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1. Introduction

Radiotherapy (RT) is an established treatment for human cancers. It has been
estimated that over 50% of all cancer patients would benefit from RT as isolated
treatment or in combinations with surgery and chemotherapy [1]. The aim of RT
is to apply a radiation dose focussed on the tumour that is high enough to kill all
cancer cells, while keeping the dose to surrounding healthy tissue as low as possible
to prevent adverse effects. The precision of RT has improved considerably by the
introduction of advanced techniques, such as intensity modulated RT (IMRT)
and irradiation with protons and heavier particles [2, 3]. With these techniques
homogeneous doses can be delivered that are highly confined to the tumour.
Nevertheless, state of the art combinations of RT and chemotherapy accomplish

local tumour control in only about 50% of patients with advanced head and neck
cancer [4]. Other tumour entities show similarly low response rates. An explana-
tion for this is the heterogeneous dose response of tumours that appear identical
in many other aspects, such as histology, stage and localisation [5]. Several fac-
tors contribute to this effect. One of them is the varying density of cells that
have the potential to repopulate the tumour and their various intrinsic radiosen-
sitivities [6]. Another important factor is the availability of oxygen, which differs
among tumours of the same type as well as within a particular tumour [7].
Regions that are hypoxic, i.e. deprived of oxygen, frequently exist in human

tumours [8]. Under hypoxic conditions cells are less sensitive to radiation damage
(radioresistant), compared to normal oxygen levels [9]. Correspondingly, several
studies correlated tumour hypoxia with a poor prognosis for the success of treat-
ments that involve RT [10,11]. These studies, however, relied on oxygen measure-
ments using needle probes, which are invasive and do not cover the entire tumour.
Therefore, it is of great interest to develop noninvasive methods to assess hypoxia
in clinical routine, ideally in three dimensions (3D) and with high spatial resolu-
tion. This would allow further classification of tumours into sub-types according
to their hypoxic status and therefore adapted treatment strategies. Thus, for tu-
mours of the same sub-type a more homogeneous and better treatment response
can be achieved.
So far, no hypoxia imaging modality has been clinically established. A promis-

ing candidate is positron emission tomography imaging (PET) using the radiola-
belled tracer [18F]Fluoromisonidazole (FMISO). Its basic mechanism is the specific
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1. Introduction

accumulation of FMISO molecules in hypoxic cells. In a PET scanner, the de-
cay products of the radioisotope 18F labelling the tracer are detected outside of
the patient. From this data, the tracer distribution inside of the patient can be
mathematically reconstructed in 3D.
FMISO PET imaging and its applicability in RT are not yet fully understood.

A number of studies concluded that the overall efficacy of RT can be predicted
based on static FMISO PET imaging performed several hours after injection of
the tracer [12, 13]. It is not clear whether this is the most reliable (i.e. sensitive,
specific and reproducible) overall prediction that can be obtained with FMISO
PET. Moreover, there is no evidence that static imaging can be used to assess the
distribution of hypoxia-associated radioresistance within a particular tumour.
The latter aspect is particularly important with respect to dose painting (DP),

a specific RT technique that has been suggested for the treatment of tumours
containing hypoxic regions [14–16]. The concept of DP is to increase the RT
dose locally, to compensate the radioresistance of hypoxic regions and kill cells
with equal effectiveness in the entire tumour volume. In order to guide DP by
FMISO PET, a comprehensive understanding of the image formation process is
essential for a correct quantitative interpretation of FMISO PET data. It has been
proposed that this requires dynamic PET imaging, which covers the distribution
and accumulation of the tracer starting with its injection [17,18].
It is the aim of this work to develop a fundamental understanding of the for-

mation of FMISO PET signals in tumours. This is intricate, as the availability of
oxygen, and consequently also the accumulation of FMISO [19], is very heteroge-
neous on the microscopic length scale. Therefore, FMISO distributions can not
be adequately sampled by PET imaging, because its spatial resolution is limited
to a few millimetres [20]. This is referred to as partial volume effect (PVE). From
an improved understanding of FMISO PET, substantiated hypotheses about op-
timum imaging modes for the assessment of hypoxia-associated radioresistance
can be developed. These hypotheses can then be used to effectively guide future
clinical studies.
It would be extremely complex to pursue this aim by means of experiments

under realistic conditions. Thus, in this work a theoretical method is developed
to simulate microscopic oxygen distributions and the corresponding dynamics of
FMISO molecules. FMISO PET signals are subsequently simulated. The simula-
tion method is based on biophysical models of the diffusion-reaction dynamics of
oxygen and FMISO molecules in tumour tissue.
While oxygen has been modelled and simulated in a number of studies [21–23],

it is a novel concept to combine this with a model of the diffusion and oxygen-
dependent accumulation of a PET tracer [24]. The uniqueness of this work is
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that realistic models of tumour capillary networks are used as input data for
the simulations. This is very important, in order to adequately model the flux
of oxygen as well as FMISO into and out of tissue. The simulation method is
validated using pre-clinical and clinical material.
Specific aspects of FMISO PET imaging investigated in this work are:

• In tissue, FMISO distributes slowly by passive diffusion. It takes consid-
erable time for the molecules to reach hypoxic cells, which are typically
located far from oxygen-supplying capillaries. The effect of the slow FMISO
diffusion on its accumulation, as well as the combined influence on the re-
sulting PET signal is analysed in Section 4.1. Moreover, with regard to
dynamic PET imaging, it is investigated whether signals detected initially
after tracer injection (wash-in phase) and signals detected by static imaging
during the accumulation phase contain distinct information. The results are
discussed in the context of optimum imaging timepoints of PET scans and
their applicability for the individualisation of RT.

• The role of acute hypoxia, i.e. temporally varying hypoxia, and its potential
influence on FMISO PET imaging as well as RT is an important issue with
regard to clinical applications [25–29]. Therefore, a model of acute hypoxia
is integrated into the oxygen diffusion-consumption model, as described in
Section 4.2. As a consequence, the local oxygen-dependent FMISO accu-
mulation rates become time-dependent as well. The results are discussed in
the context of the reproducibility of FMISO PET imaging. Potential impli-
cations for its predictive power regarding hypoxia-associated radioresistance
are also discussed.

• The quantitative interpretation of FMISO PET data is error-prone, fore-
most because signals are blurred by the PVE. Moreover, the dependence of
the tracer accumulation rate on the oxygen concentration is ambiguous. In
Section 4.3, the simulation tool developed in this work is used to evalu-
ate different FMISO PET imaging modes with respect to their accuracy as
surrogate measures of hypoxia. Specifically, the correlation between FMISO
PET signals and the average oxygen concentrations underlying the according
PET voxels is evaluated.
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2. Background

2.1. Tumour hypoxia and its relevance to radiotherapy

2.1.1. Tumour microvessel networks

Blood vessels are an integral part of the circulatory system of the human body.
They have several functions, for instance to supply tissue with nutrients, such as
oxygen, and to remove waste products, such as carbon dioxide. Most of the sub-
stance exchange takes place between tissue and capillaries, which are the smallest
constituents of the vascular system in terms of diameter.
Vascular networks in solid tumours differ from that in normal tissue in many

aspects. They are often described as chaotic, because of their aberrant struc-
tural properties. These are e.g. enlarged intervessel distances, elongated vessels,
irregularly arranged vessels with blind endings and shunts between arterioles and
veins. The function of vessels is frequently impaired as well, for instance by an
increased permeability of the endothelium and considerable variations in blood
flow, including complete flow collapse [8].

2.1.2. Tumour hypoxia

An important effect of the abnormal tumour vessel networks is an insufficient
supply of oxygen to tumour cells. This state is referred to as hypoxia. Normally
oxygenated cells are called normoxic. Many studies have shown that hypoxia is a
frequent trait of different malignancies in humans, especially squamous cell carci-
nomas of the head and neck (HNSCC) [30]. Hypoxia is a dynamic phenomenon,
because oxygen supply by the tumour vasculature varies temporally. Thus, it is
distinguished between acute and chronic hypoxia [27]. Acute hypoxia is charac-
terised by tissue oxygen levels that fluctuate with a periodicity on the order of ten
minutes [31], whereas chronic hypoxia remains stable for much longer periods.
Chronic hypoxia results from large intervessel distances. Cells far from vessel

are undersupplied with oxygen, because it has already been metabolised by cells
closer to the vessel. Typically, oxygen supply by a single vessel cord reaches as
far as 100–200 µm into tissue [25]. Not only the intervessel distance is crucial,
but also the oxygen content in blood, which decreases in flow direction. Thus,
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2. Background

(a) (b) (c)

Figure 2.1.: IHC performed in tissue sections from HNSCC xenografts. These are over-
lays of fluorescence microscopy images of two different markers. Green in-
dicates hypoxia (pimonidazole) and red indicates the endothelium of blood
vessels (antibody to mouse endothelium). The scale applies to all images.
Note, that hypoxia is distributed heterogeneously on the micrometre scale
and that there are distinct hypoxia patterns in the same cell line: (a)
ribbon-like hypoxia, (b) patchy hypoxia and (c) normoxia (classification
according to [7]). Images provided by courtesy of E. Troost (Department
of Radiation Oncology, Radboud University Nijmegen Medical Centre, Ni-
jmegen, The Netherlands).

chronically hypoxic cells might be located closer to vessels at the venous ends
of capillaries than close to arterioles. If cells experience extreme deprivation of
oxygen and other nutrients, they eventually die in an uncontrolled way. This
process is called necrosis and the resulting tissue regions are referred to as being
necrotic.
Acute hypoxia results from temporal variations in blood flow and in blood oxy-

gen content, i.e. from a varying perfusion [32,33]. The most extreme aberration in
blood supply is total flow stasis. Flow stasis was observed in pre-clinical tumour
models [34], though its incidence appears to be lower than that of continuous sup-
ply fluctuations [25]. Acutely hypoxic cells experience several cycles of becoming
hypoxic followed by reoxygenation.
Chronic and acute hypoxia are closely linked, but they may have different bi-

ological consequences. Some studies associated acute hypoxia in tumours with
a higher risk for the induction of metastases and an increased radioresistance,
compared to chronically hypoxic tumours [26,35].
Immunohistochemical (IHC) methods can be used to image hypoxia in 2D tis-
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2.1. Tumour hypoxia and its relevance to radiotherapy

sue sections. A commonly used biomarker is the 2-nitroimidazole compound pi-
monidazole, which binds in cells under hypoxic conditions. Pimonidazole can sub-
sequently be visualised using a fluorescent antibody and fluorescence microscopy.
IHC studies in tumour xenografts, i.e. human tumour material implanted in an an-
imal, showed that hypoxia is distributed very heterogeneously on the microscopic
length scale. This heterogeneity reflects, that oxygen concentrations around ves-
sels vary on the micrometre scale, with chronically hypoxic regions being located
70–100 µm from vessels [36]. Distinctly different patterns of hypoxia were ob-
served in the same cell lines, as illustrated in Figure 2.1a–c) [7]. These aspects
are very important in the context of this work, as the spatial resolutions of most
noninvasive methods to image hypoxia are much lower.

2.1.3. Hypoxia and radioresistance

Radiotherapy (RT) aims to kill cancer cells by exposing them to ionising radiation.
The underlying radiobiological mechanism is the radiation damage to the DNA
of cancer cells [37]. In order to fully eliminate a tumour, all cancer stem cells,
i.e. cells that have the potential to repopulate the tumour, have to be damaged
beyond their repair potential. Oxygen has an important role in this process, as
it binds to radicals produced by the absorption of radiation in tissue. In this
way it causes permanent changes in biological molecules, e.g. the DNA, which
may eventually lead to cell death [13]. Consequently, under hypoxic conditions
the probability that radiation damage is repaired is higher and therefore the
effectiveness of radiotherapy is lower.
Already in 1953 it was reported, that low oxygen levels are associated with

a decreased radiosensitivity [9]. In an extremely hypoxic cell population an up
to three times higher radiation dose is needed to achieve the same cell kill as in
normoxic cells. The radiosensitivity predominantly decreases for oxygen partial
pressures (PO2) below 10 mmHg [26]. Today, there is a large amount of evidence
on the adverse influence of hypoxia on the efficacy of RT in human tumours. In
most studies local PO2 values were assessed with invasive oxygen sensing probes,
for instance in SCC of the uterine cervix [10] and of the head and neck [11].
Moreover, many imaging studies with relatively small numbers of patients were
performed, using different imaging modalities [13].

2.1.4. Specific treatments for hypoxic tumours

Different treatments to improve the efficacy of radiotherapy in hypoxic tumours
are currently under clinical investigation. These studies include methods that are
intended to increase the oxygen delivery to tissue or radiosensitise hypoxic cells,
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2. Background

which is referred to as hypoxic modification [38]. An example is the inhalation of
carbogen, a mixture of 5% carbon dioxide and 95% oxygen, in combination with
the administration of nicotinamide, a drug enhancing tumour blood flow [39].
Another method is targeted to radiosensitise hypoxic cells by hyperthermia and
drugs such as nimorazole [40].
Other promising approaches involve the application of radiation doses that are

tailored to the radiosensitivity of a tumour as a whole or even to varying sen-
sitivities within a particular tumour. These methods can be summarised under
the term biologically adapted dose prescription [41–43]. Information from various
biomarkers and imaging modalities may be combined and translated into a dose
prescription for the RT treatment planning process. A brief summary of methods
to assess hypoxia is given in Section 2.2.
In the context of this work, the biological property of interest is the hypoxic

status of tumour tissue. In case parts of a tumour have been identified as hypoxic,
the simplest method in this category is to increase the radiation dose in the whole
macroscopic tumour volume. This approach might be limited by adverse reactions
in normal healthy tissue. Adverse reactions occur, because in external beam RT
the X-rays are applied from the outside of the patient and thus some dose is
inevitably deposited in organs at risk in proximity to the tumour.
Therefore, other concepts intend to escalate the dose by a constant amount in

hypoxic areas of the tumour only. This is referred to as dose painting by contours.
Maybe the most appealing method, though also the most complex, is the appli-
cation of different doses to small tumour sub-volumes. These doses are tailored
to match the respective local radiosensitivity. This method does not aim at a
homogeneous radiation dose distribution in the whole tumour volume, but at a
dose distribution with the same biological effect in every sub-volume. Because the
degree of hypoxia may vary strongly within a tumour, a homogeneous biological
effect can imply a highly heterogeneous dose distribution. This approach is called
dose painting by numbers [14–16].
None of the described treatment options has yet been clinically established, as

the assessment of hypoxia in human tumours is difficult.

2.2. Assessment of tumour hypoxia

2.2.1. Overview of different methods

In many studies relating hypoxia to RT response, the tissue oxygen levels were
measured using invasive techniques. Frequently, oxygen sensing probes were used,
which are attached to a needle and punctured into tissue [10, 11]. With the
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2.2. Assessment of tumour hypoxia

Eppendorf probe, a polarographic needle electrode, a current is measured that
is proportional to the local PO2. The current is generated by electrochemical
reduction of oxygen at the gold cathode of the probe [44]. The probes were found
to be unsuited for routine clinical use for several reasons [13]. For example, they
are invasive and may cause false measurements by influencing the tissue integrity.
Also, not all tumour sites are accessible and the PO2 is measured at a few locations
along the linear needle tracks only. Therefore, it is not possible to assess the full
tumour oxygenation in a spatially resolved manner.
As a consequence, different noninvasive imaging methods have been proposed

to assess hypoxia. Methods based on widely available hardware are obviously the
most reasonable candidates for clinical application. These typically are computed
tomography (CT), magnetic resonance imaging (MRI) and positron emission to-
mography (PET). Measurements of the blood flow in a tissue volume element
(voxel), i.e. the perfusion, are possible with all three modalities. Perfusion mea-
surements with MRI and CT appear to be prognostic for RT outcome in HNSCC
and cervical cancer, but results on the correlation between the perfusion and oxy-
genation measurements with alternative methods were conflicting [13]. An MRI
method referred to as blood oxygen level dependent (BOLD) imaging may be ap-
plicable to assess hypoxia, which has been demonstrated in prostate cancer [45].
It is problematic that BOLD signals must be interpreted in combination with the
local tissue perfusion, in order to obtain reliable information on the local degree
of hypoxia [36].
The work presented in this thesis was focussed on dedicated hypoxia tracers for

PET imaging, i.e. radiolabelled biomarkers that specifically accumulate in hypoxic
tissue. Especially the radiolabelled 2-nitroimidazole compound [18F]Fluoromiso-
nidazole (FMISO) was investigated, which is one of the first hypoxia PET tracers
that have been developed [46–48]. To date, FMISO is the most extensively studied
hypoxia tracer [13]. In the next section a short description of the basic principles
of PET imaging is given, followed by a more detailed outline of PET imaging
using FMISO.

2.2.2. Basics of positron emission tomography (PET)

PET is a medical imaging modality used to measure different functional tissue
properties in patients, which are identified using dedicated tracers, i.e. molecules
that are labelled with a positron emitting radioisotope (e.g. 18F, 15O, 60/64Cu).
Examples of functional properties that can be imaged with PET are glucose
metabolism and hypoxia, using the tracers [18F]Fluorodeoxyglucose (FDG) and
FMISO, respectively. Solutions of the tracer molecules are intravenously adminis-
tered to the patient. Emission scanning is performed following an uptake period,
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2. Background

which depends on several factors, such as the half-life of the radioisotope, the
imaged organ and the retention mechanism of the particular tracer.
As functional data complements anatomical information, PET is combined

with CT in modern imaging equipment (PET/CT) [49]. For oncological appli-
cations, PET/CT is ideally suited to combine measurements of cancer biology
and anatomy. PET/CT might help to define RT target volumes more accurately
or even individualise treatments as discussed in Section 2.1.4 for hypoxia as an
important functional property. As biological changes often precede anatomical
changes, tumour recurrences or metastases may be detected earlier with PET
imaging, compared to anatomical imaging modalities [50].
In PET, it is possible to image concentrations of the radiolabelled tracers with

temporal and spatial resolution. The radioisotopes used to label the molecules are
positron emitters, i.e. they undergo a β+ decay. For the frequently used marker
18F this process reads:

18F −→ 18O + e+ + νe,
where e+ and νe denote a positron and an electron neutrino, respectively. Follow-
ing the decay, the positron annihilates with an electron and two 511 keV photons
are emitted in opposite directions, at an angle of approximately 180◦. This pro-
cess is depicted in Figure 2.2a. The high energy photons leave the patient and are
detected in the PET scanner by arrays of scintillation crystals and photomultiplier
tubes, which are aligned in rings around the patient [51].
The acquisition of a 3D image of the tracer concentration is based on the coin-

cidence detection of the two annihilation photons, which is illustrated in Figure
2.2b. If two detections occur within a few nanoseconds, it is assumed that a ra-
dioisotope has decayed on the line connecting the two responding detectors, i.e. the
line of response (LOR). This is a valid assumption, because the photons travel
in opposite directions at the speed of light. In case there are D possible LORs,
the raw data acquired by PET imaging are the numbers of coincidences detected
on these LORs n(1), n(2), . . . , n(D). The density distribution of the emitting
radioisotopes in tissue, which is proportional to the density of tracer molecules
C (x, y, z), can be recovered from these data. The recovery is done using dedi-
cated image reconstruction algorithms, such as filtered back projection [52] and
maximum likelihood expectation maximisation [53].
A spatial resolution of about 4 mm (FWHM) is achieved with modern whole-

body PET equipment [54]. The resolution is limited by several factors. Funda-
mental physical limitations are that the emitted positrons, due to their kinetic
energy, have a mean free path of a few millimetres before annihilation. Moreover,
a remaining total momentum of the e+−e – pair at the instant of annihilation
results in an angle between the emitted photons that differs slightly from 180◦.
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180°

511 keV
photon

decay with
positron emission

Annihilation

(a)

LOR

Coincidence
detection

Detectors

(b)

Figure 2.2.: (a) Diagram of the β+ decay of radioisotopes used in PET and the subse-
quent e+−e – annihilation generating two photons. The angle between the
photon tracks differs by Θ from 180◦. Typically Θ = 0.5◦ (FWHM) [52].
(b) Coincidence detection of the annihilation photons in the PET scanner.
Figures provided by courtesy of A. Horst (Section for Biomedical Physics,
University Hospital Tübingen, Eberhard Karls University, Tübingen, Ger-
many).

Other limitations are associated with the restricted count statistics, as only a
small fraction of the emitted photons is detected as true coincidences and the to-
tal injected radioisotope dose is limited for medical reasons. Another important
factor is the finite size of the discrete radiation detectors [51].
Emission scanning can be performed in dynamic mode, i.e. the acquisition of

multiple image volumes at different timepoints post injection (pi) of the tracer.

2.2.3. PET imaging with [18F]Fluoromisonidazole

FMISO is a PET tracer dedicated for the assessment of hypoxia in tumours. It can
be denoted as R−NO2, i.e. a nitro compound NO2 attached to the rest R of the
molecule. The bioreduction of R−NO2 in cells involves multiple reduction steps.
The first step is the conversion of NO2 into a radical, which is reversed at a rate
depending on the availability of molecular oxygen, i.e. a high reversal rate for high
oxygen levels and vice versa. Due to this property, the subsequent accumulation of
FMISO depends on the oxygen concentration and therefore is specific for hypoxia.
In the following steps, further reactions occur and hydroxylamine (NHOH) is
formed:

R−NO2
+e –−−−⇀↽−−−
+O2

R−NO – ·
2

+3 e –−−−→ R−NHOH

11



2. Background

Hydroxylamine binds to macromolecules in cells, such as nucleic acids and pro-
teins, and remains confined for typical durations of a PET scan. As the reduction
is mediated by enzymes, FMISO is retained in vital cells only [47]. The reduction
process can be described by a first-order reaction rate constant that depends on
the oxygen concentration [55]. This rate is fairly constant for PO2 values above
20 mmHg and shows a steep increase below 10 mmHg [56].

(a) (b)

Figure 2.3.: (a) Transaxial slice of a clinical FMISO PET/CT image acquired 4 h pi in
a patient with a tumour in the head and neck region. The FMISO concen-
tration (red–white colour map) is overlaid on the CT (black–white). Parts
of the tumour clearly exhibit a higher FMISO signal than the surround-
ing tissue, e.g. the neck muscles. (b) FMISO TACs for different voxels
located in the tumour. In all voxels, tracer is accumulated at a similar
rate (120–240 min). However, the signals differ strongly during the early
phase (0–35 min). Imaging data provided by courtesy of D. Thorwarth
(Section for Biomedical Physics, University Hospital Tübingen, Eberhard
Karls University, Tübingen, Germany).

