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Zusammenfassung

Sinnesreize wie Töne, Bilder oder Gerüche gelangen ins Nervensystem, indem sie von
Rezeptorzellen kodiert werden. Nur die Informationen, die in Rezeptorzellen aufgenom-
men werden, können weiter verarbeitet werden, eine Empfindung erzeugen und das
Verhalten beeinflussen. Wie im gesamten Nervensystem, werden auch hier Sinnesreize
nicht in Einzelneuronen, sondern in Neuronenpopulationen kodiert. Einzelneurone in
derartigen Populationen unterscheiden sich oft untereinander in ihren Antworteigen-
schaften, ein Phänomen, das man Heterogenität nennt. Diese Dissertation befasst sich
damit, wie Sinnesreize in heterogenen Rezeptorpopulationen kodiert werden. Dies
habe ich am Beispiel der Kodierung von Kommunikationssignalen in Populationen
von Elektrorezeptoren des schwach-elektrischen Fisches Apteronotus leptorhynchus un-
tersucht. Bevor ich im Folgenden die Ergebnisse genauer darstelle, möchte ich hier
einen Überblick über die Herangehensweise geben: Zunächst habe ich die Antworten
einzelner Rezeptorzellen auf Kommunikationssignale mittels elektrophysiologischer Un-
tersuchungen beschrieben. Der Fokus lag hierbei auf der Kodierung dieser Signale bei
verschiedenen, natürlich vorkommenden Kontexten. Auf den so erlangten Ergebnis-
sen aufbauend, habe ich ein Computermodel entwickelt, das auf die Anworten auf sta-
tische Stimuli angepasst wurde und Rezeptorantworten auf dynamische Stimuli mit ho-
her Genauigkeit nachbildete. Das Modell ermöglichte die Simulation einer Population
von Neuronen, deren Heterogenität der der natürlichen Population entspricht. Somit
habe ich schließlich den Einfluss von Heterogenität auf die Kodierung eines natür-
lich vorkommenden, verhaltensrelevanten Signals in Rezeptorpopulationen untersucht.
Um heterogene Populationen zu untersuchen, sind Messungen vieler verschiedener
Zellen notwendig, die nur mittels Modellsimulationen möglich sind.

Schwach-elektrische Fische erzeugen ein elektrisches Feld (electric organ discharge,
EOD), das sie fortwährend wahrnehmen. Sie benutzen Modulationen desselben, um
Gegenstände zu detektieren oder mit anderen Fischen zu kommunizieren. Sie sind ein
etabliertes Modellsystem, um Sinneswahrnehmung zu untersuchen. Das EOD lässt sich
in Experimenten leicht beobachten und simulieren. Eine Verhaltensantwort dieser Fis-
che – die Jamming Avoidance Response – stellt eines der wenigen Beispiele dar, bei
denen von der Sinneswahrnehmung bis hin zur Erzeugung des Verhaltens jede Stufe
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der Informationsverarbeitung beschrieben ist. A. leptorhynchus erzeugt ein quasisinu-
soidales EOD, dessen Frequenz im Zeitablauf extrem stabil ist. Allerdings modulieren
die Fische die EOD-Frequenz, um zu kommunizieren. Meine Arbeit befasst sich aus-
schließlich mit Chirps. Chirps sind ein gut beschriebenes Kommunikationssignal, bei
dem ein Fisch seine EOD-Frequenz vorübergehend erhöht.

Chirps treten vor dem Hintergrund einer sogenannten Schwebung auf, die sich
bildet, wenn sich die EODs zweier Fische überlagern. Schwebungen sind sinusoidale
Amplitudenmodulationen (AM) des EODs. Die Frequenz einer Schwebung ergibt sich
aus dem Frequenzunterschied der beiden Einzelsignale, in diesem Fall der EOD-Fre-
quenzen zweier Fische, die miteinander kommunizieren. Bei A. leptorhynchus treten
Schwebungsfrequenzen zwischen wenigen und einigen Hundert Hertz auf. Da die
EOD-Frequenz von Geschlecht, Größe und sozialem Status eines Tieres abhängt, bildet
die Schwebungsfrequenz einer Begegnung ab, ob beide Fische sich in diesen Eigen-
schaften ähneln (bei niedrigen Schwebungsfrequenzen) oder nicht (bei hohen Schwe-
bungsfrequenzen). AMs der EOD werden in erster Linie von P-typ Elektrorezeptoren
(P-units) kodiert. Ich habe mich auf einen Typ Chirp, den kleinen Chirp, konzentriert.
P-unit-Antworten auf kleine Chirps wurden bisher nur bei niedrigen Schwebungsfre-
quenzen untersucht. Die Fische produzieren das Signal allerdings bei vielen, unter-
schiedlichen Schwebungen. Die Frage des ersten Projektes lautete daher: Beeinflusst die
zugrunde liegende Schwebung die Kodierung eines Chirps in P-typ Elektrorezeptoren?

Ein Chirp unterbricht die gleichmäßige Amplitudenmodulation einer Schwebung
und verändert sie in einer Weise, die von der Schwebungsfrequenz und -phase ab-
hängt. Die Ergebnisse meiner elektrophysiologischen Ableitungen zeigen, dass die
Antworten von P-units ebenfalls von der zugrundeliegenden Schwebung beeinflusst
sind: Die Neurone antworteten je nach Schwebungsfrequenz entweder durch Synchro-
nisation oder durch Desynchronisation auf einen kleinen Chirp. Bei langsamen Schwe-
bungen spielte zudem die Phase der Schwebung eine entscheidende Rolle für die P-
unit Antwort. Die P-unit-Antworten unterteilen den Bereich natürlich vorkommender
Schwebungsfrequenzen in vier Abschnitte. Diese Unterteilung entspricht keinem heute
bekannten Verhalten. Bisher wird angenommen, dass kleine Chirps unabhängig von
der Schwebung dieselbe Verhaltensrelevanz haben. Meine Ergebnisse stellen diese An-
nahme jedoch in Frage. Sie deuten an, dass die Wahrnehmung eines Chirps vom Hin-
tergrund, dem Kontext, abhängt und Chirps somit je nach Schwebungsfrequenz unter-
schiedliche Verhaltensantworten auslösen könnten.

Die Frequenzselektivität der P-units, das heißt, wie diese auf Schwebungen unter-
schiedlicher Frequenz reagieren, bestimmt ihre Antwort auf Chirps. Ein einfaches Mo-
dell konnte vorhersagen, ob ein Chirp die Aktivität synchronisieren oder desynchro-
nisieren würde und zwar, indem es ausschließlich die Frequenzselektivität zusammen
mit der Frequenz der Amplitudenmodulation in Betracht nahm, die sich aus Chirp- und
Schwebungsfrequenz ergibt. Die Aussagekraft der Frequenzselektivität in Bezug auf
die P-unit-Antworten führte zu der Frage, auf der das nächste Projekt aufbaute: Welche
Mechanismen bilden die Grundlage der Frequenzselektivität von P-units? Zur Behandlung
dieser Frage habe ich ein Leaky Integrate-and-Fire-Modell entwickelt, um die Antwor-
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ten von P-units nachzubilden. Ich habe das Modell zu konstantem EOD und zu Stufen-
reizen kalibriert. Das Modell konnte dann die Antworten der entsprechenden Zelle
detailliert reproduzieren.

Das Modell weist gegenüber Sinus- und Rauschstimuli außerdem dieselbe Frequenz-
selektivität auf wie die Zelle. Die Frequenzselektivität ergibt sich damit direkt aus den
Antworten auf konstante Stufenreize. Frühere P-unit Modelle hatte jeweils nur eine
Eigenschaft der P-units korrekt nachgebildet – die phasengekoppelte Antwort auf kon-
stantes EOD oder die Frequenzselektivität zu Amplitudenmodulationen. Entscheidend
für die gute Abbildung beider P-unit-Antworten in meinem Modell ist ein dendritisches
Filter, dessen Parametrisierung ich aus den experimentellen Daten ableiten konnte. Das
Modell lässt sich sowohl über Reize als auch über Zellen sehr gut generalisieren. So
konnte das Modell zu allen P-units, von denen ich elektrophysiologisch abgeleitet hat-
ten, kalibriert werden. Diese P-units unterschieden sich zum Teil stark in ihren Eigen-
schaften wie mittlerer Aktionspotentialrate und Variabilität ihrer Antworten.

Dass das Modell Antworten verschiedener P-units nachbilden konnte, hat es mir
ermöglicht, heterogene Populationen zu simulieren, die natürlichen Populationen äh-
neln. Die Grundlage für diese Simulationen war eine genaue Charakterisierung der
Parametervariabilität. Diese war entstanden, wenn das Modell auf verschiedene Zellen,
oder aber mehrfach zu einer Zelle justiert worden war. Für alle Parameter konnte ich
Verteilungen beschreiben, aus denen ich neue, repräsentative Parameterkombinationen
ziehen konnte. So konnte ich eine größere Population bauen, die in der Heterogenität
ihrer Antworteigenschaften den natürlichen P-unit-Populationen entspricht. Außer-
dem reproduziert die Population die Antworten auf Chirpstimuli sowohl auf Einzelzell-
als auch auf Populationsebene. Ich konnte die Population daher nutzen, um die fol-
gende Frage zu untersuchen: Wie wirkt sich realitätsnahe Heterogenität auf die Popula-
tionskodierung eines natürlichen, verhaltensrelevanten Signals aus?

Eine genauere Untersuchung der Chirpantworten hat gezeigt, dass Einzelzellen mit
bestimmten Eigenschaften stärker auf bestimmte Chirpstimuli antworten. Allerdings
haben sich jeweils unterschiedliche Eigenschaften als günstig heraus gestellt, um unter-
schiedliche Chirps zu kodieren. Heterogenität könnte so sicherstellen, dass innerhalb
einer Population starke Antworten zu allen verschiedenen, natürlich vorkommenden
Reizen vorhanden sind. Eine heterogene Population hätte dann einen Vorteil gegenüber
einer homogenen Population, die bei einem gegebenen Reiz möglicherweise nur auf
schwache Antworten zurückgreifen kann. Der Vorteil der Heterogenität wurde nur
deshalb deutlich, weil ich die natürlich vorkommene Variabilität der Signale benutzt
habe.

Zusammenfassend lassen die Ergebnisse folgende Rückschlüsse auf die Informa-
tionskodierung in Elektrorezeptoren zu:

• Chirps werden je nach Kontext unterschiedlich in Rezeptorneuronen kodiert. Da
diese Kodierung den Rahmen für jede weitere Verarbeitung setzt, deutet dies
auf eine differentielle Empfindung und Bedeutung dieses Kommunikationssig-



xvi ZUSAMMENFASSUNG

nals für das Verhalten hin. Die Ergebnisse demonstrieren, wie durch genaue Un-
tersuchung der Physiologie Rückschlüsse auf das Verhalten möglich sind.

• Die Synchronität der Elektrorezeptoren ändert sich sehr schnell in Reaktion auf
einen Stimulus. Sie bildet linear die Frequenzen ab, die in einem Stimulus vorhan-
den sind. Der Mechanismus der Synchronitätsantwort ist sehr grundsätzlich und
könnte auch von Zellen in anderen Sinnessystemen angewandt werden.

• Ein einfaches Neuronenmodell kann die Antworten von P-units auf komplexe
und neuartige Stimuli genau vorhersagen. Das unterstreicht einerseits die Lineari-
tät der P-unit-Antworten, andererseits das Mächtigkeit einfacher Neuronenmo-
delle.

• Die Heterogenität der P-unit Population lässt sich durch Parametervariabilität
nachbilden. Verschiedene Einzelneurone erweisen sich als optimal für die Ko-
dierung einzelner Stimuli. Dies deutet an, dass eine heterogene Population ro-
buster darin ist, viele verschiedene Stimuli zu kodieren.

• Die Kernergebnisse meiner Arbeit ergaben sich erst, als ich die Variabilität natür-
licher Signale benutzte. Dies unterstreicht, wie essentiell eine genaue und voll-
ständige Betrachtung der natürlichen Sinnesreize für die Beschreibung eines Sin-
nessystems ist.



Summary

Sensory stimuli such as sound or light enter the nervous system through receptor cells.
Only the information that is encoded in receptor cells can be further processed, per-
ceived and eventually influence behaviour. As in other parts of the nervous system,
information is not taken up by a single receptor but by many receptor neurons that
form a population. Individual neurons in a population often differ slightly in the way
they encode a stimulus. The population is then said to exhibit heterogeneity. This thesis
deals with the encoding of sensory signals in heterogeneous populations of electrore-
ceptor neurons. The investigation is based on the example of the encoding of commu-
nication signals in electroreceptor populations in the weakly-electric fish Apteronotus
leptorhynchus. Before I describe the findings in detail, I want give an overview of the
methodological approach that was applied: I first characterised the responses of the re-
ceptor neurons to communication signals in a broad range of natural contexts via elec-
trophysiological recordings. Using these results, I developed a computational model
that was capable of reproducing the responses with a high degree of accuracy. The
model could reproduce the activity of neurons of different properties and therefore al-
lowed for a simulation of a heterogeneous population of model neurons. This enabled
me to investigate the encoding of a natural, behaviourally-relevant signal in a model
population whose heterogeneity resembles that of a natural population. The investiga-
tion of heterogeneous populations necessitates recordings of many cells, which are only
feasible in model simulations.

Weakly-electric fish generate an electric organ discharge (EOD) and use perturba-
tions and modulations of it to navigate and communicate. They have become an estab-
lished model system for the study of sensory encoding. The EOD can easily be observed
as well as simulated during experiments. One of the behavioural patterns of these fish,
the jamming avoidance response, represents one of the few examples of a behavioural
response in which every stage of neuronal processing, from sensation to behaviour, is
described. A. leptorhynchus generates a quasisinusoidal EOD with a frequency that is
very stable over time under baseline conditions. Frequency modulations are used by
the fish to communicate. I focused on chirps, which are well-studied communication
signals that consist of transient (on the order of milliseconds) increases in EOD fre-
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quency.
Chirps occur on top of beats, sinusoidal amplitude modulations (AM) formed by

the superposition of the EODs of two communicating fish. AMs are sensed by P-type
electroreceptors that are distributed over the whole body of the fish. The frequency of
the beat is determined by the difference between the EOD frequencies of the two fish. In
A. leptorhynchus beat frequencies range from a couple up to a couple of hundred hertz.
Since the EOD frequency of each fish depends on its gender, size and social status, the
beat frequency reflects how similar the fish are in these aspects. This thesis only deals
with the encoding of one type of chirp, the small chirp. The encoding of small chirps in
P-units has been studied only when superposed on a slow beat. However, chirps occur
on a range of different beat frequencies and the AMs they generate are influenced by
the underlying beat. My first question therefore was: Does the background beat influence
the encoding of small chirps in P-units?

My electrophysiological recordings show that the P-unit responses indeed strongly
depend on the underlying beat: P-units responded either by synchronisation or desyn-
chronisation to a small chirp depending on the beat frequency. The responses partition
the range of beat frequencies into four distinct regimes that do not correspond to known
behavioural categories. Chirps are assumed to have the same behavioural relevance re-
gardless of the underlying beat. My findings challenge this assumption suggesting that
the chirp might be perceived differently in different social encounters.

The P-unit response variations to chirps can be explained by their frequency tun-
ing. By taking into account only the P-units’ response to different frequencies and the
combined frequency of chirp and beat, a simple model could predict whether P-units
would be synchronised or desynchronised in response to a chirp. The importance of
the frequency tuning led to the question of the next project: Which mechanisms underlie
the P-unit frequency tuning? To approach this question, I developed a leaky integrate-
and-fire model to reproduce P-unit responses. The model was designed and calibrated
to baseline conditions and step stimuli and reproduces the P-units’ responses to these
stimuli very well.

Furthermore, the model exhibits the same frequency tuning to both sinusoidal and
random stimuli as the target P-unit. The frequency tuning is thus an emergent prop-
erty from the responses to constant EOD and step stimuli. Previous P-unit models had
typically reproduced either baseline activity or frequency tuning. Crucial for the good
fit of my model to both these responses is a dendritic filter that I could derive from the
electrophysiological data. It allows for a correct reproduction of phase-locked responses
to the EOD and responses to AMs. The model exhibits a high degree of generalisability,
not across stimulation paradigms, but also cells. It could be fit to all P-units we had
recorded from, although they differed substantially in various physiological properties
such as rate and variability of the baseline discharge.

The latter feature of the model allowed me to simulate a model population with
natural-like heterogeneity. A detailed characterization of the parameter variability un-
derlying the fits to different P-units formed the basis for the simulation. By defining
parameter distributions and drawing new representative values from them, I was able
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to build a large population of model neurons. It resembles the heterogeneity of P-units
in terms of baseline response characteristics. It also reproduces chirp responses on the
single cell level as well as in terms of population response. It thus allowed for the in-
vestigation of the question: How does natural-like heterogeneity influence the encoding of a
well-described, behaviourally relevant signal in a neuron model population?

Chirp responses of single model neurons within the population differ systematically
with baseline characteristics. Model neurons of certain baseline characteristic encode
a chirp better than others. However, this relationship depends on the parameters of
the chirp and beat. For different beat-chirp combinations, P-units with different char-
acteristics are best suited. My findings suggest that a heterogeneous population has an
advantage in encoding natural signals, because it has access to good responses to all
possible stimuli. For some stimuli homogeneous populations might only possess weak
responses, although they are well suited for others. The benefit of heterogeneity was
thus only revealed because I took into account a range of naturally occurring signals.

Overall, these finding allow the following implications on information coding in
electroreceptor cells:

• Electroreceptors encode small chirps differently depending on the context. Since
this encoding sets the frame for any subsequent processing, it suggests a differ-
ential perception and behavioural relevance of this communication signal. This
demonstrates how a detailed investigation of the physiology can allow for predic-
tions of the behaviour of an animal.

• The synchrony response of electroreceptors is fast and linear. It reflects the fre-
quencies of a stimulus and changes quickly upon changes therein. Since the mech-
anism that underlies the response does not require unique properties of the cells,
it could also be applied by cells in other sensory modalities for the encoding of
fast, transient signals.

• A simple model of spike generation can reproduce the responses of electrorecep-
tors to complex, novel stimuli. This emphasises the linearity of the responses, but
also the power of simple neuron models.

• The heterogeneity of the electroreceptor population can be reproduced by vary-
ing the parameter values in the model. Different neurons encode different stimuli
optimally. suggesting that a heterogeneous population has an advantage over a
homogeneous popuation, because it can encode all different naturally occurring
stimuli. This indicates that the whole natural stimulus ensemble might put a se-
lective pressure on the development of a neuron population.

• Important aspects of my findings only became evident when taking into account
the variability of natural stimuli. This highlights the importance of a detailed ob-
servation of the natural sensory environment when characterising a sensory sys-
tem.
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Part I. INTRODUCTION





Preface

Only through their senses do animals have access to information about the external
world. In sensory receptors an environmental stimulus is transduced via mechanical or
chemical processes into electrical cell activity, extensively processed in subsequent neu-
ral networks and transformed into an internal representation. Any behaviour is based
on this neuronal representation. The nervous system constitutes a close link between
sensation and behaviour. This implies that all neural processing of sensory informa-
tion takes place with respect to the behavioural relevance. Similarly, any behavioural
response to a stimulus is limited by the ability of the nervous system to represent this
stimulus. An integrated description of how neural responses and behaviour change
during the interaction of an animal with its environment is therefore beneficial for both
physiologists and ethologists.

In this thesis I studies the encoding of communication signals in sensory neurons of
the weakly-electric fish Apteronotus leptorhynchus with a focus on the range of naturally
occurring signals. The signal occurs on a background that represents the encounter with
a second fish. The background continuously varies the electrocommunication signal as
well as the corresponding behaviour. Recent studies had shown that the signal is per-
ceived at all backgrounds. This finding set the starting point for studying the represen-
tation of various combinations of background and signal in receptor cells. Information
is encoded in a population of these neurons rather than in single cells. I studied the sig-
nal encoding in single neurons by electrophysiological recordings and then reproduced
population responses by computational modelling.

In this first part of the thesis I will introduce general aspects of neuronal informa-
tion processing as well as the model system that was used to tackle the questions that
were asked in the other parts. It is divided into two parts: The first chapter, “Sensory
Coding”, deals with general questions on neural information encoding and how this is
influenced by the sensory world. The second chapter is called “Electrosensory System”
and introduces the electrosensory system and its communication signals, leading to the
specific research questions that were investigated in the thesis.





Chapter 1
Sensory Coding

Characterising the rules that underlie the translation from an environmental variable
to neuronal activity is a central goal of neuroscience. Many aspects of this translation
are the subject of extensive investigation. In the temporal dimension this concerns the
features of single neuron activity that carry information. On the spatial scale the dis-
tribution of information over groups of neurons is explored, as is the question of how
information is propagated between neurons. Together, the facets of neuronal activity
that represent information constitute the neural code. Some of the questions regard-
ing the neural code shall be introduced in this chapter setting the framework for the
questions addressed in this thesis. For detailed reviews on information coding see for
example Panzeri et al., 2010; Rolls and Treves, 2011.

Opening the introduction will a description on how information can be stored in
neural activity. I will start with the different ways single neurons can embed informa-
tion, proceed with the same for neuron populations and eventually come to the prop-
agation of information between neurons. Along the way noise and heterogeneity in
neurons shall be introduced. The last part then deals with the influences that the choice
of stimulation paradigm can have on the study of sensory encoding.

1.1 Information Coding in Single Neurons

Single neurons are the building blocks of the nervous system (Cajal, 1899). Since acti-
vation of a vast majority of them evokes action potentials and mainly action potentials
get transmitted between neurons, patterns of action potentials are regarded as the main
carrier of information in the nervous system. A neuron that is stimulated with an ap-
propriate stimulus changes its neural activity in a stimulus-dependant way, thereby en-
coding the stimulus characteristics. There are, however, several ways in which it could
do so and thus many ways in which information could be embedded in the pattern of
generated action potentials. I will in the following refer to action potentials as spikes, a
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term used equivalently. Temporal series of action potentials are also referred to as spike
trains.

The most basic measure of a neuron’s activity is the number of spikes the neuron
fires in a certain amount of time. A relation between the stimulation and the number
of spikes has been the first description of an encoding scheme (Adrian, 1928). Such
a code in which the information about a stimulus is encoded in the number of spikes
regardless of their temporal pattern is referred to as a “rate code” and many examples
of rate coding have been described since then. The intensity of a light flash, for example,
correlates directly with the number of action potentials in a retinal ganglion cell (Barlow
et al., 1971), the direction of a moving bar corresponds to the response of visual cortical
neurons (Hubel and Wiesel, 1959) or the direction of a limb movement with the activity
in thalamic neurons (Werner and Mountcastle, 1963).

A stronger stimulus can also decrease the latency of a response (Gollisch and Meis-
ter, 2008; Tovée et al., 1993), that is, the time between the onset of stimulus presentation
and the neuronal response becomes shorter. This allows information to be encoded in
the temporal pattern in which spikes are fired regardless of or in addition to the num-
ber of spikes. Besides the latency of the first spike the pattern of inter-spike intervals
can also carry information, or the phase of spikes in relation to an underlying oscilla-
tion (Singer and Gray, 1995). All such encoding strategies are referred to as “temporal
coding”.

In response to a static stimulus the distinction between temporal and rate coding is
evident. The rate response is simply given by the number of spikes and any aspect of
their patterning is a temporal information. In such cases, most information is carried
in the rate response (Rolls and Treves, 2011; Tovée et al., 1993). In response to time-
varying stimuli, however, the rate also changes over time and one has to define a time
window that constitutes the basic unit of the code, in which, for example, spikes are
counted, or latency is measured. This time window resembles the time scale in which
encoding is assumed to take place within the nervous system and has therefore been
called the “encoding time window” (Theunissen and Miller, 1995). The length of the
encoding time window is unknown, but the behavioural response sets a lower limit to
it, because the encoding has to occur before the response. It also has to be shorter than
the stimulus, at least shorter than those aspects of the stimulus that are perceived by the
animal. A rigorous definition of a temporal code therefore necessitates that information
is contained in frequencies that are higher than those in the stimulus (Theunissen and
Miller, 1995).

Neural responses are noisy

What complicates the study of information embedding in spike trains is the high degree
of noise inherent to neuronal responses. This means that responses vary in both the rate
and the exact timing even if the same stimulus is presented repeatedly (Mainen and
Sejnowski, 1995; Tolhurst et al., 1983; Tomko and Crapper, 1974, see Faisal et al., 2008
for a review). Neuronal variability has been attributed to multiple sources. In many
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modalities, the stimulus itself is probabilistic. Photons arrive at photoreceptors with
a stochastic rate and at low intensities, this accounts for the variability in the activity
of sensory neurons (Barlow et al., 1971). Thermodynamic processes influence percep-
tion of molecules in smell (Bialek and Setayeshgar, 2005). But the membrane potential
of neurons fluctuates even to identical input when all other conditions are fixed, in
part because of the stochastic nature of ion channels and synapses (van Rossum et al.,
2003). An additional aspect is the background activity of neurons that influences the
response to a stimulus. Many neurons are spontaneously active and this activity fluctu-
ates. Whether the neuron is active at stimulus onset or not also influences how strongly
it responds to the stimulus (Arieli et al., 1996).

Noise can be beneficial for stimulus encoding

While noise is usually seen as detrimental for signal transmission, it can be advanta-
geous in certain situations. One such condition is referred to with the term “stochastic
resonance”. It occurs when a threshold-device is activated by a weak stimulus. In such
a case, the device transmits a maximum of information about the stimulus with an in-
termediate degree of noise (Benzi et al., 1981). While the stimulus by itself is not strong
enough to bring the system above threshold, noise increases the probability that it does.
Still, the probability of reaching the threshold is dependant on the stimulus. When the
noise is too high, it becomes the main input to the device. The output of the device then
tells less about the stimulus. Since action potentials are triggered only above a thresh-
old, neurons are threshold devices and exhibit stochastic resonance (Douglass et al.,
1993; Longtin et al., 1991).

1.2 Population Coding

Although single neurons are anatomically and computationally independant units, the
representation and processing of information in vertebrate nervous systems is distribu-
ted over groups or networks of cells (for a review, see Pouget et al., 2000). Population
coding occurs in all areas of the nervous system. Sensory neurons are selective for cer-
tain values of the environmental feature they encode, such as the orientation of a visual
stimulus, the frequency of a tone et cetera. The relation between average response and
feature value is called the tuning curve of the cell. Tuning curves are usually broad
and overlap with those of other cells. This means that a given sensory stimulus (Fitz-
patrick et al., 1997; Kilgard and Merzenich, 1999; Wilson and McNaughton, 1993) or an
intended motor action (Georgopoulos et al., 1986) influences the activity in a group of
neurons rather than in a single cell. The degree to which information is distributed,
varies between neuron population of different hierarchical stages and modalities. If
only few cells or a single cell are active in response to a given stimulus, the coding is
called local, while it is called distributed if many cells are active. Sparse coding has
been established as the description of codes that lie in between local and distributed



8 1. Sensory Coding

(Olshausen and Field, 2004). However, since the evidence for local codes in neuronal
systems is small, more selective codes are usually referred to as being sparse.

As we have seen for the case of single cells, it is not evident which features of the
activity of a neuron population carries information. Again, one can distinguish rate
and temporal coding. Information could lie exclusively in the mean firing frequency
of the population during a certain time window (Fig. 1.1 A), or in the pattern of spikes
among the population. In a latency code, the relative spike latency between different
cells would carry information (Gollisch and Meister, 2008). Another temporal aspect of
population activity is the synchrony among single cells. When a group of neurons that
project to the same target neuron spikes in synchrony, they enhance their impact on that
target neuron. It has been shown that the synchrony among cells carries information on
a very fine temporal scale in different modalities, from olfaction (Laurent, 1996) to vision
(Dan et al., 1998), and that it shapes selectivity in upstream neurons (the locust visual
system; Jones and Gabbiani, 2010). In the electrosensory system it has been shown that
communication signals change the synchrony of the receptor population (Benda et al.,
2005, 2006) and that this is read out by cells in the successive stages of the electrosensory
pathway (Marsat and Maler, 2010, 2012; Marsat et al., 2009).

When a stimulus changes the rate of several neurons in a population, this translates
into a population rate following the stimulus. The rate averaged over a population of
neurons has been shown to carry information in various sensory systems as for example
in the olfactory system (Blumhagen et al., 2011; Miura et al., 2012) and in the visual
system (Franco et al., 2007), but also in higher cognitive areas (frontal cortex, Pennartz
et al., 2011). An advantage of rate coding in populations is that it is fast. The rate in
single neurons has to be averaged over a time window, that is at least as long as the
minimum interspike interval. In contrast, the population rate can follow the stimulus
instantaneous, as it does not have to be averaged over time but can be averaged over
cells (Knight, 1972a).

Besides the benefit of a fast rate response, what are other advantages of encoding
a stimulus distributed over a population of cells? If the population consists of iden-
tical cells that respond with the same selectivity to a stimulus, this resembles a form
of redundancy. This already can bear some advantages, for example, because it makes
the system more robust against response failures or even the death of neurons. It can
also be used for cancelling out noise inherent in the responses by averaging over many
cells (Pouget et al., 2000). This is, however, limited by the fact that the variability of cell
responses in different cells of one population is often correlated (Zohary et al., 1994).
Averaging over responses exhibiting noise correlation significantly impairs information
coding (Kohn and Smith, 2005).

In a population of neurons subject to neuronal noise, stochastic resonance occurs
even if the stimulus is strong enough to trigger action potentials itself (supra-threshold
stochastic resonance described by Stocks, 2000; see Fig. 1.1 B for a demonstration). If
the neurons were identical, they would all spike at exactly the same time, thus trans-
mitting the same, redundant, information. A moderate level of noise adds variability
to the activity in different neurons. Since the activity is still modulated by the stimulus,
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Figure 1.1: Heterogeneity and noise in neuron populations. The response of different populations
of leaky integrate-and-fire (LIF) model neurons is simulated in response to a sinusoidal stimulus.
The stimulus is shown in the top panels (a.u.=arbitrary units), the middle panels show the spiking
responses of individual neurons and the third panel shows the average rate response as derived from
the inverse of the interspike intervals from the middle panel. A An identical neuron model is simulated
repeatedly to replicate a homogeneous population without noise. The rate shows discontinuities and
thus considerably differs from the sinusoidal stimulus. B The same neuron model is now extended to
include a Gaussian white noise current that mimics neuronal noise. The realisation of the white noise is
unique in each single model neuron. This model is then stimulated with the same sinusoidal stimulus.
The noise smooths out the discontinuities and the rate response now represents the stimulus more
closely. C The model is simulated with a different mean current every time to simulate a heterogeneous
population. Each neuron model is stimulated by the sinusoidal stimulus only, thus resembling a noise-
free heterogeneous population. The heterogeneity again smooths out the discontinuities and the
stimulus is represented well in the rate response. The dynamics of the membrane potential of a LIF
neuron follow the dynamics τV

dV
dt = −V + I, with t being time, V the membrane potential, τV the

membrane time constant and I the driving input current. It thus integrates the input with a leak term
“-V” to account for the flow of ions over the membrane when the equilibrium state is not reached.
When the threshold Vthreshold is reached, a spike is noted and V is reset to 0. I in our case was given
by the sum of a sine wave stimulus of frequency f , a constant offset current IBias and a Gaussian
white noise current ξ of strength

√
2D as I = sin(2π f t) + IBias +

√
2Dξ. The parameters for all

simulations were: τV = 10 ms, IBias = 13, Vthreshold = 10, D = 0.003 and f = 5 Hz. In C, the mean
bias current was varied from 8 to 18, such that the mean current remained the same. For the same
reason the bias current in B was 12.997.
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this increases the information capacity of the population response. If the noise becomes
too strong, the response is driven predominantly by the noise and transmits less infor-
mation about the stimulus.

Populations exhibit heterogeneity

Cells of the same type and from the same population often vary in their stimulus sen-
sitivity (Ringach et al., 2002) as well as in their baseline activity properties (Gussin
et al., 2007; Hospedales et al., 2008) giving rise to heterogeneous populations. Similar to
supra-threshold stochastic resonance (described in previous paragraph), heterogeneity
can increase the information content in a population simply by giving rise to different
responses to the same stimulus (see Fig. 1.1 C, Stocks, 2000).

When heterogeneity leads to different responses as described in the last paragraph,
this has been referred to as decorrelating responses (Shamir and Sompolinsky, 2006).
Neural responses are correlated by common input that can either stem from a stimu-
lus or from shared noise. Peripheral neurons are often correlated mainly by a common
stimulus, while downstream neurons also often share the noise, as it originates from
background activity in the network. Heterogeneity has been shown to improve infor-
mation coding in both situations, in the presence of noise correlations, for example in
cells of the visual system (Chelaru and Dragoi, 2008) or when correlations mainly orig-
inate from shared input as in the olfactory system (Padmanabhan and Urban, 2010).

1.3 Information Propagation

An organisational principle of the nervous system is its modularity, that is the distri-
bution of information over different specialised groups of neurons, nuclei or brain re-
gions. This requires that information is propagated from one group of cells to the next.
A prerequisite to a neural code thus is that it can be read out by other neurons (Perkel
and Bullock, 1968). The ultimate proof that a certain code is being used by the ner-
vous system includes the description of the read-out in subsequent processing stages.
Up to now, information propagation has mainly been studied in computational models
(for a review, see Kumar et al., 2010). Interestingly, networks that are well-suited for
propagating asynchronous information (van Rossum et al., 2002) differ from those that
propagate synchronous information (Diesmann et al., 1999), in which the former refers
to signal encoding in firing rate modulations and the latter to temporal coding.

One common feature about the hierarchical organisation of neuronal regions is that
the encoding becomes sparser the further downstream in the processing stream the re-
gion is located (Barlow, 1972). That the code becomes sparser, implies that neurons
further downstream encode fewer features of the stimulus and are thus more selective
than those at the periphery (Barlow, 1972). For this, information is often separated into
different streams of processing (Nassi and Callaway, 2009). Heterogeneity of cells can
lead to a sparse code, in that cells of different characteristics respond to different features
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in the response of peripheral neurons (Chechik et al., 2006; Vonderschen and Chacron,
2011; Yang et al., 2012).

1.4 Sensory Environment

A detailed description about the stimulus, that is, the information to be encoded and
the time available for the encoding process is necessary when describing the neural
code. As mentioned above, the response variability of visual interneurons at their de-
tection threshold could be attributed to the variability in the stimulus (Barlow and Ka-
plan, 1971). The detailed characterisation of the stimulus thus aided the investigation
of encoding. Similarly, the careful observation of behaviour can constrain proposed
mechanisms of encoding. In the human visual system, the description of behavioural
time scales have led to the prediction that most encoding is done feed-forward, as ex-
tensive feedback would require more processing time (Thorpe et al., 1996). Similarly,
in olfaction, Uchida and Mainen (2003) showed that robust responses can be very fast,
questioning the earlier propositions, that the information increases when processing
time is increased. The study of sensory neurons is advantageous in this respect, as
stimuli can be described as well as controlled much better than in neurons coding for
complexer cognitive tasks, and the perception of stimuli can be assessed in behavioural
experiments.

Sensory coding might be optimised to natural stimuli

Many processing mechanisms in sensory encoding have been described using artificial
stimuli, such as gratings in the visual or white noise in the auditory system. However,
these stimuli differ in first and higher order statistics from the natural stimuli an animal
is exposed to and might be optimised to. Developement and evolution shape the func-
tioning of many physiological systems and there is evidence that they also shape the
encoding mechanisms of nervous systems. For example, the development of frequency
selectivity in the auditory cortex has been shown to be delayed in animals stimulated
with white noise only (Chang and Merzenich, 2003). Also, several encoding mecha-
nisms can be related to the selective pressure that the energetic consumption of the ner-
vous system has exerted on its evolution (Laughlin, 2001; Niven and Laughlin, 2008).
These finding conformed earlier theoretical predictions that had proposed that coding
should be optimised to encode natural stimuli in an energy-efficient way (Barlow, 1972).

Various aspects of sensory coding have been shown to be affected by the statistics
of a stimulus. In the visual cortex, precision of spiking correlated directly with the time
scale of the stimulus (Butts et al., 2007), and the stimulus statistics influenced spike-
time jitter in vitro (Mainen and Sejnowski, 1995). Natural stimuli also elicited sparser
responses in the visual cortex (Vinje and Gallant, 2000) and in auditory neurons of in-
vertebrates (Machens et al., 2001).
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These results imply that stimuli of natural statistics allow for a more realistic descrip-
tion of neural coding. Nevertheless, a description of the natural stimuli is not always
straightforward. For example, an animal’s active exploration of its surrounding has to
be considered. In the visual system this means that head and eye movements have to
be taken into account. In active senses such as touch and electrosensation, the move-
ment of the animal actively influences the stimulation. Even if it is known in detail
which stimuli an animal passively receives, this does not tell us, whether these are re-
ally the ones that are processed and perceived inside the nervous system. This can only
be shown by a behavioural response of the animal.

Communication signals are behaviourally relevant 1

During social encounters, many animals use communication signals to transmit a va-
riety of information, such as individual identity and motivational state, that is used to
dynamically modulate behavioural strategies. Across taxa, signals involving mechani-
cal (including acoustic and vibrational stimuli; Hill, 2009; Kelley and Bass, 2010), visual
(Osorio and Vorobyev, 2008), chemical (Johansson and Jones, 2007; Stacey et al., 2003)
and electric modalities as well as a mixture of them (Bro-Jørgensen, 2010) have been
characterised. Responding to these signals appropriately can be crucial for reproductive
success, as well as the survival of an individual (Kelley and Bass, 2010). The study of
communication offers an optimal framework for studying the encoding of sensory stim-
uli, in that encoding principles and stimulus sensitivities can be inferred directly from
behavioural experiments. Behavioural adjustments produced in response to conspecific
simulated communication signals provide evidence that the receiving individual has
detected the sensory stimulus.

