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Deutsche Zusammenfassung

Der Ricci Fluss ist ein parabolisches System nichtlinearer partieller Differ-
entialgleichungen zweiter Ordnung für die Riemannsche Metrik g auf einer
Mannigfaltigkeit, welches durch die Gleichung

d

dt
g = −2Ric(g)

gegeben ist. Mit Hilfe des Ricci Flusses wurden in den vergangenen Jahren
große Fortschritte erziehlt. Beispielsweise ist es G. Perelman im Jahre 2003
mit Methoden des Ricci Flusses gelungen, die berühmte Poincaré Vermu-
tung zu lösen (siehe [20], [21] and [22]). Sie besagt, dass eine einfach zusam-
menhängende, geschlossene, dreidimensionale Mannigfaltigkeit homöomorph
zur dreidimensionalen Standardsphäre ist. Des Weiteren nutzten S. Bren-
dle und R. Schoen im Jahr 2009 den Ricci Fluss, um den Differenzierbaren
Sphärensatz zu beweisen [6]. Der diffenenzierbare Sphärensatz sagt aus, dass
jede einfach zusammenhängende, geschlossene n-dimensionale Riemannsche
Mannigfaltigkeit, deren Schnittkrümmungen im Intervall (1/4, 1] liegen, dif-
feomorph zur Standard n-Sphäre ist. Daneben zeigten C. Böhm und B.
Wilking 2008, dass jede geschlossene Riemannsche Mannigfaltigkeit mit 2-
positivem Krümmungsoperator diffeomrorph zu einer sphärischen Raum-
form ist [5] und verallgemeinerten damit Hamiltons Resultat aus dem Jahre
1986: Jede geschlossene vierdimensionale Riemannsche Mannigfaltigkeit mit
positivem Krümmungsoperator ist sphärisch [11].
Die Beweise der oben genannten Resultate basieren zu großen Teilen auf der
geschickten Anwendung der Tensor Maximum Prinzipien Richard S. Hamil-
tons auf die Evolutionsgleichung

d

dt
R = ∆R+ Φ(R)

des Krümmungsoperators unter dem Ricci Fluss (siehe [11]). Hierbei ist Φ ein
vertikales Vektorfeld auf dem Bündel der algebraischen Krümmungsopera-
toren. Es ist gegeben durch

Φ(R) = 2(R2 +R#R)

und wird im Folgenden als das Ricci Vektorfeld bezeichnet. Seine Unter-
suchung ist eines der Hauptanliegen dieses Textes. Denn: Hamiltons Tensor
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Maximum Prinzip erlaubt, aus dem Verhalten der Lösungen der gewöhnlichen
Differentialgleichung

d

dt
R = Φ(R)

Rückschlüsse auf das Verhalten der Lösungen der partiellen Differentialglei-
chung

d

dt
R = ∆R+ Φ(R)

zu ziehen.
Neben einer systematischen, breit angelegten Einführung in das Gebiet der
algebraischen Krümmungsoperatoren auf Euklidischen Vektorräumen und
des #-Produkts (gelesen: ”Sharp Produkt“), bietet diese Arbeit zahlreiche
neue algebraische Einzelergebnisse, die im Zusammenhang mit der Unter-
suchung des Ricci Flusses auf Mannigfaltigkeiten stehen. Unter anderem
wären hier eine tiefe strukturelle Beziehung zwischen Lie Unteralgebren
der so(n) zu nennen (siehe 2.3.0.23) sowie eine scharfe Abschätzung der
Eigenwerte von R#R durch bestimmte Produkte von Eigenwerten eines
KrümmungsoperatorsR (vergleiche 2.7.0.28). Außerdem ein Beweis der Tat-
sache, dass die Böhm-Wilking Identität

id#R = Ric(R) ∧ id−R

für einen selbstadjungierten Endomorphismus von
∧2 V nicht nur ein notwen-

diges Kriterium dafür ist, ein algebraischer Krümmungsoperator zu sein,
wie C. Böhm und B. Wilking in [5] zeigten, sondern auch ein hinreichen-
des (siehe 3.2.3.4, 3.2.3.5, 3.2.3.6 und 3.2.3.7). Ferner, ein rein algebraischer
Beweis der bereits bekannten Tatsache, dass das Ricci Vektorfeld tangential
zum Raum der algebraischen Krümmungsoperatoren ist (3.3.1.1), rein alge-
braische Berechnungen und weitergehende Betrachtungen der (irreduziblen)
invarianten Komponenten entlang des Ricci Vektorfeldes (siehe 3.3.2.11),
welche unter bestimmten Voraussetzungen Rückschlüsse auf geometrische
bzw. algebraische Besonderheiten der zugrundeliegenden Krümmungsopera-
toren erlauben (3.3.1.3 bzw. Abschnitt 3.3.2).
Abschließend beschäftigen wir uns in Kapitel 4 mit der Dynamik des Ricci
Vektorfeldes auf dem Raum der algebraischen Krümmungsoperatoren. Dabei
erweist es sich gelegentlich als vorteilhaft, anstelle des Ricci Vektorfeldes
dessen sphärischen Tangentialanteil Φ zu betrachten und die radiale Flucht-
geschwindigkeit ν(R) = τ(R)/ ‖R‖2 ·R, τ(R) = 〈Φ(R),R〉, zunächst zu ver-
nachlässigen. Unsere Überlegungen führen unter Anderem zu der folgenden
Erkenntnis über Gleichgewichtslagen des normalisierten Ricci-Vektorfeldes:
Ist R ein stationärer Punkt von Φ, und spaltet R geometrisch als Produkt
der von Null verschiedenen Krümmungsoperatoren S und T , so gilt

τ(S)

‖S‖2
=
τ(T )

‖T ‖2
=
τ(R)

‖R‖2
.
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Introduction

If a smooth family of Riemannian metrics g(t)t∈[0,T ), T > 0, on a manifold
M solves the Ricci flow equation

d

dt
g(t) = −2Ric(g(t)),

then the whole set of related geometric quantities is changing as well. As the
curvature operator carries the full information of the underlying geometry, it
is convenient first looking at the evolution of the curvature operators R(t) :∧2 TM →

∧2 TM before looking at other quantities like Ricci or scalar
curvature. As R.S. Hamilton showed in [11], we have that the curvature
operator evolves like

d

dt
R = ∆R+ Φ(R),

where ∆ = ∆(g(t)) is the time dependent spatial Laplacian and Φ =
Φ(g(t)) is a time-dependent vertical vector field on the space of linear bun-
dle endomorphisms End(

∧2 TM) of
∧2 TM . Φ is given by Φ(R) = 2(R2 +

R#R), where # is the sharp product depending on the metric g(t), and will
be called the Ricci vector field.
The differential equation d

dtR = ∆R + Φ(R) is a parabolic partial differ-

ential equation for sections of End(
∧2 TM) and, hoping to understand the

dynamics of the Ricci flow, we are lucky to have Hamilton’s tensor maxi-
mum principle (proved in [11], and described in the appendix B.8) to our
disposal, which states that each closed C0−subbundle C ⊆ E, which is fiber-
wise convex and parallel in spatial direction, is preserved by the flow of the
PDE, if it is preserved by the flow of the vector field Φ. We are lucky, since
this allows us to control the solutions of a parabolic PDE for sections of a
Euclidean vector bundle by controlling the fiberwise ODEs, which arise if
we drop the Laplace term.
Almost every application of the Ricci flow is also based on an elegant use of
Hamilton’s tensor maximum principle.
For example, after having invented the Ricci flow in 1982 and proving that
every compact three-manifold with positive Ricci curvature is spherical [10],
i.e. a manifold which is diffeomorphic to a spherical spaceform (and by the
way, one of the main tools in the proof were the scalar parabolic maximum
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principles), Hamilton proved in 1986, that every compact 4-manifold with
positive curvature operator is also spherical [11] using his tensor maximum
principle. Moreover, in 1993 Hamilton found a Harnack inequality for the
Ricci flow [12] and proved it using his tensor maximum principle. Later, in
1999, he classified all the non-singular solutions of the Ricci flow in dimen-
sion 3 [15]. There, he uses the Hamilton-Ivey Long-time pinching estimate,
which is a direct application of the tensor maximum principle. After that,
in 2003, Perelman proved the Thurston geometrization conjecture, which
includes the proof of the famous Poincaré-conjecture (compare [20], [21] and
[22]). Clearly, this is not only a simple application of the maximum princi-
ple, but it is involved. Then, in 2006, C. Böhm and B. Wilking generalized
Hamilton’s theorem from 1982 to higher dimensions. They showed that ev-
ery n-dimensional Riemannian manifold with 2-positive curvature operator
is spherical [5] and again, Hamilton’s tensor maximum principle plays a cen-
tral structural role in the proof. This method of proving didn’t stop until
2007, where S. Brendle and R. Schoen proved the differential sphere theorem,
which states that every simply connected 1

4−pinched Riemannian manifold
is diffeomorphic to the standard sphere [6]. All in all, we can say that the
study of the Ricci vector field is essential in the study of the Ricci flow.

In this work we provide a detailed and systematic introduction to the
field of algebraic curvature operators on Euclidean vector spaces, the #-
product and the Ricci vector field Φ. The main results are the following:

In chapter 2 we present a new relation between the Killing form κ of
a subalgebra h of

∧2 V ∼= so(V ) with the #-product and the orthogonal
projection π onto h. More precisely, our considerations show

κ(ε, δ) = −2 〈π#π(ε), δ〉

for all ε, δ ∈
∧2 V (see corollary 2.3.0.23). Hence, we have found a structural

relation between the #-product and Lie subalgebras of
∧2 V .

At the end of chapter 2 we present a sharp estimate of the eigenvalues
of R#R in terms of the eigenvalues λ1 ≤ λ2 ≤ ... ≤ λN of a self-adjoint
endomorphism R of

∧2 V . We show that the eigenvalues of R#R lie in the
interval [

(n− 2) min
i<j

λiλj , (n− 2) max
i<j

λiλj

]
,

where n is the dimension of V and N = dim
∧2 V =

(
n
2

)
(compare theorem

2.7.0.28).

Chapter 3 offers some more insights then the other chapters. In [5], C.
Böhm and B. Wilking showed that every algebraic curvature operator R
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satisfies the Böhm-Wilking identity

id#R = Ric(R) ∧ id−R.

Encouraged by this result, we found out that the opposite direction is also
true: A self-adjoint linear map R :

∧2 V →
∧2 V , V a Euclidean vector

space, is an algebraic curvature operator, if it satisfies the Böhm-Wilking
identity (see theorem 3.2.3.4, proposition 3.2.3.5, theorem 3.2.3.6 and theo-
rem 3.2.3.7).
Moreover, we show that a self-adjoint endomorphism R of

∧2 V is an al-
gebraic curvature operator if and only if it is the sum of wedge-product of
certain skew-adjoint linear maps (compare theorem 3.2.3.1). We use this re-
sult to show that every algebraic curvature operator R with range equal to
1, is a multiple of orthogonal projection π onto a subspace of the form

∧2 U ,
where U ⊆ V is a two dimensional subspace. Thus, there are subalgebras of∧2 V , which do not come from holonomy groups of Riemannian manifolds.
In section 3.3, when it comes to the Ricci vector field, we give a purely al-
gebraic proof of the well known fact (compare [11]), that the Ricci vector
field is tangent to the space of algebraic curvature operators (see theorem
3.3.1.1 for the algebraic proof). Also, only using algebraic data, we show in
theorem 3.3.1.3 that the Ricci curvature and the scalar curvature of Φ(R)
of an algebraic curvature operator R are given by

Ric(Φ(R))(x) = 2
∑

i

Rρ(x, ei)Ric(R)(ei),

for all x ∈ V , where {ei} is an arbitrary orthonormal basis of V , and

scal(R) = 2tr(Φ(R)) = 2 ‖Ric(R)‖2 .

(These formulas are due to R.S. Hamilton [10].)
This means that we obtain the evolution of the Ricci curvature and the

scalar curvature, and therefore also the evolution of the Weyl curvature, un-
der the flow of Φ on the space of algebraic curvature operators, by dropping
the Laplace terms of the corresponding original evolution equations under
the Ricci flow which have been published by R. S. Hamilton in [10]. Recall,
that we have

d

dt
Ric = ∆Ric +

∑
i

R(x, ei)Ric(R)(ei),

and
d

dt
scal = ∆scal + 2 ‖Ric‖2

under the Ricci flow. This is due to the fact that the Ricci vector field on
the bundle LC of algebraic curvature operators over a Riemannian manifold
M is parallel, as we show in the text (see remark 3.3.1.2).
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The formula tr(Φ(R)) = ‖Ric(R)‖2 can be used to prove very quickly that
Ricci flat symmetric spaces are flat, as we do it in corollary 3.4.0.22.
Further, this equation allows us to make a first observation concerning the
equilibrium positions of the Ricci vector field: they are all Ricci flat.
After that we examine the irreducible components of Φ(R), express them in
terms of the irreducible components of R and discuss some situations, where
some components of Φ(R) vanish. We will see that is sometimes possible to
regain geometric or algebraic knowledge about R from this. For example,
assuming that R is an algebraic curvature operator of traceless Ricci type,
we found out that Ric0(Φ(R)) = 0 implies R = 0. Also, we have established
theorem 3.3.2.4: If Ric0(Φ(R)) vanishes, then R = 0 if the dimension n of
the underlying vector space is odd, and, if the dimension is even, n = 2m,
say, then R is a multiple of the curvature operator of Sm×Hm. Further, we
have theorem 3.3.2.10, saying that if the Weyl curvature of Φ(R) vanishes,
then R is of the form R = F ∧ id, where F is the tracefree part of a multiple
of an orthogonal projection onto a one-dimensional subspace of V .

The Ricci flow preserves products. Does the flow of the Ricci vector field
preserve products as well? And what is meant with the term “product of
algebraic curvature operators”? As each algebraic curvature operator comes
with a canonical geometric realization as the curvature operator of a Rie-
mannian manifold, this question is easy to answer. Geometric products of
algebraic curvature operators are direct sums R1 + ... + Rr of algebraic
curvature operators Ri on Euclidean vector spaces Vi. There is a slightly
finer version of algebraic product curvature operators, using the holonomy
algebra hR of algebraic curvature operators. hR is by definition the smallest
Lie subalgebra of

∧2 V containing the image of R. We say that an algebra-
ic curvature operator R is an algebraic product of the algebraic curvature
operators S and T , if hS and hT form R-invariant ideals in hR and if the
holonomy algebra of R splits orthogonally as the direct sum of the holonomy
algebras of S and T ,

hR = hS ⊕ hT .

The flow of Φ preserves both, algebraic and geometric products of algebraic
curvature operators, as we show in theorem 4.1.0.3. In order to understand
the dynamics of the Ricci vector field, we can now restrict ourselves to the
study of the flow on algebraically (or geometrically) irreducible curvature
operators. The main result of chapter 4, theorem 4.4.0.17, states that if a
fixed point R of Φ decomposes algebraically (or geometrically) as a product
of algebraic curvature operators R1,..., Rr, then each factor Ri is also a
fixed point and we have the identity

τ(Ri)
‖Ri‖2

=
τ(R)

‖R‖2

for all i.
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To deal with the “algebraic aspects of the Ricci flow”, in particular with
the Ricci vector field, it is most comfortable viewing Riemannian curvature
operators as certain self-adjoint endomorphisms of

∧2 TM. As this approach
to the subject is fairly unusual and because we wanted this work to be as
self-contained as possible, we have decided to start from zero and develop
the theory of algebraic curvature operators as far as we need it, and maybe
a little more than this, from our perspective.
A sharp look at the table of contents leads to a good picture of what we are
doing here.

For reasons of self-containedness again, we have decided to write an ap-
pendix, where we present the material, which is needed to follow the text.
This includes one part on multilinear algebra and the very basic theory of
linear representations, and second part, which is concerned with Riemannian
geometry. A third is concerned with the very basic aspects of Ricci flow, for
example, we present the evolution equations of several curvature quantities.
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Kapitel 1

The Lie Algebra of Bivectors

In this section we will show how the exterior power
∧2 V of a given n-

dimensional Euclidean vector space V can be given the structure of a certain
Lie Algebra, the Lie Algebra so(V ), which is given by the space of skew-
adjoint endomorphisms of (V, 〈· , ·〉) together with the canonical Lie Bracket
[A,B] = AB − BA. We will proceed as follows: first we construct a certain
Lie bracket on

∧2 V using a fixed but arbitrarily chosen scalar product on V
and the canonical Lie structure of so(V ). Then we will see that the resulting
Lie algebra is actually isomorphic to so(V ). After that we list some formulas
which will be very important in later computations. Then we discuss some
structural properties of

∧2 V : For example, we show that
∧2 V is semi-

simple if the dimension of V is at least 3, prove that it is isomorphic to
so(3) ⊕ so(3) as a Lie algebra if V has dimension 4 and that it is simple
in higher dimensions. Next we compare the structures arising from different
choices of the underlying scalar products and clarify the relations between
them. At the end of this chapter we will translate our construction to the
vector bundle setting in a pointwise manner.

1.1
∧2 V as a Lie Algebra

Let (V, 〈·, ·〉) be an n-dimensional Euclidean vector space. Recall that 〈· , ·〉
induces a scalar product on

∧2 V , which will also be denoted by 〈· , ·〉, in the
following way: First, we define a four-linear map 〈· , ·〉′ : V ×V ×V ×V → R,

(x, y, u, v) 7→ det

(
〈x, u〉 〈x, v〉
〈y, u〉 〈y, v〉

)
.

This map obviously satisfies:

• 〈(x, y, u, v)〉′ = −〈(y, x, u, v)〉′ = −〈(x, y, v, u)〉′ and

• 〈(x, y, u, v)〉′ = 〈(u, v, x, y)〉′.

13



Then, using the universal property of exterior powers, we get the desired
scalar product

〈· , ·〉 :
∧2 V ×

∧2 V 7→ R,

satisfying

〈x ∧ y, u ∧ v〉 = det

(
〈x, u〉 〈x, v〉
〈y, u〉 〈y, v〉

)
for all x, y, u, v ∈ V . See the appendix A.2 for the details. Now let

ρ̃ : V × V → End(V) : (x, y) 7→ x∗ ⊗ y − y∗ ⊗ x,

where x∗ is the linear form on V defined by x∗(y) = 〈x, y〉 . Note that
the map x 7→ x∗ depends essentially on the choice of the underlying scalar
product. Now, ρ̃ is bilinear and skew-symmetric. Thus, it induces a unique
linear map ρ :

∧2 V → End(V) by the universal property of exterior powers.

Lemma 1.1.0.1. The image of ρ is so(V, 〈·, ·〉), the vector space of skew-
adjoint endomorphisms of (V, 〈· , ·〉)

Beweis. First we show that the image of ρ is contained in so(V, 〈· , ·〉):
Let u, v, x, y ∈ V be arbitrary.Then

〈ρ(x ∧ y)u, v〉 = 〈〈x, u〉 y − 〈y, u〉x, v〉
= 〈x, u〉 〈y, v〉 − 〈y, u〉 〈x, v〉

= det

(
〈x, u〉 〈x, v〉
〈y, u〉 〈y, v〉

)
= 〈x ∧ y, u ∧ v〉

Since every vector ε ∈
∧2 V is a sum of vectors of the form x ∧ y with

x, y ∈ V , this shows
〈ρ(ε)u, v〉 = 〈ε, u ∧ v〉

for all ε ∈
∧2 V and u, v ∈ V .

Hence, using the symmetry of 〈· , ·〉 and skew-symmetry of ∧, we get

〈u, ρ(ε)v〉 = 〈v ∧ u, ε〉 = −〈ε, u ∧ v〉 = −〈ρ(ε)u, v〉 ,

so we are done with the first part of the proof.
Now let {ei}ni=1 be an orthonormal basis of (V, 〈· , ·〉). Then

{ρ(ei ∧ ej)}1≤i<j≤n = {e∗i ⊗ ej − e∗j ⊗ ei}1≤i<j≤n

is a basis of so(V, 〈· , ·〉). (If we represent these endomorphisms as matrices
w.r.t. the chosen basis {ei}, we get that ρ(ei∧ej) is represented by the matrix
Ei,j = (ekl)kl, with eij = 1, eji = −1 and ekl = 0 otherwise. These matrices
are known to form a basis of so(n). ) Thus, ρ is an isomorphism.
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Now we are ready to define a Lie Algebra structure on
∧2 V .

Definition 1.1.0.2. For ε, δ ∈
∧2 V define

[ε, δ] := ρ−1[ρ(ε), ρ(δ)],

where the bracket on the right hand side is the Lie Bracket of so(V ).

It is clear that, having constructed the Lie bracket on
∧2 V , we get

a Lie bracket on
(∧2 V

)∗
in a natural way: The canonical isomorphism

∗ : V → V ∗ : x 7→ (y 7→ 〈x, y〉) induces an isomorphism
∧2 V →

(∧2 V
)∗

via (x ∧ y)∗ = x∗ ∧ y∗ (Note that the star on the left hand side agrees with
the star induced by the induced scalar product on

∧2 V .) So we can define

the Lie bracket on
(∧2 V

)∗
by pulling back the Lie bracket on

∧2 V using

the ∗-isomorphism. It is also clear that we can use V ∗ with the induced
scalar product as a starting point for our constructions and end up with a
Lie algebra structure on

∧2 V ∗. As we shall see in later calculations, it will
be very useful to be able to switch between the Lie algebra structures of∧2 V ,

(∧2 V
)∗

and
∧2 V ∗. Thus, we will now clarify the relations between

these spaces. Consider the following diagram:(∧2 V
)∗ ∗←−−−−

∧2 V
∗∧∗−−−−→

∧2 V ∗xρ∗ yρ yρ
so(V )∗

∗←−−−− so(V )
ι−−−−→ so(V ∗)

where ι(F )(α) = −α ◦ F = −F ∗α. One can show easily that this diagram
is commutative and that all maps in play are actually isomorphisms of Lie
algebras. Moreover, one can show, that the horizontal maps are even iso-
metric, while the vertical maps are only “isometric up to the factor 1

2 ”.

The following lemma summarizes some properties of ρ and [·, ·], which
are of fundamental importance. In a technical sense, it is the heart of the
underlying section.

Lemma 1.1.0.3. Let ε, δ ∈
∧2 V , u, v ∈ V be arbitrary and fix an orthonor-

mal basis e1, e2, ..., en of V . Then:

1.
∑

i ρ(ε)(ei) ∧ ei = −2ε

2. 〈ρ(ε)(u), v〉 = 〈ε, u ∧ v〉

3. [ε∗, δ∗] =
∑n

k=1 (ιek(ε∗)) ∧ (ιek(δ∗)) ,
where ιuω is the contraction of the two form ω with the vector u, i.e.
ιuω(v) = ω(u, v).
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4. (ρ(ε)(u))∗ = ιu(ε∗)

5. [ε, δ] =
∑n

k=1 (ρ(ε)(ek)) ∧ (ρ(δ)(ek))
In particular we have

[ei ∧ ek, ej ∧ ek] = ei ∧ ej

if i, j and k are mutually distinct and zero otherwise.
Moreover, we have

[ei ∧ ej , ek ∧ el] = 0

if i, j, k and l are mutually distinct.

6. adε = 2ρ(ε) ∧ idV, ad the adjoint representation of so(V, 〈· , ·〉).
And therefore, adε is skew-adjoint for all ε ∈

∧2 V

Before giving the proof, we want to say something concerning the termi-
nology and the notation of lemma 1.1.0.3:
The adjoint representation ad of a Lie algebra g is given by the map

x 7→ (y 7→ [x, y]).

(see the appendix B.3, there is a short introduction to Lie groups and Lie
algebras.)
The wedge product “∧” between linear maps is something totally different
than the wedge product of vectors! It is defined in the following way:
If F and G are endomorphisms of V , then we define an endomorphism F ∧G
of
∧2 V , letting

F ∧G(x ∧ y) :=
1

2
(Fx ∧Gy +Gx ∧ Fy).

For the details we refer to appendix A.2. Now we proof the lemma.

Beweis. By arguments of linearity an bilinearity it is sufficient to proof the
formulas from above on generators of

∧2 V . These have the form x ∧ y,
x, y ∈ V .

1. We compute∑
i

ρ(x ∧ y)(ei) ∧ ei =
∑
i

(〈x, ei〉 y − 〈y, ei〉x) ∧ ei

= −
∑
i

〈x, ei〉 ei ∧ y − x ∧
∑
i

〈y, ei〉 ei

= −2x ∧ y

2. This has already been done in the proof of the previous lemma 1.1.0.1.
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3. On the one hand we have

[(u ∧ v)∗, (x ∧ y)∗] = [u ∧ v, x ∧ y]∗

=
(
ρ−1 ([ρ(u ∧ v), ρ(x ∧ y)])

)∗
.

A short computation using the definition of ρ and [·, ·] shows(
ρ−1 ([ρ(u ∧ v), ρ(x ∧ y)])

)∗
= (〈u, x〉 v ∧ y + 〈v, y〉u ∧ x
− 〈u, y〉 v ∧ x− 〈v, x〉u ∧ y)∗

which equals

〈u, x〉 v∗ ∧ y∗ + 〈v, y〉u∗ ∧ x∗ − 〈u, y〉 v∗ ∧ x∗ − 〈v, x〉u∗ ∧ y∗.

And on the other hand we have∑
k

(ιek(u∗ ∧ v∗)) ∧ (ιek(x∗ ∧ y∗))

=
∑
k

(〈u, ek〉 v∗ − 〈v, ek〉u∗) ∧ (〈x, ek〉 y∗ − 〈y, ek〉x∗)

= 〈u, x〉 v∗ ∧ y∗ + 〈v, y〉u∗ ∧ x∗

− 〈u, y〉 v∗ ∧ x∗ − 〈v, x〉u∗ ∧ y∗

which gives the result.

4. Using 1. we compute

(ρ(u ∧ v)(x))∗ (y) = 〈ρ(u ∧ v)(x), y〉
= 〈u ∧ v, x ∧ y〉
= u∗ ∧ v∗(x, y)

= ιx(u∗ ∧ v∗)(y)

= ιx((u ∧ v)∗)(y)

5. follows from 3. and 4. More precisely, we compute

[ε, δ]∗ = [ε∗, δ∗] ,

By 3. this is equal to ∑
k

(ιek(ε∗)) ∧ (ιek(δ∗)) .

Now, 4. implies that the last expression may be written as(
n∑
k=1

(ρ(ε)(ek)) ∧ (ρ(δ)(ek))

)∗
,

and the claim of the first part follows.
The rest follows from a straight forward computation.
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6. This is easily established: we have

2ρ(u ∧ v) ∧ idV (x ∧ y) = ρ(u ∧ v)(x) ∧ y + x ∧ ρ(u ∧ v)(y)

= 〈u, x〉 v ∧ y + 〈v, y〉u ∧ x
− 〈u, y〉 v ∧ x− 〈v, x〉u ∧ y

which is equal to adu∧v(x∧y) by the first computation in 3. The proof
of the second statement follows from the formula

(F ∧G)∗ = F ∗ ∧G∗,

which is valid for all endomorphisms F,G of V .

Remark 1.1.0.4. Lemma 1.1.0.3.5 implies that if U ⊆ V is a codimension
1 subspace, then

∧2 U ⊆
∧2 V is maximal in the following sense: Whenever

h is a Lie subalgebra of
∧2 V with

∧2 U ⊆ h, then h =
∧2 U or h =

∧2 V .
To see this, observe that U⊥ is generated by a single element v ∈ V with

norm equal to 1, say. Therefore, the orthogonal complement
(∧2 U

)⊥
of∧2 U in

∧2 V is generated by elements of the form u ∧ v with u ∈ U .
Now let h be a Lie subalgebra of

∧2 V containing
∧2 U as a proper subspace.

Then h has nontrivial intersection with
(∧2 U

)⊥
, so it must contain at least

one nonzero element of the form u ∧ v with u ∈ U . We assume the norm of
u to be 1.
Now let {e1 = u, e2, ..., en−1, en = v} be an orthonormal basis of V . By now,
We know that ei ∧ ej lies in h, provided that i, j < n, and that e1 ∧ en lies
in h. Using lemma 1.1.0.3.5 we get

ek ∧ en = [ek ∧ e1, en ∧ e1] ∈ h

for all 1 < k < n showing that h actually contains the whole Lie algebra∧2 V and we are done.

1.2 Structure of
∧2 V

In this section we make some statements about the structure of the Lie
algebra

∧2 V we constructed earlier. These statements are well known. But
the proofs are so easy if we chose to represent so(n) as

∧2 V , that we will
do it nevertheless. The reader who is not familiar with the basic concepts
and definitions concerning Lie algebras, such as the Killing form and (semi-)
simplicity, may visit the appendix B.3, where we introduce the basic material
of the subject.
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Proposition 1.2.0.5. Let κ be the Killing form of
(∧2 V, [·, ·]

)
and n =

dimV ≥ 2. Then
κ = 2(2− n)〈· , ·〉.

So the Killing form of
∧2 V is negative definite, if n > 2 and zero otherwise.

Once we have established the following lemma, the proof is very easy.

Lemma 1.2.0.6. For all ε ∈
∧2 V holds ‖ρ(ε)‖2 = 2 ‖ε‖2 and ‖adε‖2 =

2(n− 2) ‖ε‖2.

Beweis. Let ε ∈
∧2 V be arbitrary and {ei} an orthonormal basis of V .

Then, using lemma 1.1.0.3,

‖ρ(ε)‖2 =
∑
i

〈ρ(ε)ei, ρ(ε)ei〉 =
∑
i

〈ε, ei ∧ ρ(ε)ei〉 = 2 ‖ε‖2

Further, using lemma 1.1.0.3 again,

‖adε‖2 =
∑
i<j

〈adεei ∧ ej, adεei ∧ ej〉

= 2
∑
i,j

〈id ∧ ρ(ε)(ei ∧ ej), id ∧ ρ(ε)(ei ∧ ej)〉

=
1

2

∑
i,j

〈ei ∧ ρ(ε)ej + ρ(ε)ei ∧ ej , ei ∧ ρ(ε)ej + ρ(ε)ei ∧ ej〉

=
1

2

(
(n− 1) ‖ρ(ε)‖2 − ‖ρ(ε)‖2 − ‖ρ(ε)‖2 + (n− 1) ‖ρ(ε)‖2

)
= 2(n− 2) ‖ε‖2

Proof of proposition 1.2.0.5.

κ(ε, δ) = tr(adε ◦ adδ)

= −〈adε, adδ〉

= −1

2

(
‖adε+δ‖2 − ‖adε‖2 − ‖adδ‖2

)
= (2− n)

(
‖ε+ δ‖2 − ‖ε‖2 − ‖δ‖2

)
= 2(2− n) 〈ε, δ〉

Corollary 1.2.0.7.
(∧2 V, [·, ·]

)
is semisimple if dimV > 2.

Beweis. Clear, since the Killing form is negative definite by proposition
1.2.0.5
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Next we examine the question of simplicity of
∧2 V . It is clear that

∧2 V
is simple if the dimension of V is 3: First of all, we know that the Killing form
is negative definite in this case, so

∧2 V is semisimple by definition. Further,∧2 V has no 2-dimensional subalgebra ([ε, δ] is always perpendicular to the
span of ε and δ, as one easily shows) and therefore no 2- or 1- dimensional
ideal. Thus, it must be simple.
Things are different in dimension 4. In order to explain the phenomena
occurring in dimension 4, we have to introduce the Hodge ∗-operator:
For the moment, let the dimension of V be arbitrary again, dimV = n ∈ N,
say. Chose an orientation on V and an orienting volume form ω on (V, 〈· , ·〉),
i.e. an n-form ω on V satisfying

ω(e1, ..., en) = 1,

on every positively oriented orthonormal basis (e1, ..., en) of V = (V, 〈· , ·〉).
ω induces a pairing∧k V ×

∧n−k V 7→ R : (ε, δ) 7→ ω(ε ∧ δ),

where 0 ≤ k ≤ n. This pairing is easily shown to be non-degenerate. Thus,
it induces a uniquely determined linear isomorphism ∗ :

∧k V →
∧n−k V

with

ω(ε ∧ ∗δ) = 〈ε, δ〉

for all ε, δ ∈
∧k V . This isomorphism is known as the Hodge ∗-operator.

Note that for all ε ∈
∧k V with ‖ε‖ = 1. (The induced scalar product on∧k V is explained in the appendix A.2.) holds

ω(ε ∧ ∗ε) = 1.

Note further that if (ei) is any positively oriented orthonormal basis of V ,
then

∗(e1 ∧ ... ∧ ek) = ek+1 ∧ ... ∧ en.

This equation determines the values of ∗ on the whole basis {ei1 ∧ ... ∧
eik}1≤i1<...<ik of

∧k V . We just have to permute the elements of the basis
(ei) appropriately and relabel the indices to get into the situation above.
Now we are ready to state the theorem.

Theorem 1.2.0.8. Let dimV = 4. Then
∧2 V ∼= so(3) ⊕ so(3) as a Lie

algebra. More precisely, we have∧2 V =
∧+ V ⊕

∧− V ,

where
∧± V is the ±1-eigenspace of the Hodge ∗-operator associated to an

orienting volume form ω ∈
∧4 V ∗ of (V, 〈· , ·〉). Moreover, if {ei} is any

oriented orthonormal basis of V , then
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∧+ V = 〈{e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 + e4 ∧ e2, e1 ∧ e4 + e2 ∧ e3}〉

and ∧− V = 〈{e1 ∧ e2 − e3 ∧ e4, e1 ∧ e3 − e4 ∧ e2, e1 ∧ e4 − e2 ∧ e3}〉 .

Beweis. Chose an orientation on V and let ω ∈
∧4 V ∗ be an orienting volume

form of (V, 〈· , ·〉). We know from above that if (e1, e2, e3, e4) is any oriented
orthonormal basis of V , then ∗e1 ∧ e2 = e3 ∧ e4 and ∗e3 ∧ e4 = e1 ∧ e2. This
implies ∗2 = id, so

∧2 V decomposes as the direct sum
∧+ V ⊕

∧− V of the
±1-eigenspaces of the Hodge ∗operator. It is clear that

∗(ε+ ∗ε) = (ε+ ∗ε, )

and
∗(ε− ∗ε) = −(ε− ∗ε)

for all ε ∈
∧2 V , so ε± ∗ε belongs to

∧± V . This tells us

e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 + e4 ∧ e2, e1 ∧ e4 + e2 ∧ e3 ∈
∧+ V

and

e1 ∧ e2 − e3 ∧ e4, e1 ∧ e3 − e4 ∧ e2, e1 ∧ e4 − e2 ∧ e3 ∈
∧− V.

These vectors form a linearly independent set, they are even perpendicular
to each other. Thus, we get∧+ V = 〈{e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 + e4 ∧ e2, e1 ∧ e4 + e2 ∧ e3}〉

and ∧− V = 〈{e1 ∧ e2 − e3 ∧ e4, e1 ∧ e3 − e4 ∧ e2, e1 ∧ e4 − e2 ∧ e3}〉

for reasons of dimensions. Note that this implies also that each element of∧± V is of the form ε± ∗ε with ε ∈
∧2 V .

Straight forward computations using lemma 1.1.0.3.5 show that
∧+ V and∧− V are ideals in

∧2 V . For example, we compute

[e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 + e4 ∧ e2] = e1 ∧ e4 + e2 ∧ e3 ∈
∧+ V

and
[e1 ∧ e2 + e3 ∧ e4, e1 ∧ e2 − e3 ∧ e4] = 0.

The other cases are to be treated in the same way. Now we show that the
±1-eigenspaces of the Hodge ∗-operator are isomorphic to so(3). Consider
the maps ι± :

∧2 U →
∧± V : ε 7→ 1

2(ε± ∗ε), where U is any 3-dimensional
subspace of V . It is clear that they are isomorphisms of vector spaces. We
show that ι+ is a Lie algebra isomorphism. The proof that ι− is a Lie al-
gebra isomorphism is almost the same. Let (e1, e2, e3, e4) be an oriented
orthonormal basis of V with e1, e2, e3 ∈ U . We show, as an example, that

ι+ ([e1 ∧ e2, e1 ∧ e3]) =
[
ι+(e1 ∧ e2), ι+(e1 ∧ e3)

]
.
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The other non-trivial cases are almost the same. Lemma 1.1.0.3 gives

[e1 ∧ e2, e1 ∧ e3] = e2 ∧ e3.

Thus, we have

ι+ ([e1 ∧ e2, e1 ∧ e3]) =
1

2
(e2 ∧ e3 + e1 ∧ e4).

On the other hand, we have[
ι+(e1 ∧ e2), ι+(e1 ∧ e3)

]
=

1

4
([e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 + e4 ∧ e2])

=
1

4
(e2 ∧ e3 + e1 ∧ e4 + e1 ∧ e4 + e2 ∧ e3)

=
1

2
(e2 ∧ e3 + e1 ∧ e4)

Now the claim follows from the fact that
∧2 U is isomorphic to so(3) as a

Lie algebra.

It is worthwhile to mention that the splitting
∧2 V =

∧+ V ⊕
∧− V is on-

ly SO(V)-invariant. For if we take an orthonormal transformation G ∈ O(V)
with det(G) = −1, then G ∧G interchanges

∧+ V and
∧− V :

Lemma 1.2.0.9. Let G ∈ O(V) with det(G) = −1. Then G∧G interchanges∧+ V and
∧− V .

Beweis. Any G ∈ O(V) with det(G) = −1 is a product of an odd number
of reflections on 3-dimensional subspaces of V . Therefore, it is sufficient to
proof the statement for such reflections. Any such reflection is of the form
Ge1 = −e1, Gei = ei for i = 2, 3, 4, where {e1, e2, e3, e4} be a positively
oriented orthonormal basis of V . A sharp look at the precise description of∧+ V and

∧− V in theorem 1.2.0.8 gives the result.

Corollary 1.2.0.10. SO(V) ∼= SO(
∧+ V)× SO(

∧−V)

Beweis. If G ∈ SO(V), then G ∧ G preserves
∧+ V and

∧− V . Thus, we
get a SO(V)-equivariant group homomorphism ϕ : SO(V) → SO(

∧+ V) ×
SO(

∧−V),

ϕ(G) := (π+ ◦G ∧G, π− ◦G ∧G).

The kernel of ϕ is a normal Lie subgroup of SO(V). Its Lie algebra Lie(kerϕ)
is given by the kernel of Didϕ. But the differential of ϕ at the identity fulfills

Didϕ(ρ(ε)) = 2(π+(id ∧ ρ(ε)), π−((id ∧ ρ(ε))) = 2(id ∧ ρ(ε)),
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so Didϕ is an injection, which implies that Lie(kerϕ) is 0 and hence, we get
kerϕ = {id}. Moreover, this shows that ϕ is an injective, immersive homo-
morphism of compact and connected Lie groups. So it is an isomorphism of
Lie groups. We note:

SO(V) ∼= SO(
∧+ V)× SO(

∧−V).