For application in PET imaging the positron emitter 18F with a half-life of
about 110 min is attached to the FMISO molecule [51]. After intravenous admin-
istration, FMISO distributes in the blood volume and enters soft tissue via blood
vessel membranes. In tissue it is diffusively transported into hypoxic regions,
which typically are located 70–100 µm from vessels [36]. Due to its balanced par-
tition coefficient of 0.4 [57], FMISO readily crosses cell membranes and should
be cleared from blood fairly quickly. The partition coefficient is a measure of
lipophilicity. However, clearance observed by blood sampling in patients was
quite slow, with a half-life of T1/2 = 380 min [48]. This is one explanation for the
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2.2. Assessment of tumour hypoxia

relatively low contrast in FMISO PET images, compared to examinations using
e.g. FDG. Maximum ratios between FMISO concentrations in tumour and blood
(T/B) in general do not exceed 4.7 [12, 17, 29], but typically are considerably
lower.
Typically, clinical FMISO PET images are reconstructed from signals that were

collected during an acquisition period of about 15 min, following a uptake phase
of more than two hours after tracer injection. Note that these are static images.
A clinical example is shown in Figure 2.3a.
A major limitation of PET is its relatively low spatial resolution. Especially

in hypoxia imaging this results in signals that are averaged over many differently
oxygenated cells (cf. Figure 2.1a–b). This is referred to as partial volume effect
(PVE). The PVE is another reason for the low contrast in FMISO PET images,
because vital hypoxic cells, which exclusively retain the tracer, make up only a
fraction of a voxel. Consequently, a voxel that has been classified as normoxic,
based on the static FMISO PET signal, might still contain highly hypoxic islands
embedded in normoxic or necrotic tissue regions [20]. This illustrates, how difficult
it might be, to derive a reliable measure of hypoxia or of radiosensitivity from
static signals on a voxel-by-voxel basis. For this reason, it has been proposed that
dynamic PET scanning, commencing with the injection of the tracer, might give
more conclusive information [17,18,58,59]. As an example of dynamic acquisition,
the FMISO density in three different tumour voxels is plotted over time in Figure
2.3b. These plots are referred to as time activity curves (TACs).
It is an open question whether FMISO PET strictly images chronic hypoxia, or

is also influenced by acute hypoxia. This aspect is discussed especially regarding
the reproducibility of FMISO PET scans, which is very important for its clinical
implementation. In a clinical study, differences were found between two indepen-
dent FMISO PET scans acquired within three days in untreated tumours [28]. It
was hypothesised this might be the result of acute hypoxia. However, the findings
could not be reproduced by a comparable study, in which much smaller differences
were reported [29].
Alternative hypoxia PET tracers include other 2-nitroimidazole compounds,

such as FAZA. FAZA has a lower partition coefficient than FMISO, i.e. it is more
hydrophilic [60]. Therefore, its clearance from tissue might be faster and the PET
image contrast higher. However, its distribution in tissue may be comparatively
slow, as it does not cross cell membranes as easily as FMISO. A distinct hypoxia
tracer is [60/64Cu]ATSM, labelled with different positron emitting copper isotopes.
In contrast to 2-nitroimidazoles, it is based on a different and not yet completely
understood oxygen-dependent retention mechanism [13]. It is very lipophilic and
thus quickly distributes in tissue [61]. Accordingly, its tissue clearance is slow.
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3. Biophysical Models, Materials and
Simulation Methods

3.1. Diffusion-reaction models of O2 and FMISO in tumour
tissue

3.1.1. Outline

In this work, biophysical models of the behaviour of O2 and FMISO in tumour tis-
sue were used to simulate the dynamics of FMISO molecules in consecutive steps.
This multistep approach, depicted in Figure 3.1, was proposed by Kelly et al. [24].
Here, their work was modified by using extended models, histology-based mi-
crovessel maps and a different numerical treatment of the model equations. Both
models were intended to be representative for HNSCC. A model of oxygen trans-
port and consumption was used to simulate static oxygen distributions. These
served as input for a model of FMISO transport and retention with binding rates
depending on the local PO2. For the oxygen model it was assumed that the
underlying mechanisms and parameter values are known, so that predictive sim-
ulations of oxygenation maps for given vessel distributions are feasible. It can
thus be classified as a predictive model, according to a classification scheme for
theoretical models in biology [62]. In the FMISO model a comprehensive knowl-
edge of the model equations was assumed as well, but not all parameters could be
established from published data. Consequently, some parameters were optimised
by comparing simulations with experimental data. This qualifies the model as be-
ing quantitative conceptual. Though, after establishing a set of parameters, the
FMISO was also applied as a predictive model to the specific problems addressed
in this work.

Figure 3.1.: Flowchart of the simulation process.
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3. Biophysical Models, Materials and Simulation Methods

3.1.2. Oxygen transport and consumption

Oxygen is transported from the lungs to cells in tissue primarily in a haemoglobin
bound state in red blood cells (RBCs) in the circulatory system. The release
of O2 from haemoglobin and subsequent diffusion through the RBC membrane,
blood plasma, capillary wall, extracellular space and into the cells is a complex
process, in which the molecules diffuse along concentration gradients. Because
these processes are difficult to characterise experimentally, theoretical models have
been developed that were reviewed in [63,64]. A method to reduce the complexity
is to integrate the microscopical processes in mass transfer coefficients (MTCs)
Li. These coefficients link PO2 gradients ∆Pi across each of the aforementioned
tissue constituents i to the resulting O2 fluxes ji = Li∆Pi. This is a formulation
of Fick’s law.
To make existing models applicable to the specific problem in this work, a single

approximate MTC LO2 was used. This lump coefficient comprises all transport
steps between the RBC and the outside of the capillary wall driven by the corre-
sponding PO2 difference PRBC−P . It was devised by fitting a quadratic function
to modelled data and depends only on the RBC volume fraction in blood, i.e. the
haematocrit H [65]:

LO2 = 1.21− 4.38H + 23.6H2 (3.1)
[LO2 ] = nlO2 s−1 mmHg−1 cm−2. (3.2)

The oxygen flux through the vessel wall into tissue was thus written as

jO2 = LO2 (P − PRBC) n, (3.3)

where n denotes the normal unit vector pointing outward of each wall segment.
Haematocrit H and intraerythrocytal PRBC were set to values typical for tumour
tissue. The perivascular P was variable, as it was part of the solution domain. The
small O2 molecules distribute diffusively in tissue and easily cross cell membranes.
Therefore, a homogeneous diffusion coefficient DO2 was assumed. Cells consume
oxygen at a rate M(P ), which depends nonlinearly on the amount of proffered
oxygen. This is typically modelled by a Michaelis-Menten relationship [64]:

M (P ) = M0P

P + P0
. (3.4)

For very high values of P cells consume oxygen at the maximum rate M0. With
decreasing P the consumption decreases and reaches the half-maximum rate for
P = P0. The function is plotted in Figure 3.2. Cells exposed to very low oxygen
pressures may become necrotic resulting in a decreased cell density. However, it
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3.1. Diffusion-reaction models of O2 and FMISO in tumour tissue

Figure 3.2.: Oxygen consumption as a function of PO2 according to Equation (3.4).
Parameter values from Table 3.1 were used.

was assumed that the oxygen demand of tissue is independent of the cell density.
This is justified, because cells strongly decrease their oxygen consumption before
critical partial pressures are reached, as modelled in Equation (3.4) describing the
consumption rate. A small underestimation of the PO2 far from supplying vessels
might result from this assumption.
Finally, oxygen distribution and consumption were combined in a diffusion-

reaction model [22,23]:

∂P

∂t
= DO2∇2P −M (P ) . (3.5)

3.1.3. FMISO transport and retention

Another reaction-diffusion model was developed for the supply, distribution and
retention of FMISO molecules. Basic model features presented in [24] were
adapted and extended. Especially the relationship between PO2 and tracer reten-
tion and the choice of parameters were revised. In contrast to O2, the transport
of the larger FMISO molecules might be influenced by convection, due to their
lower diffusion coefficient. However, transport of fluids across the capillary mem-
brane results from hydrostatic and oncotic pressure differences. It is a frequent
trait of tumours that both pressure differences are low due to the leaky nature of
blood vessels in tumours [66, 67]. Consequently, convective transport of FMISO
molecules across capillary membranes is negligible. As a result, the transmem-
brane FMISO flux jT only depends on the difference between the FMISO con-
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3. Biophysical Models, Materials and Simulation Methods

Figure 3.3.: Tracer blood input function Civ(t) according to Equation (3.7) used in this
work. The parameter values specified in Table 3.1 were obtained by fitting
it to clinical data.

centrations inside a blood vessel Civ and in the adjoining tissue on the outside
C:

jT = LT (C − Civ) n (3.6)
The tracer specific MTC and the normal unit vector are denoted by LT and n,
respectively. As for O2, the tissue tracer concentration C is a variable in the
simulation domain. The intravascular Civ = Civ(t) is the time dependent blood
tracer concentration in capillaries, which is defined by two major processes with
distinct temporal characteristics. The rapid tracer distribution in the body after
injection (time constant τ1) is followed by a slow wash-out (τ2). Experimental
data were approximated by the model function

Civ (t) = A1e
−t/τ1 + A2e

−t/τ2 (3.7)

using the fit coefficients A1, A2, τ1 and τ2. The input function used in this work
is plotted in Figure 3.3. It is justified to neglect the initial increase of the blood
tracer concentration after injection of the tracer bolus, because the distribution
of the bolus in the blood volume is rapid (< 2 min). An overestimation by the
model function for such short periods does not cause substantial errors in the
simulations.
Tracer retention in cells is proportional to the available concentration of free

tracer. The first order reaction rate of the binding process K = K (P (x, y)) is
a nonlinear function of the local oxygen concentration, as depicted in Figure 3.4.
Two multiplicative effects denoted by F1(P ) and F2(P ) were included:

K(P ) = F1(P ) · F2(P ) (3.8)
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3.1. Diffusion-reaction models of O2 and FMISO in tumour tissue

Figure 3.4.: First order reaction rate of FMISO as a function of the local oxygen con-
centration P .

The first effect is an increasing binding rate with decreasing PO2 which reaches
its half-maximum value Kmax/2 for P = P1:

F1 (P ) = KmaxP1

P + P1
. (3.9)

as derived by [55]. The second effect is that the reduction of FMISO in cells
depends upon an active cellular metabolism [47]. Consequently, FMISO retention
is diminished in regions with extremely low oxygen content, in which cells become
necrotic. This was modelled by a function that is close to unity for large P , but
drops to zero around P = P2:

F2 (P ) =
(

P

P + P2

)k
. (3.10)

The steepness is controlled by the parameter k.
Transport of FMISO molecules in tumour tissue is dominated by diffusion, as

human SCC have a very high content of glycosaminglycans [68] and in this case
convection is negligible for interstitial transport of compounds with low molecu-
lar weights [69]. A homogeneous diffusion coefficient DT was assumed, as FMISO
readily diffuses across cell membranes [36]. By separating the total tracer concen-
tration C into a freely diffusing Cf and a bound Cb component (C = Cf + Cb),
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3. Biophysical Models, Materials and Simulation Methods

the given assumptions were eventually expressed mathematically by two coupled
partial differential equations (PDEs):

∂Cf
∂t

= DT∇2Cf −K(P )Cf
∂Cb
∂t

= K(P )Cf .
(3.11)

3.1.4. Parameter values

An overview of parameter values used in this work is given in Table 3.1. Ranges of
realistic parameter values are naturally broad, because tumour physiology varies
within a particular tumour and among tumours. Moreover, for some properties
there are no accurate in vivo measurement methods, especially those that can be
applied in humans. Most values were therefore taken from pre-clinical studies.

Table 3.1.: Parameter values for the diffusion-reaction models in Equations (3.5) and
(3.11). Bold values were used where value ranges are specified.

Symbol Meaning Value Reference

Oxygen
PRBC Typical PO2 in RBCs 40 mmHg [23]
H Typical tumour haematocrit 19 % [70]
LO2 O2 MTC 4.1 × 10−4 m/s [65]
DO2 O2 diffusion coefficient 2 × 10−9 m2/s [21]
M0 Max. O2 consumption rate 15 mmHg/s [22]
P0 Michaelis-Menten coefficient (2.0 − 2.5) mmHg [22,64]

Fmiso
τ1 Time constant equilibration 3.58 × 102 s
τ2 Time constant washout 5.63 × 104 s Fit coefficients in
A1 Initial conc. equilibration 18.5 kBq/ml Equation (3.7)
A2 Initial conc. washout 11.9 kBq/ml
LT Transcapillary MTC (2.4 − 9.4) × 10−5m/s [24]
DT MISO diffusion coefficient 5.5 × 10−11 m2/s [71]
P1 PO2 inhibiting binding by 50% (0.8 − 1.5) mmHg [46]
Kmax Max. binding rate (anoxia) 1.7 × 10−4 s−1 Optimised
P2 PO2 inducing 50% necrosis 0.1 mmHg Simulated PO2

120 µm from vessels
k Determines step width at P2 0.3 Optimised
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3.1. Diffusion-reaction models of O2 and FMISO in tumour tissue

Oxygen

An intraerythrocyte PO2 of PRBC = 40 mmHg was assumed. This is the approx-
imate value at arteriolar capillary ends. It decreases along the capillaries. The
same value was used in previous studies [22,23]. A haematocrit value ofH = 19 %,
which was measured in mammary adenocarcinoma tumour models [70], was used
to calculate the MTC of oxygen LO2 = 4.1× 10−4 m/s from Equation (3.1). This
value lies slightly above the range given in [24]. The oxygen diffusion coefficient
was set to DO2 = 2× 10−9 m2/s [21]. The maximum oxygen consumption rateM0
is known only vaguely. A value of M0 = 15 mmHg/s was used [22]. Generally, M0
is proportional to the density of vital cells, which varies within a specific tumour
as well as among different tumour entities. Published data for the Michaelis-
Menten constant P0 of the oxygen consumption model vary strongly. It was set
to P0 = 2 mmHg, in agreement with previous studies [22,64].

FMISO

The fit parameters defining the blood tracer concentration Civ (t) according to
Equation (3.7) were derived from clinical data (cf. Figure 3.3). Decay-corrected
measurements of the activity concentration in blood samples taken at different
timepoints after tracer injection were used∗.
The MTC of FMISO was set to LT = 2.4× 10−5 m/s, as given in [24]. This value

may vary by two orders of magnitude for small molecules due to the increased ves-
sel fenestration in tumours [72]. A diffusion coefficient of DT = 5.5× 10−11 m2/s
measured for Misonidazole (MISO) in multicellular membranes of V79 hamster
cells [71] is applicable for FMISO as well, because their molecular weights and
partition coefficients are similar [57]. This is an effective value in tissue, con-
sisting of cells enclosed by a membrane and extravascular space. MISO diffusion
coefficients observed in multicellular membranes are significantly lower than in a
medium without cells [71]. The tracer binding rate K(P ) is a function of the local
PO2 and is determined by the parameters P1, Kmax, P2 and k (cf. Equations (3.9)
and (3.10)). It was found in different in vitro assays that 1000–2000 ppmO2 inhib-
ited binding by 50% compared to anoxia [46]. Hence, P1 ranges from 0.8 mmHg
to 1.5 mmHg. The parameter P2 defines the PO2 at which oxygen deprivation
results in a 50% reduction of the cell density. Because oxygen distributions can
be simulated without a model of the vital cell density, P2 could be determined by
the simulated PO2 at a distance of about 120 µm from vessels. This is a typical
width of the vital cell layer around isolated vessels [21, 73].
∗Provided by courtesy of S.-M. Eschmann (Department of Nuclear Medicine, University Hospital
Tübingen, Eberhard Karls University, Tübingen, Germany).
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Figure 3.5.: Histogram of T/B ratios simulated in 2× 2 mm regions.

The remaining parameters Kmax and k could not be established from published
values and were determined heuristically. Values of Kmax = 1.7× 10−4 s−1 and
k = 0.3 were chosen so that the simulated tracer concentrations 4 hpi result in
voxel-based tumour T/B ratios that are comparable to clinical PET data. A his-
togram of simulated T/B ratios using these parameter values is shown in Figure
3.5. The simulated T/B ratios ranged from 1.00–2.09 with a mean value of 1.53.
This is comparable to a clinical FMISO PET study in HNSCC, in which tumour
to muscle ratios ranging from 1.10–3.44 with a mean of 1.72 were reported [17].
The maximum and mean simulated values were smaller than observed experimen-
tally. This might for example represent variations in the dynamics of the blood
tracer concentration. Specifically, a faster tracer wash-out can lead to higher T/B
ratios.

3.2. Simulations of O2 and FMISO diffusion-reaction dynamics

3.2.1. Outline

In the previous section, the diffusion-reaction models for oxygen and FMISO were
established. In addition, the choice of model parameter values was discussed. In
this section the methods used to simulate oxygen and FMISO distributions in mi-
crovessel networks are described. Specifically, it is detailed how vessel maps were
created from tumour histology and how the model equations were solved numer-
ically. In these aspects, the presented method is distinct from that presented by
Kelly et al. [24]. They used distributions of identical vessels that were randomly
placed in a tissue region according to single empirical parameters, e.g. typical
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3.2. Simulations of O2 and FMISO diffusion-reaction dynamics

microvascular densities in tumours. Here, microvessel maps were used that were
derived from real tissue samples to model the input and clearance of molecules.
Due to the irregular vessel structures in these samples, it was necessary to use a fi-
nite element method (FEM) to solve the model equations numerically. Compared
to the finite difference method employed by Kelly et al., the FEM method is more
flexible and efficient with respect to the discretisation of the solution domain.

3.2.2. Vessel maps from tumour histology

Material

Two-dimensional vessel maps were derived from fluorescence microscopy images of
tumour tissue microsections†. Frozen tissue sections from human head and neck
xenograft tumour lines were immunohistochemically stained for blood vessels us-
ing an antibody that marks endothelial cells in mice (9F1). The same sections
were also stained for hypoxia using a marker that accumulates in hypoxic cells
due to a binding mechanism similar to FMISO (pimonidazole hydrochloride).
All tumour sections were scanned using a digital image analysis system result-
ing in grey-scale images for both fluorescent signals with a spatial resolution of
2.67 µm/pixel. Details on this process were described previously [74, 75]. An
example of the resulting images is given in Figure 3.6a.

Processing

Grey-scale images of vessel structures had to be converted to binary maps in order
to model sources and sinks of oxygen and FMISO molecules in the simulations. In
the first step, the image noise was reduced by bilateral filtering, which preserves
edges. Therefore, the function bfilter2 in MATLAB [76,77] was used.
In the second step a threshold was applied to the filtered images in order to

create binary data (Figure 3.6b). Threshold values were chosen according to the
noise level in presumably avascular image regions. These values varied among
images, which might result from varying conditions during image scanning or
from variations in the application of the vessel marker. In some cases the value
was adjusted manually according to a visual inspection.
In the last step the binary vessel maps were coarsened by combining 3×3 pixels

(Figure 3.6c). The circumference of the resulting 8.00 µm pixels was similar to
that of a vessel with a circular profile and a diameter of 10 µm, which is roughly
the smallest physiologically realistic value. The resulting pixel represents a vessel
†Provided by courtesy of E. Troost (Department of Radiation Oncology, Radboud University Nijmegen
Medical Centre, Nijmegen, The Netherlands).
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(a) (b)

(c) (d)

Figure 3.6.: (a) Combined false-colour images of the fluorescent signals from staining
for vessel endothelium (red) and hypoxic cells (green). (b) Vessel structures
from (a) after bilateral filtering and thresholding. (c) Vessel map after ad-
ditional coarsening, which removed small staining artifacts. (d) Triangular
FEM mesh derived from the coarsened map. Vessel boundaries are red.
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(value 1) only if at least three of the contained pixels have value 1. This procedure
removes staining artifacts from the map that are too small to represent the profile
of a microvessel. Moreover, it has the advantage of restricting the computer
memory demand of the employed numerical methods, because the size of the
FEM mesh strongly depends on the minimum size of structures in the map.

3.2.3. Numerical methods

Creating triangular meshes from vessel maps

Solving the diffusion-reaction equations (3.5) and (3.11) numerically with the
FEM requires a description of the 2D solution domain Ω. This description is
created by discretising the given geometry into triangles of different shapes and
sizes. The result is called a triangular mesh and the points in which triangle
corners join are called nodes. In this work, the geometry was defined by the
vessel maps that were created as described in the previous section. Based on
the maps a mesh was generated using a routine in MATLAB which creates a
Delaunay triangulation. The extravascular space was tessellated with triangles,
sparing vessel interiors from Ω. Thus, vessel surfaces ∂Ωv and the outer edges
of the map ∂Ωe form the 1D boundary ∂Ω = ∂Ωv ∪ ∂Ωe of the domain Ω. An
example of a mesh is shown in Figure 3.6d.

Differential equations and boundary conditions

The diffusion-reaction equations (3.5) and (3.11) are parabolic PDEs. A more
general formulation of these PDE problems is: find a solution u = u(x, y, t) that
satisfies the equation

∂u

∂t
= c∇2u− au (3.12)

in the bounded 2D domain Ω. The problem-specific coefficients are denoted by
c and a. The construction of Ω was described in the previous section. For a full
description of the problem, initial values u(x, y, 0) = u0(x, y) for x, y ∈ Ω and
boundary conditions on ∂Ω must be specified. Coefficients and initial values u0
specific to the oxygen and FMISO diffusion-reaction problems are given in Table
3.2. For the two coupled PDEs of the FMISO model these coefficients are two-
element vectors. Robin and Neumann type boundary conditions were used in this
work. With Robin boundary conditions the flux j = −c∇u across a boundary
segment can be specified by

j = (qu− g) n (3.13)
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with problem specific coefficients q and g. This is equivalent to setting the gradi-
ent ∇u to a fixed value on the segment. Robin conditions were applied to vessel
boundary segments ∂Ωv in order to define the transmembrane flux of molecules
according to Equations (3.3) and (3.6). By applying Neumann boundary condi-
tions the net flux across a boundary element is set to zero: j = 0. In the context
of this work, Neumann conditions were applied to the outer boundaries of vessel
maps ∂Ωe, so that there is no net molecular transport across them. This assump-
tion implies a certain symmetry in the virtual continuation of a given vessel map
outside its outer edges. For example, a copy of the original map mirrored on the
specific edge fulfils the no-flux condition.

Table 3.2.: Problem-specific PDE coefficients. These can be derived by comparing the
general equations (3.12) and (3.13) with equations (3.5) and (3.3) for oxygen
as well as with equations (3.11) and (3.6) for FMISO.

Oxygen FMISO

u P (x, y, t)
(
Cf (x, y, t) Cb (x, y, t)

)
u0 0 mmHg

(
0 kBq/ml 0 kBq/ml

)
c DO2

(
DT 0

)
a M(P )/P

(
K(P ) −K(P )

)
q LO2

(
LT 0

)
g LO2 · PRBC

(
LT · Civ 0

)

Problem-specific finite element method in 2D

A short problem-specific summary of the FEM is given here, which is based on an
outline in [78]. To find an approximate solution uh(x, y, t) of the PDE problem,
uh is expanded in a set of basis functions φi, i = 1, ..., Np

uh(x, y, t) =
Np∑
i=1

Ui(t)φi(x, y) (3.14)

where Np denotes the number of mesh nodes and Ui(t) are time-dependent coef-
ficients that have to be found. Typically, piecewise linear functions φi are chosen
that take on the value 1 at node i and the value 0 at all other nodes. Then, the
variational formulation of the PDE problem in Equation (3.12) is to find Ui, so
that ∫

Ω

(
∂uh
∂t
− c∇2uh + auh

)
φj dx dy = 0 ∀j = 1, . . . , Np. (3.15)
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The boundary and initial value conditions must also be fulfilled. Note that the test
functions φj are from the same set of piecewise linear functions as in the expansion
of uh. Combining Equations (3.14) and (3.15) and using Green’s identity together
with the boundary conditions in Equation (3.13) results in a system of linear
ordinary differential equations (ODEs):

M
dU

dt
+KU = F (3.16)

with

Mj,i =
∫

Ω
φiφj dx dy

Kj,i =
∫

Ω
((c∇φi)∇φj + aφiφj) dx dy +

∫
∂Ω
qφiφj ds

Fj =
∫
∂Ω
gφj ds.

By solving this ODE the coefficients Ui and thus the approximate solution uh can
be obtained. For the problems in this work this system is very large, Np typically
is on the order of 105. The product φiφj is zero for most combinations of i and j,
because the basis function φk is non-zero only on a few triangles adjoining node k
of the FEM mesh. Thus, the matricesM andK are sparse, i.e. that most elements
are zero. The function parabolic in MATLAB was used to assemble M , K and F
and to solve Equation (3.16) numerically with an integrated ODE solver.

3.2.4. Simulation procedure and data processing

Spatio-temporal FMISO distributions were simulated in three-steps, which are
outlined in Figure 3.1. In the first step, the steady-state oxygen distribution Peq
for a specific vessel map was calculated. For the oxygen case the diffusion-reaction
PDE is nonlinear, because the coefficient a = M(P )/P is a nonlinear function of
P . As nonlinear PDEs can not be handled with the routine parabolic, the problem
was linearised by calculating Peq iteratively. Based on the result of each time step,
the coefficient a was reevaluated and used as input for the following step. The
iteration was interrupted when the maximum variation of P during one iteration
step was below 0.1%.
In the second step the local FMISO binding rates were calculated from the

steady-state oxygen distribution K (Peq (x, y)) according to Equation (3.8). This
was followed by the solution of the FMISO diffusion-reaction equation. Solu-
tion values were given at each node of the FEM mesh and for each predefined
timepoint.
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By averaging the tracer concentration in different regions of interest (ROIs)
time activity curves (TACs) were calculated. In addition to the average concen-
tration of free Cf and bound Cb tracer, the amount of tracer in blood vessels
Civ(t) was included according to the vascular fraction in the specific region. In
this way, features of simulated TACs could be compared with pre-clinical and clin-
ical PET TACs. The advantages of the presented theoretical method are that the
microscopical tracer distributions underlying a TAC are known and that the free,
bound and intravascular tracer components can be evaluated separately. Simu-
lated TACs must be interpreted as approximate PET TACs, because influences
of PET image acquisition and reconstruction on the measured signal were not
simulated. In other words, an idealised PET scanner was assumed that recovers
signals from small cubic regions without noise or blurring.

3.3. Validation of the simulation method

Validating the simulation method is very difficult. For a rigorous microscopic
validation, high resolution 2D or 3D measurements of the spatial distribution
of oxygen and FMISO would be necessary. Temporally resolved data would be
needed for FMISO to validate the dynamic component. Additionally, the cor-
responding vascular structures would have to be known. Because such detailed
experimental data do not exist, it was confirmed that the simulated results are
consistent with the available information.
The simulated PO2 strongly decreases with increasing distance from vessels.