The accurate detection of communication signals depends crucially on signal encod-
ing by the nervous system which can be limited by internal and external noise (Schmidt
et al., 2011; Waser and Brown, 1986). In the auditory and electrosensory systems, com-
munication signals can be produced in the presence of an ongoing background signal
that is a consequence of the interaction itself (Kelley and Bass, 2010; Zupanc and Maler,
1993). Different aspects of this background signal, including its frequency and contrast
also provide behaviourally relevant information about social context, that is the identity
and proximity of interacting individuals (Bastian et al., 2001; Engler and Zupanc, 2001;
Yu et al., 2012). In this thesis the encoding of one particular communication signal on
all relevant backgrounds was characterised in the electrosensory system of the weakly
electric fish A. leptorhynchus which will be introduced in more detail in the following
chapter.

1The rest of the introduction including Chapter 2 is based on a text previously published in the Journal
of Physiology Paris. The original paper is included in the appendix.



Chapter 2
The Electrosensory system

Environmental conditions involving low-light and low-electrosensory signal-to-noise
ratio set a premium on efficient detection and processing of electrocommunication sig-
nals. For decades, studies examining the neurophysiological systems of weakly electric
fish have provided insights into how natural behaviours are generated using relatively
simple sensorimotor circuits (for recent reviews see: Chacron et al., 2011; Fortune, 2006;
Marsat and Maler, 2012). Further, electrocommunication signals are relatively easy to
describe, classify and simulate, facilitating quantification and experimental manipula-
tion. Weakly electric fish are therefore an ideal system for examining how communica-
tion signals influence sensory scenes, drive sensory system responses, and consequently
exert effects on conspecific behaviour.

2.1 Weakly Electric Fish

The weakly electric fish use active electroreception to navigate and communicate under
low light conditions (Zupanc et al., 2001). In active electroreception, animals produce
an electric field using an electric organ (and this electric field is therefore called the
electric organ discharge, EOD) and infer, from changes of the EOD, information about
the location and identification of objects and conspecifics in their vicinity (e.g. Kelly
et al., 2008; MacIver et al., 2001). However, perturbations result not only from objects
and other fish, but also from self-motion and other factors. All of these together make
up the electrosensory scene. The perturbed version of the fish’s own field on its skin
is called the electric image (Caputi and Budelli, 2006), which is sensed via specialised
receptors distributed over the body surface (Carr et al., 1982). In the following, we
will describe the modulations caused by the superposition of the electric fields of two
interacting fish and by the production of specific communication signals.
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2.2 Electrocommunication

Electric communication signals can be analysed by measuring properties of the com-
plex electric field that results from the interaction of nearby fish. In A. leptorhynchus, the
dipole-like electric field (electric organ discharge, EOD) oscillates in a quasi-sinusoidal
fashion at frequencies from 700 to 1100 Hz (Zakon et al., 2002) with males emitting at
higher frequencies than females (Meyer et al., 1987). The EOD of each individual fish
has a specific frequency (the EOD frequency, EODf) that remains stable in time (exhibit-
ing a coefficient of variation of the interspikes intervals as low as 2 · 10−4; Moortgat et al.,
1998). During social encounters, wave-type fish often modulate the frequency as well
as the amplitude of their field to communicate (Hagedorn and Heiligenberg, 1985). Sev-
eral different types of electrocommunication signals have been identified varying in the
type and the pattern of frequency and amplitude modulations of the EOD (Zakon et al.,
2002; Zupanc, 2002). Communication signals in A. leptorhynchus have been classified
into two classes: (i) chirps are transient and stereotyped EODf excursions over tens of
milliseconds (Zupanc et al., 2006), while (ii) rises are longer duration and more variable
modulations of EODf, typically lasting for hundreds of milliseconds to seconds (Hage-
dorn and Heiligenberg, 1985; Tallarovic and Zakon, 2002). As this thesis exclusively
treats the encoding of chirps, rises will not be described further.

Several types of chirps have been distinguished (Zupanc et al., 2006, Types 1–6).
Under most experimental conditions, the most commonly produced type is the “small
chirp” (Type 2 chirp), with males producing these signals at high rates during agonis-
tic interactions (e.g. Hagedorn and Heiligenberg, 1985; Hupé and Lewis, 2008; Larimer
and MacDonald, 1968; Triefenbach and Zakon, 2008). A small chirp is traditionally de-
fined as a short duration ( 10-20 ms) increase in EODf of about 60-150 Hz (Fig. 2.1A;
Engler and Zupanc, 2001; Zupanc and Maler, 1993). The only other chirp type observed
frequently across a number of experimental contexts and also studied electrophysiolog-
ically, is the “big chirp” (Type 1 chirp), so called because of the much larger increase in
EODf ( 350 Hz, Cuddy et al., 2012; Engler et al., 2000; Zupanc and Maler, 1993). The big
chirp is accompanied by a marked decrease in EOD amplitude that is not seen in small
chirps.

Beats create an electrosensory background during communication

During the interaction of two wave-type fish, their electric fields superimpose and sum-
mate at every point in space. Measured across the skin of each fish, the combined signal
consists of a carrier determined by its own EOD with a periodic amplitude modula-
tion (AM) at a frequency equal to the difference of the two individual EODfs, the beat
frequency. The beat frequency has been suggested to reflect different aspects of the
social encounter (Bastian et al., 2001; Kolodziejski et al., 2007). Crucial to this idea is
that EODf correlates with identifying characteristics of the emitting fish including sex
and dominance status. Given that EODfs are sexually dimorphic in A. leptorhynchus,



2.2 Electrocommunication 15

A B

C D E F

 680

 700

 720

 740

 760

 780

 800

E
O

D
 f
re

q
u
e
n
c
y
 [
H

z
]

-0.2

-0.1

 0

 0.1

 0.2

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30
Time [ms]

E
O

D
 [
m

V
/c

m
]

10ms

0
.1

m
V

/c
m

chirp

EOD
AM

Figure 2.1: Beat modulations induced by chirps during representative encounters between
different pairs of fish. A) shows one example of a small chirp. When the instantaneous EOD
frequency is plotted over time (upper panel), an increase from around 710 Hz to 810 Hz is seen. The
amplitude is almost unchanged during the chirp, as seen when the EOD waveform is plotted over time
(lower panel). B–F) In each scenario, one fish emits the chirp shown in A, but under different simulated
background conditions. The sketches of the fish demonstrate the encounter, with the chirping fish
shown in red and the size of each fish reflecting its EODf (a higher EODf is indicated by a bigger size).
B) shows the encounter with a beat frequency of 20 Hz and a contrast of about 40%; C) with a beat
frequency of 100 Hz and 40% contrast; D) shows the same encounter as in B but with a contrast of
20%; E) shows an encounter similar to B but at a beat phase shifted 180◦; F) as in C), but the fish
with the smaller EODf emits a chirp (the fish sketches are modified from (Hagedorn and Heiligenberg,
1985)).
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slower beat frequencies are more common in same-sex interactions. In addition, EODf
has been found to be correlated with size and dominance (Dunlap, 2002; Fugère et al.,
2011; Hagedorn and Heiligenberg, 1985; Triefenbach and Zakon, 2008), suggesting that
the beat frequency also provides information about relative size and dominance status.

The depth of an AM signal (its peak to trough distance relative to the EOD ampli-
tude) is referred to as its contrast. The contrast of the beat, as well as its phase, are
determined by the position and orientation of the two fish with respect to each other
(Kelly et al., 2008), with contrast decreasing as the distance separating two fish increases
(Fig. 2.1 B and 2.1 D depict encounters of different contrast). During social interactions,
fish experience increases and decreases in beat contrast due to their own movements
and those of interacting conspecifics. More aggressive interactions involve more fre-
quent and longer-lasting approach behaviours that are associated with similar changes
in contrast. The contrast also depends on the amplitude of the EODs of both fish. At a
given distance, fish with larger EOD amplitudes produce larger contrasts than do fish
with lower amplitude EODs. The beat phase varies spatially along the fish’s body in a
manner that depends on their orientation (i.e. whether fish are positioned parallel or
perpendicular to one another; Bullock and Heiligenberg, 1986; Kelly et al., 2008).

Chirps involve brief changes in EODf and thus directly influence the amplitude,
frequency and the phase of the underlying beat (Benda et al., 2005; Zupanc and Maler,
1993). Even chirps of the same duration, identical frequency excursion and amplitude
modulation can induce very different effects on the composite signal received by the
other fish depending on the specific beat parameters (Fig. 2.1). Classically, a small chirp
has been described in the context of a slow beat and generated by the higher frequency
fish (Fig. 2.1B, for a beat frequency of 20 Hz). In the example shown it causes a fast
amplitude upstroke. However, the AM looks different if the underlying beat is fast. The
chirp still accelerates the beat, but now does so over multiple beat cycles (Fig. 2.1C,
frequency difference of 100 Hz). Because the distance between the two fish influences
the contrast, the AM caused by the chirp is smaller when fish are farther apart (compare
Fig. 2.1B and D). However, the position of the chirping fish relative to the other fish
also plays a critical role: the beat phase is 180◦out of phase between the right and left
sides of the receiving fish, so the same chirp will occur at two different phases on each
side of the body (Fig. 2.1B and E). In all these cases, the chirp is produced by the fish
with the higher EODf. A different picture emerges if the chirping fish emits the lower
EODf because under these conditions, a chirp transiently decreases the beat frequency
and decelerates the beat (Fig. 2.1F). In summary, the beat signal is not simply a static
background noise source over which a chirp must be detected, but rather, it dynamically
interacts with the chirp signal in a way that depends on social context. Thus, reliably
detecting and encoding chirps presents a significant challenge for the electrosensory
system.
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Chirps are produced at slow beats

“Chirp chamber” experiments, wherein the EOD modulations produced by individual
fish restrained in tubes are recorded in response to electrical stimuli (sinusoidal or EOD
mimics) of varying frequency and amplitude (Dulka et al., 1995; Engler and Zupanc,
2001; Zupanc and Maler, 1993) have revealed that chirping behaviour is also influenced
by the beat background. In these conditions, production rates of small (big) chirps de-
crease (increase) with increasing beat frequency (Bastian et al., 2001; Engler and Zupanc,
2001) regardless of the sign of the frequency difference. Beat contrast also influences the
chirp production rates of fish in chirp chambers. These experiments have suggested
that stimulus intensities greater than 50µV/cm are required to elicit chirp responses
in A. leptorhynchus (Dunlap et al., 1998; Engler and Zupanc, 2001; Zupanc et al., 2006).
Further, chirp production rates of males increase with increasing stimulus intensity i.e.
increasing contrast (Engler and Zupanc, 2001; Zupanc and Maler, 1993). Analyses of
chirp production with respect to beat phase did not reveal any preference of fish to
chirp at certain phases (Walz et al., 2012; Zupanc and Maler, 1993).

When two fish interact electrically or physically, the chirp production pattern of one
fish is correlated with that of the other fish (Hupé and Lewis, 2008; Zupanc et al., 2006).
Correlation analyses of the instantaneous chirp rates of fish responding to chirps sug-
gest that following chirp reception there is a short-term inhibition of chirping (100-
200 ms) which precedes a subsequent period of chirp rate enhancement (Hupé and
Lewis, 2008; Salgado and Zupanc, 2011; Zupanc et al., 2006). From a sensory coding
perspective, this so-called “echo response” implies that conspecific (or artificial) chirps
are discriminated by the sensory system of a receiving individual amongst various back-
ground beat modulations. It is thus a convenient measure of sensory detection at the
behavioural level. Using EOD playbacks, Salgado and Zupanc (2011) found that 20 ms-
long chirp mimics with a frequency increase of just 1.2%, delivered with an interchirp
interval of 0.6 s, were sufficient to induce a robust echo response. This indicates that the
typical frequency excursion associated with small chirps (50-100 Hz) is at least five times
greater than the behavioural threshold for chirp detection. These results were charac-
terised with beat background conditions optimal for chirp encoding: in response to a
signal delivered at a high stimulus intensity (mimicking an inter-individual distance
of approximately 1-2 cm) with an EODf similar to that of the stimulated fish (±10 Hz)
(Salgado and Zupanc, 2011).

The relationship between chirp rate and beat frequency characterised in chirp cham-
ber studies persists across a number of behavioural scenarios (Dunlap and Larkins-
Ford, 2003; Hupé and Lewis, 2008; Zupanc et al., 2006), supporting the hypothesis that
small chirps are produced at high rates during stimulus conditions that represent more
aggressive same-sex contexts, while big chirps are produced during conditions that sig-
nal subordinance (Cuddy et al., 2012). Given that EODf is related to indicators of dom-
inance among males, increased production of small chirps and physical escalation are
expected between more closely matched individuals. However, analysis of the chirp
echo response has demonstrated that free-swimming fish reciprocate small chirps at
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rates significantly greater than chance even during social pairings that result in high
beat frequencies (Hupé et al., 2008). This gives evidence that small chirps can be en-
coded across the range of beat frequencies encountered.

To summarize, the combined signal of beat and chirp depends on both, the param-
eters of the underlying beat (the background) and those of the chirp. Beat frequency,
contrast and phase strongly influence the EOD AM waveform caused by a chirp even
of fixed parameters. Small chirps are produced most frequently if the beat frequency is
low, corresponding to encounters of fish that are similar in sex and hierarchy, while the
analysis of behavioural responses to chirps (echo response) revealed that they are per-
ceived at high beat frequencies as well. Big chirps are produced most frequently when
the beat is fast.

2.3 Anatomical Overview of the Electrosensory System

We now turn to the encoding of EOD signals in the nervous system. As all Gymnoti-
form fish, A. leptorhynchus possesses two kinds of electroreceptors on its skin that are
activated by electric signals with different properties. Ampullary receptors are tuned
to the low frequencies and DC signals associated with the passive electric sense, while
tuberous receptors are tuned to the EOD frequency and comprise the active electric
sense. Each electroreceptor organ is made up of several electroreceptor cells and inner-
vated by afferents that make up the octavolateralis nerve (Zakon, 1986) projecting to the
brain. Among the tuberous receptor afferents, two subpopulations can be discriminated
(Scheich et al., 1973): P-type electroreceptor afferents called P-units respond by phase-
locking to the EOD, firing an action potential with a probability that depends on the
amplitude of the EOD received at the skin surface (Bullock, 1969; Nelson et al., 1997),
while T-type electroreceptor afferents fire in response to every EOD cycle at a particular
phase in the cycle.

Electroreceptor afferents project to the electrosensory lateral line lobe (ELL) of the
hindbrain, the first stage in which electrosensory information is processed in the central
nervous system. Here, the axons of P-unit afferents trifurcate to connect to pyramidal
neurons in three different maps of the electroreceptive body surface (Carr et al., 1982;
Heiligenberg and Dye, 1982), represented in regions called the centromedial segment
(CMS), centrolateral segment (CLS) and lateral segment (LS), respectively. A fourth seg-
ment, the medial segment (MS) processes information carried by ampullary receptors.
There are two main classes of pyramidal neurons in each segment of the ELL. E-cells
receive direct input from P-units and are excited when P-units increase their rate (i.e.
during EOD amplitude increases), while I-cells receive the P-unit input via disynaptic
connections from interneurons and are inhibited by an increase in afferent rate (Maler,
1979; Shumway and Maler, 1989). ELL pyramidal neurons can be further categorised
as superficial, intermediate and deep cells based on their morphology and physiology
(Bastian and Courtright, 1991; Harvey-Girard et al., 2007).

Pyramidal ELL neurons then project to higher processing areas including the nu-
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cleus praeeminentialis (nP) and torus semicircularis (TS, an inferior colliculus homo-
logue, Maler et al., 1991; Metzner and Heiligenberg, 1991; Rose, 2004). nP provides
direct and indirect (via the eminentia granularis pars posterior, EGp) feedback that is
involved in reafference suppression and enhanced feature detection (Bastian et al., 2004;
Berman and Maler, 1998; Bol et al., 2011; Lewis et al., 2007; Requarth and Sawtell, 2011).
In the TS, the pyramidal cells of the lateral segment converge together with cells of
other types and all four ELL maps (Maler et al., 1982). The TS projects to the tectum,
to the diencephalic nucleus electrosensorius (nE), as well as back to nP (Maler et al.,
1991; Rose, 2004). The sensorimotor nE integrates convergent electrosensory informa-
tion and sends projections to two prepacemaker nuclei: the sublemniscal prepacemaker
nucleus (sPPn) and the diencephalic prepacemaker nucleus (PPn) that are responsible
for controlling the frequency of the EOD set by the medullary pacemaker nucleus (Pn).
Spatially specific stimulation of the nE by glutamate iontophoresis results in EODf mod-
ulations (rises and chirps) via distinct inputs to the PPn (Rose, 2004). The sPPn and
PPn project to the medullary pacemaker nucleus (Pn). The Pn contains electrotonically-
coupled pacemaker neurons, whose endogenously oscillating membrane potential sets
the EODf, and relay cells which propagate these signals to the electric organ (Smith,
2006; Smith and Zakon, 2000).

The most direct route that information can flow from sensory input to motor output
is from electroreceptors to ELL, TS, nE, prepacemaker nuclei and then to the pacemaker
nucleus. This direct route is indeed thought to form the basis of the jamming avoidance
response (JAR Bullock and Heiligenberg, 1986; Rose, 2004), a behaviour fish show when
encountering conspecifics with similar EODfs. During the JAR fish raise or lower their
EODf in order to maintain sensitvity for prey induced changes of the EOD amplitude.

2.4 Encoding in the Electrosensory Periphery

In this thesis, encoding of communication signals was studied in P-units. Their response
characteristics are described in more detailed now. Under baseline conditions, P-units
are exposed to their own EOD of constant amplitude (see Fig. 2.2). In this situation,
they fire irregularly at a certain baseline rate. Action potentials occur approximately at a
certain phase of the EOD cycle, they are phase-locked to the EOD, but only with a certain
probability to each cycle. The baseline rate differs from cell to cell (compare the two
example cells in Fig. 2.2 A and B, Gussin et al., 2007), as does variability in their baseline
discharge. The probabilistic nature of their activity leads to a high degree of noise, but
the exact strength of the noise is different for each P-unit. Since tuberous receptors are
distributed over the whole body and the EOD spans the whole surrounding, all P-units
of a given animal are stimulated with a similar stimulus (see Kelly et al. (2008) for an
exact model of the EOD). Their noise sources are, however, uncorrelated (Chacron et al.,
2005b). This means, that stimuli are encoded in P-units in a heterogeneous population
of cells subject to extensive neuronal noise.

The probability of emitting a spike at a certain EOD cycle depends on the ampli-
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Figure 2.2: P-unit activity under baseline conditions. Two P-units (A and B) were recorded semi-
intracellularly driven by their own constant EOD. The EOD is shown in the top panel, the potential
recorded semi-intracellularly in the second row. From this trace, spikes are detected and different
segments are aligned as trials such that the phase of the EOD is the same over trials (third row). The
spiking response is convolved with a Gaussian kernel of 1 ms width and averaged over trials to obtain
a rate response (fourth row). The two cells are from two different recording sessions in which the
EOD differed in frequency (A:920, B:745Hz) and amplitude(A: 1.58 mV, B: 1.13 mV). The cells differ
in baseline discharge rate (A: 120, B: 213 Hz) and variability (coefficient of variation of interspike
interval histograms: A: 0.22, B: 0.23).
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tude of the EOD making P-units responsive to amplitude modulations (Fig. 2.3). The
response thereby fluctuates around a mean rate that is approximately constant. In re-
sponse to a step increase in EOD amplitude, P-units exhibit pronounced spike frequency
adaptation (Benda et al., 2005; Chacron et al., 2001b; Nelson et al., 1997; Xu et al., 1996).
Spike-frequency adaptation involves a strong peak in firing response to the onset of a
constant stimulus, followed by a decrease to a lower steady state response. Thus, adap-
tation acts as a high-pass filter, reducing the response to low stimulus frequencies, such
as beat frequencies lower than about 25 Hz (Benda et al., 2005; Nelson et al., 1997; Xu
et al., 1996). P-units therefore exhibit a band-pass tuning, i.e. they are most responsive
to intermediate AM frequencies (of 30-100 Hz), while the response is weaker to lower
and higher frequencies and this tuning is thought to be similar over cells (Wessel et al.,
1996). Savard et al. (2011) showed that information is contained in the response at fre-
quencies higher than the stimulation frequencies, indicating that the temporal structure
of the spike trains is used to encode information about the stimulus. The synchrony in
the spike responses across neurons has been shown to carry information about chirps
(Benda et al., 2006; Marsat and Maler, 2010).
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Figure 2.3: P-unit activity under stimulation. The same cells as in Fig. 2.2 were recorded under
stimulation with a sinusoidal AM of ∆ f = 40 Hz and 20% contrast. The figure is organised as Fig.
2.2. The spike and rate responses of the cells follow the sinusoidal stimulus with high firing rates at
the peaks and low firing rates at the troughs of the sinusoidal AM.

The information encoded by P-units is separated into different streams already at the
first projection site, the ELL. Stimuli of different spacial extend are processed differently
(Chacron et al., 2005b), as are those that increase or decrease P-unit activity. At sub-
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sequent processing stages the information is further separated and responses become
sparser (Chacron et al., 2011).

2.5 Chirp Encoding

In contrast to those in other species (Eigenmannia, see Hopkins, 1974; Metzner and
Heiligenberg, 1991; Naruse and Kawasaki, 1998), A. leptorhynchus chirps do not contain
DC components and are thus thought to be encoded by tuberous only. To date, encod-
ing of small chirps has mainly been studied when occurring on a slow beat, i.e. the
conditions of most frequent chirp production, and when emitted by the signal carrier of
higher EODf. When produced by the higher frequency fish, chirps transiently increase
the frequency content of the beat signal such that adaptation is transiently overcome.
The result is a strong response similar to those evoked by the onset of a constant stim-
ulus – provided the chirp is emitted during a sufficiently slow beat background. The
increase of the EOD frequency associated with big chirps is so large that they decrease
the rate as well as the synchrony of P-units regardless of the underlying beat frequency
(although there seems to be an increase in single unit reliability at beat frequencies of
less than 10 Hz, Benda et al., 2006); this effect is enhanced by the concomitant decrease
in EOD amplitude typical of big chirps. The enhanced response to small chirps at slow
beats, as well as the decrease in response to small and big chirps at fast beats, are seen
in measures of the firing rate as well as in measures of synchronisation (Benda et al.,
2006).

The next processing stage is the electrosensory lateral line lobe (ELL). As a conse-
quence of differential ion channel distributions (Ellis et al., 2007; Mehaffey et al., 2008)
as well as different connectivity to the afferent neurons (Maler, 2009), E-cells of all three
segments exhibit very different response properties to P-unit inputs. From the CMS to
the LS, neurons are increasingly responsive to higher frequency AMs (Krahe et al., 2008)
and have larger receptive fields. Both characteristics, high-pass frequency tuning and
large receptive fields, make neurons of the LS most responsive to communication sig-
nals (Marsat et al., 2009); compared to signals encountered during navigation and hunt-
ing, communication signals are much higher in frequency and more spatially broad.
Not surprisingly, the LS has been shown to be crucial for communication behaviour
(Metzner and Juranek, 1997). Feedback to the ELL from nP and EGp plays an important
role in chirp encoding. Superficial E-cells of the LS respond with a highly reliable and
synchronous burst of spikes to small chirps emitted at slow beats (Marsat et al., 2009).
The second spike of the burst is not phase-locked to the EOD, indicating that it is not
caused by input from P-units. The bursting mechanism relies on a depolarising after
potential (DAP) that stems from backpropagating action potentials from the dendrites
(Marsat and Maler, 2012; Turner et al., 2002). In these cells, the indirect feedback from
EGp provides a negative image of a low frequency beat (Bastian et al., 2004). During
an ongoing beat, feedback and input are antiphase but the chirp shifts the phase of the
beat stimulus. When this occurs, the feedback coincides with the DAP and a spike in
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response to a chirp is more likely to be followed by a second one (Marsat and Maler,
2012). Such bursts may facilitate chirp detection, similar to many systems where bursts
enhance signal detection by increasing the signal-to-noise ratio (for a review, see Krahe
and Gabbiani, 2004). The feedback, however, is only present in response to beats of fre-
quencies up to 20 Hz (Bastian et al., 2004; Bol et al., 2011). The enhancement of the ELL
response by feedback to small chirps is therefore likely to be even more confined to low
beat frequencies than the P-unit response. Big chirps are encoded by a strong increase
in firing rate in I-cells of all maps and types (superficial, intermediate and deep, Marsat
et al., 2009). This is expected since they cause a decrease in the response of P-units and
because, in contrast to E-cells, I-cells of different maps and morphology do not show
strong differences in frequency tuning (Krahe et al., 2008).

The main target area of the ELL for further information processing is the TS. TS cells
can be grouped into two categories according to their baseline firing rate and selec-
tivity to different chirp stimuli (Chacron et al., 2011; Vonderschen and Chacron, 2011).
One category, the densely coding neurons, produce responses that resemble those of
ELL pyramidal cells, while cells in the other category respond much more sparsely, i.e.
with a higher selectivity. Compared to the densely coding TS cells and ELL pyramidal
cells, sparsely coding TS cells do not respond during the beat and respond similarly
to chirps with certain attributes, but not at all to those with others (see also Fig. 2 in
Vonderschen and Chacron, 2011). This population of TS cells can thus, in principle, de-
tect the presence of certain categories of chirps and differentiates between them. How
this selectivity arises is currently unknown. The synapses between ELL pyramidal cells
and TS neurons show pronounced short-term synaptic plasticity that can act as a tem-
poral filter passing low or high frequencies (Fortune and Rose, 2000, 2001 shown for
Eigenmannia). This synaptic plasticity has been shown to create direction selectivity
to moving electrosensory images in TS neurons (Chacron and Fortune, 2010; Chacron
et al., 2009). Whether synaptic plasticity sharpens responses to chirps is unknown. Cells
that respond selectively to chirps are not direction selective and vice versa (Vonderschen
and Chacron, 2011).

Aim of this Study

The high diversity of AM patterns generated by a chirp on different background beats
and the observation of recent behavioural studies that chirps are perceived by fish at all
these beats (Hupé et al., 2008) was the initial point to study chirp encoding in P-units
at more diverse backgrounds. This is the topic of the first research project (Chapter 3).
I looked at the encoding of one small chirp at a wide range of naturally relevant beat
parameters. I then reproduced the response pattern we found in this chapter by a com-
putational model which was the subject of the second research project (Chapter 4). I
focused on the frequency tuning of P-units, as this was shown to be crucial for chirp
encoding. Since the model reproduces the responses of various individual P-units, I
used it in the third research project to generate heterogeneous model populations that
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resemble natural P-unit populations (Chapter 5). With these I then studied the effect of
heterogeneity on chirp encoding in P-unit populations.



Part II. RESEARCH PROJECTS





Chapter 3
Chirp Encoding at Diverse Background
Beats

3.1 Introduction

The correct decoding of communication signals in aggressive and mating contexts is
crucial to an animal’s survival and reproductive success. Not surprisingly, the percep-
tion of communication signals happens robustly, even though their characteristic fea-
tures often only last milliseconds (e.g. Salgado and Zupanc, 2011; Vernaleo and Dool-
ing, 2011). They occur in social situations in which interfering signals from different
individuals make decoding particularly hard (Cherry, 1953; McKibben and Bass, 1998;
Zupanc and Maler, 1993).

In electrocommunication of A. leptorhynchus, the beating background constitutes
a signal that might interfere with the perception of the actual communication signal
(Chapter 2, (Zupanc and Maler, 1993)). Encoding of small chirps in P-units has until
now only been looked at when the chirp is emitted by a fish carrying an EOD of slightly
higher EOD frequency (EODf) than the receiving fish (Benda et al., 2005, 2006; Hupé
et al., 2008). This creates a background beat of low frequencies under which chirps are
emitted at highest rate (Bastian et al., 2001; Engler and Zupanc, 2001). In this situation
P-unit afferent neurons respond to a chirp with a strong increase in their response that
can be explained by a release from adaptation (Benda et al., 2005). However, adaptation
can only explain chirp responses on backgrounds of frequencies lower than 25 Hz, as
the cutoff of the adaptation is around this frequency. Behavioural studies have shown
that fish respond to chirps irrespective of the background (Hupé et al., 2008). The back-
ground beat influences the signal generated by an emitted chirp (Fig. 2.1, Walz et al.,
2012). Together, these findings led us to ask how P-units encode small chirps at all
naturally occuring backgrounds.

We start out with describing in detail the signals chirps elicit at different background
beats. Our single unit as well as whole nerve recordings demonstrate that the chirp
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either synchronises or desynchronises the population of P-unit receptor afferents de-
pending on the beat frequency. This results into a division of the representation of the
chirp on the receptor level into four coding regimes. We finally demonstrate that the
rapid responses of the cells to chirps can be predicted based on their frequency tuning
curves and that the position of the chirps within the beat only plays a role at low beat
frequencies.

3.2 Material and Methods

In-vivo electrophysiology

Intracellular as well as whole nerve recordings were made from the anterior part of
the lateral line nerve of 50 Brown Ghost Knifefish (Apteronotus leptorhynchus, Gymnoti-
formes) of either sex (52 in total, 46 for intracellular and 6 for whole nerve recordings,
12–16 cm body length, EOD frequency between 602-948,767.3+/-96.87). First, fish were
anesthetised with MS-222 (120 mg/l; PharmaQ; Fordingbridge, UK) and a small part of
the skin was removed atop of the lateral line just behind the skull under additional lo-
cal anesthetics with Lidocaine (2 %; bela-pharm; Vechta, Germany). For the recordings
fish were immobilised (Tubocurarine; Sigma-Aldrich; Steinheim, Germany, 25–50µl, of
5 mg/ml solution), placed in a tank, and respired by a constant flow of water through
their mouth. The water in the experimental tank (47× 42× 12 cm) was from the fish’s
home tank with a conductivity of about 300µS/cm and kept at 28 ◦C. All experimental
protocols were approved and complied with national and regional laws (file no. 55.2-1-
54-2531-135-09).

For intracellular recordings of P-unit afferents we used standard glass microelec-
trodes (borosilicate; 1.5 mm outer diameter; GB150F-8P, Science Products, Hofheim,
Germany) pulled to a resistance of 50–100 MΩ (Model P-97, Sutter Instrument Co., No-
vato, CA, USA) and filled with a 1 M KCl solution. Electrodes were advanced into
the nerve using microdrives (Luigs-Neumann; Ratingen, Germany). Potentials were
recorded using the bridge mode of the SEC-05 amplifier (npi-electronics GmbH, Tamm,
Germany) and low-pass filtered at 10 kHz.

Spikes were detected online as peaks that exceeded a dynamically adjusted thresh-
old value above the previous detected trough (Todd and Andrews, 1999). To track
changes in amplitude of the recorded spikes, the threshold was set to 50 % of the am-
plitude of a detected spike, but not below a minimum threshold that was set above the
noise in the recording based on a histogram of all peak amplitudes. Trials with bad
spike detection were discarded from further offline analysis.

Population activity in whole nerve recordings was measured using a pair of hook
electrodes of chlorided silver wire. Recorded signals were differentially amplified (gain
between 200 and 2000) and band-pass filtered (2− 5000 Hz passband, DPA2-FX, npi-
electronics, Tamm, Germany). The strong EOD artifact in this kind of recording was
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eliminated prior to further analysis by applying a running average of the size of one
EOD period (Benda et al., 2006).

The EOD of the fish was recorded between its head and tail using a pair of verti-
cal carbon rods (11 cm long, 8 mm diameter, electrophysiology), amplified 200 to 500
times and band-pass filtered (3− 1500 Hz passband, DPA2-FX, npi-electronics, Tamm,
Germany). These electrodes were placed isopotential to the stimulus field (see below)
to eliminate contamination with the stimulus. During electrophysiological experiments
the actual stimulus driving the receptor cells was estimated by recording the voltage
between a pair of silver wires (1 cm apart) placed perpendicular to the trunk of the fish,
thus approximating the transdermal voltage (amplification 200 to 500×, band-pass fil-
tered with 3− 1500 Hz passband, DPA2-FX, npi-electronics, Tamm, Germany).

For online spike and EOD detection, stimulus generation and calibration, as well as
pre-analysis and visualisation of the data, we used the ephys, efield, and efish plugin
sets of the software RELACS (www.relacs.net) running on a Debian Linux computer.
All recorded data were digitised using a data acquisition board (PCI-6229; National
Instruments, Austin TX, USA) at a sampling rate of 20 kHz.

Stimulation

Electrical stimuli were applied using a pair of stimulation electrodes (carbon rods, 30 cm
long, 8 mm diameter) placed on either side of the fish parallel to its longitudinal axis.
Stimuli were computer-generated and passed to the stimulation electrodes after being
attenuated to the right amplitude and isolated from ground (Attenuator: ATN-01M,
Isolator: ISO-02V, npi-electronics, Tamm, Germany).

The EOD of a second fish can be mimicked by stimulating directly with a sine wave
of an appropriate amplitude and frequency. The superposition of this stimulus with
the EOD of the fish from which we recorded results in a beat (Chapter 2), a periodic
amplitude modulation (AM) with a frequency given by the difference between the fre-
quencies of the stimulus and the EOD of the fish, the difference frequency ∆ fBeat. We
set its amplitude A to 10 or 20 % of the amplitude of the fish’s EOD. Chirps can be mim-
icked by Gaussian frequency and AM of the stimulating sine wave. The time-dependant
difference frequency ∆ f (t) between stimulus and EODf then follows

∆ f (t) = ∆ fBeat + s · exp
(
− t2

2σ2

)
, (3.1)

where ∆ fBeat is the difference frequency of the underlying beat, s is the maximal fre-
quency excursion during the chirp (its size), and σ = ∆t/

√
2 ln 10 sets the width of the

chirp, ∆t, at 10% height of the Gaussian modulation. We used chirps of s = 60 or 100 Hz
and ∆t = 14 ms. The amplitude was decreased by a Gaussian of the same width by
maximally 2 % of the baseline amplitude (see Fig. 3.1 for a schema of a small chirp).
The sine wave stimulus including the chirp leads to a specific AM of the EOD with a
frequency following Eq. 3.1 that is encoded by the P-units.
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Alternatively to the direct stimulation, any AM can be obtained by multiplying the
intended AM with the fish’s own EOD (multiplicator: MXS-01M, npi-electronics, Tamm,
Germany) and playing the multiplied signal back via the stimulation electrodes. In
order to generate the AM resulting from the superposition of the EOD of a fish emitting
a chirp at time t = 0 and a receiving fish we computed the AM according to

AM(t) = A(t) cos(∆φ(t)) , (3.2)

where

∆φ(t) = 2π
∫ t

−∞
∆ f (t′) dt′ = 2π∆ fBeatt + 2πsσ

∫ t/σ

−∞
exp(−z2)dz + ∆φ , (3.3)

is the phase of the beat as the time integral over the frequency difference of the two
EODs. The first term models the beat resulting from the superposition of the two EODs
with frequency difference ∆ fBeat. The second term accounts for the Gaussian increase
of the difference frequency during the chirp. ∆φ determines at which phase of the beat
cycle the chirp occurs — it is zero at the peak of a beat cycle. In addition the EOD
amplitude was decreased by a Gaussian of the same width and centered at time t = 0
by 2 %.

A single stimulus of a given ∆ fBeat was composed of chirps at ten different phases of
the beat (every 36 ◦). At least 200 ms or one beat period, whichever was larger, separated
the chirps. Each such stimulus of ten chirps was repeated 16 times. Then the next
stimulus with a different difference frequency, contrast, or chirp size was played. After
recording, chirps evoked by the same stimulus were grouped according to the measured
phase of the beat at which they occurred. Because of slight changes in EODf of the fish,
the phase of a chirp within a beat cycle can vary when using direct stimulation, so that
instead of exactly 16 we got between 10 and 20 responses to each chirp of a given phase.

Both the direct and the AM stimuli primarily elicit responses in P-unit electrorecep-
tors. Since we found no differences in the evoked effects on the cells, data from both
stimulation paradigms were pooled (Benda et al., 2005). We also pooled data over both
contrasts used (10 and 20 %), since we did not obtain different results when analyzed
separately.

Chirp encoding analysis

The time course of the firing rate (the PSTH) was computed by convolving each spike
train with a Gaussian kernel with a standard deviation of 1 ms and averaging over trials.
We chose 1 ms as our default kernel since it corresponds to the fast excitatory component
of post-synaptic potentials evoked by P-units in their target cells, the pyramidal cells in
the ELL (Berman and Maler, 1998). We also tested different kernel widths and found
small quantitative, but no qualitative differences (not shown).

We calculated the response during beat and chirp by averaging within two time win-
dows, one located during the beat before the presentation of a chirp and the other one
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centered around the chirp. For the size of the analysis window for responses to the beat
we took the largest integer multiple of the beat period smaller than 60 ms but at least one
full beat period for beat cycles longer than 60 ms. The window for chirp response analy-
sis spanned the width of the chirp stimulus (14 ms) stretched by a factor of 1.2, and was
shifted by 5 ms with respect to the time of stimulus application to account for neuronal
delays. The firing rate response in each time window was assessed as the modulation
depth of the firing rate, i.e. the standard deviation of the PSTH. The population activity
recorded from the lateral line nerve was similarly assessed by calculating the standard
deviation of the recorded voltage.