Theorem 1.2.0.11.
∧2 V is simple, if n ≥ 3 and n = dimV 6= 4.

Beweis. The case n = 3 has been done above.
Strategy for the case n > 4:
First, we will show that if n = dimV > 4 and I ⊆

∧2 V is an ideal, then
for any (n − 1)-dimensional subspace U ⊆ V ,

∧2 U ⊆
∧2 V has nontrivial

intersection with I or I⊥. And in the second step we will use this fact to
prove simplicity by induction over n.

• If J is any ideal in
∧2 V , such that J ∩

∧2 U = {0} for an (n − 1)-
dimensional subspace U of V , then J ⊕

∧2 U is a subspace of
∧2 V ,

implying that the dimension of J cannot be greater than n− 1 . So if
both of the ideals I and I⊥ have trivial intersection with

∧2 U for
some (n − 1)-dimensional subspace of V , then

(
n
2

)
= dim

∧2 V =
dim I + dim I⊥ ≤ 2(n− 1), which implies n ≤ 4.

• Induction over n:

The case n = 5:

Let I 6= 0 be an ideal in
∧2 V and let U be a 4-dimensional subspace

of V , spanned by an orthonormal basis {e1, e2, e3, e4}. We may assume
that I ′ := I ∩

∧2 U 6= 0. Then, by lemma B.3.2.2 and theorem 1.2.0.8,
there are the following 3 possibilities:

1. I ′ =
∧2 U

2. I ′ =
∧+ U

3. I ′ =
∧− U

This is due to the fact that I ′ is an ideal in
∧2 U .

Now, 1. gives I =
∧2 V , since I ′ =

∧2 U is a subspace of I and
∧2 U

is maximal in
∧2 V by remark 1.1.0.4, but no ideal at all.

2. and 3. are done by the same arguments. Let us concentrate on 2.
Recall that
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∧+ U = 〈{e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 + e4 ∧ e2, e1 ∧ e4 + e2 ∧ e3}〉

Let e5 with norm equal to 1 be perpendicular to U . Then, by lemma
1.1.0.3, [e1 ∧ e5, e1 ∧ e2 + e3 ∧ e4] = e5 ∧ e2 ∈ I. In the same way we
get e5 ∧ e1, e5 ∧ e3, e5 ∧ e4 ∈ I. Using lemma 1.1.0.3 once more, we get∧2 U ⊆ I and the claim follows as in 1.

The case n > 5:

If I is an ideal in
∧2 V , and I ∩

∧2 U 6= 0 for some (n−1)-dimensional
subspace U of V , then I ∩

∧2 U 6= 0 is an ideal in
∧2 U , which implies∧2 U ⊆ I by the induction hypotheses. But

∧2 U is a maximal Lie
subalgebra of

∧2 V , so we get I =
∧2 V . If I ∩

∧2 U = 0, then we have
I⊥ ∩

∧2 U 6= 0, which implies I⊥ =
∧2 V , so I = 0.

1.3 Changing the Scalar Product

Any scalar product on V is of the form (x, y) 7→ 〈Ax,Ay〉, with A ∈ GL(V ),
which is simply the pullback A∗〈· , ·〉 of 〈· , ·〉 under A. So let us pick some
A ∈ GL(V ), define 〈· , ·〉A := A∗〈· , ·〉 and construct the corresponding

map ρA and the Lie Bracket [·, ·]A. We wish to see that
(∧2 V, [·, ·]A

)
is

canonically isomorphic to
(∧2 V, [·, ·]

)
and express [·, ·]A in terms of [·, ·]

and A in the following way:

[ε, δ]A = (A ∧A)−1 [A ∧A(ε), A ∧A(δ)] ,

with ε, δ ∈
∧2 V . This implies that the canonical isomorphism is given by

A ∧ A. In order to prove this fact, we define a Lie algebra isomorphism Φ
step by step and prove that it agrees with A ∧A after.
It is easy to see that the map

ϕ : so(V, 〈· , ·〉A)→ so(V, 〈· , ·〉) : H 7→ AHA−1

is an isomorphism of Lie Algebras. Now we define Φ := ρ−1 ◦ϕ◦ρA, which is

clearly an isomorphism of the Lie algebras
(∧2 V, [·, ·]A

)
and

(∧2 V, [·, ·]
)

.

Next we prove a little lemma, which will help us to establish the desired
result.

Lemma 1.3.0.12. For all ε ∈
∧2 V holds

1. ρA(ε) = ρ(ε) ◦A∗A and
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2. Aρ(ε)A∗ = ρ(A ∧A(ε)),

where A∗ the adjoint of A w.r.t. 〈· , ·〉

Beweis. By arguments of linearity it is sufficient to consider ε of the form
ε = x ∧ y with x, y ∈ V . For all z ∈ V holds:

1.

ρA(x ∧ y)(z) = 〈x, z〉A y − 〈y, z〉A x
= 〈Ax,Az〉 y − 〈Ay,Az〉x
= 〈x,A∗Az〉 y − 〈y,A∗Az〉x
= (ρ(x ∧ y) ◦A∗A)(z),

and

2.

Aρ(x ∧ y)A∗(z) = A(〈x,A∗z〉 y − 〈y,A∗z〉x
= 〈Ax, z〉Ay − 〈Ay, z〉Ax
= ρ(A ∧A(x ∧ y))(z)

Now we show that φ equals A∧A. Let ε ∈
∧2 V be arbitrary. Using the

lemma we compute

Φ(ε) = ρ−1(ϕ(ρA(ε)))

= ρ−1(ϕ(ρ(ε)) ◦A∗A)

= ρ−1(A(ρ(ε) ◦A∗A)A−1)

= ρ−1(Aρ(ε) ◦A∗)
= ρ−1(ρ(A ∧A(ε)))

= A ∧A(ε)

This shows that

A ∧A :
(∧2 V, [·, ·]A

)
→
(∧2 V, [·, ·]

)
is an isomorphism of Lie algebras and hence, we arrive at the desired formula

[ε, δ]A = (A ∧A)−1 [A ∧A(ε), A ∧A(δ)] ,

ε, δ ∈
∧2 V .
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1.4 Translation to the Vector Bundle Setting

Now let M be a smooth manifold and π : (E, 〈· , ·〉)→M×[0, T ), T > 0, be a
smooth range n Euclidean vector bundle equipped with a metric connection
∇. Using the inner product on E we can turn each fiber of

∧2E into a Lie
algebra isomorphic to so(n). For this purpose we define ρ(p,t) :

∧2E(p,t) →
so(E(p,t), 〈· , ·〉(p,t)) and then [·, ·](p,t) :

∧2E(p,t)×
∧2E(p,t) →

∧2E(p,t) in the
same way as above, for any (p, t) ∈ M × [0, T ). This gives us two bundle
maps

ρ :
∧2E → so(E, 〈· , ·〉),

so(E, 〈· , ·〉) the bundle of fiberwise skew-adjoint bundle maps of E, and

[·, ·] :
∧2E ×

∧2E →
∧2E.

Since 〈· , ·〉 is smooth, these maps will be smooth as well. But we can say
a little more about these maps. They are actually parallel with respect to
the corresponding induced connections, as we will show in the proposition
below. See the appendix B.1 to get a rough introduction to connections on
vector bundles. After that one question is still left open: What about the
induced connection on so(V, 〈· , ·〉)? The answer is the following. The metric
connection ∇ on E induces a metric connection on the space of bundle en-
domorphims End(E), which is also denoted by ∇. Parallel transport w.r.t.
metric connections preserves skew-adjointness, as one easily shows. Thus,
so(V, 〈· , ·〉) is a parallel subbundle of End(V), which implies that it is in-
variant under covariant differentiation. Thus, we get a metric connection on
so(V, 〈· , ·〉) by restricting ∇ to so(V, 〈· , ·〉).

Proposition 1.4.0.13. Consider ρ as a section of
∧2E∗⊗so(E, 〈· , ·〉) and

[·, ·] as a section of (
∧2E ⊕

∧2E)∗ ⊗
∧2E. Then ρ and [·, ·] are parallel

w.r.t. the induced connections on these bundles.

Beweis. We show ∇ρ = 0 first. Pick a smooth section s of
∧2E, a smooth

section e of E, (p, t) ∈ M × [0, T ), a direction x ∈ T(p,t)M × [0, T ) and
compute (∇xρ)(s, e) in (p, t): Since ∇ is a local operator and each section
s of

∧2E is (at least locally) a linear combination of wedge-products of
sections of E, we can assume s = s1 ∧ s2, s1 and s2 sections of E. Moreover,
since ρ is tensorial in s1, s2 and e, we can assume ∇s1 = ∇s2 = ∇e = 0 in
(p, t). Let’s go:

(∇xρ)(s1 ∧ s2, e) = ∇xρ(s1 ∧ s2)(e) = ∇x(〈s1, e〉 s2 − 〈s2, e〉 s1)

= 0

The second statement is now obvious, because ∇ρ = 0 implies ∇ρ−1 = 0 and
building fiberwise commutators is clearly a tensorial and parallel operation
w.r.t. any connection coming from E.
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Kapitel 2

The #-Product

Besides multiplication of endomorphisms of
∧2 V , there is another O(V )-

equivariant binary operation on this space, the so called #-product (sharp
product), which arises as a summand in the reaction term of the evolution
equation of curvature operators under the Ricci flow. In this section we de-
fine this operation in several ways and prove equivalence of these definitions.
Then we discuss some of its properties. As we shall see, there is a deep struc-
tural relation between the Lie sub algebras h of

∧2 V and the #-product.
Roughly speaking, it turns out that the Killing form of h is given by π#π,
where π is the orthogonal projection onto h. Next we clarify the relations be-
tween #-products arising from different choices of the underlying Euclidean
structure of V . As in the previous chapter, we explain shortly, how to define
#-products on bundles and say a few words about their geometric proper-
ties. At the end of this section we present a sharp estimate on the eigenvalues
of R#R in terms of the eigenvalues of a given self adjoint endomorphism R
of
∧2 V .

2.1 Definition and Basic Properties

The bilinear skew-symmetric map [·, ·] :
∧2 V ×

∧2 V →
∧2 V : (ε, δ) 7→ [ε, δ]

induces a linear map α :
∧2(

∧2 V ) →
∧2 V by the universal property of

exterior powers. The scalar product 〈· , ·〉 on
∧2 V induces a scalar product

on
∧2(

∧2 V ) →
∧2 V , which will also be denoted by 〈· , ·〉. Let α∗ be the

adjoint of α w.r.t. these scalar products. For endomorphisms R and S of∧2 V we define the #-product R#S of R and S by

R#S := α ◦ R ∧ S ◦ α∗.

This definition of the #-product was first given by C. Böm and B. Wilking
in [5]. Before listing some obvious properties of #, we would like to say
something about the spaces in play.

∧2(
∧2 V ) must not be confused with∧4 V . They are totally different spaces.
∧2(

∧2 V ) has dimension
((n2)

2

)
and
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∧4 V has dimension
(
n
4

)
. They can only be isomorphic, if the dimension of

V is less than 2. So we have to be careful with notation. For, if ε and δ are
elements of

∧2 V , then we may view ε ∧ δ as an element of
∧2(

∧2 V ) or as
an element of

∧4 V , just as we like. We want ε ∧ δ to belong to
∧2(

∧2 V ).
By times may wish to represent elements ε ∈

∧2 V as sums of elements of
the form x ∧ y with x and y ∈ V . If we want to indicate that the wedge
product of x∧y and u∧v, x, y, u, v ∈ V , belongs to

∧2(
∧2 V ) we put braces

around them:

(x ∧ y) ∧ (u ∧ v) ∈
∧2(

∧2 V ),

while

x ∧ y ∧ u ∧ v ∈
∧4 V.

Further, we would like to mention that
∧2(

∧2 V ) is generated by elements
of the form (x ∧ y) ∧ (u ∧ v), x, y, u, v ∈ V .

Lemma 2.1.0.14. 1. # is bilinear and symmetric

2. # is O(V )-equivariant

3. If R and S are both self-adjoint or skew-adjoint, R#S is self-adjoint.

4. If R is self-adjoint and R is (semi-) definite, then R#R is positive
(semi-) definite. ((Semi-) definiteness of a self-adjoint endomorphism
means that the associated quadratic form is (semi-) definite)

Beweis. 1. The map (R,S) 7→ R∧S is bilinear and symmetric and there-
fore # has also these properties.

2. O(V ) acts on
∧2 V via (G, ε) 7→ G ∧ G(ε). The Lie bracket on

∧2 V
is O(V )-equivariant, since ρ and ρ−1 are O(V )-equivariant. Thus, the
maps α and α∗ are O(V )-equivariant either. Since (R,S) 7→ R ∧ S is
even O(

∧2 V )-equivariant, the claim follows.

3. Functoriality of ∧ and ∗ implies

(R#S)∗ = (α ◦ R ∧ S ◦ α∗)∗

= (α∗)∗ ◦ R∗ ∧ S∗ ◦ α∗

= α ◦ R ∧ S ◦ α∗

= R#S

4. If ε and δ are linearly independent eigenvectors of R corresponding
to eigenvalues λ and µ, then ε ∧ δ is an eigenvector of R ∧ R with
eigenvalue λµ. This implies that R ∧ R is positive (semi-) definite,
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whenever R is self-adjoint and (semi-) definite, since every eigenvalue
of R∧R has this form in this case. Now the claim follows from

〈R#Rε, ε〉 = 〈R ∧Rα∗ε, α∗ε〉

Proposition 2.1.0.15. Let R and S be endomorphisms of
∧2 V and x, y ∈

V be arbitrary. Fix an orthonormal basis {ei} of V . Then

1. α∗(x ∧ y) =
∑

i(x ∧ ei) ∧ (y ∧ ei)

2. R#S(x ∧ y) = 1
2

∑
i [R(x ∧ ei),S(y ∧ ei)] + [S(x ∧ ei),R(y ∧ ei)]

Beweis. 1. Let a, b, c, d ∈ V be arbitrary.Then, using 1.1.0.3, we compute

〈α∗(x ∧ y), (a ∧ b) ∧ (c ∧ d)〉 = 〈x ∧ y, [a ∧ b, c ∧ d]〉

=
∑
k

〈x ∧ y, (ρ(a ∧ b)(ek)) ∧ (ρ(c ∧ d)(ek))〉

=
∑
k

det

(
〈x, ρ(a ∧ b)(ek)〉 〈x, ρ(c ∧ d)(ek)〉
〈y, ρ(a ∧ b)(ek)〉 〈y, ρ(c ∧ d)(ek)〉

)
=
∑
k

det

(
〈x ∧ ek, a ∧ b〉 〈x ∧ ek, c ∧ d〉
〈y ∧ ek, a ∧ b〉 〈y ∧ ek, c ∧ d〉

)
=
∑
k

〈(x ∧ ek) ∧ (y ∧ ek), (a ∧ b) ∧ (c ∧ d)〉

=

〈∑
k

(x ∧ ek) ∧ (y ∧ ek), (a ∧ b) ∧ (c ∧ d)

〉

2. Let x and y be elements of V . We have

R#S(x ∧ y) = α ◦ R ∧ S ◦ α∗(x ∧ y)

by definition of the #-product. Using 1., we compute

α ◦ R ∧ S ◦ α∗(x ∧ y) =
∑
i

α ◦ R ∧ S(x ∧ ei) ∧ (y ∧ ei)

=
1

2
α (R(x ∧ ei) ∧ S(y ∧ ei) + S(x ∧ ei) ∧R(y ∧ ei))

=
1

2

∑
i

([R(x ∧ ei),S(y ∧ ei)] + [S(x ∧ ei),R(y ∧ ei)])

Next we summarize some properties of the maps α and α∗:
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Proposition 2.1.0.16. 1. α ◦ α∗ = (n− 2)id,

2. 〈α∗ε, α∗δ〉 = (n− 2) 〈ε, δ〉 for all ε, δ ∈
∧2 V and

3. α∗ ◦α = (n− 2)π, where π is the orthogonal projection onto the image
of α∗.

4. In any orthonormal basis {εi} of
∧2 V and for every ε ∈

∧2 V holds

α∗ε =
1

2

∑
i

[εi, ε] ∧ εi

5.

α∗ε = −1

2

∑
i

α(ε ∧ εi) ∧ εi

Beweis. 1. Let {ei} be an orthonormal basis of V . The {ei ∧ ej}i<j is an
orthonormal basis of

∧2 V . Lemma 1.1.0.3 tells us that [ei ∧ ek, ej ∧ ek] =
ei∧ej if i, j and k are mutually distinct and zero otherwise. Using this,
we compute

α ◦ α∗(ei ∧ ej) =
∑
k

[ei ∧ ek, ej ∧ ek] =
∑
k 6=i,j

ei ∧ ej = (n− 2)ei ∧ ej .

2. This is an immediate consequence of 1.

3. This follows using 1. and 2.

4. We compute

2α∗ε =
∑
i,j

〈α∗ε, εi ∧ εj〉 εi ∧ εj =
∑
i,j

〈ε, [εi, εj ]〉 εi ∧ εj

=
∑
i,j

〈εj , [ε, εi]〉 εi ∧ εj =
∑
i,j

εi ∧ 〈εj , [ε, εi]〉 εj

=
∑
i

εi ∧ [ε, εi] =
∑
i

[εi, ε] ∧ εi

5. 5. is just a reformulation of 4.

Corollary 2.1.0.17. We have

id#id = (n− 2)id

Beweis. This is just a reformulation of proposition 2.1.0.16.1.

Proposition 2.1.0.18. α∗ is a homomorphism of Lie algebras.
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Beweis. The map ι : O(V ) → O(
∧2 V ) : G 7→ G ∧ G is a homomorphism

of Lie groups. Its differential at the identity of O(V ), Dιid, is a Lie algebra
homomorphism. Consider the following diagram:∧2 V

α∗−−−−→
∧2
(∧2 V

)
yρ yρ

so(V )
Dιid−−−−→ so(

∧2 V )

We are done if we can show that this diagram commutes, since the vertical
maps are Lie algebra isomorphisms.
It is easy to see that

DιidH = 2id ∧H,H ∈ TidO(V ).

Using lemma 1.1.0.3 we get

Dιid ◦ ρ = ad.

On the other hand

ρ ◦ α∗(x ∧ y) =
∑
k

ρ((x ∧ ek) ∧ (y ∧ ek))

=
∑
k

(x ∧ ek)∗ ⊗ (y ∧ ek)− (y ∧ ek)∗ ⊗ (x ∧ ek)

= 2
∑
k

x∗ ⊗ y ∧ e∗k ⊗ ek − y∗ ⊗ x ∧ e∗k ⊗ ek

= 2ρ(x ∧ y) ∧ id

In the third step we used the identity

(x ∧ y)∗ ⊗ (a ∧ b) = 2(x∗ ⊗ a) ∧ (y∗ ⊗ b),

which follows from a straight forward computation.

2.2 Alternative Definitions of the #-Product

There is an alternative definition of the #-product, which was first given by
R. S. Hamilton in [11]. Let α, β ∈

∧2 V ∗ and a, b ∈
∧2 V . Then α ⊗ a and

β ⊗ b are endomorphisms of
∧2 V. Now define

α⊗ a#2β ⊗ b :=
1

2
[α, β]⊗ [a, b] .

Now extend #2 bilinearly to the whole vector space of endomorphisms of∧2 V . This is possible by the universal property since the map
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∧2 V ∗ ×
∧2 V ×

∧2 V ∗ ×
∧2 V →

∧2 V ∗ ×
∧2 V

(α, a, β, b) 7→ 1

2
[α, β]⊗ [a, b]

is 4-linear and induces #2. Note that up to multiplication with 1
2 #2 is just

the algebra tensor product of the Lie Brackets on
∧2 V ∗ and

∧2 V ,

#2 =
1

2
⊗Alg .

See the appendix A.3 for the definition of algebra tensor products. The
following observation is due to C. Böm and B. Wilking [5]:

Lemma 2.2.0.19. Let R and S be endomorphisms of
∧2 V . Then

R#S =
1

2
R⊗Alg S = R#2S.

Beweis. It is sufficient to consider range 1 endomorphisms of
∧2 V as above.

We will make use of lemma 1.1.0.3 and proposition 2.1.0.15. On the one hand
we have

(α⊗ a)⊗Alg (β ⊗ b)(x ∧ y) =
1

2
[α, β]⊗ [a, b] (x ∧ y)

=
1

2

∑
k

(ιekα) ∧ (ιekβ) (x, y) · [a, b]

On the other hand

(α⊗ a)#(β ⊗ b)(x ∧ y)

=
1

2

∑
k

[α⊗ a(x ∧ ek), β ⊗ b(y ∧ ek)] + [β ⊗ b(x ∧ ek), α⊗ a(y ∧ ek)]

=
1

2

∑
k

(α(x ∧ ek)β(y ∧ ek)− β(x ∧ ek)α(y ∧ ek)) · [a, b]

=
1

2

∑
k

(ιekα(x)ιekβ(y)− ιekβ(x)ιekα(y)) · [a, b]

=
1

2

∑
k

(ιekα) ∧ (ιekβ) (x, y) · [a, b]

Corollary 2.2.0.20. We have R#S = 1
2

∑
i,j [εi, εj ]

∗ ⊗ [Rεi,Sεj ] with re-

spect to any given orthonormal basis {εi} of
∧2 V .
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Beweis. Evolve R and S in a basis {εi} of
∧2 V ,

R =
∑
i,j

rji ε
∗
i ⊗ εj ,

and

S =
∑
i,j

sjiε
∗
i ⊗ εj .

Then, by lemma 2.2.0.19,

R#S =
1

2
R⊗Alg S

=
1

2

∑
i,j,k,l

rji s
l
k [ε∗i , ε

∗
k]⊗ [εj , εl]

=
1

2

∑
i,j,k,l

[εi, εk]
∗ ⊗

[
rji εj , s

l
kεl

]
=

1

2

∑
i,k

[εi, εk]
∗ ⊗ [Rεi,Sεk]

and the claim follows replacing k by j.

Remark 2.2.0.21. Corollary 2.2.0.20 may be viewed as a third possible
definition of the #-product. Each of these definitions has it’s own advantages
in different contexts and we will use the possibility to switch between these
definitions extensively in coming calculations. Further, if we replace the ∗
coming from the scalar product by the usual one, the we get

R#S =
1

2

∑
i,j

[
ε∗i , ε

∗
j

]
⊗ [Rεi,Sεj ]

for any basis {εi} of
∧2 V . Here, {ε∗i } is the dual basis of {εi}.

2.3 Relations to Lie Subalgebras of
∧2 V

The reader, who is not familiar with the basic concepts of the theory of
compact (or reductive) and semisimple Lie-Algebras, is invited to visit the
appendix B.3. We start with a corollary of lemma 2.2.0.19. The formula
presented was first published by C. Böhm and B. Wilking in [5].

Corollary 2.3.0.22. For any self-adjoint endomorphism R of
∧2 V and

any ε ∈
∧2 V holds

〈R#Rε, ε〉 = −1

2
tr
(
(adε ◦ R)2

)
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Beweis. Let {εi} be an orthonormal eigenbasis of R, Rεi = λiεi, λi ∈ R,
and ε ∈

∧2 V . Then

2 〈R#Rε, ε〉 =
∑
i,j

λiλj 〈[εi, εj ] , ε〉 〈[εi, εj ] , ε〉

=
∑
i,j

λiλj 〈[εj , ε] , εi〉 〈[εi, εj ] , ε〉

=
∑
i,j

λj 〈[εj , ε] , λiεi〉 〈[εi, εj ] , ε〉

=
∑
i,j

λj 〈R [εj , ε] , εi〉 〈[εi, εj ] , ε〉

=
∑
i

λj 〈[R [εj , ε] , εj ] , ε〉

= −
∑
i

λj 〈[R [εj , ε] , ε] , εj〉

= −
∑
i

〈R [R [εj , ε] , ε] , εj〉

= −tr
(
(adε ◦ R)2

)

Corollary 2.3.0.23. If h is a Lie subalgebra of
∧2 V with Killing form

κh and π :
∧2 V →

∧2 V is the orthogonal projection onto h, then, for all
ε, δ ∈ h,

κh(ε, δ) = −2 〈π#πε, δ〉 .

Beweis. We have that π commutes with adε for any ε ∈ h and that π maps
h⊥ to 0, so

κh(ε, ε) = trh(ad2
ε) = trh((adε ◦ π)2) = tr∧2 V((adε ◦ π)2) = −2 〈π#πε, ε〉

This shows that κh is negative semidefinite. So it is compact by definition.

2.4 Useful Properties of #

The following proposition is due to G. Huisken [17]:

Proposition 2.4.0.24. The trilinear map τ0 : End(
∧2 V )3 → R : (R,S, T ) 7→

〈R#S, T 〉 is fully symmetric.
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Beweis. τ0 is symmetric in R and S. So we are done if we show that it is
symmetric in S and T . Let {εi} be an orthonormal basis of

∧2 V

τ0(R,S, T ) = 〈R#S, T 〉 =
∑
k

〈R#Sεk, T εk〉

=
∑
k

〈
1

2

∑
i,j

[εi, εj ]
∗ ⊗ [Rεi,Sεj ] εk, T εk

〉

=
1

2

∑
i,j,k

〈〈[εi, εj ] , εk〉 [Rεi,Sεj ] εk, T εk〉

=
1

2

∑
i,j,k

〈[εi, εj ] , εk〉 〈[Rεi,Sεj ] εk, T εk〉

=
1

2

∑
i,j,k

〈[εi, εk] , εj〉 〈[Rεi, T εk] εk,Sεj〉

In the last step we used that adε is skew-adjoint for every ε ∈
∧2 V . It is

clear that the last expression in the above calculation equals τ0(R, T ,S).

Corollary 2.4.0.25. The linear map R 7→ R#S is self-adjoint for all en-
domorphisms S of

∧2 V and tr(R#S) = 〈id#R,S〉 .

Beweis. The first statement is clear. To prove the second statement, simply
recall that tr(R) = 〈R, id〉.

2.5 Changing the Scalar Product

According to section 1.3 we have that the Lie bracket [·, ·]A on
∧2 V , which

is associated to the scalar product A∗〈· , ·〉 with A ∈ GL(V), is given by

[ε, δ]A = (A ∧A)−1 [A ∧Aε,A ∧Aδ] .

This leads directly to the formula

R#AS = (A∧A)−1 ◦ (A∧A ◦R◦ (A∧A)∗)#(A∧A ◦ S ◦ (A∧A)∗) ◦A∧A,

for endomorphisms R and S of
∧2 V , where #A is the sharp product w.r.t.

〈· , ·〉A and (A ∧A)∗ is the adjoint of A ∧A w.r.t. 〈· , ·〉.

2.6 Translation to the Bundle Setting

As in subsection 1.4, let M be a smooth manifold (possibly with boundary)
and π : E → M× [0,T), T > 0, be a n-dimensional smooth Euclidean vector
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bundle, equipped with a metric connection ∇. The inner product on E will
be denoted by 〈· , ·〉.
For any two bundle endomorphisms R and S of

∧2 E we define

R#S(p, t) := R(p,t)#(p,t)S(p,t),

where (p, t) runs through M × [0, T ) and #(p,t) is the sharp product on

End
(∧2 E(p,t)

)
w.r.t. 〈· , ·〉(p,t). It is clear that R#S is smooth, provided

that R and S are smooth. We may view # as a smooth section of the

bundle End
(∧2 E

)∗
⊗ End

(∧2 E
)∗
⊗ End

(∧2 E
)

. From this perspective

# turns out to be parallel w.r.t. the induced metric connection ∇ on the
bundle from above. We know from section 1.3 that the Lie bracket on

∧2 E,
and therefore also the induced Lie bracket on

∧2 E∗, is parallel (w.r.t the
induced connection on

∧2 E). Since the #-product is simply the algebra
tensor product of the Lie brackets in play, it is clearly parallel.

2.7 A Sharp Estimate on the Eigenvalues of R#R
in terms of the Eigenvalues of R

Expressing the eigenvalues of R#R in terms of the eigenvalues of R is a
very hard task. According to corollary 2.2.0.20 we have

R#R =
1

2

∑
i,j

λiλj [εi, εj ]
∗ ⊗ [εi, εj ] =

1

2

∑
i,j,k,l

λiλjcijkcijlε
∗
k ⊗ εl,

if {εi} is an orthonormal eigenbasis of R, Rεi = λiεi, and the cijk are the
structure constants of

∧2 V w.r.t. the basis {εi}. So this task is at least as
hard as determining the structure constants of a generic orthonormal basis
of
∧2 V . Even if we assume R#R to be diagonal w.r.t. this basis, we have

no chance to compute the eigenvalues of R#R from the knowledge of the
eigenvalues of R, for we have

R#Rεm =

1

2

∑
i,j,m

λiλjcijmcijm

 εm

in this case and we still have the problem of computing the structure con-
stants. And things become even worse, if we ask for the eigenvectors of
R#R. However, if we restrict ourselves to self-adjoint linear maps R, which
are diagonal w.r.t. orthonormal bases of the form {ei ∧ ej}i<j , where {ei}
an orthonormal basis of V , then things become very easy:

Proposition 2.7.0.26. Let R be a self-adjoint endomorphism of
∧2 V and

suppose that R is diagonal w.r.t. an orthonormal basis {ei ∧ ej}i<j, where
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{ei} an orthonormal basis of V , i.e. Rei ∧ ei = λijei ∧ ej for i < j. Then
R#R is also diagonal w.r.t. this basis and the eigenvalues {µij}i<j of R#R
are given by

µij =
∑
k 6=i,j

λikλjk =
∑
k

λikλjk.

Here, we have made the following conventions: We put

1. λji := λij for all i < j and

2. λii := 0 for all i.

Beweis. The conventions are to be justified easily: We have

λij = 〈Rei ∧ ej , ei ∧ ej〉 = 〈Rej ∧ ei, ej ∧ ei〉 = λji

and
λii = 〈Rei ∧ ei, ei ∧ ei〉 = 0.

Using corollary 2.2.0.20 and lemma 1.1.0.3 we see

R#Rei ∧ ej =
∑
k

[Rei ∧ ek,Rej ∧ ek]

=
∑
k

λikλjk [ei ∧ ek, ej ∧ ek]

=

∑
k 6=i,j

λikλjk

 ei ∧ ej

Remark 2.7.0.27. The assumptions of proposition 2.7.0.26 are always ful-
filled if R takes the form R = F ∧ id or R = F ∧F , where F is a self-adjoint
endomorphism of V .

One sees immediately that each eigenvalue µij := λij(R#R) of R#R
will lie in the interval[

(n− 2) min
k 6=i,j

λikλjk, (n− 2) max
k 6=i,j

λikλjk

]
if R is as in proposition 2.7.0.26. Note that we get an estimate for each
eigenvalue of R#R in terms of the eigenvalues of R in this case.
In the general case, it is at least possible to describe the range of the eigen-
values of R#R in terms of the eigenvalues of R:

Theorem 2.7.0.28. If R is a self-adjoint endomorphism of
∧2 V with

eigenvalues λ1 ≤ λ2 ≤ ... ≤ λN , then for each eigenvalue µ of R#R holds

(n− 2) min
k 6=l

λkλl ≤ µ ≤ (n− 2) max
k 6=l

λkλl.

This estimate is sharp.
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We need a little lemma to prove 2.7.0.28:

Lemma 2.7.0.29. Let F : V → V be a self-adjoint endomorphism and U a
subspace of V . Let π : V → U be the orthogonal projection of V onto U and
ι : U → V the inclusion. Set F̃ := π ◦ F ◦ ι. Then

λ1(F̃ ) ≥ λ1(F ) and λn(F̃ ) ≤ λn(F ).

Beweis. F̃ : U → U is self-adjoint. So

λ1(F̃ ) = min
v∈Sn−1∩U

〈
F̃ v, v

〉
= min

v∈Sn−1∩U
〈F (v), v〉 ≥ min

v∈Sn−1
〈F (v), v〉 = λ1(F )

and

λn(F̃ ) = max
v∈Sn−1∩U

〈
F̃ v, v

〉
= max

v∈Sn−1∩U
〈F (v), v〉 ≤ max

v∈Sn−1
〈F (v), v〉 = λn(F )

Proof of Theorem 2.7.0.28. Let {δi} an orthonormal eigenbasis ofR#R, i.e.
R#Rδi = µiδi, µi ∈ R, such that µ1 ≤ ... ≤ µN . Then Proposition 2.1.0.16
implies that {δ̃i = 1√

n−2
α∗δi} is an orthonormal basis of the image of α∗. Let

π :
∧2
(∧2 V

)
→
∧2
(∧2 V

)
be the orthogonal projection onto the image

of α∗ and ι : im(α∗)→
∧2
(∧2 V

)
the inclusion.

A simple computation using Proposition 2.1.0.16 shows that

(π ◦ R ∧R ◦ ι)(δ̃i) =
1

n− 2
µiδ̃i.

So the previous lemma implies

(n− 2)λmin(R∧R) ≤ µi ≤ (n− 2)λmax(R∧R)

Now we are done proving the estimate, since every eigenvalue of R∧R is a
product λiλj of the eigenvalues λ1, ..., λN of R. The estimate is sharp, since
we have equality, if we take R = id.
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Kapitel 3

Algebraic Curvature
Operators

This chapter is devoted to the study of algebraic curvature operators on Eu-
clidean vector spaces. We begin with a geometric motivation of the subject
and show for example, that the 2-jets of Riemannian metrics at 0 ∈ Rn are
in one-to-one correspondence with the algebraic curvature operators on Rn.
After that we focus on topics concerning the structure of the space of alge-
braic curvature operators, such as the irreducible decomposition w.r.t. the
action of SO(V) or special curvature features depending on the dimension.
Further we give alternative characterizations of algebraic curvature opera-
tors in subsection 3.2.3, where we show that a self-adjoint endomorphism R
of
∧2 V is an algebraic curvature operator if it satisfies the Böhm-Wilking

identity

id#R = Ric(R) ∧ id−R.

The other direction is due to Böhm and Wilking and has been proved in
[5]. Later in the text we introduce the Ricci vector field Φ, which arises as
the reaction term in the evolution equation of the curvature operator under
the Ricci flow, and show by purely algebraic means that Φ is tangent to
the space of algebraic curvature operators. Next we discuss the interesting
class of algebraic curvature operators which arise as curvature operators of
symmetric spaces using the results of the previous chapters. For example, we
will prove very quickly, that Ricci-flat symmetric spaces are flat, using the
Ricci vector field. At the end of this chapter we introduce algebraic product
curvature operators using holonomy algebras and we show that the Ricci
vector field respects these products. We will use several objects and facts of
Riemannian geometry, such as Riemannian manifolds, connections on vec-
torbundels, Holonomy, Lie groups and Lie algebras, Symmetric spaces and
related stuff. The reader who is not familiar with these topics is invited to
visit the appendix B for a short introduction.
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3.1 Definition and Geometric Realization of Alge-
braic Curvature Operators

3.1.1 Geometric Motivation

Let (M, g) be a Riemannian manifold, p ∈ M and Rg the curvature tensor
of g. Consider the restriction Rgp of Rg to the fiber V := TpM of the tangent
bundle,

Rgp : V × V × V → V : (x, y, z) 7→ Rg(x, y)z

and the restriction gp of g to V × V ,

gp : V × V → R : (x, y) 7→ g(x, y).

Note that (V, 〈· , ·〉) := (TpM, gp) is a Euclidean vector space. We get that
Rgp fulfills the following identities for all x, y, z, w ∈ V :

1. gp(R
g
p(x, y)z, w) = −gp(Rgp(y, x)z, w) = −gp(Rgp(x, y)w, z)

2. gp(R
g
p(x, y)z, w) = gp(R

g
p(z, w)x, y)

3. Rgp(x, y)z +Rgp(y, z)x+Rgp(z, x)y = 0

The latter identity is known as the 1. Bianchi identity. Varying g we get a
whole set of trilinear maps{

Rgp : g Riemannian metric on M, Rg curvature tensor of g
}
,

each Rgp satisfying 1.2. and 3. w.r.t. its own gp. Now we focus on the set
LC (M, g)p, whose elements are by definition the trilinear maps R : V ×V ×
V → V satisfying 1.2 and 3. w.r.t. 〈· , ·〉 = gp. R ∈ LC ((M, g))p is called
an algebraic curvature operator on (M, g) at p and LC (M, g)p is called the
space of algebraic curvature operators on (M, g) at p. As the conditions 1.2.
and 3. are linear in R, LC (M, g)p is a finite dimensional vector space. We
ask if the space of algebraic curvature operators on (M, g) at p agrees with
the set

LC (M, g)p =
{

Rh
p : h Riemannian metric on M, hp = gp

}
?

The answer is yes, as we will prove in the following subsection. Thus, on this
infinitesimal level, it makes no difference whether we examine Riemannian
metrics or algebraic curvature operators.
We want to use the results of the proceeding sections in our studies of
the space of algebraic curvature operators. Thus, we have to transform the
notion of algebraic curvature operators to the right setup. Recall that if Rg is
the curvature tensor belonging to a Riemannian metric g on a manifold M ,
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then, using the universal property of exterior powers, it is always possible
to define an endomorphism field Rg :

∧2 TM→
∧2 TM requiring

g(Rg(X ∧ Y ), Z ∧W ) = g(Rg(X,Y )W,Z)

for all vector fields X,Y, Z and W on M , where the g on the left hand side
is the induced Euclidean structure on

∧2 TM. Rg is called the curvature
operator of g. The symmetries of Rg imply that Rg is fiberwise self-adjoint
w.r.t. the induced bundle metric on

∧2 TM. On the other hand, note that
if we are given an endomorphism field R :

∧2 TM →
∧2 TM, we may turn

it into a tensor field R : TM× TM× TM→ TM, requiring

g(R(X,Y )W,Z) = g(R(X ∧ Y ), Z ∧W )

for all vector fields X,Y, Z and W on M . Using this identification of R and
R we define the space of algebraic curvature operators on (

∧2 V, 〈· , ·〉)

LC
(

M, g∧2 TM

)
p

:={
R ∈ End(

∧2 V) : R algebraic curvature operator on(V, 〈· , ·〉)
}
.

3.1.2 Definition of Algebraic Curvature Operators

We start from zero. As in the proceeding sections, (V, 〈· , ·〉) denotes an
n-dimensional Euclidean vector space and N =

(
n
2

)
denotes the dimension

of
∧2 V . Given an endomorphism R of

∧2 V , define a trilinear map Rρ :
V × V × V → V by

Rρ(x, y)z := −ρ(R(x ∧ y))(z),

where ρ :
∧2 V → so(V, 〈· , ·〉) is the canonical map defined in section 1.

