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i

Abstract

The main subject of this thesis is to analyse various discretisations schemes for the stochastic
Navier-Stokes equations on bounded two and three dimensional domains.

The motivation for this numerical analysis is twofold: First this is an important model
problem which combines algebraic constraints, non-Lipschitz nonlinearity, and stochastic forcing.
The methods developed for this model problem may be applied to a wide range of nonlinear
stochastic partial differential equations driven by a Wiener noise.

Second, these methods may be used in applications. Such a system has been introduced
to better understand turbulence phenomena, well posedness of the deterministic problem and
random fluctuations in hydrodynamic models. It may be used to model relevant physical phe-
nomena, such as turbulence.

In the first part of this thesis, we address the finite element based approximation of weak
martingale solutions in two and three dimensions, i.e., a system consisting of a filtered probability
space, a Wiener process on it, and a solution to the equations. The discretisation is conceived
such that all the elements of the system are constructed using continuous perturbations of the
discrete iterates, and convergence without rates for subsequences of approximating solutions is
proved. Moreover we show the same convergence properties for a scheme which uses general
random variables to approximate the time increments of the stochastic forcing. In the two-
dimensional case, thanks to a local monotonicity argument, the same scheme with Wiener process
increments is shown to produce iterates that converge towards the unique strong solution.

In the second part of this thesis, we study the convergence properties of projection based
splitting schemes applied to the unsteady stochastic Stokes equations. In this simplified setting,
we observe that the Lagrange multiplier affects the convergence behavior of the scheme, due to
its irregularity This motivates the introduction of a new discretisation scheme, which is stable
under this irregularity. Finite element discretisations are also considered, and their convergence
proved.

In the third part of the thesis, we consider implicit Euler based approximation schemes for
the two-dimensional stochastic Navier-Stokes equations with periodic boundary conditions, and
study convergence with rates. Due to the non-Lipschitz character of the nonlinearity, we prove
convergence only on a set with probability arbitrarily close to one for the proposed schemes in
a general setting. However, for additive noise we show convergence on the whole realisation
space for the time discretisation. Finite element approximations for the corresponding time
discretisations are considered, and convergence analysed.

All the parts are concluded with simulations to illustrate the convergence results, and com-
pare the efficiency of the different discretisations.
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Zusammenfassung

Die Zielsetzung dieser Arbeit ist die Analyse von Diskretisierungen der stochastischen Navier-
Stokes Gleichungen auf beschränkten, zwei- und dreidimensionalen Gebieten.

Die Motivation für diese numerische Analysis ist zweifach: Zum einen sind die Gleichun-
gen ein wichtiges Modellproblem, das algebraische Nebenbedingungen mit einer stochastischen
Kraft und einer Nichtlinearität, die nicht Lipschitz ist, kombiniert. Die hier entwickelten Meth-
oden können auf andere ähnliche nichtlineare stochastische Partielle Differentialgleichungen
angewandt werden. Zum anderen sind diese Methoden für praktische Anwendungen wichtig.
Die hier betrachteten Gleichungen dienen Dazu, turbulente Strömungen, Wohlgestelltheit des
entsprechenden deterministischen Problems und zufällige Schwankungen in hydrodynamischen
Modellen besser zu verstehen.

Im ersten Teil der Arbeit wird die auf finiten Elemente basierte Approximation schwacher
Martingallösungen in drei Dimensionen betrachtet. Dies sind Systeme, die aus drei Bestandteilen
bestehen: einem filtrierten Wahrscheinlichkeitsraum, einem Wienerprozess und einer Lösung der
Gleichungen. Die Diskretisierung ist so konstruiert, dass alle Elemente des Lösungssystems unter
Anwendung stetiger Störungen der diskreten Iterationen konstruiert werden können. Konver-
genz ohne Raten wird hierfür gezeigt. Zusätzlich werden für dieses Schema mittels allgemeiner
Zufallsvariablen, die die Zeitinkremente der stochastischen Kraft approximieren, ähnliche Kon-
vergenzeigenschaften gezeigt. Für zweidimensionale Gebiete konvergiert dasselbe Schema gegen
die eindeutige starke Lösung, was unter Verwendung lokaler Monotonie gezeigt wird.

Im zweiten Teil werden Konvergenzeigenschaften von Projektionsverfahren studiert, die auf
die instationären stochastischen Stokes Gleichungen angewandt werden. In diesem vereinfachten
Zusammenhang wird untersucht, welchen Einfluss die Irregularität des Lagrange Multiplikator
auf die Konvergenz hat. Hierzu wird auch die Konvergenz der finite Elemente Diskretisierung
gezeigt.

Im dritten Teil der Arbeit werden Schemata für die zweidimensionale Navier-Stokes Gle-
ichungen mit periodischen Randbedingungen untersucht, die auf finiten Elementen und dem im-
pliziten Eulerverfahren basieren, und eine Konvergenzanalyse mit Raten durchgeführt. Da die
Nichtlinearität nicht Lipschitz ist, kann Konvergenz im Allgemeinen nur bis auf eine Menge mit
beliebig kleiner Wahrscheinlichkeit gezeigt werden. Im Falle additiven Rauschens wird dennoch
Konvergenz auf dem ganzen Realisierungsraum für die Zeitdiskretisierung gezeigt. Dazu wird
auch die finite Elemente Approximation betrachtet, und die Konvergenzanalyse für verschiedene
Fälle durchgeführt.

In den jeweils anschliessenden Simulationen wird das Konvergenzverhalten der vorgestellten
Algorithmen gezeigt und deren Leistungen verglichen.
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Chapter 1

Introduction

1.1 Stochastic Navier-Stokes Equations

We consider the system of equations describing the motion of incompressible fluids subject to
a random force in a bounded polygonal domain D ⊂ Rd, d = 2, 3. Let P := (Ω,F ,F,P)
be a stochastic basis, i.e., a complete probability space (Ω,F ,P), together with a filtration
F = {F}t≥0 satisfying the usual assumptions, and Ft ⊂ F for all t ≥ 0. We assume that
W ≡ {W(t) ; t ∈ [0, T ]} is a Wiener process that takes values in a suitable Hilbert space. Then
we look for a random velocity vector field u : DT × Ω→ Rd and a random pressure scalar field
π : DT × Ω→ R such that

u̇− ν∆u + [u · ∇]u +∇π = f + g(u)Ẇ in DT × Ω ,

divu = 0 in DT × Ω ,
(1.1.1)

where DT := (0, T )×D, and the dot above u and W indicates the distributional derivative with
respect to the variable t. This equations are supplemented with the initial condition

(1.1.2) u(0, ·) = u0 in D ,

and with homogeneous Dirichlet or periodic boundary conditions. Depending on the type of
initial condition (random variable or deterministic function), we will specify in each situation
studied later in which sense equality (1.1.2) has to be understood. Here, f : DT → Rd is
an external force, and g is a strongly continuous operator valued map with linear growth. Its
additional properties will be specified later, depending on the kind of problem we are considering.
The above equations are known as the stochastic Navier-Stokes equations (briefly SNSEs), and
may also be given in differential notation

du +
(
− ν∆u + [u · ∇]u +∇π

)
dt = f dt+ g(u) dW ,

divudt = 0 .

Setting g ≡ 0, we obtain the deterministic Navier-Stokes equations (NSEs), which are used
to describe the motion of an incompressible fluid in the domain D subject to the external force f .
This model was introduced by the French physicist C.L.M.H. Navier in 1822 and by the British
mathematician G.G. Stokes in 1845 independently (it is worth noticing that also Poisson in
1830 and Saint-Vénant in 1843 derived these equations). The first proofs of the well-posedness
of the problem appeared in the works of Odqvist [105] and of Leray [94, 95], while Hopf was
the first to give a probabilistic description of fluid flows, obtaining in [73] the equation for the
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characteristic functional of the statistical solution1. Since then, the problem has been widely
studied from both, the physical and mathematical point of view, and despite these efforts, there
are still many open question of mathematical and physical nature. Actually, the most important
problem is the question about the uniqueness of a weak solution in three space dimensions
and the existence of global smooth solutions. Other open questions regard e.g. the analysis of
singularities that may arise, or the full understanding of turbulent phenomena. Beyond the
analytical studies, the development of computational methods for the NSEs has become another
focus of the highest priority for the application of the mathematical theory. In particular, one
of the main challenges is the efficient simulation of flows in turbulent regimes, which is crucially
connected with the full understanding of turbulent phenomena. In this context, the introduction
of a stochastic forcing (g 6= 0) in (1.1.1) is an extension of the original model, and is meant to
be a complementatory model to the NSEs, which may represent a helpful tool in the statistical
description of turbulence, thanks to some additional properties of the corresponding solutions.
For example, the two-dimensional SNSEs have a unique invariant measure, hence exhibit ergodic
behavior in the sense that the time average of a solution is equal to the average over all possible
initial data: see [47]. Despite continuing efforts of many scientists during the last three decades,
such a property, which could lead to profound understanding of the nature of turbulence, has
not yet been proved for the deterministic equations.

From a mathematical point of view, the introduction of the noise is intended to recover
properties that are not valid for the corresponding deterministic problem. In this direction, an
important tool arising from the stochastic model (1.1.1) is that of stationary solution, namely
a solution that is a stationary process, and thus its joint distribution is independent of the
time. In general, the concept of stationary solution is useful for the quantitative knowledge of
the statistics of the stationary regime of a turbulent flow, see [44, Remark 3.4]. In the specific
case of the SNSEs, it is possible to show the existence of stationary solutions ustat, see e.g. [46,
Section 4] that satisfy an energy inequality in a mean sense. As a consequence of the stationarity,
the expectation of the solution is independent of the time, hence there holds

E
[∫

D

∣∣∇ustat(t,x)
∣∣2 dx

]
<∞

for all t ≥ 0. This implies that ∫
D

∣∣∇ustat(t,x)
∣∣2 dx <∞

for all t ≥ 0 and for almost every realisation of the noise. A corresponding property for the
three-dimensional deterministic problem, where it would imply uniqueness, does not hold.

Another fact that makes SNSEs interesting, is that in general a stochastically forced model
may lead to uniqueness results which are not available for the deterministic case at the moment.
To support this opinion, we recall that there exist examples of ordinary differential equations
which lack of uniqueness, e.g.,

du(t) =
√
|u(t)| dt , u(0) = 0 ,

but the same equation perturbed by a real-valued Wiener process W

du(t) =
√
|u(t)|dt+ dW (t) , u(0) = 0 ,

1The functional is given by
ΦΦΦt[y] = 〈exp[i(u(t),y)]〉 ,

where (·, ·) denotes the L2 scalar product, u is the velocity vector field, and 〈·〉 denotes the average over all
possible initial data. This functional is a tool to conveniently describe the probability distribution of u and its
correlation moments (the latter by means of variational derivatives of the functional).
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has a unique solution for almost every realisation of the noise. A similar remarkable result, but
more related to stochastic hydrodynamics is obtained in [4] for the dyadic model

dXn(t) =
(
kn−1X

2
n−1(t)− knXn(t)Xn+1(t)

)
dt t ≥ 0 ,

Xn(0) = xn ,
(1.1.3)

for n ≥ 1 with kn > 0, X0 ≡ x0 = 0 and {xn}n≥1 square summable. This model shares some
properties with the stochastic Euler equations (ν = 0 in (1.1.1)), like the quadratic nonlinearity,
and the fact that the energy is (formally) constant, namely

∞∑
n=1

X2
n(t) ≡ C > 0 .

It is known, see [5], that for this model there are initial conditions such that there exist at least
two solutions with continuous components on some interval [0,T]. Let {Wn}∞n=1 be a family of
independent i.i.d. real valued Wiener processes, and ◦ denotes the Stratonovich noise; see the
(1.2.2) for its meaning. If stochastic perturbation of the form

σkn−1Xn−1(t) ◦ dWn−1(t)− σkn+1Xn+1(t) ◦ dWn(t) σ 6= 0 ,

is added to problem (1.1.3), uniqueness in law of the solution on the space C([0, T ];R)N can be
shown for every initial data.

It is worth noticing that in [10], the author derives a model for turbulence driven by a
fast unidirectional flow. The most important properties for this model are the existence and
uniqueness of an invariant measure, which is then used to prove the scaling laws conjectured by
Kolmogorov in [82], proved under the assumption of additive noise as external body force.

Turning to a physical point of view, the idea to study NSEs using additional stochastic terms
mainly originates from the modeling of small fluctuations. This idea appears in [91, Chapter 17],
where the authors consider the classical balance laws for mass, energy and momentum forced
by a random noise, to describe the fluctuations, in particular local stresses and temperature,
which are not related to the gradient of the corresponding quantities. The authors then derive
correlations for the random forcing by following the general theory of fluctuations; see [90,
Chapter 12]. In a different framework, Kolmogorov conjectures the use of randomly forced
equations for turbulent flows, see [83], and since then, lots of model involving the Navier-Stokes
equations and a stochastic forcing have been introduced and studied. A first method to justify
the noise in the SNSEs is to consider the randomly forced NSEs as Langevin equations as in
the classical theory of noises; see [127]. In fact, the random force method in the Lagrangian
description (when the motion of a system of fixed liquid particles is traced) of turbulence was
proposed in [103] to statistically describe the motion of fluid particles in turbulent flows. More
precisely, Langevin stochastic equations, because of the analogies that the author finds between
turbulence and molecular statistics, see [93, 107, 108], are used to describe the (relative) motions
{ui}i≥1 of the fluid particles, i.e.,

u̇i(t) = −λui(t) + zi(t) ,

where zi is the random force (gaussian white noise) and λ > 0. This method is then naturally
generalised in [104] to the Euler description of turbulence, i.e. a description of the velocity field
u(t,x), leading to the NSEs with a random forcing term like in (1.1.1).

A second way to justify the random forcing is the Markovian random coupling model intro-
duced in [49], which is a slight modification of the stochastic model introduced by Kraichnan in
[87] for the random oscillator. The main idea from [49] consists in considering, instead of a single
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set of Navier-Stokes equations, a family of N sets of equations for N turbulent flows {vj}Nj=1

that are coupled through the nonlinear terms
[
vj ·∇

]
vj . It is assumed that the quadratic terms

fluctuate around their means µµµj = E
[[
vj · ∇

]
vj
]
as follows

[
vj · ∇

]
vj = µµµj +

1

N

N∑
k,l=1

γjkl
[
vk · ∇

]
vl ,

where the coupling coefficients {γjkl(t)}Nj,k,l=1 are independent, identically distributed, centered
gaussian white noises symmetric with respect to j, k and l. Thus we get the system

dvj +
(
− ν∆vj +µµµj +∇πj

)
dt+

1

N

N∑
k,l=1

(
[vk · ∇]vl

)
◦ dzjkl = Q1/2dW ,

divvj = 0 ,

supplied with some initial condition, with i.i.d. central white noises {dzjkl}Nj,k,l=1 and a Wiener
process W. The random forcing Q1/2dW is needed to ensure the existence of stationary solu-
tions. Note that the system is “doubly” stochastic, in the sense that additionally to the stochastic
forcing Q1/2dW there are the random coupling coefficients {dzjkl(t)}Nj,k,l=1. This model is the
motivation for the first rigorous analytical study of the SNSEs by Bensoussan and Temam in
[8]. This model is also studied in [34, Section 4], but from the point of view of the characteristic
functional.

1.2 Derivation of the model and existence results

To end the discussion about the modeling aspects related to the equations studied in the present
work, we consider a general model for turbulence rigorously derived in [99, 100] and reported
here for the sake of completeness. Let P :=

(
Ω,F ,F,P

)
be a stochastic basis. We assume that

all the random fields are regular enough to justify the manipulations below, and we work with
scalar valued Wiener processes, to simplify the mathematical setting. We assume that the fluid
we are dealing with is newtonian. Similarly to the random force method introduced in [103], for
a real valued Wiener process W1 on P we assume that the fluid particle motion is described by
the Stratonovich stochastic equation

(1.2.1) dηηη(t,x) = u(t,ηηη(t,x)) dt+ σσσ(t,ηηη(t,x)) ◦ dW1 , ηηη(0,x) = x ∈ Rd ,

where u : [0, T ]×Rd×Ω→ Rd is an unknown random field, σσσ : [0, T ]×Rd×Ω→ Rd is a given
non-random function. The idea of decomposing the velocity into a slow and a fast oscillating
part has often been used in the study of turbulent flows. The interest in flows of the form (1.2.1)
originates from recent developments in modeling a turbulent flow by a generalised Gaussian
random field with zero mean and a special covariance function, see [100, Introduction], following
the seminal work of Kraichnan on turbulent transport [88], and then developed in [55, 51]. We
assume that for every fixed t ≥ 0 the map ηηη(t, ·) : Rd → Rd is a diffeomorphism; see [116, Section
5.2] for the necessary assumptions. Here is

(1.2.2) σσσ(t,ηηη(t, ·)) ◦ dW1 =
1

2
[σσσ(t,ηηη(t, ·)) · ∇]σσσ(t,ηηη(t, ·)) dt+ σσσ(t,ηηη(t, ·)) dW1 .

Let W2 be another real valued Wiener process on P, independent of W1, and assume that the
random field u has the following form

(1.2.3) du(t, ·) = ααα(t, ·) dt+ βββ(t, ·) dW1 + γγγ(t, ·) dW2 ,
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where ααα : [0, T ] × Rd × Ω → Rd, βββ : [0, T ] × Rd × Ω → Rd and γγγ : [0, T ] × Rd × Ω → Rd are
unknown random fields adapted to the filtration generated by the processes W1 and W2. To
have the incompressibility of the fluid characterised by (1.2.1), we need that ηηη(t, ·) : Rd → Rd is
volume preserving for every t ∈ [0, T ]. This holds if and only if

(1.2.4) divu(t, ·) = divηηη(t, ·) = 0 (t ≥ 0) ,

together with the assumption of Stratonovich noise in (1.2.1); see [100, Remark 1]. To see this
it is necessary to derive an equation for the Jacobian of ηηη, and adapt the computations from
[33, Section 1.1] to the stochastic setting. Now, to derive the equations for the velocity field u
we apply Newtonian mechanics to the velocity field

U(t, ·) = u(t, ·) dt+ σσσ(t, ·) ◦ dW1 ,

in order to find the equations for the balance of momentum and mass. Consequently, because of
the Newton second law together with (1.2.1), for the total force F(t,ηηη(t, ·)) applied to the fluid
particle with trajectory ηηη(t, ·) there holds

(1.2.5) d
(
dηηη
)
(t, ·) = F(t,ηηη(t, ·)) ,

where we assumed that the mass density is 1. This implies∫ T

0
φ(t)F(t,ηηη(t, ·)) dt = −

∫ T

0
φ̇(t)σσσ(t,ηηη(t, ·)) ◦ dW1(t) +

∫ T

0
φ(t) du(t,ηηη(t, ·))

for all smooth functions φ with compact support on R. By the Itô-Wentzell formula [116,
Theorem 1.4.9] together with (1.2.2)

du(t,ηηη(t, ·)) =
(

[u(t,ηηη(t, ·)) · ∇]u(t,ηηη(t, ·)) +

d∑
i,j=1

σσσi(t,ηηη(t, ·))uxixj (t,ηηη(t, ·))σσσj(t,ηηη(t, ·))
]

+

n∑
j=1

[
[σσσ(t,ηηη(t, ·)) · ∇]σj(t,ηηη(t, ·))uxj (t,ηηη(t, ·))

])
dt

+ααα(t,ηηη(t, ·))dt+
(

[σσσ(t,ηηη(t, ·)) · ∇]u(t,ηηη(t, ·)) + βββ(t,ηηη(t, ·))
)

dW1

+γγγ(t,ηηη(t, ·)) dW2 + [σσσ(t,ηηη(t, ·) · ∇]βββ(t,ηηη(t, ·)) dt .

We assume that there exist given random fields d, f , q and h, from [0, T ]×Rd ×Ω to Rd, such
that∫ T

0
φ(t)F(t, ·) dt = −

∫ T

0
φ̇(t)d(t, ·) ◦ dW1 +

∫ T

0
φ(t)

(
f(t, ·) dt+ q(t, ·) dW1 + h(t, ·) dW2

)
.

The random fields d, f , q and h will be specified below. We use the invertibility of ηηη(t, ·), and
matching the similar terms we arrive at

du(t, ·) =
(

[u(t, ·) · ∇]u(t, ·) +
d∑

i,j=1

σi(t,ηηη(t, ·))uxixj (t,ηηη(t, ·))σj(t,ηηη(t, ·))

+

n∑
j=1

[
[σσσ(t, ·) · ∇]σj(t, ·)uxj (t, ·)

]
+ [σσσ(t, ·) · ∇]βββ(t, ·)

)
dt

+ααα(t, ·)dt+
(

[σσσ(t, ·) · ∇]u(t, ·) + βββ(t, ·)
)

dW1 + γγγ(t, ·) dW2 .
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First, we observe that for Ai,j(t, ·) := σi(t, ·)σj(t, ·) we have

d∑
i,j=1

(
Ai,j(t, ·)uxi(t, ·)

)
xj

=

d∑
i,j=1

σi(t, ·)uxixj (t, ·)σj(t, ·) +

n∑
j=1

[
[σσσ(t, ·) · ∇]σj(t, ·)uxj (t, ·)

]
,

since u is divergence-free. After some algebraic manipulations, we get

γγγ(t, ·) = h(t, ·) , βββ(t, ·) = −[σσσ(t, ·) · ∇]u(t, ·) + q(t, ·) ,
ααα(t, ·) = [σσσ(t, ·) · ∇]βββ(t, ·)− [u(t, ·) · ∇]u(t, ·) + div

(
A(t, ·)∇u(t, ·)

)
+ f(t, ·) ,

which results in the equations

du(t, ·) =
( d∑
i,j=1

(
Ai,j(t, ·)uxi(t, ·)

)
xj
− [u(t, ·) · ∇]u(t, ·) + [σσσ(t, ·) · ∇]q(t, ·)

)
dt

+ f(t, ·) dt+
(
q(t, ·)− [σσσ(t, ·) · ∇]u(t, ·)

)
dW1 + h(t, ·) dW2 .

(1.2.6)

Now, we precise the random fields f , q and h. We assume that the fluid is viscous, and following
the derivation of the Navier-Stokes equations in [33, Section 1.3], we note that (1.2.1) corresponds
to the velocity field U(t, ·). Consequently, by the usual assumptions on the stress tensor for
Newtonian flows, see [33, Page 32], we obtain that the stress tensor has the form

(1.2.7) T(t, ·) :=
ν

2

(
∇U(t, ·) +

[
∇U(t, ·)

]T)
,

with the kinematic viscosity ν > 0. Hence, for a surface S in the fluid, the total force exerted
across the surface S per unit area at x ∈ S at time t is given by

−π(t,x) I n(x) +
[
T(t,x) + G(t,x)

]
n(x) ,

where G is the external body force, π is the pressure, n(x) is the outer normal at the point
x ∈ ∂S and I ∈ Rd×d is the identity matrix. By the divergence theorem we obtain that the total
force is given by

−∇π(t, ·) + div
[
T(t, ·) + G(t, ·)

]
.

We decompose the pressure π and the force divG following the structure of du obtaining

π(t, ·) = πf (t, ·) dt+ πq(t, ·) dW1 + πh(t, ·) dW2 ,

divG(t, ·) = f̃(t, ·) dt+ q̃(t, ·) dW1 + h̃(t, ·) dW2 ,

for given random fields f̃ , q̃ and h̃. Thus, noting the Stratonovich noise in (1.2.1), on any piece
of fluid material we have that the force per unit volume is given by

f(t, ·) dt+ q(t, ·) dW1 + h(t, ·) dW2

with

f = ν∆u(t, ·) +
ν2

2

d∑
i=1

∆σi(t, ·)∆σσσxi(t, ·)−∇πf (t, ·) + f̃(t, ·) ,

q = q̃(t, ·)−∇πq(t, ·) + ν∆σσσ(t, ·)
h = h̃(t, ·)−∇πh(t, ·) .
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Putting all together, and dropping the arguments below, we arrive at the following Navier-Stokes
equations

du =
(
− [u · ∇]u +

d∑
i,j=1

(
Ai,juxi

)
xj

+ ν∆u +
ν2

2

d∑
i=1

∆σi(t, ·)∆σσσxi(t, ·)
)

dt

+
(

[σσσ · ∇]
(
q̃−∇πq + ν∆σσσ

)
−∇πf + f̃

)
dt

+
(
q̃ + ν∆σσσ −∇πq − [σσσ · ∇]u

)
dW1 +

(
h̃−∇πh

)
dW2 ,

divu = 0 .

(1.2.8)

As we see, this model is more general than equations (1.1.1), as it includes a noise which depends
on the gradient of the velocity, a general diffusion term arising from the Lagrange formulation
with Stratonovich noise, and some other (deterministic) forcing terms. It is clear, that if we set
σσσ ≡ βββ ≡ γγγ ≡ 0, we obtain the deterministic NSEs. Otherwise, by setting σσσ ≡ βββ ≡ 0 we obtain
the following SNSEs

du +
(
ν∆u + [u · ∇]u +∇πf

)
dt = f̃ +

(
h̃−∇πh

)
dW2 ,

divudt = 0 ,

which can be identified with (1.1.1), if we use an operator valued random field h, an Hilbert
space valued Wiener process W2, and define π = πf dt + πh dW2. If we are interested in an
infinite dimensional forcing, we observe that we may have considered a field u of the form

(1.2.9) du(t, ·) = ααα(t, ·) dt+
∞∑
i=1

βββi(t, ·) dW i
1 +

∞∑
j=1

γγγj(t, ·) dW j
2 ,

for suitable families of random fields {βββi}∞i=1, {γγγi}∞i=1 and independent families of scalar Wiener
processes {W i

j}∞i=1, j = 1, 2. This would imply a more general model, leaving unchanged the
considerations of the present section. A comparable derivation of the SNSEs is given in [17],
where the authors consider equation (1.2.1) with a deterministic velocity field u and Itô noise.
However, the SNSEs derived in that paper may be considered as a special case of the equations
(1.2.8). Another derivation of the SNSEs model can be found in [86], where the SNSEs are
obtained analysing a stochastic microscopic model underlying the two-dimensional NSEs for the
vorticity of a viscous incompressible flows; see also [7, Sections 2.1 and 2.2] for a simplified
derivation.

The first mathematically rigorous approach to the SNSEs is given in [8], where the authors
study the SNSEs with constant diffusion coefficient g and one-dimensional Wiener process.
There, a solution is defined as a random variable with values in a suitable Banach space, sat-
isfying the (deterministic) NSEs for almost every realisation of the noise. Then, by means of a
theorem on measurable sections, the existence is shown, and an energy inequality in the mean
sense is also given, but the question of the uniqueness is left open, due to the interplay of nonlin-
earity and stochastics. Since then, this problem has been widely studied and several approaches
have been proposed. The main problem in getting existence results for the SNSEs, is given by
the difficulty, in most cases, to apply the tools that are used in the deterministic theory. As an
example, in the deterministic case a compactness theorem is needed to show that there exists
a strongly convergent subsequence in the set of solutions to the approximating problems. This
argument requires uniform bounds for the time derivative of the approximating sequence, which
are not available for the SNSEs due to the irregularity in time of the driving Wiener process.
Thus, to prove existence, non-trivial estimates on the modulus of continuity of the approximat-
ing solutions, see e.g. [129] or the factorisation method for stochastic integrals, see e.g. [37],
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are needed. An important tool to get compactness in the stochastic case is given by the em-
bedding theorems for fractional Sobolev spaces proved in [46, Section 2], see also Section 3.2.3.
This theorems allow a treatment of the SNSEs that is similar to the one of the corresponding
deterministic equations, and is easier than the estimation of the modulus of continuity of the
approximating solutions.

Another question related to the SNSEs is the uniqueness of the solutions. In fact, the
uniqueness is proved only for the two dimensional case in [120]. In the stochastic setting, again,
it is not possible to apply the uniqueness proof from the deterministic theory, due to the the
energy estimate, which holds only in a mean sense. As a consequence, to obtain uniqueness it is
necessary to multiply the equation for the difference of two solutions with a positive integrating
factor, which compensates the effects caused by the interplay of nonlinearity and stochastics.
Even though the uniqueness of a solution to the three-dimensional problem is still an open
problem, a striking result has been obtained in [36], where the existence of a measurable selection
of solutions that depend continuously on the initial condition is proved. There is no equivalent
result for the deterministic problem, and this represents an important step towards the proof of
the uniqueness.

Let us cite some existence results that are methodologically connected with the present work.
The existence of global weak martingale solutions of (1.1.1) which satisfy an energy inequality
is shown in [46] in the case of a bounded domain and a noise which depends on the solution.
For the proof a Faedo-Galerkin method is used together a compactness argument. In [101] the
same is proved for the general model (1.2.8) in an unbounded domain using a regularisation
procedure, and the result is extended to prove existence and uniqueness of a strong solution in
the two-dimensional case. Since the domain is unbounded, the compactness argument has to
be appropriately modified. Another existence proof, limited to the two-dimensional case can
be found in [98], where a local monotonicity method is used to obtain existence only by weak
convergence, and thus without any compactness theorem. The argument is then applied also in
[97], where the same method is applied to the SNSEs with artificial compressibility.

Other existence proofs include [18, 7, 11, 22, 23, 24, 25, 26, 115, 119, 84, 129], and the
methods used are, among others, semigroup theory, nonstandard analysis or the application of
the Yamada-Watanabe theorem from [114].

1.3 Numerical Schemes for the SNSEs

Stochastic partial differential equations (SPDEs) are motivated, beyond stochastic hydrodynam-
ics, by such phenomena as wave propagation in random media, nonlinear optics, phase separation
models, neurophysiology and population biology. Thus, also the interest in the discretisation
of such equations has grown in the last two decades, giving rise to a rich literature about the
numerical analysis of SPDEs.

The first steps towards a suitable discretisation arise by using practical methods in an ab-
stract setting. In fact, Rothe’s method is considered in [57] for linear equations, in [77, 13] for
equations with maximal monotone operators, and in [96] for an equation involving monotone
operators, but in all papers it is used to show existence of a solution. To our knowledge, the
numerical analysis of SPDES started with the paper [9], where a splitting method suggested by
the Lie-Trotter product formulas for SPDEs is used. This method decomposes the SPDEs in a
deterministic PDEs, and a stochastic equation not involving a differential operator, which are
simpler for numerical computations, and are solved successively. Convergence (without rate) is
proved, and an estimate of the approximation error is given for a particular case.

The global discretisation error is estimated first in [55], for a class of SPDEs on smooth do-
mains with strongly monotone operator with positive eigenvalues in its drift, and scalar-valued
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Wiener process. Using the spectral decomposition, a set of ordinary stochastic differential equa-
tions is recovered, and this is then discretised in time by a strong Itô-Taylor method, see [81].
The derived error estimate depends on the time-step and on the biggest eigenvalue considered in
the spectral decomposition, and evidences a coupling between the time and the space discreti-
sation parameters. This work was preceded by [65], where the one-dimensional heat equation
with a nonlinear measurable term with linear growth, and an additive space-time white noise
is studied. The authors consider only time discretistion of the corresponding solution by an
implicit Rothe’s method. Using the spectral decomposition of the Laplace operator on the unit
interval, uniform Hölder continuity of the piecewise affine interpolation of the discrete solution
is proved. This leads, using tightness of the laws of the corresponding discrete solutions, to
the uniform convergence in probability of the solutions to the discretisation scheme. The re-
sult was then generalised in [66], where the authors consider a nonlinear Lipschitz continuous
term in the drift and multiplicative noise with Lipschitz coefficient. Strong Lp-convergence with
rates is obtained getting advantage of an estimate for the Lp-norm of the discrete solution,
which is proved by Malliavin calculus. By relaxing the conditions on the nonlinear coefficients,
convergence in probability is proved, extending the result of [65] to multiplicative noise. The
space-time discretisation of the same problem is then considered in [60, 61], where a finite dif-
ference scheme for the space discretisation is considered, and both, implicit and explicit schemes
are used. Under various assumptions on the nonlinear coefficients corresponding convergence
types are proved. E.g., for Lipschitz continuous coefficients, strong Lp-convergence with rate
is proved, while under the assumptions of measurability and local boundedness convergence in
probability without rates holds. The proof relies on Lp-estimates for the Green function related
to the Laplace operator, and on estimates for the corresponding convolutions.

An important generalisation of these results is given in [111], where the time discretisation
of SPDEs under very general assumptions is considered. The equation is assumed to have a drift
consisting of a linear operator, which generates an analytic semigroup, and a nonlinear term,
together with a Lipschitz continuous diffusion term. First, the author considers a Lipschitz
continuous nonlinearity to prove strong convergence in Lp with rates using tools from semigroup
theory, and energy estimates for solutions. Then, the corresponding problem with a locally
Lipschitz nonlinearity is studied. In this case only convergence in probability with rates can be
shown. The proof relies on the Lipschitz truncation of the nonlinearity, in order to get advantage
of the strong convergence. Then, the distance between the solution of the truncated problem
and the original one is estimated using regularity properties of corresponding solutions. Despite
the generality of the tools used in the proof, it is worth noticing that the methods used in the
proof are specialised on the case of the one-dimensional Burgers equation, and thus if we want
to apply the same tools, we need analogous properties for the solution of the problem we are
studying. Another general discretisation procedure is given in [69], where general semilinear
SPDEs with Lipschitz coeffcients are studied. The explicit Euler, the implicit Euler, and the
Cranck-Nicholson scheme are investigated together with a spatial discretisation based on finite
differences, spectral decomposition or wavelet approximation. Strong convergence with rates is
proved under general assumptions on the related linear and nonlinear operators, obtaining a
flexible discretisation which can be applied to a wide range of equations. This approach is then
extended to SPDEs driven by a Banach space valued Wiener process in [68].

As regards the finite element method, we may cite the paper [1]. There, the discretisation of
elliptic and parabolic SPDEs is studied by means of finite element and finite difference methods.
Using the weak formulation of the problem, and the corresponding formulation obtained with
the Green function, the authors show strong convergence with rates in L2. A key tool in the
proof is also an appropriate treatment of the Wiener process, whose approximation is taken
to be piecewise constant in time and space on the discretisation intervals. Another important
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paper which studies the finite element discretisation is [132], where a numerical scheme based
on piecewise affine finite elements and implicit Euler is studied for the stochastic heat equation
with both, additive and multiplicative noise. The author derives new error estimates for the
corresponding deterministic problem using semigroup theory, and deriving regularity estimates
for the exact solution, optimal error estimates are proved. This result also includes the case
where the equation is driven by an additive space-time white noise, and gives an error estimate
for the error induced by the truncation in the series representation of the Wiener process.

Another series of papers which considers the discretisation of SPDEs is [62, 63, 64], where
the authors study the convergence properties of discretisation schemes applied to SPDEs with
strongly monotone coefficients. The considered noise is finite dimensional, but can be easily
extended to an infinite dimensional one, if a Hilbert-Schmidt integrand is considered. In [62],
implicit and explicit time discretisation schemes together with a general space discretisation
are considered for equations with strongly monotone operators satisfying a polynomial growth
condition, framework which includes, e.g., the p-Laplacian in the drift. Under some consistency
assumptions which specify approximation properties for corresponding discrete operators and
coefficients, the weak L2-convergence without rates towards the unique solution is proved using
variational methods. In [63] the time discretisation is applied to equations with monotone
operators, but linear growth. Again, assuming appropriate approximation properties for the
discrete versions of the corresponding operators and coefficients, strong convergence with rates
is proved. The strong convergence with rates is then proved for space-time approximation in
[64], for implicit and explicit schemes, and including space discretisations like finite differences,
wavelets and finite elements.

Focusing on more general equations, which do not fit into the setting of equations with
Lipschitz continuous coefficients or monotone operators, we can cite [80], where a finite element
discretisation of the Allen-Cahn equation is considered, and the techniques from [1] are applied
to the new problem setting to obtain numerical simulations. Another interesting example of
discretisation is given by [38], where an implicit temporal discretisation is applied to the nonlinear
Schrödinger equation driven by a Stratonovich noise. The authors consider a non-monotone
nonlinearity with polynomial growth, and prove convergence in probability by a compactness
argument, which is related to that used in Chapter 3. For the approximation of problems with
coefficients which are not globally Lipschitz, we can also cite [78], where the order of convergence
is estimated for every fixed realisation of the solution. The methods used in the proof base on the
proof of strong convergence under the assumption of Lipschitz continuity, and then by applying
a localisation technique for one sample path on a bounded set.

The list of the works which have studied numerical approximations of SPDEs is far from
being exhaustive, but the works we cited here represent, to our opinion, some of the most
important steps in the understanding of numerical methods for SPDEs.

Despite the growing interest about the theory of SNSEs and the discretisation of SPDEs, the
question about numerical approximations of SNSEs is virtually untouched. For practical pur-
poses, e.g. weather prediction or climatology, approximation of solutions over long time periods
is crucial. It is believed that at large times the trajectories will typically stay on or near the
attracting sets, and their distributions are characterised by the invariant measures. Therefore,
the knowledge of the invariant measures and attractors as well as their numerical approximations
is very often essential for practical issues. However only few works which are related to some
type of approximation of (1.1.1) have been written, most of them not always in the framework
of an implementable discretisation. In our opinion, the most important is [48], where a time
discretisation of the SNSEs with additive noise is considered. Convergence in probability, in dis-
tribution and almost sure is proved for the implicit Euler method to approximate the solution
of the SNSEs, splitted in an Ornstein-Uhlenbeck equation and a two-dimensional Navier-Stokes
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with stochastic coefficients. Then in [56] is considered the approximation of the noise by smooth
functions, also called Wong-Zakai approximation, for the two-dimensional SNSEs, result which
is extended to the three-dimensional case in [130]. In [12] the approximation of the SNSEs by
an abstract Galerkin method is considered, and mean square convergence to the strong solu-
tion is proved applying properties of stopping times and convergence principles from functional
analysis. A striking result has been obtained in [41], where convergence with rates for a weak
approximation of the SNSEs is studied for the two-dimensional equations on the torus. The
author uses a weighted space to obtain a generalised Feller condition, a spectral method for the
vorticity equation, together with a Strang splitting for the corresponding semigroup, and a cu-
bature method to approximate the stochastic integral. Weak convergence with rates is obtained
under a coupling of the discretisation parameters and numerical experiments are provided.

Because of the motivations listed above, we think that a study of the discretisation of the
SNSEs should be carried out. The objective of this work is twofold:

1. First, we provide a fully practical numerical discretisation of the equations (1.1.1), which
can be used to study physically relevant phenomena, like turbulence. Our studies may
provide tools for future studies of invariant measures to equations (1.1.1).

2. Second, for the discretisation of (1.1.1) we develop technical tools that may be applied
to a wide range of nonlinear SPDEs with non-Lipschitz nonlinearity, or problems which
possess only weak martingale solutions.

1. Construction of weak martingale solutions (Chapter 1). The first problem we
address is the approximation of the weakest concept of solution, since, in the three-dimensional
case, the only available concept of solution is that of weak martingale solution, which is a system
consisting of a stochastic basis, a Wiener process and a solution, both defined on the stochastic
basis. To construct a weak martingale solution we consider a pair of finite element spaces
(Hh, Lh) satisfying the discrete Ladyzhenskaya-Babuska-Brezzi (LBB) condition

sup
ΦΦΦ∈Hh

(divΦΦΦ,Π)

‖∇ΦΦΦ‖L2

≥ C‖Π‖L2 ,(1.3.1)

with a constant C > 0 independent of the mesh size h > 0. Then we fix a stochastic basis
P = (Ω,F ,F,P) with a Wiener process W on it. Let Ik := {tm}Mm=0 be an equi-distant mesh
of size k > 0 covering the time interval [0, T ], where T ≡ tM . Then define fm := f(tm), and
∆mW := W(tm)−W(tm−1), for m ≥ 1. We consider the following finite element scheme based
on the implicit Euler method.

Algorithm 1.1. Let U0 ∈ Hh be given. For every m ∈ {1, . . . ,M} find an Hh × Lh-valued
random variable

(
Um,Πm

)
such that for all (ΦΦΦ,Λ) ∈ Hh × Lh,(

Um −Um−1,ΦΦΦ
)

+ kν
(
∇Um,∇ΦΦΦ

)
− k
(
Πm,divΦΦΦ

)
+ k
(
[Um · ∇]Um,ΦΦΦ

)
+
k

2

(
[divUm]Um,ΦΦΦ

)
= k

〈
fm,ΦΦΦ

〉
+
(
g(Um−1)∆mW,ΦΦΦ

)
,

(divUm,Λ) = 0 .

(1.3.2)

The existence of a sequence of random variables {Um}Mm=1 is ensured by a variant of the
Browuer fixed point theorem, while the existence of {Πm}Mm=1 follows by the discrete LBB
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condition. The measurability of Um with respect to Ftm follows by applying the methods from
[38]. The next key tool are the following a priori estimates

E
[

max
1≤m≤M

1

2
‖Um‖2L2 + kν

M∑
m=1

‖∇Um‖2L2 +
1

2

M∑
m=1

‖Um −Um−1‖2L2

]
≤ CT ,

E
[

max
1≤m≤M

‖Um‖2pL2 + kν

M∑
m=1

‖Um‖2p−1

L2 ‖∇Um‖2L2

]
≤ CT,p ,

E
[(
k

M∑
m=1

‖∇Um‖2L2

)2p−1]
≤ CT,p .

(1.3.3)

Since the problem is nonlinear, we need a compactness argument in order to pass to the limit.
This is accomplished in several steps. With the help of the a priori estimates, we prove the
following bounds:

E
[
k

M−`∑
m=0

t
3/4
` ‖U

m+` −Um‖2L2 + ‖Um+` −Um‖2(V∩W2,2)′

]
≤ CT t` ,

E
[
k
M−`∑
m=0

‖Um+` −Um‖p
(V∩W2,2)′

]
≤ CT,ptp/2` .

(1.3.4)

Thanks to the compact embeddings of Sobolev spaces of fractional order from [46, Section 2],
the inequalities (1.3.4) imply compactness of the piecewise affine interpolation of the iterates
{Um}Mm=1 in the space

L2(0, T ;L2) ∩ C([0, T ], D(A−γ)), γ > 1 .

Now it is possible to apply the Skorokhod almost sure representation theorem, to extract an
a.s. convergent subsequence of approximating solutions on a new stochastic basis P′. Using
the energy estimates and the resulting uniform integrability, it is possible to show the strong
convergence of the subsequence on P′, and thus the existence of a process u that solves the
SNSEs.

The last step in the construction of the weak martingale solution is the construction of
the Wiener process. This is accomplished using an almost sure representation theorem, which
allows to “transfer” the old Wiener process on the new stochastic basis. The identification of the
stochastic integral follows by using the related equation to express it by deterministic integrals
involving a continuous perturbation of the discrete solution. Using the convergence properties
of the approximating solutions is then possible to show that the limiting term corresponding
to the stochastic integral is a square integrable martingale with quadratic variation process R,
where

Rt =

∫ t

0
g(u(s))Qg∗(u(s)) ds .

The identification of the stochastic integral then follows by a representation theorem for mar-
tingales.

We introduce then a second method to construct weak martingale solutions. The main
difference with respect to the just enumerated procedure is the approximation of the Wiener
process. In fact, we replace the brownian increments by general random variables, for instance
bounded, whose first and second moments coincide with those of the Wiener process. Moreover,
we need that the estimates for higher moments of the increments are consistent with the ones of
the Wiener process. The method of construction is not very different as regards the construction
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of the process u, solution to the SNSEs, but in the identification of the stochastic integral more
work is needed. Since we approximate the (continuous) stochastic integral by a discrete time
(discontinuous) process, to show that the limiting object corresponding to the discrete time
process is a martingale with the desired quadratic variation, we can not use the techniques listed
above. To accomplish this task we get advantage of a general theorem about the convergence of
discrete time quadratic variation processes and corresponding martingales, which is proved in
Appendix B.

2. Construction of strong solutions (Chapter 1).
For the two-dimensional Navier-Stokes equations, we prove that Algorithm 1.1 produces the

approximation of a strong solution. To this end, we employ a local monotonicity argument
developed in the papers [98, 97], where it is shown that

(1.3.5)
(
G(u)−G(v),u− v

)
+

27r4

2ν3
‖u− v‖2L2 ≥

ν

2
‖∇(u− v)‖2L2

for the nonlinear operator

G : u 7→ −ν∆u + (u · ∇+
1

2
divu)u .

To get advantage of this result in the continuous setting, the solution of the Galerkin system
corresponding to the SNSEs is multiplied with an appropriate process, in order to handle the
second term on the left-hand side in (1.3.5) with Itô’s formula, and use the Minty trick to identify
the limits in the nonlinear terms. The principal advantage of this approach is that it prevents
the need of strong convergence, and thus the use of compactness arguments.

First we consider the case of additive noise, in order to clarify the techniques. The local
monotonicity argument needs the Itô lemma to be properly applied in the continuous setting,
but in the discretisation we may only use piecewise constant approximations of the solution. Thus
the Itô lemma may not be applied as in the continuous case. To prove the desired convergence
properties, we apply the calculus rules for the discrete derivatives from Appendix A together
with a Taylor expansion. Then we have to carefully handle all the residual terms, show that
they vanish in the limit, and by the Minty trick we are able to identify the limit of the weakly
convergent sequence.

This arguments are then applied to the case of multiplicative noise, for a Lipschitz diffusion
coefficient, under a mild assumption on the Lipschitz constant.

3. Splitting schemes for the Stokes equations and rôle of Lagrange multiplier
(Chapter 2).

In this chapter we investigate the approximation properties of efficient splitting scheme aris-
ing from the deterministic theory; see [31, 125]. Their application to stochastic problems may
appear straightforward, but as we will explain, that is not the case. To better understand the
differences between the stochastic and deterministic case, let us explain the rôle of the pressure
in the context of SNSEs.

The pressure is defined as the Lagrange multiplier corresponding to the divergence-free con-
straint of the NSEs, which ensures that the resulting velocity field is incompressible. Despite its
importance in applications, in the usual existence proofs of deterministic NSEs, the pressure is
usually neglected by projecting the equations on the space of solenoidal vector fields using the
Leray-projection. Thus, the concept of weak solution to the NSEs does not include the pressure
explicitly, but it can be constructed as a distribution by means of the De Rahm theorem ; see e.g.
[126]. However, using potential theoretical methods it is possible to show that for the pressure
related to a weak solution the pressure possesses the regularity

π ∈ L5/3(DT ) ,
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for bounded and unbounded domains D ⊂ R3; see [123, Theorem 2.2].
For SNSEs the situation is slightly more complicated. Consider the equations (1.1.1). We

may notice, following to the derivation of the SNSE (1.2.8), that the pressure in (1.1.1) is written
as

(1.3.6) π(t, ·) = πf (t, ·) dt+ πg(t, ·) dW2 ,

where πg results from the random forcing term. This suggests us that the pressure is highly
irregular, since πg dW2 corresponds heuristically to the distributional derivative of the noise.
This observation is then confirmed by the proof of the high roughness of the pressure given in
[92], where it is proved that

(1.3.7) π ∈ L1
(
W−1,∞(0, T ;W 1,2(D)/R

))
,

if the noise takes values in L2. This roughness may cause drawbacks (and in fact it has) in both,
the theory and the computations of discrete solutions. Namely, in the deterministic case, see e.g.
[112, 113], higher regularity is needed to show optimal approximation properties for splitting
schemes. It is worth noticing, that for a solenoidal stochastic forcing, formal computations
motivates the estimate

E
[∫ T

0
‖∇π‖2L2 dt

]
≤ C .

