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Zusammenfassung 

Populationsgenetische Studien beschreiben die Verteilung von Allelfrequenzen mit 

dem Ziel, deren Veränderung über die Zeit abzuleiten, woraus wiederum auf den 

demographischen Werdegang natürlicher Populationen rückgeschlossen werden kann. 

Darüber hinaus versuchen sie das Phänomen der Adaptation und der Artenbildung zu 

erklären. Bis vor kurzem basierten Studien in Nicht-Referenzorganismen auf nur 

wenigen genotypisierten Loci, da die Neuentwicklung einer großen Anzahl von 

Markern sehr kostspielig war und darum außerhalb der Möglichkeiten der meisten 

Forschungsprojekte lag.  Bisher waren nur in etablierten Modelorganismen mit 

bekanntem Referenzgenom „populationsgenomische“ Studien, die das genomweite 

Muster von Sequenzvariationen innerhalb und zwischen nahverwandten Populationen 

und Spezies untersuchen, möglich. Die Verfügbarkeit von neuen 

Sequenziertechnologien der nächsten Generation (NGS) hat nicht nur grosse 

Fortschritte in der Genomforschung ermöglicht, sondern auch die Entwicklung 

genomweiter Marker erleichtert. Der Guppy (Poecilia reticulata) ist ein wichtiger 

Modelorganismus in der ökologischen Genetik. Die Anpassung von Guppies in 

Hinblick auf Verhalten, Morphologie und Lebensweg in gegensätzlichen oberen und 

unteren Flussläufen wurde ausführlich untersucht. Guppies sind in der Lage sich 

schnell an eine neue Umgebung anzupassen, was vermutlich an der hohen natürlichen 

Variation liegt. Bisher war es unmöglich genomweite Analysen genetischer 

Variabilität durchzuführen oder nach Regionen im Genom, die einen Selektionsvorteil 

aufweisen, zu suchen. Diese Arbeit beschreibt den Übergang von Populationsgenetik 

zu Poplationgenomik im Guppy. Zuerst untersuchen wir die Populationsstruktur in 

einer Auswahl natürlicher Populationen und suchen zum ersten Mal nach Regionen 

mit Selektionsvorteil mittels eines genomweiten Satzes von genetisch kartierten 

Single Nukleotid Polymorphismus (SNP) Markern. Durch die Simulation von 

Populationen konnte ich abschätzen welchen Einfluss die Stichprobengröße einer 

Population und die Anzahl der Marker auf unterschiedliche Schätzer von genetischer 

Differenzierung haben. Ich demonstriere wie NGS genutzt werden kann, um die Gene 

in Regionen von Interesse, auch ohne Referenzgenom, zu identifizieren und am Ende 

zeige ich wie Sequenzierung von DNA Abschnitten neben Restriktionsschnittstellen 

(RAD-seq) die genomweite Entwicklung von SNP Markern im Guppy ermöglicht. 
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Abstract 

Population genetic studies estimate allele frequency distributions and the change of 

these frequencies over time in order to infer the demographic history of natural 

populations. Such studies aim to explain how adaptation and speciation have 

occurred. Until recently, inferences in non-reference taxa have been based on very 

few loci due to the high cost of developing a large set of markers de-novo. Only in 

established model organisms with a known reference genome was it possible to study 

genome-wide patterns of sequence variation. However, the advent of Next Generation 

Sequencing (NGS) technologies has revolutionized the field of whole genome 

research, and facilitated the development of genome-wide genetic markers. 

The guppy (Poecilia reticulata) is an important model organism in ecological 

genetics.  Adaptation of guppies to contrasting upland and lowland habitats has been 

extensively studied with respect to behavior, morphology and life history. Guppy 

populations are able to adapt rapidly to new environments, presumably due to their 

high level of standing natural variation. However, it was previously not possible to 

deduce a genome-wide picture of genetic variability and to scan for the causative 

genomic regions under selection. In this thesis, I will describe our efforts to move 

from population genetics to population genomics in the guppy. This was achieved by 

first using a genome-wide set of genetically mapped single nucleotide polymorphism 

(SNP) markers for the analysis of population history and then, for the first time, to 

check for regions under selection in the guppy genome. By simulating populations, I 

assessed the effects of sample size and marker number on the various estimates of 

genetic differentiation. I will show how NGS can be used to identify genes in 

genomic regions of interest without an available reference genome and, finally, I will 

describe how restriction associated DNA sequencing (RAD-seq) facilitates the 

development of genome wide SNP markers in the guppy. 
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1. Introduction 

1.1 The field of population genetics  

Population genetics is a field that studies allele frequency distribution and their 

change over time in natural populations (Weir, 1996). Differences in allele frequency 

distributions among natural populations from the same species give insights into the 

demographic history and structure of these populations. Measuring allele frequencies 

at many loci within a population can be considered a description of the population. 

Changes of allele frequencies within natural populations over time are at the core of 

explaining evolution and speciation.  

There are four main evolutionary processes causing changes in allele frequencies: 

genetic drift, gene flow, natural selection and de novo mutation (Hartl and Clark, 

1997). Genetic drift describes the process of random sampling of parental alleles that 

occurs from one generation to the other. Genetic drift can lead to genetic 

differentiation of separate populations within the same species. Gene flow describes 

the exchange of alleles among populations, most likely by migration of fertile 

individuals from one population to another. Gene flow between populations reduces 

the genetic differentiation. Mutations are the origin of all genetic variation. They 

generate new alleles within a population by altering the DNA sequence, increasing the 

genetic variability. Most of the mutations have no effect on the fitness of an 

individual and are therefore called neutral. However, some mutations do have an 

effect on the fitness of an individual within a population. This effect can either result 

in an enhancement of fitness (advantageous mutations) or in a reduction of fitness 

(deleterious mutations). If a mutation has an effect on the fitness, natural selection can 

act on it. In the case of advantageous mutations it causes the allele to become more 

common within a population. In the case of deleterious mutations natural selection 

will cause the allele to become less common within a population. Whereas genetic 

drift and gene flow are random processes affecting the whole genome in the same 

way, natural selection is a directed process, affecting particular loci in the genome. 

However, if environmental conditions change over time, previously neutral mutations 

can become e.g. advantageous and the allele carrying the mutation that was rare 

before becomes more common within the population due to positive selection. A 
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textbook example is the peppered moth (Biston betularia) (van't Hof, et al., 2011). 

Within this species there are two alternative alleles for coloration, one causing light 

coloration and one causing dark coloration. Originally, the allele for light coloration 

was the common one within the population. The light coloration effectively 

camouflaged the moths against the light-colored trees they rested on protecting them 

from predation. However, due to widespread pollution during the Industrial 

Revolution in England the trees, which peppered moths rested on, became blackened 

by soot. Now, the allele for dark coloration is advantageous, because it provides the 

ability to hide on the darkened trees. However, without the genetic variability at this 

locus, the species would not have been able to adapt to the environmental change. A 

population of individuals can only adapt, if it contains genetic variability, which is the 

core of population genetic studies. 

 

1.2 From population genetics to next generation population genomics 

Until recently, most studies on wild populations of non-reference species used 

moderately large numbers of samples per population (> 20), but only a small number 

of genetic markers (< 20). The most widely used markers are amplified fragment 

length polymorphisms (ALFPs), microsatellites and single nucleotide polymorphisms 

(SNPs) (Luikart, et al., 2003). However, the term “population genomics” was already 

used more than ten years ago in a publication about human disease genetics by 

Gulcher and Sefansson (1998). Luikart et al. (2003) defined population genomics “as 

the simultaneous study of numerous loci or genome regions to better understand the 

roles of evolutionary processes (such as mutation, random genetic drift, gene flow and 

natural selection) that influence variation across genomes and populations”. They 

suggested genotyping tens to hundreds of genomic markers in order to do a 

population genomic study. Yet, molecular resources in ecological model organisms 

sufficient for genome wide marker development have been rare at that time and 

population genomic studies have only been feasible in a number of reference 

organisms, like humans (Salmela, et al., 2008). The development of a large number of 

genetic markers for new species typically involved marker discovery for which 

sufficient molecular resources were needed, assay development for each marker, and 

proof of the assays in a screening population before full deployment across large 
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populations. This process was costly (in time and research funding) and usually 

resulted in generation of very few (tens) of working markers. Still, genome-wide data 

sets have the potential to improve the inference of population parameters and to 

reliably reconstruct population demography and evolutionary history. Moreover, they 

can provide a better understanding of adaptive evolution (Luikart, et al., 2003; Narum, 

et al., 2008). Genome-wide SNP marker sets have already proven useful in humans 

revealing detailed genome-wide perspectives on phylogeographic relationships 

(Salmela, et al., 2008 and citations there in) and evidence for genes under natural 

selection (Akey, et al., 2002). However, the examination of SNPs in wild populations 

addressing evolutionary, ecological or conservation issues is still limited to a few 

examples including wolves (Seddon, et al., 2005), lizards (Rosenblum and Novembre, 

2007) and salmon (Narum, et al., 2008). 

Single nucleotide polymorphisms (SNPs) represent the most abundant source of 

variation in the genome of most organisms. Their distribution throughout the entire 

genome at high density, well-established models for handling mutation rates and error 

rates, and the methods for high throughput genotyping make them appealing for 

population genetic studies at the whole genome level (Narum, et al., 2008). Yet, due 

to the lack of genomic information for non-reference organisms, the development of 

large SNP marker sets is rather expensive in such species. Therefore, microsatellites 

and AFLPs have been the markers of choice for molecular studies in ecology and 

evolution. Microsatellites are appealing because of their high variability and 

consequently high information content, which can be four to ten fold higher for some 

multi-allelic microsatellites as compared to bi-allelic SNPs (Morin, et al., 2004). 

However, analyses of microsatellite data suffer from complicated mutation models, 

high incidence of homoplasy, potentially error-prone assays and low genotyping 

throughput, making a genome-wide analysis with microsatellites very difficult (Di 

Rienzo, et al., 1994; Estoup, et al., 1995; Hedrick, 1999; Hoffmann and Amos, 2005; 

Miller, et al., 2002). AFLPs are cheap to develop and allow the analysis of thousands 

of polymorphisms spread across the genome without having access to DNA sequence 

information. However, the relatively poor per-locus type of genetic information is a 

major disadvantage (Bensch and Akesson, 2005). In most studies it is impossible to 

separate between dominant homozygous (1/1) and heterozygous (1/0). 

In recent years, several novel high-throughput sequencing platforms have entered the 

market. The most commonly used are the SOLiD system by Applied Biosystems 
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(www.appliedbiosystems.com), the Solexa technology, now owned by Illumina 

(www.illumina.com) and the 454 platform (Margulies, et al., 2005), now owned by 

Roche (www.roche.com) (for a description of all three technologies see (Mardis, 

2008). These Next Generation Sequencing (NGS) technologies have revolutionized 

the field of genome research, at first by allowing cheap re-sequencing projects for 

organisms with an already existing reference genome. But recently more and more 

methods have been developed incorporating NGS to analyse also non-reference 

organisms, taking advantage of improvements such as longer read lengths and paired-

end (PE) reads. Therefore, it is now much more difficult to understand the ecology of 

established genetic model organisms than to generate new resources required for the 

genetic analyses of established ecological model organisms (Tautz, et al., 2010). 

Given the availability of ultra-high-throughput sequencing, one strategy for marker 

development might be to just sequence completely the genomes of several of the 

target organisms, and identify SNPs by comparing these total data sets. However, this 

is still not feasible for eukaryotes with genomes that are hundreds or thousands of 

megabase pairs in size. Furthermore, de-novo assemblies of large genomes from very 

short reads remain difficult, in spite of recent improvements in assembly algorithms 

(Gnerre, et al., 2011). However, more and more methods are becoming available 

allowing de-novo discovery and genotyping of genome-wide SNP markers in many 

individuals. The probably most promising development is restriction site associated 

DNA (RAD) sequencing, which allows large amounts of sequence data to be 

generated for mapping or population genetic studies, but without the need for prior 

identification of SNP sites (Baird, et al., 2008). Further, techniques for target 

enrichment are now available for NGS in order to sequence particular genome regions 

of interest (Summerer, 2009). 

 

1.3 The Guppy as model organisms in ecological genetics 

Guppies (Poecilia reticulata) are native to freshwater habitats in the North Eastern 

coastal range of South America, including the offshore island of Trinidad (Magurran, 

2005). They are long-standing models for studies on ecological genetics and most 

fieldwork has been performed in the Northern Mountain Range of Trinidad. On the 

Southern slope of the mountain range are the Oropouche and Caroni drainages, which 
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have been separated by a watershed divide for 600,000 to 1,000,000 years (Carvalho, 

et al., 1991; Fajen and Breden, 1992). Before separation from the South American 

mainland, the present Caroni drainage (including the portions along the northern coast 

draining directly into the sea) and Oropouche drainage were most likely connected to 

North and South flowing arms of the Orinoco, respectively, giving rise to at least two 

distinct arcs of colonization that are still manifested in a distinct freshwater fauna. 

This proposal is known as the “two arcs hypothesis” (Kenny, 1988; Magurran, 2005). 

However, it has been noted that there are substantial differences between the North 

flowing rivers and both the Oropouche and Caroni. While mullets, gobies and 

freshwater prawns prevail as main guppy predators in the Antillean fauna of the 

Northern drainages, guppies are preyed upon by the typical South American mainland 

cichlids and characins in the Caroni and Oropouche (Magurran, 2005; Reznick and 

Bryga, 1996) and citations therein). Studies on ecological genetics revealed an 

amazing degree of phenotypic natural variation in male nuptial ornaments (Figure 

1.1), courtship behavior and life history traits within and among wild guppy 

populations. This phenotypic variation is shaped by both natural and sexual selection 

and has been primarily studied in the context of adaptations to habitats that differ in 

the presence of predators (Endler, 1995; Houde, 1997; Magurran, 1998). Usually, 

waterfalls separate upper river ranges from lower river ranges and prevent the 

migration of big predators upstream (Figure 1.2).  

Quare River (Oropouche Drainage) Aripo River (Caroni drainage)

Cumana (Venezuela) Oropouche River (Oropouche drainage)

Aripo River (Caroni drainage) Poza Azufre (Venezuela)

Quare  (Oropouche  drainage)

Cumana  (Venezuela)

Aripo  (Caroni  Drainage)

Oropouche  (Oropouche  drainage)

Aripo  (Caroni  Drainage)

Poza  Azufre  (Venezuela)

Figure 1.1: Phenotypic natural variation in male nuptial ornaments found among individuals in 
different drainages. 
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Consequently, headwaters are most of the time low predation habitats, whereas 

downstream sites are usually high predation habitats. High and low predation 

populations differ in a broad suite of phenotypic traits that appear to be adaptively 

significant, namely the conspicuousness in male coloration (Endler, 1978; Endler, 

1980; Endler, 1983; Godin and McDonough, 2003; Houde, 1997), behavior (Breden, 

et al., 1987; Ghalambor, et al., 2004; Kelley and Magurran, 2003; Magurran and 

Seghers, 1990; Magurran, et al., 1992; Magurran, et al., 1995; O'Steen, et al., 2002; 

Seghers, 1974), life history traits (Reznick and Bryga, 1987; Reznick, et al., 1996b) 

and parasite resistance and load (Martin and Johnson, 2007 ; van Oosterhout, et al., 

2003; van Oosterhout, et al., 2007). Where barrier waterfalls separate upper and lower 

stream populations, contemporary gene flow between upper and lower habitats occurs 

primarily in the downstream direction (Barson, et al., 2009; Crispo, et al., 2006; 

Shaw, et al., 1991). While different upper river ranges within drainages remain 

isolated from each other, there is gene flow among different lower river habitats 

(Barson, et al., 2009). Artificial introductions are a powerful tool for experimentally 

determining the selective forces driving adaptive divergence and studying adaptation 

in real time. Most introduction experiments have been performed within the same 

2 

Natural 
barriers restrict 
gene flow in 
upper direction 

Within rivers/drainages  
natural gene flow occurs 
 in contact zones 

Lower 
Guanapo 

Lower 
Caura 

Lower 
Lopinot 

Lower 
Aripo 

Upper 
Aripo 

Upper 
Caura 

Upper 
Guanapo 

Upper 
Lopinot 

Figure 1.2: Migration model among rivers within the same drainage. Different upper and lower 
rivers are depicted by blue circles (river names are taken from the Caroni drainage as an example). 
Arrows show the gene flow occurring between different river parts and the arrow size reflects the 
amount of gene flow. Photos taken by Paul Bentzen and Eva-Maria Willing  
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river basin to sites that were previously devoid of guppies. John Endler transferred 

guppies within the Aripo in 1976 (Endler, 1980), David Reznick within the El Cedro 

in 1981 (Reznick and Bryga, 1987) and also in 1996 from the Lower Yarra to the 

adjacent Damier River (Karim, et al., 2007); reviewed by (Magurran, 2005). In 

contrast, about 50 years ago Haskins transferred about 200 guppies from the Caroni 

drainage to the Oropouche drainage, namely from lower Guanapo to upper Turure 

(Magurran, 2005; Shaw, et al., 1992). Striking changes in male color patterns and life 

history traits were reported shortly after such transfers (Endler, 1980; Karim, et al., 

2007; Reznick, et al., 1990) and the rapid evolutionary changes observed suggest that 

some natural guppy populations must harbor substantial standing variation to realize 

this evolutionary potential within a limited number of generations. 

Previously, limited numbers of mitochondrial markers (Alexander and Breden, 2004; 

Alexander, et al., 2006; Fajen and Breden, 1992), allozymes (Carvalho, et al., 1991; 

Shaw, et al., 1991) and microsatellites (Crispo, et al., 2006; Suk and Neff, 2009) have 

been used to study population genetics and phylogeographic history in guppies. These 

analyses have indicated significant genetic divergence among guppies from the 

different drainages and also considerable substructure among populations within 

drainages. However, inferences about the phylogeographic relationships among the 

studied populations are not always congruent.  

Studies using allozymes and mtDNA have revealed marked genetic divergence 

between populations from the Oropouche drainage and the Caroni and Northern 

drainages, supporting the hypothesis of two major lineages of guppies in Northern 

Trinidad (Alexander, et al., 2006; Carvalho, et al., 1991; Fajen and Breden, 1992). 

However, a recent study based on seven microsatellites found that populations from 

the Northern drainages are all highly differentiated from populations in either the 

Caroni or Oropouche drainage (Suk and Neff, 2009). The same study also suggested 

that guppies from the Aripo River within the Caroni drainage have a genetic signature 

that is more similar to populations from the Oropouche drainage, in contrast to 

previous results indicating that populations from the Aripo river are more closely 

related to other populations within the Caroni drainage (Alexander, et al., 2006; 

Carvalho, et al., 1991; Fajen and Breden, 1992).  

Therefore, a genome-wide picture of standing genetic variation might refine the 

reconstruction of the evolutionary history of populations and would enhance the 

understanding of adaptive evolution in different guppy populations. 
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1.4 Outline of the thesis 

At the beginning of this thesis, the only molecular resources available for the guppy 

were a library of expressed sequence tags (ESTs) (Dreyer, et al., 2007) and randomly 

sequenced bacterial artificial Chromosome (BAC) end sequences. These resources 

were used to develop approx. 1,000 single nucleotide polymorphism (SNP) markers 

in order to generate a genetic map and to perform QTL analyses (Tripathi, et al., 

2009).  

Since a genome-wide picture of standing genetic variation has not been conducted so 

far, these approx. 1,000 nuclear markers were genotyped in 239 individuals from 37 

sites in Trinidad and Venezuela. Chapter 2 is based on Willing et al. (2010) and 

describes how used this dataset was explored to make inferences about demographic 

history of these populations using modern population genetic methods and custom 

methods specially implemented for this analysis. In addition, the genome-wide set of 

genetically mapped SNP markers was used to scan for regions under selection in the 

guppy genome using FST outlier methods. 

In Chapter 2, only a very small number of individuals sampled per population were 

used (on average 5.7). It is commonly thought that large sample sizes are required in 

order to reliably infer FST and that small sample sizes lead to overestimation of 

genetic differentiation. Chapter 3 is based on Willing et al. (in preparation) and 

examines whether a large number of genetic markers can substitute for small sample 

sizes when estimating FST. The behavior of three different estimators that infer FST 

and that are commonly used in population genetic studies was tested. 

However, 1,000 SNP markers distributed equally over the guppy genome with a size 

of approx. one gigabase leaded to a SNP density of approx. one SNP per megabase. 

This density is far too low in order to detect the regions under selection due to 

predation pressure. It is likely, that the allele variants, that are under selection, already 

existed in the last common ancestor of the Trinidadian populations. Consequently, 

linkage blocks are expected to be small and a high marker density is required to get 

the resolution for detecting signals of selection. Therefore, we were looking for a cost 

effective method to develop more genomic markers. Sequencing restriction site 
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associated DNA (RAD) with Illumina was developed in stickleback for rapid 

detection of new SNP markers.  

In Chapter 4, a new approach is demonstrated that uses paired-end RAD-seq strategy 

to produce extended contigs flanking a restriction site and how these can be used to 

develop thousands of new SNP markers. This Chapter is based on Willing et al. 

(2011). 

As mentioned before, the genome-wide set of SNP markers was used to detect 

genomic regions under selection. However, the scored SNPs alone do not give any 

hints about the genes linked to these SNPs. Since there is no reference genome 

sequence for the guppy available (which is true for most taxa in ecological genetics), 

another strategy had to be designed in order to investigate genomic regions of interest 

(e.g. under selection). Bacterial artificial chromosomes (BACs) contain the (possibly 

large) genome of an organism in comparatively small pieces and BAC libraries can be 

screened for genomic regions of interest. Chapter 5 examines the feasibility of using 

the Illumina technology to sequence and assemble a library made of pooled BAC 

DNA.  
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2. Genome-wide single nucleotide polymorphisms reveal 

population history and adaptive divergence in wild guppies 

Previously, genotyping assays were developed for over 1,000 SNPs that were used to 

construct a complete linkage map of the guppy (Dreyer, et al., 2007; Tripathi, et al., 

2009). The study described in this Chapter was published in Molecular Ecology in 

2010 (Willing et al, 2010) and surveys the value of these genome-wide markers in the 

analysis of genetic variation within and among naturally occurring guppy populations. 

The study was conceived by Christine Dreyer and Detlef Weigel. Paul Bentzen, Cock 

van Oosterhout, Joanne Cable and Felix Breden provided the population samples 

analyzed. Margarete Hoffmann prepared the DNA needed for the genotyping. I 

conceived and performed all the analyses described. Christine Dreyer, Paul Bentzen, 

Joanne Cable, Cock van Oosterhout, Felix Breden and Detlef Weigel helped with the 

interpretation of the results (see also Contributions).  

The genotypes of 239 individuals representing 37 sample sites from a wide 

geographic range covering Trinidad and Venezuela were ascertained. I subjected the 

resulting dataset to modern population structure analysis by three different individual-

based methods that do not require a priori knowledge of predefined populations. I 

completed the analyses by the estimation of well-established population statistics 

including FST, AMOVA and expected heterozygosity (He). By comparing my findings 

to previous work, which employed other marker types, I assessed the performance of 

our SNP data set and tested whether our SNPs are informative in a large number of 

different populations. A genome wide picture of standing variation may extend and 

refine previous results, but it can also clarify previous incongruent conclusions about 

phylogeographic relationships and provide new knowledge on phylogeographic 

history and undetected admixture events leading to some new interpretation. 

Additionally, the data gave first indication of potential regions under selection by 

scanning the genome with FST outlier methods (Lewontin and Krakauer, 1973). Under 

selective neutrality, genetic drift and gene flow determine the allele frequency 

divergence of all loci across the genome and therefore determine FST. Since this 

random process is expected to affect all loci in a similar way, SNPs with extremely 

high or low FST values may be strong candidates linked to selectively important loci. 

