Computational Methods for
High-Throughput Transcriptomic Data

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultat
der Eberhard Karls Universitat Tubingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
Florian Battke
aus Stuttgart

Tubingen
2012

Tag der miindlichen Qualifikation: 25. September 2012

Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatterin: Dr. Katja Nieselt
2. Berichterstatter: Prof. Dr. Daniel Huson

3. Berichterstatter: Prof. Dr. Joachim Selbig

Zusammenfassung

Transkriptomanalysen sind ein wichtiges Werkzeug fiir die Erforschung der biologi-
schen Mechanismen, mit denen sich Organismen an Verdnderungen in ihrer Umwelt
anpassen, sowie flir die Identifikation von Genen, die fiir die Entstehung von Krank-
heiten wichtig sind. Darauf aufbauend konnen molekulare Angriffspunkte fiir neue
Medikamente bestimmt, die biochemische Produktion optimiert, und vor allem Ein-
blicke in die fundamentale Arbeitsweise biologischer Zellen gewonnen werden.

Microarrays waren die ersten Hochdurchsatzmethoden zur parallelen Bestimmung
der Expression tausender Transkripte. Sie werden durch neue Methoden der RNA-
Sequenzierung erganzt, die Daten von neuer Art und in viel groflerem Umfang erzeu-
gen. Bioinformatiker sind dadurch mit neuen Herausforderungen konfrontiert: Daten
verschiedener Typen miissen integriert werden, eine grofle Zahl von Methoden fiir
die jeweiligen Analyseschritte miissen kombiniert werden, und Visualisierungen der
Daten im Zusammenhang mit Annotationen miissen mit statistischen Verfahren
zusammengebracht werden. Zuséatzlich sind in Anbetracht der groflen Datenmenge
spezialisierte Datenstrukturen fiir effiziente Berechnungen notwendig.

In dieser Dissertation werden Ansétze zur Bewéltigung einiger dieser Herausforderun-
gen vorgestellt. MAYDAY, ein Programm zur Visualisierung und Analyse von Micro-
array-Daten, wurde zum grofien Teil neu entwickelt, um eine umfassende Anwendung
flir Expressionsanalysen zu schaffen. Das neue MAYDAY baut auf einem flexiblen
Plug-in-Management auf, kann Annotationen mit Transkripten, Experimenten und
Datensétzen verkniipfen, enthélt ein interaktives System zum Filtern anhand einer
Vielzahl von Kriterien und bietet interaktive, miteinander verbundene Visualisierun-
gen, die fiir die Analyse und Erkundung von hochkomplexen Datensétzen unerlaflich
sind. Dariiber hinaus erlaubt die Integration interaktiver Scripting- und Abfrage-
sprachen, darunter die Statistik-Sprache R, auch die Durchfiihrung sehr spezieller
Analysen. Die Anbindung von MAYDAY an Gaggle ist ein erster Schritt in Richtung
kollaborativer Analysen iiber das Internet.

Auf dieser Grundlage wurde SEASIGHT in MAYDAY entwickelt, womit sich Rohdaten
aus Microarray-Experimenten, sowie Daten aus den neuartigen RN A-Sequenzierungs-
Experimenten normalisieren und gemeinsam verarbeiten lassen. Die Entwicklung
dieser Erweiterung stellt einen der Hauptinhalte der Dissertation dar.

Desweiteren wird ein Algorithmus fiir die effiziente Berechnung von Expressions-
werten aus RNA-Sequenzierungs-Daten vorgestellt, mit dem diese neuen Verfahren
auch ohne bekannte Genomsequenz angewendet werden konnen, was ihren Anwen-
dungsbereich auf Proben von nicht kultivierbaren Organismen erweitert.

In der Verbindung mit SEASIGHT stellt das neue MAYDAY die erste frei verfiighare
Software dar, die den gesamten Analyseprozess der Transkriptomik abgedeckt, be-
ginnend beim Import von Rohdaten, iiber Normalisierung, Filterung und statistische
Tests, bis hin zu komplexen Analysen und interaktiver Visualisierung.

Neue Entwicklungen auf dem Gebiet der Transkriptomik sind auf dieser soliden Basis
leicht zu integrieren. Insbesondere fiir die Systembiologie wird MAYDAYs integrativer
Ansatz immer wichtiger, um die Vielzahl unterschiedlicher ‘omics’-Daten in einem
gemeinsamen Analyse-Framework zu vereinen.

Abstract

Transcriptome analyses are an important tool for studying the biological mechanisms
behind the ability of organisms to react to changes in their environment, as well
as to elucidate which genes play important roles in diseases such as cancer. They
can be used to find targets for drug design, to optimize the output of biochemical
production, and, most importantly, to gain an understanding of the fundamental
functioning of living cells.

Microarrays have opened the door for high-throughput expression experiments of
thousands of transcripts. Recently they have been complemented by RNA sequenc-
ing methods which produce new types of data and a significantly larger data volume.
Bioinformaticians are confronted with many challenges of integration: Data of dif-
ferent types need to be integrated, many methods for different analysis steps have to
be put together, and visualizations of primary and meta data need to be combined
with statistical approaches to derive meaningful results from the data. In addition,
specialized data structures are required for efficient computations.

In this dissertation, solutions to several of these challenges are presented. MAYDAY,
a framework for visual inspection and analysis of microarray data, was largely re-
designed to create a strong platform for transcriptome analysis. The new MAYDAY
includes a flexible plugin system, a framework for handling meta information as-
sociated with transcripts, experiments, or whole datasets, as well as an interactive
system for filtering lists of transcripts according to a large variety of criteria. A new
visualization package was implemented as a basis for the highly interactive, linked
views which are vital for the analysis and inspection of complex datasets. Further-
more, interactive scripting and querying possibilities were added based on different
programming languages, most notably the statistical computing language R. With
these, bioinformaticians can quickly test ideas and perform non-standard analyses
directly inside MAYDAY. A first step in the direction of on-line collaborative analysis
is presented with MAYDAY’s integration into the Gaggle communications system.

With the new MAYDAY as a solid foundation, the SEASIGHT extension was devel-
oped, which is the main focus of this dissertation. It provides a generic framework
for raw data processing both for the new RNA-seq data types as well as for data
generated by different microarray platforms.

In addition, an algorithm for the efficient processing of RNA-seq data is presented
which allows for the application of this new technology to samples from species where
a genome reference sequence is currently not available, adding a further method to
the transcriptomics researcher’s toolkit.

Together, the new MAYDAY and SEASIGHT provide the community with the first
software tool which offers a one-stop solution for transcriptome data analysis, span-
ning the whole pipeline from raw data import, via filtering and statistical testing, to
higher-level analyses and interactive visualization, and provides a solid foundation
for further development in the transcriptomics area in particular, and in the Systems
Biology field in general where the multitude of ‘omics’ data increase the need for
integrated approaches to data interpretation.

ii

Acknowledgements

I am extremely grateful to Dr. Kay Nieselt for introducing me to this highly inter-
esting field of research, giving me large freedom in choosing projects and exploring
ideas, for discussions and comments which greatly improved the shape of this disser-
tation, and, most importantly, for being an outstanding supervisor. In addition, my
special appreciation goes to Prof. Daniel Huson for co-supervising my dissertation.

For efficient collaboration on publications, memorable parties and social activities,
I owe gratitude to Alexander Herbig, Stephan Symons, Giinter Jager, and Aydin
Can Polatkan. In particular, I am grateful to Alexander Herbig for constructive
and delightful discussions, shared conference experiences, as well as late-night paper
submission activities. Stephan Symons’ unparalleled theoretical and practical work
on MAYDAY was an invaluable contribution to the project, and is only exceeded
by his positive outlook on doom which raised my spirits many times. The project
is taken towards new destinations by Giinter Jager who was a most pleasant office
co-inhabitant and whose expertise and efficiency I appreciated immensely. Sabine
Gebert’s cheerfully applied organizational skills were a great help in planning and
realizing conference visits, as well as local teaching and additional events.

I very much enjoyed working in the Integrative Transcriptomics group and in the
larger context of the Center for Bioinformatics and hereby thank all who contributed
to this feeling, choosing as representatives of this group Lena Feldhahn, Marc Rurik,
Daniel Lehle, and Stefan Raue whose prolonged stay in our group was highly wel-
come. I am also grateful to Prof. Oliver Kohlbacher for engaging discussions on and
off topic. Though not part of the Center for Bioinformatics, Ralph Holz has been a
great support during his time in Tiibingen.

Furthermore, I am obliged to our partners in the SysMO STREAM project con-
sortium, with whom we produced and interpreted the data on the metabolism of
Streptomyces coelicolor, most notably Prof. Trond Ellingsen and @yvind Jakobsen
(SINTEF Materials and Chemistry, Norway), as well as Dr. Alexander Wentzel
(Norwegian University of Science and Technology), and Prof. Wolfgang Wohlleben
(Tibingen). I value Dr. Michael Bonin and Dr. Michael Walter of the Microarray
Facility Tiibingen as excellent collaboration partners in the SysMO project and
beyond. Together with them, I thank Stephan Ko&rner, Joachim Ziihlke, and Dr.
Steffen Hittner (Holle & Hiittner AG, Tiibingen) for successful cooperation on the
Passage project. For help with implementing my improvements to the Rank Product
implementation, I am indebted to Dr. Fangxin Hong (Harvard University).

Thanks are also due to Lucia Spangenberg-Torre and Dr. Hugo Naya, both now at
the Institut Pasteur de Montevideo, Uruguay, for interesting questions we addressed
together both in Tiibingen and on-line, as well as for the good time we spent to-
gether when organizing and realizing the “Advanced Transcriptomics” block course
in Uruguay. I am grateful for the experience of working in the field of visualization
with Julian Heinrich, Corinna Vehlow, and Prof. Daniel Weiskopf (VISUS, Univer-
sity of Stuttgart). I also learned a lot during the analysis of Parhyale hawaiiensis
expression data which was joint work with Peter Nestorov (Friedrich Miescher In-
stitute, Basel) and Dr. Matthias Gerberding (University of Hohenheim).

iii

The MAYDAY project is the work of many people over several years. Nils Gehlen-
borg and Janko Dietzsch deserve praise for initiating the project and continuing its
development. Important parts of the core were developed by Matthias Zschunke and
Stephan Symons, and Christian Zipplies played a major role in the implementation
of the genome browser visualization. Claudia Broelemann is to be mentioned for
her work on the Gaggle integration, as well as Tobias Ries for his outstanding work
on the JavaScript console. The project has greatly benefited from contributions by
Giinter Jager who will continue the development of MAYDAY’s core as well as new
applications beyond the original scope of expression analysis. Contributions from
Anna Jasper, Christian Sieber, Frederik Weber, Kirsten Heitmann, Markus Riester,
Matthias Munz, Nastasja Trunk, Michael Piechotta, Philipp Bruns, Roland Keller,
Sina Beier, Stephan Gade, and Dilek Tuncbilek in the form of plugins or prototype
implementations of new methods, and feature requests and bug reports submitted
by users of our software have helped move the project forward and are also gratefully
acknowledged.

Finally, and extending far beyond my PhD period and the writing of this dissertation,
I thank my family and friends with all my heart.

iv

Contents

List of Figures
List of Tables
List of Listings
1 Introduction

2 Transcriptomics
2.1 Gene expressiono e e
2.2 Transcript quantificationo
2.3 High-throughput transcriptomics
2.3.1 Microarrayso e e e
2.3.2 RNA sequencing, RNA-seq
2.4 Transcriptomics data analyses
2.4.1 Naming conventions
2.4.2 Data pre-processing and normalization
2.4.3 Differential expression & statistical testing.

2.4.4 Higher-level analyses

3 The new Mayday as a solid foundation
3.1 MAYDAY’s Evolution L o L
3.2 Plugin Management
3.2.1 Unique Plugin Identifiers
3.2.2 Multiple extension pointso Lo
3.2.3 Abstraction of file resources Lo
3.2.4 Surrogate pluginso L
3.3 Meta information L L oL

3.4 Persistent Settings Lo Lo

ix

xi

xii

© © 3 ot «»

11
12
12
14
15
16

19
19
21
22
22
23
24
24
26

Contents

4

vi

3.4.1 DMotivation and requirements 26
3.4.2 Implementation oL 27
343 Benefits 29
3.5 Dynamic interactive filtering oL 30
3.6 Task Management 33
3.7 Application: Expression profiling of the metabolic switch in S. coelicolor 34
3.7.1 Data acquisition and normalization 36
3.7.2 Mutation verification L. 36
3.7.3 Time-point clustering 36
3.74 Geneclustering 40
3.7.5 Outlook: Systems Biology 40
Visual analytics in Mayday 43
4.1 Vis3 — MAYDAY’s new visualization framework 43
4.1.1 The View Model 43
4.1.2 Plot Components 46
4.1.3 Efficiency 47
4.2 Reimplementation of the Enhanced Heatmap 49
4.3 Expression in a genomic context: ChromeTracks 53
4.4 Analysis of time-series transcriptome data 57
4.4.1 Statistical analysis of single time-series 58
4.4.2 Visual analysis of multiple time-series 62
Integration of scripting languages 65
5.1 An interactive programming environment 65
5.2 Joining the powers of R and MAYDAY: RLINK 66
521 Rand MAYDAY 66
5.2.2 The RINTERPRETER plugin 68
5.2.3 RLINK: Aims and foundations 68
5.2.4 Object encapsulation 71
5.2.5 Adding network transparency 72
5.3 On-the-fly scripting: JavaScript console 74
5.4 Structured queries using SQLo 76
Collaborative analysis 79
6.1 The Gaggle 79

6.2 Integration of MAYDAY with the Gaggle

6.3 Extending Gaggle for collaborative multi-user analyses

SeaSight: Integration of Sequencing and Microarray Data

7.1 MAYDAY without the SEASIGHT extension
7.2 Related Software
7.2.1 Single method implementations
7.2.2 Pipelines & Frameworks
7.2.3 Stand-alone applications
7.3 The motivation for creating SEASIGHT
7.4 Design oL
7.4.1 Challenges
7.4.2 Assumptions
7.4.3 Design requirements,

7.4.4 Modelling the transformation steps

7.4.5 Constructing the transformation and state matrices

7.4.6 Locus-based data integration
747 Summary e
7.5 Implementation,
7.5.1 Thematrix,
7.5.2 Experiment properties
7.5.3 Transformations
7.5.4 Genomic coordinates
7.5.5 The SEASIGHT user interface
7.6 Efficient Data Structures
7.6.1 Requirements
7.6.2 Primitive types o oL
7.6.3 Memory-mapped structures
7.6.4 Large and flexible arrays as the basis
7.6.5 Efficiently handling millions of lists
7.6.6 Associating data with genomic positions
7.6.7 Sparse Arrays & Overlap Arrays
7.6.8 Genomic Coordinates
7.6.9 Containers for mapped read data
7.6.10 Matrices and Vectors

7.7 Implementing efficient algorithms

Contents

vii

Contents

7.71 Caching 132

772 Lazyevaluation 133

7.7.3 Considerations for transformation authors 134

7.8 Application example: Human kidney vs. liver tissue transcriptomes . 135
7.8.1 Distributions of expression values per sample 137

7.8.2 Fold-change correlations 138

7.8.3 Normality of the distributions of transcripts’ expression values 139

7.8.4 Overlap of the sets of differentially expressed transcripts . . . 140

8 Passage: Efficient RNA-seq clustering 143
81 The PASSAGEidea 144
8.2 A mismatch-tolerant clustering algorithm for reads 146
83 Results. o 149
8.4 Recovering the transcripts oL 152

9 Discussion 153
9.1 MAYDAY as a powerful framework for expression analysis 154
9.2 MAYDAY as a powerful platform for development 155
9.3 Sequencing for transcriptome analyses 156
9.4 Outlook 158
9.5 Conclusion 160
Bibliography 160
A Publications 175
Al Articles 175
A.2 Posters & Presentations 176

viii

List

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1
5.2
5.3

of Figures

User interface comparison L. 20
Size of the MAYDAY project 21
Major elements of the MAYDAY core package 22
Settings GUI representations 26
Important classes in the dynamic ProbeList framework 30
Dynamic Probelist processing and GUT. 31
SysMO STREAM sampling scheme 35
phoP mutant verification 37
glnR mutant verification Lo 37
Time-point clustering trees 38
QT clustering of SysMO STREAM time-series 1 39
Genomic locations of QT clusters 41
Transcription strength and protein abundance 41
The visualization data model 44
Visualization framework overview 46
Clipping & tiled buffering 48
Structure of a heatmap plot L. 50
Examples of heatmap rendering styles 51
Partial heatmap of the E-TABM-185 dataset 52
ChromeTracks view L 55
Types of time-dependent events 59
Time-series statistics example 61
TIALA user interface 63
TI1ALA3D user interface L. 64
MUSHELL user interface 67
RLink process architectures 70
RLink FFT clustering example 73

ix

List of Figures

5.4 JavaScript example plugino oo oL 75
5.5 SQL example query 77
6.1 Gaggle data import 82
6.2 GaggleBridge overview Lo L 83
6.3 GaggleBridge user interface 0oL 84
6.4 Establishing a GaggleBridge link 85
7.1 Example transformation and state matrices 96
7.2 Locus-based data integration 98
7.3 Combination methods for sets of genomic regions 101
7.4 SEASIGHT experiment properties 105
7.5 Interactions between transformations and the TransMatrix 107
7.6 Coordinate anchor points 110
7.7 SEASIGHT user interface 112
7.8 Memory requirements of different containers 114
7.9 Virtual Memory statistics with and without memory mapping 117
7.10 LinkedArray data structure L. 119
7.11 MultiArray data structure 121
7.12 OverlapArray data structure 123
7.13 AbstractLocusChromosome data structure 125
7.14 MappingStore data structureo 128
7.15 Class hierarchy of MAYDAY’s matrix framework 131
7.16 Application example pipelines 136
7.17 Comparison of per-sample expression distributions 137
7.18 Variance of DE transcripts oL 142
8.1 PASSAGE transcript fragment classes 144
8.2 PASSAGE algorithmicsteps 147
8.3 Example of PASSAGE fragments along a transcript 152

List of Tables

2.1
2.2
2.3
24

3.1
3.2

4.1
4.2

5.1
5.2

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

8.1

Timeline of transcript identification/quantification methods

Third generation sequencing technologies .
Structure of a transcriptomic study

Data pre-processing and normalization steps

MAYDAY’s meta information system

Core Setting Types

ChromeTracks track types
Time-Series Statistics Windowing Methods

Predefined MUSHELL token types

RLINK modes of operation.
Gaggle data type grammar

Related Software
SEASIGHT experiment parsers

SEASIGHT transformations.

Supported file formats for genomic coordinates

Memory consumption analysis

Human liver and kidney sample sequencing data

Fold-change correlations between RNA-seq and microarray data . . .

Transcripts with normally distributed expression values

Overlap between the sets of differentially expressed transcripts

Comparison of PASSAGE to other programs

12
13
14

25
28

o4
58

67
72

80

88
106
108
109
129
135
138
139
140

151

xi

List of Listings

5.1 RLINK operators, example L. 69
7.1 SEASIGHT pipeline execution 96
8.1 The PASSAGE mismatch resolution algorithm 148

xiii

1. Introduction

All living organisms react to external and internal stimuli on a cellular level, altering
their cells’ state to adapt to changes in their environment, or in the course of the
cells’ live cycle, for instance. Such adaptations, which are usually tightly regulated,
involve changes to the abundances of functionally active molecules such as proteins
and non-coding RNA. As protein levels depend on the transcription (and translation)
of genes stored in the organism’s genome, and because the quantification of active
proteins is a non-trivial endeavour, RNA abundances are often used as a proxies for
protein levels, as well.

Transcriptome analyses are performed to obtain a so-called expression level for each
transcript, and to compare these levels between samples taken from different popu-
lations, for instance representing healthy and diseased individuals. On a larger scale,
Systems Biology studies aim at integrating these data with information about protein
and metabolite concentrations, epigenetic modifications, and a range of meta data
describing knowledge about cellular processes, among others, in order to ultimately
create a full model of the functioning of living cells.

Starting with the genome as the complement of an organism’s gene, new terms were
coined for comprehensive sets of (most generally) observable items of a certain class:
The complement of all transcribed RNA molecules forms the transcriptome, the set
of all proteins the proteome, the metabolites make up the metabolome, and the collec-
tion of all observed phenotypes is called the phenome, to give only a few examples.
The corresponding research fields are transcriptomics, proteomics, metabolomics,
phenomics, etc.

Where molecules are studied, these relatively young fields in biology are based on so-
called high-throughput technologies which enable researchers to identify and quantify
thousands of different molecules in parallel. Depending on the field, these molecules
can all be of the same type, or cover a wide range of chemical compounds. In tran-
scriptomics, the RNA molecules studied are very similar, and microarray or RNA
sequencing experiments can be applied to quantify all RNA transcripts in hundreds
or thousands of samples. A much higher chemical diversity is exhibited by proteins,
and metabolites such as nutrients are the most diverse set of compounds.

With the growing number of experimental methods and the increasing volume of
data that results from high-throughput experiments, bioinformaticians are faced
with several challenges. Firstly, raw data come in a variety of formats which software
tools need to be able to process and relate with associated meta data. Secondly,
each experimental technique has its own advantages and limitations which need
to be taken into account during pre-processing, as different sources of technical
bias require appropriate normalization methods. Thirdly, human researchers are no
longer able to inspect each individual data point acquired in their experiments. They

1. Introduction

need methods which offer meaningful, visual summaries of the data based on which
interpretations and new hypotheses can be formulated.

Solutions to these challenges are being developed as bioinformaticians are working
with the new data types. Many of these solutions are specific to a particular study
and only cover one or a few aspects of interest in the context of that project. In
general, however, researchers do not want to assemble a large library of highly spe-
cialized programs before trying to answer their research questions. As most programs
have quite specific requirements regarding data formats, a lot of time is spent on
data conversion which can range from trivial re-formatting to sophisticated compu-
tational transformations. Apart from being very costly in terms of time and posing
the danger of introducing errors in the analysis, such ‘manual pipelines’ also demand
a high willingness to learn about each program’s peculiarities.

Thus, a combination of useful methods from different areas, such as normalization,
data processing, statistical testing, and visualization in one analysis framework is
highly important for efficient research. In part, this has already been realized in
the past: The combination of statistical and visual analyses, often called Visual
Analytics, has been found to be a powerful method enabling researchers to dissect
complex datasets, formulate and test hypotheses, and gain an understanding of the
underlying biological process.

However, the benefits of integration extend beyond processing and combination of
heterogeneous primary and meta data into a common view subject to the methods
of visual analytics. Today, as large studies are usually performed by several research
groups, collaboration between researchers (working with data form different exper-
imental procedures) should be made as simple as possible, and integration of their
results becomes an important factor. Thus, integration should start with the inte-
gration of raw data from different sources, cover the integration of different analysis
and visualization methods, and extend up to the integration of results from different
researchers.

In this dissertation, a unified approach towards solving the challenges of integration
is presented. The application platform chosen for this endeavour is the microarray
data analysis program MAYDAY, developed by Kay Nieselt’s group at the University
of Tiibingen. MAYDAY focuses strongly on visual analysis, offering a range of highly-
configurable visualizations. These are complemented by statistical and machine-
learning methods for supervised learning, and by unsupervised clustering algorithms
which try to find structure in the vast amount of data produced by modern high-
throughput transcriptomics experiments.

In the course of my PhD studies, the existing application was fundamentally rewrit-
ten and extended, transforming the original microarray analysis software into an
extensible and powerful environment for visual analytics of omics data. The new
MAYDAY integrates a large number of methods into one user interface, integrates
statistics and visualization, integrates meta information with primary data visual-
izations, integrates data from different sources and of different types, integrates with
other Systems Biology analysis programs and supports the collaboration between
researchers.

The thesis is organised as follows: Chapter two introduces the biological and sta-
tistical basis for the problems addressed in this work. Chapter three presents the
new MAYDAY which is the foundation for developments in the fields of visualization
(described in chapter four), interactive bioinformatics analyses (chapter five) and
collaborative data analysis (chapter six). The new MAYDAY core also prepared the
ground for the integration of RNA-seq and raw microarray data, the purpose of
MAYDAY SEASIGHT, whose design, implementation and application are presented
in chapter seven. A special protocol and algorithm for efficient generation of tran-
scriptomics data using high-throughput sequencing is presented in chapter eight.
The final chapter offers a discussion of the achievements presented here as well as
an outlook on possible future work.

2. Transcriptomics

Organisms can react to external and internal stimuli at a cellular level. For unicellular
organisms, examples of such stimuli are changes in nutrient availability (external)
and cell-cycle dependent changes during growth and replication (internal). If cells
are part of tissues and organs in a multi-cellular organism, further stimuli can be
signals (external to the individual cell) mediated by ligands such as hormones and
by cell-cell contacts.

As a result, the internal state of a cell changes. Knowledge about cellular states and
how they can be influenced is of interest

e in medicine, where states are associated with health and sickness and effecting
change in the state is the aim of treatment,

e in biotechnology, where states are associated with e.g., productivity and the
compounds produced by microorganisms, and environmental as well as genetic
changes are used to increase yield or to produce modified compounds, and,
most importantly,

e in biology, where the comparative analysis of different states provides insights
into regulatory relationships and researchers try to uncover how cells work by
carefully observing how disruptive changes (e.g., nutrient limitation) affect the
measured state of a cell.

The ‘state’ of a cell is mostly defined by the presence of functional molecules and
by their activity. To gain an insight into these activities, the turnover of metabolites
could be measured, which is done in metabolomic studies. Another approach is to
measure the abundance of each functional molecule. Most of them are proteins or
protein-RNA complexes and their study is the subject of proteomics. However, pro-
teomics faces several challenges: Proteins have very different functions, and very dif-
ferent chemical properties. Membrane-spanning proteins, for instance, have lipophilic
surfaces, while other proteins active in the cell soma generally have hydrophilic sur-
faces. Extraction, identification and quantification of the full protein complement of
a cell is therefore non-trivial and most studies are confined to between a few hundred
and a few thousand proteins.

One solution to this problem is to change the focus from the direct identification
and quantification of proteins to identification and quantification of (protein-coding)
RNA molecules.

2.1. Gene expression

The information specifying how the cell’s functional molecules are synthesized is
stored in the cell’s DNA sequence. The region storing information about a particu-

2. Transcriptomics

lar molecule is called a gene (a word which first was used to refer to the abstract
concept of an inheritable trait [85]) and the complete set of all genes in an organ-
ism is called its genome, the study of which is the field of genomics. The following
introduction focuses on so-called protein-coding genes, i.e., genes which provide in-
formation on how to synthesize a specific protein by concatenating different amino
acids. Another important class are the non-coding RNA genes which contain tem-
plates for functionally active RNA molecules, and are also of interest in studies of
gene expression.

Depending on environmental conditions and the internal state of the cell, certain
(protein-coding) genes are expressed in the process of transcription: A DNA-depen-
dent polymerase (interacting with a number of other factors and working in a larger
complex [137]) attaches to the start of a gene’s coding sequence and creates an RNA
molecule by ligating nucleotides (adenine, cytosine, guanine, uracil) such that the
growing RNA strand’s sequence is complementary to the sequence of nucleotides
on the DNA, i.e., for each adenine on the DNA a uracil is added to the RNA, for
each cytosine a guanine is added (and vice-versa) and for each thymine an adenine
is added. Gene transcription is regulated by the presence of so-called transcription
factors which bind to specific DNA sequences (binding motifs) and direct the poly-
merase to a gene location, often as a result of long regulatory cascades that start with
the recognition of some environmental or internal condition (e.g., a ligand binding
to the cell surface) and ending in the activation or inactivation of a specific tran-
scription factor [36]. Nucleotides in the DNA can be modified (methylated), as can
DNA-packaging molecules, so-called histones, resulting in DNA that is inaccessible
to the transcription machinery, and thus inactivating the genes in the respective
region [92].

A transcribed RNA molecule is subjected to post-transcriptional processing [44],
which can be simple additions at either end of the molecule (5-cap of methylated
guanine, 3’-poly-adenine sequence), the replacement of some nucleotides by others
(RNA editing [19, 35]) or the rather complex process found in eukaryotes which
includes the removal of non-coding subregions, introns, in a process called splic-
ing [21, 43] by the spliceosome [145, 170] or by RNA autocatalysis [34].

The processed mRNA molecule forms the template based on which the ribosome
synthesizes the corresponding protein sequence. The genetic code [112] maps nu-
cleotide triplets (sequences of three consecutive nucleotides, codons) to amino acids.
The process is as follows: mRNA binds to the ribosome subunits [126], with the
start codon AUG bound to (modified) methionine-bound transfer RNA at the active
site of the ribosome. Transfer RNA (tRNA) molecules with specificity for one (or
several) codons are loaded with specific amino-acids [141] and bind to the mRNA
at the active site of the ribosome. This binding depends on (partial) sequence com-
plementarity between the mRNA codon and the tRNA anticodon loop. The new
amino-acid is ligated to the growing protein, the empty tRNA molecule is released,
the ribosome moves to the next codon, and the process continues.

During translation, the nascent protein molecule starts assuming a three-dimensional
structure which is required for its function. Further processing can be necessary to
create an active protein, such as the introduction of disulfide crosslinks and the

2.2. Transcript quantification

removal of signal peptides, short amino acid sequences which serve as localization
signals and guide the protein to its target location within (or outside) the cell [169],
for instance into the nucleus (nuclear localization signal [107]). The ‘final’ product
is a protein which might be a structural element of the cell, or might be able to
perform an enzymatic function. Many proteins can change their conformation (and,
as consequence, their activity) through activation, by binding to a co-factor or by
phosphorylation [42, 39], for instance.

Summing up, the process of gene expression consists of up to five steps: transcription
of DNA into RNA, post-transcriptional RNA modification, translation of RNA into
amino-acid sequence, post-translational modification of the protein, and activation.

As a result, RNA molecules can be used as proxies for functionally active proteins,
as their abundance is correlated [103, 102] with the abundance of the final gene
product, the active protein. Some caveats remain [54], considering that some ex-
pressed proteins require further modification to be activated (or inactivated), or
their activity depends on co-factors which might not be present in the cell.

The advantage of RNA molecules over protein molecules from the point of view
of identification and quantification is that all protein-coding RNA molecules have
the same function, namely the transmission of information from long-term storage
(DNA) to the protein-production machinery (ribosome). This functional identity
is reflected in the fact that all RNA molecules share the same chemical properties,
which renders their extraction and purification much less complicated. Furthermore,
RNA is constructed from four nucleotides, while proteins are constructed from more
than twenty different amino acids, which can carry a large number of modifications.

Transcriptomics is the scientific field concerned with the study of RNA molecules
that are transcribed from a genomic template. These transcripts fall into several
classes: protein coding messenger RNA (mRNA), large functional RNA such as ri-
bosomal RNAs (rRNA), transfer RNA that play a vital role in protein biosynthesis
(tRNA), as well as several other classes of RNA which do not code for proteins
but have (presumed) regulatory functions (so-called non-coding RNA). Among the
latter class are small nucleolar RNAs (snoRNA), small nuclear RNA (snRNA) in-
volved post-transcriptional processing (e.g., splicing), and a growing number of RNA
molecules with still unknown function [89].

Besides individual molecules, transcriptomics deals with whole transcriptomes, the
complete set of all RNA molecules present in a tissue or organism at given point in
time. In this work, the focus is on gene expression, i.e., on the set of protein-coding
RNA molecules, their abundances under different conditions and at different times,
and the regulatory mechanisms that lead to their generation (expression).

2.2. Transcript quantification

Methods for transcript quantification can be divided into two classes depending on
how transcripts are identified: Hybridization methods are based on the fact that com-
plementary single-strand DNA or RNA molecules spontaneously hybridize to form a
double-stranded molecule, and quantification is performed by measuring the amount

2. Transcriptomics

Table 2.1.: Timeline of transcript identification/quantification methods

Hybridization Sequencing

Southern Blot 1975 Sanger plus/minus sequencing’ [134]
1977 Sanger/Maxam-Gilbert sequencing*f
1986 Polymerase Chain Reaction*!
1990 Automated capillary sequencing®

1990 Quantitative PCRf
Photolithographic arrays 1994
Spotted DNA arrays 1995 Serial Analysis of Gene Expression
Ink-jet in situ arrays 1996 Quantitative Real-Time PCR
Random bead arrays 1998
Maskless photolithographic arrays 1999

2005 Second-generation sequencing
2010 Third-generation sequencing

Methods can be roughly divided into two classes, those that use hybridization and molecular
labeling of DNA /RNA molecules for identification and quantification, and those that deter-
mine nucleotide sequences directly and count identical sequences to obtain a quantitative
expression estimate. *identification only; Tonly one or a few molecules in parallel.

of light emitted by fluorophores attached to hybridized molecules. The more recently
introduced sequencing-based methods first determine (part of) the sequences of ex-
pressed transcripts (often also using hybridization and/or fluorescence as part of
the process) and then count the number of occurrences of each transcript. A short
history of all presented methods is given in table 2.1.

One very popular hybridization-based method for the detection of expressed tran-
scripts is the Southern Blot [149]. Very briefly, restriction enzymes and gel elec-
trophoresis are used to create fragments from a DNA/RNA sample and to separate
fragments by size which are then transferred to a membrane. A probe molecule
labeled with a fluorescent dye is added and allowed to hybridize with its comple-
mentary fragment (if present). This technique allows for the identification of a single
molecule of interest (or a few different molecules, using different fluorophores), in a
semi-quantitative fashion. It was the basis for the development of microarray tech-
nologies, as described in section 2.3.1.

Based on the Polymerase Chain Reaction (PCR, [110]) which allows for the am-
plification of known DNA/RNA fragments without the need of cloning fragments
into bacterial genomes for multiplication, quantitative methods (qPCR, [61]) were
developed, culminating in quantitative real-time PCR [67], a method with which
the abundance of a single molecule of interest can be established in relation to an-
other molecule with very high accuracy. Quantitative real-time PCR uses fluorescent
dyes that intercalate into double-stranded DNA molecules, or fluorescently labeled
single-stranded probe molecules for quantification.

2.3. High-throughput transcriptomics

Sequencing-based approaches rely on methods that can determine the sequence of
a given DNA/RNA molecule. Two such methods were introduced in the same year,
namely the Sanger method [135] which uses chain-terminating nucleotides with spe-
cific fluorescent labels, and the method by Maxam and Gilbert [106] which uses
radioactive labels and specific cleavage of DNA molecules. In both methods, the
resulting labeled fragments are separated by size using gel electrophoresis and the
sequence is read manually from the gel bands.

While the radioactive labeling required four parallel experiments to determine the
DNA sequence (one for each nucleotide), the Sanger method with four different fluo-
rophores required only one experiment. These two alternative concepts of nucleotide-
specific markers in a single experiment as opposed to a single marker in four nucleo-
tide-specific experiments (separated by time rather than spatially) are still present
in modern third generation sequencing methods (see below). Furthermore, the fluo-
rescent dyes require less effort in handling than radioactive 32P markers. As a result,
Sanger sequencing was further developed into an automated sequencing method by
replacing the gel electrophoresis with capillary electrophoresis and manual sequence
read-out by automated detection of fluorescence [153]. This method allowed for the
identification of amplified, identical DNA molecules. Amplification is performed ei-
ther by cloning or by PCR.

Quantification was not possible with these first sequencing methods due to their
low throughput, but based on sequencing techniques, the quantification method
SAGE (Serial Analysis of Gene Expression, [167]), was developed. The protocol was
designed to create short DNA fragments from each expressed gene and ligate them
into a long molecule (separated by linker molecules) which was then sequenced. The
short fragments were then sorted and counted to obtain abundance estimates for
the expressed genes. The modern high-throughput sequencing methods discussed in
section 2.3.2 are based on the same concept of sequencing and counting, with a much
higher parallelisation and simpler sample preparation protocols.

All mentioned methods have in common that they are only feasible for the identifi-
cation resp. quantification of a relatively small number of distinct transcripts. Living
cells, however, express several thousand different (protein-coding) transcripts at the
same time, out of a pool of several tens of thousands of possible transcripts. Thus,
new high-throughput methods were needed to study whole transcriptomes in a time-
and cost-effective way. These were introduced with an extension of the hybridiza-
tion methods to whole-genome gene expression microarrays, and, more recently, of
the sequencing-based methods to so-called next generation or second generation se-
quencing platforms and their application to RNA sequencing (RNA-seq, [173]).

2.3. High-throughput transcriptomics

2.3.1. Microarrays

Using hybridization of DNA /RNA fragments from a sample to known complemen-
tary probe molecules is the basic principle of DNA microarrays. While in Southern

2. Transcriptomics

Blotting, the sample is immobilized and a labeled interrogation probe is added to
find its complement, these roles are reversed in microarrays:

Known probe molecules are either deposited (‘spotted’) on a substrate (usually a
solid surface such as a glass slide), or synthesized directly in place. Both methods
result in a regular arrangement of so-called spots, locations where millions of copies
of identical probe molecules are attached to the substrate. If existing molecules
(e.g., molecules from an EST library or presynthesized oligos) are used, the result
is called a spotted array [140], otherwise the term in situ (oligonucleotide) array
is used, referring to the fact that in situ synthesized probe molecules are usually
relatively short (25-75 bp).

From each sample, RNA molecules are reverse transcribed into complementary DNA
(cDNA) and amplified using PCR. They are labeled with fluorescent dye molecules
and washed over the array surface. When a labeled sample molecule encounters
a complementary probe molecule, a two-stranded hybrid forms and the sample
molecule is thus bound to the array (given appropriate hybridization conditions).
The more abundant a transcript was in the original sample, the more of its molecules
can bind to the millions of complementary probe molecules in the respective spot
(up to the level of complete saturation). After washing off unbound sample, the dye
molecules are excited using laser illumination, the emitted light is captured in a
photographic image (‘scanning’) and the light intensity computed for each spot is
taken as an estimate of the abundance of the respective transcript. Some platforms
use a single fluorescent dye and can thus analyze one sample per array, yielding ab-
solute expression values, others use two (or more) different dyes to allow competitive
hybridization of two (or more) samples, yielding relative expression values.

The first commercially available in situ arrays were produced with a photolitho-
graphic method [53, 118]. Chemically modified nucleotides attached to a protection
group are combined into growing strands of DNA by selectively removing the pro-
tection group of the existing chain before adding the next nucleotide. The protection
groups are cleaved off through irradiation with ultraviolet light. To control the re-
moval of the protection groups, different masks are used that prevent the UV light
from reaching all spots. One mask is required for each nucleotide and position in the
sequence (e.g., for a probe length of 25bp, up to 100 masks are required). An alter-
native was later introduced with maskless photolithographic array construction [147]
using digital micro-mirror devices. Other in situ synthesis approaches use piezoelec-
tric deposition of nucleotides, similar to ink-jet printing technology [23].

Microarray experiments rely on the mapping of locations to known probe molecules
to identify the transcripts found in the sample. All platforms establish this relation-
ship during the array design phase, but for one: The BeadArray platform [108] uses
probe molecules synthesized on the surface of small beads, each of which carries
millions of copies of only one probe molecule. Beads are randomly distributed over
the array surface and the location of each known probe is established by hybridizing
a set of well-defined interrogation molecules (‘decoding’) that are complementary to
barcode sequences added to each probe’s sequence.

Irrespective of the technology used for array production and spot-to-probe mapping,
a very important step in microarray design is probe design (in situ arrays) resp.

10

2.3. High-throughput transcriptomics

probe selection (spotted arrays). Probe molecules must be complementary to (part
of) their target sequence and should not be (partially) complementary to another
target. If two different probe molecules are too similar in terms of their nucleotide
sequence, cross-hybridization will occur and confound the expression signal. Fur-
thermore, as the temperature at which two complementary DNA molecules form a
hybrid depends on their nucleotide content (with sequences rich in G and C having
a higher ‘melting’ temperature 7,,), probe molecule selection should be optimized
with respect to the T}, values. An optimal design thus contains sensitive, specific
(unique), and isothermal probes. This is usually achieved by using more than one
probe for each target (sometimes called ‘probesets’) and computing expression val-
ues by summarizing over the signals of all probes specific to a given target. Finally,
microarray design requires previous knowledge of the expected transcripts, either
explicitly to guide the process of oligonucleotide probe design, or given implicitly by
the contents of the probe library used for spotting.

Present-day high-density microarrays contain several hundreds of thousands of spots
(‘features’) which are summarized into several tens of thousands of expression values.
To give an example, the Affymetrix Human Genome microarray ‘HGU-133 Plus 2.0’
contains about 1.35 million features representing about 54,000 probesets [2].

2.3.2. RNA sequencing, RNA-seq

The next or second generation sequencing methods use a combination of highly-
parallel PCR reactions, either in emulsion droplets (emPCR, [180]) or on solid
substrates [1] to create millions of copies of each fragment. Highly-parallelized se-
quencing reactions are used to determine the sequence of each cluster of amplified
sequence.

e ‘Sequencing by Synthesis’ (SBS) methods [20, 47| use reversible termina-
tion and a (‘wash-and-scan’) cycle of adding (labeled) nucleotides, incorpora-
tion into a growing DNA strand by a (modified) polymerase molecule, washing
of excess nucleotides and scanning to identify the incorporated nucleotide (us-
ing different dyes for the four nucleotides) resp. to detect the incorporation
event (using a single dye and only one nucleotide per cycle).

e ‘Sequencing by Ligation’ (SBL) methods [122] use well-defined single-stran-
ded probe molecules labeled with a fluorescent dye. If the probe is able to
hybridize to the template strand in the correct position, it is ligated to the
growing strand and identified in the same manner as used in SBS methods.

The result of all methods are so-called reads, short (35-750 bp) nucleotide sequences.
These are mapped to a known reference sequence to identify the transcripts that they
derive from (for an alternative strategy, see chapter 8), and the number of reads per
transcript is computed.

Recently introduced third generation sequencing methods remove the need for frag-
ment amplification completely. Single molecules are sequenced directly, reducing
experimental bias (such as the sequence-specific efficiency of PCR [121]) and allow-
ing researchers to sequence even extremely small sample volumes. To achieve this
high sensitivity, different approaches are used, some using optical detection as in

11

2. Transcriptomics

Table 2.2.: Third generation sequencing technologies

System essential parts! detection? process® volume limited by

— Currently commercially available systems
PacBio SMRT [49] P, N (lab) fluorescence synth. zero-mode waveguide
Ion Torrent [132] P, N pH change synth. pico-titer plate well

— Systems under development,

Life Tech FRET [81] P (mod), N (lab) fluorescence synth. FRET radius <10nm
Oxford Nanopore [38] EN, protein pore ion flow degr. pore diameter

IBM Nanopore [120] transistor pore nuc. properties direct pore diameter

'P, polymerase; N, nucleotides; mod, modified; lab, labeled; EN, exonuclease. Znuc.

properties, electrical properties of each nucleotide. 3synth, synthesis of the complementary
strand; degr, degradation of the template molecule; direct, sequencing without synthesis or
degradation.

second-generation methods, others using chemical sensors or measurements based
on physical (e.g., electrical) properties. Common to all methods is the reduction of
the observed sample volume, often down to few picolitres, which is necessary to de-
tect minute events such as the light emitted by a single fluorescent dye molecule or
the positive electrical charge of a single hydrogen ion.

Methods can also be grouped as to whether they rely on the use of biological
molecules, such as polymerases or exonucleases, or whether they are based purely
on artifical parts. A third grouping is possible based on the biochemical process
used into methods that synthesize a complementary strand, methods that degrade
a single stranded molecule and methods that sequence a molecule directly without
degradation or synthesis. Table 2.2 lists several methods with their properties. For
more details, see for example the review by Schadt et al. [139].

The main advantages of third generation sequencing methods, beside the elimination
of the amplification step and direct sequencing of single-molecules, are increased
read length compared to second generation methods, and, for some methods, the
detection of nucleotide modifications (e.g., methylations).

In this thesis, the focus is on data from microarray and second-generation sequencing
experiments.

2.4. Transcriptomics data analyses

2.4.1. Naming conventions

The data processed in transcriptomics research can be seen in the first approxima-
tion as being two-dimensional: The first dimension is that of the transcripts (genes,
ncRNAs, intergenic regions) under study. The second dimension is spanned by the
biological samples that are obtained. While the first dimension is easy to describe,
the second has more structure and thus more terms that are sometimes used inter-
changeably, or even with different meanings in different settings.

12

2.4. Transcriptomics data analyses

Table 2.3.: Structure of a transcriptomic study

Study — condition a, condition b, ...

Condition? — time-point t1, time-point to, ...

Time-point? — biological replicate 1, biological replicate 2, ...
Biological replicate — technical replicate 1, technical replicate 2, ...
Technical replicate = ‘sample’

Samples can be grouped in several hierarchical levels. ! Conditions can be multi-dimensional
attributes, e.g., different mutants on different media at different temperatures. 2When only
a single time-point is studied, the ‘time-point’ level in the hierarchy is not used. Instead,
one condition comprises several biological replicates.

As the input of the computational analysis of transcriptomics data results from
microarray hybridizations (or RNA-seq experiments), the term ‘sample’ is usually
employed to refer to a single data acquisition act (hybridization or sequencing)
instead of a single biological sample, as one biological sample may give rise to several
technical replicates, each of which results in a ‘sample’.

Samples can be grouped according to technical and/or biological replicates they rep-
resent. They can be further grouped by the condition that was studied (e.g., healthy
samples vs. disease samples). Conditions can be multi-dimensional, for instance when
several treatments are evaluated on several different mutant strains of an organism.
Time specifications are usually not seen as part of the ‘condition’. Rather they are
seen as a sub-structure of each condition, such that several samples representing
different time-points under the same condition constitute a time-series. Finally, all
samples in all conditions resp. series, that were studied within a specific project,
form a ‘study’ (see table 2.3).

The term ‘experiment’ is rather ambiguous. It can be used to describe all samples
referring to one time-series, or all samples acquired under a certain condition (or
pair of conditions). In microarray literature, the term is often used interchangeably
with the term ‘sample’; to denote a single column in the expression matrix, or to
distinguish the concept of an expression matrix column from that of a biological
sample.

In the following, the term ‘experiment’ will be used in the conventional sense to
represent one column of the expression matrix, i.e., transcriptomic data obtained by
one wet-lab data acquisition act. Several experiments form an expression matrix, or
data set, (representing one or more conditions, or one time-series) of which several
can be analyzed within a larger study. In MAYDAY, each measured transcript is
represented by one Probe, irrespective of the type of transcript (gene, noncoding
RNA), the technology that was used to produce the numeric value (e.g., summarized
Affymetrix probesets are also represented by ‘probes’, as are RNA-seq quantified
expression values for a given locus), or whether the data represents transcription
at all (e.g., when microarrays are hybridized with genomic DNA samples or when
MAYDAY is used for proteomic or metabolomic studies).

13

2. Transcriptomics

Table 2.4.: Data pre-processing and normalization steps

microarrays RNA-seq
scanned array images scanned images’
1 1
Image analysis spot detection spot detection
pixel value aggregation sequence determination
. 4
fore-/background intensities read sequences
4 4
Pre-processing background correction mapping against reference
probeset summarization counting
. 4
raw expression values read counts
4 4
Normalization intra-array (dye bias)? library size
inter-array (hyb. conditions) transcript length
1 1
normalized expression values normalized read counts

Comparison of pre-processing and normalization steps for microarray and RNA-seq experi-
ments. ' All second-generation sequencing methods are based on optical detection of fluores-
cence and require a spot detection step to locate each ‘cluster’ of identical sequences being
sequenced. 2Intra-array normalization is mainly needed for multi-channel arrays. Intra- and
inter-array normalization also correct for different sample concentrations.

2.4.2. Data pre-processing and normalization

The first dry-lab step in expression studies is quantification, where the raw data
files (usually image data) are analyzed to quantify the expression strength for each
transcript of interest. For microarrays, this includes image alignment and spot de-
tection, delineation of spot boundaries and summarization of pixel values inside and
outside of the spot area of each spot location. In RNA-seq experiments, image files
are analyzed to obtain read sequences and per-base quality values (see table 2.4 for
a comparison of the steps required for the two technologies).

Raw data from biological experiments not only reflects the true biological phenom-
ena under study, but also contains unwanted components. These are (more or less)
random noise due to the technical properties of the system used for data acquisition
(e.g., optical noise in scanned microarray images) and ezperimental bias due to dif-
ferences in sample processing (environmental conditions, different experimentators,
different labs, different batches of chemicals used, etc.).

Before meaningful analyses can take place, these unwanted effects have to be removed
from the obtained signals as much as possible to uncover the relevant biological signal.
This is typically a two-step process:

1. Sample pre-processing is necessary to remove technical noise from the data
and to obtain the initial expression estimates for the next step.

14

2.4. Transcriptomics data analyses

For microarray experiments, background correction methods are used, to sep-
arate the optical signal due to probe hybridization (inside the spot area) from
the background noise (outside the spot area) due to unspecific hybridization
and scanner noise. Methods range from simple subtraction of background val-
ues to modelling signals based on separate foreground and background distri-
butions [148]. Spatial effects (especially for multi-printtip spotted arrays) can
also be corrected [183]. Further steps, such as probeset summarization can be
necessary to generate the per-transcript expression values.

Read sequences from RNA-seq experiments are mapped against a reference
sequence to assign them to transcripts, resulting in a counts per transcript
value. A separate ‘background correction’ step is not required for RNA-seq
data, as no ‘unspecific sequencing’ can take place.

. Inter-sample normalization aims at removing technical bias that overlays
the biological differences between different samples.

Normalization of microarray data [124] is strongly dependent on the platform
used. If multiple samples are hybridized to one array (dual- or multi-channel
arrays), intra-array normalization methods are first employed to remove bias
introduced by different concentrations of the two (or more) samples, as well
as by different ‘strengths’ (labeling efficiency, light output, scanner sensitivity)
of the fluorescent dyes used (see [142] for an overview of possible sources of
bias in microarray experiments). After intra-array normalization, or if only
one sample is hybridized to each array (single-channel arrays), so-called inter-
array correction methods are used, with one example being quantile normal-
ization [27] which aims at mapping both samples expression values to the same
distribution. These methods try to account for technical bias introduced e.g.,
by different scanner brightness settings, hybridization conditions or different
sample concentrations.

For RNA-seq data, two factors are considered to influence the count values: The
library size (total number of reads) has to be accounted for to make a gene’s
count values from different samples comparable [105], and the length of the
transcript influences comparisons between different genes’ count values within
one sample [114]. The RPKM (reads per kilobase of exon model per million
of mapped reads) measure [109] corrects for both. Alternative methods have
been proposed for library size normalization, such as the more robust quantile
method of Robinson and Oshlack [131, 33]. Another source of bias is sequence
GC content which can even interact with variation in library preparation [129]
(see [119] for a discussion of sources of bias in RNA-seq data).

2.4.3. Differential expression & statistical testing

With normalized data at hand, on of the fundamental aims of expression studies is to
determine which transcripts are differentially expressed between different conditions
(or time-points). For simple studies which include only two conditions (e.g., treated
vs. untreated), this could be (and has often been) determined by simply computing

15

2. Transcriptomics

the mean expression for each gene in each condition and then ranking genes according
to the absolute difference between their two mean values.

Instead of deciding on a difference threshold above which genes are deemed suffi-
ciently differentially expressed, a less arbitrary approach is to use a statistical test on
each gene’s values. Such tests (e.g., Student’s t-test [150]) rely on the availability of
several replicates per condition to take within-condition variance into account when
evaluating between-condition variance. The result of applying a statistical test is a
p-value, expressing the probability that the observed between-condition variance is
the result of random sampling from one distribution instead of from a true difference
between the means of two distributions, one for each condition. In other words, the
t-test p-value gives the probability of finding a similar or more extreme difference
between the conditions when drawing both conditions’ expression values from the
same (normal) distribution (or, equivalently, from two normal distributions with the
same mean). Genes with a p- value smaller than a predefined threshold (most often
0.05) are called statistically significantly differentially expressed.

If several tests are conducted, correction for multiple testing is necessary to limit
the amount of false positives (i.e., genes deemed significantly differentially expressed
even though they are not). This is especially important in high-throughput exper-
iments, where tens or hundreds of thousands of tests are performed and validation
of predicted positives (e.g., using qPCR) is costly and time-consuming. Several cor-
rection methods have been published with different levels of stringency, falling into
two categories. The family-wise error rate (FWER) is controlled by methods such
as Bonferroni’s [28, 29], Holm’s [70] or Sidék’s [165] which are very strict and often
lead to a high false negative rate up to the point where no gene is considered signif-
icant at all [48]. Methods controlling the false discovery rate (FDR [17, 18]) are less
stringent and are often used in expression studies.