Now that the subtle interplay of stochastics and Lagrange multiplier has been evidenced,
we may explain its influence on the convergence results for splitting schemes. We analyse the
Chorin scheme from [31] applied to the unsteady Stokes equations with homogeneous Dirichlet
boundary conditions. This is a method which splits the computation of velocity and pressure in
two subsequent iterations, and is based on the pressure stabilisation equation

divu− ε∆π = 0 (ε > 0) ,

to avoid the saddle point character of the problem. The algorithm is as follows:

Algorithm 1.2. 1. Let 1 ≤ m ≤M . For given um−1 ∈ L2(Ω,V) and ũm−1 ∈ L2
(
Ω,W1,2

0 (D)
)
,

find ũm ∈ L2
(
Ω,W1,2

0 (D)
)
such that(

ũm − um−1
)
− k∆ũm = k fm + g(tm−1, ũ

m−1)∆Wm in D .

2. Compute um ∈ L2
(
Ω,V

)
, and pm ∈ L2

(
Ω,W 1,2(D)/R

)
,

um − ũm + k∇pm+1 = 0 , divum = 0 in D ,

〈um,n〉 = 0 on ∂D .

The last step may be reformulated as a Poisson problem for the approximating pressure,
in order to gain computational efficiency. To understand the structure of error, we reformu-
late the scheme as a pressure stabilisation scheme with semi-explicit treatment of the pressure
approximations(

ũm − ũm−1
)
− k∆ũm + k∇pm−1 = k fm + g(tm−1, ũ

m−1)∆Wm in D ,

div ũm − k∆pm = 0 in D ,

∂np
m = 0 on ∂D ,

and ũ0 ≡ u0 in D. This formulation may be seen as a perturbation of the implicit Euler scheme,
and allows to identify all the sources of the error, which are the pressure stabilisation constraint
(k > 0) and the explicit treatment of the pressure approximations.
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The error analysis uses the splitting of the error into every single contribution (pressure
stabilisation, semi-explicit treatment of the pressure) by introducing auxiliary approximation
schemes. Thus, by measuring the error between each subsequent scheme, we arrive at the final
error estimate, which quantifies all the sources contributing to the error between the solution
to the implicit Euler scheme for the unsteady stochastic Stokes equations, and the solution
to Algorithm 1.2. Due to the pressure stabilisation, the error equation contains the pressure
approximations, which then crucially affects the error estimates. In fact, to obtain the error
estimates we need that corresponding pressure approximation satisfy

E

[
k

M∑
i=1

‖∇pm‖2L2

]
≤ C

uniformly in k > 0. This property is then transferred to the pressure iterates resulting from the
auxiliary problems by the corresponding error equations. As one can maybe note, due to the
decomposition (1.3.6) and the regularity property (1.3.7), the above bound is valid only if the
noise takes values in a space of divergence-free functions, leading to optimal convergence only for
such a stochastic perturbation. This result is then confirmed by the numerical computations,
where Algorithm 1.2 is applied to equations with both, solenoidal and non-solenoidal noise,
showing optimal convergence behavior for the former and suboptimal for the latter.

To obtain, independently of the type of noise, an optimal splitting-method from Algorithm
1.2 it is necessary to add an additional step which projects the noise increment onto a space
of solenoidal functions, preventing the pressure field to be too rough. Then, the other steps
of the algorithm remains unchanged, except for the calculation of the pressure approximation,
where the resulting Lagrange multiplier eliminated by the first projection step is summed to the
resulting pressure approximation. The resulting scheme is then called stochastic Chorin scheme,
and shows optimal convergence properties again.

In addition to the proposed splitting schemes, we study their finite elements approximation
by a general pair of approximation spaces. According to the deterministic theory, the finite
element space need not to be LBB-stable, because of the pressure stabilisation, which prevents
the divergence-free constraint. Thus, the choice of an unstable pairing is allowed, if the following
coupling of time and space discretisation parameters holds:

k ≥ Ch2 .

Even if we are not able to prove any error bound for the pressure, in the numerical exper-
iments we observe that the expectation of the pressure error is subject to the phenomenon of
boundary layers, due to the unphysical boundary conditions from the second step of Algorithm
1.2. The results for the expectation are similar to the corresponding ones for the deterministic
problem.

The studies performed in this chapter shows that the application of deterministic methods
to stochastic problem has to be accomplished carefully, due to the roughness of the noise, and
its interplay with the Lagrange multiplier. This consideration becomes even more crucial in the
study of the next problem.

4. Discretisation of the stochastic Navier-Stokes equations (Chapter 3).
In this last part, we consider algorithms from the first two parts, applied to the two-

dimensional SNSEs with periodic boundary conditions and multiplicative noise, to obtain conver-
gence with rates. The results from this chapter show that, as in the study of splitting methods,
it is not possible just to apply the approximation methods from the deterministic theory, be-
cause of various effects caused by the subtle interplay of stochastic, nonlinearity and Lagrange
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multiplier. This problem is here amplified by the presence of the convection term, which, due to
its non-Lipschitz character, is responsible for the resulting error estimates, that are valid only
of a subset of the realisation set Ω. Objective of this part is the study of Algorithms 1.1 and 1.2
applied to the two-dimensional SNSEs with periodic boundary conditions.

We start with a fully implicit Euler based time discretisation. In order to perform the error
analysis, we have to prove higher regularity properties of the exact solutions. This is possible
thanks to the particular problem setting, for which there holds

(1.3.8)
(
[u · ∇]u,Au

)
= 0

for divergence-free u, where A is the Stokes operator. This property allows to get estimates
pointwise in time for the higher moments of the norm of the solution gradient

E

[
sup

0≤t≤T
‖∇u(t)‖pL2

]
+ ν E

[∫ T

0
‖∇u(t)‖p−2

L2 ‖Au(t)‖2L2 dt

]
≤ CT,p .

These estimates are then crucial to prove the Hölder continuity in time of the solution and of
its gradient by semi-group theory, using the correspondence between mild and strong solutions
in this framework:

E
[∥∥u(t)− u(s)

∥∥p̃
V

]
≤ C |t− s|

ηp̃
2 ∀ 0 < η <

1

2
, p ∈ [2,∞) .

Once that these regularity properties has been proved, we may prove a priori estimates that
are the discrete counterpart of the estimates obtained for the exact solution. Moreover, we prove
stability estimates for the pressure depending on the type of noise, which reads

E

[
k

M∑
m=1

‖∇πm‖2L2

]
≤ CtM ,2k

−1 for divergence-free noise,(1.3.9)

while for divergence-free noise, we obtain a bound uniformly in k > 0. Then, subtracting
the corresponding equations, testing with the error, using the Hölder continuity and the a
priori estimates, we are able to prove an error bound on a set Ωk ⊂ Ω with the property that
P[Ωk]→ 1 for vanishing parameter k > 0. This lack of a global estimate is due to the fact that
the a priori estimates only hold in a mean sense, while, to bound properly the terms resulting
from the non-Lipschitz nonlinearity, estimates independent of the stochastic parameter ω ∈ Ω
are needed. These are then obtained by means of the Markov inequality on a set of measure
close to one, leading to the local error estimate. Unfortunately, the convergence behavior is
affected by the Hölder exponent of the gradient, which is only 1/4, leading to the half of the
expected convergence order. We may increase the convergence order by considering weaker norm
for the error. That is, we test the corresponding error equation with A−1 applied to the error.
In this way, we do not have to consider the difference of the gradients of the discretised and
of exact solution, which caused the suboptimal convergence, increasing the convergence rate to
optimal. As a consequence, we get convergence in probability with rates for the corresponding
approximations.

We then pass to the full discretisation based on the implicit Euler scheme together with a
stable finite element pairing, studying the error between the time and the full discretisation in the
case of general noise. First we derive an a priori estimate for the fully discrete solution. In this
framework we only obtain estimates like those from Chapter 3, i.e., no pointwise in time stability
for the gradient of the discrete solution is available because identity (1.3.8) does not hold any
more. As a consequence, when we try to estimate the error induced by the convection term, we
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need the inverse estimates to control the gradient of the fully discrete solution pointwise in time
on a set Ωh ⊂ Ω with probability close to one, leading to order limiting terms, arising from the
stabilisation of the nonlinear term. We started the analysis with a spatial discretisation which
does not deliver exactly divergence-free iterates. Thus, during the error analysis, the pressure
approximation from the time discrete scheme does not vanish. This causes a dependence of
the convergence rate on the estimate (1.3.9), which implies a coupling of the discretisation
parameters to get convergence on a set Ωh ⊂ Ω with probability close to one.

A possibility to get better convergence behavior for general noise may be the choice of finite
element pairings which deliver exactly divergence-free iterates. An example of this is the Scott-
Vogelius element; see [121]. Because the iterates are pointwise divergence-free, the pressure
vanishes preventing that the order of convergence is affected on the type of noise. Moreover
the order of convergence is optimal (on Ωh), since other order limiting terms caused by the
stabilisation of the convection term are not necessary any more for the Scott-Vogelius element.

We observe that all the above convergence results hold on a set of probability close to one.
In this last part, we show that for additive noise, it is possible to show strong convergence on the
whole set Ω for the implicit time discretisation. The proof crucially depends on the exponential
estimates for the gradient of the exact solution, which allow to prevent the use of the Markov
inequality to obtain pathwise estimate on the set Ωk.
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Chapter 2

Stochastic integral in infinite
dimensions

Objective of this chapter is to give an introduction to the stochastic integral in infinite dimen-
sions, providing the essential tools that are necessary to understand the manipulations of the
stochastic integrals in the discrete setting. The presentation of the topic is essentially based on
the tools we use later. In fact we do not consider some of the more general aspects, like e.g. the
localisation procedure for integrands from [37].

2.1 Nuclear and Hilbert-Schmidt operators

In this section we give a short introduction to Nuclear and Hilbert-Schmidt operators, which
are crucial for the definition of the Wiener process. For more details we refer to [118, Section
3.7] and to [110, Appendix B]. For two vector spaces X and Y we denote by L(X,Y ) the
space of linear operators bounded with respect to the operator norm ‖ · ‖L(X,Y ). We use the
convention L(X) = L(X,X). The space X ′ indicates the dual of the space X. Let

(
H, (·, ·)H

)
and

(
K, (·, ·)K

)
be two separable Hilbert spaces, with norms | · |H and | · |K respectively. The

operator A : K → H is called nuclear if it can be represented in the form

x 7→ Ax =

∞∑
i=1

ai(bi, x)K ,

where {ai}i≥1 and {bi}i≥1 are sequences in H and K respectively, with the property

∞∑
i=1

|ai|H · |bi|K <∞ .

The space of all nuclear operator nuclear operators from K to H is denoted by I1(K,H), and
endowed with the norm

‖A‖I1(K,H) := inf

{ ∞∑
i=1

|ai|H · |bi|K ; Ax =

∞∑
i=1

ai(bi, x)K , x ∈ K

}
,

it is a Banach space. An operator B : K → H is called Hilbert-Schmidt if

∞∑
i=1

|Bei|H <∞ ,
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where {ei}i≥1 is an orthonormal basis of K. The space of all Hilbert-Schmidt operators from K
to H is denoted by I2(K,H), and is a Hilbert space if endowed with the scalar product

(
A,B

)
I2(K,H)

:=
∞∑
i=1

(
Aei, Bei

)
H
∀A,B ∈ I2(K,H) .

For an operator C ∈ L(H) we define the trace

TrC =

∞∑
i=1

(Cei, ei)H ,

if the series is convergent. All the above representations are independent of the choice of the
orthonormal basis {ei}i≥1. An operator D ∈ L(H) is called positive, respectively nonnegative,
if (Dx, x)H > 0, respectively (Dx, x)H ≥ 0, for all x ∈ H.

We enumerate some known facts about nuclear and Hilbert-Schmidt operators. For (i),
(ii) and (iii) we refer to [110, Remark B.0.9], [110, Proposition 2.3.4] and [110, Remark B.0.6]
respectively. For (iv), we refer to [118, Chapter 3, Section 7.1, Corollary 2].

Proposition 2.1.1. (i) If an operator A ∈ L(H) has finite trace, is self-adjoint and nonneg-
ative, then it is nuclear.

(ii) If an operator A ∈ L(H) is nonnegative, symmetric and has finite trace, there exists a
unique element A1/2 ∈ L(H) such that A1/2◦A1/2 = A. Moreover there holds A1/2 ∈ I2(H)
and ‖A1/2‖2I2(H) = TrA.

(iii) The composition of a Hilbert-Schmidt and a bounded linear operator is a Hilbert-Schmidt
operator.

(iv) The composition of a nuclear and a bounded linear operator is a nuclear operator.

(v) For an operator A ∈ I2(H,K), there holds ‖A‖I2(H,K) = ‖A∗‖I2(K,H), where A∗ denotes
the adjoint of A.

We use the conventions I1(K) = I1(K,K) and I2(K) = I2(K,K).

2.2 Construction of the stochastic integral

In this section, we define the Hilbert space valued Wiener process and construct the stochastic
integral with respect to it. Let T > 0 and let P :=

(
Ω,F ,F,P

)
be a stochastic basis, with

F =
{
Ft; t ∈ [0, T ]

}
. Let

(
KKK, (·, ·)KKK

)
be a Hilbert space. By N (m,Q) we denote the Gaussian

measure on KKK with expectation vector m ∈ KKK and covariance operator Q ∈ I1(KKK). Analogously
to the real-valued case, we have the following definition.

Definition 2.2.1. A KKK-valued stochastic process W ≡ {W(t) ; t ∈ [0, T ]} on P is called a
Q-Wiener process, if

1. W(0) = 0,

2. W as P-a.s. trajectories,

3. W has independent increments, i.e. the random variables

W(tn)−W(tn−1),W(tn−1)−W(tn−2), . . . ,W(t1)−W(t0)

are independent for any choice of the partition 0 ≤ t0 < t1 < . . . < tn ≤ T , n ∈ N.
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4. the increments have the following laws

W(t)−W(s) ∼ N
(
0, (t− s)Q

)
∀ t, s ∈ [0, T ].

Let Q ∈ I1(KKK) be self-adjoint and positive definite, and {ej}j≥1 denotes an orthonormal
basis of KKK consisting of eigenfunctions of Q. Then the Q-Wiener process has the following
representation

W(t) =
∞∑
j=1

√
qj β

j(t)ej ∀ t ∈ [0, T ] ,(2.2.1)

where {qj}j≥1 ⊂ R+ are the corresponding eigenvalues of Q and
{
βj(t); t ∈ [0, T ]

}
j∈N, is a

sequence of independent R-valued Brownian motions on P; see e.g. [37, Chapter 4]. This series
converges in L2(Ω;C([0, T ];KKK)). In particular, for any Q ∈ I1(KKK) there exists a Q-Wiener
process on KKK.

Remark 2.2.1. The series (2.2.1) is convergent in the space L2(Ω;C([0, T ];KKK)) because the
embedding Q1/2(KKK) ↪→KKK defines a Hilbert-Schmidt operator. If Q is not a trace-class operator,
it is always possible possible to construct a Hilbert space JJJ such that the embedding R : JJJ ↪→KKK
is Hilbert-Schmidt; see [110, Remark 2.5.1]. Then, by defining Q = RR∗, we may define a
Q-Wiener process which converges in the space L2(Ω;C([0, T ];JJJ )).

Now we are in position to construct the integral with respect to theKKK-valued Wiener process,
and to define the class of processes for with the stochastic integral exists. For p ≥ 1 and XXX being
a Banach space, consider the space Mp

(
[0, T ],F;XXX

)
of equivalence classes of all F-progressively

measurable processes u : [0, T ]× Ω→XXX such that

(2.2.2) E
[∫ T

0
‖u(t)‖pMMM dt

]
<∞ .

Let
(
HHH, (·, ·)HHH

)
be a Hilbert space. For any process ϕϕϕ ∈ M2

(
[0, T ],F;L(KKK,HHH)

)
we define the

stochastic integral
{∫ t

0 ϕϕϕ(s) dW(s); t ∈ [0, T ]
}
by the following three steps.

(i) First we consider a step process defined by

(2.2.3) ϕϕϕ(s) =

n∑
i=1

1[tm,tm+1)(s)ϕϕϕm,

where the random variables ϕϕϕm take only a finite number of values in L(KKK,HHH). Then
define the integral as the continuous HHH-valued F-martingale

E(ϕϕϕ) :=

∫ t

0
ϕϕϕ(s) dW(s) =

M∑
m=1

ϕϕϕm

(
W(t ∧ tm)−W(t ∧ tm−1)

)
∀ t ∈ [0, T ] .

(ii) For any step process prove that there holds the Itô isometry

E
[∣∣∣ ∫ T

0
ϕϕϕ(s) dW(s)

∣∣∣2
HHH

]
= E

[∫ T

0

∥∥ϕϕϕ(s) ◦Q1/2
∥∥2

I2(KKK,HHH)
ds

]
.(2.2.4)
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(iii) Let XXX := I2

(
Q1/2(KKK),HHH

)
. The processes of the form (2.2.3) are dense in the Banach space

M2
(
[0, T ],F;XXX

)
. Then there exists a unique linear bounded operator

E : M2
(
[0, T ],F;XXX

)
→ L2(Ω,F ,P;HHH) ,

which is the extension to M2
(
[0, T ],F;XXX

)
of the operator E, defined in (i) for all the step

processes.

Remark 2.2.2. In most of the paper we work with processes taking values in L(KKK,HHH), which is
less general case since L(KKK,HHH) ⊂ I2

(
(Q1/2(KKK),HHH

)
, because of Proposition 2.1.1, (iii).

Remark 2.2.3. It is possible to enlarge the class of integrands by using a localisation procedure,
which takes into account all progressively measurable processes ϕϕϕ such that

P
[∫ T

0
‖ϕϕϕ(s) ◦Q‖2I2(KKK,HHH) ds <∞

]
= 1 .

Remark 2.2.4. For the case of a Q-Wiener process, where Q is not nuclear, e.g., Q is the
identity, because of (2.2.4), we need that ϕϕϕ takes values in the space of Hilbert-Schmidt operators.

For a detailed construction of the stochastic integral, we may refer to [37, 110] for Hilbert
space theory of stochastic integral, or to [16], for extensions to Banach space theory.

2.3 Properties of the stochastic integral

Here we list some properties of the stochastic integral that are use later in this work. The
stochastic integral satisfies the Itô isometry (see [37, Proposition 4.5]), i.e., for each ϕϕϕ ∈
M2
(
[0, T ];F;L(KKK,HHH)

)
(2.3.1) E

[∣∣∣∫ t

0
ϕϕϕ(s) dW(s)

∣∣∣2
HHH

]
= E

[∫ t

0
‖ϕϕϕ(s) ◦Q1/2‖2I2(KKK,HHH) ds

]
∀ t ∈ [0, T ] ,

and the Burkholder-Davis-Gundy inequality, see [16, Theorem 2.4] which holds for 1 < r <∞:

(2.3.2) E

[
sup

0≤t≤T

∣∣∣ ∫ t

0
ϕϕϕ(s) dW(s)

∣∣∣r
HHH

]
≤ CE

[(∫ t

0
‖ϕϕϕ(s) ◦Q1/2‖2I2(KKK,HHH) ds

)r/2]
∀ t ∈ [0, T ] .

and the following special due to Davis

(2.3.3) E

[
sup

0≤t≤T

∣∣∣ ∫ t

0
ϕϕϕ(s) dW(s)

∣∣∣
HHH

]
≤ 3E

[(∫ t

0
‖ϕϕϕ(s) ◦Q1/2‖2I2(KKK,HHH) ds

)1/2
]
∀ t ∈ [0, T ] .

which can be found in [37, Theorem 3.14].

We recall that for a Q-Wiener process W, there holds the inequality

E
[
|W(t)−W(s)|2nKKK

]
≤ Cn(t− s)n(TrQ)n ∀n ∈ N,(2.3.4)

where for n = 1 we have equality and Cn = 1; see for instance [75, Corollary 1.1].
An important property for the stochastic integral is the Itô formula.
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Theorem 2.3.1. Let W be a KKK-valued Wiener process with covariance operator Q ∈ I1(KKK).
Assume that ΦΦΦ ∈M2

(
[0, T ],F;L(KKK,HHH)

)
, φφφ is a HHH-valued progressively measurable and Bochner

integrable process. Define the process

X(t) = X0 +

∫ t

0
φφφ(s) ds+

∫ t

0
ΦΦΦ(s) dW ,

where X0 is a HHH-valued F0 -measurable random variable. Let F : [0, T ]×HHH → R be a function
with derivatives Ft, Fx, Fxx that are uniformly continuous on bounded subsets of [0, T ] × HHH.
Then there holds

F (t,X(t)) =F (0, X(0)) +

∫ t

0

(
Fx(s,X(s)),ΦΦΦ(s) dW

)
HHH +

∫ t

0
Ft(s,X(s)) ds

+

∫ t

0

{(
Fx(s,X(s)),φφφ(s)

)
HHH +

1

2
Tr
[
Fxx(s,X(s))ΦΦΦQ1/2

(
ΦΦΦQ1/2

)∗]}
ds .

The Itô formula holds only for deterministic functions F. For F that are stochastic processes,
the Itô-Wentzell formula [116, Theorem 1.4.9] is a useful tool, which allows to consider F given
by Itô processes.



24 CHAPTER 2. STOCHASTIC INTEGRAL IN INFINITE DIMENSIONS



25

Chapter 3

Construction of martingale and strong
solutions

3.1 Introduction

We consider the system of equations describing the motion of an incompressible fluid subjected
to a random force in a bounded polygonal domain D ⊂ Rd, d = 2, 3. Let (Ω,F ,F,P) be a
complete, filtered probability space with a filtration F = {Ft; t ∈ [0, T ]} satisfying the usual
assumptions, and W ≡ {W(t); t ∈ [0, T ]} be a KKK-valued Wiener process adapted to F, for a
Hilbert space KKK. Then we look for a stochastic process u ≡ {u(t) ; t ∈ [0, T ]} with values in
L2(D) = L2(D;Rd) such that

u̇− ν∆u + [u · ∇]u +∇π = f + g(u)Ẇ in DT × Ω ,(3.1.1)
divu = 0 in DT × Ω ,(3.1.2)

where DT := (0, T )×D, and the following initial and boundary conditions hold,

(3.1.3) u(0, ·) = u0 in D , and u = 0 on (0, T )× ∂D .

Here, u · ∇ =
∑n

i=1 ui∂i. Below, we will precise requirements for the mapping g.
An existing result for the practical discretisation of problem (3.1.1)–(3.1.3), Flandoli and

Tortorelli [48] consider a semi-discretisation in time of the stochastic 2D Navier-Stokes equa-
tions driven by an additive noise, where strong solutions exist. By splitting the problem in a
linear SPDEs coupled with Navier-Stokes equations with stochastic coefficients, convergence in
probability of the discrete solution is shown.

A paper which is related to this chapter from a methodological point of view is [38], where De
Bouard and Debussche show convergence in probability towards the unique strong solution of a
time-semidiscretisation of the stochastic Schrödinger equation with non-Lipschitz nonlinearity.
Similarly to the present work, uniform bounds for higher moments of the discrete solution, and
of its increments are used to establish compactness for the sequence of discrete solutions. The
main difference between the present paper and [38] is that here one has to deal with weak
martingale solutions, which requires to construct a filtered probability space together with an
adapted Wiener process, and an adapted solution in the overall construction process.

A similar construction of a Wiener process and of a related σ-algebra for the weak martingale
solution is considered in [3], where a discretisation of the stochastic Landau-Lifschitz-Gilbert
equation with Stratonovich noise is considered. Important tools to accomplish this goal are the
characterisation of the new probability space, which uses [128, Theorem 1.10.4 and Addendum
1.10.5], together with a theorem which allows to identify the limit of a sequence of quadratic
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variations of a martingales [20, Theorem C.2]. The method we employ can be considered a
generalisation of that developed in [131] for the finite dimensional case.

The goals of this chapter are to consider implementable space-time discretisations of (3.1.1)–
(3.1.3), and to show that corresponding iterates construct weak martingale solutions (d = 3),
and strong solutions (d = 2). The related analysis addresses the interplay of space-time discreti-
sation (see Algorithms 3.1 and 3.3), and its interaction with the discretisation of the noise (see
Algorithm 3.2 below), where stability, control of increments of iterates, a compactness argument
and some tools from stochastic analysis are needed. For this purpose, we study a finite element
based space-time discretisation of problem (3.1.1)–(3.1.3). Let Th be a quasi-uniform triangu-
lation of the domain D, where h > 0 denotes the maximum mesh-size, and

(
Hh, Lh

)
denotes

a corresponding Ladyzhenskaja-Babuska-Brezzi (LBB) stable pair of finite element spaces to
approximate velocity and pressure fields, respectively. Let Ik := {tm}Mm=0 be an equi-distant
partition of size k > 0 covering the time interval [0, T ], where T ≡ tM . Then, we consider the fol-
lowing discretisation of (3.1.1), where for m ≥ 1, fm := f(tm), and ∆mW := W(tm)−W(tm−1).

Algorithm 3.1. Let U0 ∈ Hh be given. For every m ∈ {1, . . . ,M} find an Hh × Lh-valued
random variable

(
Um,Πm

)
such that for all (ΦΦΦ,Λ) ∈ Hh × Lh,(

Um −Um−1,ΦΦΦ
)

+ kν
(
∇Um,∇ΦΦΦ

)
− k
(
Πm,divΦΦΦ

)
+ k
(
[Um · ∇]Um,ΦΦΦ

)
+
k

2

(
[divUm]Um,ΦΦΦ

)
= k

〈
fm,ΦΦΦ

〉
+
(
g(Um−1)∆mW,ΦΦΦ

)
,(3.1.4)

(divUm,Λ) = 0 .(3.1.5)

A general Faedo-Galerkin method, continuous in time, which uses divergence-free functions
is used in [46] to construct weak martingale solutions of (3.1.1)–(3.1.3) as limit of approximate
solutions of a related stochastic differential equation: a compactness argument that uses frac-
tional Sobolev spaces, and the Skorokhod almost sure representation theorem, together with a
martingale representation theorem to properly identify limits of both, the deterministic and the
Itô integrals are used in [46]. The fact that divergence-free functions are used, and that only
a space discretisation is considered is in contrast to practical implementations, where usually
(3.1.2) is only approximatively satisfied.

Unfortunately, it is non-trivial to construct practicable numerical schemes where finite el-
ement functions are exactly divergence-free, which is why discretisations are preferred where
solutions are only weakly divergence-free, i.e., (3.1.5) holds. General references in the determin-
istic setting include [15, 53]. Here, in general, sequences of space-time interpolants {divUUUk,h}k,h
only converge weakly in L2 to zero (as k, h→ 0). Hence a related consequence is the convergence
to solutions of the limiting problem in larger spaces; see also Theorem 3.5.1.

In this work, we show convergence of the space-time discretisation (3.1.4)–(3.1.5) which
consists of the following three steps:

(i1) For every k, h > 0, show solvability by means of the Brouwer fixed point theorem, and
derive useful a priori bounds for iterates {Um}Mm=1, and increments of iterates (Section 3.3).

(ii1) Prove tightness of sequences of laws related to space-time continuous functions {UUUk,h}k,h
which are only discretely divergence-free, and use Prohorov’s theorem together with the
Skorokhod almost sure representation theorem to identify limits of related deterministic
integrals (Section 3.4).

(iii1) In order to identify the limit of the stochastic part in (3.1.4)–(3.1.5), slightly perturb
the sequence {UUUk,h}k,h to {ŨUUk,h}k,h: for corresponding filtrations {Fk,h}k,h, the resulting
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stochastic integral term is a square-integrable Fk,h-martingale, and a proper limit (k, h→
0) a square-integrable F′-martingale which by martingale representation theorem is the Itô
integral

{∫ t
0 g
(
u(s)

)
dW′(s); t ∈ [0, T ]

}
; this part is accomplished in Section 3.5.1.

The practical construction of a weak martingale solution, since it is the only available solution
concept for problem (3.1.1)–(3.1.3) in three space dimensions, is the first main contribution of
this chapter. This requires to properly address the combined space-time discretisation effects
interacting with the non-Lipschitz drift, and the nonlinear noise. In particular, to realise these
steps for a space-time discretisation where iterates are only discretely divergence-free requires
different tools than those used in e.g. [46]. In particular, this practical construction of a weak
martingale solution for (3.1.1)–(3.1.3)

(i2) has to account for the fact that involved velocity fields are only discretely divergence-free,
which is the reason for the additional term that appears in (3.1.4), and a proper balancing
of finite element spaces for both, velocity and pressure to obtain a well-posed discretisation
(‘discrete LBB condition’). This lack of incompressibility of iterates {Um}Mm=1 requires
different compactness arguments on larger spaces if e.g. compared to those in [46] for
example; see Lemma 3.3.3.

(ii2) requires relevant stability properties, including uniform control of higher moments of iter-
ates, and increments of them (in k, h > 0), which motivates an implicit in time treatment
of deterministic terms in (3.1.4), and an explicit in time treatment of the integrand in
the stochastic part; see Lemma 3.3.1. The control of increments of the iterates in Lemma
3.3.3 in particular is then a crucial step which again benefits from the special space-time
discretisation, and is a key property for the compactness argument in Lemma 3.4.3.

(iii2) has to construct (a proper sequence of) filtrations Fk,h to validate the Fk,h-martingale
property of the related stochastic term, to eventually pass to the limit; see equation (3.5.2)
in Section 3.5.1. Since the approximation is discrete in time, we use iterates from Algorithm
3.1 to construct time-continuous processes {ŨUUk,h}k,h, which inherit relevant properties of
those iterates. In the next step this construction allows the stochastic integral with respect
to the given Wiener process W to be represented by a sum of deterministic integrals
involving the continuous functions {ŨUUk,h}k,h. Then, the convergence of a subsequence of
discrete solutions obtained in Lemma 3.4.3 allows to pass to the limit in the deterministic
integrals on a new probability space, see Proposition 3.4.1, leading to a martingale which
may be identified as a stochastic integral with respect to a limiting Wiener process W′ by
a martingale representation theorem.

As will become clear from the following, these arguments differ significantly from existing
works in the numerics of nonlinear SPDEs. We hope that the elaboration of the steps (i2)–(iii2)
turns out useful for the practically relevant construction of weak martingale solutions for a broad
range of nonlinear SPDEs; while (i2)–(ii2) are mainly based on tools from nonlinear numerical
analysis, those developed within (iii2) in Section 5 heavily draw from concepts of stochastic
analysis in a discrete setting.

It is computationally advantageous to replace Gaussian increments of a Wiener process ∆mW
in Algorithm 3.1 by simpler (for instance bounded and discrete) i.i.d.KKK-valued random variables
ξξξm, with appropriate moment conditions (SI1)–(SI3) to hold; see Section 3.5.2 for details. The
following algorithm is then a simple modification of Algorithm 3.1.
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Algorithm 3.2. Let U0 ∈ Hh be given. For every m ∈ {1, . . . ,M} find an Hh × Lh-valued
random variable

(
Um,Πm

)
such that for all (ΦΦΦ,Λ) ∈ Hh × Lh,(

Um −Um−1,ΦΦΦ
)

+ kν
(
∇Um,∇ΦΦΦ

)
− k
(
Πm, divΦΦΦ

)
+ k
(
[Um · ∇]Um,ΦΦΦ

)
+
k

2

(
[divUm]Um,ΦΦΦ

)
= k

〈
fm,ΦΦΦ

〉
+
(
g(Um−1)ξξξm,ΦΦΦ

)
,(3.1.6)

(divUm,Λ) = 0 .(3.1.7)

We introduce assumptions (SI1)–(SI3), see Section 3.5.2, on the random variables {ξξξm}Mm=1

to have measurability with respect to the time discrete filtration, to ensure that expectation
and covariance coincide with those of the corresponding Brownian increments, and to have the
right scaling for higher moments of ξξξm with respect to the time-step k > 0. It is thanks to
these assumptions that it is possible to show existence and stability of corresponding iterates
{Um}Mm=1, but in this case we can not use the Burkholder-Davis-Gundy inequality to get higher
moments, and the Doob’s inequality is needed. Then the tightness of the corresponding piecewise
affine interpolation of the resulting iterates follows exactly as in Step (ii2); see Section 3.5.2.
The main issue is then given by the construction of the stochastic integral. Now we can not
take advantage of the perturbation {ŨUUk,h}k,h from (iii2), since it is constructed by a stochastic
integral. In this case we construct a time-discrete martingale {Mm

k,h}Mm=1, with corresponding
filtration. By using a general theorem on the convergence of time discrete martingales, together
with the properties of the discrete process {Rm

k,h}Mm=1, which has the rôle of the quadratic
variation, we can identify the limit of {Mm

k,h}Mm=1 with the desired stochastic integral. This
convergence result can be compared with the Donsker invariance principle. In fact, we can use
any sequence of i.i.d. random variables which have the same expectation and covariance as the
Brownian increments to construct a stochastic integral, since the convergence is independent of
the distribution of the {ξξξm}Mm=1. The method we present can be seen as a generalisation of the
method used in [134] in the case of SDEs.

Moreover, we can consider versions of Algorithms 3.1 and 3.2 where the convection term is
treated in a semi-implicit way, see Algorithm 3.3, such that the solution of problem (3.1.1)–
(3.1.3) is approximated by iterates solving linear problems only. For this scheme, the estimates
for higher moments of the solution, and of its increments remain valid, leading to the same
compactness properties as for the solution of Algorithm 3.1 or 3.2. This allows to conclude the
same convergence properties as for Algorithms 3.1 and 3.2.

Our second main contribution is the convergence of the whole sequence of Hh-valued iterates
{Um}Mm=0 from Algorithm 3.1 on a given probability space to the existing unique strong solutions
of (3.1.1)–(3.1.3), for d = 2 and multiplicative noise. This method can be seen as a generalisation
of the numerical methods presented in [62] to the 2D Navier-Stokes equations. Moreover, we
extend arguments from [98] and [97] to the given fully discrete setting. In [98], the existence of
strong solutions is shown by an abstract Faedo-Galerkin method. Here we use the implementable
Algorithm 3.1 to construct strong solutions of (3.1.1)–(3.1.3). A crucial difference between the
two approaches is the time discretisation: due to the fact that chain and product rules differ
from their discrete counterparts, residual terms arise in the present setting which need to be
shown to vanish for vanishing discretisation parameters. The main tool in this proof is a local
monotonicity result for the operator

G(u) := −ν∆u + [u · ∇]u +
1

2
[divu]u,

taken from [97]. This property allows to identify the limit in the nonlinear terms without using
strong convergence type results explicitly: the argument does not employ the Skorokhod theorem
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as well, and, as a consequence, we do not need to construct a new probability space together
with a Wiener process on it.

This chapter is organized as follows. In Section 3.2 we collect necessary background material.
In Section 3.3 we show stability properties of solutions from Algorithm 3.1, and construct weak
martingale solutions of (3.1.1)–(3.1.3) from

{
Um

}M
m=0

in Sections 3.4 and 3.5.1. In Section 3.5.2,
we generalize these results to Algorithm 3.2. In Section 3.6, we construct strong solutions of
(3.1.1)–(3.1.3) as limits of solutions of Algorithm 3.1 for the case d = 2.

3.2 Preliminaries

3.2.1 General setting

Let us assume thatD is a bounded domain in Rd, d = 2, 3 with polygonal or polyhedral boundary.
Let Lp(D) and Wm,p(D) for m ≥ 0, 1 ≤ p ≤ ∞, denote the usual Lebesgue and Sobolev spaces,
which are endowed with the standard norms ‖ · ‖Lp respectively ‖ · ‖Wm,p and, for p = 2, scalar
products (·, ·) respectively (·, ·)Wm,2 . By Wm,p

0 (D) we denote the closure in Wm,p(D) of C∞0 (D)
of all smooth functions defined on D with compact support. Let Lp0(D) denote the subspace of
functions from Lp(D) with vanishing mean. The Lebesgue and the Sobolev spaces of vector-
valued functions will be indicated with blackboard bold letters, e.g. W1,2

0 (D) = W 1,2
0 (D,Rd), for

d = 2, 3. Since we work mainly with the domain D, we write usually W1,2
0 or L2. For a Banach

space X, let Lp
(
0, T ;X

)
, and Wm,p

(
0, T,X

)
denote standard Lebesgue and Sobolev spaces of

Bochner measurable X-valued functions. For the space W1,2
0 we denote by W−1,2 its dual, and

by 〈·, ·〉 the corresponding dual pairing. The following spaces play a fundamental rôle below.

VVV =
{
v ∈ C∞0 (D) ; divv = 0 in D

}
,

H =
{
v ∈ L2(D) ; divv = 0 a.e. in D, v · n = 0 a.e. on ∂D

}
,

V =
{
v ∈W1,2

0 (D) ; divv = 0 a.e. in D
}
,

where ‘·’ denotes the standard scalar product in Rd, and n : ∂D → Rd denotes the unit outer
normal vector field.

We denote D(A) = W2,2(D) ∩ V, and define the self-adjoint, inversely compact operator
A : D(A) → H via Au := −PH∆u, where PH : L2(D) → H denotes the Leray-projection.
Below, we always suppose that the bounded domain D ⊂ Rd is such that the unique solution
w ∈ V of the stationary, incompressible Stokes problem −∆w+∇π = b inD ⊂ Rd supplemented
with Dirichlet boundary conditions belongs to V ∩W2,2(D) provided b ∈ L2(D), and satisfies
‖w‖W2,2 ≤ C‖b‖L2 .

We summarize the assumptions needed below for data Q, u0, and f ; see [46] for similar
assumptions.

(S1) Q ∈ I1(KKK) is a symmetric, positive operator.

(S2) g : L2 → L(KKK,L2) is (strongly) continuous with linear growth, i.e., there exists a constant
K1 > 0, such that

‖g(v)‖L(KKK,L2) ≤ K1‖v‖L2 .

(S3) u0 ∈ H, and f ∈ C
(
[0, T ];W−1,2

)
.

We recall the notion of a weak martingale solution of (3.1.1)–(3.1.3); see for instance [46].
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Definition 3.2.1. Let T > 0 be given, and (S1)–(S3) are valid. A weak martingale solution of
(3.1.1)–(3.1.3) is a system

(
Ω,F ,F,P

)
, u, W, where

(
Ω,F ,F,P

)
is a stochastic basis, W is a

KKK-valued F-Wiener process with covariance operator Q ∈ I1(KKK) symmetric and positive, and

u ∈ L2
(

Ω;C
(
[0, T ];D(A−γ)

)
∩ L∞

(
0, T ;H

)
∩ L2

(
0, T ;V

))
is an F-progressively measurable process, such that γ > 1 and P-almost surely, for all t ∈ [0, T ],
the following equality holds,(

u(t, ·),v
)

+

∫ t

0

(
∇u(s, ·),∇v

)
ds−

∫ t

0

(
[u(s, ·) · ∇]v,u(s, ·)

)
ds

=
(
u0,v

)
+

∫ t

0

(
f(s, ·),v

)
ds+

(∫ t

0
g
(
u(s, ·)

)
dW(s, ·),v

)
∀v ∈ VVV .

A weak martingale solution for (3.1.1)–(3.1.3) and d = 3 under the above assumptions is
constructed in [46, Theorem 3.1] by an abstract Faedo-Galerkin method.

3.2.2 Space discretisation

For simplicity, throughout the work we assume that Th is a quasi-uniform triangulation of the
domain D ⊂ Rd (d = 2, 3) into triangles resp. tetrahedra of maximal diameter h > 0, and
D =

⋃
K∈T K. Let Pi(K) ≡ [Pi(K)]d be the space of polynomial vector fields on K with degree

less or equal to i. We introduce finite element function spaces for fixed i, j ∈ N0,

Hh :=
{
W ∈ C0(D) ∩W1,2

0 (D) ; W ∈ Pi(K) ∀K ∈ Th
}
,

Lh :=
{

Π ∈ L2
0(D) ; Π ∈ Pj(K) ∀K ∈ Th

}
.

We assume that these spaces satisfy (for fixed i, j) the discrete LBB-condition, see e.g. [15,
Section II.2.3],

(3.2.1) sup
ΦΦΦ∈Hh

(
divΦΦΦ,Π

)
‖∇ΦΦΦ‖L2

≥ C‖Π‖L2 ∀Π ∈ Lh ,

for a constant C > 0 independent of the mesh size h > 0. Let

Vh :=
{
ΦΦΦ ∈ Hh ; (divΦΦΦ,Π) = 0 for all Π ∈ Lh

}
.

Note that Vh is in general not contained in H or V. We denote by P0
h : L2(D) → Hh, and by

Q0
h : L2(D)→ Vh L2-orthogonal projections, defined by the identities

(3.2.2)
(
z−P0

hz,ΦΦΦ
)

= 0 ∀ΦΦΦ ∈ Hh ,
(
z−Q0

hz,ΦΦΦ
)

= 0 ∀ΦΦΦ ∈ Vh .

The following estimates are standard, see for instance [15, 53],

‖z−Q0
hz‖L2 + h‖∇

(
z−Q0

hz
)
‖L2 ≤ Ch2‖Az‖L2 ∀ z ∈ VVV ∩W2,2(D) ,(3.2.3)

‖z−Q0
hz‖L2 ≤ Ch‖∇z‖L2 ∀ z ∈ VVV ∩W1,2(D) .(3.2.4)

We recall the inverse inequality [14, Lemma 4.5.3], which holds for quasi-uniform triangula-
tions for every finite element function vh ∈ Hh,

(3.2.5) ‖vh‖W`,q1 ≤ Ch
m−`+dmin{ 1

q1
− 1
q2
,0}‖vh‖Wm,q2 ∀ 1 ≤ q1, q2 ≤ ∞ , 0 ≤ m ≤ ` .

An important tool for proving the solvability and the energy estimates is the following identity(
[ΦΦΦ · ∇]ΦΦΦ,ΦΦΦ

)
+

1

2

(
[divΦΦΦ]ΦΦΦ,ΦΦΦ

)
= 0 ∀ΦΦΦ ∈ Hh .(3.2.6)
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3.2.3 Time discretisation

Let Ik = {tm}Mm=0 denote an equi-distant partition of [0, T ] of time-step size k > 0. To con-
struct weak martingale solutions of the nonlinear problem (3.1.1)–(3.1.3) requires some strong
convergence of constructed subsequences which for deterministic problems usually comes from
the compactness results for instance of Aubin and Lions, and requires some estimates for the
time derivatives of approximate solutions. This strategy does not extend to the stochastic case
where approximate solutions are not differentiable; a key problem related to time-discretisation
is to properly set up sequences of continuous processes {UUUk,h}k,h related to the discrete ones
{Um}Mm=0 solving the iterative scheme, and to construct related filtrations {Fk,h}k,h that they
are adapted to. Another problem that has to be addressed in the present work is that approx-
imating functions in general are not solenoidal. In the following, we use a method based on
fractional Sobolev spaces, which are related to Nikolskii spaces. We refer to [122, Definition 1]
for the following

Definition 3.2.2. Let X be a Banach space, and T > 0.
i) Fractional Sobolev spaces are defined for 0 < s < 1, 1 ≤ p <∞ by

W s,p
(
0, T ;X

)
=
{
f ∈ Lp

(
0, T ;X

)
: ‖f‖W s,p <∞

}
,

where

‖f‖W s,p =
(∫ T

0

∫ T

0

(‖f(r)− f(t)‖X
|r − t|s

)p drdt

|r − t|

) 1
p
.

ii) Hölder spaces are defined for 0 < s < 1 by

Lips
(
[0, T ];X

)
=
{
f ∈ L∞

(
0, T ;X

)
: ‖f‖Lips <∞

}
,

where

‖f‖Lips = ess supr,t∈[0,T ]

‖f(r)− f(t)‖X
|r − t|s

.

iii) Nikolskii spaces are defined for 0 < s < 1, 1 ≤ p <∞ by

N s,p
(
0, T ;X) =

{
f ∈ Lp

(
0, T ;X

)
: ‖f‖Ns,p <∞

}
,

where
‖f‖Ns,p = sup

δ>0
δ−s‖f(·+ δ)− f(·)‖Lp(0,T−δ;X) .

The following properties of these spaces are known, see for instance [122].

(i) W s,p ⊂ N s,p,

(ii) W s,p ⊂W r,p and N s,p ⊂ N r,p, for s ≥ r,

(iii) W s,p and N s,p are both embedded in W r,p ∩N r,p, provided s > r,

(iv) if s > 1
p , then both, W s,p and N s,p are included in Lip

s− 1
p . In particular, they are included

in the set of continuous functions,

(v) if s − 1
p ≥ r − 1

q , then W s,p ⊂ W r,q and N s,p ⊂ N r,q, provided 0 < r ≤ s < 1, and
1 ≤ p ≤ q <∞.
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Let X be a Banach space, k > 0 and let Ik ≡ {tm}Mm=0 be an equi-distant partition of [0, T ].
Let us denote by Gk the set of functions belonging to C

(
[0, T ];X) that are piecewise affine on

subintervals [tm, tm+1], m = 1, · · · ,M .
The following criterion for the embedding of the space Gk into the spaces Nα,p(0, T ;X) will

be useful, see [3, Lemma 3.1] for a proof.

Lemma 3.2.1. Assume that 0 ≤ α < 1 and p ≥ 1. Assume that f ∈ Gk is such that for every
` ∈ {1, . . . ,M}

(3.2.7) k
M−`∑
m=0

∥∥f(tm+`)− f(tm)
∥∥p
E
≤ Kptαp` .

Then, there exists a constant C > 0 not depending on f neither on k > 0, such that

(3.2.8) ‖f‖Nα,p(0,T ;X) ≤ CK .

3.2.4 Compactness results

The following compactness results will be needed below; see e.g. [46] for proofs and comments.

Lemma 3.2.2. Assume that X0 ⊂ X ⊂ X1 are Banach spaces, X0 and X1 being reflexive.
Assume that the embedding X0 ↪→ X is compact, q ∈ (1,∞), and α ∈ (0, 1). Then the embedding

Lq
(
0, T ;X0

)
∩Wα,q

(
0, T ;X1

)
↪→ Lq

(
0, T ;X

)
is compact.

Lemma 3.2.3. Assume that X0, X are Banach spaces such that the embedding X0 ↪→ X is
compact. Assume that q ∈ (1,∞) and 0 < α < β < 1. Then the embedding

W β,q
(
0, T ;X0

)
↪→Wα,q

(
0, T ;X

)
is compact.

The last compactness result relates Sobolev spaces to spaces of continuous functions.

Lemma 3.2.4. Assume that X0, X are Banach spaces such that the embedding X0 ↪→ X is
compact, and some real numbers α ∈ (0, 1), q > 1 satisfy

αq > 1 .

Then the space Wα,q
(
0, T ;X0

)
is compactly embedded into C

(
[0, T ];X

)
.

3.3 Existence and stability of discretised solutions

Let P = (Ω,F ,F,P) be a stochastic basis. Let us first observe that in view of the assumption
(S1) there exists a KKK-valued Wiener process W with covariance operator Q. We fix this process,
together with the filtration F generated by it, for the remainder of this section.

In a first step, we derive existence and stability properties for the solution to Algorithm 3.1.
For this purpose, problem (3.1.4)–(3.1.5) is rewritten in the following form by using discretely
solenoidal functions,

(Um −Um−1,ΦΦΦ) + kν(∇Um,∇ΦΦΦ) + k
(
[Um · ∇]Um,ΦΦΦ

)
+
k

2

(
[divUm]Um,ΦΦΦ

)
= k

〈
fm,ΦΦΦ

〉
+
(
g(Um−1)∆mW,ΦΦΦ

)
∀ΦΦΦ ∈ Vh .(3.3.1)
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Lemma 3.3.1. Assume that 1 ≤ p < ∞ is a natural number and U0 ∈ Hh with ‖U0‖L2 ≤ C
for a constant independent of h > 0, and assume that f ∈ C

(
0, T ;W−1,2

)
. Then there exists

a sequence of Hh × Lh-valued random variables {(Um,Πm)}Mm=1 which P-almost surely solves
Algorithm 3.1, and satisfies the following conditions for T ≡ tM :

(i) for each m ∈ {0, · · · ,M}, the map Um : Ω→ Hh is Ftm-measurable.

