
Measurement of the Reaction pp→pK+Λ and its
Analysis with a new Analysis Program: typeCase

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Katharina Ehrhardt

aus München

Tübingen

2011

Tag der mündlichen Prüfung: 31. Oktober 2011
Dekan: Prof. Dr. Wolfgang Rosenstiel
1. Berichterstatter: Prof. Dr. Heinz Clement
2. Berichterstatter: PD Dr. Roland Speith

i

Abstract

Im Herbst 2004 wurde am COSY-TOF-Detektor ein dediziertes hoch-Statistik Ex-
periment zur Suche nach dem Pentaquark-TeilchenΘ+ unternommen. Als Strahl-
impuls wurden 3.081GeV/c, entsprechendTp = 2.282GeVStrahlenergie, in Proton-
Proton-Stössen verwendet. Auch wenn für den Wirkungsquerschnitt für die Pro-
duktion desΘ+ nur eine obere Schranke angegeben werden konnte [45], lassen sich
die, während dieses Experiments gewonnenen Daten im Hinblick auf die Reak-
tion pp→ pK+Λ analysieren, nachdem diese Reaktion genauso wie die Reaktion
pp→ pKsΣ+ in den Daten angereichert wurde. Mit der im Rahmen dieser Arbeit
geschaffenen AnalysesoftwaretypeCasewurden diese Daten analysiert.
Durch erschöpfende Kalibration konnte eine Auflösung von≈ 6MeV(FWHM) in
den invarianten Massen erreicht werden. Der totale Wirkungsquerschnitt der Reak-
tion pp→ pK+Λ wurde zu 21.1± 0.1stat± 2.0sysµb bestimmt und stimmt inner-
halb der Fehler mit anderen Veröffentlichungen überein [41]. Durch die exklusiven
Messungen konnten differentielle Wirkungsquerschnitte erstellt werden. Auch sie
stimmen im Wesentlichen mit früheren Veröffentlichungen überein.
Durch die exzellente Auflösung wurde im invarianten Massen-SpektrumMpΛ die
Struktur desΣ-Cusp sichtbar. Auf Grund der hohen Statistik konnten nun zum er-
sten Mal differentielle Wirkungsquerschnitte für denΣ-Cusp erstellt werden. Sein
totaler Wirkungsquerschnitt konnte zuσcusp= 1.2±0.1statµbbestimmt werden.
Die Spektren können durch Modelrechnungen derN∗-ResonanzenS11(1650),-
P11(1710) undP13(1720) zuzüglich einer einfachen Rechnung für denΣ-Cusp gut
beschrieben werden.

Contents

1 Introduction 1
1.1 Structure of matter . 1
1.2 Motivation for the new analysis program: typeCase 5

2 COSY-TOF detector 8
2.1 COSY-accelerator . 8
2.2 TOF-detector . 8

3 Program package typeCase: Data Analysis 22
3.1 Ananlysis . 22
3.2 Concepts . 23
3.3 Principles of work . 24
3.4 Components . 27
3.5 Geometry package . 29
3.6 Fit package . 30
3.7 Parameter package . 31
3.8 Shape package . 31
3.9 Data container package . 33
3.10 Algorithm package . 34
3.11 Reaction recognition . 43
3.12 Graphical User Interface . 43
3.13 User and developer guide . 48
3.14 Note on root . 48

4 Guides 50
4.1 The very short User Guide . 50
4.2 The extremely short developers’ guide62

5 Measurements 77
5.1 Detector setup . 77
5.2 Trigger . 77

i

6 Calibration 79
6.1 Common calibration . 79
6.2 Beam time “October 2004” . 81
6.3 Geometry calibration . 82
6.4 Walk-correction . 83
6.5 Signal-run-correction . 85
6.6 TDC-Offset . 86
6.7 Calibration procedure . 88
6.8 Velocity corrections and error determination 91

7 Results 94
7.1 Simulations . 94
7.2 Simulated Resonances and Final State Interactions 97
7.3 Normalization . 100
7.4 Total cross-section . 103
7.5 Legend . 104
7.6 Analysis . 105
7.7 Selection ofPK+Λ-events . 105
7.8 Kinfitted Graphs . 112

8 Discussion 124

A Formulae 125
A.1 Pixels in Quirl and Ring . 125
A.2 Bethe-Bloch-Formula . 128
A.3 Invariant mass / missing mass . 129
A.4 Breit-Wigner-Formula for Resonances131
A.5 Frames . 133
A.6 Reactions . 134

B KinFit 135

C Unfitted and additional Graphs 141
C.1 Cusp . 148

D typeCase: Program documentation 149
D.1 Analyzer . 149
D.2 Shapes classes . 154
D.3 Container classes . 160
D.4 Algorithm classes . 163
D.5 Meta-code . 167
D.6 the plot-reaction classes . 169
D.7 Picture Gallery . 186

ii

E Detector dimensions and materials 192
E.1 Quirl detector . 193
E.2 Ring detector . 193
E.3 Barrel detector . 193
E.4 Start detector . 193
E.5 2-layered Hodoscope . 194
E.6 3-layered Hodoscope . 194
E.7 Micro-Strip-ring detector . 194
E.8 Micro-Strip-spiral detector . 194

F Analysis 196
F.1 Hit-tree-file generation . 196
F.2 Calibration-generation . 197
F.3 Prompt tracking . 200
F.4 Vee tracking . 202
F.5 Extraction . 205
F.6 Kinematical fit . 205
F.7 Luminosity calculation . 207
F.8 Plotting . 208

iii

Chapter 1

Introduction

1.1 Structure of matter

As we know today, the universe is made up of dark energy, dark matter and what
we call ordinary matter: Most of it (75%), the dark energy, issomething we don’t

75%

20%

5%Dark Energy

Dark Matter

Standard Model particles

have any idea what it is made of yet, though we know what it does: In the current
phase of our universe it accelerates its expansion.
The next big part is the dark matter (20%) and at least here we can pin down
some of the properties. It consist of massive particles interacting only weakly with
“normal” matter. Both dark energy and dark matter are under close observation in
science today, but not issue of this thesis, though mentioned for completeness.
The ordinary matter, the remaining five percent of the energycontent of the uni-
verse, is what we know most of:
There are four fundamental interactions, two sets of particles each of three families
made up of doublets. The interactions are:

electro-magnetic force coupling to the (single) electromagnetic charge. Its medi-
ating boson is the massless photonγ.

strong force couples to the color-charge (threefold: red, green, blue).Its corre-

1

sponding bosons are the 8 (also color-charged) massless gluons.

weak force has three massive vector bosons: charged (W+, W−) and neutral (Z0)
current. This gives rise to the very short range of the interaction. It couples
to the weak charge.

gravitation couples to the mass and was assigned a hypothetical particle, the
(massless) graviton.

Theoretical descriptions for the electro-magnetic interaction exist (U (1)) and per-
turbatory calculations give good results. This is also truefor the weak-force, that
has been included into the theory now naming electro-weak interaction (SU(2)×
U (1)).

mass 0.511 MeV

q =−1 e
s= 1

2

electron

mass 105.7 MeV

q =−1 µ
s= 1

2

muon

mass 1777 MeV

q =−1 τ
s= 1

2

tauon

mass< 2.2eV

q = 0 νes= 1
2

electron neutrino

mass< 0.17MeV

q = 0 νµs= 1
2

muon neutrino

mass< 15.5MeV

q = 0 ντs= 1
2

tauon neutrino

mass 2.4 MeV

q = 2
3 u

I (JP) = 1
2 (1

2
+

)

up

mass 1.27 GeV

q = 2
3 c

I (JP) = 0(1
2

+
)

charm

mass 171.2 GeV

q = 2
3 t

I (JP) = 0(1
2

+
)

top

mass 4.8 MeV

q =− 1
3 d

I (JP) = 1
2 (1

2
+

)

down

mass 104 MeV

q =− 1
3 s

I (JP) = 0(1
2

+
)

strange

mass 4.2 GeV

q =− 1
3 b

I (JP) = 0(1
2

+
)

bottom

mass 0

q = 0 γ
s= 1

photon

mass 0

q = 0 g
s= 1

gluon

mass 91.2 GeV

q = 0 Z0
s= 1

neutral current

mass 80.3 GeV

q =±1 W±
s= 1

charged current

Figure 1.1: Particles in Standard Model. Green shows the leptons, magenta the
quarks and in red the force mediating bosons. On each box there is written the mass
of the particle, its electric charge, its spin, its abbreviation and its name (values
[46], appearance [4]).

The theory could be extended to also include the strong forceto “the standard
model” (SU(3)×SU(2)×U (1)), but due to the charge of the gluons and the ris-

2

n
(udd)

p
(uud)

Σ−
(dds)

Σ0Λ
(uds)

Σ+

(uus)

Ξ−
(dss)

Ξ0

(uss)

−1.5 −0.5 0.5
0.5

−0.5

−1.5

I3

S

(a) Baryon-octett

K0

(ds̄)
K+

(us̄)

π−
(dū)

π0ηη′
(uū,dd̄,ss̄)

π+

(ud̄)

K−

(sū)
K0

(sd̄)

−1.5 −0.5 0.5
1.5

0.5

−0.5

I3

S

(b) Meson-nonett

Figure 1.2: The baryon-octett at spin-parityJP = 1
2
+

and the meson nonett at spin-
parity JP = 0− [22].

u
d
u

u
d
u

u
d
s

s̄
u

u
d
u

p

p p

K+

Λ

?

Figure 1.3: The reactionpp→ pK+Λ. Quark-line-model.

ing potential the Quantum-Chromo-Dynamics, QCD is perturbatively very hard to
solve and is subject to recent research efforts.
The particles however come as already mentioned in two groups, Quarks and Lep-
tons. Quarks carrying color-charge and Leptons being colorneutral. The leptons’
three families are called electron, muon and tauon, where one part of the doublet
has charge -1 and a mass between 0.511MeV and 1777MeV and the other is the
corresponding neutrino with a very small mass and no electric charge. The quarks
in their doublet have fractional electric charge (2

3, −1
3) and don’t exist freely due to

the nature of the strong force that they are subject to.
Today we know, that the particles we can observe such as protons, neutrons and,
as described in this work, hyperons are made up of quarks and gluons. The gluons
being charged cause the potential to be linearly rising. This is the reason that single
quarks can not be observed but are confined in color-neutral objects. These color

3

p

p

Y

K

N
K

(a)
p

p

N

K

Y
π,σ,η,ρ

(b)
p

p

N

K

Y
π,σ,η,ρ

N∗

(c)

Figure 1.4: Meson exchange model using either Kaon (a) or non-strange mesons
(b) includingN∗-Resonnances (c).

neutral objects are either mesons (qq̄) or baryons (qqq) or other exotic objects like
(qqqqq̄), ((qq)(q̄q̄)), (qq̄g) etc.
Taking the lightest baryons with spin12 and parity (−), they can be arranged, hav-
ing the strangeness (number of strange quarks) on the y-axisand the z-component
of the iso-spin on the x-axis, in an octet (fig. 1.2(a)). Here there are beside the
nucleons (proton and neutron) the hyperons containing at least one strange quark.
For the state with strangeness -1 spin and iso-spin of u- and d-quark couple to an
iso-spin-singlet (Λ) and an iso-spin-triplet-state (Σ−Σ0Σ+).
For the purposes of describing ordinary matter and matter, that is also easily acces-
sible in medium-energy-experiments, it suffices to take into account only the three
lightest quarks: u, d and s. Only for high-energy experiments the charm-quark has
to be taken into account, adding another dimension to figureslike fig. 1.2. For even
higher energies, also bottom and top quarks start to play a role.
The same way as for the baryons the mesons can be arranged intoa nonet (fig. 1.2(b)).
The mass of the naked quark – with≈ 3MeV for u- and d-quark – is quite small
compared to the mass of the nucleon of≈ 1GeV or even the mass of the lightest
meson, the pion (mπ0 = 135MeV). The rest of the mass is generated dynamically,
by the gluon field, the sea-quarks and other effects.
Strangeness was first observed in 1947 ([37]) in an experiment to examine cosmic
rays. Here “strange” particles were observed, that were generated only in pairs
with lifetimes much longer than expected, meaning their decay mechanism being
much different from their production-mechanism ([49]).
Today we know: Strange baryons (Hyperons) are produced, when as-s̄-pair is ex-
cited from the vacuum. Let’s introduce a new quantum number –the strangeness;
the strange-quark havingS = −1 and the anti-strange-quarkS = +1. Exciting
a ss̄-pair from the vacuum conserves strangeness: before S = 0 andafterwards
S = (−1)+ (+1) = 0. The decay on the other hand involves a transformation of
anS=±1-state to anS= 0-state and is only possible via the weak interaction that
can transform between the families of quarks and leptons.
To get a closer insight into the interaction between nucleonand hyperon the re-
action pp→ pK+Λ (figs. 1.4 and 1.3) is observed, especially close to threshold
where the relative velocities of the particles are small andfinal state interactions
are likely to happen ([17]).

4

1.1.1 Exotic particles

In spring 2003 a new resonance was reported by the LEPs-collaboration measured
at SPRING8 ([43]). A baryonic-resonance with a mass of M=1.540GeV, width
Γ = 10MeV, charge C=+1 and strangeness S=+1. In the usual 3-quark-baryon-
model this resonance could not be described, S=+1 hinting toan anti-strange-
quark. The only possible quark content would then be(uudd s̄) – a minimum of
five quarks is necessary giving the resonance its name: penta-quark.
Afterwards a number of papers were released by many collaborations reanalyzing
old data and re-measuring the region of interest.
The outcome was twofold. About half the experiments, mainlythe ones using
photo-production of the hyperon-channel in question, claim to see this resonance.
The other half, mainly using hadronic interaction for the production-process (e.g.
pp-collisions), give negative statements.
Being especially suited for this kind of experiment, also the COSY-TOF collabora-
tion took part in these efforts. First reanalyzing old data ([44]) and later, in autumn
2004 in a dedicated high statistics measurement ([45]). While the first, low statis-
tic result was still positive with respect to the observation of the penta-quark, the
later one only could give an upper limit of the production cross-section.
The trigger used to collect this data did not only enhance theabundance of events
with the reactionpp→ pK0

s Σ+ which was thought to show the penta-quark in the
pK0

s -channel but also the reactionpp→ pK+Λ. The background to the reaction
pp→ pK0

s Σ+ was the reactionpp→ pK+Λ, meeting the same trigger-conditions.
This background channel was analyzed in the course of this thesis.

1.2 Motivation for the new analysis program: typeCase

The COSY-TOF-Collaboration is a very loosely bound collaboration, focusing the
collaboration on detector development. That gave the reason that prior to the new
analysis programtypeCase, there existed three independent analysis programs and
of each several incompatible sub-versions ([2], [27], [1]).
As always in such collaborations analysis programs tend to develop. Every person
working with the program includes new parts and new conceptsinto the analysis
software. And with time, there is no compatibility between the different versions
of the one analysis program left. The only way to prevent thatis a strict version-
control with very few people working on one single part of theprogram at a time.
And the possibility to modify the program-flow without modifying the code.
As one may say, the development of different analysis programs, that can analyze
only part of the data taken with the detector, instead of onlyone that can analyze
all data, was a waste of time and manpower. But on the other hand it gives us an
important and really powerful tool for the analysis of the COSY-TOF data. Since
all analysis programs use different analysis strategies, the comparison of the re-
sults of the analysis of the data (taking the same data set forall analysis programs),
either on the histogram or the event by event comparison gives a deep insight into

5

the data as well as the analysis programs and their strengthsand weaknesses.
The analysis programtypeCasedoes not in any way implement new analysis
strategies. It is designed as a platform, so one can run his orher analysis strategies,
his or her algorithms.
The larger part of designing a new strategy or a new algorithmdoesn’t consist of
actual programming (I’m not taking bug-shooting into account) but of designing a
solution for a problem in some kind of pseudo-code. When an idea or a solution
has manifested, it is so far not bound to a programming language, though C++, C
and FORTRAN are the clear favorites in particle physics.
The new approach uses the main features of Object-Oriented-Programming ([4]
“Object Oriented Programming”): Abstraction, encapsulation, modularity, mes-
saging, inherritance and most important late binding. The use of these concepts
enables us to create an extremely powerful analysis tool. The feature of late bind-
ing (or polymorphism) makes it possible to change the analysis strategy without
compiling the program anew.
In previous approaches also using object-oriented-principles ([2], [27]), the analy-
sis, better the calculation of the event-properties was done in member-functions of
the data-structures and the detector geometries were, up tosome point, hard-coded.
This resulted in the problem, that it is not at all easy to switch between different
analysis strategies and making modifications to the detector setup had to be cross-
checked several times to be sure, that the modification one made was really the
intended one and that it was made in all parts of the program consistently.
I followed a different approach:

• No global variables.

• All data – detector-setup and analysis-strategies – are read during run-time
from external files.

• Data-structures and calculation of their values were separated.

• Data-structures were made simple and general.

• HTML-reference documentation on the Web.

• Calculation of the data-structures’ values were encapsulated into classes: al-
gorithm classes.

• Abstraction, inheritance and polymorphism are used for thealgorithm classes.

• Graphical User Interface for easy use and easy extension.

• Version control.

This approach has several advantages: the analysis itself is strongly modular; the
modules can be distributed among the available developpersfor modification. The
problem of two persons working on the same piece of code is reduced. Different

6

analysis-strategies are kept in parallel, so the strategies can be chosen depending
on the actual detector-setup and reaction-in-question. The analysis software is in-
dependent of the detector-setup, though if other geometries shall be used it may
be possible that the available shapes have to be restocked. It is easy to extend the
analysis-software with additional modules or shapes.
The name “typeCase” was found suitable for the program concept.
The next two chapters will focus on the development of the analysis-programtype-
Case. In this course, the COSY-TOF-detector will be described atfull length in
contrary to the common practice only to describe the currently used setup. The
way the detector developed over time, as well as its modularity and flexibility gave
constraints to the design of the analysis-program as a framework. The concepts and
strategies to design thetypeCase-analysis-framework will be described in chap-
ter 3.
The analysis of the measurement of the reactionpp→ pK+Λ will be described af-
terwards. Since the COSY-TOF-detector had been described in such detail earlier,
the description of the actual setup during the measurement of the data analysed for
this work will be a reference to the detector-components that were used; the actual
geometry is listed in Appendix E.
Chapter 7 will present the results of the analysis, startingwith the simulations done
to describe the data, total cross-section considerations,description of the event se-
lection, finishing with the differential distributions of the reactionpp→ pK+Λ.
The Appendix contains used formulae, the description of theused kinematical fit,
the – already mentioned – detector-geometry listings, the differential distribution
of the unfitted values of the reactionpp→ pK+Λ and last but not least a more
detailed program documentation fortypeCase.

7

Chapter 2

COSY-TOF detector

The COSY-TOF detector is a very modular detector. Many components have been
build and assembled in different ways to make the – then current – configuration of
the COSY-TOF-detector (fig. 2.10). Unlike other theses I will not restrict myself to
explaining the setup that was currently used, when the data Iwas analyzing for this
work was recorded. The purpose for this is to show the modularity of the detector
and the differences in the way the detector can look like. This mainly gave the
reason for the way the typeCase analysis framework is designed and implemented:
Flexibility.

2.1 COSY-accelerator

The COoler SYnchrotron accelerator is a storage ring, delivering a proton- or
deuteron-beam with a particle momentum range (for protons)from 270 up to 3300
MeV/c. It is located at the Forschungszentrum Jülich. It’sname shows already its
main feature, the low momentum spread and low emittance which is achieved by
phase space cooling.
Beginning withH−-ions orH−2 , that are accelerated in the JULIC-cyclotron, which
is used as pre-accelerator to an energy of 40 MeV, the protons(deuterons) are
stripped off their electrons and injected into the COSY-ring for further acceler-
ation. The accelerated protons or deuterons can be used for experiments either
inside the ring such as COSY-11, ANKE or WASA, or extracted off the ring and
used at an external experimental site, such as BIG-KARL or TOF (fig. 2.1).

2.2 TOF-detector

The TOF-detector is a non magnetic Time-Of-Flight-spectrometer, which delivers
– after analysis – direction vectors and the flight time of thedetected particles. It
is located at an external beam-line. It consists of a vacuum tank, three meters in
diameter. Its length can be varied from one meter up to three meters (nine meters
was planned, but not yet built). The whole detector is a modular system; there

8

Figure 2.1: The cooler-synchrotron with the pre-accelerator, the COSY-Ring, in-
ternal and external experiments. [28]

exist sub-detectors, that can be plugged in or left out according to the physics
being studied. In any case one can separate three different regions. The first one
is the target system, next the start region, that gives the start time for the time of
flight measurement, and the stop region giving the stop signal for the time of flight
measurement. There is also a calorimeter available, after the stop-region up to 50
cm radius around the beam-axis, giving also kinetic energy for stopped particles.

2.2.1 Target

Currently an unpolarized target is used. It is usually equipped with liquid hydrogen
or deuterium, but solid materials (like lead) can be used as well, if density effects
on probed reactions are of interest. An additional target was planed to be build for
double polarized measurements (both beam and target being polarized), but not yet
realized.

Unpolarized target

The unpolarized target system for the COSY-TOF-detector has been developed at
the Forschungszentrum Jülich along with the target of the neighboring detector

9

(a) (b)

Figure 2.2: The target system as it is used in COSY-TOF. In 2.2(a) there is a
schematic drawing of the target ([24]), 2.2(b) shows a photograph of the target
region (Picture: M.Krapp, 2008 [12]).

BIG-KARL ([24]). There were several requirements that had to be met. First it
should provide a high luminosity. The TOF-detector is located at an external beam
line and therefore a very small beam spot (2 mm in Diameter) with an excellent
duty factor is provided by super-slow resonance extraction. The requirement of
high statistics of the specified reaction entail high luminosities and therefore high
area densities.
A thick target would solve that problem, but on the other handenlarge the energy
loss the particles undergo in the target volume. So a thin target has to be used.
A small target on the other hand gives the big advantage of a well defined vertex
position. This results in a better resolution of the directions of the particles and also
gives the possibility to geometrically resolve delayed decays of unstable particles
like hyperons and mesons.
Next requirement is that as little shadowing effects as possible shall take place. The
windows through which the beam enters and exits, have to be asthin as possible
but also planar. The cooling system has to occupy minium space and minimum
solid angle.
The target thickness has to be constant, so the target volumehas to be filled with-
out bubbles. The shape of the target-system was defined by theneed to cool the
material down to a working temperature of 2.7K in as little time as possible and
preventing connections and cooling to be in the way of the particles to the stop-
detectors. The target cell is of cylindrical shape of 6 mm diameter and 4 mm
length with 0.9µm thick mylar windows at the front and the back side and 60µm
copper-walls at side and bottom (fig. 2.2). It sits on the end of a copper-tube that
is connected to the cooling copper-head. To prevent the generations of bubbles in
the target volume, the copper tube is separated by a thin aluminum separator into
an upper, up-flowing part for the gas and a lower, down-flowingpart for the liq-
uid. During operation the target region is evacuated with a remaining pressure of
10−7 mBar. To separate it from the vacuum tank with an operation vacuum of 10−3

10

mBar, there exists a separation foil of 30µm thickness ([38]).

2.2.2 Sub-Detectors

The parts of the TOF-detector are, as earlier mentioned, designed to be exchange-
able between beam-times, to use the minimum amount of material needed to probe
the physics giving the motivation of the experiment. This isdone to increase pre-
cision, since every layer of material changes the kinematical parameters of the
particle going through. The detectors are divided into sub-detectors, which can be
mounted or dismounted. Furthermore they are divided into two regions of position
according to their functionality. There is the start and thestop region. For higher
precision, the start region should better be divided into start and tracking region,
but due to historical development this was not the case. The exact dimensions and
other properties can be found in table E.1.

2.2.3 Start region

The start region gives the start-timing for the time of flightmeasurement. It does
not trigger (better: start) the time-measurement in electronics, the stop detectors
do this. A sketch of the start and tracking system used to record the data for this
work is shown in fig. 2.3.

Figure 2.3: The “Erlangen” start system [12].

Start detector/ Start Torte

The Start detector, by some called Start Torte, is a circularplastic scintillator seg-
mented into 12 wedges (pizza pieces or cake pieces: Torte = German for cake). It is
located downstream from the target. It has two layers, each 1mm thick, which are

11

rotated against each other by half a segment, which is 15 degrees. This results in
an azimuthal resolution of∆φ = 15◦. The outer radius is 76 mm, the inner radius,
cut out for the beam, is 1 mm. The signals are read out by photomultipliers. The
Start detector is used for the determination of multiplicity and therefore for trigger
electronics for the specific event.

2.2.4 Tracking region

The following detectors (downstream the beam-line) are notused for time of flight
measurement, but provide much more precise angular information of the tracks
than the stop detectors can. Therefore I named these detectors tracking region.
A sketch of the start and tracking system used to record the data for this work is
shown in fig. 2.3. From 2008 on one could choose between several setups:

• stack of several hodoscopes1 and micro-strip detectors

• straw-tube-chamber

Micro-Strip (ring)

The silicon micro-strip detector is a 520µm thick circular silicon plate with an
outer radius of 31.0 mm and an inner radius of 3.1 mm. It is segmented both in
128 wedges and in 100 concentric rings, read out at both sides, front and back
(fig. 2.4(a)). These elements are connected via very thin gold wires and Kapton-
bands to preamplifiers outside the vacuum tank. The segmentation gives 12800
pixel and therefore a very fine resolution. The energy information can be used for
energy-loss calculation and thus for particle identification, though this is not very
precise ([18]).

Micro-Strip (spiral)

In 2008 a new silicon micro-strip detector was added to the TOF-setup. It is also
a 520µm thick circular silicon plate with an outer radius of 31.0 mmand an inner
radius of 3.1 mm. This one is segmented into 256 archimedian spirals on both sides
bent in different directions back and front. Connections are the same as for the
Micro-Strip-Ring, but due to the enormous amount of channels, each two channels
are read out together, resulting in a total of 256 channels for this detector to process
(fig. 2.4(b)). The segmentation gives 65536 (16384) pixels.Due to construction
these pixels are all the same size, not in Cartesian, but in spherical coordinates
([48]).

1A hodoscope is a planar stack of thin detector elements, extended in one spacial dimension.
Here it is long box-like fibers.

12

(a) (b)

Figure 2.4: Photographs of micro-strip detector before mounting ([30], M. Krapp
[12]). 2.4(a) shows the bonding of the wedge shaped side of the Micro-Strip-Ring,
2.4(b) shows the one complete Micro-Strip-Spiral detectorwith bonding, support
structure and preamplifiers [12].

Three-layered Hodoscope

This hodoscope has been modified several times in the past ([42]), the newest
modification taking place before the beam-time in October 2004, where it has been
extended in size and a third layer has been added (fig. 2.5(a)). The hodoscope now
consists of three layers of plastic scintillator each one 2.0 mm thick, located about
100mm behind the target. All layers have fibers as elements, meaning they are box
shaped with a quadratic base shape and a height, that defines the overall length
of the sub-detector. The layers are rotated around the beam axis. The first layer
viewed from target is the so called D-layer (D for diagonal).The 136 elements of
this layer have all the same length of 272.2 mm giving the layer a quadratic shape.
The elements are rotated by 45.375◦ around the beam-axis from the detectors x-
axis.
The other two layers, called Y and X, are oriented perpendicular to each other,

giving a rotation angle from the x-axis of 0.375 and 90.375◦. The two layers are
identical in shape except for their rotation angle. The elements have all different
length, so each layer overlaps the D-layer by 75%. These layers have been the
original layers of this hodoscope, with a quadratic shape with a length of 191 mm,
so the D-layer covers the whole two existing layers. The elements of the X- and
Y-layer have been extended to fit the edges of the D-layer. This results in half of the
area covered by three layers, the other half by two layers. Additionally each layer
has one element, right in the middle of the layer which is cut in half to allow the
beam to pass through without signal. The elements are made ofplastic scintillator
and read out by photomultipliers. As signals the energy lossbut no time signal is
recorded.

13

(a) (b)

Figure 2.5: Photographs (M. Krapp [12]) of the three-layered hodoscope (2.5(a))
and the two layered hodoscope (2.5(b)) before mounting [12].

Two-layered Hodoscope

The two layered hodoscope is rather simple compared to the three-layered one,
here all elements of both layers have the same length of 383.8mm with width
and thickness of the fiber elements of 2.0316 mm. This resultsalso in a quadratic
shape of the layer since here two elements are halved to form abeam hole (See
fig. 2.5(b)). The layers of this hodoscope are also rotated from the x-axis around
the beam-axis by -33.85◦ and 63.85◦. The elements are made of plastic scintillator
(BCF12) and read out by photomultipliers. As signals the energy loss is recorded
([29]).

Straw-Tube-Chamber

The straw-tube chamber is an upgrade of the detector system,newly (2008) done
to improve the resolution of decay vertices. It consists of 15 double layers of 208
proportional chambers each (fig. 2.6). The single straw is 1050 mm in length, 10
mm in diameter and has a wall thickness of 30µm Mylar. Each double layer is
tilted by an angle of 60◦ against the preceeding one, to allow three dimensional
track reconstruction. Here, too, a beam hole of 15 mm diameter exists. Due to the
rotation angle the active detector volume is almost cylindrical with a diameter of
1000 mm and a length of 300 mm. The need of heavy frames to keep wire tension
is overcome by overpressure within the tubes and gluing the tubes together in one
double layer. So the weight of the detector could be reduced to 15 kg for the de-
tector and 15 kg for its supporting structure ([33], [13], [7], [36], [35], [34]).

14

(a) (b)

(c) (d)

Figure 2.6: Straw tube tracker. (c) shows the three different orientations of the
layers ([34]), in (a) one can see a dismantling single straw tube ([33]). In (b) and
(d) one can see the 15 double-layers of the actual Straw tube tracker just before
mounting and being fixed to the start cap of the TOF-detector ([12], [34]).

2.2.5 Stop region

The stop region consists of three different detectors, namely Quirl, Ring and Barrel
detector, each giving a timing signal, that is used for the time of flight measure-
ment and an energy-loss information. The hits in this sub detectors trigger data
recording. Both Quirl and Ring detector are built in principally the same way, with
different building parameters.

Quirl and Ring detector

The Quirl and the Ring detector are both three-layered plastic scintillators read out
by photomultiplier tubes outside the vacuum tank. The sub-detector overall shape
is a circular one. One of the layers has wedge shaped elements(as the Start detector

15

(a) (b)

(c) (d)

Figure 2.7: The Quirl and Ring detectors. (a) shows a sketch of the Quirl detector.
Here a projection of all three layers and the construction ofa pixel out of three
hit elements in different layers is shown, more clearly evenin (b). (c) shows the
projection of both Quirl and Ring elements. A Photograph of the Quirl detector is
shown in (d) ([40], [21], [25], [12])

and one of the Micro-Strip-Ring sides, see sec. 2.2.4 and sec. 2.2.3), giving only
azimuthal but no polar angular information (fig. 2.7(b)). Inorder to get information
about the polar angleθ, two additional layers have been added to construct pixels
with fine polar- and azimuthal- angular information. These layers have elements
that are shaped as Archimedian spirals with the following edge function:

rϕ =
∆r
∆ϕ
∗ϕ =

rmax

ϕmax
∗ϕ = b∗ϕ, (2.1)

whereϕmax is the azimuthal angle from the center point of the sub-detector to the
actual position. Two of the three layers have the same absolute bendingbbut differ-
ent sign. This results in pixels with increasing area withθ, but that have a constant
width in polar angleθ. The wedge shaped elements cut these pixels again in half

16

to increase resolution in azimuthal angleϕ. Since the layer with the wedge shaped
(straight) elements has twice as many elements as the other layers, the triangular
pixels are unique in which elements they consist of.
The thickness of individual layers for both Quirl and Ring is5 mm each. The Quirl
detector consists of 48 elements in the straight layer and 24elements each in the
bent layers, its inner radius, for the beam, is 42 mm, its outer radius is 580 mm.
The maximalϕ is 180◦, so the value for the bendingb = 184.62mm

rad . Spacing be-
tween two layers is 6 mm (fig. 2.7).
The Ring detector has an inner radius of 568 mm and an outer radius of 1540 mm,
so there is a∆r of 12 mm where Quirl and Ring are overlapping. Certainly onlyin
central projection, (in projection) from target, for the short setup (see fig. 2.10(c))
there is a gap between Quirl and Ring. The bendingb for the Ring is larger than
for Quirl, namely 618.762mm

rad , so the maximal bending angle for an element is
142.6◦. The elements of the Ring detector begin at a bending angle of52.6 ◦, so
each element covers 90◦ and it does not intersect with all other elements but has
only half of the number of intersection points: 24. This results in 2304 pixels.
Material-Quirl: Bycron-BC404:nmean= 1.58,αtot,re f lex = 39.3◦, cmax = 19.0cm/ns,
density 1.032g/cm, H/C-Ratio = 1.1,chargee f f = 5.612,Ae f f = 11.157, Radiation
length = 43.5cm, Absorption length = 125cm.
Material-Ring ([16]): Bycron-BC408:nmean=1.58, vinscinti,wedges = 18.6cm/ns =
0.62c,vinscinti,spirals = 14.9cm/ns = 0.497c

Barrel detector

Originally the Barrel detector was planned as three 3 m long barrels, almost cylin-
drical in shape to extend the distance of target to Quirl/Ring-detector to up to 9 m.
It was designed to be comparable to the Quirl and the Ring detector in design, also
three-layered with one layer giving information about the azimuthal angle and two
layers of bent elements to provide information about the polar angle. Instead of the
flat design of the Quirl- and Ring- detector, the Barrel layers should be tilted, to
form a cone-stump-mantle, close to a cylinder. The radius ofthe Barrel cylinder is
larger close to the target, to make it possible to connect thethree identical Barrel
modules without the loss of acceptance (1553.5 mm to the front, 1488.5 mm at
the end). Contrary to the plans, only one layer of plastic scintillator was realized
instead of three. To gain information about the polar angle,this being the pizza
piece layer, the 96 elements are read out on both ends. Each one is 2854 mm long,
15 mm thick and wedge-shaped (fig. 2.8). The position of the hit is calculated out
of the time difference of both time-signals. The resolutiontherefore is quite poor,
but with the other sub-detectors, this can be improved.

17

(a) (b)

Figure 2.8: Photographs of the TOF-detector. (a) shows the inside of the Bar-
rel detector, (b) the complete TOF-detector with front-capto the right. The
photomultiplier-tubes for the Barrel are visible as black spikes heading to the
vacuum-tank ([12]).

