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Abstract

Along with a growing number of applications in unstructured outdoor environments, mobile
robots are faced with increased requirements with respect to their driving safety and opera-
tional demands. Issues arise due to varying terrain types, each possessing different navigability
characteristics such as the degree of hazardousness. Hence, a safe robot traversal necessitates
the classification of the present ground surface from sensor data. In this thesis, a retrospec-
tive approach based on tactile sensing has been considered for the terrain discrimination task.
That is, the ground surface classification relies on sensor data being collected while the robot
traverses the environment. Here, the sensor data is represented by means of preprocessed ac-
celeration patterns which emanate from terrain-wheel-chassis interactions and directly relate to
the mechanical properties of the ground surfaces.
The main contribution of this thesis comprises the integration of contextual information into the
terrain classification procedure. Here, contextual information denotes the temporal dependen-
cies between consecutive measurements which are likely to arise from the same terrain type. It
is demonstrated that the modeling of these dependencies in a principled way results in a sig-
nificant improvement of the classification performance. As for the underlying framework, the
Bayes filter approach has been adopted and modified so as to requiring the posterior probabil-
ity of individual terrain classifications only. Starting with a support vector machine as the base
classifier, the latter technique is compared to other machine learning techniques which also pro-
vide class posterior estimates. In this context, the random forest and random ferns classifiers
are employed as novel means for ground surface estimation. It further shows that the random
ferns approach as well as several other classifiers benefit from a more compact acceleration sig-
nal representation which is based on the Mel-frequency cepstral coefficient extraction process.
The classification approach requires the terrain classes to be known a priori. Since this infor-
mation might not be available in all domains, this thesis also addresses the problem of unsu-
pervised learning. That is, given acceleration data acquired during the robot traversal a model
is established which autonomously partitions the data instances into clusters such that obser-
vations with similar characteristics are assigned to the same cluster. Dissimilar measurements,
on the other hand, are to be located in differing clusters. Analogous to supervised classifi-
cation, the proposed model makes use of temporal coherences contained within subsequent
observations. These temporal dependencies are incorporated by means of a Markov random
field-based clustering approach which assumes that the class labels of nearby acceleration pat-
terns are generated by prior distributions with similar parameters. Experimental results reveal
the superiority of the temporally coherent approach in comparison with the one which does
not exploit temporal dependencies. The problem of obtaining varying local optima after the
clustering process is addressed in terms of a deterministic cluster model initialization scheme.
It shows that the inclusion of temporal coherences within the initialization step increases the
clustering performance.
Further contributions involve the introduction of a novel unsupervised feature selection ap-
proach which enables the identification of important characteristics of the acceleration signal.
Finally, systematic means are presented which allow for the estimation of the number of terrain
classes when this information is not provided.





Zusammenfassung

Einhergehend mit einer wachsenden Anzahl von Anwendungen in unstrukturierten Umge-
bungen steigen auch die Ansprüche an den mobilen Roboter bezüglich seiner Fahrsicherheit
und Fahrwerkbeanspruchung. Probleme ergeben sich durch verschiedene Terraintypen, wel-
che unterschiedliche Merkmale bezüglich der Navigierbarkeit wie beispielsweise dem Grad
der Fahrunsicherheit aufweisen. Wie sich hieraus ableiten lässt, erfordert eine sichere Ro-
boternavigation die Klassifizierung des gegenwärtigen Terrains anhand von Sensordaten. In
dieser Arbeit wurde für die Terrainidentifikationsaufgabe ein retrospektiver Ansatz basierend
auf taktilen Eingabesignalen gewählt. Das heißt, dass die Klassifikation auf Sensordaten be-
ruht, welche während der Terraintraversierung aufgenommen werden. In diesem Zusammen-
hang werden die Daten durch vorverarbeitete Beschleunigungsmuster repräsentiert, welche aus
Terrain-Rad-Fahrgestell-Interaktionen hervorgehen und direkt mit den mechanischen Eigen-
schaften des Untergrundes in Verbindung gebracht werden können.
Der wesentliche Beitrag dieser Arbeit besteht in der Einbindung von Kontextinformation in
den Terrainvorhersageprozess. Hierbei bezieht sich der Term ”Kontextinformation“ auf tem-
porale Abhängigkeiten zwischen aufeinanderfolgenden Messungen, welche mit hoher Wahr-
scheinlichkeit von derselben Terrainklasse stammen. Es zeigt sich, dass durch ein methodisches
Modellieren dieser Abhängigkeiten die Klassifizierungsleistung signifikant verbessert werden
kann. Als zugrundeliegendes Wahrscheinlichkeitsmodell wurde der Bayes-Filter-Ansatz ge-
wählt, welcher derart umformuliert wurde, dass die Ergebnisse des Filterprozesses allein aus
den a posteriori Wahrscheinlichkeiten einzelner Terrainschätzungen abgeleitet werden können.
Ausgehend von der Support Vektor Maschine als Basisklassifizierer wird dieser Ansatz mit
anderen Verfahren des maschinellen Lernens verglichen, welche ebenso a posteriori Verteilun-
gen bereit stellen. In diesem Zusammenhang werden die Random Forest und Random Ferns
Ansätze als neue Methode zur Terrainklassifizierung vorgestellt und bezüglich der Klassifi-
zierungsleistung verbessert. Weiterhin zeigt sich, dass die Random-Ferns-Technik und einige
weitere Klassifizierer von einer kompakteren Beschleunigungsdatenrepräsentation profitieren,
welche auf der Extrahierung von Mel-frequency cepstral Koeffizienten beruht.
Der Klassifikationsansatz benötigt zur Modellbildung Sensordaten von allen zu klassifizieren-
den Untergrundtypen im Voraus. Da diese Information nicht in allen Einsatzgebieten vorhanden
sein muss, legt diese Arbeit einen weiteren Schwerpunkt auf unüberwachte Lernverfahren. Das
heißt, dass bei gegebenen Daten einer Robotertraversierung ein Modell zu erstellen ist, wel-
ches die Sensordaten autonom in Cluster unterteilt, so dass Messungen mit ähnlichen Merk-
malen den selben Clustern zugewiesen werden. Unähnliche Beobachtungen sollen andererseits
in unterschiedliche Cluster platziert werden. Analog zur überwachten Klassifikation verwen-
det das vorgeschlagene Modell temporale Kohärenzen aus aufeinanderfolgenden Messungen.
Diese temporalen Zusammenhänge werden mittels eines Markov-Random-Field-Ansatzes in
den Clustervorgang integriert. Hierbei basiert das probabilistische Modell auf der Vermutung,
dass die Klassenbezeichnungen von naheliegenden Beschleunigungsmustern aus a priori Ver-
teilungen mit ähnlichen Parametern hervorgehen. Die resultierenden experimentellen Ergebnis-
se zeigen den Vorteil der temporal kohärenten Methode im Vergleich zum Alternativansatz auf,
welcher nicht auf temporalen Abhängigkeiten beruht. Das Problem der randomisierten Initiali-
sierung der Clustermodelle und der daraus resultierenden Varianz bei der Klassenzuweisung
wird mittels eines deterministischen Initialisierungsprozesses gelöst. Auch in diesem Zusam-
menhang erweist sich die Einbindung temporaler Kohärenzen als vorteilhaft.



Ein weiterer Beitrag dieser Arbeit besteht in der Entwicklung einer neuen unüberwachten
Methode zur Merkmalsselektion, welche die Identifikation wichtiger Charakteristika des Be-
schleunigungssignals ermöglicht. Schließlich werden Methoden vorgestellt und weiterentwi-
ckelt, welche die Anzahl der Terrainklassen abschätzen, wenn diese Information nicht gegeben
ist.
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Nomenclature
X ≡ {xi}n

i=1 ≡ x1:n set of input patterns

Y ≡ {yi}n
i=1 ≡ y1:n set of true class labels

I indicator function

ai predicted class or cluster given input pattern xi

c j class j

d dimensionality of the input patterns, xi ∈ Rd

dist travel distance

k number of classes or clusters, respectively

n number of instances contained in the data sets

xi, j jth feature of the ith input pattern

H(X) entropy of random variable X

MI(X ,Y ) mutual information between random variables X and Y

E(X) expected value of random variable X

AMI adjusted mutual information index

ARI adjusted rand index

BAYES Bayes filter classification approach

BIC Bayesian information criterion

DAS DFT amplitude spectrum

EM Expectation-maximization

GMM Gaussian mixture model

KS-test Kolmogorow-Smirnow-test

LDA linear discriminant analysis

MCD minimum covariance determinant

MFCC Mel frequency cepstral coefficients

MRF Markov random field

v



MSPRT multi-hypothesis sequential probability ratio test

SBS sequential backward selection

SFS sequential forward selection

SO single observation classification approach

SVM support vector machine

TPR true positive rate

UGV unmanned ground vehicle



1. Introduction

1.1. General Overview and Motivation
Recently, a growing number of outdoor tasks for mobile robots such as planetary and rescue
missions as well as agricultural assignments has emerged. Thereby, the main motivation of the
various application domains is diverse. For example, planetary robotics is concerned with the
search for life in our solar system and beyond. Particularly, researchers focused on Mars with
regard to both the astrobiological question of whether life forms were present on this planet
[EKL+02] and its ability of being colonized. In this context, a planetary unmanned ground
vehicle (UGV) has to navigate in an unknown, hostile terrain, recognize and circumnavigate
obstacles, and acquire samples from scientific targets [Ell08]. Environments of similar hostility
can be found in the domain of disaster management, requiring a large number of heterogeneous
and autonomous mobile robots. The necessity of considering the involved search and rescue
tasks is given by natural disasters induced from seismic activities of the tectonic plates. For
example, the Great Hanshi-Awaji earthquake which hit Kobe City in 1995 caused more than
6500 causalities, destroyed more than 80000 wooden houses, and damaged all infrastructures
whose reconstitution costs were estimated at more than 1 billion US dollars. Likewise, the
nuclear reactor incident of Fukushima in the recent past showed that catastrophes of historical
proportions can befall us at any time and unexpectedly. Robots which are assigned to search
and rescue tasks should not only be able to collect necessary information and provide physical
support but also to fulfill their task reliably and robustly. Finally, autonomous robots employed
in the field of agriculture aim at the reduction of energy resources and hence production costs
in the long run. According to Blackmore et al. [BSR05], they “should have enough intel-
ligence embedded within them to behave sensibly for long periods of time, unattended, in a
semi-natural environment, whilst carrying out a useful task”.
All given applications involve an increasing demand regarding a robot’s driving behavior. Par-
ticularly in outdoor environments, an UGV is exposed to a variety of different terrain types. To
enable a safe traversal of unknown terrain, the robot should adapt its driving style according
to the present ground characteristics. While even surfaces with good traction allow a traversal
at high speed, loose, slippery and bumpy surfaces are hazardous and require a reduction of the
driving speed to avoid robot damages. In literature, hazards that are attributed to the ground
surface are known as non-geometric hazards [Wil94].

1.1.1. Approaches for Terrain Hazardousness Estimation
The presence of hostile terrain types shows the necessity of a reliable terrain classification
scheme. Thereby, the hazardousness of the ground surface can be inferred by at least two
different approaches. One technique involves a direct estimation of terrain parameters like co-
hesion or slippage without knowing the exact terrain type the robot is driving on. Here, it is
assumed that all control information can be directly inferred to adequately update the control
settings of the robot. As mentioned in the context of wheel slip [AMH+06, WSG+09], how-
ever, it is sometimes difficult to determine a consistent measure of these quantities. Especially
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in outdoor environments, terrain characteristics are likely to change frequently, resulting in nu-
merous changes of the driving behavior.
In the classification approach, different terrain types are grouped into classes each representing
a ground surface of a certain degree of hazardousness. Using sensor measurements, a model
is generated which predicts the present class from the set of available classes. The classifi-
cation approach assumes that the instances of each terrain class affect the driving behavior
in a consistent manner. Hence, the choice of predetermined control settings is likely to yield
the best vehicle performance with respect to a specific terrain. This dissertation focuses on
proprioceptive classification algorithms which are based on the analysis of the interaction be-
tween the robot and the terrain. Thereby, the robot “senses” internal and external variations
like wheel sinkage, induced acoustic noise, or wheel slippage. More commonly, proprioceptive
algorithms focus on vehicle vibrations as originally proposed by Iagnemma et al. [ID02]. They
showed that extracted signatures from vibration data provide enough information to distinguish
between different terrain classes. Usually, accelerometers are used to record vibration signals
during the robot traversal. The sensors can be attached at the wheels, the axes, or the body of
the robot. The use of tactile feedback is motivated by findings in the animal kingdom. There,
research showed that whiskers in animals are able to extract information about surface texture
and shape [Vin12, Ley79]. For example, rats employ these sensors to compensate for their lack
of adequate vision abilities. Note that the visual acuity of a rat is approximately 30 times less
accurate than the one of humans [BJ79].

1.1.2. Terrain Classification in the Automotive Domain
In the automotive domain, the benefits of considering terrain-based modifications of control
settings have been demonstrated by car manufacturers such as Land Rover and the Ford Motor
Company. The first system, denoted as Terrain Response, was introduced for the Land Rover
LR3 distinguishing five different terrain modes: general driving, grass/gravel/snow, mud and
ruts, sand, and rock crawl [Van05]. Depending on the selected control mode, various settings
of the vehicle system are changed such as the anti-lock braking system (ABS), the traction
and stability control systems, the locking action of the differentials, the shift schedule of the
transmission, and the throttle response of the engine in order to improve traction, steering, and
fuel efficiency. Concerning the results, the application of the Terrain Response approach results
in a 3%-17% improvement in zero to twenty mph acceleration on simulated ice surfaces and
a reduction in stopping distance of up to 35% on mud, sand, and gravel terrains [Van05]. In
a later car, the Land Rover LR4, additional terrain response features have been implemented.
For example, the LR4 now includes a mode for “sand launching” which prevents the wheel
spin when moving from stillstand [Har09]. A similar terrain-dependent control system, called
Terrain Management has been developed by the Ford Motor Company. Integrated within the
newly unveiled 2011 Ford Explorer, the control mode system also distinguishes between five
different terrain types enabling features such as an increased slip and stability control in grass,
gravel, and snow environments, among others.

1.1.3. Temporally Coherent Terrain Classification
The use of terrain-dependent control strategies in a real-world application illustrates the im-
portance of ground surface classification techniques. It is noticeable that none of the existing
approaches makes use of temporal coherences. Each terrain classification only considers the
actual observation. However, it is very likely that the robot traverses over the same terrain type
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for several time steps. Hence, not only actual sensor readings should influence the classifica-
tion but also former ones. The development of a systematic means which filters the predictions
of several times steps is addressed in this thesis. It is assumed that while temporal coherences
show significant benefits when this assumption proves to be valid, issues occur in situations of
fast system changes. Thus, the established technique must take the latter cases into account to
not compromise the results negatively. In the context of terrain classification that means that
the chosen approach must be both reactive and stable enough to detect fast terrain transitions
and selective false classifications.
Further, supervised terrain classification can only be considered as a first step towards the com-
plete autonomy of the robot. Problems occur if the autonomous vehicle is placed in environ-
ments containing completely or partially unknown ground surfaces. Here, the classification
approach fails, since the robot is only able to predict the terrain types which were presented
during training. More appropriately, UGVs should generate a model of the terrain characteris-
tics on their own, assigning an acquired observation to a specific terrain class or cluster in later
stages. Hence, beside the supervised classification approach mentioned above, learning in the
unsupervised case is also taken into account for the problem of terrain understanding. Although
the exact terrain types (such as grass, asphalt, etc.) are not inferred, an unsupervised clustering
of varying ground surfaces still yields beneficial information: when the robot navigates over
unknown terrain, meta data such as the degree of bumpiness or slippage of the ground surface
can be stored along with the vibration data. After data clustering, this meta data is an integral
part of each cluster. Hence, whenever the robot traverses a certain terrain type and this terrain
type reveals potentially hazardous characteristics according to the clustering, adjustments to its
driving style should be made. Note that in certain situations, some of the meta information
may change whereas other meta information remains the same (e.g., wet grass can become dry
while a bumpy surface most likely remains bumpy). Here, a simple binary classification strat-
egy which separates the data into a hazardous class and a non-hazardous one is inappropriate,
since class assignments have to be retrained whenever the degree of hazardousness of some of
the data instances changes. In a multi-class setting, however, we can simply modify the meta
information assigned to a certain cluster without the need of retraining the classifier.
Unsupervised terrain clustering is a non-trivial problem. Problems arise due to the potentially
large overlap between terrain classes in feature space. Similar to the supervised case, the use of
temporal dependencies between consecutive measurements is advised to obtain a better cluster-
ing taking ambiguous cases into account. Here, an ambiguous case occurs if two measurements
belong to the same class, but are clustered into two different clusters. Starting from clustering
with temporal constraints in which the number of clusters k is assumed to be known, several
other aspects of the unsupervised learning task are taken into account including model initial-
ization, feature selection, and model selection. The latter demonstrates the performance of
clustering approaches when the number of clusters is not known a priori which can be regarded
as a further increase of the degree of autonomy.

1.2. Related Work
In this section, the related work with regard to terrain discrimination is presented. Here, the
term terrain discrimination comprises both the terrain classification and clustering task and is
introduced to facilitate the notations. The objective of this summary is not only to provide
a systematic hierarchical structuring of previous research but also to reveal the benefits and
disadvantages of each approach. For the reason of clarity and compactness, this survey only
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focuses on fundamental concepts. A more detailed overview of individual research is provided
in the following chapters.

1.2.1. A Classification of Ground Surface Estimation Approaches
Terrain classification comprises the following two problem domains: first, the navigation task,
which determines the path the robot is heading for, and second, the control task which answers
the question of how the UGV reaches its destination. In outdoor environments, both questions
are highly related, since the traversability characteristics of certain terrain types directly influ-
ence the robot traversal. Note that these issues differ in the context of indoor environments
where the ground surface is assumed to be constant and the path is defined by obstacles.
Terrain classification with regard to navigation is addressed using forward-looking sensors
which determine the terrain type prior to the robot traversal. Thereby, two approaches can
be distinguished: traversability estimation and ground surface classification. Whereas the first
approach only divides the present terrain into traversable and non-traversable sections in a bi-
nary manner, the second technique aims at classifying the underlying ground surface given a
set of available classes. As for the sensors, camera and terrestrial laser scanner devices such as
RADAR or LIDAR (LADAR) can be employed.

Image-based Terrain Classification

In the camera-based setting, an image is decomposed into smaller primitives where each of the
primitives is assigned either a terrain class [FC97, AMHP07a, TC09] or a binary traversabil-
ity characteristic [EHS+07, VTL08, BBMG09]. Commonly, these primitives are represented
in terms of pixels [THKS88] or patches [DVH04, PUH03, KSO+06]. Pixels, however, are
prone to noisy estimations, rendering the task of identifying homogeneous regions complicated
[DKSM95]. Region primitives such as patches, on the other hand, enable the use of local image
descriptors such as color distributions and texture statistics.

Ground Surface Estimation using Color Features The use of color features is motivated
by the neurobiological findings that the human eye is able to differentiate thousands or even
millions of color shades [Leo06] in comparison with only two-dozen shades of gray. As a
consequence, several classification and indexing techniques arose which rely on color features
only. Although color provides an efficient tool in these domains, color features suffer from a
variety of deficiencies. These include changes in color perception in dependence of daytime,
the weather condition, and observer position and orientation. For example, when considering
a certain surface, the variation in the perceived color due to illumination and the object’s re-
flectance properties can be larger than the one caused by two differing colors. Although color
constancy approaches exist which aim at the reduction of these effects, these techniques are
based on simplified assumptions concerning the illuminant and the object’s reflective charac-
teristics. For instance, they adopt a local lighting model only [Sch04] which renders them
incapable of taking object inter-reflections into account. In an outdoor environment, however,
the robot is faced with varying shading and weather conditions. Hence, the above-mentioned
assumptions on which the color constancy techniques rely are likely to fail.

Texture Features for Terrain Classification Texture features, on the other hand, proved to
be more robust with respect to illumination changes. Texture describes an intrinsic property
of virtually all surfaces, such as wood, gravel, or PVC floors. Informally, it represents the
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Figure 1.1.: Images acquired from a robot traversal at a speed of 0.6 m/s which show the loss
of image structure due to motion blur artifacts.

distribution of gray-level variations or regular structural patterns within an image and captures
the relationship to the surrounding environment. In comparison with color, texture is defined
using a local area around a certain image pixel as opposed to the pixel itself. Furthermore,
texture information is usually extracted by means of gray level images only and hence can be
regarded as orthogonal to color-based techniques. Various approaches have been suggested
for texture representation: Tuceryan et al. [TJ98] thereby distinguished between four classes:
statistical [HSD73], geometric [Wil89, Asa99], model-based [Bes74, LP96], and signal pro-
cessing methods [BCG90, MFM04]. Statistical techniques describe the spatial organization of
the gray-level image. Based on the distribution of pixel intensities, several types of simple sta-
tistical features are determined. Among these features, the co-occurrence approach proved to be
the most appropriate for terrain classification [OD92]. Geometric texture analysis techniques
describe textures in terms of texture primitives and their spatial distribution. These primi-
tives are obtained by applying image filters such as edge detection or morphological filters.
A mathematical process describing the texture is generated for model-based texture analysis.
Examples of these techniques include the random mosaic model [AR81] or Markov random
fields [KH95, MC91]. Finally, signal processing approaches apply linear transforms, filters, or
filter banks to the texture. In a succeeding step, energy measures are extracted from the prepro-
cessed textures. The key idea of signal processing techniques is to transform the texture data
into another representation which is better suited for classification. The transform approach is
motivated by the finding that the most important information is contained in the low-energy
frequency components of the image. High-frequency content, in contrast, only represents noise
and can thus be omitted. Despite their use in many classification tasks, texture approaches have
several shortcomings. First, they are sensitive to motion blur artifacts emanating during robot
traversal at higher speeds. As shown in Figure 1.1, nearly all texture information is lost in
the acquired image. Second, vision-based classifiers are only able to extract features from the
topmost terrain surface which does not necessarily represent the load-bearing surface of inter-
est. For example, fallen leaves and snow (cf. Figure 1.2) or stalks of straw occlude the actual
ground surface and hence result in a false classification of traversability and, as a consequence,
in an improper robot navigation.

Laser-based Terrain Classification

To circumvent the effects induced by partial or full occlusion, terrain classification schemes
based on laser devices have been proposed. These devices are capable of directly sensing depth
information in the form of unorganized 3-D point clouds. Labeled data can then be employed to
determine three-dimensional features representing the inputs for predictive models. In the fol-
lowing, a trained predicted model is capable of distinguishing between load-bearing surfaces
and vegetation [WCS05, WCS06, WKSB09], detecting obstacles [MMM00, MBC+03], and
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Figure 1.2.: Examples of non-trivial terrain classification due to the presence of occlusion
caused by fallen leaves and/or snow.

terrain classification [VHKH04, LOCD09]. Beside the laser-based traversability approach of
Wolf et al. [WSFB05] which divides the traversed path in navigatable and non-navigatable ar-
eas, researchers addressed the problem of classifying outdoor entities such as large tree trunks
and ground surfaces. Vandapel et al. [VHKH04] therefore employed three-dimensional ladar
data which is preprocessed by local point statistics. Their system enabled the discrimination
between three classes including clutter to identify grass and tree canopy, linear structures to
classify thin objects such as wires or tree branches, and ground surfaces to capture solid ob-
jects like ground terrain surfaces and rocks. While the classification technique of Vandapel
et al. is able to identify both, long and mid-range environment entities, the laser stripe-based
structured light sensor approach of Lu et al. [LOCD09] performs terrain classification at very
close range at a distance of less than 1 m. Yet, it allows for a more detailed classification of
present terrain types instead of outdoor entity classes. Note, however, that the laser stripe-based
structured light sensor consists of both a laser and a camera yielding range and intensity infor-
mation. Hence, the latter approach can be considered as a combined camera and laser technique
similar to the ones presented by Rasmussen [Ras02] and Häselich [HALP11].
Along with their many benefits such as lighting independence or night-vision ability, the ap-
plication of laser-based approaches remains difficult for at least four reasons [BL11]: first, the
variable degree of resolution and sparsity of the data due to inevitable shadowing effects, sec-
ond, the intrinsic heterogeneity and complexity of natural surfaces, and third, the large amount
of data which is generated by modern terrestrial laser scanners. Finally, fallen leaves or a
thin layer of snow which cover the complete ground surface result in occluding artifacts and
misguide the driving behavior selection scheme.

Proprioceptive Ground Surface Estimation

The issue of covered terrain can be addressed by considering interactions between the robot
and the ground surface. In this way, the UGV does not only “see” the current terrain but
also “feels” it using proprioceptive sensors, similar to human perception during car naviga-
tion. Since terrain characteristics such as wheel slip or wheel sinkage are difficult to measure
accurately, proprioceptive terrain classification usually relies on vehicle vibrations. This is
mainly due to the ease of sensor evaluation yielding an estimate for the vibration strength. In
the literature, whiskers are known to be an efficient solution for collecting information about
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surface properties. The generated whisker deformation can be detected using transducers rep-
resenting a device which converts one form of energy into another representation such as volt-
age. The quality of the latter is measured by the transducer’s inherent characteristics with
regard to sensitivity, resolution, noise, and bandwidth. Examples include simple electrical con-
tacts [Wal50, Rus84], potentiometers to measure springy whiskers deflections [JZ96], strain
gauges [PPM+07], load cells [SR04], Hall-Effect sensors [HAZ+06], microphones recording
sound data [RDF96], and sensors detecting changes in the optical transmission of fiber op-
tic whiskers [RSPX01]. For wheeled vehicles, the most frequently employed transducer is
an accelerometer [BID05, CCJD+08, DMRCJ05, DMS+05, DMCJC08, DRM06a, OBWK06,
WFZ06, WFSZ07, WSZ07, WZ08, WTZ08]. This type of sensor is more sensitive to rapid
motion in comparison with the whisker device mentioned above. Another important aspect
of accelerometer signals is their frequency response: Terrain discrimination is performed by
spatial terrain signatures which arise from vehicle vibrations. The term spatial terrain signature
denotes the features of the spatial frequency response of a certain terrain which distinguishes its
frequency response from the one of other ground surfaces. Several approaches demonstrated
the effectiveness of these signatures in various applications such as planetary rovers [BI05],
autonomous ground vehicles [DMCJC08], and experimental unmanned vehicles [DMR08].
One drawback of vibration-based terrain classification schemes is that their sensitivity highly
depends on the vehicle itself. A heavy chassis mounted on a suspension system in combi-
nation with air-filled tires can be regarded as a damped mass-spring system. This damping
results in a (partial or complete) removal of high-frequency components of the acceleration
data which yields an inferior discrimination performance as compared to vehicles with no sus-
pension [GD09]. Further issues arise from the fact that a proprioceptive-based classification
approach can only identify terrain which was already traversed by the robot.

Combining Vision- and Proprioceptive-based Terrain Classification Approaches

A combination of forward-looking and proprioceptive techniques was advised by Krebs et al.
[KPS09]. While the former is used to predict the terrain type in front of the robot, the latter tech-
nique validates the prediction. Classifier fusion is achieved in terms of the AdaBoost [FS95] al-
gorithm which autonomously selects the most appropriate vibration and vision characteristics.
From these characteristics, weak classifiers are trained in a succeeding step whose linear com-
bination yields a strong classifier. In another approach, Sarvadevabhatla [Sar06] established
a relationship between visual features and proprioceptive ones as the robot navigates through
unknown terrain. Therefore, a vibration-based classifier is employed to automatically adapt a
visual feature-based classifier. This visual classifier is then able to predict terrain types in the
distance. Note that the latter technique is an example of self-supervised learning. Here, the key
idea is that one sensor provides the ground truth for learning a predictive model which relies
on other sensor modalities. In other words, an a priori trained vibration-based terrain classifier
provides the labels for the succeeding on-line visual model generation process. After labeled
training data has become available, standard supervised classification techniques can be used
to train the visual classifier. A similar approach to the one of Sarvadevabhatla has been pro-
posed by Brooks et al. [BI07] using differing acceleration and visual features. Measured slip
was adopted by Angelova et al. [AMHP07b] to train a vision system being able to recognize
regions of potentially high slip in the context of Martian exploration. These approaches show
the benefits of local terrain sensing in terms of vibration signatures resulting in an improvement
of the overall system performance.
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Terrain Classification using Incremental Machine Learning Techniques

The above-mentioned techniques follow a supervised classification paradigm in which a gener-
ative model is trained to distinguish between certain terrain classes whose number is known a
priori. In outdoor environments, however, the robot is faced with an unknown number of terrain
classes. This renders the identification of ground surfaces necessary which do not belong to a
predefined set of classes. Brooks et al. pointed out [BI09] that the unnoticed traversal of novel
terrain classes result in both a loss in mobility safety when classifying hazardous unknown ter-
rain as a ground surface with safe characteristics and potentially missed scientific opportunity
due to the disregard of scientifically interesting terrain types. This problem was addressed by
Brooks et al. [BI09] and Weiss et al. [WZ08] in the context of novelty detection strategies.
While the former researchers rely their approach on a two-class SVM, the latter ones employed
a mixture model-based technique to identify novel terrain.

Unsupervised Ground Surface Estimation

Another class of learning problems is unsupervised learning in which the data set does not con-
tain any truly labeled instance. Instead, a clustering algorithm has to establish an appropriate
data subdivision assigning similar data instances into the same clusters while distributing dis-
similar instances into differing clusters. In [GD08], Giguere et al. proposed a novel off-line
vibration signature clustering framework exploiting time-dependency between consecutive vi-
bration samples. Their system is based on the optimization of a user-specified classifier with
respect to a given cost function which takes the temporal correlation of sensory measurements
into account. Note that the application of temporal coherences is well founded in literature
with respect to several other domains such as computer graphics [SYM10, SSM11, MBW08,
DFR04], computer vision [RF03, MCW09], and robotics [BB89, CKW94, Bar01].

1.3. Thesis Outline and Research Objectives
The main focus of this dissertation is to integrate temporal coherences into the domain of ter-
rain classification and clustering using proprioceptive sensors. As previously described, this is
an important domain of research, since most current approaches rely the terrain type discrim-
ination task on single observations only. The remainder of this dissertation is organized into
nine chapters which discuss domain-specific problems along with their solutions. The objective
of the second chapter is twofold. Besides introducing the autonomous robot, the proprioceptive
sensor, and the characteristics of sensor observations, the basic elements of the pattern recog-
nition and clustering approaches are presented. A more detailed description of these elements
is provided in Chapter 3. Here, not only the model generation processes are taken into ac-
count but also the recall phase along with the assessment of the model quality. Starting from
Chapter 4, the contributions of this thesis are presented. This chapter shows how temporal
coherences can be efficiently integrated into the terrain classification framework in terms of a
recursive Bayes filter. To render this approach applicable in situations of both low-frequency
and high-frequency terrain changes, the Bayes filter is modified adaptively based on a history
of terrain type estimates. The latter, however, were derived from support vector machines only,
disregarding the capability of other classification techniques to provide these estimates. Chap-
ter 5 thus considers other classifiers to be embedded into the Bayes filter prediction scheme,
each featuring different characteristics. Furthermore, a novel preprocessing scheme is proposed
which does not only decrease the time spent on training the model but also improves the qual-
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ity of certain classifiers such as the Gaussian mixture-based technique. As demonstrated later,
this finding will become important in the following chapters which address the unsupervised
learning task.
Since training instances of each present terrain type might not be available a priori for some
application domains, Chapter 6 considers the problem of unsupervised vibration data clustering
when no training data is provided. Here, a Markov random field-based clustering approach is
proposed taking the inherent temporal dependencies between consecutive measurements into
account. As a further contribution, a general means is derived enabling the estimation of the
model’s most important parameter from the observed data. Motivated by the findings of Chap-
ter 5 which reveal an advantage of compact feature representations over longer ones, a novel
unsupervised feature selection technique is proposed and experimentally evaluated against cur-
rent state-of-the-art methods. The feature selection scheme is based on a mutual information
measure which has already been successfully applied in the supervised case [KZ09b]. Since the
non-deterministic initialization procedure of the Markov random field-based clustering tech-
nique introduces an unwanted overhead during feature selection, several means of obtaining
a deterministic model initialization scheme are presented in Chapter 7. It shows that, in this
context, the newly proposed technique incorporating temporal constraints yields the best gen-
eralization performance. The experimental part of this thesis is concluded by a systematic
comparison of techniques estimating the number of modes (clusters) in the data set when the
number of clusters is not provided in advance (Chapter 9). To assess the performance of the
resulting cluster models, two novel quality measures are proposed. The first one penalizes ho-
mogeneous, yet smaller clusters less in comparison with existing approaches while the other
measure provides information about the splitting tendency of certain ground surfaces. Finally,
Chapter 10 summarizes the contribution of this dissertation, gives concluding remarks and pro-
vides suggestions for future work on vibration-based terrain discrimination.
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In the following, the key elements of the terrain discrimination process are presented. Since
both terrain classification and clustering techniques are considered herein differences and com-
mon building blocks have to identified and discussed. While the primary objective of the fol-
lowing chapter consists of providing an overview of the various stages within the discrimination
pipeline, a more detailed description of the applied algorithms can be found in the next chapter.

2.1. Common Building Blocks
Although pursuing their own objectives, terrain classification and clustering feature structural
intersections which are introduced in the following.

Data Acquisition To establish a model for terrain classification, training data has to be col-
lected first. In this thesis, a RWI ATRV-Jr outdoor robot (cf. Figure 2.2(a)) was em-
ployed as experimental platform. Including the sensors, the robot has a dimension of
77.5×62×95cm3 referring to length, width, and height. The total weight of the robot is
about 60 kg where 10 kg (17%) are assigned to the sensors. Equipped with a skid-steering
drive, the velocities of the left and right wheels can be adjusted independently. Hence,
the robot is able to rotate around its height axis without a translational kinetic component.
Big pneumatic tires render a fast robot traversal possible even in rough outdoor terrains.
The robot’s maximal translational velocity is bounded by 1 m/s.
The body of the robot is split into two parts. In the lower part, the engines and batteries
are located, whereas the upper part contains a 2 GHz Pentium M PC with 1 GB RAM.
The latter allows for a real-time logging and processing of various sensor information.
Besides odometry, vision, ultrasonic, laser range, and differential GPS sensors, an atti-
tude and heading reference system (AHRS), the Xsens MTi1 (Figure 2.2(b)2), is mounted
on top of the robot. This device contains accelerometers, gyroscopes, and magnetometers
providing three-dimensional sensor data. While the first sensor supports accelerations up
to 5 g, the second sensor measures angular velocities at a resolution of ±300 deg/s. Fi-
nally, the magnetometers yield 3D earth-magnetic field data at a scale of ±750 mGauss.

Data Subdivision During robot traversal, vibration signals were acquired using accelerome-
ters at a sampling rate of 100 Hz. This data stream was split into overlapping segments
consisting of 128 samples where 28 samples comprised the overlap. In this way, each
subset corresponds to 1.28 s of robot travel and enables a prediction frequency of 1 Hz.

Feature Extraction Feature extraction can be regarded as a decorrelation method. Thereby, a
signal is transformed into another representation which is believed to have more benefi-
cial properties compared to the original one. These methods include data transformation
techniques such as the Fast Fourier Transform (FFT) which decomposes a signal into

1Xsens Technologies B.V., http://www.xsens.com/
2Source: cn.gcimg.net
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Figure 2.1.: A flow chart containing the building blocks of (a) terrain classification and (b)
terrain clustering.
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(a) (b)

Figure 2.2.: (a) The experimental platform used in this thesis and (b) the Xsens MTi inertial
measurement unit (image source: www.xsens.com).

its constituent frequencies and dimensionality reduction methods. The latter map high-
dimensional observations into a lower-dimensional subspace by generating a new feature
set from a combination of the most important ones. The main drawback of this approach
is that the original features lose their physical meaning and are thus hard to interpret.
Two well-known techniques for dimension reduction are the principal component analy-
sis (PCA) [Pea01] and the independent component analysis (ICA) [Com94].

Feature Selection Feature selection refers to the task of searching for a small set of features
which (completely) explain the properties of the data. It differs from feature extraction
in that the latter constructs new features by projecting the original feature set into a lower
dimensional space. In contrast, feature selection techniques are based on the unmodified
feature set and thus maintain the interpretability of the results. There are several poten-
tial benefits of using a reduced feature set such as the facilitation of data visualization
and data understanding, the reduction of training and testing time, and the decrease in
the influence of the curse of dimensionality. Moreover, noisy features can degrade the
performance of a learning task and should thus be excluded during the model generation
process.

Feature Normalization Data normalization is the most common form of preprocessing which
ensures that all of the input variables are of order unity. This becomes the more important
the larger the difference in their range is, because the magnitude of varying variables may
not reflect their relative importance in determining the required outputs.

2.1.1. Classification of Vibration Data
Model Generation In the model generation phase, the model learns the correct assignment of

classes j, j ∈ [1,k] for each observation xi ∈ Rd, i ∈ [1,n] of the training set X ≡ {xi}n
i=1.

Hence, a trained model can be considered as a function f which maps a d dimensional
input vector into the set of available classes, f : xi ∈Rd→N. Note that all the classifiers
presented in this work do not only provide a hard assignment, i.e. the class label, but also
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posterior probabilities. These probabilities, p(c = j|xi) denote the probability of data
instance xi to belong to class j.

Model Selection Model selection describes the process of determining the free parameters
for the selected classification technique. For example, when adopting a support vector
machine with a radial basis function kernel this includes the specification of the kernel
parameter σ , the dimensionality d of the input space, and the cost value C. These free
parameters are usually determined using a grid search in conjunction with a n-fold cross
validation.

Model Evaluation For model evaluation, unknown data has to be a applied to the trained
model. In the context of terrain classification, the term “unknown” refers to novel ob-
servations which were collected from known ground surfaces rather than terrain classes
which the robot did not traverse. As quality measure, the average true positive rate (TPR)
has been adopted. The TPR is defined as the correct number of class assignments related
to a certain terrain type averaged over the complete set of classes:

TPR =
1
k

k

∑
j=1

1
n j

∑
yi∈ class j

I(yi, ai), (2.1)

where n j is the number of instances contained in class j and I is the indicator function
returning the value of 1 if the true class of test instance i, yi, equals the predicted class
ai and 0 otherwise. Equation (2.1) is superior to simply counting the number of correct
predictions for all test instances in terms of increasing the TPR’s informational value
when the class frequencies are distributed non-uniformly. For instance, if the test set
consists of 99 objects from class 1 but only a single object from class 2, a false prediction
of the latter stays unnoticed if the remaining objects are correctly estimated. Using (2.1)
for the definition of the TPR, however, class 1 and 2 are assigned true positive rates of
100% and 0%, respectively, yielding an average TPR of 50%.