The t-test is a parametric test statistic, meaning that it makes assumptions about
the underlying data, namely that data follows a normal distribution. Non-parametric
test statistics make no such assumptions, and thus are more suited for data where
assumptions might be violated. One example for a non-parametric test is the Rank
Product method [30], which automatically controls the false discovery rate and also
takes dependencies in the data into account. Such dependencies are very likely in
expression data, as genes are usually up- resp. downregulated in groups, for instance
comprising all genes common to a metabolic pathway.

The list of (statistically significantly) differentially expressed genes is then used for
higher-level analysis.

2.4.4. Higher-level analyses

Two points of entry are commonly used to dissect expression data sets, one being the
list of differentially expressed (DE) genes obtained by applying some statistical test
(i.e., a gene list derived from the data), the other being lists of ‘interesting’ genes
(i.e., lists based on a priori information). The latter include lists of genes implicated
in the same (metabolic or regulatory) process, genes suspected to be of relevance to
the research question under study, genes found to be significant in other studies, etc.

16

2.4. Transcriptomics data analyses

These gene lists can be used as the basis for a large number of computational as well
as visual analyses. Very common are unsupervised clustering methods which try to
group genes together based on their expression profiles to discover potentially co-
regulated genes (i.e., genes whose transcription is regulated by the same transcription
factors), pathway analyses and enrichment studies with the aim of finding a pathway
or gene category which is (statistically significantly) over- resp. underrepresented in
the list of DE genes, and analyses of the genomic location of putative co-regulated
genes. An example analysis covering most of these points is presented in section 3.7.

Meta-information, such as functional gene annotations, is often included in the anal-
ysis process, for instance to assign transcripts to functional categories for enrichment
calculations. It can also be used to enhance data visualizations by introducing ad-
ditional data aspects and allowing researchers to intuitively perceive relationships
between different experimental (and meta) variables which might be unexpected and
would not have been picked up by algorithmic approaches. Repeatedly displaying
data in rich visualizations based on primary and meta data, generating hypotheses
and testing them with further visualizations as well as statistical methods is the
scope of visual analytics.

In this dissertation, a fundamental redesign and several large extensions of the ex-
pression analysis framework MAYDAY are described which implement the concept of
visual analytics for expression data, add and /or improve important visualizations for
large-scale data, integrate sequencing-based high-throughput transcriptomics data,
and lay the foundation for further developments within the MAYDAY framework.

17

3. The new Mayday as a solid foundation

3.1. Mayday’s Evolution

In 2003, MAYDAY [46] was initiated by Kay Nieselt, Janko Dietzsch and Nils Gehlen-
borg who implemented version 1.0 as part of a student project, and was quickly
followed by version 1.1. The aim of the project was to fill the need for a visual an-
alytics application for microarray studies. The project became the basis for many
other students’ work who designed and implemented plugins for the core application.
A major step was the release of MAYDAY 2 in 2005 which was the starting point for
the work described here. The next release was version 2.5 in 2008 which included a
redesign of large parts of MAYDAY’s core (see below), with regular releases continu-
ally incorporating changes and additions to the core, introducing new functionality
(often as a result of students implementing new plugins), as well as improving the
user interface [16].

The evolution from MAYDAY 2.0 to the current version 2.12 was motivated by two
developments: The rise of Systems Biology where additional aspects (metabolome,
proteome) of an organism were described as numerical data similar to the matrix
format (‘expression matrix’) used for transcriptome analyses, and the introduction
of powerful high-throughput sequencing technologies which resulted in a completely
new form of expression data. Both of these needed to be integrated into the program.

Together with many changes necessary to make MAYDAY more flexible and to allow
for efficient analyses of large-scale data, these developments not only significantly
changed the user interface (see figure 3.1) and brought the project to well over
300,000 lines of code (see figure 3.2), but also lead to the establishment of a more
structured basis on which plugins can be implemented. The loosely coupled pair of
a small core and a relatively simple plugin management system in version 2.0 was
replaced by the combination of the original core adapted to allow for multi-threaded
computations, a large number of data structures (such as flexible vector and matrix
classes, structures for the efficient storage of genomic positions, graphs, trees, data
structures built around native types as well as memory-mapped structures), a very
powerful plugin system currently providing more than 60 extension points (see be-
low), a framework for persistent settings and automated GUI creation as well as a
task management system. A common foundation for visualizations was established
which greatly simplifies the development of new visualizations and their integration
with other plots and MAYDAY’s data structures. Figure 3.3 shows how these ele-
ments relate to each other. The visualization framework is presented separately in
chapter 4.1, the other elements are described in more detail below, followed by a
short example of how MAYDAY can be used to analyze complex Systems Biology
datasets.

19

3. The new MAYDAY as a solid foundation

Eile Mayday DataSet Probelist Windows H
x| Eile Mayday Set P Wi Help -
Datasets 4| ProbeLists in F195-50P —
o~ L3 5 Expression Matrix A
F1SS:80P"22779:82 Complete DataSet (1] 22779 0 Meta Information Table
% Percentile Table
S sample Information Table
Partitioning (k-Means) (9] 322
! Created 22112011 15:38:46. Box Pt
e . W HeatMap [
kMeans1 17 | Histogram
: MGV - Mayday Graph Viewer
bset " % Profile Plot
pooal ""I kMeans 2 30 # Scatter Plot
DataSet Proparties E feteans 326 Expression Profiles
22779 probes Bar Plot
32 experiments oMo 4 Z = Mui Profile Plot o
Meta Information # StarPlot I
by annotated Objects << Windows ~ x
: b W kMeanss 20
tovels || MoveDomn ST bvivee | -‘ febeans 3 {27 Mayday [F193-PAPER maydayz]
[Meta information groups 9) F1ss-sop
[} Timepoints (11 9] kMeanss 2 9 (5] Visualizer <1>: 1 open wi
¢ (Tigen) t i [) Fas9-s0p <1> Profi
[Level 2 annctation (752] kMeans7 12
(i) Profile Plot "k-Means 9" [Visualizer 5 =101 x|
k=Means 9 Do Blot ProbeLists Selection Experiments View Visuaiger Windows
tog2 rato . . N
Dol EEG %S (05 Mk b o [o# s 0
[} scoid
D) regv
[tocus
[Ame
<

‘ 4902 M8 free of |
S—

Expression value, zscore

Figure 3.1.: User interface comparison: Compared to the MAYDAY version 2.0 released
in 2005 (left), the current version (right) has a much richer user interface
which displays all important elements of MAYDAY’s data model directly in
the main window (top part of the figure): If multiple datasets are opened,
they are listed at the top left of the window. For the currently selected
dataset, meta information is shown on the bottom left side, while the
probe lists are displayed in the central area of the window, together with
their hierarchical ordering and small preview images which make it easier
for users to remember what each probe list contains. Users can include
additional view elements (rightmost column) such as a list of visualiza-
tions for quick access, or an overview of currently opened visualization
windows. The visualization plots (for example the profile plot, bottom
part of the figure) also offer many more configuration and interaction
possibilities than before.

20

3.2. Plugin Management

300.000
250.000
200.000

150.000

Lines of code

100.000

50.000

e — =T

(.OLDQ‘NHOC’I\@LOMNHOO’JV“O?("}NHO?GJI‘LOV(‘QHOO’COLDLOVNHOO’I\KDLD(")NP'OCOI\@#MNHO’UJV‘L{)VMHOO’G)LOLDVNHO
SO AN N GN N 0 oeAN e O SeAN S NGO NN SO AN, S N AN AN, AN N
vm oomo‘—n—cm mgor\ 1O SN NN mvm ODO)HNHN 100 O)OH NM 5 ©OMN00 N mv l\OOOﬁHNHHVLO

O#vow?ﬁﬁ'mmommmo owowomww HDI\!\I\OI\!\I\HOOOOOOOOODOOHHDmc}ommcﬁmHHHOOHOOODHHHHH

OOOOOOWOOOOOOOOLOI-OOOOOOOOO@@OOOOOOOO’\OOOOooowwOOOOOOOOO@OHHOHHHHOHO-—h—i

ANOONOO OOO0ONOO ONOONO OONOOOO ONOOONOOOOOONOONOOO NOONOOO OOONOONOOOO—ONOO
AN ANONNN AN OO AN ANANANO O AN ANANANOANIANT AN ANOO AN ANANANANO O AN ANOANANANO NN NN

ol

Time

M Total W core package [visualization [settings [pata structures [l seasight (partial;

Figure 3.2.: Size of the MAYDAY project, given in lines of code (LoC) for the total
package as well as several subsystems over the lifetime of the project.
The figure is based on all packages included in the “experimental” re-
lease version, excluding unfinished code in the “incubator” repository.
The curve for SEASIGHT only shows the main SEASIGHT components,
excluding data structures, settings, and other components developed for
SEASIGHT but placed into core packages. The decrease in total lines of
code in November 2008 coincides with MAYDAY 2.5 and the switch from
the old code repository to the new one.

3.2. Plugin Management

Prior to version 2.5, MAYDAY was built around a small core extended by plugins.
The plugin management was kept simple such that all plugins extended MAYDAY at
a single predefined point, namely the processing of ProbeLists. This was optimal
for accommodating such methods as clustering or machine learning. Other exten-
sions to the core functionality, especially those that did not work on a selection of
ProbeLists, nevertheless had to be presented to the user in the same place. This
resulted in a situation where plugins that had nothing to do with ProbeList process-
ing could only be included at a semantically inappropriate place, at times confusing
users as to why these plugins did not respect the current selection of ProbeLists. In
addition, plugins extending MAYDAY at internal points where direct user interaction
was not required, such as plugins implementing distance measures, were not possible
in this system.

In the course of this work, MAYDAY’s plugin system was rewritten from scratch. The
new system incorporates three very important changes which will be described in
more detail below:

21

3. The new MAYDAY as a solid foundation

Mayday 2.0 Mayday 2.12
------------ > Plugin Core Plugin - Vis 3
System Matrices System > Plots
- Genome - Model
Vis 1 A
S Trees ™. " ¥ Gradients
Model Meta Graphs 4%, o
Gradients Information Native . Meta [<—| Settings
MMap Information |<.... ...

Figure 3.3.: Major elements of the MAYDAY core package and the changes in their
integration between MAYDAY 2.0 and the current version 2.12. Arrows
indicate dependencies. MMap, memory mapped data structures (see sec-
tion 7.6.3); Visl (Mayday 1.0) and Vis3 (Mayday 2.12), visualization
framework implementations (see 4.1).

e Unique plugin identifiers as part of each plugin’s descriptor
e Multiple extension points

e The abstraction of file resources

3.2.1. Unique Plugin ldentifiers

The new plugin management system defines a standard set of information required
for each plugin, encapsulated in the PluginInfo class. It contains human-readable
information regarding the plugin’s author, the author’s email address, a short de-
scription of the plugin’s purpose and the name of the plugin. Further information
required by the plugin manager are a unique plugin identifier and a list of depen-
dencies.

The unique plugin identifiers are used throughout MAYDAY to refer to the plugin, to
describe dependencies between plugins and for serialization purposes. When MAY-
DAY is started, the plugin manager begins by scanning for available plugins (Java
classes extending the AbstractPlugin base class). Candidate classes are instantiated
and queried for their plugin descriptor. In the second phase, plugin dependencies are
resolved and all plugins are initialized in the order defined by their dependencies.
From this point on, the unique plugin identifier can be used to refer to a certain
plugin.

Plugin identifiers are also used for serialization purposes, equipping MAYDAY with
a universal system for storing information about which plugin is capable of pars-
ing certain data. Through this system, MAYDAY’s file formats (most notably the
maydayz snapshot format) can be used to embed additional information which is
serialized and deserialized while the main file parsing and storing classes can defer
finding parsers for embedded data items to the plugin manager.

3.2.2. Multiple extension points

As described before, the original MAYDAY version only allowed plugins to extend
MAYDAY at one given point, i.e., the ProbeList context menu. By adding multiple

22

3.2. Plugin Management

points for extensions, the utility of the plugin system could be greatly improved and
MAYDAY could be transformed into a more generic platform for data processing.

This was done by introducing a further information field into the plugin descriptor,
the so-called master component. The plugin manager groups plugins by their mas-
ter component and makes them available, e.g., for creating context menus. Many
features of today’s MAYDAY are only possible due to these changes.

As an example, all plugins working on ProbeLists, including most plugins already
available in MAYDAY prior to the introduction of the new plugin system, specify
MC_PROBELIST as their master component. Other extension points have been de-
fined for plugins working on datasets and meta-information, as well as for internal
plugins such as distance measures, statistical tests, data transformations and meta-
information types, among others.

In terms of programming patterns, the plugin manager implements the factory pat-
tern and, by the system of extension points, is turned into a plugin super-factory.
Secondary factories, e.g., for distance measures, provide simplified access to some
groups of plugins and/or adapt pre-existing structures in the original MAYDAY ver-
sion to the new plugin management system.

3.2.3. Abstraction of file resources

As Java application, MAYDAY was designed to be run from a local installation or
by using the Java WebStart mechanism which allows starting the program with a
single click on a website link. A third deployment option is used by developers, who
usually start MAYDAY from within their development environment (e.g., Eclipse).
Each option results in different location of resources such as icons, help text files,
filter specifications etc.

e In local installations, these files are usually part of JAR archives which, since
they are part of the local file system, can be opened and scanned by the plugin
manager. Additional plugins and resources may be available as individual files.

e During development, plugin classes as well as resources are available as indi-
vidual files in a folder structure depending on the respective developer’s choice.

e When using WebStart, classes and resources are hidden away in JAR containers
which, though they are cached in the local file system, are not accessible to
the plugin manager. (Prior to Java version 1.5, these resources were at well-
defined locations in the user’s home directory. Starting with Java 1.5 (Java
5 SE), the files are placed into Java’s WebStart cache with names randomly
assigned by the Java installation. In any case, the placement of these files is
undocumented and subject to change without notice). Furthermore, users may
have additional plugins installed locally that they want to have incorporated
into their MAYDAY WebStart session.

Depending on the deployment option, the plugin manager chooses the appropriate
methods to find available plugins and file resources. JAR files for webstart deploy-
ment contain an extra file as part of their meta-information which gives a list of
all resources as well as a list of included plugins as part of the JAR manifest. The

23

3. The new MAYDAY as a solid foundation

plugin manager enumerates available resources and makes them available to MAY-
DAY classes in the form of a virtual file system based on the mayday/ prefix. Thus
programmers can access icons etc. based on a simple file path irrespective of their
actual position in the file system.

3.2.4. Surrogate plugins

With the addition of the R console RLINK (see 5.2) and the JavaScript console
(see 5.3) plugins, MAYDAY can make use of functions available in R or written in
JavaScript to further extend its functionality. The flexibility of the new plugin system
allows functions in these (and other) languages to be registered as MAYDAY plugins.
Thus, a distance measure written as an R function and registered with the plugin
manager will be available to all methods using distance measures, such as for example
clustering methods.

These extensions are made possible via the SurrogatePlugin class which defines
a Java adapter for non-Java plugin methods. The plugin manager recognizes these
plugins and, instead of instantiating the plugin using a Java class constructor, uses a
factory method of the surrogate plugin in conjunction with an extra object (e.g., the
function name for R or the JavaScript source code). Plugins defined via this system
can extend MAYDAY at any of the existing extension points.

3.3. Meta information

Expression analyses are usually performed in the context of a priori information
about the genes under investigation. Such meta information or annotation can, for
instance, assign genes to functional categories (such as Gene Ontology [5] terms) or
metabolic pathways (such as KEGG [88] IDs). Meta information can also be derived
from the primary expression data, an example would be the p-values obtained by
computing a statistical test for differential expression on each gene’s expression
vector (given a class labelling of the experiments).

Meta information is an important part of MAYDAY’s data model. Before MAYDAY
2.5, meta information was organized as collections of values (meta information ob-
jects, MIOs), grouped together in so-called MIGroups. Each group stored MIOs of a
given type and associated Probes with MIOs. Different meta-information types were
available (storing values of type Integer, Double, complex numbers, String, as well
as String lists) and were statically included in all MAYDAY classes creating or using
meta information. As a result, adding new meta information types required changing
all classes that would potentially be able to work with the new type. The groups
were stored in a flat structure, i.e., no relationships between MIGroups could be de-
fined. Values stored in MIOs could not be visualized by the user, neither in a tabular
view nor in specialized plots such as histograms. Furthermore, serialization was not
part of the MIO definition, resulting in a situation where meta information could be
imported into an opened dataset but could not be stored with that dataset. During
the implementation of the “R interpreter” plugin, Matthias Zschunke implemented
serialization support for the existing MIO types [186]. However, this was kept in

24

3.3. Meta information

Table 3.1.: Differences between MAYDAY’s old and new meta information framework

old system new system

Number of types 5 24
Pluggable no yes
Serialization no yes
Rendering no yes
MIGroup structure flat hierarchical
Used in visualizations rarely heavily

separate classes which were statically selected based on the type of information to
serialize and, furthermore, were only used inside the R interpreter package.

The MIO system was completely rewritten for MAYDAY 2.5 (changes are listed in
table 3.1). Firstly, all MIO types were implemented as MAYDAY plugins implement-
ing the MIType interface (or extending the abstract GenericMIO class). Each MIO
type needs to implement its own serialization and deserialization methods, creating
a plain-text representation as well as an XML representation. These are used to
persistently store all meta information associated with a given MAYDAY dataset in
the so-called “Mayday Snapshot format”, a compressed, fast-access file format which
was also introduced with MAYDAY 2.5. A further interface HugeMIO was introduced
with MAYDAY 2.11 for meta information types storing large amounts of data. These
implement efficient serialization to Java Input/OutputStreams.

Furthermore, each MIType can implement special rendering classes for display of its
content in MAYDAY’s overview dialogs as well as editor classes that can be used to
change the value of the object (if it is not read-only). Many of MAYDAY’s visualiza-
tions (see also 4.1) can now use meta information either directly (e.g., displaying the
distribution of numeric meta information in a histogram), or as a source of relevance
information (e.g., influencing opacity to highlight relevant profiles in a profile plot),
as the basis for coloring visual elements (based on numerical values mapped to a
color gradient or an assignment of distinct colors to categorical meta information),
as well as for sorting rows in tabular representations or MAYDAY’s heatmap plot,
for instance.

MIO types can implement a set of interfaces to indicate the kind of data they
contain, such as numerical data (NumericMIO), categorical data (CategoricalMIO),
or data that can be ordered (ComparableMIO). This allows other classes in MAYDAY
to decide which MIGroups provide valid input. Thus, adding new meta information
types only rarely requires changes to existing code, and only in cases where specific
handling of the new type is needed, e.g., a new numerical type with higher precision
would not require any changes to visualizations using numeric meta information to
assign colors.

The meta information groups relating MIOs to other objects were rewritten to pro-
vide a much larger set of access functions for programmers as well as to expand
the applicability of meta information beyond only annotating Probe objects. Other

25

3. The new MAYDAY as a solid foundation

Object selection - layout one [First l — l Some example |
Object selection - layout one P
Dbiectasichion M YSittne First Object selection - layout two P
Se.cond Object selection - layout three P
Third Object selection - layout four »
Detach menu... Sgcon&
Object selection - layout three (@) First ik

() Second
) Third
Object selection - layout four (® First () Second () Third

-- last used settings -- vH Remove H Add l l Cancel l OK

HierarchicalSetting mySetting = new HierarchicalSetting("Some example", LayoutStyle.PANEL VERTICAL, true)
.addSetting(
new ObjectSelectionSetting(
"Object selection - layout one",
"Help text ",
0,
new String[]{"First","Second","Third"}

)
.setLayoutStyle(ObjectSelectionSetting.LayoutStyle.COMBOBOX))

Figure 3.4.: Graphical User Interface representations shown for the example of a
ObjectSelectionSetting. Top left, different styles can be used for dis-
playing the object selection in dialog windows. The automatically created
user interface also contains control elements to store and load often-used
configurations. Top right, the same selections as represented when em-
bedded in a menu. Bottom, exemplary source code for creating one of the
settings and adding it to the surrounding hierarchical setting.

objects, such as ProbeLists, DataSets and even other MIType objects can now
be annotated. A hierarchical structure was introduced, assigning a path to each
MIGroup similar to a file system, to allow the definition of relationships between
MIGroups. This makes it easier to find MIGroups in strongly-annotated datasets, and
also reflects logical relationships. For instance, a statistical test may produce a test
statistic, a raw p-value as well as a p-value corrected for multiple testing. One might
choose to have the corrected p-value at the root level of the MIGroup hierarchy, as it
is arguably the most informative of the three values, while the raw p-value as well
as the original test statistic could be added as children in the MIGroup tree.

3.4. Persistent Settings

3.4.1. Motivation and requirements

Most algorithms and analysis methods have some configurable parameters. As a con-
sequence, programmers implementing such methods for MAYDAY have often spent
considerable effort in creating user interfaces to allow users to change these param-
eters. Often, these user interfaces were very different from method to method, and
many ‘lessons’ learnt during the development of previous methods were not known
to those implementing new methods, or were not heeded due to time constraints.

26

3.4. Persistent Settings

However, there are some very desirable features that are almost universally useful.
These are:

1. A consistent visual appearance of configuration dialogs and GUI elements.
For example, if a color has to be selected, the GUI element for this purpose
should look the same in all dialogs. In addition, if the same component is re-
used, improvements need only be implemented once and automatically affect
all instances of the component.

2. Context-sensitive help texts for different options, especially when their im-
pact on the method’s output is not obvious.

3. Automated checking of parameter values including appropriate notifica-
tions to the user in case a parameter was not specified correctly. For example,
programmers should be able to define the acceptable value range for a numer-
ical parameter. The implementation should check user input before accepting
it and present a helpful message in case the input does not fulfill the require-
ments. Implementors using such parameter implementations will not have to
spend any time validating the input, as they are guaranteed that any input is
already tested.

4. Serialization of parameters for later re-use, not only during one analysis
session but also in a persistent manner. Specifically, being able to store different
sets of parameter combinations for later use can greatly simplify analysts’ work,
in addition to preventing errors in repetitive analysis tasks.

5. An event-based system to communicate parameter changes, e.g., to auto-
matically update a plot when a visual parameter is changed.

6. Integration of parameters into different GUI elements such as dialog windows
and menu bars with appropriate visual representation and event handling,
as well as synchronization of multiple views visualizing the same parameter
instance.

7. The possibility to programmatically access the values of parameters, also
from outside the original implementor’s code. This can be useful in the context
of automating analyses, where manipulating the content of a GUI window
would be very cumbersome. A more elegant solution is to directly configure
the parameters via a common interface and then run the method with these
parameters.

8. A hierarchical representation of parameters that allows for the aggregation
of several methods’ parameters into one parameter object. Thus, methods can
be combined (for an example, see section 4.4.1) and the parameters for the
combination are made up of the parameters for each of its parts.

3.4.2. Implementation

All the above requirements are all fulfilled by MAYDAY’s Settings framework which
was first implemented as part of SEASIGHT. Due to its usefulness, the framework
was incorporated into and tightly integrated with the MAYDAY core and is now used
by many other packages (e.g., the complete visualization framework) and plugins.

27

3. The new MAYDAY as a solid foundation

Table 3.2.: Setting types implemented in MAYDAY’s core package (selection).

Base classes

Setting (interface) defines the common interface for all settings
AbstractSetting (abstract) implements common functionality
GenericSetting delegates storage and serialization to a MIType

Single values
Setting classes are implemented for the types boolean, double, integer, long,
String, for multiline Strings, directories and files, colors and meta-information.
Lists of values
Setting classes are implemented for ordered lists of the types double, integer,
String, for lists of files, as well as for a list of Objects based on a predefined set.
Miscellaneous

StringMapSetting a set of pairs of Strings, e.g., a mapping of names
ObjectOrderSetting an ordering on a set of predefined objects
ClassSelectionSetting a class labelling on a predefined set of objects

Object selections

ObjectSelectionSetting<T> one object from a predefined set
MultiselectObjectListSetting<T> a selected subset from a predefined set
RestrictedStringSetting one String from a set of predefined Strings
SuggestedStringSetting one String from a set of predefined Strings or

a String entered by the user

Plugin-related settings

specific classes are implemented for certain plugin categories: distance measures, data

transformations, p-value correction, statistical tests.

PluginInstanceSetting<T > a plugin instance selected from a list of available
plugin instances, each potentially containing its
own setting objects.

PluginInstanceListSetting<T> a list of plugin instances that can be constructed
based on a predefined set of available plugin in-
stances, each potentially containing its own set-
ting objects.

PluginMultiselectListSetting<T> a selection of plugins from a predefined set of
available plugins, each potentially containing its
own setting objects.

Hierarchical settings

HierarchicalSetting an ordered list of settings (each possibly with sub-
settings)

BooleanHierarchicalSetting encapsulates any kind of setting and a boolean
value; if set to true, the sub-setting can be con-
figured.

SelectableHierarchicalSetting an object selected from an ordered list of objects,
where each object can be itself a Setting

SortedExtendableConfigurable- An orderable list of objects composed from a

ObjectListSetting<T> set of available objects (dynamically constructed

based on the current list), where each object can
supply its own Settings.

All types implement the Setting interface and with the exception of ComponentPlace-
HolderSetting, which does not store a value but can be used to integrate any SWING
component in auto-generated user interfaces, derive from the AbstractSetting base class
via GenericSetting.

28

3.4. Persistent Settings

The implementation is split into the storage, event-handling and validation part
defined in the Setting interface and implemented largely in the AbstractSetting
and GenericSetting classes (see table 3.2 for an overview of the core setting types),
and into the user interface part defined in the SettingComponent interface and im-
plemented largely in the AbstractSettingComponent class. Some settings offer dif-
ferent visual styles to allow programmers to influence how the setting is represented
in user interface components (an example is shown in figure 3.4).

The same Setting can be represented by more than one GUI component. As an
example take a BooleanSetting (storing one binary value) which can be included
in a menu bar (using JCheckBoxMenuItem, a menu item with a check box next to
its label) as well as in a dialog window (using an ordinary JCheckBox). By clicking
on the menu item, users can toggle the value (true/false) of the underlying Setting
which will be instantly reflected in the state of the JCheckBoxMenuItem as well as
in that of the JCheckBox shown in the dialog window.

An important aspect of the Settings framework is its tight integration with MAY-
DAY’s plugin system: Plugins can define their parameters based on the settings frame-
work. If a method requires selection of a plugin, e.g., if a clustering method requires
selection of a distance measure, the parameters of the selected distance measure plu-
gin will automatically become part of the clustering method’s parameter set, both
for user interface creation as well as for serialization.

3.4.3. Benefits

Using the Settings framework, time that would have been spent on writing user in-
terfaces, parameter validation and serialization (which was often omitted before) can
now be spent developing and optimizing and, above all, testing the actual method.
Furthermore, the definition even of very complex parameter sets no longer results in
several hundred lines of code spread over several classes (GUI elements, validation,
storage) with sometimes indistinct responsibilities but can be accomplished in a few
lines (typically one single line for each parameter).

The serialization capabilities included in each setting type can be used to apply
identical parameter values to a large number of objects. This is used in SEASIGHT
to allow users to change the parameters of several selected experiments: First, a
user interface is created showing the setting components for the settings common
to all experiments. After they have been configured by the user, the new values are
serialized and deserialized into the individual setting objects of the experiments.
This in turn triggers change events within each experiment’s setting which result in
updates to the experiment’s state as well as to the main SEASIGHT user interface.

And finally, user interface components (dialogs, menus) are automatically created for
the parameters with intelligent and consistent layouting of components. No external
dependencies or pre-processing steps are required.

29

3. The new MAYDAY as a solid foundation

Implementing classes provide a Implementing classes can Implementing classes can
GUI component for configuration serialize their configuration convert Probe — Boolean
OptionPanelProvider StorageNodeStorable ProbeFilter

RuleSet Rule - AbstractDataProcessor
Operator: AND / OR Default value Input Type — Output Type
List<Rule> »| Operator: NOT =4

Stack<AbstractDataProcessor> ...

ProbelL ist

DynamicProbeList | DynémicProbeListMIO
reacts to events in RuleSet serializes the RuleSet
detects cyclic dependencies restores it after loading

Figure 3.5.: Important classes in the dynamic ProbeList framework. Classes are
shown with a solid border, interfaces with a dotted border. Solid arrows
indicate interfaces that are always implemented, sparsely dotted arrows
indicate that some of the respective classes implement a given interface.
Finely dotted arrows indicate dependencies. The ProbeList class is part
of MAYDAY’s core.

3.5. Dynamic interactive filtering

Filtering plays one of the most important roles in the analysis of high-throughput
datasets. The number of features studied is usually in the range between a few thou-
sand and several hundred thousand, which makes visual inspection of the whole
dataset infeasible. Since most features (i.e., genes) are expected to not be differen-
tially expressed between different conditions, hiding uninteresting features allows to
reduce visual as well as analytical complexity without sacrificing relevant informa-
tion.

Usually, an analysis contains several rounds of filtering, visual inspection, statistical
computations and hypothesis generation by the researcher. In M AYDAY, this is sup-
ported by a very flexible filtering framework, implemented under the name Dynamic
ProbeLists (DPL, see figure 3.5 for an overview of the elements involved). The basic
idea is to use filter criteria to define which probes (i.e., features, genes) to include
in the resulting ProbeList, and which ones to exclude. Two elements of the DPL
system are fundamental for its flexibility and power:

e Small building blocks: Similar to the GNU suite of tools, dynamic ProbeList
filters are constructed from very simple parts, so-called DataProcessors which
can be chained together (as shown in figure 3.6A). A DataProcessor converts

30

3.5. Dynamic interactive filtering

A

Rule

= I Probe { DP I T, I DP lL’| DP | L;

Probe —>| RuleSet

AND NOT) . SOEC S S S SR
booleanw,, . (J‘ Boolean Boolean Boolean
boolean Boolean

Interpretation
- true: keep Probe Interpretation
- false: remove Probe - True: keep Probe

- False: remove Probe
-null: use Rule's default

B o P {Grestors
Probe —| Expression Values IM]»M
- [Ausote}——[Greters|

‘ Name

[Dynamic ProbeList ‘

Color
Rule Set
[ALL of these 1 rules Active [] InvertRule [] Missing values = TRUE

D IProbe Values, at least one item (absolute) = 5.0

Probe Experiment Values

At least one element matches

Absolute value

LAERERR

Compare a number (class java.lang.Double)

Value should be s
22206 matching probes. Apply

Remove

Figure 3.6.: Processing path and user interface of a dynamic ProbeList. A, RuleSets
aggregate the results from several independent tests either by an AND or
OR operation. Rules encapsulate one test, providing a default value and,
optionally, inverting the result (NOT operation). DataProcessors (DP)
convert an input object into an output object, passing it on to the next
DP, until the result is of type Boolean. This result is passed back the chain
to allow further modification and aggregation operations. B, the data
processor chain expressing the test “at least one expression value should
be larger than 5 or smaller than -5”. The “All elements” processor uses an
array as input (regardless of element type) and executes the remaining
chain for each element in the array, aggregating the result. C, Dialog
window for setting up a dynamic ProbeList, showing the setup of the
same data processor chain (right panel), the automatically created name
for the rule (left panel), as well as the number of Probes passing the filter
(bottom left).

31

3. The new MAYDAY as a solid foundation

32

one type of data into another type and hands the result to the next element
in the processing chain. A chain is complete, iff after passing through all
processors, the input data (of type Probe) has been converted to a Boolean
value, indicating whether to include or exclude said probe from the dynamic
ProbelList. Each chain of DataProcessors is encapsulated by a Rule object,
which takes care of cases where the chain can not come to a positive or negative
result. In such cases, a (user-defined) default decision is made. Furthermore,
the Rule can apply the unary NOT operator. To build more complex filters,
several criteria (chains) can be combined in a tree structure of RuleSet ob-
jects, each of which can be configured to either apply the AND or the OR
operation.

Using such small building blocks allows for very flexible specification of quite
complex filters while keeping the implementation effort for each DataProcessor
low. As an example, consider the criterion “at least one of the probe’s expres-
sion values should be larger than 5 or smaller than -5”. This very specific
condition can be modelled using a chain of four DataProcessors. The first
one converts a Probe object into an array of double values by extracting the
Probe’s expression values. The second one applies the “any element of a col-
lection matches” operation, made possible by the bidirectional data flow in the
processing chain (as shown in figure 3.6B): Each DataProcessor converts its
input value and hands the output value to the next DataProcessor. The final
result of type Boolean is handed back in the reverse direction, allowing each
DataProcessor to apply further computations before passing the result on.
In this example, the “Any element” DataProcessor executes the remaining
chain independently for each element in its input object and aggregates the
result using the OR operation (taking care of correctly handling null values).
The third DataProcessor in our example merely computes the absolute value
of a number. Finally, the fourth and last element checks whether its (numeri-
cal) input fulfills a given equality resp. inequality with respect to a predefined
number.

Dynamic updates: A dynamic ProbeList’s RuleSet may contain criteria
that depend on other ProbelLists, even other dynamic ProbeLists. If any
of those lists changes, the dynamic ProbeList is automatically updated to
reflect changes resulting from the change in the other list(s). The same is
true for criteria depending on meta-information values, visualizer selections
and so forth. The algorithm taking care of the updates can detect circular
dependencies. In such cases, updates are stopped, and the user is informed
about the problem. As soon as the circle has been removed by the user, updates
are resumed.

Furthermore, all updates to ProbeLists’ content (regardless of whether they
are dynamic or not) are automatically communicated to MAYDAY’s visualiza-
tions (see section 4.1), providing real-time updates to all plots based on those
ProbeLists. As a result, researchers can quickly change filtering criteria in
one window, while observing the resulting changes in any number of linked
visualizations.

3.6. Task Management

Users can construct the RuleSet for a dynamic ProbeList using an intuitive GUI
where the tree of AND and OR aggregations (RuleSets) can be constructed (see fig-
ure 3.6C). For each Rule, the processing chain can be built by successively selecting
DataProcessors and adding them to the chain. MAYDAY automatically determines
which DataProcessors are applicable, based on the output type of the current last
element in the chain. Input fields for configurable DataProcessors (which imple-
ment the OptionPanelProvider interface) are also shown. During the construction
of the RuleSet, the number of Probes matching the dynamic ProbeList’s criteria
is shown in the GUI and updated in real time. All Rules that contain a complete
processing chain, i.e., which can be applied to a Probe object to yield a boolean re-
sult are considered for this determination. A description of the complete RuleSet is
automatically created. For the example described above, this descriptive text would
be “Probe values, at least one item (absolute) > 57.

An interesting aspect of the dynamic ProbeList framework is that it is completely
implemented outside of MAYDAY’s core. From the core’s point of view, dynamic
ProbeLists are no different from ordinary ProbeLists. Configuration dialogs, pro-
cessing modules, serialization and deserialization are all implemented based on MAY-
DAY’s plugin and meta-information systems. This implementation approach relies
on the use of different listeners to restore the ‘dynamic’ nature of the dynamic
ProbeLists after loading a dataset containing such ProbeLists into MAYDAY, since
they are stored as ordinary ProbeLists annotated with a meta-information object
of a special type (DynamicProbeListMIO0). After the dataset has finished loading, it
is added to MAYDAY’s DataSetManager, triggering an event. This event is received
by the deserialized meta-information object, which creates the necessary RuleSet
structure and replaces the ordinary ProbeList in the DataSet’s ProbeListManager
with a dynamic ProbeList based on that RuleSet.

3.6. Task Management

Some calculations on expression data can be very time-consuming, such as hierar-
chical clustering of a large number of probes or samples. Originally, all operations in
MAYDAY were implemented as blocking operations, i.e., after starting a computation,
MAYDAY’s user interface would become unresponsive until the respective task was
finished. Most methods did not give any indication of their progress, leaving users to
wonder how long they would have to wait before being able to continue their anal-
yses. Some methods showed some sort of progress information in a method-specific
user interface, some of them even allowed users to cancel the current task. However,
pressing the cancel button often just dismissed the progress dialog (thus unblocking
the user interface), and after the computation was completed, the result that was
finally obtained was discarded.

This situation clearly was not satisfactory. In some cases, users might need to wait
for one computation to finish before starting the next step because of a logical
connection between these steps. However, analyses often involve several computa-
tions that can be performed in parallel. For instance, users might want to compute
a hierarchical clustering using different distance measures. On modern multi-core

33

3. The new MAYDAY as a solid foundation

computers, these different computations can be performed in parallel while the user
can continue investigating the data.

MAYDAY 2.5 introduced a task management system that solves the problems of the
original system while placing no additional implementation burden on the authors
of MAYDAY plugins. The task manager automatically creates new threads when
plugins are invoked on the data and provides a common user interface that shows
the progress of all running threads (if plugin authors chose to report fractional
progress state), the estimated remaining time, and messages produced during the
computation, as well as a button to cancel any thread. Tasks can contain sub-
tasks whose fractional progress contributes to the parent task’s overall progress.
Many MAYDAY plugins now implement their own cancelling behaviour, stopping
computations, cleaning up data structures, etc. To allow cancelling of plugins that
do not react to users’ cancel requests, the task manager can forcibly kill any thread
after a certain time has passed without the thread acknowledging the cancel request.

The introduction of concurrent computations mandated many small changes in
MAYDAY’s core data structures either to enforce synchronization or to safely al-
low unsynchronized concurrent access. MAYDAY now uses an optimistic approach to
concurrency, which works in most cases. There are some situations in which concur-
rent access can fail, e.g., when one plugin fundamentally changes the structure of a
dataset (for instance removing a column from the expression matrix) while another
accesses the same dataset (for instance relying on the number of columns to be fixed
during the whole computation), but these are extremely rare in practice.

In such a situation, one of the two concurrent tasks will fail and produce an error
message, requiring the user to manually restart that task. The rarity of such situa-
tions is due to the fact that only very few plugins actually change the structure of
a dataset, and also due to users’ understanding that performing computations on a
dataset that is in the process of being fundamentally reorganized not only might fail
but will also most likely produce results that are of no interest in the context of the
reorganized dataset.

3.7. Application: Expression profiling of the metabolic switch in
Streptomyces coelicolor

Coinciding with the development of many of the new features described in this
chapter, a large transcriptomics dataset studying the metabolic switch in Strepto-
myces coelicolor was analysed using MAYDAY [111]. In this study, the soil bacterium
S. coelicolor was grown under controlled conditions in liquid medium fermenters
with automatic adjustment of oxygen levels leading to highly reproducible data [11].
This organism undergoes a metabolic switch from primary metabolism (exponential
growth) to secondary metabolism (stationary phase). The secondary metabolism,
among other things, produces antibiotics, making S. coelicolor an interesting target
for biotechnical engineering.

Five different strains (wild type and four mutant strains lacking the phoP, scbR, ginR
and glnK genes, respectively) were cultured under different conditions (phosphate

34

3.7. Application: Expression profiling of the metabolic switch in S. coelicolor

Condition: [lPhosphate depletion [Glutamate depletion

Strain: lwild type [l AphoP AscbR AginK
Time series identifier # of hybridizations
Flermentation number

199 e e e oo 0000000 ccccccscsoccocec o o o o o .0 o o 32

1 200 °o o 2

201 . . e e e e oo o . . . 12

202 L] L] L] ® © 0 0.0 0 0 L] L] L] L] L] 15

334 o 1

3 335 ® © 0 0 0 0 0 0 0 00 ® 00000000000 0 0 0 0 0 0 o [] L] L] L] L] [] 36

336 8

337) . . . 8

.. 4 346 . eee oo 6
357 o © 0 0 00 0 0 0 000cccccccccececs o 0 o o . . 34

I 5 358 . . . ee 00 0.0 14
359) . . o o o o LY L)) . . 15

387 o 0 . 8

388 o o 2

? 6 389 o . e o o . . . 8
390 8

. 7 421 . . . 0 S0 cee e e oo) . 21
. 8 425 L] L] L] L] ® 0.0 0 0 0 0 0 0 0 L] L] L] L] [] L] 20
. 9 452 [] L] L] L] ® 0 0 0.0 0 0 0 0 0 00000 0 0 L] L] L] [] L] 26
. 10 455 . ° . e 0000 ee o o o o o 16

Time [n] 20 30 40 50 60

Figure 3.7.: Microarray hybridizations for all time-series datasets produced in the
course of the SysMO STREAM project. Filled circles indicate transcrip-
tomics samples used for expression analysis, empty circles indicate ge-
nomic samples processed for mutant verification. Only samples selected
for processing and hybridisation to microarrays are included in the ta-
ble. Time-series 2 was cancelled due to a problem during fermentation,
time-series 6 was not analyzed further due to a problem with the se-
lected mutant strain (see text). Only 292 samples hybridized to arrays
are shown; for all fermentations, samples were taken at regular (hourly,
half-hourly) intervals. Missing fermentation numbers refer to preliminary
trials for establishing media and mutants.

35

3. The new MAYDAY as a solid foundation

depletion and glutamate depletion) and samples were taken at different time-points
between 20h and 60h after inoculation to cover the metabolic switch (see figure 3.7
for the detailed sampling scheme). Samples were used for transcriptomic analyses as
well as for metabolomic and proteomic studies (performed in other groups).

Analyses were mostly performed by Kay Nieselt and Alexander Herbig, MAYDAY
was used for all analysis steps. The clustering, dynamic filtering and visualization
methods were used most often. Other tools, such as MAYDAY’s genome browser
ChromeTracks (see 4.3) were used for specific questions, especially for mutant veri-
fication. In the following, important steps in the analysis are highlighted. These can
be considered relevant elements of any standard pipeline for projects of this type.

3.7.1. Data acquisition and normalization

For the transcriptomic analyses, RNA was extracted from the samples and, after
the appropriate processing steps, hybridized to Affymetrix GeneChips® Custom-
Express™ arrays containing 226,576 perfect match probes which interrogate cod-
ing sequences (8,205 probesets), intergenic regions (10,834 probesets) and predicted
noncoding RNAs (3,671 probesets) [11]. Affymetrix CEL files were imported and
normalized with the robust multiarray average (RMA) method [77] using MAY-
DAY SEASIGHT. Array identifiers were mapped to time-points by attaching meta-
information to the experiments.

3.7.2. Mutation verification

Besides the Streptomyces coelicolor M145 wild type strain, several mutant strains
were used to elucidate the role of key regulators in the context of metabolic switch-
ing induced by nutrient (phosphate resp. nitrogen) starvation. The AphoP, AginK,
AglnR strains were deletion mutants, the AscbR mutant produces a functionally
inactive scbR protein. To confirm the gene deletions, genomic DNA was hybridized
to the S. coelicolor microarrays and, instead of summarizing probe-level expression
values into probeset expression values using the RMA algorithm, the probe-level
data was visualized directly in MAYDAY ChromeTracks together with the genomic
loci of deleted genes.

In the case of the AphoP mutant strain, the complete deletion of phoP (SC04230)
can clearly be verified (figure 3.8). In the AglnR mutant strain, ginR (SC0O4159)
was partially replaced by a gentamicin resistance cassette [50]. The fact that all
probes designed for ginR show relatively high ‘hybridization values’ (which in this
experiment indicate the presence of the respective sequences in the genomic DNA)
indicates that the selected strain does not contain the desired mutation (figure 3.9).
As a result, further processing of time-series 6 was abandoned.

3.7.3. Time-point clustering

The expectation in a time-series experiment is that expression changes between
adjacent time-points are less marked than if comparing more distant time-points.
The two most highly resolved time-series datasets (T'S1, fermentation 199 and TS5,

36

3.7. Application: Expression profiling of the metabolic switch in S. coelicolor

Whole genome

5:“ o 500 k 10M 15M 20M 25M 3,0M 35M 40M 45M 50M 55M 60M E5M 7.0M T5M 80M 85M
chromosoms: X | L | L | L | L | L | L | L | |

Widtype(+) M L ¥ NI s ™ o +f - it S ™ b ”-* LAk Ui r i
phoP mutant (+1 T * ‘
cenevocr INUNURIN I TONICIR 00 RN YOO 0O OO RO 0 O 000 R O O 000 A RO 0 OO OO ARG 0 O R O 00 A U R

pheP mutant (- ‘ |

L & s

widtpe () ! |‘, m m‘|“ “‘Hm '|“r'r A Lt D A i\ e

Detailed view of SC04230

E

:“ 4 GE0SM 4ESI0M 463LSM 4.E320M A6325M 4EII0M A6M AEIOM 46USM 46350M 4EI5M 46360M 4EIHM AEIOM 4ETSM AEI0M AEWSM AEI0M 4635 M
chremeseme: |- | L L L L |- | L |- L L L |- | L |- L L L L

wild type () - J— ——— IURPEEE— T N . R e

phoP mutant (+) - . - I '1|| ' |- e T

.) B D) D DECEE D 555z _Jscousdis slscomss Yscons
T CIERE { 4«44 a s aaa

phoP mutant (-] B TR e e - r n ' - [— -

. - - S ey - [T e,
wild type () e A - . -~ .

Figure 3.8.: Probe-level data aligned to the S. coelicolor genome. Outer tracks: wild-
type, Inner tracks: AphoP mutant. Data was centered for improved vi-
sual clarity (the mean of wild-type and mutant hybridization value was
subtracted from both). In the whole-genome view, the deletion at 4.6M
is already apparent (top). Zooming in to show phoP (SC04230) clearly
shows that the whole gene is deleted, as probe-level hybridization values
on both strands are significantly lower for the mutant strain.

seo 5761 M 4,5762 M 45763 M 45764 M 45765 M 45766 M 45767 M 45768 M 4,5769 M 45770 M 45771 M 45772
chromosome: X 7 | . 1 . 1 . 1 . 1 . 1 . | . | . 1 . 1 . 1 . 1
"
| i e
| 5] neRNA2142 1G-3446_at
Locus
a SC04159 1G-3446_st
I

Figure 3.9.: Probe-level data aligned to the S. coelicolor genome. The deleted seg-
ment in glnR (red; leaving 97bp of the 5’ region and 298bp of the 3’
region intact) is covered by 3 probes with consistently high values (> 10)
indicating that the strain used here was not the desired mutant strain
lacking ginR.

3. The new MAYDAY as a solid foundation

20
29
24
25
26
27
28
30
31
32
33
il 32,5
33.5
34.5
35
35.5
36
36.5
37
37.5
38
39
38.5
39.5
40
41
42
44
46

!

o

58

Figure 3.10.: Results obtained by hierarchical clustering of the samples in fermenta-

38

tion 199 (time-series 1, left) using the neighbour-joining method shown
as an unrooted tree, and fermentation 357 (time-series 5, right) using the
UPGMA method shown as dendrogram. Both clusterings were based on
euclidean distances computed on the most variant protein-coding genes
(regularized variance > 0.1). Only few experiments are not clustered
perfectly according to their time-point label (highlighted in blue). The
longest edges coincide with the time of nutrient depletion (after 36h in
F199, after 34.5h in F335) indicating a major transcriptional event as
response to changing nutrient availability.

3.7. Application: Expression profiling of the metabolic switch in S. coelicolor

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 9

Figure 3.11.: Profile plots of clusters created by QT clustering (Pearson correlation,
diameter 0.25, minimal cluster size 4) of the 322 most variant protein-
coding genes (regularized variance > 0.1) of Streptomyces coelicolor wild
type under phosphate-limiting conditions (time-series 1, fermentation
number 199). The time-point of phosphate depletion is indicated in each
plot by a strong vertical line.

fermentation 357) were selected to test this hypothesis. After importing the data
and a mapping of Affymetrix probeset identifiers to S. coelicolor gene identifiers,
dynamic filtering was used to select all probesets representing protein-coding genes
with a regularized variance (variance divided by mean) larger than 0.1. These 322
(F199) resp. 223 (F357) genes were used as the basis for hierarchical clustering using
the euclidean distance and the rapid neighbour-joining method [146] for F199 and
the UPGMA method for F357.

The resulting clustering trees (shown in figure 3.10) nicely confirm the expectation.
In addition, the longest edge in each tree is the edge separating the time-points
before nutrient depletion and those after nutrient starvation. The few experiments
that are not perfectly clustered according to the ordering defined by their time-point
annotation can be explained by the fact that during the early, resp. very late periods,
transcription does not change much. More importantly, no experiment is clustered
on the ‘wrong side’ of the divide defined by the nutrient depletion event.

39

3. The new MAYDAY as a solid foundation

3.7.4. Gene clustering

The probesets representing highly variant protein-coding genes were also the basis
for a clustering of the expression matrix rows (i.e., the genes). The QT (quality
threshold) clustering method [69] as implemented in MAYDAY by Giinter Jager 78]
was used with a minimal cluster size of four and the diameter set to 0.25 to cluster
these genes according to the Pearson correlation [55, 117] distances of their expres-
sion profiles. 13 clusters were created (shown in figure 3.11).

Mapping these clusters to the S. coelicolor genome reveals that some of these genes
with similar expression profiles are also clustered in terms of their genomic loci
(figure 3.12), e.g., the genes in cluster 4 which are responsible for the production
of the antibiotic actinorhodin. Cluster 3 is a combination of three chromosomal
clusters with very similar expression. Interactively selecting these three clusters in
the genome browser and using Mayday’s tag cloud visualization (not shown) to
summarize the functional annotations (Sanger protein classifications [136]) of these
genes shows that one of the genomic clusters is responsible for the production of
the antibiotic undecylprodigiosine, the second is comprised of proteins associated
with membrane production, and the third is only generically annotated as related
to secondary metabolism.

The genes of the largest cluster (cluster 1, comprising 147 protein-coding genes) are
spread over the whole chromosome, indicating that the strong downregulation that
coincides with phosphate depletion has a global effect on transcription in S. coeli-
color.

3.7.5. Outlook: Systems Biology

The Systems Biology approach at the heart of the SysMO STREAM project involved
not only the analysis of transcriptome samples, but also of proteome and metabolome
samples. As these data are also represented by a numeric matrix (relating proteins
with their abundance, resp. metabolites with their concentration), MAYDAY can be
used to analyze them just like transcriptomics datasets.

The time-series alignment tool TIALA (see section 4.4.2) was developed to enable
visual comparisons between the expression profiles of clusters of genes under dif-
ferent conditions in different mutants. It was used extensively during the analysis
of the SysMO STREAM dataset for this purpose. TIALA is flexible enough to also
allow for comparisons between datasets of different ‘omics’ experiments. In parallel
to the transcriptomics data created for time-series 1 (fermentation 199), proteomics
data was produced from the same samples by the group of Margaret Smith in Ab-
erdeen [159].

The quantitative proteomics dataset used here covers 780 proteins in 8 experiments
(time-points 20, 29, 32, 35, 41, 48, 54, and 60h after inoculation). Data points were
averaged over two runs and imported into MAYDAY. The expression clusters found by
the QT algorithm were used to create TIALA plots of aligned transcript and protein
abundance profiles (figure 3.13). The proteomics and transcriptomics data agree
very nicely. As expected, increases in the protein abundances (spectral counts) lag
behind the transcriptional activation of the respective genes (e.g., visible in clusters 2

40

3.7. Application: Expression profiling of the metabolic switch in S. coelicolor

SCO 0 1M 2M 3M 4 M 5M 6M 7M 8M
chromosome: X L+ | . | [| I

1 I 1 1 I 1
AtQrt Clusters [[[1| [P PO WEEEEOETE 1

Cluster 3 | |

Cluster 4 |
Cluster 9

Cluster 10 |

Figure 3.12.: QT clusters in Mayday’s genome browser plotted according to the ge-
nomic positions of the genes contained. Expression clusters 4, 5 and
10 are single genomic clusters, expression cluster 3 is spread over three
genomic clusters. Colors correspond to those in figure 3.11.

Cluster 2 Cluster 4
5 f
25
2
N 4
15 //% N AT ;
— SN 7
S L+
1] j——
@ @
§ 0,5 by §
N ' i N / &
.]
05 ===
-1
H
29999 99999900909999999009 9 9 2 2 2 9 9 9
SoNmY OR®ASHNMYNONGAodNmY © © S N ¥ © © O
SRARY SRERNRANANARARASTISSY € 2 3 3 3 8 3 8
Time Point Time Point
Cluster 9 Cluster 13

z-score
z-score

2ee0e 9990900900990 000000 © © 9 9 o 9 o o
CRBACHNMINONOASHNMT © ® O N ¢ O © O
NNNNN NNNNAMAMMMOMMNITIIIT § F b 0 o 1 v ©

46.0
48.0
50.0
52.0
54.0
56.0
58.0
60.0

0

1

2

3

4,

NNNNN ANNNMMOmMOMMm6 0TS TS
Time Point Time Point

Figure 3.13.: Aligned profiles of transcription strength (red) and protein abundance
(blue; measured as spectral units). Data was z-score normalized for
comparison purposes. Protein abundances were only measured for some
time-points, indicated by filled blue squares. Increases in protein levels
lag behind transcription activation (clusters 2, 4), sustained transcrip-
tion results in stable protein levels (cluster 9), while transient transcrip-
tion is reflected in a short peak in protein levels (cluster 13).