Calorimeter

The calorimeter (fig. 2.9(a)) is the only sub-detector in theTOF-detector-system,
that can be called a thick detector, a detector, that is able to stop the average charged
baryon or meson. It is also the only sub-detector, apart fromthe COSY-NUS de-
tector (see sec. 2.2.5) that can detect neutral particles. It is located directly behind
the Quirl-detector and covers its area in central projection. It is made of 84 hexag-
onal prisms each 450 mm thick, with a key-width of 140 mm, leaving one prism in
the center out for the beam. This shape and arrangement leaves an almost circular
shape with a minimum diameter of 1260 mm and a maximum diameter of 1421
mm for coverage. Protons up to a velocity of 0.65 c can be stopped (pions: 0.88 c).
The individual elements are made of plastic scintillator (BC-416) and read out by
photomultipliers ([21]).

Pad detector

The pad detector is designed to increase acceptance in the region close to the beam-
axis. The Quirl-detector has a minimum distance of 42 mm to the beam-axis. In
the short TOF configuration of about 1 meter this results in a minimum polar angle
of 2.2◦. To be able to detect particles with a smaller polar angle, the pad detector
has been installed, within the inner radius of the Quirl-detector. The inner radius
of the pad-detector is 10 mm resulting in 0.5◦ in the short TOF configuration. The
pad detector also is made of plastic scintillator, that is read out by photomultipliers.
The shape of the individual elements is wedges, but in contrary to the other pizza
shaped detectors, this one has an inner ring with an outer radius of 20 mm and
an outer ring with an outer radius of 43 mm. The inner ring is segmented into 4
elements the outer ring into twice that number.

18

(a)

(b)

(c)

Figure 2.9: (a): Calorimeter. Sketch of the front areas of the elements, along with
the numbering of the elements; view from target ([21]). (b) and (c): The COSY-
NUS detector, a single element (c), the total arrangement (b) ([5]).

COSY-NUS

To be able to detect neutrons with the TOF-detector-system,there has been de-
veloped a separate detector concept for detecting neutronsat TU Dresden. It is a
system of several scintillator blocks outside the vacuum tank (fig. 2.9(b)). A fur-
ther description can be found in [5].

Beam hodoscope

Behind the TOF-detector, there is a beam hodoscope installed, that is made of two
layers of 32 elements of plastic scintillator fibers each. The fibers have as the other
fiber hodoscopes a quadratic base shape with a edge length of 2mm, that are read
out by photomultipliers.

19

Veto detector

The reality of the beam shape is, that it is not only made up of abeam spot of 1
mm in diameter but also of a so called halo, that makes these beam particles pass
sub detectors and create signals, that can falsely trigger an event. To prevent this
the veto-detector-system has been installed. It is made of several rings of plastic
scintillator, read out by photomultipliers. First ring is 900 mm in front of the target
with a central hole of 15 mm, second is 500 mm in front of the target with an 8 mm
central hole. These two are called ”Molnar”-vetos. At a distance of 50 mm in front
of the target there is the third one, the ”Wolfi”-Veto, with a central hole that can be
chosen from 1.5 to 3.5 mm.

20

(a)

(b) (c)

Figure 2.10: Auto-CAD drawings for the different possible configurations. Sub-
figure (a) shows the nine meter version, (b) and (c) the actually built 3 meter and 1
meter versions ([12]).

21

Chapter 3

Program package typeCase: Data
Analysis

3.1 Ananlysis

In particle physics, the results are sometimes less easy to find than in other fields
of experimental physics, where results sometimes just can be read from a display
of the measurement electronics. The data an experiment in particle physics pro-
vides today, raw and unprocessed, consists of signals of lots of detector-elements
with different meanings. This data has to be recorded1, perhaps already filtered by
triggers. Only part of this data is what we are actually interested in, so we have to
reconstruct what happened in the detector and more accurately filter for the events
of interest (cuts). And even after that, data is still convolved with acceptance and
efficiency.
The analysis is the engine that connects the unprocessed data to the final graphs
of efficiency- and acceptance-corrected observables. It has to read raw data and
calibrate the signals (assign physical meaning to so far arbitrary numbers). It finds
tracks in the detector; signals on the path of a particle where it deposited energy in
a detector-element. For these tracks, direction (preferably at production –vertex–
position), velocity, momenta, energy are calculated if theavailable information suf-
fices. It may be possible to identify the type of particle thatgenerated that track.
A kinematic fit may be used to force the measured properties tofulfill energy- and
momentum-conservation. In the end the observables can be calculated out of the
retrieved 4-momenta and filled into histograms.
And still these will not be the final results because these histograms are still con-
volved with the efficiency and acceptance of both detector and reconstruction. So
simulations have to be made: particles are generated according to some model and
transported through a virtual detector, where detector-response is simulated. And
again the same procedure as for data is applied to the simulated events. Now you
are in the position to generate a correction for your data andshow the distributions

1done by the Data AQuisition system (DAQ) that is not subject of this thesis.

22

of your observables in a way, that they can be compared to other experiments.
All this is called The Analysis. Rather often there are different tools for each step
that is mentioned above. Dedicated small programs that are created, designed and
used by and for a single physicist. In thetypeCaseanalysis framework all of these
steps can be done consistently, combined in an integrated framework.2.

3.2 Concepts

As described in the introduction, the restrictions on the actual program are tough.
The main concepts of the program are:

Flexibility The user should be able to analyze all data from the COSY-TOF de-
tector with a single program without compiling the code anew, each time
the setup is changed. This requirement, consequently followed, results in
the feature that all possible data from nuclear and particlephysics is
analyzable with this program.

Low divergency This requirement can only be met, if a very basic data structure
is used, that every programmer can use and just stores all relevant informa-
tion without processing it. The basic data structures are extremely simple,
without any functionality. They act as container classes and have to be filled
by other means. There is no need for any programmer to modify the con-
tainer classes. As for the processing units of code, a modular approach was
chosen. Here, an algorithm can be plugged in, if needed or left out, if not.
This is possible since the algorithms are capsuled in classes. All are derived
from the base class AAlgorithm, overwriting the process-method. By calling
this method, one can access each algorithm.
These features keep divergency low, since single analysis parts, the algo-
rithms, can be easily exchanged.

Easy to usePhysicists tend to program software, that can only be used and un-
derstood by them and the persons who spend quite a long time studying the
code. This software should be easy to use, therefore a Graphical User In-
terface (GUI) was designed. Here, the data to analyze can be selected, as
well as the algorithms to use on the data or the detector setup. Help is sup-
plied as for the detector setup, the geometry is graphicallydisplayed, for the
algorithms, a description is displayed (which can only be asdetailed as the
programmer of the algorithm designed it, but any programmeris strongly
advised to make this description as understandable as possible, since it will
be not only him who is using it) and the parameters of the algorithms to be
used can be changed.

2Except for the virtual detector engine transporting simulated particles and generating simulated
detector response. There are already rather good programs available like GEANT([11]).

23

Easy to adapt Since the container classes are so simple and well documented,
existing algorithms can be easily modified and packed into algorithm classes
to fit into the program.

Easy to extend The program is not designed to be finished at some point. It is
designed in a way, that any algorithm that can be packed into the algorithm
class structure, can be included into the program. An experienced program-
mer can add and modify algorithms by himself. There exists just a single
method, that defines algorithms and that has to be modified, when an algo-
rithm changes its call. For the non-experienced programmer, there is no need
to modify the code, when adding a new algorithm. A Graphical User Inter-
face asks about the properties of the algorithm and generates and inserts the
code which is necessary. If this has been done already by someone else, the
program offers the possibility to read a log-file, that readsthe specifications
of the algorithm, the user just has to supply a name.

These requirements result in some very powerful features:portability . Usually if
one wants to give analyzed data to someone else, this is done giving histograms or
– in best case – ASCII-files, containing a lot of numbers. Here, since one of the
possible outputs are fixed, data can be analyzed to a certain point in one location,
transfered to another and be analyzed further on in the otherlocation. But portabil-
ity of data is just one of the key features. Another is the portability of algorithms.
If an algorithm is programmed in one site, it can be easily used in an other, espe-
cially if the install-logs (3.12.3) are used. This program can be used not only in the
COSY-TOF-collaboration, but for many other experiments too.

3.2.1 Documentation

The components of thetypeCase-analysis-framework have been documented. A
reference documentation for the framework-classes as wellas a general description
is available on
http://www.pit.physik.uni-tuebingen.de/˜ehrhardt/KT OF.

3.3 Principles of work

This software was designed using features of Object-Oriented-Programming (OOP).
The main concepts of OOP are ([4]):

Encapsulation: Data can be combined into a single structure and can be equipped
with methods (functions) that work on this data. But encapsulation is even
more than that; it means that data can be hidden to the outside.
For typeCase, the information about one specific structure, let’s say a hit,
has been combined and encapsulated into the class TCalibHit. The variables
themselves are not visible to the outside of the class but areonly accessible
via get-methods and set-methods (getters and setters), taking care that the

24

values the variables can hold are valid ones. In thetypeCase-framework
there are no public class variables.

Messaging: Here one object sends a message that changes properties or causes
the execution of a member-method of an other object.

Modularity: A module is a list of commands that fulfill a certain task (or func-
tion) and that is bound into a procedure or function with a certain interface.
Modules can be used repeatedly at different points in a program.
This is the main concept of functions or methods. It makes thecode easier
to read and to see what actually happens.

Data abstraction: In short, data abstraction is the definition of an interface,where
only the definition is visible (or even defined) but not the actual implemen-
tation. This peaks in the definition of abstract data-types that define methods
but do not implement them. You cannot instantiate an object of such an ab-
stract class (but use pointers of that type), but you can inherit from one.
One of the main concepts used intypeCase: An interface is defined, compo-
nents that many types of a kind should have – all shapes have a center-point
(sec. 3.8).

Inheritance: A base class defines properties that other classes also have and that
will be derived from it. It is a way of reusing code. Let’s havea small ex-
ample: we define a base class “animal”. It may have a weight, a number
of legs, ears and it can eat and make communicative sound. Other classes
(sub-classes) like “pig” or “dog” can inherit these properties and functions
from “animal” and declare new properties and functions (like fur color for
the dog).
This very important feature gives us the possibility to define inheritance
trees, where the child classes inherit all methods and variables from their an-
cestors. So acircle inherits the normal-vector from its ancestorplaneShape
and the center-point from its ancestorbaseshape.

Polymorphism: or late binding describe the way the lookup of methods is treated:
during compilation of code (early-) or during run-time (late-binding). Late-
binding provides the possibility to handle pointers of baseclasses (possibly
abstract), pointing to any kind of sub classes; by calling aninterface method
of the base class, the appropriate method of the sub class is used. In the
example above this would mean, that we have a pointer of class“animal”.
Somewhere else an object of a derived class has been allocated and the ad-
dress of that object has been stored in the pointer. Our class“animal” prob-
ably has defined the method “sound”, making one of the animalstypical
communicative sounds. Though our pointer does not know which animal is
in the box, it may shake the box to see which sound may come out:“oink!”
This might have been a pig!

25

Polymorphism is both the most difficult and the most important concept be-
ing used fortypeCase. It is used in many ways throughout the framework.
To start with, it is used for the volumes of the hit elements. Each hit element
certainly has a volume, but it is unimportant and possibly impossible for the
hit to know exactly how the shape looks like and how it behaves, as long as it
is derived from the classvolumeShape. This way it is not necessary to define
separate hit-classes for each detector, but all hits from all detectors could be
treated with just one class. The same holds for theTPixelclass containing
planar shapes. But most importantly it is used for the analysis strategies,
making the program most versatile.

For the analysis-software the concept of polymorphism became the most im-
portant one. The classAAlgorithmwas defined and all analysis-modules are de-
fined as sub classes of theAAlgorithm base class. It defines a name and most
important the methodprogressthat will be called once for every event.

Since the algorithms are no more distinguishable after initialization, all param-
eters and the data-structures have to be passed via the constructor during initializa-
tion.
There are three main steps: initialization, execution and finalization:

Algorithm 3.1 Initialization process for algorithms
init setup and data
n←number of algorithms
allocate f :array of pointers of AAlgorithm[n]
for all algorithmsi do

f[i] ← get Algorithm(parameter[i])
end for

Initialization In this one step, the algorithm-type is known. All needed param-
eters and the needed part of the data-structure is passed to the algorithm,
necessary by-algorithms are declared and connections (using SIGNAL-and-
SLOT-mechanism of Qt) are made (algorithm 3.1).

Execution In this step, which is repeatedly done once for each event, the actual
analysis takes place, for example reading from file or pixel-calculation in one
sub-detector. Since the definition of the algorithms takingpart in this step of
the analysis is done dynamically, the actual type of the individual algorithm
is not known (algorithm 3.2).

Finalization The last step of the analysis is not important for algorithmslike cal-
ibration, pixel-calculation or tracking, but it is essential for writing algo-
rithms, where data has to be written and files have to be closed. This step
should not be omitted in any case since used memory is freed here (algo-
rithm 3.3).

26

Algorithm 3.2 Execution of algorithms
f :array of pointers of AAlgorithm[n]
for all eventsi do

if no more events to process or stop-flagthen
leave loop

end if
reset event
for all algorithms j do

f[j] → progress()
end for

end for

Algorithm 3.3 Finalization process for algorithms
f :array of pointers of AAlgorithm[n]
for all algorithmsi do

free f[i]
end for
finalize setup and data

In the following sections the individual parts of the analysis are described, begin-
ning with the most basic one, geometry, ending with the description of the Graph-
ical User Interface.

3.4 Components

Analyzing the data requires two kinds of data-structures tobe given to any anal-
ysis method: constant structures representing the detector-setup and event-based
structures, that change with every event that is analyzed. These structures – virtual
detector (TSetup, TDetector, TTarget, TBeamandTMaterial) and event (TEvent,
TRawHit, TCalibHit, THitCluster, TPixel, TClusterand TTrack)– are combined
into the container-package (sec. 3.9). It still misses the geometrical representation
of the detector elements, but the shapes – volumes (volumeShape) and planar ones
(planeShape) – are pooled in a package (sec. 3.8) by themselves to make it easier
to extend it or use it by itself.
For definition of the detector-setup, the beam and target, aswell as the shapes
themselves, the parameter-classes (sec. 3.7) are necessary. They have been ex-
tended with descriptions for runs and beam-times as well as the algorithms and the
way the detector shall be drawn.
Unfortunately, it proved necessary to implement classes for the geometrical de-
scription of the detector. They are combined into a separatepackage: geometry
(sec. 3.5). As well as the other packages this package can be used without the oth-
ers.

27

The algorithms themselves are combined in one package (sec.3.10) for the same
reason as the shapes are.
To identify reaction-pattern for events, the reaction classes have been developed.
As the shapes they are stored in a separate package, but in order not to make a
circular dependence, the basic reaction class was pooled with the basic algorithm
classes into the basic-package.
The analysis itself is encapsuled in the classtofAnalysis. This class implements the
three analysis-steps (algorithms 3.1, 3.2, 3.3), and defines the needed data struc-
tures. It can be included into different programs:

typeCase : the full Graphical-User-Interface program (sec. 3.12) with extended and
user-friendly definitions of the analysis-parameters.

cl-typeCase : a command-line version, being a bit faster than the widget-based version,
since the graphical overhead is missing.

• Feel free to implement an own version.

The package dependency (fig. 3.1) and the main outline of their content was de-
signed with the top-down method, but the individual packages were implemented
and tested using the bottom-up-method – starting with the most basic class in the
most basic package – in order to have reliable data-structures when entering the
more complex tasks.

ROOT

QtBoost

geometry

fit

parameter

shapes

container

basics reactions

algorithms

analyser

cl-typeCase

documentation

code

typeCase

Figure 3.1: Dependence graph of the individual packages of the typeCase-analysis-
program. Here the gray filled boxes are the ROOT, Boost and Qt libraries as pre-
requesites. The open boxes are packages of the typeCase-analysis-program.

28

3.5 Geometry package

The geometry package has been done especially because the possibilities of the
root-mathematical-vectors and -matrices are somewhat limited and partially not
reliable. It is a stand alone package and can be used by other programs alone.
The base class of the geometry package is the class geomObject. It contains a
status variable. Earlier inheritance of this class from TObject has been removed
making this package independent of root.
From this class points and vectors are derived, the latter ones also derived from
points. There are general points and vectors, that can have any dimension and
specialized points and vectors for 2D- 3D- and 4D- use. Operators for adding, sub-
tracting, multiplying and scalar products have been included.
The specialized points and vectors have special functions to access the data, like
Cartesian (X(), Y(), Z(), W()), polar (R(), Phi()), spheric(R(), Theta(), Phi()) and
cylindric (Rho(), Phi(), Z()) representations. There exists also an operator to write
the data to an output-stream, which is also sensitive to the current representation,
as well as a toString()-method returning a string.
The 4D-classes have one prominent member, the momentum4D class. This class
provides all functionality of the relativistic 4-momentum. Its set-operator is split
according to the variable it gets, that can be mass or energy,3-momentum or veloc-
ity. These properties can also be read again (Momentum(), Velocity(), Direction(),
Mass(), Energy()). The operators, such as *, + and - have beenadjusted. With the
boost-method, one can perform a Lorentz-transformation and return the resulting
vector. There exists a static method CM(), that returns the center-of-mass frame of
the arguments (up to five 4-momentum-vectors).
The package also contains two different matrix types, one issymmetric 3-dimen-
sional, the other one is the general type. The 3-dimensionalmatrix, matrix3D, is
thought as rotation-matrix in 3-dimensional space (which is the most important one
if coming to detector setup), but can be also constructed as dyadic product of two
3D-vectors. The general matrix (matrixNxM) doesn’t have tobe symmetric, as it’s
name says. This matrix is a mathematical matrix in the sense,that it can be mul-
tiplied, added and subtracted to other matrices, it can be transposed, inverted and,
what is not possible in the root-library, multiplied to a vector of the right dimension
and the right type, since the vectors distinguish between line- and column-vectors.
Last but not least, there are five more geometrical classes inthe package, at least
when considering 2- and 3-dimensional space. There is a plane, plane3D, that con-
sists of a footing point (Foot()), two direction vectors anda normal vector. The
other four are lines, one each limited straight line, and unlimited straight line in
both 2D and 3D, lLine3D, lLine2D, sLine3D and sLine2D. lLine3D is the connec-
tion between two points and is therefore represented with P() and Q(), and it also
has a defined length. sLine3D only holds a direction and one point, that can be
shifted along the line. It has no length, since there is no endpoint to the line. The
same holds for the 2D variants of these classes.
Since sLine3D, lLine3D and plane3D are especially done for the representation of

29

the geometry of detectors, there have been implemented several operators to com-
pute distances of lines, points to lines, points to planes, and hit-points of lines and
planes and lines.
To draw 3D-shapes to, let’s say, a root-canvas it is necessary to perform a projec-
tion of the 3D-coordinates to 2D-space. To perform this a static class projector
was defined, that can project in central-, parallel- and fish-eye- projection from an
eye-point to a view-plane.

geomObject

point

sLine2D

lLine2D

sLine3D

lLine3D

plane3D

matrix3D

matrixNxM

projector

Vector
vector2D

vector3D

vector4D

momentum4D

point2D

point3D

point4D

Figure 3.2: Class tree for the geometry package.

3.6 Fit package

This package is a rather small package containing only threebut essential classes
at the moment. There is a single line fit, fitting in 3D a straight line to a number of
points. There is also a multiple line fit. This is interestingif several tracks emerge
from the same point each with an own set of points. The vertexFit fits the indi-
vidual lines to their points in parallel forcing them to havethe same footing-point.
Though it is possible to fit any number of lines to a common vertex, advice is not
to use more than 4 lines at the same time ([6]).
Most essential and difficult one the kinematic fit, fitting three components of a
particle with fixed mass in different possible representations (momentum compo-
nents, energy and angles, momentum and angles, speed and angles, momentum

30

and normalized x- and y-momentum components, energy and normalized x- and
y-momentum components, . . .) using momentum and energy conservation. Any
component can be set to fixed, measured or unmeasured and additional constraints
can be set, invariant masses of decaying particles. This kinfit has been adopted
from the kinfit used by the WASA-Collaboration written in FORTRAN. For more
detailed information see sec. B.

geomObject

vertexFit

sLine3D

kinFit

lineFit

Figure 3.3: Class tree for the fit package. Classes in filled gray boxes are not part
of the library.

3.7 Parameter package

The main use of the parameter package is to define in an easy waythe parameters
of the analysis (detector-setup, algorithms to use, their parameters, which runs to
analyze etc.) and provide them with file-In-and-Output. They are used mainly be-
fore the actual analysis is launched, reading them from file.Then they are used to
initialize the analysis-structures, like the setup and thealgorithms.
There is one class, that capsules all possible shapes,shapeparameter, one that
holds a detector,detectorparameter, one that holds a run,run parameter, or a
beam-time,beamTimeparameter, one that capsules the properties of the beam(s)
and target,reaction parameter, one for the materials used in the experiment,mate-
rial parameterandelementparameter, and most important thealgorithm parameter
class, that holds the name, description, ID and parameter for all the different algo-
rithms.

3.8 Shape package

The shape package is still a very small package, since it doesnot contain many
shapes. The already defined shapes are build considering theCOSY-TOF-detector
and therfore it is possible that some detector cannot be described by the given
volume shapes. But the package is extendable, if the new shapes are fully imple-
mented children of the respective base-shapes. There are two main types of shapes
in the package: volume- and plane-shapes.
The base shape of all shapes, volume- and plane-, isbaseshape. It contains a

31

(a) cylinder (b) fiber (c) hexPrism (d) wedge

(e) spiral

Figure 3.4: Volume shapes: 3.4(a) cylinder (identical withstrawTube), 3.4(b)
fiber, 3.4(c) hexPrism, 3.4(d) wedge and 3.4(e) spiral.

(a) circle (b) triangle (c) rectangle (d) hexagon (e) quadrangle

Figure 3.5: Planar shapes: 3.5(a) circle (including normalvector), 3.5(b) triangle,
3.5(c) rectangle, 3.5(d) hexagon and 3.5(e) quadrangle.

center-point.
The volume shapes are especially constructed for use as geometric representations
of detector elements. The classvolumeShapehas some placeholder functions, that
have to be implemented in derived classes to enable the tracking algorithms for
example. The tracking algorithms don’t implement the hit point calculation for an
assumed track to the volume, but the shape classes do.
These hit-point-calculating methods are optimized for speed – using distance es-
timations, reducing the number of operations and making educated guesses about
the hit surface –, since these methods are the bottle-neck inthe analysis.
The planar shapes, the second part of the shape package, are all derived of the class
planeShape, that declares as place-holder several methods, so the individual type
doesn’t need to be known. The most important one is getCenter(), that returns the
center-point of the planar shape. But there are also angularranges to be calculated
for each shape, from an origin-point along a specified axis.

32

baseparameter

baseShape

planeShapevolumeShape

fiber

wedge

spiral

ring

cylinder

strawTube

hexPrism

triangle

rectangle

hexagon

circle

quadrangle

sphericRectangle

sphericTriangle

Figure 3.6: Class tree for the shape package. Classes in filled gray boxes are not
part of the library.

The volumes that have been implemented already are the volumes, the COSY-
TOF-detector is build of: fiber, wedge, spiral, ring, cylinder, strawTube, hexPrism,
triangle, rectangle, hexagon, circle, sphericTriangle, sphericRectangle and quad-
rangle (see fig. 3.4 and fig. 3.5).
For a more detailed description of the shapes see sec. D.2.

3.9 Data container package

The container classes are designed and implemented to follow one single purpose:
flexibility. Therefore, contrary to other analysis packages the container classes do
not have any methods to generate their properties. One couldthink of different
classes for the calibrated hits, for example, according to the element shape, hold-
ing their calibration data basis as static member field.
But that means, that for every new detector a new class has to be programmed,
and therefore, a stable version of these classes won’t be possible. The hits, pixels,
tracks are the same data structure no matter where it occurs.Its content has to
be generated outside the container data structure and then filled into the container
class variable. This leaves, as only point to modify, the algorithms that do this
generation and filling, opening the possibility to use different algorithms without
further compilation on the same data structure to compare the results and find dif-
ferences.
There are two different container class types: the event based container classes,

33

that are manipulated and generated anew every event, and thesetup describing con-
tainer classes, that are generated once, at the beginning (and whenever the setup of
the experiment changes) and used as read only structures during analysis.

3.9.1 Setup describing classes

These classes describe the experimental setup and are therefore kept quasi con-
stant. Their properties are, as for all container classes, not generated by themselves
but by the controlling analyzer class prior to the analysis,having parameter classes
as input. When the setup changes these setup classes are generated anew.

3.9.2 Event based container classes

The event based container classes are holding the properties of the single event,
beginning with the very basic data, the raw hit data, the calibrated values of the
hits, to the further processed ones, the pixels, clusters and tracks. In multi-thread
application, these classes are created in one instance for each program thread that
is used.
For a more detailed description see sec. D.3.

3.10 Algorithm package

The algorithm package consists of several base classes, namely:

• AAlgorithm
The AAlgorithm is the very base class of all algorithms used in this package.
It is derived from the basic Qt-class, QObject, to provide the very elegant
SIGNAL-SLOT mechanism for messaging. The AAlgorithm classhas one
member, or property, that is the name of the algorithm, whichhas to be
provided with the constructor (which means by declaring a variable of this
class, a string has to be provided to the constructor containing the name of
the algorithm), the methods to access this property and a virtual function
that has to be overwritten by each class that is derived from AAlgorithm and
that is the function called process, called to actually do the algorithm (see
algorithm. 3.2).

• AFitAlgorithm
The AFitAlgorithm is derived from AAlgorithm inheriting all of its prop-
erties. It describes the general fitting algorithm, providing apart from the
process-function also the possibility to get data not only with the construc-
tor, but at run time. This is kept quite general so the user should not feel
limited by this feature. Last but not least it has a function called fit, that will

34

do, in derived classes, the actual fitting. With getResult(), the result of the
fitting can be retrieved. The fit() as well as the getData() function are de-
clared as SLOT, from the Qt-SIGNAL-SLOT mechanism, the fit()function
emits a SIGNAL, so the fit-algorithm and the calling algorithm don’t have to
know each other.

• AElossAlgorithm
The AElossAlgorithm is designed to fit the needs of the material classes, to
calculate the energy loss of a particle traversing matter.

Subsequently all algorithms that are described here are derived from the AAlgo-
rithm class. Not all algorithms that were developed in course of the analysis of
the data for this thesis will be described, but most of the ones that are finally used.
Find a complete list attached in sec. D.4.

3.10.1 Data read-in

On different stages of the analysis it may be necessary or useful to store the data
acquired by the analysis routines to file, either to make the program more stable
by using less algorithms at one step, or if one step is under development one might
think of doing analysis up to that point, save, and start the analysis several times
(development) with different parameters at that point anew, saving a lot computer
time. Or there might be a so called Bottle-Neck-Algorithm, that takes a lot of time
(like tracking). Save the found tracks to file and do the reaction recognition in a
later step.
On different stages of the analysis, different types of dataare available (raw-hits,
calibrated hits, pixels, clusters, tracks, reactions,. . .), so different formats were
chosen for write-out and again read-in.

The TADE-format

The data the COSY-TOF detector gives to the experimentalistis not as we would
hope the 4-vectors of all passing particles. The detector delivers a voltage for each
channel, not only for those that were hit. The voltage signals are fed into the data-
acquisition-electronics (DAQ), that decides which voltage actually corresponds to
a hit and transforms the voltage into an integer-number (channel) – more precisely
the integrated current. Along with that, the arrival time ofthe signal, the rise of the
voltage above a certain level, is recorded and also converted into an integer-number.
The output of the DAQ is a binary file, where the data are not sorted by event, but
in clusters and the hits are still numbered by input channel,not detector/element
wise. This data-format is not read in, but is converted into an ASCII file, that is
also readable by eye, by a program called ems2tade, that has been around for quite
some time and is being used throughout the collaboration. The output format, the
input format (or one of the formats that can be read by this analysis program) is the

35

TADE format (TDC3-ADC4-Detector-Element), that has an event header includ-
ing the event number, the trigger information and the numberof hits for this event.
All hits are written successively line by line, giving four integer numbers each: the
integer timing information, the TDC, the integer energy information, the ADC (or
more often used QDC), the ID of the sub-detector and the number of the element,
that has been hit.
This information is read in by an algorithm calledAReadFromTade and stored
into the container-data-structure for further processing.

The hit tree format

The root-framework was chosen for its visualization- but mainly for its data-com-
pression-functionality when it comes to writing to file, so most file formats are
root-files, containingTTrees. Writing the original event-data-structure to root-file
was time and disk-space consuming and above all unstable.
So a new format, the hit tree format was developed for the datatype hit, writable to
a new file. Its main feature is that it writes to severalbranches, reducing disk-space
occupancy significantly.

The track tree format

For the track structures there has lately been developed an alternative file structure,
distinguishing between different track types (prompt, kink and vees). This file type
has been spread (Analysis Meeting 09.2009) in the collaboration and is now a stan-
dard output format.

3.10.2 Calibration

To generate the correct energy and timing information out ofthe integer QDC- and
TDC- values is called calibration. There are several steps of calibration:

• Before tracking

– Apply cuts in QDC and TDC

– Convert QDC to energy

– Convert TDC to time

– Apply a walk-correction to the time-information

• After tracking

3Time-to-Digital-Converter, the time signal the electronic provides, given in channels.
4Analogue-to-Digital-Converter, the integrated signal size, given in channels. It gives a measure

of the deposited energy.

36

– Correct the time-information for the run time of the signal in the mate-
rial

– Apply a pulse height correction

• After particle Identification: Do a quench-correction

In these algorithms the found parameters are applied to the data. The generation of
calibration-parameters as well as the used functions are described in more detail in
Chapter 6.

Teufel-Correction In the beam-time October 2004 there has been a significant
problem with the QDC-electronics of the Start detector. There were shifts/jumps in
the pedestal-position and the amplification almost event-based. The runs have been
sorted into categories of their correctability. Note, thatthe QDC-jumps are critical,
since this energy-information also modifies the walk-correction, which modifies
the timing-information.
This has been done in the University of Erlangen by A. Teufel,giving the correc-
tion its name.
The correction works in steps of 10000 events, applying simply an offset and a
factor to the QDC value, setting the pedestal to a value of 1000 and the data peak
to 1500. This has to be done before the other calibration steps, since the calibration
counts on the correct QDC values.

3.10.3 Pixel-calculation

Pixel calculation generates of several layers of thin, adjoining detectors, planar
shapes, on a plane close to the detector. These shapes are characterized by the
overlap of several elements, each in a different layer. The overlap area of the ele-
ments give the planar shape its shape. This makes it possibleto have many pixels
with few elements, few read out electronics. For example, two layers, each 100
elements, can, as fibers with perpendicular layers result in10000 pixels with only
the read out of 200 elements.

Pixels in Quirl-shaped detectors

The pixels in the Quirl-shaped detectors, such as Quirl and Ring (sec. 2.2.5) are,
in their reconstruction quite simple, as an algorithm, not so simple as shape. The
pixels are more or less triangular, so they can be approximated by a triangle. The
algorithm provided for the Quirl-shaped pixels also allowsa triangle approxima-
tion. Actually they are spherical triangles, since the edges of the bent layers of the
Quirl don’t have straight edges (see pic. 2.7(a) and 2.7(b)).
If any three elements of each a different layer (s. . . straight element number,l . . . left
bent element number,r. . . right bent element number) form a pixel, it is defined by

37

a simple formula∆ϕ = (l + r)− s. This ∆ϕ has to be within predefined ranges,
here between -1 and +1. The values, by the way defines the azimuthal angle of the
pixel; the value(l − r), the polar angle, with(l − r) = 0 being the outermost pixel.
The complete formula for the Quirl-pixels can be found in thesec. A.1.

Pixels in hodoscopes

Pixels in two layered detectors have one problem: an overlapof two elements in
different layers is not enough to define a real track. Requiring three elements in
a three layered detector diminishes these ambiguities, butreduces the efficiency,
since each layer has an efficiency of less than one. The first fiber hodoscopes were
both two layered, with perpendicularly aligned layers. So both pixels could be cal-
culated by the same algorithm. Since the diagonal layer has been added to the now
three layered hodoscope, a different algorithm had to be designed.

Two-layered hodoscope Pixels in the two layered hodoscope are the overlap of
two elements from each of the two layers, which gives many pixels, that do not cor-
respond to particle transitions. Nevertheless, the pixel center is the point of closest
approach of the two center lines of the fibers in their length direction (the longest
one), the shape is a rectangle, the edges are projections of the element shapes to
the plane defined by the pixel center and the beam axis.
Unfortunately the shape of the two-layered fiber hodoscope’s elements is not ex-
actly box shaped but bent to the outside at the center. The ends of the individual
fibers remain fixed. This effect is small but noticeable. It iscorrected for the exact
position of the pixels.

Three-layered hodoscope First of all the possible area for three element pixels is
not the whole detector area, but just half of that (see sec. 2.2.4). So starting with an
element of the diagonal layer, intersecting that with an element of one of the other
layers, one has to see whether this possible pixel position is inside or outside the
three-element-pixel-region. If it is outside, one can immediately define the pixel,
with the center point being the point of closest approach of the middle lines, as
done for the two layered hodoscope. If it is inside, one has tocheck whether there
is an element hit in the remaining layer nearby. If not, thereis no pixel. If there is,
the resulting pixel shape can be quite complicated, from a triangle to a shape with
five or six corners. This is quite complicated and in the programmers point of view
not worth the effort, so the pixel is approximated by a circlewith the diameter the
same as the width of one of the originating elements.

38

Algorithm 3.4 Calculation of pixel in 3-layered hodoscope
for all hits in diagonal layeri do

for all hits in x-layer j do
if intersection is in 2-layered regionthen

take pixel
else

for all hits in y-layerk do
if intersection is close tok then

take pixel
end if

end for
end if

end for
repeat with x-y exchanged

end for

Pixels in Micro-Strip detector

The pixels in the Micro-Strip detector are quite simple, since only the overlap of
two elements, a ring shaped and a wedge shaped have to be considered. The re-
sult is again a wedge with the inner and outer radius of the ring element and theϕ
and∆ϕ of the wedge element. The resulting wedge is the projected onthe detec-
tors front plane, leaving the wedges front plane, that is called a spheric rectangle
(sec. D.2).

Cluster search

When a particle flies through a detector, it may happen, that the particle passes not
only one element per layer, but two or more neighboring elements, depending on
angle of the particle and thickness of the detector layer. For these cases, there are
many pixels calculated for just one passing particle. Here one can collect the pixels
belonging to just one hit point, together. This is called a cluster.
The cluster search used in this package is quite a simple one (reflected in its name:
Simple Cluster Search). It collects pixels, that contain neighboring elements, start-
ing with the pixel with the largest energy sum of its elements, pixels with directly
neighboring elements are added (the “directly” is a maximalelement number dif-
ference specified with the algorithm-parameter at initialization, this has been set
to 1 in the analysis used here). This can be done recursively for the added pixels.
(This algorithm is not used for the actual analysis).

