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Zusammenfassung

Die Entdeckung von exosolaren Planeten in Binérsternen und insbesondere die in engen
(< 20AU) Systemen wie z. B. y Cephei (Campbell et al., 1988; Hatzes et al., 2003) oder
o Centauri (Dumusque et al., 2012) hat besondere Anspriiche an die Planetenentstehungs-
theorien gestellt. Die Gezeitenkrifte, welche auf die proto-planetare Scheibe aufgrund des
Binérsterns wirken, verdndern deren Struktur drastisch, indem sie massive Spiralarme entste-
hen und die Scheiben exzentrisch werden lassen. In Miiller and Kley (2012) untersuchen wir
dies in zwei-dimensionalen Modellen, welche die Aufheizung der Scheibe durch viskose Heizung
und p dV-Arbeit sowie die Abkiihlung der Scheibe durch radiative Abstrahlung mit beriick-
sichtigen. Dabei zeigen wir, dass die Scheiben weniger exzentrisch werden als in isothermen
Modellen, was die Entstehung von Planeten vereinfacht.

Diese Modellrechnungen berticksichtigen bisher nicht die Eigengravitation der Scheiben. Um
diese korrekt zu behandeln, ist es notig, die endliche Ausdehnung der Scheibe in vertikaler
Richtung zu berticksichtigen. Da dies in zwei-dimensionalen Berechnungen nicht direkt mog-
lich ist, wird das Gravitationspotential mit einem Smoothing-Parameter € so ausgeschmiert,
dass die Ergebnisse ndherungsweise dieselben sind. Ein &hnliches Problem tritt auf, wenn
man die Gravitationskréafte der Scheibe auf einen in der Scheibe eingebetteten Planeten un-
tersucht. In Miiller et al. (2012) analysieren wir dieses Problem. Wir vergleichen die realen
Krafte zwischen verschiedenen Punkten in der Scheibe bzw. von der Scheibe auf den Plane-
ten mit den gendherten Kréften, welche durch ein ausgeschmiertes Potenzial entstehen. Wir
ermitteln Werte fiir € in Abhéngigkeit des Abstandes zwischen Punkten in der Scheibe bzw.
des Abstandes zum Planeten, welche die bestmogliche Approximation geben.

Bisher wurden keine Planeten in ihrer Entstehungsphase beobachtet. Transitional Disks sind
proto-planetare Scheiben mit einem Loch in der Mitte, welches durch einen Planeten entstan-
den sein konnte. Daher sind die in letzter Zeit haufig beobachteten Transitional Disks ein
heifser Kandidat fiir Beobachtungen von entstehenden Planeten. Obwohl diese Transitional
Disks ein Loch in der Mitte haben, zeigen sie trotzdem Akkretion auf den Stern. Eine Mog-
lichkeit, Material durch das Loch auf den Stern zu bekommen, ist mit Hilfe eines Planeten.
Auferdem wird die Scheibe bei schwereren (> 3 Mjyp,) Planeten exzentrisch und somit kann
einfacher Material durch das Loch hindurch gelangen. In Miiller and Kley (2013) untersuchen
wir die Akkretion durch die Scheibe auf den Stern mit isothermen und radiativen Modellen.

Alle bisher erwahnten Simulationen wurden mit dem FARGO Code erstellt, welcher den FAR-
GO Algorithmus (Masset, 2000) zur Beschleunigung der Rechnungen verwendet. Die Anwend-
barkeit des Algorithmus auf unsere Problemstellungen ist von Dong et al. (2011) bezweifelt
worden. Die Autoren behaupten, dass sehr grofe Auflésungen und zusétzliche Zeitschrittkri-
terien notwendig wére, um korrekte Ergebnisse zu erzielen. In Kley et al. (2012) untersuchen
wir diese Bedenken und zeigen mit Hilfe von Vergleichen von fiinf verschiedenen Codes, dass
diese Bedenken gegenstandslos sind.

Fiir Planeten in Binérsternen stellt sich natiirlich auch die Frage nach Habitabilitéat. In Miiller
and Haghighipour (2014) erweitern wir Arbeiten von Kaltenegger and Haghighipour (2013)
und Haghighipour and Kaltenegger (2013) zur Habitabilitdt in Binérsternen auf Mehrsternsys-
teme. Wir zeigen, dass die Idee von einem inneren und dufseren Radius bei Mehrsternsystemen
keinen Sinn macht und zeigen eine alternative Definition auf. Aufserdem présentieren wir eine
interaktive Website zur Berechnung der habitablen Zone in Mehrsternsystemen.
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1. Introduction

1.1. Solar System

The Solar System is our home and therefore the first planetary system to be known. It played
an important role in the research of planet formation theories as it was the only planetary
system known until about twenty years ago.

1.1.1. History

In ancient times only the inner planets Mercury and Venus and the outer planets Mars, Jupiter
and Saturn have been known. They attracted attention as they were the only lights which
could be seen with the naked eye that were moving on the sky in relation to all the other stars.
Therefore ancient Greeks called them nh\dvntec dotépec (planetes asteres, "wandering stars")
from which today’s name planets came from. They played an important role in mythology and
many of the Roman and Greek gods were named after them. In the 2" millennium BC they
were identified and studied by Babylonian astronomers (Sachs, 1974), which e.g. recorded the
rise times of Venus in the Venus tablet of Ammisaduga from the 7 century BC. In the 6P
and 5" centuries BC the Pythagoreans in Greece developed a planetary theory in which the
Earth, the Moon, the Sun and the other to date known planets are rotating around a central
fire at the center of the Universe. This model was improved by Aristarchus of Samos (310 BC
— ca. 230 BC) when he identified the Sun as the central fire and based on his theory invented
the first heliocentric model.

By the 15¢ century BC the Greeks started to develop their own mathematical schemes to
predict the positions of the planets. In the 2°¢ century CE Claudius Ptolemy (ca. 90 CE —
ca. 168 CE) published the Madnuotixy Xovtolic (syntaxis mathematica) also known as the
Almagest where he describes the motions of the stars and planets and presents his geocentric
model which later has been known as the Ptolemaic system. In this geocentric model the
Earth sits at the center and is orbited by the seven planets: the Moon, Mercury, Venus,
the Sun, Mars, Jupiter and Saturn. The planets move on epicyclic orbits around the Earth
which means that they are assumed to move in a small circle called an epicycle around a
point which moves along larger circle called a deferent. As this model could explain the
sometimes retrograde motion of the planets it became the dominant astronomical conception
of the Universe for over 13 centuries. Figure 1.1 illustrates the model as seen in the 16"
century.

During the scientific revolution which started in the 16'"" century Nicolaus Copernicus (1473
— 1543) revived the heliocentric model in his De revolutionibus orbium coelestium (On the
Revolutions of the Heavenly Spheres) as the Copernican system. In his model the universe
consisted of eight spheres (see Figure 1.2). In the center was the Sun followed by the planets



1. Introduction

Figure 1.1.: Figura dos corpos celestes (Figure of the heavenly bodies) — Illuminated illus-
tration of the Ptolemaic geocentric conception of the Universe by Portuguese
cosmographer and cartographer Bartolomeu Velho (7-1568). From his work Cos-
mographia, 1568 (Bibilotéque nationale de France, Paris). Notice that the Moon
and the Sun are also listed as planets which move around the Earth.
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Figure 1.2.: Page 9 verso of De revolutionibus orbium coelestium (On the Revolutions of the
Heavenly Spheres) from Nicolaus Copernicus illustrating his heliocentric system.



1. Introduction

which were in order Mercury, Venus, Earth, Mars, Jupiter and Saturn. The Sun and the
Moon are no longer planets, whereas the Earth has become one. The outermost sphere
consisted of the fixed stars. The Moon has its own sphere around the Earth. As Copernicus
believed that the planets are god-made their orbits must be perfect circles and therefore he still
needed Ptolemy’s epicircles to describe the motion of the planets. Tycho Brahe (1546 — 1601)
disagreed with the idea of a moving Earth for religious and physical reasons and developed
a geo-heliocentric system. In the Tychonic system, the five planets (Mercury, Venus, Mars,
Jupiter and Saturn) orbit the sun, while the Sun and the Moon orbit around the Earth.

In 1609 Johannes Kepler (1571 — 1630) published his book Astronomia nova (A New Astron-
omy) were he presented his two laws of planetary motion. The first law states that the orbit of
every planet is an ellipse with the Sun at one of the two foci. The second law states that a line
joining a planet and the Sun sweeps out equal areas during equal intervals of time. He derived
them from analysis of Mars’ orbit which had been documented by Tycho Brahe. With the
invention of the telescope, Galileo Galilei (1564 — 1642) discovered in 1610 the four Galilean
moons of Jupiter. As they were moving very fast on a straight line very close to Jupiter
and disappeared from time to time, he concluded that they were behind Jupiter and orbited
him. Later that year he discovered a full set of phases of Venus which were predicted by the
heliocentric system and could not be explained with the geocentric system which therefore
became indefensible.

Giordano Bruno (1548 — 1600) went one step further and suggested that all the stars on the
sky were suns like your own which also habit other planets. He saw the Solar System as a
prototype which existed infinitely many times in the universe. He agreed with Copernicus that
the Earth and the outer planets were moving around the Sun, but the Sun itself was not the
center of the universe for him and the motion of the stars over the sky was an illusion created
by the rotation of the Earth around its axis. Over two hundred years later in 1838 Friedrich
Bessel (1784 — 1846) measured the parallax of the star 61 Cygni to be 0.314 arcseconds. This
was a prove that the Earth itself must be moving and therefore the geocentric models cannot
be true. The fact that the Sun itself is a star among many others became more and more
obvious in the following decades.

With better optical instruments additional planets and moons were discovered in the Solar
System. In 1781 William Herschel (1738 — 1822) discovered Uranus and in 1846 Neptune
was discovered by Johann Galle (1812 — 1910) by looking at positions predicted by Urbain
Le Verrier (1811 — 1877). Finally in 1930 Pluto was discovered by Clyde Tombaugh (1906 —
1997). In 2005 Eris was discovered and with a mass slightly larger than Pluto it would have
been the tenth planet of the Solar System. This led to a discussion of the planetary status of
Pluto and in 2006 Pluto was demoted to be a dwarf planet by the International Astronomical

Union (TAU).

1.1.2. Present status

In 2006 the IAU released a definition of the term planet as (International Astronomical Union,
2006):

"A ’planet’ is defined as a celestial body that (a) is in orbit around the Sun, (b)
has sufficient mass for its self-gravity to overcome rigid body forces so that it

10



1.2. Extrasolar planets

Table 1.1.: Properties and orbital parameters of the planets in the Solar System.

Quantity Mass Radius Semi-major axis Eccentricity Inclination
Unit M;up Tiup AU ©
Mercury | 0.000174 0.0349 0.387 0.206 7.0
Venus 0.00256  0.0866 0.723 0.00676 3.4
Earth 0.00315  0.0911 1.00 0.0167 0.00054
Mars 0.000339  0.0485 1.53 0.0933 1.9
Jupiter 1.00 1.00 5.20 0.0485 1.3
Saturn 0.299 0.832 9.54 0.0555 2.5
Uranus 0.0457 0.362 19.2 0.0469 0.77
Neptune | 0.0540 0.352 30.1 0.00895 1.8

assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the
neighborhood around its orbit."

By this definition the Solar System consists of the Sun and eight planets. These are, in order
from the innermost to the outermost: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus
and Neptune. The four inner planets are primarily composed of rock and metal and are called
terrestrial planets. The four outer planets are substantially more massive (see Table 1.1).
Being primarily composed of Hydrogen and Helium Jupiter and Saturn are therefore called
gas giants. Uranus and Neptune however are composed of gases with higher melting points
called ices and are therefore being called ice giants.

All eight planets are more or less coplanar but there is a small misalignment of about 7°
between the mean orbital plane of the planets and the Sun’s equator. The planets have
rather low eccentricities with the exception of Mercury having the largest one of about 0.2
(see Table 1.1). Their semi-major axis ranges from 0.38 AU for Mercury being the inner
most planet up to 30.1 AU for Neptune being the outermost planet. Only Earth lies within
the habitable zone which ranges from 0.97 — 1.67 AU (Kopparapu, 2013) and is defined by
property that a rocky planet with a CO2/H0 /Ny atmosphere within the habitable zone could
maintain liquid water. The mass of all the planets is only about 0.13 % of the total Solar
System and therefore most of the mass is concentrated in the Sun. The angular momentum
of the Solar System is, in contrast to the mass, mainly in the orbital angular momentum of
the planets.

Besides the eight planets there are several dwarf planets like Ceres, Eris, Haumea and Make-
make. Except for Ceres all dwarf planets are trans-Neptunian objects meaning that they have
larger orbits than Neptune. Ceres orbits the Sun on an orbit between Mars and Jupiter within
the asteroid belt.

1.2. Extrasolar planets

The planets of the Solar System have been the only known planets for centuries. In 1992
the first extrasolar planet was discovered around the millisecond pulsar PSR B1257+12 (Wol-

11



1. Introduction

szczan and Frail, 1992). Only three years later, "a Jupiter-mass companion to a solar-type
star" (Mayor and Queloz, 1995) was found and triggered a gold rush for the discovery of
more extrasolar planets. Since then, more than 973 extrasolar planets have been discovered
by ground-based observation and by two planet-hunter missions COROT and Kepler from
space. So planets around stars are nothing special anymore for the Solar System as already
predicted by Giordano Bruno.

With hundreds of discoveries of extrasolar planets the International Astronomical Union con-
vened a Working Group on Extrasolar planets. In 2001 it released a working definition of
an extrasolar planet and refined it in 2003. The current working definition defines extrasolar
planets as (Working Group on Extrasolar Planets, 2003):

"1) Objects with true masses below the limiting mass for thermonuclear fusion
of deuterium (currently calculated to be 13 Jupiter masses for objects of solar
metallicity) that orbit stars or stellar remnants are 'planets’ (no matter how they
formed). The minimum mass/size required for an extrasolar object to be consid-
ered a planet should be the same as that used in our Solar System.

2) Substellar objects with true masses above the limiting mass for thermonuclear
fusion of deuterium are ’brown dwarfs’, no matter how they formed nor where
they are located.

3) Free-floating objects in young star clusters with masses below the limiting mass
for thermonuclear fusion of deuterium are not ’planets’, but are ’sub-brown dwarfs’
(or whatever name is most appropriate)."

1.2.1. Observational methods

Most of the extrasolar planets discovered so far cannot be directly seen through an optical
telescope. The have been discovered by different indirect methods.

Radial velocity

The vast majority of the extrasolar planets discovered have been detected by the radial velocity
method. When a star is orbited by one or multiple planets all objects move around the center
of mass of the system. If the orbits are not in a plane perpendicular to the line of sight to the
star, the star wobbles a little bit forward and backward with respect to the observer. This
results in periodic shifts of the spectral lines in the spectrum of the star due to the Doppler
effect, and dynamic models can be applied to the data to calculate the parameters of potential
planets. As the inclination of the orbital plane is usually not known, only a lower limit of the
planets masses can be calculated.

The velocities to be measured are very small. Jupiter forces the Sun to change the velocity by
about 12.4ms~! over a period of 12 years and the Earth only by about 9cms™! over a period
of 1 year. Therefore long-term observations with very high spectral resolution are needed. As
the Doppler spectroscopy requires high signal-to-noise ratios to achieve the high precisions
needed, it is only used for nearby stars within a few hundred light years from Earth. It favors

12



1.2. Extrasolar planets

massive planets which are close to low-mass stars as these systems have the highest radial
velocities.

The first extrasolar planet discovered around a solar-type star was a massive planet (M sini =
0.47 M;y,p) with an orbital period of 4.23 days. For this discovery the ELODIE spectrograph
from the Haute-Provence Observatory in France was used, which had an precision of 13ms™!.
The latest instrument installed for the HARPS (the High Accuracy Radial velocity Planet
Searcher) at the ESO La Sille telescope in Chile has an precision of 2.5cms™! (Wilken et al.,
2012). With this precision it now should be possible to detect Earth-like planets around

solar-type stars.

Transits and transit timing variations

Transit detections build upon the effect that a planet transiting in front of a star dims the
light received by an observer. This can be also seen for Mercury or Venus transiting the Sun.
Stars with one or more transiting planets show periodic dips in their light curve (light intensity
as a function of time). From the shape, length and periodicity of the dips in the light curve
the planet’s radius and orbital period can be calculated. In combination with spectroscopy
even the atmosphere of the planet can be analyzed. The problem with this method is that
it can only be used if the planet’s orbital plane is aligned with the observer’s vantage point.
The probability for this is the ratio of the radius of the star to the radius of the orbit. For
example a planet at a distance of 1 AU orbiting around a sun-sized star has a probability of
only 0.46 %. With this method it is possible to detect planets around stars that are located
thousand light years away, but as the false-detection is rather high, follow-up confirmation
is needed which is usually only possible for nearer objects. This method favors large planets
close to the star as they have the largest intensity decrease and can be observed more easily
for multiple orbits.

If a planetary system has more than one planet, but not all of them are transiting, they still
might be detectable due to transit timing variations. If a planetary system hosts more than
one planet then transits are not periodic within one orbit, but change a little bit for each
orbit due to the gravitational effect of the other planets. This can be also measured and used
for dynamical models to calculate the parameters of additional unseen planets.

The COROT and Kepler space missions and many ground-bases projects have detected hun-
dreds of planets using the transit and transit timing variation method.

Imaging

As planets are usually extremely faint light sources it is difficult to see them directly. It is
only possible for planets that have a large separation to their host star and works best if they
are hot enough to emit infrared radiation. To see the planets, the star itself has to be blocked
using a coronagraph. This method works for all orientation of the planetary orbits in respect
to the observer’s vantage point. The orbital parameters of planets can be obtained easily with
multiple observations, but statements about their size or mass are not possible and require
additional observation through other methods. As the planets are spatially resolved they can
be observed with spectroscopy as well to investigate the planet’s atmosphere.

13



1. Introduction

Figure 1.3.: Image of HR 8799 and its four planets in .’ band at 3.776 pm. The planets are
located at 68, 38, 24 and 14.5 AU. Image with permission from Ben Zuckerman.

The most impressive image of extrasolar planets (see Figure 1.3) is that of HR 8799, a star
which is 39.4 parsec away and located in the Pegasus constellation. Marois et al. (2008) found
three planets orbiting HR 8799 with semi-major axes of 68, 38 and 24 AU. Two years later a
fourth planet at 14.5 AU was discovered (Marois et al., 2010).

Gravitational microlensing

Gravitational microlensing is an effect of general relativity. If two stars are almost exactly
aligned along the line of sight, the gravitational field of the nearer star acts like a lens,
magnifying the light of the distant background star. Usually these magnifications occur as
short events lasting only for a few days or weeks, when Earth and the two stars are in the
perfect position. If the nearer star has a planet, its gravitational field disturbs the signal like
a scratch in an optical lens. This effect can be measured to detect the planet. Gravitational
microlensing events have been observed over a thousand times during the last decade and over
twenty planets have been detected so far. The disadvantage of this method is that the stars
have to be observed for very long times until they might get into right constellation and that
the detections are not reproducible as the same constellation will never appear again. And
as the planets are usually kiloparsecs away it is impossible to confirm the planets using the
other methods. Only the mass of the planet and its current separation to the host star can

14



1.2. Extrasolar planets

be calculated.

Pulsar timing

A pulsar is a highly magnetized, rotating neutron star. It emits radio waves which can be only
seen if the beam of emission is pointing towards Earth. As it rotates extremely regularly the
light beam can be seen as a periodic light curve. If a pulsar has one or more planets it orbits
around the center of mass of the planetary system. This results in a small timing variation of
the periodicity of the light curve. This method can detect planets of masses down to a tenth
of an Earth mass and also planets that are very far away from the pulsar. The first extrasolar
planet detected was around the pulsar PSR 1257+12 (Wolszczan and Frail, 1992).

1.2.2. Diversity

One of the first questions that arose when the first extrasolar planets were discovered was
how the other planetary systems compare to our own Solar System. Although there is still
an observational bias in the planet discoveries due to the detection methods, it became very
clear that the Solar System is not a prototype for all extrasolar planetary systems.

Figure 1.4 shows all the to date discovered extrasolar planets by their mass and semi-major
axis in comparison to the planets of the Solar System. The very massive planets with masses
up to tens of Jupiter masses very nearby the star at separation less than 0.1 AU, the so-called
Hot Jupiters, are completely absent in the Solar System, but can be found very often. This
is due to observational bias and correcting for it they account for about 1% of all planets.
We also find many lower mass planets with masses between one to several Earth masses, the
so-called Super Earths, with very small orbits. It is not surprising to find many planets with
small orbits as due to their short orbital period it is easier to detect them. But nevertheless
it stands out that we do not have planets with this small separation within the Solar System.

Earth-mass planets at distance around 1 AU seem to be lacking in other planetary systems,
but this can also be due to observational bias as it is difficult to detect low-mass planets.

There are also planets with much larger separations (up to thousands of AU) than in the
Solar System.

The planets in the solar systems have, except for Mercury, more or less circular orbits with
eccentricities of less than 0.09 (see Table 1.1). Figure 1.5 shows the eccentricity distribution
of the extrasolar planets. It is clearly visible that eccentric orbits are a common phenomenon.
As eccentric orbits occur for planets within single star systems as well, the binary companion
cannot be the sole cause for the eccentricity of the orbits.

The fact that many planets are part of a multistellar, typically a binary, system is also
highlighted in Figure 1.4. The planets in binary systems occur as two types. They either
have so-known s-type orbits, which means that they orbit a single star (circumprimary or
circumsecondary) or they have p-type orbits, which means that they orbit around both stars
around their center of mass (circumbinary). Most of the planets in binaries were found in
rather close binaries with separations of less than 20 AU such as y Cephei and o Centauri or
with separations of more than 100 AU.
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1.3. Formation of planets

1.3. Formation of planets

The first theories of planetary formation emerged in the 18" century in the context of cos-
mogony theories. Emmanuel Swedenborg (1688 — 1772) published his book Opera Philosophica
et Mineralia (Philosophical and Mineralogical Works) in 1734 where he proposed the nebular
hypothesis. It was further developed by Immanuel Kant (1724 — 1804) in his book Allgemeine
Naturgeschichte und Theorie des Himmels (Universal Natural History and Theory of Heaven)
from 1755. Pierre-Simon Laplace (1749 — 1827) independently proposed his version of the neb-
ular hypothesis in the last book of his series Ezposition du systeme du monde (The System
of the World) in 1796. Both versions of the theory were combined by Arthur Schopenhauer
(1788-1860) to the Kant-Laplace theory.

The idea of the nebular hypothesis is, that stars from in gaseous, massive, dense clouds
mainly composed of hydrogen. They are gravitationally unstable and therefore collapse to
smaller denser clumps which will become the stars. Due to conservation of angular momentum
not all matter can collapse into the central object and therefore a flat disc of material, the
protoplanetary or accretion disc, is left over. Within this disc the planets form due to different
mechanisms. These protoplanetary disks can be observed around young stars for the first few
million years of their evolution.

1.3.1. Core Accretion

The core accretion model (Mizuno, 1980; Pollack et al., 1996) is a bottom-up method for mak-
ing planets and the most commonly accepted theory of planet formation. Small microscopic
dust grains within the protoplanetary disk, settle to the midplane of the disk and start to
collide and coagulate to larger grains due to electrostatic forces. The evolution of the particles
within the disk is dominated by the gravitational field of the star and the drag forces from
the surrounding gas which is assumed to be turbulent. The gravitational interaction of the
particles itself is very weak and does not play an important role until the objects have grown
up to km-sized objects, known as planetesimals.

When the objects reach km-size their self-gravity starts to play an important role and they
start to become more roundish. With increasing size they also get less coupled to the gas
and their motion is governed by mutual gravitational interaction and gravitational interaction
with the star. Colliding planetesimals usually merge to a more massive planetesimal and some
small fragments, resulting in net-growth. This results in a run-away growth which ends with
a few massive planet cores as a left over. They have accumulated almost all planetesimals
during this growth phase as they changed their orbital parameters frequently due to close
encounters with other planetesimal.

Whereas in the inner regions these cores grow to terrestrial planets, they can accumulate much
more mass in the colder, outer regions of the disk, where the temperature is cold enough to
condense ices. When a core grows to several Earth masses it starts slowly to accrete the
surrounding gas. As it gets more massive more and more gas is accreted resulting again in
a run-away growth. This process is stopped when the disk has dissipated or the planet has
opened a large gap within in the disk.

However there are a number of problems with this scenario. First of all small protoplanets
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may undergo a rapid inward migration due to gas drag and therefore move into the central
star before they reach a certain size. Also the dust grains and larger particles need to have
the correct collision velocities to allow net-growth within the collisions. Last but not least
the core accretion model requires a few million years to form gas giants (Alibert et al., 2004)
which might be longer than the actual lifetimes of the protoplanetary disk.

1.3.2. Gravitational Instability

In contrast to the Core Accretion model in the Gravitational Instability scenario (Kuiper,
1951; Cameron, 1978; Boss, 1997) planets are formed top-down directly from the gaseous
disk. It builds on the fact that a gaseous disk can become unstable if it is massive and cool
enough (Toomre, 1964). In the unstable regime a gravitational instability can create local
and global spiral waves with mass and angular momentum transport, and can even lead the
disks to fragmentation into dense clumps. These dense clumps can become self-gravitational
precursors to gas giants.

As the disk heats up during the fragmentation it must be able to cool fast enough to allow
fragmentation (Gammie, 2001). This usually is true for the outer parts of the disk beyond
about 50 AU where the gas is optically thin and therefore can cool on timescales less then the
local period. In the inner parts the gas is optically thick and allows only inefficient cooling
thus preventing fragmentation.

Thus, the problem with this scenario is the presupposition of a massive enough disk and the
constraint of only forming planets in the outer disk, but these planets could migrate inwards
after their formation due to the interaction with the rest of the disk. In addition the planets
do not have a solid core by necessity.

1.3.3. Binary stars

Many of the stars known are actually binary or even multiple star systems. Mizar and Alcor,
the first known binary star system, was already discovered in the 17" century, and as of today
it is actually a six star system. Stars in binary star systems can of course also host planets.
Two types of configuration are distinguished:

Planets in so-called S-type orbits encircle only one component of a binary system. They are
also known as circumprimary or circumsecondary planets. In most cases the binary system
has a wide separation and the planet formation scenarios work the same way as in a single star
system. However there are a few system where the binary separation is rather small (< 25 AU)
like for example y Cephei. y Cephei is a binary system consisting of a 1.4 My subgiant star
and a 0.4 Mg red dwarf with a separation of 20 AU at an eccentricity of 0.4. The system
hosts an 1.6 Mj,p planet at 2 AU around the subgiant star. Planet formation is somewhat
more difficult in these kind of systems (Nelson, 2000) because the companion star disturbs
the protoplanetary disk and induces strong spiral arms due to its tidal forces. These spiral
arms heat up the disk and make gravitational collapse unlikely (Johnson and Gammie, 2003).
In addition the orbits of small particles within the protoplanetary disk are disturbed, which
results in higher relative velocities between particles and thus collisions between particles are
more likely disruptive (Paardekooper et al., 2008).
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Planets in so-called P-type orbits encircle both components of a binary star system. They
are also known as circumbinary planets. The stars in these systems usually have a small
separation and the protoplanetary disk embraces both stars. The motion of the two stars
only effects the very inner parts of the disk and thus planet formation scenarios can still work
for this case.

For the writing of this introduction the Astrophysics of Planet Formation book by Philip
J. Armitage and the English and German Wikipedia, especially the articles about planets,
extrasolar planets and the time line of discovery of Solar System planets and their moons,
have been used.
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2.1. S-type planets in binaries

As of today, planets have been found in over 60 multi-star systems. The multi-star systems
with planets range from binaries over triple star system such as Gliese 667 with 7 planets,
which of 3 are in the habitable zone (Anglada-Escudé et al., 2012; Delfosse et al., 2013), up
to even quadruple systems like KIC 4862625 (Schwamb et al., 2013).

Most of these systems are either widely separated with separations over 100 AU and have s-
type planets around a single star or have a very small separation with p-type planets around
two stars. There is evidence from observation for fewer planets in close binary systems which
separations less than 100 AU (Eggenberger et al., 2007). This is in agreement with theory
which expects that planet formation is much more challenging in close binary systems. Nev-
ertheless, there are several systems with a close binary separation such as y Cephei (Campbell
et al., 1988; Hatzes et al., 2003), a Centauri (Dumusque et al., 2012), Gliese 86 (Queloz et al.,
2000; Els et al., 2001), HD 41004 (Zucker et al., 2004) and HD 196885 (Correia et al., 2008).
Planet formation theories should also provide a scenario for those systems and therefore the
study of those systems is of particular importance.

Several effects change the planet formation process in these close binary star systems. The
most influential may be the truncation of the disk due to the tidal torques of the companion
star (Artymowicz and Lubow, 1994). The disk can only extend up to the truncation radius
which depends on the mass ratio of the stars, the eccentricity of the binary system and the
viscosity within the disk. The much smaller than usual disk results in several problems. The
total disk mass is smaller providing less material for planet formation and the timescales
within the disks are much smaller so that planet formation has much less time.

Additionally, the tidal forces excite eccentric modes in the disk (Whitehurst, 1988; Lubow,
1991; Kley et al., 2008). This effect has been recently studied in the case of planet formation
by Paardekooper et al. (2008); Kley and Nelson (2008), who showed that despite the high
eccentricity of a y Cephei-type binary the disk became eccentric with an average eccentricity
of about egisx &~ 0.12 and a coherent disk precession (Kley and Nelson, 2008). The disk eccen-
tricity increases the relative encounter velocities between planetesimals (Paardekooper et al.,
2008) making collisions more disruptive. This decreases the efficiency of planet formation
through planetesimal collisions.

The tidal forces also induce spiral arms within the protoplanetary disk. These are strong
shocks which can heat up the disk significantly. Previous simulations typically model the
disk isothermally, which means that they used a fixed (in time and space) radial temperature
distribution throughout the whole simulation. In Miiller and Kley (2012) we extended the
simulations with an energy equation. We accounted for heating through viscous dissipation
and pdV work and a local radiative cooling approach. The simulations were made for the
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v Cephei system which is known for over 25 years to host a protoplanet (Campbell et al., 1988;
Hatzes et al., 2003), and the o Centauri system which is our closest neighbor in the milky way.
We show that for protoplanetary disks with low viscosities (o < 0.01) the eccentricities are
much smaller (egisx &~ 0.04 — 0.06) than in the isothermal case, resulting in better conditions
for planet formation. Picogna and Marzari (2013) confirmed these smaller eccentricities in
their 3D simulations.

Another effect which most simulations to-date neglect is the self-gravity of the disk. This has
been analyzed by Marzari et al. (2009), who concluded that the inclusion of self-gravity leads
to disks with lower eccentricity on average. However many of the simulations done are made
in 2D and especially the inclusion of self-gravity is tricky as it also depends on the disk’s
vertical structure. To account for this, usually a Plummer form of the gravitational potential
is used, which runs as oc (72 —|—62)_1/ 2 where € is called the smoothing parameter. This is also
the case for the FARGO code (Masset, 2000) that we used with a self-gravity implementation
of Baruteau (2008) which expects an € = ¢(r). One needs to find a value or function for e
which produces the correct results. In Miiller et al. (2012) we extend work done by Huré
and Pierens (2009) for finding correct values of € for self-gravitating disks and also cover
the case of an embedded planet which is somewhat similar. We find that an ¢ of 1.2 H is
needed for best agreement with 3D simulations. This is a much higher value than most of the
simulations have used and therefore previous simulations with self-gravity overestimate the
effect of self-gravity.

2.2. Transitional disks

While many extrasolar planets have been detected to date, none have been observed during
their formation phase. As the early stages of planet formation take place in protoplanetary
disk around young stars one would expect that a forming planet shapes the structure of these
disks. Thus even a not directly detectable protoplanet could be revealed by its surrounding
disk structure. The most promising candidate for such findings are so-called transitional disks
which show an extended inner hole in the disk which can be seen directly or by a deficiency in
the IR excess in the spectral energy distribution (SED) of the star. Many of these transitional
disks have been discovered in the last years, e.g. by surveys of the Spitzer Space Telescope
(Muzerolle et al., 2010; Kim et al., 2013). Recent observations presented by Mayama et al.
(2012) show a kind of spiral arm connecting the outer disk through the cleared area with the
star. The authors claim that this indicates the probable existence of an unseen planet in the
inner region.

Transitional disks show nevertheless mass accretion onto the star even though the gap or the
inner hole may reduce this. The accretion rates M through the disks are, however, by an
order of magnitude smaller than that of a continuous disk (Kim et al., 2013). For smaller
mass planets (< Mjyp) the mass accretion rate across a gap has been analyzed by Lubow and
D’Angelo (2006). For larger mass planets (> 3 Mjyp) the disk become eccentric (Kley and
Dirksen, 2006) which makes it easier to push material through the gap. Both studies used
locally isothermal simulations. In Miiller and Kley (2013) we analyzed the mass accretion in
transitional disks using more realistic radiative models with stellar irradiation for a range of
different planet masses. We found that for the radiative models the disk is less eccentric than
in the isothermal cases and thus have lower mass accretion rates through the gap.
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For the simulations in Miiller and Kley (2013) we used the FARGO code which uses the FARGO
algorithm (Masset, 2000) to speed up calculations. The applicability of this algorithm for this
kind of problems has been questioned recently by Dong et al. (2011). Dong et al. claimed that
a very high spatial resolution of about 256 grid cells per scale height of the disk is needed. In
addition they suggest to include some gravity related timestep criterion which would result in
very small time steps. This would make the use of the FARGO algorithm almost useless. We
addressed those concerns in Kley et al. (2012). We adapted the setup by Dong et al. (2011)
and simulated it with five different codes. Comparing different resolutions with and without
the use of the FARGO algorithm we rebutted the statements by Dong et al. (2011). We also
showed that an additional timestep limitation is not needed.

2.3. Habitable zones in binary stars

The question of existence of extraterrestrial life occupied humanity for centuries. One pre-
requisite for extraterrestrial life is the existence of a planet-like object that can host life. The
definition of prerequisites for a planet to be able to host life is difficult as we could imagine
life that is different to the life forms known on earth. Nevertheless astronomers stick usually
to the definition that a planet is habitable if it is a rocky Earth-like planet that can maintain
liquid water on its surface. The holy grail of the planet searchers is to find an Earth-mass
planet around a Sun-like star in its habitable zone.

The extent of the habitable zone around a star depends on many factors. The two most
important are the stellar parameters of the star, such as luminosity, temperature and spectral
energy distribution, and the atmosphere of the planet. To calculate the extent of the habitable
zone usually a CO2/H20/Ng atmosphere similar to Earth is assumed (Kasting et al., 1993).
Kasting et al. used one-dimensional climate models for the planet atmosphere and calculated
the size of the annulus shaped habitable zone around the Sun from 0.95 to 1.37 AU. In these
models the inner edge of the habitable zone was determined by the loss of water and the
outer edge by the maximum greenhouse provided by a COs atmosphere. Kopparapu et al.
(2013a,b) improved the model and used more accurate line data and recalculated the size of
habitable zone around the Sun to range from 0.97 to 1.67 AU where the Earth lies at the inner
edge of the habitable zone and Mars with its semi-major axis of 1.524 AU still lies within the
habitable zone.