Recall that ρ satisfies ρ(x ∧ y) = x∗ ⊗ y − y∗ ⊗ x for all x, y ∈ V . Further,
we have the formula

〈ρ(ε)(x), y〉 = 〈ε, x ∧ y〉 ,

provided by lemma 1.1.0.3. This formula guaranties, that for all elements
x, z, y and w of V holds

〈Rρ(x, y)w, z〉 = 〈R(x ∧ y), z ∧ w〉 .

This shows that we have chosen the right identification of endomorphisms of∧2 V with (1, 3)-tensors on V . In order to define the space of algebraic cur-
vature operators on

∧2 V we introduce the Bianchi map B : End(
∧2 V) →

T3
1V, where T3

1V is the space of trilinear maps V ×V ×V → V . The Bianchi
map is defined by

B(R)(x, y)z := Rρ(x, y)z +Rρ(y, z)x +Rρ(z, x)y.

We say that R satisfies the 1. Bianchi identity, if R lies in the kernel of B.
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Definition 3.1.2.1. An endomorphism R of
∧2 V is called an algebraic

curvature operator on
(∧2 V, 〈· , ·〉

)
if

1. R is self-adjoint

2. R satisfies the first Bianchi Identity.

The space of algebraic curvature operators on
(∧2 V, 〈· , ·〉

)
will be denoted

by LC
(∧2 V, 〈· , ·〉

)
or simply LC

(∧2 V
)

, if it is clear, which scalar product

is used.

We shall give an algebraic example.

Example 3.1.2.2. If F and G are self-adjoint endomorphisms of V , then
F ∧ G is an algebraic curvature operator on

∧2 V . In particular, if U ⊆
V is a subspace and πU : V → V is the orthogonal projection onto U ,

then π∧2 U := πU ∧ πU ∈ LC
(∧2 V

)
. Positive multiples of the curvature

operators SU = π∧2 U and HU = −π∧2 U will be called weakly spherical
and weakly hyperbolic, respectively. The positive multiples of SV and HV are
called spherical and hyperbolic. Notice that SV is the curvature operator of
the round sphere Sn and HV is the curvature operator of the n-dimensional
hyperbolic space Hn.

Beweis. It is sufficient to proof the statement only for F ∧F , since we have

2F ∧G = (F +G) ∧ (F +G)− F ∧ F −G ∧G

for all endomorphisms F and G of V and LC
(∧2 V

)
is a vector space: It

is clear that F ∧ F is self-adjoint, since F is self-adjoint by assumption. So
it remains to check the first Bianchi identity: Let x, y, z ∈ V be arbitrary.
Then

(F ∧ F )ρ(x, y)z = −ρ(Fx ∧ Fy)(z)

= −(〈Fx, z〉Fy − 〈Fy, z〉Fx)

= −F (〈x, Fz〉 y − 〈y, Fz〉x)

In the last step we used that F is self-adjoint. From the above computation
we get

B(F ∧ F )(x, y)z = −F (〈x, Fz〉 y − 〈y, Fz〉x+ 〈y, Fx〉 z
− 〈z, Fx〉 y + 〈z, Fy〉x− 〈x, Fy〉 z)

= 0

since F is self-adjoint.
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Now we may ask the question whether a given algebraic curvature op-
erator is of the form F ∧ G with F and G as in the previous lemma or at
least a linear combination of curvature operators of this form. As we shall
see later, the answer to the first question is yes in many cases while the
answer to the second is yes in any case. One can even show that the space
of algebraic curvature operators on

∧2 V is generated by weakly spherical
algebraic curvature operators.

Remark 3.1.2.3. 1. Usually, algebraic curvature operators are defined
as 4-linear maps R on V , satisfying

(a) R(x, y, u, v) = −R(y, x, u, v)

(b) R(x, y, u, v = R(u, v, x, y))

(c) R(x, y, u, v) +R(u, x, y, v) +R(y, u, x, v) = 0

for all x, y, u, v ∈ V . And the space of algebraic curvature operators
on V w.r.t. 〈· , ·〉 is defined as

LC (V, 〈· , ·〉) := {R : R a 4-linear map on V satisfying a),b), and c) } .

But, examining the relations between the #-product and algebraic
curvature operators, for example, it will prove to be useful to regard
algebraic curvature operators as endomorphisms of

∧2 V .

2. If we are given two symmetric bilinear maps β and β′ on V , we can
use these maps to define a 4-linear map β ◦ β′ on V , letting

β ◦ β′(x, y, u, v) := β(x, u)β′(y, v) + β(y, v)β′(x, u)

− β(y, u)β′(x, v)− β(x, v)β′(y, u)

The operation “◦” is known as the Kulkarni-Nomizu product. One can
show that the Kulkarni-Nomizu product of β and β′ behaves like an
algebraic curvature operator on V : We have

(a) β ◦ β′(x, y, u, v) = −β ◦ β′(y, x, u, v)

(b) β ◦ β′(x, y, u, v) = β ◦ β′(u, v, x, y)

(c) β ◦ β′(x, y, u, v) + β ◦ β′(u, x, y, v) + β ◦ β′(y, u, x, v) = 0

for all x, y, u, v ∈ V .
Writing β and β′ as

β(x, y) = 〈F (x), y〉 and β′(x, y) =
〈
F ′(x), y

〉
,

F, F ′ : V → V self-adjoint, we may convince ourselves that〈
F ∧ F ′(x ∧ y), u ∧ v

〉
=

1

2
β ◦ β′(x, y, u, v).
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3.1.3 Geometric Realization of Algebraic Curvature Opera-
tors

The most famous examples of algebraic curvature operators are given by
curvature operators R of Riemannian manifolds (M, g): We have that Rp
is an algebraic curvature operator on

(∧2 TpM, gp

)
for all p ∈ M . On the

other hand every algebraic curvature operatorR has a geometric realization:
Given an algebraic curvature operator R, there exists a Riemannian metric
g on an neighborhood U of 0 ∈ V , such that R is the curvature operator of
g in 0. This tells us that the curvature operators of Riemannian manifolds
are the only possible examples of algebraic curvature operators.
To prove the existence of such a Riemannian metric, let

gp(x, y) := 〈x, y〉 − 1

3
〈Rx ∧ p, y ∧ p〉 .

R is self-adjoint w.r.t. 〈· , ·〉, so gp is a symmetric bilinear map for all p ∈ V .
Positive definiteness is an open condition, which implies that g is indeed a
Riemannian metric on a sufficiently small neighborhood U of 0. In the fol-
lowing we will always take U = {p ∈ V : gp > 0} to be the maximal domain
of definition of g. Later we will see that U is starshaped w.r.t. 0 ∈ U . Note
that (U, g) is an analytic Riemannian manifold.
Now we compute the curvature operator of g in 0:
Let Rg be the curvature operator of g, Rg the (3, 1)-curvature tensor of g
and R = Rρ. Rg and Rg are algebraically equivalent and related by the
formula

g(Rgx ∧ y, u ∧ v) = g(Rg(x, y)v, u).

Now we start computing Rg: First of all, we need to compute the Levi-Civita
connection ∇ of g. We will proceed as follows: First we compute ∇XY on
constant vector fields X and Y and then we use that ∇ is derivative in Y
to obtain the full information about ∇
Let X ≡ x, Y ≡ y and Z ≡ z, x, y, z ∈ V , be constant vector fields on U
and p ∈ U . Then, using the Koszul formula, we get

2gp(∇XY,Z) = Xg(Y,Z)|p + Y g(Z,X)|p − Zg(X,Y )|p
+ gp([X,Y ] , Z)− gp([Y,Z] , X) + gp([Z,X] , Y )

= Xg(Y,Z)|p + Y g(Z,X)|p − Zg(X,Y )|p
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since the terms with the Lie brackets vanish. Using the symmetries of R, we
get

Xg(Y, Z)|p =
d

dt

∣∣∣∣
t=0

(
〈x, y〉 − 1

3
〈R((p+ tx) ∧ y), (p+ tx) ∧ z〉

)
= −1

3
(〈Ry ∧ x, z ∧ p〉+ 〈Ry ∧ p, z ∧ x〉

=
1

3
(〈R(x, y)p, z〉+ 〈R(p, y)x, z〉).

Interchanging the roles of X,Y and Z and using the symmetries of R leads
to

Y g(Z,X)|p = −1

3
(〈R(x, y)p, z〉+ 〈R(x, p)y, z〉)

and

−Zg(X,Y )|p =
1

3
(〈R(p, x)y, z〉+ 〈R(p, y)x, z〉).

This gives

gp(∇XY,Z) =
1

3
〈R(p, x)y +R(p, y)x, z〉 .

Now let {ei} be a gp-orthonormal basis of V and Ei ≡ ei the corresponding
constant vector fields on U . We find

∇XY |p =
1

3

∑
i

gp(∇XY,Ei)Ei(p) =
1

3

∑
i

〈R(p, x)y +R(p, y)x, ei〉 ei.

Since every vector field on U is a sum of vector fields fY , where f : U → R
is a smooth function and Y is a constant vector field on U , we get the full
information about ∇ from our knowledge about ∇ on constant vector fields
and the Leibniz-rule. More precisely, we have

∇XfY |p == (Xf)Y |p + f(p)∇XY |p

= DXfY|p +
1

3

∑
i

〈R(p, x)f(p)y + R(p, f(p)y)x, ei〉 ei.

We summarize our results in the following proposition.

Proposition 3.1.3.1. Let (U,g) be the geometric realization of R ∈ LC
(∧2 V

)
,

p ∈ U and X,Y, Z vector fields on U with X(p) = x, Y (p) = y, Z(p) = z.
Further, let {ei} be a gp-orthonormal basis of V and S ∈ Sym (TU, g) be the
fiberwise inverse of G ∈ Sym (TU, g), Gp(Xp) := Xp − 1

3R(Xp, p)p. Then,

1. ∇XY |p = DXY|p + 1
3

∑
i 〈R(p, x)y + R(p, y)x, ei〉 ei,

2. ∇XY |p = DXY|p + 1
3Sp(R(p, x)y + R(p, y)x)

3. gp(∇XY,Z) =
〈
DXY|p + 1

3(−R(DXY|p, p)p + R(p, x)y + R(p, y)x), z
〉
.
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Beweis. 1. There is nothing left to show.

2. Using 1., it follows that

gp(∇XY,Z) = gp(DXY|p, z) +
1

3

∑
i

gp(〈R(p, x)y + R(p, y)x, ei〉 ei, z)

= gp(DXY|p, z) +
1

3

∑
i

〈R(p, x)y + R(p, y)x, ei〉 gp(ei, z)

= gp(DXY|p, z) +
1

3

〈
R(p, x)y + R(p, y)x,

∑
i

gp(z, ei)ei

〉

= gp(DXY|p, z) +
1

3
〈R(p, x)y + R(p, y)x, z〉

= gp(DXY|p, z) +
1

3
gp(Sp(R(p, x)y + R(P, y)x), z)

= gp(DXY|p +
1

3
Sp(R(p, x)y + R(p, y)x), z).

3. This follows from 2. using gp(x, y) = 〈Gp(x), y〉.

We are ready to compute Rg:

Theorem 3.1.3.2. We have

gp(R
g
p(X,Y )Z,W ) = 〈R(X,Y )Z,W 〉

+
1

9

∑
i

〈(DeiR(−,p)p ∧DeiR(−, p)p)ρ (X,Y )Z,W 〉

for all p ∈ U and all vector fields X,Y, Z and W on U , where {ei} is a
gp-orthonormal basis of V . In particular, we have

Rg0 = R.

and

∇Rgp|p=0 = 0.

Beweis. Let X,Y, Z and W be vector fields on U . We have

g(Rg(X,Y )Z,W ) = g(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,W )

= Xg(∇Y Z,W )− g(∇Y Z,∇XW )

− Y g(∇XZ,W ) + g(∇XZ,∇YW )− g(∇[X,Y ]Z,W ).
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everywhere on U . From now on we assume X,Y, Z and W to be constant.
In p holds

Xg(∇Y Z,W ) = X

〈
DYZ +

1

3
(−R(DYZ, p)p + R(p,Y)Z + R(p,Z)Y),W

〉
=

1

3
X 〈R(p, Y )Z +R(p, Z)Y,W 〉

since the derivative of Z vanishes identically everywhere. Thus,

Xg(∇Y Z,W ) = X

〈
DYZ +

1

3
(−R(DYZ, p)p + R(p,Y)Z + R(p,Z)Y),W

〉
=

1

3
〈R(X,Y )Z +R(X,Z)Y,W 〉

This gives

gp(R
g(X,Y )Z,W ) =

1

3
〈(R(X,Y )Z +R(X,Z)Y −R(Y,X)Z −R(Y,Z)X),W 〉

− gp(∇Y Z,∇XW ) + gp(∇XZ,∇YW )

Using the symmetries of R and the 1. Bianchi identity, it follows that

1

3
〈(R(X,Y )Z +R(X,Z)Y −R(Y,X)Z −R(Y,Z)X),W 〉 = 〈R(X,Y )Z,W 〉 ,

which leads to

gp(R
g(X,Y )Z,W ) = 〈R(X,Y )Z,W 〉 − gp(∇Y Z,∇XW ) + gp(∇XZ,∇YW ).

Now we treat the terms involving the covariant derivatives:
We have

∇XY |p = DXY|p +
1

3

∑
i

〈R(p,X)Y + R(p,Y)X, ei〉 ei

for all vector fields X and Y . Since X,Y, Z and W are constant, this leads
to

gp(∇XZ,∇YW )− gp(∇Y Z,∇XW )

=
1

9

∑
i

(
〈R(p,X)Z +R(p, Z)X, ei〉 〈R(p, Y )W +R(p,W )Y, ei〉
− 〈R(p, Y )Z +R(p, Z)Y, ei〉 〈R(p,X)W +R(p,W )X, ei〉

)
=

1

9

∑
i

(
〈R(X, p)ei +R(X, ei)p, Z〉 〈R(Y, p)ei +R(Y, ei)p,W 〉
− 〈R(Y, p)ei +R(Y, ei)p, Z〉 〈R(X, p)ei +R(X, ei)p,W 〉

)
= −1

9

∑
i

(
〈(DeiR(−, p)p) (X), Z〉 〈(DeiR(−,p)p) (Y ),W 〉
− 〈(DeiR(−,p)p) (Y ), Z〉 〈(DeiR(−, p)p) (X),W 〉

)
= −1

9

∑
i

〈DeiR(−,p)p ∧DeiR(−, p)p(X ∧Y)),Z ∧W〉

=
1

9

∑
i

〈(DeiR(−,p)p ∧DeiR(−,p)p)ρ (X,Y )Z,W 〉
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This shows the first and the second claim. We are left showing ∇Rg|p=0 = 0 :
The map p 7→ ι(p) = −p is an isometry of (U, g). This shows ∇Rg|0 = 0,
since the curvature Rg and therefore also the covariant derivative ∇Rg is
preserved by isometric transformations: In p = 0, we have

−(∇xRg)|0(u, v)w = Dι0((∇xRg)|0(u, v)w)

= (∇Dι0(x)R
g)|0(Dι0(u),Dι0(v))Dι0(w)

= (∇xRg)|0(u, v)w.

Now we are able to prove the statement mentioned in the motivating
part at the beginning of this chapter.

Corollary 3.1.3.3. If (M, g) is a Riemannian manifold and p ∈M then

LC (M, g)p =
{

Rh
p : h Riemannian metric on M, hp = gp

}
.

Beweis. It is clear that every curvature tensor Rh of a Riemannian metric
h lies in LC (M, g)p, if hp = gp. We have to show that every element R

of LC (M, g)p determines a Riemannian metric h on M with Rhp = R. Let
(ϕ,U ′) be a chart around p with ϕ(p) = 0. Put 〈· , ·〉 := (ϕ∗g)|0, i.e.

〈x, y〉 = gp(Dϕ
−1
p x,Dϕ−1

p y)

and define R′ := ϕ∗R, i.e.

R′(x, y)z = DϕpR(Dϕ−1
p x,Dϕ−1

p y)Dϕ−1
p z.

Now let h’ be the geometric realization of R′ in a small neighborhood U ⊆
ϕ(U ′),

h′q(x, y) = 〈x, y〉 − 1

3

〈
R′(x, q)q, y

〉
.

For vector fields X,Y on U ′′ := ϕ−1(U) define

h′′(X,Y ) := h′(DϕX,DϕY).

This gives a Riemannian metric on U ′′ with Rh
′′
p = R. Now let C ⊆ U ′′ a

compact neighborhood of p and ψ : M → [0, 1] be a bump function with
ψ|C ≡ 1 and ψ|M\U ′′ ≡ 0. To finish the proof put h := (1− ψ)g + ψh′′.

Note that if the algebraic curvature operators R and S differ by con-
jugation with an element G of O(V ) (S = G ∧ GRG−1 ∧ G−1), then their
geometric realizations are isometric via the map p 7→ Gp.
On the other hand, if the geometric realizations gR and gS of R and S are
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isometric via a map ϕ, i.e. ϕ∗gS = gR, with ϕ(0) = 0, then R and S belong
to the same O(V)-orbit. For if ϕ(0) = 0, then Dϕ0 = G ∈ O(V), which
implies S = G ∧GRG−1 ∧G−1, as claimed. We use this result to prove the
following

Proposition 3.1.3.4. Let R be an algebraic curvature operator on
∧2 V

and (U, g) its geometric realization. Then

Isom0(U, g) = StabO(V,〈· ,·〉)(R),

where Isom0(U, g) is the isotropy group of (U, g) in 0 ∈ U and StabO(V,〈· ,·〉)(R)
is the stabilizer of R w.r.t. the induced action of O(V) on the space of alge-
braic curvature operators.

Beweis. It is clear from above that the stabilizer of R lies completely in the
isotropy group of the geometric realization. Let ϕ ∈ Isom0(u, g) be arbitrary.
Then, arguing as above, we get ϕ = G for some G ∈ O(V). We have to show
that G lies in the stabilizer of R. Let p ∈ U and v, w ∈ V be arbitrary. Then
we get

gG(p)(G(v), G(w)) = gp(v, w),

where

gG(p)(G(v), G(w)) = 〈v, w〉 − 1

3
〈RG(p) ∧G(v), G(p) ∧G(w)〉

and

gp(v, w) = 〈v, w〉 − 1

3
〈Rp ∧ v, p ∧ w〉 .

This leads to 〈(
(G ∧G)−1 ◦ R ◦G ∧G−R

)
p ∧ v, p ∧ w

〉
= 0

for all p ∈ U and all v, w ∈ V . The map S := (G ∧ G)−1 ◦ R ◦ G ∧ G − R
is an algebraic curvature operator with geometric realization gS ≡ 〈· , ·〉
which implies S = 0. Thus, we have that G lies in the stabilizer of R as
claimed.

Proposition 3.1.3.5. A curve γ in U is a geodesic if and only if

d2

dt2
γ(t) = −2

3
Sγ(t)(Rρ(γ, γ̇)γ̇).

Consequently, the radial line segments γv : R→ V.t 7→ tv, ‖v‖ = 1, through
0 ∈ U are geodesics as long as they stay in U .

Beweis. γ is a geodesic in U if and only if

0 = ∇γ̇ γ̇ = Dγ̇ γ̇ +
2

3
Sγ(Rρ(γ, γ̇)γ̇).
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We have

Dγ̇ γ̇|γ(t0) =
d

dt

∣∣∣∣
t=to

γ̇(γ(t0 + t)) =
d2

dt2

∣∣∣∣
t=t0

γ(t)

for all t. Thus, the first claim follows. Pick v ∈ V with ‖v‖ = 1. Then
γv(t) = tv and γ̇v = v so Rρ(γv, γ̇v)γ̇v = 0. On the other hand, we have
d2

dt2
γv = 0. Thus, γv is a geodesic in U .

Next we state some further geometric properties of geometric realizations
of algebraic curvature operators. For v ∈ V with ‖v‖ = 1 define

λ(v) := max
w⊥v,‖w‖=1

〈Rv ∧ w, v ∧ w〉 .

Note that λ(v) is the maximal eigenvalue of the Jacobi operator Jv : V →
V : w 7→ Rρ(w, v)v. Moreover define

f : Sn−1 ⊆ V → [0,∞) : v 7→ max(λ(v), 0).

Proposition 3.1.3.6. Let R be an algebraic curvature operator with ‖R‖ =
1 and geometric realization (U, g). Then,

1. U =
{
p ∈ V \ {0} : ‖p‖2 f( p

‖p‖) < 3
}
∪ {0}. Thus, U is starshaped

w.r.t. the point 0.

2. U = V if and only if the Jacobi operators Jv of R are non positive for
each v ∈ V .

3. λ constant implies U = Br for some r > 0 or U = V .

Beweis. 1. By construction of g U is the set of points p ∈ V , where gp is
positive definite. Now let p ∈ V with ‖p‖ = 1 be given. Then for all
t ≥ 0 and v ⊥ p with ‖v‖ = 1 we have

gtp(v, v) = ‖v‖2 − 1

3
t2 〈Jp(v), v〉 ≥ 1− t2

3
λ(p) ≥ 1− t2

3
f(p).

and

gtp(p, p) = 1.

This tells us that gtp is positive definite as long as t2f(p) < 3. If
If f(p) > 0 and t(p) denotes the first time, where we have equality
t(p)2f(p) = 3, then, by definition of f, there exists an eigenvector v
of Jp with 〈Jp(v), v〉 = f(p). Hence we have gt(p)p(v, v) = 0, telling us
that gt(p)p is not positive definite. Moreover, if we take t > t(p) then
we even get gtp(v, v) < 0. Putting things together it follows that gtp is
positive definite if and only if t2f(p) < 3 and the claim follows.
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2. If U = V , then ‖p‖2 f( p
‖p‖) < 3 for all p ∈ V . This implies f ≡ 0, so

the Jacobi operators Jv of R are clearly nonpostive for each v ∈ V .
The other direction is clear.

3. This follows immediately from 1.

3.2 The Structure of the Space of Algebraic Cur-
vature Operators

Now we take a closer look at the structure of algebraic curvature operators

R in LC
(∧2 V

)
. It is clear that the space of algebraic curvature operators

is not interesting if the dimension of the underlying vector space V is less

than 2. In this cases we have
∧2 V = 0, so we get LC

(∧2 V
)

= 0 either.

In the following we will restrict our considerations to the case n = dimV ≥ 2.

3.2.1 Fundamental Properties of the Space of Algebraic Cur-
vature Operators

Here, we deal with topics like the dependence of LC
(∧2 V

)
on the underly-

ing Euclidean structure, the invariant components of LC
(∧2 V

)
, we answer

the question, how LC
(∧2 U

)
lies in LC

(∧2 V
)

if U ⊆ V is a subspace and

then we say a few words about bundles of algebraic curvature operators over
Riemannian manifolds.

3.2.1.1 Changing the Scalar Product

As in section 1.3, let A ∈ GL(V), define a new scalar product 〈· , ·〉A :=

A∗〈· , ·〉 on V and let ρA :
(∧2 V, 〈· , ·〉A

)
→ so(V, 〈· , ·〉A) the corresponding

representation. The induced scalar scalar product 〈· , ·〉A on
∧2 V takes

the form 〈· , ·〉A = (A ∧ A)∗〈· , ·〉. It is clear how to transform self-adjoint

endomorphism R of
(∧2 V, 〈· , ·〉

)
into self-adjoint endomorphisms RA of(∧2 V, 〈· , ·〉A

)
: simply define

RA := A−1 ∧A−1 ◦ R ◦A ∧A.

It is not very surprising that the R 7→ RA also preserves the property of
being an algebraic curvature operator.
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Proposition 3.2.1.1. An endomorphism R of
∧2 V is an algebraic curva-

ture operator on
(∧2 V, 〈· , ·〉

)
if and only if RA := A−1 ∧ A−1 ◦ R ◦ A ∧ A

is an algebraic curvature operator on
(∧2 V, 〈· , ·〉A

)
Beweis. We have to check the 1. Bianchi identity. Using lemma 1.3.0.12.2,
we compute〈
RρAA (x, y)z, w

〉
A

=
〈
A(RρAA (x, y)z), A(w)

〉
=
〈
A(RρAA (x, y)z), A∗A(w)

〉
= −〈ρA(RA(x, y)z)), A∗A(w)〉
= −〈ρ(RA(x ∧ y)(A∗A(z)), A∗A(w)〉
=
〈
A−1 ∧A−1 ◦ R ◦A ∧A(x ∧ y), A∗A ∧A∗A(z ∧ w)

〉
= 〈R(A ∧A(x ∧ y)), A ∧A(z ∧ w)〉
= 〈Rρ(A(x), A(y))A(z), A(w)〉
=
〈
A−1(Rρ(A(x), A(y))A(z)), w

〉
A
,

and the claim follows.

3.2.1.2 The Invariant Components of the Space of Algebraic Cur-
vature Operators

The Bianchi map B is O(V)-equivariant and hence, the space of algebra-

ic curvature operators is an O(V)-invariant subspace of Sym
(∧2 V

)
. This

leads immediately to the question, if the space of algebraic curvature opera-
tors decomposes into further invariant subspaces. In this subsection we will
idendify and investigate the invariant subspaces SCAL, RIC0 and WEYL
and introduce them as eigenspaces of the (self-adjoint) O(V)-equivariant Ric-
ci operator. After that, we compute the dimensions of these spaces and con-
struct examples of Weyl curvature operators. Finally, we prove irreducibility
of SCAL and RIC0.

Lemma 3.2.1.2. If S is an algebraic curvature operator on
∧2 V , then we

have

S = 0

if and only if for all x, y ∈ V holds

〈S(x ∧ y), x ∧ y〉 = 0

Beweis. This follows easily, since if we have

〈Sx ∧ y, x ∧ y〉 = 0
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for all x, y ∈ V , then S must be skew-adjoint. But on the other hand, S is
self-adjoint by definition. Thus it is zero. The other direction is clear.

Lemma 3.2.1.3. Consider the linear map σ : Sym
(∧2 V

)
→ Tri(V; V),

σ(R)(x, y)z := Rρ(x, y)z +Rρ(x, z)y

Then, R is perpendicular to the space of algebraic curvature operators if and
only if σ(R) = 0

Beweis. Let R be perpendicular to the space of algebraic curvature opera-
tors. Then we have 〈R, π〉 = 0 for any orthogonal projection π of the form
〈x ∧ y, ·〉⊗x∧y, where x, y ∈ V with x ⊥ y and ‖x‖ = ‖y‖ = 1 - notice that
π equals 2πx ∧ πy, πx := x∗ ⊗ x, πy := y∗ ⊗ y, so π is an algebraic curvature
operator by example 3.1.2.2. Now define e1 = x, e2 = y and extend {e1, e2}
to an orthonormal basis {e1, e2, e3, ..., en} of V .

0 = 2 〈R, π〉 =
∑
i,j

〈R(ei ∧ ej), π(ei ∧ ej)〉

= 〈R(x ∧ y), x ∧ y〉 = 〈Rρ(x, y)y, x〉

This implies σ(R)(x, y)z = 0, whenever x, y and z are mutually perpendic-
ular, since σ(R) is symmetric in y and z. Hence, σ(R) must be 0.

Now assume that σ(R) = 0. Decompose R = S + T with S ∈ LC
(∧2 V

)
and T ∈ LC

(∧2 V
)⊥

. Then, σ(R) = σ(S) + σ(T ) = σ(S), since T is

perpendicular to LC
(∧2 V

)
. This gives

σ(S) = 0.

By lemma 3.2.1.2 it follows that S = 0, so that R = T is actually perpen-

dicular to LC
(∧2 V

)
.

Corollary 3.2.1.4. The orthogonal complement of LC
(∧2 V

)
in Sym

(∧2 V
)

is canonically isomorphic to
∧4 V .

Beweis. For any R ∈ Sym
(∧2 V

)
we may define a 4-linear map ωR on V ,

letting
ωR(x, y, z, w) := −〈Rρ(x, y)z, w〉 .

If R is perpendicular to the space of algebraic curvature operators, then ωR
is a 4-form on V by lemma 3.2.1.3.
Conversely, if ω is a 4-form on V , we may interpret ω as a symmetric bilinear
map ω̃ on

∧2 V ,
ω̃(ε, δ) := ω(ε ∧ δ).
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Since ω̃ is symmetric, there exists a uniquely defined self-adjoint endomor-
phism Rω of

∧2 V , such that

ω̃(ε.δ) = 〈Rωε, δ〉 .

This gives

ω(x, y, z, w) = −〈Rρω(x, y)z, w〉 ,

which implies σ(Rω) = 0. Using lemma 3.2.1.3, it follows that Rω is per-

pendicular to LC
(∧2 V

)
.

These to linear constructions are obviously inverse to each other:

RωR = R, ωRω = ω.

This shows that the map ω : LC
(∧2 V

)⊥
→
∧4 V : R 7→ ωR is an isomor-

phism.

Next we consider the O(V)-equivariant linear map Ric : Sym
(∧2 V

)
→

Sym (V), defined by

Ric(R)(x) =
∑

i

Rρ(x, ei)ei,

where {ei} is an orthonormal basis of V . Note that for all x, y ∈ V holds:

〈Ric(x), y〉 =
∑
i

〈Rρ(x, ee)ei), y〉 =
∑
i

〈Rρ(ei, x)y, ei〉 = tr(z 7→ Rρ(z, x)y),

so our definition of Ric is clearly independent of the choice of the orthonor-
mal basis {ei}. Ric is called the Ricci operator.
The Ricci operator gives rise to a “new” O(V)-equivariant operator Ric :

Sym
(∧2 V

)
→ Sym

(∧2 V
)

,

R 7→ Ric(R) ∧ idV.

The O(V)-equivariance of Ric guaranties that the space of algebraic curva-
ture operators is mapped onto itself. But Ric has another property, which

allows us to compute the decomposition of LC
(∧2 V

)
into O(V)-invariant

subspaces. We have

Lemma 3.2.1.5. The map R 7→ Ric(R) ∧ idV is self-adjoint w.r.t. the

induced scalar product on Sym
(∧2 V

)
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Beweis. Let R and S be self-adjoint endomorphisms of
∧2 V and {ei} an

orthonormal basis of V . Then, using lemma 1.1.0.3.2 in the third step of the
following computation, we get

〈Ric(R) ∧ idV,S〉 = 〈S,Ric(R) ∧ idV〉

=
1

4

∑
i,j

〈S(ei ∧ ej),Ric(R)(ei) ∧ ej + ei ∧ Ric(R)(ej)〉

=
1

4

∑
i,j

〈Sρ(ei, ej)ej),Ric(R)(ei)〉+ 〈Sρ(ej , ei)ei),Ric(R)(ej)〉

=
1

2
〈Ric(S),Ric(R)〉

This shows that the map (R,S) 7→ 〈Ric(R) ∧ idV,S〉 is symmetric and we
are done.

The eigenspaces Eλ(Ric), λ ∈ R, of Ric are O(V)-invariant subspaces of

LC
(∧2 V

)
⊕ LC

(∧2 V
)⊥

. Lemma 3.2.1.3 assures LC
(∧2 V

)⊥
lies in the

kernel of Ric. Thus, LC
(∧2 V

)
splits orthogonally and O(V)-invariantly

into im(Ric)⊕
(

ker(Ric) ∩ LC
(∧2 V

))
. We define

WEYL := ker(Ric) ∩ LC
(∧2 V

)
and call it the space of algebraic Weyl curvature operators. On the other
hand, it is clear, that every non-zero eigenvector of Ric has the form F ∧ idv

with F ∈ Sym (V). The following technical lemma will help us to find all
the nonzero eigenvalues.

Lemma 3.2.1.6. If F is a self-adjoint endomorphism of V ,then

1. tr(F ∧ id) = n−1
2 tr(F)

2. tr(F ∧ F) = 1
2(tr(F)2 − ‖F‖2)

3. Ric(F ∧ id) = n−2
2 F + 1

2tr(F)id

4. Ric(F ∧ F) = −F2 + tr(F)F

5. If, in addition, tr(F) = 0, then
W(F ∧ F) = F ∧ F− 1

(n−1)(n−2) ‖F‖
2 id + 2

n−2F2 ∧ id

Beweis. Choose an orthonormal eigenbasis {ei} of F and write

F =
∑
i

fie
∗
i ⊗ ei,
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fi ∈ R the eigenvalues of F. Then

F ∧ id(ei ∧ ej) =
1

2
(F(ei) ∧ ej + F(ei) ∧ ej) =

fi + fj
2

ei ∧ ej

and

F ∧ F (ei ∧ ej) = F (ei) ∧ F (ej) = fifjei ∧ ej .

We compute

1.

tr(F ∧ id) =
∑
i<j

〈F ∧ id(ei ∧ ej), ei ∧ ej〉

=
∑
i 6=j

fi + fj
4

=
1

4

∑
i

∑
j 6=i

fi + fj

=
1

4

∑
i

(n− 1)fi +
∑
j 6=i

fj


=

1

4

∑
i

((n− 1)fi + tr(F )− fi)

=
n− 1

2
tr(F)

2.

2tr(F ∧ F) =
∑
i 6=j

fjfj =
∑
i

fi
∑
j 6=i

fj =
∑
i

fi(tr(F)− fi)

= tr(F)2 − ‖F‖2

3. For all i = 1, ..., n holds

Ric(F ∧ id)(ei) =
∑
j

(F ∧ id)ρ(ei, ej)ej = −
∑
j

ρ(F ∧ id(ei ∧ ej))ej

= −1

2

∑
j 6=i

ρ(Fei ∧ ej)ej + ρ(ei ∧ Fej)ej

=
1

2

∑
j 6=i

(fi + fj)ei =
n− 1

2
Fei +

1

2

∑
j 6=i

fjei

=

(
n− 2

2
F +

1

2
tr(F)id

)
ei
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4. For all i = 1, ..., n holds

Ric(F ∧ F)(ei) =
∑
j

(F ∧ F )ρ(ei, ej)ej = −
∑
j

ρ(F ∧ F (ei ∧ ej))ej

= −
∑
j 6=i

ρ(Fei ∧ Fej)ej = −
∑
j 6=i

fifjρ(ei ∧ ej)ej

=
∑
j 6=i

(fifj)ei = fi(tr(F)− fi)ei

=
(
−F 2 + tr(F)F

)
ei

5. We have

W(F ∧ F) = F ∧ F− 1

N
tr(F ∧ F)id∧2 V −

2

n− 2
Ric0(F ∧ F) ∧ idV

Using 2. we get

tr(F ∧ F) = −1

2
‖F‖2 .

and 4. implies
Ric(F ∧ F) = −F2

so

Ric0(F ∧ F) = −F 2 +
1

n
‖F‖2 idV

Putting all together the claim follows.

Corollary 3.2.1.7. Let dimV = n, n ≥ 2. The spectrum of the Ricci
operator equals {0, n − 1, n−2

2 }. Moreover, if R is an algebraic curvature
operator, we have

1. R ∈WEYL if and only if Ric(R) = 0

2. R = λid∧2 V, λ ∈ R, if and only if Ric(R) = (n− 1)R

3. R = F ∧ idV, F ∈ Sym0 (V), if and only if Ric(R) = n−2
2 R

Beweis.

Now we define

• SCAL := En−1(Ric) =
{
R ∈ LC

(∧2 V
)

: R = λid, λ ∈ R
}

, the space

of algebraic scalar curvature operators ,

• RIC0 := En−2
2

(Ric) =
{
R ∈ LC

(∧2 V
)

: R = F ∧ id,F ∈ Sym0 (V)
}

,

the space of algebraic traceless Ricci curvature operators and
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• WEYL := ker(Ric)∩LC
(∧2 V

)
, the space of algebraic Weyl curvature

operators.

From the above we conclude that LC
(∧2 V

)
decomposes orthogonally

and O(V)-invariantly as the direct sum

LC
(∧2 V

)
= SCAL⊕ RIC0 ⊕WEYL.

Consequently, we can write every given algebraic curvature operator R in
the form

R =
1

N
tr(R)id∧2 V︸ ︷︷ ︸
∈SCAL

+
2

n− 2
Ric0(R) ∧ idV︸ ︷︷ ︸
∈RIC0

+ W(R)︸ ︷︷ ︸
∈WEYL

.

The whole space of self-adjoint endomorphisms decomposes orthogonally
and O(V )-invariantly as

Sym
(∧2 V

)
= SCAL⊕ RIC0 ⊕WEYL⊕ ker(σ).

Having established these results, two questions arise: What about ir-
reducibility of the summands what about their dimensions? The second
question is much easier to answer. So we will treat this question first.

Proposition 3.2.1.8. Let V be an n-dimensional vector space and N :=
dim(

∧2 V ) =
(
n
2

)
, then

• dim Sym
(∧2 V

)
=
(

N+1
2

)
• dim ker(σ) =

(
n
4

)
• dim LC

(∧2 V
)

= 1
12n2(n2 − 1)

• dim SCAL = 1, if n ≥ 2

• dim RIC0 =
(

n+1
2

)
− 1, if n ≥ 2

• dim WEYL = n−3
2

(
n+2

3

)
, if n ≥ 3 and dim WEYL = 0 if n = 2.

Beweis. Just compute. There is no trick.

Proposition 3.2.1.8 asserts that there is always Weyl curvature in dimen-
sion n ≥ 4. How do Weyl curvature operators look like?

Proposition 3.2.1.9. If F and G are self-adjoint endomorphisms of V with
vanishing trace and FG+GF = 0 then F ∧G is an algebraic Weyl curvature
operator.
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Beweis. Using the formula

2F ∧G = (F +G) ∧ (F +G)− F ∧ F −G ∧G.

and lemma 3.2.1.6, it follows that

W(F ∧G) = F ∧G− 1

(n− 1)(n− 2)
(〈F,G〉 − tr(F)tr(G))id∧2 V

+
1

n− 2
(FG+GF − tr(F)G− tr(G)F) ∧ idV

for all self-adjoint endomorphisms F and G of V . But

〈F,G〉 = tr(F∗G) = tr(FG) =
1

2
tr(FG + GF) = 0,

so

W(F ∧G) = F ∧G,

since we also have tr(F) = tr(G) = 0 by our assumptions.

Remark 3.2.1.10. If the dimension of V is greater then three it is always
possible to find self-adjoint endomorphisms F and G of V with vanishing
trace and FG+GF = 0, such that F ∧G 6= 0. Let {ei} be an orthonormal
basis of V and define F := e∗1 ⊗ e2 + e∗2 ⊗ e1, G := e∗3 ⊗ e4 + e∗4 ⊗ e3.

Now we turn our attention towards the question of irreducibility of the

summands appearing in the O(V)-invariant decomposition of LC
(∧2 V

)
.

As SCAL is 1-dimensional, it is clearly irreducible. What about RIC0?

Proposition 3.2.1.11. RIC0 is irreducible in any dimension.

Beweis. SO(V) acts on RIC0 via conjugation on the first wedge-factor. (ev-
ery element of RIC0 is of the form F ∧ id, with tr(F) = 0). Therefore, it
is sufficient to prove that Sym0 (V) is irreducible. We will prove this in an
extra lemma.