2.1.2. Clustering of Vibration Data
Model Generation The objective of the clustering task is to divide a given set of objects or

measurements into subgroups or clusters based on a similarity criterion. Thereby, the
data instances have to be arranged in such a way that objects assigned to the same clus-
ter should be similar whereas objects belonging to different clusters differ significantly.
More formally, the clustering process can be defined as follows [JMF99]: given a set
of data instances X ≡ {xi} ∈ Rd, i ∈ [1,n], the objective of the clustering process is to
partition X into k clusters such that for two data instances, x1 ∈ cluster u, x2 ∈ clus-
ter v,u,v ∈ [1,k], dist(x1,x2) is small if u = v and large otherwise. Here, dist denotes
an appropriate distance function. As a result, a clustering algorithm yields an injective
mapping of data instance xi to cluster j.

Model Selection Analogous to the model selection scheme for classification, model selec-
tion in relation to clustering involves the determination of free cluster model parameters.
Note, however, that due to the absence of class labels a grid search approach along with
cross validation is not possible in this context. Instead, the unknown parameters have to
be inferred using statistical measures or Bayesian techniques.
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2. Terrain Identification Overview

terrain1 terrain2 terrain3

a0 a1 a2 a3 a4 a5 b0 b1 b2 b3 b4 b5 c0 c1 c2 c3 c4 c5

c4 c5 a2 a3 b0 b1 a0 a1 b4 b5 c0 c1 b2 b3 c2 c3 a4 a5

Figure 2.3.: The visualization of the artificial path generation process. Given the acceleration
samples of a certain terrain class, these samples are first subdivided into smaller
patches. Then, patches from varying ground surfaces are systematically concate-
nated to form the final path.

Model Evaluation In general, model evaluation for clustering is a harder problem in com-
parison with classification tasks, which is mainly a reason of the missing label problem.
Further problems arise due to the potentially differing number of classes comprised in the
reference and estimated clusterings. This renders the direct application of quality mea-
sures derived in the context of classification problems impractical. Note, however, that in
this case, a correct terrain labeling along with the number of clusters k is available which
enable the use of external cluster quality criteria. That is, based on the given labeling of
data instances, a clustering with a pre-specified structure can be established representing
the intuition about the clustering structure of the data set. This structure is then employed
to evaluate the results of a certain clustering technique.
To demonstrate the effectiveness of the presented clustering approach, the evaluation is
not only based on a single but on several quality measures, including pair counting of
elements, information theory, and the above mentioned classification performance.

2.2. Experimental Data Sets
The paths employed for assessing the terrain identification quality emerged from both a con-
tiguous robot traversal and an artificial composition of consecutive vibration segments. All
measurements were collected within the Sand area next to the Department of Computer Sci-
ence of the University of Tübingen after rainfall. Hence, the robot was faced with slippery
grass and soil ground surfaces. For both data sets, the data originated from a robot traversal
at constant speed. Note that this is not a significant limitation, since the speed is known at
each time step and can thus be logged. After data acquisition, the data is split according to the
recorded traversal speed and each data subset can be identified separately.

2.2.1. Natural Paths Including Three Terrain Classes
The paths generated from a (natural) contiguous robot traversal contain 3 terrain classes (cf.
Figure 2.4(a)): paving, asphalt, and grass. Due to the contiguous recording technique, the
data sets also include terrain transitions, i.e. vibration segments comprising samples from two
distinct ground surfaces. Further, the paths are characterized by a small frequency of terrain
transitions and a non-uniform distribution of terrain classes at a ratio of 0.56:0.27:0.17 with
regard to asphalt, paving, and grass.
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2.2. Experimental Data Sets

(a)

(b)

Figure 2.4.: Visualization of the terrain classes employed in the (a) 3 classes and (b) 5 classes
experiments: (a) asphalt, paving, and grass and (b) indoor floor, asphalt gravel,
grass, and clay, respectively.

2.2.2. Artificially Generated Paths Including Five Terrain Classes
Since some terrain transitions are easier to detect than other ones, creating an adequate test set
must be handled with care. This is because the results depend on the order in which assembled
terrain segments of varying terrain type are presented. This effect was minimized by establish-
ing a second test environment in a systematic manner. Here, artificial paths have been preferred
over natural ones as the former allow for a more detailed investigation of the effects of temporal
coherences. Note that with a growing distance the robot navigates on the same terrain (which
will be denoted as travel distance in the following), the amount of temporal dependencies is
assumed to increase as well. To verify whether the algorithms are able to exploit the increased
temporal coherences, paths have to be considered which contain a systematic variation of the
travel distance. Since such paths which provide these characteristics are hard to find or simply
do not exist, artificially generated paths had to be used. One disadvantage which arises from
this approach is the absence of terrain transitions. It is important to stress, however, that the
frequency of terrain transitions is much less as opposed to the frequency of non-transitions.
Hence, it is assumed that the impact of these transitions on the performance of the terrain dis-
crimination process is rather small. Furthermore, since the vibration segments which represent
terrain transitions tend to be outliers with respect to the complete data set, they can be easily
filtered out using standard outlier detection techniques.

In total, the artificially generated paths include five terrain classes shown in Figure 2.4(b):
indoor floor, asphalt gravel, grass, and clay. The path generation process can be described as
follows: After data acquisition and feature extraction, k vibration segment sets are obtained,
one for each terrain type. From each of these sets, a homogeneous terrain patch consisting of δ

consecutive vibration segments is drawn without replacement to yield a certain travel distance
dist. Since the robot speed is varied among different experiments between v1 = 0.2 m/s up to
v3 = 0.6 m/s, δ is determined by δ = ddist/vie. Then, homogeneous terrain patches of vary-
ing terrain types were grouped together yielding the final test set. In Figure 2.3, an example
path generation process with a homogeneous terrain patch size of two vibration segments is
depicted.
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2. Terrain Identification Overview

In total, two artificial path generation techniques were carried out to investigate the perfor-
mance of the terrain discrimination approach. In the first setting, test paths were generated
which consisted of homogeneous terrain patches of constant size δ . To analyze the temporally
coherent clustering approach in situations of low-frequency and high-frequency terrain transi-
tions, the travel distance dist has been systematically altered for varying test paths: Here, dist
was chosen from the set {2,4,8,16,32}m.
In a further setting, a generated path is allowed to contain varying travel distances. Therefore,
k random patches, one from each set, are iteratively drawn without replacement and then as-
sembled in random order. Finally, the patch assembly process was repeated with an increasing
travel distance. Starting from dist = 2m, the value of dist was increased by a factor of 2 in
each step and reset to 2 m if a travel distance of 32 m was exceeded. The resulting test paths
represent a more realistic terrain setting with both high-frequency and low-frequency terrain
transitions.
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3. Applied Techniques
This chapter introduces the technical details of data preprocessing, model generation, and
model evaluation. Here, the general structure conforms to the one of the previous chapter
rendering the discrimination between the classification and clustering tasks necessary. On the
other hand, common processes of both framework are mutually discussed. Note that the main
focus of this survey is on the presentation of techniques which are frequently used in the follow-
ing chapters. Methods which are subject to a modification to fit into the terrain discrimination
task are introduced later on.

3.1. Common Building Blocks

3.1.1. Feature Extraction
Fast Fourier Transform

Fourier analysis allows for an alternative description of a time-discrete signal. Instead of rep-
resenting a signal as a function of time, the Fourier technique provides information about the
energy content contained at different frequencies. It therefore decomposes a signal into a sum
of sines and cosines of different frequencies. Given a periodic signal f (x) of period 2π , f can
be represented by the following infinite series:

f (x) = c0 +
∞

∑
n=1

(an cos(n · x)+bn sin(n · x)), (3.1)

where c0, an, and bn are the Fourier coefficients defined by the integrals:

c0 =
1

2π

∫
π

−π

f (x)dx,

an =
1
π

∫
π

−π

f (x)cos(n · x)dx,

bn =
1
π

∫
π

−π

f (x)sin(n · x)dx.

Using complex notations and Euler’s formula, the Fourier series can be expressed in an al-
gebraically simpler form. Here, one can make use of the fact that the complex exponential
exp(iθ) satisfies exp(iθ) = cos(θ)+ isin(θ). Thus, we have:

cos(θ) =
1
2
(exp(iθ)+ exp(−iθ)), (3.2)

sin(θ) =
1
2i
(exp(iθ)− exp(−iθ)). (3.3)

(3.4)
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3. Applied Techniques

From (3.2) and (3.3) it can be shown that (3.1) can be reformulated as

c0 +
∞

∑
n=1

(cn exp(inx)+ c−n exp(inx)) =
∞

∑
n=−∞

cn exp(inx),

where cn is defined for all integers n by

cn =
1

2π

∫
π

−π

f (x)exp(−inx)dx. (3.5)

Note that the definition of the Fourier transform given above requires the underlying function
f (x) to be given analytically. In the context of terrain discrimination, however, the function f
is represented in terms of discrete acceleration samples acquired equidistantly. This renders a
reformulation of the Fourier series for time-discrete signals necessary. The respective transfor-
mation is known as the discrete Fourier transform (DFT) which maps a finite sequence of M
numbers { f (xk)}M−1

k=0 ≡ {gk}M−1
k=0 into a set of DFT coefficients {Gn}. The derivation of the

respective formulas makes use of the fact that in the discrete case the integrals employed for
the calculation of the Fourier series coefficients {cn} in (3.5) can be discretely approximated
by Riemann sums.
For a positive integer M, we define xk = −π + 2πk/M, for k = {0,1, . . . ,M − 1} and let
∆x = 2π/M. Then, the nth Fourier coefficient cn of a function f is approximated by:

cn ≈
1

2π

M−1

∑
k=0

f (xk)exp(−i2πnxk)∆x

=
exp(−inπ)

M

M−1

∑
k=0

f (xk)exp(−i2πkn/M). (3.6)

Replacing f (xk) in (3.6) by gk yields the approximation of f in terms of DFT coefficients {Gn}:

Gn =
M−1

∑
k=0

gk exp(−i2πkn/M). (3.7)

Note, however, that instead of applying (3.7) for determining the Fourier coefficients c0, an
and bn, the Fast Fourier Transform (FFT) is used which transforms the signal {gk}M−1

k=0 in
O(M log2 M) operations.
Although the obtained DFT coefficients provide an effective representation of the underlying
signal, a common approach is its description in terms of the power spectrum of its positive
frequencies. Given a set of M coefficients {ai,bi}M−1

i=0 , the power spectrum is determined by:

ci =
√

a2
i +b2

i , i ∈ [0,M/2−1].

In the following, this feature representation is referred to as the DFT amplitude spectrum (DAS)
descriptor.

Principal Component Analysis

Principle component analysis aims at finding m principle directions in the d-dimensional data
set which contain the largest variance. These directions are defined using linear projectors
T ∈ Rd×m, i.e., the matrix T projects the data onto the subspace spanned by the principal
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3.1. Common Building Blocks

directions. The determination of the projection matrix T can be mathematically formulated as
a minimization of the following residuum-functional:

L(xi,T,µ) =
T

∑
t=1
‖(xi−µ)−T ·T T (xi−µ)‖2

2, (3.8)

where µ ∈ Rd is the center vector defined as µ = 1
n ∑

n
i=1 xi. The residuum-functional describes

the least-squares difference between the unmodified observation and its m-dimensional projec-
tion.
Equation (3.8) is equivalent to:

L =
T

∑
i=1

(xi−µ)T (I−T ·T T )(xi−µ). (3.9)

Since the projectors T are subject to the orthogonality condition T T ·T = Im×m, (3.9) can be
minimized analytically to find the optimal parameters for µ and T :

µ =
1
n

n

∑
i=1

xi, C =
1
n

n

∑
i=1

(xi−µ)(xi−µ)T = T ·S ·T +O(Λmin).

Here, T is the matrix of m dominant eigenvectors and S = diag(λ1, . . . ,λm) denotes the m
corresponding largest eigenvalues of the covariance matrix C. The diagonal matrix Λmin =
diag(λm+1, . . . ,λn) corresponds to the remaining spectrum. The above results show that the
optimal value for µ is determined by the expected value of the data set. Furthermore, the opti-
mal projection matrix T is given by the dominant eigenvectors of the data covariance matrix.

3.1.2. Data Normalization
In the following, a d-dimensional data set X = {xi}n

i=1, xi = (xi,1, . . . ,xi,d) ∈ Rd containing
n instances is assumed. Further, xi, j denotes the jth feature (variable, component) of the ith
instance and x∗, j is the set of all n feature values with respect to a certain component j. That is,
the latter set is represented by the jth column of the data matrix X .
Given these definitions, data normalization can be applied by transforming a specific variable
j such that the jth column of the data matrix, x∗, j, has zero mean and a standard deviation of
1. This is achieved by determining the mean x̄ j and standard deviation σ j for each variable x∗, j
followed by subtracting the mean x̄ j from each instance of variable x∗, j and finally dividing
each instance by the standard deviation σ j.

x̄ j =
1
n

n

∑
i=1

xi, j

σ
2
j =

1
n−1

n

∑
i=1

(xi, j− x̄ j)
2

x̃i, j =
xi, j− x̄ j

σ j
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3. Applied Techniques

3.2. Classification of Vibration Data

3.2.1. Model Generation
Support Vector Machines

Based on the work of Burges [Bur98], this section presents a mathematical formulation of
the hard-margin support vector machine (SVM) for binary, linear separable problems. That
is, problems involving training data which can be correctly classified by the following linear
function:

F(xi) = w · xi−b, (3.10)

where xi is a d-dimensional real vector given from the data set X = {xi}n
i=1, yi denotes the class

of xi and is assigned either -1 or 1. Further, w is the weight vector and b is the bias. Both values
are determined during the training process of the SVM and are chosen such that the sign of
F(xi) is either positive or negative depending on the class membership of xi:

w · xi−b≥ 0 if yi = 1, and
w · xi−b < 0 if yi =−1,

which can be reformulated as:

yi(w · xi−b)> 0,∀(xi,yi) ∈ X . (3.11)

The linear function F defines a hyperplane which separates the data into two subspaces. Yet,
there is an infinite number of hyperplanes which satisfy (3.11). Hence, an additional constraint
has to be defined which yields a unique solution. In the context of a SVM, a maximum-margin
criterion is used. The margin denotes the distance between the hyperplane and its closest points.
This constraint results in the following modification of (3.11):

yi(w · xi−b)≥ 1,∀(xi,yi) ∈ X . (3.12)

Given that the data set is linearly separable, or equivalently, each instance satisfies (3.11), then
the existence of (3.12) is also guaranteed. This is achieved by a rescaling of the weight vector
w and bias b.
The distance of an instance xi to the hyperplane is defined as |F(x)|

‖w‖ . Hence, the margin becomes
‖w‖−1 due to the constraint |F({xc})|= 1, where {xc} denotes the set of the closest vectors to
the hyperplane. These vectors are denoted as the support vectors.
Maximizing the margin ‖w‖−1 is equivalent to the minimization of ‖w‖ resulting in the follow-
ing constrained optimization problem:

minimize Q(w) =
1
2
‖w‖2

subject to yi(w · xi−b)≥ 1,∀(xi,yi) ∈ X (3.13)

The optimization problem can be solved using Lagrange multipliers [Min86] yielding a La-
grange function of the form:

J(w,b,α) =
1
2

w ·w−
n

∑
i=1

αi{yi(w · xi−b)−1}, (3.14)

20



3.2. Classification of Vibration Data

where the variables α ≥ 0 denote the Lagrange multipliers.

The solution of the constrained optimization problem is given by:

w∗ = ∑
i

α
∗
i yixi and (3.15)

b∗ = 1−w∗ · xi.

Here, the set {α∗i } denotes the optimal Lagrange multipliers determined after optimizing (3.14).
Finally, the decision function of (3.10) becomes:

F(x) = ∑
i

αiyixi · x−b (3.16)

The optimization problem of the hard-margin SVM stated in (3.13) only has a solution if the
data set X is linearly separable. For the linearly inseparable case, another SVM approach is
considered, which is based on soft margins. Here, mislabeled data points are allowed while the
objective of maximizing the margin is kept. Therefore, slack variables ξ are introduced which
measure the degree of misclassification. The optimization problem for the soft margin SVM
then becomes:

minimize Q(w,b,ξi) =
1
2
‖w‖2 +C ·∑

i
ξi

subject to yi(w · xi−b)≥ 1−ξi,∀(xi,yi) ∈ X and
ξi ≥ 0 (3.17)

By including the slack variables ξi in (3.17), the misclassification of data instances is rendered
possible, yet, the degree of misclassification is minimized along with the maximization of the
margin. C denotes a user-defined parameter which is a trade-off between the margin size and
the allowed classification error. Usually, C is obtained using a cross-validation [Koh95] ap-
proach.

A data set which is not linearly separable in its original space might be linearly separable when
the input vectors are mapped into a high-dimensional feature space. In a second step, a SVM
can be trained to find the hyperplane providing the maximum margin in the new feature space.
Here, the separating hyperplane is a linear function in the transformed space but a non-linear
one in the input space.
Given a non-linear mapping function from the d-dimensional input space to a higher dimen-
sional feature space, ϕ(x), the decision boundary in feature space is defined as:

w ·ϕ(xi)−b = 0.

Using (3.15), the weight is determined by:

w = ∑αiyiϕ(xi),

and hence, the decision function of (3.16) becomes:

F(xi) = ∑
i

αiyiϕ(xi) ·ϕ(x)−b.
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Note that in the latter equation, the mapping function occurs as the dot product ϕ(xi) ·ϕ(x).
Instead of calculating this dot product directly, the Kernel trick is applied which replaces the
dot product in feature space with a kernel function K in the original input space:

K(u,v) = ϕ(u) ·ϕ(v).

Since K can be determined in the input space, the time-consuming task of feature transforma-
tion can be skipped. As for the kernel function, the radial basis function K(a,b) = exp(−γ ·
‖a−b‖2) is used in this work.

The Estimation of Multi-Class Posterior Probabilities

In its original formulation, the SVM only yields binary classifications, i.e. decisions whether
a class belongs to one class or to the other one. In many situations, however, not only the
information about the class assignment is important but also the certainty of the decision. From
a statistical viewpoint, the certainty of a decision can be represented by means of the posterior
probability p(c = 1|xi) which denotes the probability of a certain measurement xi to belong to
class 1.
Platt [Pla00] proposed a sigmoid-fitting approach to transform (unthresholded) decision values
into posterior probability estimates. Therefore, he used the following parametric form for the
sigmoid:

p(c = 1|xi) = (1+ exp(A fi +B))−1,

where fi denotes the unthresholded output of the SVM model, and A and B are the parameters
to be determined. To estimate the latter, Platt applies a maximum likelihood approach on the
training set { fi, ti}, where ti is defined as ti = (yi +1)/2. In the maximum likelihood approach,
the negative log likelihood of the training data is minimized with respect to the following cross-
entropy error function:

−∑
i

ti log(pi)+(1− ti) log(1− pi), (3.18)

where
pi = (1+ exp(A fi +B))−1.

The minimization problem of (3.18) can be efficiently solved using a model-trust algorithm
based on the Levenberg-Marquardt algorithm [Yua00].

This work focuses on the classification of multiple terrain types, rendering a multi-class classi-
fier necessary. A general approach is to divide the multi-class problem into a number of binary
classification tasks. In the case of a one-vs-one multi-class classifier system, k·(k−1)

2 binary
classifiers are required, one for each possible pair of classes. Then, a coupling approach can
be employed which combines the posterior probability estimates to derive the posteriors pi of
each individual class i, i ∈ [1,k].
More formally, let rk j be the estimated posterior µk j ≡ pk, that is, the posterior probability of
class k given a binary classifier. Here, the latter is only trained of data assigned to both class
k and class j, respectively. Obviously, we have µk j = pk/(pk + p j), since pk + p j = 1. In the
approach of Wu et al. [WLW04], values for pi are determined such that the resulting µi j are
close to the binary estimates ri j. Therefore, they establish the following quotients and identify
them with the binary posterior probability estimates:

µi j

µ ji
=

pi
pi+p j

p j
pi+p j

=
pi

p j

!≈
ri j

r ji
.
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From this, one can conclude that the smaller is the outcome of r ji pi− ri j p j, the smaller is the
difference between µi j and ri j. In their work, Wu et al. use a slightly modified term for the
objective function which is defined as:

min
p

k

∑
i=1

∑
j, j 6=i

(r ji pi− ri j p j)
2 subject to

k

∑
i=1

pi = 1.

It can be shown [WLW04] that the solution of this optimization formulation is obtained by
solving a simple linear system.

3.3. Clustering of Vibration Data

3.3.1. Model Generation
K-means Clustering

The k-means algorithm is an iterative algorithm which minimizes the distance between each
observation and its corresponding cluster center (centroid). Here, the distance can be defined
in various ways, e.g. by means of the Euclidean distance, city-block, or hamming distances.
Among these distance measures, the Euclidean distance is commonly used for k-means cluster-
ing. A Euclidean k-means algorithm minimizes the sum-squared-error (SSE) criterion defined
as:

SSE =
k

∑
j=1

∑
xi∈ cluster j

‖xi−µ j‖2,

where n j denotes the number of instances contained in cluster j and µ j is their respective mean,
µ j =

1
n j

∑xi∈ cluster j
xi.

The k-means algorithm is initialized with k centroids which are chosen either deterministically
or randomly. Then, the SSE criterion is minimized using the following two steps: First, each
observation xi is assigned to the nearest centroid j: j = argmink ‖xi− µk‖. Second, the new
locations of the cluster centroids are determined given the assignment of the first step. Both
steps are repeated until convergence of the centroid locations.

Gaussian Mixture Model-based Clustering

The Gaussian mixture model (GMM) is a semi-parametric technique for modeling an uncon-
ditional probability density function p(x) given a set of unlabeled, d-dimensional data points
X ≡ {xi}n

i=1. The probabilistic model is expressed as a linear combination of k basis functions
p(xi) = ∑

k
j=1 π j p(xi|c = j), where k denotes the number of components of the model, π j is

the mixing coefficient of component j, and p(xi|c = j) is the component likelihood. The lat-
ter defines the probability of a data point xi to belong to a certain mixture component j. For
Gaussian mixture models, the basis functions are given by Gaussian distribution functions with
parameters

{
µ j,Σ j

}
:

p(xi|c = j) =
1

(2π)d/2
∣∣Σ j
∣∣1/2 · e

− 1
2 (xi−µ j)

T Σ
−1
j (xi−µ j). (3.19)

Here, µ j denotes a d-dimensional mean vector and Σ j is the positive definite d×d covariance
matrix. The corresponding generative model is shown in Figure 3.1 where two neighboring
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π

ci

xi

c j

x j

θ

Figure 3.1.: The probabilistic graphical model of a standard Gaussian mixture model.

vibration segments i and j are presented. The model assumes a common prior distribution π

which independently generates all vibration segment labels xi.
The Gaussian mixture parameters ~θ j =

{
µ j,Σ j,π j

}
, j ∈ [1,k] can be efficiently trained using

the expectation maximization (EM) algorithm. The EM algorithm is an iterative technique
guaranteeing a monotone decrease of the negative log-likelihood of the data set during opti-
mization. The log-likelihood is defined as:

L(t)
1 =

n

∑
i=1

log p(xi|~θ (t)), (3.20)

which is the sum of the probability of each data point given the current model parameters
~θ (t). Provided with an initial estimate of the mixture model parameters ~θ (0), the EM algorithm
iteratively reestimates these parameters until convergence of the data log-likelihood:

1. E-step:

p(c = j|xi) =
p(xi|c = j)π j

∑
k
l=1 p(xi|c = l)πl

(3.21)

2. M-step:

µ̂ j =
1

nπ j

n

∑
i=1

p(c = j|xi)xi (3.22)

Σ̂ j =
1

nπ j

n

∑
i=1

p(c = j|xi)xixT
i − µ̂ jµ̂

T
j (3.23)

π̂ j =
1
n

n

∑
i=1

p(c = j|xi) (3.24)

While the E-step determines the probability of the jth mixture component given the data and
model parameters ~θ (t), the M-step performs a reestimation of the model parameters. The algo-

rithm terminates if 1− L(t−1)
1

L(t)
1

< ε . In this work, ε was chosen as ε = 0.001.

A trained GMM can then be employed for classification and clustering tasks by assuming a
one-to-one correspondence between mixture components and classes and mixture components
and clusters, respectively. That is, a certain class or cluster i is assigned to the mixture compo-
nent i. Finally, the class (or cluster) belonging to a given data point xl is chosen by selecting
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Table 3.1.: The structure of a contingency table. Each entry ni j denotes the number of obser-
vations which belong to both cluster Ui and cluster Vj. Further, the sets {ai}r

i=1 and
{b j}c

j=1 are the row and column sums, respectively.
U /V V1 V2 . . . Vc sum
U1 n11 n12 · · · n1c a1
U2 n21 n22 · · · n2c a2
...

...
... . . . ...

...
Ur nr1 nr2 . . . nrc ar

sum b1 b2 · · · bc ∑i j ni j = n

the mixture component j that maximizes the posterior probability p(c = j|xl). Since in the
unsupervised learning case each cluster represents a certain terrain class to discriminate, both
“cluster” and “class” are used as equivalent terms in the remainder of this thesis.

3.3.2. Evaluation
For comparing two different clusterings, a similarity measure has to be defined. In this section,
four performance measures are presented which are all derived from a contingency table (Sec-
tion 3.3.2), yet are based on different ideas: counting pairs of elements, information theory, and
classification performance.

Contingency Table

The contingency table (Table 3.1) is a data structure which stores the information about the
cluster overlap between two different clusters: given two clusterings U and V with r and c
classes, the entries ni j of the contingency table C ∈ Rr×c denote the number of observations
which belong to both cluster Ui and cluster Vj. Note that this approach assumes a hard cluster-
ing of observations, i.e., one observation is assigned to only a single cluster.

Using this contingency table, several cluster similarity indices can be defined.

The Rand Index and its Extensions The idea of the rand index is to count pairs of instances
on which two clusterings agree or disagree. In total, there are n · (n−1)/2 possible pairs each
of which can be assigned to one of the following categories:

N11: The number of pairs that are in the same cluster in both U and V .
N00: The number of pairs that are in different clusters both in U and V .
N01: The number of pairs that are in the same cluster in U but in different clusters in V .
N10: The number of pairs that are in different clusters in U but in the same cluster in V .

The rand index only makes use of the former two cases which intuitively can be regarded as
indicators of agreement between U and V . It is defined as:

RI(U,V ) =

(
N00 +N11/

(
N
2

))
.
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Note that the rand index is bounded by 0 and 1. It is assigned a value of 1 if the two clusterings
are identical, and 0 if no pair of instances appear either in the same cluster or in different clus-
ters in both clusterings.
The issues related to the rand index are that its outcome for two random partitions is not con-
stant (e.g. 0) and converges to one as the number of clusters increases. Hubert et al. [HA85]
addressed these problems by modeling the partition generation process using a generalized hy-
pergeometric distribution. Under this probability model, the expected value of the rand index
can be determined when drawing two random partitions which contain the original number of
clusters and instances in each. Hubert et al. used this expected value to define a modified rand
index corrected for chance:

ARI =
RI−E(RI)

max( RI )−E(RI)

=

∑i j

(
ni j
2

)
−
[

∑i

(
ai
2

)
∑ j

(
b j
2

)]
/

(
N
2

)
1
2

[
∑i

(
ai
2

)
+∑ j

(
b j
2

)]
−
[

∑i

(
ai
2

)
∑ j

(
b j
2

)]
/

(
N
2

) ,

where each ni j, ai and bi are derived from the contingency table. The ARI index is upper
bounded by 1 and is assigned the value of 0 if the index equals its expected value.

Information Theoretic Measures

Adjusted Mutual Information The mutual information (MI) is a non-parametric measure
of relevance which can be derived from information theory. The MI of two random variables
X and Y is a measure of how X and Y depend on each other. It can be defined from the entropy
H(.):

MI(X ,Y ) = H(X)+H(Y )−H(X ,Y ) = H(Y )−H(Y |X),

where H(Y |X) is the conditional entropy of Y given X . It measures the loss of uncertainty of
Y when X is known. If X and Y are independent, then H(X ,Y ) = H(X)+H(Y ), H(Y |X) =
H(Y ) and hence MI(X ,Y ) = 0. For a continuous random variable X , the mutual information
corresponds to the Kullback-Leibler distance between the joint distribution and the product of
the marginals:

MI(X ,Y ) = KL(p(X ,Y )||p(X)p(Y ))

=
∫ ∫

p(X ,Y ) ln
(

p(X)p(Y )
p(X ,Y )

)
dXdY

In the context of clustering, mutual information can be used to determine the amount of shared
information between two clusterings. To render the mutual information index applicable, the
notions of entropy and joint probability have to be defined in the clustering domain. Given a
clustering U , the probability of a randomly chosen instance of the data set to belong to cluster
Ui is defined as p(i) = |Ui|

n . Hence, the entropy of a clustering U can be calculated as:

H(U) =−
r

∑
i=1

p(i) log p(i).
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3.3. Clustering of Vibration Data

Similarly, the entropy of another clustering V is determined by H(V ) = −∑
c
j=1 p̃( j) log p̃( j),

where p̃( j) = |V j|
n . Finally, the mutual information between two clusterings U and V is defined

as:

MI(U,V ) =
r

∑
i=1

c

∑
j=1

p(i, j) log
p(i, j)

p(i) · p̃( j)
,

where the joint probability p(i, j) denotes the probability that an observation belongs to cluster
Ui in U and to cluster Vi in V :

p(i, j) =
|Ui∪Vj|

n
.

The mutual information defines a metric on the space of all clusterings, yet, it is not bounded
which renders an interpretation of the outcome difficult. A bounding can be established, how-
ever, by using the entropies of the specific clustering. This is because

MI(U,V )≤min(H(U),H(V )).

Strehl et al. [SG03] proposed a normalization scheme in terms of the geometric mean. There,
they calculated the normalized mutual information by:

NI(U,V ) =
MI(U,V )√
H(U)H(V )

.

For the NI index, we have 0 ≤ NI(U,V ) ≤ 1 with NI(U,V ) = 1 for U = V and NI(U,V ) = 0
if for all i,1≤ i≤ k, and for all j,1≤ j ≤ l, we have p(i, j) = 0 or pi, j = p(i) · p( j).
The (normalized) mutual information measure suffers from the same issue as the unadjusted
rand index of Section 3.3.2: the outcome when applying the mutual information measure to two
random clusterings differs from 0 and is not constant for varying random clusterings. Similar to
the approach of Hubert et al. [HA85], Vinh et al. [VEB09] adjust the mutual information index
by incorporating the expected value of the mutual information between two random clusterings.
As model for randomness, they also chose the generalized hypergeometric distribution in which
clusterings are generated randomly with the constraint to have a fixed number of clusters and
observations in each cluster.
As shown in [VEB09], the expected mutual information can be calculated as:

E{MI(M)|a,b} =
r

∑
i=1

c

∑
j=1

min(ai,b j)

∑
ni j=(ai+b j−n)

ni j

n
log
(

n ·ni j

aib j

)
←↩

ai!b j!(n−ai)!(n−b j)!
n!ni j!(ai−ni j)!(b j−ni j)!(n−ai−b j +ni j)!

.

Given the expected mutual information, Nguyen et al. proposed the following adjusted mutual
information index:

AMI(U,V ) =
MI(U,V )−E{MI(M)|a,b}√
H(U)H(V )−E{MI(M)|a,b}

.

The AMI index is assigned a value of 1 if the two clusterings are identical, and 0 if the mutual
information between the two clusterings equals its expected value.
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Classification Performance

Given external class information {yi}n
i=1 for each data instance xi along with the number of

classes k contained in the data set, the true positive rate performance measure of Section 2.1.1
can be applied. Problems arise due to the inherent permutation symmetry of clustering algo-
rithms which can be stated as follows: even if two distinct clusterings yield exactly the same
instance grouping the labels may be arbitrarily permuted. To overcome this problem, the dis-
tance function of (3.25) is considered determining the summed difference between the real Y
and estimated Y ∗ target label distribution:

d(Y,Y ∗) = min
π

N

∑
i=1

I(yi−π(y∗i )), (3.25)

where π denotes a permutation of labelings which bijectively assigns each class of Y ∗ a certain
class of Y . The optimal and hence chosen permutation is the one which minimizes the distance
d(Y,Y ∗). Determining the optimal permutation either requires the complete enumeration of
possible permutations or adopting more elaborate techniques such as the Hungarian method for
solving the minimum weighted perfect bipartite matching problem [Kuh55, Mun57].
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4. Terrain Classification using Temporal
Coherences

4.1. Introduction
The objective of the work presented in this chapter is to predict the terrain type the robot is nav-
igation on using vibration data. Therefore, a machine learning model has to be learned which
establishes the assignment between current sensor measurements and the ground surface. For
the machine learning model, a variety of classifiers can be employed such as support vector ma-
chines [WFZ06], linear discriminants [BID05] and probabilistic neural networks [DRM06b].
Incorporating all these classifiers in a comparative survey, Weiss et al. [WFSZ07] reported
the support vector machine in conjunctions with a radial basis function kernel to yield the best
classification performance. All the presented approaches have in common that the terrain clas-
sification is only based on a single observation and hence disregard the temporal coherences
contained in succeeding observations. Given that the robot navigates on a certain terrain type
for a longer period of time during the robot traversal, it is very likely that the ground surface
does not change from one time step to the next. This assumption is based on the observation
that the probability of a terrain transition is significantly smaller in comparison with the one
that the terrain type remains the same.

4.1.1. Sequential Pattern Classification
The use of sequential patterns to improve the prediction quality of classifiers leads to the
domain of sequential supervised learning [Die02]. Given n training examples {(xi,yi)}n

i=1,
xi ∈Rd , yi ∈N+, the learning problem is defined as the generation of a valid classifier h which
predicts a new label sequence Y = h(X) from the input sequence X . Similar, but yet distinct
tasks include time-series prediction and sequence classification. The objective of the former
technique is to predict the t + 1st elements of a sequence {y1, . . . ,yt}, possibly given further
features or covariates {x1, . . . ,xt}. From this definition, two key differences between time-
series prediction and sequential supervised learning arise. First, in the latter task, the complete
set of observations xi is available whereas for time-series prediction, only a prefix of this se-
quence is present. Second, during the recall phase of sequential supervised learning, any of the
target labels yi is given but predicted by the machine learning model instead.
In the following, several techniques are briefly described which address the problem of sequen-
tial supervised learning.

4.1.2. Sliding Window Techniques
The first technique is the sliding window method. Here, the current target label yt is predicted
using a temporal window which contains the last k observations {xt−k+1, . . . ,xt}. For example,
Coyle et al. [CCL10] used a sliding window approach to establish an update rule for switching
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4. Terrain Classification using Temporal Coherences

control modes of an outdoor robot. Thereby, the decision was based on past and present classi-
fications and an appropriate window size was found using empirical data. Note, however, that
this window size selection scheme is likely to fail whenever the observed frequency of terrain
transitions during training does not reflect the one during the recall phase. Furthermore, the
predictive model of Coyle et al. only allows for the use of two terrain classes which is inappro-
priate for most environmental settings.
The sliding window approach has the advantage that a window classifier can be trained us-
ing any classical supervised learning algorithm. Yet, it does not provide effective means to
exploit existing correlations between nearby target labels. These correlations can only be in-
corporated using nearby observations. Relationships among target labels, however, which are
independent from observations cannot be taken into account. Recurrent sliding windows ac-
count for these issues as they also include the last k terrain estimates, {yt−k, . . . ,yt−1} as inputs
for the prediction process. Analogous the non-recurrent window approach, its recurrent exten-
sion benefits from a variety of classifiers which can be adopted for the training task without
further modifications. Note, however, that the last statement is only valid if the true labels are
employed during model generation. A recurrent window approach applied to two-dimensional
data has been proposed by Vega [Veg05]. There, a spatially coherent classifier was established
being able to differentiate between five distinct types of plants. Training and test data were
extracted from Synthetic Aperture Radar and Airborne Thematic Mapper images provided by
the Feltwell data set [SR95, GRB00]. Vega reported an increase in prediction performance of
3% up to 10% depending on the employed classifier model.

4.1.3. Hidden Markov Models
The hidden Markov model (HMM) [Rab90] is an example of a generative model as it describes
a means how the observations xi and target labels yi are generated. Formally, the hidden Markov
model is a representation of the joint distribution p(x,y). Two probability distributions are re-
quired to define the probabilistic model: first, the transition distribution p(yt |yt−1) representing
the probability of moving from state yt−1 to state yt , and second, the observation distribution
p(x|y) reflecting the relationship between the observations to the hidden target labels. Note,
that both distributions are assumed to be stationary, i.e. constant for all considered time steps.
Further model simplifications include the assumed independently and identically distributed
nature of the observations and the Markov property between target labels. Whereas the former
assumption states that each observation is generated independently conditioned on y, the latter
Markov property only models the relationships between consecutive target labels. Both sim-
plifications give indications why hidden Markov models are often a poor model of the process
generating the data. Yet, several authors successfully adopted HMMs in the domain of terrain
classification. In [WSFB05], Wolf et al. proposed a technique for generating three-dimensional
data from two-dimensional laser scans. On these maps, the respective regions were divided into
navigable and non-navigable regions using hidden Markov models. After both steps, a Markov
random field-based segmentation approach was applied to increase the classification perfor-
mance. In a later work [WS08], Wolf et al. extended the idea of structural mapping by means
of incorporating semantic properties into the map. This enabled the generation of maps which
did not represent metric occupancy only but also other features such as navigability or the
degree of activity. Thereby, the authors addressed the semantic mapping problem using both
hidden Markov models and support vector machines. They concluded that both techniques
yield similar results in terms of mapping quality. A terrain classification method derived from
gait bounce and gait roll measures was proposed by Larson et al. [LDV05]. Their approach is
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based on the assumption that the spatio-temporal patterns of these signals can directly be used
to estimate the characteristics of the terrain. In their work, a meta-classifier based on discrimi-
nant analysis and hidden Markov models was employed to extract the spatio-temporal patterns
of the gait-bounce signal.