As planets have been found around binary and multiple stars, the question for habitability
applies there as well. The calculation of the habitable zones in binary systems has been
addressed recently by Kaltenegger and Haghighipour (2013) for planets on s-type orbits and
Haghighipour and Kaltenegger (2013) for planets on p-type orbits. The authors adapted
the one-dimensional climate models from Kopparapu et al. (2013a,b) and accounted for the
stellar flux from both stars to the planet to calculate the inner and outer radii of the habitable
zone. As both stars may have different spectral energy distributions they introduced a spectral
weight factor for each star to account for this. As both stars move with time the habitable zone
also changes with time. To illustrate this I rendered movies of the habitable zones changing
over time which are presented as snapshots in the paper by Haghighipour and Kaltenegger
(2013) or can be watched online at http://astro.twam.info/hz-ptype.

In Miiller and Haghighipour (2014) we extended this approach to multiple star systems with
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more than two stars. In binary systems with planets on arbitrary orbits or in multiple star
systems the habitable zone is not necessarily annulus shaped and therefore the definition of
an inner and outer radius of the habitable zone is obsolete. We presented an alternative way
to calculate the extent of the habitable zone in multiple star systems which also works in
single stars or binary systems as a special case. To simplify calculations of the habitable
zone we presented an interactive website at http://astro.twam.info/hz which calculates
the habitable zone of a given binary or multiple star system automatically.
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ABSTRACT

Context. As of today, over 50 planetary systems have been discovered in binary star systems, some of which have binary separations
that are smaller than 20 AU. In these systems the gravitational forces from the binary have a strong influence on the evolution of the
protoplanetary disk and hence the planet formation process.

Aims. We study the evolution of viscous and radiative circumstellar disks under the influence of a companion star. We focus on the
eccentric y Cephei and o Centauri system as examples and compare disk quantities such as disk eccentricity and precession rate to
previous isothermal simulations.

Methods. We performed two-dimensional hydrodynamical simulations of the binary star systems under the assumption of coplanarity
of the disk, host star and binary companion. We used the grid-based, staggered mesh code FARGO with an additional energy equation
to which we added radiative cooling based on opacity tables.

Results. The eccentric binary companion perturbs the disk around the primary star periodically. Upon passing periastron, spirals arms
are induced that wind from the outer disk towards the star. In isothermal simulations this results in disk eccentricities up to egisx ~ 0.2,
but in more realistic radiative models we obtain much smaller eccentricities of about egg ~ 0.04—0.06 with no real precession.
Models with varying viscosity and disk mass indicate that disks with less mass have lower temperatures and higher disk eccentricity.
Conclusions. The fairly high disk eccentricities, as indicated in previous isothermal disk simulations, implied a more difficult planet
formation in the y Cephei system caused by the enhanced collision velocities of planetesimals. We have shown that under more
realistic conditions with radiative cooling the disk becomes less eccentric and thus planet formation may be made easier. However, we
estimate that the viscosity in the disk has to very low, with @ < 0.001, because otherwise the disk’s lifetime will be too short to allow
planet formation to occur along the core instability scenario. We estimate that the periodic heating of the disk in eccentric binaries

will be observable in the mid-IR regime.

Key words. accretion, accretion disks — protoplanetary disks — hydrodynamics — radiative transfer — methods: numerical —

planets and satellites: formation

1. Introduction

Presently, about 50 planets are known to reside in binary stars
systems. In all systems with solar-type stars the planet orbits
one of the stars while the secondary star acts as a perturber,
i.e. these are in a so-called S-type configuration (Dvorak 1986).
Recently, planets seem to have been detected in evolved binary
star systems that are in a circumbinary (P-type) configuration
(e.g. Beuermann et al. 2011). The main observational character-
istic of the known planets in binary stars system have been sum-
marized by Eggenberger et al. (2004); Raghavan et al. (2006);
Desidera & Barbieri (2007). Most planets are in binaries with
very large separations with semi-major axis beyond 100 AU,
in particular when detected by direct imaging. Observationally,
there is evidence for fewer planets in binaries with a separation
of less than about 100 AU (Eggenberger et al. 2007), in accor-
dance with the expectation that binarity constitutes a challenge
to the planet formation process. Despite this, there are several
systems with a quite close binary separation such as y Cephei
(Campbell et al. 1988), Gliese 86 (Queloz et al. 2000; Els et al.
2001), HD 41004 (Zucker et al. 2004), and HD 196885 (Correia
et al. 2008).

As known from several theoretical studies, the presence of
the secondary renders the planet formation process more difficult
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than around single stars. Owing to the gravitational disturbance,
the protoplanetary disk is hotter and dynamically more excited
such that the coagulation and growth process of planetesimals
as well as the gravitational instability process in the early phase
of planet formation are hindered (Nelson 2000; Thébault et al.
2004, 2006). This is particularly true for the mentioned closer bi-
naries with an orbital separation of about 20 AU. Hence this the-
oretical challenge has put these tighter binaries into the focus of
studies on planet formation in binary stars (Quintana et al. 2007;
Paardekooper et al. 2008; Kley & Nelson 2008) and on their
dynamical stability (Dvorak et al. 2004; Haghighipour 2006).
The most famous example in this category is the y Cephei sys-
tem, which has been known for over 20 years to contain a pro-
toplanet (Campbell et al. 1988; Hatzes et al. 2003). In recent
years the orbital parameter of this system have been updated
(Neuhduser et al. 2007; Torres 2007) and the basic binary pa-
rameters are quoted in Table 2 (below) because y Cephei is our
standard model. At the end of the paper we will briefly discuss
the @ Centauri system as well.

Because planet formation occurs in disks, their dynamical
structure is of crucial importance in estimating the efficiency
of planetary growth processes. The prime effect of the sec-
ondary star is the truncation of the disk owing to tidal torques
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(Artymowicz & Lubow 1994). The truncation radius depends on
the mass ratio of the binary, its eccentricity and the viscosity in
the disk. An additional effect, namely the excitation of eccentric
modes in the disk, which has been noticed previously in close
binary stars (Whitehurst 1988; Lubow 1991; Kley et al. 2008),
has recently drawn attention in studies of planet harboring binary
stars as well (Paardekooper et al. 2008; Kley & Nelson 2008). In
these studies it was shown that despite the high eccentricity of a
v Cephei type binary the disk became eccentric with an average
eccentricity of about egisk ~ 0.12 and a coherent disk precession
(Kley & Nelson 2008). However, this leaves the question of nu-
merical effects (Paardekooper et al. 2008). Subsequently the in-
fluence of self-gravity of the disk has been analyzed by Marzari
et al. (2009a), who concluded that the inclusion of self-gravity
leads to disks with lower eccentricity on average.

Interestingly, there may be observational evidence for tidal
interactions between a companion on an eccentric orbit and a cir-
cumstellar disk around the primary star (van Boekel et al. 2010),
as inferred from variable brightness on longer timescales. The
possibility to detect an eccentric disk through spectral line ob-
servations has been analyzed recently by Regély et al. (2011).

In all simulations mentioned above, the disk has typically
been modeled using a fixed radial temperature distribution. This
simplifies the numerics such that no energy equation has to be
solved but of course it lacks physical reality. In this work we
will extend previous studies and consider a much improved treat-
ment of the energy equation. We will do so within the two-
dimensional, flat-disk approximation following D’Angelo et al.
(2003) and Kley & Crida (2008). Here, the viscous heating of
the disk and the radiative losses are taken into account. We will
study the structure and dynamical evolution of disks with differ-
ent masses and binary parameter, and will analyze the influence
of numerical aspects, in particular boundary conditions. Our first
target of interest will be the well-studied system y Cephei and we
will present results on the @ Centauri system subsequently.

2. Model setup

We assumed that the complete system of primary star, circum-
stellar disk and secondary star is coplanar. Consequently, in our
calculations we assumed a flat two-dimensional disk orbiting the
primary. The disk is modeled hydrodynamically, under the as-
sumption that the action of the turbulence can be described by a
standard viscous stress tensor.

2.1. Physics and equations

We used cylindrical coordinates (r, ¢, z) centered on the primary
star where the disk lies in the equatorial, z = O plane. Because
our model is two-dimensional (r, ¢), we solved the vertically in-
tegrated versions of the hydrodynamical equations. In this ap-
proximation the continuity equation is
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where v = (v,1,) = (v, Qr) is the velocity, and £ = [ pdz
the surface density. As indicated, in the following we will also
use v and rQ for the radial and orbital velocity, respectively. The
vertically integrated equation of radial motion is then
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Here p is the vertically integrated pressure, ¥ the gravitational
potential of both stars, and f, and f, describe the radial and az-
imuthal forces due to the disk viscosity (Masset 2002). Owing to
the motion of the primary star around the center of mass of the
binary, the coordinate system is non-inertial, and indirect terms
were included in the equations of motion to account for this.
These are included in the potential . The gravitational influ-
ence of the disk on the binary is neglected, and the disk in non-
self-gravitating. The vertically integrated energy equation reads
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where e is the internal energy density, Q. the heating source term
and Q- the cooling source term. To obtain a fully determined
system, we additionally used the ideal gas law
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where 7 is the temperature in the midplane of the disk, y the
adiabatic index and R the universal gas constant divided by
the mean molecular mass, which can be calculated by R =
kg /(umy), where kg is the Boltzmann constant, y the mean
molecular weight and m, the unified atomic mass unit.

The adiabatic sound speed ¢, within the disk is then given as
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where ¢;jso = 4/p/X is the isothermal sound speed. The vertical
pressure scale height H is then
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where Qg denotes the Keplerian angular velocity around the pri-
mary and & the aspect ratio.

For the heating term Q. we assumed that this is solely given
by viscous dissipation, and it then is given by

1 2vE
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where v is the kinematic viscosity and o denotes the viscous
stress tensor, to be written in polar coordinates. The viscosity v
is given by v = acgH (Shakura & Sunyaev 1973).

The cooling term Q- describes the radiative losses from the
lower and upper disk surface, which can be written as

T4
QO =20r—,
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where oy is the Stefan-Boltzmann constant and 7. an effective
optical depth. We followed the approach of Kley & Crida (2008)
and write, according to Hubeny (1990),

S S < B
eff = 4T + Tiin

8 4 (10)

The optical depth follows from 7 = f pkdz, that can be approxi-
mated by T ~ pkH where p and (p, T') are evaluated at the disk’s
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Table 1. Details of the various opacity regimes by type, showing the transition temperature and the constants o, @ and b.

# Regime ko [em*/g] a b Twin [K] Tnax [K]

1 Ice grains 2x10* 0 2 0 170

2 Sublimation of ice grains 2x10"% 0 -7 170 210

3 Dust grains 5x10% 0 1 210 4.6 x 1031
4 Sublimation of dust grains ~ 2x10* 2 -9 46x 103p1s 3000

5 Molecules 2x10% 23 3000 L1 x 10%%
6 Hydrogen scattering Ix107% 1 10 1Ix 10°p7F 3 x10%%
7 bound-free & free-free 15100 1 -2 3x 10%p7% —

Notes. All values are quoted in cgs units. See Lin & Papaloizou (1985) for more details.

midplane. The vertical density profile of a disk is approximately
given by a Gaussian and hence

S = V2rpH. an

To account for the drop of opacity with vertical height we intro-
duced a correction factor ¢ and write finally

C1

12

The constant ¢; = % is obtained by comparing two-dimensional

disk models with the fully three-dimensional calculations as pre-
sented in Kley et al. (2009). For the Rosseland mean opacity «
we adopted power-law dependencies on temperature and density
described by Lin & Papaloizou (1985) and Bell & Lin (1994),
where

Kk = kop®T" (13)
for various opacity regimes. Each opacity regime is described by
a minimum temperature 7y, and maximum temperature 7 gy,
which depends on the density p. Table 1 lists the constants ko,
a and b for each regime of the Lin & Papaloizou model. The
temperature and density are taken from the midplane, where the
density p is obtained from Eq. (11).

In our model we did not consider presently any radiation
transport within the disk plane. This contribution is potentially
important when strong gradients in temperature and density oc-
cur. In our situation this may be the case around the periastron
phase of the binary. However, in our simulations the observed
contrast did not seem strong enough and we did not expect a
large impact on the evolution. In subsequent studies we plan to
investigate this question further.

Because we are interested in the global evolution of the disk,
we measured the disk eccentricity eg;sx and the disk periastron
w@isk by first calculating for each grid cell the eccentricity vector
e, which is defined by

_uXj o r

e = M (14)

I’
where j = r X v is the specific angular momentum, G the grav-
itational constant, M the total mass and r the relative vector. In
our two-dimensional case the specific angular momentum only
has a component in z direction and therefore the eccentricity e
and the longitude of periastron @ follow as

e = le|= 1le§+e§ (15)
@ = atan2(e,, ey). (16)

The global disk eccentricity egisx and disk periastron @y;g is then
calculated by a mass-weighted average over the whole disk,

oo (27 o (27 -
Cdisk = [f f Yerdedr|x f f Zrdgodr] (17)
Tmin 0 Fmin 0
Fman (270 Fma (V2T -1
Wdisk = [f f Ywrdedr|x f f Erd(pdr} (18)
Tmin - YO Fmin - YO

where the integrals are evaluated by summation over all grid
cells.

2.2. Numerical considerations

The simulations were performed using the FARGO code (Masset
2000) with modifications from Baruteau (2008). The numeri-
cal method used in FARGO is a staggered mesh finite difference
method. It uses operator splitting and a first-order integrator to
update to velocities with the source terms (potential and pressure
gradients, viscous and centrifugal accelerations). The advective
terms are treated by a second-order upwind algorithm (van Leer
1977). To speed up calculations the code uses the FARGO algo-
rithm (Masset 2000). The algorithmic details of the FARGO code
have been described in Masset (2000). Because the FARGO code
is based on ZEUS-2D, the basic techniques are described in Stone
& Norman (1992).

The position of the secondary star is calculated by a fifth-
order Runge-Kutta algorithm. To smooth shocks we used the ar-
tificial viscosity described by Stone & Norman (1992) in our
simulations.

To test the code we checked that we obtained the same results
when using a corotating coordinate system. In addition, several
test calculations were made using the RH2D code (Kley 1989,
1999) to assure that we implemented everything correctly.

To avoid numerical problems, we implemented a surface
density floor of Zgeor = 1077 X Zo where X = X(1 AU)|;—o and a
temperature floor of T'oor = 3 K, which is about the temperature
of the cosmic background radiation. In addition to the physical
motivation for the floor, very low temperatures only occur in the
very outer parts of the disk (see e.g. Fig. 3) where there is only
very little mass that influences the dynamics of the disk. For the
same reason, these cells do not contribute to the mass weighted
average of the disk eccentricity. We performed test simulations
with a very low temperature floor and obtained identical results.

For the simulations we typically used two boundary condi-
tions. The open boundary condition allows outflow, but no inflow
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Fig. 1. Evolution of the disk within one binary period for the fully radiative standard model. The top labels in the four panels state the current
position of the binary (rin, @bin) in polar coordinates. In the first panel the binary companion is at the apastron and has less influence on the
disk. The L, point in this configuration is at about 17.5 AU and therefore far outside the computational domain (gray circles). In the second panel
the binary has reduced its distance to about 12.8 AU and the Roche lobe (green curve) has shrunken dramatically and is now entirely within the
computational domain. The third panel shows the disk with the binary at periastron. Some of the material in the disk is now outside the Roche lobe
and might be lost from the system. In the /ast panel the binary’s separation increases again, which makes the Roche lobe grow such that it engulfs
the disk entirely. The strong tidal forces near periastron induce spiral waves in the disk that will be damped out until the binary is at apastron.

of material. It is implemented as a zero-gradient outflow condi-
tion, which reads at R.,;, as

Xoj = Zij
ej = eij
vo; = v1j = 0if vp; > 0 and vy, otherwise,

where the index 0 denotes the first inner radial ghost cells, e.g.
Xy; is the first active cell in radial and the jth cell in azimuthal
direction. Alternatively, the reflecting boundary condition denies
exchange of quantities with the system as is implemented at R
as

Zoj = Xy
e = el
voj = 02
v = 0

and similarly at Ry,.«. For the outer radial boundary we always
used the standard outflow condition, while at R, we typically
used the reflecting condition. Below, we will investigate a possi-
ble influence of the numerical inner boundary condition.

3. The standard model

For our simulations we constructed a standard reference model
using the physical parameter of the y Cephei system. The first
entries of Table 2 list the orbital parameter of this standard model
based on the observations of Neuhéuser et al. (2007) and Torres
(2007).

The disk parameters where chosen to be in a typical range
for a possible disk around y Cephei A, with a total mass that
would allow for the formation of the observed planet of about
1.85 My, (Endl et al. 2011) in the system. Because the tidal
forces of the secondary limits the radial extent of the disk to
about 6 AU (Artymowicz & Lubow 1994) we chose a slightly
larger extent of the computational domain to 8 AU. This reduces
artificial boundary effects. The initial density distribution is lim-
ited to 6 AU. For the outer boundary condition we always used
the zero-gradient outflow boundary condition so that the material
that is accelerated during periastron may leave the system freely.
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Table 2. Parameters of the standard model. The top entries refer to the
fixed binary parameter.

Primary star mass (Mprimary) 1.4 Mg
Secondary star mass (Mecondary) 0.4 M,
Binary semi-major axis (a) 20AU
Binary eccentricity (epin) 0.4
Binary orbital period (Py;y) 66.6637 a
Disk mass (Mgis) 0.01 M,
Viscosity (@) 0.01
Adiabatic index (y) 7/5
Mean-molecular weight (u) 2.35
Initial density profile (X) ocr”!
Initial temperature profile (7') ocr!
Initial disk aspect ratio (H/r) 0.05
Grid (N, X N,) 256 x 574
Computational domain (Ryin — Rmax)  0.5-8 AU

Notes. The following give the disk properties, and then the initial disk
setup and the computational parameter are given.

The inner boundary in the standard model is typically reflect-
ing. The resolution of the logarithmic grid is trimmed to have
quadratic cells (rAg/Ar = 1).

After the initial setup at time zero, the models have to run
for several binary orbits until a quasistationary state has been
reached, see also Kley & Nelson (2008). This equilibration pro-
cess typically takes about 15 binary periods, i.e. 1000 years for
fully radiative models. Afterward the disk cycles through several
states during one orbital period of the binary displayed in Fig. 1.
When the binary is at apastron, the the disk is very axisymmetric,
but when the binary moves toward its periastron, it starts to per-
turb the disk. After the binary passes its periastron, two strong
tidal spiral arms develop within the disk and wind themselves
to the center of the disk. Before the binary reaches its apastron,
the disk spiral arms disappear. Periastron passages are also the
time when most of the disk mass is lost. During the first periapse
the disk looses 4.8% of its mass. This decreases during the next
ten periapsis passes to about 0.1%. At the end of the simulation
after 200 binary orbits, the disk mass has reduced to 0.0073 M,
which is a loss of about 20%.
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Fig. 2. Global mass-weighted disk eccentricity (fop) and disk periastron
(bottom), both sampled at the binary’s apastron, for isothermal simula-
tions of the standard model with different aspect ratios H/r. The disk
eccentricity needs quite a long time to reach a quasi-equilibrium and
settles at around 0.2 for an H/r of 0.05 and 0.055. High values of H/r
result in a lower disk eccentricity. Note that in the lower panel a short
time span is displayed for clarity.

3.1. Isothermal runs

To check our results and compare them with previous results, we
first performed simulations where we kept the initial temperature
stratification. In Fig. 2 we present results for constant H/r disks
where we did not solve the energy equation. Shown are results
for four different values of H/r, which were chosen according
to our fully radiative results (see below). The disk reaches an
equilibrium state after many (typically several 100) binary or-
bits, and the magnitude of the final average eccentricity depends
on the temperature of the disk. In particular, for the disks with
an H/r of about 0.05 the disk eccentricity settles at fairly high
values of about 0.2. This seems to be higher than in previous
simulations performed by Kley & Nelson (2008), but the param-
eters used for the y Cephei system, in particular the mass ratio
q = Mgecondary/Mprimary Of the host star and the binary companion
(their ¢ = 0.24 instead of our ¢ = 0.29), and the binary eccen-
tricity epin (epin = 0.36 instead of ey, = 0.4) are different. Using
the (older) system parameters as given by Kley et al., we were
able to reproduce the results nicely (e.g. their Fig. 4).

In these isothermal runs it is clear that the two thicker, hotter
disks have significantly lower mean eccentricities. The disk with
H/r = 0.065 does not even display a coherent disk precession

Table 3. Time average of the disk eccentricity (eq«) and precession
rate g for the four different isothermal models.

H/r {edisk) @aisk [P

0.05 | 0.19803 +0.00085 —0.0844 +0.0018
0.055 | 0.20200 +0.00076 ~ —0.1082 + 0.0017
0.06 | 0.15800 +0.00054 —0.1172 +0.0063
0.065 | 0.08004 +0.00031  —0.1334 + 0.0025

any more (Fig. 2, bottom panel). This drop of egisx With increas-
ing H/r is a consequence of the reduction of the eccentricity
growth rate for thicker disks. The growth rate of the disk eccen-
tricity is the lowest for the hottest disk with H/r = 0.065 and
increases with decreasing H/r (Fig. 2, top panel), a finding that
perfectly agrees with Kley et al. (2008). The hotter disks need
therefore much more time to reach an equilibrium state. As the
eccentric binary damps the growth of disk eccentricity by tidal
interaction (see below), the hotter disks settle into an equilibrium
state that has a lower egjg.

After about 400 binary periods, i.e. 25 000 years, the time av-
erage of the disk eccentricity (egisx) reaches a constant value and
the disks precess with a nearly constant precession rate @gjsk-
The values of (egix) and @wgisx for the four different values of
H/r are given in Table 3.

3.2. Fully radiative disks: structure and dynamics

Now we include all physics, in particular the viscous heating
and radiative cooling terms and solve the full set of equations as
stated above. For given binary parameter and disk physics (opac-
ity and viscosity) the dynamical state and structure of the disk is
completely determined once the disk mass has been specified.
The density and temperature distribution cannot be stated freely
and hence the power law given in Table 2 refers only to the initial
setup.

The radial disk structure is displayed in Fig. 3 where az-
imuthally averaged quantities of X, 7" and egisk are displayed. The
upper panel of Fig. 3 shows the surface density and temperature
distribution for five different timestamps. For the initial setup,
at t = Oyears, the surface density follows the initial 7~! profile
in the inner region (0.5 AU-5 AU) and is lowered to the density
floor in the outer region. The temperature follows the initial 7!
profile for the whole computational domain. After about 25 bi-
nary orbits a quasistationary state is reached where the profiles
show a bend at about » = 1.8 AU. This change in slope, which
occurs at a temperature of about 1000K in the profiles, is a re-
sult of a change in the opacity caused by the sublimation of dust
grains, which starts at about (p g~' cm?)"/!> x 4.6 x 10° K in the
opacity tables (see Table 1) given by Lin & Papaloizou (1985).
A second bend occurs at about r = 4.5 AU, which corresponds
to the truncation radius of the companion’s tidal forces. In the
bottom panel of Fig. 3 the corresponding radial distribution of
eccentricity is shown. The eccentricity is low in the inner parts
of the disk and increases with larger radii. The highest values
for e(r) occur in the outer region r > 5.5 AU, beyond the tidal
truncation radius. But these regions do not play an important dy-
namical role because there is only very little mass left owing to
the tidal forces of the secondary star. For example, the disk has
a mass-weighted mean overall disk eccentricity of egisk = 0.032
after 100 binary orbits even though more than half of the ra-
dial extent of the disk has an eccentricity of >0.05. Remarkably
the eccentricity is much lower than in the isothermal simulations
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Fig. 3. Radial dependency of surface density (fop), midplane tempera-
ture (middle) and disk eccentricity (bottom) of the fully radiative stan-
dard model for different timestamps. The disk ranges from 0.5 AU to
about 5.5-6 AU due to tidal forces of the companion. At ¢ = 0 years the
disk is not fully Keplerian and thus ey > 0.

presented in Sect. 3.1. As a consequence of the lack of eccen-
tricity there is not visible disk precession.

Figure 3 shows the radial dependency of the disk surface
density and disk eccentricity of the H/r = 0.05 model in equi-
librium after 750 binary orbits compared with the subsequently
introduced fully radiative model. The surface density in the
isothermal model misses the bend caused by the 1000 K change
in the disk opacity and is slightly steeper than the initial ! pro-
file. The disk eccentricity in the isothermal case is much more
homogeneous with radius, as is to be expected for a coherent
structure. This has already been observed by Kley & Nelson
(2008).

To check for numerical dependencies we varied the loca-
tion of the inner boundary of the computational domain and
the grid resolution. First we chose a smaller inner boundary of
rmin = 0.25 AU increasing the number of radial grid points such
that the spatial grid resolution remained unchanged in the over-
lap region. In Fig. 5 the radial dependency of the surface density
and the midplane temperature at the end of the simulations dif-
fers not too much in the overlap region of both simulations, so
that the effects of the inner boundary are negligible in this re-
spect. However, the amplitude of the oscillation in the time evo-
lution of the disk eccentricity is nearly gone (see Fig. 6). In the
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Fig. 4. Radial dependency of surface density (top), and disk eccentricity
(bottom) of the H/r = 0.05 isothermal model and the fully radiative
standard model after 750 binary orbits.

standard model we could see a small oscillation in the disk pe-
riastron, which also vanishes in the r;, = 0.25 AU model. The
non-existence of a coherent precession is also an indication of
very low disk eccentricity in both cases. In additional test simu-
lations (not displayed here), we extended the outer radius to the
value of rm.x = 12 AU, changing the number of grid cells ac-
cordingly to maintain the resolution of the standard model. As
expected, this larger radial domain does not change the results.
Then we varied the grid resolution by first doubling the grid
cells to 512 x 1150 and doubling it again to 1024 x 2302 grid
cells. This change in resolution has basically no impact on the
disk’s dynamics. As before, the disk eccentricity settles to a time
averaged value of about 0.04. In all three simulations the disk
periastron does not reach a state with real precession and the
only change caused by the change of resolution is a small shift
in time. Consequently our standard resolution of 256 X 574 cells
seems to be sufficient to resolve the disk dynamics properly.

4. Variation of physical parameters

To study the influence of the physical conditions on the evolution
of the disk, we investigated in particular the impact of the disk
mass Mgisk, the viscosity v, which is determined by «, the opacity
, and the binary’s eccentricity ep.

4.1. Disk mass

The first parameter we investigated is the disk mass. In contrast
to isothermal simulations our radiative simulations depend on
the disk mass as the opacity depends on gas density. To analyze
the influence of the disk mass on the disk’s evolution, we ran
four simulations with disk masses Mgz of 0.005 M, 0.01 M,
0.02 My and 0.04 My while keeping all other parameters un-
changed.
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Fig.5. Azimuthally averaged surface density (fop) and midplane tem-
perature (bottom) profiles for the radiative standard model using two
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Results are displayed at 100 binary orbits (6666 years). In the overlap-
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:
Mgy = 0.005 M,
——— My =001 M,
,,,,,,, Mg =002 My 4
Mgy = 0.04 M,

5

Disk Surface Density [g/cm”]

Distance [AU]

——— My =0.01 M,
Mg = 0.02 M,
Mgig, = 0.04 M,

Disk Temperature [K]

1 2 3 4 5 6 7 8

Distance [AU]

Fig.7. Azimuthally averaged surface density (fop) and midplane tem-
perature (bottom) profiles after 100 binary orbits (6666 years) for radia-
tive models using different initial disk masses. The profiles can be fitted
using power-laws when divided into two regimes: An inner region with
temperatures of less than about 1000 K and an outer region with tem-
peratures above 1000 K because of a break in the opacity tables at about
1000 K. The inner region follows X oc y~149 10 =151 and T oc p=0-53 t0 =034
whereas the outer region follows X oc 7708210 =167 and T oc p=1:39 10 ~1.58
for all models.

The surface density and temperature profiles after 100 bi-
nary orbits for different disk masses is displayed in Fig. 7, where
the solid (red) line refers to the standard model displayed in
Fig. 3. The profiles can be divided into two regimes that are sep-
arated by the 1000 K temperature line caused by the opacity (see
Sect. 3.2). In each regime the surface density and temperature
profiles follow a simple power-law that depends only weakly on
the disk mass, and is given in the caption of Fig. 7.

Figure 8 shows the time evolution of the disk eccentricity
and periastron for different disk masses. The higher the disk
mass, the lower the oscillations of the the disk eccentricity, but
the time average of the disk eccentricity is in the range of 0.04—
0.05 for all disk masses. The disk periastron displays no real
precession and with increasing disk mass it settles at about 0.
This is in contrast to the isothermal simulations presented in
Sect. 3.1 where we obtained a disk eccentricity egisx of 0.2 for
an aspect ratio H/r of 0.05 and a real precession of the disk pe-
riastron. There is a trend, however, that the eccentricity becomes
higher for cooler disks with lower H/r. But one has to be care-
ful here, because the aspect ratio is constant in radius and time
for the isothermal simulations, but not for our radiative simula-
tions. Figure 9 shows the aspect ratio of the disk after 100 binary
orbits. All models had an initial value of (H/r)iya = 0.05 but
end up with different values of H/r depending on the disk mass
and the phase in the binary orbit. We note that in all models the
mass of the disk reduces with time owing to the mass loss across
the outer boundary. In particular, we find that after 100 binary
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Fig.9. H/r after 100 binary orbits (6666 years) for different disk
masses.

orbits the disks have lost about 27% of their initial mass in the
Mgk = 0.04 Mg model, 23% in the Myisx = 0.04 M model,
17% in the Mg« = 0.04 My and 6% in the Mgix = 0.005 M,
model. Hence, the values quoted in the text and figures always
refer to the initial disk masses.

The results for egisx in Fig. 8 show a marginal increase of
the disk eccentricity for smaller disk masses. To test if this trend
continues, we performed additional simulations for even smaller
initial disk masses and found indeed an increased oscillatory be-
havior of the eccentricity, which settles eventually after about
600 binary orbits to a low eccentric state very similar to the
Mgisx = 0.025 model, however. Hence, there does not seem to
exist an obvious trend of ey with disk mass.
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Fig. 10. Azimuthally averaged surface density (fop) and midplane tem-
perature (bottom) profiles after 100 binary orbits (6666 years) using four
different values for the viscosity parameter @. The profiles can be fitted
using power-laws when divided into two regimes: An inner region with
temperatures of less than about 1000 K and an outer region with tem-
peratures above 1000 K, because there is a break in the opacity tables at
about 1000 K. The inner region follows ¥ oc 7148 ©© =13 and T oc y7053,
whereas the outer region follows X oc y~0-78 0 =095 ~145 10 -1.53
for all  values.
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4.2. Viscosity

In this section we investigate the influence of the viscosity v. To
study the dependence on v we varied the @ parameter, which de-
termines the viscosity, v = ac,H = ac?Qy' (Shakura & Sunyaev
1973), from our standard model (@ = 0.01) and kept all other
parameters unchanged. We varied @ from 0.005 to 0.04.

Figure 10 shows the surface density and temperature profiles
after 100 binary orbits. All models started with identical disk
mass, and evidently, higher @ models lose the disk masses more
rapidly. For example, at the displayed time at 100 binary orbits
the @ = 0.04 model has lost about 71% of its initial mass, while
the standard model (@ = 0.01) lost only 19%, see also Fig. 12
below. The shape of the surface density and temperature profile
seems to be independent of the viscosity in the disk, as expected.
Again, the profiles can be divided into two regimes that are sep-
arated by the 1000 K temperature line. The power-laws for the
surface density and temperature profiles are given in the caption
of Fig. 10.

Figure 11 shows the influence of @ on the disk eccentric-
ity and periastron. Higher values of @ and thus high viscosities
result in a calmer disk that does not react fast enough on the
disturbances of the binary companion. Therefore the disk shows
less oscillations in the disk eccentricity and the disk periastron
remains almost constant for the higher values of @. The disk
eccentricity in the model with the highest viscosity, @ = 0.04,
increases to up to 0.25 within 600 binary orbits, and the disk ec-
centricity in the & = 0.02 model starts to grow slowly after about



3.1 Circumstellar disks in binary star systems. Models for y Cephei and o Centauri

T. W. A. Miiller and W. Kley: Circumstellar disks in binary star systems

Time [Py;,]
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
R B e e
I @=0.005 ]
023 =001
——————— =002
=004
02 b 4
0.15 J

Disk Eccentricity

0.1 4

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Time [a]
Time [Py;,]

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

800

Longitude of Disk Periastron

=001 @=004 |
: -

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Time [a]

Fig.11. Global mass-weighted disk eccentricity (fop) and periastron
(bottom), sampled at the binary’s apastron, as a function of time for
different o values for the viscosity.
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Fig. 12. Disk mass evolution for different @ values for the disk viscosity.

200-300 binary orbits. This effect of a rising disk eccentricity is
a direct consequence of the increasing viscosity. As shown in
Fig. 12, the mass loss of the disk depends on the magnitude of
the viscosity, the higher «, the faster the mass loss of the disk.
For example, after 500 binary orbits the @ = 0.04 disk has lost
about 97% of its initial mass. The increased mass loss for higher
viscosities is a result of the stronger outward spreading of the
disk, i.e. a larger truncation radius. The larger disk makes the
outer parts of the disk more susceptible to the tidal perturbations
of the secondary, which increase the disk eccentricity dramati-
cally. This is in accordance with the viscosity dependence found
in earlier studies, e.g. Kley et al. (2008).

4.3. Opacity

The amount of cooling in our radiative model depends on the
disk’s opacity. To examine the influence of the opacity model we
calculated the standard model with two different opacity mod-
els leaving all other parameters unchanged. In the first calcu-
lation we used the opacity tables (see Table 1) shown by Lin
& Papaloizou (1985), whereas the second calculation uses the
opacity tables given by Bell & Lin (1994, their Table 3).

As expected, the opacity plays an important role and the
model with the Bell & Lin opacity shows less oscillations in
the disk eccentricity, but the time average is about the same as
in the model with the Lin & Papaloizou opacity. This is similar
to the rpin change in Sect. 3.2. The surface density and midplane
temperature profiles at the end of the simulation in the simula-
tion with the Bell & Lin opacity model differ slightly from the
one shown in Fig. 3. Both models have a bend at a tempera-
ture of about 1000 K but the temperature profile in the model
with the Bell & Lin opacity model is flatter and slightly lower in
the region below 1000 K and slightly steeper in the region about
1000 K. In exchange, the surface density is slightly steeper and
slightly higher in region the below 1000 K and matches the other
model in the region above 1000 K very well.

4.4. Binary eccentricity

Another very important factor for the disk’s evolution are the
binary parameters. We therefore varied the binary’s eccentric-
ity in our standard model from ep, = 0 to 0.4. Because this
also changes the truncation radius of the disk that is caused
by the binary’s tidal forces (Artymowicz & Lubow 1994), we
extended the computational domain to up to 12.5AU for the
epin = 0 model. To reach the same resolution in the computa-
tional domain of the standard model (0.5-8 AU) we increased the
number of cells in radial direction to 295 in the ey, = 0 model.
The epin = 0.05, epin = 0.1 and epin, = 0.2 models were adjusted
accordingly in their computational domain and resolution in ra-
dial direction.

Figure 13 shows the time evolution of the disk eccentric-
ity and periastron. Interestingly, the epi, = 0 and e, = 0.05
models show the highest disk eccentricity. These high values for
epin = 0 seem to agree with Kley et al. (2008). Also, the epin = 0
and epi, = 0.05 models are the only ones that have a real co-
herent disk precession with a precession rate of —0.033 Pgii,‘ for
the ey, = 0 model and —0.062 PgiL for the ey, = 0.05 model.
All other models with epi, > 0.1 show a disk eccentricity of
edgisk < 0.1 and no precession, which also indicates that the disk
is not globally eccentric. For the low eccentric binaries it takes
up to about 125 binary orbits to reach the high eccentric quasi-
equilibrium disk state, which is long compared to the standard
model, which reaches its quasistationary state after only about
15 binary orbits. These timescales agree well with those obtained
by Kley et al. (2008) for isothermal disks. The reason why bina-
ries with low epi, tend to have eccentric disks is the larger disk
radius in this case. This allows an easier operation of the insta-
bility according to the model of Lubow (1991).