(ii) E
[

max
1≤m≤M

‖Um‖2L2 + kν
M∑
m=1

‖∇Um‖2L2 +
1

2

M∑
m=1

‖Um −Um−1‖2L2

]
≤ CT ,

(iii) E
[

max
1≤m≤M

‖Um‖2pL2 + kν
M∑
m=1

‖Um‖2p−1

L2 ‖∇Um‖2L2

]
≤ CT,p ,

(iv) E
[(
k

M∑
m=1

‖∇Um‖2L2

)2p−1]
≤ CT,p .

Above, the constants CT,p ≡ CT,p
(
TrQ, ‖U0‖L2 , ‖f‖L∞(0,T ;L2)

)
> 0, and CT ≡ CT,1 do not

depend on k, h > 0.

Proof. Step 1. Solvability. We use Brouwer’s fixed point theorem to show the existence of
Vh-valued random variables {Um(ω)}Mm=1 on Ω solving (3.3.1). We argue by induction: since
U0 is given, and |∆mW(ω)|KKK < ∞ for all m ∈ {1, . . . ,M} P − a.s., we may then assume that
U1, . . . ,Um−1(ω) are also given. For every m ∈ {1, . . . ,M}, consider the map FFFωm : Vh → Vh,
defined by(
FFFωm

(
ΦΦΦ
)
,ψψψ
)

=
(
ΦΦΦ−Um−1(ω),ψψψ

)
+ kν

(
∇ΦΦΦ,∇ψψψ

)
+ k
(
[ΦΦΦ · ∇]ΦΦΦ,ψψψ

)
+
k

2

(
[divΦΦΦ]ΦΦΦ,ψψψ

)
−
(
g
(
Um−1(ω)

)
∆mW(ω),ψψψ

)
−
〈
fm,ψψψ

〉
∀ψψψ ∈ Vh .

Since Vh, endowed with the L2 scalar product is a Hilbert space, FFFωm is well-defined. Moreover,
it can be easily shown that this mapping is continuous. Hence, on using identity (3.2.6) and
Young’s inequality, we have for all ΦΦΦ ∈ Vh(

FFFωm(ΦΦΦ),ΦΦΦ
)
≥

(1

2
‖ΦΦΦ‖2L2 − ‖Um−1(ω)‖2L2 −

1

2
‖g
(
Um−1(ω)

)
‖2L(KKK,L2)|∆mW(ω)|2KKK

)
+kν‖∇ΦΦΦ‖2L2 − Ck‖fm‖2W−1,2 − kν‖∇ΦΦΦ‖2L2 .(3.3.2)

By the inductive assumption and (S2), there holds for P-almost every ω ∈ Ω,

Rm(ω) := ‖Um−1(ω)‖2L2

(
1 +

K1

2

∣∣∆mW(ω)
∣∣2
KKK

)
+ Ck‖fm‖2W−1,2 <∞ .

Hence, we may conclude that, with Am(ω) ≡
{
ϕϕϕ ∈ Vh : ‖ϕϕϕ‖2L2 ≥ 2Rm(ω)

}
there holds(

FFFωm(ΦΦΦ),ΦΦΦ
)
≥ 0 ∀ΦΦΦ ∈ Am(ω).

By Brouwer’s fixed point theorem, this implies the existence (but not uniqueness) of ΦΦΦ∗ω ∈ Vh,
such that FFFωm(ΦΦΦ∗ω) = 0, see for instance [53, Corollary 1.1, p. 279]. Hence Um(ω) ∈ Vh exists
P-almost surely.

Since the discrete LBB-condition holds, there exists an Lh-valued pressure {Πm}Mm=1 such
that (3.1.4) is valid.

Step 2. Measurability. Proof of claim (i). This can be done exactly as in [38], see also [3].
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Step 3. A priori energy estimates. We will prove the three bounds from (ii) by first proving
an auxiliary inequality to deduce the second and third part of the inequality in (ii). Then we
prove the first part. We put ΦΦΦ = Um in equation (3.3.1) and by using the following fundamental
identity

(3.3.3) (a,a− b) =
1

2
(‖a‖2L2 − ‖b‖2L2) +

1

2
‖a− b‖2L2 ∀a,b ∈ L2 ,

together with (3.2.6), we find out that

1

2

(
‖Um‖2L2 − ‖Um−1‖2L2 + ‖Um −Um−1‖2L2

)
+ kν‖∇Um‖2L2(3.3.4)

= k
〈
fm,Um

〉
+
(
g(Um−1)∆mW,Um −Um−1

)
+
(
g(Um−1)∆mW,Um−1

)
.

Fix m ∈ {1, . . . ,M}. Note that in view of Step 2, the last term on the right-hand side of (3.3.4)
vanishes when taking its expectation. By the Cauchy-Schwarz inequality, and taking the sum
from m = 1 to m = M , after absorbing terms we obtain

1

2
E
[
‖UM‖2L2 +

1

2

M∑
m=1

‖Um −Um−1‖2L2 + kν
M∑
m=1

‖∇Um‖2L2

]
(3.3.5)

≤ 1

2
‖U0‖2L2 + Ck

M∑
m=1

‖fm‖2W−1,2 +
M∑
m=1

E
[
‖g
(
Um−1

)
‖2L(KKK,L2)|∆mW|2KKK

]
.

By the tower property of the conditional expectation, the independence of the increments of the
Wiener process, and assumption (S2) we find for the last term

E
[∥∥g(Um−1

)∥∥2

L(KKK,L2)
|∆mW|2KKK

]
= E

[
E
[
‖g
(
Um−1

)
‖2L(KKK,L2)|∆mW|2KKK

∣∣Ftm−1

]]
= E

[
‖g
(
Um−1

)
‖2L(KKK,L2)E

[
|∆mW|2KKK

∣∣Ftm−1

]]
= k(TrQ)E

[
‖g
(
Um−1

)
‖2L(KKK,L2)

]
≤ (TrQ)K1kE

[
‖Um−1‖2L2

]
,(3.3.6)

where in the last equality we use (2.3.4) with n = 1. Hence we conclude by applying the discrete
version of Gronwall’s lemma (see e.g. [117, Lemma 1.4.2]) to inequality (3.3.5), together with
(3.3.6), to obtain the following estimate

max
1≤m≤M

E
[
‖Um‖2L2

]
≤
(
‖U0‖2L2 + Ck

M∑
m=1

‖fm‖2W−1,2

)
eCT ≤ CT .(3.3.7)

In the next step, by using the estimate (3.3.7) together with (3.3.5), we obtain the second and
third estimate in (ii). To prove the first inequality in (ii), we start from equality (3.3.4), and use
the Cauchy-Schwarz’s inequality on the first two terms of the right-hand side, sum from m = 1
to m = i, for a fixed natural number i ≥ 1, take the maximum over 1 ≤ i ≤ M , and apply the
expectations. As a consequence, omitting the positive terms on the left-hand side, we find

E
[

max
1≤i≤M

‖Ui‖2L2

]
≤ ‖U0‖L2 + Ck

M∑
m=1

‖fm‖2W−1,2 + kE

[
M∑
m=1

‖g(Um−1)∆mW‖2L2

]

+2E

[
max

1≤i≤M

i∑
m=1

(
g(Um−1)∆mW,Um−1

)]
,(3.3.8)
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where we used the fact that for sums of positive terms, the maximum is reached for i = M . The
first two terms are clearly bounded. To bound the third term we proceed like in getting (3.3.6)
and use the auxiliary inequality (3.3.7), together with condition (S2). It remains to bound the
fourth term. This is accomplished with the help of the Burkholder-Davis-Gundy inequality, see
[79, Theorem 3.3.28], and assumption (S2), after treating the sum as the stochastic integral of
a piecewise constant integrand:

E

[
max

1≤i≤M

i∑
m=1

(
g(Um−1)∆mW,Um−1

)]

≤ CE

(k M∑
m=1

‖g(Um−1)‖2L(KKK,L2)‖U
m−1‖2L2

)1/2


≤ E

 max
1≤m≤M

‖Um−1‖L2

(
k

M∑
m=1

‖g(Um−1)‖2L(KKK,L2)

)1/2
(3.3.9)

≤ 1

2
‖U0‖2L2 +

1

2
E

[
max

1≤i≤M
‖Ui‖2L2 + k

M∑
m=1

‖g(Um−1)‖2L(KKK,L2)

]

≤ 1

2
‖U0‖2L2 +

1

2
E

[
max

1≤i≤M
‖Ui‖2L2 +K2

1k
M∑
m=1

‖Um−1‖2L2

]
.

In the third inequality, we change the index from m to i and shift it by one, taking in account
the initial condition. Thus, we can absorb the first term on the left hand side (3.3.8); using the
bound (3.3.7), we get then the first inequality in (ii).

Step 4. Bounds for the higher moments of the velocity. First we prove the assertion for
p = 2. At the end we indicate how our argument can be extended to any natural number p ≥ 3.
Again we proceed like in Step 2, by proving an auxiliary bound analogous to (3.3.7), to deduce
the second and then the first part of the inequality in (iii).

We begin by multiplying identity (3.3.4) by ‖Um‖2L2 , and consider the last two terms on the
corresponding right-hand side:

I :=
(
g(Um−1)∆mW,Um −Um−1

)
‖Um‖2L2 , II :=

(
g(Um−1)∆mW,Um−1

)
‖Um‖2L2 .

By using the Cauchy-Schwarz’s inequality, we infer that

I ≤ ‖g(Um−1)‖2L(KKK,L2)|∆mW|2KKK ‖Um‖2L2 +
1

4
‖Um −Um−1‖2L2 ‖Um‖2L2

= ‖g(Um−1)‖2L(KKK,L2)|∆mW|2KKK
([
‖Um‖2L2 − ‖2Um−1‖2L2

]
+ ‖Um−1‖2L2

)
+

1

4
‖Um −Um−1‖2L2 ‖Um‖2L2(3.3.10)

≤ ‖g(Um−1)‖2L(KKK,L2)|∆mW|2KKK‖Um−1‖2L2 + 4‖g(Um−1)‖4L(KKK,L2)|∆mW|4KKK

+
1

16

∣∣∣‖Um‖2L2 − ‖Um−1‖2L2

∣∣∣2 +
1

4
‖Um −Um−1‖2L2 ‖Um‖2L2 ,

and

II =
(
g(Um−1)∆mW,Um−1

)(
‖Um‖2L2 − ‖Um−1‖2L2 + ‖Um−1‖2L2

)
≤

(
g(Um−1)∆mW,Um−1

)
‖Um−1‖2L2 + 4‖g(Um−1)‖2L(KKK,L2)|∆mW|2KKK ‖Um−1‖2L2

+
1

16

∣∣∣‖Um‖2L2 − ‖Um−1‖2L2

∣∣∣2.(3.3.11)



36 CHAPTER 3. CONSTRUCTION OF SOLUTIONS

Next, by using the identity (3.3.3), and the above estimates (3.3.10) and (3.3.11), we infer that
there exists a constant C > 0 which does not depend on k, h > 0 such that

1

4

(
‖Um‖4L2 − ‖Um−1‖4L2 +

(
1− [

1

4
+

1

4
]
)∣∣∣‖Um‖2L2 − ‖Um−1‖2L2

∣∣∣2)
+

1

4
‖Um‖2L2

(
‖Um −Um−1‖2L2 + kν‖∇Um‖2L2

)
≤ 4

∥∥g(Um−1)
∥∥4

L(KKK,L2)
|∆mW|4KKK + 5

∥∥g(Um−1)
∥∥2

L(KKK,L2)
|∆mW|2KKK ‖Um−1‖2L2(3.3.12)

+Ck‖fm‖4W−1,2 +
(
g(Um−1)∆mW,Um−1

)
‖Um−1‖2L2 .

Then, proceeding as in (3.3.6), by using (2.3.4) for n = 2, and the assumption (S2), we get that

E
[
‖g(Um−1)‖4L(KKK,L2)|∆mW|4KKK

]
≤ C(TrQ)2k2 E

[
‖g(Um−1)‖4L(KKK,L2)

]
≤ K4

1C(TrQ)2k2 E
[
‖Um−1‖4L2

]
.

Next, by (2.3.4), and the linear growth condition (S2) for g, we find that the second term in
(3.3.12) can be estimated as follows,

E
[∥∥g(Um−1)

∥∥2

L(KKK,L2)
|∆mW|2KKK ‖Um−1‖2L2

]
≤ K2

1CE
[
‖Um−1‖4L2 |∆mW|2KKK

]
≤ K2

1C(TrQ)kE
[
‖Um−1‖4L2

]
.

Since the fourth term on the right-hand side of (3.3.12) vanishes when taking expectation, by
the discrete version of the Gronwall Lemma, proceeding as in Step 2, we obtain the second
inequality in (ii) i.e.

max
1≤m≤M

E
[
‖Um‖4L2

]
≤ CT,2 .(3.3.13)

Next we use it to conclude

max
1≤m≤M

E
[
‖Um‖4L2

]
+

1

2
E
[ M∑
m=1

∣∣∣‖Um‖2L2 − ‖Um−1‖2L2

∣∣∣2]
+E

[ M∑
m=1

‖Um‖2L2

(
‖Um −Um−1‖2L2 + kν‖∇Um‖2L2

)]
≤ CT,2 .

For the first inequality in (iii), we use a corresponding strategy as in (3.3.8) and (3.3.9).

E

[
max

1≤i≤M

i∑
m=1

(
g(Um−1)∆mW,Um−1

)
‖Um−1‖2L2

]

≤ CE

(k M∑
m=1

‖g(Um−1)‖2L(KKK,L2)‖U
m−1‖6L2

)1/2


≤ CE

 max
1≤m≤M

‖Um−1‖2L2

(
k

M∑
m=1

‖g(Um−1)‖2L(KKK,L2)‖U
m−1‖2L2

)1/2
(3.3.14)

≤ 1

2
E
[

max
1≤i≤M

‖Ui‖4L2

]
+ C‖U0‖4L2 + CE

[
K2

1k

M∑
m=1

‖Um−1‖4L2

]
.
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Thus, using (3.3.13), we may conclude the assertion for (iii) for p = 2.
We may now continue successively for p ≥ 3, by multiplying (3.3.12) by ‖Um‖2p−1

L2 , to arrive
at the following inequality

E
[

sup
1≤m≤M

‖Um‖2pL2 + cp

M∑
m=1

∣∣∣‖Um‖2p−1

L2 − ‖Um−1‖2p−1

L2

∣∣∣2]
+E
[ M∑
m=1

‖Um‖ξpL2

(
‖Um −Um−1‖2L2 + kν‖∇Um‖2L2

)]
≤ CT,p ,(3.3.15)

for some constants cp ≥ 0 and ξp =
∑p−1

`=1 2` = 2p − 2. We leave the details of the derivation of
(3.3.15) to the reader.

Step 5. A priori estimates for the gradient norm of the velocity. Here we prove the inequality
(iv). As in the previous step, we only consider in detail the case p = 2, and hints for the general
case are given. We take the sum in (3.3.4) (with index i instead of m) from i = 1 to i = m, and
afterwards square the resulting equality. This us leads to the following inequality

1

C
‖Um‖4L2 +

(kν
C

m∑
i=1

‖∇Ui‖2L2

)2
≤ ‖U0‖4L2 +

(
k

m∑
i=1

‖f i‖2L2

)2

(3.3.16)

+
( m∑
i=1

‖g(Ui−1)∆iW‖2L2

)2
+
( m∑
i=1

(g(Ui−1)∆iW,Ui−1)
)2
.

Next we consider only the expectation of the last two terms; the other terms can be bounded
easily. In the first case, by the Cauchy-Schwarz’s inequality for sums, and assumption (S2), we
have

E
[( m∑

i=1

‖g(Ui−1)∆iW‖2L2

)2]
≤ m

m∑
i=1

E
[
‖g(Ui−1)‖4L(KKK,L2)|∆iW|4KKK

]
≤ K4

1m
m∑
i=1

E
[
‖Ui−1‖4L2 |∆iW|4KKK

]
= · · · .

Next, using the tower property, the inequality (2.3.4) for n = 2, and the already proved first
part of assertion (iii) we get

· · · = K2
1m

m∑
i=1

E
[
‖Ui−1‖4L2E

[
|∆iW|4KKK|Fti−1

]]
≤ C2(TrQ)2mk2

m∑
i=1

E
[
‖Ui−1‖4L2

]
≤ CT,2 .

In the last term of (3.3.16) we use the fact the discrete time sequence can be represented as a
stochastic integral together with Burkholder-Davis-Gundy inequality, assumption (S2), and first
part of assertion (iii), to conclude that

(3.3.17) E
[( m∑

i=1

(g(Ui−1)∆iW,Ui−1)
)2]
≤ CE

[
k

m∑
i=1

‖Ui−1‖4L2

]
≤ CT,2 .
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Putting things together in (3.3.16) shows inequality (iv) for p = 2.
For the case p ≥ 3 we note that the following inequality

1

Cp
‖Um‖2pL2 +

(kν
Cp

m∑
i=1

‖∇Ui‖2L2

)2p−1

≤ ‖U0‖2pL2 +
(
k

m∑
i=1

‖f‖2L2

)2p−1

+
( m∑
i=1

‖g(Ui−1)∆iW‖2L2

)2p−1

+
( m∑
i=1

(g(Ui−1)∆iW,Ui−1)
)2p−1

(3.3.18)

holds.
We take expectation and bound each term independently. The first and second terms can

easily be controlled. The third term on the right-hand side can be bounded using the inequality
(2.3.4) together with the tower property, assumption (S2), and inequality (iii). For the expecta-
tion of the last term in (3.3.18), we represent the discrete time sequence as a stochastic integral
and use the Burkholder-Davis-Gundy inequality.

The proof of the Lemma is therefore complete.

Remark 3.3.1. To have ‖U0‖L2 ≤ C independently of h > 0, we can choose for instance
U0 = Q0

hu0, because of the stability in L2 of the projection Q0
h; see [59, Lemma 3.1].

In the deterministic case, a mesh constraint ensures the uniqueness property for iterates of
Algorithm 5.1 by a contraction argument for restricted numerical parameters F (k, h) > 0. Here,
stochastic effects only allow uniqueness of iterates {Um} ⊂ L2(Ω;L2(D)) of Algorithm 5.1 on a
set Ωε, ε = ε(k, h) > 0, with probability close to one. The following lemma shows uniqueness on
those sets Ωε ⊂ Ω under restrictive conditions on numerical parameters, evidencing the subtle
interplay of discretisation and stochastic effects in a general setup of data.

Lemma 3.3.2. Let d = 2, 3, and D ⊂ Rd be a bounded polygonal domain. Suppose that the
parameters k, h, ε, ν > 0 satisfy the constraint

Ck

h2d−2ε
< 1 ,

with a constant C = C(d,D, ν−1) > 0. Then iterates {Um}Mm=1 of Algorithm 5.1 are unique on
the set

Ωε :=

{
ω ∈ Ω

∣∣∣ max
1≤m≤M

‖Um(ω)‖4L2 ≤
1

ε

}
.

where P[Ωε] ≥ 1− E
[
max1≤m≤M ‖Um‖4L2

]
ε.

Proof. a) Let d = 3. Suppose that two sequences {Um}Mm=1, {Vm}Mm=1 ⊂ L2(Ω;L2(D)) solve
Algorithm 5.1 for the initial condition U0. We subtract the corresponding equations to get for
ΦΦΦ = Zm := Um −Vm for m ≥ 1

1

2

(
‖Zm‖2L2 − ‖Zm−1‖2L2 + ‖Zm − Zm−1‖2L2

)
+ kν‖∇Zm‖2L2 + k

(
[Um · ∇]Um,Zm

)
−k
(
[Vm · ∇]Vm,Zm

)
+
k

2

(
[divUm]Um,Zm

)
− k

2

(
[divVm]Vm,Zm

)
(3.3.19)

=
(

[g(Um−1)− g(Vm−1)]∆mW,Zm − Zm−1
)

+
(
[g(Um−1)− g(Vm−1)]∆mW,Zm−1

)
.

Taking into account the skew-symmetricity of the stabilised convective term, we obtain(
[Um · ∇]Um,Zm

)
−
(
[Vm · ∇]Vm,Zm

)
+

1

2

(
[divUm]Um,Zm

)
− 1

2

(
[divVm]Vm,Zm

)
=
(
[Zm · ∇]Um,Zm

)
+

1

2

(
[divZm]Um,Zm

)
.
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Then, for the first nonlinear convective term we use Hölder’s inequality together with interpo-
lation of L3 between L2 and W1,2, and an inverse estimate,(

[Zm · ∇]Um,Zm
)
≤ ‖Zm‖L3‖∇Um‖L2‖Zm‖L6 ≤

ν

2
‖∇Zm‖2L2 +

C

ν3
‖Zm‖2L2‖∇Um‖4L2

≤ ν

2
‖∇Zm‖2L2 +

C

ν3
h−4‖Zm‖2L2‖Um‖4L2 ,(3.3.20)

and correspondingly(
[divZm]Um,Zm

)
≤ ν

2
‖∇Zm‖2L2 +

C

ν3
h−4‖Zm‖2L2‖Um‖4L2 .(3.3.21)

Here C = C(d,D) > 0 denotes a constant resulting from the Gagliardo-Nirenberg inequality,
and from the inverse estimate. By Lemma 3.1 any finite moment of solutions of Algorithm
5.1 is bounded. Hence, we may define a set Ωε such that max1≤m≤M ‖Um(ω)‖4L2 ≤ 1

ε for a.e.
ω ∈ Ωε and find by Chebyshev’s inequality

P[Ωε] ≥ 1− εE
[

max
1≤m≤M

‖Um‖4L2

]
≥ 1− CT,2ε (ε > 0) .

Thus, after multiplying (3.3.19) with the indicator function of Ωε, and taking expectation, we
may proceed by induction to establish max1≤m≤M E

[
‖Um −Vm‖2L2

]
= 0.

First step: m = 1. Using the fact that Z0 ≡ 0 together with (3.3.20) and (3.3.21), we obtain

E
[(

1

2
− C k

h4εν3

)
1Ωε‖Z1‖2L2 + kν1Ωε‖∇Z1‖2L2

]
≤ 0 ,(3.3.22)

provided Ckh−4ε−1ν−3 < 1/2.
Induction step: m− 1→ m. Assuming max1≤i≤m−1 E

[
1Ωε‖Zi‖2L2

]
= 0 , we want to prove

(3.3.23) max
1≤i≤m

E
[
1Ωε‖Zi‖2L2

]
= 0 .

First we observe that because of the induction assumption, there holds Um−1 = Vm−1 P-a.s.
on Ωε, which implies that the term corresponding to the stochastic integral disappears. Then,
because of (3.3.19) we have

E
[

1

2
1Ωε

(
‖Zm‖2L2 + kν‖∇Zm‖2L2

)]
≤ C k

h4ν−3ε−1
E
[
1Ωε‖Zm‖2L2

]
.

This implies (3.3.23).
b) Let now d = 2. The main difference with respect to the three-dimensional case is that

now we interpolate L4 between L2 and W1,2, obtaining(
[Zm · ∇]Um,Zm

)
≤ ‖Zm‖2L4‖∇Um‖L2 ≤

ν

2
‖∇Zm‖2L2 +

C

ν
‖Zm‖2L2‖∇Um‖2L2

≤ ν

2
‖∇Zm‖2L2 +

C

ν
h−2‖Zm‖2L2‖Um‖2L2 ,

and correspondingly(
[divZm]Um,Zm

)
≤ ν

2
‖∇Zm‖2L2 +

C

ν3
h−2‖Zm‖2L2‖Um‖4L2 .

Proceeding now as in past a) settles the assertion for Ckh−2ε−1ν−3 < 1/2.
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The next result quantifies the time variation of the iterates {Um}Mm=0 from Algorithm 3.1. It
will be useful later on to validate the related compactness properties of the iterates {Um}Mm=0.
Its proof evidences the interaction of noise, the incompressibility constraint, and the chosen
space-time discretisation.

Lemma 3.3.3.(i) There exists a constant CT > 0 such that for every ` ∈ {1, . . . ,M}

(3.3.24) E
[
k

M−`∑
m=0

t
3/4
` ‖U

m+` −Um‖2L2 + ‖Um+` −Um‖2(V∩W2,2)′

]
≤ CT t` .

(ii) For every p ≥ 2 there exists a constant Cp > 0 such that for every ` ∈ {1, . . . ,M}

(3.3.25) E
[
k
M−`∑
m=0

‖Um+` −Um‖p
(V∩W2,2)′

]
≤ CT,ptp/2` .

Proof. Step 1. Proof of the first part of inequality (i). a) First assume m ≥ 1. Fix a natural
number ` ∈ {1, . . . ,M}. We replace the index m by i in (3.3.1), and take the sum from i = m+1
to i = m+`. Then choosing ΦΦΦ = Um+`−Um, and finally taking the sum overm ∈ {1, . . . ,M−`}
leads us to the following identity

k

M−`∑
m=1

‖Um+` −Um‖2L2 = −νk2
M−`∑
m=1

∑̀
i=1

(
∇Um+i,∇[Um+` −Um]

)
− k2

M−`∑
m=1

∑̀
i=1

(
[Um+i · ∇]Um+i +

1

2
[divUm+i]Um+i,Um+` −Um

)
+ k2

M−`∑
m=1

∑̀
i=1

(
fm+i,Um+` −Um

)
+ k

M−`∑
m=1

∑̀
i=1

(
g(Um+i−1)∆m+iW,Um+` −Um

)
=: I + II + III + IV .(3.3.26)

Our aim is to show that the expectation of each of these four terms can be estimated from above
by Ct1/4` . We begin with the first term. By the Cauchy-Schwarz inequality, and Lemma 3.3.1,
(ii), we have

E
[
I
]
≤ ν E

[
k

M−`∑
m=1

‖∇[Um+` −Um]‖L2

(
k
∑̀
i=1

‖∇Um+i‖L2

)]
≤ 2ν

√
t` E
[
k

M∑
m=1

‖∇Um‖L2

(
k
∑̀
i=1

‖∇Um+i‖2L2

)1/2]
≤ 2ν

√
t` E
[
k

M∑
m=1

‖∇Um‖L2

(
k

M∑
m=1

‖∇Um‖2L2

)1/2]
(3.3.27)

≤ CT ν
√
t`
√
T E
[
k

M∑
m=1

‖∇Um‖2L2

]
≤ CT t1/2` ≤ CT 1/4t

1/4
` .

Since both terms in II are similar to each other, we only treat the first one. Since the Sobolev
embedding W1,2 ⊂ L6 is continuous, by using the Gagliardo-Nirenberg inequality for d = 3, the
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Cauchy-Schwarz inequality for sums, the Hölder’s inequality, and the second part of (iii) and
(iv) in Lemma 3.3.1, and similar ideas as in the estimates of I, we infer that

E
[
II
]
≤ k2E

[M−`∑
m=1

‖Um+` −Um‖L6

∑̀
i=1

‖Um+i‖L3‖∇Um+i‖L2

]
≤ CkE

[
M−`∑
m=1

‖∇[Um+` −Um]‖L2k
∑̀
i=1

‖Um+i‖1/2L2 ‖∇Um+i‖3/2L2

]

≤ Ct
1/4
` kE

[
2

M∑
m=1

‖∇Um‖L2

(
k
∑̀
i=1

‖Um+i‖2/3L2 ‖∇Um+i‖2L2

)3/4
]

≤ Ct
1/4
`

(
E
[(
k

M∑
m=1

‖∇Um‖L2

)4])1/4

E

[
k
∑̀
i=1

‖Um+i‖2/3L2 ‖∇Um+i‖2L2

]3/4

≤ CT t
1/4
` .(3.3.28)

The last estimate follows from the

E

[
k
∑̀
i=1

‖Um+i‖2/3L2 ‖∇Um+i‖2L2

]
≤ CE

[
k
∑̀
i=1

(
‖Um+i‖2L2 + 1

)
‖∇Um+i‖2L2

]
,(3.3.29)

We omit the straightforward estimates for E
[
III
]
. For what concerns the last term in the

equality (3.3.26), by the Young’s inequality, the Itô isometry (2.3.1), and the assumption (S2),
we infer that

E [IV ] ≤ CT (TrQ)T 3/4t
1/4
`

(
max

1≤m≤M
E
[
‖Um‖2L2

])
+

1

4
k
M−`∑
m=1

E
[
‖Um+` −Um‖2L2

]
.

We conclude by observing that the second term above can be absorbed into the left-hand side
(3.3.26) and the first can be estimated with Lemma 3.3.1, (ii).

b) Consider the case m ≥ 0. It is enough to consider m = 0 and ` = M − 1 in (3.3.26).
Then we have

kE
[
‖U` −U0‖2L2

]
≤ 2
(
kE
[
‖U` −U1‖2L2

]
+ kE

[
‖U1 −U0‖2L2

])
.

Because of Lemma 3.3.1, we have that kE
[
‖U1 −U0‖2L2

]
≤ CTk. Thus, using a), we have

kE
[
‖U` −U1‖2L2

]
+ kE

[
‖U1 −U0‖2L2

]
≤ C(t

1/4
`−1 + k) ≤ Ct1/4` ,

for k small enough. Thus the first part of (i) is proved.

Step 2. Proof of the second part of inequality (i). Let us fix a natural number ` ∈ {1, . . . ,M}.
Let us recall that there exist C > 0 such that the following inequality holds

‖ · ‖(V∩W2,2)′ ≤ C sup
{

(·,ϕϕϕ) : ϕϕϕ ∈ VVV, ‖ϕϕϕ‖V∩W2,2 ≤ 1
}
.

Consider (3.3.1), with index i instead of m, and sum it up from i = m + 1 to i = m + `.
Then take the sum of it from m = 0 to m = M − `, and finally the norm, and the expectation
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of it. We then arrive at the following estimate

k

C

M−`∑
m=0

E
[
‖Um+` −Um‖2(V∩W2,2)′

]
≤ k3

M−`∑
m=0

E
[

sup
ϕϕϕ∈VVV,

‖ϕϕϕ‖V∩W2,2≤1

(∑̀
i=1

∇Um+i,−∇[Q0
h − Id]ϕϕϕ−∇ϕϕϕ

)2]

+ k3
M−`∑
m=0

E
[

sup
ϕϕϕ∈VVV,

‖ϕϕϕ‖V∩W2,2≤1

(∑̀
i=1

[Um+i · ∇]Um+i +
1

2
[divUm+i]Um+i, [Q0

h − Id]ϕϕϕ+ϕϕϕ
)2]

+ k3
M−`∑
m=0

E
[

sup
ϕϕϕ∈VVV,

‖ϕϕϕ‖V∩W2,2≤1

(∑̀
i=1

fm+i, [Q0
h − Id]ϕϕϕ+ϕϕϕ

)2]

+ k

M−`∑
m=0

E
[

sup
ϕϕϕ∈VVV,

‖ϕϕϕ‖V∩W2,2≤1

(∑̀
i=1

g(Um+i−1)∆m+iW, [Q0
h − Id]ϕϕϕ+ϕϕϕ

)2]
=: I + II + III + IV .(3.3.30)

We proceed separately with the terms I, . . . , IV .
By the second part of inequality (3.2.3), estimates (3.2.5), and the first part of (i) in

Lemma 3.3.1, we get

I ≤ k3
M−`∑
m=0

E
[

sup
ϕϕϕ∈VVV,

‖ϕϕϕ‖V∩W2,2≤1

(∑̀
i=1

{
‖∇Um+i‖L2‖∇[Q0

h − Id]ϕϕϕ‖L2

}
+
(
Um+i,−Aϕϕϕ

))2]

≤ k
M−`∑
m=0

E
[

sup
ϕϕϕ∈VVV,

‖ϕϕϕ‖V∩W2,2≤1

(
k
∑̀
i=1

Ch−1‖Um+i‖L2h‖Aϕϕϕ‖L2 +
(
Um+i,Aϕϕϕ

))2]

≤ Ck

M−`∑
m=0

E
[(
k
∑̀
i=1

‖Um+i‖L2

)2]
≤ Ct2` k

M−`∑
m=0

E
[

max
1≤i≤`

‖Um+i‖2L2

]
(3.3.31)

≤ CT t
2
` ≤ CTTt` .

We continue with term II in (3.3.30). Using integration by parts and the Cauchy-Schwarz
inequality, we obtain the following estimate.

II = −k
M−`∑
m=0

E

[
sup
ϕϕϕ∈VVV,

‖ϕϕϕ‖V∩W2,2≤1

{∑̀
i=1

k
([

Um+i · ∇
]{

[Q0
h − Id]ϕϕϕ+ϕϕϕ

}
,Um+i

)

−1

2

([
divUm+i

]
Um+i,

{
[Q0

h − Id]ϕϕϕ+ϕϕϕ
})}2

]
(3.3.32)

≤ Ck

M−`∑
m=0

E

[
sup
ϕϕϕ∈VVV,

‖ϕϕϕ‖V∩W2,2≤1

{∑̀
i=1

k
([

Um+i · ∇
]{

[Q0
h − Id]ϕϕϕ+ϕϕϕ

}
,Um+i

)}2

+ sup
ϕϕϕ∈VVV,

‖ϕϕϕ‖V∩W2,2≤1

{∑̀
i=1

k
([

divUm+i
]
Um+i,

{
[Q0

h − Id]ϕϕϕ+ϕϕϕ
})}2

]
= II1 + II2.
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Then the continuous embedding W1,2 ⊂ L6, (3.2.3) and (3.2.5), like in (3.3.31), yield

II1 = −k
M−`∑
m=0

E
[

sup
ϕϕϕ∈VVV,

‖ϕϕϕ‖V∩W2,2≤1

{∑̀
i=1

k
([

Um+i · ∇
]{

[Q0
h − Id]ϕϕϕ+ϕϕϕ

}
,Um+i

)}2]

≤ k

M−`∑
m=0

E
[

sup
ϕϕϕ∈VVV,

‖ϕϕϕ‖V∩W2,2≤1

{∑̀
i=1

k
(
‖Um+i‖L3‖∇

{
[Q0

h − Id]ϕϕϕ‖L2‖∇Um+i‖L2

)}2]

+k
M−`∑
m=0

E
[

sup
ϕϕϕ∈VVV,

‖ϕϕϕ‖V∩W2,2≤1

{∑̀
i=1

k
(
‖Um+i‖L3‖∇ϕϕϕ‖L6‖Um+i‖L2

)}2]
(3.3.33)

≤ Ck
M−`∑
m=0

E
[(∑̀

i=1

k‖Um+i‖L3‖Um+i‖L2

)2]
≤ . . .

Then the Gagliardo-Nirenberg inequality for d = 3, Lemma 3.3.1, (iv), and the first part of (iii)
further lead us to

. . . ≤ Ck
M−`∑
m=0

E
[

max
1≤i≤`

‖Um+i‖3L2

(
k
∑̀
i=1

‖∇Um+i‖1/2L2

)2]
≤ Ct

3/2
` k

M−`∑
m=0

E
[

max
1≤i≤`

‖Um+i‖3L2

(
k
∑̀
i=1

‖∇Um+i‖2L2

)1/2]
(3.3.34)

≤ Ct
3/2
` k

M−`∑
m=0

(
E
[

max
1≤i≤`

‖Um+i‖4L2

])3/4(
E
[(
k
∑̀
i=1

‖∇Um+i‖2L2

)2])1/4
≤ CT 1/2t` .

The additional term II2 is now the order-limiting term. Since in general Vh 6⊂ V, the iterates{
divUm

}M
m=1

will be controlled by the second part of Lemma 3.3.1, (ii), for
{
∇Um

}M
m=1

, such
that

IIb ≤
Ck

2

M−`∑
m=0

E
[

sup
ϕϕϕ∈VVV,

‖ϕϕϕ‖V∩W2,2≤1

(
k
∑̀
i=1

∥∥divUm+i
∥∥
L2‖Um+i‖L2

∥∥[Q0
h − Id]ϕϕϕ+ϕϕϕ

∥∥
L∞

)2]

≤ Ct`k

M−`∑
m=0

E
[

max
1≤i≤`

‖Um+i‖2L2

(
k
∑̀
i=1

‖divUm+i‖2L2

)]
≤ Ct` ,(3.3.35)

where the following bound is used for every 0 < δ ≤ 3,

‖[Q0
h − Id]ϕϕϕ‖L∞ ≤ C‖∇[Q0

h −IIIh]ϕϕϕ‖L3+δ + C‖∇[IIIh − Id]ϕϕϕ‖L3+δ

≤ Ch−d
1+δ
6+2δ ‖∇[(Q0

h − Id) + (Id−IIIh)]ϕϕϕ‖L2 + C‖ϕϕϕ‖W2,2

≤ Ch−d
1+δ
6+2δ

(
h+ h

)
‖ϕϕϕ‖W2,2 + C‖ϕϕϕ‖W2,2 ≤ C ,

by the Sobolev embedding, the approximation properties of the Lagrange interpolation, see
Appendix C , inverse estimates (3.2.5), the interpolation estimate for the Lagrange interpolation
(for instance [53, Lemma 4.4.4]), and (3.2.3).

A proper control of III is immediate. For IV , by assertion (S2), the tower property, and
first part of Lemma 3.3.1, (i),

IV ≤ Ck
M∑
m=0

∑̀
i=1

kE
[(

1 + ‖U`−1‖2L2

)]
≤ Ct` .
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The proof of (i) is thus concluded.

Step 3. Proof of assertion (ii) by modifying the argument in Step 2. Fix some ` ∈
{1, . . . ,M}, change the index in (3.3.1) from m to i, and sum up from i = m to i = m + `.
Choose ΦΦΦ = Q0

hϕϕϕ ∈ Vh for any ϕϕϕ ∈ VVV. Summation over m ∈ {0, . . . ,M − `}, property (3.2.2)2,
and taking expectations then leads to

k

Cp

M−`∑
m=0

E
[
‖Um+` −Um‖p

(V∩W2,2)′

]
≤ kp+1

M−`∑
m=0

E
[

sup
ϕϕϕ∈VVV,

‖ϕϕϕ‖V∩W2,2≤1

(∑̀
i=1

∇Um+i,−∇[Q0
h − Id]ϕϕϕ−∇ϕϕϕ

)p]

+kp+1
M−`∑
m=0

E
[

sup
ϕϕϕ∈VVV,

‖ϕϕϕ‖V∩W2,2≤1

(∑̀
i=1

[Um+i · ∇]Um+i +
1

2
[divUm+i]Um+i, [Q0

h − Id]ϕϕϕ+ϕϕϕ
)p]

+kp+1
M−`∑
m=0

E
[

sup
ϕϕϕ∈VVV,

‖ϕϕϕ‖V∩W2,2≤1

(∑̀
i=1

fm+i,ϕϕϕ
)p]

+k
M−`∑
m=0

E
[

sup
ϕϕϕ∈VVV,

‖ϕϕϕ‖V∩W2,2≤1

(∑̀
i=1

g
(
Um+i−1

)
∆m+iW,ϕϕϕ

)p]
(3.3.36)

=: I + II + III + IV .

A simple adaptation of the arguments from Step 2 leads to

I + II + III ≤ CT
(
tp` + t

3p/4
` + t

p/2
`

)
≤ CT p/2tp/2` .

For IV , by the Burkholder-Davis-Gundy inequality, assumption (S2), and the first part of
Lemma 3.3.1, (ii),

IV ≤ Ck
M−`∑
m=0

E
[∥∥∥∑̀

i=1

g
(
Um+i−1

)
∆m+iW

∥∥∥p
L2

]
≤ Ck

M−`∑
m=0

E
[(
k
∑̀
i=1

∥∥g(Um+i−1)
∥∥2

L(KKK,L2)
ds
)p/2]

≤ CKp
1 t
p/2
` E

[
max

1≤m≤M
(1 + ‖Um‖pL2)

]
≤ Ctp/2` .

This concludes the proof of the assertion (ii) and also of the whole Lemma.

We define the piecewise affine, globally continuous process

UUUk,h(t,x) :=
t− tm−1

k
Um(x) +

tm − t
k

Um−1(x) ∀ (t,x) ∈ [tm−1, tm)×D ,(3.3.37)

and

UUU−k,h(t,x) := Um−1(x) ∀ (t,x) ∈ [tm−1, tm)×D ,(3.3.38)

UUU+
k,h(t,x) := Um(x) ∀ (t,x) ∈ (tm−1, tm]×D .(3.3.39)
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Note that

(3.3.40) UUUk,h(t, ·)−UUU−k,h(t, ·) =
t− tm−1

k

(
Um −Um−1

)
∀ t ∈ [tm−1, tm) .

Hence, the C
(
[0, T ];Vh

)
-valued random variable UUUk,h satisfies for every t ∈ [tm−1, tm),(

UUUk,h(t)−UUU−k,h,ΦΦΦ
)

+ (t− tm−1)
{
ν
(
∇UUU+

k,h,∇ΦΦΦ
)

+
([
UUU+
k,h · ∇

]
UUU+
k,h,ΦΦΦ

)}
+

1

2
(t− tm−1)

(
[divUUU+

k,h]UUU+
k,h,ΦΦΦ

)
= (t− tm−1)

(
f(tm),ΦΦΦ

)
(3.3.41)

+
t− tm−1

k

[∫ t

tm−1

(
g
(
U−) dW(s),ΦΦΦ

)
+
(
g
(
U−)[W(tm)−W(t)],ΦΦΦ

)]
.

3.4 Compactness properties of iterates

Lemma 3.3.3 controls fractional derivatives of the process UUU ≡ UUUk,h : DT → Rd. Since N s1,r ⊂
W s2,r continuously if s1 > s2 by [122, Cor. 24], the following result immediately follows from
Lemma 3.2.1.

Lemma 3.4.1. Let k, h > 0, and T ≡ tM > 0. There exists CT > 0 such that the solution UUUk,h
of (3.3.41) satisfies for every α ∈ (0, 1

8) the bound

E
[
‖UUUk,h‖2Wα,2(0,T ;L2)

]
≤ CT .

For integer p ≥ 2, β ∈ (0, 1
2), there holds

E
[
‖UUUk,h‖2Wβ,p(0,T ;D(A−γ))

]
≤ CT ∀ γ ≥ 1 .

The bounds in Lemma 3.3.1, and E
[
‖UUUk,h‖2L2(0,T ;W1,2

0 )

]
≤ C as well as Lemma 3.4.1 allow for

the following compactness result that follows from

(i) Lemma 3.2.2, with X0 = W1,2
0 and X = X1 = L2, for α ∈ (0, 1

8), and q = 2,

(ii) Lemma 3.2.3, with X0 = L6/5 and X = W−1,2, and β ∈ (0, 1
8),

(iii) Lemma 3.2.4, with X0 = D(A−γ̃) and X = D(A−γ) for 1 ≤ γ̃ < γ, and α ∈ (0, 1
2), q = p.

Lemma 3.4.2. Assume that α ∈ (0, 1
8) and U0 → u0 in L2. Then

i) The sequence of laws {L(UUUk,h)}k,h is tight on L2
(
0, T ;L2

)
∩Wα,2

(
0, T ;W−1,2

)
.

ii) If γ > 1, and p > 2, the sequence is tight on C
(
[0, T ];D(A−γ)

)
.

By Lemma 3.4.2, we can find a subsequence {UUUk,h}k,h denoted in the same way as the full
sequence, such that the laws

{
L(UUUk,h)

}
k,h

converge weakly to a certain probability measure µ
on L2

(
0, T ;L2

)
. The following result is based on the Skorokhod theorem [76, p. 9], which allows

to turn over to possibly another sequence {UUU ′k,h}k,h with improved convergence properties.

Proposition 3.4.1. Let α ∈ (0, 1
8), γ > 1, and U0 → u0 in L2 for h→ 0. There exists a filtered

probability space P′ = (Ω′,F ′,F′,P′), and
i) a sequence

{
UUU ′k,h

}
k,h

such that for all indices k, h

UUU ′k,h : Ω→ L2
(
0, T ;L2

)
∩Wα,2

(
0, T ;W−1,2

)
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is a measurable map and

L(UUUk,h) = L′(UUU ′k,h) on L2
(
0, T ;L2

)
∩Wα,2

(
0, T ;W−1,2

)
.

ii) an L2
(
0, T ;L2

)
∩Wα,2

(
0, T ;W−1,2

)
-valued random variable uuu defined on P′ such that

L′(uuu) = µ on L2
(
0, T ;L2

)
∩Wα,2

(
0, T ;W−1,2

)
,

and P′-almost surely

UUU ′k,h → uuu in L2
(
0, T ;L2

)
∩Wα,2

(
0, T ;W−1,2

)
(k, h→ 0) .

iii) Let p > 2, there exists a sequence
{
UUU ′k,h

}
k,h

such that for all indices k, h

UUU ′k,h : Ω→ L2
(
0, T ;L2

)
∩ C

(
0, T ;D(A−γ)

)
is a measurable map and

L(UUUk,h) = L′(UUU ′k,h) on L2
(
0, T ;L2

)
∩ C

(
0, T ;D(A−γ)

)
.

iv) an L2
(
0, T ;L2

)
∩ C

(
0, T ;D(A−γ)

)
-valued random variable uuu defined on P′ such that

L′(uuu) = µ on L2
(
0, T ;L2

)
∩ C

(
0, T ;D(A−γ)

)
,

for p > 2, and P′-almost surely

UUU ′k,h → uuu in L2
(
0, T ;L2

)
∩ C

(
0, T ;D(A−γ)

)
(k, h→ 0) .

We resume all the convergence results in the following

Lemma 3.4.3. Let α and γ be as in Proposition 3.4.1, and U0 → u0 in L2 for h → 0. Then
there exists a filtered probability space P′ = (Ω′,F ′,F′,P′), such that the following convergences
hold for k, h→ 0: (

UUU ′k,h
)+ ∗

⇀uuu in Lp
(
Ω′;L∞(0, T ;L2)

)
,(

UUU ′k,h
)+

⇀uuu in L2
(
Ω′;L2(0, T ;W1,2

0 )
)
,

UUU ′k,h → uuu in L2
(
Ω′;L2(0, T ;L2)

)
,(3.4.1)

div
(
UUU ′k,h

)+
, div

(
UUU ′k,h

)−
⇀ 0 in L2

(
Ω′;L2(0, T ;L2)

)
,

divUUU ′k,h ⇀ 0 in L2
(
Ω′;L2(0, T ;L2)

)
.

Proof. The assertions (3.4.1)1 and (3.4.1)2 follow from the fact that the sequence
{
UUU ′k,h

}
k,h

of piecewise affine Hh-valued processes and the original sequence
{
UUUk,h

}
k,h

satisfy the same
estimates, since they have the same laws; see Lemmata 3.3.1 and 3.3.3.

Convergence (3.4.1)3 follows by Lemma 3.3.1, (ii), Proposition 3.4.1, (3.3.40) and the uniform
integrability given by Lemma 3.3.1, (ii).

The first part of property (3.4.1)4 follows from (3.4.1)2, the discrete divergence-free constraint
(3.1.5), and approximation properties of the Lagrange interpolation Ih : C∞(D)→ Lh (see [14,
Theorem 4.4.4]), such that for all t ∈ [0, T ] and all λ ∈ C∞(D),

E′
[∫ T

0

(
div
(
UUU ′k,h

)+
, λ
)

ds
]

= E′
[∫ T

0

(
div
(
UUU ′k,h

)+
, [λ− Ihλ] + Ihλ

)
ds
]

= E′
[∫ T

0

(
div
(
UUU ′k,h

)+
, λ− Ihλ

)
ds
]
→ 0 (k, h→ 0) .
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The proof of the second part of (3.4.1)4 follows accordingly, using the strong convergence of the
discrete initial data

E′
[∫ T

0

(
div
(
UUU ′k,h

)−
, λ
)

ds
]

= E′
[∫ T

t1

(
div
(
UUU ′k,h

)−
, λ− Ihλ

)
ds
]
− kE′

[(
U0,∇λ

)]
→ 0 (k, h→ 0) .

Finally, property (3.4.1)5 follows exactly in the same way, since UUU ′ is a linear combination of(
UUU ′
)+ and

(
UUU ′
)−.

We now may identify limits of the deterministic integral in Algorithm 3.1.