Typically, the PO2 is smaller than 0.1 mmHg at a distance of about 120 µm from
vessels. Values of zero are reached only asymptotically, as the oxygen consumption
M(P ) tends towards zero in line with decreasing PO2. Similar empirical data were
reported for the distance at which PO2 falls to zero [21]. The median simulated
PO2 for all vessel maps used in this work was 10.0 mmHg. It was calculated
from oxygen maps with resolutions of 50 µm/pixel, which is comparable to the
measurement volume of polarographic oxygen sensing electrodes [79]. The median
PO2 measured with such electrodes in clinical HNSCC by different institutions
ranged from 5 mmHg to 18 mmHg [11]. This makes it plausible that the manifold
oxygenations in human SCCHN were adequately represented by the simulations.
In order to evaluate the FMISO model the aspects of tracer retention and

transport were investigated independently. FMISO retention patterns were quali-
tatively compared against the pimonidazole IHC staining for identical vessel maps.
A high visual concordance between the patterns was found. For example in Fig-
ures 3.7a and c, the maximum uptake of FMISO and pimonidazole occurrs at
roughly the same distance from vessels. In Figures 3.7b and d, a good agreement
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between areas of low simulated FMISO retention and low pimonidazole intensity
associated with cell necrosis can be observed (white arrow). Despite apparent sim-
ilarities between the retention patterns, quantitative correlations were very low.
Possible reasons for this are that the pimonidazole stainings are cross-sections
from three-dimensional material, while FMISO is simulated in a 2D plane. There
might also be a disparity between the two markers regarding the PO2 dependence
of the binding rate. Another effect that might contribute to a low correlation can
be identified in Figure 3.7a. In some regions high pimonidazole intensities over-
lap with a vessel (white arrow). This indicates that the vessel did not properly
supply oxygen during uptake period of the marker, which may be explained by
acute hypoxia. Nonetheless, in the FMISO simulations a normal oxygen supply
by this particular vessel was assumed and there is no retention overlapping with
the vessel, as can be seen in Figure 3.7c.

(a) (b)

(c) (d)

Figure 3.7.: (a), (b): Details of two different IHC stained tissue sections(1.69 mm ×
1.04 mm). Vessels are red and hypoxia is green. (c), (d): Concentrations of
bound FMISO 4 h pi Cb(t = 4 h) simulated based on vessel maps derived
from (a) and (b), respectively.
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Furthermore, the FMISO simulation model was validated by comparing clini-
cal and simulated TACs, which is shown in Figure 3.8. Two characteristics can
be distinguished in the curves, a highly variable component initially after tracer
injection, which is followed by an almost linear progress. The early component
represents the distribution of the tracer molecules, injected as a bolus into the
blood volume, in the entire tissue volume. It is thus referred to as input peak.
After a state has been reached that is closer to equilibrium, the curves are domi-
nated by the superposition of tracer accumulation in hypoxic cells and clearance
of free tracer. During this phase tracer molecules are cleared from tissue via ves-
sels. This component is therefore called the uptake curve. The transition between
the two phases is completed when the curves become linear. These timepoints
strongly depend on the vessel density in the map as well as the mass transfer and
diffusion coefficients of FMISO. Also, the binding rate properties of FMISO play
a role. Thus, the timepoint of completed transition is an ideal parameter to check
the overall plausibility of the FMISO simulations.
Three distinct clinical FMISO PET TACs‡ were used as references (Figure 3.8d).

Simulated TACs were evaluated in ROIs that were chosen so that the resulting
overall curve shapes were comparable (Figure 3.8c). It could not be investigated
if microvessel networks underlying real and simulated data were similar, because
this information is unavailable for clinical PET voxels. Nonetheless, there is a
very good agreement in terms of the transition timepoints. It appears that for
a specific clinical TAC it is generally possible to find a similar simulated TAC
in the available vessel maps. Thus, tracer input across capillary membranes and
subsequent distribution in tissue seems to be adequately reproduced by the model
and simulation method in combination with the chosen parameter values. It
also appears that the properties of vessel maps, e.g. the heterogeneity of vessel
distributions, cover a realistic range.

‡Provided by courtesy of D. Thorwarth (Section for Biomedical Physics, University Hospital Tübingen,
Eberhard Karls University, Tübingen, Germany)
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(a) (b)

(c) (d)

Figure 3.8.: (a) Vessel map highlighting 1.5× 1.5 mm2 ROIs with intermediate (A) and
high vessel density (B). (b) Low vessel density in a different map (C). (c)
TACs were simulated by averaging the total tracer concentration in the
respective ROI. Note the distinct curve shapes. Curves are almost linear
after 40 min, 41 min and 109 min in ROI A, B and C, respectively. (d)
Clinical voxel-based FMISO PET TACs in a HNSCC. Voxels 1 and 2 were
located in the centre and at the edge of the tumour, respectively. Voxel 3
was located in a metastatic lymph node. Fits were plotted as solid lines.
Curves are linear after 33 min, 38 min and 105 min in voxel 1, 2 and 3,
respectively.
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4.1. Fundamentals of FMISO PET signal formation

4.1.1. Outline

Intervessel distances in tumour tissue are typically large. This is generally ac-
cepted as the cause of chronic hypoxia, in combination with the chaotic arrange-
ment of vessels, that is lacking a proper hierarchy and shows other aberrations,
such as blind endings and plasma flow [8, 80]. The fact that hypoxic cells are lo-
cated at relatively large distances from vessels might pose an obstacle for FMISO
molecules to reach these cells and accumulate there, as it distributes passively
by diffusion. Another effect of large intervessel distances might be a slow equili-
bration between the injected bolus of tracer molecules and remote tissue regions.
This is comprehensible considering that the expected distance a particle diffus-
ing in 2D has travelled from its starting point in a time interval ∆t is given by
the root-mean-squared distance dRMS =

√
4D∆t [81]. D denotes the diffusion

coefficient of the particle in a given medium. As a consequence, small changes of
intervessel distances have a large effect on the distribution of particles. It takes
particles four times as long to travel twice as far. Interpreted in the context of
this work, it takes about 46 s for an FMISO molecule (DT = 5.5× 10−11 m2/s, cf.
Table 3.1) to reach hypoxic cells, which are located about 100 µm from vessels.
To reach necrotic tissue, located for example 300 µm from vessels, it takes 409 s.
Both effects allow to hypothesise that it might take a long time before FMISO

signals effectively represent FMISO accumulation that is specific for tumour hy-
poxia. This is an important issue for the design of FMISO PET acquisition
protocols. In the following, this aspect is studied based on the simulation method
developed in this thesis, making use of its capability to simulate the distribution
of FMISO in tissue with very high spatial and temporal resolution.
Another hypothesis is that the equilibration between blood and tissue is faster

in regions with high vessel densities and regularly arranged vessels, leading to
higher FMISO signals in the early wash-in phase. Therefore, early signals may be
used as a measure of perfusion by the embedded vessel configuration. Evidence
for this relationship has been found in clinical studies comparing FMISO or FAZA
PET scans with scans using radiolabelled water, i.e. [15O]H2O [82,83]. The latter
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molecule is a PET tracer dedicated to perfusion imaging. It might be possible to
gather a more reliable prediction of the latent RT response with an FMISO PET
examination, if the perfusion is analysed in combination with the accumulation
data [17, 18]. Therefore, the second aspect studied in the following is, whether
early and late FMISO PET signals contain distinct information.

4.1.2. Results

In this study a single microscopic tissue section was converted into a square vessel
map with an edge length of 3.94 mm, which is shown in Figure 4.1a. The overall
vascular fraction was 3.0%. Within this map three square ROIs with edge lengths
of 0.63 mm were manually selected. The ROIs comprise vessel distributions that
are distinct with respect to their vessel densities. The vascular fraction was 7.9%,
2.9%, and 1.2% in ROI A, B, and C, respectively. Simulations of the corresponding
static oxygen distribution and subsequently the FMISO dynamics were performed
as described in Section 3.2.
The oxygen distribution used to calculate FMISO binding rates is shown in

Figure 4.1b. Maximum PO2 values in proximity to vessels are close to the mod-
elled PO2 in red blood cells of 40 mmHg. This value strongly decreases with
increasing distance from vessels. At a distance of about 120 µm the PO2 typ-
ically is below 0.1 mmHg. The mean simulated PO2 for this specific map was
8.8 mmHg, irrespective of whether the oxygen maps were sampled at a resolution
of 50 µm/pixel or 5 µm/pixel. As the former is close to the spatial resolution of
polarographic electrodes, this theoretical result corroborates that the resolution
of the electrodes is sufficient to capture representative microscopic PO2 values.
The mean PO2 in the ROIs was 18.1 mmHg, 14.0 mmHg and 2.4 mmHg, in ROI
A, B and C, respectively.
Simulated FMISO distributions are displayed in Figures 4.1c–f for different

timepoints after injection (pi). The early distribution 4 min pi is clearly domi-
nated by freely diffusing tracer molecules entering the tissue via vessels (Figure
4.1c). Subsequently, the molecules gradually spread into regions further from ves-
sels. However, 15 min pi there still are considerable heterogeneities, with lower
tracer concentrations in regions distant from vessels (Figure 4.1d). Apparently,
these regions are still not equilibrated with the supply of tracer from vessels.
Moreover, at 15 min pi the first hint of a concentration contrast appears that can
actually be attributed to FMISO retention. This contrast gradually increases with
increasing uptake time (Figures 4.1e–f). The resulting FMISO patterns predom-
inantly appear like ribbons around vessels. The concentration strongly increases
with increasing distance from vessels, then reaches a maximum and declines again.
This mirrors the PO2-dependence of the tracer binding rate modelled by Equation
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1.: (a) Vessel map and ROIs used in this study. (b) Corresponding simulated
static O2 distribution Peq (x, y). (c)–(f) Simulated total FMISO concen-
tration C (x, y, t) for t = 4 min (c), 15 min (d), 30 min (e) and 240 min (f)
(colour bar applies to all).
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(3.8). The increase is associated with an increasing retention of FMISO in hypoxic
cells, while the following decline is cause by a reduced cell density due to necrosis.
It is evident that low FMISO retention several hours pi may indicate normoxic
(high PO2) as well as predominantly necrotic (extremely low PO2) tissue. Similar
findings were reported for IHC experiments investigating the microscopic nature
of hypoxia: ribbon-like patterns of pimonidazole binding were observed in tumour
models [7].

(a)

(b)

Figure 4.2.: (a) Simulated TACs for the ROIs outlined in Figure 4.1. The modelled
tracer input function Civ(t) is shown in black. (b) Differences between the
tracer signal components of ROIs B and C (∆ = C− B).
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4.1. Fundamentals of FMISO PET signal formation

Time activity curves (TACs) were derived from the simulated data by averaging
the tracer concentrations in ROIs A, B and C for each timepoint. As shown in
Figure 4.2a, curves with distinct shapes emanate from each region. There is
a correspondence between the shape of the initial signals, i.e. the input peaks,
and the underlying vessel distributions. Pronounced peaks belong to regions A
and B, which exhibit high vascular densities and relatively homogeneous vessel
distributions. Obviously, the tracer concentrations in these regions are strongly
coupled to the intravascular component Civ (t). The maximum value of peak A
is slightly larger than in peak B, which can be explained by the higher vessel
density in A. On the other hand, the almost avascular region C is characterised
by a very shallow initial curve without a peak value. Regarding the uptake curves
60–180 minpi, region A shows a slower FMISO retention than regions B and C.
By comparing curve A with the plotted input function it can be seen that some
tracer is accumulated in A as well. Therefore, it is not a pure wash-out type
region. Most remarkably, the uptake curves of B and C are similar, even though
the underlying microvessel networks differ strongly. The net tracer uptake rate
is slightly higher in C than in B. In contrast, the total signal in C is lower up to
about 70 min pi. This inconsistency between the total FMISO signal and the net
uptake rate was further investigated by separately evaluating the components of
the signal. These are (1) the perfusive component in vessels, (2) the free and (3)
the bound tracer component in tissue. Differences between these components in
regions B and C are plotted in Figure 4.2b. The observations for each component
are:

(1) Perfusion: The negative difference in the perfusive component shows that
the signal originating from vessels is larger in region B than in C. Obviously,
this is due to different vascular volumes in the regions.

(2) Free tracer: There is a large initial difference between the average free tracer
concentrations, because tracer molecules distribute much quicker in region B.
Nevertheless, this difference vanishes almost completely for timepoints later
than 60 minpi. This is contradictory, as the extravascular space, which the
tracer distributes in, is larger in region C than in B. Thus, if both regions
were equilibrated with the intravascular component, one would expect a
higher contribution of free tracer to the total signal in region C. As this
is not the case, free tracer levels must be lower in some areas of region C
than in B. Such lower concentrations are vaguely discernible 4 h pi in the
avascular bottom part of C in Figure 4.1f. It can be argued that the reason is
the slow coupling between the tracer input and distant areas due to diffusion
restrictions.
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Figure 4.3.: Simulated bound FMISO concentration Cb (x, y, t = 15 min). The tracer
retention in ribbon-like patterns around vessels is anisotropic. It is lower in
direction towards avascular regions than in direction towards regions with
a high vessel density.

(3) Bound tracer: Interestingly, the bound tracer concentration is higher in B up
to about 30 min pi, even though this region displays a considerably higher
vessel density and mean PO2. Later this is compensated by the higher
net binding rate in region C. This initial anti-specific binding is a direct
consequence of the slow distribution of tracer in tissue. More specifically,
tracer binding is proportional to the amount of proffered tracer according to
Equation (3.11). Initially, more tracer is bound in hypoxic areas of region
B than in C, which can be seen in Figure 4.3 showing the bound tracer
concentration 15 min pi. Clearly, less tracer was bound around vessels that
supply tracer to large tissue areas. In the same figure, this effect can also be
identified in vessels on the edges of highly vascularised regions. There, tracer
accumulation is anisotropic, i.e. it is lower in direction towards avascular
regions than in direction towards regions with a high vessel density.

Altogether, these effects explain why it takes more than one hour until the total
FMISO signal in region C is higher than in B. It is corroborated that the diffusive
transport, which is slow compared to typical intervessel distances, is an important
factor determining signal formation. More generally, the results give evidence
that a sufficiently long tracer uptake period is mandatory, in order to obtain a
consistent FMISO image contrast in terms of a stable sign.
Furthermore, the results indicate that there is a correspondence between prop-
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4.1. Fundamentals of FMISO PET signal formation

(a) (b)

Figure 4.4.: (a) Concentric layers around vessels (width b = 50 µm). (b) TAC decom-
posed into sub-TACs a1(t), . . . , a5(t) for each layer. The weights w1 = 0.38,
w2 = 0.36, w3 = 0.16, w4 = 0.04, w5 = 0.02 correspond to the respective
areas occupied by the layers.

erties of the microvascular network and the input peak shape. It was analysed
in detail whether this information is redundant with the information from tracer
retention, i.e. whether the magnitude of the input peak is inversely related to the
tracer uptake. Therefore, the simulated TAC A(t) of the vessel map in Figure
4.4a was decomposed into a weighted superposition of sub-TACs ai(t), i = 1, . . . , 5
originating from concentric layers around vessels

A(t) =
5∑
i=1

wi ai(t).

The weights are denoted by wi. Each type of sub-TAC may be interpreted to
represent a tissue volume, in which the typical distance between cells and vessels
lies within the range of the layer that is covered by the specific sub-TAC.
The resulting sub-TACs are shown in Figure 4.4b. A gradual change of the input

peak with increasing distance from the nearest vessel can be observed, i.e. the
maximum value decreases and the peak becomes wider. Moreover, the position
of the peak is shifted towards later timepoints. This monotonic behaviour is not
found in the uptake curves, where an increase of the slope from layer 1 to layer 2
is followed by decreasing slopes for the more distant layers. Apparently, layer 2
comprises most of the ribbon-like uptake regions, as it covers distances from 50 µm
to 100 µm. Necrosis dominates layers at distances larger than 150 µm, in particular
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layers 4 and 5. In these layers the uptake rates are low, as FMISO is retained
in vital cells only. This clearly demonstrates that the tracer input peak conveys
independent information about the respective tissue region. For example, it might
help to resolve problems that are associated with the intrinsically ambiguous
FMISO binding, i.e. a low retention in normoxic as well as necrotic tissue.

4.1.3. Discussion

The aim of FMISO PET imaging is to measure hypoxia by means of the oxygen-
dependent retention of the radiolabelled molecule. The results show that the
supply of FMISO molecules to tissue regions located far from vessels is dilatory.
This effect can mask hypoxia-specific tracer retention in the total FMISO signal
for a considerable period following tracer injection. As large intervessel distances
are common in hypoxic tumours, it is necessary to acquire static FMISO PET
images after a sufficiently long uptake period. Not all recent clinical hypoxia
PET studies have regarded this aspect, for example in [83] FAZA PET imaging
has been performed up to 1 h pi only. Clearly, longer uptake periods compete
with decreasing decay rates of the injected 18F radioisotopes, which determine
the count statistics of the PET acquisition.
The results of this study show that the quantification of FMISO uptake from

static images is problematic, because the contrast between PET voxels is un-
stable. For example, the ratios between the signals from ROIs A, B and C in
Figure 4.2a strongly depend on the imaging timepoint. A robust quantification
of the net uptake rate in a voxel requires the acquisition of at least two image
volumes at different timepoints pi during the uptake phase, for example 2 h and
4 h. Nevertheless, most clinical studies were so far limited to the analysis of sin-
gle static scans [12, 84]. A consistent quantification is for instance necessary to
segment hypoxic volumes in FMISO PET images in a reliable manner, regard-
less whether these volumes are defined manually or by automatic algorithms [85].
These volumes may be used in RT to perform a dose escalation by dose painting
by contours [86]. The requirements for dose painting by numbers based on FMISO
PET are even higher, because the dose is not escalated using a binary criterion,
i.e. inside/outside the contour, but it is prescribed according to a voxel-based
metric.
In order to obtain a stable measure of hypoxia, a method has been proposed

to quantitatively analyse dynamic FMISO PET data that were acquired over
several hours pi [87]. Dynamic imaging in patients is technically demanding and
time consuming. For the analysis of dynamic data a suitable compartmental
model of the tracer kinetics has to be established [55]. The free coefficients of
this model can then be fitted to voxel-based FMISO PET TACs. Parametric
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maps can subsequently be created by combining these coefficients in a single
value. In this way a parameter that correlates with RT outcome was derived [18].
It combined two kinetic model coefficients characterising the hypoxia-associated
retention (late signal) and the vessel architecture (early signal) in a PET voxel,
respectively. The results presented here corroborate the interpretation that there
is a connection between early FMISO PET signals and the underlying vessel
architecture. As a consequence, it is proposed in Section 4.3 that the combination
of a late and an early static FMISO PET scan is useful to identify hypoxia and the
associated radioresistance. This may facilitate hypoxia PET imaging compared
to the acquisition and analysis of fully dynamic data.
If it should prove unfeasible to obtain all information about the hypoxia status

of a tumour that is necessary for an effective adaption of RT, a combination of
different imaging modalities may be an alternative. This may for example be
a combination of FMISO PET and functional MRI methods, such as dynamic
contrast enhanced (DCE) [88] or blood oxygen level dependent (BOLD) mea-
surements [36,45]. This approach is facilitated by modern PET/MRI equipment,
which combines these two modalities in a single device, enabling simultaneous
whole-body image acquisition without moving the patient off the bed between
scans.
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4.2. Acute hypoxia in FMISO PET imaging

4.2.1. Outline

Hypoxia can be classified into chronic and acute hypoxia. While chronic hypoxia is
a static phenomenon, which is primarily caused by a sparse and chaotic network of
vessels [8,80], acute hypoxia is highly dynamic and is characterised by fluctuating
tissue PO2 [27, 33,89].
Fluctuating tissue PO2 was directly measured in pre-clinical tumour models

with polarographic and optical oxygen sensing methods [33,90]. Indirect methods,
evaluating a mismatch between sequentially administered markers, also yielded
evidence for acute hypoxia [32,91].
Although a varying oxygen consumption by tumour cells may cause fluctuations

in tissue oxygenation, previous research was focussed on the relationship between
fluctuations and variations in the red blood cell flux (RCF). Early studies at-
tributed acute hypoxia to a total stasis of blood flow in tumour vessels [34]. This
perception shifted towards a more gradual understanding of acute hypoxia, as it
was demonstrated that varying RCF predominates over flow stasis in pre-clinical
tumour models [92, 93]. Fluctuating RCF was found in different human tumours
as well [94]. A few studies combined direct single-point measurements of tissue
PO2 timelines and RCF in tumour models [89, 95]. These studies revealed that
frequently there is a correlation between flux fluctuations and variations in tis-
sue oxygenation. Consequently, it seems justified to assume that the supply of
oxygen, rather than the demand for it, is driving fluctuations in tissue.
Previously, theoretical simulations of tissue oxygenations were used to link sup-

ply fluctuations and acute hypoxia [89]. In a similar way, a theoretical model of
intravascular PO2 fluctuations was used to simulate the efficacy of the hypoxic
cytotoxin tirapazamine under acute hypoxia [31]. It is an important prerequisite
for a clinical application that FMISO PET imaging is reproducible. This has been
questioned by an FMISO PET imaging study, because variations in the spatial
uptake was found between repeated scans in head and neck cancer patients [28].
In contrast, a comparable study concluded that FMISO PET scans are highly
reproducible [29]. In this context a method was developed to separate acute from
chronic hypoxia using multiple independent scans [96]. So far, this method could
not be validated [97].
In this part of the work, a theoretical model of varying intravascular PO2 has

been developed and integrated in the simulation method. The model and its pa-
rameter values were deduced from published measurements in pre-clinical tumour
models. As results, the simulated oxygenations in different phases of the fluc-
tuating oxygen supply are discussed. Moreover, the magnitude of the influence
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of supply fluctuation on FMISO PET imaging is estimated. The results are in-
terpreted in the context of the reproducibility of FMISO PET imaging and the
potential separate assessment of the degrees of chronic and acute hypoxia.

4.2.2. Methods and Materials

Model of supply fluctuations

So far, the PO2 in red blood cells PRBC was set to a constant value. To simulate
the influence of acute hypoxia on FMISO retention, the calculation of static oxy-
gen distributions was extended by an explicit time dependence PRBC = PRBC(t).
As a consequence, the simulated oxygen supply became time dependent as well.
Sinusoidal fluctuations around a mean value P̄ , with an amplitude PA, a period
T and a phase φ were assumed

PRBC(t) = P̄ + PA sin
(2π
T
t+ φ

)
. (4.1)

This is a simplification of a broad range of fluctuation patterns observed in pre-
clinical tumour models. Nonetheless, a number of published timelines clearly
exhibit an approximately harmonic behaviour [90, 93]. The continuous fluctua-
tions in Equation (4.1) were discretised, in order to maintain the approach of
simulating the oxygenation and FMISO dynamics in consecutive steps (cf. Figure
3.1). In each timestep i of length ∆t a constant P i

RBC, i.e. a constant supply, was
simulated as calculated from

P i
RBC = 1

∆t

i∆t∫
(i−1)∆t

PRBC (t) dt (4.2)

for i = 1, 2, . . . , T/∆t. Figure 4.5b illustrates that the discretised values ade-
quately sample the continuous fluctuations for ∆t = 2.5 min, T = 40 min and
hence i = 1, 2, . . . , 16, as chosen in this study. The choice of parameter values is
discussed in the following section. In a separate scenario, total supply collapse in
a manually selected group of vessels was added to continuous fluctuations. It was
further assumed that the vital status of cells is not influenced by acute hypoxia.
In tissue, the small O2 molecules have a higher mobility than FMISO because

of their diffusive properties. This situation is reversed for intravascular trans-
port, where most oxygen is bound in RBCs, which are large compared to FMISO
molecules. Thus, fluctuating vascular oxygen supply does not necessarily imply
an unstable supply of FMISO. This also holds true for transient collapse of RCF
in vessels, as FMISO may still be transported by plasma flow [25]. Consequently,
a stable tracer supply was assumed in this study.
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(a) (b)

(c) (d)

Figure 4.5.: (a) The simulated PO2 fluctuates around 5 mmHg in acutely hypoxic re-
gions (red), which is a typical hypoxia threshold. It invariably remains be-
low this threshold in chronically hypoxic regions (green). (b) Black curve:
Modelled fluctuations of PRBC(t) for T = 40 min and P̄ = 5 mmHg, cf.
Equation (4.1). Blue curve: Fluctuations discretised into steps of constant
supply P iRBC, i = 1, 2, . . . , 16, cf. Equation (4.2). Red steps include total
supply collapse. (c) Static oxygenation Peq during step 5, i.e. low supply
and supply collapse in outlined region. (d) Oxygenation during step 14,
i.e. high supply and no supply collapse.
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Parameter values

The choice of parameter values for the fluctuation model is based on pre-clinical
timelines of intravascular PO2 measured in rats [93]. Dominating fluctuation pe-
riods were on the order of tens of minutes. Total amplitudes as high as 10 mmHg
were commonly observed, thus PA = 5 mmHg was chosen for the simulations.
These values may vary among different tumour entities, sites and volumes. Con-
sequently, several fluctuation periods T were included in this study up to an
empirically unvalidated value of T = 4 h, in order to assess the magnitude of the
potential influence of acute hypoxia on hypoxia PET imaging. It appears likely
that these effects crucially depend on the fluctuation period, because the accu-
mulation of FMISO during the uptake period effectively integrates the concurrent
fluctuations of the tracer binding rates. For PRBC a mean value of P̄ = 35 mmHg
was used, hence the maximum value of PA + P̄ = 40 mmHg during cycling corre-
sponds to the baseline chronic oxygenation. Experimentally observed fluctuations
were not strictly synchronous among vessels in 6 mm2 regions. Nonetheless, there
is evidence for synchronous cycling in small groups of vessels as well [33]. Con-
sequently, synchronous variations were modelled in the 4.2× 4.2 mm2 vessel map
that was used in this study. Again, this aimed to simulate the maximum effect.
In some tumour models, a transient flow collapse or the absence of RCF was ob-
served, affecting 5%–17% of repeatedly the same vessels for short periods [33,98].
However, no data have yet been published on typical frequencies of this collapse.
For simulation purposes a region comprising 13% of the total vessel volume in
the vessel map was selected manually, which is depicted in Figure 4.5c. In the
affected vessels, collapse was simulated with a duration of 2.5 min and a frequency
of f = 1/T = 6 h−1.