The surface density and midplane temperature profiles af-
ter 100 binary orbits of all five models have the same slope
but differ slightly in absolute values. The ey, = 0.4 models is
the hottest and densest model and then the temperature and sur-
face density decreases with decreasing binary eccentricity. The
evin = 0 model shows low oscillations in the profiles. As ex-
pected, the disk’s truncation radius owing to the binary’s tidal
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Fig. 13. Global mass-weighted disk eccentricity (top) and disk perias-
tron (bottom), sampled at the binary’s apastron, for different binary ec-
centricities. The low eccentricity (e, < 0.05) models need much more
time to reach their equilibrium state compared to the standard model.
These are also the only models that develop a real coherent disk preces-
sion.

forces is shifted outward in the models with lower binary eccen-
tricity.

5. Brightness variations

To identify possible observable changes in the brightness of the
systems caused by perturbations in the disk, we calculated theo-
retical light curves for our standard model. For that purpose, we
examined the time variation of the disk dissipation given by

Dyigc = [[ 0" dA,

and the disk luminosity given by

Lig = [[ 0" ddA = [[20: L dA.

To identify the source of the brightness variations we divided the
disk into five rings ranging from 0.5-2 AU, 2-3 AU, 3-4 AU, 4—
5 AU and 5-8 AU. In each of these rings the disk dissipation and
disk luminosity was calculated. Figure 14 displays the variation
of the disk dissipation and disk luminosity of our standard model
during one orbital orbit at # = 100 Py, where the system has
already reached its quasistationary state. The periastron occurs
att = 100.5 Py, and is indicated by the vertical line.
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Fig. 14. Variation of disk dissipation and disk luminosity during one
binary orbit. The dissipation and luminosity are calculated for five dif-
ferent rings ranging from 0.5-2 AU, 2-3 AU, 34 AU, 4-5 AU and 5-
8 AU. Because the disk is truncated at about 4.5 AU (see Fig. 3), the
outmost ring does not contain much mass. The solid (red) curve is the
sum of all five rings. The gray line indicates the binary’s periastron pas-
sage.

When the binary is at apastron, the disk is almost uniform
(see Fig. 1) and we cannot see any variations in the light curves.
However, when the binary passes periastron, it starts to perturb
the outer regions of the disk and two spiral arms evolve that wind
themselves to the center of the disk. This results in a rise of the
luminosity by 2-3 mag in the outer rings of the disk shortly after
periastron passage (see Fig. 14) and after a short time also in a
smaller rise in the inner rings of the disk. As the binary moves
farther away from the disk, the spirals are damped out and the
luminosity peak vanishes. These luminosity peaks should be ob-
servable as a 2-mag increase in the mid-infrared (MIR) because
the main contributions come from the outer rings (3—5 AU) with
temperatures between 150K and 450 K.

Luminosity peaks have already been observed in the mid-
infrared in the T Tau S system (van Boekel et al. 2010), a bi-
nary system that is not very different from the early stage of
the y Cephei system. Additionally, van Boekel et al. also per-
formed some radiative simulations for the T Tau S system and
pointed out that these brightness variations could be caused by
the perturbations of the binary companion. However, the bright-
ness variations found in their disk models were very weak.
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Table 4. Parameters of the & Centauri model.

Primary star mass (Mjrimary) 1.1 M,

Secondary star mass (Miecondary) 0.93 M,
Binary semi-major axis (a) 23.4 AU
Binary eccentricity (eyin) 0.52
Binary orbital period (Ppiy) 79.4431 a
Disk mass (M) 0.01 M,
Viscosity (@) 0.01
Adiabatic index (y) 7/5
Mean-molecular weight (1) 2.35
Initial density profile (X) o !
Initial temperature profile (7°) o !
Initial disk aspect ratio (H/r) 0.05
Grid (N, X N,) 256 x 574
Computational domain (Rpin — Rmax)  0.5-8 AU

Notes. The top entries refer to the fixed binary parameter. Below we list
along with the disk properties the initial disk setup and the computa-
tional parameters.

6. « Centauri

In addition to the y Cephei system we also performed some cal-
culations for the & Centauri system, because it is of special in-
terest, being the nearest star to our solar system. This system
has been investigated for the possibility of planet formation, see
e.g. Thébault et al. (2008). Table 4 gives an overview of the
parameters of our a Centauri model based on Pourbaix et al.
(2002). We tried to keep the disk parameters the same as in the
vy Cephei model, so that the main difference are the mass ratio
q = Mgecondary/Mprimary and the binary’s orbital parameters. In
the y Cephei model we have a mass ratio ¢ of 0.28, an eccentric-
ity epin of 0.4 and a semi-major axis a of 20 AU, whereas in the
a Centauri model we have a mass ratio g of 0.84, an eccentricity
epin 0f 0.52 and a semi-major axis a of 23.4 AU.

In Sect. 4.4 we saw that for high binary eccentricities the
disk eccentricity does not reach very high values, so that we
would expect a fairly low disk eccentricity for the o Centauri
system. Kley et al. (2008) showed that for isothermal simula-
tions the disk eccentricity in the quasistationary state does not
depend heavily on the mass ratio ¢g. Figure 15 shows the evolu-
tion of the disk eccentricity and periastron over time. The disk
eccentricity settles after about 15 binary orbits at a rather low
value of about 0.038 and the disk periastron is also at a nearly
constant position.

The surface density and midplane temperature profiles for
the @ Centauri model can only be fitted in the inner region with
r < 1.8 AU as a simple power-law. The surface density can be
described by a 4% and the midplane temperature by a r~%-3
power-law. In the outer region the surface density and tempera-
ture decreases rather fast to O until about 4 AU, where the disk is
truncated by the binary’s tidal forces.

7. Summary and conclusions

We have investigated the dynamics of a protostellar disk in bi-
nary star systems using specifically the orbital parameter of
v Cephei and o Centauri. We assumed a coplanar system and
used a two-dimensional hydrodynamical code to evolve the non-
self-gravitating disk. Extending previous simulations, we in-
cluded internal viscous heating given by an a-type viscosity pre-
scription, and radiative cooling from the disk surface.
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0.05 4
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Fig. 15. Global mass-weighted disk eccentricity (fop) and disk peri-
astron (bottom), sampled at the binary’s apastron for the o Centauri
model.

In a first set of simulations we investigated locally isother-
mal disks for different disk temperatures. We showed that disks
in binaries of the y Cephei type with a standard thickness of
H/r = 0.05 become eccentric (egisk ~ 0.2) showing a coherent
disk precession. This agrees well with previous simulations by
Kley & Nelson (2008) and Paardekooper et al. (2008). Varying
the temperature in the disk, we showed that the magnitude of
the disk’s eccentricity becomes lower when the disk thickness
increases. For disks with H/r > 0.065 the mean average ec-
centricity has dropped below 0.08 and the disks do not show a
precession anymore.

Then we studied more realistic disks with internal heating
and radiative cooling, varying the disk’s mass. In all cases we
found relatively low eccentricities and no precession. We at-
tribute the lack of eccentricities firstly to the increased disk
height, which is, in particular for the more massive disks, higher
than the standard value (see Fig. 9). Secondly, in the full ra-
diative models the disk’s dynamical behavior is more adiabatic
compared to the locally isothermal case. Then, through com-
pressional heating (pdV-work), kinetic energy is transferred to
internal energy, which leads to a reduced growth of disk eccen-
tricity. We have checked that purely adiabatic models show an
even lower disk eccentricity than the radiative models. Hence,
the radiative case lies between the adiabatic and isothermal, as
expected.

Because the disk’s energy balance is determined via the vis-
cosity, we changed the value of the parameter @ ranging from
0.005 to 0.04, all values that are consistent with the results
of MHD-turbulent accretion disks. Here, we found that only
the disk with the highest @ becomes eccentric. The reason for
this rise is the larger disk radius, which leads to an enhance-
ment of the tidal torques from the secondary. We note that
the disk’s outer radius in our models still lies well inside the
3:1 resonance with the binary. According to the linear instability
model by Lubow (1991), the disk eccentricity is excited through
the 3:1 resonance and hence, the disk should be sufficiently
large, a condition which is fulfilled only for small mass ratios,
q = Mgecondary/Mprimary. However, as shown by Kley & Nelson
(2008), disks in binary star systems with large mass ratios can
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turn eccentric as well, even though the disks are small, a feature
confirmed in our simulations.

The inferred short lifetime of disks with standard viscosities
is slightly alarming with respect to planet formation in these sys-
tems. In the core-accretion scenario planet formation proceeds
along a sequence of many steps that take a few Myr. For disks
to persist this long in y Cephei-type binaries a very low vis-
cosity of @ < 107 seems to be required. In the gravitational
instability scenario the timescale for planet formation is much
shorter and hence, this scenario may be favored by our find-
ings. Observationally, several recent studies indeed suggest that
the lifetime of disks in young binary stars is significantly re-
duced compared to disks around single stars (Cieza et al. 2009;
Duchéne 2010; Kraus et al. 2012). Dynamically, this behavior is
expected, because the perturbation of the companion star leads
quite naturally to an increased mass loss of the disk, details de-
pending on the binary separation and eccentricity.

A very critical phase in the core accretion scenario, in par-
ticular in binary stars, is the initial growth of meter to km-sized
planetesimals. Here, the growth depends on the successful stick-
ing of the two collision partners. Since the relative velocity of
the bodies is increased in binary stars, planetary growth will be
significantly hindered by the presence of a companion, see e.g.
Thébault et al. (2006); Thebault (2011) and references therein.
Here our results indicate that planetesimal growth is less neg-
atively influenced because the disk eccentricity is reduced for
more realistic radiative disks. As has been shown, eccentric disks
tend to increase the mutual relative velocities of embedded ob-
jects, in particular of different sizes, because of the misaligned
periastrons of the particles (Kley & Nelson 2007; Paardekooper
et al. 2008). Hence, a radiative disk with a low viscosity could
help to promote planetesimal growth. However, it remains to be
seen how the inclusion of stellar irradiation (from both stars) in-
fluences the dynamics. Owing to the additional heating of the
disk, we expect even more mass loss from the system and possi-
bly higher disk eccentricities because the disks are more isother-
mal and will have a larger radius.

Previous studies have indicated that in a mutually inclined
system planetesimal growth may be enhanced because planetes-
imals can be size-sorted in differently inclined planes (Xie &
Zhou 2009; Marzari et al. 2009b). However, recently Fragner
et al. (2011) showed through full 3D hydrodynamical studies
that for inclined binaries the relative velocities of different sized
planetesimals increases through inclinations effects. They con-
clude that for inclined systems planetesimal formations can take
place only for very distant binary stars with ap, > 60 AU.
However, the simulations considered only isothermal disks, and
it remains to be seen how radiative effects influence the disk. But
full 3D radiative simulations are still beyond the present compu-
tational possibilities, because thousands of orbital timescales of
the disk will have to be calculated.
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ABSTRACT

Context. In 2D-simulations of thin gaseous disks with embedded planets or self-gravity the gravitational potential needs to be
smoothed to avoid singularities in the numerical evaluation of the gravitational potential or force. The softening prescription used
in 2D needs to be adjusted properly to correctly resemble the realistic case of vertically extended 3D disks.

Aims. We analyze the embedded planet and the self-gravity case and provide a method to evaluate the required smoothing in 2D sim-
ulations of thin disks.

Methods. Starting from the averaged hydrodynamic equations and using a vertically isothermal disk model, we calculated the force
to be used in 2D simulations. We compared our results to the often used Plummer form of the potential, which runs as oc1/(r? + €2)'/2.
For that purpose we computed the required smoothing length € as a function of distance r to the planet or to a disk element within a
self-gravitating disk.

Results. We find that for longer distances € is determined solely by the vertical disk thickness H. For the planet case we find that
outside r ~ H a value of € = 0.7H describes the averaged force very well, while in the self-gravitating disk the value needs to
be higher, € = 1.2H. For shorter distances the smoothing needs to be reduced significantly. Comparing torque densities of 3D and
2D simulations we show that the modification to the vertical density stratification as induced by an embedded planet needs to be taken
into account to obtain agreeing results.

Conclusions. It is very important to use the correct value of € in 2D simulations to obtain a realistic outcome. In disk fragmentation
simulations the choice of € can determine whether a disk will fragment or not. Because a wrong smoothing length can change even the
direction of migration, it is very important to include the effect of the planet on the local scale height in 2D planet-disk simulations.

‘We provide an approximate and fast method for this purpose that agrees very well with full 3D simulations.

Key words. accretion, accretion disks — planets and satellites: formation — hydrodynamics — methods: numerical —

protoplanetary disks

1. Introduction

Numerical simulations of accretion disks are often performed
in the two-dimensional (2D) thin-disk approximation, because
a full 3D treatment with high resolution is still a computation-
ally demanding endeavor requiring a lot of patience. In numer-
ical disk models with embedded planets and/or self-gravity the
gravitational potential (force) needs to be smoothed because it
diverges for very short mutual distances. For that purpose the po-
tential is softened to avoid the singularities that arise, for exam-
ple, from pointlike objects, such as planets embedded in disks.
In full 3D simulations this smoothing may be required solely for
stability purposes and can be chosen to be as small as the given
numerical resolution allows. In contrast, 2D disk simulations are
typically based on a vertical averaging procedure that leads to a
physically required smoothing. Ideally, this smoothing should be
calculated in a way that the 2D simulations mimic the 3D case as
closely as possible. The most often used potential smoothing has
a Plummer form with ¥ o« —1/(r2+€2)'/?, where r is the distance
to the gravitating object and € is a suitably chosen smoothing or
softening length. If a vertically stratified disk has a thickness H,
we would expect that somehow € should depend suitably on H.
In a sense, the potential is “diluted” in this case due to the disk’s
finite thickness.

For the planet-disk problem, Miyoshi et al. (1999) have
shown with local shearing sheet simulations that owing to this
dilution effect, the total torque exerted on a planet in a three

Article published by EDP Sciences

dimensional disk is only about 43% of the torque obtained in
the thin, unsmoothed 2D case. These authors also showed that
the strength of the one-sided torque depends on the value of the
smoothing, where larger € lead to smaller torques. Later, Masset
(2002) has studied the smoothing problem in greater detail. He
has shown that good agreement of the total 2D and 3D Lindblad
torques can be obtained for smoothing lengths of € = 0.75H,
where H is the vertical scale height of the disk, see Eq. (11) be-
low. Masset found that for the Lindblad torques this optimum
€/H value is independent of the planet mass and the thickness
of the disk. On the contrary, for the corotation torques that are
generated by material moving on horseshoe orbits, he found that
the required smoothing depends on the ratio Ry/H, where Ry is
the Hill radius of the planet. Masset concluded that there is no
“magic” value of € that generates overall agreement of 2D with
3D results.

Based on these studies, in 2D planet-disk simulations the pa-
rameter € is typically chosen such that the fotal torque acting on
the planet, which determines the important migration speed, is
approximately equal to that obtained through 3D (linear) analy-
sis, for example by Tanaka et al. (2002). This argument has led to
the choice of € ~ 0.3—-0.6H, a value very often used in these sim-
ulations (Masset 2002; de Val-Borro et al. 2006; Paardekooper
& Papaloizou 2009). However, recently a very small smooth-
ing has been advocated for 2D planet-disk simulation (Dong
et al. 2011). A smoothing based on a vertical integration using
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Gaussian density profiles has been used by Li et al. (2005, 2009),
but they provided no details on the methodology and accuracy.

For self-gravitating disks, the conditions for fragmentation
have recently attracted much attention in the context of planet
formation via gravitational instability. Typically, studies are per-
formed in full 3D (see e.g. Meru & Bate (2011b) and references
therein). However, to save computational effort, 2D simulations
present an interesting alternative in this context (Paardekooper
et al. 2011). Here, the accurate treatment of self-gravity is very
important.

The incorporation of self-gravity in 2D thin-disk calculations
can be achieved by using fast Fourier transforms. Baruteau &
Masset (2008) presented a method where the force is calculated
directly using a smoothing length that scales linearly with radius,
and they used the same smoothing, € = 0.3H, for the planet and
self-gravity. Li et al. (2005) used this method to calculate the po-
tential in the disk’s midplane. The simultaneous treatment of an
embedded planet and disk-self-gravity can be important because
the latter may influence the migration properties of the planet
(Pierens & Huré 2005; Baruteau & Masset 2008). For global
self-gravitating disks the treatment of the potential has been an-
alyzed in more detail by Huré & Pierens (2009), who calculated
the required smoothing by comparing 3D and 2D disk models
with specified density stratifications. For that purpose they com-
pared the midplane value of the 3D potential to the 2D case and
estimated from this the required smoothing length. Additionally,
they considered the whole extent of the disk for their integration.
They found that € needs to be reduced for close separations ~H,
while for long distances it approaches a finite value. Huré¢ &
Pierens (2009) give an extended list of smoothing prescriptions
used in the literature and we refer the reader to their paper.

Here, we will reanalyze the required smoothing in 2D disk
simulations. We show that the force to be used in 2D has to be
obtained by performing suitable vertical averages of the force.
For the planet-disk case we extend the work by Masset (2002)
and compare in detail the torque density to full 3D simulations.
We present a method to approximately include the change in ver-
tical stratification induced by the presence of the planet. With
respect to self-gravitating disks we follow the work by Huré &
Pierens (2009) and calculate the optimum smoothing length € by
performing a vertical averaging procedure for the force between
two disk elements. We show that this will be important for frag-
mentation of gravitational unstable disks.

In the next two sections we present the vertical averaging
procedure and our unperturbed isothermal disk model. In Sect. 4
we analyze the potential of an embedded planet followed by the
self-gravitating case. In Sect. 6 we summarize and conclude.

2. The vertical averaging procedure

Throughout the paper we assume that the disk lies in the z =
0 plane and work in a cylindrical coordinate system (r, ¢, z).
Starting from the full 3D hydrodynamic equations the vertically
averaged equations, describing the disk evolution in the r — ¢
plane, are obtained by integrating over the vertical direction. The
continuity equation then reads

op
o&r V. =
f o dz + f (pv)dz =0,

where v and p are the 3D velocity and density, respectively. This
is typically written as

0%
=4V -(Cu) =0,
Fri (Xu)
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where
r= [ pa: 3
is the surface density of the disk and

! f (o) d. (4)
u=c

s z

the vertically averaged 2D velocity in the disk’s plane. The
integrals extend over all z ranging from —co to +co. The in-
tegrated momentum equation, considering only pressure and
gravitational forces, then reads

du
X— =-VP- V¥d
dr f‘o ©

(5
with the vertically integrated pressure P = f p dz, where p is the
3D pressure. From Eq. (5) it is obvious that the change in the
velocities is determined by the specific force (or acceleration)
that is given by the ratio of force density (the integral in Eq. (5))
and surface density X, i.e.

. [pV¥dz

S ©)

We here deal with the correct treatment of the last term in
Eq. (5), which describes the averaging of the potential that can
be given, for example, by a central star, an embedded planet, or
self-gravity

Y=Y, +¥, +¥,. (7)
From the derivation of the momentum Eq. (5) it is clear that not
the potential in the midplane matters, but a suitable averaging
of the gravitational force. In the following we will analyze this
averaging using density stratifications in the vertical isothermal
case. Even though accretions disks are known not to be isother-
mal, we nevertheless prefer at this stage to use this assumption
because it is still a commonly used approach that avoids solving
a more complex energy equation. It leads to a Gaussian den-
sity profile that is also in more general cases a reasonable first-
order approximation. Additionally, the irradiation of a central
light source tends to make disks more isothermal in the vertical
direction. More realistic structures will be treated in future work.

3. The locally isothermal accretion disk model

The vertical structure of accretion disks is determined through
the hydrostatic balance in the direction perpendicular to the
disk’s midplane. In this section we present first an idealized
situation, where the disk is non-self-gravitating and its struc-
ture is not influenced by an embedded planet. This allows for
analytic evaluation of integrals. Then we will consider more
general cases. Using the thin-disk approximation and a gravi-
tational potential generated by a point mass M, in the center, i.e.

W, = —-GM. /(r* + 2%)'/?, the vertical hydrostatic equation for
long distances r from the star can be written as

10 GM.z GM.z

SO TR L T @l 8)
p Oz (2 +22) 7

To obtain the vertical stratification for the density, p, from this
equation requires an equation of state p = p(p, 7') and a detailed
thermal balance, by considering, for example, internal (viscous)
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heating, stellar irradiation and radiative transport through the
disk. To simplify matters, often the so-called locally isothermal
approximation is applied for the (numerical) study of embedded
planets in disks or for self-gravitating disks. Using this approach,
a costly solution of the energy equation is avoided by specifying
a priori a fixed radial temperature distribution 7'(r). At each ra-
dius, however, the temperature is assumed to be isothermal in
the vertical direction. Using

p=pct, ©

where the (isothermal) sound speed ¢ is now independent of z,
we obtain for the vertical disk structure a Gauss profile

12
p6(r,¢,2) = po(r,p)e 217, 10)
where the vertical height H is defined as

Cs
H=S 11
o )
and po(r, ¢) is the density in the midplane of the disk. For the
vertically integrated surface density X one obtains in this case

2
T= fpoe‘%i;—z dz = V2rHpo. (12)

In 2D, r — ¢, simulations of disks this surface density X(r, ¢) is
one of the evolved quantities.

4. The potential of an embedded planet

To illustrate the necessity of potential- (or force-)smoothing we
consider in this section embedded planets in locally isothermal
disks that are non-self-gravitating. First we will look at an unper-
turbed disk whose structure is determined by the distance from
the host star and is given by Eq. (10). Then we include the effects
of an embedded planet on the disk structure.

4.1. Unperturbed disk

We consider the potential of a point like planet with mass M,
embedded in a 3D locally isothermal disk with a fixed Gaussian
density profile, pg. The planetary potential is given by

GM, GM,
Wy(r) = - =2 (13)
|r = ry (s> +2%)?

where r is the vector pointing to the location in the disk and r,
is the vector pointing to the planet. The vector s pointing from
the disk element to the projected position of the planet, i.e. in the
z = 0 plane, is denoted by

s=(rp—r)—(r,—r,e)e, (14)

where e, is the unit vector in z direction and (-, -) denotes the
scalar product.

The force acting on each disk element is then calculated from
the gradient of the potential. Since it acts along the vector s, we
can write for the modulus of the vertically averaged force density

o
Fos)=— [ p=ldz=-GMys [ —2— dz. (15)
ds (s +22)3

The force density (with units force per area) in Eq. (15) has to be
evaluated at the centers of all individual grid cells, as illustrated

v

S H

Fig. 1. Geometry of protoplanetary disk with embedded planet. We cal-
culated the gravitational force from the planet (blue) on a vertical slice
of the disk (red). For that purpose the gradient of the potential has to
be vertically integrated along the dashed line that goes through the cell
center. To obtain the total force exerted on the shaded disk segment, this
value has to be multiplied by its area in the r — ¢ plane.

in Fig. 1. From there, either the total force of a disk element can
be calculated by multiplying F,(s) with the disk element’s area
(rArAg), or one computes the specific force f, = F},/X, which
can be used directly to update the velocities, see Eq. (6). For the
density we write

pa(r,¢.2) = po(r, @) - po(2* | HP), (16)

where we have assumed that the vertical dependence of p is a
function of the quantity z2/H?, as stated in Eq. (10). Substituting
y = z/s in Eq. (15) and using a vertical stratification according
to Eq. (16), we find

M,
0 21 (s). a7
s

The dimensionless function I,(s) is defined through an integral

over half the disk
“ Z(C2 2)
1) = f LAY g, (18)
0 1+’
where the normalized vertical distance y and the quantity c are
given by
z s
== d = —. 19
y p and ¢ I (19)

For the standard Gaussian vertical profile, ie. p.(c’y?) =

1.2,2

exp (_E‘ y ), the integral /,(s) can be expressed as

2 2 2
I(s) = %cz exp(%) [K, (%) - Ko(%)], (20)

where K,(x) are the modified Bessel functions of the second
kind. For illustrating purposes we present evaluations of the
force correction function /;, for simpler polynomial density strat-
ifications in Appendix B.

In 2D numerical simulations of disks the above averag-

ing procedure is typically not performed. Instead, an equivalent
2D potential is used in the momentum equation such that

= -V¥P. 1)

We point out that a 2D potential with the property of equation
Eq. (21) cannot be the result of an averaging procedure in general
as in Eq. (5) because for realistic densities

f pV¥dz

s (22)
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Fig. 2. Force correction function 7,,(s) (solid line) resulting from an in-
tegration over the vertical structure of the disk, see Eqgs. ((17), (20)).
Additional curves indicate the corresponding function for the 2D po-
tential (equivalent to Eq. (24)) using different values of the smoothing
parameter €,.

For ‘{’gD a simple smoothed version is often used, which reads
GM,

2D _
=
2 2)2
(2+e)

) (23)

where ¢, is the smoothing length to the otherwise point mass
potential, introduced to avoid numerical problems at the location
of the planet. We will refer to this functional form of ¥ as the
e-potential, although it is sometimes named Plummer-potential
as well. The force acting on each disk element is then calculated
from the gradient of the potential.

A finite €, regularises the potential and guarantees stable nu-
merical evolution. Additionally, it serves to account for the ver-
tical stratification of the disk. Comparing torques acting on a
planet in 2D and 3D simulations it has been suggested for the
Lindblad torques that ¢, should be on the order of the vertical
disk height, specifically 0.7H, see Masset (2002). He pointed
out, however, that for the corotation torques a lower value may
be appropriate. Hence, often a value of € = 0.6H is chosen. Here,
we calculated the correct smoothing by a vertical average assum-
ing an isothermal, vertically stratified disk. This will lead to a
distance-dependent smoothing.

In Fig. 2 we compare the force correction obtained from the
vertically averaging procedure and the 2D smoothed e-potential.
Specifically, we plot the function /,(s) for the Gaussian den-
sity profile together with the corresponding function for the
2D potential, which reads

52 V2rH
IE(S) = 3 2 °
(2 +€2)?

(24)

Because we are mainly interested in distances s up to a few H,
we assume, that the disk height H does not change with radius.
The unsmoothed ¢, = 0 potential diverges as 1/s for short dis-
tances from the planet, leading to a 1/s> force as expected for
a point mass. Since the value of I,(s) remains finite for s — 0,
we see that a vertically extended disk reduces the divergence
of the force to 1/s. This is a clear indication that in 2D simula-
tions the potential has to be smoothed for physical reasons alone,
and that the assumption of a point mass potential will greatly
overestimate the forces. As expected, the e-potential strongly re-
duces the force for s — 0 and always yields regular conditions at
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Fig. 3. Specific gravitational force F},/Z as a function of distance from
the planet. Different approximations are shown: a) an ideal point mass
(solid-red) that falls off as 1/r%; b) the exact averaged force according
to Egs. (25) and (20); c) the force according to the smoothed potential
of Eq. (23) using here g, = 0.7H; and d) a numerically integrated aver-
aged force using 10 grid points in the vertical direction and a maximum
Zmax = SH. The force is normalized such that GM,, = 1.

the location of the planet. Additionally, it appears that the value
& = 0.6H overestimates the potential slightly for s * H (green
curve in Fig. 2).

Using the Gaussian isothermal density distribution, pg, and
the surface density X from Eq. (12), the force density of the
planet acting on the disk can be written as

GM,E 1

2
b P ;Ip(s).

F§ = —= (25)
This expression could in principle be used directly in nu-
merical simulations of planet-disk interaction. However, even
though /,,(s) can be solved in terms of Bessel-functions, in com-
putational hydrodynamics this evaluation is not very efficient,
because it has to be calculated once per timestep at each grid
point. A possibility is to solve the integral /,(s) in Eq. (18)
directly numerically using a limited number of vertical grid cells.
In this case the integral is converted into a sum, where the expo-
nential can be pre-calculated and tabulated at the correspond-
ing nodes. For our purposes we found that only 10 vertical grid
points give an adequate solution (see below). This is shown in
Fig. 3 where we plot the specific force (acceleration) exerted by
a planet on a disk element that is a distance s away. The force
for a point mass falls off as 1/s? while for small radii the exact
vertically averaged force shows a 1/s behavior. Two approxima-
tions are displayed as well: the curve for the e-potential given
in Eq. (23), where we used a constant g, = 0.7H. The numer-
ically averaged curve refers to a numerical integration of /,(s)
using 10 grid points in the z-range [0, 5H]. Note that because
of the finite discretization no additional smoothing is required.
Increasing the number of grid points increases the agreement
with the exact averaged force even more for shorter distances s.
The scaling of the distance with 1/H and the normalization of
the force make the plot independent of the used vertical thick-
ness of the disk. While the e-potential agrees well for s  H with
the exact averaged force, our numerical approximation agrees
to much shorter distances. In Appendix B we show that simpli-
fied density distributions can lead to an equally good agreement.
However, the advantage of the described vertical numerical in-
tegration procedure lies in its speed and in the fact that it leads
directly to a regularized force for very short s. Also, it is easily
generalizable, as will be shown in the next section.
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Fig. 4. Optimum value of g, in the smoothing potential of Eq. (23) as a
function distance s from the planet. The shaded area illustrates which
values of ¢, result in a force error of less than 10% with respect to the
exact averaged value.

Because we can calculate I,(s) for the Gaussian profile nu-
merically to any required accuracy, we can estimate the optimum
€ () value for the smoothed potential in Eq. (23) for each point
to obtain agreement with the exact averaged force. In Fig. 4 we
display the correct €,(s) value against the distance. The range
of g, in which the smoothed potential produces an error of less
than 10% in the force compared to the correct value is illustrated
by the shaded region. Obviously for very short distances it is
important to use the correct €, and for long distances the exact
value of €, does not play an important role. Through a Taylor
expansion for s — oo of the denominator in Eq. (18) of ;,(s) it
can be shown that

lim €,(s) = H, (26)
§—00

which can be expected because the disk has a vertical extent on
the order H.

4.2. Taking the planet into account

In the previous section we have analyzed the forces acting on the
planet considering an unperturbed disk with a given scale height
as determined by the star, see Eq. (11). However, an embedded
planet changes the disk structure, which will lead, for example,
to a reduced thickness in the vicinity of the planet. This plays an
important role for the torques acting on the planet. To estimate
this effect we start from the vertical hydrostatic Eq. (8) taking an
additional planet into account,
la_p:_ GM*Z; _ GMPZX’ (27)
p oz (2 +z2)?  (s2+72)?
where s is again the distance from the planet. For a vertically
isothermal disk this can be integrated
GM, s
[

where we assumed for the stellar contribution z < r, as before.
Using the previous vertical thickness H (Eq. (11)) and the mass
ratio g = My, /M., this can be written as

1]} .

1GM,
Pp = Poexp {—5 EREIR N (28)
S S

2 3
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Fig. 5. Exact (see Eq. (29)) and approximate (see Eq. (30)) vertical den-
sity profiles for a disk with aspect ratio 4 = 0.05 for short distance s
to a planet with mass ratio ¢ = 6 x 107>, The exact profiles are shown
by the solid lines and the corresponding approximate ones in the same
color but with dashed lines. For comparison the unperturbed Gaussian
profile (see Eq. (10)) is shown in black for this H/r.

Because s is on the same order as z in the neighborhood of the
planet, this equation cannot be simplified further. To still obtain
an estimate of the expected effects, we approximate the vertical
density stratification by

; 122 I
p; :poexp{— (Em + Fp s (30)
where we define the reduced scale height near the planet
45H?
P oy

This approximation for the vertical behavior of p, leads to the
correct limits for the integrated surface density X in the limits
for very short and long s and is a reasonable approximation in
between. From the definition of Hj, in Eq. (31) we find that the
distance s, where the two scale heights are equal, i.e. H, = H, is
given by

se 1 q\/?
ro2 (h) ’
where £ is the relative scale height, & = H/r, of the disk. The
location s, denotes approximately a transitional distance from
the planet. For s < s, the standard approximation of a Gaussian
density distribution with the scale height H is no longer valid,
and the influence of the planet dominates.

Figure 5 shows the exact (Eq. (29)) and the approximate (30)
vertical density profiles for different distances to the planet and
the comparison with the unperturbed Gaussian profile. For very
short distances to the planet the effective height of the disk is
much lower than in the unperturbed case. Obviously, py is only
an approximation to pp, but it captures the change in thickness
of the disk, as induced by the planet, very well. We will show
below that using py, in the force calculations yields a very good
approximation to the exact case.

To test how this new density-scaling influences the previous
isothermal results for the planet’s gravity, we calculated a cor-
rected vertically averaged force using the modified density p,
according to

(32)

Pp

R 33
R (33)

Fy(s) = —2GMps f -
0
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Fig. 6. Specific force F,,/Z for different approximations. The first three
curves are identical to Fig. 3 and are shown for comparison. The “exact”
potential using p, is shown in yellow and the approximates solution,
using the simplified expression for the density pj and only 10 vertical
grid points, is shown in pink. A tapering function near the center was
used for the latter to regularize the force.

This integral has to be calculated numerically using an approx-
imate zZmax. Depending on the model to be calculated (either
“exact” or approximate force), we substituted either p, from
Eq. (29) or the approximate pj, from Eq. (30). Since the presence
of the planet alters the vertical height of the disk, zmax depends
on the distance s from the planet. To estimate z,x we first define
an effective vertical scale height

NN
eff = | 77 ) 5
H Hp

which is an interpolation of the value at short and long distances
from the planet. We choose to take zmax = 6Heg in the “exact”
numerical evaluation where we use the density p, and 1000 grid
cells. In contrast, we apply Zmax = 3Heq in the approximate nu-
merical evaluation using pj and only 10 vertical grid cells, see
also Appendix A.

In Fig. 6 we display the results for the vertically integrated
specific force F,/Z in various approximations. The first three
curves (red, blue, green) correspond to those shown in Fig. 3 as
an illustration. The “exact” potential using p;, is shown in yellow
and the approximate solution using p2 in pink. The presence of
the planet reduces the scale height of the disk, which leads to
an enhancement of the force above the Gaussian, i.e., it diverges
as s~2 for short distances. To regularize the approximate force,
we added a tapering function that reduces it to zero in the vicinity
of the planet (pink dashed-dotted curve) such that it can be used
in hydrodynamic simulations, see Appendix A. Clearly the range
of applicability for short s is much improved over the simple
e-potential. In contrast to the Gaussian approximation that uses
the fixed thickness H, the force correction (with respect to the
pure point mass potential) depends now on the mass of the planet
as well, which enters through H,,.

(34)

4.3. Numerical simulations of planet-disk interactions

To test the formulation of the force, we performed numerical
simulations of embedded planets in two and three dimensions
where we use an isothermal equation of state. For this purpose
we solved the 2D and 3D hydrodynamic equations for a viscous
gas. We used a setup very similar to that of Kley & Crida (2008)
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Fig. 7. Specific radial torque density in units of (d['/dm), (see Eq. (36))
for embedded planet models using the € potential with various €,. The
simulations use a given H = 0.05, and the x-axis refers to the radial
coordinate where a,, is the semi-major axis of the planet. The planet to
star mass-ratio is ¢ = 6 x 107>, Other parameters of the simulations are
stated in Sect. 4.3.

and Kley et al. (2009). The planet with a mass ratios M,/M.. =
6 x 107 is embedded at = 1 in the disk with radial extent of
0.4-2.5. The disk is locally isothermal such that the aspect ra-
tio H/r is constant. This implies a radial temperature gradient
of T(r) « r~!, while in the vertical direction T is constant. As
a consequence, the unperturbed vertical density structure (in the
3D simulations) is Gaussian along the z-axis. The surface density
falls off with radius as  oc 7~!/2. We used a constant kinematic
viscosity coefficient of v = 107> in dimensionless units. This
setup is such that without the planet the disk is exactly in equi-
librium and would not evolve with time. At the radial boundaries
damping boundary conditions were applied (de Val-Borro et al.
2006). In our simulations we used H/r = 0.05 and evolved the
disk after the planet’s insertion for about 100 orbits. To test our
improved treatment of the force, we varied the planet mass and
the scale height of the disk in comparison models. For the stan-
dard parameter, 2 = 0.05 and ¢ = 6 X 1075, we found for the
transition distance s, ~ 0.35H.

