to extract the optical
flow over a predefined baseline of length δt while the best possible frame rate is still maintained.
Therefore, features are tracked from one frame to the next as they are acquired, but the resulting
feature locations for each frame are stored together with a time stamp. Afterwards, the frame
with the time stamp closest to tnow − δt is used for the computation of the optical flow relative
to the most recent image.

Equally Distributed Feature Tracking over the Entire Image

In order to provide reliable state estimates, the tracked optical features should be equally dis-
tributed over the entire image independent of the camera motion. This requirement imposed
the ability of the system to both actively sample features in sparse parts of the image as well as
to drop features from the set of tracked points in over-represented areas. At the same time, the
maximum number of all features should always be limited by a configurable bound to limit the
computation time of the feature tracking algorithm.

To this end, we propose a segmentation of the image into a configurable amount of tiles.
For each tile, a desired lower and upper bound on the number of features is specified. While
the upper bound is implicitly defined as the maximum number of features for the entire image
divided by the number of tiles, the lower bound is a free parameter. After each feature tracking
step, the number of features is counted for each tile. If more features than allowed are found for
one tile, the feature with the lowest Shi-Tomasi score [Shi and Tomasi, 1994] is removed until
the number of features is again within the allowed range. Similarly, when the number of features
on one tile drops below the chosen minimum, new FAST features [Rosten and Drummond, 2005]
are sampled on that tile. However, regardless of the number of detected features, a threshold on
the Shi-Tomasi score is applied to exclude features of low quality in, e.g., texture-free regions of
the image. Therefore, the desired minimal amount of features is intendedly not guaranteed.
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Figure 2.3.: Quadrotor UAV used for the experiments with highlighted locations of IMU and cam-
era. The x-axis of the body frame is oriented along the red metal beam of the frame.
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Figure 2.4.: Circular trajectory used for the experiments to compare the three velocity estimation
algorithms V1–V3. The trajectory has a diameter of 2 m and lies on a plane tilted by
26.5◦ with respect to the ground. The UAV completes one revolution every 10 s. The
height varies between 0.5 m and 1.5 m. A similar trajectory, but lying on a horizontal
plane, has also been used for the experiments of Sec. 2.5.5
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2.5.2. Experimental Setup

For our experiments, we made use of a quadrotor UAV that is described in App. A.1. The free
TeleKyb software framework [Grabe et al., 2013b] was used as middleware and control software.
The location of all relevant sensors and frames can be found in Figs. 2.1 and 2.3. The quadrotor
was equipped with an additional IMU (frame I, see App. A.3) to provide the measurements of
the specific acceleration Ifm, the angular velocity Iωm, and the gravity vector Igm at 200 Hz.
The gravitational vector was estimated internally by the IMU via fusion of the measurements
from the accelerometers, rate gyroscopes, temperature sensor, and a 3D magnetometer (see
Sec. 2.5.6 for an analysis of this orientation estimate). The visual input was provided by a
pre-calibrated MatrixVision mvBlueFox camera (frame C, see App. A.2) mounted down-facing
on the UAV. The onboard processing was carried out on a small PC with an Intel Atom 1.8 GHz
dual core processing unit (see App. A.5), while velocity command inputs were transmitted to
the vehicle using a wireless serial interface. Note that for the following experiments on the
comparison of velocity estimation techniques, older hardware with just a single 1.66 GHz CPU
core was used (see App. A.4).

2.5.3. Comparison of Algorithms V1–V3 for Ego-Motion Estimation from Optical
Flow

We start by presenting a comparison of the three modalities of IMU integration into the velocity
estimation process as discussed in Sects. 2.2.2–2.2.4 for recovering v/d and ω during flight. For
the reader’s convenience, we recall that algorithm V1 (Sec. 2.2.2) is only based on the perceived
optical flow for obtaining (v/d, ω), algorithm V2 (Sec. 2.2.3) exploits the additional (indepen-
dent) measurement of ω from the onboard rate gyroscopes, and algorithm V3 (Sec. 2.2.4) further
exploits the independent knowledge of the scene normal n that is approximated to coincide with
the gravity vector.

To allow for a controlled and direct comparison of the three algorithms V1 –V3, we recorded
a dataset while flying along a circular trajectory of 2 m in diameter that is shown in Fig. 2.4.
The trajectory was chosen to have the UAV accelerating sinusoidally along the three Carte-
sian directions with a period of 10 s, and a maximum speed and acceleration of 0.6 m/s and
0.296 m/s2, respectively. The height varied from 0.5 m to 1.5 m along the trajectory. Addition-
ally, the vehicle was periodically rotated around its body z-axis in the range of [−70◦ . . . 70◦].
The quadrotor relied on an external optical motion tracking system that also provided a ground
truth regarding the position of the UAV. A ground truth velocity has then been derived from
this ground truth position reading. Onboard hardware was used to record vision and IMU data
during flight. Afterwards, all three algorithms of Sects. 2.2.2–2.2.4 were tested offline on this
common dataset to allow for a direct comparison.

Figure 2.5 summarizes the results of this first experiment. The plots in Figs. 2.5a, 2.5c,
and 2.5e show a superimposition of the three methods to estimate the linear velocity v against
the ground truth provided by the derived position measurements of the external tracking system.
In all three cases, for the purpose of presentation only, the plotted metric linear velocity v was
recovered from the measured (v/d)m using the ground truth measurement of d. Figure 2.5g
then reports the corresponding error norms.

2opencv.willowgarage.com
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Figure 2.5.: Comparison of the three grades of IMU integration V1 (’pure vision’), V2 (’known
ang. vel’), and V3 (’known normal’) against a ground truth for the estimation of
the scaled linear and angular velocity. For the purpose of visualization only, the non-
metric linear velocity estimates have been scaled using the scene depth d as obtained
from the optical tracking system. (a) Linear velocity along the x, (c) y, and (e) z
axis. (b) Angular velocity for the rotation around the x and (d) z axis. Results similar
to the ones presented for the x axis were found for rotations around the y axis. (g)
Norm of the error between ground truth and both the estimated linear and (f) angular
velocities. (h) Altitude d of the vehicle above the scene and the number of tracked
features: this latter quantity influences the quality of the tracking system.
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Employed algorithm: V1 ( 2.2.2) V2 (2.2.3) V3 (2.2.4)

Linear velocity

Mean error 0.134 m/s 0.117 m/s 0.113 m/s

Standard deviation 0.094 m/s 0.093 m/s 0.088 m/s

Angular veclocity

Mean error 0.151 rad/s IMU IMU

Standard deviation 0.110 rad/s IMU IMU

Table 2.1.: Comparison of the errors in retrieving the scaled linear and angular velocity for the three
levels of IMU integration as described in Sects. 2.2.2–2.2.4: the pure visual estimate
(V1 ), the inclusion of angular velocity readings from the rate gyroscopes (V2 ), and the
additional integration of the estimated plane normal vector (V3 ).

From these results, we can conclude that all three algorithms V1 –V3 yield a satisfactory
performance. However, one can also note that the increasing integration of IMU measurements
for algorithms V2 –V3 reduces the mean error of the linear velocity estimation compared to
algorithm V1, see Table 2.1. In particular, failures of the feature detection system, e.g., at
second 55.5 in the presented data, can be partly compensated using the IMU measurements.

A comparison of the angular velocity retrieved from the visual system (algorithm V1 ) against
the gyroscope readings and the ground truth of the external tracking system is given in Figs. 2.5b
and 2.5d while the error compared to the ground truth is plotted in Fig. 2.5f. We can note that
the IMU provides a less noisy estimate almost free of spikes, while the camera-based estimation
is prone to outliers in the case of high eminent optical flow during low altitude flights.

Figure 2.5h indicates the origin of the irregularities found in the error plots. Since the vehicle
is moving with a constant speed in world frame, v/d increases with lower altitudes d. Thus,
the feature detector is forced to sample new features more often since they vanish from the field
of view faster. This both slows down the algorithm due to the frequent feature re-sampling
processes and does only allow for the maintenance of a sets of 30 to 65 feature pairs instead of
the, in this case, intended 50 to 100 pairs.

Table 2.1 provides a quantitative summary of all reported results. One can again notice the
improvements obtained when fusing the decomposition of the perceived optical flow with mea-
surements from the IMU with, in particular, algorithm V3 performing slightly better than V2.

2.5.4. Experimental Evaluation of the Outlier Rejection Approach

To investigate the robustness of the outlier rejection algorithm proposed in Sec. 2.3, we conducted
two experiments. The aim of these experiments was the evaluation of our feature filtering ap-
proach in the presence of clutter and the therefore violated assumption of a planar environment.
To allow for a comparison of both the proposed outlier rejection system and the unmodified
algorithm on the same sensory input, we recorded the video stream together with the IMU mea-
surements. For this dataset, we commanded the UAV using feedback from an external optical
motion tracking system along an arbitrary trajectory commanded by a human operator. The
motion tracking system was additionally used to provide a reliable ground truth. The quadrotor
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Figure 2.6.: A section of the trajectory that was used for the outlier filtering experiments. The
section shown here was recorded during the 30 s period of the evaluation that corre-
sponds to the plots presented in Fig. 2.7. The trajectory extends 2.2 m in x, 2.1 m in
y, and 1.2 m in the z direction.

took off from a flat horizontal floor and moved towards a table placed on the right side of the
room. The UAV was then commanded to explore the room in which two more objects were
placed: a small ladder and a stool with an object on it. The resulting trajectory is partly shown
in Fig. 2.6. The objects and the walls of the room were textured using the same pattern to
equalize the initial feature density on the objects and the planar walls.

For the evaluation of the experiment, we consider a total flight time of 120 s. Figs. 2.7a–2.7c
report the recovered scaled linear velocity for a 30 s period of this experiment. Each of the three
plots shows a comparison between: (i) the unmodified algorithm which, for each image frame,
considers all observed flow vectors for the estimation of the linear velocities, (ii) the suggested
clustering approach of planar features, and (iii) the ground truth obtained from the optical
motion tracking system. To allow for a comparison of the non-metric velocity estimates with
the ground truth, during the generation of the plots, the obtained estimates were scaled by the
distance d to the dominant plane as obtained from the motion tracking system.

The error relative to the ground truth for both system during the presented 30 s section of the
dataset is shown in Fig. 2.7d. Computing the mean error over the entire 120 s of the experiment,
we find that the original approach reaches an accuracy of 0.111 m/s, while the proposed improved
solution yields an error of 0.089 m/s Thus, the proposed outlier rejection approach was able to
improve the ego-motion estimation by 25% compared to the unfiltered system. The standard
deviation improved slightly from an initial 0.087 m/s to 0.081 m/s when using the modified
algorithm. Figs. 2.7a–2.7d indicate that the overall estimation error when using the suggested
outlier rejection step is mostly reduced by enhanced velocity estimates in the horizontal plane.
However, the vertical velocity estimate is only improved to a small extend.

Figure 2.8 demonstrates the accuracy of the proposed feature rejection process for features
on non-planar regions of two different environments. In the case of Fig. 2.8c, our algorithm is
able to reject the features located on a table of 0.75 m height and a board close by. Similarly,
in the scene of Fig. 2.8d, the system excludes features on the back wall and two irregularly
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Figure 2.7.: Estimated linear velocities in camera frame along the (a) x, (b) y, and (c) z axis for
both the unmodified and the improved algorithm together with the ground truth. (d)
Error of the original and improved approach compared to the ground truth.

shaped objects. To quantitatively verify the ability of our system to reject outliers, we counted
the number of features on 5 randomly selected images. In average, 20% of all initially detected
features were actually outliers. Out of these, our system rejected 94% successfully.

The algorithm was mainly designed to avoid a false-positive classification of outliers and
therefore the addition of unsuitable features to the observed dominant plane. Consequently, a
relatively high false-negative classification rate was accepted.

2.5.5. Comparison of the two Scale Estimation Schemes

In the following, the two scale estimation schemes of Sects. 2.4.2 and 2.4.3 are first evaluated
in simulation to compare their performance in ideal conditions. Subsequently, results obtained
on recoded sensor data from real flights are presented. We also compare our solution against
a recent related work by qualitatively reproducing the experiments presented in [Weiss et al.,
2012b].

Before starting the discussion, we note that both filters allow for two distinct possibilities to
retrieve the metric linear velocity v. Indeed, a first possibility is to just set v̂ = (v/d)md̂ exploit-
ing the estimated d̂ and the measured (v/d)m from the optical flow decomposition. However,
a second possibility is to exploit the internal estimation of v maintained by both filters, that
is v̂ from (2.30) in the EKF case, and v̂ = ŝ1/ŝ2 for the nonlinear observer (see Sect. 2.4.3).
Both possibilities have their advantages and disadvantages: in general, the second possibility
may result in a less noisy but potentially more delayed estimation of v (caused by the ‘filtering’
action of both estimation schemes). Nevertheless, for the sake of obtaining a less noisy estimate,
all the following simulation and experiment results rely on this second possibility.
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2. Ego-Motion Estimation from Optical Flow for Online Control of a Quadrotor UAV

Simulated Data

To illustrate the convergence of the proposed estimation schemes, we generated a synthetic
acceleration profile together with the corresponding (simulated) sensor readings. This resulted in
a camera motion similar to the horizontal circular trajectory used for the evaluation on recorded
datasets in following section with an associated constant acceleration norm ‖Ω‖ ≈ 0.296 m/s2.
All generated sensor readings were perturbed with an additive zero-mean Gaussian noise with
covariance matrices taken from the real sensor characteristics: 0.00004 I3 m/s2, 0.00002 I3 rad/s
and 0.00001 I3 1/s for Ifm, Iωm, and for the unscaled linear velocity estimate from optical flow
( Cv/d)m, respectively. The same covariance matrices were employed in the steps (2.24)–(2.28)
of the EKF (thus fixing all the free parameters of the filter). As for the nonlinear observer, its
only free parameter (gain Kα) was taken as Kα = 6: this value was chosen so as to obtain, for
both filters, the same noise level in the estimated d̂(t) after convergence. This ensured a ‘fair’
comparison among the EKF and the nonilnear observer in terms of overall performance. The
choice of Kα = 6 resulted in a value of σd =

√
Kα‖Ω‖ ≈ 0.725 m/s2 for the ideal estimation

error convergence in (2.43).