We hypothesized that neutral forces, such as random genetic drift, are mainly 
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responsible for the large genetic divergence among guppies from different drainages. 

However, the freshwater habitats of the Northern, Caroni and Oropouche drainages 

exhibit many differences, including different types of predators that might drive 

adaptation (Magurran, 2005). Therefore, I scanned this novel data set in order to find 

evidence for genomic regions under adaptive natural selection in guppies originating 

from the Oropouche, Caroni and Northern drainages. 

 

2.1 Material and Methods 

2.1.1 Sample collection and SNP analysis 

The 239 individuals were sampled from five major geographical regions in Trinidad 

and Venezuela, namely the Caroni drainage (North-West Trinidad), Oropouche 

drainage (North-East Trinidad), the Northern drainages of Trinidad (Yarra, Marianne 

and Paria), South-West Trinidad and Eastern Venezuela (Figure 2.1, Table 2.1). The 

samples can be hierarchically classified. The top level represents the five major 

geographical regions that are presently separated by watershed divides or by the sea. 

The next level corresponds to samples originating from different river basins in the 

separate geographical regions, and the lowest levels are the different sampling sites 

within the same river, e.g. upstream and downstream sites (Table 2.1). In total,  

samples from 37 different sites were available, with N=2 to 14 (mean 5.7, see 

Discussion) individuals per sample site. Although the sample sizes per population 

were small, the total sample sizes of populations within four of the five major 

geographic regions were moderately large (Oropouche drainage N=42, Caroni 

drainage N=70, Northern drainages N=63 and Venezuela N=20). In order to minimize 

the chance of sampling closely related individuals, samples from the same spot at one 

sampling site were avoided. Of the samples 187 came directly from the wild, and 95 

of these were parts of larger samples from 16 sites, which had previously been 

genotyped for nine microsatellites to confirm that these populations were in Hardy-

Weinberg equilibrium. The analysis included 52 progeny from wild caught guppies 

that were kept for up to 10 - 15 generations (3 to 4 years) in the laboratory (see Table 

2.1). Lower Oropouche, upper Quare and Cumaná samples (labeled with an asterisk 

in Table 2.1) had each been separated from natural samples and subdivided into 

families reflecting different color patterns before breeding in small community tanks. 
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To provide the best estimate of the natural variation originally contained in the sample 

I retained one to four specimens from each family for the final analysis. 

Genomic DNA was isolated from the tail muscle of each fish using a Qiagen 

DNeasy96 kit (Catalogue No.69582) according to the manufacturer’s instructions. 

DNA was adjusted to a concentration of 20 ng/µl and 2.5 ng per SNP assay was 

provided. 

 

2.1.2 SNP genotyping and evaluation 

Genotyping assays for 1005 polymorphic markers were designed and performed using 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF) (by Sequenom (San Diego, CA, USA), for details see (Vignal, et al., 

2002)), based on sequence information gained from genomic re-sequencing of two 

populations, namely upper Quare and Cumaná (Tripathi, et al., 2009). 

After exclusion of markers whose assays failed and 104 markers that were not 

polymorphic (< 1% frequency of the minor allele) a set of 866 SNPs remained for 

further analysis. This marker set had a mean missing data rate of 10.3% across SNPs, 

8.8% across individuals and 8.9% across populations. I used these 866 SNPs as input 

for the Neighbor-Net analysis. To minimize the bias in the inference of admixture 

coefficients by Structure, I reduced the mean missing rate per individual to below  

Figure 2.1: Map of East Venezuela and Trinidad showing sample sites. Map in inset shows 
locations in East Venezuela and South-West Trinidad. Sites from which the fish were collected are 
labeled and numbered as in Table 2.1. Color codes: Venezuela – purple, South-West Trinidad – 
yellow, Northern drainages – green, Caroni drainage – blue, Oropouche drainage – red. 
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Table 2.1: List of sampling sites.  

Geographical region River  Sample Site Number of Population Predation 
      Individuals Number Regime 

Northern drainages Marianne  M1 6 1 Low 

(Northern slope of   M11 6 2 Low 

North Trinidad)   M15 5 3 High 

    M2 6 4 Low 

    M8 6 5 Low 

    Mid Marianne 1 4 6 High 

    Mid Marianne 2 4 7 High 

  Paria  Paria 6 8 Low 

    Paria 7 6 9 Low 

  Yarra  Lower Yarra 14 10 High 

    Upper Yarra 14 11 Low 

Oropouche drainage Matura  Lower Matura 4 12 High 

(Eastern part of Oropouche  Lower Oropouche 4 13 High 

Southern slope of   Lower Oropouche*1) 12 14 High 

North Trinidad)   Upper Oropouche 4 15 Low 

  Quare  Lower Quare 6 16 High 

    Upper Quare*2) 12 17 Low 

  Turure  Lower Turure 12 18 High 

    Upper Turure 10 19 Low 

Caroni drainage Aripo  Lower Aripo 14 20 High 

(Western part of   Rapsey Pool 4 21 Low 

Southern slope of   Upper Aripo 6 22 Low 

North Trinidad) Guanapo  Lower El Cedro 6 23 High 

    Upper El Cedro 6 24 Low 

    Lower Guanapo 4 25 High 

    Upper Guanapo 4 26 Low 

  Caura  Lower Caura 4 27 High 

    Upper Caura 4 28 Low 

  Tunapuna* Tunapuna* 2 29 Low 

  Tranquille* Tranquille* 8 30 High 

  Lopinot  Lower Lopinot 4 31 High 

    Upper Lopinot 4 32 Low 

SW Trinidad 

Palm Drive 

Felicity  4 33 High 

  Pitch Lake   4 34 Low 

Venezuela Cumaná Armando Pou 2 35 High 

(Mainland)   Central Cumaná*3) 13 36 High 

  Poza Azufre PV6* 5 37 High 

 
NOTE: *Individuals that have been separated from natural populations and subdivided into families 
(see Material and Methods). For the analysis individuals from different families have been pooled to 
provide the best estimate of variation originally contained in the sample yielding 1) four Oro209, two 
Oro201, two Oro4-2 and four Oro2 individuals 2) four Quare6, four Qua6_II-203, two Qua6_II-206, 
one Qua6_II-215-3 and one Qua6_3-2 individuals, 3) three CCBlue, four CCELB and six CCFR 
individuals. 
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10% (Pritchard and Wen, 2002) by excluding 60 markers with a missing call rate of > 

40%. With the remaining 806 markers the mean missing rate across individuals was 

4.8% and only 11 individuals had a missing call rate between 10% and 17%. The 

mean missing rate across SNPs and across populations was 5.9% and 4.8%, 

respectively. Since the input format for the software Eigensoft demands positional 

information of all markers used, for PCA I could only use 720 markers with 

information about their position on the genetic map (Tripathi et al. 2009). 
 

2.1.3 Neighbor-Net 

Since relationships among populations may not conform to a tree-like pattern due to 

potential gene flow (Nordborg, et al., 2005) and shared ancestral polymorphisms, I 

performed a phylogeographic analysis using the method Neighbor-Net (Bryant and 

Moulton, 2004) implemented in SplitsTree4 (Huson and Bryant, 2006) after 

compiling an artificial nucleotide sequence comprising all SNPs with heterozygous 

SNPs coded according to IUPAC. Because all populations analyzed were considered 

members of the same species, I assumed that more than one mutation at a specific 

position had rarely occurred and used Uncorrected_P distance as metric and 

ambiguous states were handled as average matches. The Normalize option accounted 

for unequal distribution of missing data across individuals. 

 

2.1.4 Bayesian analysis by Structure 

For direct assessment of admixture I used Structure version 2.3 (Pritchard, et al., 

2000). This Bayesian clustering approach avoids a priori population classifications, 

and instead estimates the shared population ancestry of individuals based solely on 

their genotypes assuming Hardy-Weinberg equilibrium and linkage equilibrium in 

ancestral populations. The number of predefined clusters (k) has to be optimized by 

the user. I ran Structure with a Markov Chain Monte Carlo (MCMC) burn in of 

100,000 steps, followed by an MCMC of 100,000 steps for clustering inference. The 

allele frequency distribution, which is assumed to be a Dirichlet distribution, is 

parameterized by λ. I estimated λ in three different runs for each dataset prior to the 

main clustering analysis by setting k = 2 and fixed λ at the mean of the inferred 

values. I used the admixture model with correlated allele frequencies (Falush, et al., 

2003) and applied the infer α option with the same α for all populations, where α 
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parameterizes the Dirichlet distribution used to infer admixture coefficients. Each 

analysis was repeated 10 times for each k. To find the optimal k, I used the Wilcoxon 

rank-sum test to determine whether or not likelihoods improved significantly for k 

compared to k-1 clusters. I calculated the symmetric similarity coefficient (SCC) with 

CLUMPP (Jakobsson and Rosenberg, 2007) between all pairs of runs for the same k. 

When multiple runs at the same k value produced discrepant results, I relied on the 

majority rule and the best mean likelihood to select the optimal result.  

 

2.1.5 Principal Component Analysis 

Principal Component Analysis (PCA) has similar power to detect population structure 

as Structure (Patterson, et al., 2006). In addition, an estimation of the maximal 

number of subpopulations that can be found within a dataset is achieved by 

determining the number of statistically significant principal components (PCs). I used 

the software package Eigensoft version 1.01 to perform the PCA (Patterson, et al., 

2006) and to test the significance of the resulting eigenvalues and corresponding 

eigenvectors. I used a significance cutoff of 1% to determine the number of 

eigenvectors representing significant population substructure. To assign the 

individuals to their respective population (Paschou, et al., 2007) I applied the k-means 

clustering algorithm (Hartigan and Wong, 1979) implemented in GNU R (Team, 

2008) on low-dimensional data. I performed for each k ten independent clustering 

runs with maximal 10,000,000 iterations and 10,000,000 random sets to confirm the 

reproducibility of the results. 

 

2.1.6 Expected Heterozygosity, FST and Analysis of Molecular Variance 

For subsequent studies of variation parameters, heterozygosity and pairwise FST, I 

used predefined populations named by their sample sites (Table 2.1). I excluded fish 

from the lower Yarra, Turure, Palm Drive Felicity and Pitch Lake since the methods 

used so far revealed that they deviated from the hierarchical geographical pattern. 

Turure samples could, however, be included as part of the Guanapo cluster without 

substantial changes (data not shown). In contrast, including the lower Yarra samples 

as part of the Northern drainages decreased apparent genetic diversity between the 

Caroni and Northern drainages and increased genetic diversity between samples from 

the Yarra River and the remaining Marianne and Paria River. Considering the samples 
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from Palm Drive Felicity and Pitch Lake as a fifth geographical region representing 

South-West Trinidad, did not change the overall findings, but the small sample size 

from this region led to a lack of power.   

I performed an analysis of molecular variance (AMOVA) at different hierarchical 

levels using Arlequin version 2.001 (Excoffier, et al., 2005). I estimated expected 

heterozygosity (He) as described (Excoffier, 2007) assuming Hardy-Weinberg 

equilibrium. I implemented a script in GNU R for this task. Confidence intervals were 

determined by 1,000 bootstraps over loci. I used the Wilcoxon rank-sum test to 

determine whether or not heterozygosity levels differ significantly between upper and 

lower river habitats, using GNU R (Team, 2008). Pairwise FST-values between 

subpopulations were estimated using a formula that has asymptotically minimal 

variance and was recently suggested by Reich et al. (2009, see Appendix for details). 

I implemented this formula in Java in order to infer pairwise FST-values (see Chapter 

3). I performed a permutation test with 10,000 permutations in order to test for 

significance. 

 

2.1.7 Scanning for Selection 

To identify loci subject to selection I used two different programs based on different 

outlier approaches. First I used the program fdist2 (Beaumont and Balding, 2004; 

Beaumont and Nichols, 1996) that is based on a summary statistic approach. It 

calculates FST for each sampled locus and then uses coalescent simulations to generate 

a null distribution of FST values based on an infinite island model for populations and 

an infinite allele model for polymorphisms (Beaumont and Nichols, 1996). We 

simulated the neutral distribution of FST with 50,000 iterations. The second program 

BayesFst (Beaumont and Balding, 2004) relies on a Bayesian regression model 

implemented via a Markov Chain Monte Carlo (MCMC). It estimates three different 

parameters describing the locus effect (αi), the population effect (βj) and the 

interaction between both effects (γij). I focused on the posterior distribution of the 

locus-effect parameters where a positive αi suggests that locus i is subject to adaptive 

selection, whereas a negative αi suggests balancing selection. The probability 

densities for FST values were obtained with the assumption of independent, lognormal 

(1, 1.8, 0.5) prior distributions for the αi, βi, and γij (Beaumont and Balding, 2004).  
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To adjust the false positive rates of the two methods, I adapted the confidence levels 

by 10-fold to 90% for BayesFst and 99% for fdist2, as previously suggested by 

Beaumont & Balding (2004). In order to control for type I errors due to multiple 

testing, I repeated the simulations ten times with each program and reported only 

those loci detected in all ten runs at the appropriate significance level. Note that 

BayesFst itself deals with the problem of multiple testing through the prior 

distribution of the regression parameter for the locus effect (αi) (Beaumont and 

Balding, 2004). 

 

2.2 Results 

2.2.1 Clustering Analysis and Admixture Patterns 

For a first analysis of guppy population structure I ignored any labels defined by 

sample site, as I used three different unsupervised clustering methods, Neighbor-Net, 

PCA and Structure, to detect population sub-structure.   

 

Top level: Major unconnected geographical regions 

Samples from the Caroni, Oropouche and Northern drainages of Trinidad, and from 

Venezuela were separated into four distinct clusters by Neighbor-Net (Figure 2.2), 

PCA (Figure 2.3A) and Structure analyses (Figure 2.4A). However, there was no 

unique clustering of samples from South West Trinidad, a region that was represented 

by two sampling sites only, namely Palm Drive Felicity (33) and Pitch Lake (34); 

numbers in parentheses refer to Table 2.1. Whereas fish from Palm Drive Felicity (33) 

which is close to the Caroni, clustered within the Caroni drainage, Pitch Lake (34) 

individuals from the far South West appeared as a distinct group in the Neighbor-Net 

(Figure 2.1). PCA indicated that both samples are part of the Caroni drainage cluster 

(Figure 2.3A). Structure analysis revealed predominantly the same genetic 

signature for individuals from the same geographical region, with a few notable 

exceptions. Individuals from the Turure in the Oropouche drainage (18, 19) were 

found within the Caroni drainage cluster (Figure 2.2, 2.3A and 2.4A) (see below). In 

agreement with the ancestry proportions inferred by Structure, fish from the lower 

Yarra (10) stood out among all samples from the Northern drainages in that they 

appeared equidistant between Northern and Caroni drainage clusters in the Neighbor-
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Net (Figure 2.2 and 2.4A). Samples from Poza Azufre (37) in East Venezuela shared 

genetic signatures with guppies from Cumaná, the Caroni, and the Northern 

drainages, but appeared to be more closely related to populations from the Caroni 

Figure 2.2: Phylogenetic network reconstructed with the method Neighbor-Net. The network is 
based on 866 SNP markers and shows all 239 individuals. Major geographical regions are color-coded 
as in Figure 2.1. Smaller circles within major geographical regions mark different river basins. 
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drainage in Trinidad than to populations from Cumaná or the Northern drainages 

(Figure 2.2 and 2.4A).  

 

Second level: River basins 

With all 239 individuals, likelihoods in Structure improved significantly with the 

number of clusters until k = 12 (Wilcoxon rank-sum test: P > 0.15 for k = 12 versus 

13, ln P(k = 11) = -70069.80, ln P(k = 12) = -69229.70, ln P(k = 13) = -69584.47). For 

the majority of runs, clustering was very similar to that revealed by Neighbor-Net and 

to the one shown by k-means clustering at k = 12 using the first 11 PCs as input 

(Figure 2.2, 2.3A and 2.4B). The clustering clearly correlated with the second 

Figure 2.3: Principal component analysis (PCA) with k-means clustering. A) Plotting PC1 against 
PC2 revealed clustering reflecting four major geographical regions: Caroni drainage, Oropouche 
drainage, Northern drainages and Venezuela. Populations from South-West Trinidad (yellow) cluster 
with populations from the Caroni drainage. B) Clustering obtained by k-means using the all 28 
significant PCs and k = 29. A vertical bar represents each individual. Vertical black lines indicate 
predefined regions, rivers and sample sites. Matching upper and lower samples are (10/11), (13/15), 
(16/17), (18/19), (20/22), (23/24), (25/26), (27/28), (31/32). Major geographical regions are color-
coded as in Figure 2.1 and 2.2, with more color gradations discriminating sub-clusters in B. $Upper 
river samples, *laboratory reared populations. 
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hierarchical level (river basins) of the sampling scheme (Table 2.1), although the three 

methods were applied without any a priori assumptions about populations. 

Neighbor-Net (Figure 2.2) and Structure (Figure 2.4B) both grouped individuals 

from the Caroni drainage into clusters representing four of the rivers sampled, namely 

Aripo, Guanapo, Lopinot and Caura (Table 2.1). Samples from the Tranquille and 

Tunapuna fell into the Caura cluster. Clustering with k-means classified the Lopinot, 

which is represented by two sampling sites only (31, 32), as part of the Caura cluster. 

This observation reflects the close proximity of the Lopinot to the remaining rivers in 

this cluster (Figure 2.1). Guppies from the lower Aripo (20) showed evidence of 

genetic admixture with Oropouche fish (Figure 2.4B). Individuals from the upper 

Caura (28) showed admixture with a source population that did not appear to be 

included in the dataset, since there was no homogeneous cluster representing the 

source of the admixture. In addition, samples from the lower Yarra (10) located on the 

Northern slopes predominantly showed a genetic signature from apparently the same 

source population (Fig. 2.4B; marked with §).  

At the second hierarchical level, all three analyses suggested that individuals from 

Pitch Lake (34) in South-West Trinidad constituted a separate cluster. Individuals 

from Palm Drive Felicity (33), which is also located in South-West Trinidad but much 

closer to the Caroni, remained in clusters representing the Caroni drainage, with 

Figure 2.4: Analysis with Structure. Analysis based on 239 individuals using 806 SNP markers. 
Individuals are represented as vertical bars, horizontally partitioned into segments corresponding to 
their membership in genetic clusters indicated by colors. Vertical black lines indicate predefined 
regions, rivers and sample sites. Geographical regions are color-coded as in Figure 2.1 to 2.3. A) 
Clustering for k = 4 (ln P(k = 4) = -88159.53) B) Clustering for k = 12 (ln P(k = 12) = -69229.70). 
Abbreviations: SW = South-West Trinidad, Tu = Tunapuna, Tra = Tranquille, PL = Pitch Lake, PD = 
Palm Drive, LM = Lower Matura, PA = Poza Azufre. $Upper river samples, §undefined source 
population for admixture, *laboratory reared populations. 
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contributions from clusters representing the Oropouche and Northern drainages 

(Figure 2.3C and 2.4B). 

Within the Oropouche drainage I had samples from the Quare, Oropouche, Turure and 

Matura (Table 2.1). In agreement with the analysis at the first level (see above), all 

three methods showed the samples from the Turure (18, 19) as part of the cluster 

representing the Guanapo (23 – 26). This is explained by a known introduction from 

the lower Guanapo (25) into the upper Turure (19) about 50 years ago (Magurran, 

2005). I observed that about 6% of the loci within lower Turure individuals (18) 

displayed alleles that were native to the Oropouche drainage population (Figure 

2.4B), in agreement with previous studies (Becher and Magurran, 1999; Shaw, et al., 

1992). The three methods revealed a clear separation between individuals from the 

upper Quare (17) and the remaining individuals from lower Quare (16), Oropouche 

(13, 14, 15) and lower Matura (12). Only the Neighbor-Net (Figure 2.2) classified the 

individuals from lower Matura as a separate subpopulation, whereas Structure and 

PCA suggested the lower Matura individuals formed part of the Oropouche cluster. In 

the Oropouche, I observed additional genetic signatures typical for Caroni drainage 

populations. Surprisingly, this admixture was not caused by individuals originating 

from the Guanapo and migrating downstream the Turure (Figure 2.4B), but seemed to 

originate from the Caura. This is remarkable, given that compared to the other Caroni 

drainage rivers, the Caura is relatively remote from the Oropouche drainage. 

We included samples from the Yarra, Marianne and Paria, which are part of the 

Northern drainages in Trinidad (Figure 2.1). The Neighbor-Net as well as PCA 

indicated three separate clusters representing these rivers. Yet, individuals from a 

sampling site located within a tributary of the Marianne (2) were genetically similar to 

samples from the Paria (8, 9) (Figure 2.2 and 2.3A). Lower Yarra individuals (10) 

showed minor admixture from the upper Yarra (11), but major admixture from an 

unidentified source (see above).  

The mainland of Eastern Venezuela was represented by two geographically well-

separated sites, Poza Azufre (35) and Cumaná (36) (Figure 2.1). PCA, Structure 

and Neighbor-Net all suggested that these two samples were genetically very different 

(Figure 2.2, 2.3A and 2.4A). 
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Lowest level: Sample sites 

Although likelihoods calculated by Structure did not improve significantly when 

more than 12 clusters were predefined, I detected 28 significant PCs by PCA, each 

having a p-value < 10-20, suggesting at least 29 minor subpopulations within the 

dataset (Patterson, et al., 2006).  

The k-means clustering revealed that the PCs described additional substructure within 

the Paria (2,8,9), Marianne (1,3-7), Oropouche (12-16), Aripo (20-22), Guanapo (18, 

19, 23-26), Caura (27-32) and Cumaná (35-36) clusters (Figure 2.3B). These results 

suggested that each headwater sample site (Table 2.1; asterisks in Figure 2.3B) 

contained a subpopulation that had genetically diverged from communities in 

neighboring rivers. Samples from lower river ranges usually grouped with the 

corresponding upper river samples (Figure 2.3B), with three exceptions, namely 

samples of the lower Aripo (20), lower Quare (16) and lower Lopinot (31) were 

separate from their corresponding upper river populations (Figure 2.3B).  

In addition to natural separation of sample sites, the maintenance of our laboratory 

fish stocks originating from the Oropouche drainage and Cumaná (see Material and 

Methods) may have imposed some artificial substructure as revealed by PCA. The 

clustering reproduced clearly the separation of samples in different families (Figure 

2.3B). I therefore repeated the analysis without these laboratory-reared specimens and 

confirmed that these had not distorted the overall results (Figure 2.5). I also ran 

Structure on subsets corresponding to the five major geographical regions (Figure 

2.6). PCA indicated even more refined sub-clustering within the Oropouche and 

Caroni drainages than Structure (Figure 2.3B and 2.5), reflecting plausibly the 

Figure 2.5: Principal component analysis (PCA) with k-means clustering. We excluded the 10 
laboratory strains from the PCA in order to make sure that they did not distort our results. Clustering 
was obtained by k-means using the all 18 significant PCs and k = 19. A vertical bar represents each 
individual. Horizontal black lines indicate predefined regions, rivers and sample sites. Major 
geographical regions are color-coded as in Figure 2.3, with more color gradations discriminating sub-
clusters. Abbreviations: PL = Pitch Lake, PD = Palm Drive, LM = Lower Matura. *Upper river 
samples 
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geographical structure. In addition, Structure indicated gene flow between 

neighboring downstream sites, in contrast to the more homogeneous appearance of 

upstream samples (Figure 2.6). 

 

2.2.2 Inference of population parameters 

Population Divergence  

A hierarchical analysis of molecular variance (AMOVA) revealed that 31.3% of the 

variance segregated among individuals within populations and 25.8% among sample 

sites within geographical regions (Table 2.2). However, the largest component of the 

global variation, 42.9%, was observed among regions (Table 2.2).  PCA (Figure 2.3A) 

also provided information about the distribution of variation found within the dataset. 