The embedded planet disturbs the disk and torques are ex-
erted on it by the disk through gravitational back-reaction. These
might lead to a change in the planet’s orbital parameter. The
strength of these torques will depend on the applied smooth-
ing of the gravitational force. To illustrate the effect, it is con-
venient to study the radial torque distribution per unit disk mass
dI'(r)/dm, which we define here, following D’ Angelo & Lubow
(2010), such that the total torque I'y, is given as

Tt =21 f d—r(r) 2(r) rdr. (35)
dm

In other words, dI'(r) is the torque exerted by a disk annulus

of width dr located at the radius r and having the mass dm. As

dI'(r)/dm scales with the mass ratio squared and as (H/r)™, we

rescale our results accordingly in units of

dF) 5 L (H\?
—| =@ ayg (—]|
(dmo PR ap

where the index p denotes that the quantities are evaluated at the
planet’s position, with the semi-major axis aj,.

In Fig. 7 we plot dI'(r)/dm obtained from 2D simulations us-
ing the e-potential for the gravity of the planet and the standard

(36)
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Fig. 8. Specific radial torque density in units of (dI'/dm), for embed-
ded planet models for 2D models using e-potential (red curve) and a
numerically integrated force Ff (see Eq. (25)) that takes into account
a Gaussian vertical density distribution (blue curve). The green curve
refers to a full 3D model using the same physical model parameter as
the 2D models. The 3D result is adapted from Kley et al. (2009) where
the setup and numerics is described in more detail.

fixed scale height H for the disk. The torque in this and the simi-
lar following plots are scaled to (dI'(r)/dm)g as given in Eq. (36).
Results for five values of the smoothing length are presented.
Obviously, the value of €, has great impact on the amplitude of
the torque density, and making the correct choice is important.
We point out that the differences in the torque density also in-
fluence the total torques that determine the important migration
rate. Because Iy, consists of positive and negative contributions
of similar magnitude, even small errors in dI'(r)/dm can lead to
large errors in 'y For the range of e displayed in Fig. 7 we find
a variation of I, larger than about a factor of 4. The best agree-
ment in this case of H/r = 0.05 with 3D results is obtained for e
in between 0.6—0.7H.

In Fig. 8 we compare two different force treatments for
2D simulations to a full 3D run. Results for the ¢ = 0.7H
potential are given by the red curve, and the blue curve corre-
sponds to the vertically averaged force F/ g according to Eq. (25),
which assumes a Gaussian vertical density profile. In magni-
tude the g, = 0.7H potential represents the vertically averaged
results reasonably well, but it behaves differently close to the
planet. The additional green curve corresponds to a full 3D (lo-
cally) isothermal simulation as presented in Kley et al. (2009)
(their Fig. 10, purple curve). The 3D runs use an identical phys-
ical setup and a more realistic cubic-potential with a smoothing
of rgm = 0.5. Both 2D results are on the same order as the 3D
run, but show small deviations that can lead to larger variations
in the total torque, end hence the migration rate, because the pos-
itive and negative contributions to the radial torque density are
of similar magnitude.

To test the applicability of our new procedure for treating
the gravity in 2D simulations, we performed runs with different
mass ratio and temperature in the disk. The results of 2D and
3D simulations are shown in Fig. 9, where the torque density
dI'(r)/dm is plotted. The first set of simulations refers to H/r =
0.05, where we compared the standard model in 2D and 3D to a
run with half the planet mass. The next two curves show results
of 2D and 3D simulations for H/r = 0.037. Despite the indicated
differences in the parameter, all models used the same physical
setup as described above. The 2D runs used our approximate
density distribution pj, in evaluating the gravitational force. The
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2D, g=6:10"°, h=0.037

-+ 3D, g=6:10"", h=0.037

0.03

0.02

0.01

Torque density

0,05 i i i i i i i

(r-a,/H

Fig. 9. Specific radial torque density in units of (dI'/dm), for 2D and
3D embedded planet models using different mass ratio and disk tem-
perature. The first three curves represent models with the same disk
temperature H/r = 0.05. The red curve corresponds to our standard
model, the blue curve has a reduced planet mass ¢ = 3 x 10~, and the
third (green curve) corresponds to a full 3D run. The next two curves
(yellow and purple) refer to models with H/r = 0.037. The 2D runs
used our approximate density distribution pj in evaluating the gravita-
tional force. The 3D results were adapted from Kley et al. (2009) where
the setup and numerics is described in more detail.

3D results are adapted from Kley et al. (2009) where the setup
and numerics is described in more detail. Firstly, all five curves
show very similar overall behavior, confirming the scaling with
(dI'(r)/dm)g. The reduced amplitude of the H/r = 0.037 models
is due to the onset of gap formation. Secondly, the agreement
of the 2D and 3D runs is very good indeed. For example, upon
varying the scale height, the change in shape of the curves is
identical in 2D and 3D runs (yellow and purple) curve. We point
out that the value of € to obtain the best agreement of the total
torque I in 2D and 3D simulations may depend on the value
of H, because of the influence of the planet. Hence, it is always
advisable to perform the simulations using the vertical integra-
tion of the force.

To additionally validate our simulations we compare in
Fig. 10 our 2D and 3D results obtained for the standard model
to an analytic fit by D’Angelo & Lubow (2010) for the same
disk parameter. Although the fit has been developed for a smaller
planet mass, the agreement of the two 3D results is excellent.
This is interesting because our planet mass of 20 Mgy, is al-
ready in the range where non-linear effects should set in. The
2D torque shows the same amplitude, but small differences
are visible just inside the planet. In isothermal disks the flow
close to the planet is not in exact hydrostatic equilibrium any-
more. However, full 3D high-resolution isothermal simulations
(D’Angelo et al. 2003) have shown that vertical velocities are
only large inside the Roche region of the planet. This explains
the good agreement of the 2D approximation with the full
3D case.

5. The potential of a self-gravitating disk

Now we turn to full self-gravitating disks where a smoothing of
the gravitational potential is required as well to account for the
finite thickness of the disk. The potential at a point r generated
by the whole self-gravitating disk is given by

P (r) = —f Gp(r) 4
Dbisk 11 =77

(37

A123, page 7 of 13

thin disk simulations

45



3. Publications

46

A&A 541, A123 (2012)

——— 2D, q=6:10", h=0.05
3D, q=6-10", h=0.05 |
Fit (D" Angelo & Lubow, 2010)

Torque density

(-a)/H

Fig. 10. Specific radial torque density in units of (dI'/dm), for 2D and
3D embedded planet models using different mass ratio and disk tem-
perature. The first two curves are identical to those in the previous
figure, and the third is a fit presented by D’Angelo & Lubow (2010)
corresponding to the model with T'(r) oc #~! and X(r) oc 771/,

The smoothing required to obtain the potential in the midplane
has been analyzed for this situation by Huré & Pierens (2009).
However, if one is interested in problems of fragmentation, it is
more convenient to analyze the force between to individual ele-
ments (segments) of the disk. Let us consider the force between
two such disk segments that are a separated by the distance s,
see Fig. 11. The potential at the location r generated by a disk
element located at r* which is a projected distance s away is
given by

Gp(r',¢',7)

Yp(r) = fff(s”(z—z)z)

where dA’ is the surface element of the disk in the r — ¢-plane at
the point r’. The vector s is defined in analogy to Eq. (14) and
illustrated in Fig. 11.

The force at the location r generated by this vertically ex-
tended disk element is calculated from the gradient of the poten-
tial. The vertically averaged force density can then be written in
analogy to Eq. (15) as

W
Fg(s) = —fp(mp,z)—dz
o', ¢, 2) p(r, ¢, 2)

o ffff (2 +(@-2))°

The evaluation of this integral depends on the vertical stratifi-
cation of the density at both locations r and r’. As before, we
consider locally isothermal disks. For weakly self-gravitating
disks the density structure is then given by the Gaussian form in
Eq. (10). However, similar to an embedded planet the disk’s self-
gravity will modify the vertical profile. Following our previous
treatment of the embedded planet, we first analyzed the smooth-
ing required for a disk that has an unperturbed Gauss profile and
will then allow for modifications.

dz dA’, (38)

dz’ dA’ dz. (39)

5.1. Unperturbed disk

For a locally isothermal disk and with Eq. (16) we obtain
Fyo(s) = =Gpo(r, ¢) ffpo(r’, @) dA” - 25, (s), (40)
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Fig. 11. Geometry of a protoplanetary disk for calculations with self-
gravity. We calculate the gravitational force exerted by a vertical slice
of the disk (blue) on another vertical slice of the disk (red), separated
by a distance s. Two vertical integrations have to be performed along
the dashed lines that go through the cell centers. To obtain the total
force between the two segments, this value has to be multiplied by the
corresponding areas, see also Eq. (39).

25 T T T T T T

1)

rrrrrrrr 16 e=12H
I(s)e=06H

Py 1(9), e=0.0H |

Is)s

05

s [H]

Fig.12. Force correction function /I(s) multiplied by s resulting
from an integration over the vertical structure of the disk, see
Eqgs. ((40), (41)). Additional curves indicate the corresponding function
for the 2D potential (Eq. (24)) using different values of the smoothing
parameter €.

where we defined the function /s,(s) by

PPy pPy) y’2)

Isg(s) = f f
o (1+@-yP)?

where the normalized vertical distance y and the quantity ¢ are
given by Eq. (19) again assuming a constant H. This integral
cannot be calculated directly for the standard Gaussian profile,
and we will evaluate it numerically.

In 2D numerical simulations usually a simple smoothed po-
tential is used instead of calculating the correct averaging. This
€&g-potential reads as

¥(s) = f f

where €, is the smoothing length. The force acting on each disk
element is then calculated from the gradient of WP

In Fig. 12 we compare the force correction obtamed from the
vertically averaging procedure and the 2D smoothed potential
for a disk height that does not change with radius. Because /4 (s)
diverges for short distances, we multiply it by s. Because we are
interested in local effects with distances s up to a few H, we as-
sumed for the plot that the disk height H is constant. Comparing
this result to the corresponding force correction function for the
planet in Fig. 2, it is obvious that for the self-gravitating case a

dy’ dy, (4D

G3(r) ax, @)

32+E
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Fig. 13. Optimum value of € in the smoothing potential of Eq. (42)
as a function of distance s using a Gaussian vertical stratification. The
colored area illustrates which values of € result in an error of the force
correction value of less than 10%.

larger smoothing is required for the e-potential than in the planet
case. Here, a value of € = 1.2 seems to be a good choice. Lower
values, already € = 0.6, considerably overestimate the force. We
attribute this larger required smoothing with the double vertical
averaging that has to be performed in this case.

From the numerically calculated I (s) for the Gaussian
profile we can calculate the best € (s) value for the smooth-
ing potential in Eq. (42) at each distance s to obtain the right
force correction value. In Fig. 13 we display the optimum e, (s)
value versus distance. The range of €, over which the smoothing
potential produces an error of less than 10 % is shaded. Cleary
for short distances it is crucial to use the correct value of €,
whereas for long distances the influence of &, becomes negligi-
ble. Because we now have to account twice for the vertical extent
of the disk here compared to the planet case, we obtain a higher
limiting value of
lim e4(s) = V2H. (43)
§—00
This value was obtained through numerical calculation up to the
sixth significant digit for s = 1000H, and we verified it through
a Taylor expansion of the denominator in Eq. (42). As before,
it is interesting that the required optimum smoothing remains
finite, even for very long distances. This result agrees with Huré
& Pierens (2009).

5.2. Taking the disk into account

Now we consider the correction for a disk where self-gravity
has modified the vertical structure. For that purpose, we con-
sidered the case of a pure self-gravitating disk, neglecting the
gravitational potential of the central mass. Assuming a large disk
with a slowly varying surface density X(r), then the derivate with
respect to z of the disk potential given in Eq. (37) simplifies
(Mestel 1963) to

p,
= 27GE(r),

44
oz (44)
and consequently the hydrostatic Eq. (8) changes to
10
~% = 2aGE(r). @5)
p 0z

Density [p,]

I
0 05 1 15
2[H]

Fig. 14. Vertical density profiles of the disk with for a self-gravitating
disk (see Eq. (46)) with Q@ = 1. For comparison the unperturbed
Gaussian profile (see Eq. (10)) is shown in red.

3 T T T T T T
10% error
——— Optimum value

€[H]

05

s [H]

Fig. 15. Optimum value of € in the smoothing potential of Eq. (42)
versus distance s using a vertical stratification caused by self-gravity
with Q = 1. The colored area illustrates which values of €, result in an
error of the force correction value of less than 10%.

For a vertically isothermal disk this can be integrated (Spitzer
1942) to

L z
Pse(r.¢,2) = po(r, @) cosh 2(H—), (46)
sg
where the vertical scale height H, is defined by
c? [eX9)
Hy=—— =Ky~ 0H, 47
w= s oz @ “n

with the Toomre parameter Q (Toomre 1964). Figure 14 shows
the changed vertical density profiles in the self-gravitating case
compared to the unperturbed Gaussian for H = Hg or Q = 1,
respectively. The self-gravitating profile is steeper and there-
fore, for equal surface density, the mass is consequently located
nearer to the midplane of the disk. This is expected because
the vertical component of the disk’s gravitational potential is,
with 27GX(r) ~ GM/r?, by a factor of about r/H larger than
in Eq. (8), and so the mass is more concentrated toward the
midplane.

Now we can calculate the force correction function I (s)
of Eq. (41) with the self-gravitating vertical density profile pg.
In analogy to the unperturbed case, this can be used to calcu-
late an optimum €, for the e-potential. In Fig. 15 we display
the correct e,(s) value against distance. The optimum e, for
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Table 1. Parameters of the disk model.

Star mass (Mprimary) 1.0 My
Disk mass (Mgis) 0.4 Mg
Adiabatic index (y) 5/3
Mean-molecular weight () 2.4

B-Cooling (B) 20

-2

Initial density profile (X) ocr
Initial temperature profile (7) oyt
Initial disk aspect ratio (H/r) 0.1
Grid (N, x N,) 512 x 1536
Computational domain (Rpin — Rmax)  20—-250 AU

Notes. The top entry refers to host star. The following give the disk
properties, and then the initial disk setup and the computational param-
eter are given.

this value of Q is always lower than our previous unperturbed
Gaussian case. For the limit s — oo we find a value about 10%
lower. This is in consistency with the lower effective vertical
scale height, because more mass is located near the midplane.

In most self-gravitating disks the vertical structure will be
affect by both the central mass object and the self-gravity of the
disk. Then it is to be expected that the correct & is a value be-
tween the two extreme cases. The combined situation where self-
gravity and the central mass both contribute has been considered
by Lodato (2007). For clarity, we treat the two cases separately
here.

5.3. Numerical simulations of self-gravitating disks

To demonstrate the influence of € in numerical simulations, we
analyzed the effects of different values of € on the fragmenta-
tion conclusions of a self-gravitating disk. For that purpose, we
adopted a disk model from Baruteau et al. (2011). Table 1 shows
all important disk parameters. We simulated the disk twice using
the ADSG version of the FARGO code (Baruteau & Masset 2008;
Masset 2000) for 5000 years with values of 0.6H and 0.006H
for &,. Both models include the self-gravity of the disk and a
simple S-cooling model, which is defined by

OE EQ
o B’
where E is the internal energy, Q the angular velocity and
S a constant. The disk must cool fast enough to be able to
fragment, which is otherwise prevented by compressional heat-
ing. Gammie (2001) showed that this is the case for 8 < 3 and
Rice et al. (2005) found later a dependency from the equation of
state for 8 and suggested a8 < 7 fory = 5/3.

Meru & Bate (2011a) pointed out that the previous results
had not converged with increasing resolution and that the crit-
ical value, B, may be higher than previously thought. They
measured an B¢ of ~18 for their highest resolution. Because we
use B = 20 in our models, we do not expect them to fragment in
any case.

Another stability criterion can be described by the Toomre
stability parameter Q, which is defined by

(48)

KCy

nGx’

Q= 49)

where ¢, is the sound speed in the disk and « the epicyclic
frequency. Toomre (1964) showed that for values of O > 1
an axisymmetric disk should be stable. As shown in Fig. 16,
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Fig. 16. Radial dependency of surface density (top), midplane temper-
ature (middle) and Toomre parameter (bottom) of the two disk models
with &, = 0.6H and &, = 0.006H for different timestamps. At ¢ = 0
a both simulations match because they have identical start conditions.
In the first 500 years they behave very similar but then their further
evolution diverges drastically.

the modeled disks have an initial Q value of 1.85-2.2 depend-
ing on the radial distance to the star, and thus should not be
fragmenting.

In the first 500 years both disks cool down in the central parts
of the disk from about 120 K to about 30 K, resulting in Q values
of 1 at the inner edge of the disk, which means that they are not
Toomre-stable anymore, but still should not fragment because
the cooling constant 3 is higher than the critical value required
for fragmentation. After 500 years both simulations start to dif-
fer. The e, = 0.006H model fragments within about 500 years
in the inner region of the disk whereas, the &, = 0.6H model
needs about 1000 years to start developing small spiral arms in
the inner region. After 5000 years two fragments have survived
in the &g = 0.006H disk with fragment masses of 16.5 My, and
8.3 Myyp. The &, = 0.6H model only shows spiral arms and no
signs of fragmentation. Even after 50000 years we did not ob-
serve any fragments. Figure 17 shows the surface density distri-
bution of both models after 5000 years.

In Sect. 5.1 we suggested an € on the order of unity to
obtain results that can compare to 3D simulations. Because the
& = 0.6H model did not fragment as predicted by the stability
criteria, this seems to support the validity of our estimate for €.
The very short € in the &, = 0.006H model overestimates the
gravitational forces on short distances (see Fig. 12) and therefore
excites disk fragmentation.
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Fig. 17. Surface density of two disks after 5000 years which started from the same initial condition but with different values for the smoothing
parameter €, of the gravitational potential. The gray circle shows the computational domain.

6. Summary and conclusions

We analyzed the smoothing of gravity in thin 2D disk simula-
tions for the embedded planet and self-gravitating case. Starting
from the vertically averaged hydrodynamic equations, we first
showed that the gravitational force has to be calculated using a
density-weighted average of the 3D force, see Eq. (5). Because
this depends on the density distribution, there cannot be a gen-
eral equivalent 2D version of the potential (Eq. (22)). To be able
to explicitly calculate the averaged force, we first used a locally
isothermal disk structure in which the vertical density stratifica-
tion is Gaussian.

For the embedded planet case the resulting force can be cal-
culated analytically. In full 2D hydrodynamic simulations we
compared the resulting torque density acting on the planet for
the e-potential (23) and the “exact” averaged force. We found
that the overall magnitude of the torque is best modeled using
a smoothing of € = 0.7H, while there remain significant dif-
ferences to the full 3D case, also in the total torque. Taking the
modification of the density stratification induced by the planet
into account leads to a much reduced vertical thickness of the
disk in the vicinity of the planet. We presented a simplified an-
alytical form for the modified vertical density stratification with
a planet, the details of the numerical implementation are given
in the appendix. Using this in 2D simulations leads to very good
agreement of the torque density with full 3D calculations of em-
bedded planets on circular orbits. By varying the disk height and
the mass of the planet, we showed that the torque density scales
as expected with (dI'(r)/dm)o, see Eq. (36).

Because the modified density approximation that includes
the planet is based on vertical hydrostatic equilibrium, it is not
clear, however, whether it is valid for planets on non-circular
or inclined orbits. Here, the variations occur on the orbital
timescale and to establish hydrostatic equilibrium, the thermal
timescale must be on the same order. In the situation of multi-
ple planets that may interact strongly, the same restrictions may
apply. Despite these restrictions, we believe that using this pre-
scription will enhance the accuracy of 2D simulations consid-
erably. We expect that our procedure can be generalized to the
radiative case using suitable vertical averages, but this needs to
be developed.

For the self-gravitating case we showed that the required
smoothing, € ~ H, is even larger than in the planetary case.
We attribute this to the necessity of a double averaging over
the vertical height of the disk. Owing to the complex integra-
tion, the integrals cannot be solved analytically in this case.
Taking into account self-gravity lowers the required smoothing
because the vertical scale height is reduced due to the additional
gravity. In more strongly self-gravitating systems, which have a
Toomre parameter Q ~ 1, non-axisymmetric features may occur.
Because the standard self-gravity solvers require a smoothing
that scales with radius, one has to take an approximate average
in non-axisymmetric situations. The same applies for disks that
are close to the fragmentation limit. As shown by our last ex-
ample, the choice of smoothing may affect the conclusions on
whether the disk will fragment or not. Through detailed com-
parisons with full 3D simulations a suitable smoothing may be
found.
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Appendix A: Integration of the force density

Here, we briefly outline a numerically fast and convenient
method to vertically integrate the force for the embedded planet
case. Specifically, we plan to evaluate the force density F in
Eq. (33), which reads

Pp

FP(S) = —ZGMPSJ; m

As pointed out in the text, we used for the (approximate) numer-
ical integration a maximum z of zmax = 3Heqr, With He given by

(A1)
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Eq. (34). The interval [0, zmax] is divided into N, equal intervals
with the size Az = zmax/N-. The integral in Eq. (A.1) is replaced
with the following sum

Zmax N,
I =2
0

k=1

where the N, nodes are located at z; = (k — 1/2)Az. We in-
troduce a small smoothing, s, here to keep the sum regular at
short distances s. In the simulation presented in the paper we
used 7y = 0.1Ry;y throughout, which is much shorter than the un-
perturbed vertical height H. In the 2D hydrodynamic simulations
we used N, = 10, which makes the method feasible numerically.

The specific force, or acceleration (F},/X), is then obtained
by dividing through the integrated surface density

ppdz
(s2+ )t

Pp(z) Az

T
(2+2+1d)2

(A2)

¥=2 (A.3)

N,
pp(z) Az,

k=1

using the same nodes. In 2D simulations X is one of the evolved
quantities and this relation can be used to calculate the other-
wise unknown midplane density pg. Because the vertical number
of grid points is very small (N, = 10), the method is reason-
ably fast and can be used in numerical planet-disk simulations.
Additionally, it only needs to be evaluated in the vicinity of the
planet and could be omitted farther out. Nevertheless, despite
the coarseness of the integration, the agreement with the “exact”
force and torque is excellent. For numerical stability we smooth
the resulting force using the following tapering function

1

Jraper(s) = exp [—(s — r)/(0.2r)] + 1

(A4)

with the tapering cutoft-length r, for which we used in our
simulations r; = 0.2Ryin. The purple curve in Fig. 6 exactly
corresponds to the procedure described here, using the stated
parameter.

Finally, we point out that for the stellar contribution to the
potential
v = Mo O

Ir=rl (24 2)

(A.5)

a very similar vertical averaging needs to be performed.
However, because the vertical profile is always Gaussian, the
nodes can be precomputed and the exponential function has only
to be evaluated once for the N. nodes per grid point and timestep.

Appendix B: Approximate vertical density profiles

To simplify some estimates and obtain an idea of the functional
behavior of the forces, it is useful to study simpler vertical den-
sity stratifications. Here, we present results for a parabolic and
quartic behavior. The corresponding density stratifications read

1/ z \2
(2) _ [
bz ‘[1 2(11@)] (B-1)
for the parabolic form, and
1/ 2\ 1/ z \*
) _ _ = i
: _[1 2(H(4>) - 16(H<4>)} ®2)

for the quartic form. The vertical heights H® and H® of the
models are specified such that the corresponding surface and

A123, page 12 of 13

1

0.6 -

PP ,0)

04

0 05 1 15 2 25 3
2 [H]

Fig. B.1. Gaussian vertical profile p, (solid line) compared with the
parabolic vertical profile p® and fourth-order vertical profile p{”. They

all have the same area below the curves and yield the identical surface
density.
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Fig. B.2. Force correction functions for different vertical density pro-
files. I,(s) is the numerically calculated force correction function for the
Gaussian vertical profile p.. I,(,z)(s) and Il(f)(s) are the analytically calcu-
lated force correction functions for the parabolic vertical profile pf?) and

the fourth-order vertical profile p(f’ .

midplane densities match the isothermal case, see Eq. (12). We
obtain H® = 3/4+xH and H® = 15/16 \n/2 H. Figure B.1
shows all three vertical density profiles in comparison.

These density stratifications are then used to calculate the
vertically integrated force and to obtain the corresponding
force correction functions. Here, the vertical integrations ex-
tend to that zy,.x value where the density vanishes. For the two
distributions we find 22, = V2H® and 2 = 2H®. For the
second-order integral we find

1 1 2
1,(,2)(5) = \/@ - Ec% arcsinh[z/—z—], (B.3)
and for the fourth-order integral
32 +8 af, .34 2
o= e S (l + 1—6“] aesinh - B9

Here, we defined ¢, = s/H® and ¢4 = s/H®. As Fig. B.2 illus-
trates, for the unperturbed disk (without a planet) these functions
agree reasonably well with the Gaussian value also for smaller



3.2 Treating gravity in thin disk simulations

T. W. A. Miiller et al.: Treating gravity in thin-disk simulations

separations s. For long distances all studied force correction

functions (/, IG,II(,D and Iff)) approach each other. These sim-
pler profiles may be also useful in the study of self-gravitating
disks.
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ABSTRACT

Context. Embedded planets disturb the density structure of the ambient disk, and gravitational back-reaction possibly will induce a
change in the planet’s orbital elements. Low-mass planets only have a weak impact on the disk, so their wake’s torque can be treated
in linear theory. Larger planets will begin to open up a gap in the disk through nonlinear interaction. Accurate determination of the
forces acting on the planet requires careful numerical analysis. Recently, the validity of the often used fast orbital advection algorithm
(FARGO) has been put into question, and special numerical resolution and stability requirements have been suggested.

Aims. We study the process of planet-disk interaction for low-mass planets of a few Earth masses, and reanalyze the numerical
requirements to obtain converged and stable results. One focus lies on the applicability of the FARGO-algorithm. Additionally, we
study the difference of two and three-dimensional simulations, compare global with local setups, as well as isothermal and adiabatic
conditions.

Methods. We study the influence of the planet on the disk through two- and three-dimensional hydrodynamical simulations. To
strengthen our conclusions we perform a detailed numerical comparison where several upwind and Riemann-solver based codes are
used with and without the FARGO-algorithm.

Results. With respect to the wake structure and the torque density acting on the planet, we demonstrate that the FARGO-algorithm
yields correct a correct and stable evolution for the planet-disk problem, and that at a fraction of the regular cpu-time. We find that
the resolution requirements for achieving convergent results in unshocked regions are rather modest and depend on the pressure scale
height H of the disk. By comparing the torque densities of two- and three-dimensional simulations we show that a suitable vertical
averaging procedure for the force gives an excellent agreement between the two. We show that isothermal and adiabatic runs can

differ considerably, even for adiabatic indices very close to unity.
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1. Introduction

Very young planets that are still embedded in the protoplanetary
disk will disturb the ambient density by their gravity. This will
lead to gravitational torques that can alter the orbital elements
of the planet. For massive enough planets, the wake becomes
nonlinear, and gap formation sets in. In numerical simulations
of embedded planets, different length scales have to be resolved,
in particular when studying low-mass planets. On the one hand,
the global structure has to be resolved to be able to obtain the
correct structure of the wakes, i.e. the spiral arms generated by
the planet, which requires a sufficiently large radial domain. The
libration of co-orbital material on horseshoe streamlines requires
a full azimuthal extent of 2 7 radians to be properly captured. On
the other hand, the direct vicinity of the planet has to be resolved
to study detail effects, such as horseshoe drag or accretion onto
the planet.

To ease computational requirements, often planet-disk sim-
ulations are performed in the two-dimensional (2D) thin disk
approximation, because a full three-dimensional (3D) treatment
with high resolution is still very time-consuming. However, even
under this reduced dimensionality, the problem is still com-
putationally very demanding. The main reason is the strongly
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varying timestep size caused by the differentially rotating disk.
Because the disk is highly supersonic with (azimuthal) Mach
numbers of about 10 to 50, the angular velocity at the inner
disk will limit the timestep of the whole simulation, even though
the planet or other regions of interest are located much farther
out. Changing to a rotating coordinate system will not help too
much owing to the strong differential shear. To solve this par-
ticular problem and speed up the computation, Masset (2000a)
has developed a fast orbital advection algorithm (FARGO). This
method consists of an analytic, exact shift in the hydrodynami-
cal quantities by approximately the average azimuthal velocity.
The transport step utilizes only the residual velocity, which is
close to the local sound speed. Depending on the grid layout and
the chosen radial range, a very large speed-up can be achieved,
while at the same time the intrinsic numerical diffusion of the
scheme is highly reduced (Masset 2000a,b).

The original version of the algorithm has been implemented
into the public code FARGO, which is very often used in planet-
disk and related simulations. The accuracy of the FARGO-
algorithm has been demonstrated in a detailed planet-disk com-
parison project utilizing embedded Neptune and Jupiter mass
planets (de Val-Borro et al. 2006). There, it has been shown
that it leads to identical density profiles near the planet and total
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torques acting on the planet. Meanwhile, similar orbital advec-
tion algorithms have been implemented into a variety of dif-
ferent codes in two and three spatial dimensions, e.g. NIRVANA
(Ziegler & Yorke 1997; Kley et al. 2009), ATHENA (Gardiner &
Stone 2008; Stone & Gardiner 2010), and PLUTO (Mignone et al.
2007, 2012). Despite these widespread applications, it has been
claimed recently that usage of the FARGO-algorithm (here in
connection with ATHENA) may lead to an unsteady behavior of
the flow near the planet, which even affects the wake structure of
the flow farther away from the planet (Dong et al. 2011b).

In the same paper, Dong et al. (2011b) note that a very
high numerical grid resolution is required to obtain a resolved
flow near the planet. In particular, they analyze the smooth, un-
shocked wake structure close to the planet and infer that a min-
imum spatial resolution of about 256 gridcells per scale height
H, of the disk is needed to obtain good agreement with linear
studies. New simulations with a moving mesh technique also
seem to indicate the necessity of very high resolutions (Duffell
& MacFadyen 2012).

Because a robust, fast, and reliable solution technique is
mandatory in these types of simulations, we decided to address
the planet-disk problem for a well defined standard setup, which
is very close to the one used in Dong et al. (2011b). To an-
swer the question of the validity of the FARGO-algorithm and
estimate the resolution requirements, we applied several dif-
ferent codes to an identical problem. These range from classi-
cal second-order upwind schemes (e.g. RH2D, FARGO) to mod-
ern Riemann-solvers such as PLUTO. The characteristics of these
codes are specified in Appendix A.

Another critical issue in planet-disk simulations is the selec-
tion of a realistic treatment of the gravitational force between the
disk and the planet. Because the planet is typically treated as a
pointmass and located within the numerical grid, regularization
of the potential is required. In addition, physical smoothing is
required to account for the otherwise neglected vertical thick-
ness of the disk. The magnitude of this smoothing is highly rele-
vant, since it influences the torques acting on the planet (Masset
2002), and the smoothing parameter has even entered analyti-
cal torque formulas (Masset & Casoli 2009; Paardekooper et al.
2010). Because the 2D equations are obtained by a vertical av-
eraging procedure, the force should be calculated by a suitable
vertical integration as well. This approach has been undertaken
recently by Miiller et al. (2012), who show that the smoothing
length is indeed determined by the vertical thickness of the disk,
and is roughly on the order of 0.7 H. They show in addition that
the change of the disk thickness induced by the presence of the
planet has to be taken into account. Because in recent simula-
tions very short smoothing lengths have been used in 2D sim-
ulations (Dong et al. 2011b; Duffell & MacFadyen 2012), we
compare our 2D results on the standard problem to an equiva-
lent 3D setup and infer the required right amount of smoothing.

Finally, we performed additional simulations for differ-
ent equations of state. The first set of simulations deals with
the often used locally isothermal setup, while in comparison
simulations we explore the outcome of adiabatic runs. This is
important because some codes may not allow for treating an
isothermal equation of state. Here, we use different values for
the ratio of specific heat y. In particular, a value of y very close
to unity has often been quoted as closely resembling the isother-
mal case. We show that this statement can depend on the physi-
cal problem. In particular, in flows where the conservation of the
entropy along streamlines is relevant, there can be strong differ-
ences between an isothermal and an adiabatic flow, regardless
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of the value chosen for y. For the planet-disk problem this has
already been shown by Paardekooper & Mellema (2008).

In the following Sect. 2 we describe the physical and numer-
ical setup of our standard model, and present the numerical re-
sults in Sect. 3. The validity of the FARGO-algorithm is checked
in Sect. 4. Alternative setups (nearly local, 2D versus 3D, adia-
batic) are discussed in Sect. 5. The transition of the wake into
a shock front is discussed in Sect. 6, and in the last section, we
summarize our results.

2. The physical setup

We study planet-disk interaction for planets of the very low
masses that are embedded in a protoplanetary disk. Most of our
results shown refer to 2D simulations, using the vertically inte-
grated hydrodynamic equations. For validation and comparison
purposes, some additional full 3D models were performed using
a similar physical setup. In all cases, we assumed that the disk
lies in the z = O plane and used, for the 2D models, a cylin-
drical coordinate system (7, ¢, z), while in the 3D case we used
spherical polar coordinates (R, ¢, 6).

We considered locally isothermal, as well as adiabatic mod-
els. In the first case, the thermal structure of the disk was kept
fixed, and for the standard model we chose a constant aspect ra-
tio, h = H/r. Here r is the distance to the star and H the local
vertical scale height of the disk

H=—> )

where ¢ is the isothermal sound speed and Qg = (GM./ 2
is the Keplerian angular velocity around the star. During the
computations the orbital elements of the planet remained fixed
at their initial values; i.e., we assumed no gravitational back-
reaction of the disk on the planet or the star. This allows the
problem to be formulated scale free in dimensionless units.
The planet, whose mass is specified in terms of its mass ratio
q = M,/M., is placed on a circular orbit at the distance r = 1
and has angular velocity Q, = 1;i.e., one planetary orbit in these
units is 277, The initial surface density X, is constant and can be
chosen arbitrarily since it scales out of the equations.

In the 2D case, the basic equations for the flow in the r — ¢
plane are given by equation of continuity
0x

= +V-(Cu) =0,
Fri (Zu)

the momentum equation
[
a—t" +V - (Suu) = —VP + SFey,

and the equation of energy

(@)

3

de
ot
Here, e is the energy density (energy per surface area), and
P = (y — 1)e denotes the vertically integrated pressure. In the
isothermal case the energy equation is not evolved and the pres-
sure reduces to P = Z‘cz, where ¢4(r) is a given function. The
external force

+V-(eu) = =PV -u. “4)

(6))

contains the gravitational specific forces (accelerations) exerted
by the star, the planet, and the inertial specific forces due to the
accelerated and rotating coordinate system.

Fext:F*+Fp+Finenialv
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Table 1. Physical and numerical parameter for the 2D standard model,
which consists of a locally isothermal, 2D disk with an embedded
planet.