To demonstrate the robustness of both filters to unknown initial scene depth estimates d̂, the
initial conditions were chosen as d̂(t0) = 5 m and Cv̂(t0) = [0 0 0]T m/s. At the beginning of
the experiment, the actual distance from the scene was d(t0) = 1 m while the velocity along the
trajectory had a norm of ‖ Cv(t0)‖ ≈ 0.6 m/s. To indicate the uncertainty of the initial state, we
chose Σ(t0) = 14×4.

Figure 2.9a reports a comparison of the estimation performance of the scene depth d by both
the EKF and the nonlinear observer on the same UAV trajectory and sensor readings, together
with the ground truth. One can then appreciate the faster convergence of the estimation error
for the nonlinear observer with respect to the ‘fully-informed’ EKF (in the sense of being aware
of the system noise characteristics). This better performance can be ascribed to the lack of
linearization of the system dynamics in the nonlinear observer case.

Furthermore, Fig. 2.9b shows the behavior of the estimation error ζ(t) = 1/d(t) − 1/d̂(t)
for both filters, with the superimposed ‘ideal’ transient response (2.43). We can then note the
very good match of this latter ideal response with the behavior of the estimation error ζ(t) for
the nonlinear observer base algorithm, thus confirming the theoretical analysis of Sec. 2.4.3.
In this figure, a horizontal band at 10 % of the initial error is also shown: according to the
ideal response (2.43), the estimation error of the nonlinear observer should have dropped below
10 % of the initial error ζ(t0) after 5.36 s. The real observer is slightly delayed compared to
this prediction because of the presence of the perturbation term g(e, t) in (2.39) (also shown
in the plot). Indeed, presence of this term (neglected in the analysis) initially slows down the
convergence rate of d̂(t) with respect to its predicted behavior. Note that, ideally, one should
have found g(e, t) = 0 in this case, since v has always been perpendicular to the plane normal n
(see again (2.39)). However, the simulated noise in the measurements resulted in the presence of
a small vz which gave rise to the initial value of g(e, t) > 0. Additional details on the possibility
to predict the convergence time of the nonlinear observer are also given in Sec. 2.5.7.

The linear velocities estimated by both observers are shown in comparison in Fig. 2.10. Similar
to the estimation of the scale factor d, the estimate for the metric velocity v converges faster
in the case of the nonlinear observer. However, both scale estimation schemes provide very
reliable velocity measurements after 30 s as shown in Fig. 2.11 in which the norm of the velocity
estimation errors are reported.
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Figure 2.9.: Estimated plane distance d̂ using a simulated dataset. (a) Estimated distance d̂ and (b)

the estimation error |1/d−1/d̂| for the nonlinear observer and the EKF based approach.
Additionally, the ideal convergence of the nonlinear observer as per (2.43) is plotted
together with the influence of the neglected disturbance g(e, t) given in (2.39). The
vertical dashed line denotes the predicted time at which the estimation error of the
nonlinear observer should have dropped below the threshold of 10% of the initial error
(highlighted with a horizontal dashed line).
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Figure 2.10.: Estimated linear velocity from simulated noisy measurements compared to the ground
truth in the (a) x, (b) y, and (c) z direction.
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Figure 2.11.: Norm of the error for the linear velocity estimates on simulated data for the two
filtering approaches with respect to the ground truth.

EKF nonlin. obs.

Experiments in simulation

RMS error after convergence (scale) 0.0075 m 0.0078 m

RMS error after convergence (velocity) 0.0071 m/s 0.0111 m/s

Experiments on recorded data

RMS error after convergence (scale) 0.0525 m 0.0357 m

RMS error after convergence (velocity) 0.0954 m/s 0.0833 m/s

Comparison with [Weiss et al., 2012b]

RMS error x-axis (velocity) 0.0101 m/s 0.0074 m/s

RMS error y-axis (velocity) 0.0141 m/s 0.0095 m/s

RMS error z-axis (velocity) 0.0107 m/s 0.0114 m/s

Improvement over [Weiss et al., 2012b] (avg) 250 % 323 %

Table 2.2.: Quantitative comparison of the two scale estimation approaches as presented in Sec. 2.4.
These results are discussed in Sec. 2.5.5.
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In Tab. 2.2, the quantitative results for the comparison of both scale estimation approaches
are summarized. The listed Root Mean Square (RMS) error for both systems was computed
after 30 s had passed and both estimates had converged.

Recorded Data

After the tests in simulation, we compared both scale estimation approaches on a recorded
dataset that was collected during a flight of a real quadrotor UAV. The chosen circular trajectory
was similar to the one used in Sec. 2.5.3 and shown in Fig. 2.4. However, to yield a horizontal
trajectory at a constant height, the sinusoidal command in the z direction was initially omitted
to allow for a simplified interpretation of the results. The flight was again controlled using an
external motion tracking system that was additionally used to provide ground truth information.
The chosen trajectory was characterized by an acceleration of ‖Ω‖ ≈ 0.296 m/s2, thus resulting
in a σd =

√
Kα‖Ω‖ ≈ 0.725 m/s2 for the ideal system (2.43). However, on the real quadrotor,

the actual accelerations were found to be slightly higher than those expected from the ideal
circular trajectory due to additional constant regulations necessary to overcome small real-
world disturbances. All sensor offsets were calibrated before the recording of the dataset, and
the covariance matrices of Ifm, Iωm and ( Cv/d)m were estimated over a period of 60 s. Again,
both filters were initialized with d̂(t0) = 5 m and Cv̂(t0) = [0 0 0]T m/s while the actual initial
height was d(t0) ≈ 1 m and the initial velocity was ‖ Cv(t0)‖ ≈ 0.6 m/s. The uncertainty of the
initial state was indicated with the same choice of Σ(t0) = 14×4. The gain for the nonlinear
observer Kα was selected as Kα = 6 given the findings in simulation.

Figure 2.12a shows the behavior of the estimated scene distance d̂(t) for both filters with the
superimposed ground truth d(t). The behavior of the estimation error ζ(t) = 1/d(t)− 1/d̂(t) is
shown in Fig. 2.12b, and the behavior of d(t) − d̂(t) is also reported in Fig. 2.12c for a better
appreciation of the convergence behavior. Again, from these plots one can note the good match
among the actual estimation error of the nonlinear observer against the ideal response (2.43).
On this dataset from real sensor measurements, the predicted convergence rate was more accu-
rate than in the case of simulated data. Consequently, convergence is reached faster for both
approaches as well. This can be explained by the fact that the real acceleration of the vehi-
cle was slightly higher than the acceleration expected from the commanded circular trajectory
alone, and this in turn compensated for the initial ‘disturbing’ effects of the perturbation g(e, t)
in (2.39).

Similar to the convergence of d̂, the estimated metric linear velocities are presented in Fig. 2.13.
The error against the ground truth as shown in Fig. 2.14 demonstrates a fast convergence rate
for the nonlinear observer. Nevertheless, the EKF yielded a reliable output after approximately
20 s as well. All quantitative results can be compared in Tab. 2.2.

As an additional validation of our approach, we also tested both sensor fusion algorithms on
an inclined circular trajectory similar to the one depicted in Fig. 2.4 in order to investigate the
case of a time-varying plane distance d(t). The plots shown in Fig. 2.15 again confirm that
both the scene depth and the vertical component of the linear velocity can be reliably estimated
despite the more challenging UAV motion concerning a time-varying d(t). Similarly, an almost
perfect match between the actual and ideal transient response of the estimation error can be
observed.
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Figure 2.12.: (a) Metric scale factor d estimated from a recorded dataset, the corresponding esti-

mation errors 1/d(t)− 1/d̂(t) (b) and ‖d(t)− d̂(t)‖ (c) compared against the ground
truth. Convergence from an initial assumption of a plane distance of 5 m to the real
distance of approximately 1 m is shown, together with the ideal transient response of
the nonlinear observer as per (2.43). Note the good match between the predicted and
actual behavior of the estimation error and the faster overall convergence obtained
with the proposed nonlinear observer compared to the EKF scheme.
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Figure 2.13.: Estimated linear velocities from a recorded dataset with superimposed ground truth
information in the (a) x, (b) y, and (c) z direction.
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Figure 2.14.: Norm of the velocity estimation error on a recorded dataset for the two sensor fusion
approaches with respect to the ground truth.

Motivated by these good results of the nonlinear observer scheme in comparison to the EKF,
all following experiments exploit the nonlinear filtering approach.

Comparison to Previous Work

For a direct comparison with the state-of-the-art velocity scale estimation approach, we repeated
the experiment in [Weiss et al., 2012b] under similar conditions using the nonlinear observation
scheme. Therefore, the camera-IMU system was moved on a trajectory consisting of small
sinusoidal hand-held motions. This resulted in a vehicle trajectory with an amplitude of about
0.1 m/s, a frequency of approximately 1 Hz, and a height of 0.5 m. An optical motion tracking
system was used to obtain a ground truth. All three Cartesian directions were tested individually.

Figure 2.16 shows the metric velocity estimates compared to the ground truth for the nonlinear
observer. On this trajectory, we found an RMS error of [0.0074, 0.0095, 0.0114] m/s for the
three Cartesian directions, respectively. This allows us to compare our results to the error of
[0.028, 0.035, 0.025] m/s reported in [Weiss et al., 2012b]. Therefore, using the nonlinear observer,
we could obtain an average improvement of 320 % compared to the estimation accuracy of the
state-of-the-art velocity estimation system. All results are summarized in Tab. 2.2. Note that
in [Weiss et al., 2012b], the experiments were carried out at a height of d ≈ 1 m as opposed to d ≈
0.45 m in our experiments due to technical simplifications. Since the estimation error is typically
directly proportional to the scene depth d, one can expect an improvement of approximately
700 % over [Weiss et al., 2012b] under normalized conditions when transformed to a height of
d = 1 m. Although the experimental conditions were obviously different since the dataset used
in [Weiss et al., 2012b] has not been made available, we believe our results still indicate the good
potential of the proposed nonlinear observer in dealing with scale estimation from vision.

2.5.6. Estimation of the Gravity Vector

Both scale estimation schemes require the availability of the gravity vector g, which, as explained
in Sec. 2.4.2, we assume to be provided by the IMU itself. In order to verify the precision of this
gravity estimation, we compared the IMU estimate of g against the ground truth obtained from
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Figure 2.15.: Estimation results from experiments on a recorded flight along an inclined circular
trajectory, thus characterized by a time-varying d(t). (a) Estimation of the scene

depth d, (b) Estimation error |d(t) − d̂(t)| compared to the ground truth and the
ideal convergence behavior (2.43), and (c) the estimation of the vertical velocity vz.
The performance of the nonlinear observer in recovering d(t) and vz(t) is not affected
by the more challenging UAV motion.
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Figure 2.16.: Velocity estimates for the nonlinear observer on the experimental conditions used
in [Weiss et al., 2012b]. Results for the (a) x, (b) y, and (c) z direction are plotted
against the ground truth.
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Figure 2.17.: x and y component of the normalized gravity vector estimated through sensor fusion
within the IMU compared to the ground truth obtained from an optical tracking
system. In average, the error between the IMU estimation and the ground truth is
in the range of 1◦.

the motion tracking system during the horizontal circular flights conducted for the experiments
of Sec. 2.5.5.

The comparison of the x and y components of g are shown in Fig. 2.17. In average, the error
of the gravity estimation from the IMU versus the ground truth is smaller than 1◦ despite the
accelerated motion undergone by the UAV. Thus, the error is below the accuracy with which we
were able to define the quadrotor object frame in the ground truth providing motion tracking
system. Therefore, we conclude that the estimated g from the onboard IMU is suitable for our
needs.

2.5.7. Predicting the Error Convergence Time for the Nonlinear Observer

As shown in Figs. 2.9b–2.12c and discussed in Sects. 2.5.3–2.5.5, keeping a constant acceleration
norm ‖Ω(t)‖ allows us to impose a behavior equivalent to the ideal reponse (2.43) on the
estimation error ζ(t) = 1/d(t) − 1/d̂(t) of the nonlinear observer. This possibility admits for
a more general observation. Given a desired time for reaching some percentage of the initial
error ζ(t0), and choosing a gain Kα, one can exploit (2.43) to determine the needed acceleration
norm to achieve this goal. Similarly, for a given trajectory with a known acceleration norm
and a given gain Kα, one can determine the time needed to reach a desired percentage of the
initial estimation error. The relation between acceleration norm and convergence time is plotted
in Fig. 2.18 for the three cases of reaching 10 %, 1 %, and 0.1 % of the initial error under the
(arbitrary) choice of Kα = 6. Thus, for a bounded initial estimation error, i.e., with a maximum
possible distance to the planar scene known before launch, one can uniquely predict how long
the quadrotor has to fly (with constant acceleration norm) for having a guaranteed accuracy
in the estimated distance. We note that this analysis can, of course, be done for any choice of
gain Kα.
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Figure 2.18.: Plot of the relation between the required ’excitement’
√
Kα‖Ω‖ and the convergence

time t needed to reach the same convergence criteria for the inverse scale estimation
error |1/d− 1/d̂|. The plot was generated for the choice of Kα = 6. The three curves
show the relation between the time needed to reach a percentage ε = [10%, 1%, 0.1%]
of the initial error versus

√
Kα‖Ω‖. The plot can be read as follows: on a trajectory

with an acceleration norm of 0.296 m/s2, the error |1/d − 1/d̂| will drop below 10%
of its initial value within 5.36 s and below 1% within 9.15 s.

2.5.8. Noise Robustness of the Nonlinear Observer

As opposed to the fully informed EKF, the nonlinear observer handles the presence of noise in
sensor readings in an indirect way. In particular, the single gain Kα regulates the ‘aggressiveness’
of the filter, influencing both the convergence speed and its sensitivity to noise. Therefore, as
explained, in all the previous experiments we tuned Kα to obtain the same noise level in the
estimated d̂(t) with respect to the results found for the EKF.