The average correlation between pairs (i, j) of spike trains, as a measure of syn-
chrony, was quantified by means of the correlation coefficient

rij =
〈(si − 〈si〉t)(sj − 〈sj〉t)〉t√
〈(si − 〈si〉t)2〉t

√
〈(sj − 〈sj〉t)2〉t

, (3.4)

where si and sj are two spike trains convolved with a Gaussian kernel with a standard
deviation of 1 ms (see above) and 〈...〉t denotes averaging over time. The rij are then
averaged over all possible pairs of spike trains recorded in one cell in response to a
specific stimulus.

To assess the effect of chirps at different beats we calculated the chirp selectivity
index (CSI, see Vonderschen and Chacron, 2011) as

CSI =
rchirp − rbeat

rchirp + rbeat
(3.5)

where rchirp is the response (standard deviation of the firing rate or of the population
activity, or spike-train correlation) during the chirp and rbeat the response during the
beat. The CSI is greater than zero when chirps increase a cell’s response, and less than
zero if they decrease the response relative to the response evoked by the beat. Note that
the CSI yields qualitatively similar results to that of the chirp gain (rchirp/rbeat) used in
previous studies (Benda et al., 2005, 2006).

Chirp Discrimination Analysis
The distance between two spike trains was quantified using a spike train metric accord-
ing to

d2(si, sj)τc =
1
τc

∫ t2

t1

[si − sj]
2 dt (3.6)

where si and sj are two spike trains convolved with an alpha-function of width τc that
we varied from 1 to 100 ms (van Rossum, 2001). We examined P-unit responses on two
different integration intervals: one ranging from t1 = −10 ms to t2 = 25 ms contained
only the chirp response, while the other ranging from t1 = −10 ms to t2 = 100 ms in
addition contained the beat context.
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We then asked whether the responses to chirps occurring on different beat phases
are distinguishable. For this we constructed confusion matrices by assigning each spike
train to the chirp stimulus at the beatphase that evoked a set of responses this spike train
had the minimal distance (eqn. 3.6) to. Responses would be optimally distinguishable
based on the stimulus, if each spike train was assigned to the stimulus it was evoked by
and thus this matrix only had values different from zero on the diagonal. The discrim-
inability can be quantified by the mutual information, MI, contained in this confusion
matrix, which is calculated according to

MI =
k

∑
b=1

k

∑
a=1

p(b|a)log2
p(b|a)

p(a) ·p(b) (3.7)

where p(a) is the fraction of trials in which the chirp was delivered at a certain beat
phase a and p(b) is the fraction of responses that was assigned as having been evoked
by beat phase b. p(b|a) is the fraction of responsed that was assigned to beat phase
b, although having been elicited by a. The k = 10 phase bins each cover 36 ◦. We
normalised the mutual information by its maximum, such that it ranges from zero to
one, with higher values resembling better discriminability.

3.3 Results

Amplitude modulations caused by small chirps

Small chirps (Engler et al., 2000) are short EOD modulations of a small Gaussian-shaped
frequency excursion ranging from a few tens up to about 150 Hz (the size of a chirp s)
and lasting for around 10–20 ms (its width ∆t; Bastian et al., 2001; Engler et al., 2000;
Engler and Zupanc, 2001; Kolodziejski et al., 2007, see Fig. 3.1 A, B). At a receiving fish,
the superposition of its own EOD with the smaller EOD of the more distant chirping
fish results in a characteristic amplitude modulation (AM) of its EOD (Fig. 3.1 C).

However, the AM caused by a chirp strongly depends on the difference frequency
of the underlying beat, ∆ fBeat, indicating the social context, as well as on the phase, ∆φ
within the beat cycle at which the chirp occurs (Fig. 3.2). The time course of the AM (first
and third column) is determined by the phase difference between the two EODs (middle
column). During a beat the phase difference in- or decreases with constant slope. This
slope is set by the difference frequency ∆ f (t) between the EODf of the chirping and the
EODf of the receiving fish. The absolute value of ∆ fBeat is the frequency of the resulting
beat AM. Throughout this paper we calculate ∆ f as the frequency of the communicating
fish, EODf2, (i.e. the frequency of the stimulus) minus the frequency of the receiving
fish, EODf1. Thus, ∆ f is positive if the stimulation frequency is above the EODf of the
recorded fish. A chirp always constitutes an increase in EODf2. Therefore, the transient
change in ∆ f (t) that a chirp induces depends on both the value and the sign of the beat
∆ fBeat.
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Figure 3.1: A small chirp and its effect on the amplitude modulation sensed by a receiving
fish. A) EOD waveform of a single fish during a small chirp. Chirp beginning and end are defined
as the times the EODf excursion exceeds 10 % of the chirp size s and are indicated by tic marks and
black bar. B) EOD frequency during the chirp. s is the maximum deviation from baseline EODf
(vertical arrow). The horizontal arrow shows the chirp width. C) Resulting EOD waveform close to a
receiving fish that has an EOD frequency of 20 Hz below the chirping fish (thin line) and its amplitude
modulation (AM, thick line). The chirp alters the AM form (black bar). D) Without the chirp the
AM would be an ongoing beat (dashed line) with frequency given by the difference, ∆ fBeat, of the two
EODf. The chirp (black bar) transiently increases ∆ f (t) for less than a full period of the beat (solid
line).
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Figure 3.2: Signals caused by chirps at different beats. A–D) Characteristic AMs (left and right
column) are formed by the phase difference ∆φ(t) between two EOD signals (middle column). In all
examples a chirp of width ∆t = 14 ms and size s = 100 Hz was simulated centered around time 0 (all
values corresponding to Eq. 3.3 ). The stimulation frequency was chosen relative to the fish’s EODf
to form difference frequencies ∆ fBeat = 10, 150, −50 and −150 Hz as indicated. The left column
shows the AM caused by a chirp occurring at beat phase ∆φ = 180 ◦ , while the right column shows
the same chirp at ∆φ = 0 ◦. The phase differences (middle column) are shown for both ∆φ = 180 ◦

(solid line) and ∆φ = 0 ◦ (dashed line). Note that the actual effects of a chirp on the AM also depend
on its width and size. E) The time course of the EODf of a chirping fish (the “stimulus”, EODf1)
with the parameters from panel A and EODf= 810 Hz (left panel), and together with the EODf of the
receiving fish with EODf2 = 800 Hz (middle column). The chirp changes the resulting time-dependant
∆ f (t) (right column, solid line) which mainly determines the resulting AMs (left and right column in
panel A). The ∆ f (t) for panels B–D are also shown as indicated.

At positive ∆ fBeat, when EODf1 is greater than EODf2, a chirp transiently increases
∆ f (t) and thus briefly accelerates the beat AM (Fig. 3.1 D). At low ∆ fBeat, the chirp leads
to a fast up- or down stroke depending on the phase of the beat at which it is emitted
(Fig. 3.2 A). At faster ∆ fBeat, the chirp spans several periods of the beat and thus the beat
phase at which it occurs is not as crucial anymore (Fig. 3.2 B).

When EODf1 is lower than EODf2, ∆ f is negative and ∆φ(t) decreases with time
(Fig. 3.2 C, D middle column). Now, the transient increase in EODf1 caused by the chirp
decreases ∆ f (t) and thus slows down the beat. It could even invert the sign of ∆ f (t).
The latter occurs at ∆ fBeat between −90 and 0 Hz and results in a plateau-like signal
(Fig. 3.2 C). At faster negative ∆ fBeat the chirp leads to a few periods of a slower beat
(Fig. 3.2 D).

Although the original communication signal, the chirp, is always the same (Fig. 3.2 E),
it causes a huge variety of AM signals depending on the underlying beat parameters,
its frequency ∆ fBeat and phase ∆φ. In the following we demonstrate how these different
signals are encoded in the electrosensory system.

Chirps increase response at slow positive difference frequencies

The AMs of both, beats and chirps, are encoded in P-unit electroreceptors. In the ab-
sence of a beat, the P-units fire randomly with a constant rate (Fig. 3.3, left column).
When the cell is stimulated with a slow beat (e.g. 10 Hz in Fig. 3.3, middle column), its
firing rate closely follows the stimulus. However, spike timing in between trials appears
to be uncorrelated (Fig. 3.3 B).

As was shown before (Benda et al., 2005, 2006), a small chirp increases the cell’s
response when superimposed on such a slow beat. The peak of the firing rate during the
chirp clearly exceeds that during the beat (Fig. 3.3 C), although the maximal amplitude
of the stimulus is the same during chirp and beat periods (Fig. 3.3 A).

The shortest interspike interval (ISI) of the cell’s response is determined by the fre-
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quency of the fish’s EOD. During the fast upstroke of the chirp, the cell reaches this
highest possible firing rate. Here, the ISIs are on the order of one EOD period and con-
sequently, the reliability over trials is high. The increase in firing rate is thus caused by
both, an increase in instantaneous firing rate as well as an increase in reliability across
trials.

Chirps decrease response at faster beats
At higher beat frequencies, for example ∆ fBeat = 100 Hz, the cell responds with an
increased maximal firing rate of about 600 Hz to the beat (Fig. 3.3 right column). Further,
action potentials are fired with a reliable 2–1-locking in response to the beat (Fig. 3.3 B,
right column). In contrast to the slow beat described above the chirp now decreases the
peak firing rate (Fig. 3.3 C) and the 2–1- locking breaks down during the chirp due to
missing spikes (see spike raster in Fig. 3.3 B).

Population activity is either synchronised or desynchronised by chirps
Since the receptor afferents have uncorrelated noise sources (Benda et al., 2006; Chacron
et al., 2005b) the effects seen over subsequent trials recorded in single cells are expected
to persist at the population level as well. To test this, we measured the population re-
sponse in whole-nerve recordings for the same chirp/beat combinations as used in sin-
gle cell recordings. A chirp on a slow beat increases the population activity (Fig. 3.3 D,
middle column), suggesting an increase in synchrony among cells. The population ac-
tivity is already high in response to a faster beat (Fig. 3.3 D, right column) and is de-
creased by the chirp. The population activity thus resembles the effects shown for the
single cell and supports the assumption that the reliability of single cells over subse-
quent trials mirrors the synchrony among cells in a population.

Synchronisation and desynchronisation at negative difference frequen-
cies
At negative ∆ fBeat that arise in interactions with an EOD of lower frequency than that of
the receiving fish, the resulting beat AMs are the same as the AMs of the corresponding
positive ∆ fBeat. Consequently, the response of P-units to beats of negative ∆ fBeat is the
same as for those of positive ∆ fBeat.

However, a chirp occurring on a beat of negative ∆ fBeat causes quite different P-unit
responses as compared to one occurring on the corresponding positive ∆ fBeat. The chirp
now decreases the absolute ∆ f (t) (Fig. 3.2 D).

At intermediate negative ∆ fBeat, where the chirp transiently inverts the sign of the
difference frequency and a plateau-like signal evolves (Fig. 3.2 C), the response depends
on where the plateau occurs, namely at which phase of the beat the chirp is emitted. In
Fig. 3.4, middle column, we show an example where the chirp occurs more towards
the trough in the beat, and the cells cease firing. They keep on firing at high levels if
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Figure 3.3: Electroreceptor activity evoked by a chirp at positive difference frequencies. A)
The AM stimulus recorded at a site close to the fish’s body under baseline conditions (no stimulus, left
column), with a beat resulting from a difference frequency of ∆ fBeat = +10 Hz (middle column) and
a beat of +100 Hz (right column). A chirp of size s = 100 Hz and width ∆t = 14 ms was delivered
around time 0. Shown are individual AMs for each trial (black lines) and the average (gray line).
B) Spike raster of a single cell recording under the respective stimulus conditions. C) Average firing
rate computed by convolving the spike raster shown in B with a Gaussian kernel of 1 ms standard
deviation and averaging over trials. The timescale of the kernel resembles the fast component of
the postsynaptic potential in the target cells (Berman and Maler, 1998). D) Population activity as
recorded from the lateral line nerve with hook electrodes. Black lines depict results from single trials,
grey line their average. The gray boxes mark the time window used for analysing the responses to
chirps.
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Figure 3.4: Electroreceptor activity evoked by a chirp at negative difference frequencies. The
organisation of the figure is the same as in Fig. 3.3 for beats resulting from difference frequencies of
∆ fBeat = −60 Hz (middle column) and −200 Hz (right column). Note that this is a different example
cell from that in Fig. 3.3 and therefore exhibits a different baseline activity.
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the chirp occurs at the peak of the beat (not shown). For all cases, the reliability over
trials decreases in response to this slow signal. At very fast beats, where the response to
beats is reduced due to the high frequency, it is now transiently increased by the chirp
(Fig. 3.4, right column).

Four distinct coding regimes

The examples shown so far suggest a strong influence of ∆ fBeat on the synchronisation
or desynchronisation of the P-unit response by a chirp. In the following we system-
atically examine this effect and quantify the P-unit responses by the chirp selectivity
index, i.e. the contrast between the responses to chirps and beats (CSI, see methods and
Vonderschen and Chacron, 2011). As the response of P-units fluctuates around a mean
firing rate, we determined the CSI in terms of the firing rate fluctuation and in terms of
the correlation over trials.

The CSI pooled over all single unit recordings (n = 220 cells) as well as over all
n = 9 population recordings confirm the impression of the example recordings shown
above. There are four regimes of ∆ fBeat in which the firing rate, the spike correlation,
and the population activity are affected in the same way by a chirp of size s = 100 Hz
(Fig. 3.5, left column): At large negative ∆ fBeat (below −100 Hz) the CSI is greater than
zero, indicating an increase in firing rate as well as synchrony in response to the chirp.
At slow negative ∆ fBeat between −80 and −20 Hz the chirp desynchronises the P-unit
responses (CSI < 0). For positive ∆ fBeat the opposite happens: At low beat frequencies
between about 0 and 30 Hz, the CSI is positive again (synchronisation), while all beats
faster than 30 Hz lead to a CSI less than zero (desynchronisation). At these high beat
frequencies, the effect is less prominent for the correlation over trials. The results at
most ∆ fBeat differ statistically significantly from zero [p-value < 0.05 and corrected with
a modified Bonferroni correction, Simes method (Simes, 1986)], indicating that chirps
affect the responses and that both effects, decreases as well as increases in the response,
are consistent and reliable over cells. At the zero-crossings, where the CSI changes from
being positive to being negative or vice-versa, values are not distinguishable from zero.

Similar results are obtained for the responses to chirps with a smaller size s of 60 Hz
(Fig. 3.5, right column). However, effects are smaller at many ∆ fBeat, especially at high
positive ones. Accordingly, many values are not significantly different from zero (de-
noted by asterisks), particularly regarding correlation across trials. In a few ∆ fBeat, the
effect is contrary to that originating from a chirp of size s = 100 Hz. At −80 Hz, the
60 Hz-chirp increases the response, while the larger (100 Hz) one decreased it, at−20 Hz
the former decreases it, while the response is increased by the latter chirp.

In summary, chirps are encoded by P-units over the whole behaviourally relevant
repertoire of beats. However, depending on ∆ fBeat a chirp either increases or decreases
synchronisation of the P-unit population. This partitions the ∆ fBeat in four distinct re-
gions. In the following we analyze how the responses to chirps are generated and how
cell heterogeneity and more detailed aspects of a chirp influence the response to chirps.
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Figure 3.5: Representation of chirps by electroreceptor activity in dependence on difference
frequency. The chirp selectivity index (CSI) measures the contrast between the response to the
chirp and the response to the beat. A) The average firing rate computed in a window around the
chirp (gray boxes in Figs. 3.3 and 3.4) and during the beat is used as a measure for the single unit
response. Shown are the median (solid line) and the interquartile range (shaded area) of all CSI values
pooled over beat phases, contrasts, and cells. B) CSI of single units based on spike correlation across
trials. C) The CSI obtained from the population activity as the standard deviation of the potential
recorded from the lateral line nerve. Gray and black bars indicate beat frequencies where chirps have
synchronising (CSI > 0) or desynchronising (CSI < 0) effects, respectively. Difference from zero was
assessed by a sign test (Bonferroni corrected) in all cases. Values that are not significantly different
from zero (p > 0.05) are indicated by asterisks. All panels in the left column show the responses to
a chirp of size s = 100 Hz, in the right column to one of size s = 60 Hz.
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Figure 3.6: AM frequency tuning of P-units. The responses to the pure beat stimulus as a
function of difference frequency ∆ fBeat (based on the same responses as in Fig. 3.5). The responses
are averages in a window during the beat of A) the standard deviation of the single cell firing rate as a
measure for the rate modulation depth, B) the correlation between pairs of spike-trains as a measure of
synchrony and C) the population activity computed as the standard deviation of the voltage recorded
from the lateral line nerve. Shown are median (solid line) and interquartile range (gray).

Predicting the response to chirps from frequency tuning

As described above, a chirp increases the difference frequency ∆ f (t) for a short time
(Fig. 3.2) and with that transiently modulates the frequency of the resulting AM that
is encoded by the P-units. The response of a P-unit to a chirp could therefore be pre-
dictable solely from its tuning to sinusoidal AMs of different frequencies, i.e. beats. The
single-cell responses to sinusoidal AM stimuli show a peak in modulation depth of the
firing rate as well as in correlation at intermediate AM frequencies between 50 and 80 Hz
and decrease for slower and faster frequencies (Fig. 3.6 A, B). The tuning of the popula-
tion response closely matches the tuning of spike-train correlations measured in single
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Figure 3.7: Predicting the response to a chirp solely from the AM frequency tuning. A)
Prediction procedure. The average frequency excursion of a chirp with a maximum of 100 Hz over
14 ms is 56 Hz. We predicted the CSI from the response to a beat with a frequency ∆ fBeat = 60 Hz
shifted to the right with respect to the underlying beat. For example, the response to a chirp on
top of a beat of ∆ fBeat = −150 Hz was predicted to be the same as a response to a pure beat of
∆ fBeat = −90 Hz, at a beat of ∆ fBeat = 70 Hz the prediction was read off as the response to a beat
of ∆ fBeat = 130 Hz as demonstrated in the figure. The same applies to all other ∆ fBeat. B) The
predicted CSI plotted together with the measured CSI as a function of ∆ fBeat. The inset shows the
root mean squared error of the prediction for different shift values.

cells (compare Fig. 3.6 B and C). The largest modulation of the population response and
thus the highest synchronicity is found at the same intermediate beat frequencies. Note
that all three tuning curves are symmetrical around zero, because the AM of a beat of
negative ∆ fBeat is the same as that for a positive one.

To predict the response to a chirp with a size of s = 100 Hz we read off the response
from the AM frequency tuning curve at 60 Hz (approximately the average change in
frequency evoked by this chirp) to the right of the beat frequency (Fig. 3.7 A). With
this procedure we computed the CSI for every beat frequency from the tuning curve
obtained from the whole-nerve recordings. For most beat frequencies these predictions
match the measured data well (Fig. 3.7 B), indicating that the cells mainly respond to
the change in ∆ f (t) induced by the chirp. This response to chirp-induced frequency
changes is rapid since at low beat frequencies the faster ∆ f during the chirp shows up
for less than a full period.

Small differences between prediction and data are observed for fast positive ∆ fBeat
( > 120 Hz ) where the measured desynchronisation is weaker than predicted, and for
intermediate negative beats (∆ fBeat ≈ 30 Hz), where higher CSI values are predicted.
The latter is the region where the phase at which a chirp occurs influences the response.
Phase is not considered in the prediction and the deviations are therefore not surprising.
The prediction works very robustly, also for slightly different shift values (Fig. 3.7 B,
inset). Computing a more precise prediction by considering the chirp’s shape did not
improve results (not shown).
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Sources of variability

The estimates of the CSI derived from single unit responses (Fig. 3.5 A, B) show a con-
siderable amount of variability when pooled over cells and animals. In contrast, the
CSIs computed from the population rates are much more reliable, since the variability
between single cells is already averaged out in the measurement (Fig. 3.5 C). In both
cases, we pooled all data irrespective of the phase at which the chirps occurred within
a beat cycle. Chirps at different phases ∆φ of the beat give rise to very different AMs
(Fig. 3.2, see also Walz et al., 2012; Zupanc and Maler, 1993) and thus to potentially dif-
ferent responses of the P-units (see below). To disentangle the influence of cell hetero-
geneity and phase we averaged over each factor separately and analyzed the remaining
variability.

When averaging the responses over beat phases first, the remaining variability is
caused by cell heterogeneity (Fig. 3.8 A) and appears to be large. The variability caused
by different phases of the chirp within the beat (Fig. 3.8 B) is markedly lower except for
intermediate negative beat frequencies. Comparing the standard deviation of CSI esti-
mates when averaged over cells or over beat phases indicates that indeed the variability
over cells is greater than that over phases (Fig. 3.8 C). The heterogeneity among P-units
thus affects responses of single cells more strongly than the difference in stimulus shape
caused by different beat phases.

Discrimination of different chirps

We next ask whether an upstream neuron could in principal distinguish chirps occur-
ring at different phases ∆φ of the beat. Especially at slow beats the particular phase at
which a chirp occurs in a beat cycle has a strong impact on the resulting AM (Fig. 3.2).
This appears to be reflected in the spike responses (Fig. 3.9 A).

For analysing the differences between spike trains evoked by chirps at different ∆φ,
we performed a discrimination analysis similar to Marsat and Maler (2010) and Von-
derschen and Chacron (2011) on the basis of spike distance metrics (van Rossum, 2001).
For each ∆ fBeat and each cell we constructed confusion matrices for 10 different ∆φs
(Fig. 3.9 B). The confusion matrices were averaged over cells. How well the responses
to different phases can be assigned correctly, is quantified by the mutual information
of the confusion matrix, that is normalised to the maximum possible value. For each
∆ fBeat and each temporal resolution tested a single value is obtained that is color coded
in Fig. 3.9 C & E (see methods for details). A high information in the confusion matrix,
corresponding to a light color in Fig. 3.9 C & D, reflects a good discriminability of the
responses evoked by chirps at different beat phases.

Generally, the responses to chirps occurring at different phases of the beat can be
well discriminated at slow beats while discrimination becomes more difficult at higher
beat frequencies (darker colors in Fig. 3.9 C, D). Discrimination performance is markedly
improved at higher beat frequencies when temporal resolution of the distance measure
is fine (τc = 1 ms, Equation 3.6). On the contrary, at slow beats good discrimination can
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Figure 3.8: Sources of variability. A) The chirp selectivity index (CSI, based on the correlation
over trials) computed from responses to chirps of s = 100 Hz in dependence on beat frequencies (same
data as in Fig. 3.5 B). Here the CSI is averaged over all phases ∆φ for each cell separately (each
black circle is the average of a single cell). Gray area represents mean ± standard deviation of the
CSI estimates. B) Same data as in A, but now averaged over cells for ten classes of beatphases ∆φ,
i.e. the time of occurrence of a chirp within a beat cycle. Three phase-classes are drawn as indicated,
the gray area marks the mean ± standard deviation of the ten phase classes as a function of beat
frequency. C) Comparison of CSI variability when averaging over cells or phase. For each underlying
beat frequency ∆ fBeat, the standard deviation of the CSI estimations when averaged over cells (gray
area in panel A) is plotted over the standard deviation of the estimation when averaged over cells
(gray area in panel B). Points lying above the diagonal exhibit a greater variability resulting from cell
heterogeneity than from different phases of chirp stimulation.
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Figure 3.9: Discriminability of chirp responses at different beat phases. A) top: AMs of two
different beats (∆ fBeat = 10 Hz and 120 Hz) superimposed with chirps occurring at different phases
of the beat (∆φ = 180◦Cand 90◦C). Black bars indicate the two intervals used for the discrimination
analysis (short interval spanning the chirp only and long interval also including parts of the beat).
Bottom: Rasterplots of the respective neuronal responses. Scale bars indicate 0.5 mV in the first row
and 30 ms and 3 trials in the second. B) Confusion matrices created from assigning each chirp response
(at a given phase ∆φ, x-axis) to the phase ∆φ that had elicited a set of responses this response had
the smallest distance to as estimated by Equation 3.6 (y-axis, τc = 2 ms). The confusion matrices
were averaged over cells. From them, the mutual information was calculated (Equation 3.7). Subplots
show confusion matrices for different beat frequencies ∆ fBeat as indicated, with a τc of 2 ms and the
short analysis window. C) Discrimination performance (in terms of the relative mutual information) of
a chirp of size s = 60 Hz as a function of ∆ fBeat and the temporal resolution of the distance measure
(Equation 3.6) for the short (left plot) and long (right plot) analysis intervals (see methods). D) Same
as C but for responses to a chirp of size s = 100 Hz. The underlying difference frequencies in C and
D were −250, −200, −150, −120, −100, −80, −60, −30, −20, −10, 10, 20, 30, 50 (only for the
100 Hz chirp), 60, 80, 100, 120, 150, 200 and 250 Hz.

be achieved with a wide range of temporal resolutions. This matches the natural time
scales of the AM waveforms induced by the chirps. However, for all beat frequencies
up to 100 Hz, the discrimination is possible at the physiologically relevant time scale
which is on the order of milliseconds.

Increasing the width of the analysis interval simply increases discrimination perfor-
mance since more information becomes available for the discrimination. The depen-
dence on ∆ fBeat and temporal resolution is, however, not influenced by the width of the
analysis interval (compare left and right column in Fig. 3.9 C, D). The size s of the chirp,
i.e. its maximal frequency excursion, also influences discrimination performance. Dis-
crimination is elevated for the 100 Hz chirp as compared to the 60 Hz chirp (compare
Fig. 3.9 D and C, respectively).

3.4 Discussion

Our data demonstrate that the very same stereotyped communication signal — the
small chirp of the weakly electric fish A. leptorhynchus — is encoded in two opposing
ways. Depending on the ongoing background signal, the beat, the chirp transiently
either synchronises or desynchronises the activity of the receptor population, thereby
partitioning the range of naturally occurring difference frequencies into four regimes.
In contrast to a previous study where synchronisation was attributed to small chirps
and desynchronisation to a different type of chirps (large chirps, Benda et al., 2006),
we here focused on the neural responses elicited by a single type of chirp occurring
in different social contexts that are reflected by the frequency of the background beat.
We chose the small chirp as it is the most commonly emitted signal in most contexts
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(Zupanc, 2002) and used background frequencies that fish are likely to encounter in the
wild (Stamper et al., 2010).

Critical to a perception of signals is their representation at higher brain areas. Is the
differential encoding of small chirps in dependence on the background difference fre-
quency likely to persist at such subsequent processing stages and thus correspond to
a categorial perception of these signals? P-units project with distinct convergence ra-
tios onto pyramidal cells in three different maps of the electrosensory lateral line lobe
(ELL, Chapter 2, Carr et al., 1982; Heiligenberg and Dye, 1982; Maler, 2009). As shown
by lesion experiments, the lateral segment (LS) of the ELL is necessary for chirping be-
haviour (Metzner and Juranek, 1997). In this map about one thousand electroreceptor
afferents converge onto each pyramidal cell (Maler, 2009). The resulting large receptive
fields together with a readout based on coincidence detection explains their high-pass
response properties (Krahe et al., 2008; Middleton et al., 2009). The pyramidal cells of
the LS should therefore be sensitive to changes in the level of synchrony of the P-unit
population as measured here by spike train correlations and whole nerve recordings.
Indeed, LS pyramidal cells of the E-cell type encode small chirps on low difference fre-
quencies in synchronised bursts, whereas large chirps on high difference frequencies,
that desynchronise P-units (Benda et al., 2006), are encoded by I-cells (Marsat et al.,
2009). We expect that depending on the beat, small chirps are encoded by E-cells when-
ever they synchronise the P-unit population and by I-cells in case they desynchronise
the P-units. Thus, small chirps would be encoded in two different processing streams
depending on the background difference frequency.

The result of four encoding regimes is largely independant of the assumed read-
out of the P-unit population, as the firing rate as well as correlations between spike
trains give similar results. This similarity is not surprising since P-units are indepen-
dant (Chapter 2, Benda et al., 2006; Chacron et al., 2005b) and their mean firing rate
is the same during beats and chirps (Benda et al., 2006). In the centrolateral and the
centromedial segments (CLS and CMS) of the ELL neither E-cells nor I-cells show such
strong responses to chirps as in the LS (Marsat et al., 2009). In these segments, recep-
tive field sizes are smaller. About 150 (CLS) or 40 (CMS) P-unit afferents project onto
each pyramidal cell (Maler, 2009). This makes an additive readout of P-unit activity as
quantified by the firing rate more likely.

Our results focus on the responses evoked by chirps directly. However, a chirp also
induces a phase shift of the beat (Fig. 3.1 D, Benda et al., 2005). Superficial E-cells that
encode small chirps on slow beats (Marsat et al., 2009) receive indirect feedback (Berman
and Maler, 1998) that predicts and cancels responses to low-frequency ongoing beats
(Bastian et al., 2004). After a chirp the beat and the feedback are out of phase, resulting
in an enhanced response (Marsat and Maler, 2012). The cancellation of beat responses by
the feedback only works up to AM frequencies of 20 Hz and is thus unlikely to enhance
chirp responses at higher difference frequencies. Thus, at AM frequencies larger than
20 Hz that occur mostly during social encounters (Stamper et al., 2010) chirp-induced
phase shifts of the beat are not processed by the indirect feedback of the ELL.

The AM waveform a chirp induces not only depends on its size, duration, and the
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difference frequency, but also on the phase at which the chirp occurs during the beat
(Fig. 3.2). Indeed, responses to chirps at different beat phases can be well discrimi-
nated at low difference frequencies (Fig. 3.9). This is preserved in the ELL pyramidal
cells as well as in the dense coding cells of the torus semicircularis (Vonderschen and
Chacron, 2011). The large differences in AM waveforms and the corresponding neural
responses caused by different beat phases was demonstrated to hinder discrimination
of chirps of different sizes and durations in pyramidal cell responses (Marsat and Maler,
2010). However, at difference frequencies larger than about 100 Hz P-unit responses to
chirps at different beat phases become more and more similar (Fig. 3.9) thus potentially
allowing to discriminate different chirp properties. This behaviourally still relevant
range of difference frequencies (Stamper et al., 2010) was not tested in the mentioned
ELL studies. Discrimination of chirps in P-units performed best at time constants of
1 ms in contrast to about 5 ms in pyramidal cells (Marsat and Maler, 2010; Vonderschen
and Chacron, 2011), following the general pattern of less precise spike responses in up-
stream neurons both in vertebrates (Kara et al., 2000) and invertebrates (Vogel et al.,
2005). For future analyses of chirp discrimination in P-units population responses have
to be taken into account, since variability between different cells is even larger than
between responses of a single cell to chirps at different beat phases (Fig. 3.8).

Because the rate of emitted small chirps strongly decreases with larger difference
frequencies (Bastian et al., 2001; Engler and Zupanc, 2001) and recordings of P-unit re-
sponses suggested vanishing responses at beat frequencies beyond 60 Hz (Benda et al.,
2005), all electrophysiological studies on chirp encoding considered difference frequen-
cies only up to this frequency (Benda et al., 2006; Marsat and Maler, 2010; Marsat et al.,
2009; Vonderschen and Chacron, 2011). However, large difference frequencies up to
300 Hz do occur naturally (Stamper et al., 2010) and chirps at larger difference frequen-
cies do have significant effects on echo responses and attack behaviour (Hupé et al.,
2008). Our data on P-unit responses to chirps demonstrate that chirps are indeed en-
coded by P-units in the full range of possible positive and negative difference frequen-
cies.

Surprisingly, chirps as transient and stereotyped communication signals (Hupé and
Lewis, 2008; Zakon et al., 2002) turned out not to be encoded by P-units irrespective
of context parameters like the difference frequency. Rather the space of difference fre-
quencies is divided into four regimes where synchronising chirp responses alternate
with desynchronising responses (Fig. 3.5). Since difference frequency carries important
information about social context in terms of gender (Meyer et al., 1987; Zakon and Dun-
lap, 1999), size (Dunlap, 2002; Zakon and Dunlap, 1999), and dominance (Dunlap, 2002;
Fugère et al., 2011; Triefenbach and Zakon, 2008), our findings suggest two opposing
hypotheses. Either small chirps have the same meaning at all difference frequencies,
then one would expect to find neurons further upstream that respond in the same way
to small chirps irrespective of difference frequency. Or different behavioural categories
of chirps exist that reflect the categorical representation that we find on the receptor
level.

Following the second hypothesis, we suggest that small chirps at large difference
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frequencies could be used by the fish to determine the sign of the difference frequency.
How fish sense the sign of the difference frequency, has been studied in detail in Eigen-
mannia in the context of the jamming avoidance response for low difference frequencies
(Bullock and Heiligenberg, 1986; Kawasaki et al., 1988). However, at high difference fre-
quencies this mechanism that is based on a comparison between amplitude and phase
modulation signals evoked by the beat has not been studied yet and quite likely might
not work. Alternatively, since small chirps either synchronise or desynchronise the P-
unit population at large negative or positive difference frequencies, respectively, chirp-
ing could provide the necessary cue whether the fish’s frequency is higher or lower than
that of its opponent.

Our study on the encoding of a communication signal was triggered by behavioural
observations demonstrating the utilisation of this signal on a much broader context then
previously assumed (Hupé et al., 2008). The results showed a much richer response di-
versity on this broader space of natural stimuli. Like many recent unexpected findings
from the visual system of vertebrates (e.g. Butts et al., 2007; Vinje and Gallant, 2000) and
invertebrates (van Hateren et al., 2005) as well as in the auditory system (Neklen et al.,
1999; Theunissen et al., 2000), this emphasises the importance of natural stimuli when
studying neural function. In turn our results on the context-dependant encoding of one
type of chirps by electroreceptors call for more detailed behavioural as well as electro-
physiological studies that take into account the full range of natural and behaviourally
relevant stimuli.

The dependence of P-unit activity on difference frequency can be explained by a
simple model based on the unit’s frequency tuning. As demonstrated in Fig. 3.7, the
synchronisation behaviour of the P-units in response to the chirps is mainly based on
their AM frequency tuning. A chirp transiently increases the difference frequency and
thus modulates the AM frequency. The neuronal response rapidly follows this AM
frequency shift according to the AM frequency tuning curve. The good performance
of the model highlights how fast the P-units respond to changes in stimulus frequency.
As the chirp width is only 14 ms and thus shorter than one period of many of our beat
stimuli, P-units already respond to fractions of a beat cycle (see for example Fig. 3.3,
middle column). Because P-unit action potentials lock onto the EOD (Hagiwara and
Morita, 1963), their membrane time constant is likely to be shorter than a single EOD
period (∼ 1 ms) and thus potentially explains the P-units’ ability to quickly follow such
a mean-coded signal. Cortical neurons also have been shown to rapidly follow mean-
coded signals (Boucsein et al., 2009; Tchumatchenko et al., 2011). A variance-coded
transmission that was suggested for rapid signal transmission (Silberberg et al., 2004) is
therefore not required.

The AM frequency tuning curves for both rate modulation and correlations as the ba-
sis for predicting chirp responses show a band-pass tuning with maximal values in the
range of 30 to 80 Hz (Fig. 3.6). Such a band-pass frequency tuning is found in neurons of
various sensory systems (auditory: Narayan et al., 1998, vestibular: Straka et al., 2005,
visual: Saul and Humphrey, 1990) and is thus not a specific characteristic of P-units.
The high-pass component of the P-units’ tuning curve (Nelson et al., 1997) has been at-
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tributed to rapid spike-frequency adaptation (Benda et al., 2005). Note that adaptation
currents in general attenuate responses to low-frequency components of the stimulus
thereby shaping a high-pass filter (Benda and Herz, 2003). The low-pass component
could simply originate from the firing rate of the P-units (Knight, 1972a; Pressley and
Troyer, 2011) that have a high baseline activity of about 100 to 250 Hz (Gussin et al.,
2007).

In addition to these basic mechanisms of the spike generator the receptor current
itself could already be band-pass tuned. While this is not the case for P-units, since the
tuning we consider here is with respect to the amplitude modulation of a carrier signal,
auditory nerve fibers, for example, are band-pass tuned by the cochlear filter to their
characteristic sound frequency (Narayan et al., 1998). Many behaviourally relevant sig-
nals in acoustic communication as well as echolocation involve frequency shifts like the
chirps in electrocommunication discussed here (see e.g. Bailey et al., 1993; Wang et al.,
1995). The study of their encoding has been focused on more complex aspects such
as the selectivity for spectro-temporal features (Zhang et al., 2003). However, the fast
and robust encoding of transient signals in peripheral receptors could also be based on
the simple frequency-tuning mechanism described above. This mechanism does not re-
quire unique properties in receptor cells and could therefore be a universal mechanism
for a fast encoding of transient periodic signals.



Chapter 4
Predicting dynamic P-unit responses with
a spiking neuron model

4.1 Introduction

When the representation of information in neural activity is known, one would also like
to uncover the biophysical processes that implement it. Reproducing experimentally
measured activity with theoretical models is a powerful way to reveal such mechanisms
(Anderson and Kreiman, 2011). In the last chapter we have shown that P-units respond
by opposite tendencies to chirp depending on the background and that these response
variations can be explained from looking only at their frequency tuning and the fre-
quency content of the stimulus. The P-unit frequency tuning therefore lies at the heart
of their responses. Building on this result, we investigate the P-units’ frequency tuning
in this chapter by means of a computational model.