Lemma 3.4.4. For T > 0, let
{
UUU ′k,h

}
k,h

be the sequence from Proposition 3.4.1. Then for every
ϕϕϕ ∈ VVV and every t ∈ [0, T ],

(i) lim
k,h→0

E′
[∫ t

0

(
∇(UUU ′k,h)+,∇Q0

hϕϕϕ
)

ds

]
= E′

[∫ t

0

(
∇uuu,∇ϕϕϕ

)
ds

]
.

(ii) lim
k,h→0

E′
[∫ t

0

(
[(UUU ′k,h)+ · ∇](UUU ′k,h)+ +

1

2
[div (UUU ′k,h)+](UUU ′k,h)+,Q0

hϕϕϕ
)

ds
]

= E′
[∫ t

0

(
[uuu · ∇]uuu,ϕϕϕ

)
ds
]
.

Proof. In addition to (3.4.1)2 and (3.4.1)4, we have the convergence

(UUU ′k,h)−, (UUU ′k,h)+ → uuu in L2
(
Ω′;L2(0, T ;L2)

)
,(3.4.2)

which is a consequence of the third part of (ii) from Lemma 3.3.1 together with (3.3.40), for the
sequence on the new probability space P′.

In order to prove part (i) of the lemma, let us fix ϕϕϕ ∈ VVV. We note that∫ t

0

{(
∇(UUU ′k,h)+,∇Q0

hϕϕϕ
)
−
(
∇uuu,∇ϕϕϕ

)}
ds

=

∫ t

0

{(
∇(UUU ′k,h)+,∇[Q0

hϕϕϕ−ϕϕϕ]
)

+
(
∇[(UUU ′k,h)+ − uuu],∇ϕϕϕ

)}
ds .

Then, we infer that

lim
k,h→0

E′
[∫ t

0

{(
∇(UUU ′k,h)+,∇[Q0

hϕϕϕ−ϕϕϕ]
)

+
(
∇[(UUU ′k,h)+ − uuu],∇ϕϕϕ

)}
ds

]
= 0 .

For the first term in the integral this follow by the uniform boundedness of
{
∇(UUU ′k,h)+

}
k,h

in
L2
(
Ω′;L2(0, T ;L2)

)
and strong convergence for ϕϕϕ −Q0

hϕϕϕ in V. For the second term, this is a
consequence of the weak convergence of ∇(UUU ′k,h)+ in L2.

To prove (ii), we integrate by parts in the leading term on the left-hand side, and use (3.4.2)
for the first term, and (3.4.2) together with (3.4.1)2 for the second:

− lim
k,h→0

E′
[∫ t

0

{(
[(UUU ′k,h)+ · ∇]Q0

hϕϕϕ, (UUU ′k,h)+
)

+
1

2

(
[div (UUU ′k,h)+](UUU ′k,h)+,Q0

hϕϕϕ
)}

ds
]

= −E′
[∫ t

0

(
[uuu · ∇]ϕϕϕ,uuu

)
ds
]
.

Integration by parts and using divuuu = 0 Lebesgue a.e. in DT , and P′-almost surely then implies
assertion (ii). This completes the proof.
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Due to the strong W1,2-convergence of ϕϕϕ − Q0
hϕϕϕ for h → 0, Lemma 3.4.4 remains valid if

Q0
hϕϕϕ is replaced by ϕϕϕ. Therefore

[(UUU ′k,h)+ · ∇](UUU ′k,h)+ +
1

2
[div (UUU ′k,h)+](UUU ′k,h)+ ⇀ [uuu · ∇]uuu in L2(Ω;L2(0, T ;D(A−γ))) .

3.5 Construction of weak martingale solutions

3.5.1 Construction by exact increments

We now prove that the random process uuu constructed in Section 3.4, together with a probability
space P′ = (Ω′,F ′,F′,P′), and a Wiener process to be constructed is a weak martingale solution
of equations (3.1.1)–(3.1.3). For this aim, we follow an argument from [3, Section 6]. According to
the modified Skorokhod theorem formulated and proved in [128, Theorem 1.10.4 and Addendum
1.10.5], the new probability space P′, together with a family of measurable maps φk,h : Ω′ → Ω
can be constructed such that

P = P′ ◦ φk,h ,
UUU ′k,h = UUUk,h ◦ φk,h .

We can then define a C(R+,KKK)-valued random variable

(3.5.1) W′
k,h := W ◦ φk,h ,

and using [132, Section 2] it can be shown that W′
k,h it is a Q-Wiener process. In fact, for a

real-valued Brownian motion βi from (2.2.1), we define (βi)′k,h(ω′) := βi(φk,h(ω′)) for all ω′ ∈ Ω′,
such that

P′[(βi)′ ∈ D] = P′[φ−1
k,h(βi)−1(D)] = P[βi ∈ D].

The claim then follows by noting the representation (2.2.1).
In Section 3.4, the Hh-valued process UUUk,h is defined in a natural way via piecewise affine

interpolation of iterates {Um}Mm=0 from (3.1.4)–(3.1.5). However, in order to construct an appro-
priate Wiener process, we use another continuous L2-valued process ŨUUk,h ≡ {ŨUUk,h(t) ; t ∈ [0, T ]}
defined by

(
ŨUUk,h(t)− ŨUUk,h(0),ΦΦΦ

)
+

∫ t

0

{
ν
(
∇ŨUU

+

k,h,∇ΦΦΦ
)

+
(

[ŨUU
+

k,h · ∇]ŨUU
+

k,h,ΦΦΦ
)}

ds(3.5.2)

+

∫ T

0

1

2

(
[div ŨUU

+

k,h]ŨUU
+

k,h,ΦΦΦ
)

ds =

∫ t

0
〈f(s),ΦΦΦ〉 ds+

∫ t

0

(
g
(
ŨUU
−)

dW(s),ΦΦΦ
)

∀ΦΦΦ ∈ Vh .

Note that this process coincides with the process UUUk,h on the grid points {tm}Mm=0, i.e.

ŨUU
+

k,h(tm) = Um = UUU+
k,h(tm) , m = 0, 1, . . . ,M .

Below, we will show the strong L2-convergence of a subsequence of {ŨUUk,h}k,h to uuu obtained
from (3.4.1). Using the properties of the stochastic integral for piecewise constant processes, we
compute

Q0
h

(∫ t

tm−1

g
(
Um−1

)
dW(s)

)
−Q0

hg
(
Um−1

){ t− tm−1

k

(
W(tm)−W(tm−1)

)}
= Q0

hg
(
Um−1

)[ tm − t
k

(
W(t)−W(tm−1)

)
− t− tm−1

k

(
W(tm)−W(t)

)]
.
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By subtracting (3.5.2) from (3.3.41), setting ΦΦΦ = ŨUUk,h(t) − UUUk,h(t), taking expectation, using
the Cauchy-Schwarz inequality and the tower property, we get for t ∈ [tm−1, tm)

1

2
E
[
‖ŨUUk,h(t)−UUUk,h(t)‖2L2

]
≤ E

[
‖g
(
Um−1

)
‖L(KKK,L2)

∣∣∣ tm − t
k

(
W(t)−W(tm−1)

)∣∣∣2
KKK

]
+E
[
‖g
(
Um−1

)
‖2L(KKK,L2)

∣∣∣ t− tm−1

k

(
W(tm)−W(t)

)∣∣∣2
KKK

]
≤ E

[
‖g
(
Um−1

)
‖L(KKK,L2)

]
(TrQ)

(
tm − t+ t− tm−1

)
(3.5.3)

≤ Ck
(

1 + E
[
‖Um−1‖2L2

])
.

We may define correspondingly the family of L2-valued processes
{
ŨUU
′
k,h

}
k,h

analogously to

(3.5.2), with ŨUU
′
k,h : DT × Ω′ → Rd. Then, by (3.5.1) and [3, Proposition 6.3],(

ŨUU
′
k,h(t)− ŨUU

′
k,h(0),ΦΦΦ

)
+

∫ t

0

{
ν
(
∇(ŨUU

′
k,h)+,∇ΦΦΦ

)
+
(

[(ŨUU
′
k,h)+ · ∇](ŨUUk,h)+,ΦΦΦ

)}
ds

+

∫ T

0

1

2

(
[div (ŨUU

′
k,h)+](ŨUU

′
k,h)+,ΦΦΦ

)
ds =

∫ t

0
〈f(s),ΦΦΦ〉 ds(3.5.4)

+

∫ t

0

(
g
(
(ŨUU
′
k,h)−

)
dW′

k,h(s),ΦΦΦ
)

∀ΦΦΦ ∈ Vh ∀t ∈ [0, T ] .

Using (3.5.4) we may now follow the argument in (3.5.3) to conclude

1

2
E′
[
‖ŨUU
′
k,h(t)−UUU ′k,h(t)‖2L2

]
≤ Ck

(
1 + E′

[
‖(UUU ′k,h)−‖2L2

])
∀t ∈ [0, T ] .

Thanks to this estimate and (3.4.1)3, we obtain,

(3.5.5) ŨUU
′
k,h → uuu in L2

(
Ω′;L2(0, T ;L2)

)
as k, h→ 0.

Let Fk,h resp. F′k,h denote the natural filtration generated by the processes ŨUUk,h resp. ŨUU
′
k,h.

We introduce the following Vh-valued Fk,h- resp. F′k,h-martingale defined on the filtered proba-
bility spaces

(
Ω,F ,F,P

)
resp.

(
Ω′,F ′,F′,P′

)
via

(
Xk,h(t),ΦΦΦ

)
:=

∫ t

0

(
g
(
ŨUU
−
k,h

)
dW(s),ΦΦΦ

)
∀ΦΦΦ ∈ Vh , t ≥ 0

(
X′k,h(t),ΦΦΦ

)
:=

∫ t

0

(
g
(
(ŨUU
′
k,h)−

)
dW′

k,h(s),ΦΦΦ
)

∀ΦΦΦ ∈ Vh , t ≥ 0 .

In the following, we identify the limit of the quadratic variation of the Vh-valued process
X′k,h for k, h→ 0. This will be accomplished by verifying all assumptions of [20, Theorem C.2],
and taking into account Theorem B.0.2, which is used to represent the quadratic variation by
dual pairing between D(A−γ) and D(Aγ), instead by means of scalar product on D(A−γ). This
choice is motivated by the fact that in the limiting equation we have test function from D(Aγ).
The identification of the stochastic integral is accomplished in three steps.

Step 1. We show the convergence of the quadratic variation process of X′k,h. Let Rk,h ≡
{Rk,h(t) ; t ∈ [0, T ]} be the quadratic variation process of the process Xk,h. By [37, Section 3],
thanks to (3.5.2) we have

(3.5.6) Rk,h(t) :=

∫ t

0
Q0
hg(ŨUU

−
k,h)Q1/2

[
Q0
hg(ŨUU

−
k,h)Q1/2

]∗
ds .
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Since the laws of the processes (W, ŨUUk,h) and (W′
k,h, ŨUU

′
k,h) are equal due to (3.5.1), (3.5.2) and

(3.5.4), we infer that the laws of Xk,h and X′k,h also coincide. Therefore, in view of representa-
tions (3.5.2), (3.5.4) and [3, Lemma 6.3], the quadratic variation of the F′k,h-martingale X′k,h is
given by

(3.5.7) R′k,h(t) :=

∫ t

0
Q0
hg
(
(ŨUU
′
k,h)−

)
Q1/2

[
Q0
hg
(
(ŨUU
′
k,h)−

)
Q1/2

]∗
ds ∀ t ∈ [0, T ] .

Let γ > 1. We define as a natural candidate for the martingale part of the process uuu the following
D(A−γ)-valued process X′ on P′, for all t ∈ [0, T ],〈

X′(t),ϕϕϕ
〉
D(A−γ)

=
(
uuu(t)− u0,ϕϕϕ

)
+

∫ t

0

{
ν
(
∇uuu,∇ϕϕϕ

)
+
(

[uuu · ∇]uuu,ϕϕϕ
)
− 〈f ,ϕϕϕ〉

}
ds ∀ϕϕϕ ∈ D(Aγ) ,(3.5.8)

where
〈
·, ·
〉
D(A−γ)

denotes the dual pairing between D(A−γ) and D(Aγ). We take the limit
k, h → 0 of the I1(Vh)-valued quadratic variation process R′k,h. Because of (3.5.5), (3.2.3),
assumption (S2) and Theorem B.0.2, we find for every 0 ≤ t ≤ T ,〈

R̃′k,h(t)ϕϕϕ1,ϕϕϕ2

〉
D(A−γ)

:=
(
R′k,h(t)Q0

hϕϕϕ1,Q
0
hϕϕϕ2

)
→
〈
R̃(t)ϕϕϕ1,ϕϕϕ2

〉
D(A−γ)

∀ϕϕϕ1,ϕϕϕ2 ∈ VVV (k, h→ 0) ,(3.5.9)

where R̃(t) = R(t)◦I : D(Aγ)→ D(A−γ), γ > 1, with the isometric isomorphism I : D(Aγ)→
D(A−γ); see Appendix B. Because of Theorem B.0.2, R is then defined by

(3.5.10) R(t) :=

∫ t

0
g
(
uuu
)
Q1/2

[
g(uuu)Q1/2

]∗
ds ∀ t ∈ [0, T ] .

Step 2. We have to show that the D(A−γ)-valued process X′ defined in (3.5.8) is a square
integrable martingale with respect to the naturally augmented filtration F generated by uuu, with
quadratic variation given by (3.5.10). In order to prove that X′ is an F-martingale we first note
that in view of [40, p. 75] it is enough to show that the process X′ is an F-martingale. For this
aim let us choose n ∈ N and fix times s, t ∈ [0, T ] and 0 ≤ s1 < · · · < sn ≤ s, bounded and
continuous functions hi : D(A−γ)→ R, i = 1, . . . , n and vectors ϕϕϕ ∈ D(Aγ), i = 1, . . . , n . We
have to show the following equality

(3.5.11) E′
[〈
X′(t)−X′(s),ϕϕϕ

〉
D(A−γ)

n∏
i=1

hi
(
uuu(si)

)]
= 0 .

By the definition of X′ we obtain the following

E′
[〈
X′(t)−X′(s),ϕϕϕ

〉
D(A−γ)

n∏
i=1

hi
(
uuu(si)

)]
= E′

[(
uuu(t)− uuu(s),ϕϕϕ

) n∏
i=1

hi
(
uuu(si)

)]
+ E′

[(∫ t

s
(∇uuu,∇ϕϕϕ) ds

) n∏
i=1

hi
(
uuu(si)

)]
+E′

[(∫ t

s
([uuu · ∇]uuu,ϕϕϕ) ds

) n∏
i=1

hi
(
uuu(si)

)]
− E′

[(∫ t

s
〈f ,ϕϕϕ〉ds

) n∏
i=1

hi
(
uuu(si)

)]
=: I + II + III − IV .(3.5.12)
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We only consider the terms I and III since the other two can be treated in a similar way. By
the convergence property (3.5.5), we infer that I satisfies the following identity

I = lim
k,h→0

E′
[(
ŨUU
′
k,h(t)− ŨUU

′
k,h(s),Q0

hϕϕϕ
) n∏
i=1

hi
(
UUU ′k,h(si)

)]
.

By Lemma 3.4.4, (i) we infer that III satisfies the following identity

III = lim
k,h→0

E′
[( ∫ t

s

{[
(ŨUU
′
k,h)+ ·∇

]
(ŨUU
′
k,h)++

1

2

[
div (ŨUU

′
k,h)+

]
(ŨUU
′
k,h)+

}
ds,Q0

hϕϕϕ
) n∏
i=1

hi
(
UUU ′k,h(si)

)]
.

Therefore, by (3.5.2) and Lemma 3.4.4 (ii), the right-hand side of equality (3.5.12) is equal to 0.
Step 3. It remains to show that R is the quadratic variation process 〈〈X′〉〉 of X′. According

to [20, Theorem C.2] together with Theorem B.0.2, we need to show that for every t ∈ [0, T ]
and some r > 1,

sup
k,h

E′
[
‖X′k,h(t)‖2rD(A−γ)

]
< ∞ ,(3.5.13)

sup
k,h

E′
[
‖R̃′k,h(t)‖r

L
(
D(Aγ),D(A−γ)

)] < ∞ .(3.5.14)

To show estimate (3.5.13), we use Lemma 3.3.1, (ii)1, and assumption (S2), after reformulating
(3.5.2) in a manner similar to (3.5.8). To verify the condition (3.5.14), we use the definition of
ŨUU
′
k,h and Lemma 3.3.1, after noting (3.5.9). Now that we have shown that these two assumptions

are satisfied, we obtain the following equation of the limiting process X′ at all times t ∈ [0, T ],
(3.5.15)〈
X′(t),ϕϕϕ

〉
D(A−γ)

=
(
uuu(t)− u0,ϕϕϕ

)
+

∫ T

0

{(
∇uuu,∇ϕϕϕ

)
+
(
[uuu · ∇]uuu,ϕϕϕ

)
− 〈f ,ϕϕϕ〉

}
ds ∀ϕϕϕ ∈ D(Aγ) .

Hence, the process X′ is a square integrable D(A−γ)-valued martingale with respect to the
filtration F, with quadratic variation given by (3.5.10).

The remainder of the construction of a weak martingale solution for (3.1.1)–(3.1.3) is now
standard, using the martingale representation theorem; see for instance [37, Section 8.4], or [46,
Step 3 in the proof of Theorem 3.1].

We summarize the results proven in Sections 3.3 through 3.5.1.

Theorem 3.5.1. Let D ⊂ Rd, d = 3 be a polyhedral bounded domain, T > 0, U0 ∈ Hh such
that ‖U0‖L2 ≤ C uniformly for h > 0. Let

(
Ω,F ,F,P

)
be a filtered probability space, and

suppose (S1) through (S3). For every finite (k, h) > 0, let Th be a quasi-uniform triangulation
of D, Ik := {tm}Mm=0 be an equi-distant partition covering [0, T ], and

(
Hh, Lh

)
a pair of finite

element spaces that satisfies the discrete LBB condition. There exists
{

(Um,Πm)
}M
m=1

which
solves (3.1.4)–(3.1.5), and satisfies Lemma 3.3.1.

Let ŨUUk,h : DT → Rd be the continuous process obtained from iterates {Um}Mm=1 in (3.5.2)
for k, h > 0, and U0 → u0 in L2 for h → 0. Then, there exist a filtered probability space(
Ω′,F ′,F′,P′

)
, a convergent subsequence

{
ŨUU
′
k,h

}
k,h

, and uuu such that for all α ∈ (0, 1
8),

ŨUU
′
k,h → uuu in L2

(
0, T ;L2

)
∩Wα,2

(
0, T ;W−1,2

)
(k, h→ 0)

P′-almost surely, and an F′-progressively measurable Q-Wiener process W′ such that the system
uuu, W′,

(
Ω′,F ′,F′,P′

)
is a weak martingale solution of problem (3.1.1)–(3.1.3).
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In addition, provided that we fix γ > 1 and p > 2 from Proposition 3.4.1 and Lemma 3.3.3,
then, P′-almost surely,

ŨUU
′
k,h → uuu in L2

(
0, T ;L2

)
∩ C

(
[0, T ];D(A−γ)

)
(k, h→ 0) .

Algorithm 3.1 amounts to solving nonlinear algebraic problems. Revisiting the above proofs
shows that weak martingale solutions of (3.1.1)–(3.1.3) may also be constructed by iterates which
successively solve linear algebraic problems.

Remark 3.5.1. We may modify Algorithm 3.1 to the following linear scheme.

Algorithm 3.3. Let U0 ∈ Hh be given. For every 1 ≤ m ≤M find Hh × Lh-valued
(
Um,Πm

)
such that for all (ΦΦΦ,Λ) ∈ Hh × Lh,(

Um −Um−1,ΦΦΦ
)

+ kν
(
∇Um,∇ΦΦΦ

)
− k
(
Πm,divΦΦΦ

)
+ k
(
[Um−1 · ∇]Um,ΦΦΦ

)
+
k

2

(
[divUm−1]Um,ΦΦΦ

)
= k

〈
fm,ΦΦΦ

〉
+
(
g(Um−1)∆mW,ΦΦΦ

)
,(3.5.16)

(divUm,Λ) = 0 .(3.5.17)

Accordingly, Lemmata 3.3.1 and 3.3.3, as well as Theorem 3.5.1 hold for iterates of Algorithm
3.3.

Remark 3.5.2. For simplicity, we used a function f : DT → Rd with

f ∈ C([0, T ];L2)

but we can also assume that
f ∈ Lp(0, T ;W−1,2) ,

for the fixed p from Theorem 3.5.1, using a piecewise constant approximation like in [125, Section
3.4.2].

3.5.2 Construction by approximate increments

The goal of this section is to construct a weak solution to problem (3.1.1)–(3.1.3) when the
increments of the Wiener process are replaced by general, not necessarily Gaussian, random
variables. Choosing simpler, for instance bounded, random variables may also improve conver-
gence of nonlinear algebraic solvers for Algorithm 3.2.

To this end let us assume that Ik := {tm}Mm=0 is an equi-distant partition of size k > 0 cov-
ering the time interval [0, T ], Fk =

{
Ftm : tm ∈ Ik

}
is a (discrete time) filtration, (Ω,F ,Fk,P)

is a complete, filtered probability space, KKK is a real separable Hilbert space, Q ∈ I1(KKK) be
symmetric and positive, and {ξξξm}Mm=1 a sequence of KKK-valued i.i.d. random variables such that
each satisfies

(SI1) ξξξm is Ftm-measurable and independent of Ftm−1 ,

(SI2) E [ξξξm] = 0, E [(ξξξm,x)KKK(ξξξm,y)KKK] = k(Qx,y)KKK ∀x,y ∈ KKK,

(SI3) E
[
|ξξξm|2pKKK

]
≤ Ckp, for all integer p ≥ 1.

Note that the assumptions (SI1) and (SI2) are generalized versions of the assumptions needed
to show the existence of the R-valued Wiener process by a piecewise continuous interpolation
of an appropriate random walk on R. In the finite dimensional case, by the Donsker invariance
principle, the limiting distribution of increments is Gaussian. In fact, the Donsker invariance
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principle is a direct consequence of the central limit theorem. Here we do not use it, and the only
thing we need to get the right quadratic variation process is the condition on the first moment
and on the covariance operator. In the present case, these conditions on the first and second
moment allow us to show that, for k, h→ 0, the limiting process corresponding to the stochastic
integral has the desired quadratic variation, which, by a martingale representation theorem, is
enough to show the existence of an appropriate Wiener process.

We now give examples of R-, and more general KKK-valued sequences of random variables
{ξξξm}Mm=1 that satisfy (SI1)–(SI3).

Example 3.5.1. 1. Let us assume that KKK = R and {ξ̃m}Mm=1 be a sequence of i.i.d. R-valued
random variables. We put ξm =

√
kξ̃m. Below we list two admissible choices which satisfy the

conditions (SI1)–(SI3).

(i) P[ξ̃m = ±1] = 1
2 , or

(ii) P[ξ̃m = ±
√

3] = 1
6 , and P[ξ̃m = 0] = 2

3 .

We refer to [102, Section 6.4] and [81, Section 9.7] for a further discussion of simplified schemes
of SODEs.

2. Let KKK be a real separable Hilbert space and {ej ; j ≥ 1} is an orthonormal basis (ONB) of
KKK. Then the conditions (SI1)–(SI3) are satisfied for the following system of random variables

ξξξm =

∞∑
j=1

√
qjξ

j,mej , m ≥ 1 ,

where {{ξj,m}∞j=1}Mm=1 are i.i.d. R-valued random variables from part 1. of this example.

In what follows we will show that the iterates from Algorithm 3.2 inherit the stability prop-
erties of those from Algorithm 3.1. Once this result is obtained, we will be able to identify
the limits of the deterministic integrals exactly as in Section 3.4. Finally, we will use a gen-
eral theorem on the convergence of discrete time martingales to identify the limit of the term
corresponding to the stochastic integral.

Existence and stability of solutions

Assume that U0 is a function in Hh with ‖U0‖L2 ≤ C. We note that the random walk defined
through

S0 = 0, Sn =

n∑
i=1

g(Ui−1)ξξξi

is a discrete time HHH-valued Fk-martingale. The following result holds.

Lemma 3.5.1. Let U0 be a given function with ‖U0‖L2 ≤ C, and suppose that the assumptions
(S1)–(S3) and (SI1)–(SI3) hold. Then all results of Lemmata 3.3.1 and 3.3.3 remain valid.

Proof. We only sketch those parts of the proof which indicate the rôle played by the general
random variables {ξξξm}Mm=1.

We begin with the proof of Lemma 3.3.1. We consider the term

M∑
m=1

E
[
‖g(Um−1)‖2L(KKK,L2)|ξξξ

m|2KKK
]
.
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By the tower property, and assumptions (SI3) and (S2) we compute,

E
[∥∥g(Um−1)

∥∥2

L(KKK,L2)
|ξξξm|2KKK

]
= E

[
E
[
‖g(Um−1)‖2L(KKK,L2)|ξξξ

m|2KKK
∣∣Ftm−1

]]
= E

[
‖g(Um−1)‖2L(KKK,L2)E

[
|ξξξm|2KKK

∣∣Ftm−1

]]
≤ CkE

[
‖g(Um−1)‖2L(KKK,L2)

]
(3.5.18)

≤ K2
1CkE

[
‖Um−1‖2L2

]
.

As a consequence, the assertions (3.3.7) and (3.3.13) are satisfied. Consequently, the second and
third part of (ii), and the second part of (iii), for p = 2, in Lemma 3.3.1 follow. We can prove
(iv) from Lemma 3.3.1, and as a by-product we get the first part of (iii). This implies the first
part of (ii) by interpolation of Lp-spaces. Taking the maximum, and using the Doob’s inequality
for p = 2, as well as the independence of the random variables {ξξξi}Mi=1 we compute

E

[(
max

1≤m≤M

m∑
i=1

(
g(Ui−1)ξξξi,Ui−1

))2
]
≤ C2E

[
M∑
m=1

(
g(Um−1)ξξξm,Um−1

)2]

≤ δE
[

max
1≤m≤M

‖Um‖4L2

]
+ ‖U0‖4L2 + C2E

[
M∑
m=1

‖g(Um−1)ξξξm‖4L2

]
(δ > 0).

The first term can be absorbed in the left-hand side, while last term can be bounded with the
tower property for martingales. This shows assertion (iv) of Lemma 3.3.1, together with the
first part of (iii) for p = 2. Then the first part of (ii) follows. This argument can be applied for
all integers p ≥ 3.

Now we will prove Lemma 3.3.3. The proofs of estimates of the L2-norm the time increments
in Lemma 3.3.3 are straightforward by using the discrete martingale property of the random walk
{Sm}Mm=1.

For integer p > 2, we use again the independence of the random variables {ξξξm}Mm=1 to
compute

k
M−`∑
m=0

E
[(∑̀

i=1

g(Um+i−1)ξξξm+i,Q0
hϕϕϕ
)p]

= k

M−`∑
m=0

E

[∑̀
i=1

(
g(Um+i−1)ξξξm+i,Q0

hϕϕϕ
)p]

≤ Ct
p/2
` ,

where in the last estimate we use the estimates from the first part of the proof.

Compactness of the iterates and identification of the deterministic integrals

Recall the definitions of linear interpolation UUUk,h in the framework from current section. For
t ∈ [tm−1, tm) the following equality holds for all ΦΦΦ ∈ Vh,(

UUUk,h(t)−UUU−k,h,ΦΦΦ
)

+ (t− tm−1)
{(
∇UUU+

k,h,∇ΦΦΦ
)

+
([
UUU+
k,h · ∇

]
UUU+
k,h,ΦΦΦ

)}
(3.5.19)

+
1

2
(t− tm−1)

(
[divUUU+

k,h]UUU+
k,h,ΦΦΦ

)
= (t− tm−1)

(
f(tm),ΦΦΦ

)
+
t− tm−1

k

(
g(Um−1)ξξξm,ΦΦΦ

)
.

An argument similar to that used in Section 3.4 allows us to formulate the following result.

Proposition 3.5.1. Let α, γ, and p > 2 be as in Section 3.4. Let U0 ∈ Hh be such that
U0 → u0 in L2 for h → 0. Then there exist a filtered probability space P′ = (Ω′,F ′,F′,P′), a
subsequence

{
UUU ′k,h

}
k,h

of solutions from (3.5.19) defined on P′, and a process uuu which satisfy all
properties in Lemma 3.4.2, Proposition 3.4.1, Lemma 3.4.3, and Lemma 3.4.4.
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Identification of the stochastic integral

In this section let the elements of the time grid Ik be denoted by {tkn; 0 ≤ n ≤ M} to avoid
confusion in the identification of the integral.

In order to identify the stochastic integral we need to show that the assumptions of Theorem
B.0.3 are satisfied and so conclude by means of a representation theorem. To this end, let (UUU ′k,h)+,
respectively uuu, play the rôle of U+

k,h, respectively U in Theorem B.0.3, and let V = D(Aγ)

E = D(A−γ), γ > 1. For the filtrations, we use the notations from Theorem B.0.3.
First we need a process which is a discrete version of the quadratic variation. Put (Ui−1)′ :=

(UUU ′)−(ti). Then we define the discrete-time process

(Rm
k,h)′ := k

m∑
i=1

(
Q0
hg
(
(Ui−1)′

)
Q1/2

)(
Q0
hg
(
(Ui−1)′

)
Q1/2

)∗
,

together with the corresponding piecewise constant interpolation process (R′k,h)+. Denote
(Mm

k,h)′ =
∑m

i=1 Q
0
hg
(
(Ui−1)′

)
ξξξi. We claim that the process (φφφ,ψψψ ∈ VVV)

(N ′k,h)+(tkn) :=
(
(M′k,h)+(tkn),φφφ

)(
(M′k,h)+(tkn),ψψψ

)
−
(
(R′k,h)+(tkn)φφφ,ψψψ

)
n = 0, 1, . . . ,M

is an Fkn-martingale. For this aim by using the independence of the random variable {ξξξm}Mm=1

we get, for all φφφ,ψψψ ∈ VVV,

E

[
m+1∑
i=1

m+1∑
j=1

(
Q0
hg
(
(Ui−1)′

)
ξξξi,φφφ

)(
Q0
hg
(
(Ui−1)′

)
ξξξj ,ψψψ

)

−k
m+1∑
i=1

(
Q0
hg
(
(Ui−1)′

)
Q1/2(Q0

hg
(
(Ui−1)′

)
Q1/2)∗φφφ,ψψψ

)∣∣∣Fk,htkm
]

= E

[
m+1∑
i=1

{(
ξξξi,g∗

(
(Ui−1)′

)
Q0
hφφφ
)(
ξξξi,g∗

(
(Ui−1)′

)
Q0
hψψψ
)

−k
(
Q0
hg
∗((Ui−1)′

)
Q1/2(Q0

hg
∗((Ui−1)′

)
Q1/2)∗φφφ,ψψψ

)}∣∣∣Fk,htkm
]

= . . .

Using the fact that ξm is Ftm measurable we get

. . . =

m∑
i=1

(
ξξξi,g∗

(
(Ui−1)′

)
Q0
hφφφ
)(
ξξξi,g∗

(
(Ui−1)′

)
Q0
hψψψ
)

−k
m∑
i=1

(
Q0
hg
(
(Ui−1)′

)
Q1/2(Q0

hg
(
(Ui−1)′

)
Q1/2)∗φφφ,ψψψ

)
+E

[(
Q0
hg
(
(Um)′

)
ξξξm+1,φφφ

)(
Q0
hg
(
(Um)′

)
ξξξm+1,ψψψ

)
−k
(
Q0
hg
(
(Um)′

)
Q1/2

(
Q0
hg
(
(Um)′

)
Q1/2

)∗
φφφ,ψψψ

)∣∣∣Fk,htkm
]
.
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Thus the claim is a consequence of the following train of identities.

E

[(
Q0
hg
(
(Um)′

)
ξξξm+1,φφφ

)(
Q0
hg
(
(Um)′

)
ξξξm+1,ψψψ

)
−k
(
Q0
hg
(
(Um)′

)
Q1/2(Q0

hg
(
(Um)′

)
Q1/2)∗φφφ,ψψψ

)∣∣∣Fk,htkm
]

= E

[(
ξξξm+1,g∗

(
(Um)′

)
Q0
hφφφ
)(
ξξξm+1,g∗

(
(Um)′

)
Q0
hψψψ
)

−k
(
Q0
hg
(
(Um)′

)
Q1/2

(
Q0
hg
(
(Um)′

)
Q1/2

)∗
φφφ,ψψψ

)∣∣∣Fk,htkm
]

= k
(
Qg∗

(
(Um)′

)
Q0
hφφφ,g

∗((Um)′
)
Q0
hψψψ
)

−k
(
Q0
hg
(
(Um)′

)
Q1/2

(
Q0
hg
∗((Um)′

)
Q1/2

)∗
φφφ,ψψψ

)
= k

(
Q0
hg
(
(Um)′

)
Q1/2

(
Q0
hg
(
(Um)′

)
Q1/2

)∗
φφφ,ψψψ

)
−

k
(
Q0
hg
(
(Um)′

)
Q1/2

(
Q0
hg
(
(Um)′

)
Q1/2

)∗
φφφ,ψψψ

)
= 0 ,

where in the second equality, we used that ξξξm+1 is independent of Fk
tkm
, together with (SI2), and

g
(
(Um)′

)
is Fk

tkm
-measurable.

We will now verify that the properties (B.0.9) and (B.0.10) hold. Firstly we observe that
(B.0.9) follows by the strong convergence of UUU ′k,h in the space C

(
0, T ;D(A−γ)

)
, γ > 1.

In order to prove the latter, let us recall that, in view of equality (3.5.19) we have(
(Mm

k,h)′,ΦΦΦ
)

=
(

(UUU ′k,h)+(tkm)−UUUk,h(0),ΦΦΦ
)

+

∫ tkm

0
ν
(
∇(UUU ′k,h)+,∇ΦΦΦ

)
+
(

[(UUU ′k,h)+ · ∇](UUU ′k,h)+,ΦΦΦ
)

ds(3.5.20)

+
1

2

∫ tkm

0

(
[div (UUU ′k,h)+](UUU ′k,h)+,ΦΦΦ

)
ds−

∫ tkm

0

(
f(s),ΦΦΦ

)
ds ∀ΦΦΦ ∈ Vh .

Noting an obvious identity
∫ t

0 1 ds =
∫ tkm

0 1 ds+
∫ t
tkm

1 ds and using the strong convergence of UUU ′k,h
in the space C

(
0, T ;D(A−γ)

)
, γ > 1, we conclude that the convergence (B.0.10) holds true.

Now we will verify whether the assumption (B.0.11) of Theorem B.0.3 is satisfied. For this
aim let us fix a time t ∈ [0, T ] and a sequence (tkm)k>0 such that tkm → t. Since the function g
is Lipschitz continuous, by the strong convergence of UUU ′k,h in the space L2

(
Ω;L2(0, T ;L2)

)
, and

by the fact that the projection Q0
h converges strongly in L2 (i.e. Q0

hx→ x, for all x ∈ V) to the
identity, we get〈

(R̃′k,h)+(tkm)φφφ,ψψψ
〉
D(A−γ)

:=
(

(R′k,h)+(tkm)φφφ,ψψψ
)
→
〈
R̃(t)φφφ,ψψψ

〉
D(A−γ)

∀φφφ,ψψψ ∈ VVV,

where R̃ = R ◦ I : D(Aγ) → D(A−γ), with the isometric isomorphism I : D(Aγ) → D(A−γ)
from Appendix B, and

R(t) :=

∫ t

0
(g(u(s))Q1/2)(g(u(s))Q1/2)∗ ds .



3.5. CONSTRUCTION OF WEAK MARTINGALE SOLUTIONS 57

Note that it follows from the above formula that the process R is F-progressively measurable.
The next assumption of Theorem B.0.3 to be checked is (B.0.12). We compute

1

Cr
|
(
(M′k,h)+,ΦΦΦ

)
|2r ≤ |

(
(UUU ′k,h)+(tkm),ΦΦΦ

)
|2r + |

(
UUU ′k,h(0),ΦΦΦ

)
|2r

+
∣∣∣ ∫ tkm

0

(
∇(UUU ′k,h)+,∇ΦΦΦ

)
ds
∣∣∣2r +

∣∣∣ ∫ tkm

0

(
[(UUU ′k,h)+ · ∇](UUU ′k,h)+,ΦΦΦ

)
ds
∣∣∣2r

+
∣∣∣1
2

∫ tkm

0

(
[div (UUU ′k,h)+](UUU ′k,h)+,ΦΦΦ

)
ds
∣∣∣2r +

∣∣∣ ∫ tkm

0

(
f(s),ΦΦΦ

)
ds
∣∣∣2r ∀ΦΦΦ ∈ Vh .

Thus, for ΦΦΦ = Q0
hϕϕϕ for all ϕϕϕ ∈ D(Aγ), γ > 1 we have

E
[∣∣∣((UUU ′k,h)+(tkm),ΦΦΦ

)∣∣∣2r] ≤ E
[∥∥(UUU ′k,h)+(tkm)

∥∥2r

L2

]∥∥ΦΦΦ∥∥2r

L2 ,

E

[∣∣∣ ∫ tkm

0

(
∇(UUU ′k,h)+,∇ΦΦΦ

)
ds
∣∣∣2r] ≤ E

[(∫ tkm

0
‖∇(UUU ′k,h)+‖L2 ds

)2r
]
‖∇ΦΦΦ‖2rL2

≤ CE

[(∫ tkm

0
‖∇(UUU ′k,h)+‖2L2 ds

)r]
‖∇ΦΦΦ‖2rL2 ,

E

[∣∣∣ ∫ tkm

0

(
[(UUU ′k,h)+ · ∇](UUU ′k,h)+,ΦΦΦ

)
ds
∣∣∣2r]

≤ CE

[(∫ tkm

0
‖(UUU ′k,h)+‖2L2‖∇(UUU ′k,h)+‖2L2 ds

)r]
‖ΦΦΦ‖2rL∞

≤ CE

[(
sup
t∈[0,T ]

‖(UUU ′k,h)+‖2L2

∫ tkm

0
‖∇(UUU ′k,h)+‖2L2 ds

)r]
‖ΦΦΦ‖2rL∞

≤ CE

[(
sup
t∈[0,T ]

‖(UUU ′k,h)+‖2L2

)2r
]1/2

E

[(∫ tkm

0
‖∇(UUU ′k,h)+‖2L2 ds

)2r
]1/2

‖ΦΦΦ‖2rL∞ .

Thanks to Lemma 3.3.1, we can conclude that

sup
h,k>0

E
[
‖(M′k,h)+(t)‖2rD(A−γ)

]
<∞, γ > 1.

To prove (B.0.13), we note the sublinearity of g ∈ I2(KKK,L2), together with the uniform
boundedness of the projection Q0

h : L2 → Vh and of Q ∈ I1(KKK). Now we have that the limit M
is a square integrable martingale with quadratic variation process

R(t) :=

∫ t

0
(g(u(s))Q1/2)(g(u(s))Q1/2)∗ ds.

The existence of the Wiener process follows from a standard martingale representation theorem
as in Section 3.5.1. Hence we proved that both Theorem 3.5.1 and Remark 3.5.1 hold for
Algorithm 3.2.

We can summarize the results proved in this section in the following result.

Theorem 3.5.2. Let D ⊂ Rd, where d = 2 or d = 3 be a polyhedral bounded domain, T > 0
and U0 ∈ Lp

(
Ω,Hh

)
for some p ≥ 2. Let

(
Ω,F ,P

)
be a probability space, KKK be a real separable
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Hilbert space and let Q ∈ I1(KKK) be a positive and symmetric operator. Suppose (S2), (S3), and
(SI1) through (SI3). For every finite (k, h) > 0, let Th be a quasi-uniform triangulation of D,
let Ik := {tm}Mm=0 be an equi-distant partition covering [0, T ], and

(
Hh, Lh

)
be a pair of finite

element spaces that satisfies the discrete LBB condition. There exists
{

(Um,Πm)
}M
m=1

which
solves (3.1.4)–(3.1.5), and satisfies Lemma 3.3.1.

Let UUUk,h : DT → Rd be the continuous process obtained from iterates {Um}Mm=1 in (3.5.19)
for k, h > 0, and U0 → u0 in L2

(
Ω;L2

)
for h → 0. Then, there exist a filtered probability

space
(
Ω′,F ′,F′,P′

)
, a subsequence

{
UUU ′k,h

}
k,h

, an F′-progressively measurable process uuu, and an
F′-progressively measurable Q-Wiener process W′ such that the following two conditions are
satisfied.
(1) For all α ∈ (0, 1

8), P′-almost surely,

(3.5.21) lim
k,h→0

UUU ′k,h = uuu in L2
(
0, T ;L2

)
∩Wα,2

(
0, T ;W−1,2

)
.

(2) The system
(
uuu,W′,Ω′,F ′,F′,P′

)
is a weak martingale solution of problem (3.1.1)–(3.1.3).

In addition, provided that γ > 1 and p > 2, P′-almost surely,

(3.5.22) lim
k,h→0

UUU ′k,h = uuu in L2
(
0, T ;L2

)
∩ C

(
[0, T ];D(A−γ)

)
.

3.6 Construction of strong solutions in the 2-D case

In this section we will show, using tools from papers [98, 97], that iterates from Algorithm 3.1
converge to a strong solution to problem (3.1.1)–(3.1.3) for k, h→ 0. The key tool in our analysis,
as well as in these two papers, is a sort of local monotonicity property of the operator −ν∆ +F
defined below in (3.6.4). This property is used to identify a strong solution and allows to avoid
the use of a compactness methods. Our study in this section is restricted to the 2-dimensional
case, but we impose weaker conditions on the initial random variable u0 and on f .

We summarize the assumptions needed below for data Q, u0, and f .

(SII1) Q ∈ I1(KKK) is a symmetric, positive operator.

(SII2) u0 ∈ L2(Ω,F0;H), and f ∈ L2
(

Ω;L2
(
[0, T ];W−1,2

))
.

(SII3) The mapping g : L2 → I2

(
Q1/2(KKK),HHH

)
satisfies the Lipschitz condition

‖g(v)− g(u)‖I2(Q1/2(KKK),HHH) ≤ K2‖u− v‖L2 ,

with a constant K2 > 0, such that

(3.6.1)
ν

2
‖∇(u− v)‖2L2 −K2

2‖u− v‖2L2 ≥ 0 .

Inequality (3.6.1) holds for all K2 ≤ λ1

√
ν
2 , where λ1 > 0 is the smallest eigenvalue of A.

Definition 3.6.1. Let T > 0, and suppose (SII1)–(SII3). Let W be an F-progressively measur-
able Q-Wiener process on the probability space (Ω,F ,F,P). A strong solution of (3.1.1)–(3.1.3)
is an F-progressively measurable stochastic process u such that

u ∈ L2(Ω;L∞(0, T ;H)) ∩ L2
(
Ω;L2(0, T ;V)

)
,
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and the following equation holds for all t ∈ [0, T ], P-a.s.

(
u(t, ·),v

)
+ ν

∫ t

0

(
∇u(s, ·),∇v

)
ds−

∫ t

0

(
[u(s, ·) · ∇]v,u(s, ·)

)
ds

=
(
u0,v

)
+

∫ t

0

(
f(s, ·),v

)
ds+

(∫ t

0
g(
(
u(s, ·)

)
dW(s, ·),v

)
∀v ∈ VVV .(3.6.2)

In the first part of this section we consider the additive noise to point out the key steps that
are used in the construction of a strong solution. Then, we consider the multiplicative noise,
where the computations are quite similar but more involved. For brevity, we write I2 to indicate
I2(Q1/2(KKK),L2).

For a given r > 0, let us define

(3.6.3) Br = {v ∈W1,2
0 : ‖v‖L4 ≤ r} .

The following result from [97] is crucial.

Lemma 3.6.1. Let us assume that d = 2. Then the nonlinear operator

(3.6.4) G : u 7→ −ν∆u + Fu := −ν∆u + (u · ∇+
1

2
divu)u

is monotone in the ball Br i.e., the following inequality is satisfied

(3.6.5)
(
G(u)−G(v),u− v

)
+

27r4

2ν3
‖u− v‖2L2 ≥

ν

2
‖∇(u− v)‖2L2

for all u ∈W1,2
0 , v ∈ Br. Moreover, the operator G is hemicontinuous.

3.6.1 Additive Noise

First we assume the following weakened form of (SII3).

(SII′3) g : Ω× [0, T ]→ L(KKK,HHH) belongs to L2
(

Ω;C
(
[0, T ];L(KKK,HHH)

))
.

Then we define g− by

g−(t) := gm−1 ≡ g(tm−1) ∀ t ∈ [tm−1, tm).

Assume that T = tM . The process UUU+
k,h has been defined in formula (3.3.39), which is

constructed by Algorithm 3.1. We recall that we will not use the Skorokhod theorem anymore.
By Lemma 3.3.1, formula (ii), and (3.3.40) we can find a subsequence of the sequence (k, h),
which for simplicity of notation will denoted in the same way as the old one, such that

UUU+
k,h ⇀ u in L2

(
Ω;L2(0, T ;W1,2

0 )
)

(k, h→ 0) .(3.6.6)

Hence, we define G0 as

E
[∫ T

0
(G0,ϕϕϕ) ds

]
= lim

k,h
E
[∫ T

0

(
G(UUU+

k,h),Q0
hϕϕϕ
)

ds

]
∀ϕϕϕ ∈ VVV .(3.6.7)

Here(
G(UUU+

k,h),ΦΦΦ
)

:= ν
(
∇UUU+

k,h,∇ΦΦΦ
)

+

(
[UUU+
k,h · ∇]UUU+

k,h +
1

2
[divUUU+

k,h]UUU+
k,h,ΦΦΦ

)
∀ΦΦΦ ∈ Vh .
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Since in our special case we obviously have, by (SII′3), the convergence

(3.6.8) g− → g in L2
(

Ω;L2(0, T ; I2)
)
,

we infer that the process u satisfies the following equation, for all ϕϕϕ ∈ VVV, P − a.s., and for all
t ∈ [0, T ],(

u(t)− u0,ϕϕϕ
)

+

∫ t

0
(G0(s),ϕϕϕ) ds =

∫ t

0
(f(s),ϕϕϕ) ds+

∫ t

0

(
g(s)dW(s),ϕϕϕ

)
.(3.6.9)

Hence, in order to prove that the limiting process u is a strong solution of Problem 3.1.1, we
have to prove that

E
[∫ T

0
(G0(s),ϕϕϕ) ds

]
= E

[∫ T

0

{
ν
(
∇u(s),∇ϕϕϕ

)
+
(

[u(s) · ∇]u(s),ϕϕϕ
)}

ds
]
.

Let ρ : [0, T ]→ R be a bounded monotonically decreasing function with ρ(0) = 0. Define a finite
sequence

{
ρm
}M
m=0

by ρm = ρ(tm), m ∈ N. Then multiplying the discrete energy inequality
(3.3.4) by eρ

m leads us to the following inequality

eρ
m‖Um‖2L2 − eρ

m‖Um−1‖2L2 ≤ eρ
m {

2k (−G(Um),Um) + ‖gm−1∆mW‖2L2

}
+eρ

m {(
Um−1,gm−1∆mW

)
+ k ‖fm‖2L2

}
.(3.6.10)

We note that because of the Itô isometry (2.3.1) the following equality holds

E

[
M∑
m=1

‖gm−1∆mW‖2L2

]
= E

[
k

M∑
m=1

‖gm−1Q1/2‖2I2(KKK,L2)

]
= E

[
k

M∑
m=1

‖gm−1‖2I2

]
.

By Lemma A.0.1 the discrete time derivative dtρm := (ρm − ρm−1)/k, see (A.0.3), satisfies the
following equality

eρ
+
dt‖UUU+

k,h‖
2
L2 = dt

(
eρ

+‖UUU+
k,h‖

2
L2

)
− ‖UUU−k,h‖

2
L2dte

ρ+ .