It implied the highest variation between Cumaná and Quare samples, since these were 

placed at opposite ends of PC1, which harbors 18% of the variation (Figure 2.3A). 

Figure 2.6: Detailed investigation of regional subpopulations. The 239 individuals were subdivided 
into five smaller sets representing the five major geographical regions. Populations that appeared as 
likely sources of admixture in the previous analysis (Figure 2.4) were included in every subset. Shown 
are the most likely Structure results for each subset (see Material and Methods). The analysis of 
subsets showed more refined sub clustering within region compared to the global analysis in Figure 
2.4. Abbreviations: PL = Pitch Lake, PD = Palm Drive, UElC = Upper El Cedro, Tra = Tranquille, UO 
= Upper Oropouche, LM = Lower Matura, PA = Poza Azufre, ElC = El Cedro, Lop = Lopinot 
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PC2 split samples from the Caroni and Northern drainages and explained 12% of the 

variation found in the dataset (Figure 2.3A). 

AMOVA results on four subsets corresponding to the four major geographical regions 

indicated that the Caroni and Oropouche samples had the smallest values for variation 

between rivers (31.5 and 24.3%) and the largest values for variation within sample 

sites (56.0 and 60.2%, respectively). The highest value for variation between groups 

(46.8%) was observed between the two Venezuelan habitats, Cumaná and Poza 

Azufre, consistent with the Neighbor-Net analysis (Figure 2.2). Excluding the 

specimens reared in the laboratory did not alter the results significantly (Table 2.3). 

 
Table 2.2: Analysis of molecular variance (AMOVA). 

NOTE: The major regions were the uppermost level, followed by river basins within these regions and 
the sample sites again at the lowest hierarchical level. ***P < 0.001, **P < 0.01, *P < 0.05, NS not 
significant. 
 
 
 
 
Table 2.3: AMOVA without lab-reared specimens. 

NOTE: The major regions were the uppermost level, followed by river basins within these regions and 
the sample sites again at the lowest hierarchical level. ***P < 0.001, **P < 0.01, *P < 0.05, NS not 
significant. 
 

 

I found significant pairwise FST-values > 0 (P < 0.05) between almost all samples 

originating from different sites. FST values ranged from 0.036 [lower (18) and upper 

(19) Turure samples, Supplementary Table S2.1] to 0.908 [Paria (9) and upper 

 Among 
groups 

Among populations within 
groups 

Within populations Number of loci 
used 

Hierarchical Level 1st 2nd 3rd  

Geographical regions 42.9*** 25.8*** 31.3*** 573 

Northern drainages 35.3** 30.1*** 34.6*** 624 
Oropouche drainage 24.3NS 15.5*** 60.2*** 656 
Caroni drainage 31.5*** 12.5*** 56.0*** 591 
Venezuela 46.8NS 16.6*** 36.6*** 686 

 Among 
groups 

Among populations within 
groups 

Within populations Number of loci 
used 

Hierarchical Level 1st 2nd 3rd  

Geographical regions 38.3*** 27.1*** 34.6*** 573 

Northern drainages 35.3*** 30.1*** 34.6*** 624 

Oropouche drainage 13.6*** 5.2*** 81.2*** 656 
Caroni drainage 34.8*** 10.8*** 54.4*** 591 
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Lopinot (32), Supplementary Table S2.1]. Although genetic divergence seemed to be 

higher among populations from different major geographical regions there was also 

substantial allele frequency divergence among populations within regions. Allele 

frequency divergence was especially high among upper river populations, whereas 

lower river populations appeared to be less diverged from each other (Supplementary 

Table S2.1). 

 

Heterozygosity  

To test whether there was a significant association between heterozygosity and 

location within the river, I analyzed fish from high and low predation habitats 

separately and estimated the expected heterozygosity (He). He was significantly higher 

in lower river habitats (high predation) (mean µ = 0.12, standard deviation σ = 0.043) 

than in the corresponding upland river (low predation) (µ= 0.06, σ = 0.037; Wilcoxon 

rank-sum test: P < 0.001 (without laboratory strains); Figure 2.7). 

 

2.2.3 Regions under selection and candidate genes 

The probability of detecting selection based on a significant FST greatly improves with 

population sample size. Although our sample sizes per site were rather small, defining 

Figure 2.7: Summary of expected heterozygosity for specimens from different sample sites. We 
estimated the expected heterozygosity (He) for each population with n > 3. Additionally, 95% 
confidence intervals were indicated. Each sampling site can be categorized into either lower or upper 
river habitat (see Table 2.1). Laboratory reared populations are marked with asterisks. 14* Oro209 and 
Oro2; 17* Qua6 and QuaII_203; 36* CCELB and CCFR (see Table 2.1). 
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populations by separate geographical regions effectively increased our sample size per 

population. 

I scanned 310 SNPs that were polymorphic among individuals from the three separate 

geographical regions of Northern Trinidad, Caroni drainage (N=70), Oropouche 

drainage (N=42), Northern drainages (N=63), for signatures of directional selection 

using fdist2 and BayesFst (Beaumont and Balding, 2004; Beaumont and Nichols, 

1996). Ten runs of fdist2 gave an average of 16.9 markers that were significantly 

scored to be under directional selection. This number is much higher than what one 

would expect by chance (3.1, α = 0.01). In total, 31 different markers were significant 

in at least one run, with 12 SNPs (3.9%) with an FST value above the 99% confidence 

level reported in all ten runs (Table 2.8).  

 
Table 2.8: Summary of the outlier loci detected by the Bayesian (BayesFst) and summary 
statistics (fdist2) methods.  
 
fdist2 BayesFst LG Position (cM) 

Marker Marker   

 0581* 1§ 18.476 

0455* 0455** 1§ 19.014 

 1004** 5 4.818 

0417**  5 6.932 

0249* 0249* 5 22.17 

 0232* 6 2.813 

0785** 0785** 6 22.365 

0290** 0290** 7 1.52 

0085** 0085* 8$ 1.711 

0999* 0999* 8 4.52 

0026*  10$ 12.604 

 0642* 11 30.769 

 0228* 12 23.351 

 0574* 14 21.364 

0628** 0628** 14 33.01 

 0614* 15 13.349 

 1010* 15 23.829 

 0076** 17 13.007 

0893**  19 8.96 

0694**  19 21.774 

0280** 0280** 20§ 0.735 

 
NOTE: § Ornamental trait mapped to this region (Tripathi, et al., 2009), $Markers are linked to ESTs,    
*P < 0.01 (Fdist2) / P < 0.1 (BayesFst), **P < 0.005 (Fdist2) / P < 0.05 (BayesFst). 
 

BayesFst reported on average 18 SNPs per run. In total, this approach detected 22 

SNPs that were significant in at least one run, with 17 SNPs (5.5%) found in all ten 
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runs. Eight markers were predicted with high probability by both methods to be under 

directional selection (Table 2.8). Of these, two were positioned near regions to which 

ornamental traits have been mapped (Tripathi, et al., 2009) and one was linked to an 

EST. 

 

2.3 Discussion 

I have carried out a comprehensive survey of genetic variation in wild guppy 

populations from Trinidad and Venezuela. The large SNP marker set I employed 

enabled me to apply modern approaches to the inference of population genetic history 

at the whole genome level. I found strong population substructure, which was highly 

correlated with the geographic features of the sampled area. My results are by large 

not in conflict with previous results obtained with other marker types. Thus, the SNP 

marker set is informative in many wild populations from different geographic regions 

in Trinidad and Venezuela and, therefore, a useful tool for analyzing demographic 

parameters and reconstructing lineage histories. In addition, I can both refine previous 

results, and provide new insights. Moreover, selection scans detected evidence for 

genetic differentiation among populations from different drainages in Northern 

Trinidad being not only due to genetic drift, but partly also to adaptive selection. 

Therefore, the data provided an important first step to future analyses of the genetics 

of adaptation in guppies. 

 

Consequences of small sample sizes 

To determine whether the marker set is useful for a large number of different 

populations, we wanted to sample very widely throughout the entire range of the 

species. This in turn necessitated that the sample sizes were limited per site (mean 

number of individuals 5.7). To reduce the impact of small sample sizes, I used 

individual based clustering methods, which fail to detect population substructure if 

sample sizes are too small and population differentiation is too weak (Patterson, et al., 

2006). Estimates of population parameters such as FST and heterozygosity could still 

be affected by small sample sizes. A recent study by Reich et al. (2009) used similar 

sample sizes as this study to reconstruct human population history in India. They 

suggested a formula that has asymptotically minimal variance for estimation of FST. 
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Simulations have shown that one does not falsely encounter significant estimates of 

FST > 0 using sample sizes greater than four, if the expected FST between two 

populations equals zero (no genetic differentiation) (N = 2 to 20; 10,000 replicates per 

N tested with 1,000 permutations; see Chapter 3). If the expected FST >> 0, small 

sample size (N = 2 to 10) leads in general to a slight underestimation rather than 

overestimation of genetic differentiation (see Chapter 3). When estimating 

heterozygosity, one obtains a good estimate with moderate number of loci and sample 

sizes. However, variances in estimates decrease much faster with an increasing 

number of loci than with an increasing number of individuals (data not shown). 

Given these observations and the fact that my results do not contradict previous 

studies leads me to the conclusion that I did not overestimate population substructure 

or heterozygosity due to small sample sizes. Instead, the large number of markers 

used provides me with a reliable genome wide picture of population substructure in 

wild guppies.  

 

Past and present population structuring 

I found clear genetic divergence among populations from the well-separated major 

geographic regions. Based on geological history and zoogeography of Trinidad, the 

“two arcs” hypothesis proposed that guppy populations from the Caroni and 

Oropouche basins had different origins on the South American mainland and have 

been separated since at least 600,000 years (Fajen and Breden, 1992). This stands in 

contrast to populations of the Caroni basin and the East Venezuela regions that may 

have been bridged until the end of Pleistocene (10,000 y b.p.; reviewed by (Magurran, 

2005)). A neighbor-joining haplotype tree based on mtDNA had previously suggested 

a relatively close relationship between populations from the Northern slope, the 

Caroni basin and East Venezuela, including Poza Azufre, Cumaná, the Paria 

Peninsula, and the offshore island Isla Margarita. At the same time, it had suggested 

marked genetic divergence between these samples and those from the Oropouche 

drainage (Alexander, et al., 2006). These observations confirmed previous studies 

using allozymes that were also in support of the “two arcs” hypothesis.  

My results are much more similar to what had been extrapolated from an analysis of 

seven microsatellites, which had suggested that populations from the Northern coast 

are highly differentiated from those in either the Caroni or Oropouche drainage (Suk 

and Neff, 2009). In addition, I propose shared ancestry for populations within the 



 40 

same geographical regions and that samples from the Caroni, Oropouche and 

Northern drainages of Trinidad are genetically about equally distant to each other. 

Shared ancestry is a novel finding for the populations from the three North flowing 

rivers for which this could previously not be detected (Alexander and Breden, 2004; 

Barson, et al., 2009; Carvalho, et al., 1991; Suk and Neff, 2009). 

Populations from Poza Azufre and Cumaná were also included in my analysis. Based 

on morphological and behavioral traits, Alexander & Breden (2004) have proposed 

that the Cumaná guppy is highly differentiated from guppies originating from Poza 

Azufre, even though they had found little mitochondrial sequence variation. Based on 

nuclear markers, I suggest that there is strong genome wide genetic differentiation. 

Moreover, guppies from Poza Azufre appeared to be genetically more similar to 

Trinidadian than to Cumaná guppies, especially to those from the Caroni drainage 

(Figure 2.2, 2.3A and 2.4A). The Cumaná guppy exhibited the greatest genetic 

distance from all other populations studied. A caveat is that the genetic divergence of 

the Cumaná guppy might be overestimated due to a biased design that aimed at 

discrimination between Quare and Cumaná for the purpose of mapping crosses 

(Tripathi, et al., 2009). Therefore, some of the alleles occur only in either the Quare or 

the Cumaná populations, the two regions of maximal geographic distance in my 

study. Excluding the alleles that were specific to either Cumaná or Quare samples, 

decreased the genetic distance between the two populations, but did not alter the 

topology of the clustering (Figure 2.8). The distance between the Cumaná and 

Trinidadian guppies was most strongly affected, suggesting that there are more 

Cumaná- than Quare-specific alleles in our sample.  

In conclusion, I propose based on genome wide SNPs that the populations from the 

three Northern drainages in Trinidad have been separated from both the Caroni and 

the Oropouche populations for as long as these have been sequestered from one 

another. The data supported genetically the notion that the Cumaná guppy may 

represent a case of incipient speciation (Alexander and Breden, 2004). 

Previous studies focusing on single drainages found considerable differentiation 

among populations from different sites attributing it to waterfall barriers and 

geographic distance (Barson, et al., 2009); (Crispo, et al., 2006). In addition, Crispo et 

al. (2006) found that differences in predation or habitat features within the Marianne 

drainage did not influence genetic divergence or gene flow, while Barson et al. (2009) 

detected that lowland populations within the Caroni drainage experience gene flow 
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from other lowland populations, with evidence for ongoing gene flow from headwater 

to lower tributaries. The pairwise FST values I estimated confirmed strong genetic 

differentiation between populations from different sites within the same drainage, 

Figure 2.8: Influence of potential ascertainment bias. A.  SNPs linked to alleles that were specific 
to samples from either Cumaná or upper Quare were excluded before reconstruction of a network 
using SPLITSTREE4. The clustering did not change compared to the one using all SNPs (Figure 2.2), 
but genetic distances between the Cumaná and remaining samples as well as between the upper Quare 
and the remaining samples decreased. B. Site frequency spectra using the major allele in upper Quare 
samples as reference. Allele frequencies of the reference were calculated for populations included in 
the ascertainment panel (Cumaná and upper Quare) and for samples within major regions. 
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especially between different headwater populations (Supplementary Table S2.1). I 

suggest that genetic differentiation is mainly shaped by geographic separation, which 

is evident from the hierarchical pattern found with the individual based clustering 

methods. In addition, matching upper and lower populations can be found in the same 

cluster (Figure 2.3B). This indicates that genetic drift is mainly responsible for the 

genetic differentiation, even if predator-driven selection is strong as proposed by the 

rapid adaptation detected in introduction experiments.  

Admixture caused by gene flow among different downstream habitats could be 

visualized for the first time with STRUCTURE (Figure 2.4B). I found significant 

differences in heterozygosity between headwater and downstream populations 

supporting the notion of lower river populations being sinks receiving net gene flow 

(Barson, et al., 2009; Carvalho, et al., 1991; Shaw, et al., 1991). Since Barson et al. 

(2009) found little differences in effective population sizes (Ne) between upland and 

lowland populations within the Caroni drainage, we do not believe that Ne explains 

the detected difference in genetic diversity. However, if the headwaters were 

colonized by small numbers of individuals from the downstream regions, genetic 

diversity would also be reduced.  

 

Signatures of admixture among drainages caused by introduction and natural gene 

flow 

My analysis confirms that the guppies introduced by Haskins have largely replaced 

the original lower Turure population (Becher and Magurran, 1999; Magurran, 2005; 

Suk and Neff, 2009). Although there is no evidence that they have invaded the 

Oropouche, STRUCTURE revealed the presence of admixed alleles in Oropouche 

populations that appeared to resemble the Tranquille rather than the Turure (Figure 

2.4B). Given the geographic distance between the two locations, it is unlikely that this 

admixture has a natural cause, but also no artificial introduction has been documented. 

There is a small genetic signature of Oropouche alleles within samples from the lower 

Aripo. Suk & Neff (2009) proposed based on seven microsatellites that Aripo 

populations are more similar to those in the Oropouche than to those in the Caroni 

drainage. This could be due to previously undetected admixture that might have been 

caused by natural gene flow, since the Quare and Aripo catchment areas are less than 

70 m apart during the wet season (Magurran, 2005). 
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I found strong evidence for another admixture event between the lower Yarra 

(Northern drainages) and the Caroni drainage. Whereas to our knowledge no artificial 

introduction has been documented there, floods could have occasionally bridged the 

watershed between the Caroni basin and the Northwest slopes, resulting in some gene 

flow. This might have occurred between North-flowing rivers West of the lower 

Yarra, which originate close to the Western tributaries of the Caroni drainage (John 

Endler, personal communication). Since guppies can tolerate moderate salinities 

(Briggs, 1984), allowing for periodic colonization between river mouths, migration 

from guppies between adjacent river mouths could be possible (Carvalho, et al., 

1991). Human interference cannot be excluded either. Since a linkage plot inferred by 

STRUCTURE (Supplementary Figure S2.1) revealed that the Caroni signature in the 

lower Yarra is evenly distributed across the genome, this admixture might be rather 

ancient. Another explanation is the occurrence of several independent colonization 

events of the Northern drainages, the Caroni drainage and the rivers further West to 

the lower Yarra, creating genetically diverged populations in these regions. To 

scrutinize either hypothesis, samples from rivers to the West of the Yarra and 

Tunapuna (see Figure 2.1) will have to be genotyped.  

A surprising admixture pattern was observed between rivers within the Northern 

drainages of Trinidad. Individuals from sample site 2 (Table 2.1) in the Marianne 

River were genetically more similar to individuals from Paria. Sample site 2 is located 

in the Petite Marianne, a tributary that is separated from the main Marianne River 

(sample site M11 in (Crispo, et al., 2006)) by a high barrier waterfall, which 

effectively prevents upstream migration. On the other hand, the tributary has its origin 

near Paria tributaries, and it may be connected to the Paria catchment area during 

major floods. Therefore, it is likely that Paria rather than Marianne guppies have 

populated the Petite Marianne. 

 

Signatures of selection in Trinidadian guppy populations  

The combined results of two different FST outlier methods applied to the populations 

from three major geographical regions in Trinidad suggested between 3.5 and 6.5% of 

the SNP markers being under directional selection. This proportion lies in the range 

reported in other species using similar methods: 2.6 to 5.5% in humans (e.g. in (Akey, 

et al., 2002), 1.4 - 3.2 % in lake whitefish ecotypes (Campbell and Bernatchez, 2004), 

2.6 - 3.3% in Norway spruce (Achere, et al., 2005), 9.5% in salmon (Vasemagi, et al., 
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2005), 1.3 to 3.6% in common frog (Bonin, et al., 2006), 5.5% in white spruce 

(Namroud, et al., 2008) and 5% in stickleback (Mäkinen, et al., 2008). 

Two markers predicted to be under directional selection, 0581 and 0280, mapped to 

genomic regions previously scored by QTL mapping as candidates contributing to 

ornamental traits (Tripathi, et al., 2009). Only marker 0280 was scored as highly 

significant by both methods. The quantitative trait that mapped to the same region on 

chromosome 20 as marker 0280 is the area of a prominent orange spot on the central 

trunk (Tripathi, et al., 2009). Intriguingly, it has been reported that individuals from 

the Northern drainages exhibit more orange color compared to the remaining 

Trinidadian guppies, and this has been linked to a relatively red insensitive visual 

system of abundant guppy predators, prawns of the species Macrobrachium (Endler, 

1983; Endler, 1991). 

The association of some outlier alleles with QTL certainly needs scrutiny because 

QTL mapping for ornamental traits was at low resolution and did not include 

specimens from the Northern drainages of Trinidad. Furthermore, the strong historical 

subdivision between the three geographical regions may have produced false 

positives. Nevertheless these promising results suggest that genes under selection in 

geographically separated populations may be identified by FST outlier methods. 

Larger sample sizes will be required to identify genes under selection in contrasting 

habitats within the same river, but low/high predation contrast are replicated many 

times yielding great power to identify genomic regions under selection. 
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3. Estimates of genetic differentiation measured by FST do 

not necessarily require large sample sizes when using large 

panel of SNP markers 

Studies on wild populations give important insights into population dynamics leading 

to genetic differentiation. One important goal of population genetic studies is to 

estimate the amount of genetic differentiation among populations in order to draw 

conclusions on the demographic history. A common measure for the degree of genetic 

differentiation is the fixation index FST, first defined by Wright (1951).  

Until recently, most studies on wild population of non-reference species used 

moderately large numbers of samples per population (>20), but only a small number 

of genetic markers (< 20), preferentially microsatellites, for which more than two 

alleles can often be distinguished. Studies on human populations were among the first 

using thousands of markers, with single nucleotide polymorphisms (SNPs) as markers 

of choice. SNPs are typically the most abundant sequence variants in genomes. Their 

distribution throughout the entire genome at high density, combined with well-

established models for handling mutation rates and error rates, and inexpensive 

methods for high throughput genotyping make them appealing for population genetic 

studies (Morin, et al., 2004). However, SNP assays are often designed using small 

panels incorporating only a fraction of populations and individuals that are later 

genotyped for these SNPs. Consequently, common polymorphisms are more likely 

detected than rare variants skewing allele frequencies to higher values (Rosenblum 

and Novembre, 2007). Additionally, because individual SNP assays are expensive to 

develop, studies on non-reference organisms, and particularly those on wild 

populations, are relatively rare (Narum, et al., 2008; Rosenblum and Novembre, 2007; 

Seddon, et al., 2005; Willing, et al., 2010). New methods incorporating next 

generation sequencing make it now possible to develop thousands of SNP assays with 

less bias and at a fraction of previous costs, also in non-reference organisms (Tautz, et 

al., 2010). It is commonly believed that large sample sizes (n > 20) are required to 

yield reliable estimates of differentiation (Holsinger and Weir, 2009). However, the 

question arises whether the large increase in the number of available genetic markers 

reduces the required sample sizes in order to get reliable estimates of FST. Reducing 
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the sample size per population would make it possible to analyze a larger number of 

different populations at the same cost, and it offers an important advantage in 

conservation genetic studies on rare organisms. 

The study described in this Chapter was conceived by Cock van Oosterhout, Christine 

Dreyer and me and is under preparation to be published (Willing et al., in 

preparation). I devised the experimental design, implemented the software used to 

conduct the simulations in order to examine whether the estimation of genetic 

differentiation measured by FST becomes inflated with small sample sizes and 

performed all the analyses described (see also Contributions). I concentrated the study 

on three different estimators. The first one was proposed by Wright (1951), which by 

definition lies between zero (no genetic differentiation) and one (population have 

gone to fixation for different alleles). However, Wright assumed infinite sample sizes 

in his definition, but population size is finite in real datasets. The absence of negative 

FST values in Wright’s (1951) definition can lead to an overestimation of FST, 

particularly when the populations are only weakly or not differentiated. In such cases, 

estimates one fold higher than the actual differentiation cannot be compensated by 

estimates one fold smaller, because these would than be negative, and therefore, this 

estimator was expected to be upwardly biased. Cockerham and Weir (1984) proposed 

an unbiased estimator that can also have negative FST estimates and that has been 

widely used (Holsinger and Weir, 2009). Reich et al. recently published a population 

genetics study on human populations using very small sample sizes (n = 4 – 6). They 

proposed a new unbiased estimator for bi-allelic SNP data. Here I compared all three 

estimators for their performance on the same bi-allelic data set. This study addressed 

the following four questions. First, what is the type I error rate, i.e. falsely detecting 

genetic differentiation in a panmictic population, and what is the effect of small 

sample size? Second, does a small sample size result in an overestimation of the FST 

in cases where populations are genetically differentiated? Third, if estimates are 

biased by small sample sizes, can an increasing number of loci genotyped compensate 

for this bias? Fourth, what is the effect of ascertainment bias on the FST statistics, in 

particular, do deviations from the normal allele frequency distribution towards 

common or rare alleles lead to a bias in FST estimates? 
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3.1 Material & Methods 

3.1.1 Data generation 

I simulated an ancestral population with 1,000 individuals (50% males and 50% 

females, sex assigned randomly) and 21,000 bi-allelic loci. The genotypes at the loci 

were generated by randomly drawing from eight allele frequency classes 

(0.1,0.2,….,0.9). The two starting populations consisted of the same 1,000 

individuals, which were genotyped at 10,000 loci randomly taken from the 21,000 

loci of the ancestral population. I assumed an isolated island model (i.e. no migration 

between the two populations after separation). Genetic drift was simulated for a 

certain number (t) of generations according to the Wright-Fisher model without 

mutations (which is appropriate for SNPs, which arise at much lower rates than 

microsatellite variants). Consequently, the population sizes were kept constant, the 

generations were non-overlapping and the frequencies in the next generation were a 

binomial random sample based on the frequencies in the current generation. Random 

dioeciously mating was simulated by randomly drawing one female and one male 

with replacement. Thus all males and females were equally likely to be chosen and 

could mate multiple times, and the draw was independent of the number of times an 

individual has been chosen before. The two individuals drawn became the parents of 

one member of the next generation. Since I assumed all loci to be completely 

unlinked, I simulated gametogenesis by simply selecting at random one allele from 

each parent. This process was repeated until all members of the next generation have 

been created. I simulated different degrees of genetic differentiation (FST = 0, 0.01, 

0.05, 0.1, 0.2). The number t of generations was determined by FST =  

with n equals the number of mating individuals (effective population size, Ne = 1,000) 

and t equals the number of generations needed to achieve the required amount of 

differentiation (Morin, et al., 2009). 