To test the robustness of the nonlinear observer to increased sensor noise levels for the same
choice of Kα, we increased the variance of the simulated noise by a factor of 100 for both the
IMU acceleration readings and the scaled velocity v/d from the optical flow decomposition.
Figure 2.19a shows the influence of different sensor noise levels on the estimation error ζ(t) =
1/d(t)− 1/d̂(t). Despite the high noise level, the filter demonstrates a good level of robustness
in generating a consistent state estimation.

Furthermore, from the theoretical analysis of Sec. 2.4.3, the convergence rate of the nonlinear
observer in (2.43) is determined by the quantity σd =

√
Kα‖Ω‖. Thus, one can always trade

smaller accelerations with a higher gain Kα for obtaining the same (ideal) convergence rate. In
this sense, we compared a circular flight with an acceleration norm of ‖Ω‖ ≈ 0.296 m/s2 and
a choice of Kα = 6 to two flights with acceleration norms of 0.148 m/s2 and 0.037 m/s2, and
the gain Kα chosen so as to yield the same σd (i.e., same error convergence). The results are
reported in Fig. 2.19b. As expected, by keeping a constant σd, one obtains the same transient
behavior for the estimation error ζ(t), although a higher noise level is induced by the larger
employed Kα. Therefore, gain Kα can be used to tune the ‘aggressiveness’ of the filter.

2.5.9. Closed-Loop Control of a Real Quadrotor UAV

For a final validation of the overall framework, we made use of the estimated metric velocity to
‘close the loop’ and control the UAV motion in real time. For this experiment, we combined

41



2. Ego-Motion Estimation from Optical Flow for Online Control of a Quadrotor UAV

0 10 20 30 40 50 60
−0.5

0

0.5

1

time [s]

∣ ∣ ∣

1 d
−

1 d̂

∣ ∣ ∣

[

1 m

]

 

 

σ
2
V = 0.07, σ

2
I = 0.04

σ
2
V = 0.07, σ

2
I = 0.0004

σ
2
V = 0.0007, σ2

I = 0.04
σ
2
V = 0.0007, σ2

I = 0.0004

(a)

0 10 20 30 40 50 60
−0.5

0

0.5

1

time [s]

∣ ∣ ∣

1 d
−

1 d̂

∣ ∣ ∣

[

1 m

]

 

 

‖Ω‖ = 0.04, Kα = 384
‖Ω‖ = 0.15, Kα = 24
‖Ω‖ = 0.15, Kα = 6
‖Ω‖ = 0.30, Kα = 6

(b)

Figure 2.19.: Influence of sensor noise on the nonlinear observer scheme. (a) Robustness of the
nonlinear observer to different noise levels. The variance values of σ2

V = 0.0007 m2/s2

and σ2
I = 0.0004 m2/s4 for the visual and inertial sensor data, respectively, correspond

to the actual noise found on the real sensors. The noise was then increased 100 times
to test the robustness. (b) plot showing the trade-off between the ‘control effort’
(norm of the acceleration ‖Ω‖) and the gain Kα. In case of lower accelerations, the
convergence rate can be re-established using a higher gain Kα but at the expense of
an increased noise level.
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algorithm V2 for the optical flow decomposition with the scale estimation obtained from the
nonlinear observer. The quadrotor described in App. A.1 was commanded using a gamepad to
give velocity commands sent via a wireless link while all perception and processing was carried
out on board the UAV. Again, a motion tracking system was employed to record ground truth
velocity estimates.

Figure 2.20 shows a section of a longer flight relying purely on onboard sensors. To test
the robustness of the system, we moved an object through the field of view of the down-facing
camera at time 125, causing some disturbances in the estimated velocity. Starting from time 134,
the vehicle was additionally commanded to move in the vertical direction, causing the height,
and therefore the distance to the plane, to change. The plots show some temporary over- and
under-estimations of the linear velocity due to the abrupt commanded motions, but otherwise
the proposed approach is always able to adapt to the changing height and provides a reliable
ego-motion estimation.

A video from one of these experiments can be found online: http://youtu.be/ohmLr3mCop8
In this video, external views of the vehicle and the image stream from the down-facing camera are
shown while the vehicle navigates purely based on onboard sensors and processing capabilities.
An example of the view from the down-facing camera is provided in Fig. 2.21.

Concluding the experiment, we believe these experiments demonstrate that the presented
velocity-based state estimation pipeline can be effectively used for the closed-loop control of real
quadrotor UAVs using solely onboard hardware.

2.6. Conclusions and Future Work

In this chapter, we addressed the need for a reliable onboard ego-motion estimation for quadrotor
UAVs to overcome the boundaries of controlled lab environments. To this end, we first discussed
three variants of an algorithm based on the continuous homography constraint to obtain an
estimation of the UAV scaled linear velocity and angular velocity from the decomposition of
the perceived optical flow. This step, indeed, allows us to retrieve ego-motion information
independently of map and known landmarks. Furthermore, it eliminates the need for tracking
features over an extended period of time. Subsequently, we extensively discussed the issue
of estimating the (unknown) metric scale factor by fusing the scaled velocity estimates from
the optical flow decomposition with the high frequency accelerometer readings of an onboard
IMU. Scale estimation was achieved by proposing two estimation schemes: a first one based
on a classical EKF and a second one on a novel nonlinear observation framework. Results
from experiments on simulated and recorded sensor measurements were presented to assess and
compare the performance of both filters under ideal and real conditions. When compared to
the EKF, the nonlinear observer demonstrated a consistently better performance in terms of
convergence rate of the scale estimation error. Furthermore, the proposed theoretical analysis
showed the possibility to actively impose (and thus predict) the error transient response of the
nonlinear observer by suitably acting on the estimation gain and the UAV motion (the norm of
its acceleration). This analysis was, again, confirmed by the reported simulative/experimental
results under several conditions, also involving different sensor noise levels to test the robustness
of the approach. With the advantage of a fast and predictable convergence for recovering the
metric UAV linear velocity, the nonlinear observer proved to be a suitable choice for the fully
onboard implementation of a closed-loop velocity control of flying vehicles. In particular, we
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Figure 2.20.: Estimated and ground truth velocity during a closed-loop flight of a quadrotor UAV
for the (a) x, (b) y, and (c) z direction. An object was moved through the field of
view at second 125 disturbing the estimated velocity.
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Figure 2.21.: View from the onboard camera as used for the optical flow extraction. Optical flow
vectors tracked between the last two images are highlighted.

successfully demonstrated the reliability of the proposed framework in closed-loop experiments
on a quadrotor UAV.

2.6.1. Future Work

Despite the convincing results, we are considering to extend our work in several ways. A first
possibility is to further exploit the awareness of the error convergence behavior when using the
nonlinear filter. Inspired by what has been presented in [Achtelik et al., 2013] in the context
of offline path planning, one could devise an online strategy meant to adjust the input UAV
trajectory (e.g., the velocity commands) in order to maintain a desired level of excitement. In
our case, this excitement would be represented by the quantity σd =

√
Kα‖Ω‖. This could result

in, e.g., execution of small circular trajectories when the vehicle is commanded to hover in place
with, instead, a more precise tracking of the desired/commanded velocities when undergoing
more aggressive maneuvers.

On a similar note, we are currently investigating the possibility to dynamically adapt gain Kα

of the nonlinear observer. Indeed, in the presence of noisy sensor readings, it might be desirable
to start with a high value of Kα for imposing a quick initial error convergence, and to then
reduce it once a sufficient convergence level is reached to obtain a smoother state estimation
(see also Fig. 2.19b).

Furthermore, the quality of the initial scaled velocity estimate could be improved by dynam-
ically selecting the temporal baseline for the computation of the optical flow vectors depending
on the eminent velocity of the optical flow on the camera image (compare Sec. 2.5.1). Therefore,
during high velocity motions and flight at low heights above the scene, features would be tracked
over a shorter period of time. On the other hand, during slow motions, the temporal baseline
could be extended to increase the quality of the state estimate.
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3. Towards Visual Perception and Control for
Multi UAV Collaboration

Summary

While we extensively addressed the problem of velocity controlled flight for a single UAV by
means of onboard ego-motion estimation in Chapter 2, in this Chapter, we shift the focus towards
the problem of state estimation for multiple UAVs. Key component to allow a group of robots to
collaboratively achieve a common goal is the awareness of each others location within the shared
environment. This mutual localization problem could be either circumvented by using direct
visual observations of the other robots or actively addressed by exchanging location coordinates
in a common reference frame. Thus, the latter approach requires one robot to localize itself with
respect to the map of another. In this chapter, we present one approach for each of these two
general techniques.

First, we present a decentralized formation control based on velocity estimation and direct
vision-based perception of bearing angles to the other members of the formation. To overcome
the limited field of view (FOV) of real cameras and to detect other agents surrounding the
robot, we suggest to superimpose an artificial yaw-rotation. Therefore, a filter predicts the
bearing angle towards a particular agent and is periodically updated whenever the other robot
is visually detected. Our approach is finally evaluated using closed loop experiments with three
real quadrotor UAVs and a human operator.

Afterwards, we introduce a global dense localization approach of a monocular camera with
respect to a dense 3D map. To this end, we suggest to two stage algorithm, involving a
coarse global localization stage using sparse state-of-the-art feature matching techniques and
a novel iterative analysis-by-synthesis pose-refinement process. The second stage minimizes
the photometric error between the real monocular camera image and a synthesized view of the
dense map from the predicted view-point.

The work described in this chapter has been partly published in:

• Grabe, V., Masone, C., Ryll, M., Franchi, A., Bulthoff, H. H., Rubuffo Giordano, P. (2011).
Implementation of a Decentralized Formation Control based on Visual Bearing Angles for
Multiple UAVs. Technical Report.

• Franchi, A., Masone, C., Grabe, V., Ryll, M., Bulthoff, H. H., Rubuffo Giordano, P. (2012).
Modeling and Control of UAV Bearing Formations with Bilateral High-level Steering. The
International Journal of Robotics Research, 31(12), 1504–1525.

• Grabe, V., Scaramuzza, D. (2014). Global Localization of a Monocular Camera in RGB
3D Maps through Photometric-Error Minimization. Technical Report.
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3.1. Overview

In this section, we introduce two approaches towards the mutual localization problem based on
direct and indirect observations. First, in Sec. 3.2, we present a formation control based en-
tirely on direct visual bearing angle observations between each two robots within the formation.
Afterwards, in Sec. 3.3, for cases without the availability of a direct line of sight between the
robots, we propose an indirect localization approached based on the precise localization of a
camera within a dense 3D map obtained by a second robot.

3.1.1. Bearing Angle Formations based on Direct Visual Detection

In Section 3.2, we present an innovative distributed system for the control of groups of UAVs
using visually established bearing angle measurements from onboard camera, i.e., without relying
on distance measurements or global localization. While [Franchi et al., 2011] presents theoretical
derivations behind bearing based formation control in the general case and suggests a haptic
teleoperation system as external user interface, we focus on the implementation and experimental
evaluation of the complete system using a group of quadrotors. The required bearing angles are
retrieved purely visually by means of onboard cameras and processing. We further extend the
control framework to cope with the limited field of view of real cameras by periodical horizontal
scanning movements and estimations of the bearing angles whenever the other UAVs are out of
sight. We demonstrate the validity of our approach with closed-loop experiments using a set of
three real quadrotor UAVs.

3.1.2. Camera Localization within a Dense 3D Map

In Section 3.3, we tackle the problem of globally localizing a camera-equipped mobile agent in
a dense 3D map created by another agent equipped with, e.g., an RGBD sensor or a monocular
dense reconstruction system. After an initial coarse global pose estimate obtained from putative
point correspondences using state-of-the-art algorithms, the camera location and orientation is
refined using a analysis-by-synthesis approach that minimizes the photometric error between
a synthesized view of the 3D map and the actual monocular camera image. An extensive
experimental verification of the approach run on challenging indoor datasets is used to evaluate
our approach.

The approach of mutual localizations from heterogeneous sensors is later extended with further
ideas and concepts in the future work (see Sec. 4.2).
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3.2. Implementation of a Decentralized Formation Control based on
Visual Bearing Angles for Multiple UAVs

The control of a group of mobile robots became more and more an active focus of research in
the recent years. In fact, swarms are able to react more flexibly to situational changes than one
large robot [Howard et al., 2006]. Furthermore, their versatility accommodates a swarm to a
variety of different missions, e.g., coordinated transport of loads using a formation [Fink et al.,
2010], distributed surveillance tasks [Alexis et al., 2009], joint object throwing and catching [Ritz
et al., 2012], and building of 3D structures [Willmann et al., 2012].

To an even greater extent than most work on individual UAVs, recent literature on the control
of UAV formations relies on external tracking systems to retrieve either the absolute location
of all UAVs or their mutual positions, that is, the formation. This, however, is not suitable for
many usage scenarios where robots enter previously unmapped areas or are out of the range of
GPS signals. Thus, we tried to establish a formation control with the help of cheap and light
weight onboard sensors. Although a camera fits these needs best, bearing-plus-distance based
visual formation control either requires the integration of IMU measurements or known sized
objects to obtain distance perception, e.g. [Das et al., 2002; Olfati-Saber et al., 2007; Moshtagh
et al., 2009]. However, when dealing with large aerial distances, low camera resolutions, or wide
optical field of views, distance estimation based on known object dimensions becomes infeasible.

In [Franchi et al., 2011], an approach which uses only relative bearing angles to stabilize a
formation of multiple UAVs has been derived from a theoretical perspective. In contrast to pre-
vious work, this control system allows a user to actively translate and expand the full formation,
while most cited approaches from the literature focus on basic leader following strategies.