We infer, by taking the sum in (3.6.10) from m = 1 to m = M , then taking the expectation,
using Lemma A.0.2, and identity (A.0.7), and finally using the tower property and Itô’s isometry,
we get the following inequality

E
[
eρ

+(T )‖UUU+
k,h(T )‖2L2

]
≤ E

[
‖UUU−k,h(0)‖2L2 +

∫ T

0

[
dte

ρ+‖UUU−k,h‖
2
L2 ds

]]
+E

[∫ T

0

[
eρ

+
2
(
−G(UUU+

k,h),UUU+
k,h

)]
ds

]
(3.6.11)

+E
[∫ T

0
eρ

+ (‖g−‖2I2 + ‖f+‖2L2

)
ds

]
.

Applying first the identity (A.0.7) to the function ρ+ we find a bounded function g : [0, T ]→ R
and a function ξ : [0, T ]→ R such that ξ(t) ∈ (ρ−(t), ρ+(t)) and the inequality (3.6.11) becomes

E
[
eρ

+(T )‖UUU+
k,h(T )‖2L2 − ‖UUU−k,h(0)‖2L2

]
+

∫ T

0
eρ

+
2
(
G(UUU+

k,h),UUU+
k,h

)
ds

≤ E
[∫ T

0
‖UUU−k,h‖

2
L2

[
eρ

+
g(s)dtρ

+ + eξ
(ρ+ − ρ−)2

2k

]
ds

]
(3.6.12)

+E
[∫ T

0
eρ

+ (‖g−‖2I2 + ‖f+‖2L2

)
ds

]
.
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Next we choose a function ρ in such a way that for all 1 ≤ m ≤M

(3.6.13) ρ+(t) := −r+(t) := −27

ν3
k

m∑
i=0

‖Q0
hv(ti)‖4L4 ∀ t ∈ (tm−1, tm] ,

for a fixed v ∈ C([0, T ];VVV). Then, thanks to Lemma 3.6.1, the following inequality holds,

E
[∫ T

0
e−r

+
(

2G(VVV+) + dtr
+VVV+,VVV+ −UUU+

k,h

)
ds

]
≥ E

[∫ T

0
e−r

+
(

2G(UUU+
k,h) + dtr

+UUU+
k,h,VVV

+ −UUU+
k,h

)
ds

]
,(3.6.14)

for all UUU+
k,h ∈ L

2
(

Ω;L2(0, T ;W1,2
0 )
)
, and every VVV+ = Q0

hv
+ ∈ L∞([0, T ];W1,2

0 ). Note that the
radius r(t) of the time varying ball Br(t) is determined by the function VVV+.

Now we try to pass to the limit in inequality (3.6.14). The terms which cause most problems
are those involving the discrete derivative, because they do not fit exactly in the framework of
(3.6.14). First note that because of Lemma 3.3.1, (i)3

lim
k→0

E
[
‖UUU+

k,h −UUU
−
k,h‖L2(0,T ;L2)

]
= 0,

which implies the existence of an L2(Ω;L2(0, T ))-valued sequence 0 < {εk} such that the con-
vergence E

[
‖εk‖2L2(0,T )

]
→ 0 for k → 0 holds, and

E
[∫ T

0
‖UUU+

k,h‖
2
L2 ds

]
= E

[∫ T

0

[
‖UUU−k,h‖

2
L2 + εk

]
ds

]
.

Then we use the fact that VVV+ → v in Lq(0, T ;W1,2
0 ) for h→ 0 by (3.2.3) to conclude

lim inf
k,h→0

E
[∫ T

0
‖UUU−k,h‖

2
L2

[
e−r

+
g(s)dtr

+ + eξ
(r+ − r−)2

2k

]
ds

]
=

lim inf
k,h→0

E
[∫ T

0

(
‖UUU+

k,h‖
2
L2 − εk

)[
e−r

+
(1 + g(s)− 1)dtr

+ + eξ
(r+ − r−)2

2k

]
ds

]
= lim inf

k,h→0
E
[∫ T

0
‖UUU+

k,h‖
2
L2e−r

+
dtr

+ ds

]
+ lim inf

k,h→0
IR ,(3.6.15)

where

IR = E
[∫ T

0
−εk

[
e−r

+
g(s)dtr

+ + eξ
(r+ − r−)2

k

]
ds

]
+E

[∫ T

0
‖UUU+

k,h‖
2
L2

[
e−r

+
(g(s)− 1)dtr

+ + eξ
(r+ − r−)2

k

]
ds

]
.(3.6.16)
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All terms in (3.6.16) converge to 0 in L1(Ω, L1(0, T )) by Lebesgue dominated convergence the-
orem, and so the residual term IR converges to 0 for k, h→ 0. Thus we get

lim inf
k,h→0

E
[
−
∫ T

0

(
e−r

+
2G(UUU+

k,h) +
[
e−r

+
dtr

+
]
UUU+
k,h,UUU

+
k,h

)
ds

]
= lim inf

k,h→0
E
[
−
∫ T

0

(
e−r

+
2G(UUU+

k,h),UUU+
k,h

)
ds

]
+ lim inf

k,h→0
E
[
−
∫ T

0

([
e−r

−
dtr

+ + eξ
(r+ − r−)2

k

]
UUU−k,h,UUU

−
k,h

)
ds

]
≥ lim inf

k,h→0
E
[
e−r

+(T )‖UUU+
k,h(T )‖2L2 − ‖UUU+

k,h(0)‖2L2 −
∫ T

0
e−r

+ (‖g−‖2I2 + ‖f+‖2L2

)
ds

]
≥ E

[
e−r

+(T )‖u(T )‖2L2 − ‖u0‖2L2 −
∫ T

0
e−r

(
‖g‖2I2 + ‖f‖2L2

)
ds

]
= E

[
−
∫ T

0
e−r

(
2G0 +

27

ν3
‖v‖4L4u,u

)
ds

]
,

where we used (3.6.15) in the first step, inequality (3.6.11) in the second step, lower semicon-
tinuity of norms, strong convergence of the initial data, strong convergence of g− and f+ from
(3.6.8) in the third step, and Itô formula for the limit equation in the fourth step. Now we are
allowed to take the limit in (3.6.14) to get

E
[∫ T

0
e−r
(

2G(v) + ∂srv,v − u
)

ds

]
≥ E

[∫ T

0
e−r
(

2G0 + ∂sru,v − u
)

ds

]
where r : [0, T ]→ R is defined by

∂sr(s) =
27

ν3
‖v(s)‖4L4 v ∈ C([0, T ],VVV) .

By density, we get that the inequality holds for all v ∈ L4(Ω;L∞(0, T ;H))∩L2(Ω;L2(0, T ;V)).
Now the conclusion of the proof follows by a standard argument of monotone linear operators.
Set v := u+λw, forw ∈ L4(Ω;L∞(0, T ;H))∩L2(Ω;L2(0, T ;V)) and λ > 0, divide the inequality
by λ, and use hemicontinuity of the operator G to let λ→ 0 and get

E
[∫ T

0

(
G(u(s))−G0(s),w(s)

)
ds

]
≥ 0 ,

which implies G(u(t)) = G0(t) with probability 1, a.e. in [0, T ]×D, since w is arbitrary.

3.6.2 Multiplicative noise

Now we assume that g is a nonlinear function of u satisfying (SII3). In addition to the conver-
gences (3.6.6) and (3.6.7), we have

g(UUU−k,h) ⇀ g0(t) in L2(Ω;L2(0, T ; I2)) .(3.6.17)

Then it follows that the limit u is solution of the following equation

(u(t)− u0,ϕϕϕ) +

∫ t

0
(G0(s),ϕϕϕ) ds

=

∫ t

0
(f(s),ϕϕϕ) ds+

∫ t

0
(g0(s)dW(s),ϕϕϕ) ∀ t ∈ [0, T ] ,(3.6.18)
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for all ϕϕϕ ∈ VVV. To prove that u is a strong solution, we need to identify the terms G0(t)
and g0(t). A necessary condition for the uniqueness is a Lipschitz condition on the mapping
g : Q1/2(KKK)→HHH,

‖g(v)− g(u)‖I2 ≤ K2‖u− v‖L2 .(3.6.19)

As we will see in the proof, we have to combine the Lipschitz condition with the condition
given in (3.6.5). Summing these two inequalities we get

−
(
G(u)−G(v),u− v

)
− 27r4

2ν3
‖u− v‖2L2 + ‖g(v)− g(u)‖2I2

≤ −ν
2
‖∇(u− v)‖2L2 +K2

2‖u− v‖2L2 ∀u ∈W1,2
0 , ∀v ∈ Br .

This implies (SII3). Then, using Lemma 3.3.1, we have

E
[
e−r

+(T )‖UUU+
k,h(T )‖2L2

]
≤ E

[
‖UUU−k,h(0)‖2L2

]
+E

[∫ T

0

[
dte
−r+‖UUU−k,h‖

2
L2 − e−r

+
(

2G(UUU+
k,h),UUU+

k,h

)]
ds

]
(3.6.20)

+E
[∫ T

0
e−r

+
(
‖g(UUU−k,h)‖2I2 +

(
f ,UUU+

k,h

))
ds

]
.

Then for every v ∈ C([0, T ];V), define VVV+ as in the computations for the additive noise case
and conclude

E
[
eρ

+(T )‖UUU+
k,h(T )‖2L2 − ‖UUU+

k,h(0)‖2L2

]
≤ E

[∫ T

0
−e−r

+
(

2G(UUU+
k,h)−G(VVV+),UUU+

k,h −VVV
+
)

ds

]
+E

[∫ T

0
e−r

+‖g(UUU+
k,h)− g(VVV+)‖2I2 ds

]
+ E

[∫ T

0

(
dte
−r+
)
‖UUU+

k,h −VVV
+‖2L2 ds

]
+E

[∫ T

0
e−r

+‖g(UUU+
k,h)− g(UUU−k,h)‖2I2 ds

]
+E

[∫ T

0
e−r

+
((
−2G(VVV+),UUU+

k,h

)
− 2

(
G(UUU+

k,h)−G(VVV+),VVV+
))

ds

]
+E

[∫ T

0
e−r

+

(
2
(
g(UUU+

k,h),g(VVV+)
)
I2

+−‖g(VVV+)‖2I2

)
ds

]
+E

[∫ T

0

(
dte
−r+
)(

2
(
UUU−k,h,VVV

+
)
− ‖VVV+‖2L2

)
ds

]
+ E

[∫ T

0
e−r

+(
f ,UUU+

k,h

)
ds

]
.

With Assumption (SII3), using the representation (3.6.15) for the discrete derivative of the
exponential function and condition (S2), we can get rid of the first three terms on the right-hand
side leaving only the rest term from (3.6.16). The fourth term does not cause any difficulty,
since g is Lipschitz continuous and the difference UUU+

k,h −UUU
−
k,h converges strongly to 0. Then, by

the same argument for the last term, to fit all the terms in the setting of (SII3)’, by using the
lower semicontinuity of the norm, strong convergence of the initial data, strong convergence of
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VVV+, and part (iii) of Lemma 3.3.1, we get

lim
k,h→0

E
[
eρ

+(T )‖UUU+
k,h(T )‖2L2 − ‖UUU−k,h(0)‖2L2

]
≤ E

[
−
∫ T

0
e−r ((2G(v(s)),u(s))− 2 (G0 −G(v(s)),v(s))) ds

]
+E

[∫ T

0
e−r

(
2 (g0,g(v))I2 − ‖g(v)‖2I2

)
ds

]
+E

[∫ T

0

(
∂te
−r) (2 (u,v)− ‖v‖2L2

)
ds

]
+ E

[∫ T

0
e−r
(
f ,u
)

ds

]
.

Using (3.6.18) and Itô formula to substitute the left-hand side, and rearranging we get

E
[∫ T

0
e−r (2G(v)− 2G0 + ∂sr [v − u],v − u)

]
−E

[∫ T

0
e−r‖g(v)− g0‖2I2

]
≥ 0 ∀v ∈ C([0, T ];V) .

Extending by the density argument to all v ∈ L4(Ω;L∞(0, T ;H)) ∩ L2(Ω;L2(0, T ;V)) and
setting v := u, we get g(u(t)) = g0(t) with probability 1, a.e. in [0, T ] × D. Then using the
same argument as in the previous subsection, we can prove G(u(t)) = G0(t) with probability 1,
a.e. in [0, T ]×D, finishing the proof of the existence of a strong solution.

According to [119, 98], strong solutions of (3.1.1)–(3.1.3) for d = 2 are unique. The arguments
used to show uniqueness are similar in both works. The authors consider the function y(t)

(
u(t)−

v(t)
)
, for u and v two solutions and for some appropriate choice of y(t), show a corresponding

energy inequality, and with the properties of the convective term in d = 2, they prove that u
and v coincide P-almost surely for the same initial condition. As a consequence for our study,
uniqueness implies that the whole sequence {UUU+

k,h}k,h generated by the iterates of Algorithm 3.1
converges to the strong solution.

We summarize the results of this section in the following theorem, which uses the stronger
assumption (SII′3) instead of (S2), in particular

Theorem 3.6.1. Let D ⊂ R2 be a polyhedral domain, and T > 0. Suppose (SII1), (SII2), and
(SII′3), and let W be a Q-Wiener process on the filtered probability space

(
Ω,F ,F,P

)
. For every

finite (k, h) > 0, let Th be a quasi-uniform triangulation of D, Ik be an equi-distant partition
covering [0, T ], and

(
Hh, Lh

)
a pair of finite element spaces that satisfies the discrete LBB

condition.
Let UUU+

k,h : DT → R2 be the piecewise constant process obtained from iterates {Um}Mm=0 for
k, h > 0, and let U0 → u0 in L2

(
Ω;L2

)
for h→ 0. Then the whole sequence

{
UUU+
k,h

}
k,h

converges

UUU+
k,h ⇀ u in L2

(
Ω;L2

(
0, T ;W1,2

0

))
(k, h→ 0) ,

where u : DT ×Ω→ R2 is a strong solution of problem (3.1.1)–(3.1.3) in the sense of Definition
3.6.1.

3.7 Computational experiments

In this section we give some examples of discretisations of the stochastic Navier-Stokes equations
(5.1.1)–(5.1.3). To this end we consider the semi-implicit Euler scheme given by Algorithm 3.3
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for the discretisation. For the spatial discretisation we choose the LBB-stable MINI element,
which consists of continuous piecewise linear functions enriched with a ‘bubble’ part for the
velocity, and continuous piecewise linear functions for the pressure; see e.g. [74].

All the simulations are performed for the case d = 2 on a cartesian mesh of the domain D =
(0, 1)2 on the time interval [0, 1]. For the noise we consider the representation W := (W1,W2)T ,
for two independent Wiener processes Wi, i = 1, 2 with values in the space W 1,2

0 . We then
consider the following expansions; see (2.1).

(i) Exact Gaussian increments

∆mWi ≈
N∑

j,k=1

√
λij,k
(
∆mβ

i
j,k

)
ej,k .

(ii) Approximated increments

∆mWi ≈
√
k

N∑
j,k=1

√
λij,kξ

i,m
j,k ej,k .

Figure 3.7.1: Wiener process for eigenvalues from point a): Exact (left) and approximate incre-
ments, M = 256.

Here the elements of the basis are defined as the eigenvalues of the Laplace operator with
homogeneous Dirichlet boundary conditions on the domain (0, 1)2, i.e.

ej,k := sin(jπx) sin(kπy) x, y ∈ (0, 1), j, k ∈ N .

In the case (i), the {βij,k}∞j,k=1, i = 1, 2, are two independent families of independent R-valued
brownian motions, while the random variables {{ξi,mj,k }

∞
m=1}∞j,k=1, i = 1, 2, are independent and

defined as
P[ξi,mj,k = 1] = P[ξi,mj,k = −1] =

1

2
.

For computational purposes, the above expansions are truncated, i.e. only a sum over a finite
number N of terms is considered. This number N depends on the space discretisation parameter
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h, in the sense that its behavior should be O(h−1) in order to ensure convergence; see e.g. [132,
Section 4] for the stochastic heat equation. To avoid the influence of the truncation error,
we consider always finite dimensional covariance operator, which means that the sequences
{λij,k}∞j,k=1, i = 1, 2 are non zero for only a fixed finite number of terms.

We set f = (f1, f2)T with fi := −∆ui + ∂xiπ for

u1(t, x, y) := x2(1− x)2(2y − 6y2 + 4y3) ,

u2(t, x, y) := −y2(1− y)2(2x− 6x2 + 4x3) ,

π(x, y, t) := (x2 + y2 − 2/3)(1 + t2) ,

and u0 = 0.

3.7.1 Wiener process

Here we consider the discretisation of the noise for M = 256. We show plot of the increments
of the noise for different choices of eigenvalues. We consider finite sums in (i) and (ii) above,
setting 30 as the number of non-zero modes.

a) λk,j = 1
(k+j)2

for jk ≤ 30,

b) λk,j = 1 for jk ≤ 30,

In Figure 3.7.1 we can see the increments ∆mW and the random variables ξξξm for M = 256,
plotted for h = 1/50 for part a). For part b), the increments are plotted in Figure 3.7.2, for
M = 256 and h = 1/100. In this case, higher definition is needed to show the effects of the higher
order modes. The non-decaying behavior of the Eigenvalues from b) causes the increments to
be rougher, having a bigger L2-norm.

Figure 3.7.2: Wiener process with eigenvalues from point b): Exact (left) and approximate
increments, M = 256.

3.7.2 Brownian and discrete increments

Here we consider the discretisation of the solution corresponding to the forcing terms given in
a) and b). First we consider the Eigenvalues from a). In Figure 3.7.3 are depicted snapshots
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for the pressure and velocity at times t = 0.5 and t = 1 in the case of Wiener increments, while
in Figure 3.7.4 the same plot are given for discrete increments.

As regards the Eigenvalues from b), in Figure 3.7.5 are depicted the snapshots at time t = 1
for both, velocity and pressure, computed with exact and approximated increments.

Figure 3.7.3: Velocity (left column) and pressure (right) for t = 0.5 (first row) and t = 1 for the
eigenvalues from a), computed with the exact increments.

From the computations, we observe how the regularity of the solution is influenced by the
noise. In particular, and this will be crucial in the next chapters, we notice that while the velocity
seems to keep some regularity even for nuclear noise, the pressure is particularly affected by the
regularity of the noise. Moreover, the pressure computed by the approximated increments is
smaller, due to the fact that in this case the increments are always bounded.
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Figure 3.7.4: Velocity (left column) and pressure (right) for t = 0.5 (first row) and t = 1 for the
Eigenvalues from b), computed with the approximate increments.

3.7.3 Navier-Stokes-Coriolis equations

Let {bi}3i=1 be the canonical basis of R3, and D = R2 × (0, b), b > 0. We consider the following
Navier-Stokes-Coriolis equations

ut − ν∆u + [u · ∇]u +∇π + ζ(b3 × u) = 0 in DT × Ω ,(3.7.1)
divu = 0 in DT × Ω ,(3.7.2)

with boundary conditions for the third component given by

u(t, x1, x2, 0) = 0, u(t, x1, x2, b) = ubb3 x1, x2 ∈ R, t > 0 .

Here ub ∈ R is a constant and ζ > 0 denotes the speed of rotation. These equations are used to
describe the motion of a fluid under the influence of the Coriolis force, which is represented by
the last term on the left-hand side of (3.7.1). Beyond the practical importance of these equations
(e.g. meteorology), an important consequence is that for ζ big enough, the system admits well
posedness, evidencing the dissipative effect of the Coriolis force, which dominates the convection;
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Figure 3.7.5: Velocity (left column) and pressure (right) for t = 1, computed with the Eigenvalues
from Example b) computed with exact (first row) and approximate increments (second row).

see e.g. [85]. It is remarkable that this system admits an explicit stationary solution given by

ustat(x1, x2, x3) = ũb

 1− e−
x3
δ cos

(
x3
δ

)
e−

x3
δ sin

(
x3
δ

)
0

 ,

where δ = b/πk, for k ∈ Z, and

ũb :=

{
ub(1− e−

b
δ )−1 if k is even

ub(1 + e−
b
δ )−1 if k is odd

.

This solution is called Ekman spiral, and describes the theoretical displacement of current di-
rection by the Coriolis effect1. Given this stationary solution, it is worth to study its stability.
The stability under deterministic perturbations has been considered by many authors, and ex-
ponential convergence of solution towards the Ekman spiral has been proved. For stochastic

1Encyclopaedia Britannica.
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perturbations, the problem has been considered in [72], where its stochastic analogue is intro-
duced, and its stochastic stability is studied by means of stochastic stationary solutions. the
stochastic problem reads.

ut − ν∆u + [u · ∇]u +∇π + ζ(k× u) = εdW in DT × Ω ,(3.7.3)
divu = 0 in DT × Ω(3.7.4)

with the same boundary conditions.
Objective of this example is to consider a two dimensional version of the problem, and simu-

late a practical example. Our setting is slightly different, since we consider the two dimensional
problem with Dirichlet boundary conditions

u = (1, 0)T for x ∈ E , u = 0 for ∈ Ec ,

where E = [0, 1]×{1}, and non-solenoidal Wiener noise. In this setting, the Coriolis force reads

ζ(k× u) = ζ

 u2

−u1

0

 .

To understand the interplay between the Coriolis force and the noise, we consider the discretisa-
tion of these equations for ζ = 40 and ε = 0.1 at a fixed time tM = 3. The results are depicted
in Figure 3.7.6.

Figure 3.7.6: Velocities for tM = 3, computed for the Navier-Stokes-Coriolis equations, with the
Eigenvalues from Example b) computed with exact (left) and approximate increments (right).

We note that the solutions is stable in the sense that it fluctuates around the profile shown
in Figure 3.7.6, for both, the exact and the approximate increments.

3.8 Summary and outlook

We analysed the qualitative convergence of different space-time discretisations, based on the
(semi-) implicit Euler scheme with a discretely stable LBB-stable finite element pairing.

In three dimensions, the problem is caused by the need of compactness to handle the non-
linear term, by the weakly divergence-free finite element pairing, and by the construction of the
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stochastic integral. The main tools are suitable a priori bounds for the discrete solution and for
corresponding increments. For the construction of the stochastic integral we consider two pro-
cedures: the computation by Gaussian increments, and the approximation by general random
variables with consistent assumptions on the moments. To show that the limiting object is the
desired stochastic integral, we make use of appropriated convergence theorems for continuous
and time discrete martingales, together with a representation theorem.

In two dimensions, we address the construction of strong solutions by a local monotonicity
method, which uses weak convergence only. The main problem is to adapt computations from
continuous to a discrete setting. This is accomplished by using a priori estimates for a per-
turbed problem, together with a careful handling of the residual term arising from the discrete
derivatives.

Further steps in the numerical analysis of the SNSEs are the quantitative statement on the
convergence of approximating sequences, the application of splitting methods to increase the
efficiency of the discretisation, and what are the properties of the Lagrange multiplier and how
this affects the convergence.

Acknowledgment: Parts of this chapter were written when I visited the Newton Institute,
Cambridge (UK) in the period January-May 2010 to participate on the program: Stochastic
Partial Differential Equations.
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Chapter 4

Splitting-based scheme for the Stokes
equations

4.1 Introduction

Let (Ω,F ,F,P) be a filtered probability space, and D ⊂ Rd, d = 2, 3 be a bounded polyhedral
domain and define DT = (0, T )×D. We consider the d-dimensional stochastic Stokes equation

u̇− ν∆u +∇π = f + g(·,u)Ẇ in DT × Ω ,

divu = 0 in DT × Ω ,(4.1.1)
u(0, ·) = u0 in D × Ω ,

together with the Dirichlet boundary condition u = 0 on ∂DT := (0, T ) × ∂D. Here, the
velocity u = (u1, .., ud) and the pressure p are unknown random fields on DT , and W is a
HHH-valued, F-adapted Wiener process, where HHH is a separable Hilbert space. Finally, g(·,u) be
an appropriate operator to be specified later. The study of the stochastic incompressible Stokes
system is e.g. motivated from modeling microfluids, where inertial effects are generally negligible,
and microscopic fluctuations are relevant contributions to fluid flow dynamics; cf. [124, 44].

Strong solutions u ∈ L2
(
Ω;C([0, T ];H)

)
∩ L2

(
ΩT ;V

)
, where ΩT := Ω × (0, T ), of (4.1.1)

for proper operators g are usually obtained by a Galerkin method which employs divergence-
free approximates from finite-dimensional spaces Hn ⊂ H (n ≥ 1) to remove the pressure from
the problem. This strategy is different from a numerical setting, where the choice of the finite
dimensional ansatz space for the pressure, as well as regularity properties of the pressure from
(4.1.1) crucially determine both, stability and convergence behavior of the resulting scheme, see
[53].

To properly handle the incompressibility constraint is a non-trivial issue, and is usually
accomplished in a variational rather than a pointwise sense; as it is well-known for the cor-
responding deterministic problem, discretisation strategies based on implicit methods cause a
significant computational effort due to the coupled computation of both, velocity and pressure
iterates. Moreover, choices of stable finite element pairings are restricted by the LBB-constraint.
As a consequence, splitting algorithms turn out to be a very promising alternative to reduce the
complexity of actual computations by successively updating velocity and pressure iterates; we
refer to [58] for a recent survey on this topic. It is evident that such a strategy is desirable to
solve the stochastic partial differential equation (4.1.1), where a significant number of trajecto-
ries has to be computed to obtain statistically relevant results for quantities of interest. The goal
of this paper is to show that the interplay of time-splitting strategies and the ‘stochastic nature’
of problem (4.1.1) is subtle, leading to a poor convergence behavior of known time-splitting
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schemes which perform well in the deterministic case. Computational experiments detail this
assertion, which roots in the non-regular pressure process in (4.1.1). In a second step, an op-
timally convergent stochastic time-splitting scheme is constructed that distinguishes between
approximations of the (non-regular) stochastic pressure, and the (more regular) deterministic
pressure.

To illustrate the problematic issue to construct a proper time-splitting scheme of a stochas-
tic equation, we start with Chorin’s projection method [30, 32, 125], which is one of the
first splitting schemes to solve the deterministic incompressible (Navier-)Stokes equation. Let
fm := f(tm, ·) ∈ L2(Ω,L2), suppose that u0 ∈ L2(Ω,V) is given, and consider i.i.d. stochastic
increments ∆Wm := W(tm)−W(tm−1), where k = tm− tm−1 > 0 denotes the mesh-size of the
equi-distant grid Ik := {tm}Mm=0 covering [0, T ].

Algorithm 4.1. 1. Let 1 ≤ m ≤M . For given um−1 ∈ L2(Ω,V) and ũm−1 ∈ L2
(
Ω,W1,2

0 (D)
)
,

find ũm ∈ L2
(
Ω,W1,2

0 (D)
)
such that

(4.1.2)
(
ũm − um−1

)
− kν∆ũm = k fm + g(tm−1, ũ

m−1)∆Wm in D × Ω .

2. Compute um ∈ L2
(
Ω,H

)
, and πm ∈ L2

(
Ω,W 1,2(D)/R

)
,

um − ũm + k∇πm = 0 , divum = 0 in D × Ω ,(4.1.3)
〈um,n〉 = 0 on ∂D × Ω .(4.1.4)

We start a discussion of the scheme which ignores the stochastic term for a moment: the
latter step can be reformulated as a problem for the pressure function only,

(4.1.5) −∆πm = −1

k
div ũm on D × Ω , ∂nπ

m = 0 on ∂D × Ω .

Hence, each step consists of (4.1.2), (4.1.5), and the algebraic update (4.1.3) to obtain um ∈ H.
In order to understand error effects inherent to discretisation in time, and operator splitting

in Chorin’s scheme, we shift the index in (4.1.3)1 back, and add the resulting equation to (4.1.2);
together with (4.1.5), we then arrive at(

ũm − ũm−1
)
− kν∆ũm + k∇πm−1 = k fm + g(tm−1, ũ

m−1)∆Wm in D × Ω ,(4.1.6)
div ũm − k∆πm = 0 in D × Ω ,(4.1.7)

∂nπ
m = 0 on ∂D × Ω ,(4.1.8)

and ũ0 ≡ u0 in D×Ω. We make the following observations: (i) iterates
{
ũm
}M
m=1

of Algorithm
4.1 are not divergence-free any more, but satisfy the ‘quasi-compressibility equation’ (4.1.7),
with a penalisation parameter equal to k, (ii) iterates of the pressure satisfy a homogeneous
Neumann boundary condition, which is in contrast to pressure π : DT → R from (4.1.1), and
(iii) the pressure iterate in (4.1.6) is used in an explicit fashion, which rules out an immediate
discrete energy law, where test functions um and πm are used.

For the deterministic case, by assuming D ⊂ Rd to be a convex polyhedral domain, u0 ∈
H ∩W2,2(D), and f ∈ W 2,∞(0, T ;L2(D)

)
, the following optimal estimates are proved in [112,

Theorem 6.1],

(4.1.9) max
1≤m≤M

{√
τm‖u(tm, ·)− ũm‖L2 +

√
k‖u(tm, ·)− ũm‖W1,2

}
≤ Ck ,

where τm := min{1, tm}. Its proof consists of three steps: first, optimal error estimates for
the implicit Euler discretisation using solenoidal velocity fields are derived, where its derivation
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benefits from valid regularity properties of solutions u ∈ C
(
[0, T ];V∩W2,2

)
∩W 2,2

(
0, T ;V′

)
; then,

a modified version of (4.1.6)–(4.1.8) is studied with respect to both, convergence and stability
properties, where the pressure iterate πm−1 in (4.1.6) is shifted to πm; a key property here
is the existing bound π ∈ L∞

(
0, T ;W 1,2/R

)
for the deterministic evolutionary incompressible

Stokes problem. We remark that this pressure-stabilisation method (with parameter ε = k)
is of its own interest, since it allows for more choices of finite element pairings [15, 74], which
are usually restricted by the discrete LBB condition. Finally, the third step accounts for the
explicit treatment of the pressure in (4.1.6), which strongly benefits from the upper bound of∫ T

0 τ(s)‖∇πt(s)‖2 ds for the time derivative of the pressure from (4.1.1) in terms of the data u0,
f , and DT , where τ(s) = min{1, s}.

The goal of the present work is to study convergence properties of W1,2
0 (D)-valued iter-

ates {ũm}Mm=1 from Algorithm 4.1 to approximate solutions of (4.1.1). The main difficulties
which enter in the stochastic setting are due to restricted regularity properties (in time) of solu-
tions (u, π) to (4.1.1), which are due to the driving stochastic term: for instance, the pressure
which is constructed by Helmholtz decomposition after u is found, need not even be absolutely
continuous with respect to time [92], see (4.2.6), but its regularity properties are crucial for
the convergence analysis of our splitting method as detailed above. Hence, there is the question
whether splitting effects inherent to Algorithm 4.1 will deteriorate convergence rates of computed
iterates {ũm}Mm=1 — if compared to divergence-free velocity iterates {wm}Mm=1, approximating
{u(tm, ·)}Mm=1, solving the coupled Euler-Maruyama time discretisation of (4.1.1),(

wm −wm−1
)
− kν∆wm + k∇σm = kfm + g(tm−1,w

m−1)∆Wm in D × Ω ,(4.1.10)
divwm = 0 in D × Ω ,(4.1.11)

where w0 ≡ u0 in D × Ω. Note that the pressure σm : D → R, which approximates p(tm, ·),
will be eliminated from the convergence analysis where solenoidal test functions are used. As a
consequence, the following rates of strong convergence of Euler iterates {wm}Mm=1 are proved in
[62],
(4.1.12)

max
1≤m≤M

(
E
[
‖u(tm, ·)−wm‖2L2

])1/2
+
(
E
[
k
∑

1≤m≤M
‖∇
(
u(tm, ·)−wm

)
‖2L2

])1/2
≤ CT

√
k .

In fact, [62, Theorem 3.1] gives the rate of convergence for a finite dimensional Wiener process.
However, the proof can be modified in such a way, that the same result holds for the integral of
a Hilbert-Schmidt operator valued process with respect to a cylindrical Wiener process. Since
this will be the case (see Assumption (4.2.2) below), Theorem 3.1 of [62] is applicable.

The first main result in this paper is Theorem 4.3.1, which shows property (4.1.12) for iterates
{ũm}Mm=1 from Algorithm 4.1 in the case of solenoidal noise. A discretisation in space using
equal-order finite elements is studied in Section 4.4, and overall error estimates for related finite
element iterates {ũm}Mm=1 are given in Theorem 4.4.1. Then, computational studies are provided
in Section 4.5 which compare (anisotropic) convergence behavior of iterates from Algorithm 4.1
and (4.1.10)–(4.1.11) for different noise, and highlight that solenoidal noise is imperative to
assure optimal convergence behavior of the splitting Algorithm 4.1, which in the case of general
noise deteriorates to a poor convergence behavior. Those computational studies motivate the new
time-splitting scheme (Algorithm 4.3) in Section 4.5.3, which distinguishes between approximate
deterministic and stochastic pressure iterates. As a consequence, optimal rates of convergence
for general noise is shown both, theoretically (see Theorem 4.5.1), and computationally.

The remainder of this chapter is organised as follows. Necessary background for the stochas-
tic partial differential equation (4.1.1), and useful stability bounds for Euler iterates {wm}Mm=1
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solving (4.1.10)–(4.1.11) are provided in Section 2. In Section 4.3, we estimate the additional
different perturbation effects due to the quasi-compressibility constraint (4.1.7), and the split-
ting character of Algorithm 4.1 due to the explicit treatment of the pressure in (4.1.6), which
then leads to Theorem 4.3.1. In Section 4.4, a finite element discretisation of Algorithm 4.1 is
proposed, where the study of the coupled error effects due to time discretisation, time splitting,
and spatial discretisation leads to Theorem 4.4.1. Computational evidence to highlight failure
of Chorin’s method in the case of general noise is reported in Section 4.5, as well as the modified
Algorithm 4.3 that performs optimally for general noise.

4.2 Preliminaries

4.2.1 The Problem

LetP :=
(
Ω,F ,F,P

)
be a stochastic basis where F = {Ft; t ≥ 0}. For the definition of stochastic

integral, we refer to Chapter 2. Let KKK and HHH, be two Hilbert spaces as in Chapter 2, and let
the spaces V and H be defined as in Section 3.2.1.

Recall the Stokes operator A ≡ −PH∆, with domain D(A) = V∩W2,2(D). Here, PH : L2 →
H denotes the (Leray) projection operator. For Lipschitz domains D ⊂ Rd and on V∩W2,2(D),
the operator norm ‖ · ‖D(A) is equivalent to the W2,2(D)-norm. Throughout the paper, let

(4.2.1) u0 ∈ L2
(
Ω,F0,P;V

)
, and f ∈ L2

(
Ω× (0, T );L2(D)

)
.

Suppose that g : Ω × (0, T ) ×W1,2
0 → I2

(
HHH;V

)
is measurable Lipschitz, and sublinear; more

precisely, there exists a constant CT > 0 such that for KKK = L2 and KKK = W1,2
0 ,∥∥g(t,v)− g(t,w)

∥∥
I2(HHH,KKK)

≤ CT ‖v −w‖KKK ∀ t ∈ [0, T ], ∀v,w ∈W1,2
0 ,(4.2.2)

and for v ∈W1,2
0

g(·,v) ∈ L2
(

Ω;L2
(
0, T ; I2(HHH,W1,2

0 )
))
.(4.2.3)

Definition 4.2.1. We call an adapted stochastic process a strong solution (in the stochastic
sense) of (4.1.1) if u ∈ L2

(
Ω;C([0, T ];H)

)
∩M2

(
[0, T ],F;V

)
such that for all t ∈ [0, T ] and all

ψψψ ∈ V holds P-a.s.,(
u(t),ψψψ

)
+ ν

∫ t

0

(
∇u(s),∇ψψψ

)
ds =

(
u0,ψψψ

)
+

∫ t

0

(
f(s),ψψψ

)
ds+

(∫ t

0
g(s,u)dW(s),ψψψ

)
.

The existence of a unique strong solution u ∈ L2
(
Ω; C ([0, T ];V)

)
∩ L2

(
Ω;L2(0, T ;D(A))

)
which satisfies the energy equation

‖u(t)‖2L2 + 2ν

∫ t

0
‖∇u(s)‖2L2 ds = ‖u0‖2L2 + 2

∫ t

0

(
f(s),u(s)

)
ds

+2

∫ t

0

(
g
(
s,u(s)

)
dW(s),u(s)

)
+

∫ t

0
‖g
(
s,u(s)

)
‖2I2(HHH;L2) ds ∀ t ∈ [0, T ](4.2.4)

is well-known; see for instance [37, Theorem 6.19]. Moreover, standard arguments yield for
u0 ∈ L2

(
Ω,F0,P;V

)
that u ∈ L2

(
Ω; C ([0, T ];V)

)
∩ L2

(
Ω;L2(0, T ;D(A))

)
, and

E
[

sup
0≤t≤T

‖u(t)‖2W1,2

]
+ νE

[∫ T

0
‖Au(s)‖2L2 ds

]
≤ CT

{
1 + E

[
‖u0‖2W1,2

]
+

+E
[∫ T

0
‖f(s)‖2W−1,2 ds

]
+ E

[∫ T

0
‖g(s,0)‖2I2(HHH,L2) ds

]}
,(4.2.5)
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see e.g. [27, Thm. 4.4 & Sec. 5]. In contrast, the limited available analytical results about
the pressure in (4.1.1) indicate very restricted smoothness: For g : Ω × [0, T ] × L2(D) →
L2(HHH,L2(D)), there exists a unique (distributional) pressure (see [92, Theorem 4.1 and Remark
4.3])

(4.2.6) π ∈ L1
(

Ω,F,P;W−1,∞(0, T ;W 1,2(D)/R
))
,

such that P-a.s.

ut − ν∆u +∇π = f + g(·,u)Ẇ in
(
D′(DT )

)d
,(4.2.7) ∫

D
π dx = 0 in D′(0, T ) .(4.2.8)

This result evidences a deregularising effect upon the pressure in (4.1.1) which is exerted by a
general noise. This feedback effect of general noise onto the (lack of) regularity of the pressure
may be avoided by analytical constructions using Leray projection, but causes severe deterio-
rations with respect to accuracy of well-known numerical schemes where accurate pressures are
needed.

As will be shown in Lemma 4.2.1 below, pressure iterates of the (coupled) Euler-Maruyama
scheme (4.1.10)–(4.1.11) are smoother for noise that is solenoidal, which is why we assume

(4.2.9) g : Ω× [0, T ]×W1,2
0 (D)→ I2(HHH,V)

in Sections 4.3 and 4.4. Conversely, computational experiments in Section 4.5.1 show that
Chorin’s projection method only performs optimally in the case of solenoidal noise. Since in our
case g : Ω× (0, T )×W1,2

0 → I2

(
HHH;V

)
the following Lemma 4.2.1 motivates

(4.2.10) π ∈ L1
(

Ω,F,P;L2(0, T ;W 1,2(D)/R)
)
,

which provides enough regularity of the pressure such that the splitting scheme performs opti-
mally. However, we are not aware of a rigorous analytical motivation of this fact.

Remark 4.2.1. A velocity field u that solves the stochastic incompressible (Navier-) Stokes
equations is usually constructed by an (“inner approximation”) Galerkin method that employs
solenoidal test functions, and thus eliminates the pressure p from the problem in a first step; a
pressure p is then later obtained by de Rham’s theorem; see e.g. [11, 46, 27, 92]. A different strat-
egy is to obtain solutions by perturbing the incompressibility constraint (‘quasi-compressibility
method’) to avoid the saddle-point character of the problem, for example (ε > 0):

(i) divuε + επε = 0 in DT ,

(ii) divuε − ε∆πε = 0 in DT , ∂nπ
ε = 0 on ∂DT ,

(iii) divuε + επεt = 0 in DT , πε(0) = π(0) on D ,

(iv) divuε − ε∆πεt = 0 in DT , ∂nπ
ε = 0 on ∂DT , πε(0) = π(0) on D .

The penalty method (i) is used in [25], and the artificial compressibility method (iii) in [97]
to construct solutions of the stochastic incompressible Navier-Stokes equations. The pressure
stabilisation ansatz (ii) is related to Algorithm 4.1 where ε = k is chosen in (4.1.5); the pressure
correction method (iv) is used for numerical schemes as well; cf. [112] for further details.
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4.2.2 Euler scheme

The Euler scheme (4.1.10)–(4.1.11) is strongly consistent. Suppose that (4.2.1)–(4.2.3), and
(4.2.9) are valid throughout the section. For every m ≥ 1, there exists a solution wm ∈ L2

(
Ω;V

)
such that w0 = u0, and

(wm −wm−1,ϕϕϕ) + kν(∇wm,∇ϕϕϕ)

= k(fm,ϕϕϕ) +
(
g(tm−1,w

m−1)∆Wm,ϕϕϕ
)

∀ϕϕϕ ∈ V .(4.2.11)

Moreover, solutions satisfy the error estimate given in (4.1.12) and shown in [62].
Some bounds for solutions of (4.1.10)–(4.1.11) in strong norms will be useful later, where the

first one mimics (4.2.4) on a discrete level.

Lemma 4.2.1. Let {wm}Mm=1 ⊂ L2
(
Ω;V

)
be a solution of (4.2.11), and let (4.2.1),(4.2.2),(4.2.3),

(4.2.9) be valid. Then

(i) max
1≤m≤M

E
[
‖wm‖2L2

]
+ E

[ M∑
m=1

‖wm −wm−1‖2L2

]
+ νE

[
k

M∑
m=1

‖∇wm‖2L2

]
≤ CT

{
E
[
‖u0‖2L2

]
+ E

[
k

M∑
m=1

‖fm‖2L2

]}
,

(ii) max
1≤m≤M

E
[
‖∇wm‖2L2

]
+ E

[ M∑
m=1

‖∇[wm −wm−1]‖2L2

]
+ νE

[
k

M∑
m=1

‖Awm‖2L2

]
≤ CT

{
E
[
‖∇u0‖2L2

]
+ E

[
k

M∑
m=1

‖fm‖2L2

]}
,

(iii) E
[
k

M∑
m=1

‖∇σm‖2L2

]
≤ CT

{
E
[
‖∇u0‖2L2

]
+ E

[
k

M∑
m=1

‖fm‖2L2

]}
,

where CT ≡ C
(
u0,g, f , D, T

)
> 0 is a generic constant that does not depend on k.

Proof. Assertion (i). Choose ϕϕϕ = wm, and use the algebraic identity 2
〈
a−b,a

〉
= |a|2− |b|2 +

|a− b|2 to obtain

1

2

(
‖wm‖2L2 − ‖wm−1‖2L2 + ‖wm −wm−1‖2L2

)
+ νk‖∇wm‖2L2 = k

(
fm,wm

)
+
(
g(tm−1,w

m−1)∆Wm,w
m −wm

)
+
(
g(tm−1,w

m−1)∆Wm,w
m−1

)
.(4.2.12)

Taking expectations puts the last term in (4.2.12) to zero. For the remaining stochastic term,
we use Itô isometry, and (4.2.2), (4.2.3) to conclude that

E
[∣∣∣(g(tm−1,w

m−1)∆Wm,w
m −wm−1

)∣∣∣]
= kE

[
‖g(tm−1,w

m−1)‖2I2(HHH,L2)

]
+

1

4
E
[
‖wm −wm−1‖2L2

]
≤ CTk

(
1 + E

[
‖wm−1‖2L2

])
+

1

4
E
[
‖wm −wm−1‖2L2

]
.

We now use the discrete version of Gronwall’s lemma in (4.2.12) to obtain assertion (i).
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Assertion (ii). Choose ϕϕϕ = Awm, and proceed as before. We use (4.2.9) and integrate by
parts in the stochastic term to find(

∇
[
g(tm,w

m−1)∆Wm

]
,∇wm−1

)
+

(
∇
[
g(tm,w

m−1)∆Wm

]
,∇
[
wm −wm−1

])
.(4.2.13)

After taking expectations, only the second term is non-zero; by Itô’s isometry, (4.2.2), (4.2.3)
an upper bound for it is

1

4
E
[
‖∇[wm −wm−1]‖2L2

]
+ CkE

[
‖g(tm−1,w

m−1)‖2I2(HHH,W1,2)

]
≤ 1

4
E
[
‖∇[wm −wm−1]‖2L2

]
+ CTk

(
1 + E

[
‖wm−1‖2W1,2

])
.

Putting things together, and using discrete Gronwall’s inequality then leads to assertion (ii).
Assertion (iii). For every m ≥ 1, consider (4.1.10) as identity on L2(Ω,L2), which is justified

from the previous step. Term-wise multiplication with ∇σm and integration in space then leads
to

k

2
‖∇σm‖2L2 ≤ Ck

(
‖∆wm‖2L2 + ‖fm‖2L2

)
,

where we use (4.2.9). Assertion (ii) then validates the assertion.

4.3 Perturbation effects: Quasi-Compressibility and Operator-
Splitting

Solutions {ũm}Mm=1 ⊂ W1,2
0 (D) of Algorithm 4.1 satisfy (4.1.6)–(4.1.8), which illustrates the

different error effects due to time discretisation, quasi-incompressibility, and splitting character
in the scheme. The main result of this section is the following

Theorem 4.3.1. Let T > 0, D ⊂ Rd, d = 2, 3 be a bounded convex polyhedral domain, and
(4.2.1)–(4.2.3), (4.2.9) be valid. Denote by u ∈ L2

(
Ω;C([0, T ];V)

)
∩ L2

(
Ω;L2(0, T ;W2,2)

)
the

strong solution of (4.1.1), and {ũm}Mm=1 ⊂ L2
(
Ω,W1,2

0 (D)
)
solves Algorithm 4.1. There exists a

constant C ≡ C
(
E[‖u0‖W1,2 ], DT

)
> 0, such that

(4.3.1) max
1≤m≤M

(
E
[
‖u(tm, ·)− ũm‖2L2

])1/2
+
(
E
[
k

M∑
m=1

‖∇
(
u(tm, ·)− ũm

)
‖2L2

])1/2
≤ C
√
k .

The proof is split into several steps: first, we study solutions{
(vm, ρm)

}M
m=1

⊂ L2
(
Ω; ,W1,2

0 (D)
)
× L2

(
Ω,W 1,2(D)/R

)
of the auxiliary problem (note that, in contrast to (4.1.6) where the approximation of the pressure
is given from the previous time-step, it is here computed by an implicit procedure)(

vm − vm−1,φφφ
)

+ kν
(
∇vm,∇φφφ

)
− k
(
ρm,∇φφφ

)
=
(
kfm,φφφ

)
+
(
g(tm−1,v

m−1)∆Wm,φφφ
)

∀φφφ ∈W1,2
0 (D) P− a.s. ,(

divvm, φ
)

+ k
(
∇ρm,∇φ

)
= 0 ∀φ ∈W 1,2(D) P− a.s. ,(4.3.2)

∂nρ
m = 0 on ∂D × Ω ,

and v0 ≡ u0 in D × Ω, both, with respect to convergence towards the solution of (4.1.10),
and stability behavior. Then, we study convergence behavior for solutions of (4.3.2) to those of
(4.1.6)–(4.1.8).
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Proof. Step 1. The pressure stabilisation problem (4.3.2): rates of convergence. We show the
following convergence estimate for solutions {wm}Mm=1 ⊂ L2(Ω,V) of (4.2.11), and {vm}Mm=1 ⊂
L2
(
Ω,W1,2

0 (D)
)
of (4.3.2),

max
1≤m≤M

(
E
[
‖wm − vm‖2L2

])1/2
+
(
E
[
k

M∑
m=1

‖∇
(
wm − vm

)
‖2L2

])1/2

+
(
E
[
k2

M∑
m=1

‖∇
(
σm − ρm

)
‖2L2

])1/2
≤ C
√
k .(4.3.3)

Let em := wm − vm ∈ L2
(
Ω,W1,2(D)

)
, and χm := σm − ρm ∈ L2

(
Ω,W 1,2(D)/R

)
. Taking the

difference of (4.1.10) and (4.3.2) then leads to(
em − em−1,φφφ

)
+ kν

(
∇em,∇φφφ

)
− k
(
χm,∇φφφ

)
=
((

g(tm−1,w
m−1)− g(tm−1,v

m−1)
)
∆Wm,φφφ

)
∀φφφ ∈W1,2

0 (D) P− a.s. ,(
divvm, φ

)
+ k
(
∇χm,∇φ

)
= k

(
∇σm,∇φ

)
∀φ ∈W 1,2(D) P− a.s. ,(4.3.4)

∂nχ
m = ∂nσ

m on ∂D ,

and e0 ≡ 0 in D × Ω. By setting φφφ := em, φ = χm in (4.3.4), using the Lipschitz continuity of
g, adding both identities, and using Young’s inequality, then leads to

1

2

(
‖em‖2L2 − ‖em−1‖2L2 + ‖em − em−1‖2L2

)
+ kν‖∇em‖2L2 + k2‖∇χm‖2L2

≤
(

[g(tm−1,w
m−1)− g(tm−1,v

m−1)]∆Wm, e
m−1

)
+

1

4
‖em − em−1‖2L2

+‖[g(tm−1,w
m−1)− g(tm−1,v

m−1)]∆Wm‖2L2 +
1

4
k2‖∇χm‖2L2 + k2‖∇qm‖2L2 .