41

3. The new MAYDAY as a solid foundation

and 4). The transient transcriptional responses also result in transient increases in
protein levels (cluster 13), while sustained transcription leads to constant protein
abundance (cluster 9).

The next step in a Systems Biology investigation could now be the inclusion of
metabolite data and metabolic pathway information to gain insight into the com-
plex interplay of transcription, protein abundances and activities, and metabolic
fluxes. Combined analyses of this kind based on pathway information and graph
visualization was a major focus of Stephan Symons’ dissertation [154], part of which
resulted in the development of the MAYDAY GRAPH VIEWER [155].

42

4. Visual analytics in Mayday

4.1. Vis3 — Mayday’s new visualization framework

Visualizations are the most important aspect of MAYDAY. They are immensely
useful (if not essential) to understanding complex datasets (for some examples
see [156, 111], as well as section 3.7). Consequently, the visualization subsystem
has seen several iterations of development, starting with three individual plots (box
plot, profile plot, enhanced heatmap) loosely linked by a simple data model. The
second iteration was Philipp Bruns’ [32] introduction of new and replacement of
existing plots (scatter plot, profile plot) based on a scatter plot visualization library,
using a different data model. The necessary integration of old and new plots lead to
the development of the third visualization data model in combination with a very
flexible framework for constructing plots from standard components. These two com-
ponents shall be discussed in more detail below. The new visualization framework
triggered the implementation of many new plot types. Currently, MAYDAY offers
four tabular views and 31 visualizations, two of which will be presented in more
detail in sections 4.2 and 4.3.

4.1.1. The View Model
Data content & interaction

The ‘Vis3’ visualization data model (shown in figure 4.1) provides a unified system
that all visualizations are built on. Starting with a selection of ProbelLists, the
ViewModel is created. It contains the selected (‘original’) probe lists together with
the set of all Probes contained in them as well as a list of ‘optimized’ probe lists.
Based on an ordering of the original probe lists, which can reflect their native order
in the DataSet or any user-defined order, each probe is associated with a top priority
probe list by a simple algorithm: All probes contained in the first probe list (according
to their ordering) are assigned to that list. The intersection of the second probe list
and the remaining probes is computed and the result is the second ‘optimized’
ProbeList. The process is continued until all probes have been assigned to a list
and for each original probe list, an ‘optimized’ list has been created. The purpose
of these disjoint optimized lists is to help programmers write efficient visualization
code. The profile plot, for instance uses the ‘optimized’ lists to make sure that each
probe is rendered exactly once.

Plots use the ViewModel to access each probe’s expression data, rather than directly
requesting the data from the Probe object. This allows for the implementation of
online data transformations that affect the way data is plotted but does not require
changing the original data matrix or implementing special transformations for each

43

4. Visual analytics in Mayday

DataSet ViewModel Visualizer

| ProbeListManagerI \ I ProbeLists (original) | Plot 1
I .

atve order 1 Sorter I ProbeLists (optimizetli) |

| Probe Selection | Plot n

| Experiment Selection | Table 1

"native" - X
Probes expression valies Manipulator :| Expression Data |

(in selected ProbelLists)

Table m

HREE

SortedProbes | Probe — Rank |

CoIorProvider| Probe — Color |

Manipulator }L(VaIueProvider| Probe — double |

probe meta data

| Meta Information

experiment
meta data

ReIevanceProvider| Probe — [0,1] |

"ative” experiment order | SortedExperlments| Experiment — Rank |

| MasterTable I
]

Figure 4.1.: Components of MAYDAY’s visualization data model. All connected plots
and tables are managed by a Visualizer. The ViewModel holds selec-
tions and supplies the plot with data from the DataSet. Further classes
encapsulate often-needed functionalities such as mapping Probes to col-
ors (ColorProvider). These classes also provide their own Settings for
user interaction.

plot. Such transformations include the logarithm, centering each probe’s values (such
that each probe’s expression vector’s mean is zero), scaling the values (such that the
expression standard deviation is one), applying the z-score transformation (centering
and scaling), smoothing using a sliding window, etc. Transformations can also be
combined (‘stacked’) and more transformations can easily be added as plugins.

Another important role of the visualization data model is the sharing of selections
between connected plots (so-called ‘linked views’). If several visualizations (e.g., one
heatmap, one scatter plot and one profile plot together with an expression table) are
opened within the same Visualizer (see section 4.1.2), selecting probes in one of
them will automatically select and highlight the same probes in all other connected
visualizations to facilitate understanding. For very complex analysis tasks, selection
sharing can also be enabled between different ViewModels, even when they are not
visualizing the same DataSet. In the latter case, selections are matched based on
the names of selected objects.

Additional data aspects

The primary expression data (resp. its transformed form) is often not enough to
create helpful visualizations. MAYDAY’s visualization data model offers a range of
so-called providers that programmers can use to access different aspects of the un-
derlying data.

44

4.1. Vis3 — MAYDAY’s new visualization framework

These include the ValueProvider which maps each Probe object to a numeric value,
which is either one of the (transformed) experimental values, or the content of a
numerical meta information object attached to the Probe.

The ColorProvider assigns a color value to each probe, based on a user-selectable
source which can be the top-priority probe list for the given probe, any of the probe’s
experiment values or any attached meta information. Numerical data is mapped to
a predefined or user-defined color gradient using a user-defined linear or sigmoidal
mapping function and various other parameters. Categorical data (e.g., from meta
information) is mapped to an appropriate number of (configurable) distinct colors,
and a legend is displayed that shows the mapping.

Meta information can also be used to assign a relevance value to each probe. This is
accomplished by the RelevanceProvider which uses numerical meta information,
for instance p-values from a statistical test, applies a user-defined mapping function
(linear, logarithmic, exponential), and interprets the resulting value in the range
[0,1] as the relevance of the probe with zero signifying low relevance and one sig-
nifying high relevance. This replaces the original system [57] where numerical meta
information had to be converted to a special class of relevance meta information be-
fore it could be used for visualization. Plots can use this information to enhance the
visualization, e.g., by using transparency and opacity to reduce the visual ‘strength’
of irrelevant probes and increase that of relevant ones, respectively.

Probes as well as experiments (rows and columns in the heatmap, for example) can
be sorted according to several properties, such as their name, their display name,
attached meta information, expression values (probes only), and trees obtained by
hierarchical clustering.

Extensibility and integration

All components of the visualization data model offer Settings (see also section 3.4)
that allow users to change configurable properties. By using these classes, program-
mers can quickly implement rich and highly useful visualizations without dealing
with the intricacies of how to compute relevance, how to correctly (re-)map values
to colors when data transformations are suddenly changed by the user, or how to
define color gradients, for example. Furthermore, using the same components for all
plots ensures a ‘smooth’ user experience without unwelcome surprises. Configuring
these data aspects is always done in the same user interface and with the same,
well-defined results.

When using one of the providers or another building block of the visualization frame-
work, programmers can add the component’s setting to the overall Setting object
of their visualization. Using the methods described in section 4.1.2, these settings
are combined and integrated into the menu bar of the respective plot window (or
another location if the outer container is not a PlotWindow). While the code gen-
erating these menus is quite complex to ensure it correctly works with changes in
settings’ values, as well as with the addition and removal of sub-settings (e.g., when
a plot is detached, see section 4.1.2), the code needed to create highly-configurable
plots is extremely simple.

45

4. Visual analytics in Mayday

ViewModel

B Visualizer

Data Model

: | VisualizerMember |

& . | PlotContainer (-or-) PlotComponent

User Interface Teeees vl sombned. | PIotContalnerH PIotComponent|

for instance in PlotWindow layout or aggregation of plots e.g. ProfilePlotComponent

Figure 4.2.: Overview of MAYDAY’s visualization framework. The Visualizer con-
nects all visualizations based on a common ViewModel (sharing selec-
tions, data transformations etc.). Individual visualizations implement
the PlotComponent interface and are connected to the ViewModel.
Plots can be aggregated or laid out using any number of standard
SWING components or intermediate wrappers of hybrid classes (im-
plementing PlotContainer as well as PlotComponent). The top-level
user interface component containing the visualization(s) implements the
PlotContainer interface and is responsible for displaying interaction el-
ements for the plot’s settings. The VisualizerMember interface is imple-
mented separately from the PlotContainer interface to also allow non-
GUI implementations of plugins (e.g., export plugins).

4.1.2. Plot Components
Swing/AWT integration

Java already offers many components that can be used to create graphical user in-
terfaces but can also be helpful for creating rich visualizations. Among them are
the basic SWING/AWT'T classes for panels, scroll panes, and windows, but also the
LayoutManagers which arrange groups of components according to different systems.
These components also mediate user interaction by capturing mouse and keyboard
events, changing their state accordingly (e.g., scrolling the viewport of a scroll pane)
or redirecting them to the appropriate receiving components. MAYDAY’s plotting
framework allows visualization programmers to make use of all these existing com-
ponents to build their plots. In fact, many of the helper classes available as part
of the MAYDAY visualization package work directly on SWING components. The
ZoomController class, for instance, which adds mouse wheel zooming capabilities
to a component, can in principle be added to any existing SWING object.

Since the visualization framework is built on standard SWING components, the
framework code was written as generic as possible. One example is MAYDAY’s plot
export functionality. Any plot can be exported into raster image formats (PNG,
JPG, TIFF) as well as into vector formats (SVG, PDF) using the same classes and
offering the same user experience without any need to implement such functionality
separately for each plot. Additional export formats can easily be added as MAYDAY
plugins.

46

4.1. Vis3 — MAYDAY’s new visualization framework

Connecting plots with the data model

Two important interfaces are defined to integrate visualizations with the frame-
work and ensure that data can be passed from MAYDAY to these plots. These are
PlotComponent and PlotContainer. PlotComponent defines two methods, namely
setup(PlotContainer) which is used to inform the plot that it has become part
of a plot container, and updatePlot which instructs the plot to discard any buffers
and redraw its content. PlotContainer defines methods with which any contained
PlotComponent can register user interface elements (such as Settings, additional
menus and a title for the plot) as well as a method to access the underlying vi-
sualization data model (see 4.1.1). The PlotContainer is responsible for aggre-
gating settings of all contained components (e.g., via submenus) and presenting
them to the user. This system allows for very flexible presentation of visualiza-
tions. PlotContainers are implemented by the “traditional” GUI plot windows (
AbstractVisualizerWindow), by containers that can be used to create and manip-
ulate plots in a programmatic fashion (ScriptablePlotContainer), by plots that
can be detached from a GUI window (DetachablePlot), as a combination of sev-
eral plots in one view (MultiPlotComponent, implementing both interfaces), as well
as for embedding any plot in the MAYDAY Graph Viewer MGV (Vis3Component).
PlotContainers that can be used as the outermost container, i.e., GUI windows,
usually also implement VisualizerMember, an interface which the Visualizer as-
sociated with the ViewModel can access to organize all connected plots, e.g., to bring
windows to front or to close them.

A PlotComponent does not have to be added as a direct child of a PlotContainer
(such as a JPanel as direct child of a JWindow). Any number of standard SWING
(and AWT) components can be nested inbetween (see figure 4.2). The methods of
the two interfaces are used to connect the ViewModel with the PlotComponent as
well as to bring the PlotComponent’s interface elements to the PlotContainer. Once
the PlotContainer is activated (e.g., via addNotify when being added to a GUI
window), it notifies all contained PlotComponents of itself. These can then access the
ViewModel, set up their content and export their interface elements (settings, title,
etc.). If a PlotComponent is removed from a PlotContainer and added to another
(e.g., when a plot is transferred from one window to another), it will be notified of
this change automatically by the SWING methods removeNotify and addNotify.
It can thus remove any listeners that are no longer needed and re-export interface
elements to the new PlotContainer.

4.1.3. Efficiency

When visualizing large amounts of data, naive rendering approaches quickly show
that they do not scale well. Interactivity is key in visual analytics and MAYDAY uses
several strategies to keep plots responsive even when showing large datasets.

e Buffering is an often-used strategy to avoid repeatedly rendering the same
data and is used in almost all MAYDAY plots. Implemented in the Antialias-
PlotPanel class, buffering is integrated with zooming (where upon zooming,
a scaled version of the buffer is displayed while a new plot is prepared in

47

4. Visual analytics in Mayday

NANNNNANASS

1600 om w00p

o . o\ |

\\1 cache, not used/

(not rendered)

Figure 4.3.: Clipping (left) and partial, tiled buffering (right) are strategies to speed
up rendering. Using clipping, plots only need to render elements that
are within the viewport, meaning that they are currently visible to the
user. Tiled buffering improves on this strategy by keeping small parts of

the complete view (so-called tiles) prepared so that they can quickly be
displayed when they are overlapping the visible area.

a background task). By adding their plot to an AntialiasPlotPanel or ex-
tending that class directly, programmers automatically add buffering to their
visualization.

e Event aggregation can significantly reduce the amount of time spent for
updating visualizations. Changes to the underlying data or the data transfor-
mation, for instance, require updating a visualization. These changes are also
communicated to the Providers which need to update their state accordingly.
For example, a ColorProvider needs to know the minimum and maximum
of all data values to be able to map them to the color gradient. Thus, after
recomputing the minimum and maximum, the ColorProvider will also create
a change event and notify the visualization. Furthermore, changes to config-
urable properties of a Provider or of the plot itself will create change events. If
the plot were to redraw on each such notification (possibly even blocking the
thread which sent the event), many unnecessary updates would be performed
and MAYDAY’s user interface would become unresponsive for a long time. In-
stead, MAYDAY plots aggregate incoming update requests in a window of at
least 100 ms, meaning that if an event is received, an update will be performed
after 100 ms if no further event is received during that time. Otherwise, the
timer is reset and the update is deferred for another 100 ms.

e Clipping (as shown in figure 4.3) is a very common strategy. Instead of ren-
dering the whole visualization, only the parts actually visible are updated.
MAYDAY’s heatmap implementation (described in section 4.2), for example,
determines which rows and columns are currently visible and only draws those
cells falling into the intersection of visible rows and visible columns.

Based on these methods, plots can also implement more complex strategies to im-
prove efficiency, such as partial and/or tiled buffering (see figure 4.3). Partial buffer-
ing can be a solution when buffering the whole plot is infeasible (as in MAYDAY’s

48

4.2. Reimplementation of the Enhanced Heatmap

genome browser, see section 4.3) or when the plot consists of several parts some of
which profit from buffering while others do not (as in the heatmap, section 4.2).
Further improvements can be obtained by splitting the buffer into multiple smaller
buffers, called ‘tiles’. Rendering a tile requires only a fraction of the whole buffer’s
rendering time, and as only part of the whole plot area is represented by tiles (which
also do not have to represent a contiguous area in the plot), this results in an overall
reduction of the time spent for rendering. An example of the speed-up that can be
achieved is given in section 4.3.

4.2. Reimplementation of the Enhanced Heatmap

A heatmap plot is a visual representation of a table of numeric or categorical values,
where instead of displaying the table cell content in its textual representation, each
cell is colored according to its content using a mapping of content values to distinct
colors (categorical) or to a color gradient (continuous values). The concept was
first used for population data [101] by Loua in 1873 (see [179] for a history of this
visualization). The first application to large-scale expression data was presented
in 1998 [175]. Improvements of the original concept include the addition of clustering
trees [99] and meta information [57].

Originally, the heatmap in MAYDAY was one of four visualizations (heatmap, box
plot, profile plot and multi profile plot). These four plots were statically included in
menus and mostly consisted of a few large and complicated Java classes each. This
first implementation was extended such that meta information could be included to
enhance the heatmaps which can greatly increase the amount of information they
convey and their usefulness in data analysis [57]. The second heatmap implementa-
tion was built as part of the new visualization framework (described in section 4.1).
Problems in parts of Java’s table rendering classes on MacOS systems triggered the
development of a third incarnation of the heatmap concept, this time independent
of the table rendering code. (The problem has since been resolved in Mac Java).

The heatmap is built around a central data structure which connects to the View-
Model and keeps track of the columns, column groups (see below) and row headers
that are part of the visualization, including the width of each column and the height
of each row. Row heights can be scaled globally as well as individually based on
relevance meta information. When updating the plot contents, this central structure
computes the set of cells that need to be repainted and calls the rendering code of
the respective delegate objects (columns or headers).

All on-screen elements of the heatmap are realized as plugins, each with its own
Settings. On the first hierarchical level, the plot is organized into the main area
where heatmap cells are rendered, an area to the left where row headers are placed,
and an area above for column headers (see figure 4.4). This splitting of rendering
responsibilities into small, well-defined elements allows for quick implementation
of new rendering styles and additional column plugins (some shown in figure 4.5),
such as the expression bars and expression box styles which are especially useful for
conveying the heatmap information in black and white prints.

49

4.

Row headers

50

Visual analytics in Mayday

Single columns:
electlon indicator
(no header)
smgle experiment
Column group: ‘ ‘

(name, gradient headers)
‘4— Expression columns =————

meta information
(name header)

per-group headers:
- gradient

- clustering tree
per-column header:
- experiment name

Column headers

Reg Variance

5C01906

5C01968
5C07631
505091 | | N
5C05092)
5C05083)

o W\\\\\

scosoes \\\\\\\\\\\

\\ ‘ NN
\\\\ \\\\\\\ N
AN zeorer] NN \\ NN

5C05077 RN\ NN

5C05086| \\\\\\\

$C05079)

$C05075)
5C05073|
5C05087|

SC05080 \\ \ N ‘\ NN N \\ N

B 1. 000 NN NN

scosors \\\\\\\\\\\\\\\\ NN *\ Heatmap cells,
i D Jainmminmnnnuninunununn one row per probe

5C01244
5C06272
5C06274
$C06275
5C06273
5C06281
sco2878
$C05746
5C04230
SC04401
sco4e7s
5C04879
5C03790
5C04229
5C04874
5C04140
5C04880
5C04873
5C04228
5C00324
5C04139
SC04881
5C04141
5C04142
5C01908
SCO6691
5C01565
5C04875

WHH

[
Global per-row headers:
header: - probe name
-tree - selection indicator
- top-level ProbelList color

Figure 4.4.: Structure of a heatmap plot. The plot area is divided into three major
parts: heatmap cells, column header area, and row header area. Each row
represents one probe, each column visualizes one aspect. Several consecu-
tive columns with identical properties are combined into column groups.
Single columns are internally handled as single-member groups. Column
headers are rendered either per column (e.g., names) or per column group
(e.g., clustering trees). Row headers are rendered either per row (e.g.,
names, selections) or for the whole heatmap (e.g., clustering trees).

4.2. Reimplementation of the Enhanced Heatmap

(a) (b) (c) (d) (e) (f) ()

Gene Models from Locus

202122232426 202122232426 202122232426 202122232426 202122232426 Gene Models from Locus
-EEN-

- .
SC06275 B N N | | N
SC06274 ml L
scos2r3 i canmlis N0

8§C06281

SC06272 EEE _ N =
SCO1244 enmll —— 1

|
[T T—

Figure 4.5.: Different heatmap rendering styles implemented in MAYDAY. Here an ex-
ample for time-series expression data of three genomic clusters is shown
(data from [111]). Top, zoomed-out display showing a conventional color-
gradient heatmap (a, with large gradient legend on top), vertical expres-
sion bars (b), horizontal expression bars (c), expression boxes (d), and
expression profiles (e) as well as two meta-information columns, one show-
ing the relative location and exon structure of the respective genes (f), the
second showing expression variance on a red-blue gradient (g, with small
gradient legend on top). Selected genes are highlighted in red color or
with diagonal lines, depending on the rendering style. At this zoom level,
row and column names are automatically hidden. Bottom, zoomed-in dis-
play restricted to the first six rows and columns of the matrix. When more
space is available, rows and column labels can be displayed. To display col-
umn headers also for very narrow columns (such as the meta-information
column), header labels are automatically rotated. Many view elements
have configurable options. For example, the gradient headers can be ren-
dered with or without value indicators for minimum and maximum and
the height of the vertical gradient can be adjusted.

51

4. Visual analytics in Mayday

Figure 4.6.: A traditional heatmap plot visualizing the 435 most variant probesets
of the E-TABM-185 dataset from ArrayExpress. The matrix displayed
has 435 rows and 5,896 columns. Rows and columns are both clustered
hierarchically using the UPGMA algorithm based on the Pearson corre-
lation distance. Clustering trees are displayed to the left and atop the
matrix. Expression values are mapped to an inverse heat colors gradient
(white—red—black), shown at the top of the plot.

The basic invariant of the heatmap is that all visual elements on one row are related,
i.e., they visualize one aspect of the same probe. Thus, a row header relates to all
cells in the respective row and row header plugins are managed by the main heatmap
class. Columns, on the other hand, can visualize quite different information, such as
expression values (primary data) or meta information (secondary attributes). Often,
several columns form a logical group based on common properties. For instance, a
dataset with 20 experiments (columns in the expression matrix) is usually visualized
in a heatmap with 20 columns, each of them visualizing the expression values of one
of the experiments. The fact that columns often are grouped is reflected in the
heatmap design: The central data structure manages a list of column groups, each
group being created by a plugin instance. The column group plugin is responsible for
creating the appropriate number of columns and managing its own column header
plugins.

To find out which column header plugins can be used for a given column group,
column groups can define properties. For instance, a clustering tree column header
can only be used on column groups implementing the HasExperimentTree inter-
face (e.g., on expression columns of a clustered dataset, but not on a single meta
information column).

User interaction is handled by the main heatmap structure (row selection events and
scaling), by the row resp. column header plugins (e.g., enlarging the area used for
rendering a clustering tree), or by the columns (e.g., selection, tooltip display).

The heatmap can include meta information in three different ways: Additional
columns can be included that show meta information mapped to colors (using a
color gradient for numerical data, or a set of distinct colors for categorical annota-
tions), or using a domain-specific visualization (e.g., for gene models as shown in
figure 4.5). Numerical annotations can also be used as relevance information, and
these are then visualized as color shading overlaying the coloring of an expression
column, or by modifying the transparency values of the expression column’s colors.

52

4.3. Expression in a genomic context: ChromeTracks

Finally, any meta information with a defined ordering can be used to sort the rows
of the heatmap, as well as the columns in a group of expression columns.

The heatmap uses a combination of the approaches discussed in section 4.1.3 to
speed up rendering. Firstly, clipping is employed to compute the heatmap cells, row
and column headers that require updating. Secondly, each rendering plugin author
can decide whether to use direct painting or a buffered approach. For conventional
heatmap columns, rendering a cell is usually a very simple operation, consisting
of the application of a uniform color fill. Thus, drawing all visible cells can be
accomplished very quickly and buffering is not needed. Other elements, such as a
clustering tree header, can benefit from buffering and use the facilities offered by
the AntialiasPlotPanel class.

The efficiency of the new implementation reveals itself when analyzing large datasets.
One such example is the ArrayExpress [115] dataset “E-TABM-185" comprising
5,896 hybridizations performed with Affymetrix HG-U133A microarrays. More than
370 biological conditions in human samples are accumulated in this dataset, each
experiment covering 22,283 probesets (in the “processed” version of the dataset).
MAYDAY can easily handle such large datasets given enough memory (in this case,
16GB of main memory were assigned). Gene variances were computed and the most
variant genes selected (435 genes with variance > 9). The data was clustered both
on rows (probes) and on columns (experiments) using the UPGMA algorithm and
the Pearson correlation distance measure and the heatmap plot for the full matrix
(not shown) as well as for the set of highly variant probes (figure 4.6) was created.

4.3. Expression in a genomic context: ChromeTracks

Gene expression happens in a genomic context. Transcripts are copied from the
genome regulated by elements upstream (and sometimes downstream) of their tran-
scription start site (T'SS). Furthermore, in prokaryotes, several genes are often tran-
scribed as one operon, resulting in a polycistronic transcript. Eukaryotes, on the
other hand, have complicated post-transcriptional processing mechanisms so that
mapping the expressed sequences back to the genome sequence can reveal the in-
tron/exon structure of their genes.

Visualizing expression in its genomic context can often lead to important conclu-
sions. For instance, genomic co-location of transcripts with similar expression pro-
files can reveal genomic clusters of genes under common regulatory control, or with
a functional relationship (e.g., in so-called ‘pathogenicity islands’ [65]).

Based on the diploma thesis by Christian Zipplies [185], MAYDAY’s genome browser
ChromeTracks was developed to show any element of MAYDAY’s data model in a ge-
nomic context. ChromeTracks is a track-based visualization: The x axis of the plot is
associated with the chromosomal position (in bases) of the currently visualized chro-
mosome. The y axis is used to distinguish different tracks, each of which displays one
data aspect, such as the expression value in one of the experiments, meta informa-
tion like p-values, or additional, external annotation (e.g., gene models, chromosome
sequence information).

53

4. Visual analytics in Mayday

Table 4.1.: ChromeTracks track types

Track type data strands # visualization

— Probe data

Profile primary (1 exp.) one 1 profile curve

Single Heatmap primary (1 exp.) / meta both 2 colored fixed-size boxes
Multi Heatmap primary (all exp.) both 2 colored fixed-size boxes
Stem primary (1 exp.) / meta one 3 colored variable-height boxes

— RNA-seq data (via SEASIGHT, see chapter 7)
Mapped reads both colored read objects
Read coverage both 1 coverage curve

—_

— Chromosome annotation
Chromosome sequence both — full IUPAC alphabet [40]
Locus data, genetic coordinates (see 7.6.8) both —

— External annotation
Sequence data, e.g., from FastA files both — full IUPAC alphabet [40]
Numerical data, from ‘Wiggle’ files both 1 Wiggle curve

Track types are listed together with the data they use for rendering and the visualization
method. Some track types can only display data for one strand (forward or backward),
others can include both strands in a single track. #: Number of visual characteristics (color,
size/location, transparency) used for data mapping.

ChromeTracks provides the core data structures needed for such a visualization
and for constructing the track-based user interface, including event handling, coor-
dinate transformations and optimized rendering strategies (see below). The actual
track rendering is realized using MAYDAY’s plugin management system: Each track
type is implemented as a TrackPlugin with specific Settings. Data attributes are
mapped to all or some of the three visual characteristics, color, size/y-position, and
transparency. Several plugins are implemented for primary as well as meta data and
to include additional annotations from internal (the DataSet) or external (the file
system) sources. SEASIGHT (described in chapter 7) provides additional track ren-
dering plugins for some of its own RNA-seq data types (see table 4.1 for a list of
currently available track types).

Two special tracks are included in each visualization (see figure 4.7): Firstly, the
ruler (‘minor scale’) indicates the current base position and can be used to jump
to another location as well as to zoom in. Secondly, the global location indicator
(‘major scale’) is a track which is not part of the x-axis coordinate system. Rather,
it always shows a ruler representing the whole chromosome currently visualized. It
can be used to jump to any location within the chromosome as well as to zoom in
on any region. Users can switch to another species resp. chromosome from the view
menu.

ChromeTracks offers many interaction possibilities for horizontal (base resolution)
zooming, vertical (track height) zooming, panning and scrolling, probe selection and
track configuration. Horizontal zooming and panning is available both through the
major and the minor scales as well as using the mouse wheel. Tracks can be zoomed

54

4.3. Expression in a genomic context: ChromeTracks

Current view location

DL A A el A e L [Major (global) scale
SpeCIeS Sco M 3514 M 3515M 3516 M 3517 M 3518 M 3519 M H
Chromosome chromosome: X R T S M T Minor (local) scale
REMEE
+- col=20 (mean) el il | pm— Heatmap track
REMEE)
20 e — I - | Profile track
REMEE .
- Multiple Heatmap
—_ i T track
— I
] !
REMEE
+h=20, col=20 I I I _I Stem track
Track controls REE=E ‘ \ g —
M P P D D D | BEEEEEED! Nlocus track

Track label rrobeset Locus | = : :‘M:F} w
[« 8 i ' ~ ' »

Chromosome-wide scrollbar

Figure 4.7.: ChromeTracks view. The two scales can be used for navigation (zoom-
ing and panning). Tracks can be rearranged by drag&drop or using the
track controls. Each track is labelled either automatically, describing the
mapping of data aspects to visual attributes (e.g., ‘col=20’ indicates that
color is used to visualize probe data for the experiment labelled ‘20’), or
by a user-defined label (e.g., ‘ProbeSet Locus’). Several track types are
shown as examples, displaying data of the S. coelicolor dataset described
in 3.7. Further track types are listed in table 4.1.

(enlarged /shrunk) vertically using the mouse wheel. Probes can be selected either
directly or by selecting a genomic range. Locations can be jumped to by specifying
a base position, searching for an element or centering the currently selected probes
in view. Tracks can be arranged by drag&drop and are automatically placed in a
non-overlapping layout. Optionally, this behaviour can be disabled to allow tracks
to overlap which can be useful to relate the information presented in different tracks
(e.g., two wiggle tracks). Using the plugin system and the Settings framework’s
serialization capabilities, the current track layout and all tracks’ settings can be
stored to disk and restored during later analysis sessions.

Furthermore, each track can implement tooltips that display location-specific in-
formation whenever the mouse cursor is placed above the respective track. Such
information can, for instance, include the current position (in base coordinates), el-
ements associated with this position, and numerical values such as normalized read
coverage.

To efficiently display data in the context of large eukaryotic chromosomes and al-
low for smooth scrolling and panning, a sophisticated tiled rendering system (see
also 4.1.3) was implemented. Each track along the chromosome is split into tiles of
a fixed width (in pixels) such that a certain interval of bases is represented by each
tile, depending on the current zoom level. Based on the current viewport position
(base offset in the chromosome), a track requests tiles from its tile cache and copies
the pre-rendered images to the screen buffer. If a tile is currently not available, a
request is placed in the track’s rendering queue and the respective tile is rendered in
a background task as soon as possible. This happens independently for each track,

55

4. Visual analytics in Mayday

allowing for parallel rendering of all tracks. Whenever a tile is ready, it is placed
into the cache, and an event is created notifying the track that there is new content
ready for display.

Changes in the viewport position (resulting from scrolling or jumping to a new
position) are communicated to the tracks’ tile caches which automatically place all
visible (but not yet rendered) tiles into the rendering queue. In addition, a certain
number of tiles to the right and left of the current viewport are pre-rendered to
prepare for (continued) local scrolling by the user. When the user scrolls the viewport
by a small amount (e.g., to the left), existing buffers can be used to display the new
area right away. The new center of the viewport is used to update the area that
should be buffered and new buffers (here: to the left) are prepared while old ones
(here: to the right) can be discarded if memory should be recovered.

In total, an area of 20,000 pixels width (corresponding to 20 not necessarily consec-
utive tiles, each of width 1000 pixels) is cached for each track. Event aggregation is
used to prevent unnecessary updates when several aspects of the visualization are
changed. For instance, during mouse-wheel zooming, several zoom levels are usually
skipped before the user interaction stops and the view settles on the final zoom
level. As zooming results in the invalidation of all cached tiles, event aggregation is
an important efficiency improvement here.

The tiled approach was chosen for two reasons: Firstly, the genome browser deals
with huge amounts of data which require, at times, quite complex operations for
drawing (for instance when the layout of overlapping RNA-seq reads is computed).
Thus, clipping is not sufficient as even rendering only the currently visible area
can be very time-consuming when the visible genome region is large. Here, re-using
cached tiles is the optimal strategy to quickly accommodate small movements along
the chromosome without any expensive redrawing. Secondly, caching an image of the
whole track is infeasible because users would have to wait a very long time before
the track image was ready for display, even if they were only interested in a small
region of the genome.

For illustration, consider a simulated example of 250 million reads (of length 32bp)
distributed approximately uniformly over human chromosome 1 (249 mb). Initially,
the tile cache is empty. After zooming to a resolution of one pixel per base and
scrolling to any location within the genome, the first tile is rendered and displayed
after 18 ms and the full view (1280 pixel width) is ready after 54 ms (as it requires at
most three tiles). In comparison, rendering the whole chromosome at this resolution
(which is equivalent to rendering 249,213 tiles) would require 76 minutes. In fact,
in most real-world use cases it is simply impossible to cache an image of the whole
track, as the image would be too large to keep in memory (if images of such large
dimensions were even possible using Java Swing objects). Again consider human
chromosome 1 at base resolution: The image for a complete track of medium height
(50 pixels) would be about 249,000,000 x 50 pixels large, i.e., for each such track
a 12.5 gigapizel image would have to be cached. If the letters of the chromosomal
sequence were to be displayed as well, the image size would further increase: If, say,
10 pixels of width were used for each letter, the resulting image would be 2.5 billion
pixels wide and comprise a total of 125 gigapixels.

56

4.4. Analysis of time-series transcriptome data

If a ChromeTracks visualization is exported to a bitmap or vector graphics file,
instead of using the tiled rendering approach, the track plugins directly render to
the image’s Graphics object. For the vector file formats (SVG and PDF), this means
that the view is exported as editable and scalable objects instead of as one possibly
huge bitmap image.

4.4. Analysis of time-series transcriptome data

Originally, MAYDAY was designed to analyze data from relatively simple studies, of-
ten considering a number k of conditions C1, ..., Cy where k was usually quite small,
e.g., in the range of two to five. For each condition, several samples (replicates) would
be hybridized to arrays, leading to experiments (E11, ..., Eip), ..., (Ek1, ..., Ekpy),
where k; is the number of replicates hybridized for condition ¢. Statistical testing for
such study designs is straightforward and many established methods exist for the
two-sample case (i.e., kK = 2). The multi-sample case is covered by methods such as

ANOVA [51, 52).

Decreasing costs for microarray experiments as well as growing interest in Systems
Biology questions led to larger and more complex experiments, most notably time-
series studies. Generally, experiments performed in the context of time-series studies
involving multiple conditions can be described as Ejj, where 4 is the condition, j
refers to the time-point, and ¢ denotes the replicate. However, such studies often
trade replicates for additional time-points. In fact, the high quality of microarrays
and the near-perfect reproducibility of experiments performed under strict quality
control can make creation of replicates for time-series studies unnecessary [11]. Time-
series studies thus often contain experiments (Eii,...,Eip,),...,(Ext,. .., Ekp,),
where p; is the number of time-points sampled for condition ¢. Each experiment Ej;
is annotated with a time-point #;;, specified in some unit relevant to the respective
study, e.g., “hours since treatment”.

Statistical analyses of (multiple) expression time-series studies are still subject to
research. The two-sample statistics employed to find differentially expressed genes
in non-time-series studies can not be applied here — not only for lack of replicates
but also because it is quite inappropriate to define two groups to compare. There
are often many more time-points than conditions, such that comparing all pairs of
two time-points is not feasible. In most cases, this procedure would be unable to
answer the researchers’ question, which is: “Which genes behave differently (in a
significant way) between different conditions tested, over time?”. Such a question
can not easily be translated into a statistical test. Additional complications arise
from the multi-dimensionality of the comparisons. Time-points and conditions (see
section 2.4.1 for a definition of these terms) already define two dimensions of inter-
est, and studies can add further dimensions, e.g., by including different species or
mutants. Conditions can also be defined in such a way that they can be expressed
as multi-dimensional attributes, e.g., by combining (1) different growth media with
(2) different temperatures in (3) anaerobic and aerobic environments. Finally, the
time-points sampled for the different conditions may either not be the same (e.g.,
due to lack of manpower for obtaining samples synchronously), or they might appear

57

4. Visual analytics in Mayday

Table 4.2.: Time-Series Statistics Windowing Methods

Separator Single window Adjacent windows Free windows

12345678 12345678 12345678 12345678
12345678 12345678 12345678 12345678
12345678 12345678 12345678 12345678
12345678 12345678
12345678 12345678
12345678 12345678

The four windowing methods available in MAYDAY’s time-series statistics plugin are ex-
plained using an example of 8 time-points (1-8) with the (minimal) size parameters set to
3 for each method. Each method creates pairs of groups by splitting the set of time-points
in different ways. Groups are distinguished by underlining all time-points in the first group,
unused time-points are printed in gray. The pairs of groups are used as the basis for applying
pair-wise statistical tests.

to be identical (i.e., t;; = t;;) but for biological reasons they should not be compared
directly (e.g., one sample might, for some reason, show a delay in the response to
the treatment that is unrelated to the type of treatment itself).

As a first step towards determination of time-dependent differentially expressed
genes, two approaches have been implemented in MAYDAY: The time-series statistics
plugin allows for the computation of statistically significantly differentially expressed
genes in a time-series (described in the next section). TIALA, a visual analytics
method for the analysis of multiple time-series datasets is presented in section 4.4.2.

4.4.1. Statistical analysis of single time-series

If only a single time-series (without replicates) should be analysed, i.e., if experiments
can be described as E1, . . . Ep, the question of what constitutes differential expression
over time can usually be answered relatively easily. Still, depending on the details of
the study and on the effects one wants to discover, different answers might fit best
(see also figure 4.8). Researchers might be interested in genes that

e are permanently switched on (resp. off) at some (unknown) point in time
e are transiently up- resp. downregulated in some (unknown) time interval

e show a significant switching event at some (unknown) point in time, regardless
of their behaviour over the rest of the time-series

e show significant expression differences between two (unknown) disjoint inter-
vals anywhere in the time-series

The MAYDAY time-series statistics plugin is a first step towards offering a tool to
address these questions in an automated fashion based on two-sample statistical
tests. Essentially, it tackles the need for a definition of two groups to compare against
each other by testing different pairs of groups (each group of size > 3), defined
according to one of four windowing systems shown below. For sake of exposition,
the methods are introduced with an example in table 4.2.

58

4.4. Analysis of time-series transcriptome data

A B c D
f (. (I (A

t t t tot, t bty ty oty

Figure 4.8.: Types of time-dependent events that can be detected with MAYDAY’s
time-series statistics plugin. Pairwise statistical tests are performed be-
tween the time-points in the red group and those in the blue group. A, per-
sistent switching; B, transient change; C, local switching event; D, general
differential expression. See the text for details.

e Separator: The experiments are split into two groups according to one time-
point ¢ which is moved along the time-series (figure 4.8A). The first group
contains all experiments up to t, the second group contains all remaining ex-
periments. This addresses the question “ Which genes are permanently switched
on (resp. off) at some (unknown) point in time?”. The minimal size of each
group can be set as a parameter.

e Single window: The experiments are split into two groups according to two
time-points t; < t2 which are moved along the time-series, keeping the number
of experiments to —t; constant (figure 4.8B). The first group contains all exper-
iments in this window, the second group contains all remaining experiments.
This addresses the question “Which genes are transiently up- resp. downrequ-
lated in some (unknown) time interval?”. The number of experiments in the
window can be defined as a parameter.

e Adjacent windows: The experiments are split according to three time-points
t1 < t9 < t3 into four groups: Experiments before ¢, are ignored, experiments
between t; and t9 form the first group, experiments between t9 and t3 form
the second group, and experiments after t3 are ignored (figure 4.8C). The
biological question here would be “Which genes show a significant switching
event at some (unknown) point in time, regardless of their behaviour over the
rest of the time-series?”. The number of experiments in the windows (to — 1
and t3 — t2) can be defined as parameters and are kept constant.

e Free windows: This is a generalization of the above method, where the two
windows are not kept adjacent to each other, i.e., the set of experiments is
split into groups according to four time-points t; < to < t3 < t4 such that the
first group contains all experiments between ¢; and to and the second group
contains all experiments between t3 and ¢4 (figure 4.8D). The very general
question here is “Which genes show significant expression differences between
two (unknown) disjoint intervals anywhere in the time-series?” Another way to
find such genes (without a statistical significance assessment, however) would
be to compute the per-gene expression variance.

As a result, each probe is assigned an aggregated ‘p’-value which (even if it is not
a p-value in the strict statistical sense, e.g., when using the mean as aggregation

59

4. Visual analytics in Mayday

function instead of the minimum), can be used to rank genes with respect to how
‘differentially’ they behave. Since many tests are performed for each gene, and many
genes are tested, corrections for multiple testing are important. The time-series
statistics plugin uses two correction steps, called “Inner correction” and “Outer
correction”, respectively. The complete computation is performed in five steps:

1. Pair creation: Pairs of groups are created according to the selected windowing
system (see above). Let k be the number of pairs.

2. Statistical testing: For each pair of groups, compute a selected statistical
test for each gene. Let n be the number of genes.

3. Inner correction: For each gene, correct the k p-values using the selected p-
value correction method. This corrects for multiple testing due to the number
of pairs, k.

4. Aggregation: For each gene, aggregate the k (corrected) p-values using a
selected summarization method, obtaining one aggregated p-value for each
gene. The most obvious choice here is to report the minimum of the k values, as
it describes the probability of the gene’s expression profile showing ‘differential’
behaviour in any pair.

5. Outer correction: For each pair of groups, correct the p-values obtained in
step 4 using the selected p-value correction method. This corrects for multiple
testing due to the number of genes, n.

Based on MAYDAY’s plugin system, the methods applied during this process can be
selected from all available pairwise statistical tests (step 2; e.g., t test, SAM, Rank
Product, ...), p-value correction methods (steps 3 and 4; e.g., None, Bonferroni,
éidék, Holm, FDR, ...) and summarization methods (step 5; e.g., geometric mean,
median, harmonic mean, min, max), respectively.

For illustration, the time-series statistics plugin was applied to the S. coelicolor time-
series data introduced in chapter 3.7. The ‘adjacent windows’ method was chosen
with both window sizes set to three, to find genes which show a significant switching
event at some (unknown) point in time, regardless of their behaviour over the rest of
the time-series (as illustrated in figure 4.8C). The Rank Product method was used
for statistical testing (with 100 permutations), Holm’s p-value correction method
was chosen for both inner and outer correction, and the minimum was used as
aggregation function. As input, the set of 7839 protein-coding genes of S. coelicolor
was used, of which 170 were reported to be statistically significant (p < 0.05). These
were taken as input for a QT clustering (diameter 0.35, Pearson correlation distance,
minimal cluster size four) which resulted in nicely defined clusters revealing a clear
cascade of switching events (shown in figure 4.9).

These 170 genes could also be found using the ‘separator’ method or the ‘free win-
dows’ method. However, the genes called significant by the ‘free windows’ method
are a superset of the genes found by the ‘adjacent windows’ method, as this method
reports additional genes with more ‘blurred’ switching events, which is not what
was desired in this example. Furthermore, it requires considerably longer computing
time due to the larger number of pairs to check. The ‘separator’ method runs much
faster but it assigns statistical significance to all tested genes because the effect of

60

Expr. (zscore) Expr. (zscore) Expr. (zscore) Expr. (zscore) Expr. (zscore) Expr. (zscore) Expr. (zscore) Expr. (zscore)

Expr. (zscore)

4
2
0
o © ~— © — [se] [ee]
N o (2] (s} < < w
Time point
4
2
0
-2 1
o © -~ © -~ © ©
o o (3] [} < < w
Time point
o © — ~— (=) ©
N o (2] (2] < < (e}
Time point
2
0
o © -~ © — (=] [ee]
o o (] (3] < < w
Time point
2
1
0
-1 1
o © - © -~ © L=<
o o (sl o < < w
Time point

A

o © - © -
[<

(] (3] <
Time point

©
e}

Time point

o ~— © — [se]
o (] (] < <
Time point

© ©
[0

4.4. Analysis of time-series transcriptome data

Expr. (zscore) Expr. (zscore)

Expr. (zscore)

Expr. (zscore)

Expr. (zscore)

- © - o
@ ™ <+ <

Time point

20
26
58

© — © +~ ©
N Mmoo <

Time point

Lo T

20
58

[N

o © = ©O© = o
N N <

™ @ <
Time point

©
wn

© - ©
N o ¢

Time point

48

© — © +~ ©
(U IR I

Time point

20 7
58

Figure 4.9.: Example application of the time-series statistics plugin. Expression pro-

files of 7839 protein-coding genes in S. coelicolor were tested using the
‘adjacent windows’ method (both window sizes set to three, see text for
details) using the Rank Product (100 permutations) as statistical test and
Holm’s procedure as inner and outer p-value correction. Probes called
significant at p < 0.05 were clustered using the QT clustering method
(diameter 0.35, Pearson correlation distance, minimal cluster size set to
four) and manually sorted to show the cascade of clear switching events
over time (left). Less pronounced events are also detected (top right), as
are general trends in the data (bottom right). These are also valid results
in this application, as the corresponding profiles show at least one marked
switch overlaying the general trend. Data from [111].

61

4. Visual analytics in Mayday

nutrient limitation is visible in the vast majority of genes as a gradual downregula-
tion. Thus these methods are clearly not applicable to the given example data, but
can be the methods of choice for other datasets where different biological phenomena
are studied.

4.4.2. Visual analysis of multiple time-series

The Time-series Alignment Analysis plugin TIALA was developed to offer a visual
analytics approach to finding significant differences between time-series studied un-
der different conditions. The original TIALA implementation only allowed for pair-
wise comparisons of time-series. It was later extended by Gilinter Jager to support
multiple time-series comparisons, including the computation of multiple time-series
alignments and 3D visualizations [79].

The basic idea of TIALA is to align two time-series such that each experiment Ey; of
the first time-series is mapped to at most one experiment Fy; (1 <i < p1,1 < j < po)
of the second time-series (and vice-versa). This alignment is computed based on two
important assumptions:

1. Time-points are expressed as integer values. Biological experiments are
performed by human researchers, who can only work with a certain level of
precision when sampling is concerned. Furthermore, while biological condi-
tions might be changing quickly, they are not expected to change greatly in
sub-second intervals. In fact, RNA polymerase 11 has been shown to create
transcripts at about 30 nucleotides per second [26]. Even studies trying to
investigate the order in which transcripts are produced (e.g., to gain insight
into regulatory cascades) do not require sub-second precision — and if they did,
time-points could still be expressed as integer values, measured in milliseconds.

2. Intervals between time-points are correct. When sampling time-points
in two separate conditions, there might be a deviation from the perfect sam-
pling time, e.g., owing to too few staff members who can extract and process
(purify, freeze) the samples. However, these deviations will be at least one order
of magnitude smaller than the interval between two consecutive time-points.
Thus, T1ALA does not attempt to change the time-point designations to cre-
ate a ‘better’ alignment. Trivially, this includes that the order of time-points is
not changed during the alignment. Manual corrections of the time-point labels
attached to the experiments are still possible, of course.

As a result of these two assumptions, the alignment consists of finding the optimal
global shift between the two time-series, i.e., finding a ¢ such that ¢y; + 0 = t; for
all matched experiments i, j from the two time-series. The idea is that finding the
correct global shift to align two time-series will result in lower average distances
between their expression profiles, as the majority of genes will not be differentially
expressed between the time-series. To find this shift, TIALA offers several statistical
and distance-based methods. Some experiments might have to be dropped from the
alignment, either because, after shifting, they fall into a time interval not covered
by the other time-series (i.e., they were measured before resp. after any experiment
in the other time-series), or because they occurred at time-points that were not

62

4.4. Analysis of time-series transcriptome data

Menu [Hide] [Detach] :_ F201 & F199-50P Export Menu [Detach]

ﬂ
Expression valus &
onn

201_40
201_44
201 48
201_60

@
m
o
=1
&

201_37

w
m
o
=1
1

201_24
201_22
201 32
201_34

Experiment

Expression value

F155-50P Menu [Hide] [Detach]

o
=1
=}

240
280
320
340
360
370
330
40.0
440
42.0

Time Poirt

Expression value

SO VS TR0 O e T S-S || —
e AADIAD | et

Experiment ‘| Combined statistics

Probelists [Hide] [Detach] :| [Profile plot | Box plots
Probelists |
Type Il PKS - Actinorhodin ==22 11=1

Statistic

Dataset Alignment [Hide] [Detach]

- - w4 e e = - - -
3 = I T 3 3 s
,_,‘ ,_,‘ -—<| -—<| -—<| -—<| ,_,‘ ,_,‘ ,_,‘ -—<| -—<| =]
z = S 2 2 o = = =
& & = = g EE & & = a o=
e} | i |
F195-50P
AL A S L L l

= = w = = e
S omoooe oo Mot oM oc oM om oM om ;oMo omomomom % o o F = = = = n

Figure 4.10.: T1ALA user interface: Two time-series with different sampling intervals
are aligned. Here the alignment contains no shift (bottom). Profiles are
shown for the PKS cluster in Streptomyces coelicolor for the unaligned
datasets (left) as well as after alignment (top right) together with fold-
change profiles (center right). One gene is selected (red, blue profiles).

analyzed in the other series. An example for the latter would be time-series with
different resolutions on the time axis due to different depth of sampling (e.g., one
hour versus two hours resolution).

The resulting alignment is visualized firstly as two parallel axes showing the aligned
and unaligned time-points, and secondly by assigning a distinct color to each of the
two time-series and drawing the aligned profiles in a common profile plot using these
colors. The user interface (see figure 4.10) includes the original, unaligned data sets
as well as a plot showing the result of computing a user-selected statistical mea-
sure on the aligned profiles. All components of the view can be detached (shown
in separate windows), to allow users to focus on certain aspects and make use of
modern multi-screen workstations. Tight integration with MAYDAY’s visualization
framework furthermore enables users to visualize the aligned, unaligned and statisti-
cal data in all other visualizations available in MAYDAY, as well as to share selections
with other visualizers, etc.

Giinter Jéiger extended the basic TIALA approach to analyses of more than two
time-series [79]. The starting point is a multiple time-series alignment, where one
sequence is arbitrarily chosen as center series to which all others are aligned in a
pairwise manner and time-points that could be aligned in all time-series are chosen

63

4. Visual analytics in Mayday

for visualization. The resulting set of time-points is independent of the choice of
the center sequence. The user interface is similar to that for the two-dimensional
case (see figure 4.11) but uses three-dimensional plots for the aligned profiles and
multiple views for pairwise statistical comparisons.

cold Menu [Hide] [Detach] | cold Grosmotic &salt Grheat Export Menu [Detach]

15

Expression value

asmatic

Cambined statistics [Detach]

n - o © o - cold vs. osmotic | cold vs saft | cold vs_heat |

Experiment Statistics [Fole-change [w] confors | Export menu [Detachl
heat Menu [Hidel [Detach] g oo pict=
5 Sl | T [|
. — |
i —
E 5 —]
1
SR NN \
Experiment e S ° 2 e
B B
Probalists (Show] [Detach] Tirne Poirt
Dataset Alignment [ide] [Detach]

abgrment || [|

— 120
210

]
1
fl
6

21

Set Centar...

U Edit...
asmotic o

Figure 4.11.: T1ALA user interface for multiple time-series comparisons. Here, four
datasets are compared. The view layout is similar to the pairwise align-
ment case (figure 4.10), showing the multiple alignment (bottom), the
profile plots for the unaligned datasets (left), and the statistics view
(center right). The aligned profiles are shown in a three dimensional
view (top right). The third dimension (z axis) is used to separate in-
dividual probes, distinct colors are used to represent each dataset and
transparent expression surfaces are drawn to facilitate interpretation.
Data from [152], figure modified from [79].

64

5. Integration of scripting languages

Bioinformatics analyses often require the application of a standard set of methods
(sometimes laid down in ‘standard operating procedures’, SOPs). MAYDAY offers a
large range of methods and visualizations which can be combined in a very flex-
ible manner to conduct analyses. Sometimes, however, analyses require a specific
approach that is not covered by the available methods. Scripting languages allow
bioinformaticians to quickly test ideas. Rather than implementing a new MAYDAY
plugin for such a one-time occasion, an analyst might want to quickly test some
ideas by interactively programming with the data. Another use case for interactive
scripting arises during the development of a new method, where ideas are first tested
in a ‘quick and dirty’ interactive session before a clean implementation as a MAYDAY
plugin is created.

There exist several programming resp. scripting languages suitable for interactive
data analysis, each with its own benefits and disadvantages. However, a user inter-
face integrating such languages into MAYDAY always contains the same basic set
of functionalities irrespective of the language used. The specific implementation of
these might differ between languages, for instance because different languages use
different keywords, but the basic concepts remain the same. The next section will
introduce MAYDAY’s generic framework for the integration of interactive program-
ming. It is followed by three concrete examples of languages already integrated.

5.1. An interactive programming environment

The ‘Mayday Universal Shell’ (MUSHELL) package defines interfaces and abstract
classes for a user interface for interactive programming along with basic implemen-
tations that can be used when specialized implementations are not needed. The
package consists of the following parts:
e A tokenizer which splits any given string into so-called tokens, each of which
is part of a certain token class. Several classes are predefined (see table 5.1)
but this list can be extended if a specific language defines additional classes.
e A syntax highlighter that can be used to add color to a text string based
on its decomposition into tokens, both for static (display-only) content as well
as for editable GUI elements.
e Auto-completion that can support the user in programming either based on
a dictionary of known keywords, or context-aware. The latter approach can,
for example, include the names of currently visible variables in the dictionary,
or restrict the set of completion suggestions to objects (resp. tokens) that are
applicable at the current position in the source code (e.g., the names of member
functions of an object).