In this section, however, we discuss the challenges arising from the implementation of the
proposed controller on an actual robotic system. To provide true decentralization, we designed
the system to solely rely on onbaord sensors for the perception of the remaining agents within
the formation. To this end, we rely on cameras and the visual detection of individually colored
markers on each robot to obtain the required bearing angle measurements. However, the field
of view of cameras is naturally limited and the fitting of multiple cameras for omni directional
vision is not always suitable. To allow for an nevertheless unconstrained motion, we propose
the robot to periodically scan its environment by means of rotation around its center axis and
predict the angle to those robots which are currently outside of the field of view.

The remainder of this section is structured as follows: the theory behind [Franchi et al.,
2011] is briefly reviewed in Sec. 3.2.1. Afterwards, we address the problem of a limited camera
field of view in Sec. 3.2.2 and extend the proposed controller accordingly. Our experimental
setup is described in Sec. 3.2.3 while the experimental results are presented and discussed in
Sec. 3.2.4. Finally, in Sec. 3.2.5, we conclude our work and present an outlook to future projects
in Sec. 3.2.6.

3.2.1. Vision-Based Bearing-Angle Formations

We recall the most important theoretical derivations presented in [Franchi et al., 2011] here.
The reader is referred to [Franchi et al., 2011] for further information and detailed proofs.

Assuming a common knowledge of the vertical axis z through sensor fusion on the onboard
IMU (see Sec. 2.5.6 for a demonstration of feasibility), we address the control of position and
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rotation (pi, θi) ∈ R3 × S1 by means of velocity and rotation (ui, ωi) in body frame of each
kinematic agent. The unit vector relative bearing iβ̂ij ∈ S2 is defined as iβ̂ij = iR(pj−pi)/‖pj−
pi‖ where iR denotes the inverse rotation matrix of θi around the z axis. Relative bearings are
obtained from the cameras in the form of the two components azimuth iαij ∈ (−π π] and
elevation iηij ∈ [−π/2 π/2] (explained in detail in Sec. 3.2.3). The transformation between the

two representation is given by iβ̂ij =
(
cos iηij cos iαij cos iηij sin iαij sin iηij

)T
.

Let us define the set N = {(i, j) ∈ {1, . . . , N}2|i 6= j}. A bearing-formation is defined through
the desired relative bearings {ib̂ij ≡ (iâij ,

iêij)}(i,j)∈N between all the N agents. In [Franchi
et al., 2011] is was proved that a set of only 3N − 4 bearings is sufficient to specify such a
formation. In addition we showed that these formations can be further translated, dilated and
rotated around an axis parallel to the z axis by a user while the relative bearings are kept
constant (synchronized motions). However, in order to perform any synchronized rotation,
the measurements of the agent inter-distances are necessary. Unfortunately, for typical areal
distances, it is not feasible to accurately estimate the distance to other agents in an unknown
environment by means of a visual system only. Therefore, we do not allow the control of
synchronized rotations through the user.

The control input is split in two components, namely (µi, ωi) = (µfi , ω
f
i ) + (µmi , 0). The

term (µfi , ω
f
i ) denotes the signal for the automatic control of the bearing formation (covered

in Subsection 3.2.2). The term (µmi , 0) allows the user to translate and dilate the formation

by setting µmi = iRνt − rγ12iβ̂i1, with γijk =
‖j β̂ji×j β̂jk‖
‖kβ̂ki×kβ̂kj‖

, where the vector νt ∈ R3 is used to

control the translation and r ∈ R sets the expansion rate of the formation.

For interaction with a human operator, we propose a first force-feedback device with three
degrees of freedom (DoFs) and a second with 1-DoF to control the translational speed νt as
well as the expansion rate r of the formation respectively. In particular, we set νt = λtxt and
r = λrxr with xt ∈ R3 and xr ∈ R being the position of the two control devices and λt > 0,
λr > 0 factors to map the positions to desired velocities.

The actual quadrotor follows the kinematic agent velocity as described by the tracking con-
troller presented in the next Sec. 3.2.2). However, when using real vision based velocity per-
ception system such as the one presented in Chapter 2, some tracking errors inevitably occur.
To improve the controllability of the system by a human operator, in our experimental evalu-
ation, the user receives two haptic force feedbacks which are proportional to this velocity and
expansion rate tracking errors.

In the remainder of this Sec. 3.2, we use Greek letters for measured quantities and the homol-
ogous Latin characters for their desired values since the excessive use of subscripts to indicate
measurements between different agents renders the use of the otherwise preferred subscribed m
impractical.

3.2.2. Bearing Formations with Limited Field of View

Camera hardware suitable for the use on small flying robots usually suffers from a limited
FOV. Furthermore, restricted onboard processing power often does not allow for a parallel use
of multiple cameras. Thus, in contrast to the assumptions made in [Franchi et al., 2011], we
have to deal with a limited FOV for the implementation on real robot. To compensate for a
horizontally limited FOV, two strategies apply: (i) horizontal shifting of the agent or (i) rotation
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of the agent around the body z axis. We opt for this latter yaw rotation strategy since it is fast
and preserves mutual positions of all robots within the formation.

In particular, we focus on a limited horizontal FOV only, mainly due to two reasons. First, we
primarily test formations with a horizontal dominant dimension, which, for collaboration tasks
such as joined transportations of heavy loads, are the most relevant ones. Lastly, since quadrotors
are under-actuated, it is unfeasible to change their roll/pitch orientation independently from the
horizontal speed. However, the proposed approach can be easily extended to a limited vertical
FOV provided that the camera is mounted on an additional tilting unit. Therefore, we assume
the agent i to be measuring the azimuth angle iαij , if and only if iαij ∈ [amin, amax].

We first introduce a relaxed definition of a bearing formation and then propose a controller
based on this formulation, which overcomes the limitation of the horizontal FOV.

We introduce the following relaxed bearing formation definition: two bearing formations
{(iαij , iηij)}(i,j)∈N and {(iα′ij , iη′ij)}(i,j)∈N are equivalent if the shift iα′ij − iαij is the same
for every (i, j) ∈ N , i.e., if the difference between any two azimuths is constant

iαij − iαik = iα′ij − iα′ik ∀(i, j), (i, k) ∈ N . (3.1)

The rotation speed ωi of agent i does not affect the difference in (3.1). In fact, from the
dynamic equation of the azimuth we have:

iα̇ij − iα̇ik =
1

δij
(jα̂Tjiµj − iα̂Tijµi) −

1

δik
(kα̂Tkiµk − iα̂Tikµi). (3.2)

Therefore, the rotation dynamic of an agent can be freely chosen without affecting the relaxed
bearing formation.

Formation Control with a Limited Field of View

To deal with the limited FOV in the horizontal plane, we ask the agents to follow an opportunely
shaped bearing trajectory, i.e., any agent h ∈ (1, . . . , N) is forced to rotate with a given yaw rate
ωrot,h(t) in order to execute a periodic motion (e.g., a sinusoidal or a constant-slope trajectory).
By suitably choosing ωrot,h(t) and while the bearing formation is maintained, agent h would
be able to periodically measure the relative azimuth hαhj of another agent j for a fraction of
the trajectory period. For the remaining fraction, a direct measure of the azimuth is not given.
Hence it must be estimated on the basis of motion proprioception.

We define the modified version of the bearing formation control problem, which accounts for
the horizontally limited FOV.

Problem 1 (Relaxed bearing-formation control). Given a set of feasible desired bearings {ib̂ij =

(iaij ,
ieij)}(i,j)∈N , find a control law (µfi , ω

f
i ) depending on {iβ̂ij}(i,j)∈N which steers iβ̂ij to the

trajectory ib̃ij(t) = (iaij+θrot,i(t),
ieij) with θrot,i(t) =

∫
t ωrot,i(t)dt and the distances {δij}(i,j)∈N

to a constant non-zero value, ∀(i, j) ∈ N .

First we present the control law used to solve Problem 1 assuming that the azimuth is always
measured. Afterwards, we describe the estimate that we used in the real case. Let us consider
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the following control law:

µf1 = 0 (3.3)

ωf1 =− ωrot,1 (3.4)

µf2 =− Kp

cos 1η12

[
sin(1α12 − θrot,1 − 1a12)M 1β̂12 +(

sec 1η12
1β̂12 − sec 1e12

1b̂12

)
· ẑ)ẑ

]
(3.5)

ωf2 =− ωrot,2 +Kω sin(2α21 − θrot,2 − 2a21) (3.6)

µfi =−Kp
iR1

(
δ̄1i

1β̂1i − d̄1iR(θrot,1)1b̂1i

)
(3.7)

ωfi =

{
−ωrot,i +Kω sin(iαi1 − θrot,i − iai1) if cos iei1 6= 0

−ωrot,i +Kω sin(iαi2 − θrot,i − iai2) otherwise
(3.8)

where i ∈ [3, . . . , N ], ẑ = (0 0 1)T , δ̄1i = γ12i sec(1η12), d̄1i =
‖2b̂21×2b̂2i‖
‖ib̂i1×ib̂i2‖ sec(1e12), ib̂ij ≡

(iaij ,
ieij),

iR1 can be computed asRT (iαi1)R(π)R(1α1i), denoting byR(∗) the rotation matrix

of a given angle around ẑ and M =

[
M ′ 02×1

01×2 0

]
with M ′ =

[
0 −1

1 0

]
.

Given a starting configuration described by the bearings {iβ̂0

ij ≡ (iα0
ij ,

iη0
ij)}i,j=1,...,N such

that
∥∥∥1β̂

0

1i × 2β̂
0

2i

∥∥∥ 6= 0 and cos 1η0
12 6= 0, and a set of feasible desired bearing trajectories

{ib̃ij(t) ≡ (iaij + θrot,i(t),
ieij)}i,j=1,...,N such that

∥∥∥1b̃1i(t)× 2b̃2i(t)
∥∥∥ 6= 0, cos 1e12 6= 0 for all

i = 3, . . . , N , the control laws in (3.3-3.8) asymptotically, and almost globally, steer iβ̂ij → ib̃ij(t)
and δij → d̄1iδ

0
12 cos 1η0

12, for any (i, j) ∈ N .

As an estimate ξ of the azimuth hαhj , we use the following dynamics:

hξ̇hj = Kξ(
hαhj − hξhj)− ωh (3.9)

where the constant Kξ ∈ R≥0 is positive when the measure is available (i.e., iαij ∈ [amin, amax])
and zero otherwise. If the bearing formation is maintained, the estimates (3.9) will converge to
the actual value. On the other hand, for a sufficient large value of Kξ, the estimate will not
diverge even if the bearing formation changes.

3.2.3. Experimental Setup

Our experimental setup shown in Fig. 3.1 consists of three quadrotors (see App. A.1), each
equipped with a monocular camera and a unique visible beacon, and two force feedback devices
to generate motion commands. The visual bearing angle detection system and the velocity
tracking controller run on a small PC onboard the quadrotor. To simplify the computational
setup and to overcome software license limitations, the three high-level formation controllers
were delegated to an additional GNU-Linux machine running Matlab. Both sides communicate
by means of wireless ethernet. The haptic feedback devices are connected to the additional
Linux PC. For a pure evaluation of the formation control system proposed in this section, we
rely on an optical motion tracking system to recover the metric velocity of each robot, however,
the visual ego-motion estimation system presented in Chapter 2 could be used likewise.
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(a)

(b)

(c)

 b1  

 b2  

 c1  

 c2  

 c3  

 c4  

Figure 3.2.: Quadrotor setup for the experiments on the bearing angle formation. (a) Quadrotor
in its flight configuration. (b) Camera setup, b1) Playstation Eye 3 camera with M12
lens holder attached, b2) 140◦ lens. (c) Computational setup c1) Microcontroller and
IMU, c2) 2200 mAh Lithium Polymer Battery, c3) Small PC with Intel Atom CPU
and extension board holding the connectors, c4) WLAN adapter

The Haptic Input Device

An Omega.3 haptic feedback device is used together with an Omega.6 device1 to capture the
translational and dilational control commands in R3 and R1 respectively. The Omega.3 device
features three DoF while the Omega.6 has six DoF of which the three translational DoF are actu-
ated. For the Omega.6, we constrained the motion to one DoF as indicated in Figure 3.1d. The
forces described in Sec. 3.2.1 are presented to the human operator with a frequency of 2.5 kHz.

The Quadrotors

The three quadrotors used for the experiments are described in more detail in App. A.1. The
entire optical detection system is implemented on a small Intel Atom 1, 66 GHz processing board
(see App. A.4) that can be seen on Fig. 3.2c3.

To allow for an independent evaluation of the presented approach including the visual bearing
angle estimation, we relied on an external motion tracking system to obtain the velocities of
the quadrotors. However, the relative bearings are estimated by means of a vision-based system
implemented on the onboard Intel Atom hardware.

1http://www.forcedimension.com
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Vison-based Bearing Measurements

We decided to use a modified low cost Sony Playstation Eye 3 color camera for our experiments
which was originally designed for the consumer market. The camera and all modifications are
described in more detail in App. A.2 and are shown in Fig. 3.2b. The calibration was done
individually for all cameras prior to the experiment.

Figure 3.2a shows the configuration of one of our quadrotors. The camera is mounted 0.09 m
above the central body frame. Small shock absorbers help to reduce vibrations carried from the
motors to the camera. Reflective markers serve as tracking markers for the external ground truth
providing motion tracking system. To allow for a simple and reliable visual tracking among the
UAVs, we mounted a ball in an individual color 0.08 m above the camera of each quadrotor.
This offset between camera and tracked ball results in an error that cannot be corrected without
the availability of distance measurements. Thus, to allow for an evaluation of the visual system
itself, we incorporate these offsets into the data obtained from the ground truth for the results
presented in Sec. 3.2.4.

To reduce the development time, we mainly relied on implementations provided by the free
OpenCV library. Our tracking algorithm first segments the input image for all of the predefined
ball colors individually by exploitation of the HSV (Hue, Saturation and Value) color space.
Then, noise in the resulting binary image is eroded and the remaining segmented shapes are
expanded to allow a more reliable blob detection even for distant objects. In the following,
ellipses are fitted for all segmented areas while non-circular ellipses up to a threshold are rejected.
If there was more than one blob detected, the one closest to the last known position is chosen.
Additionally, an outlier rejection is applied. Since neither the distance to the traced quadrotor
nor the size of the blob is assumed to be known, the rejection is done based on imposing a
maximum allowed angle change. Finally, lookup tables generated during the calibration of the
cameras are used to obtain the angles corresponding to the center of the remaining blob.