 

3.1.2 Estimators tested 

The first and simplest estimator, FST
W, was introduced by Wright in 1951. For one 

allele at locus k, 
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where s2 is the observed variance of allele frequencies pi in the sampled populations i 

(i = 1, …, r),  and  is the mean allele frequency over all 

populations. The estimate of FST
W for multiple loci is calculated by taking the mean 

across k loci. 

 

This estimator has a theoretical range between zero and one and is known to 

overestimate the level of genetic differentiation especially at low values (Weir and 

Cockerham, 1984).  

 

The second estimator tested, FST
W&C, is probably one of the most widely used 

estimators. It was proposed by Weir & Cockerham (1984), who showed that it 

provides a nearly unbiased estimate of FST at moderate population sample size (n=15, 

20 and 25) and small number of loci (k=10). The estimates can also have negative 

values which do not have a biological meaning (Weir, 1996), but they can compensate 

for overestimates especially at low levels of genetic differentiation. At a single locus 

k, FST
W&C is defined as 

 

where 

 

 

Here, s2 is the observed variance of allele frequencies, n is the number of individuals 

per population,  is the mean allele frequency over all populations, r is the number of 

sampled populations and  is the mean observed heterozygosity. The overall estimate 

from all k loci is derived by  

. 

Recently, Reich and colleagues (2009) proposed a new unbiased estimator, FST
R, for 

bi-allelic loci and pairwise population comparison. In their study they used a very 
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high number of loci, but small sample sizes per population. Therefore, we decided to 

test this estimator as well. Again FST
R is calculated as follows 

 

 

, 

where u is the allele count for population 1, v is the allele count for population 2, t and 

s are the total number of individuals for population 1 and 2, respectively. The 

parameter  is an unbiased estimate of the expected heterozygosity. An estimate over 

many loci is given by 

. 

3.1.3 Statistical analysis 

After t generations of random mating among 1,000 individuals, 10,000 of the 21,000 

loci were randomly chosen to test the FST estimates. In order to test the influence of 

ascertainment bias in marker design, I generated three different datasets. The first set 

contained loci with equally distributed allele frequencies, the second set contained 

only loci with minimum allele frequency MAF > 0.25, because SNP marker sets are 

often biased in the direction of more common polymorphisms. However, I also 

generated a dataset of the other extreme containing only markers with MAF ≤ 0.25.  

I used sample sizes of 2, 4, 6, 10, 20 and 50 individuals. For each sample size I 

sampled 10, 20, … , 100, 200, … , 1000, 2000, …, 5000 loci. For each number of 

individuals and genotyped loci I sampled from each population 1,000 times. I took the 

average FST estimate and derived the 95% confidence interval. I implemented a 

custom Java program to perform the simulations and estimations of FST. 

 

3.2 Results 

After t generations of random mating, I estimated FST on the complete simulated 

dataset comprising two populations with 1,000 individuals each that were genotyped 

at 21,000 loci. All estimators tended to give a slightly higher value than the 

theoretically expected FST (Table 3.1). The reason is that there is variance in the 
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offspring number around the Poisson distribution, which slightly inflates the observed 

FST compared to the theoretically expected value.  

 
Table 3.1: Estimated FST values on complete dataset 

expected FST t FST
W FST

W&C FST
R 

0 0 0 -5.00E-04 -5.00E-04 

0.0104 21 0.0107 0.0102 0.0102 

0.0503 103 0.0542 0.0546 0.0547 

0.1003 211 0.1073 0.1097 0.1096 

0.2 447 0.2022 0.2068 0.2068 

0.4001 1,022 0.4134 0.4024 0.4023 
 

3.2.1 Estimates on SNP set with unbiased allele frequency distribution 

I tested the influence of increasing the sample size on the estimate by taking 2, 4, 6, 

10, 20 and 50 individuals from each population at different levels of genetic 

differentiation (FST = 0, 0.01, 0.05, 0.1, 0.2, 0.4). Figure 3.1 shows an example were 

the number of loci is fixed at k = 100 and k = 1,000 at varying sample sizes. Figure 

3.2 depicts an example were the number of individuals is fixed at n = 4 and n = 20 at 

increasing number of loci genotyped. Since combining all the different parameters 

(sample size, number of loci and level of genetic differentiation) resulted in a large 

number of estimates, I chose these four combinations in order to illustrate my general 

findings (all estimates can be downloaded as supplementary file). FST
W severely 

overestimated genetic differentiation in small sample sizes (n = 2 – 6) (e.g. Figure 

3.1). Moreover, since this estimator cannot have negative values, the 95% CIs 

excluded zero implying significant genetic differentiation even if there is none. Also 

with moderate sample sizes (n = 10 – 50), FST
W slightly overestimates the level of 

genetic differentiation. Since these observations were consistent for all datasets, I will 

in the following concentrate on the behavior of the two other estimators.  

The estimators FST
W&C and FST

R gave on average similar, fairly good estimates at all 

sample sizes (Figure 3.1). Importantly, both estimators did not indicate genetic 

differentiation when there was not any (Figure 3.1). However, if genetic 

differentiation was moderate or large (FST ≥ 0.1) the FST
W&C estimator tended to 

slightly overestimate genetic differentiation with small sample sizes (n ≤ 6), whereas 

the estimator FST
R showed the same average estimate irrespective of samples size. 

However, with increasing sample sizes the size of 95% CIs decreased. The 95% CIs  
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Figure 3.1: Effect of increasing sample sizes. Results are shown for the simulated data with equally 
distributed allele frequencies. Number of loci is fixed at k = 100 (left column) and k = 1,000 (right 
column). Each row contains a different level of genetic differentiation (FST = 0, 0.01, 0.05, 0.1, 0.2, 
0.4). The results (average FST and 95% CI) of each estimator are depicted in the different graphs: FST

W 
(blue circles), FST

W&C (purple squares) and FST
R (green triangles). The dashed red line indicates the 

actual FST for the simulated population. 
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Figure 3.2: Effect of increasing the number of markers. Results are shown for the simulated data with 
equally distributed allele frequencies. Number of individuals is fixed at n = 4 (left column) and n = 20 
(right column). Each row contains a different level of genetic differentiation (FST = 0, 0.01, 0.05, 0.1, 0.2, 
0.4). The results (average FST and 95% CI) of each estimator are depicted in the different graphs: FST

W 
(blue circles), FST

W&C (purple squares) and FST
R (green triangles). The dashed red line indicates the actual 

FST for the simulated population. 
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were large and included zero at low genetic differentiation (FST  < 0.05), when using a  

small sample size (n = 2 – 6) and a moderate number of loci (Figure 3.1, k = 100). 

Increasing the number of loci had no impact on the average estimate of FST (Figure 

3.1, k = 1,000; Figure 3.2), but it did significantly reduce the 95% CIs. This effect 

was similar to the reduction in 95%CI caused by increasing the sample sizes (Figure 

3.2). With 50 individuals per population and 1,000 loci one can detect genetic 

differentiation as small as 0.001 (average = 0.0011, 95% CI = [1.12E-04, 0.0022], 

Supplementary Table S3.1). Genetic differentiation as small as 0.01 can already be 

detected with n = 4 and k = 3000 (average = 0.0102, 95% CI = [0.0014, 0.0212], 

Supplementary Table S3.2). 

 

3.2.2 Influence of differences in sample sizes 

Next, I considered the impact of differences in samples sizes on the FST estimates. For 

this I kept the sample size taken from population 1 fixed at n1 = 4 and varied the 

sample size taken from population 2. At low genetic differentiation (FST ≤ 0.05) 

differences between sample sizes did not have an impact on the average estimates of 

FST of either estimator (FST
W&C and FST

R). If genetic differentiation was moderate to 

high (FST ≥ 0.1), the FST
W&C overestimated genetic differentiation when the sample 

size of population 2 was small (n2 ≤ 6), but it gave an underestimation in cases where 

the sample taken from population 2 was large (n2 = 50) (Supplementary Figure S3.1). 

The FST
R estimator gave on average the same estimate of FST independently of the 

differences between sample sizes. Furthermore the estimates were always very close 

to the expected level of genetic differentiation (Supplementary Figure S3.1 and S3.2). 

Therefore, I would recommend FST
R, if sample sizes differ among the populations 

analyzed. However, the magnitude of the 95% CI did not decrease with increasing the 

sample size in only one population of either estimator leading to the conclusion that 

the accuracy of an estimate depends on the smaller sample size taken (Supplementary 

Figure S3.1 and S3.2). 

  

3.2.3 Estimates on SNP sets with biased allele frequency distributions 

In order to test the influence of biases of allele frequency distribution in the analyzed 

marker set, I generated two datasets with 10,000 loci each, where in one set MAF > 

0.25 and in the other set MAF ≤ 0.25. The simulations show that a bias towards 
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common polymorphisms in the marker set leads to overestimation of genetic 

differentiation, whereas a bias towards rare polymorphisms leads to underestimation. 

These biases were observed in both the FST
R estimator as well as the FST

W&C estimator, 

and they could neither be compensated by increasing the sample size nor by 

increasing the number of loci genotyped (Supplementary Figure S3.4 to S3.6). This 

suggests there will be a systematic overestimation of genetic differentiation due to 

ascertainment bias when the marker loci in the panel are developed based on the 

screening of a small number (n < 4) individuals. 

 

3.3 Discussion 

Our simulations show that even when sample sizes are small (n = 2, 4, 6), accurate 

and unbiased estimates of FST can still be obtained when a large number of bi-allelic 

markers such as SNPs are used, as long as the appropriate FST estimator is chosen. 

The original FST
W estimator severely overestimates the level of genetic differentiation 

when using small sample sizes. Since this estimator cannot have negative values, 

these results were expected for values of FST < 0.5, because overestimates that are 

higher than 0.5 over the actual FST cannot be compensated by a negative value at 

another locus. The two other estimators I tested showed similar performance on large 

sample sizes (n ≥ 20), but the estimator proposed by Reich et al. (2009) showed better 

performance in cases where sample sizes were small (n ≤ 6). Our simulations suggest 

that genetic differentiation is not falsely detected due to small sample sizes using 

these unbiased estimators. Furthermore, I showed that increasing the number of 

genetic markers has no impact on the mean FST estimates, but that it considerably 

reduces the 95% CIs. However, the accuracy of a pairwise estimate depends on the 

smaller sample size taken from one of the populations.  

A previous study suggested that increasing the sample size might be more beneficial 

than increasing the number of markers genotyped (Morin, et al., 2009). However, that 

study tested a rather small number of SNPs (k < 100). Our study suggests that using a 

large number of markers (>500) increases significantly the power of detecting genetic 

differentiation even if using a small sample size. For example, pairwise genetic 

differentiation as small as 0.01 can be detected by taking a sample of only four 

individuals from each population when genotyped at 3,000 loci. This finding has 
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important implications for studies on endangered species or those with small 

population size. By developing markers using next generation sequencing tools, 

conservation genetic studies can obtain the same statistical power in some of their 

population genetic analysis as studies performed on model organisms. However, 

testing datasets with biased allele frequencies (MAF ≤ 0.25 and MAF > 0.25) has 

shown that ascertainment bias has a severe effect on the estimation of FST rather than 

the sample size taken. Baird and colleagues (2008) proposed a method that has been 

proven particularly useful to develop a large number of genetic markers in non-

reference organisms with less ascertainment bias (Hohenlohe, et al., 2011; Pfender, et 

al., 2011). Using multiplex strategies, samples taken from different populations in the 

wild can now be sequenced and genotyped in one lane of Illumina GAIIX sequencer 

(Elshire, et al., 2011). Therefore, it is now possible to analyze genetic differentiation 

from a large number of populations at low cost. Our simulations have shown that the 

cost of these analyses can be even reduced further by using only a small number of 

individuals per population. 



 56 

4. Paired-end RAD-seq for de-novo assembly and marker 

design without available reference 

In Chapter 2 I showed that for a large number of interesting questions a high number 

of genetic markers equally distributed over the genome is already very informative, 

even without a complete genome sequence. Therefore, new methods incorporating 

NGS for cost-effective high-throughput marker development are of great interest. 

Baird and colleagues (2008) developed a protocol for high throughput sequencing of 

restriction site associated DNA (RAD) tags using the Illumina platform (RAD-seq). It 

has the advantage that only a reduced representation of the genome is sequenced 

leading to deep sequence coverage of fragments near a specific type of restriction site. 

They showed that single end (SE) sequencing of RAD tags could be used for rapid 

marker development in stickleback for which a reference genome is available. Since 

then, SE RAD-seq has become a popular tool in next generation population genetics 

(Davey and Blaxter, 2010; Emerson, et al., 2010; Hohenlohe, et al., 2011; Hohenlohe, 

et al., 2010; Pfender, et al., 2011). In addition, Illumina PE sequencing could extend 

the sequence information on each side of the restriction sites (Baird, et al., 2008; 

Davey and Blaxter, 2010). Because each RAD can provide a unique genomic 

sequence tag that can be characterized without its immediate genomic context, the 

first reads may be aligned to each other, building subsets that are associated to one 

restriction site each. As a strategy for obtaining longer sequence tags, I exploited the 

fact that random mechanical shearing leads to a family of staggered second reads that 

can be assembled to longer subsets associated to the RE site defined by the first read 

cluster. This strategy subdivides the assembly problem into a high number of less 

complex local assemblies. This Chapter describes a study, published in 

Bioinformatics in 2011 (Willing et al., 2011), about PE RAD-seq data from two very 

diverged guppy populations, namely Quare and Cumaná, which have been previously 

used to generate a genetic linkage map (Tripathi, et al., 2009). Christine Dreyer, 

Margarete Hoffmann and I conceived the experimental design of the RAD-seq 

libraries. Margarete Hoffmann prepared the RAD-seq Illumina libraries analyzed. 

Juliane Klein implemented the assembly tool LOCASopt that was conceived and 

designed by me and considers the special needs for the assembly of PE RAD-seq data. 
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I conceived, designed and implemented the remaining tools described here and 

conducted all analyses (see also Contributions). I showed that my approach can 

generate de-novo 283,842 RAD tags that are 200 – 400 bp long and cover ~10% of 

the guppy genome. Furthermore, these tags can be used as reference to design 

thousands of new polymorphic markers useful for population genetic and mapping 

studies. All tools developed for the analysis are available as a package called RApiD. 

 

4.1 Material & Methods 

4.1.1 Creation and sequencing of the RAD library 

The genomic RAD libraries were created as described by Baird and colleagues (Baird, 

et al., 2008). Briefly, genomic DNA pooled from six individuals each was digested 

with EcoRI (G’AATT,C, NEB). Pools represented Cumaná and Quare males and 

females and technical replicates of Quare males and Cumaná females were included 

(Table 4.1). Illumina P1 adaptors including a unique 12-bp multiplex identifier (MID) 

preceding the EcoRI site were added by ligation. All MIDs differed by at least seven 

bases and were therefore tolerant to up to three errors. After ligation of the P1 

adaptors containing the different MIDs, the six DNA samples were pooled in 

proportionate amounts before shearing (Covaris) and addition of the P2 adaptor. A 

single library with an insert size range of 200 – 400 bp was prepared and sequenced 

from both ends with 100 bp read lengths in one lane of an Illumina GAIIX sequencer 

(Figure 4.1A).  

Table 4.1: Sequence information and read counts for each 12 bp MID.  

MID Sequence Sample Million reads 

1 ATGTGTCGCCAA 6 Quare males* 4.6 

2 TCTGAGCGTACA 6 Quare males* 3.4 

3 GATCTGAAGCTC 6 Quare females 0.015 

4 CGACGATACTTG 6 Cumaná males 5.1 

5 CTAGATGCTGAC 6 Cumaná females* 4.4 

6 GACACCGTATGT 6 Cumaná females* 5.4 

*technical replicates 

 

4.1.2 De novo assembly of RAD tags 

For quality control, I checked all first reads for presence of the partial 5 bp EcoRI 

motif (AATTC) following the 12 bp MID. Second, all reads containing uncalled 
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nucleotides were removed from the dataset. After removal of the MID and restriction 

site sequence the remaining first reads were grouped into pools representing the same 

RAD tag, using vmatch (www.vmatch.de), (Figure 4.1B). I allowed a maximal 

hamming distance of three within the same cluster. After clustering the first reads, the 

second reads could be sorted into groups accordingly that were assembled separately 

Figure 4.1: (A) RAD-seq output. Fragments are sheared randomly. By paired-end sequencing of 
fragments between 200 and 400 bp, the obtained 2nd reads are staggered and cover a range of 100 – 
300 bp, whereas the 1st reads contain the MID and the restriction site and therefore start always at the 
same genomic position. (B) After removing the MID and the restriction site, the 1st reads can be 
aligned to each other (clustering). According to these clusters, the 2nd reads can also be sorted and 
assembled separately to a contig, which is then linked to the first read majority consensus. The tag 
pairs then serve as a reference to which all reads are mapped back and a majority consensus is called 
using only high quality bases from read pairs that mapped to the assembly fulfilling certain constrains 
(read pairs below red dashed line are discarded). After this step, all remaining tag pairs are checked 
whether they overlap. (C) All reads can be sorted according to their MID and sample specific 
consensus sequences and SNPs can be called by mapping the sorted reads back to the reference. 
. 
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(Figure 4.1B). Ideally, the local assembly of second reads in a cluster results in one 

contig indicating that they indeed originate from the same RAD tag. Mixed clusters of 

first reads could be caused by RE sites in repetitive regions. Such clusters might be 

resolved if the second reads were in a region outside the repeat and could be 

assembled into unique sequences. In such cases the assembly of the second reads 

resulted in more than one contig and allowed resolution of the mixed first reads 

accordingly. Every single cluster for each tag could have a different set of optimal 

assembly parameters, because of different repeat content and number of reads per 

cluster. E.g. if the coverage of a tag is low a smaller overlap length should be used for 

the assembly. I used the assembler LOCAS (Klein, et al., 2011) that uses an Overlap-

Layout-Consensus approach to keep track of the overlaps among reads and is 

especially developed for low coverage data. LOCASopt is a wrapper that calls the 

assembler LOCAS with a different set of parameters in order to assemble the reads in 

a cluster several times under different conditions. Parameters that can be optimized 

are overlap length, percent of mismatches allowed in overlap, and seed size (see 

LOCAS Manual). LOCASopt keeps track of all the assemblies in order to choose the 

optimal one. I defined the optimal assembly as the one resulting in the smallest 

number of contigs and incorporating the largest fraction of available reads in a cluster. 

In order to test if optimizing each local assembly leads to better results, I assembled 

the data once with LOCASopt iterating over a large set of different parameter 

combinations, namely overlap = 21, 23, … 67, kmer = 13, 15, 17 and mismatch rate = 

0.05, 0.07, 0.09. Additionally, I assembled the same set of clusters a second time with 

the parameters fixed at the values mostly used in the previous assembly (see Results). 

After assembling, the 2nd read contigs are joined with the consensus of the 

corresponding first reads (Figure 4.1B). In order to generate a high quality reference I 

performed an additional quality control by mapping back all read pairs to the 

assembled tags and calling the majority consensus (see consensus and SNP calling) 

for each tag requiring a minimal quality of 20 (corresponding to a 0.01% chance that a 

base was wrongly called) and a minimal coverage of two per base. After that, uncalled 

nucleotides at the ends of the 2nd read contigs were removed. If there were uncalled 

nucleotides in the middle of a 2nd read contig, the contig was split up at these 

positions and the longest resulting substring remained as representative of this contig. 

Depending on the insert size of the library the 1st read consensus and 2nd read contig 

can be overlapping or non-overlapping (Figure 4.1B). Therefore, I checked for an 
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overlap between the two parts requiring a minimal overlap length of 10 bp and a 

maximal mismatch rate of 5%. 

 

4.1.3 Consensus and SNP calling 

After generating a comprehensive high quality reference, reads were sorted according 

to their MIDs and separately mapped back to the reference (Figure 4.1C). I used 

GenomeMapper (Schneeberger, et al., 2009) to map the reads back to the reference 

allowing up to five mismatches and no gaps. A mapped read pair has to pass several 

quality controls to be considered for consensus or SNP calling (see Figure 4.1B). Both 

reads in a pair have to map to the same contig in the right direction, with the start of 

the first read at the first position in a tag. A pair is only considered if at least one 

member uniquely maps to one contig in the reference. Furthermore, redundant read 

pair clones are removed in order to prevent false positive SNP calls that were caused 

by errors occurring during the amplification of the library. A read pair was considered 

to be a redundant clone, if the second read maps to the same position in a reference 

tag as another second read in a previous pair. After mapping the reads back the 

consensus base for each position in the reference was called by determining the major 

base at that position in the reads that could be mapped back. I used only bases with a 

minimal quality of 20 for consensus calling. Each consensus base got a quality value 

that was the average over the quality values of the bases used for consensus calling. If 

a position in the assembled reference was not covered during the consensus calling it 

was marked with a ‘N’ as uncalled nucleotide. 

The search for polymorphic sites was done in a similar way as the consensus calling. 