4.1.4. Conditional Random Fields
To overcome the limitations of the HMM, the conditional random field (CRF) [LMP01] has
been suggested. It differs from a HMM by establishing a model of the conditional probability
distribution p(y|x) rather than p(x,y). Hence, informally, CRFs does not try to explain the
process generating the observations, but to predict the target labels given the observations.
Thereby, the relationship between succeeding target label pairs yt−1 and yt is modeled using a
Markov random field conditioned on the observations. In other words, the influence of adjacent
target labels is determined by the observations. Since conditional random fields became a
popular tool in object recognition [QCD05] or segmentation [JWL+06] tasks, this technique
was also applied to the domain of terrain classification. For example, Verbeek et al. [VT07]
introduced a CRF-based labeling model taking both local and global features into account.
There, global features are defined to represent terrain characteristics gathered over the whole
or at least large sections of a given image. The advantage of their CRF model is that it does not
require pixelwise-labeled training data, rendering the generation of the training data less time-
consuming. Wang et al. [WZTL10] employed CRF models for the generation of long-range
terrain perception in outdoor environments. Their approach does not only consider local region
features but also spatial dependencies between different regions during classification.

4.1.5. The Proposed Bayes Filter Approach
Despite the many benefits of conditional random fields, their inference is known to be a te-
dious task rendering the training of CRFs expensive. For this reason, a novel technique is
presented in this chapter which does not require any further information but the posterior prob-
ability estimates of individual observations. These posteriors are then recursively applied to
a Bayesian filter enabling the integration of a history of terrain estimates into the prediction
framework. Starting from the original Bayes filter formulation [Jaz70], several modifications
had to be considered for enabling its use in the domain of terrain classification [KWZ09b]. As
a further contribution, an adaptive extension to the proposed Bayes filtering approach is intro-
duced which renders its application possible in situations of high dynamic range including both
high-frequency and low-frequency terrain changes [KWZ09a]. Finally, further improvements
could be achieved by embedding the filtering technique into the multi-class sequential decision
process of [BV94].

4.2. Embedding Temporal Dependencies
The incorporation of temporal coherences renders the modification of the general terrain class
prediction scheme (cf. Section 2.1.1) necessary. Figure 4.1 highlights the differences between
the single observation-based ground surface estimation approach of Weiss et al. [WSZ07]
and the one which relies on temporal dependencies [KWZ09a]. Note that in this figure, the
processes of data subdivision, feature extraction, and feature scaling have been summarized
into a single procedure denoted as data preprocessing. Further note that no feature selection
scheme has been applied.
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Single Observation-based Classification

xt

Data Preprocessing

Predictive Model

Terrain Class Estimation

(a)

Temporally-Filtered Classification

xtxt−1xt−2...x0

Data Preprocessing

Predictive Model

ptpt−1pt−2...p0

Bayesian Filtering

Multi-Hypothesis Sequential
Probability Ratio Testing

Terrain Class Estimation

Bayes Filter Adaption

(b)

Figure 4.1.: A flow chart depicting the differences between a classification approach based on
(a) single observations and (b) filtering a history of ground surface predictions.
Here, pt denotes the posterior distribution at time t.
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From Figure 4.1 it can be derived that the single observation and the temporally coherent ap-
proaches differ by two key elements. First, when using the latter technique, not only one but
all measurements up to the current one are considered for the terrain estimate. Second, the
filtered prediction scheme does not rely on hard class assignments only, but takes the class
posteriors into account. These class posteriors are then applied to a Bayesian filter to obtain
temporally-filtered posterior probability estimates. At this time, an evaluation of the filtered
class posteriors can be made yielding the final terrain class prediction. In this approach, how-
ever, the result is thresholded in terms of a multi-hypothesis sequential probability ratio test
(MSPRT) to further reduce the number of (potentially) erroneously detected terrain transitions.
Thresholding avoids a change of the terrain estimate in situations where the filtered maximum
a posteriori probability p(c = cmax|X),cmax = argmax j p(c = j|X) indicates a terrain transi-
tion, yet p(c = cmax|X) does only differ insignificantly from the class posterior of another class
6= cmax. Finally, the filtered and thresholded terrain estimation is employed to adapt the dynam-
ics of the Bayes filter. This aims at enabling its use in situations of both high-frequency and
low-frequency terrain changes.

4.3. Applied Techniques
The method overview of Section 4.2 introduces two key techniques which have been adopted
for filtering terrain class estimates: Bayesian filtering and the multi-hypothesis sequential prob-
ability ratio test (MSPRT). Both techniques are presented in the following subsections.

4.3.1. Bayesian Filtering
A Bayes filter allows for an estimation of a dynamic system’s state from noisy observations.
In this section, the key elements of Bayes filtering are summarized. A detailed description is
provided in [TBF05].
When using Bayes filters, the state of a dynamic system at a certain time t is represented by
a random variable ct . Its uncertainty is denoted by a probability distribution over the state
space ct . Given t + 1 sensor readings, {xi}ti=0 ≡ x0:t ≡ X , the estimated target distribution is
denoted by p(ct |x0:t).
Applying Bayes’ rule, the posterior p(ct |x0:t) can be decomposed in the following way:

p(ct |x0:t) =
p(xt |ct ,x0:t−1)p(ct |x0:t−1)

p(xt |x0:t−1)

= αt p(xt |ct ,x0:t−1)p(ct |x0:t−1),

where p(xt |x0:t−1) = α
−1
t is a normalizing constant. Assuming that observations are distributed

i.i.d., that is, given the current state past observations are independent of present ones, we have:

p(ct |x0:t) = αt p(xt |ct)p(ct |x0:t−1), (4.1)

where p(xt |ct) denotes the likelihood function or measurement probability and p(ct |x0:t−1) de-
notes the predictive distribution representing the current state estimate given past observations.
Equation (4.1) quantifies the correction applied to ct due to current sensor data. The predictive
distribution is obtained by marginalizing over the previous state:

p(ct |x0:t−1) =
∫

p(ct ,ct−1|x0:t−1)dct−1

=
∫

p(ct |ct−1,x0:t−1)p(ct−1|x0:t−1)dct−1.
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Here p(ct |ct−1,x0:t−1) is the transition probability describing the system dynamics. p(ct−1|x0:t−1)
denotes the posterior distribution from the previous time step. Bayes filters model the dynamic
system by a first-order Markov process assuming that the information provided by the cur-
rent state at time t suffices to predict future states without considering past observations. This
yields:

p(ct |x0:t−1) =
∫

p(ct |ct−1)p(ct−1|x0:t−1)dct−1. (4.2)

Equations (4.1) and (4.2) provide a recursive formulation of the posterior state distribution
which only depends on previous and current observations. To determine the posterior probabil-
ity recursively, an initial probability distribution p(c0)≡ p(c0|x0) has to be defined. It is either
initialized with prior knowledge about the initial state or is uniformly distributed if no prior
knowledge exists.

4.3.2. Multi-Hypothesis Sequential Probability Ratio Testing
In the following, an ordered sequence of t+1 observations X ≡{xi}ti=0 along with their respec-
tive class memberships Y ≡ {yi}ti=0 ∈ [1,k] are assumed. A sequential decision strategy S is a
sequence of decision functions S = {S1,S2, . . .} which assign either a class j or an undecided
state ] to each observation: St : (x0, . . . ,xt)→ {1, . . . ,k, ]}. Here, undecided means that a class
membership decision cannot be made from the first t + 1 measurements. Starting from t = 0,
the strategy is evaluated sequentially until a class assignment can be performed.
A decision strategy is characterized in terms of the expected decision time T̂S defined as

T̂S = E(TS(x))

and the error rate αS which is the probability of an incorrect decision:

αS = ∑
i

α
i
S

α
i
S = ∑

j 6=i
α

i j
S p(ct = j) (4.3)

α
i j
S = p(S(x0:t) = i|ct = j), i 6= j. (4.4)

Here, (4.3) denotes the probability of incorrectly assigning class m and (4.4) is the probability of
erroneously assigning an instance from class j to class i. Using these definitions, the following
decision criterion can be established:

S∗ = argmin
s

T̂S s.t. α
i
S ≤ α

i, i ∈ [1,k] (4.5)

with nominal error rates (α1, . . . ,αk) or

S∗ = argmin
s

T̂S s.t. αS ≤ α, i ∈ [1,k] (4.6)

with the nominal error rate α .

In contrast to the binary MSPRT, termed as SPRT, there is no optimal multi-class sequential
decision strategy minimizing (4.5) or (4.6). Although approaches based on the truly optimal
recursive Bayesian test exist [Tar89, Zac71, BG70], these solutions are impractical in most
cases due to their complexity. Other techniques consider ad hoc tests which repeatedly apply a
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two class SPRT in a pair-wise manner [EG91]. For most of these sequential tests, however, the
bounds with regard to the truly optimal strategy are either very loose or simply do not exist.
In [BV94], a generalization to the SPRT was introduced which approximates the much more
involved optimal test under Bayesian assumptions. For the parameter set 0 < A1, . . . ,Ak < 1,
the following multi-class strategy was proposed:

St(x0:t) =

{
i if p(ct = i|x0:t)>

1
1+Ai

] otherwise
(4.7)

Assuming all Ai < 1 the procedure is well-defined as there is only one i for which p(ct =
i|x0:t)> 1/(1+Ai)>

1
2 , since the probabilities must sum to one.

In the context of terrain classification, the MSPRT approach can be adopted by first determin-
ing the filtered posterior probability p(ct |x0:t) in each step. If this probability exceeds a given
threshold 1−α , the terrain estimate is changed to the class j which maximizes p(ct = j|x0:t).
Otherwise, the terrain estimate remains the same. In the applied experiments, α was found ex-
perimentally using a separate data subset which was independent from the training set. Several
paths with varying terrain transition frequencies were generated in a systematic manner (cf.
Section 2.2) and the threshold α∗ was chosen which maximized the obtained true positive rate
(Section 2.1.1).
From (4.7), it can be derived that the filtering of posterior probabilities is the key element of the
MSPRT technique. Hence, in the following section, two approaches are introduced which allow
for their robust estimation. In this context, robust means to filter out selective misclassifications
while preserving the detection of true terrain transitions.

4.4. Bayesian Filtering Applied to Terrain Class Estimation
This section considers the modifications which have been made to enable the use of Bayesian
filtering and multi-hypothesis sequential probability ratio testing in the context of supervised
terrain classification. Starting with a reformulation of the Bayes filter which relies on an ob-
servation’s posterior probability point estimate instead of its likelihood, a general means of
estimating the MSPRT threshold is presented.

4.4.1. Adaption of the Bayes Filter Formulation
In this context, the state vector comprises the class number i ∈ [1,k], where k is the number
of terrain classes to discriminate. By this coding scheme, a discrete set of k different states is
obtained describing the dynamic system. The random variable ct representing the state vector
reveals the uncertainty with which the robot navigates on a certain terrain type. Preprocessed
vibration data recorded by accelerometer sensors provide the observations.
To apply Bayes filtering to the problem of vibration-based terrain classification, three proba-
bility distributions have to be specified: an initial probability distribution p(c0) which denotes
the probability at which the robot resides on a certain terrain type at time t = 0, the measure-
ment probability p(xt |ct) defining the likelihood that the vibration data measurement xt can be
observed navigating over a certain terrain type ct , and the state transition probability p(ct |ct−1)
denoting the probability that the robot moves from terrain type ct−1 = j to terrain type ct = i.
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The initial probability distribution p(c0) For the derivation of p(c0), there is no informa-
tion available that the robot is placed on a specific terrain type at time t = 0. Hence, p(c0) is
assumed to be uniformly distributed.

The measurement probability p(xt |ct) The distribution p(xt |ct) can be learned from train-
ing examples using parametric or non-parametric density estimators [SS04]. Note, however,
that the extracted feature vector generated from sensor readings has 64 dimensions. This poses
a problem, since density function estimation of a high-dimensional random variable is a non-
trivial task suffering from the curse of dimensionality. For this reason, another approach is
adopted to represent the likelihood function. The key idea is to express the measurement
probability in terms of the (estimated) posterior probability, p(ct = i|xt), provided by machine
learning classifiers. Note that in contrast to the probability density function of xt , estimates for
p(ct |xt) are provided by certain classifiers like neural networks and support vector machines
with only little additional costs.
Applying Bayes’ rule to p(xt |ct), we have:

p(xt |ct) = p(ct |xt)
p(xt)

p(ct)
. (4.8)

The term on the right hand side of (4.8) now depends on the classifier posterior probability and
the marginal probability of random variables ct and xt , respectively. Given no prior knowledge
about the marginal probability of a certain terrain instance, p(ct) is modeled as a uniform
distribution, i.e., it is assigned the value of κ1 = 1/k for all terrain classes. For p(xt), the
complete Bayes filtering formulation is considered which assigns a probability value to a certain
terrain class i, given sensor measurements x0:t :

p(ct = i|x0:t) = αt p(ct = i|xt)
p(xt)

κ1
ppr(ct = i), (4.9)

where ppr(ct) is the predictive distribution:

ppr(ct = i) = ∑
j

p(ct = i|ct−1 = j)p(ct−1 = j|x0:t−1).

Note that the integral of (4.2) has become a sum, since we have a discrete set of possible states.
From (4.9) we see that p(xt) is constant for all i and can thus be merged with the constant α to
give a new normalizing constant. Introducing α∗t = αt

κ2
κ1

with κ2 = p(xt) yields the final Bayes
filter formulation:

p(ct = i|x0:t) = α
∗
t p(ct = i|xt)ppr(ct = i). (4.10)

The state transition probability p(ct |ct−1) The transition probability p(ct = i|ct−1 = j) de-
scribes the probability of moving from state ct−1 = j into state ct = i. Given k states, k2 prob-
abilities have to be defined. These values are stored in a square matrix which is denoted as the
transition matrix M with elements mi j ≡ p(ct = i|ct−1 = j). The matrix diagonal elements mii
represent the probabilities that the system remains in its current state whereas the non-diagonal
elements mi j, i 6= j denote the probability of a system state change from state j to state i.
In this work, the derivation of the transition matrix is based on the control mode switching
approach proposed by Coyle et al. [CCL10]. There, a transition to terrain type i is assumed
if the number of terrain estimates for class i, ni, divided by the total number of terrain pre-
dictions within a time window of w observations is larger than a predefined threshold η , i.e.

36



4.4. Bayesian Filtering Applied to Terrain Class Estimation

f = ni
w > η . Note that the approach presented in this work differs from the one of [CCL10] in

two vital aspects. First, the proposed technique does not rely the terrain prediction directly on
the determined fraction f but f is employed to model the probability p(ct = i|ct−1 = i), i.e. the
probability of remaining in the current state:

p(ct = i|ct−1 = i) = f =
ni

w
.

To avoid the zero-frequency problem [WB91], a slightly modified version of the probability
distribution derivation scheme is adopted which is based on the Laplace estimation:

p(ct = i|ct−1 = i) = f̃ =
ni +1
w+ k

.

Informally, the Laplace estimate increases the absolute frequencies of the observed class counts
by one for each class. As an effect, the probability of remaining on a certain terrain class
differs from 0 at all time steps. This choice has been experimentally verified in the conducted
experiments.
Second, the number of considered ground surface estimates w, i.e. the window size, is chosen
dynamically according to the present terrain characteristics. Therefore, several cases have to be
distinguished. Given the current state cmax, that is, the maximum of the filtered class posterior
distribution at time t along with the state of the previous time step ãt−1, the window size w
is either reset to one or divided in half at each iteration whenever the latest two terrain states
cmax 6= ãt−1 do not match. Here, all but the current entry of the window are rejected if the
MSPRT indicates a change of the present terrain type. This is because enough evidence for
a terrain transition is gathered and hence terrain estimates representing the previous terrain
type can be safely removed. In the case of an unsuccessful MSPRT, the window size is halved
keeping the most recent dw/2e ground surface estimates. Note that a change of the system state
is caused by either a true or an erroneously detected transition. The aim of the window bisection
technique is to establish a tradeoff between the loss of temporal dependencies in the case of a
true change in the terrain class and the preservation of temporal coherences in situations of
wrong system transitions. In a similar spirit, the window size is also halved whenever the
previous and the current state remain the same, but the current unfiltered prediction at indicates
a change of the present ground surface. In so doing, a possible system state transition is taken
into account in terms of decreasing the degree of temporal dependencies. If none of the above-
mentioned conditions is fulfilled, the probability of a terrain transition is assumed to be low
which, in turn, allows for the use of a larger amount of temporal coherence. This is realized by
incrementing the window size by a value of 1.
If the underlying structure of the terrain is unknown, each transition to one of the other terrain
types can occur with equal probability. Hence, transition matrix elements mi j with i 6= j are
assigned the constant value 1−mii

k−1 , such that ∑i mi j ≡∑i p(ct = i|ct−1 = j) = 1. The assignment
of constant values to the non-diagonal elements of the transition matrix is based on the fact that
typically no information is provided about the terrain characteristics in unknown environments.
If, however, additional information such as impossible terrain transitions exists, the transition
matrix provides an elegant means of incorporating this information into the Bayesian prediction
framework.
To summarize, the elements of the transition matrix mi j are given by

p(ct = i|ct−1 = j) =

{
ni+1
w+k i = j

1−p(ct=i|ct−1=i)
k−1 otherwise

. (4.11)

Pseudo code for the complete Bayesian filter formulation is provided in listing 1.
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Algorithm 1 A Bayesian filtering framework for coupling posterior distributions.
Require: {ai}n

i=1: the unfiltered terrain class estimates, k: the number of terrain classes
Ensure: {ãi}n

i=1: the filtered class posteriors
1: w = 1
2: ã1 = a1
3: for t = 2→ n do
4: For each class j, determine the relative frequency of terrain estimates in a given window:

n j =
∑t∗ I(argmaxl p(ct−t∗ = l|xt−t∗), j)

w
, j ∈ [1,k], t∗ ∈ [0,w−1]

5: Update the entries of the transition matrix:

p(ct = i|ct−1 = j) =

{
ni+1
n+k i = j

1−p(ct=i|ct−1=i)
k−1 otherwise

6: For each class, calculate the filtered, but unnormalized, class posteriors:

p̃(ct = i|x0:t) = p(ct = i|xt)∑
j

p(ct = i|ct−1 = j)p(ct−1 = j|x0:t−1)

7: Normalize the filtered class posteriors such that ∑i p(yt = i|x0:t) = 1:

p(ct = i|x0:t) =
p̃(ct = i|x0:t)

∑ j p̃(ct = j|x0:t)

8: Determine the class which maximizes the posterior along with the respective probability:

cmax = argmax
j

p(ct = j|x0:t)

pmax = p(ct = cmax|x0:t)

9: Calculate the filtered prediction ãt according to the flow chart depicted in Figure 4.2.
10: end for
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cmax 6= ãt−1

cmax 6= at cmax ≥ TMSPRT

w = w+1
ãt = ãt−1

w = dw/2e
ãt = ãt−1

w = dw/2e
ãt = ãt−1

w = 1
ãt = cmax

false true

false true false true

Figure 4.2.: Flow chart depicting the determination of the filtered prediction ãt using the Bayes
filtered estimate cmax and the most recent single classification at at time step t.
Further w denoted the size of the current window and TMSPRT is the threshold
parameter for the multi-hypothesis sequential ratio test.

4.4.2. MSPRT Parameter Estimation
The threshold for the MSPRT is obtained using training data. To derive an unbiased estimate,
the training set is therefore further refined into a reduced training set and a threshold estimation
set. While the training set is employed exclusively for training the machine learning model, the
threshold estimation set is used for determining the MSPRT threshold. Here, the subdivision
is performed by assigning 2/3 of the instances of each terrain class to the reduced training set
whereas the remaining measurements constitute the threshold estimation set.
The actual threshold is determined using a one-dimensional grid search. Given a candidate
threshold T ∗MSPRT ∈ [0.51,0.96] with step size 0.05, the Bayes filter is applied to a set of class
posteriors. These class posteriors are obtained when applying the instances of the threshold
estimation set to the trained model. The history of individual posterior probabilities represents
a robot traversal over varying terrain types with certain terrain transition characteristics. After
obtaining the filtered posterior probability distributions, the outcomes are evaluated in terms
of the true positive rate. Finally, from the set of candidate thresholds, the threshold TMSPRT is
selected which maximizes the TPR.
As for the presented path, the distinction has to be made with respect to the 3 and 5 classes
experiments. In the 3 classes experiment, the measurements were grouped according to their
class membership. For each group, 2/3 of all instances were assigned to the training set and the
remaining ones to the threshold estimation set. These subsets were concatenated over all classes
to yield the final training and threshold estimation set, respectively. The 5 classes experiment
follows the class membership grouping process and the 2:1 subdivision scheme of the training
and threshold estimation set. Yet, the observation concatenating technique of Section 2.2.2 has
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been applied to the generated groups with a certain terrain transition profile. Modifying this
transition profile among different paths from d = 2m up to d = 32m increases the probability
of obtaining a threshold which is adequate for a range of travel distances.

4.5. Experimental Results

4.5.1. Experimental Setup
In this subsection, the choice of all remaining parameters and settings which have been em-
ployed during the experiments are presented. These include the SVM hyperparameters, the
definition of the Bayes filter transition matrix, training and testing data subset partitioning, and
the quality assessment procedure.

SVM Hyperparameter Selection The optimal values for the standard deviation σ of the
RBF kernel as well as for the soft margin parameter C have been determined by a grid search.
Each candidate parameter vector on the grid (σ ,C) was evaluated by 5-fold cross-validation.
As SVM implementation, the LIBSVM [CL05] library has been adopted.

Defining the Bayes Filter Transition Matrix In this work, three types of transition matrices
have been implemented:

• Static transition matrix Following the choice of Grundmann et al. [GFB10], the el-
ements of the transition matrix are set to 1/k, where k denotes the number of classes.
Thus, both the probability of moving to any other terrain class and the probability of
remaining on the same one become equally likely.

• Transition matrix determined by a window of constant size Here, the determination
of the transition matrix relies on the adaptive filter approach introduced in Section 4.4.1.
Yet, while the adaptive technique uses a window of varying size w, the constant window
approach always considers the same number of predictions to estimate the transition
matrix diagonal, i.e. w = const. In the following experiments, w was chosen from the set
{2,4,8,16,32}.

• Transition matrix using an adaptive window approach Using the adaptive window
technique of Section 4.4.1 (denoted as adapt in the following), no user-defined parame-
ters have to be specified.

Training and Testing Data Set Generation The paths employed for evaluating the proposed
Bayesian filter represent natural paths containing three classes and artificially generated ones
with five classes. For the latter, the path generation scheme of Section 2.2.2 has been adopted
yielding robot traversals with either constant or varying travel distances, respectively. Note that
certain terrain transitions are easier to detect than other ones. Hence, the classification results
depend on the order in which assembled terrain segments of varying terrain type are presented.
For the five classes experiment, this effect was minimized by randomly permuting this order
and averaging the classification results determined after 50 reruns of a particular experiment.

Evaluation For the result evaluation, the average true positive rate introduced in Section 2.1.1
has been employed.
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4.5.2. Results and Discussion
The discussion starts with the 3 classes experiments representing robot traversals which consist
of continuously acquired vibration data and hence include natural terrain transitions. In Table
4.1 both the results of the single observation approach (SO) and the Bayes filter approach (BAY)
are shown for varying velocity profiles (0.2 up to 0.6 m/s) when applying the constant window
size (2-32), the adaptive window size (adapt) and the constant transition matrix determination
schemes. In comparison with the single observation approach, the temporally coherent clas-
sification technique yields an improvement of the average true positive rate of 10.7% at most
with respect to all velocity profiles and 7.2%, 10.7%, and 6.0% for velocity profiles 1-3 (0.2,
0.4, and 0.6 m/s), respectively. Concerning the constant window approach it can be stated that
the filtered classification performance is rather independent from the chosen window size. That
is, with a minimum derivation of 1.5%, 2.2%, and 1.1% for velocity profiles 1-3 the obtained
average true positive rates do not change significantly when altering the window size between
2 and 32. For the const approach, the obtained results are always worse in comparison with the
other transition matrix estimation techniques. Yet, the outcomes of the constant transition ma-
trix determination scheme significantly outperform the ones of the single observation approach.
Choosing the window size adaptively yields adequate results for all velocity profiles. Although
the adaptive method does not result in the best classification performance for a certain test case,
average true positive rates are obtained which are close to the best ones or at least are among
the best three TPRs.
This observation is confirmed in Figure 4.3 where the results with regard to a certain window
size are averaged over velocity profiles 1-3. Figure 4.3 also reveals the trend of favoring larger
window sizes. Note that the size of the window should correlate with the amount of estimated
temporal dependencies within the data set. The larger the latter, the more terrain predictions
can be considered during the filtering process and hence, the larger has the window size to be
chosen. As there are only 4 terrain transitions contained in the 3 classes experiments, a large
amount of temporal coherences can be assumed which, in turn, validates the trend of selecting
larger window sizes. Comparing the optimal window sizes for the constant window approach
and the average window sizes of the adaptive approach for a given traversal path (Table 4.2),
an approximate correspondence can be observed. This shows that the adaptive approach cor-
rectly determines the relationship between the amount of temporal dependencies contained in
the present path and the window size to be chosen.
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Table 4.1.: Classification performance in terms of the true positive rate [%] for the 3 classes
experiments with respect to varying velocity profiles (vel), filter sizes, and the un-
filtered single observation (SO) and Bayes filtered (BAY) classification approach.

vel approach
filter size

2 4 8 16 32 const adapt

0.2 m/s
SO 88.4 88.4 88.4 88.4 88.4 88.4 88.4

BAY 94.1 94.7 95.6 95.0 95.4 92.4 95.1

0.4 m/s
SO 86.8 86.8 86.8 86.8 86.8 86.8 86.8

BAY 95.4 95.2 95.9 97.4 97.5 94.7 96.3

0.6 m/s
SO 92.1 92.1 92.1 92.1 92.1 92.1 92.1

BAY 97.1 98.1 98.0 98.0 97.1 96.4 98.1

average
SO 89.1 89.1 89.1 89.1 89.1 89.1 89.1

BAY 95.5 96.0 96.5 96.8 96.7 94.5 96.5

Figure 4.3.: The visualization of the results of the 3 classes experiments with respect to varying
filter sizes when averaging the outcomes over the complete set of velocity profiles.

Table 4.2.: The average filter sizes for the 3 classes experiments with respect to varying velocity
profiles (vel).

vel
classifier

svm
0.2 m/s 25.4
0.4 m/s 19.9
0.6 m/s 11.8
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The presentation of the five classes experiments is similar to the one of the three classes ex-
periments. The key difference is the introduction of varying travel distances either related
to an individual path (var) or a set of paths each featuring a single travel distance dist, with
dist ∈ {2,4,8,16,32}.
The use of the temporally coherent classification scheme yields significant improvements in
terms of the true positive rate. Depending on the chosen velocity profile and travel distance, a
maximum increase of classification performance by 9.7% can be observed in comparison with
the single observation approach. If the differing velocity profiles are considered individually,
the overall improvement of TPR is 9.7%, 5.1%, and 6.2% for velocity profiles 1-3, respectively.
In contrast to the three classes experiments, the Bayes filter favors smaller window sizes in the
5 classes experiments for establishing the transition matrix. This is an expected behavior, since
now the terrain transitions appear more frequently reducing the amount of temporal dependen-
cies within the present paths. As an effect, the window size has to be reduced to not consider
outdated measurements which represent another terrain type. Note that with increasing travel
distance the amount of temporal dependencies rises as well. Hence, when using a temporal
filter, the filtered classification results are expected to increase alike. As shown in Table 4.3,
the true positive rates follow this assumption.
Similar to the 3 classes experiments, the adaptive transition matrix generation approach yields
results which are close to the best ones (cf. Figure 4.4). One reason for this characteristic is
shown in Table 4.4. Here, the average window size with regard to the travel distance is pre-
sented. The results reveal that the adaptive Bayes filter approach is able to establish a correct
relation between the present travel distance and the estimated filter size.

To assess the effects of the filtering process on the state transition behavior, Figure 4.5 depicts
two robot traversals of the 5 classes experiment at a robot speed of 0.2 m/s. Here, correct (blue
bars) and erroneous (red bars) transitions are presented with respect to unfiltered and Bayes
filtered classification along with the reference transition sequence. Thereby, a true transition is
defined as a state change from any terrain type of time step t− 1 to the correct terrain type of
time step t. If the system changes into an incorrect state representing a wrong ground surface
the respective transition is denoted as an erroneous one. Furthermore, a gray bar in Figure 4.5
indicates situations in which no terrain transition occurs but the system erroneously remains in
the wrong state.
Figure 4.5(a) shows a positive example of Bayes filtered classification. In comparison with
the single observation approach, the temporally coherent classification scheme requires less
state transitions which is due to the correct filtering of erroneous predictions. Further, the
filtered transition sequence reveals a fast state switching behavior of the Bayes filter, since
almost all state transitions are processed without any delay. The sole exception occurs at time
step t = 91 where the system erroneously remains in its current state and finally migrates into
the correct one not until the third prediction. Note, however, that the wrong prediction of the
single observation approach at time step t = 91 contributes to the delayed detection of the state
change.
Finally, Figure 4.5(b) provides an example where the Bayes filter fails at correcting erroneous
predictions. Beginning from time step t = 41, the single observation approach yields wrong
results over a period of 6 terrain estimates. Since the filtered classification technique is based
on these individual predictions, there is much evidence for the system indicating the traversal
over a wrong ground surface. This results in the belief of staying on a certain terrain type
which differs from the true one. Note, however, that the number of erroneous terrain transitions
is smaller in comparison with the single observation approach preventing the system mechanics
from an increased exposure.
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Table 4.3.: Classification performance in terms of the true positive rate [%] of the 5 classes
experiments with respect to varying velocity profiles (vel), travel distances (dist),
filter sizes and the unfiltered (SO) and Bayes filtered (BAY) classification schemes.

vel dist
filter size

2 4 8 16 32 const adapt
0.

2
m

/s
SO 75.2 75.2 75.2 75.2 75.2 75.2 75.2
2 77.2 77.8 78.0 77.3 76.3 75.8 77.3
4 80.2 81.2 81.3 81.2 79.3 78.7 80.9
8 81.3 82.7 82.7 82.6 81.4 79.4 82.1

16 81.8 83.5 83.7 83.7 83.2 80.0 83.0
32 82.2 83.5 84.0 84.8 82.8 80.1 83.4
-1 79.0 79.8 80.0 79.0 77.8 77.3 79.5

0.
4

m
/s

SO 89.5 89.5 89.5 89.5 89.5 89.5 89.5
2 90.2 89.9 89.5 90.2 90.3 89.6 90.3
4 92.0 92.2 91.4 91.3 91.2 91.5 91.8
8 92.7 93.2 93.3 92.8 92.3 92.8 93.0

16 93.2 93.7 94.2 93.9 93.4 93.3 93.9
32 93.4 94.0 94.6 94.5 94.4 93.5 94.3
-1 92.3 92.6 92.8 92.4 91.7 92.3 92.6

0.
6

m
/s

SO 88.1 88.1 88.1 88.1 88.1 88.1 88.1
2 89.2 88.8 88.6 88.7 88.3 87.4 88.9
4 90.4 90.6 89.9 89.4 89.6 88.9 90.2
8 91.2 91.8 92.3 91.1 90.9 89.9 92.1

16 91.6 92.5 93.4 93.4 92.1 90.5 93.1
32 91.8 92.7 94.0 94.2 93.8 90.7 93.5
-1 91.2 91.9 92.3 91.5 90.6 89.8 92.1

av
er

ag
e

SO 84.3 84.3 84.3 84.3 84.3 84.3 84.3
2 85.6 85.5 85.4 85.4 85.0 84.3 85.5
4 87.6 88.0 87.5 87.3 86.7 86.4 87.6
8 88.4 89.2 89.4 88.8 88.2 87.4 89.1

16 88.8 89.9 90.4 90.3 89.5 87.9 90.0
32 89.1 90.1 90.9 91.2 90.3 88.1 90.4
-1 87.5 88.1 88.4 87.6 86.7 86.4 88.1

Table 4.4.: The average filter sizes for the 5 classes experiments with respect to varying velocity
profiles (vel) and travel distances (dist).

dist
velocity

0.2 m/s 0.4 m/s 0.6 m/s
2 6.0 4.9 4.2
4 8.6 7.3 5.7
8 10.4 10.7 8.7
16 12.0 15.0 12.6
32 12.9 18.3 15.9
var 7.4 9.7 9.3
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(a)

(b)

Figure 4.4.: The visualization of the results of the 5 classes experiments with respect to (a) vary-
ing travel distances and filter sizes when averaging the outcomes over the complete
set of velocity profiles and (b) varying filter sizes when averaging the outcomes
over the complete set of velocity profiles and travel distances.
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(a)

(b)

Figure 4.5.: The visualization of a simulated robot traversal over (a) 3 terrain classes and (b) 5
terrain classes. The blue bars indicate a correct transition, that is, a transition into
a correct state. In this case, it is irrelevant whether the previous state represented
the true terrain type. Red bars, on the other hand, reveal an erroneous belief that
the ground surface changed from one time step to the next. Finally, the bars are
colored gray when the system remains in an erroneous state.
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4.6. Conclusion
In this chapter, a novel means of terrain classification has been proposed, which does not rely
its current prediction on a single measurement only but uses a history of predictions instead.
The temporal filtering is achieved in terms of a Bayes filter, whose original formulation had to
be modified to fit into the proposed classification scheme. Using the modified formulation, the
Bayes filter only makes use of a set of recent class posterior estimates which are then coupled
in a systematic manner. As the coupling process does not need the generation of an additional
coherent model, the filtered predictions are efficiently determined enabling the filter’s use on
robots with low computational and memory capacities as well.
In total, three approaches have been suggested to estimate the free parameter of the Bayes
filter which is represented by the transition matrix. Here, window-based approaches resulted
in the best classification performance and proved to be rather insensitive against a variation of
the chosen window size. Further, a proposed adaptive technique which automatically adjusted
the window size according to a history of terrain classifications provided near-optimal results
in terms of the true positive rate. This enables the use of the Bayes filter in situations of
both high-frequency and low-frequency terrain changes. To conclude, the application of the
suggested Bayes filter formulation yielded a maximum absolute increase of the true positive
rate of more than 10%.
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5.1. Introduction
The success of the Bayes filter approach presented in the last chapter highly depends on the
quality of posterior probability estimates. In the ideal case, a large posterior probability should
be assigned to the class the respective observation belongs to and a small posterior otherwise.
For the estimation of posterior probabilities, the SVM classifier was employed. Note, however,
that the original formulation of the SVM does not provide a formalism to estimate these prob-
abilities directly. Instead, given a one-vs-one multi-class classification scheme, n·(n−1)

2 binary
classificators are evaluated and the respective classification scores are converted into pairwise
probability estimates. These estimates are then coupled in a pairwise manner to yield the fi-
nal posterior probability for each class. Any assumption within the prediction chain which
does not reflect the underlying model generating the data set will increase the probability of
observing inadequate posterior estimates. Thus, it remains questionable whether the support
vector machine provides the best filtered classification performance. Furthermore, according
to the No Free Lunch Theorem [WM95], there are no context-independent reasons to favor one
classification method over another. This renders a systematic comparison of different posterior
probability estimation techniques necessary with respect to their inclusion into the Bayes filter
approach presented in the last chapter.
In the context of unfiltered terrain classification, the problem of classifier selection has already
been addressed by two authors. Weiss et al. [WFSZ07] compared different classifiers including
the support vector machine, multi-layer perceptrons, decision trees, the naı̈ve Bayes classifier
and the k-nearest neighbor approach for the terrain discrimination task. They concluded that
a support vector machine employing a radial basis function kernel yielded the largest gener-
alization performance. Later, Coyle et al. [CC08] refined these experiments by also adopting
a principal component feature extraction scheme along with other feature representations. In
contrast to the previously mentioned approach, the results presented by Coyle et al. do not
reveal a superiority of the RBF-based SVM classifier over other approaches. For example, a
support vector machine using a polynomial kernel and a Parzen window estimator performed
comparably well in terms of the generalization performance.
Note, however, that both comparisons only evaluate the hard assignments of each observation
to a certain class. The degree of reliability of each prediction is not taken into account. Since
the success of the Bayes filter approach is highly correlated with the quality of posterior prob-
ability estimates, the experiments of this chapter focus on this issue [KZ09a]. As a further
contribution, the random forest [Bre01] and random ferns classifiers [OCLF10] are introduced
into the domain of terrain classification. The application of the former is motivated by both
its success in vision-based terrain classification approaches [KKBZ11, KKZ11] and its almost
parameter-free usage. Note that only a single user-defined parameter, the number of employed
decision trees, has to be provided. The performance of the random ferns approach, on the
other hand, is determined by the choice of its base binary classifier which renders a thorough
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investigation of base classifier selection necessary. The final contribution of this work com-
prises the introduction of a novel acceleration segment preprocessing scheme which reduces
the dimensionality of the input vector from 64 to 6 frequency components. As shown in the
result section, the proposed preprocessing technique yields a significant improvement of the
classification performance for several classifiers.

5.2. Applied Classifiers
In this section, all classifiers are briefly described which have been embedded into the Bayes
filter classification approach. Therefore, it is explained how posterior probabilities p(c = j|xi)
can be determined for each class j under consideration.

5.2.1. k-Nearest Neighbor Classification
k-nearest neighbor classification (KNN) [CD07] determines the set of the k nearest neighbors
contained in a training set to a testing instance xi. Then, the frequency of occurrence of each
class in the neighbor set is calculated. The class with the largest frequency becomes the pre-
dicted class for the testing instance xi. The posterior probability p(c = j|xi) is defined as the
ratio between the number of occurrences of class j in the neighbor set, n j, and the number of
considered neighbors k, p(c = j|xi) =

n j
k .