39

Hit cluster

Intuitively a cluster search is done on pixel-level, calculating pixels and then merg-
ing neighboring pixels to a cluster. However this is not the only possibility to
form a cluster, it can be also done on hit level. While the pixel-cluster-search is a
two-dimensional one, the hit-cluster-search is linear, using only element numbers
instead of position.
The analysis software used at the Forschungszentrum Jülich uses this variation, be-
cause pixel-clusters were not expected at the design phase of the program. This is
why neighboring hits are merged instead of neighboring pixels.
This feature was adapted for the new analysis package. For the hit-clusters, neigh-
boring hits (element numbers) are searched, also taking into account the element
number jump for the circular detectors at element number 0 ton−1.
The hit-clusters shape and TDC is taken from the hit with the QDC-weighted po-
sition of the participating hits and for the new QDC the individual ones are added.

3.10.4 Tracking algorithms

As already mentioned there exist more than one way to identify tracks depending
on collaborator. The algorithm used at the Forschungszentrum Jülich was used as
a starting point, but the others were implemented as well. For the prompt tracking
the different algorithms produced output, that was very small in difference, so the
version with the highest efficiency was used.
On the other hand the Vee-tracking, searching for neutral-decays, showed some
differences.The two remaining versions: the Suspect-Vee-search and the Pixel-
search have been compared. The Pixel-search, being a brute force method was
considerably slower than the Suspect-Vee-search, but the efficiency was higher.
The resolution was comparable.

Prompt Tracking

The tracking routine used in this work is derived from the routine used in the Jülich
Analysis Program. There are several assumptions made:

• The tracks originate in the target, so one point of the straight line is fixed
already: the target (0, 0, 0). This assumptions is valid for all prompt tracks
due to the definition of prompt tracks.

• The second point to pin down the straight line is the center ofa stop-pixel
(in the Jülich Analysis Program this is fixed to Quirl, Ring,Barrel and a
special angular range of large Hodoscope pixels; in this analysis, Quirl-,
Ring-, Barrel- and Micro-Strip-pixels are used).

In this version, nothing so far distinguishes the pixels, soone has to supply the IDs
of the pixels, which are to be stop-pixels.
The procedure is: There are some main differences between the original version

40

Algorithm 3.5 Prompt tracking algorithm used in Jülich
for all stop pixelsj of type i do

line←
−−−−−−−−−−−−−−−−→(

pixelcenter
i, j

)
− (origin)

for all detectorsd and elementse∈ d do
distance← line to volumee,d
if volumee,d is hit then

takeelemente,d
else if distance< max− distanceand distance is smallest for alle in d
then

takeelemente,d
end if

end for
if Nhits < Ni,min then

reject track
end if
if χ2

line− f it < χ2
i,max then

reject track
end if

end for
sort tracks byχ2

eliminate too close tracks (α < αmax) or tracks with too many shared elements
sort tracks byθ

and the derived version that is used in this work: Most parameters are not built in,
but provided by the algorithmparameter passed during initialization: IDs of pixel-
types,ncommon, distmax, n j,min, χ j,max andαmax as well as an array of detector-ids to
search hits for.

Suspect search

The tracking algorithm described above has one major flaw: its speed. The most
time consuming operation is the hit-point-calculation of the straight line with the
volumes. Many accelerations for this operation have been done, especially in the
geometry package, also including distance estimations forlarge distances. But the
biggest problem remained: the number of hit-point calculation.
The new idea was to do the hit-point calculation not for everyelement for each
track, but to do it once, asking the detector overall shape which element most prob-
ably would be hit by the line. Allowing for a specific deviation in element number
(supplied for each detector and each biasing pixel) the hit-point calculation is now
done but only once.
Next step was to define essential detectors, like Start detectors, that have to be on
a track, for the track to make sense. The search for these essential detectors was

41

done first. If one was not found, the track is rejected.
For some detectors it may not be possible to define a suspect-function. Some may
have every single element read in from file, some shapes may have the suspect-
method not correctly implemented for a certain stack-type of elements. Here it
is possible to have the algorithm do a conventional search for this special sub-
detector.
With this modifications the speed was increased by a factor often, without notice-
able difference in output.

Decay Tracking / Vertex Tracking

There are two kind of unstable particles, charged and neutral ones. For the neutral
particles, the interesting decay channel is the one into twocharged particles. This
enables one to make some assumptions: There are two charged tracks, that intersect
somewhere outside the target and that are in plane with the target and their point of
closest approach. And the point of closest approach must have a minimum distance
from the target (dmin) to be distinguishable from prompt tracks. The following
routine takes advantage of the coplanarity of the decay plane with the target. This
routine is also derived from the Jülich Analysis Program.
The prompt tracks have to be calculated beforehand, becausethis routine rejects
decays that have too many hits in common with prompt tracks. The tracks are
sorted inϑ as the prompt tracks. Here also the parameters are taken fromthe
algorithm parameter instead of using hard-coded values.

suspect V-search

As described in 3.10.4 also the Vee-search adapted from the analysis software used
at the Forschungszentrum in Jülich is creepingly slow. So the same modifications
as for the prompt suspect search were made here.

pixel-search

Adapted from the analysis software in Dresden, this tracking routine is a brute
force method. Here any two pixels are combined and form the bias of a track.
Additional pixels close to that line are searched. Then an element search as for
the suspect-search is done to find other elements on the track. A single line Fit is
applied. Tracks too close to prompt tracks, with too less hits or too highχ2 of the
fit are rejected.
Then any two tracks are combined to find a vee. There are limitson the distance
of the tracks to each other (αmin), χ2-values of the combined fit and the coplanarity
with the target to get a neutral decay into two particles.

42

Algorithm 3.6 Neutral-decay tracking algorithm used in Jülich
for any combination of stop-pixelsi and j with i 6= j do

defineplaneastriangle(Ptarget−center,Pi,Pj)
for all intermediate pixelsk do

if distanceplane−Pk < dmax then
take pixelk

end if
end for
for all stored intermediate pixelsl do

for both i and j do
search elements onlinei/ j,l =

(
Pi/ j ,Pl

)

if Nhits
linei/ j,l

> Nhits
min then

keeplinei/ j,l

end if
end for

end for
combine any twolinei,x andline j,y to aV
if Nhits

V
> Nmin and χ2

vee f it < χ2
max and distance(vertex− target) > dmin then

takeVsmallestχ2

else
noV for this combinationi, j

end if
end for

3.11 Reaction recognition

Reaction recognition is perhaps the most interesting part of the analysis, at least
from the physicists point of view. Many reactions have differently tight restrictions
on the properties of the tracks, defined by the kinematical restrictions of the reac-
tion. Most stringent case is elastic scattering of two identical particles. Here the
kinematical restriction on the tracks, the angles and the velocities is hardest.
As mentioned in the documentation (see sec. D.3.12) the reactions found are stored
in the TEvent-structure. The reaction recognition does no real testing for these
footprints itself, but passes this point down to the reaction classes themselves.

3.12 Graphical User Interface

The Graphical User Interface (GUI) is designed to help the physicist manage the
incoming data, the detector setup and the algorithms that shall be used on the data.
The user selects the order in which the algorithms are applied to the data and can
watch histograms during analysis. After analysis he can display the results, fit his-
tograms, apply cuts.

43

This is programmed on the basis of Qt [47], to use the SIGNAL-and-SLOT mech-
anism Qt provides and above all, the designer with its Graphical User Interface to
produce the widgets (windows).
With typeCaseversion 2 also the graphical user interface of the software became
very well structured.
An important feature of version 2 is the compatability both with Qt3 and Qt4, that
makes at some points the code hard to read but also provides hereby portability and
backward compatability.
There are:

main window that manages the file-IO for the parameters as well as the other
windows/widgets. All special features that are native to the graphical user
interface are launched here

help widget a simple window based on an HTML-viewer, that allows to browse
through the help files

parameter widgets to modify the parameters of the analysis, see sec. 3.12.1

analysis widget here all parameters for the analysis come together to perform and
view the analysis. Selected algorithms as well as selected runs have to be
passed (and are passed via the main window) to this module. Ona (dividable
root-) canvas the event pattern/histograms/trees can be drawn

view widgets these widgets perform actions like simulations, kinfit or efficiency
and acceptance corrections. Usually these parts of analysis are done in sep-
arate programs, but fortypeCasethese very different functionalities have
been included.

utility widgets and dialogs

3.12.1 Parameter-widgets

The parameter-widgets (see parameter-package sec. 3.7) allow a parameter to be
displayed and/or modified (figs. 3.7, 3.8). The list widgets display a list of param-
eters. This exists for the following parameter-types:

• run parameter, beamTimeparameter

• elementparameter, material parameter

• shapeparameter

• detectorparameter, reaction parameter

• algorithm parameter

• paint parameter

44

As list widgets there are two defined for algorithms, one to simply display the algo-
rithms and one to sort them for analysis. Run and beam-time widgets are organized
into a data-basis-widget and detector-, material- and shape-lists are combined into
a setup-widget. The complete set of parameter-widgets including dependencies is
shown in fig. 3.9.

Figure 3.7: Widget for editing and displaying a detector anda run (b). For more
pictures see sec. D.7

3.12.2 Utilities

Utility widgets are small, useful widgets, that are also used in other programs. They
are packed into a separate library and can be linked to any other program. There is
a widget, that manages three floating-point values, useful for points and vectors in
three dimensions. There are dialogs for single values, as integers, floating-point-
values, a single string, 3D-vectors/-points, and a whole vector set. There is also a
dialog that asks for a single widget, the user can interact with, e.g. a parameter-
widget.
Unfortunately the developers at Trolltech ([47]) removed the class QWizard at the
transition from Qt3 to Qt4 with a remark of the type “if you want to have it do it
yourself”. The classQMyWizardas result is also in this library. Last but not least
there is a stack-widget combined with a combo-box, where theuser can define
which widget is shown by the selection of the combo-box.
To edit the properties that come from various root-objects,widgets for Input/Out-
put for fill-, line-, marker-, text-, axis-, pad- and histogram-attributes as well as
a colored button including a root-color selection dialog have been created (At-
tributeWidget, AAttributeWidget, ColorButton, ColorSelectDialog, HistoWidget).
Since the root-classTQtWidgetprovides no real signals,QCanvasWidgethas been
declared for easier use. For division of canvasesDivideDialogcan be used to ask

45

(a)

Figure 3.8: Widget for editing and displaying a run . For morepictures see sec. D.7

for the number of divisions in x- and y-direction.

Qt-utilities

Some of the most used commands that have been changed from Qt3to Qt4 are
redefined in a small utility unit, to reduce the number of preprocessor commands
in the actual code.

3.12.3 Install-wizards

For easy installation of additional algorithms and shapes to typeCase, meta-code
has been generated that inserts the necessary commands intomake-files, header-
files, the analyzer-code files and, if necessary, totypeCase-code-files (see sec. D.5).
The parameters – filenames mostly – can be handled with two installation wizards
(fig. 3.10), that also do some kind of rough consistency check.
Having specified the installation parameters once, they canbe saved to file and
reloaded in a later session or can be passed along together with the corresponding
header- and code-files for easy exchange of algorithms between developers and
users.

46

run parameter

beamTimeparameter

elementparameter

materialparameter

shapeparameter

detectorparameter

reactionparameter

algorithm parameter

paint parameter

run

beam-time

element

material

shape

detector

reaction

algorithm

paint

data-basis

materials

shapes

detectors

algorithms

algorithm-order

paints

setup

analysis-widget

Figure 3.9: Dependency of the widget classes. First column shows the non-GUI-
parameter-classes as used in the parameter package. Secondcolumn shows the
single-parameter-widgets, third the list-widgets and fourth the combined widgets.
The widgets filled in gray are directly accessible via the main window; the hatched
analyser-widget is not included in this library.

3.12.4 IO-algorithm-widgets

A subset of algorithms is used for reading and writing data toand from file. For
easier handling these algorithms are not per se listed underalgorithms, but come
with an own widget, that returns the parameter describing the algorithm. They can
be selected this way along with reaction recognition and theorder selection in the
analyzer widget.

3.12.5 Analyzer-widget

The analyzer-widget needs the assignment of selected runs and algorithms, that can
be passed – and are in the case oftypeCase– using the Signal-and-Slot-mechanism
from the data-basis-widget or the algorithm-widget.
The main part of the analyzer-widget is covered by a canvas, that can show the
event-pattern, information about a current event, a histogram or a tree, that are
filled during analysis (fig. 3.11).

47

(a)

Figure 3.10: Screen-shot of some widget of the install-wizards. Go to the picture-
gallery (sec. D.7) for more pictures.

The left bar controls the analysis, usinginit, to initialize algorithms,start or step
to run analysis,stopto halt the running analysis, finishing the current event,final
to finalize analysis (necessary e.g. to close files),help to receive some help on the
widget, algorithms to add input-, output- or reaction-recognition-algorithms and
view to select the display type in the aforementioned canvas.
The bottom bar shows the status of the analyzer (initialized, running, stopped, . . .),
the number of events to be analyzed per step and the number of selected runs.

3.13 User and developer guide

see section. 4.

3.14 Note on root

Initially it was planned to derive all classes from the root base classTObject. This
would have provided writability to root-files and usabilityin the command-line-
interpreter CINT. But this was omitted, when serious problems in the construction
of the root-framework became visible.

48

Figure 3.11: The analysis-widget, showing the control buttons on the left and the
display of the currently analyzed event (pp-elastic-scattering) as a point-projection
of the hit detector elements (detector-ID is color-coded) in a root-TCanvas in the
center.

First of all the memory management was reprogrammed overwriting thenewand
deleteoperators. This may have been a reasonable idea in the first years of C++-
compilers, but meanwhile doing so is for a long time no more appropriate since the
compilers memory management is good.
However the aforementioned operators were redeclared as class members ofTOb-
ject making it impossible to privately or protectedly inherit from this class.
The actual implementation of the root memory management leads to serious prob-
lems concerning portability of code (what may work on one machine may fail
completely on an other), large programs (memory is sometimes not freed correctly)
and polymorphism which was made impossible due to the actualimplementation
of TStorage.
After many unexplainable segmentation faults, the dependence was removed and
surprise: it works now reliably. But the problem remains forthe root-defined
classes. It is strongly recommended that the polymorphism feature is not used
with root-classes.

49

Chapter 4

Guides

4.1 The very short User Guide

4.1.1 Get the program

Download the zip file athttp://www.pit.physik.uni-tuebingen.de/
˜ehrhardt/KTOF/download/typeCase.tar.bz2 .
Unpack the file using

> tar --bzip2 -xf typeCase.tar.bz2

Prerequisites

You need one of the following configurations:
configuration 1 configuration 2

compiler: gcc version 3.x 4.x
root-library version <5.18.x >5.18.x
Qt version 3.x 4.x
Boost any will do

Environment variables Next, you need to set a number of parameters necessary
for the compilation process. These are mainly path variables, of where the individ-
ual variables are located:

50

Variable meaning default

CDIR where is your compiler
LD LIBRARY PATH path including all directories for shared libs

PCCODE identifier for your computer
KTOFPACK typeCase-package directory

BOOST ROOT Boost main-directory
BOOSTINCLUDE Boost-header directory $BOOSTROOT/include
BOOSTLIB Boost-library directory $BOOSTROOT/lib$PCCODE

QTDIR where is your Qt
QT VERSION Qt-version
QT INCLUDE Qt-header directory
QT LIBS linker command for Qt-libraries

ROOTSYS where is your root distribution
ROOTLIB root-libraries $ROOTSYS/lib/root
ROOTINCLUDE root header directory $ROOTSYS/include/root

You certainly need the directories for your libraries, likeBoost ($BOOST ROOT),
Qt ($QTDIR) and root ($ROOTSYS) and since the variables are native to the li-
braries, they may already be set. The include and library paths were added since
you can specify these paths to be different from the default values during the in-
stallation process. The version of Qt (“3”—”4”) is necessary for the generation of
the meta-objects of some of the widgets.
Use the$PCCODE variable to identify the machine you are doing the compila-
tion on, with this you can make libraries for different configurations in the same
base directory: the$PCCODE will be appended to the name of the object- and
executable-files. This can be the value stored in$HOST, you can even leave it
empty if you want to compile only one version of binaries.
To be able to choose between different compilers the$CDIR variable was added if
you want to use the default g++-compiler use

> which g++

to see where it is located and set the path-variable$CDIR accordingly.
$LD LIBRARY PATH (but I recommend having$KTOFPACK too) is the only
variable that is important to have at run time. Else you won’tbe able to execute
the program. Like the variable$PATH it contains paths separated by colons and
may already be set to some value; append the library paths of Boost, root, Qt and
typeCase.
When you extracted the tar-file, there is a filetypeCaseVariables.initincluding the
definition of the needed variables for bash (for shell you will needsetenvinstead
of export). Open the file and edit the variables; save them for later use. Type (for
bash)

> source typeCaseVariables.init

51

Compilation

Go to the package directory oftypeCase, here you type

> make FIRST

With this command, the packages will be compiled; this may take some time.
Then you go to thegui-directory and type again

> make INSTALL

There you are.

4.1.2 Start typeCase

> typeCase$PCCODE

If you start it for the first
time, it will create a new direc-
tory in you$HOME-directory:
.typeCase.
If you need some help on
the widgets or the reference-
documentation of the classes
of typeCase, use the help-
button.
Clicking on any button on the
main-window will open an in-
dependent window, you can
work in different ones in par-
allel.
The menu is mainly for file-
management, here you can
load and save the parameters

of the analysis. The “save”, “save as” and “load” commands refer to the complete
data-base of that type, so with “load” you will load a complete different data-base
from file, omitting the previously used (so take care to have “save”d it before). If
you want to add a single parameter from a file to the existing data-base, use “add”.
Also the installation-wizards (sec. 3.12.3 and Appendix D.5) are accessible here.

52

The Data-Base

Clicking on the button labeled
“Databasis and Calibration”,
the data-basis-widget opens,
showing the defined beam-
times and runs. The runs are
equipped with check-boxes, so
if you check one it is marked
for analysis.
With a right-click you access
the context menu, that allows
you to inspect (read-AND-
write) the selected run/beam-
time, to delete the selected
run/beam-time or to create a
new one.

53

The setup

Access the setup by clicking
on the button labeled “Geom-
etry”. This window has four
tabs.
The last one contains the
defined shapes. Here you
can view the defined shapes,
their properties and the way
they look like when plot-
ted.
The tab called “Experiment”
shows the settings for beam
and target.
In “Materials”, the materials
of the detector-setup can be
viewed and modified.
The first tab shows the de-
fined detectors. A check-
mark can be added to detectors
in the list; selected this way,
the checked detectors will be
drawn in the lower canvas.
In the upper part of the win-
dow, the current detector is
displayed and can be changed
here.
Right-clicks on the lists open
pop-up-menus, enabling adding
of items and removing items.
Make sure, that you saved
the modified setup before you
start the analysis, because the
setup is read from file ac-
cording to the file specified
for the beam-time or run.

54

55

The algorithms

The button labeled “Algo-
rithms” opens the algorithm-
window. On the left there
is the list of all available
algorithms, here – as with
the data-basis – a check-mark
means that the algorithm is se-
lected for analysis. On the
right, the current algorithm
is described including the pa-
rameters, ready for modifica-
tion.
At this point the algorithms
are not sorted in any way.
You cannot really do that here,
though enabling them in the
right order may help.

The sorting

Having now edited and saved
the detector-setup, chosen the
runs to analyze and the al-
gorithms to use, we can now
proceed to the actual analysis
by clicking on the “Analysis”-
button.
On the bottom you can see –
on the very right – the num-
ber of runs you chose in the
data-basis-window. The color-
button on the left is still red
(uninitialized).
Before you go ahead and ini-
tialize the analysis, let’s first
bring some order into the se-
lected algorithms. So click on
the button “Algorithms”.

In the window that opens you can see the selected algorithms.Select one to see
(and modify) its parameters on the right side. To move it click on the description
and type “u” for up, “n” for down and “d” for un-select. As you perhaps noticed,

56

there is no input-algorithm so far. Let’s change that by clicking on the “input Al-
gorithms” tab and choose one of the input algorithms from thecombo-box on top.
Click on insert, when all the parameters fit. Do the same for output-algorithms.
Then check again for the sorting of the algorithms. You don’tneed to close the
window to proceed.

The analysis procedure

On the left of the analysis
window, you see the control
buttons. Press “init” to ini-
tialize analysis. You cannot
run an un-initialized analysis,
as well as you cannot stop
a not running analysis. En-
ter the number of events to
do in one step in the line-
edit on the bottom of the win-
dow.
The button on the left of the
bottom line shows color coded
the state of the analysis. Red
is uninitialized, green is ini-
tialized but not running, yel-
low is running. If you final-
ize, the button will turn red
again.
After analysis you should fi-
nalize the analysis-engine us-
ing the “final”-button. This
will cause important last-mi-
nute-stuff to happen, like clos-
ing files, generating calibra-
tion constants (only if calibra-
tion-generation was selected
as algorithm) or simply free-
ing memory that was allo-
cated.

57

Viewing the progress

To see such an event-display as shown in the picture on the left side, you click
on the “Watch”-button. An other window opens. Select a pad. Select what to
watch. If you want to view a histogram or a tree-branch, you have to select it af-
ter initialization. Again no need to close the window, you can change it at any time.

Corrections, Simulations and Kinfit

Generating these nice plots as seen in this work, the plotting engine has been added
to the software recently, as well as the simulation and some rudimentary kinfit-
engine.
To access these, go to the Main-Window and press the “View”-button.

Corrections and plotting Se-
lect the “Corrections”-tab at
the upper part of the widget.
For the purpose of perform-
ing corrections and displaying
the data nicely, you define dif-
ferent data-sets: raw-data for
uncorrected data, corrected-
data, different simulations like
phase-space or model simula-
tions, simulations that passed
a virtual detector and ef-
ficiency (simulation-through-
detector over pure simula-
tion). Each data-set will need
at least one input-file (spec-
ify histogram-files, files with
track-tree-format, PreCutTree-
format or ascii-dat-format) and
how it should be displayed
(line-, marker- and fill- -color,

-style and -size, draw-option).
The central part considers the plotting of the data. The lower part of this column
is dedicated to the color-schemes of the data-sets, as well as the draw-option and
the relative size of the set (data is always 1). On the top you can select between
the two paint-modes (color and monochrome, though you can also use colors for
the monochrome-draw) and switch on the debug mode, where alldata-sets are
drawn with factor 1, not only the specified ones. You can specify cuts and a beam-
momentum, essential if you are reading from tree- or dat-format. In the center of

58

this column you can select between the different reaction types. Each reaction type
defines different graphs, so take care that – especially for histogram-input – the
input files match the selected reaction.
The left part of the widget is covered by a canvas to draw the graphs and a list to
browse through the list of available histograms. On the right edge, you have the
control buttons:

• Files: Here you open a window that displays the files you can read in for
each data-set

• Save: Save the file-names and color-options to file.
• Load: Load file-names and color-options from file.
• Init : Define the data-structures and read input-files. For histogram-files this

is rather fast but it can take a while for the tree- and dat-formats, since the
histograms are filled event-wise, also applying cuts.

• Final: Clear the data-structures again to read other data from other files or
perhaps change to a different reaction type.

• Picture: Draw all histograms with the specified colors and plot modesto a
directory of your choice.

• LaTeX: Produce a LATEX-file, that includes all plots, previously plotted into
a specified directory. The file is not fed through the LATEX-engine, you will
have to do that yourself going into the specified directory and usinglatexand
dvipsor dvipdf.

59

Simulation Select the “Simulations”-tab at the top of the widget.

The right part of this wid-
get is filled with controls: set
the number of events to sim-
ulate, the initial system and
show the currently simulated
number of events. The but-
ton “initialize” initializes the
simulation engine asking for
the type of output you want
to have (you can also have
PreCutTree-format if you se-
lect a reaction type). “Final-
ize” will save the simulated
events to file. “generate” starts
the simulation. Since the sim-
ulation will run in a different
thread you can stop(“Stop”-
button) the simulation before it
reaches the maximum number
of events.
On the left side of the wid-
get, you see the simulated par-
ticles. Top-level is the decay of

the initial system. It frames the particles it decays in. On the top part of the frame,
there are two buttons enabling you to add or remove particles(opening a menu).
Below that, there are the modifications to the phase-space-weight, every event re-
ceives: You may add resonances (Breit-Wigner-like) or Final-State-Interactions.
This is followed by the particles. If one of these particles is non-stable, you
may add the decay of this particle into some other particles.Note: There is no
consistency-check done whether the masses of the decay-particles is smaller than
that of the decaying particle or whether charge or lepton-number for example are
conserved.
On the bottom there is a canvas and an input line. If you specify a valid tree-branch
to draw, it will be drawn to canvas.

4.1.3 Command-line-typeCase

The command-line-typeCase(or cl-typeCase) is quite small and easily compiled:
go to thecl-typeCase-directory and type

> make

For a faster performance use the command

60

> make STATIC

Since the packages, the program depends on, were already compiled, the pro-
cedure is finished rapidly.
The program takes some command-line arguments, type

> cl-typeCase --help

to see which.
The parameters “a”, “d” and “m” define the parameter-files forthe used algorithms,
the data-basis and the materials. Select a run with “r”, probably you should enclose
the parameter and the name in quotes, especially if the run’sname contains blanks.
Alternatively you can specify a file containing the names of the runs (“runs”, one
line per run name).
“n” sets the number of events to analyze, it is 1 by default. “l” passes a start entry
number to input-algorithms, that support this feature. “j”defines the number of
threads the analysis shall run with (defaults to 1), don’t use more than you have
processors in your machine.
“o” specifies the path where output-algorithms write their files to.
With the options “local”, “local-directory” and “nonLocal” you can ask the input-
and output-algorithms to copy input files to a local directory, do the analysis lo-
cally and copy the output files back. Most input-algorithms clean-up their copies
afterwards, but it pays to check.
Use the “paint”-option to generate a post-script file with the projected event-pattern
of the analyzed events, but use this option only for a small number of events, the
file will grow very large else. The options “H” and “I” provideyou with additional
information about the analysis.
All parameters can be specified using the command-line, but also using the file
“analysisInit.init” in the current directory. An example may be

> cl-typeCase --H --I "--r=elastic run" --a=algorithms.da ta
--o=out-directory/first- --d=beamTimes.data --m=mater ials.data
--n=1000000 --nonLocal

Progress file The analysis-program will write a file to the directory “/dev/shm/$USEŔ’
if it exists. In this file it will save the progress of the analysis. This directory was
chosen, since it doesn’t exist on disk – all files will be deleted on a reboot –, it is
much faster than writing to disk. And since the file is just a few hundred bytes in
size no matter how much you analyze it won’t fill up the memory.

Parameter files

There are three parameter files necessary to run an analysis.

1. A data-basis-file; here the defined beam-times are saved. For each beam-
time, there exists a separate file with the runs for this beam-time.

61

2. A material-file containing the defined materials.

3. An algorithm-file; here the algorithms that are going to beused on the data
are described, in the right order. Only algorithms with the set used-flag will
be considered.

The detector-setup will also be read from file, but you cannotspecify it separately.
It comes with the data-base, where for each beam-time the setup-file-name is saved.
All these parameter-files are ASCII-files – human-readable.Most values are named
and therefore easy to identify.
Fortunately you won’t have to write them all from scratch by yourself. typeCase
did that already for you. Especially for the data-basis and the materials it is best
and much easier to use the Graphical User Interface to define the necessary param-
eters for the runs and materials. Later-on, as experienced user, you can open the
parameter-files with an editor (like vi or emacs) and modify the content, for the
runs, it is rather easy. Use the complete data-base as input and specify a run name
for the analysis.
For the algorithms, use the “save analysis algorithms” menu, that is accessible as
pop-up-menu in the algorithm-order-widget from the analysis-widget. Here you
can save the current algorithm-set to file. Starting with this file you can easily
modify the parameters if necessary using the editor of your own choice.

4.2 The extremely short developers’ guide

You are a C++-programmer and you want to extend thetypeCaseanalysis-framework.
You are welcome to do so.
You are a FORTRAN-programmer and you want to include an algorithm to the
typeCaseanalysis-framework. Please proceed to sec 4.2.2.
You are a C-programmer and you want to extent thetypeCaseanalysis-framework.
You are welcome to do so, though you will have to learn something about object
oriented programming first.
First you have to decide what you want to do

• Modify an existing shape
• Modify an existing algorithm
• New detector-shape
• Interface to black-box/library
• New algorithm
• Create Install-log
• Apply Install-log
• GUI-Maintenance

62

Class 4.1Class definition of class volumeShape.

c l a s s volumeShape : p u b l i c ba s es ha pe
{

p r o t e c t e d :
vec tor3D r e s ;

p r i v a t e :
f l o a t maxDist ;

p u b l i c :
volumeShape (s t r i n g n=” unde f i ne d ”) ;
volumeShape (c ons t volumeShape &s) ;
v i r t u a l ˜ volumeShape () ;
v i r t u a l volumeShape∗ ge tC lone () ;
f l o a t getMaxDis tance () c ons t ;
vo id se tMaxD is tance (f l o a t va l ue) ;
v i r t u a l f l o a t g e t F l i g h t P a t h I n S h a p e (c ons t sLine3D &l i n e);
v i r t u a l Vector H i tParams (c ons t sLine3D &l i n e) ;
v i r t u a l Vector H i t t i n g (c ons t sLine3D &l i n e) ;
v i r t u a l Vector H i tParams (c ons t p laneShape &shape , point3D o r i g i n) ;
v i r t u a l volumeShape∗ ge tNex t (i n t t imes , i n t s tackType) ;
v i r t u a l volumeShape∗ ge tEnve lope (i n t t imes , i n t s tackType) ;
v i r t u a l i n t s u s p e c t (c ons t sLine3D &l i n e , i n t s tackType) ;

} ;

4.2.1 Shapes

The shapes come in two different types: the volumes and the planar shapes. The
volumes are mainly used to express the shape of a detector or detector-element,
while the planar shapes are mainly used for the projected pixel-shapes. This re-
flects the interface of the two types (see class definitions 4.1 and 4.2).
The volumes need the copy constructor as well as the clone function. The func-
tion getFlightPathInShape()returns the distance between entrance- and exit-point
(needed for∆E/δx-calculations). The functionsHitParams(), Hitting() andsus-
pect()are needed for tracking purposes and return information about the hit of a
line with the volume (for more information see D.2 and the reference documen-
tation in [23]). Though not shown here, I recommend to define and implement
a constructor taking a shapeparameter to define the properties of the volume. If
you want your shape to be drawn to a root-canvas, you will haveto overwrite the
function(s)Draw().
The planar shapes define a plane in which they exist. The footing point of the plane
is always the center-point defined in the base class baseshape; the normal vector is
defined in planeShape. The planar shapes define a number of corner points and an
area-calculation-function. They return the shapeparameter containing their prop-

63

Class 4.2Class definition of class planeShape.

c l a s s p laneShape : p u b l i c ba s es ha pe
{

p r o t e c t e d :
vec tor3D normal ;
f l o a t c i r c R a d i u s ;

p u b l i c :
p laneShape (c ons t s t r i n g &n) ;
p laneShape (c ons t s ha pepa r a m e t e r &d e s c r i p t i o n) ;
v i r t u a l ˜ p laneShape () ;
vec tor3D getNormal () c ons t ;
vo id setNormal (c ons t vec tor3D & v) ;
plane3D g e t P l a n e () c ons t ;
vo id s e t P l a n e (c ons t plane3D &p) ;
v i r t u a l i n t getNumberOfPoin ts () c ons t ;
v i r t u a l point3D g e t P o i n t (i n t num) c ons t ;
v i r t u a l f l o a t a r e a () c ons t ;
v i r t u a l f l o a t a ngu l a r R a ngeP h i (c ons t point3D &o r i g i n =point3D (0 , 0 , 0) ,

c ons t vec tor3D &z D i r e c t i o n = vector3D (0 , 0 , 1)) c ons t ;
v i r t u a l f l o a t angu la rRa ngeThe ta (c ons t point3D &o r i g i n =point3D (0 , 0 , 0) ,

c ons t vec tor3D &z D i r e c t i o n = vector3D (0 , 0 , 1)) c ons t ;
v i r t u a l vec tor3D d i s t a n c e P l a n e (c ons t plane3D &p) ;
v i r t u a l vec tor3D d i s t a n c e (c ons t sLine3D &l i n e) ;
v i r t u a l f l o a t c i r c um s c r i b e d R a d i u s () c ons t ;
v i r t u a l s ha pe pa r a m e t e r d e s c r i p t i o n () c ons t ;
s t a t i c s ha pepa r a m e t e r g e t D e s c r i p t i o n () ;

} ;

erties. Also a static function is defined that returns the properties of the shape
into a parameter. The distance calculating functionsdistancePlane(), distance(),
angularRangeTheta()andangularRangePhi() are of importance for the tracking
process.

Modify an existing shape

If you want to modify an existing shape, simply go to “$KTOFPACK/shapes/in-
clude”, here you find the header files of all existing shapes. The code files are in
“$KTOFPACK/shapes/src” and are named as the shapes but in lower case letters.
Here you can modify the shapes functions, but take care, thatyou keep in mind the
definition of the shape in general!

64

New detector-shape

The creation of a new shape needs the modification of quite some files, including
a make-file, an additional header-file and the “getShape”-file. If you don’t want to
do it by hand, use the install-wizard bytypeCase. This does not implement the
actual shape for you, but helps you to insert it into the framework.