The leading term on the right-hand side vanishes when we take its expectation. By Itô’s isometry,
and (4.2.2), there holds for the remaining stochastic integral term

E
[
‖[g(tm−1,w

m−1)− g(tm−1,v
m−1)]∆Wm‖2L2

]
≤ Ck

(
1 + E

[
‖em−1‖2L2

])
.

We now take expectation term-wise, and sum over all steps 1 ≤ m ≤ m∗ ≤ M ; because
of E

[
‖e0‖2L2

]
= 0, Lemma 4.2.1, (iii), and the discrete version of Gronwall’s inequality, after

summation we arrive at

1

2
E
[
‖em∗‖2L2

]
+

1

4
E
[ m∗∑
m=1

‖em − em−1‖2L2

]
+ νE

[
k

m∗∑
m=1

‖∇em‖2L2

]
+

3

4
E
[
k2

m∗∑
m=1

‖∇χm‖2L2

]
≤ Ctm∗E

[
k2

m∗∑
m=1

‖∇qm‖2L2

]
≤ CTk .(4.3.5)

Step 2. The pressure stabilisation problem (4.3.2): stability. Proper bounds are needed for the
pressure in (4.3.2) to validate optimal error estimates between solutions of (4.3.2) and (4.1.6)–
(4.1.8) below. We show

(4.3.6) max
1≤m≤M

E
[
‖vm‖2W1,2

]
+ E

[
k

M∑
m=1

‖vm‖2W2,2

]
+ νE

[
k

M∑
m=1

‖∇rm‖2L2

]
≤ CT .
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Hence, for solutions of problem (4.3.2) there hold the same estimates which are valid for solutions
of (4.1.10)–(4.1.11) from Lemma 4.2.1.

Property (4.3.6)1 follows from the term (4.3.3)2, and Lemma 4.2.1, (ii), and property (4.3.6)3
is a consequence of (4.3.3)3, and Lemma 4.2.1, (iii). A formal derivation of (4.3.6)2 uses (4.3.2)1,
which we multiply by −∆vm, and then integrate over D. After summing up over all 1 ≤ m ≤M ,
by taking expectations and absorbing terms we arrive at

1

2
E
[
‖∇vM‖2L2

]
+

1

2
E
[ M∑
m=1

‖∇(vm − vm−1)‖2L2

]
+
ν

4
E
[
k

M∑
m=1

‖∆vm‖2L2

]
≤ 1

2
E
[
‖∇v0‖2L2

]
+ CE

[
k

M∑
m=1

‖∇rm‖2L2

]
+ CE

[
k

M∑
m=1

‖fm‖2L2

]
(4.3.7)

+kE
[M−1∑
m=1

‖g(tm−1,v
m−1)‖2I2(HHH,W1,2)

]
+

1

4
E
[ M∑
m=1

‖∇[vm − vm−1]‖2L2

]
,

where we use the fact that E
[∑M

m=1(∇g(tm−1,v
m−1)∆Wm,∇vm−1)

]
= 0, and Itô’s isometry.

By (4.2.2),(4.2.3), we have E
[
‖g(tm−1,v

m−1)‖I2(HHH,W1,2)

]
≤ C

(
1 + E[‖vm−1‖W1,2 ]

)
. The bounds

(4.3.6)1,3 then allow to conclude (4.3.6)2 from (4.3.7).

Step 3. The splitting error: comparison of problems (4.3.2) and (4.1.6)–(4.1.8). We estimate
the differences εεεm := vm − ũm ∈ L2

(
Ω,W1,2

0 (D)
)
, and ηm := ρm − πm ∈ L2

(
Ω,W 1,2(D)/R

)
,

which are determined by the following system of equations,(
εεεm − εεεm−1, ϕ

)
+ kν

(
∇εεεm,∇φφφ

)
+ k
(
∇ηm,φφφ

)
=

(
EEEm,φφφ

)
∀φφφ ∈W1,2

0 (D) P− a.s.,(
divεεεm, φ

)
+ k
(
∇ηm,∇φ

)
= 0 ∀φ ∈W 1,2(D) P− a.s.,(4.3.8)

∂nη
m = 0 on ∂D ,

where εεε0 ≡ 0, and

(4.3.9) EEEm := −k∇[ρm − ρm−1] +
(
g(tm−1,v

m−1)− g(tm−1, ũ
m−1)

)
∆Wm .

Upon testing (4.3.8)1 by εεεm, and (4.3.8)2 by ηm, adding both identities, using Young’s inequality
with δ1 > 0 and absorbing terms then yields

1

2

(
‖εεεm‖2L2 − ‖εεεm−1‖2L2 + ‖εεεm − εεεm−1‖2L2

)
+ kν‖∇εεεm‖2L2 + k2

(
∇ηm,∇ηm−1

)
≤
(

[g(tm−1,v
m−1)− g(tm−1, ũ

m−1)]∆Wm, εεε
m−1

)
− k
(
∇(ρm − ρm−1), εεεm

)
(4.3.10)

+Cδ1‖[g(tm−1,v
m−1)− g(tm−1, ũ

m−1)]∆Wm‖2L2 + δ1‖εεεm − εεεm−1‖2L2 .

Again, the expectation of the leading term on the right-hand side vanishes; Itô’s isometry, and
(4.2.2) yields to

E
[
‖[g(tm−1,v

m−1)− g(tm−1, ũ
m−1)]∆Wm‖2L2

]
≤ CTk

(
1 + E[‖εεεm−1‖2L2 ]

)
.

There remains to deal with terms which contain pressures. We use (4.3.8)2 and Young’s inequal-
ity with δ2 > 0 to conclude that

k2
(
∇ηm,∇ηm−1

)
= k2‖∇ηm‖2L2 − k2

(
∇ηm,∇[ηm − ηm−1]

)
= k2‖∇ηm‖2L2 − k

(
∇ηm, εεεm − εεεm−1

)
(4.3.11)

≥
(
1− 1

4δ2

)
k2‖∇ηm‖2L2 − δ2‖εεεm − εεεm−1‖2L2 .
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The remaining crucial term in (4.3.10) is bounded as follows,

k2
(
∇[ρm − ρm−1],∇ηm

)
≤ k2δ3‖∇ηm‖2L2 +

k2

4δ3
‖∇[ρm − ρm−1]‖2L2 .

where we used Young’s inequality with δ3 > 0. To keep the corresponding terms in (4.3.12)
nonnegative, we choose parameters δi > 0, i = 1, 2, 3 such that

1− 1

4δ2
− δ3 ≥ 0 , and

1

2
− δ1 − δ2 ≥ 0 ,

Next, we sum over all 1 ≤ m ≤ m∗ ≤ M in (4.3.10), and take expectations. Then, by the
discrete Gronwall inequality,

E
[
‖εεεm∗‖2L2

]
+
(1

2
− δ1 − δ2

)
E
[ m∗∑
m=1

‖εεεm − εεεm−1‖2L2

]
+ νE

[
k

m∗∑
m=1

‖∇εεεm‖2L2

]
+k2

(
1− 1

4δ2
− δ3

)
E
[ m∗∑
m=1

‖∇ηm‖2L2

]
≤ CT 4

k2

4δ3

m∗∑
m=0

‖∇ρm‖2L2 ≤ CtT k ,(4.3.12)

where the last estimate uses (4.3.6)3, and r0 ≡ 0 is a consequence of (4.3.2)2.

By putting together results (4.1.12), (4.3.3), and (4.3.12) yields the error bound,

max
1≤m≤M

(
E
[
‖u(tm, ·)− ũm‖2L2

])1/2

+
(
νE
[
k
∑

1≤m≤M
‖∇
(
u(tm, ·)− ũm

)
‖2L2

])1/2
≤ C

(√
k +
√
k +
√
k
)
,(4.3.13)

which proves Theorem 4.3.1.

The following stability result for solutions of Algorithm 4.1 will be helpful in Section 4.4,
where we consider an optimally convergent, practical finite element discretisation.

Lemma 4.3.1. Let T > 0, D ⊂ Rd, d = 2, 3 be a convex polyhedral domain, and (4.2.1)–
(4.2.3), (4.2.9) be valid. {ũm}Mm=1 ⊂ L2

(
Ω,W1,2

0 (D)
)
be the solution of Algorithm 4.1. Then,

all estimates given in Lemma 4.2.1 remain valid.

Proof. We use (4.3.6) and (4.3.12) to validate bounds (i), (iii), and (ii)1,2 in Lemma 4.2.1 for
{ũm}Mm=1. In order to (formally) verify E

[
k
∑M

m=1 ‖∆ũm‖2L2

]
≤ C, we multiply (4.1.6) by

−∆ũm, integrate over D, and consider expectations. Similar arguments as above lead to

1

2
E
[
‖∇ũm‖2L2 − ‖∇ũm−1‖2L2 +

3

4
‖∇[ũm − ũm−1]‖2L2

]
+

3kν

4
E
[
‖∆ũm‖2L2

]
≤ E

[
k‖∇πm−1‖2L2

]
+ Ck

(
1 + E

[
‖ũm−1‖2W1,2

])
+ CkE

[
‖fm‖2L2

]
.

We now sum up 1 ≤ m ≤ M , use the fact that ∇π0 = 0, and may use the available bound
E
[∑M

m=1 ‖∇πm‖2L2

]
≤ C to obtain

E
[
k

M∑
m=1

‖∆ũm‖2L2

]
≤ CT .
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4.4 Finite element discretisation

Let T be a quasi-uniform triangulation of the polygonal or polyhedral bounded Lipschitz domain
D ⊂ Rd into triangles or tetrahedra for d = 2 or d = 3, respectively. We define the lowest order
finite element space

Hh =
{

Φ ∈ C (D) : Φ
∣∣
K
∈ P1(K) ∀K ∈ T

}
,

where P1(K) denotes the set of polynomials of degree less or equal than one if restricted to the
element K ∈ T . We introduce equal-order finite element function spaces

Hh :=
[
Hh

]d
, and Lh := Hh ∩ L2

0(Ω) ,

and H0
h := Hh ∩W1,2

0 (D). We recall the L2-orthogonal projection P0
h : L2 → H0

h, where

(φφφ−P0
hφφφ,ξξξ

)
= 0 ∀ξξξ ∈ H0

h ,

for which holds

‖φφφ−P0
hφφφ‖L2 + h‖∇(φφφ−P0

hφφφ)‖L2 ≤ Ch2‖φφφ‖W2,2 ∀φφφ ∈W2,2 .

Accordingly, there holds for P 1
h : W 1,2(D)/R→ Lh, where(
∇[χ− P 1

hχ],∇η
)

= 0 ∀ η ∈ Lh

that
‖χ− P 1

hχ‖L2 + h‖∇[χ− P 1
hχ]‖L2 ≤ Ch2‖χ‖W 2,2 ∀χ ∈W 1,2/R ∩W 2,2 .

Below we use finite elements for a fully discrete version of Algorithm 4.1. Moreover, for
simplicity we assume that g is independent of time.

Algorithm 4.2. 1. Let m ≥ 1. For given Um−1 ∈ L2(Ω,Hh), find Ũm ∈ L2
(
Ω,H0

h

)
such that(

Ũm −Um−1,ΨΨΨ
)

+ kν
(
∇Ũm,∇ΨΨΨ

)
= k

(
fm,ΨΨΨ

)
+
(
g(tm−1, Ũ

m−1)∆Wm,ψψψ
)

∀ΨΨΨ ∈ H0
h .(4.4.1)

2. For given Ũm ∈ L2
(
Ω,H0

h(D)
)
, compute Πm ∈ L2(Ω, Lh) from

(
∇Πm,∇χ

)
=

1

k

(
Ũm,∇χ

)
∀χ ∈ Lh(4.4.2)

∂nΠm = 0 on ∂D.

3. Update (
Um,ϕϕϕ

)
=
(
Ũm,ϕϕϕ

)
− k
(
∇Πm,ϕϕϕ

)
∀ϕϕϕ ∈ Hh .

The following result provides error estimates for the fully discrete scheme.

Theorem 4.4.1. Let the assumptions in Lemma 4.3.1 hold. Let
{
Ũm

}M
m=1

⊂ L2(Ω,H0
h) be

computed from Algorithm 4.2. Then

max
1≤m≤M

(
E
[
‖u(tm, ·)− Ũm‖2L2

])1/2
+
(
E
[
k

M∑
m=1

‖∇[u(tm, ·)− Ũm]‖2L2

])1/2
≤ C

(√
k+ h+

h2

√
k

)
.
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Because of Theorem 4.3.1, it is sufficient to control the error between the solutions of Algo-
rithms 4.1 and 4.2, for which Lemma 4.3.1 is relevant. In order to balance the coupling error
O
(
h2√
k

)
with the other two errors due to time discretisation, splitting, and spatial discretisation

motivates a (non-critical) balancing h ≤ C
√
k. We remark that this requirement is well-known in

the deterministic setting, where stability of equal-order finite element pairings using the pressure
stabilisation ansatz

divuε − ε∆πε = 0 in D , ∂nπ
ε = 0 on ∂D

requires choices ε ≥ Ch2; cf. [74, 112]: since ε = k in (4.4.2), the restriction k ≥ Ch2 then leads
to a stable discretisation in space by equal-order finite element pairings.

Proof. For every m ≥ 1, let(
Em,Λm

)
:=
(
ũm − Ũm, πm −Πm

)
∈ L2

(
Ω,W1,2

0 (D)×W 1,2(D)
)

be the solution of the following set of error equations, for all
(
ΨΨΨ, χ

)
∈ H0

h ×Hh,(
Em −Em−1,ΨΨΨ

)
+ kν

(
∇Em,∇ΨΨΨ

)
+ k
(
∇Λm−1,ΨΨΨ

)
=(4.4.3) (

[g(tm−1, ũ
m−1)− g(tm−1, Ũ

m−1)]∆Wm,ΨΨΨ
)
,(

divEm, χ
)

+ k
(
∇Λm,∇χ

)
= 0 .(4.4.4)

The equations follow from the reformulation of Algorithm 4.1 in the form (4.1.6)–(4.1.8), and
corresponding equations for (4.2). We may choose ΨΨΨ = P0

hE
m as test function in (4.4.3). For

any δ1 > 0, we use Young’s inequality to conclude

1

2

(
‖Em‖2L2 − ‖Em−1‖2L2 + ‖Em −Em−1‖2L2

)
+

3kν

4
‖∇Em‖2L2 + k

(
∇Λm,P0

hE
m
)

≤
(

[g(tm−1, ũ
m−1)− g(tm−1, Ũ

m−1)]∆Wm,P
0
hE

m
)

+ k‖∇[ũm −P0
hũ

m]‖2L2(4.4.5)

+Cδ1
∥∥[g(ũm−1)− g(Ũm−1)]∆Wm

∥∥2

L2 + δ1‖Em −Em−1‖2L2 .

A lower bound for the last term on the left-hand side is as follows (δ2 > 0),

k
(
∇Λm−1,P0

hE
m
)
≥ k

(
∇P 1

hΛm−1,Em
)
− δ2k

2‖∇Λm−1‖2L2 −
1

4δ2
‖ũm −P0

hũ
m‖2L2

−k‖πm−1 − P 1
hπ

m−1‖2L2 −
k

4
‖∇Em‖2L2 .(4.4.6)

We use χ = P 1
hΛm−1 in (4.4.4) to conclude k

(
∇P 1

hΛm−1,Em
)

= k2
(
∇P 1

hΛm−1,∇Λm
)
. We use

properties of P 1
h to conclude

k2
(
∇P 1

hΛm−1,∇Λm
)

= k2
(
∇P 1

hΛm,∇Λm
)
− k2

(
∇P 1

h [Λm − Λm−1],∇Λm
)

= k2‖∇Λm‖2 + k2
(
∇[πm − P 1

hπ
m],∇Λm

)
−k2

(
∇[Λm − Λm−1],∇P 1

hΛm
)
.

Because of (4.4.4) we may now conclude (δ3, δ4 > 0)

k2
(
∇P 1

hΛm−1,∇Λm
)

= k2
(
1− δ3

)
‖∇Λm‖2L2 − Cδ3k2‖∇[πm − P 1

hπ
m]‖2L2

−k
(
Em −Em−1,∇P 1

hΛm
)

≥ k2
(
1− δ3 − δ4

)
‖∇Λm‖2L2 − Cδ3k2‖∇πm‖2L2 −

1

4δ4
‖Em −Em−1‖2L2 .
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Because of standard approximation results and Lemma 4.3.1, arising interpolation error
terms in (4.4.5)–(4.4.6) may be controlled as follows,

E
[
k

M∑
m=1

‖∇(ũm −P0
hũ

m)‖2L2

]
≤ Ch2E

[
k

M∑
m=1

‖∆ũm‖2L2

]
≤ Ch2 ,

E
[ M∑
m=1

‖ũm −P0
hũ

m‖2L2

]
≤ Ch4E

[ M∑
m=1

‖∆ũm‖2L2

]
≤ Ch

4

k
,(4.4.7)

E
[
k

M∑
m=1

‖πm − P 1
hπ

m‖2L2

]
≤ Ch2E

[
k

M∑
m=1

‖∇πm‖2L2

]
≤ Ch2 ,

where (4.4.7)2 comes from (4.4.6), which involves a coupling of discretisation scales in space and
time.

To keep the corresponding terms in (4.4.8) nonnegative, it is possible to choose δi > 0, such
that

1− δ2 − δ3 − δ4 > 0 , and
1

2
− δ1 −

1

4δ4
≥ 0 .

Next, we sum over all 1 ≤ m ≤ m∗ ≤ M in (4.3.10), and take expectations. Then, by the
discrete Gronwall inequality, and (4.4.7),

E
[
‖Em∗‖2L2

]
+
(1

2
− δ1 −

1

4δ4

)
E
[ m∗∑
m=1

‖Em −Em−1‖2L2

]
+ νE

[
k

m∗∑
m=1

‖∇Em‖2L2

]
+k2

(
1− δ2 − δ3 − δ4

)
E
[ m∗∑
m=1

‖∇Λm‖2L2

]
≤ Ctm∗

(
h2 +

h4

k

)
.(4.4.8)

This proves the theorem.

4.5 Computational Experiments

In this section, we report on comparative computational studies for both, the Euler method
(4.1.10)–(4.1.11), and the splitting Algorithm 4.2. For a stable discretisation in space, we use the
LBB-stable MINI element; cf. [15, 74] for details. For the underlying domain D = (0, 1)2 ⊂ R2

and a deterministic applied forcing term f , we consider the finite-dimensional Wiener process
(t ∈ [0, T ])

W(t) =

N∑
j,k=1

λj,kβj,k(t)ej,k (1 ≤ N <∞) ,

where λj,k = 1
(j+k)2

, {βj,k}Nj,k=1 is a family of independent, real-valued Wiener processes on(
Ω,F ,F,P

)
, as well as {ej,k}∞j,k=1 are (for x := (x, y) ∈ R2)

(i) non-solenoidal functions

ej,k(x, y) :=
(

sin(jπx) sin(kπy), sin(jπx) sin(kπy)
)>

,

(ii) solenoidal functions

ej(x, y) :=
(
− cos(jπx− π

2
) sin(jπy − π

2
), sin(jπx− π

2
) cos(jπy − π

2
)
)>

.
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HenceHHH = KKK = W1,2
0 for the basis from (i), andHHH = KKK = W1,2

0 ∩H in the case (ii). Notice that
in the analysis we use a Wiener process with an infinite number of terms, but all the results
hold also for W defined as above. In this section we assume that equation (4.1.1) is driven by
a finite dimensional noise.

In the experiments below we take N = 4, and address the following topics in the following
Sections 4.5.1 and 4.5.2.

(A) How does non-solenoidal resp. solenoidal noise affect strong approximation properties of
Algorithm 4.2? Is Theorem 4.3.1 sharp with respect to the restriction to solenoidal noise?

(B) Chorin’s projection scheme in the deterministic setting is known to exhibit anisotropic
error structures for the pressure, such as boundary layers of magnitude O(

√
k | log k|),

cf. e.g. [113]. What may be concluded accordingly in the stochastic setting for both,
trajectories and expectations of pressure iterates?

It is evident that if compared to Euler’s method the splitting scheme discussed here causes
reduced computational effort, which in particular pays off in the present stochastic setting where
a significant number of realisations has to be computed to obtain expectations.

For the experiments below we use T = 1, and compute on cartesian meshes of size h = 1
50 ,

for a number of realisations Np = 3000, a minimum time discretisation parameter k0 = 1
4096 ,

and a constant operator g in (4.1.1). To approximate strong errors (1 ≤M∗ ≤M)

(
E
[
‖UM∗

k0 −UM∗
ki
‖2L2

])1/2
≈
( 1

Np

Np∑
`=1

‖UM∗
k0 (ω`)−UM∗

ki
(ω`)‖2L2

)1/2
(i ≥ 1) ,

we use UM∗
k0
≈ u(tM∗ , ·) as (approximate) solution to (4.1.1) which is computed for the smallest

k0 � 1, whereas {UM∗
ki
}i≥1 are obtained from Algorithm 4.2 for ki = 2ik0 with i = 1, 2, 3, · · · .

4.5.1 Strong errors for different noise

We compare computed velocity iterates of both, the Euler scheme (4.1.10)–(4.1.11) and Algo-
rithm 4.2 for both solenoidal and non-solenoidal noise. The theoretical study in the previous
sections needed the uniform bound

(4.5.1) E
[
k

M∑
m=1

‖∇σm‖2L2

]
≤ C

for pressure iterates of (4.1.10)–(4.1.11); this property is shown in Lemma 4.2.1, (iii) in the
case of solenoidal noise, and in Lemma 4.3.1 for pressure iterates of Algorithm 4.1 in this
case. The computational results in Figure 4.5.1 evidence 1

2 as convergence rate for velocity
iterates from Algorithm 4.2, which is in accordance with Theorem 4.4.1. Figure 4.5.2 reports on
corresponding results for applied non-solenoidal noise; we observe a reduction of the convergence
rate for velocity iterates of Algorithm 4.2 by approximately 50%, while Euler iterates converge
optimally. To further evidence this loss of accuracy for iterates of the splitting Algorithm 4.2 in
the presence of non-solenoidal noise, our computations suggest

(
E
[
k

M∑
m=1

‖∇Πm‖2L2

])1/2
≈ C√

k
,

which is a bound that we obtain for {σm}Mm=1 instead of item (iii) in Lemma 4.2.1 for applied
non-solenoidal noise.



4.5. COMPUTATIONAL EXPERIMENTS 87

Figure 4.5.1: Solenoidal noise: Rates of convergence for velocity iterates of Algorithm 4.2 (left),
and the Euler scheme (4.1.10)–(4.1.11) (right).

Figure 4.5.2: Non-solenoidal noise: Rates of convergence for velocity iterates of Algorithm 4.2
(left), and the Euler scheme (4.1.10)–(4.1.11) (right).

4.5.2 Approximation of pressures

The reformulation (4.1.6)–(4.1.8) of Algorithm 4.1 evidences error effects due to homogeneous
boundary conditions, which are well-known in the deterministic setting to cause artificial bound-
ary layers of thicknessO(

√
k | log k|); see e.g. [58, 112, 113] and the literature cited in these works.

Hence, it is reasonable to ask if corresponding anisotropic errors for pressure iterates from Algo-
rithm 4.1 occur in the stochastic setting as well. We remark that no results regarding (rates of)
convergence of iterates {Pm}m≥1 from Algorithm 4.1 have been obtained in the previous sec-
tions. The following results show error profiles for the pressure computed by Algorithm 4.2 both,
pathwise and expectation-wise, computed for h = 1/30 and k0 = 1/512. Again, we distinguish
between computations for applied solenoidal and non-solenoidal noise.

Pressure error functions in the case of solenoidal noise for different time-step sizes are depicted
in Figure 4.5.3 both, for a single path (first line), and expectations (second line); in both cases,
we observe an anisotropic structure of the error, which is more pronounced for expectations, and
clearly grows for increasing time-steps ki > 0.

The influence of applied non-solenoidal noise on the accuracy of pressure iterates can be
deduced from the plots in Figure 4.5.4: no local error structures are visible for a single realization;



88 CHAPTER 4. SPLITTING-BASED SCHEME FOR THE STOKES EQUATIONS

Figure 4.5.3: Solenoidal noise: Error of pressure from Algorithm 4.2 at T = 1 for ki =
1

512 ,
1

256 ,
1

128 for one realization (first line), and its expectation (seond line).

this is different from corresponding plots for expectations which still show marked boundary
layers that increase for growing values ki > 0.

The influence of applied non-solenoidal noise on the accuracy of pressure iterates can be
deduced from the plot in Figure 4.5.5. There the function

ki 7→ kiE

[
M∑
m=1

‖∇Πm
ki
‖2L2

]1/2

is plotted, showing that the norm of the pressure divergence for small time-steps. Thsu, no local
error structures are visible for a single realisation and for corresponding expectations.

4.5.3 Chorin scheme with stochastic pressure correction.

As has been shown so far, the proposed splitting Algorithm 4.1 shows optimal convergence
behavior only in the case of solenoidal noise. Here we try to modify Algorithm 4.1, in order to
validate optimal convergence behavior also in the case that the sequence of random variables{
g(tm−1, ũ

m−1)∆Wm

}M
m=1

approximates general noise. The scheme that we propose is the
following:

Algorithm 4.3. Let m ≥ 0.
1. For given ũm−1 ∈ L2

(
Ω,W1,2

0 (D)
)
, find ξξξm ∈ H ∩W1,2(D) such that

ξξξm +∇sm =
1√
k
g(tm−1, ũ

m−1)∆Wm in D,

div ξξξm = 0 in D,(4.5.2)
〈ξξξm,n〉 = 0 on ∂D .
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Figure 4.5.4: Non-solenoidal noise: Error of pressure from Algorithm 4.2 at T = 1 for ki =
1

512 ,
1

256 ,
1

128 for one realization (first line), and its expectation (seond line).

Figure 4.5.5: Non-solenoidal noise: gradient norm of the pressure plotted with respect to the
time-step.

2. For given um−1 ∈ L2(Ω,H), find ũm ∈ L2
(
Ω,W1,2

0 (D)
)
such that

(4.5.3)
(
ũm − um−1

)
− kν∆ũm = kfm +

√
kξξξm in D .

3. Compute um ∈ L2
(
Ω,H

)
, and πm ∈ L2

(
Ω,W 1,2(D)/R

)
from

um − ũm + k∇πm = 0 in D ,

divum = 0 in D ,(4.5.4)
〈um,n〉 = 0 on ∂D .
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4. Compute the approximation of the pressure p via

rm = πm +
1√
k
sm.

The underlying idea for this algorithm is to distinguish between deterministic and stochastic
(forcing) integrals on the right-hand side of (4.1.1), which scale differently in a time discretisation
scheme. Corresponding Helmholtz decompositions of both terms involve gradient functions,
which are then referred to a deterministic and then stochastic pressures. It is by Step 1 that the
gradient of the stochastic pressure {sm}Mm=1 in (4.5.2)1 has no influence on computing velocity
iterates in Steps 1 to 3, where only the deterministic pressure {πm}Mm=1 is involved. This
argument is further detailed by the following formal computation for Euler iterates from (4.1.10)–
(4.1.11):

wm − kν∆wm + k∇πm = wm−1 + kfm + g(tm−1,w
m−1)∆Wm

= wm−1 + kfm + PHg(tm−1,w
m−1)∆Wm +

√
k∇sm−1 .

So we get

wm − kν∆wm + k∇πm = wm−1 + kfm + PHg(tm−1,w
m−1)∆Wm ,

where
πm = πm − 1√

k
sm .

In fact, Algorithm 4.3 is Algorithm 4.1, which is applied to the same equation with projected
noise. So, the proof of the convergence rate could follow directly from Theorem 4.3.1. Unfor-
tunately, for v ∈ W1,2

0 (D) the projection PHv ∈ W1,2(D) is not an element of W1,2
0 (D). As a

consequence, in formula (4.2.13) we obtain an additional boundary integral which is difficult to
bound, and properties (ii) and (iii) of Lemma 4.2.1 are not clear to hold in this setting anymore.
To avoid this problematic issue, we consider Problem 4.1.1 with space periodic boundary condi-
tions on a set Q = [0, L]d, L > 0. Let Hper, Vper and Wn,2

per denote the space periodic analogues
of the spaces H, V and Wn,2. In this case optimal convergence of splitting Algorithm 4.3 also
holds for general noise. We have the following

Theorem 4.5.1. Let T > 0, D ⊂ Rd, d = 2, 3 be a bounded convex polyhedral domain, and
(4.2.1)–(4.2.3) be valid. Denote by u ∈ L2

(
Ω; C ([0, T ];Vper)

)
∩L2

(
Ω;L2(0, T ;W2,2

per)
)
the strong

solution of (4.1.1), and {ũm}Mm=1 ⊂ L2
(
Ω,W1,2

per(D)
)
solves Algorithm 4.3. There exists a con-

stant C ≡ C
(
E[‖u0‖W1,2 ], DT

)
> 0, such that

(4.5.5) max
1≤m≤M

(
E
[
‖u(tm, ·)− ũm‖2L2

])1/2
+
(
E
[
k

M∑
m=1

‖∇
(
u(tm, ·)− ũm

)
‖2L2

])1/2
≤ C
√
k .

Again, note that condition (4.2.9) is not needed in this case to validate (4.5.5).
Here we give some numerical motivations for Algorithm 4.3 by considering the same setting

as at the beginning of this section. Figure 4.5.6 shows error plots for different types of noise. We
observe an improvement in the case of general noise to almost optimal order, which is rooted
in the improved regularity of the deterministic pressure, which is exclusively needed for optimal
convergence behavior of this time-splitting scheme,

E

[
k

M∑
m=1

‖∇πm‖2L2

]
≤ C.
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Figure 4.5.6: Solenoidal noise: Rates of convergence for velocity iterates of Algorithm 4.3 with
non divergence-free noise (left), and solenoidal noise (right).

4.6 Summary and outlook

We analysed splitting-based schemes for the stochastic Stokes equations.
We proved error estimates for the stochastic version of the Chorin scheme, and theory ev-

idences how this estimate depends on the regularity of the Lagrange multiplier, which is de-
termined by the noise. For the proof we split the error in several parts, to control the error
contributions from the pressure stabilisation and from the semi-implicit treatment of the pres-
sure. To prove optimal error estimates, we have to assume that the noise takes values in the
space of solenoidal vector fields.

Numerical experiments confirm that the irregularity of the pressure affects the convergence
of the splitting scheme. Thus, we consider a generalised version of the splitting scheme, which
includes a step where the noise is projected on the space of solenoidal vector fields. This scheme
delivers optimal convergence independently of the type of noise.

Further steps in this direction may be the analysis of other splitting schemes, e.g. the
Chorin-Penalty scheme from [113], or the application of such schemes to the SNSEs, and study
the interaction of noise, Lagrange multiplier and convection term.

Acknowledgment: I warmly thanks Prof. Dr. Hausenblas for the help in writing this
chapter. I gratefully acknowledge interesting discussions on the subject with Z. Brzezniak (U
York) and S. Peszat (Polish Academy of Sciences).
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Chapter 5

Strong rates of convergence

5.1 Introduction

We consider the system of equations describing the motion of incompressible Newtonian fluids
subject to random forcing on the torus D = (0, L)2 ⊂ R2. Let P = (Ω,F ,F,P) be a stochastic
basis, with filtration F =

{
Ft ; t ∈ [0, T ]

}
. We denote DT := (0, T ) ×D, for 0 < T < ∞. Let

u0 : Ω ×D → R2 be a given random variable. We seek a vector field u : Ω ×DT → R2, and a
scalar field π : Ω×DT → R such that the stochastic Navier-Stokes equations

u̇− ν∆u + [u · ∇]u +∇π = g(u)Ẇ in DT × Ω ,(5.1.1)
divu = 0 in DT × Ω ,(5.1.2)

are satisfied, together with initial and boundary conditions

u(0, ·) = u0 in D × Ω and u(t,x + Lbi) = u(t,x) on (0, T )× ∂D × Ω(5.1.3)

for i = 1, 2. Here u · ∇ =
∑n

i=1 ui∂i, {bj}2j=1 is the canonical basis of R2, and g is an operator-
valued random field, while W is a Wiener process on P that takes values in a Hilbert space to
be specified later.

Stochastic Navier-Stokes equations are employed since long time as a complementatory model
of the deterministic one to better understand the rôle of small perturbations or (thermodynamic)
fluctuations, which are present in fluid flows, and to get further insight regarding possible non-
uniqueness, and loss of initial regularity of solutions in the deterministic case (in 3D). In appli-
cations, the noise can be used to e.g. model structural vibrations in aeronautics, heating and
industrial pollution in atmospheric dynamics, or the influence of ice or vulcans in some models
of atmosphere-ocean evolution.

In this chapter, we show convergence with rates for space-time discretisations of the incom-
pressible Navier-Stokes equations (5.1.1)–(5.1.3) using variational methods; we exploit improved
spatial regularity of solutions of (5.1.1)–(5.1.3), and Hölder continuity in time of the velocity
gradient to arrive at convergence in probability with rate 1/4 for the implicit Euler scheme in
the L∞(0, T ;L2(D))-norm, which improves to the rate 1/2 in the L2(0, T ;L2(D))-norm. In fact,
Euler iterates {um}Mm=1 are only accounted for on a subset Ωk ⊂ Ω, with P[Ω \ Ωk] → 0 for
k → 0, where k > 0 is the (equi-distant) time step; our first result is then the estimate

E

[
1Ωk

(
max

1≤m≤M

∥∥u(tm)− um
∥∥2

L2 + k1−η
M∑
m=1

∥∥u(tm)− um
∥∥2

L2

)]
≤ C kη−ε (ε > 0) ,(5.1.4)

for all η ∈ (0, 1/2); see Section 5.3. This bound reflects the interplay of the stochastic forcing
and the non-Lipschitz nonlinearity: It is the set Ωk which singles out trajectories whose approx-
imation could then be handled by a discrete Gronwall argument. As a consequence of (5.1.4),
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convergence in probability with asymptotic rate 1/4, and 1/2 respectively follows; see Corollary
5.3.1:

lim
C̃→∞

lim
k→0

P

[
max

1≤m≤M

∥∥u(tm)− um
∥∥2

L2 + k1−η
M∑
m=1

∥∥u(tm)− um
∥∥2

L2 ≥ C̃ kη−ε
]

= 0 ,(5.1.5)

for all ε > 0.
Since the proposed scheme is nonlinear, in a second step, we analyse the error of a semi-

implicit treatment of the nonlinear drift. Estimates (5.1.4) and (5.1.5) remain valid for corre-
sponding iterates {vm}Mm=1 from the semi-implicit scheme, but the related subset Ωk may not be
constructed from {vm}Mm=1 anymore: Ωk is again defined in terms of the implicit Euler iterates
{um}Mm=1 as in (5.1.4), for which P[Ωk]→ 1 holds in case k → 0.

The third goal of this paper is the finite element approximation of problem (5.1.1)–(5.1.3).
Stable pairings of velocity and pressure ansatz spaces (Hh, Lh), each assembled from functions
of vanishing mean, satisfy the discrete LBB-condition

(5.1.6) sup
ΦΦΦ∈Hh

(divΦΦΦ,Π)

‖∇ΦΦΦ‖L2

≥ C ‖Π‖L2 ∀Π ∈ Lh ,

with a constant C > 0 independent of the mesh size h > 0. We may then define the space
Vh ⊂ Hh of discretely divergence-free velocity fields:

Vh =
{
ΦΦΦ ∈ Hh

∣∣ (divΦΦΦ,Λ) = 0 ∀ Λ ∈ Lh
}
* Vper ,(5.1.7)

where Vper denotes the space of periodic divergence-free functions, see Section 5.2.1.
As it will turn out from the error analysis in Section 5.4, a main difficulty are the weak

stability properties of solutions of the space-time discretisation (see Algorithm 5.3) in Lemma
5.4.1, as opposed to those for Algorithm 5.1 in Lemma 5.3.1 for the time discretisation. To
compensate for this lack of stability, a perturbation argument in combination with a boot-
strapping argument is employed to show optimal convergence in Theorem 5.4.1. This is in
contrast to the deterministic version of (5.1.1)–(5.1.3), where a corresponding ‘pathwise’ version
of Lemma 5.4.1 is enough to show optimal convergence of the related modification of Algorithm
5.3; cf. [71]. Moreover, as can be seen from Theorem 5.4.1, the explicit appearance of the pressure
of Algorithm 5.1 in the error estimate illustrates the rôle of noise that determines the convergence
behavior of a general discrete LBB-stable discretisation in Algorithm 5.3. To illustrate this
problematic issue, we recall the following estimate for approximates V ∈ Vh of the deterministic
stationary incompressible Stokes equations with solutions (v, π) ∈ (Vper ∩W2,2)×W 1,2/R,

‖∇(v −V)‖L2 ≤ C

(
inf

ΦΦΦ∈Vh
‖∇(v −ΦΦΦ)‖L2 + inf

Ξ∈Lh
sup

06=ΦΦΦ∈Vh

(divΦΦΦ, π − Ξ)

‖∇ΦΦΦ‖L2

)
.(5.1.8)

As a consequence, the finite element error for the velocity also depends on the best-approximation
error of the pressure. Hence, it is because of the limited regularity of the pressure. As opposed
to the deterministic case, the restricted regularity of the pressure, see [92],

π ∈ L1
(

Ω;W−1,∞(0, T ;W1,2(D)/R
))

(5.1.9)

that also the accuracy of velocity fields computed from general discrete LBB-stable mixed finite
elements may be affected in the presence of a non-solenoidal noise; see Theorem 5.4.1.

In order to avoid this problematic issue, an alternative discretisation strategy that uses an
inner approximation Vh ⊂ Vper by finite element pairings may be preferred. With this ansatz,
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the second term on the right-hand side of (5.1.8) vanishes, leading to the best approximation
error

‖∇(v −V)‖L2 ≤ C inf
ΦΦΦ∈Vh

‖∇(v −ΦΦΦ)‖L2 .

An example for a divergence-free finite element pairing is the Scott-Vogelius element from [121],
which is recalled in Section 5.4. In this case, variational arguments similar to those given for
the time discretisation may be applied to deduce optimal rates of convergence for a related
space-time discretisation of (5.1.1)–(5.1.3),

E
[
1Ωk∩Ωh max

1≤m≤M

∥∥u(tm)−Um
∥∥2

L2

]
≤ C

(
kη−ε + h2−ε) (ε > 0) ,

E

[
1Ωk∩Ωhk

M∑
m=1

∥∥u(tm)−Um
∥∥2

L2

]
≤ C

(
k2η−ε + h2−ε) (ε > 0) ,

where {Um}Mm=1 is the fully discrete Vper-valued solution of Algorithm 5.3, and Ωh ⊂ Ω satisfies
P[Ωh]→ 1 for h→ 0.

The convergence analysis presented in this work may be simplified to cover the stochastic
incompressible Stokes equations as well, where the regularity properties given by Lemmata 5.2.1
and 5.3.1 remain valid; by taking into account the improved Hölder continuity for the gradient
of the solution of the Stokes equations, we obtain strong convergence with rate 1/2 in time, and
1 in space. It is due to the absence of a nonlinear drift that we may choose a set Ωk ≡ Ωh ≡ Ω,
and ε = 0 in estimate (5.1.4); see Remarks 5.3.3 and 5.4.3 for further details.

Our hope is that the tools developed in this work to accurately discretise the stochastic
Navier-Stokes equations may be applied to construct both, reliable and efficient space-time
discretisations of more general constrained, nonlinear stochastic evolution equations. The re-
mainder of this chapter is organised as follows. In Section 5.2 we collect background material,
and necessary assumptions on data in (5.1.1)–(5.1.3). In Section 5.3 we show stability and con-
vergence results for the solutions of the different time discretisation schemes, while in Section
5.4 we extend these results to the full discretisation in space and time.

5.2 Preliminaries

5.2.1 Function spaces

Let
(
Lp(D), ||·||Lp

)
and

(
W k,p(D), ||·||Wk,p

)
denote the usual Lebesgue and Sobolev spaces

endowed with their usual norms; spaces with blackboard letters (e.g., Wk,p(D) := [W k,p(D)]2)
represent the spaces of vector valued functions. We denote by Lpper(D) andW k,p

per(D) the Lebesgue
and Sobolev space of functions that are periodic and have vanishing mean respectively. For
a normed space X, Lp(0, T ;X) denotes the Bochner space of strongly measurable functions
ϕ : [0, T ] → X such that

∫ T
0 ||ϕ||

p
X dt < ∞, and X∗ denotes the dual space of X. The inner

product for functions in L2(D) is defined as (u,v) :=
∑2

i=1

∫
D uivi dx.

For the study of our problem we need the following spaces:

Hper =
{
u ∈ L2

per(D) | div u = 0 weakly in D
}
,

Vper =
{
u ∈W1,2

per(D) | div u = 0 weakly in D
}
.

Note that, since ‖v‖V = ‖v‖Vper for all v ∈ Vper, we will use only ‖ · ‖V in the following.
We define the self-adjoint, inversely compact operator A : D(A) → Hper via Au := −Pper

H ∆u,
where Pper

H : L2
per(D)→ Hper denotes the Leray-projection, and define D(A) = W2,2(D)∩Vper.

We recall that this projection is stable in L2 and W1,2; see [125, Remark 1.6]. The space of
bounded linear operators between two vector spaces X and Y will be denoted by L(X,Y ).
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5.2.2 General assumptions, and spatial regularity of the solution

We summarise the assumptions needed below for data W, Q, g, and u0. In the following we
either choose HHH = W1,2

per, or HHH = Vper, to distinguish between non-solenoidal or solenoidal noise
in (5.1.1)–(5.1.3). The following assumptions will be made.

(S1) For Q ∈ I1(KKK), let W = {W(t, ·) ; t ∈ [0, T ]} be a Q-Wiener process with values in a
separable Hilbert space KKK defined on the stochastic basis P.

(S2) Let the operator g : L2 → L(KKK,HHH) be Lipschitz continuous with linear growth, i.e., there
exist constants K1,K2 > 0 such that

‖g(u)‖L(KKK,L2) ≤ K1‖u‖L2 , ‖g(u)− g(v)‖L(KKK,L2) ≤ K2‖u− v‖L2 .

(S3) The operators A : D(A)→ Hper, g : L2 → L(KKK,HHH), and Q : KKK →KKK satisfy the following
estimates, with K3 ∈ (0, ν/3), and K4 > 0,

Tr
(
g(u)Qg∗(u)

)
≤ K3‖u‖2V , Tr

(
Ag(u)Qg∗(u)

)
≤ K4‖u‖2V .

(S4) u0 ∈ Lp
(
Ω,F0,P;Vper

)
for some p ≥ 2.

Remark 5.2.1. Conditions (S1), (S2), and (S4) are needed to prove existence of solutions; see
e.g. [46, 27]. The second condition in (S3) is needed to conclude Lemma 5.2.1, (i), for p = 2;
see [25, Remark 4.1]. The first condition in (S3) is needed to generalise this result to p > 2:
admitting only K3 sufficiently small allows to control the noise by the main part of the drift.
The second condition in (S3) implies the first, in case K3 = K4/λ1 , and K3 ∈ (0, 2ν), where λ1

denotes the smallest eigenvalue of A.

We give the definition of a strong solution, see for instance [27].

Definition 5.2.1. A Vper-valued adapted process u ∈ L2(Ω;C([0, T ];V)) ∩M2([0, T ],F;Vper ∩
W2,2) on P is a strong solution to problem (5.1.1)–(5.1.3) if for every t ∈ [0, T ], and all φφφ ∈ Vper,
there holds (

u(t),φφφ
)

+ ν

∫ t

0

(
∇u(s),∇φφφ

)
ds+

∫ t

0

(
[u(s) · ∇]u(s),φφφ

)
ds

=
(
u0,φφφ

)
+

∫ t

0

(
φφφ,g(u(s))dW(s)

)
P− a.s.

Higher moments with stronger norms are obtained for solutions in the following result; its
proof requires ν > 0 (see (S3), first part) to be sufficiently large, in order to control the effects
given by the random forcing term. This is a slight generalisation of corresponding results in
[46, 27]. A similar result, but for additive noise is proved in [42, Lemma A.1].

Lemma 5.2.1. Assume (S1)–(S4), and HHH = W1,2
per. Then solutions of (5.1.1)–(5.1.3) satisfy for

2 ≤ p≤ 8

(i) sup
0≤t≤T

E
[
‖u(t)‖pV

]
+ ν E

[∫ T

0
‖u(t)‖p−2

V ‖Au(t)‖2L2 dt

]
≤ CT,p ,

(ii) E

[
sup

0≤t≤T
‖u(t)‖pV

]
≤ CT,p ,

where CT,p = CT,p

(
TrQ,E

[
‖u0‖pV

] )
> 0.
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Proof. Use Itô’s formula for the process given by {‖u(t)‖pV ; t ≥ 0}. We compute the Fréchet
derivatives of the norm,

D‖u‖pV = p‖u‖p−2
V Au , D2‖u‖pV = p(p− 2)‖u‖p−4

V Au⊗Au + p‖u‖p−2
V A ,

such that

Tr
(
D2‖u‖pVg(u)Qg∗(u)

)
≤ p(p− 2)‖u‖p−4

V ‖Au‖2L2Tr
(
g(u)Qg∗(u)

)
+p‖u(s)‖p−2

V Tr
(
Ag(u)Qg∗(u)

)
.

To obtain inequality (i), we use Itô’s formula and assumption (S3) to get

E
[
‖u(t)‖pV + pν

∫ t

0
‖u(s)‖p−2

V ‖Au(s)‖2L2 ds

]
≤ E

[
‖u0‖pV +

p

2

∫ t

0
‖u(s)‖p−2

V Tr(Ag(u)Qg∗(u)) ds

]
+
p(p− 2)

2
E
[∫ t

0
‖u‖p−4

V ‖Au‖2L2Tr(g(u)Qg∗(u)) ds

]
≤ E

[
‖u0‖pV

]
+K4

p

2

∫ t

0
E
[
‖u(s)‖pV

]
ds+ E

[
K3

p(p− 2)

2

∫ t

0
‖u‖p−2

V ‖Au‖2L2 ds

]
.

In particular, after absorbing the the last term of the right-hand side to the left, we obtain the
term

E
[
p

(
ν − (p− 2)

2
K3

)∫ t

0
‖u‖p−2

V ‖Au‖2L2 ds

]
which is positive thanks to assumption (S3), since we have ν − 3K3 > 0.