A given site was considered polymorphic if the polymorphism occurred in at least a 

certain number of reads and if the site had a minimal coverage above threshold. In 

order to call a homozygous SNP, all reads must contain the same nucleotide that must 

be different from the reference. As in the consensus calling, only bases were 

considered that reached a certain quality threshold. The quality of a SNP is the 

average of the qualities of the single bases at the SNP position. 
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4.2. Results 

4.2.1 Paired-end sequencing 

In order to generate a dense set of RAD markers, we chose the restrictions enzyme 

EcoRI, which recognizes the palindromic 6-bp sequence G’AATT,C. The guppy 

genome size is nearly 1 Gb as estimated by flow cytometry (Manfred Schartl, 

personal communication). Based on sequenced BAC ends from a genomic library of 

the Cumaná guppy, the guppy genome was predicted to be relatively AT-rich (60%), 

close to the AT content of the EcoRI recognition site. For simplicity, I assumed that 

EcoRI sites occur close to the expected frequency of 1/4,096 bp, and that I have 

therefore an expected number of 500,000 RAD tags. To test the sequencing depth 

required as well as reproducibility of the results, six independently digested bulks of 

DNA from six individuals each were pooled, representing males and females of two 

different populations, and technical replicates (see Table 4.1). Paired-end (PE) 

sequencing with 101 bp read length of this pool on a single lane of an Illumina 

flowcell resulted in 23.4 million read pairs, of which 97% (22.6 million) contained the 

correct restriction site pattern (AATTC) at the beginning of the first read and no 

uncalled positions. Consequently, assuming 500,000 tags, each tag should be covered 

by ~46 read pairs on average. Figure 4.2 shows the base and quality score counts per 

site in each read. The base distribution over the first 17 bp in the first read nicely 

Figure 4.2: Base distribution and quality scores along the reads. (A) The number of bases per 
position in each read was determined. For read1, positions 1-12 contain the sample specific MID and 
at position 13-17 is the restriction site (clearly seen in the base counts at these position). Read2 is 
completely comprised of genomic bases. The base distribution at positions containing solely genomic 
regions reflects the expected distribution of ~60% AT.  (B) Quality values were counted along the 
reads. As expected, quality values decrease to the end of the reads. 
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depicts the MIDs and the restriction site. However, at the first position after the 

restriction site G is significantly underrepresented, possibly as a consequence of 

genomic CG methylation inhibiting EcoRI. Yet after position 18 the distribution 

converges on the expected values (60% AT, 40% GC), which is seen over the entire 

second read. As expected, quality values of both reads decrease over their length 

(Bansal, et al., 2010), with a slightly faster decline in the first read, possibly caused by 

the unequal base distribution in the first 17 bp. For consensus and SNP calling the 

reads were sorted according to sample specific MIDs (Table 4.1). Differences 

between read counts for the different samples deviated less than a factor of 1.6 from 

each other, with one exception. This is within the range previously encountered when 

sequencing multiplexed samples (Craig, et al., 2008).  Only approximately 15.000 

reads encoded with MID3 were obtained, suggesting technical failure (Craig, et al., 

2008).   

 

4.2.2 Clustering and de novo assembly 

All-against-all alignment of reads resulted in 451,981 first-read clusters with ~48 

reads on average (range 2 to 66,393). For assembly, I considered only 297,147 

(65.7%) clusters within a certain coverage range (5 – 184), in order to avoid highly 

repetitive regions. These clusters had an average size of 63 reads and included 18.9 

million (81%) of the reads.  

The second reads belonging to each first-read cluster were sorted and assembled 

separately to obtain a second-read contig for each cluster (Figure 4.1B). If the 

assembly of a cluster resulted in more than one contig or if not all the reads were used 

in the assembly, the first reads were sorted anew, according to the assembled contigs. 

I performed the assembly twice, once iterating over different parameter settings and 

once fixing the parameters at the values mostly used in the optimized assembly 

(overlap = 21, kmer = 13, mismatch rate = 0.05). The assembly with fixed parameters 

resulted in 503,748 contigs with an average length of 286 bp, representing 291,149 

clusters and incorporating 76.6% of the reads. On average, 28 read pairs contributed 

to one RAD tag (Table 4.2). In the optimized assembly, 291,159 clusters were 

assembled resulting in 334,215 second-read contigs with an average length of 349 bp 

using 76.8% of the input reads. On average 43 read pairs contributed to one RAD tag, 

which is close to the 46 read pairs expected per tag (Table 4.2). Figure 4.3 shows that 
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after optimizing the assembly the increase in the number of longer contigs was 

marginal, but most of the very short contigs may have been merged with longer 

contigs by choosing a different set of parameters. This notion is supported by the fact 

that significantly less clusters result in more than one contig in the optimized 

assembly (8.7% compared to 31.0%, Table 4.2). Consequently, optimizing the set of 

parameters for each local assembly led to less, but on average longer second read 

contigs with a higher number of reads used per contig. I therefore used these contigs 

for all following analyses. 

 

Table 4.2. Results of the optimized versus the not optimized assembly.  

  Fixed Optimized 

Clusters resulting in an assembly  291,149 291,159 

Contigs  503,748 334,215 

Clusters resulting in >1 contig  31.0% 8.7% 

Reads used  75.6% 76.8% 

Average contig length  286 bp 349 bp 

Sum of all contigs  143.8 Mb 116.6 Mb 

 

 

Figure 4.3: Length distribution of assembled contigs. The assembly of the 2nd read clusters was 
performed twice. Once with parameters fixed at certain values and once trying a large set of different 
assembly parameter combinations to find the optimal one for each cluster. The optimal assembly was 
defined as the one resulting in the least number of contigs, but incorporating the largest fraction of 
reads. 
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4.2.3 Quality control 

Following the strategy detailed in Material and Methods, I found 283,842 contigs 

fulfilling the quality requirements, corresponding to ~57% of the tags expected. This 

is comparable to the number of EcoRI RAD tags found in stickleback (Baird, et al., 

2008), where short (36 bp) reads were aligned to a reference genome. Of the 

assembled guppy RAD tags, 51.4% were overlapping with their corresponding first 

read consensus, over a length of 29 bp and with an average mismatch rate of 0.002%. 

For these tags I obtained on average 417 bp continuous sequence corresponding to 60 

Mb in total. The second read contigs of the non-overlapping tags were on average 259 

bp long. Taking the sequence information together from all overlapping and non-

overlapping tags I obtained 108.2 Mb of sequence, corresponding to about one tenth 

of the guppy genome, close to the expectation.  

In order to assess the quality of the de novo assembled reference, I predicted RAD 

markers of ≥150 bp length by digesting 6,165 sequenced Cumaná BAC ends with 

EcoRI in silico. These were used as queries in a Blastn search against our high quality 

reference. Of 1,112 predicted RAD markers, 862 (77.5%) matched (≤1e-100) our 

assembled reference. Of these 862 hits, 798 (92.6%) covered over 90% of the query 

or the subject sequence and included the restriction site at one end. These results show 

that our strategy led to a high quality reference of de-novo assembled RAD markers 

that can be further used for sample-specific consensus and SNP calling. 

 

4.2.4 Sample specific consensus calling 

After assembly and quality control, I sorted the reads according to their MIDs and 

mapped each batch on the reference in order to call sample-specific consensus 

sequences. Baird and colleagues (2008) used the presence or absence of a tag to 

identify it as polymorphic. The absence of a RAD tag in one sample is probably most 

often caused by a polymorphism in the associated restriction site. However, random 

sampling in the sequencing process can cause false positives. Therefore, Baird and 

colleagues (2008) scored only such markers as absent that were represented by at least 

eight reads in one sample and by none in the other sample. I tested whether this 

strategy also works with de-novo RAD tags by comparing the intersections between 

the different samples using different coverage cut-offs (1x, 6x, 10x) to assign a 

marker as polymorphic. The technical replicates provided the opportunity to estimate 
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the false positive rate at the different coverage cut-offs. Table 4.3 shows how many 

tags I found per sample at different coverage cut-offs (diagonal) and the percentage of 

markers that could not be found in the intersection between the different samples and 

would therefore be scored as polymorphic. The false positive rate declines from 

greater than 1% with a minimum coverage of 1x to below 0.3% and 0.04% with 

minimum coverage of 6x and 10x, respectively. We see from Table 4.3 that the 

percentage of absent markers between the samples from the two different populations 

is much higher (>14% at all coverage thresholds) than the highest false positive rate.  

Table 4.3:  Pairwise comparison of missing RAD tags between the five sample pools using 
different coverage thresholds. Diagonal contains the total number of tags in the sample with the 
required coverage. Remaining entries give the percentage of RAD tags that can be found in sample i 
(rows) but are missing in sample j (columns). 

MID 
Minimum 
coverage 1 2 4 5 6 

 1x 218,946 2.88 19.49 19.89 19.35 

1 6x 174,735 0.26 16.81 17.07 16.75 

 10x 137,679 0.04 15.11 15.31 15.06 

 1x 1.89 216,720 19.53 19.93 19.37 

2 6x 0.06 153,463 16.02 16.28 15.98 

 10x 0.01 103,495 14.03 14.26 14.06 

 1x 25.11 25.91 235,368 3.54 2.86 

4 6x 20.70 21.17 185,295 0.73 0.60 

 10x 18.13 18.46 148,954 0.34 0.32 

 1x 25.17 25.97 3.15 234,404 1.80 

5 6x 20.14 20.57 0.39 178,107 0.05 

 10x 17.25 17.53 0.10 137,078 0.01 

 1x 25.30 26.07 3.28 2.62 236,381 

6 6x 20.97 21.47 0.50 0.15 190,100 

 10x 18.27 18.60 0.12 0.02 155,298 

 

 

I infer that a significant number of polymorphic markers were caused by sequence 

variation that changes restriction enzyme sites. At 10x coverage, less than 0.04% of 

these markers are false positives.   

In guppies, sex is genetically determined and sex-linked inheritance and sex 

chromosome evolution are topics of general interest in this species (Lindholm and 

Breden, 2002). Sex is determined by male heterogamety (XY), but the master sex 

determining locus, which appears to be located at the distal end of the Y chromosome, 

has not yet been precisely mapped due to a lack of markers (Tripathi, et al., 2009). I 

inspected the de-novo assembled RAD tags for sex-specific markers. At 10x 
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coverage, there were at least 2.5-fold more markers polymorphic (0.1% / 0.12% and 

0.34% / 0.32%, Table 4.3) in the Cumaná female/male (MID 4 compared to 5 and 6, 

Table 4.3) contrasts, compared to the Cumaná female/female (0.02% and 0.01%, MID 

5 and 6, Table 4.3) or Quare male/male (0.04% and 0.01%, MID 1 and 2, Table 4.3) 

contrasts, corresponding to ~149 female specific tags and ~477 male specific tags. 

Because 40% of these markers are expected to be false positives at 10x coverage, a 

higher coverage threshold should be used. 

 

4.2.5 Distribution and fidelity of polymorphic sites 

The distribution of polymorphic sites along the assembled RAD tags was analyzed by 

mapping all reads back to the assembled reference. A site was regarded as 

polymorphic if the polymorphism was covered by at least two reads and the coverage 

was at least six fold. SNPs were called with quality thresholds of either 20 or 30. 

Figure 4.4 shows that the coverage decreases significantly toward the end of the first 

read, with declining quality scores, as is typical for the end of the reads (Bansal, et al., 

2010). Over the first 69 bp, SNPs are found with equal frequency at each position in 

the first read, but the number of SNPs significantly increases to the end of the first 

read even when using a quality threshold of 30. However, this might not only be 

caused by decreasing quality values at the end of the reads, but might be also due to 

more misalignments at the end of the reads. When I do not use the last 15 bp of each 

mapped read for SNP calling, I reduce the number of SNPs mainly at the proximal 

end of the second read part of the tag (red curve in Figure 4.4). Figure 4.4 also 

illustrates that the second read contigs have their maximal coverage around position 

~270 bp and that the coverage decreases as expected toward both ends of the contigs. 

Furthermore, the likelihood to detect a SNP at a certain position in the second read 

part of a tag is positively correlated to the coverage. However, above a coverage of on 

average ~15 fold SNP detection does not seem to increase further, suggesting that 

such coverage is sufficient to detect the majority of alleles. 

To determine the number of SNPs that could be confirmed in the intersection of 

technical replicates, I analyzed each sample separately. Based on the observations 

described above, I performed the sample specific SNP calling disregarding the last 15 

bp of each read and considering only those positions in the reference having a 

coverage at least equal to a certain cut-off in all samples. For the Quare male 
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replicates I used the Cumaná consensus as reference and for the Cumaná female 

replicates the Quare consensus as reference, in order to compare high fidelity rates for 

heterozygous as well as homozygous SNPs. At 6x coverage, 84% of the heterozygous 

SNPs within the Quare replicates, and 86% of heterozygous SNPs within the Cumaná 

replicates, could be found in the intersection. At 10x coverage, these numbers 

increased as expected slightly to 89% and 90%, respectively. In order to determine 

whether this applies to both parts of a tag, I examined the intersections of the first and 

second read part separately. I found that 87-91% of the SNPs detected in the first read 

lie in the intersection between the technical replicates, but only 78-80% of the 

heterozygous SNPs in the second read. Apart from the higher coverage in the first 

read, this could be also partly due to position dependent systematic errors in the base 

calling that are equally likely in each sample. Since the first reads in a RAD tag are 

completely overlapping, position dependent systematic errors can lead to false 

positive heterozygous SNPs that are shared among different multiplexed samples. The 

position dependent effect cannot occur in the second part of a tag because I did not 

consider read pair clones. However, homozygous SNPs differ from the heterozygous 

SNPs in their fidelity. At 6x coverage, I find over 97.1% of the SNPs in the 

intersection of the technical replicates, and this increases only to over 97.7% at 10x 

coverage. Moreover the intersections between the first and the second part differ by 
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less than 1%. This indicates that the detection of homozygous SNPs between 

populations is highly reproducible with this method. Nevertheless, our approach also 

allows the detection of a high number of high fidelity heterozygous SNPs within 

populations at a specificity rate of >78% at comparatively low coverage.  

 

4.2.6 Polymorphic markers within and between Quare and Cumaná populations 

To determine the number of polymorphic markers within and between Quare and 

Cumaná specimens, I pooled the technical replicates to increase the coverage. At a 

minimum coverage of 6x, I found that 28.9% of the assembled 283,842 RAD markers 

are polymorphic between the two populations due to a polymorphism affecting the 

enzyme recognition site.  

Including only those positions in the reference with at least 6x coverage in each 

population sample, I scored 302,693 polymorphic sites, of which 148,770 (49.1%) 

were homozygous SNPs differentiating the two populations, and 153,923 (50.9) sites 

contained SNPs that were heterozygous in at least one population. I found 116,861 

(41.2%) tags containing at least one polymorphism of which 81,405 (28.7%) 

contained at least one homozygous SNP and 73,199 (25.9%) at least one heterozygous 

SNP indicating that some tags can be either scored for a homozygous or heterozygous 

SNP.  

Using the complete set of 302,693 SNPs, I estimated the expected heterozygosity (He) 

(Excoffier, 2007) within each population and the genetic differentiation measured by 

FST (Reich, et al., 2009) between the two population samples. I found He = 0.078 and 

He = 0.138 within Quare and Cumaná samples, respectively. These values are similar 

to a previous study using genome wide SNP markers for population structure analysis 

(Willing, et al., 2010). The FST was estimated to be equal to 0.71. This is somewhat 

lower than what has been reported before (see Discussion). 

 

4.3 Discussion 

In this study I have demonstrated a method for the de-novo assembly and analysis of 

PE RAD-seq data. I was able to assemble ~10% of the guppy genome represented by 

283,842 RAD tags of which ~50% were overlapping. This ratio could be significantly 

increased by either reducing the insert size of the library or by sequencing with longer 



 69 

read length. About 29% of the tags were polymorphic between the Quare and Cumaná 

populations due to a disruption in the EcoRI recognition site and about 41% of the 

tags contained at least one SNP site. Furthermore, some tags could be scored for a 

heterozygous and a homozygous SNP making the same tag a useful marker for 

different kinds of analyses (e.g. population genetics vs. genetic map). I have scored 

polymorphic sites using a newly developed approach, because the first read and error 

models developed for SNP calling in whole-genome sequencing data do not apply to 

RAD-seq data. As the first read of a specific tag starts at an invariant position, a SNP 

within the first read will always be at the same position. This is severely punished by 

some error models used for SNP calling, because sequencing errors at the same site 

are correlated (Li, et al., 2008). In addition, I do not expect a large number of 

insertions and deletions causing misalignments, because the reference is assembled 

with the reads that are also used for SNP calling. Moreover, repetitive sequences are 

removed by removing large first read clusters. These properties make the alignment 

problem fairly easy and eliminate the main sources of false positive SNPs in genomic 

data (Li, et al., 2008; Malhis and Jones, 2010). While my approach supports the use of 

other SNP calling algorithms using the assembled consensus tags as reference, I 

would advise to filter the mapping file used as input, following the criteria for 

informative reads defined in this study (see Material and Methods, Section 4.1.3). 

Estimated population parameters using the scored SNPs are similar to those 

previously reported. However, the estimated FST of 0.71 is somewhat lower, perhaps 

due to the less biased choice of markers compared to the previous work, which used 

markers designed for mapping crosses, with fixed SNPs between the two populations 

being preferred over segregating ones, inflating the estimation of genetic 

differentiation between the two populations (Willing, et al., 2010). Consequently, our 

approach will produce a high number of unbiased informative SNPs that are ideal for 

population genetic analyses. I found that 81,405 of the tags contain homozygous SNP 

between Cumaná and Quare populations. These would be potentially useful in 

generating a dense genetic map that would greatly aid a whole genome assembly. 

Furthermore, the paired-end RAD-seq contigs could be used as artificial long reads in 

a whole genome assembly, to overcome the problems of assembling an entire genome 

from short reads only. Moreover, one could use different restriction enzymes to 

generate an overlapping set of RAD-seq contigs. By counting the restriction sites of 

ten additional 6-cutter enzymes in our assembled data (unpublished data), I saw that 
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167,848 tags contain at least one of ten other restriction enzyme sites analyzed. 

Similar sequence complexity reduction approaches for aiding genome assemblies 

have been advocated before (e.g. Hyten, et al., 2010). 
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5. Sequencing of specific genomic regions contained in BACs 

with short reads 

In Chapter 2, I have shown how a genome-wide set of genetic markers can give hints 

about genomic regions under selection by applying FST outlier methods and Chapter 4 

introduced a new approach that makes it feasible to obtain these genome-wide marker 

sets. However, even if the marker density is high enough to pinpoint a genomic region 

under selection, the marker by itself does not give any hints about the genes located in 

its neighborhood. Although next generation sequencing has greatly facilitated the re-

sequencing of reference organisms, de-novo sequencing and assembly of complex 

genomes remains a challenge using short reads only. In the described case above, 

however, one does not need to sequence the whole genome, but much smaller pieces 

containing genomic regions of interest. Bacterial Artificial Chromosomes (BAC) 

libraries contain the genome of an organisms fragmented into 100 to 350 Kb inserts. 

Wicker et al. (2006) did the first study on BAC shotgun sequencing using 454 

sequencing. They sequenced four BACs containing parts of the barley genome in 

order to test whether or not 454 sequencing data is sufficient for de-novo assembly of 

complex genomes. They found that all coding fractions of the BACs were excellently 

covered in the assembly. The 454 read length at that time was 100 bp. Since then, this 

read length has greatly improved (> 500 bp) and sequencing of mate pairs has become 

available. Recently, more studies on BAC sequencing with 454 technology 

incorporating the new protocols have been published in barley (Sato, et al., 2011; 

Steuernagel, et al., 2009; Wicker, et al., 2006), rice (Rounsley, et al., 2009), melon 

(Gonzalez, et al., 2010) and salmon (Quinn, et al., 2008). In these studies not each 

BAC was sequenced separately but instead sequenced libraries with pooled DNA 

from 20 to 400 BACs. These BACs either originated from the same genomic location 

(Quinn, et al., 2008; Rounsley, et al., 2009; Sato, et al., 2011) or were non-

overlapping (Steuernagel, et al., 2009). While the experimental designs where slightly 

different among these studies, they all showed that coding fractions could be 

excellently reconstructed de-novo and 454 sequencing of BACs has meanwhile 

become an established tool. However, Illumina sequencing has not been used so far 

for the sequencing of BAC pools, despite the much cheaper per base cost and the fact 

that the read length of up to 150 bp is now comparable to the initial 454 read length. I 
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conceived and designed the study described in this chapter. Christine Dreyer, Verena 

Kottler and I selected the BACs for sequencing. Margarete Hoffman and Verena 

Kottler prepared the BAC DNA and Margarete Hoffmann made the Illumina libraries 

for sequencing. I performed all analyses described in this Chapter (see also 

Contributions). In the following, I will describe the de-novo assembly and analysis of 

Illumina sequencing data generated from a library containing the pooled DNA of 

eleven guppy BACs that were not barcoded prior to pooling (Table 5.1).  Seven of 

these were of interest because they were associated to SNP markers scored to be 

under directional selection (see Section 2.2.3). Therefore, gene mining in these BACs 

could lead to candidate genes under selection.  

 

5.1 Material and Methods 

5.1.1 Sequencing and quality filtering 

Eleven BACs linked to ten different mapped markers (Table 5.1) were obtained for 

sequencing from a guppy BAC library with an average insert size of 160 Kb, 

representing eight times coverage of the male Cumaná guppy genome (Tripathi, et al., 

2009). Seven of these markers were of interest, because they were scored as being 

under directional selection (see Section 2.2.3), three were associated to a known QTL 

(Tripathi, et al., 2009) and one was chosen, because it was linked to a candidate gene 

for color patterning, namely slc45a2. The BAC library was screened by filter 

hybridization using specific probes for each BAC, if the parent clone was not a BAC 

end (Table 5.1). The DNA of each BAC was isolated using the QIAGEN large 

construct kit and then pooled to equal amounts in one sample. It is important that each 

BAC is present in the pool in sufficient quantity to be sequenced effectively and that 

no individual BAC dominates the pool. However, certain variability in the relative 

amounts of each BAC clone in the pool cannot be avoided. The library was prepared 

following the Illumina protocol for paired-end sequencing of genomic DNA. The 

insert size of the library was 200 bp and the sequencing was done on an Illumina 

GAII sequencer with 80 bp read length. The raw data was subjected to quality 

trimming using qualityTrimmer (Euler-sr package) (Chaisson and Pevzner, 2008) 

with a minimal base quality of six (-minQual 6) and all reads shorter than 50 bp after 

trimming were discarded (-maxTrim 30). Since the BACs were amplified within E. 
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coli using the BAC vector pIndigoBAC-5, a certain amount of contamination of E. 

coli and vector DNA could no be avoided. In order to remove these reads, I mapped 

all reads against the E.coli reference genome and pIndigoBAC-5 sequence using 

GenomeMapper (Schneeberger, et al., 2009), allowing a maximal edit distance of four 

(-E 4). After quality trimming and filtering, I built the intersection between the first 

and second read files in order to get pairing information. Those reads without partner 

after filtering were used as singles. 

 
Table 5.1 Information to BACs sequenced with Illumina. *The parent clone that was used to 
develop the SNP marker, is the BAC end of the BAC sequenced 
 

Parent clone 
Accession 

(NCBI) 
Marker 

Guppy 

LG 

Position 

(cM) 
BAC sequenced Type 

Tra_Embryo_3_4_G01 ES371771 30 12 9.52 Bac15_I02 QTL 

Blu_Testis_6_B19 ES380805 76 17 13.01 Bac25_P09 Selection 

Tra_Liver_7_4_G02 ES377426 85 8 1.71 Bac28_O05 Selection 

yaBac01_2_H02 FH888654 280 20 0.74 Bac01_O04* Selection/QTL 

yaBac01_3_D05 FH888700 290 7 1.52 Bac01_H09 Selection 

      Bac32_G02*  

yaBac03_F10 FH889280      380 12 5.66 Bac02_F10* QTL 

yaBac03_I24 FH889361      396 8 4.49 Bac03_I24* Selection 

yaBac04_2_D06 FH889637      455 1 19.01 Bac04_G12* Selection 

yaBac33_1_A10 FH890456      581 1 18.48 Bac33_A19* Selection/QTL 

slc45a2 FJ236222 1075 12 - Bac19_N24 Pigmentation gene 

 

5.1.2 De-novo assembly 
The de-novo assembly was done using the Velvet assembler (Zerbino and Birney, 

2008), which is especially designed to build contigs and eventually scaffolds using 

short-read sequencing data. Velvet uses de Bruijn graphs as data structure to find 

overlaps between the reads.  There are some critical parameters that can be set by the 

user and that substantially influence the outcome of an assembly. The probably most 

important one is the hash length (k) also known as k-mer length or word length. It 

corresponds to the length of substrings that are stored and compared in the 

construction of the de-Bruijn graph. In order to determine the optimal k-mer length, I 

first iterated over different values ranging from 31 to 69, increasing the value stepwise 

by two, because velvet only takes odd numbers as hash length to avoid palindromes. 