65

5. Integration of scripting languages

e A command queue and history that stores commands entered but not yet
evaluated as well as commands already processed. The history can be browsed,
stored, loaded and executed again.

e So-called code snippet elements. In the most basic form, a code snippet
is a small piece of code that can be inserted at the current position. More
sophisticated implementations provide the user with a list of visible objects
in the current scope (e.g., the current environment in R) or with a browsable
list of objects and their members (as implemented for the JavaScript console,
see 5.3).

e The script engine interface that links the input and output windows, the
command queue and the command history with the actual script engine. Com-
mands are sent to the engine for execution, resulting output is displayed to
the user. The engine’s current state (‘busy’ or ‘idle’) is queried to determine
whether a command can be executed right away or needs to be put into the
queue. The engine interface also supplies the auto-completer with information
about available objects etc.

e A user interface bringing all these elements together in a combined view, as
shown in figure 5.1.

Based on the MUSHELL package, plugins for interactive data analysis were imple-
mented for three languages: The statistical computing language R [125] (section 5.2),
the general-purpose scripting language JavaScript (section 5.3) and the database
query language SQL (section 5.4).

5.2. Joining the powers of R and Mayday: RLink

5.2.1. R and Mayday

R is a programming language and an environment for statistical computing. The lan-
guage has a large set of mathematical functions and many constructs for vector and
matrix operations. The latter allow users to quickly specify complex computations,
such as computing the element-wise logarithm of a large matrix and subtracting
a (column) vector from each column of the matrix before finding all matrix rows
which contain at least one element larger than some value x. Data can quickly be
visualized (e.g., in histograms or scatter plots) and visualizations can be customized
by a myriad of parameters.

R supports object-oriented programming (using so-called S3 and S4 classes) and has a
sophisticated system for call parameter evaluation and variable scoping [168]. Most
importantly, R’s basic functionality can be extended by installing packages, most
of which are available through a central repository, the comprehensive R archive
network CRAN. Such packages can contain R code as well as native C or Fortran
code (using functions provided by the native R library) for optimized computations.
R has become a standard tool for bioinformaticians, and many packages specific for
bioinformatics tasks have been developed which are collected by the bioconductor
project [58]. New algorithms for bioinformatics problems are often developed and
implemented as R packages before becoming available in other forms. This, together

66

5.2. Joining the powers of R and MAYDAY: RLINK

Table 5.1.: Predefined MUSHELL token types

WHITESPACE spaces, tabulators, line breaks

PUNCTUATION comma, semicolon, etc., including matching braces
OPERATOR the common one-character operators (e.g., +, —)
TYPE data types (for typed languages)

OBJECT names of visible objects (e.g., user-defined variables)
COMMAND function calls (usually of the form <Identifier>()
NUMBER numeric literals in decimal or hexadecimal notation
STRING string literals enclosed by (non-escaped) delimiters
COMMENT including one-line and multi-line comments

ERROR_TOKEN Something that is clearly wrong at its position,
including non-matching braces, brackets, and parentheses

TEXT anything not classified as another token type

Mayday R'Terminal

History

| Fsummaryimayday)

= mayday

ex <=- maydayl['Example"]]

iex

ex.mean =- meanfex[1:2])

exX.mean

boxploti as.dataframe lapplyi mayday,

| »
-

Welcome to RELink. Type "mayday" to start.
= summary (mayday)

Mayday has 2 open datasets.

= Mayday

[1] "Example" "Another"

= 8x <- mayday [["Example"]]

> ex

Mayday DataSet: Example (internal id 1 3

DataSet with 2 probelists, expression matrix of size
and 2 meta information groups

> BX.mean <- mean(ex[,1:2]3

> 8x.mean

[1] 7.330787

R is ready

boxplot [as.data.frame [
Tlapply (mayday, function(dataset) {

Syntax highlighting
History

22779 x 15

A] I»

T
[Visible R objects

“lex
|ex.mean

Multi-line editor

apply (dataset, 1, mean JJi . mayday
) Auto completion | | Topjevel objects
main = "Probe variation", . 5
xlab = "Dataset” Brace matching
J

Figure 5.1.: MUSHELL user interface for interactive programming showing the RLINK
console. A multi-line editor with syntax highlighting (bottom left) can
be used to enter commands which are placed in the command queue
and evaluated. Results are shown in the output window (top left). Past
commands are collected in the command history (top right). A list of
top-level objects is shown in the lower right corner as an example of a
‘code snippet’ element.

67

5. Integration of scripting languages

with R’s powerful scripting language and the powerful interactive shell are the cause
for R’s popularity with bioinformaticians.

As a GUI application, MAYDAY has some advantages over R with respect to user-
friendliness and interactivity of the visualizations. However, due to the much larger
user base of R, complicated new analysis methods are usually not implemented
within MAYDAY at first. Even if they are implemented eventually, they will not be
available in MAYDAY as quickly as in R. Furthermore, while MAYDAY’s plots offer
many configurable properties, they are not as flexible as the programmable (though
non-interactive) R plots. Thus it may be helpful for analysts if the strengths of both
programs were combined.

5.2.2. The Rinterpreter plugin

In 2004, Matthias Zschunke developed a plugin [186] to connect MAYDAY to R. This
implementation was based on converting MAYDAY data structures to script files that,
when processed by R, recreated the data structures as R objects. Then, R executed a
user-defined script to process these objects and the resulting data (meta-information,
new datasets, etc.) were again written to a file in a proprietary format. Finally, these
files were parsed by the MAYDAY plugin and new MAYDAY data structures were
created. This plugin created a first connection between MAYDAY and R, yet it had
a few shortcomings:

e No interactivity — R functions had to be prepared in advance together with
XML files describing the parameter values MAYDAY should pass to R. Inter-
active analysis, one of the core strengths of R, was not possible. Furthermore,
debugging the scripts was not possible in an interactive fashion, as the complex
R objects created by MAYDAY were not available for manual inspection in R.

o Extensive serialization — Every call to an R script resulted in the complete
MAYDAY dataset being serialized to files and deserialized into R objects, even
if only a single value was accessed by the user’s script.

e Hard to maintain — To create intermediate files, the plugin required write
access to the file system. Furthermore, the call to the R binary differs depend-
ing on the operating system. For instance, finding the R installation path on
Microsoft Windows systems is only possible by accessing the system registry.
This, together with changes between different R versions made the RINTER-
PRETER plugin hard to maintain.

5.2.3. RLink: Aims and foundations

To address the problems identified with the RINTERPRETER approach, a new con-
nection between MAYDAY and R was developed. Its aims were to

e provide a feature rich, interactive R shell inside M AYDAY,

e give R users live access to MAYDAY’s data structures while protecting them
against illegal changes,

e share objects between MAYDAY and R in an efficient manner and avoid un-
necessary copying of data, and to

68

5.2. Joining the powers of R and MAYDAY: RLINK

e facilitate the use of MAYDAY objects in R by hiding the complexity of the
Java—R transition and providing experienced R users with familiar constructs.

MAYDAY RLINK, released in 2009 and presented at the R user conference “useR!2009”,
was developed to complement and eventually replace the old RINTERPRETER plu-

gin. Different approaches for connecting R to MAYDAY (as a Java-based application)

were considered:

Firstly, a separate R instance could be started and data could be transferred by
redirecting the input and output streams of R. This would allow users to interactively
control R from a MAYDAY shell window, but live access to MAYDAY’s objects would
be extremely difficult to implement, and impossible to implement efficiently.

Secondly, a networking connection could be established based on RServe [163].
Again, data exchange would be problematic and the burden of the implementa-
tion would be on the Java side. An interactive shell would be very challenging if
not impossible to implement as RServe was designed to allow Java programs to call
R functions. RLINK requires the opposite direction, the aim is to call MAYDAY’s
functions from within an R shell.

Java: Eztracting one element from a Map<String,Integer>
Note that Java automatically ‘unboxes’ the Integer object to an int value.
int ret = myMap. get ("Key”);

rJava:
1. Creating a Java String from the R character vector
keyS <— .jnew(”Ljava/lang/String;”, "Key”);

2. Casting the Java String to a Java Object
to match the map’s get function argument type.
keyO <— .jcast (keyS, ”Ljava/lang/Object”);

3. Calling the map’s fully-specified get function
to retrieve the mapped-to Object
retO <— .jcall(myMap, ”Ljava/lang/Object;”, ”get”, keyO);

4. Casting the Object to Integer
retl <— .jcast(retO, "Ljava/lang/Integer”);

5. Calling the Integer’s fully-specified intValue function
to extract the native int value
ret <— .jcall(retI, "I”7, ”intValue”);

RLink: Using R’s named list semantics to represent the map
ret <— map[[” Key”]]

Listing 5.1: Example of an RLINK operator: Accessing an element of type Integer
by its key (of type String) in a map. Top, original Java code; Middle,
rJava code necessary to retrieve the element; Bottom, simplified code
using native R semantics as provided by RLINK.

69

5. Integration of scripting languages

Shared process (local execution)

Mayday interactive R session
Java libraries, JRI functions R libraries, RLink functions
Java memory manager R core, memory manager

Java Virtual Machine core

Independent processes (local or remote execution)

Mayday, RLink server RLink client interactive R
Java VM R libraries, RLink
Java
Virtual Machine
R core
Legend: | native code Java bytecode R scripts

Figure 5.2.: RLINK process architecture. Different architectures are used depending on

whether the R session is directly embedded in MAYDAY’s virtual machine,
or whether a separate process is connected via Java’s remote method
invocation (RMI) protocol. As RMI is network-transparent, the second
option also allows remote connections.

The third option, which was chosen for RLINK, is to embed an R process into the
Java Virtual Machine using the Java native interface (JNI) which enables Java pro-
grams to call functions implemented in other languages based on loading dynam-
ically linked libraries (“shared objects”). On the Java side, the JRI package (now
part of rJava [164]) implements the necessary linking code. Then, on the R side,
the rJava package is used to call Java functions directly from R code. On top of
rJava, RLINK implements a layer of R functions that hide the complexity of calling
functions across the language barrier (as shown in listing 5.1) and implement data
access (see figure 5.2).

RLINK consists of three major components:

70

1. A wrapper around R to serve as script engine (in two different implementations,
see below).

2. The user interface based on the MUSHELL package, offering R specific syntax

highlighting, and a code snippet element based on the current R environment
which lists all variables and functions in the current scope.

3. A two-part communication layer: Safe access to MAYDAY’s objects is imple-

mented in Java. Operator overloading is implemented in R to hide rJava’s
complexity. The R part is also responsible for encapsulating MAYDAY’s ob-
jects in R adapters. More details on object encapsulation are given in the next
section.

5.2. Joining the powers of R and MAYDAY: RLINK

5.2.4. Object encapsulation

To provide efficient and safe access to MAYDAY’s data structures from within R
in a manner that is easily usable for programmers familiar with R’s syntax, is not
straightforward. Firstly, MAYDAY and R do not share a common area of memory:

MAYDAY’s objects are part of the Java virtual machine’s object heap, are managed
by the JVM’s memory manager and subject to removal by the Java Garbage Collec-
tor (GC). When R is embedded in the JVM as described above, it shares the JVM’s
memory. R implements its own memory management and garbage collection facili-
ties. As a result, the JVM’s allocated memory is dominated by two (potentially) very
large objects: The Java object heap and the R object heap. (The precise distribution
of object heaps to allocated memory may differ, e.g., a typical JVM usually keeps
several so-called ‘generations’ of object heaps.)

Both R and Java hide the ‘true’ location and nature of user’s objects, i.e., users can
neither determine the memory address that their object resides at nor the layout
(the order of the object’s bytes in memory). JNI/JRI solve this problem and allow
objects to be visible on both sides. However, granting direct access to MAYDAY’s
objects from R scripts is dangerous as many of their functions are not meant to be
called directly by users and could bring the dataset into an unexpected state.

In addition, if the complete object is exported from MAYDAY to R in this manner,
the alternative mode of operation for network-transparent access (described in the
next section) would require that each MAYDAY object type that could conceivably
be used in R (including types referenced from the main data types) implement the
RMI Remote interface which is clearly infeasible, considering the size of the MAYDAY
project.

As a result of these considerations, RLINK was implemented in such a way that
only a single object (implementing Remote) is exported via JNI and all access is
channelled through methods of that object. Only MAYDAY objects of a small set
of types (DataSet, ProbeList, Probe, MIGroup, MIType, MIManager) are accessible
from R. Upon first access from R, a MAYDAY object is associated with a unique
numerical identifier which is encapsulated in an R object. This object implements
an S3 class such that R operators can be overloaded with specific implementations
suitable for the object’s type.

Operator overloading is used to implement R semantics on the encapsulated objects.
For example, the indexing operators ([1, [[1]) are used to retrieve and modify
values contained in a DataSet’s expression matrix. Thus, a MAYDAY DataSet is
encapsulated in R as a numeric value (the object’s identifier) with attached class
‘DataSet’. Essential R methods such as sapply, lapply, print, rownames, etc. are
overloaded with implementations specific for DataSets and the indexing operators
can be used to access ProbeLists (using list semantics), Probes (using vector se-
mantics), as well as any element of the expression matrix (using matrix semantics).

The overloaded operators mask the true nature of the encapsulated object such that
most R functions can be used directly on MAYDAY’s object without the need to copy
for example the whole expression matrix from MAYDAY to R. For cases where this is
not sufficient, or where the programmer actually wants to work on a copy of the data,

71

5. Integration of scripting languages

Table 5.2.: RLINK modes of operation

Mode: Shared process RMI connection
Number of R instances 1 no limit
Memory limit (32 bit) 3 GB for JVM and R 3 GB for each process
R process location local local or remote
Installation more complex easier
Connecting R and MAYDAY simple more complex
Speed of data transfer very high depending on connection

a special use of the matrix indexing operator [] without index (e.g., m<-object[])
has been added. For DataSets, for example, this copies the whole expression matrix
into an R numerical matrix, an operation which can be interpreted as dereferencing
the pointer which the object represents.

In addition to accessing MAYDAY’s data structures, RLINK also allows users to
embed MAYDAY plugins into their R scripts, and to register R functions as plugins
in MAYDAY (e.g., to implement a distance measure). This bi-directional integration
can be used very effectively to solve problems that MAYDAY alone may not be able
to solve easily. For an example, consider a data set of time-series expression data. A
user would like to cluster genes with oscillating expression profiles according to the
strongest frequency component, which is not possible in MAyDAY. Using the FFT
transformation in R, this can be done with a few lines of R code (see figure 5.3).

5.2.5. Adding network transparency

The RLINK implementation discussed so far has a major drawback, which results
from the direct embedding of the R runtime into the Java Virtual Machine’s process:
R is not running as a separate process but as part of the JVM process. As such,
both ‘partners’ share a common memory area. On 32 bit systems, each process can
use a maximum of 4 GB of memory (in theory; in practice it is around 3 GB per
process as some part of the address space is reserved for the operating system kernel).
For large data sets, this can be a problem, especially when performing demanding
computations in R. A second problem is that a bug in an R package can crash R and,
by consequence, also crash the JVM.

By decoupling the two parts and running R in a separate process, both problems
are solved. For RLINK, this was achieved by adding an alternative script engine
implementation, where the RLINK R part is run in a separate R process, connecting
to MAYDAY via Java’s Remote Method Invocation (RMI) protocol. Thus, instead of
running R inside MAYDAY’s JVM, a tiny JVM used only for data transmission is
embedded into the separate R process (figure 5.2).

This solution has three additional benefits: Firstly, RMI is network transparent by
design. Thus, it does not matter where the separate R process is running. It could be
on the same workstation, or on a high-performance computing system somewhere on

72

5.2. Joining the powers of R and MAYDAY: RLINK

B Experiment

TestData <- mayday [["Example"]]; # get reference fr
submatrix <- TestData[["Complete DataSet"]] # select submatri
clusterByFFT{ submatrix , 50);

clusterByFFT <- function{ probelist , minsize=10 ,
parentNane="FFT Clustering", prefix="Strongest:")} {

T <- probelist{,T] # extract submatri
perform fft on each row-vector, find strongest factor
f. Fft<-Hod (t apply (f, 1, 1)) C
T.fftranks-t{apply (-f. fftf,-17,1,rank, ties="first"))
f. fftrankbest<-apply {f. fftrank,1, Complete DataSet
function(i) which{i==1)+1)
ds <- getDataSet{ probelist);
group <- addProbelistGroup{ds, parentName, probelist); # create hierarchical stucture FFT Clustering
?
factors <- unique(f.fftrankbest);
clusters <- sapply{factors, function{factor) { X .
cluster_i <- names (which¢f. Frrrankbest==factor)) Strongest: 4
if {length{cluster_i)=minsize) {
name <- pastegprefix, factor) —
return {addProbelist{ds, name, cluster_i, group)); # 1 dl new cluster to Mayda: [—‘ Strongest: 6
) e
return{-1);
»
global
color the results nice
clusters <- clustersfclusters>-13;
callPlugin{ ds, "PAS.core.RecolorProbelists", clusters); # call another Ma plugin

invisible();

Experiment

Figure 5.3.: FFT clustering performed using RLINK. A, expression profile plot of 3000
simulated gene expression profiles over 100 experiments (time-points).
1000 profiles oscillate at a frequency of 0.04 (4 cycles over 100 experi-
ments), 1000 at a frequency of 0.06 (6 cycles), 1000 oscillate randomly.
Normally distributed noise was added to all profiles. B, RLINK function
for clustering based on R’s FFT transformation with syntax highlighting
by MAYDAY’s shell. C, resulting ProbeLists in MAYDAY. D, profile plot
colored by cluster membership.

73

5. Integration of scripting languages

the network. Secondly, there is no limit to the number of R processes concurrently
connecting to MAYDAY. This can be used to allow a simple form of collaboration (see
also chapter 6), where several users connect to a single MAYDAY ‘server’ instance to
work on the same data. Thirdly, as there is no direct (byte-code) linking between
the R library and the Java Virtual Machine, this scenario is easier to set up from
the end-user’s point of view. A comparison of both modes of operation is given in
table 5.2.

5.3. On-the-fly scripting: JavaScript console

The RLINK plugin can be used both for interactive analyses as well as for rapid
prototyping of new analysis methods. However, RLINK is not part of the default
MAYDAY distribution due to the requirement that native code needs to be compiled
on the user’s workstation. This motivates the inclusion of another scripting language
which can be distributed directly with MAYDAY. JavaScript is an obvious choice for
such a language: On the one hand, JavaScript execution has been part of the Java
specification since Java version 6 [83], requiring no additional or native libraries.
On the other hand, programmers used to writing Java programs and plugins for
MAYDAY are already familiar with the language as Java and JavaScript use very
similar constructs.

The JavaScript console implemented during Tobias Ries’ bachelor thesis [128] ex-
tends the MUSHELL framework. Its most important parts are a highly complex
context-sensitive auto-completer as well as type-sensitive operator definitions. Fur-
ther improvements are code snippet elements for quick access to MAYDAY’s objects
and to a list of visible objects (including their type and content), automatic code
loading and a more comfortable editor window.

The auto-completer uses Java’s Reflection API to inspect live objects inside the
script engine, gain information about their type and create a list of available mem-
bers of complex objects. Furthermore, sophisticated code analyses are performed to
deduce the content types of Java containers (which, at run-time, are basically un-
typed) taking care not to change any object’s state by calling functions which might
have unintended side effects.

A flexible method for operator definitions has been implemented that allows users
to (persistently) define operators in the form of JavaScript functions such that,
for instance, the [] operator can be used on a DataSet object with a numerical
parameter for one purpose, and with a string parameter for a different purpose.
Such definitions are possible based on exact type matching as well as on inherited
types (similar to the assignableFrom function of the Class reflection type). Even
more far-reaching effects can be attained by using replacement rules based on regular
expressions.

The JavaScript engine is coupled much more tightly to MAYDAY than the R core
can ever be, mainly because the former is directly supported by Java while the
latter had to be attached in a rather more complicated manner (see section 5.2.2).
Programmers using JavaScript have direct access to all of MAYDAY’s data structures,
user interface elements, and plugins. On the other hand, however, the JavaScript

74

5.3. On-the-fly scripting: JavaScript console

A importClass(Packages. mayday. core. ProbelList);
importClass(Packages. mayday.core.pluma.prototypes. ProbelistPlugin);
importClass(Packages. mayday. core. settings. typed. IntSetting);
importClass(Packages. mayday. core. settings. typed. StringSetting);

B var plotter = new ProheiistPlugin()
{

run:function(probelLists, masterTable)

c var m);Seiting = new HierarchicalSetting("Automatic plot exporter”)
. addSetting(outputSetting = new PathSetting("Output folder", "Select the output folder", "", true
. addSetting(nameSetting = new StringSetting("Name prefix", null, "plot"))

//Settings for Plots, will be set after First Plot is created.
var users;

D for (pli=0; pli'=probelLists.size(); ++pli) {
var pl = probelLists. get(pli);
var arr = new ArrayList();
arr.add(pl);
var vis = new Visualizer(masterTable.getDataSet(), arr);
vis. getViewHodel (). getDataHanipulator(). setHanipulation(manip):
var bp = new PlotWithLegendAndTitle(new ProfilePlotComponent());
var spc = new ScriptablePlotContainer(bp, vis, width, height);
var hsc = spc. getPlotSettings():

hsc. fromPreflode(userS. toPreflode());
/ export the file
spc. setSize(width, height);:
spc. exportToFile(exportPlugin, output+File.separator+name+pl. getName()+"."+fmtname);
}

return null;
}

//Register Plugin
new PluginInterface(). registerPlugin(plotter, "Export each as plot", "js.ExportPlots"):

Output folder “ H Browse ... I @
Name prefix [plot |
Plot width 300 | @
Plot height [500] @
Data manipulation |none | v | L7
Format [pPNG ~] @

Anti-Aliasing

Text Graphics

Sancsl

Figure 5.4.: JavaScript example plugin (excerpt). A typical JavaScript plugin for
MAYDAY starts with a section where Java classes are imported (A), fol-
lowed by the definition of a plugin object (B). When run, the plugin
first creates Settings (C) to allow users to configure relevant parameters
needed for processing the input ProbeLists, resulting in an automatically
generated user interface (bottom). In this example, MAYDAY’s visualiza-
tion framework is used to create a profile plot for each ProbeList and
export it using one of MAYDAY’s image export plugins selected by the
user via a PluginTypeSetting (D). Finally, the plugin is registered with
MAYDAY’s plugin manager (E). The complete code of the example shown
here covers 84 lines of JavaScript code.

75

5. Integration of scripting languages

interpreter lacks the elegant mathematical syntax of R and its vast library of domain-
specific packages. Thus, the typical application domain of JavaScript in MAYDAY are
tasks that can be automated using existing MAYDAY components, possibly involve
some user interaction, but do not require extensive computations. As an example
for a JavaScript plugin written for MAYDAY, consider a small program (shown in
figure 5.4) which takes the currently selected ProbeLists, creates a profile plot for
each of them (using user-defined parameters for plotting) and exports these plots to
image files (e.g., for later use in a publication). Such a plugin can be implemented in
less than 100 lines of JavaScript code due to the strengths of MAYDAY’s visualization
and Settings frameworks as well as the plugin system.

5.4. Structured queries using SQL

With the dynamic ProbeList mechanism (described in section 3.5), MAYDAY offers
a powerful filtering framework. Still, very complex filters might require additional
implementation. Stephan Symons implemented an SQL console based on MUSHELL
and the Apache Derby database engine.

MAYDAY’s objects (DataSets, MasterTables, ProbeLists, and meta information
groups) are wrapped in adapters that allow the SQL processor to execute queries
on them as if they were tables. Queries can be entered in the well-defined SQL
syntax, including such powerful operations as joins, ordering and sub-queries, and
are optimized by the database engine before evaluation. Custom views and new
tables can be created to facilitate analyses.

For illustration, consider the following research question: Given a dataset of ex-
pression data annotated with functional categories (e.g., the dataset described in
section 3.7), find the categories that the genes with the highest expression values
in the first experiment belong to and produce a table ordered by (1) the functional
category and (2) the expression value, and include the locus tag (probe display
name) in the table. To do this using MAYDAY’s user interface, one has to start by
creating a dynamic ProbeList of all genes with expression (in the first experiment)
above a certain threshold, say 12. The meta information attached to the genes in
that ProbeList can be displayed in a tabular view and sorted according to the func-
tional annotation column. However, a second level of ordering can not be configured.
For this, the table has to be exported into a tabular text file, imported into a spread-
sheet application and sorted there. Using SQL, the question can be answered using
the query shown in figure 5.5.

76

> SELECT
p.DisplayName, v.Value
mio.Val
FROH
Probes AS p
ProbeMIOs AS mio
Probevalues AS v
WHERE (v.Name=p.Name)
AND (mio.Probe=p.name)
AND (mio.Name='Sanger description')
AND (v.Exp=1)
AND (v.Value>12)
ORDER BY
mio.Val, v.Value DESC:

DISPLAYNAME
SC05369 12,132
SC04295 12,024
SCO2156 12,097
SC04296 12,028
SC04253 12,628
SC02150 12,468
SC03663 12,406
SC06531 12,399
SC04725 12,367
SC04661 12,155
SC04662 12,054
SC03906 13,098
SC05624 12,592
SC04706 12,371
SC04726 12,264
SC04715 12,242
SCOSS91l 12,222
SC04717 12,219
SC03908 12,209
SCo4648 12,179
SC04728 12,171
SC04652 12,059
SC04709 12,01
SC05776 12,639
SC05477 12,016
SC03662 12,604

5.4. Structured queries using SQL

VALUE VAL

ATP-proton motive force
Adaptations, atypical conditions
Aerobic respiration

Chaperones

Conserved in organism other than Escherichia coli

Electron transport
Gram +ve membrane

Not classified (included putative assignments)

Proteins - translation and modification
Proteins - translation and modification
Proteins - translation and modification

Ribosomal proteins - synthesis, modification
Ribosomal proteins - synthesis, modification
Ribosomal proteins - synthesis, modification
Ribosomal proteins - synthesis, modification
Ribosomal proteins - synthesis, modification
Ribosomal proteins - synthesis, modification
Ribosomal proteins - synthesis, modification
Ribosomal proteins - synthesis, modification
Ribosomal proteins - synthesis, modification
Ribosomal proteins - synthesis, modification
Ribosomal proteins - synthesis, modification
Ribosomal proteins - synthesis, modification

Transport/binding proteins
Transport/binding proteins
Unknown function, no known homologs

Figure 5.5.: SQL example query (left) extracting a list of gene locus tags, expres-
sion values in the first experiment and functional annotation ordered first
by the annotation and then, descendingly, by the expression value, and
restricted to such genes whose expression value is larger than 12. Fur-
ther SQL operations, such as aggregation and grouping, as well as joins
across additional tables can be used to refine the query. The resulting
table (right) shows a dominance of ribosomal proteins among the highly

expressed genes in a time-series expression dataset in S. coelicolor [111].

77

6. Collaborative analysis

In bioinformatics, one of the main hindrances to efficient analyses are problems of
data exchange, owing on the one hand to the huge volume of data produced by
modern high-throughput technologies, and, more importantly, to the diversity of
data formats. This problem not only manifests itself when researchers from different
groups want to exchange data and analyse it collaboratively, but also when a single
researcher is working with the data, as different analysis steps (especially during
higher-level analysis) require the application of different programs, each with its
own demands regarding data input format.

In this chapter, both the problem of data exchange between programs as well as that
of collaborative data analysis between different researchers is addressed. Regarding
the first problem, integrating as many tools as possible into one comprehensive
software package (the MAYDAY approach) can be helpful as it reduces the number
of occurrences of the problem that need to be dealt with. The integration with R
further extends the circle of tools available to a researcher using MAYDAY, but it
may still not be enough.

6.1. The Gaggle

The Gaggle [143] provides a fundament for further integration. The basic idea is to
replace the current system of file system based manual conversion between data for-
mats and analysis programs with an automated approach using inter-application
communication (using the RMI protocol, as done by MAYDAY RLINK, see sec-
tion 5.2) based on a small set of defined interchange objects.

These object types were defined with a view on Systems Biology projects where users
mainly deal with tabular numeric data (e.g., expression matrices), lists of object
identifiers (e.g., gene names, accession numbers), clustering results, and different
kinds of networks (such as protein-protein interaction networks, gene regulation
networks, etc.). Gaggle defines five object types to cover most data exchange tasks
(see table 6.1 for details):

e NamelList: A list of object identifiers (strings).

e Matrix: A numerical matrix with row and column names.

e Cluster: A set of row and column names, used to define a sub-matrix resulting
for example from bi-clustering of an expression matrix.

e Network: A set of nodes with attributes and connections (of different types,
e.g., positive and negative regulation).

e Tuple: The most generic data structure, containing a set of (possibly nested)
named values, and a name.

79

6. Collaborative analysis

Table 6.1.: Gaggle data type grammar

GAGGLEDATA — Name , Species , CONTENT , TUPLE

CONTENT — (NAMELIST | MATRIX | CLUSTER | NETWORK | TUPLE)

TUPLE — Name , SINGLE*

SINGLE — Name , (VALUE | TUPLE)

VALUE — (Integer | Long | Float | Double | Boolean | String | GAGGLEDATA)

Each GAGGLEDATA object contains a specific CONTENT depending on its type (NameList,
Matrix, Cluster, Network, or Tuple) and an additional Tuple for metadata. The Tuple type
allows for nesting of objects.

Each object contains an additional tuple instance which can be used to transport
meta information regarding the object. Applications supporting the Gaggle inter-
faces, called Geese (sg. Goose), send objects of the aforementioned types to the
Gaggle Boss, a small RMI application which acts as a server that all Geese connect
to. The Boss broadcasts the object to all attached applications (except for the sender
itself).

To integrate an existing application with Gaggle, it needs to support the RMI pro-
tocol and define import as well as export conversion methods that convert between
the internal object representation of the application and the Gaggle object types.
In addition, ‘appropriate’ handling of incoming data (e.g., display, annotation of
existing data, creation of a new dataset, changes to existing visualizations) needs to
be implemented.

Currently, more than twenty applications can connect with Gaggle (listed on http:
//gaggle.systemsbiology.net/docs/geese/), among them the Gaggle Genome
Browser [8], the MeV tool for microarray analysis [133], and a plugin for the Firefox
web browser allowing for database searches [9]. The power of Gaggle is directly linked
to the number of programs implementing the Gaggle interfaces.

Unfortunately, the Gaggle system has several fundamental shortcomings:

1. The dependence on Java RMI makes integration of programs written in
other languages relatively difficult.

2. Gaggle offers only a narrow set of object types geared towards matrix-based
analyses (matrices, named elements, sub-matrices, etc.). Transcriptomic analy-
ses, for example, rely very much on genomic mapping and transcription is often
analyzed in the context of a genomic neighborhood (see also section 4.3). This
has become even more important with the introduction of high-throughput
sequencing methods. Many data formats for genomic coordinates and annota-
tions are currently in use, differing in the level of detail of the annotation, as
well as in the coordinate specification (zero-based vs. one-based base position,
end-inclusive vs. end-exclusive intervals) which often hinders data exchange.
However, there is no Gaggle object type to represent genomic coordinates of
any kind. As the Gaggle specification does not include versioning or a similar
system for introducing changes later on, adding a new data type now would
break compatibility with existing Geese and changes of the existing (set of)
object types are unlikely to ever happen.

80

http://gaggle.systemsbiology.net/docs/geese/
http://gaggle.systemsbiology.net/docs/geese/

6.1. The Gaggle

3. Gaggle’s object types are only defined in terms of the basic data type they
contain (numeric data, string data, etc.). There is no semantic definition
of their content. On the one hand, this makes the approach extremely flexible,
as ‘anything’ can be encapsulated in Gaggle objects (especially in the ‘tuple’
type). On the other hand, it is up to the user to make sure that data sent from
one application can be interpreted by the receiving applications. It is virtually
impossible to write an application that receives a Gaggle ‘tuple’ object and
does ‘something sensible’ with it, without knowing exactly where the object
originated. Even in the case of the most simple Gaggle object, which only stores
a list of names, the receiving application can only interpret these names within
its own scope. For example, if one application sent a list of RefSeq [123] acces-
sions which are received by an application that only ‘understands’ UniProt [6]
identifiers, meaningful data exchange cannot take place. Obviously, this is a
general problem in the field of bioinformatics, where several naming systems
exist in parallel and an automated mapping solution seems to be in the distant
future (even though such systems where already proposed, such as the Protein
Identifier Cross Reference service [41]).

4. The complete lack of security is problematic. If a Gaggle Boss instance is

run on a machine that is open to the network (i.e., not behind a restrictive fire-
wall), external users can connect to the running Boss and receive a copy of all
data transmitted between the attached applications. Furthermore, the Gaggle
Boss also accepts and broadcasts data from Geese that are not even connected
to the Boss, allowing external users to ‘insert’ data into a running Gaggle ses-
sion. This results from the distinction between a ‘Gaggle connection’ and an
RMI connection: A ‘Gaggle connection’ can contain a large number of RMI
connections and is defined by connecting, followed by (several) data exchange
events and finally disconnecting. A single RMI connection, in comparison, is
equivalent to one remote method call, originating at a Geese application and
executed in the context of the Boss instance. From the point of view of the
Gaggle user, the new data will seem to appear completely out of the blue.
This problem is not restricted to cases of deliberate interference with a user’s
session. For instance, if several users share a computing server and each of
them wants to have a Gaggle session on that server, only one Boss instance
will function as the RMI host for both users’” Geese to connect to and data
will be exchanged between all connected applications, leading to confusion in-
creasing with the number of simultaneous users.
When using Gaggle for remote exchange (see section 6.3), the security issue
becomes even more problematic, as data is sent unencrypted and unauthenti-
cated and attackers could potentially listen in on the data exchange or even
participate by sending data to the respective Gaggle Boss instance.

Finally, Gaggle only addresses the problem of local data exchange between several
applications running on the same machine. The more general case of several appli-
cations running on different, spatially separated machines is not addressed (even
though the underlying RMI technology is network transparent). In section 6.3, the
GaggleBridge program is introduced, which extends the Gaggle functionality to also

81

6. Collaborative analysis

find Probes in open DataSet ——— > New ProbeList
(by name, display name, meta information)

v
find associated ProbeLists
J—* Profile Plot
find ProbeLists

Cluster row names and

column names
Matrix }—L{ matrix with row and column namesl New DataSet
| Network nodes as probes, annotation\ as values (numeric) or meta information L Heatmap
network with node and edge pr‘qperties I Graph Viewer
node names, attribute values |J _> Interaction Matrix

Figure 6.1.: Gaggle data import. Users can decide how to integrate received Gaggle ob-
jects (left) into their MAYDAY session. Depending on the data type, differ-
ent options are possible, either resulting in a new DataSet or ProbelList,
or producing an instant visualization.

cover the area of remote data exchange. This enables researchers to collaboratively
analyse data irrespective of the geographic distance between them (an idea already
touched upon in section 5.2, where collaboration was limited to analyses performed
in MAYDAY and R). Furthermore, GaggleBridge proposes a method to add encryp-
tion and a simple form of authentication to the data exchange.

6.2. Integration of Mayday with the Gaggle

Notwithstanding the shortcomings of Gaggle that were discussed in the previous sec-
tion, an integration of MAYDAY with the other Geese can simplify complex analyses.
In her diploma thesis, Claudia Broelemann [31] implemented the Gaggle interfaces
within MAYDAY both for sending and for receiving data. Her plugin addresses the
problem of missing information on the semantics of received data by offering users
a choice of options how to continue with the incoming data (see figure 6.1):

e Names (from name lists, matrix row/column names, cluster row/column na-
mes, network nodes and from tuple string content) can be used to create new
ProbeLists in existing data sets, either by matching them to Probe names or
to meta information associated with probes. Alternatively, matching Probes
can be visualized directly in the context of the ProbeList containing them.

e Numerical Matrices can be used to create new data sets, which can option-
ally be visualized as heatmaps. The source can be incoming matrix data, as
well as a network object, where any numerical node annotations are interpreted
as experiment values.

e Networks can be visualized in MAYDAY’s Graph Viewer. Node and edge prop-
erties are also imported.

e Meta-information can be imported from network node annotations. A hier-
archical structure of meta information groups is automatically inferred from
the annotation names (column labels).

82

6.3. Extending Gaggle for collaborative multi-user analyses

Goose A1 Goose B1

Boss A BridgeGoose Boss B

Goose B4

Computer A Network Computer B

Figure 6.2.: GaggleBridge: Two (or more) Gaggle Boss instances are linked together
by a special type of Goose, the BridgeGoose.

As a sender, MAYDAY can transmit the names and display names of selected Probes
or the content of selected meta information objects as NameList, Cluster or Tuple
objects. ProbeLists and the corresponding submatrices of the expression matrix
can be transmitted as Gaggle Matrix object. Networks visualized with the MAYDAY
Graph Viewer plugin can also be transmitted via Gaggle.

6.3. Extending Gaggle for collaborative multi-user analyses

The Gaggle approach to inter-application data exchange can be extended to a plat-
form for collaborative analyses: Using RMI, the Gaggle data exchange is network
transparent. Basically, a Goose can connect to a Gaggle Boss instance on any other
machine, thus linking for example a locally running genome browser with a remotely
running microarray analysis software. Here, ‘remote’ can stretch as far as another
continent or as close as two computers in the same room. As a second computer
also introduces a second human user, extending the scope of inter-application ex-
change beyond the local machine transforms Gaggle into a software for collaborative
analyses.

Both users can work on the same data in different Geese, or they could be running
the same Goose application and see the same view of the same data simultaneously.
Exchange between the users’ Geese only happens upon user request, allowing each
user to browse and work with the data until some elements of interest have been
found (e.g., a list of interesting genes) which can then be transmitted to the other
use with the click of a button (allowing for network latency when large data is
exchanged). The two users can thus collaborate on the analysis of the data set
without the need for emailing or up- and downloading data sets. This setup would
typically include a telephone or video chat connection for verbal communication.

However, with the original Gaggle Boss program, this is not easily possible. Two
reasons can be distinguished: Firstly, most Geese applications automatically con-
nect to a locally running Boss instance and do not allow users to specify alternative,
remote Boss addresses. Secondly, network configurations, especially at research insti-
tutions, often include restrictive firewalls and NATs (network address translation)

83

6. Collaborative analysis

Gaggle bridge =1 [E][X

lv Connections t Messages I About 1

'Local Bridge' (1 goose) at localhost: 39298 as 'Local Bridge'
‘Alex' (2 geese) at caribbean:45784 as 'Bridge to aruba.informatik uni-tuebingen.de'
'Lucia’ (2 geese) at iztl: 27969 via lucia@ central. pasteur.edu.uy:22 [out via 10003, in via 51801] as 'Bridge to aruba.informatikuni-tuebin%

¥Geese on this Boss:

- Bridge to aruba.informatik uni-tuebingen.de

- Genome Browser |
LLLE

<]

[»

[Connect local boss ‘ | Connect Boss ‘ l Remove Boss

Figure 6.3.: GaggleBridge user interface showing connections to three Boss instances,
one to the local Boss, one direct network connection and one connec-
tion tunneled through SSH. Information about connection endpoints is
included, and the tooltip window shows a list of Geese connected to the
respective Boss instance. Part of a figure published in [15].

which prevent direct RMI connections from outside users. The GaggleBridge [15]
program implements a solution to both problems.

Instead of changing all Geese to allow users to specify other, non-local Boss ad-
dresses, GaggleBridge adds another Goose (the ‘BridgeGoose’) which relays data
between two Boss instances (see figure 6.2). If a Goose G 41 on computer A sends
data to its local Boss B4, the Boss broadcasts the data to all other local Geese
G4i(1 < i < n). One of these, say Gy, is a BridgeGoose. This means that G 4,
is connected to B4 locally and to another boss Bg on computer B via a remote
connection (as G gy, say). Upon receiving G 41’s data from By, G4, transmits the
data to Bpg. For Bp, the data is coming from one of its connected geese, i.e., Bp
makes no distinction between its local Geese G;(1 < j < m) and the BridgeGoose
GBm = Gayn. The data is broadcast to all Geese G; (excepting the ‘sender’ Gy).

This approach has several advantages: No existing Goose applications need to be
changed, and neither does the Gaggle Boss. As the Gaggle Boss allows users to
choose, for each broadcast, which Geese should receive the data, users can selective
enable resp. disable the BridgeGoose, thereby either limiting data exchange to all
local applications or extending it to a remote user’s session. Also, a BridgeGoose can
connect to any number of Boss instances, and any number of BridgeGoose instances
can be used in parallel, such that the number of users that are connected is virtually
unlimited.

The problem of establishing a network connection through firewalls is addressed by
the introduction of SSH tunnelling: The BridgeGoose can be configured to establish
a secure shell (SSH) connection to a given machine and to tunnel all RMI traffic
through the SSH connection. As most research facilities allow SSH connections to
pass their firewalls, this circumvents the firewall problem. In addition, it adds en-
cryption, data compression and even a form of authentication (based on the SSH
username/password authentication scheme).

GaggleBridge’s user interface makes establishing and managing multiple connections
as simple as entering the remote machine address and optionally specifying the SSH

84

6.3. Extending Gaggle for collaborative multi-user analyses

Computer A Computer C
BridgeGoose Gaggle Boss
in out rmi ssh RMI Registry in out
Direct connection 1
2
3
Computer B
SSH server
SSH tunneling 1 —
2 o0 o
3 o0 o
4 o o
—— connection « o endpoint, using any free port
-------- tunneled connection = o endpoint, port must be known

Figure 6.4.: Establishing a GaggleBridge link.

A direct connection (top) is established in three steps: The BridgeGoose
on A connects to the RMI Registry on C (1) to request the Boss address.
It creates an outgoing connection to the Boss instance (2) and registers
itself. The Boss creates a connection back to the BridgeGoose (3) and
confirms the registration. A and C can be the same machine.

An SSH tunneled connection (bottom) is more complex: The BridgeGoose
establishes an SSH connection to the SSH server on B (1) and creates a
tunnel to the RMI registry. Through this first tunnel it connects to the
RMI registry (2) and asks for the Boss address (relative to B). It creates a
second, outgoing tunnel to the Boss and the local RMI socket is modified
to point to the local tunnel endpoint. The BridgeGoose is exported to
RMI address space, resulting in a local incoming connection endpoint
towards which a third, incoming tunnel is created from the SSH server.
RMI socket information is modified to replace the local endpoint by the
SSH tunnel’s entrance on B. The Goose connects to the Boss instance
through the second tunnel (3) and registers itself. The Boss creates a
connection back to the BridgeGoose through the third tunnel (4) and
confirms the registration. Any pair of A, B, and C, or all three can refer
to the same machine.

85

6. Collaborative analysis

server and login credentials. Tunnels are automatically created and GaggleBridge
monitors the tunnels to check if they need to be reestablished (e.g., after a network
problem) and to query remote Boss instances about the number and names of Geese
connected to them (figure 6.3).

Establishing the SSH connection is more complicated from a technical point of view,
as several RMI connection endpoints need to be modified in the right order (using
Reflection) to redirect traffic through the tunnels (see figure 6.4).

86

7. SeaSight: Integration of Sequencing
and Microarray Data

MAYDAY is a powerful and feature-rich platform for microarray-based transcrip-
tomics analyses. With the recent introduction of new high-throughput sequencing
technologies [20, 47, 122], transcriptomics studies based on sequencing of transcripts
(termed “RNA-seq” [173]) have become a feasible alternative to microarrays. In the
course of this work, MAYDAY was extended to allow its application to data from
RNA-seq experiments as well as to incorporate a framework for raw data import
(for data from different underlying technologies) and normalization. The following
sections describe MAYDAY’s capabilities without the SEASIGHT extension, related
software, the desired result of implementing the extension, and considerations for
the design. General features of the implementation are described as well as sev-
eral highly-optimized data structures supporting efficient computations. Finally, an
example analysis is presented.

7.1. Mayday without the SeaSight extension

MAYDAY was originally conceived as a visualization tool for normalized microarray
data [56] offering several visualization plots and clustering methods. As expected for
a first version, MAYDAY’s features were not sufficient to perform all steps necessary
for transcriptomic analyses. Data normalization and preprocessing was excluded
from the original scope of the program and was usually accomplished using R, which
was also employed for statistical testing. Data exchange between R and MAYDAY
was simplified by Matthias Zschunke’s R Interpreter plugin (see section 5.2.2).

Thus, the first version of MAYDAY was a tool placed at the end of the preprocessing
pipeline, used for analysis and visualization of data normalized by other programs.
(Normalized) data could be imported from tab-separated text files. Raw data could
not be imported directly, however for some formats (Affymetrix CEL, Illumina),
import modules were implemented over time as student projects [162, 82]. These
modules made use of R and appropriate parser packages to read and normalize the
data before loading it into MAYDAY.

7.2. Related Software

The new possibilities and challenges resulting from the RNA-seq technology have
led to the development of many new software tools, in the academic as well as the
commercial fields. In this section, only methods developed and made available as

87

7. SEASIGHT: Integration of Sequencing and Microarray Data

Table 7.1.: Related Software
Name published PF GUI CP features
ArrayExpressHTS Jan 2011 [63]

R no no read mapping, filtering,
expression quantification
181] R no no statistical testing (single method
R
R

ASC Nov 2010 [)
baySeq Aug 2010 [66] no no statistical testing (single method)
DESeq Oct 2010 [4] no no statistical testing (single method)
edgeR Oct 2009 [130] R no no statistical testing (single method)
ERANGE May 2008 [109] Python no no expression quantification
GenPlay May 2011 [94] Java yes no genome browser view of array & seq data
Galaxy May 2010 [24] Python yes mno transcript assembly, quantification
rnaSeqMap May 2011 [96] R no no data input, transcript detection,
memory management, ‘building blocks’
KNIME+modules Aug 2011 [80] Java yes no data input, quantification
RseqFlow July 2011 [172] Python yes yes mapping, expression quantification
statistical testing
rQuant Oct 2009 [25] Matlab no no expression quantification
TopHat Feb 2009 [160] C+4+ no no transcript detection, quantification
SEASIGHT Jan 2011 [14] Java yes yes data input, quantification, normalization,
(+MAYDAY) Sep 20107 statistical testing, visualization

Software programs in the fields of RNA-seq analysis and joint analysis of RNA-seq and
microarray data. PF, programming platform; GUI, graphical user interface; CP, does the
program offer the complete pipeline from raw data to visualized statistical testing results;
t, date of submission

open-source or free software by academic researchers will be discussed. Most are
implementations of individual methods as R packages building on existing projects.
Recently, more comprehensive packages have been published which combine several
aspects of the data analysis pipeline, such as normalization and statistical testing,
for instance. Such packages provide a foundation on which programmers can imple-
ment their own methods and pipelines. As with most R packages, these are geared
towards “power users” and require detailed knowledge of R, the respective package
and the underlying statistical methods. Some also provide a (semi-)automated work-
flow suitable for most analyses. Finally, stand-alone software packages offer methods
to perform (at least part of) the analysis outside of R. The remainder of this sec-
tion will introduce several such tools together with comments on their scope (an
overview is given in table 7.1). Note that many of these tools were published after
our submission of SEASIGHT to PLoS one.

7.2.1. Single method implementations

Implementations of single steps in the usual RNA-seq analysis pipeline largely fall
into two groups, expression quantification methods and statistical testing methods.

Expression quantification of RNA-seq data (based on mapped reads and genome
annotations) is a complex task. Reads that map non-uniquely to the respective
genome (so-called multi-reads) must be handled in a meaningful way, and, more
importantly, signals resulting from several transcript variants being expressed at
different levels at the same time must be deconvoluted to obtain the real signal for
each transcript. ERANGE [109] is a set of python scripts that can be used to compute

88

7.2. Related Software

expression (RPKM) values for a given set of transcripts taking multi-reads into
account. TopHat [160] is a stand-alone program that computes the real expression
values for alternatively-spliced transcripts (so-called FPKM values). rQuant [25] uses
model fitting to compute transcript expressions based on the observation that the
expression strength along each transcript does not follow a uniform distribution. It
also reports RPKM values.

Once expression values have been obtained, statistical tests can be employed to
find significant differences between several (classes of) samples. Such tests are often
applied in the R computing environment and all eminent methods in this category
are implemented as R packages. One of the first published methods, edgeR [130]
models the distribution of reads per transcript by a negative binomial distribution,
estimating the parameters from the data. This idea was expanded by the authors
of DESeq [4] who implemented a method to estimate the (negative binomial) distri-
butions for each gene in each sample even in the absence of replicates, which is an
important feature as long as sequencing is still too expensive for most researchers
to produce the required number of replicates for more robust statistical methods.
The Analysis of Sequence Counts (ASC) [181] package also offers a method that
works without replicates, “borrowing information across sequences” to estimate the
distribution of sample variation. Differential expression is then detected using an
empirical Bayes method. A similar statistical approach is taken by the baySeq [66]
package, albeit requiring the presence of several replicates for each condition.

Interestingly, the statistical methods for differential expression (DE) detection do
not work with RPKM expression values as input, since these already are the result
of some basic normalization (namely, by exon length and sequencing depth), but
rather require the input data to be a numerical (integer) matrix of observed read
counts per transcript per sample. This fact indicates a (hopefully transient) division
of the community into two groups: On the one hand, researchers develop sophis-
ticated transcript expression quantification algorithms based on statistical models
and algorithmic optimization, the results of which are used as input for relatively
simple methods for calling differential expression. On the other hand, very simple
quantification methods (i.e., counting) are used to provide input data for sophisti-
cated statistical methods for DE detection. Whether either of these approaches will
dominate in the future is unclear, but it is likely that a combination of both will be
used. Yet since the statistical methods rely on the assumption of a discrete distri-
bution of counts (e.g., the negative binomial distribution) while the quantification
methods produce expression estimates on a continuous scale, it is hard to see how
the gap between the two can be bridged.

7.2.2. Pipelines & Frameworks

RseqFlow [172] is a web-based pipeline which encompasses all steps from read map-
ping, via expression quantification (RPKM) to detection of differential expression
(using the DESeq method). The extensible workflow management system can spread
the workload over several machines and installation is simplified by the fact that the
authors offer a virtual machine for download.

89

7. SEASIGHT: Integration of Sequencing and Microarray Data

Another web-based solution is provided by the Galaxy platform [60]. Wrapping
around external tools for mapping (e.g., Bowtie [95]), data conversion (SAMtools [98]),
splice junction prediction (e.g., TopHat [160]) and transcript assembly (Cufflinks [161])
as well as simple differential expression detection methods (Cuffcompare and Cuff-
diff), it offers users an easy to use tool for basic expression analysis. The project’s
focus, however, is not on transcriptomic studies, and higher-level analyses such as
clustering or machine learning methods are not offered at present.

The inappropriately named rnaSeqMap [96] package does not offer any mapping
capabilities. Rather, the package contains building blocks which, according to the
authors, “may be used to construct processing pipelines that iterate over fragments
of chromosome, genes or intergenic spaces”. As such, the package serves as a bridge
between data backends, offering connections to mySQL databases, reads stored in
BAM [98] and plain-text tabular files, and statistical analysis packages such as DE-
Seq and edgeR as well as custom analysis scripts. The two key features introduced
with this package are an implementation of the Aumann-Lindell algorithm for find-
ing ‘irreducible regions’ (e.g., transcribed exons) from RNA-seq data, as well as
memory management methods programmers can employ to adapt their own anal-
ysis methods to large data. These methods allow for the ‘slicing’ of the genome
into ‘manageable parts’ in terms of memory. While this certainly improves the sit-
uation for programmers who need to handle large data in R, it begs the question
why the actual ‘slicing’ (i.e., the determination of the correct parameters for the
trade-off between speed and memory use) is left as an exercise to the user of the
package. Techniques such as memory mapping (see section 7.6.3) could be used to
transparently ‘slice’ the data without placing an additional burden on programmers.

ArrayExpressHTS [63] is an analysis pipeline implemented as an R package. Starting
with read sequences in FastQ format, the pipeline calls an external read mapping
program (Bowtie [95], TopHat [160] or BWA [97]), and converts the resulting SAM
files to BAM format using the SAMtools program [98]. The aligned reads are then
imported into R and expression is quantified, resulting in ExpressionSet objects
which can be passed on to statistical methods such as DESeq or edgeR for differ-
ential expression detection. The package offers methods to run the time-consuming
mapping tasks on a computing cluster.

The Konstanz Information Miner KNIME [22] is a generic platform for building
processing workflows from small modules. Recently, new modules were introduced
for tasks specific to next-generation sequencing data [80]. These include input and
output modules for the FastQ, and SAM/BAM formats, a module for removing
adapter sequences from reads, and, most importantly, a module for computing tran-
script counts from mapped reads. While these new modules open the door for the
development of KNIME workflows for RNA-seq data, all further processing, as well
as statistical and visual and analysis steps are left to external programs. The authors
suggest the use of R for these tasks.