5.2.2. Multi-layer Perceptrons
The multi-layer perceptron (MLP) [Bis95] is an instance of an artificial neural network. It
consists of artificial neurons which are interconnected in a well-defined manner. These neu-
rons are arranged in three different layers: in an input layer, a hidden layer, and an output
layer. When applying an input xi to the network input, the nhidden neurons of the hidden layer
perform a weighted sum of the input components: netl = 〈wl,xi〉, l ∈ [1,nhidden]. Here, netl
denotes the net activation of neuron hl and wl is the weight vector determining the specific
contribution of each input component to the final sum. An activation function fact , typically
chosen as fact = tanh(netl), is then applied to each net activation to obtain the final output for
the neurons of the hidden layer. The determination of the net activation of the output neu-
rons is equivalent to the ones of the hidden layer except that we do not add weighted input
coefficients but weighted activations of the hidden neurons. For classification problems, the
activation function of the output neurons is replaced by the softmax function which takes the
form fact = exp(netm)/∑m′ exp(netm′), where netm is the net activation for output neuron m.
Each output neuron represents a certain class to discriminate. The predicted class is the one
which is represented by the neuron with the maximum activation. It can be shown [Bis95] that
the activations can directly be interpreted as posterior probabilities.
Training the network involves the optimization of the adaptive network parameters, the weights
and biases, with respect to a given error function E. For classification, the cross-entropy error
function is employed which has the form:

E =−
n

∑
i=1

{
yi ln

ai

yi
+(1− yi) ln

1−ai

1− yi

}
,

where {yi} denotes the set of given training labels and {ai} is the set of predicted class labels
for each training instance xi. Several approaches have been advised to obtain a minimization
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of E, e.g. the Newton, the Conjugate Gradients, and the Levenberg-Marquardt approaches. In
this work, the quasi-Newton approach presented in [Nab02] has been adopted which does not
require second-order information but uses first-order derivative information of the error func-
tion to determine increasingly accurate approximations of the inverse Hessian matrix.
Neural networks trained with iterative gradient-based methods tend to learn the Fourier compo-
nents of the target function in a low-frequency to high-frequency order. Hence, stopping at an
appropriate point during training, the network does not learn the high-frequency noise content
contained in the training signals. This point can be identified by using a validation set which is
disjunct from the training and test sets. While the training error will always decrease, the val-
idation error will decrease to a minimum and then begins to rise again as the network is being
overtrained. Ideally, training stops when the minimum validation error is reached to obtain a
network with best generalization behavior. In this work, the validation set of size valRatio·n
is chosen deterministically by means of a k-means clustering (cf. Section 3.3.1) with KKZ
initialization [KKZ94]. The KKZ algorithm, named after its inventors Katsavounidis, Kuo, and
Zhang, is an example of a distance-based initialization scheme. In each step of the greedy algo-
rithm, the data instance is determined which has the maximum distance from its nearest cluster
center already contained in the initial cluster set. Then, the chosen instance is included as novel
entry into the set of initial cluster centers. A deterministic approach was chosen instead of a
random one, since the former outperformed the latter in various experiments.

5.2.3. Probabilistic Neural Networks
Probabilistic neural networks (PNN) [Spe90] are another instance of artificial neural networks.
In the training phase, scaled training patterns are inserted into a matrix Wc, c ∈ [1,k], accord-
ing to the class c they belong to. Each row of Wc represents a single pattern. The scaling
is performed such that the L2 norm of each training instance equals to one. In the recall
phase, the same scaling is applied to the test vector xi. For each class c, the inner product
between each pattern wi of the weight matrix Wc and the query xi is determined yielding the
net activation netc,i. The net activations are non-linearly transformed using the activation func-
tion fact(netc,l) = exp((netl − 1)/σ2), where σ is a model parameter defining the size of the
Gaussian window. For each class, the sum over all transformed net activations is determined,
sc = ∑l fact(netc,l), and the predicted class becomes the one which maximizes sc. Given that
the probability of each class is distributed uniformly, the posteriors p(c = j|xi) are then defined
as p(c = j|xi) = (n−1

j s j)/(∑l n−1
l sl), where n j is the number of training instances for class j.

5.2.4. Gaussian Mixture Model Classifiers
In a Gaussian mixture model, each class j is represented by its own Gaussian distribution: class
j ∼ N(µ j,Σ j), where the mixture model parameters θ j = {µ j,Σ j} represent the mean of the
class instances xi, i ∈ [1,n j],xi ∈ class j and the corresponding covariance matrix, respectively.
Given the posterior probability of each individual class p(c = j), the probability density func-
tion of the random variable X can be defined as p(xi|θ) =∑

k
m=1 p(c = j)p(xi|θm) with p(xi|θm)

defining the likelihood distribution. The latter represents the density of each component and is
assumed to be Gaussian distributed:

p(xi|θm) =
|Σm|−1/2

(2π)d/2 exp
{
−1

2
(x−µm)

T
Σ
−1
m (x−µm)

}
.

Applying the Bayes rule, the class posterior p(c= j|xi) is obtained by p(c= j|xi)=
p(xi|c= j)p(c= j)

p(xi)
.
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5.2.5. Random Forests
Decision Trees have shown their applicability in various classification tasks. Yet, predictive
models which have been generated with this approach tend to overfit the data and hence do not
generalize well. Random forests try to overcome these problems by injecting randomness into
the tree generation procedure and by combining the output of nT randomized trees into a single
classifier.
The trees are established by recursively bisecting the data set into smaller subsets at each inner
node Ri. As splitting criterion for each node Ri, the Gini-index is employed which is defined
by:

IG(i) =
k

∑
j=1

p̂i j(1− p̂i j),

where k is the number of classes to discriminate and p̂i j denotes the probability of observing
a measurement of class j given all instances provided in node Ri. That is, p̂i j =

n j
ni

, where
n j denotes the number of measurements belonging to class j and ni is the total number of
observations in node Ri. At each splitting step, the remaining data is separated into two distinct
subspaces using a random feature subset of size m, where m is typically chosen by m =

√
d.

Then, the best split on these features is used to bisect the node into two subnodes, Rc1 and Rc2 .
In this context, the best split is defined to be the subdivision which maximizes the decrease in
the Gini-index:

∆IG(i) = IG(i)− p̂c1IG(c1)− p̂c2IG(c2).

The splitting procedure is recursively applied until a maximum tree depth is reached. For de-
cision trees, pruning or recursion depth limitation techniques have to be applied to prevent
overfitting. Random Forests classifiers, however, grow trees of maximum depth without per-
forming subsequent pruning steps.

After tree generation, each leaf node stores several instances along with their respective class
membership. The latter can be adopted to assess posterior probabilities as described in the fol-
lowing paragraph.
In the relative class frequency approach, the posterior probability distribution is obtained by
averaging the relative class frequencies of all members of the ensemble:

p(c = k∗|xi)≈ F({t1, . . . , tnT },xi,k∗) =
1

nT
·

nT

∑
j=1

f (t j,xi,k∗)

∑
k
l=1 f (t j,xi,kl)

,

where f (t j,xi,k∗) denotes the number of estimation examples which belong to class k∗ and
which are assigned to the same leaf as instance xi in the jth tree t j. Here, the term estimation
examples is employed to stress that this set is only used for the estimation of posterior prob-
abilities and hence does not have to be identical to the training set in general. In this work,
however, the approaches of [Bre96] and [Bre01] have been followed which suggest to choose
the estimation examples to be identical to the original set of training examples.
To motivate the second posterior estimation technique, the following example is considered
where two classes, A and B, are given along with the leaf node of a single tree for which the
class posterior estimation is based on a single instance x,x ∈ class A. Further, a second leaf
node is provided containing instances of both classes, A and B. Here, the estimated posterior
p(A|x) = 1 assigned to the former node will always be larger in comparison with p(A|x) of the
latter one, independently of the number of examples and the respective class distribution.
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A common solution to this problem is to modify the observed class frequencies. In the Laplace
estimation approach, the relative frequencies are adjusted by adding the value of 1 to the num-
ber of observed estimation examples for each class in each leaf:

p(c = k∗|xi)≈ L({t1, . . . , tnT },xi,k∗) =
1

nT
·

nT

∑
j=1

1+ f (t j,xi,k∗)
k+∑

k
l=1 f (t j,xi,kl)

.

Here, the increment by one represents a regularization term which behaves as a uniform Dirich-
let prior [Bis06] over feature values. If an instance assigned to a specific leaf node is not en-
countered during training, the inclusion of the additional terms assign a non-zero value to the
corresponding probability.
The last posterior estimation technique is based on averaging the unweighted votes of the mem-
bers of an ensemble. Here, each member votes for a single, i.e. the most probable class:

p(c = k∗|xi)≈V ({t1, . . . , tnT },xi,k∗) =
1

nT
·

nT

∑
j=1

I
(

max
k′

(
t j(xi,k′)

)
,k
)
,

where t j(xi,k′) returns the estimated probability of xi belonging to class k′ according to the jth
tree t j.

During the recall phase, the test pattern traverses each random tree until a leaf node is reached.
The posterior distributions assigned to the respective nodes are then averaged over all members
of the ensemble. Finally, the class which maximizes F , L, or V is chosen to be the classification
result of the test pattern.

5.2.6. Random Ferns
Random ferns [OCLF10] consist of an ordered set of nF binary tests, yielding either 0 or 1,
respectively. Hence, when applying an observation to each fern, a bitstring of nF values is
obtained. Further, this bitstring is divided into dnF/nBe substrings of length nB. Depending on
the applied observation, each substring is assigned to one of 2nB possible states ∈ [0,2nB − 1].
For each state, a posterior distribution p(c= j|xi,sl) has to be established during model training
which defines the probability of observing a certain class j given the observation xi and state
sl, l ∈ [0,2nB − 1]. In the recall phase, each substring of the initial bitstring is evaluated and
the obtained posterior distributions are averaged over all ferns. In the following, details of the
binary tests and posterior distribution calculations are provided.

Binary Tests

In the present classification framework, several binary tests have been implemented, ranging
from simple feature magnitude comparisons to both random and deterministic linear classifiers.

Feature Magnitude Comparison In the original paper [OCLF10], Özuysal et al. propose a
simple binary test whose outcome only depends on the magnitude of two features xi,u
and xi,v:

b j(xi,u,xi,v) =

{
1 if xi,u < xi,v
0 otherwise ,

where j denotes the index of the fern under consideration. Further, the feature indices u
and v are randomly selected and stored for their later use in the recall phase.
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Random Linear Classifier The second binary test is represented in terms of a linear classifier.
This type of predictive model aims at dividing the data space into two distinct subspaces
using a separating hyperplane which is formally described by

f (x) = wT x+b.

The class decision is made by assigning each instance fulfilling f (x)> 0 to the first class
and the others to the remaining class:

b j(xi) =

{
1 if wT · xi +b≤ 0
0 otherwise

(5.1)

The function f is referred to as decision function and the separating hyperplane defined
by f (x) = 0 represents the decision boundary. For choosing the model hyperparameters
w and b, Bosch et al. [BZM07] suggested a random approach: w is defined to be a
random vector having the same number of components as the observation xi. Similar to
the random forest approach, only a subset of features is considered for the node test. This
is realized by assigning n f components a random value which is uniformly drawn from
the interval [−1,1]. The remaining components are set to zero. The value of b is assigned
a random value as well. It is chosen randomly between 0 and the distance of the furthest
instance xi, i ∈ [1,n], from the origin.
Since not all random tests are appropriate in terms of class separation, r candidate binary
tests are initialized and evaluated using the following entropy criterion:

∆E =−∑
i

|Q1|
|Q|

H(Q1),

where Q is the complete set of instances applied to test b j and Q1 is the set of examples
which are assigned to the first subspace according to the given test b j. Further, H(Q) is
the entropy H(Q) = −∑

k
j=1 p j log2(p j) with p j denoting the fraction of examples in Q

belonging to class j and |.| being the size of the respective set. Using the entropy criterion
∆H, the binary test which maximizes ∆H is selected from the candidate set.

Posterior Probability Calculation

In the random ferns approach, a set of binary tests of size nB are grouped together. Hence,
when applying an observation to this group, a bitstring sl , l ∈ [1,nF ] of length nB is obtained.
This bitstring is a representative of the observation, yet this representation is not unambiguous
in the sense that instances from varying classes can be transformed into the same bitstring.
Given the training set, however, the probability p(c = j|sl) can be determined by counting the
instances of a class j which are mapped to a certain bitstring sl and dividing this number by
the total number of training examples which are mapped to sl . In [BZM07], Bosch et al. used
this distribution to approximate the posterior p(c = j|xi). They therefore determined a class
posterior pl(c = j|xi) for each fern l and averaged the outcomes over the complete set of ferns.
Due to the averaging process, this posterior probability estimation technique is denoted as the
average class posterior approach in the remainder of this chapter.
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5.3. Revisiting Random Ferns and Feature Extraction
When considering the results of Section 5.4.2, at least two issues can be noticed. First, the
inferior classification performance of the random ferns classifier with respect to the other clas-
sification approaches, and second, the large amount of time spent during the model selection
procedure. Solutions which address both issues are discussed in the following subsections.

5.3.1. Improving the Performance of the Random Ferns Classifier
Concerning the random ferns classifier, its prediction capability highly depends on the perfor-
mance of the chosen binary test. Thus, the substitution of the binary tests presented in Sec-
tion 5.2.6 by a more adequate one is likely to improve the true positive rate. In the following,
two candidate tests are introduced: the binary support vector machine with a linear kernel and
the Fisher linear discriminant.

liblinear Classifier Instead of choosing random hyperplanes for data separation, this test uses
a deterministic approach for calculating n and b. Therefore, the results of the training
process of a linear support vector machine is employed, i.e. nF linear classifiers are
trained in a one-vs-all scheme. Here, classifier i assigned to fern i distinguishes between
class ((i− 1) MOD k)+ 1 and the remaining classes. The data instances representing
positive and negative examples are randomly subsampled from the training set such that
the size of both sets, nP, is equal. This assures the avoidance of unwanted effects caused
by an uneven class distribution. Analogous to the previous testing scheme, only a subset
of n f features are taken into consideration for the classification task.

Fisher Linear Discriminant Here, the conversion of the multi-class problem into several bi-
nary ones is applied analogously compared to the previous liblinear approach. Yet, an-
other instance of linear discrimination is employed which is denoted as the Fisher lin-
ear discriminant. This binary test defines the optimal separating hyperplane to be the
one which preserves the data’s variance best when the latter is projected into a one-
dimensional space. Therefore, the following cost function is maximized:

J(w,µx,µy,Σx,Σy) =
wT (µx−µy)(µx−µy)

T w
wT (Σx +Σy)w

=
(wT (µx−µy))

2

wT (σx +σy)w
,

where X and Y denote two random variables, and µx, Σx and µy, Σy are the mean and
the covariance of X and Y , respectively. Informally, the maximization of J is achieved
by choosing a weight vector w such that the projected means of both classes are distant
from each other while minimizing the variance within the classes. A discriminant which
maximizes J can be calculated as

wnorm = (Σx +Σy)
−1(µx−µy),

yielding the maximum Fisher discriminant ratio

(µx−µy)
T (Σx +Σy)

−1(µx−µy) = max
w 6=0

J(w,µx,µy,Σx,Σy).
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a0 a1 a2 a3 a4 a5 a6 a7 . . . a31

a0 a1 a2,a3 a4, . . . ,a7 a8, . . . ,a15 a16, . . . ,a31

a0 a1 a2:3 a4:7 a8:15 a16:31

(a)

Figure 5.1.: The visualization of the MFCC-like feature extraction scheme. First, individual
features are binned based on a logarithmic scale and second, the set of all features
contained in a specific bin are averaged to form the final feature descriptor.

5.3.2. Low-Dimensional Fingerprints of Vibration Patterns
The acceleration pattern’s amplitude spectrum has been reported to adequately represent a vi-
bration signal. Yet, consisting of 64 dimensions, it gives rise to problems for classification
techniques which suffer from the curse of dimensionality. This renders a more compact rep-
resentation of the vibration signal necessary. The proposed vibration fingerprint has only 6
dimensions. It is based on the Mel-frequency cepstral coefficients (MFCC) approach which
has gained attention in the audio signal processing domain. The descriptor is established by
first subdividing the audio data into frames which represents a block of audio samples acquired
consecutively. This block is then transformed into the Fourier domain using a discrete Fourier
transform (DFT) and the corresponding amplitude spectrum is determined. After calculating
the logarithm of the latter, scaling and smoothing operations are applied to the transformed
DFT coefficients. The smoothing process is performed by assigning each spectral component
a certain bin, where the number of bins is (significantly) smaller than the number of spectral
components. Thereby, the number of transformed DFT components assigned to a specific bin
rises with increasing frequency. This choice is based on the findings that lower frequencies
are perceptually more important than higher frequencies. Smoothing is now accomplished by
means of averaging the set of transformed DFT components within each bin, where averaged
values become the new bin’s representative. In a final step, a decorrelation transform is applied
to these binned and averaged features to reduce the dependencies among them.
The proposed fingerprint for vibration signals adopts the essential elements of the MFCC ap-
proach consisting of frame subdivision, Fourier transformation, amplitude spectrum determi-
nation, spectral binning, and spectral smoothing operations. Whereas the first three steps of the
MFCC-like vibration segment transform equal the original vibration signal processing pipeline
introduced in Section 2.1, the binning and smoothing steps are novel means which aim at the re-
duction of the overall feature dimensionality. Analogous to the MFCC descriptor, the proposed
fingerprint also assigns higher importance to the spectral components with lower frequencies.
This is based on the assumption that high-frequency content of the vibration signal only rep-
resents noise which is induced by smaller rocks or bumps on the ground surface. As these
factors are frequently observed on a variety of terrain types, the resulting high-frequency parts
of the signal do not indicate a certain terrain type and hence play only an inferior role in the
discrimination task.
In this implementation, the binning scheme is defined as follows (cf. Figure 5.1): In total,
there are 6 bins being labeled from 0 to 5. Given a subset of 32 preprocessed DFT coefficients
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{ai}31
i=0 which represent the lower energy content of the vibration signal, the first two compo-

nents, a0 and a1, are unalteredly inserted into the feature set, i.e. are assigned to bin 0 and
1, respectively. Starting from the third bin, bin i contains 2i−1 entries including the spectral
components 2i−1 up to 2i−1− 1. Note that by this means, the preprocessed DFT components
a32 up to a63 remain unconsidered. This choice relies on experimental results which showed
superior clustering characteristics in comparison with the inclusion of the high-frequency com-
ponents. Further note that these findings support the assumption that the importance of spectral
components decreases with increasing energy content. In a final step, the MFCC-like vibration
segment representation is established by substituting the set of frequency components of each
bin by their respective average.

5.4. Experimental Results

5.4.1. Experimental Setup
The general experimental setup of embedding a variety of classifiers into the proposed Bayesian
classification framework follows the one based on the support vector machine which was pre-
sented in the previous chapter. Hence, only the key differences between both experimental
settings are detailed in the following.

Choosing the Transition Matrix Estimation Scheme Instead of considering various transi-
tion matrix estimation schemes individually, the selection of the latter was integrated into the
MSPRT threshold selection technique. That is, given a variety of generated test paths, this
procedure does not only provide an adequate MSPRT threshold but also the optimal transi-
tion matrix estimation technique along with its corresponding parameter. Thereby, the set of
transition matrix estimation scheme candidates comprised the constant, adaptive window size,
and constant window size approaches where the latter employed a window of size w, with
w ∈ {2,4,8,16,32}.

Vibration Segment Fingerprint In contrast to the previous chapter where only the DFT am-
plitude spectrum has been employed for the representation of the vibration signal, the following
experiments also consider the MFCC-like vibration segment fingerprint.

Model Selection The optimal hyperparameters for the various classification schemes have
been found using grid-search. The following listing provides the set of all free parameters
along with lower and upper bounds which were defined prior to training the respective model.
For an explanation of the hyperparameters, it is referred to the technical section given above.

• Support Vector Machine
> kernel K radial basis function kernel
> gamma γ 10−4 up to 101, log10 sampling, 32 samples
> cost C 10−2 up to 102, log10 sampling, 16 samples

• Multi-Layer Perceptron
> optimizer Quasi-Newton optimization
> valRatio 10%
> nhidden 8 up to 24, linear sampling, 5 samples
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• k-Nearest Neighbor
> k 1 up to 32, linear sampling, 32 samples

• Probabilistic Neural Network
> sigma σ 10−3 up to 102, log10 sampling, 64 samples

• Gaussian Mixture Model
> none

• Random Forest
> nT 25 up to 250, linear sampling, 10 samples
> posterior estimation voting or voting + Laplace approximation

• Random Ferns
> nF 64 up to 640, linear sampling, 10 samples
> nB 22 up to 24, log2 sampling, 4 samples
> nP 25 up to 250, linear sampling, 10 samples
> liblinear solver multi-class SVM by Crammer and Singer [CS02]
> r 100
> nodeConstruction entropy (applies to the random linear classifier binary test)
> binTest compare or linear discr. or liblinear or LDA
> prior Dirichlet prior
> posterior estimation voting or average leaf posterior

5.4.2. Results and Discussion
Due to the multitude of aspects to investigate, the section comprising the results and discussion
is subdivided into several entities. The first investigation addresses the choice of the binary
test and the posterior probability calculation scheme with regard to the random ferns classi-
fier. The second section provides a more detailed discussion of class posterior derivation in
the context of the random forest technique and the random ferns classifier. Given the best pa-
rameters for the random forest and random ferns approaches by means of the evaluation of the
latter two experiments, these ground surface estimation techniques are compared with a set of
classifiers previously adopted in the context of supervised terrain classification. All presented
results relate to the evaluation of the 3 and 5 classes experiments with regard to both feature
extraction schemes, the DFT amplitude spectrum approach (DAS) and Mel-frequency cepstral
coefficients-like preprocessing (MFCC).

Evaluating the Binary Tests for the Random Ferns Approach

Table 5.1 shows the classification performance of the random ferns approach with regard to the
3 and 5 classes experiments when varying the underlying binary test, the chosen preprocessing
technique, and the posterior probability estimation scheme. Here, the presented classification
quality measure denotes the mean true positive rate obtained after averaging the results of the
single observation approach over all three velocity profiles.
From Table 5.1 it can be derived that the Fisher-LDA provides the most appropriate binary test
followed by the liblinear, the LDA, and the comparison techniques. The 3 classes experiments
using DAS preprocessing represent the sole exception of the given ranking as the liblinear bi-
nary test outperforms the Fisher-LDA test in this case.
Concerning the posterior probability estimation technique, it can be stated that the voting
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Table 5.1.: Classification performance in terms of the true positive rate [%] of the random ferns
classifier for the 3 and 5 classes experiments with respect to varying preprocessing
techniques (preproc) and binary tests when applying the unfiltered single observa-
tion classification scheme.

#classes preproc
binary test

compare LDA liblinear Fisher-LDA
voting post voting post voting post voting post

3
DAS 34.3 58.0 34.6 64.9 81.9 88.3 87.7 87.1

MFCC 40.0 77.2 37.6 80.4 77.1 81.5 82.5 84.5

5
DAS 17.7 72.6 18.9 59.1 75.3 78.7 78.1 79.4

MFCC 16.7 71.1 21.1 44.9 69.9 75.6 74.9 77.4

method performs significantly worse than the average class posterior technique in all con-
sidered cases but the 3 classes experiment in conjunction with the DFT amplitude spectrum
signal processing strategy. Note that when comparing both posterior probability estimation
techniques, the decrease in the classification performance is more distinct for the comparison
and LDA binary tests as opposed to the liblinear and Fisher LDA approaches.
To keep the presentation of the results clear, the following discussion focuses on the most ap-
propriate binary test only which is represented by the Fisher LDA approach. In contrast, as
the average true positive rate does not differ significantly with regard to the voting and average
posterior probability estimation techniques, the discussion of both techniques is continued in
the next subsection.

A Comparison of varying Terrain Classification Schemes

The presentation of the results of the applied terrain classification approaches is based on the
one of the previous chapter. That is, the classification performance is provided for both the
single observation approach and the temporally coherent Bayes filter technique. Thereby, the
prediction quality is given in terms of the average true positive rate.
Regarding the 3 classes experiments, the TPR is shown for each individual velocity profile as
well as for the average determined over all considered velocity profiles. The tables which refer
to the results of the 5 classes experiments denote the classification performance of both the
single observation approach and the Bayes filter technique using various travel distances which
range from 2 m up to 32 m. Furthermore, the mean TPR is presented which is obtained by
averaging all results but the ones of the single observation approach in a column-wise manner.
For the random forest and random ferns classifiers, each column of Tables 5.2 up to 5.3 de-
note the classification performance with respect to a certain posterior probability determination
scheme. Concerning the random ferns technique, this includes class posterior estimation meth-
ods based on voting (vot) and voting applied with the Laplace correction (lap). As for the
posterior probability determination techniques of the random ferns classifier, results for the
voting method (vot) and the average class posterior strategy (prob) are presented. Finally, it has
to be noted that all the above-mentioned parameter settings have been considered with respect
to the DAS and MFCC-like feature extraction techniques.

58



5.4. Experimental Results

Results of the Random Forest Classifier At first, the results of the random forest and ran-
dom ferns approaches are discussed. Note that in this context, the main focus is on the eval-
uation of differing classifier properties rather than the effects of temporal coherences, varying
preprocessing schemes, or differing velocity profiles.
Table 5.2 shows the classification performance of the random forest classifier for the 3 classes
experiment. Referring to the DAS preprocessing scheme and the mean true positive rates ob-
tained after averaging over all velocity profiles, the voting technique is superior to the combined
voting/Laplace approximation method (86.7% vs. 85.4% for the single observation approach
and 96.1% vs. 94.5% for the Bayes filter technique). When adopting the MFCC-like prepro-
cessing strategy on the other hand, the voting/Laplace approximation method outperforms the
voting-only technique: 85.1% vs. 85.4% (single observation) and 93.9% vs. 94.7% (Bayes
filtering), respectively.
For the 5 classes experiments, the results reveal a more general trend with respect to the class
posterior estimation technique. Considering the outcomes obtained after averaging the TPR of
all but the single observation experiment, the voting approach yields larger true positive rates
than the voting/Laplace approximation technique: 84.5% vs. 82.7% for DAS preprocessing
and 83.0% vs. 81.5% for the MFCC-like preprocessing scheme.
To conclude, due to the good performance of the random forest approach related to the 5 classes
experiments, the following discussion only considers the voting posterior probability estima-
tion technique.

Results of the Random Ferns Classifier For evaluating the results of the random ferns clas-
sifier with respect to the 3 classes experiments, the mean true positive rates are considered.
The latter are obtained after averaging the classification outcomes over all 3 velocity profiles.
From Table 5.2 it can be derived that the voting strategy represents the most effective class
posterior estimation technique. On the other hand, when varying the class posterior determina-
tion technique for the MFCC-like preprocessing scheme, the average class posterior approach
outperforms the voting-based strategy.
Referring to the 5 classes experiments and the mean true positive rates which represent the
average TPR over all but the single observation experiment, the results with respect to a certain
posterior probability estimation procedure have to be discussed separately in dependence of the
chosen feature extraction technique: As for the DFT amplitude spectrum-based preprocessing
method, the voting and average posterior probability approaches perform similarly. In con-
trast, both techniques yield differing true positive rates where the average posterior probability
method significantly outperforms the voting strategy.
As shown during the discussion of the random ferns approach, there is no general trend of a
certain posterior probability determination scheme to outperform all other techniques in the
context of the 3 classes experiments. Hence, the choice of the posterior estimation method
to be considered in the following discussion is based on the 5 classes experiments. Here, the
outcomes suggest the use of the average posterior probability technique for estimating the class
posteriors.
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Table 5.2.: The true positive rates [%] of the random forest and random ferns classifiers for
the 3 classes experiments with respect to varying preprocessing schemes (preproc),
velocity profiles (vel), and posterior derivation techniques (the voting (vot) and the
combined voting/Laplace approximation (lap) techniques and the voting (vot) and
the average class posterior approaches, respectively) when applying the unfiltered
single observation (SO) and Bayes filtered (BAY) classification schemes.

preproc vel approach
random forest random ferns
vot lap vot post

D
A

S

0.2 m/s
SO 83.2 83.1 83.3 82.0

BAY 96.0 90.9 96.5 93.5

0.4 m/s
SO 87.9 88.6 87.5 87.2

BAY 96.6 97.1 96.7 96.4

0.6 m/s
SO 88.9 84.6 91.1 90.1

BAY 95.6 95.6 97.8 96.4

average
SO 86.7 85.4 87.3 86.4

BAY 96.1 94.5 97.0 95.4

M
FC

C

0.2 m/s
SO 83.1 84.5 80.0 84.4

BAY 91.1 91.9 96.5 95.9

0.4 m/s
SO 90.3 89.7 85.7 85.2

BAY 96.4 97.6 95.1 98.3

0.6 m/s
SO 81.7 82.1 79.7 77.2

BAY 94.1 94.5 94.6 94.2

average
SO 85.1 85.4 81.8 82.3

BAY 93.9 94.7 95.4 96.1

Table 5.3.: The true positive rates [%] of the random forest and random ferns classifiers for
the 5 classes experiments when averaging the outcomes over the complete set of
velocity profiles. For an explanation of abbreviations, the latter table is referenced.

preproc dist
random forest random ferns
vot lap vot post

D
A

S

SO 81.1 81.1 78.8 79.0
2 78.5 75.6 70.5 72.5
4 83.4 81.5 77.5 78.5
8 85.9 84.1 81.3 81.3
16 87.1 86.1 83.3 82.6
32 87.8 87.1 84.1 83.3
var 84.1 81.6 79.2 79.1

average 84.5 82.7 79.3 79.5

M
FC

C

SO 78.6 78.9 75.6 77.2
2 78.6 75.8 63.7 71.5
4 82.3 79.0 71.7 76.3
8 84.3 83.0 76.1 79.4
16 85.1 84.6 78.5 81.0
32 85.6 85.5 80.0 81.4
var 82.3 81.0 73.3 77.5

average 83.0 81.5 73.8 77.9
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Table 5.4.: Classification performance of the single observation (SO) and Bayes filtering
schemes (BAY) in terms of the true positive rate [%] for the 3 classes experiments
when varying the preprocessing scheme (preproc), velocity profile (vel.), and un-
derlying classifier.

preproc vel approach
classifier

svm mlp knn pnn gmm rfst rfrn

D
A

S

0.2 m/s
SO 88.4 82.5 73.9 79.1 77.0 83.2 82.0

BAY 95.6 86.6 73.9 92.4 80.7 96.0 94.3

0.4 m/s
SO 86.8 87.1 82.0 85.4 51.9 87.9 87.2

BAY 97.5 91.0 83.5 87.9 53.6 96.6 96.5

0.6 m/s
SO 92.1 85.0 79.7 84.4 33.3 88.9 90.1

BAY 98.1 86.4 79.7 90.0 33.3 95.6 96.4

average
SO 89.1 84.9 78.5 83.0 54.1 86.7 86.4

BAY 97.1 88.0 79.0 90.1 55.9 96.1 95.8

M
FC

C

0.2 m/s
SO 85.1 82.4 82.4 84.0 82.0 83.1 84.4

BAY 92.4 87.0 88.5 96.0 89.0 91.1 95.9

0.4 m/s
SO 85.4 84.4 82.6 82.7 88.1 90.3 85.2

BAY 96.2 85.7 97.3 85.9 96.3 96.4 98.3

0.6 m/s
SO 79.9 70.9 70.9 79.8 78.0 81.7 77.2

BAY 96.5 72.4 80.1 94.0 94.8 94.1 94.2

average
SO 83.5 79.2 78.6 82.2 82.7 85.1 82.3

BAY 95.0 81.7 88.6 91.9 93.4 93.9 96.1

Embedding various Classification Techniques into the Bayesian Prediction Framework
The discussion now focuses on a comparison of terrain classifiers with respect to their ability to
exploit temporal dependencies within the ground surface prediction framework. Furthermore,
the performance of both preprocessing schemes is evaluated: the DAS descriptor comprising a
set of 64 spectral coefficients and the compact MFCC-like descriptor which consists of only 6
components.
Table 5.4 shows the classification performance of the single observation and Bayes filter ap-
proaches with regard to the 3 classes experiments in dependence of the chosen classifier, veloc-
ity profile, and preprocessing scheme. To facilitate the following discussion, the mean predic-
tion quality is provided as well which denotes the average true positive rate over all considered
velocity profiles. Note that the latter measure is depicted in Figure 5.2. For the single observa-
tion approach, it shows that the SVM classifier performs best followed by the random forest,
random ferns, multi-layer perceptron, probabilistic neural network, and k-nearest neighbor clas-
sification techniques. The Gaussian mixture model yields the worst classification performance
being not able to generate an appropriate model of the underlying data. Note that the same
ranking can be observed for the temporally coherent Bayes-filter approach. When applying the
latter, the classification performance is always larger in comparison with the single observation
approach, where the SVM, PNN, random forest, and random ferns benefit the most from the
inclusion of temporal dependencies. Here, the true positive rates increase by 8.0%, 7.1%, 9.4%,
and 9.4%, respectively. Averaged over the complete set of classifiers, the Bayes filter approach
results in an absolute improvement of 5.6% TPR. Referring to the MFCC-like preprocessing
scheme, an average increase of 9.6% TPR is obtained which turns out to be larger in compar-
ison with the standard DAS feature extraction approach. Note that all but the MLP classifier
raise the classification performance by at least 8.8% and 13.8% at maximum.
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The evaluation of both preprocessing schemes yields a differing ranking with respect to the
single observation and Bayes filter approaches. For the former, there are several classification
techniques such as the PNN, GMM, random forest, and random ferns classifiers which yield
similar true positive rates in comparison with the SVM approach where the random forest clas-
sifier even outperforms the support vector machine on average. Another ranking is established
for the Bayes filter technique in conjunction with the application of the MFCC-like descrip-
tor. Note, however, that the general trend with regard to the classification performance for
the varying methods is maintained: while the SVM, PNN, GMM, random forest, and random
ferns classifiers provide true positive rates of more than 91.1%, the multi-layer perceptron and
k-nearest neighbor classifiers increase the classification error by 14.4% and 7.5%, respectively.
These findings denote the decrease in the TPR with respect to the best classification technique
which is represented by the random forest approach. Further note the good performance of
the GMM classifier. In comparison with the DAS descriptor, the more compact feature vector
results in an increase in the true positive rate of 28.6% and 37.5% referring to the single ob-
servation and Bayes filter approaches. This is an important finding as the clustering technique
of Chapter 6 is based on Gaussian mixture models and hence benefits from the novel repre-
sentation of acceleration signals. The superiority of the MFCC-like descriptor in the context
of Bayesian filtering can also be observed for other classifiers such as the KNN, PNN, and
random ferns techniques. Note, however, that the increase in the true positive rate for the latter
two classification techniques is generally not as significant as for the GMM technique.