4.2.3. Results

Influence on tissue oxygenation

Simulated static oxygen distributions in two fluctuation steps are shown in Figures
4.5c–d. In step 5 the oxygen supply is low (P 5

RBC = 30.1 mmHg) and supply
collapse is occurring in the selected group of vessels. On the other hand, step 14
is a high supply step (P 14

RBC = 39.9 mmHg) without collapse. The resulting PO2
values averaged over the whole vessel map (PO2) for each fluctuation step are
summarised in Figure 4.6a. In step 5 PO2 is 5.5 mmHg and 4.8 mmHg without
and with supply collapse, respectively. In step 14 it is 8.2 mmHg, which is the
approximate value for stable chronic hypoxia. Therefore, the maximum difference
in PO2 is 3.4 mmHg or 41% relative to baseline conditions. Obviously, the tissue
oxygenation is substantially influenced by the modelled supply fluctuations.
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(a) (b)

Figure 4.6.: (a) Mean PO2 in the simulation map for each fluctuation step (cf. fig. 4.5c).
Boxes: without supply collapse. Dots: with collapse occurring in every
fourth step (f = 6 h−1). (b) PO2 histogram for fluctuation steps 1 to
16 (black to white). The number of oxygen levels between 0 mmHg and
5 mmHg as well as between 30 mmHg and 40 mmHg are primarily affected
by fluctuating supply. Supply collapse is not included in the histogram.

To analyse which oxygen levels are affected the most, PO2 histograms for all
fluctuation steps were plotted in Figure 4.6b. For a decreasing supply between
steps 1 to 5, the number of high PO2 values between 30 mmHg and 40 mmHg
decreases, while the number of very low readings between 0 mmHg and 5 mmHg
increases. This process is reversed when supply increases again during steps 6 to
13. In contrast, the number of intermediately oxygenated states between 5 mmHg
and 30 mmHg is influenced much less.
Commonly, a hypoxic fraction (HF) is calculated by defining a threshold PO2

value below which cells are considered hypoxic. Here, a value of 5 mmHg was
chosen, which is a well established threshold. Though this binary picture of
hypoxia is highly questionable, it offers a straightforward possibility to compare
different oxygenations based on a single value. The acutely hypoxic fraction (aHF)
can be defined as the proportion of tissue in which oxygen levels fluctuate across
the threshold. The chronically hypoxic fraction (cHF) of tissue invariably remains
below the threshold. For the presented example, this distinction is visualised in
Figure 4.5a. The aHF is 8.6% and 12.2% for simulations without and with supply
collapse, respectively. Chronic hypoxia prevails, with a cHF of 56.3%.
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Influence on FMISO retention

In order to evaluate the influence of acute hypoxia on FMISO retention, TACs
for the whole vessel map were simulated in four scenarios:

(A) chronic hypoxia with a stable PRBC of 40 mmHg,

(B) fluctuating supply with T = 40 min, without supply collapse,

(C) similar to B, but with supply collapse,

(D) fluctuating supply with T = 4 h, without supply collapse.

Scenario D is exploratory, as there is no experimental evidence for such extremely
slow cycling.
The amount of free tracer in tissue, which is available for binding, varies with

time. Thus, the FMISO retention will depend on the phase of the fluctuating
oxygen supply in which the tracer bolus is injected. More specifically, the shape
of the simulated TAC for a particular scenario is different for different fluctuation
phase parameters φ (cf. Equation (4.1)). If this effect is large enough to be
detected in routine clinical PET acquisition, the reproducibility of FMISO PET
imaging can be affected. To investigate whether this is realistic, simulations
were performed with eight phases φ = 0, π/4, . . . , 7π/4 covering a full fluctuation
period in scenarios B and C as well as with φ = 0, π/2 in scenario D. This aimed
to simulate a test/retest experiment in a clinical setting.
The resulting TACs are shown in Figure 4.7a. Clearly, an unstable oxygen

supply influences the total signal. Depending on the timepoint, 4.1% (2 h), 5.4%
(3 h) and 6.2% (4 h) of the signal directly results from acute hypoxia in scenario C.
The difference between scenarios B and C, i.e. the blue and the red curve, shows
that, compared to baseline conditions, fluctuations without supply collapse cause
more additional tracer retention than the additional phases of supply collapse.
An isolated analysis of the bound FMISO component revealed that in scenario C
a maximum of 13.0% of the retention is related to acute hypoxia (Figure 4.7b).
This value includes 3.5% of the retention arising from supply collapse. These
values are independent of the timepoint.
Regarding the reproducibility of the total signal, the maximum differences were

evaluated within each set of curves in scenarios B, C and D. This yields an estimate
for the test/retest variability that acute hypoxia might induce in a voxel-based
FMISO PET signal. In scenarios B and C the variability between the curves was
extremely small. For both cases the maximum difference was 0.7% at 140 min pi,
while it was 0.3% at 4 h pi. In the exploratory scenario D, a variability of 3.8%
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(a) (b)

Figure 4.7.: (a) TACs for scenario A (black curve), B (blue), C (red) and D
(green). For B and C, curves were simulated with fluctuation phases
φ = 0, π/4, . . . , 7π/4, for D with φ = 0, π/2. (b) Isolated bound FMISO
component.

(120 min pi) was found. These values are specified relative to the average of each
set of curves at the respective timepoint.
So far, the analysis was performed for a single vessel map only. In order to

further explore the potential magnitude of the effect, sub-regions with distinct
vessel patterns were selected in the total map as depicted in Figure 4.5c. In the
sub-region with an extremely low vessel density, the variability within the set of
curves was 0.3% for scenario C, thus lower than in the total map. On the other
hand, in a high vessel density sub-region the signal variability was 2.2%, which
is an increase compared to the total map. Almost all vessels in the latter sub-
region are affected by supply collapse, which explains the larger effect. Typically,
tissue regions with an intermediate vessel density are affected most by fluctuating
supply, because the net tracer accumulation is comparatively high. Consequently,
the maximum expected signal variability is close to the 3.8% simulated for the
total map in scenario D.

4.2.4. Discussion

In this study, periodical fluctuations in oxygen supply were modelled and in-
tegrated in the simulation method. The resulting variations in simulated tissue
oxygenations showed that these fluctuations may induce acute hypoxia in substan-
tial volumes of human tumours. Acutely hypoxic volumes are typically located
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closer to vessels than the chronically hypoxic sub-population of cells. For the spe-
cific vessel map used in this study, chronic hypoxia prevails over acute hypoxia.
This agrees with results from the evaluation of the frequency of acute and chronic
hypoxia in immunohistochemically stained HNSCC xenograft sections [98].
However, regarding the influence of acute effects on FMISO PET imaging, the

limited precision of PET measurements is important. Typically, in clinical PET
imaging, acquisition times are adjusted to provide a voxel-based signal with a
relative standard deviation of about 10%. A higher precision requires either the
administration of a higher dose of radiolabelled tracer or a longer acquisition time,
thus increasing the radiation exposure of the patient or the risk of image artifacts
due to patient motion, respectively. With an accuracy of 10%, an increase of 6.2%
in the total signal due to acute hypoxia is indistinguishable from the baseline
signal without fluctuations. This is the maximum increase in uptake due to acute
hypoxia simulated in this study. In other words, the results imply that two FMISO
PET images acquired in the same subject, one in the presence of acute hypoxia
and the other for stable supply, appear identical in a voxel-based analysis.
Regarding the issue of reproducibility the conclusion is similar. As the max-

imum simulated test/retest difference is 3.8% in scenario D, the consequence is
that there is no detectable influence of acute hypoxia on FMISO PET imag-
ing. This result appears reliable, because the fluctuation model was designed to
evaluate the magnitude of the influence of acute hypoxia. Under most circum-
stances the influence of acute hypoxia on FMISO PET imaging presumably is
even smaller, as fluctuation amplitudes and periods are smaller or fluctuations
are less synchronised among vessels than assumed here.
Therefore, it seems unlikely that the differences between clinical repeat FMISO

PET scans in HNSCC patients reported by Nehmeh et al. can be explained by
acute hypoxia [28]. This is corroborated by a recent study performed under com-
parable conditions by Okamoto et al., which lead to the conclusion that FMISO
PET scans are highly reproducible [29]. Alternative explanations for the differ-
ences between repeated FMISO PET scans are an insufficient accuracy of the
registration between the two PET/CT image volumes. It is also possible that ir-
reversible, and therefore chronic, changes in the hypoxic status occurred between
the scans. This is possible, as HNSCCs often progress rapidly [99]. However, this
influence has not been observed by Okamoto et al.
The results have a number of implications for the integration of FMISO PET in

RT treatment planning. Signals appear to be dominated by uptake from chronic
hypoxia. The reproducibility of imaging an untreated tumour seems unaffected by
acute hypoxia. These are ideal preconditions, if chronic hypoxia is the dominant
form of hypoxia in terms of the negative impact on the efficacy of RT. FMISO
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PET may then be used to predict treatment outcome and subsequently to locally
adapt radiation doses according to the hypoxic status.
Though, it is also possible that the detrimental biological and clinical conse-

quences of acute hypoxia dominate over those of chronic hypoxia. It has been
suggested that acute hypoxia may induce increased radioresistance and stimulate
transfer of cells to a more malignant phenotype, while chronically hypoxic cells
are less harmful due to their limited survival time [26, 30]. In this situation the
incapacity of FMISO PET imaging to detect acute hypoxia, which the presented
results indicate, is problematic. Some capability to detect acute hypoxia might
arise from an inherent correlation between chronic and acute hypoxia. Neverthe-
less, this correlation is speculative.
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4.3. Correlation between tumour oxygenation and FMISO
PET data

4.3.1. Outline

The tissue PO2 in head and neck cancer patients measured with polarographic
oxygen probes has been correlated with the overall survival after RT. Specifically,
the fraction of measurements below 2.5 mmHg (HF2.5) was the statistically most
significant factor [11]. This study was based on data from 397 patients. There also
is clinical evidence for the ability of FMISO PET imaging to predict RT outcome,
though the studies performed until this point were based on much smaller numbers
of patients [13].
So far, it is unclear which FMISO PET imaging protocol delivers the best

surrogate for tissue PO2 and therefore potentially has prognostic capabilities,
comparable to those demonstrated for oxygen sensing probes. This issue has
been addressed by a number of experimental studies investigating the relationship
between PO2 measurements with oxygen probes and hypoxia PET in clinical
[100–102] as well as pre-clinical settings [103–105]. Generally, low or moderate
correlations between hypoxia PET and direct probe measurements were observed.
A good agreement was found in some tumours or tumour regions, while in others
ambiguities remained.
A major drawback of the methods used in the aforementioned studies is the

lack of a precise volumetric registration between PET and probe data, which is
necessary for a voxel-based analysis. Recently, a voxel-based comparison was re-
ported as well [106]. These problems in experimentally establishing links between
tissue oxygenation and FMISO PET data make a simulation approach appealing.
The method developed in this work overcomes many experimental limitations,
because the simulated oxygenations and FMISO dynamics are based on the same
microvessel maps and thus are perfectly aligned. It is furthermore possible to eval-
uate the full information from tracer dynamics, such as the wash-in and uptake
phases, with very high spatial and temporal resolution.
The spatial distribution of hypoxia in tumour tissue is very heterogeneous on

the microscopic length scale and often interspersed with necrotic regions. Necro-
sis frequently results from extremely low PO2 levels. As FMISO is not retained
in necrotic tissue, this may lead to low tracer retention in poorly oxygenated re-
gions. This ambiguity, in combination with the PVE arising from the low spatial
PET resolution, makes it virtually impossible to establish a bijective relation-
ship between FMISO PET signals and properties of the underlying oxygenation.
Nonetheless, it might be possible to derive a parameter from FMISO PET data
that is sufficiently sensitive and specific for clinical purposes.
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In this regard, two parameters were evaluated in this study, which can be readily
acquired in a clinical setting: (a) The voxel values from a static FMISO PET scan
4 hpi (late scan). (b) The late scan signals were normalised with respect to a scan
covering the first 15 min pi. The second parameter was chosen based on the result
of Section 4.1 that the shape of the wash-in peak is characteristic for the density
and arrangement of vessel in a voxel, i.e. its perfusion. In this way, predominantly
necrotic voxels may be properly identified as high risk voxels, as they display a
low perfusion in combination with a low tracer retention. Moreover, it has been
suggested that a perfusion metric may contribute essential information about the
potential of tissue to reoxygenate during RT [59]. In this case, it must be included
in a metric predicting the radiosensitivity based on FMISO PET data. In this
study, the correlations were analysed between the FMISO parameters specified
above and characteristic properties of the underlying oxygenation, i.e. the mean
PO2 and the vital hypoxic fraction. The parameters are defined in detail in the
following section.

4.3.2. Methods and Materials

Five tissue sections from different pre-clinical tumours with a combined area of
133 mm2 were converted into binary vessel maps using the method described in
Section 3.2.2. The sections covered a large range of distinct vessel distributions.
Subsequently, a total number of 300 sub-regions with dimensions of 2 × 2 mm2

were placed in the vessel maps at random locations. In these sub-regions, O2 and
FMISO parameters were calculated from the simulated data as specified in the
following section.

Oxygenation and FMISO parameter sets

Two parameters were evaluated from the simulated FMISO distributions. First,
a measure of tracer retention FH was derived from averaging the concentration
C(x, y, t) for t = 4 hpi over each sub-region:

FH = 1
AΩ

∫
Ω
C (x, y, t = 4 h) dx dy + Civ (t = 4 h) VF (4.3)

where Ω denotes the extravascular space, AΩ the area of Ω and VF the respec-
tive vascular fraction. To obtain a measure of perfusion, the simulated early
timeframes between 0 and τ were averaged:

FP = 1
τ

∫ τ

0

( 1
AΩ

∫
Ω
C (x, y, t) dx dy + Civ (t) VF

)
dt. (4.4)
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Based on this, the second investigated FMISO-derived parameter was evaluated
from

FH/P = FH

FP
. (4.5)

Here, τ = 15 min was chosen, as this covers substantial parts of the wash-in
phase and could be clinically implemented. The simulated steady-state oxygena-
tions were characterised by two parameters. The mean of the equilibrium oxygen
distribution Peq (x, y) in the respective sub-region was calculated from

PO2 = 1
AΩ

∫
Ω
Peq (x, y) dx dy.

In experimental studies, the hypoxic fraction (HF) is frequently evaluated as the
ratio between the number of PO2 measurements below and above a threshold value
Pcrit. Typical threshold values are 2.5 mmHg and 5 mmHg. Vital and necrotic
tissue regions are likewise included in HF and in PO2 and both parameters are
highly correlated, especially for hypoxic sub-regions, as can be seen in Figure
4.9b. For this reason a vital hypoxic fraction (vHF) was introduced in this study,
instead of evaluating the HF. It regards the vital fraction F2 at a particular
location according to Equation (3.10) and therefore includes vital regions only. It
was calculated from

vHF = 1
AΩ

∫
Ω

V (Peq (x, y)) dx dy

V(P ) =
F2(P ) if P < Pcrit

0 else.

In this study, Pcrit = 2.5 mmHg was chosen.

Receiver operating characteristic

A straightforward approach to analyse FMISO PET signals is to choose a cut
off value above which the respective parameter presumably indicates hypoxia. A
too small cut off value leads to a low specificity, i.e. a high rate of false-positive
results (FPR). A too large value leads to a low sensitivity, i.e. a low rate of true-
positive results (TPR). The optimum value is located somewhere in between. The
diagnostic accuracy for a given threshold value can be quantified by the Youden
Index (YI) defined as

YI = TPR− FPR
= Sensitivity + Specificity− 1.
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A receiver operating characteristic (ROC) analysis can be performed by plotting
the TPR against the FPR for various cut off values. The area under the ROC
curve (AUC) is an alternative accuracy measure. In contrast to the YI, the AUC
regards the whole ROC curve and therefore also includes information about the
stability of the method. The AUC and YI values may range from 0.5 to 1 and 0
to 1 (futile to ideal), respectively.
In this study a ROC analysis was performed, to investigate how accurately the

two FMISO-derived parameters identify voxels with PO2 < Pcrit. In a further step,
the ROC analysis was also used to evaluate how well the parameters characterise
the PO2 on the microscopic length scale (microPO2). In this case, a single FMISO
parameter does not represent a single PO2 value, but a matrix of 60×60 underlying
microscopic oxygen partial pressures.

4.3.3. Results

Simulated oxygenations

Full simulations were performed on all vessel maps. An example of a simulated
equilibrium PO2 distribution is given in Figure 4.8a. Moreover, Figures 4.8b–c
show the corresponding FMISO pattern 4 h pi as well as the pattern averaged
over the first 15 min pi, respectively.
The median PO2 over all maps was 10.0 mmHg (0.0 mmHg–40.0 mmHg), cal-

culated with a resolution of 50 µm/pixel, i.e. a resolution comparable to that of
polarographic probes. This agrees with observations in clinical HNSCC, where the
median PO2 assessed by different institutions ranged from 5 mmHg to 18 mmHg
with an overall median of 9 mmHg [11]. This does not prove that the simulations
adequately reproduce the manifold oxygenations in HNSCC. For example, there
appears to be a disagreement with regard to the HF. The median simulated HF
of 37% is considerably higher than the experimental value of 19%. This might
partly be explained by the low accuracy of polarographic oxygen probes, which is
about 1 mmHg irrespective of the absolute value [79]. Nonetheless, histograms of
the microscopic PO2 within four selected sub-regions exhibit distinct oxygenation
patterns, as shown in Figure 4.9a. This indicates that the irregularities in tumour
oxygenations are, to some degree, reproduced by the simulations.
The simulated sub-regional PO2 ranged from 1.3 mmHg to 32.5 mmHg with a

median of 11.0 mmHg. The median vHF was 26% (0%–48%), while the median
HF was 34% (0%–87%). In Figure 4.9b the simulated vHF and HF are plotted
against PO2. For mean PO2 values above 17 mmHg vHF and HF overlap, which
indicates that cell necrosis plays a minor role in this PO2 range. However, for lower
values vHF and HF differ greatly. In hypoxic regions with PO2 < 10 mmHg the
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(a) (b)

(c) (d)

Figure 4.8.: (a) Equilibrium PO2 distribution for a 6.3×4.9 mm2 vessel map, including
two randomly placed 2× 2 mm2 sub-regions (A and B). (b) Corresponding
FMISO distribution 4 h pi, from which FH is calculated according to Equa-
tion (4.3). (c) FMISO distribution averaged over timeframes between 0 min
and 15 min, from which FP is calculated according to Equation (4.4). (d)
Ratio between the distributions in (b) and (c). Averaging over sub-regions
yields FH/P, as defined in Equation (4.5).
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relationship between vHF and mean PO2 appears ambiguous, while apparently
the HF is linearly related to PO2. This was the reason for abandoning the HF
in favour of the mean PO2 in the further analysis, as the latter does not include
an arbitrary threshold value. Certainly, the biological basis for a fixed hypoxia
threshold is questionable.

(a) (b)

Figure 4.9.: (a) Histograms of the simulated microPO2 values in four different sub-
regions display distinct distributions. Sub-regions A and B are depicted
in Figure 4.8a, C and D are not shown. The mean of each histogram is
indicated on the top axis. (b) Scatter plots of vHF and HF against PO2.
Necrosis does not induce a difference between vHF and HF for PO2 >
17 mmHg. For lower values, the exclusion of necrotic areas in the vHF
causes large differences. In hypoxic areas (PO2 < 10 mmHg) HF appears to
be linearly correlated with PO2, while there are large discrepancies between
PO2 and vHF.

Correlations between oxygenation and FMISO PET

Sub-regions A and B in Figure 4.8a are good examples of the ambiguous rela-
tionship between FMISO retention and mean PO2. The mean PO2 in A and B is
1.7 mmHg and 4.3 mmHg, respectively. This is inconsistent with the late FMISO
signal FH, which is lower in A (16.2 kBq/ml) than in B (17.7 kBq/ml). In con-
trast, the combined parameter FH/P is consistent with the mean PO2, because it
is higher in A (1.82) than in B (1.35).
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(a)

(b)

Figure 4.10.: Scatter plots of vHF and PO2 against the FMISO parameters (a) FH
and (b) FH/P. Continuous lines are fits to the overall data, while dashed
lines are fits restricted to hypoxic regions. The respective coefficients of
determination R2 for the restricted fits show that vHF correlates with FH.
In contrast, PO2 correlates with FH/P only (cf. Table 4.1).

59



4. Results and Discussion

In Figure 4.10a scatter plots of vHF and PO2 against FH are shown. Each point
represents a data pair from a specific sub-region. A high overall linear correlation
coefficient R2 of 0.99 and 0.95 for vHF and PO2 was observed, respectively. These
values reduced to 0.90 and 0.22, respectively, when the analysis was restricted to
data pairs in the hypoxic range, where PO2 < 10 mmHg and vHF > 0.24. A
high diagnostic accuracy is especially important in this range. Consequently, FH
is a reliable surrogate measure of the vHF, but it does not enable an accurate
prediction of the PO2.
Figure 4.10b shows plots of vHF and PO2 against the second FMISO parameter

FH/P. Both scatter plots display a nonlinear relationship. Based on a visual
inspection PO2 appears better defined than the vHF, especially in the hypoxic
range. This was corroborated by fitting a function of the form

f(FH/P) = p1(
p2 + FH/P

)p3 + p4 (4.6)

to both data sets in a least-squares sense. The respective fit coefficients pi, i =
1, 2, . . . , 4 and determination coefficients R2 are summarised in Table 4.1. For fits
to the overall data, vHF as well as PO2 appear highly correlated with FH/P, with
R2 values of 0.97 and 0.99, respectively. When the fit is restricted to data in the
hypoxic range, values of R2 were 0.54 and 0.99, respectively. This suggests that
in this range FH/P is a more accurate surrogate measure of the mean PO2 than
FH.