Lemma 3.2.1.12. If V is a Euclidean vector space of finite dimension n,
then Sym0 (V) is irreducible w.r.t. the canonical action of SO(V).

Beweis. If F is a self-adjoint endomorphism of V then we find an orthonor-
mal Basis {ei} of V and real numbers f1, f2, ..., fn such that F (ei) = fiei for
all i = 1, ..., n. Thus, we may write F in the form

F =

n−1∑
k=1

(
k∑
i=1

fi

)
(ek ⊗ ek − ek+1 ⊗ ek+1) + tr(F)en ⊗ en.
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If F has vanishing trace, this expression reduces to

F =

n−1∑
k=1

(
k∑
i=1

fi

)
(ek ⊗ ek − ek+1 ⊗ ek+1),

showing that F lies in the linear span of the set

M := {x∗ ⊗ x− y∗ ⊗ y : x, y ∈ V, ‖x‖ = ‖y‖ = 1, y ⊥ x} .

M is obviously SO(V)-invariant. And, since SO(V) is acting transitively on
the set of positively oriented orthonormal n-frames of V , it is also acting
transitively on M . This shows, that every SO(V)-invariant subspace U of
Sym0 (V) equals Sym0 (V), if it contains at least one element of M .
Let U be a proper SO(V)-invariant subspace of Sym0 (V) and pick some
F ∈ U \{0}. Then the range of F is greater than or equal to 2, otherwise, F
would be the zero map, since F is skew-adjoint. If the range of F equals 2,
then we are done. Since in this case, we get F = f1(e1 ⊗ e1 − e2 ⊗ e2) from
the equation from above. Thus, we have proved our claim, if we can show:
If U contains an element F of range m ≥ 3, then U contains an element F ′

of Rank m’ with 2 ≤ m′ < m.
Let F ∈ U be an element of range m. Then we have F =

∑m
i=1 fie

∗
i ⊗ ei,

with f1, ..., fm 6= 0. If M is even, then the map

F ′ := f1e1 ⊗ e1 +
m−1∑
i=2

fi+1ei ⊗ ei + f2em ⊗ em

is also an element of U and so is the difference

F − F ′ =
m−1∑
i=2

(fi+1 − fi)ei ⊗ ei + (f2 − fm)em ⊗ em.

If the range of F −F ′ is different from zero, then it lies between 2 and m-1.
If the range is zero, then f2 = f3 = ... = fm and we didn’t gain anything.
But, since F was assumed to be nonzero with vanishing trace, we get

fi = (m− 1)f1

for all i = 2, ..., n in this case. So we simply conjugate F with G ∈ SO(V)
which interchanges e1 with e2. Writing H := GFG−1, we get H − H ′ 6= 0
and hence, 2 ≤ range(H−H′) < m. Now we assume m to be odd:
In this case define

F ′ := f1e1 ⊗ e1 +
m−2∑
i=2

fi+1ei ⊗ ei + f2em−1 ⊗ em−1 − fmem ⊗ em.

Then, if F − F ′ = 0, then fm = 0, which is impossible, since the range of F
was assumed to be m. This shows that the range of F − F ′ lies between 2
and m− 1.
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What about the question of irreducibility of WEYL? If we consider the
action of O(V) on WEYL, the answer is “yes” in every dimension. If we
consider the action of SO(V) on WEYL instead, the answer depends on
the dimension of V . It turns out that WEYL is not SO(V)-irreducible in
dimension 4, but SO(V)-irreducible in any other dimension. The case n ≥ 5
requires some more work than we can do here. We refer to [4] Exposé IX
and [2] pp. 82-83 for the proof. The case n = 4 will be treated in section
3.2.2.

3.2.1.3 How does LC
(∧2 U

)
embed into LC

(∧2 V
)

if U is a Sub-

space of V ?

Next we want to see how LC
(∧2 U

)
embeds into LC

(∧2 V
)

, if U is a sub-

space of V . By now, we know that every algebraic curvature operator R on∧2 U is a linear combination of curvature operators of the form F ∧ G,
where F and G are self-adjoint endomorphisms of U . We simply define
ι(F ∧G) := F̃ ∧ G̃, where F̃ and G̃ are the standard embeddings of F and G
into the space of (self-adjoint) endomorphisms of V (F̃ = F ◦π, where π is the
orthogonal projection V → U). As one sees easily, ι is O(U)-equivariant and

isometric. But it does not preserve the irreducible splittings of LC
(∧2 U

)
and LC

(∧2 V
)

: id∧2 U is mapped to π∧π, and Rico(π∧π) 6= 0 ∈ LC
(∧2 V

)
.

At least one can say that ι maps the span
〈

id∧2 U

〉
⊆ LC

(∧2 U
)

to

SCAL ⊕ RIC0 ⊆ LC
(∧2 V

)
: The O(U)-equivariance of ι implies that the

image of
〈

id∧2 U

〉
under ι is a one dimensional O(U)-invariant subspace

in LC
(∧2 V

)
, so its projections to SCAL,RIC0 and WEYL will be O(U)-

invariant as well and at most one dimensional. This means that the Weyl
partW of π∧π is invariant under conjugation with elements of O(U), soW
must be zero by corollary 3.4.0.22.
A simple computation using lemma 3.2.1.6 shows that Ric(F̃ ∧ G̃) equals

˜Ric(F ∧G), which implies that ι preserves WEYL. Further, we get that ι

maps RIC0(U) ⊆ LC
(∧2 U

)
to SCAL⊕ RIC0 ⊆ LC

(∧2 V
)

.

3.2.1.4 The Bundle of Algebraic curvature Operators over a Rie-
mannian Manifold

Let (M, g) be a Riemannian manifold. Within each fiber of the vector

bundle of self-adjoint bundle maps
(∧2 TM, g∧2 TM

)
→
(∧2 TM, g∧2 TM

)
we have a subspace LC

(∧2 TpM, g∧2 TpM

)
of algebraic curvature operators

on
(∧2 TpM, g∧2 TpM

)
. The collection of all these spaces forms the vector
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bundle LC (M, g) of algebraic curvature operators on (M, g).

Proposition 3.2.1.13. LC (M, g) is a parallel subbundle of

Sym
(∧2 TM, g∧2 TM

)
Beweis. We have seen in section 1.4 that the map ρ :

∧2 TM→ so(TM),

ρ(xp ∧ yp) = gp(xp, ·)⊗ yp − gp(yp, ·)⊗ xp

is parallel w.r.t. the connection induced by the Levi-Civita connection. Thus,
the first Bianchi identity is a parallel condition.

3.2.2 Curvature and Dimension

The structure of the space of algebraic curvature operators LC
(∧2 V

)
depends on the dimension of the underlying vector space V . For exam-

ple, we have LC
(∧2 V

)
= 0 if the dimension of V is less than 2, and

LC
(∧2 V

)
= SCAL, if dimV = 2, as LC

(∧2 V
)

must be one-dimensional

in this case (see proposition 3.2.1.8).

3.2.2.1 Curvature in Dimension n=3

In dimension three, each algebraic curvature operator is completely deter-
mined by its Ricci curvature:
An easy computation shows that if Ric(R) is diagonal w.r.t. the orthonormal
basis (e1, e2, e3) with eigenvalues λ1, λ2 and λ3, then R is diagonal w.r.t. the
orthonormal basis (e1∧e2, e2∧e3, e3∧e1) with eigenvalues tr(R)−λ3, tr(R)−
λ1, and tr(R) − λ2, respectively. This implies that R = 0 if Ric(R) = 0
(tr(R) = 1

2tr(Ric(R))), so there can be no Weyl curvature in dimension 3

and we get LC
(∧2 V

)
= SCAL⊕ RIC0.

Recall that remark 3.2.1.10 tells us, that there is always Weyl curvature in
dimension greater than 3. The case dimV = 4 is special, since WEYL is not
irreducible in this case.

3.2.2.2 Curvature in Dimension n=4

Let V be an oriented Euclidean vector space of dimension 4. As we have
seen in theorem 1.2.0.8,

∧2 V splits as a Lie algebra as the direct sum of the
±-eigenspaces

∧± V of the Hodge ∗-operator. This has certain consequences
concerning the structure of the space of algebraic curvature operators: The
curvature operators of traceless Ricci type will interchange the eigenspace of
the Hodge ∗-operator and the space of algebraic Weyl curvature operators
will split orthogonally into two irreducible subspaces WEYL+ and WEYL−.
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Proposition 3.2.2.1. The traceless Ricci part of any algebraic curvature
operator R on

∧2 V interchanges
∧+ V and

∧− V .

Beweis. Pick an algebraic curvature operatorR of traceless Ricci type. Then
R has the form R = F ∧ id, where F ∈ Sym0 (V) is a self-adjoint endomor-
phism of V with vanishing trace. Let (e1, e2, e3, e4) be a positively oriented
eigenbasis of F and write F =

∑
i fie

∗
i ⊗ ei, fi ∈ R the eigenvalues of F .

Then e1 ∧ e2 + e3 ∧ e4 lies in
∧+ V and

2F ∧ id(e1 ∧ e2 + e3 ∧ e4) = (f1 + f2)e1 ∧ e2 + (f3 + f4)e3 ∧ e4

= (f1 + f2)e1 ∧ e2 − (f1 + f2)e3 ∧ e4

= (f1 + f2)(e1 ∧ e2 − e3 ∧ e4),

so the image of e1 ∧ e2 + e3 ∧ e4 under F ∧ id lies in
∧− V . The other

eigenvectors of the Hodge ∗-operator may be treated in exactly the same
way.

Let U ⊆ V be a three-dimensional subspace. Using the Lie algebra iso-
morphisms ι± :

∧2 U →
∧± V : ε 7→ 1

2(ε ± ∗ε) (compare theorem 1.2.0.8)

and the orthogonal projections π± :
∧2 V →

∧± V we can turn any self-
adjoint linear operator F on

∧2 U into a self-adjoint endomorphism F+ of∧2 V , which preserves
∧+ V and satisfies

∧− V ⊆ kerF+, letting

F+ := ι+ ◦ F ∧ id ◦ (ι+)−1 ◦ π+.

Analogously, we may define

F− := ι− ◦ F ∧ id ◦ (ι−)−1 ◦ π−.

Straight forward computations, which will be done in the following lemma,
show that F+ and F− are algebraic curvature operators on

∧2 V if and only
if F ∧ idU is an algebraic curvature operator of traceless Ricci type on

∧2 U
and that F+ and F− are actually Weyl curvature operators in this case.
(They have vanishing trace and preserve

∧+ V and
∧− V , so their traceless

Ricci parts must vanish by proposition 3.2.2.1.)
So let us define

WEYL± :=
{

F± : F ∧ idU ∈ RIC0(
∧2 U)

}
.

Lemma 3.2.2.2. F+ and F− are algebraic curvature operators if and only if
F : U → U is self-adjoint with vanishing trace, i.e. if F ∧ idU ∈ RIC0(

∧2 U).

Beweis. We only prove the statement for F+. The proof of the other state-
ment is almost the same.
First, we show that F+ is self-adjoint if and only if F is self-adjoint:
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Let (e1, e2, e3, e4) be a positively oriented orthonormal basis of V , such that
U = 〈e1, e2, e3〉 and Fei == fiei for i = 1, 2, 3. Then

π+(ei ∧ ej) =
1

2
(ei ∧ ej + ∗(ei ∧ ej))

for all i, j. Thus,

F+(e1 ∧ e2 + ∗(e1 ∧ e2)) = 2(f1 + f2)(e1 ∧ e2 + ∗(e1 ∧ e2)),

F+(e1 ∧ e3 + ∗(e1 ∧ e3)) = 2(f1 + f3)(e1 ∧ e3 + ∗(e1 ∧ e3))

and

F+(e2 ∧ e3 + ∗(e2 ∧ e3)) = 2(f2 + f3)(e2 ∧ e3 + ∗(e2 ∧ e3)),

showing that F+ is self-adjoint, if F is self-adjoint.
Now, we prove the other direction. If F+ is self-adjoint, then the restriction
of F+ to

∧+ V is diagonal in an basis of the form {e1 ∧ e2 + ∗(e1 ∧ e2), e1 ∧
e3 +∗(e1∧e3), e2∧e3 +∗(e2∧e3)}, where {e1, e2, e3} is an orthonormal basis
of U and (e1, e2, e3, e4) is a positively oriented orthonormal basis of V . Now
we have

F+(e1 ∧ e2 + ∗(e1 ∧ e2)) = f+
1,2(e1 ∧ e2 + ∗(e1 ∧ e2)),

and, as an easy computation shows,

F+(e1 ∧ e2 + ∗(e1 ∧ e2)) = F ∧ id(e1 ∧ e2) + ∗(F ∧ id(e1 ∧ e2)).

This gives

f+
1,2e1∧e2−

1

2
(Fe1∧e2+e1∧Fe2)+∗(f+

1,2e1∧e2−
1

2
(Fe1∧e2+e1∧Fe2)) = 0.

This implies that f+
1,2e1∧e2− 1

2(Fe1∧e2+e1∧Fe2) lies in the−1-eigenspace of
the Hodge ∗-operator. Hence, this sum must be 0, for F preserves the linear
span of e1, e2 and e3. We get

1

2
((f+

1,2e1 − Fe1) ∧ e2) + e1 ∧ (f+
1,2e2 − Fe2) = 0

which gives

Fe1 = f1e1, F e2 = f2e2 and f+
1,2 =

f1 + f2

2
.

Analogously, we get Fe3 = f3e3. Hence, F is self-adjoint.

We are left showing that F+ is an algebraic curvature operator if and
only the self-adjoint map F has vanishing trace:
It is clear that B(F+)(x, y)y = 0 for all x, y ∈ V , no matter whether F has
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vanishing trace or not. We treat the other cases:
Keeping the notation from above, we compute

(F+)ρ(e1, e2)e3 = −1

2
ρ(ι+(F ∧ id((ι+)−1(e1 ∧ e2 + e3 ∧ e4))))(e3)

= −ρ(ι+(F ∧ id(e1 ∧ e2)))(e3)

= −1

2
(f1 + f2)ρ(ι+(e1 ∧ e2))(e3)

= −1

4
(f1 + f2)ρ(e1 ∧ e2 + e3 ∧ e4)(e3)

= −1

4
(f1 + f2)e4

In the same way we get

(F+)ρ(e2, e3)e1 = −1

4
(f2 + f3)e4

and

(F+)ρ(e3, e1)e2 = −1

4
(f3 + f1)e4,

showing that the sum of these terms equals

−1

4
(f1 + f2 + f3)e4 = −1

4
tr(F)e4

Moreover, we have

(F+)ρ(e1, e2)e4 = −1

2
ρ(ι+(F ∧ id((ι+)−1(e1 ∧ e2 + e3 ∧ e4))))(e4)

= −ρ(ι+(F ∧ id(e1 ∧ e2)))(e4)

= −1

2
(f1 + f2)ρ(ι+(e1 ∧ e2))(e4)

= −1

4
(f1 + f2)ρ(e1 ∧ e2 + e3 ∧ e4)(e4)

=
1

4
(f1 + f2)e3,

(F+)ρ(e2, e4)e1 =
1

2
ρ(ι+(F ∧ id((ι+)−1(e1 ∧ e3 − e2 ∧ e4))))(e1)

= ρ(ι+(F ∧ id(e1 ∧ e3)))(e1)

=
1

2
(f1 + f3)ρ(ι+(e1 ∧ e3))(e1)

=
1

4
(f1 + f3)ρ(e1 ∧ e3 − e2 ∧ e4)(e1)

=
1

4
(f1 + f3)e3
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and

(F+)ρ(e4, e1)e2 =
1

2
ρ(ι+(F ∧ id((ι+)−1(e1 ∧ e4 + e2 ∧ e3))))(e2)

= ρ(ι+(F ∧ id(e2 ∧ e3)))(e2)

=
1

2
(f2 + f3)ρ(ι+(e2 ∧ e3))(e2)

=
1

4
(f2 + f3)ρ(e1 ∧ e4 + e2 ∧ e3)(e2)

=
1

4
(f2 + f3)e3,

so their sum equals

1

4
(f1 + f2 + f3)e3 =

1

4
tr(F)e3

This shows

B(F+)(e1, e2)e3 = −1

4
tr(F)e4

and

B(F+)(e1, e2)e4 =
1

4
tr(F)e3

Analogously, we may compute

B(F+)(e1, e3)e4 = −1

4
tr(F)e2

and

B(F+)(e2, e3)e4 =
1

4
tr(F)e1.

Hence, F+ satisfies the first Bianchi identity if and only if tr(F) = 0 and the
claim follows.

Corollary 3.2.2.3. WEYL± ∼= Sym0

(∧±V
)

Beweis. RestrictingW± ∈WEYL± to
∧± V , we get an element of Sym0

(∧±V
)
.

The claim follows since both spaces are 5-dimensional.

The following proposition shows that WEYL decomposes orthogonally
as the direct sum of the SO(V)-irreducible subspaces WEYL+ and WEYL−.

Proposition 3.2.2.4. In dimension 4 any algebraic Weyl curvature opera-
tor W on

∧2 V is of the form

W =W+ +W−,

where W± ∈ WEYL± and therefore preserves the splitting
∧+ V ⊕

∧− V .
Moreover, WEYL+ and WEYL− are SO(V) irreducible subspaces of WEYL.
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Beweis. In dimension 4, the space of algebraic Weyl curvature operators has
dimension 10. WEYL+ and WEYL− are both 5-dimensional and perpendic-
ular to each other, so they sum up to WEYL. It is easy to see that WEYL+

and WEYL− are SO(V)-invariant subspaces of WEYL. Thus, we are left
to show that these spaces are SO(V)-irreducible. Actually, we have that
WEYL± = Sym0

(∧±V
)
, so it is irreducible w.r.t. the action of SO(

∧±V)

on Sym
(∧±V

)
. The claim follows, since we may view SO(

∧±V) ⊆ SO(V)
as a subgroup. More precisely, using the notation of corollary 1.2.0.10, we
have that the pre-image of SO(

∧±V) under ϕ acts irreducibly on WEYL±.

Combining the results from above, we can say that every algebraic cur-
vature operator R on

∧2 V decomposes SO(V)-irreducibly into its SCAL-,
RIC0-, WEYL+- and WEYL−-part,

R =
1

6
trRid + Ric0(R) ∧ id + W+(R) + W−(R),

where W±(R) := W(R) ◦ π±, W(R) the Weyl curvature of R and π± :∧2 V →
∧± V the orthogonal projection. Note that the projections π± are

definitely not algebraic curvature operators. We formulate this fact in an
extra lemma:

Lemma 3.2.2.5. The orthogonal projections π±
∧2 V →

∧± v ⊆ ∧2 V
onto the eigenspaces of the Hodge ∗-operator do not belong to the space of
algebraic curvature operators.

Beweis. If π± was actually an algebraic curvature operator, we could de-
compose it according to the equation from above. Now, π± preserves

∧± V ,
which forces Ric0(π±) to be zero, so we get

π± =
1

2
id + W(π).

This implies W∓(π±) = −1
2π
∓, a contradiction.

Proposition 3.2.2.6. WEYL is O(V)-irreducible in dimension 4.

Beweis. Let U ⊆WEYL be an O(V)-invariant subspace, U 6= {0}. Then U
is also SO(V)-invariant. From U 6= 0 we conclude that U contains WEYL+

or WEYL−. W.l.o.g, we assume WEYL+ ⊆ U. Let R ∈ WEYL+. Pick
G ∈ O(V) with det(G) = −1. Then, by lemma 1.2.0.9, G interchanges the
eigenspaces of the Hodge -operator

∧+ V and
∧− V . Thus, G∧G◦R◦ (G∧

G)−1 is an element of WEYL−. This implies U = WEYL.
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3.2.2.3 Curvature in Dimension n≥5

In dimension n ≥ 5, the space of algebraic Weyl curvature operators is
irreducible w.r.t. the action of SO(V). We won’t prove this fact in our text.
We refer to [4] Exposé IX and [2] pp. 82-83 for the proof instead.

Theorem 3.2.2.7. If the dimension of V is greater than four, then every
algebraic Weyl curvature operator is of the form

m∑
i=1

Fi ∧Gi,

where Fi and Gi are self-adjoint endomorphisms of V with vanishing trace
and FiGi +GiFi = 0 for all i = 1, ...,m, m ∈ N.

Beweis. The bilinear map β : Sym (V)× Sym (V)→WEYL,

β(F,G) := W (F ∧G),

is SO(V)-equivariant. So it maps SO(V)-invariant subsets of Sym (V) ×
Sym (V) to SO(V)-invariant subsets of WEYL. Since WEYL is irreducible
if dimV > 4 each of its nonempty SO(V)-invariant subsets N 6= {0} spans
WEYL. Thus, it is sufficient to find an SO(V)-invariant subset M 6= {0} of
Sym (V)× Sym (V) with β(M) 6= 0.
Let M := {(F,G) ∈ Sym (V)× Sym (V) : FG + GF = 0} . M is obvious-
ly invariant under the action of SO(V). Further, by remark 3.2.1.10 and
dimV > 4, we have that M and β(M) are nonempty.

Remark 3.2.2.8. Actually we have shown more: Take F and G of V as in
3.2.1.10. Then the SO(V)-orbit of F ∧G spans WEYL. It follows that every
algebraic Weyl curvature operator W is of the form

W =
m∑

i=1

wigi.F ∧G,

where m = dim WEYL, g1, ..., gm ∈ SO(V) and wi ∈ R.

3.2.3 The 1. Bianchi Identity and Alternative Characteriza-
tions of Curvature Operators

In this subsection we give two alternative characterizations of algebraic cur-
vature operators, one using the #-product, the other using the representa-
tion ρ :

∧2 V → so(V ), eigenvalues and orthonormal eigenbasis. The main
difference to the the definition from above is, that these characterizations
do not use (3, 1)-tensors on V . They only use data of the endomorphisms
under consideration and

∧2 V . At the end, this gives a more precise pic-
ture of curvature operators in general and much more flexibility in further
computations concerning algebraic curvature operators.
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Theorem 3.2.3.1. If R is a self-adjoint endomorphism of
∧2 V which is

diagonal in an orthonormal basis {εi} of
∧2 V , i.e. R =

∑
i λiε

∗
i⊗εi, λi ∈ R,

then R is an algebraic curvature operator if and only if

R =
∑
i

λiρ(εi) ∧ ρ(εi)

Beweis. Let R =
∑

i λiε
∗
i ⊗ εi be an algebraic curvature operator and

u, v, x, y ∈ V . Then, using Lemma 1.1.0.3 and the first Bianchi identity,
we compute

〈Rx ∧ y, u ∧ v〉 = 〈Rρ(y, x)u, v〉 = −〈Rρ(x, u)y, v〉 − 〈Rρ(u, y)x, v〉
= 〈ρ(Rx ∧ u)y, v〉 − 〈ρ(Ry ∧ u)x, v〉

=
∑
i

〈ρ(〈Rx ∧ u, εi〉 εi)y, v〉 − 〈ρ(〈Ry ∧ u, εi〉 εi)x, v〉

=
∑
i

〈ρ(〈x ∧ u,Rεi〉 εi)y, v〉 − 〈ρ(〈y ∧ u,Rεi〉 εi)x, v〉

=
∑
i

λi (〈〈x ∧ u, εi〉 ρ(εi)y, v〉 − 〈〈y ∧ u, εi〉 ρ(εi)x, v〉)

=
∑
i

λi (〈〈u, ρ(εi)x〉 ρ(εi)y, v〉 − 〈〈u, ρ(εi)y〉 ρ(εi)x, v〉)

=
∑
i

λi (〈〈ρ(εi)x, u〉 ρ(εi)y − 〈ρ(εi)y, u〉 ρ(εi)x, v〉)

=
∑
i

λi 〈ρ (ρ(εi)x ∧ ρ(εi)y)u, v〉

=

〈(∑
i

λiρ(εi) ∧ ρ(εi)

)
x ∧ y, u ∧ v

〉

Now let R =
∑

i λiρ(εi) ∧ ρ(εi) be given and x, y, z ∈ V . We have to check
the 1. Bianchi identity.

Rρ(x, y)z = −
∑
i

λiρ(ρ(εi)x ∧ ρ(εi)y)z

= −
∑
i

λi(〈ρ(εi)x, z〉 ρ(εi)y − 〈ρ(εi)y, z〉 ρ(εi)x)

= −
∑
i

λi 〈εi, x ∧ z〉 ρ(εi)y − λi 〈εi, y ∧ z〉 ρ(εi)x

= −
∑
i

ρ(〈x ∧ z, λiεi〉 εi)y +
∑
i

ρ(〈y ∧ z, λiεi〉 εi)x

= −ρ(Rx ∧ z)y + ρ(Ry ∧ z)x
= −Rρ(z, x)y −Rρ(y, z)x
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Remark 3.2.3.2. Theorem 3.2.3.1 is somehow remarkable, since every ρ(εi)
is skew-adjoint. And if F : V → V is skew-adjoint, then it is generally not
true, that F ∧ F is an algebraic curvature operator.

Corollary 3.2.3.3. Every algebraic curvature operator R of range 1 has
the form

R = x∗ ∧ y∗ ⊗ x ∧ y

with x, y ∈ V .

Beweis. Pick an algebraic curvature operator R with range equal to one. R
has the form

R = ε∗ ∧ ε

for some suitable ε ∈
∧2 V . Now, theorem 3.2.3.1 asserts that

ε∗ ∧ ε = ρ(ε) ∧ ρ(ε).

This implies that the range of ρ(ε) must be equal to 2, since

1. for any endomorphism F of V holds
∧2 im(F) ⊆ im(F ∧ F), telling us

that the dimension of im(ρ(ε)) cannot be greater that 2, and

2. skew-adjoint endomorphims of V with range lower than two are nec-
essarily zero

From this we conclude that ρ(ε) takes the form

ρ(ε) = x∗ ⊗ y − y∗ ⊗ x

for some x, y ∈ V which tells us

ε = x ∧ y.

Now the the claim follows using the last proposition once more.

The following theorem is due to C. Böhm and B. Wilking [5]. We will see
later, that the identity below is not only a consequence of the first Bianchi
identity, but it is actually equivalent to the 1. Bianchi identity.

Theorem 3.2.3.4. Any algebraic curvature operator R satisfies the Böhm-
Wilking identity:

id#R = Ric(R) ∧ id−R.

Moreover, we have

1. R ∈ SCAL⇒ id#R = (n− 2)R

2. R ∈ RIC0 ⇒ id#R = n−4
2 R

3. R ∈WEYL⇒ id#R = −R
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and the map R 7→ id#R restricts to an isomorphism of LC
(∧2 V

)
, if

dimV 6= 2, 4.

Beweis. We will use Lemma 1.1.0.3, Proposition 2.1.0.15 and the 1. Bianchi
identity. Let R be an algebraic curvature operator and {ei} be an orthonor-
mal basis of V . Then

id#R(x ∧ y) =
1

2

∑
i

[x ∧ ei,Ry ∧ ei]− [Rx ∧ ei, y ∧ ei]

=
∑
i

− (ρ(Ry ∧ ei) ∧ id) (x ∧ ei) + (ρ(Rx ∧ ei) ∧ id)(y ∧ ei)

=
1

2
(x ∧ Ric(R)y) + Ric(R)x ∧ y)

+
1

2

∑
i

(Rρ(y, ei)x−Rρ(x, ei)y) ∧ ei

= Ric(R) ∧ id(x ∧ y)− 1

2

∑
i

(Rρ(x, y)ei) ∧ ei

= (Ric(R) ∧ id−R)x ∧ y

Now we compute the eigenvalues of the O(V )-equivariant linear map

R 7→ id#R

using the Böhm-Wilking identity.

1. Pick R ∈ SCAL. Then R = λid for some λ ∈ R. Now, 1. follows from
Proposition 2.1.0.16

2. If R ∈ RIC0 then R is of the form F ∧ id, where F is self-adjoint and
tr(F) = 0. So 2. follows using Lemma 3.2.1.6.

3. R ∈ WEYL implies Ric(R) = 0, so we get id#R = −R in this case,
as claimed.

Now it is also clear that our map restricts to an isomorphism of the space of
algebraic curvature operators, provided that the dimension of V is neither
2 nor 4.

One can proof that, except in dimension 2 an 4, the map R 7→ id#R is
indeed an isomorphism on the whole space of self-adjoint endomorphisms of∧2 V :

Proposition 3.2.3.5. If a self-adjoint endomorphism R of
∧2 V is perpen-

dicular to the space of algebraic curvature operators, then

id#R = 2R
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Beweis. For any self-adjoint endomorphism R of
∧2 V define a (3,1)-tensor

σ(R) of V as follows:

σ(R)(x, y)z := Rρ(x, y)z +Rρ(x, z)y

1. If R is self-adjoint and perpendicular to the space of algebraic curva-
ture operators, then σ(R) = 0:
Let S ∈ LC(

∧2 V ) be arbitrary and {ei} an orthonormal basis of V .
Then, applying the 1. Bianchi identity, we get

0 = 4 〈R,S〉 =
∑
i,j,k

〈Rρ(ei, ej)ek,Sρ(ei, ej)ek〉

= −
∑
i,j,k

〈Rρ(ei, ej)ek,Sρ(ej , ek)ei + Sρ(ek, ei)ej〉

Shifting the indices, we see that the right hand side equals

−
∑
i,j,k

〈Rρ(ek, ei)ej +Rρ(ej , ek)ei,Sρ(ei, ej)ek〉

By lemma 1.1.0.3 this is the same as

−
∑
i,j,k

〈(Rρ(ek, ei)ej −Rρ(ek, ej)ei) ∧ ek,Sei ∧ ej〉

Now let S be the orthogonal projection onto the linear span of ei ∧ ej .
It is clear that S is an algebraic curvature operator. Then the equation
from above reads

−
∑
k

〈(Rρ(ek, ei)ej −Rρ(ek, ej)ei) ∧ ek, ei ∧ ej〉

So we get

0 =
∑
k

(〈(−Rρ(ek, ej)ei) ∧ ek, ei ∧ ej〉+ 〈(Rρ(ek, ei)ej) ∧ ek, ei ∧ ej〉)

= −2 〈Rρ(ei, ej)ej , ei〉

using the definition of 〈· , ·〉 on
∧2 V in the last step.

The orthonormal basis {ei} and projection S were chosen arbitrarily.
Thus, we get

〈Rρ(x, y)y, x〉 = 0,

whenever x and y are perpendicular to each other. Now, since the
linear map x 7→ Rρ(x, y)y is self-adjoint for any y ∈ V , we get that
the maps x 7→ Rρ(x, y)y must vanish identically, no matter which
y ∈ V we choose. Now 1. follows from

σ(R)(x, y)y = 2Rρ(x, y)y = 0
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for all x and y in V and the formula

σ(R)(x, y)z =
1

2
(σ(R)(x, y + z)(y + z)− σ(R)(x, y)y − σ(R)(x, z)z),

which is true for all x, y and z in V .

2. If R lies in the kernel of σ, then id#R = 2R:
Let x, y ∈ V be arbitrary. Using lemma 1.1.0.3 we compute:

id#Rx ∧ y =
1

2

∑
k

[x ∧ ek,Ry ∧ ek] + [Rx ∧ ek, y ∧ ek]

=
∑
k

−(ρ(Ry ∧ ek) ∧ id)(x ∧ ek) + (ρ(Rx ∧ ek)(y ∧ ek))

=
1

2

∑
k

(Rρ(y, ek)x) ∧ ek − (Rρ(x, ek)y) ∧ ek + Ric(R) ∧ id(x ∧ y)

=
1

2

∑
k

(Rρ(ek, x)y −Rρ(ek, y)x) ∧ ek

=
∑
k

Rρ(ek, x)y ∧ ek

Now pick some u, v ∈ V . Then:

〈id#Rx ∧ y, u ∧ v〉 =

〈∑
k

Rρ(ek, x)y ∧ ek, u ∧ v

〉
=
∑
k

(〈Rρ(ek, x)y, u〉 〈ek, v〉 − 〈Rρ(ek, x)y, v〉 〈ek, u〉)

= 〈Rρ(u, y)x, v〉 − 〈Rρ(v, y)x, u〉
= 2 〈Rρ(u, y)x, v〉

since u 7→ Rρ(u, y)x is skew-adjoint. Using σ(R) = 0 we get:

2 〈Rρ(u, y)x, v〉 = −2 〈Rρ(y, u)x, v〉 = 2 〈Rρ(y, x)u, v〉 = 2 〈Rx ∧ y, u ∧ v〉

and so we are done.

Now we are ready to express the orthogonal projection onto the the
space of algebraic curvature operators using the #-product and the Ricci
curvature operator. From this we will get that the Böhm-Wilking identity
is equivalent to the 1- Bianchi identity as a by-product.

Theorem 3.2.3.6. Let π : Sym(
∧2 V )→ LC

(∧2 V
)

and π⊥ : Sym(
∧2 V )→

LC
(∧2 V

)⊥
be the orthogonal projections. Then
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1. π(R) = 1
3(2R− id#R+Ric(R) ∧ id) and

2. π⊥(R) = 1
3(R+ id#R−Ric(R) ∧ id).

Beweis. By the previous proposition, 2R− id#R is an algebraic curvature
operator. As RicR∧ id is an algebraic curvature operator as well, it follows

that π maps Sym
(∧2 V

)
to LC

(∧2 V
)

.

Now, if R is an algebraic curvature operator, then we get π(R) = R, us-
ing the Böhm-Wilking identity. Thus, π is a projection. Further, if R is
perpendicular to the space of algebraic curvature operators, we get that
2R− id#R = 0 and Ric(R) = 0, which implies π(R) = 0 and the first claim
follows.
The second formula follows directly from π⊥ = id− π.

We conclude

Theorem 3.2.3.7. The Böhm-Wilking identity is equivalent to the 1. Bianchi
identity. More precisely, a self-adjoint endomorphism R of

∧2 V is an alge-
braic curvature operator if and only if id#R = Ric(R) ∧ id−R.

�

We close this section with an application of the stuff of this subsection to
the 4-dimensional case. As we have seen in subsection 3.2.2.2, any algebraic
curvature operator of traceless Ricci type interchanges the eigenspaces

∧+ V
and

∧− V of the Hodge ∗-operator, while they are preserved by Weyl cur-
vature operators and, which is a rather trivial observation, by the elements
of SCAL.

Proposition 3.2.3.8. Let dimV = 4 and R be a self-adjoint endomorphism
of
∧2 V . Then

1. If R interchanges the eigenspaces of the Hodge ∗-operator, then R is
an algebraic curvature operator of traceless Ricci type.

2. If R preserves the eigenspaces of the Hodge ∗-operator and has van-
ishing trace, then R is an algebraic Weyl curvature operator.

Beweis. Let {εi} be an orthonormal basis of
∧2 V , such that ε1, ε2, ε3 ∈∧+ V and ε4, ε4, ε6 ∈

∧− V . Then we get

[εi, εj ] = 0,

whenever i ∈ {1, 2, 3} and j ∈ {4, 5, 6}, since
∧+ V and

∧− V are ideals in∧2 V .
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1. Since R interchanges the ideals
∧+ V and

∧− V , we get

[Rεi, εj ] = 0,

whenever i, j ∈ {1, 2, 3} or i, j ∈ {4, 5, 6}. This implies

id#R = 0

and the claim follows.

2. R preserves the ideals
∧+ V and

∧− V , so we may write it as a di-
rect sum R+ + R− with R± :

∧± V → ∧± V . Thus, the traceless
Ricci curvature part of R± vanishes by proposition 3.2.2.1. Hence, the
traceless Ricci curvature part of R must vanish either. Now, tr(R±)
is O(V)-invariant, while the splitting

∧2 V =
∧+ V ⊕

∧− V is only
SO(V)-invariant. We use this to show tr(R±) = 0. Then the claim will
follow from Sym

(∧±V
)

= WEYL±.
Let G ∈ O(V) be an orthogonal transformation with det(G) = −1.
Using lemma 1.2.0.9, it follows that G ∧ G interchanges

∧+ V and∧− V . This implies tr(R+) = 0 and tr(R−) = 0, since R+|∧− V = 0

and R−|∧+ V = 0.

3.2.4 Relating Algebraic Curvature Operators to Subalge-
bras of

∧2 V

Every endomorphism R on
∧2 V - and in particular every algebraic cur-

vature operator - gives rise to a Lie subalgebra hR of
∧2 V , which is by

definition the smallest Lie subalgebra of
∧2 V containing the image of R,

hR :=
⋂

im(R)⊆h

h.

We call hR the holonomy algebra of R. The following proposition relates
the holonomy algebra of an algebraic curvature operator to the Lie algebra
of the holonomy group of its geometric realization.

Proposition 3.2.4.1. Let R be an algebraic curvature operator with ge-
ometric realization (U, g). Let hol ⊆ so(V ) denote the Lie algebra of the
holonomy group Hol0(U, g) based at the point 0 ∈ U . Then

ρ(hR) ⊆ hol.

Beweis. Recall that the isomorphism ρ :
∧2 V 7→ so(V ) was defined on

generators x ∧ y of
∧2 V by

ρ(x ∧ y) := 〈x, ·〉 ⊗ y − 〈y, ·〉 ⊗ x.
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ρ maps hR to the subalgebra h which is generated by the subset

{Rρ(x, y) : x, y ∈ V } ⊆ so(V ).

By theorem 3.1.3.2, we have that Rρ equals the curvature tensor Rg of g
in 0. Thus, the claim follows from the theorem of Ambrose and Singer [1],
which also is stated in the appendix B.4.

Now, we may ask, whether a given Lie subalgebra h of
∧2 V is the

holonomy algebra of a suitable algebraic curvature operator or not. In view
of corollary 3.2.3.3 this can’t be true for every subalgebra, if the dimension
of V is at least 4. To see this, simply take a one dimensional subspace h
of
∧2 V , which is always a subalgebra. If h was the holonomy algebra of

an algebraic curvature operator R, h = hR, then R must have range equal
to 1. Now, corollary 3.2.3.3 implies that h is generated of an element of
the form x ∧ y, with x, y ∈ V . Thus, if the dimension of V is at least 4,
we may construct counter examples in the following way: Take a linearly
independent set {u, v, x, y} ⊆ V , define ε := x∧y+u∧v and h := 〈ε〉. Then
h is definitely not the holonomy algebra of an algebraic curvature operator,
since it doesn’t contain elements of the form x ∧ y, x, y ∈ V .
We note

Theorem 3.2.4.2. Let h be a one dimensional Lie subalgebra of
∧2 V and

π :
∧2 V →

∧2 V the orthogonal projection onto h. Then we have h = hR for
an algebraic curvature operator R if and only if π is an algebraic curvature
operator.