Concerning the 5 classes experiments and the DAS descriptor, the SVM classifier yields the
largest true positive rates. This statements holds true for both the single observation approach
(84.3%) and the Bayes filter technique (88.7%) on average. With regard to the Bayes filter
scheme and the averaged classification performance measure, the remaining classifiers can be
ranked in decreasing order of classification performance as follows: First, the random forest
technique (84.5%), then random ferns (80.2%), probabilistic neural networks (79.9%), multi-
layer perceptrons (79.6%), the k-nearest neighbor technique (79.4%), and the Gaussian mixture
model classifier (76.5%). The respective ranking related to the single observation approach is
nearly identical with the only exception of the MLP and PNN classifiers which exchange their
positions.
Comparing the increase in the true positive rates of the single observation approach and the
averaged ones of the temporally coherent technique, an average improvement of 3.2% TPR is
obtained. On the other hand, the average difference of the classification performance between
the single observation technique and the Bayes filter method at a travel distance of 32 m is
5.0%. In general, the findings that the true positive rate rises with an increase of the travel dis-
tance are valid for each classifier. Already at a travel distance of 2 m, the temporally coherent
approach yields a better classification performance than the single observation technique. The
only exceptions occur when adopting the random forest and random ferns methods. Here, the
Bayes filter approach outperforms the single observation method starting at a travel distance of
4 m.
On the other hand, the random forest approach does not suffer from a decrease in the classifica-
tion performance when adopting the MFCC-like feature extraction strategy. Here, an increase
of the TPR is obtained already at a travel distance of 2 m. This is in contrast to the random ferns
classifier where the terrain classification scheme benefits from temporal dependencies starting
at a travel distance of 4 m. The general trend of a rising TPR with increasing travel distance
is confirmed for the 5 classes experiments as well. In comparison with the single observation
approach, the SVM and GMM classifiers benefit the most from the inclusion of temporal coher-
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Figure 5.2.: The visualization of the true positive rates [%] for the 3 classes experiments and
(a) the DAS and (b) MFCC-like feature extraction schemes with respect to varying
classifiers when averaging the outcomes over the complete set of velocity profiles.
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Table 5.5.: Classification performance in terms of the true positive rate [%] of the single obser-
vation (SO) and Bayes filtering schemes for the 5 classes experiments with respect
to varying preprocessing schemes (preproc), travel distances (dist.), and terrain clas-
sifiers when averaging the outcomes over all velocity profiles.

preproc dist svm mlp knn pnn gmm rfst rfrn
D

A
S

SO 84.3 77.3 75.5 75.7 73.8 81.1 79.0
2 85.4 78.8 75.7 77.3 75.6 78.5 74.8
4 87.5 79.4 78.4 79.3 76.3 83.4 79.2
8 89.4 79.8 80.2 80.5 76.6 85.9 81.5

16 90.4 80.0 81.2 81.1 76.9 87.1 82.6
32 90.9 80.0 81.5 81.4 77.0 87.8 83.2
var 88.4 79.6 79.2 79.5 76.5 84.1 79.8

average 88.7 79.6 79.4 79.9 76.5 84.5 80.2

M
FC

C

SO 78.7 75.8 78.4 76.3 79.3 78.6 77.2
2 80.2 77.8 79.4 77.9 80.1 78.6 74.3
4 82.2 79.7 82.7 79.8 82.6 82.3 78.0
8 84.3 80.7 84.8 81.3 84.3 84.3 79.9

16 85.2 81.3 85.6 82.0 85.1 85.1 81.0
32 85.7 81.5 86.3 82.3 85.5 85.6 81.2
var 83.4 79.9 83.0 80.3 83.3 82.3 78.5

average 83.5 80.2 83.6 80.6 83.5 83.0 78.8

ences providing a maximum absolute increase of the TPR of 7.0%, respectively. Averaged over
all applied classifiers, the classification error decreases by 6.3% when comparing the results of
the single observation technique with the ones of the temporally filtered classification scheme
at a travel distance of 32 m. Referring to the mean results obtained after averaging the TPR
over all but the single observation technique, the KNN classifier yields the best classification
performance (83.5%). Similar findings can be inferred for the SVM, GMM, and random forest
techniques where the classification error is increased only insignificantly by at most 0.6%. The
remaining approaches yield worse but still acceptable true positive rates which deviate from
the maximum one by at most 4.8%. Noticeable is the good performance of the GMM approach
in conjunction with the MFCC-like preprocessing scheme compared to the higher dimensional
DAS descriptor. Since the same characteristics can be observed for the 3 classes experiments,
the MFCC-like feature extraction scheme is an adequate choice when the underlying model
is represented by a Gaussian mixture. Yet, as shown in Table 5.5, several other classification
schemes such as the MLP, KNN, and PNN techniques benefit from a more compact represen-
tation of acceleration signals.
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Figure 5.3.: The visualization of the true positive rates [%] for the 5 classes experiments and
(a) the DAS and (b) MFCC-like feature extraction schemes with respect to varying
classifiers when averaging the outcomes over the complete set of velocity profiles
and travel distances.
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Investigating other Characteristics of the Adopted Classifiers Classifier selection should
be handled with care, since each approach has different characteristics. KNNs and PNNs be-
long to the class of lazy learning techniques. That is, all computations are delayed until a
prediction query is requested. On the one hand, this renders a time-demanding training phase
unnecessary which is advantageous if the underlying phenomenon changes frequently. On the
other hand, all patterns have to be available at run-time which might pose a problem if stor-
age is limited. Given that the acquired training set consists of n samples, storage requirements
are O(n · d), where d is dimensionality of a training instance. Furthermore, if the computing
capacity is constrained in the recall phase, the desired prediction frequency might not be ac-
complished due to a large set of training patterns. For example, when using the KNN classifier,
a naı̈ve approach involves O(n) distance calculations to determine the k-nearest-neighbors.
Although accelerating data structures like M-trees [Yia93] exist, high-dimensional nearest-
neighbor search is known to be a non-trivial task, suffering from the curse of dimensionality.
To decrease the effects of the latter, the MFCC-like preprocessing scheme can be employed
reducing the feature set size from 64 to 6 dimensions. As shown in Tables 5.6(a)-5.7(c), the
application of the MFCC-like feature descriptor does not only result in an increase of the TPR
for several classifiers but also decreases the model training and testing time as well as the model
size. This renders the MFCC-like feature extraction scheme attractive for mobile robots with
low computational capacities and storage resources.
MLP and SVM classifiers typically provide compact models, resulting in a fast prediction per-
formance (cf., e.g. [SDK+11]). The models generated by the support vector machine, however,
are larger in comparison with the ones of the multi-layer perceptron. This is because the SVM
model is not sparse, i.e. too many data points are defined as support vectors. To overcome this
issue, model complexity reduction schemes can be applied which significantly decrease the
number of support vectors while conserving the classification performance. One example of
SVM complexity reduction strategies is the approach of Downs et al. [DGM02] which has also
been successfully adopted in the context of engine state prediction [KZ09b]. With regard to
training, multi-layer perceptrons are computationally much more demanding compared to sup-
port vector machines. Although both methods iteratively try to minimize a given error function,
the minimization process in the context of support vector machines is based on solving a con-
vex optimization problem. For the latter, an efficient approach denoted as sequential minimal
optimization [Pla98] exists in contrast to the standard optimization techniques used for train-
ing neural networks (e.g. [CKL96]). Yet, it has to be noted that the time spent on choosing a
classifier with a good generalization behavior is significantly increased by the model selection
process which has to consider a sufficiently large set of candidate model parameter settings.
With regard to the classification performance, the random forest approach yields similar results
in comparison with the SVM classifier. This is remarkable, since the latter technique repre-
sents the best terrain classification technique in the context of DAS preprocessing. Hence, a
separate discussion is rendered necessary which focuses on other important properties of both
classifiers and aims at facilitating the choice of a certain technique with respect to a given ap-
plication domain. Averaging the results over the 3 and 5 classes experiments and both applied
preprocessing schemes, the model generation process of the random forest approach takes 2.6
times longer than the one of the SVM classifier. Model evaluation, however, is 40% faster when
the former classification technique is employed. This renders the random forest technique ap-
propriate when run-time complexity becomes an issue. Finally, the memory requirements of
the random forest approach exceed the one of the SVM classifier by one magnitude. Note,
however, that storage requirements are significantly reduced as a large fraction of the con-
sumed memory is required as auxiliary structure when determining the class posteriors. These
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auxilary structures are calculated once at run-time and thus do not have to be stored on disc.
Moreover, lossless compression schemes [KFDB07] can be applied to the model, enabling a
further reduction of the required disc space.
Considering memory requirements, the random ferns approach generates models which occupy
3.5 times more space in memory as opposed to the random forest classifier. Furthermore, when
comparing the other two characteristics, the duration of the random ferns model generation
process exceeds the one of the random forest classifier by a factor of 1.7 where the duration of
the model evaluation step differs by a magnitude. Summarizing these characteristics, the appli-
cation of the random ferns technique is inferior to the random forest approach. Note, however,
that the random ferns classifier yielded appropriate results in the context of the 3 classes exper-
iments. Furthermore, it is characterized by an efficient implementation whose core system can
be represented by approximately 20 lines of Matlab code. Finally, since most of the involved
calculations can be expressed in terms of scalar products, the Matlab code is easily portable to
graphical processing units.
Tables 5.6(a) up to 5.7(c) summarize the key characteristics of the proposed classifiers for the
3 and 5 classes experiments: for the best classification model, both the training time using
data contained in one fold of a 5-fold cross validation scheme and the respective memory re-
quirements (measured in kB) are presented. Further, Tables 5.6(b) and 5.7(b) show the average
testing time for a single query. All run-time analyses were performed on a Pentium D 3.0 GHz
desktop PC. For the storage considerations, each floating point number was represented as
double, each 8 bytes in size.
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Table 5.6.: (a) Model training times [s], (b) model evaluation times [ms], and (c) model sizes
[kB] for varying classifiers with respect to the 3 classes experiments and the DAS
and MFCC-like preprocessing schemes. These results reflect the outcomes obtained
for the model with the best classification performance when averaging over all 5
folds of the 5-fold cross-validation technique.

(a)

preproc
classifier

svm mlp knn pnn gmm rfst rfrn
DAS 1.943 124.084 0.035 0.057 0.125 4.462 4.707

MFCC 0.767 21.045 0.023 0.027 0.059 1.169 3.892

(b)

preproc
classifier

svm mlp knn pnn gmm rfst rfrn
DAS 0.460 0.025 2.189 0.313 0.158 0.155 3.238

MFCC 0.141 0.019 0.535 0.227 0.069 0.102 2.390

(c)

preproc
classifier

svm mlp knn pnn gmm rfst rfrn
DAS 545.03 11.46 465.34 458.96 162.90 9341.91 1027.57

MFCC 45.02 2.86 50.58 44.20 2.04 6640.59 44901.42

Table 5.7.: (a) Model training times [s], (b) model evaluation times [ms], and (c) model sizes
[kB] for varying classifiers with respect to the 5 classes experiments and the DAS
and MFCC-like preprocessing schemes. These results reflect the outcomes obtained
for the model with the best classification performance when averaging over all 5
folds of the 5-fold cross-validation technique.

(a)

preproc
classifier

svm mlp knn pnn gmm rfst rfrn
DAS 1.213 78.678 0.075 0.204 0.372 4.131 6.109

MFCC 0.435 8.856 0.055 0.208 0.538 1.546 4.504

(b)

preproc
classifier

svm mlp knn pnn gmm rfst rfrn
DAS 0.390 0.086 1.684 0.480 0.524 0.214 3.031

MFCC 0.160 0.096 0.662 0.280 0.680 0.230 4.634

(c)

preproc
classifier

svm mlp knn pnn gmm rfst rfrn
DAS 340.94 11.17 251.72 248.39 97.89 5032.30 14598.70

MFCC 23.16 2.80 27.58 24.24 1.37 4311.17 26908.32
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5.5. Conclusion
The work in this chapter focused on the integration of various classifiers into the temporally
coherent classification framework. This is possible by methods of calculating the required pos-
terior probability estimates for the SVM classifier, the multi-layer perceptron, the k-nearest
neighbor approach, probabilistic neural networks, the Gaussian mixture model classifier, ran-
dom forests and random ferns. A thorough comparison including all mentioned classification
schemes revealed that all techniques benefit from the inclusion of temporal coherences. De-
pending on the number of classes to discriminate, the selected preprocessing technique, and the
length of the path which a robot has to navigate before the terrain type changes, an increase in
the true positive rate by 13.8% at maximum can be observed. Providing other characteristics
of each classifier such as the time spent on training and testing the respective model as well as
memory requirements facilitates the choice of an appropriate terrain classification scheme in a
variety of application domains.
As a further contribution, two classifiers have been introduced in the context of ground sur-
face estimation: the random forest and the random ferns approaches. For both techniques, the
problem of choosing an adequate posterior probability estimation strategy has been addressed.
While random forests yield the best classification performance in conjunction with a voting
scheme, the evaluation of the random ferns classification results advises an averaging process
over individual posterior estimates.
Concerning the classification performance, the random forest technique achieves similar true
positive rates as the SVM approach. The evaluation of the generated random forest classifier,
however, turns out to be 40% faster than the one of the SVM method. The random ferns clas-
sifier, on the other hand, is characterized by a good performance with respect to the 3 classes
experiments, an efficient implementation, and a straightforward portability on programmable
graphics hardware.
The final contribution of this chapter is the introduction of a novel preprocessing scheme which
adopts the basic elements of the Mel-frequency cepstral coefficients feature extraction scheme.
Its application significantly decreases the component count from 64 to 6 entries while remain-
ing and even improving the classification performance of various classifiers. Especially the
Gaussian mixture model-based terrain estimator benefits from the applied dimensionality re-
duction. The resulting classification models outperform the ones which have been trained using
the 64 dimensional feature representation. These findings are important, since the techniques
presented in the following chapters make intensively use of Gaussian mixtures.
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6.1. Introduction
Classical clustering algorithms such as k-means or mixture-based clustering are based on the
independent processing of observations. Hence, relationships between succeeding observations
cannot be incorporated into the clustering process. Note, however, that measurements from the
same terrain class tend to cluster together and thus introduce temporal constraints, which can
be exploited by the clustering model. Despite this additional information, only Giguere et
al. [GD08] adopted a temporally coherent terrain clustering technique. In their approach, they
established a cost function to find an optimal clustering model with respect to its parameter
set. The applied cost function also incorporates temporal dependencies of vibration signatures
as it constrains the posterior distributions of consecutive terrain estimates to be similar. Later,
Giguere et al. extended their work to be applied to two-dimensional data [GDP+09]. There-
fore, they divided the two-dimensional problem into two one-dimensional ones, considering
the sequence of images in a horizontal and vertical manner. The main drawback of both ap-
proaches is the time spent on minimizing the proposed cost function. In contrast, the clustering
technique presented in this work is based on an efficient expectation maximization approach
which yields a valid clustering within several seconds.
Other approaches regard temporal coherences as (pairwise) constraints which are to be inte-
grated into the Gaussian mixture model-based clustering process [SBHHW04]: if two mea-
surements are acquired at approximately the same time, a hard constraint can be established
to enforce a certain Gaussian mixture component to contain both measurements. The problem
of this approach is its error-proneness in the presence of false hard constraints. Even a small
number of erroneous hard constraints can result in inferior results [NC07]. This is a significant
observation in our case, since these hard constraints have to be estimated and cannot be guar-
anteed to be valid. Soft constraints as proposed in [LTJ04] can handle these situations more
adequately, yet, it is still not clear of how to derive a stable measure to estimate the degree of
cohesion between two consecutive measurements.
In [GG87] and [Bes86], Markov random fields (MRF) models were introduced into the do-
main of image analysis. In the following, they were applied to a number of image analysis
tasks such as image denoising [Bar09] or image interpretation [MZ92]. The main advantage
of MRF models is that they offer a convenient means for incorporating context, or dependence
among neighboring pixels. Context is important because contiguous pixels are likely to belong
to the same region. In image segmentation tasks where an image is partitioned into multiple
descriptive segments this additional assumption increases the probability of achieving a better
image analysis. This is because small sensor noise-related errors can be detected during the
segmentation process and are subsequently removed in an efficient manner.
In this chapter, a model is described which exploits spatial dependencies among neighboring
terrain patches instead of pixel arrays [KZ10b]: the applied MRF model [DVG07] assumes
that the class labels of observations are generated by prior distributions which share similar pa-

70



6.2. Temporally Coherent Clustering

Figure 6.1.: Two overlapping classes arising from two normal distributions.

rameters for neighboring observations. As shown in the result section, the integration of local
environment properties can significantly improve the clustering results if the number of consid-
ered neighbors is chosen adequately. As a further contribution, a general means of estimating
this neighbor set size from the given data is derived.

6.2. Temporally Coherent Clustering

6.2.1. Motivation
Since temporally close measurements are likely to belong to the same cluster, the inclusion of
this side information into the above-mentioned Gaussian mixture model-based clustering pro-
cess is advised. To motivate a new EM formulation which takes temporal dependencies into
account, Figure 6.1 is referred. There, two clusters A and B are depicted representing two dis-
tinct classes. Both measurements xi−1 and xi belong to the same terrain class B, although, in
this example, they are assigned to two different clusters. This is because the posterior p(A|xi)
is larger than the posterior p(B|xi).
Following the E-step of the EM algorithm by applying (3.21), the new cluster centers µA
and µB are determined by the weighted mean of all data points: the larger the posteriors
p(A|xl), l ∈ [1,n], the larger is the contribution of each data point xl to the new cluster center
µA. The same applies to p(B|xl) and cluster center µB. In the provided example, the measure-
ment xi erroneously influences the calculation of the new cluster center µA more than the one
of µB, although xi belongs to cluster B. By increasing p(B|xi) and hence decreasing p(A|xi),
since p(A|xi) = 1− p(B|xi), we finally obtain a solution which is closer to the underlying data
distribution.
The modification of the posterior probabilities is achieved by considering not only the current
measurement xi for their calculation, p(c = j|xi), but a history of measurements X = {xi}n

i=1
instead: p(c = j|X). When the robot acquires several recent measurements on the same terrain
type, the probability of staying on this terrain type aggregates over several time steps. Mea-
surements which intrinsically belong to another cluster but to the same terrain class j (cf. xi
in the given example) thus obtain a larger posterior probability for class j as their posterior is
filtered with the ones of former measurements. To embed temporally filtered posterior proba-
bilities into the EM algorithm described in Section 3.3.1, the posteriors p(c = j|xi) determined
by (3.21)-(3.24) of the E-step are replaced by p(c = j|X). Then, the model parameter estimates
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are updated in the M-step using the modified posterior probabilities. Thereby, the temporal
filtering of class posteriors can be applied using the adaptive Bayes filter approach of Section
4.4.1.
Experiments provided in [KZ10a] which focus on the performance of the temporally coherent
clustering scheme demonstrate the effectiveness of the proposed technique. Note, however, that
the likelihood function of 3.3.1 is not guaranteed to converge when replacing the estimated class
posteriors by their filtered representatives. To overcome this issue, another approach based on
Markov random fields is presented in the following section. This method is based on a similar
key idea, as varying probability distributions are filtered over time for the inclusion of temporal
dependencies.

6.2.2. Clustering Using Markov Random Fields
The Gaussian mixture model-based clustering model presented in Section 3.3.1 does not exploit
temporal a priori dependencies between vibration segments, since the prior πk is independent
from the vibration segment index i. In the context of vibration segment clustering, this assump-
tion does not (necessarily) hold, since, during robot traversal, it is very likely that the terrain
does not change from one measurement to the next. To incorporate temporal dependencies, the
generative model of Diplaros et al. [DVG07] was applied. There, each label is generated by
an individual prior distribution πi. Further, it is assumed that these priors are similar among
neighboring vibration segments.
The latter is enforced by including a penalty term p(π|β ) to the log-likelihood function of
(3.20). This term penalizes neighboring pixels with different priors:

L2 = L1− p(π|β ).

To model the joint density over vibration segment priors, the following Besag approximation is
used [Bes74, Bes86]:

p(π|β )≈∏
i

p(πi|πNi,β ),

where Ni is the set of neighboring vibration segments of vibration segment i, β is a non-negative
scalar, and πNi denotes the mixture distribution over the priors of neighboring vibration seg-
ments of vibration segment i:

πNi = ∑
l∈Ni,l 6=i

λilπl. (6.1)

Here, the mixture weights λil, l ∈ Ni, l 6= i are constrained to be non-negative and sum to one
over all l. They determine the influence of each prior to the mixture relative to the offset
between vibration segments i and l.
The conditional density p(πi|πNi,β ) is then approximated by the following log-model (ignoring
constants):

log p(πi|πNi,β ) =−β [KL(πi||πNi)+H(πi)] . (6.2)

KL(πi||πNi) denotes the Kullback-Leibler (KL) divergence between πi and πNi and is defined
as KL(πi||πNi) = ∑

k
j=1 πi j log πi j

πNi j
. The KL divergence is a measure of similarity between the

prior of a vibration segment i and the one of its neighbors. The KL divergence is always
positive and becomes zero if πi = πNi . Hence, by minimizing the KL divergence, the neighbors
are constrained to have similar class labels. H(πi) is the entropy of the distribution πi. It is
a non-negative measure which is the larger the more similar is πi to a uniform distribution.
The minimization of the entropy H(πi) is necessary, since although regions of the same terrain
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should exhibit similar priors, these priors are not expected to be distributed uniformly.
Instead of optimizing (6.2) directly, the following approximation of the conditional density is
employed [DVG07]:

log p(πi|πNi,β ,si)≈−β [KL(si||π)+KL(si||πNi)+H(si)] , (6.3)

where {si} is an auxiliary set of distributions. Replacing (6.2) by (6.3) turns the constrained
optimization problem into an efficient one which can be solved using the EM algorithm de-
scribed below. Note that si (as well as the other auxiliary distribution qi introduced in the next
paragraph) is not user-specified, but arises directly from the optimization process.
In addition to the penalty term of (6.3), a data-dependent penalty term Pd is introduced, which
incorporates useful domain knowledge. Therefore, the posterior distributions are constrained
to be similar among neighboring vibration segments and to be as informative as possible:

Pd =−0.5 [KL(qi||pi)+KL(qi||pNi)+H(qi)] .

Here, qi is an arbitrary class distribution for a vibration segment i and pi is the posterior of a
vibration segment given the model parameters θ and priors πi.
The complete penalized log-likelihood of the observed data as a function of the model parame-
ters and the introduced auxiliary distributions {si} and {qi} then becomes (ignoring constants):

L2(θ ,π,s,q) = ∑i

[
log∑

j
p(xi| j,θ)πi j←↩

−β [KL(si||πi)+KL(si||πNi)+H(si)]←↩

−0.5 [KL(qi||pi)+KL(qi||pNi)+H(qi)]
]
. (6.4)

6.2.3. Estimating the Model Parameters
The parameter set {θ ,s,q} is estimated using an EM algorithm which maximizes the energy of
L2 by coordinate ascent: in the E-step, θ and π are fixed and L2 is maximized over s and q. In
the M-step, s and q are fixed and L2 is maximized over θ and π . Pseudo code for the EM algo-
rithm is provided below. For a complete derivation of the respective formulas, it is referred to
the work of Diplaros et al. [DVG07]. Note the similarity between the EM formulation for train-
ing the MRF-based generative model and the one for Gaussian mixtures (cf. Section 3.3.1). The
main difference is that in the temporally coherent approach, the label posteriors are “smoothed”
over vibration segments between each E- and M-step by a one dimensional filter.

6.3. MRF-based Vibration Signature Clustering

6.3.1. Filtering Prior and Posterior Probabilities
The determination of the mixture distributions over the priors (πNi), the posteriors (pNi), and the
auxiliary set (qNi) require the definition of both the mixing weights λi j and the neighborhood
size. Note that the evaluation of (6.1) is equivalent to a convolution operation π∗ j � λ , for
each mixture component j. In this context, λ is a linear one-dimensional filter with certain
properties: first, the center coefficient has to be zero and second, all coefficients have to sum to
one. In our experiments, modified versions (i.e., the center coefficient was set to zero) of a box,
tent, quadratic, cubic, and a Gaussian filter were applied. Although relevant differences in the
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Algorithm 2 The temporally constrained EM algorithm
1: Initialize the parameter vector θ (including the priors {πi}) using the k-means algorithm

(see Section 6.4.1).
2: E-step: Determine posterior probabilities pi using the current estimates of θ and {πi}:

pi j ≡ p(c = j|xi) =
p(xi|c = j)πi j

∑
k
l=1 p(xi|c = l)πil

3: Determine {si} :
si ∝ πiπNi, πNi = ∑

l∈Ni,l 6=i
λilπl.

4: Normalize each si such that ∑ j si j = 1.
5: Determine {qi} :

qi ∝ pi pNi, pNi = ∑
l∈Ni,l 6=i

λil pl.

6: Normalize each qi such that ∑ j qi j = 1.
7: M-step: Update the parameter vector θ :

qNi = ∑
l∈Ni,l 6=i

λilql

µ j =
∑i(qi j +qNi, j)yi

∑i(qi j +qNi, j)

Σ j =
∑i(qi j +qNi, j)yiyi

T

∑i(qi j +qNi, j)
−µ jµ j

T

8: Update {πi}:

πi =
1

(1+2β )

[
1
2
(qi +qNi)+β (si + sNi)

]
.

9: Evaluate L2 using (6.4)
10: if convergence of L2 then
11: terminate.
12: else
13: goto step 2.
14: end if

74
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results were expected when adopting the varying filters, these differences did not prove to be
statistically significant. Hence, only the results of the Gaussian filter are presented in the result
section which tend to yield slightly better results in comparison with the other filters. Further,
the standard deviation of the Gaussian filter was chosen to be equal to half of the neighbor set
size.

6.3.2. Choosing an Appropriate Neighbor Set Size
The neighbor set size should be selected data-dependently: choosing a large neighborhood is
only appropriate when the robot navigates over homogeneous terrain for a longer period of
time. In this case, the influence of erroneously chosen priors is reduced due to the inclusion of
neighboring priors. In situations of high-frequency terrain changes, however, a large neighbor
set is inadequate, since the neighboring vibration segments most likely belong to a another ter-
rain class and thus should provide priors with different distributions.
Although the exact frequency of terrain changes is not known, the following technique is pro-
posed to estimate the neighbor set size from the acquired sensor data: first, a k-means clustering
of the vibration signals is performed. This clustering provides a broad assignment of each vi-
bration segment xi to one of the terrain classes. Then the homogeneous neighbor size S is
determined for each vibration segment xi which is defined as:

S (xi) = argmax
l

T (xi,{xm}), m ∈ [i− l, i+ l]\{i},

T (xi,V ) =

{
0, ∃vo ∈V , vo is an outlier w.r.t. Nµ j,Σ j

|V |, else

In other words, the homogeneous neighbor set size S of a vibration segment xi is the maximum
number of contiguous vibration segments which are located symmetrically around observation
xi and belong to the same terrain class j as vibration segment xi with a certain probability.
Since the terrain class j of xi is represented by a multivariate Gaussian distribution with mean
µc j and covariance matrix Σc j , the latter verification is rendered possible by using the Maha-
lanobis distance-based outlier test of [RL87], pp. 224. This test is based on the fact that the
Mahalanobis distances between the instances of class j and the cluster center µ j are approxi-
mately χ2

d -distributed with d degrees of freedom [Krz88]. Here, d denotes the dimensionality
of a vibration segment xi. The test defines a given vibration segment vo as outlier with respect
to class c j if the squared Mahalanobis distance between vo and the cluster center µc j is larger
than χ2

d,0.95, where χ2
d,0.95 is the 95th percentile of the χ2

d distribution.
Finally, the homogeneous neighbor set size of the whole data set, S , is defined to be the mean
neighbor set size averaged over all vibration segments xi, i ∈ [1,n], mapped to the next multiple
of 2. For the last free parameter β , the suggestion of [DVG07] is followed, i.e. β is set to 0.5.
Experimental results proved this choice to be valid.
Note that the proposed testing scheme does not only provide a means to estimate the frequency
of terrain changes but also enables the partition of the data set in segments of similar terrain
transition frequencies. That is, the data set can be recursively split until the variance of the
individual neighbor set sizes contained in the smaller segments falls below a certain threshold.
Then, each subsegment can be clustered separately whereas each clustering is performed with
a more adequate neighbor set size.
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6.4. Experimental Results

6.4.1. Experimental Setup
This section considers the remaining aspects of the GMM-based clustering and evaluation
schemes which have been employed during the experiments. These include the vibration
segment preprocessing approach, the GMM cluster center initialization technique, the cluster
model evaluation criteria, and the path generation technique.

Vibration Segment Preprocessing As shown in the result section of Chapter 5, the Gaussian
mixture model-based classifier favors a compact, low-dimensional representation of the 100-
sample-sized vibration segment. The vibration segment representation should be handled with
care, since high dimensional density estimation is known to be a non-trivial task suffering from
the curse of dimensionality. In the context of Gaussian mixture models, k+k ·d+k d·(d+1)

2 free
parameters have to be estimated for defining the k mixing coefficients, the mean vectors, and
the covariance matrices. Here, k is the number of mixture components (classes) and d is the
dimensionality of the data set. With an increase of the latter, the possibility of getting stuck in
a local minimum rises as well when applying the EM algorithm. Motivated by the success of
the MFCC-like descriptor in the context of Bayes filtered terrain classification, this descriptor
is now adopted to the problem of unsupervised classification.

Cluster Center Initialization In the context of cluster center initialization, the discrimina-
tion between the Gaussian mixture model technique and the Markov random field model ap-
proach has to be made. For GMM-based clustering, two techniques have been considered:
random and k-means initialization. The former method randomly selects k instances from the
data set as initial cluster centers and sets the starting values for the class prior probabilities to
1/k. Using the k-means initialization technique, a preceding k-means clustering step has to be
applied. The mixture model covariances are then initialized with the covariances of the clus-
ters found by the k-means algorithm and the mixing coefficients are set to the fractions of data
points assigned to the respective clusters.
Experimental results revealed that the latter two initialization schemes result in inadequate
models representing inferior local optima of the likelihood criterion when applied to Markov
random field-based clustering. Employing the model obtained from the GMM clustering pro-
cess as initial estimate of the MRF clustering solution yielded significantly better results with
respect to all quality criteria under consideration. Note, however, that the GMM model has
to be modified to fit into the structure defined by the Markov field approach. This is because
the latter technique comprises an individual prior on a per-observation basis rather than on a
per-cluster basis. In this implementation, the GMM model is converted by assigning the GMM
prior of cluster j to the jth component of the MRF observation prior.

Cluster Model Evaluation Criteria In contrast to the latter two chapters which based their
evaluation on the true positive rate only, a total of three cluster model evaluation schemes has
been considered: the true positive rate, the adjusted rand index and the adjusted mutual infor-
mation criterion (cf. Section 3.3.2). By this means, a more general conclusion can be obtained
examining the obtained results under various perspectives such as information theoretic, com-
binatoric, and descriptive aspects. Note that the respective tables and figures which show the
outcomes when appying the adjusted rand index and the adjusted mutual information criterion
are moved into the appendix to keep the presentation of the results clear.
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Table 6.1.: Estimated filter size for the 3 classes experiments with respect to varying velocity
profiles.

vel estimated filter size
0.2 m/s 78.0
0.4 m/s 46.0
0.6 m/s 42.1

Path Generation Scheme The path generation procedure follows the one of the latter two
chapters including the 3 classes experiments representing natural paths and the 5 classes exper-
iments which are characterized by paths containing a varying amount of temporal coherence.
Since both the random and the k-means initialization schemes are likely to yield a different
initial Gaussian mixture parameter set for each single path due to their random components,
the EM algorithm might terminate with varying solutions as well. Thus, 50 reruns of each
clustering have been applied with regard to a certain, i.e. constant, path using a novel random
and k-means setup for each trial.

6.4.2. Results and Discussion
Results of the 3 Classes Experiments

Table 6.2 shows the clustering performance in terms of the true positive rate for the GMM and
MRF approaches, random and k-means initialization schemes, and velocity profiles 1-3 (0.2-
0.6 m/s). Further, the last four columns denote the true positive rates when averaging the results
over all robot driving speeds. In comparison with the GMM clustering technique, the tempo-
rally coherent approach in conjunction with the k-means (random) initialization scheme yields
a maximum absolute improvement of the TPR by 14.8% (13.7%), 9.3% (9.4%), and 13.8%
(12.8%), for velocity profiles 1-3 and 12.4% (11.9%) on average. Thereby, using k-means for
cluster center initialization always results in a larger clustering performance in comparison with
the random technique.
Regarding the filter size parameter of the MRF model, Table 6.2 reveals that larger filter sizes
yield a better clustering model. This is an expected behavior, since the natural paths of the 3
classes experiments comprise a large amount of temporal dependencies as they contain a small
number of transitions only. Hence, large filter sizes are required to adequately exploit the con-
tained temporal coherences.
As shown in Table 6.1 which present the estimated filter size for the respective paths, the filter
size derivation technique is capable of correctly selecting a large filter size. As an effect, the
obtained results when applying the MRF clustering approach along with the proposed filter size
estimation scheme represent the superior ones or are at least close the best ones.
Finally, Figure 6.2 visualizes the clustering performance with respect to the true positive rates
obtained when employing the k-means initialization technique and averaging the results over
the three robot driving speeds.
Tables A.1 and A.2 (cf. Section A.1.1) show the results when the clustering performance mea-
sure is substituted by the adjusted rand index (ARI) and adjusted mutual information (AMI)
quality measures. There, the same findings can be derived in comparison with the TPR quality
measure with respect to varying velocity profiles, cluster center initialization, and the estimated
filter sizes. Note, however, that the relative improvements of the MRF approach with regard to
GMM clustering are significantly larger in comparison with the TPR performance measure.
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Table 6.2.: True positive rate [%] for the 3 classes experiments with respect to varying velocity
profiles, mixture model initialization schemes, and filter sizes when adopting the
GMM-based and the temporally coherent MRF-based clustering techniques.

vel init approach
filter size

2 4 8 16 32 S

0.2 m/s
random

gmm 82.7 82.4 82.3 82.3 82.3 82.3
mrf 91.4 92.1 93.8 95.1 96.0 96.0

k-means
gmm 82.3 82.3 82.3 82.3 82.3 82.3
mrf 91.7 93.2 94.8 96.1 97.0 97.1

0.4 m/s
random

gmm 87.2 86.2 87.1 85.9 87.0 87.0
mrf 92.0 91.1 93.4 94.3 96.2 96.4

k-means
gmm 87.7 87.7 87.7 87.7 87.7 87.7
mrf 92.3 92.5 93.9 96.3 97.0 97.0

0.6 m/s
random

gmm 67.3 65.7 65.6 64.6 66.9 64.2
mrf 73.5 72.2 73.5 74.0 79.7 76.4

k-means
gmm 72.0 70.3 71.6 72.4 72.0 72.8
mrf 79.9 78.8 84.4 86.2 85.1 85.0

average
random

gmm 79.0 78.1 78.3 77.6 78.7 77.8
mrf 85.6 85.1 86.9 87.8 90.6 89.6

k-means
gmm 80.7 80.1 80.5 80.8 80.7 80.9
mrf 88.0 88.1 91.0 92.8 93.1 93.0

Figure 6.2.: True positive rate [%] for the 3 classes experiments and k-means model initial-
ization with respect to varying filter sizes when averaging the outcomes over the
complete set of velocity profiles.
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Table 6.3.: Estimated filter size for the 5 classes experiments with respect to varying velocity
profiles and travel distances.

vel
estimated filter size for distance

0 m 2 m 4 m 8 m 16 m var
0.2 m/s 0.0 7.8 13.4 18.6 30.1 23.6
0.4 m/s 0.0 4.0 6.6 13.3 22.2 16.4
0.6 m/s 0.0 2.9 4.7 8.7 14.4 11.8

Results of the 5 Classes Experiments

Table 6.2 shows the results of the 5 classes experiments with respect to the true positive rate
when the travel distance is systematically varied. Here, the paths employed in a certain ex-
periment represent artificially generated ones providing a differing amount of temporal depen-
dencies between varying experiments. For the reason of clarity, the clustering performance is
averaged over all velocity profiles. Further, the average true positive rate over all travel dis-
tances is provided for each initialization scheme.
Considering the GMM and the MRF approaches, the latter always outperforms the former,
starting at a travel distance of 2 m. The maximum increase of the true positive rate is 9.2%
(9.4%) and 5.4% (9.2%) on average using k-means (random) model initialization. Whereas the
best results of smaller travel distances are obtained for smaller filter sizes, larger filter sizes
have to be chosen when increasing the travel distance. As the filter size is assumed to be a
function of the present amount of temporal dependencies, this characteristic has been expected.
At a travel distance of 0, which denotes the situation of a terrain transition after each mea-
surement, only the adaptive filter size estimation technique yields adequate results. This is
because in this case no temporal coherences are provided. Techniques, however, which rely
on the presence of temporal dependencies between succeeding observations are likely to fail,
since their key assumption is not met. As presented in Table 6.3, the adaptive filter size esti-
mation technique is able to detect these cases and determines a filter size of 0. Note, that using
this parameter for the Markov random field technique, the MRF clustering scheme turns into a
standard GMM approach disregarding temporal coherences. Table 6.3 further reveals that the
filter size is autonomously adjusted according to the present travel distance. This enables an
adequate utilization of temporal dependencies by considering an appropriate number of neigh-
boring observations.
Finally, in contrast to the 3 classes experiments, only small differences between the random
and k-means initialization schemes can be observed.
Figure 6.3 depicts the increase in the true positive rate when using the MRF approach with
respect to the GMM-based clustering technique. Here, the relationship between the travel dis-
tance, filter size and the obtained clustering performance is visually highlighted.
Analogous to the 3 classes experiments, Tables A.3 and A.4 and Figures A.3 and A.4 (cf. Sec-
tion A.1.2) present the clustering performance when exchanging the TPR clustering quality
measure by the adjusted rand index and the adjusted mutual information quality criterion. It
shows that all performance measures yield similar characteristics with respect to the travel
distance, filter size, and clustering quality relationship, varying cluster center initialization
schemes and the adaptive filter size selection behavior.
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Table 6.4.: True positive rate [%] for the 5 classes experiments with respect to varying velocity
profiles, mixture model initialization schemes, and filter sizes when adopting the
GMM-based and the temporally coherent MRF-based clustering techniques.

init dist
filter size

2 4 8 16 32 S

random

gmm 73.9 74.1 73.7 73.5 73.9 74.0
0 28.5 29.8 27.6 26.6 26.0 72.2
2 77.2 78.2 74.2 65.5 51.5 77.8
4 79.0 80.7 79.8 76.1 67.1 80.6
8 80.1 80.9 80.5 80.9 77.6 82.2
16 80.1 80.2 80.9 82.2 84.1 83.3
var 79.7 79.9 81.8 81.0 81.8 83.4

average 70.8 71.6 70.8 68.7 64.7 79.9

k-means

gmm 73.4 74.1 73.1 74.1 73.6 73.0
0 28.2 30.0 27.3 26.6 26.0 73.6
2 76.2 77.2 74.5 66.0 51.1 77.2
4 77.9 78.8 78.3 75.9 65.9 78.8
8 78.6 79.3 80.9 80.1 76.8 78.9
16 79.5 83.2 79.4 82.8 83.2 82.2
var 79.0 78.9 78.7 82.5 80.9 80.0

average 69.9 71.2 69.9 69.0 64.0 78.4

Figure 6.3.: Increase in the clustering performance in terms of the true positive rate for the 5
classes experiments and k-means model initialization with respect to varying filter
sizes when averaging the outcomes over the complete set of velocity profiles and
travel distances.
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6.5. Conclusion
The work proposed in this chapter focused on the clustering of different terrain types using
vibration data. Therefore, the framework of Markov random fields has been adopted which ex-
ploits temporal dependencies between consecutive observations. Thorough tests using a variety
of terrain transition frequencies demonstrated the efficiency of the MRF model in situations of
both low- and high-frequency terrain changes. Depending on the number of present terrain
classes, the chosen driving speed of the robot and the frequency of terrain transitions, an abso-
lute increase in the true positive rate of up to 14.8% is obtained. The application of two other
quality measures, the adjusted rand index and the adjusted mutual information criterion, which
both resulted in similar findings in comparison with the true positive rate emphasizes the ade-
quate performance of the proposed technique. As second contribution, a general approach was
derived which yields an estimate of the amount of temporal coherence contained in the data set.
Furthermore, this also provides a reliable indication of the absence of temporal dependencies.
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7. Temporally Coherent Initialization of
Gaussian Mixture Models

7.1. Introduction
In this thesis, a density-based clustering approach using Gaussian mixture models (GMMs) is
considered. For deriving the parameters of the GMM the expectation maximization (EM) algo-
rithm has become the most widely applied technique. Although the EM algorithm guarantees
a convergence of the respective parameters within a finite number of iterations, the obtained
parameter set is likely to not represent a global optimum of the likelihood function. Instead,
the algorithm terminates at a local optimum which can be arbitrarily worse than the global op-
timum. To circumvent the local minimum problem, it is a common practice to restart the EM
algorithm repeatedly, each time being initialized with a different set of starting parameters. In
this way, each run is likely to explore different regions of the solution space, decreasing the
probability of terminating in the same local optimum. By evaluating the objective function, i.e.
the likelihood function, at the end of each run, the best clustering solution can be defined as the
one whose parameter set maximizes the likelihood function.
Applying the EM algorithm multiple times, however, results in a waste of computational re-
sources, since most of the calculations do not contribute to the final result. Moreover, in the
context of unsupervised feature selection, a non-deterministic approach is not desirable, since
it is not clear whether an unsatisfying clustering result emanates from an inappropriate choice
of initial GMM parameters or from the feature subset itself. To decrease the effects of the
former, initial parameters have to be determined deterministically which yield a reasonable
local optimum of the likelihood function. For example, Bishop [Bis95] suggests to employ
the results of k-means clustering as the initial GMM parameter set. Note, however, that due
to its random initialization scheme, the k-means algorithm becomes non-deterministic as well,
hence shifting the problem of random characteristics from the Gaussian mixture approach to
its initializer only. Although a globally optimal solution for the k-means algorithm (as well
as for the EM algorithm) can be obtained, this problem has shown to be NP-hard [GJW82].
That is, the k-means algorithm has to be applied taking each possible data subset of size k as
the initial cluster centers into account. An approximate technique denoted as global k-means
clustering was proposed by Likas et al. [LVV03]. They chose a greedy technique inserting one
additional cluster center from one step to the next. Given a solution for the clustering problem
with k−1 clusters, n k-means reruns are performed. In each rerun, one of the n data instances
is employed as the kth initial cluster. Since the optimal solution for the one cluster setting is
known1, a deterministic outcome of the k-means clustering scheme is obtained. Although the
authors demonstrated the effectiveness of their approach, the computational complexity allows
its use for small datasets only.
Another technique was adopted by Celeux et al. [BCG03]. In their approach, they employed

1Here, the cluster center is the mean of all data instances and the respective covariance matrix is the covariance
of the complete data set.
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several short runs of a slightly modified EM algorithm initialized with random starts. The mod-
ifications consist of relaxing the convergence criterion and introducing a limit for the maximum
number of EM iterations. After all EM runs have terminated, the solution is selected for ini-
tialization of the full EM algorithm which provides the largest likelihood. Similar to the global
k-means algorithm, this approach is computationally expensive. Furthermore, it suffers from a
random component introduced by the random initialization scheme.
The technique, which is presented in this chapter, is based on principal direct divisive parti-
tioning (PDDP). The PDDP initialization scheme is an instance of divisive algorithms. This
is, it starts with a single cluster which contains all data points. In the following, this cluster is
recursively split into smaller subsets. Thereby, the algorithm selects those subclusters to split
which have the largest variance. The actual splitting process is performed with regard to a
hyper-plane which is orthogonal to its leading principal component. Recently, this work was
adopted by several researchers and a variety of extensions have been proposed. For example,
Kruengkrai et al. [KSI03] introduced an additional refinement step of the novel cluster centers
after the splitting process. There, the adjustment was realized by a local 2-means clustering
only considering the data contained in the cluster to split. Furthermore, Kruengkrai et al. em-
ployed the BIC criterion as a measure when to stop the splitting process. Later, Zeimpekis et
al. [ZG03] proposed a 2l-way division of each (sub)cluster instead of a 2-way (binary) data
subdivision in each splitting step. This was achieved by considering not only the leading but
the first l eigenvectors sorted according to the amount of explained variance. These eigenvec-
tors define l hyperplanes which intersect at the origin and divide the space into 2l orthants to
which the respective data points are assigned. Similarly, Nilsson [Nil02] also makes use of the
first l eigenvectors adopted in a binary splitting scheme. In this work, a binary splitting tree
is employed whose nodes contain the index of the eigenvector which defines the actual split-
ting process. Given a tree depth of s, there are ls possible splitting combinations to determine.
This renders the binary splitting tree approach more and more computationally demanding as
l increases. Finally, Tasoulis et al. [TT08] proposes a novel strategy to determine the posi-
tion of the splitting hyperplane. Therefore, they consider the distance of two consecutive data
instances previously projected onto the leading eigenvector. The pair having the maximum dis-
tance is then used to define the separating hyperplane. Furthermore, this maximum distance is
used to choose the next subcluster to split. This choice is based on the assumption that a large
distance is an indicator for multi-modality.
The approach presented in the following section is also based on principal direct divisive parti-
tioning. Yet, it introduces several modifications to the original technique. The first one refines
the new cluster centers after splitting a subcluster. Similar to the approach presented by Kru-
engkrai et al., a local 2-way clustering is applied to the contained subdata. In contrast to their
approach, the 2-means approach is replaced by either a Gaussian Mixture model or a Markov
random field model with two components. The latter approach enables the direct inclusion
of temporal coherences into the initialization step of the chosen cluster model. Second, a di-
rect application of the PDDP algorithm was not possible due to the impact of outliers. These
outliers led to inadequate initial conditions of the clustering model which, in turn, resulted in
ill-conditioned covariance matrices in the further course of the EM algorithm. Hence, a KNN-
based outlier removal technique [AP05] was adopted prior to the initialization process. As
a further contribution, the outlier removal technique was extended to enable the autonomous
estimation of its most important parameter.
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7.2. Applied Techniques

7.2.1. PCA-based Data Partitioning
The PCA-based data partitioning scheme splits the data into two subclusters. These subclusters,
in turn, can be recursively subdivided into smaller clusters until the desired number of cluster
centers is obtained. Here, two issues have to be clarified: which (sub)cluster is subject to a
division and how the actual splitting operation is performed. The PCA-based data partitioning
scheme solves the first problem by considering the likelihood of each (sub)cluster j: since the
aim of GMM clustering is to maximize the data log-likelihood, an adequate heuristic is to split
the cluster j providing the minimum log-likelihood L j. The latter is defined by:

L j = ln p(X) = ∑
xi∈ cluster j

(lnπ j−
d
2

ln(2π)− 1
2
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1
2
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n j
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2
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2
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where π j denotes the prior probability, µ j is the mean, and Σ j is the covariance of mixture com-
ponent j, respectively. Since the determination of L j requires the calculation of the determi-
nant of the covariance matrix for each component j, another, less computationally demanding
heuristic is suggested. This heuristic splits the cluster with the largest-within sum-squared-error
SSE j, defined as:

SSE j = ∑
xi∈ cluster j

‖xi−µ j‖2.