Table 4.1.: Coefficients obtained by fitting Equation (4.6) to the vHF–FH/P and PO2–
FH/P data shown in Figure 4.10b. The respective coefficient of determination
R2 is specified as well. For PO2: [p1] = [p4] = mmHg.

p1 p2 p3 p4 R2

vHF (overall) −9.61 × 104 3.85 8.27 4.79 × 10−1 0.97
vHF (> 0.24) −4.90 × 101 1.22 7.37 4.22 × 10−1 0.54
PO2 (overall) 3.99 × 101 −3.71 × 10−1 2.66 × 10−1 −3.51 × 101 0.99
PO2 (< 2.5 mmHg) 4.39 × 104 2.25 6.97 −9.93 × 10−1 0.99

The ROC analysis of the diagnostic accuracy of the two FMISO parameters
to identify hypoxia is visualised in Figure 4.11. Clearly, regions with a critical
mean PO2 can be discriminated extremely well using FH/P (AUC = 0.95, optimal
YI = 0.94), while FH alone is much less reliable (AUC = 0.88, YI = 0.68). Note
that for very high thresholds applied to FH the false positive rate is higher than
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Figure 4.11.: Receiver operating characteristic of FH/P (green curves) and FH (red
curves) for the identification of hypoxia (Pcrit = 2.5 mmHg) using dif-
ferent cut off values. Solid and dashed lines refer to the identification of
PO2 and microPO2, respectively. Cut off values applied to the FMISO
parameters decrease along the curves from left to right. Optimum points
in terms of maximum YI are marked. The identification of critical PO2 is
very sensitive and specific using FH/P (YI = 0.94). Using FH is less effec-
tive (YI = 0.68). Both parameters are moderately accurate in identifying
critical microPO2 values (YI = 0.63 and 0.60).

the true positive rate. This means that the sub-regions with the highest tracer
retention are identified as hypoxic, though the mean PO2 lies above the critical
value. The optimum threshold values, in terms of maximum YI, were FH/P = 1.61
and FH = 16.3 kBq/ml. The latter threshold value is equivalent to a T/B ratio
of 1.8. The ROC analysis of the accuracy of identifying hypoxia that was defined
based on microPO2 with the FMISO parameters resulted in AUC values (optimum
YI) of 0.88 (0.63) and 0.86 (0.60) for FH/P and FH, respectively. These values are
almost identical to those for identifying macroscopic hypoxia (according to PO2)
using FH, though much lower compared to FH/P. Here, the optimum thresholds
were FH/P = 1.0 and FH = 15.5 kBq/ml. The latter is equivalent to a T/B ratio
of 1.7. Note the considerable decrease in the optimum FH/P threshold compared

61



4. Results and Discussion

to the identification of PO2. A decreasing threshold implies an increased fraction
of sub-regions that are identified as hypoxic. In this case it increased from 15.7%
to 46.6%. This can be interpreted in the context of RT dose painting: if the
tumour sub-volume that receives an escalated radiation dose increases three-fold,
this might strongly affect normal tissue complication probabilities.

4.3.4. Discussion

The results of this study outline the fundamental problems associated with imag-
ing microscopic tumour hypoxia using PET, which is a macroscopic imaging
modality. In addition to the PVE, the ambiguous binding behaviour of FMISO is
problematic, i.e. it is not accumulated in well oxygenated as well as predominantly
necrotic tissue. Necrosis is closely related to the progress of hypoxia [107].
The finding that late FMISO PET signals (FH) are poor surrogate measures

for the mean PO2 in a voxel is a direct consequence of these limitations. On the
other hand, it appears that the vHF, a parameter already corrected for necrosis
by its definition, can be identified based on late signals with high accuracy. As
our results show a high accuracy of assessing the mean PO2 by means of FH/P,
supplementing the late FMISO information with information from the wash-in
phase obviously compensates the loss of retention due to necrosis and also the
excessive binding in voxels dominated by intermediate hypoxia.
This work can not answer the question whether vHF or PO2 offers a better

prediction of the response to RT. However, all previous reports of a correlation
between direct measurements of tumour oxygenation and RT efficacy were uncor-
rected for necrosis, i.e. it was not distinguished between necrotic and vital tissue.
Therefore, there is only evidence for the predictive value of PO2, which was the
reason for limiting the ROC analysis to this parameter.
The acquisition of both evaluated FMISO parameters requires relatively simple

clinical PET imaging protocols. FH is comparable to the voxel values in a static
scan several hours pi, as it typically has been acquired in previous studies. For the
evaluation of FH/P a second scan covering the wash-in phase would be necessary,
followed by a registration of the PET/CT image volumes as well as a simple
division between late and early voxel values.
There are some limitations regarding the transfer of the theoretical results of

this study to clinical data and the underlying biological systems. Generally, the
mathematical model is an idealisation of real tissue and the behaviour of O2 and
FMISO molecules therein. Adding further biological aspects to the model, e.g. a
heterogeneous vascular permeability (MTC) for tracer molecules, would weaken
the evaluated correlations. It probably has the same effect, if a larger base of
histological material would be included that covers a broader range of vessel con-
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figurations. Two other limitations specific to this study also lead to an overestima-
tion of the diagnostic accuracy. First, the chosen size of sub-regions was smaller
than a clinical PET voxel, because the size and number of available histological
tissue sections was limited. Second, stable oxygenation properties (vHF, PO2)
were assumed, though it was shown in Section 4.2 that the oxygenation is not
static and that FMISO PET signals predominantly depict chronic hypoxia. The
listed limitations likewise affect the correlations between PO2 and FH as well as
FH/P. Therefore the conclusion that FH/P has a higher diagnostic accuracy than
FH remains unchanged.
In conclusion, this study offers an explanation for the low correlations that

were reported between PO2 and late FMISO PET measurements in clinical and
pre-clinical tumours. Furthermore, the results indicate a potential advantage of
using the independent information of two FMISO PET scans to accurately assess
the mean PO2 in a voxel-based manner in head and neck tumours, compared to a
single scan. The first scan covers the tracer wash-in phase, while the second scan
is acquired following a tracer uptake phase of several hours.
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Summary

This work investigates the assessment of hypoxia in human tumours with FMISO
PET imaging. A special focus lies on its potential use in RT, as hypoxia is
especially relevant regarding the prediction of the efficacy of RT [10, 11]. There
is a number of open questions in FMISO PET imaging, particularly regarding
the optimum acquisition modes. Scans can be performed in static or dynamic
mode and at different timepoints post injection (pi). Most clinical FMISO PET
imaging studies were based on small numbers of patients and imaging was rarely
performed in dynamic mode [13]. Moreover, it has been suggested that scans
must be acquired after the initiation of RT, in contrast to pre-treatment scans,
to allow a prediction of treatment outcome [84].
As hypoxia is a microscopic phenomenon [7, 19], a fundamental understanding

of FMISO PET requires an understanding of the processes on this length scale. In
this work, a method is developed to simulate these processes. For this purpose,
biophysical models of the diffusion and consumption of oxygen as well as the
diffusion and retention of FMISO are combined. In contrast to an earlier model
outlined in [24], it is considered that FMISO is retained in vital hypoxic cells
only. Moreover, it is very important to include an accurate model of the supply of
oxygen and the flux of FMISO into and out of tissue via capillary networks [108].
For this reason, 2D vessel maps are created based on tumour histology, which is a
uniqueness of this work. Simulations are performed by solving the model-specific
system of PDEs using the FEM in 2D. The method is validated by comparing
the simulated results with IHC material and clinical FMISO PET data acquired
in dynamic mode.
This work consists of three different studies that are performed using the de-

scribed simulation method [109,110]. See also Appendices A–C. In the following
the results are briefly summarised. The first study shows that the diffusion of
FMISO molecules to hypoxic regions is rather dilatory. As a result, the accumu-
lation of FMISO may not be interpreted as hypoxia-specific for the first 30 min
pi. It takes additional time, until a specific contrast develops. Therefore, it is
obligatory to perform static FMISO PET imaging at timepoints later than 1 h pi.
Possibly, even longer uptake times are necessary to achieve detectable and consis-
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tent intratumour contrasts. A high image contrast is important for example for
the automatic segmentation of hypoxic volumes using different algorithms [85].
In this study, it is as well demonstrated that the information content of a PET
scan covering the wash-in of tracer is distinct from that of a scan during the accu-
mulation phase a few hours pi. While tracer accumulation is related to hypoxia,
the early signals appear to contain information about the density and regularity
of the vessel network in a voxel. The denser and more regular the vessel network,
the higher may be the probability that reoxygenation occurs during fractionated
RT [58,59,111]. Therefore, the magnitude of early signals may be correlated with
radiosensitivity.
In the second study, the role of acute, i.e. temporally varying, hypoxia in FMISO

PET imaging is addressed. It is a frequently discussed issue whether the repro-
ducibility of this imaging modality is impaired by acute hypoxia [28, 29] and
whether it is possible to separately assess the degree of acute and chronic hy-
poxia based on two independent scans [96]. This is of interest, as acutely hypoxic
cells may be less radiosensitive and less susceptible to radiosensitising drugs, com-
pared to cells under chronic hypoxia [26, 93]. Therefore, a model of fluctuating
oxygen levels in blood is integrated in the simulation model. These fluctuations
result in temporal variations of the FMISO retention rates. The results of this
study suggest that the influence of acute hypoxia on FMISO imaging is negli-
gible, even though the fluctuation model is designed to explore the magnitude
of the effect. FMISO PET thus predominantly images chronic hypoxia and the
associated effects on RT. Consequently, the reported poor match between two
independent image volumes that were acquired within three days in the same
patients [28], most likely can not be explained by acute hypoxia. Possible ex-
planations are an inconsistent patient preparation and positioning as well as an
inaccurate post-scan registration of the two image volumes. Accordingly, a recent
study performed under comparable conditions concluded that FMISO PET scans
are highly reproducible [29].
In FMISO PET imaging, the microscopic oxygenation of tissue is assessed with

a macroscopic imaging modality. The resulting spatial undersampling leads to
errors in the assessment of different properties of the oxygen distribution in a
PET voxel and consequently of hypoxia [20]. In the third study, this aspect
is investigated in particular regard to the assessment of the mean PO2 and the
fraction of vital hypoxic cells (vHF) with FMISO PET. The accuracies of different
surrogate measures of these parameters that can be derived from clinical FMISO
PET imaging is studied with the simulation tool. A major result is that the
mean PO2 in a PET voxel may be assessed based on two static FMISO PET
scans covering the wash-in and the accumulation phase, respectively. Compared
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to a single scan, the accuracy of this method is much higher. The vHF may be
effectively assessed by a single scan. However, it is reasonable to assume that the
mean PO2 is a better predictor of the radiation response than the vHF, as the
oxygen enhancement of radiation damage shows a strong nonlinear dependence
on the PO2 [73]. Clinical data have to be analysed to investigate the feasibility
of the proposed method. An advantage of the proposed method is that two
static FMISO PET scans are easy to implement in clinical routine, in contrast to
dynamic imaging, which is technically demanding and associated with a complex
data analysis [55,87].

Outlook

Some aspects of the simulation model have to be validated more comprehen-
sively in the future. This can be achieved based on pre-clinical tissue sections,
for which FMISO autoradiographs as well as images of the corresponding vessel
structures are available. For these data sets, simulated FMISO distributions can
be compared with experimental data. However, the analysis is restricted to a sin-
gle timepoint, as autoradiographs display the tracer distribution at the moment
when the laboratory animal has been sacrificed. In this way, for instance a better
estimate may be found of the typical distance from vessels at which the maximum
FMISO retention occurs. It critically depends on the PO2 at which cell necrosis
becomes important (cf. Equation (3.10)).
A further step will be to extend the method from 2D to 3D. It is possible to

reconstruct 3D models of vessel networks from consecutive tissue sections, which
were IHC stained for vessel structures [112]. With a fully 3D method, gradients in
the intravascular oxygen content along elongated capillaries can be simulated. In
case FMISO PET data has been obtained in vivo for the respective sections, it is
as well possible to compare experimental and simulated PET data. Though, this
requires an accurate spatial registration between IHC and the PET image, which
can be realised in pre-clinical experiments [113]. For a quantitative comparison, it
may also be necessary to consider blurring of FMISO signals by the point spread
function (PSF) in the simulated data. The PSF is an intrinsic property of the
PET scanner and the tracer radioisotope. Comparable PET data may also be
obtained from simulated FMISO emission densities by Monte Carlo simulations
of the detection process in the PET scanner [114]. This must be followed by image
reconstruction with the same algorithm as the experimental data that is used for
comparison.
Other hypoxia PET tracers have been developed, in addition to the first gener-

ation tracer FMISO, e.g. [18F]FAZA and [60/64Cu]ATSM. These molecules differ
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from FMISO in some aspects, such as the lipophilicity, the tissue clearance rate
and the binding rate–PO2 relationship. By adapting the simulation model to dif-
ferent tracers, their behaviour can be compared. For each tracer substantiated
hypotheses regarding their respective general performance and optimum imag-
ing protocols can be generated, instead of simply extrapolating experiences from
FMISO PET imaging.
Another future line of research lies beyond the scope of the presented simulation

model. It is the validation of a hypothesis, which is formulated in Section 4.3
based on results of this work. The hypothesis is that a parameter FH/P, which
combines early and late FMISO PET data, is a reliable predictor of the overall RT
efficacy and moreover of the local hypoxia-associated radiosensitivity. The former
aspect can be studied using existing clinical data sets of dynamic FMISO PET
data and RT follow-up information. It is much more complex to investigate the
second aspect, as detailed information about the localisation of potential tumour
recurrences following RT are required. High recurrence rates are expected in
regions with a high pre-treatment FH/P value.
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Abstract
Hypoxia can be assessed non-invasively by positron emission tomography
(PET) using radiotracers such as [18F]fluoromisonidazole (Fmiso)
accumulating in poorly oxygenated cells. Typical features of dynamic Fmiso
PET data are high signal variability in the first hour after tracer administration
and slow formation of a consistent contrast. The purpose of this study is
to investigate whether these characteristics can be explained by the current
conception of the underlying microscopic processes and to identify fundamental
effects. This is achieved by modelling and simulating tissue oxygenation and
tracer dynamics on the microscopic scale. In simulations, vessel structures on
histology-derived maps act as sources and sinks for oxygen as well as tracer
molecules. Molecular distributions in the extravascular space are determined
by reaction–diffusion equations, which are solved numerically using a two-
dimensional finite element method. Simulated Fmiso time activity curves
(TACs), though not directly comparable to PET TACs, reproduce major
characteristics of clinical curves, indicating that the microscopic model and
the parameter values are adequate. Evidence for dependence of the early PET
signal on the vascular fraction is found. Further, possible effects leading to late
contrast formation and potential implications on the quantification of Fmiso
PET data are discussed.

(Some figures in this article are in colour only in the electronic version)

0031-9155/11/072045+13$33.00 © 2011 Institute of Physics and Engineering in Medicine Printed in the UK 2045
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1. Introduction

Tumour hypoxia strongly affects radiotherapy (RT) outcome (Höckel et al 1993, Nordsmark
et al 2005). It is caused by the structurally and functionally abnormal microvessel networks
in tumours (Vaupel 2004). Hypoxia may be chronic or acute. Chronic hypoxia is constantly
present and is caused by a mismatch between oxygen supply and demand resulting from
increased distances between vessels and tumour cells or the presence of underperfused vessels.
Fluctuating perfusion can cause acute hypoxia in addition to chronic baseline conditions
(Dewhirst 1998). In this paper we focus on the former effect.

One reason for RT failure is the lower radiosensitivity of hypoxic cancer cells compared
to normoxic ones (Thomlinson and Gray 1955). Hypoxia can lead to a non-uniform radiation
response within treatment volumes, while it is still clinical practice to provide uniform dose
distributions. To compensate for hypoxia-induced treatment resistance, dose painting (DP) of
RT target volumes has been proposed (Ling et al 2000, Bentzen 2005). Applying an increased
dose to small sub-volumes is technically feasible by means of intensity modulated RT (Chao
et al 2001, Alber et al 2003, Thorwarth et al 2007). The local oxygenation of tumours can be
non-invasively assessed by positron emission tomography (PET) imaging using radiolabelled
tracers accumulating in hypoxic cells, such as Fmiso5 (Rasey et al 1996), Faza6 (Piert et al
2005), Cu-ATSM7 (Dehdashti et al 2003), EF58 (Komar et al 2008), EF39 (Mahy et al 2008)
and HX410 (van Loon et al 2010). Kinetic analysis has been proposed as a method to quantify
dynamic Fmiso PET data (Thorwarth et al 2005a). Still, no consensus has yet been found
on how to correctly interpret hypoxia PET data and how to effectively use them in clinical
practice (Søvik et al 2009).

Voxel-based dynamic PET data show two major characteristics: a highly variable
nonlinear curve during the first hour after tracer administration, in some cases a pronounced
peak, is followed by an approximately linearly sloped signal. This was observed e.g. for
Faza (Souvatzoglou et al 2007), Fmiso (Koh et al 1992, Eschmann et al 2005, Wang et al
2010) and EF5 (Komar et al 2008). The late slope depends on the local cell density, cellular
oxygenation, vascular fraction and tracer plasma clearance rate. It can take hours until a
consistent contrast is observed in clinical hypoxia PET images, i.e. until the sign of the
difference between any two voxel intensities is stable. The purpose of this study was to
investigate whether these clinical observations can be explained by the current conception
of the microscopic processes determining Fmiso distribution and retention. Specifically,
that Fmiso is transported by passive diffusion, and that the pO2 dependent binding is
irreversible and can be described as a first-order reaction (Thorwarth et al 2005b). To
answer these questions, Fmiso microdynamics were modelled and simulated in a two-
step process starting with the simulation of static tissue oxygenation. Existing methods
were adapted and extended, resulting in a quantitative conceptual model characterized by
assumed mechanisms and the use of optimized parameter values in the lack of published
values.

5 [18F]fluoromisonidazole.
6 1-(5-[18F]Fluoro-5-deoxy-α-D-arabinofuranosyl)-2-nitroimidazole.
7 [61Cu]Copper(II)diacetyl-di(N4-methylthiosemicarbazone).
8 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-[18F]pentafluoropropyl)-acetamide.
9 2-(2-nitro-1H-imidazol-1-yl)-N-(3,3,3-[18F]trifluoropropyl)-acetamide.
10 3-[18F]fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3-triazol-1-yl)propan-1-ol.
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2. Model

2.1. Tissue oxygenation

Previous research focusing on the path of O2 molecules from their haemoglobin bound state to
extravasation was reviewed by Popel (1989) and Goldman (2008). A model taking into account
relevant effects was fitted to experimental data to derive a lump permeability coefficient LO2

depending on blood haematocrit only (Eggleton et al 2000). This coefficient links the oxygen
flux through vessel walls JO2 to the oxygen tension in erythrocytes Pie and on the extravascular
side of the wall P:

JO2 = LO2 (Pie − P) . (1)

Previously, oxygen distributions in tumour tissues were simulated based on three-dimensional
vessel maps derived from confocal microscopy (Secomb et al 2004), two-dimensional maps
manually delineated on H&E-stained tissue sections (Pogue et al 2001) and two- and
three-dimensional maps artificially generated from empirical parameters (Daşu et al 2003,
Toma-Daşu et al 2009). All authors modelled oxygen transport as a diffusive process (diffusion
coefficient DO2 ) that is in equilibrium with cellular oxygen consumption. While Pogue et al
assumed a constant consumption rate, in this paper we adopt the approach of Secomb et al and
Daşu et al using a Michaelis–Menten relationship between oxygen tension P and consumption
rate M(P). Specifically, the consumption rate is almost constant at high oxygen levels (rate
M0) and drops sharply at low levels, when cells adapt to limited supply. The half-maximal
rate is reached for P = P0. This aggregates in the reaction–diffusion equation for tissue
oxygenation:

∂P

∂t
= DO2∇2P − M (P) = DO2∇2P − M0P

P + P0
. (2)

Diffusion along concentration gradients is introduced by the Laplacian operator ∇2, which is
the sum of second-order spatial partial derivatives. Quasistatic distributions can be calculated
by numerically solving equation (2) until temporal variations are below a specified threshold.

2.2. Fmiso dynamics

Previously, diffusion and binding of Fmiso and Cu-ATSM in tumours were simulated,
employing vessel maps statistically generated from empirical microvessel distribution
parameters (Kelly and Brady 2006, Dalah et al 2010). The method presented in this
paper extends towards the use of more straightforward histology-derived vessel maps and an
explicitly oxygen-dependent binding rate K(P ). As for oxygen, tracer flux across vessel walls
JT is assumed to be proportional to the difference between concentration on the intravascular
Civ and extravascular C side:

JT = LT (Civ − C). (3)

The tracer permeability coefficient is denoted by LT. To model Fmiso dynamics, we follow
the approach of Kelly et al by assuming that diffusion is the dominant transport mechanism
(diffusion coefficient DT), that tracer binding in cells can be described as a first-order reaction
(rate constant K), and that binding is irreversible on timescales relevant for hypoxia PET
imaging. This agrees with kinetic models used to analyse dynamic hypoxia PET data (Wang
et al 2009, Thorwarth et al 2005b). To summarize the stated assumptions in a mathematical
expression, the tracer concentration C is separated into a free Cf and a bound Cb component:

∂Cf

∂t
= DT ∇2Cf − K(P )Cf (4)
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∂Cb

∂t
= K(P )Cf . (5)

A hyperbolic relationship F1(P ) between the cellular Fmiso binding rate and oxygen tension
was derived by Casciari et al (1995). It is parameterized by the maximal binding rate under
anoxic conditions Kmax and the oxygen tension P1 at which binding is inhibited by 50%:

F1 = KmaxP1

P + P1
. (6)

Calculations of tissue oxygenation showed that some cells are exposed to extremely low
oxygen levels. It appears realistic to assume cell death as the consequence, as necrosis is also
present in H&E-stained tissue sections. It is modelled by a function F2(P ) exhibiting a sharp
drop from value 1 (all cells vital) to 0 (all cells dead) at a critical oxygen tension P2:

F2 =
(

P

P + P2

)k

. (7)

The dimensionless parameter k controls the width of the transition layer between vital and
necrotic regions. Considering that Fmiso only accumulates in vivid cells the effective binding
rate constant is K(P ) = F1(P ) · F2(P ). Similar binding characteristics were reported
as ribbon-like hypoxic structures in tissue sections dual-stained for vessels and hypoxia
(Ljungkvist et al 2002). By defining the binding rate solely on the basis of local pO2 the
total cell density in the extravascular space is inherently considered homogeneous. It is
further assumed that convective transport is negligible compared to diffusive transport in
the extravascular space and across vessel membranes. In the extravascular space, this is
justified for the rapidly diffusing O2 molecule, but not necessarily for larger tracer molecules,
where the dominant transport mechanism depends on different tissue properties (Jain 1987b).
Transmembrane transport is diffusion dominated in tumours since hydrostatic and oncotic
pressure differences across vessel walls are small due to the leaky nature of vessels (Boucher
and Jain 1992, Stohrer et al 2000).

3. Methods and materials

In this section the practical aspects of simulating spatiotemporal Fmiso distributions based on
the mathematical model presented in the preceding section are described and the employed
materials are specified.

3.1. Stained microsections

Frozen tissue sections from human head-and-neck xenograft tumour lines were
immunohistochemically stained for endothelial structures (9F1, rat monoclonal to mouse
endothelium (Department of Pathology, Radboud University Nijmegen Medical Centre,
Nijmegen, The Netherlands)) and hypoxia (Pimonidazole, (Natural Pharmacia International,
Research Triangle Park, NC, USA)); anti-pimonidazole, (gift from J A Raleigh, Department
of Radiation Oncology, University of North Carolina, School of Medicine, Chapel Hill, NC,
USA) as described previously (Bussink et al 2000). All tumour sections were scanned using
a digital image analysis system as described previously resulting in grey-scale images for
both fluorescent signals (Rijken et al 2000). Consecutive tissue sections were stained with
hematoxylin and eosin (H&E) to distinguish vital from necrotic tissue.
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(a) (b) (c)

Figure 1. (a) Tissue microsection immunohistochemically stained for endothelium (9F1). (b)
Image after binarization and resolution reduction. (c) FEM mesh in the region highlighted in (b).

3.2. Generation of vessel maps

The finite element method (FEM) applied to solve the reaction–diffusion equations given in
section 2 is based on a triangular tessellation (mesh) of the integration domain. In the present
case, this domain consists of extravascular space interspersed by vessels, which constitute holes
in the mesh (figure 1(c)). Transport across vessel walls is reproduced by appropriate boundary
conditions specified later. A set of vertices describing the vessel distribution is extracted
from tissue microsections stained for vascular structures (figure 1(a)) by the following steps.
First, the image is binarized using a threshold determined by the mean background intensity.
In the next step the resolution of the binarized image is reduced. This restrains computer
memory usage, because the mesh size strongly depends on the minimum structure size in the
map. The output is a 2D binary vessel map with a pixel size of 8μm (figure 1(b)). Thus, a
single pixel has approximately the same circumference as a circular vessel with a diameter
of 10 μm, which is roughly the smallest physiologically realistic value. Due to the fact that
the vessel surface area (length in 2D) is the most important factor for transport between blood
and tissue, it is confirmed that it is not changed by the resolution reduction. The vascular
fraction of 3% in the simulation map used in this work is comparable to other published values
(Jain 1988).

3.3. Simulation of spatiotemporal Fmiso distributions

The simulation of spatiotemporal Fmiso distributions was implemented in a two-step process
in Matlab R2008a.