The theorem from above is false, if we consider Lie subalgebras of higher
dimensions. For example, in dimension 4, the orthogonal projections onto
the eigenspaces

∧± V of the Hodge ∗-operator (see theorem 1.2.0.8, where
we give the definition) do not belong to the space of algebraic curvature
operators (see lemma 3.2.2.5 for the proof), but we have

∧+ V = hR for
every nonzero algebraic curvature operator R ∈WEYL±. More precisely, if
R ∈ WEYL+ \ {0}, say, then 0 6= hR ⊆

∧+ V . As
∧+ V does not contain

nonzero elements of the form x ∧ y, x, y ∈ V , hR is at least 2-dimensional
by the previous theorem. But

∧± V is isomorphic to so(3) as a Lie algebra
by theorem 1.2.0.8, so it does not contain 2-dimensional Lie subalgebras.
Therefore, we get hR =

∧+ V for reasons of dimension.
This discussion shows that the question, whether a given Lie subalgebra of∧2 V is the holonomy algebra of an algebraic curvature operator or not, is
not trivial.
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3.2.5 Ricci Curvature

The Ricci curvature of a self-adjoint endomorphism R of
∧2 V was defined

using an orthonormal basis {ei} of V by the formula

Ric(R)x =
∑

i

Rρ(x, ei)ei.

Equivalently, we could have defined it by

〈Ric(R)x, y〉 = tr(z 7→ Rρ(z, x)y) =
∑

i

〈Rx ∧ ei, y ∧ ei〉 .

We will see now, that it is possible to describe the Ricci curvature Ric(R) of
any algebraic curvature operator R in terms of an orthonormal eigenbasis
and the corresponding eigenvalues of R itself, without using orthonormal
bases of V . We will use this representation of the Ricci curvature in 3.5.

Proposition 3.2.5.1. Let R be a self-adjoint endomorphism of
∧2 V , R =∑

i λiε
∗
i ⊗ εi. Then

1. Ric(R) = −
∑

i λiρ(εi)
2

2. Ric(R) ∧ id = −1
2

∑
i λiad2

εi
+
∑

i λiρ(εi) ∧ ρ(εi)

Beweis. Let R =
∑

i λiε
∗
i ⊗ εi be any self-adjoint endomorphism of

∧2 V ,
{ei} an orthonormal basis of V and x ∈ V . Then

Ric(R)x = −
∑
i

ρ(Rx ∧ ei)(ei) = −
∑
i,j

λjρ(ε∗j (x ∧ ei)εj)(ei)

= −
∑
i,j

λj 〈εj , x ∧ ei〉 ρ(εj)(ei) = −
∑
i,j

λj 〈ρ(εj)(x), ei〉 ρ(εj)(ei)

= −
∑
j

λjρ(εj)
2x

To prove the second formula, just recall that 2(id ∧ F)2 = id ∧ F2 + F ∧ F
and make use of the formula adε = 2ρ(ε) ∧ id, proved in lemma 1.1.0.3.

Remark 3.2.5.2. 1. Proposition 3.2.5.1, theorem 3.2.3.4 and theorem
3.2.3.1 imply that for algebraic curvature operators R =

∑
i λiε

∗
i ⊗ εi

holds

id#R = −1

2

∑
i

λiad2
εi

2. Proposition 3.2.5.1 implies∑
i

σiad2
εi

= 2
∑

i

σiρ(εi) ∧ ρ(εi)

for all self-adjoint endomorphisms S =
∑

i σiε
∗
i ⊗ εi, which are per-

pendicular to the space of algebraic curvature operators.
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3.3 The Ricci Vector Field

The Ricci vector field Φ arises naturally as the reaction term in the evolu-
tion equation of the curvature operator under the Ricci flow, see [11]. More
precisely, the evolution equation reads

∇ ∂
∂t
R = ∆R+ Φ(R),

where Φ(R) = 2(R2 +R#R). (See theorem C.2.0.9 for a more detailed de-
scription of the quantities in play and [24], where the evolution equation is
proved in coordinate-free way. ) First, we show that Φ preserves the space of
algebraic curvature operators by purely algebraic means and compute trace
and Ricci curvature along the Ricci vector field. After that we examine the
irreducible components of Φ(R) and express them in terms of the irreducible
components of R. Further, we discuss some situations, where some compo-
nents of Φ(R) vanish. We will see that it is sometimes possible to regain
knowledge about R from this.

3.3.1 The Ricci Vector Field on the Space of Algebraic Cur-
vature Operators

From the analytic viewpoint it is clear that Φ maps curvature operators to
curvature operators, since the algebraic properties of curvature operators
R carry over to their covariant derivatives of arbitrary order. But, also for
reasons of consistency, we want to establish this result in a purely algebraic
way.

Theorem 3.3.1.1. If R is an algebraic curvature operator on
∧2 V , so is

Φ(R).

Beweis. We have to check the 1. Bianchi identity, the rest is clear. Let {ei}
be an orthonormal basis of V . Using Lemma 1.1.0.3.1 we get

(R2)ρ(x, y)z =
1

2

∑
i

Rρ(Rρ(x, y)ei, ei)z

and proposition 2.1.0.15.2 gives

R#Rρ(x, y)z = −
∑
i

[Rρ(x, ei),Rρ(y, ei)] (z).

Then, applying the Bianchi map B to the sum of these terms, we get
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B(R2 +R#R)(x, y)z

=
∑
i

1
2R

ρ(Rρ(x, y)ei, ei)z −Rρ(x, ei)Rρ(y, ei)z +Rρ(y, ei)Rρ(x, ei)z
1
2R

ρ(Rρ(z, x)ei, ei)y −Rρ(z, ei)Rρ(x, ei)y +Rρ(x, ei)Rρ(z, ei)y
1
2R

ρ(Rρ(y, z)ei, ei)x−Rρ(y, ei)Rρ(z, ei)x+Rρ(z, ei)Rρ(y, ei)x

 .

Rearranging the terms we get

∑
i

 1
2R

ρ(Rρ(x, y)ei, ei)z +Rρ(x, ei)(Rρ(ei, y)z +Rρ(z, ei)y)
1
2R

ρ(Rρ(z, x)ei, ei)y +Rρ(y, ei)(Rρ(ei, z)x+Rρ(x, ei)z)
1
2R

ρ(Rρ(y, z)ei, ei)x+Rρ(z, ei)(Rρ(ei, x)y +Rρ(y, ei)x)

 .

Applying the 1. Bianchi identity to the terms in the second column gives

∑
i

1
2R

ρ(Rρ(x, y)ei, ei)z −Rρ(x, ei)Rρ(y, z)ei
1
2R

ρ(Rρ(z, x)ei, ei)y −Rρ(y, ei)Rρ(z, x)ei
1
2R

ρ(Rρ(y, z)ei, ei)x−Rρ(z, ei)Rρ(x, y)ei

 .

Now apply the 1. Bianchi identity to the terms in the first column and

rearrange the terms in the third to get

∑
i

−1
2R

ρ(ei, z)Rρ(x, y)ei − 1
2R

ρ(z,Rρ(x, y)ei)ei −Rρ(z, ei)Rρ(x, y)ei
−1

2R
ρ(ei, y)Rρ(z, x)ei − 1

2R
ρ(y,Rρ(z, x)ei)ei −Rρ(y, ei)Rρ(z, x)ei

−1
2R

ρ(ei, x)Rρ(y, z)ei − 1
2R

ρ(x,Rρ(y, z)ei)ei −Rρ(x, ei)Rρ(y, z)ei


which equals

− 1

2

∑
i

Rρ(z, ei)Rρ(x, y)ei +Rρ(z,Rρ(x, y)ei)ei
Rρ(y, ei)Rρ(z, x)ei +Rρ(y,Rρ(z, x)ei)ei
Rρ(y, ei)Rρ(z, x)ei +Rρ(x,Rρ(y, z)ei)ei



Now let v ∈ V be arbitrary. Then, using the symmetries of Rρ and the
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results from above, we compute

2
〈
B(R2 +R#R)(x, y)z, v

〉
=

tr (Rρ(x, y) ◦ (Rρ(·, v)z +Rρ(·, z)v))
tr (Rρ(z, x) ◦ (Rρ(·, v)y +Rρ(·, y)v))
tr (Rρ(y, z) ◦ (Rρ(·, v)x +Rρ(·, x)v))


= −

〈Rρ(x, y),Rρ(·, v)z +Rρ(·, z)v〉
〈Rρ(z, x),Rρ(·, v)y +Rρ(·, y)v〉
〈Rρ(y, z),Rρ(·, v)x+Rρ(·, x)v〉


= 0

Let us explain this computation step by step:
To see that the first step is correct, we compute the first row as an example:∑

i

〈Rρ(z, ei)Rρ(x, y)ei +Rρ(z,Rρ(x, y)ei)ei, v〉

=
∑
i

(〈Rρ(z, ei)Rρ(x, y)ei, v〉+ 〈Rρ(z,Rρ(x, y)ei)ei, v〉)

=
∑
i

(−〈Rρ(z, ei)v,Rρ(x, y)ei〉+ 〈Rρ(ei, v)z,Rρ(x, y)ei〉)

= −
∑
i

〈ei,Rρ(x, y)(Rρ(ei, z)v +Rρ(eiv)z)〉

= −tr (Rρ(x, y) ◦ (Rρ(·, v)z +Rρ(·, z)v)) .

In the second step we simply used the definition of the induced scalar product
on the space of endomorphisms of V and the fact that the map z 7→ Rρ(x, y)z
is skew-adjoint for all x, y ∈ V .
The last step now follows since the map z 7→ Rρ(z, x)y +Rρ(z, y)x is self-
adjoint for all x, y ∈ V and the spaces of skew-adjoint and self-adjoint linear
maps are perpendicular to each other.

Remark 3.3.1.2 (Translation to the bundle setting). As in subsection 1.4
and subsection 2.6, let M be a smooth manifold (possibly with boundary)
and (E, 〈· , ·〉)→ M× [0,T), T > 0, a Euclidean vector bundle with a metric
connection ∇. Following these subsections, we may consider Φ as a vertical
vector field on the bundle of endomorphism fields End(

∧2 E). Φ preserves

the parallel subbundle Sym
(∧2 E, 〈· , ·〉

)
of self-adjoint endomorphism fields

of
(∧2 E, 〈· , ·〉

)
and the last proposition tells us, that Φ even preserves the

parallel subbundle LC
(∧2 TM, 〈· , ·〉

)
of algebraic curvature operators. As

the usual multiplication of endomorphism fields is clearly parallel and the
#- product is parallel either, it follows that Φ is actually a parallel vertical

vector field on LC
(∧2 TM, g

)
.
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Next we consider the curvature quantities scal and Ric of Φ(R). The
derived formulas agree with the reaction terms in the evolution equations
of scal and Ric under the Ricci flow, which have been computed by R.S.
Hamilton in [10], [11]. This is actually not very surprising, since Φ is parallel.
But it is important. We will use these formulas in chapter 4, where we
examine the dynamics of the flow of Φ on the space of algebraic curvature
operators.

Theorem 3.3.1.3. For any algebraic curvature operator holds

1. tr(Φ(R)) = ‖Ric(R)‖2 and

2. Ric(Φ(R)) = 2
∑

iRρ(·, ei)Ric(R)(ei)
for any given orthonormal basis {ei} of V .

Beweis. 1. The following computation shows that if F is a self-adjoint
endomorphism of V , then

‖F ∧ id‖2 =
n− 2

4
‖F‖2 +

1

4
(tr(F))2.

Let {ei} be an orthonormal eigenbasis of F , i.e. Fei = fiei, fi ∈ R.
Then

‖F ∧ id‖2 =
∑
i<j

‖F ∧ id(ei ∧ ej)‖2 =
1

8

∑
i 6=j

(fi + fj)
2

=
1

8

∑
i

∑
j 6=i

f2
i + f2

j + 2fifj

=
1

8

∑
i

(n− 1)f2
i +

∑
j 6=i

f2
j

+
1

4

∑
i

fi
∑
j 6=i

fj

=
1

8

∑
i

(
(n− 2)f2

i + ‖F‖2
)

+
1

4

∑
i

fi(tr(F)− fi)

=
1

8

(
(n− 2) ‖F‖2 + n ‖F‖2

)
+

1

4

(
(tr(F)2 − ‖F‖2)

)
=
n− 2

4
‖F‖2 +

1

4
(tr(F))2.

Now let’s compute the trace of Φ(R). Using that the map R 7→ id#R
is self-adjoint, we get

tr(Φ(R)) = 〈Φ(R), id〉 = 2
〈
R2 +R#R, id

〉
= 2 〈R+ id#R,R〉 ,

which is equal to

2 〈Ric(R) ∧ id,R〉
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by the Böhm-Wilking identity. Thus,

2 〈Ric(R) ∧ id,R〉 = 2 〈Ric0(R) ∧ id,R〉+
2

n
tr(Ric(R))2

=
4

n− 2
‖Ric0(R) ∧ id‖2 +

2

n
tr(Ric(R))2

= ‖Ric(R)‖2 .

2. We will proof the following identities:

(a) Ric(R#R)x =
∑

iRρ(x, ei)Ric(R)(ei) +
∑

i,jRρ(ei, ej)Rρ(x, ej)ei

(b) Ric(R2)x = −1
2

∑
i,j

(
Rρ(ej, ei)

2x +Rρ(ei,Rρ(ei, ej)x)ej

)
(c) 2

∑
i,j Rρ(ei, ej)Rρ(x, ej)ei =

∑
i,j Rρ(ei, ej)2x

(d)
∑

i,j Rρ(ei,Rρ(ei, ej)x)ej = 0

Then the claim follows immediately combing (a), (b), (c) and (d). In
order to proof (b) and (d) we need the following lemma:

Lemma 3.3.1.4.
∑

i,j [Rρ(ei, ej),Rρ(·, ei)ej ] = 0

Beweis. Using the 1. Bianchi identity in the second step of the follow-
ing computation, we get

∑
i,j

[Rρ(ei, ej),Rρ(·, ei)ej ] = −
∑
i,j

[Rρ(ej , ei),Rρ(·, ei)ej ]

=
∑
i,j

[Rρ(ej , ei),Rρ(ei, ej)]

+
∑
i,j

[Rρ(ej , ei),Rρ(ej , ·)ei]

=
∑
i,j

[Rρ(ej , ei),Rρ(ej , ·)ei]

= −
∑
i,j

[Rρ(ej , ei),Rρ(·, ej)ei]

= −
∑
i,j

[Rρ(ei, ej),Rρ(·, ei)ej ] .
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(a) We have

Ric(R#R)x = −
∑
i

ρ(R#Rx ∧ ei)(ei)

= −
∑
i,j

ρ([Rx ∧ ej ,Rei ∧ ej ])(ei)

= −
∑
i,j

[Rρ(x, ej),Rρ(ei, ej)] (ei)

= −
∑
i,j

Rρ(x, ej)Rρ(ei, ej)(ei)

+
∑
i,j

Rρ(ei, ej)Rρ(x, ej)(ei)

=
∑
i

Rρ(x, ei)Ric(R)(ei)

+
∑
i,j

Rρ(ei, ej)Rρ(x, ej)ei.

(b) We have

Ric(R2)x = −
∑
i

ρ(R2x ∧ ei)(ei) = −
∑
i

ρ(R(Rx ∧ ei))(ei)

= −
∑
i

ρ(R(−1

2

∑
j

ρ(Rx ∧ ei)(ej) ∧ ej))(ei) (3.1)

by Lemma 1.1.0.3. So

Ric(R2)x =
1

2

∑
i,j

Rρ(Rρ(x, ei)ej, ej)ei

After applying the 1. Bianchi identity for two times, the right
hand side becomes

1

2

∑
i,j

Rρ(ej , ei)Rρ(ei, ej)x−
∑
i,j

Rρ(ej , ei)Rρ(ej , x)ei

−
∑
i,j

Rρ(ei,Rρ(ei, ej)x)ej +
∑
i,j

Rρ(ei,Rρ(ej , x)ei)ej

 .

Since the third term equals∑
i,j

Rρ(ej ,Rρ(ej , ei)x)ei
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we get

Ric(R2)x =
1

2

−∑
i,j

Rρ(ei, ej)2x+
∑
i,j

[Rρ(ej , ei),Rρ(ej , ·)ei)]x

−
∑
i,j

Rρ(ei,Rρ(ej , ei)x)ej

 .

By the previous lemma we have∑
i,j

[Rρ(ej , ei),Rρ(ej , ·)ei)]x = 0,

so

Ric(R2)x = −1

2

∑
i,j

Rρ(ei, ej)
2x−Rρ(ei,Rρ(ej, x)ei)ej.

(c) Applying the 1. Bianchi identity and the symmetries of Rρ, it
follows that∑

i,j

Rρ(ei, ej)Rρ(x, ej)ei =
∑
i,j

Rρ(ei, ej)Rρ(ei, ej)x

+
∑
i,j

Rρ(ei, ej)Rρ(x, ei)ej

=
∑
i,j

Rρ(ei, ej)2(ei, ej)x

−
∑
i,j

Rρ(ej , ei)Rρ(x, ei)ej

=
∑
i,j

Rρ(ei, ej)2(ei, ej)x

−
∑
i,j

Rρ(ei, ej)Rρ(x, ej)ei,

so

2
∑
i,j

Rρ(ei, ej)Rρ(x, ej)ei =
∑
i,j

Rρ(ei, ej)2x.

(d) The previous lemma implies∑
i,j

Rρ(ei,Rρ(ei, ej)x)ej =
∑
i,j

Rρ(ei, ej)Rρ(x, ei)ej
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Hence,

2
∑
i,j

Rρ(ei,Rρ(ei, ej)x)ej =
∑
i,j

Rρ(ei,Rρ(ei, ej)x)ej

+
∑
i,j

Rρ(ei, ej)Rρ(x, ei)ej

= −
∑
i,j

Rρ(Rρ(ei, ej)x, ei)ej

+
∑
i,j

Rρ(ei, ej)Rρ(x, ei)ej

=
∑
i,j

[Rρ(ei, ej),Rρ(·, ei)ej ] (x)

= 0,

where we used the lemma again.

Corollary 3.3.1.5. R ∈WEY L implies Φ(R) ∈WEY L, so the flow of Φ
preserves the space of Weyl curvature operators.

Beweis. Clear by theorem 3.3.1.3.

3.3.2 On the Irreducible Decomposition of Φ(R)

Now we are ready to describe the irreducible components of Φ(R) in terms
of the irreducible components of a given algebraic curvature operator R.
Decomposing the algebraic curvature operator R into its irreducible com-
ponents I ∈ SCAL, T ∈ RIC0 and W ∈WEYL, we see

Φ(R) = Φ(I) + Φ(T ) + Φ(W) + 2ϕ(I, T ) + 2ϕ(I,W) + 2ϕ(T ,W),

where
ϕ(R1,R2) := R1R2 +R2R1 + 2R1#R2

for any two endomorphisms R1,R2 of
∧2 V . ϕ is symmetric and satisfies

ϕ(R1,R2) =
1

2
(Φ(R1 +R2)− Φ(R1)− Φ(R2)).

This ensures that ϕ(R1,R2) is an algebraic curvature operator provided that
R1 and R2 are algebraic curvature operators. Further, using proposition
2.4.0.24, we see

Proposition 3.3.2.1. The trilinear map (R,S, T ) 7→ 〈ϕ(R,S), T 〉 is fully
symmetric.

Now we want to identify the irreducible components of Φ(R):
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3.3.2.1 The Trace Part of Φ(R)

It is clear that Φ(I) lies completely in SCAL. Theorem 3.3.1.3 tells us that
tr(Φ(T )) = ‖Ric(T )‖2 = ‖Ric0(T )‖2, so tr(Φ(R)) will depend on this term
either. Corollary 3.3.1.5 implies tr(Φ(W)) = 0. Using proposition 3.3.2.1 and
theorem 3.2.3.4, we see ϕ(I, T ) ∈ RIC0, ϕ(I,W) = 0 and tr(ϕ(T ,W)) =
〈id, ϕ(T ,W)〉 = 〈T , ϕ(id,W)〉 = 0. Thus,

tr(Φ(R)) = tr(Φ(I)) + tr(Φ(T )) = ‖Ric(I + T )‖2 .

This tells us that the trace part of Φ(R) depends quadratically on the Ricci
curvature of R and that it is independent of the Weyl part of R.

3.3.2.2 The Traceless Ricci Part of Φ(R)

By what we have done above, we are left with the examination of the terms
ϕ(I, T ), ϕ(T ,W) and Φ(T ):
We observe immediately that the tracefree Ricci part of Φ(R) depends lin-
early on I and W and quadratically on T .
Let us treat the term ϕ(I, T ) first. Theorem 3.2.3.4 gives ϕ(I, T ) ∈ RIC0.
If the dimension of V equals 2, then ϕ(I, T ) = 0. But if it is different from
2, then ϕ(I, T ) = 0 if and only if T = 0.
We note

Lemma 3.3.2.2. For all I ∈ SCAL and T ∈ RIC0 holds

ϕ(I, T ) = (n− 2)IT .

Now we treat the term ϕ(T ,W). By proposition 2.4.0.24 we get

〈
ϕ(T ,W),W′〉 =

〈
ϕ(W,W′), T

〉
= 0

for every algebraic Weyl curvature operator W′, since 2ϕ(W,W′) = Φ(W +
W′) − Φ(W) − Φ(W′) and each of the terms on the right hand side lies in
WEYL. Hence, ϕ(T ,W) ∈ RIC0. We claim that ϕ(T ,W) does not vanish in
general. Using theorem 3.3.1.3 we compute

Ric(ϕ(T ,W)) =
∑

i

Wρ(·, ei)Ric(T )ei,
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where {ei} is an orthonormal basis of V . Now let x, y ∈ V and compute

〈Ric(ϕ(T ,W))x, y〉 =
∑
i

〈Wρ(x, ei)Ric(T )ei, y〉

=
∑
i

〈W(x ∧ ei), y ∧ Ric(T )ei〉

= 2
∑
i

〈W(x ∧ ei),Ric(T ) ∧ id(y ∧ ei)〉

−
∑
i

〈W(x ∧ ei),Ric(T )y ∧ ei〉

= (n− 2)
∑
i

〈W(x ∧ ei), T (y ∧ ei)〉

= (n− 2)
∑
i

〈TW(x ∧ ei), y ∧ ei〉

= (n− 2) 〈Ric(TW)x, y〉

Hence,

Ric(ϕ(T ,W)) = (n− 2)Ric(TW).

This expression is symmetric in T and W, which gives

ϕ(T ,W) = Ric0(TW + WT ) ∧ id.

Here, we used that ϕ(T ,W) ∈ RIC0 implies ϕ(T ,W) = 2
n−2Ric0(ϕ(T ,W))∧

id.
We note this result in a proposition

Proposition 3.3.2.3. For all T ∈ RIC0 and W ∈WEYL holds

ϕ(T ,W) = Ric0(TW + WT ) ∧ id.

Assume for a moment that the dimension of V equals 4. Using the results
from subsection 3.2.2.2 it follows that W preserves the eigenspaces of the
Hodge ∗-operator and T interchanges them. Proposition 3.2.3.8 then implies
that TW + WT is an algebraic curvature operator of traceless Ricci type.
Thus, we get

ϕ(T ,W) = TW + WT

in dimension 4. Now we give an example for which ϕ(T ,W) 6= 0:
Define

T := ι+ ◦ (ι−)−1 ◦ π− + ι− ◦ (ι+)−1 ◦ π+,

where ι± was defined in theorem 1.2.0.8 and π± is the orthogonal projection
onto the ±1-eigenspace of the Hodge ∗-operator. T simply interchanges the
eigenspaces of the Hodge ∗-operator and is therefore an algebraic curvature
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of traceless Ricci type (show id#T = 0). Now let W ∈ WEYL+, W 6= 0.
Then we clearly have

TW + WT 6= 0.

We may use this result to construct algebraic curvature operators T and W
in higher dimensions, such that ϕ(T ,W) 6= 0.

Now we come to treat the last term Φ(T ). Theorem 3.3.1.3 says

Ric0(Φ(T )) = 2
∑
i

T ρ(·, ei)Ric(T )ei −
2

n
‖Ric(T )‖2 id

= 2
∑
i

T ρ(·, ei)Ric0(T )ei −
2

n
‖Ric0(T )‖2 id,

which is usually different from 0. For, if Ric0(Φ(T )) = 0, then

∑
i

T ρ(·, ei)Ric0(T )ei =
1

n
‖Ric0(T )‖2 id.

T ∈ RIC0 implies 2
n−2Ric0(T ) ∧ id = T . Hence, if {ei} is an orthonormal

eigenbasis of Ric0(T ) and τ1, ..., τn are the corresponding eigenvalues, then
{ei ∧ ej} is an orthonormal eigenbasis of T with corresponding eigenvalues
τi+τj
n−2 . This gives∑

i

T ρ(ej , ei)Ric0(T )ei =
∑
i 6=j

τiT ρ(ej , ei)ei

= −
∑
i 6=j

τiρ(T (ej ∧ ei))ei

=
∑
i 6=j

τ2
i + τiτj
n− 2

ej

=
1

n− 2

(
‖Ric0(T )‖2 − 2τ2

j

)
ej ,

leading to

τ2
j =

n− 2

2

(
1

n− 2
− 1

n

)
‖Ric0(T )‖2 =

1

n
‖Ric0(T )‖2

for all j = 1, ..., n. This leads to the following theorem

Theorem 3.3.2.4. Assume that Ric0(Φ(T )) = 0.

1. If the dimension of V is odd, then Ric0(T ) = 0 and hence even T = 0.
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2. If the dimension of V is even, then

T =
1√
n
‖Ric0(T )‖ (π − π⊥),

where π :
∧2 V →

∧2E is the orthogonal projection and E denotes
the eigenspace associated with the eigenvalue 1√

n
‖Ric0(T )‖ of T .

Beweis. Clear

Again, there is something special happening in dimension 4:
Both T 2 and T #T preserve the eigenspaces of the Hodge ∗-operator. Thus,
Φ(T ) is an algebraic curvature operator on

∧2 V preserving these spaces as
well. It follows that its traceless Ricci part must vanish. As a consequence,
the traceless Ricci part of Φ(R) reads

Ric0(Φ(R)) ∧ id = 2IT + TW + WT .

We note

Proposition 3.3.2.5. In dimension 4 holds

Ric0(Φ(R)) ∧ id = 2IT + TW + WT

for any algebraic curvature operator R.

In order to get a better understanding of the traceless Ricci part of Φ(R)
in general, we have to take a closer look at the term Φ(T :)
T is of the form T = F ∧ id with F ∈ Sym0 (V). Let {ei} be an orthonormal
eigenbasis of F , i.e. Fei = fiei, fi ∈ R. Now we start computing Φ(F ∧ id):
It is easy to see that

2(F ∧ id)2 = F2 ∧ id + F ∧ F.

Treating the term 2(F ∧ id)#(F∧ id) requires some more work. We compute:

2(F ∧ id)#(F ∧ id)ei ∧ ej =
∑
k

[F ∧ id(ei ∧ ek), F ∧ id(ej ∧ ek)]

=
1

2

∑
k 6=i,j

(fi + fk)(fj + fk)ei ∧ ej

=
1

2

∑
k 6=i,j

(fifj + fk(fi + fj) + f2
k )ei ∧ ej

=
1

2

(
(n− 2)fifj + (tr(F )− (fi + fj))(fi + fj) + (‖F‖2 − (f2

i + f2
j ))
)
ei ∧ ej

=

(
n− 2

2
F ∧ F + tr(F )F ∧ id− 2(F ∧ id)2 +

1

2
‖F‖2 id− F2 ∧ id

)
ei ∧ ej

=

(
n− 2

2
F ∧ F − 2(F ∧ id)2 +

1

2
‖F‖2 id− F2 ∧ id

)
ei ∧ ej

This yields the proposition
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Proposition 3.3.2.6. Let F be a self-adjoint endomorphism of V with van-
ishing trace. Then

Φ(F ∧ id) =
n− 2

2
F ∧ F +

1

2
‖F‖2 id− F2 ∧ id,

or

Φ(F ∧ id) =
n

2
F ∧ F− 2(F ∧ id)2 +

1

2
‖F‖2 id.

Now we compute the traceless Ricci part of Φ(T ), T = F ∧ id.

Proposition 3.3.2.7. Consider T ∈ LC
(∧2 V

)
with T = F ∧ id The

traceless Ricci part of Φ(T ) is given by

2

n− 2
Ric0(Φ(F ∧ id)) = −2

(
F2 ∧ id− 1

n
‖F‖2 id

)
.

Beweis. It is clear that the traceless Ricci part of 1
2 ‖F‖

2 id is zero. Using
lemma 3.2.1.6, we compute

Ric0(F ∧ F) = −F2 +
1

n
‖F‖2 id

and

Ric0(F2 ∧ id) =
n− 2

2

(
F2 − 1

n
‖F‖2 id

)
.

This gives

Ric0(Φ(F ∧ id)) = (2− n)

(
F2 − 1

n
‖F‖2 id

)
and the claim follows.

Corollary 3.3.2.8. Let R ∈ LC
(∧2 V

)
be an algebraic curvature operator

with invariant decomposition R = I+T +W, I ∈ SCAL, T = F ∧ id ∈ RIC0

and W ∈WEYL. Then the traceless Ricci part of Φ(R) is given by

2

n
‖F‖2 id + 2(n− 2)IT − 2F2 ∧ id + 2Ric0(TW + WT ) ∧ id

3.3.2.3 The Weyl Part of Φ(R)

We know already that Φ(W) lies in WEYL. The only other term producing
Weyl curvature is Φ(T ). We get

W(Φ(R)) = Φ(W) + W(Φ(T )).

We will now take a closer look at the term Φ(T ) and its Weyl curvature:
Proposition 3.3.2.6 gives

Φ(F ∧ id) =
n− 2

2
F ∧ F +

1

2
‖F‖2 id− F2 ∧ id.
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It is clear that the Weyl part of Φ(F ∧ id) comes from F ∧ F , since the
other two terms obviously lie in SCAL and SCAL⊕RIC0. Hence, the Weyl
curvature of Φ(F ∧ id) takes the form

W(Φ(F ∧ id)) =
n− 2

2
F ∧ F− 1

2(n− 1)
‖F‖2 id + F2 ∧ id.

An easy calculation shows that this expression is always zero in dimension
n ≤ 3. What happens if the Weyl curvature of Φ(F ∧ id) vanishes in dimen-
sion n ≥ 4? If this is the case, the eigenvalues of F will fulfill the relations

(fi − fj)2 + nfifj =
1

n− 1
‖F‖2 , if i 6= j.

So, if F 6= 0, this situation can only occur if the kernel of F has dimension
less than 2. Moreover, assuming dim(ker(F )) = 1, it follows that the nonzero
eigenvalues of F are equal up to sign. Now, F has vanishing trace, which
implies that the number of positive eigenvalues equals the number of negative
eigenvalues. Therefore, V splits as a direct sum

V = E+ ⊕ E− ⊕ ker(F), dim(E+) = dim(E−)

where E+ and E− are the eigenspaces of F corresponding to the positive
and the negative eigenvalue f and −f of F , respectively. By the way, note
that the dimension of V has to be odd in this case. Now the formula from
above gives

nf2 = (4− n)f2,

which implies f = 0. Otherwise we would have n = 2, which was excluded.
We have shown

Proposition 3.3.2.9. Let T = F∧id 6= 0 be an algebraic curvature operator
of traceless Ricci type in dimension n ≥ 4. If the Weyl curvature of Φ(T )
vanishes, then F is an isomorphism of V .

From now on we assume the dimension of V to be greater than 3. We
are left with the case, where F is an isomorphism of V . The formula from
above implies

(fi − fj)((n− 2)fk + fi + fj) = 0.

provided that i, j and k are mutually distinct. tr(F) = 0 implies that there
are at least two distinct eigenvalues of F . Assume f1 6= f2. Then we get

fk = −f1 + f2

n− 2

for all k ≥ 3. We conclude that F has at most 3 distinct eigenvalues f1,
f2 and f3. At least two of them are different from each other. We keep
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the assumption f1 6= f2. Now we show that there are precisely two distinct
eigenvalues. Assuming f1, f2 and f3 to be mutually distinct we get

(n− 2)f2 + f1 + f3 = 0 and (n− 2)f1 + f2 + f3 = 0,

which leads to f1 = f2, a contradiction. We note

Proposition 3.3.2.10. Let T = F ∧ id be an algebraic curvature operator
of traceless Ricci type in dimension n ≥ 4. Suppose that the Weyl curvature
of Φ(T ) vanishes. Then F takes the form

F = (v∗ ⊗ v)0

for some v ∈ V , i.e. F is the tracefree part of the map x 7→ 〈v, x〉 v.

At the end of this paragraph we would like to state our results about the
irreducible decomposition of Φ(R) in one theorem.

Theorem 3.3.2.11. Let R be an algebraic curvature operator decomposing
as R = I + T +W with I ∈ SCAL, T = F ∧ id ∈ RIC0 and W ∈WEYL.
Then,

1. the trace-part of Φ(R) is given by

1

N
‖Ric(R)‖2 id,

2. the traceless Ricci part of Φ(R) is given by

2

n
‖F‖2 id + 2(n− 2)IT − 2F2 ∧ id + 2Ric0(T W +WT ) ∧ id

3. the Weyl part of Φ(R) is given by

Φ(W) +
n− 2

2
F ∧ F − 1

2(n− 1)
‖F‖2 id+ F 2 ∧ id.
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3.4 Algebraic Symmetric Curvature Operators

Suppose that we are given a simply connected and irreducible symmetric
space (M, g) with curvature operator Rg and p ∈ M . Since Rg is parallel,
the theorem of Ambrose and Singer [1], see appendix B.4 for the formula-
tion of this theorem, gives us hRg

p
= ρ−1

p (holp(M, g)). Theorem B.7.3.2 of
the appendix tells us that the Lie algebra holp(M, g) of the holonomy group
of (M, g) coincides with the Lie algebra isop(M, g) of the isotropy group
Isomp(M, g). This implies that hRg

p
= ρ−1

p (isop(M, g)). Now, Isomp(M, g)

acts isometrically on the space of algebraic curvature operators LC
(∧2(TpM, gp)

)
via conjugation,

(ϕ,R) 7→ Dϕp ∧Dϕp ◦ R ◦Dϕ−1
p ∧Dϕ−1

p .

It is clear that Isomp(M, g) lies completely in the stabilizer of Rgp w.r.t.
this action. This shows that hRg

p
lies completely in the Lie algebra of the

stabilizer of Rgp w.r.t. the action of SO(TpM, gp) on LC
(∧2(TpM, gp)

)
:

hRg
p
⊆ stabSO(TpM,gp)(R

g
p) =

{
ε ∈

∧2(TpM, gp) : [(adp)ε,R] = 0
}
.

We will use this fact to define Algebraic symmetric curvature operators on a
given n-dimensional Euclidean vector space (V, 〈· , ·〉) and see what we get.

Definition 3.4.0.12. An algebraic curvature operator R is called an alge-
braic symmetric curvature operator (or simply a symmetric curvature oper-
ator) on

∧2 V , if it commutes with adε for every ε ∈ hR.

Example 3.4.0.13. Every range 1 algebraic curvature operator is symmet-
ric. Moreover, any algebraic curvature operator of the form R = ±λπ, where
π :
∧2 V →

∧2 V is an orthogonal projection onto a subspace
∧2 U , U ≤ V

a subspace, and λ ∈ R, is symmetric.

Each algebraic curvature operator R has a geometric realization on an
open subset U of V . We will see in a moment that the symmetric curvature
operators even have geometric realizations as curvature operators of simply
connected symmetric spaces. This theorem is due to É. Cartan [7].

Theorem 3.4.0.14. If R ∈ LC(
∧2 V ) is symmetric, then R is the curva-

ture operator of a simply connected symmetric space (M, g). (M, g) is unique
up to isometry.

Beweis. We define a Lie algebra structure on V ⊕ hR as follows:

1. For v, w ∈ V define [v, w] := Rv ∧ w

2. For v ∈ V and ε ∈ hR define [ε, v] := − [v, ε] := ρ(ε)v
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3. For ε, δ ∈ hR define [ε, δ] := [ε, δ]∧2 V

It is clear that [·, ·] is R-bilinear and skew-symmetric. It remains to check
the Jacobi identity:

• For u, v, w ∈ V holds

[u, [v, w]] = [u,Rv ∧ w] = −ρ(Rv ∧ w)u = Rρ(v, w)u

In this case the Jacobi identity follows from the fact that Rρ satisfies
the 1. Bianchi identity.

• It is clear that the Jacobi identity is valid for all ε, δ, γ ∈ hR.

• For ε, δ ∈ hR and v ∈ V we get

[ε, [δ, v]] + [δ, [v, ε]] + [v, [ε, δ]] = ρ(ε)ρ(δ)v − ρ(δ)ρ(ε)v − ρ([ε, δ])v

= [ρ(ε), ρ(δ)] v − ρ([ε, δ])v

= 0

since ρ is a homomorphism of Lie algebras.

• And for ε ∈ hR and v, w ∈ V we have

[v, [w, ε]] + [w, [ε, v]] + [ε, [v, w]] = − [v, ρ(ε)w] + [w, ρ(ε)v] + [ε,Rv ∧ w]

= −Rv ∧ ρ(ε)w +Rw ∧ ρ(ε)v + adε ◦ Rv ∧ w

= (−R ◦ 2ρ(ε) ∧ id+ adε ◦ R)v ∧ w

= [adε,R] v ∧ w
= 0

since R is symmetric.

Now let L : V ⊕ hR → V ⊕ hR be the linear map defined by

L|V = −idV , LhR = idhR .

Then L is an involutive homomorphism of Lie algebras:

• L2 = id is clear.

• For v, w ∈ V we get

L [v, w] = LRv ∧ w = Rv ∧ w = [v, w]

and

[Lv,Lw] = [v, w]
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• For ε ∈ V hR and v ∈ V

L [ε, v] = Lρ(ε)v = −ρ(ε)v = [−ε, v] = [Lε, Lv]

• And for ε, δ ∈ hR
L [ε, δ] [ε, δ] = [Lε, Lδ]

Hence, the pair (V ⊕hR, L) is an effective orthogonal symmetric Lie algebra
and therefore there exists a symmetric space M = G/H with Lie(G) =
V ⊕ hR, Lie(H) = hR and with curvature tensor S, such that

S(x, y)z = − [x, [y, z]] = Rρ(x, y)z

for all x, y, z ∈ V .

Remark 3.4.0.15. It is clear that every symmetric algebraic curvature op-
erator R has a geometric realization M as a symmetric space, such that M
is simply connected. Recall that the universal cover M̃ of M with the pullback
metric is a symmetric space, whenever M is a symmetric space.