Parameter Symbol Value
mass ratio q=M,/M, 6x107°
aspect ratio h=H/r 0.05
nonlinearity parameter M = ¢'/3/h 0.36
kinematic viscosity v 1078
potential smoothing & 0.1 H
radial range Fmin — Fmax 0.6-1.4
angular range Prmin — Dmax 02
number of gridcells N, X Ny 256 x 2004
spatial resolution Ar H/16
damping range at i, 0.6-0.7
damping range at 7y 1.3-1.4

For the gravitational force generated by the central star and
the inertial part of the force, we use standard expressions. The
planetary force is more crucial because it influences, for exam-
ple, the magnitude of the torque generated by the planet. In our
2D standard model, we derive it from a smoothed potential and
use the very common form

GM,

2 2
(#+2)

where s is the distance from the planet to the gridpoint under
consideration, and ¢, the smoothing length to the otherwise point
mass potential. It is introduced to avoid numerical problems at
the location of the planet. Then, F}, = —V‘PgD. Alternatively, we
use in the 2D simulations a vertically averaged version of F,
following Miiller et al. (2012), which we outline in more detail
below.

Even though we use a nonzero but very low viscosity, we
do not specify those terms explicitly in the above equations, as
for example in Kley (1999). The viscosity is so low, that it does
not influence the flow on the relevant scales but is just included
to enhance stability and smoothness of the flow. In the invis-
cid case, the dynamical evolution of the system is controlled by
the planet-to-star massratio ¢ and the pressure scale height H. A
dimensional analysis by Korycansky & Papaloizou (1996) has
shown that the relevant quantity is the nonlinearity parameter

D _
Y, =

, (6)

g\

m=1_.

7 (@)

2.1. The standard model

The standard model refers to a 2D disk with a locally isothermal
setup, where the temperature is a given function of radius, which
does not evolve in time. The parameters for our standard model
are specified in Table 1. The first two quantities, the mass and the
aspect ratio, determine the problem physically. Since we intend
to model the linear case in the standard model, we chose a small
planet with ¢ = 6 X 107°, which refers to a 2Mgam planet for
a solar-mass star. We assume /2 = 0.05 for the disk’s thickness.
For later purposes, we list the nonlinearity parameter in the third
row, which is 0.36 here. All results are a function of ¢ and H
only, if we assume a vanishing viscosity. In the present situa-
tion, where we indeed model the inviscid case, we nevertheless
chose a small nonzero kinematic viscosity v = 107%, given in

units of ag Qg (ap). This is equivalent to an a-value of 4 x 107°
for a H/r = 0.05 disk, a value that is considered to be much
lower than even a purely hydrodynamic viscosity in the disk. We
opted for the very low nonzero value for numerical purposes.
For the planetary gravitational potential 2P, we chose a value
of € = 0.1H in the standard model. We selected this small value
for €, primarily for comparison reasons to make contact to the
recent simulations of Dong et al. (2011b,a), who suggest a very
small smoothing length. Below we demonstrate that, for physi-
cal reasons, a much larger smoothing is required, which can be
obtained by a suitable vertical averaging procedure (Miiller et al.
2012).

A whole annulus is modelled with a radial range from 7y, =
0.6 to rmax = 1.4. We chose this domain size to capture all of
the torque-producing region, which has a radial range of typi-
cally a few vertical scale heights, see e.g. D’Angelo & Lubow
(2010). The computational domain is covered by an equidistant
grid that has 256 x 2004 gridcells. This results in a resolution
of H/16 at the location of the planet for the standard model. To
reduce or even avoid reflection from the inner and outer bound-
aries we applied a damping procedure where, within a specified
radial range, all dynamical variables are damped towards their
initial values. Specifically, we used the prescription described in
de Val-Borro et al. (2006), and write
dX  X(1)-Xo

a . R(r), ®)
where X € {Z,u,}, and R(r) is a ramping function increasing
quadratically from zero to unity (at the actual boundary) within
the radial damping regions. The relaxation time 7 is given by a
fraction of the orbital periods 7o at rmin and rmax. Here, we use
a value of 7 = 0.037 . For more details on the procedure, see
de Val-Borro et al. (2006). We note that it is sufficient to only
damp the radial velocity u, (plus uy in 3D simulations), which
may be useful in radiative simulations where the density strati-
fication may not be known a priori. In test simulations (not dis-
played here) that use a wider radial range, we have found iden-
tical results for the torque and wake structure induced by the
planet.

2.2. Initial setup and boundary conditions

The initialization of the variables X, T, u,, us was chosen such
that without the planet the system would be in an equilibrium
state. Here, we chose a constant Xy, and a temperature gradient
such that the aspect ratio 4~ = H/r is constant. That results in
T(r) o r~!, which is fixed for the (locally) isothermal models.
The radial velocity is zero initially, u, = 0, and for u, we as-
sume a nearly Keplerian azimuthal flow, corrected by the pres-
sure gradient

12

ug(t = 0) = rQx (1-h?) )

The planet with mass ratio g is placed at r = 1 and ¢ = &, i.e. in
the middle of the computational domain. For some models the
gravitational potential of the planet is slowly switched on within
the first five orbital periods, while others do not use this ramping
procedure for the potential. For low-mass planets, the results that
are typically evaluated at 30 Ty, (i.e. £ = 30 - 27), and there is
no difference between these two options.

Near the inner and outer radial boundaries the solution is
damped towards the initial state, using the procedure as de-
scribed above. In addition we use reflecting boundaries directly
at 7min and 7. In the azimuthal direction we use periodic
boundaries.
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2.3. Numerical methods and codes

Because one goal of this paper is to verify the accuracy of
numerical methods, we applied several different codes to this
physical problem. The 2D case was run using the following
codes FARGO, NIRVANA, RH2D, and PLUTO. All of these are fi-
nite volume codes utilizing a second-order spatial discretiza-
tion. Additionally, all are empowered with the orbital advec-
tion speed-up known as the FARGO-algorithm, as developed by
Masset (2000a), but can be used without this algorithm as well.
The first three codes in the list have been used and described
in de Val-Borro et al. (2006). The last code, PLUTO, is a mul-
tidimensional Riemann-solver based code for magnetohydrody-
namical flows (Mignone et al. 2007), which has been empowered
recently with the FARGO-algorithm (Mignone et al. 2012).

In the standard 2D setup, the simulations were performed in
a cylindrical coordinate system that corotates with the embed-
ded planet, and the star is located at the origin. This implies that
inertial forces, such as Coriolis and centrifugal force, as well as
an acceleration term to compensate for the motion of the star,
have to be included in the external force term Fey. Additionally,
the FARGO-algorithm is applied, which leads to a speedup of
around ten for the standard model, and possibly even more for
the higher resolution models. For testing purposes the FARGO-
algorithm can be alternatively switched on or off.

The 3D models are run in spherical polar coordinates. For
reference we quote the inertial terms and their conservative
treatment in Appendix C. These are run using the following
codes FARGO3D, NIRVANA, and PLUTO, where FARGO3D is a
newly developed 3D extension of FARGO. For a description
see Appendix A. For the timestep we typically use 0.5 of the
Courant number (CFL). In Sect. 4 we describe the outcome of
the comparison in more detail.

3. Results for the standard case

To set the stage and illustrate the important physical effects, we
first present the results of our simulations for the 2D standard
case using the parameters according to Table 1. For the simu-
lations in this section we used the RH2D code unless otherwise
stated. Below, we discuss the variations from the standard model.

After the insertion of the planet, the planet’s gravitational
disturbance generates two wakes in the form of trailing spiral
arms. The basic structure of the surface density, X, is shown in
Fig. 1. As seen from the plot, the damping procedure ensures
that reflections by the radial boundaries are minimized. There is
indication of vortex formation as can be seen by the additional
structure on the righthand side of Fig. 1. Vortices induced by
the planet occur for low-viscosity disks and have already been
seen in earlier simulations (see e.g. Li et al. 2005; de Val-Borro
et al. 2006; Li et al. 2009). Here, we do not discuss this issue any
further.

The relevant quantity to study the physical consequences of
the interaction of the embedded planet with the ambient disk is
the gravitational torque exerted on the planet by the disk. For
that purpose it is very convenient to calculate the radial torque
distribution per unit disk mass, d['(r)/dm, which we define here,
following D’ Angelo & Lubow (2010), through the definition of
the total torque, ', acting on the planet

ot =27 f £(r) 3(r) rdr. (10)
dm

Here, dI'(r) is the torque exerted on the planet by a disk annulus
of width dr located at the radius r and having mass dm. Because
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Fig. 1. Density structure of the 2D standard model as generated by an
embedded planet with ¢ = 6 x 107 in a disk having the aspect ratio
H/r = 0.05. Shown is the configuration after 30 7, The density is
scaled linearly.
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Fig.2. Total torque, Iy, in units of I'y (see Eq. (12)), acting on the
planet vs. time for the 2D standard model. Shortly after insertion, the
torque is positive and approximately constant between 10 and 40 or-
bits. At later times it saturates due to mixing of the material within the
horseshoe region.

dI'(r)/dm scales with the mass ratio squared and as (H/r)™*, we
rescale our results accordingly in units of

dr H\™*
4) 2 2
(dm)o o(@p)apd ay)

where the index p denotes that the quantities are evaluated at the
location of the planet, which has the semi-major axis a,. The
time evolution of the total torque, I'io, is displayed in Fig. 2 for
the first 500 orbits. The total torque is stated in units of

an

H\2
— 2 4.2
Fo = 50 Q(apay (a—p) : (12)
In this simulation, the planetary potential has been ramped up
during the first five orbits. After insertion of the planet, the total
torque becomes first positive and remains constant at this level
for about 30 orbits. In this phase the co-orbital torque, in par-
ticular the horseshoe drag, is fully unsaturated and gives rise
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Fig. 3. Radial torque density in units of (dI'/dm), (see Eq. (11)) at 30
and 200 T, for the 2D standard model. The torque enhancement and
spike near r = 1 att = 307, is due to the unsaturated corotation
torque. At later times, here shown at t = 200 Ty, only the Lindblad
contributions due to the spiral arms remain.

to a total positive torque. In our situation of an isothermal disk
this comes about because of a nonvanishing vortensity gradient
across the horseshoe region, which generates a strong positive
corotation torque (Goldreich & Tremaine 1979) in this case. The
vortensity, which is defined as vorticity divided by surface den-
sity, is given here by

(Vxw):

=%
As can be seen from this definition, the radial gradient of ¢ is
ocr~3/2 for a constant X disk, which leads to the strong vortensity-
related torque. However, owing to the different libration speeds,
the material within the corotation region mixes, and the gra-
dients of potential vorticity and entropy are wiped out in the
absence of viscosity (Balmforth & Korycansky 2001; Masset
2001). Consequently, the torques drop again and oscillate on
timescales close to the libration time towards a negative equilib-
rium value, which is given by the Lindblad torques generated by
the spiral arms. This saturation of the vortensity-related torque
related torque has been analyzed, for example, by Ward (2007)
through an analysis of streamlines within the horseshoe region
for an inviscid disk, and later through 2D hydrodynamic simula-
tions by Masset & Casoli (2010) and Paardekooper et al. (2011).
The strength of the (positive) corotation torque depends strongly
on the smoothing of the gravitational potential. For the chosen
small € = 0.1 this results in a positive total torque. For more re-
alistic values of € ~ 0.6-0.7, 'y, will usually be negative, see
Sect. 5.2.

To study the spatial origin of the torques we analyzed the
radial torque density for the standard model. In Fig. 3 the
torque density dI'/dm, according to Eq. (11) is displayed vs.
radius in units of (dI'/dm),. Two snapshots are displayed, one
at t = 30 T,y where the torque is fully unsaturated and one at
t = 200 T, where the torque is saturated. We note that, for the
torque calculation, we used a tapering function near the planet to
avoid contributions of material that is bound to the planet, or is
so close that it yields large torque fluctuations due to numerical
discretization effects. We use the form as given in Crida et al.
(2008) which reads as

s —r +1 -l
0.1r, ’

13)

fs) = [exp (— 14)

1.2
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Fig.4. Normalized azimuthal density profile of the inner and outer
wakes at radial distances +4/3H away from the planet at 30 T, for
the isothermal 2D standard model. The coordinates x and y refer to lo-
cal Cartesian coordinates, see Eq. (15). The “plus” sign in the x-axis
label refers to the blue curve at r, — 4/3H, and the “minus” sign to the
red curve at r;, +4/3H. The upstream side of the wake is to the left for
both curves.

with a tapering length of . = 0.8 Ry. Here, Ry = ((1/3)1/351p is
the Hill radius of the planet. Such tapering is particularly useful
for massive planets that form a disk around them (Crida et al.
2009). Around lower mass planets, with M < 0.6, circumplane-
tary disks do not form (Masset et al. 2006) and a large tapering is
not required. Indeed, we found that for values of r; in the range
of 0.4-1.0 Ry there is not a large difference in the measured
torques in equilibrium. For example, the variations in the total
torque in Fig. 2 are less than 5%.

The torque density in the fully saturated phase, at ¢t =
200 T, (Fig. 3, blue line), is positive inside of the planet and
negative outside of the planet. The positive contribution of this
Lindblad torque comes from the inner spiral arm, and the nega-
tive part from the outer one. The distribution at the earlier time,
t = 30 Top, shows an additional contribution and spike just in-
side of the planet. This part is due to the horseshoe drag, which
is subject to the described saturation process.

To study the wake properties generated by the planet, we
used here a quasi-Cartesian local coordinate system centered on
the planet to allow direct comparison to previous linear results.
Specifically, we define

x=(r—-rpy) and y=(¢—prp. (15)

In Fig. 4 the relative density perturbations for the inner and outer
wakes are shown along the azimuth. They are displayed at a
radial distance of x = +4/3H from the location of the planet.
For the normalization of the perturbed density we first define the
thermal mass of the planet

3

P

My =|=%| =hM,, 16
th ( Go )p (16)
where the quantities have to be evaluated at the location of the
planet. Then, the ratio of the planet mass to the thermal mass is
given by
M, q

My
Now, we follow Dong et al. (2011b) and scale 6 = X(¢) — Xy by
the planet mass (in units of M) and normalize by x/H.

= M. 17
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RH2D
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=3
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Fig.5. Radial torque density of the 2D standard-problem in units of
(dI'/dm)g at 30 Ty, for different codes at the standard resolution.

Owing to the radial temperature variation and the cylindrical
geometry, the inner and outer wake differ in their appearance.
However, the general shape and magnitude are very similar to
the linear results that have been obtained for the local shearing
sheet model (see Goodman & Rafikov 2001; Dong et al. 2011b).
Differences in the amplitude are presumably due to a different
normalization. Because our results (in all simulations and with
all codes) are consistently by a factor of 3/2 greater than those
of Dong et al. (2011b), we suspect that they might have used the
normalization of My, as given by Goodman & Rafikov (2001),
which differs exactly by this factor. At the displayed distance
from the planet, the wake is expected to be in the linear regime,
which results in a smooth maximum. For this reason we do not
expect a strong dependence on the numerical resolution. In the
following, we only use the outer wake to check for possible vari-
ations due to setup, numerical methods, and resolution.

4. Testing numerics

To validate our results and demonstrate that the FARGO-
algorithm yields accurate results, we varied the numerical setup,
and used several different codes on the same physical problem.
In this section we describe our studies in more detail.

4.1. Using different codes on the 2D standard model

To support our findings on the torque density and wake form
and to demonstrate the accuracy of the used codes, we ran the
2D standard model in the isothermal and the adiabatic version
using all of the above codes. All simulations use the FARGO-
setup and were run in the same (standard) resolution. The
isothermal results for the torque density are shown in Figs. 5
and 6, where the latter displays an enlargement of the first.
Clearly, the results agree extremely well between the different
codes. This includes the standard Lindblad torques, as well as the
detailed structure of the corotation torque. The FARGO3D code
was used in its 2D version for this test.

Recently, it has been shown by Dong et al. (2011b) and
Rafikov & Petrovich (2012) that the torque density I'(r) changes
sign at a certain distance from the planet in contrast to the stan-
dard linear results (Goldreich & Tremaine 1979). Here, we show
that this effect is reproduced in our simulations, for all codes. In
Fig. 6 we show that this reversal occurs at a distance r. ~ 3.1H
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Fig. 6. Radial torque density in units of (dI'/dm), at 30 T for the
standard setup for various code. This is an enlargement of Fig. 5.
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Fig.7. Normalized azimuthal density profile of the outer wake at the
radius r, +4/3H at 30 Ty, for different codes at the standard resolution.

away from the planet in good agreement with the linear results
of Rafikov & Petrovich (2012). Again, all codes agree well on
this feature, with only FARGO3D showing small deviations.

The corresponding wake form at x = r, + 4H is displayed in
Fig. 7. It is identical for all four cases, which shows the consis-
tency and accuracy of the results and codes.

4.2. The FARGO treatment

In Fig. 8 the wake form is analyzed for three different numeri-
cal uses of the FARGO-algorithm on the 2D standard setup. The
first, a red curve, corresponds to the standard reference case us-
ing a corotating coordinate system and the FARGO-algorithm.
For the second, the blue curve, the simulation was performed in
the inertial frame and using FARGO. In the mechanism of the al-
gorithm, the quantities in each ring are first shifted according to
the overall mean angular velocity of the ring, and then advected
using the residual velocity (Masset 2000a). As a result, theo-
retically it should not matter whether the coordinate system is
rotating or not. This is exactly what we find in our simulations,
since the blue curve is very similar to the red one. Small dif-
ferences can be produced by the planetary potential, which is
time dependent in the latter case, as the planet is moving, and
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Fig.8. Normalized azimuthal density profile of the outer wake at the
radius r;, +4/3H at 30 Ty, for the code RH2D using different timesteps
and a non-rotating frame.

— 182 x 1418

P I R A A N N 2562004 ||
—————— 512 % 4008
1024 x 8016
gr——+—F——F— e 2048 x 16032 |1
s 4096 x 32064
g 06 1
3
g 04t 4
<
2
2 02f .
=
=
O \\_ 1
02 b \\ 1
04 | L | | I
% 4 2 0 2 4 6

(IyVH) - 3 (x/H)>/4

Fig.9. Normalized azimuthal density profile of the outer wake at the
radius r,+4/3H at 30 T, using the FARGO-code at different resolutions.

it lies at different locations with respect to the numerical grid.
Also, the number of timesteps used until 30 7y, are identical
for two runs (12 866 steps). The third, the green curve, corre-
sponds to a model in the corotating frame without using the
FARGO-algorithm. Because of the small timestep size in this
case, over ten times more timesteps had to be used in this case
(137750 steps). Nevertheless, the wake form is identical. These
runs indicate that the FARGO-algorithm captures the physics of
the system correctly. At the same time, it comes with a much
larger timestep, thereby much reducing the computational cost.
This also applies to modern Riemann-solvers such as PLUTO, as
shown in Sect. 5.4.

4.3. Testing numerical resolution

To estimate the effect of numerical resolution, we ran the
2D standard model using gridsizes ranging from 182 x 1418 all
the way to 4096x32 064. This is equivalent to grid resolutions of
H/10 to H/256. As shown in Fig. 9, the results are nearly identi-
cal at all resolutions. The first two, lower resolution cases have a
slightly lower trough just in front of the wake and a smaller am-
plitude. As discussed later in Sect. 6, the results for the different

0.004 F T T — ; . -

MMy BE/Eg) / (/)"

6 4 2 0 2 4 6
(Iyl/H) - 3 (x/H)2/4
Fig. 10. Normalized azimuthal density profile of the outer wake at the

radius r,+4/3H at 30 Ty using the FARGO-code with different Courant-
numbers (CFL). The physical setup differs slightly from the standard
problem and is described in Sect. 4.4. In the upper panel the differ-
ences of the individual runs with respect to the standard, CFL = 0.5, are
displayed.

resolutions are this similar because at this distance to the planet
the wake is in the linear regime and has not steepened to a shock
wave yet. The resolution requirements at the shock front is ana-
lyzed in Sect. 6.

4.4. Testing timestep and stability

Finally, we would like to comment on possible timestep limita-
tions due to the gravitational force generated by the planet. In
our simulations we never found any unsteady evolution when
using orbital advection. In contrast, the results of Dong et al.
(2011b) indicate an unsteady behavior for longer timesteps.
They attribute possible instabilities to a violation of an additional
gravity-related timestep criterion and advocate using very small
timesteps, which would render the FARGO-algorithm inapplica-
ble in very many cases.

To test this statement specifically, we performed a suite
of simulations on a very similar setup to the one used by
Dong et al. (2011b) in their Fig. 12. Owing to the difficulty of
RH2D and FARGO to use a Cartesian local setup, we used here
a computational domain exactly as before with a gridsize of
1024 x 8016, which gives a resolution of 64 gridcells per scale-
height H. The planet mass is 1.33 Mg, Which is equivalent
to a mass ratio g = 4 X 107% or M, = 32 x 1072 My,. For
the potential smoothing we chose € = 0.08H, which yields a
planetary potential that is nearly identical to that of Dong et al.
(2011b). In Fig. 10 we display the results (using FARGO) for dif-
ferent timestep sizes as indicated by the corresponding Courant-
number. The CFL = 0.5 case corresponds to our standard case.
We made the timestep longer (CFL = 0.8) as well as shorter,
down to CFL = 0.05. All cases yield identical results and do not
show any sign of instability. In the upper panel the differences
of the individual runs with respect to the standard, CFL = 0.5,
are displayed. The performed runs with the RH2D, FARGO, and
FARGO3D codes yield identical results, again with no signs of
unsteady behavior. Here, FARGO3D was run in the 2D version,
both with the setup as indicated above and with the local setup
of Table 3, with resolution /2/64. For all our runs, past the first
two orbits the wake profile at x = 1.33H has achieved conver-
gence to better than the 1% level, regardless of the value of the
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Fig.11. Total torque I'yy, in units of I'y (see Eq. (12)), acting on the
planet vs. time. Shown are the 2D standard model (red) and a globally
isothermal case (blue), with a different density profile, such that the
potential vorticity gradient vanishes.

timestep size. In Appendix B we reanalyzed possible stability
requirements in the presence of gravity and find indeed stability
for the timestep sizes used with the FARGO-algorithm.

For these runs we switched off the physical viscosity com-
pletely. We find that the result for the wake displayed in Fig. 10
is, in fact, due to the special scaling of the axes, identical to
that of the standard problem as shown in the previous plots.
Additionally, we have not seen any sign of unsteady behavior.
All of this indicates that our low value of the kinematic viscos-
ity, v = 1078 (in dimensionless units), is essentially negligible.

5. Using alternative setups

To illustrate how variations in individual properties of the stan-
dard model influence the outcome, we performed additional sim-
ulations, which are described in this section.

5.1. Different radial stratification

As shown above, in the initial evolution after embedding the
planet the total torque is positive owing to a strong positive
horseshoe drag. The strength of this effect depends on the radial
gradients of potential vorticity, entropy (for simulations with en-
ergy equation), and temperature (Baruteau & Masset 2012). To
minimize this effect, we present an additional, alternative setup
where the gradients of potential vorticity (vortensity) and tem-
perature vanish exactly. For this reason, we chose a setup with
a density gradient X o« 7~/ and T = const. The time evolution
of the total torque for this model is displayed with the standard
case in Fig. 11. Clearly, after the short switch-on period of the
planet mass, the total torque is negative and constant throughout
the evolution. This demonstrates that, for this density profile,
T o 732, which resembles (coincidently) the minimum mass
solar nebula, there is indeed no corotation torque present, and
the flow settles directly to the Lindblad torque. The final value
for the total Lindblad torque differs slightly for the two models
due to the different gradients in density and temperature. We note
that for this setup, with a vanishing vortensity gradient, there are
also no vortices visible during the initial evolution.
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Table 2. Numerical parameter for the 3D standard model.

Parameter Symbol Value
smoothing radius Fom 0.25Ry
radial range Riin — Rinax 0.6-1.4
angular range Prmin — Dmax 0-2r
meridional range Omin — Omax 82°-90°
number of gridcells N, X Ny x Ny 256 x 2004 x 39
spatial resolution Ar H/16
damping range at Ry, 0.6-0.7
damping range at Ry, 1.3-14
ol [ ——ry

2D: integrated force

0.05

dI/dm / (dT/dm),
=3

-0.05

(r—ap)/H

Fig.12. Radial torque density in units of (dI'/dm)y at 30 Ty, for 2D
and 3D simulations of the standard setup. The red curve corresponds
to that in Fig. 3, the blue line to a 2D model with a vertical integrated
gravitational force, and the green to the 3D model (using NIRVANA).

5.2. Comparing 2D and 3D simulations

The setup of the described standard case reduces the physical
planet-disk problem to two dimensions. However, even though
the disk may be thin, corrections are nevertheless expected be-
cause of its finite thickness. We investigated this by performing
full 3D simulations using the same physical setup as in the stan-
dard 2D model. The treatment of the inertial forces is outlined
in Appendix C. The additional numerical parameters are listed in
Table 2. The spatial extent and numerical resolution are identical
to the 2D model. The initialization of the 3D density was chosen
such that the surface density is constant throughout. In the ver-
tical direction the density profile was initialized with a Gaussian
profile as expected for vertically isothermal disks. The temper-
ature is constant on cylinders. For the gravitational potential of
the planet we chose the so-called cubic-form (Kley et al. 2009),
which is exact outside a smoothing radius ryy, and smoothed by
a cubic polynomial inside of ry,,. The advantage of this form lies
in the fact that in 3D simulations the smoothing is required only
numerically, and the cubic potential allows us to have the ex-
act potential outside a specified radius, here rgy,. To calculate the
torque the same tapering function (Eq. (14)) as has been used
before.

In Fig. 12 we show the normalized torque density dI'/dm
for 2D simulations in comparison to a full 3D simulation us-
ing the same physical setup. Due to the finite vertical extent, the
torques of the 3D model are substantially less than for the corre-
sponding 2D setup. As Miiller et al. (2012) have shown recently,
this discrepancy can be avoided by performing a suitable vertical
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Fig. 13. Normalized azimuthal density profile of the outer wake at the
radius r, +4/3H at 30 Ty for 2D and 3D simulations of the standard
setup. The color coding is identical to Fig. 12.

averaging procedure of the gravitational force. Specifically, the
force acting on each disk element in a 2D simulation is calcu-
lated from the projected force that acts in the midplane of the
disk. Denoting the distance of the disk element to the planet
with s, the force density (force per area) is given by

Fo(s)=— p%dz:—GMs Ldz
P Js P 2+ Zz)% 8

(18)
where ¥, is the physical 3D potential generated by the planet.
For the vertical density stratification, a Gaussian density pro-
file can be assumed for a vertically isothermal disk as a first
approximation. However, the change in the vertical density as
induced by the planet has to be taken into account. The results
using this averaging prescription in an approximate way (Miiller
et al. 2012) is also shown additionally in Fig. 12. The overall
behavior and magnitude is very similar to the full 3D results.
For comparison, a 2D model using a fixed € = 0.7H (instead of
0.1H of the standard model) for ¥2" yields similar amplitude as
the full 3D model but a slightly dilgferent shape (see Fig. 14).

In Fig. 13 we show the corresponding wake profile for the
2D and 3D setups. For the 3D case, the surface density is ob-
tained by integration along the 6 direction at constant spherical
radii, R. Here, the wake amplitude of the full 3D model is again
reduced in contrast to the flat 2D case, with € = 0.1. The 2D
model using the integrated force algorithm yields here again a
better agreement. The 3D results displayed in these plots were
obtained with NIRVANA, but using the new code FARGO3D yields
identical results, as demonstrated in Fig. 14.

These results demonstrate clearly that the e-parameter in the
2D planetary potential (‘PgD) cannot be chosen arbitrarily small,
but has to be similar to the scale height H of the disk. Near the
planet, a reduction is required to account for the reduced thick-
ness, see Miiller et al. (2012). As a result, the value of e = 0.1 H
as chosen for the standard setup is too small to yield good agree-
ment with vertically stratified disks, and serves here only as a
numerical illustration to connect to previous linear and numer-
ical results (Goodman & Rafikov 2001; Dong et al. 2011b). As
shown by Miiller et al. (2012), a value of € = 0.7 H yields similar
amplitudes to the 3D case, in particular for the Lindblad torque,
see Fig. 14. However, as can be seen from the figure, for the
e-potential the relative strengths of the inner and outer torques
differ from the full 3D and the 2D vertically integrated case.

—— NIRVANA: 3D

dI/dm / (dT/dm),

(r—al,)/H

Fig. 14. Radial torque density in units of (dI'/dm), at 30 Ty, for the
3D and 2D simulations of the standard setup. Compared are two 3D
simulations (using NIRVANA and FARGO3D) with a 2D simulation, using
e=0.7.

Table 3. Setup for the alternative quasi-local model.

Parameter Symbol Value
mass ratio q=M,/M. 32x1078
aspect ratio h=H]|r 0.01
nonlinearity parameter M = ¢'/*/h 0.32
potential smoothing & 0.06H
radial range Fmin — Fmax 0.94-1.06
angular range Pmin — Pmax~~ —0.32-0.32 rad
number of gridcells N, X Ny 384 x 2048
spatial resolution Ar H/32

Notes. The parameters have been chosen according to Dong et al.
(2011b).

5.3. Using a quasi-local setup

To demonstrate the agreement of our simulations with previ-
ously published local results, e.g. by Dong et al. (2011b,a),
we changed the computational setup, which is listed briefly in
Table 3. Despite using cylindrical coordinates, the setup is in
fact identical to a model used by Dong et al. (2011b). The very
small thickness H of the disk and the small planet mass min-
imize curvature effects and make the problem more local. The
nonlinearity parameter for this local model is M = 0.32, which
is similar to the standard case. This quasi-local model was run in
a 2D and 3D setup using FARGO3D. The 3D case was run again
in spherical polar coordinates with the same spatial resolution
as in the 2D setup of Table 3. For the gravitational smoothing a
length of two gridcells was chosen, which is equivalent here to
€ = 0.06 H. For the 2D simulations we used RH2D and FARGO,
while for the 3D simulations we used NIRVANA and FARGO3D.
All these codes are based on the standard ZEUS-method and are
enhanced with the FARGO-speedup, see Appendix A for details.

In Fig. 15 we compare the torque density of the 2D stan-
dard model to the quasi-local model. In a local setup any corota-
tion torques saturate very quickly, possibly due to the very small
(quasi-periodic) domain in the angular direction. To match this
condition, the standard model is shown here at 2007, when
the corotation torques have nearly saturated. The overall shape
and magnitude of the two models is qualitatively in very good
agreement, which supports the scaling with (dI'/dm)y. For the
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Fig. 15. Radial torque density in units of (dI'/dm)y. The standard setup
with ¢ = 6 X 107°, 4 = 0.05 at 200 Ty, is compared to the quasi-local
model with ¢ = 3.2 x 1078, 2 = 0.01 at 30 Ty. The local calculation
utilizes the FARGO3D-code in the 2D setup.

—— 2D: standard (Table 1)
b ——— 2D: local (Table 3) 1
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Fig. 16. Normalized azimuthal density profile of the outer wake at the
radius r, + 4/3H at 30 Ty, Compared is the standard setup with g =
6 x 107, h = 0.05 to the quasi-local model with ¢ = 3.2 x 1078,
h=0.0l.

local models a symmetric shape with respect to the location of
the planet is expected, while for standard model the outer torques
are greater in magnitude. This can explain some differences.

In Fig. 16 we compare the wake form of the standard model
(as shown in Figs. 4, 13) to the more local alternative model for
the 2D setup. The two curves agree very well indeed, despite
the huge difference in parameters for the planet mass and the
disk scale height. We attribute the small differences to curvature
effects. We note that, thanks to the local character of this setup,
the curves for inner and outer wakes at r, + 4/3 look identical
for the quasi-local model.

In Fig. 17 we compare the torque density of the 3D standard
model to the 3D quasi-local model. As in the 2D case, now the
overall shape and magnitude of the two models are again quali-
tatively in good agreement. The local model shows a symmetric
shape with respect to the location of the planet, as expected. For
both cases a similar reduction of amplitude is seen in comparison
to the 2D case.

In Fig. 18 we compare the wake form of the standard model
to the local alternative model for the full 3D setup. This time
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Fig. 17. Radial torque density in units of (dI'/dm), for full 3D models.
Compared is the standard setup with ¢ = 6 x 107, & = 0.05 at 30 Ty,
(using NIRVANA) to the quasi-local model with ¢ = 3.2x 107, 1 = 0.01
at 30 Ty, (using FARGO3D).
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Fig.18. Normalized azimuthal density profile of the outer and inner
wake at the radii r, £ 4/3H for full 3D models. Compared is the stan-
dard setup with g = 6 x 107, & = 0.05 at 30 Ty, for the outer and inner
wakes, to the quasi-local model with ¢ = 3.2x 1078, 4 = 0.01 at 30 Ty,
only at the outer wake.

the two curves for the outer wake again agree very well, despite
the huge difference in parameters. The profile for the inner wake
of the standard model deviates from the outer wake as for the
previous 2D setup. For the local model, inner and outer wakes
are again identical, as expected.

5.4. Adiabatic simulations

The assumption of isothermality is only satisfied approximately
in protoplanetary disks. Because cooling times can be long, it
may be more appropriate to take the energy equation into ac-
count. To study the influence of the equation of state on the out-
come, we performed purely adiabatic simulations, which solve
the energy equation (Eq. (4)), together with an ideal equa-
tion of state. The result of such an approach is presented in
Fig. 19, where the radial torque density is displayed for the stan-
dard isothermal model, along with two adiabatic models using
v = 1.4 and 1.01. The adiabatic results require rescaled units be-
cause the adiabatic sound speed is greater than the isothermal
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Fig.19. Radial torque density in units of (dI'/dm), (see Eq. (11)) at
30 T, for the 2D standard model for an isothermal and an adiabatic
setup using ¥ = 1.01 and y = 1.40. The units for (dI'/dm), and H have
been changed for the adiabatic runs, such that H — yH.

one by a factor +fy. As a result, the pressure scale length is in-
creased by the same factor, which enters (through H) the units
for (dI'/dm)o and I'y. Obviously, there is a huge difference in the
horseshoe torque between isothermal and adiabatic runs, while
the Lindblad contributions are similar, once correctly scaled. The
adiabatic runs yield similar results for the two y values through-
out. The strong torque enhancement in these adiabatic simu-
lations comes from the entropy-related part of the corotation
torque, which is driven by a radial gradient of entropy across
the horseshoe region (Baruteau & Masset 2008).

This result is interesting because sometimes an isothermal
situation is mimicked with an adiabatic simulation using a
y-value very close to unity. In particular, this may be required
by those Riemann solvers that do not allow isothermal condi-
tions to be treated. Our results show that such an approach has
to be treated very carefully, as shown already by Paardekooper
& Mellema (2008). They argue that compressional heating near
the planet plays an important role in determining the torques.
Additionally, in an adiabatic situation the entropy is conserved
along streamlines, which is not the case for isothermal flows.
Reducing the value of y even further yields the same results. In
general, an adiabatic flow with y — 1 approaches truly isother-
mal flow only in the the case of a globally constant temperature.

After a few libration times the horseshoe region is well
mixed, and the entropy and potential vorticity gradients across
the horseshoe regions are wiped out, so the horseshoe torques
disappear and the Lindblad contributions remain. This situation
is displayed in Fig. 20 for an evolutionary time of 500 orbits.
Now, the isothermal model agrees well with the adiabatic one.

We also applied several codes on the adiabatic setup. In
Fig. 21 we display the same results for the adiabatic situation
using y = 1.01. Again, all codes agree very closely, even though
now the numerical methodology is vastly different, because
some use a second order upwind scheme (RH2D and FARGO)
while PLUTO uses a Riemann-solver. Only very near to the planet
do the results differ slightly.