Oxygen. In the first step the quasistatic oxygen distribution Ps (x, y) in a vessel map was
calculated by numerically solving equation (2) until relative temporal variations were below
0.2% s−1. A solver for linear partial differential equations was extended to iteratively adapt
the nonlinear consumption rate M(P). The intraerythrocytic oxygen tension was assumed to
be uniform, neglecting axial gradients or differences between vessels in pO2. Transmembrane
fluxes J as defined in the modelling section were realized via Robin boundary conditions
imposed on the vessel boundaries. For oxygen they read n · (

DO2∇P
) = JO2 , where n is the

normal unit vector to the respective boundary segment. No-flux boundary conditions were
applied to the edges of the vessel map for oxygen as well as tracer molecules.
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Table 1. Parameter values used in simulations. The bold value was used where ranges are given.

Symbol Meaning Value Reference

Oxygen
Pie Intraerythrocyte pO2 in tumours 40 mmHg Secomb et al (2004)

LO2 Capillary permeability to O2 for 4.1 × 10−4 m s−1 Eggleton et al (2000)/
tumour haematocrit of 19% Brizel et al (1993)

DO2 O2 diffusion coefficient 2 × 10−9 m2 s−1 Tannock (1972)

M0 Maximum O2 consumption rate 15 mmHg s−1 Daşu et al (2003)
P0 Michaelis–Menten coefficient of (2.0–2.5) mmHg Goldman (2008) and

oxygen consumption Daşu et al (2003)

Fmiso

LT Capillary permeability to Fmiso (2.4–9.4) × 10−5 m s−1 Kelly and Brady (2006)

DT Miso diffusion coefficient 5.5 × 10−11 m2 s−1 Cowan et al (1996)
P1 pO2 inhibiting binding by 50% (0.8–1.5) mmHg Rasey et al (1989)

Kmax Maximum binding rate (anoxia) 1.7 × 10−4 s−1 Optimized
P2 pO2 inducing 50% necrosis 0.1 mmHg Simulated pO2 approximately

120 μm from vessels
k Determines step width at P2 0.3 Optimized

Fmiso. In the second step local tracer binding rates K (Ps (x, y)) were calculated from the
simulated oxygenation. Eventually, diffusion and binding of tracer were simulated by solving
the coupled linear equations (4) and (5). The plasma tracer concentration was specified as
a function of time that was fitted to clinical decay-corrected data measured from multiple
blood samples. The output was a set of spatial tracer distributions at predefined time points.
By averaging tracer concentrations in designated regions it is possible to obtain time activity
curves (TACs).

3.4. Parameter values

An overview of parameter values used in this work is given in table 1. Ranges of realistic
parameter values are naturally broad because of large inter- and intra-tumoural variations in
physiology.

Oxygen. An intraerythrocyte pO2 of Pie = 40 mmHg was assumed. This is the approximate
value at arteriolar capillary ends. The same value was used for the intravascular pO2 in
previous approaches (Secomb et al 2004, Daşu et al 2003). Oxygen transport across the
vessel wall is characterized by the permeability LO2 = 4.1 × 10−4 m s−1 calculated from a
function of blood haematocrit fitted to simulated transport (Eggleton et al 2000). A median
haematocrit of 0.19 was used, as measured in mammary adenocarcinomas in rats by Brizel et al
(1993). The oxygen diffusion coefficient was set to DO2 = 2 × 10−9 m2 s−1 (Tannock 1972).
This effective value incorporates tissue inhomogeneities, including cell membranes, intra- and
extracellular components. The maximum oxygen consumption rate M0 is known only vaguely.
A mean value of 15 mmHg s−1 was used, as in the work of Daşu et al (2003). Generally the
rate is proportional to the density of vital cells, which might vary within a tumour as well as for
different tumour types. Published data for the Michaelis–Menten constant P0 of the oxygen
consumption vary strongly. One reason is that it is not a fixed parameter for any system, but is
linearly related to the maximal rate of respiration M0 (Schindler 1964). It was set to 2 mmHg,
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in agreement with other investigators (Goldman 2008 Daşu et al 2003). The resulting median
pO2 of a typical vessel map simulated with the chosen parameters is 3.3 mmHg. This is
small compared to the overall median pO2 of 9 mmHg reported for head-and-neck tumours by
Nordsmark et al (2005), because more islands of low oxygen are resolved by the simulation
compared to the low resolution measurements with polarographic electrodes.

Fmiso. The diffusional permeability coefficient LT was set to 2.4 × 10−6 m s−1, as calculated
by Kelly and Brady (2006). This value is prone to error, it may vary by two orders of
magnitude for small molecules due to increased vessel fenestration in tumours (Jain 1987a). A
diffusion coefficient of DT = 5.5 × 10−11 m2 s−1 measured for Misonidazole in multicellular
membranes of V79 hamster cells by Cowan et al (1996) is considered applicable for Fmiso as
well. The relationship between the tracer binding rate and O2 tension K(P ) is determined by
P1, P2 and Kmax. Rasey et al (1989) found that 1000 to 2000 ppm O2 inhibited binding by 50%
compared to anoxia in vitro in different cell cultures. Hence, P1 ranges from 0.8 to 1.5 mmHg.
The remaining parameters could not be chosen based on published values. As it is not the
purpose of this work to create predictive simulations that would be directly comparable to
measurements, it seems to be legitimate to heuristically determine unknown parameters. Kmax

was chosen such that the late slope of TAC is on the same order of magnitude as in clinical
PET TACs, i.e. that tumour to blood ratios (T/B) are comparable. Parameter P2, defined as
the O2 tension at which the cell population is diminished by 50%, was determined by the
simulated pO2 at a distance of about 120 μm from vessels. This is a typical width of the vital
cell layer around vessels (Thomlinson and Gray 1955, Tannock 1972). The parameter k was
set to 0.3 to model a narrow transition zone between vital and necrotic tissue.

4. Results

The main characteristics of the simulated oxygen distribution are a sharp decrease with
distance proximal to vessels and an asymptotic approach to 0 at large distances. These
results corroborate with the findings of earlier investigations (Tannock 1972, Daşu et al 2003,
Secomb et al 2004). Simulated tracer distributions 4 min, 3 min and 4 h after tracer injection
are shown in figure 2. Shortly after injection the distribution is highly inhomogeneous;
the concentration close to vessels is higher than that in distant regions (figure 2(b)). This
results form the combination of slow purely diffusive tracer transport and large intervessel
distances. No hypoxia-specific binding can be identified in the image. Hypoxic regions
located between normoxic and necrotic tissue start to become discernible after about 30 min
(figure 2(c)). Subsequently, the contrast of hypoxic regions against background gradually
increases (figure 2(d)). A sufficiently high level of contrast is only reached several hours after
tracer injection.

These observations also manifest in TACs from sub-regions with distinctive vascular
fractions (VF) as shown in figure 3. Tissue perfusion strongly depends on VF. All simulated
curves reproduce the typical phases in clinical PET TACs: a highly variable part in the first
minutes, which is dominated by the freely diffusing tracer component, is followed by an
almost linear uptake which is related to oxygen-dependent tracer binding. The shape of the
early signal is strongly influenced by the VF and might thus be suitable to measure tissue
perfusion. A lower VF results in higher tracer diffusion distances and, because the initial
signal is dominated by free tracer, a less pronounced initial peak. Further, late signal slopes
correspond to the VF in the chosen sub-regions, but it takes more than 1 h until the contrast
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(a) (b)

(c) (d)

Figure 2. (a) Simulation vessel map with ROIs (vascular fractions A: 7.9%, B: 2.9%, C: 1.2%).
Total (free + bound) tracer distributions on this map 4 min (b), 30 min (c) and 240 min (d) after
tracer administration. Scale applies to all. Initially, the distribution is highly inhomogeneous as
a result of slow tracer diffusion. Subsequently a hypoxia-specific contrast arises and gradually
increases in layers between normoxic and necrotic tissue.

between region B (low late slope) and C (high late slope) is consistent with the late slopes, i.e.
until the mean tracer density in C is higher than that in B.

To explore the complex formation process of Fmiso distributions, differences between
TACs from two distinctively vascularized regions are shown in figure 4. A major advantage
of the presented method is the possibility of separately analysing each component of a signal.
There are three components: the mean densities of free and bound tracer in the extravascular
space and the perfusive component, which is the contribution of tracer in the blood vessels in
the respective tissue region. Two reasons for the described discrepancy between late signal
slopes and contrast can be derived.

(i) Initially, there is a large difference between free components. This leads to unbalanced
binding that is higher in region B than in region C (�bound), because the amount of
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Figure 4. Signal component differences ROI C (low VF)—ROI B (interm. VF). A large initial
difference between free tracer signals (slow diffusion) leads to unspecific binding in the first
minutes. In addition, the persistent difference between perfusive components has to be compensated
before the total signal of ROI C becomes higher than that of ROI B and thus the contrast becomes
representative (though not quantitatively) for the late signal slope. The late slope is strongly
influenced by tracer binding and may thus be a measure of hypoxia.

bound tracer is proportional to free tracer concentrations. After about 30 min this effect
is compensated.

(ii) Still, the total signal difference remains negative, because the perfusive signal component
is higher in region B exhibiting a higher VF than region C (�perfusive). An additional
30 min later this is compensated by tracer binding.

Eventually, TACs from regions B and C intersect more than 60 min after tracer
administration and a contrast that corresponds to the late signal slope starts to evolve (figure 3).
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However, a quantitatively stable contrast does not develop. It is noteworthy that in the presented
case the free components have no influence on the time point of intersection.

Hypoxia tracers with transport and binding mechanisms similar to those of Fmiso were
optimized for beneficial pharmacokinetic properties, such as a faster clearance from blood
plasma while a high diffusibility is sustained (Mees et al 2009). We studied the theoretical
impact of faster clearance by varying the clearance rate in the input plasma tracer concentration
function by factors of 3 and 9. The resulting average increase in simulated T/B ratios 4 h after
injection was 11% and 96%, respectively. However, absolute signals strongly decreased by
33% and 75%, respectively, which may impact the overall signal-to-noise level in PET imaging.
For faster clearance less initial anti-specific binding was observed. Also, late tracer binding
decreased because free tracer is almost completely cleared from tissue. These observations
point towards an earlier optimum time point for static imaging compared to Fmiso. However,
the simulations showed that, for quicker clearance, the free component is elevated in signals
from sparsely vascularized regions, which limits the earliest feasible imaging time point.

5. Limitations of the method

The presented method is subject to a number of limitations. By employing two-dimensional
vessel maps only radial molecular diffusion is incorporated, though considerable diffusion in
the out of plane direction might occur in tissue. It might be feasible to extract three-dimensional
maps from consecutive tissue sections, though this seems very challenging. When extracting
simulation maps from microsections, erroneous vessel staining and resolution reduction might
lead to false estimations of supply. No-flux boundary conditions imposed on the external
boundary of simulation maps might result in false representations of the vessel density close
to boundaries. As a consequence, sub-regions with different VFs were only taken from central
areas of the vessel map. By calculating local tracer binding rates from static oxygenations,
acute effects possibly influencing uptake are ignored. Tracer as well as oxygen concentration
gradients along vessels are neglected; thus, a permeability limited supply is assumed. Irregular
properties of tumour vasculature (e.g., elongated vessels, low vascular density) might lead to
a slightly different situation. Parameter values of the model are generally prone to error and
additional uncertainties are introduced by their different origins. Assumptions of homogeneous
cell density and diffusion coefficients are limited by high tumour heterogeneity. In this study,
results are not directly related to clinical PET signals, because PET characteristics such as a
machine-specific point spread function, averaging over finite acquisition periods, image noise
and reconstruction details, were not simulated. Still, the simulated TACs provide valuable
information on the fundamental composition of real curves.

6. Discussion

We presented a method to simulate the dynamics of Fmiso on the microscopic scale
incorporating all important processes for tracer distribution and uptake. Despite the limitations
discussed in the previous section, the simulated local TACs share many characteristics with
clinical PET TACs. Specifically, the high variability in the first hour which strongly depends
on the local VF and the linear uptake later on. This suggests that the model is sensible. The
results give evidence that it might be possible to measure perfusion from early dynamic Fmiso
PET TACs. This potentially yields information on the time point of reoxygenation during RT
and might help to identify hypoxic regions exhibiting low uptake.
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Intersecting TAC were observed clinically (Eschmann et al 2005) and in preclinical tumour
models (Busk et al 2009). This was confirmed by the simulated curves. The intersection of
TACs may have fundamentally different reasons. Curves from regions exhibiting high (A) and
intermediate (B) VFs intersect shortly after tracer administration (approximately 15 min). This
is caused by faster distribution of free tracer in region (A) that quickly equilibrates with region
(B). Curves from intermediately (B) to sparsely (C) vascularized regions intersect much later
(1 to 2 h). In contrast to the first scenario, this is not driven by the free tracer component. Here,
the late intersection is due to early unspecific binding and different weights of the perfusive
components in the total signal. A possible practical implication is that, in order to identify
hypoxia-related tracer binding, static Fmiso PET scans should be acquired as late as possible.
Unspecific binding may be reduced by employing hypoxia tracers with higher diffusibilities,
but the perfusive components are determined by the local vascular structure and cannot be
influenced.

Quantification of images is necessary to incorporate Fmiso PET into RT by a DP by
numbers approach (Thorwarth et al 2010). It is still an open question how to obtain stable
parameters and how to translate them into a radiation dose by means of a suitable prescription
function (Bentzen 2005, Bowen et al 2009). Our results indicate that using a single static
image is prone to quantification error, because absolute intensities and more importantly also
relative intensities between voxels strongly depend on the acquisition time point. Stability
could be achieved by acquiring two subsequent images and thus directly measuring the late
slope that is a combination of tracer uptake and clearance rate. Alternatively, kinetic model
parameters fitted to dynamic Fmiso PET data could be employed, which was shown earlier to
correlate with treatment outcome for head-and-neck cancer patients (Thorwarth et al 2005a).

7. Conclusion

Simulation of Fmiso dynamics using realistic microvessel maps based on tumour histology
is feasible and may help to improve hypoxia PET acquisition protocols. Simulated
spatiotemporal tracer distributions share many features with clinical PET TACs, suggesting that
the current conception of the microscopic processes involved in the distribution and oxygen-
dependent retention of Fmiso is adequate. Intersecting TACs from distinctively vascularized
regions result from slow tracer diffusion and distinctive perfusion. Evidence was found that a
measure of tissue perfusion might be derived from dynamic Fmiso PET scans. Furthermore, the
simulations show that a single static Fmiso PET scan may not enable quantitative assessment
of hypoxia because simulated intervoxel contrast is unstable.
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Abstract
Tumour hypoxia can be assessed by positron emission tomography (PET) using
radiotracers like [18F]fluoromisonidazole (Fmiso). The purpose of this work
was to independently investigate the influence of chronic and acute hypoxia on
the retention of Fmiso on the microscale. This was approached by modelling
and simulating tissue oxygenation and Fmiso dynamics on the microscale based
on tumour histology. Diffusion of oxygen and Fmiso molecules in tissue- and
oxygen-dependent Fmiso binding were included in the model. Moreover, a
model of fluctuating vascular oxygen tension was incorporated to theoretically
predict the effects of acute hypoxia. Simulated tissue oxygen tensions (PO2)
are strongly influenced by the modelled periodical fluctuations (period 40 min,
total amplitude 10 mmHg and mean 35 mmHg). Fluctuations led to variations
in mean PO2 of up to 41% and in the hypoxic fraction (PO2 < 5 mmHg) from
56% up to 65%. Significant Fmiso retention is caused by chronic (87%) as
well as acute hypoxia (13%). By simulating Fmiso injection during different
phases of the vascular PO2 fluctuation cycle, it was found that acute hypoxia of
an empirically valid magnitude does not influence the reproducibility of PET
imaging. Thus, it may be impossible to separate acute and chronic hypoxia
from serial PET images.

(Some figures may appear in colour only in the online journal)

1. Introduction

Hypoxia is a frequent trait of human tumours and negatively affects radiotherapy outcome
(Höckel et al 1993, Nordsmark et al 2005, Vaupel 2004). It can be categorized into chronic
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and acute (or intermittent) hypoxia. While chronic hypoxia is a static phenomenon which
is primarily caused by large intervessel distances, acute hypoxia is highly dynamic and is
characterized by fluctuating tissue oxygen tension (PO2) (Bayer et al 2011). As a consequence,
acutely hypoxic cells can be located closer to vessels than cells suffering from chronic hypoxia.
Hypoxia can be clinically assessed by positron emission tomography (PET) imaging using
radiotracers such as [18F]fluoromisonidazole (Fmiso) (Mees et al 2009). Integrating hypoxia
PET imaging into radiotherapy treatment planning might improve treatment efficacy (Søvik
et al 2009, Nestle et al 2009, Thorwarth et al 2010).

Fluctuating tissue PO2 was directly measured in preclinical tumour models with
polarographic electrodes and optical methods (Dewhirst et al 1998, Brurberg et al 2004).
Indirect methods evaluating a mismatch between sequentially administered markers also
yielded evidence for acute hypoxia (Chaplin et al 1987, Bennewith and Durand 2004). Early
studies often attributed acute hypoxia to a total stasis of blood flow in vessels (Brown 1979).
This view shifted towards a more gradual understanding of acute hypoxia by demonstrations
of the predominance of varying red blood cell flux (RCF) over flow stasis in preclinical tumour
models (Durand and Aquino-Parsons 2001, Lanzen et al 2006, Cárdenas-Navia et al 2008).
Fluctuating perfusion was also found in different clinical tumours (Pigott et al 1996). Few
studies combined direct measurements of (single-point) tissue PO2 timelines and RCF (Kimura
et al 1996, Lanzen et al 2006), in many cases, revealing a correlation between flux fluctuations
and variations in tissue PO2. More evidence on the induction of intermittent tissue hypoxia
by fluctuating RCF was obtained from theoretical simulations of O2 transport (Kimura et al
1996). In a similar way, a model of vascular PO2 fluctuations was used by Cárdenas-Navia
et al (2007) to theoretically predict the efficacy of the hypoxic cytotoxin tirapazamine with
respect to acute hypoxia.

In a clinical Fmiso PET imaging study, Nehmeh et al (2008) reported a variability in
spatial uptake between repeat scans. Assuming that this variability is associated with acute
hypoxia, Wang et al (2009) developed a model to separate out acute from chronic hypoxia. In
a preclinical study, Maftei et al (2011a) found no correlation between the proportion of acute
hypoxia predicted by this model and that assessed in tumour microsections.

In this work, fluctuating O2 supply is linked to the resulting tissue O2 distribution with
high spatial resolution. To achieve this, a theoretical model of varying vascular PO2 has
been integrated in a simulation tool to predict the tissue oxygenation for a given 2D vascular
configuration. Moreover, with this tool the distribution and oxygen-dependent binding of
Fmiso can be simulated with high spatial and temporal resolution. Theoretical predictions are
a valuable tool for this application, because time-resolved measurements of microscopic O2

and tracer distributions are not yet technically feasible. A further objective is to investigate
the influence of acute hypoxia on Fmiso retention and the potential to distinguish between
retention from chronic and acute hypoxia in serial (or single dynamic) clinical PET scans.
This is an important issue for the correct interpretation of hypoxia PET data and its potential
use for an individualization of radiotherapy in terms of dose painting.

2. Methods and materials

2.1. Modelling and simulation of tissue oxygenation and Fmiso dynamics

Modelling and simulation of Fmiso diffusion and binding has been implemented in multiple
steps, as described in detail before (Mönnich et al 2011). Fundamental parameter values used
in this study have been adopted from this publication. The major steps of the simulation
process and their respective input and output are outlined in figure 1. Briefly, spatial oxygen
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Figure 1. Spatiotemporal Fmiso distributions are simulated in three steps. A steady-state oxygen
map is simulated on a histology-derived vessel map (step I). This serves as input for the calculation
of local PO2-dependent Fmiso binding rates (step II). These first-order reaction rates are the input
for the simulation of Fmiso dynamics (step III).

tension distributions are simulated on 2D vessel maps that are derived from images of the
vasculature in preclinical tumour tissue microsections. Details on histological procedures
have been published elsewhere (Bussink et al 2000, Rijken et al 2000). Tissue oxygenation
is modelled by a reaction–diffusion equation (Daşu et al 2003) using a Michaelis–Menten
relationship between tissue oxygen tension Pt and consumption rate M(Pt ):

∂Pt

∂t
= DO2 · ∇2Pt − M(Pt ),

with DO2 as the oxygen diffusion coefficient. A reduced cellular oxygen demand, when supply
is limited, is reproduced by M. In a consecutive step, local Fmiso binding rates K(Pt ) are
calculated as a function of local oxygen tensions, also considering the density of vital cells.
Finally, diffusion and binding of Fmiso in the extravascular space is simulated with high
spatial and temporal resolution. The underlying coupled diffusion–reaction model linking
concentrations of freely diffusing Cf and bound Cb tracer (Kelly and Brady 2006):

∂Cf

∂t
= DT · ∇2Cf − K(Pt ) · Cf

∂Cb

∂t
= K(Pt ) · Cf ,

where DT denotes the Fmiso diffusion coefficient.
As a consequence of acute hypoxia in tumour tissue, Fmiso binding rates can vary with

time. In contrast, the assumption of a stable Fmiso supply does not induce substantial errors
in the simulations, because the supply is limited by the tracer plasma concentration for the
first minutes after bolus injection only, i.e. before an equilibrium free tracer concentration has
been established in tissue.

2.2. Modelling fluctuating vascular oxygen tension

To simulate the influence of acute hypoxia on Fmiso retention, the calculation of steady-state
oxygen distributions (step I, figure 1) has been extended by an explicitly time-dependent blood
oxygen tension P = P(t). It was assumed that P fluctuates sinusoidally with an amplitude PA,
a period T and a phase φ around a mean value P̄ :

P(t) = P̄ + PA sin(2πt/T + φ). (1)

This is a simplification of a broad range of fluctuation types observed in preclinical tumour
models. Nonetheless, a number of published timelines clearly exhibit harmonic behaviour
(Cárdenas-Navia et al 2008, Brurberg et al 2004). The cellular oxygen consumption rate is a
function of supply, it is almost constant at high tissue oxygen levels and decreases if supply
is limited. Cells are not able to fully adapt metabolism to oxygen fluctuations above a certain
frequency. Thus, the continuous fluctuations described by equation (1) are discretized into
constant steps (figure 2(b)). In each consecutively numbered step, i a static tissue oxygen
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Figure 2. (a) In a subregion of the simulation map, oxygen levels fluctuate around 5 mmHg in
acutely hypoxic regions (red) while remaining below this threshold in chronically hypoxic regions
(green). Vessels are white. (b) Continuous periodical fluctuations of vascular PO2 with a period of
40 min (P(t), equation 1) are discretized into 2.5 min wide steps of constant PO2 (Pi, i = 1, ..., 16).
Red: steps including supply collapse. Dashed line: baseline PO2 level (chronic hypoxia). (c/d):
Resulting tissue oxygenations during step 4 (c) and 13 (d). In step 13, oxygen supply from the
highlighted group of vessels has stalled. Two subregions with vascular fractions distinct from the
total map are highlighted in (c).

distribution is calculated based on the corresponding discretized intravascular Pi. In this study,
a step width of 2.5 min and a fluctuation period of 40 min (cf section 2.3) translate to
i = 1, . . . , 16. It was further assumed that acute hypoxia does not interfere with cell viability.
In a separate scenario, total supply collapse within a manually selected group of vessels is
added to continuous fluctuations.

2.3. Simulation parameters

The choice of parameter values for the fluctuation model is based on preclinical timelines of
intravascular PO2 reported by Cárdenas-Navia et al (2008). Dominating fluctuations showed
periods in the order of tens of minutes. Total amplitudes as high as 10 mmHg were commonly
observed. In order to assess the potential magnitude of the effects from acute hypoxia, a
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total amplitude of 10 mmHg (PA = 5 mmHg) and a period T = 40 min was chosen
for the simulations. These values may vary among tumour types, sites and volumes. As a
consequence, an empirically unvalidated value T = 4 h was included in this study to estimate
an upper boundary of the effect that crucially depends on the fluctuation period. A mean
value of P̄ = 35 mmHg was used, so that a maximum plasma PO2 of PA + P̄ = 40 mmHg
during cycling yields the baseline chronic oxygenation. Reported fluctuations were not strictly
synchronous among vessels in a 6 mm2 region. However, in this study variations were assumed
to be temporally coordinated in a 4.2 × 4.2 mm2 vessel map, as small vascular networks are
probably cycling together (Dewhirst et al 2008). Transient flow collapse or plasma flow
(absence of RCF) affects 5%–17% of repeatedly the same vessels for short periods (Dewhirst
1998, Maftei et al 2011b). No data have been published yet on the frequency of supply collapse.
For simulation purposes, a region comprising 13% of the vascular space in the simulation map
was manually selected (figure 2(d)) in which supply collapse for 2.5 min with a frequency of
6 h−1 was modelled.