For assertion (ii), after the Itô formula we use the Burkholder-Davis-Gundy inequality to-
gether with assumption (S3), following [44, Appendix 1].

5.2.3 Hölder continuity of the solution.

Let {e−tA ; t ≥ 0} denote the analytic contraction semigroup in Hp,per := {u ∈ Lpper ; divu =
0 weakly} for 1 < p < ∞, which is generated by the Stokes operator A in the case of periodic
boundary conditions. There holds Hper = Hper,2.

Lemma 5.2.2. Let a > 0, b ∈ [0, 1], and 1 < p <∞. There exist constants Ca,p, Cb,p > 0, such
that for all t > 0 there holds

(i)
∥∥Aae−tA

∥∥
L(Hper,p)

≤ Ca,p t−a ,

(ii)
∥∥A−b(IdHper,p − e−tA

)∥∥
L(Hper,p)

≤ Cb,p tb .

Proof. Estimate (i) is a consequence of the analyticity of the semigroup. Once we have (i), we
can proceed as in the proof of [109, Theorem 2.6.13] to conclude (ii).

We may now study Hölder continuity properties of strong solutions of (5.1.1)–(5.1.3) in
Lp-norms. For this purpose we use tools from semigroup theory (see, e.g. [111, Appendix]).

Lemma 5.2.3. Suppose (S1)–(S4), and HHH = W1,2
per. For the solution of problem (5.1.1)–(5.1.3),

with u0 ∈ L2p̃(Ω;V), 2 ≤ p̃ <∞, there holds

(i) E
[
‖u(t)− u(s)‖p̃L4

]
≤ C |t− s|ηp̃ ∀ 0 < η <

1

2
,

(ii) E
[∥∥u(t)− u(s)

∥∥p̃
V

]
≤ C |t− s|

ηp̃
2 ∀ 0 < η <

1

2
.
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Proof. Due to the regularity estimate given in Lemma 5.2.1, and to [110, Proposition F.0.5, (i)],
we have the following representation for the strong solution of (5.1.1)–(5.1.3),

u(t) = e−tAu0 +

∫ t

0
e−(t−s)APHper [u(s) · ∇]u(s) ds+

∫ t

0
e−(t−s)APHperg(u) dW(s) .

For t2 < t1, there holds

u(t1)− u(t2) =
(
e−t1A − e−t2A

)
u0

+

(∫ t1

0
e−(t1−s)APHper [u(s) · ∇]u(s) ds−

∫ t2

0
e−(t2−s)APHper [u(s) · ∇]u(s) ds

)
(5.2.1)

+

(∫ t1

0
e−(t1−s)APHperg(u) dW(s)−

∫ t2

0
e−(t2−s)APHperg(u) dW(s)

)
=: I + II + III .

First step: proof of (i). We only bound term II in (5.2.1). The control of terms I and III
follows from standard estimates; see [111, Proof of Proposition 3.4]. From [54, Lemma 2.2] we
have

‖A−1/2PHper [u · ∇]u‖L4 ≤ C ‖A1/8u‖2L4 .

Using the Sobolev embeddings

W1,2(D) ⊂W3/4,2(D) ⊂W1/4,4(D) ,

we then obtain

(5.2.2) ‖A−1/2PHper [u · ∇]u‖L4 ≤ C ‖A1/2u‖2L2 .

We rearrange terms as follows,

II =

∫ t1

0
e−(t1−s)APHper [u(s) · ∇]u(s) ds−

∫ t2

0
e−(t2−s)APHper [u(s) · ∇]u(s) ds

=

∫ t2

0

(
e−(t1−s)A − e−(t2−s)A

)
PHper [u(s) · ∇]u(s) ds

+

∫ t1

t2

e−(t1−s)APHper [u(s) · ∇]u(s) ds

= IIa + IIb .

For IIa we have by (5.2.2), Lemma 5.2.2, (i) and (ii),

‖IIa‖L4 ≤
∫ t2

0

∥∥∥A1/2
(

e−(t1−s)A − e−(t2−s)A
)∥∥∥
L(Hper,4)

‖A−1/2PH[u · ∇]u‖L4 ds

≤ C

∫ t2

0

∥∥∥A1/2
(

e−(t1−s)A − e−(t2−s)A
)∥∥∥
L(Hper,4)

‖A1/2u‖2L2 ds

≤ C

∫ t2

0

∥∥∥A1/2+ηe−(t2−s)A
∥∥∥
L(Hper,4)

∥∥∥A−η(e−(t1−t2)A − Id
)∥∥∥
L(Hper,4)

‖A1/2u‖2L2 ds

≤ C |t1 − t2|η
∫ t2

0

‖A1/2u(s)‖2L2

|t2 − s|1/2+η
ds .
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Then, for any p̃ ≥ 1, and 0 < η < 1
2 ,

E
[
‖IIa‖p̃L4

]1/p̃
≤ C |t1 − t2|η E

(∫ t2

0

1

|t2 − s|1/2+η
‖A1/2u(s)‖2L2 ds

)p̃1/p̃

≤ C |t1 − t2|η
(

sup
0≤t≤T

E
[
‖A1/2u(t)‖2p̃L2

]1/p̃ )
.

For the second term IIb, by using the same methods, we have

E
[
‖IIb‖p̃L4

]1/p̃
≤ C |t1 − t2|η

(
sup

0≤t≤T
E
[
‖A1/2u(t)‖2p̃L2

]1/p̃
)
.

Second step: proof of (ii). From [54, Lemma 2.2] we have

(5.2.3) ‖A−1/4PHper [u · ∇]u‖L2 ≤ C ‖A1/2u‖2L2 .

Then, following the computations in the first step, with Hper,4 replaced by Hper, and using
(5.2.3), we have

‖IIa‖L2 ≤
∫ t2

0

∥∥∥A3/4
(

e−(t1−s)A − e−(t2−s)A
)∥∥∥
L(Hper)

‖A−1/4PHper [u · ∇]u‖L2 ds

≤ C |t1 − t2|η/2
∫ t2

0

‖A1/2u(s)‖2L2

|t2 − s|3/4+η/2
ds .

This estimate leads to

E
[
‖IIa‖p̃L2

]1/p̃
≤ C |t1 − t2|η/2

(
sup

0≤t≤T
E
[
‖A1/2u(t)‖2p̃L2

]1/p̃
)
,

and, in the same way we obtain

E
[
‖IIb‖p̃L2

]1/p̃
≤ C |t1 − t2|η/2

(
sup

0≤t≤T
E
[
‖A1/2u(t)‖2p̃L2

]1/p̃
)
.

5.2.4 Discretisation in space

Let Th be a quasi-uniform triangulation of the domain D ⊂ R2, using triangles of maximal
diameter h > 0, and D =

⋃
K∈T K. Let Pi(K) ≡ [Pi(K)]2 be the space of polynomial vector

fields on K of degree less or equal to i. We introduce finite element function spaces (i, j ∈ N0)

Hh :=
{
U ∈ C0(D) ∩W1,2(D) : U ∈ Pi(K) ∀K ∈ Th

}
,

Lh :=
{

Π ∈ L2
0(D) : Π ∈ Pj(K) ∀K ∈ Th

}
,

which satisfy the discrete LBB-condition (5.1.6), and the space Vh is defined in (5.1.7). We
denote by Q0

h : L2 → Vh the L2-orthogonal projection,

(5.2.4)
(
z−Q0

hz,ΦΦΦ
)

= 0 ∀ΦΦΦ ∈ Vh .
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The following estimates are standard, see for instance [70],

‖z−Q0
hz‖L2 + h ‖∇

(
z−Q0

hz
)
‖L2 ≤ Ch2 ‖Az‖L2 ∀ z ∈ Vper ∩W2,2(D) ,(5.2.5)

‖z−Q0
hz‖L2 ≤ Ch ‖∇z‖L2 ∀ z ∈ Vper ∩W1,2(D) .(5.2.6)

We need the following stability estimates from [59, Lemma 3.1],

‖Q0
hv‖L2 ≤ C ‖v‖L2 ∀v ∈ L2 ,(5.2.7)

‖∇Q0
hv‖L2 ≤ C ‖∇v‖L2 ∀v ∈ Vper .(5.2.8)

We recall the inverse inequality, which holds for all ΦΦΦ ∈ Hh,

‖ΦΦΦ‖W`,q1 ≤ C h
m−`+dmin{ 1

q1
− 1
q2
,0} ‖ΦΦΦ‖Wm,q2 ∀ 1 ≤ q1, q2 ≤ ∞ , 0 ≤ m ≤ ` .

5.2.5 Convergence in probability

We recall the definition of convergence in probability with rates from [111, Definition 2.7].

Definition 5.2.2. Let X be a Banach space, and Ik = {tm}Mm=1 an equi-distant mesh covering
[0, T ], where k = tm − tm−1 for all m = 1, . . . ,M is the time-step. Let {um}Mm=1 ⊂ L2(Ω;X) be
a sequence of X-valued random variables, and u be a stochastic process in L2(Ω;C([0, T ];X)).
We say that {um}Mm=1 converges in probability with rate α > 0 towards {u(tm)}Mm=1, if

lim
C→+∞

lim
k→0

P
[

max
1≤m≤M

‖um − u(tm)‖X ≥ C kα
]

= 0 .

For a comparison of the various types of convergence, we refer to [111, Lemma 2.8].

5.3 Convergence with rates of time discretisation schemes

In this section, we consider different time discretisation schemes on the equi-distant mesh Ik :=
{tm}Mm=1 covering [0, T ] with mesh-size k = T/M > 0, where t0 = 0, and tM = T .

Algorithm 5.1. Let u0 := u0 be a given Vper-valued random variable. Find for every m ∈
{1, . . . ,M} a tuple of random variables (um, πm) with values in Vper ×L2

per, such that P-almost
surely

(um − um−1,φφφ) + kν (∇um,∇φφφ) +

k
(
[um · ∇]um,φφφ

)
− k(πm,divφφφ) =

(
g(um−1)∆mW,φφφ

)
,(5.3.1)

(divum, ψ) = 0 ,(5.3.2)

for all φφφ ∈W1,2
per and ψ ∈ L2

per.

Here ∆mW = W(tm) −W(tm−1) ∼ N (0, kQ) , with uniform mesh size k := tm+1 − tm.
The existence of pressure iterates follows by de Rham theory ([125, p. 10]).

To analyse the error behavior of Algorithm 5.1, we reformulate equations (5.3.1) and (5.3.2)
in the following form:

(um − um−1,φφφ) + νk(∇um,∇φφφ)

+k
(

[um · ∇]um,φφφ
)

=
(
g(um−1)∆mW,φφφ

)
∀φφφ ∈ Vper, P− a.s.(5.3.3)

The stability of solutions {um}Mm=1 ⊂ L2(Ω;Vper) is studied in the following lemma.
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Lemma 5.3.1. Let u0 ∈ L2q
(
Ω;Vper

)
for an integer 1 ≤ q <∞ be given, such that E

[
‖u0‖2qV

]
≤

C. Assume that (S1)–(S4) are valid, with HHH = W1,2
per. Then {um}Mm=1 ⊂ L2(Ω;Vper) from

Algorithm 5.1 satisfies

(i) E
[

max
1≤m≤M

‖um‖2qV + 2νk
M∑
m=1

‖um‖2q−2
V ‖Aum‖2L2

]
≤ CtM ,q ,

(ii) E

[
M∑
m=1

‖um − um−1‖2L2‖um‖2L2 +
M∑
m=1

‖∇(um − um−1)‖2L2‖∇um‖2L2

]
≤ CtM ,2 ,

(iii) E

( M∑
m=1

‖um − um−1‖2V

)4

+

(
k

M∑
m=1

‖Aum‖2V

)4
 ≤ CtM ,3 ,

where CtM ,q ≡ CtM ,q
(
TrQ,E[‖u0‖2qV ]

)
> 0 does not depend on k, h > 0. Moreover, the iterates

um are Ftm-measurable.

Proof. The measurability, assertion (i), the second part of (ii), and (iii) may be shown as in the
proof of Lemma 3.3.1, using φφφ = Aum in (5.3.3). The first part of (ii) may be found in Lemma
3.3.1.

In case of a semi-implicit treatment of the nonlinearity, we do not get the improved space
regularity, since in general (

[um−1 · ∇]um,Aum
)
6= 0 .(5.3.4)

The next lemma, which is essential for the study of the splitting scheme and the finite element
discretisation, shows that to obtain uniform bounds for the pressure iterates crucially depends
on the noise used in Algorithm 5.1.

Lemma 5.3.2. Let 2 ≤ q <∞. Consider the iterates {um, πm}Mm=1 from Algorithm 5.1.
(i) For HHH = Vper in (S2), there holds

E

[
k

M∑
m=1

‖∇πm‖2L2

]
≤ CtM ,2 .(5.3.5)

(ii) For HHH = W1,2
per in (S2), there holds

E

[
k

M∑
m=1

‖∇πm‖2L2

]
≤ CtM ,2k

−1 .(5.3.6)

Proof. (i) Let HHH = Vper. We formally multiply the strong form of (5.3.1) with ∇πm. Then we
use

(
gm−1∆mW,∇πm

)
= 0 to conclude

k ‖∇πm‖2L2 ≤ k ‖∆um‖L2‖∇πm‖L2 + k ‖[um · ∇]um‖L2‖∇πm‖L2

≤ Ck
(
‖∆um‖2L2 + ‖[um · ∇]um‖2L2

)
+
k

2
‖∇πm‖2L2 .(5.3.7)

Since
‖[um · ∇]um‖2L2 ≤ C ‖um‖L2‖∇um‖2L2‖∆um‖L2 ,

we may conclude the assertion from Lemma 5.3.1, (i).
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(ii) Let HHH = W1,2
per. We proceed accordingly to obtain

k‖∇πm‖2L2 ≤ k ‖∆um‖L2‖∇πm‖L2

+k ‖[um · ∇]um‖L2‖∇πm‖L2 + ‖g(um−1)∆mW‖L2‖∇πm‖L2 .(5.3.8)

We only have to estimate the last term on the right-hand side. We use Assumption (S2), and
the tower property for martingales to compute

E
[
‖g(um−1)∆mW‖L2‖∇πm‖L2

]
≤ C

k
E
[
‖g(um−1)∆mW‖2L2

]
+
k

8
E
[
‖∇πm‖2L2

]
≤ C E

[
‖um−1‖2L2

]
+
k

8
E
[
‖∇πm‖2L2

]
.

By Lemma 5.3.1, (i), we then infer

E

[
k

M∑
m=1

‖∇πm‖2L2

]
≤ CtM

k
.

The remainder of this section is as follows: Rates of convergence for iterates of Algorithm
5.1 are established in Section 5.3.1 below. Then we consider Algorithm 5.2 which uses a semi-
implicit discretisation of the convection term. Here, we use the stability of the fully implicit
scheme to show corresponding error estimates.

5.3.1 Fully implicit time discretisation

Let u ≡ {u(t) ; t ∈ [0, T ]} be the strong solution to equations (5.1.1)–(5.1.3). Define the error
em = u(tm)− um. We subtract the equation (5.3.3) from the equation in Definition 5.2.1, (iii),
to get

(em − em−1,φφφ) + ν

∫ tm

tm−1

(
∇
(
u(s)− um

)
,∇φφφ

)
ds+

∫ tm

tm−1

([
u(s) · ∇]u(s),φφφ

)
ds

−
∫ tm

tm−1

(
[um · ∇]um,φφφ

)
ds =

(∫ tm

tm−1

g(u) dW − g(um−1)∆mW,φφφ
)
∀φφφ ∈ Vper .(5.3.9)

In this section we prove the first main result, Theorem 5.3.1, in three steps: in the first we
perform an error analysis on the whole set Ω. In the second step we introduce sample subsets
with asymptotic probability one of Ω, in order to handle the stochastic integral and the terms
arising from the nonlinearity. In the last step we apply a Gronwall argument on the sample
subsets to obtain an error bound

Step 1. A preparatory error analysis on Ω. Set φφφ = em and consider the diffusion term(
∇
(
u(s)− um

)
,∇em

)
= ‖∇em‖2L2 +

(
∇
(
u(s)− u(tm)

)
,∇em

)
.

For the second term, thanks to Lemma 5.2.3, (ii), we compute∫ tm

tm−1

E
[
−
(
∇
(
u(s)− u(tm)

)
,∇em

)]
ds

≤
∫ tm

tm−1

E
[
Cδ1
∥∥∇(u(s)− u(tm)

)∥∥2

L2 + δ1‖∇em‖2L2

]
ds(5.3.10)

≤ Cδ1k1+η + δ1kE
[
‖∇em‖2L2

]
(δ1 > 0) .
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Then, for the convection term, on using the skew-symmetricity, there holds

∫ tm

tm−1

(
[um · ∇]um −

[
u(s) · ∇]u(s), em

)
ds

=

∫ tm

tm−1

{(
[em · ∇]um, em

)
−
(

[(u(tm)− u(s)) · ∇]em,u(tm)
)}

ds(5.3.11)

−
∫ tm

tm−1

(
[u(s) · ∇]em,u(tm)− u(s)

)
ds =

∫ tm

tm−1

(
I + II + III

)
ds .

Term I can be bounded as follows,

E [I] ≤ Cδ2 E
[
‖∇um‖2L2‖em‖2L2

]
+ δ2 E

[
‖∇em‖2L2

]
(δ2 > 0) .(5.3.12)

For term II, we find

II ≤ ‖u(tm)− u(s)‖L4‖∇u(tm)‖L2‖em‖L4

≤ C ‖u(tm)− u(s)‖L4‖∇u(tm)‖L2‖em‖1/2L2 ‖∇em‖
1/2
L2(5.3.13)

≤ C ‖u(tm)− u(s)‖2L4‖∇u(tm)‖2L2 + Cδ3 ‖em‖2L2 + δ3 ‖∇em‖2L2 (δ3 > 0) .

Then, using Lemmata 5.2.3, (i) and 5.2.1, (i), for the first term leads to

E

[∫ tm

tm−1

‖u(tm)− u(s)‖2L4‖∇u(tm)‖2L2 ds

]

≤
∫ tm

tm−1

E
[
‖u(tm)− u(s)‖4L4

]1/2 E [‖∇u(tm)‖4L2

]1/2
ds(5.3.14)

≤ C k1+2η
(
E
[
‖∇u(tm)‖4L2

]1/2 ) ≤ C k1+2η .

For the last inequality, we use Lemma 5.2.3, (i) and the boundedness of the eighth moment of
the initial data. Accordingly, we may conclude that

E

[∫ tm

tm−1

III ds

]
≤ Cδ3 k1+2η + δ3 kE

[
‖∇em‖2L2

]
(δ4 > 0) .(5.3.15)

To bound the stochastic integral in (5.3.9), we divide it into two terms.

E

[
max

1≤n≤M

n∑
m=1

∫ tm

tm−1

([
g
(
u(s)

)
− g(um−1)

]
dW(s), em

)]

= E

[
max

1≤n≤M

n∑
m=1

∫ tm

tm−1

([
g
(
u(s)

)
− g(um−1)

]
dW(s), em−1

)]

+E

[
max

1≤n≤M

n∑
m=1

∫ tm

tm−1

([
g
(
u(s)

)
− g(um−1)

]
dW(s), em − em−1

)]
= IV + V .
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For IV , we use the Burkholder-Davis-Gundy inequality, condition (S2), Young’s inequality, and
Lemma 5.2.3, (i), to get

IV ≤ C E

( M∑
m=1

∫ tm

tm−1

‖g
(
u(s)

)
− g(um−1)‖2I2(Q1/2(KKK),L2)

‖em−1‖2L2ds

)1/2


≤ C E

 max
1≤m≤M

‖em−1‖L2

(
M∑
m=1

∫ tm

tm−1

‖g
(
u(s)

)
− g(um−1)‖2I2(Q1/2(KKK),L2)

ds

)1/2
(5.3.16)

≤ C E

[
max

1≤m≤M
‖em‖L2

(
M∑
m=1

∫ tm

tm−1

[
‖g
(
u(s)

)
− g

(
u(tm−1)

)
‖2I2(Q1/2(KKK),L2)

+K2 ‖em−1‖2L2

]
ds

)1/2]

≤ δ4 E
[

max
1≤m≤M

‖em‖2L2

]
+ Cδ4 k

M∑
m=1

(
k2η + E

[
‖em−1‖2L2

])
,

while for the second we have (δ5 > 0)

V ≤ E

 M∑
m=1

Cδ5
∥∥∥∥∥
∫ tm

tm−1

(
g
(
u(s)

)
− g(um−1)

)
dW(s)

∥∥∥∥∥
2

L2

+ δ5 ‖em − em−1‖2L2


= E

[
M∑
m=1

(
Cδ5

∫ tm

tm−1

‖g
(
u(s)

)
− g(um−1)‖2I2(Q1/2(KKK),L2)

ds+ δ5 ‖em − em−1‖2L2ds

)]
(5.3.17)

≤ Cδ5 k
M∑
m=1

(
k2η + E

[
‖em−1‖2L2

])
+ δ5 E

[
M∑
m=1

‖em − em−1‖2L2

]
.

Here, we use Itô’s isometry for the equality, and for the subsequent inequality the estimate

‖g
(
u(s)

)
− g(um−1)‖2I2(Q1/2(KKK),L2)

≤
(

TrQ
)
‖g
(
u(s)

)
− g(um−1)‖2L(KKK,L2) ,

condition (S2), and Lemma 5.2.3, (i).
Step 2. Introduction of sample subsets. After these preparations, we are ready for the main

argument of the error analysis which deals with the inherent nonlinear effects. By summing up
(5.3.9) with φφφ = em from m = 1 to M , and using the identity (a,a− b) = 1

2

(
‖a‖2 − ‖b‖2 +

‖a − b‖2
)
, as well as considering the estimates (5.3.12), (5.3.13) (without expectation), and

absorbing on the left-hand side corresponding terms, we obtain

max
1≤n≤m

[
‖en‖2L2 +

1

2

n∑
`=1

‖e` − e`−1‖2L2 +
ν

2
k

n∑
`=1

‖∇e`‖2L2

]
≤ C k

m∑
`=1

(‖∇u`‖2L2 + 1)‖e`‖2L2

+C k
m∑
`=1

[
‖∇
(
u(t`)− u(t`−1)

)
‖2L2 + ‖u(t`)− u(t`−1)‖2L4‖∇u(t`)‖2L2

]
+Mm(5.3.18)

P-almost surely, where

Mm = max
1≤n≤m

n∑
`=1

(∫ t`

t`−1

g
(
u(s)

)
dW(s)− g(u`−1)∆`W, e`

)
.
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Here, the discrete Gronwall inequality may not be used since the application of Lemma 4.2.1,
(i) only refers to expectations of {‖∇u`‖2L2}M`=1.

To overcome this problem, we consider a subset

Ω̃1
κ,m =

{
ω ∈ Ω

∣∣∣ max
1≤`≤m

‖∇u`‖2L2 ≤ κ
}
⊂ Ω (κ > 0) .(5.3.19)

Thus, Markov’s inequality yields that

P
[

max
1≤`≤M

‖∇u`‖2L2 ≤ κ
]
≥ 1−

E
[
max1≤`≤M ‖∇u`‖2L2

]
κ

∀κ > 0 ,(5.3.20)

which is close to one thanks to Lemma 4.2.1, (i)1.
Now consider the error inequality (5.3.18) for some 1 ≤ ` ≤ M , multiply it by 1

Ω̃1
κ,`−1

,
sum over the index from ` = 1 to n, take the maximum between 1 and m ≤ M , and then the
expectation. The choice of this indicator function is necessary such that the term corresponding
to the stochastic integral is a martingale, which allows the use of the Burkholder-Davis-Gundy
inequality. So we obtain for the first two terms on the left-hand side of (5.3.18)

E

[
max

1≤n≤m

n∑
`=1

1
Ω̃1
κ,`−1

(‖e`‖2L2 − ‖e`−1‖2L2)

]

= E

[
max

1≤n≤m

(
1

Ω̃1
κ,n−1
‖en‖2L2 − 1Ω̃1

κ,0
‖e0‖2L2 +

n∑
`=2

(1
Ω̃1
κ,`−2

− 1
Ω̃1
κ,`−1

)‖e`−1‖2L2

)]
(5.3.21)

≥ E
[

max
1≤n≤m

1
Ω̃1
κ,n−1
‖en‖2L2

]
,

where we use the fact that the sum in the second line is positive because Ω̃1
κ,m ⊂ Ω̃1

κ,m−1, and
that e0 = 0 P-almost surely. The next term to be considered corresponds to IV from (5.3.16).
Recall that now we have the stochastic integral

M̃m = max
1≤n≤m

n∑
`=1

(
1

Ω̃1
κ,`−1

∫ t`

t`−1

g
(
u(s)

)
dW(s)− g(u`−1)∆`W, e`

)
.

The bound corresponding to (5.3.16) now reads

ĨV ≤ C E

( m∑
`=1

1
Ω̃1
κ,`−1

∫ t`

t`−1

‖g
(
u(s)

)
− g(u`−1)‖2L2(KKK0,L2)‖e

`−1‖2L2ds

)1/2


≤ C E

 max
1≤n≤m

1
Ω̃1
κ,n−1
‖en−1‖L2

(
m∑
`=1

1
Ω̃1
κ,`−1

∫ t`

t`−1

‖g
(
u(s)

)
− g(u`−1)‖2L2(KKK0,L2)ds

)1/2


≤ δ4 E
[

max
1≤n≤m

1
Ω̃1
κ,n−1
‖en‖2L2

]
+ Cδ4 k

m∑
`=1

(
k2η + E

[
1

Ω̃1
κ,`−1
‖e`‖2L2

])
(δ4 > 0) ,

where we use the Burkholder-Davis-Gundy inequality, and, in the last inequality, the fact that
1

Ω̃1
κ,n
‖en‖L2 ≤ 1

Ω̃1
κ,n−1
‖en‖L2 for every 1 ≤ n ≤M . The term corresponding to V may be dealt

with as before.
We split the first term on the right-hand side of (5.3.18), in order to get advantage of the

set defined in (5.3.23) below. We obtain

C k

m∑
`=1

‖∇u`‖2L2‖e`‖2L2 ≤ Ck
m∑
`=1

‖∇(u` − u`−1)‖2L2‖e`‖2L2 + Ck

m∑
`=1

‖∇u`−1‖2L2‖e`‖2L2 .
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Then using estimates (5.3.21), (5.3.12), (5.3.10), (5.3.14), (5.3.15), and the bound for ĨV ,
we conclude

E

[
max

1≤n≤m

(
1

Ω̃1
κ,n−1
‖en‖2L2 +

1

2

n∑
`=1

1
Ω̃1
κ,`−1
‖e` − e`−1‖2L2 +

ν

2
k

n∑
`=1

1
Ω̃1
κ,`−1
‖∇e`‖2L2

)]

≤ C κk
m∑
`=1

E
[

max
1≤n≤`

1
Ω̃1
κ,n−1
‖en‖2L2

]
+ C

(
kη + k2η

)
(5.3.22)

+Ck
m∑
`=1

E
[
‖∇(u` − u`−1)‖2L2‖e`‖2L2

]
.

Recall that the order-limiting term Ckη is a consequence of (5.3.10), which itself follows from
the Hölder regularity properties in Lemma 5.2.3. We compute

Ck

m∑
`=1

E
[
‖∇(u` − u`−1)‖2L2‖e`‖2L2

]
≤ Ck

m∑
`=1

E
[
‖∇(u` − u`−1)‖2L2(‖u`‖2L2 + ‖u(t`)‖2L2)

]
.

To control the first term, we use Poincaré inequality to obtain

Ck
m∑
`=1

E
[
‖∇(u` − u`−1)‖2L2‖u`‖2L2

]
≤ Ck

m∑
`=1

E
[
‖∇(u` − u`−1)‖2L2‖∇u`‖2L2

]
≤ Ck ,

thanks to Lemma 4.2.1, (ii). For the second, we use Hölder’s inequality and Lemma 4.2.1, (iii)

Ck

m∑
`=1

E
[
‖∇(u` − u`−1)‖2L2‖u(t`)‖2L2

]

≤ CkE
[

max
1≤`≤m

‖u(t`)‖4L2

]1/2

E

( m∑
`=1

‖∇(u` − u`−1)‖2L2

)2
1/2

≤ Ck .

The first term is bounded because of Lemma 5.3.1, (i), and the last term can be bounded with
Lemma 5.3.1, (iii).

Step 3. Gronwall argument. Consider the following subset and inclusion,

Ω̃1
κ =

{
ω ∈ Ω

∣∣∣ max
1≤m≤M

‖∇um‖2L2 ≤ κ
}
⊂ Ω̃1

κ,m (κ > 0, m ≤M) .(5.3.23)

The discrete Gronwall inequality then leads to

E
[
1

Ω̃1
κ

max
1≤n≤M

(∥∥en‖2L2 +
1

2

n∑
m=1

‖em − em−1‖2L2 +
ν

2
k

n∑
m=1

‖∇em‖2L2

)]
≤ CeCtMκ kη ,

provided that Cκk < 1. With the constant C > 0 from (5.3.22), we set

κ := C−1 log k−ε (ε > 0) ,

and define Ω1
k := Ω̃1

κ(k). Then

E

[
1Ω1

k
max

1≤n≤M

(∥∥en‖2L2 +
1

2

n∑
m=1

‖em − em−1‖2L2 +
ν

2
k

n∑
m=1

‖∇em‖2L2

)]
≤ C kη−ε (ε > 0) .
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For the computable set Ω1
k ≡ Ω1

k

(
{um}m

)
we have, thanks to Lemmata 5.2.1 and 5.3.1, and for

k < 1,

P
[
Ω1
k

]
≥ 1−

E
[
max1≤m≤M ‖∇um‖2L2

]
log k−ε

:= 1 +
1

ε̃ log k
,

for ε̃ = ε/E
[
max1≤m≤M ‖∇um‖2L2

]
. We can now state our first main result.

Theorem 5.3.1. Let D = (0, L)2, T > 0, and P :=
(
Ω,F ,F,P

)
be a filtered probability space.

Assume that (S1) through (S4) hold, with HHH = W1,2
per. Let u0 ∈ L8(Ω;Vper) be a given random

variable, W be an F-progressively measurable Q-Wiener process on P with Q ∈ I1(KKK), and
u ∈ L8

(
Ω;C([0, T ];Vper)

)
be the strong solution of (5.1.1)–(5.1.3). Let Ik = {tm}Mm=0 be an equi-

distant mesh covering [0, T ], for k ≤ k0(T,TrQ,E
[
‖u0‖8V

]
) sufficiently small, and

{
um
}M
m=1

⊂
L8(Ω;Vper) be iterates from Algorithm 5.1. Then, for every ε > 0, the computable set

Ω1
k =

{
ω ∈ Ω

∣∣∣ max
1≤m≤M

‖∇um‖2L2 ≤ log k−ε
}
,

satisfies

P
[
Ω1
k

]
≥ 1 +

1

ε log k
,

and iterates {um}Mm=1 of Algorithm 5.1 satisfy

(i) E

[
1Ω1

k

(
max

1≤m≤M
‖u(tm)− um‖2L2 + k

M∑
m=1

‖u(tm)− um‖2V

)]
≤ C kη−ε

(
η ∈ (0,

1

2
)
)
.

Suppose in addition that the following assumption holds:

(S2)′ There exists a constant K ′2 > 0 such that

‖g(u)− g(v)‖L(KKK,(Vper)′) ≤ K ′2 ‖u− v‖(Vper)′ ∀u,v ∈ L2 .

Then there exists a set

Ω2
k =

{
ω ∈ Ω

∣∣∣ max
1≤m≤M

(
‖∇um‖4L2 + ‖∇u(tm)‖4L2

)
≤ log k−ε

}
,

such that
P
[
Ω2
k

]
≥ 1 +

1

ε log k
,

and the iterates {um}Mm=1 of Algorithm 5.1 satisfy the estimate

(ii) E

[
1Ω2

k

(
max

1≤m≤M
‖u(tm)− um‖2(Vper)′ + k

M∑
m=1

‖u(tm)− um‖2L2

)]
≤ C k2η−ε .

Recall that E
[
‖u0‖8V

]
≤ C is needed to validate the bounds (5.3.14), and (5.3.15), which

control the nonlinear drift.

Proof. Estimate (i) is shown above. The order-limiting term in (5.3.22) is (5.3.10), which is
bounded in Lemma 5.2.3, (ii). To prove estimate (ii) we use φφφ = A−1em in (5.3.9) instead,
such that the term corresponding to (5.3.10) has no spatial derivatives anymore; Lemma 5.2.3,
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(i) then improves the convergence behavior of the term (5.3.10). For the nonlinear convection
term, we compute(

[em · ∇]um,A−1em
)

= −
(

[em · ∇]A−1em,um
)
≤ ‖em‖2L2‖∇A−1em‖2L4‖um‖2L4 ,

where the second term on the right-hand side can be bounded by the Gagliardo-Nirenberg
inequality. We remark that the set Ω2

k ≡ Ω2
k

(
{um}Mm=1,u

)
also depends on the strong solution

of (5.1.1)–(5.1.3), since in general(
[u(tm) · ∇]A−1em, em

)
6= 0 .

Condition (S2)′ is necessary to bound the stochastic integral in (5.3.9) as in (5.3.16), (5.3.17).
Again, we have to control the differences

I + II := CkE

[
m∑
`=1

‖u` − u`−1‖4L4‖e`‖2V′

]
+ CkE

[
m∑
`=1

‖u(t`)− u(t`−1)‖4L4‖e`‖2V′

]
.

To control the first difference we bound the norm of the solution by the norm of its gradient,
and proceed as below (5.3.22). For the second, we use the same argument, taking into account
Lemma 5.2.3.

Remark 5.3.1. To avoid the condition k ≤ k0(T,TrQ,E
[
‖u0‖8V

]
), we may proceed as follow:

k
M∑
m=1

(‖∇um−1‖2L2 + 1)‖em‖2L2 = k
M−1∑
m=1

(‖∇um−1‖2L2 + 1)‖em‖2L2 + k(‖∇uM−1‖2L2 + 1)‖eM‖2L2 .

The expectation of the last term can be bounded by Ck thanks to Lemma 5.3.1. This allows the
use of the explicit version of the Gronwall inequality, preventing any condition on the smallness
of k > 0.

A consequence of this theorem is the convergence in probability of the scheme.

Corollary 5.3.1. Under the assumptions of Theorem 5.3.1, iterates {um}Mm=1 of Algorithm 5.1
converge in probability with order α1 <

1
2(η− ε), respectively α2 < η− ε for all ε > 0, i.e., there

holds

lim
C̃→∞

lim
k→0

P
[

max
1≤m≤M

‖u(tm)− um‖L2 +
(
k

M∑
m=1

‖u(tm)− um‖2V
)1/2

≥ C̃ kα1

]
= 0 ,

lim
C̃→∞

lim
k→0

P
[

max
1≤m≤M

‖u(tm)− um‖(Vper)′ +
(
k

M∑
m=1

‖u(tm)− um‖2L2

)1/2
≥ C̃ kα2

]
= 0 .

Proof. We estimate

P
[

max
1≤m≤M

‖em‖2L2 ≥ C̃kα
]
≤ P

[{
max

1≤m≤M
‖em‖2L2 ≥ C̃kα

}
∩ Ω1

k

]
+ P

[
Ω \ Ω1

k

]
≤ Ckη−ε

C̃kα
− 1

ε log k
≤ C

C̃
− 1

ε log k
.

Passing to the limit for k → 0 then implies

lim
k→0

P
[

max
1≤m≤M

‖em‖2L2 ≥ C̃ kα
]
≤ C

C̃
.(5.3.24)

Eventually then passing to the limit for C̃ → ∞ proves the assertion. The other terms can be
handled in exactly the same way.
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Remark 5.3.2. Next to strong convergence, and convergence in probability, the weak convergence
is a relevant concept to study the approximation of related laws. Weak convergence rates for
discretisations are proved in [39] for a problem with Lipschitz nonlinear drift. In [39], weak
convergence is proved by semigroup theory and Malliavin calculus, leading to asymptotic weak
convergence order 1/2 for the equation

ut +Au+ f(u) = g(u) Ẇ ,(5.3.25)

with Lipschitz nonlinearity f , and linear self-adjoint, positive operator A. In the present paper,
as a direct consequence of Theorem 5.3.1 together with the mean value theorem, we may conclude
the weak convergence of Euler iterates from Algorithm 5.1 with order 1

2η − ε on the set Ω1
k, i.e.

E
[
1Ω1

k
max

1≤m≤M
|φ(u(tm))− φ(um)|

]
≤ C k

1
2
η−ε (ε > 0) ,

for all φ ∈ C1
b (W1,2

per,R), where the constant depends on the problem data and on the function φ.

Remark 5.3.3. The convergence analysis performed in this section can be applied successfully
to the stochastic incompressible Stokes equations

ut − ν∆u +∇π = g(u)Ẇ in Ω×DT

divu = 0 in Ω×DT

in the periodic case, as well as in case of more general domains D with Dirichlet boundary
conditions. By standard arguments, the Hölder exponent related to {∇u(t) ; t ∈ [0, T ]} is twice
as large if compared to (ii) from Lemma 5.2.3, which then implies for Euler iterates strong
convergence of order η,

E

[
max

1≤m≤M
‖um − u(tm)‖2L2 + k

M∑
m=1

‖um − u(tm)‖2V

]
≤ C k2η .(5.3.26)

The absence of a nonlinear drift leads to Ω1
k ≡ Ω, and ε = 0 in Theorem 5.3.1, since Gronwall’s

inequality may now be used directly; see (5.3.18) and (5.3.22).

Remark 5.3.4. (i) The main problem in proving the error estimate (i) from Theorem 5.3.1
is the error induced by the nonlinearity ([u · ∇]u,φφφ). Its proof is accomplished by using the
Markov inequality (5.3.20) to control the stochastic effects of the nonlinearity on a subset Ω1

k

of Ω, together with a discrete Gronwall argument. This results in an estimate which depends
exponentially on the parameters arising from the Markov inequality, thus evidencing the subtle
interplay of non-Lipschitz nonlinearity and stochastics. As a consequence, the measure of the
set Ω1

k ⊂ Ω converges logarithmically to one, i.e.

P[Ω1
k] ≥ 1 +

1

ε log k
(ε > 0) .

(ii) A complementatory strategy is proposed in [111], where a discretisation of the problem
with truncated nonlinearity in the 1D Burgers equation leads to optimal strong convergence rates
for the truncated solution on the whole set Ω; this auxiliary result may then be used to conclude
rates of convergence in probability of the discretised, truncated problem towards the original one.
In this work we leave the original problem (5.1.1)–(5.1.3) unaffected, and use a truncated sample
set Ω1

k to account for nonlinear effects and obtain rates of convergence in probability for the
stochastic Navier-Stokes equations (5.1.1)–(5.1.3).
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5.3.2 Semi-implicit time semi-discretisation

We consider a discretisation with linearised drift.

Algorithm 5.2. Let v0 := u0. Find for every m ∈ {1, . . . ,M} a pair of random variables
(vm, ρm) with values in Hper × L2

per, such that P-almost surely

(vm − vm−1,φφφ) + kν (∇vm,∇φφφ)

+k
(

[vm−1 · ∇]vm,φφφ
)
− k(ρm,divφφφ) =

(
g(vm−1)∆mW,φφφ

)
∀φφφ ∈W1,2

per ,(5.3.27)

(divvm, ψ) = 0 ∀ψ ∈ L2
per .(5.3.28)

Iterates {vm}Mm=1 resulting from Algorithm 5.2 do not satisfy Lemma 5.3.1 because of (5.3.4).
As a consequence, we employ a perturbation analysis below to again benefit from the strong sta-
bility properties of Euler iterates {um}Mm=1 from Algorithm 5.1, and show that iterates {vm}Mm=1

from Algorithm 5.2 inherit the same convergence properties from Theorem 5.3.1.
We rewrite Algorithm 5.2 by using divergence-free test functions and compare its solution

to that of (5.3.3) by subtracting the two equations and choosing φφφ = em := um − vm. The
term governing the error is the convection term, which, by skew-symmetricity property, may be
restated as follows,(

[vm−1 · ∇]vm −
[
um · ∇]um, em

)
=
(

[em−1 · ∇]vm, em
)
−
(

[(um − um−1) · ∇]em,um
)

= I + II .

The term I is estimated as follows,(
[em−1 · ∇]vm, em

)
=
(

[em−1 · ∇]um, em
)

≤ C‖∇um‖2L2

(
‖em−1‖2L2 + ‖em‖2L2

)
+
ν

8

(
‖∇em−1‖2L2 + ‖∇em‖2L2

)
,(5.3.29)

where we use again the skew-symmetricity property of the trilinear form to base a corresponding
bound on the result for ‖∇um‖2L2 in Lemma 5.3.1, (i), instead of ‖∇vm‖2L2 . From term II, we
conclude

II ≤ C
(
‖um − um−1‖2L2‖um‖2L2 + ‖∇(um − um−1)‖2L2‖∇um‖2L2

)
+
ν

8
‖∇em‖2L2 .(5.3.30)

The expectation of the sum of the first two terms in (5.3.30), if multiplied by k, may be bounded
by Ck; see Lemma 5.3.1, (ii). We may now employ the set Ω1

k ≡ Ω1
k

(
{um}Mm=1

)
from above, and

proceed as in the error analysis of the previous section to conclude the following result.

Theorem 5.3.2. Let {um}Mm=1 be the solution of Algorithm 5.1, and {vm}Mm=1 be the solution
of Algorithm 5.2. Then, under the assumptions of Theorem 5.3.1, there holds

E

[
1Ω1

k

(
max

1≤m≤M
‖um − vm‖2L2 + k

M∑
m=1

‖um − vm‖2Vper

)]
≤ C k1−ε ,

where the set Ω1
k is defined in Theorem 5.3.1.

Theorem 5.3.2 compares iterates {um}Mm=1 and {vm}Mm=1, and thus avoids to use the Hölder
regularity property in Lemma 5.2.3, (ii) for strong solutions {∇u(t) ; t ∈ [0, T ]}. By combining
Theorem 5.3.1, (ii), and Theorem 5.3.2, on using the fact that Ω2

k ⊂ Ω1
k, we may conclude that

for every η ∈ (0, 1/2)

E

[
1Ω2

k

(
max

1≤m≤M
‖u(tm)− vm‖2(Vper)′ + k1−η

M∑
m=1

‖u(tm)− vm‖2L2

)]
≤ C kη−ε ,

where Ω2
k is defined in Theorem 5.3.1, (ii).
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5.3.3 Additive noise: global convergence.

In this section we generalise the assertion (i) of Theorem 5.3.1. Using the results from [67],
we are able to control the nonlinear effects, which cause the constant in the error estimate to
be exponentially dependent on the pathwise regularity of the solution. To apply the desired
stability, see [67, Lemma 4.10], we consider the following framework: Let R ∈ I2(KKK) be a
Hilbert-Schmidt operator and let W be a cylindrical Wiener process on H. Throughout this
section we consider the equations

u̇− ν∆u + [u · ∇]u +∇π = RẆ in DT × Ω ,(5.3.31)
divu = 0 in DT × Ω ,(5.3.32)

together with the boundary conditions given in (5.1.3) and a deterministic initial value u0 ∈ Vper.
We first begin with some technical Lemmata, and provide their proof in order to make clear

the interplay of the various problem data: covariance operator, viscosity parameter and time
interval. The first result we give, can be found, together with its proof, in [67, Lemma 4.10, Part
1]. Let w := curlu. Then, w satisfies the Navier-Stokes equations in the vorticity formulation;
see [67]. For the vorticity w there holds an exponential estimate.

Lemma 5.3.3. There exist constants C > 0 and η0, such that for every t > 0 and every
η ∈ (0, η0] there holds the bound

E
[
exp

(
η sup
t≥s
‖w(t)‖2L2

)]
≤ exp

(
ηe−νs‖w0‖2L2

)
.(5.3.33)

The constant η0 can be chosen as the constant α/2 such that there holds

ν‖w‖2L2 ≥
α

2
‖Q∗w‖2L2 ,

evidencing the interaction of noise and viscosity.
Thanks to [67, Formula A.3]

‖∇u‖L2 ≤ ‖curlu‖L2 ∀u ∈ Vper ,

from (5.3.33) we can conclude

E
[
exp

(
η sup
t≥s
‖∇u(t)‖2L2

)]
≤ exp

(
ηe−νt‖curlu0‖2L2

)
.(5.3.34)

Consider the P-a.s. inequality (5.3.18)

max
1≤m≤M

‖em‖2L2 +
1

2

M∑
m=1

‖em − em−1‖2L2 +
ν

2
k

M∑
m=1

‖∇em‖2L2

≤ C k
M−1∑
m=1

(‖∇u(tm)‖2L2 + 1)‖em‖2L2 + k(‖∇u(tM )‖2L2 + 1)‖eM‖2L2(5.3.35)

+C k
M∑
m=1

[
‖∇
(
u(tm)− u(tm−1)

)
‖2L2 + ‖u(tm)− u(tm−1)‖2L4‖∇u(tm)‖2L2

]
+ IM .
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Now, since we have additive noise, we can subtract the corresponding noises pathwise, because
there is no stochastic integral. We may now use the Gronwall inequality before taking expecta-
tion, since k

∑M
m=1 ‖∇um‖2L2 is P-a.s. finite. We then use the Hölder inequality to obtain

E

[
max

1≤m≤M
‖em‖2L2 +

ν

2
k

M∑
m=1

‖∇em‖2L2

]
≤ E

[
exp

(
CtM−1 sup

1≤m≤M
(‖∇u(tm)‖2L2 + 1)

)
EM

]

≤ E

[
exp

(
2CtM−1 sup

1≤m≤M
(‖∇u(tm)‖2L2 + 1)

)]1/2

E
[
E2
M

]1/2
,

where

EM := I + II + III := k(‖∇u(tM )‖2L2 + 1)‖eM‖2L2

+C k

M∑
m=1

[
‖∇
(
u(tm)− u(tm−1)

)
‖2L2 + ‖u(tm)− u(tm−1)‖2L4‖∇u(tm)‖2L2

]
.

We estimate each term separately. For the first there holds

E
[
I2
]
≤ Ck2E

[
(‖∇u(tM )‖2L2 + 1)2 + ‖eM‖4L2

]
,

while for II we use the Hölder inequality for sums to get

E

(k M∑
m=1

‖∇
(
u(tm)− u(tm−1)

)
‖2L2

)2
 ≤ E

[
CtMk

M∑
m=1

‖∇
(
u(tm)− u(tm−1)

)
‖4L2

]
≤ Ck2η .

For III we use

E

(k M∑
m=1

‖u(tm)− u(tm−1)‖2L4‖∇u(tm)‖2L2

)2


≤ E

[
tM

(
sup

1≤m≤M
‖∇u(tm)‖4L2

)
k

M∑
m=1

‖u(tm)− u(tm−1)‖4L4

]
≤ Ck4η .

Putting the inequalities together and using the triangle inequality we have

E

[
max

1≤m≤M
‖em‖2L2 +

ν

2
k

M∑
m=1

‖∇em‖2L2

]

≤ CE

[
exp

(
2CtM−1 sup

1≤m≤M
(‖∇u(tm)‖2L2 + 1)

)]1/2 (
k + kη + k2η

)
.(5.3.36)

This can be resumed in the following

Theorem 5.3.3. Let D = (0, L)2, T > 0, and P :=
(
Ω,F ,F,P

)
be a filtered probability space.