We use a leaky integrate-and-fire model to reproduce the responses of the whole P-
unit receptor organs. Each P-unit is made up of one afferent neuron innervating about
25–30 receptor cells (Chapter 2). Spikes are initiated at the afferent neuron close to the
receptor site, with short unmyelinated processes branching off to multiple active zones
at each receptor (Bennett et al., 1989). The exact transformations of the electric organ
discharge (EOD) that occur at the receptor, synapse, “dendritic” processes and spike
initiation sites remain unclear, as the receptor organs are inaccessible for electrophysi-
ology. Yet, the P-unit responses that result from these transformations, have been anal-
ysed in detail (Scheich et al., 1973; Wessel et al., 1996). As described in Chapter 2, their
discharge is phase-locked to the EOD but spikes are generated in a probabilistic man-
ner (hence “P”-unit) and the probability of spiking is dependant on the amplitude of the
EOD and the frequency of the amplitude modulation (AM). The P-unit discharge is not
a renewal process – successive interspike intervals (ISIs) are negatively correlated and
this correlation is important for encoding electrosensory signals (Chacron et al., 2001a;
Ratnam and Nelson, 2000).
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Previous modelling work has greatly contributed to our understanding about the
overall computations performed by P-unit electroreceptor organs. Kashimori et al.
(1996) built a conductance-based model of the whole electroreceptor unit and were able
to qualitatively reproduce the behaviour of different types of tuberous units. Nelson
et al. (1997) constrained a stochastically spiking model by linear filters of the previously
determined P-unit frequency tuning. Kreiman et al. (2000) used the same frequency fil-
ters to stimulate a noisy perfect integrate-and-fire neuron with which they investigated
the variability of cell responses to random amplitude modulations (RAMs). To repro-
duce the probabilistic phase-locked firing and the correlations of the ISIs, Chacron et al.
(2000) designed a noisy leaky integrate-and-fire model with refractoriness as well as a
dynamic threshold. Benda et al. (2005) used a firing rate model with a negative adap-
tation current to reproduce the high-pass behaviour of P-units. These five models can
roughly be grouped into studies that primarily aimed at reproducing the baseline be-
haviour (Chacron et al., 2000; Kashimori et al., 1996; Kreiman et al., 2000) or such which
focused on the cell’s responses to AM stimuli of the cells (Benda et al., 2005; Nelson
et al., 1997). However, no model to date captures all aspects of P-unit encoding. We
show that a model designed and calibrated to baseline characteristics can reproduce the
responses to AMs that represent the naturally relevant signals with a high degree of
accuracy.

In the following we will first describe the design of our model and the fit to P-unit
responses to baseline conditions and step stimuli. We then describe the parameter vari-
ability underlying the fit to different cells and show how the model is altered by chang-
ing each parameter separately. Finally, we show how the models that are only con-
strained to response characteristics in baseline conditions and to artificial steps in EOD
amplitude, can reproduce the frequency tuning of cells with high accuracy.

4.2 Methods

Experimental recordings of P-unit electroreceptors

P-unit recordings were made from the posterior branch of the anterior lateral line nerve
ganglion of adult A. leptorhynchus. The experimental procedures were as described in
detail in Chapter 3. The data in this chapter stems from recordings in seven fish (12.5 –
18.9 cm body length, 2 female, 3 male 2 not determined, EOD frequency (EODf) range
775.4± 73.31).

We included results of all P-units (n = 23) of which we had recorded baseline activity
as well as responses to step and sinusoidal stimuli. We excluded all bursting cells, i.e.
those in which one spike is likely to be followed by another one within one or two
EOD periods. We rejected the bursting units because we suspected that, at least in
some cases, such bursting may be caused by damage to the P-unit afferent fibres and
so be artefactual. The tendency to burst shows up in the baseline ISI histograms as
an additional peak at small intervals in addition to the peak that all cells show at the
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inverse of their baseline firing rate. Therefore, we checked all ISI-histograms to have a
bell-shaped form and excluded those whose histograms had more than one peak. Note
that in cells with a very high baseline firing rate, the two peaks can overlap and lead to
ISI-histograms with only one peak at intervals as small as one EOD cycle. We chose to
be conservative and discarded such cells assuming bursting activity.

Model Simulations

P-units were modelled as noisy leaky integrate-and-fire neurons with adaptation cur-
rent (LIFAC). Simulations were integrated using the Euler method with time steps of
∆t = 0.05 ms or 0.1 ms (during the fit routine). For the simulation of a stochastic noise
current (ξ, see below), a normally distributed random number (N(0,1)) was drawn at
every time step and divided by

√
∆t to obtain a current with an autocorrelation func-

tion independant of the integration step size. All data acquisition, analysis and model
simulations were done using custom-made C++ software. Most analysis programs are
available through the RELACS package (www.relacs.net).

The membrane potential V of LIF neurons follows the dynamics

τV
dV
dt

= −V + I + ∑(δ(t)) . (4.1)

The current is integrated and when V reaches the threshold, it is reset to 0 and a spike is
listed. Because P-unit cell bodies are inaccessible in recordings and information about
their membrane resistance is lacking, the current is directly integrated and carries the
unit mV. It is comprised of the sum of a stimulus-dependant current IInput, a bias current
IBias, a spike history-dependant adaptation current IA and a Gaussian noise current ξ,
thus

I = αIInput + IBias − IA +
√

2Dξ , (4.2)

with α representing a cell-specific gain factor expressed in cm (because IInput represents
the EOD stimulus and carries the unit mV/cm). The adaptation current evolves over
time according to

τA
dIA

dt
= −IA + ∆A ∑(δ(t)) . (4.3)

Using the Euler integration, this corresponds to an exponentially decaying current that
is incremented at every threshold crossing by

IA 7→ IA +
∆A

τA
. (4.4)

IInput consists of an amplitude modulated sine wave that mimics the EOD. The de-
sired waveform of the AM, β(t), is multiplied with the EOD stimulus. EOD frequency
and amplitude are taken from the recording (the amplitude is incorporated into β).
The signal is then passed through a Heaviside function to include zero-clipping of the
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synapse. It is low-passed filtered at about one EOD period to simulate filtering in the
unmyelinated processes. Accordingly, the dynamics of the input current are

τD
dIInput

dt
= −IInput + H[β(t)sin(2π fEODt)] . (4.5)

Our model necessitated the fit of seven parameters, namely τV , α, ∆A, τA, τD,
√

2D
and IBias. The first six were optimised using the simplex algorithm (Nelder and Mead,
1965). This is a standard numerical procedure for the fit of variables, in which an error
function of target parameters is minimised. In our case the error function consisted of a
weighted sum of four baseline parameters as well as the error between the estimated f-I-
curves of model and data. The four baseline parameters were the coefficient of variation
(CV) and the first serial correlation (SC) of the ISIs, the vector strength (VS) of phase-
locking to the EOD and the mean firing rate. For details on how to calculate these
measures see the section on Data Analysis below. The individual terms were weighted
such that all errors were of comparable size. Since VS, for example, ranged between 0.8
and 1, its error was on the order of 0.2 and was multiplied by 5 to be about as big as the
other errors. After each iteration of the simplex algorithm, IBias was adjusted such that
the baseline firing rate was matched.

The fit routine risks falling into local minima, i.e. ending at a parameter combination
with better results than neighbouring parameter sets, but worse results than combina-
tions that are further away in the parameter space. To find a better overall solution,
we started the fit multiple times with different starting values for each of the six model
parameters. We chose 3 initial values for each model parameter and thus got a total
of 36 = 729 fits. The one with the lowest cost function was chosen as the best overall
model fit.

Stimulation Protocols

All stimulation protocols were identical for electrophysiological experiments and model
simulations. To construct f-I-curves, step stimuli of on average 14 different intensities
between 80 and 120 % of the baseline EOD amplitude were used. With this intensity
range we usually sampled the whole linear part of the response of the neuron or model,
with only the highest and lowest values forcing it into saturation (Gussin et al., 2007).
Each step was 400 ms long and was followed by a 1 s pause to guarantee that the cell
was not any longer adapted to the last step. Each intensity was played back 10 times, in
a sequence with the other steps such that one high intensity was always followed by a
low intensity.

We stimulated with sinusoidal amplitude modulations (SAMs) to assess the fre-
quency tuning of cells and models. SAMs ranged from 2 to 300 Hz at contrasts of 5, 10
and 20 %. We also used higher frequencies, but decided to exclude them, as the EOD is
the carrier to all AMs and, following the Nyquist theorem, AM frequencies higher than
EODf/2 are not represented well in the signal. Each frequency was played back between
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200 and 450 times. To test cross-frequency effects, we used random amplitude modula-
tions (RAMs). They consisted of 2 s of Gaussian white noise with a cutoff-frequency of
300 Hz and a standard deviation of 0.3 at 5 % contrast.

All stimuli were generated by multiplying the EOD with the desired AM. In the
model, the phase of the EOD in each trial was randomised to account for the fact that
we did not control the AM with respect to the EOD in the experiments. In general, AM
stimuli can also be produced by simulating another electric signal that by superposition
with the EOD of the fish generates the desired AM. In the case of SAM stimuli, for
example, the EOD of a conspecific can be played back with a frequency resulting from
the addition of the fish’s EODf and the desired beat frequency. In the model, we tested
both – direct EOD and multiplied AM stimuli – and found no differences in the resulting
responses.

Data Analysis

Baseline

From each P-unit we recorded at least 30 s of baseline activity, i.e. activity in the presence
of an unmodulated EOD. Likewise, we simulated 50 s of the model. From this data the
four baseline parameters mean firing rate, CV, VS, and SC were extracted. The mean
firing rate was calculated as the number of spikes divided by measuring time. From the
ISIs the CV was calculated as their standard deviation divided by their mean,

CV =
σ

µ
. (4.6)

The SCx was calculated as the correlation coefficient between successive ISIs of a partic-
ular lag, x,

SCx =
〈(pi − 〈p〉t)(pi+x − 〈p〉t)〉t√
〈(pi − 〈p〉t)2〉t

√
〈(pi+x − 〈p〉t)2〉t

, (4.7)

where pi is a certain ISI and pi+x the one succeeding with a lag of x intervals. 〈...〉t de-
notes averaging over time. As a measure of the phase-locking to the EOD, the VS was
calculated as

VS =
1
n

√√√√(
N

∑
i=1

sinφi)2 + (
N

∑
i=1

cosφi)2 , (4.8)

where ti is the time of the ith spike and φi = 2π(ti − time)/period the phase of the EOD
period at which it occurred.

f-I-curves

The time course of the firing rate response to all following stimulation protocols (the
peri-stimulus time histogram) was computed by convolving each spike train with a
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Gaussian kernel with a standard deviation of 1 ms and averaging over trials. 1 ms was
chosen since it corresponds to the fast excitatory component of excitatory postsynaptic
potential evoked by P-units in their target cells, the pyramidal cells in the electrosensory
lateral line lobe (ELL, Berman and Maler, 1998).

For each step intensity we then calculated the onset response as the maximal de-
flection of the rate during a window of 20 ms following stimulus onset relative to the
average baseline rate. The steady-state response was calculated as the average rate dur-
ing the last 200 ms of stimulus application.

The slope of the steady-state f-I-curve ( f∞) was derived from a linear fit to the data.
We defined the slope of the onset-f-I-curve ( f0) at the point of inflection, which we de-
rived from a fit to the Boltzmann function,

y =
p0

1.0 + exp(−p1 ∗ (x− p2))
+ p3 , (4.9)

where p0∗p1
4 gives the slope.

Sinusoidal stimuli

The response to SAM stimuli of different frequencies was characterised using two mea-
sures. First, the modulation depth of the rate was calculated as the standard deviation
of the rate response. Second, the correlation over trials was assessed by the average
correlation coefficient (Equation 4.7) between all pair-wise combinations of trials. From
then resulting tuning curves, we also determined the cutoff frequency to both high and
low frequencies as the frequency at which the response drops to half its maximal value.

Noise stimuli

To characterise the frequency response of cells and models to random amplitude mod-
ulations (RAM), we used the coherence. The coherence function between two time-
varying signals s(t) and r(t) is given by

Csr( f ) =
‖〈SR〉‖2

〈SS〉〈RR〉 , (4.10)

in which S and R are the signals in the frequency domain. SR is the cross spectrum
and SS and RR the auto spectra. 〈...〉 denotes averaging over trials. The spectra were
calculated using Hanning windows with 50 % overlap. The coherence function can take
values between 0 and 1 with high values reflecting a linear relationship between the
two signals. We measured the coherence between stimulus and response as a measure
of encoding linearity at different frequencies. The coherence between different trials we
took as a measure of coding reliability. In both cases each spike train was convolved
with a Gaussian kernel of 1 ms width. The mean was subtracted for both, response
and stimulus. The stimulus-response coherence was then calculated as the coherence
between the average rate response and the stimulus, the response-response coherence
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as the square root of the average coherence between all pairs of trials (Roddey et al.,
2000).

Goodness of fit

To quantify the goodness of fit of a certain model, we used the per cent error between
the response characteristics of this model neuron and its target cell. The goodness of
fit to baseline activity and f-I-curves was assessed by the errors of the baseline activity
characteristics: the baseline rate, CV, VS and SC and the slopes of the f-I-curves, f0 and
f∞.

To examine the quality of the response predictions to SAM and RAM stimuli, we as
well used the per cent errors between values derived from model and cell data. The per
cent error of the tuning curves to SAMs was calculated as the mean error normalised by
the mean response (rate modulation or correlation averaged over frequencies). We also
calculated the error of the cutoff frequencies. From the responses to RAM stimuli the
per cent error was estimated of the rate response as the per cent error of the mean rate
modulation (i.e. standard deviation of the rate response). The errors of the coherences
were estimated as the mean error normalised by the mean coherence.

Additionally, we used the correlation coefficient between cell and model results to
quantify the similarity of the shape of the frequency tuning. From the SAM responses
we calculated the correlation coefficients between the response tuning curves of cell
and model. The RAM prediction quality was quantified by the correlation coefficient
between the rate responses as well as the coherences of cell and model.

Sensitivity Analysis
To assess the influence each parameter has on the activity of the model, we changed the
parameters one by one in a relative fashion from 0.5 to 1.5 of their value, and compared
the response properties of the altered models to the default model. For each realisation
we adjusted IBias to match the baseline firing rate and to avoid confounding effects of
different firing rates. All relations between parameter and property were significantly
linearly correlated (p-value < 0.05). However, the size of the effect varied strongly. We
quantified it by the normalised sensitivity coefficient S(C, P) between a certain response
characteristic C and the parameter P according to

S(C, P) =
dC/Cdefault

dP/Pdefault
. (4.11)

Specifically, we calculated S(C, P) as the slope of a linear regression between dC and dP,
given by

dC
Cdefault

= S(C, P) ∗ dP
Pdefault

+ X . (4.12)

The response characteristics C we used in the sensitivity analysis were the same six
baseline characteristics as before. However, the Boltzman fit was too unstable to derive
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f0 from it, and we derived it from a linear fit of the middle part of the f-I-curve. For the
analysis of changes in SAM response predictions, we used the correlation coefficients
between the tunings of the modified model and the reference model, as well as the mean
errors between the two data series. For the RAM responses, the correlation coefficients
and the errors of the rate response fluctuations (i.e. standard deviations) and of the
coherences were evaluated.

4.3 Results

We here present a model of P-unit electroreceptors. Our aim with the model was twofold:
To investigate the variability in biophysical parameters underlying population hetero-
geneity in these neurons and to examine their frequency tuning. Specifically, we exam-
ined whether a model constrained to baseline discharge characteristics is able to repro-
duce the frequency tuning to simple and complex stimuli.

The model is designed and fit to baseline activity

We start with the description of the response characteristics of P-units that form the ba-
sis of our model. A complete characterisation of their activity has been the subject of
previous studies (Gabbiani et al., 1996; Gussin et al., 2007; Scheich et al., 1973; Wessel
et al., 1996; Xu et al., 1996; Zakon, 1986). Under baseline conditions, P-units are stimu-
lated by a constant EOD, to which they respond with a constant baseline rate, but high
interspike interval (ISI) variability (Fig. 4.1 A). This variability is reflected in a broad
ISI histogram (Fig. 4.1 B) that is discrete because of phase-locking to the EOD. Succes-
sive ISIs are negatively correlated at first lag (Fig. 4.1 C), a prominent feature of P-units
resulting from their strong spike-frequency adaptation (Chacron et al., 2001a; Farkhooi
et al., 2009; Ratnam and Nelson, 2000). Overall, the baseline activity of single cells can
be described by the well-established measures baseline firing rate, coefficient of varia-
tion (CV) and first serial correlation (SC) of ISIs as well as vector strength (VS) of EOD
coupling. Note that we ignore possible positive correlations among ISIs at longer time
scales that have been described in P-units before (Chacron et al., 2001a). Such posi-
tive correlations show up as an increase in the Fano factor for long analysis windows,
a feature that we only saw inconsistently in some of our cells and therefore chose to
disregard.

The probability with which P-units fire at each EOD cycle depends on the amplitude
of the EOD. Upon a step in amplitude the cells show a strong initial response that de-
cays to a steady-state upon constant stimulation (Fig. 4.1 D). The response can also be
a reduction of activity and increase to a steady-state if the EOD amplitude is decreased
(as upon termination of the step in Fig. 4.1 D). Cells with such a behaviour to step stim-
uli can be described by two f-I-curves (relationships between firing rate and stimulus
strength, Fig. 4.1 E, Benda et al., 2005, 2010). One is derived from the maximal response
at stimulus onset for steps of different amplitudes, the other as the steady-state response
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Figure 4.1: Baseline activity and f-I-curves of P-units. A) Stimulus and response of a represen-
tative P-unit under baseline conditions, when the EOD amplitude is constant. The EOD is shown in
the top panel, the spiking response in the middle panel and in the third panel the rate as obtained by
convolving the spiking response with a Gaussian kernel of 1 ms width. B) and C) show the interspike
interval (ISI) histogram and the correlations of successive ISIs derived from the baseline activity in A,
respectively. D) shows the activity of the example cell under step stimulation. The organisation of
the panels is the same as in A. E) Two f-I-curves are calculated from the responses to step stimuli
of different intensities: The onset f-I-curve is generated by taking the maximum in a window after
stimulus onset and the steady-state f-I-curve by averaging in a second window in the last second half
of the stimulus (the windows are indicated in D as black bars). At the baseline EOD amplitude, the
two curves intersect.
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after adaptation to each step. The slopes of the two f-I-curves, f0 (onset) and f∞ (steady-
state), indicate the firing rate sensitivity of the cells, as higher slopes indicate a bigger
change in firing rate associated with a certain change in EOD intensity.

Based on these characteristics, we designed the model (Fig. 4.2): We chose a simple
form of spike generator, the noisy leaky integrate-and-fire model, that integrates the
stimulus with a low-pass filter of time constant τV and a noise current of strength

√
2D

until it reaches a threshold and a spike is noted (Lapicque, 1907). The adaptation was
modelled as a negative adaptation current that is incremented at every spike by ∆A and
relaxes back to zero exponentially with a certain time constant τA (Benda and Herz,
2003). We designed the stimulus as a modulated EOD to preserve phase-locking to the
EOD. The stimulus was passed through a nonlinearity that clipped it at zero as well
as a low-pass filter with time constant τD simulating processes at the synapse and the
unmyelinated dendritic processes, respectively. The gain factor α and offset IBias account
for the different sensitivities and baseline rates of different cells.

The model has the seven parameters τD, α, IBias, τV ,
√

2D, ∆A and τA. When these
are constrained in a fit routine to match a cell’s mean firing rate, CV, VS, SC and f0 as
well as f∞, the model reproduces the full baseline ISI histogram (Fig. 4.3 A), all serial
correlations (Fig. 4.3 B) as well as the full onset- and steady-state f-I-curves of the target
cell (Fig. 4.3 C). We repeated the fit for all 23 P-units (baseline rate= 144.14 Hz±32.5;
CV = 0.281± 0.05) of which we had recorded baseline activity and responses to step
and SAM stimuli. The fit was successful for all target data sets showing that the result
is not specific for one example neuron. The rate, CV and VS lie within 10 % range of
the target values, only the SC is matched poorer (Fig. 4.3 D). The errors of f0 and f∞
are also higher and lie between ±20 %. The error values of the example cell (points in
Fig. 4.3 D) lie well within the range of those of the other cells, demonstrating that such
error values correspond to a very good match of the entire shapes of ISI histogram, ISI
correlations and f-I-curves.

In order to test the necessity of the dendritic low-pass filter we also fit the model
without such a filter to the data. This reduced model matches the shape of the ISI his-
togram, but fails to match its peak height (Fig. 4.4 A). The f-I-curves of cell and model
correspond nicely (Fig. 4.4 B). The mismatched histogram peak is reflected in a mis-
match of VS. The model without the filter consistently leads to strong phase-locking
and therefore only produces activity with high VS (Fig. 4.4 C).

The model reproduces the heterogeneity of P-units

Our sample of 23 P-units differs in all four baseline response characteristics as well
as in the slopes of the f-I-curves (see Fig. 4.5 A–F, distributions of cells in grey). It
approximately covers the range that has been described for these neurons, although the
baseline firing rates are lower than seen in previous studies (Nelson et al. (1997) report
firing rates around 320 Hz, Gussin et al. (2007) around 200 Hz). This might be caused by
the rigorous criterion that we applied to leave out bursting cells (see Sec. 4.2). Bursting
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Figure 4.2: P-unit model. The EOD and possible AMs are sensed by tuberous receptors (top panel
on the right). The synapse between receptor and afferent clips the signal at zero (second panel). This
zero-clipped signal is low-pass filtered in the dendritic processes with a certain time constant τD (third
panel) and enhanced by a gain (α) and offset (IBias) at the cell (fourth panel). The processes at the
cell body are modelled by a leaky integrate-and-fire model with an adaptation current (the integrated
input is shown in the fifth panel). When it reaches the threshold, a spike is noted (sixth panel) and the
voltage is reset to zero. Also, the adaptation current is incremented by ∆A and relaxes back to zero
with a time constant τA. All left panels schematically depict the mathematical operations: Heaviside
function, low-pass filtering, leaky integration, reset at threshold, and the feed-back of the negative
adaptation current.

is positively correlated with firing rate (not shown), we thus underestimate the firing
rate.

The model can not only be fit to all different P-units regardless of their character-
istics, it also reproduces the distributions of these characteristics (see Fig. 4.5 A–F, dis-
tribution of model values in black). Furthermore, over cell and model population the
response characteristics exhibit the same correlations. Cells and model with higher rates
also show higher SCs, those with higher CVs also have higher slopes of both their f-I-
curves and the slopes of the two f-I-curves are correlated as well. The model population
thus resembles the heterogeneity of the P-unit population in terms of both, variability
and correlation of the response characteristics.

Parameter variability underlies heterogeneity

Causing the heterogeneity in the model is a high variability of parameter values over
fits to different target cells (Fig. 4.6). The distributions of values for each parameter are
of different shape and width. We determined the degree of variation as the percentage
of the median value that the semiquartile range took up. The latter is defined as half
the difference between first and third quartile. The semiquartile range spans from 11 %
(for τA) to 78.5 % (for the IBias, see Table 5.3) of the median value. This means that
half the values of the different models are spread over 22–157 % of their median value,
demonstrating that the models vary greatly in the values of their parameters.

In addition to heterogeneity compensatory effects can also cause variation in pa-
rameter values, when two parameters are jointly varied without affecting the outcome.
Compensations lead to correlations between parameters. In the model only the follow-
ing are significantly correlated: ∆A, τV and

√
2D (see Table 5.3), implicating that there

are little compensatory effects.

Sensitivity analysis relates parameters with model activity

The basis for the heterogeneity in baseline characteristics thus lies in the variability of
the model parameters. But which parameter influences which characteristic? We ad-
dressed this question in a so-called sensitivity analysis. We varied the model parame-
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Figure 4.3: Fit of the model. A) The ISI histogram of one representative P-unit (the same as in
Fig. 4.1) is shown together with that of the corresponding model. B) The serial correlations between
successive ISIs and C) the f-I-curves for the same cell and model. D) shows the per cent errors of all
23 fits for the baseline rate, the coefficient of variation, CV, and the first serial correlation, SC, of the
ISIs, the vector strength of phase-locking to the EOD period, VS, and the slopes of the f-I-curves,
f0 and f∞, indicated as medians, interquartiles and maximal values. Points show the values of the
example cell from A–C.
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Figure 4.4: Effect of the dendritic low-pass filter. A) shows the baseline ISI histogram for the
example cell (“cell”) and the results of the corresponding model with (“model”) or without (“model
wo d”) a dendritic low-pass filter (same fitting procedure was used). The latter can match the shape
of the histogram, but fails to match its peak height. B) shows the f-I-curves for the same cell and
models. C) The model without the filter was fit to all 23 cells. This panel shows the distribution of
VS for the cells, the model with a low-pass-filter as well as without the low-pass filter (the legend is
the same as in A). The reduced model consistently leads to strong phase-locking reflected in high VS.

ters in a relative fashion between 0.5 and 1.5 of their default value and measured the
corresponding relative change in the response characteristics. To eliminate confound-
ing effects by different baseline rates, the rate was adjusted via IBias and this parameter
therefore left out of the analysis. In the following, we describe the changes in the six re-
sponse characteristics caused by changing each of the model parameters. We restrict the
descprition to those relations in which doubling the value of a parameter led to a change
in response characteristic of at least 10 % corresponding to a sensitivity coefficient S (see
Eq. 4.11) of at least 0.1 (relations shown in Fig. 4.7 and Table 4.2).

Increasing the gain factor α most strongly influences f∞ and f0, but it also increases
VS (Table 4.2, first row, Fig. 4.7 C, D and F, first panels). These effects are expected, since
increasing α will increase the effective stimulus strength and thus the sensitivity of the
cells to the EOD stimulus. Increasing noise strength

√
2D has the opposite effect and

predictably increases the CV and decreases the SC as well as the VS (Table 4.2, second
row, Fig. 4.7 A and B first panel, C second panel). The CV is a measure of discharge
variability, while the SC and VS rely on response regularity with respect to the ISIs and
the phase of the EOD, respectively.

Lengthening the membrane time constant τV decreases the CV, the SC and f∞ and,
particularly, f0 (Table 4.2, third row; Fig. 4.7 A, B and D, second panels). Its influence on
the CV and on f0 results from its low-pass filter effect. The first is decreased because fast
components and thus the effective amplitude of the Gaussian noise are reduced. The
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Figure 4.5: Distributions of response characteristics of cells and models. Shown are the
distributions of cells (grey, filled boxes) and model fits (black, empty boxes) for the following response
characteristics: A) baseline rate, B) CV, C) SC, D VS, E) f0 and F) f∞. Correlations between these
six response characteristics are shown in G) for the values from the recorded cells and in H) for the
corresponding values. Shown are those correlation coefficients that are statistically significant (p-value
< 0.05, Bonferroni corrected).
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Figure 4.7: Sensitivity of baseline characteristics. The relative change of different baseline pa-
rameters as a result of changing a certain model parameter is shown. For example, by increasing
the noise strength

√
2D by half, the CV is increased by half, while it is increased only slightly when

increasing the membrane time constant τV (first and second panel in the top row). The reference
value is the default model, the different lines show the relation for the 23 fits. All relations whose
slope lies above 0.1 are shown for effects on A) the CV B) the SC, C) the VS and D) the slopes of
the f-I-curves. The order of the underlying parameters from left to right are: α,

√
2D, τV , τA, ∆A

and τD. If a parameter did not have an effect, the panel for the next one is shown in its place (as for
example α did not have an effect in A, the relation with

√
2D is shown in the first panel).
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Table 4.1: Distributions of model parameters. From the distributions shown in Fig. 4.6 median
values and semiquartile ranges are shown in the second column. To quantify the dispersion of values,
the semiquartile ranges are given in the second column as percentages of the median. The semiquartile
range is defined as half the difference between first and third quartile. The right part of the table
shows the correlations between optimal model parameters. Only significant correlations are shown
(p < 0.05, Bonferroni corrected).

parameter median value per cent α IBias
√

2D τV τA ∆A τD

α [cm] 77.9±20.58 26.4 1.0
IBias [mV] −17.19±13.49 78.5 1.0√

2D [mVs1/2] 0.098±0.04 41.1 1.0 0.91 0.84
τV [ms] 0.95±0.46 48.4 0.91 1.0 0.72
τA [ms] 41±4.5 11 1.0
∆A [mVms] 0.0768±0.0246 32 0.84 0.72 1.0
τD [ms] 1.804±0.55 30.7 1.0

Table 4.2: Sensitivity Analysis of Baseline Response Characteristics. Shown are the sensitivity
coefficients S(C, P) (see Eq. 4.11) of the relations between changes in model parameters P and
resulting changes in response characteristics C (full relations shown in Fig. 4.7). All S(C, P) > 0.1
are bold. They correspond to a 10 %-change in response characteristic C, when changing the model
parameter P by 100 %, and are discussed in the text.

param. CV SC VS f∞ f0

α −0.02±0.02 −0.01±0.03 0.17±0.09 1.00±0.01 0.90±0.18√
2D 0.62±0.11 −0.15±0.09 −0.12±0.06 −0.04±0.02 −0.07±0.07

τV −0.64±0.21 −0.27±0.16 −0.07±0.03 −0.12±0.06 −0.64±0.27
τA 0.47±0.12 −0.31±0.20 0.02±0.01 0.01±0.01 0.44±0.17
∆A −0.44±0.15 0.37±0.14 −0.02±0.01 −1.03±0.05 −0.43±0.14
τD −0.01±0.02 0.01±0.03 −0.15±0.08 −0.04±0.03 −0.25±0.19

second effect is confined to high intensity steps (not shown), to which the maximal firing
rate of the model is decreased. The dependency with the SC exhibits a different shape
for different models. The SC has a maximum when the time scale of adaptation exactly
matches the baseline firing rate (Benda et al., 2005). In Fig. 4.7 B, second panel, some
curves have a slightly positive slope in contrast to the negative slope seen on average.
For most models the SC would be greater for a smaller τV while it is too long for others.

Stronger adaptation, thus an increase in ∆A, decreases the CV, increases the SC and
decreases f0 as well as f∞ (Table 4.2, fifth row, Fig. 4.7 A, B and D, fourth panel, last row
third panel). The influence of adaptation on ISI variability depends on the adaptation
time scale (Liu and Wang, 2001; Schwalger and Lindner, 2013). When the adaptation
time scale is on the order of the mean firing rate, it decreases the variability (Benda
et al., 2010; Liu and Wang, 2001) and thus the CV. It has also been shown that adapta-
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tion leads to negative ISI correlations (Chacron et al., 2001a) and that this correlation is
increased by increasing the strength of adaptation (Liu and Wang, 2001), which explains
the effect on the SC. The negative adaptation current decreases the effective stimulation
current and thus decreases the f-I-curve slopes. The effect is stronger on f∞ which is in
accordance with its high-pass filter effect (Benda et al., 2005).

The adaptation time constant, τA, increases the CV and f0, while it decreases the SC
(Table 4.2, fourth row, Fig. 4.7 A, B and D, third panels ). When the adaptation current
is incremented by ∆A at each spike, it is normalised by τA (Eq. 5.3) as a result from
the Euler integration method. Increasing τA therefore at the same time decreases the
magnitude of the adaptation current. As a consequence f∞ is constant upon changes in
τA, because the effect of lengthening the relaxation of the adaptation current cancels out
that of decreasing it maximal strength. The normalisation also leads to effects on the
CV, the SC and f0 that oppose the effects of ∆A. However, previous studies have also
shown that increasing τA increases the ISI variability (Liu and Wang, 2001; Schwalger
and Lindner, 2013). The effect of τA on the SC seems to be nonlinear, in the same way
as shown for τV , as the SC is highest when τA matches the baseline firing rate (Benda
et al., 2010). In Fig. 4.7 B, third panel, some curves exhibit a positive slope in contrast to
the negative slope of the average.

It was shown above (Fig. 4.4) that the dendritic low-pass filter is needed to reduce
the phase-locking to the EOD. Increasing its length by increasing τD decreases the VS
(Table 4.2 sixth row, Fig. 4.7 C third panel). It also has an effect on f0 which it decreases
(Fig. 4.7 last panel). By filtering out high frequencies, the fast onset of the step stimulus
is washed out and the onset response is decreased.

Models predict responses to sinusoidal stimuli

We now turn to the second aim of our study which is the investigation of the frequency
tuning of our P-unit model. When stimulated with sinusoidal amplitude modulations
(SAM), P-units respond with an increased rate during the peaks, while the rate is de-
creased during the troughs (Fig. 4.8 D, Chapter 3, Wessel et al., 1996). The magnitude
of rate modulation depends on the frequency of the SAM, being strongest for interme-
diate frequencies between about 50 and 150 Hz and decaying for both lower and higher
frequencies (Fig. 4.8 E). The pattern of how P-units respond reliably to the stimulus, as
seen in the correlation over trials, is similar (Fig. 4.8 F). The model cell reproduces the
behaviour of its real-cell counterpart in both the time course of the spike and rate re-
sponse to single frequencies (Fig. 4.8 C and D, except for the axonal delay (Heiligenberg
and Dye, 1982; Nelson et al., 1997) that is not included into the model) as well as the
shape and the height of the frequency tuning in terms of rate modulation (Fig. 4.8 E)
and correlation over trials (Fig. 4.8 F). Since the model was neither designed nor cali-
brated to reproduce the frequency tuning of P-units, this is an emergent property from
their responses to baseline condition and step stimuli.

The rate mainly fluctuates around an average firing rate which does not depend
much on the stimulus frequency (Fig. 4.8 G). However, P-units show an enhanced re-
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sponse to AMs with a frequency close to their baseline frequency or multiples thereof.
This nonlinear effect is reproduced by the model (Fig. 4.8 G, this cell fired at 210 Hz. See
also Brunel et al., 2001; Fourcaud-Trocmé et al., 2003; Knight, 1972b). However, the lock-
ing is smaller in the model than in the cell, indicating that our model for the neuronal
noise is not optimal (Brunel et al., 2001; Fourcaud-Trocmé et al., 2003).
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Figure 4.8: Response of cell and model to sinusoidal stimuli. A) Cell and model were stimulated
with sinusoidally amplitude modulated EODs of 40 Hz and 20 % contrast. The EOD is shown in
black, its amplitude modulation in grey. B) shows the spiking response of the representative P-unit
(the same as in Fig. 4.1 and 4.3) over different trials, C) the spiking response of the corresponding
model. D) The spiking responses were convolved with a small Gaussian kernel (1 ms width) and
averaged. Shown are the rate responses of the cell (black) and model (grey). E) The same cell
and model were stimulated with sinusoidal AMs between 5 and 300 Hz (at 20 % contrast). From
the rate response, the standard deviation as a measure of modulation depth was calculated. This is
plotted over the stimulation frequency. F) The correlation coefficient over trials was also calculated
and plotted over stimulation frequency. G) shows the mean rate of responses to all frequencies. The
dashed lines show the bisecting line and twice the bisecting line. P-units show enhanced responses
to AMs of their baseline firing frequency. They show up as peaks on the bisecting line as here seen
primarily in the cell data. H) and I) summarise the prediction performances for all 23 modelled cells.
H shows correlation coefficients between the frequency tunings of cell and model as derived from the
correlation over trials (Rcorr, derived from the values shown in F) and standard deviation of the rate
(Rrate, derived from E), I shows per cent errors (Qcorr and Qrate) and the cutoff frequencies (COcorr

and COrate) of these. The cutoff frequencies were calculated as the frequencies at which the response
drops to half its maximum. We here only show high cutoff frequencies, because for many cells (as for
our example cell), the lower cutoff lay below the frequencies we had used in our stimulation protocol.
Shown are median, interquartiles and maximal values, the points show the values of the example cell.

The model reproduces SAM responses of different P-units as well as
the population response

The prediction of the responses to SAMs worked well for all 23 cells. We calculated the
correlation coefficients between the frequency tuning of each pair of cell and model to
quantify how well the model reproduces the shape of the frequency tuning, and the per
cent error as a measure of the reproduction of the exact magnitude. The shape of the
frequency tuning is reproduced almost perfectly in the models, resulting in correlation
coefficients between cells and models close to one (Fig. 4.8 H). The per cent errors lie
within 20 % (Fig. 4.8 I).

The correlation over trials to SAM stimuli depends on the contrast of the stimulus.
Different models reproduce the behaviour of their target cells for different contrasts
(Fig. 4.9 A–C for contrasts from 5–20 %). The population response of the 23 models also
matches the population response of the corresponding P-units at two different contrasts
(Fig. 4.9 D and E). Interestingly, this population response does not exhibit resonances
as the single neuron responses. Because each P-unit locks to a different frequency –
its baseline rate, averaging smoothes out the peaks (Fig. 4.9 D and E). Similarly, the
summed potential of all P-units in a nerve does not show peaks, but rather smooth
band-bass tuning to SAMs (Fig. 4.9 F).
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Figure 4.9: SAM responses to different contrasts and averaged over population. A) The
responses to SAMs in terms of the correlation over trials (as plotted in Fig. 4.8 F), for two different
cells and their corresponding models at 20 % contrast. B) and C) show the responses of the same
cells to lower contrasts, 10 % and 5 %, respectively. D) The correlation over trials in response to
SAMs of 20 % is averaged over cells and models. Candlesticks depict medians, quartiles and maxima
of the model responses, the line and grey areas depict the medians (line) quartiles (darker grey) and
maxima (lighter grey) of cell responses. E) The same as in D, but to SAMs at 10 % contrast. F)
The population response of P-units as measured in whole nerve recordings to SAMs of 20 and 10 %
contrast (the data for 20 % is the same data as shown in Fig. 3.6 C).