After selecting the cluster j to split, the data points belonging to cluster j have to be assigned
to one of the subclusters. The PCA-based data partitioning approach therefore projects these
points to a one dimensional subspace. Projected observations which reside to the left of α j,
the projected mean of the considered data, are assigned to the first cluster and the remaining
points are assigned to the other one. To motivate the choice of the projection vector which
maps the data point into a one dimensional subspace, it has to be noted that with an increase
in the likelihood the determinant of the covariance matrix |Σ j| decreases. Hence, the choice
of the direction that contributes most to |Σ j| provides an adequate candidate for data splitting.
In [SD07], it is shown that this direction is determined by the eigenvector which is associated
with the largest eigenvalue. This is because |Σ| is the product of all eigenvalues. Pseudo code
for the PCA-based data partitioning is presented in Listing 3.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.1.: Visualization of the cluster splitting process: (a) the data instances under consider-
ation, (b) the direction defined by the main principal component, (c) the projection
onto the one-dimensional subspace defined by the main principal component, (d)
the decision boundary, (e) the assignment according to the established decision
boundary, and (e) the result of a preceding 2-means step using the previously de-
termined data assignment.
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Algorithm 3 PCA-based Data Partitioning
1: k = 1
2: repeat
3: Given k clusters, select the cluster j with minimum SSE j
4: Determine {X |xi ∈ cluster j} and project X to the largest principal component axis de-

fined by the data subset X . In the following, x∗i is denoted as the projection of xi onto
this principal component axis.

5: Cluster j is split into two subclusters, cluster k+1 and cluster k+2 as follows: let α j be
the projected mean of X . For any xi ∈ X , if x∗i ≤ α j then xi is assigned to cluster k+ 1
and to cluster k+2 in the other case.

6: Insert clusters k+1 and k+2 into the set of clusters and remove cluster j from this set.
7: k = k+1
8: until k equals the desired number of clusters.

7.2.2. Outlier Detection Using the Minimum Covariance Determinant
In [Rou85], Rousseeuw proposed the minimum covariance determinant (MCD) technique yield-
ing robust estimates of the data’s location and scatter. The key idea of the MCD method is to
derive a subset of h observations from the data which result in a classical covariance matrix
having the minimum determinant. The average of these h points is then referred to as the MCD
estimate of location µ̂0 and their covariance matrix represents the MCD estimate of scatter σ̂0.
Further improvements of these estimates can be obtained by assigning weights to each observa-
tion and determining weighted variants of location µ̂w = (∑n

i=1 wixi)/(∑
n
i=1 wi) and covariance

matrix σ̂ = (σn
i=1wi(xi− µ̂w). Here, the weight wi equals 1 if the robust Mahalanobis distance√

(xi− µ̂0)T σ̂0
−1(xi− µ̂0) is smaller than the threshold

√
χ2

p,0.975 and 0 otherwise.
The value of h is a user-defined parameter determining the robustness of the MCD estima-
tor. This is because the choice of h directly influences the breakdown value, i.e. the smallest
fraction of observations which have to be corrupted to render the respective location and scale
estimates unusable. For the MCD approach, the breakdown value is given by (n− h+ 1)/n,
reaching its maximum if h = b(n+ p+1)/2c. Rousseeuw advises to choose h close to 0.5n if
the data set is highly contaminated, 0.75n is recommended for a higher finite-sample efficiency.

Note that the exact calculation of the MCD estimate requires the evaluation of all
(

n
h

)
sub-

sets of size h. An approximate approach, the FAST-MCD estimator, was proposed in [RD99]
enabling the efficient calculation of the minimum covariance determinant. Its main component
is the concentration step (C-step) defined as follows. First, an initial h-subset H1 ⊂ {xi}n

i=1
of size |H1| = h is drawn. Given H1, its empirical mean µ̂1 and covariance matrix σ̂1 are
determined. The latter estimates are then employed to calculate the respective Mahalanobis
distances defined as

d1(i) =
√

(xi− µ̂i)T σ̂
−1
1 (xi− µ̂i), i ∈ [1,n].

The h observations with minimum distances d1(i) constitute the elements of the succeeding
h-subset H2. Based on this new subset, the respective mean µ̂2 and covariance matrix σ̂2 are
computed. Rousseeuw showed that

det(σ̂2)≤ det(σ̂1),
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thus, each C-step results in a new h-subset with a lower covariance determinant. The gradu-
ally decrease in the data’s covariance is referred to as a concentration process, hence the name
concentration or C-step. These C-steps are iteratively applied until det(σ̂i) = 0 or |det(σ̂i−1)−
det(σ̂i−1)|< ε . The convergence of succeeding determinants is guaranteed within a finite num-
ber of steps, since the set of possible h-subsets is finite. Yet, the converged determinant value
may represent a local minimum of the MCD objective function only. To obtain an approximate
global solution, the FAST-MCD algorithm can be run with varying initial subsets H1. Then,
succeeding C-steps are applied to each of the subsets and the solution is kept which provides
the lowest determinant.
For choosing the initial H1-subsets, a random (p+1)-subset R is drawn and both its mean µ̂R
and covariance σ̂R are calculated. The H1 subset then consists of the h observations yielding the

h minimum Mahalanobis distances dR(i) =
√
(xi− µ̂R)T σ̂

−1
R (xi− µ̂R). Note that by choosing

an initial (p+1)-subset instead of a regular h-subset, the probability is increased to obtain an
outlier-free set of observations. The random nature of the initial R-subset selection scheme ren-
ders the FAST-MCD algorithm non-deterministic. Even if the sampling follows a deterministic
rule, its outcome still depends on the order in which observations appear in the data set. To
obtain a fully deterministic approach, Hubert et al. [HRV11] proposed the DetMCD algorithm
which provides similar robustness characteristics while remaining the permutation invariance.
There, the permutation invariance is achieved by starting from seven well-chosen initial esti-
mates along with a successive application of C-steps until convergence. Among others, the
initial estimates include the Spearman correlation matrix, the spatial sign covariance matrix,
and the raw covariance estimate derived from the OGK estimator [MZ02]. The complete enu-
meration of initial H1-subset derivation technique is listed in [HRV11] and [TV10].
The FAST-MCD approach can also be applied in a univariate setting [RL87]. Here, the de-
rived estimates represent the (weighted) mean and variance of the h-subset with the smallest
variance. The computational complexity reduces to O(n · logn) by considering contiguous h-
subsets and by exploiting the fact that in this case, the respective mean and variance can be
efficiently determined in a recursive manner.

7.3. Improving PCA-based Data Partitioning
Primal experiments using a PCA-based data partitioning scheme yielded inferior results in
comparison with random initialization schemes such as random initial center selection or a k-
means-based initialization technique. Yet, improvements of the clustering performance could
be observed when adopting the temporally coherent MRF clustering approach of Chapter 6 not
only for the actual clustering process but also for cluster center initialization. The key elements
and the motivation of using an initialization scheme which makes use of temporal dependencies
are presented in the following subsection. Further improvements are obtained when applying an
outlier removal technique prior to initialization. Thus, in a succeeding subsection, the employed
outlier removal technique is introduced along with proposed modifications to estimate its most
important parameter.

7.3.1. Temporally Coherent Data Partitioning
Algorithm 7.2.1 shows that the inclusion of temporal coherences can be realized within two
stages of the divisive initialization framework: in the data projection and in the cluster bisec-
tion steps. The latter comprises the task of partitioning the (sub)cluster into two halves and
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(a) (b)

Figure 7.2.: The clustering result when adopting a clustering technique with 2 components
which (a) disregards and (b) exploits temporal dependencies.

assigning each data instance to one of the generated subclusters. Considering data projection,
temporal dependencies can be considered by finding a projection matrix W such that tempo-
rally close neighbors are spatially close to each other in the projected data space. Techniques
which allow for this kind of transformations include the locality preserving projection tech-
nique [HN03] and the neighborhood preserving projection approach [KS07]. Note, however,
that these techniques did not provide adequate results when applied to the present problem of
cluster center initialization and hence are not further addressed.
Instead, the integration of temporal dependencies into the cluster bisection process is proposed.
After projecting the data onto the leading eigenvector defined by the data subset under consid-
eration, each data instance is assigned to one of the generated subspaces. Thereby, the corre-
sponding subspace is defined by the sign of the respective projected data instance. After the
assignment step, there are two clusters defined determined by their mean and covariance matrix.
The latter two parameters are employed to initialize a further clustering which aims at refining
the present solution. For the cluster refinement step, a variety of techniques is available. Yet,
the use of a temporally coherent clustering scheme is advised. This is motivated by Figure 7.2
where a data set with two classes is depicted. When applying the original PCA-based initial-
ization scheme, the leading eigenvector and hence the projection direction becomes the one
parallel to the y-axis. As shown in Figure 7.2(a), this results in a data subdivision which erro-
neously bisects the instances of each class, respectively. A clustering approach, however, which
makes use of temporal constraints yields the correct clustering (cf. Figure 7.2(b)). Based on the
assumption that a better clustering is obtained for non-artificial data sets as well, the original
cluster bisection process is extended by a succeeding temporally coherent MRF clustering step
with two components. This technique is denoted as the PCA-MRF approach in the following.

7.3.2. A Combined k-NN and MCD approach for Outlier Removal
The outlier detection technique adopted in this chapter is based on the outlier definition of
Angiulli et al. [AP05]. There, the accumulated distances from each data instance xi to its
k nearest neighbors xl, l ∈ [1,k] are considered. Angiulli et al. refers to these accumulated
distances of a certain data point xi as weight wi = ∑l d(xi,xl),xl ∈N , where N denotes the k
neighborhood of xi. Sorting the data instances according their weight wi, outliers can then be
determined by choosing the n data points with maximum weight. Here, n denotes the number
of expected outliers in the data set and is a used-defined value. Note that, in general, the latter
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number cannot be selected a priori but has to be estimated from the data set instead. Since
the original approach of Angiulli does not provide means for the estimation of the expected
number of outliers n, a technique for its derivation is introduced. This technique is based on
the assumption that the weights wi of inliers follow a Gaussian distribution N(µ,Σ). Outliers,
on the other hand, have weights arising from a different distribution hence representing outliers
with respect to N(µ,Σ). By estimating the parameters of the inliers’ Gaussian distribution by
means of robust mean and variance estimation, outliers can be detected using the univariate
MCD method introduced in Section 7.2.2.

7.4. Experimental Results

7.4.1. Experimental Setup
Cluster Center Initialization For the cluster center initialization, not only the proposed
PCA-MRF-based partitioning scheme (PCA-MRF) has been implemented but also the origi-
nal PCA-based technique (PCA). The latter represents the reference when evaluating the novel
temporally coherent partitioning method. Furthermore, to demonstrate the superiority of tem-
porally coherent clustering within the cluster refinement step, the involved MRF clustering
with two components is replaced by alternatives which do not take temporal dependencies into
account, namely k-means clustering with k = 2 (PCA-kmeans) and GMM-based clustering
with two components (PCA-GMM). Finally, to establish the connection between this and the
previous chapter, the random and the k-means initialization schemes (random and kmeans, re-
spectively) have also been included into the set of initialization procedure candidates. This is
because they are commonly proposed as the default initialization technique (cf., i.e. [Bis95]).
Note, however, that the latter two approaches have been implemented for the reason of com-
pleteness, although they do not yield deterministic results and hence do not match the scope of
this research.
Almost all introduced initialization schemes are parameter-free. The sole exception is the PCA-
MRF-based partitioning technique which requires the neighbor set size S to be defined. Ex-
periments revealed the superiority of choosing S = 2. That is, only the direct neighbors of
an instance are considered for establishing the temporal coherences which guide the clustering
process.
To render the cluster center initialization robust against outliers, an outlier removal technique
was applied prior to the actual initialization process. For the outlier removal technique, the
combined k-NN and MCD approach of Section 7.3.2 has been adopted. The corresponding
parameter k was experimentally found and set to k = 16. Note, however, that experiments
revealed an insensitiveness against this parameter in the range of k ∈ [8,32].

Vibration Segment Preprocessing The aim of the research presented in this chapter is to
develop an adequate cluster initialization technique which can then be applied to the feature
subset selection task introduced in the next chapter. Thereby, the set of available features
comprises all components of the DFT amplitude spectrum which are extracted from a block
of 128 acceleration samples. To access the performance of varying cluster center initialization
schemes, it is thus beneficial to consider differing subsets of the complete feature set as input
representations of the preprocessed vibration pattern. Since the application of all possible, i.e.
264, subsets is intractable due to the large computational complexity, a sampling of the complete
subset space has been performed. Each subset candidate of this sampling contains the first m
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spectral components where m was chosen from the set M = {8,16,24,32,40,48,56}. Note
that the complete set of features, i.e. m = 64, resulted in invalid clusterings for the random
and k-means initialization procedures in all conducted replications. Hence, the decision was
made to remove the latter case from the list of chosen subset candidates. Finally, the last
feature representation is given in terms of the MFCC-like descriptor being an instance of feature
extraction rather than feature selection. Since, however, the following two chapters make use
of this feature representation, its performance in the context of cluster center initialization is
important to be pointed out as well.

Clustering Model The clustering model consists of the temporally coherent Markov random
field-based technique. Furthermore, for determining the neighborhood set size, the autonomous
neighborhood set size estimation technique of Section 6.3.2 has been employed.

Cluster Model Evaluation Criteria Since the varying cluster quality criteria which have
been adopted in the previous chapter turned out to be quite similar with respect to their outcome,
only one quality measure is employed in this chapter. The selected quality criterion is the true
positive rate which is the most descriptive one among the three.

Path Generation Scheme The following experiments employ the same path generation scheme
as introduced in Section 2.2. This includes both the 3 classes experiments providing naturally
generated paths as well as the 5 classes experiments representing paths with varying travel
distances. As the only difference, the travel distance of 0 was removed for the 5 classes experi-
ments. This is because a travel distance of 0 yields an MRF model being identical to a Gaussian
mixture-based clustering model.
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7.4.2. Results and Discussion
Results of the 3 Classes Experiments

Table 7.1 shows the clustering performance of the initialization experiments with 3 classes
when averaging the results over velocity profiles 1-3 (0.2, 0.4, and 0.6 m/s). Here, the table
comprises the results which are obtained when applying the MFCC-like feature extraction and
the low-energy feature selection schemes, where the latter employs a feature subset of size
8 up to 56 spectral components. Furthermore, the mean outcomes of all GMM and MRF
experiments are presented, averaging the true positive rates over all feature extraction and fea-
ture selection approaches. Note that the latter outcomes are depicted in Figure 7.1. Refer-
ring to these averaged results, the following ranking can be established: first, the PCA-MRF
approach 93.7% (84.4%), followed by kmeans 92.7% (83.1%), PCA-GMM 91.7% (82.3%),
PCA-kmeans 91.6% (81.8%), PCA 90.4% (80.8%), and finally random 89.1% (77.7%) where
the first number denotes the true positive rate of the MRF clustering technique and the second
number in brackets is the outcome of the GMM clustering result. Hence, the same ranking
applies to both the GMM and MRF clustering approaches. These results advise the use of an
additional clustering step for determining the new cluster centers in the cluster refinement pro-
cedure as the respective techniques outperform the PCA approach on average. In this context,
the temporally coherent PCA-MRF initialization technique is superior to all other subdivision
techniques which do not incorporate temporal dependencies into the refinement process.
The maximum TPR for MRF clustering is obtained when applying the MFCC-like preprocess-
ing scheme. This is notable, since the same feature extraction technique does not provide the
best GMM clustering performance. Instead, using the latter technique, the most appropriate
clustering is obtained in terms of selecting a subset of the amplitude spectrum. Other feature
subsets result in a differing clustering performance depending on the size of the respective
subset: for both, the GMM and MRF approaches, the true positive rate rises until a feature
set size of 32 and then worsens with increasing set size. There are at least two reasons for
this behavior. First, the larger the set size, the larger is the number of DFT amplitude compo-
nents with high-frequency content. As the latter is assumed to only contain the noisy parts of
the signal, the high-frequency components do not contribute to a good clustering but worsen
the clustering performance instead. Second, with an increasing set size, the dimensionality of
the input vectors rises as well. This, in turn, increases the probability of obtaining a model
parameter set which represents a local optimum only. Note that these findings confirm the
choice of the MFCC-like descriptor which rejects the 32 spectral components representing the
high-frequency part of the signal. These findings related to the decrease of the clustering per-
formance starting with a set size of 40 DFT amplitude components are valid for all but the
PCA-MRF approach. Here, the true positive rates remain approximately the same up to a fea-
ture set size of 56 spectral components. As shown in the next chapter, this characteristic is
beneficial for backward feature selection techniques which start their search for an appropriate
feature subset with the complete set of features.
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Table 7.1.: True positive rate [%] of the 3 classes experiments when varying the clustering
model, the number of input dimensions, the feature extraction scheme, and the
model initialization technique, averaged over all velocity profiles.

model #feat
initialization technique

random kmeans PCA PCA-kmeans PCA-GMM PCA-MRF

gmm

0 77.8 80.9 75.2 76.4 79.9 82.7
8 69.4 68.8 69.0 68.8 69.0 68.6

16 79.2 83.5 76.7 84.8 84.3 84.3
24 81.9 87.2 88.0 87.1 87.1 87.2
32 83.0 88.9 89.2 88.9 89.4 89.7
40 80.0 87.4 88.2 87.4 88.7 88.3
48 77.7 86.0 85.0 86.1 86.7 87.2
56 72.9 81.9 75.3 75.0 73.3 87.2

average 77.7 83.1 80.8 81.8 82.3 84.4

mrf

0 89.6 93.0 88.3 88.1 93.6 97.1
8 81.9 81.2 81.8 81.2 81.8 81.1

16 91.9 94.3 85.6 95.4 95.5 95.4
24 92.2 95.4 95.4 95.4 95.5 95.4
32 92.3 95.3 95.2 95.3 95.3 95.3
40 90.8 94.9 95.0 94.9 95.0 95.0
48 89.1 94.8 95.1 95.0 94.8 95.2
56 85.0 92.6 86.9 87.5 82.1 95.0

average 89.1 92.7 90.4 91.6 91.7 93.7

Figure 7.3.: The true positive rate [%] with respect to the 3 classes experiments and varying
model initialization techniques when averaging the outcomes over all clustering
models, descriptor lengths, and feature extraction schemes.
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Results of the 5 Classes Experiments

The structure of Table 7.2 presenting the results of the 5 classes experiments follow the one
of the 3 classes experiments. The respective outcomes were obtained after averaging the true
positive rates over both velocity profiles 1-3 and travel distances of 2, 4, 8, and 16 m, and
combinations of those values, respectively. Again, the clustering performance of the feature se-
lection and feature extraction schemes are provided along with their respective mean (average).
Establishing a ranking based on the latter measure, the different approaches can be organized in
decreasing clustering performance as follows: PCA-MRF 79.4% (73.8%), PCA-GMM 78.8%
(72.9%), PCA-kmeans 78.3% (72.2%), kmeans 77.1% (71.6%), PCA 74.7% (68.9%), and fi-
nally random 74.0% (68.0%), where the first number denotes the true positive rate of the MRF
clustering technique and the second number in brackets is the GMM clustering result. Note,
that this ranking is the same for both the GMM and MRF clustering approaches. These findings
reveal that an additional clustering step for determining the new cluster centers in the cluster
refinement procedure positively effects the succeeding progress of the clustering task. Further
improvements are achieved by incorporating temporal coherences into the cluster refinement
procedure by means of a MRF-based clustering approach with two components.
Considering the performance of the feature selection and feature extraction techniques, the
MFCC-like descriptor yields the largest true positive rates for both the GMM and MRF clus-
tering methods. The feature selection strategy performs best at a feature subset size of 24 with
the sole exception of the random initialization scheme. Larger feature sets result in a decreased
clustering performance supporting the assumption of the higher-frequency spectral components
to be irrelevant.
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Table 7.2.: True positive rate [%] of the 5 classes experiments when varying the clustering
model, the number of input dimensions, the feature extraction scheme, and the
model initialization technique, averaged over all velocity profiles.

model #feat
initialization technique

random kmeans PCA PCA-kmeans PCA-GMM PCA-MRF

gmm

0 74.3 72.9 71.5 80.2 73.1 80.2
8 69.1 69.7 62.3 60.5 70.0 69.1

16 70.3 71.8 69.8 68.9 70.1 70.4
24 70.3 73.4 74.2 76.6 76.1 76.7
32 67.8 73.1 69.4 74.3 74.9 75.1
40 65.3 71.7 69.4 74.0 73.6 73.2
48 63.8 70.6 70.5 72.6 73.7 73.5
56 62.8 69.5 63.9 70.9 71.9 72.4

average 68.0 71.6 68.9 72.2 72.9 73.8

mrf

0 81.4 79.4 78.8 87.5 79.5 87.5
8 77.4 78.4 71.8 70.8 78.7 78.8

16 75.8 77.0 75.9 74.4 76.0 75.8
24 75.5 80.0 79.6 83.8 83.4 82.5
32 73.0 77.5 71.1 78.8 79.6 80.0
40 70.9 76.1 72.8 79.0 78.2 77.3
48 69.5 74.7 77.0 76.7 78.5 77.3
56 68.3 73.8 70.5 75.2 76.7 76.2

average 74.0 77.1 74.7 78.3 78.8 79.4

Figure 7.4.: True positive rate [%] of the 5 classes experiments when varying the clustering
model, the number of input dimensions, the feature extraction scheme, and the
model initialization technique, averaged over the complete set of velocity profiles.
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7.5. Conclusion
This chapter focused on the development of a deterministic scheme for cluster center initial-
ization in the context of Gaussian mixture model-based clustering. The analysis was rendered
necessary, since the previously considered initialization techniques, a random and a k-means
approach, are characterized by random components. These random components are likely to
yield clustering models with varying performance due to the chance of ending up in differing
local optima after the model generation.
The proposed technique is based on a hierarchical partitioning scheme. Starting with a single
cluster, the data is recursively divided into two subclusters until a desired number of clusters is
reached. Here, the cluster is split by means of projecting the data onto the leading eigenvector
and assigning each instance to one of the generated subspaces according to the sign of its cor-
responding projection. The novel cluster center of each subspace is then defined as the mean
vector determined over the respective instance subset. Experimental results suggest the use of
a succeeding refinement step to adjust the obtained cluster centers. Here, the refinement step
is realized in terms of a clustering technique with 2 components. As for the applied clustering
scheme in the refinement process, the best clustering performance was achieved by means of a
Markov random field-based technique. The MRF-based clustering scheme yielded an improve-
ment of 3.3% TPR for the 3 classes experiments and 4.7% TPR for the 5 classes experiments
on average in comparison with the original PCA-based partitioning approach.
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8.1. Introduction
Feature selection describes the task of reducing the dimensionality of the given data. Its main
objective is to represent the data feature set by a smaller subset without compromising the orig-
inal data characteristics. Along with the reduction of the computational costs, feature selection
is likely to improve the performance of a predictive model, rendering it less prone to overfitting,
increasing its resistance towards noise, and maintaining its discriminative capabilities. This is
because different features often contain a certain degree of dependency or redundancy among
each other. Their removal does not affect the prediction performance significantly, since all
necessary information is already contained within other features. Hence, in recent years, the
problem of redundant feature removal became an active research area. Although the main fo-
cus has been devoted to feature selection in supervised learning tasks, a growing interest in the
unsupervised clustering community has emerged recently. Note that in contrast to classification
problems, where the variable selection problem can be clearly stated as the search for an at-
tribute set yielding the highest classification performance, this task is less well-defined for clus-
ter analysis. This is mainly a matter of missing class information which could guide a specific
selection scheme. Generally, the unsupervised feature selection task can be divided into three
categories: filter, embedded and wrapper techniques. Methods from the first category choose a
certain feature subset from the original data space. Here, the selection is based on evaluation
criteria which are independent from the clustering algorithm. Since no clustering model has to
be generated and evaluated, filter techniques are computationally more efficient than embed-
ded and wrapper methods. For the evaluation critera, researchers focused on information-based
metrics [LSLZ09] as they provide an adequate measurement of quantifying the uncertainty of
a feature. For example, Søndberg-Madsen et al. [SMTn03] defined the relevance of a given
feature by scoring the dependence between the feature under consideration and the remain-
ing features. There, pairwise dependent scores were determined in terms of both their mutual
information and their mutual prediction capability, respectively. Another filter technique was
proposed by Yen et al. [YCL10]. Their technique employed an eigen-decomposition to rank
the linear dependency among different features sequentially, removing those features which
could be represented best by the remaining ones. Further, Yen et al. showed that their approach
is similar to removing features which contribute the most to the principal components with the
smallest eigenvalue.
Embedded methods combine the feature selection and model generation task as they aim at
incorporating knowledge about the specific structure of the clustering algorithm. Furthermore,
this combined approach involves that it is neither possible to separate the clustering from the
feature selection process nor to replace the clustering technique by another one. Several re-
searchers addressed the problem of embedded feature selection methods in the context of Gaus-
sian mixture model-based clustering. Law et al. [LFJ02] therefore defined salient features as
those which are capable of describing the data with a multi-modal distribution and modes which
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can be adequately represented by Gaussian components. In this context, they represent saliency
in terms of probability. Given a certain feature, data instances are considered independent of a
certain mixture component up to a determined probability. Feature saliency is then defined as
the complement of this probability. To allow both the detection of appropriate feature subsets
and the correct number of clusters, Law et al. adopted the minimum message length (MML)
criterion. As the latter approach was derived by means of several assumptions and simplifica-
tions, Constantinopoulus et al. [CTL06] extended this technique using a variational framework
which introduces a Bayesian approach for mixture learning.
In a feature selection wrapper approach, the performance of a certain feature subset is estimated
using performance criteria which are derived from an established clustering model. That is,
the variable selection scheme is wrapped around the clustering technique under consideration.
Several performance criteria can be considered. For example, Dy et al. [DB04] considered the
scatter separability and maximum likelihood obtained after the clustering process. In another
work, Figueiredo et al. [FJL03] focus on the change in the posterior probability estimates when
removing certain features. There, it is assumed that the removal of unnecessary features has a
less significant impact on the posterior probability estimates in comparison with the removal of
useful ones. Although wrappers provide a systematic means for feature subset selection, they
suffer from at least two drawbacks: at first, wrapper techniques are tightly coupled with a pre-
defined clustering algorithm. That is, feature subsets which result in an appropriate clustering
with respect to a certain clustering technique do not have to be optimal when exchanging the
clustering technique. Second, the requirement to run the clustering algorithm with any pro-
vided feature subset renders the wrapper technique time-consuming and often intractable for
large scale problems.
Recently, researchers aimed at combining the benefits of both the filter and wrapper approaches.
Here, the common strategy is the use of an iterated step-wise procedure. In a clustering step,
a hypothetical partition is established generating the base for the successive relevance determi-
nation step in which the features are scored for relevance. Hruschka et al. [HCHE05] therefore
employed the k-means algorithm for clustering in conjunction with a Bayesian filter which de-
termines the relevance of each feature. For the Bayesian filter, Hruschka et al. adopted the
Markov blanket framework [Pea88] in which a feature set can be replaced by a smaller subset
if the latter is able to represent the original set completely. In another approach, Xing et al.
[XK01] ranked the features according to their intrinsic discriminability, relevance to the hypo-
thetic partitions, and irredundancy to other relevant features. This ranking is then employed to
select the features which are to be used in a following clustering step.
From the results of Chapter 5 it can be derived that a compact vibration signal descriptor out-
performs the higher-dimensional one which is based on the signal’s amplitude spectrum in
the context of Gaussian mixture model-based classification. The definition of the MFCC-like
descriptor, however, relied on the assumption that the most relevant spectral components are
the ones representing the lower-frequency subbands of the signal. To the best knowledge of
the author, no experiments were carried out which support this assumption. Hence, it remains
unclear, whether the choice of the proposed binning strategy in the context of the MFCC-like
descriptor is an appropriate one. The work presented in the following chapter aims at clari-
fying this issue under the perspective of unsupervised learning: given 64 spectral components
representing the elements of the amplitude spectrum of a 128 sample-sized vibration signal,
systematic approaches are discussed, compared, and extended to find an adequate feature sub-
set from the set of spectral components. As presented in the result section, the best feature
selection approach is a hybrid technique combining a filter and wrapper methodology.
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8.2. Applied Feature Selection Techniques
Given a d-dimensional data set X = {xi}n

i=1,xi ≡ F = { f j}d
j=1, the aim of the feature selection

task is to choose a subset S from F , S ⊂ F , which represents the data set best with regard
to the clustering performance. Due to the presence of noise in certain frequency bands of
the vibration signal, not all spectral components are believed to contribute equally well to the
final clustering result. Hence, an adequate feature selection scheme is characterized by the
capability of maintaining “good” features while identifying and removing noisy features. The
following subsections discuss two popular methods for feature selection including filter-based
and wrapper-based techniques.

8.2.1. Filter-based Feature Selection
In filter-based feature selection, each feature fi is assigned a certain degree of relevance. In a
succeeding step, the features are rearranged according to the relevance criterion in decreasing
order and the final feature vector comprises the first n elements from the resorted feature list.
Since this assignment is independent from the employed clustering algorithm, filter methods
provide an effective and general means of feature selection. The novel unsupervised filtering
scheme presented in this work is based on a mutual information (MI) filter. Details of how
the mutual information between two random variables can be estimated are provided in the
following section.

Mutual Information The mutual information index has received increased attention due to
its strong theoretical background in information theory. For its derivation, the Kraskov MI
estimator MI(1) [KSG04] is employed which is based on entropy estimation using k-nearest
neighbor statistics. Given normed spaces X and Y with norms ‖.‖x and ‖.‖y, a new space
Z = X×Y is defined. For each zi ∈ Z, zi = (xi,yi), its norm ‖zi‖Z is determined by:

‖zi‖Z = max{‖x‖X ,‖y‖Y} .

Given k ∈ N, we define ε(i)/2 as the distance from zi to its k-th nearest neighbor. Further, we
denote by nx(i) the number of points x j with

∥∥xi− x j
∥∥

X ≤ ε(i)/2 and by ny(i) the number of
points y j with

∥∥yi− y j
∥∥

Y ≤ ε(i)/2. Then the MI can be estimated by:

MI(1)(X ,Y ) = ψ(k)−〈ψ(nx +1)+ψ(ny +1)〉+ψ(N),

where 〈. . .〉 = 1
N ∑

N
i=1E{. . .(i)} is an averaging operation both over i = 1, . . . ,N and over all

realizations of the random samples. ψ(x) is the digamma function recursively defined as:

ψ(x+1) =
{

γ, for x = 0
ψ(x)+ 1

x otherwise
,

where γ is the Euler-Mascheroni constant.

8.2.2. Wrapper-based Feature Selection
In the wrapper-based feature selection approach, the quality of a feature subset can directly be
assessed in terms of the underlying clustering technique rather than a cluster model independent
measure. Given a candidate feature subset C ⊂ F , a cluster model is trained using C. Then, the
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generated model is evaluated by means of an internal criterion J yielding the performance of the
feature subset C. In a final step, the candidate feature subset C is defined to be the optimal one
which maximizes the chosen internal criterion J. The trivial solution to wrapper-based feature
selection is to perform an exhaustive search over all possible feature subsets. However, there are
2d feature subsets in a d-dimensional data set and thus a brute force search is computationally
infeasible. Two approximations of the brute force search which only explore a fraction of
the overall search space are the sequential forward feature selection and the backward search
feature selection approaches. Both techniques are introduced in the following subsections.

Sequential Forward Feature Selection

Formally, the feature selection task is defined as a search problem of finding a subset S of
m features among the complete feature set F with respect to a chosen internal measurement
J(S). Sequential forward feature selection starts with an empty set which is iteratively enlarged
by (at least) one feature. The new feature is determined among the remaining features, i.e.
features which are not included in the currently selected feature set such that the criterion J is
maximized or minimized. The forward selection terminates when a feature insertion step does
not result in an improvement of the criterion J or the feature subset reaches its predefined size.

Backward Search Feature Selection

In a backward search strategy, one or more features are iteratively removed from the feature
subset. Starting with the complete set of features, (at least) one feature is removed after each
iteration. Similar to the sequential forward feature selection approach, the candidate feature
sets {Ci} are evaluated according to a criterion J(Ci). Yet, in this context, a candidate feature
set Ci is decomposed of the feature (sub)set from the previous iteration St−1 minus a candidate
feature c j with c j ∈ St−1, that is Ci = St−1 \ c j. The chosen feature being removed from St−1

becomes the optimal one with respect to J. An instance for the criterion J is presented in the
following paragraph.

Backward Search based on the Change of Posterior Distributions The wrapper technique
of Figueiredo et al. [FJL03] considers the change in the posterior estimates when removing
a certain feature. Here, the key assumption is that the class posteriors are altered less signif-
icantly by conditionally independent features in comparison with relevant features when they
are removed from the feature set. In this context, the change of posterior probabilities denotes
the deviation of the class posteriors with respect to the original model and the one which oper-
ates on the smaller feature subset.
For the derivation of the respective formulas, the E-step of the EM-algorithm is reconsidered.
There, the posterior estimates are determined by

p(c = m|xi,θ)≡ wi,m ∝ π̂m p(xi|θ̂m). (8.1)

In the following, it is assumed that the complete feature set can be divided into a useful fU and
non-useful fN feature set. Furthermore, the non-useful features are independent from the useful
ones and the distribution of the former is the same for all clusters. This yields

p( fi|θU ,θN) = p( fi,N |θN)
k

∑
m=1

πm p( fi,U |θm,U), (8.2)
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where fi is equivalent to the set of features contained in xi. Further, θN denotes the set of pa-
rameters characterizing the distribution of the non-useful features, and θU = {θ1,U , . . . ,θk,U} is
the set of parameters characterizing the mixture distribution of the useful features. Considering
the m-th mixture component and inserting (8.2) into (8.1), we have

wm =
πm p( fU |θm,U)p( fN |θN)

∑
k
j=1 π j p( fU |θ j,U)p( fN |θN)

=
πm p( fU |θm,U)

∑
k
j=1 π j p( fU |θ j,U)

.