Lemma 3.4.0.16. Let R ∈ LC(
∧2 V ) be symmetric. Choose an orthonor-

mal basis εi, such that Rεi = λiεi.Then

1. adε preserves the eigenspaces of R for every ε ∈ hR

2. λi 6= λj and λi, λj 6= 0, then [εi, εj ] = 0

Beweis. 1. Radεεi = adεRεi = λiadεεi

2. From 1. we conclude that λi 6= λj and λi, λj 6= 0 imply [εi, εj ] lies
in the λi-eigenspace and in the λj-eigenspace of R at the same time,
which is only possible if [εi, εj ] = 0.

Corollary 3.4.0.17. If R ∈ LC(
∧2 V ) is symmetric, hR is the direct sum

of the eigenspaces of R corresponding to the nonzero eigenvalues of R. Each
of the eigenspaces forms an ideal in hR and hR = im(R).

Beweis. This is an immediate consequence of the previous lemma.

Theorem 3.4.0.18. If R ∈ LC(
∧2 V ) is symmetric, then R#R preserves

the simple R-invariant ideals of hR In particular, we have

R#R = πR#πR ◦ R2

in this case, where πR is the orthogonal projection of
∧2 V onto the image

of R.
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Beweis. Write R =
∑

i λiε
∗
i ⊗εi, λi ∈ R and {εi} an orthonormal eigenbasis

of R. Then, by corollary 2.2.0.20, we have

R#Rεi =
1

2

∑
k,l

λkλl 〈[εk, εl] , εi〉 [εk, εl]

for each i. Now we fix some i between 1 and N. If the term

λkλl 〈[εk, εl] , εi〉 [εk, εl]

is nonzero for some k and l , then

λk, λl 6= 0, 〈[εk, εl] , εi〉 6= 0 and [εk, εl] , [εk, εi] , [εl, εi] 6= 0.

Now, lemma 3.4.0.16 implies

λk = λl = λi

, if λi 6= 0 in this case. Moreover, since the simple R-invariant ideals of
hR are perpendicular to each other, 〈[εk, εl] , εi〉 6= 0 forces εk and εl to lie
in the simple R-invariant ideal of hR containing εi. This shows that R#R
preserves the simple R-invariant ideals of hR.
Further, it turns out that

R#Rεi =
1

2

∑
k,l

λkλl 〈[εk, εl] , εi〉 [εk, εl]

=
λ2
i

2

∑
k,l;λk,λl 6=0

〈[εk, εl] , εi〉 [εk, εl]

= λ2
iπR#πR(εi)

= (πR#πR ◦ R2)(εi)

as claimed.

Remark 3.4.0.19. Note that πR#πR commutes with R, so πR#πR and R
are simultaneously diagonalizable. Thus, πR#πR takes the form

πR#πR =
∑
{i|λi 6=0}

‖adεi‖
2 εi ⊗ εi

in a common orthonormal eigenbasis.
This leads to the following formula for R#R:

R#R =
∑
i

λ2
i ‖adεi‖

2 εi ⊗ εi.
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Beweis. If εk lies in the kernel of R, so does [εk, εi] if λi 6= 0, since

R [εi, εk] = (R ◦ adεi)(εk) = (adεi ◦ R)(εk) = 0.

So the eigenvalues of πR#πR are given by

〈πR#πRεi, εi〉 =
∑
k,l

〈adεiεk, εl〉2 =
∑
k

‖adεiεk‖2 = ‖adεi‖
2

Corollary 3.4.0.20. If R is symmetric, so is Φ(R).

Beweis. Clear.

Corollary 3.4.0.21. If R ∈ LC(
∧2 V ) is symmetric, then tr(R#R) ≥ 0

Beweis. Clear.

Corollary 3.4.0.22. If R ∈ LC(
∧2 V ) is symmetric and R ∈ WEY L,

then R = 0.

Beweis. R ∈WEY L implies

0 = trΦ(R) = 2 ‖R‖2 + 2trR#R,

so
trR#R ≤ 0

which implies trR#R = 0, since R is symmetric. But then, each eigenvalue
of R must be zero, so R is zero.

Corollary 3.4.0.23. If R ∈ LC(
∧2 V ) is symmetric with Φ(R) = τ(R)R,

then all nonzero eigenvalues of R have the same sign. If it has vanishing
trace, then it is trivial

Beweis. This is clear, because Φ(R) is nonnegative, whenever R is symmet-
ric.
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3.5 Algebraic Product Curvature Operators

Suppose that R is the curvature operator of a product of Riemannian man-
ifolds M and N . Then R is the orthogonal direct sum of the curvature
operators RM and RN of M and N and the images of the summands form
ideals in the smallest Lie subalgebra of

∧2 T (M ×N) containing the image
of R. We use this as a starting point for our definition of algebraic product
curvature operators.

Definition 3.5.0.24. An algebraic curvature operator R on
∧2 V is called

a geometric product of the algebraic curvature operators R1, ...,Rr, r ∈ N,
if

R =
∑
i

Ri

and if there exists an orthonormal decomposition V = V1 ⊕ ... ⊕ Vr into
subspaces Ui of V with

im(Ri) ⊆
∧2 Vi

for each i = 1, ..., r.
R is called geometrically irreducible, if R = 0 or if

∧2 V does not contain
any proper R-invariant subspaces of the form

∧2W , where W ≤ V is a
subspace.

The following observation is obviously true: R is the geometric product
of the algebraic curvature operators R1, ...,Rr if and only if the geometric
realization gR of R splits isometrically as the product of the geometric re-
alizations gi of the restrictions of the curvature operators Ri to the

∧2 Vi,
Vi taken from the definition of geometric products. Thus, from a geometric
viewpoint, this is precisely the definition of products of algebraic curvature
operators we need. But there is another definition available, which is slightly
more algebraic, a little finer and easier to handle within our context.
Recall that, for any given algebraic curvature operator R, its holonomy al-
gebra hR was defined to be the smallest Lie subalgebra of

∧2 V containing
the image of R (compare subsection 3.2.4).

Definition 3.5.0.25. An algebraic curvature operator R is called an alge-
braic product of algebraic curvature operators R1, ...,Rr, if each hRi is an
R-invariant ideal in hR, R|hRi

= Ri and hR = hR1 ⊕ ...⊕ hRr .
R is called algebraically irreducible, if hR does not contain any proper R-
invariant ideals. Otherwise, R is called algebraically reducible. Those R-
invariant ideals of hR, which do not contain any further proper R-invariant
ideals will be called R-irreducible.
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First of all, why do we have to distinguish the definitions from above?
It is clear from the definitions that every geometric product of algebraic
curvature operators is also an algebraic product. But it is in general not true
that algebraic products are geometric. For example, if V is 4-dimensional,
we can take R =W+ +W− with W+ ∈WEYL+ and W− ∈WEYL− with
W+ 6= 0 and W− 6= 0. Then we have that R is geometrically irreducible,
but not irreducible in the sense of the previous definition, since we have
hW+ =

∧+ V , hW− =
∧− V , where

∧± V is the ±1-eigenspace of the Hodge
∗-operator (see theorem 1.2.0.8 for the definition of the spaces in play). As
the eigenspaces of the Hodge ∗-operator form proper R-invariant (and even
irreducible) ideals in

∧2 V = hR, R is the algebraic product of W+ and
W− and hence, it is reducible in the algebraic sense. On the other hand this
shows that R is geometrically irreducible, since every nontrivial R-invariant
subspace of

∧2 V of the form
∧2W , W ≤ V a subspace, must contain at

least one of the spaces hW+ or hW+ . This follows from the fact that the
decomposition of

∧2 V = hW+⊕hW− is R-irreducible together with the fact
that geometric products of algebraic curvature operators are also products
in the algebraic sense. At least, we can say that every algebraic curvature
operator, which is irreducible in the algebraic sense, is also geometrically
irreducible.
We note

Proposition 3.5.0.26. Every geometric product of algebraic curvature op-
erators is an algebraic product as well. Further, we have that every algebraic
curvature operator, which is algebraically irreducible, is also geometrically
irreducible.

2

Further, we find that it is important to point out that R-irreducibility
does not imply irreducibility at all. For example, if we assume V to be four-
dimensional again, we can take any algebraic curvature operator of the form
R = F ∧ id with vanishing trace and trivial kernel. Such an algebraic curva-
ture operator interchanges the eigenspaces of the Hodge ∗-operator, so the
only possible ideals of hR =

∧2 V are definitely not R-invariant. Another
example is given by R = id in the four-dimensional case. Here, we have two
R-invariant ideals of

∧2 V : the eigenspaces of the Hodge ∗-operator. But
the restrictions of R to each of these spaces do not give algebraic curvature
operators (compare lemma 3.2.2.5).

Examples 3.5.0.27. Now we give some examples of irreducible algebraic
curvature operators R with the property that hR does not contain any proper
ideals:

1. Irreducible symmetric algebraic curvature operators.
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2. Irreducible algebraic Weyl curvature operators.

Beweis. 1. This follows easily using corollary 3.4.0.17.

2. Recall that if R is any algebraic curvature operator, which is diagonal
in the orthonormal basis {εi}, Rεi = λiεi, λi ∈ R, then

id#R = −1

2

∑
i

λiad2
εi
,

(see remark 3.2.5.2) so id#R preserves the ideals of hR.
On the other hand we know that the Weyl curvature operators are
eigenvectors of S 7→ id#S with eigenvalue −1.
This implies, that for Weyl curvature operators W, any ideal of hW is
W-invariant, so hW cannot contain any proper ideal, if W is assumed
to be irreducible.

3.5.1 Geometric Realization of Algebraic Product Curvature
Operators

It is clear that every algebraic curvature operator splits as an algebraic
product of irreducible algebraic curvature operators: Let R be an algebraic
curvature operator. Then, first of all, hR is an ideal of itself. So if there are
no proper R-invariant ideals, we are done. But if I ⊆ hR is a proper R-
invariant ideal in hR, so is I⊥, since R is self-adjoint and adε is skew-adjoint
for any ε ∈

∧2 V . Repeating this procedure with I = hR|I and I⊥ = hR|
I⊥

instead of hR again and again will finally give us the desired irreducible
decomposition after finitely many steps. This decomposition is unique. We
note

Theorem 3.5.1.1. Every algebraic curvature operator owns a unique de-
composition as an algebraic product of irreducible algebraic curvature oper-
ators.

2

If we consider geometric decompositions of algebraic curvature operators,
we get a stronger result.

Theorem 3.5.1.2. If R is an algebraic curvature operator, then R owns a
unique geometrically irreducible decomposition R = R1 + ... + Rr and the
geometric realization (U, gR) of R splits isometrically as

(U, gR) = (Rm, gRm)× (U1, gR1)× ...× (Ur, gRr)

(gRm the standard metric on Rm, m = n −
∑r

i=1 di , di = dim T0Ui), such
that each Ri is the curvature operator of gRi at 0 in V and hRi ⊆

∧2 VRi,
VRi = ToUi, for all i = 1, ..., r.
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Beweis. Given an algebraic curvature operator R, we consider its geometri-
cal realization g = gR on a (possibly small) simply connected neighborhood
U of 0 ∈ V . The tangent bundle TU splits into holonomy-irreducible sub-
bundles

TU = E0 ⊕ ...⊕ Er,

where r ∈ N and
∑r

i=0 rank(Ei) = n and E0|0 ⊆ V is the subspace, on which
the holonomy group Hol(U, g) acts trivially. The De Rham decomposition
theorem (compare appendix B.5) implies that U splits isometrically as a
product

(U, g) = (Rm, gRm)× (U1, g1)× ...× (Ur, gr),

(m = rank(E0) and gRm the standard metric on Rm,) which implies that
the curvature operator Rg of g decomposes orthogonally as the direct sum
of the curvature operators of the involved factors. Let Vi := T0Ui ⊆ V and
Ri :

∧2 Vi →
∧2 Vi be the curvature operator of gi at 0. It is clear that

R|∧2 Vi
= Ri for all i = 1, ..., r and R|∧2 Rm = 0. Thus, we have that R is

the direct orthogonal sum of the Ri and hRi = hR∩
∧2 Vi for all i = 1, ..., r.

Obviously, each hRi is R-invariant and even an ideal in hR, finally showing
that R is a product of the Ri in the sense of definition 3.5.0.24. Now we
are left to show that this splitting is geometrically irreducible. But this
follows from the fact, that Hol(U, g), the holonomy group of the geometric
realization of R, is acting irreducibly on each Vi by construction.

Theorem 3.5.1.2 implies that for any algebraic curvature operator R on∧2 V , there exists a uniquely defined minimal subspace VR of V , such that
hR ⊆

∧2 VR. As we may view any algebraic curvature operator R on
∧2 V

as an algebraic curvature operator on
∧2 VR, we can restrict our further

considerations to algebraic curvature operators with VR = V . Algebraic
curvature operators, sharing this property, will be called reduced.
Moreover, since any algebraic curvature operator turned out to be a product
of irreducible algebraic curvature operators, we may restrict our considera-
tions to irreducible algebraic curvature operators. Note that if R is reduced
and irreducible it follows that the geometric realization of R is holonomy-
irreducible.

3.5.2 The Holonomy Algebra and the Ricci Vector Field

There is another property of the Lie algebra hR of an algebraic curvature
operator, which is fundamental in our further considerations: It is R#R-
invariant and therefore invariant under Φ(R) as well. But one can say more:
R#R and Φ(R) even preserve the R-invariant ideals of hR, so its irreducible
R-invariant splitting will be preserved by these maps either.
To see this, evolve R in an orthonormal eigenbasis {εi}, i.e. R =

∑
i λiε

∗
i ⊗εi
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with suitable λi ∈ R, where we choose the eigenbasis in a way such that each
εi is contained in someR-irreducible ideal. Then, by corollary 2.2.0.20,R#R
reads

R#R =
1

2

∑
i,j

λiλj
[
ε∗i , ε

∗
j

]
⊗ [εi, εj ] .

so the image of R#R clearly lies in hR and the R-invariant ideals are ob-
viously preserved. Note that this gives us hΦ(R) ⊆ hR as a by-product.
Furthermore, the geometric splitting of R is also preserved by Φ(R). We
note

Theorem 3.5.2.1. Let R be an algebraic curvature operator. Then

hΦ(R) ⊆ hR.

Further, any R-invariant ideal I in hR is also Φ(R)-invariant. Consequent-
ly, Φ(R) respects both, the R-irreducible algebraic splitting of hR and the
R-irreducible geometric splitting of V .

Beweis. There is nothing left to be done.

.
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Kapitel 4

On the Dynamic of the Ricci
Vector Field

In this final chapter we study the flow of the Ricci vector field Φ on the
space of algebraic curvature operators. Recall that Φ was defined by

Φ(R) = 2(R2 +R#R)

for R ∈ LC
(∧2 V

)
.

Φ decomposes orthogonally as a sum of a spherical part Φ, which is tangent

to a central sphere in LC
(∧2 V

)
and a radial part ν, which is given by

ν(R) =
τ(R)

‖R‖2
R,

where τ(R) = 〈Φ(R),R〉. One of the highlights of this chapter is theorem
4.4.0.17, which states that the equilibrium positions of Φ split algebraically
(and also geometrically) as sums of irreducible equilibrium positions of Φ and
relates the radial parts of the summands to the radial part of their sum. An-
other highlight is given by theorem ??, which shows that if the Φ-trajectory
t 7→ R(t) through an algebraic curvature operator R does not converge to

zero, then R must either be an equilibrium of Φ or limt→T+ τ
(
R(t)
‖R(t)‖

)
> 0,

T+ the maximal lifetime of R(t).

4.1 Invariant Subspaces

We start with a simple but fundamental observation.

Lemma 4.1.0.2. Sym
(∧2 V

)
and LC

(∧2 V
)

are preserved by the flow of

Φ.
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Beweis. If R is self-adjoint, so is R2 and R#R (compare lemma 2.1.0.14).

Thus, Φ is tangent to Sym
(∧2 V

)
. And theorem 3.3.1.1 implies that Φ is

tangent to LC
(∧2 V

)
. The first claim follows.

Recall that the holonomy algebra hR of an algebraic curvature operator
R on

∧2 V was defined to be the smallest Lie subalgebra of
∧2 V containing

the image of R. This has been done in subsection 3.2.4. It is clear that
one can associate a holonomy algebra hS to any endomorphism S of

∧2 V .
The theorem below states that the flow of the Ricci vector field Φ respects
holonomy algebras and their irreducible decompositions.

Theorem 4.1.0.3. Let R ∈ Sym
(∧2 V

)
, then hR itself and any of its R-

invariant ideals are preserved by the flow of Φ. More precisely, if t 7→ R(t),
t ∈ I := (−ε, ε), ε > 0, is a solution curve of Φ with R(0) = R, then
hR(t) = hR for all t ∈ I and any R-invariant ideal of hR is also R(t)-
invariant and vice versa.

Beweis. Let s ∈ I and define

M s
R :=

{
S ∈ Sym

(∧2 V
)

: hS ⊆ hR(s)

}
.

Since im(S+T ) ⊆ imS+imT ⊆ hS+hT ⊆ hR(s) holds for all S, T ∈M s
R, we

have that M s
R is a subspace of Sym

(∧2 V
)

. Section 3.5.2 gives hΦ(S) ⊆ hS

for every S ∈ Sym
(∧2 V

)
, which implies Φ(S) ∈ M s

R, whenever S ∈ M s
R,

so Φ is tangent to M s
R. This gives hR(t) ⊆ hR(s), whenever t ≥ s. The

same arguments show that −Φ is tangent to M s
R, which gives hR(s) ⊆ hR(t),

whenever t ≤ s.
Now let I be any R-invariant ideal of hR and define

NI := {S ∈MR : S(I) ⊆ I} ,

MR = M0
R. Now, NI is a subspace of MR. Following section 3.5.2, we see

that Φ(S) preserves I if S is an element of NI, showing that Φ and −Φ are
tangent to NI. The claim follows.

Corollary 4.1.0.4. Let U ≤ V be a subspace. Then LC
(∧2 U

)
⊆ LC

(∧2 V
)

is preserved by the flow of Φ.

Beweis. Let R be an algebraic curvature operator on
∧2 V which reduces

to a curvature operator on
∧2 U , i.e. R satisfies

R = ι ◦ R ◦ π,
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where ι :
∧2 U →

∧2 V is the canonical inclusion and π :
∧2 V →

∧2 V
is the orthogonal projection onto

∧2 U . Theorem 4.1.0.3 implies that the
flow of Φ preserves the holonomy algebra hR. But hR ⊆

∧2 U . The claim
follows.

We have already seen that the flow of Φ preserves the space of algebra-
ic curvature operators (compare theorem 4.1.0.3). The following theorem

provides some examples of Φ-invariant subspaces of LC
(∧2 V

)
.

Theorem 4.1.0.5. 1. The flow of Φ preserves SCAL and WEYL. If
the underlying dimension is 4, then Φ even preserves WEYL+ and
WEYL−.

2. The flow of Φ preserves the set of algebraic symmetric curvature op-
erators.

3. Let G ∈ O(V) and define

LC
(∧2 V

)
G

:=
{
R ∈ LC

(∧2 V
)

: G ∧G ◦ R ◦ (G ∧G)−1 = R
}

.

The flow of Φ preserves LC
(∧2 V

)
G

.

Beweis. 1. Corollary 2.1.0.17 states that id#id = (n− 2)id, so

Φ(λid) = 2(n− 1)λ2id

for every λ ∈ R, which implies that the flow of Φ preserves SCAL.
By corollary 3.3.1.5, Φ is tangent to WEYL, so WEYL is preserved by
the flow of Φ.
Now let dimV = 4, R ∈ WEYL+ and t 7→ R(t), t ∈ (T−, T+) the
maximal solution of Φ with R(0) = R. Then im(R) ⊆

∧+ V, where∧+ V is the +1-eigenspace of the Hodge ∗-operator on V .
∧+ V is an

ideal in
∧2 V (compare theorem 1.2.0.8 and corollary 3.2.2.3). This

gives hR ⊆
∧+ V . Theorem 4.1.0.3 says that the holonomy algebra

does not change along the flow of Φ. Hence, we have im(R(t)) ⊆
∧+ V

for all t ∈ (T−, T+), which impliesR(t) ∈WEYL+ by corollary 3.2.2.3.
This shows that WEYL+ is Φ-invariant. The proof that WEYL− is Φ-
invariant is almost the same.

2. Let R be an algebraic symmetric curvature operator. Write

R =
∑
i

λiε
∗
i ⊗ εi,

where λ1, ..., λN , N =
(
n
2

)
, denote the eigenvalues of R and {εi} is an

eigenbasis. Then, by remark 3.4.0.19, we have

Φ(R) = 2
∑
i

(
1 + ‖adεi‖

2
)
λ2
i ε
∗
i ⊗ εi.

105



Now we observe that every algebraic curvature operator S which is
diagonal w.r.t. the chosen orthonormal basis and satisfies im(S) ⊆
im(R), is automatically symmetric. So the idea is now to evolve the
eigenvalues of R appropriately and keep the eigenbasis fixed: For each
i solve

d

dt
λi(t) = 2

(
1 + ‖adεi‖

2
)
λ2
i (t),

with λi(0) = λi and let

R(t) :=
∑
i

λi(t)ε
∗
i ⊗ εi

on the maximal interval [0, T ), where each λi(t) is defined.

Using remark 3.4.0.19 and arguing as in the computation in theorem
3.4.0.18, we see that

d

dt
R(t) = Φ(R(t))

for each t. As we have R(0) = R ∈ LC
(∧2 V

)
, we get that the whole

solution curve lies in the space of algebraic curvature operators.

3. According to lemma 2.1.0.14 # is an O(V)-equivariant operation. Hence,

Φ is equivariant either. This implies that Φ is tangent to LC
(∧2 V

)
G

.

Remark 4.1.0.6. The flow of Φ does not preserve RIC0. Every trajectory
starting in RIC0 must leave RIC0 instantaneously unless it is constantly
zero.

Beweis. If the maximal solution curve t 7→ R(t), t ∈ (T−, T+), through
R ∈ RIC0 stays in RIC0 for t ∈ [0, ε], ε > 0, then, using tneorem 3.3.1.3, we
get

0 =
d

dt
tr(R(t)) = tr(Φ(R(t))) = ‖Ric(R(t))‖2

for t ∈ [0, ε), which implies R = 0 and we are done.

Theorem 4.1.0.7. The flow of Φ preserves stabilizers. More precisely we
have

StabO(V)(R) ⊂ StabO(V)(Φ(R))

w.r.t. the canonical action of O(V) on LC
(∧2 V

)
.

Beweis. This is an immediate consequence of the fourth item in theorem
4.1.0.5.
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4.2 The Curvature Normalized Flow

The Ricci vector field Φ is homogeneous of order 2, which means that for all

R ∈ LC
(∧2 V

)
and every λ > 0 holds

Φ(λR) = λ2Φ(R).

This implies that the flow of Φ behaves nicely under rescaling of space and
time.

Lemma 4.2.0.8. Let F : DΦ → LC
(∧2 V

)
be the flow of Φ, where DΦ =

{(R, t) : t ∈ (T−(R), T+(R))} ⊆ LC
(∧2 V

)
× R is the maximal domain of

definition of the flow of Φ, i.e. for each R ∈ LC
(∧2 V

)
the curve

FR : (T−(R), T+(R))→ LC
(∧2 V

)
,

FR(t) := F (R, t)

is the maximal trajectory of Φ through R. Then we have

F (λR, t) = λF (R, λt),

whenever (λR, t) ∈ DΦ, λ > 0. Moreover, we have T±(λR) = 1
λT±(R).

Beweis. F is the flow of Φ, so

d

dt
F (λR, t) = Φ(F (λR, t)).

A simply computation shows

d

dt
λF (R, λt) = λ2Φ(F (R, λt) = Φ(λF (R, λt),

so both sides of the equation fulfill the same differential equation, also with
the same initial condition λR. Now the desired formula

F (λR, t) = λF (R, λt)

follows from the uniqueness of solutions of ordinary differential equations.
The rest is clear.

Lemma 4.2.0.8 implies that for each R ∈ LC
(∧2 V

)
, R 6= 0, and each

λ > 0 the sets {
F (R, t)
‖F (R, t)‖

: t ∈ (T−(R), T+(R))

}
and {

F (λR, t)
‖F (λR, t)‖

: t ∈ (T−(λR), T+(λR))

}
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agree. Φ induces a vector field Φ on LC
(∧2 V

)
which is tangent to the

central spheres Sr =
{
R ∈ LC

(∧2 V
)

: ‖R‖ = r
}

, r > 0,

Φ(R) = Φ(R)− τ(R)

‖R‖2
R, with τ(R) = 〈Φ(R),R〉 .

We call Φ the spherical Ricci vector field on the space of algebraic curvature
operators. Let F be the flow of Φ. F preserves the norm of the curvature
operators. In the following we will examine the flow of Φ to S = S1 as well
as the flow of Φ. This will help us to deal with the solution curves tending to
infinity. We will now use the formula in lemma 4.2.0.8 to construct solution
curves of Φ from solution curves of Φ and vice versa.

Proposition 4.2.0.9. Let R be a curvature operator with ‖R‖ = 1 and T
the lifetime of R. If ϕ solves the ODE ϕ̇(t) = 1

‖F (R,ϕ(t))‖ with initial data

ϕ(0) = 0, then F (R,ϕ(t))
‖F (R,ϕ(t))‖ is a solution curve of Φ starting at R.

Beweis. We have

d

dt
F (R, ϕ(t)) =

1

‖F (R, ϕ(t))‖
Φ(F (R, ϕ(t)))

and

d

dt
‖F (R, ϕ(t))‖2 =

2 〈Φ(F (R, ϕ(t))), F (R, ϕ(t))〉
‖F (R, ϕ(t))‖

=
2τ(F (R, ϕ(t)))

‖F (R, ϕ(t))‖

which gives

d

dt

F (R, ϕ(t))

‖F (R, ϕ(t))‖
= Φ

(
F (R, ϕ(t))

‖F (R, ϕ(t))‖

)
− τ(F (R, ϕ(t)))

‖F (R, ϕ(t))‖4
F (R, ϕ(t))

= Φ

(
F (R, ϕ(t))

‖F (R, ϕ(t))‖

)
Finally, ϕ(0) = 0 gives the result.

Proposition 4.2.0.10. Let R be a curvature operator with ‖R‖ = 1. If ϕ
and ψ solve the ODEs ϕ̇ = −ϕ2τ(F (R, ψ)) and ψ̇ = ϕ with ϕ(0) = 1 and
ψ(0) = 0, then ϕF (R, ψ) is a solution of Φ starting at R.

Beweis. Just compute

d

dt
ϕF (R, ψ) = −ϕ2τ(F (R, ψ))F (R, ψ) + ϕ2Φ(F (R, ψ))

= Φ(ϕF (R, ψ))

Now, the claim follows from ϕ(0) = 1 and ψ(0) = 0.
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4.3 Evolution equations

We start with a fundamental observation, which has been made by G.
Huisken in [17] and states that the flows of the vector fields Φ and Φ are
actually gradient flows associated to the cubic potential τ , which is given by

τ(R) = 〈Φ(R),R〉 .

Proposition 4.3.0.11. We have that

1. d
dtR(t) = 1

3∇τ(R(t)), if t 7→ R(t) is a solution curve of Φ and

2. d
dtR(t) = 1

3∇τ(R(t)), if t 7→ R(t) is a solution curve of Φ on the unit

sphere in LC
(∧2 V

)
.

Here, ∇τ is the gradient of τ and ∇τ is the gradient of τ on the unit sphere

S ∈ LC
(∧2 V

)
.

Beweis. The map (R,S, T ) 7→ 〈ϕ(R,S), T 〉 is trilinear and fully symmetric
by proposition 3.3.2.1. This gives

d

dt

∣∣∣∣
t=0

τ(R+ tH) = 3 〈Φ(R),H〉 .

Now, 1. is immediate.
The gradient ∇τ on the unit sphere is simply the projection of ∇τ to the
tangent bundle of the sphere, which gives

∇τ(R) = ∇τ − 〈∇τ,R〉

and the claim follows.

Corollary 4.3.0.12. Let t 7→ R(t), t ∈ (T−, T+), be the maximal solution
curve of Φ starting from R(0) = R0. Then

1. t 7→ τ(R(t)) is strictly monotonically increasing, unless R0 is an equi-
librium position of Φ

2. t 7→ ‖R(t)‖2 is strictly monotonically decreasing on {τ < 0} and strict-
ly monotonically increasing on {τ > 0}. Moreover, it is strictly convex,
unless R0 is an equilibrium position of Φ, ,

3. t 7→ R(t) has infinite lifetime, if t 7→ τ(R(t)) stays nonpositive. Fur-
ther, τ(R(t)) converges to 0 as t reaches infinity, in this case
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Beweis. 1. We have

d

dt
τ(R(t)) = 3 ‖Φ(R(t))‖2 ≥ 0,

so t 7→ R(t) is monotonically increasing. Now suppose that t 7→ R(t)
is constant on I = (t0, t1). Then

0 =
d

dt
τ(R(t)) = 3 ‖Φ(R(t))‖2

on I, which implies that R(t) = R0 for all t.

2. We have
d

dt
‖R(t)‖2 = 2τ(R(t)),

proving the first two statements, and

d2

dt2
‖R(t)‖2 = 6 ‖Φ(R)‖2 ≥ 0,

showing that t 7→ ‖R(t)‖2 is convex.
If it is not strictly convex, then there exists an interval I = [t0, t1], on
which it is affine linear, forcing its second derivative

d2

dt2
‖R(t)‖2 = 6 ‖Φ(R)‖2

to be zero on I. This gives the result.

3. If τ(R(t)) is nonpositive during the whole flow, then the norm ‖R(t)‖2
is nonincreasing in t. Thus, our solution doesn’t leave the compact ball
of radius ‖R0‖, say, so it has infinite lifetime.
Assume that τ(R(t)) is bounded from above by c < 0. Then we get

that ‖R(t)‖ becomes zero before time t0 = −‖R0‖2
c , which implies

τ(R(t0) = 0), which is impossible.

Corollary 4.3.0.13. Let t 7→ R(t), t ∈ R, be a trajectory of Φ. Then
t 7→ τ(R(t)) is strictly monotonically increasing unless R is an equilibrium
position of Φ.

Beweis. Clear, since we have Φ = 1
3∇τ by proposition 4.3.0.11.

Understanding the asymptotic behavior of the solution curves of Φ re-
quires understanding the evolution of the irreducible components of cur-
vature. The first step towards this direction is to determine the evolution
equation of the geometrical quantities in play. Following theorem 3.3.1.3,
the evolution of scalar and Ricci curvature under Φ are obvious:
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Proposition 4.3.0.14. Let t 7→ R(t), t ∈ (T−, T+), be the maximal solution
curve of Φ starting from R(0) = R0.

1. Evolution of the irreducible components:

(a) d
dttr(R(t)) = ‖Ric(R(t))‖2,

(b) d
dtRic(R(t)) = 2

∑
iRρ(t)(·, ei)Ric(R(t))ei, {ei} an arbitrary or-

thonormal basis of (V, 〈· , ·〉).
(c) d

dtRic0(R(t)) = 2
∑

iRρ(t)(·, ei)Ric(R(t))ei − 2
n ‖Ric(R(t))‖2 id

(d) d
dtW(R(t)) = Φ(W(R(t))) + 2

n−2Ric0(R(t)) ∧ Ric0(R(t))

− 2
(n−1)(n−2)2

‖Ric0(R(t))‖2 id + 4
(n−2)2

Ric0(R(t))2 ∧ id

2. Evolution of the norms of the irreducible components:

(a) d
dt

1
N (tr(R(t)))2 = 2

Ntr(R(t)) ‖Ric(R(t))‖2

(b) d
dt ‖W(R(t))‖2 = 2τ(W(R(t)))

(c) d
dt

2
n−2 ‖Ric0(R(t)) ∧ id‖2 = − 4

N2 tr(R(t)) 2
n−2 ‖Ric0(R(t)) ∧ id‖2

− 8
n2N

(tr(R(t)))3 + 2(τ(R(t))− 2τ(W(R(t))).

Beweis. 1.(a) to 1.(c) and 2.(a) follow directly from theorem 3.3.1.3. 1.(d)
follows using the formulas for the Weyl curvatures of Φ(R) and Φ( 2

n−2Ric0(R)∧
id) from subsection 3.3.2.3. Now we proof 2.(b):
We have

d

dt
‖W(R(t))‖2 = 2 〈W(Φ(R(t))),W(R(t))〉

= 2 〈Φ(R(t)),W(R(t))〉
= 2 〈ϕ(R(t),W(R(t))),W(R(t))〉
= 2 〈Φ(W(R(t))),W(R(t))〉
= 2τ(W(R(t)))

Here we used that the trilinear map (R,S, T 7→ 〈ϕ(R,S), T 〉) is fully sym-
metric, that ϕ(id,W(R)) = 0 and that ϕ(Ric0(R) ∧ id,W(R)) lies in RIC0

(compare proposition 3.3.2.1 and the subsections 3.3.2.1 and 3.3.2.2).
2.(c) now follows using 2.(a) and 2.(b).

First of all we observe that the evolution of scalar curvature does not
depend on the Weyl curvature. From the evolution of scalar curvature we get
immediately that the lifetime of any solution curve of Φ is finite, provided
that the scalar curvature becomes positive in finite time. To see this, first
observe that ‖Ric(R)‖2 ≥ 2

ntrR2, which allows us to compare the scalar
curvature with solutions of the explosion equation ϕ̇ = 2

nϕ
2 with initial

data ϕ(0) = tr(R(t0)). This comparison gives tr(R(t0 + t)) ≥ ϕ(t) for all
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t ≥ 0, whenever it makes sense. The solution of ϕ̇ = ϕ2 with initial data
ϕ(0) = c is given by

ϕ(t) =
nc

n− 2ct
.

This tells us that the lifetime T+ of the solution curve throughR0 is bounded
from above by T ≤ n

ctr(R(0) , if tr(R0) > 0 and that tr(R) becomes infinitely
large before this time. Remembering corollary 4.3.0.12, we see that this
forces τ to become positive during the flow.
If the lifetime is finite, then the solution leaves every compact subset of the
space of algebraic curvature operators. So the norm ‖R(t)‖ tends to infinity,
as t tends to T+. We know from corollary 4.3.0.12 that τ(R(t)) will become
positive. Actually, τ(R(t)) will become infinitely large, since

‖R(t)‖2 = ‖R(0)‖2 + 2

∫ t

0
τ(R(s))ds

tends to infinity as t tends to T+ <∞.

Now we treat the case, where we have infinite lifetime of the solution
curve and therefore necessarily nonpositive scalar curvature.
First, if the scalar curvature becomes zero at time t0, then we must have that
the Ricci curvature is zero at this time either. Otherwise, the scalar curvature
would become positive, which is impossible, since we have infinite lifetime.
Hence, we have that R(t0) is a Weyl curvature operator, which tells us that
the whole solution curve lies in WEYL, since WEYL is invariant under the
flow of Φ.
We are left considering the case where the scalar curvature remains strictly
negative for all times. As we have

tr(R(t)) = tr(R(0)) +

∫ t

0
‖Ric(R(s))‖2 ds,

this tells us that there is a sequence (tn) with tn →∞ and Ric(R(tn))→ 0.
But it may happen, that lim supt→∞ ‖Ric(R(t))‖ > 0. We note our results
in the following theorem.

Theorem 4.3.0.15. Let t 7→ R(t), t ∈ (T−, T+), be the maximal solution
curve of Φ starting from R(0) = R0. Then:

1. We have T+ <∞, if tr(R(t)) becomes positive in finite time.

2. We have T+ < ∞, if tr(R(t0)) = 0 and Ric0(R(t0)) 6= 0 for some
t0 ∈ (T−, T+).

3. If we have T+ =∞, then tr(R(t)) ≤ 0 for all t and

lim inf
t7→∞

‖Ric(R(t))‖ = 0.

Moreover, if we have tr(R(t0)) = 0 for some t0 ∈ (T−,∞), then we
have Ric(R(t)) = 0 for all t ∈ (T−,∞).
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4.4 Equilibrium Positions

For a given R ∈ LC
(∧2 V

)
, let ΩΦ(R) be the Ω-limitset of R w.r.t. the

flow of Φ and, if ‖R‖ = 1, let ΩΦ(R) be the Ω-limitset of R w.r.t. the flow
of Φ. We are interested in the asymptotic behavior of the solution curves of
Φ, which reflects in the behavior of Φ-trajectories near ω-limitsets of Φ. The
elements of these sets are equilibrium positions of Φ. As we have

Φ(R) = Φ(R)− τ(R)

‖R‖2
R

the equilibrium positions of Φ on S are in 1-1 correspondence to the one-
dimensional Φ-invariant subspaces of LC(

∧2 V ). We give shall some exam-
ples:

Examples 4.4.0.16. 1. Every range 1 algebraic curvature operator de-
fines a Φ-invariant 1-dim subspace

2. Spherical curvature operators:

(i) Let {ei} be an orthonormal basis of V and Rij := e∗i ∧ e∗j ⊗ ei∧ ej
for i, j ∈ {1, ..., n}, then

Φ(Rij +Rjk +Rki) = 4(Rij +Rjk +Rki),

if i, j and k are mutually distinct. R = Rij + Rjk + Rki is the
curvature operator of S2 × Rn−2.

(ii) Let l ≤ n and σ a permutation of {1, ..., n}, then

Φ(
∑

1≤i<j≤l
Rσ(i)σ(j)) = 2(l − 1)

∑
1≤i<j≤l

Rσ(i)σ(j).

R =
∑

1≤i<j≤lRσ(i)σ(j) is the curvature operator of Sl × Rn−l.
(iii) Let 1 ≤ l1 < k1 < l2 < k2 < ... < lm < km ≤ n, Rs :=∑

ls≤i<j≤ks Rij for s ∈ {1, ...,m} and

R :=
m∑
s=1

1

2(ks − ls − 1)
Rs

then

Φ(R) = R.

R is the curvature operator of Sk1−l1r1 × Sk2−l2r2 × Skm−lmrm × RM ,
where rs = 1√

2(ks−ls)
and M = n−

∑m
s=1 ks − ls
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3. Hyperbolic curvature operators:
Replacing R by −R in (i), (ii) and (iii) from above we get the hyper-
bolic analogues and

(i) Φ(−R) = 4R in case (i)

(ii) Φ(−R) = R in the cases (ii) and (iii).

Beweis. 1. If R has range 1, then R = ±ε∗ ∧ ε for some ε ∈
∧2 V . Then

R2 = ±‖R‖2R

and

R#R = 0.

So

Φ(R) = ±2
∥∥R2

∥∥R.
2. (a) Rij is a range 1 algebraic curvature operator, so Rij#Rij = 0.