90

7.3. The motivation for creating SEASIGHT

7.2.3. Stand-alone applications

GenPlay [94] is a stand-alone tool able to import data from different sequencing
experiment types (RNA-seq, ChIP-seq) as well as array-based experiments for vi-
sualization in a genome browser view. It offers some very basic computations (such
as computing the mean, minimum and maximum over windows of fixed or variable
sizes). Data normalization as well as more sophisticated statistical computations
are not offered. Furthermore, in contrast to SEASIGHT and the MAYDAY Genome
Browser (section 4.3) which offers track types for displaying aligned read data and
derived coverage values (‘wiggle tracks’), GenPlay does not use sophisticated mem-
ory management and relies on loading the complete dataset into main memory. The
authors state a requirement of 24 GB of main memory to work with multiple tracks
at base pair level and suggest the use of a dedicated workstation. On computers with
fewer resources, users are forced to either accept extremely slow interactivity due to
excessive use of on-disk swapping of memory, or can not perform their analyses at
all.

7.3. The motivation for creating SeaSight

As shown in the previous section, several tools have emerged for dealing with RNA-
seq data. They cover one of the three fields of expression quantification, statistical
testing, or visualization. None of the programs described offers methods for all three
steps in the usual data analysis pipeline and most are implemented as R packages
requiring extensive knowledge of that environment before they can be employed to
produce meaningful results.

While individual implementations of new methods are necessary to bring the field
of RNA-seq analysis forward, a software offering several of these methods in a com-
mon user interface is highly desirable if the new methods are to be widely accepted.
Furthermore, such a software can use an internal data format that makes translat-
ing data between different formats (such as R object types) unnecessary. The new
sequencing technologies result in new kinds of input data for expression studies. Re-
search on this kind of data is currently hindered by the need to manually bring the
raw data into a form suitable for detailed study. Furthermore, combining data from
different sources such as microarrays and RNA-seq is a difficult problem due to the
different nature of the data.

The aim of SEASIGHT was to provide a common framework for transcriptomics data
pre-processing. By integrating different methods for expression quantification and
normalization together with importers for many file formats for RNA-seq data as
well as raw microarray data and annotation formats, it enables users to perform
combined analyses of data from different sources. MAYDAY offers a large number
of tools to analyze and visualize normalized expression data. These methods are
basically technology-agnostic and do not rely on the data coming from a traditional
microarray experiment.

Some methods, such as the t test, are based on the assumption that data is normally
distributed. Raw read data does not follow a normal distribution, but after appro-

91

7. SEASIGHT: Integration of Sequencing and Microarray Data

priate normalization, logarithmic normalized read counts can essentially be treated
like logarithmic normalized single-channel microarray data (see section 7.8 for an
example analysis). Regarding the ‘divide’ between the ‘sophisticated normalization
plus standard statistics’ and the ‘simple counting plus sophisticated statistics’ ap-
proaches mentioned in section 7.2, SEASIGHT is positioned on the former side, con-
verting raw read data into ‘microarray-like’ expression data. Thus, data imported
and processed using SEASIGHT can be analyzed with the full breadth of methods
already implemented in MAYDAY.

7.4. Design

SEASIGHT’s initial design was created by first identifying challenges posed by the
nature of the input data and the processing tasks that should be possible in the
new framework. A set of very basic assumptions was formulated about what the
typical application of SEASIGHT to new data would involve. Based on these two,
design requirements were stated. The next three subsections will briefly deal with
these three categories, followed by an overview of the steps required to process data
from the raw input files into a form that can be used within MAYDAY.

7.4.1. Challenges

Raw data from transcriptomics experiments are highly diverse, coming from different
technologies and experimental platforms. They vary in terms of the file formats used,
the overall data volume produced for one sample, the possible sources of experimen-
tal bias, the distribution of signal values, and also regarding the set of transcripts
queried. This results in the following challenges:

e Data integration: Data can be obtained from different types of microarrays,
it can be in the form of aligned reads from RNA-seq experiments, or it can
be data normalized by some external pipeline. These data types need to be
imported and integrated into a common format.

e Data storage and handling: High-throughput technologies produce large
amounts of raw data. Especially data from RNA-seq experiments requires op-
timized data structures that allow for efficient handling of the data during
quantification and normalization.

e Data normalization: Different technologies have different shortcomings. The-
se include experimental noise and systematic bias. As a consequence, different
methods are needed to correct these problems, and there are usually a host of
competing methods available.

e Data summarization: RNA-seq experiments allow for the creation of base-
specific expression profiles. However, each sequencing run (resp. sample) will
likely contain data for a different subset of genomic locations due to sampling,
while no information is available for all other locations. Also, not all experimen-
tal procedures produce strand-specific information. The locations queried by
microarray experiments depend on the set of probes represented on the arrays

92

7.4. Design

used. When different technologies, or different array platforms (or different
versions of the same platform) are combined in one study, a common set of
interrogated genomic locations has to be produced as the basis for comparisons
between samples.

7.4.2. Assumptions

A typical application of SEASIGHT starts with importing raw data for each sample
and ends with the production of a MAYDAY DataSet. Based on imported raw sample
data, ‘experiments’ are defined, one for each sample. Normalization methods are
applied on a per-experiment, per-technology, and finally per-dataset basis. A set of
common genomic locations is produced and expression is quantified for each location
in each experiment. The resulting expression matrix is the basis for transcriptomics
analyses using MAYDAY’s analysis and visualization methods. As a basis for the
design of SEASIGHT’s data structures and processing workflows, seven assumptions
can be formulated for this process:

1. A dataset is built from several experiments, each of which contains data ob-
tained using a specific technology.

2. Raw experimental data can be very large, especially for RNA-seq experiments.
For most workstations, the raw data size of one experiment is already larger
than available main memory.

3. Experiments are usually performed in groups, where each experiment in the
group is performed using the same technology. Other levels of grouping can
be created based on other relevant characteristics, e.g., which lab performed a
given experiment.

4. Normalization involves performing successive steps of transformation on each
experiment. Such steps can be technology-specific (e.g., microarray background
correction) or generic (quantile normalization to remove inter-sample distribu-
tion differences). Some steps will be applied to one experiment at a time (e.g.,
intra-experiment normalization) while others operate on a group of experi-
ments (e.g., inter-experiment normalization). These groupings of experiments
into sets usually differ between different steps in the normalization pipeline.

5. For each transformation method, an acceptable state for the input data is
defined, limiting the applicability of the method to experiments fulfilling this
requirement. By applying the transformation, the experiments’ properties are
changed, resulting in a new state for each experiment. This state is a com-
bination of data type, available data streams (e.g., two-channel microarray
foreground and background values), genomic locations, and additional anno-
tations.

6. Transformation steps can be very time-consuming, due to complex computa-
tions or the large data volume that needs to be processed. Users might want
to set up a processing pipeline without waiting for each transformation to
finish before selecting the next method. If the outcome of processing the raw
data is not satisfactory, a user might want to replace individual steps of the

93

7. SEASIGHT: Integration of Sequencing and Microarray Data

pipeline with alternative methods. Such alternative normalization runs might
be performed within the same session, or at a later time.

. The end result of SEASIGHT processing a dataset is a state in which all ex-

periments are comparable. Firstly, this means that the sets of genomic loci
queried in the different experiments overlap (i.e., that a common set of loci
has been constructed). Secondly, it also means that the expression values fall
into the same range (and possible also have the same resolution). Experiments
are comparable if their values are semantically identical, that is if a specific
expression value in one experiment has the same meaning if encountered in
another experiment.

7.4.3. Design requirements

From the challenges identified and assumptions formulated above, certain design
requirements follow:

94

1. Experiments need to be modeled in a very flexible way allowing for the inclu-

sion of data from very different sources (assumption 1). This involves provisions
for different data structures with a set of common methods and capabilities, as
well as parsers for a range of input formats, mostly for the different microarray
data formats. A description of experiment types and available parsers is given
in section 7.5.2.

. To handle the expected data volumes efficiently and allow for quick application

of transformations even on standard workstations, optimized data structures
are required (assumption 2). The data structures developed for SEASIGHT are
explained in section 7.6.

. Transformations are applied to (sets of) experiments in a sequential man-

ner, with different input sets for each transformation (assumption 3 and 4).
Thus a mapping of transformations to (sets of) experiments is required to
construct the input data for each transformation, and a mapping of experi-
ments to (ordered lists of) transformations is needed to plan the execution of
the normalization ‘pipeline’. How these mappings are modeled is described in
section 7.4.4, the data structure responsible for these mappings is described
in section 7.5.1. The input state of one transformation is determined by the
output state of the preceding transformation, or set of transformations in case
several experiments are used as input. The properties of transformations and
a list of currently implemented transformations are presented in section 7.5.3.

. SEASIGHT must have a means to describe the properties of an experiment,

covering different aspects of the data (assumption 5). These must be structured
such that transformations can specify acceptable input and predicted output
states. Experiment properties are described in section 7.5.2.

. The SEASIGHT user interface must allow users to quickly set up and configure a

transformation ‘pipeline’ without forcing them to wait for processing between
adding transformations (assumption 6). An indication of the expected result
of applying the pipeline to the input data should be provided. It should be
possible to insert, remove and replace transformations and re-run the pipeline.

7.4. Design

Such changes might be desired a long time after the initial application of the
pipeline (e.g., several months later), thus serialization of the complete pipeline,
its settings and the input data is needed. The user interface is introduced in
section 7.5.5, serialization is described in section 7.5.1.

6. As experimental values from different experiments (platforms/technologies)
can only be compared based on their association with genomic locations,
SEASIGHT must include data structures for genomic coordinates, as well as
parsers for several data formats used to store and exchange such information.
Transformations applicable to genetic coordinates should also be included,
together with methods to join different sets of coordinates into a common
set (assumption 7). These methods are described in section 7.4.6 and their im-
plementation is presented in section 7.5.4. Finally, validation methods should
be offered that can help users in avoiding problems due to incompatible coor-
dinate definitions (e.g., chromosome name mismatches).

7.4.4. Modelling the transformation steps

The mapping of transformation steps to unordered sets of experiments and of ex-
periments to ordered lists of transformation steps can be represented by an n x m
matrix T (the transformation matrixz). Each row represents one of the n experiments
and the order of rows is of no significance. Each column represents one ‘step’, and
the order of columns represents the order in which ‘steps’ are executed.

The number of columns, m, is at most equal to the number 7 of transformations,
but can be smaller (m < 7). This is possible whenever different transformations can
be applied in parallel. Two transformations ¢; and to can be executed in parallel, if

1. they act on disjoint sets of experiments, and

2. there exists no dependency between them, i.e., the input set of ¢; is not de-
pendent on the output of t9 or vice-versa.

Thus, m is the total number of successive steps needed to apply all transformations
taking into account all opportunities to execute transformations in parallel.

Let the term transformation instance denote a specific application of a transforma-
tion, that is the triple of transformation, the input set of experiments and (optional)
parameter values. Then each cell of the matrix T' contains zero or one transforma-
tion instance and each instance can occupy one or more cells. The cells assigned to
a specific transformation instance all occur in the same column but need not be in
consecutive rows. Finally, cells in T can be left empty, in which case the data in the
respective experiments is not altered in that step. The transformation matrix can
be used for efficient execution of the transformation pipeline with a relatively simple
algorithm shown in listing 7.1.

To allow users to setup the transformation matrix without actually executing the
individual steps, the state of each experiment needs to be modeled at the beginning
(raw state) as well as after each applied transformation (intermediate states) up
to the final state. This is done with a second matrix, S (the state matriz) of size
n x (m + 1). Here, the ith column contains the state of each experiment before the
ith transformation step. The first column contains the raw state, columns 2 to m

95

7. SEASIGHT: Integration of Sequencing and Microarray Data

1. Create a variable data, for each experiment e.
2. Assign the raw data object of each experiment e to datae.
3. For each column T’; of T*
1. For each transformation instance t; in T';:
1. Collect the set Fy, of experiments that ¢ uses as input
This is equivalent to finding all ¢ with T;; = .
2. Execute ti(E}, , parameters) in a new thread.
3. Update data. with the respective output of ¢ for each e € Ej, .
2. Wait for all threads to finish.
4. Create the final expression matrix based on the expression vectors in data.

Listing 7.1: SEASIGHT pipeline execution based on the transformation matrix

Transformation steps

Microarray 1-» background > probe set > add genomic - ™
Microarray 2> correction »'summarization » coordinates map to f =
. quantile
logarithm common set N
RNA-seq1 - RpkM —————> — lof coordinates‘> ™
RNA-seq 2 — quantification ! — q >

Transformation matrix

1 2 3 4 5 6

1 |bg correction |summarization |log (base 2) add coordinate |map to coord. |quantile norm.

2 |bg correction |summarization |log (base 2) |add coordinate |map to coord. |quantile norm.

3 |rpkm log (base 2) map to coord. |quantile norm.

4 |rpkm log (base 2) map to coord. |quantile norm.

1 7 A o o
State matrix | | A
1] 2 | « 3 « 4 5 6 7

1|1ch FE,raw+bg|1ch FE, bg corr|1ch FE 1ch log, FE 1ch log, FE+c [1ch log, FE+c |1ch log, FE+c, [0,16]
2|1ch FE,raw+bg|1ch FE, bg corr{1ch FE 1ch log, FE 1ch log, FE+c |1ch log, FE+c |1ch log, FE+c, [0,16]
3|aligned reads |LE LE log, LE log, LE 1ch log, FE+c |1ch log, FE+c, [0,16]
4|aligned reads |LE LE log, LE log, LE 1ch log, FE+c |1ch log, FE+c, [0,16]

Figure 7.1.: Example transformation and state matrices: The transformation steps to
convert raw data into a MAYDAY dataset are represented in the transfor-
mation matrix while the state matrix holds the (predicted) state of each
experiment before (resp. after) applying the transformations. Colors are
used to distinguish transformation instances. Transformations with lazy
evaluation (see section 7.7.2) are marked with a star. FE, feature expres-
sion data (expression values are accessible by feature name); LE, locus
expression data (expression values can be computed based on genomic
regions of interest); 1ch, single channel data; bg, background intensities;
¢, genomic coordinates. In the final state, all four experiments contain
comparable data (as defined in section 7.4.2).

96

7.4. Design

contain the input states for the transformations in the respective columns of 7" and
the last column (m + 1) contains the state after application of all transformations
(see figure 7.1 for an example of T" and S).

7.4.5. Constructing the transformation and state matrices

During matrix setup, when transformations are selected and added to groups of ex-
periments by the user, the state matrix is employed to decide which transformations
are applicable to a given input set of experiments: Each transformation method
implements a test method which, given an experiment state, decides whether the
transformation can be applied to this experiment. This is based on considerations
such as whether the application is technically possible, that is whether input data
is in the right format (e.g., preventing the application of microarray background
correction methods to sequencing data), as well as whether the application is useful
(e.g., applying a log-transformation to negative data).

Users can add transformations into any column of the matrix. Using the selected set
of input experiments and their state at the desired location, SEASIGHT creates a list
of applicable transformations for the user to choose from. If a transformation method
offers configurable parameters (via the Settings framework), it is initialized based
on the input experiments and their states, and a configuration dialog is presented
to the user.

If the transformation is inserted at the ‘end’ of the current processing pipeline, it
is simply added to the transformation matrix and the state matrix is updated with
the new final state for each transformed experiment (as reported by the transforma-
tion method). If, however, the transformation is added somewhere else, i.e., added
before the first transformation, inserted between a pair of transformations, or added
by replacing another transformation, the process of adding it to the matrices is
more complex and may require user interaction. The details of this process are thus
presented with SEASIGHT’s user interface in section 7.5.5.

7.4.6. Locus-based data integration

When data is obtained using different technologies or different platforms, the prob-
lem of data integration not only concerns the different distributions of the resulting
expression values, but also the mapping of values between different experiments:
Microarray platforms differ in the transcripts they query, the names used for these
transcripts (such as vendor-specific names, RefSeq accession numbers, gene names,
etc.) and the genomic origin of the probe sequences, and each sequencing run pro-
duces reads (potentially) mapping to different locations.

The one information that is available for all transcriptomics technologies are the
genomic locations of the features (coordinates of probe sequences, mapping position
of reads). Thus data integration can be achieved by mapping all information to
genomic coordinates and then constructing the expression matrix based on these
locus-mapped expression values (see figure 7.2). For microarray data, the set of
genomic locations is obtained from annotation files linking probe (set) names to

97

7. SEASIGHT: Integration of Sequencing and Microarray Data

| External sources I ~ Sets of (hamed)
e.g. GFF or PTT files or K_) genomic regions

microarray annotation files
merge

| Set of query regions |

compute expression

| Microarray data }—\‘ annotate |—>

find peaks

Expression data
accessible by
genomic regions
| RNA-seq data | | expression matrix

Figure 7.2.: Locus-based data integration. Experimental data is mapped to genomic
locations either intrinsically (for RNA-seq data) or by annotating feature-
based expression data with genomic regions from external sources. A set
of query regions is either taken from an external source, or obtained by
finding peaks in aligned read data, or created by merging several such
input sets of genomic regions. The final expression matrix results from
querying each experiment for expression values for each of the genomic
regions in the query set.

genomic locations. For RNA-seq data, this information is attached to each read
during the mapping step. One has to take care to make sure that both annotations
are based on the same version of the respective reference genome, i.e., microarray
probe expression data annotated with locations referring to the human genome in,
say, NCBI’s version 18 can only meaningfully be combined with RNA-seq reads
mapped to the same genome version.

Different experiments with locus-based expression values can then be combined into
an expression matrix based on a set of genomic regions of interest (e.g., the set of
known genes for the given organism): For each locus, each experiment is queried to
provide an expression value based on the locus coordinates. The exact method differs
based on the experiment type. RNA-seq data, for instance, provides transcript count
data at base resolution, which has to be appropriately summarized into an expression
value for each locus, as described on page 101). Constructing the expression matrix
can be seen as a three step process:

1. Select genomic regions of interest (‘query regions’). These can come from one
source (e.g., the set of known genes for a given organism) or from several
sources, for example from the sets of regions queried by different microarray
platforms which were used to obtain the raw data.

2. If more than one source is selected, combine the sets of regions into a single
set. Different methods for this combination can be devised, some of which are
discussed below.

3. Based on the (combined) set of query regions, merge the available data into
an expression matrix.

Each of these three steps will be presented in more detail below.

98

7.4. Design

Sources of genomic regions

Users may want to select the set of query regions from one or more sources, depending
on the respective study. Such sources can be

e Microarray probe annotations which assign a genomic coordinate to each
(named) probe (set) represented on the array.

e Algorithms which create a set of query regions, for instance by splitting
the genome into a set of regions of equal size (a ‘tiling’ approach). A more
sophisticated approach would be to use a data-driven algorithm such as a
gene finder (called ‘peak finder’ in ChIP-seq literature) which tries to predict
transcript regions from the coverage of reads at each genomic position. In this
case, names have to be constructed for the features, e.g., by describing their
genomic coordinates in human-readable form.

¢ External annotation files containing a list of named genomic regions in one
of several formats (e.g., GenBank feature files, protein table files, tabular text
files).

Within SEASIGHT, genomic coordinates can be imported from external annotations
files in a wide variety of formats (see section 7.5.4 for a list) to be used as a source
for the set of query regions. Alternatively, imported coordinates can be mapped to
microarray features (or any other feature-based expression values, e.g., such values
imported from tabular text files of data normalized externally).

For RNA-seq experiments, a simple peak-finding algorithm is offered to predict a set
of putative transcripts from the read coverage. However, due to the complexity of the
gene-finding problem, especially in eukaryotes with their exon-intron gene structure,
the use of dedicated tools (such as ‘G-Mo.R-Se’ [45]) for this step is encouraged.

The input for the second (coordinate set combination) step can come from exter-
nal files, from coordinates derived or computed from imported experiments, or they
can be the result of applying coordinate transformations on one of the above. Such
coordinate transformations (presented in section 7.5.4) may be used for two very
different reasons. Firstly, annotations often differ in the way numeric coordinates
are represented (either using zero or one to represent the first base of the genome
and either including or excluding the last base), as well as in the textual representa-
tion of species and chromosome names. For example, the largest human chromosome
could be referred to as ‘Chromosome 1°, ‘chrl’, just ‘1’, or by an accession number
such as NC_000001.10 (Assembly GRCh37.p5). Thus, to make the coordinates from
different experiments (or from experiments and query regions) compatible, transfor-
mations might be needed. To spot such problems, SEASIGHT offers a ‘consistency
check’ method which can detect possible problems with incompatible coordinate
specifications and issue a descriptive warning (see also section 7.5.4). The decision
whether to continue without changes or apply a coordinate transformation is left to
the user.

The second reason for using coordinate transformations is related to the actual data
used, instead of only to the specifics of the annotation: For example, one might be
interested in relating gene expression values with the level of chromatin modification
in the genes’ promoter regions (as determined by chromatin immunoprecipitation,

99

7. SEASIGHT: Integration of Sequencing and Microarray Data

ChIP). In this case, the genomic coordinates associated with the ChIP data could
be transformed by shifting them downstream by a constant term such that they
overlap with the transcript region assessed by the gene’s microarray probes. Thus
the resulting expression matrix would directly link gene expression in one column
with promoter chromatin modification in another column.

Another example would be changing the strand information (forward resp. backward
strand) in the genomic coordinates associated with an experiment studying antisense
RNA expression to allow its direct comparison with gene expression on the sense
strand.

Combining sets of genomic regions

The decision how to combine several sets of genomic coordinates into one set of
query regions depends on the data studied and on the researcher’s interest. Within
MAYDAY SEASIGHT, several methods are available (see figure 7.3) which cover a
broad range of possible applications.

The most simple approach is the union method, which constructs the set of query
regions by taking the set union of all input sets of genomic coordinates. This means
that the combined set will contain all coordinates of the input sets, excepting ex-
act duplicates (same species, chromosome, strand, start and end coordinates, and
exon structure). This approach can be useful when the genomic regions come from
two versions of a microarray design, where both platforms have a large overlap in
the regions queried. For most other applications, however, the union approach is
too simplistic and more complex schemes based on the genomic regions’ nucleotide
positions (start, stop, exon boundaries) have to be applied. SEASIGHT offers four
such methods, which differ mostly in how fine-grained the resulting regions cover
the input regions, resp. how strongly they aggregate input regions into larger query
regions:

e All fragments are computed by building a single ordered list containing the
start and end coordinates of all covered regions. Based on this list, all regions
that lie between pairs of coordinates (irrespective of whether these are start
or end coordinates) and are covered by at least one input region are defined
as query regions. This method results in a large number of query regions but
achieves the highest possible resolution of features over the genome.

e Overlap merging is a method which creates query regions by starting with a
region defined in one input set and extending that region to the left and right
until all overlapping regions in all input sets are covered. The covered regions
are removed from the input and the next starting region is chosen. This can be
useful for instance if the input regions are from different microarray platforms
which cover slightly different subregions of an organism’s genes. The minimal
required overlap can be defined as a parameter of this approach.

e Greedy merging is a relaxed version of the overlap merging method. In
addition to merging all overlapping regions, the candidate query region is ex-
tended to the left and right to also include non-overlapping input regions in
close proximity as defined by a maximal distance parameter. The application

100

7.4. Design

Input set A I I

Input set B — ——— —

Input set C I I I

Set union P

F—

All fragments 3]

Overlap merge - m— — u C

Greedy merge @ s [—] u |

Minmax —]
I ||

Figure 7.3.: Combination methods for sets of genomic regions. Three input sets of
genomic regions (A,B,C, top) are combined according to five different
schemes (see text for detailed descriptions). Colors are used to visualize
the merging of regions. Numbers indicate the number of input coordinate
sets covered by the merged regions. If the input sets are from experiment
data (e.g., microarray data annotations), this is equivalent to the num-
ber of non-empty columns in the expression matrix row representing the
respective region.

of this method can be helpful for datasets where the above-mentioned overlap
merging is too strict to actually merge, for example, microarray targets from
different platforms.

e The minmax approach processes regions from all input sets in decreasing or-
der of size. Starting with the largest input region, all other regions overlapping
it are merged until a (user-defined) maximal size is reached. Overlapping re-
gions that would increase the merged region’s size beyond the limit are clipped
(the overlapping part is removed). They can later form the starting point of a
new query region. Remaining regions below a minimal size are removed.

A final filtering step can be added to remove regions which are not represented in
enough experiments, according to a user-defined threshold. Thus, rows which contain
a large number of NAs (i.e., are undefined for a large number of experiments) can be
removed from the expression matrix. This is especially useful for approaches which
generate a large number of candidate query regions, such as the ‘all fragments’
method. Removing regions below a certain minimal size limit is advisable to avoid
introducing artifacts in the computed expression values, such as extremely high
RPKM values resulting from normalizing the number of reads (R) by a very small
region size (K < 1, given in kilobases).

Summarizing expression values

When the expression matrix, the final output of running SEASIGHT, is constructed,
each experiment in the transformation matrix corresponds to one column of the
expression matrix, and each region in the set of query regions corresponds to one

101

7. SEASIGHT: Integration of Sequencing and Microarray Data

row. Thus, each cell in the expression matrix results from computing an expression
value for a pair (experiment, region). The method to compute this expression value
differs depending on the type of data associated with the experiment:

For microarray experiments, the expression can be computed from the probes over-
lapping the query region. If several probes are covered by the region, their values
are combined using an appropriate statistic, such as the median or mean, possibly
assigning different weights to the probes depending on the percentage of overlap
they share with the query region.

For RNA-seq data, where each query region contains a number of reads which also
might be zero, different quantification methods have been proposed and are im-
plemented in SEASIGHT, ranging from simply counting the number of overlapping
reads (optionally weighing them according to the length of their overlap), to more
sophisticated schemes such as the RPKM measure which takes into account that
the number of reads mapping into a genomic region is not only proportional to the
number of RNA transcripts produced from that region but also increases with the
length of the region and with the total number of reads produced in the sequencing
run.

Finally, the rows of the expression matrix are annotated with the respective genomic
region in the form of meta information objects of the LocusMIO type and the row
(probe) names are set according to the names of the query regions (if available) or
a human-readable description of the region’s coordinates.

Using locus-based data integration is only one of the possible routes SEASIGHT
allows users to take. If only feature-based expression data are to be imported, the
integration can be performed based on a mapping between the feature names (e.g.,
probe identifiers) of the different experiments. It is also possible to construct the
expression matrix (i.e., create feature-based expression data from locus-based data)
as an intermediate step in the transformation matrix and apply further (feature-
based) normalization methods, such as inter-experiment quantile normalization.

7.4.7. Summary

Building a MAYDAY dataset from raw data produced by different platforms consists
of (a subset of) the following steps:

1. Parse raw data files and create experiments
2. Apply platform- and experiment-specific transformations (e.g., bias correction)
3. Integrate data
e based on feature names:
— map feature names between different experiments
— create a set of common features
e based on genomic locus:
— find peaks from RNA-seq experiments
— load genomic regions from external files
— apply coordinate transformations
— annotate feature-based experiments with coordinates
— construct a set of query regions
4. Summarize expression levels for the final set of features resp. regions
5. Apply further transformations (e.g., inter-experiment normalization)

102

7.5. Implementation

7.5. Implementation

The previous section discussed the ideas behind the design of MAYDAY SEASIGHT
and introduced the fundamental data structure, the transformation matriz which
links experiments and transformations. The implementation of these abstract con-
cepts is presented in the following, together with an overview of the experiment
data types, file parsers, transformations, and coordinate transformation methods
currently implemented. The rather high-level view of the implementation presented
here is complemented by section 7.6 which gives detailed descriptions of the under-
lying efficient data structures.

7.5.1. The matrix

The central data structure in SEASIGHT is the transformation matrix modelled by
the TransMatrix class. Its main purpose is to manage the relationship between the
experiments and the transformations and to offer methods for manipulating the ma-
trix by inserting or removing experiments, or by inserting, removing, or replacing
transformations. Instead of storing two matrices explicitly (the transformation and
the state matrix), the TransMatrix class stores three mappings which, in combina-
tion, contain the same information:

¢ Experiments—Transformations: This is required, among others, to com-
pute the current state of each experiment.

e Transformations— Experiments: Based on this information, the input set
for each transformation can be constructed.

e Transformations— Execution index: The execution index is equivalent to
the column index of the transformation instance in the transformation matrix.

In addition, the TransMatrix keeps track of annotation objects which arise during
runtime but are not associated with any specific experiment, either because they
describe the complete DataSet, or because they are identical for a whole group of
experiments (e.g., a mapping of feature names to genomic coordinates) and need
only be stored once.

The creation of a DataSet at the end of the transformation pipeline is not an action
performed by the TransMatrix class after pipeline execution. Instead, some transfor-
mation plugins implement the special empty interface DatasetCreatingTransfor-
mation. When such a transformation is applied to a set of experiments, it creates a
new DataSet and moves it into MAYDAY’s core data structure, the DataSetManager.
Before executing the pipeline, the TransMatrix class checks whether all experiments
contain at least one DatasetCreatingTransformation and warns the user in case
some experiments might have been ‘forgotten’ during matrix set-up.

Modelling DataSet creation as ‘just another’ transformation has several benefits:
Firstly, several different plugins can implement this functionality in different ways
(which is already done to support dataset creation directly from LocusExpression
data without going through a mapping transformation). Secondly, it allows users to
create several DataSets from one transformation matrix using the central feature
of applying transformations to a subset of all experiments. A use case would be to

103

7. SEASIGHT: Integration of Sequencing and Microarray Data

normalize a large number of experiments together and then split them into several
DataSets for easier handling within MAYDAY. Thirdly, as the dataset creating trans-
formations create a DataSet as a side effect only without modifying the data in the
transformation matrix (i.e., without changing data. for the affected experiments),
users can create ‘snapshots’ of their data at different steps in the transformation
pipeline. This also introduces the possibility for creating DataSets with overlapping
sets of experiments as input.

Besides controlling matrix set-up and execution, the TransMatrix class is respon-
sible for serialization, i.e., storing the whole transformation matrix to a file (and
loading it again later on). This involves storing all transformations as well as their
properties, their position in the transformation matrix, the raw data for each exper-
iment, any additional coordinate data included in the matrix (e.g., resulting from
locus transformations, coordinate merging or peak finding), and additional mappings
such as feature—feature mappings, or probeset—probe mappings. The whole serial-
ization process makes heavy use of MAYDAY’s plugin manager and the serialization
capabilities of the Settings framework (which was, in fact, initially created exactly
for this purpose).

The SEASIGHT file format is based on the very popular compressed ZIP file format.
It contains several file entries, one for the transformation matrix, one for each trans-
formation instance, each experiment, each set of genomic coordinates, and one for
each mapping. During the serialization process, each experiment is asked to serial-
ize its data into its respective file entry. For this, the subclasses of the Experiment
type are linked to serialization classes which can be generic, e.g., for tabular feature
expression data, or highly specific, only working for that particular kind of data. It
is up to the serialization class to decide whether to serialize the experiment data di-
rectly, or whether to simply write a reference to an external file (e.g., an Affymetrix
CEL file) into the experiment data stream and ask the TransMatrix to embed that
external file in the SEASIGHT project file. As a result, the final SEASIGHT file con-
tains all data necessary to recreate the transformation matrix at any later point
while still being relatively compact.

7.5.2. Experiment properties

Experiments in SEASIGHT are modelled as a combination of elements that are de-
fined upon importing the raw data and do not change when transformations are
added/executed (‘static properties’), properties that are affected by the addition of
transformations to the transformation matrix (‘set-up properties’), and properties
that change during execution of the pipeline (‘runtime properties’), as shown in fig-
ure 7.4. The static properties include the experiment name, information about the
data source, the initial (raw) state of the data and the raw data itself.

The set-up properties include annotations that are added during the matrix construc-
tion, as well as the ‘current’ state, i.e., the state of the experiment in the last column
of the state matrix. Intermediate states are not stored explicitly, but can be quickly
created on demand. At runtime, the current data (called data. in section 7.4.4) is

104

current state |
annotations

_,:?':3"> ExperimentData

\—| FeatureExpression |

- microarray formats
- intermediate data
- final data

\-| LocusReadCount |
- mapped reads

runtime properties
current data -{-"
annotations

\—I LocusExpression |

- RPKM, DCPM, ...
- wiggle track data

Experiment ExperimentState
static properties properties -
name -~ data class
source info feature count
initial state feature names
initial data locus count
Set_up propemes |OCUS data':

7.5. Implementation

P >| PropertyParticle

N ValueType .
relative
Raw |
\-I ProcessingStep
normalized
Linear Log 2
\-I DataMode — | |
Logarithmic Log 10 |

\-I BackgroundType

\-| Flags |

\-I DataRange |

Printtip

Spotwise

\-I ChannelCount |

4"~->| LocusData

annotated features

Figure 7.4.: SEASIGHT experiments: Experiments are characterised by static proper-
ties including an initial state and the primary experiment data. During
pipeline set-up, the state of the experiment changes according to the
transformations that are applied to it. When the pipeline is executed, the
data content of the experiment is changed successively. The actual ex-
periment data is separated from the experiment’s state to allow for quick
checking of the applicability of a given transformation during set-up. The
experiment state includes a set of properties which can be mutually ex-
clusive (e.g., data is either linear or logarithmic).

also stored, together with annotations that are added by some transformations and
will become part of the MAYDAY DataSet at the end of processing.

As experiments need to be able to store vastly different kinds of data, the actual
data is not part of the Experiment object itself, but is stored in an instance of
ExperimentData, of which, currently, three different implementations exist:

e FeatureExpression data contains a set of uniquely named features, each of

which is associated with a numeric value, as well as (optional) information
about the layout of these features on the microarray surface, which is required
by some normalization methods. This is the format most similar to MAYDAY’s
expression matrix representation, but in contrast to an expression matrix col-
umn, an object of the FeatureExpression type can hold several data channels.
For example, raw data from a two-channel microarray experiment contains four
data channels, namely foreground and background values for each of the two
channels.

LocusReadCount data can produce a set of overlapping objects for any
genomic region, e.g., mapped reads.

LocusExpression data can produce a numeric value for any genomic region,
e.g., RPKM values.

105

7. SEASIGHT: Integration of Sequencing and Microarray Data

Table 7.2.: SEASIGHT experiment parsers

FeatureExpression LocusReadCount LocusExpression

Tabular text files Tabular text files (read, position) Wiggle files
MAYDAY DataSets SAM files of mapped reads

Affymetrix CEL files BAM files of mapped reads

Agilent feature files

GenePix files

ImaGene files

ScanArray files

Most parsers are implemented for raw microarray data, as there exist many different file
formats (with often even different versions) most of which can not be parsed using MAYDAY's
very flexible tabular text file parser. Mapped read data is most commonly either stored as
SAM/BAM files or in a tabular file format defined by the read mapping software used.

The initial data of an experiment is created by a file parser class which reads one
or more raw data files and produces the appropriate ExperimentData object (see
table 7.2 for a list of supported file formats). During runtime, the content (and
type) of the ‘current data’ field can change with each successive application of a
transformation to the experiment. To allow transformations to decide whether they
are applicable to a certain input experiment, the data type (Java Class) of the
ExperimentData object is part of the experiment’s state which is described by the
ExperimentState class. This class also stores information about the number and
names of features (if present) as well as the number of locus objects (e.g., if features
are annotated with genomic coordinates). Such locus data can be used for the gen-
eration of the set of query regions (section 7.4.6). In many cases, locus data objects
are only lazily created upon access (and then cached, see section 7.7.1) as they can
be expensive in terms of construction time and memory requirements.

The most important aspect of the ExperimentState are the experiment properties.
Together with the type of the ExperimentData, experiment properties are the main
basis on which transformations define their applicability and users can assess the
predicted result of running their transformation pipeline. They are stored as a set
of PropertyParticle objects describing different aspects of the data, such as the
data mode (linear, logarithmic), or the type of microarray background information
present. PropertyParticles can define mutual exclusion rules to ensure that the
experiment properties are sensible. For example, all PropertyParticle inheriting
from the DataMode class are mutually exclusive, as data can be either linear or
logarithmic, and if it is logarithmic, it can either be base two or base ten, but never
both.

7.5.3. Transformations

Transformations in SEASIGHT are realized as plugins implementing the Transforma-
tion interface (or, for the most part, inheriting from the AbstractTransformation-
Plugin class). Transformation authors need to implement functions to determine

106

7.5. Implementation
user wants to add user chooses
a transformation this transformation
TransMatrix
Q.
?
§ | applicable? |ﬁ>| initialize setting | | insert H update states |
S
©
=
trans. matrix
{ experiments)
c . .
o intermediate
§ / compute
(5]
5 NI
X user starts
g matrix execution

Figure 7.5.: Interactions between transformations and the TransMatrix. During ma-
trix set-up, transformations use information regarding the current state
of experiments (i.e., their input) to decide whether they are applicable to
the data, as well as to initialize configurable settings. When an applica-
ble transformation is added to the transformation matrix, the experiment
states are updated accordingly. During matrix execution, transformations
access intermediate experiment data (processed by preceding transforma-
tions) and update it with the result of their own computations.

the applicability of their transformation based on a set of input experiments (and
their states), to generate a new ExperimentState (see section 7.5.2) based on in-
put state(s), and (optionally) to initialize configurable settings based on the in-
put set of experiments (see figure 7.5). The actual computation of the transforma-
tion, performed during matrix computation, can obtain input data (in the form of
ExperimentData objects) from the TransMatrix, and modify or replace this in-
termediate data. General annotations which should not be linked to one specific
Experiment can also be deposited with the TransMatrix.

Due to this relatively simple interface and the implementation of a lot of functionality
in the TransMatrix, AbstractTransformationPlugin and AbstractExperiment
classes, transformation authors can focus on the implementation of their actual
method and only need to implement three SEASIGHT-specific functions, as well as the
registration method for MAYDAY’s plugin manager for their method to become part
of SEASIGHT. A list of currently implemented transformation methods is presented
in table 7.3.

7.5.4. Genomic coordinates

MAYDAY can read genomic coordinates from a variety of file formats (see table 7.4),
including the most commonly used GFF (generic feature) and GenBank formats.
In addition, a parser for tabular text files can be used to import genomic coor-
dinates from almost any tabular format. Based on MAYDAY’s very generic parser
for tabular text files, which can deal with different column separators, files with or

107

7. SEASIGHT: Integration of Sequencing and Microarray Data

Table 7.3.: SEASIGHT transformations

Microarray data: background correction
— spotwise subtraction

— normal+exponential model

— RMA correction

Multi-channel feature data: misc.

— channel extraction

— channel swapping

— channel renaming

— Red/Green — MA transformation

Multi-channel feature data: normalization
— dye-swap

— loess (locally-linear regression)

— loess using print-tip information

— *reference channel quantile scaling

Feature expression data: map values

— logarithmically

— exponentially

— logarithmically to range [0, 16]
Feature expression data: transform loci
Feature expression data: features

— change feature names

— *restrict to common set

Data conversion:
— Locus—Feature expression
(using query regions)
— Feature—Locus expression
(add locus annotation to features)
— Feature—Read count
(simulate reads for expressed features)

Sequencing data: Add pseudo read counts
Sequencing data: expression quantification
— read count
— arithmetic mean coverage
— geometric mean coverage
— reads per million mapped, RPM
— reads per kilobase of exon model, RPK
— reads per kilobase per million, RPKM
— depth of coverage per million, DCPM
— square root arcsin coverage
variance stabilizing, f(x) = v/narcsiny/z/n

Single-channel feature data: summarization
— arithmetic/harmonic mean, median

— minimum, maximum

— *median polish

Single-channel feature data: normalization
— *scale mean to 0 and/or std.dev. to 1

— *scale according to a given percentile

— *quantile scaling

Locus expression data: map values
— logarithmically
— exponentially

Locus expression data: transform loci

Pass-through side-effect methods
— Write feature expression vector to file
— Compute mate-pair distance distribution

DataSet creation
— from feature expression data
— from locus expression data

There are more than 40 transformations available in SEASIGHT, listed here according to
the type of input data they accept. Transformations marked with a star (*) require several
experiments as input, all others can be applied to one or more experiments.

108

7.5. Implementation

Table 7.4.: Supported file formats for genomic coordinates

Tabular text files (generic parser)

Tabular text files (MAYDAY LocusMIO type)

GenBank format (single- and multi-locus)

EMBL format (similar to GenBank format)

PTT (protein table) format

GFF (generic feature) format, version 2 and 3, including exon models

without headers, and different quoting characters, this parser allows coordinates to
be specified in any column order, missing information (e.g., chromosome name) can
be specified by the user, and different encodings, for instance for the strand (such
as +/—, F/R, D/P, W/C, or S/A) are automatically detected.

Coordinate transformations (see section 7.4.6) can be applied to imported coordi-
nates, to coordinates attached to feature-based expression data (e.g., annotated mi-
croarray data), as well as to coordinate-based expression data (e.g., mapped reads).
SEASIGHT’s locus transformation method implements methods which can be used
alone or in combination to

e Replace species and/or chromosome names which is helpful when inte-
grating data from different sources.

e Change the strand location by defining a mapping between the four pos-
sible strand locations ‘forward’, ‘backward’, ‘both’, and ‘unspecified’.

e Move coordinates by a fixed number of bases, thereby moving all their exons.

e Move upstream and/or downstream coordinates, enlarging or shrinking
the coordinate’s region.

e Set the length of the coordinate by either placing the upstream coordinate
relative to the downstream coordinate or vice-versa.

e Convert exon models to primitive coordinates either by creating one
coordinate for each exon or by creating a large coordinate spanning the whole
region from the first to the last exon. See section 7.6.8 for details on the
differences between complex and primitive coordinates.

Methods for merging multiple sets of genomic coordinates into a set of query re-
gions as discussed in 7.4.6 are implemented as efficiently as possible. The union, all
fragments, overlap merging and greedy merging methods run in O(nlogn) in the
number of input coordinates, the logarithmic component being necessary for sorting
the coordinates in the input sets. The runtime of the minmax method is O(nlognk)
where k is the (average) number of overlapping loci which are considered for merging.

To ensure that the set of query regions and the experiments’ coordinates are com-
patible and can be used to create an expression matrix, SEASIGHT includes a ‘Con-
sistency check’ method. The motivation lies in the fact that there is no generally
accepted scheme for species and chromosome identifiers in bioinformatics. As a re-
sult, different datasets and annotation files use different identifiers for the same
chromosomes, resulting in the need for manually mapping identifiers. To be able to

109

7. SEASIGHT: Integration of Sequencing and Microarray Data

Candidate coordinates A closest w.r.t. A closest w.rt. B B
Reference coordinates T_T
Forward strand upstream downstream
frcim center t?
Reverse strand downstream upstream
Reference coordinates
Candidate coordinates A closest w.r.t. A closest w.r.t. B B

Figure 7.6.: Coordinate anchor points. The ‘upstream’ and ‘downstream’ points are
mapped to the strand-independent ‘from’ and ‘to’ positions depending on
the coordinate’s strand location, while the ‘center’ point is independent
of strandedness. If pairs of coordinates are considered, e.g., for distance
calculations, there is also a ‘closest’ anchor point which is either the up-
stream or the downstream coordinate, whichever is closer to the second
coordinate’s selected anchor point.

correctly map identifiers, the first step is to recognize that there is, in fact, a problem
with a given set of data, preferably before a time-consuming normalization pipeline
is run in vain. The consistency check method implemented in SEASIGHT inspects the
input and query coordinate sets and issues warnings for three classes of problems:

1. Query set not covered: If the query set contains species or chromosome
names which are not covered by the experiments, the resulting expression
matrix will contain some rows consisting only of NA values.

2. Experiment set not covered: If input experiments contain data for species
or chromosome names which are not contained in the query set, this data will
not be used. For example, if the query set and some experiments use the species
name ‘Homo sapiens’ while other experiments use the species identifier ‘hsa’,
the resulting expression matrix will have some columns completely made up
of NAs.

3. Duplicated chromosome names: Some data sets contain multiple identi-
fiers for the same chromosome, for instance due to unfinished assemblies used
in read mapping (e.g., chromosome ‘2’ vs. chromosome ‘2_random’). More im-
portantly, when merging multiple sets of coordinates into one query set, there
could be similarly-named chromosomes which should have been merged (e.g.,
‘chr2’” and ‘chromosome 2’ denote the same chromosome).

Finally, SEASIGHT also offers a method to filter one set of coordinates based on
another set. Using X = {x;} to represent the set being filtered and Y = {y;} the
set to filter against, the method keeps each x; € X whose distance min; d(z;,y;) is
smaller than a user-defined threshold. The distance calculations can be done in a
strand-specific (only using y; which are on the same strand as z;) or strand-agnostic
fashion and the distance thresholds can be defined separately depending on whether
y; is upstream or downstream of x;. The anchor points used for distance calculations
can be selected independently for coordinates in X and Y (e.g., comparing the

110

7.5. Implementation

upstream coordinates of X with the downstream coordinates of Y). Available choices
are ‘upstream’, ‘downstream’, ‘center’ and ‘closest’ (see figure 7.6).

7.5.5. The SeaSight user interface

SEASIGHT’s user interface is a rather straightforward representation of the transfor-
mation matrix (see figure 7.7). For each experiment (row), the name and a descrip-
tion of the source of raw data is given, followed by the list of transformations which
work on the experiment. Transformations are represented by boxes with a short label
describing the transformation. The boxes’ background color is used to convey the
information which boxes (all in the same column) belong to the same transformation
instance. Thus, the visualized properties are the mapping of experiments to trans-
formations (transformation box y coordinate), the mapping of transformations to
execution steps (transformation box x coordinate), the mapping of transformation
instances to sets of input experiments (transformation box color), and the ordering
of experiments in the final output dataset (experiment row order).

The order of experiments can be changed by drag&drop or by sorting the exper-
iments according to their names. Experiment properties such as the experiment
name, for instance, can be configured. External (tabular) files can be used to re-
name all experiments automatically. Transformations can be appended after the
last transformation in the matrix, before the first transformation or between any
pair of transformations (either by inserting or by replacing an existing transforma-
tion) using a menu available by clicking on any transformation box. Further actions
in this menu allow users to change the input set of the respective transformation
instance (e.g., by removing the current experiment from the input set), as well as to
modify the parameters of the transformation method.

If a transformation is inserted, removed, or replaced, which is not the last transfor-
mation in each concerned experiment, or if such a transformation’s properties are
changed, other transformations to the right of it might not be applicable any more.
To prevent users from unwanted side-effects, SEASIGHT evaluates the consequences
of the change before applying it: First, a copy of the original transformation matrix
is created and all further changes are applied to this copy. All transformations ‘to
the right of’ the changed transformation are removed from the matrix, as are all
further transformations depending on them (which may also be in other rows of the
matrix). Then, the desired change is performed (by inserting, removing, replacing
or reconfiguring a transformation), resulting in new output states for the affected
experiments. The previously removed transformations are added back to the matrix
one by one, always checking whether they are still applicable to the changed ex-
periments. If any such test fails, the respective transformation is put into a list of
unsatisfied transformations. If all transformations could be added without problem,
the changes to the cloned transformation matrix are applied to the original matrix.
Otherwise, the user is presented with a list of transformations that would be deleted
as a result of the intended change, and given the choice to either go through with
the changes, or cancel the process and reconsider.

111

7. SEASIGHT: Integration of Sequencing and Microarray Data

Experimerts in this Matrix: 12

1) Kidney 1A

604258 faatures, A no loci Experiments

Imported CEL file: GSM275060.CEL [raw, absolute expression, unlogged, 1 channel] ‘Add Experiments

2) Kidney 2A 604258 fastures, A no loci

Imported CEL fle: GSM27906L CEL ram, absolute expression, unlogged, 1 channl]
3) Kidney 3A 604258 features, A no loci

Imported CEL file: GSM279062.CEL [raw. absolute expression. unlogged, 1 channel] Experiment names

4) Kidney 1S 5025044 features, 5025044 locil Map Experiment Names
Reads from kidneyL txt [mapped reads]

5) Kidney 25 - 5199295 features, 5199295 loci| | 3O Experiments By Name
Reads from kdney2 bt Add transformations (mapped reads] o

6) Kidney 35

Reads from kichey3

7) Liver 1A

Imported CEL file: ¢

8) Liver 2A Experiments in this Matrix: 12

Imported CEL file: ¢
9) Liver 3
Imported CEL file: ¢
10) Liver 15
Reads from liverL.tx
11) Liver 25
Reads from liver2.tx
12) Liver 35
Reads from liver3.tx

1) Kidney 1A MABE
Imported CEL fle: GSM279060.CEL
2) Kidney 24 FiEEE | aiorm
Imported CEL file: GSM279061.CEL
3) Kidney 3A FiliAEE
Imported CEL fle: GSM279062.CEL
4) Kidney 15 [EBRMN Map to Features Man Ranae
Reads from kidneyl. bt
5) Kidney 25

Reads from kidney2 txt
6) Kidney 35 [IEBRMI Ma to Features Map Ranae
Reads from kidney3 bt
7 liver 1A ENAEE N
Imported CEL fle: GSM279063.CEL
8) Liver 2A [HNAEE jorm
Imported CEL file: GSM279064.CEL
9) Liver 3A [BMAEGE QNorm
Imported CEL fle: GSM279065.CEL
10) Liver 15

Reads from iverl txt
11) Liver 25 [IEBRMI Man to Features Map Ranae
Reads from iver2txt
12) Liver 35

Reads from liver3.txt

16473 features, 16473 loci| Experiments

[absolute expression, 1 channel, log 2, normalized] Add Experiments
RMA:Polish Add Locus Common Features |QNorm 1=> *Marion! 16473 features, 16473 loc
[absolute expression, 1 channel, log 2. nermalized]| Remove Experiments

RMAPolish Add Locus Common Features > "Marioni* 16473 features, 16473 loci

[absolute expression. 1 channel,log 2. normalized] Experiment names
Common Features [QNorm => *Marion?!

16473 features, 16473 lodi Map Experiment Names
[absolute expression. 1 channel, log 2. normalized]
Common Features (QNorm -> "Marioni® 16473 featuras, 16473 loci | S0rk Experiments By Name

[absolute expression. 1 channel, log 2. normalized]|

QNorm Loa20 |RMAPalish AddLocus Common Features > *Marion?*

Loa20

QNorm Loa20

Mapto Features Map Ranae

Transformations

Common Features > "Marioni" 16473 features, 16473 loci
[absolute expression, 1 channel, log 2, normalized]| Add Transformation

RMA:Polish Add Locus ‘Common Features |QNorm |=> *Marioni" 16473 features, 16473 loci
[absolute expression, 1 channel, log 2. normalized]|

16473 features, 16473 loci
[absolute expression, 1 channel, log 2, normalized]|

16473 features, 16473 loci|
[absolute expression, 1 channel, log 2, normalized]|

16473 features, 16473 loci|
{absolute expression, 1 channel, log 2, normalized]|

16473 features, 16473 loci
[absolute expression, 1 channel, log 2, normalized]|

16473 features, 16473 loci|
[absolute expression, 1 channel, log 2. normalized]|

iorm Loa20

Locus Data

Loa20 |RMAPaisH AddLocus Common Features [QNorm == "Marion!

Check Locus Consistency

Loa20 |[RMAPolsH AddLocus Common Features [GNorm

Inspect Locus Data

Mapto Features Map Ranae Common Features (QNorm -> "Marioni®. Import/Create Locus Data

Peak finder
Common Features > "Marioni".

Common Features [QNorm => *Marion?"

Mapto Features Map Ranae Merge Locus Data

Transform Locus Data

Filter Locus Data

Click to open context menu

savematrix | Loadmatrix | [RunTransformations Nonf

Median Polish

Properties _— Feature summarization

Configure [

Remove this transformation completely

Use existing G133 Piis 2 (54675 summary festures) | v

transformation ;

Import from file

|

Selec periments in this transformation
Add selected expariments to this transformation para meters 7] Use the tAMA procedure @

[[] Attach Probeset size &

Current experiment

Remove this experiment from the transformation

Change the matrix
Insert another transformation before this one

Replace transformation

Figure 7.7.: SEASIGHT user interface: The transformation matrix is visualized as ex-

112

periments (rows) to which transformations (columns) are applied. On the
left, each experiment is named and information about the raw data is
shown. Color is used to show the input set of experiments for each trans-
formation (i.e., each transformation instance is assigned a distinct color).
Experiments can be selected by clicking on their name and they can be
freely reordered using drag&drop. On the right, the final state (corre-
sponding to the last column of the state matrix) of each experiment is
described. Buttons (far right) can be used to add and remove experiments,
rename them using an external file of name mappings, sort experiments
by name, add a new transformation to selected experiments, as well as
perform operations on locus data. Buttons at the bottom of the window
allow users to save resp. load the matrix, and to start the execution of the
transformation pipeline. Clicking on any transformation opens a context
menu (bottom) from which the transformation can be removed, the in-
put set of experiments modified, another transformation added in front of
or in place of the current transformation, and parameters of the current
transformation changed. As an example, the configuration dialog of the
‘Median Polish’ transformation is shown (bottom right). Example data
from [105].