A visualization of the output of the visual blob detection system is shown in Fig. 3.1c. Note
that it is indeed possible to obtain an estimate of the distance to other UAVs exploiting the
known diameter of the tracked colored ball. However, when using wide angle lenses or low
camera resolutions, this is only reliable for short distances. For our camera setup, this was
therefore not feasible for distances larger than 1 m and in particular not for the larger aerial
distances targeted by our work.

The mounting of the camera introduces a small offset between the direction of the camera
and the x axis of the UAV. For a compensation, we calibrated the extrinsic parameters of all
camera-UAV setups prior to the experiments, that is we measured the average offset for both
azimuth and elevation over the entire FOV.

Experimental Design

For the validation of our bearing angle based formation control approach using real robots, we
first chose a triangular configuration of three robots with each of them being able to see all
other robots at the same time (Figure 3.1a). Thus, in this first experiment, we were able to use
the original controller presented in [Franchi et al., 2011]. All quadrotors were roughly oriented
towards the center of gravity of the formation, inducing relative bearing angles around −30◦

and 30◦. In the starting configuration (approximately 2.1 m distance between the quadrotors),
the height was set to 0.7 m, 0.55 m, and 0.85 m for agents 1, 2, and 3 respectively.
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In a second set of experiments, we altered the formation such that one angle of the triangle
exceeded 90◦ and therefore the corresponding agent 3 was only able to retrieve the relative
bearing to one of the two other agents at a time. Thus, agent 3 was forced to use the controller
for a limited FOV as presented in Sec. 3.2.2 while agent 1 and 2 did not rotate. We used a
sinusoidal profile with an amplitude of 26◦ and a frequency of 0.8 Hz for the scanning rotation
θrot(t). For this second experiment, the initial height was set to 0.7 m for all quadrotors.

An optical motion tracking system was used to provide a reliable ground truth with sub-
millimeter accuracy. W.l.o.g, the estimator was initialized with the help of data obtained from
this motion tracking system prior to the experiment to allow for a save sequential take-off
procedure of the UAVs.

3.2.4. Experimental Results and Discussion

In the following, we describe several experiments to validate our approach for visually controlled
bearing formations. First, we analyze the accuracy of the visual system. We then evaluate
the system with three real robots. The experiments are further documented in the videos
http://youtu.be/9RiGd7DTk34 and http://youtu.be/YGjMXqGnvWI.

First, to validate our visual bearing angle detection system, we compared the output of our
algorithm with the ground truth obtained from our motion tracking system. For this experiment,
we recorded the real bearing angles calculated from the positions and orientations given by the
motion tracking system together with the relative bearing angles obtained from our visual system
during an actively controlled flight with three UAVs. W.l.o.g., we picked the angles between
agent 1 and 2 as well as between agent 1 and 3 for evaluation. The results are presented in
Fig. 3.3.

For the presented data, we found a mean error of −0.24◦ and −0.44◦ with a standard deviation
of 0.30◦ and 0.40◦ for the azimuth between agent 1 and 2 (Fig. 3.3a) and agent 1 and 3 (Fig. 3.3b)
respectively. The mean elevation error was −0.51◦ and −0.53◦ with a standard deviation of
1.46◦ and 1.45◦ respectively. The higher standard deviation for the elevation is due to the less
robust height control compared to the yaw control of our quadrotors. The controller was able
to stabilize azimuth and elevation up to a mean error of −1.70◦ and −4.62◦ with a standard
deviation of 2.72◦ and 2.36◦ for azimuth and elevation respectively compared to the desired
values (see Figs. 3.3c and 3.3d). The high standard deviation is mainly a consequence of the
constantly changing human control commands and the lag inherent to the system. In turn,
the quadrotors demonstrated to follow the commanded velocities precisely. The mean velocity
tracking error of agent 1 was 0.001 m/s, 0.002 m/s, and 0.006 m/s with a standard deviation of
0.110 m/s, 0.056 m/s, and 0.042 m/s for the x, y, and z axis respectively, see Figs. 3.3e and 3.3f.

We were able to prove real-time performance on the described limited onboard hardware
without any particular optimizations. The algorithm runs with a frequency of 7 Hz. However,
we measured a constant temporal lag of three frames compared to the data obtained from the
motion tracking system. The lag of precisely three frames was observed independent of the
capabilities of the underlying hardware system and thus the achieved frame rate. We assume
that it was caused by the use of the default video-for-linux drivers that were manually patched
to support the employed Playstation eye camera. Thus, on the mobile setup, this lag measured
in average 500 ms in contrast to 120 ms on desktop hardware, where the algorithm was executed
with a frequency of 30 Hz.
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In the second set of experiments, agent 3 was set to perform a scanning movement to detect
both agent 1 and 2 periodically. The relative azimuth angles of agent 3 are presented in Fig. 3.4.
Note that the outer end of the FOV was reached at approximately −43.5◦ and 43.5◦ for agent 1
and 2 respectively. Thus, the mean error of the measured azimuth angle between our algorithm
and the ground truth was computed only when the respective other robot was visible within
the FOV of agent 3. In those instances, we found the mean error of the visual estimate to be
0.32◦ with a standard deviation of 1.52◦. The tracking error between our visual estimate and
the desired azimuth angle was 0.10◦ with a standard deviation of 4.25◦. For the elevation, as
expected, we found results similar to the first experiment, namely 0.25◦ for the mean error of
the visual angle estimate and 1.41◦ for the standard deviation.

To compensate for roll and pitch motion associated with accelerations of the quadrotor, we
tested a compensator based on IMU readings in simulation. However it turned out that this
compensation was not improving the performance of the system significantly. Thus, we decided
to omit the compensation which would have introduced the need of an additional low-level
communication pathway between the microcontroller and the onboard PC.

3.2.5. Conclusions

In this section, we were able to demonstrate the feasibility of a decentralized formation control
for flying robots relying purely on visually estimated relative bearing angles between agents
and the perception of ego-motion. The bearing angles were computed using an onboard visual
detection system. The validity of the system has been analyzed using a group of three real
quadrotor UAVs. The system proved to be stable even with a large temporal lag, introduced by
the usage of low-cost camera hardware in combination with constrained processing power.

The contributions of the suggested framework are therefore two-fold:

• Presentation of an effective solution to cope with limited field of views on quadrotor UAVs

• Conduction of the first closed-loop human-controlled formation flight of a group of UAVs
based entirely on perception and computation techniques that can be implemented on
onboard hardware and without the need to obtain absolute or relative pose estimates

3.2.6. Future Work

With the aim to become fully independent of external tracking devices, we are planning to
integrate the optical flow based velocity estimation system presented in Chapter 2 on a secondary
visual system of each vehicle. The resulting formation control would be completely independent
of any external ground station or motion tracking system. We are further planning to extend
the system to include the avoidance of obstacle points based on the detection of bearing angles
towards the obstacles. Additionally, we consider to autonomously choose the optimal magnitude
of the scanning motion θrot(t) based on the formation layout itself.

Furthermore, to increase the robustness of the system to colored or poorly illuminated envi-
ronments, we plane to replace the current colored ball shown in Fig. 3.2a in future projects. In
Fig. 3.5, the active LED-powered beacon is shown that we developed for this purpose in 2011.
The bright light facilitates very short shutter speeds and less sensitivity to false detections caused
by other colored objects in the scene. In the last years, this design has been adopted by other
research labs and companies for similar purposes and even art displays.
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Figure 3.3.: Bearing angles as obtained from our onboard visual system in comparison with the
ground truth and the desired bearing angles when all agents could directly observe the
bearings to all other agents at all times. (a) Azimuth angle between agent 1 and 2 and
(b) between agent 1 and 3. (c) Elevation angle between agent 1 and 2 and (d) between
agent 1 and 3. (e) Velocity tracking error of agent 1 and (f) agent 2.
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Figure 3.4.: Azimuth and elevation angles during the second experiment on bearing angle forma-
tions. (a) Azimuth angle between rotating agent 3 and agent 1 (static yaw angle) and
(b) between agent 3 and 2. The output of the visual bearing estimation system (red)
is only plotted when the corresponding other agent was within the FOV of agent 3.
(c) Elevation angle between agent 3 and 1 and (d) between agent 3 and 2.
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Figure 3.5.: Sanded acrylic glass beacon with embedded RGB LED on top of the modified Playsta-
tion eye3 camera.
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3.3. Global Localization of a Monocular Camera in Dense 3D Maps
through Photometric-Error Minimization

Over the last years, Simultaneous Localization and Mapping (SLAM) systems have become
highly popular for the navigation of autonomous mobile robots. While navigation based on
laser range finders has been used on mobile robots for many years, the availability of small and
lightweight cameras has opened a new field of SLAM research even on Micro Aerial Vehicles
(MAVs), such as quadrotors [Blösch et al., 2010]. Based on cameras, robots are able to continu-
ously track their pose in all 6 degrees-of-freedom (DoF) while constructing a three-dimensional
map to recover their location even after tracking was interrupted [Nützi et al., 2011; Weiss et al.,
2011, 2012a].

The recent introduction of affordable combined color and distance sensors, known as RGBD
sensors, has led to several innovative improvements in precision and reliability, which further
increased the range of image based SLAM techniques [Shen et al., 2012].

These advances in autonomous map building naturally raise the problem of mutual localiza-
tion of multi-robot teams, an ability essential to accomplish common tasks with joint efforts.
The problem of mutual localization becomes fundamentally important in the growing field of
rescue robotics with heterogeneous agents. Each agent (both robot or human) may carry dif-
ferent sensors and possesses different computational resources. Possible scenarios are ground
robots which are supported by MAVs to find the best path through rough terrains after natural
disasters. Additionally, MAVs of different sizes could be used to pass through small openings oth-
erwise inaccessible. Even humans could benefit largely when working in a mixed human-robot
team. After recent disasters, robots were sent to inspect and map hazardous areas [Michael
et al., 2012]. Human forces could be guided more effectively when using wearable camera-based
localization systems.

For many applications, it is important to localize an agent with a camera within a 3D map
previously obtained by another agent. In this work, we tackle the problem of precise global
localization of a camera-equipped mobile agent in a dens 3D map created by another agent.
The 3D map could likewise be created using any monocular or stereo dense reconstruction
system, however, in this work and w.l.o.g., we resort to RGBD sensors. One considered setup is
shown in Fig. 3.6.

To estimate the pose of a camera, most state-of-the-art localization approaches are based on a
minimization of the reprojection error of a sparse feature set in a least-square sense. Therefore,
a large amount of information contained in the camera image is neglected completely. Further-
more, least-square optimizations are known to be highly sensitive to noise and, thus, require an
efficient additional outlier-rejection step. To overcome these limitations, computationally expen-
sive map-maintenance algorithms, such as bundle adjustment, are a common choice. However,
this limits the possible map size drastically [Blösch et al., 2010; Newcombe et al., 2011b].

Related Work

To the best of our knowledge, this is the first work that takes advantage of using the whole
image information to achieve a precise global localization of a camera with respect to a given
dense 3D map from a different sensor.
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Figure 3.6.: Example setup considered in this work. One small quadrotor MAV with just a monoc-
ular camera is localized globally within a dense map created by a second robot with,
e.g., an RGBD sensor.

Early work on dense real-time monocular 3D reconstruction and localization is reported in
[Newcombe et al., 2011b; Lovegrove, 2011]. Similarly to our approach, they achieve robust
camera tracking in small environment by minimizing the photometric error. However, their
systems are not designed to provide any re-localization abilities and are, therefore, unsuitable
for mutual localization tasks involving multiple robots. Furthermore, they require powerful
additional hardware in the form of a fast Graphics Processing Unit (GPU) to achieve real-time
performance.

Based on an RGBD sensor, KINECT fusion was proposed in [Newcombe et al., 2011a]. The
system builds a texture-less dense 3D map on the GPU entirely based on the depth image but
does not attempt loop-closure detection and the resulting pose estimate therefore drifts over
time. Since it does not store any textures, the tracking fails on planar and other repetitively
structured surfaces. For the same reason, KINECT fusion cannot be used to localize other
cameras that do not provide depth images.

RGBDSLAM [Engelhard et al., 2011] builds a dense point-cloud and further maintains a
sparse feature set for internal loop-closure detection. This feature set could be used for a global
localization of a second camera as well. However, the reprojection-error–based optimization of
the pose estimate relies on matching a sparse set of visual features only. In our experiments, we
found the resulting pose estimate to have an error of up to 10% of the scene depth.

In our approach, we use the sparse feature set stored with an RGBDSLAM-based 3D map to
obtain a prior for a novel iterative analysis-by-synthesis pose refinement process that minimizes
the photometric error between a synthesized view of this dense map and the camera image.

In an effort to avoid confusion, we refer to the RGBD camera as ’RGBD sensor’ or just ’sensor’
unless otherwise stated. The monocular camera is consequently addressed as ’camera’.
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The remainder of this section is structured as follows. In Sec. 3.3.1, we first describe the
construction of the underlying 3D map and consequently state the problem formulation. In
Sec. 3.3.3, we explain the calculation of the initial pose estimate of the camera. This initial
position is then refined using our proposed method described in Sec. 3.3.4. In Sec. 3.3.6, relevant
implementation details are discussed. The system is experimentally evaluated in Sec. 3.3.8 and
the results are presented in Sec. 3.3.9. Finally, this work is concluded in Sec. 3.3.10.

3.3.1. Construction of the 3D Map

In this section, we summarize the construction of a 3D map that consists of both a dense 3D
point-cloud and sparse feature descriptors.