Another crucial parameter that can be given to the assembler is the expected k-mer 

coverage (exp_cov). It allows Velvet to determine which contigs correspond to unique 
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regions of the genome and which contigs correspond to repeats. It can be determined 

using the following probabilistic formula 

,  

where L is the read length and bp_cov stands for the base pair coverage that is 

determined by 

, 

where R is the number of reads and M the expected input in base pairs. The best 

assembly was ascertained by the highest N50. The N50 metric was here defined as the 

largest contig size at which half of the total size of the contigs is represented by 

contigs larger than the N50 value. Related to the expected k-mer coverage are the 

minimal coverage (cov_cutoff) and maximal coverage cutoff (max_cov) that can also 

be given by the user. Assembled regions with coverage below or above these 

thresholds are removed, because they have not enough support (coverage is too low) 

or are repetitive (high coverage is an indication for collapsed repeats). However, as 

already mentioned above, certain variability among DNA concentrations of the 

different BACs in the pool cannot be avoided. Therefore, it is likely that the coverage 

among contigs from different BACs is not equal. I therefore varied the coverage 

thresholds (t) after determining the optimal k in order to find the optimal cutoffs by 

setting 

 

and 

 

with t = 5, 10, 15, 20, 25 and 30. The ends of each BAC were previously Sanger 

sequenced and could be used to identify each BAC insert boundary. For some BACs I 

had additional Sanger sequence information like parts of cDNAs, ESTs or genomic 

marker sequences that should be contained in the BAC inserts (Supplementary Table 

S5.1). In order to ascertain that contigs from all BACs were covered in the assembly, 

the best assembly was identified as the assembly in which  the maximal number of 

Sanger sequences could be found by blasting (e-value < 1e-50).  

exp_cov = (L ! k +1)*bp_cov
L

bp_cov = R*L
M

cov_ cuttoff = 1
t
*exp_cov

max_cov = t *exp_cov
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5.1.3 Assigning the contigs to BACs and gene mining assuming synteny in other 

species 

Since the contigs in our assembly were a mixture of the pooled BACs, I had to come 

up with a strategy to assign each contig to one BAC. Medaka (Oryzias latipes) and 

stickleback (Gasterosteus aculeatus) are the two most closely related fish species to 

guppies with sequenced genomes. By blasting (blastn) (Altschul, et al., 1990) the 

contigs against these reference sequences, I hoped to identify clusters of contigs 

aligning to a syntenic region and, therefore, belonging to the same BAC. I used 

GBrowse (Stein, et al., 2002) in order to visualize the blast results. The clusters 

corresponding to one BAC could be identified by contigs within a cluster having a 

significant hit to at least one of the respective Sanger sequences of a specific BAC 

(Supplementary Table S5.1). After assigning each contig to a BAC, I blasted (blastn) 

all contigs against NCBI non-redundant (nr) database for annotation. In addition, I 

blasted the contigs of each cluster separately against the stickleback and medaka 

reference genomes using the Ensembl Genome Browser (www.ensembl.org) in order 

to use the provided annotation of regions with the majority of significant hits (e-value 

< 1e-4).  

 

5.2 Results 

5.2.1 De-novo assembly using Velvet 

Eleven BACs were pooled to equal amounts in one library without barcoding. 

Sequencing on a single lane of an Illumina GAII flowcell resulted in ~23.3 Mio. read 

pairs. After quality trimming ~19 Mio. first reads and ~8.2 Mio. second reads 

remained, indicating that the first reads were of better quality. The filtering step 

revealed that only ~2.3% of the reads were originating from E.coli and ~4.4% from 

the pIndigoBAC-5 Vector, leaving us with ~13.8 Mio. paired and ~11.6 Mio. single 

reads from the BAC inserts, which were on average 78 bp long. These reads were de-

novo assembled using Velvet.  

Since one BAC has an average length of ~160 Kb, the amount of base pairs 

sequenced was estimated to be ~1.76 Mb leading to an expected base pair coverage of 

~1,125x on average. Iterating over different hash lengths showed that k = 53 led to the 
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best assembly defined by the highest N50 value of 6,819 bp and maximal contig 

length of 38,458 bp (Table 5.2). 

After finding the optimal hash length, I repeated the assembly with different values 

for the minimal (-cov_cutoff) and maximal (-max_cov) coverage cutoff keeping k = 

53. In order to find out which assembly contained most likely contigs from all BACs, 

I blasted the available Sanger sequences against each assembly. At a coverage cutoff 

of t = 20, most Sanger sequences had a significant hit to at least one of the contigs in 

the assembly (e-value < 1e-50, Supplementary Table S5.1). Increasing t to 30 did not 

lead to additional significant hits of previously missing Sanger sequences. In addition, 

increasing t further than 20 did neither significantly improve the N50 value of 8,557 

bp nor the maximum contig length of 38,458 bp (Table 5.3). However, the number of 

contigs was significantly reduced from 20,124 to 2,096 by providing coverage cutoffs 

(Table 5.2 and Table 5.3). I used the assembly done with k = 53 and t = 20 for further 

analysis. 

 

5.2.2 Assigning contigs to BACs using syntenic regions 

In order to assign contigs to a specific BAC I blasted all contigs against medaka and 

stickleback reference genome sequences. I used the search function in the locally 

installed GBrowse (Stein, et al., 2002), where I visualized the alignments of contigs to 

the reference genomes, to look for the contigs containing the Sanger sequences 

(Supplementary Table S5.1). If these contigs were located near a cluster of aligned 

contigs, I assumed that these were contigs from the corresponding BAC (e.g. Figure 

5.1). Contigs that appeared in conserved order in the stickleback and medaka 

reference genome were believed to belong to the same BAC (e.g. Figure 5.1). With 

this strategy, I was able to identify a cluster for each BAC located chromosome 21 in 

medaka and the corresponding group XVI in stickleback that could not be identified 

by a BAC end. I labeled this cluster as Marker 0380, since the remaining BACs could 

be ascertained (see Discussion). In this way, I was able to assign 187 of 716 contigs 

larger than 500 bp to the BACs. The coverage among all contigs assigned to a BAC 

varied drastically between 20x and 1,241x with an average coverage of 203x and a 

standard deviation of σ = 238.5. However, coverage among contigs from the same 

BAC was much more similar (σ = 5 to 39, Table 5.4). The only exception was Marker 

0085 with σ  = 190, which is almost as high as the standard deviation of coverage  
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Figure 5.1: Assigning contigs to BACs using GBrowse. All contigs were blasted against the 
stickleback and medaka reference genome and alignments were visualized in GBrowse. The search 
function was used in order to find the contigs containing Sanger sequenced parts of the BACs (see 
Supplementary Table S4.1). Contigs aligning densely to the same genomic region were believed to 
belong to the same BAC. This picture shows an example for Marker 0076. Contigs with significant hits 
on Sanger sequences (BAC ends, cDNA and genomic marker sequences) are marked in red. Contigs 
that have the same ordering on the reference genomes are marked in grey. A) Stickleback B) Medaka 
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Table 5.2 Summary of velvet assemblies using different hash values (k) 

k 
 
exp_cov 

Number of 
contigs N50 

Maximal contig 
length Total output Mb 

31 692.3 469,567 27 21,221 6.18 

33 663.5 4,316 173 1,318 0.64 

35 634.6 3,543 192 2,049 0.59 

37 605.8 3,621 203 1,783 0.63 

39 576.9 4,073 221 2,190 0.77 

41 548.1 4,293 230 1,802 0.85 

43 519.2 4,615 241 2,087 0.95 

45 490.4 82,833 904 29,312 3.29 

47 461.5 65,245 1,801 34,866 3.09 

49 432.7 50,668 3,042 32,728 2.9 

51 403.8 31,472 4,945 29,668 2.61 

53 375 20,124 6,819 38,458 2.39 

55 346.2 13,751 5,241 24,728 2.25 

57 317.3 10,871 2,505 18,186 2.13 

59 288.5 7,797 2,552 16,632 2.07 

61 259.6 5,761 2,729 22,623 2.02 

63 230.8 4,477 2,717 22,621 1.99 

65 201.9 4,483 2,717 22,621 1.99 

67 173.1 4,500 2,717 22,621 1.99 

69 144.2 4,502 2,717 22,621 1.99 

 
 

Table 5.3 Summary of velvet assemblies using k = 53, but different values for the minimal and 
maximal coverage cutoffs. 

t 

Number of 

contigs N50 

Maximal contig 

length total output Mb 

5 845 4,963 18,971 1.23 

10 1,504 6,511 34,592 1.74 

15 1,738 8,184 38,468 1.93 

20 2,096 8,557 38,468 1.95 

25 2,515 8,484 38,659 1.97 

30 2,778 8,589 38,661 1.97 

35 3,136 8,589 38,657 1.98 

40 3,654 8,589 38,657 2.00 

 

 

the case of Marker 0290 and I will refer to this contig cluster as Cluster 

Bac04_G12/Bac33_A19. The total contig length in each cluster was between 95 and 

194 Kb and in the range of the expected inserts size of the library. However, for 

Marker 0085 the total contig length was only 41 Kb (Table 5.4).  The N50s and the 

maximal contig length for each contig cluster were very different and ranged from 
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2,842 to 34,644 bp and 4,001 to 38,520 bp, respectively (Table 5.4). In the following I 

will refer to each contig cluster by the BAC name (Table 5.4), e.g. Bac15_I02 refers 

to the contig cluster associated to Marker 0030. 

 
Table 5.4: Statistics about contig clusters associated to BACs and the location of clusters in the 
two reference genomes of medaka and stickleback.  Cov = average coverage, σ = standard deviation, 
LG = linkage group, Loc = location 

Marker       Medaka Stickleback 

No BAC name 

number 
of 
contigs 

average 
coverage σ N50 Max 

total 
(Kb) LG 

Loc 
(Mb) LG 

Loc 
(Mb) 

30 BAC15_I02 11 108x 27 34,644 38,520 115.4 1 16.25 IX 1.24 

76 BAC25_P09 24 140x 32 10,379 26,137 138.7 17 23.3 III 7.14 

85 BAC28_O05 24 770x 190 2,842 4,011 41.2 8 23.3 XI 2.49 

280 BAC01O04 20 58x 13 12,859 14,720 130 20 2.9 
scaff
37 2.34 

290 BAC01_H09 8 110x 11 10,531 30,569 84.2 7 0.58 XII 5.2 

 /BAC32_G02 20 57x 12 4,431 10,571 88.6     

380 BAC03_F10 19 98x 20 17,434 34,236 142.4 21 20.03 XVI 12.9 

396 BAC03_I24 22 146x 26 12,789 21,227 193.8 8 21.69 XI 2.53 

455 BAC04_G12 21 318x 39 13,189 26,243 181.1 1 17.47 IX 9.69 

/581 /BAC33_A19 - - - - - - - - - - 

1075 BAC19_N24 18 36x 5 10,464 16,464 95.5 12 8.15 XIV 3.44 

 
 

5.2.3 Candidate genes 

I found between three and eleven genes on the contigs in each cluster. With genes I 

refer to regions encoding well-annotated as well as hypothetical proteins. I found in 

total 66 genes of which 51 encode well-annotated protein. Well-annotated means here 

the function of the protein is known in other reference species. Relative gene order 

was mostly conserved across the two reference genomes of stickleback and medaka. 

However, some genes were in inverse order or were grouped together in one reference 

genome, but appeared in two separated genomic regions in the other reference 

genome. Separate means here the distance between genes was larger than 200 Kb and 

there were eventually other genes between them. In the first case, I could sometimes 

determine whether the respective region in the guppy is more similar to stickleback or 

medaka. In the latter case, I knew that the genes should be in the same region (here 

defined < 200 Kb) in the guppy genome, since they should be located on one BAC. 
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Marker 0030 

BAC15_I02 contained in total ten genes, of which seven encode well-annotated 

proteins (Figure 5.2). I found all ten of them linked together in the same region in the 

stickleback reference genome. However, five of these genes were missing from the 

corresponding region in medaka, but the remaining genes were in the same order 

compared to stickleback. I was able to reconstruct the order for some genes in the 

guppy genome, since they were linked through contigs. From this I could infer that 

the ordering is mostly conserved between guppy and stickleback. 

 

Marker 0076 

I found nine genes on the contigs associated to Bac25_P09 and seven of them encode 

well-annotated proteins (Figure 5.2). Ordering of genes was conserved between the 

two reference species. Only one gene annotated as hypothetical protein in stickleback 

could not be found in the medaka reference, but had a hit on one of the guppy contigs. 

Those genes that could be ordered in the guppy appeared in the same relative order as 

compared to the stickleback and medaka. 

 

Marker 0085 

Here, I found seven genes in the respective region of medaka, of which five encode 

well-annotated proteins (Figure 5.2). In stickleback, I only found five of these genes, 

where three were found in another genomic region (further away than 150 Kb) on the 

same chromosome and the remaining two appeared to be in inverted order compared 

to medaka. The same five genes could also be found on the guppy contigs on 

Bac28_O05. The relative order of genes could not be determined, since none of them 

were linked through contigs. However, they should be linked together in the same 

genomic location similar to medaka.  

 

Marker 0280 

I found four genes on the contigs on Bac01_O04 of which three encode well-

annotated proteins (Figure 5.2). One gene, slc12A7, could not be found in stickleback 

and another one, annotated as novel protein, could not be found in medaka. However, 

the order of the two remaining genes appeared to be conserved among the three 

species.  
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Figure 5.2: Comparative synteny analysis against two published fish genomes, medaka and 
stickleback. For each Marker all genes are listed that could be found in the contigs of the 
corresponding BAC. Genes are color coded and numbers within boxes refer to guppy contigs. In 
addition, the ordering of genes in the two reference genomes of stickleback and medaka is depicted 
using the same coloring as in lists as well as the most likely ordering in the guppy genome. If boxes 
are connected by a black line, the corresponding genes appear next to each other in the genome. 
Double slashes show that there is a gap between the sepeparated genes larger than 160 Kb.  
 

Marker0085

MYST  histone  acetyltransferase  2  
aldehyde  dehydrogenase  16  family,  member  A1  
novel  protein
novel  protein
synaptotagmin  V  
troponin  T  type  1  (skeletal,  slow)  
PIH1  domain  containing  1  

Guppy

Stickleback

Medaka

123    11    57    44 199    299    59    47 52    594    54    408    517    224 115    202    283    410 186    100

123    11    57 199    299    59    47 100    186 410    283    202    115 224    517    54    594    52

123    11    57    44 199    299    59    47 X X 52    594    54    408    517    224 115    283    410 186    100

Marker0280

solute  carrier  family  12  (potassium/chloride  transporters),  member  7  
amiloride  binding  protein  1  (amine  oxidase  (copper-containing))  
SCO-spondin  homolog  (Bos  taurus)  
novel  protein

Guppy

Stickleback

Medaka

79    505 453 453    346    375    185    471    372    883    1870    784    351    213 127

79    505 453 453    346    375    185    471    372    883    1870    784    351    213

453 453    346    375    185    471    372    883    784    351    213 127

Marker0030

hypothetical  protein
collapsin  response  mediator  protein  1
Wolfram  syndrome  1  (wolframin)  
protein  phosphatase  2,  regulatory  subunit  B,  gamma  
hypothetical  protein
hypothetical  protein
chromosome  4  open  reading  frame  27  
ankyrin  2,  neuronal  
hypothetical  protein
calcium/calmodulin-dependent  protein  kinase  II  delta  

Guppy

Stickleback

Medaka

25    566    986    183    18    18    18    18    18    403    193    193    29    29

25    566    986    183    18    18    18    18    18    403    193    193    29    29

      18    18          18    403    193       29

Marker0076

novel  miRNA
solute  carrier  family  25,  member  42  
armadillo  repeat  containing  6
hypothetical  protein
NADH  dehydrogenase  (ubiquinone)  1  alpha  subcomplex,  13  
hypothetical  protein
cold  inducible  RNA  binding  protein  
serine/threonine  kinase  11  
SURP  and  G  patch  domain  containing  1

Guppy

Stickleback

Medaka

545    24    24    68    867    90    90    90    298    300    250    538

545 24    24    68    867    90    90    90    298    300    250    538

545    24    24    68    867    90       90    298    300    250    538

Marker0290

novel  protein
novel  protein
mechanistic  target  of  rapamycin  (serine/threonine  kinase)  
angiopoietin-like  7  

Guppy

Stickleback

Medaka

284 284 837    1666    923    1215    540    180    896    744 419 509    838    520    91    125    1484    1804    76    622    1210

284 284 837    1666    923    1215    540    180    896    744 419 509    838    520    91    125    1484    1804    76    622    1210

837    923    1215    540    180    896    744 419 509    520    91    1046    1484    1804    622
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Marker 0290 

Marker 0290 was represented by two BACs, Bac01_H09 and Bac32_G02, but I 

combined the contigs into one cluster. These contigs contained four genes encoding 

two well-annotated and two hypothetical proteins (Figure 5.2). All four were linked 

together in the stickleback reference sequence, but two of them, both annotated as 

novel proteins, were missing in the reference sequence of medaka. Relative ordering 

of all four genes in the guppy genome could not be confidently resolved. 

Marker0380

A  kinase  (PRKA)  anchor  protein  17A  
novel  protein
septin  10  
SH3  domain  containing  ring  finger  3  

Guppy

Stickleback

Medaka

176    192 489    752 470    71 34    833    425    330    89    164    2032

176    192 489    752 470    71 34    833    425    330    89    164    2032

176    192 489    752 470    71 34    833

Marker0396

ubinuclein  2  
ribosomal  protein  SA  pseudogene  58  
solute  carrier  family  25,  member  38  
myosin,  heavy  chain  9,  non-muscle  
thioredoxin  2  
novel  protein
DEAD  (Asp-Glu-Ala-Asp)  box  polypeptide  39A  
novel  protein
endoglin  
protein  kinase  N1  
novel  protein

Guppy

Stickleback

Medaka

1560    244    301 301 269 269    212 126    456 216 216    243 243    2 437 198    1024    358    492    980 672    188

1560    244    301 301 269 269    212 126    456 216 216    243 243    2 437 198    1024    492    980 672    188

126 212    269 269 301 244    1560 243    2 437 1024    358    492    980

Marker0455

deleted  in  liver  cancer  1  
LON  peptidase  N-terminal  domain  and  ring  finger  1  
calcium  binding  protein  4  
novel  protein
serpin  peptidase  inhibitor,  clade  G  (C1  inhibitor),  member  1  
transmembrane  protein  134  
aryl  hydrocarbon  receptor  interacting  protein  
cyclin-dependent  kinase  2  associated  protein  2  
G  protein-coupled  receptor  83  

Guppy

Stickleback

Medaka

387    102    45    67 101 290    61 78  10  28    21  157 55 119 119 119 4

102    45    67 101 61 21    28    157 55 119 119 119 4

387    102    45 101 290    61 78    10    21    157 55 119 119 119

Marker1075

superkiller  viralicidic  activity  2-like  2  (S.  cerevisiae)  
phosphatidic  acid  phosphatase  type  2A  
chondroitin  sulfate  N-acetylgalactosaminyltransferase  1  
nucleoredoxin-like  2  
guanine  nucleotide  binding  protein  (G  protein),  gamma  10  
relaxin/insulin-like  family  peptide  receptor  3  
solute  carrier  family  45,  member  2  
alpha-methylacyl-CoA  racemase  

Guppy

Stickleback

Medaka

1382    510 510 1618    479    1055    56    1571 39 39 987    1601 150    502    390    103    685 196    302

1382    510 510 1618    479    1055    56    1571 39 39 987  1601 502    390    685 302

1382    510 510 1618    479    1055    56    1571 39 302  196 685    103    502    150 1601    987

Figure 5.2: Comparative synteny analysis against two published fish genomes, medaka and 
stickleback.  (continued) 
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Marker 0380 

I found four genes on the contigs associated to Bac03_F10,, of which only one is 

annotated as hypothetical protein. All four genes could be found in stickleback as well 

as medaka in conserved order. The relative ordering of these genes in the guppy 

genome could not be shown by contig links, but is most likely the same as in the two 

reference species.  

 

Marker 0396 

Bac03_I24 contained eleven genes and therefore the highest number of genes found 

on one BAC sequenced in this study. Eight encoded for well-annotated proteins 

(Figure 5.2). All of these genes could be found linked together in the stickleback 

reference sequence, but three genes were missing in medaka. In addition, a subset of 

the genes appeared to be inverted order in medaka relative to stickleback. I was not 

able to resolve whether the order of these genes in the guppy genome is more similar 

to medaka or stickleback. However, some of the genes could be linked through 

contigs and these subsets had the same relative order as in the two reference species.  

 

Marker 0455/0581 

As described before, the BACs associated to Marker 0455 and 0581 seem to be 

overlapping (Supplementary Figure S5.2). Therefore, contigs aligning to this region 

were fused into one cluster, Bac04_G12/Bac33_A19. The respective contigs 

contained nine genes of which eight encode well-annotated proteins (Figure 5.2). 

These genes could be found in conserved order in the stickleback and medaka 

reference sequence apart from the G protein coupled receptor 83 that was missing in 

medaka. Those genes, for which I was able to determine the order, appeared to have 

the same sequential arrangement in the guppy genome as in the medaka and 

stickleback reference sequence. 

 

Marker 1075 

The BAC associated to Marker 1075 contained an pigmentation candidate gene, 

namely the solute carrier family 45, member 2 (slc45a2). I found seven additional 

genes on Bac19_N24, all encoding well-annotated proteins (Figure 5.2). All of these 

could be found in the same genomic region of the stickleback reference, but in the 
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medaka reference these genes were located in two different genomic locations. 

Moreover, one group appeared in reversed order compared to stickleback indicating 

an inversion (Figure 5.2). However, genes within this subgroup had the same relative 

order to each other compared to stickleback. Although, the order of genes in the 

guppy genome could not be confidently determined, it appeared that this genomic 

region is more similar to the syntenic region in the stickleback reference. The 

corresponding region containing all genes is too large in medaka to be covered by one 

BAC. This notion was supported by the observation that one of the contigs contained 

the breakpoint (Supplementary Figure S5.2). 

 

5.3 Discussion 

A pool of eleven BACs linked to ten genomic regions of interest has been sequenced 

without barcoding using Illumina GAII. De-novo assembly of the quality filtered 

dataset iterating over different parameters resulted in an assembly with an N50 of 

8,557 bp and a maximum contig length of 38,468 bp. Previous studies using 454 

technology reported N50s within the range of 3 to 50 Kb (Gonzalez, et al., 2010; 

Quinn, et al., 2008; Rounsley, et al., 2009; Sato, et al., 2011; Steuernagel, et al., 2009) 

using in some cases much longer read length and mate pair information. This 

indicates that our de-novo assembly using paired-end Illumina data was within the 

quality range of assemblies based on 454 data. However, the repeat content among 

different genomes significantly influences the quality and the N50 of de-novo 

assemblies and makes the results not directly comparable. Even within the genome 

the repeat content can vary drastically (e.g. near centromeres). Consequently, different 

parts of the genome might be easier to assemble and other parts are more difficult. 

This is also shown by our data. The repeat content among BACs seemed to vary 

significantly as shown by the different N50 values per contig cluster. Most contig 

cluster corresponding to BACs were found on the expected syntenic chromosomes in 

stickleback and medaka. Exceptions may have different explanations. If the probe 

used to screen the BAC library exists in multiple copies in the genome, it can happen 

that the wrong BAC is picked. For example, the BAC associated to Marker 0085 was 

probed with the cDNA of a gene existing in multiple copies in the medaka genome. 