7.6. Efficient Data Structures

To the right of the last transformation box, the final state of each experiment is
described, showing experiment properties (see section 7.5.2) as well as the number
of features resp. genomic loci covered. Further actions, such as coordinate transfor-
mations, coordinate set merging methods and the consistency check function (all
described in section 7.5.4) are accessible from a list presented at the right of the
main SEASIGHT window. Serialization (loading and storing) as well as the actual
execution of the matrix can be triggered from the buttons at the bottom of the
window.

7.6. Efficient Data Structures

7.6.1. Requirements

MAYDAY SEASIGHT should be broadly applicable to the different data types men-
tioned above and its data structures should allow programmers to relatively easily
implement their transformations in an efficient manner concerning time and mem-
ory consumption. Time requirements depend on the time complexity of operations
defined on the underlying data structures as well as on implementation details such
as caching (see 7.7.1). They are usually in a balance with memory requirements, e.g.,
fast access is trivially achieved by raising memory complexity. The large size of ex-
pression data from high-throughput experiments precludes this naive approach and
requires optimized data structures complemented by implementation details such as
memory mapping (see 7.6.3), caching (7.7.1) and memory locality.

These abstract requirements translate into the following concrete demands, specifi-
cally concerning objects mapped to genomic coordinates:
Time

1. constant time insertion of an object at a given (complex) coordinate

2. constant time access to the any element covering a given location
3. constant time access to the any element spanning a given location
4

. constant time access to all information concerning a given element
(such as the start and end coordinates, strand etc.)

5. constant time access to all mapping positions of a given element
Memory

6. space linear in the number of bases covered,
independent of the size of the genome

7. space linear in the number of elements covering a given base

How these requirements translate into data structures will be explained in the fol-
lowing sections.

7.6.2. Primitive types

The Java language knows two basic types of objects: primitive and class objects.
Primitive (or native) objects represent data types native to the hardware, such as

113

7. SEASIGHT: Integration of Sequencing and Microarray Data

Total Overhead

Container type (bytes) (times)
LinkedList<Long> 80,040 10.005
ArrayList<Long> 40,068 5.009
Long|] 40,024 5.003

long]] 8,024 1.003

Figure 7.8.: Memory requirements of different containers. As an example, the total
number of bytes necessary to store 1000 numeric values of type long in
different Java containers are shown.

numeric types of different length, characters and boolean values. Class objects can
represent any kind of complex, structured data type. While many different containers
for class objects exist (linked lists, vectors, maps, sets), the only collection able to
hold values of primitive type is an array. Arrays have several drawbacks as they lack
many of the desirable properties of the container types (such as O(1) insertions in
linked lists, or finding an object in O(1) in hash sets), and they are of fixed size. To
allow programmers to use the basic numeric, character and boolean types in generic
type specifications (such as template definitions for containers), Java defines one
class type for each primitive type.

These corresponding types, however, introduce an enormous penalty regarding mem-
ory (often referred to as object tax), as can be seen in figure 7.8. As an example,
consider a collection of 1000 long values. The native long type consumes 8 bytes of
storage. The corresponding object type, Long, adds another 24 bytes (three 64-bit
pointers, assuming a 64-bit operating system), a three-fold overhead. Since arrays
of objects are in fact arrays of references to objects, a non-native Long]] array of
1000 Long values is an array of 1000 references (each 8 bytes long) to 1000 objects,
each requiring 2448 bytes, which results in a total of 40 bytes per long value, i.e.,
40,000 bytes for all values, plus another 24 bytes object overhead for the array itself.
If smaller types such as int or byte were used, the overhead would be even larger
since all Java objects are aligned in memory to addresses divisible by eight bytes.

The more convenient ArrayList<Long> type is basically only a wrapper around a
Long|| array, adding another 44 bytes (an 8-byte reference to the array, the 4-byte
size of the array, two 4-byte positions of the last and first element in the array, as
well as the 24-byte object overhead for the list itself). Finally, a LinkedList<Long>
which allows for O(1) insertion and removal of objects has the largest penalty as it
stores each individual Long value in a separate entry object, from which the double-
linked list is constructed. Thus, each entry contains a reference to the value (8 bytes),
a reference to the previous as well as next entry (2x8 bytes), i.e., 48 bytes per entry
in addition to the 32 bytes consumed by the referenced Long object, totalling 80
bytes per value, a tenfold overhead.

With the large volumes of data that SEASIGHT is required to handle, especially in the
context of RNA-seq experiments, native objects must be used as often as possible.
As a consequence, it was necessary to develop efficient data structures capable of
storing data of primitive types, accessing them in an efficient manner, and allowing

114

7.6. Efficient Data Structures

the use of memory-mapping (see Section 7.6.3). These structures are presented in
the next sections, following a more detailed requirements analysis.

7.6.3. Memory-mapped structures

Memory mapping is the process of representing (part of) a file stored in a filesystem
inside the memory space of a running process [177, 158]. Thus, if the process accesses
a certain address space in its virtual memory, it is in reality accessing data on the
filesystem. This approach lies at the heart of modern operating systems as it allows
the OS’s virtual memory manager to allocate more virtual memory to each process
than there is real physical memory available, which is called overcommitting. If
physical memory is exhausted (or used by other applications), individual pages of
virtual memory are written to disk (“paged out”) to be read back (“paged in”) later
when they are accessed again. Such pages are either stored in so-called “swap” files
(the accurate term is paging files) or dedicated partitions.

Apart from the automatic memory management done behind the scenes by the
operating system’s virtual memory manager (VMM), programmers can also employ
this method to map any file into their program’s memory. Existing files can be
mapped read-only, write-only or for read-write mode. If a non-existent file is mapped,
it will be created by the VMM (depending on the process having sufficient rights for
the given location).

During the development of SEASIGHT, new memory-mapped data structures were
implemented for MAYDAY. This includes structures to store long arrays of the native
Java types, such as double, byte, char, int, long (varying in length from 1 to 8
bytes depending on the data to be stored), and boolean (packed into bytes). Some
very specific structures have also been implemented using memory mapping, e.g., a
replacement for HashMap<String,Long>.

The advantages and disadvantages of memory-mapping in general and with respect
to Java applications are discussed in more detail below.

Advantages

Memory-mapping offers several advantages, some of which are of particular interest
to programmers developing Java applications:

e Efficiency: The VMM is an essential part of the operating system and, due to
its importance for every program, highly optimized. Furthermore, it possesses
detailed knowledge of the hardware specifics of the given computer and can
select the optimal page size for read and write requests. Upon reading, whole
pages are loaded into memory, with the VMM heuristically predicting which
pages are needed next (such as in forward or backward sweeps over a file).
When changes need to be written back to disk, they can be deferred for some
time and are then agglomerated into larger write operations if possible.

e Transparency: Memory-mapped data can, in principle (see the ‘disadvan-
tages’ section for more details), be handled like any other data in a processes’
memory. No special code is necessary for working with the data, no explicit

115

7. SEASIGHT: Integration of Sequencing and Microarray Data

116

loading and storing or calling of file system code is required. For example,
the methods implemented in MAYDAY SEASIGHT can switch from memory-
mapped buffers to pure in-memory buffers on the fly, e.g., if no more disk
space is available for mapping, and do so without any special code for each
case.

Persistence: If data is mapped in read-write mode, changes to the data in
memory will be written back to the mapped file by the VMM. Thus, memory-
mapped files are a convenient method to store data persistently and have it
instantly available in the next invocation of a program, without the need for
defining file formats, writing parsers, or data conversion. Furthermore, if only
a few bytes in a huge file need to be changed, the programmer does not have
to take care of writing them back at the correct locations, a simple change in
memory is sufficient.

Memory locality: While virtual memory allows users to run many applica-
tions simultaneously by extending the amount of memory “available”, excessive
paging leads to very poor performance. If it is known in advance that certain
data are always processed together, programmers can make use of that knowl-
edge and put these data close together in memory. Thus, working on the data
will require only one paging operation, not several. Java objects are placed
into the Java heap at locations unknown to the programmer (Java has noth-
ing equivalent to C/C++ pointers). As a result, normal VM paging will likely
not find related objects on the same page. If they are instead placed in close
proximity in a memory-mapped area, they will be paged in resp. out together
(except in cases where they fall on different sides of a page boundary, or are
too large to occupy only one page). While working on memory-mapped data
is, understandably, slower than directly working in physical memory (also see
the next section) for small datasets, the optimized paging possible due to pro-
grammers exploiting memory locality reverses this situation if the data are too
large to be handled in main memory (see figure 7.9 for an example). If large
collections of identically structured objects are to be stored, programmers can
place certain aspects of these objects (e.g., the genomic start positions of genes)
together in one mapped data block. In this way, algorithms that only process
that particular aspect of the objects will only require a smaller amount of data
to be paged into memory than if all aspects of each object would be stored
together (e.g., start and end position, strand, etc.).

Low priority: Physical memory used for memory-mapping usually has a lower
priority than memory used for normal VM paging. This allows time-consuming
operations on large data mapped into memory to work in the background while
users can still work on their computers without experiencing unresponsive
programs that are waiting for their pages to be brought back from disk. If a
foreground application needs some part of its memory to be paged in, the VM
will simply drop a memory-mapped page of the background task from memory
(if necessary writing changes back to disk first) and allocate the recovered space
to the application.

7.6. Efficient Data Structures

——Top—-

* Disk read

* Swap IN
—-Bottom--

¢ Disk write

. Swap ouT

JMM«WMW% LA WW L

CPU waiting for Dlsk

0 200 400 600 800 1000 1200 1400

B [u

Disk read
Swap IN
--Bottom--
Disk write
* Swap OUT

N VN,

T 1
0 100 200 300 400

Figure 7.9.: Virtual Memory statistics obtained while importing an RNA-seq dataset
using SEASIGHT. Data was acquired using the Linux vmstat command.
Disk access is shown in black color, excluding accesses due to virtual mem-
ory paging, which are shown in red color. Lines rising from the baseline
indicate disk read accesses, lines extending below the baseline represent
disk write access. The blue/yellow graph indicates the percentage of time
the CPU was waiting for data to become available. A, importing the data
without memory-mapping, i.e., holding all data in virtual memory (re-
quiring the Java VM heap space to be set to a value above the limits of
physical memory available on the machine); B, using memory mapping
and a small Java VM heap size. Note the different total time as indicated
by the scale below each plot.

117

7. SEASIGHT: Integration of Sequencing and Microarray Data

e Extending Java limits: Java applications are running inside a virtual ma-

chine (VM) which is started with a user-defined, fized maximum amount of
virtual memory (“heap space”) available to the application. Programs that
have to be able to handle data of vastly different sizes must either be run with
very high default heap space values to make sure they can handle even the
largest files, or programmers have to implement complicated on-demand data
retrieval and storage functionality (effectively duplicating the work done by
the developers of the virtual memory manager, albeit without knowledge of
hardware-specific optimal page sizes etc.). Memory-mapped files increase the
virtual memory footprint of the Java VM, but consume only a small, constant
amount of Java heap space. Thus they allow to extend the virtual memory
available to an application at runtime, in the same way as programs written
in languages such as C/C++ can.

Extending the paging file: Each memory-mapped file can be stored in
another location on the file system, or even on another file system altogether.
Thus, memory-mapped data does not use space in the paging file or dedicated
swap partition. Users may, for instance, choose to place a memory-mapped
file on a large harddrive to run analyses on very large data, while maintaining
only a small paging file (resp. partition) for everyday use.

Disadvantages

Unfortunately, the advantages of memory-mapping are somewhat offset by a number
of disadvantages, especially when they are used within Java programs:

118

e Unstructured storage: The data that is mapped into memory consists only

of a block of bytes. To add structure (such as Java objects referencing other
objects), these have to be constructed from the block of bytes either directly
after mapping, or lazily upon access. However, constructor invocations are
expensive operations, and if objects are created from the mapped data, the
benefits of using memory mapping disappear, as the created objects consume
Java heap space. Other languages, such as C/C++, allow to set pointers into
the mapped data and cast them to any object type, but Java does not offer
this possibility. Instead, objects need to be created. Using flyweight objects,
which only provide convenient access to the underlying mapped data without
copying the values to the heap can alleviate the problem, but they require
more work during programming.

Speed: Due to the need for conversion resp. object creation, memory-mapping
can be slower than directly working with Java objects on the heap. However,
as soon as the limits of physical memory become relevant, the situation is
reversed (see above).

Garbage collection: Being unstructured blocks of data outside of the Java
heap, memory-mapped areas can not be processed as a whole by the Java
garbage collector. This shifts the burden of memory management towards the
application developer. However, as memory mapping is usually employed to
store large amounts of static data which is not expected to change over the

7.6. Efficient Data Structures

Figure 7.10.: A LinkedArray object maintains a list of blocks which are either arrays
of a primitive type or ByteBuffer objects (to allow memory mapping).
Blocks are of a fixed size and can be added to increase the number of
elements stored. The total number of elements that can be stored is
between 23! (block size 1) and 2%? (block size 231).

lifetime of the program, explicit memory management (e.g., finding unused
areas and compacting them) can be disregarded in most cases. Some structures
in SEASIGHT implement compaction functions (as specified by SEASIGHT’s
CompactableStructure interface), such as the long arrays which can switch
from an eight-byte long representation to shorter representations at runtime
(if the range of the stored values permits it).

e Constant size: The size of memory-mapped data blocks has to be specified
at the point of mapping the file and cannot be changed later (at least not
in Java programs). Thus, structures that might need to grow must be imple-
mented carefully, e.g., by mapping more blocks at a later stage (as is done in
SEASIGHT).

e Debugging: Since the mapped data is outside the Java heap space and for
most of the time also outside of physical memory, debugging applications that
use memory mapping is made much more complicated. The contents of the
mapped files can not be inspected in the debugger and programmers can only
use tools such as hex editors to look into the files that are mapped into mem-
ory. Finding the position of a certain value requires knowledge about the size
of objects stored, as well as the index of the object of interest. Even then,
the bytes at the respective position need to be combined into meaningful in-
formation, which can be relatively easy (e.g., when multi-byte numeric values
are stored) or very hard (e.g., when the bytes represent a complex structured
object).

7.6.4. Large and flexible arrays as the basis

Apart from being fixed in size, a major drawback of primitive arrays in Java is that
their maximum size is limited to about 2 billion elements by the maximal value of the
(signed) integer holding the array’s size. To overcome these two limitations, a more
flexible implementation of a native-type array constitutes the foundation for most
of SEASIGHT’s data structures. The idea is to create a list of arrays of a predefined
size (see figure 7.10). The total size of the data structure can be increased in steps of
the block size, random access is possible in constant time and the maximal number

119

7. SEASIGHT: Integration of Sequencing and Microarray Data

of elements is 22 (if using the maximal block size of 23!). These “linked arrays”
can be used to store large amounts of data without specifying the exact amount in
advance, which is often not feasible, e.g., when importing an unknown number of
mapped reads from a large text file. Each native data type requires its own imple-
mentation of this structure (all based on an abstract base class that handles block
allocation). SEASIGHT mostly uses the LinkedLongArray, LinkedDoubleArray, and
LinkedCharArray classes, the latter of which can handle 2-byte unicode characters
or 1-byte ASCII characters, allowing SEASIGHT to conserve memory for non-unicode
strings. A container for boolean values (LinkedBooleanArray) is based on the sparse
array implementation (see below) and packs 64 boolean values into one long value.

With the introduction of memory-mapping (see Section 7.6.3), the internal represen-
tation of the data has been changed from primitive arrays to ByteBuffer objects,
either representing regular in-memory buffers or memory-mapped buffers. In both
cases, the number of bytes per element (e.g., 8 for a long value) is automatically
reduced to the minimum required to represent the values stored in the linked ar-
ray (e.g., down to 3 bytes per long if the maximal value stored is 224). The list of
files associated with the mapped blocks is also stored to make sure that the files
are removed from the file system when the LinkedArray itself is garbage collected.
However, a small first block of each linked array is still stored as a native-type array,
for two reasons: Most importantly, it makes sure that very small lists (e.g., small
temporary objects) are handled without the memory-mapping overhead. As a ben-
eficial side-effect it also simplifies debugging as at least parts of the objects’ content
are available for inspection by the programmer.

7.6.5. Efficiently handling millions of lists

The LinkedArray classes efficiently handle the storage of large amounts of values.
However, while they can be used to store few lists of millions of elements, they are not
suitable for storing millions of lists of only a few elements each. The main problem is
the overhead associated with the lists themselves (e.g., the 24 bytes object overhead
for each list, plus the reference to the internal storage object etc.). Furthermore,
the runtime of Java’s garbage collector is adversely affected by the need to check
millions of objects for live pointers.

These considerations led to the development of the MultiArray class. Based on two
LinkedArray objects, it can manage an arbitrary number of short (unordered) lists
of long values, placing list headers into the first LinkedArray and list contents into
the second one (see figure 7.11). New short lists can be added to the object at any
time, and the individual short lists can grow (by a specified block size). For the
sake of efficiency, lists can neither be removed nor can objects be deleted from them.
Furthermore, the only access operation is via a special Iterator which traverses the
list starting at the most recently inserted element and continues backward. Choosing
the correct block size is essential to balance the overhead due to the block ‘pointers’
with the overhead due to large half-filled blocks.

120

7.6. Efficient Data Structures

List 1 List 2 List 3
first block
insert pos.
size
fo ii fo/i i
Headers | | |6 P ?] D 8
? hd h hN
\\
N N R \
Content 1i12i3i4 1 5|6
L]

. _

Figure 7.11.: A MultiArray object uses two LinkedLongArrays to store a large num-
ber of short, unordered lists. Lists are built from blocks of a fixed size
(here: 4) and chained together back-to-front via ‘pointers’ (block off-
sets). New content blocks are allocated to the lists in the order of their
creation, leading to an interleaved structure in the ‘content’ array. The
values 1-6 have been added to list ‘1’ to show the insertion order, list
‘2’ contains only one element, list ‘3’ is empty.

7.6.6. Associating data with genomic positions

Data associated with genomic positions is often distributed unevenly, i.e., elements
tend to cluster together at certain genomic positions while large stretches of the
genome are not associated with any data. Thus it would be very wasteful to store
the elements associated with each position in an array of lists of elements, one list per
position. While this would allow O(1) access to the elements at a given position, most
lists would remain empty and the array alone would be huge. If, on the other hand,
pairs of <position,list> were stored, for instance in a hash map or similar structure,
access would no longer be O(1). More importantly, Java hash maps consist of many
objects incurring a large memory penalty (and garbage collection overhead). Finally,
standard maps are very bad in terms of memory locality and performance degrades
rapidly as soon as paging is involved.

In MAYDAY SEASIGHT, reads associated with genomic positions are one of the most
essential data types. The MappingStore structure was developed for this kind of
data and will be explained in the following sections. It relies heavily on the basic
SEASIGHT data structures (e.g., the multi array and linked array structures described
above and the overlap array structure described in the following section) as well as
on the structures implemented for genomic coordinates (described in section 7.6.8)
and will be fully explained in section 7.6.9.

7.6.7. Sparse Arrays & Overlap Arrays

If only few positions in a large array contain values, data is said to be sparse,
and the array is sparsely populated. SEASIGHT contains a very memory-efficient
implementation of a sparse array which is the basis for data structures that allow
to access objects by their genomic position.

121

7. SEASIGHT: Integration of Sequencing and Microarray Data

The SparseArray class creates a tree structure that can grow as needed, adding
new levels to the hierarchy if elements are added beyond the current size of the
array. Each level in the hierarchy is associated with a multiplier value: At the leaf
level, each node can store 1000 objects associated with a genomic range of 1000
bases. The next level nodes store references to 1000 blocks, each of size 1000. On the
third level, each block covers a range of 10° bases (1000x1000). Accessing elements
within this array is possible in O(log;ggo) and its memory requirement is at most
O(logio00 ™ X k) where k is the number of non-empty positions.

This idea is extended by the OverlapArrayLong class (and associated node classes)
which more explicitly models the tree structure and adds two important refinements:
Firstly, the size of each node is reduced to 100 elements and instead of storing 100
objects in each leaf node, each of the 100 positions is associated with two lists
(managed by two MultiArray instances for all nodes in the OverlapArray), used
as follows. Each leaf node covers 6400 consecutive genomic positions. If an object is
added to a position p, this position is converted to an index i € [0,100[as well as
an offset o € [0,64] such that

1= L%J and o= p mod 64.
A new long value is added to the ‘overlap’ list at position 7 with the ot* bit set to 1,
and a second long value is added to the ‘content’ list, representing the object just

added.
The second refinement in the OverlapArrayLong class is that each node, including
internal nodes, also maintains a ‘span’ list of elements that completely cover the ge-
nomic range associated with the node. This allows elements that cover large intervals
to be stored and retrieved very efficiently.
Thus, if an object spans more than one position (e.g., a gene annotation covering
the region [p1, p2]), the range is converted to a pair of positions (i1,01) and (ig, 02).
Three cases can be distinguished for leaf nodes (see figure 7.12):
e Ifio = i1, a long value is constructed with the bits 01 to 02 set to 1, and this
value is added to the ‘overlap’ list at position ;.
o Ifio =41 + 1, a long value with the bits 01 to 63 set to 1 is added in position
11 and another long value with bits 0 to o2 set to 1 is added in position 2 to
the ‘overlap’ list while the same object identifier is added to the ‘content’ list
in both positions.
o If io > 41 + 1, positions i; and io are treated as above, and in intermediate
positions, the object identifier is simply added to the ‘span’ list.
As with storing elements in leaf nodes, the left- and rightmost internal node that still
contains the element requires special handling (delegating storage to its children in
a recursive fashion) while the intermediate nodes simply store the object identifier
in their own ‘span’ list.
The large genome range associated with each node (starting with 6400 bases at the
leaf level) is an important factor for keeping the number of node objects stored in
Java heap space to a minimum as well as the number of steps necessary to access
objects associated with a particular base.

122

7.6. Efficient Data Structures

0 63,999,999

[4T5]61718[9]

A- B— C
[v | Lo | e
640,000 723,200 748,800 780,800 800,000
704,000 729,600

Gene Coordinates & Computed index and offset values

Gene start end
1D from to node index offset node index offset
A 704,150 704,160 1 2 22 1 2 32
B 729,590 729,610 2 99 54 3 0 10
C 755,185 780,815 4 99 49 9 0 15

Node contents

Node 1, overlap[2]
content[2]

Node 2, overlap[99]
content [99]
Node 3, overlap[0]
content[0]

Node 4, overlap[99]
content [99]

{a}

{B}

{8}

{c}

Node 5, span = {C}
Node 6, span = {C}
Node 7, span = {C}
Node 8, span = {C}
Node 9, overlap[0] 11111111 11111110 00000000 00000000 00000000 00000000 00000000 00000000

content[0]

{c}

Figure 7.12.:

Example of the OverlapArrayLong structure. Three elements (A-C) are
associated with positions along a chromosome. Element A falls into a
single leaf node, B covers two consecutive nodes and C covers altogether
six consecutive nodes. No other elements are stored, thus the nine leaf
nodes are the only elements stored in the internal node which in turn is
the only node stored at the root node. The ranges covered by internal
nodes are written next to the nodes’ left and right boundary, the visible
range of the chromosome and the ranges of the leaf nodes are indicated
at the ruler. The positions of the elements are given in the table with
their node, index and offset values computed as described in the text.
The (non-empty) values of the nine nodes are shown below in the node
contents table.

123

00000000 00000000 00000111 11111111 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000011 11111111

11111111 11000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 01111111 11111111

7. SEASIGHT: Integration of Sequencing and Microarray Data

7.6.8. Genomic Coordinates

Data structures for genomic coordinates were first added to MAYDAY by Matthias
Zschunke [187] in 2006. A genomic locus was defined by a species/chromosome pair,
a start and end position on the chromosome, and a strand identifier (forward, back-
ward, both, unspecified).

During the development of SEASIGHT, two major additions were made to MAYDAY’s
handling of genomic coordinates, while preserving the old interfaces and maintaining
compatibility with plugins and stored data from previous versions:

1. Complex coordinates: While the existing coordinate format was well-suited
for studies of chromatin modifications, computing transcript strengths for eu-
karyotic genes requires a definition of genomic loci able to model multi-exon
genes. The coordinate description model used in gff and GenBank files was
adopted to describe such coordinates, consisting of the specification of ge-
nomic intervals and two operations, namely join and complement, These cre-
ate a tree structure describing the genomic locus. Internally, MAYDAY provides
this tree structure as well as a flat structure consisting of a list of ‘atoms’, i.e.,
(start,end,strand)-tuples. Several convenient methods exist to convert these
two formats into each other.

2. Coordinate containers: SEASIGHT needs to be able to access genomic ele-
ments by their location (species, chromosome, strand, location). The original
genomic coordinates contained references to their chromosome (including the
species), but the implementation did not provide access to elements located on
a given chromosome (or at a given location). For the type of query necessary for
SEASIGHT, e.g., find all elements covering chromosome c, positions i to j, iter-
atively searching through large lists of (possible unordered) genome-associated
elements and comparing their chromosome and position values to ¢, ¢ and j,
respectively, is not feasible. This is complicated further by the complex coor-
dinate structure mentioned above, as well as by the different types of queries
that are possible. Take for example the the distinction between elements cov-
ering a genomic position (i.e., the respective base is part of the element) and
elements spanning a given location (i.e., the respective base is not part of the
element but the element covers bases upstream as well as downstream of that
base). To address these issues and prevent code duplication, memory-efficient
containers were implemented that provide efficient (in most cases O(1)) access
to elements located in genomic regions, as well as further methods required for
SEASIGHT. These will be described in more detail below.

Containers for genomic coordinates

Building on the efficient structures introduced above, containers for genomic coor-
dinates were implemented, centering around the AbstractLocusChromosome class!.
Two considerations were taken into account.

Lpublic abstract class AbstractLocusChromosome < CoordinateType extends AbstractGeneticCo-
ordinate > extends SimpleChromosome implements CompactableStructure

124

7.6. Efficient Data Structures

| AbstractLocusChromosome | AbstractLocus

| Species | > Species reference <o GeneticCoordinate

| String | > Chromosome name.....-«---+=""" index <
| long | > Chromosome length :

| OverlapArrayLong | > access by spanned position, created lazily

OverlapArrayLong | > access by overlapped position .- ‘

|ChromosomeArrayLong| |LinkedLongArray | > all start positions <+

LinkedLongArray | > all end positions <" o

| LinkedStrandArray | > all strand annotations (2 bit each) <----*""

| LinkedBooleanArray | > complex coordinate start indicators <---*

Figure 7.13.: Internal representation of the AbstractLocusChromosome class and el-
ements accessed by the AbstractLocusGeneticCoordinate flyweight
class. The different elements of genetic locations are stored in separate
specialized containers, OverlapArrayLong instances are used for efficient
access by overlapped or spanned coordinate or coordinate ranges.

Firstly, since the number of chromosomes is typically quite small with potentially
millions of elements associated with each chromosome, the chromosome is not refer-
enced by each element but is stored implicitly: start, stop and strand information for
each element are stored in the respective chromosome object and the element itself
is not represented by a Java object most of the time. During access, a small object is
created that provides access to all aspects of the genomic coordinate, transparently
communicating with the chromosome object, a technique known as the flyweight pat-
tern. Keeping all elements of one chromosome in one container is beneficial for most
algorithms as data is usually processed chromosome-wise such that memory-locality
becomes a major factor for algorithm runtime.

Secondly, start, stop and strand information are stored in three large (memory-
mapped) arrays for each chromosome. Thus, instead of storing the elements associ-
ated with the forward and backward strand in two separate containers, they are all
stored together. This requires some filtering when strand-specific queries are pro-
cessed. However, if separate containers were used, elements associated with ‘both’
strands or elements having ‘unspecified’ strand location would need to be stored
either in two further containers (also resulting in additional query processing) or
would need to be duplicated in the forward and backward strand and annotated in
some fashion to denote their special status.

To store complex coordinates in these containers, they are first split into their ‘atoms’
which are stored as individual elements in the start, stop and strand arrays. A
further array of boolean values is used to store whether a given ‘atom’ is the first
one of a complex coordinate, or the continuation of a previously started complex
coordinate. Reconstruction of the complex coordinate model is done transparently
by the flyweight access object.

125

7. SEASIGHT: Integration of Sequencing and Microarray Data

The structure of AbstractLocusChromosome and the classes it uses internally for
storage are shown in figure 7.13. The flyweight class encapsulating access to the coor-
dinates is AbstractLocusGeneticCoordinate?. Different chromosome types storing
different chromosome-associated data are derived from these two classes. They all
inherit the methods implemented in the abstract base class, which provide the fol-
lowing functionality:

AbstractGeneticCoordinate

Chromosome, start and end: In addition to this basic information, strand-
specific functions are implemented as getUpstreamCoordinate and getDown-
streamCoordinate.

Length: The length of the coordinate is accessible as spanned length (i.e.,
end-start+1) as well as covered number of bases.

Coordinate Model: The coordinate model can be accessed as structured
model or as list of consecutive coordinate atoms.

Overlap: The number of overlapping bases can be computed between a co-
ordinate and a range of positions, or between two coordinates (taking into
account the complex coordinate models).

Distances: The distance can be computed between a coordinate and another
coordinate, optionally ignoring the case when the two coordinates are on op-
posite strands. Furthermore, genetic coordinates define the concept of An-
chors which can be used for distance computations. The distance between any
given position and a genetic coordinate can be computed based on different
anchors: FROM and TO are strand-independent, their strand-specific equivalents
are UPSTREAM and DOWNSTREAM, further anchors are CENTER as well as CLOSEST.
Comparisons: The compare function defines an order by (1) chromosome (in-
cluding species), (2) start position, (3) end position, (4) strand, (5) coordinate
atoms’ compare function, i.e., by (5.1) coordinate atom start, (5.2) coordinate
atom end, (5.3) coordinate atom strand. Further functions for strand-specific
comparisons are provided with isUpstream0f and isDownstreamOf.

Further functions: Serialization, Java’s toString and hashCode functions.

AbstractLocusChromosome

e Basic properties: Chromosome name, species, length, number of objects

stored

e Access to coordinates: Methods are implemented to access all objects cover-

ing a certain base, stretch of bases, or bases specified by a complex coordinate
model. Equivalent methods are implemented to access all objects spanning the
given positions.

e Coverage: The coverage (objects per base) can be computed for the whole

chromosome or for a specified range of bases. Furthermore, efficient functions

2public abstract class AbstractLocusGeneticCoordinate<T extends AbstractLocusChromosome>
extends AbstractGeneticCoordinate

126

7.6. Efficient Data Structures

exist to check if any object overlaps (resp. spans) a specified region, as well
as whether a specified region is completely covered (i.e., no base has zero
overlapping objects).

e Iteration: Associated objects can be iterated (a) in unsorted fashion, (b)
sorted by their start position, (c) sorted by their end position, as well as
(d) sorted by their length. Base positions can also be iterated, such that the
iteration goes over (a) only positions where an object starts, (b) only positions
where an object ends, (c) positions where objects start or end, or (d) positions
covered by any object.

e Cluster selection: Starting with a given region, all objects covering that
region can be extracted, together with all objects covering any of the ex-
tracted objects until no further objects can be added. This function is used by
MAYDAY’s genome browser (see section 4.3) to find all reads that need to be
considered together during the layout phase of rendering. A similar function
is implemented using spanning instead of covering as selection criterion.

e Further functions: Compaction, Java’s toString, compareTo, equals and
hashCode functions

7.6.9. Containers for mapped read data

The MappingStore class uses the containers described in the previous sections and
brings them together to store all information associated with an RNA-seq experi-
ment’s reads. Since eukaryotic organisms have several chromosomes, and datasets
might even contain reads mapped to different species, the efficient access methods
and the flyweight implementations mentioned before needed to be extended to sev-
eral chromosomes. Furthermore, several mapping positions might exist for any given
read and efficient access to all mapping positions of a given read as well as to the
read associated with a given mapping position are needed. Three distinct sets of
identifiers are used inside the MappingStore: Read indices, mapping indices and
coordinate indices.

In the MappingStore, each read is identified by its read index into several data
structures storing the read name, the read index of the read’s mate pair (if paired-
end sequencing was used) as well as the read’s mapping positions (as shown in
figure 7.14). Each mapping position is also stored with a mapping index which gives
access to the read index of the associated read, the start of the alignment in read
coordinates, the quality value reported by the aligner and, finally, the coordinate
index of the mapping. This coordinate index can be used to retrieve the genomic
coordinates of the mapping (the lower two bytes of the coordinate index specify
the LocusChromosomeLong instance containing the mapping, the remaining 6 bytes
specify the internal index of the coordinate inside the LocusChromosomeLong). The
reverse link is provided by the long values that store the mapping index with each
element inside the chromosomes.

As a result, the MappingStore provides O(k - logn) access to all k reads mapped to
(covering or spanning) a given genomic region on a chromosome of length n. Starting
from a read, all its mapping positions as well as the positions of the mate pair (if

127

7. SEASIGHT: Integration of Sequencing and Microarray Data

Figure 7.14.: Internal representation of the MappingStore class storing information
on reads and the positions in the genome that they were mapped to
by an external mapping program, as well as providing fast access to
all reads mapped at any genomic coordinate. Three different indices are
used, one referencing the data belonging to one read, one referencing the
data related to one mapping of a read, and one related to the mapping
coordinate associated with that mapping. Dashed arrows indicate the
direction of access, e.g., the read index stored for each mapping can be
used to access data about the read while the mapping index stored with

128

| MappingStore
| LinkedFinalStringArray | > read name
| LinkedLongArray | > mate read index .-

| | Reads

| LinkedBooleanArray

| > read mapped uniquely

| LinkedLongArray | > mapping index, if mapped uniquely-...
L05000000 MultiList index of mappings, else

| MultiArray | > lists of mapping indices for ------..... 5
multiply mapping reads

| LinkedLongArray | >read index-.......

| LinkedLongArray | > Alignment start in read

| LinkedDoubleArray | > Alignment quality

| LinkedLongArray | > coordinate index «=+-r e

|Coordinates | | Mappings

coordinate index (8 bytes)

- least significant 2 bytes: chromosome index
- most significant 6 bytes: inner coordinate index in chromosome

List<LocusChromosomeLong>| inner coordinate index > mapping index-1""

each read can be used to access data about the mapping.

7.6. Efficient Data Structures

Table 7.5.: MappingStore memory consumption analysis

without MM with MM and compaction

Data element type main memory per read main memory mapped per read
— Data stored for each read
read name String 643,360,456 #128.0308 11,280,504 140,421,232 28.1991
maps unique bool 642,056 0.1277 642,056 - 0.1277
mapping index long 40,257,616 8.0114 180,504 *20,060,176 4.0081
— Data stored for each mapping
read index long 40,257,616 8.0114 80,504 *20,060,176 4.0081
alg. start long 40,257,616 8.0114 180,504 15,015,044 1.0140
alg. quality double 40,257,616 8.0114 180,504 40,120,352 8.0001
coord. index long 40,257,616 8.0114 180,504 *20,060,176 4.0081
— Coordinate data

icsc 571,948,261 T4.7425 16,757,136 184,459,264 11.6685
Totals 19,082,216 430,196,420

1,417,238,835 449,278,636

Memory consumption of a MappingStore object storing and indexing 5,025,044 single-end
reads of length 36bp with 28 character identifiers mapping uniquely to the human genome,
measured with with and without memory mapping (MM). With memory mapping enabled,
compaction is also used (as described in section 7.6.4). alg, alignment; coord, coordinate;
icsc, IndexedChromosomeSetContainer mapping indices to genomic coordinates and
vice-versa (see figure 7.14). #including 28 unicode characters of 2 bytes each plus 64
bytes String object overhead. fincluding memory required for storing the first block of
10,000 elements (see section 7.6.4). *using four bytes per long value as the maximal index
to reference in this example is smaller than 24, fusing one byte per long value as all
alignments start at the first base. Tper read and chromosome.

available) are accessible in constant time. Furthermore, memory locality for many
algorithms is achieved by grouping mapping coordinates by chromosome. Care was
taken to also limit memory consumption, e.g., by only allocating memory for one
mapping position per read and extending this space if necessary by adding a layer
of indirection and storing a list of mapping indices in a MultiArray instance.

To illustrate the memory consumption of the MappingStore class, an example dataset
with about five million reads of length 36bp (each with a 28 character identifier)
mapped to the human genome was loaded into SEASIGHT and the actual memory
consumption (both in main memory as well as in on-disk memory-mapped files)
was measured using the Eclipse Memory Analyzer (http://eclipse.org/mat/).
Measurements were taken with and without memory mapping enabled, to allow for
comparison of the two approaches (see table 7.5). Even without memory mapping,
the storage structures introduce very little overhead, for instance 0.14% in the case of
the LinkedLongArray used for storing read quality values. With memory mapping,
the main memory footprint of the MappingStore object is almost constant (allowing
for a few bytes to be used to reference on-disk mapped data). Furthermore, the use
of compaction (see section 7.6.4) significantly reduces memory requirements while
retaining flexibility for storing larger datasets.

129

http://eclipse.org/mat/

7. SEASIGHT: Integration of Sequencing and Microarray Data

The MappingStore structure stores a number of read details (qualities, multiple
mapping coordinates per read, read identifiers, alignment starts) that are only
needed for read visualization in MAYDAY ChromeTracks, and for (future) imple-
mentations of expression quantification methods using read alignment quality or
paired-read information. For the simpler quantification approaches such as RPKM,
SEASIGHT offers to import mapped read data into an alternative structure with
much smaller storage footprint. For the example presented here, this would reduce
the total memory consumption to 175 MB, equivalent to 36.5 bytes per read (instead
of 89.5 bytes/read).

7.6.10. Matrices and Vectors

Beside data from RNA-seq experiments, MAYDAY SEASIGHT was also designed to
handle raw data from microarray experiments. For these, expression values can be
represented by a vector of named values, where the (unique) names denote features
on the array. Several microarray experiments based on the same platform (i.e., the
same chip from the same vendor) can be represented as a matrix with named rows
(features) and named columns (experiments), similar to the well-known expression
matriz which is the outcome of a SEASIGHT normalization.

Such vectors and matrices can also be used to hold the intermediate SEASIGHT data
produced during the application of transformations, if the data can be regarded
as numerical values associated with named features. During the implementation of
MAYDAY SEASIGHT, a new framework for vector and matrix types was added to
MAYDAY’s core with the aim of simplifying the implementation of transformations.
Some features of this framework were inspired by the implementation of similar
types in R, such as summary functions (e.g., sum, prod, sd, mean, ...), per-element
operations (e.g., log, vector-scalar addition, multiplication, ...), vector-vector opera-
tions (element-wise addition, multiplication, ...) as well as the application of custom
functions. For the latter, the R syntax “apply(matrix, dimension, function,
extra arguments...)” was closely followed, using Java’s Reflection system to
allow calls of the form “Matrix.apply(dimension, object, ‘function’, extra
arguments...)” where the object implements a function named ‘function’.

Matrices can be created by providing a number of rows and columns, or by binding
vectors together (similar to R’s cbind and rbind functions). Furthermore, MAYDAY’s
vectors and matrices support sorting, ranking, permutation, indexing by row/col-
umn name, O(1) transposition, memory-efficient creation of shallow clones and sub-
matrices, as well as some of the usual algebraic operations such as matrix multipli-
cations. The matrix/vector framework was designed such that the internal represen-
tation of the vector resp. matrix data can be defined in different ways by subclasses
of the respective abstract classes, allowing for very flexible implementations. For ex-
ample, matrices can be implemented as wrappers around data stored in a completely
different data structure, or the values of matrix cells can be computed on the fly dur-
ing access to provide a (read-only) matrix of (e.g., for the identity transformation).
General features, such as transposition, permutation and sorting are implemented
independent of the underlying data structure as modifications to the indices during
access. Thus, several views of the same data can be created (e.g., a view represent-

130

7.7. Implementing efficient algorithms

AbstractMatrix | - read/write access to values

— submatrix creation

— statistics (mean, min, ...)

— apply() semantics

does not define data storage

NamedMatrix — indexing by row/column name
does not define name storage

| PermutableMatrix | — transposition
— (random/defined) permutation

| StringArrayNamedPermutableMatrix |

/ implements name storage

VectorBasedMatrix | DoubleMatrix
implements value storage implements value storage
by accessing a list of AbstractVectors as two-dimensional double array
bound together as rows or columns in row or column major memory layout

by rbind() and cbind(), respectively.

Figure 7.15.: Class hierarchy of MAYDAY’s matrix framework showing the responsi-
bilities of the different classes.

ing the original matrix and a permuted view on a transposed sub-matrix) without
the need to store the same data twice. This approach also allows to efficiently per-
form computations that require sorting, changing values in the sorted matrix, and
finally restoring the original order. Figure 7.15 gives an overview of main classes
implementing the matrices.

7.7. Implementing efficient algorithms

Even when using primitive data types in the optimized structures described above,
SEASIGHT still requires a lot of memory during application of the transformations
to the raw data. The extendable plugin architecture at the same time allows and
requires programmers to write their transformations without taking into account
other transformations that were applied to the data before, or will be applied at a
later stage during normalization. The only exception to this are the data properties
discussed in 7.5.2 which are used to check whether a specific transformation is ap-
plicable to the data available as its prospective input and to predict the state of the
data after applying said transformation.

This independence of the transformations results in some implementation problems
that are addressed at the level of the SEASIGHT framework. The aim is to avoid need-
less (re-)computations wherever possible without using too much memory for the
storage of intermediate results which might never be needed again. This is achieved

131

7. SEASIGHT: Integration of Sequencing and Microarray Data

by two strategies, namely caching (described in 7.7.1) and lazy evaluation (see 7.7.2).
However, transformation authors still need to take care to implement their methods
in an efficient manner. Some useful considerations are mentioned in section 7.7.3.

7.7.1. Caching

At some points, data needs to be converted from one representation into another.
These conversions can result in tiny objects (such as when creating a flyweight object
representing a certain mapped read or genomic coordinate) or in very large objects
(such as when an unsorted list of genetic coordinates is converted into an indexed
object allowing by-base access to the contained coordinates). Transformation pro-
grammers accessing objects usually do not know whether the access function requires
such an on-the-fly conversion, nor should they have to think about this question.

Rather, it is up to SEASIGHT’s data structures to ensure that objects resulting from
such conversions are kept in memory long enough to make repeated access efficient
(by preventing the recreation of the conversion object for each access). At the same
time, large conversion results must be dropped from active memory when they are
no longer needed to free the space they occupy.

Basically, SEASIGHT uses two methods to accomplish this aim: Firstly, SoftRef-
erences are used to keep pointers to conversion objects as long as possible. Soft-
References are a kind of Java pointers which do not prevent garbage collection of
the pointed-to object. Java offers several different Reference types upon which an
ordering is defined [64]:

Strong o Soft o Weak o Phantom

> (no reference)
reference Reference Reference Reference

Consistent with this ordering, the Java standard defines the concept of Reachability
from the point of view of the garbage collector: Objects which can be accessed by at
least one strong reference are strongly reachable, otherwise they are softly reachable
if a SoftReference points to them, otherwise they are weakly reachable if referenced
by a WeakReference object, and so on:

strongly o softly o weakly o phantom

> unreachable
reachable reachable reachable reachable

Object is accessible inaccessible non-existent

A more detailed explanation is given below:

e Strong reference: The corresponding object is directly referenced via a
variable, it will not be garbage-collected.

e SoftReference: During garbage collection, the JVM may remove the refer-
enced object from memory. However, the Java standard “encourages” imple-
mentations to only clear the object in the case when not clearing it would
result in an OutOfMemoryError. Furthermore, more recently accessed refer-
ents should be cleared after other softly referenced objects. If the referent is
removed from memory, all SoftReferences referring to it will be cleared.

132

7.7. Implementing efficient algorithms

e WeakReference: During garbage collection, all objects that are only weakly
referenced will be removed from memory and all WeakReferences pointing to
the object are cleared.

e PhantomReference: The corresponding object cannot be accessed via the
reference object (the get method always returns null) and thus will never
become strongly, softly or weakly reachable again. PhantomReferences can be
used to have the garbage collector notify the user’s code about the fact that
the referred object has been found to only be phantom reachable and will be
removed from memory. This notification can be used to perform further ‘pre-
mortem’ cleanup operations depending on the object referred to. After such
actions are completed, the reference must be cleared, which will change the
referent from being phantom reachable to being unreachable.

e No reference: Objects that are unreachable are reclaimed by the garbage
collector and their memory is returned to the Java Heap memory pool.

Reachability is a transitive property. All reachable Java Threads are by definition
strongly reachable. For any reachable object O, there exists a directed path of refer-
ences p(O) connecting it to one of the root Thread objects. The reachability of O is
defined as the minimum reachability of all its predecessors on p(O). For example, if
p(O) = (Thread;:strong, O;:strong, Oz:weak, O:strong), then O is weakly reachable
from the garbage collector’s point of view. Obviously, the graph of references can
contain cycles. Only references belonging to the greedy (in terms of reachability)
spanning tree that starts at the respective Thread object are considered for the
determination of reachability.

Using SoftReferences, SEASIGHT’s first strategy is to try to hold on to conversion
intermediates for as long as possible, i.e., until the Java VM determines that new
objects require heap space to be freed, and the cached objects are claimed by the
garbage collector.

A second strategy uses more sophisticated caching for conversion objects that are
created based on an additional parameter (e.g., based on the name of a chromosome
an object might be created containing all genetic coordinates located on that chro-
mosome). If the same parameter is supplied repeatedly, the object already created
in the first invocation (stored via a SoftReference as described above) is returned,
otherwise the cache is cleared and a new conversion object is created.

7.7.2. Lazy evaluation

Many transformations can be implemented in a lazy fashion, especially such trans-
formations that only affect individual values in an experiment and do not need the
context of the other values to compute the result. For instance, consider the log-
arithm. To compute a logarithm of a set of numbers, each number can be dealt
with individually, without knowledge of the full set. In MAYDAY SEASIGHT, many
transformations use lazy evaluation, among them the log transformation and most
read-based measures of transcriptional strength, such as RPKM, RPM, RPK, DCPM
and the naive counting method. When such a transformation is applied to the data,
a wrapper function is added such that as soon as the data is accessed, the trans-

133

7. SEASIGHT: Integration of Sequencing and Microarray Data

formed value is computed and returned. The benefit of the lazy approach is that only
those values need to be transformed that are actually requested by a downstream
transformation. In the case of the read-based measures of transcriptional strength,
this approach is the only feasible method since computing these measures requires
the actual genomic coordinates of the transcript to evaluate. Computing RPKM
values for all possible transcript coordinates is obviously infeasible and deferring the
computation to the point where the coordinates of interest are known is the only
sensible implementation choice.

For the purpose of illustration, consider the computation of log, transformed RPKM
values: To get the final value for transcript ¢ with coordinate c(t), first the getEx-
pression method of the class LogTransformedExperiment is called with ¢(¢) which
calls the same method from RPKMExperiment. In this method, the number of reads
overlapping with ¢(t) is obtained from the underlying LocusReadCountExperiment-
Data object, normalized with the total exon length of ¢(t) and the number of reads
in the experiment (in millions). The resulting value is returned, the logarithm is
computed and the final result handed back to the calling function.

7.7.3. Considerations for transformation authors

Authors using the efficient data structures provided by SEASIGHT still need to take
some considerations into account to make sure that their implementation can be
executed in an efficient manner. Besides the usual Java-specific efficiency improve-
ments, such as avoiding the creation of millions of short-lived Objects if existing
instances can be re-used, memory locality is the most important aspect to keep in
mind.

The use of memory-mapped data structures and SEASIGHT’s caching mechanism can
only be efficient if the implemented method accesses data in the correct order. This
involves working on data in a chromosome-by-chromosome fashion, as chromosomes
are the top-level object with respect to the distribution of data to the memory-
mapped files. Furthermore, caching of conversion intermediates is also handled with
the assumption that most of the time, consecutive requests will target the same
chromosome and that chromosome switching is a rare event.

Secondly, as read data is usually imported from sorted alignment files (such as BAM
files), algorithms accessing locus-associated objects should try to access proximal ob-
jects first, before moving on to more distant objects. This allows the virtual memory
manager to work on one page after another, instead of requiring it to constantly move
pages in and out of physical memory.

As an example of how these two considerations can be realized in an implementation,
consider a transformation that computes expression values from aligned reads and
a set of genomic locations of genes. An efficient implementation would first sort
the gene locations by chromosome to exploit the benefits of SEASIGHT’s caching
mechanisms, and then by their base coordinate to optimally use the memory-mapped
access to the mapped read data. Based on the sorted genes, reads overlapping the
genes’ locations can now efficiently be retrieved.

134

7.8. Application example: Human kidney vs. liver tissue transcriptomes

Table 7.6.: Human liver and kidney sample sequencing data

Sequencing run reads mappable % alignments/read
Kidney SRR002320 39,221,626 12,741,216 32.49 1.74
SRR002324 17,292,434 7,314,865 42.30 1.86
SRR002325 27,137,793 9,184,290 33.85 1.80

Liver SRR002321 54,797,551 17,039,752 31.09 1.81
SRR002322 18,437,696 7,251,171 39.33 1.93
SRR002323 14,761,931 6,604,737 44.07 1.28

Totals 171,649,031 60,136,031 35.03 1.75

7.8. Application example:
Human kidney vs. liver tissue transcriptomes

As an example for the application of MAYDAY SEASIGHT, data from a comparative
study of RNA-Seq and microarray experiments was used [105]. In this study, total
RNA from liver and kidney samples of a single human male were extracted and each
sample was hybridized to three Affymetrix HG-U133 Plus 2.0 microarrays as well
as sequenced on multiple lanes of an Illumina Genome Analyzer. Of the technical
replicates reported in the original publication, only data from three sequencing lanes
per tissue are used here.

Raw read data was downloaded from the NCBI’s short read archive (http://www.
ncbi.nlm.nih.gov/sra/, accession numbers SRR002320-SRR002325) and mapped
to the human genome (NCBI version 37.2) using Bowtie [95] with a maximum of two
mismatches and excluding reads with more than three mapping locations (using the
options -v2 -m3 -k3 --best --tryhard --sam), resulting in six SAM files (see
table 7.6). Microarray data was obtained from GEO [10] in Affymetrix CEL file
format (accessions GSM279060-GSM279065). The array description (CDF) file for the
HG-U133 Plus 2.0 microarray was downloaded from Affymetrix’ website, as were the
604,258 probe sequences, which were also mapped to the human genome to allow
for locus-based data integration as described in section 7.4.6. 525,721 probes could
be mapped uniquely, covering 53,100 probesets (of a total of 54,675).

Array data and mapped reads were imported into SEASIGHT. Arrays were normal-
ized using MAYDAY’s implementation of the optimized RMA method [62] consisting
of RMA background correction, computing the logarithm to base two, quantile-
normalizing the experiments, and applying the median polish method to summarize
probe values into probeset expression values. To test the effect of different meth-
ods on the comparability of RNA-seq and microarray data, sequencing data was
processed using several different pipelines (see figure 7.16): First, the ‘pseudocount’
transformation was applied to ensure that each queried region contained at least
one (synthetic) transcript. This removes the problem of zero expression which com-
plicates the computation of the logarithm later. Secondly, expression was quantified
using either the genomic locations of the microarray probes as query set, or the

135

http://www.ncbi.nlm.nih.gov/sra/
http://www.ncbi.nlm.nih.gov/sra/

7. SEASIGHT: Integration of Sequencing and Microarray Data

Quantile norm.
Quantile norm.

RPKM |—| Map to probesets
Map to probesets
Map to probes

Mayday
Quantile norm. |—| Median polish l— session

Mapped reads |—| add pseudo count Count

Median polish
Quantile norm. Median polish

Full count |—| Map to probes |_| |_
Median polish

Figure 7.16.: Transformation pipelines used for the analysis of the human transcrip-
tome RNA-seq data [105]. A total of eight different normalized DataSets
were produced based on three different expression quantification meth-
ods, quantification on the level of probesets or on the level of probes
with subsequent summarization into probeset expression values, and an
additional quantile normalization step. See text for details.

genomic regions covered by the probesets (from first to last probe). The logarithm
(base two) of the resulting expression values was computed. When using the probe re-
gions, the median polish method was applied to compute probeset expression values
comparable to those of the microarray. Thus, the sequencing data contained expres-
sion values for 53,100 probesets. These four processing pipelines (probeset RPKM,
probeset count, probe count, probe full count) were run both with and without an
inter-experiment quantile normalization step which, depending on the set of query
regions, was applied either as the final normalization or directly before summariza-
tion (exactly as in the RMA procedure), to test its influence on the comparability
of the different platforms.