We start from the open-source implementation RGBDSLAM [Engelhard et al., 2011] of an
algorithm suggested earlier in [Henry et al., 2012]. Both the 3D points as well as visual feature
locations are stored in local coordinate frames Ki associated with keyframe ki. All keyframes
are arranged within a pose graph that is extended as the map grows. During motion, the
RGBD sensor is constantly tracked and whenever the current location is sufficiently far from
any previous keyframe, a new keyframe is added to the graph. Additionally, a sparse set of
visual features F i associated to each keyframe is used to match the current view against all
existing keyframes to detect loop-closures. For this, we rely on matching SIFT (Scale-Invariant
Feature Transform) feature descriptors [Lowe, 1999]. Pose-graph optimization is consequently
used to reduce the error within the keyframe graph using all detected loop-closures.

Since the original RGBDSLAM implementation lacks several important properties, we im-
proved the overall performance and added the storage of all original keyframe images. Further-
more, the original implementation neglects camera-distortion parameters completely and does
not align the RGB sensor with the depth images.

To simplify the interaction with the 3D map for the proposed setup, we implemented an
interface to RGBDSALM based on the well known Robot Operating System (ROS).

3.3.2. Problem Formulation

We address the following problem. Let M be a given 3D map composed of l keyframes ki, i ∈
[1 . . . l]. A coordinate frame Ki is associated to each keyframe i and each keyframe holds a dense
set P i of colored 3D points pj , j ∈ [1 . . .m] together with a sparse set F i of feature descriptors
fh, h ∈ [1 . . . N ]. Without loss of generalization, K1 is considered to be the origin of the map.
Furthermore, let IC be a monocular camera image as seen from camera frame C. We attempt
to find the best transformation K1[R|t]C from the origin of the map K1 to the camera frame C
that minimizes the photometric error.

3.3.3. Computation of an Initial Pose Estimate

In this section, we describe a method to compute an initial global estimate of the camera location
that is later refined using a local analysis-by-synthesis optimization technique (see Sec. 3.3.4).
For the global estimate, we rely on an efficient closed-form solution of the Perspective-3-Point
problem (P3P) [Kneip et al., 2011b]. Given the 3D location of three points in some frame K
together with their corresponding directional observations from a calibrated camera in frame
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C, the algorithm computes two solutions for the unknown roto-translation K[R|t]C . A fourth
feature is then used to solve the ambiguity. For the details of this algorithm, we refer the reader
to [Kneip et al., 2011b].

To create the complete set of 3D map feature locations from all keyframes for the P3P algo-
rithm, all keyframes of the map have to be rotated such that their associated feature locations
are expressed in the frame of the origin, in our case frame K1 associated to the initial keyframe
k1. The transformation K1[R|t]Ki

necessary to rotate all N feature locations fh, h ∈ [1 · · ·N ]
of a keyframe ki into K1 is obtained from the pose graph.

Since we rely on SIFT feature matching to obtain the correspondence between the up to N · l
features of the map and those found in the current camera image, it is not advisable to match
the image features against all features of the map at once. Using the original implementation
of SIFT feature matching, a match would be considered reliable only if it differs sufficiently
from the next best match [Lowe, 1999]. Since the same feature is usually visible in multiple
keyframes with almost the same descriptor, matching all features of the map at once would
result in many candidate matches with similar descriptors, which in fact correspond to the
identical visual feature in the real world. Thus, a more time-consuming match-selection process
involving comparisons with all neighboring matches would become necessary to select good
features that defer sufficiently from the next best match that actually corresponds to a different
feature. Instead, we match the features of one keyframe at a time against the camera image and
add the resulting matches to a global set of good matches.

Having established the correspondences between the features visible in the camera image and
those stored in the map, Random Sample Consensus (RANSAC) is used to discard outliers. The
system repetitively selects four feature matches to compute a model of the camera location and
orientation. It is ensured that these four features are in a non-degenerate configuration, that is,
that their 3D locations are adequately spaced and that they are not collinear. This process is
repeated until a sufficiently-large number of additional features supporting this model is found.
Finally, the transformation K1[R|t]C is computed again using this extended set of matches.

In our experiments, when using this initial pose estimate, we found an accuracy of 0.1 m to
0.2 m when the camera was located 1 m to 2 m from the scene. This finding of an error of 10%
of the scene depth corresponds to the error reported by the authors of [Kneip et al., 2011b]. In
the next section, we describe our novel analysis-by-synthesis driven algorithm to achieve a more
precise localization based on this initial pose estimate.

3.3.4. Iterative Pose Optimization

To locally optimize the camera roto-translation estimate by minimizing the photometric error,
we propose an iterative two-step algorithm. Starting from an initial global estimate through
putative point correspondences, we alternate between a rendering step—in which the dense map
is rendered into an image using the parameters of the calibrated monocular camera—and an
image-alignment step that computes an improved camera pose by minimizing the photometric
error between the synthesized view and the real camera image through image warping.
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Rendering of a Synthesized Camera View

In this step, an image of the 3D map is rendered from the latest pose estimate of the camera
using the known intrinsic camera and distortion parameters obtained during an initial camera
calibration step.

As described before, the 3D map consists of l keyframes ki, i ∈ [1 . . . l] where each frame has
a local coordinate frame Ki assigned to it. These frames follow the common camera frame
convention and the z-axis is aligned with the camera principal axis. Up to m 3D points
Kipj , j ∈ [1 . . .m] per keyframe have to be rotated into the common base frame K1 first. Here,
m corresponds to the number of pixel in the RGBD sensor image, e.g. m = 307, 200 for a Kinect
or Asus Xtion. Consequently, all points Kipj are rotated into K1 using K1pj = K1[R|t]Ki

Kipj .

Once again K1[R|t]Ki
is obtained from the internal pose graph of the 3D map.

In order to reduce the time needed to project all up to m · l map points into the virtual camera
image, we do not consider keyframes for which the z-axis differs from the current principal axis
of the camera orientation by more than a thresholded angle. Afterwards, other points far to the
sides or behind of the camera are removed as well.

All remaining points K1pj are projected onto the virtual camera image. Since, usually, more
than one point of the map would be projected into the same pixel, only the point closest to
the camera is rendered. Thus, while iterating over all points, we construct both a z-buffer
depth image (containing the scene depth for each pixel) and the resulting output image. This
simplified rendering procedure has linear-time complexity on the number of points in the map
and is further linear in space complexity on the number of pixels in the virtual camera image.

An example of a resulting synthesized image is shown in Fig. 3.11a.

3.3.5. Minimizing the Photometric Error

To optimize the viewpoint, we propose a method that minimizes a dense photometric cost
function for every pixel. This approach has been pioneered by Lucas and Kanade [Lucas and
Kanade, 1981] to compute the optical flow in an image. It works by using the spatial intensity
gradient of a small image patch to accelerate the search. Many variations of the original Lucas-
Kanade tracking have been proposed (see, e.g., [Baker and Matthews, 2001] for a summary).
While the initial method was intended to optimize a 2D alignment, it can also be used to
estimate the 6 degree-of-freedom (DoF) pose of one camera with respect to a second camera
image [Lovegrove, 2011].

For the photometric cost function to minimize, we chose the sum of squared differences between
the pixels in the synthesized view IS and the image from the monocular camera IC :

F (T) =
1

2

∑
x∈Ω

(
IC [fx(T)]− IS [x]

)2
where

fx(T) = π
(K1[R|t]C Tπ−1(x) ξ(x)

)
.

The π() and π−1() functions represent the pinhole camera projection and back-projection func-
tions respectively and ξ(x) is the depth at pixel x. Ω denotes the set of pixel locations in IC

and IS as both images have the same dimensions by construction. K1[R|t]C is the homogeneous
4× 4 matrix rigid-body transformation between the camera frame C and the frame of the dense
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map K1. The cost F is minimized iteratively through finding an update transformation T that
minimizes the current cost:

T̂ = arg min
T

F (T)

K1[R|t]C ← K1[R|t]C T̂,

where the incremental transformations T are parametrized using the Lie algebra se3. The rigid
body transformation update T can be recovered through the exponential map T = exp(T). This
nonlinear least-squares problem can be solved by means of the Gauss-Newton or Levenberg-
Marquardt algorithms [Baker and Matthews, 2001].

For the localization of the considered monocular camera, ξ(x) is unknown. Thus, we approx-
imate ξ(x) with the scene depth found at the same pixel in the rendered view IS of the dense
3D map.

3.3.6. Implementation

In this section, we cover the most important implementation details concerning the theoretical
approach discussed in the previous Sec. 3.3.4.

Rendering of the Synthetic View

In an effort to speed up the rendering process of the synthesized camera view, only points
from keyframes for which the z-axis is oriented similarly to the principal axis of the camera are
considered. Although SIFT features are known to be viewpoint-angle invariant for up to 60◦ on
a planar scene, empirically, we did not find any reliable matches on more complex 3D scenes
once the camera was tilted by more than 40◦. As suggested in the literature [Henry et al., 2012],
the best result for a synthesized view is obtained when planar patches with normals pointing
in the direction of the camera are used. Since the available computational power on robots is
insufficient for an extraction of local patches for all points, all feature point patches are assumed
to share the normal of the image plane of their respective keyframe. Thus, the choice of a normal
angle of 40◦ from the principal axis of the camera as a threshold to exclude keyframes ensures
a good compromise between selecting points with a patch facing the camera, the need to render
a sufficiently large area of the scene, as well as efficiency considerations. Additionally, this filter
step removes points from backsides of objects invisible to the camera efficiently. Potential holes2

in the rendered image, caused by this filtering step or the lack of information in the 3D map at
that location, are ignored in the image alignment process described in Sec. 3.3.5.

Furthermore, points too distant from the line of sight of the camera are not considered. The
choice of the used threshold for the rejection of distant features depends on the field of view of
the camera and is necessary to avoid projection artifacts caused by lenses with strong distortions.

Localization of the Monocular Camera

The synthesized camera view usually suffers from rough edges and sometimes small rendering
artifacts. Thus, both images IS and IC need to be filtered with Gaussian blur prior to the
alignment step.

2Pixels in a synthesized image which are undefined since no color was assigned to them are often referred to as
’holes’
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Before aligning the rendered view IS with the original image IC , the mean intensity of both
images is equalized for all pixel locations x ∈ Ω: I(x) = I(x) + (c − Ī). Ī denotes the mean
intensity of the image I and c is a constant which is additionally added to avoid dark low-
contrast images otherwise caused by the mean subtraction. Furthermore, all regions of the
rendered image for which there was no information available in the map are masked as they
should not be considered for the alignment. That is, all pixels unsuitable for the comparison
of IS and IC are removed from the set Ω of considered pixels in the images. This ensures the
robustness of our algorithm even in the presence of holes in the rendered image or when only
portions of the mapped scene are visible from the viewpoint of the camera.

Computation of the Relative Photometric Error

To allow for an evaluation of the suggested pose refinement approach with respect to the 3D
map (that is, independent of errors present within the pose-graph of the RGBDSLAM map
used for the implementation), we had to resort to a direct measure of the photometric error
reduction. Indeed, for a globally minimal photometric error, the synthesized view of the 3D
map corresponds to the camera image in the best possible way and any further movement of
the camera in any of the 6 DoF would increase the error. Since all information available in the
camera image is used for the computation of the photometric error, the camera pose estimate
cannot be improved any further by resorting to other means of localization. Hence, since we
aim for an optimal localization of the camera with respect to the 3D map, an external tracking
system cannot be used to provide a ground truth since the 3D map will never be perfectly aligned
to the origin of the motion tracking system. In fact, given a minimal photometric error, a ground
truth from a motion tracking system will only measure the internal error of the pose-graph that
relates the keyframes of the chosen 3D map system, in our case RGBDSLAM. However, for
successful joint multi-robot applications, a mutual localization of the robots with respect to
each other is essential, while minor inaccuracies with respect to some arbitrary global map are
usually acceptable. For this reason, we resort to the photometric error for the evaluation of
the complete system. However, to obtain a comparison with a ground truth measurements as
well, we devised an additional experiment on a map consisting of just a single keyframe, thus,
eliminating possible errors within the pose-graph of the map (see Sec. 3.3.8).

Assuming a noiseless 3D map, an ideal camera calibration, and an environment that is not self-
similar or otherwise ill-structured, the iterative camera pose refinement process will eventually
converge into an optimal pose for which the photometric error of the rendered camera view with
respect to the real camera image reaches a global minimum. In this case, the accuracy of the
refinement approach is bounded by the resolution of the camera.

Since two completely different cameras are involved, the intensity of the same patch in both
images is not identical despite the mean equalization. Thus, the absolute photometric error
expressed as the sum-of-square difference of pixel intensities in the synthesized image IS and
the real camera images IC

r =
1

‖Ω‖
∑
x∈Ω

[IS(x)− IC(x)]2 (3.10)

will never reach zero. Therefore, the photometric error as such cannot be used for the comparison
of the refinement iterations. Instead, for the evaluation, we employ the relative photometric
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Algorithm 1: Incremental camera pose estimation

Input: 3dMapM , cameraImage IC

Output: cameraPose [R|t]
1 cameraPose [R|t] ← P3P(3dMapM , cameraImage IC) // see Sec. 3.3.3

2 for 15 iterations or until termination criterion reached do
3 renderedImage IS ← renderImage(cameraPose [R|t], 3dMapM) // see Sec. 3.3.4

4 cameraPose [R|t] ← refinePose(renderedImage IS , cameraImage IC) // see Sec. 3.3.5

5 end

error r̂i between the initial error r0 and the error ri after the ith iteration of the pose refinement
process expressed in percentile r̂i = 100(r0/ri − 1).

Selection of the Termination Criterion

In real world scenarios, the pose-graph of the map is not ideal and will cause small distortions
within the rendered images. Thus, the iterative optimization might alternate between equally-
good pose estimates in close proximity and a termination criterion becomes necessary. For the
conducted experiments, we chose to run not more than 15 iterations and to interrupt the process
once the suggested camera location refinement drops below 0.001 m.