4.3 Results 73

Table 4.3: Sensitivity of response predictions to SAM stimuli. The normalised sensitivity coef-
ficient between parameter changes and alterations of the results as calculated by the slope of their
relation. They are shown for the correlation coefficient (RCorr) and the mean deviation (QRate) be-
tween the frequency responses of model and target cell in terms of correlation over trials. For the rate
modulation, the coefficients are shown only for the deviation (QRate), as the correlation coefficient
did not change when changing any of the parameters. The right two columns show the sensitivity
coefficients for the errors of low and high cutoff frequencies as estimated from the rate response (low
CORate and high CORate).

param. Rcorr QCorr QRate low CORate high CORate

α 0.01±0.01 0.36±0.15 0.29±0.09 −0.07±0.25 −0.06±0.06√
2D 0.01±0.01 −0.23±0.11 −0.09±0.05 0.03±0.15 −0.04±0.04

τV −0.00±0.02 −0.04±0.13 −0.12±0.06 −0.02±0.08 0.03±0.08
∆A −0.01±0.01 −0.09±0.06 −0.13±0.08 0.15±0.57 0.06±0.04
τA 0.02±0.03 0.09±0.05 0.12±0.07 −0.06±0.22 −0.03±0.07
τD −0.00±0.02 −0.15±0.08 −0.10±0.06 −0.01±0.03 −0.06±0.08

The height of the frequency tuning is senstive to changes in the param-
eters

We next examined how sensitive the prediction of SAM responses is to parameter changes.
None of the parameters influences the shape of the frequency tuning strongly (Table
4.3), the correlation coefficient stay high), indicating that the band-pass tuning is a ro-
bust phenomenon of the model. This is not surprising as LIFAC models are known
to be band-pass tuned (Benda et al., 2010). However, all parameters had an effect on
the height of the tuning curves either in terms of the correlation over trials or in terms
of the rate. Increasing α strongly increases the response to all frequencies (not shown)
resulting in increases in the correlation over trials as well as in the rate modulation (Ta-
ble 4.2 first row). This is due to an increase in signal-to-noise ratio, as IInput becomes
stronger while ξ is unaffected. In contrast, increasing the noise strength

√
2D decreases

the signal-to-noise ratio, thereby decreasing the tuning in terms of correlation over trials
(Table 4.2 second row). The low-pass filter of the membrane, τV decreases the response
to high frequencies, thus decreasing the responses in both correlation over trials and the
rate (Table 4.2, third row).

Only the strength of adaptation ∆A influences the cutoff frequencies. It has an effect
on the low cutoff frequencies. It has been shown before that the cutoff frequency and
the adaptation are inversely related (Benda and Herz, 2003; Benda et al., 2010). Sur-
prisingly, τA does not influence the cutoff frequency as strongly. However, it decreases
the response in terms of rate modulation (Table 4.2 fourth row) and does so by affect-
ing mainly the responses to low frequencies (not shown). The negative effects of τD on
the tuning in both correlation over trials and rate modulation can be explained by its
low-pass filter-effect and the resultant response decrease to high frequencies.
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The model predicts responses to noise stimuli

To check for cross-frequency effects on the encoding of different frequencies we now
look at the responses of cells and models to random amplitude modulations (RAM).
RAMs contain all frequencies in all possible combinations, but despite this complexity,
the model reproduces RAM responses well (Fig. 4.10). The spiking and rate responses
of cell and model are very similar (Fig. 4.10 B–D), apart from the small delay in the rate
of the cell with respect to the model that we had seen in the responses to SAMs as well.

Models and cells exhibit similar coding linearity

We used the coherence function to estimate nonlinearities in the encoding in both cells
and models. The coherence function measures frequency-dependant correlations be-
tween two time series. It reaches its maximal value, 1, if the relationship is purely lin-
ear, and takes on smaller values in the presence of noise or nonlinearities. We quantified
the coherence between stimulus and response for both, the response of the cell and the
corresponding model. We found great similarity between the two (Fig. 4.10 E). This
suggests that the model adequately captures the nonlinearities and the noise inherent
in P-unit responses.

To determine the maximal coherence that can be reached in the presence of noise,
we also calculated the coherence between different trials. Again, the model yields sim-
ilar values as the cell (Fig. 4.10 F) indicating that the neuronal noise can be adequately
modelled by Gaussian white noise. Furthermore, this response-response coherence is
only slightly higher than the stimulus-response coherence. This shows that stimulus
encoding in P-units is mainly linear, because the lower coherence values result mainly
from noise and not from nonlinearities.

We had recorded the response to noise stimuli in eleven P-units. As in examining the
SAM responses, we calculated the correlation coefficients and per cent errors between
the rate responses and the coherences of the models and the cells to examine the simi-
larity of their shape and absolute values. All eleven pairs show only small deviations in
shape (Fig. 4.10 G) and values (Fig. 4.10 H).

Changes in the parameter alter the magnitude of RAM responses

We also examined the sensitivity of RAM response predictions to changes in our model
parameters. The shapes of the rate response and the coherence functions are not strongly
influenced by changing the parameters (first, third and fourth column in Table 4.4), as
we do not see changes in correlation coefficients upon changing the parameters. How-
ever, almost all parameters have an influence on the actual magnitude of the rate as
well as the coherences. The magnitude of the rate response was calculated as the ratio
of the standard deviations of cell and model responses. It is increased by an increase in
α (Table 4.4, first row) and decreased by an increase in

√
2D (Table 4.4, second row), due

to an increase and decrease in signal-to-noise ratio, respectively. The two effects are also
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Figure 4.10: Response of cell and model to RAM stimuli. The response of the example cell
and model (the same as in Fig. 4.8, 4.1 and 4.3) is shown to random amplitude modulations of the
EOD (RAM stimuli). A) shows the stimulus with the EOD in black and the AM in grey. In B)
the spiking response of the cell is shown, in C) that of the model. D) shows the rate responses of
both the cell (black) and the model (grey). E) The coherence between response and stimulus (SR
Coherence) is shown for frequencies up to the stimulus cutoff (300 Hz) for both cell and model. F)
shows the same for the coherence between different trials (RR Coherence). G) and H) demonstrate
the average performance of all models in predicting the responses of their target cells (11 in this case
as we had recorded noise responses of only 11 cells). In G it assessed as the correlation coefficients
of the rate (Rrate, calculated from the data shown in D, the stimulus-response coherence and the
response-response coherence (RSRCoh and RRRCoh), derived from the data plotted in E and F). In H it
the performance is quantified as the per cent errors (Qrate, QSRCoh and QRRCoh). Depicted are again
medians, interquartiles and maxima.
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reflected in an increase (and decrease) in the coherence for α (and
√

2D). τV decreases
the rate response by filtering out fast fluctuations.

Increasing the adaptation strength ∆A also decreases the rate response and the sti-
mulus-response coherence by reducing the effective stimulus strength, especially for
low frequency stimuli (Table 4.4, fourth row). τA increases the modulation of the rate
response (Table 4.4, fifth row), in correspondence with its effect on the CV (Table 4.2). τD
decreases the rate response as well as both the stimulus-response coherence as well as
the response-response coherence, again affecting mainly the response to high frequen-
cies (Table 4.4, sixth row).

Table 4.4: Sensitivity of response predictions to RAM stimuli. The normalised sensitivity co-
efficients between parameter changes and alterations of the outcome are shown as the slopes of the
linear relations. They are shown for the correlation coefficient and per cent error for rate response
and coherence function in response to noise stimuli. R’s denote correlation coefficients between
model and cell data for the rate response (first column, Rrate) and the stimulus-response coherence
(third column, RSRCoh). There were no significant effects on the correlation coefficients between the
response-response and stimulus-response coherences, RRR RSRCoh, and and we here only show RSRCoh

representative for both. To quantify the deviation of the actual magnitude, the ratios were calcu-
lated (all Q’s), for the standard deviation of the rate (second column, Qrate), the stimulus-response
coherence (fourth column, QSRCoh) and response-response coherence (fifth column, QRRCoh).

param. Rrate Qrate RSRCoh QSRCoh QRRCoh

α 0.05±0.02 0.51±0.12 0.02±0.02 0.62±0.16 0.34±0.12√
2D 0.01±0.02 −0.15±0.07 −0.00±0.01 −0.42±0.16 −0.28±0.12

τV −0.02±0.03 −0.31±0.15 0.01±0.01 −0.06±0.11 0.01±0.07
∆A −0.00±0.03 −0.20±0.14 −0.00±0.01 −0.14±0.07 −0.03±0.03
τA 0.05±0.04 0.48±0.15 0.01±0.02 0.07±0.05 0.04±0.03
τD −0.01±0.03 −0.15±0.11 0.01±0.01 −0.27±0.12 −0.1±0.08

4.4 Discussion

The leaky integrate-and-fire model is one of the simplest models of spike generation and
has been shown insufficient to reproduce responses of many neuron types (Izhikevich,
2004). Here, we show a case where, when supplemented by appropriate data-derived
filters and adaptation, it successfully provides a realistic description of the activity of
not only a single cell but a whole receptor-afferent organ. We calibrate the model to
responses to baseline conditions and artificial step stimuli and show that these models
inherently have the same frequency tuning as the receptor organs.

We thereby ignore the nonlinear processes taking place at the receptor’s basilar
membrane, as described by Kashimori et al. (1996), and replace it by a linear gain in am-
plitude. This simplification is possible, because in response to only one frequency – the
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EOD frequency – the system can be approximated as a damped oscillator. Our model
builds most strongly on that of Chacron et al. (2000). In their model spike-frequency
adaptation was obtained by a dynamic threshold. Benda et al. (2010) showed that the
dynamic threshold and the negative adaptation current have different effects on the
onset f-I-curve at different preadaptation levels. The dynamic threshold has a divisive
effect, reducing f0 – the slope of the onset f-I-curve – for higher preadaptation, while
with a negative adaptation current, the curve is merely shifted with stable f0. P-units
exhibit the latter subtractive effect (Benda et al., 2005), which is why we used an adap-
tation current. However, we fit our model as well as an identical one with a dynamic
threshold (LIFDT) to data where we had determined f-I-curves at different preadapta-
tion states, and got statistically indistinguishable results. The constant carrier in form of
the EOD seems to change the signal processing properties of the LIFDT such that they
more closely resemble those of the LIFAC. Note that with this simple model of adapta-
tion, we neglect the multiple time scales demonstrated by Nelson et al. (1997) and still
reproduce the responses well, because the additional time scales of adaptation are on a
longer (> 1 s) time scale than those analysed in our study.

The most substantial difference of our model to previous ones is the low-pass filter
that we apply after rectifying the EOD signal. Without the low-pass filter, the model re-
sponses lock too strongly to the EOD (Fig. 4.4), despite an otherwise comparably good
reproduction of baseline ISIs and f-I-curves. Various other mechanisms could also lower
the phase-locking, such as for example a second noise term (Chacron et al., 2000). How-
ever, most of them also decrease the sensitivity to AMs, which is in contrast to the ob-
servation that in P-units low vector strengths are not correlated with low sensitivity.
We also need the filter to get correct response predictions to RAM and SAM stimuli
(sensitivity of predictions to changes in this parameters seen in Table 4.3 and 4.4). This
demonstrates that the filter is an essential component of the correct description of the
electroreceptor unit.

The filter allows us to obtain the right sensitivity to both the AM and its EOD carrier.
Sensitivity to envelopes of signals while preserving the response to the signal itself has
recently been demonstrated for higher order envelopes by exactly the same mechanism,
i.e. rectifying and subsequent low-pass filtering the signal (McGillivray et al., 2012;
Savard et al., 2011). Our filter could thereby represent processes at the receptor, the
synapse or at the dendritic processes that precede the spike-generation in the axon.
Important is that the low-pass filter comes after rectifying the signal. It is thus more
likely to represent postsynaptic processes.

The simplifications underlying our model prohibit assessment of realistic parame-
ters such as ion channel conductance or time course, as would be possible with a full
conductance-based model of the Hodgkin-Huxley type (Jaeger et al., 1997; Roth and
Häusser, 2001). Since it is not possible to intracellularly record from electroreceptors
or the dendrites of their innervating axons, constraining such more realistic parame-
ters remains impossible. However, our model parameters are biophysically motivated
and examining their variability and their influence on the model performance allows
predictions on the nature of P-unit population response to sensory input.
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P-units show a high diversity in various response characteristics (Gussin et al., 2007).
The high variability and infrequent correlations of the parameters, that we obtain by
modelling a number of cells in an automatic fit routine, suggest that the heterogeneity
can not be modelled by only changing one parameter, in contrast to suggestions of pre-
vious studies (Savard et al., 2011). This finding is confirmed by the sensitivity analysis,
in which we find effects of all parameters on the response of the model. None of the
parameters affected all response characteristics that underlie the heterogeneity.

In the second part of our model analysis we focused on the reproduction of the P-
units’ frequency tuning. Periodic AMs form the basis of signals fish receive in the wild.
When two fish interact, their EODs superimpose to create a beat, a quasi-sinusoidal AM
at the difference frequency (Chapter 2 and 3). Since EOD frequencies in A. leptorhynchus
range from 700–1000 Hz, SAMs of up to 300 Hz are common stimuli for the fish (Stam-
per et al., 2010). Communication signals are often comprised of changes in EOD fre-
quency (Chapter 2, Zakon et al., 2002) which consequently show up in changes in the
AM frequency (Chapter 3, Benda et al., 2005). Self-motion on the other hand induces
perturbations of the field that can be modelled by RAMs (Yu et al., 2012). We here show
that the exact frequency tuning that underlies responses to such stimuli is intrinsically
characterised already by responses to step and constant stimuli.

This emphasises the effectiveness and also the importance of choosing the right stim-
ulus when characterising a neuron. Step stimuli have been shown effective to constrain
a model (Druckmann et al., 2011) and aspects of the frequency tuning are inherent in
such stimuli. The "adapted f-I-curves" describe cell dynamics at two separate time scales
(Benda and Herz, 2003; Benda et al., 2010), with the onset f-I-curve capturing responses
to fast stimuli and the steady-state f-I-curve determining the effective mean input. If the
ISI’s are shorter than the adaptation time constant, these two dynamics can formally be
separated and the cutoff-frequency of the high-pass filter as induced by the adaptation
current can directly be determined from the f-I-curves (Benda et al., 2010). The maximal
gain to SAM stimuli then corresponds to f0.

The integrate-and-fire model has been introduced with different voltage-dependant
functions in place of the leak term, such as an exponential (Brette and Gerstner, 2005;
Fourcaud-Trocmé et al., 2003, EIF) or quadratic one (Ermentrout, 1996, QIF). In a pre-
vious study, the choice of this function influenced the filtering properties of the model,
especially its response to high frequencies (Fourcaud-Trocmé et al., 2003). We fit an EIF
and QIF in the same way as the LIF to our data and did not see such a difference (not
shown), probably because of the noise, which causes these models to behave similarly
(Lindner et al., 2003).

Previous studies have shown that IF models exhibit resonances in the firing rate
response to frequencies that are multiples of their baseline rate (Brunel et al., 2001;
Fourcaud-Trocmé et al., 2003; Knight, 1972b), if the noise is sufficiently low. These reso-
nance peaks had not been reported in P-units before, probably because previous studies
averaged over a number of cells (Benda et al., 2006). Such averaging smoothes peaks,
because different cells exhibit them at different frequencies (Fig. 4.9, also see Knight,
1972b). As we showed in Chapter 3, stimuli are encoded by sweeps on the cells’ tuning
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curves. Smooth tuning curves might therefore be beneficial and constitute one advan-
tage of heterogeneity in these cells.

For the readout of a population of P-units, recent studies have proposed a synchronis-
ation-desynchronisation code (Benda et al., 2006; Middleton et al., 2009). The degree
of synchronous activity in a population can be read out easily by upstream neurons
(Softky and Koch, 1993) and propagated through layered networks of neurons (Dies-
mann et al., 1999). P-units have been shown to synchronise to different degree depend-
ing on the stimulus frequency, suggesting that a synchrony code could transmit the
information about the frequency content of the stimulus (Benda et al., 2006). However,
many open questions remain, such as, e.g., about the number of neurons needed to fire
synchronously to encode stimuli of different contrasts, the effect of heterogeneity on
such a code etc. Since our model reproduces the frequency tuning in terms of correla-
tion of spike trains for different contrasts (Fig. 4.8, Fig. 4.9), it can now be used to tackle
such questions.

Under the naturalistic conditions that occur during navigation, prey capture or elec-
trocommunication, large populations of P-units will be stimulated. It is only possible
to record from single P-units at a time and extrapolation to the entire population is not
readily achieved. There are now good models that describe the effective electrosensory
stimuli for both electrolocation (Babineau et al., 2007; Chen et al., 2005) and electrocom-
munication (Kelly et al., 2008; Yu et al., 2012). Our model, combined with our under-
standing of electrosensory stimuli, will allow us to predict the effects of complex stimuli
on the activity of the entire population of P-units. This will make studies possible on
fundamental questions about receptor populations, such as on the ability of cells to de-
tect and discriminate different signals, on the role of heterogeneity in the population
and, especially, on the neuronal population codes that might be important for electro-
perception.





Chapter 5
Population Coding of Chirps

5.1 Introduction

Sensory signals are encoded distributed across neuron populations rather than in single
neurons (Pouget et al., 2000, Chapter 1). Signal encoding is therefore best studied in
populations. Because it is often impossible or tedious to record from many neurons, it
is highly desirable to build neuron model populations to replicate natural populations
(Marder and Taylor, 2011). In Chapter 4 we investigated in detail a model of P-unit
electroreceptors that could be fit to a number of cells of different characteristics. The
model can therefore be used to build a heterogeneous model population that resembles
natural P-unit populations. Building on that we here use it to investigate the effect of
heterogeneity on population coding.

Heterogeneity is a ubiquitous feature of neuronal populations (Chapter 1, Chelaru
and Dragoi, 2008; Hospedales et al., 2008; Padmanabhan and Urban, 2010; Ringach et al.,
2002). It has been shown in theoretical (Shamir and Sompolinsky, 2006) and experimen-
tal studies (Chelaru and Dragoi, 2008; Padmanabhan and Urban, 2010) to decorrelate
the activity of cells, thus decreasing redundancy and increasing the capacity of the pop-
ulation to transmit information. These studies used simplified descriptions of the popu-
lation heterogeneity (Chelaru and Dragoi, 2008) or investigated the encoding of artificial
stimuli (Padmanabhan and Urban, 2010). With our model and the detailed knowledge
of signals involved in electrocommunication, we are able to study the effect of hetero-
geneity on encoding a behaviourally relevant signal in model populations that closely
resemble their natural counterparts.

At the projection site of P-units, the electrosensory lateral line lobe (ELL), pyramidal
cells pool over around 1000 afferent neurons to process the high-frequent communica-
tion signals (in the lateral segment; Chapter 2, Krahe et al., 2008; Maler, 2009). Tuberous
receptors are distributed across the whole fish body (Carr et al., 1982) and in commu-
nication contexts many receptor cells are stimulated by the same signal (Chacron et al.,
2003). Interestingly, P-units are diverse in the rate and variability of their baseline dis-
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charge (Gussin et al., 2007, Chapter 2), but are believed to exhibit similar frequency
tuning (Wessel et al., 1996). They are neither connected among each other nor receive
shared feedback. All correlated activity results from stimulus correlations. We specif-
ically ask how heterogeneity in baseline activity can aid the encoding of signals in a
population of cells that receive the same stimulus to which they are presumably equally
sensitive.

A detailed characterisation of the parameter distributions underlying the model fits
from Chapter 4 sets the basis for modelling the population. It will be subject of the first
part of this chapter. From the distributions we draw representative parameters and use
them to simulate a heterogeneous population. We show that the population reproduces
natural P-unit population activity in baseline conditions as well as under stimulation
with communication signals (beats and chirps, Chapter 2). In the last part we investigate
how model neurons of distinct characteristics respond to the communication signals in
order to assess the effect of heterogeneity on stimulus encoding.

5.2 Methods

Experimental Recordings

All experimental data used in this chapter is the same as in the preceding two chapters.
The investigations of the parameter variability and the variability of baseline response
characteristics are based on the 23 data sets presented in Chapter 4. The comparison of
chirp encoding in a model population and a natural cell population (Fig. 5.5, 5.8) is done
using the data presented in Chapter 3, which comprises recordings from 220 P-units. All
experimental procedures were as stated in detail in Chapter 3.

Model of Electroreceptors

P-units were modelled as leaky integrate-and-fire neurons with an adaptation current
(LIFAC) to account for spike-frequency adaptation and negative interspike interval (ISI)
correlations. The model has been extensively investigated in Chapter 4. Since the para-
meters and their distributions are a central topic of this project, we restate the equations
that underlie the dynamics of the model. The membrane potential V follows the dy-
namics,

τV
dV
dt

= −V + αIInput + IBias − IA +
√

2Dξ + ∑(δ(t)) , (5.1)

with τV being the membrane time constant, α a cell-specific gain factor, IInput an external
input current, IBias a cell-specific constant offset current, IA the adaptation current and ξ

a Gaussian white noise of strength
√

2D. The current is directly integrated, because the
membrane resistance of P-units is unknown. The current therefore carries the unit mV.
Whenever the membrane potential reaches the threshold (10 mV in our case), a spike is
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noted and IA is incremented by ∆A. It then relaxes back to zero with

τA
dIA

dt
= −IA + ∆A ∑(δ(t)) , (5.2)

where τA is the adaptation time constant. Within the Euler integration routine, this
corresponds to an increment of the current at every spike by

IA 7→ IA +
∆A

τA
. (5.3)

The external input current IInput is an amplitude modulated EOD current that is passed
through a Heaviside function to include zero-clipping of the synapse between electrore-
ceptor and afferent neuron. It is low-pass filtered at about one EOD period to simulate
filtering processes in the dendritic processes of the afferent. Together, this gives

τD
dIInput

dt
= −IInput + H[β(t)sin(2π fEODt)] , (5.4)

where β(t) is the desired AM waveform and τD the time constant of the dendritic filter.
The baseline amplitude of the EOD is set to 1.0 mV/cm, its frequency to 700 Hz. Because
IInput resembles the EOD stimulus and carries the unit mV/cm, the gain factor α is
expressed in cm.

The six parameters α, τV ,
√

2D, τA, ∆A, and τD were calibrated using a simplex fit
as described in Chapter 4. The cost function consisted of a weighted sum of the errors
of six basic measures describing the response of cells to constant EOD amplitude and
step stimuli. These were the mean firing rate, the coefficient of variation (CV) and the
first serial correlation (SC) of the ISIs and the vector strength (VS) of phase coupling to
the EOD in response to constant baseline EOD. From the responses to step stimuli the
slopes of two f-I-curves were measured: f0 of the relation between stimulus intensity
and onset response, and f∞ between stimulus and steady-state response (see section on
Data Analysis for details). IBias was adjusted after each fit iteration such that the model
matched the mean firing rate. The model was calibrated to match responses of a target
data set to constant EOD and step stimuli.

In order to avoid local minima of the error function, we fit the model to each target
data set using three different initial values for each parameter. We varied the initial
values systematically, yielding 36 = 729 different fits. Each of these fits yields one
optimal parameter combination. However, since the fit routine depends on the initial
conditions, the resulting parameters vary. From the 729 parameter sets for each cell we
took the best 10 % when ranked according to their cost function for further analysis.
These are referred to as the “best 10 %” in the following. We also selected the best fit for
each target data set.

The three initial values for each parameter were chosen from good fits that we had
obtained beforehand. For this purpose the 23 target data sets were fit with a simplex
fit in which the initial conditions were hand-tuned to obtain reasonable results. From
the resulting 23 parameter combinations, we took the mean and maximal values as the
three initial values. They are stated in Table 5.1.
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Table 5.1: Initial values of parameters. Fits were run with all 729 combinations of these values as
initial values.

parameter initial values

α[cm] 50, 200, 450√
2D[mVs1/2] 0.1, 0.2, 0.3

τV [ms] 0.1, 0.5, 1
τA [ms] 20, 30, 40
∆A [A] 0.1, 0.3, 0.6
τD [ms] 1, 2, 3

Constructing Heterogeneous populations
In order to construct heterogeneous populations of model neurons that resemble the
variability found in natural populations, we first characterised in detail the variability
exhibited by the parameters resulting from different fits. For this purpose, we pooled
the parameters over the fits to different target data sets. The 23 target data sets orig-
inated from recordings of fish that potentially had different EOD frequencies (EODf)
and amplitudes. To pool the values, we first converted those that are affected by EODf
or EOD amplitude. We assumed that all time constants were related to the EODf and
converted them such that they were expressed in multiples of the EOD period by mul-
tiplying them with the EODf. Further we expected the gain factor α being associated
with the EOD amplitude and normalised it by the corresponding EOD amplitude.

Next, we estimated the types and moments of the pooled parameter distributions to
be able to later draw new realistic parameter sets. We fit normal, lognormal and gamma
distributions of different order. Best fits yielded the normal distribution given as

g(x) = a exp
−(x− µ)2

2σ2 , (5.5)

where µ corresponds to the expectancy value and σ to the variance, and the lognormal
distribution with

gn(x) =
a

σx
√

2π
exp− (log(x)− µ)2

2σ2 . (5.6)

The expectancy value of the lognormal distribution is then given by

E(x) = exp µ +
σ2

2
(5.7)

and the variance by
Var(x) = exp 2µ + σ2(exp σ2 − 1) . (5.8)

We transformed all lognormal distributions to normal distributions by taking the
logarithm of the corresponding values. We thus obtain a multivariate Gaussian distri-
bution from which we are able to draw new values. However, we first have to account
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for correlations between the parameters. Such correlations demonstrate compensatory
effects between parameters. Since we were interested in compensations involved in
simulating a population of cells rather than one particular cell, we only included the
best parameter combination for the 23 target data sets in the following steps.

We first determined the covariance matrix Σ of the 23 parameter sets. Σ is given by

Σij = E[(Xi − X̄i)(Xj − X̄j)] , (5.9)

where X are the parameters and E[...] denotes averaging over the different data points.
Since we only had 23 data points for n(n + 1)/2 = 28 degrees of freedom (since the
covariance matrix is quadratic, but symmetrical with n = 7), we cross-validated our
sample by a leave-one-out analysis. We took all 22 combinations of data points when
leaving one out and calculated Σ for each of these. We then compared the estimations
of Σ by calculating the cosine between all pairs of matrices. All values were well above
0.95 (with 90 % above 0.99) indicating that the estimations did not differ. The covariance
matrix was thus a valid estimate regardless of the small sample of data points.

To generate a multivariate Gaussian distribution that exhibits the same covariance
matrix, one first draws uncorrelated random numbers and then multiplies the resulting
matrix with a Cholevsky decomposition L of Σ. L is defined as

LT L = Σ . (5.10)

In line with this approach, we generated 2000 parameter combinations by drawing a
2000× 7 matrix of random numbers and multiplied it by L calculated from the data.
Finally, we added the mean and multiplied the standard deviation of each parameter.
That way we generate distributions of parameters that resemble those obtained from
the calibration to real data in their mean, standard deviation and covariance matrix.

Whenever we calculated correlations between parameters or response characteris-
tics, we used the Pearson’s correlation coefficient according to

r = ∑n
i=1(Xi − X̄)(Yi − Ȳ)√

∑n
i=1(Xi − X̄)2

√
∑n

i=1(Yi − Ȳ)2
. (5.11)

We assessed the significance level via the Pearson’s test. Only those pairs of parameters
were regarded as correlated whose p-values were below 0.05 (Bonferroni corrected).

Stimulation
The AM waveforms used to stimulate models or cells were the same. For details on the
generation of stimuli in electrophysiological experiments, see the corresponding sec-
tions in Chapter 3 and 4. We here describe the generation of stimuli for the model sim-
ulations. The baseline stimulus consisted of a constant sine wave of 700 Hz at 1 mV/cm
that mimics a constant EOD stimulus. For the analysis of the baseline response charac-
teristics, 100 s of model activity in response to this stimulus were simulated.
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All stimuli consisted of AMs of this EOD mimic and were generated by multiplying
it with the desired waveform. F-I-curves (relations between firing rate and stimulus
intensity) were generated by stimulating with step stimuli, during which the EOD am-
plitude was in- or decreased for 200 ms. We used eleven different steps in which the
intensity was changed to a value between 0.5 and 1.5 of the baseline EOD amplitude.
Each step was repeated 300 times.

Chirps were superimposed on beats. Beats are formed when two EODs superimpose
and constitute sinusoidal AMs of the frequency difference between the two signals. We
denote beat frequencies as ∆ fBeat. We calculate it as the frequency difference between
the EODf of the communicating fish (or the stimulus), EODf2, and the EODf of the
receiving fish (or recorded or simulated fish), EODf1, according to EODf2 − EODf1. It
can be positive and negative, depending on which EOD is of higher frequency. The AM
during the beat is given by

AM(t) = A(t) cos(2π∆ fBeatt) , (5.12)

where A(t) is the amplitude of the stimulus which we set to values between 0.01 and 0.4
(resembling contrasts from 1 to 40 %). The beat was simulated from t = −250 to 250 ms
with a ∆ fBeat between −250 to 250 Hz (±5, 10, 20, ..., 100, 120, ..., 200, 225, 250).

The phase of the beat ∆φ(t) is the time integral over the frequency difference be-
tween the two signals. It advances with a constant rate in the case of a normal beat.
Chirps were modelled as modulations of ∆φ(t) originating from the superposition of
the EOD with another EOD whose frequency is transiently increased. The frequency
increase due to the beat was modelled as a Gaussian of maximal frequency excursion s
and width ∆t. The phase modulation yields

∆φ(t) = σ
∫ t

−∞
∆ f (t′) dt′ = ∆ fBeatt + sσ

∫ t/σ

−∞
exp(−z2)dz + ∆φ . (5.13)

The first term models the beat while the second term accounts for the Gaussian increase
of the difference frequency during a chirp centered around t = 0. The width of the
Gaussian frequency increase is modelled by σ = ∆t/

√
2 ln 10, such that the chirp has

its width ∆t at 10 % of its size s. ∆φ determines at which phase of the beat cycle the
chirp occurs – it is zero at the peak of a beat cycle. In addition, the EOD amplitude A(t)
was decreased by a Gaussian of the same width and centered at time t = 0 by a. We
used chirp parameters of s = 50, 100, 150 Hz, ∆t = 15, 50 ms, ∆φ = 36, 72, ...360◦ and
a = 2, 20 %.

Data analysis

The response characteristics of the model populations were evaluated by assessing sev-
eral quantities from the baseline activity, the f-I-curves and the response to chirps and
beats.
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From the baseline activity, four measures were derived: The rate, the CV, SC and
VS (for details on how to calculate them, see Chapter 4). From the response to step
stimuli, two f-I-curves were constructed: The onset f-I-curve, that relates the maximal
response to the stimulus onset with stimulus intensity and the steady state f-I-curve of
the average response after adaptation. To construct these, the onset and steady-state
rate in response to each step was measured and plotted over the intensity of the step.
The onset rate was determined as the maximal deviation of instantaneous to mean rate
during the first 100 ms upon stimulus onset. The instantaneous rate is given by the
inverse of the ISIs. The steady state rate was calculated as the mean firing rate in the
second half of stimulation, i.e. between 100 ms and 200 ms after stimulus onset. The
slopes of the f-I-curves were derived from linear fits to the full f-I-curve in the case of
the steady-state, yielding f∞, and to the middle part of the onset f-I-curve, yielding, f0.
The two slopes together with the four baseline response characteristics were matched
during the fit routine (see above).

Beat and chirp responses were analysed by calculating the response in a time win-
dow during the beat and around the chirp, respectively. The analysis window for beat
responses spanned the time of the beat stimulation following the chirp stimulus, i.e.
from t = ∆t/2 (since the chirp stimulus of width ∆t/2 was centered around 0) to the
end of stimulation at t = 250 ms. The window size was adjusted such that it spanned
integer multiples of the respective beat period. For analysing the response to chirps, an
analysis window was set from t = −∆t/2 to t = ∆t/2. The effect that a chirp had on the
response compared to the underlying beat, was assessed by the contrast between chirp
and beat response, the so-called chirp selectivity index CSI (Vonderschen and Chacron,
2011), given by

CSI =
rchirp − rBeat

rchirp + rBeat
, (5.14)

where rchirp and rBeat are the responses in the chirp and beat analysis windows, respec-
tively.

As the response of P-units mainly fluctuates around a mean rate, the response was
calculated as the standard deviation of the rate. Each model (and neuron, see Chapter 3
for more details), was stimulated 15 times with the same chirp/beat stimulus. Each
single trial spike train was then convolved with a Gaussian kernel of width σ = 1 ms (to
resemble the fast excitatory component of the postsynaptic potential in the projection
cell Berman and Maler, 1998). The rate was averaged over the 15 trials and this average
fed into the subsequent analysis.
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Figure 5.1: P-unit model. A) Sketch of the P-unit model. The stimulus is an amplitude modulated
EOD current (EOD + AM). It is rectified and low-pass-filtered to represent processes at the synapse
between receptor and afferent neuron and the dendritic processes of the neuron, respectively. The
signal is scaled with a gain factor α and shifted by an offset IBias. The membrane potential then
integrates the current together with an independant noise ξ and the negative adaptation current. A
spike is fired whenever the membrane potential reaches the threshold. It is then reset to zero and the
negative adaptation current is incremented by ∆A. The adaptation current subsequently exponentially
relaxes back to zero with τA (panels on the left, clockwise from top, as indicated by the arrows). The
model is designed to match baseline activity and f-I-curves shown on the right for one representative
P-unit and the corresponding model. B) The histogram of interspike intervals (ISIs). C) The serial
correlations between succeeding ISIs of different lag. D) F-I-curves as derived from responses to step
stimuli of different EOD amplitude. From each step the maximal response upon stimulation onset is
extracted as well as the average response after the response is adapted to this step. Plotting the two
over the step intensity yields the onset and steady-state f-I-curves of slope f0 and f∞, respectively.
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5.3 Results

The model is designed to reproduce baseline characteristics and f-I-
curves of P-units

In Chapter 4 we introduced a leaky integrate-and-fire (LIF) model that reproduces the
behaviour of P-units of distinct response characteristics in great detail. We here briefly
recapitulate the results as they set the basis for the following investigations. The well
informed reader may skip this section and move on to the next one on Characterising
parameter distributions.

The input to the model is a sinusoid whose amplitude is modulated by the desired
stimulus waveform, representing an amplitude modulated EOD. It is rectified and low-
pass filtered with time constant τD to simulate processes at the synapse and dendritic
processes, respectively. To account for different sensitivities and operating points of dif-
ferent P-units, it is multiplied by the gain factor α as well as shifted by the offset current
IBias (Fig. 5.1 A, upper part). A Gaussian noise current ξ of strength

√
2D is added

to model neuronal variability. The adaptation current IA is subtracted to account for
spike-frequency adaptation. The combined current is integrated with time constant τV
(Fig. 5.1A, middle part). Spikes are noted when the membrane voltage reaches a certain
threshold (Fig. 5.1A, right bottom part). At this point in time the membrane voltage V
is reset to zero and the adaptation current IA is incremented by ∆A and exponentially
relaxes back to zero with time constant τA (Fig. 5.1 A, left bottom part).

The model reproduces the activity of P-unit electroreceptors under various cond-
tions (Fig. 5.1 B–D, results for the example cell shown in grey, results for the corre-
sponding model in black). Under baseline conditions – when stimulated with a constant
EOD – P-units fire irregularly with a high baseline rate (144.14 Hz±32.5 in our sample of
23 cells). Since they phase-lock to the EOD, a distribution over the interspike intervals
(ISI) is broad and discrete (Fig. 5.1 B). Their strong spike frequency adaptation leads to
a negative correlation between successive ISIs (Fig. 5.1 C) and strong transient changes
in their firing rate to step stimuli, referred to as the onset rate. Upon stimulation, the
response relaxes to a steady state. Onset and steady-state f-I-curves describe the relation
between these two responses and the step intensity (Fig. 5.1 D).

Based on these features, different cells are well characterised by six measures: base-
line firing rate, coefficient of variation (CV) and first serial correlation (SC) of ISIs, vector
strength of phase-locking to the EOD (VS), and the slopes of the onset and steady-state
f-I-curve, f0 and f∞, respectively. All six measures differ from cell to cell (Chapter 4)
demonstrating the population heterogeneity in P-units (Gussin et al., 2007).

Characterising parameter distributions

The model comprises seven parameters in total: α, IBias,
√

2D, τV , ∆A, τA and τD. Dif-
ferent values of these parameters give rise to models with different response character-
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istics. The basis for the simulation of heterogeneous model populations therefore lies in
a reproduction of the parameter variability underlying fits to distinct P-units. For this
purpose, we now examine in detail the distributions of values underlying the model
fits from Chapter 4. We distinguish between two sources of parameter variability: The
uncertainty of choosing parameters for one target data set and the distribution of values
across fits to different target data sets.

Multiple fits to one target data set are variable

Table 5.2: Variability of model parameters. To quantify the dispersion of parameter values, the
semiquartile range is given in per cent of the median value for each parameter. The semiquartile range
is half the difference between the first and third quartile. The middle column gives the measure across
fits to different target data sets. The right column shows it for the values of the 10 % best fits to one
target data set. The latter was calculated for each target data set separately and then averaged.

parameter dispersion cells [%] dispersion fits [%]

α 34.1 19.4
IBias 78.5 18.7√

2D 41.1 24.8
τV 39.63 13.4
τA 10.14 14.6
∆A 53.4 19
τD 38.7 25

To avoid local minima, we fit each target data set with a different set of initial con-
ditions. From this approach we yield 729 fits from which we take the best 10 % into
the following analysis of the variability arising from fit uncertainty. They reproduce
the baseline characteristics well (per cent errors in Fig. 5.2 H for the example cell). The
distributions are steady without distinct local minima, but they show a high variability
(grey distributions in Fig. 5.2 A–G). We quantified the degree of variability by calculat-
ing the ratios between the semiquartile range and the median. The semiquartile range
is defined as half the difference between first and third quartile. It takes up from 13.4
to 25 % of the median for different parameters (Table 5.2), implying that half of the val-
ues resulting from different fits to the same target data set spread over 27-50 % of their
median value.