Class 4.3A new plane-Shape class example.

c l a s s myNewShape : p u b l i c p laneShape
{

p r o t e c t e d :
/ / pu t he re your new v a r i a b l e s

p u b l i c :
myNewShape () ;
myNewShape (c ons t myNewShape &shape) ;
myNewShape (c ons t s ha pepa r a m e t e r &d e s c r i p t i o n) ;
myNewShape (. . . n e c e s s a r y pa r a m e t e r s . . .) ;
v i r t u a l ˜ myNewShape () ;
v i r t u a l p laneShape∗ ge tC lone () ;
v i r t u a l s ha pe pa r a m e t e r d e s c r i p t i o n () c ons t ;
s t a t i c s ha pepa r a m e t e r g e t D e s c r i p t i o n () ;
v i r t u a l i n t getNumberOfPoin ts () c ons t ;
v i r t u a l point3D g e t P o i n t (i n t num) c ons t ;

v i r t u a l f l o a t a ngu l a r R a ngeP h i (c ons t point3D &o r i g i n =point3D (0 , 0 , 0) ,
c ons t vec tor3D &z D i r e c t i o n = vector3D (0 , 0 , 1)) c ons t ;

v i r t u a l f l o a t angu la rRa ngeThe ta (c ons t point3D &o r i g i n =point3D (0 , 0 , 0) ,
c ons t vec tor3D &z D i r e c t i o n = vector3D (0 , 0 , 1)) c ons t ;

v i r t u a l vec tor3D d i s t a n c e P l a n e (c ons t plane3D &p) ;
v i r t u a l vec tor3D d i s t a n c e (c ons t sLine3D &l i n e) ;

v i r t u a l vo id Draw (c ons t point3D &eye , c ons t plane3D &plane,
vector4D∗ boundingBox , i n t lCo lo r , i n t f C o l o r =8 ,
i n t f S t y l e =1001) c ons t ;

v i r t u a l vo id Draw (c ons t point3D &eye = point3D (0 , 0 , 0) ,
c ons t plane3D &p l a ne =plane3D (point3D (0 , 0 , 1) , vec tor3D (0 , 0 , 1)) ,
vec tor4D∗ boundingBox=NULL, TObject ∗∗ i d e n t =NULL, i n t l C o l o r =1 ,
i n t f C o l o r =8 , i n t f S t y l e =1001) c ons t ;

/ / pu t he re t he n e c e s s a r y g e t t e r and s e t t e r methods
} ;

65

planeShape Define your new planeShape as in class definition 4.3. Define the
properties, like some corner-points or vectors as “protected” or “private”, define
constructors and destructors in the shown pattern (default-constructor, copy-con-
structor(s) and the normal constructor), define parameter-getters.
Most importantly: overwrite the distance functions, that they fit your shape!
Overwrite theDraw() functions to provide painting functionality to root-canvas.

volumeShape Define your new volume shape as shown in example 4.4. Define
the constructors and destructor (default- , copy-constructors, normal-constructor)
and the description parameter-getters.
ThegetClone()-, getNext()- andgetEnvelope()-functions are very important. In the
getNext()-function, you define, how out of one shape a neighboring one will be
generated.
Overwrite the hit-point-calculating functionsHitting(), entrance(), distance(), Nor-
mal(), HitParams(), suspect()andgetFlightPathInShape()for the use in tracking.
If you want the shape to be drawn, overwrite theDraw()-functions.

Important For the implementation, use a new file in the $KTOFPACK/shapes/src/-
directory. Use the reference documentation [23] to help youwith the implementa-
tion in the source file.
If in doubt, how you should implement something, open one of the other shape-
source-files – best something with a rather similar shape –, copy the code to your
file and use it as a starting point.
If the new shape you have in mind resembles an already defined shape, think about
inheriting from that shape. Perhaps you can extend the already existing shape to fit
your needs.

4.2.2 Algorithms

In class definition 4.5 there is the class-definition of the class AAlgorithm, the base-
class of all algorithm-modules. It is derived of the class QObject [47] to enable the
SIGNAL-and-SLOT-mechanism. Apart from default- and copy-constructor and
destructor it has a name-getter. It defines methods to retrieve histogram- or tree-
pointers, if defined, for external viewing (see sec. 4.1.2).The staticgetDescrip-
tion()-method returns an algorithmparameter, that defined all necessary variables
and the description of the algorithm.
The most important function is theprocess()-method.

Modify an existing algorithm

There exist the following major modification-types

66

Class 4.4Definition of a new volume.

c l a s s myNewShape : p u b l i c volumeShape
{

p r o t e c t e d :
/ / pu t he re your new v a r i a b l e s
p u b l i c :
myNewShape () ;
myNewShape (c ons t volumeShape &s) ;
myNewShape (c ons t s ha pepa r a m e t e r &d e s c r i p t i o n) ;
myNewShape (. . . n e c e s s a r y pa r a m e t e r s . . .) ;
v i r t u a l ˜ myNewShape () ;
v i r t u a l s ha pe pa r a m e t e r d e s c r i p t i o n () c ons t ;
s t a t i c s ha pepa r a m e t e r g e t D e s c r i p t i o n () ;

v i r t u a l volumeShape∗ ge tC lone () ;
v i r t u a l volumeShape∗ ge tNex t (i n t t imes , i n t s tackType) ;
v i r t u a l volumeShape∗ ge tEnve lope (i n t t imes , i n t s tackType) ;

v i r t u a l Vector H i t t i n g (c ons t sLine3D &l i n e) ;
v i r t u a l point3D e n t r a n c e (c ons t sLine3D &l i n e) ;
v i r t u a l vec tor3D d i s t a n c e (c ons t sLine3D &l i n e) ;
v i r t u a l sLine3D Normal (c ons t sLine3D &l i n e) ;
v i r t u a l boo l c u t (c ons t f i b e r &f) ;
v i r t u a l Vector H i tParams (c ons t sLine3D &l i n e) ;
v i r t u a l Vector H i tParams (c ons t p laneShape &shape , point3D o r i g i n) ;
v i r t u a l f l o a t g e t F l i g h t P a t h I n S h a p e (c ons t sLine3D &l i n e);
v i r t u a l i n t s u s p e c t (c ons t sLine3D &l i n e , i n t s tackType) ;

v i r t u a l vo id Draw (c ons t point3D &eye , c ons t plane3D &plane,
vector4D∗ boundingBox , i n t lCo lo r , i n t f C o l o r =8 ,
i n t f S t y l e =1001) c ons t ;

v i r t u a l vo id Draw (c ons t point3D &eye = point3D (0 , 0 , 0) ,
c ons t plane3D &p l a ne =plane3D (point3D (0 , 0 , 1) , vec tor3D (0 , 0 , 1)) ,
vec tor4D∗ boundingBox=NULL, TObject ∗∗ i d e n t =NULL, i n t l C o l o r =1 ,
i n t f C o l o r =8 , i n t f S t y l e =1001) c ons t ;

/ / pu t he re t he n e c e s s a r y g e t t e r and s e t t e r methods
} ;

Modify a parameter: this can be done online, no need to change the code or to
recompile. Use the Graphical User Interface to modify the parameter or edit
the algorithm-parameter-file to give the parameter the desired value.

67

Class 4.5The definition of the class AAlgorithm

c l a s s AAlgori thm : p u b l i c QObject
{

p r i v a t e :
s t r i n g name ; / / !

p u b l i c :
AAlgori thm (s t r i n g n) ;
AAlgori thm (c ons t AAlgori thm &a) ;
˜ AAlgori thm () ;
s t r i n g getName () c ons t ;

v i r t u a l vo id ∗ p r o c e s s (vo id∗ p t r) ;

v i r t u a l ve c t o r<s t r i n g>histogramNames () ;
v i r t u a l TH1∗ h i s t og r a m (s t r i n g histoName) ;

v i r t u a l ve c t o r<s t r i n g>t reeNames () ;
v i r t u a l TTree∗ t r e e (s t r i n g t reename) ;

s t a t i c a l g o r i t h m p a r a m e t e r g e t D e s c r i p t i o n () ;
} ;

Modify the defaults for a parameter: Go to the algorithm-source file and there
to the implementation of the constructor. Here you can add orchange the
defaults of a parameter. You will have to recompile.

Add a parameter: Go to the algorithm-header file. If there has already been de-
fined a variable to hold the new parameter, proceed, else define a new vari-
able.
Go to the algorithm-source file. Assign the value of the new parameter to the
variable.
Recompile the algorithm package AND the analysis package (needed be-
cause header file changed).
Don’t forget to edit the algorithm-parameter-files to add the new parameter.

Change the behavior of an algorithm: Go to the algorithm-source file and change
the implementation of theprocess()-method.
Recompile the algorithm-package.

Add a function: Go to the algorithm-header file and add the function to the class
definition.
Go to the algorithm-source file and implement it.
Recompile the algorithm package AND the analysis package (needed be-

68

cause header file changed).

Change the amount of data the algorithm receives:Go to the algorithm-header
file and modify the constructor-definition according to the modified needs:
e.g. add, TPixel* pixels, int &numberOfPixelsprobably you’ll have to add
or remove variables.
Go to the algorithm-source file, apply the modifications alsohere to the con-
structors implementation and change the code to fit the new specification.
Go to the algorithm-init file of the analyzer. Change the init-call of the algo-
rithm according to the modifications you made for the constructor.
Recompile the algorithm package AND the analysis package.

Interface to black-box/library

Let’s say, you have an algorithm defined by somebody else. Unfortunately this
algorithm was not defined in thetypeCaseframework, but as FORTRAN-, C-
or C++(other thantypeCase)-algorithm. You have some library or black-box-
function, but the interface has a valid specification. So youuse the following steps:

1. define a new algorithm as in class definition 4.6

2. define the constructor to get the necessary variables, like hits for calibration,
hits and pixels for pixel calculation, hits, pixels and tracks for tracking, tracks
for after-tracksearch-calibration, etc.

3. use the constructor to initialize the data structures (probably pointers or
arrays), copy the parameter values to class-variables and to initialize your
black-box, if necessary.

4. theprocess()-method is the place to put the actual conversion between the
typeCase-data-structures and the input into your black-box. Run your black-
box and copy again the outcome to thetypeCase-data-structures.

5. use the install-wizards to insert it intotypeCase.

New algorithm

If you want to implement a new algorithm,

• you better first take some pencil and paper and put down some notes about
it:

• What shall it do.
• What data does it need.
• Will it need information from time to time (e.g. like switching to a new run)
• Define the algorithm on paper in some kind of pseudo-code.

69

Class 4.6Definition of a new algorithm

c l a s s AMyNewAlgorithm : p u b l i c AAlgori thm
{
Q OBJECT

p r i v a t e :
/ / c l a s s v a r i a b l e s
p u b l i c :
AMyNewAlgorithm (. . . needed pa r a m e t e r s . . . ,

c ons t a l g o r i t h m p a r a m e t e r& param) ;
v i r t u a l ˜ AMyNewAlgorithm () ;

v i r t u a l vo id ∗ p r o c e s s (vo id∗ p t r) ;

/ / v i r t u a l ve c t o r<s t r i n g>histogramNames () ;
/ / v i r t u a l TH1∗ h i s t og r a m (s t r i n g histoName) ;

/ / v i r t u a l ve c t o r<s t r i n g>t reeNames () ;
/ / v i r t u a l TTree∗ t r e e (s t r i n g t reename) ;

s t a t i c a l g o r i t h m p a r a m e t e r g e t D e s c r i p t i o n () ;

s i g n a l s :

p u b l i c s l o t s :
v i r t u a l vo id onNewRun (r u np a r a m e t e r &run) ;

} ;

When you are ready, define your algorithm as shown in class definition 4.6. The
tree- and histogram-functions are not essential, so you only need to overwrite them
if you define histograms or trees that you want to be seen outside. The analyzer
(sec. D.1) defines signals, that can be caught by the algorithm using the SIGNAL-
and-SLOT-mechanism. If you define signals or slots you will have to add the
“Q OBJECT” macro on top, don’t do it, if you don’t need it.
When implementing, I recommend you to start with thegetDescription()-method.
Here you can insert, what you put on paper before. Describe what the algorithm
will do and what it will need for it. Define which parameters itwill need.
Then go to the constructor and implement the initialization, like copying the para-
meter-values to member-variables and initializing references.
Immediately after the constructor you should implement thedestructor, freeing the
allocated memory. Do it now, you’ll perhaps forget it later.
Implement the algorithm in theprocess()-method. For more complicated algo-
rithms it pays to modularize the process by defining member-functions to do recur-

70

ring or coherent parts in a separate block.
Use the install-wizard to insert the algorithm intotypeCase.

Class 4.7Definition of the QAlgoritmDefineWidget, the base-class of the IO-
algorithm-widgets.

c l a s s QAlgor i thmDef ineWidget : p u b l i c QWidget
{
Q OBJECT

p r o t e c t e d :
QPushButton ∗ i n s e r t B u t t o n ;
a l g o r i t h m p a r a m e t e r ap ;
i n t ID ;
boo l i s I n p u t ;

p u b l i c :
i f QT VERSION < 0x040000

QAlgor i thmDef ineWidget (QWidget∗ p a r e n t = 0 ,
c ons t char∗ name = 0 , WFlags f l = 0) ;

e l s e
QAlgor i thmDef ineWidget (QWidget∗ p a r e n t = 0 , Qt : : WindowFlags f = 0) ;

e n d i f
˜ QAlgor i thmDef ineWidget () ;
i n t get ID () c ons t ;
vo id s e t I D (i n t v) ;

s i g n a l s :
vo id i n s e r t C l i c k (a l g o r i t h m p a r a m e t e r ∗a , boo l i npu t A l go r i t hm) ;

p u b l i c s l o t s :
v i r t u a l vo id r e s i z e (i n t w, i n t h) ;

v i r t u a l vo id r e s i z e (c ons t QSize &s) ;
v i r t u a l vo id r e s i z e E v e n t (QResizeEvent∗e) ;
v i r t u a l vo id se tRuns (ve c t o r<r u n p a r a m e t e r∗> ∗ s e l e c t e d R u n s) ;
p r o t e c t e d s l o t s :

v i r t u a l vo id O n I n s e r t B u t t o n C l i c k () ;
} ;

Input-output-algorithms Some of the algorithms are not for processing data,
but for reading data from file or electronics or to write it to disk or other devices.
In principle these algorithms are in no way distinguishablefrom any other algo-
rithm, but for the use in the Graphical User Interface, they are treated a tiny bit
different, when it comes to selection. They are not listed with the other algorithms,
but you can select them in the ordering-window (see sec. 4.1.2).
If you are adding an IO-algorithm, you probably will need an IO-algorithm-widget
for that. It has to be derived from QAlgorithmDefineWidget (class definition 4.7)

71

Class 4.8Definition of a new IO-algorithm-widget.

c l a s s QAMyNewAlgorithmWidget : p u b l i c QAlgor i thmDef ineWidget
{

Q OBJECT
p r o t e c t e d :

/ / f o r each pa r a m e t e r you need an i n p u t w idget
vo id languageChange () ;

p u b l i c :

i f QT VERSION < 0x040000
QAMyNewAlgorithmWidget (QWidget∗ p a r e n t = 0 , c ons t char∗ name = 0 ,

WFlags f l = 0) ;
e l s e

QAMyNewAlgorithmWidget (QWidget∗ p a r e n t = 0 , Qt : : WindowFlags f = 0) ;
e n d i f

˜ QAMyNewAlgorithmWidget () ;

p u b l i c s l o t s :
/ / s l o t s t o copy changed pa r a m e t e r v a l u e s t o t he a l g o r i t h mp a r a m e t e r

} ;

like in this example 4.8.
For each parameter you will need an input widget: check-boxes for boolean, line-
edits for floating point, integer and strings, 3D-inputs forvectors and points, list-
boxes for the vector-types and AlgorithmDisplays for the algorithm-type-parameters.
For each input-widget you will need at least one slot, to catch the changes in the
properties, the user performs. Copy them directly to the inherited variableap.
Don’t forget the connections for these slots. You don’t haveto free them, if you
define them as children of the widget, Qt will do that for you.
Use the install-wizard to insert the widgets intotypeCase.

4.2.3 Install-logs

The install-wizards give you the possibility to insert algorithms and shapes into
your copy oftypeCase. I really recommend using them for you may easily forget
some file where to make changes and I, myself am using them.

72

Create Install-log

To create an install-log, go to the main-window and select from the menu either
“algorithm”–“install algorithm” or “shape”–“install shape”.

Algorithm
The first page already asks you for the install-log, omits that for the moment and

select the category and the information about being IO-algorithm.
Page two displays the algorithm-parameter that will be saved for the algorithm.
On page three you provide the files of the algorithm. First go for the header file and
select the algorithm you want to use. Then add the source file(s). You will be asked
if it should parse for a description. If you defined thegetDescription()-method, say
yes here. If you go back to page two you will see the changes.
Page four shows connections and call-frequencies. Here youcan connect the slots
you defined to the signals the analyzer provides.
Page five makes you define the assignment of the available variables to the con-
structors parameters as you will need for the initialization process.
Page six is the finish page. If you proceed on finish, the algorithm will be installed.
But you want to save an install-log first, so after having provided the wizard with
all information, you go back to page one and click on the “create”-button.

Shape
For the shapes it works as for the algorithms. The install-log-box is defined

on page one, but you go through the wizard, supplying all information about the
shapes files, parameters and the way, it is created out of a shape parameter. Then
you go back to page one and create the install-log.

Apply Install-log

Applying the install-log is rather simple. There are two ways. First, you choose
either “algorithm”–“load install-log” or “shape’–“load install-log” and specify the
name of the install-log file. Secondly you can open the install-wizard and click
on page one on the “read”-button for the install-logs. This way you can still see
and modify the parameters before you click on finish on the last page to install the
component.

4.2.4 Plot reactions

Another part is the filling and drawing of histograms for a specific reaction. Most
of the functionality has been formulated in a very general way, independent of the
type of reaction. But some things remain, that have to be redone every time you
define a new reaction-type. Fortunately you can copy most of it from an existing
one.

73

As for the algorithms and shape you’ll also here have an abstract base class, that
defines the general functionality, derived classes define the reaction specific func-
tionality. The base class is calledreaction typeand the class definition is shown
in secs. D.4 and D.5. These are the methods youwon’t have to modify. But they
are using methods that are strongly reaction dependent and these you will have to
implement in your derived class.
Your derived class can look like class definition 4.9.
You will have to implement the following methods, each of them defined virtual:

1. int* getIDs()
2. float *getMasses()
3. void setBaseUse()
4. vector<string>getCutNames()
5. string makeComment(bool use[20], int nCuts)
6. void fillCuts(writeOutStruct &stru, int cuton, int nCuts, bool *cuts, float

*masses, bool converged)
7. void getStrings(string strings[20], bool use[20], int cuton, float* masses)
8. void qualityFill(TH1F*** histos1, TH2F*** histos2, writeOutStruct &stru,

int which, int cuton, int nCuts, bool *cuts, bool use[20], float *masses, bool
converged, float weight=1)

9. void observablesFill(TH1F*** histos1, TH2F*** histos2, writeOutStruct &stru,
int which, float weight=1)

10. void addDrawingLines(histoStack1 *h1, histoStack2 *h2, float *masses)
11. void setHistoPropertiesDefault(const momentum4D &inputmomentum)
12. bool leafToStruct(TLeaf** leav, writeOutStruct &stru, momentum4D &cms,

momentum4D &inM, momentum4D moment[4][4], momentum4D inter[4],
momentum4D Pcms[2][3], momentum4D Jmoment[2][3][3], momentum4D
jbm[2][3], float *mass,int id[4],vector3D &lDir)

13. bool leafToStruct(TLeaf** leav, writeOutStruct &stru, momentum4D &cms,
momentum4D &inM, float *mass,int *id)

14. bool trackTreeStruct2WoStruct(trackstruct &tr, writeOutStruct& stru, mo-
mentum4D &cms, momentum4D &inM, float *mass)

15. void event2Pstruct(istream &input, writeOutStruct& tracks, const momen-
tum4D &initSystem, int *particleids)

16. void setTexFile(texFileMakeup &makeup)

For a reference see Appendix D.6.6 or use
http://www.pit.physik.uni-tuebingen.de/˜ehrhardt/KT OF/ .
Important again is the initialization of some variables in the constructor:

74

fN2D number of 2D histograms
fN1D number of 1d histograms

fNparticles number of particles
fNangles number of angles to store for PreCutTree-format

fNmissingMasses number of missing-masses to store for PreCutTree-format
fNinvariantMasses number of invariant-masses to store forPreCutTree-format

fkinfitNdF number of degrees of freedom for kinematic fit

HistogramDefinitionDefault
=new histoProperties[fN2D+fN1D]
will be deleted by base class

HistogramDefinition
=new histoProperties[fN2D+fN1D]
will be deleted by base class

But best advice I can give is to copy the source file from a related reaction and
change the code to fit your needs.
In class definition. 4.9, you can see the example definition ofa simple plot-reaction
including only the essential functions.

75

Class 4.9Definition of a plot-reaction-class

c l a s s e x a m p l er e a c t i o n : p u b l i c r e a c t i o nt y p e
{
p u b l i c :

e x a m p l e r e a c t i o n () ;
˜ e x a m p l e r e a c t i o n () ;
v i r t u a l i n t ∗ ge t IDs () ;
v i r t u a l f l o a t ∗ getMasses () ;
v i r t u a l vo id setBaseUse () ;
v i r t u a l ve c t o r<s t r i n g> getCutNames () ;
v i r t u a l s t r i n g makeComment (boo l use [2 0] , i n t nCuts) ;
v i r t u a l vo id f i l l C u t s (w r i t e O u t S t r u c t &s t r u , i n t cuton ,

i n t nCuts , boo l ∗ cu ts , f l o a t ∗masses , boo l converged) ;
v i r t u a l vo id g e t S t r i n g s (s t r i n g s t r i n g s [2 0] , boo l use [2 0],

i n t cuton , f l o a t∗ masses) ;
v i r t u a l vo id q u a l i t y F i l l (TH1F∗∗∗ h i s t o s 1 , TH2F∗∗∗ h i s t o s 2 ,

w r i t e O u t S t r u c t &s t r u , i n t which , i n t cuton , i n t nCuts ,
boo l ∗ cu ts , boo l use [2 0] , f l o a t∗masses , boo l converged ,
f l o a t we ight = 1) ;

v i r t u a l vo id o b s e r v a b l e s F i l l (TH1F∗∗∗ h i s t o s 1 , TH2F∗∗∗ h i s t o s 2 ,
w r i t e O u t S t r u c t &s t r u , i n t which , f l o a t we ight = 1) ;

v i r t u a l vo id addDrawingL ines (h i s t o S t a c k 1∗h1 , h i s t o S t a c k 2 ∗h2 ,
f l o a t ∗masses) ;

v i r t u a l vo id s e t H i s t o P r o p e r t i e s D e f a u l t (
c ons t momentum4D &inputmomentum) ;

v i r t u a l boo l l e a f T o S t r u c t (TLeaf∗∗ l eav , w r i t e O u t S t r u c t &s t r u ,
momentum4D &cms , momentum4D &inM , momentum4D moment [4] [4] ,
momentum4D i n t e r [4] , momentum4D Pcms [2] [3] ,
momentum4D Jmoment [2] [3] [3] , momentum4D jbm [2] [3] ,
f l o a t ∗mass , i n t i d [4] , vec tor3D &l D i r) ;

v i r t u a l boo l l e a f T o S t r u c t (TLeaf∗∗ l eav , w r i t e O u t S t r u c t &s t r u ,
momentum4D &cms , momentum4D &inM , f l o a t∗mass , i n t ∗ i d) ;

v i r t u a l boo l t r a c k T r e e S t r u c t 2 W o S t r u c t (t r a c k s t r u c t &t r ,
w r i t e O u t S t r u c t& s t r u , momentum4D &cms , momentum4D &inM ,
f l o a t ∗mass) ;

v i r t u a l vo id e v e n t 2 P s t r u c t (i s t r e a m &inpu t ,
w r i t e O u t S t r u c t& t r a c k s , c ons t momentum4D &i n i t S ys t e m ,
i n t ∗ p a r t i c l e i d s) ;

v i r t u a l vo id s e t T e x F i l e (texF i leMakeup &makeup) ;
} ;

76

Chapter 5

Measurements

The measurements analyzed for this work were recorded in October 2004 with the
COSY-TOF-detector (see fig. 2.10(b)) at the Forschungszentrum Jülich.
The measurements were dedicated to the search for theθ+

(1520)-particle, with a posi-
tive signal reported in several publications ([43], [44], [50]). To serve this purpose
the beam-momentum was chosen to be 3.059GeV/c translating to a beam-kinetic-
energy of 2.261 GeV. A closer look at the data revealed the real beam momentum
Pbeam= 3.081GeV/c andEbeam= 2.282GeV. At this energy theθ+-resonance was
expected to show up in the center of the invariant mass distribution of the reaction-
products proton andKs. However no positive signal could be derived from the data,
but an upper limit to the cross-section [44].

5.1 Detector setup

For this experiment the detector setup of the 3m-version waschosen, including
Start (sec. 2.2.3), Micro-Strip (sec. 2.2.4), two Hodoscopes (sec. 2.2.4 and 2.2.4),
Barrel (sec. 2.2.5), Quirl and Ring (sec. 2.2.5). For details see Tables in Appendix
E.
Unfortunately for the particle identification the calorimeter was cut off for that
measurement due to missing QDC-modules.

5.2 Trigger

In collision experiments the wanted reaction is seldom the most abundant one. Also
the beam intensity and target density give a reaction rate that is far too high to be
handled by the Data AcQuisition system (DAQ). A selection has to take place even
before recording, to enrich the data with the wanted reaction.
This is the task of the trigger system. It gives a positive signal when the hits in
the detector show a desired pattern. For elastic scatteringthis would be two hits in
a stop detector and two hits in each layer of start. This is called a multiplicity of
two in both start and stop detector. For the reactionpp→ pKsΣ+ the pattern looks

77

as follows: the proton passes the detector generating signals in all layers – one in
each start and stop –, theΣ+ – decaying with a decay length of 24.04 mm – gives a
signal in start and the charged one of it’s decay products gives a signal in the stop
detector; theKs decays with a decay length of 26.84 mm gives no signal in start
but its charged decay products (π+π−) give two signals in the stop detector. The
trigger was set to have a multiplicity of 2 in start and a multiplicity of 4 in stop.
For calibration purposes there was also a two-track triggerswitched on but with a
pre-scaling of 400.
These trigger conditions were not only met by the reactionpp→ pKsΣ+ but also
by the reactionpp→ pK+Λ with both proton andK+ traversing the detector; the
K+ without decay (decay length forK+ is 3712 mm). This gives two start and two
stop signals.Λ is neutral, so there is no signal in the start (decay length 78.9 mm)
but its charged decay intopπ− (64%) gives two signals in stop fitting exactly into
the trigger. Unfortunately, considering the luminosity or, in other words, the time
between the individual proton beam-bunches, the gates for the stop detector were
set too long leading to a mixing of events. If in two successing beam bunches inter-
actions took place with the target and there were two tracks each, there were stop
signals fed into the trigger-system for each of the four tracks but, since the gate for
start was considerably smaller, only two signals for the start detector. This gave
rise to a high amount of recorded elastic interactions and single pion production
events within the data even with the hyperon trigger.

78

Chapter 6

Calibration

The data acquisition system of the detector returns raw data, that indicates which
detector element has generated a signal and provides information on signal-am-
plitude (QDC) and timing (TDC). These QDC and TDC values are delivered as
integer values that have to be converted into more suitable and comparable units
like – as used for this work – nano-seconds and GeV. This conversion along with
the decision which signal is a valid one is called calibration.
The following procedures have to be applied:

• Before tracking

– Apply cuts in QDC and TDC
– Convert QDC to energy
– Convert TDC to time
– Apply a walk-correction to the time-information

• After tracking

– Correct the time-information for the run time of the signal in the mate-
rial

– Apply a pulse height correction

• After particle identification

– Do a quench-correction

6.1 Common calibration

In spring 2005 the TOF-collaboration agreed on a well-defined calibration method,
a common set of calibration parameters and a common file format for distribution
of these parameters. The following formulae are from this agreement:

79

tcounter= O f f setT DC− ((TDC+ rnd)∗ fTDC−walk− tinDetector) (6.1)

walk=
A

(QDC−Pmean)+B
+D∗ log(QDC−Pmean) (6.2)

Ecounter= (QDC−Pmean)∗ fQDC (6.3)

The valuesO f f setT DC[ns], fTDC[ns], A[ns], B[channels],D[ns], Pmean[channels],
fQDC[GeV], TDChigh[channels], TDClow[channels], QDChigh[channels],
QDClow[channels] are calibration constants. They have to be determined for ev-
ery detector element separately and will not be given as an Appendix to this work
(∼1400 elements× 11 constants× 500 runs = too much numbers). But the
calibration-data-basis can be retrieved via thetypeCase-home-page ([23]).
In the first calibration-step the following steps are done:

tcounter = O f f setTDC(event−number)− ((TDC+ rnd)∗ fTDC−walk)

walk =
A

(QDC−Pmean)+B
+D∗ log(QDC−Pmean)

Ecounter = (QDC−Pmean)∗ fQDC

Here, also cuts are applied, setting hits as invalid, when the QDC- or TDC-value
is not within certain limits. The QDC-cuts are to cut away theso called pedestal,
which is in fact the noise the detector and its photomultiplier/preamplifier produce.
There appear signals, with a Gaussian distribution in pulse-height, that do not cor-
respond to any real hit.
In an experiment, there were always certain runs, that record the noise of the
detector-system. These distributions are fitted and one applies, already during the
experiment a threshold on the voltage, to suppress this pedestal and record only the
real signals, with higher energy. However, this pedestal suppression only some-
times works perfect, there can be a lot of garbage hits in the data, that have to be
cut away. On some channels however, the thresholds can be to high cutting into the
desired data; this has to be taken into account for simulations.
For the TDC cuts, one has to consider, that it may be necessaryto use only hits
in a special time window for analysis. The TDC cuts in analysis have been set
very wide for the stop detectors and to±2σ of a Gaussian distribution for the Start
detectors.
The other corrections are applied after tracking, when the complete angular infor-
mation of the track is available. Here

tcounter,mod = tcounter− tinDetector

and

Ecounter,mod = Ecounter∗ fQDC(θ)

80

with tinDetector being the time the signal needs to propagate from the generation-
point in the detector to the photomultiplier for example andfQDC(θ) a function in
dependence ofθ or alternativelyr, the signal run path to readout are applied. The
run-time-correction is only necessary for the detectors where the timing-information
is recorded, namely Start, Quirl, Ring and Barrel, where Barrel has a correction due
to the pixel calculation, taking the mean of the TDC at both ends of the element.
The Start detector has such a short run path for the light, that the correction lies far
below the timing resolution, leaving Quirl and Ring.
For the pulse-height-correction, the correction for the fact, that in wedge or spiral
shaped detectors the light collection is dependent on the polar angle of the track,
this is done also just for the Quirl and the Ring detector. Theparameters here
come as coefficients of a polynomial of the 5th or 6th order in the distance-to-
photomultiplier, which is multiplied to the energy information. Since the QDC-
information is not used to gain energy-information on the particle, this algorithm
is not applied to the data ([10]).

6.2 Beam time “October 2004”

The data of the analyzed beam-time was special in many respects. One of the big
changes compared to earlier and later periods of data-taking was, that a common
effort of the whole collaboration was made to analyze this data with respect to the
reactionpp→ pK0

s Σ+. The main goal was to learn something about the penta-
quark particleΘ+, though this goal was only reached by giving an upper limit to
its cross-section (see [44]).
But nevertheless, the measured data contains a lot of eventsof the reactionpp→
pK+Λ to be analyzed for this thesis and a common set of calibrationparameters
were generated to be applied to the data. This calibration parameters, along with
the formulae to apply them have been supplied by senior members of the collabo-
ration and are also in this analysis applied to the data.
After initial difficulties this calibration worked nicely at least for the QDCs and
cuts, since the QDC values are not used to extract actual energies but only to have
a binary switch whether a detector element was hit or not. Also the problems
coming with the QDC-jumps in the Start-counter could be corrected applying the
Teufel-correction (see sec. 3.10.2).
Unfortunately this is not the case for the TDCs. Being a Time-Of-Flight-spectro-
meter, timing and with it the TDCs are an essential tool and have to be calibrated
as exact as possible to make sure that the errors of the extracted velocities are min-
imal. Here the calibration parameters supplied by the collaboration showed being
not sufficient.
Binning-correction seems to be constant over the whole period of data-taking, but
the offsets and walk aren’t. Drifts and jumps of the offsets can be observed over the
whole period. A closer look at the hit pattern of the wedge shaped detectors gives a

81

hint to the beam direction and magnitude, that also changed during the beam-time.
So it is necessary to do a calibration based on the individualrun (i.e. approximately
one hour of data-taking).

6.3 Geometry calibration

The geometry is crucial for the reconstruction of the tracksthe measured particles
take through the detector. The better the geometry is defined, the higher the recon-
struction efficiency, the better the resolution for the directions of the 4-momentum
vectors of the measured particles. There geometry plays an even more important
role than the timing.
To define the geometry of the detector, two assumptions are made:

1. The mean interaction point is the origin(0,0,0),

2. The direction of the beam is along the z-axis(0,0,1).

3. By general agreement, the x-axis is at nine O’clock when looking in beam-
direction.

With these assumptions the detector definition is done in four steps:

1. Position in x-y-plane:
For any two particle reaction, theϕ-difference of the two particles is 180◦.
Take a detector with a wide range inθ (here the 2-layered-Hodoscope de-
tector was used). Searching for a two track event means searching for two
hits in each layer. Combine these hits to pixels. Shifting the center point
of the detector in x-y-plane also shifts the peak in the∆ϕ distribution. The
correct x-y-position can be found by searching the point where the peak has
a minimal width and a position close to 180◦.

2. Position in z-direction:
As in step (1): take two-particle-events, use events with∆ϕ close to 180◦

and plot the value 1√
tanθ1 tanθ2

which corresponds to theγ-value of the beam
in elastic events (see eq. A.24).γ is fixed due to fixed beam-momentum.
Modify the z-value of the pixel to fit the mean of theγ-peak to the specified
value.

3. Stacking order of the detectors in the tracking-region:
Take a pixel in Quirl or Ring. Connect the center-point of this pixel to the
target to get a straight line. For each detector in the tracking region calculate
for each hit of the considered event the distance of the line to the element’s
volume. Plot this distance versus element number. A line appears in this plot.
If it is flat at zero, the detector is in the right position, an offset translates into
a shift in direction perpendicular to the elements length, aslope translates
into a shift in z-direction. Take only z positions into account in this step.

82

4. Using the pixels from step (3), plot theθ-difference of the Micro-Strip to
the pixels in hodoscopes versusϕ of the Micro-Strip pixel. Modify the x-y-
position to make the graph flat. Do the same for Quirl and Ring respectively.
Plot theθ-difference of the hodoscopes to the pixels in the other detectors
overθ. Modify the z-position to make the graph flat.

5. Iterate steps (1) to (4) until there is no further modification.

Note that a tilt of the beam-axis to the symmetry-axis of the detector is not taken
into account!
The geometry of the detectors and their layers are at least for each of them given
by construction. This fixes the actual size. The position andalignment direction is
however not fixed a priori. By construction the three layers of Quirl and Ring each
are fixed on each other, as well as the two layers of the Start detector.