Therefore, we might have picked a BAC containing a region that contains a 

paralogous gene. Another explanation might be that the syntenic genomic region is 
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indeed located on a different chromosome in the guppy compared with stickleback 

and medaka. For example, Marker 0030 is located on guppy linkage group 12, which 

corresponds to the sex chromosome in guppy. However, I found that the contigs 

associated to Bac15_I02 through blast hits of the BAC ends do not align to the 

corresponding medaka chromosome 12, but mapped to medaka chromosome 1, which 

is the sex chromosome in this species. Yet, I would like to emphasize that the 

identification of BACs with their BAC ends is not unambiguous. Common repeats in 

the BAC ends can lead to wrong, but significant blast hits. Therefore, all results have 

to be interpreted with caution. This accounts especially for the BACs associated to 

Marker 0030, 0085 and 0380. Bac02_F10 associated to Marker 0380 could not even 

tagged by its BAC ends. It was just the only contig cluster left that has not been 

identified. It is unlikely that the wrong BAC was picked in this case, because it could 

be directly derived from the parent clone (Table 5.1). A BAC can loose large parts of 

its insert during DNA preparation due to repeats in the insert. This might be an 

explanation for a partly or completely missing BAC in the assembly. 

Still, an important outcome of this study is that our approach can be successfully used 

for gene mining in a genomic region of interest, given that the correct BAC was 

picked. I found in total 66 genes linked to ten SNP markers of interest. Almost all 

genes, found in the syntenic region of medaka or stickleback, were covered by a 

contig in our assembly. However, the order of genes in the guppy could not always be 

fully resolved, because the assembly lacked sufficiently long continuous sequences. I 

did not use the scaffolding function in Velvet in order to generate longer scaffolds, 

because simulation studies have shown that scaffolding of pooled BAC data is very 

error prone (diploma thesis, Andrea Sprecher). Therefore, I preferred having less 

information about sequential arrangements of genes rather than getting wrong 

information in form of chimeric scaffolds. However, I cannot exclude that our 

assembly contains chimeric contigs in which parts actually come from different 

BACs. These chimeric contigs are most likely caused by repetitive motifs that are 

shared among different BAC sequences. The more BACs are pooled the higher the 

probability of shared repeat motifs among BACs. In this experiment, we did not 

barcode the BACs previously to pooling, in order to find out if this labor intensive 

step is necessary (Steuernagel, et al., 2009). Although I were able to assign 187 

contigs to the different BACs, 529 contigs > 500 bp in the assembly remained of 

unknown origin. Contigs containing long stretches of coding sequence are more likely 
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to be assigned correctly using synteny to other species. If the goal of a study using 

BAC sequencing is to find not only the coding parts of a BAC but also large parts of 

the non-coding stretches, I would recommend barcoding prior to pooling. With 

barcoding, reads could be sorted prior to assembly and each BAC could be assembled 

separately (Steuernagel, et al., 2009). In addition, it would provide the opportunity to 

optimize the assembly parameters for each BAC separately. This would most likely 

lead to better N50 values per BAC and would also solve the problem of chimeric 

contigs and scaffolds. 

However, I was able to show that sequencing of BAC pools without barcoding using 

Illumina can be useful for identifying genes according to synteny to other species. 

Given that the BACs can be unambiguously identified, this approach can lead to 

interesting candidate genes linked to regions under selection. I found 44 genes on the 

seven BACs associated to SNP markers scored to be under directional selection (see 

Section 2.2.3). These genes could now be sequenced and analyzed further in different 

wild populations in order to determine whether or not some of them are indeed 

exposed to selection. 

  



 87 

6. Conclusions 

Studying genetic differences within and among natural populations can give important 

insights into ancestry, population structure, adaptation and speciation. Until recently 

genome-wide analyses were restricted to classical genetic model organisms, because 

for these the required molecular resources were available. However, there is not much 

known about the ecology of genetic model organisms and its difficult to infer from 

laboratory studies how natural populations adapt to their variable environment. Next 

generation sequencing makes it more feasible than ever to identify genetic loci 

responsible for adaptive evolution in ecological model organisms.  

In this thesis I have shown by the means of the guppy, which is an important model 

organisms in ecological genetics, how new methods for high-throughput genotyping 

have shifted the field of population genetics to population genomics. I demonstrated 

the benefits of a comprehensive set of nuclear SNP markers anchored to the genetic 

map for a high-resolution survey of populations from a wide geographic range 

(Chapter 2). While I began with a comparatively low sample size per site, my study 

gave new insights in ancestry and population structure and specific questions can now 

be studied in depth using larger sample sizes from populations of interest. In addition 

I could show that, population parameters like FST were not inflated by small sample 

sizes (Chapter 3). As next-generation sequencing methods like RAD-seq became 

available, development of comprehensive SNP data sets are likely to become an 

efficient and cost-effective genetic tool in studies of non-reference species. I showed 

that my method especially designed for de-novo assembly and analysis of PE RAD-

seq allowed to detect thousands of new genetic markers in the guppy genome suitable 

for genetic mapping and population studies (Chapter 4). RAD-seq will provide the 

opportunity to increase the density of informative markers in the guppy genome to the 

level required for resolution of genes under selection in contrasting, but 

geographically neighboring, habitats. Identification of genes under diversifying 

selection may guide the choices of genomic regions to be sequenced with BAC-seq 

(Chapter 5) and help us decipher the evolution of adaptation in natural guppy 

populations. 

During the time of this thesis, the field of population genetics has shifted to next 

generation population genomics. We started out in the guppy with a set of 1,000 SNP 

markers, which was a huge number of genetic markers for a non-reference organism 
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four years ago. Meanwhile, we are able to generate thousands of new SNP markers at 

only a fraction of cost using NGS. As mentioned in Chapter 2, analyses of previous 

SNP datasets were suffering from ascertainment bias (Luikart, et al., 2003), , which 

can significantly bias the estimate of FST (Chapter 3). This problem is solved with next 

generation genotyping methods like RAD-seq, because all individuals included in the 

study can be genotyped at the same time.  

Interesting questions in future population genetic studies in non-reference organisms 

will no longer depend on the number of available markers, because population 

genomics will become feasible in a large variety of systems. However, the 

experimental design of these studies depends on the question of interest. In Chapter 3, 

I showed that taking a very small number of individuals from each population led 

already to reliable estimates of genetic differentiation. Therefore, a study on 

population substructure and demographic histories might be done now with a large 

number of populations from a wide geographic range at very little cost.  

However, explaining the mechanisms of adaptation and speciation is one of the major 

goals in evolutionary genetics. In these studies large sample sizes from the 

populations analysed are required, because allele frequencies at single loci have to be 

estimated (Chapter 3). Still, we now have the tools to analyse adaptive divergence 

genetically in a large number of different systems hopefully giving us answers to 

questions dating back to the early days of evolutionary biology. There will be an 

explosion of new studies aiming at identifying genes responsible for adaptive change, 

because empirical approaches for FST outlier methods become feasible in non-model 

taxa. Studies similar to the one done by Akey et al. (2002), who used > 26,000 SNPs 

sampled genome wide in humans to find regions under selection, will now be possible 

in non-reference taxa (Luikart, et al., 2003).  

The vast amount of genotype data that will soon be available will also bring new 

challenges for the field of Bioinformatics. Many of the commonly used software 

programs for population genetic data analysis (e.g. (Excoffier and Heckel, 2006) 

cannot deal with large SNP datasets. The computation times of the sophisticated 

software STRUCTURE (see Chapter 2) scales with the number of individuals and 

markers used as input. With thousands of markers, it will not be feasible to run 

STRUCTURE. PCA (see Chapter 2) is a valid alternative to STRUCTURE in order to 

infer population substructure. The computation times are very fast even if using 

thousands of markers. Moreover, it provides the opportunity to sort the SNPs 
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according to information content (Paschou, et al., 2007). This feature could be used to 

choose a subset of SNPs used for STRUCTURE in order to infer admixture patterns. 

This is only one example of how already available software packages can be 

combined in order to be able to deal with the huge datasets. However, also new 

software adapting old methods to the new data is needed, in addition to completely 

new approaches developed to take full advantage of the provided genome-wide 

information. Concisely, software development in this field has to move from 

population genetics to next generation population genomics.  

However, next generation population genomics will revolutionize the field of 

evolutionary genetics and I am positive that my work will be helpful in providing 

some guidelines and new methods for future studies. 
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Appendix 

A. Supplementary Figures 
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Figure S2.8: Linkage plot. Clustering was inferred with STRUCTURE using the linkage model with 
100,000 burn in steps and 100,000 iteration steps with k = 4. Each individual is represented by two 
subsequent rows and columns represent genotypes ordered according to the position on the linkage 
groups. Colors describe the most likely cluster membership for each genotype. 
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Figure S3.1: Effect of increasing sample sizes. Results are shown for the simulated data with equally 
distributed allele frequencies using different sample sizes taken from population 1 (n1 = 4) and from 
population 2 (n2 = 2, 4, 6, 10, 20, 50). Number of loci is fixed at k = 100 (left column) and k = 1,000 
(right column). Each row contains a different level of genetic differentiation (FST = 0, 0.01, 0.05, 0.1, 
0.2, 0.4). The results (average FST and 95% CI) of each estimator are depicted in the different graphs: 
FST

W (blue circles), FST
W&C (purple squares) and FST

R (green triangles). The dashed red line indicates 
the actual FST for the simulated population. 
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Figure S3.2: Effect of increasing the number of markers. Results are shown for the simulated data 
with equally distributed allele frequencies using different sample sizes taken from population 1 (n1 = 4) 
and from population 2 (n2 = 2, 4, 6, 10, 20, 50). Number of individuals is fixed at n = 4 (left column) 
and n = 20 (right column). Each row contains a different level of genetic differentiation (FST = 0, 0.01, 
0.05, 0.1, 0.2, 0.4). The results (average FST and 95% CI) of each estimator are depicted in the different 
graphs: FST

W (blue circles), FST
W&C (purple squares) and FST

R (green triangles). The dashed red line 
indicates the actual FST for the simulated population. 
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Figure S3.3: Effect of increasing sample sizes. Results are shown for the simulated data with skewed 
allele frequencies (MAF > 0.25). Number of loci is fixed at k = 100 (left column) and k = 1,000 (right 
column). Each row contains a different level of genetic differentiation (FST = 0, 0.01, 0.05, 0.1, 0.2, 
0.4). The results (average FST and 95% CI) of each estimator are depicted in the different graphs: FST

W 
(blue circles), FST

W&C (purple squares) and FST
R (green triangles). The dashed red line indicates the 

actual FST for the simulated population. 
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Figure S3.4: Effect of increasing the number of markers. Results are shown for the simulated data 
with skewed allele frequencies (MAF > 0.25). Number of individuals is fixed at n = 4 (left column) 
and n = 20 (right column). Each row contains a different level of genetic differentiation (FST = 0, 0.01, 
0.05, 0.1, 0.2, 0.4). The results (average FST and 95% CI) of each estimator are depicted in the different 
graphs: FST

W (blue circles), FST
W&C (purple squares) and FST

R (green triangles). The dashed red line 
indicates the actual FST for the simulated population. 
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Figure S3.5: Effect of increasing sample sizes. Results are shown for the simulated data with skewed 
allele frequencies (MAF ≤ 0.25). Number of loci is fixed at k = 100 (left column) and k = 1,000 (right 
column). Each row contains a different level of genetic differentiation (FST = 0, 0.01, 0.05, 0.1, 0.2, 
0.4). The results (average FST and 95% CI) of each estimator are depicted in the different graphs: FST

W 
(blue circles), FST

W&C (purple squares) and FST
R (green triangles). The dashed red line indicates the 

actual FST for the simulated population. 
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Figure S3.6: Effect of increasing the number of markers. Results are shown for the simulated data 
with skewed allele frequencies (MAF ≤ 0.25). Number of individuals is fixed at n = 4 (left column) 
and n = 20 (right column). Each row contains a different level of genetic differentiation (FST = 0, 0.01, 
0.05, 0.1, 0.2, 0.4). The results (average FST and 95% CI) of each estimator are depicted in the different 
graphs: FST

W (blue circles), FST
W&C (purple squares) and FST

R (green triangles). The dashed red line 
indicates the actual FST for the simulated population. 
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Figure S5.1: Assigning contigs to BACs using GBrowse. All contigs were blasted against the 
Stickleback  and medaka reference genome and alignments were visualized in GBrowse. The search 
function was used in order find the contigs containing Sanger sequenced parts of the BACs (see Table 
Sxx[soll das Tab S4.1 sein oder was neues?]). Contigs aligning densely to the same genomic region 
were believed to belong to the same BAC. This picture shows an example for Marker 0455/0581. 
Contigs with significant hits on Sanger sequences associated to Marker 0455 are marked in red. 
Contigs with significant hits on Sanger sequences associated to Marker 0581 are marked in blue. 
Contigs that have the same ordering on the reference genomes are marked in grey. A) Stickleback B) 
Medaka 
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Figure S5.2: Assigning contigs to BACs using GBrowse. All contigs were blasted against the 
Stickleback and Medaka reference genome and alignments were visualized in GBrowse. The search 
function was used in order find the contigs containing Sanger sequenced parts of the BACs (see Table 
Sxx)??. Contigs aligning densely to the same genomic region were believed to belong to the same 
BAC. This picture shows an example for Marker 1075. Here, all contigs align nearby each other in 
Stickleback, but are separated if aligned to Medaka. Contigs with significant hits on Sanger sequences 
associated to Marker 0455 [was tut der hier?]are marked in red. The contig most likely containing the 
break point is marked in blue. Contigs that have the same ordering on the reference genomes are 
marked in grey or yellow. A) Stickleback B) Medaka 
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B. Supplementary Tables 

Table S2.1: Pairwise FST-values calculated A) between the populations within the Northern drainages 
B) between the populations from the Northern drainages and the populations from the Oropouche 
drainage C) between the populations from the Northern drainages and the populations from the Caroni 
drainage D) between the populations from the Northern drainages and the populations from South West 
Trinidad E) between the populations from the Northern drainages and the populations from Venezuela. 
Region River Name Number 1 2 3 4 5 6 7 8 9 10 11 
A) Northern 

drainages 

Marianne M1 1            

M11 2 0.773           

M15 3 0.421 0.621          

M2 4 0.544 0.749 0.188         

M8 5 0.555 0.633 0.192 0.399        

MM1 6 0.381 0.552 0.063* 0.168 0.209       

MM2 7 0.343 0.597 - 0.145 0.216 -      

Paria P1 8 0.736 0.541 0.560 0.690 0.609 0.486 0.506     

P7 9 0.789 0.743 0.661 0.776 0.715 0.595 0.586 0.583    

Yarra LY 10 0.598 0.654 0.532 0.582 0.569 0.510 0.499 0.646 0.671   

UY 11 0.709 0.845 0.672 0.752 0.720 0.635 0.598 0.806 0.833 0.559  

B) Oropouche 

drainage 

Matura LM 12 0.593 0.608 0.516 0.583 0.560 0.507 0.505 0.578 0.606 0.400 0.623 
Oropouche LO 13 0.563 0.588 0.506 0.559 0.546 0.500 0.484 0.587 0.585 0.445 0.606 

Oro209 14 0.764 0.779 0.705 0.760 0.749 0.682 0.666 0.760 0.786 0.617 0.771 
Oro201 14 0.704 0.729 0.651 0.701 0.699 0.646 0.637 0.719 0.733 0.559 0.721 
Oro4-2 14 0.615 0.649 0.570 0.625 0.620 0.545 0.526 0.641 0.631 0.479 0.691 
Oro2 14 0.691 0.715 0.638 0.686 0.684 0.621 0.606 0.699 0.712 0.561 0.693 
UO 15 0.586 0.606 0.543 0.591 0.577 0.515 0.492 0.594 0.611 0.457 0.620 

Quare LQ 16 0.542 0.605 0.504 0.557 0.545 0.484 0.477 0.576 0.587 0.409 0.581 
QuaII6 17 0.781 0.830 0.751 0.792 0.784 0.741 0.731 0.812 0.823 0.705 0.804 
QuaII203 17 0.809 0.844 0.768 0.808 0.799 0.759 0.746 0.828 0.840 0.711 0.827 
QuaII206 17 0.790 0.833 0.756 0.799 0.789 0.754 0.739 0.813 0.826 0.702 0.807 

Turure LT 18 0.704 0.718 0.627 0.681 0.670 0.608 0.605 0.701 0.726 0.426 0.732 
UT 19 0.747 0.780 0.692 0.745 0.720 0.665 0.662 0.764 0.790 0.483 0.773 

C) Caroni 

drainage 

Aripo LA 20 0.659 0.697 0.608 0.654 0.660 0.582 0.588 0.684 0.707 0.399 0.704 
RP 21 0.700 0.733 0.621 0.691 0.680 0.590 0.596 0.699 0.735 0.418 0.721 
UA 22 0.822 0.869 0.768 0.835 0.818 0.736 0.727 0.837 0.867 0.621 0.859 

Guanapo LElC 23 0.798 0.850 0.763 0.812 0.803 0.740 0.743 0.828 0.867 0.562 0.839 
UElC 24 0.839 0.885 0.785 0.850 0.830 0.766 0.769 0.869 0.895 0.615 0.875 
LG 25 0.679 0.726 0.642 0.688 0.681 0.610 0.610 0.716 0.756 0.415 0.720 
UG 26 0.811 0.862 0.766 0.817 0.807 0.735 0.729 0.852 0.871 0.614 0.870 

Caura LC 27 0.580 0.619 0.521 0.571 0.558 0.482 0.496 0.601 0.632 0.243 0.593 
UC 28 0.694 0.741 0.607 0.666 0.660 0.583 0.579 0.709 0.737 0.254 0.724 

Tunapuna* Tu 29 0.660 0.712 0.603 0.663 0.653 0.542 0.573 0.698 0.697 0.377 0.696 
Tranquille* Tra 30 0.623 0.680 0.574 0.624 0.611 0.553 0.552 0.668 0.686 0.305 0.647 
Lopinot LL 31 0.578 0.626 0.521 0.572 0.559 0.461 0.468 0.600 0.620 0.294 0.621 

UL 32 0.845 0.895 0.793 0.842 0.836 0.769 0.758 0.876 0.908 0.629 0.880 

D) SW Trinidad Palm Drive 
Felicity 

PD 33 0.535 0.579 0.473 0.541 0.512 0.449 0.449 0.562 0.596 0.300 0.585 
 Pitch Lake PL 34 0.775 0.826 0.731 0.777 0.778 0.699 0.709 0.788 0.818 0.605 0.804 

E) Venezuela Cumaná AP 35 0.805 0.825 0.779 0.807 0.800 0.761 0.763 0.810 0.826 0.745 0.821 
CCB 36 0.723 0.744 0.692 0.728 0.717 0.677 0.671 0.732 0.757 0.632 0.726 
CCE 36 0.764 0.792 0.731 0.766 0.758 0.724 0.714 0.776 0.799 0.691 0.766 
CCFR 36 0.822 0.846 0.807 0.830 0.821 0.793 0.787 0.832 0.854 0.767 0.831 

Poza Azufre PV6 37 0.732 0.794 0.675 0.728 0.715 0.665 0.650 0.756 0.786 0.555 0.756 

NOTE: Populations were defined by sampling site. For all entries P < 0.001 if not otherwise marked. 
**P < 0.01, *P < 0.05. Not significant estimates are not reported. 
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Table S2.1 (continued): Pairwise FST-values calculated A) between the populations within the 
Oropouche drainage B) between the populations from the Oropouche drainage and the populations 
from the Caroni drainage C) between the populations from the Oropouche drainage and the populations 
from South West Trinidad C) between the populations from the Oropouche drainage and the 
populations from Venezuela. 
 

Region River Name Number 12 13 14 14 14 14 15 16 17 17 17 18 19 

A) Oropouche  

drainage 

Matura LM 12              

Oropouche LO 13 0.195             

Oro209 14 0.408 0.239            

Oro201 14 0.324 0.135 0.383           

Oro4-2 14 0.259 0.146 0.341 0.294          

Oro2 14 0.305 0.133 0.393 0.250 0.261         

UO 15 0.209 - 0.256 0.196 0.168 0.163        

Quare LQ 16 0.232 0.069 0.276 0.206 0.205 0.205 0.084       

QuaII6 17 0.542 0.367 0.596 0.500 0.497 0.484 0.426 0.332      

QuaII203 17 0.560 0.407 0.625 0.537 0.525 0.518 0.462 0.349 -     

QuaII206 17 0.551 0.397 0.617 0.520 0.513 0.482 0.442 0.340 - -    

Turure LT 18 0.432 0.403 0.630 0.559 0.512 0.558 0.441 0.412 0.704 0.718 0.720   

UT 19 0.506 0.500 0.693 0.633 0.586 0.642 0.504 0.494 0.757 0.775 0.762 0.036  

B) Caroni 

drainage 

Aripo LA 20 0.441 0.416 0.601 0.564 0.465 0.567 0.454 0.400 0.674 0.700 0.681 0.297 0.363 

RP 21 0.470 0.472 0.650 0.606 0.516 0.594 0.510 0.469 0.715 0.735 0.720 0.353 0.400 

UA 22 0.592 0.571 0.768 0.723 0.637 0.706 0.629 0.575 0.809 0.821 0.812 0.522 0.582 

Guanapo LElC 23 0.581 0.555 0.749 0.704 0.639 0.698 0.583 0.550 0.808 0.821 0.819 0.174 0.254 

UElC 24 0.636 0.587 0.793 0.734 0.673 0.743 0.620 0.582 0.834 0.850 0.844 0.263 0.372 

LG 25 0.464 0.428 0.644 0.599 0.515 0.596 0.479 0.443 0.722 0.735 0.729 0.052** 0.061** 

UG 26 0.589 0.553 0.753 0.713 0.631 0.703 0.612 0.563 0.803 0.811 0.805 0.258 0.263 

Caura LC 27 0.327 0.371 0.556 0.499 0.416 0.489 0.395 0.359 0.651 0.662 0.659 0.242 0.289 

UC 28 0.444 0.466 0.647 0.601 0.526 0.576 0.486 0.463 0.728 0.740 0.724 0.349 0.378 

Tunapuna* Tu 29 0.407 0.469 0.647 0.611 0.523 0.594 0.504 0.458 0.724 0.733 0.720 0.376 0.398 

Tranquille* Tra 30 0.379 0.375 0.569 0.505 0.422 0.528 0.410 0.373 0.669 0.679 0.676 0.327 0.384 

Lopinot LL 31 0.355 0.383 0.562 0.505 0.449 0.517 0.427 0.381 0.661 0.675 0.664 0.224 0.271 

UL 32 0.618 0.588 0.788 0.746 0.671 0.727 0.655 0.592 0.824 0.842 0.837 0.629 0.690 

C) SW Trinidad Palm Drive 
Felicity 

PD 33 0.325 0.304 0.523 0.439 0.375 0.445 0.367 0.342 0.629 0.643 0.638 0.248 0.335 
 Pitch Lake PL 34 0.534 0.547 0.717 0.667 0.604 0.656 0.560 0.539 0.776 0.789 0.773 0.622 0.649 

D) Venezuela 

 

Cumaná AP 35 0.722 0.730 0.801 0.783 0.738 0.774 0.728 0.712 0.836 0.843 0.837 0.761 0.757 

CCB 36 0.609 0.637 0.728 0.709 0.659 0.694 0.635 0.634 0.783 0.795 0.785 0.644 0.644 

CCE 36 0.680 0.683 0.764 0.741 0.692 0.726 0.680 0.677 0.808 0.815 0.810 0.713 0.726 

CCFR 36 0.750 0.753 0.823 0.802 0.765 0.798 0.762 0.742 0.853 0.858 0.854 0.775 0.772 

Poza Azufre PV6 37 0.551 0.559 0.708 0.678 0.602 0.670 0.587 0.572 0.778 0.791 0.779 0.602 0.640 

NOTE: Populations were defined by sampling site. For all entries P < 0.001 if not otherwise marked. 
**P < 0.01, *P < 0.05. Not significant estimates are not reported. 
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Table S2.1 (continued): Pairwise FST-values calculated A) between the populations within the Caroni 
drainage B) between the populations from the Caroni drainage and the populations from South West 
Trinidad C) between the populations from the Caroni drainage and the populations from Venezuela. 
 