This implies

(Rij +Rjk)#(Rij +Rjk) = 2Rij#Rjk = Rik,

so

R#R = (Rij +Rjk +Rki)#(Rij +Rjk +Rki)
= 2(Rij#Rjk +Rjk#Rki +Rki#Rij)
= Rij +RjkRki
= R

Since RijRkl = 0, whenever {i, j} 6= {k, l} and R2
ij = Rij , we get

R2 = (Rij+Rjk+Rki)2 = R2
ij+R2

jk+R2
ki = Rij+Rjk+Rki = R.

This shows

Φ(R) = 4R.

(b) W.l.o.g. σ = id. Then by the same arguments as above:

R2 = R.
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Now we treat the term R#R:

R#R =
1

4

∑
1≤i,j,r,s≤l

Rij#Rrs

=
1

2

∑
1≤i,j,r≤l

Rij#Rjr

=
1

2

∑
1≤i,r≤l

∑
1≤j≤l,j 6=i,r

Rir

=
l − 2

2

∑
1≤i,r≤l

Rir

= (l − 2)R

This gives the result.

(c) For all s = 1, ...,m holds

Φ

(
1

2(ks − ls)
Rs
)

=
1

2(ks − ls)
Rs

And if r 6= s, then

RrRs = RsRr = 0 and Rr#Rs = 0.

Thus,

Φ(R) = Φ

(
m∑
s=1

1

2(ks − ls − 1)
Rs
)

=

m∑
s=1

Φ

(
1

2(ks − ls − 1)
Rs
)

=
m∑
s=1

1

2(ks − ls − 1)
Rs

= R

The examples from above show that there exist many equilibrium posi-
tions and that we can construct new equilibriums building geometric prod-
ucts of certain equilibrium positions. But it also shows that we are not
allowed to mix hyperbolic and spherical curvature operators. The follow-
ing theorem generalizes our thoughts to arbitrary equilibrium positions and
builds the core of this section.
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Theorem 4.4.0.17. Let R 6= 0 be an algebraic curvature operator on V
with

Φ(R) =
τ(R)

‖R‖2
R,

in other words, R
‖R‖ is an equilibrium of Φ. Suppose that R splits as an

algebraic product of the algebraic curvature operators Ri 6= 0, i = 1, ..., r,
r ∈ N. Then each of the Ri satisfies

Φ(Ri) =
τ(Ri)
‖Ri‖2

Ri

and we have the relations

τ(Ri)
‖Ri‖2

=
τ(R)

‖R‖2

for each i.

Beweis. On the one hand we have

Φ(R) =
τ(R)

‖R‖2
R =

τ(R)

‖R‖2
∑
i

Ri

and on the other hand Φ preserves products, thus we get

Φ(R) =
∑
i

Φ(Ri)

as an algebraic product of algebraic curvature operators and

hΦ(Ri) ⊆ hRi .

Hence, we get

Φ(Ri) =
τ(Ri)
‖Ri‖2

Ri

for all i and also
τ(Ri)
‖Ri‖2

=
τ(R)

‖R‖2

as claimed.

Remark 4.4.0.18. Obviously, theorem 4.4.0.17 is also true for geometric
splittings.
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Example 4.4.0.19. Let U ⊆ V be a proper subspace and consider the
algebraic (and geometric) product curvature operator

R =
1

‖S +H‖
(S +H),

where S := SU and H := HU⊥ are weakly spherical and weakly hyperbolic
curvature operators as in example 3.1.2.2. Following theorem 4.4.0.17 we see
that the normalized curvature operator 1√

2N
(S+H) of Sn×Hn is not a fixed

point of Φ, since τ(S) > 0 while τ(H) < 0.

Corollary 4.4.0.20. Let R ∈ LC
(∧2 V

)
with ‖R‖ = 1 and τ(R) ≥ 0. Sup-

pose that S ∈ ΩΦ(R) is an algebraic (or geometric) product of the curvature
operators S1, ...,Sr, Si 6= 0. Then, for all i holds

τ(Si) ≥ 0.

If we have τ(Si) = 0 for some i ∈ {1, ..., r}, then S = R is an equilibrium
of Φ and therefore R ∈WEYL.

Beweis. S is an equilibrium position of Φ with ‖S‖ = 1. Hence,

Φ(S) = τ(S)S.

As τ is monotonically increasing along the flow of Φ τ(S) is nonnegative.
The first claim follows from corollary 4.4.0.17.
Now let i ∈ {1, ..., r} such that τ(Si) = 0. Then, by corollary 4.4.0.17 again,
we get τ(S) = 0, which gives S = R, since τ is strictly increasing along the
non stationary flow lines of Φ by corollary 4.3.0.13. It follows that

Φ(R) = τ(R)R = 0,

from which we conclude that R is an algebraic Weyl curvature operator
using theorem 3.3.1.3.

Example 4.4.0.21 (Example 4.4.0.19 continued). Let R as in example

4.4.0.19. Corollary 4.4.0.20 implies Ω(R) =
{

1
‖S‖S

}
.

The equilibriums of the Ricci vector field Φ lie in the space of Weyl
curvature operators. For, if Φ(R) = 0 for an algebraic curvature operator
R, then tr(Φ(R)) = 0 as well and therefore Ric(R) = 0, since we have
tr(Φ(R)) = ‖Ric(R)‖2 by theorem 3.3.1.3.
What about the equilibriums of Φ? We know that the (weakly) spherical and
hyperbolic algebraic curvature operators are fixed by the flow of Φ. They lie
in SCAL⊕ RIC0. Since WEYL is Φ-invariant, there must exist equilibrium
positions in WEYL as well. SCAL is invariant either. This implies that there
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are also equilibrium positions R in SCAL ⊕WEYL with tr(R) 6= 0 and
W(R) 6= 0, which implies τ(W(R)) 6= 0. Now we can construct equilibrium
positions R, with nonvanishing irreducible components. For example, take
a spherical curvature operator S on

∧2 V and a Weyl curvature operatorW
of
∧2 V with Φ(W) = τ(W)W and τ(W) > 0. Now adjust the lengths of S

and W, such that S ⊕W is an equilibrium of Φ in LC
(∧2(V ⊕V)

)
.

These are the only possibilities, as the following two propositions show.

Proposition 4.4.0.22. Φ has no fixed points R ∈ RIC0 other than R = 0.

Beweis. Suppose that R ∈ RIC0 with ‖R‖ = 1 satisfies

Φ(R) = τ(R)R.

Then Φ(R) is of traceless Ricci-type as well. Together with theorem 3.3.1.3
we get

0 = tr(Φ(R)) = ‖Ric(R)‖2 = ‖Ric0(R)‖2 = ‖R‖2 ,

so R = 0.

Proposition 4.4.0.23. If R ∈ RIC0 ⊕WEY L with norm equal to one is
a fixed point of Φ, then Ric0(R) = 0

Beweis. Theorem 3.3.1.3 implies

tr(Φ(R)) = ‖Ric(R)‖2 − τ(R)tr(R)

for every algebraic curvature operator R. Hence, we have

d

dt
tr(R(t)) = ‖Ric(R(t))‖2 − τ(R(t))tr(R(t))

along the flow of Φ. If R ∈ RIC0 ⊕WEYL, then the right hand side equals
‖Ric0(R)‖2, which implies that the trace of the Φ-trajectory through R
becomes instantaneously positive unless Ric0(R) = 0 and the claim follows.
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Anhang A

Multilinear Algebra and
Basics of Representation
Theory

This section gives a rough introduction to Euclidean multilinear algebra
with special focus on the bilinear case and we provide the basic material of
representation theory which is used in the text.
Let (V, 〈· , ·〉) be an Euclidean vector space of dimension n.

A.1 The Tensor Algebra

In this subsection we recall some fundamental properties of the tensor alge-
bra of V . We start with the general construction of tensor products of (real)
vector spaces. Let W be another vector space. Up to canonical isomorphisms,
the tensor product V ⊗W of V and W is completely characterized by the
universal property: Let Z be a vector space and s : V ×W → Z bilinear.
We say that Z is the tensor product of V and W , if the following situation
occurs. Whenever U is any other vector space, and β : V ×W → U is any
bilinear map, then there exists precisely one linear map βs : Z → U, such
that the following diagram commutes

V ×W
β

- U

Z

s

?
∃!β

s

-

To see that the universal property determines the tensor product up to
canonical isomorphism, let s

′
: V ×W → Z

′
be another bilinear map satis-

fying the universal property. Then, replacing U by Z
′

in the diagram from
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above, the universal property yields two canonically (and uniquely) defined
linear maps s

′
s : Z → Z ′ and ss′ : Z

′ → Z, each of them making the di-
agram commute. These maps are inverse to each other: First, we convince
ourselves, that the restrictions of these maps to the images of s and s

′
are

inverse to each other. Observing that the images of s and s′ span Z and
Z
′

respectively, which is a consequence of the uniqueness statement in the
universal property, the claim follows.
Now, there are two possibilities to generalize the definition of the tensor
product to finite families of vector spaces. One by induction, the other by
writing down the appropriate universal property. But, up to canonical iso-
morphisms, the tensor product turns out to be a commutative and asso-
ciative operation. So it doesn’t really matter, which way we choose. Since
the main ideas concerning existence and functoriality of tensor products are
the same, no matter how many factors we want to include, we choose the
inductive way and keep our minds focused on the easiest non trivial case,
where we are left with only two factors V and W .
Let F be the vector space with basis {(v, w) : v ∈ V,w ∈W} and let E ⊆ F
be the subspace generated by elements of the form

λ(v1, w) + µ(v2, w)− (λv1 + µv2, w)

or
λ(v, w1) + µ(v, w2)− (v, λw1 + µw2)

where λ, µ ∈ R and all the vectors in play belong to the appropriate spaces.
Then the quotient space F/E fulfills the universal property from above and
therefore it is the desired tensor product of V and W . Given v ∈ V and
w ∈W , we write v ⊗ w rather than (v, w) + E ∈ F/E.
One can show, that if {vi}i∈I and {wj}j∈J are bases of V and W respective-
ly, then {vi ⊗ wj}(i,j)∈I×J is a basis of V ⊗W . Thus, if V and W are both
finite dimensional, then the dimension of V ⊗W is dimV · dimW .
What about the functoriality of this construction? Suppose that we are given
linear maps fi : V →W , i = 1, 2. Then, by the universal property, we get a
linear map f1⊗f2 : V ⊗V →W⊗W , such that f1⊗f2(v⊗w) = f1(v)⊗f2(w)
for all v ∈ V , w ∈ W . With this definition, the tensor product becomes a
covariant functor on the category of vector spaces.
Now let us see, how we can turn the tensor product into a functor on the cat-
egory of Euclidean vector spaces. First of all, we have to define a scalar prod-
uct on the tensor product of two given Euclidean vector spaces (V, 〈· , ·〉V )
and (W, 〈· , ·〉W ) in a canonical way. To do so, we simply define

〈v1 ⊗ w1, v2 ⊗ w2〉 := 〈v1, v2〉V 〈w1, w2〉W .

The universal property assures that this definition gives a bilinear map on
V ⊗ W . The symmetry of this map is obvious and so is its positive defi-
niteness. It is also clear that the map f ⊗ g : V ⊗W → V ⊗W is a linear
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isometry provided that f and g : V → W where linear isometries. Thus,
the tensor product is indeed a functor on the category of Euclidean vector
spaces.
Now we take a look at the covariant tensor algebra T(V) :=

⊕
p∈Z TpV as-

sociated to the vector space V . Here, TpV = V ⊗ ...⊗ V︸ ︷︷ ︸
p times

denotes the p-fold

tensor product of V provided that p ≥ 0. Otherwise it is zero by definition.
As we have mentioned above, the tensor product operation is associative and
commutative. Thus, the multiplication (x, y) 7→ x ⊗ y, x, y ∈ T(V), turns
T(V) into a commutative graduate algebra.
As each linear map f : V → W gives rise to linear maps fp : TpV → TpW
for any p ∈ Z in the obvious way, we get a linear map fT : T(V) → T(W),
which is simply the direct sum of the maps fp. fT is a graduate algebra ho-
momorphism and one sees immediately, that this construction is functorial.
Any scalar product on V induces scalar products on TpV for any p ∈ Z.
The direct sum of these yields a scalar product on the tensor algebra T(V).
It is obvious that for any linear isometry g : V → W , the induced map
gT : T(V)→ T(W) will also be isometric. Thus, we may view T as a functor
from the category of Euclidean vector spaces to the category of Euclidean
commutative graduate algebras as well.
Next to the covariant tensor algebra T(V) there is the contravariant ten-
sor algebra T∗(V), which is defined by T∗(V) := T(V∗). Clearly, T∗ is a
functor. But it is contravariant. As we have restricted our considerations to
the case of finite dimension, we get that T∗(V) is canonically isomorphic to⊕

p∈Z (TpV)∗. If 〈· , ·〉 is a scalar product on V , then we can identify V ∗ and
V canonically via the map ∗ : V → V ∗,

v 7→ (w 7→ v∗(w) := 〈v, w〉).

Letting
〈v∗, w∗〉 := 〈v, w〉 ,

for v, w ∈ V , we turn V ∗ into a Euclidean vector space and the isomorphism
∗ into a linear isometry. Moreover, one can show that the ∗-isomorphisms
are compatible with building tensor products, as we have the identity

(v ⊗ w)∗(x⊗ y) = v∗ ⊗ w∗(x, y)

for all x, y, v, w ∈ V . This means that the canonical linear isometry ∗ :
V ⊗V → (V ⊗V )∗ is simply the tensor product ∗⊗∗ of the canonical linear
isometry ∗ : V → V ∗ with itself. If we consider an arbitrary finite number k
of factors, then we get the same results.

Obviously, it is also possible to mix co- and contravariant tensors. Doing
so, we obtain some fundamental, canonical identifications of certain vector
spaces with tensor spaces. We have, for example,

V ∗ ⊗W ∼= Hom(V,W),
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where Hom(V,W) is the space of linear maps F : V → W . Using the
universal property, the desired isomorphism may be defined canonically by

α⊗ w 7→ (v 7→ α(v) · w).

Analogously, one can show that for each k ∈ N Multk(V1, ...,Vk; W), the
space of k-multilinear maps on V1× ...×Vk with values in W , is canonically
isomorphic to the tensor space

V ∗1 ⊗ ...⊗ V ∗k ⊗W.

Here, we define the desired isomorphism by

α1 ⊗ ...⊗ αk ⊗ w 7→ ((v1, ..., vk) 7→ α1(v1) · ... · αk(vk) · w).

This means that Euclidean structures on vector spaces induce Euclidean
structures on the corresponding spaces of multilinear maps in a natural
way. To us, it is important to know how these scalar products look like and
how they can be computed explicitly in terms of the underlying Euclidean
vector spaces.

We start with Hom(V,W). Let {e1, ...en} and {d1, ..., dm} be orthonor-
mal bases of V and W , respectively. Given linear maps F,G : V → W , we
can describe them as follows:

F =
∑
i,j

f ji e
∗
i ⊗ dj , f

j
i ∈ R,

and
G =

∑
i,j

gji e
∗
i ⊗ dj , g

j
i ∈ R.

Now, we have

〈e∗i ⊗ dj , e∗k ⊗ dl〉 = 〈e∗i , e∗k〉 · 〈dj , dl〉 = 〈ei, ek〉 · 〈dj , dl〉 ,

which implies

〈F,G〉 =
∑
i,j,k,l

f ji g
l
k 〈ei, ek〉 〈dj , dl〉

=
∑
i,j

f ji g
j
i

= tr(G∗ ◦ F),

since we have

G∗ ◦ F =
∑
i,j,k,l

(
gji d
∗
j ⊗ ei

)
◦
(
f lke
∗
k ⊗ dl

)
=
∑
i,j,k

gji f
j
ke
∗
k ⊗ ei.
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Note carefully that

〈F,G〉 = 〈G∗ ◦ F, idV〉 .

Now we describe scalar products on spaces of multilinear maps
Multk(V1, ...,Vk; W), k ∈ N.

Let
{
ej1, ...e

j
nj

}
, j = 1, ..., k, and {d1, ..., dm} be orthonormal bases of Vj and

W , respectively. Take k-multilinear maps µ, ν ∈ Multk(V1, ...,Vk; W). Then
we can write

µ =
∑

i1,...,ik,l

µli1...ik(e
1
i1)∗ ⊗ ...⊗ (ekik)∗ ⊗ dl

and

ν =
∑

i1,...,ik,l

νli1...ik(e
1
i1)∗ ⊗ ...⊗ (ekik)∗ ⊗ dl.

Arguing as above, we get

〈µ, ν〉 =
∑

i1,...,ik,l

µli1...ik · ν
l
i1...ik.

A.2 Exterior Powers

Besides the tensor algebra T (V ) =
⊕

p T
pV with its induced Euclidean

structure 〈· , ·〉, there is another functorial construction of a graduate Eu-
clidean algebra, namely the antisymmetric algebra

∧
V =

⊕∧p V , which is
of interest in our studies.

∧
V is also called the algebra of exterior powers of

V . We may characterize
∧p V up to canonical isomorphisms by the following

universal property: Let W be a vector space and s : V × ...× V︸ ︷︷ ︸
p times

→ W an

alternating p-multilinear map. We say that W is an exterior power of V of
order p if the tuple (W, s) satisfies the following condition: Given a vector
space U and an alternating p-multilinear map µ : V × ...× V︸ ︷︷ ︸

p times

→ U there is

one and only one linear map µs : W → U such that the following diagram
is commutative

V × ...× V︸ ︷︷ ︸
p times

µ
- U

W

s

?
∃!µ

s

-

The universal property from above characterizes W up to canonical isomor-
phisms. To see this, let (W ′, s′) be another tuple satisfying the universal
property. Then the universal property yields two canonically defined linear
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maps s′s : W →W ′ and ss′ : W ′ →W and these maps will be inverse to each
other. (It is easy to see that the restrictions of these maps to the images of
s and s′ are inverse to each other. Then use that the images of s and s′ span
W and W ′, which follows from the uniqueness statement about the induced
linear maps in the universal property.)
Now we come to the construction of

∧p V : Each permutation σ ∈ Sp defines
a linear map λσ : T pV 7→ T pV with λσ(v1 ⊗ ...⊗ vp) = vσ(1) ⊗ ...⊗ vσ(p) by
the universal property of the tensor product.
Now define Ep := {t− sgn(σ)λσ(t) : t ∈ TpV, σ ∈ Sp}, set

∧p V := T pV/Ep

and let π : T pV →
∧p V the canonical projection. Further, let ∧ := π ◦ ⊗.

Then the universal property from above is easily established for (
∧p V,∧)

using the universal properties of tensor products and quotient spaces.∧p V is generated by elements of the form v1 ∧ ... ∧ vp := ∧(v1, ..., vp),
v1, ..., vp ∈ V and one can show that if (e1, ..., en) is a basis of V , then
(ei1 ∧ ... ∧ eip)1≤i1<...<ip≤n is a basis of

∧p V . By the way, this shows that
the dimension of

∧p V equals
(
n
p

)
.

If W is another vector space and F : V →W is linear, then we can define a
linear map

∧p F :
∧p V →

∧pW , first letting∧p F (v1 ∧ ... ∧ vp) := F (v1) ∧ ... ∧ F (vp)

on the generators of
∧p V and then extending this map linearly to the whole

vector space using the universal property. It is easy to see that
∧p idV =

id∧p V and
∧pG ◦F =

∧pG ◦
∧p F , showing that

∧p is actually a covariant
functor on the category of vector spaces.
It is also possible to define a linear map F1 ∧ ... ∧ Fp :

∧p V →
∧pW , if we

are given linear maps F1, ..., Fp : V →W :
To do so, first define µ(v1, ..., vp) := 1

p!

∑
σ∈Sp

Fσ(1)(v1)∧ ...∧Fσ(p)(vp). This
map is clearly p-multilinear and alternating, so we can use the universal
property to define

F1 ∧ .... ∧ Fp := µ∧.

Note that if F1, ..., Fp = F , then F1 ∧ ... ∧ Fp =
∧p F .

Now let us see how we can turn
∧p V into a Euclidean vector space in a

natural way, such that
∧p becomes a functor on the category of Euclidean

vector spaces: Fix w1, ..., wp ∈ V .Then the p-multilinear alternating map
(v1, ..., vp) 7→ det(〈vi, wj〉)ij induces a linear map µw :

∧p V → R (w =
(w1, ..., wp)) with

µw(v1 ∧ ... ∧ vp) = det(〈vi, wj〉)ij .

This gives us a p-multilinear alternating map µ : V × ...× V︸ ︷︷ ︸
p times

→ (
∧p V )∗ :

w 7→ µw which descends to a linear map µ∧ on
∧p V . Now we simply define

a symmetric bilinear map 〈· , ·〉 on
∧p V , letting

〈ε, δ〉 := µ∧(ε)(δ),
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for arbitrarily chosen ε, δ ∈
∧p V .

It is clear that if (e1, ..., en) is an orthonormal basis of (V, 〈· , ·〉), then
(ei1 ∧ ... ∧ eip)1≤i1<...<ip≤n is an orthonormal basis of (

∧p V, 〈· , ·〉) and that
for any linear isometry F of V ,

∧p F is a linear isometry of
∧p V , so we may

view
∧p as a covariant functor on the category of Euclidean vector spaces

as well.

Finally, we consider the direct sum
∧
V :=

⊕
p

∧p V together with the
anticommutative multiplication

ε ∧ δ = (−1)pqδ ∧ ε,

for ε ∈
∧p V and δ ∈

∧q V , turning
∧
V into a graduate anticommutative

algebra.

A.3 The Algebra Tensor Product

An algebra over a field K is a K-vector space A together with a bilinear map
β : A × A → A. Let (A, β) and (A′, β′) be K-algebras. Then we can turn
the tensor product A⊗A′ into a K-algebra in the following way:
Consider the map A×A′ ×A×A′ → A⊗A′,

(a, a′, b, b′) 7→ β(a, b)⊗ β′(a′, b′).

This map is 4-linear and therefore induces a bilinear map

⊗Alg = β ⊗Alg β′ : A⊗A′ ×A⊗A′ → A⊗A′

with
(a⊗ a′, b⊗ b′) 7→ β(a, b)⊗ β′(a′, b′)

by the universal property of tensor products. Thus, we have constructed
a new K-algebra (A ⊗ A′,⊗Alg). This algebra is called the algebra tensor
product of the algebras A and A′.

A.4 Group Actions on Vector spaces and Induced
Actions

Let G be a group and X a set. A map ϕ : G×X → X is called a G-action
on X, if for all g, h ∈ G and x ∈ X holds

ϕ(g, ϕ(h, x)) = ϕ(gh, x)

and
ϕ(e, x) = x,
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where e ∈ G the neutral element. Sometimes we write g.x instead of ϕ(g, x)
and sometimes, if we want to be more precise, we write ϕX rather than ϕ.
To each g ∈ G belongs an associated map ϕg : X → X,

x 7→ ϕ(g, x)

It is clear from the definition that for every g ∈ G holds

ϕg−1 ◦ ϕg = ϕg ◦ ϕg−1 = idX.

Thus, the association g 7→ ϕg defines a group homomorphism ρ : G→ S(X),
S(X) the group formed by the bijective maps X → X. Conversely, each
group homomorphism ρ : G → S(X) gives rise to an action of G on X.
Simply define ϕ(g, x) := ρ(g)(x) for g ∈ G and x ∈ X.
Since the inclusion ι : H → G of an arbitrary subgroup H ⊆ G is a group
homomorphism, the restriction of ϕ to H induces an action of H on X.
Moreover, each subgroup H ⊆ G acts on G by left translation, ϕ : H ×G→
G,

(h, g) 7→ lg(h) = gh.

A subset Y ⊆ X is called G-invariant, or simply invariant, if y ∈ Y implies
ϕ(g, y) ∈ Y for each g ∈ G. As above, the restriction of a G-action on X to
a G-invariant subset Y yields a G-action on Y .
Clearly, the G-orbits G(x) := {ϕ(g, y) : g ∈ G} are the smallest nontrivial
invariant subsets of X and X itself is the biggest. Further, X decomposes
as the disjoint union of G-orbits. We say that a G-action on X is transitive,
if X has no invariant subsets other that X. Given x ∈ X, we can look at all
elements g ∈ G which fix x. These elements build a subgroup

Gx = {g ∈ G : ϕ(g, x) = x} .

Gx is called the stabilizer of x. If G is acting transitively on X, we get an
bijection

G/Gx → X

for each x ∈ X, which is induced by the map g 7→ ϕ(g, x).
Now suppose that G is acting on the sets X and Y . A map f : X → Y
is called G-equivariant (or simply equivariant), if it is compatible with the
actions of G on X and Y . More precisely, we require f ◦ ϕXg = ϕYg ◦ f for
each g ∈ G.

In the text we are mostly concerned with linear group actions on vector
spaces. In these cases X is replaced by a vector space and we additionally
require that the associated maps ϕg are linear for every g ∈ G, i.e. we want
ρ(G) ⊆ GL(V) ⊆ End(V). In the text, G is usually given by a subgroup of
O(V, 〈· , ·〉), where 〈· , ·〉 is a scalar product on V . In this case the action is
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called orthogonal.
If a group G is acting linearly on the vector spaces V1, ..., Vk, k ∈ N, then G
is also acting on the tensor product V1 ⊗ ... ⊗ Vk. To see this, let ρi : G →
GL(Vi), i = 1, ..., k, the group homomorphism corresponding to the action
of G on Vi, and define ρ : G→ GL(V1 ⊗ ...⊗Vk),

ρ(g) := ρ1(g)⊗ ...⊗ ρk(g).

The functoriality of the tensor product assures that ρ is indeed a homomor-
phism of groups. Moreover, if we assume the Vi to be Euclidean vector spaces
and G acting orthogonally on each factor Vi, then G is acting orthogonally
on the tensor product V1 ⊗ ...⊗ Vk w.r.t. the induced Euclidean structure.
If we are given vector spaces W1, ...,Wk together with linear G-actions and
equivariant linear maps Fi : Vi →Wi, the induced map

F1 ⊗ ...⊗ Fk : V1 ⊗ ...⊗ Vk →W1 ⊗ ...⊗Wk

is equivariant either.
Analogously, we can define induced actions of G on exterior powers, since

each g ∈ G, induces a map

ρ(g) ∧ ... ∧ ρ(g)︸ ︷︷ ︸
k−times

on
∧k V for every k ∈ N. Again, if the action of G on V is orthogonal w.r.t.

some given Euclidean structure, then the induced G-action on
∧k V will be

orthogonal w.r.t. induced scalar product as well. And obviously, equivariant
linear maps F1, ..., Fk : V →W give rise to an equivariant linear map

F1 ∧ ... ∧ Fk :
∧k V →

∧kW

Now we explain some special examples of linear group actions, which are
frequently used in the text.

For example, each subgroup G of GL(V) acts linearly on V by multipli-
cation

g.v := g(v), v ∈ V.

Further, we see that the linear G-action on V gives rise to linear G-actions
on V ∗ and End(V) in a canonical way: simply define

g.α := α ◦ g−1, for α ∈ V ∗,

and

g.F := g ◦ F ◦ g−1, for F ∈ End(V).
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On the other hand, as we have seen above, we can use the linear actions
of G on V and V ∗ to define a linear action on the tensor product V ∗ ⊗ V ,
letting

g.(α⊗ v) := (g.α)⊗ (g.v)

on generators α⊗ v of V ∗⊗ V . A sharp look makes sure that the canonical
isomorphism V ∗ ⊗ V → End(V), mapping α ⊗ V to the endomorphism
w 7→ α(w)v preserves the corresponding G-actions, in other words, it is
equivariant.
O(V) embeds into O(

∧2 V) canonically via

G 7→ G ∧G.

As this map is a homomorphism of groups, it induces orthogonal actions of
O(V) on

∧2 V ,

(G, ε) 7→ G ∧G(ε)

and on End(
∧2 V),

(G,F) 7→ G ∧G ◦ F ◦G−1 ∧G−1.

The action of O(V) on End
∧2 V preserves the subspaces Sym

(∧2 V
)

, the

space of self-adjoint linear maps
∧2 V →

∧2 V , and the subspace Skew
(∧2 V

)
consisting out of skew-adjoint linear maps

∧2 V →
∧2 V . Therefore, O(V)

acts on these spaces orthogonally either.

We say that G is acting linearly on the R-algebra (V, β), provided that
G is acting linearly on V and the bilinear map β is equivariant (this is the
case, if and only if the induced linear map β⊗ is equivariant). Now suppose
that a group G is acting on the real algebras (V, β) and (V ′, β′). Then G
also acts on the algebra tensor product

(V ⊗ V ′, β ⊗Alg β′),

as one easily sees.

A.5 Representation Theory

Let (V, 〈· , ·〉) be a Euclidean vector space of finite dimension and O(V ) =
O(V, 〈· , ·〉) the orthogonal group with respect to 〈· , ·〉.

Definition A.5.0.24. A group homomorphism ρ : G → GL(V ) is called a
representation of G. It is called an orthogonal representation, if the image
of ρ lies in O(V).
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Any (orthogonal) representation ρ : G → GL(V ) gives rise to a (an
isometric) left-action of G and vice versa: ϕ : G × V → V : (g, v) 7→ g.v :=
ρ(g)v.

A subspace of U of V is called G-invariant, or simply invariant, if it is
preserved by the action of G on V . In this case we get a new homomorphism
ρ : G→ GL(U), i.e. a new (orthogonal) representation of of G. Note that if
U is invariant, then its orthogonal complement U⊥ is invariant either, if the
given representation was orthogonal.

ρ : G → O(V ) is called irreducible, if every invariant subspace of V is
either 0 or V . Irreducible orthogonal representations are the building blocks
of orthogonal representations:

Theorem A.5.0.25. Every orthogonal representation is the direct (orthog-
onal) sum of irreducible orthogonal representations

Now let σ : G → O(W ) be another orthogonal representation. A linear
map F : V →W is called G-equivariant (or simply equivariant), if F ◦ρ(g) =
σ(g) ◦ F for all g ∈ G. If V = W , then F is called an intertwining map.
One can take the orthogonal projections onto - and inclusions of - invariant
subspaces as examples for intertwining maps.

Now we get new examples of invariant subspaces: if F : V →W is linear
and equivariant, then kerF and imF are invariant subspaces. Moreover, if λ
is an eigenvalue of F , then the corresponding eigenspace Eλ(F) is invariant.
As an immediate consequence we get the obtain theorem.

Theorem A.5.0.26 (Schur). Let ρ : G → O(V ) and σ : G → W be
irreducible representations. Then every linear equivariant map F : V → W
is either 0 or an isomorphism.

Beweis. There is nothing left to do.
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Anhang B

Riemannian Geometry

In this second part of the appendix we summarize some facts about Rieman-
nian manifolds, which play a certain role in our context, such as (induced)
connections on vector bundles, Lie groups and Lie algebras, the relation
between curvature and holonomy, Killing fields and isometry groups of Rie-
mannian manifolds, curvature description of Riemannian homogeneous man-
ifolds and symmetric spaces and finally, convergence of Riemannian man-
ifolds in the sense of Cheeger and Gromov. The reader is assumed to be
familiar with the basic concepts of differential geometry.

B.1 Connections on Vector Bundles

Let π : E → M be a smooth vector bundle of rank r. As usual, the space of
sections of E will be denoted be Γ(E).

Definition B.1.0.27. A connection on E is an R-bilinear map ∇ : Γ(TM)×
Γ(E) → Γ(E) : (X, s) 7→ ∇Xs which is tensorial in X and derivative in s,
meaning that for all X ∈ Γ(TM), s ∈ Γ(E) and all smooth functions f on
M holds

1. ∇fXs = f∇Xs and

2. ∇Xfs = (Xf)s+ f∇Xs

Alternatively, we could have said that a connection ∇ on E assigns to
each section s of E a 1-form ∇s on M with values in E, such that for any
function f on M holds

∇fs = f∇s+ Df ⊗ s.

The space of all connections on E is obviously an affine space (of infinite
dimension, however): the difference of any two connections is a tensor, or,
more precisely, a 1-form on M with values in End(E). This implies that,
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starting from any connection ∇0 on E, we obtain all the other possible
connections by subtracting 1-forms A on M with values in End(E),

∇ = ∇0 −A.

What about the existence of connections? If E = M×Rn is a trivial bundle we
can take the ordinary differential operator D as a connection on E. However,
this doesn’t work if E is not trivial, for the differential DXs of a sections s of
E in direction of a vector field X on M won’t be a section of E any longer.
How is this to be repaired?
Take a countable collection U = {Ui : i ∈ I} of open subsets of M which are
covering M , together with trivializing diffeomorphisms ϕi : E|Ui → Ui × Rr

and a subordinated partition of unity {ρi : M → [0, 1]}i∈I . Now, for each i,
we define a (local) connection ∇i : Γ(TUi)× Γ(E|Ui)→ Γ(E|Ui) by

∇iXs(q) := ϕ−1
i (D(s ◦ ϕi)q(X(q))) .

Finally, we define

∇ :=
∑
i

ρi∇i,

which is the desired connection on M .

Now we come to the concept of parallel transport:
Let p, q ∈ M and c : [0, 1]→ M be a smooth curve joining p with q. Then,
for any prescribed vector v ∈ TpM we can find a vector field Xv along c,
satisfying

∇ċXv = 0

along c. Proofs of this fact can be found in almost any book about differential
or Riemannian geometry, for example in [18]. The parallel transport along
c is then defined by

Pc : TpM→ TqM : v 7→ Xv(1).

This definition also applies to piecewise smooth curves in the obvious way.

If E′ → M is another vector bundle over M with connection ∇′, then we
get an induced connection ∇⊗ on E ⊗ E′ requiring this new connection to
satisfy the product rule

∇⊗s⊗ s′ = ∇s⊗ s′ + s⊗∇s′.

Thus, we get induced connections on any tensor bundle T(r,s)E. Further, ∇
induces connections on the exterior powers

∧r E with
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∇X(s1 ∧ ... ∧ sr) =
∑
i

s1 ∧ ... ∧∇Xsi ∧ .... ∧ sr.

It is somehow clear how the induced parallel transports will look like. Nev-
ertheless, we will describe the parallel transport on

∧2 E, since this case is
quite important to us:
If P denotes the parallel transport in E along a curve c : [0, 1] → M , then
the parallel transport in

∧2 E along c is given by P ∧P , as one easily shows.
If E is equipped with an inner product 〈· , ·〉, there is a special class of

connections on E: the 〈· , ·〉-metric connections. A connection ∇ is called
metric w.r.t. 〈· , ·〉, if 〈· , ·〉 is parallel w.r.t. ∇, i.e. if ∇〈· , ·〉 ≡ 0, or equiv-
alently, if X 〈s, t〉 = 〈∇Xs, t〉 + 〈s,∇Xt〉 holds for all vector fields X on M
and all smooth sections s, t of E. It is easy to see that the induced con-
nections from above will be metric w.r.t. the corresponding induced inner
products, provided that the connection on E itself is metric. Further, the
parallel transport corresponding to metric connections is always isometric.
What about the existence of metric connections on Euclidean vector bun-
dles? We already know that, staring from any connection ∇0 on E, we get
all the other possible connections by subtracting 1-forms on M with values
in End(E). In particular, we get the metric connections in this way. So let
∇0 be an arbitrary connection. Now we are going to define a 1-form A on
M with values in End(E), such that the connection ∇ := ∇0 − A will be
metric.
Consider the map

(X, s, t) 7→ 1

2

(〈
∇0
Xs, t

〉
+
〈
s,∇0

Xt
〉
−X 〈s, t〉

)
,

X ∈ Γ(TM), s, t ∈ Γ(E). As this map is a tensor and symmetric in s and t,
we may use it to define the desired 1-form through

〈AXs, t〉 :=
1

2

(〈
∇0
Xs, t

〉
+
〈
s,∇0

Xt
〉
−X 〈s, t〉

)
.

Note that, for any vector field X on M , AX is by definition self-adjoint w.r.t.
〈· , ·〉p within each fiber of E. Using this, a short computation shows that

∇ = ∇0 −A

is indeed a metric connection.
The space of metric connections on a Euclidean vector bundle E is an affine
subspace of the space of all connections: The difference ∇ −∇′ of the two
metric connections ∇ and ∇′ is a 1-form on M with values in so(E), the
space of skew-adjoint bundle endomorphisms of E. Therefore, starting from
any metric connection ∇ on E, we obtain all the other possible metric con-
nections, by subtracting 1-forms on M with values in so(E).
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In order to define higher order covariant derivatives, we need a connection
∇ on TM as well. So let ∇ be a connection on M . We proceed as follows: If
s is a section of E, then ∇s is a section of T∗M⊗E - and this is actually the
reason why one needs a connection on M to define higher order covariant
derivatives on E! We define

∇2
X,Y s := (∇X∇s) (Y ) = ∇X∇Y s−∇∇XY s

for all vector fields X,Y on M and all sections s of E to assure that ∇2s
will be tensorial in X and Y .
The k-th covariant derivative of s shall be a section of TM∗ ⊗ ...⊗ TM∗︸ ︷︷ ︸

k times

⊗E.

Therefore we define

(
∇X∇ks

)
(X1, ..., Xk) := ∇X∇X1,...,Xk

s−
k∑
i=1

∇s(X1, ...,∇XXi, ..., Xk)

to guaranty that ∇k+1s will actually be a tensor. For short, the inductive
definition of higher order covariant derivatives is this:

∇0s = s and ∇k+1s = ∇(∇ks)

B.2 Basic Concepts of Riemannian Geometry

A Riemannian manifold (M, g) is a smooth n-dimensional manifold M to-
gether with a smooth (0, 2)-tensor field g which restricts to a scalar product
gp on each tangent space TpM, p ∈ M . Such a tensor field g is called a
Riemannian metric on M . Riemannian metrics do always exist. They are
constructed easily, using partitions of unity and the fact that the space of
scalar products on a vector space is a convex cone.
Riemannian metrics allow us to carry over the basic concepts of classic ge-
ometry (on linear spaces) to manifolds (non-linear spaces), such as angles
between tangent vectors and their lengths, the length of smooth curves and
distances between points: If p, q ∈M are points and c : [0, 1] 7→M is a curve
connection p and q, then the length L(c) of c is defined to be

L(c) :=

∫ 1

0

√
gc(t)(ċ, ċ)dt,

just like in Rn, and the distance between p and q is defined to be the infimum
over the lengths of all curves connecting these points,

dist(p, q) := inf {L(c) : c connects p and q} .
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It is worthwhile to mention that this function turns M into a metric space
and that the derived (metric) topology is the same as the underlying mani-
fold topology. As a consequence, which is indeed not very surprising, a big
part of the theory of Riemannian manifolds is devoted to the fruitful study
of the interplay between (algebraic) topology and Riemannian geometry.
To each Riemannian metric g belongs a uniquely determined connection ∇
on the tangent bundle of M , the so called Levi-Civita connection of g. This
statement is known as the fundamental theorem of Riemannian geometry.
∇ is determined by the requirements that it shall be metric, i.e.