Informally, the latter equation reveals that the posterior probability of a certain observation can
be represented in terms of useful features only.
To clarify the relationship between posterior probability calculations and feature selection, the
notion of conditional independence has to be introduced. Applying the definition of Koller et
al. [KS96], a feature subset fN is denoted as irrelevant if it is conditionally independent from
the labels c, given a useful feature set fU . Formally, this can be expressed as

p(c| f ) = p(c| fU , fN) = p(c| fU).

From the latter equation the following implication can be made

p(c| fU , fN) = p(c| fU)⇒ KL(p(z| fU , fN)‖p(c| fU)) = 0, (8.3)

where KL denotes the KL divergence between the probability distributions p(c| fU , fN) and
p(c| fU). Equation (8.3) shows that the removal of non-useful features from the set of useful
features does not alter the posterior probability distribution and hence results in a KL diver-
gence of 0.
To obtain a criterion for the performance of a candidate feature set, Figueiredo et al. propose
to average this measure over the feature space given by the training samples. Note, however,
that in the case of unsupervised learning, the true labels c cannot be inferred. Instead the ex-
pected values W = {wi,m}n,k

i=1,m=1 are employed to estimate the sample-based feature usefulness
measure. The latter is based on the assumption that W was obtained using the full feature set
and a clustering model with parameter vector θ̂ . Further, the set V = {vi,m(N)}n,k

i=1,m=1 is de-
fined denoting the expected label values which are obtained when using the features in the
corresponding useful subset U = F \N only. Thus, for vi,m(N), we have:

vi,m(N) = π̂m p(ci,U |θ̂m,U)

(
k

∑
j=1

π̂ j p(ci,U |θ̂ j,U)

)−1

.

Then, Figueiredo et al. determine the “non-usefulness” of a feature by:

J(N) =
1
n

n

∑
i=1

k

∑
m=1

wi,m log
wi,m

vi,m(N)
, (8.4)

with J(N) being the smaller the larger is the conditional independence between yN and the
expected class labels given yU . Hence, the aim of the feature selection task is to find the largest
subset of non-useful features N such that J(N) equals zero. If no feature subset exists which
fulfills this condition, feature selection can be continued by moving the feature fi from the
useful to the non-useful feature set such that J(N∪ fi) is minimum.
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8.3. Feature Subset Evaluation Criteria
The filter-based and wrapper-based feature selection approaches require the definition of the
relevance criterion and evaluation measurement function J, respectively. The adopted tech-
niques are introduced herein. Furthermore, the specific issues related to feature selection in the
unsupervised case are addressed.

8.3.1. A Mutual Information-based Feature Selection Technique
A Combined Filter-Wrapper Approach

Motivated by the success of the mutual information feature selection strategy of Komma et
al. [KZ09b] in the domain of supervised learning, the mutual information criterion is now
considered to estimate the relevance of features with respect to the estimated labels generated
by the Gaussian mixture. Problems arise due to the lack of class labels required for assessing
the degree of statistical relevance. Analogous to the approach of Figueiredo et al. [FJL03],
the estimated class labels obtained after the clustering process are considered instead. Given
the set of estimated class labels, the mutual information-based feature selection scheme can be
summarized as follows:

1. Perform the clustering given the data instances each consisting of the feature subset S.

2. Determine the estimated labeling of the data instances.

3. Calculate the mutual information between each feature and the estimated class labels.

4. Select the first m spectral components with the largest mutual information value.

Note, however, that the presented algorithm violates the definition of a filter-based feature se-
lection technique. This is because a certain clustering model has to be defined which determines
an estimate of the class labels rendering this approach dependent on the employed clustering
method. Hence, the introduced algorithm can be regarded as a combined filter-wrapper tech-
nique rather than a true filter approach.

Embedding the Mutual Information Filter into a Backward Feature Selection Scheme

Considering the latter approach, the selection of the m spectral components with the largest
mutual information value can equivalently be regarded as removing d−m features from the
feature set at once. Alternatively, it is also possible to apply the feature reduction process by
iteratively decreasing the feature count by a predefined number. In so doing, the following
backward feature selection scheme is obtained: starting with the complete set of features, step
1-3 of the above-introduced feature selection technique are applied. Instead of processing the
forth step, r spectral components with the smallest mutual information value are removed from
the current feature set. Then, these steps are iteratively applied until the current feature set
reaches a user-specific size. To the best knowledge of the author, this approach has not been
reported in literature and hence provides a novel means for the feature selection task in the
unsupervised case.
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8.3.2. Wrapper-based Techniques
Wrappers and Sequential Forward Search

In this work, candidate feature subsets for wrapper-based feature selection have been estab-
lished using sequential forward selection (SFS) and sequential backward selection (SBS), ei-
ther inserting or removing one feature at each iteration. Concerning SFS, the active feature
subset A starts with the empty set, A = /0, while the open feature set O consists of the complete
set of available features, O = F . In each iteration, a single feature oi,oi ∈ O, is taken from
the open set and concatenated with the active feature subset to form the candidate feature set
C = A∪ oi. This candidate feature subset is evaluated using a quality criterion function J(C)
yielding a measure for the performance of C. Repeating these steps for all entries of the open
set, the optimal feature subset Copt of size |A|+1 is defined to be the one providing the max-
imum J(C). The corresponding optimal feature oopt is then moved from the open feature set
into the active one and the whole process is iteratively repeated until a desired size of the active
feature set is reached.
Using different quality assessment functions J(C), the evaluation of a feature subset follows
the same scheme. At first, a clustering model is generated using the candidate feature subset
C. Then, the clustering is employed to assess the feature subset quality. As for the quality
assessment functions, a variety of criteria have been considered:

Sum of Squared Errors The sum of squared errors is the optimization criterion used during
k-means clustering. It is defined by the sum of squared Euclidean distances d between the
instances of a cluster j and the respective cluster center µ j summed over the complete set of
clusters ∈ [1,k]:

JSSE(C) =
k

∑
j=1

∑
xi∈ cluster j

d(xi,µ j).

Data Negative Log Likelihood This criterion defines the negative log likelihood of the data
set given the cluster model with model parameters θ where the definition of the likelihood is
given in (3.20) of Section 3.3.1:

JLL(C)≡ L =
n

∑
i=1

log p(xi|θ).

Temporally Coherent Data Likelihood In comparison with the previous criterion JLL(C),
the data likelihood estimation technique of (6.4) introduced in Section 6.2.2 also incorporates
temporal dependencies. Here, it is employed as subset quality criterion as:

JMRF(C) = L2 ≡ LMRF(θ ,π,s,q) = ∑
i

[
log∑

j
p(xi|c = j,θ)πi j (8.5)

−β [KL(si||πi)+KL(si||πNi)+H(si)] (8.6)

−0.5 [KL(qi||pi)+KL(qi||pNi)+H(qi)]
]
. (8.7)
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Temporally Coherent Cost Function In [GD08], Giguere et al. proposed the following cost
function to find an optimal classifier with respect to its parameter set θ :

Jcost(C)≡ cost(θ) =
k

∑
j=1

∑
n−1
i=1 (p(c = j|xi+1,θ)− p(c = j|xi,θ))

2

var(p(c = j|X ,θ))2 , (8.8)

where k denotes the number of terrain classes i, i ∈ [1,k] to cluster and n is the number of data
points xi, i ∈ [1,n]. Equation (8.8) “strike[s] a balance between minimizing variations of classi-
fier posterior probabilities over time, while simultaneously maintaining a wide distribution of
posterior probabilities” [GD08].

Number of Incoherent Pairs The number of incoherent pairs criterion is derived from the
temporally coherent cost function by considering the number of terrain transitions, i.e. situa-
tions in which the estimated class label argmax j p(c= j|xi) differs from the label argmax j p(c=
j|xi+1) which are required for traversing the path given by {xi}n

i=1. Hence, the proposed crite-
rion is defined as:

JNIP(C) =
n−1

∑
i=1

1− I
(

argmax
j

p(c = j|xi+1,θ),argmax
j

p(c = j|xi,θ)

)
.

Mutual Information The mutual information SFS approach makes use of the estimated la-
bels {ai}n

i=1 generated after the clustering process. This labeling is employed to determine the
mutual information between each candidate feature o j from the open set O and the estimated
class labels. The quality assessment function JMI(C) based on the mutual information criterion
is then given by:

JMI(C)≡ JMI(A∪o j) =−MI
(
{ai},{oi, j}

)
,

where {oi, j} denotes the set of realizations of feature j given n data instances. Finally, it has
to be noted that all the introduced criteria J∗(C) have been selected such that a decrease in the
value of J∗(C) indicates a rise in the assumption of observing a feature subset candidate which
provides adequate clustering characteristics. In other words, the optimal feature subset of size
C is defined to be the one which minimizes the respective cost function J∗(C).

Wrappers and Sequential Backward Search

For the sequential backward search (SBS), the active feature set is initially set to the complete
feature set F , A = F . Note that no open feature set O is required in the context of a sequential
backward search. In each iteration, a candidate feature subset is generated by removing one
feature ri,ri ∈ A from the active set, Ci = A \ ri, which is then applied to a quality criterion
function J(Ci). Considering each element of the active set ai as a candidate for being removed,
a ranking of these elements can be established with increasing value of J(Ci). Given that a small
value of J(C) indicates the estimated insignificance of feature ai with regard to the clustering
task, the first m features of the ranking are removed from the active set. Repeating these steps
until the active set reaches a predefined limit yields the final feature subset.
As for the quality criterion J(Ci), the posterior-based “non-usefulness” function of (8.4) is
advised yielding:

Jpost(C) =
1
n

n

∑
i=1

k

∑
m=1

wi,m log
wi,m

vi,m(N)
,
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with v and w being posterior distributions as described above. Since Jpost(C) is the smaller
the more irrelevant a feature subset is assumed, the feature subset selection scheme aims at the
minimization of Jpost(C) at each iteration.

8.3.3. Feature Transformation
Several feature transformation techniques have been adopted to further assess the performance
of the above-mentioned feature selection strategies including low energy, low dimensionality,
MFCC-like, and principal component analysis approaches. Details of the considered tech-
niques are presented in the following.

Low Energy Feature Selection The low energy feature selection approach (LE) is not a
true instance of feature transformation techniques. This is because the selected feature subset
consists of the first m spectral components while no composition of the latter is performed.
Since the low energy feature selection scheme can be realized in terms of a d×m matrix

T = {ti, j}, with ti, j =
{

1 if i = j
0 else

being multiplied with the data matrix X , X ∈ Rn×d , X · T , this type of feature selection is
assigned to the group of feature transformation techniques.

Low Dimensional Feature Transform The low dimensional feature transform (LD) is the
only transform which is based on the unmodified 128 element vibration segment s instead of its
64-dimensional spectral representation. Here, the proposed feature vector x consists of a subset
of the features originally advised in [WFZ06]: given a raw vibration segment s, the feature
vector x is defined as:

x = { sgn, rk, norm(s), min(s), max(s), std(s) }T ,

where sgn denotes the number of sign changes in s, rk is the autocorrelation rk of s at lag
k = 1, and norm(s), min(s), max(s), and std(s) denote the Euclidean norm, the minimum, the
maximum and the standard deviation σ of s, respectively.

logbinning The logbinning technique (LB) applies the MFCC-like feature transform as de-
scribed in Section 5.3.2.

Principal Component Analysis Using principal component analysis (PCA), the resulting
feature transform achieves both a reduction of the instance dimensionality and a linear feature
decorrelation. Given the normalized data matrix X̃ ∈Rn×d , i.e. a matrix whose columns have a
mean of 0 and a standard deviation of 1, the PCA yields a matrix U whose columns contain the
eigenvectors ei of X̃ . The actual transformation is applied by first sorting the eigenvectors in
decreasing order of their corresponding eigenvalues. Then, the first m eigenvectors are chosen
from the reordered set which explain the largest amount of variance. Denoting this set by
{ei}m

i=1 and arranging them column-wise in a matrix E ∈Rd×m, the PCA transform is formally
defined as X̃ ·E.

104



8.4. Experimental Results

8.4. Experimental Results

8.4.1. Experimental Setup
Both, the varying criteria for feature selection and the set of feature extraction schemes have
been experimentally evaluated. The general setup with regard to vibration segment preprocess-
ing, cluster model generation, clustering evaluation, and path generation schemes along with
technique-specific parameters which have been applied during the experiments are presented
in the following.

Vibration Segment Preprocessing With regard to the applied feature selection techniques,
the set of candidate features comprises all 64 DFT amplitude spectrum components. For the
feature extraction approaches, all techniques described in Section 8.3.3 have been adopted.
Note that all generated vibration segment representations consist of a feature subset of size 6.
This choice was made because of the good performance of the MFCC-like descriptor which
also has a dimensionality of 6. Hence, the objective of this work is not only to find a valid
feature subset with beneficial clustering characteristics but also to determine a subset of spectral
components which contains as much features as the MFCC-like descriptor while providing the
same clustering performance.

Clustering Model The clustering model was established by means of the MRF clustering
technique proposed in Chapter 6.2.2. Its corresponding parameter was determined by the neigh-
bor set size estimation technique (Section 6.3.2). To obtain a deterministic result for each path,
the PCA-MRF partitioning scheme (Section 7.3.1) with a neighbor set size of 2 has been em-
ployed as cluster center initialization technique. Prior to the initialization step, outliers were
detected and removed using the outlier removal approach of Section 7.3.2. Note that while the
PCA-MRF partitioning scheme was based on the outlier-processed data set, the actual cluster-
ing considered the whole set of data instances.

Cluster Model Evaluation Criteria Analogous to the previous chapter, the true positive rate
has been employed for accessing the clustering performance.

Path Generation Scheme The following experiments are based on robot traversals over three
and five terrain classes. The considered paths correspond to those that have been adopted in the
experiments of the previous chapters including natural paths as well as artificially generated
ones (cf. Section 2.2). Since the main interest of this chapter is not to examine the influence of
temporal dependencies on the clustering performance but to study the quality of varying feature
selection and extraction techniques, the set of generated paths for the 5 classes experiments has
been reduced. That is, only paths are considered which contain varying travel distances from
2 m up to 32 m, respectively.

8.4.2. Results and Discussion
Tables 8.1(a)-8.1(c) show the results of the 3 and 5 classes experiments for the applied feature
selection techniques. Here, the clustering performance is given in terms of the true positive
rate. Beside the presentation of the clustering quality measure at various robot driving speeds,
the average over all velocity profiles is denoted. Further, Tables 8.1(a)-8.1(c) show the average
over all trials of the 3 and 5 classes experiments at the bottom of the respective tables. Using

105



8. Feature Selection for Vibration-based Terrain Clustering

the latter average measure, the following ranking for the evaluation criteria of the forward fea-
ture selection technique (Table 8.1(a)) can be established: J f MI (81.3%), JICP (80.7%), JMRF
(77.4%), Jcost (72.7%), and finally JSSE (70.9%). The J f MI is characterized by the second best
results for the 3 classes experiments and the best results for the 5 classes experiments. Prob-
lems only arise with respect to robot traversals over 3 terrain classes at a speed of 0.2 m/s.
The JICP criterion performs best with regard to the 3 classes experiments, yet fails to select
an appropriate feature set for the 5 classes experiments. Considering the Jcost measure, the
contrary characteristics can be observed. Here, the Jcost criterion yields the worst results for
the 3 classes experiments with regard to all other criteria but the best ones for the 5 classes
experiments. When applying the JMRF approach, an appropriate clustering performance for the
3 classes experiments can be observed, yet only a mediocre one in the context of robot traver-
sals over 5 terrain classes. The use of the JSSE measure cannot be advised, since it yields true
positive rates below average for all but 2 experiments.
The next part of the discussion considers the backward feature selection schemes (Table 8.1(b)).
Regarding the JbMI criterion, it does not show a significant sensitivity against the number of
features which are removed from the active set in each iteration. With respect to the averaged
results provided at the end of Table 8.1(b), the optimal number of features to be removed from
the active set is 8. Note, however, that the results of the JbMI56 approach where all but 6 features
are removed in a single iteration still yields an adequate clustering behavior. Furthermore, the
true positive rates which are obtained with the JbMI56 criterion outperform the ones of the best
forward feature selection approaches. The other backward feature selection scheme using the
Jpost criterion results in significantly worse outcomes in comparison with all instances of the
JbMI approach.
The ranking of the clustering performance with respect to varying feature extraction techniques
is well-defined. The logbinning method performs better than PCA-transformed spectral com-
ponents (92.9% vs. 87.5%), followed by the low energy (77.9%), and the low dimension de-
scriptor (73.7%) approaches. Here, the number in brackets denotes the averaged results over
both the 3 classes and 5 classes experiments. The logbinning technique provides the largest
true positive rates or at least true positive rates which are close to the best ones. The PCA
approach performs well for the 3 classes experiments, yet it does not yield an appropriate clus-
tering model for robot traversals over 5 terrain classes at a robot speed of 0.2 m/s. The results
obtained when adopting the low energy method and the low dimensional descriptor are diverse.
As some experiements reveal their good performance with respect to the generation of an ap-
propriate clustering model, other experiments do not confirm these findings.
Comparing the best approaches of varying feature selection and extraction techniques among
each other, it can be stated that the feature extraction scheme outperforms backward feature
selection. The latter, in turn, provides better results in comparison with the applied forward fea-
ture selection methods. Given this ranking, the alternative use of feature selection techniques
instead of feature extraction methods becomes questionable. Note, however, that feature se-
lection is superior to feature extraction under the following two point of views: computational
complexity and descriptiveness. Concerning the computational complexity, it has to be noted
that the logbinning and PCA feature extraction approach require the complete set of DFT co-
efficients to be determined in a first step. Only then, the final descriptor can be determined. In
contrast, the feature selection approaches presented in this chapter choose a subset of 6 spectral
component features. Hence, a reduced FFT can be applied which only determines the DFT co-
efficients under consideration, resulting in a significant decrease of computational complexity.
The second benefit of feature selection is its descriptiveness. Since a novel feature obtained
after the principal component analysis represents a linear combination of spectral components,
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the original meaning which is assigned to the unmodified features gets lost. That is, in the
context of terrain clustering, no conclusions with respect to the frequency-clustering perfor-
mance correlation can be made. In contrast, feature selection approaches enable this kind of
data interpretation as they remain the original features.
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Table 8.1.: True positive rate [%] of the 3 and 5 classes experiments for varying velocity profiles
when adopting (a) forward search feature selection, (b) backward search feature
selection, and (c) feature extraction strategies.

(a)

#classes vel
feature selection technique

SSE MRF cost ICP MI

3

0.2 m/s 61.6 73.1 66.8 94.2 70.7
0.4 m/s 71.0 95.4 77.4 97.7 97.0
0.6 m/s 94.1 94.7 68.4 97.9 96.2
average 75.6 87.7 70.9 96.6 88.0

5

0.2 m/s 55.3 66.7 66.2 60.6 64.2
0.4 m/s 83.4 69.4 82.1 72.1 77.1
0.6 m/s 60.3 65.2 75.6 61.4 82.4
average 66.3 67.1 74.6 64.7 74.6

average 70.9 77.4 72.7 80.7 81.3

(b)

#classes vel
feature selection technique

MI1 MI2 MI4 MI8 MI56 post8

3

0.2 m/s 91.5 91.2 91.2 93.1 96.3 72.4
0.4 m/s 95.8 95.2 95.2 94.6 95.6 96.1
0.6 m/s 94.9 97.0 95.3 95.3 86.5 94.6
average 94.1 94.5 93.9 94.3 92.8 87.7

5

0.2 m/s 60.8 64.6 65.3 68.2 63.3 55.6
0.4 m/s 86.3 92.6 92.5 92.2 85.9 76.5
0.6 m/s 80.2 79.4 79.4 79.4 81.1 67.9
average 75.8 78.9 79.1 79.9 76.8 66.7

average 84.9 86.7 86.5 87.1 84.8 77.2

(c)

#classes vel
feature extraction technique
LE PCA LD LB

3

0.2 m/s 94.6 96.7 63.4 97.1
0.4 m/s 82.9 95.7 90.3 97.0
0.6 m/s 57.2 97.6 61.0 97.3
average 78.2 96.7 71.6 97.1

5

0.2 m/s 84.0 64.2 61.9 82.0
0.4 m/s 88.6 89.4 78.7 93.7
0.6 m/s 60.0 81.3 86.7 90.3
average 77.5 78.3 75.8 88.6

average 77.9 87.5 73.7 92.9
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8.5. Conclusion
This chapter addressed the problem of feature selection in the context of unsupervised vibra-
tion segment clustering. Varying feature selection techniques have been examined including
approaches based on sequential forward search and sequential backward search. For both sub-
set search strategies, novel means have been proposed which are based on mutual information
statistics. While the forward search uses the mutual information measure as quality criterion to
evaluate the performance of a candidate subset in a wrapper-style manner, the proposed mutual
information backward search combines the filter and wrapper methodologies. That is, given a
set of candidate features, a clustering model is established using this subset. Then, the labels
which are generated according to the clustering are used to determine the mutual information
between each feature and the estimated labels. In a final step, a certain number of features is
removed from the current set and the process is repeated until a given number of features is
reached.
Experimental results showed the superiority of the mutual information feature subset quality
criterion in comparison with all other candidates of the same feature subset search strategy.
Comparing the clustering performance obtained when applying the proposed feature selection
techniques with those of feature extraction methods, the former approaches yield competitive
results in terms of the true positive rate while conserving the interpretability of the selected
feature subset.
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9. Estimating the Number of Mixture
Components

9.1. Introduction
The clustering techniques in the previous chapters are based on the assumption that the number
of terrain types (clusters) is known a priori. Note, however, that this assumption gives rise to
problems if an adequate estimate of the cluster count can be obtained using prior knowledge,
yet, the robot does not traverse all these terrain types. As a consequence, vibration data rep-
resenting the same ground surface will be assigned to different clusters although they belong
together. Furthermore, it is not always possible to generate a valid estimate of the present clus-
ter count. Hence, autonomous approaches should be considered which try to determine whether
a given cluster count k represents the data well or another cluster model should be chosen by
altering the number of clusters.
Recently, several researchers have addressed the problem of automatically selecting a valid k.
The estimated cluster count is either obtained by splitting or merging existing clusters, or per-
forming both splitting and merging operations in an alternating way. The following techniques
all have in common that they start from a minimum number of clusters and greedily increase
the cluster size by one if the actual clustering model explains the data set worse than the ex-
tended model. For example, Tibshirani et al. [TWH01] introduces the gap statistic comparing
the likelihood of a generated model with the distribution of the likelihood of models trained on
data drawn from a null distribution. Although this approach works quite well for the selection
of k when there is a small number of clusters contained in the data set, Feng et al. showed that
the Gap statistic becomes worse with increasing cluster count [FH07]. A hierarchical technique
was proposed by Pelleg et al. [PM00]. Starting from a cluster which contains all data instances,
this cluster is recursively split into two subclusters whenever a better fit to the data is obtained.
As splitting criterion, the Bayesian information criterion (BIC) [Sch78] is applied. The statis-
tical significance of the BIC, however, has been questioned in [HE04]. There, it is claimed that
the BIC is likely to generate overfitted models by generating too many cluster centers if the
data does not emanate from a strictly spherical Gaussian distribution. Another hierarchical ap-
proach was introduced by Hamerly et al. [HE04]. There, the decision whether to split a cluster
or not is based on the Anderson-Darling test [AD52]. The Anderson-Darling test is a statistical
test which verifies if the data contained in a subcluster appears to be Gaussian distributed. If
this is not the case, the cluster is bisected to improve the overall Gaussian fit. The g-means
algorithm does not assume spherical clusters and provides good results if the true clusters are
separated well. Yet, in the case of overlapping clusters as this is the case for vibration data,
the g-means algorithm is reported to worsen its ability in finding a valid cluster count [FH07].
To alleviate the problem of overlapping clusters, Feng et al. [FH07] present the pg-algorithm.
Similar to the g-means technique, it uses a statistical hypothesis test to decide whether a given
cluster count represents the data set well. In contrast to the g-means algorithm, the pg-means
technique performs this test on the entire model and not on a subcluster level. Feng et al. show
the effectiveness of their approach in difficult cases as well, including non-Gaussian data, over-
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lapping and eccentric clusters, and high dimensional data.
The term “clustering stability” refers to another group of techniques for assessing a valid cluster
count estimate. These methods are based on the assumption that clustering algorithms generate
stable clusterings with an appropriate k and unstable clusterings if k is chosen inappropriately.
Yin et al. [YH09] extended this approach by introducing the measure of hierarchical stability.
There, each model component is tested for stability and recursively split until a stability crite-
rion is met. Similar to the latter approach, Ghorbani et al. [GO10] also employ a stability-based
technique to detect whether to split an existing cluster. Yet, the splitting decision is based on an
outlier detection technique assigning identified outliers to new centroids. Furthermore, Ghor-
bani et al. also allow for the fusion of proximate clusters if they are assumed to be generated
from the same underlying process.
In the following section, the problem of extracting the cluster count from the present data is
applied to the problem of vibration segment clustering. On the one hand, the novel contribution
consists of a systematic comparison of the above-mentioned approaches. Here, the discussion
focuses on the ability of the respective algorithms to cope with overlapping clusters as they
are present in this domain. Furthermore, two external criteria are introduced which allow for
an assessment of the clustering performance with respect to both robot traversal safety and the
number of unnecessary driving mode transitions. This was rendered necessary as the cluster
performance measures of Section 3.3.2 neither provide an intuitive evaluation of the generated
cluster model nor an adequate penalization strategy of cluster refinements, i.e. the recursive
separation of data instances which actually belong to the same terrain type.

9.2. Applied Techniques
Determining the number of components in a Gaussian mixture which is required for an ap-
propriate representation of the data set is an important issue. If the number of components is
chosen too large, the mixture model overfits the data. Selecting too few components, on the
other hand, yields a model which is unable to represent the data well. Recently, researchers pro-
posed several systematic means of establishing an adequate estimate of the component count
such as the BIC-criterion, x-means, g-means, pg-means clustering, and consensus clustering
techniques. An overview of these methods is provided in the following subsections.

9.2.1. The Bayesian Information Criterion
In literature, a variety of component count estimation techniques can be found which are
Bayesian-motivated. Examples include the Bayesian information criterion (BIC) [Sch78, FR98],
the integrated completed likelihood (ICL) [BCG00], the Akaike information criterion (AIC)
[Aka74], and the deviance information criterion (DIC) [SBCL02]. Assessing the performance
of the different approaches in a comparative study, Steele et al. [SR09] showed the superiority
of the BIC approach with respect to the model selection problem for Gaussian mixture models.
The Bayesian information criterion is a measure of evaluating the probability of a model M j

with parameter vector θ from a set of candidate models
{

M j
}l

j=1 given the data set instances
X = {xi}n

i=1, i.e. p(M j|X). Since there is no general means of accessing the model posterior
p(M j|xi), this probability is determined by applying the Bayes theorem:

p(M j|X) =
p(M j)p(X |M j)

p(X)
.
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Assuming the prior probability of a model, p(M j), to be equal for each model and rejecting the
likelihood of X , it can be derived that the model posterior is proportional to the probability that
the data is generated by the model M j, p(X |M j). Note that the validity of the rejection of the
data likelihood p(X) relies on the fact that p(X) is equal for each model. The probability of
observing the data set X given the model M j is determined by:

p(X |M j) =
∫

p(X ,θ j,M j)p(θ j|M j)dθ j,

which can be estimated using the Laplace approximation [Raf95, Rip96] as follows:

log p(X |M j)≈ log p(X |θ̂ j,M j)−
1
2

d(M j) logn.

Here, θ̂ j denotes the maximum likelihood estimate of θ j, d(M j) is the number of free param-
eters in the model M j, and n is the number of training patterns. Using this result, Fraley et al.
[FR98] define the BIC value of the model M j given the training data set X as:

BIC(M j,X) = 2log p(X |θ̂ j,M j)−d(M j) logn.

The latter equation states that the larger the BIC value is, the larger is the evidence for the
model. Related to the selection of the number of components, that means that the component
count k has to be chosen which maximizes the BIC value.

9.2.2. x-Means Clustering
The x-means clustering algorithm [PM00] is a hierarchical approach. That is, it starts with a
certain number of clusters which are then recursively refined during the clustering process. The
refinement is achieved by splitting one existing cluster into two different subclusters. Therefore,
it has to be determined whether a cluster has to be split and how the actual splitting operation
is performed.
The x-means algorithm addresses the latter problem by replacing the centroid of a candidate
cluster by two children and moving them a distance apart proportional to the size of the region
in opposite directions along a randomly chosen vector. Then, the k-means algorithm with k = 2
is applied to the instances which are assigned to the candidate cluster. The resulting centroids
become the centers of the newly created subclusters.
For choosing the cluster to split, the local BIC score of a candidate cluster and the BIC scores
of its children which are generated when splitting the candidate cluster are determined. Since
the x-means algorithm is based on the k-means algorithm for which the identical spherical
Gaussian assumption holds, the BIC score BIC(M j) of a single cluster j with respect to the
complete k-component model is defined as:

BIC(M j) = L j(X)−
p j

2
· logR,

L j(X) = −Rn

2
log(2π)− Rn ·d

2
log(σ2)− Rn− k

2
+Rn logRn−Rn logR.

Here, R denotes the number of data points of the whole data set, R j is the number of points
which belong to cluster j, d denotes the dimensionality of the data set, and p j is the sum of
the free parameters of the model. In this context, p j is determined by p j = k− 1+ d · k+ 1,
for k− 1 class probabilities, d · k center coordinates, and one variance estimate. To determine
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the local BIC score comprising only the candidate cluster or its children, both BIC(M j) and
BIC(M j,1)+BIC(M j,2) have to be calculated where BIC(M j,i) denotes the local BIC score of
the ith child of candidate cluster j. The calculation of the 2-component BIC is based on the fact
that the log-likelihood of the data instances which are assigned to the considered clusters is the
sum of the log-likelihoods of the individual clusters. Further note that for the calculation of the
local BIC score, R has to be replaced by the number of elements contained in the considered
subclusters.
Finally, a candidate cluster is split if the sum of the local BIC scores of the child clusters is
larger than the BIC score of their parent.

9.2.3. g-Means Clustering
The g-means algorithm [HE03] is similar to the x-means clustering approach in terms of split-
ting existing clusters. Yet, it employs another splitting criterion which subdivides a given clus-
ter if the cluster’s data instances do not follow a Gaussian distribution. For this test, Hamerly et
al. adopted the Anderson-Darling statistic [AD52] which is a normality test based on the em-
pirical cumulative distribution function (ECDF). This test is carried out in a one-dimensional
subspace of the original input data since a univariate normality test is known to be a simpler
task in comparison with its multivariate counterpart [Kaf03]. Given the data points {xi}n

i=1
assigned to cluster j, the following two alternative hypotheses can be formulated:

• H0 : {xi} are sampled from a Gaussian distribution.

• H1 : {xi} are not sampled from a Gaussian distribution.

Depending on whether H0 is accepted or rejected, the cluster under consideration is either kept
or split, respectively.
As previously noted, the Anderson-Darling test is a one-dimensional test statistic. Yet, the vi-
bration patterns are high-dimensional rendering it necessary to project the data instances into
a lower-dimensional space. Therefore, a direction has to be defined on which the data points
are projected. The g-means algorithm therefore considers the two new cluster centers which
emerge from the candidate cluster after splitting. The direction which is assumed to be impor-
tant for the clustering task is chosen as the vector which connects the new cluster centers. For
placing the new centers of the child clusters, Hamerly et al. used a deterministic approach in
which the cluster center locations are determined by means of a k-means clustering algorithm
(k = 2) applied to the data instances of the candidate cluster. The k-means algorithm is ini-
tialized with the cluster center of the candidate cluster ci shifted by ±m units along a certain
direction~v, ĉ1,2 = ci±m ·~v. Here, the direction v is determined by the leading eigenvector with
eigenvalue λ with respect to the data subset assigned to the candidate cluster. Finally, m is
defined as m = v

√
2λ/π .

9.2.4. pg-Means Clustering
The projected Gaussian-means (pg-means) clustering approach [FH07] is based on a similar
idea in comparison with g-means, yet the former can also cope with non-Gaussian and over-
lapped data sets. The term projected Gaussians is derived from the use of projections which
are applied to both the clustering model and the data during hypothesis testing. Note that the
projection of the complete model and data set is the key difference to the x-means and g-means
approaches where the statistical tests are performed on a cluster-based level.
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pg-means adopts Gaussian mixture models for clustering which are trained using the expecta-
tion maximization algorithm. Starting with k = 1 classes, the number of classes is increased by
one in each iteration until enough evidence is gained that the observed data was generated by
the current model. To verify the latter condition, the Kolmogorov-Smirnov (KS) test is applied
which determines whether a sample {xi}n

i=1 originates from a specific distribution. Here, the
respective hypotheses are formulated as follows:

• H0 : {xi} are sampled from a mixture of Gaussians with k components.

• H1 : {xi} are not sampled from a mixture of Gaussians with k components.

Since the KS-test is based on one-dimensional data only, both the Gaussian mixture model and
the data set have to be projected into a one-dimensional space. In the approach of [FH07], the
authors therefore adopt the technique of random projections [Das00].
In the following paragraph, both the random projection technique and the Kolmogorov-Smirnov
test are explained in more detail.

Model and Data Projection

To verify the model fitness for a given value of k, the pg-means algorithm projects both the
model and the data set into a one-dimensional space. Data projection yields several benefits:
first, a mixture of Gaussians remains a mixture of Gaussians after the projection and second,
testing the model fitness in one dimension is effective, efficient, and less involved than a test in
higher dimensions.
In the following, a data set X = {xi}n

i=1 from a single Gaussian cluster j with distribution
X ∼ N(µ j,Σ j) in d dimensions is assumed. Here, µ j denotes the d× 1 mean vector and Σ j
is the d× d covariance matrix. Given a projection vector p of unit length, i.e. ‖p‖ = 1, the
projection x̃i of a data instance xi is given by x̃i = p · xi. Further, the projected data set X̃ fol-
lows again a Gaussian distribution with mean µ ′j and standard deviation σ ′j, i.e. X̃ ∼ N(µ ′j,σ

′
j)

with µ ′j = pT µ j and σ ′j = pT ·Σ j · p. Applying the projection vector to the data set X and each
component of the mixture, a one-dimensional representation of the original data and mixture
model, respectively, is obtained. Using both projections, empirical and estimated cumulative
distribution functions (CDFs) are determined which are then applied to the model fitness test
described below.
For the choice of projection vectors, a random projection approach was considered [Das00].
Here, np different projection vectors pi ∼ N(0,1/dI) are generated randomly having approxi-
mately unit length in high dimensions. Feng et al. provide statistical justification of choosing
np ≈−2.62log(ε), where ε denotes the probability of only observing “bad” projections which
are not capable of separating the cluster means.

The Kologorov-Smirnov Test and the Lilliefors Test

After data projection, the univariate Kolmogorov-Smirnov test [Mas51] is applied to verify the
clustering model for a specific k. The KS test statistic is defined as

D = maxl|F(x̃l)−S(x̃l)|,

which is the maximum absolute difference between the true cumulative distribution function
(CDF) F(X) and the empirical cumulative distribution function (ECDF) S(X). Along with
the test statistic D, two other parameters are necessary to completely define the KS-test: the
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significance level α and the critical value. The significance level α defines the probability of
the α error, i.e. the erroneous rejection of H0 if H0 is valid. Further, the critical value is the
threshold the value of the test statistic D is compared to. If the test statistic D is larger than the
critical value, H0 is rejected.
One issue with the KS-test is its requirement for a fully specified true CDF F(X) which is,
however, not available in this domain. To solve this problem, a modification of the KS-test,
the Lilliefor’s test [Lil67], is adopted. This test allows for the use of a CDF estimated from
the data set by modifying the critical values. The test hypotheses, on the other hand, remain
the same. Feng et al. employed the following analytic approximation for deriving the critical
values which also takes test repetitions with regard to the Bonferroni adjustment [Bon35] into
account:

α = exp
(
−7.01D2

cv(ñ+2.78)+3.00Dcv(ñ+2.78)1/2−1.22+
0.97
ñ1/2 +

1.68
ñ

)
, (9.1)

D̃cv =

{
Dcv for n ∈ [5,100]
Dcv · (n/100)0.49 otherwise

, (9.2)

where n is the sample size, ñ denotes the saturated sample size, ñ=min(100,n), and α is a user-
defined confidence level. Furthermore, D̃cv represents the approximated critical value. Note
that, in its original form, the Lilliefor’s test is intended for the correction of the critical values
for CDFs which arise from estimated univariate Gaussian distributions. In [FH07], Feng et al.
showed, however, that these corrections also apply to multivariate Gaussian distributions and
distributions from mixtures of Gaussians as well when they are projected to a one-dimensional
space.

9.2.5. Mixture Component Count Estimation Using Consensus Clustering
Consensus clustering [MTMG03, SG03] provides a means of unifying the knowledge obtained
from several clustering processes. Thereby, varying knowledge can be generated by subsam-
pling the present data set, employing data from differing sensors, or altering the clustering
technique. Given a set of clustering solutions, consensus clustering techniques aim at integrat-
ing the obtained data labelings into a final clustering which has beneficial characteristics in
terms of robustness and quality. Vinh et al. [VEB09] adopted this framework in the domain of
estimating the number of clusters k in a data set. Their method is based on the assumption that
a valid k minimizes the discrepancy between the clusterings obtained by different algorithms
or different runs of a single algorithm. Given a candidate value for k, k̂, along with a set of b
clustering solutions, Uk = {Ui}b

i=1, Vinh et al. define the consensus index (CI) of Uk as:

CI(Uk) = ∑
i< j

AM(Ui,U j),

where the agreement measure AM is an appropriate clustering index. In other words, the con-
sensus index CI quantifies the average agreement between all pairs of clustering solutions in the
clustering set Uk. The larger the value of CI, the larger is the stability of the clustering process
and hence the larger is the probability that k was chosen accurately. Finally, the optimal cluster
count is the one which maximizes the consensus index.
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9.3. Mixture Component Count Estimation for Vibration
Fingerprint Clustering

The BIC-criterion and the x-means, g-means, and pg-means clustering techniques can be ap-
plied to any data set without modifications. Yet, the consensus clustering techniques requires
a definition of how varying clustering results, i.e. differing labelings of the data instances, are
obtained. In this approach, varying clustering solutions are generated by altering the repre-
sentation of the vibration data. The employed representations are discussed in the following
subsection.