6.4 Walk-correction

(i) (j) (k)

(l) (m) (n)

Figure 6.1: These plots are generated during calibration ascontrol plots. They
show preliminarily corrected TDC-differences [ns] in dependence of QDC [chan-
nels] for detectors QuirlS (a), QuirlL (b), QuirlR (c), RingS (d), RingL (e), RingR
(f). The black line is a fit function. Its parameters are used later-on for correction.

The walk occurs for small signals. For a signal to be recorded, it has to have a
height larger than a certain threshold. The moment when thisthreshold is reached

83

is taken as time. The fraction of the voltage-at-timing to voltage-at-maximum is
different for small signals and large signals since the aforementioned threshold is
constant. To compensate this dependency of time to signal height the walk correc-
tion is applied.
Plotting the time [ns] vs. QDC-value, this dependency can beseen and fitted with
an appropriate function.
There are a lot of discussions of which function can be considered as appropriate

(a) (b)

Figure 6.2: These plots are generated during calibration ascontrol plots. They
show preliminarily corrected TDC-differences [ns] in dependence of QDC [chan-
nels], for StartA (a) and StartB (b). The black line is a fit function. Its parameters
are later used for correction.

and also whether a single TDC should be used for this purpose.The single TDC
has no real meaning in the experiment, but the TDC-difference between two detec-
tors on a single track has. But taking the time-of-flight heremixes the walk of two
detectors and the correction has to be done several times iteratively.
There are two possible constructs: tracks and pixels on which this calibration can
be done. The pixels in Quirl and Ring are unambiguous and therefore timing is
considered within the pixel. The two Start layers are taken from a known track.
For Barrel it becomes a bit more difficult, since there existsonly one layer that
is read out on both sides. Time-difference between front andback contains still
position information, but this can be determined beforehand and subtracted for the

84

walk plots. This leaves the following:

TDCQ/R
le f t −TDCQ/R

right −vs− QDCQ/R
le f t

TDCQ/R
right−TDCQ/R

le f t −vs− QDCQ/R
right

TDCstartA−TDCstartB −vs− QDCstartA

TDCstartB−TDCstartA −vs− QDCstartB

TDCBarrelback−TDCBarrelf ront − tposition −vs− QDCBarrelf ront

TDCBarrelf ront −TDCBarrelback− tposition −vs− QDCBarrelback

The applied procedure is:

• for all events

– for all tracks/pixels in the event

∗ fill the defined histograms for all (Start, bent Quirl/Ring, Barrel)-
detector elements on track.

• for all considered detector elements

– produce a maximum histogram with QDC-axis.

– fit the maximum histogram with

f i
(QDC) =

A
B+QDC

+C∗ log(D+QDC)+E

– save parameter for next iteration.

Since the two bent layers of each Quirl- and Ring-pixel have the same signal-run-
time –canceling out in the TDC-difference– walk-corrections can be calculated
before the signal-run-time correction. For the straight layers the formula is:

TDCstraight−
TDCle f t +TDCright

2
−vs− QDCstraight

This uses both bent and straight elements. Here the signal-run-calibration (sec. 6.5)
is needed and has to be generated before the – in this case – non-iterative walk
correction. The parameter after this last step are saved as calibration parameters.

6.5 Signal-run-correction

The time the signal of a hit needs to come from the creation point in the detector
element to the element readout has to be corrected for. This signal is – in case of
the scintillators – the light-flight-time. In the wedge shaped elements it was found
that this time is simply the distance of the entrance point ofthe particle to the read-
out divided by the speed of light in the material.

85

(a) (b)

Figure 6.3: These plots are generated during calibration ascontrol plots. They
show preliminarily corrected TDC-differences [ns] in dependence of signal-run-
path [mm], for QuirlL (a) and RingL (b). The black line is the overall correction
function. Do not feel disturbed, that the line does not lie ontop of the points. This
is due to the fact, that the plot contains already some correction.

As for the bent elements of Quirl and Ring the situation is worse, a linear cor-
rection is not sufficient. Here a distance-to-PMT(photomultiplier-tube)-dependent
offset has to be applied. A fourth order-polynomial has beenfound suitable.
This is done along with the walk-calibration, one step before the straight elements
of Quirl and Ring are calibrated and once after.
The distributions that are fitted are

(TDCbent−TDCstraight) −vs− (distance− to−PMT)

6.6 TDC-Offset

The offset-calibration comes in two steps. The offset-calibration is the last calibra-
tion step, so all other TDC-calibration-types (binning, Walk, signal-run-calibration)
are applied before the offsets are calculated.
In the first step the TDC peak positions of all elements are shifted to a common
value (500 ns is used in this work, but it doesn’t matter, since it cancels out in
TDC-difference). Here the TDC of elements on known tracks (or pixels in the case
of Quirl and Ring) are used.
Drifts of the peak-position of the TDC with event-number arequite common (see
fig. 6.4(b)), in some runs however, jumps in the TDC-baselinehappen
(see fig. 6.4(c)). The jumps happen for all elements of all detectors at roughly
the same position, but the height of the jump as well as the drift slope are quite
different. For some elements it almost vanishes. This results in the problem that,
if the time-of-flight is correctly adjusted for the first event in the run, the time-of-
flight at the end of the run can be off by 10% or more. This can be overcome by
firstly introducing an event number dependent TDC-offset, here a straight line was
found to be sufficient, and secondly dividing the run into sections that have their
own offset-parameter-set.

86

(a) (b)

(c) (d)

Figure 6.4: TDC distribution in dependence of event-number(record time) for runs
5042 (6.4(a)), 5115 (6.4(b)), 4543 (6.4(c)) and 5108 (6.4(d)). Due to the small
number of jumps and constant slope runs of these types can be used for analysis.

The second step uses events of the type pp-elastic, where with two known polar
angles the complete kinematic is known (eq. A.23) with even tight restrictions on
these angles (eqs. A.24). The routine applies tight cuts on the coplanarity of the
two tracks (2◦) and the fulfillment of the elastics-condition. In these events veloci-
ties of the two protons can be calculated, with them the flight-path and eventually
the time-of-flight.
The difference of the time-of-flight calculated from the angles (TOFa) is then com-
pared to the time-of-flight which is measured (TOFm). Out of this plotTOFa−
TOFm two values can be extracted: the mean value of the Gaussian shaped distri-
bution is the absolute offset of the stop detector to the Start detector and has to be
added to the offsets found in step one and secondly the width of the distribution
gives the detector-time-resolution.

87

(a) (b)

(c) (d)

Figure 6.5: TDC distribution in dependence of event-number(record time) for runs
(6.5(a)), 5112 (6.5(b)), 5120 (6.5(c)) and 4572 (6.5(d)). Runs of these types cannot
be corrected using the standard procedures due to the sheer number of jumps and
the nonlinear behavior.

6.7 Calibration procedure

The complete TDC-calibration procedure is done in the Module ATDCcalibration,
which is part of the typeCase analysis software. It performsthe following steps (as
described above) and writes the result to text-file:

1. element-offset-calibration (preliminary)

2. position dependence of TDC-difference in Barrel (preliminary)

3. walk-calibration iterative

4. signal-run-correction (preliminary)

5. walk-calibration non-iterative

88

6. signal-run-correction

7. position dependence of TDC-difference in Barrel

8. element-offset-calibration

9. detector-offset-calibration

10. determination of the TDC-cuts for the Start detector

Several calibration steps are done repeatedly as the element-offset-calibration, which
is necessary in the beginning to center the following calibration histograms or to
cancel dependencies in other variables. This improves accuracy (see sec. 7.7.2).

6.7.1 QDC-cuts

In the common calibration format there are four values defined for the use of cuts
for each detector element. These parameters areQDClow, QDChigh, TDClow and
TDChigh. A valid hit has to have a TDC betweenTDClow andTDChigh and a QDC
betweenQDClow andQDChigh.
QDChigh is a very large number because all hits having a large energy can be
counted as real hits. For the hits with small energy, some threshold has to be
applied, to suppress the noise of the detector. A small signal is likely to be no sig-
nal at all. To record only a reasonable amount of garbage, thresholds were applied
already during data-taking, and software-cuts for the QDC were supplied (one set
for the whole beam-time) by the collaboration. TheseQDClow-values should be the
minimum of the QDC-distribution, between the right tail of the Gaussian shaped
noise and the Landau shaped data-signal (see fig. 6.7). But even after applying the
supplied software-cuts for most elements there remained a lot of noise. Unfortu-
nately the plots are far from being easily fitted and the shapes (amount of noise,
distance between noise and signal, . . .) quite different, sothe cuts are supplied by
hand. Due to a drift of the QDCs of up to 100 Channels per week, these cuts are
to be generated run-wise as the other calibration are. On theother hand some of
the elements had QDC-spectra where the threshold during data-taking was set too
high and most of the signal was not recorded at all.
This was only done for the stop detectors, being track-defining detectors. For the
Start detector this was not necessary because the noise suppression worked well.
The TDC-spectra of the Start detector are Gaussian shaped, therefore a cut can be

easily generated during the TDC-calibration-procedure, cutting away side-peaks.
The TDC-spectra of the stop detectors are again Landau-shaped; here we generate
only an upper limit at the steep side of the Landau-distribution, cutting away side-
peaks. These are generated during the generation and selection of the QDC-cuts,
which is essential for the Quirl detector, the side-peaks being quite dominant here.

89

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.6: Plots (a) to (h) show TDC-difference in dependence of element num-
ber after calibration. The difference is taken between two neighboring layers of
detectors and should be (close to) zero. Plot (i) shows the calibration plot of the
position of a barrel hit. The x-axis shows the TDC-difference between back- and
front-readout, the y-axis shows the distance of the entrance-point of the track to the
front-readout. You can nicely see the linear dependence. Note: the y-axis in this
case is given in cm.

90

Fri Jul 9 09:36:30 2010QDC-Quirl-straight el 0

Entries 13056

Mean 1758

RMS 560.9

QDC
1000 1500 2000 2500 3000

C
ou

nt
s

0

50

100

150

200

250

QDC-Quirl-straight el 0

Entries 13056

Mean 1758

RMS 560.9

QDC-Quirl-straight el 0

Figure 6.7: QDC-spectrum of the first element of the wedge shaped layer of Quirl.
Clearly a rest of noise can be seen on the left side. The optimal cut will be at about
Channel 1200.

6.7.2 Parameters

The calibration parameters determined that way can be downloaded as a zip file at
http://www.pit.physik.uni-tuebingen.de/˜ehrhardt/KT OF/download/
parametersOct04.tar.bz2
The calibration files are in Common-Calibration-format. The archive contains also
the beam-time-parameter file as well as the setup-definitionfile and the Teufel-
correction files.

6.8 Velocity corrections and error determination

6.8.1 Error determination

For a kinematical fit (Appendix. B) a determination of errorsis necessary. This
is done, using Monte-Carlo simulations, that were passed through virtual detector
and later-on through the analysis-software in the same way as data is. After tracks
and final (for MCs) corrections, the tracks are written to file(sec. 3.10.1).
Using this file and the purely simulated events (the ones thatwere fed into the
virtual detector) as input, the reconstructed events can beassigned to the origi-
nal events, the true values of the angles and the velocities can be assigned to the
measured values. With this assignment it is possible to generate distributions of
the difference of some measured value from its true value. These distributions are
Gaussian in shape. The mean value of the fitted function is saved as a correction
value and the sigma value can be used as error for the kinematical fit.
It is not sufficient to take errors only dependent on particleand property type, but
the errors are quite different for different parts of the detector. So a error-lookup-

91

table has been implemented and generated, having errors foreach particle and
property to fit dependent on polar angleθ for the directions andβ for velocities
(see fig. 6.8).

Mon Apr 4 10:08:07 2011

reconstructedθ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tr
ue

θ-
re

co
ns

tr
uc

te
d

θ

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

histo1
Entries 302747
Mean x 0.3999
Mean y -0.001985
RMS x 0.1885
RMS y 0.006097

 0 3902 172
 1 294742 27
 0 3900 3

histo1
Entries 302747
Mean x 0.3999
Mean y -0.001985
RMS x 0.1885
RMS y 0.006097

 0 3902 172
 1 294742 27
 0 3900 3

+error and corrections for K

(a)

Mon Apr 4 10:11:52 2011

reconstructedθ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tr
ue

φ-
re

co
ns

tr
uc

te
d

φ

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

histo1
Entries 302747
Mean x 0.4057
Mean y -0.001607
RMS x 0.1885
RMS y 0.02015

 1 7270 6
 0 287496 185
 0 7778 11

histo1
Entries 302747
Mean x 0.4057
Mean y -0.001607
RMS x 0.1885
RMS y 0.02015

 1 7270 6
 0 287496 185
 0 7778 11

+error and corrections for k

(b)

Mon Apr 4 10:15:52 2011

reconstructed
β

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tr
ue

β-
re

co
ns

tr
uc

te
d

β

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

histo
Entries 302747
Mean x 0.8029
Mean y -0.0001463
RMS x 0.1147
RMS y 0.02883

 0 10117 7983
 78 278852 580

 1771 3366 0

histo
Entries 302747
Mean x 0.8029
Mean y -0.0001463
RMS x 0.1147
RMS y 0.02883

 0 10117 7983
 78 278852 580

 1771 3366 0

+error and corrections for K

(c)

Figure 6.8: Deviations of (a)θ, (b)φ and (c)β for K+ from true values in dependence
of θ (a,b) andβ (c).

6.8.2 Velocity corrections

Unfortunately the corrections generated as described in sec. 6.8.1 and the calibra-
tion with pp-elastic-scattering in the calibration routine were not sufficient. So
an additional correction step was applied. Here both pp-elastic andpK+Λ-events
were used to cover the complete detector.
For pp-elastic the process was the same as in the calibrationroutine:

1. identify pp-elastic using coplanarity (||φ1−φ2|−π|〈0.05) andγ-elastic-cuts

(
∣∣∣ 1√

tanθ1∗tanθ2
− γcalc

∣∣∣< 0.075)

2. calculate complete kinematic out of geometry using A.23

3. calculate velocities usingβ = p√
p2+m2

4. calculate time-of-flight usingto fcalc = path
β

For thepK+Λ-events it is possible to calculate the complete kinematic out of the
geometry of the event, assuming theΛ-direction as connection between primary-
and decay-vertex is sufficiently well known:

1. take exact track pattern: 2 charged prompt tracks, 1 neutral decay vee

2. determine momenta of prompt charged and prompt neutral track using mo-
mentum conservation

3. determine particle identity using energy conservation using the combination
that fulfills it best

92

4. do a cut on energy conservation

5. calculate velocities usingβ = p√
p2+m2

6. calculate time-of-flight usingto fcalc = path
β

Then the point of entrance of the particles in the individualsub-detectors is calcu-
lated, the time-of-flight difference of the previously calculatedto fcalc to the mea-
suredto fmeasuredis plotted in dependence of the distance of this entrance point to
the detector readout. A fifth-order polynomial is assumed and fitted to the profile
of this 2D-distribution.

93

Chapter 7

Results

7.1 Simulations

After the analysis of the measured data including calibration, tracking, velocity re-
construction and reaction recognition, the resulting spectra are still convolved with
the detectors acceptance and efficiency of both detector response and reconstruc-
tion. To get rid of these effects simulations are done.
First step is to generate events of the reaction to investigate, usually these first
events are phase space distributed. Then these particles are transported through a
virtual detector generating simulated detector response.In best case the output of
the simulation software is the same format as data. Then thisoutput is, together
with prepared (quite often dummy) calibration, fed into theanalysis software. In
the optimal case the analysis software is unaware of the origin of the events.
To get the efficiency and acceptance, spectra are generated for both purely simu-
lated events and simulated events, that passed the virtual detector. The ratio of these
spectra (purely simulated over passed virtual detector), the correction spectra are
to be multiplied to the data spectra to get the efficiency and acceptance corrected
spectra:

Hdata . . . Data Spectra

Hsim . . . Simulated Spectra

Hmc . . . Simulated Events trough virtual detector

Hefficiency =
Hmc

Hsim

Hcorrected =Hdata/Hefficiency

Fortunately the acceptance of the COSY-TOF-detector is rather large and due to the
Lorentz-boost almost 4π are covered in the center of mass frame for the reaction
pp→ pK+Λ. This gives the reason why it is mostly unimportant which kind of
reaction mechanism is used for the generation of the MonteCarlo-Simulation for
the efficiency and acceptance corrections. Corrections have been generated for

94

both phase-space-distributed events and a simulation close to the one described in
sec. 7.2. The final spectra differ only in the parts of the spectra where the relative
efficiency is rather low, which occurs only at the very edges of spectra like cosθcm.
Therefore the differences are negligible. Nevertheless the spectra shown in this
work are corrected using the model-simulations and not the phase-space distributed
events.

7.1.1 Simulation

The generation of phase-space-distributed events is done by the GIN phase space
generator built into the GEANT simulation software. It generates a random phys-
ical event of the specified type along with a phase space weight. Afterwards a
Laplacianly distributed random number is generated. If theweight is smaller than
the random number, the event is skipped.
Instead of using the simple phase space weight, a modification can be multiplied
to it, modifying the differential cross-sections. This canbe a resonance using a
Breit-Wigner-term (see sec. A.4) modifying the invariant mass spectra, a final state
interaction (FSI) or a propagator that also modifies the angular distributions.
The internal GEANT phase-space-generator GENBOD is used inthe case of phase-
space distributed simulations and for simple cases like elastic scattering. For the
more complicated simulations an external program has been written that generates
phase-space distributed events, using the ROOT phase-space generator TGenPhas-
eSpace. This program is written in C++ and therefore much easier to read and to
debug. The events generated with this program are written tofile(s) and later used
as an input for the GEANT simulation program.

7.1.2 Virtual detector

The virtual detector is a computer description of the physical detector. The Fortran
based GEANT 3 package developed at CERN is used. The program was originally
programmed in Jülich, but further refined in the course of this work.
First step, after initialization of basic data structures,is to define materials. Then
the detector volumes are defined as active volumes, few supporting structures as
dead material.
Then the event generator is launched, generating a previously specified number
of valid events. The particles generated for these events, are transported through
the detector volume, taking into account the energy loss by electromagnetic- and
hadronic-interactions (the latter can be switched off), decay of unstable particles,
until the particles (primary as well as decay products) are either stopped or leave
the detector volume.
If some energy loss occurred in one of the volumes defined as active volumes, a
timing and energy loss output similar to the output the DAQ1 produces is gener-
ated. This output is written to file. Also the generated particles are written to file

1Data AQuisition system

95

with their 3D-momentum components and the particle ID. Lastbut not least there
are “track” files generated that record – apart from the generated particles – the
start vertex, the stop vertex, the particles ID and the initial and the final momentum
of each particle processed in the course of the event.
Using track files of data, purely simulated and analyzed simulated events it is pos-
sible to determine the reconstruction efficiency and the reconstruction resolution.
For the sake of precision the virtual detector has to be as close to the real detector
as possible.

7.1.3 Calibration for Simulation

As mentioned above the output of the virtual detector is fed into the analysis pro-
gram the same way as real data is. In the course of this analysis a calibration is
applied. In the case of simulation a dummy calibration is applied as usual in the
COSY-TOF-Collaboration. To have more precise results, a de-calibration can be
applied to the simulated values to be able to apply the same calibration constants
as for data.
Fortunately processing the whole procedure is not necessary. Already during the
event transport smearing is applied for the timing. Since the QDC-signal is used
as a mere switch whether the signal is a valid one, an energy-de-calibration is not
necessary. This leaves us with the cuts. Cuts in data are necessary to suppress
the noise but they are always cutting away valid signals, sometimes significantly.
To simulate the way the small signals are treated in data, cuts for simulated events
were generated by comparing the spectra of the simulated QDCs and the rest-QDC-
spectrum of data and choosing a value, where the relative height (compared to the
peak-position and -height) of the spectra is the same. This procedure can be ap-
plied after generating simulated events.
There are runs where some parts of the detector have reduced efficiency, that does
not depend on event-number,θ-angle, QDC, TDC or other values. To have cor-
responding events for this already quite large part of the measured data, this has
already to be taken care of during simulation. So the simulation code was altered
for a number of simulated events to reduce the efficiency for the appropriate parts
of the detector.

7.1.4 Background

Since any measurement involves not only the desired reaction but also other so
called background reactions, that have track-pattern similar to the one of the stud-
ied reaction, these background reactions have to be simulated to make an estima-
tion on the background content of the real spectra and to givean efficiency estimate
of the applied cuts.
Studies for background reactions have been made and the results are listed in table
7.1 and 7.2.
The main background however could not reasonably be simulated or even reason-

96

reaction σ [mb] simulated events track-pattern after cuts
Data 3046587 662765 34869

pp→ pK+Λ see sec. 7.4 8000000 611208 381308
pp→ pK+Σ0 0.005 500000 10356 100

pp→ ppπ+π− 2.5 500000 1728 5
pp→ ppπ0π0 1 500000 472 1
pp→ ppπ0 3 500000 271 0
pp→ pnπ+ 15-16 500000 109 0

pp→ pnπ+π0 4 500000 238 0

Table 7.1: Simulated reactions in phase-space distribution. Expectation of contam-
ination in the data-set.

able estimated: The background due to event-mixing. As discussed in the trigger
section (sec. 5.2), the gates of the stop detectors were set too long, which made
it possible, that a lot of originally two-charged-track events were mixed with a
previous two-charged-track event (e.g. two succeeding elastic events or a single
pion-production-event and an elastic-event). This background was reduced with
tight cuts and a kinematic fit.

7.2 Simulated Resonances and Final State Interactions

Previous studies ([41]) show, that in the energy region of interest mainly threeN∗-
resonances contribute. Dominantly visible is theP11 resonanceN∗1710 with a width
of Γ1710 = 100 MeV . But there are also contributions from theS11 resonance
N∗1650 with a width of Γ1650 = 165 MeV, theP13 resonanceN∗1720 with a width of
Γ1720= 200MeV ([46]) and the final state interaction of the two heavy particles
in the exit channel of this reaction:p andΛ ([17]).
The resonances are described each with a Breit-Wigner-term(see. eq. A.4). This
term changes the Dalitz-Plots and therefore the invariant mass spectra and also the
angular spectra, but not sufficiently to describe the data.
According to the meson exchange model, a propagator for the exchanged meson

p

p

Y

K

N
K

(a)
p

p

N

K

Y
π,σ,η,ρ

(b)
p

p

N

K

Y
π,σ,η,ρ

N∗

(c)

Figure 7.1: Meson exchange model. (a) shows an exchange of a strange meson
(Kaon) without he excitation of a resonance. The exchange ofa non-strange meson
without (b) and with (c) the excitation of aN∗-resonance is shown.

97

reaction
remaining % after

tracking converged cut 1 cut 2 cut 3 cut 4 cut 5

Data
3046587 662765 50727 240749 1650328 545789 391153

(22%) (1.7%) (7.9%) (54.2%) (17.9%) (12.8%)

pp→ pK+Λ 652320 611208 490042 477244 599613 499463 565985
(93.7%) (75.1%) (73.2%) (91.9%) (76.6%) (86.8%)

pp→ pK+Σ+ 471 220 3 53 100 94 104
(46.7%) (0.6%) (11.3%) (21.2%) (20%) (22.1%)

pp→ ppπ+π− 1728 501 5 104 192 231 253
(29%) (0.3%) (6%) (11.1%) (13.4%) (14.6%)

pp→ ppπ0π0 472 153 1 34 89 83 71
(32.4%) (0.2%) (7.2%) (18.9%) (17.6%) (15%)

pp→ ppπ0 272 51 0 20 26 30 34
(18.8%) (0%) (7.4%) (9.6%) (11%) (12.5%)

pp→ pnπ+π0 238 38 0 6 20 13 15
(16%) (0%) (2.5%) (8.4%) (5.5%) (6.3%)

pp→ pnπ+ 109 18 0 2 11 5 11
(16.5%) (0%) (1.8%) (10.1%) (4.6%) (10.1%)

Table 7.2: Simulated reactions in phase-space distribution. Work of cuts. Cut 1 is
χ2 < 8-cut, cut 2 isαPmiss,PK+ ,vee< 4◦, cut 3 isM∆pπ < 0.04 GeV, cut 4 isMMPK+ <
0.07 GeV and cut 5 isMMPK+∆Pπ < 0.2 GeV.

has to be added. Since we are dealing withN∗-excitations,σ-exchange appears
very reasonable. For the Roper resonanceN∗(1440) it has been shown to be the
dominant exchange process for the re-scattered nucleon [8], [9].
Before we continue let’s make a short break to discuss the nomenclature of the
momenta used in the following formulae: On the production vertex of theN∗-
resonanceq denotes the momentum-exchange between the two baryons. That is
the momentum of the exchanged meson. In superscript the frame in which this
momentum is given is provided (qcm is meson-momentum in overall-center-of-
mass,qN∗ in the N∗ rest-frame);qµ denotes a Lorentz-invariant 4D-momentum
vector,~q a 3D-momentum vector andq the length of the 3D-momentum-vector.
On the decay vertex of theN∗-resonance,k is the momentum of the emitted meson
(Kaon). Finally for the final state interactionp is the momentum between the two
interacting particles (here only proton andΛ have been taken into account).
The meson propagator is then:

P =
1

(
qcm

µ

)2−m2
meson

(7.1)

This term introduces an angular dependence, as visible in the measured data.
The enhancement at the low invariant mass of proton andΛ compared to phase-
space is due to some final state interaction at low relative momentum of the two

98

heavy articles. The final state interaction can be described

σ∼ 1
4
|M|2 (pcm)2 + β2

(pcm)2 + α2
(7.2)

with |M|2 the singlet production matrix element squared (singlet only since the
triplet state doesn’t contribute according to [17]) andp the proton orΛ momentum
in thePΛ-system. The valuesα andβ are defined as follows :

α =
1−
√

1−2 r
a

r

β =
1+
√

1−2 r
a

r

using as parameters the scattering lengtha and the effective ranger; see [17] for
further details.
Resonance terms: The resonance amplitudes are described bya Breit-Wigner-term:

fresonance∼
−MΓresonance(q)

M2−M2
resonance+ iMΓresonance

(7.3)

For each vertex there are terms necessary depending on the spin/iso-spin of the
resonance and the exchanged meson. Theσ-exchange-vertex contributes with a
constant factor. For the three contributing resonances we have the following:

fresonance∼
−MΓresonance(q)

M2−M2
resonance+ iMΓresonance

const. N∗1650(S11)(
~σ ·~k

)
N∗1710(P11)(

~s·~k
)

N∗1720(P13)

(7.4)

The momentum dependent width in the numerator and the vertex-factors can be
combined into the following expression:

c =

√
Γ f

kN∗
Γi

qN∗ (7.5)

=
√

Γ0
f Γ

0
i

√
1

qN∗kN∗

√√√√
(

kN∗

kR

)2l f +1
(

k2
R+ δ2

(kN∗)2 + δ2

)l f +1(
qN∗

kR

)2li+1
(

k2
R+ δ2

(qN∗)2 + δ2

)li+1

Γ f ,i = Γ0
f ,i

(
kN∗

kR

)2l+1
(

k2
R+ δ2

(kN∗)2 + δ2

)l+1

(7.6)

δ2 = (mN∗−mΛ−mK)2 +
Γ2

N∗

4
(7.7)

(7.8)

99

The complete expression for the cross-section then looks asfollows (M the decay
particles invariant mass,~σ the spin-operator vector,~s the spin):

σ∼ PS ∗ FSI ∗ |Propagator ∗ (aN∗1650+bN∗1710+cN∗1720)|2

=PS∗
(

1
4
|M|2 (pcm)2 + β2

(pcm)2 + α2

)

︸ ︷︷ ︸
FSI

∗
∣∣∣∣∣

1
(
qcm

µ

)2−m2
σ︸ ︷︷ ︸

propagator

∗

eiφ1650c1650

(−M

M2−M2
1650+ iMΓ1650

)

︸ ︷︷ ︸
S11 N∗1650

+eiφ1710c1710

(−M

M2−M2
1710+ iMΓ1710

)

︸ ︷︷ ︸
P11 N∗1710

+ eiφ1720c1720

(−M

M2−M2
1720+ iMΓ1720

)∣∣∣∣
2

︸ ︷︷ ︸
P13 N∗1720

(7.9)

with kR being the momentum of either particle at the resonance pole position and
Γ0

f ,i –better the relative strengthai – a fit parameter.
To find the right parameters (listed in table 7.3), a fit was performed using the MI-
NUIT ([19], [20]) minimization tool. The used version was version 2 integrated
into the root-analysis-framework programmed in C++. The fitted spectra were the
invariant mass spectra of each two prompt particles of the reaction pp→ pK+Λ
(figs. 7.17(a), 7.17(b) and 7.17(c)). Using the named three resonancesN∗1710, N∗1650
andN∗1720, the spectra could be reasonably well described though in the center of
the invariant mass spectrum ofpΛ (7.17(b)) there is a structure known as cusp-
effect (see sec. 7.8.3). To describe this structure, a Breit-Wigner-term was intro-
duced due to its peak-like structure, no resonance-like process whatsoever was
intended though using this formula! This term was added as intensity, not on
amplitude-level.

7.3 Normalization

In order to get the total cross-sectionσtot and the correctly scaled differential cross-
sections, a normalization has to be done. The process of normalization results
normally in a single value with the unitbarn

Ncorrected
. Multiplying this number to the ef-

ficency and acceptance corrected graphs and the corrected total number of events,
returns the total cross-section and the correctly scaled differential cross-sections.
To retrieve this number, a reference reaction has to be chosen with a known cross-
section.

100

Resonances Value
M1650 S11 1.653GeV
Γ1650 0.1683GeV
φ1650 0.514419
a1650 0.166
M1710 P11 1.712 GeV
Γ1710 0.0986GeV
φ1710 0.278949
a1710 0.17
M1720 P13 1.731 GeV
Γ1720 0.3826GeV
φ1720 (fixed) 0
a1720 0.61

CUSP
MCUSP 2.138 GeV
ΓCUSP 0.025GeV
acusp 0.078

FSI
a -2.23 fm
r 1.4 fm

Meson exchange propagator
mmeson 0.400GeV (σ)

Table 7.3: Parameters used for the described model. The relative strengthsai used
as fit parameters are dimensionless and∑ai = 1

Here pp-elastic-scattering was chosen, where the differential cross-section depend-
ing on the polar angle in the CM-system (A.5.1) is well known [39].
As for the procedure, a number of events was generated using the aforementioned
cross-section retrieved from [39]. These events were fed through a virtual detector
and then analyzed as was the procedure for all simulated runs.
From the data there were elastic events extracted using the same data-base as for
extracting thePK+Λ-events. Here the following cuts were made:

Ntracks= 2

−0.05< |φ1−φ2|−π < 0.05

−0.2 <
1√

tanθ1 ∗ tanθ2
− γbeam< 0.2 (7.10)

The resulting 1√
tanθ1∗tanθ2

distribution is shown in eq. 7.2(a). The elastic gamma
peak is clearly visible in the distribution, though there remains background. This
can be removed using a closer cut on this distribution and a kinematic fit (eqs. 7.11).
Furthermore the correct beam-momentum can be extracted outof this plot, since

101

Fri May 6 12:19:02 2011

)2θ)tan(1θtan(
1=γ

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65
0

50

100

150

200

250

300

350

400

450
310×

(a)

Fri May 6 12:09:03 2011

0 1 2 3 4 5 6 7 8 9 100

50

100

150

200

250

300

350

400

310×

(b)

Figure 7.2: (a) 1√
tanθ1∗tanθ2

, (b) χ2-distribution are shown for both data (hashed)
and Monte-Carlo (solid gray).

theγ here is the relativisticγ of the initial system. Thisγ was found to beγ = 1.488
which corresponds to a beam-momentum ofPbeam= 3.081GeV/c.
After the extraction the data is fed into the kin-fit-engine with the correct beam-
momentum as well as analyzed Monte-Carlo-events are. The events are then used
to generate graphs for purely simulated, simulated throughvirtual detector and
data, applying the following cuts on all three data-sets:

Ntracks= 2

−0.05< |φ1−φ2|−π < 0.05

−0.075<
1√

tanθ1∗ tanθ2
− γbeam< 0.075

χ2 < 1.5 (7.11)

For further study the cosθcm-graphs are used. As for thePK+Λ-reaction, the plots
are corrected using purely generated, Monte-Carlo and measured data (7.1).
Some ranges in cosθcm are chosen for the normalization (fig. 7.3). For these ranges
the integral over the literature distribution is calculated and divided by the corrected
number of entries retrieved from the histogram.

fnormalisation=

R ranges δσ
δθcm

dθcm

∑rangesNcorrected
(7.12)

7.3.1 Trigger

Here again the question of triggers arises. There was a dedicated elastic-trigger,
requiring two hits in start and two again in stop (start2-stop2). This trigger was
pre-scaled by a factor of 400, only every four-hundredth event was recorded.
On the other hand there is an enormous amount of elastic-events in the regular

102

data-set (see sec. 5.2).

Trigger elastic-trigger (6)
Number 1.85·10−8 mbarn

evt
Error 0.85·10−10mbarn

evt

(a) kinfitted (b) non kinfitted

Figure 7.3: cosθcm-distribution for pp-elastic scattering. The regions usedfor nor-
malisation are the ones indicated by arrows.

7.4 Total cross-section

To determine efficiency eight milion events were simulated using the previously de-
scribed model (sec. 7.2). After virtual detector, analysisand cuts, 4.7% remained.
The measurable decay-channel of theΛ into two charged particles is not the only
possible decay, it has only a branching ratio of 64% ([46]). Together with the data-
events, that passed the cuts and the luminosity derived frompp-elatic-scattering,
the total cross-section can be calculated:

Value Error
Simulated eventsNGIN 8e+06 2828.4
through detectorNMC 381308 617.5
Data eventsNDATA 34869 186.7
efficiency:ε = NMC

NGIN
0.04766 7.9e-05

branching ratio into charged decay 0.639 0.005

derived from elastic
(

δσ
δN

)
[mb/Entr] 1.847e-08 8.4e-11

The errors are either from text-book (branching ratios), purely statistical (∆N =

103

√
N) or calculated using Gaussian error-propagation.