Parameter correlations reveal compensatory effects

How can such different values generate models that are very similar in their activity?
The parameter values of the 10 % best fits are highly correlated (Fig. 5.2 I). This shows
that alterations in model performance caused by changing one parameter are compen-
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Figure 5.2: Variability of parameter estimation. The distributions of parameter values originating
from fits to different target data sets (grey), and from different fits to the same target data set (10 %
best of the example cell, ex.c.,black) are shown for the seven model parameters: gain factor α (A),
offset IBias (B), noise strength

√
2D (C), membrane time constant τV (D), adaptation strength ∆A

(E) and time constant τA (F) and time constant of dendritic low-pass filter τD (G). The value of the
best parameter set for the example cell is shown as the asterisks on top the distributions. H) The
estimation errors of the six baseline response characteristics of the 10 % best fits to the example cell.
Indicated are median and quartiles as well as maximal values. I) Correlations between parameters of
the 10 % best fits. J) Correlations between parameters from the best fit for each different target data
sets.

sated by changing another. This also explains why the parameter values of the best fit
often lie outside the center of their distributions (asterisks in Fig. 5.2 A–G).

Parameter fits to different target data sets are variable

We quantify the variability of parameter values across a population of cells via the best
parameter sets for the 23 target data sets. The distributions of these parameter sets
have been reported before (Fig. 4.6, values might deviate they are normalised by EOD
frequency and amplitude). Their dispersion is greater than that for different fits for
one cell, which is reflected in wider distributions in Fig. 5.2 A–F and bigger percentage
quartile ranges in Table 5.2. However, the values are only seldom correlated (Fig. 5.2 J).

Table 5.3: Distributions of model parameters. The types and moments of the parameter dis-
tributions shown in Fig. 5.3. The types (Distr. type.) are stated in the second column, the mean
values and the standard deviations in the third and fourth, respectively. For the normal distribution
the mean and variance are directly given by probability density function fit to the data (µ and σ), in
the lognormal they are derived according to Eq. 5.7 and 5.8.

parameter Distr. type E[x]
√

Var[x]

α[cm] lognormal 121.4 84.7
IBias[mV] lognormal -22.05 42.1√

2D[mVs1/2] lognormal 0.095 0.069
τV[EOD−1] lognormal 0.813 0.423
τA[EOD−1] normal 28.12 2.61
∆A[mVms] lognormal 0.00194 0.00078
τD[EOD−1] normal 1.099 0.838

Populations can be constructed from parameter distributions
In order to reproduce the parameter variability, we have to define distributions from
which we can draw parameter values in the next step. Smooth distributions are ob-
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Figure 5.3: Estimated distributions of model parameters. Pooling the 10 % best parameter
sets over all cells reveals smooth distributions (grey filled bars). The type and moments of these
distributions can unambiguously be determined (black line). The parameter sets for the best fits to
different target data sets lie within them (black open bars). As in Fig. 5.2, the histograms and the
fitt distributions are shown for the seven model parameters: gain factor α (A), offset IBias (B), noise
strength

√
2D (C), membrane time constant τV (D), adaptation strength ∆A (E) and time constant

τA (F) and time constant of dendritic low-pass filter τD (G). The fit distributions are lognormal for
A, B, C, D, and F and normal for E and G.
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tained when the 10 % best parameter sets for all target datasets are pooled (Fig. 5.3,
grey distributions). The distributions of the single best parameter sets correspond to
the distributions of the 10 % best in terms of the shape and moments (Fig. 5.3, black
distributions). For five of the parameters, the distribution was modelled best as a log-
normal distribution. These were: α, τV ,

√
2D, ∆A and τD. The distributions of IBias and

τA were best modelled as a normal distribution (Table 5.3). All distributions could be
clearly defined by their first and second moment (Table 5.3).

From the distributions we now drew 2000 new representative values. To account
for compensatory effects (Fig. 5.2 I and J), we matched their covariance to the covari-
ance of the 23 best parameter sets. The population of 2000 model neurons resembles
the P-unit population in terms of baseline rate, CV, SC and f0 as well as f∞. Only the
distribution of VS differs between model and neurons (Fig. 5.4). This demonstrates that
the model population exhibits a similar heterogeneity as the P-unit population. A dif-
ference lies in the correlations between the different characteristics. Among the model
population, they are highly correlated (Fig. 5.4 G). In fact, only the rate and the CV are
not correlated. This is in contrast to the cell population where only few combinations
are correlated (Fig. 5.4 H).

Population coding of communication signals matches that of the natu-
ral population

With the model population that resembles natural P-units in terms of baseline charac-
teristics, we want to investigate the encoding of communication signals. As described
in Chapter 2 and Chapter 3 chirps are transient increases in EOD frequency emitted
in communication situations. Thus, chirps occur on top of beats, AMs formed by the
superposition of two EODs that periodically oscillate at the difference frequency ∆ fBeat
between the two individual EODs (Chapter 2). We have shown in Chapter 4 that the
model faithfully reproduces the frequency tuning of P-units to beat stimuli.

We here show that the model also reproduces chirp responses on the single cell as
the population level (Fig. 5.5). A chirp interrupts the periodic beat response (Fig. 5.5 A).
In the case of a chirp superimposed on a slow beat (∆ f < 30 Hz), the maximal spike
frequency as well as the rate are higher in both, model and P-unit, during the chirp
than they are during the beat background (Fig. 5.5 B and D). The rate response of the
cell lags the response of the model with a few milliseconds, probably due to an axonal
conduction delay that is not included in the model.

Depending on the frequency of the beat, a chirp might also decrease the response
(Fig. 5.5 F, Chapter 3). The chirp selectivity index, CSI, measures the contrast between
chirp and beat response. It is negative when the chirp decreases the response and posi-
tive if it increases it. The behaviour of P-units in response to chirps has been extensively
investigated in Chapter 3. Here it suffices to say that chirp responses are different de-
pending on the background beat. The sign as well as the value of the CSI depend on
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Figure 5.4: Response characteristics of cell and model population. From the estimated distri-
butions of parameter values shown in Fig. 5.3 2000 parameter combinations were drawn and models
were simulated with constant EOD as well as EOD steps of different intensities. From these responses
(grey) as well as from the responses of 23 P-unit recordings (black), the baseline rate (A), the coeffi-
cient of variation (CV, B) and the serial correlation (SC, C) of the ISIs, the vector strength of EOD
phase-locking (VS, D) and the slopes of the onset f-I-curve ( f0, E) and the steady-state f-I-curve ( f∞,
F) are derived. Correlations between the response characteristics within the model neuron population
in G and within the sample of P-unit recordings in H.
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Figure 5.5: Population responses to chirps and beats. The model reproduces the chirp responses
of recorded P-units on the single cell as well as on the population level. A) shows the AM stimulus of
a chirp of size s = 100 Hz, width ∆t = 15 ms EOD amplitude drop of 2 %, superposed on a beat of
frequency ∆ fBeat = 10 Hz and phase ∆φ = 240◦. B) The spiking response of the example cell and
C) the spiking response of the corresponding model. D) The spiking responses are convolved with
a Gaussian kernel of 1 ms width corresponding to the fast excitatory component of the post-synaptic
potential at the projection site, and then averaged over trials. The rate response of the cell (grey)
lacks that of the model (black) because of axonal delays. E) The rate modulation as the rate’s
standard deviation in response to beats is analysed for single P-units and single model neurons and
then averaged over the population. It is plotted over the frequency of the beat stimulus ∆ fBeat. F)
From the responses to beats and chirps, the chirp selectivity index (CSI) is calculated for chirps on
the different background beats. Shown are median, interquartile ranges and extrema for the model
population, and interquartile ranges and extrema in dark and light grey, respectively, for the recorded
P-unit population.
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∆ fBeat. Importantly, the different responses are matched well by a population of model
neurons for all frequencies except ∆ f = −250 Hz (Fig. 5.5 F).

SAM responses of model neurons exhibit different gains, while chirp
responses do not differ systematically
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Figure 5.6: Beat and chirp responses of single model neurons. A) The responses of single model
neurons to beats is calculated as the standard deviation of the rate response. It is plotted over the
difference frequency ∆ fBeat of the beat ∆ fBeat. Each colour represents a specific model neuron. B)
The CSI of the same model neurons to a chirp of the same characteristics as indicated in Fig. 5.5
superimposed on beats of different ∆ fBeat.

With the model population we can now look at responses of different single neurons
to the whole range of beats and chirps (Fig. 5.6). This is not feasible in P-unit recordings,
because the length and number of experiments is limited. The band-pass tuning to beats
is conserved across different model neurons as are slight non-uniformities from the res-
onances to their baseline frequencies (Fig. 5.6 A). However, the magnitude of the maxi-
mal response varies strongly. It ranges from 50 Hz in models with weak responses to up
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to 450 Hz in those that respond strongly. The responses to a chirp superimposed on the
beats, on the other hand, do not vary systematically (Fig. 5.6 B). In general the pattern of
CSI over ∆ fBeat of single models exhibits more variability than that of the population.
However, no systematic trends can be made out among model neurons (Fig. 5.5 B).

Model neurons of different onset gain perform better at encoding a
chirp depending on the background

We have demonstrated that the model population exhibits natural-like heterogeneity
and that it reproduces responses to a behaviourally-relevant signal. To examine the
effect of heterogeneity on the population encoding of chirps, we look at the differential
encoding of chirps by model neurons of distinct response characteristics. We use the
absolute CSI as it reflects, how strong the chirp changes a response, and start out by
relating the CSI to the onset gain (Fig. 5.7).

The CSI is strongly correlated with f0, demonstrating that model neurons of partic-
ular onset gain encode a chirp better than others. However, this correlation depends on
the parameters of the underlying beat. At low positive ∆ fBeat (10 Hz) a chirp is encoded
better by cells with high f0 if the contrast is low (Fig. 5.7 A), while the opposite is true
at high contrast (Fig. 5.7 B). On the other hand, at a high contrast and a fast negative
∆ fBeat (−200 Hz) cells with a high f0 again outperform those with low f0 (Fig. 5.7 C and
D). At some ∆ fBeat it depends on the phase of the beat ∆φ at which the chirp is occurs
which cell encodes it most strongly. At low ∆ fBeat and intermediate contrast, a higher
f0 is beneficial when the chirp is emitted at the peak of a beat, while there is no effect
of f0 if it is emitted at the trough of the beat (Fig. 5.7 E and F). Together, these relations
show that it is beneficial for a population exposed to chirps at different backgrounds to
encompass cells of different f0.

Recordings indicate that different P-units encode chirps better than
others

To see whether such effects are also seen in natural cell populations, we correlated chirp
responses with responses to firing rate sensitivity in our recordings (Fig. 5.8 A). We
took the cells’ beat response as a measure of firing rate sensitivity. The gain of cells
to SAMs is correlated with their f0 (Benda et al., 2010). At high contrast, there is a
negative relation between chirp response and firing rate sensitivity (Fig. 5.8 A). This
reproduces the relation seen in the model neurons (Fig. 5.7 B). The relation becomes
weaker for lower contrasts (Fig. 5.8 B and C) indicating that different P-units encode
chirps better at different backgrounds. However, it never reverses as in the model pop-
ulation (Fig. 5.7 B).
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Figure 5.7: Relation between chirp encoding and firing rate sensitivity in the model popula-
tion. Different model neurons are simulated 15 times in response to different chirp/beat combinations.
From the responses, the CSI is calculated, and plotted over f0 of the same model. Each dot repre-
sents the result for one model neuron. For different chirp/beat combinations, the relations differ in
sign or strength, as indicated by a linear regression (black) and the correlation coefficient (r) with
corresponding p-value (p). The relations are shown for a chirp on a slow beat (10 Hz) at low contrast
(1 %) in A) and at a high contrast (40 %) in B). C) and D) show the relations at low and high
contrast, respectively, at a fast negative ∆ fBeat (−200 Hz). In E), ∆ fBeat is again low as in A and
B, but now the phase of the beat is shifted to 0◦, while it is 180◦again in F). All parameters that
are not listed had the following default values: The beat had a ∆ f = 10 Hz at 20 % and a chirp of
s = 100 Hz, ∆t = 15 ms, a = 2 % was emitted at ∆φ = 180◦
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Figure 5.8: Relation between chirp encoding and firing rate sensitivity in recorded P-units.
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5 % in C). The relations become weaker for increasing contrast, indicating a similar relationship in
neurons as seen in the model in Fig. 5.10.

Different baseline characteristics are needed for good chirp encoding
on different backgrounds

There does not seem to be an optimal f0 for chirp encoding when all backgrounds are
taken into account. But might there be an optimal value for the baseline characteristics?
Exemplary relations between CSI and all four baseline characteristics demonstrate as
well that they have opposing effects depending on the background beat (Fig. 5.9). A
high baseline rate is beneficial for chirp encoding on fast positive ∆ fBeat (Fig. 5.9 A),
while cells with high baseline rate perform slightly worse than others at intermediate
negative ∆ fBeat (Fig. 5.9 B). For the CV there is a slightly negative correlation with CSI
at low positive ∆ fBeat at low contrast (Fig. 5.9 C), while there is a positive correlation at
intermediate negative ∆ fBeat (Fig. 5.9 D). Stronger SC (i.e. greater negative correlations)
are beneficial for encoding a chirp at low positive ∆ fBeat (Fig. 5.9 E), while they deteri-
orate encoding at fast positive ∆ fBeat (Fig. 5.9 F). For the VS the relation is positive at
low positive ∆ fBeat and low contrast (Fig. 5.9 G), while the relation is conversed at high
contrast (Fig. 5.9 H).

Overall, these results show that there is not a single neuron in a population that
encodes chirps optimally at every background. For every chirp/beat combination a
different cell is best suited. The variability of naturally occurring signals makes it bene-
ficial for a population to exhibit heterogeneity in their baseline properties (Fig. 5.9) and
f-I-curves (Fig. 5.7).
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Figure 5.9: Relation between chirp encoding and baseline characteristics in the model popu-
lation. From the same data as used in Fig. 5.7 the absolute CSI in response to different chirp/beat
stimuli is related with different baseline characteristics of the model neurons. A) and B) The CSI
in relation to the baseline firing rate. The chirp stimulus was superimposed on high, negative ∆ fBeat
(> 100 Hz) in A and on intermediate negative ∆ fBeat (between −80 and −30 Hz) in B. C) and D) The
relation between CSI and CV. The chirp stimulus was on a beat of low positive ∆ fBeat (≤ 10 Hz) in
C and on intermediate negative ∆ fBeat (between −80 and −30 Hz) in D. E) and F) show the relation
with SC for a chirp on low (< 10 Hz) in E and fast positive ∆ fBeat (> 100 Hz) in F. G) and H) The
relation between CSI and VS for a chirp superimposed on a beat of low positive ∆ fBeat (< 10 Hz) at
low contrast in G and high contrast in H.
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5.4 Discussion

We here investigated the heterogeneity of electroreceptor populations and its effect on
encoding communication signals. For this purpose, we rebuilt a natural population by
means of model neurons. We reproduced the population heterogeneity by distributing
the underlying parameters according to the variability found in fits of our model to
different target data sets.

To do so we first analysed the distributions of and correlations between paramet-
ers underlying good fits of the model to target data sets. We got smooth distributions of
parameters that could be characterised in their type and moments. We distinguished be-
tween variability caused by the uncertainty of fitting one target data set and the variabil-
ity obtained when fitting different target data sets. While both caused similar parameter
distributions, we frequently observed significant correlations between parameters only
when looking at the repeated fits to one target data set. Parameters resulting from fits
to different target data sets were not correlated.

Correlations between parameters reveal compensatory effects between them, i.e. re-
lations in which the effect of changing one parameter can be compensated by changes
in another (Olypher and Calabrese, 2007). In such a case many different parameter
combinations can produce the same behaviour (Prinz et al., 2004). The variability and
correlations between parameter combinations to one particular target data set reveal
that cells are not represented by single points in the parameter space, but rather by hy-
perdymensional planes (Goldman et al., 2001). Furthermore, the fact that pooling the
parameters over all target data sets yields smooth distributions indicates that there is a
continuous region in the parameter space that underlies all different fits.

Our approach leads to very few models that do not produce realistic P-unit activ-
ity. Furthermore, discrepancies only appear in one of six response characteristics (the
strength of phase-locking to the carrier signal, VS). The five remaining response char-
acteristics are matched well both in value and in the distribution of values. A previous
study reported the lognormal distribution of baseline firing rates (Gussin et al., 2007)
and hypothesised that it originates from the nature of the P-unit electroreceptor organ,
in which 25-30 receptor cells are innervated by one afferent nerve fibre. Our model
now allows more detailed investigations on the possible causes as well as on poten-
tial benefits for signal encoding imposed by the distributions of baseline characteristics
underlying P-unit heterogeneity.

The model population differs substantially from the cell population in the correla-
tions between their response characteristics (Fig. 5.4). This could have different causes.
The sample of 23 recordings might be too small to elucidate existing correlations be-
tween response characteristics in the natural population. On the other hand, the co-
variance matrix we use to draw correlated parameters for the model population might
not be a valid estimation of the true covariance between parameter sets. However, we
tested for the robustness of the correlation matrix between response characteristics as
well as of the covariance matrix of parameters in leave-one-out analyses and found that
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both are robustly defined. Most likely, the uncertainty in fitting each target data set hin-
ders the exact estimation of the covariance matrix of the parameters. The covariance
matrix is calculated between the 23 parameter sets that yielded the best fit for each cell.
However, this selection seems delicate considering the good performance of the 10 %
best parameter combinations for each individual target dataset. A more detailed anal-
ysis of the relations between planes in the parameter space underlying these fits could
allow for a better estimation of the covariance between parameters. However, this was
not the focus of the study at hand, and we therefore used this population regardless of
this discrepancy for further analyses.

In the face of the ubiquity of population coding to rebuild natural populations by
computational models has gained much attention during the past years. In cases in
which model parameters can be derived from physiological experiments, such as con-
ductances in conductance-based models, average or maximal values are derived from
these and a simple distribution is assumed to underlie population diversity (Butera
et al., 1999; Golomb and Rinzel, 1993). Using physiological data certainly allows for
more realistic models, however, there are also limitations to this approach. First, the
distribution of the parameters across a population is usually not known since experi-
mental data is often too scarce. Second, each parameter value is usually derived from
recordings in a different cell and putative compensations between them are thus inac-
cessible.

A different approach is to sample a big parameter space and to select those models
that reproduce the normal behaviour (Prinz et al., 2004; Taylor et al., 2009). Correlations
and distributions of the parameters are then derived from the successful fits. Similar
to the second approach, we sample the whole parameter space during the fitting pro-
cedure and select those models that reproduce the data well. However, we then do not
restrict our analysis to these selected models, but go one step further and extrapolate
from the derived parameter distributions a population that resembles a heterogeneous
cell population. Our approach thus combines the two approaches described above.

When populations were built in previous studies to investigate the effect of hetero-
geneity, the analysis was often restricted to varying one parameter (Chelaru and Dragoi,
2008; Hospedales et al., 2008; Mejias and Longtin, 2012; Savard et al., 2011). This alle-
viates the systematic analysis of the mechanisms and causes of heterogeneity effects.
However, it builds on strong assumptions about the underlying diversity. On the con-
trary, we here model heterogeneity in several baseline characteristics. A detailed exam-
ination of the exact mechanisms why one population performs better than another is
therefore not feasible. However, our population is less likely to miss important aspects
of natural heterogeneous populations.

With our model population we studied the encoding of a behaviourally relevant
natural signal – the chirp. The model had not been constrained to reproduce chirp
responses, but reproduces such responses in the single cell as well as on the population
level. This finding is in line with the good model predictions of the neurons’ frequency
tuning to SAM and RAM stimuli (Chapter 4). The frequency tuning had earlier been
shown to lay the basis for responses to chirps. Chirps are transient changes in AM
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frequency and P-units had been shown to respond without further processing to this
change in frequency (Chapter 3).

We were able to investigate the effect of natural-like heterogeneity on chirp encod-
ing. When correlating the variations in each of the heterogeneity characteristics ( f0,
baseline rate, CV, SC or VS) with chirp encoding, we found that different values of
each characteristic were optimal for the encoding of different stimuli. This shows that it
is beneficial to have cells of different characteristics and suggests that a heterogeneous
population performs better in response to the whole stimulus ensemble. In a previ-
ous study about heterogeneity and signal encoding in P-units Savard et al. (2011) have
shown that cells with lower baseline rates, higher CV and higher f-I-curve slopes en-
code the envelope of a stimulus better. For the encoding of envelopes a homogeneous
population of the responsive cells would suffice. In contrast we show that for encoding
different stimuli different neurons might be needed. This is a stronger implication on
the benefit of heterogeneity than was shown before.

Crucial for our analysis is a correct approximation of the distribution of naturally
occurring stimuli. We used beat backgrounds of various phases and ∆ fBeat. Fish have
been shown to chirp at random at any phase of the beat (Walz et al., 2012; Zupanc and
Maler, 1993). They are most frequently emitted in encounters of low ∆ fBeat. However,
behavioural studies have shown that fish respond well to chirps emitted at higher ∆ fBeat
as well (Hupé et al., 2008). Our stimulus ensemble is based on current knowledge of
chirping behaviour.

But why do the model neurons respond differently to a chirp on different back-
ground beats? In contrast to earlier studies (Wessel et al., 1996) who described the
frequency tuning of P-units to be similar across cells, we see subtle differences in the
response to SAM stimuli (Fig. 5.6 A). Different model neurons show different overall
gains in the tuning curve, but also slightly different shapes. The different chirp re-
sponses are most likely resulting from the differences in the frequency tuning of the
neurons.

Heterogeneity has been shown before to have a benefit for stimulus encoding. It
can reduce the likelihood of populations to entrain to high frequencies and thus in-
crease the tuning bandwidth (Hospedales et al., 2008). Another well-known effect of
heterogeneity is that it decorrelates cell activity. This reduces redundancy and increases
the information content stored in a population (Chelaru and Dragoi, 2008; Padmanab-
han and Urban, 2010; Shamir and Sompolinsky, 2006). Correlated activity arises from
shared input that can either originate from the stimulus or from shared noise (Kohn and
Smith, 2005; Zohary et al., 1994). P-units are not connected and have independant noise
sources (Benda et al., 2006; Chacron et al., 2005a). However, they receive shared input.
Their responses are therefore correlated by the stimulus and a decorrelation could im-
prove stimulus encoding. Our analysis does not assess this question, as we analyse the
chirp responses on the single cell level only. However, our results point into a similar
direction: we find that single neurons respond differently well to certain stimuli thereby
potentially increasing the information the population response carries about a stimulus.

It is ubiquitous in the nervous system that stimuli are encoded by populations of
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neurons rather than single cells (Fitzpatrick et al., 1997; Georgopoulos et al., 1986; Kil-
gard and Merzenich, 1999; Wilson and McNaughton, 1993). This implies that evolution
might not optimise single cells but rather populations of cells (Marder and Goaillard,
2006). We here find that it might be beneficial for populations to hold a wide set of
strategies – in our case a set of response characteristics – to be able to respond to big
ensembles of stimuli as encountered in the wild. Heterogeneity might be a result of a
selection pressure to encode the whole natural ensemble of stimuli.

5.5 Perspective: Modelling a Population Response

In the last part of the results section of this chapter we analysed the effect of heterogene-
ity on chirp responses. For this purpose, each model neuron was stimulated 15 times
with the same chirp stimulus and the rate modulation to beats and chirps were averaged
over trials. However, a downstream neuron does not have access to multiple responses
of one neuron. Rather, it has information about one response of each projecting cell and
has to average over a population of such single trial responses. In the following we ap-
ply an analysis that more realistically resembles such a situation. Because some aspects
of this analysis remain delicate (see below), I decided to include it as a separate section
rather as part of the result section.

In th following we take one trial of a response of a model neuron, analyse it and
then pool over a population (Fig. 5.10). The rate response of single trials is calculated
as the instantaneous rate given by the inverse of the ISIs (Fig. 5.10 A and B, third row).
The response to the beat and chirp is then derived as the standard deviation in time
windows during beat and chirp as described in Section 5.2. In contrast to the previous
analysis, these measures are not derived from averaged responses, but from single trials.

We now average these responses over populations of 100 different model popula-
tions. In order to simulate heterogeneous populations, we pool single trials of models
with different parameter sets (Fig. 5.10 A). Multiple trials of a model instance are used
to form homogeneous populations (Fig. 5.10 B). Different heterogeneous populations
respond similarly to beats and chirps (Fig. 5.10 C and D, grey curves). In contrast,
different homogeneous populations perform differently (Fig.‘5.10 C and D, coloured
curves, every colour represents a different homogeneous population).

In response to one stimulus there are homogeneous populations that perform better
than all heterogeneous populations, but also some that perform worse. Heterogeneous
populations show moderate responses and they behave very similarly. One advan-
tage of heterogeneity could be to minimise the likelihood of very poor encoding perfor-
mance.

We now ask whether homogeneous populations that are good for encoding one
chirp, remain good in encoding chirp stimuli of other parameters. Chirps can be of
different size s, width ∆t and amplitude decrease a. All these change the waveform of
the AM caused by the chirp and thus influence the cellular response. So far we used
a “standard chirp” that was generated with s = 100 Hz, ∆t = 15 ms and a = 2 % and
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Figure 5.10: Chirp encoding in heterogeneous and homogeneous populations. population
responses to chirp stimuli are simulated for 100 model neurons of different parameter sets (hetero-
geneous population, A) or as 100 repetitions of the same parameter set (homogeneous population,
B). The top row shows the chirp AM stimulus, the second row the spiking responses, the third row
the instantaneous rate as derived as the inverse of the spiking response of single trials in B. D) From
this rate response the standard deviation in a window during the beat was calculated and averaged
over a heterogeneous (grey) or homogeneous population (colour, different colours represent different
populations). D Accordingly, the CSI was derived from the rate response for each model simulation
and averaged. The chirp had the default width and size, the stimulus contrast was 20 %.

was emitted on a beat of ∆ f = 10 Hz at 20 % contrast, if not indicated differently. From
the responses to the “standard chirp” we select the best and worst homogeneous pop-
ulations, and stimulat it with chirps of other parameters. The best population shows
moderate responses to other chirp types (Fig. 5.11 B), while the worst population per-
forms well on some chirp stimuli as well (Fig. 5.11 D).

However, even over the whole range of chirp stimuli that we include in our analysis,
the best homogeneous population remains better than a representative heterogeneous
population. This seems to contradict our finding of the result section of this chapter stat-
ing that distinct models encode different kinds of chirps well (see Fig. 5.7 and Fig. 5.9).
One would suspect that the heterogeneous population comprises individual neurons
that give a good response for each chirp stimuli and thus performs better than a homo-
geneous population that presumably fails at encoding a range of chirp stimuli.

The “best” homogeneous population is worse than the heterogeneous in only a few
of the chirp stimuli. To generate the heterogeneous population response, we sum the ab-
solute CSI of individual models. Good responses of some models could be covered by
a bulk of bad responses. On the other hand, the good homogeneous population might
perform worse than some other models for individual chirp stimuli, but still better than
average. The best homogeneous population comprises the model with the highest f0
(turquoise population in Fig. 5.10). In Fig. 5.7 we have seen that a high f0 is detrimental
for encoding several chirp stimulus. However, the slopes of the relations differ and the
positive correlations usually have a higher slope. This could mean that in Fig. 5.11 C,
the CSIs in which the homogeneous population performs better, are higher and further
separated from the heterogeneous population and cause a visual bias when looking at
this figure.

The addition of absolute, individual CSI to generate the population response is
based on three assumptions about the read-out of P-unit responses in the ELL. First,
we decided to sum the CSI, because individual models usually have a CSI of similar
magnitude. On the contrary, cells of higher f0 have much higher individual responses
to beats and chirps, thus have a higher impact than cells on a sum of these responses.
However, an upstream cell more likely integrates beat and chirp responses and com-
pares the averaged responses in a form of CSI.

Second, individual models possibly have CSIs of different sign in response to the
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Figure 5.11: Population responses to different chirps. A) The best homogeneous population is
chosen as the one exhibiting the largest absolute CSI from the data shown in Fig. 5.7. Its response is
plotted together with a representative heterogeneous population. B) Both populations are stimulated
with chirps of different parameters (s = [50, 100, 150]Hz, ∆t = [15, 50]ms and ∆A = [2, 20]%,
resembling the diversity of chirps found in Kolodziejski et al. (2007)). Each line represents one chirp
of fixed characteristics. The responses of the homogeneous population are plotted in black, those
of the heterogeneous in grey. C) Similarly as in A, the chirp responses of the worst homogeneous
population are plotted together with a random heterogeneous population. D) As in B, the “worst”
homogeneous and the heterogeneous population are stimulated with chirps of different parameters.
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same chirp stimulus. We assume that the downstream cell takes into account the mag-
nitude of the CSI only and we therefore use the absolute CSI. We do not make a pre-
diction how this could be implemented in ELL pyramidal cells. Third, we assume an
equal summation of all P-units. While this is the simplest possibility of how information
could be read out of the population, the strength of synapses and their position within
the dendritic tree could weigh different P-unit inputs differently.

The instantaneous rate of single trials fluctuates heavily (Fig. 5.10) and this can lead
to an unstable estimation of the CSI. Overall, the estimation of the CSI as well as the
justification of the read-out assumptions are fragile and should be elaborated on in fu-
ture research. Nevertheless, in case the results persist, one can ask, why natural P-unit
populations are heterogeneous and do not resemble an optimal homogeneous popu-
lation. One reason could be that the calibration of a homogeneous population to the
optimal case was too costly in evolution and a mediocre heterogeneous population was
better than a bad homogeneous one. Another reason could be an incompleteness of our
parameter space. P-units also encode signals that are of completely different statistic for
tasks such as localisation and prey capture. Including those might enhance the equal-
ising effect that we see for increasing the parameter space. Heterogeneous and homo-
geneous populations might then perform the same when the whole parameter space is
taken into account. Again, heterogeneous populations would then have the advantage
that they do not have to be calibrated as strongly a homogeneous population.





Part III. DISCUSSION





Chapter 6
Conclusions

Signal encoding in heterogeneous populations of receptor neurons was the subject of
this thesis. Its investigation was based on the encoding of an electrocommunication
signal – the chirp – in P-type electroreceptors. Various complementary approaches were
employed ranging from electrophysiological experiments to computational modelling.
In the following, I recapitulate the conclusions of the three research projects separately
and then combine the findings with respect to their implications for information coding.
Finally, I present an outlook on follow-up research questions.

Chirps occur on top of beats, periodic amplitude modulations (AMs) of the electric
organ discharge (EOD) due to the superposition of the EODs of two fish. Behaviour-
al studies have shown that fish readily respond to chirps at beats of a wide range of
difference frequencies (Hupé et al., 2008). In Chapter 3 I studied the responses of P-
units to chirps at beats of different parameters via electrophysiological recordings. The
results were as follows:

• The AM waveform is the relevant signal for P-units. Its frequency is given by the
frequency difference between the EODf of a receiving and the EODf of a commu-
nicating fish and is affected by both the initial difference frequency of the beat and
the transient frequency change of the chirp. The signal therefore depends on both
beat and chirp.

• The P-unit response to a chirp depends on the difference frequency of the underly-
ing beat, partitioning the range of occurring difference frequencies in four distinct
regimes: beats of high negative and low positive frequencies elicit an increased
response, while low negative or high positive ones decrease the response.

• The response increases and decreases are reflected in changes in synchronisation
as measured by the correlation over trials and in the modulation depth of the rate.

• Whether P-units respond by synchronisation or desynchronisation to the chirp
can be predicted by taking into account only the frequency of the signal and the
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frequency tuning of the cells, although the duration of a chirp is often shorter than
a full period of the frequency it elicits.

The great informative value of the cells’ frequency tuning with respect to their chirp
responses led us to investigate this tuning in Chapter 4 by means of a computational
model. I constructed a leaky integrate-and-fire model with data-derived dendritic filter
and adaptation current. The model showed the following:

• A P-unit’s baseline activity and responses to step stimuli can be reproduced with
high accuracy when the model parameters are calibrated to replicate characteris-
tics of these responses.

• Heterogeneous baseline discharges of P-units can be simulated by varying the
model parameters. The model can reproduce successfully the responses of all P-
units we had recorded from and thus produce activity of different baseline char-
acteristics reflecting the heterogeneity found in P-unit populations.

• The frequency tuning to sinusoidal and noise AM stimuli is an emergent property
from the responses to step stimuli and the constant EOD. Even when calibrated to
the latter, the model responds to sinusoidal and noise AMs in a similar way as the
target P-unit.

The ability of the model to reproduce responses of distinct P-units allowed for a
simulation of a heterogeneous model population that resembles the natural P-unit pop-
ulation. I characterised the parameter variability and correlations underlying the fits to
distinct P-units in order to generate new representative parameter combinations. With
these I built model populations that led to the following conclusions:

• The distributions of parameter values are a sufficient foundation to produce natural-
like heterogeneity. The model population resembles the natural population in
terms of baseline characteristics, even though it encompasses models that are not
fit directly to P-units, but whose parameters are drawn from the characterised dis-
tributions.

• The model also reproduces chirp responses. A single model neuron responds to
chirps as its target P-unit, and the population responds to chirps like the P-unit
population virtually at the full range of background beats.

• The single models in the population exhibit a frequency tuning of varying magni-
tude, but similar shape in response to sinusoidal AMs. No systematic differences
can be made out in their chirp encoding.

• For a single chirp stimuli the responses of different model neurons are correlated
with certain baseline response characteristics. P-units of a certain characteristic en-
code a chirp more strongly, but different P-units optimally encode different chirps.
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This suggests that a heterogeneous population is better suited to encode the nat-
ural range of chirps than a homogeneous population, because it possesses strong
responses to all chirp stimuli.

The findings allow for implications on the strategies of information coding applied
in the electrosensory system. Before I now go in detail into these implications, I here
combine the results of the different projects:

• The coding of chirps in P-units is context-dependant. This challenges behavioural
theories about these signals and shows how a detailed physiological description
can make predictions concerning the behaviour of an animal.

• The synchrony response of P-units is fast and linear. Since it does not require
unique encoding mechanisms, this could constitute a universal strategy of recep-
tor cells to encode fast, transient signals.

• A simple model of spike generation can predict responses to complex dynamic
stimuli even if calibrated to responses to simple stimuli. It therefore constitutes a
general description of the natural neuron. This demonstrates the power of simple
models when they are carefully designed and calibrated.

• Different individual model neurons respond optimally to chirp stimuli of differ-
ent characteristics suggesting an advantage of a heterogeneous population in the
encoding of variable natural signals. It indicates that the whole stimulus ensem-
ble might put a selective pressure on the development of populations of sensory
neurons.

• Careful examinations of the signals caused by different chirps on different contexts
lay the basis for understanding the response in receptor cells. Main findings of this
thesis were only revealed when the whole stimulus space was taken into account.
This underlines the importance of a detailed knowledge of the natural sensory
environment when characterising a neuronal system.





Chapter 7
Implications for Information Coding in
the Electrosensory System

7.1 Context-dependency of Responses to Communication
Signals

Perception does not strictly mirror the stimuli from the external world, but rather origi-
nates from the construct that the nervous system forms of them (Zeki, 2001). Otherwise,
phenomena such as colour or shape constancy would not exist, in which our perception
is not linearly related to the physical stimulus. The nervous system creates new “qual-
ities” from the physical information present in the external world. That is, it forms
categorisations of the stimuli that differ from those that are present in physical world.
We perceive red as red in a number of different light conditions, in which the physical
stimulus – the absolute intensities of the different wavelengths reflected by a surface –
is very different, as it depends on the properties of both the surface and the light eluci-
dating it. We do so by taking into account the composition of the light source also by
comparing the light reflected by all surfaces. If the perception was based solely on the
stimulus’ magnitude, we would have distinct colour percepts in differing light condi-
tions.

Such mapping of a physical stimulus to a perceptual category plays a crucial role
in communication. Here, communication signals are perceived as distinct categories,
albeit often consisting of continuously variable acoustic signals (e.g. in humans, Holt
and Lotto, 2010, monkeys, May et al., 1989, or birds, Nelson and Marler, 1989). Recent
studies have revealed neural correlates of this mapping from variable sensory stimuli
to perceptual categories (Gifford et al., 2005; Prather et al., 2009). In contrast I show in
Chapter 3 that the responses of single P-units are influenced by the background beat
in a way that does not correlate to a known behaviour. A chirp either synchronises or
desynchronises the P-unit responses depending on the beat background creating four
different encoding regimes. This partition persists on the population level (Chapter 5).
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Although P-units are just the first stage of sensory information processing and per-
ceptual phenomena are the result of extensive parallel and interconnected processing
(Nassi and Callaway, 2009), our findings suggest that the nervous system categorises
chirps as distinct when they occur on different backgrounds.

P-units respond to amplitude modulations (AMs) of the EOD by in- or decreasing
the ongoing baseline response. An increase of population activity is read out by E-type
pyramidal cells in the electrosensory lateral line lobe (ELL), while a decrease activates
I-type pyramidal cells (Chapter 2, Shumway and Maler, 1989). Whether or not this
separation of information persists up to a perceptual level, remains unknown. However,
it has been suggest that E- and I-cells form encoding streams that process information
about conductors (prey) or insulators (rocks) in parallel (Chacron et al., 2011). In the
context of communication signals this separation has been suggested to underlie the
distinction between big and small chirps (Marsat and Maler, 2010).