Assume that

(i) R :HHH →HHH is a Hilbert-Schmidt operator,

(ii) u0 ∈ Vper.
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Define Q := RR∗ and let W be an F-progressively measurable Q-Wiener process on P, and
u ∈ Lp

(
Ω;C([0, T ];Vper)

)
be the strong solution of (5.1.1)–(5.1.3) for all p ≥ 2. Let Ik =

{tm}Mm=0 be an equi-distant mesh covering [0, T ], for k ≤ k0(T,TrQ, ‖u0‖V) sufficiently small,
and

{
um
}M
m=1

⊂ Lp(Ω;Vper) be iterates from Algorithm 5.1. Then there holds

(i) E

[(
max

1≤m≤M
‖u(tm)− um‖2L2 + k

M∑
m=1

‖u(tm)− um‖2V

)]
≤ C kη

(
η ∈ (0,

1

2
)
)
,

under the assumption 2CtM−1 ≤ η0; see (5.3.34) and (5.3.36).

The result from this section shows that if exponential estimates for the velocity are available,
it is possible to show convergence on the whole realisation set Ω. However, this result is limited
to problems with small data, i.e., a covariance operator with small trace, a big viscosity, see
below (5.3.33), and a small time interval (0, T ), evidencing the subtle interplay of stochastics
and problem parameters.

5.4 Space-time discretisation

The goal in this section is to study the interplay of nonlinear effects, stochasticity, and general
discrete LBB-stable finite element discretisations of problem (5.1.1)–(5.1.3). As will be shown be-
low, since velocity approximates typically are only discretely rather than exactly divergence-free,
the weak stability properties of the related Lagrange multiplier again crucially affect convergence
properties of such discretisations, while spatial discretisations that lead to exactly divergence-free
velocity approximates circumvent those problems and may be shown to be optimally convergent.

In order to illustrate the interaction of a general space discretisation with the type of the
driving noise, we apply a general mixed method

(
Hh, Lh

)
to Algorithm 5.1 that satisfies the

discrete LBB-constraint (5.1.6).

Algorithm 5.3. Let U0 be a given Hh-valued random variable. Find for every m ∈ {1, . . . ,M}
a tuple of random variables

(
Um,Πm

)
with values in Hh×Lh, such that the following equations

hold for all (ΦΦΦ,Λ) ∈ Hh × Lh and P-almost surely,(
Um −Um−1,ΦΦΦ

)
+ kν

(
∇Um,∇ΦΦΦ

)
+ k
(

[Um · ∇]Um,ΦΦΦ
)

+
k

2

(
[divUm]Um,ΦΦΦ

)
− k
(
Πm,divΦΦΦ

)
=
(
g(Um−1)∆mW,ΦΦΦ

)
,(5.4.1)

(divUm,Λ) = 0 .(5.4.2)

The additional term k
2

(
[divUm]Um,ΦΦΦ

)
is used to control nonlinear effects in the presence of

discretely divergence-free velocity iterates, and thus allows for the following stability properties
of the scheme; see [19, Lemma 3.1] for a proof.

Lemma 5.4.1. Let 1 ≤ q < ∞, and U0 ∈ L2q
(
Ω;Hh

)
be given, such that E

[
‖U0‖2qL2

]
≤ C.

Suppose (S1), (S2), (S4). Then there exists {(Um,Πm)}Mm=1 ⊂ L2(Ω;Hh × Lh) which P-almost
surely solves Algorithm 5.3, and satisfies,

E

[
max

1≤m≤M
‖Um‖2qL2 + 2νk

M∑
m=1

‖Um‖2q−2
L2 ‖∇Um‖2L2

]
≤ CtM ,q ,(5.4.3)

where CtM ,q ≡ CtM ,q
(
TrQ,E[‖U0‖2qL2 ]

)
> 0 does not depend on k, h > 0.
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These stability results for iterates {Um}Mm=1 of Algorithm 5.3 are weaker if compared to the
ones in Lemma 5.3.1 for iterates {um}Mm=1 from Algorithm 5.1, where the test function φφφ = Aum

in (5.3.1) allowed to control the nonlinear term in Algorithm 5.1. This strategy is not successful
any more for Algorithm 5.3, and leads to further difficulties in the related error analysis below.

Remark 5.4.1. A finite element analysis for the deterministic version of (5.1.1)–(5.1.3) via
a deterministic version of Algorithm 5.3 is given in [71], which bases on stability properties
for iterates similar to those in Lemma 5.4.1, and uses a discrete Gronwall argument to con-
trol nonlinear effects. This strategy is not straightforwardly applicable to problem (5.1.1)–(5.1.3)
and Algorithm 5.3, where only expectations of corresponding terms are controlled, and iterates
{Um}Mm=1 satisfy the weaker stability property (5.4.3); as a consequence, an ‘iterative pertur-
bation argument’ is employed below to successively compensate for the lack of stronger stability
bounds than those available in Lemma 5.4.1.

Remark 5.4.2. The convergence analysis in Section 5.3.1 for iterates {um}Mm=1 of Algorithm 5.1
relies on the strong stability properties in Lemma 5.3.1, (i); iterates {vm}Mm=1 of Algorithm 5.2
in Section 5.3.2 miss these strong stability properties, and only satisfy the discrete energy law
corresponding to (5.4.3). However, the fact that velocity iterates {vm}Mm=1 are exactly divergence-
free, together with estimate (ii) in Lemma 5.3.1 allows to efficiently control nonlinear effects,
and leads to the optimal error estimates stated in Theorem 5.3.2. This property of the nonlinear
term is not inherited by a general space discretisation in Algorithm 5.3, which is the reason for
a different convergence analysis below.

We start with an analysis of a general mixed discrete LBB-stable finite element discretisation,
and show that the control of errors is crucially affected by the type of noise: an ‘iterative pertur-
bation argument’ will be needed to compensate for the weak stability properties in Lemma 5.4.1.
Moreover, the error estimate crucially depends on stability properties of the pressure in Algo-
rithm 5.1, and thus causes a restrictive coupling of the space and time discretisation parameters
for general noise.

To avoid this drawback, we analyse a spatial discretisation which delivers exactly divergence-
free iterates, such as the Scott-Vogelius finite element pairing from [121]. The pressure term
arising in the computations then disappears from the error analysis, leading to error estimates
which are not affected by the type of noise used in (5.1.1)–(5.1.3).

Another advantage which goes along with pointwise divergence-free elements is that the
stabilisation term k

2

(
[divUm]Um,ΦΦΦ

)
for the convection term in (5.4.1) vanishes. This term

is subtle in the subsequent error analysis, and initiates the ‘iterative perturbation argument’
for general discretely LBB-stable elements; exactly divergence-free elements avoid this one, and
structural stability properties of the nonlinearity again allow a direct argument in the error
analysis.

We reformulate (5.4.1) using discretely divergence-free test functions,

(Um −Um−1,ΦΦΦ) + νk (∇Um,∇ΦΦΦ) + k
(
[Um · ∇]Um,ΦΦΦ

)
+
k

2

(
[divUm]Um,ΦΦΦ

)
= (g(Um−1)∆mW,ΦΦΦ) ∀ΦΦΦ ∈ Vh .(5.4.4)

For the sake of brevity, we introduce the following notation

(5.4.5) b̃(U,V,W) :=
(

[U · ∇]V,W
)

+
1

2

(
[divU]V,W

)
∀U,V,W ∈ Hh .

We bound the error between the semi-discrete and the fully discrete problem. By taking into
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account equation (5.3.3), the equation for Em := um −Um is

(Em −Em−1,ΦΦΦ) + νk (∇Em,∇ΦΦΦ) + kb̃ (um,um,ΦΦΦ)

−kb̃ (Um,Um,ΦΦΦ)− k (πm,divΦΦΦ) =
(

(g(um−1)− g(Um−1))∆mW,ΦΦΦ
)

∀ΦΦΦ ∈ Hh .

To obtain an error estimate we set

ΦΦΦ = Q0
hE

m = Em −
(
um −Q0

hu
m
)

as test function, leading to

1

2

(
‖Qh

0E
m‖2L2 − ‖Qh

0E
m−1‖2L2 + ‖Qh

0(Em −Em−1)‖2L2

)
+ νk‖∇Em‖2L2

+kb̃
(
um,um,Q0

hE
m
)
− kb̃

(
Um,Um,Q0

hE
m
)

(5.4.6)

= k
(
∇Em,∇(um −Q0

hu
m)
)

+k
(
πm,divQ0

hE
m
)

+
(

(g(um−1)− g(Um−1))∆mW,Q0
hE

m
)
.

Step 1. Preliminary analysis on Ω. The first term on the right-hand side is bounded with
the help of (5.2.5),

k
(
∇Em,∇(um −Q0

hu
m)
)
≤ ν

4
k ‖∇Em‖2L2 + C kh2 ‖Aum‖2L2 .(5.4.7)

By the multi-linearity of the form b̃, there holds

b̃
(
um,um,Q0

hE
m
)
− b̃

(
Um,Um,Q0

hE
m
)

= b̃
(
Em,um,Q0

hE
m
)

+ b̃
(
Um,Em,Q0

hE
m
)

=: I + II .

For term I, we use (5.4.5), the Gagliardo-Nirenberg inequality, and Young’s inequality to con-
clude

I ≤ ‖Em‖L4‖∇um‖L2‖Q0
hE

m‖L4 +
1

2
‖divEm‖L2‖um‖L4‖Q0

hE
m‖L4

≤ C ‖Em‖2L2

(
1 + ‖∇um‖2L2 + ‖um‖2L2‖∇um‖2L2

)
+
ν

8
‖∇Em‖2L2 .

For term II, we employ the skew-symmetricity property of b̃ to conclude

II = b̃
(
Um,Em,Q0

hE
m −Em

)
≤ ‖Um‖L4‖∇Em‖L2‖um −Q0

hu
m‖L4 +

1

2
‖∇Um‖L2‖Em‖L4‖um −Q0

hu
m‖L4

:= IIa + IIb .

By Gagliardo-Nirenberg inequality, and (5.2.5), (5.2.6), we find for the first part

IIa ≤
ν

8
‖∇Em‖2L2 + C h2 ‖Um‖L2

(
‖Um‖L2 + ‖∇Um‖L2

)
‖∇um‖L2‖Aum‖L2 .(5.4.8)

We use Young’s inequality to resume

IIa ≤
ν

8
‖∇Em‖2L2 + Ch2

(
‖Um‖4L2 + ‖Um‖2L2‖∇Um‖2L2 + ‖∇um‖2L2‖Aum‖2L2

)
.
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It remains to bound IIb. Since Lemma 5.4.1 only provides pointwise bounds for iterates rather
than related gradients, we use the inverse inequality

(5.4.9) ‖∇Um‖L2 ≤ C h−β0 ‖Um‖L2 for β0 = 1 ,

the bound ‖um − Q0
hu

m‖L4 ≤ C h3/2 ‖Aum‖L2 , the inverse estimate (5.4.9), and Young’s in-
equality to verify the upper bound

IIb ≤ C h
3
2
−β0 ‖Um‖L2‖Em‖1/2L2

(
‖Em‖L2 + ‖∇Em‖L2

)1/2
‖Aum‖L2

≤ C
(
‖Um‖2L2 + ‖Um‖4L2

)
‖Em‖2L2 +

ν

8
‖∇Em‖2L2 + C h3−2β0 ‖Aum‖2L2 .(5.4.10)

Putting things together then yields the estimate

I + II ≤ C
(
‖∇um‖4L2 + ‖Um‖4L2

)
‖Em‖2L2 + C h3−2β0 ‖Aum‖2L2 +

ν

4
‖∇Em‖2L2

+C h2
(
‖Um‖4L2 + ‖Um‖2L2 + ‖∇Um‖2L2‖∇um‖2L2‖Aum‖2L2

)
for β0 = 1 .(5.4.11)

For the term involving the pressure in (5.4.6), we use (5.4.2), and the L2-orthogonal projec-
tion P 0

h : L2
per(D)→ Lh,

k
(
πm,divQ0

hE
m
)

= k
(
πm − P 0

hπ
m, divQ0

hE
m
)

≤ C kh2 ‖∇πm‖2L2 +
ν

4
k‖∇Em‖2L2 ,(5.4.12)

where the first term can be controlled by Lemma 5.3.2. To control the stochastic integral term in
(5.4.6), we proceed like in (5.3.16), (5.3.17), after using the L2-stability of the Leray-projection.
Step 2. Introduction of sample subsets. Set

Θm−1 = max
1≤`≤m−1

C
(
‖∇u`‖4L2 + ‖U`‖4L2

)
,

and consider the following estimates

k

M∑
m=1

E
[(
‖∇um‖4L2 + ‖Um‖4L2

)
‖Em‖2L2

]
≤ Ck

M∑
m=1

E
[(
‖∇um − um−1‖4L2 + ‖Um −Um−1‖4L2

)
‖Em‖2L2

]
(5.4.13)

+Ck

M∑
m=1

E
[(
‖um−1‖4L2 + ‖Um−1‖4L2

)
‖Em‖2L2

]
The expectation of the first sum on the right-hand side of (5.4.13) can be bounded by Ck as in
the proof of Theorem 5.3.1. Using Θm−1 we can bound the second sum as follows

k
M∑
m=1

E
[
1{Θm−1≤κ}

(
‖∇um−1‖4L2 + ‖Um−1‖4L2

)
‖Em‖2L2

]
≤ k

M∑
m=1

κE
[
1{Θm−1≤κ}‖E

m‖2L2

]
.

To control the initial condition we assume that

E
[
‖U0 − u0‖2L2

]
≤ C h2 .
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Thus, after multiplying the error equality (5.4.6) (with index `) with the indicator function of
the set (ε > 0)

Ω3
h,`−1 :=

{
ω ∈ Ω

∣∣Θ`−1 ≤ κ := log h−ε
}
,(5.4.14)

which depends on both, {um}`−1
m=1 and {Um}`−1

m=1, and summing up from ` = 1 tom in (5.4.6), we
get, thanks to estimates (5.4.11) through (5.4.13), and Lemma 4.2.1, (i), as well as Lemma 5.4.1,
the estimate (ε > 0)

E

[
max

1≤n≤m

(
1Ω3

h,n−1
‖Q0

hE
n‖2L2 +

1

2

n∑
`=1

1Ω3
h,`−1
‖Q0

h(E` −E`−1)‖2L2

)]

+E

[
max

1≤n≤m

(
Ck

n∑
`=1

1Ω3
h,`−1
‖∇E`‖2L2

)]
≤ C log

1

hε
k

m∑
`=1

E
[

max
1≤n≤`

1Ω3
h,n−1
‖En‖2L2

]
(5.4.15)

+C

(
k + h2 + h3−2β0 + h2 E

[
k

m∑
`=1

‖∇π`‖2L2

])
.

We observe the error Ck, which is caused by the first sum on the right-hand side of (5.4.13)
together with Lemma 4.2.1, (ii). The last term on the right-hand side may be bounded by
Lemma 5.3.2. Then, defining the set

Ω3
h :=

{
ω ∈ Ω

∣∣Θ ≤ log h−ε
}
⊂ Ω3

h,` (1 ≤ ` ≤M) ,

for Θ = C max1≤m≤M
(
‖∇um‖4L2 + ‖Um‖4L2

)
, which satisfies P

[
Ω3
h

]
→ 1 for h→ 0 by Lemma

5.4.1 and Markov’s inequality. Using the implicit version of the discrete Gronwall inequality,
which requires the non-restrictive mesh-constraint

(5.4.16) h−ε < exp
( 1

Ck

)
to cope with the leading term on the right-hand side in (5.4.15), and (5.4.14), lead to

E
[
1Ω3

h
max

1≤n≤M

(
‖En‖2L2 +

1

2

n∑
m=1

‖(Em −Em−1)‖2L2 + k

n∑
m=1

‖∇Em‖2L2

)]
≤ C

(
h3−2β0−ε + h2−ε + kh−ε + h2−ε E

[
k

M∑
m=1

‖∇πm‖2L2

])
(5.4.17)

≤ C
(
h3−2β0−ε + kh−ε + h2−ε E

[
k

M∑
m=1

‖∇πm‖2L2

]
+ Ch2

)
where C ≡ C

(
CtM ,2; tM

)
> 0 is from Lemma 4.2.1. Here we used the bound ‖um−Q0

hu
m‖2L2 ≤

Ch2‖∇um‖2L2 , together with Lemma 5.4.1.
Step 3. Bootstrapping argument. The error estimate (5.4.17) is dominated by the error

Ch3−2β0−ε that results from term IIb on in (5.4.10). To improve (5.4.17) we consider the set

(5.4.18) ΩE
h,m−1 = Ω3

h,m−1 ∩
{

max
1≤`≤m−1

‖Q0
hE

`‖2L2 ≤ Ch3−2β0−2ε + kh−2ε + C∇πh
2−2ε

}
⊂ Ω ,

where C∇π = E
[
k
∑M

m=1 ‖∇πm‖2L2

]
. The probability of this set can be estimated by Markov’s

inequality

P[Ω3
h,m−1 \ ΩE

h,m−1] ≤
E
[
1Ω3

h,m−1
max1≤`≤m−1 ‖Q0

hE
`‖2L2

]
Ch1−2ε + kh−2ε + C∇πh2−2ε

≤ Chε ,
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where in the last inequality we use (5.4.17). Thus, on the set ΩE
h,m−1, using inverse inequalities

and (5.4.17) we compute

‖∇Um−1‖L2 ≤ C
(
‖∇um−1‖L2 + ‖∇Q0

hE
m−1‖L2

)
≤ C‖∇um−1‖L2 + Ch−1‖Q0

hE
m−1‖L2

≤ C‖∇um−1‖2L2 + Ch−β0
(
h1/2−ε +

√
kh−ε + h1−ε) .(5.4.19)

This leads to the following improvement on the set ΩE
h,m−1 of the corresponding term from

(5.4.10)

IIb ≤ C h
3
2
−β0(h1/2−ε +

√
kh−ε + h1−ε) ‖Em‖1/2L2

(
‖Em‖L2 + ‖∇Em‖L2

)1/2
‖Aum‖L2

+‖∇um‖L2‖Em‖1/2L2

(
‖Em‖L2 + ‖∇Em‖L2

)1/2
‖Aum‖L2(5.4.20)

≤ C
(
‖Um‖2L2 + ‖Um‖4L2 + ‖∇um‖4L2

)
‖Em‖2L2(5.4.21)

+
ν

8
‖∇Em‖2L2 + C

(
h4−2β0 + kh3−2β0−2ε + h5−2β0−2ε + h3

)
‖Aum‖2L2 .

because of (5.4.17).
We may now state the following result about the convergence of a general space-time discreti-

sation (see Algorithm 3.3) of (5.1.1)–(5.1.3) with general noise, which asymptotically justifies
optimal first order of convergence for the space discretisation, and evidences the critical influence
of the pressure on the overall convergence behavior. We may proceed as in (5.3.21) with the sets
Ω3
h,n and defining a set

ΩE
h =

{
max

1≤m≤M
‖Q0

hE
m‖2L2 ≤ Ch1−2ε + kh−2ε + C∇πh

2−2ε

}
∩ Ω3

h (1 ≤ m ≤M) .

Theorem 5.4.1. Let D = (0, L)2, T > 0, and P :=
(
Ω,F ,F,P

)
be a filtered probability space.

Assume that (S1) through (S4) hold, with HHH = W1,2
per. Let u0 ∈ L8(Ω;V) be given. Let W be

an F-adapted measurable Q-Wiener process on P with Q ∈ L̂1(KKK,KKK). For k, h > 0, let Th be
a quasi-uniform triangulation of D, and Ik = {tm}Mm=0 be a uniform partition covering [0, T ],
and assume (5.4.16). Let

(
Hh, Lh

)
be a pair of finite element spaces that satisfies the discrete

LBB-condition (5.1.6). Assume that U0 is a Hh-valued random variable with E
[
‖U0‖8L2

]
≤ C,

such that E
[
‖U0 − u0‖2L2

]
≤ C h2. Let {um}Mm=1 be the solution given by Algorithm 5.1, and{

(Um,Πm)
}M
m=1

solves Algorithm 3.3. Then, the set Ω3
h which is defined in (5.4.14) satisfies

Ω3
h ⊂ Ω, P[Ω3

h] ≥ 1 +
C

ε log h
∀ ε > 0 .

Moreover there exists a set ΩE
h ⊂ Ω, and ε > 0 such that

P[Ω3
h \ ΩE

h ] ≤ Chε ,

and the following estimate holds

E

[
1Ω3

h∩ΩEh

(
max

1≤m≤M
‖um −Um‖2L2 + k

M∑
m=1

∥∥∥∇(um −Um
)∥∥∥2

L2

)]

≤ C(h2−3ε + kh1−3ε + kh−ε) + Ch2−3ε E
[
k

M∑
m=1

‖∇πm‖2L2

]
.(5.4.22)
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The overall convergence behavior of iterates {Um}Mm=1 from Algorithm 5.3 is then controlled
by Theorems 5.3.1 and 5.4.1.

Corollary 5.4.1. Let u0 ∈ L8
(
Ω;V

)
. Under the same assumptions as stated in Theorems 5.3.1

and 5.4.1, for η ∈ (0, 1
2) there hold

(i) E
[
1Ω1

k∩Ω3
h∩ΩEh

(
max

1≤m≤M
‖u(tm)−Um‖2L2

)]
≤ C

(
kη−ε + C(h2−3ε + kh−ε) + Ch2−3ε E

[
k

M∑
m=1

‖∇πm‖2L2

])
,

(ii) E

[
1Ω2

k∩Ω3
h∩ΩEh

(
k

M∑
m=1

∥∥u(tm)−Um
∥∥2

L2

)]

≤ C

(
k2η−ε + C(h2−3ε + kh−ε) + Ch2−3ε E

[
k

M∑
m=1

‖∇πm‖2L2

])
.

Here, u0 ∈ L8
(
Ω;V

)
is needed, since estimates (5.3.14) and (5.3.15) are involved, which

require higher moments of the gradient of the strong solution of (5.1.1)–(5.1.3); see Lemma
5.2.3. To derive rates of convergence in probability for corresponding errors now follows as in
Corollary 5.3.1.

Corollary 5.4.2. Under the same assumptions as stated in Theorems 5.3.1 and 5.4.1, if we
assume k = O(h) Algorithm 5.3 is convergent in probability with order α1 (resp. α2) in time
(see Corollary 5.3.1), and order β < 1 in space both, with respect to the L∞(0, T ;L2(D))-norm

and the
(
k
∑M

m=1 ‖ · ‖2W1,2

)1/2
-norm,

(i) lim
C̃→∞

lim
k,h→0

P
[

max
1≤m≤M

‖u(tm)−Um‖L2 ≥ C̃
(
kα1 + hβ +

√
C∇πh

β
)]

,

(ii) lim
C̃→∞

lim
k,h→0

P

[(
k

M∑
m=1

‖u(tm)−Um‖2L2

) 1
2 ≥ C̃

(
kα2 + hβ +

√
C∇πh

β
)]

.

Remark 5.4.3. The time discretisation of the non-stationary stochastic Stokes equations is
discussed in Remark 5.3.3. By Lemma 5.3.2, Remark 5.3.3 and Theorem 5.4.1, a simplified
argumentation leads to

E

[
max

1≤m≤M
‖u(tm)−Um‖2L2 + k

M∑
m=1

∥∥∥∇(u(tm)−Um
)∥∥∥2

L2

]

≤ C

(
k + h2 + h2 E

[
k

M∑
m=1

‖∇πm‖2L2

])
.

A severe restriction of Theorem 5.4.1 is the coupling of discretisation parameters evidenced
in (5.4.22) for general noise; this choice may be avoided for mixed methods (Hh, Lh) where
Vh ⊂ Vper. A well-known pairing here is the Scott-Vogelius mixed element [121, 133], which
uses continuous polynomials of degree i ≥ 1 to approximate the velocity, and discontinuous
polynomials of degree i−1 for the pressure. A relevant property is then divV ∈ Lh for V ∈ Hh,
which can be used to prove that the condition (divV, χ) = 0 for all χ ∈ Lh implies divV = 0
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pointwise in D. As a consequence, the following terms vanish (see (5.4.6)) in the error analysis
for an Algorithm 5.3 that is based on the Scott-Vogelius mixed element,(

πm,divQ0
hE

m
)

= 0 , and
(

[divUm]Um,Em
)

= 0 .(5.4.23)

Moreover, the convection term k
(
[Um ·∇]Um,ΦΦΦ

)
in (5.4.1) can be handled as in the correspond-

ing error analysis around (5.3.29), and allows to avoid the ‘bootstrapping argument’ from above
to verify the following result.

Theorem 5.4.2. Suppose that the same assumptions as in Theorem 5.4.1 are valid. Moreover
assume that the finite element pairing is chosen such that Vh ⊂ Vper. Then for the set

Ω4
h :=

{
ω ∈ Ω : max

1≤m≤M
‖∇um‖2L2 ≤ log h−ε

}
(ε > 0)

there holds the estimate

E

[
1Ω4

h

(
max

1≤m≤M
‖um −Um‖2L2 + k

M∑
m=1

∥∥∥∇(um −Um
)∥∥∥2

L2

)]
≤ C h2−ε .

By evidence, this estimate does not involve the pressure of Algorithm 5.1 any more, which
suggests a more robust discretisation in Algorithm 5.3 for general noise.

Remark 5.4.4. If we consider the result from Section 5.3.3, we note that the application of
the space discretisation to get convergence on the whole set Ω is not possible, since we need
exponential estimates to control the time-discrete iterations. This remains an unsolved question,
leaving open the question of global convergence for the full discretisation in the case of additive
noise.

5.5 Computational experiments

In this section, we report on computational experiments which show the the convergence behavior
of the proposed algorithms and compare the convergence results of Euler and Chorin based
schemes. The space discretisation is accomplished by the stable MINI element; cf. [15, 74] for
details.

We consider the finite-dimensional Wiener process (t ∈ [0, T ])

W(t) =
N∑

j,k=1

λj,kβj,k(t)ej,k (1 ≤ N <∞) ,

where λj,k ≡ 20, {βj,k}Nj,k=1 is a family of independent, real-valuedWiener processes on
(

Ω,F ,F,P
)
,

as well as {ej,k}∞j,k=1 are functions specified below. For the initial conditioni we choose u0 = 0.
For the discretisation we consider the following fully practical scheme based on the Euler

scheme: (
Um −Um−1,ΦΦΦ

)
+ kν

(
∇Um,∇ΦΦΦ

)
+ k
(

[Um−1 · ∇]Um,ΦΦΦ
)

+
k

2

(
[divUm−1]Um,ΦΦΦ

)
− k
(
Πm,divΦΦΦ

)
=
(
g(Um−1)∆mW,ΦΦΦ

)
,

(divUm,Λ) = 0 .

We remark that a simple adaptation of the previous calculation leads to the same error
estimates as for the fully implicit scheme. In all the simulations the number of realisations is
fixed to Np = 500, which is a good compromise in order to get convergence without too big
fluctuations, and a reasonable computation time (recall the two nonlinear terms, for which we
have to assemble the corresponding finite element representation at every time-step).
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5.5.1 Error for periodic boundary conditions

We consider the domain D = (0, π)2 and periodic boundary conditions. We consider the eigen-
functions

es =

{
1√
2π
s⊥ sin(s · x) s ∈ Z2

+,
1√
2π
s⊥ cos(s · x) s ∈ −Z2

+,

where s⊥ = (−s2, s1)T , for s1, s2 ∈ R, and

Z2
+ = {(s1, s2) | s1 > 0 or (s1 = 0, s2 > 0)} .

We consider a Wiener noise only for s ∈ {(1, 1), (2, 2), (3, 3), (4, 4)} in order to prevent the
influence of the error caused by the truncation of the series representation of the Wiener process.
The computations are performed on the domain DT = (0, 2π)2×(0, 1/4), We consider time steps
k ∈ 1

1024 ,
1

512 ,
1

256 ,
1

128 ,
1
64 , where the first time-step is used to compute the reference solution, ans

plays the rôle of the exact solution for the computation of the error. The plot is shown in Figure
5.5.1 for the semi-implicit Euler scheme. First we note that the convergence rate is almost 1/2,
which shows, together with Theorem 5.3.1, that the Hölder regularity is probably better than
what we proved.

Figure 5.5.1: Error for periodic boundary conditions and periodic divergence-free noise.

This numerical example let us suppose that the results given in Theorems 5.3.1 and 5.4.1
may not be optimal in general, while results like Theorem 5.3.3 may be expected. We consider
several numbers of realisations Np ≤ 500, and we do not note the exponential dependence of the
error constant described in Theorem 5.4.1. On the contrary, the fluctuation of the error are less
pronounced for a higher number of realisations. We also consider the weak error for the Euler
scheme and it is clearly better than what is proved Remark 5.3.2.

5.5.2 Error for Dirichlet boundary conditions

The strong error analysis for the schemes we proposed strongly relies on the regularity given
by Lemma 5.2.1, which is valid only for periodic boundary conditions. Goal of this example
it to analyse the error behavior for homogeneous Dirichlet boundary conditions, and give a
practical motivation for the numerical analysis of the corresponding problem. We consider now
two different cases. First the eigenbasis from Section 5.5.1, and in addition an eigenbasis of the
Laplace operator on the domain D = (0, 1)2 with homogeneous boundary conditions, i.e.

ej,k(x, y) :=
(

sin(jπx) sin(kπy), sin(jπx) sin(kπy)
)>

,



122 CHAPTER 5. STRONG RATES OF CONVERGENCE

for j, k ∈ {1, 2, 3, 4} again to avoid the influence of the truncation error. The plot of the

Figure 5.5.2: Error for Dirichlet boundary conditions. Divergence-free noise (left) and non
divergence-free noise (right).

error is shown in Figure 5.5.2, and shows that the scheme converges (almost) optimally also for
Dirichlet boundary conditions, and both, solenoidal and non-solenoidal noise, evidencing that
the coupling of the parameters caused by the irregular pressure seems not to hold, in contrast
to our theoretical studies. This result may be interpreted as a consequence of the fact that the
rôle of the Lagrange multiplier is not well understood in both, theory and numerical analysis.
Again, we notice that the error is not affected by the number of realisations.

5.5.3 Dependence on the Reynolds number

Here, we study the dependence of the solutions on the Reynolds number. In the same setting
as in Section 5.5.2, we consider the discretisation for Re =∈ {1, 10, 100}, an ν = 1

Re , and
divergence-free noise. According to the theory, proof of Theorems 5.3.1 and 5.4.1, the error
depends linearly on 1

ν = Re, and we expect that the convergence rate is not affected by the
viscosity of the fluids, although the magnitude of the error suffers from it.

Figure 5.5.3: Error for Dirichlet boundary conditions and different viscosities. Strong (left) and
weak convergence (right).

The results are depicted in Figure 5.5.3, showing comparable results for strong and weak
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error.

5.6 Summary and outlook

We analysed various space-time discretisations of the 2D stochastic Navier-Stokes equations
(5.1.1)–(5.1.3), including the (semi-)implicit Euler scheme, and discretely LBB-stable mixed
finite elements. The main problems are caused by the subtle interplay of nonlinearity, algebraic
constraint, stochasticity, and space-time discretisation. To handle these problems, we perform
the error analysis on various subsets of Ω to use a Gronwall-type argument, and to derive error
bounds with rates; see e.g. Theorems 5.3.1 and 5.4.1. The main tools are bounds to control
higher moments of the solutions of (5.1.1)–(5.1.3) (Lemma 5.2.1), the Hölder regularity for ∇u
(Lemma 5.2.3), a perturbation argument (Theorem 5.4.1), and exactly divergence-free elements
(Theorem 5.4.2). All results in this work are obtained for periodic boundary conditions; it would
be interesting to generalise them to boundary value problems, and to the three-dimensional case.

Piecewise solenoidal mixed finite elements of non-conforming type have been developed in
[2] to e.g. reduce the computational effort of the Scott-Vogelius finite elements. The interaction
of the non-conformity, nonlinearity, and stochasticity in a corresponding space discretisation of
(5.1.1)–(5.1.3) remains an open problem. Another open question is the weak convergence be-
havior of the schemes proposed in this work, and the concomitant clarification of the interaction
with the Lagrange multiplier, nonlinearity, and stochasticity in this framework.

The numerical experiments indicate that the bounds from Theorems 5.3.1 and 5.4.1 are not
optimal. In particular, the subtle interplay between nonlinearity and stochastic forcing that
arises from the proofs, appears not to be a source of problems for the convergence behavior of
the analysed discretisation schemes.

Acknowledgment: I warmly thank Dr. Philipp Dörsek, who pointed to my attention the
exponential estimates from [67], making possible the results from Section 5.3.3.
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Appendix A

Discrete derivatives

In this section we derive some rules for the computations with discrete derivatives. Let Ik be a
given mesh of the interval [0, T ] of size k > 0. Given a finite sequences {fm}Mm=0 we define two
piecewise constant functions f+ : [0, T ]→ R and f−+ : [0, T ]→ R as

f+(t) := fm ∀ t ∈ [tm−1, tm) ,(A.0.1)
f−(t) := fm−1 ∀ t ∈ (tm−1, tm] .(A.0.2)

with f+(T ) := fM , and f−(0) := f0.
Let us define the so called discrete time derivative of the sequence {fm}Mm=0 by

(A.0.3) dtf
m :=

fm − fm−1

k
(1 ≤ m ≤M) .

Then we have

dt(f
mgm) =

1

k

(
fmgm − fm−1gm−1

)
=

1

k

(
fmgm − fmgm−1 + fmgm−1 − fm−1gm−1

)
= fmdtg

m + gm−1dtf
m.(A.0.4)

Let us also define the operator dt acting on f+ by

(A.0.5) dtf
+ =

f+ − f−

k
.

Then, defining piecewise constant functions g+, g− : [0, T ]→ R corresponding to a sequence
(gm)Mm=0 as above, we have the following discrete product rule.

Lemma A.0.1. In the above framework the following identity holds

(A.0.6) dt(f
+g+) = f+dtg

+ + g−dtf
+ .

Another useful tool is the following

Lemma A.0.2. We have ∫ T

0
dtf

+ dt = f+(T )− f−(0).

Proof of Lemma A.0.1.
∫ T

0 dtf
+ dt = k

∑M
i=1

f i−f i−1

k = fM − f0.
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A consequence of this lemma is the following identity

(A.0.7)
∫ T

0
f+dtg

+(t) dt = (f+g+)(T )− (f−g−)(0)−
∫ T

0
(dtf

+(t))g−(t) dt.

We derive now a discrete version of the chain rule for a function ef
+

: [0, T ]→ R. Applying
Taylor’s formula to functions φ(x) = ex, we get

eb − ea

b− a
= ea + eξ

b− a
2

for some ξ ∈ (a, b). Putting a = f− and b = f+, we infer that there exists ξ ∈ (f−, f+) such
that

dte
f+ = ef

−
dtf

+ + eξ
(f+ − f−)2

2k

= ef
−−f+ef

+
dtf

+ + eξ
(f+ − f−)2

2k
.(A.0.8)

We end this chapter with the discrete version of the Gronwall inequality; see [71, Lemma
5.1]

Lemma A.0.3. Let k, B, and aj, bj, cj, dj be nonnegative numbers for j ≥ 0, such that

an + k
M∑
j=0

bj ≤ k
M∑
j=0

djaj + k
M∑
j=0

cj +B for M ≥ 0 .

If kγj < 1 for all j ≥ 0, there holds

an + k
M∑
j=0

bj ≤

k M∑
j=0

cj +B

 exp

(
k

M∑
m=0

σjdj

)

for σj = 1
1−kdj .

We may also consider the following explicit version: there holds

am ≤
(
B + k

m−1∑
j=1

cj

)
ek

∑l−1
j=1 dj

provided

am ≤ B + k

m−1∑
j=1

(djaj + cj)

for any m ≥ 1 .
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Appendix B

Quadratic variation

We propose a generalization of [20, Theorem C.2]. In this section let the elements of the time
grid Ik be denoted by tkm to avoid confusion in the proof of Theorem B.0.1. For two Hilbert
spaces KKK and HHH, let I1(KKK,HHH) be the space of nuclear operators from KKK to HHH.

Theorem B.0.1. Assume that E and
(
H, (·, ·)

)
are a separable metric, and a Hilbert space

respectively. Assume that B := (Ω,F ,P) is a probability space. Let h, k > 0 and Ik := {tkm}Mm=0.
Suppose that for every pair (h, k) we are given two discrete time processes

{
Umk,h

}M
m=0

and{
Mm
k,h

}M
m=0

, such that

Umk,h : Ω→ E and Mm
k,h : Ω→ H .

Given these processes, we define the following piecewise constant interpolation processes

U+
k,h : [0, T ]× Ω→ E and M+

k,h : [0, T ]× Ω→ H

as in the previous sections.
We assume also that

U : [0, T ]× Ω→ E and M : [0, T ]× Ω→ H

are stochastic processes such that for every t ∈ [0, T ], P-almost surely, as k → 0 and tkm → t,

U+
k,h(tkm)→ U(t) in E,(B.0.1)

M+
k,h(tkm)→M(t) in H.(B.0.2)

We denote by Fk,h =
{
Fk,h
tkm

; m = 1, . . . ,M
}
the filtration on the probability space B generated

by the process
{
U+
k,h(tkm)

}M
m=0

. Similarly, we denote by F the filtration on the probability space
B generated by the process U . Finally, we denote by F the augmentation of the filtration F. For
each h, k, assume that Rk,h is an operator-valued process defined on Ik such that the process{

M+
k,h(tkm)⊗M+

k,h(tkm)−R+
k,h(tkm); m = 1, . . . ,M

}
is an Fk,h-martingale. Assume that R is an ∞1(H)-valued F-progressively measurable process
such that for every t ∈ [0, T ], P-almost surely

(R+
k,h(tkm)x, y)→ (R(t)x, y) ∀x, y ∈ H,(B.0.3)
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for k → 0, and tkm → t. Assume also that for some r > 1 and for every t ∈ [0, T ],

sup
h,k>0

E
[
‖M+

k,h(t)‖2rE
]
<∞,(B.0.4)

sup
h,k>0

E
[
‖R+

k,h(t)‖rL(E)

]
<∞.(B.0.5)

Then R is equal to 〈〈M〉〉, the quadratic variation process of the F-martingale M .

Proof. In view of the Doob-Meyer Theorem it is enough to prove that for all x, y ∈ H the process
N = (N(t))t≥0, t ∈ [0, T ] defined by

N(t) = (M(t), x)(M(t), y)− (R(t)x, y), t ∈ [0, T ]

is an F-martingale. To show this, notice that by [40, p. 75] it is enough to show the martingale
property with respect to F.

Let us fix x, y ∈ H, and t1, t2 ∈ [0, T ] such that t2 ≤ t1. We have to show that for any choice
of times 0 ≤ s1 < s2 < . . . < sn ≤ t2, where n ∈ N, and any bounded and continuous functions
hi : E → R, i = 1, . . . ,m, m ∈ N, the following equality holds

E

[(
N(t1)−N(t2)

) N∏
i=1

hi(U(si))

]
= 0.

By assumption, the process {Nk,h(tkn)}Mn=1, defined by

Nk,h(tkn) := (Mk,h(tkn), x)(Mk,h(tkn), y)− (Rk,h(tkn)x, y)

is an Fk,h-martingale. Let us fix a partition 0 ≤ s1 < s2 < . . . < sn ≤ t2 and let us choose a
corresponding sequence of partitions 0 ≤ sk1 < sk2 < . . . < skn ≤ tk2 with ski ↗ si and tki ↗ ti
for all indices i. Thus, for every sequence satisfying the properties given above, the following
equality

E

[(
Nk,h(tk1)−Nk,h(tk2)

) N∏
i=1

hi(Uk,h(ski ))

]
= 0.(B.0.6)

holds.
Now, in view of assumptions (B.0.3), (B.0.4) and (B.0.5), since the functions hi are bounded,

the process on the left-hand side of equality (B.0.6) is uniformly integrable. Using the almost
sure pointwise convergence of

(
Nk,h(tk1)−Nk,h(tk2)

) N∏
i=1

hi(Uk,h(ski )),

ensured by assumptions (B.0.1) and (B.0.2), and a well-known result from [106, Appendix C],
we can conclude

0 = lim
h,k→0

E

[(
N+
k,h(tk1)−Nk,h(tk2)

) N∏
i=1

hi(Uk,h(ski ))

]
= E

[(
N(t1)−N(t2)

) N∏
i=1

hi(U(si))

]
.
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Now we give a characterisation of the quadratic variation of a martingale with values in a
dual of a Hilbert space.

Let V be a Hilbert space, with dual denoted by V ′. Let V ⊂ H ∼= H ′ ⊂ V ′ be a Gelfand
triple. We denote the scalar products of V and H respectively by (·, ·)V and (·, ·). The induced
norms are denoted by ‖ · ‖ and | · | respectively. By 〈·, ·〉 we denote the dual pairing between V
and V ′. By the Lax-Milgram lemma we have an isomorphism I : V → V ′ defined by I−1(f) = u,
where for f ∈ V ′, u is the solution of

(B.0.7) (u, v)V = 〈f, v〉 = 〈I(u), v〉 ∀v ∈ V .

Due to the definition of I, it is easy to see that

‖I(u)‖V ′ = ‖u‖,

where ‖u‖V ′ = sup{|〈u, v〉| ; ‖v‖ ≤ 1}, for all u ∈ V ′, establishing the isometry property of the
operator I. Thus we may define the scalar product on V ′ by

(u, v)V ′ :=
(
I−1(u), I−1(v)

)
V
∀u, v ∈ V ′ .

Defining a norm on V ′ by means of the scalar product, i.e., |||f |||V ′ :=
√
〈f, f〉V ′ , there holds

|||f |||V ′ = ‖f‖V ′ ∀ f ∈ V ′ .

Let M ≡ {Mt ; t ∈ [0, T ]} be a square-integrable V ′-valued martingale. A positive process
R ≡ {R(t) ; t ∈ [0, T ]} is the quadratic variation of M if and only if the process

(M,a)V ′(M, b)V ′ − (Ra, b)V ′ ∀ a, b ∈ V ′,

is a martingale; see [37, p. 81]. We give a representation of the quadratic variation R by means
of dual pairing instead of scalar product on V ′, by means of the isometric isomorphism I. We
begin with a lemma which can be easily proved.

Lemma B.0.4. There holds

〈f, x〉 =
(
f, I(x)

)
V ′

∀ f ∈ V ′, ∀x ∈ V.

Let us define an operator R̃ := R◦I : V → V ′. Then there exists a martingale N ≡ {Nt ; t ∈
[0, T ]} such that for all t ∈ [0, T ]

〈R̃(t)u, v〉 =
〈
R(t)I(u), v

〉
=
(
R(t)I(u), I(v)

)
V ′

=
(
Mt, I(u)

)
V ′

(
Mt, I(v)

)
V ′

+Nt ∀u, v ∈ V .(B.0.8)

Since I is invertible, we have the following

Theorem B.0.2. Let (Ω,F ,F,P) be a filtered probability space. If V ⊂ H ∼= H ′ ⊂ V ′ is a
Gelfand triple, and M is a V ′-valued F-martingale, then there exists an increasing I1(V, V ′)-
valued process R̃ such that for all u, v ∈ V the process

〈M,u〉〈M, v〉 − 〈R̃u, v〉

is a martingale. Moreover R̃ = R ◦ I, where R is the quadratic variation of M and I : V → V ′

is the isometric isomorphism given in (B.0.7).



132 APPENDIX B. QUADRATIC VARIATION

Now combining Theorems B.0.1 and B.0.2, we have a new version of B.0.1, where it is enough
to prove the assumptions for the process R̃.

Theorem B.0.3. Assume that
(
V, (·, ·)

)
and E are respectively a Hilbert and a separable metric

space, and suppose that we are given an Hilbert space H such that V ⊂ H ∼= H ′ ⊂ V ′ is a Gelfand
triple. We denote by 〈·, ·〉 the dual pairing between V and V ′. Assume that B := (Ω,F ,P) is a
probability space. Let h, k > 0, and Ik := {tkm}Mm=0. Suppose that for every pair (h, k) we are
given two discrete time processes

{
Umk,h

}M
m=0

and
{
Mm
k,h

}M
m=0

, such that

Umk,h : Ω→ E and Mm
k,h : Ω→ V ′ .

Given these processes we define the following piecewise constant interpolation processes

U+
k,h : [0, T ]× Ω→ E and M+

k,h : [0, T ]× Ω→ V ′

as in the previous sections.
We assume also that

U : [0, T ]× Ω→ E and M : [0, T ]× Ω→ V ′

are stochastic processes such that for every t ∈ [0, T ], P-almost surely, as k → 0 and tkm → t,

U+
k,h(tkm)→ U(t) in E,(B.0.9)

M+
k,h(tkm)→M(t) in V ′.(B.0.10)

We denote by Fk,h =
{
Fk,h
tkm

; m = 1, . . . ,M
}
the filtration on the probability space B generated

by the process
{
U+
k,h(tkm)

}M
m=0

. Similarly, we denote by F the filtration on the probability space
B generated by the process U . Finally, we denote by F the augmentation of the filtration F. For
each h, k, assume that Rk,h is an operator-valued process defined on Ik such that the process{〈

M+
k,h(tkm), u

〉〈
M+
k,h(tkm), v

〉
−
〈
R̃+
k,h(tkm)u, v

〉
; m = 1, . . . ,M

}
is an Fk,h-martingale for all u, v ∈ V . Assume that R̃ is an I1(V, V ′)-valued F-progressively
measurable process such that for every t ∈ [0, T ], P-almost surely

〈R̃+
k,h(tkm)x, y〉 → 〈R̃(t)x, y〉 ∀x, y ∈ V,(B.0.11)

for k → 0, and tkm → t. Assume also that for some r > 1 and for every t ∈ [0, T ],

sup
h,k>0

E
[
‖M+

k,h(t)‖2rV ′
]
<∞,(B.0.12)

sup
h,k>0

E
[
‖R̃+

k,h(t)‖rL(V,V ′)

]
<∞.(B.0.13)

Define R := R̃ ◦ I, where I is the isometric isomorphism given in (B.0.7). Then R is equal to
〈〈M〉〉, the quadratic variation process of the F-martingale M .
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Appendix C

Finite elements

Here we recall some basic concepts from the finite element theory. Most of them can be found
in [14].

Definition C.0.1 (Definition 3.3.11, [14]). A triangulation of a polygonal domain D is a subdi-
vision consisting of triangles having the property that no vertex of any triangle lies in the interior
of an edge of another triangle.

The definition can be extended to a subdivision of tetrahedra analogously

Definition C.0.2 (Definition 4.4.13, [14]). Let D be a given domain and let {Th}0<h≤1, be a
family of subdivision such that

max{diam(T ) |T ∈ Th} ≤ Chdiam(D) .

The family is said to be quasi-uniform if the exists ρ > 0 such that

min{diam(BT ) |T ∈ Th} ≥ ρ h diam(D)

for all h ∈ (0, 1], where BT is the largest ball contained in T such that T is star-shaped with
respect to BT . The family is said to be non-degenerate if there exists σ > 0 such that for all
T ∈ Th and for all h ∈ (0, 1],

diam(BT ) ≥ σ diam(T ) .

If a family is quasi-uniform, then is is non-degenerate, but not conversely.
Let Th be a quasi-uniform triangulation of a bounded polygonal domain or polyhedral domain

D ⊂ Rd, d− 2, 3 into triangles of tetrahedra of maximal diameter h > 0. Let N = {N1, . . . , Nk}
be the functional corresponding to the evaluation at the vertices {x`}k`=1 of Th, i.e.,

N`(u) = u(x`) u ∈ C(D), ` ∈ {1, . . . , `} ,

and let
{φφφ` | ` = 1, . . . , k}

be the nodal basis for Th. Then the corresponding Lagrange interpolator is defined by

Iu :=

k∑
`=1

N(u)φφφ` ∀u ∈ C0(D) .

Then, for a triangle T of maximal diameter h ∈ (0, 1] there holds the following approximation
property, see [14, Theorem 4.4.4]

|u− Iu|W i,p(T ) ≤ C(m, d)hm−i|u|Wm,p(T ) for m− d

p
> 0 .
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for 0 ≤ i ≤ m. Moreover, the following inverse estimate holds

‖v‖W i,p ≤ C(l,m, p, q)h
m−i+ d

p
− d
q ‖v‖Wm,q
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