σPK+Λ =

(
δσ
δN

)
NDATA

εPK+Λ

1
BR

(7.13)

= 0.0211417mb

∆σPKΛ =

√(
NDATA

εPKΛ

−1
BR

∆
(

δσ
δN

))2

+

((
δσ
δN

)
1

εPKΛ

−1
BR

∆NDATA

)2

(7.14)

+

((
δσ
δN

)
NDATA

−1
BR
−1

ε2
PKΛ

∆εPKΛ

)2

+

((
δσ
δN

)
NDATA

−1
εPKΛ

−1
BR2∆BR

)2

= 0.000225497mb

σPK+Λ = 21.1±0.2stat±2.0sysµb (7.15)

As systematic error for the total cross-section 10% of the absolute value were
assumed. This is roughly the value used in other publications as well and the
amount the total cross-section varied in dependence of different values for the dif-
ferent applied cuts.
The previous publication by M. Schulte-Wissermann ([41]) claimed a total cross-
section of 23.9±0.3µb, which is comparable within error-bars to the value pre-
sented in this work. The main difference lies in the total number of events, which is
much lower for this work than in the publication by M. Schulte-Wissermann. With
his analysis, he has twice the reconstruction efficiency I have, but with the limi-
tation of having no kinematic fit. In total, especially sincethe total-cross-sections
are so close, the result can be viewed as comparable.
The main reason for the rather small number of events may be found in the al-
ready mentioned non-working trigger. A number of 300,000 to400,0002 events
was expected to be reconstructed from such a long beam-time.Due to this trigger-
malfunction, most of the hyperon-trigger-events were justgarbage – two success-
ing events with two charged prompt tracks each. The reconstruction of events
omitting the time-of-flight information is possible, though many events may sur-
vive the applied cuts, that are not reallypp→ pK+Λ but probably two single-pion-
production events.

7.5 Legend

All one-dimensional plots shown in this chapter have the following color code:

2considering expected crossection, requested luminosity,target thickness, efficiency of detector
and reconstruction and assumed DAQ-efficiency.

104

Color data set
yellow fill phase space

black dots with error bars corrected data
blue dotted line SimulationN∗1720
green dotted line SimulationN∗1650
magenta dotted line SimulationN∗1710
red dotted line Simulation of cusp
red line complete Simulation
gray fill MC simulation through virtual detector

Plots with observables are shown as phase-space with corrected data and mod-
els, plots showing cuts display only uncorrected data alongwith the Monte-Carlo
passed through virtual detector.
Two-dimensional plots are shown in two steps since plottingtwo 2D-plots on top
of each other can be gruesome.

7.6 Analysis

The analysis-programtypeCasewas used for the calibration and analysis of the
data. For the complete list of parameters see Appendix. F.

7.7 Selection ofPK+Λ-events

[GeV]
miss

decay using PM
1.1 1.2 1.3

[G
eV

]
P

K
M

M

0.8

1

1.2

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

(a) MC

[GeV]
miss

decay using PM
1.1 1.2 1.3

[G
eV

]
P

K
M

M

0.8

1

1.2

0

500

1000

1500

2000

2500

3000

(b) Data

Figure 7.4: The figures (a) and (b) show – before the kinematical fit – the invariant
mass of decay-particlesp andπ− vs. the missing mass of the two prompt charged
particles. Both describe theΛ-particle and the peak is clearly visible at theΛ-mass
on both axes.

105

[GeV]
d

 pπM
1.1 1.2 1.3

C
ou

nt
s

0

5000

(a) using allβ

[GeV]
d

 pπM
1.1 1.2 1.3

C
ou

nt
s

0

2000

4000

(b) using onlyβp and secondary
vertex

[GeV]
d

 pπM
1.1 1.2 1.3

C
ou

nt
s

0

2000

4000

(c) using noβ of decay particles

Figure 7.5: Different spectra ofpπ− invariant mass distributions before kinematical
fit. (a) used no geometrical information about the secondaryvertex, (c) used purely
geometry for calculation ([1]), (b) is a hybrid calculationmethod. Blue dotted line
indicates theΛ-mass, red dotted lines show where cuts are applied. Shaded gray is
MC, points are data.

Cuts need to be applied to the data to enrich the data sample with the wanted re-
action and reduce background. Nevertheless, there will still remain a non-vanishing
background content.
The most stringent cut applied to the data is requesting the exact track-pattern of
two charged prompt tracks and one neutral decay. This reduces the data sample by
a factor of 500. It should be considerably less considering the applied trigger, but
since it didn’t work as designed, this is the best that could be achieved.
Next cut is the “forward cut”: Applying momentum conservation, the momenta of
the three prompt particles (2 charged, 1 neutral) can be calculated by using:

~Pinitial = p1v̂1 + p2v̂2 + p3v̂3

Px

Py

Pz

initial

=

v̂1

x v̂2
x v̂3

x

v̂1
y v̂2

y v̂3
y

v̂1
z v̂2

z v̂3
z

p1

p2

p3

p1

p2

p3

=

v̂1

x v̂2
x v̂3

x

v̂1
y v̂2

y v̂3
y

v̂1
z v̂2

z v̂3
z

−1

Px

Py

Pz

initial

(7.16)

By the fact that all observed particles are forward going, all resulting momenta
have to be positive.
Even more stringent cuts on the momenta ranges of the particles can be applied
using the so called “Phase-Space-Cut” used in the work of Wolfgang Schröder

106

[GeV]uncut
ΛpKMM

-0.2 0 0.2

C
ou

nt
s

0

2000

4000

(a) Mmiss
pK+π−p

[deg]α
0 5 10 15

C
ou

nt
s

0

2000

4000

(b) αvee
MPpk

Figure 7.6: Overall missing mass andαvee
MPpk

, both before kinematical fit. Red
dotted lines show where cuts are applied. Shaded gray is MC, points are data.

([49]). Here after particle identification (which is done using energy conservation:
∆E = Einitial − (E1+E2+E3) using the combination that produces a smaller∆E)
cuts on the phase-space-limit are applied, allowing only for events where all mo-
menta are in the kinematically allowed momentum-range.
We do not follow this cut method here, but rather follow a moresophisticated pro-
cedure: Up to this point particle identification was not necessary. A kinematic
fit is applied with all four different permutations, keepingthe mass-(or particle)-
assignment with the smallestχ2.
After particle identification, cuts are performed on the missing mass of the two
prompt charged particles (using the unfitted values; using the fitted ones result in
delta-distributions) to be close to the literature-value of the Λ-mass, as well as the
invariant mass of the two decay particles of the neutral particle.
An additional cut is applied on the angle between the connection line from the
primary to the secondary vertex and the missing momentum of the two charged
prompt particles (see fig. 7.6(b)).
The next cut is applied on the overall missing mass (see fig. 7.6(a)).
Last but not least a cut on thechi2-distribution of the kinematic fit is applied (see
fig. 7.8(a)). Theχ2-distribution peaks at(n− 2) where n is the number of de-
grees of freedom, that is the number of over-constraints that are imposed on the
kinematic due to measuring more properties of the participating particles than nec-
essary to reconstruct all 4-momenta. Not counting theΛ but its decay particles,
there are four particles, each with 4 properties (two angles, one mass, one energy/-
momentum/velocity) summing up to 16 variables to be determined. The angles of
all particles are measured (8), the masses of all particles are assumed (4), the ve-
locities of all particles are measured (4), momentum- and energy-conservation add

107

[GeV]uncut
ΛKMM

0.8 1

C
ou

nt
s

0

1000

2000

3000

(a) Mmiss
pK+

[GeV]uncut
ΛpMM

0.4 0.6

C
ou

nt
s

0

1000

2000

3000

(b) Mmiss
pΛ

[GeV]uncut
pKMM

1 1.2

C
ou

nt
s

0

2000

4000

(c) Mmiss
K+Λ

Figure 7.7: Missing Masses ofpK+(c), pΛ(b) andK+Λ(a) before kinematical fit.
Red dotted lines show where cuts are applied. Shaded gray is MC, points are data.

another 4 constraints to the equation. Imposing theΛ-mass as additional constraint
on the invariant mass of the decay particlesp andπ−, give five over-constrains in
total.
As a measure of the quality of the data the missing masses of any two prompt
particles is plotted in fig. 7.7.

108

7.7.1 Kinematical fit

kinfit
2χ

0 5 10 15 20

C
ou

nt
s

0

1000

2000

3000

(a) χ2

probability
0 0.5 1

C
ou

nt
s

210

310

410

(b) Probability

Figure 7.8: Properties of kinematic fit, 7.8(a) shows theχ2 distribution, 7.8(b) is
the probability distribution.

109

7.7.2 Resolution

Before proceeding to the differential cross-sections, let’s make a short stop to in-
vestigate the resolution of these distributions, especially here the invariant masses.
Of interest here are the central values in table 7.4, these are the differences between
the fitted and the true values. For the missing masses these values are naturally tiny,
since they are minimized during the kinematic fit. For the invariant masses the res-
olution is FWHM3 is about 6 MeV, which is comparable with the values retrieved
from more recent COSY-TOF-beam-times using the Straw-Tube-Chamber [26].

reconstructed- true- true-
fitted fitted reconstructed

MKΛ
σ [GeV] 0.0165 0.0025 0.0172
FWHM [GeV] 0.039 0.0059 0.040

MpΛ
σ [GeV] 0.0168 0.0026 0.0171
FWHM [GeV] 0.040 0.0062 0.040

MpK

σ [GeV] 0.0130 0.0025 0.0135
FWHM [GeV] 0.030 0.0058 0.032

Mpπ
σ [GeV] 0.0063 (0.00071) 0.0063
FWHM [GeV] 0.015 (0.0017) 0.015

MMKΛ
σ [GeV] 0.026 (0.00061) 0.026
FWHM [GeV] 0.060 (0.0014) 0.060

MMpΛ
σ [GeV] 0.022 (0.00034) 0.022
FWHM [GeV] 0.052 (0.00080) 0.052

MMpK

σ [GeV] 0.017 (0.00071) 0.017
FWHM [GeV] 0.040 (0.0017) 0.041

Table 7.4: Resolution of the invariant- and missing- mass spectra.

3full width half maximum

110

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
0

10000

20000

30000

40000

50000

ΛKM -rec-true∆
Entries 337962
Mean 7.967e-05
RMS 0.004282

ΛKM

(a) MK+Λ

-rec-true∆
Entries 337962
Mean 7.967e-05
RMS 0.004282

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
0

10000

20000

30000

40000

50000

ΛpM -rec-true∆
Entries 337962
Mean -0.0002078
RMS 0.004619

ΛpM

(b) MpΛ

-rec-true∆
Entries 337962
Mean -0.0002078
RMS 0.004619

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
0

10000

20000

30000

40000

50000

pKM -rec-true∆
Entries 337962
Mean 0.0002079
RMS 0.004724

pKM

(c) MpK+

Figure 7.9: Monte-Carlo resolution histograms. Black lines are (reconstructed-
fitted)-values, green lines are (reconstructed-true)-values and red (fitted-true)-
values, for (a)MK+Λ, (b) MpΛ and (c)MpK+

111

7.8 Kinfitted Graphs

φ
-2 0 2

b/
ra

d]
µ[φdσd

0

2

4

(a) φp

φ
-2 0 2

b/
ra

d]
µ[φdσd

0

2

4

(b) φK+

φ
-2 0 2

b/
ra

d]
µ[φdσd

0

2

4

(c) φΛ

Figure 7.10: Theφlab-distribution for proton,K+ andΛ.

CMΘcos
-1 -0.5 0 0.5 1

b]µ[
C

M
Θ

dc
os

σd

0

10

20

30

(a) cosθcm
p

CMΘcos
-1 -0.5 0 0.5 1

b]µ[
C

M
Θ

dc
os

σd

0

20

40

(b) cosθcm
K+

CMΘcos
-1 -0.5 0 0.5 1

b]µ[
C

M
Θ

dc
os

σd

0

10

20

(c) cosθcm
Λ

Figure 7.11: The cosθcm-distribution for proton,K+ andΛ.

In this section we discuss the graphs with the kinematicallyfitted observables.
All plots are normalized toσtot derived in sec. 7.3.
The cosθcm-graphs (fig. 7.11) can be used as a measure of the quality of the data
reduction. Since the entrance channel consists of identical particles, the exit chan-
nel has to be symmetric in cosθcm around 90◦ or 0. Looking at theθcm-distributions
of the individual particles – proton,K+ andΛ – one can see, that they are largely
symmetric to 90◦. For the proton and theΛ the distributions deviate clearly from
phase-space.
Theφlab-distributions (fig. 7.10) are flat as expected.
The center-of-mass energy distributions (Ecm, fig. 7.13) are nicely described by the
model.

112

E
0 0.5 1 1.5

b/
G

eV
]

µ[
dE

σd

0

10

20

30

(a) Elab
p

E
0 0.5 1

b/
G

eV
]

µ[
dE

σd

0

20

40

(b) Elab
K+

E
0 0.5 1 1.5

b/
G

eV
]

µ[
dE

σd

0

10

20

30

(c) Elab
Λ

Figure 7.12: The laboratory Energy-distribution for proton, K+ andΛ.

CME
0 0.05 0.1 0.15

b/
G

eV
]

µ[
C

M
dE

σd

0

100

200

(a) Ecm
p

CME
0 0.1 0.2

b/
G

eV
]

µ[
C

M
dE

σd

0

50

100

150

(b) Ecm
K+

CME
0 0.05 0.1 0.15

b/
G

eV
]

µ[
C

M
dE

σd

0

100

200

(c) Ecm
Λ

Figure 7.13: The center-of-mass Energy-distribution for proton,K+ andΛ.

113

β
0 0.5 1

βdσd

0

50

100

(a) βlab
p

β
0 0.5 1

βdσd

0

50

100

(b) βlab
K+

β
0 0.5 1

βdσd
0

50

100

(c) βlab
Λ

Figure 7.14: Theβlab-distribution for proton,K+ andΛ.

Θ
0 0.2 0.4 0.6

b/
ra

d]
µ[

Θd
σd

0

20

40

60

(a) θlab
p

Θ
0 0.5 1

b/
ra

d]
µ[

Θd
σd

0

20

40

60

(b) θlab
K+

Θ
0 0.2 0.4 0.6

b/
ra

d]
µ[

Θd
σd

0

50

(c) θlab
Λ

Figure 7.15: Theθlab-distribution for proton,K+ andΛ.

114

]2[GeVΛp
2M

4.5 5

]2
[G

eV
Λ

K2
M

3

3.5

0

20

40

60

80

100

120

140

160

180

(a) model

]2[GeVΛp
2M

4.5 5

]2
[G

eV
Λ

K2
M

3

3.5

0

200

400

600

800

1000

1200

1400

(b) corrected data

]2[GeVΛp
2M

4.5 5

]2
[G

eV
Λ

K2
M

3

3.5

0

100

200

300

400

500

600

700

(c) MC

]2[GeVΛp
2M

4.5 5

]2
[G

eV
Λ

K2
M

3

3.5

0

10

20

30

40

50

60

70

(d) raw data

Figure 7.16: Dalitz-plots for Simulation (a), corrected data (b), MC (c), data (d).

7.8.1 Dalitz-plot and projections

The corrected Dalitz-plots (fig. 7.16(b)) agree quite well with the model calcula-
tions (fig. 7.16(a)). Here, at the left upper part of the ellipse – at low invariant
mass ofpΛ – the enhancement due to Final-State-Interaction is visible. The bulk
enhancement at the lower part, that is almost parallel to theMpΛ-axis, is the expres-
sion of theN∗-excitations described earlier (sec. 7.2). A vertical linein the center
is the expression of theΣ-cusp-effect
A closer look at the projections reveals more detailed information to the eye.
As well as the Dalitz-plot, the invariant mass spectra (figs.7.17(a), 7.17(b) and
7.17(c))are nicely described by the model simulations; in the invariant mass spec-
trum of MpΛ, there is an enhancement at 2.14GeV, which is due to the cusp-effect
(sec. 7.8.3).In fig. 7.17(d), the model-simulation is done using the literature values
for the Final State Interaction. Here it is clear, that theseparameters are not able to

115

[GeV]ΛKM
1.6 1.7 1.8

b/
G

eV
]

µ
 [

dE
σd

0

50

100

150

(a) MK+Λ

[GeV]ΛpM
2.1 2.2 2.3

b/
G

eV
]

µ
 [

dE
σd

0

50

100

150

(b) MpΛ

[GeV]pKM
1.5 1.6 1.7

b/
G

eV
]

µ
 [

dE
σd

0

50

100

150

(c) MK+ p

[GeV]ΛpM
2.1 2.2 2.3

b/
G

eV
]

µ
 [

dE
σd

0

50

100

150

(d) MpΛ

Figure 7.17: Invariant Masses ofK+Λ (a), pΛ (b) andK+p (c). (d) contains for
the simulation of FSI the literature values, (b) is adjustedvalues.

discribe the FSI in full, but they have to be adjusted (2σ-deviation, fig. 7.17(b)).
The helicity-frame-angles – another possible projection of the Dalitz-plot – also
agree nicely with the model-simulation. Also in this distribution, the contributing
resonances are visible, as well as the final state interaction.

116

αcos
-1 -0.5 0 0.5 1

b]µ
 [

H
α

dc
os

σd

0

10

20

(a) α(K+Λ)
pΛ

αcos
-1 -0.5 0 0.5 1

b]µ
 [

H
α

dc
os

σd

0

5

10

15

(b) α(Λp)
K+ p

αcos
-1 -0.5 0 0.5 1

b]µ
 [

H
α

dc
os

σd
0

5

10

(c) α(pK+)
K+Λ

αcos
-1 -0.5 0 0.5 1

b]µ
 [J

α
dc

os
σd

0

10

20

(d) α(Λp)
p

αcos
-1 -0.5 0 0.5 1

b]µ
 [J

α
dc

os
σd

0

10

20

(e) α(pK+)
K+

αcos
-1 -0.5 0 0.5 1

b]µ
 [J

α
dc

os
σd

0

5

10

15

(f) α(K+Λ)
Λ

Figure 7.18: Helicity- and Jackson-Frame-angles.

117

CMαcos
-1 -0.5 0 0.5 1

b]µ
 [

cm
α

dc
os

σd

0

10

20

30

(a) αcm
K+Λ

CMαcos
-1 -0.5 0 0.5 1

b]µ
 [

cm
α

dc
os

σd

0

20

40

60

(b) αcm
Λp

CMαcos
-1 -0.5 0 0.5 1

b]µ
 [

cm
α

dc
os

σd

0

20

40

(c) αcm
pK+

K^+
)CMθcos(

-1 -0.5 0 0.5 1

[G
eV

]
Λ

K
M

1.6

1.7

1.8

0

1000

2000

3000

4000

5000

6000

7000

(d) MK+Λ vs. cosθcm
K+

Λ
)CMθcos(

-1 -0.5 0 0.5 1

[G
eV

]
Λp

M

2.1

2.2

2.3

0

1000

2000

3000

4000

5000

6000

7000

(e) MΛp vs. cosθcm
Λ

p
)CMθcos(

-1 -0.5 0 0.5 1

[G
eV

]
pK

M

1.5

1.6

1.7

0

1000

2000

3000

4000

5000

(f) MpK+ vs. cosθcm
p

Figure 7.19: CM-angles. (a), (b) and (c) show the opening angles of each two
particles. (d), (e) and (f) invariant mass of each two particles versus the center of
mass angle of one of them.-

118

7.8.2 Λ-decay-particles

E
0 0.5 1 1.5

b/
G

eV
]

µ[
dE

σd

0

20

40

(a) Epd

CMΘcos
-1 -0.5 0 0.5 1

b]µ[
C

M
Θ

dc
os

σd
0

10

20

(b) θcm
pd

CME
0 0.1 0.2

b/
G

eV
]

µ[
C

M
dE

σd

0

100

200

(c) Ecm
pd

Θ
0 0.2 0.4 0.6

b/
ra

d]
µ[

Θd
σd

0

50

(d) θpd

φ
-2 0 2

b/
ra

d]
µ[φdσd

0

2

4

(e) φpd

β
0 0.5 1

βdσd

0

50

100

(f) βpd

Figure 7.20:Λ-decay particle: proton

TheΛ that could be reconstructed decayed into proton andπ−. With the rather
small excess momentum of 101 MeV/c ([46]), the proton, beingalmost as heavy
as theΛ, carries almost the same momentum as theΛ it decayed off. This is the
reason, that all effects, that theΛ-observables are subject to, are also affecting the
proton-observables. Therefore the proton laboratory and center-of-mass distribu-
tions are rather well described.
The θlab-distributions of all measured particles show steps, at thetransition from
one stop sub-detector to another (Quirl-Ring at 0.17rad, Ring-Barrel at 0.43rad).
This is caused by the fact, that the detector is not as well described by the simulation-
software as expected, the features of the rawθ-spectra, both of Monte-Carlo-
model-simulations and data, have qualitatively the same shape, but differ quan-
titatively. Here some inefficiencies of the real detector have not been correctly
transformed to the virtual detector.

119

E
0 0.2 0.4 0.6

b/
G

eV
]

µ[
dE

σd

0

50

100

150

(a) Eπ−

CMΘcos
-1 -0.5 0 0.5 1

b]µ[
C

M
Θ

dc
os

σd

0

10

20

30

(b) θcm
π−

CME
0 0.05 0.1

b/
G

eV
]

µ[
C

M
dE

σd
0

200

400

(c) Ecm
π−

Θ
0 0.5 1 1.5

b/
ra

d]
µ[

Θd
σd

0

20

40

(d) θπ−

φ
-2 0 2

b/
ra

d]
µ[φdσd

0

2

4

(e) φπ−

β
0 0.5 1

βdσd

0

50

100

(f) βπ−

Figure 7.21:Λ-decay particle:π−

120

7.8.3 Σ-cusp

[GeV]ΛpM
2.1 2.2 2.3

b/
G

eV
]

µ
 [

dE
σd

0

50

100

150

Figure 7.22: The invariant mass spectrumMpΛ, including the lines on which the
cusp-cut is made. Red arrows indicate the side-bands, greenthe main-band.

TheΣ-production reactionspp→ pK+Σ0 andpp→ nK+Σ+ are suppressed in
this data-sample.
Σ0 decays electromagnetically with a mean life-time ofτ = 7.4∗10−20s [46] into
Λγ (BR = 100%). It gives the same signature in the COSY-TOF-detector as the
reactionpp→ pK+Λ, but can be removed using theχ2-cut (sec. 7.7) and the cut on
αPmiss,PK+ ,vee. The later onepp→ nK+Σ+ shouldn’t even trigger the data aquisition
and minor remnants are removed due to the applied cuts.
Nevertheless theseΣ-production reactions are still visible in the measured data, but
not as a final but as an intermediate state. With small relative momentum between
nucleon andΣ, a conversion betweenΣ andΛ via hadronic interaction can occur
(collision damping). Having now proton, kaon andΛ in the final state this event
is no more distinguishable from the rest of thepK+Λ-events, but it generates a
narrow vertical structure in the Dalitz-plot and the projection onMpΛ-axis. Here it
is visible as a peak atΣ-threshold. This is called theΣ-cusp-effect.
The hadronic nature of the interaction gives rise to the rather broad width of this
structure of 25 MeV.
Having this large number of events for the reactionpp→ pK+Λ, and theΣ-cusp

showing up so nicely, we are in the position to calculate a total cross-section and
generate differential distributions for the effect using side-band-subtraction.
For the side-band-subtraction, the events were separated according to theirMpΛ.
The side-band-events (left and right) were filled in one set of histograms, the main-
or cusp-band-events into another (see fig. 7.22). To gain thefinal set of histograms,
the side-band-histograms were subtracted from the main-band-histograms4.

4Including a factor of 0.899 to take the different area in model – without cusp – into account.

121

CMΘcos
-1 -0.5 0 0.5 1

b]µ[
C

M
Θ

dc
os

σd

0

0.5

1

(a) cosθcm
p

CMΘcos
-1 -0.5 0 0.5 1

b]µ[
C

M
Θ

dc
os

σd

0

1

2

(b) cosθcm
K+

CMΘcos
-1 -0.5 0 0.5 1

b]µ[
C

M
Θ

dc
os

σd

0

0.5

1

1.5

(c) cosθcm
Λ

Figure 7.23: This figure shows the cosθcm-distribution for proton, kaon anΛ-
particles for theΣ-cusp-region.

αcos
-1 -0.5 0 0.5 1

b]µ
 [

^Hα
dc

os
σd

0

0.5

1

(a) cosα(K+Λ)
pΛ

αcos
-1 -0.5 0 0.5 1

b]µ
 [

^Hα
dc

os
σd

0

0.5

1

(b) cosα(Λp)
K+ p

αcos
-1 -0.5 0 0.5 1

b]µ
 [

^Hα
dc

os
σd

0

0.5

1

1.5

(c) cosα(pK+)
ΛK+

Figure 7.24: This figure shows the helicity-frame angles forproton, kaon anΛ-
particles for theΣ-cusp-region.

side-band left cusp-band side-band right
MpΛ-ranges[GeV] 2.085 2.11 2.11 2.175 2.175 2.21
NData

events 4361 15213 7332
Nsimulation

events 1326950 2804269 2335188

Nthrough−detector
events 39167 148147 93300

These numbers together with the total cross-section (eq. 7.15) result in a total cross-
section for the cusp of:

σcusp= 1.2±0.2µb (7.17)

The following differential cross-sections have been produced: angular distribution
in center of mass frame cosθcm (fig. 7.23) for all three prompt particles, Jackson-
and helicity-frame-angles respectively (figs. 7.25 and 7.24).
Contrary to the pictures showing the complete data-set, thecusp-region-graphs
have considerably larger error-bars due to significantly smaller statistics. The
cosθcm

Λ -distribution is definitely not phase-space-like, but is rather a smiling dis-
tribution. The kaon and proton center-off-mass angular distributions show a rather

122

αcos
-1 -0.5 0 0.5 1

b]µ
 [

^Jα
dc

os
σd

0

0.5

1

1.5

(a) cosα(Λp)
p

αcos
-1 -0.5 0 0.5 1

b]µ
 [

^Jα
dc

os
σd

0

0.5

1

(b) cosα(pK+)
K+

αcos
-1 -0.5 0 0.5 1

b]µ
 [

^Jα
dc

os
σd

0

0.5

1

(c) cosα(K+Λ)
Λ

Figure 7.25: This figure shows the Jackson-frame angles for proton, kaon anΛ-
particles for theΣ-cusp-region.

flat behavior as expected due to relative s-wave close to threshold.
Fig. 7.25(a) gives access to the cusp-system, being the proton angle in thepΛ-
system. This distribution is also definitely non-flat, but showing a decrease for
forward going protons. Also the helicity-frame-angle between proton and kaon in
the respective system shows such a behavior.
From these figures it is clear, that the toy-simulation used for these figures does
not describe the data. What can be described are the effects of the Σ-cusp in the
Dalitz-plots and projections of the full reaction, but not the extracted pureΣ-cusp
spectra. Here detailed theoretical calculations are needed.

123

Chapter 8

Discussion

As expected, the results for the events of the reactionpp→ pK+Λ held no real
surprises. The contributions of theN∗-resonances – as seen also in previous pub-
lications – are clearly visible and can be described with theused model. For this
model, threeN∗-resonances (N∗1650, N∗1710, N∗1720) were added coherently including
a meson-propagator due toσ-exchange. Along with the Final-State-Interaction, the
data can be well described.
In contrary to the previous publications no non-resonant term was included into
the model.N∗1720 is a very broad resonance. It is used instead of the non-resonant
phase-space contribution.
Due to the excellent resolution a deviation in the invariantmass of proton andΛ
(MpΛ) – between 2.11 GeV and 2.175 GeV – became visible.ThisΣ-Cusp region
can – at least in the Dalitz-plot and projections – be described using an additional
Breit-Wigner-term, though no implications what so ever towards a resonance shall
be made with this choice of function, for theΣ-cusp is a peak-like structure in this
invariant mass spectrum.
Though having rather large error-bars, the figures in chapter 7.8.3 show already,
that the distributions of theΣ-Cusp are neither phase-space-distributed nor can they
be described with a Breit-Wigner-term alone.
The center-of-mass-frame angles for both proton and kaon are rather flat but the
Λ-angle is definitely not. A meson-exchange is unlikely to happen, a simulation
including meson-exchange could not describe the data. As for the helicity- and
Jackson-frame angles, here also the distributions are not phase-space-like. Though
the helicity-frame angle cosθ(Λp)

pK+ can be reasonably well described by the Breit-
Wigner-distribution, the other helicity-frame angles cannot.
Providing now for the first time exclusive measurements showing a complete set of
observables for theΣ-cusp-region, detailed theoretical calculations are now needed
to describe those spectra appropriately.

124

Appendix A

Formulae

A.1 Pixels in Quirl and Ring

The pixels in Quirl and Ring detector – and later in the SQT – have a very special
form due to the projected shape of the elements forming them ([32]).
The variables∆r and∆l are the point projection factors relative to the layer with
the wedge shaped elements:

∆r =
zr

zw

∆l =
zl

zw

In case of Quirl and Ring detector the bendingb is defined as:

b =
rmax

ϕmax

The edges of the bent elements can be described as

r =
rmax

ϕmax
(ϕ−ϕo f f set) = b(ϕ−ϕo f f set) = bϕ̃

as for the straight elementϕ = const is valid. The valueϕo f f set can be calculated
for the lower-ϕ-edge for element numberni in layer i with Ni total elements as:

ϕni = ϕglobal +2π
ni

Ni

for the straight elements and

ϕni = ϕglobal−2π
ni

Ni

for the bent ones. Lets define an intersection pointPintersection in cylindrical coor-
dinates. The z-component is quite easy to determine:Pz is the z-component of the

125

straight layer. Assuming the bending of both bent layers being of same absolute
value, the intersection point of two edgesEl ,nl andEr,nr is:

Pbb{nl ,nr},ϕ = −(∆lϕnl + ∆rϕnr)

∆l + ∆r

Pbb{nl ,nr}ρ = b∆l
(
Pbb{nl ,nr}ϕ−ϕnl

)

A pixel out of two bent layers, has four such intersection points:Pbb{nl ,nr}, Pbb{nl +1,nr},
Pbb{nl ,nr+1} andPbb{nl +1,nr+1}. The intersection of a bent and a straight layer is sim-
pler:

Pbs{nl/r ,ns},ϕ = ϕns

Pbs{nl/r ,ns},ρ = b∆l/r

(
ϕns−ϕnl/r

)

There are three categories of pixels:

Three corners, pointing right (conditionnl +nr−ns > 0)
Here are the intersection pointsPbb{nl ,nr}, Pbs{nl ,ns+1}, Pbs{nr ,ns+1}. The areaSof the
pixel is:

S =
b2

2

[
1
3

(
∆2

l −∆2
r

)
ϕ3+

(
∆2

l ϕnl −∆2
r ϕnr

)
ϕ2

+
(
∆2

l ϕ2
nl
−∆2

r ϕ2
nr

)
ϕ
]Pbb{nl ,nr}ϕ

ϕns+1
(A.1)

The center pointC in cylindrical coordinates is

cϕ =
b2

8S

[(
∆2

l −∆2
r

)
ϕ4 +

8
3

(
∆2

l ϕnl −∆2
r ϕnr

)
ϕ3 (A.2)

+2
(
∆2

l ϕ2
nl
−∆2

r ϕ2
nr

)
ϕ2]Pbb{nl ,nr}ϕ

ϕns+1

cr = −b2

3S

[
1
4

(
∆3

l + ∆3
r

)
ϕ4 +

(
∆3

l ϕnl + ∆3
r ϕnr

)
ϕ3 (A.3)

+
3
2

(
∆3

l ϕ2
nl

+ ∆3
r ϕ2

nr

)
ϕ2 +

(
∆3

l ϕ3
nl

+ ∆3
r ϕ3

nr

)]Pbb{nl ,nr}ϕ

ϕns+1

Three corners, pointing left (conditionnl +nr −ns < 0)
Here are the intersection pointsPbb{nl+1,nr+1}, Pbs{nr+1,ns}, Pbs{nl+1,ns}. The areaS
of the pixel is:

S =
1
2

b2
[

1
3

(
∆2

r −∆2
l

)
ϕ3 +

(
∆2

r ϕnr+1−∆2
l ϕnl +1

)
ϕ2 (A.4)

+
(
∆2

r ϕ2
nr+1−∆2

l ϕ2
nl+1

)
ϕ
]Pbb{nl +1,nr+1}ϕ

ϕns

126

The center pointC in cylindrical coordinates is

cϕ =
b2

8S

[(
∆2

r −∆2
l

)
ϕ4 +

8
3

(
∆2

r ϕnr+1−∆2
l ϕnl +1

)
ϕ3 (A.5)

+2
(
∆2

r ϕ2
nr+1−∆2

l ϕ2
nl+1

)
ϕ2]Pbb{nl +1,nr+1}ϕ

ϕns

cr = −b2

3S

[
1
4

(
∆3

r + ∆3
l

)
ϕ4 +

(
∆3

r ϕnr+1+ ∆3
l ϕnl+1

)
ϕ3 (A.6)

+
3
2

(
∆3

r ϕ2
nr+1+ ∆3

l ϕ2
nl+1

)
ϕ2 +

(
∆3

r ϕ3
nr+1 + ∆3

l ϕ3
nl +1

)]Pbb{nl +1,nr+1}ϕ

ϕns

Six corners (conditionnl +nr −ns == 0)
Here we have the intersection pointsPbb{nl+1,nr}, Pbb{nl ,nr+1}, Pbs{nl ,ns}, Pbs{nr+1,ns},
Pbs{nr ,ns}, Pbs{nl+1,ns} Depending whetherPbb,{nl ,nr+1},ϕ > Pbb,{nl +1,nr},ϕ, the limits
for the integration change:

φ1 = ϕns

φ2 =

{
Pbb,{nl ,nr+1},ϕ
Pbb,{nl +1,nr},ϕ

Pbb,{nl ,nr+1},ϕ > Pbb,{nl +1,nr},ϕ
Pbb,{nl ,nr+1},ϕ < Pbb,{nl +1,nr},ϕ

φ3 =

{
Pbb,{nl +1,nr},ϕ
Pbb,{nl ,nr+1},ϕ

Pbb,{nl ,nr+1},ϕ > Pbb,{nl +1,nr},ϕ = A
Pbb,{nl ,nr+1},ϕ < Pbb,{nl +1,nr},ϕ = B

φ4 = ϕns+1

S =
b2

2

([
1
3

(
∆2

l −∆2
r

)
ϕ3 +

(
∆2

l ϕnl −∆2
r ϕnr

)
ϕ2 +

(
∆2

l ϕ2
nl
−∆2

r ϕ2
nr

)
ϕ
]φ2

φ1

+

[
1
3

(
∆2

r −∆2
l

)
ϕ3 +

(
∆2

r ϕnr+1−∆2
l ϕnl +1

)
ϕ2 +

(
∆2

r ϕ2
nr+1−∆2

l ϕ2
nl+1

)
ϕ
]φ4

φ3

+

∆2

l

[
(ϕnl −ϕnl+1)ϕ2 +

(
ϕ2

nl
−ϕ2

nl+1

)
ϕ
]φ3

φ2
,A

∆2
r

[
(ϕnr −ϕnr+1)ϕ2 +

(
ϕ2

nr
−ϕ2

nr+1

)
ϕ
]φ3

φ2
,B

cϕ =
b2

2S

([
1
4

(
∆2

l −∆2
r

)
ϕ4 +

2
3

(
∆2

l ϕnl −∆2
r ϕnr

)
ϕ3 +

1
2

(
∆2

l ϕ2
nl
−∆2

r ϕ2
nr

)
ϕ2
]φ2

φ1

+

[
1
4

(
∆2

l −∆2
r

)
ϕ4+

2
3

(
∆2

l ϕnl+1−∆2
r ϕr+1

)
ϕ3 +

1
2

(
∆2

l ϕ2
nl +1−∆2

r ϕ2
nr+1

)
ϕ2
]φ4

φ3

+

[
∆2

l

(
2
3 (ϕnl −ϕnl+1)ϕ3 + 1

2

(
ϕ2

nl
−ϕ2

nl+1

)
ϕ2
)]φ3

φ2
,A

[
∆2

r

(
2
3 (ϕnr+1−ϕnr)ϕ3 + 1

2

(
ϕ2

nr+1−ϕ2
nr

)
ϕ2
)]φ3

φ2
,B

 (A.7)

127

cr =
b3

3S

([
1
4

(
∆3

l + ∆3
r

)
ϕ4+

(
∆3

l ϕnl + ∆3
r ϕnr

)
ϕ3 (A.8)

+
3
2

(
∆3

l ϕ2
nl

+ ∆3
r ϕ2

nr

)
ϕ2 +

(
∆3

l ϕ3
nl

+ ∆3
r ϕ3

nr

)
ϕ
]φ2

φ1

−
[

1
4

(
∆3

r + ∆3
l

)
ϕ4 +

(
∆3

r ϕnr+1 + ∆3
l ϕnl +1

)
ϕ3

+
3
2

(
∆3

r ϕ2
nr+1+ ∆3

l ϕ2
nl+1

)
ϕ2 +

(
∆3

r ϕ3
nr+1 + ∆3

l ϕ3
nl +1

)
ϕ
]φ4

φ3

+∆3

l

[
(ϕnl −ϕnl+1)ϕ3 + 3

2

(
ϕ2

nl
−ϕ2

nl+1

)
ϕ2 +

(
ϕ3

nl
−ϕ3

nl+1

)
ϕ
]φ3

φ2

,A

−∆3
r

[
(ϕnr+1−ϕnr)ϕ3+ 3

2

(
ϕ2

nr+1−ϕ2
nr

)
ϕ2+

(
ϕ3

nr+1−ϕ3
nr

)
ϕ
]φ3

φ2
,B

A.2 Bethe-Bloch-Formula

When a particle traverses matter it interacts with the matter leaving some (or all) of
its kinetic energy in the matter. This basic feature allows us to identify the particles.
In the case of heavy charged particles, the only measurable particles in the case of
COSY-TOF, the interaction of the particle in matter can be characterized by:

1. Inelastic scattering on electrons of the electron shell of atoms.

2. Elastic scattering on nuclei.

3. Nuclear reactions .

4. Bremsstrahlung.

5. Čherenkov radiation.