Assuming that the separation of the encoding persists and results in a distinct per-
ception of small chirps depending on the background, the question arises whether the
communication behaviour is influenced by this distinction. More specifically, the dif-
ferential encoding challenges two assumptions about small chirps. First, behavioural
studies on small chirps suggested that they convey the same information regardless of
the background (Bastian et al., 2001; Cuddy et al., 2012; Engler and Zupanc, 2001; Hupé
et al., 2008; Salgado and Zupanc, 2011). This is consequential considering the stereotyp-
ical form of the chirp independant on the background (Zupanc et al., 2006). However,
the various AM forms elicited by a chirp at different backgrounds (Fig. 2.1 and Fig. 3.2)
and the differential encoding in P-units suggests that the behavioural meaning of the
small chirp differs depending on the background.

Second, a clear distinction between small and big chirps is suggested in terms of their
behavioural relevance (Bastian et al., 2001; Engler and Zupanc, 2001; Salgado and Zu-
panc, 2011). The correlate of this distinction at the physiological level has been thought
to be the encoding of small and big chirps by synchronisation and desynchronisation of
P-units, respectively (Benda et al., 2006), that persists at the level of the ELL by encod-
ing in E- and I-cells (Marsat and Maler, 2010). Our results show that small chirps are
also encoded by desynchronisation of P-units at certain backgrounds and thus question
the clear distinction between big and small chirps at these backgrounds, namely high
positive difference frequencies.

Overall perception in an organism can ultimately only be probed by behavioural
studies. While cognitive phenomena such as colour and shape constancy are accessible
via introspection or psychophysical methods, perceptual experiments are more difficult
to perform with animals. Communication signals are an exception in that their percep-
tion can well be assessed by studying the behavioural response (Chapter 1, Walz et al.,
2012). While a behavioural examination was beyond the scope of this thesis, future
studies could explore chirp encoding on different backgrounds by looking at behaviour-
al responses to these signals. This could then clarify whether a new quality is formed
and perception indeed categorises chirps according to the background they occur on.
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7.2 Frequency Tuning in P-units

Temporal and rate coding describe two modes of embedding information in neuronal
responses that differ in the way information is represented in the activity of single neu-
rons or neuronal populations and in the way it is propagated over nuclei and regions in
the nervous system (Chapter 1). Several previous studies have concluded that the early
electrosensory system uses a temporal rather than a rate code (Berman and Maler, 1999;
Nelson et al., 1997). The phase-locking of P-units to the EOD and the short excitatory
postsynaptic potential observed in ELL pyramidal cells appears appropriate to read out
information using synchrony among P-units on time scales of the EOD period (Berman
and Maler, 1999).

Information about prey and communication is thought to be encoded in parallel in
the electrosensory system as prey gives rise to locally restricted, low-frequency stimuli,
while communication signals stimulate receptors on the whole body of a fish and con-
tain high frequencies (Chacron et al., 2005c; Middleton et al., 2009). The two classes of
stimuli elicit responses in different maps of the ELL (Chapter 2). In both cases a tem-
poral code has been postulated to underlie the read-out of P-unit responses in the ELL.
The small rate increase in single P-units, as induced by prey, seems to be too small to be
detectable on the background noise. Since it affects several P-units, Nelson et al. (1997)
suggested that it should be read out via the synchrony among P-units. The cells in
the ELL that respond to communication signals (pyramidal cells of the lateral segment,
Chapter 2, Krahe et al., 2008; Marsat et al., 2009; Metzner and Juranek, 1997) have par-
ticularly large receptive fields and a high spike threshold. These characteristics make
them particularly well suited for the detection of high-frequency, synchronous activity
(Middleton et al., 2009).

Throughout Part II we measure P-unit activity either in terms of the correlation over
trials or the rate modulation. For both measures we convolve the spike trains with a
Gaussian kernel of 1 ms width. Although we do not apply a rigid time window for
calculating the correlation or rate, this kernel resembles our choice of an “encoding
window”, as information on a finer time scale is smoothed out by the convolution. The
kernel width corresponds to the width of the excitatory postsynaptic potential in ELL
pyramidal cells (Berman and Maler, 1998), the read-out of sensory inputs is therefore
likely to discard information on finer time scales as well.

Since P-units have independant noise sources (Chacron et al., 2005b), the population
activity can directly be inferred from the single cell’s activity. In a homogeneous pop-
ulation the population rate corresponds to the single cell’s rate and the synchrony to
the correlation across trials. This allows a direct comparison of information encoding
when a rate code is implied and when a temporal code is implied. Qualitatively, both
measures yield the same results: the rate as well as synchrony response is strongest to
beats of intermediate frequencies and fall off at higher and lower frequencies (Fig. 3.6).

Chirps as well have the same effects on rate and synchrony (Fig. 3.5): they increase
rate and synchrony at low positive and fast negative beats, and both measures decrease
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at fast positive and low negative beats. Quantitatively, the rate is more sensitive to
chirps than is the correlation (Fig. 3.5). A chirp of size 60 Hz affects the rate response sig-
nificantly on beats of difference frequencies at which the correlation is not affected sig-
nificantly. We additionally performed whole-nerve experiments in which the strength
of the signal represents the degree of synchrony in the whole population of P-units in
the nerve. For this kind of experiment, the effect of a chirp is significant on all back-
ground beats (Fig. 3.5 C). The information embedded in the synchrony of the whole
population is thus sufficient to encode all chirp-beat combinations.

The whole-nerve recordings also show that the synchrony across a population is
modulated very fast upon changes in the stimulus. With them I could predict from the
frequency of the stimulus together with the frequency tuning of the P-units whether
they would respond by synchronisation or desynchronisation to a chirp (Fig. 3.7). A
chirp increases the frequency of the stimulus by on average 55 Hz for about 14 ms (for
the parameters we used). On low beat frequencies (e.g. 10 Hz) this means that its dura-
tion is on the order of just one period of the frequency we used to predict the response
(10+ 55 = 65 Hz in our example, corresponding to a period of 15.4 ms). The good match
between prediction and data shows that the synchrony response is very fast.

The prediction also shows that the response is linear. I used an average of the fre-
quency, although in reality the chirp constitutes a Gaussian-shaped frequency excur-
sion. The response thus changes in response to the combination of multiple frequencies
as it would do to each one of them separately. The simple nature of the synchrony re-
sponse is further supported by the finding that a population of leaky integrate-and-fire
model neurons shows exactly the same responses in terms of correlation over trials. It
does not only reproduce the shape of the tuning curve, but also the exact magnitude
of synchrony to different frequencies (Fig. 4.8) and further generalises for different con-
trasts (Fig. 4.9). The exact match of the synchrony response is more surprising than
that of the rate response, as to generate it, one needs an additional nonlinear step. To
calculate the correlation coefficient over trials, for example, one first multiplies the two
time series. The reproduction of the synchrony response with the model allows for very
important simulation experiments on the encoding of signals that are small (prey) and
transient (communication) in neuronal populations that were not possible to date.

7.3 P-unit Modelling

Since the beginning of neuroscience (Lapicque, 1907), mathematical modelling has been
used as a powerful way to reveal mechanisms of information encoding in single neu-
rons and neuronal networks (for reviews on single cell modelling, see Herz et al., 2006;
Koch and Segev, 2000, for network modelling Averbeck et al., 2006; Gerstner, 2000).
Theoretical models allow to characterise in detail which aspects of the external world
are represented by the nervous system and how this representation is influenced by
changes in the encoding process. One can even perform novel “in silico” experiments
that are difficult or impossible to perform on biological neurons or neural networks,
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or use models to generate inputs for neural prostheses (Chen and Zhang, 2007; Hu-
mayun et al., 1999). While for many modelling tasks a qualitative reproduction of the
behaviour of natural cells is sufficient, a quantitative examination is mandatory for the
latter. Also, “in silico” experiments and neural prostheses require predictive power,
that is models have to reproduce cell responses not only to those stimuli used during
the model fit, but also to novel ones.

Modelling includes two steps in which target data is needed: Calibration and val-
idation. During calibration, the model is designed and the parameter values are con-
strained in order to best match a target data set. During validation, a different data set
is used to test the performance of the model. Essentially, the choice of the validation
data determines whether or not predictive power of a model is tested. Despite the rel-
evance of models with quantitative predictive power, they remain rare. Only over the
past ten years, such models have been introduced (Brette and Gerstner, 2005; Jolivet
and Gerstner, 2004; Jolivet et al., 2008; Keat et al., 2001; Pillow et al., 2005; Schaette et al.,
2005).

Keat et al. (2001) were able to reproduce the exact timing of the spiking responses of
cells in the early visual system with a model comprised of a linear filter followed by a
nonlinearity and a negative feedback. A leaky integrate-and-fire model has been shown
to accurately reproduce the mean firing rate of cortical cells recorded in vitro in response
to noise stimuli with varying standard deviation (Camera et al., 2004; Rauch et al., 2003)
and follow-up studies showed that this model also reproduced the membrane potential
fluctuations Clopath et al. (2007) and the exact timing of spikes (Jolivet et al., 2006).

However, the validation data sets of these studies were taken from the same stimu-
lation paradigm as the calibration data. Validation to stimuli of novel statistics has been
used to test how well simple models can reproduce the dynamics of more complex ones
that are thought to resemble more natural activity (Brette and Gerstner, 2005; Jolivet
and Gerstner, 2004). A quantitative prediction of experimental responses to novel stim-
ulation paradigms was employed by Schaette et al. (2005), who predicted responses to
noise stimuli by a stochastic neuron model fit to responses to step stimuli, and Pillow
et al. (2005), who could reproduce responses to brief impulse-like stimuli by a leaky
integrate-and-fire model that was constrained with noise stimuli.

Our model of P-unit responses is calibrated to baseline activity and responses to step
stimuli, but reproduces responses to sinusoidal and random AM as well as chirp stim-
uli with a high degree of accuracy (Fig. 4.8, Fig. 4.10 and Fig. 5.4). It therefore possesses
quantitative predictive power and is suited to be used in “in silico” experiments as per-
formed in Chapter 5. Simplified models will never embody a full representation of a
real cell. They are built to answer a specific question and this should always be kept
in mind when discussing outcomes (Herz et al., 2006). Nevertheless, the ability of a
model to respond similarly to a real cell in a novel situation remains a fascinating prop-
erty of models. The seldom occurrence of true quantitative predictions underpins how
exceptional the match of our model predictions with the recorded data are. While the
models of Pillow et al. (2005); Schaette et al. (2005) both included a phenomenological
filter extracted from the responses, we show that a quantitative prediction of neuronal
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cell responses is also possible with a mechanistic model.

7.4 Heterogeneity in P-units

The biophysical mechanisms that form the basis of our model also account for the het-
erogeneous response characteristics in different cells. When I calibrated the model pa-
rameter to different P-units, I could reproduce their responses with the same degree of
accuracy (Fig. 4.3, Fig. 4.8, Fig. 4.10). By taking a distribution of values as the basis, I
could build a heterogeneous population that matches the distribution of response char-
acteristics of P-units (Fig. 5.4). I found two effects of the heterogeneity of P-units on
signal encoding. First, single cells show resonances in their responses to beat frequen-
cies that are multiples of their baseline firing rate (Fig. 4.8). Averaging over a population
of cells cancels resonances which leads to a population tuning to sinusoidal stimuli that
is smoother than the tuning of single cells (Fig. 4.9). Second, responses to chirps corre-
late with response characteristics of single cells. Distinct single cells optimally encode
distinct chirp stimuli (Fig. 5.7).

How are the two effects related? In both effects, single cell responses exhibit greater
inhomogeneities than the population response. Resonances make the tuning curves of
single cells more irregular and chirp responses of a single cell exhibit more extremes
than the average. I conceptually evaluate the variability of the single cell responses
differently in the two cases. In the first case, I suppose that having a smooth population
response is beneficial, as it erases ambiguity and nonlinearities in the coding of different
frequencies and could aid the encoding of signals via sweeps on the cells’ tuning curve
(Chapter 3). In the second, I assume that the variability of the responses is exploited
by downstream neurons to get clearer representations of different chirp stimuli. Both –
a smooth population response and variable single cell responses – might be needed in
different contexts. The smoothing of tuning curves could also be achieved in single cells
by increasing the neuronal noise. However, such a high degree of noise might impair
encoding in other contexts, e.g. chirp encoding.

Heterogeneity means that neurons that are different in physiology are used to en-
code the same stimulus. It is a form of degeneracy in which a system constitutes multi-
ple structurally different elements performing the same task (Edelman and Gally, 2001).
Degeneracy can make a system more robust to changes in the environment and it is
ubiquitous in biological systems. In the genetic code, for example, many triplets code
for the same amino acid. Different polypeptides can be folded such that they function
similarly. The effect of heterogeneity on chirp encoding resembles a kind of degener-
acy. To one single chirp stimulus, the benefit of having different cells is not apparent, as
single cells respond better than average to such a stimulus. However, the diversity of
AM stimuli elicited by chirps generates a pressure on populations to respond robustly
to very different signals. Heterogeneous populations might be better suited for robust
encoding in variable environments. The potential benefit of heterogeneity only become
evident when using a range of different chirp stimuli. This underlines the importance



7.4 Heterogeneity in P-units 123

of using the range of possible naturally occurring contexts when characterising a bio-
logical system (Chapter 3 and 5).





Chapter 8
Outlook

In the following I will propose specific research questions that result from my find-
ings. Future projects could evolve in two directions. First, the results on chirp encoding
call for behavioural studies on the perception of big and small chirps at different back-
ground beats. Second, the possibility to create model populations that closely resemble
natural heterogeneous populations allows for a thorough investigation of population
responses. I will now elaborate on each of them in more detail.

P-unit receptor neurons respond with opposite tendencies to chirps of fixed charac-
teristics depending on the underlying beat frequency. These opposite responses are be-
lieved to trigger responses in different target neurons. Plus, on some backgrounds they
show an equivalent response to a small chirp as they have been described to exhibit in
response to a big chirp (fast beats, Benda et al., 2006). This calls for an investigation of
the behavioural responses small chirps elicit depending on the underlying beat and the
distinction the fish make between big and small chirps on fast beats.

Fish preferentially chirp in a short time window after having perceived the chirp
of another fish. Behavioural thresholds of chirp encoding have been investigated by
testing this echo response (Salgado and Zupanc, 2011). Exploring the echo response on
different background beats could give insights into whether or not the perception of
small chirps is modified by the background. Does the echo response exhibit the same
magnitude regardless of the background? How does its behaviour evolve over trial
time? Are behaviour and stimulation frequency similarly related for small and big chirp
stimuli? These aspects are well-known for pure chirp production in response to EOD
stimuli of different frequencies (Bastian et al., 2001; Engler and Zupanc, 2001). However,
the relation between echo response and stimulation frequency remains unknown.

In Chapter 3 we propose that the small chirp could be used to test the sign of the dif-
ference frequency of fast beats. It elicits a desynchronisation in cases in which the EODf
of the communicating fish is higher than the EODf of the receiving fish. In contrast, it
synchronises the cells if the communicator’s EODf is above the receiver’s EODf. The
mechanism of how fish are thought to sense the sign of a beat’s difference frequency
(Bullock and Heiligenberg, 1986; Kawasaki et al., 1988) can very well be applied at low
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frequencies. At higher frequencies, in which a beat consists of only few EOD cycles, it
is more difficult to implement. The small chirp could fill that gap.

Such a fundamentally different function of the signal itself would likely show up as
a deviation in chirping behaviour. If the small chirp is used on slow beats to mediate
an encounter (Hupé et al., 2008) but as a means to test the sign of a frequency difference
on fast beats, I would suspect to see a distinct temporal evolution of chirping behav-
iour. While fish would likely continuously chirp at high rates in the first case, a few
chirps would suffice in the second case to get the necessary information. This fits to
the observation that fish chirp preferentially on beats of low frequency (Bastian et al.,
2001; Engler and Zupanc, 2001). A more detailed analysis of the temporal evolution and
other aspects of the chirping behaviour could shed more light on the functions of chirps
at different beat contexts.

In the electrosensory lateral line lobe, where information is read out of P-unit ac-
tivity, pyramidal cells are estimated to pool over 1000 neurons (in the lateral segment
involved in electrocommunication, Maler, 2009). To get a realistic estimate of the P-unit
population response, the sample of recordings has to be on this order. However, such
numbers are not feasible to obtain in electrophysiological recordings, in which a good
experiment yields a handful of good data sets. With the model, on the other hand, large
numbers of neurons can be simulated and multiple questions on population coding can
be tackled.

Under baseline conditions, only few P-units fire during one EOD cycle, but this
number is in- or decreased in the presence of a stimulus. Such changes in the num-
ber of synchronously firing neurons can easily be detected by downstream neurons and
have been suggested to constitute the code employed by the early electrosensory sys-
tem (Chapter 4 and 7). The relevant signal for this code on the single cell level is the
correlation over trials. The fact that the model can faithfully reproduce this measure
(Fig. 4.9) allows for a realistic examination of details on the encoding between P-units
and ELL. For example, the threshold for detecting a stimulus could be predicted. This
would require determining the minimal intensity that significantly changes the number
of spikes in a population. The sensitivity is likely to depend on the number of neurons
taken into account. It is therefore important to have access to a sample of neurons of
realistic size to assess the sensory threshold.

Other questions require to test a large number of stimuli. One example is the dis-
criminability of different chirp stimuli, a question that was touched upon in Chapter 3.
Each fish produces slightly different small chirps and this might depend on their hor-
mone levels (Dulka et al., 1995). The parameters of a chirp thus potentially carry impor-
tant information for the receiving fish. However, Marsat and Maler (2010) argued, that
the large variability of responses to one small chirp, especially caused by the beat phase
at which the chirp occurs, makes the discriminability of different small chirps impossi-
ble. I have shown in Chapter 3 that the variability of chirp responses originating from
cell heterogeneity is greater than that caused by the beat phase. To answer whether fish
can distinguish different chirps and if so how large the difference in chirp parameters
has to be, chirps of many different parameters would have to be tested in many different
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cells. This is now possible with the model.
Detection thresholds and discriminability of different stimuli are essentially behav-

ioural questions. A powerful approach would integrate behavioural experiments with
model predictions. Electric fish are particularly well-suited for such an integrated ap-
proach as their behaviour is easily observable and stimuli can be quantified, analysed
and simulated well. This thesis combined electrophysiological and modelling approach-
es with behavioural findings from earlier studies. The conclusions concern all the dif-
ferent disciplines demonstrating how an interdisciplinary approach in the end benefits
every individual discipline involved.
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List of Abbreviations

AM amplitude modulation

CMS centromedial segment

CLS centrolateral segment

CSI chirp selectivity index

CV coefficient of variation

DAP depolarising after potential

EGp eminentia granularis pars posterior

ELL electrosensory lateral line

EOD electric organ discharge

EODf EOD frequency

ISI interspike interval

JAR jamming avoidance response

LIF leaky integrate-and-fire

LIFAC leaky integrate-and-fire with adaptation current

LIFDC leaky integrate-and-fire with dynamic threshold

LS lateral segment

MS medial segment
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nP nucleus praeeminentialis

PSTH peri-stimulus time histogram

RAM random amplitude modulation

SAM sinusoidal amplitude modulation

SC serial correlation

TS torus semicircularis

VS vector strength
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a b s t r a c t

Weakly-electric fish are a well-established model system for neuroethological studies on communication
and aggression. Sensory encoding of their electric communication signals, as well as behavioural
responses to these signals, have been investigated in great detail under laboratory conditions. In the
wave-type brown ghost knifefish, Apteronotus leptorhynchus, transient increases in the frequency of the
generated electric field, called chirps, are particularly well-studied, since they can be readily evoked by
stimulating a fish with artificial signals mimicking conspecifics. When two fish interact, both their
quasi-sinusoidal electric fields (called electric organ discharge, EOD) superimpose, resulting in a beat,
an amplitude modulation at the frequency difference between the two EODs. Although chirps themselves
are highly stereotyped signals, the shape of the amplitude modulation resulting from a chirp superim-
posed on a beat background depends on a number of parameters, such as the beat frequency, modulation
depth, and beat phase at which the chirp is emitted. Here we review the influence of these beat param-
eters on chirp encoding in the three primary stages of the electrosensory pathway: electroreceptor affer-
ents, the hindbrain electrosensory lateral line lobe, and midbrain torus semicircularis. We then examine
the role of these parameters, which represent specific features of various social contexts, on the behavi-
oural responses of A. leptorhynchus. Some aspects of the behaviour may be explained by the coding prop-
erties of early sensory neurons to chirp stimuli. However, the complexity and diversity of behavioural
responses to chirps in the context of different background parameters cannot be explained solely on
the basis of the sensory responses and thus suggest that critical roles are played by higher processing
stages.

� 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

During social encounters, many animals use communication
signals to transmit a variety of information, such as individual
identity and motivational state, that is used to dynamically modu-
late behavioural strategies. Across taxa, signals involving mechan-
ical (including acoustic and vibrational stimuli; Hill, 2009; Kelley
and Bass, 2010), visual (Osorio and Vorobyev, 2008), chemical (Sta-
cey et al., 2003; Johansson and Jones, 2007) and electric modalities
as well as a mixture of them (Bro-Joergensen, 2010) have been
characterized. Responding to these signals appropriately can be
crucial for reproductive success, as well as the survival of an indi-
vidual (Kelley and Bass, 2010). Accordingly, understanding why
and how signals are produced has been a central goal in animal
ethology.

The accurate detection of communication signals depends
crucially on signal encoding by the nervous system which can be
limited by internal and external noise (Waser and Brown, 1986;
Schmidt et al., 2011). In the auditory and electrosensory systems,
communication signals can be produced in the presence of an
ongoing background signal that is a consequence of the interaction
itself (Zupanc and Maler, 1993; Kelley and Bass, 2010). Different
aspects of this background signal, including its frequency and con-
trast also provide behaviourally relevant information about social
context, i.e. the identity and proximity of interacting individuals
(Engler and Zupanc, 2001; Bastian et al., 2001; Yu et al., 2012).

To explore both the meaning of communication signals, and the
mechanisms by which they are encoded, it is necessary to consider
an integrated description of how sensory stimuli, neural responses,
and behaviour change during the social interactions. The study of
communication also offers a framework for studying the encoding
of sensory stimuli, in that encoding principles and stimulus sensi-
tivities can be inferred directly from behavioural experiments.
Behavioural adjustments produced in response to conspecific or
simulated communication signals provide evidence that the
receiving individual has detected the sensory stimuli. A combined
analysis of neuronal encoding and behaviour is therefore profitable
for both neurophysiology and ethology.

In this review, our goal is to exemplify this neuroethological
approach in the context of electrocommunication among the Gym-
notiform weakly electric fish Apteronotus leptorhynchus. Environ-
mental conditions involving low-light and low electrosensory
signal-to-noise ratio set a premium on efficient detection and
processing of electrocommunication signals. For decades, studies
examining the neurophysiological systems of weakly electric fish
have provided insights into how natural behaviours are generated
using relatively simple sensorimotor circuits (for recent reviews
see: Chacron et al., 2011; Fortune and Chacron, 2011; Marsat
et al., 2012). Further, electrocommunication signals are relatively
easy to describe, classify and simulate, facilitating quantification
and experimental manipulation. Weakly electric fish are therefore

an ideal system for examining how communication signals
influence sensory scenes, drive sensory system responses, and con-
sequently exert effects on conspecific behaviour.

Electric communication signals can be analyzed by measuring
properties of the complex electric field that results from the inter-
action of nearby fish. In A. leptorhynchus, the dipole-like electric
field (electric organ discharge, EOD) oscillates in a quasi-sinusoidal
fashion at frequencies from 700 to 1100 Hz (Zakon et al., 2002)
with males emitting at higher frequencies than females (Meyer
et al., 1987). When two fish with different EOD frequencies inter-
act, the combination of their signals results in an amplitude mod-
ulation called a ‘‘beat’’; the beat signal oscillates at the frequency
difference between the fish. Beat signals are a direct consequence
of social interactions and thus set the background of the electro-
sensory scene. In addition, through the individual EOD frequencies,
information about sex, relative size and individual identities are
represented in the beat signal. Physical movements result in slow
amplitude modulations of the beat that can encode, among other
things, aggressive approach and retreat behaviours (Yu et al.,
2012). Electrocommunication signals are produced in these social
contexts and thus must be detected amidst the resulting complex
background.

One type of electrocommunication signal, the chirp, involves
brief amplitude and frequency modulations of the EOD and thus
induces transient perturbations of the ongoing beat signal (Zupanc
and Maler, 1993). Chirp production in this species is sexually
dimorphic: males emit chirps at high rates during agonistic
encounters, while females do not. Chirp production is strongly
influenced by steroid hormones (e.g. testosterone; Dulka and
Maler, 1994; Dunlap, 2002) and neuromodulators (e.g. serotonin;
Maler and Ellis, 1987; Smith and Combs, 2008). Recent physiolog-
ical results suggest that encoding is influenced by serotonin as well
(Deemyad et al., 2011).

Behavioural studies have focused on chirping behaviours under
diverse conditions: from stimulating a restrained fish with signals
mimicking a conspecific (Zupanc and Maler, 1993; Bastian et al.,
2001; Engler and Zupanc, 2001) to observing freely-moving fish
during social interactions (Dunlap and Larkins-Ford, 2003; Hupé
and Lewis, 2008; Triefenbach and Zakon, 2008). The neural encod-
ing of chirps has also been studied at successive stages from
electroreceptor afferents (Benda et al., 2005, 2006), through the
hindbrain (Marsat et al., 2009; Marsat and Maler, 2010, 2011),
and up to the midbrain (Vonderschen and Chacron, 2011), albeit
in limited and simplified background contexts. Furthermore, the
neural circuitry that controls the production of these signals is well
known (Zupanc, 2002).

We here focus on how context-dependent properties of the beat
signal influence the neural encoding of chirps and correlate with
chirp production and aggression responses to chirp stimuli. We be-
gin with a description of the different beat perturbations that are
generated by the interplay of chirps with the different background
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beat parameters encountered during interactions. Following this,
we review how chirps are encoded at successive stages of the
electrosensory pathway in different background conditions. We
then integrate findings from behavioural studies to reveal how
chirp production varies under different social contexts. In the final
section, we incorporate principles from both neurophysiological
and behavioural studies, to explore relationships between commu-
nication signal encoding and behaviour.

2. Signals and backgrounds in electrocommunication

Weakly electric fish use active electroreception to navigate and
communicate under low light conditions (Zupanc et al., 2001). In
active electroreception, animals produce an electric field using an
electric organ (and this electric field is therefore called the electric
organ discharge, EOD) and infer, from changes of the EOD, informa-
tion about the location and identification of objects and conspecif-
ics in their vicinity (e.g. MacIver et al., 2001; Kelly et al., 2008).
However, perturbations result not only from objects and other fish,
but also from self-motion and other factors. All of these together
make up the electrosensory scene. The perturbed version of the
fish’s own field on its skin is called the electric image (Caputi
and Budelli, 2006) which is sensed via specialized receptors

distributed over the body surface (Carr et al., 1982). In the
following, we will describe the modulations caused by the
superposition of the electric fields of two interacting fish and by
the production of specific communication signals.

2.1. Chirps involve transient increases in EOD frequency

Some weakly electric fish, the pulse-type fish, emit EODs in dis-
crete pulses, while wave-type electric fish produce an EOD contin-
uously, with a potential that oscillates with a specific frequency
(the EOD frequency, EODf) that remains stable in time (exhibiting
a coefficient of variation as low as 2 � 10�4; Moortgat et al., 1998).
During social encounters, wave-type fish often modulate the fre-
quency as well as the amplitude of their field to communicate
(Hagedorn and Heiligenberg, 1985). Several different types of elec-
trocommunication signals have been identified, varying in the type
and pattern of frequency and amplitude modulations of the EOD
(Zakon et al., 2002; Zupanc, 2002). Communication signals in A.
leptorhynchus have been classified into two classes: chirps are tran-
sient and stereotyped EODf excursions over tens of milliseconds
(Zupanc et al., 2006), while rises are longer duration and more var-
iable modulations of EODf, typically lasting for hundreds of milli-
seconds to seconds (Hagedorn and Heiligenberg, 1985; Tallarovic
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Fig. 1. Beat modulations induced by chirps during representative encounters between different pairs of fish. (A) shows one example of a small chirp as measured in a chirp
chamber (for method descriptions see Fig. 3). When the instantaneous EOD frequency is plotted over time (upper panel), an increase from around 710 Hz to 810 Hz is seen.
The amplitude is almost unchanged during the chirp, as seen when the EOD waveform is plotted over time (lower panel). (B–F) In each scenario, one fish emits the chirp
shown in Fig. 1A, but under different simulated background conditions. The sketches of the fish demonstrate the encounter, with the chirping fish shown in red and the size of
each fish reflecting its EODf (a higher EODf is indicated by a bigger size). (B) shows the encounter with a beat frequency of 20 Hz and a contrast of about 40%; (C) with a beat
frequency of 100 Hz and 40% contrast; (D) shows the same encounter as in B but with a contrast of 20%; (E) shows an encounter similar to B but at a beat phase shifted 180�;
(F) as in C, but the fish with the smaller EODf emits a chirp (the fish sketches are modified from Hagedorn and Heiligenberg 1985).
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and Zakon, 2002). Here, we focus on chirps because chirp encoding
in the nervous system, in contrast to that of rises, has been the
subject of a number of physiological studies and the behaviour is
more stereotyped and is easier to quantify.

Several types of chirps have been distinguished (Zupanc et al.,
2006, Types 1–6). Under most experimental conditions, the most
commonly produced type is the ‘‘small chirp’’ (Type 2 chirp), with
males producing these signals at high rates during agonistic inter-
actions (e.g. Larimer and MacDonald, 1968; Hagedorn and Heili-
genberg, 1985; Hupé et al., 2008; Triefenbach and Zakon, 2008).
A small chirp is traditionally defined as a short duration (10–
20 ms) increase in EODf of about 60–150 Hz (Fig. 1A; Zupanc and
Maler, 1993; Engler and Zupanc, 2001). The only other chirp type
observed across a number of experimental contexts and also stud-
ied electrophysiologically, is the big chirp (Type 1 chirp), so called
because of the much larger increase in EODf (>350 Hz, Zupanc and
Maler, 1993; Engler et al., 2000; Cuddy et al., 2012). The big chirp is
accompanied by a marked decrease in EOD amplitude that is not
seen in small chirps. Although the behavioural relevance of chirps
remains unclear, researchers are beginning to gain insights about
the relationship between chirping behaviours and aggression using
a diversity of experimental approaches (see below).

2.2. The beat background and its social context

During the interaction of two wave-type fish, their electric
fields superimpose and summate at every point in space. Measured
across the skin of each fish, the combined signal consists of a car-
rier determined by its own EOD with a periodic amplitude modu-
lation (AM) at a frequency equal to the difference of the two
individual EODfs, the beat frequency (Fig. 1C and D). The beat fre-
quency has been suggested to reflect different aspects of the social
encounter (Bastian et al., 2001; Kolodziejski et al., 2007). Crucial to
this idea is that EODf correlates with identifying characteristics of
the emitting fish including sex and dominance status. Given that
EODfs are sexually dimorphic in A. leptorhynchus, slower beat fre-
quencies are more common in same-sex interactions. In addition,
EODf has been found to be correlated with size and dominance
(Hagedorn and Heiligenberg, 1985; Dunlap and Oliveri, 2002;
Triefenbach and Zakon, 2008; Fugère et al., 2011), suggesting that
the beat frequency also provides information about relative size
and dominance status.

The depth of an AM signal (its peak to trough distance) is re-
ferred to as its contrast. The contrast of the beat, as well as its
phase, are determined by the position and orientation of the two
fish with respect to each other (Kelly et al., 2008), with contrast
decreasing as the distance separating two fish increases (see
Fig. 1B and D). During social interactions, fish experience increases
and decreases in beat contrast due to their own movements and
those of interacting conspecifics. More aggressive interactions
involve more frequent and longer-lasting approach behaviours
that are associated with similar changes in contrast. The contrast
also depends on the amplitude of the EODs of both fish. At a given
distance, fish with larger EOD amplitudes produce larger contrasts
than do fish with lower amplitude EODs. The beat phase varies
spatially along the fish’s body in a manner that depends on their
orientation (i.e. whether fish are positioned parallel or perpendic-
ular to one another; Kelly et al., 2008; Heiligenberg, 1986).

2.3. Chirps modulate the beat background

Chirps involve brief changes in EOD frequency and thus directly
influence the amplitude, frequency and the phase of the underlying
beat (Benda et al., 2005; Zupanc and Maler, 1993). Even chirps of
the same duration having identical frequency and amplitude mod-
ulations can induce very different effects on the composite signal

received by the other fish depending on the specific beat parame-
ters (Fig. 1). Classically, a small chirp has been described in the
context of a slow beat and generated by the higher frequency fish
(Fig. 1B, for a beat frequency of 20 Hz), and in the example shown it
causes a fast amplitude upstroke. However, the amplitude modula-
tion looks different if the underlying beat is fast. The chirp still
accelerates the beat, but now does so over multiple beat cycles
(Fig. 1C, frequency difference of 100 Hz). Because the distance be-
tween the two fish influences the contrast, the AM caused by the
chirp is smaller when fish are farther apart (compare Fig. 1B and
D). However, the position of the chirping fish relative to the other
fish also plays a critical role: the beat phase is 180� out of phase be-
tween the right and left sides of the receiving fish, so the same
chirp will occur at two different phases on each side of the body
(Fig. 1B and E). In all these cases, the chirp is produced by the fish
with the higher EODf. A different picture emerges if the chirping
fish emits the lower EODf because under these conditions, a chirp
transiently decreases the beat frequency and decelerates the beat
(Fig. 1F). In summary, the beat signal is not simply a static back-
ground noise source over which a chirp must be detected, but
rather, it dynamically interacts with the chirp signal in a way that
depends on social context. Thus, reliably detecting and encoding
chirps presents a significant challenge for the electrosensory
system.

3. Electrosensory pathways and principles of chirp encoding

Central to the detection and discrimination of a chirp is its rep-
resentation in the nervous system. Chirp encoding has been stud-
ied in electroreceptor afferents called P-units (Benda et al., 2005,
2006; Hupé et al., 2008), and in primary electrosensory nuclei
called the electrosensory lateral line lobe, ELL (Marsat et al.,
2009; Marsat and Maler, 2010, 2012) and torus semicircularis, TS
(Vonderschen and Chacron, 2011). In this section, we summarize
how beat frequency, contrast and phase influence the processing
of chirps at these different stages.

3.1. Electrosensory pathways

As all Gymnotiform fish, A. leptorhynchus possesses two kinds of
electroreceptors on its skin that are activated by electric signals
with different properties. Ampullary receptors are tuned to the
low frequencies and DC signals associated with the passive electric
sense, while tuberous receptors are tuned to the EOD frequency
and comprise the active electric sense. In contrast to those in other
species (Eigenmannia, see Hopkins, 1974; Metzner and Heiligen-
berg, 1991; Naruse and Kawasaki, 1998), A. leptorhynchus chirps
do not contain DC components and are thus thought to be encoded
by tuberous receptors.

Each electroreceptor organ is made up of several electrorecep-
tor cells and innervated by afferents that make up the octavolater-
alis nerve (Zakon, 1986) projecting to the brain. Among the
tuberous receptor afferents, two subpopulations can be discrimi-
nated (Scheich et al., 1973): P-type electroreceptor afferents called
P-units respond by phase-locking to the EOD, firing an action
potential with a probability that depends on the amplitude of the
EOD received at the skin surface (Bullock, 1969; Nelson et al.,
1997), while T-type electroreceptor afferents fire in response to
every EOD cycle at a particular phase in the cycle. Electroreceptor
afferents project to the ELL of the hindbrain, the first stage in which
electrosensory information is processed in the central nervous
system (see Fig. 2A). Here, the axons of P-unit afferents trifurcate
to connect to pyramidal neurons in three different maps of the
electroreceptive body surface (Heiligenberg and Dye, 1982; Carr
et al., 1982), represented in regions called the centromedial
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segment (CMS), centrolateral segment (CLS) and lateral segment
(LS), respectively. A fourth segment, the medial segment (MS)
processes information carried by ampullary receptors and will
not be described in detail here. ELL pyramidal neurons can be fur-
ther categorized as superficial, intermediate and deep cells based
on their morphology and physiology (Bastian and Courtright,
1991; Harvey-Girard et al., 2007).

Pyramidal ELL neurons then project to higher processing areas
including the nucleus praeeminentialis (nP) and torus semicircularis
(TS, an inferior colliculus homologue, Fig. 2A; Metzner and Heiligen-
berg, 1991; Maler et al., 1991; Rose, 2004). nP provides direct and
indirect (via the eminentia granularis pars posterior, EGp) feedback

that is involved in reafference suppression and enhanced feature
detection (Berman and Maler, 1998; Bastian et al., 2004; Lewis
et al., 2007; Bol et al., 2011; Requarth and Sawtell, 2011). In the TS,
the pyramidal cells of the lateral segment converge together with
cells of other types and all four ELL maps (Maler et al., 1982).