Region River Name Number 20 21 22 23 24 25 26 27 28 29 30 31 32 

A) Caroni 

drainage 

Aripo LA 20              

RP 21 0.067             

UA 22 0.225 0.092*            

Guanapo LElC 23 0.455 0.497 0.695           

UElC 24 0.533 0.576 0.788 0.097          

LG 25 0.285 0.330 0.503 0.123 0.208         

UG 26 0.483 0.517 0.713 0.465 0.584 0.231        

Caura LC 27 0.247 0.253 0.430 0.398 0.447 0.239 0.404       

UC 28 0.351 0.350 0.548 0.479 0.554 0.315 0.561 0.107      

Tunapuna Tu 29 0.361 0.389 0.569 0.490 0.546 0.339 0.533 0.148 0.260     

Tranquille Tra 30 0.311 0.318 0.515 0.479 0.535 0.332 0.493 0.122 0.245 0.278    

Lopinot LL 31 0.266 0.264 0.442 0.379 0.458 0.232 0.454 0.083 0.154 0.195 0.192   

UL 32 0.622 0.621 0.834 0.798 0.856 0.632 0.814 0.443 0.592 0.610 0.569 0.347  

B) SW Trinidad Palm Drive 
Felicity 

PD 33 0.299 0.313 0.457 0.411 0.454 0.264 0.421 0.134 0.268 0.296 0.237 0.148 0.511 
 Pitch Lake PL 34 0.563 0.593 0.748 0.737 0.780 0.611 0.776 0.462 0.597 0.564 0.516 0.472 0.816 

C) Venezuela 

 

Cumaná AP 35 0.744 0.754 0.809 0.806 0.818 0.754 0.813 0.699 0.745 0.741 0.729 0.697 0.834 

CCB 36 0.630 0.649 0.731 0.717 0.736 0.648 0.723 0.578 0.628 0.604 0.608 0.558 0.747 

CCE 36 0.689 0.703 0.765 0.762 0.788 0.708 0.769 0.641 0.699 0.689 0.676 0.640 0.793 

CCFR 36 0.774 0.772 0.828 0.816 0.832 0.775 0.826 0.726 0.777 0.763 0.753 0.734 0.845 

Poza Azufre PV6 37 0.567 0.598 0.724 0.714 0.750 0.607 0.727 0.474 0.572 0.565 0.524 0.501 0.774 

NOTE: Populations were defined by sampling site. For all entries P < 0.001 if not otherwise marked. 
**P < 0.01, *P < 0.05. Not significant estimates are not reported. 
 
 
Table S2.1 (continued): Pairwise FST-values calculated between all populations defined by sampling 
site from South-West Trinidad and Venezuela 
 

Region River Name Number 33 34 35 36 36 36 

SW Trinnidad Palm Drive 
Felicity 

PO 33       
 Pitch Lake PL 34 0.511      

Venezuela 

 

Cumaná AP 35 0.691 0.771     

CCB 36 0.563 0.657 0.343    

CCE 36 0.644 0.734  - 0.298   

CCFR 36 0.723 0.802 0.260 0.444 0.262  

Poza Azufre PV6 37 0.501 0.643 0.716 0.541 0.650 0.734 

NOTE: Populations were defined by sampling site. For all entries P < 0.001 if not otherwise marked. 
**P < 0.01, *P < 0.05. Not significant estimates are not reported. 
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Table S3.1: FST estimated with the three different estimators. Expected FST = 0.001 
 
	   	   FST

W FST
W&C  FST

R 

k n 2.5% 97.5% 
mean 
FST 2.5% 97.5% 

mean 
FST 2.5% 97.5% 

mean 
FST 

1000 2 0.2918 0.3437 0.3160 -0.0359 0.0447 0.0024 -0.0336 0.0413 0.0021 

1000 4 0.1340 0.1606 0.1465 -0.0159 0.0189 0.0007 -0.0157 0.0185 0.0006 

1000 6 0.0878 0.1055 0.0959 -0.0091 0.0133 0.0010 -0.0091 0.0131 0.0010 

1000 10 0.0519 0.0626 0.0570 -0.0045 0.0077 0.0011 -0.0045 0.0077 0.0011 

1000 20 0.0259 0.0317 0.0287 -0.0020 0.0044 0.0011 -0.0020 0.0044 0.0011 

1000 50 0.0110 0.0134 0.0121 -0.0001 0.0025 0.0011 -0.0001 0.0025 0.0011 

2000 2 0.2966 0.3373 0.3149 -0.0280 0.0375 0.0009 -0.0262 0.0347 0.0008 

2000 4 0.1366 0.1595 0.1470 -0.0118 0.0160 0.0013 -0.0116 0.0157 0.0013 

2000 6 0.0891 0.1046 0.0961 -0.0068 0.0110 0.0012 -0.0067 0.0109 0.0012 

2000 10 0.0529 0.0623 0.0572 -0.0035 0.0070 0.0013 -0.0035 0.0070 0.0013 

2000 20 0.0265 0.0313 0.0287 -0.0014 0.0039 0.0011 -0.0014 0.0039 0.0011 

2000 50 0.0112 0.0131 0.0121 0.0001 0.0022 0.0011 0.0001 0.0022 0.0011 

3000 2 0.2972 0.3355 0.3155 -0.0255 0.0301 0.0016 -0.0238 0.0279 0.0014 

3000 4 0.1384 0.1585 0.1470 -0.0094 0.0157 0.0013 -0.0092 0.0154 0.0013 

3000 6 0.0896 0.1031 0.0959 -0.0066 0.0096 0.0010 -0.0066 0.0096 0.0010 

3000 10 0.0531 0.0617 0.0570 -0.0037 0.0064 0.0011 -0.0036 0.0064 0.0011 

3000 20 0.0269 0.0308 0.0288 -0.0009 0.0035 0.0011 -0.0009 0.0035 0.0011 

3000 50 0.0112 0.0131 0.0121 0.0002 0.0022 0.0011 0.0002 0.0022 0.0011 

4000 2 0.3000 0.3341 0.3158 -0.0232 0.0295 0.0020 -0.0217 0.0274 0.0018 

4000 4 0.1385 0.1567 0.1467 -0.0098 0.0150 0.0011 -0.0096 0.0147 0.0010 

4000 6 0.0907 0.1031 0.0962 -0.0052 0.0096 0.0013 -0.0052 0.0096 0.0012 

4000 10 0.0534 0.0614 0.0571 -0.0032 0.0063 0.0012 -0.0032 0.0063 0.0012 

4000 20 0.0269 0.0310 0.0288 -0.0008 0.0037 0.0011 -0.0008 0.0037 0.0011 

4000 50 0.0113 0.0130 0.0121 0.0003 0.0021 0.0011 0.0003 0.0021 0.0011 

5000 2 0.2995 0.3339 0.3153 -0.0221 0.0276 0.0014 -0.0207 0.0256 0.0013 

5000 4 0.1390 0.1572 0.1470 -0.0088 0.0143 0.0013 -0.0086 0.0140 0.0013 

5000 6 0.0905 0.1031 0.0961 -0.0057 0.0093 0.0012 -0.0057 0.0092 0.0012 

5000 10 0.0537 0.0612 0.0570 -0.0027 0.0056 0.0011 -0.0027 0.0056 0.0011 

5000 20 0.0271 0.0309 0.0288 -0.0007 0.0034 0.0012 -0.0007 0.0034 0.0012 

5000 50 0.0114 0.0129 0.0121 0.0003 0.0020 0.0011 0.0003 0.0020 0.0011 
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Table S3.2: FST estimated with the three different estimators. Expected FST = 0.01 
 
	   	   FST

W FST
W&C  FST

R 

k n 2.5% 97.5% 
mean 
FST 2.5% 97.5% 

mean 
FST 2.5% 97.5% 

mean 
FST 

1000 2 0.2817 0.3286 0.3039 -0.0220 0.0475 0.0102 -0.0206 0.0441 0.0095 

1000 4 0.1345 0.1591 0.1464 -0.0041 0.0263 0.0101 -0.0040 0.0258 0.0099 

1000 6 0.0909 0.1088 0.0991 0.0004 0.0206 0.0104 0.0004 0.0205 0.0103 

1000 10 0.0569 0.0684 0.0623 0.0039 0.0169 0.0100 0.0039 0.0168 0.0100 

1000 20 0.0328 0.0393 0.0360 0.0069 0.0138 0.0102 0.0069 0.0138 0.0102 

1000 50 0.0187 0.0223 0.0204 0.0084 0.0123 0.0102 0.0084 0.0123 0.0102 

2000 2 0.2876 0.3239 0.3046 -0.0143 0.0428 0.0116 -0.0134 0.0398 0.0108 

2000 4 0.1380 0.1570 0.1469 -0.0012 0.0237 0.0105 -0.0012 0.0233 0.0103 

2000 6 0.0928 0.1061 0.0990 0.0029 0.0185 0.0102 0.0028 0.0184 0.0101 

2000 10 0.0583 0.0668 0.0624 0.0056 0.0149 0.0101 0.0056 0.0149 0.0101 

2000 20 0.0337 0.0386 0.0360 0.0077 0.0130 0.0102 0.0077 0.0130 0.0102 

2000 50 0.0192 0.0218 0.0205 0.0088 0.0117 0.0102 0.0088 0.0117 0.0102 

3000 2 0.2899 0.3200 0.3041 -0.0106 0.0333 0.0107 -0.0099 0.0310 0.0099 

3000 4 0.1393 0.1556 0.1467 0.0014 0.0216 0.0103 0.0014 0.0212 0.0102 

3000 6 0.0937 0.1057 0.0991 0.0038 0.0180 0.0104 0.0038 0.0179 0.0103 

3000 10 0.0591 0.0663 0.0626 0.0065 0.0147 0.0103 0.0065 0.0146 0.0103 

3000 20 0.0340 0.0381 0.0360 0.0080 0.0126 0.0102 0.0080 0.0126 0.0102 

3000 50 0.0194 0.0216 0.0204 0.0091 0.0115 0.0102 0.0091 0.0115 0.0102 

4000 2 0.2915 0.3184 0.3041 -0.0066 0.0321 0.0109 -0.0062 0.0299 0.0101 

4000 4 0.1395 0.1554 0.1468 0.0015 0.0220 0.0105 0.0015 0.0216 0.0103 

4000 6 0.0943 0.1051 0.0991 0.0044 0.0175 0.0104 0.0044 0.0173 0.0104 

4000 10 0.0594 0.0662 0.0626 0.0068 0.0144 0.0103 0.0068 0.0144 0.0103 

4000 20 0.0342 0.0380 0.0360 0.0082 0.0125 0.0102 0.0082 0.0125 0.0102 

4000 50 0.0195 0.0215 0.0205 0.0093 0.0114 0.0102 0.0093 0.0114 0.0102 

5000 2 0.2926 0.3175 0.3043 -0.0075 0.0327 0.0112 -0.0070 0.0304 0.0104 

5000 4 0.1404 0.1552 0.1467 0.0025 0.0210 0.0104 0.0025 0.0206 0.0102 

5000 6 0.0947 0.1041 0.0991 0.0052 0.0162 0.0104 0.0052 0.0161 0.0103 

5000 10 0.0595 0.0660 0.0625 0.0069 0.0144 0.0103 0.0068 0.0144 0.0103 

5000 20 0.0344 0.0378 0.0360 0.0085 0.0122 0.0102 0.0085 0.0122 0.0102 

5000 50 0.0196 0.0214 0.0205 0.0093 0.0112 0.0103 0.0093 0.0112 0.0103 
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Table S5.1: List of Markers and associated BACs. Also listed here are the contigs on which the 
Sanger sequenced BAC ends had a significant blast hit. In addition it is reported on which chromosome 
the Sanger sequences had a significant hit on stickleback (G.a.) and medaka (O.l.) * these Sanger 
sequences are not BAC ends, but EST, cDNA or genomic sequences that should be found in the 
corresponding BAC sequence 

   Sanger sequence  Blast hits on contig Blast hits on 
reference species 

Marker LG BAC name length Name length e-value ID G.a. LG O.l. LG 

30 12 BAC15_i02 yaBac15_I02 955 25 7,444 0 96% IX (1) 1 

   zaBac15_I02 977 29 17,576 0 95% IX (1) 1 

76 17 BAC25_P09 yaBac25_P09 908 538 3,639 0 96% III (17) 17 

   zaBac25_P09 859 455 1,094 0 98% - - 

   Blu_Testis_6_B19 1,078 90 7,854 0 94% III (17) 17 

   Marker0076* 604 90  0 97% III (17) 17 

85 8 BAC28_O05 yaBac28_O05 960 232 1,779 0 100% - - 

     124 418 0 100% XII (7) - 

   zaBac28_O05 914 128 4,011 0 98% XI (8) 8 

   Tra_Liver_7-

4_G02* 

962 236 243 2e-95 96% XI (8) 8 

   pr02_A12* 436 660 331 1e-141 98% XI (8) 8 

280 20 BAC01-2_H02 yaBac01-2_H02 940 79 8,679 0 98% XII (7) 20 

   zaBac01-2_H02 798 1115 3,053 0 99% -  

290 7 BAC01_H9 yaBac01_H09 517 837 7,264 0 99% XII (7) 7 

   zaBac01_H09 109 170 12,416 73-47 98% XII (7) - 

  BAC32_G02 yaBac32_G02 792 1045 3,840 e-134 91% - - 

   zaBac32_G02 756 923 2,664 0 100% XII (7) 7 

380 12 BAC03_F10 yaBac03_F10 917 421 2,327 0 92% - 1 

     962 1,314 0 89% IX (1) 14 

     483 801 0 87% - 23 

     48 411 0 98% - - 

     1172 516 0 92% - 15 

   zaBac03_F10 882 359 2,056 0 93% XX (16) - 

     626 1,981 0 87% - - 

396 8 BAC03_I24 yaBac03_I24 974 416 4,744 0 97% XI (8) 8 

   zaBac03_I24 759 1560 594 0 95% - 8 

455 1 BAC04_G12 yaBac04_G12 1,012 4 13,059 0 95% IX (1) 1 

   zaBac04_G12 976 152 2,402 0 96% IX (1) 1 

581 1 BAC33_A19 yaBac33_A19 714 not found     

   zaBac33_A19 445 491 3,690 3e-95 98% - 1 

1075 12 BAC19_N24 yaBac19_N24 712 1501 695 0 99% -  

   zaBac19_N24 516 1382 722 0 88% XIV (12) 12 

   C1qTNF3* 341 302 11,819 0 98% XIV (12) 12 

   Rxfp3* 650 1601 1,094 0 99% XIV (12) 12 

   skiv2l2 fw* 204 1382 722 2e-94 100% XIV (12) 12 

   skiv2l2 rev* 169 510 16,464 1e-74 99% XIV (12) 12 

   ppap2a fw* 920 510 16,464 0 99% XIV (12) 12 

   ppap2a rev* 959 510 16,464 0 96% XIV (12) 12 

   aim1_5end* 1,025 657 526 0 97% - - 

   aim1* 2,013 685 2,331 0 100% XIV (12) 12 
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C. RApiD Manual 

This is the manual for the pipeline RApiD (Willing, et al., 2011) to analyze paired-
end RAD-seq data. The following external tools are required. The output of these 
tools is used as input for the scripts that are part of RApiD. 
 

1. The assembler LOCAS available from 
http://ab.inf.unituebingen.de/software/locas/, in order to assemble the 2nd read 
clusters. We developed as addition LOCASopt (part of RApiD) in order to 
optimize each local assembly. 

2. The read aligner and clustering algorithm vmatch in order to cluster read1. 
Available under www.vmatch.de 

3. The read aligner GenomeMapper (Schneeberger et al., 2009, 
http://www.1001genomes.org/downloads/genomemapper_singleref.html), in 
order to map the reads back to the assembled reference. 

 
Convert Fastq to Fasta 
Usage: Fastq2Fasta.pl –i <name>.fastq 
-i   fastq file that should be converted to fasta 
 
Generates a fasta output file called <name>.fasta 
 
Parse clustering output from Vmatch 
Usage: parseVmatchClustering.pl -i input-file -l input-file -o output-file 
 
prints the cluster number, size and read identfiers of each cluster in the output file 
1 line per cluster 
 
-i fasta file containing the reads that were used as input for vmatch 
-v output file from vmatch 
-o cluster file that can be used as input the the assembly script 
 
Vmatch commands: 
mkvtree –db read1.fasta –dna –pl -allout 
vmatch -d -l 84 -dbcluster 100 100 -h 3 -v read1.fasta 
 
Assembly of read2 clusters 
In order to run the assembly go to http://ab.inf.uni-tuebingen.de/software/locas/ and 
download LOCAS. Move the binary LOCASopt, which is provided with the package 
RApiD to the locas directory. You need to give the full path to LOCASopt to the 
script. 
 
Usage: assembleRead2Clusters.pl -i input-file -v input-file -o string –c int –r int –n 
integer -a string   -k int-int-int –l int-int-int –e float-float-float  
 
Goes through the cluster file and calls LOCASopt on each cluster separately. 
Assembled contigs are already reverse complemented and therefore have the same 
strand direction as read1. 
 
-i input file with second illumina reads in fasta format 
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-v clusters (output from parseVmatchClusters.pl) 
-o beginning of output files, 2 files are generated <output>_contigs.fasta and 

<output>_ids.fasta 
-c maximal number of contigs allowed in assembly 
-r range of #reads required in clusters, min_number – max_number, e.g. 5-192, 

all clusters with a size of 5 to 192 reads are assembled 
-a path to LOCASopt 
-k kmer range tested with LOCASopt, minimal kmer – maximal kmer – size of 

steps 
       e.g. 13-17-2, means kmers 13, 15 and 17 are used 
-l range of overlap length tested, minimal overlap length – maximal overlap 

length –    size of steps, e.g. 21-27-2, means overlap lengths 21, 23, 25 and 27 
are used 

-e error rate allowed in overlap, minimal error rate – maximal error rate – size of 
steps, e.g. 0.05-0.07-0.01 means error rates 0.05, 0.06 and 0.07 are tested 

  
Join read1 and read2 contig 
Usage: joinRead1WithRead2contig.pl -i input-file -a input-file -r input-file -o string –
f int –e float 
 
-i  id file (output from assembleRead2Clusters.pl), contains the ids of the reads 

used for each contigs 
-a  read2 contig file (output from assembleRead2Clusters.pl), contains the 

assemble read2 contigs 
-r  fasta file containing read1 of each pair 
-o  output fasta file, containing the read1 consensus joined with the consistent 

read2 contig 
-f   (optional, default = 0, meaning no overlap) if the script should check for an 

overlap between read1 consensus and read2 contig, set the minimal overlap 
length 

-e  (optional, default = 0.0) maximal rate of mismatches allowed in the overlap. 
Has to be between 0 (0%) and 1 (100%). 

 
Joins each read2 contig with the corresponding read1 consensus and checks for 
overlap if wanted. If both parts do not overlap, a separator of 10 Ns is inserted 
between the two parts. 
Three output files are generated: 
<output>.fasta   contains all joined sequences 
<output>_notOverlapping.fasta contains all read2 contigs that did not overlap 

with the corresponding read1 consensus 
<output>_Overlapping.fasta  contains all overlapping contigs 
 
Sort barcoded reads 
Usage: ./countAndSort_BarcodesAndRestrictionSites.pl -1 input-file-fastq [-2 input-
file-fastq] -o output-file-txt -f input-file-txt -r input-file-txt –e int [-c 1 -s int] 
 
-1  fastq file with read1 
-2  (optional) fastq file with read2, if paired end sequencing 
-o  output file containing the barcode and restriction site counts 
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-f  file containing the names of the barcodes and the sequence information 
separated by a tab, e.g. 

  index1  ACTG 
  index2  GTCA 
-r  file with sequence information of restriction site overhang, e.g. for EcoR1 it 

would be AATTC same format as for barcodes 
  EcoR1 AATTC 
  NdeI GTCCT 
-e  maximal number of errors allowed in barcode 
-c  (optional, default = 0), if set to 1, barcode and restriction site are removed 

from read1 
-s  remove all read1 containing more than a given number of Ns (uncalled 

nucleotides)  
 
This script counts the occurrences of the different barcodes and sorts the reads into 
different fasta files named <code>.fasta.  
If wanted, it cuts the barcode and restriction site from read1. 
 
 
 
Call Consensus 
Usage: ./callConsensus.pl -1 input-file -r input-file -l int [-2 input-file -p input-file -m 
int] -c input-file -o string [-q int -n int -u -x int] 
   
-1  read1-mapping file (output from GenomeMapper, has to be sorted according 

to the first column (hit names)) 
-r  fastq file containing read1 
-l  length that should be used from read1 (it might be good to cut the last few 

bases) 
-2  (optional) read2-mapping-file (output from GenomeMapper) 
-p  (required if -2 is set) fastq file containing read2 
-m  (required if -2 is set) length that should be used from read2 
-d (required if -2 is set) direction of read2 that were mapped (P = original read2 

direction, D = reverse complements of read2 were mapped). If you reverse 
complement the read2 before mapping, you don't have to use the reverse 
complement of the reference 

-c  fastq file containing the reference sequence 
-o  string that gives the beginning of the output file generated (consensus fastq, 

alignment file, statistics file) 
-q  (optional, default = 6) min_quality of bases used to call consensus 
-n  (optional, default = 1) min_coverage to call a consensus base (default = 1) 
-u  (optional, default = no iupacs) iupac flag, if set, consensus contains iupa 

codes, if not, the majority base is called as consensus 
-x (optional, default = 64), quality format used 64 = illumina, 33 = sanger 
   
Calls the consensus with reads mapped back to a given reference (reads currently only 
GenomeMapper format). 
Three output files are generated: 
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<output>.fastq contains the consensus sequences in fastq format. 
Quality values are the average of the quality values of 
the bases that mapped to this position. 

<output>_alignments.txt contains the alignments generated to call the consensus 
(can be quite big) 

<output>_counts.txt  contains the coverage per position over all tags 
 
Call SNPs 
Usage: ./callSNPs.pl -1 input-file -r input-file -l int [-2 input-file -p input-file -m int]  
-c input-file -o string [-f float -q int -n int -k int -x int] 
 
-1  read1-mapping file (output from GenomeMapper) 
-r  fastq file containing read1 
-l  length that should be used from read1 (it might be good to cut the last few 

bases) 
-2  (optional) read2-mapping-file (output from GenomeMapper) 
-p  (required if -2 is set) fastq file containing read2 
-m  (required if -2 is set) length that should be used from read2 
-c  fastq file containing the reference sequence 
-o  string that gives the beginning of the output file generated (consensus fastq, 

alignment file, statistics file) 
-f  (optional, default = 0.0) minimal minor allele frequency (MAF) to call a SNP 
-q  (optional, default = 20) minimal quality of bases used to call a SNP 
-n  (optional, default = 10) minimal coverage for a site containing a SNP 
-k (optional, default = 2) minimal number of reads to cover a polymorphism 
-x (optional, default = 64) quality format 64 = illumina, 33 = sanger 
   
Checks for SNPs within reads mapped back to a given reference (reads currently only 
GenomeMapper format). A SNP has to be covered by at least three unique read pairs. 
Four output files are generated: 
 
<output>.txt   contains the SNP information 
<output>_alignments.txt contains the alignments generated to call the SNPs (can 

be quite big) 
<output>_counts.txt contains the total coverage of all positions that were 

checked for a SNP over all tags 
<output>_statistics.txt  contains read counts used for SNP calling, total #SNPs 

found etc. 
 