The reactions 3, 4 and 5 happen quite seldom in nature and are therefor neglected
also the elastic scattering of the particles on the nucleus can be neglected due to
the, compared to the inelastic scattering on shell-electrons, small cross-section and
energy loss.
The remaining process of inelastic scattering on electronsof the electron shell of
atoms has been described by H. BETHE and F. BLOCH [15]:

−dE
dx

=
4π

mec2

nz2

β2

(
e2

4πε0

)2[
ln

(
2mec2β2

I (1−β2)

)
−β2

]
(A.9)

128

with the following definitions

ze . . . particle charge

e . . . electron charge

ε0 . . . vacuum permissivity

c . . . speed of light

n =
NAZρ

A
. . . electron density

β =
v
c

. . . particle speed

me . . . electron mass

I ≈ (10eV)Z . . . mean excitation potential

A.3 Invariant mass / missing mass

A.3.1 Invariant mass

In the analysis of a reaction it is important to consider the sum of the 4-momentum
vectors of all or part of the participating particles. An important observable is the
invariant mass, the mass of the summed up 4-momentum-vectors.
The invariant mass of n particles is calculated via:

Minv =

√√√√
(

n

∑
i=1

Ei

c2

)2

−
(

n

∑
i=1

pi

c

)2

(A.10)

This reduces in the two particle case to:

Minv =

√(
E1 +E2

c2

)2

−
(

p1 + p2

c

)2

(A.11)

Using energy- and momentum-conservation the number of necessary input com-
ponents reduces in the two particle case to five.

Invariant mass for Λ-decay

In the case ofΛ-reconstruction, two of these components are the angles of the
decay-products to theΛ. Due to the big mass difference of the decay particles
(proton andπ−), the masses of the decay particles are fixed as well. The track with
the larger opening angle is always theπ−, the one with the smaller opening angle
the proton. With these considerations there remains one value to be determined.

129

In the analysis of other groups of the collaboration, theΛ-momentum is used, cal-
culated out of the incoming momenta and the two prompt particles using the miss-
ing mass (eqn. A.14) formula. This leads to the following formula:

M2
pπ = (A.12)

m2
π +m2

p+ p2
Λ

(
2tan2 θp tan2θπ + tan2 θp + tan2 θπ

(tanθp + tanθπ)
2 −1

)

+2

√√√√
{

m2
πm2

p + p2
Λ

(
tan2 θp tan2θπ

(
m2

π +m2
p

)
+m2

π tan2θπ +m2
p tan2 θp

(tanθp + tanθπ)
2

)

+p4
Λ

(
tan2 θp tan2θπ (tan2θp tan2θπ + tan2 θp + tan2θπ +1)

(tanθp + tanθπ)
4

)}

θp is the angle between the proton- and theΛ-direction,θπ is the angle between
the π−- and theΛ-direction,mp andmpi are the masses of proton andπ− and pΛ
the calculated momentum of theΛ-particle.
This method is biased by the primary particles of the reaction. It is preferred to
have a method to calculate the invariant mass only from the measured values of the
decay particles.
Fortunately the mass of the proton is quite close to the mass of the Λ and so the
direction- and velocity-change of the baryon in the decay isnot too large. Also the
distance of the Start-detector to the range where theΛ-decay can be reconstructed
is small compared to the complete distance to the stop-detectors. The velocity of
the proton can be determined by using the stop-timing of the hit stop-detector and
the global start-timing, here in this case the mean start of the prompt proton and
the promptK+.
This gives the following formula:

M2
pπ = m2

p +m2
π (A.13)

+

mp
βp√
1−β2

p

2(

1+sin2 θp +cos2θp
tan2θp

tan2θπ
−cos2 θp

(tanθp + tanθπ)
2

tan2θπ

)

+ 2

√√√√√m2
pm2

π +

mp
βp√
1−β2

p

2

m2
π

+

mp
βp√
1−β2

p

2(

sin2θp +cos2θp
tan2 θp

tan2 θπ

)

m2
p +

mp
βp√
1−β2

p

2

With βp being the velocity of the proton.

130

A.3.2 Missing mass

The missing mass is a version of the invariant mass, taking incoming and outgoing
particles, apart from the sign, alike:

Mmiss=

√√√√
(

ingoing

∑
i

Ei−
outgoing

∑
j

E j

)2

−
(

ingoing

∑
i

~pi −
outgoing

∑
j

~p j

)2

(A.14)

Usually the square of the missing mass is shown, it is not restricted to positive
values and can give a hint on which side of the reaction the mass is missing:

M2
miss=

(
ingoing

∑
i

Ei−
outgoing

∑
j

E j

)2

−
(

ingoing

∑
i

~pi −
outgoing

∑
j

~p j

)2

It can be calculated for the complete reaction, where it incorporates conservation
of energy and momentum and should be zero. Using only some of the reaction
particles, it can give important information about reaction processes, produced res-
onances etc.

A.3.3 Dalitz-plot

In a three-particle decay one can plot a so called Dalitz-plot, a scatterplot repre-
senting the complete kinematic of the reaction. One of the axes is the square of
the invariant mass (A.10) of e.g. particle A and B while the other axis is the square
invariant mass of particle B and C.
In a pure phase-space distribution the Dalitz-plot is flat, but a resonance being
produced in the reaction will show up in the Dalitz-plot, if the statistic permits
sometimes even more pronounced than in the invariant mass plots themselves. A
resonance decaying into two of the three outgoing particleswill show up as a line,
while a resonance involving all three will show up as a point.

A.4 Breit-Wigner-Formula for Resonances

The description of the shape of resonances, e.g. showing up in (invariant) mass- or
energy-spectra is given by the Breit-Wigner-formula [14]

fresonance∼
√

2 j +1
(2s1 +1)(2s2 +1)

−√sΓ(s)

s−M2+ i
√

sΓ
(A.15)

As for the nomenclature:
√

s is the invariant mass (see. A.10) of the decay particles,
M the mass of the resonance. Further-on:Γ is the width of the resonance at pole-

position,Γi andΓ f partial widths, with
√

Γ0
i ∗Γ0

f the strength of the resonance.k is

the meson-momentum of the outgoing (decay) vertex in the resonance rest-frame,

131

q is the momentum at the ingoing (production) vertex also in the resonance rest-
frame. There are three things to be taken into account:
First, the widthΓs in the numerator is the product of the partial widths of the
production and the decay of the resonance and therefore momentum dependent.
Second is the production vertex, where the exchanged meson and the spin of the
resonance determine the operator that has to be applied as a factor. σ-exchange
contributes only with s-wave, resulting in a constant factor. π-exchange is p-wave
(l=1):

operator=

const. σ−exchange{
~σ ·~q J = 1

2
~S·~q J = 3

2

π−exchange

Third is the decay vertex, where – as for the production vertex – spin and parity of
the resonance as well as the angular momentum of the decay products define the
necessary operator.

operator=

const. s−wave

~σ ·~k p−wave, J = 1
2

~S·~k p−wave, J = 3
2

These operators and the momentum dependent width can be expanded to the fol-
lowing formula:

Γ f ,i = γ0
f ,i

(
k
kr

)2l f ,i+1(k2
r + δ2

k2 + δ2

)l f ,i+1

c(k,l f ,q,li) =

√
ΓiΓ f

qk

=

√
Γ0

i Γ0
f

qN∗kN∗

√(
k
kR

)2l f +1(k2
R+ δ2

k2 + δ2

)l f +1(q
kR

)2li+1(k2
R+ δ2

q2 + δ2

)li+1

(A.16)

with the angular momentum both at the production (l i) vertex and at the decay (l f)
vertex.
Now the formula has the following form:

fresonance∼
√

2 j +1
(2s1 +1)(2s2 +1)

c(k,l f ,q,li)
−√s

s−M2+ i
√

sΓ
(A.17)

If more than one resonance is excited, the resonance amplitudes have to be added,
including a phase (multiply a factor ofeiφ).

132

A.5 Frames

Particles, directions, velocities, energies and momenta are measured in the lab sys-
tem. But there exist other inertial systems, that can provide interesting features for
i.e. angular distributions.

A.5.1 CM-Frame

The Center of Momentum System (CMS) or overall center of momentum system,
is the rest frame of the center of momentum. Here both beam andtarget particle
have the same absolute momentum in different directions:

~pbeam=−~ptarget (A.18)

If the entrance channel is symmetric (here 2 protons), the exit channel has to give
symmetric angular distributions in CMS around 90◦.

A.5.2 Subsystems

The Jackson Frame as well as the Helicity Frame are not overall center of mass
systems but correspond to different subsystems. For three-body decays of the type
ab→ 123, one can define three different subsystems:(2,3), (3,1), (1,2).

Jackson-Frame

In one of these sub-system-frames (i.e.(2,3)), the Jackson Angle is defined as
the angle between particle 3 and the beam direction in this sub-system-frame:
6 (~pb,~p3).
This angle connects the exit (3) and the entrance (beam) channel and gives infor-
mation not accessible by means of the Dalitz plot. Define the Jackson Angle as:

θR23
b3 = 6 (~pb,~p3)

R23 (A.19)

where the superscript denotes the subsystem, the subscriptindicates the angle of
particle 3 with respect to the beamb.

Helicity-Frame

For two-particle decays such as theΛ-decay, the helicity frame is defined as the
Λ-rest frame. The angle here between the decay particles and theΛ-direction gives
a hint to theΛ-polarization.

θΛ
decayΛ = 6 (~pdecay,~pΛ) (A.20)

But for three-body-decays we can define subsystems and a helicity angle:

θR23
13 = 6 (~p1,~p3)

R23 (A.21)

133

A.6 Reactions

A.6.1 2-particle reactions

For any reaction of the patternAB→CD there are tight restrictions on the kine-
matics of the reaction.
For simplicity let’s consider the lab-frame with A being thebeam-particle (moving
along the z-axis), B the target. Here the following equationis valid:

|φC−φD|= 180◦ (A.22)

The momentum of particles C and D can be calculated from theθ-angles and the
sum-momentum of particles A and B:

Pt = PA+B
tanθC ∗ tanθD

tanθC + tanθD

Pl ,C/D = PA+B
tanθD/C

tanθC + tanθD

PC/D =
√

P2
t +P2

l ,C/D

= PA+B
tanθD/C

tanθC + tanθD

√
tan2θC/D +1 (A.23)

The longitudinal momentumPl is parallel, the transverse momentumPt is perpen-
dicular to the sum-momentum of A and B. This also holds if A andB are not two
particles but one that decays into two particles (eg.Λ-decay).

Elastic scattering

The elastic scatteringpp→ pphas the additional restriction that the particles C and
D have the same mass. This provides an additional restriction on the lab-angles:

γ =
1√

1−βbeam
(A.24)

apart from the coplanarity condition A.22

Deuteron-π+

The reactionpp→ dπ+ is another example of a binary reaction. Here also the
equations A.22 and A.23 hold. Contrary to the elastic scattering of protons, for
thedπ+-reaction the identity of the particles has to be determinedusing thePt−Pl -
plot, where the transverse momentum is plotted versus the longitudinal momentum.
In this plot two bands are visible forming ellipses; one for the deuteron, one for the
pion. Only in the small overlapping region the distinction of the two masses is
impossible.

134

Appendix B

KinFit

Measured values of particles, like directions (in Cartesian, spheric or cylindric co-
ordinates) and energy, momentum or velocity always are smeared due to limited
resolution of the detector. This results in the fact, that –for measured values– mo-
mentum and energy is not necessarily conserved and that the values for different
observables may exceed beyond the kinematically allowed region. To shift these
values back to the kinematically allowed region, a kinematical fit (abbr. kinFit) is
performed taking the errors of the measurement into account.
The kinematic fit procedure used for this work was adopted from the kinFit used by
the WASA-Collaboration ([3]). The value to be minimized is the deviation from
energy and momentum conservation:

F = (∆Px)
2+(∆Py)

2 +(∆Pz)
2 +(∆E)2 =

∣∣∣∣∣∣∣∣

∆Px

∆Py

∆Pz

∆E

∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣∣

∑ j P j
x

∑ j P j
y

∑ j P j
z

∑ j E j

−

Pi
x

Pi
y

Pi
z

Ei

∣∣∣∣∣∣∣∣∣

2

= minimal (B.1)

For minimalisation the gradient method using Lagrangian multipliers is used. Let’s
make some definitions: Each Particle gives 3 variables (masscounts as fixed).
These variables can be either measured, unmeasured or fixed (useful for beam and
target).

Variables Let’s have m measured variables and u unmeasured variables:

X = (x0,x1, . . . ,xm) (B.2)

U = (xm+1,xm+1, . . . ,xm+u) (B.3)

135

Transform to n Particles (transformation see Table B.1):

Pi =

Px,i(Xj ,Xk,Xl)
Py,i(Xj ,Xk,Xl)
Pz,i(Xj ,Xk,Xl)
Ei(Xj ,Xk,Xl)

(B.4)

Define an error MatrixGM for the measured variables asdiag
(
∆x2

i

)

GM =

1
∆x2

0
0 . . . 0

0 1
∆x2

1
. . . 0

...
...

0 0 . . . 1
∆x2

m

(B.5)

Do a Taylor-expansion:

Flast =

∑Px,i

∑Py,i

∑Pz,i

∑Ei

+
m

∑
j=1

ε j
δFµ

δx j
= F +

m

∑
j=1

ε j
δFµ

δx j
= F +Bε (B.6)

using derivative matrixBM (see Tables B.2, B.3, B.4, B.5, B.6, B.7, B.8). Since
variablex j only contributes to the calculation of the 4-momentum of particle κ, the
expression for the derivation matrix reduces somehow.

BM =
δFµ

δx j
=

δ∑i Pi,x

δx0

δ∑i Pi,x

δx1

δ∑i Pi,x

δxm
δ∑i Pi,y

δx0

δ∑i Pi,y

δx1
. . .

δ∑i Pi,y

δxm
δ∑i Pi,z

δx0

δ∑i Pi,z

δx1

δ∑i Pi,z

δxm
δ∑i Ei

δx0

δ∑i Ei
δx1

δ∑i Ei
δxm

=

(
δ∑l Pl ,i

δx j

)

i, j

=

(
δPκ,i

δx j

)

i, j

(B.7)

No unmeasured variables Define Lagrangian multiplierλ, variable modificator
ε andχ2

λ =
(
BG−1BT)−1

Flast (B.8)

ε = −G−1(BTλ
)

(B.9)

χ2 = εTGε (B.10)

With unmeasured variables Define formmeasured variables: error matrixGM,
derivative matrixBM, modificatorεM.

136

Define foru unmeasured variables: weighting matrixGU , derivative matrixBU ,
modificatorεU .

GB =
(
BMG−1

M BT
M

)−1
(B.11)

εU = −
(
GU +BT

UGBBU
)−1

BT
UGBFlast (B.12)

λ = GB (BUεU +Flast) (B.13)

εM = −G−1
M

(
BT

Mλ
)

(B.14)

χ2 = εT
MGMεM + εT

UGUεU +2λ(Flast +BMεM +BUεU) (B.15)

Representations It is not necessary to do the fit in the simplePx,Py,Pz, represen-
tation. Other representations of the particles may reflect the detector-setup more
precisely, like in the case of COSY-TOFβ,θ,φ. To take account for the differ-
ent representations different formulae have to be applied to calculate the 4-vectors
out of the variables (see table B.1) and the derivative matricesBM andBU (see ta-
bles B.2, B.3, B.4, B.5, B.6, B.7, B.8).
It is interesting to examine the dependence of the outcome ofthe kinFit with re-
spect to the representation used. To have comparable errorsas input, these also
have to be transformed.

Representation ID P Px Py Pz E

Px,Py,Pz 1
√

P2
x +P2

y +P2
z Px Py Pz

√
P2 +m2

Ekin,θ,φ 2
√

Ekin (Ekin +2m) Psinθcosφ Psinθsinφ Pcosθ Ekin +m

β,θ,φ 3 mβ√
1−β2

Psinθcosφ Psinθsinφ Pcosθ m√
1−β2

P,θ,φ 4 P Psinθcosφ Psinθsinφ Pcosθ
√

P2 +m2

Ekin,δx,δy 5
√

Ekin (Ekin +2m) Pδx√
δx2+δy2+1

Pδy√
δx2+δy2+1

P√
δx2+δy2+1

Ekin +m

P,δx,δy 6 P Pδx√
δx2+δy2+1

Pδy√
δx2+δy2+1

P√
δx2+δy2+1

√
P2 +m2

β,δx,δy 7 mβ√
1−β2

Pδx√
δx2+δy2+1

Pδy√
δx2+δy2+1

P√
δx2+δy2+1

m√
1−β2

Table B.1: Transform measured properties into 4D-momentum.

Px Py Pz E
δ

δPx
1 0 0 Px√

P2+m2

δ
δPy

0 1 0 Py√
P2+m2

δ
δPz

0 0 1 Pz√
P2+m2

Table B.2: Derivatives for representation 1:Px,Py,Pz

137

δ Px Py Pz E
δ

δEkin

Ekin+m
P sinθcosφ Ekin+m

P sinθsinφ Ekin+m
P cosθ 1

δ
δθ Pcosθcosφ Pcosθsinφ −Psinθ 0
δ

δφ −Psinθsinφ Psinθcosφ 0 0

Table B.3: Derivatives for representation 2:Ekin,θ,φ, P =
√

Ekin (Ekin +2m)

Px Py Pz E
δ

δβ
δP
δβ sinθcosφ δP

δβ sinθsinφ δP
δβ cosθ mβ

(1−β2)
3
2

δ
δθ Pcosθcosφ Pcosθsinφ −Psinθ 0
δ

δφ −Psinθsinφ Psinθcosφ 0 0

Table B.4: Derivatives for representation 3:β,θ,φ, p = mβ√
1−β2

= mβγ, δP
δβ =

m
1+ β2

1−β2√
1−β2

= mγ
(
1+ β2γ2

)

Errors

δx = tanθcosφ (B.16)

δy = tanθsinφ (B.17)

θ = arccos
1√

δx2 + δy2 +1
(B.18)

φ = arccos
δx√

δx2 + δy2
(B.19)

138

Px Py Pz E
δ

δP sinθcosφ sinθsinφ cosθ P√
P2+m2

δ
δθ Pcosθcosφ Pcosθsinφ −Psinθ 0
δ

δφ −Psinθsinφ Psinθcosφ 0 0

Table B.5: Derivatives for representation 4:P,θ,φ

Px Py Pz E
δ

δEkin

Ekin+m
P

dx
l

Ekin+m
P

dy
l

Ekin+m
P

1
l 1

δ
δdx Pl2−dx2

l3 −Pdydx
l3 −Pdx

l3 0
δ

δdy −Pdxdy
l3 Pl2−dy2

l3 −Pdy
l3 0

Table B.6: Derivatives for representation 5:Ekin,dx,dy, P =
√

Ekin (Ekin +2m),
l =
√

dx2 +dy2+1.

∆β =
s
c

∣∣∣∣
1
t2∆t

∣∣∣∣ (B.20)

∆P = m
∣∣γ
(
1+ β2γ2)∆β

∣∣

=

∣∣∣∣
E
P

∆E

∣∣∣∣ (B.21)

∆E =

∣∣∣∣
dE
dβ

∆β
∣∣∣∣= m

∣∣βγ3∆β
∣∣

= m

∣∣∣∣
P
E

∆P

∣∣∣∣ (B.22)

∆θ =

√√√√√

 δx

l
√

1− 1
δx2+δy2+1

∆x

2

+

 δy

l
√

1− 1
δx2+δy2+1

∆y

2

=
1

l
√

1− 1
l2

√
δx2∆(δx)2 + δy2∆(δy)2 (B.23)

∆φ =

√√√√√

(δx2 + δy2)−
3
2

√
1− δx2

δx2+δy2

δy2∆(δx)

2

+

(δx2 + δy2)−
3
2

√
1− δx2

δx2+δy2

δx2∆(δy)

2

=

(
δx2 + δy2

)− 3
2

√
1− δx2

δx2+δy2

√
(δy2∆(δx))2 +(δx2∆(δy))2 (B.24)

∆(δx) =

√
(cosφ(1+ tan2θ)∆θ)

2
+(tanθsinφ∆φ)2 (B.25)

∆(δy) =

√
(sinφ(1+ tan2θ)∆θ)

2
+(tanθcosφ∆φ)2 (B.26)

139

Px Py Pz E
δ

δP
dx
l

dy
l

1
l

P√
P2+m2

δ
δdx Pl2−dx2

l3 −Pdydx
l3 −Pdx

l3 0
δ

δdy −Pdxdy
l3 P l2−dy2

l3 −Pdy
l3 0

Table B.7: Derivatives for representation 6:P,dx,dy, l =
√

dx2 +dy2 +1.

Px Py Pz E
δ

δβ
δP
δβ

dx
l

δP
δβ

dy
l

δP
δβ

1
l

mβ

(1−β2)
3
2

δ
δdx Pl2−dx2

l3 −Pdydx
l3 −Pdx

l3 0
δ

δdy −Pdxdy
l3 P l2−dy2

l3 −Pdy
l3 0

Table B.8: Derivatives for representation 7:β,dx,dy, l =
√

dx2 +dy2 +1, P =

mβγ = mβ√
1−β2

, δP
δβ = m

1+ β2

1−β2√
1−β2

= mγ
(
1+ β2γ2

)

140

Appendix C

Unfitted and additional Graphs

CMΘcos
-1 -0.5 0 0.5 1

b/
ra

d]
µ[

C
M

Θ
dc

os
σd

0

10

20

30

(a)

CMΘcos
-1 -0.5 0 0.5 1

b/
ra

d]
µ[

C
M

Θ
dc

os
σd

0

10

20

30

(b)

CMΘcos
-1 -0.5 0 0.5 1

b/
ra

d]
µ[

C
M

Θ
dc

os
σd

0

10

20

(c)

Figure C.1: The cosθcm-distribution for proton,K+ andΛ.

E
0 0.5 1 1.5

b/
G

eV
]

µ[
dE

σd

0

10

20

30

(a)

E
0 0.5 1

b/
G

eV
]

µ[
dE

σd

0

20

40

(b)

E
0 0.5 1 1.5

b/
G

eV
]

µ[
dE

σd

0

10

20

30

(c)

Figure C.2: The laboratory Energy-distribution for proton, K+ andΛ.

141

CME
0 0.05 0.1 0.15

b/
G

eV
]

µ[
C

M
dE

σd

0

100

200

(a)

CME
0 0.1 0.2

b/
G

eV
]

µ[
C

M
dE

σd

0

50

100

150

(b)

CME
0 0.05 0.1 0.15

b/
G

eV
]

µ[
C

M
dE

σd
0

100

200

(c)

Figure C.3: The center-of-mass Energy-distribution for proton,K+ andΛ.

β
0 0.5 1

βdσd

0

50

100

(a)

β
0 0.5 1

βdσd

0

50

100

(b)

β
0 0.5 1

βdσd

0

50

100

(c)

Figure C.4: Theβlab-distribution for proton,K+ andΛ.

142

φ
-2 0 2

b/
ra

d]
µ[φdσd

0

2

4

(a)

φ
-2 0 2

b/
ra

d]
µ[φdσd

0

2

4

(b)

φ
-2 0 2

b/
ra

d]
µ[φdσd

0

2

4

(c)

Figure C.5: Theφlab-distribution for proton,K+ andΛ.

Θ
0 0.2 0.4 0.6

b/
ra

d]
µ[

Θd
σd

0

50

(a)

Θ
0 0.5 1

b/
ra

d]
µ[

Θd
σd

0

20

40

60

(b)

Θ
0 0.2 0.4 0.6

b/
ra

d]
µ[

Θd
σd

0

50

(c)

Figure C.6: Theθlab-distribution for proton,K+ andΛ.

143

E
0 0.5 1 1.5

b/
G

eV
]

µ[
dE

σd

0

10

20

30

(a) Epd

CMΘcos
-1 -0.5 0 0.5 1

b/
ra

d]
µ[

C
M

Θ
dc

os
σd

0

10

20

(b) θcm
pd

CME
0 0.1 0.2

b/
G

eV
]

µ[
C

M
dE

σd

0

100

200

(c) Ecm
pd

Θ
0 0.2 0.4 0.6

b/
ra

d]
µ[

Θd
σd

0

50

(d) θpd

φ
-2 0 2

b/
ra

d]
µ[φdσd

0

2

4

(e) φpd

β
0 0.5 1

βdσd

0

50

100

(f) βpd

Figure C.7:Λ-decay particle: proton

E
0 0.2 0.4 0.6

b/
G

eV
]

µ[
dE

σd

0

50

100

(a) Eπ−

CMΘcos
-1 -0.5 0 0.5 1

b/
ra

d]
µ[

C
M

Θ
dc

os
σd

0

10

20

(b) θcm
π−

CME
0 0.05 0.1

b/
G

eV
]

µ[
C

M
dE

σd

0

200

400

(c) Ecm
π−

Θ
0 0.5 1 1.5

b/
ra

d]
µ[

Θd
σd

0

20

40

(d) θπ−

φ
-2 0 2

b/
ra

d]
µ[φdσd

0

2

4

(e) φπ−

β
0 0.5 1

βdσd

0

50

100

(f) βπ−

Figure C.8:Λ-decay particle:π−

144

[GeV]Λp
2M

4.2 4.4 4.6 4.8 5 5.2

[G
eV

]
Λ

K2
M

2.6

2.8

3

3.2

3.4

0

1000

2000

3000

4000

5000

6000

(a) model

[GeV]Λp
2M

4.2 4.4 4.6 4.8 5 5.2

[G
eV

]
Λ

K2
M

2.6

2.8

3

3.2

3.4

0

50

100

150

200

250

300

350

400

450

(b)

[GeV]Λp
2M

4.2 4.4 4.6 4.8 5 5.2

[G
eV

]
Λ

K2
M

2.6

2.8

3

3.2

3.4

0

10

20

30

40

50

60

(c)

[GeV]Λp
2M

4.2 4.4 4.6 4.8 5 5.2

[G
eV

]
Λ

K2
M

2.6

2.8

3

3.2

3.4

0

200

400

600

800

1000

1200

1400

(d) corrected data

Figure C.9: Dalitz-plots for Simulation (a), MC (b), data (c), corrected data (d).

145

[GeV]pMM
1.6 1.7 1.8

b/
G

eV
]

µ
 [

dE
σd

0

50

100

150

(a) Mmiss
p

[GeV]+KMM
2.1 2.2 2.3

b/
G

eV
]

µ
 [

dE
σd

0

50

100

150

(b) Mmiss
K+

[GeV]ΛMM
1.5 1.6 1.7

b/
G

eV
]

µ
 [

dE
σd

0

50

100

150

(c) Mmiss
Λ

Figure C.10: Missing Masses of proton (a),K+ (b) andΛ (c).

[GeV]ΛKM
1.6 1.7 1.8

b/
G

eV
]

µ
 [

dE
σd

0

50

100

150

(a) MK+Λ

[GeV]ΛpM
2.1 2.2 2.3

b/
G

eV
]

µ
 [

dE
σd

0

50

100

150

(b) MpΛ

[GeV]pKM
1.5 1.6 1.7

b/
G

eV
]

µ
 [

dE
σd

0

50

100

150

(c) MK+ p

Figure C.11: Invariant Masses ofK+Λ (a), pΛ (b) andK+p (c).

146

αcos
-1 -0.5 0 0.5 1

b/
ra

d]
µ

 [
H

α
dc

os
σd

0

5

10

15

(a)

αcos
-1 -0.5 0 0.5 1

b/
ra

d]
µ

 [
H

α
dc

os
σd

0

10

20

(b)

αcos
-1 -0.5 0 0.5 1

b/
ra

d]
µ

 [
H

α
dc

os
σd

0

5

10

15

(c)

αcos
-1 -0.5 0 0.5 1

b/
ra

d]
µ

 [J
α

dc
os

σd

0

10

20

(d)

αcos
-1 -0.5 0 0.5 1

b/
ra

d]
µ

 [J
α

dc
os

σd

0

10

20

(e)

αcos
-1 -0.5 0 0.5 1

b/
ra

d]
µ

 [J
α

dc
os

σd

0

5

10

15

(f)

Figure C.12: Helicity and Jackson-Frame-angles.

CMαcos
-1 -0.5 0 0.5 1

b/
ra

d]
µ

 [
cm

α
dc

os
σd

0

10

20

30

(a)

CMαcos
-1 -0.5 0 0.5 1

b/
ra

d]
µ

 [
cm

α
dc

os
σd

0

20

40

60

(b)

CMαcos
-1 -0.5 0 0.5 1

b/
ra

d]
µ

 [
cm

α
dc

os
σd

0

20

40

(c)

K^+
)CMθcos(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

[G
eV

]
Λ

K
M

1.6

1.65

1.7

1.75

1.8

1.85

0

1000

2000

3000

4000

5000

(d)

Λ
)CMθcos(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

[G
eV

]
Λ

p
M

2.05

2.1

2.15

2.2

2.25

2.3

0

1000

2000

3000

4000

5000

6000

7000

8000

(e)

p
)CMθcos(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

[G
eV

]
pK

M

1.45

1.5

1.55

1.6

1.65

1.7

0

1000

2000

3000

4000

5000

6000

(f)

Figure C.13: CM-angles. (a), (b) and (c) show the opening angles of each two
particles. (d), (e) and (f) invariant mass of each two particles versus the center of
mass angle of one of them.-

147

C.1 Cusp

Figure C.14: Considerations to theΣ-cusp total cross-section. Graph showsMpΛ.
Dots is corrected data: black all, blue (up) cusp-band, red side-band. Lines are
simulations: red including cusp, blue widthout cusp. Red line is area-normalized
to black points, blue line is area-normalized to red line in the rangeMpΛ > 2.2GeV.
Magenta line is the difference between the two simulations,resulting in a cross-
section ofσcusp= 1.65µb.
Gray fill is the difference of all corrected data to simulation without cusp resulting
to a cross-section ofσcusp= 2.0µb.
The lower blue dots are calculated using the mean of the red dots and subtracting
that from the upper blue dots. This results in a cross-section of σcusp= 1.2µb.
Scale of the y-axis is dependent on the bin-widthdbin: µb/GeV×dbin.

148

Appendix D

typeCase: Program
documentation

Here is some documentation on the different components thatmake up thetypeCase-
Analysis-program. A class reference is available on the net[23] or with the help
function in typeCaseitself. The complete reference documentation would go be-
yond the scope of page-limits for this thesis.
The program itself consists of several components

D.1 Analyzer

The analyzer is the class, that can do the complete analysis,though, the algorithms
and container-structures don’t essentially rely on it.
It comes with a large number of methods, some of them, severaltimes with differ-
ent parameters, provided for convenience.
The usual procedure is

1. initialize usinginitStep()or

(a) initData()

(b) createSetup()(ordefineMaterials(), defineDetectors(), defineReaction()

(c) initAlgorithms()

2. process

• process()or

• step()

3. finalize usingendStep()or

(a) killAlgorithms()

(b) killSetup()

149

(c) killData()

If you are not satisfied with the way the event-loop is handledhere, use thegetAl-
gorithm()-method to allocate the algorithms and do the actual event-loop yourself.
To provide trees and histograms as well as the event structure for drawing (GUI),
appropriate functions and signals have been implemented.
For process control there are slots that add and remove runs from a runs-to-analyze-
list, to request specific events and to stop the analysis at some point.
The most critical point of this class is thegetAlgorithm()-method, where the actual
algorithms are allocated according to their IDs given by thealgorithm parameter
provided as parameter to the method. This is the only point, where the algorithms
actual type is selected and it is treated according to its type. Later the algo-
rithms are not anymore distinguishable. For easy installation of new algorithms
an installation-procedure has been implemented (see D.5).