Communication and System Layout

Our setup is designed to run on at least two autonomously operating robots, one equipped with,
e.g., an RGBD sensor to build and maintain a dense 3D map, and the other one with just a
monocular camera. We further assume that both agents provide at least a small amount of
onboard processing power and share a common communication channel. ROS is used to provide
inter-process communication. Our system is flexible in that the computationally expensive
steps could be carried out on either of both agents or even on an independent ground station,
depending on availability.

3.3.7. Summary of the Algorithm

Algorithm 1 summarizes the proposed system for the precise localization of a camera within
a dense map. In line 1, an initial estimate of the camera pose is computed as described in
Sec. 3.3.3. The iterative refinement is carried out in line 3 and 4. First, a synthesized image is
rendered from the current camera pose estimate according to Sec. 3.3.4. The rendered image is
then aligned in all 6 DoF with the real camera image to update the estimated viewpoint of the
camera following the explanations in Sec. 3.3.5.

3.3.8. Experiments

For the evaluation of our algorithm, we have conducted three experiments. First, we evaluate
the full system and simulate the localization of a camera-equipped robot within a dense 3D
map. Here, we discuss results on a cluttered three dimensional scene constructed from multiple
boxes in detail. The findings are confirmed by a second similar experiment on a desktop scene.
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Additionally, we tested the proposed system in an motion capture system to compare the results
against a metric ground truth.

Hardware Setup

Our experimental setup consists of two main components: the RGBD sensor carried by one
robot and a monocular camera on a second robot. Figure 3.6 illustrates a potential setup of a
ground robot holding an RGBD sensor and a miniature quadrotor equipped with just a camera
as considered in our experiments.

A MatrixVision BlueFox monochrome camera (see App.A.2) was used to localize the second
agent with respect to the 3D map. The camera was moved and rotated randomly within a
volume of approximately 4× 3× 2 m3 in front of the mapped scene.

To ease the conduction of the experiments, we ran all parts of the distributed algorithm on
a single laptop using communication through localhost. Clearly, most parts of the proposed
algorithm could be parallelized on dedicated GPU hardware for real-time performance. Since
this exceeds the scope of this work, all computations are currently carried out on two cores of
the CPU.

Conducted Experiments

To demonstrate the precision and reliability of the presented approach, we tried to localize a
camera within a given 3D map and to further refine its initial position estimate.

For the first experiment, the mapped environment consisted of a cluttered scene of approxi-
mately 3× 2 m2 with elements up to 1 m in height. The scene is shown in Fig. 3.11b. An Asus
Xtion Pro RGBD sensor was used to create the 3D map exploiting the modified RGBDSLAM
system described in Sec. 3.3.1. Repeatedly, we tried to localize the camera from 130 randomly-
selected images acquired on a 10 m trajectory within the 3D map of the environment. The map
was composed of 75 keyframes and contained around 25 million 3D points and 22, 000 feature
descriptors.

To increase the validity of our findings, we repeated this experiment in a second setting, a
cluttered desktop environment depicted in Fig 3.7. In this setting, 200 more diverse camera
locations were estimated from a map consisting of 30 keyframes.

In a third experiment, we tested our approach in a motion capture system to compare the
improved pose against a metric ground truth. To avoid errors introduced by an imprecise pose-
graph of the third-party RGBDSLAM system, we created a small 3D map from a textured wall
consisting of just a single keyframe. The origin of this keyframe was located using an OptiTrack
motion tracking system from NaturalPoint with millimeter precision. Consequently, a camera
was localized from 15 tracked ground truth locations within this map. The initial pose estimate
using the state-of-the-art P3P system was compared to the result of the proposed optimization
algorithm using the ground truth locations of the camera.

3.3.9. Results and Discussion

Overall, 93% of all tested camera poses were recovered successfully within a small range of their
real location. In our experiments, the system was always able to detect unsuccessful localizations
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Figure 3.7.: Part of the desktop scene used in the experimental evaluation.

Cluttered Desktop Wall

Successful localizations 97% 90% 87%

False-positive localizations 0 0 0

Improvement of the photometric error 19% 25% 10%

Scene depth (average) 2 m 1.5 m 0.8 m

Position update (average) 0.05 m 0.05 m 0.02 m

Position update (maximum) 0.19 m 0.19 m 0.03 m

Orientation update (average) 1.5◦ 0.9◦ 0.5◦

Orientation update (maximum) 6.6◦ 4.2◦ 1.5◦

Distance from closest keyframe (avg.) 0.70 m 0.95 m 0.20 m

Table 3.1.: Comparison of the results for the three environments.
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Figure 3.8.: Improvement of the photometric error after the iterative refinement of 118 camera pose
estimates. (a) Improvement of the photometric error for each image together with the
median for all 118 camera poses. 4 trials with improvements of more than 100% are
not shown. (b) Histogram of the relative photometric error.

attempts. Hence, it did not report any false-positive localizations. The major results for all three
experiments are summarized in Tab. 3.1.

Experiment on a Cluttered Environment

In the first experiment, 126 out of 130 camera locations were successfully recovered in the initial
global localization step. In 2 instances, the state-of-the-art P3P based global initialization step
failed to predict a camera location at all, while in the remaining 2 instances, a wrong initial
estimate was returned. Opposed to existing approaches, our system was able to detect these 2
false positives by construction since the predicted view and the real image did not match. In an
additional 8 cases, the iterative error minimization process was unable to further improve the
initial estimate. Figure 3.8a shows the improvement of the photometric error for the remaining
118 trials. Here, the initial camera pose estimate was refined by 0.004 m to 0.190 m with an
average of 0.046 m. The orientation estimate was improved by 0.02◦ to 6.55◦ with an average
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Figure 3.9.: Influence of the number of refinement iterations on the relative photometric error
in percent together with the total distance the camera pose estimate was optimized
with respect to the initial estimate in [cm]. In blue, the number of the 118 camera
localization trials which passed an iteration without reaching the termination criterion
as defined in Sec. 3.3.6 is plotted. The number of this trial instances is plotted in units
of [10].

of 1.45◦. The improved estimate of the camera pose in average reduced the photometric error
by 19.27% with respect to the synthesized view from the initial pose estimate. The median was
8.45% (see Fig. 3.8b). In four cases of poor initial pose estimates, the relative photometric error
was improved by 100% up to 334%.

In Fig. 3.9, the influence of each iteration during the camera position refinement process on the
photometric error is visualized together with the distance the camera pose has been corrected
from the initial estimate. The plot also illustrates the number of images that did not reach
the termination criterion (as defined in Sec. 3.3.6) after each iteration. It becomes clear that,
after approximately 8 iterations, the gained improvement per iteration does not justify further
optimization in most cases. Depending on the required precision, the optimization phase could
be shortened by choosing a more relaxed termination criterion at the expense of less accurate
pose estimates.

The reduction of the photometric error is visualized in Fig. 3.10 by an exemplary camera pose
estimation in each of the three environments. The actual camera image was subtracted from
the synthesized view before and after the pose refinement process.

During all localization trials, we also recorded the keyframes of the 3D map with closest
distance to the camera to investigate the viewpoint invariance of our system. For some images,
the camera was located up to 2.01 m away or was rotated by up to 61.9◦ with respect to the
closest keyframe. In average, the distance between the camera and the closest keyframe was
0.695 m while the average orientation difference was 13.4◦. Figure 3.11b shows an image of the
monocular camera next to the image of the closest keyframe in Fig. 3.11c. Clearly, the proposed
system is robust to different viewpoints of the camera with respect to the trajectory of the
RGBD sensor during the creation of the 3D map.

In the current implementation, all computations were carried out on a single core of a laptop
CPU. Thus, the computation of the initial P3P based global localization took in average 0.25 s
while the generation of each synthesized image took 0.75 s. Each image alignment required
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3.3. Global Localization of a Camera in 3D Maps through Photometric-Error Minimization

0.05 s. Thus, without the availability of specialized hardware, such as a GPU, the proposed pre-
cise localization framework would be a good choice for a periodical background map-alignment
process. To use this CPU-based system for pure pose tracking, additional fusion with other
state estimation sensors, such as odometry readings or an inertial measurement unit, would
be necessary for high frequency estimates. However, when implemented on a GPU, real-time
performance should be achievable since GPUs are tailored for image rendering and alignment.
Depending on the design of the experimental setup, additional network transportation delays
have to be considered.

Experiment on a Desktop Scene

Due to the smaller number of keyframes compared to the box environment that was used to cover
a similarly sized environment, the average distance between the camera and the trajectory of the
RGBD sensor during map creation was 0.95 m and therefore the rate of successful localization
was slightly lower at 90%. This drop is due to more frequent failures of the initial P3P pose
estimation, while in all other cases our system was able to improve the estimate above the state-
of-the-art. Over the 90% of successful localizations, on this dataset, our algorithm was able to
reduce the average photometric error by 25%. All other results support the findings of the first
experiment.

Experiment with Ground Truth Comparison

All 15 localization attempts were successful and in 13 cases our algorithm was able to improve
the camera pose estimate by up to 0.03 m with respect to the ground truth location in the given
small environment of less than 1 m in depth. In two cases, the initial estimate could not be
improved any further. This finding underlines that our system also allows to globally improve
the pose estimate with respect to an external world frame, provided that an ideal map is given.
In this small and planar environment, the state-of-the-art approach provides good results as well
and thus the additional improvement of our system is smaller compared to the other experiments.

3.3.10. Conclusions

In this work, we proposed a method to precisely estimate the pose of a monocular camera with
respect to a dense 3D map. For this purpose, we first calculate an initial global estimate of the
camera pose by solving the P3P problem embedded in a RANSAC framework. Afterwards, this
initial state-of-the-art pose estimate is further refined locally in a novel iterative analysis-by-
synthesis process which aims to minimize the photometric error between the rendered view of
the 3D map from the estimated camera pose and the real camera image. Thus, all information
captured within the camera image is exploited. For this purpose, a rendered view of the map
from the estimated camera pose is aligned in 6 DoF to the actual camera image.

The system proved to be able to precisely localize the camera in 93% of the tested cases
while not producing any false-positive localizations. Furthermore, our algorithm was shown to
be robust to different camera viewpoints with respect to the 3D map. Experiments with an
optical tracking system demonstrated that the proposed system not only improves the camera
pose estimate with respect to the 3D map but also the estimate of its real world location.
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Our work can be exploited for the mutual localization of two or more robots where only one is
equipped with an dense mapping system. Therefore, our analysis-by-synthesis approach could
greatly improve efficiency in multi-agent joint operations, such as rescue scenarios even in mixed
human-robot teams.

3.3.11. Future Work

Currently, we are exploring possibilities to achieve real-time performance through the exploita-
tion of current small-scale GPUs which became available even on board level computers recently.
We expect that especially the time consuming rendering process of the synthesized camera image
will benefit largely from the use of dedicated parallel hardware. A similar increase in perfor-
mance can be expected for the other stages of our algorithm such as the SIFT feature detection
as well as the image alignment process.

3.3.12. Acknowledgments

The authors like to thank Christian Foster for his contribution to the implementation of the
image alignment process and furthermore Matia Pizzoli for the joint efforts to create the collected
datasets.
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4. Conclusions and Future Work

In this final chapter, we summarize our work and discuss future directions of research.

4.1. Conclusions

Robust and reliable state estimation is one of the essential components for the control of any
robot. For operations independent from designated ground stations and external tracking sys-
tem, such as, GPS or motion tracking systems, all required computations have to be carried
out relying solely on onboard hardware and sensors. In this thesis, we addressed the problem of
ego-motion estimation for flying robots, in particular quadrotor UAVs. Additionally, we propose
approaches to tackle the mutual localization problem that arises from multi robot scenarios. Our
major achievements could be summarized as follows:

• Velocity estimation from the decomposition of optical flow based on the continuous homo-
grapy constraint using increasing amounts of information from onboard gyroscopes [Grabe
et al., 2012a]

• Outlier rejection techniques to detect planar patches within the scene to increase the
robustness of the least-square optimization based velocity estimates [Grabe et al., 2012b]

• Presentation of a nonlinear sensor fusion approach with IMU measurements to recover the
metric scene depth and therefore the metric scale of the velocity estimates [Grabe et al.,
2013a, 2014]

• Characterization of the convergence behavior for the scale estimation filter [Grabe et al.,
2014]

• Formation control based on the visual observation of bearing angles towards the other
members of the formation [Franchi et al., 2012], [Grabe et al., 2011, unpub.]

• Precise localization of a camera with respect to a dense map using an analysis-by-synthesis
approach [Grabe and Scaramuzza, 2014]

• Release of parts of the underlying code to the public by means of the freely available
TeleKyb control framework for UAVs [Grabe et al., 2013b]

In Section 2.2, we presented a method to estimate the velocity of a quadrotor UAV from the
decomposition of optical flow given by consecutive observations from a down-facing monocular
camera. In particular, we compared three different levels of gyroscope integration to simplify and
improve the computed estimates. While the resulting velocity estimates are naturally not metric,
we found our systems to yield highly accurate results in various experiments. Therefore, these
estimates can be used for a lightweight directional human-in-the-loop control of real quadrotor
UAVs. In this scenario, the human operator compensates the lacking metric scale factor with
experience.

Using advanced outlier filtering techniques as presented in Sec. 2.3, we were able to segment
features on planar patches of the scene to increase the robustness of the previously presented
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approach. This is particularly important when relying on optimizations in the least-square sense
since their accuracy is known to be affected by outliers. Thus, using our method, we are not only
able to segment both objects on a planar scene or planar patches in an otherwise non-planar
environment, but also drastically improve state estimates based on homography constraints such
as the presented algorithm to recover the ego-motion of a quadrotor UAV.