2.4. Data evaluation

The mean PO2 in the tissue region selected for this simulation was calculated for each
fluctuation step to determine the corresponding tissue hypoxia. Moreover, PO2 histograms
were generated for all steps to evaluate changes in PO2 statistics caused by acute hypoxia.
The proportion of Fmiso retention caused by acute hypoxia was calculated relative to the
reference uptake for a constant plasma PO2 of 40 mmHg. Furthermore, Fmiso time activity
curves (TACs) were generated by integrating tracer concentrations over the whole area of the
vessel map. The maximum difference between TACs for different underlying PO2 fluctuation
phases was determined for timepoints later than 2 h after tracer injection (p.i.). This allows us
to assess whether Fmiso PET imaging is sensitive to the PO2 fluctuation phase in which the
tracer bolus is injected, i.e. whether acute hypoxia can cause differential uptake in serial PET
scans as proposed by Nehmeh et al (2008). As hardware-specific properties of PET imaging
and 3D characteristics of the vascular bed are not included in the simulation of TACs, these are
not directly comparable to clinical voxel-wise PET TACs. Nonetheless, the simulated activity
distributions form a plausible microscopic ground truth for a real PET signal.

3. Results

3.1. Influence of fluctuating vascular PO2 on tissue oxygenation

Resulting oxygen distributions for two different fluctuation steps are shown in figure 2.
In figure 2(c), oxygen supply is low (step 4, P4 ≈ 31 mmHg). In this step, tissue
PO2 is considerably lower than that in the high supply step 13 depicted in figure 2(d)
(P13 ≈ 40 mmHg), even though step 13 includes supply collapse in the depicted region.
The mean tissue PO2 for the two distributions is 5.7 mmHg (S4) and 7.3 mmHg (S13),
respectively. A still larger mean tissue PO2 of 8.2 mmHg results from step 14, which does not
include supply collapse. Generally, the modelled fluctuations in plasma PO2 influence mean
tissue PO2 directly (figure 3(a)). The maximum observed variation between steps 5 and 14 is
3.4 mmHg (w/ collapse, dots, figure 3(a)) and 2.7 mmHg (w/o collapse, boxes). Figure 3(b)
shows a histogram of oxygen tensions for all steps during the 40 min fluctuation period.
Apparently, the population of states with oxygen tensions between 0 and 5 mmHg strongly
depends on the fluctuation step. In contrast, intermediately oxygenated states are influenced
to a much lower extent. The acutely hypoxic fraction (aHF) can be defined as the proportion
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Figure 3. (a) Mean tissue PO2 of the simulation map for each fluctuation step (cf figure 2(b)).
Boxes: w/o supply collapse. Dots: w/ collapse with a frequency of 6 h−1. (b) Histogram of
simulated tissue PO2 for fluctuation steps 1 to 16 (black to grey). Oxygenation states between 0
and 5 mmHg are primarily affected by acute hypoxia.

(a) (b)

Figure 4. (a) Simulated Fmiso TACs for a constant vascular PO2 of 40 mmHg (black) and for a
PO2 fluctuating with an amplitude of 5 mmHg around a mean value of 35 mmHg w/o (blue) and
w/ supply collapse (red) in selected vessels. Eight different fluctuation phases φ from 0 to 7π/4
were used in each set of curves to assess the variability of the curves depending on the timepoint
of tracer injection. In addition, a period of 4 h was simulated w/o collapse for φ = 0, π (green).
(b) Influence of acute hypoxia on the isolated bound tracer component.

of tissue area in which oxygen levels fluctuate across a 5 mmHg threshold (figure 2(a)).
In the presented example, the aHF amounts to 9% (w/ collapse) and 12% (w/o collapse).
Chronic hypoxia prevails, with 56% of the simulated tissue area invariably remaining below
the threshold.

3.2. Influence of acute hypoxia on Fmiso distributions

The influence of acute hypoxia on simulated Fmiso retention is depicted in figure 4. TACs
for the vessel map in figure 2 were simulated for three scenarios: stable supply with the
maximum vascular PO2 of 40 mmHg (baseline) and fluctuating supply with and without
collapse. Compared to baseline conditions, fluctuations alone affect tracer retention more
strongly than the additional phases of supply collapse. Isolated analysis of the bound Fmiso
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component (figure 4(b)) reveals that in the combined case a maximum of 13.0% of Fmiso
retention can be attributed to acute hypoxia. As a part of this, a fraction of 3.5% arises from
supply collapse. This fraction rises to 33% in an extreme scenario with supply collapse in
69% of the vessels. Relative to the total tracer concentration, which consists of tracer in
blood plasma, freely diffusing in tissue and bound in hypoxic regions, the influence is smaller.
Depending on the timepoint p.i. 4.1% (2 h), 5.4% (3 h) and 6.2% (4 h) of the total tracer
concentration results from acute hypoxia.

In order to investigate the reproducibility of Fmiso PET imaging, simulations with eight
different PO2 fluctuation phases were performed (variation of φ in equation 1 between 0 and
7π/4). Each single curve in figure 4 corresponds to the injection of Fmiso in a different phase
of the modelled harmonic PO2 fluctuations, comparable to a test/retest experiment in a clinical
setting. The maximum variability of the total Fmiso signal including supply collapse was 0.7%
(140 min p.i.), while at 4 h p.i. it was 0.3%. These values are specified relative to the mean at
each timepoint. The same analysis was carried out for subregions in the simulation map that
exhibit distinct vascular densities from the total map (figure 2(c)). The maximum variability
between TACs in a poorly and a well-vascularized subregion was 0.3% and 2.2%, respectively.
For hypothetical fluctuations with T = 4 h (w/o collapse), a maximum difference of 3.8%
for the total map was found, which may be still larger in subregions. Averaging over a 15 min
interval, which is representative for a typical late PET acquisition time, does not reduce the
given variabilities.

4. Discussion

Acute hypoxia is characterized by oxygen supply fluctuations that directly induce variations in
mean tissue PO2 and lead to considerable redistribution towards worse oxygenated states. All
cells experience cycling oxygenation, though in chronically hypoxic regions the absolute effect
is lower. This may increase the magnitude of hypoxia-related adverse effects on treatment of
human cancers and add temporal variability. The results of this simulation framework show
that chronic hypoxia prevails over acute hypoxia for the specific vessel map used, which agrees
with results from categorizing microvascular supply units in immunohistochemically stained
squamous cell carcinoma xenograft sections (Maftei et al 2011b). This particular vessel map
was chosen, because it comprises a well-balanced combination of subregions with distinct
vascular patterns, in contrast to most other available tissue sections of the same family.

In the presented example, additional Fmiso retention predominantly originates from
periodical fluctuations rather than supply collapse. Significant Fmiso retention arises from
both acute and chronic hypoxia. In the presented simulations, an acutely hypoxic fraction of
12% accounts for 13% of the total tracer retention, indicating that in special cases there may be
a direct match between the abundance of hypoxia types and the retention associated with each
type. This result strongly depends on the choice of the model, parameter values and vessel
map. Generally, acute hypoxia may result in an amount of Fmiso retention that is detectable
by PET. However, it is not evident that this component can be separated from the total signal
due to the inherent combination of both acutely and chronically hypoxic tissue areas in a PET
voxel. There are fundamental limitations to the potential to detect acute hypoxia by a single
dynamic PET examination. Rapid fluctuations will be obliterated by the inertia of cells to adapt
to alternating O2 supply and also cannot be sampled by slow PET imaging. Slow fluctuations
with periods much larger than the duration of the examination will induce equally slow uptake
changes that may also not be detectable by PET.

As Fmiso binding is approximately irreversible (Casciari et al 1995), the amount of
retained Fmiso is a surrogate of the integral hypoxia during the tracer uptake time. Thus, it
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is intelligible that acute hypoxia with periods smaller than the uptake time may not strongly
affect Fmiso PET reproducibility. Our results support this notion, as different timepoints of
tracer administration were simulated by varying the phase of the PO2 fluctuation. Resulting
variations in tissue Fmiso concentrations were smaller than 2.2% for fluctuation parameters
based on published values. A wide range of potential microvascular distributions in a PET
voxel was incorporated in the analysis by also considering subregions in the simulation map
with vascular patterns distinct from the total map. A variation of the observed magnitude may
not influence the interpretation of Fmiso PET, which is subject to much larger uncertainties,
such as statistical noise. Asynchronous (out of phase) plasma PO2 fluctuations among vessels
potentially further reduce this variability in (pre-)clinical tumours.

Only extremely slow fluctuations with periods in the order of the tracer uptake time
(∼4 h p.i.) might compromise reproducibility and thus render acute hypoxia observable by
PET imaging. For hypothetical fluctuations with T = 4 h a maximum signal difference of
3.8% was found, indicating a rising influence on Fmiso PET imaging compared to simulations
based on empirical parameter values. This ambiguity remains, as it is unknown if such slow
changes in tumour oxygenation occur periodically in (pre-)clinical tumours or if they are
dominated by irreversible structural remodelling that should be attributed to evolving chronic
hypoxia. This has to be clarified by future research to determine the precursor of differential
Fmiso uptake in serial clinical Fmiso PET scans observed by Nehmeh et al (2008).

Our results have a number of implications for the integration of Fmiso PET data into
radiotherapy treatment planning (RTP). First, the reproducibility of Fmiso retention in a
voxel seems largely unaffected by acute hypoxia originating from supply collapse and PO2

fluctuations with periods below 4 h and a total magnitude of 10 mmHg. This is a prerequisite
for consistent PET-based RTP, as this work suggests that there is no method to separate chronic
and acute hypoxia in Fmiso PET images for a broad range of microvascular beds and supply
fluctuation patterns. Moreover, it is a promising result that the composite PET signal shows
substantial uptake from both hypoxia types and therefore no type is generally neglected in RTP
using this data. Although, it might be necessary to find ways to assess both types separately,
if it holds true that they have different biological consequences. It has been suggested that
acute hypoxia may induce increased radioresistance and stimulate transfer of cells to a more
malignant phenotype, while chronically hypoxic cells have a limited survival time (Janssen
et al 2005, Bristow and Hill 2008).

5. Conclusion

A mathematical model of transport and oxygen-dependent binding of the hypoxia PET
tracer [18F]fluoromisonidazole (Fmiso) was extended in order to theoretically investigate the
interplay of acute and chronic hypoxia and its influence on Fmiso retention in histology-derived
microscopic tumour vessel maps. Simulations show that modelled fluctuations in vascular
oxygen content considerably reduce tissue oxygenation, still underlying chronic hypoxia
prevails. Acute effects cause an amount of Fmiso retention detectable by PET. However,
simulations with empirical fluctuation properties do not suggest a potential to distinguish
between uptake from chronic and acute effects in serial clinical PET scans.
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Abstract 
Purpose 

Tumor hypoxia is associated with poor outcome after radiotherapy. It can be assessed by positron 

emission tomography (PET) using the hypoxia tracer 
18

F-Fluoromisonidazole (FMISO). It was 

investigated, which aspects of the local tumor oxygenation are actually assessed using different 

FMISO-PET protocols. We hypothesize that two PET scans at different timepoints after tracer 

injection (p.i.) yield a measure for the mean oxygen partial pressure (PO2) in a voxel. 

Methods and Materials 

Microscopic tissue oxygenations and FMISO diffusion-retention dynamics were computationally 

simulated. Tumor vessel maps, derived from head-and-neck tumor xenograft histology, model the 

transport of molecules into and out of tissue. Different O2 and FMISO parameters were evaluated 

for 300 distinct 2×2 mm
2
 vessel configurations: O2 parameters were the vital hypoxic fraction (vHF) 

and the meanPO2. FMISO-PET parameters were the voxel signal four hours p.i. (F4h) and the ratio 

between F4h and signal 0—15 min p.i. (FH/P). Interpreting each vessel configuration as a PET voxel, 

correlations between O2 and FMISO parameters were evaluated. A receiver operating characteristic 

(ROC) analysis was performed, regarding the identification of voxels with meanPO2<2.5 mmHg 

using F4h or FH/P. It was also performed for critical microscopic PO2 values without averaging. 

Results 

In hypoxic tissue F4h is well correlated with vHF (R
2
=0.90), while its correlation with meanPO2 is 

low (R
2
=0.22). A high correlation was found between FH/P and meanPO2 (R

2
=0.99). The ROC 

analysis showed that hypoxic regions can be identified based on FH/P with a higher diagnostic 

accuracy (YI=sensitivity+specificity-1=0.94), than based on F4h alone (YI=0.68). Both FMISO 

parameters identify critical microscopic PO2 values with moderate effectiveness (YI=0.63 and 0.60, 

respectively). 

Conclusions 
Compared to a single late FMISO-PET scan alone, incorporating a second scan, acquired during the 

tracer wash-in phase, yields a more accurate measure for the mean voxel PO2. The single-scan alone 

appears suitable to estimate the vHF. 

 

1 Introduction 
Tumor hypoxia reduces the effectiveness of radiotherapy (RT). Clinical studies have shown that 

therapy response correlates with local tumor oxygen concentrations (PO2) measured with 

polarographic oxygen probes (1). A prognosis of RT outcome is also possible by non-invasive 

positron emission tomography (PET) imaging using hypoxia tracers such as 
18

F-Fluoromisonidazole 

(FMISO) and 
60/64

Cu-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) (2–4). These results 

prompted concepts to improve RT efficacy by adapting dose prescriptions to the local degree of 

hypoxia that was assessed using PET imaging (5). Reliable local prescriptions for a specific tumor 

might require more elaborate imaging protocols, compared to a simple overall prognosis of RT 

outcome (6). 

Hypoxia in tumor tissue is very heterogeneously distributed on the microscopic length-scale and 

often interspersed with necrotic regions. Moreover, FMISO is retained in vital cells only. Thus, the 

limited PET resolution restricts the detection of small hypoxic regions embedded in necrotic or 

normoxic tissue (7, 8). Consequently, any information about microscopic tissue properties inferred 

from hypoxia PET data, e.g. the oxygenation, is associated with uncertainties. This might explain 

reports of low to moderate correlations between direct PO2 measurements using invasive oxygen 

probes and hypoxia PET data in clinical (9, 10) as well as preclinical settings (11–13). 

The aim of this study was to investigate, which FMISO PET imaging protocol might deliver a 

reliable surrogate for the local loss of cell kill that is caused by hypoxia. This loss, frequently 

characterized by the oxygen enhancement ratio (OER), is closely linked to the PO2 in cells. Cell kill 

strongly decreases below PO2 values of 10 mmHg (14). Therefore, an FMISO PET imaging 

parameter that correlates with the local PO2 might also effectively identify radioresistance. 

Here, two different voxel-based FMISO parameters were considered, which can be obtained by one 



3 

or two PET scans at different timepoints after injection (p.i.). The correlation between these 

parameters and the underlying PO2 was analyzed for different histology-derived microvessel 

architectures. The analysis was based on computational simulations of (a) the static tissue 

oxygenation and subsequently (b) the full FMISO diffusion-retention dynamics (15).  

 

2 Methods and Materials 

2.1 Tissue microsections and tumor microvessel maps 
Vessel maps were derived from tumor tissue histology. As described earlier (16), frozen tissue 

sections from human SCCHN xenograft tumor lines were immunohistochemically (IHC) stained for 

endothelial structures with 9F1 (rat monoclonal to mouse endothelium). Subsequently, the sections 

were scanned using a digital image analysis system, resulting in gray-scale images of the 

fluorescent signal. In this study, five images of different tumors with a total area of 133 mm
2
 

converted into binary vessel maps. Tissue images were chosen from a large amount of data, so that 

vessel patterns varied strongly among the maps, ranging from very dense to sparse and 

inhomogeneous distributions. The maps were used to model the flow of O2 and FMISO molecules 

into and out of tissue. Within the maps, 300 sub-regions with dimensions of 2×2 mm
2
 were placed 

at random locations. In these sub-regions, the O2 and FMISO parameters were calculated from the 

simulated data. 

 

2.2 Modeling and simulation of O2 and FMISO 
A tool to perform computer simulations of the FMISO diffusion-retention dynamics in multiple 

steps was used in this study. Its basic working principle is schematically shown in fig. 1. The 

applied diffusion-reaction equations, simulation method and parameter values were described in 

detail earlier (15). Briefly, equilibrium oxygen partial pressure (PO2) distributions are calculated for 

a given vessel map. The applied model accounts for the supply of oxygen across capillary 

membranes, its distribution in tissue and its consumption by tumor cells. A Michaelis-Menten 

relationship describes the decreasing oxygen consumption with a decreasing amount of offered 

oxygen (17). Subsequently, the PO2 distributions are used to calculate local FMISO binding rates. 

Binding rates are modeled to increase with decreasing PO2, up to a sharp drop at very low PO2. This 

drop accounts for cell death under extreme oxygen and glucose deprivation. It also considers that 

FMISO is reduced in vital cells only. These assumptions agree qualitatively with pimonidazole IHC 

in xenografts of human squamous cell carcinomas of the head-and-neck (SCCHN) (18). Finally, 

applying the PO2-dependent local binding rates, FMISO supply, diffusion and retention are 

simulated in the same vessel map as the PO2. By integrating the simulated FMISO concentrations in 

a specific sub-region, pseudo-PET voxel signals can be derived at different timepoints (p.i.). 

Relating these signals to the blood tracer concentration yields tumor-to-blood (T:B) ratios. 
 

2.3 Simulated macroscopic O2 and FMISO parameters 
In each sub-region (a) the mean oxygen partial pressure (meanPO2) and (b) the vital hypoxic 

fraction (vHF) were calculated. The vHF was defined as the fraction of microscopic PO2 values 

(microPO2) that are smaller than 2.5 mmHg. The fraction of necrotic cells was mathematically 

excluded. Consequently, the vHF is low in largely necrotic regions, which typically show a very low 

meanPO2. In contrast, the HF, which is frequently assessed using oxygen probes, includes vital and 

necrotic tissue areas alike. 

The two simulated FMISO parameters calculated in each sub-region were: (a) the mean FMISO 

concentration four hours p.i., F4h=c(t=4h p.i.) and (b) the ratio between F4h and the mean 

concentration 0—15 min  p.i., FH/P=c(t=4h p.i.) / c(t)0-15min. The second parameter can be interpreted 

as a measure of hypoxia-related tracer retention that is normalized to a simple measure of perfusion 

(6). In this way, a largely necrotic region, which retains small amounts of FMISO, can nonetheless 

be correctly identified as hypoxic, as it is typically poorly perfused as well. 
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2.4 Correlations between oxygenation and FMISO PET 
Scatter plots of meanPO2 and vHF against F4h as well as FH/P were created. Further, a correlation 

analysis was performed. Coefficients of determination R² were calculated in a linear sense (Pearson 

coefficient) and from nonlinear fits. 

Binary hypoxia maps (meanPO2<2.5 mmHg) were created by applying different thresholds to both 

simulated FMISO parameters. In ROC curves, true positive rates (sensitivities) were plotted versus 

false positives rates (1-specificities). Along the curves the applied thresholds decrease. The area 

under the curves (AUC) and the Youden index (YI=sensitivity+specificity-1) were calculated as 

quality measures. Their values may range from 0.5 to 1 and 0 to 1 (futile to ideal), respectively. In a 

further step, the ROC analysis was also used to evaluate how well the hypoxia maps characterize 

the microPO2. In this case, each component of an FMISO hypoxia map represents a 60×60 matrix 

of underlying PO2 values. 

 

3 Results 

3.1 Simulated oxygenations 
Full simulations were performed for all vessel maps. An example for a simulated equilibrium PO2 

distribution and the corresponding static FMISO pattern four hours p.i. is shown in fig. 2. The 

median microPO2 value of all maps was 10.0 mmHg (0.0 mmHg–40.0 mmHg), calculated with a 

resolution comparable to that of polarographic probes (~50 m/pixel). Histograms of the microPO2 

within four selected sub-regions show distinct oxygenation patterns (fig. 3). 

 

The simulated sub-regional meanPO2 values ranged from 1.3 mmHg to 32.5 mmHg with a median 

of 11.0 mmHg. The median simulated vHF was 26% (0%–48%), while the median HF was 34% 

(0%–87%). In fig. 4 the simulated vHF and HF are plotted against meanPO2. For meanPO2 values 

above 17 mmHg vHF and HF overlap, which indicates that necrosis plays a minor role in this value 

range. However, for lower values vHF and HF differ greatly. In hypoxic regions with 

meanPO2<10 mmHg the relationship between vHF and meanPO2 appears ambiguous, while 

apparently there is a linear relation between HF and meanPO2. Due to this relation, the HF was 

abandoned in favor of the meanPO2 in the further analysis, as the latter is not based on an arbitrary 

threshold value. 

 

3.2 Correlations between oxygenation and FMISO PET 
In fig. 5a scatter plots of vHF and meanPO2 versus F4h are shown. Each point represents a data pair 

from a specific sub-region. A high overall linear correlation coefficient R² of 0.99 and 0.95 for vHF 

and meanPO2, respectively, was observed. These values reduce to 0.90 and 0.22, respectively, when 

the analysis is restricted to data pairs in the hypoxic range (i.e. meanPO2<10 mmHg and vHF>0.24). 

A high diagnostic accuracy is especially important in this range. Consequently, F4h is a reliable 

surrogate measure for the vHF, but it does not enable an accurate prediction of the meanPO2. 

 

Plots of vHF and meanPO2 against the second FMISO parameter, FH/P, are shown in fig. 5b. Both 

plots display a nonlinear relationship. By visual inspection the meanPO2 appears better defined than 

the vHF, markedly in the hypoxic range. This was corroborated by fitting a function of the form 

f(x)=p1/(p2+x)
p3

+p4 to the meanPO2 and vHF curves (fit coefficients pi). The resulting coefficients 

of determination R² for vHF and meanPO2 were 0.97 and 0.99 for the overall data, respectively and 

0.54 and 0.99 when the fit was restricted to the hypoxic range, respectively. This suggests that FH/P 

is a more accurate surrogate for the meanPO2 than F4h. 

 

3.3 ROC analysis 
The ROC analysis of the simulated diagnostic accuracies of the two FMISO parameters to identify 

hypoxia is shown in fig. 6. Clearly, regions with critical meanPO2 values are discriminated 

extremely well by FH/P (AUC=0.95, optimum YI=0.94), while F4h alone is much less reliable 

(AUC=0.88, YI=0.68). Note, that for very high thresholds applied to F4h the false positive rate is 
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higher than the true positive rate. The optimum threshold values were FH/P=1.61 and F4h=16.3 

kBq/ml (T:B=1.8). 

 

The ROC analysis of the feasibility to identify microscopic hypoxia (microPO2) resulted in AUC 

(optimum YI) coefficients of 0.88 (0.63) and 0.86 (0.60) for FH/P and F4h, respectively. These values 

are almost identical to those for identifying the macroscopic meanPO2 by F4h, though much lower 

than for evaluating meanPO2 by FH/P. Here, the optimum threshold values were FH/P=1.0 and 

F4h=15.5 kBq/ml (T:B=1.7). 

 

4 Discussion 
The results of this study outline the fundamental problems associated with imaging microscopic 

tumor hypoxia using PET, which is a macroscopic imaging modality. In addition to the partial 

volume effect, the ambiguous binding behavior of the FMISO molecule is problematic. That is, its 

low accumulation in well oxygenated as well as predominantly necrotic tissue. Necrosis is closely 

related to the progress of hypoxia (18). These intrinsic limitations might render static FMISO PET 

signals poor surrogates for meanPO2 and, as a consequence, also for the local radiosensitivity. The 

advantages of the employed simulation method, compared to experimental approaches using 

oxygen electrodes, are the very high spatial as well as temporal resolutions. Moreover, it is possible 

to quantitatively compare PO2 and FMISO distributions for identical vessel microstructures. 

The combined statistics of the PO2 distributions simulated here showed a median PO2 value of 

10.0 mmHg. In clinical SCCHN the median PO2, assessed in different institutions, ranged from 

5 mmHg to 18 mmHg (1). This makes it plausible that the manifold oxygenations in SCCHN were 

adequately represented by the simulations. Note, that this study is specific to SCCHN, as the 

employed histological material was limited to this entity. 

The high correlation between F4h and vHF indicates that the vHF in a voxel can be assessed by an 

FMISO PET scan 4 h p.i. A similar result was reported for the relationship between FAZA 

autoradiography and the vital hypoxic fraction evaluated using pimonidazole IHC (7). In contrast, 

the meanPO2 is not as easily accessible. A reliable evaluation of the meanPO2 requires adding 

information from a second PET scan during the tracer wash-in phase. This argument is supported by 

a small study reporting a correlation between kinetic analysis of dynamic FMISO PET data and 

local control in RT of head-and-neck cancer (6). The results of the ROC analysis correspond with 

the different degrees of correlation, i.e. the two-scan parameter being more accurate.  