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ),

and torsion free, i.e.

∇XY −∇YX = [X,Y ] ,

where X,Y and Z are arbitrary vector fields on M . Both, existence and
uniqueness of such a connection, follow from the Koszul formula

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

+ g([X,Y ] , Z)− g([Y,Z] , X) + g([Z,X] , Y ).

which is easily established for metric and torsion free connections.
Now we are ready to introduce another fundamental concept of Riemannian
geometry: Curvature. First of all, there is the curvature tensorR. It is defined
by

R(X,Y )Z := ∇2
X,Y Z −∇2

Y,XZ

for all smooth vector fields X,Y and Z. The curvature tensor measures to
which extend the covariant derivatives of vector fields fail to be commutative.
It has the following properties: The curvature tensor

• is tensorial in X,Y and Z,

• skew-symmetric in X and Y ,

• satisfies the 1. Bianchi identity:
R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0

• and the 2. Bianchi identity:
∇XR(Y, Z)U +∇YR(Z,X)U +∇Z,R(X,Y )U = 0.

By the theorem of Cartan, Ambrose and Hicks (see [8] for the precise state-
ment and the proof), the curvature tensor R carries the whole information
about the geometry of (M, g) - at least if (M, g) is metrically complete and
simply connected.
Apart from this rather global statement, there is an infinitesimal one point-
ing in the same direction. The curvature tensor Rp, p ∈ M , gives rise to a

135



Riemannian metric g̃, defined on a neighborhood U of 0 ∈ TpM ∼= Rn, such
that R̃0 equals Rp. The metric g̃ is given by

g̃q(x, y) = gp(x, y)− 1

3
gp(Rp(x, q)q, y).

Furthermore, the Taylor expansions of g̃ and g|U (or rather the pullback of g
under the exponential map) agree up to second order. But this is something
which is actually true for any locally defined Riemannian metric on TpM,
whose curvature tensor in 0 agrees with Rp ( see [8] for the details, where
the Taylor expansion of g around p is computed by means of Jacoby fields).
So from this perspective, the curvature tensor R may be viewed as a canon-
ical infinitesimal representative of g up to second order. And the algebraic
curvature operators on TpM as a whole, namely the (1,3) tensors on TpM
sharing the algebraic properties of the curvature tensor Rp, may be viewed
as the 2-jets of Riemannian metrics in p.
Further, there is the Riemannian curvature tensor, defined by

R(X,Y, Z, U) = g(R(X,Y )Z,U).

Clearly, the Riemannian curvature tensor R inherits the symmetries of the
curvature tensor R in the first three arguments. In addition, it is skew-
symmetric in Z and U and fulfills

R(X,Y, Z, U) = R(Z,U,X, Y ).

It is clear, that the curvature tensor and the Riemannian curvature tensor
are algebraically equivalent.
Next to these constructions, there is a third, which is algebraically equivalent
to the others: The curvature operator R :

∧2 TM →
∧2 TM. It is defined

(uniquely) by the equation

g(RX ∧ Y, Z ∧ U) := R(X,Y, U, Z),

where the g on the left hand side is the induced inner product on
∧2 TM and

X,Y, Z and U are vector fields on M . It is the universal property of exterior
powers that guaranties R to be an endomorphism of

∧2 TM. One can easily
show that R is self-adjoint w.r.t. to the induced metric g on

∧2 TM.
From a geometrical point of view, R is a linear self-adjoint operator on
formal linear combinations of 2-dimensional subspaces of TM.
For sake of completeness we also introduce the concept of sectional curvature
(we do not need it in our text). Let E ⊆ TpM a 2 dimensional subspace,
generated by elements x, y ∈ V . Then the sectional curvature of E is defined
to be

sec(E) :=
R(x, y, y, x)

‖x ∧ y‖2
.
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Actually, this definition is independent of the choice of the vectors generating
E. Moreover, the sectional curvature carries the full geometric information
about the underlying Riemannian manifold (M, g). One can recover the cur-
vature tensor R from the knowledge of the sectional curvatures. A quite long
formula, describing the curvature tensor in terms of the sectional curvatures
can be found in [8] , for example.
Beside the curvature concepts from above, there are two other curvature
constructions of fundamental importance, which we would like to mention
here: Ricci curvature and scalar curvature.
The Ricci tensor ric is a symmetric bilinear tensor flied on the tangent bundle
TM of M . For each point p ∈M , the Ricci curvature ricp(x, y) of x, y ∈ TpM
is defined to be the trace of the map z 7→ Rp(z, x)y, i.e.

ricp(x, y) =
∑

i

gp(Rp(ei, x)y, ei),

where {ei} is an orthonormal basis of TpM. As ricp is symmetric in x and y
for any p ∈M , there exists a uniquely determined self-adjoint endomorphism
field Ric on TM, satisfying g(Ric(X),Y) = ric(X,Y) for all vector fields X
and Y and we have

Ricp(x) =
∑

i

Rp(x, ei)ei,

where x ∈ TpM and {ei} is as above.
The scalar curvature scal is a function on M . It is the trace of the Ricci
curvature,

scal(p) := trRicp.

There are numerous applications of these curvature concepts.
Riemannian metrics provide a way to translate the classical differential

operators, such as the gradient, the Hessian, the divergence and the Lapla-
cian, to the manifold setting.
Using the induced isomorphism TM → T∗M, x 7→ (y 7→ g(x, y)), we define
the gradient ∇f of a smooth function f : M → R requiring

g(∇f,X) = Df(X)

for any smooth vector field X on M .
The Hessian Hess(f) of f is simply the covariant derivative of the ordinary
differential Df of f ,

Hess(f)(X,Y) = ∇XDf(Y) = g(∇X∇f,Y).

It is a tensor and symmetric in X and Y and reflects the qualitative behavior
of f near extremal points just like its relative on the flat Euclidean space.
The divergence of a vector field X is given by

div(X) = tr(Z 7→ ∇ZX).
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W.r.t. an orthonormal basis {ei} of TpM, p ∈ M , the divergence of X in p
may be written as follows:

div(X)(p) =
∑

i

gp(∇eiX(p), ei).

Just like the divergence of vector fields on Rn, the Riemannian divergence
div(X)(p), p ∈M , measures the infinitesimal flux of the vector field X within
p.
As in Rn, the Laplacian ∆f of f is defined to be the divergence of the
gradient of f ,

∆f = div(∇f).

Both, the divergence and the Laplacian, have their own canonical gener-
alizations to differential operators on sections of Euclidean vector bundles
over Riemannian manifolds:
Let (E, 〈· , ·〉)→ M be a Euclidean vector bundle over the Riemannian man-
ifold (M, g) and ∇ a metric connection on E. If s is a smooth section of E
and {ei} is an orthonormal basis of TpM, then we define

∆s(p) :=
∑
i

∇2
ei,eis.

The definition of the divergence of s is somehow more sophisticated. ∇s is a
1-form on M with values in E. So there is a priori no possibility to perform
contractions w.r.t. variables coming from the tangent bundle of M . Thus,
we have to restrict ourselves to the case where E ∼= T∗M⊗E

′
. Then we can

define the divergence div(s) of s as the contraction of ∇s w.r.t. the first two
variables,

div(s)(p) :=
∑

i

∇eis(ei),

where p ∈ M and {ei} is as above. Note that, using this definition of the
divergence, we still get

∆s = div∇s

for all sections of Euclidean vector bundles over Riemannian manifolds,
which are equipped with a compatible connections.

B.3 Lie Groups and Lie Algebras

Definition B.3.0.28. A Lie Group is a differentiable manifold endowed
with a smooth group structure. This means, we have a smooth manifold G
together with a binary operation

µ : G×G→ G
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turning G into a group, such that the map

(g, h) 7→ µ(g, h−1)

is smooth.
A subgroup H of G is called a Lie subgroup of G, if it is closed, i.e if it is
not only a subgroup but also a submanifold of G.
And finally, the smooth group homomorphisms between Lie groups are called
the Lie group homomorphisms.

There are many examples of Lie groups. For example, every matrix group
is a Lie group. But also the discrete groups Z and Zp, p ∈ N, are Lie
groups. The Lie groups, which are of most importance in our context, are
the orthogonal groups O(n) and their compact subgroups.

Definition B.3.0.29. A Lie algebra is a vector space g together with a
skew-symmetric bilinear map [·, ·] : g× g→ g satisfying the Jacobi identity

[[x, y] , z] + [[y, z] , x] + [[z, x] , y] = 0

for all x, y, z ∈ g. [·, ·] is called the Lie bracket of g.
A linear subspace g′ of g is called a Lie subalgebra if it is closed under [·, ·],
i.e. if x, y ∈ g′ implies [x, y] ∈ g′.
A linear subspace I of g is called an ideal, if [x, y] ∈ I for all x ∈ I and
y ∈ g
And finally, a linear map between Lie algebras is called a Lie algebra homo-
morphism, if it respects the Lie brackets of the underlying Lie algebras. In
the following we will only consider real Lie algebras, i.e. Lie algebras over
R.

For example, the matrix ring Mat(n,R) together with the commutator
[A,B] = AB − BA is a Lie algebra, or R3 together with the cross product.
The Lie algebra so(n), n ∈ N is one of the most important examples in our
context. By definition

so(n) :=
{
A ∈ Mat(n,R) : At = −A

}
.

It is easy to see that so(n) is a Lie subalgebra of Mat(n,R) and that the set
of matrices {Ei,j}1≤i<j≤n, (Ei,j)ij = 1, (Ei,j)ji = −1 and (Ei,j)kl = 0 otherwise,

forms a basis of so(n), which gives dim so(n) = n(n−1)
2 . This is the standard

model of so(n).
It is possible to give coordinate free definitions of the spaces from above:
First, we replace Mat(n,R) by the space of endomorphisms End(V), where
V is an n-dimensional real vector space. The Lie bracket will be given by
the commutator of endomorphisms, [F,G] = F ◦ G − G ◦ F = FG − GF .
Now we fix a scalar product 〈· , ·〉 on V and define

so(V, 〈· , ·〉) := {F ∈ End(V) : F∗ = −F} ,
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where F ∗ is the adjoint of F w.r.t. 〈· , ·〉. Again, it is easy to see that
so(V, 〈· , ·〉) is a Lie subalgebra of End(V). Now we wish to see that so(V, 〈· , ·〉)
and so(n) are isomorphic as Lie algebras.
Let 〈· , ·〉can be the standard scalar product on Rn. Using coordinate repre-
sentations w.r.t. the standard basis of Rn, one sees quickly that so(Rn, 〈· , ·〉can)
is isomorphic to so(n) as a Lie algebra. Now pick an orthonormal basis {ei}
of (V, 〈· , ·〉) and define a linear isometry ϕ : (V, 〈· , ·〉) → (Rn, 〈· , ·〉can) by
sending ei to the i-th member of the standard basis of Rn. ϕ induces an
isomorphism of vector spaces so(V, 〈· , ·〉)→ so(Rn, 〈· , ·〉can),

F 7→ ϕ ◦ F ◦ ϕ−1.

This isomorphism is easily seen to be an isomorphism of Lie algebras as
well. Thus, we have shown that so(V, 〈· , ·〉) and so(n) are isomorphic as Lie
algebras either.
There is a third possibility to define so(n) using exterior powers of Euclidean
vector spaces. These representations of so(n) are discussed in detail in sec-
tion 1.

Further, Lie algebras arise naturally in differential geometry:
If we are given a smooth manifold M , the space Γ(TM) of smooth vector
fields on M together with the Lie bracket of [·, ·] of vector fields, defined by

[X,Y ]f := X(Y f)− Y (Xf)

for all smooth functions f : M → R, is a Lie algebra. However, it has infinite
dimension.
If we are given a Lie group G, there is a special type of vector fields. The
left invariant vector fields: A vector field X on M is called left invariant, if
it satisfies

X ◦ Lg = DLgX

for all g ∈ G. One can show easily that left invariant vector fields are smooth
and that they form a finite dimensional Lie subalgebra of the space of all
smooth vector fields. This Lie algebra is called Lie algebra of G and labeled
by g or Lie(G). As a vector space, g is canonically isomorphic to TeG, the
tangent space of G the identity. The isomorphism g → TeG is given by
X 7→ X(e).
Any left invariant vector field X on G defines a homogeneous 1-parameter
family αX : R→ G with α̇X = X ◦α and αX(0) = e. The map exp : g→ G :
X 7→ αX(1) is called the exponential map of G. exp is a local diffeomorphism
at 0 ∈ g.
G acts on itself by conjugation, (g, h) 7→ cg(h) := ghg−1. This map provides
a representation Ad : G→ GL(g) through

g 7→ (Dcg)e.
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We call it the adjoint representation of G. Taking the differential DAd0 of
adjoint representation of G at 0 ∈ g gives a representation ad : g → gl(g) :
x 7→ adx := DAd0(x), the so called adjoint representation of g. Here, gl(g)
denotes the Lie algebra of GL(g). It turns out that we have adx(y) = [x, y]
for all x, y ∈ g. Using the Jacoby identity, we get

ad[x,y] = [adx, ady]

and
adx([y, z]) = [adx(y), z] + [y, adx(z)]

for all x, y, z ∈ g.
At the end of this section we mention the famous theorem of Ado-

Iwasawa, which states that every finite dimensional Lie algebra is the Lie
algebra of a uniquely defined simply connected Lie group.

Theorem B.3.0.30 (Ado-Iwasawa). Given a Lie algebra g there exists a
simply connected Lie group G whose Lie algebra is g. The isomorphy type
of G is uniquely determined by g.

B.3.1 Lie Groups and Riemannian geometry

Let G be a Lie group. A Riemannian metric 〈· , ·〉 on G is called left-invariant,
if every left translation Lg : G→ G,

h 7→ gh

is an isometry of (G, 〈· , ·〉), i.e. if for every g ∈ G and every pair of vector
fields X and Y holds

〈DLg(X), DLg(Y )〉 = 〈X,Y 〉 .

〈· , ·〉 is called right-invariant if the right translations are all isometries and
it is called biinvariant if it is both left- and right-invariant.
Each scalar product 〈· , ·〉′ on the Lie algebra g of G gives rise to a left-
invariant Riemannian metric 〈· , ·〉 on G. Simply define

〈· , ·〉g := (DLg−1)∗g〈· , ·〉′

for each g ∈ G. Thus, there is a natural one to one correspondence between
the set of left-invariant Riemannian metrics on G and the set of scalar prod-
ucts on g.
Now let H be a Lie subgroup of G and consider the homogeneous space
G/H. G acts on G/H by

(g1, g2H) 7→ Lg1(g2H) := (g1g2)H.

We say that a Riemannian metric on G/H is G-invariant, if G acts by
isometries. We have the following theorem (compare proposition 3.16 in
[8]):

141



Theorem B.3.1.1. 1. The set of G-invariant Riemannian metrics on
G/H is naturally isomorphic to the set of scalar products on g/h, which
are invariant under the action of AdH on g/h.

2. If G acts effectively on G/H, then G/H admits a G-invariant Rieman-
nian metric if and only if the closure of the group AdH(G) in GL(g)
is compact.

B.3.2 Simple, Semi Simple and Compact Lie algebras

Every real Lie algebra g comes with a bilinear map κ : g × g → R, defined
by

κ(ε, δ) := tr(adε ◦ adδ).

κ is called the Killing form of g. It is obviously symmetric in ε and δ. But
it has another property which proved to be quite useful:
For all x, y, z ∈ g holds:

κ([x, y] , z) = κ([y, z] , x) = κ([z, x] , y).

For example, this formula can be used to proof that the nullspace of κ, also
known as the radical of g, always forms an ideal in g. We write

Rad(g) := {ε ∈ g : κ(ε, δ) = 0 for all δ ∈ g} .

Another important observation is the following one: If g is the Lie algebra
of the Lie group G, the Killing form is Ad-invariant. It turned out in the
past that κ is closely related to the structure of g in many important cases.
These observations led to the following definitions:

Definition B.3.2.1. Let g be a real Lie algebra with Killing form κ. g is
called

1. semi-simple, if the Killing for is nondegenerate,

2. simple, if it is semi-simple and has no ideals other that {0} and g,

3. compact (reductive), if the Killing form is negative semi-definite.

Lemma B.3.2.2. Let g be a finite dimensional Lie algebra with Killing form
κ and I an ideal in g.

1. I is a Lie algebra with Killing form equal to κ|I×I .

2. If h is a Lie subalgebra of g, then I ∩ h is an ideal in h.

3. If g is semisimple, then I⊥, the orthogonal complement of I w.r.t. the
Killing form, is also an ideal in g. Moreover, I is semisimple and g is
the direct sum of I and I⊥.
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Beweis. 1. Clear.

2. Clear.

3. The first and the second part follows using that the map (x, y, z) 7→
κ([x, y] , z) is invariant under cyclic permutations of the arguments.
Let x ∈ I⊥. We have to show [x, y] ∈ I⊥ for all y ∈ g. So let y ∈ g be
arbitrary and z ∈ I. Then

κ([x, y] , z) = κ([y, z] , x).

But z lies in I, which implies that [y, z] lies in I as well. Thus, we get

κ([y, z] , x) = 0,

since x is a member of I⊥ and therefore [x, y] lies in I⊥ as claimed.
The semisimplicity of I follows using 1.
We are left to show that the intersection I ∩ I⊥ is trivial.
We have dim I + dim I⊥ = dim g, since κ is nondegenerate. If x and y
lie in I ∩ I⊥ and z ∈ g is arbitrary, then

κ([x, y] , z) = κ([y, z] , x) = 0

by arguments similar to the arguments from above. This tells us that
[x, y] = 0, so I ∩ I⊥ is an abelian ideal in g. Now let x ∈ I ∩ I⊥. We
are done, if we can show κ(x, y) = 0 for all y ∈ g.

• Let z ∈ I∩I⊥. Then we get [y, z] ∈ I∩I⊥ and hence [[y, z] , x] = 0.

• Let z be κ-perpendicular to I ∩ I⊥, then [[y, z] , x] ∈ I ∩ I⊥.

Thus, we get κ(x, y) = 0 for all y ∈ g and we are done.

Corollary B.3.2.3. A semisimple real Lie algebra g has no abelian ideals
other than {0}.

Beweis. Let g be a semisimple Lie algebra over R and κ the Killing form
of g. We have Rad(g) = {0} by definition of semisimplicity. Hence, it is
sufficient to show, that any abelian ideal of g lies completely in Rad(g).
Let I be an abelian ideal in g. By lemma B.3.2.2, we get that I⊥, the
orthogonal complement of I w.r.t. κ, is an ideal and that g = I ⊕ I⊥.
Let ε ∈ I. It is clear that

κ(ε, δ) = 0

for all δ ∈ I, since I is an abelian ideal and it is also clear that

κ(ε, δ) = 0

for all δ ∈ I⊥. This shows I ⊆ Rad(g) and the claim follows.
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Corollary B.3.2.4. Simple Lie algebras are non-abelian.

Beweis. Clear.

Lemma B.3.2.2 has certain consequence concerning the structure of com-
pact and semi-simple Lie algebras.

Corollary B.3.2.5. Let g be a finite dimensional Lie algebra over R. Then,
g is semi-simple if and only if g decomposes as a direct sum of simple ideals.

Beweis. It is obvious that direct sums of simple Lie algebras are semisimple.
The other direction follows from lemma B.3.2.2.

B.4 Curvature and Holonomy

In the following we consider an n-dimensional Riemannian manifold (M, g).
As usual, the Levi-Civita connection of g will be denoted by∇, the curvature
tensor by R. Let p ∈M . Any piecewise smooth loop c : [0, 1]→M , which is
based at p, gives rise to a linear map Pc : TpM → TpM , obtained by parallel
translating tangent vectors along c. Since ∇ is a metric connection Pc lies
in O(TpM) for each given loop c. The holonomy group Holp = Holp(M, g)
is defined to be the group of all transformations Pc of TpM . One can show
that Holp is a Lie group which is usually a closed subgroup of O(TpM).
We also have the restricted holonomy group Hol0p, which is the connected
normal subgroup of Holp which comes from using only contractible loops.
The restricted holonomy group is always compact, so it is a Lie subgroup of
O(TpM) in any case. Now we state two elementary properties of holonomy
(there are many of elementary properties of holonomy, but these two are the
most important for our purpose):

• Holp is conjugate to Holq via parallel translation along any smooth
curve connecting p and q.

• A tensor field on M is parallel if and only if it is invariant under the
action of the restricted holonomy group.

Now we take a look at the Lie algebra holp of the restricted holonomy group
Hol0p. It is clear that holp is a sub algebra of so(TpM). Note that the curvature
transformations z 7→ R(x, y)z are skew-symmetric transformations of TpM
as well. How are they related to holonomy? Let X and Y be smooth vector
fields on M commuting in p and ct the loop at p obtained by following the
flow of X for time t, then the flow of Y for time t, then the flow of X for
time -t and then the flow of y for time -t again. Define Pt to be the parallel
transport along ct. Then one can proof that

R(X(p), Y (p)) = lim
t7→0

1

t
(Pt − idTpM ),
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showing that R(X(p), Y (p)) is actually an element of holp. But then we get
that P−1 ◦R(Px, Py)◦P is also an element of holp, P the parallel transport
along any curve emanating in p and x, y ∈ TpM . The theorem of Ambrose
and Singer [1] states that this is all, meaning that holp is generated by
elements of the form

P−1 ◦R(Px, Py) ◦ P,

where x, y and P are as above. For a proof of this theorem we also refer
to [18]. Thus, it is at least possible to recover the reduced holonomy from
curvature, but that’s a hard task in general. One can say much more if the
underlying space provides more geometric structure, for example if it is a
symmetric space.

B.5 The DeRham Decomposition Theorem

Let (M, g) be a Riemannian manifold and E ⊆ TM a parallel subbundle.
Since the parallel transport along any curve in M is isometric, we conclude
that the orthogonal complement E⊥ in TM is parallel either. Thus, the
whole tangent bundle decomposes orthogonally into parallel subbundles Ei,
each of which is irreducible, i.e. does not contain any further proper parallel
subbundles,

TM = E1 ⊕ ...⊕ Er,

r ∈ N. Such a decomposition of the tangent bundle is called holonomy-
irreducible. The reason for this is that the Ei are the parallel translates of
the holonomy-irreducible subspaces V1, ..., Vr ⊆ TpM, for any p ∈M .
Since the Levi-Civita connection is torsionfree, it follows, that each Ei an
involutive distribution on the tangent bundle. Thanks to Frobenius’ theorem
each Ei yields a foliation of M . The leaves of all these foliations are total-
ly geodesic. As each point p ∈ M has a totally convex neighborhood, this
implies that M is locally isometric to the product of (local) leaves L1, ..., Lr
tangent to E1, ...,Er respectively, meeting in some point and carrying the
induced Riemannian metrics. Thus, we have shown the local version of DeR-
ham’s decomposition theorem.

Theorem B.5.0.6 (DeRham ). Let (M, g) be a Riemannian manifold and
TM = E1 ⊕ ... ⊕ Er a holonomy-irreducible splitting of the tangent bundle.
Then M is locally isometric to a product (U1, g1)×, ...,×(Ur, gr) of simply
connected Riemannian submanifolds manifolds (Ui, gi) of (M, g) with TUi =
Ei|Ui and Hol0(M, g) = Hol(U1, g1) × ... × Hol(Ur, gr). Moreover, if M is
simply connected and complete, then the splitting is global.

Beweis. See [23]
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B.6 Killing Fields and Isometry Groups

Definition B.6.0.7. A smooth vector field X on M is called a Killing field
if LXg = 0 (where LXg is the Lie derivative of g in w.r.t X), i.e. if the local
flows of X are isometric. Equivalently, one could say that X is a Killing
field if and only if the endomorphism field ∇X is skew-symmetric w.r.t. g.
The set of Killing fields on (M, g) will be denoted by kill = kill(M, g)

The equation LXg = 0 is linear in X, so the set of Killing fields is a
vector space. Moreover, it is a Lie algebra, since L[X,Y ] = [LX ,LY ] holds
for any two vector fields X and Y , which implies that [X,Y ] is a Killing
field, whenever X and Y are Killing fields. Further, one can show that the
dimension of kill is finite. The reason for this is, that, given p ∈ M , any
Killing field X is uniquely determined by its values X(p) and ∇X(p), which
implies that the linear map kill→ TpM × so(TpM) : X 7→ (X(p),∇X(p)) is

injective, so that the dimension of kill will not be greater than n(n+1)
2 .

A famous Theorem of Myers and Steenrod [19] says that the group Isom =
Isom(M, g) of isometries of any connected, complete Riemannian manifold
(M, g) is a Lie group whose Lie algebra iso = iso(M, g) is the space of
complete Killing fields on (M, g). The exponential map is given by exp(X) =
ΦX

1 , ΦX : M × R → M the flow of X. Let us take a closer look on the Lie
algebra structure of iso. For p ∈ M , let Isomp = Isomp(M, g) ⊆ Isom(M, g)
the isotropy group of (M, g) at p and isop = isop(M, g) its Lie algebra. It
is clear that the flow of any element X ∈ isop fixes p, showing that isop
consists of complete Killing fields on M vanishing in p and that isop is a
subalgebra of so(TpM). Let tp := {X ∈ iso : ∇X(p) = 0}. Then we have:

• If X,Y ∈ isop, then [X,Y ] ∈ iso is identified with − [∇X,∇Y ] (p) ∈
so(TpM).

• If X ∈ tp and Y ∈ iso, then [X,Y ] = (∇Y )(X(p))

• If X,Y ∈ tp, then [X,Y ] ∈ isop

Thus, we can write iso as the direct sum tp ⊕ isop. Its Lie algebra structure
is given by

• [F,G] = −(FG−GF ) ∈ isop, if F,G ∈ isop.

• [F, x] = − [x, F ] = F (x) if x ∈ tp and F ∈ isop

• [x, y] ∈ isop if x, y ∈ tp

Lemma B.6.0.8. Let X,Y and Z ∈ tp, then R(X,Y )Z = [Z, [X,Y ]] ∈ tp.

Beweis.

Lemma B.6.0.9. If K is a Killing field on M , then R(K,X)Y = −∇2
X,YK.

In particular we have Ric(K) = −∆K.
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B.7 Symmetric Spaces

There is lots of theory concerned with symmetric spaces. The reader who
wants to learn more about this beautiful subject is referred to the book
of Helgason [16]: ”Differential Geometry and Symmetric Spaces“ Here, the
symmetric spaces only appear as class of Riemannian manifolds represent-
ing a certain class of algebraic curvature operators, namely the algebraic
symmetric curvature operators, which are examined in section 3.4.
The intention of this section is to provide the knowledge about symmetric
spaces which is necessary to understand what we are doing in chapter 3.4.

There are several popular perspectives, from which symmetric spaces
maybe defined. The geometric viewpoint, the analytic and the algebraic
viewpoint. And there is fourth one, the curvature description of symmetric
spaces, which will be treated in detail in section 3.4. Now let (M, g) be a
Riemannian manifold.

B.7.1 The Geometric Viewpoint

Form the geometric point of view, we wish to call (M, g) symmetric, provided
that for each point p ∈M there is a globally defined isometry ϕ : M →M ,
which fixes p and whose differential at p is the reflection in the origin of the
tangent space based at p, i.e.

ϕ(p) = p and Dϕp = −idTpM.

From this definition follows immediately that any symmetric space M

1. has parallel curvature tensor,

2. is metrically complete and

3. a homogeneous space, since the group of isometries of M is always
acting transitively on M .

B.7.2 The Analytic Viewpoint

From the analytic viewpoint we wish to call (M, g) symmetric if it is simply
connected and has parallel curvature tensor. One can show with little work
that simply connected Riemannian manifolds with parallel curvature tensors
are actually symmetric spaces in the geometric sense from above. If we drop
the simply connectedness, then we get only the locally symmetric spaces, i.e.
the isometries ϕ from the definition of a symmetric space are only defined
locally.
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B.7.3 The Algebraic Viewpoint

Now let G be a connected Lie group and H a closed subgroup. Following
Helgason [16], the pair (G,H) is called a symmetric pair, if there exists an
involutive automorphism σ of G, such that (Hσ)0 ⊆ H ⊆ Hσ, where Hσ is
the set of fixed points of σ and (Hσ)0 is the identity component of Hσ. If
AdG(H) ⊆ AdG(G) is compact, we call the symmetric pair (G,H) a Rie-
mannian symmetric pair. One can show the following: If we are given a
Riemannian symmetric pair (G,H) together with the involutive automor-
phism σ from the definition, then any G−invariant Riemannian metric g the
quotient space M = G/H turns M into a symmetric space in the geometric
sense. The proof of this theorem can be found [16].
On the other hand, a symmetric space (M, g) gives rise to a symmetric
pair (G,H). Take G = Isom(M, g) and H = isop(M, g), p ∈ M . This
gives M = G/H. We are left finding the involutive automorphism σ from
the definition of a symmetric pair. We know that there exists an isometry
ϕ ∈ isop(M, g), whose differential in p is simply the reflection in the origin
of the tangent space TpM. We use ϕ to define σ by σ(g) := ϕ ◦ g ◦ ϕ for
all g ∈ G. Clearly, ϕ is an automorphism of G. To prove (Hσ)0 ⊆ H ⊆ Hσ

requires a little more work than we wish to do here, but the proof is not too
hard and may also be found in [16]. Now we take a look at symmetric spaces
at the infinitesimal level of the Lie algebras h ≤ g belonging to the Lie groups
H and G, respectively: The differential s := Dσe of σ e ∈ G is an involutive
automorphism of g. Therefore, the tangent space g ∼= TeG decomposes or-
thogonally as the direct sum of the ±1-eigenspaces of s, g = E−1(s)⊕E1(s).
With little extra work, one can show that +1-eigenspace of s coincides with
h. Thus, we have g = h ⊕ E−1(s). Further, it follows that the center z of g
and h intersect trivially.
In other words, the pair (g, h) is an effective orthogonal symmetric pair of
Lie algebras.
Now, one could ask whether the converse is also true. Given an effective
orthogonal symmetric pair (g, h) of Lie algebras together with an involutive
Lie algebra homomorphism s : g→ g, is there a Riemannian symmetric pair
(G,H) together with corresponding involutive Lie group homomorphism
σ : G→ G, such that the Lie algebras Lie(G) and Lie(H) of G and H agree
with g and h and the differential Dσe of σ at the identity of G equals s,

g = Lie(G), h = Lie(H) and Dσe = s?

The answer is yes. The proofs can also be found in [16]. We will use this
fact in chapter 3.4, where we construct symmetric spaces from algebraic
algebraic curvature operators sharing a special property.
The following statements about curvature tensors of symmetric spaces are
important in this context:
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Proposition B.7.3.1. Suppose that R is the curvature tensor of a symmet-
ric space M = G/H and let p = [H] ∈ M . Then we have Rp(X,Y )Z =
−[[X,Y ], Z](p) for all vector fields X,Y, Z on M with X(p), Y (p), Z(p) ∈
E−1(s).

Beweis. See [16] or [8], for example.

Theorem B.7.3.2. Let (M, g) be a symmetric space and p ∈ M . Then we
have

holp ⊆ isop.

Beweis. The proof can be found in [23].

Corollary B.7.3.3. Let (M, g) be a symmetric space and R its curvature
operator. Then we have

[Rp, id ∧ h] = 0

for all p ∈M and h ∈ holp.

Beweis. Let p ∈M and pick some h ∈ holp. Following theorem B.7.3.2, there
exists a smooth 1-parameter family ϕt of isometries of M with ϕt(p) = p for
all t and d

dt

∣∣
t=0

ϕt = h. Thus, we get

[Rp, id ∧ h] =
1

2

d

dt

∣∣∣∣
t=0

ϕ−1
t ∧ ϕ

−1
t ◦ Rp ◦ ϕt ∧ ϕt = 0

B.8 Parabolic Partial Differential Equations on Vec-
tor Bundles and Tensor Maximum Principles

Let M be smooth manifold, connected and possibly with boundary, T >
0, (gt)t∈[0,T ) a smooth family of Riemannian metrics on M and π : E →
M× [0,T) a smooth vector bundle, equipped with bundle metric 〈· , ·〉 and a
metric connection D. We wish to study parabolic partial differential equation
of the form

(PDE) D ∂
∂t
σ = ∆σ + Φ(σ, t),

where σ ∈ Γ(E) is a section, ∆ is the Laplacian in spatial direction w.r.t.
the bundle metrics 〈· , ·〉 and g = (gt) on E and π∗1TM (π1 : M× [0, T )→M
the projection onto the first factor), respectively, and Φ is a time dependent
vertical vector field on E, i.e. a time dependent vector field on E which is
tangent to the fibers of E.
It turns out that the qualitative properties of solutions of (PDE) are strongly
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influenced by the boundary data and the properties of solutions of the (non-
autonomous) ordinary differential equation

(ODE) σ̇ =

(
φ+

∂

∂t

)
◦ σ.

In order to explain the connections between solutions of (PDE), (ODE) and
the boundary data, we have to introduce some further notation and make
some additional assumptions:
Throughout this section let

∂parE := ∂(M × [0, T )) = M ∪ ∂M × [0, T )

the parabolic boundary of E. Further, let

C = (Cp,t)(p,t)∈M×[0,T ) ⊆ E

a smooth subbundle of E with boundary which is closed in E, parallel in
spatial direction and fiberwise convex.
Suppose in addition that the flow of Φ + ∂

∂t preserves C.
Under these assumptions the following theorems hold:

Theorem B.8.0.4 (Weak Tensor Maximum Principle). Let M be compact.
If σ solves the (PDE) and takes values in C on the parabolic boundary of E
then σ takes values in C everywhere on M × [0, T ).

Beweis. See Hamilton’s paper on 4-manifolds with nonnegative curvature
operator [11].

Theorem B.8.0.5 (Tensor Maximum Principle). Suppose that C is also
parallel in time direction. Let σ be a solution of (PDE) and assume that
σ takes values in ∂C in p at time t > o. Then σ takes values in ∂C on
M × [0, t).

Beweis. See Hamilton’s paper on 4-manifolds with nonnegative curvature
operator [11].
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Anhang C

Ricci Flow

This section gives a rough introduction to Ricci flow and the methods being
used within this subject with special focus on the tensor maximum prin-
ciples and the evolution equations of geometric quantities. At the end we
present some results of this subject.

Let M be smooth manifold of finite dimension and (gt)t∈[0,T ), T > 0 a
smooth family of Riemannian metrics on M. (gt) is called a Ricci flow on M
if

d

dt
gt = −2Ric(gt)

holds on [0, T ).
There is another version of the Ricci flow which is equivalent to the Ricci
flow modulo rescaling of space and time: The Volume normalized Ricci flow.
Its solutions satisfy the equation

d

dt
gt = −2Ric(gt) +

2

n
r(gt)gt

on n-dimensional manifolds. Here

r(gt) :=
1

vol(M, gt)

∫
M

scal(gt)dvol(gt)

denotes the average scalar curvature of the Riemannian manifold (M, gt).

C.1 Ricci Flow Basics

One property of the Ricci flow which is of fundamental importance is the
invariance of set of solutions under the action of the full group of diffeomeor-
phisms of a given manifold. This means that, whenever (gt) is a solution of
the Ricci flow on a given manifold M and Φ : M →M is a diffeomorphism,
so is the family (Φ∗gt) of pullbacks under under Φ. This is an immediate
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consequence of the fact that the curvature tensor, and therefore also the
Ricci tensor, behaves naturally under pullbacks via diffeomorphisms.
Thus, the Ricci flow descends to the moduli spaceM/Diff(M), and therefore
has a purely geometric meaning. Another important property is the follow-
ing: the Ricci flow preserves products. This means that, if (gt) is a Ricci
flow on a manifold M and (ht) is a Ricci flow on N than the product metric
(gt × ht) is a Ricci flow on M × N . This is not very surprising, since the
Ricci tensor of a Riemannian product is simply the direct sum of the Ricci
tensors of the factors in play, Ric(g × h) = Ric(g)× Ric(h).
The third fundamental property is: isometries remain isometries under the
Ricci flow. This means that any isometry Φ : (M, gt0) → (M, gt0) will be
an isometry of (M, gt) for all times t ≥ t0. This is a consequence of the
naturality of the Ricci tensor again together with the fact that solutions
of the Ricci flow are uniquely determined by the initial metric. This third
property guaranties that the Ricci flow preserves certain classes of Rieman-
nian manifolds, for example, the class of symmetric spaces and the class of
Riemannian homogeneous manifolds.

C.2 Evolution Of Geometric Quantities

It is clear that the whole geometry of M is varying with g. As it takes a long
time to compute the evolution equations of the geometric quantities in play,
we only present the results here. For the proofs, we refer to the diploma
thesis of the author, where all these calculations have been done in detail
and in a coordinate free manner.

Proposition C.2.0.6. Under the Ricci flow, the volume vol(M, gt) changes
like d

dtvol = −rvol

�

Another easy example is given by the evolution of the gradient operator.

Proposition C.2.0.7. The gradient operator ∇ evolves like

d

dt
∇ = 2Ric ◦ ∇

�

Proposition C.2.0.8. Under the Ricci flow, the Levi-Civita connection ∇
evolves like

d

dt
∇ = divR−∇Ric

�
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In order to describe the evolution of the family of associated Riemannian cur-
vature operators in a compact and coordinate free way and apply the maxi-
mum principle to it, it is useful to consider the Ricci flow as an inner product
on the pullback π∗TM of the tangent bundle of M , π : M×[0, T ) the projec-
tion onto the first factor. To do so, simply define g(p,t) := (gt)p and you are
done. Now let us see, how the associated family of Levi-Civita connections
appears in this new setting. Taking covariant derivatives in spatial directions
shall give the same results as before, so we define∇πXY (p, t) := ∇tX(p,t)Y (p, t)
for all smooth sections of π∗TM . But what about the covariant derivatives
in time direction? The first idea is to define ∇π∂

∂t

X := d
dtX. But this will not

give a metric connection. We repair this by subtracting the term Ric(X), i.e.
we define

∇π∂
∂t

X :=
d

dt
X − Ric(X)

for smooth sections X of π∗TM . Now we can write

∇ = ∇π − dt⊗ Ric.

Theorem C.2.0.9. Under the Ricci flow, the curvature operator evolves
like

∇ ∂
∂t
R = ∆R+ Φ(R),

where ∆ is the time dependent Laplacian with respect to the metric gt and
Φ is the Ricci vector field.

�

Having computed the evolution equation of the curvature operator it is easy
to obtain the evolution equation of the Ricci and scalar curvature

Corollary C.2.0.10. • ∇ ∂
∂t

Ric = ∆Ric + 2
∑

i R(·, ei)Ric(ei), ei an ar-

bitrarily chosen orthonormal frame.

• d
dtscal = ∆scal + 2 ‖Ric‖2 .

�
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