For the primary expression quantification from read data, four different methods
were used:

¢ RPKM on probesets. The expression is computed as the number of reads
covering at least one base of the probeset region, divided by the region’s length
(in kilobases) and the total number of reads (in millions). From this, the log-
arithm (base 2) is computed.

e Count on probesets. Reads in the probeset region are counted and the
logarithm (base 2) is computed.

e Count on probes. The number of reads covering at least one base of each
probe’s region (25bp) is counted. The median polish method is used to sum-
marize based on the logarithms of these numbers.

e Full count on probes. The number of probes covering all 25 bases of the
probe region is counted. The expectation is that this most closely mimics the
biochemical process of hybridization. The median polish method is used to
summarize based on the logarithms of these numbers.

Parsing the SAM files (32GB) required 101 minutes, resulting in 3.8GB of memory-
mapped files. Executing the transformation matrix required 1,5 h for the array data
and the four sequencing DataSets using quantile normalization (4GB Java Heap
space, working on a single 2.5GHz core). If normalizing without quantile normal-
ization, the time required is slightly shorter. The transformation matrix was stored

136

7.8. Application example: Human kidney vs. liver tissue transcriptomes

probeset count probeset RPKM probe count probe full count

e
A :..‘“

Figure 7.17.: Quantile-quantile plots comparing the distributions of logarithmic ex-
pression values obtained by processing RNA-seq data with one of four
methods (see text) with the distribution of expression values obtained
from a microarray experiment.

to the SEASIGHT file format in six minutes, resulting in a 626MB file which could
be loaded again in under five minutes. Each of the two final MAYDAY snapshot files
containing five normalized DataSets amounted to 25MB and can be loaded in 40
seconds.

For each of the resulting DataSets, four questions were addressed:

1. What are the differences between the distributions of the expression value of
the samples (i.e., expression matrix columns) when comparing RNA-seq to
microarray data?

2. What is the correlation between fold-changes derived from either technology?

3. How many probesets’ expression values (expression matrix rows, per tissue)
follow a normal distribution?

4. How large is the overlap between statistically significantly differentially ex-
pressed (SDE) genes detected by either technology?

7.8.1. Distributions of expression values per sample

To compare the distribution of transcript expression values in a sample analyzed
using RNA-seq with the distribution in a traditional microarray sample, quantile-
quantile plots [178] were created, comparing one sequencing sample (SRR002320)
with the corresponding array sample (GSM279060) for each of the four normalization
strategies without quantile normalization (see figure 7.17). Using quantile normal-
ization, the plots showed almost identical shapes (data not shown).

The probeset count method, which does not normalize by the length of the tran-
scripts, clearly overestimates the expression strengths of highly expressed transcripts
in comparison to the microarray data, while the RPKM method which explicitly
models the transcript length dependent bias achieves a more linear correlation with
the distribution of the array expression values. Here, it is clearly visible that even
extremely lowly expressed transcripts show a high baseline expression due to back-
ground noise on the microarray.

137

7. SEASIGHT: Integration of Sequencing and Microarray Data

Table 7.7.: Fold-change correlations between RNA-seq and microarray data

without quantile normalization with quantile normalization
all only expressed transcripts all only expressed transcripts

Probeset count 0.75 0.87 (13984 transcripts, 26.3%) 0.75 0.88 (11200 transcripts, 21.1%)
Probeset RPKM 0.75 - 0.75 -

Probe count 0.77 0.95 (1620 transcripts, 3.1%) 0.77 0.95 (1132 transcripts, 2.1%)
Probe full count 0.64 0.93 (293 transcripts, 0.6%) 0.63 0.94 (189 transcripts, 0.4%)

Correlations between the fold-change values computed from normalized microarray data
and expression quantified from RNA-seq data using different quantification methods (see
text) either with or without a final quantile normalization step. Correlations were computed
on all 53,100 transcripts, or on the set of expressed transcripts only, regarding as expressed
each transcript with an expression value of at least five in at least one sample, corresponding
to 32 mapped reads.

The two probe-based quantification approaches show a similar profile as RPKM,
because they also (implicitly) control for transcript length, by only considering a
fixed-length subsequence of length 325bp (13 probes of 25bp each) for each tran-
script. On the other hand, this means that the probe-based methods only use a
small part of the sequencing data, resulting in expression values of zero for lowly
expressed transcripts. Only using reads which completely overlap a probe’s region
further increases this problem.

Thus, to get an accurate representation of transcript expression, one should either
use a quantification method that corrects for transcript length explicitly (such as
RPK or RPKM), or drastically increase the depth of sequencing such that the probe-
based methods have enough data to work on. Obviously, the latter choice would
result in a huge amount of sequencing reads which, after mapping, are not used for
quantification at all, i.e., a huge amount of data would be expensively produced,
processed, and then discarded. In chapter 8, an alternative to the common RNA-seq
protocol is presented together with a specialized processing algorithm, which avoids
this wasteful data generation while implicitly controlling for transcript length.

7.8.2. Fold-change correlations

The correlations between the expression fold-changes derived from the 2 x 3 tech-
nical array replicates with those derived from the 2 x 3 sequencing replicates was
computed. These correlations are quite high (see table 7.7), as observed in the orig-
inal publication of Marioni et al. [105]. Even without correcting for the library size
(either by using RPKM or by the additional quantile normalization step), the cor-
relations are above 0.75 for the probeset methods as well as for the probe count
method. The latter shows the highest correlation, possibly because it is quite close
to the process used to compute expression values from the array data. The full count
method shows a smaller correlation, most likely due to the fact that only very few
reads are actually counted for the present data, as the read length (36bp) was not
much longer than the probe length (25bp). In the ‘count’ method, a read is counted
when it overlaps with any of the bases of the probe, thus it will be counted if its start

138

7.8. Application example: Human kidney vs. liver tissue transcriptomes

Table 7.8.: Transcripts with normally distributed expression values

without quantile normalization with quantile normalization

transcripts % failed tests transcripts % failed tests
Probeset count 48965 92.2 25 50931 95.9 0
Probeset RPKM 53000 99.8 38 52992 99.8 28
Probe count 50369 94.9 34 51305 96.6 36
Probe full count 51658 97.3 25 52227 98.4 40
Array data 52956 99.7 1

The distributions of transcripts’ expression values per tissue were tested for normality
using the Shapiro-Wilk test, for a total of 53,100 transcripts. Transcripts with p-values for
both tissues above 0.05 were considered to be normally distributed, otherwise they were
counted as not following a normal distribution. The R implementation of the Shapiro-Wilk
test failed with an internal error for a small number of transcripts. These were regarded as
being not normally distributed.

maps in the region from —35 upstream of the probe’s start to +25 bp downstream,
i.e., a region of 60 bp in size. The ‘full count’ method requires the read to map such
that it completely overlaps the probe, i.e., its start has to map in the region of —11
upstream to 0 (coinciding with the probes’s start position), a region of only 12 bp
in size.

When only considering transcripts with a certain baseline expression in at least one
sample, the correlation of the fold-changes rises considerably. As suggested in the
original publication, the threshold was set such that only transcripts were considered
with at least 32 mapped reads (equivalent to a log, expression of five). As in the
original publication, the correlations observed for this smaller set were significantly
higher than for the full complement of genes, supporting the conclusion that the
technologies mostly differ regarding the lowly-expressed genes. Such differences are
likely due to microarray background noise and the sampling of too few reads from
very lowly expressed genes in RNA-seq experiments.

Interestingly, the probe-based quantification methods profit more strongly from this
than the probeset based method. However, this might be due to the small number of
transcripts with sufficiently high expression. This test was not performed for RPKM,
where expression values can not be directly related to the number of reads mapped.

7.8.3. Normality of the distributions of transcripts’ expression values

An argument often advanced as justification for highly sophisticated new statistical
methods to find significantly differentially expressed (SDE) genes is that the expres-
sion values obtained from RNA-seq experiments do not follow a normal distribution.
To test if this was the fact for the data used here, the expression values of each tran-
script in each tissue were tested using the Shapiro-Wilk test for normality [144] as
implemented in R (via MAYDAY RLINK).

A transcript was counted as being ‘normal’; if both its expression values in the
liver sample and its expression values in the kidney sample were found to come

139

7. SEASIGHT: Integration of Sequencing and Microarray Data

Table 7.9.: Overlap between the sets of differentially expressed transcripts

differentially expressed transcripts overlap in percent
seq total only seq overlap only array of seq of array

without quantile normalization

— Probeset count 1917 596 1321 1867 68.9 41.4
— Probeset RPKM 1893 583 1310 1878 69.2 41.1
— Probe count 1811 431 1380 1808 76.2 43.3
— Probe full count 1519 535 984 2204 64.8 29.9
with quantile normalization

— Probeset count 1961 624 1337 1788 68.2 41.9
— Probeset RPKM 1922 610 1312 1876 68.3 41.2
— Probe count 1967 521 1446 1742 73.5 45.4
— Probe full count 1763 744 1019 2169 57.8 31.9

Transcripts were considered differentially expressed (DE) if their Rank Product pfp value
(100 permutations) was below 0.05. A total of 53,100 transcripts were tested, of which 3,188
were called DE based on the microarray data.

from (possibly different) normal distributions. For each vector of three replicates,
this was assumed to be the fact if either all values were identical (a case which
the shapiro.test function will not evaluate), or the p-value for rejecting the null
hypothesis was larger than 0.05. Of 53,100 transcripts, at least 92% were found to
contain normally distributed expression values (see table 7.8).

As there were only three replicates per tissue, the basis for this test is very thin. How-
ever, the results still suggest that for this particular data, the normal distribution
might be a valid assumption.

7.8.4. Overlap of the sets of differentially expressed transcripts

Despite the high number of transcripts with normally distributed expression values,
the nonparametric Rank Product method [30] was used to determine DE transcripts,
both from the microarray data as well as from the DataSets created from RNA-seq
data. MAYDAY offers a memory-efficient implementation of that method. For n tran-
scripts, k permutations and two classes with m; and me replicates, respectively, it
requires O(2n) memory as opposed to the O(nmmsa + nk) of the original algorithm
without an increase in runtime requirements. This algorithm was recently also in-
cluded as an improvement to the original RankProd package [71] for R. Here, it was
run with 100 permutations on each DataSet and all transcripts with a pfp < 0.05
were selected.

To allow for a clearer discussion of the following results, the array data is considered
as a ‘gold standard’. Transcripts called as DE based on the RNA-seq data can thus
be classified either as true positives (TP) if they are also called as DE based on the
array data, as false positive (FP) otherwise, and transcripts only called as DE based
on the array data can be classified as false negatives (FN).

140

7.8. Application example: Human kidney vs. liver tissue transcriptomes

The largest overlap between the set of DE transcripts from the array data and that
from the sequencing data is found with the ‘probes count’ method (see table 7.9),
which is not surprising given that it involves expression quantification and summa-
rization steps quite similar to the ones used for the array data. Again, one might
expect an even larger agreement for the ‘full count’” method, because it models the
hybridization process on the array more closely. This expected result is probably not
seen due to the small number of reads that can be used for quantification with this
method (as discussed in section 7.8.2).

Testing only for the overlap of DE transcripts which also have an expression value > 5
in at least one sample, or which additionally also have an absolute fold-change of at
least three between tissues, reduces the number of false positives, but also greatly
increases the number of false negatives, simply because the number of DE transcripts
in the RNA-seq data gets smaller (data not shown). One might also argue that an
expression level of five in the array data is not sufficiently high to ensure that all DE
transcripts are actually expressed above the level of the background noise. Increasing
the minimum expression threshold for the array data reduces the number of false
negatives (as seen from the sequencing data), but also reduces the number of true
positives (data not shown).

Interestingly, the number of transcripts detected as differentially expressed in the
RNA-seq data is much smaller than if using the array data, regardless of normaliza-
tion method, ranging from 48.7% to 63.1% in size. This is likely due to the higher
variance in the expression values computed from the mapped reads, which could be
alleviated either by using more replicates, or by advances in sequencing technology
(including protocols). To test whether the variances might be a problem, the three
sets of transcripts (TP, FP, FN) were analyzed separately by computing the quotient
of the coefficient of variation divided by the fold-change. This results in a measure
of observed variation per fold-change detected, irrespective of the absolute expres-
sion strength. The results clearly show (figure 7.18) that the false negatives are not
detected as DE in the sequencing data because of their high variance in relation
to their fold-changes. DE transcripts found based on the sequencing data, but not
found based on the array data also show a somewhat elevated variance, yet much
less pronounced.

141

7. SEASIGHT: Integration of Sequencing and Microarray Data

o
** 71 RNA-seq, probes count Microarray, RMA

with quantile normalization H
8
8
o
< |

| o
3 o |
c '
] '
< '
© |
k] \
L ,

> . °

8 « 4 : o

o

o

-]

o

3

— — -]

8

o

[] : J_ _
L] T :
o f—— —— R — e —— &

T T T T T T
both only seq only array both only seq only array

Figure 7.18.: Variance of differentially expressed (DE) transcripts found based on the
sequencing data, the array data, or both, and computed, based on the
expression values of each technology, as the ratio of the coefficient of
variation (standard deviation divided by mean) and the fold-change.
This measure shows the relationship between variance and fold-change,
normalized by the relative expression strength.

142

8. Passage: Efficient RNA-seq clustering

MAYDAY SEASIGHT can quantify expression and build expression matrices from raw
data in many formats obtained using different technologies such as microarrays or
RNA-seq, but also data from specialized protocols. One such protocol is PASSAGE,
which will be introduced in this chapter.

Microarrays have been widely used for expression analyses. However, there are limi-
tations to this technology. Most importantly, probe design requires previous knowl-
edge about the transcripts of interest. RNA-seq does not have this limitation: By
mapping the sequenced reads against a reference genome sequence, RNA-seq anal-
yses can be used for de movo transcriptomics, i.e., for measuring the transcription
without prior definition of interesting targets.

RNA-seq experiments usually involve the sequencing of millions of short reads cover-
ing the whole transcriptome (after suppression of highly abundant ribosomal RNAs
from the sample). Besides expression quantification, this wealth of data can be used
to address a very wide range of research questions, spanning detection of previously
unknown coding as well as non-coding transcripts, reannotation of known tran-
scripts, splicing analysis, and characterisation of single nucleotide polymorphisms
(SNPs) as well as larger mutations.

However, all these analyses depend on the mapping of sequenced transcripts against
a known reference sequence for the organism (or organisms) under study. This de-
pendence prevents the application of RNA-seq analyses to samples from organisms
for which genome sequences are not available, or, in the field of metatranscriptomic
analyses, samples for which the organism content is not known. Even though more
and more genome sequences are produced, genome sequencing (and genome assem-
bly in particular) remains very time-consuming as the advent of faster sequencing
methods only managed to move the bottleneck from wet-lab work to data process-
ing [116]. Thus RN A-seq is not easily applicable to analyses of presently unsequenced
organisms. As the vast majority of organisms (above 99.95% [100]) fall into this class,
this problem will not be resolved quickly.

In the case of metatranscriptomic samples and samples of unknown organisms,
Blast [3] is usually employed to map the sequenced transcript fragments against
the database of all known sequences. Based on the mapping results, researchers try
to assess organism content and to compute a transcriptional profile for each sample.
Such analyses require enormous computing resources for storing the large number
of reads sequenced as well as for performing the mapping step.

Many RNA-seq experiments, however, are performed with the specific aim to detect
differential expression (of protein-coding genes) between two classes of samples. For
this kind of project, the sheer volume of data produced by RNA-seq is an obstacle
to analysis rather than a blessing. A lot of time and effort is spent to quantify

143

8. Passage: Efficient RNA-seq clustering

Transcrip‘fional Unit

T
TSS Start

Rsal Stop TTS
l l Gene X restriction site
5'UTR 3'UTR
[ceae iEgmentseauenca D> G SEqueRea) TTTTTTTTTTTTTCA|

Figure 8.1.: Schematic view of fragments created by the PASSAGE protocol from a
transcriptional unit. Rsal restriction sites (signature GTAC) give rise to
internal fragments starting with the AC prefix. Additional fragments are
created downstream of the transcription start site (TSS), covering part of
the 5’ untranslated region (UTR) and starting with the prefix ACGGG, as
well as upstream from the transcription termination site (T'TS), covering
part of the 3> UTR and starting with ACT!3.

expression based on the reads and many of the features of sequencing data (single-
base resolution, detection of SNPs, etc.) are not considered at all. In addition, the
(still) high cost per experiment (resp. sequencing ‘run’) is still a prohibitive factor.

8.1. The Passage idea

PASSAGE is a novel protocol [75] which adds a new option to the transcriptomics
toolbox. In particular, it offers a solution to the reference genome problem intro-
duced above. In the following, the general PASSAGE idea will be introduced with
the computational challenge it presents, followed by a description of the algorithmic
solution [12] to this challenge.

The PASSAGE idea is an extension of the SAGE method [167] for expression quan-
tification. Instead of sequencing a random subset of fragments generated from all
transcribed RNA molecules (excluding most of the ribosomal RNA), the PASSAGE
protocol is designed to only sequence certain well-defined fragments from each gene,
as shown in figure 8.1. Prior to sequencing, the extracted RNA is cut using the
Rsal restriction enzyme (restriction site motif GT-AC), resulting in fragments start-
ing with the bases AC. Sequencing primers are used that specifically bind only to
such fragments. In addition, fragments in the 3’ and 5’ untranslated region (UTR)
of the genes are also sequenced. For the 3’ UTR, a primer binding to the poly-A tail
of the transcript is used, introducing a dangling AC end. To capture the 5° UTR,
adapters containing the ACGGG tag are ligated to the start of the mRNA. These UTR
fragments ensure that transcriptional units which do not contain an Rsal restriction
site are also represented in the read pool.

The PASSAGE protocol is based on Illumina sequencing of these fragments produc-
ing reads of a fixed length. Restricting the sequencing step to a set of well-defined
transcripts results in several advantages that makes PASSAGE highly useful for cer-
tain applications. These come at the expense of some of RNA-seq’s wide range of
application domains. The differences between generic RNA-seq and PASSAGE are as
follows:

144

8.1. The PASSAGE idea

Advantages of Passage
e Significantly reduced data volume
e Higher multiplexing levels are possible, reducing the cost per experiment.

e Reads share a common prefix (AC) such that contamination (e.g., by linker
sequences) can easily be detected and removed.

e Reads either overlap completely (if they are from the same site), or not at all
(different sites). Time-consuming overlap computation thus is not necessary
and read clustering can be implemented very efficiently, as described below.

e As only reads starting at restriction sites (and the two UTR sites) are consid-
ered, the RNA-seq specific length bias is no problem for PASSAGE. Instead of
generating reads proportional to the expression strength and the length of the
transcript, reads are only generated proportional to the expression strength.
Thus normalization of the resulting expression estimates is less complicated
than for generic RNA-seq data where a nonlinear dependence of read counts
to transcript length is observed [33].

Disadvantages of Passage
e No single-nucleotide precision for the detection of transcript boundaries.

e Polymorphisms (SNPs) can only be found in very limited transcript regions,
i.e., those regions that are directly up- resp. downstream of restriction sites
and are thus covered by fragments.

e As SNPs, splice sites can only be detected in the regions covered by fragments.
A reference sequence is required and splice sites can be discovered by mapping
the fragments to the genomic sequence and finding fragments that only map
partially because they span an intronic region.

e Distinguishing different isoforms of one gene is not straightforward because
the different fragments originating from one gene do not overlap (except in
some rare cases where the distance between restriction sites is less than twice
the sequenced fragment length). Mapping fragments to a reference sequence
and modelling the observed expression estimates for each fragment as the sum
of expression values of the different isoforms it is contained in would be one
possible route to computing isoform expression.

e The protocol is currently limited to eukaryotic coding genes. A modified pro-
tocol for prokaryotes as well as for non-coding transcripts is in preparation.

Based on PASSAGE output, analyses of differential expression are possible in differ-
ent settings. If no reference genome is available, differentially expressed transcript
fragments can be determined which can later be the basis for Blast searches or
for primer design to fully characterise the corresponding transcripts. If, on the other
hand, the reference genome of the respective organism is available, the clustered and
quantified reads can be mapped using common mapping tools such as Bowtie [95]
or RazerS [174]. Users then benefit from drastically reduced computational costs
as clustering typically reduces the number of reads by about 85-95% (for details,
see [12]).

Data generated based on the PASSAGE protocol and algorithm (see 8.2) is made up of
a list of identifiers (fragment sequences) and the quantified expression level (available

145

8. Passage: Efficient RNA-seq clustering

as absolute reads and reads per million). Such data can be analyzed using MAYDAY
just like any other tabular expression data. If normalization steps are desired, data
import into MAYDAY should be performed using SEASIGHT.

8.2. A mismatch-tolerant clustering algorithm for reads

The aim of the PASSAGE program is to cluster the reads resulting from sequencing
of a sample treated with the PASSAGE wet-lab protocol, i.e., to count the number
of occurrences of each fragment. The algorithm has to be able to allow for a certain
number of mismatching bases while still being efficient. The vast majority of such
mismatching bases occur due to imperfections in sequencing methods. Additionally,
in diploid organisms, single nucleotide polymorphisms can cause a divergence be-
tween the maternal and the paternal allele of a gene. The special properties of the
reads, in particular the fact that all reads belonging to the same fragment overlap
completely, make an efficient implementation possible. Reads are clustered in three
consecutive steps (see figure 8.2):

1. Presorting: All reads share the common prefix AC. Since PASSAGE drasti-
cally reduces the number of reads required for accurate transcript expression
quantification, so-called barcode sequences can be added in front of each read.
This allows for multiplexing, i.e., sequencing several samples in one lane. The
presorting step separates reads according to their multiplexing barcode and
their fragment class (3’, 5°, or internal) based on their prefixes. As barcode se-
quences are designed to be mismatch-tolerant, the presorting algorithm must
allow for a certain number of mismatches in the barcodes.

2. Exact clustering: The majority of reads are assumed to be error-free. In the
exact clustering step, a prefix trie data structure is used to collect identical
copies of reads, deriving from the same transcript fragment. The number of
identical copies corresponds to the expression level of the respective gene.
Thus this step reduces the data volume by discarding duplicate reads and
summarizing expression strength as the number of identical copies.

3. Mismatch resolution: Sequencing errors can arise during to base-calling
(where they only affect one read), or during PCR amplification (where several,
if not all reads originating from the same locus are affected). The latter problem
is solved by new third-generation sequencing methods which eliminate the
amplification step, as well as by specialized amplification-free protocols for
second-generation sequencing [104]. The base-calling error, however, remains.
In the final step of the PASSAGE algorithm, reads are clustered together based
on a maximal number of allowed mismatches. This reduces the data volume
by removing the effect of sequencing errors.

The mismatch resolution step of the algorithm (see listing 8.1) starts by sort-
ing the exact clusters according to their size, i.e., the number of reads with
identical sequence. Starting with the largest such cluster, the procedure is as
follows: Use the sequence of the largest cluster as center sequence. Find all
other exact clusters that have at most k& mismatches to the center sequence.

146

Presorting

Exact clustering

Mismatch resolution

8.2. A mismatch-tolerant clustering algorithm for reads

P:;‘;;Zn;e: ds [ACG® | fragment sequence
1L DEYI e =
franmant caniianra

// \Eemultiplexing

> 4| ACT™ | fragment sequence
Barcode 3| ACG?® |fragme I ‘ g e

Barcode 4 I /NeIE |

Prefix trie sorting

l Hashing, Cluster merging
!!IIIIII
Emmesc A
\ clusters with
sequencing errors
Fragment A | 2343
Fragment B | 1899
Fragment C | 1674

Figure 8.2.: Steps of the PASSAGE algorithm: In the presorting step, reads are sorted

according the their multiplexing barcode and the fragment class. A prefix
trie data structure based on the DNA alphabet is used to cluster reads
together if their sequences are identical. Only nodes for existing sequences
are added. The final step, mismatch resolution, uses hashing to merge
clusters that likely derive from the same genomic sequence but contain
mismatches due to sequencing errors. The final result is a data table
summarizing expression strengths for observed fragments. 147

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

28

29

8. Passage: Efficient RNA-seq clustering

Let L ={C4,...,Cp} /] the set of exact clusters, sorted descendingly by size.
Let M =10 // the set of mismatch clusters
Create hashmaps Hy, ..., Hpq1 /] for k+1 seeds (k mismatches allowed)

For each C; € L do
Let S(C}) be the sequence of cluster Cj.
Split S(C;) into k + 1 substrings s1,..., Sk+1
For ¢ =1to k+1do

Put < s¢,C; > into Hy

done

done

while |L| > 0 do
Let C be the largest cluster in L. /] S(C) is the current center sequence.
K «+ {C}
Split S(C) into k + 1 substrings si,. .., Skt1
For ¢ =1tok+1do

Let Ky be the set of clusters stored in Hy at key s
For each candidate C’ € K, do

if mismatches(S(C), S(C")) < k then
K+ Ku{C"}
fi

done

done

Remove all C' € K from Hy, ..., Hgiq
M <+ M U {mergecluster(K)}

L« L\K

done

return M

148

Listing 8.1: The PASSAGE mismatch resolution algorithm

Merge them with the initial cluster and remove the resulting cluster (and all its
corresponding reads) from the data. (Note that the center sequence is stable
and does not change as a result of the merging of clusters, i.e., the clusters’
centroids do not move.) Thus, each cluster can be merged exactly once. Repeat
until all clusters have been processed. Efficiently finding clusters with up to
k mismatches to a given center sequence is achieved using hashing. Sequences
are split into k + 1 substrings. For each i € [1,k + 1], a hashmap is created
mapping the i** substring to all clusters in which it is contained.

The assumption at the basis of this procedure is that erroneous bases are much
less likely to occur than correct bases. As a result, the majority of reads should
correctly reflect the genomic sequence (excluding introns) of the respective
gene. In fact, we found this to be the case for most genes. For genes with a

8.3. Results

very low number of reads (e.g., less than 5), however, the correct sequence
cannot reliably be identified, as erroneous reads are more likely to dominate
the distribution in such cases.

8.3. Results

The results obtained using the PASSAGE method were validated using microarray
experiments (see [12] for details), showing a correlation of the expression values of
0.69, a figure that is comparable to the correlations reported between microarray
and conventional RNA-seq experiments elsewhere (for an example, see Fu et al. [54]
who found a correlation of 0.67).

As expected, summarizing expression values greatly reduces the size of the dataset
by removing redundancies. Observed average reduction rates varied between 85%
for reads of length 76bp and 94% for shorter 40bp reads, if two mismatches are
allowed during mismatch resolution (see [12] for details). It is to be noted, however,
that longer reads are expected to have a higher number of mismatches. This has
several reasons: Firstly, a constant error rate per base automatically results in a
larger number of mismatches for reads with more bases. And secondly, per-base
error rates for the Illumina sequencing technology are not uniform but increase over
the length of each read with each additional base sequenced. These error profiles are
not easy to implement in a program like PASSAGE, however.

Assuming position-independent and equal error rates for both read lengths, one has
to allow for four mismatches for the 76 bp reads. To complement the results already
presented, PASSAGE was run with this higher number of allowed mismatches using
the same eight datasets of 76bp reads as in the original publication. The resulting
data volume reduction was in the range of 84% to 94% (mean 91%) for the longer
reads, showing that data volume reduction is consistently high if per-base error rates
are maintained independent from read length.

Theoretically, the average runtime of PASSAGE is O(n), which was found to hold true
in practice (as described in [12]). To assess the runtime and memory requirements
of the clustering implementation described here and to find out if other programs
can perform the same task with similar effort, PASSAGE was compared to programs
designed for transcript assembly. Although such programs are not designed for the
same task, they can be used for such a comparison as the problem at hand is a special
case of transcript assembly (with only 0% or 100% overlap between fragments to
assemble).

The test dataset consisted of 4,610,214 reads of length 40bp. To define a ‘gold stan-
dard’ of the expected number of clusters, the read sequences were trimmed to remove
the ACTTTTTTTTTTTTT, ACGGG and AC prefixes and then mapped against the reference
genome using Bowtie [95] and allowing for two mismatches. The resulting number
of unique mapping position was used as the expected number of clusters to be gen-
erated. This is based on the assumption that read sequences derive from genomic
fragments and that each cluster created by PASSAGE should correspond to one ge-
nomic locus covered by a group of identical reads. For want of a ‘true’ gold standard

149

8. Passage: Efficient RNA-seq clustering

this method was chosen as the best approximation, even though there are several
caveats with this assumption:

e In the case of genomic duplications with identical sequence (large-scale du-
plications or smaller duplicated elements such as pseudogenes), the mapping
process would create several mapping positions while PASSAGE would create
only one cluster. If all mapping positions were counted, this might lead to
an overestimation of the expected number of clusters. For the test dataset,
only unique mappings were considered, i.e., reads mapping to more than one
position with identical alignment score were discarded.

e Bowtie can not map reads to the genomic sequence if they span an exon-
intron junction as this requires splitting the read into two parts and aligning
them separately. Thus, such reads would not be mapped and would not be
contributing to the number of mapping positions. PASSAGE, on the other hand,
would have no problem clustering these reads. As a result, the mapping process
could underestimate the number of clusters to be found. To counteract this
problem, only reads mappable by Bowtie were included in the test dataset.

3,442,541 reads (74.67%) could be aligned to the genome to 40,023 unique positions.
Based on this gold standard, a clustering of reads performed without the reference
genome should approximately generate forty thousand clusters. If a program pro-
duces significantly fewer clusters, it is likely to merge clusters stemming from differ-
ent genomic loci. As a result, the expression estimates obtained from that clustering
will be too high and/or many fragments will be missed. In addition, such a clustering
would result in clusters with either very vague consensus sequences (using ambiguous
bases) or consensus sequences longer than the well-known read length (violating the
0%-or-100%-overlap rule). On the other hand, if a program produces significantly
more clusters, it will underestimate the expression of the fragments because clusters
arising due to sequencing errors would not have been merged correctly.

The tests clearly showed that the tested assembly programs use more memory and
have a higher runtime than our implementation, and, most importantly, can not
solve the PASSAGE clustering problem (see table 8.1), either producing too few or
too many clusters. Interestingly, Mira3 not only produces too many clusters, but
these clusters also have very ambiguous consensus sequences. Assembly programs
with their (for this problem) very generic approach are clearly not useful for our
purpose.

The development of new tools for second-generation sequencing data lead to the pub-
lication of new software tools specifically designed for clustering second-generation
DNA-seq reads. One such tool is SEED [7] which aims at reducing the redundancy
found in NGS datasets by finding so-called center sequences and by clustering each
read with the center sequence if their distance is less than a predefined threshold. As
such, SEED is very similar to PASSAGE, and the authors claim that clustering reads
with their software also improves sequence assembly based on the clustered reads.
To complement the comparisons described above, PASSAGE’s performance was also
compared with that of SEED and the results are presented in table 8.1 alongside
those of the other programs. Though SEED produces almost the same number of
clusters as PASSAGE, its runtime is more than five times as high.

150

8.3. Results

Table 8.1.: Comparison of PASSAGE to other programs

Program CPU time memory clusters/contigs mcl
Bowtie® [95] 22 min 160 MB ©40,023 -
Assemblers
Cap3® [72] - >16000 MB - -
Mira3 [37] 22 h 3000 MB 70,121 40.23
Locas [90] 35 min 4100 MB 2,537 40.10
Velvet [184] 1 min 600 MB 291 42.12
Read clustering tools
SEED [7] 5 min 2500 MB 40,808 40
PASSAGE <1 min 1200 MB 40,759 40

Runtimes and resulting number of clusters/contigs for all tested programs. mcl, mean con-
sensus length. “Cap3 did not complete due to memory restrictions; *Bowtie was used to
establish a gold standard for the expected number of clusters; “unique mapping sites. Table
updated and extended based on [12].

The number of clusters reported by PASSAGE is closest to the estimate produced
using Bowtie. A small discrepancy is to be expected. In fact, there are explanations
for differences in either direction, resulting in too few or too many clusters created
by read clustering programs such as PASSAGE. Both cases result from the fact that
clustering is performed without knowledge of the genomic reference sequence:

e Too many clusters can occur if the genomic sequence of a locus is never
sequenced perfectly. A lowly-expressed gene, for instance, could result in two
reads, each having two mismatches (sequencing errors, SNPs) to the genomic
reference sequence. If the errors in the two reads do not occupy the same posi-
tions, the distance between those reads would be four. The genomic sequence
would lie ‘between’ the read sequences, in terms of the distances. A mapping
tool such as Bowtie would be able to align both reads to the same genomic
locus with two mismatches, creating a single mapping coordinate. During read
clustering, however, these reads would result in the creation of two separate
clusters, as they are too far apart for merging.

e Too few clusters can occur because PASSAGE assumes that two clusters with
less than k£ mismatches come from the same genomic locus. In some cases,
mapping these two clusters’ sequences against the genomic reference might
reveal that there exist, in fact, two loci with almost identical sequences. Here,
the number of mapping positions would be larger than the number of clusters
created.

Considering that the number of clusters found is only slightly larger than the ex-

pected number (by 1.8%), and that this ‘gold standard’ itself is also just an estimate
of the ‘true’ situation, the PASSAGE clustering is likely to be close to perfect.

151

8. Passage: Efficient RNA-seq clustering

Candida albicans 541,800k 541,900k 542000k 542100k 542,200k S42,300k 542400k S42,500k 542,600k
chromosome: Ca2lchrl |) | | | | | | | | | L | L |] | 1

Candida albicans CDS

Mapped Reads

Coverage

E

Figure 8.3.: PASSAGE fragments along a transcript, shown for orf19.2947 on Candida
albicans chromosome 1 (antisense strand). Reads are colored according
to their PASSAGE fragment class: Blue, 5> UTR,; gray, internal; red, 3’
UTR. The Rsal restriction sites result in internal fragments sequenced
in both directions. Internal fragments create many more reads than the
UTR fragments, causing many reads to be drawn overlapping each other
due to space constraints. The log coverage curve at the bottom clearly
shows these differences.

8.4. Recovering the transcripts

One interesting question regarding PASSAGE is whether it is possible to recover which
fragments belong together, i.e., which fragments come from the same transcript. As
fragments do not overlap and the reference genome is not available for mapping,
this information can not be obtained by computing overlaps, comparing mapping
positions to existing gene annotations or by grouping together fragments based on
their distance in the genome.

A simple idea would be to group fragments by their expression estimate, assuming
that the 5, internal and 3’ fragments of one transcript should have very similar
expression (allowing for small differences due to the sampling of reads). However,
this procedure does not work because expression of the different fragments of one
transcript can in fact be highly different [182, 25]. The same effect was found for PAs-
SAGE data where the genome sequence was available (see figure 8.3 for an example).
Thus, there is presently no method to reconstruct the relationship between frag-
ments generated by the PASSAGE protocol without using a known reference genome
or, at least a library of known transcript sequences.

152

9. Discussion

Many challenges are posed by biological research focusing more and more on large-
scale, comprehensive studies in general, and by the introduction of new experimental
techniques for high-throughput experiments in particular. For the field of bioinfor-
matics, these challenges are all centered around the theme of integration. Bioinfor-
maticians are called to develop methods and tools which simplify and assist in the
task of deriving knowledge from the experimental data. This task starts with pro-
cessing data from different sources, with specific biases to take into account, and
stored in different data formats. It includes the combined application of methods
from statistics and visualization in the context of meta information, and extends
up to the merging of different research groups’ findings into a global view of the
biological system under investigation.

My contribution in the course of my PhD period was the creation of a flexible,
extensible software tool for visual omics data analysis which offers solutions to some
of these challenges. The new MAYDAY software

1. integrates many stand-alone methods into a common application,

2. integrates many visualizations, enhanced by the use of meta-information,

3. integrates interactive analysis and ad-hoc programming,

4. integrates with other Systems Biology applications,

5. integrates results from different physical locations via GaggleBridge, and

6. integrates new types of transcriptomics data into existing analysis pipelines.

In this dissertation, I have presented major changes to the existing MAYDAY frame-
work, involving the complete re-design of several existing systems. The code base has
grown considerably over the time of this dissertation, as new facilities were added to
MAYDAY’s core (e.g., data structures, the Settings framework). At the same time,
functionality that was previously implemented several times in different sub-systems
(written by different authors) was consolidated and moved into the appropriate core
packages. Thus, the overall increase in the size of the project is a combination of
a growth due to new, well-designed core classes/packages and new plugins, and a
decrease resulting from the removal of (duplicated) ad-hoc solutions.

These developments followed two major aims: Firstly, the creation of a comprehen-
sive, ‘one stop’ solution for transcriptome analysis tasks. This was clearly achieved.
MAYDAY now integrates a large range of methods covering different analysis tasks
(e.g., filtering, statistics, inclusion of meta data, and visualization), giving users a
powerful software tool for their transcriptomics analyses. From the user’s point of
view, the user interface is now much richer, exposing more of the data model to di-
rect inspection and interaction. The re-use of core components instead of per-plugin
implementations results in a more consistent user experience. MAYDAY’s power was

153

9. Discussion

proven in the course of the SysMO STREAM project, during which many new exten-
sions were conceived, implemented and put to use. MAYDAY’s strengths were also
recognized by external users as given by currently 35 original papers citing one of
the MAYDAY publications (the core publications [46, 16], or the sub-system publi-
cations [156, 155, 14]). Recently, a review of microarray analysis software [93] found
that MAYDAY was one of the top three tools in this field, together with MeV [133]
and Chipster [87] (see also section 9.1).

The second aim was to establish a solid foundation for further software develop-
ment. This aim was also achieved as evidenced by several new developments which
are based on the new MAYDAY core. From a programmer’s point of view, implement-
ing new methods as well as complete sub-systems for MAYDAY has become easier,
with less time spent on writing user interface components, task management, and
data handling, to name only a few, and more time available for the implementa-
tion of the actual method. This aspect is discussed further in section 9.2. During
method development, but also during complex or non-standard analyses, interactive
programming can be highly useful to explore new ideas and hypotheses. MAYDAY’s
‘universal shell’ package provides a user interface and a range of functionality re-
quired for the implementation of interactive scripting and querying on MAYDAY’s
data structures. On this basis, MAYDAY RLINK provides an interface to the ex-
tremely powerful R language for statistical programming, a framework for method
development in the JavaScript language which allows for very tight integration with
MAYDAY’s Java core, and an interface for data analysis using the database query
language SQL. Other programming and query languages can now easily be added
as plugins.

The integration of sequencing-based expression data and a comprehensive data pre-
processing framework was the third aim and major focus of my work. Based on the
strong foundation laid with the new MAYDAY core, SEASIGHT allows users to work
on data from recently introduced transcript quantification methods based on new
high-throughput sequencing technologies as well as from traditional, well-established
microarray platforms. This extends MAYDAY’s applicability to new data types, to
the full transcriptomics analysis pipeline starting from raw data, and to new kinds
of projects, as described in section 9.3.

The penultimate section 9.4 presents some ideas for further development which have
become possible with the new MAYDAY core and the large additions to MAYDAY’s
functionality presented in this dissertation. It is followed by a final conclusion of my
work in section 9.5.

database query language SQL. Other programming and query languages can be
added as plugins.

9.1. Mayday as a powerful framework for expression analysis

MAYDAY was used for data analysis in the context of a large study of time-series
data [111, 11, 171] during which its stability, the flexible visualizations, and the
possibility to quickly add new features proved to be very useful.

154

9.2. MAYDAY as a powerful platform for development

Apart from work done in the Integrative Transcriptomics group in Tiibingen, MAY-
DAY is also used by other researchers, and was recently analyzed as part of a large
survey of microarray analysis software [93]. In that survey, MAYDAY was found to
offer “the second-most complete range of features”, which is remarkable given the fact
that most other free microarray analysis software packages only present a graphical
user interface to the functions offered as part of the Bioconductor [58] packages for
R [125], while the respective functions in MAYDAY have all been (re-)implemented in
Java. As the authors further note, this makes MAYDAY’s analyses “run comparatively
fast”. The wealth of methods and the flexibility it provides result in a large number
of configurable options that are missing from other software (such as the choice of
distance measure for k-means clustering, for instance), which the authors recognize
as a double-edged sword, stating that “the functionally-rich interface, that also allows
to set various parameters for every method, is clearly geared towards the expert and can
be demanding for less experienced or occasional users.”

As a stand-alone application, MAYDAY has none of the setup and configuration
costs that are common to client/server-based applications (and even some appli-
cations running on top of an R installation) which demand that such installations
“should only be attempted by an experienced engineer. These systems need to have a
database installed (often in a specific version) which needs to be configured properly”.
While one would expect that this extra cost is amortized by the benefits of having
a database-backed client /server solution, Koschmieder et al. find that in contrast to
MAYDAY, most database-based systems do not work well with large experiments, or
fail completely when trying to import the data.

Finally, as many published microarray analysis packages are no longer actively devel-
oped, and a large number is no longer available for download, the fact that MAYDAY
is actively developed and support requests are quickly answered is specifically high-
lighted by the authors. Of 78 tools included in the initial survey list, the authors
find that only seven are open-source, available for download, and could successfully
be installed.

Thus, even though MAYDAY appears to be only one tool in a vast ocean of such
programs, it is in fact (at least according to Koschmieder et al.) one of only six tools
that are actually really available to the scientific community, one of four able to deal
with a large human transcriptome dataset, and one of only three programs that can
be used without a complicated installation procedure.

9.2. Mayday as a powerful platform for development

The powerful core structure implemented in MAYDAY since version 2.5 greatly re-
duces the amount of work necessary for programmers to add new functionality to
the program, especially if they wish to extend an existing part. As a result, MAYDAY
can be used as a platform for rapid prototyping of new ideas for visualizations and
statistical measures, amongst others.

The current implementation of MAYDAY’s heatmap (described in section 4.2) is a
good example. Itself being a visualization plugin, the heatmap can delegate most of
its work to MAYDAY’s core to minimize implementation effort: Everything related to

155

9. Discussion

settings (including storage, user interface generation, and communication of changes
due to user interaction) is handled by the Settings framework; the discovery, in-
stantiation and management of column and header renderers is done by the plugin
manager; and everything connected with the data being visualized is the responsibil-
ity of the Vis3 framework. If a row, column, or header renderer has user-configurable
settings, these are integrated automatically into the relevant menus and dialogs. As
the same Setting types are used by other MAYDAY plots, they are already familiar
to users. A combination of Vis3 and core data structures, Settings, and specific
rendering code is used to implement meta-information dependent rendering, which
was one of the prime features of the original enhanced MAYDAY heatmap [57].

While the new heatmap is an excellent example of powerful, rich-interface tools
that can be written based on plugins, settings and the visualization framework, it
is by far not the only one. The largest and most complete illustration of MAYDAY’s
power as a development platform is given by Stephan Symons’ MAYDAY GRAPH
VIEWER [155]. A third example is the time-series analysis tool, TIALA, which was
described in section 4.4.2. Further, more recent examples not described here are the
GenomeRing visualization of multiple genome alignments [68], and Giinter Jéger’s
eQTL analysis tool REVEAL [86]

Besides such extensions which are relatively self-contained, M AYDAY’s architecture
also allows programmers to implement changes that deeply affect MAYDAY’s core
operations without actually touching a single line of the core codebase. The dy-
namic filtering framework introduced in section 3.5 gives a good example of how far-
reaching modifications to core facilities such as the ProbeList can be implemented
as MAYDAY plugins without requiring any change of the core data structures.

9.3. Sequencing for transcriptome analyses

When the new high-throughput sequencing technologies were introduced, software
tools needed to be created to analyze the new type of data generated by these
technologies. Quality control and read mapping tools were among the first programs
developed. Using mapped read data as input, variant detection and expression quan-
tification methods could be implemented, followed by programs for the computation
of differential expression. However, as shown in section 7.2, the early tools were
all single-method implementations for either expression quantification, or statistical
testing, or visualization. Some of them were later included in larger frameworks,
such as the Galaxy web service, for instance.

MAYDAY SEASIGHT was one of the first, probably even the first, implementation
of a complete analysis pipeline covering all steps from importing mapped read data
from a variety of specialized read mapping tools, via expression quantification and
normalization, filtering and statistical testing, up to highly interactive and flexible
visualization of results. At each step, researchers can apply different methods to
process data from RNA-seq experiments in a variety of ways. With this ‘one stop
shop’ approach to data analysis, MAYDAY SEASIGHT marks a major achievement
in transcriptome bioinformatics. It allows researchers to focus on interpreting their
data instead of memorizing how to apply a series of programs specialized for just one

156

9.3. Sequencing for transcriptome analyses

single task and writing custom processing scripts for each project. Getting started
on an analysis with MAYDAY SEASIGHT takes only a few minutes as no compli-
cated installation procedure is required and interactive visualizations can be used
to quickly inspect the data.

As the importance of RNA-seq for transcriptomics research is increasing, traditional,
microarray-based transcriptome studies will remain an essential method to research
the roles of individual genes as well as groups of genes defined by, e.g., metabolic
pathways, functional families or common intra-cellular localization of the gene prod-
ucts. For well-characterized organisms where the transcriptomic potential is already
known, microarrays are still considerably cheaper than full-scale sequencing experi-
ments, and their analysis is less fraught with problems of handling large volumes of
data. Thus, MAYDAY’s strong capabilities in this field will remain highly important
for future research. The flexibility provided by SEASIGHT allows for the relatively
quick incorporation of new or improved normalization methods to extract as much
useful information from such experiments as possible. This has the benefit of enabling
users to analyze their transcriptome data in a single software package, irrespective of
the technological platform used for data acquisition, reducing the need for adjusting
to a completely different program for each data type.

In addition, MAYDAY (with SEASIGHT) can now be used for combined analysis of
both RNA-seq and microarray data. In the future, studies will make even more
use of combined approaches. For example, in the field of genome-wide association
studies (GWAS [91]), sequencing experiments of a subset of a large population can
be used to determine the set of variants which are then verified and analyzed in
large cohort studies with specifically designed (and cheaper) microarrays. One such
approach is proposed by Illumina with their so-called ‘Omni’ line of products [76].
Similar developments are likely to occur in the field of gene expression analysis.

High-throughput sequencing is becoming an established tool for transcriptome stud-
ies (as well as for a range of other areas such as genome sequencing, variant detec-
tion, epigenome studies [176, 74], and taxonomic classification of metagenome sam-
ples [73, 59], for example). A large part of the new technology’s utility lies in the
fact that RNA-seq can be used to create an unbiased view of a cell’s transcriptome,
independent of a previously chosen set of known transcripts. In conjunction with a
known genome sequence, this allows for the detection of novel transcripts [157] and
isoforms [127, 151], as well as for correcting existing gene annotations, for instance
including exons only found in rare splice variants.

However, the fact that RNA-seq currently requires the existence of a reference se-
quence for read mapping can prove to be a significant obstacle for researchers working
with samples from organisms which are unknown or hard to cultivate, as the ob-
tained reads can not be mapped to a genome. Two possible directions can be taken
to use traditional RNA-seq data in the absence of a reference sequence. Transcript
assembly tools can be employed to try to recover full-length transcripts from the
sequencing reads. Alternatively, the reads can be mapped directly to a database of
all known sequences (e.g., using Blast [3]) to try to gain an insight into the organism
community and gene content of a (meta-) transcriptome sample.

157

9. Discussion

A third alternative described in this work is the application of the PASSAGE protocol
for sequencing followed by the read clustering algorithm presented in chapter 8.
With this method, comparative transcriptomics experiments are possible even for
samples with unknown reference genomes. Data volume is greatly reduced due to the
restriction of the sequenced reads to precise locations (starting at Rsal restriction
sites). As a result, smaller sample volumes and shorter read lengths can be used,
leading to a significant reduction in cost as compared to full-scale RNA sequencing
experiments.

The PASSAGE algorithm for read clustering makes use of the special properties of
the reads produced by the wet-lab protocol to efficiently group them into clusters
transcribed from the same genomic locus and quantify the expression for each tran-
script fragment. Compared to other tools addressing the generic problem of tran-
script assembly and more recent algorithms developed particularly for clustering of
short reads from high-throughput sequencing, the implementation presented here is
superior both in memory demands as well as regarding computing time. Most impor-
tantly, results indicate that it produces results most similar to the ‘gold standard’
defined by counting unique mapping positions for the sequenced reads.

9.4. Outlook

The MAYDAY project has come a long way, thanks in a large part to the work of
students implementing new methods, collaborators and other researchers evaluating
existing and requesting new functionality, and, most importantly, the other core
developers, Nils Gehlenborg, Janko Dietzsch, Stephan Symons, and Gilinter Jager,
under the supervision of Kay Nieselt.

However, there always remain improvements which were not implemented for lack
of time, or have just become possible with the latest developments in MAYDAY,
regarding both new analysis technologies (e.g., RNA-seq), as well as changes in the
scope of research (such as the wide approach taken by Systems Biology projects).

For SEASIGHT, one very interesting area would be the inclusion of more sophisticated
quantification methods, such as the model used by rQuant [25], or the statistical in-
ference method proposed by Jiang and Wong [84], and their evaluation against less
complicated methods in terms of sensitivity and specificity of detection of differen-
tially expressed transcripts. Furthermore, while read mapping qualities are already
part of SEASIGHT’s data model, they are not used during transcript quantification
so far. It might be worth studying whether integrating this additional information
into the quantification step results in a notable improvement, or whether such qual-
ity information should rather be used at an earlier step in the RNA-seq pipeline, for
instance to filter alignments during read mapping.

As microarrays will likely remain a standard tool for transcriptome research, support
for further array formats could be added, for example for the bead-based microar-
rays [113] manufactured by Illumina.

Regarding PASSAGE, research is currently under way to extend the wet-lab protocol
so that it can be applied to prokaryotic genomes and to the study of non-coding

158

9.4. Outlook

RNAs. The PASSAGE read clustering algorithm could also benefit from further de-
velopment, for example by parallelizing the algorithm where possible, by reducing
memory consumption, and by evaluating the use of sophisticated, lock-free data
structures for efficient parallel computations, based on atomic compare-and-swap
operations.

As transcriptome projects grow and the community begins to settle on a few gen-
erally accepted algorithms for data processing (as has happened in the microarray
world, for instance, where Affymetrix arrays are usually normalized with the RMA
method [77]), automating analyses will become more and more interesting. MAY-
DAY already offers some limited support for automation [13], but the new plugin
system as well as the Settings framework open the door for automated process-
ing on a much larger scale. One solution, already sketched (but not implemented),
could be the addition of a simple interface to MAYDAY’s plugin system. Called, say,
ScriptablePlugin, it would add only two methods (without interfering with the
existing plugin interfaces): The first method would return the expected size of the
output of running the plugin (number of ProbeLists, number of meta informa-
tion groups, number of DataSets, etc., depending on the plugin type). The second
method would be used to determine the mode of operation for a subsequent call to
the plugin’s run method, with three modes available: INIT (to initialize Settings
based on parameters supplied to the run method, AUTO (to start non-interactive
processing when run is called), and INTERACTIVE (to start normal plugin execu-
tion with user interaction). Using these two methods together with the existing run
and getSettings method, complex processing pipelines could be built using any of
MAYDAY’s plugins, as well as some additional methods for iteration, branching and
combination of results.

A fourth important field for future development are solutions for collaborative anal-
yses. The integration of MAYDAY with the Gaggle is a step in that direction. Future
improvements could be the use of specialized objects for communication between
MAYDAY instances, perhaps based on the Gaggle ‘tuple’ data type. Alternatively,
collaborative analyses could be enabled independent of the Gaggle system, either
based on a separate RMI-based protocol, or using a web-based client-server solu-
tion. With the growth of Systems Biology projects both in terms of data volume per
‘omics’ type, as well as in terms of the number of different ‘omics’ types, and the
number of people and research groups involved, collaboration between researchers
working on different aspects of one system will become increasingly important. Soft-
ware developers should support this process by minimizing the time spent on data
exchange and integration tasks, which are at the same time trivial from the point
of view of the research question, and complicated regarding the implementation of
good solutions.

A fifth area of high interest are analyses of associations between genotypic vari-
ations (single nucleotide polymorphisms, SNPs) and phenotypic outcomes such as
disease susceptibility, speed of progression, or drug resistance. Traditionally, so-called
genome-wide association studies (GWAS [91]) were performed to find statistically
significant links between genotypes and phenotypes. Expression quantitative trait
locus (eQTL [138]) studies extend this concept to include expression data, linking

159

Bibliography

genotypic differences with differential expression and phenotypic outcomes. Based
on MAYDAY, Gilinter Jager has now started to develop the eQTL analysis tool RE-
VEAL [86] which incorporates methods presented at the IEEE Visweek 2011 as part
of the BioVis 2011 challenge, where the approach was awarded the ‘Visualization
Experts Favorite’ award. It includes ideas from the previously published iHAT [166]
which offered hierarchical aggregation methods to analyze GWAS data. REVEAL
opens up a completely new direction of development for the MAYDAY project, where
the data structures for genomic locations will likely be highly useful, among others.