Quantitative aspects of the presented results must be interpreted carefully. In a clinical setting, the 

diagnostic accuracies presumably are substantially lower than estimated here. There is a number of 

reasons for this. For instance, resolutions achievable in clinical PET are lower than the edge-length 

of 2 mm of the simulated sub-regions. Moreover, the full temporal and spatial heterogeneity of 

tumor tissue oxygenations might not be covered entirely by the histological data and the model used 

in the simulations. Also, simple averaging over sub-regions is not fully realistic, as real PET signals 

are convolved with a more complex point spread function. Furthermore, image noise was neglected 

in this study and simulations were performed in 2D.  

This study does not cover the development of hypoxia and FMISO PET signals after RT initiation. 

It was proposed that optimum timepoints for static imaging might lie weeks into the course of 

therapy (3, 19). A possible explanation is that reoxygenation occurs during RT. It is possible that the 

independent tracer wash-in signals make information about the reoxygenation potential of a tissue 

region available ahead of the start of therapy (20). 

Despite all limitations, the general tendency probably persists that two-scan FMISO PET imaging 

yields a more reliable surrogate for the mean PO2 than a single scan. The results of this study will be 

validated based on clinical data, comprising dynamic FMISO PET scans or the two static scans 

proposed here. In combination with the assessment of RT outcome data, an analysis of the locations 

of potential tumor recurrences would be ideal to evaluate the different parameters proposed here. An 

advantage of the two-scan method is its simple clinical implementation, compared to the more 

intricate kinetic analysis of dynamic data. Standard static scan routines can be used, followed by co-



6 

registration of the image volumes and a simple parameter evaluation. 

Another future line of research is to further investigate the hypothesis supported by this work, that 

low perfusion/necrosis and high perfusion/mild hypoxia can only be distinguished with multiple or 

dynamic FMISO PET scans. This can be performed by taking targeted biopsies from patients 

following FMISO PET scanning and evaluate necrosis and hypoxia. 

 

5 Conclusion 
In this study, tissue oxygenations and FMISO diffusion-retention dynamics were computationally 

simulated based on histology-derived tumor microvessel networks. The results indicate a potential 

advantage of using the independent information of two FMISO PET scans to accurately assess the 

local mean partial oxygen pressure (PO2) in head-and-neck tumors, compared to a single scan. The 

first scan covers the tracer wash-in phase, while the second scan is acquired following a tracer 

uptake phase of a few hours. This might be important to effectively adapt radiotherapy dose 

prescriptions according to the local degree of tumor hypoxia. 
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Figures 

 

 
Figure 1: Multi-step simulation of tissue oxygenation and FMISO dynamics. I. A steady-state 

oxygen map is simulated in a histology-derived vessel map. II. This serves as input for the 

calculation of local PO2-dependent FMISO binding rates. III. These rates are the input for the 

simulation of FMISO diffusion and retention. 

 
Figure 2: (a) Equilibrium PO2 distribution  for a 6.3×4.9 mm

2
 vessel map including two randomly 

placed 2×2 mm
2
 sub-regions (A, B). (b) Corresponding distribution of FMISO four hours p.i. Sub-

regional averaging yields F4h. Note the increasing retention with decreasing PO2 until it is 

diminished by necrosis. Vessels are white.  (c) Averaged early FMISO signal. (d) Ratio between the 

distributions shown in (b) and (c), yielding FH/P. The meanPO2 in sub-regions A and B is 1.7 mmHg 

and 4.3 mmHg, respectively. The single-scan FMISO signal F4h is lower in A (16.2 kBq/ml) than in 

B (17.7 kBq/ml), giving contradicting results. A consistent metric is given by the two-scan value 

FH/P, which is higher in A (1.82) than in B (1.35). 
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Figure 3: Histogram of the simulated microPO2 values in 2×2 mm

2
 sub-regions. Regions A 

and B are depicted in fig. 2, C and D are not shown. Respective meanPO2 values are 

marked on the top axis. 

 
Figure 4: Scatter plots of vHF and HF against meanPO2. Each point represents mean simulated data 

in a 2×2 mm
2
 sub-region. Necrosis does not induce a difference between vHF and HF for 

meanPO2>17 mmHg. For lower  values excluding the necrotic sub-population from the vHF causes 

large differences. In hypoxic areas (meanPO2<10 mmHg) the HF correlates well with the meanPO2, 

while there are large discrepancies between meanPO2 and vHF. 
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Figure 5: Scatter plots of vHF and meanPO2 against (a) F4h and (b) the two-scan parameter FH/P. 

Continuous lines are fits to the overall data, while dashed lines are fits restricted to hypoxic regions. 

Coefficients of determination R² for the restricted fits show that F4h is correlated to vHF. In contrast, 

meanPO2 is well correlated to FH/P only. 

 
Figure 6: Receiver operating characteristic of FH/P (green curves) and F4h (red curves) for the 

identification of hypoxia (PO2<2.5 mmHg). Solid and dashed lines refer to the identification of 

meanPO2 and microPO2, respectively. Cut off values applied to the FMISO parameters decrease 

along the curves from left to right. Optimum points, in terms of maximum Youden indices, are 

marked. Identification of critical meanPO2 is very sensitive and specific using FH/P (YI=0.94). Using 

F4h is less effective (YI=0.68). Both parameters are morderately accurate in identifying critical 

microPO2 values (YI=0.63 and 0.60). 
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Abstract Purpose: Combined PET/CT imaging has been proposed as an integral part of radio-
therapy treatment planning (TP). Contrast-enhanced CT (ceCT) images are frequently
acquired as part of the PET/CT examination to support target delineation. The aim of this dosi-
metric planning study was to investigate the error introduced by using a ceCT for intensity
modulated radiotherapy (IMRT) TP with Monte Carlo dose calculation for non-small cell lung
cancer (NSCLC).
Material and methods: Nine patients with NSCLC prior to chemo-RTwere included in this retro-
spective study. For each patient non-enhanced, low-dose CT (neCT), ceCT and [18F]-FDG-PET
emission data were acquired within a single examination. Manual contouring and TP were per-
formed on the ceCT. An additional set of independent target volumes was auto-segmented in
PET images. Dose distributions were recalculated on the neCT. Differences in dosimetric
parameters were evaluated.
Results: Dose differences in PTV and lungs were small for all patients. The maximum differ-
ence in all PTVs when using ceCT images for dose calculation was �2.1%, whereas the mean
difference was less than �1.7%. Maximum differences in the lungs ranged from �1.8% to
2.1% (mean: �0.1%). In four patients an underestimation of the maximum spinal cord dose
between 2% and 3.2% was observed, but treatment plans remained clinically acceptable.
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Conclusions: Monte Carlo based IMRT planning for NSCLC patients using ceCT allows for correct
dose calculation. A direct comparison to neCT-based treatment plans revealed only small dose
differences. Therefore, ceCT-based TP is clinically safe as long as the maximum acceptable
dose to organs at risk is not approached.
ª 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

Introduction

Combined PET/CT imaging enables the quasi-simultaneous
acquisition of PET and CT data within a single examination
without moving the patient off the bed in between scans
[1]. Over the past decade, whole-body PET/CT has become
a diagnostic modality-of-choice for the work-up of cancer
patients [2]. PET/CT is increasingly employed in radio-
chemotherapy treatment planning (TP) [3,4]. The use of
PET/CT in radiotherapy (RT) treatment planning is further
supported by adaptations to the hardware, the possible use
of a radiotherapy pallet for patient positioning and DICOM
connectivity to RT planning systems [5]. PET/CT examina-
tions performed in treatment position, including positioning
devices, can be directly used for tumor delineation based
on the available anatomical and metabolic information
[3,6,7]. Frequently, the separate acquisition of a planning
CT can be waived in favor of a single PET/CT acquisition [8].

Modern radiation dose calculation algorithms rely on CT-
derived tissue density information. It is generally accepted
that dose calculation for radiotherapy should be performed
on non-enhanced CT (neCT) images acquired without
intravenous (IV) contrast administration. However,
combined PET/CT imaging including contrast-enhanced CT
(ceCT) protocols has been shown to yield more accurate
information in several tumor entities than non-enhanced
PET/CT alone [9,10]. Further, contrast-enhanced PET/CT
facilitates clinical whole-body staging, therapy response
assessment as well as delineation of target volumes and
organs at risk (OARs) [11,12].

Modern CT contrast agents consist of iodine in a non-
ionic, complexed form, for instance iopromide in different
concentrations equivalent to 150e370 mg/mL ionic iodine
for IV application. Ramm et al. investigated the influence of
comparatively high atomic number contrast agents, such as
barium-sulfate [13]. Using phantom studies, the authors
found that accumulations of high-density CT contrast
agents with attenuation values of 500 HU, or less in volumes
of 5 cm diameter, or less lead to errors in the dose calcu-
lations of 1%e3%. Clinical patient studies reported a simi-
larly low bias in dose calculations from the presence of IV
CT contrast (300e370 mg/mL iodine) for NSCLC [14e16].
Also, some head-and-neck planning studies concluded that
there is no clinically relevant influence on calculated dose
[16e20]. Some of these studies relied on a single CT volume
only and densities within blood-vessels were virtually
altered to simulate the effect of IV contrast. Even in TP of
radiosurgery of cerebral arteriovenous malformations,
where CT attenuation differences within the target volume
were large, a significant effect was observed in selected
cases only [21].

The purpose of this study was to evaluate the effect of IV
CT contrast enhancement on TP with Monte Carlo (MC) dose
calculation in intensity modulated radiotherapy (IMRT) of
patients with non-small cell lung cancer (NSCLC). In contrast
to earlier studies where artificial CT densities were assigned
to single volumes, this investigation includes original neCT
and ceCT images with proven co-registration, as they were
acquired as part of the same PET/CT examination. In addi-
tion, the effect of IV contrast agents on dose calculation was
evaluated using state-of-the art MC dose calculation, which
was shown to yield accurate results for TP of NSCLC [22].

Material and methods

Patient data

Nine patients diagnosed with NSCLC prior to combined
radio-chemotherapy (RCT) were included in this retro-
spective planning study. Additional patient characteristics
are summarized in Table 1. All patients were examined
between 2003 and 2009 in the context of the randomized
multicenter ESPATUE (Essen-Paris-Tübingen) study. Each
patient recruited at the University Hospital Tübingen
received a pre-treatment [18F]-FDG-PET/CT examination
for staging purposes followed by a second PET/CT exam
between day 16 and day 21 of RCT. From the originally
available data (n Z 34), a subgroup of nine patients
meeting the following criteria was selected:

� Location of the main tumor mass confirmed in the
upper lobe of the lung, in order to reduce respiratory
motion artifacts.

� Availability of complete image volumes for neCT, ceCT
and PET emission acquisition.

� Visually verified spatial alignment of neCT and ceCT
image volumes using retrospective image co-

Table 1 Characteristics of patients selected for this study
(n Z 9).

Pat Age (y) Gender TNM stage PTVCT (mL) PTVPET (mL)

1 54 M T4N0M0 357 250
2 65 M T4N0M0 881 213
3 53 M T4N3M0 967 e

4 66 M T1bN0M0 268 130
5 56 M T2bN0M0 1002 267
6 63 M T4N2M0 978 329
7 52 M T4N0M0 994 581
8 57 M T3N0M0 584 173
9 54 F T2aN2M0 480 92

2 D. Mönnich et al.

+ MODEL
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registration. Here, neCT and ceCT image volumes were
aligned using automated linear and non-linear co-
registration based on mutual information algorithms
(Mirada XD3, Mirada Medical Ltd., UK). Following the
spatial co-registration, the image registration quality
was visually assessed and then the image volume
alignment of neCT and ceCT data was confirmed. If the
residual maximum average misregistration vector
provided by the software was less than the PET voxel
size (600 mm, 128 matrix size: 4.7 mm) then the CT
image volumes were considered accurately aligned for
the purpose of CT-based attenuation correction and
dose planning. Note, the spatial resolution of the CT
and PET emission data must be the same.

Patient protocol

Patients fasted for 6 h prior to the injection of [18F]-FDG.
Patients were then injected with a median [18F]-FDG dose
of 441 MBq. During the median uptake phase of 62 min
patients rested in a reclined position in a dimly lit room. A
negative oral CT contrast was administered during the
uptake phase [23]. Patients were positioned head first
supine on a vacuum cushion and an RT table top with their
arms raised and supported above the head. PET/CT imaging
was performed on a Biograph HiRez 16 PET/CT (Siemens
Healthcare, Germany).

The imaging sequence was as follows: topogram scan,
low-dose non-enhanced CT (neCT), arterial-phase contrast-
enhanced CT (ceCT) following 100 mL of 370 mg/mL iodine-
equivalent non-ionic intravenous iodinated contrast agent
(Ultravist 370, Bayer-Schering, Germany) and a multi-bed
emission scan of 3 min/bed. More details are given in [24].
Emission and CT imaging with and without IV contrast was
performed during tidal breathing and in mid-expiration,
respectively [25]. PET image reconstruction was per-
formed using a 2D OSEM algorithm with 2 iterations, 8
subsets and a matrix size of 128 � 128. PET attenuation
correction was performed based on the neCT images with
a well-established algorithm described elsewhere [26].

Treatment planning and target volumes

For this retrospective study PET/CT image data from the
pre-treatment examination were used. Target volumes (TV)
and OARs were delineated manually on the ceCT using the
treatment planning system Oncentra MasterPlan (Nucle-
tron, The Netherlands). A clinical target volume (CTVCT)
including the primary tumor and involved lymph nodes was
created by an experienced RT specialist in accordance with

the guidelines of the International Commission on Radiation
Units & Measurements (ICRU) Report 62 [27]. A second
clinical target volume (CTVPET) was automatically
segmented in the PET images using a fixed threshold at 42%
of the maximum standardized uptake value [28] (Siemens
TrueD, Siemens Healthcare). Both volumes were uniformly
expanded by a 1.5 cm safety margin to obtain planning
target volumes (PTVCT and PTVPET, Fig. 1) that were subject
to a dose prescription of 60 Gy in 30 fractions. OARs
considered for NSCLC IMRT planning were heart, total lung,
and spinal cord.

IMRT TP was performed on the ceCT with the Hyperion
planning system using a dedicated MC dose engine [22,29].
The voxel size for the dose calculation and estimated MC
accuracy was set to 3 mm and 2%, respectively. Six to ten
coplanar 6 MV beams were applied. The primary objective
was to enclose the PTV within the 95% isodose line as long
as normal tissue constraints were met and to achieve high
target dose uniformity. Doses higher than 105% of the
prescribed dose were not allowed.

In a second step, the created treatment plans were
recalculated based on tissue densities in the neCT (Fig. 1).
Here, accurate alignment of neCT and ceCT image volumes
was assumed, since the patients eligible for this study were
shown not to have moved in between the CT examinations.
Previously, it was reported that dose errors induced by
differences in attenuation values between low- and full-
dose CTs are below 2% [30]. Thus, it is legitimate to use
doses calculated on non-enhanced low-dose CTs as
references.

Data analysis

Relative dose differences in the PTV, the spinal cord and
healthy lung tissue (total lung e PTV) were calculated as

DDZðDceCT �DneCTÞ=DceCT � 100 ð1Þ

where DD is the relative dose difference in % and D is the
respective dosimetric parameter. This definition differs in
sign compared to results in [15]. Relative differences were
calculated for mean and maximum dose. Maximum dose
differences of more than 3% were considered to be clini-
cally relevant. Additionally, differences in the fractional
volume of healthy lung tissue receiving more than 20 Gy
(V20) and the minimum dose within 95% of the PTV (D95)
were evaluated. PTVPET plans were assessed independently
using the same method.

Figure 1 Flow chart for the presented study. First, two target volumes were segmented independently on the contrast-enhanced
CT (ceCT) and [18F]-FDG-PET. Then, two independent planning target volumes were generated based on these volumes: PTVCT and
PTVPET, respectively. This was followed by ceCT-based treatment plan (TP) optimization and dose recalculation on the corre-
sponding non-enhanced low-dose CT (neCT). Finally, the resulting differences in dosimetric parameters were evaluated.
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Results

A direct comparison of the CT attenuation values in ne- and
ceCT images demonstrated that IV contrast leads to an
increased fraction of higher attenuating tissue voxels in
relevant sub-volumes (Fig. 2). Contrast administration
leads to an increased number of voxel values between
150 HU and 300 HU in the ceCT.

Manually delineated PTVs had a mean size of 723 mL
(range: 268 mLe1002 mL), and were generally larger than
those segmented from PET images with a mean volume of
254 mL (range: 92 mLe581 mL) (Table 1).

An acceptable dose coverage complying with normal
tissue constraints was achieved in all treatment plans with
one exception where the full dose was applicable to the
manually delineated CTV only (patient 10). The resulting
median mean dose was 59.3 Gy (range: 55.2 Gye60.9 Gy)
for PTVCT plans and 59.8 Gy (59.2 Gye60.7 Gy) for PTVPET

plans. Dose parameters for all plans created on the neCT
images are shown in Table 2.

Table 3 shows the relative dose differences DD between
neCT and ceCT for PTVs as well as OARs. Relative dose
differences in the target volumes were below 2% in almost
all cases. For patient 9, differences in the maximum dose
and D95 for the PTV were �2.1% and �2.2%, respectively,
which reflects a noncritical overdosage in the original plan.
In contrast, a positive difference of 2.6% in D95 in the PET-
PTV plan for the same patient reveals a moderate
underdosage.

For the mean PTV dose mainly negative differences were
found with a median value for PTVCT and PTVPET of �0.9%,
and �0.3%, respectively. This indicates a small systematic
underestimation of the applied dose caused by the usage of
the ceCT as a basis for dose calculation. Dose differences in
the lung were below 2% with the exception in patient 9,
where V20 and mean dose were underestimated by �3.6%

and �2.4%, respectively. Differences in mean spinal cord
doses were below 2% for all plans with median values of
�1.2% (PTVCT) and �1.5% (PTVPET). Maximum spinal cord
doses were underestimated in all but one case. In some
plans the underestimation was larger than 2% with
a maximum of �3.2% in the PTVPET plan of patient 5.
Nevertheless, no critical overdosages were observed in this
particular case, considering that absolute maximum doses
remained below 45 Gy.

Figure 3 shows IMRT treatment plans on neCT and ceCT
images for patients 9 and 5. Examples of the resulting
dose distributions are depicted for selected axial image
planes. In patient 9, differences between the original and
the recalculated dose distribution (Fig. 3a, b) can be
identified in a region where the PTVCT overlaps with large
arteries containing contrast agent. The shape of the 95%
isodose line is different and a small overdosed region
(>63 Gy) appears in the recalculated plan. In another
patient (patient 5, Fig. 3d, e) the isodose lines of both
dose distributions are virtually identical. Voxel-based
relative dose differences reveal some mismatch artifacts
close to the body surface and also local differences
smaller than �6% and larger than 6% in low-dose regions
(Fig. 3c, f). Figure 4 shows the corresponding dose volume
histograms (DVH) for patients 9 and 5. Here, the effect of
ceCT-based TP, which is a slight underestimation in terms
of dose in the contrast-enhanced target regions, is clearly
visible.

Discussion

The uniqueness of the presented study is given by (a) the
availability of pairs of original NSCLC CT image data
acquired with and without IV contrast in one single exam-
ination and (b) by the use of an MC dose calculation to
investigate the effect of ceCT on RT TP. As neCT and ceCT
were acquired during the same examination and in the
same breathing phase, accurate co-registration of the
corresponding image data sets could be validated retro-
spectively. As a result, identical regions of interest could be
used for ne- and ceCT-based TP. Furthermore, the type of
dose calculation used to study this effect is of major

Figure 2 Histogram of Hounsfield units in the non-enhanced
(neCT) and contrast-enhanced (ceCT) CT volume covering the
co-axial range of the target volume (patient 5). Note the
increased number of voxels with higher attenuation values in
the range of 150e300 HU after intravenous contrast adminis-
tration (ceCT).

Table 2 Characteristics of treatment plans created on
non-enhanced CT volumes for the patient group of this
study.

Dosimetric parameter median
(range)

PTVCT PTVPET

Mean dose PTV (Gy) 59.3 (55.2e60.9) 59.8 (59.2e60.7)
Max dose PTV (Gy) 65.4 (64.3e67.0) 64.7 (62.7e65.9)
D95 (Gy) 56.3 (47.5e58.2) 56.6 (55.9e57.8)
Mean dose lungs (Gy) 19.8 (9.5e23.7) 10.8 (7.1e16.9)
Max dose lungs (Gy) 64.2 (63.3e66.8) 63.7 (62.7e65.9)
V20 (%) 25.9 (13.7e34.3) 16.3 (6.3e25.4)
Mean dose spinal
cord (Gy)

12.3 (7.3e18.2) 6.9 (5.5e11.9)

Max dose spinal
cord (Gy)

36.2 (21.7e40.6) 25.6 (17.1e46.5)
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importance. It is known, that current analytical dose
calculation algorithms introduce errors of up to 5%, espe-
cially in the case of high density materials and high density
gradients, i.e. tissue-bone and tissue-air interfaces [31,32].
It is not safe to assume that results obtained with such
algorithms are as well applicable to more accurate MC dose
calculation.

We were able to demonstrate that dose calculation based
on ceCT images is possible and results in acceptable treat-
ment plans. Errors introduced byusing CT images following IV
contrast enhancement were clinically negligible in all
patients. In most cases the applied dose in targets as well as
OARs was underestimated. Underdosage effects were
regional and resulted either from the attenuation of beams
by enhanced structures shadowing a volume-of-interest, or
from the direct effect of less dose being deposited in
enhanced structures compared to non-enhanced CT TP.

The magnitude of dose differences in PTVs and healthy
lung tissue were much smaller than errors anticipated from
tumor motion during irradiation (Table 3). Specifically, the
dose simulation underestimates target doses, which may
translate into excess radiation doses. This increase may,
however, be acceptable in NSCLC if it is below 110%. This
result agrees with other studies investigating the influence
of intravenous contrast on IMRT planning of NSCLC [14,15].

Dose differences in the lung, though much larger than
reported by Xiao et al. [15], were clinically irrelevant
(Table 3). Deviations from the results reported by Xiao
et al. [15] may be due to the fact that in their study
a convolution/superposition algorithm was used for dose
calculation. Good agreement with the results of Shi et al.
[14] was found in the patient group averages of differences
in V20 and mean lung dose. Generally, it is difficult to
compare the presented patient specific values with other
studies, because most of them reported group averages
only, thus obliterating extreme differences from the
results.

Relevant differences were found in the maximum spinal
cord dose, which varied by up to 3.2% on a single patient
basis. These patient based differences are considerably
larger than the cohort averages of 0.4% as reported by Shi
et al. using single CTs and density override [14]. In the
spinal cord, errors of the observed magnitude might be
relevant in cases with high local dose burdens approaching
45 Gy. In these cases it may be feasible to adjust tissue
densities following the delineation of contrast-enhanced
regions.

A careful clinical interpretation of the dosimetric
differences in patients of this pilot study is required. First,
the minor differences can be explained by the use of an MC
dose engine and two independent CT image volumes (neCT
and ceCT). The observed dose differences may be caused
also by effects of respiratory motion, which may lead to
sub-cm, or even sub-mm alignment accuracies of the
lesions on neCT and ceCT. Here, the neCT and ceCT image
volumes were acquired sequentially in mid-expiration
breath-hold [24,25], which improves spatial co-
registration of complementary image volumes [33].

In addition to the small group size of this study, it should
be mentioned that a potential influence of dose calculation
errors on the convergence of the TP software to the
optimum treatment plan was not investigated in this study.
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Conclusions

Our data support the notion of using contrast-enhanced CT
as part of combined PET/CT imaging for radiotherapy
treatment planning in NSCLC without the need to acquire
a separate, low-dose CT. MC dose calculation based on
ceCT images was shown to yield correct treatment plans in
terms of relative errors in dose compared to neCT-based

planning. Care must be taken in cases with perceived high
doses to OARs, where critical overdosages might result
when TP is performed on a contrast-enhanced CT.
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Figure 4 Dose volume histograms of patient 9 (a) and 5 (b) in the PTV (black), the lungs (red) and the spinal cord (blue).
Continuous lines represent treatment plans created on the ceCT and dashed lines those recalculated on the neCT. Dose differences
are most obvious within the PTVCT of patient 9. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Figure 3 Selected axial image planes from the PTVCT plan of patient 9 (aec) and the PTVPET plan of patient 5 (def). Isolines of
the dose distributions as planned on ceCT are depicted in a and d, respectively. Isolines of dose distributions recalculated using the
neCT are illustrated in b and e. Corresponding voxel-based relative dose differences are shown in c and f.
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