6. Shock formation

For the damping of the wake, it is important where the tran-
sition to a shock occurs. As a shock indicates a discontinu-
ous change in the fluid variables, numerical codes often have

0.08 T T T T T T T
ARy isothermal

adiabatic: y=1.40 ||
adiabatic: y=1.01
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-0.08
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Fig.20. Radial torque density in units of (dI'/dm), (see Eq. (11)) at
500 T,y for the 2D standard model for an isothermal and an adiabatic
setup using ¥ = 1.01 and y = 1.40. The units for (dI'/dm), and H have
been rescaled as in Fig. 19.

dI/dm / (dT/dm),

(r—ap)/H

Fig.21. Radial torque density in units of (dI'/dm), (see Eq. (11)) at
30 T for the adiabatic standard model using an ideal equation of state
with y = 1.01. Three different codes have been used, RH2D and FARGO
are 2nd-order upwind schemes and PLUTO is a Riemann solver.

difficulty resolving the structure in detail. To analyze this, we
plot in Fig. 22 the maximum density in the wake as a function
of radius for various resolutions of the computational grid. At
the radius of the planet, the density obviously has its maximum,
and it drops on both sides. The previous curves for the wake
profile were taken near the minimum value of the density max-
imum. Here, all resolutions show an identical maximum of the
wake amplitude. As we demonstrated in Sect. 4.3, the form of
the wake thus does not depend very strongly on resolution at a
distance of |x| = 4/3H.

Farther away from the planet, beyond a distance |x| > 2H the
curves begin to differ for the various resolutions. This clearly in-
dicates the nonconvergence of the simulations. We attribute this
to the formation of a shock wave. In fact, at a distance x; ~ 2H
from the location of the planet, the speed of the wake becomes
supersonic with respect to the local Keplerian flow. The crite-
rion as given by Goodman & Rafikov (2001) indicates a shock
formation at a distance of ~2.9H from the planet for our nonlin-
earity parameter, M = 0.36, which consistent with our findings.
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Fig.22. Maximum of the density in the spiral wake as a function of
radius for the 2D isothermal standard model at 30 T,. Different nu-
merical resolutions are shown using FARGO.

At very high spatial resolutions, i.e. above a grid resolution of
64 gridcells per scale height (1024 x 8016), the curves begin
to converge in the shock region. Far away from the planet, the
damping action of the boundary condition begins to set in be-
yond |x| = 6H (r = 1.3), and the curves coincide again.

In Fig. 23 the azimuthal density profile is shown at a radial
location r = r,+5H = 1.25. At this location the wake is expected
to have turned into a shock wave. Owing to the trailing nature of
the wake, we define the variable y here slightly different from
before through

y:(¢_¢p)r~

From the figure it is obvious that the wake has turned into a
shock at this location. At our standard resolution (256 x 2004)
there is no indication of any shock front. The overall form is
very smooth with the presence of large oscillations behind the
wake. With increasing numerical resolution the shock becomes
resolved better and better, but only at the very highest resolu-
tion does the wake turn into a discontinuous jump. The oscilla-
tions behind the front diminish and move closer to the front with
increasing resolution. Numerical experiments show that these
oscillations can be damped out by increasing the strength of vis-
cosity. However, this also smears out the shock front. It has been
suggested that these oscillations stem from the chosen numerical
scheme and occur for very weak shocks (Rein 2010).

7. Summary

Through a series of 2D and 3D simulations using different com-
putational methods and codes we have explored in detail the
numerical requirements for studies of the planet-disk problem.
In our analysis we focused on the torque density acting on the
planet and the structure of the wake generated by the planet.
With respect to the applicability of the fast orbital advection
algorithm, FARGO, we have shown that it leads to consistent
numerical results that agree extremely well with non-FARGO
studies. The achievable gain in speed can be significant. For the
setup used here we found a speed-up of more than a factor of 10.
The method works well in the presence of embedded planets,
does not show any signs of unsteady behavior, and can be ap-
plied in two or three spatial dimensions. Since it is also appli-
cable in conjunction with magnetic fields, new possibilities for
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Fig.23. Normalized azimuthal density profile of the outer wake at the
radii r, + SH at 30 Ty, for the 2D isothermal standard model. Different
numerical resolutions are shown.

numerical studies of turbulent accretion disks open up (Mignone
et al. 2012).

We extend previous treatments of the gravitational potential
of embedded planets (Masset 2002; Miiller et al. 2012) to very
low-mass planets in extremely thin disks. We confirmed that, for
physical reasons, the planetary potential has to be smoothed in
2D simulations with about € = 0.6 H — 0.7 H. Models where the
gravitational force is obtained directly through a vertical inte-
gration always yield reasonable agreement with full 3D simula-
tions. The use of very short smoothing lengths below € = 0.6 H
in 2D simulations is not recommended, because then the forces
in the vicinity of the planet are strongly overestimated, which re-
sults in an unphysical enhancement of the torque and wakes that
are too strong.

Through a careful resolution study, we showed that the
smooth wake structure at distances below about 2 H of the planet
can be resolved well and consistently, already with the very low
resolution of 8 to 16 cells per scale height. The results are clearly
converged for 32 gridcells per H. For longer distances from the
planet, the spiral wake turns into a shock wave, and much higher
resolution may be required. We found that around a resolution of
about 100 gridcells per H convergence can be achieved. Because
this high resolution is only required near the spiral shocks and
the flow is relatively smooth outside, numerical methods that
adaptively refine this crucial region may be the method of choice
in the future.

For adiabatic flows we confirmed earlier findings
(Paardekooper & Mellema 2008) that the unsaturated horseshoe
drag shows a strong deviation from the isothermal case. Using
the appropriate scaling, the adiabatic corotation torques are
independent of y and do not converge to the isothermal case,
even in the limit y — 1. As a result, the procedure of modelling
the isothermal case with simulations of y close to unity has to
be treated with care. In the final saturated case, where all the
corotation effects have been wiped out, isothermal and adiabatic
results agree perfectly, once the correction to the sound speed
has been applied.

In Appendix B we show that we do not find any additional
timestep criterion due to the planetary potential, and we also do
not notice any unstable evolution in the case of using the or-
bital advection. The question why using the ATHENA-code in-
stabilities occur in the simulations (Dong et al. 2011b) may
be connected to the treatment of orbital advection in that code
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(Stone & Gardiner 2010), which is apparently different from the
implementation in the FARGO-code. One should also notice that
the conservative treatment of Coriolis forces is mandatory in
such simulations to properly conserve angular momentum (Kley
1998).

We have demonstrated that the planet-disk interaction prob-
lem may be regarded as a very good test to validate an implemen-
tation of orbital advection, because it admits a nearly analytic
solution to which a code output can be compared. This is not the
case for simulations of turbulent disks, where no such known so-
lutions exist. We hope that the presented results and comparison
simulations may serve as a useful reference for other researchers
in this field.
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Appendix A: The codes

For our comparison simulations we utilized the following codes:
NIRVANA: In its original (FORTRAN) version a ZEUS-like
second-order upwind scheme (Ziegler & Yorke 1997), with
the option of fixed nested grids and magneto-hydrodynamics
(MHD). It can be used in two or three dimensions and can use
different coordinate systems. Recently, it has been improved to
include radiative transport and the FARGO-treatment (Kley et al.
2009).

RH2D: A 2D radiation hydrodynamics code for different coor-
dinate systems, originally developed for treating the boundary
layer in accretion disks (Kley 1989) and later adapted to the
planet disk problem (Kley 1999).

FARGO: A 2D, special purpose code for disk simulations that
first featured the FARGO-algorithm (Masset 2000a). The code is
publicly available at: http://fargo.in2p3. fr/, and has been
used frequently in planet-disk and related simulations.

FARGO3D: A code based on similar algorithms to the standard
FARGO-code, but aimed at being more versatile, as it includes
Cartesian, cylindrical and spherical geometries, in one, two or
three dimensions, with arbitrary grid limits. Its hydrodynami-
cal core has been written from scratch, and it includes an MHD
solver based on the method of characteristics and constrained
transport. It is parallelized using the Message Passing Interface
(MPI) and a slab domain decomposition. It is intended in the
near future to run distinctly on clusters of CPUs or GPUs,
and it will be made publicly available as the successor to the
FARGO-code.

PLUTO: A multidimensional Riemann-solver based code for
MHD flows (Mignone et al. 2007), which can also be
used in the purely hydrodynamic setup. Additionally, it
has been empowered recently by the FARGO-algorithm
(Mignone et al. 2012). PLUTO is also freely available at
http://plutocode.ph.unito.it.

The first three codes in the list have been used and described
in an earlier code comparison project on the planet-disk prob-
lem (de Val-Borro et al. 2006). There, more massive planets
of Neptune and Jupiter mass embedded in viscous and inviscid
disks have been studied for a large number of codes, the focus
was on the gap structure of the disk, and the total torques have
been analyzed.

Appendix B: Timestep limitation in the presence

of gravity
Numerically, we expect that possibly gravity might cause prob-
lems if, due to the gravitational acceleration g, a parcel of ma-

terial travels more than about half a gridcell of length Ax in one
timestep Ar. This requires the additional gravitational criterion

1/2
A

Atg S(—x) .
g

Using now the smoothed planetary potential of Eq. (6) we find
that the maximum force is given by

(B.1)

GM
Py

Jmax = P (B.2)
with k = 2/3%2 ~ 0.4. To obtain the strongest limitation on At
we substitute gmax in Eq. (B.1) and obtain
28xe\'?
At QM (——n) - B3
G K k H3 ( )
We compare this limit now to the regular Courant condition
when using orbital advection which is given by

A
Bre = =, (B.4)

S
and find

1/2
AZG ~1/2 262
- : B.

ae =M ki B3

If there should be no additional timestep limitation generated by
the gravity then this ratio should be larger than one. Writing now
for the grid resolution Ax = H/N we finally find that

N > 22 M (B.6)
for stability. With k = 0.4, € = 0.1H, and M = 0.36 we find for
the necessary resolution N ~ 10. This is indeed fulfilled even
for our lowest resolution. We point out that this limit formally
only applies to flows without pressure (dust). If around the planet
the envelope is hydrostatic, no additional criterion is required.
Switching on the planetary potential slowly will ensure stability
throughout the evolution as will an initial atmosphere around the
planet (Duffell & MacFadyen 2012).
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Appendix C: The 3D hydrodynamic equations
in a rotating frame

For reference we state here the 3D hydrodynamic equations in a
rotating coordinate frame. In a coordinate system rotating with
the (constant) angular velocity £, omitting pressure terms, any
external forces (eg. gravitation) and viscosity, the momentum
equation reads as

ou

i (C.1)

+uVu = -2Q xu + %V[(er)z].
We now use spherical polar coordinates (r, ¢, 6), where r is the
radial coordinate, ¢ the azimuthal angle, and 6 the usual polar
coordinate measured from the z-axis. NOTE, that we use in this
Appendix the same symbol r for the spherical radial coordinate.
For rotation around the z-axis, = Qe_, the individual equations
are

Ou, 1 . .
O_MI +uVu, = — (ui + uz) +rQsin® 0 + 2u,Q sin 6, (C2)
r
Ouy, Uplty  Uglly, COLO .
—— +uVu, = ——— - —————=2Q(sin u, + cos buy), (C.3)
ot r r
F) . u cotf
o +uVug = e, Ty +2Qu, cos 6 + Q*rsin @ cos 6.
ot r r
(C4)
Introducing the angular velocity w through
uy = rsinf w, (C.5)
we may write for the three equations (C.2—-C.4)
(9 r uZ .
a”t FuVi, = 22 1 rsin? 6 (w + Q) (C.6)
r
Ouy, .
r +uViu, = — (w + 2Q) (sin Qu, + cos buy) , (C.7
Ouy Urllg . 2
E+uVu9:——+rs1n9cose(w+Q) . (C.8)
r

One sees that in the radial and meridional () momentum equa-
tion only the centrifugal part (w + Q) and occurs in the angular
momentum (¢) equation only the Coriolis term (2Q2).

C.1. Conservative treatment of Coriolis terms in the angular
momentum equation

Defining the fotal specific angular momentum

hy = 1*sin? 6 (w + Q) (C.9)
and using the continuity equation (in 3D) we may write
dph,

g’t‘ +V - (pha) =0 (C.10)
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Fig. D.1. Normalized azimuthal density profile of the outer wake at the
radius r,+4/3H at 30 T, Compared is the standard setup with g = 6 x
107%, h = 0.05 and the quasi-local model with ¢ = 3.2 X 1078, 2 = 0.01
to the linear theoretical results of Goodman & Rafikov (2001).

for the angular momentum Eq. (C.7). Expanding /4, this may be
written as

7] [pr sin @ (”w + rQsin 9)]
ot

+V. [prsin@(w + rQsinH)u] =0.
(C.11)

The validity of (C.11) can be easily checked by expanding the
terms and making use of the continuity equation. Then one
arrives at Eq. (C.7). In a numerical method that evolves u,,
Eq. (C.11) should be used to solve the angular momentum
transport conservatively.

Appendix D: Comparing to linear results

After submission of the original manuscript, Ruobing Dong
generously supplied us with the data of the linear results of
Goodman & Rafikov (2001). In Fig. D.1 we compare their data
to our results for the 2D simulations using the standard setup of
Table 1 and the quasi-local setup of Table 3. The overall agree-
ment of our full nonlinear results with the linear case is very
good. The small differences between the results are comparable
to what Dong et al. (2011b) found in their study. We note that
their vertical scaling differs by a factor of 3/2.
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ABSTRACT

Context. Transitional disks are protoplanetary disks around young stars that display inner holes in the dust distribution within a few au
that are accompanied by some gas accretion onto the central star. These cavities could possibly be created by the presence of one or
more massive planets that opened a large gap or even cleared the whole inner region.

Aims. If the gap is created by planets and gas is still present in it, then there should be a flow of gas past the planet into the inner
region. It is our goal to study in detail the mass accretion rate into this planet-created gap in transitional disks and in particular the
dependency on the planet’s mass and the thermodynamic properties of the disk.

Methods. We performed 2D hydrodynamical simulations using the grid-based FARGO code for disks with embedded planets. We
added radiative cooling from the disk surfaces, radiative diffusion in the disk midplane, and stellar irradiation to the energy equation
to have more realistic models.

Results. The mass flow rate into the gap region depends, for given disk thermodynamics, non-monotonically on the mass of the
planet. Generally, more massive planets open wider and deeper gaps which would tend to reduce the mass accretion into the inner
cavity. However, for larger mass planets the outer disk becomes eccentric and the mass flow rate is enhanced over the low mass cases.
As a result, for the isothermal disks the mass flow is always comparable to the expected mass flow of unperturbed disks M, while
for more realistic radiative disks the mass flow is very small for low mass planets (<4 M;,,) and about 50% of Mj for larger planet
masses. The critical planet mass that allows the disk to become eccentric is much larger for radiative disks than for purely isothermal
cases.

Conclusions. Massive embedded planets can reduce the mass flow across the gap considerably, to values of about an order of mag-
nitude smaller than the standard disk accretion rate, and can be responsible for opening large cavities. The remaining mass flow into
the central cavity is in good agreement with the observations.

Key words. accretion, accretion disks — protoplanetary disks — planet-disk interactions — methods: numerical — hydrodynamics —

planets and satellites: formation

1. Introduction

The early stages of planet formation take place in protoplan-
etary disks around young stars and the growing and evolving
planets shape the structure of the disks. One important obser-
vational goal is the detection of signatures that give direct hints
of the presence of planets in such disks. One class of systems
that have been linked to planets are the so-called transitional
disks that show a deficiency in the IR excess in their spectral
energy distribution (SED) and/or show an extended inner hole
in the disk in direct images. In recent years many of these tran-
sitional disks have been discovered, for example by the Spitzer
Space Telescope (Muzerolle et al. 2010; Kim et al. 2013). The
occurrence rate of transitional disks rises monotonically with
age from about 1% at an age of one million years to about 20%
at 8 million years (Muzerolle et al. 2010) and so they are poten-
tially very interesting indicators of the late phase in the planet
formation process. Disks with gaps or completely cleared inner
cavities usually fshow mass accretion onto the star, but with ac-
cretion rates M typically an order of magnitude smaller than that
of a continuous disk (Kim et al. 2013). As there is a clear de-
crease in M from continuous disks over disks with gaps to disks
with cavities, Kim et al. (2013) suggest that the presence of sub-
stellar companions (planets) may be the most likely explanation
of the properties of transitional disks.

Article published by EDP Sciences

Growing planets can open gaps within the disk after accumu-
lating a sufficient amount of mass, and so they constitute a natu-
ral possible explanation (Lin & Papaloizou 1993). Indeed, single
planet simulations of embedded planets could show the forma-
tion of large inner cavities with a reduced mass flow through the
inner hole (Quillen et al. 2004; Varniere et al. 2006). In these
simulations, a massive Jupiter-like planet opened a gap in the
disk and the inner cavity was cleared out rapidly through mass
flow through the inner boundary onto the star. While it was pos-
sible to produce a deep cavity, it has been pointed out that this
may be due to the special outflow boundary condition used at
the inner edge (Crida et al. 2007). Additional clearing of the in-
ner disk in the case of one embedded planet region may also
be mediated by disk photo-evaporation (Alexander & Armitage
2009), which has been investigated in simulations by Rosotti
et al. (2013). Here, the timescale of the evaporation process has
to be chosen such that it is compatible with the observed long
life times of accretion in T Tau disks (Zhu et al. 2011). Because
it is known that multiple planets can clear out much deeper and
wider gaps than single planets (Kley 2000), it has been suggested
that the large gaps and inner cavities may be caused by the pres-
ence of multiple (up to four) planets (Dodson-Robinson & Salyk
2011; Zhu et al. 2011). In this scenario, however, mass transfer
has to occur across the planets and the system has to be dynam-
ically stable over long timescales.

A40, page 1 of 10

69



3. Publications

70

A&A 560, A40 (2013)

The recent observations presented by Mayama et al. (2012)
that show a kind of spiral arm connecting the outer disk through
the cleared area with the star strengthened these hints of plan-
ets within transitional disks. In either case, multiple planets or a
single planet, the important question is, how strong is the mass
flow from the outer disk across the planet into the inner cavity
onto the star?

Even though the option of multiple planets has been sug-
gested as a possible cause for the observed properties of tran-
sitional disks, we will nevertheless focus in this paper of the
effect of single embedded planets in the disk. As pointed out
above, even in the presence of multiple planets it is necessary
for mass to flow from the outer disk into the inner gap region
to provide for the observed accretion signatures onto the star.
Here, we focus on the dynamics of single massive planets that
are surrounded by an outer accretion disk and no inner counter-
part. For smaller mass planets (<M;yp) the mass accretion rate
across a gap has been analysed by Lubow & D’Angelo (2006).
This single planet could be considered the outermost in a multi-
planet system. Our simulations will give important information
about the mass flow from the outer disk into this planetary
system.

We are particularly interested in the amount of mass that
can flow across massive planets into the inner cavity. For this
purpose we have performed a detailed analysis of this pro-
cess considering planets of different masses. Additionally, we
have improved on the thermodynamics of the disk and consider
isothermal as well as radiative disks with and without irradiation
from the central star.

In Sect. 2 we describe our physical and numerical modelling
of the process. The standard model is described in Sect. 3. In
Sect. 4 we present the results of the isothermal runs for dif-
ferent planet masses together with some numerical tests. This
is followed in Sect. 5 by the radiative results that are com-
pared to even more extended models that include irradiation
in Sect. 6.

2. Model set-up

2.1. Physics and equations

We assumed an infinitesimally thin disk around the star and
therefore solved the vertically integrated versions of the hydro-
dynamical equations. For the coordinate system we chose cylin-
drical coordinates (r, ¢, z), centred on the star where the disk lies
in the equatorial z = 0 plane.

The vertically integrated versions of the continuity equa-
tion and the equations of motions in the r — ¢ plane can be
found in Miiller & Kley (2012, Sect. 2.1). Here, we included
an energy equation to allow for a more realistic thermodynamic
treatment of the disk. The vertically integrated energy equation
reads

0
ZAV () = —pV -0+ Q.- 0.
where e is the internal energy density, Q, the heating source
term, and Q- the cooling source term.

The cooling term Q_ is given by the vertically integrated di-
vergence of the radiative flux,

(¢))

4
F=—20Rygp4 )
3pk
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where o is the Stefan-Boltzmann constant, p the density, « the
Rosseland mean opacity and 7 the temperature. It can be writ-
ten as
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Here Q,.q describes the radiative losses from the disk surfaces
which is calculated using suitably averaged opacities (Miiller &
Kley 2012, Sect. 2.1), and the second term corresponds to the
radiative diffusion in plane of the disk; H = ¢,/Qx is the pres-
sure scale height given by the midplane sound speed, ¢, and
the Keplerian rotational angular velocity, Qk, of the disk. The
coefficient of the radiative diffusion in the r—¢ plane is given
by K = - 57873,

The heating term Q. consists of the viscous dissipation Qyisc
and the irradiation from the star Qj..q. The stellar irradiation to
one surface of the disk can be approximated by

4 Rstar 2
Qitrad = o RTmr( p ) 4)
(Giinther et al. 2004), where T, is the effective photospheric
temperature of the star and R, the radius of the star. The fac-
tor B accounts for the non-perpendicular impact of the irradiation
from the star onto the disk.

2.2. Numerical considerations

We used the adiabatic version of the FARGO code (Masset 2000;
Baruteau 2008). For the radiative cooling Qy,q from Eq. (3) we
used our implementation from Miiller & Kley (2012). The ra-
diative diffusion source term is solved separately after the rest of
the source-terms as a flux-limited diffusion equation for the tem-
perature (Kley 1989; Kley & Crida 2008). We solve it implicitly
using a successive over-relaxation (SOR) method. For the stellar
irradiation we implemented the approximation by Giinther et al.
(2004).

The planet in the disk has a Plummer type gravitational
potential to account for the vertical extent of the disk and to
avoid numerical problems of a point-mass potential. We used
a smoothing value of € = 0.6H as this describes the vertically
averaged forces very well (Miiller et al. 2012).

To avoid numerical problems the density cannot fall below a
minimum value of Zgor = 1077 - X, where X is the reference
density at r = rjyp = 5.2au, and the temperature is always at
least Toor = 3 K, which is about the temperature of the cosmic
background radiation.

Because the disk has an abrupt end at the inner edge of the
computational domain, the stellar irradiation produces here arti-
ficial high temperatures because of the large amount of energy
deposited. To account for this we introduced an estimated hor-
izontal optical depth 7 by rescaling the vertical optical depth T
(see Miiller & Kley 2012, Eq. (12)) by the radial extent of the
corresponding grid cell

Tivl —Ti

(hr)i,j '

(6))

Tij = Tij
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where h = HJr is the aspect ratio of the disk. If 7;; < 1 we
set Qiraa = 0. This simple procedure keeps the temperatures
within the gap region regular and allows for standard heating in
the outer parts of the disk.

2.3. Boundary conditions

To maintain a given disk structure in the outer parts of the disk
we implemented the damping mechanism by de Val-Borro et al.
(2006), where specified quantities like radial velocity and angu-
lar velocity are damped towards their initial values. This damp-
ing is described by

4

a (6)

_ &- foR(r)z,
T

where & € {Z,v,,0,, e}, T is the damping timescale, and R(r) is a
linear ramp-function rising from O to 1 from the damping star ra-
dius to the outer radius of the computational domain. To be able
to measure the mass loss rate in our models we only damped the
velocity components within 0.9 rpax to rmax using a time factor
of 1 =3 %1072 21 Ok (Fimax) -

In addition to the damping we used a reflecting boundary
condition at the outer edge so that no mass could escape through
the outer boundary. For the inner edge we used a zero-gradient
outflow boundary condition and measured the amount of mass
lost through this boundary to calculate the mass accretion rate
onto the star. The details of the implementation of the boundary
conditions can be found in Miiller & Kley (2012, Sect. 2.2).

3. The standard model

Our model consists of a planet with a varying mass of 1
to 16 Jupiter masses (M;yp) orbiting a Sun-like star with a semi-
major axis of 1rj,, = 5.2au. The planet is fixed in its circular
orbit and therefore cannot change its orbital parameters during
the simulation. Beyond rj,, the star is surrounded by a gaseous
disk that extends up to rinax = 5 rjup, the outer edge of the com-
putational domain. The inner radius depends on the model and
ranges from 0.7 to 0.9 rjyp, where we chose for the main part
of our models ryi, = 0.7. The gas disk is set up initially as if
there were no planet with a simple surface density power-law
profile of ¥~ and a temperature power-law profile of r~!. To
prevent strong shock waves in the initial phase of the simula-
tions the planet’s mass is ramped up slowly over 50 orbits. All
the models were run for a total simulation time of 5000 planetary
orbits. For the viscosity we used a constant kinematic viscosity
v = 10" cm? s7! that corresponds to an a-value of about 4x 1073
at the reference radius. Table 1 summarizes the parameters of the
standard model.

4. Isothermal simulations

For the first set of simulations we used a locally isothermal
approach keeping the initial temperature stratification through-
out the whole simulation fixed. We assumed a constant aspect
ratio H/r = 0.05, that corresponds to a temperature profile
of r~! with 137K at the inner edge and 24 K at the outer edge
of the disk. Similar simulations have been performed by Kley
& Dirksen (2006) for a constant surface density profile; they
damped the surface density at the outer edge of the disk.

Table 1. Parameters of the standard disk model.

Star mass (M) 1M,

Star radius (Rr) 1Rs

Planet mass (M) 4 Mjp
Adiabatic index (y) 1
Mean-molecular weight (1) 2.35

Surface density (Zo) 888.723 gcm 2
Viscosity (v) 1 x 10" cm?s7!
Initial density profile (Z) o1/

Initial temperature profile (7') ocr”!

Initial disk aspect ratio (H/r) 0.05

Grid (N, X N,) 256 x 1024
Computational domain (rpin = max) ~ 0.7-5 rjup
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Fig. 1. Azimuthally averaged radial profile of surface density of the
isothermal set-up after 5000 orbits with a planet of M, = 4 M.

4.1. Inner radius dependency

In this first set of simulations, a fixed planet mass of M, = 4 M;y,
was assumed, while the location of the inner radius was varied
to check its influence. The L; point lies at about 0.896 au and
so all radii were chosen in such a way that the Roche-Lobe of
the planet is fully included in the computational domain. Kley
& Dirksen (2006) showed, that for planets with M, > 3 M,
the disks become eccentric after a very long time (>1000 orbits).
Figures 1 and 2 show the azimuthally averaged surface density
and disk eccentricity profiles after 5000 orbits for M, = 4 My,
and five different inner radii. For the eccentricity we calculated
first a mass weighted average of each grid cell and then averaged
over the azimuthal direction. We note that the models are in dif-
ferent phases of their eccentricity oscillation as shown in Fig. 5.
The gap opened by the planet at r = 1 rjy, is clearly visible and
the gas in the vicinity has eccentric orbits with an eccentricity of
up to 0.22. The eccentricities for all models are very similar. The
model with the smallest inner radius shows a slightly smaller ec-
centricity just outside of the planet inside the gap. This does not
influence the mass flow across the planet, however. The eccen-
tricity can also be noticed in the surface density plot show in
Fig. 3. In this r-¢ plot, circular motions are represented by hor-
izontal lines. However, the gas at the outer edge of the gap has
wavelike perturbations which visualize the eccentricity of its or-
bit. This is similar to Fig. 1 of Kley & Dirksen (2006) where the
outer disk also becomes eccentric.

These quasi-stationary states of the disks need a rather long
time to establish. Figure 4 shows the disk mass evolution and
Fig. 5 the disk eccentricity evolution of the disks over the total
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Fig. 2. Azimuthally averaged radial profile of eccentricity of the isother-

mal set-up after 5000 orbits with a planet of M, = 4 Mjy,.
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Fig. 3. Surface density of the isothermal set-up after 5000 orbits with a
planet of M, = 4 Mj,;, and an inner radius of rpi, = 0.7 jup. The planet
is located at the angle of 7 in this » — ¢ representation.
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simulation time of 5000 orbits. The planet’s mass is ramped up
during the first 50 orbits which is indicated by the dotted verti-
cal line. For about the first 1000 orbits (depending on the inner
radius), the disk evolution is very smooth with a nearly constant
mass content and small eccentricity. After this time the disk be-
comes eccentric and thereby loses more mass through the inner
boundary. The simulations with smaller computational domain
(larger rmin) need some more time to develop the disk eccentric-
ity, but after that display a similar evolution.

Figure 6 shows the normalized mass accretion rate through
the inner boundary of the computational domain using a moving
average over 50 orbits. The normalized mass flow —M(£)/ My (t)
is shown where the actual mass of the disk is used, as the sur-
face density X and therefore the disk mass Mgk cancel out
of the equations in locally isothermal simulations. During the
first ~1000 orbits the mass accretion rate is almost constant at
about 5 X 107° Mi Pj‘uL. However, as soon as the disk becomes
eccentric (see Fig. 5) the mass accretion rate starts to increase as
more mass is crossing the planetary orbit and flows through the
inner boundary at ry;p.

The initial mass loss through the inner boundary is smaller
than the standard mass accretion rate of stationary, viscous ac-
cretion disks as given by

Mg = 37vE0 = 837x 10" gs™' = 1.33%x 107 My a™'

_ -6 -1
= 1.58 X 107°Mo P}, (@)
After the disk becomes eccentric, it seems to converge against
the value, which is indicated by the horizontal dashed line.

We note that all the figures with normalized mass accretion
rates are displayed in units of Pj‘ui), whereas accretion rates are
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Fig. 4. Total disk mass over time for the isothermal set-up with a planet
mass of M, = 4 Mj,,. The vertical dotted line at t = 50 Pj,, marks the
time when the planet has reached its full mass.
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Fig. 5. Global disk eccentricity over time for the isothermal set-up with
a planet mass of M, = 4 M;,,. The vertical dotted line at ¢ = 50 Pj,,
marks the time when the planet has reached its full mass.

usually given in Mg a~!. The 0.7 rjup models have an initial disk
mass of 0.12 M, and because the disks lose less than 20% of
their mass during the simulation time of 5000 orbits (see Fig. 4),
one can get a rough estimate of the mass accretion rate in My a™!
by dividing the values in the figures by a factor of

1 1 11.86a

S i 100.
Maisk 012M® Pjup

=98.86aM;' P! ~

up X ®)
The shapes of the time-dependent curves (Figs. 4—6) appear
to be shifted in time, because the disks with the smaller inner
computational radii need more time to loose the mass in the
outer disk. This leads to a surface density enhancement at the
outer edge of the gap and subsequently to stronger eccentricity
excitations.

4.2. Planet mass dependency

The final state of the simulations are not strongly dependent
on the minimum radius of the computational domain. So we
chose rpin = 0.7rjyp for the following simulations to com-
pare different planet masses. As shown by Kley & Dirksen
(2006), the outer disk turns eccentric for planetary masses larger
than about 3 Mj,,. So we varied the planet mass from 1 Mjy,
to 16 M;,, by doubling it each step. Figures 7 and 8 show again
the radial profiles of the surface density and the eccentricity at
the end of simulation after 5000 orbits. We note that the mod-
els are in different phases of their global eccentricity oscillation
as shown in Fig. 10. For example, in Fig. 8 the 16 M;,, model
shows a maximum eccentricity of about 0.35, whereas the max-
imum eccentricity varies between 0.32 and 0.4 during one pe-
riod of the oscillation. In agreement with the previous results,
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Fig. 9. Total disk mass over time for the isothermal set-up with an in-
ner radius of the computational domain of ryi, = 0.7 rjy,. The vertical

up with a planet mass of M, = 4 Mj,,. The values are plotted as a mov-
ing average over 50 orbits to remove jitter. The vertical dotted line at
t = 50 Pj,, marks the time when the planet has reached its full mass and
the horizontal dashed line is the gas accretion rate given by Eq. (7).
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Fig.7. Azimuthally averaged radial profile of surface density of the
isothermal set-up after 5000 orbits with an inner radius of the com-
putational domain of ryin = 0.7 jyp.
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Fig. 8. Azimuthally averaged radial profile of eccentricity of the isother-
mal set-up after 5000 orbits with an inner radius of the computational
domain of ryin = 0.7 rjyp.

the simulations with the small mass planets, 1 and 2 M, do
not show any significant disk eccentricity. Beyond a planet mass
of about 3—4 M;,, the disk becomes eccentric. As expected, the
more massive planets form a much wider gap in the disk, and the
eccentricity of the disk is much higher for the 4 M;,, and more
massive planets.

In Figs. 9 and 10 the disk mass and disk eccentricity over
time are shown. The average disk eccentricity increases clearly
with the planetary mass. It is easy to see that the higher the
planet mass is, the faster the disk eccentricity starts to grow and
that the mass loss starts earlier. Whereas the previously exam-
ined example of the 4 M;,, planet needs about 1000 orbits until
the disk eccentricity grows, the lower mass planet models do

Fig. 10. Global disk eccentricity over time for the isothermal set-up with
an inner radius of the computational domain of ryi, = 0.7 rj,p. The verti-
cal dotted line at f = 50 Pj,, marks the time when the planet has reached
its full mass.
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Fig. 11. Normalized mass accretion rate over time for the isothermal set-
up with an inner radius of the computational domain of ripin = 0.7 rjyp.
The values are plotted as a moving average over 50 orbits to remove
jitter. The vertical dotted line at t = 50 Pj,, marks the time when the
planet has reached its full mass and the horizontal dashed line is the gas
accretion rate given by Eq. (7).

not develop a noteworthy eccentricity at all. The models with
more massive planets start to develop much large eccentricities
almost instantly. The normalized mass accretion rate is displayed
in Fig. 11. There is no clear trend that with increasing planet
mass the mass accretion rate grows or shrinks because there are
two competing effects. The growing disk eccentricity favours the
mass transport across the planet into the inner cavity of the disk
whereas the larger gap due to the larger planet mass hinders mass
transport through this gap. All the mass accretion rates are of the
order of the typical disk accretion rates from Eq. (7).
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Fig. 12. Azimuthally averaged radial profile of surface density of the
radiative set-up after 5000 orbits with a planet of M, = 4 Mjy,.
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Fig. 13. Azimuthally averaged radial profile of eccentricity of the radia-

tive set-up after 5000 orbits with a planet of M, = 4 M;,,.

5. Radiative simulations

In Sect. 4 we performed locally isothermal simulations and
maintained the initial temperature stratification throughout the
whole simulation. In this section we extend the set-up and also
solve for the energy equation (Eq. (1)), but neglect the radia-
tive diffusion (2H V (KVT) = 0), because in standard accretion
disk models this term is much smaller than the vertical cooling.
Additionally, we neglect stellar irradiation (Qjrag = 0). We redid
the same set of calculations (except for the ryy, = 0.4 rjyp case)
as in the isothermal case for a direct comparison of the results.

5.1. Inner radius dependency

Figures 12 and 13 show the surface density and eccentricity pro-
files at the end of the simulation. Whereas the shape of surface
density profile does not look too different from the isothermal
models shown in Fig. 1, the absolute values within the gap are
about a magnitude smaller. All models display a much lower to-
tal eccentricity. The planets also open a gap that can be seen in
Fig. 14, but compared with to the isothermal case (Fig. 3) the
outer edge of the gap is much less distorted because of the much
smaller eccentricity. Only within the gap does a significant ec-
centricity develop and it is a factor of three to four smaller than
in the isothermal simulations (see Fig. 3).