9.5. Conclusion

Over the course of five years, MAYDAY evolved from a small program, which was
mostly used as a basis for teaching (both for programming assignments as well as for
development related to theses), into a powerful application for transcriptome (and
other ‘ome’) data analysis with a strong focus on visual exploration, which is of
great use for Systems Biology studies and recognized as one of the leading academic
programs in this field [93].

As Systems Biology projects try to elucidate how the different biochemical processes
in living cells are integrated, i.e., how the interplay of genomic information, protein-
coding as well as functionally active transcripts, proteins and their modifications,
and metabolites results in a living cell or organism interacting with its environment,
the integration of different data types into one comprehensive image remains one
of the most important areas of research in bioinformatics. In this context, MAYDAY
offers a well-integrated, powerful foundation for further development to keep up
with technological advances, and to include new analysis methods and innovative
visualizations.

160

Bibliography

1]

[11]

C. Adessi, G. Matton, G. Ayala, G. Turcatti, J. Mermod, P. Mayer, and
E. Kawashima. Solid phase DNA amplification: characterisation of primer at-
tachment and amplification mechanisms. Nucleic Acids Research, 28(20):e87,
2000.

Affymetrix. Data Sheet: GeneChip Human Genome Arrays, 2003.
[http://media.affymetrix.com/support/technical/datasheets/human_
datasheet.pdf, accessed 04-November-2011].

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local align-
ment search tool. Journal of Molecular Biology, 215(3):403-410, 1990.

S. Anders and W. Huber. Differential expression analysis for sequence count
data. Genome Biology, 11(10):R106, 2010.

M. Ashburner, C. Ball, J. Blake, D. Botstein, H. Butler, J. Cherry, A. Davis,
K. Dolinski, S. Dwight, J. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver,
A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M.
Rubin, and G. Sherlock. Gene Ontology: tool for the unification of biology.
Nature Genetics, 25(1):25, 2000.

A. Bairoch, R. Apweiler, C. Wu, W. Barker, B. Boeckmann, S. Ferro,
E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, D. A. Na-
tale, C. O’Donovan, N. Redaschi, and L.-S. L. Yeh. The universal protein
resource (UniProt). Nucleic Acids Research, 33(suppl 1):D154, 2005.

E. Bao, T. Jiang, I. Kaloshian, and T. Girke. SEED: efficient clustering of
next-generation sequences. Bioinformatics, 27(18):2502-2509, 2011.

J. Bare, T. Koide, D. Reiss, D. Tenenbaum, and N. Baliga. Integration and
visualization of systems biology data in context of the genome. BMC Bioin-
formatics, 11(1):382, 2010.

J. Bare, P. Shannon, A. Schmid, and N. Baliga. The Firegoose: two-way
integration of diverse data from different bioinformatics web resources with
desktop applications. BMC Bioinformatics, 8(1):456, 2007.

T. Barrett, D. Troup, S. Wilhite, P. Ledoux, D. Rudnev, C. Evangelista,
I. Kim, A. Soboleva, M. Tomashevsky, K. Marshall, K. Phillippy, P. M. Sher-
man, R. N. Muertter, and R. Edgar. NCBI GEO: archive for high-throughput
functional genomic data. Nucleic Acids Research, 37(suppl 1):D885-D890,
2009.

F. Battke, A. Herbig, A. Wentzel, O. M. Jakobsen, M. Bonin, D. A. Hodgson,
W. Wohlleben, T. E. Ellingsen, and K. Nieselt. A Technical Platform for
Generating Reproducible Expression Data from Streptomyces coelicolor Batch
Cultivations. In H. R. R. Arabnia and Q.-N. Tran, editors, Software Tools and

161

http://media.affymetrix.com/support/technical/datasheets/human_datasheet.pdf
http://media.affymetrix.com/support/technical/datasheets/human_datasheet.pdf

Bibliography

[27]

162

Algorithms for Biological Systems, volume 696 of Advances in FEzxperimental
Medicine and Biology, pages 3—15. Springer New York, 2011.

F. Battke, S. Korner, S. Hiittner, and K. Nieselt. Efficient sequence clustering
for RNA-seq data without a reference genome. Lecture Notes in Informatics
(LNI) — Proceedings, P-157:21, 2010.

F. Battke. A Processing Framework for Mayday. Studienarbeit, Universitét
Tiibingen, 2006.

F. Battke and K. Nieselt. Mayday SeaSight: Combined Analysis of Deep
Sequencing and Microarray Data. PLoS one, 6(1):¢16345, 01 2011.

F. Battke, S. Symons, A. Herbig, and K. Nieselt. GaggleBridge: Collaborative
data analysis. Bioinformatics, 2011.

F. Battke, S. Symons, and K. Nieselt. Mayday — Integrative analytics for
expression data. BMC Bioinformatics, 11(1):121, 2010.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal Statistical
Society. Series B (Methodological), pages 289-300, 1995.

Y. Benjamini and D. Yekutieli. The control of the false discovery rate in
multiple testing under dependency. Annals of Statistics, pages 1165-1188,
2001.

R. Benne, J. Van Den Burg, J. Brakenhoff, P. Sloof, J. Van Boom, and
M. Tromp. Major transcript of the frameshifted coxII gene from trypanosome
mitochondria contains four nucleotides that are not encoded in the DNA. Cell,
46(6):819-826, 1986.

S. Bennet. Solexa ltd. Pharmacogenomics, 5(4):433-438, 2004.

S. Berget, C. Moore, and P. Sharp. Spliced segments at the 5’terminus of
adenovirus 2 late mRNA. PNAS, 74(8):3171, 1977.

M. Berthold, N. Cebron, F. Dill, T. Gabriel, T. Ko&tter, T. Meinl, P. Ohl,
C. Sieb, K. Thiel, and B. Wiswedel. KNIME: The Konstanz information
miner. Data Analysis, Machine Learning and Applications, pages 319-326,
2008.

A. Blanchard, R. Kaiser, and L. Hood. High-density oligonucleotide arrays.
Biosensors and Bioelectronics, 11(6-7):687-690, 1996.

D. Blankenberg, A. Gordon, G. Von Kuster, N. Coraor, J. Taylor,
A. Nekrutenko, and the Galaxy Team. Manipulation of FASTQ data with
Galaxy. Bioinformatics, 26(14):1783-1785, 2010.

R. Bohnert, J. Behr, and G. Rétsch. Transcript quantification with RNA-Seq
data. BMC Bioinformatics, 10(suppl 13):P5, 2009.

S. Boireau, P. Maiuri, E. Basyuk, M. De La Mata, A. Knezevich, B. Pradet-
Balade, V. Béacker, A. Kornblihtt, A. Marcello, and E. Bertrand. The tran-

scriptional cycle of HIV-1 in real-time and live cells. The Journal of Cell
Biology, 179(2):291, 2007.

B. Bolstad, R. Irizarry, M. Astrand, and T. Speed. A comparison of normal-
ization methods for high density oligonucleotide array data based on variance

[28]
[29]

[30]

[42]
[43]

[44]

and bias. Bioinformatics, 19(2):185, 2003.

C. Bonferroni. Il calcolo delle assicurazioni su gruppi di teste. Studi in Onore
del Professore Salvatore Ortu Carboni, 13, 1935.

C. Bonferroni. Teoria statistica delle classi e calcolo delle probabilitd. Libreria
internazionale Seeber, 1936.

R. Breitling, P. Armengaud, A. Amtmann, and P. Herzyk. Rank products: a
simple, yet powerful, new method to detect differentially regulated genes in
replicated microarray experiments. FEBS Letters, 573:83-92, 2004.

C. Broelemann. Kooperative Analyse von Hochdurchsatzdaten aus heteroge-
nen Quellen durch Einbindung von Gaggle in Mayday. Diplomarbeit, Univer-
sitat Tiibingen, 2011.

P. Bruns. Entwicklung eines effizienten Frameworks zur interaktiven Visual-
isierung in Mayday. Bachelor thesis, Universitdt Tiibingen, 2008.

J. Bullard, E. Purdom, K. Hansen, and S. Dudoit. Evaluation of statistical
methods for normalization and differential expression in mRNA-Seq experi-
ments. BMC Bioinformatics, 11(1):94, 2010.

T. Cech. The generality of self-splicing RNA: relationship to nuclear mRNA
splicing. Cell, 44(2):207-210, 1986.

T. Cech. RNA editing: world’s smallest introns? Cell, 64(4):667-669, 1991.

C. Chang and R. Stewart. The two-component system: Regulation of Di-
verse Signalling Pathways in Prokaryotes and Eukaryotes. Plant Physiology,
117(3):723, 1998.

B. Chevreux, T. Wetter, and S. Suhai. Genome Sequence Assembly Using
Trace Signals and Additional Sequence Information. Computer Science and
Biology: Proceedings of the German Conference on Bioinformatics (GCB),
99:45-56, 1999.

J. Clarke, H. Wu, L. Jayasinghe, A. Patel, S. Reid, and H. Bayley. Continu-
ous base identification for single-molecule nanopore DNA sequencing. Nature
Nanotechnology, 4(4):265-270, 2009.

P. Cohen. The regulation of protein function by multisite phosphorylation —
a 25 year update. Trends in Biochemical Sciences, 25(12):596-601, 2000.

A. Cornish-Bowden. Nomenclature for incompletely specified bases in nucleic
acid sequences. Nucleic Acids Research, 13(9):3021, 1985.

R. Coté, P. Jones, L. Martens, S. Kerrien, F. Reisinger, Q. Lin, R. Leinonen,
R. Apweiler, and H. Hermjakob. The Protein Identifier Cross-Referencing
(PICR) service: reconciling protein identifiers across multiple source databases.
BMC Bioinformatics, 8(1):401, 2007.

A. Cozzone. Protein phosphorylation in prokaryotes. Annual Reviews in Mi-
crobiology, 42(1):97-125, 1988.

J. Darnell. Implications of RNA-RNA splicing in evolution of eukaryotic cells.
Science, 202(4374):1257, 1978.

J. Darnell, W. Jelinek, and G. Molloy. Biogenesis of mRNA: genetic regulation
in mammalian cells. Science, 181(106):1215, 1973.

163

Bibliography

[45]

[46]

[47]

[58]

164

F. Denoeud, J. M. Aury, C. Da Silva, B. Noel, O. Rogier, M. Delledonne,
M. Morgante, G. Valle, P. Wincker, C. Scarpelli, O. Jaillon, and F. Artigue-
nave. Annotating genomes with massive-scale RNA sequencing. Genome Bi-
ology, 9(12):R175, 2008.

J. Dietzsch, N. Gehlenborg, and K. Nieselt. Mayday — a microarray data
analysis workbench. Bioinformatics, 22(8):1010-1012, Apr 2006.

M. Droege and B. Hill. The Genome Sequencer FLX System—longer reads,
more applications, straight forward bioinformatics and more complete data
sets. Journal of Biotechnology, 136(1-2):3-10, Aug 2008. [PubMed:18616967]
[d0i:10.1016/j.jbiotec.2008.03.021].

S. Dudoit, J. Shaffer, and J. Boldrick. Multiple hypothesis testing in microar-
ray experiments. Statistical Science, pages 71-103, 2003.

J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank, P. Bay-
bayan, B. Bettman, A. Bibillo, K. Bjornson, B. Chaudhuri, F. Christians,
R. Cicero, S. Clark, R. Dalal, A. Dewinter, J. Dixon, M. Foquet, A. Gaertner,
P. Hardenbol, C. Heiner, K. Hester, D. Holden, G. Kearns, X. Kong, R. Kuse,
Y. Lacroix, S. Lin, P. Lundquist, C. Ma, P. Marks, M. Maxham, D. Mur-
phy, I. Park, T. Pham, M. Phillips, J. Roy, R. Sebra, G. Shen, J. Sorenson,
A. Tomaney, K. Travers, M. Trulson, J. Vieceli, J. Wegener, D. Wu, A. Yang,
D. Zaccarin, P. Zhao, F. Zhong, J. Korlach, and S. Turner. Real-time DNA
sequencing from single polymerase molecules. Science, 323(5910):133, 2009.

D. Fink, N. Weissschuh, J. Reuther, W. Wohlleben, and A. Engels. Two
transcriptional regulators GInR and GInRII are involved in regulation of ni-
trogen metabolism in Streptomyces coelicolor A3 (2). Molecular Microbiology,
46(2):331-347, 2002.

R. A. Fisher. The correlation between relatives on the supposition of
Mendelian inheritance. Transactions of the Royal Society of Edinburgh,
52(2):399-433, 1918.

R. A. Fisher. On the “Probable Error” of a Coefficient of Correlation Deduced
from a Small Sample. Metron, 1:3-32, 1921.

S. Fodor, J. Read, M. Pirrung, L. Stryer, A. Lu, and D. Solas. Light-directed,
spatially addressable parallel chemical synthesis. Science, 251(4995):767, 1991.
X. Fu, N. Fu, S. Guo, Z. Yan, Y. Xu, H. Hu, C. Menzel, W. Chen, Y. Li,
R. Zeng, and P. Khaitovich. Estimating accuracy of RNA-Seq and microarrays
with proteomics. BMC Genomics, 10(1):161, 20009.

F. Galton. Co-relations and their measurement, chiefly from anthropometric
data. Proceedings of the Royal Society of London, 45(273-279):135, 1888.

N. Gehlenborg. Mayday — Microarray Data Analysis. Studienarbeit, Univer-
sitat Tlbingen, 2003.

N. Gehlenborg, J. Dietzsch, and K. Nieselt. A Framework for Visualization of
Microarray Data and Integrated Meta Information. Information Visualization,
4(3):164-175, June 2005.

R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit,
B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber,

http://www.ncbi.nlm.nih.gov/pubmed/18616967
http://dx.doi.org/10.1016/j.jbiotec.2008.03.021

[59]

[60]

S. Iacus, R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki,
C. Smith, G. Smyth, L. Tierney, J. Y. Yang, and J. Zhang. Bioconductor: open
software development for computational biology and bioinformatics. Genome
Biology, 5(10):R80+, 2004.

W. Gerlach and J. Stoye. Taxonomic classification of metagenomic shotgun
sequences with CARMAS3. Nucleic Acids Research, 39(14):¢91-e91, 2011.

B. Giardine, C. Riemer, R. Hardison, R. Burhans, L. Elnitski, P. Shah,
Y. Zhang, D. Blankenberg, I. Albert, J. Taylor, W. Miller, J. W. Kent, and
A. Nekrutenko. Galaxy: a platform for interactive large-scale genome analysis.
Genome Research, 15(10):1451-1455, 2005.

G. Gilliland, S. Perrin, K. Blanchard, and H. Bunn. Analysis of cytokine
mRNA and DNA: detection and quantitation by competitive polymerase chain
reaction. PNAS, 87(7):2725, 1990.

F. Giorgi, A. Bolger, M. Lohse, and B. Usadel. Algorithm-driven Artifacts
in median polish summarization of Microarray data. BMC' Bioinformatics,
11(1):553, 2010.

A. Goncalves, A. Tikhonov, A. Brazma, and M. Kapushesky. A pipeline for
RNA-seq data processing and quality assessment. Bioinformatics, 27(6):867,
2011.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java (TM) Language Spec-
ification, 2005.

J. Hacker, L. Bender, M. Ott, J. Wingender, B. Lund, R. Marre, and
W. Goebel. Deletions of chromosomal regions coding for fimbriae and
hemolysins occur in vitro and in vivo in various extra intestinal Escherichia
coli isolates. Microbial Pathogenesis, 8(3):213-225, 1990.

T. Hardcastle and K. Kelly. baySeq: Empirical Bayesian methods for iden-
tifying differential expression in sequence count data. BMC' Bioinformatics,
11(1):422, 2010.

C. Heid, J. Stevens, K. Livak, and P. Williams. Real time quantitative PCR.
Genome Research, 6(10):986, 1996.

A. Herbig, G. Jager, F. Battke, and K. Nieselt. GenomeRing: alignment visu-
alization based on SuperGenome coordinates. Bioinformatics, 28(12):i7-i15,
2012.

L. Heyer, S. Kruglyak, and S. Yooseph. Exploring expression data: identifica-
tion and analysis of coexpressed genes. Genome Research, 9(11):1106, 1999.
S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics, pages 65-70, 1979.

F. Hong, B. Wittner, and contributions from R. Breitling, C. Smith, and F.
Battke. RankProd: Rank Product method for identifying differentially expressed
genes with application in meta-analysis, 2011. R package version 2.28.0.

X. Huang and A. Madan. CAP3: A DNA sequence assembly program. Genome
Research, 9(9):868-877, Sep 1999.

D. Huson, A. Auch, J. Qi, and S. Schuster. MEGAN analysis of metagenomic
data. Genome Research, 17(3):377-386, 2007.

165

Bibliography

[74]
[75]

[76]

[77]

78]

[79]

[80]
[81]
[82]
[83]
[84]
[85]
[36]

[87]

[33]

[89]

[90]

166

M. Huss. Introduction into the analysis of high-throughput-sequencing based
epigenome data. Briefings in Bioinformatics, 11(5):512, 2010.

S. Hittner. Genexpressionsanalyse. German Patent DE 102009058298, Dt.
Patentamt Miinchen, 2011.

Nlumina. Next-Generation GWAS, 2011. [http://www.illumina.com/
landing/gwas_ebook/video/files/gwas_ebook_secured.pdf, accessed 15-
December-2011].

R. Irizarry, B. Hobbs, F. Collin, Y. Beazer-Barclay, K. Antonellis, U. Scherf,

and T. Speed. Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics, 4(2):249, 2003.

G. Jager. QT-Clustering for Mayday. Bachelor thesis, Universitat Tiibingen,
2008.

G. Jager, F. Battke, and K. Nieselt. TTALA — Time Series Alignment Analysis.
In Biological Data Visualization (BioVis), 2011 IEEE Symposium on, pages
55-61, Oct. 2011.

B. Jagla, B. Wiswedel, and J. Coppée. Extending KNIME for Next Generation
Sequencing data analysis. Bioinformatics, 2011.

G. Janaway, C. Inman, and J. Beechem. Single molecule nucleic acid sequenc-
ing using multiphoton fluorescence excitation. US Patent 13/009,442, 2011.

A. Jasper. A Mayday plugin for Affymetrix Chip Analysis. Studienarbeit,
Universitat Tiibingen, 2008.

Java Community Process. JSR 223: Scripting for the Java Platform, 2006.
[http://www.jcp.org/en/jsr/detail?id=223; accessed 26-Sept-2011].

H. Jiang and W. Wong. Statistical inferences for isoform expression in RNA-
Seq. Bioinformatics, 25(8):1026-1032, 2009.

W. Johansen. Elemente der exakten Erblichkeitslehre. Gustav Fischer, Jena,
1909.

G. Jager, F. Battke, and K. Nieselt. Reveal — Visual eQTL Analytics. Bioin-
formatics, 28(18):1542-1548, 2012.

M. Kallio, J. Tuimala, T. Hupponen, P. Klemela, M. Gentile, I. Scheinin,
M. Koski, J. Kaki, and E. Korpelainen. Chipster: user-friendly analysis
software for microarray and other high-throughput data. BMC Genomics,
12(1):507, 2011.

M. Kanehisa and S. Goto. KEGG: Kyoto encyclopedia of genes and genomes.
Nucleic Acids Research, 28(1):27, 2000.

P. Kapranov, J. Cheng, S. Dike, D. A. Nix, R. Duttagupta, A. T. Willingham,
P. F. Stadler, J. Hertel, J. Hackermiiller, I. L. Hofacker, I. Bell, E. Cheung,
J. Drenkow, E. Dumais, S. Patel, G. Helt, M. Ganesh, S. Ghosh, A. Piccol-
boni, V. Sementchenko, H. Tammana, and T. R. Gingeras. RNA maps reveal

new RNA classes and a possible function for pervasive transcription. Science,
316(5830):1484, 2007.

J. Klein, S. Ossowski, K. Schneeberger, D. Weigel, and D. Huson. LOCAS — A
low coverage assembly tool for resequencing projects. PloS one, 6(8):¢23455,

http://www.illumina.com/landing/gwas_ebook/video/files/gwas_ebook_secured.pdf
http://www.illumina.com/landing/gwas_ebook/video/files/gwas_ebook_secured.pdf
http://www.jcp.org/en/jsr/detail?id=223

[92]

[93]

[94]

[95]

[101]
[102]

103]

[104]

[105]

[106]

2011.

R. J. Klein, C. Zeiss, E. Y. Chew, J. Y. Tsai, R. S. Sackler, C. Haynes, A. K.
Henning, J. P. SanGiovanni, S. M. Mane, S. T. Mayne, M. B. Bracken, F. L.
Ferris, J. Ott, C. Barnstable, and J. Hoh. Complement factor H polymorphism
in age-related macular degeneration. Science, 308(5720):385, 2005.

R. Kornberg. Eukaryotic transcriptional control. Trends in Biochemical Sci-
ences, 24(12):M46-M49, 1999.

A. Koschmieder, K. Zimmermann, S. Trif}l, T. Stoltmann, and U. Leser. Tools
for managing and analyzing microarray data. Briefings in Bioinformatics,
2011.

J. Lajugie and E. Bouhassira. GenPlay, a multi-purpose genome analyzer and
browser. Bioinformatics, 2011.

B. Langmead, C. Trapnell, M. Pop, and S. Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome
Biology, 10(3):R25, 2009.

A. Leéniewska and M. Okoniewski. rnaSeqMap: a Bioconductor package for
RNA sequencing data exploration. BMC' Bioinformatics, 12(1):200, 2011.

H. Li and R. Durbin. Fast and accurate short read alignment with Burrows—
Wheeler transform. Bioinformatics, 25(14):1754, 2009.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, and R. Durbin. The sequence alignment/map format and SAM-
tools. Bioinformatics, 25(16):2078, 2009.

R. Ling. A computer generated aid for cluster analysis. Communications of
the ACM, 16(6):355-361, 1973.

K. Liolios, I. Chen, A. Min, K. Mavromatis, N. Tavernarakis, P. Hugenholtz,
V. Markowitz, and N. Kyrpides. The Genomes On Line Database (GOLD)
in 2009: status of genomic and metagenomic projects and their associated
metadata. Nucleic Acids Research, 38(suppl 1):D346, 2010.

T. Loua. Atlas statistique de la population de Paris. J. Dejey & cie, 1873.

E. Lundberg, L. Fagerberg, D. Klevebring, I. Matic, T. Geiger, J. Cox,
C. Algenis, J. Lundeberg, M. Mann, and M. Uhlen. Defining the transcrip-
tome and proteome in three functionally different human cell lines. Molecular
Systems Biology, 6:450, 2010.

T. Maier, M. Guell, and L. Serrano. Correlation of mRNA and protein in
complex biological samples. FEBS Letters, 583(24):3966-3973, 2009.

L. Mamanova, R. Andrews, K. James, E. Sheridan, P. Ellis, C. Langford,
T. Ost, J. Collins, and D. Turner. FRT-seq: amplification-free, strand-specific
transcriptome sequencing. Nature Methods, 7(2):130-132, 2010.

J. Marioni, C. Mason, S. Mane, M. Stephens, and Y. Gilad. RNA-seq: an
assessment of technical reproducibility and comparison with gene expression
arrays. Genome Research, 18(9):1509, 2008.

A. Maxam and W. Gilbert. A new method for sequencing DNA. PNAS,
74(2):560, 1977.

167

Bibliography

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]
[117]

[118]

[119]

[120]

168

U. Meier and G. Blobel. A nuclear localization signal binding protein in the
nucleolus. The Journal of Cell Biology, 111(6):2235, 1990.

K. Michael, L. Taylor, S. Schultz, and D. Walt. Randomly ordered address-
able high-density optical sensor arrays. Analytical Chemistry, 70(7):1242-1248,
1998.

A. Mortazavi, B. Williams, K. McCue, L. Schaeffer, and B. Wold. Mapping
and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods,
5(7):621-628, 2008.

K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn, and H. Erlich. Specific
enzymatic amplification of DNA in vitro: the polymerase chain reaction. In
Cold Spring Harb Symp Quant Biol, volume 51, pages 263273, 1986.

K. Nieselt, F. Battke, A. Herbig, P. Bruheim, A. Wentzel, O. M. Jakobsen,
H. Sletta, M. T. Alam, M. E. Merlo, J. Moore, W. A. Omara, E. R. Mor-
risey, M. A. Juarez-Hermosillo, A. Rodriguez-Garcia, M. Nentwich, L. Thomas,
M. Igbal, R. Legaie, W. H. Gaze, G. L. Challis, R. C. Jansen, L. Dijkhuizen,
D. A. Rand, D. L. Wild, M. Bonin, J. Reuther, W. Wohlleben, M. C. Smith,
N. J. Burroughs, J. F. Martin, D. A. Hodgson, E. Takano, R. Breitling, T. E.
Ellingsen, and E. M. Wellington. The dynamic architecture of the metabolic
switch in Streptomyces coelicolor. BMC Genomics, 11(10):10-10, Jan 2010.

M. Nirenberg, P. Leder, M. Bernfield, R. Brimacombe, J. Trupin, F. Rottman,
and C. O’neal. RNA codewords and protein synthesis, VII. On the general
nature of the RNA code. PNAS, 53(5):1161, 1965.

A. Oliphant, D. L. Barker, J. R. Stuelpnagel, and M. S. Chee. BeadArray
technology: enabling an accurate, cost-effective approach to high-throughput
genotyping. Biotechniques, 32(6):56-58, 2002.

A. Oshlack and M. Wakefield. Transcript length bias in RNA-seq data con-
founds systems biology. Biology Direct, 4(1):14, 20009.

H. Parkinson, U. Sarkans, N. Kolesnikov, N. Abeygunawardena, T. Burdett,
M. Dylag, I. Emam, A. Farne, E. Hastings, E. Holloway, N. Kurbatova,
M. Lukk, J. Malone, R. Mani, E. Pilicheva, G. Rustici, A. Sharma, E. Williams,
T. Adamusiak, M. Brandizi, N. Sklyar, and A. Brazma. ArrayExpress update
— an archive of microarray and high-throughput sequencing-based functional
genomics experiments. Nucleic Acids Research, 39(suppl 1):D1002, 2011.

K. Paszkiewicz and D. Studholme. De novo assembly of short sequence reads.
Briefings in Bioinformatics, 11(5):457, 2010.

K. Pearson. On the general theory of skew correlation and non-linear regres-
sion. Biometrika, 4:172-212, 1905.

A. Pease, D. Solas, E. Sullivan, M. Cronin, C. Holmes, and S. Fodor. Light-
generated oligonucleotide arrays for rapid DNA sequence analysis. PNAS,
91(11):5022, 1994.

S. Pepke, B. Wold, and A. Mortazavi. Computation for ChIP-seq and RNA-seq
studies. Nature Methods, 6:522-S32, 2009.

S. Polonsky, S. Rossnagel, and G. Stolovitzky. Nanopore in metal-dielectric
sandwich for DNA position control. Applied Physics Letters, 91:153103, 2007.

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

M. Polz and C. Cavanaugh. Bias in template-to-product ratios in multitem-
plate PCR. Applied and Environmental Microbiology, 64(10):3724, 1998.

G. J. Porreca, J. Shendure, and G. M. Church. Polony DNA sequencing. Cur-
rent Protocols in Molecular Biology, Chapter 7, Nov 2006. [PubMed:18265387]
[d0i:10.1002/0471142727.mb0708s76].

K. Pruitt, T. Tatusova, W. Klimke, and D. Maglott. NCBI Reference Se-
quences: current status, policy and new initiatives. Nucleic Acids Research,
37(suppl 1):D32, 20009.

J. Quackenbush. Microarray data normalization and transformation. Nature
Genetics, 32:497, 2002.

R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2006.
ISBN 3-900051-07-0.

V. Ramakrishnan. Ribosome structure and the mechanism of translation. Cell,
108(4):557-572, 2002.

H. Richard, M. Schulz, M. Sultan, A. Niirnberger, S. Schrinner, D. Balzereit,
E. Dagand, A. Rasche, H. Lehrach, M. Vingron, S. A. Haas, and M. L. Yaspo.
Prediction of alternative isoforms from exon expression levels in RNA-Seq
experiments. Nucleic Acids Research, 38(10):e112—e112, 2010.

T. Ries. Automatisierung von Mayday mit Java Script. Bachelor thesis, Uni-
versitat Tubingen, 2010.

D. Risso, K. Schwartz, G. Sherlock, and S. Dudoit. GC-Content Normalization
for RNA-Seq Data. UC Berkeley Division of Biostatistics Working Paper
Series, page 291, 2011.

M. Robinson, D. McCarthy, and G. Smyth. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics,
26(1):139, 2010.

M. Robinson and A. Oshlack. A scaling normalization method for differential
expression analysis of RNA-seq data. Genome Biology, 11(3):R25, 2010.

J. M. Rothberg, W. Hinz, T. M. Rearick, J. Schultz, W. Mileski, M. Davey,
J. H. Leamon, K. Johnson, M. J. Milgrew, M. Edwards, J. Hoon, J. F. Si-
mons, D. Marran, J. W. Myers, J. F. Davidson, A. Branting, J. R. Nobile,
B. P. Puc, D. Light, T. A. Clark, M. Huber, J. T. Branciforte, I. B. Stoner,
S. E. Cawley, M. Lyons, Y. Fu, N. Homer, M. Sedova, X. Miao, B. Reed,
J. Sabina, E. Feierstein, M. Schorn, M. Alanjary, E. Dimalanta, D. Dressman,
R. Kasinskas, T. Sokolsky, J. A. Fidanza, E. Namsaraev, K. J. McKernan,
A. Williams, G. T. Roth, and J. Bustillo. An integrated semiconductor device
enabling non-optical genome sequencing. Nature, 475(7356):348-352, 2011.

A. 1. Saeed, V. Sharov, J. White, J. Li, W. Liang, N. Bhagabati, J. Braisted,
M. Klapa, T. Currier, M. Thiagarajan, A. Sturn, M. Snuffin, A. Rezantsev,
D. Popov, A. Ryltsov, E. Kostukovich, 1. Borisovsky, Z. Liu, A. Vinsavich,
V. Trush, and J. Quackenbush. TM4: a free, open-source system for microarray
data management and analysis. Biotechniques, 34(2):374, 2003.

169

http://www.ncbi.nlm.nih.gov/pubmed/18265387
http://dx.doi.org/10.1002/0471142727.mb0708s76

Bibliography

[134]

[135]
[136]
[137]

138

[139]

[140]

[141]

[142]

[143]

[144]

[145]
[146]

[147]

[148]
[149]

[150]
[151]

170

F. Sanger and A. Coulson. A rapid method for determining sequences in DNA
by primed synthesis with DNA polymerase. Journal of Molecular Biology,
94(3):441-446, 1975.

F. Sanger, S. Nicklen, and A. Coulson. DNA sequencing with chain-
terminating inhibitors. PNAS, 74(12):5463, 1977.

Sanger Institute. Protein classification scheme, 2010. [ftp://ftp.sanger.
ac.uk/pub/S_coelicolor/classwise.txt; accessed 30-Sept-2011].

M. Sawadogo and A. Sentenac. RNA polymerase B (II) and general transcrip-
tion factors. Annual Review of Biochemistry, 59(1):711-754, 1990.

E. E. Schadt, S. A. Monks, T. A. Drake, A. J. Lusis, N. Che, V. Colinayo,
T. G. Ruff, S. B. Milligan, J. R. Lamb, G. Cavet, P. S. Linsley, M. Mao, R. B.
Stoughton, and S. H. Friend. Genetics of gene expression surveyed in maize,
mouse and man. Nature, 422(6929):297-302, 2003.

E. Schadt, S. Turner, and A. Kasarskis. A window into third-generation se-
quencing. Human Molecular Genetics, 19(R2):R227, 2010.

M. Schena, D. Shalon, R. Davis, and P. Brown. Quantitative monitoring of
gene expression patterns with a complementary DNA microarray. Science,
270(5235):467, 1995.

P. Schimmel. Aminoacyl tRNA synthetases: general scheme of structure-
function relationships in the polypeptides and recognition of transfer RNAs.
Annual Review of Biochemistry, 56(1):125-158, 1987.

J. Schuchhardt, D. Beule, A. Malik, E. Wolski, H. Eickhoff, H. Lehrach, and
H. Herzel. Normalization strategies for cDNA microarrays. Nucleic Acids
Research, 28(10):e47, 2000.

P. Shannon, D. Reiss, R. Bonneau, and N. Baliga. The Gaggle: an open-source
software system for integrating bioinformatics software and data sources. BMC
Bioinformatics, 7(1):176, 2006.

S. Shapiro and M. Wilk. An analysis of variance test for normality (complete
samples). Biometrika, 52(3/4):591-611, 1965.

P. Sharp. Splicing of messenger RNA precursors. Science, 235(4790):766, 1987.

M. Simonsen, T. Mailund, and C. Pedersen. Rapid neighbour-joining. Algo-
rithms in Bioinformatics, pages 113-122, 2008.

S. Singh-Gasson, R. Green, Y. Yue, C. Nelson, F. Blattner, M. Sussman, and
F. Cerrina. Maskless fabrication of light-directed oligonucleotide microarrays
using a digital micromirror array. Nature Biotechnology, 17(10):974-978, 1999.
G. Smyth. Limma: linear models for microarray data. Bioinformatics and com-
putational biology solutions using R and bioconductor, pages 397420, 2005.

E. Southern. Detection of specific sequences among DNA fragments separated
by gel electrophoresis. Journal of Molecular Biology, 98(3):503-517, 1975.
Student. The probable error of a mean. Biometrika, pages 1-25, 1908.

M. Sultan, M. H. Schulz, H. Richard, A. Magen, A. Klingenhoff, M. Scherf,

M. Seifert, T. Borodina, A. Soldatov, D. Parkhomchuk, D. Schmidt,
S. O’Keeffe, S. Haas, M. Vingron, H. Lehrach, and M. L. Yaspo. A global

ftp://ftp.sanger.ac.uk/pub/S_coelicolor/classwise.txt
ftp://ftp.sanger.ac.uk/pub/S_coelicolor/classwise.txt

[152]

[153]
[154]
[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]
[163]
[164]

[165]

[166]

view of gene activity and alternative splicing by deep sequencing of the hu-
man transcriptome. Science, 321(5891):956, 2008.

J. Supper, M. Strauch, D. Wanke, K. Harter, and A. Zell. EDISA: extracting
biclusters from multiple time-series of gene expression profiles. BMC' Bioin-
formatics, 8:334, 2007.

H. Swerdlow and R. Gesteland. Capillary gel electrophoresis for rapid, high
resolution DNA sequencing. Nucleic Acids Research, 18(6):1415, 1990.

S. Symons. Analysis and Visualization of Gene Expression Data. Dissertation,
Universitat Tiibingen, 2011.

S. Symons and K. Nieselt. MGV: A Generic Graph Viewer for Comparative
Omics Data. Bioinformatics, 2011.

S. Symons, C. Zipplies, F. Battke, and K. Nieselt. Integrative Systems Biology
Visualization with MAYDAY. Journal of Integrative Bioinformatics, 7(3):115,
2010.

P. 't Hoen, Y. Ariyurek, H. Thygesen, E. Vreugdenhil, R. Vossen,
R. De Menezes, J. Boer, G. Van Ommen, and J. Den Dunnen. Deep
sequencing-based expression analysis shows major advances in robustness, res-
olution and inter-lab portability over five microarray platforms. Nucleic Acids
Research, 36(21):e141, 2008.

The Linux Documentation Project. Memory management, 2011. [http://
tldp.org/LDP/t1k/mm/memory.html; accessed 21-Sept-2011].

L. Thomas, D. A. Hodgson, A. Wentzel, K. Nieselt, H. Sletta, T. E.
Ellingsen, J. Moore, E. R. Morrissey, R. Legaie, The STREAM Consortium,
W. Wohlleben, A. Rodriguez-Garcia, J. F. Martin, N. J. Burroughs, E. M. H.
Wellington, and M. C. M. Smith. Metabolic switches and adaptations deduced
from the proteomes of Streptomyces coelicolor wild type and phoP mutant
grown in batch culture. Molecular & Cellular Proteomics, 11(2), 2012.

C. Trapnell, L. Pachter, and S. Salzberg. TopHat: discovering splice junctions
with RNA-Seq. Bioinformatics, 25(9):1105-1111, 2009.

C. Trapnell, B. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. Van Baren,
S. Salzberg, B. Wold, and L. Pachter. Transcript assembly and quantification
by RNA-Seq reveals unannotated transcripts and isoform switching during cell
differentiation. Nature Biotechnology, 28(5):511-515, 2010.

N. Trunk. Hlumina array algorithms for Mayday. Diplomarbeit, Universitat
Tiibingen, 2009.

S. Urbanek. A fast way to provide R functionality to applications. In Proceed-
ings of DSC, page 2, 2003.

S. Urbanek. rJava: Low-level R to Java interface, 2010. R package version
0.8-8.

7. Sidak. Rectangular confidence regions for the means of multivariate normal
distributions. Journal of the American Statistical Association, pages 626—633,
1967.

C. Vehlow, J. Heinrich, F. Battke, D. Weiskopf, and K. Nieselt. iHAT: Interac-
tive hierarchical aggregation table. In Biological Data Visualization (BioVis),

171

http://tldp.org/LDP/tlk/mm/memory.html
http://tldp.org/LDP/tlk/mm/memory.html

Bibliography

[167]

168
169

[170]

[171]

[172]

[173]
[174]

[175]

[176]

[177]

178
[179]

[180]

[181]

[182]

[183]

172

2011 IEEE Symposium on, pages 63-69, Oct. 2011.

V. Velculescu, L. Zhang, B. Vogelstein, and K. Kinzler. Serial Analysis of Gene
Expression. Science, 270(5235):484, 1995.

W. Venables and B. Ripley. S Programming, 2000.

G. Von Heijne. The structure of signal peptides from bacterial lipoproteins.
Protein Engineering, 2(7):531, 1989.

M. C. Wahl, C. L. Will, and R. Lithrmann. The Spliceosome: Design Principles
of a Dynamic RNP Machine. Cell, 136(4):701 — 718, 20009.

E. Waldvogel, A. Herbig, F. Battke, R. Amin, M. Nentwich, K. Nieselt, T. E.
Ellingsen, A. Wentzel, D. A. Hodgson, W. Wohlleben, and Y. Mast. The Py
protein GInK is a pleiotropic regulator for morphological differentiation and
secondary metabolism in Streptomyces coelicolor. Applied Microbiology and
Biotechnology, pages 1-18, 2011.

Y. Wang, G. Mehta, R. Mayani, J. Lu, T. Souaiaia, Y. Chen, A. Clark, H. J.
Yoon, L. Wan, O. V. Evgrafov, J. A. Knowles, E. Deelman, and T. Chen.
RseqFlow: Workflows for RNA-Seq data analysis. Bioinformatics, 2011.

Z. Wang, M. Gerstein, and M. Snyder. RNA-Seq: a revolutionary tool for
transcriptomics. Nature Reviews Genetics, 10(1):57-63, 2009.

D. Weese, A. Emde, T. Rausch, A. Doring, and K. Reinert. RazerS — fast read
mapping with sensitivity control. Genome Research, 19(9):1646, 20009.

X. Wen, S. Fuhrman, G. Michaels, D. Carr, S. Smith, J. Barker, and R. Som-
ogyi. Large-scale temporal gene expression mapping of central nervous system
development. PNAS, 95(1):334, 1998.

T. Werner. Next generation sequencing in functional genomics. Briefings in
Bioinformatics, 11(5):499, 2010.

Wikipedia, The Free Encyclopedia. Memory-mapped file, 2011.
[http://en.wikipedia.org/w/index.php?title=Memory-mapped_
file&oldid=448078496; accessed 21-Sept-2011].

M. Wilk and R. Gnanadesikan. Probability plotting methods for the analysis
for the analysis of data. Biometrika, 55(1):1-17, 1968.

L. Wilkinson and M. Friendly. The history of the cluster heat map. The
American Statistician, 63(2):179-184, 2009.

R. Williams, S. Peisajovich, O. Miller, S. Magdassi, D. Tawfik, and A. Griffiths.
Amplification of complex gene libraries by emulsion PCR. Nature Methods,
3(7):545, 2006.

Z. Wu, B. Jenkins, T. Rynearson, S. Dyhrman, M. Saito, M. Mercier, and
L. Whitney. Empirical bayes analysis of sequencing-based transcriptional pro-
filing without replicates. BMC' Bioinformatics, 11(1):564, 2010.

Z. Wu, X. Wang, and X. Zhang. Using non-uniform read distribution models to
improve isoform expression inference in RNA-Seq. Bioinformatics, 27(4):502,
2011.

Y. Yang, S. Dudoit, P. Luu, D. Lin, V. Peng, J. Ngai, and T. Speed. Normaliza-
tion for cDNA microarray data: a robust composite method addressing single

http://en.wikipedia.org/w/index.php?title=Memory-mapped_file&oldid=448078496
http://en.wikipedia.org/w/index.php?title=Memory-mapped_file&oldid=448078496

and multiple slide systematic variation. Nucleic Acids Research, 30(4):el5,
2002.

[184] D. Zerbino and E. Birney. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Research, 18(5):821, 2008.

[185] C. Zipplies. Skalierbare Methoden zur interaktiven Visualisierung genomweiter
Genexpressionsdaten. Diplomarbeit, Universitat Tiibingen, 2009.

[186] M. Zschunke. Connecting R to Mayday. Studienarbeit, Universitdt Tiibingen,
2004.

[187] M. Zschunke. Visualisierung und Analyse von ChIP on Chip-Experimenten.
Diplomarbeit, University of Tiibingen, 2006.

173

A. Publications

A.1. Articles

2008

e Florian Battke, Carsten Miiller-Tidow, Hubert Serve, and Kay Nieselt. Post-
Hybridization Quality Measures for Oligos in Genome-Wide Microarray Ez-

periments. Proceedings of the 8th international workshop on Algorithms in
Bioinformatics 2008: 64-75

2010

e Florian Battke, Stephan Symons, and Kay Nieselt. Mayday — Integrative
analytics for expression data. BMC Bioinformatics 2010, 11:1

e Florian Battke, Stephan Korner, Steffen Hiittner, and Kay Nieselt. Effi-
cient sequence clustering for RNA-seq data without a reference genome. Lec-
ture notes in Informatics (LNI) — Proceedings (2010), P-173:21-30

e Kay Nieselt, Florian Battke, Alexander Herbig, Per Bruheim, Alexan-
der Wentzel, @Oyvind Jakobsen, Havard Sletta, Tauqueer Alam, Elena Merlo,
Jay Moore, Walid Omara, Edward Morrissey, Miguel Juarez-Hermosillo, Lub-
bert Dijkhuizen, David Rand, David Wild, Michael Bonin, Jens Reuther, Wolf-
gang Wohlleben, Margaret Smith, Nigel Burroughs, Juan Martin, David Hodg-
son, Eriko Takano, Rainer Breitling, Trond Ellingsen, and Elizabeth Welling-
ton. The dynamic architecture of the metabolic switch in Streptomyces coeli-
color. BMC Genomics 2010, 11:10

e Stephan Symons, Christian Zipplies, Florian Battke, and Kay Nieselt. In-

tegrative Systems Biology Visualization with Mayday. Journal of Integrative
Bioinformatics 2010, 7:3

2011

e Florian Battke and Kay Nieselt. Mayday SeaSight: Combined Analysis of
Deep Sequencing and Microarray Data. PLoS ONE 2011, 6:1

e Florian Battke, Alexander Herbig, Alexander Wentzel, @yvind M. Jakob-
sen, Michael Bonin, Dave A. Hodgson, Wolfgang Wohlleben, Trond E. Ellingsen,
and Kay Nieselt. A Technical Platform for Generating Reproducible Expres-
ston Data from Streptomyces coelicolor Batch Cultivations. Advances in Exper-
imental Medicine and Biology: Software Tools and Algorithms for Biological
Systems

175

A. Publications

2012

e Florian Battke, Stephan Symons, Alexander Herbig, and Kay Nieselt.

GaggleBridge: Collaborative data analysis. Bioinformatics (2011) 27 (18): 2612
2613

Giinter Jager, Florian Battke, and Kay Nieselt. TIALA — Time Series Align-
ment Analysis. Biological Data Visualization (BioVis), 2011 IEEE Symposium
on, pages 5561, Oct. 2011

Lucia Spangenberg, Florian Battke, Martin Grana, Kay Nieselt, and Hugo
Naya. Identification of associations between amino acid changes and meta in-
formation in alignments. Bioinformatics (2011) 27 (20): 2782-2789

Corinna Vehlow, Julian Heinrich, Florian Battke, Daniel Weiskopf, and Kay
Nieselt. iHat — the interactive hierarchical aggregation table. Biological Data
Visualization (BioVis), 2011 IEEE Symposium on, pages 55-61, Oct. 2011
Eva Waldvogel, Alexander Herbig, Florian Battke, Merle Nentwich, Kay
Nieselt, Trond E. Ellingsen, David A. Hodgson, Wolfgang Wohlleben, and
Yvonne Mast. The Py protein GInK is a pleiotropic requlator for morphological
differentiation and secondary metabolism in Streptomyces coelicolor. Applied
Microbiology and Biotechnology 2011: 1-18

Alexander Herbig, Florian Battke, Giinter Jager, and Kay Nieselt.
GenomeRing: alignment visualization in SuperGenome coordinates. Bioinfor-
matics 2012, 28(12):17-i15 (Proceedings of the ISMB 2012)

Giinter Jager, Florian Battke, and Kay Nieselt. Reveal — Visual eQTL ana-
lytics. Bioinformatics 2012, 28(18):1542-1548 (Proceedings of the ECCB 2012)
Peter Nestorov, Florian Battke, Mitchell P. Levesque, and Matthias Ger-
berding. The maternal transcriptome of the crustacean Parhyale hawaiiensis
is inherited asymmetrically to invariant cell lineages of the ectoderm and meso-
derm. (under review)

Julian Heinrich, Corinna Vehlow, Florian Battke, Giinter Jager, Daniel Weis-
kopf, and Kay Nieselt. iHAT: interactive Hierarchical Aggregation Table for
Genetic Association Data. BMC Bioinformatics 2012, 13(Suppl 8):52

Christopher W. Bartlett, Soo Yeon Cheong, Liping Hou, Jesse Paquette,
Pek Yee Lum, Giinter Jager, Florian Battke, Corinna Vehlow, Julian Heinrich,
Kay Nieselt, Ryo Sakai, Jan Aerts, and William C. Ray. An eQTL biological

data visualization challenge and approaches from the visualization community.
BMC Bioinformatics 2012, 13(Suppl 8):S8

A.2. Posters & Presentations

2006

176

e Stephan Symons, Florian Battke, Janko Dietzsch, Matthias Zschunke, and Kay

Nieselt. Automated Processing and Machine Learning Tools for Mayday. Ger-
man Conference on Bioinformatics 2006

2007

2008

2009

2010

2011

A.2. Posters & Presentations

Stephan Symons, Christian Schillinger, Janko Dietzsch, Florian Battke, and
Kay Nieselt. GeneMining in Mayday, a feature selection framework for binary
classification. German Conference on Bioinformatics 2007

Carsten Miiller-Tidow, Claudia Homme, Hans-Ulrich Klein, Antje Hascher,
Steffen Koschmieder, Anke Becker, Yipeng Wang, Michael McClelland, Udo
zur Stadt, Florian Battke, Kay Nieselt, Christian Thiede, Gerhard Ehninger,
Wolfgang E. Berdel, Martin Dugas, and Hubert Serve. Defining the Leukemia
Epigenome: Distinct Genome Wide Histone H3 Modification Patterns Exist in
AML, ALL and Healthy Hematopoietic Progenitor Cells. Blood (ASH Annual
Meeting Abstracts) 2007, 110:11: Abstract 2124

Florian Battke, Stephan Symons, Michael Piechotta, Philipp Bruns, Karin
Zimmermann, and Kay Nieselt. Mayday — Microarray data analysis. German
Conference on Bioinformatics 2008

Florian Battke, Stephan Symons, and Kay Nieselt. Mayday and RLink — In-
tegrated Expression Analysis. German Conference on Bioinformatics 2009
Florian Battke, Stephan Symons, and Kay Nieselt. Mayday RLink — The best
of two worlds. Presentation at useR 2009

Florian Battke. Mayday - Visual Analytics for Expression Data. Invited Talk
at Humbold University Berlin, Knowledge Management in Bioinformatics

Florian Battke, Stephan Korner, Steffen Hittner, and Kay Nieselt. Efficient
sequence clustering for RNA-seq data without a reference genome. Presenta-
tion at the German Conference on Bioinformatics 2010

Stephan Symons, Florian Battke, Christian Zipplies, and Kay Nieselt. Mayday
— Integrative Visual Analytics for Transcriptomics. VizBi 2010

Florian Battke, Steffen Hiittner, and Kay Nieselt. PASSAGE: A fast and effi-
cient sequence clustering method for RNA-seq data without a reference genome.
Dechema Seminar “Functional Genomics — Next Generation Applications and
Technologies” 2011

Florian Battke, Stephan Symons, Glnter Jager, Aydin Can Polatkan, Alexan-

der Herbig, and Kay Nieselt. GenomeRing: Visual Comparison of Multiple
Genomes. Video Presentation at the Illumina iDEA challenge, San Diego —
Winner of the Most Creative Algorithm award (academic entries)

177

A. Publications

e Florian Battke, and Kay Nieselt. Microarray-Analyseprogramm Mayday: Ret-
tungsanker in der Datenflut. Laborjournal 4/2010 (software presentation, not
peer reviewed)

e Gunter Jager, Florian Battke, and Kay Nieselt. Tiala - Visual Time Series
Alignment Analysis. German Conference on Bioinformatics 2011

e Julian Heinrich, Corinna Vehlow, Kay Nieselt, Florian Battke, and Daniel
Weiskopf. iHAT — interactive Hierarchical Aggregation Table. VizBi 2011

178

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Transcriptomics
	Gene expression
	Transcript quantification
	High-throughput transcriptomics
	Microarrays
	RNA sequencing, RNA-seq

	Transcriptomics data analyses
	Naming conventions
	Data pre-processing and normalization
	Differential expression & statistical testing
	Higher-level analyses

	The new Mayday as a solid foundation
	Mayday's Evolution
	Plugin Management
	Unique Plugin Identifiers
	Multiple extension points
	Abstraction of file resources
	Surrogate plugins

	Meta information
	Persistent Settings
	Motivation and requirements
	Implementation
	Benefits

	Dynamic interactive filtering
	Task Management
	Application: Expression profiling of the metabolic switch in S. coelicolor
	Data acquisition and normalization
	Mutation verification
	Time-point clustering
	Gene clustering
	Outlook: Systems Biology

	Visual analytics in Mayday
	Vis3 – Mayday's new visualization framework
	The View Model
	Plot Components
	Efficiency

	Reimplementation of the Enhanced Heatmap
	Expression in a genomic context: ChromeTracks
	Analysis of time-series transcriptome data
	Statistical analysis of single time-series
	Visual analysis of multiple time-series

	Integration of scripting languages
	An interactive programming environment
	Joining the powers of R and Mayday: RLink
	R and Mayday
	The RInterpreter plugin
	RLink: Aims and foundations
	Object encapsulation
	Adding network transparency

	On-the-fly scripting: JavaScript console
	Structured queries using SQL

	Collaborative analysis
	The Gaggle
	Integration of Mayday with the Gaggle
	Extending Gaggle for collaborative multi-user analyses

	SeaSight: Integration of Sequencing and Microarray Data
	Mayday without the SeaSight extension
	Related Software
	Single method implementations
	Pipelines & Frameworks
	Stand-alone applications

	The motivation for creating SeaSight
	Design
	Challenges
	Assumptions
	Design requirements
	Modelling the transformation steps
	Constructing the transformation and state matrices
	Locus-based data integration
	Summary

	Implementation
	The matrix
	Experiment properties
	Transformations
	Genomic coordinates
	The SeaSight user interface

	Efficient Data Structures
	Requirements
	Primitive types
	Memory-mapped structures
	Large and flexible arrays as the basis
	Efficiently handling millions of lists
	Associating data with genomic positions
	Sparse Arrays & Overlap Arrays
	Genomic Coordinates
	Containers for mapped read data
	Matrices and Vectors

	Implementing efficient algorithms
	Caching
	Lazy evaluation
	Considerations for transformation authors

	Application example: Human kidney vs. liver tissue transcriptomes
	Distributions of expression values per sample
	Fold-change correlations
	Normality of the distributions of transcripts' expression values
	Overlap of the sets of differentially expressed transcripts

	Passage: Efficient RNA-seq clustering
	The Passage idea
	A mismatch-tolerant clustering algorithm for reads
	Results
	Recovering the transcripts

	Discussion
	Mayday as a powerful framework for expression analysis
	Mayday as a powerful platform for development
	Sequencing for transcriptome analyses
	Outlook
	Conclusion

	Bibliography
	Publications
	Articles
	Posters & Presentations