In Section 2.4, we introduced a novel nonlinear observer to fuse non-metric velocity estimates
from the visual system with metric readings from accelerometers to obtain the metric scale factor
for the visual velocity estimates. In extensive experiments, we compared the proposed filter to
an EKF implementation. For both simulated and recorded data, we found a highly improved
convergence rate. Additionally, the fully characterized exponential convergence behavior allows
to predict the otherwise unknown error of the scale factor for the acceleration profile of the
robot. This has not been possible using any of the existing approaches. A gain factor allows
to regulate between a fast conference rate and a noisy estimate depending on the requirements
imposed by the current task. Having integrated this ego-motion estimation system into our
control framework TeleKyb [Grabe et al., 2013b], we were able to present the first results from
a closed-loop flight of a quadrotor UAV relying purely on onboard sensors and computations.
As opposed to other approaches based on global pose estimation, the presented velocity based
approach is robust to short temporary failures of the vision system since it does not require the
interruption-free localization with respect to a map.

Being able to control a UAV using only onboard resources, we addressed the problem of mutual
robot localization for joint operations of multiple robots in Sec. 3. In particular, whenever a
direct line of sight exists among a sufficiently large subset of robots in a formation, we presented
a control algorithm based on optically detected bearing angles to the other members of the
formation in Sec. 3.2. We also provide a solution to overcome limited field of views when using
actual camera hardware. The approach does not require knowledge of metric distances within
the formation since they are often difficult to obtain by means of onboard sensors. Again,
we suggest a human-in-the-loop approach to counteract for potential drift. The system was
validated using a setup of three real quadrotor UAVs that relied on onboard visual bearing
angle detection systems.

For situations in cluttered environments where a direct visual detection among the robots
is impossible, in Sec. 3.3, we provide a solution to precisely globally localize a camera with
respect to a dense 3D map. Hereby, the map could be equally well obtained using either an
RGBD sensor or, e.g., a monocular dense reconstruction approach. An experimental evaluation
demonstrated that our analysis-by-synthesis approach can achieve a considerable improvement
over current state-of-the-art techniques. Naturally, apart from the localization of one robot with
respect to a second, our approach could also be used to fuse multiple maps more precisely.

To conclude this thesis, we were able to develop and rigorously test a quadrotor UAV that is
able to autonomously execute velocity commands by tracking the current metric velocity purely
by means of onboard hardware: a camera, an IMU, and a small processing unit. We then
developed two approaches that allow vision guided UAVs to collaborate in a multi robot setup.
Here, we consider both a formation controller based on direct visual bearing angle observations
and the indirect localization of a camera with respect to a dense 3D map created by an arbitrary
visual dense mapping approach.
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4.2. Future Work

In this global future work section, we particularly address new directions of research in the field
of multi modal mapping related problems. Future work directly linked to one of the projects
described in detail in Chapter 2 and 3, such as improvements and extensions, can be found in
the respective future work sections.

The localization and pose estimation problem has been widely addressed for individual robots.
In particular, in Chapter 2, we extensively addressed the problem of a camera based velocity
estimation and control of a quadrotor UAV. In most cases found in the literature, the robot uses
a single set of sensors exclusively for this task, e.g., laser range finders or cameras. However, the
problem of mutual localization among different robots using different means of localization has
remained an open challenge. Nevertheless, this problem is essential for any fail-safe cooperation
among multiple robots without the need for a designated supervising base station. In Sec. 3.3, we
introduced a precise algorithm to localize a camera equipped robot within a dense map created
by another agent carrying, e.g., an RGBD sensor. However, in the future, we plan to extend
our work and address further sensor combinations. In the following Sec. 4.2.1, we discuss initial
results on the localization of a ground robot equipped with a laser range finder within a dense
3D map. Afterwards, in Sec. 4.2.2, we take a more general approach to map an environment
using a heterogeneous set of robots and sensors in an optimal way.

4.2.1. Localization of a Laser Range Finder in a dense 3D map

Up to today, most ground robots still rely on two dimensional laser range finders as their ma-
jor source of information on their environment. While laser scanners as a sensor are neither a
cheap nor particularly light source of information, they provide reliable metric distance mea-
surements to all objects surrounding the robot. This enables simple obstacle avoidance routines
but the low amount of perceived information does not allow for efficient localization or mapping
algorithms. In fact, even well received literature in the field does not cover the problem of
mapping the environment but only address the localization problem within an already provided
map [Thrun et al., 2006]. For the full SLAM problem, the freely available GMapping frame-
work uses a Rao-Blackwellized particle filter to build up a grid map as the vehicle traverses the
environment [Grisetti et al., 2007].

However, current smaller autonomous robots including most areal systems rely on light and
versatile cameras to map the environment. Especially for the emerging number of projects
addressing air–ground collaboration, e.g. [EU Collaborative Project ICT-600958; Forster et al.,
2013], a localization of the ground robot within the map created by a flying camera would be
highly desirable. However, to the best of our knowledge, the problem of localizing a laser range
finder within a map built by a different sensor has not been addressed so far.

Problem Description

In this project, we plan to solve the following problem: given a sufficiently large dense 3D map,
localize a 2D laser scanner within this map. The required map could be obtained from either
RGBD ’Kinect like’ sensors, dense stereo systems, or scale aware dense monocular systems. To
facilitate this six dimensional problem, we assume the availability of orientation estimates for
all sensors involved. Thus, the orientation of the laser scan plane relative to the dense map is
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known and reduces the problem to four dimensions: the 3D location and the yaw orientation of
the laser scanner. Using orientation estimates from magnetometers, the problem could even be
reduced to three Cartesian dimensions.

Proposed Methodology

Similar to our proposed solution for a precise localization of a camera within a dense map,
we propose a particle filter combined with an analysis-by-synthesis approach to address the
described problem. Depending on the availability of initial location priors, particles representing
potential locations of the laser range finder are distributed over the three or four dimensional
search space. The location of all particles is then updated by comparing a synthesized laser scan
for each particle with the actual scan obtained from the real laser range finder. After an outlier
removal step, a current efficient implementation of the Iterative Closest Point (ICP) algorithm
such as, e.g., [Pomerleau et al., 2013] could be used to update the location of the particles
to minimize the difference between the observed and the simulated laser scan points. Using
a sufficiently dense initial particle set, the predicted location of the laser range finder should
eventually converge into the real location.

The key component of the proposed approach is the synthesis of the predicted laser scan from
a given pose within the dense 3D map. Since this simulation has to be carried out multiple
times per second for all > 1000 particles, this algorithm needs to be highly time efficient. To
this end, we propose the following steps:

1. A virtual plane is placed in the dense map. This plane has to include the given location of
the particle and have the known orientation of the laser range finder with respect to the
3D map.

2. All points of the dense map for which the distance to the plane along its normal is smaller
than a threshold are projected onto the plane. This threshold could additionally depend
on the distance to the particle to reflect orientation uncertainties.

3. All points on the plane that are not actually visible to the scanner are removed. To avoid
a quadratic computational complexity with the number of points on the plane, all points
could be first clustered into angle segments (corresponding to the angular resolution of the
scanner) and only the closest point within each segment is rendered into the final scan.
Correctly implemented, this procedure even achieves linear complexity with the number
of points on the plane.

Initial Results

For initial tests, we rigidly connected a monocular camera and a Hokuyo URG-04LX-UG01
laser scanner and localized the camera within a previously created sparse map of visual SIFT
features [Lowe, 2004]. From this initial estimate and the known relative pose of the laser scanner
with respect to the camera, we predicted the laser scan within the sparse map. The resulting
synthesized scans before any possible ICP based pose optimization can be seen in Fig. 4.1
together with the real scan for two different environments. Although the map has been sparse
for this initial test which resulted in blind spots for uniform areas without rich textures and
therefore only few SIFT features (see, e.g., the lower part of Fig. 4.1a), the quality of the
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(a)

(b)

Figure 4.1.: Initial results for the simulation of a laser scan in comparison to a scan obtained from
a real laser range finder. The white circle in the center denotes the location of the
laser scanner. Red dots indicate intersections of laser scan rays with objects while
green dots represent expected scan points as predicted based on a metric sparse 3D
map. (a) Environment with wall, floor, and cardboard box. (b) Environment with a
gap between two tables.
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synthesized laser scans appears to be suitable for further pose optimization steps based on the
ICP algorithm.

4.2.2. Multimodal Mapping

Robots are usually equipped with a minimal set of sensors that suffices the need of their appli-
cation best. Furthermore, most robots are still intended for isolated use, potentially even in a
constrained environment without other robots, humans, or even stationary obstacles. Therefore,
a wide range of sensors is used on robots in general, but most localization or SLAM algorithms
are highly specific for one particular type of sensor. Naturally, this complicates the localization
problem among a set of heterogeneous robots using a variety of different sensors. Equally, since
they are unable to localize themselves with respect to each other, the robots cannot contribute
to one common map. From this observation, the problem of multimodal mapping arises.

Problem Description

Consider the problem of a swarm of heterogeneous robots that are supposed to collaboratively
map a certain environment using different sensors. The resulting map should unite the mea-
surements and conclusions from all sensors involved. Similarly, the data structure should allow
to combine the findings from multiple robots and sensors to draw new conclusions on the en-
vironment. Therefore, observations of the same physical point in the environment by different
sensors need to be clustered into one joint observation once the uncertainty has converged.

Discussion

The problem could be addressed by providing pairwise localizations techniques among all dif-
ferent sensors of interest. In this sense, the approach to localize a camera with respect to a
dense map created from, e.g., an RGBD sensor, stereo, or monocular dense tracking in Sec. 3.3
and the considerations made in Sec. 4.2.1 for laser range finders and dense maps provide partial
solutions. However, the different physical principles underlying the sensors require adequate
considerations concerning the different noise and error characteristics. Providing individual so-
lutions for all pairs of senors might not provide the necessary flexibility to dynamically integrate
all collected information in one common framework.

Therefore, an optimization in the least-square sense similar to bundle-adjustment could be
used to find a map that minimizes the uncertainties of all sensor observations. This process would
have to be iterative since converged uncertainties could create new links between observations.
Regions with high uncertainties for a particular sensor could be revisited by a robot with the
appropriate sensor in a multi-robot multi-sensor active mapping approach.

Clearly, this project would be of high complexity but might start an entirely new field of
robotic research with new applications that allow for a higher level of implicit autonomy.
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A. Hardware Description

A.1. Quadrotor UAV

The quadrotor UAVs from Mikrokopter1 used in all experiments measure 0.55 m in diameter and
typically have a total mass of 1.3 kg in flight with all sensors attached. For some experiments,
extended legs were used to guarantee a focused camera image even when landed. Each motor
produces a maximum thrust of 5 N which provides the quadrotor with a maximum vertical
acceleration of 5.2 m/s2. All computational components are centered in the middle of the UAV.
A low-level flight controller is implemented on either an Atmega 644p or 1284p microcontroller.
The low-level control loop regulates the attitude (roll φ, pitch θ, and yaw ψ) and the thrust
of the quadrotor by means of a PID controller with a frequency of 480 Hz with respect to the
data provided by an integrated IMU. Please note that this IMU is otherwise not used for any
sensor fusion purposes (compare Sec. A.3). The desired values for φ, θ, and ψ are read with a
frequency of ∼ 100 Hz from the serial port.

A.2. Cameras

In the following, we list all cameras that have been used throughout our experiments. For all
cameras, the calibration has been done before the experiments using the camera calibration
toolbox for Matlab2. To save computational time, for each camera, a lookup table holding
the bearing angles for all pixels in the image has been numerically pre-calculated. The values
were linearly interpolated between these precomputed values to gain an approximate sub-pixel
accuracy.

A.2.1. BlueFox Camera

For most experiments, a MatrixVision3 BlueFox monochrome camera was used. A 140◦ lens
projected a field-of-view of approximately 100◦ onto the 752 × 480 pixel 1/3′′ global shutter
sensor. The camera is capable to deliver up to 90 images per second.

A.2.2. Playstation Eye 3 Camera

For the experiments discussed in Sec. 3.2.3, we decided to use a modified low cost Sony Playsta-
tion Eye 34 color camera, originally designed for the consumer market. The camera is able to
provide 60 frames of 640× 480 pixel per second. With the casing removed, the camera weights

1http://www.mikrokopter.de
2http://www.vision.caltech.edu/bouguetj/calib_doc/
3http://www.matrix-vision.com
4http://www.playstation.com/
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A. Hardware Description

25 g including the lens. To increase the FOV, we removed the original lens and attached a
default M12 lens holder together with a filter for infrared light. For most experiments, we used
a 140◦ lens which projects an image of 90◦ × 65◦ onto the 1/4′′ sensor. The camera in its final
configuration can be seen in Fig. 3.2b. Black tape was used to shield the sensor from scattered
light.

A.3. Inertia Measurement Unit

For most experiments, the quadrotor was equipped with an additional 3DM-GX3-25 IMU from
MicroStrain5 to provide the measurements of the specific acceleration, angular velocity, magnetic
field vector, temperature, and gravitational vector at 200 Hz. The gravitational vector was
estimated internally within the IMU via fusion of the measurements from the accelerometer,
rate gyroscopes, temperature sensor, and a 3D magnetometer (see Sec. 2.5.6 for an analysis of
this orientation estimate).

A.4. Single Core Processing Board

For all onboard computations, we have first used a small Intel Atom QSeven board which was
mounted underneath the quadrotor (Figure 3.2c3). The CPU operated with 1, 66 GHz and used
1 GB of RAM. The Linux operating system loaded from a 8 GB flash ROM chip and could access
additional storage on an external SD-Card. A WiFi adapter as well as camera and IMU were
attached via default USB plugs. A GPU was not available.

A.5. Dual Core Processing Board

For all later work, the onboard processing was carried out on a small PC with an Intel Atom
1.8 GHz dual core processing unit and 4 GB of memory. The Linux operating system was stored
on a fast 32 GB Compact Flash card. Again, all sensors were connected by means of USB while
a WiFi card occupied the internal PCI-Express port. This PC did not feature a GPU.

A.6. Software

For the control of the quadrotors in all experiments, we make use of our free and open TeleKyb
framework [Grabe et al., 2013b]. All image processing steps rely on methods from the OpenCV6

library. Inter process communication between the many different parts of our software is based
on the Robot Operating System (ROS)7.

5http://www.microstrain.com/
6http://opencv.org/
7http://www.ros.org/
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