The global disk eccentricity is more or less constant over
time and it reaches its final, very small value shortly after the
planet has been ramped up. The value of 0.013 at the end of the
simulation is about the same as the value for the first stage in
the isothermal evolution (Fig. 5). Because of the small constant
value of the disk eccentricity there is a small mass loss through
the inner edge of the simulation region, which can be seen in
the disk mass over time simulation shown in Fig. 15. As in the
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Fig. 14. Surface density of the radiative set-up after 5000 orbits with a
planet of M, = 4 M;,;, and an inner radius of ryi, = 0.7 jup. The planet
is located at the angle of 7.
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Fig. 15. Total disk mass over time for the radiative set-up with a planet
mass of M, = 4 M;,,. The vertical dotted line at t = 50 Pj,, marks the
time when the planet has reached its full mass.

isothermal models, the mass loss at the start of simulation is de-
pendent on the exact position of the inner boundary, but for the
rest of the simulation the results are only shifted.

The normalized mass accretion rate shown in Fig. 16 is there-
fore almost constant except for some jitter. For the 0.7 rj,, model
we obtain an average value of (6.604 + 0.008) x 10‘7Pj‘u}J af-
ter 1000 orbits. Assuming a constant disk mass (see Eq. (8)),
this corresponds to a mass accretion rate of (6.680 + 0.008) x
10°Mga~!, which fits very well to observational data (Kim
et al. 2013). Interestingly, it is now much smaller than the value
given by Eq. (7) in contrast to the isothermal simulations, as
the disk is much less eccentric and therefore pushes less mass
through the gap. In addition, the disk can radiate its energy away
and is therefore much cooler which also hinders mass transport
through the gap. In the next section we present a comparison of
the temperatures in the isothermal and radiative disks.

Figure 17 shows a zoomed version of Fig. 14 with a different
scaling of the surface density. Within the gap almost no gas is
left (<0.001 gcm™2), but the spiral arm induced by the planet is
clearly visible.

5.2. Planet mass dependency

For the comparison of different planet masses we again chose
Tmin = 0.7 jyp for the inner boundary. Figures 18 and 19 display
the surface density and eccentricity profiles at the end of the
simulation. As in the isothermal, case the more massive plan-
ets open a deeper gap in the disk. In the isothermal simula-
tions, the disk eccentricity profiles were much larger for masses
M, > 4 Mj,,, whereas in the radiative models this is only the
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Fig. 16. Normalized mass accretion rate over time for the radiative set-
up with a planet mass of M, = 4 Mj,,. The values are plotted as a mov-
ing average over 50 orbits to remove jitter. The vertical dotted line at
t = 50 Pj,, marks the time when the planet has reached its full mass and
the horizontal dashed line is the gas accretion rate given by Eq. (7).
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Fig. 17. Surface density of the radiative set-up after 5000 orbits with a
planet of M, = 4 Mj,, and an inner radius of r;, = 0.7 jup. The planet
is located at the angle of 7.
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Fig. 18. Azimuthally averaged radial profile of surface density of the ra-
diative set-up after 5000 orbits with an inner radius of the computational
domain of ryin = 0.7 rjyp.

case for masses M, > 8 Mjy,. In addition, all eccentricities are
smaller than those seen in the isothermal case. We note again,
that the models are in different phases of their eccentricity oscil-
lation as shown in Fig. 22. Because the temperature profile can
also change during the simulation, Fig. 20 shows the radial tem-
perature profile at the end of the simulation. The temperature in
the gap is rather low and therefore we can see the deeper gaps
for the more massive planets even in the temperature profile. The
maximum temperature is always at the outer edge of the gap and
is dependent on the planet’s mass. The edge temperature is the
highest for the 4 Mj,, and lower for higher and smaller planet
masses.
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Fig. 19. Azimuthally averaged radial profile of eccentricity of the radia-
tive set-up after 5000 orbits with an inner radius of the computational
domain of ryin = 0.7 rjyp.

Temperature [K]

180
160 [
140
120
100

- No planet

80
60
40
20

I I I I I
1 1.5 2 25 3 35 4 4.5 5
Distance [rJ

1
up

Fig. 20. Azimuthally averaged radial profile of temperature of the radia-
tive set-up after 5000 orbits with an inner radius of the computational
domain of ryin = 0.7 rjyp.

The global disk mass evolution is shown in Fig. 21. The mass

loss through the inner edge now depends on two factors. On the
one hand, the mass flow through the gap will be increased by the
disk’s eccentricity as in the isothermal case. The global disk ec-
centricity evolution in time as shown in Fig. 22 is similar to that
of the isothermal case. In the radiative case the planet mass re-
quired to reach a certain disk eccentricity is higher than in the
isothermal case. On the other hand thermal pressure changes
the depth of the gap which may lead to an enhanced mass flow
across the gap. This is also mass dependent as already seen in
Fig. 20. Figure 23 now shows the normalized mass accretion
rate for the radiative models. As both effects interact we can see
no clear trend for the mass accretion rate. For the two lowest
mass planets (1 and 2 Mjy,), the mass accretion rates are highest
because they have the smallest gap size (see Fig. 18). The 4 M,
case has a wider and deeper gap with no disk eccentricity and
shows a much smaller accretion rate. For the 8 Mj,, case the disk
becomes eccentric and the mass flow increases again, while for
the 16 My, case the gap widens substantially such that the mass
flow rate becomes very small.

5.3. Disk mass dependency

In the isothermal models the normalized mass accretion rate was
independent of the disk mass Mg;sx because as the surface den-
sity X cancels out of the equations. Therefore, the mass accretion
rate scales with the same factor as the surface density, for exam-
ple if we decrease the surface density by a factor of 10, the mass
accretion rate decreases by a factor of 10.
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Fig. 21. Total disk mass over time for the radiative set-up with an inner
radius of the computational domain of 1, = 0.7 rjyp,. The vertical dot-
ted line at ¢+ = 50 Pj,, marks the time when the planet has reached its
full mass.
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Fig. 22. Global disk eccentricity over time for the radiative set-up with
an inner radius of the computational domain of 1y, = 0.7 rjup. The verti-
cal dotted line at t = 50 P;,, marks the time when the planet has reached
its full mass.
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Fig. 23. Normalized mass accretion rate over time for the radiative set-
up with an inner radius of the computational domain of ryin = 0.7 rjyp.
The values are plotted as a moving average over 50 orbits to remove
jitter. The vertical dotted line at t = 50 Pj,, marks the time when the
planet has reached its full mass and the horizontal dashed line is the gas
accretion rate given by Eq. (7).

In the radiative case, however, this is no longer true.
Figure 24 shows the normalized mass accretion rates and the
mass accretion rates for different disk masses. The normalized
mass accretion rates (upper panel of Fig. 24) seem to scale in the
wrong direction at first sight. For example, the Mg = 0.12 My
model has a smaller normalized mass accretion rate than the
Mgk = 0.012 My model, but if we calculate the mass accre-
tion rates (lower panel of Fig. 24) with Eq. (8) the trend flips
as expected and the Mgisx = 0.12 M model has a larger mass
accretion rate than the Mg = 0.012 My model, but it does not
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Fig. 24. Normalized mass accretion rate over time (upper panel) and
mass accretion rate over time (lower panel) for the radiative set-up with
an inner radius of the computational domain of 7y, = 0.7, and a
planet mass of M, = 4 Mj,,. The values are plotted as a moving average
over 50 orbits to remove jitter. The vertical dotted line at 1 = 50 Py,
marks the time when the planet has reached its full mass.
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Fig. 25. Total disk mass over time for different set-ups with an inner
radius of the computational domain of 1y, = 0.7 rj,, and a planet mass
of M, = 4 Mj,,. The vertical dotted line at r = 50 Pj,, marks the time
when the planet has reached its full mass.

scale with the same factor as the disk mass. For the rest of the
simulations we used the Mg, = 0.12 M model.

6. Comparison of different models

In this section we extend our models again for radiative diffu-
sion and stellar irradiation and compare the following four dif-
ferent models: the isothermal set-ups from Sect. 4 with a con-
stant temperature stratification throughout the simulation, the
radiative set-ups from Sect. 5 where we solve the energy equa-
tion with viscous dissipation and radiative cooling, the radiative
with diffusion set-ups where we also solve the radiative diffu-
sion in the r—¢ plane, and the radiative with irradiation set-ups
where we include radiative diffusion and stellar irradiation. As
radiative diffusion and stellar irradiation are very costly in terms
of computation time we ran those models only with an inner
radius of rmin = 0.7rj, and planet masses of M, = 4 Mjy,
and M, = 8 Mjyp.

Figures 25 and 26 show the disk mass and disk eccentricity
evolution over the whole simulation for the M, = 4 M;,, models.
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Fig. 26. Global disk eccentricity over time for different set-ups with an
inner radius of the computational domain of ry;, = 0.7 rj,, and a planet
mass of M, = 4 M;,,. The vertical dotted line at r = 50 Pj,, marks the
time when the planet has reached its full mass.
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Fig. 27. Normalized mass accretion rate over time for different set-ups
with an inner radius of the computational domain of 7y = 0.7 rjyp and a
planet mass of M, = 4 Mj,,. The vertical dotted line at # = 50 Pj,, marks
the time when the planet has reached its full mass and the horizontal
dashed line is the gas accretion rate given by Eq. (7).

The isothermal model shows a huge difference in both plots. The
disk loses much more mass and becomes significantly more ec-
centric. Between the radiative model and the radiative with diffu-
sion model there is barely a visible difference, so that the neglect
of the radiative diffusion in accretion disk simulations is a valid
assumption. The addition of irradiation increases the mass loss
again because the disk is much hotter, but it does not play an
important role for the global disk eccentricity.

The normalized mass accretion rate of all models in shown in
Fig. 27. As already seen in Fig. 25, the mass loss of the isother-
mal model is much larger than all the other models. The radia-
tive with diffusion model has a slightly larger accretion rate than
the radiative model, but both are smaller than the standard mass
accretion rate of stationary accretion disks (Eq. (7)). The accre-
tion rate of the radiative with irradiation model needs much more
time to converge and is significantly larger than those of the other
two radiative models.

Therefore, the mass accretion in the irradiative model must
be driven by thermal pressure through the gap, as the eccentric-
ity is the same. This can be seen in Fig. 28, which shows the
temperature profiles of all models after 5000 orbits. The isother-
mal model still has the unchanged initial condition, whereas the
radiative models show a temperature drop in the gap. The radia-
tive with diffusion set-up shows a slightly higher temperature in
the gap as heat is diffused into the gap from the outer edge. The
temperature of radiative with irradiation is much higher overall,
especially in the outer regions, but the gradient on the outer edge
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Fig.28. Azimuthally averaged radial profile of temperature of the
isothermal, radiative, radiative with diffusion and radiative with irradi-
ation set-up after 5000 orbits with an inner radius of the computational
domain of rin = 0.7 rjy, and a planet mass of M, = 4 Mjy,.
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Fig. 29. Azimuthally averaged radial profile of the surface density of the
isothermal, radiative, radiative with diffusion and radiative with irradi-
ation set-up after 5000 orbits with an inner radius of the computational
domain of rpin = 0.7 rjy, and a planet mass of M, = 4 Mjy,.

of the gap is also much steeper and therefore has pushed more
material through the gap.

In Fig. 29, we display the surface density at the final state
after 5000 orbits for all our models. In the outer part of the disk,
all models show comparable surface densities. In the inner gap
region, the densities are typically 3 to 4 orders of magnitude
smaller than in the outer disk. As expected by the mass accretion
rates, the isothermal and irradiated models show an enhanced
density in the gap region. In contrast, the radiative models have
a surface density about an order of magnitude smaller inside the
gap. For the most realistic irradiated models, the density con-
trast is about 4 orders in magnitude. For models with the 8 M;y,
planet the principal surface density structure is very similar for
the radiative models.

7. Summary and conclusions

We have performed hydrodynamic simulations of transitional
disks where the inner edge is formed by a very massive planet
and studied the mass flow rate of the gas from the outer disk
into the inner cavity. For comparison, we have studied locally
isothermal disks as well as viscously heated radiative disks in-
cluding irradiation from the central star.

We find that the mass flow past the planet is largest for the
isothermal models. These have a much higher temperature in the
inner regions of the disk and the corresponding pressure gradient
is partly responsible for the high mass flow. The second contri-
bution comes from the eccentricity of the disk for planet masses
beyond roughly 3 M;,,. The disk has its largest eccentricity near
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its inner edge, and reaches about 0.2 for the 4 and 8 M;,, planets
and up to 0.35 for the 16 Mj,, planet in the isothermal disk. For
larger radii the disk eccentricity slowly declines. For eccentric
disks the planet passes periodically through the disk which leads
to the enhanced mass accretion into the inner gap. The asym-
metries in recent observations (e.g. Mayama et al. 2012) can be
explained by these eccentricities or by a vortex within the disk
(Ataiee et al. 2013).

In the radiative cases, there are two reasons why the mass
mass accretion rate is generally much smaller. First, the temper-
ature is much smaller in the gap region which leads to a smaller
pressure effect, and second the radiative models have a smaller
disk eccentricity than the isothermal models. The maximum disk
eccentricity is around 0.2 for the most massive 16 M;,, planet.
The reduction in eccentricity comes about because the emission
of radiation from the disk surfaces leads to an energy leakage
of the eccentric modes of the disk. The model including stellar
irradiation shows again a larger mass flow which is still smaller
than the purely isothermal disk.

The surface density contrast between the outer and inner disk
is interesting. In the eccentric disk case we find a contrast of
about four orders of magnitude which is even larger in the non-
eccentric disk cases. Despite this large contrast in surface den-
sity, the mass accretion rate past the planet into the gap changes
by much less. For the isothermal models it is always comparable
to the typical disk accretion rate (see Fig. 11) in contrast to the
observations that show a reduction of about an order of magni-
tude compared to stationary disks (Kim et al. 2013). However,
for the more realistic radiative cases, the mass accretion rate can
be reduced by over an order of magnitude, if the disk is not ec-
centric, i.e. if the planet is smaller than about 5 Mj,p. This mass
flow rate is in good agreement with the observations (Kim et al.
2013). For larger mass planets and eccentric disks the mass flow
rate is about 40% of the standard equilibrium disk value (see
Fig. 23).

Our model contains several restrictions that could be im-
proved on in subsequent works. The models are only 2D because
3D runs over this extended simulation time of several thousand
orbits are not feasible at the present time. We estimate that be-
cause of the large mass of the planets and the deep gaps that
are opened, the differences between 2D and 3D may be not too
large. For Jupiter-mass planets the gaps are nearly indistinguish-
able (Kley et al. 2001) in 2D and 3D. Furthermore, the plan-
ets cannot accrete material from their surroundings. Because of
the strong decline of the density in the gap, this effect may be
more important for low mass planets as well. It may play a role,
however, in the eccentric disk case where it could lead to higher
planet masses than otherwise reachable (Kley & Dirksen 2006).

In our models we kept the planet fixed in a circular orbit,
while it is known that the planets will tend to migrate because
of the torques of the outer disk. For circular planets in non-
eccentric disks, the migration will be directed inwards. However,
the eccentric disk for more massive planets will make the orbit
the slightly eccentric and the migration rate slows considerably
(D’Angelo et al. 2006). For e > 0.2, the migration may
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be even outwards, but these high planetary eccentricities are only
reached for very massive planets beyond 10 Mj,, (Papaloizou
etal. 2001). However, all these results are only obtained using lo-
cally isothermal disks. The question of planetary migration and
possible eccentricity growth will have to be addressed in future
simulations. In our case, we might consider the simulated sin-
gle planet being the outermost planet in a multiple system. Our
results should then give a good approximation of the expected
mass flow of the gas into the gap.

We also did not include any dust particles within the mod-
els. Rice et al. (2006) showed that the outer edge of the gap acts
as a filter for larger particles (>10 wm). However, the simula-
tions by Rice et al. are only locally isothermal. The question
whether this filter mechanism also works within more realis-
tic, radiative simulations will also have to be addressed in future
simulations.
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ABSTRACT

We have developed a comprehensive methodology and an interactive Web site for calculating the habitable zone
(HZ) of multiple star systems. Using the concept of spectral weight factor, as introduced in our previous studies of
the calculations of HZ in and around binary star systems, we calculate the contribution of each star (based on its
spectral energy distribution) to the total flux received at the top of the atmosphere of an Earth-like planet, and use
the models of the HZ of the Sun to determine the boundaries of the HZ in multiple star systems. Our interactive
Web site for carrying out these calculations is publicly available at http://astro.twam.info/hz. We discuss the details
of our methodology and present its application to some of the multiple star systems detected by the Kepler space
telescope. We also present the instructions for using our interactive Web site, and demonstrate its capabilities by
calculating the HZ for two interesting analytical solutions of the three-body problem.

Key words: astrobiology — atmospheric effects — planetary systems

Online-only material: color figures

1. INTRODUCTION

It is widely accepted that stars form in clusters. Surveys of
star-forming regions have indicated that approximately 70% of
all stars in our galaxy are in binary or multiple star systems
(Batten et al. 1989). An examination of 164 nearest G-dwarfs
by Duquennoy & Mayor (1991), for instance, has shown that
62 of these stars are in binaries, 7 are in triplets, and 2 are
members of two quadruple star systems. In the past few years,
the Kepler space telescope has also detected many binary and
multiple star systems. The Kepler Eclipsing Binary Catalog lists
more than 2100 eclipsing binaries (Slawson et al. 2011) among
which ~20% are within triple star systems.

A survey of the currently known planet-hosting stars indicates
that slightly more than 8% of these stars have stellar companions
(Rein 2012). While the majority of these stars are in binaries,
some are also in triple and quadruple systems. For instance,
Kepler 64, which has a binary stellar companion and is host to a
circumbinary planet (Schwamb et al. 2013), is in fact a member
of a quadruple stellar system. The M star Gliese 667 (Anglada-
Escudé et al. 2012; Delfosse et al. 2013), which is known to
host at least seven planets, is part of a triple stellar system. The
star 16 Cyg (Cochran et al. 1997), the first multiple star system
discovered to host a planet, consists of three stellar components.

The discovery of planets in multiple star systems has raised
the question that whether such planetary systems can be habit-
able. As the habitability of a planet (and, therefore, the system’s
habitable zone (HZ)), in addition to the size, atmospheric com-
position, and orbital dynamics of the planet, depends also on the
total flux received at the top of the planet’s atmosphere, the stel-
lar multiplicity plays an important role in determining the range
and location of the system’s HZ. Depending on their surface
temperatures and orbital characteristics, each star of the system
will have a different contribution to the total flux at the location
of the planet. Within the context of binary stars, during the past
few years this topic has been addressed by Mason et al. (2013),

* http://astro.twam.info/hz

Liuetal. (2013), Kane & Hinkel (2013), Eggl et al. (2013), Eggl
et al. (2012), and Quarles et al. (2012).

Recently, Haghighipour & Kaltenegger (2013, hereafter
HK13) and Kaltenegger & Haghighipour (2013, hereafter
KH13) studied this concept within the context of binary star
systems. These authors have shown that as the atmosphere of a
planet interacts differently with the incident radiation from stars
with different spectral energy distributions (SEDs), the contri-
bution of each star of the binary to the total flux received by the
planet will be different. In other words, considering the direct
summation of the fluxes of the two stars as the total flux received
at the top of the planet’s atmosphere, and using that quantity to
calculate the total insulation on the planet’s surface will not be
a correct approach and will result in an inaccurate value for
the planet’s equilibrium temperature. The fact that the planet’s
atmosphere responds difterently to stellar radiations with differ-
ent incident energy indicates that the contribution of each star to
the total flux received at the top of the planet’s atmosphere has
to be weighted according to the star’s SED. As shown by HK13
and KH13, such a weight factor will be a function of the star’s
effective temperature and will have different forms for different
models of the Sun’s HZ. Considering the latest models of the
habitability of Earth as presented by Kopparapu et al. (2013a,
2013b), HK13 and KH13 derived a formula for the spectral
weight factor of a star based on the star’s effective temperature,
and presented an analytical formalism for calculating the HZ in
S-type and P-type binary stars systems.

In this paper, we follow the same approach as presented by
these authors and generalize their methodology to calculate
the HZ in systems with N > 2 stars. Although in order to
maintain stability, most multi-star systems have evolved into
hierarchical configurations and have developed large stellar
separations (which depending on the effective temperatures
of their stars may imply minimal contribution from one star
in the extent of the HZ around others), as we will explain in
next sections, it proves useful to develop a self-consistent and
comprehensive methodology that can be used to calculate the HZ
of any system with more than one stellar component. The latter
constitutes the main goal of this paper. We consider the HZ to be
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Table 1
Values of the Coefficients of Equation (2) from Kopparapu et al. (2013b)
Narrow HZ Empirical HZ
Runaway Greenhouse Maximum Greenhouse Recent Venus Early Mars

Fsun 1.06 0.36 1.78 0.32

dsun (AU) 0.97 1.67 0.75 1.77

a 1.2456 x 107* 5.9578 x 1073 1.4335 x 107* 5.4471 x 1073

b 14612 x 1078 1.6707 x 1079 3.3954 x 1079 1.5275 x 1077

c —7.6345 x 10712 —3.0058 x 10712 —7.6364 x 10712 —2.1709 x 10712

d —1.7511 x 10713 —5.1925 x 10716 —1.1950 x 10713 —3.8282 x 10716
aregion where an Earth-like planet (that is, a rocky planet with a and Equation (3) in HK13, that implies,
CO,/H,0/N, atmosphere and sufficiently large water content)
can permanently maintain liquid water on its solid surface. This N Li/L

s . i ©

definition of the HZ assumes that similar to Earth, the planet has Frota = Z Wi (Tsiar) 7 (1

a dynamic interior and a geophysical cycle similar to Earth’s
carbonate silicate cycle that naturally regulates the abundance
of CO, and H,O in its atmosphere. The boundaries of the HZ are
then associated with an H,O-dominated atmosphere for its outer
boundary and a CO,-dominated atmosphere for its inner limit.
Between those limits on a geologically active planet, climate
stability is established by a feedback mechanism through which
the concentration of CO; in the atmosphere varies inversely with
planetary surface temperature.

It is important to note that in a multiple star system, the close
approach of each star of the system to a planet can substantially
affect the contribution of that star to the overall flux received by
the planet. Also, the interaction between the star and the planet
can affect the orbital motion of the planet, and therefore, its
habitability. This all implies that the (instantaneous) shape of
the HZ in a multiple star system will vary during the motion of
the stars. In the next sections, we discuss this in more detail and
explain how our methodology treats this matter properly.

In Section 2, we present the generalization of the calcula-
tion of a binary HZ to a system of N stars. In Section 3, we
demonstrate the time-variation of the HZ in a multiple star sys-
tem by applying our methodology to some of the systems from
the Kepler catalog. Motivated by the Habitable Zone Gallery
(http://hzgallery.org, Kane & Gelino 2012) which provides in-
formation about the HZ around single stars, we present in Sec-
tion 4 our fully interactive Web site for calculating the HZ in
binary and multiple star systems. We also demonstrate in this
section how to use our Web site by calculating the HZ of two
analytical solutions of the three-body problem. In Section 5, we
conclude this study by summarizing the results.

2. CALCULATION OF THE HABITABLE ZONE

As mentioned in the previous section, we consider the HZ to
be the region where a fictitious Earth-like planet with a CO,/
H,0/N, atmosphere, and similar geophysical and geodynam-
ical properties as those of Earth can maintain liquid water on
its solid surface. As the capability of retaining liquid water de-
pends on the planet’s equilibrium temperature, and because this
temperature depends on the total flux received by the planet, the
statement above is equivalent to considering the HZ to be the
region where the total flux received at the top of the atmosphere
of a fictitious Earth-like planet is equal to that of Earth received
from the Sun. To calculate this flux for a star in a multiple star
system, we generalize the methodology presented by HK13 and
KH13 (which has been developed for binary star systems) to
systems with N number of stars. Using Equation (1) in KH13

i=1 i

In this equation, Fiyy is the total flux received by the planet, L;
is the luminosity of star i in units of the solar luminosity (L), d;
is the distance of the planet to the ith star in astronomical units
(AU), and W;(Ty,,) is the spectral weight factor which accounts
for the different SED of the ith star compared to the Sun. The
quantity Ty, is the effective stellar temperature.

The value of the spectral weight factor W(T'), in addition to
the star’s effective temperature, depends also on the models of
the Sun’s HZ. We consider the models recently developed by
Kopparapu et al. (2013a, 2013b) for which the spectral weight
factor of a star with an effective temperature in the range of
2600K < Ty < 7200K, is given by (HK13; KH13)

W(Tua) = [1 4 (Ts)d2,] )

In this equation, Ts = Ty, — 5780 K is the star’s temperature-
difference compared to the Sun, and

a(Ts) = aTs+bTE+cTg +d Ty 3)

The quantities a, b, ¢, and d in Equation (3) are constant
coefficients with values that depend on the conditions that
determine the inner and outer boundaries of the Sun’s HZ.
Table 1 shows these values.

As mentioned earlier, to calculate the HZ of a multiple star
system, we compare the total flux received by a fictions Earth-
like planet with that received by Earth from the Sun. From
Equation (1), that means

al Li/L L

D Wi (Tar) % =7 )
i=1 i x—Sun

where x = (In, Out), and /;_g,, denotes the boundaries of the
Sun’s HZ. To determine the location and range of the HZ of a
multiple star system, the distances d; have to be calculated for
different values of /x_gy, by solving a set of differential equations
corresponding to the motion of the stellar N-body system along
with the algebraic equation (4).

To determine the values of I, _g,,, we follow HK13 and KH13,
and consider a narrow HZ corresponding to the region between
the runaway greenhouse and the maximum greenhouse limits
in the most recent Sun’s HZ model by Kopparapu et al. (2013a,
2013b). As this model does not include cloud feedback, the
boundaries of the narrow HZ in our definition do not include the
feedback from clouds as well. To mimic the effects of clouds
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Table 2
Values of the Spectral Weight Factor

T 2800 3500 4500 5500 5636 5780 6407 7400 8500
(K)

Win (narrow) 1.200 1.184 1.132 1.033 1.017 1.000 0.929 0.844 0.843
Wou (narrow) 1.529 1.417 1.237 1.048 1.024 1.000 0.906 0.809 0.807
Win (empirical) 1.194 1.164 1.102 1.023 1.012 1.000 0.952 0.899 0.901
Wout (empirical) 1.614 1.462 1.249 1.050 1.025 1.000 0.903 0.799 0.771

(and have a more realistic definition for the HZ), HK13 and
KHI13 introduced the empirical (nominal) HZ as the region
with an inner boundary at the Recent Venus limit and an
outer boundary at the limit of Early Mars in the model by
Kopparapu et al. (2013a, 2013b). These boundaries have been
derived using the fluxes received by Mars and Venus at 3.5 and
1.0 Gyr ago, respectively. At these times, the two planets did
not show indications for liquid water on their surfaces (Kasting
et al. 1993). We follow HK13 and KH13, and consider also the
empirical HZ, as the second range for determining the values
of Ix_sun. In these definitions, the locations of the HZs are
determined based on the flux received by the planet (Kasting
et al. 1993; Selsis et al. 2007; Kaltenegger & Sasselov 2011;
Kopparapu et al. 2013a).

It is important to note that, except for some special orbital
configurations of the stars (e.g., when the stars orbit the center
of mass of the system so close to one another that the system’s
HZ can only exist around the entire stellar system, as in HK13),
it may not be possible to determine a distinct inner or outer
edge for the HZ of a multiple star system. The motions of the
stars cause the HZ of the system to be dynamic and change
boundaries and locations as the stars move over the time. For
this reason, in order to determine the location of the HZ of the
system, at any given time, we consider a large grid of points over
the entire system and calculate the flux at each grid point using
Equation (1). We then mark those points of the grid for which
the value of the total flux satisfies the following condition, as a
point of the system’s HZ:

L L;/L
o <Y Wi (T ’;2 2 <5

i=1 i Out—Sun

Lo

- ©)

In—Sun
We repeat this process for one complete orbital period of the
system by increasing the time in small increments and allowing
the stars to move in their orbits. When calculating the HZ, we do
not consider whether the orbit of the fictitious Earth-like planet
will stay stable. As explained in the next sections, we determine
the stability of the HZ by direct integration of the orbit of an
Earth-mass planet at different locations in the HZ. As a result,
in some systems, some or all of the HZ will be dynamically
unstable (see HK13 for several examples). In the following, we
present a sample of our calculations as well as the instructions
to our interactive HZ-calculator Web site.

3. EXAMPLES

To demonstrate the application of our methodology, we
calculate the HZ of two multiple stars systems KIC 4150611
and KID 5653126 from the Kepler space telescope catalog.
As explained below, these systems have stellar and orbital
characteristics that allow for exploring effects of luminosity
and distance on the range of the HZ. We calculate the narrow
and empirical HZs in these systems, and show the results for one

complete orbit. Following HK 13 and KH13, and from the model
by Kopparapu et al. (2013a, 2013b), we consider the narrow
HZ (without cloud feedback) of a Sun-like star to extend from
0.97 AU to 1.67 AU, and its empirical HZ to be from 0.75 AU
to 1.77 AU. Animations of the time-variation of the HZs of our
systems can be found at http://astro.twam.info/hz-multi.

3.1. KIC 4150611

The KIC 4150611 (HD 181469, HIP 94924) is a system of
five stars consisting of a triplet with an A and two K stars, and
a binary with two F stars. The A-KK and FF systems form
a visual pair with a separation of 1”71. The A-KK triplet has
an orbital period of 94.2 days, and the orbital period of the
inner KK binary is 1.522 days. The effective temperatures of
the A and K stars are 8500 K and 4500 K, respectively (A. Pria
2013, private communication). We consider here only the A-KK
system and use our methodology to calculate the location and
time-evolution of its HZ (given the large separation between this
system and the FF binary, the effect of the latter is negligible).

As shown by Equation (5), the calculation of the HZ requires
the knowledge of the luminosity, semimajor axis, and spectral
weight factor of each star. To calculate the semimajor axis and
luminosity of the A and K stars, we consider the A star to
be 1.5 M (corresponding to the lower limit of the mass of
a star of spectral type A) and the mass of each K star to be
0.7 M. Using these values of the mass combined with the
orbital periods of the KK binary and A-KK system as given
above, the semimajor axis of the KK binary will be 0.029 AU
and that of the A—KK system will be equal to 0.58 AU. The
luminosities are calculated using the mass-luminosity relation,
L = M?33. For the values of the stellar masses considered here,
the luminosity of the A star will be equal to 4.134 L, and that
of the K stars will be 0.287 L,. To calculate the spectral weight
factor W(T') for each star, we use Equation (2). It is important
to note that this equation is model-dependent and has been
derived based on the model of the Sun’s HZ by Kopparapu et al.
(2013a, 2013b), which is valid for stellar temperatures ranging
from 2600 K to 7200 K. The latter means that Equation (2)
may not be applicable when calculating the spectral weight
factor of the A star (8500 K). However, because the purpose
of our calculations is to demonstrate our methodology and how
it is used to determine the HZ of multiple star systems, we
assume that the model by Kopparapu et al. (2013a, 2013b) will
maintain the functional form of its temperature dependence
(i.e., Equation (3)) for higher values of stellar temperature,
and extrapolate this model to effective stellar temperatures of
8500 K. We then calculate the spectral weight factor of each star
using Equation (2). Table 2 shows these values for the system’s
A and K stars.

Given the short period of the KK binary (1.522 days), the
stand-alone HZ of this system (i.e., assuming it is isolated and
not part of a triple or larger stellar system) will be only at
circumbinary distances. Following the methodology by HK13,
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Figure 1. Graphs of the HZs of the A—KK triplet in the KIC 4150611 system and its components. The top left panel shows the HZ of the A star, the top right panel
shows that of the KK binary, and the bottom panel shows the HZ of the A—KK triple star system. Here and in subsequent figures, the dark green corresponds to the
narrow and the light green corresponds to the empirical HZs. The dashed circle shows the boundary of stability. Interior to this boundary, planetary orbits will become
unstable. An animation of the HZ of this system can be found at http://astro.twam.info/hz-multi.

(A color version of this figure is available in the online journal.)

this HZ extends from 0.6 AU to 1.5 AU from the center of mass
of the binary. The top right panel of Figure 1 shows this region.
The dark green in this and subsequent figures corresponds to
the narrow and the light green corresponds to the empirical
HZ. Similarly, assuming that the A star is isolated and not part
of a multiple star system, its single-star HZ, shown in the top
left panel of Figure 1, will extend from 1.3 AU to 3.1 AU.
As the distance between the A star and the center of mass of
the KK binary in the A—KK system is 20 times larger than the
semimajor axis of the binary K stars, one would expect that the
effect of the A star on the stand-alone HZ of the KK binary,
if not negligible, to be very small. However, as shown in the
bottom panel of Figure 1, when these three stars are considered
to be in their current orbital configuration, and assuming that
the orbits are co-planar and circular, the higher luminosity of
the A star dominates and causes the entire HZ around the KK
binary to disappear. In this case, the HZ of the A—KK system is

primarily due to the A star although the KK binary does seem to
have some small effect. An animation of the HZ of this system
can be found at http://astro.twam.info/hz-multi.

To determine the orbital stability of an Earth-like planet in
the HZ of the A-KK system, we distributed 100,000 non-
interacting Earth-mass objects between 0.5 AU and 3 AU around
the center of mass of the system, and integrated their orbits for
5000 periods of the A star using a fifth-order N-body integrator
(Cash & Karp 1990). The bodies were initially set to be in non-
eccentric Keplerian orbits. The timesteps of the integrations
were taken to be 1/100 of the period of the inner KK binary.
Figure 2 shows the distribution of the Earth-like planets at the
beginning (top panel, blue) and end (bottom panel, red) of the
simulations. As shown here, at the end of the simulations, a
lack of particles appears for distances smaller than 1.32 AU
(shown by the vertical dashed line in Figure 2), implying that the
orbit of an Earth-mass planet in these regions will be unstable.
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Figure 2. Results of the integrations of the orbits of non-interacting Earth-mass planets around the center of mass of the KIC 4150611 system. The top panel (blue
histogram) shows the initial distribution of planets and the bottom panel (red histogram) corresponds to their distribution after integrating their orbits for 5000 orbital
periods of star A around the KK binary. The dashed line shows the boundary of orbital stability at 1.32 AU.

(A color version of this figure is available in the online journal.)

We, therefore, considered 1.32 AU as the stability limit, and
have shown this by the dashed circles in Figure 1.

As mentioned above, the stability integrations were carried
out for only 5000 orbits of the A star. To determine whether this
time of integration was sufficient, we assumed that the triple star
system of A—KK can be approximated by a binary star system
with the A star as its primary and a secondary with a mass equal
to the sum of the masses of the two K stars (0.7+0.7 = 1.4 M).
We recall that the distance between the A star and the center
of mass of the KK binary is 20 times larger than the binary
semimajor axis. In this auxiliary binary system, an Earth-mass
planet in the HZ will have a circumbinary orbit. As shown by
Dvorak (1986), Dvorak et al. (1989), and Holman & Wiegert
(1999), for such planetary orbits, the stability limit is given by

Amin = a(1.60+5.10e — 222> +4.12 4 — 427 ep
—5.09 1% +4.61*u?), (6)

where ap;, is the minimum semimajor axis for a planetary orbit
to be stable, a is the binary semimajor axis, e is the binary
eccentricity and & = Mp;/(Mp+ Mg ) with Mp, and M, being
the masses of the primary and secondary stars, respectively.
Considering that in the actual A-KK system, the orbits are
circular and the A star is at 0.58 AU from the KK binary
(a = 0.58 AU), the stability limit obtained from Equation (6)
is at amip = 1.39 AU. This value is in good agreement with the
1.32 AU stability limit obtained from our numerical simulations,
indicating that stability integrations have been carried out for a
sufficient amount of time.