9.3.1. Diversifying the Clustering Input Data Set
The results of the previous chapter reveal that varying vibration data representations yield a
differing clustering performance with respect to the classification error. Since the discrepancy
in the classification error is an effect of diverse clustering solutions, the selection of varying
vibration data representations for the generation of differing clustering solutions is proposed.
As for the representations, the mutual information backward feature selection and several fea-
ture extraction techniques have been considered. In comparison with the feature extraction
techniques presented in the last chapter, three additional approaches have been considered:
PCA-MI, MI-binning, and PCA-MI-binning.

PCA-MI The PCA-MI approach follows the mutual information-based approach introduced
in Section 8.3.1. The key difference is the process of generating the initial model being
responsible for assigning a mutual information score to each variable. Instead of relying
the model generation process on unmodified 64-dimensional DFT amplitude spectra, a
lower dimensional representation of these input vectors is employed. This lower dimen-
sional representation of the spectral components is obtained by PCA transforming the
input signals using a set of six eigenvectors which explain the largest amount of vari-
ance.

MI-binning The MFCC-like preprocessing approach of Section 5.3.2 is based on the assump-
tion that the importance of the spectral components decreases with increasing frequency.
In contrast, the proposed MI-binning technique determines this importance statistically
by calculating the mutual information between each spectral component and the deter-
mined set of labels analogously to the mutual information-based feature selection ap-
proach of Section 8.3.1. Then, the spectral components are rearranged in order of de-
creasing mutual information. Applying the MFCC-like binning technique of 5.3.2 with
the same logarithmic scale, a set of bins is obtained each containing the more elements
the less is the amount of mutual information assigned to its members. Replacing these
members by their average yields the final 6-dimensional representative of the vibration
pattern.

PCA-MI-binning Note that the determination of the initial clustering model for estimating
the mutual information score in the MI-binning approach relies on the complete 64-
dimensional DFT amplitude spectrum. Substituting these input patterns by a lower di-
mensional representation results in the PCA-MI-binning technique. The actual dimen-
sionality reduction process was applied by means of PCA using a set of six eigenvectors
with the largest eigenvalues.
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(a) (b)

Figure 9.1.: (a) The correct and (b) the erroneous subdivision of a 2-class data set. Although the
solution of (b) can be regarded as a refinement of the true clustering an evaluation
of the ARI and AMI performance measures only yield values of 0.57 and 0.58,
respectively.

9.3.2. Evaluation of the Clustering Results
Evaluation in the Context of Traversal Safety

The adjusted rand index and the adjusted mutual information clustering quality measures intro-
duced in Section 3.3.2 can also be applied when the cluster counts ktrue and kest of the true and
estimated clustering solutions differ. Note, however, that in the context of robot traversal safety,
it is arguable whether the determination of the true clustering is of primary interest. To support
this claim, a clustering of an artificial two terrain setting is depicted in Figure 9.1. Whereas one
terrain class is correctly represented by a single cluster A, the other terrain class is separated
into two distinct subclusters B1 and B2 (cf. Figure 9.1(a)). As an effect, the ARI and the AMI
indices penalize the solution shown in the second image too strongly although the estimated
clustering only represents a refinement of the true one. In the given example, the evaluation by
means of the ARI and AMI indices yields outcomes of 0.57 and 0.58, respectively. To alleviate
this effect, an aggregation step is proposed prior to the cluster evaluation. In this aggregation
step, all clusters are merged whose majority of instances belong to the same class in relation
to the true data labeling. In this context, the class majority for a given cluster l is defined in
terms of the cluster purity which denotes the maximum relative frequency of a certain class j,
{xi ∈ class j|xi ∈ cluster l}, with respect to the total number of instances |X | of cluster l:

Purity(cluster l) = max
j

{xi ∈ class j|xi ∈ cluster l}
|X |

The class providing the majority of instances within cluster Cl is given by:

Majority(cluster l) = argmax
j

{xi ∈ class j|xi ∈ cluster l}
|X |

.

Here, | · | denotes the number of elements contained in the respective set and class j is the
true label of instance xi. The agglomeration process starts by labeling the instances of the
generated clusters according to their true class membership. Then, for each class j the set of
clusters C j ⊂ {cluster 1, . . . ,cluster m} is determined for which Purity(cluster i) > 0.95 and
Majority(cluster i) = class j, i ∈ [1,m]. Note that while each class j represents a class from the
reference data set, cluster i denotes an estimated cluster obtained after model generation.
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For the reason of clarity, the set of class labels of the reference data set is referred to as π =
{πi}k

i=1 and the set of cluster labels corresponding to the estimated clustering with kest clusters

is denoted by ρi = {ρ}kest
i=1 . Given the set of clusters C j, the instances of the majority class j

are assigned a new and unique label π j /∈ π, π j /∈ ρ . Finally, the label of all other instances is
remapped to the one generated by the clustering process, that is, to a label contained in the ρ

set.

Evaluation in the Context of Driving Mode Transition Reduction

If the main objective is the reduction of necessary driving mode transitions rather than robot
traversal safety, the quality of an appropriate cluster count estimation procedure becomes an
important issue. These situations arise when all of the expected terrain classes are assumed to
be non-hazardous, yet, each terrain type requires its own specific driving style. In this context,
the probability of an unnecessary driving mode transition rises with an increasing refinement
of a certain terrain cluster, that is, the oversegmentation of a larger cluster representing a single
terrain into several smaller ones. The driving mode transition is termed unnecessary, since
in this case, the set of smaller clusters represent the same terrain type along with the same
ground surface characteristics and hence does not require a change in the driving behavior. To
account for a too detailed refinement of the presented terrain, an external measure is proposed
which is based on the cluster purity index introduced above. This external measure quantifies
the number of clusters in which vibration signatures from a certain terrain class represent the
majority with respect to all other classes of the reference data set. Formally, this measure is
defined as:

Split(class j) =
kest

∑
i=1

I(Majority(cluster i),class j),

where kest denotes the cluster count of the estimated clustering and class j is the jth class of
the reference data set.

9.4. Experimental Results

9.4.1. Experimental Setup
The choice of the experimental setup was based on the results of the previous chapters, con-
sidering the techniques which yielded the best clustering performance. That is, for all cluster
count estimation approaches which rely on the outcomes of an initial clustering step, the tem-
porally coherent MRF clustering scheme along with the 2-component PCA-MRF cluster center
initialization technique have been adopted. The corresponding parameter of the initialization
technique, the neighbor set size, was assigned a value of 2 as advised in the latter two chapters.
If not stated otherwise, the MFCC-like descriptor was chosen as vibration segment representa-
tion providing the best clustering performance with regard to the considered feature selection
and feature extraction methods (cf. Chapter 8). And finally, the employed paths correspond
to those which have been adopted in the experiments of the previous chapter including robot
traversals over 3 and 5 classes, respectively.
In this work, all the cluster count estimation techniques introduced in Section 9.2 have been
implemented, including the BIC approach, x-means clustering, g-means clustering, pg-means
clustering, and the consensus clustering techniques. The choice of the respective parameters
and implementation details are presented in the following paragraphs.
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BIC There are no parameters assigned to the Bayesian information criterion.

x-means Pelleg et al. [PM00] do not provide a detailed description of the cluster splitting
process leaving the concrete implementation of their algorithm to the user. In this work, a
candidate cluster is bisected by first selecting two instances of the data subset in a random
manner yielding u and v. The splitting axis is then defined as the straight line passing through
the selected points. Given the normalized orientation of this line ~o along with the standard
deviation σ of the candidate cluster, two novel points are determined by p1,2 = ~m±4σ~o where
~m denotes the center between u and v. In the following, p1,2 are employed as initial cluster
centers for a succeeding k-means clustering step with k = 2. The clustering which arises from
the latter step represents the outcome of the cluster bisection procedure.

g-means The g-means approach requires the significance level α to be specified. The value
α denotes the probability of erroneously rejecting the hypothesis that the data instances around
the center are sampled from a Gaussian distribution. For its derivation, it has to be noted that
the g-means cluster count estimation procedure is based on multiple tests hence demanding a
Bonferroni adjustment [Mil91]. Following the suggestion of Hamerly et al. [HE03], α was set
to α = 0.0001.

pg-means For projecting the Gaussian mixture model to a one-dimensional subspace, a total
of 18 projection directions has been considered. Thereby, these directions where sampled at
random as detailed in Section 9.2.4. Further, the Lilliefors test was applied at a significance
level of α = 0.001, hence determining the required critical value Dcv by means of (9.2).

consensus clustering The implemented consensus clustering technique employs the differ-
ing preprocessing schemes of Section 9.3.1 to generate a variety of clustering solutions. For
the agreement measure AM, both the adjusted rand index and the mutual information criterion
have been adopted resulting in the ARI consensus clustering (consARI) and AMI consensus
clustering (consAMI) approaches. Each clustering applies the respective steps as explained in
the introduction given above.

Regarding the evaluation of the obtained data partitionings, not only the number of estimated
clusters was taken into account but also the quality of the obtained clusterings. As quality cri-
teria, the adjusted rand index and the mutual information measure have been employed. Note
that the use of the true positive rate is not applicable any more, since the number of clusters of
the reference and estimated partitions may vary. In the result section, both criteria are presented
denoting the clustering performance of the generated models before and after the aggregation
procedure (Section 9.3.2). The term “generated models” does not necessarily relate to the
models which are established during the cluster count estimation procedure. For the BIC and
pg-means approaches, it proved to be beneficial to disregard temporal dependencies during the
generation of the model which estimates the number of clusters k. In a second step, a tempo-
rally coherent MRF clustering was adopted with k representing its hyperparameter. The same
applies to the consensus clustering techniques which do not establish a single clustering but
multiple data partitions instead. As for the vibration segment representation, the MFCC-like
descriptor has been used in this context. The outcomes of the x-means and the g-means algo-
rithms, on the other hand, which claim to yield an appropriate clustering by themselves, are
applied unalteredly to the proposed evaluation schemes.
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9.4.2. Results and Discussion
Results of the 3 Classes Experiments

Table 9.1 shows the results of the cluster number estimation experiments along with the cluster-
ing performance which is obtained when evaluating the generated partitions. For the evaluation
process, paths are considered which contain a total of three terrain classes and which are tra-
versed at velocity profiles 1-3, ranging from 0.2 m/s up to 0.6 m/s. As clustering performance
criteria, both the adjusted rand index and the adjusted mutual information measures have been
adopted. Here, the discrimination is made between the original clustering and a clustering
with a succeeding aggregation step as described in Section 9.3.2. Further, the last 6 rows de-
note the results when averaging the outcomes over all robot driving speeds. With regard to
the latter measure, the consensus clustering terrain count estimation technique yields the best
clustering performance for both the adjusted rand index and the adjusted mutual information
criterion. Here, the estimated cluster count does not vary with respect to the chosen evalua-
tion criterion (consARI , consAMI) yielding equivalent outcomes when evaluating the respective
clustering models. The second best cluster number derivation method is the BIC technique,
followed by the pg-means, g-means, and x-means approaches. It is noticeable that the ob-
tained clustering of the g-means approach is significantly worse than the one provided by the
BIC technique although both estimation approaches yield the same number of clusters. This is
because the latter technique performs a temporally coherent MRF clustering after the cluster
number estimation step. For the g-means method, on the other hand, the data partition is kept
which arises during the estimation procedure.
The cluster aggregation technique is only applied to a robot driving speed of 0.2 m/s for the
BIC, x-means, and g-means approaches. The largest decline in the estimated cluster count is
obtained for the x-means technique. Here, this number decreases from 23 to 10 cluster. The
results indicate that the respective approaches recursively subdivide a pure cluster rather than
generating subclusters which contain various terrain types. In this context, a pure cluster is
defined as a cluster which contain elements of the same terrain at a majority of 95%.
Table 9.2 presents the number of clusters in which the considered terrain classes represent the
bare majority. It reveals that at driving speeds of 0.2 m/s and 0.4 m/s, the x-means, g-means,
and pg-means techniques show the characteristics of subdividing the cluster which contains in-
stances from the asphalt class. Further, for velocity profile 0.2 m/s and terrain count estimation
technique x-means the grass cluster is subdivided into 16 subclusters. This indicates that the
distribution of grass instances does not follow a Gaussian distribution with spherical shape.
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Table 9.1.: The estimated cluster count along with the clustering performance in terms of the
ARI and AMI quality measures for the 3 classes experiments when varying the
velocity profile. Here, the results before (none) and after (applied) the cluster ag-
gregation step are presented.

vel aggregation criterion
k estimation technique

bic x-means g-means pg-means consARI consAMI

0.
2

m
/s

none
kest 5 23 5 4 3 3
ARI 0.34 0.12 0.24 0.51 0.91 0.91
AMI 0.42 0.22 0.34 0.57 0.87 0.87

applied
kest 4 10 4 4 3 3
ARI 0.52 0.17 0.27 0.51 0.91 0.91
AMI 0.51 0.26 0.37 0.57 0.87 0.87

0.
4

m
/s

none
kest 4 4 4 4 3 3
ARI 0.62 0.38 0.37 0.62 0.91 0.91
AMI 0.58 0.38 0.40 0.58 0.87 0.87

applied
kest 4 4 4 4 3 3
ARI 0.62 0.38 0.37 0.62 0.91 0.91
AMI 0.58 0.38 0.40 0.58 0.87 0.87

0.
6

m
/s

none
kest 3 4 3 2 3 3
ARI 0.93 0.31 0.36 0.37 0.91 0.91
AMI 0.89 0.29 0.38 0.39 0.86 0.86

applied
kest 3 4 3 2 3 3
ARI 0.93 0.31 0.36 0.37 0.91 0.91
AMI 0.89 0.29 0.38 0.39 0.86 0.86

av
er

ag
e none

kest 4 10.33 4 3.33 3 3
ARI 0.63 0.27 0.32 0.50 0.91 0.91
AMI 0.63 0.30 0.37 0.51 0.87 0.87

applied
kest 3.67 6 3.67 3.33 3 3
ARI 0.69 0.28 0.33 0.50 0.91 0.91
AMI 0.66 0.31 0.38 0.51 0.87 0.87

Table 9.2.: The number of clusters in which a certain terrain type represents the bare majority
when varying the velocity profile along with the cluster count estimation technique.
All results denote the outcomes of the 3 classes experiments.

vel terrain
k estimation technique

bic x-means g-means pg-means consARI consAMI

0.
2

m
/s asphalt 2 6 2 2 1 1

pavement 2 1 1 1 1 1
grass 1 16 2 1 1 1

0.
4

m
/s asphalt 2 2 2 2 1 1

pavement 1 1 1 1 1 1
grass 1 1 1 1 1 1

0.
6

m
/s asphalt 1 2 1 1 1 1

pavement 1 1 1 0 1 1
grass 1 1 1 1 1 1

121



9. Estimating the Number of Mixture Components

Results of the 5 Classes Experiments

The presentation of the results of the 5 classes experiments follows the one of the 3 classes
experiments. Concerning the averaged clustering performance of the respective approaches
presented in the latter rows of Table 9.3, the pg-means approach yields the best outcomes with
respect to both the adjusted rand index and the adjusted mutual information criterion. The best
performing techniques of the 3 classes experiments, consARI and consAMI , are positioned third
place excelled by the BIC cluster number estimation approach. This statement proves to be
valid for both techniques with respect to their adopted quality criteria, consARI and consAMI ,
respectively. The g-means and x-means techniques denote the cluster count estimation tech-
niques providing the lowest clustering quality.
For robot driving speeds above 0.2 m/s, a general trend of overestimating the cluster count size
can be observed. This overestimation is distinctive most when adopting the x-means clustering
technique and less noticeable for the g-means method. The BIC and pg-means approaches, on
the other hand, yield cluster counts which are close to but still larger than the correct ones. The
consensus clustering derivation schemes are characterized by underestimation for all velocity
profiles. Note that this is likely to decrease the robot safety during the robot traversal, since
the aggregation of varying terrain types into a single cluster prevents their distinguishability.
As one of these ground surfaces might increase its hazardousness due to a change in weather
conditions, both terrain types are nevertheless processed in the same manner. This either results
in an over- or underestimation of the present robot traversal safety and hence an inappropriate
velocity profile is chosen. Note that an underestimation of the present terrain type count can
also be observed for all but the x-means and pg-means techniques at a robot driving speed of
0.2 m/s.
Concerning the aggregation technique, it is applied in 7 out of 18 experiments. The decline in
the number of estimated clusters, however, is rather insignificant. This is a reason of the class
number derivation techniques themselves yielding outcomes which are close to the real ones.
The only exception is the x-means technique which significantly overestimates the number of
clusters. Referring to Table 9.4, this overestimation originates mainly from the grass terrain
class. In addition, the clusters containing asphalt instances and less significantly PVC floor
instances are partitioned in smaller subclusters as well. With regard to both consensus cluster-
ing techniques, the asphalt class and clay terrain classes are underrepresented for the 0.2 m/s
velocity profile while the PVC floor instances do not obtain a majority with respect to their
assigned cluster in the 0.6 m/s experiments.
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Table 9.3.: The estimated cluster count along with the clustering performance in terms of the
ARI and AMI quality measures for the 5 classes experiments when varying the
velocity profile. Here, the results before (none) and after (applied) the cluster ag-
gregation step are presented.

vel aggregation criterion
k estimation technique

bic x-means g-means pg-means consARI consAMI

0.
2

m
/s

none
kest 4.67 23 4 6 3 3
ARI 0.47 0.15 0.38 0.48 0.42 0.44
AMI 0.56 0.30 0.43 0.58 0.49 0.51

applied
kest 4.67 9 4 5.58 3 3
ARI 0.47 0.34 0.38 0.51 0.42 0.44
AMI 0.56 0.37 0.43 0.58 0.49 0.51

0.
4

m
/s

none
kest 7.50 24 16 7 5 5
ARI 0.74 0.26 0.34 0.74 0.84 0.84
AMI 0.74 0.39 0.44 0.75 0.85 0.85

applied
kest 6.08 14 13 5.50 5 5
ARI 0.84 0.51 0.49 0.84 0.84 0.84
AMI 0.82 0.49 0.50 0.84 0.85 0.85

0.
6

m
/s

none
kest 5 18 7 5 3.58 4
ARI 0.82 0.29 0.56 0.82 0.61 0.68
AMI 0.82 0.41 0.57 0.82 0.65 0.71

applied
kest 5 11 7 5 3.58 4
ARI 0.82 0.40 0.56 0.82 0.61 0.68
AMI 0.82 0.46 0.57 0.82 0.65 0.71

av
er

ag
e none

kest 5.72 21.67 9 6 3.86 4
ARI 0.67 0.23 0.43 0.68 0.63 0.65
AMI 0.71 0.37 0.48 0.72 0.66 0.69

applied
kest 5.25 11.33 8 5.36 3.86 4
ARI 0.71 0.42 0.48 0.72 0.63 0.65
AMI 0.73 0.44 0.50 0.75 0.66 0.69
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9. Estimating the Number of Mixture Components

Table 9.4.: The number of clusters in which a certain terrain type represents the bare majority
when varying the velocity profile along with the cluster count estimation technique.
All results denote the outcomes of the 5 classes experiments.

vel terrain
k estimation technique

bic x-means g-means pg-means consARI consAMI

0.
2

m
/s

PVC 1 2 1 1 0.83 0.92
asphalt 0.67 2 1 1.58 0.17 0.08
gravel 0.50 1 0 0.92 0.83 1
grass 1 16 1 1.42 1 1
clay 1.50 2 1 1.08 0.17 0

0.
4

m
/s

PVC 1 5 3 1 1 1
asphalt 1.50 8 5 1 1 1
gravel 1 2 2 1 1 1
grass 2 7 3 2 1 1
clay 2 2 3 2 1 1

0.
6

m
/s

PVC 1 2 1 1 0.33 0.25
asphalt 1 2 1 1 0.67 0.75
gravel 1 1 1 1 1 1
grass 1 9 1 1 1 1
clay 1 4 3 1 0.58 1
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9.5. Conclusion
In this chapter, several techniques have been thoroughly examined for autonomously estimat-
ing the number of clusters contained in a given data set. This problem is important to consider,
since many clustering schemes such as the k-means and Gaussian mixture model-based tech-
niques require this parameter to be specified a priori.
The results obtained after evaluating the generated models in terms of the adjusted rand index
and the adjusted mutual information measure did not prove to be consistent. In a series of
experiments with 3 classes, a consensus clustering scheme outperformed all other techniques,
correctly determining the true cluster count at various robot driving speeds. Here, the cluster
count estimation scheme is based on establishing a sequence of differing clustering solutions at
a fixed k. In a succeeding step, an average consensus index is derived over all pairs of generated
labelings. The estimated number of classes then becomes the kest which maximizes the consen-
sus index. In another series of experiments, the paths represented robot traversals over 5 terrain
types. Here, the best cluster count estimation method is based on a combined projection-testing
approach. Given a certain Gaussian mixture model with k components, this model along with
the instances of the data set are projected into a one-dimensional space. Then, the obtained
empirical cumulative distribution function of the projected data is tested against the cumulative
distribution function of the projected model in terms of a one-dimensional Lilliefors test. The
chosen cluster count kest is the minimum k for which the Lilliefors test passes with regard to
a given number of random projections. Although both the consensus clustering technique and
the pg-means approach yielded adequate clusterings with respect to the 3 classes and 5 classes
experiments, respectively, these findings were not confirmed when adopting these algorithms
in the other experimental setting. For example, if the pg-means technique is applied in the 3
classes experiments, both under- and overestimation of the correct number of terrain types oc-
curred. The use of the consensus clustering scheme in the 5 classes experiments, on the other
hand, resulted in a significant underestimation of the true cluster count in 2 of 3 experimental
settings.
As further contribution, two quality measures were introduced to evaluate the performance of
the resulting cluster models. The first one penalizes the refinement of a larger cluster into
smaller subclusters less in comparison with existing approaches. This quality measure was
motivated by the fact that in the context of robot traversal safety, a cluster refinement does not
increase the degree of hazardousness. Note that in this case, each subcluster represents a single
terrain type which requires a well-defined driving style. This is in contrast to non-uniform sub-
clusters which comprise instances from varying terrain classes and hence agglomerate driving
styles of differing characteristics. With regard to the driving style transition frequency, however,
a possible cluster refinement becomes an issue as each subcluster may be assigned a varying
driving behavior. Hence, a second quality measure was proposed providing information about
the splitting tendency of certain ground surfaces.
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10. Conclusion

10.1. Thesis Summary
This thesis addressed the problem of terrain discrimination using inertial sensors in the context
of supervised and unsupervised learning. As for the inertial measurements, acceleration data
acquired during robot navigation has been employed which are known to provide varying char-
acteristics depending on the traversed terrain class. For both domains, the main contribution
comprises the inclusion of temporal coherences which are contained in succeeding measure-
ments. The developed techniques are based on the assumption that these measurements were
acquired on the same terrain type assigning a smaller probability to terrain transitions and a
larger one to situations in which the ground surface does not change from one measurement to
the next.
For the task of terrain classification where labeled training data is available, previous research
focused on point estimates only, considering the ground surface with the maximum posterior
probability. In contrast, the proposed technique takes the distribution of class posteriors over
the complete set of terrain types into account. These class posteriors are then filtered over time
such that the current prediction does not only depend on a single measurement but a history of
observations. The actual filtering process is realized by means of a Bayes filter which allows
for a recursive terrain class discrimination with regard to all measurements acquired from the
beginning of the robot traversal up to the current time. The application of the original Bayes fil-
ter formulation introduces the problem of high-dimensional density estimation, which is known
to be a non-trivial task due to the curse of dimensionality. To overcome this issue, a Bayes filter
reformulation was proposed which substituted the likelihood of single observations by the re-
spective class posteriors. This modification facilitates the overall filtering process, since these
class posteriors are already available after each point estimate of the ground surface. Experi-
mental results using data which were collected during a robot traversal showed the superiority
of the proposed temporally coherent prediction scheme in comparison with a single observation
approach where the ground surface estimate relies on an individual measurement only. These
experiments comprised both natural paths of robot traversals over 3 classes and artificially gen-
erated ones with 5 classes where preprocessed blocks of acceleration signals were concatenated
in a systematic manner.
Note that the Bayes filter approach only relies on the estimation of class posteriors of individ-
ual measurements. Since varying classification techniques provide means of deriving the latter
probabilities, different class posterior estimation approaches were embedded into the Bayesian
prediction framework. A thorough investigation showed that all considered classifiers bene-
fit from the inclusion of temporal dependencies. As a further contribution, the random forest
classifier and the random ferns classification techniques have been adopted in the domain of
terrain discrimination. Since the calculation of posterior probabilities represent the key ele-
ment of Bayesian filtering, special care has been taken with regard to a classifier’s capability of
determining appropriate class posteriors. In this context, a succeeding posterior probability cal-
ibration step for the random ferns approach has been proposed. Using the calibration method,
the posterior probabilities of true positives are assigned larger values, hence increasing the con-
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10.1. Thesis Summary

fidence of correct predictions. Finally, the investigation also comprised the introduction of a
novel preprocessing scheme which borrows its key characteristics from the Mel-frequency cep-
strum approach. Using this kind of preprocessing, the dimensionality of the obtained feature
vector is decreased to 6 in comparison with the 64 dimensions of the DFT amplitude spectrum
feature extraction scheme which was previously considered for the terrain discrimination task.
With regard to the experimental results, several classifiers benefited from the shortened feature
descriptor such as the Gaussian mixture classifier approach. The latter finding is notable as the
machine learning models described in later chapters of this thesis were represented in terms of
Gaussian mixtures.
The second part of this work focused on terrain discrimination in the domain of unsupervised
learning. Compared to the supervised case, there are no labeled instances available which can
be used for the generation of a predictive model. Instead, a clustering approach aims at au-
tonomously grouping acquired acceleration signals into clusters such that observations with
similar characteristics are assigned to the same cluster while observations with varying char-
acteristics are positioned in different clusters. For this task, a graphical model approach based
on Markov random fields has been considered which is also capable of integrating temporal
dependencies. Here, temporal coherences are exploited by constraining the distributions of
class priors and posteriors to be similar within a neighborhood of given size. To estimate the
latter, a general means was proposed which relies on multivariate outlier detection techniques.
It showed that the neighborhood size estimation technique yields appropriate clustering results
in the case of both high-frequency and low-frequency terrain changes. Furthermore, it is able
to identify situations where there is no temporal coherence provided. Comparing the tempo-
rally coherent Markov random field approach with a Gaussian mixture model-based clustering
technique, the former significantly outperforms the latter in terms of clustering performance.
Note that for assessing the clustering performance, a total of three quality measures have been
adopted: measures based on pair counting, mutual information and classification performance.
The feature extraction investigations of Chapter 5 revealed the superiority of a more compact
representation of acceleration signals in the context of Gaussian mixture model generation.
Note, however, that the Mel-frequency cepstrum-based feature extraction scheme results in a
loss of interpretability as the novel features are determined by an averaging process of spec-
tral frequency amplitude magnitudes each representing varying energy content. Hence, there
is no possibility to recover the contribution of each frequency subband to the quality of the
clustering process. The latter information, however, is necessary to infer whether a good clus-
tering emanates from smaller or larger amplitudes contained in the acceleration signal. To
overcome this problem, varying feature selection approaches were introduced which selected a
subset of spectral components each representing a certain frequency content. Experimental re-
sults revealed that a novel approach based on mutual information significantly outperformed all
other considered techniques and yielded comparable results with regard to the Mel-frequency
cepstrum-based vibration signal representation scheme. This approach relied on a backward
search strategy removing a certain number of feature candidates at each iteration. For the re-
moval, those features are considered which have the minimum amount of mutual information
with the set of estimated target labels.
The clustering model employed in this work was based on Gaussian mixture models. One is-
sue related to this kind of clustering techniques is that the final model parameters after training
depend on their initialization. Each initial choice might result in another outcome representing
a varying local optimum with respect to the criterion being optimized during the cluster model
training process. Note that this problem complicates the feature selection task: given a cluster-
ing model of bad performance it is impossible to state whether the improper model behavior
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emanates from an inappropriate model initialization or an unfavorable feature subset. Hence,
this thesis also focused on a deterministic means of initializing Gaussian mixture model-based
clustering techniques. The proposed model is a hierarchical one which recursively bisects the
data in a top-down manner. After choosing the cluster to split and a separating hyperplane
which divides the cluster into two subspaces, the cluster instances are assigned to one of the
generated subclusters. The respective means of the two instance sets are then defined as the
novel centers of the clustering solution replacing the center of the divided cluster. Experiments
showed that the clustering model benefits from a further cluster center refinement process re-
alized in terms of a 2-means clustering step. Several techniques have been considered for the
latter where the application of a temporally coherent clustering approach yielded the largest
improvements in the clustering quality.
The final investigation focused on the estimation of terrain classes contained in an unlabeled
data set. This work proved to be necessary as Gaussian mixture model-based clustering ap-
proaches require the number of classes to be known a priori. The complexity of this problem
can be inferred from the experimental results as no approach was able to estimate the terrain
class count correctly in all situations: while the Bayesian information criterion performs well
for the 5 classes experiments but results in an overestimation of the terrain class count in the
3 classes experiments, an approach based on consensus clustering correctly determined the
number of classes in the 3 classes experiment but underestimated this number when the robot
traversal paths contained 5 classes. For the latter technique, the consensus was established us-
ing the outcomes from varying models which are based on the same MRF clustering approach
but varying preprocessing schemes. Thereby, the set of preprocessing techniques consisted of
differing feature extraction strategies all providing a feature representation with 6 dimensions.
As a further contribution, two novel quality assessment criteria have been proposed which
evaluate the generated clustering with regard to traversal safety and driving mode transition
frequency.

10.2. Outlook
Besides the investigation of the effects on incorporating temporal dependencies into a clas-
sification and clustering framework, this thesis provides means of increasing the autonomy
of mobile outdoor robots in comparison with existing approaches. The augmented autonomy
renders it unnecessary to train a discriminative terrain model a priori as the preprocessed accel-
eration patterns are distinctive enough to generate an appropriate clustering model by their own
without the need of labeled instances. It is arguable whether a mobile robot requires the infor-
mation about the actual terrain type it is navigating on. More importantly, a machine learning
model has to group instances which provide the same characteristics with regard to the degree
of hazardness. As shown in the experimental sections of this work, the generated clusterings
follow the natural distribution of preprocessed acceleration signals. Note, however, that this
thesis sees itself as a waypoint to the full degree of autonomy of a mobile robot rather than
having reached this goal already. This is because the presented techniques require the complete
robot traversal being finished at the time of model generation. An incremental model generation
process would be preferable allowing for the estimation of traversal safety at the time of data
acquisition. The approaches of Weiss et al. [WZ08] and Bouveyron [Bou10] can be regarded
as a first step into this direction, yet, both approaches start with a known set of classes which
is extended during the robot traversal. An interesting method is advised by Arandjelović et al.
[AC05] proposing a Gaussian mixture model-based framework which is incrementally updated
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by one instance at a time. Note, however, that, so far, there is no experimentally-supported
evidence that this method can also be applied in the domain of acceleration signal clustering.
Another issue of the inertial measurement-based approaches is that the data is acquired using
an expensive sensor which has a scheduled price of more than 1000C. This renders the applica-
tion of the proposed techniques impossible in low-cost domains. It remains unclear, however,
whether the full resolution provided by the Xsens MTi sensor is necessary to enable the ter-
rain discrimination task. For example, the Wii Motion Plus sensor1 offers similar facilities at a
price of approximately 14C. Hence, further research should focus on the choice of adequate,
yet economic sensors to increase the application range of inertial measurement-based terrain
discrimination techniques.

1http://www.nintendo.com/wii/console/accessories/wiimotionplus
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A. Appendix

A.1. Further Results of the MRF-based Clustering Approach

A.1.1. Results of the 3 Classes Experiments

Table A.1.: Adjusted rand index for the 3 classes experiments when adopting the GMM-based
and the MRF-based clustering techniques.

vel init approach
filter size

2 4 8 16 32 S

0.2 m/s
random

gmm 0.53 0.52 0.52 0.52 0.52 0.52
mrf 0.74 0.77 0.82 0.86 0.88 0.89

k-means
gmm 0.52 0.52 0.52 0.52 0.52 0.52
mrf 0.75 0.79 0.84 0.88 0.91 0.91

0.4 m/s
random

gmm 0.63 0.62 0.63 0.61 0.63 0.63
mrf 0.75 0.74 0.79 0.83 0.88 0.89

k-means
gmm 0.64 0.64 0.64 0.64 0.64 0.64
mrf 0.76 0.77 0.81 0.88 0.90 0.90

0.6 m/s
random

gmm 0.32 0.31 0.31 0.30 0.31 0.30
mrf 0.44 0.42 0.45 0.45 0.57 0.51

k-means
gmm 0.38 0.37 0.38 0.39 0.39 0.39
mrf 0.55 0.53 0.64 0.68 0.67 0.67

average
random

gmm 0.49 0.48 0.49 0.48 0.49 0.48
mrf 0.64 0.64 0.69 0.71 0.78 0.76

k-means
gmm 0.51 0.51 0.51 0.51 0.51 0.52
mrf 0.68 0.70 0.76 0.81 0.83 0.83

Figure A.1.: Adjusted rand index (ARI) for the 3 classes experiments and k-means model ini-
tialization when averaging the outcomes over the complete set of velocity profiles.
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Table A.2.: Adjusted mutual information index for the 3 classes experiments with respect to
varying velocity profiles, mixture model initialization schemes, and filter sizes
when adopting the GMM-based and the temporally coherent MRF-based clustering
techniques.

vel init approach
filter size

2 4 8 16 32 S

0.2 m/s
random

gmm 0.55 0.55 0.55 0.55 0.55 0.55
mrf 0.72 0.74 0.79 0.84 0.85 0.85

k-means
gmm 0.55 0.55 0.55 0.55 0.55 0.55
mrf 0.73 0.76 0.81 0.85 0.87 0.87

0.4 m/s
random

gmm 0.63 0.62 0.63 0.61 0.63 0.63
mrf 0.73 0.72 0.77 0.80 0.85 0.85

k-means
gmm 0.64 0.64 0.64 0.64 0.64 0.64
mrf 0.74 0.74 0.78 0.85 0.87 0.87

0.6 m/s
random

gmm 0.36 0.34 0.34 0.34 0.35 0.33
mrf 0.49 0.45 0.50 0.50 0.60 0.54

k-means
gmm 0.40 0.39 0.40 0.41 0.40 0.41
mrf 0.54 0.53 0.63 0.66 0.66 0.66

average
random

gmm 0.52 0.50 0.51 0.50 0.51 0.50
mrf 0.65 0.64 0.69 0.71 0.77 0.75

k-means
gmm 0.53 0.53 0.53 0.53 0.53 0.53
mrf 0.67 0.68 0.74 0.79 0.80 0.80

Figure A.2.: Adjusted mutual information index for the 3 classes experiments and k-means
model initialization with respect to varying filter sizes when averaging the out-
comes over the complete set of velocity profiles.
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A.1.2. Results of the 5 Classes Experiments

Table A.3.: Adjusted rand index for the 5 classes experiments with respect to varying velocity
profiles, mixture model initialization schemes, and filter sizes when adopting the
GMM-based and the temporally coherent MRF-based clustering techniques.

init dist
filter size

2 4 8 16 32 S

random

gmm 0.55 0.55 0.55 0.55 0.55 0.55
0 0.02 0.02 0.01 0.01 0.01 0.53
2 0.61 0.62 0.55 0.40 0.21 0.62
4 0.64 0.65 0.65 0.59 0.42 0.66
8 0.66 0.67 0.67 0.68 0.62 0.69
16 0.66 0.67 0.69 0.71 0.73 0.72
var 0.65 0.66 0.68 0.68 0.68 0.71

average 0.54 0.55 0.54 0.51 0.45 0.65

k-means

gmm 0.54 0.55 0.54 0.55 0.54 0.54
0 0.02 0.02 0.01 0.01 0.01 0.54
2 0.60 0.60 0.55 0.40 0.21 0.61
4 0.63 0.64 0.63 0.58 0.41 0.64
8 0.64 0.65 0.68 0.67 0.61 0.66
16 0.65 0.69 0.67 0.71 0.72 0.71
var 0.65 0.65 0.66 0.70 0.67 0.67

average 0.53 0.54 0.53 0.51 0.44 0.64

Figure A.3.: Increase in the clustering performance in terms of the adjusted rand index for
the 5 classes experiments and k-means model initialization when averaging the
outcomes over the complete set of velocity profiles and travel distances.
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Table A.4.: Adjusted mutual information index for the 5 classes experiments with respect to
varying velocity profiles, mixture model initialization schemes, and filter sizes
when adopting the GMM-based and the temporally coherent MRF-based clustering
techniques.

init dist
filter size

2 4 8 16 32 S

random

gmm 0.61 0.61 0.61 0.60 0.61 0.61
0 0.04 0.04 0.03 0.03 0.04 0.60
2 0.67 0.67 0.61 0.47 0.28 0.67
4 0.69 0.71 0.70 0.65 0.49 0.71
8 0.71 0.72 0.73 0.74 0.68 0.74
16 0.71 0.72 0.74 0.76 0.78 0.77
var 0.70 0.71 0.73 0.74 0.73 0.75

average 0.59 0.60 0.59 0.56 0.50 0.71

k-means

gmm 0.60 0.61 0.60 0.61 0.61 0.60
0 0.04 0.04 0.03 0.03 0.04 0.61
2 0.66 0.66 0.62 0.47 0.29 0.66
4 0.68 0.70 0.69 0.64 0.49 0.70
8 0.70 0.71 0.73 0.73 0.67 0.72
16 0.71 0.74 0.73 0.76 0.77 0.76
var 0.70 0.70 0.72 0.75 0.72 0.73

average 0.58 0.59 0.58 0.56 0.50 0.70

Figure A.4.: Increase in the clustering performance in terms of the adjusted mutual information
index for the 5 classes experiments and k-means model initialization with respect
to varying filter sizes when averaging the outcomes over the complete set of ve-
locity profiles and travel distances.
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