The TS projects to the tectum, to the diencephalic nucleus elec-
trosensorius (nE), as well as back to nP (Maler et al., 1991; Rose,
2004). The sensorimotor nE integrates convergent electrosensory
information and sends projections to two prepacemaker nuclei:
the sublemniscal prepacemaker nucleus (sPPn) and the dience-
phalic prepacemaker nucleus (PPn) that are responsible for
controlling the frequency of the EOD set by the medullary
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Fig. 2. The electrosensory processing stages and their response to a chirp. (A) Connectivity between the different brain nuclei involved is indicated by arrows, with black
arrows depicting ascending projections and red arrows feedback. ELL, electrosensory lateral line lobe; EGp, eminentia granularis pars posterior; nP, nucleus praeeminentialis;
TS, torus semicircularis; nE, nucleus electrosensorius; SPPn, sublemniscal prepacemaker nucleus; Ppn, prepacemaker nucleus. (B) The same chirp stimulus was used to
stimulate cells of the different processing stages. It consisted of a chirp with a frequency excursion of 60 Hz and a beat frequency of 20 Hz. The responses of P-unit
electroreceptor afferents (C), pyramidal cells of the hindbrain electrosensory lateral line lobe (ELL; D) and of two types of neurons in the midbrain torus semicircularis (TS; the
dense and sparse coding cells in the left and right column, respectively) to this chirp stimulus are shown as raster plots. The data from p-units was recorded by H. Walz
following the methods described in Benda et al. (2005); data from ELL and TS were kindly provided by M. Chacron (for methods see Vonderschen and Chacron, 2011).
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pacemaker nucleus (Pn). Spatially specific stimulation of the nE by
glutamate iontophoresis results in EODf modulations (rises and
chirps) via distinct inputs to the PPn (Rose, 2004). The sPPn and
PPn project to the medullary pacemaker nucleus (Pn). The Pn
contains electrotonically-coupled pacemaker neurons, whose
endogenously oscillating membrane potential sets the EODf, and
relay cells which propagate these signals to the electric organ
(Smith and Zakon, 2000; Smith, 2006).

The most direct route that information can flow from sensory
input to motor output is from electroreceptors to ELL, TS, nE, pre-
pacemaker nuclei and then to the pacemaker nucleus. This direct
route is indeed thought to form the basis of the jamming avoidance
response (Heiligenberg, 1986; Rose, 2004), a behaviour that in-
volves the fish changing their EOD frequency when stimulated
with an EOD of similar frequency.

3.2. Chirps are encoded by electroreceptor afferents

To date, the afferent encoding of chirps has exclusively been
studied in the tuberous P-unit receptors. In response to a step in-
crease in EOD amplitude, P-units exhibit pronounced spike fre-
quency adaptation (Xu et al., 1996; Nelson et al., 1997; Chacron
et al., 2001; Benda et al., 2005). Spike-frequency adaptation in-
volves a strong peak in firing response to the onset of a constant
stimulus, followed by a decrease to a lower steady state response.
Thus, adaptation acts as a high-pass filter, reducing the response to
low stimulus frequencies, such as beat frequencies lower than
about 25 Hz (Xu et al., 1996; Nelson et al., 1997; Benda et al.,
2005). When produced by the higher frequency fish, chirps tran-
siently increase the frequency content of the beat signal such that
adaptation is transiently overcome. The result is a strong response
similar to those evoked by the onset of a constant stimulus – pro-
vided the chirp is emitted during a sufficiently slow beat back-
ground (see Fig. 2C). The increase in firing rate is accompanied
by an increase in P-unit population synchrony (Benda et al.,
2006). The degree of synchrony between P-units is maximal for
an intermediate range of beat frequencies (30–80 Hz) and decays
for higher beat frequencies. Small chirps at beats faster than
30 Hz accelerate the beat frequency into a regime in which the
synchrony between P-units decreases relative to their response
to the beat. Hence, while P-units are synchronized by chirps occur-
ring at beats slower than approx. 30 Hz, they are desynchronized
by the same chirps presented in conjunction with faster beats
(Hupé et al., 2008; Walz et al., 2010).

The increase of the EOD frequency associated with big chirps is
so large that they decrease the rate as well as the synchrony of P-
units regardless of the underlying beat frequency (although there
seems to be an increase in single unit reliability at beats <10 Hz,
Benda et al., 2006); this effect is enhanced by the concomitant de-
crease in EOD amplitude typical of big chirps. The enhanced re-
sponse to small chirps at slow beats, as well as the decrease in
response to small and big chirps at fast beats, are seen in measures
of the firing rate as well as in measures of synchronization (Benda
et al., 2006).

3.3. Chirp encoding in the electrosensory lateral line lobe

The next processing stage is the electrosensory lateral line lobe
(ELL). There are two main classes of pyramidal neurons in each seg-
ment of the ELL. E-cells receive direct input from P-units and are
excited when P-units increase their rate (i.e. during EOD amplitude
increases), while I-cells receive the P-unit input via disynaptic con-
nections from interneurons and are inhibited by an increase in
afferent rate (Maler, 1979; Shumway and Maler, 1989).

As a consequence of differential ion channel distributions (Ellis
et al., 2007; Mehaffey et al., 2008) as well as different connectivity

to the afferent neurons (Maler, 2009), E-cells of all three segments
exhibit very different response properties to P-unit inputs. From
the CMS to the LS, neurons are increasingly responsive to higher
frequency AMs (Krahe et al., 2008) and have larger receptive fields.
Both characteristics, high-pass frequency tuning and large recep-
tive fields, make neurons of the LS most responsive to communica-
tion signals (Marsat et al., 2009); compared to signals encountered
during navigation and hunting, communication signals are much
higher in frequency and more spatially broad. Not surprisingly,
the LS has been shown to be crucial for communication behaviour
(Metzner and Juranek, 1997).

Feedback to ELL from nP and EGp plays an important role in
chirp encoding. Superficial E-cells of the LS respond with a highly
reliable and synchronous burst of spikes to small chirps emitted
at slow beats (Fig. 2D; Marsat et al., 2009). The second spike of
the burst is not phase-locked to the EOD, indicating that it is not
caused by input from P-units. The bursting mechanism relies on
a depolarizing after potential (DAP) that stems from backpropagat-
ing action potentials from the dendrites (Turner et al., 2002; Mar-
sat and Maler, 2012). In these cells, the indirect feedback from EGp
provides a negative image of a low frequency beat (Bastian et al.,
2004). During an ongoing beat, feedback and input are antiphase,
but the chirp shifts the phase of the beat stimulus. When this oc-
curs, the feedback coincides with the DAP and a spike in response
to a chirp is more likely to be followed by a second one (Marsat and
Maler, 2012). Such bursts may facilitate chirp detection, similar to
many systems where bursts enhance signal detection by increasing
the signal-to-noise ratio (for a review, see Krahe and Gabbiani,
2004). The feedback, however, is only present in response to beats
of frequencies up to 20 Hz (Bol et al., 2011; Bastian et al., 2004).
The enhancement of the ELL response by feedback to small chirps
is therefore likely to be even more confined to low beat frequencies
than the P-unit response.

Big chirps are encoded by a strong increase in firing rate in I-
cells of all maps and types (superficial, intermediate and deep,
Marsat et al., 2009). This is expected since they cause a decrease
in the response of P-units and because, in contrast to E-cells, I-cells
of different maps and morphology do not show strong differences
in frequency tuning (Krahe et al., 2008).

3.4. Higher level processing of chirps

The main target area of the ELL for further information processing
is the TS. TS cells can be grouped into two categories according to
their baseline firing rate and selectivity to different chirp stimuli
(Vonderschen and Chacron, 2011; Chacron et al., 2011). One cate-
gory, the densely coding neurons, produce responses that resemble
those of ELL pyramidal cells (Fig. 2E, left), while cells in the other cat-
egory respond much more sparsely, i.e. with a higher selectivity
(Fig. 2E, right). Compared to the densely coding TS cells and ELL pyra-
midal cells, sparsely coding TS cells do not respond during the beat
and respond similarly to chirps with certain attributes, but not at
all to those with others (see also Fig. 2 in Vonderschen and Chacron,
2011). This population of TS cells can thus, in principle, detect the
presence of certain categories of chirps and differentiates between
them. How this selectivity arises is currently unknown. The synapses
between ELL pyramidal cells and TS neurons show pronounced
short-term synaptic plasticity that can act as a temporal filter pass-
ing low or high frequencies (Fortune and Rose, 2000, 2001, shown for
Eigenmannia). This synaptic plasticity has been shown to create
direction selectivity to moving electrosensory images in TS neurons
(Chacron et al., 2009; Chacron and Fortune, 2010). Whether synaptic
plasticity sharpens responses to chirps is unknown. Cells that
respond selectively to chirps are not direction selective and vice ver-
sa (Vonderschen and Chacron, 2011).
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3.5. Large contrasts enhance the encoding of beats and chirps

So far, we have primarily considered the effect of beat fre-
quency on chirp encoding. We will now turn to the influence of
beat phase and contrast. The encoding of beats and chirps at differ-
ent contrasts has been studied only in P-units. P-units respond lin-
early to increasing contrasts within a certain range (Gussin et al.,
2007). The responses of P-units to chirps and beats are greater
for larger contrasts, however, the relative response to chirps is
qualitatively independent of the contrast (Benda et al., 2006). At
higher contrasts, the responses of P-units become nonlinear (due
to rectification) suggesting that responses to chirps will change
(Savard et al., 2011). For example, at beat frequencies in which
the chirp elicits a stronger response than the underlying beat, the
response is cut off and both chirp and beat elicit responses that
are equally strong.

Heterogeneity in the characteristics of P-units (Gussin et al.,
2007) as well as in spatial properties of the signal (Kelly et al.,
2008), however, result in saturation of their responses at different
levels of beat contrast. Using whole-nerve recordings, Benda et al.
(2006) showed that the population response begins saturating at
contrasts around 20%. Whether or not saturation effects make
the detection of chirps more difficult for interacting A. leptorhyn-
chus remains to be tested with behavioural experiments.

3.6. The phase of the beat influences chirp encoding at low frequencies

The timing within the beat cycle at which a chirp is produced
strongly affects the shape of the AM at beat frequencies lower than
30 Hz (Fig. 1), causing either transient upstrokes or downstrokes.
In response to a chirp that causes an upstroke, a strong increase
in firing rate is seen in P-units, whereas in response to a chirp that
results in a downstroke, P-units cease firing. However, when chirps
occur at times between a trough and a peak, the resulting AM con-
tains parts of an upstroke as well as a downstroke and the response
is similar to the case of a pure upstroke (Benda et al., 2005).

One way to characterize whether a certain attribute of a chirp
significantly influences its encoding, is to analyze whether a re-
sponse is sufficient to differentiate between chirps of different val-
ues of this attribute. This is traditionally done in a discrimination
analysis (Green and Swets, 1974) and such an analysis has been
conducted using responses in the ELL and TS (Marsat and Maler,
2010; Vonderschen and Chacron, 2011). At both processing stages,
responses to the same chirp presented at different phases of the
beat are significantly different. The beat phase selectivity of ELL
and TS neurons to chirp stimuli suggests that there may be a
behavioural relevance of chirps produced at different times in
the beat phase cycle and that fish could therefore control chirp pro-
duction to influence perception by the other fish. If this were the
case, one would expect a nonuniform distribution of chirps over
the beat cycle (see behavioural section for further discussion).

As discussed earlier, the amplitude modulation of a chirp de-
pends on whether the emitting fish carries the higher or lower
EODf (the sign of the frequency difference, see Fig. 1E). The results
from electrophysiological studies about the encoding mechanisms
suggest that the responses of P-units, ELL and TS to chirps will also
depend on whether the chirping fish has the lower or higher EODf.
However, this remains to be shown as all electrophysiological
studies thus far have been conducted using positive difference
frequencies.

4. Behavioural responses to chirp stimuli

In the previous section we reviewed how electrophysiological
responses to chirps in electrosensory afferents and primary inte-

gration centers are influenced by parameters of the background
signal, including beat frequency, contrast, and beat phase. In this
section, we will review evidence from the literature that describes
how behavioural responses to chirps are influenced by these same
parameters. We will begin with a brief discussion of A. leptorhyn-
chus responses to different chirp stimuli characterized using a sim-
plified experimental design, addressing how chirp delivery
influences chirp production rates depending on stimulus parame-
ters (the beat frequency and contrast, and the rates and pattern
of chirps delivered). Following this, we will examine how chirping
and aggressive responses to conspecific chirps are influenced by
beat parameters under more natural contexts. We focus primarily
on small chirps, with some discussion of big chirps at the end of
the section. Throughout, we consider whether what is known
about sensory encoding is sufficient for explaining the relation-
ships between behavioural responses to chirps and the background
beat parameters.

4.1. Chirping in chirp chambers

Stimulus specific behavioural responses have been character-
ized using ‘‘chirp chamber’’ experiments, wherein the EOD modu-
lations produced by individual fish restrained in tubes are recorded
in response to electrical stimuli (sinusoidal or EOD mimics) of
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Fig. 3. Beat phase and chirp production. (A) Shows a histogram of all chirps over
beat phase recorded in 66 chirp chamber experiments with a stimulation of 4 Hz
above the fish’s own EODf. Fish were placed in a tube and stimulated with mimics
of conspecifics using two carbon electrodes, one on either side of its body. The fish’s
field was measured with silver chloride electrodes placed near the head and the tail
of the fish and chirps were detected as frequency increases of more than 10 Hz of
the EODf using custom made software. To exclude effects of an overall higher chirp
rate of individual fish, we normalized the histograms with the overall chirp rate for
each fish. Shown are the number of chirps in each phase bin (of 36�) divided by the
number of all emitted chirps of this fish, then summed over all experimental
conditions. For a more detailed description of chirp chamber experiments see
Bastian et al., 2001. (B) Shows the results from the same experiments under a
stimulation with 48 Hz above the fish EODf. (C) For each stimulation frequency we
calculated the vector strength of the histogram. The vector strength is a measure for
phase locking and ranges from 0 to 1. As we find values of 0.1 for all stimulation
frequencies, this shows that chirp production rates do not depend on beat phase.
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varying frequency and amplitude (Dulka et al., 1995; Zupanc and
Maler, 1993; Engler and Zupanc, 2001). In these conditions, chirp
production rates of males decrease with increasing beat frequency
(Engler and Zupanc, 2001; Bastian et al., 2001) regardless of the
sign of the frequency difference. This selective behavioural re-
sponse corresponds well with the range of beat frequencies over
which chirps lead to the greatest increases in P-unit synchrony
and enhancement of chirp encoding in the ELL by feedback mech-
anisms. Beat contrast also influences the chirp production rates of
fish in chirp chambers. These experiments have suggested stimulus
intensities greater than 50 lV/cm are required to elicit chirp re-
sponses in A. leptorhynchus (Dunlap et al., 1998; Engler and Zupanc,
2001; Zupanc et al., 2006). Further, chirp production rates of males
increase with increasing stimulus intensity i.e. increasing contrast
(Zupanc and Maler, 1993; Engler and Zupanc, 2001).

Chirp chambers have also been used to characterize the occur-
rence of chirps relative to the phase of the beat. In chirp chamber
experiments using slow beat stimuli, chirps were produced at all
beat phases (Zupanc and Maler, 1993). To investigate whether
there might be effects of beat phase on chirp production at other
beat frequencies, we performed chirp chamber experiments using
various stimulation frequencies (Fig. 3). The data shows that chirps
were produced at equal rates across all beat phases (Fig. 3C). Thus,
fish will likely be exposed to chirps at all different beat phases.
Marsat and Maler (2010) suggested that the high variability in
the response of pyramidal cells, resulting from chirps at different
beat phases, hinders the fish’s ability to distinguish between chirps
of different parameters. However, fish often emit chirps in bursts
and the electric image evoked by the chirp is heterogeneous along
the body (Kelly et al., 2008). This means that receiver fish likely
have access to information about a chirp at multiple beat phases.
The absence of a pronounced relationship between chirp produc-
tion times and beat phase does not necessarily imply that beat
phase is not behaviourally relevant. Even if the fish might not con-
trol the production at certain beat phases, chirps emitted at certain
beat phases could still be represented better in the nervous system
and evoke stronger behavioural responses. In free-swimming con-
ditions, the exact phase of the beat at the skin of a fish is hard to
infer and no such analysis has been done so far. However, such
experiments could give important information in this direction.

Chirp chamber experiments have also been performed using
playback stimuli containing chirps. In these experiments, chirping
also decreases with increasing beat frequency similar to the re-
sponse to stimulus EODs that do not contain chirps (Engler and Zu-
panc, 2001; Triefenbach, 2005). Interestingly though, overall
chirping rates are lower when playbacks contain chirps, suggesting
that in these conditions, chirp reception inhibits the chirp produc-
tion rates of receiving fish (Dunlap and Larkins-Ford, 2003; Trie-
fenbach, 2005). Chirp production rates in response to playbacks
with chirps approximately 3 cm and 10 cm from the receiving fish
(resulting in field intensities of 0.5 mV/cm and 0.075 mV/cm,
respectively, near the receiving fish) also increase with higher
intensity stimuli (Dunlap and Larkins-Ford, 2003). However, as will
be discussed in the following section, these relationships are more
complicated during natural interactions.

4.2. Behavioural responses to chirps under more natural experimental
conditions

The stimuli presented and experimental conditions used in
chirp chamber experiments are similar to those used in electro-
physiological experiments, but both lack many features common
to natural interactions. While many of the observations found in
chirp chambers carry over to more natural experimental condi-
tions involving staged social interactions (Dunlap and Larkins-
Ford, 2003; Zupanc et al., 2006; Triefenbach and Zakon, 2008;

Hupé et al., 2008), there are also important differences, suggesting
that the complexity of chirping behaviours produced under
increasingly naturalistic conditions involves the integration of
multiple features of a social interaction. As described earlier, the
beat background during conspecific interactions can be quite com-
plex because fish constantly change position relative to one an-
other and produce rapid frequency and amplitude modulations in
varying temporal patterns.

4.2.1. Chirp response rates and patterns are influenced by the
experimental setting and behaviour of interacting conspecifics

When two fish confined to separate tubes interact electrically
(but not physically), the chirp production pattern of one fish is cor-
related with that of the other fish (Zupanc et al., 2006). Correlation
analyses of the instantaneous chirp rates of fish responding to
chirps suggest that following chirp reception there is a short-term
inhibition of chirping (�100–200 ms) which precedes a subse-
quent period of chirp rate enhancement (Zupanc et al., 2006;
Hupé and Lewis, 2008; Gama Salgado and Zupanc, 2011).

From a sensory coding perspective, this so-called ‘‘echo re-
sponse’’ implies that conspecific (or artificial) chirps are discrimi-
nated by the sensory system of a receiving individual amongst
various background beat modulations. It is thus a convenient mea-
sure of sensory detection at the behavioural level. Using EOD play-
backs, Gama Salgado and Zupanc (2011) found that 20 ms-long
chirp mimics with a frequency increase of just 1.2%, delivered with
an interchirp interval of 0.6s, were sufficient to induce a robust
echo response. This indicates that the typical frequency excursion
associated with small chirps (�50–100 Hz) is at least five times
greater than the behavioural threshold for chirp detection. These
results were characterized with beat background conditions opti-
mal for chirp encoding: in response to a signal delivered at a high
stimulus intensity (mimicking an inter-individual distance of
approximately 1–2 cm) with an EODf similar to that of the stimu-
lated fish (±10 Hz) (Gama Salgado and Zupanc, 2011).

The pattern of chirp stimuli also influences both the chirping
and aggressive responses of free-swimming fish. With EOD play-
backs containing chirps delivered in a random sequence, the chirp
and aggressive responses of male A. leptorhynchus decrease with
the number of chirps delivered (Hupé, 2012). In addition, fish echo
more often in response to higher randomly patterned stimulus
chirp rates, produce fewer chirps and are less aggressive towards
stimulus mimics (Hupé, 2012). This inhibition of chirping was
not observed in fish responding to playbacks during which chirps
are delivered interactively (stimulus chirps echo those produced
by the real fish with a latency of 200 ms). These observations sug-
gest that both the rate and pattern of chirps delivered differentially
influence behaviour and provide evidence that chirps received are
temporally integrated in electrosensory systems.

4.2.2. The influence of beat frequency
The relationship between chirp rate and beat frequency charac-

terized in chirp chamber studies persists across a number of
behavioural scenarios (Dunlap and Larkins-Ford, 2003; Zupanc
et al., 2006; Hupé et al., 2008). These results imply that chirps
are produced at high rates during stimulus conditions that repre-
sent more aggressive same-sex contexts. Given that EODf is related
to indicators of dominance among males, increased chirping and
physical escalation are expected between more closely matched
individuals (see Section 2, Fugère et al., 2011).

Along these lines, it follows that chirp rates should be asymmet-
rical with respect to the sign of the frequency difference. Contrary
to this prediction, results from chirp chamber studies reveal no sig-
nificant dependence of chirp rates on the sign of the frequency dif-
ference (Engler and Zupanc, 2001; Bastian et al., 2001). However,
contrary to the results from chirp chambers, there is growing evi-
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dence that under more natural experimental conditions, fish re-
spond in a way that depends on the sign of the frequency differ-
ence. During experiments in which one fish is restrained in the
center of a tank in an electrically transparent hammock, and an-
other fish swims freely around it, the chirp rates of the free-swim-
ming fish correlate significantly with the magnitude and the sign of
the frequency difference (Hupé, 2012), Additionally, playbacks of
lower frequency EODs without chirps elicit more approach behav-
iours from fish than do playbacks of an EOD of the same frequency
with chirps, or playbacks of higher frequency EODs regardless of
whether they contain chirps or not (Triefenbach, 2005).

Although small chirps are produced infrequently in response to
large beat frequencies, analysis of the chirp echo response has
demonstrated that free-swimming fish reciprocate chirps at rates
significantly greater than chance even during social pairings that
result in high beat frequencies (Hupé et al., 2008), evidence that
small chirps can be encoded across the range of all beat frequencies
encountered.

4.2.3. The effect of beat contrast
Chirp rates of pairs of males, each confined to a separate tube,

change significantly only when the tubes are positioned within
10 cm of one another, suggesting that the dependence of chirp pro-
duction on contrast characterized in chirp chambers extends to
dyadic interactions (Zupanc et al., 2006). When one or both of
two interacting fish are unrestrained, contrasts change dynami-
cally throughout the interaction and can provide fish with informa-
tion about conspecific motion and proximity (Yu et al., 2012).
During such free swimming interactions, there are significant cor-
relations between measures of aggression (associated with large
increases in contrast) and average chirping rates (Triefenbach
and Zakon, 2008; Hupé and Lewis, 2008).

To further characterize the temporal relationship between
chirping and contrast, we quantified, over time, the relationship
between chirp production and the distance separating a chirping
fish and the playback mimic to which it is responding (methods
described in Hupé, 2012). Fig. 4 shows the mean distances centered
at the time of chirp production (Fig. 4A), and centered at the time
of delivered chirps (Fig. 4B), in one free-swimming fish responding
to a low beat frequency EOD playback with chirps delivered to
echo those of the real fish, calculated for every minute of a
10 min trial (Hupé, 2012). At the onset of the trial (within the first
couple of minutes), the fish remains at a distance from the mimic,
and during this time chirps are produced when the distance sepa-

rating the fish and mimic is largest (when contrasts are small).
Further into the trial (from 3 to 4 min onward), the fish spends
more time in close proximity to the mimic and produces its chirps
during, or slightly following, times when mean distances are the
smallest (corresponding to large contrasts that occur during ap-
proach behaviours). This suggests that the timing of chirps pro-
duced does not depend only on the absolute contrast or on
specific types of contrast changes. Further, it is expected that the
distance relationships in Fig. 4A and B should be similar, because
chirps delivered echo those produced by the fish. However, the
relationship between chirp time and distance is more pronounced
for chirps produced than for chirps delivered, suggesting that chirp
production may be influenced more strongly by contrast than by
conspecific chirps. The strength of these relationships may also de-
pend on the experimental and social conditions under which the
behaviours are examined. Future studies should address how
aggressive behaviours are differentially patterned with chirping
under conditions that more closely represent natural interactions.

4.3. Big and small chirps: differential chirp production and associated
behaviours

Up to now we have exclusively considered the behavioural
responses to stimulation with EODs containing small chirps. How-
ever, behavioural results from playback experiments suggest that
the chirp types are differentially encoded. Playbacks with big
chirps increase the production of big chirps relative to small chirps,
and evoke approach behaviours in both male and female fish (Trie-
fenbach, 2005). This is consistent with the idea that big chirps are
an attractive signal, as predicted from observations of interacting
fish during reproductive contexts (Hagedorn and Heiligenberg,
1985), chirp chamber studies (Bastian et al., 2001; Engler and Zu-
panc, 2001), and freely interacting A. leptorhynchus (Hupé, 2012).

The relative production rates of small chirps and big chirps are
also influenced by the frequency and contrast of the beat back-
ground, chirp stimulus parameters, as well as experimental setting
(Triefenbach, 2005; Hupé and Lewis, 2008). Under a variety of con-
ditions, males preferentially produce big chirps in response to
stimulation with high beat frequencies (Engler and Zupanc, 2001;
Bastian et al., 2001). High beat frequencies occur during opposite
sex-interactions and during interactions between same sex indi-
viduals with large differences in EODf, providing additional
evidence that big chirps function in attraction, reproduction
(Engler and Zupanc, 2001; Zakon et al., 2002) and/or to signal sub-

A B

Fig. 4. Chirp patterning over time. Chirps are patterned with contrast changes that result from physical movements in a manner that changes over time. The mean distance
separating a free-swimming fish and a playback mimic calculated over 20 s centered at the time of (A) chirp production and (B) chirp delivery. Distances are depicted in the
colour of each 100 ms bin centered at the time of chirp production or delivery, averaged over 1 min bins for every minute of a 10 min interactive chirp playback trial. The
colour bar denotes the linearly distributed representation of distances. Playback stimuli EODs were delivered through a mimic at a frequency slightly higher (+10 Hz) than
that of the real fish, with an amplitude matching that of the real fish, and chirps were delivered to echo those produced by the real fish with a latency of 200 ms (methods
described in Hupé, 2012).
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ordinance (Cuddy et al., 2012). This proposed function is further
supported by results from dyadic experiments in which less
aggressive males produce significantly more big chirps than do
more aggressive males (Hupé, 2012).

If two communication signals convey different meaning, they
must be discriminated in sensory systems. Signals that convey
opposite behavioural states (i.e. aggression and submission) often
comprise opposite extremes of some variable in signal space (i.e.
frequency, duration) presumably to reduce receiver error (Morton,
1977; Hurd et al., 1995; Triefenbach and Zakon, 2003). As de-
scribed in the previous sections, responses to big and small chirps
can be discriminated at all stages in the early electrosensory path-
way when they are emitted on a slow beat background. During fast
beats, both small and big chirps desynchronize P-unit electrore-
ceptors, so how these two signals are distinguished in subsequent
processing stages is not clear.

4.4. Behavioural responses to chirps depend on the interplay of
individual propensities and stimulus condition

Pronounced individual differences in chirp responses have been
observed in multiple contexts (Dunlap and Larkins-Ford, 2003;
Gama Salgado and Zupanc, 2011); and interestingly, the chirp rates
of fish to EOD playbacks with and without chirps are correlated
(Dunlap and Larkins-Ford, 2003). Some variation is explained by
body size, as larger males chirp more overall, maintain higher chirp
rates, and are less likely to decrease chirp rate in response to chirp
containing EOD playbacks compared to smaller males (Triefen-
bach, 2005). This is consistent with the idea that the chirping by
more dominant males is less affected by threatening stimuli than
that of less dominant (smaller, low EODf) males (Triefenbach and
Zakon, 2008; Hupé, 2012). These selective responses to different
chirp stimuli suggest that responses to chirps can be influenced
by the threat potential and the condition of the receiver (Triefen-
bach, 2005). Individual differences could at least in part be a con-
sequence of differential chirp encoding and processing by
electrosensory pathways.

A complex behavioural repertoire is revealed through a compar-
ison of behavioural responses to chirp stimuli presented under
different experimental conditions. The information contained in
the beat frequency and beat contrast influence both chirp encoding
and chirp production behaviours. While differences in chirp encod-
ing under specific beat background conditions may account for
some of this variation in behavioural response, it appears that
higher processing of conspecific chirps may be categorical (small
versus big chirp) and subject to modification by a number of
influences.

5. Integration of encoding and behaviour

Characterizations of chirping behaviours in male and female A.
leptorhynchus have revealed that chirp production patterns can be
very complex, influenced by a variety of internal and external
factors. As demonstrated, some of the complexity of chirping
behaviour may be explained by features of chirp encoding in early
sensory pathways. Many aspects of chirping behaviour, however,
might only be reflected in higher processing stages, downstream
from the primary integration centers that have been studied so far.

5.1. What encoding can tell us about behaviour

Describing the physical properties of the sensory environment
of an animal provides information about the nature of the stimuli
that activate the receptor cells of a certain modality. However, the
internal representation of these stimuli is ultimately responsible

for the information an animal has access to about the outside
world. Here we have examined how conspecific signals are
encoded when presented in conjunction with different background
parameters and discuss which aspects of encoding may influence
behavioural responses. Small chirps are particularly well-encoded
when they are emitted at slow beats (Benda et al., 2005; Marsat
et al., 2009; Marsat and Maler, 2010). Behavioural investigations
show, however, that they are detected by the fish even when
occurring on faster beats, during which chirps have an opposite ef-
fect on the response of receptor cells (Hupé et al., 2008). Although
the ELL responses have only been studied in a limited context, i.e. a
chirp on a 5 Hz beat (Marsat and Maler, 2010), and the question of
how chirps are encoded in conjunction with different beat frequen-
cies has not been analyzed in detail in the TS, the distinct responses
to a chirp at a slow and a fast beat suggest that chirp encoding at
low and high beat frequencies is routed through different streams.
In the ELL, for example, we would expect E cells to respond to small
chirps occurring at low beat frequencies (as shown by Marsat and
Maler, 2010) and I cells to be responsive to small chirps occurring
at high beat frequencies. Furthermore, the way small chirps are
encoded by P-units at high beat frequencies seems to be similar
to the encoding of big chirps at these frequencies.

Chirp encoding in the early electrosensory pathway suggests
two aspects that future behavioural investigations should consider.
First, since the effect or relevance of a chirp might depend on
whether they are emitted at low or high beat frequencies, a more
careful analysis of behavioural responses at different beat frequen-
cies is warranted. Second, the categorical distinction between
small and big chirps might depend on beat frequency and should
be examined further. If behavioural studies confirm a clear distinc-
tion between big and small chirps at high beat frequencies, the
encoding of big and small chirps at these frequencies might rely
on mechanisms and effects that have not been examined in phys-
iological studies so far.

The encoding principles investigated so far in the early electro-
sensory pathway can only provide hints to the overall representa-
tion of the stimulus. Processing at the neural population level
could lead to enhanced detection or discrimination in successive
stages. Even at the initial stage from P units to the ELL, there is a
high degree of convergence (by a factor of 1:1000 in LS; Maler,
2009); this is also most likely occurring between ELL and TS. Addi-
tionally, in the TS, the information encoded by P-units converges
with information about low frequencies and phase differences in
the EOD signal that is encoded by ampullary receptors and in
T-units, respectively (Metzner and Heiligenberg, 1991; Kawasaki
et al., 1988). Beats as well as the amplitude modulations caused
by chirps generate no low-frequency signals that might be de-
tected by the ampullary system. However, Dunlap et al. (2010)
demonstrated that A. leptorhynchus also chirps in response to the
low frequency signals preferred by ampullary receptors. This
behaviour suggests that information from the ampullary system
could be used to trigger chirp production. Chirp encoding in
T-units has not been studied to date, but could provide a comple-
mentary stream of information.

5.2. What behaviour can tell us about encoding

Studies of the encoding of sensory stimuli shed light onto the
mechanisms by which sensory information may be represented
in a nervous system. However, only behavioural studies can
ultimately show whether a signal is detected and differentiated
by the animal.

The complex temporal patterning observed between chirp pro-
duction and physical aggression, occurs over subsecond timescales
(Triefenbach and Zakon, 2008; Hupé et al., 2008; Gama Salgado
and Zupanc, 2011). This provides evidence that the electrosensory
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system is able to encode and respond to chirps occurring at rates as
high as 3–5 chirps per second (Hupé and Lewis, 2008; Gama
Salgado and Zupanc, 2011). In many systems, antiphonal ex-
changes such as the chirping echo response, mediate mutual
assessment of individual status. Coordinated signalling behaviours
are often exchanged during confrontations as a means to prevent
the costs associated with escalation (Triefenbach and Zakon,
2008) and necessitate that signal timing and quality are rapidly
and faithfully represented in sensory pathways.

An even faster control of chirp production time than observed in
behavioural experiments seems, however, not possible or neces-
sary. Although at early electrosensory stages the phase in the beat
at which a chirp occurs strongly influences chirp encoding, chirps
do not appear to be produced with any phase preference. This does
not necessarily imply that beat phase is irrelevant. Chirps emitted
at certain beat phases could still be represented better in the ner-
vous system and therefore potentially evoke stronger behavioural
responses. In free-swimming conditions, the exact phase of the
beat at the skin of a fish is hard to infer and no such analysis has
been done so far. However, experiments investigating the influence
of beat phase on the echo response, for example, could give impor-
tant information in this direction.

Under various experimental conditions, fish tend to produce
chirps in bursts (Zupanc et al., 2006; Hupé and Lewis, 2008). Bursts
of chirps might allow for neural responses to integrate over
successive chirps in higher processing stages, leading to a larger
signal-to-noise ratio. Up to the level of the TS, this is clearly not
the case. All time scales of the responses are still fast and chirps
separated by 400 ms will be processed as separate signals. Alterna-
tively, emitting chirps in bursts might simply increase the chance
of some chirps occurring at beat phases at which they are
perceived best.

The difference between chirping responses to playback chirps
and to those produced by two physically interacting fish suggests
that spatiotemporal electric field complexities resulting from
relative motion significantly influence chirping and aggressive re-
sponses to chirps (Dunlap and Larkins-Ford, 2003). Furthermore,
during dyadic interactions, chirps are produced preferentially
when fish are positioned in a head-to-tail orientation compared
to when oriented head-to-head (Triefenbach and Zakon, 2008). Fu-
ture studies should characterize the electric image modulations
produced during chirping in each of these orientations, and
electrosensory responses to these different stimuli.

In other systems, signal attributes such as maximal frequency
excursion and duration provide information about the identity
and attractiveness of conspecifics: individual identity in damselfish
(Myrberg and Riggio, 1985) and attractiveness in crickets (Hennig,
2003). This could also be the case for chirping in A. leptorhynchus
(Dulka et al., 1995). However, the great variability involved in
encoding one chirp at different beat phases at the level of the
ELL has led to the suggestion that the differentiation between
chirps of different attributes is impossible for the fish (Marsat
and Maler, 2010). To ultimately evaluate this possibility, the whole
parameter space of chirp patterning and beat backgrounds must be
taken into account. Also, other parameters such as EODf, beat
frequency and chirp production rates already convey redundant
information about identity and dominance status, suggesting that
specific chirp attributes may be less important. Evidence from
choice experiments in which females prefer males with higher
EODf (Bargeletti, Gogarten and Krahe, personal communication)
show that this information seems to be relevant in reproductive
contexts as does the observation that fish increase their EODf in
breeding conditions (Cuddy et al., 2012).

However, negative results from behavioural experiments do not
necessarily mean that a chirp has not been detected by a receiving
fish. Chirping is not a reflexive behaviour and whether or not a fish

chirps in response to a stimulus chirp or EOD does not only depend
on signal detectability but also on the receiver’s motivation and
behavioural strategy, as well as the experimental context and
various other factors. Carefully designed experiments are required
to tease out the relative effects of these different factors on behav-
ioural thresholds.

5.3. The complexity of chirp encoding and behaviour: future directions

The diversity and context specificity of behavioural responses to
chirps under more realistic experimental conditions demonstrate
that many factors are integrated to influence these responses. De-
spite the extensive description of chirp encoding in the first three
stages of electrosensory processing and the growing body of
behavioural characterizations, many open questions about chirp
encoding remain. There is a need for a description of electrosenso-
ry responses to chirping in higher brain areas as well as
behavioural and physiological experiments performed under
increasingly natural conditions.

Male and female A. leptorhynchus behave very differently to
chirp stimuli, with only males producing chirps (Dulka and Maler,
1994; Dulka et al., 1995). These behavioural differences are likely a
consequence of hormonal modulation of chirp production
pathways (Telgkamp et al., 2007; Smith and Combs, 2008). Recent
evidence suggests that encoding pathways are sensitive to neuro-
modulation by circulating hormone levels (Deemyad et al., 2011).
This in vitro study showed that serotonin increases the excitability
and the burst firing of the ELL E-cells that are responsible for
encoding chirps. The effects of neuromodulation on chirp encoding
is an exciting finding that should be investigated in vivo and in
more detail in future studies.

So far, physiological experiments have characterized responses
to stimuli containing chirps on a beat with a constant contrast, pre-
sented in conditions similar to those used in chirp chamber behav-
ioural experiments. Certain aspects of movement that are reflected
in contrast changes of the beat are correlated with chirping (Hupé,
2012). Whether or not contrast changes will influence chirp encod-
ing is another important question for future physiological or mod-
eling studies (see Yu et al., 2012), in particular at higher processing
stages. Future studies should also examine electrophysiological re-
sponses to stimulus chirps that incorporate elements of the spatio-
temporal electric field complexities generated during conspecific
interactions, and compare these to the responses to self-generated
chirps. Clearly, behavioural responses to chirps are influenced by
the context under which they are characterized, and stimulus
paradigms that represent more natural electric scenes should be
a priority.
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