3.1.1. Effect of the Eccentricity of the A Star

The fact that the high luminosity of the A star stripped the
KK binary from its HZ motivated us to examine how the HZ
of the entire triple system would change, and at what stage
the HZ around the KK binary would re-appear, had the A star
been at farther distances. We, therefore, increased the radial
distance of the A star from the center of mass of the system,
and determined the smallest distance (r; = 2.8 AU) for which
the inner edge of the empirical HZ re-appeared around the

KK binary. We continued increasing the radial distance of the
A star until the smallest value (r, = 6.45 AU) for which
the outer boundary of the empirical HZ of the KK binary
re-appeared. Beyond this distance, the two HZs of the A star
and KK binary will separate. To study the HZ of the triple
system in the intermediate distances, we considered two cases.
In the first case, we assumed the closest and farthest distances
of the A star to be 0.5r; and 1.5r|, respectively, and calculated
the semimajor axis and eccentricity of an elliptical orbit for
the A star for which these distances could be the periastron
and apastron (a; = 2.8AU, ¢; = 0.5). Figure 3 shows four
snapshots of the HZ of this system during the orbital motion of
the A star. From the top right panel and in a counterclockwise
rotation, the panels correspond to the A star to be at angles
0°, 63°, 110°, and 180° with respect to the horizontal line
passing through zero on the vertical axis. The dashed circles
correspond to the outer boundaries of planetary stability (planets
interior to the dashed circles will be stable). Around the A
star, this boundary is at 0.34 AU, and around the KK binary is
at 0.32 AU. The inner boundary of stability around the entire
system is at approximately 10.18 AU (outside this limit, planets
will have stable orbits). As shown here, while the A star is
still the dominating factor in establishing the boundaries of the
narrow HZ, there are distances where the inner region of the
empirical HZ of the KK binary is solely due to the luminosities
of its two stars. For an animation of the HZ of this system see
http://astro.twam.info/hz-multi.

In the second case, we considered the closest and farthest
distances of the A star to be 0.5, and 1.5r,, respectively. The
corresponding elliptical orbit of the A star in this case has a
semimajor axis of 5.48 AU and an eccentricity of 0.412. Figure 4
shows the evolution of the HZ during the motion of the A star.
From the top right panel and in a counterclockwise rotation,
the panels correspond to 0°, 19°, 86°, and 180°, respectively.
The outer boundaries of planetary orbit stability are at 0.8 AU
around the A star and 0.77 AU around the KK binary. The
inner stability limit around the entire system is at 18.95 AU.
As shown here, beyond certain distances, the HZ of the KK
binary reappears, and the HZ of the triple system consists of

83



3.

84

Publications

THE ASTROPHYSICAL JOURNAL, 782:26 (18pp), 2014 February 10

5

MULLER & HAGHIGHIPOUR

al

Distance [AU]
o

Distance [AU]

Distance [AU]
)

-5 L L L L L L " " "

Distance [AU]

-5 L L L L L L L " " "

-6 -5 -4 -3 -2 -1 0 1 2 3 4
Distance [AU]

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5
Distance [AU]

Figure 3. Time-evolution of the HZ of the A-KK triplet in the KIC 4150611 system when the orbit of the A star has a semimajor axis of 2.8 AU and an excentricity
of 0.5. From top right panel and in a counterclockwise rotation, the panels correspond to the A star being at 0°, 63°, 110°, and 180° with respect to the horizontal
line passing through zero on the vertical axis. The dashed circles correspond to the outer boundary of the stability of planetary orbits. An animation of the HZ of this

system can be found at http://astro.twam.info/hz-multi.
(A color version of this figure is available in the online journal.)

two separate HZs corresponding to those of the A star and KK
binary, respectively. An animation of the HZ of this system can
be found at http://astro.twam.info/hz-multi.

3.2. KID 5653126

The A-KK triplet in the multiple star system KIC 4150611
provided an interesting case for studying how the HZ of a binary
can be affected by a highly luminous farther companion. To
study the reverse situation, that is, the possible effect of a less
luminous farther star on the HZ of a binary with more luminous
components, we considered the hierarchical triple star system
KID 5653126. This system consists of a close binary (hereafter
labeled as A and B) with a period of 38.5 days and a farther
companion (hereafter labeled as C) orbiting the AB binary in an
800 day orbit. The stellar properties of this system are unknown.
To ensure that the farther companion would be a less luminous
star, we consider the star A to be similar to the primary of the
Kepler 47 system and stars B and C to be similar to the primary
and secondary stars of Kepler 64, respectively. Table 3 shows
the values of the mass, luminosity, and effective temperatures
of these stars. From the values of the mass and orbital periods

Table 3
The AB—C Triplet in KID 5653126 System
Star A B C
Mass (Mo) 1.043 1.528 0.4
Luminosity (L) 0.84 4.54 0.02
Temperature (K) 5636 6407 3561

of the system, the AB binary will have a semimajor axis of
aap = 0.31 AU and that of star C, with respect to the center of
mass of the binary system, will be ac = 2.42 AU. In contrary
to the A—KK triplet in the KIC 4150611 system, the separation
of star C is only 7.8 times larger than the semimajor axis of the
inner binary AB, implying that this star may have a noticeable
effect on the HZ of the binary system.

Figure 5 shows the HZ of the system when the binary AB and
star C are in circular orbits. Starting from the upper right panel
and counterclockwise, the figures show the evolution of the HZ
during one revolution of the star C around the binary when this
star is at 0°, 60°, 120°, 180°, 240° and 330°, respectively. As
shown here, while the HZ of the system is primarily due to the
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Figure 4. Time-evolution of the HZ of the A—KK triplet in the KIC 4150611 system when the orbit of the A star has a semimajor axis of 5.48 AU and an excentricity
of 0.412. From top right panel in a counterclockwise rotation, the panels correspond to the A star being at 0°, 19°, 86°, and 180° with respect to the horizontal line
passing through zero on the vertical axis. The dashed circles correspond to the outer boundary of the stability of planetary orbits. An animation of the HZ of this

system can be found at http://astro.twam.info/hz-multi.
(A color version of this figure is available in the online journal.)

AB binary, the radiation from star C excludes the region around
this star from the system’s narrow HZ and slightly extends the
empirical HZ of the AB binary to farther distances (animations
of the HZ at http://astro.twam.info/hz-multi).

To determine the stability of an Earth-like planet in the HZ of
the KID 5653126 system, similar to the case of KIC 4150611,
we distributed a large number of non-interacting, Earth-mass
planets around the center of mass of the AB—C system, and
integrated their orbits for 10,000 orbital periods of the star C
using the N-body integrator explained in Section 3.1. Figure 6
shows the distributions of the Earth-mass planets at the begin-
ning and end of the integrations. The top panel of this figure
corresponds to the stability around the entire system and the
bottom panel is for the stability around the star C. As shown
here, the stability limit around the system’s center of mass is
at approximately 5.225 AU (shown by a dashed line in the top
panel of Figure 6 and by a dashed circle in Figure 5), indicating
that the majority of the HZ of the system is unstable. As indi-
cated by the bottom panel of Figure 6, however, a small region of
stability exists interior to 0.348 AU around the star C (shown by
a dashed line in the bottom panel of Figure 6 and a dashed circle
around this star in Figure 5) where an Earth-mass planet can

have a stable orbit in a small portion of the empirical HZ around
this star.

To determine whether the above-mentioned integration time
was sufficient for calculating the stability limit around the entire
three stars, we approximated the AB—C system with a circular
P-type binary. In this binary, the mass of the primary star is
equal to the sum of the masses of stars A and B, and the binary
semimajor axis is 2.42 AU. Using Equation (6), the stability
limit of this P-type system will be at ~5 AU, which is in a
very good agreement with the 5.225 AU that was obtained from
direct integrations.

To examine whether the time of the integration was sufficient
for calculating the stability limit around the star C, we approxi-
mate the AB—C system with an S-type binary, considering star C
to be the primary star. As shown by Holman & Wiegert (1999)
and Rabl & Dvorak (1988), the critical stability limit around
each star of an S-type binary (interior to which a planet will
have a long-term stable orbit) can be calculated using

Amax = a(0.464 —0.38 u — 0.631 e +0.586 e

+0.15¢> — 0.198 pe?). 0
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Figure 5. Graphs of the HZ of the KID 5653126 system when the three stars are in circular orbits. From the top right panel and counterclockwise, the figures show
the changes in the boundaries of the HZ during one revolution of the star C when this star is at 0°, 60°, 120°, 180°, 240° and 330°, respectively. The dashed circles
corresponds to the limits of planetary orbit stability (see Figure 6). An animation of the HZ of this system can be found at http://astro.twam.info/hz-multi.

(A color version of this figure is available in the online journal.)
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Figure 6. Results of the integrations of non-interacting Earth-mass planets around the center of mass of the KID 5653126 system (top) and around the star C (bottom).
In each panel, the upper graph (blue histogram) shows the initial distribution of the planets and the lower graph (red histogram) corresponds to their distribution after
integrating their orbits for 10,000 orbital periods of the star C around the binary AB. The dashed line shows the boundary of orbital stability at 5.225 AU around the

center of mass, and at 0.348 AU around star C.
(A color version of this figure is available in the online journal.)

Considering a circular binary with a semimajor axis of 2.42 AU
and a mass-ratio of u = (Ma + Mp)/(Ma + Mg + Mc), the
outer boundary of the stable region around star C will be at
0.328 AU. This is in a very good agreement with the 0.348 AU
limit obtained from direct integrations confirming that the time
of integrations for our stability analysis was sufficient.

3.2.1. Effect of the Eccentricity of the Star C

The fact that during its motion around the AB binary, the
star C removes part of the HZ of the system that is in its
vicinity motivated us to examine how the HZ would change
if the orbit of this star were eccentric. Similar to the case of
KIC 4150611, we considered two cases. In the first case, we
determined the values of the semimajor axis and eccentricity
of star C for which this star would break away from the inner
part of the empirical HZ of the system while having a periastron
distance equal to 2.42 AU and an apastron interior to the outer
edge of the system’s empirical HZ. In this case ac = 3.01 AU,
and ec = 0.195. Figure 7 shows the HZ of the system in one
orbit of the star C around the binary. From the upper right panel

and in a counterclockwise rotation, the panels correspond to star
Cat0°, 60°, 180° and 309°. As shown here, the inner part of the
empirical HZ of the system expands temporarily as the star C
moves away from this region. The outer edge of the HZ is also
extended to larger distances as this star approaches its apastron
position. Figure 8 shows the outer boundary of orbital stability
for Earth-mass planets around star C. Integrations were carried
out for 1000 orbital periods of planet C. As indicated by the
vertical dashed line, planets with semimajor axes smaller than
0.362 AU will have stable orbits around this star. Figure 7 shows
this region with a dashed circle around star C. As shown in this
figure, the empirical HZ around this star maintains stability for
planetary orbits as this star rotates around the AB binary. For an
animation of the HZ of this system, we refer the reader to the
Web site http://astro.twam.info/hz-multi.

In the second case, we considered the star C to have a
semimajor axis equal to 2.42 AU and changed the value of
its orbital eccentricity until this star left the HZ of the binary
(ec = 0.7). Figure 9 shows this for half of the orbital period of
star C. From top right and in a counterclockwise rotation, the
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Figure 7. Graphs of the HZ of the KID 5653126 system when the star C has a semimajor axis of 3.01 AU and an eccentricity of 0.195. From the top right panel and in
a counterclockwise rotation, the panels correspond to the star C being at , 0°, 60°, 180°, and 309°, respectively. An animation of the HZ of this system can be found

at http://astro.twam.info/hz-multi.
(A color version of this figure is available in the online journal.)

panels show this star at 0°, 26°, 28°, 41°, 52°,73°, 117°, 150°,
and 154°. As shown here, the motion of star C disturbs the
HZ of the AB binary by either excluding regions of it that are
around this star, or extending its inner and outer boundaries.
The capability of the HZ of the AB binary to accommodate
stable planetary orbits is also affected by the motion of the
star C. Except for when this star is either entirely inside the inner
boundary of the system’s empirical HZ or is outside the HZ of
the AB binary, the stability of the system’s HZ is limited to only
a small region around star C. When star C is separated from
the AB binary, planetary stability is maintained in both HZs.
However, as this star enters the inner boundary of the empirical
HZ of the system, the stability region around it becomes unstable
due to the perturbation of the AB binary. This all means that
during the motion of the stars around their center of mass, an
Earth-like planet may not maintain a long-term stable orbit in
the HZ of the system. For more details, we refer the reader to
the Web site http://astro.twam.info/hz-multi where animations

of the time-variations of the HZs shown in Figures 7 and 9 can
be found.

4. INTERACTIVE WEB SITE

To streamline the calculations of the HZ in binary and multiple
star systems, we have developed an interactive Web site where
by inputting the orbital and physical properties of the stars, the
HZ of the system is calculated for the time at which the stars are
in the configuration that corresponds to their prescribed orbital
parameters. The Web site can be found at

http://astro.twam.info/hz.

Figure 10 shows a screenshot of the Web site. As shown
on the top of the figure, the Web site gives the option for
the calculations to be performed for a binary or a multiple
star system. We chose to separate these two cases because in
calculating the HZ of binary star systems, the Web site has
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dashed line shows the outer boundary of orbital stability at 0.362 AU.

(A color version of this figure is available in the online journal.)

Table 4
Values of the Mass, Luminosity, Temperature, and the Components

the capability of using Equations (6) and (7) to determine

the boundaries of planetary stability as well. However, for

of the Position and Velocity Vectors of the Equilateral Three-star

a stellar system with more than two stars, the stability limits

Systems shown in Figures 11 and 12

can be obtained only by direct integration of the equation of

Elliptical

Circular

motion of planetary bodies at different locations in the system.

the value of the mean-anomaly, which can be used to obtain
snapshots of the HZ during the rotation of the two stars around

Also, for binary stars, the Web site offers the choice of setting
their common center of mass.

5500 7400 3500 5500 7400

3500

T (K)
L(Lo)

6.6

0.063
0.5

0.028
0.4

6.6

0.063
0.5

0.028
0.4

1.6
1.21

0.8
—3.64

—3.88

2.85

0.8
—0.14

1.6
2.19 2.96
0.8

5.13

532

M (Mo)
a (AU)

e

The next set of input parameters are the effective temperature,
luminosity, and mass of each star as well as the star’s position.

3.36
—3.88

—0.14  -3.64
—3.88

3.64
—3.88

X (AU)
Y (AU)

The temperature and luminosity of a star are used to calculate its

2.18
—0.08
—0.005

2.18
—0.19
—0.01

spectral weight factor and the boundary of the system’s HZ. The

0.15
—0.13

0.13
0.14

0.33
—0.31

0.33
0.29

Vy /27 (AU day~')

mass of each star is used to calculate boundaries of planetary

stability in binary star systems, and for the calculation of the

Vy /27 (AU day~")

will not be concerned about the possibility of the formation of
terrestrial-class planets in these systems, and the orbital stability

of Earth

the HZ are model-dependent, the Web site offers the option to
choose between three models of the Sun’s HZ: The model by
Kasting et al. (1993), Selsis et al. (2007), and Kopparapu et al.

spectral weight factor and the locations of the boundaries of
(2013b). The remaining input parameter:

center of mass in multiple star systems. Since the value of the

like bodies in their HZs (although when possible, we

s are for determining

will address the latter).

the range of plotting the HZ and its resolution.

After entering all parameters and choosing the options, the
HZ of the system can be displayed by clicking on the “Render
button. The Web site has been programed to stop the calculations

4.1. Interesting Examples: Equilateral Three-star System

»

Among the currently known solutions of the general three-
body problem, only a few are stable. The most well-known stable
solutions are the equilateral configurations were three stars (with

different masses) rotate around their common center of mass in

an equilateral triangle at all times. The orbits of the stars can
be circular or elliptical. In the latter configuration, the distances

between the stars vary with time whereas in the circular case,

the distances stay constant.

and ask for reducing the resolution if the calculations take longer
than 10 s. Once the HZ of the system is calculated, the displayed
image can be saved as a vectorized PDF file, or a rasterized PNG

image. Figure 10 shows as an example the input parameters and

the calculated HZ of a GKM triple star system. In the next
section, we show the application of the Web site by calculating

the HZ of some interesting analytical solutions to the three-

body

problem. We would like to emphasize that the systems studied

We calculated the HZ of the system using our interactive Web

site for different values of the mass

of the three stars

in the next section have been chosen for the mere purpose of

demonstrating the use of our interactive Web site. We.

luminosity and temperature

>

, and for the model of the Sun’s HZ by

therefore,

5

Kopparapu et al. (2013a, 2013b). Table 4 shows a sample
of our systems for a circular (Figure 11) and an elliptical

3 The calculations of the spectral weight factor for this model is carried out

using the formulas given by Underwood et al. (2003).
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Figure 9. Graphs of the HZ of the KID 5653126 system when the star C has a semimajor axis of 2.42 AU and an eccentricity of 0.7. From the top right panel and in a
counterclockwise rotation (from (a) to (h)), the panels correspond to the star C being at 0°, 26°, 28°, 41°, 52°,73°, 117°, 150°, and 154°, respectively. An animation
of the HZ of this system can be found at http://astro.twam.info/hz-multi.

(A color version of this figure is available in the online journal.)
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Figure 10. Screenshot of the interactive Web site http://astro.twam.info/hz for calculating the HZ of binary and multiple star systems.
(A color version of this figure is available in the online journal.)
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Figure 11. Habitable zone of a triple star system with the stars on an equilateral triangle as an analytical solution to the general three-body problem. From the top
right panel and counterclockwise, the figures show the evolution of the HZ of the system for one complete revolution around its center of mass. The stars masses,
luminosities, and temperatures as well as their initial positions and velocities are given in Table 4. The orbits of the stars around the center of mass (0, 0) are shown in
black. An animation of the HZ of this system can be found at http://astro.twam.info/hz-multi.

(A color version of this figure is available in the online journal.)

(Figure 12) configuration. The initial positions (X,Y) and
velocities (Vy, Vy) of the stars are also shown. Figure 11 shows
four snapshots of the HZ of the circular case along with the orbits
of the stars (black, solid circles) for one complete revolution of
the system (from the top right panel and in a counterclockwise
rotation). Since in this configuration, the distances between the
stars do not change, one would expect that for the types of
the stars considered here, the mutual stellar interactions will
be so small that planetary orbits maintain stability in the stars’
individual HZs. Figure 12, shows similar stars in an elliptical
configurations. As shown here, although at times during their
orbital motions, the stars are so far away from one another
that they maintain their individual HZs, their subsequent close
approaches causes the HZ of the system to change and the
interactions among them may become so strong that the orbits of
Earth-mass objects in the HZ will become unstable. Animations
of the time-evolution of the HZ of the system can be found at
http://astro.twam.info/hz-multi.

4.2. Interesting Examples: Three Stars in a Figure-eight Orbit

Another interesting solution to the general three-body prob-
lem is when three equal-mass bodies revolve around their cen-
ter of mass in a figure-eight orbit (Moore 1993; Chenciner &
Montgomery 2000). Although such orbital configuration is un-
likely to appear in nature, it would be interesting to calculate
its HZ and determine how it evolves as the stars move in their
orbits.

Using our interactive Web site, we calculated the HZ of such
systems for different values of the mass and temperature of
each star. Results of stability analysis indicated that in general
in a triple star system in a figure-eight orbit, the orbit of an
Earth-mass planet will be stable at large distances around the
entire system and in a small region around each star where the
perturbations of other stars do not affect its motion. Figure 13
shows the results of these integrations for a system with three
Sun-like stars (7 = 5780 K). Integrations were carried out for
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Figure 12. HZ of the same triple star systems as in Figure 11 with stars being in elliptical orbits. From the top right panel and counterclockwise, the figures show
the evolution of the HZ of the system for one complete revolution around its center of mass. The stars masses, luminosities, and temperatures as well as their initial
positions and velocities are given in Table 4. The orbits of the stars around the center of mass (0, 0) are shown in black. An animation of the HZ of this system can be
found at http://astro.twam.info/hz-multi.

(A color version of this figure is available in the online journal.)
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Figure 14. HZ of a triple star system with Sun-like stars in a figure-eight orbit. From the top right panel, and in a counterclockwise rotation, the figures show the
evolution of the HZ of the system for one complete revolution around its center of mass. The initial orbital elements and velocities of the stars are given in Table 5.
The dashed circles correspond to the boundaries of planetary orbit stability. As shown here, the HZ encompasses the entire system and is dynamically unstable. An
animation of the HZ of this system can be found at http://astro.twam.info/hz-multi.

(A color version of this figure is available in the online journal.)

of the time-evolution of the HZ of the system can be found at
http://astro.twam.info/hz-multi.

5. SUMMARY

We presented a general methodology for calculating the HZ
of multiple star systems. We used the concept of spectral weight
factor as introduced by HK13 and KH13, and calculated the
total flux received at the top of the atmosphere of an Earth-
like planet. By comparing this flux with that received at the top
of Earth’s atmosphere from the Sun, we determined regions
corresponding to narrow and empirical HZ in and around
multiple stars systems. To demonstrate the applicability of our
methodology, we calculated the HZ of two triple star systems
and studied the effects of high and low luminosity stars on
the HZ around the other stellar components. To streamline
the calculations of HZ in binary and multiple star systems,
we developed an interactive Web site where by inputting the
physical and dynamical properties of the stars, the HZ of the
system is obtained.

We would like to note that the HZ, as calculated in this study
is in fact an instantaneous HZ. In our calculations, we did not

consider the effect of the eccentricity of the stellar and planetary
orbits. When the orbit of the planet and/or those of the stars
are eccentric, the close approaches of the stars to the planet will
affect the total flux received at the top of the planet’s atmosphere,
and therefore changes the locations where the planet can be
habitable (i.e., the boundaries of the system’s HZ). In an actual
system with an Earth-like planet, these effects have to be taken
into consideration, and the region of the habitability of the planet
has to be determined by averaging the flux received by the planet
over the longest orbital period of the system. Such calculations
have to be applied to actual systems in a case by case basis.

We thank the anonymous referee for constructive comments
which have improved our manuscript. T.M. received financial
support from the Carl-Zeiss-Stiftung. N.H. acknowledges sup-
port from the NASA ADAP grant NNX13AF20G, NASA Astro-
biology Institute under Cooperative Agreement NNAO9DA77
at the Institute for Astronomy, University of Hawaii, HST grant
HST-GO-12548.06-A, and Alexander von Humboldt Founda-
tion. Support for program HST-GO-12548.06-A was provided
by NASA through a grant from the Space Telescope Science
Institute, which is operated by the Association of Universities
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(A color version of this figure is available in the online journal.)
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4. Summary

Throughout this work I studied different problems in the context of planet formation and
in particular the case of planet formation in binary stars. This was done using numerical
simulations mainly with the FARGO code.

In the first paper (Miiller and Kley, 2012) we addressed the problem of planet formation in
close binary systems using the examples of v Cephei and o Centauri. We extended previous
work which was done primarily with locally isothermal simulations by adding an energy equa-
tion and local radiative cooling. The additional physical effects result in less eccentric disks
which facilitates planet formation as the relative velocities between dust within the disk are
decreased.

The second paper (Miiller et al., 2012) analyzed the numerical treatment of gravity forces in
two-dimensional simulations due to an embedded planet in the protoplanetary disk or the self-
gravity within the protoplanetary disk. As planets are usually treated as point masses their
gravitational potential needs to be smoothed to avoid singularities within the potential. The
smoothing also accounts for the finite height of the disk in the vicinity of the planet. In the case
of a self-gravitating disk the gravitational potential needs also to be smoothed to account for
the finite height of the disk and to avoid overestimating gravitational forces on short distances.
To estimate the values for the smoothing parameter we compared the smoothed torques on
the planet to analytically known torques and the smoothed forces between cells to vertically
integrated forces.

In the third paper (Kley et al., 2012) we investigated spatial resolution and timestep issues
concerning the FARGO algorithm rose by Dong et al. (2011). We showed that the FARGO
algorithm can be applied to the given problems without any constraints on resolution and
time steps. This was done by doing a comprehensive comparison between five different codes
on the problem suggested by Dong et al. (2011).

The forth paper (Miiller and Kley, 2013) deals with mass accretion in transitional disks.
Transitional disks are protoplanetary disks with an inner cavity but nevertheless show mass
accretion onto the star. We showed that planets at the outer edge of the cavity may transfer
mass through the gap onto the star. This was done using locally isothermal and radiative
simulations which also included stellar irradiation. Isothermal models showed similar mass
accretion rates to the standard mass accretion rate of stationary, viscous accretion disks
whereas the radiative and irradiated models show much smaller accretion rates.

In the last paper (Miiller and Haghighipour, 2014) we described a way to calculate habitable
zones in multiple star systems based on one-dimensional climate models by Kopparapu et al.
(2013a,b). Therefore we extended previous work done by Kaltenegger and Haghighipour
(2013) and Haghighipour and Kaltenegger (2013). We showed that the concept of an inner
and outer radius of the habitable zone in multiple star systems is obsolete and presented an
alternative definition. To simplify calculations of the habitable zones in multiple star systems
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4. Summary

we presented an interactive website.

4.1. Outlook

The simulations done on the y Cephei and o Centauri system in Miiller and Kley (2012) did
not include self-gravity and stellar irradiation. With the in-depth analysis of gravitational
smoothing in Miiller et al. (2012) it is now possible to include the effects of self-gravity in
these models correctly. Also the addition of radiative diffusion (Appendix A.1) and stellar
irradiation (Appendix A.2), which were successfully used in the simulations of Miiller and
Kley (2013) can improve the models.

As all the simulations where only done using the two-dimensional FARGO code, some of the
models should be compared to fully three-dimensional models to check if the gravitational
smoothing and stellar irradiation provide similar results.

The protoplanetary disks in these simulations can get eccentric and thus the relative velocities
between particles within the disk increase. To simulate the evolution of particles and their
relative velocities in the disk further simulations need to be done. This can be done using the
particle treatment (Appendix A.3) that I implemented into the FARGO code.
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A. Appendix

Most of the simulations done in this thesis we performed using the FARGO code, which is freely
available at http://fargo.in2p3.fr. The FARGO code is a grid-based, staggered mesh code
which uses the same techniques as the ZEUS-2D (Stone and Norman, 1992) code with the
addition of the FARGO algorithm (Masset, 2000) to speed-up calculations. It uses operator
splitting and a first-order integrator to update velocities with the source terms. The advective
terms are treated by a second-order upwind algorithm (van Leer, 1977). We used the modified
version of Baruteau (2008) with self-gravity and an energy equation.

In this chapter, some of the additions we made to the FARGO code are described.
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A. Appendix

A.l. Radiative Diffusion

The vertically integrated energy equation reads as

0%c, T
ot

+V (e, Tv) = —pVv+ Q4+ — / VFdz, (A.1.1)

where ¥ is the surface density, ¢, the specific heat, T' the mid-plane temperature, p the
vertically integrated pressure, v the two-dimensional velocity, Q)4 the heating terms and F
the two-dimensional radiative flux, which reads as

dor
3pK

F=——vTt (A.1.2)

where op is the Stefan-Boltzmann constant, p the density and « the Rosseland mean opacity.
The last term of Equation A.1.1 can be approximated as
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where Qaq describes the radiative losses from the disk surfaces (Miiller and Kley, 2012,
Section 2.1) and

32 32¢/2
K = 220Rp3 _ 22VETOR prs (A.1.7)
3pk 33Xk

is the diffusion coefficient of the radiative diffusion in the r—¢ plane. To treat optically
thick and thin regions correctly we use a flux-limited diffusion approach (Levermore and
Pomraning, 1981; Levermore, 1984). Therefore the factor % in K is replaced by a flux-limiter
A given by Kley (1989). The flux-limiter depends on the local physical conditions of the gas
and approaches % for optically thick regions and reduces the flux to 40rT* in the optically
thin regions.

The radiative diffusion part of Equation A.1.6 can be written as a diffusion equation, which

reads as
0X¥c, T 10 (9 101 8
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A.1. Radiative Diffusion

This can be discretized on the staggered mesh as

1 n
Ty Ty H 2 Tiv1j = Tig  pe Tij=Tivrj e
=3 P P (1K)~ o (rK)
dt 2ijCo |15 L — 17 Tivl — Ti 2 TP — i1 2
’ i+3 =3
1 1
+ 73@ ((TMH - Tu) Ki,jJr% - (TZJ —Tij- 1) K7J77> (A.1.9)

If we bring all terms with the n+ 1 timestep on the right side and factor them by the different
cell values of T' we get a linear system of equations:
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This linear system of equations can be solved by any linear equation solver. We use a successive
over-relaxation algorithm to solve it. Therefore we iterate over

~ w ~ ~
27]

until 7' converges. If we use open boundary conditions at the inner or outer radius of the disk
we set the corresponding temperature values to Thoo, at each iteration. Thyo, is usually = 3K
to account for the cosmic background radiation.
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A.2. Stellar irradiation

The irradiation from the star to one side of the disk can be approximated by

r 2
Qirrad = QOR étar ( s;ar) (A21>

(Giinther et al., 2004), where Ty, is the effective photosphere temperature of the star and
Tstar the radius of the star. The factor o accounts for the non-perpendicular impact of the
irradiation from the star onto the disk.

The implementation of this is done in the following way: First of all, the factor « is calculated
for each cell by

_1
2

dHi,j [(de‘)z + (Ti+1 — Ti_1)2:| dHZ'J‘ <0 ’
0 de‘ >0

(A.2.2)

aiv.j =

where dH; j = (hr)it1,; — (hr)i—1,; is the difference in height of the current cell. « is only
non-zero when the slope is positive and thus not shadowed.

To further improve the shadow effect a depth buffer is used. Therefore a maximum angle ¥,,x
and a resolution in ¥ direction is specific in the configuration file. A buffer with N, x Ny
integer values is created, where N, is the number of cells in ¢ direction and Ny the number
of cells in ¥ direction. Each value is filled with the radial index of maximum radius which
is visible by direct line of sight in this direction. The advantage of this method is that it
can be trivially parallelized with the FARGO parallelization method of rings. Each process can
calculate its own maximum radius and later on the maximum of all local maximum radii can
be taken to get the global maximum radius. For each cell the visibility can be determined by
calculating the index

hi j(Nyg — 1
k; j = min {N,g, arctan T)} , (A.2.3)
which corresponds to the height of the cell and then looking up the maximum visible radius
in the depth buffer. The visibility

(A.2.4)

0 otherwise

{1 i < depthBuffer|i, k]
Nij =

then defines if a cell is visible or not. To avoid discontinuities by abrupt shadowing the actual
visibility is calculated as a mean of all surrounding cells.

As the initial profiles used in the simulations usually do not account for stellar irradiation,
it is a good idea to slowly ramp up the stellar irradiation. This can be done by multiplying
Qiraa by a factor

2
1.0 — <cos 2tf:mp> t < tramp

0 otherwise

£(t) = : (A.2.5)

where tamp is the ramp-up time.
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To avoid depositing too much energy in the optically thin regions, we estimate a horizontal
optical depth 7 by calculating the vertical optical depth

1
Tij = —==HRijYij (A.2.6)

V2

where £ is the Rosseland mean opacity and ¥ the surface density, and rescaling it by the size
of the cell:

- Ti41 — T4
T,] 7_7] (h’r)i,j ( )

If 7~—z‘,j < 1 we set Qirrad = 0.

Composing everything together Qi;;aq can be written as

2
2 f(t) g cvij oR Tigar (%) Tij 21 (A.2.8)

Qirrad,ij = theru
otnerwise
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A.3. Particles

The FARGO code has a built-in N-body solver for the motion of the stars and planets. It is
implemented as a fifth-order Runge-Kutta integrator. When running FARGO in parallel the
position of the stars and planets is needed in all processes and therefore the N-body problem
is solved on each process separately.

This is not needed for the study of particles within the disk and so we implemented an
additional N-body solver into the FARGO code, which is optimized for handling hundreds of
thousands particles. We also use a fifth-order Runge-Kutta integrator proposed by Cash and
Karp (1990). Each particle is only calculated by one process, more precisely by that process
which stores the corresponding gas cells of the particle’s current position. If a particle leaves
the computational domain of one process it is handed over to the next process.

The particles can not interact, meaning they only feel the gravity of the stars and planets,
but not of other particles. The inclusion of the gravitational potential of the gaseous disk is
optional as it is computationally very costly.

In addition to the gravitational forces, the particle feels the gas drag. It is given by (Landau
and Lifshitz, 1959; Whipple, 1972)
1 2
Fdrag = _5 Cp TTy Pg Urel Vrel (A.3.1)

where 7}, is the radius of the particle, ps the density of the gas and v,¢ the relative velocity
between the particle and the gas. The drag coefficient is a dimensionless constant and is given
by (Whipple, 1972; Weidenschilling, 1977)

24Re™! Re<1 (Stoke’s law)
Cb=1{24Re"5 1< Re< 800 , (A.3.2)
0.44 Re > 800 (Newtonian)

where Re is the Reynolds number of the gas. It can be calculated by

Re = 2Pa’p el (A.3.3)

n
where 7 is the dynamic viscosity of the gas. It is given by (Adachi et al., 1976)

Mg Vtherm
= —=— A34
" P (A.3.4)

8kpT

—B~ are the mean mass and mean thermal velocity of
g

where mg = pmgo and Viherm =
the gas molecules and o their collisional cross section. The collisional cross section is about

T (1.5 x 1078 cm)2 for molecular hydrogen.

We assume that the sizes of the particles are larger than the mean free path of the gas
molecules and therefore neglect the Epstein regime. A combined approach to include both
regimes is described in Haghighipour and Boss (2003).

To calculate the drag force for the particles the gas quantities (density p, temperature 7' and
velocity v) need to be known at the position of the particles. As they are only specified for

104



A.3. Particles

the grid points they have to be interpolated. For each quantity we identify the nearest grid
point in r and ¢ direction. Qmm, Qmp, @pm and Qpp are the nearest values to the point (7, ¢),
where the first index specifies the radial direction and the second the azimuthal direction and
the index m means minus and specifies the cell left or below and the index p stands for plus
and specifies the cell right or above. We can first interpolate azimuthally by

O — (rm@p — Tm®) Qmm + ("rm$ — T'm$Pm) Qmp7 (A.3.5)
Tm@p - Tm@m
Qp = (rp®p — 1p%) Qpm + (rp® — rp®m) Qpp. (A.3.6)

Tp¥p = 'pPm

Afterwards we interpolate radially by
(rp = 1) Qm + (r —mm) Qp

'p = Tm

Q= (A.3.7)

The values of r and ¢ have to be taken on the corresponding grids. If ¢, > 27 or ¢y, > 27
it is a good idea to shift everything by —m to avoid problems.
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A.4. FARGO Viewer

As the FARGO code has no graphical user interface all the output data is provided in binary
data files. To visualize the certain gas quantities and positions of stars, planets and particles
I developed an OpenGL based viewer. The FARGO Viewer is freely available at https:
//github.com/twam/FARGO-Viewer.

The FARGO Viewer can visualize the simulations from arbitrary point of views, with or
without the underlaying grid. Stars and planets can be displayed with the respective orbits.
It also allows the visualization of particles within the disk as discussed in Appendix A.3.
It can loop through all the time steps of the simulation by itself and write out the current
visualization as PNG files for easy video generation.

Timestep: 6
104

Timestep: 7 Timestep: 6
4.0:10°

Figure A.1.: Screenshots of the FARGO Viewer showing a y Cephei simulation. The upper
left panel shows the surface density of the disk, the orbits and positions of the
stars and the Roche-Lobe of the primary star. The upper right panel shows the
surface density at a zoomed view such that the single grid cells are visible. Note
the logarithmic grid with a much higher resolution in the top left corner. The
lower left panel shows the particles within the simulation. The lower right panel
shows the azimuthal velocity of the gas.
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