• Init methods

– tofAnalysis(int max=100,int maxDets=100, int NThreads=1)
Constructor sets the maximum number of detectors, the maximum num-
ber of hits and pixels per detector and the number of threads the analy-
sis shall be done with.

– ∼tofAnalysis()
Destructor. Finalizes the analysis if not done before and frees allocated
memory.

– void initStep(const vector<algorithm parameter> &p, vector<beamTimeparameter>
&beamParam, vector<run parameter> & runParam,vector<detectorparameter>
&dets, vector<material parameter> &mats, reactionparameter col)
Initializes the analysis for some given algorithm-parameters (cannot be
changed during analysis, you have to reinitialize for that), some data-
basis and setup.

– void initData()
Initializes the data-structure.

– void defineMaterials(const string &fileName,const string &fileName2)
Reads material-parameter from file and initializes the materials.

– void defineMaterials(vector<material parameter> &mats,vector<detectorparameter>&dets)
Initializes used materials.

– void defineDetectors(const string &fileName)
Reads detectors from file and initializes detectors.

– void defineDetectors(vector<detectorparameter>&dets)
Initializes detector-setup.

– void defineReaction(reactionparameter col)
Initializes experiment-parameters.

150

– void createSetup(vector<detectorparameter> &dets, vector<material parameter>
&mats, reactionparameter col)
Initializes complete setup by calling above functions.

– void createSetup(const string &setupFileName, const string &materi-
alFileName)
Reads setup from file and initializes setup by calling above functions.

– void initAlgorithms(const vector<algorithm parameter> &p, const runparameter
& runParam)
Initializes algorithms for all threads by calling the static getAlgorithm()
function.

• finalize methods

– void killAlgorithms()
Finalizes algorithms by calling destructors.

– void killData()
Frees data-structures.

– void killSetup()
Frees setup-data-structures.

– void endStep()
Finalizes complete analysis by calling above functions.

• process control methods

– bool step(int num=1)
Makes the analysis run fornumevents, if the end of one run is reached,
the newRun-signal is emitted for the subsequent run and the analysis
continues.

– bool process()
Makes the analysis run until there is no more data to process,if the end
of one run is reached, the newRun-signal is emitted for the subsequent
run and the analysis continues.

– void doRequestEvent(int eventNumber, int runNumber)[SLOT]
Emit the requestEvent-Signal, that can be caught by an inputalgorithm.

– void doRequestNextEvent()[SLOT]
Emit the requestNextEvent-Signal, that can be caught by an input al-
gorithm.

– int stopAnalysis()[SLOT]
Stops the analysis after the current event.

– void *thread run(void *ptr)
Function, that is called for each thread, that processes events until a
specified number of events is reached or the input is empty.

151

• io-methods

– vector<vector<string>> getHistogramNames()
Returns for each initialized algorithm, that defines histograms the array
of histogram names headed by the algorithm name.

– TH1 *getHisto(const string &name)
Returns the histogram of namename, defined by some initialized algo-
rithm, or NULL if a histogram of this name is not defined.

– vector<vector<string>> getTreeNames()
Returns for each initialized algorithm, that defines trees the array of
tree names headed by the algorithm name.

– TTree *getTree(const string &name)
Returns the tree of namename, defined by some initialized algorithm,
or NULL if a tree of this name is not defined.

• static methods

– static vector<string> getVariables()
Returns a vector with variable names, their types and a comment on
whether they are defined once or once per thread, that are accessible
during initialization of an algorithm in the functiongetAlgorithm().

– static algorithmparameter getAlgorithmParameter(int ID)
Returns for an algorithm ID the description the algorithm-class pro-
vides.

– static int getAlgorithm(AAlgorithm ***out,int &executeUpTo,const al-
gorithm parameter ¶m,const runparameter &firstRun, TEvent &event,
TSetup &setup, int **numberOfHits, int *numberOfTracks, int **num-
berOfPixels, int **numberOfClusters, int **numberOfHitClusters, TRawHit
***raws, TCalibHit ***calibratedHits, THitCluster ***hi tClusters, TTrack
tracks, TPixel *pixels, TCluster ***clusters, TMaterial **materi-
als, TDetector **detectors, bool &readValid,int &readInID, QObject
*stearIt,bool &eventRequesting)
Basic algorithm initializing method. Returns the total number of al-
gorithms that have been allocated for algorithmparam. These algo-
rithms are stored inout, executeUpTogives the number of algorithms
that should be called in the event-loop, the rest can be such things as
fitting algorithms. Apart from the data-structures, there are readValid
that is given to reading-algorithms that will switch it to false if the
number of remaining events for the current file is zero,readInID which
is obsolete but kept for backward compatability,stearIt the class, that
provides the essential signals for e.g. new runs,eventRequestingthat
provides a switch, that of several different reading algorithms one (not
necessarily the first one) can act as an event-input-list.

152

• slots

– void addRun(runparameter &rp)
Adds a run to the list of runs to analyze.

– void removeRun(runparameter &rp)
Removes a run from the list of runs to analyze. Cannot remove current
run.

– void showNewRun(runparameter & run)
Debugging output. Writes Run information to analysisLog.

• signals

– newRun(runparameter&r, beamTimeparameter&b)
This signal is emitted whenever a new run will be necessary, right at the
beginning of the analysis and whenever the current run has noevents
left to analyze and there is a new run in the runs-to-analyze-list. If your
algorithm needs to do something with every new run (e.g. readsome
run-specific calibration) connect a slot to this signal.

– newEvent(int nrEvent)
After each thousand events in step- or process-mode, after each event
in single-step-mode this signal is emitted providing the number-of-
analyzed-events or the event-number (single-step-mode).

– changeEvent(TEvent *ev)
After each thousand events in step- or process-mode, after each event
in single-step-mode this signal is emitted providing the event-data-
structure. Useful for drawing purposes.

– algorithmInit(int algoID)
Signal is emitted, when an algorithm of IDalgoID is going to be ini-
tialized.

– algorithmInited(int algoID)
Signal is emitted, when an algorithm of IDalgoID has been initialized.

– analysisFinished(int numEvents)
Signal is emitted, when the analysis stopped afternumEventsevents.

– initStateChanged(const char *msg)
Signal is emitted, when some step in the initialization process is fin-
ished.

– finishStateChanged(const char *msg)
Signal is emitted, when some step in the finalization processis finished.

– requestEvent(int eventnumber, int runnumber)
Signal is emitted to request some specific event in analysis.

– requestNextEvent()
Signal is emitted to request the next event, when using some algorithm
as event-input-list.

153

Some of the methods that are still member of the class are keptfor convenience
keeping backward compatability, but are not documented here.

D.2 Shapes classes

The shapes package defines some methods that have to be implemented for the
shapes to be usable for e.g. the tracking algorithms. Most ofthem are only used
for the volumes, but methods likeDraw or getClone()are also useful for planar
shapes. The essential methods are:

• entrance(const sLine3D &line)
that returns the entrance point of a straight line into the volume,

• distance(const sLine3D &line)
that returns the distance vector of the line to the volume, which is the zero-
vector if the volume is hit,

• getClone()
that returns a copy of the volume, that has to be deleted by theuser,

• suspect(const sLine3D &line, int stackType)
returning the most probable element number, a straight linemay hit, for a
given stack-type considering this shape as element number zero,

• HitParams(const sLine3D &line)
that calculates the parameters needed for tracking,

• DrawProjected(const point3D &eye, const plane3D &plane, TCanvas* can-
vas, int color1=1, int color2=0, int style1=6,int ptt=-1)
that projects the surfaces of the volume and draws them on a canvas; this is
actually depreciated use

• Draw(const point3D &eye, const plane3D &plane, vector4D* boundingBox,
TObject **ident, int lColor, int fColor, int fStyle)
instead, here you also get a bounding box for the shape and a pointer to a
TObject, that my identify the drawing on a canvas,

• getNext(int times, int stackType)
that calculates the next element out of the own properties and the stackType,

• getEnvelope(int times,int stackType)
that calculates the enveloping volume of the whole detector,

• Hitting(const sLine3D &line)
that calculates all the properties of a possible hit betweena straight line and
the volume, and

154

(a) fiber (b) wedge

(c) stacked fibers (d) stacked fibers

Figure D.1: (a) Sketch of a fiber, showing the corner point andthe three direction
vectors. This shape is used to describe the two TOF-hodoscopes. (b) Sketch of a
wedge, showing the center point, the lower phi edge direction vector, the normal
vector, thickness, inner and outer radius properties. Thisshape is used to describe
the TOF-start detector, one layer of the micro-strip detector, one layer of each
Quirl and Ring detector and the Barrel detector, using an additional property, the
tilt angle between the normal vector and the symmetry axis. (c) and (d) show two
different ways to stack fibers. (c) is stack-type 2, (d) stack-type 17.

• Normal(const sLine3D &line)
that returns the entrance point and the vector normal to the surface in that
point; this method is especially useful, if you want to do ray-tracing on the
volumes.

These methods, especially the methods used for tracking areand should be opti-
mized for speed, since these methods are the bottle-neck in the analysis. For the
hit calculating methods, it pays to do the code for hit calculation once, in Hitting,
and call this method from the others (like entrance, distance, etc.), this prevents too
many bugs and makes the code clearer and easier to read. For the tracking methods,
note, that only hit-point-calculation is done for the surfaces the line can actually
hit to speed this calculation up, so the straight line is chosen as to be a half-limited
straight line, pointing from the footing point into a direction (e.g. target outwards).

Fiber The fiber is a box like shape, that consists of six planar surfaces, each two
opposing surfaces being parallel (fig.D.1(a)). It is represented by a corner-

155

point and three direction vectors. In special case, the fiberis a rectangular
box, but it doesn’t need to be. There are several stacking parameters avail-
able, as rectangular stacking and extended rectangular stacking. The rect-
angular stacking stacks the fibers in the direction of the second direction
vector, with no space in-between. There is a hole left out, when the num-
ber of halved rows is larger than zero. This is to include something like
a beam-hole. The difference between rectangular and extended rectangular
stacking is that the fibers are elongated by twice the shifting vector times
the element number, up to the position of the beam-hole and back, so that
a stretched hexagonal shape results as envelope. This stacking was imple-
mented to pay respect to the hodoscope that was installed in autumn 2004,
that has two layers of that shape and a third layer in rectangular stacking
(figs.D.1(c), D.1(d)).

Wedge The wedge in principal looks like a pizza- or cake- piece (fig.D.1(b)). It
has a center point, that is not the center of mass of the volume, but the center
of the circle, of the front plane of the cake, the piece was cutout. It has a
normal vector, to define the front plane and a vector that defines one of the
edges. It also has a phi range, an angle, by which the edge vector is rotated
around the negative normal vector to result in the other edgeand a thickness.
There are two radius variables, an inner and an outer radius.This shape
describes nicely the start detector and the straight layersof the Quirl- ,Ring-
and the Micro-Strip-detector. The individual elements of the Barrel detector
are also wedge shaped, but with a far away center point and radii that are
close together; also the elements are arranged in a way that they result more
in a cone-shape mantle than a cake. So there is an additional variable, that
accounts for the distance of the outer circle of the envelopeto the center-line
of the envelope. There are four stacking types available: circular stacking,
that results in a cake shaped envelope, extended circular stacking, where the
elements that come after completing a circle are added on theouter radius
of the circle, cone stacking, that takes the tilt of the Barrel into account, and
line stacking, that stacks the wedges in line with the negative normal vector,
the result here is a thicker wedge (fig. D.2(d)).

Spiral The spiral shape is in general like the wedge, except of the bending of
the edges. The edges are not straight lines but archimedian spirals, with
the equation:r = rmax

φmax
φ, where r is the distance from the center-point on

the plane, and phi is the angle between the edge-vector (fig. D.2(b)). The
archimedian spirals are build in the Micro-Strip-Spiral, the Quirl- and Ring
detector. In the latter there are one wedge shaped layer, andtwo spiral-layers
in opposite bending. The result of this is pixels of each three elements, that
cover all the same angle in space. For the spiral shapes, there exists only the

156

(a) cylinder (b) spiral

(c) spiral stacking (d) spiral and wedge stacking

Figure D.2: (a) Sketch of a cylinder, showing center point and direction vector
along with the radius property. This shape is used to describe the target volume
and the straw-tube-chamber. (b) Sketch of a spiral, showingthe center point, the
lower-phi-edge vector, the normal vector, the thickness, the outer and inner radius
and the bending. This shape is used to describe the bent layers of both Quirl and
Ring detector. (c) and (d) show the stacking of spirals and wedges to form the Quirl
detector. In both cases stack-type 1 is used.

157

(a) ring (b) stacked ring

(c) stacked ring (d) stacked microstrip

Figure D.3: (a)Sketch of a ring, showing the center point, the normal vector, the
thickness, the inner and outer radius properties. This shape is used to describe one
layer of the Micro-Strip detector. (b) and (c) show the different ways the ring can
be stacked with (b) having stack-type 2 and (c) stack-type 1.(d) shows ring and
wedges combined as used for the Micro-Strip-detector (sec.2.2.4).

circular stacking, to result in a cake-shape (figs. D.2(c), D.2(d)).

Cylinder The cylinders consist of a center-point, a direction vector, that describes
the shift of the center-point to one of the ends of the cylinder, a radius and
a preference direction, that is used for stacking (fig. D.2(a)). Here exist two
types of stacking, rectangular stacking, that results in a box like envelope
and circular stacking, that is similar to the extended circular stacking of the
wedge. The cylinder is used for the target volume.

Ring The ring is a generalized form of the wedge and a more specialized form of
the cylinder (fig. D.3(a)). Generalized in the way, that it has no edge-vectors,
it covers 2π range, specialized in the way, that it has an inner and an outer
radius, it is not filled. There are two types of stacking implemented: circular

158

(a) hexPrism (b) stacked hexPrism

Figure D.4: (a) Sketch of a hex-prism, showing the center point, the key-width
vector, the first-point-vector and the thickness vector. (b) shows how the hexPrisms
are stacked to form the calorimeter.

stacking, that modifies the radii of the rings, such that theyincrease the ra-
dius of the envelope (fig. D.3(c)), and line stacking, that results in a thicker
ring (fig. D.3(b)).

Hexprism The hex-prism is the most complicated of the volume shapes. It has
eight planar surfaces, always two of them in parallel (fig. D.4(a)). The front
and the back surface are a regular hexagon, the backward simply shifted by
the thickness vector. The other surfaces connect the back and the front plane.
The front plane contains as center of mass point the center-point, the vector
from the center-point to one of the corner-points and a key-width vector,
that is in plane but normal to the other vector. This key-width vector also
gives the direction for stacking. There is line stacking, that generates next
elements in a row, and snake-stacking, that generates a hex-prism shaped en-
velope (fig. D.4(b)).

StrawTube The straw-tube is derived from the cylinder, inheriting allproperties
and methods, but there is an additional parameter, the isochrone-radius, that
makes it necessary to implement a new class.

triangle with three corners. It calculates its center itself.

159

sphericTriangle To pay respect to the more unusual shape of the pixels in Quirl
and Ring, this spheric triangle has been developed. The center property has
to be set from outside.

rectangle represented by two four points. The angles between two connected
edges are 90deg.

quadrangle Any four points in plane.

spheric rectangle This planar shape could be the front and back side of a wedge.
The center point here is calculated using the center point ofthe underlying
wedge shifting it into the direction of the sum of both edges of the wedge by
the mean of the inner- and outer radius.

hexagon A regular hexagon, with a center, a normal vector and a so called first
point A.

circle A planar circle.

D.3 Container classes

D.3.1 TMaterial

This is a class, that is not used much so far, but is generated for completeness
and perhaps future use. It contains the properties of a material, a detector or dead
material1 can consist of, such as density, radiation length, speed of light and the
possibility to enter the elements, with mass (in GeV) and charge, the material con-
sists of.
Lately it finds use in the correction of the timing due to run time of the signal (light
for scintillators) from the generation-point (where the particle passes through the
material) to the collection point (e.g. photo-multiplier).

D.3.2 TDetector

The class TDetector is designed to hold one single detector layer, but can handle
more if necessary. It holds the geometry of the detector in question and a pointer
to the material the detector consists of. Each element is kept in an array and can
be used by the appropriate method. Note, that here a pointer to the original data is
returned, so if modified, the volume shape of the element is modified. The geom-
etry is not defined by this class, but is put in as the shape of the first element, that
has to be generated outside and an integer parameter that holds the way, the other
elements are generated out of the first one. But still this generation is not done

1Dead material is the opposite of detector material. It is notconnected to the DAQ, but distorts
never-the-less the measurement simply by its presence.

160

in the TDetector class but by the volume shape itself (see 3.8). The possibility to
modify the shapes gives you the possibility to alter the shapes according to your
needs after generation. Additionally this class holds an IDvalue, corresponding to
the ID of the detector it reflects.
Later it will be possible to read in the shapes of the individual elements from file,
if they are aligned so irregularly that they cannot be generated from the first one.
This is not necessary for the TOF-detector, but may be usefulfor other detectors
(like WASA, central calorimeter e.g.).

D.3.3 TTarget

The TTarget class is a small class to hold the properties of the target. It has a
volume shape, reflecting the target shape, a temperature variable and a four mo-
mentum vector to describe the particle the target is made of.This will have to be
modified in the future to be usable for other than elementary (proton or deuteron)
targets. As for the TDetector class the TTarget class has to be given an outside
generated volume shape as target volume.

D.3.4 TBeam

This class also is still not perfect, since not much used. It consists of a plane shape,
that corresponds to the beam spot, the projection of the beamon the target surface,
a value for the emittance and a four momentum vector for the beam particle.

D.3.5 TSetup

The TSetup class is the class that holds the setup of the wholeexperiment, de-
tectors, beam(s) and target. It has arrays for materials (TMaterial) and detectors
(TDetector) and variables for beam and target. Furthermore, it provides the possi-
bility to have a two beam experiment, a collider experiment,so you can supply a
second beam. All properties have to be generated outside theclass and added to
the TSetup variable to hold them.

D.3.6 Raw hit data: TRawHit

The TRawHit is the most basic class, it simply contains four integer variables,
naming detector and element of the detector that is hit and the hit properties, the
QDC and TDC information, in channels, as it is read out by QDC and TDC cards.
If one of the properties is not needed, one can set it to -1.

161

D.3.7 Calibrated hit data: TCalibHit

The TCalibHit class contains the hit data after calibration, which is a variable of
type TRawHit, for the unprocessed hit and additionally two floating point vari-
ables for energy and time information and a volume shape thatreflects the detector
geometry. The volume shape pointer is saved as assigned, butonly a clone can be
retrieved for further processing. This makes it possible tosave a volume shape once
for any number of events, when written to file. But makes it also less vulnerable to
programming errors. As mentioned above, the TCalibHit structure doesn’t contain
any calibration data, only calibrated data, and it doesn’t retrieve its volume shape
itself. It has to be assigned by appropriate algorithms likeACalibration (3.10.2)
and AGetTheShape (D.4). Furthermore it has a property, thatmakes it possible to
distinguish between hits, that have passed all cuts and requirements, and those that
have not: the valid-property.

D.3.8 TPixel

The TPixel class is the next class in reconstruction hierarchy. Very seldom, the
detectors are built in an intrinsic pixel structure. At mosttimes, the pixels with
fine resolution in x- and y- orθ- andϕ- are reconstructed out of hit detector ele-
ments, that intersect somehow in a projection to a plane or a sphere. The way this
reconstruction is done is not relevant for the TPixel class,the concrete algorithm
has to be applied from the outside. But the TPixel structure saves the elements that
contribute to the pixel and a planar shape, that gives the shape of the pixel.

D.3.9 TCluster

Often when a particle traverses a detector layer, it deposits not only energy in one
element per layer, but perhaps in two or more, depending on the specific direction
and the thickness of the detector layer. Here a simple pixel structure, that saves
only one element per layer is not enough anymore. The TCluster handles a number
of TPixels, that correspond to one particle, that went through this detector, along
with a three-dimensional point that is the center of the cluster shape. To have the
exact planar shape is out of question, since it can be very complex.

D.3.10 THitCluster

This class is added quite lately in the development process,to implement the whole
functionality of the analysis software used at the Forschungszentrum Jülich. Here
due to design features of the software, the generation of pixel-clusters was not pos-
sible, so the cluster search is done on hit level, merging several neighboring hits
into one, deleting the non used ones.

162

The principle of this package is never to delete any information, so a new class was
implemented. It is derived from TCalibHit inheriting all properties and functions.
It can be used alternatively to the TCalibHit objects, making it possible to make as
less modifications to the existing algorithms as possible with the full functionality.
Pass TCalibHit or THitCluster to an algorithm requiring TCalibHit, the algorithm
won’t even notice the difference.

D.3.11 TTrack

The TTrack structure has a lot of properties to describe. First of all the path of
the particle, the track describes. Here the sLine3D structure from the geometry
package (3.5) was chosen, since it has a footing point Foot and a direction vector
Direction, that describes the particles flight at its vertexpoint. In a future package
this may be extended to a variable, that can hold any class object, that is derived
of sLine3D, to enable curved lines. The TTrack structure canhold any TCalibHit
element, that was hit by the particle going through the detector, along with all the
pixels. You can set a track to be a prompt track or a secondary track, that doesn’t
origin in the target, but on the path of an other track, due to adecay, and pointer to
secondary tracks, in which this particle decayed. Additionally there are some other
analysis relevant properties, like errors for the track properties, that can be used,
for example a kinematic fit, and aχ2 value reserved for the fit of the path to the
elements/pixels. Finally there are kinematically relevant properties as speed of the
particle, its kinetic energy, its charge (this one is an integer value) and certainly a
four momentum representation of the particle.

D.3.12 TEvent

The TEvent class combines all other event based classes. Here all hits, pixels,
clusters and tracks are saved. This class allocates the memory for the TCalib-
Hit, TPixel, TCluster and TTrack objects. The references tothese objects can be
retrieved by the.member functions. The TEvent class provides place for event spe-
cific information, such as event number, run number and an integer trigger infor-
mation, additionally it has a three-dimensional vector forpolarization information.
Finally there is an array saving information about reactions, that could have taken
place in this event.

D.4 Algorithm classes

Most has been discussed already in section 3.10, though I will provide a list for
completeness:
AAlgorithm is the base class for all algorithms. An algorithm, that is not derived
from AAlgorithm (not necessarily directly) cannot be used in this analysis. Its

163

constructor asks for a string containing the name of the algorithm but this can also
be a description, no essential need to be unique. The parameter-list of the derived
classes usually is much more lengthly than that. Its properties are:

• string getName()
Returns the name of the algorithm specified in the constructor.

• void *process(void*ptr)
Method that will be called in the event-loop. Anything you want to happen
then put it here.

• vector<string>histogramNames()
This method returns a vector of names for histograms that aredefined in
the algorithm. By default it is empty. It is called by the GUI,to make the
histograms accessible and drawable during analysis. If youdefine debugging
or write-out histograms do not hesitate to overwrite this method and make
them available here.

• TH1* histogram(string histoName)
Returns the histogram of namehistoNameor NULL if none such exists. If
you inserted a histogram-name into the return-vector of themethod above,
also add some commands here to make the histogram available for viewing.

• vector<string>treeNames()
This method returns a vector of names for trees that are defined in the al-
gorithm. By default it is empty. It is called by the GUI, to make the trees
accessible to the GUI during analysis. If you define debugging or write-out
trees do not hesitate to overwrite this method and make them available here.

• TTree* tree(string treename)
Returns the tree of nametreeNameor NULL if none such exists. If you
inserted a tree-name into the return-vector of the method above, also add
some commands here to make the tree available for viewing.

• static algorithmparameter getDescription()
This static member function returns an algorithmparameter that holds all pa-
rameters (not necessarily with sensible values), the algorithm requests. This
method is not essential, but overwriting it in derived classes makes things
more comfortable.

As derived algorithms there exist:

• IO-algorithms

AReadFromTade The most basic input algorithm, reading from the ASCII
TADE-format described in sec. 3.10.1

AConversion Place holder class. Here you can define your own conversion
from your data format to thetypeCasedata format.

164

AHitTreeInput and AHitTreeOutput Write and read hits to/from root-TTree-
file. The hit tree contains branches for detector and hit element, the raw
TDC and QDC as well as for the calibrated values.

ATrackTreeInput and ATrackTreeOutput Read and Write Tracks to/from
root-TTree-file. The track-tree contains branches for the general track
properties, but also for the hit elements assigned to the track. Apart
from the pixel-information, there is no information lost when writing
to file.
Prompt-, kink- and vee-tracks are stored in different trees. For the in-
put, there exist a whole range of options starting from usinga directory
on the local machine to reading only specific event-pattern.

AMultipleTreeInput and AMultipleTreeOutput An older version of
ATrackTreeInput/Output with fixed branch-length. This class is obso-
lete, but maintained for format compatability reasons.

• Generation algorithms

AGenerateEvents This algorithm generates events using the root TGen-
PhaseSpace phase-space particle generator to generate prompt tracks.
If desired you can apply a modulation function/graph/histogram to im-
plement some model.

AGenerateEventsWithDecayThis algorithm not only generates prompt
tracks, but also simulates decays of a specified number of tracks. To all
vertices separate modulation functions can be applied.

AVirtualMachine The two algorithms above only generate the particles.
This algorithm here is an extremely simple virtual machine,generating
hits in the detector volume causing energy loss for the particles. It does
not do real scattering, so the angles are conserved.
This is a toy virtual machine, do not use it as realistic simulation of
your detector, but feel free to upgrade it into one.

• Calibration algorithms

AGetTheShape Assigns the shape from the detector-structure to the hit-
structure. This is only needed if the input-algorithm doesn’t do it itself
(e.g. AReadFromTade).

ACalibration Calibration algorithm. Applies Offset-, Walk- and Binning-
calibration-parameters to the hits QDC and TDC and applies cuts for
QDC and TDC.

ATeufelCorrection As mentioned in sec. 3.10.2, the Teufel-correction is
applied here. Note that it is applied to the raw QDCs. All other cali-
bration steps leave the raw values untouched.

• Pixel and Cluster algorithms

165

BarrelPixel For a detector with two-sided-read-out it defines a pixel, with
the pixel center defined by the difference of the TDCs betweenthe
back- and the front-read-out.

HodoPixel Pixel calculation for 2 perpendicular fiber-shaped hodoscope lay-
ers.

AHodo3Pixel Pixel calculation for 3-layered fiber-hodoscope, first two lay-
ers have to be perpendicular, the third in 45◦ to these.

MicroPixel Pixel calculation for 2-layered detector with one side wedges
and rings on the other.

Ringpixel Pixel calculation of detectors of type Quirl or Ring see sec.3.10.3,
A.1 and figures 2.7(a) and 2.7(b).

AHitClusterSearch Cluster search on hit level.

MicroCluster Cluster search on pixel level.

• Tracking algorithms

TüTrackSearch First approach to implement the Jülich prompt-tracking
routine intotypeCase. Since it is quite slow it is in use no more (see
sec. 3.10.4).

TüVSearch First approach to implement the Jülich vee-tracking routine
into typeCase. As for the prompt version it is too slow to be in use
anymore (see sec. 3.10.4).

ALineTrackSearch This is the improved prompt tracking algorithm using
suspect-search described in sec. 3.10.4.

AVLineTrackSearch This is the improved vee-tracking algorithm using sus-
pect-search described in sec. 3.10.4.

APixelTracking This algorithm implements the pixel-vee-search used in
Dresden. It is a brute force method, combining any two pixelsto pos-
sible tracks. It is quite slow, but has a high efficiency. It combines in-
tersecting tracks to decays. Can be switched to find also prompt tracks.

APromptHistoTracker This algorithm implements the projection-search
for prompt tracks used in Erlangen. Since it works on histograms
instead of 2D-function-lines, it is definitely slower than the suspect-
search, and the output is comparable.

AKinkSearch This is a kink search, finding charged decays between two
detector layers.

ATofStrawTrackFinder This algorithm is an interface to the TofStrawTrack-
Finder implemented at the Forschungszentrum Jülich. To use this al-
gorithm properly you have to download and install the TofStrawTrack-
Finder from the tof-home-page. The hits are fed into the track-finder
and the found tracks are converted to thetypeCase-format.

166

AAssignHitsToTracks This algorithm is useful, if a track-finder was ap-
plied, that did the track-search not on the complete detector but on a
subset of layers. This algorithm adds the missing detector layers to the
track using suspect-search.

AFindDecaysInTracks This algorithm is needed, when a track-finder was
applied, but no specification was given whether the found tracks are
primary or secondary. This algorithm defines the tracks intoprompt,
kink, vee, any-decay, adding neutral tracks if necessary.

• Post-tracking-calibration algorithms

AapplyLRC To finally calibrate the TDCs, they have to be corrected for the
signal-run-time in the detector, before reaching the photo-multipliers
for example. This algorithm calculates the hit point of the tracks in
their hit elements to a distance to readout. The correction is then a
function dependent on this path. Several options can be chosen for
correction-functions.

ATofPixCorrection This algorithm does essentially the same as the one
above, but can be applied already on pixel-level, as it is done in Jülich.

APulsHeightCorrection Corrects the QDCs for the signal-run-path in the
detector.

ACalculateTrackProperties Calculates the betas out of the TDCs. Specify
start- and stop-detectors; the mean is taken each.

• Other algorithms

ACompareToGIN This algorithm helps to compare the analyzed Monte-
Carlo simulation to the generated input values, leading to resolution,
efficiency and acceptance.

AWriteHistogramsToRootFile This algorithm produces an awful lot of his-
tograms, that are written to file or can be viewed during run-time. It is
still maintained, but the information contained here can beretrieved in
a more elegant way using the trees of e.g. ATrackTreeOutput.

• ABetheBloch: A small class calculating the energy-loss of aparticle in mat-
ter using the Bethe-Bloch-formula. It can be added to a material.

• ATDCcalibration: Big algorithm generating calibration for anything with a
TDC. It does offset, walk, signal-run-correction, Barrel-pixel-position and
also some TDC-cuts. Needs pixels and/or tracks.

D.5 Meta-code

Per definition meta-code is code that generates code.
To make installation of new algorithms and shapes more comfortable and less error

167

generating, this part of the analysis-program has been developed. It inserts com-
mands into all necessary files to include the new part of the analysis.
Specifications have to be made about the constructor of the class in question and in
the case of algorithms also about SIGNAL-SLOT-connectionsand GUI-interactions.
These can be saved to file, reread and executed later.
It contains search functions for every part of the installation process to prevent dou-
ble installation.
Note: This part of the analysis-program does not prevent youfrom programming
the new class. It only makes it (much) easier to install it into typeCase.

D.5.1 algorithmWriter

The class algorithmWriter provides all necessary functionality to insert a new al-
gorithm into the analysis package. Apart from the getters and setters, that provide
the necessary information about the algorithm in question,like header- and source-
file-names, class name, constructor call, connections to the main algorithm class
(sec. D.1), informations for IO-algorithms (widget headerand source, etc.) it pro-
vides the following functions (table D.1).
Operators to write the properties to file and reread them fromfile are supplied.
These files can be traded along with the new algorithm to othersites.

void insertToMakeFile()
void insertToIOMakeFile()
void insertToHeader()
void insertToIOHeader()
void insertToIO()
void insertToAnalyser()
bool headerAvail() const included in common header
bool makeAvail() const included in makefile
bool libAvail() const included in library
bool analyserAvail() const ready for analysis
bool ioAvail() const ready for IO
bool ioMakeAvail() const included in IO-makefile
bool ioHeaderAvail() const included in IO-header
int getNextID()
int getInstalledID()

Table D.1: These methods check up to which state the algorithm is already installed
and are able to insert the necessary code into the analysis-code-files and make-files.

168

D.5.2 shapeWriter

The class shapeWriter works quite similar, though it is a lotsimpler, the shapes
having a much less complicated calling structure than the algorithms. Here again
some getters and setters provide you with the information necessary to install the
new shape (see table D.2).
Operators to write the properties to file and reread them fromfile are supplied.
These files can be traded along with the new shape to other sites.

void insertToMakeFile()
void insertToHeader()
void insertToShapes() insert to analyzer
bool shapeAvail() const ready for analysis
bool headerAvail() const included in common header
bool makeAvail() const included in makefile
bool libAvail() const included in library

Table D.2: These methods check up to which state the shape is already installed
and are able to insert the necessary code into the analysis-code-files and make-files.

D.6 the plot-reaction classes

To generate the pretty plots seen in chapters 7 and C, severalclasses had to be de-
signed and implemented.
There are some help classes, likecolorScheme, filesManager, histoPropertiesand
texFileMakeup, that help to define the color scheme of a single histogram type, to
manage the files for input and output, histogram properties,like name, title, axis
titles, etc and the way a LATEX-file containing all plots and information of interest
should be made off. Additionally there are the classeshistoStack1andhistoStack2,
that contain all the histograms that should be plotted into one picture and do the
actual scaling and plotting.
When looking closer to a specific reaction, you may be interested not only in the
total cross section, but also in the differential cross sections and you want to see
the quality of your data and the resolution of your setup. Forthis purpose the plot-
reaction classes have been developed.
The main purpose of these classes is to define and fill histograms for a specific re-
action. But they can also apply cuts, correct data with simulations, write a TEX-file
containing all interesting plots and define and fill a tree (the “PreCutTree”-format)
with all values that are filled into the histograms.
If you think: That’s a tough task to define a class that alone can do this for all
possible reactions; you are right.
What is defined – as you have already seen for algorithms and shapes – is an in-
terface, an abstract class that defines the functions but does not implement them.

169

There are two classes derived from this base classes so far: implementing the plot-
ting a.s. for the reactionspp→ pK+Λ andpp→ pnπ+.

D.6.1 colorScheme

The struct colorScheme is a rather small one, containing information about line-,
fill- and marker- -color, -style and -size. For information about the color-pallete and
styles visit the root web-page (eg.http://root.cern.ch/root/html524/
TAttMarker.html). The most important functions are:

D.6.2 texFileMakeup

The class texFileMakeup is there to make a nice LATEX-file containing the plots
of the desired reaction. It capsules the number of pages for the one-dimensional
histograms. For each page it saves the number of rows and columns and for each
of these slots the ID of the plot to draw in this space. The “sub”-string defines the
aspect ratio of the plots: “a” for golden-ratio, “b” for squared.

D.6.3 histoProperties

This small struct combines the properties of one histogram.It contains the name
(which will not be displayed but is used to write to root-file), the title, the title
of the axes, the number of bins for the x-axis (as well as for the y-axis for 2D-
histograms), the ranges of the axes (xMin to xMax, yMin to yMax), the position
of the title box in canvas NDC2. It has a flag that is true, if only raw data and
simulation through detector shall be plotted, showing e.g.detector resolution, and
that is false for observable histograms, where corrected data and pure simulations
are shown. Thetp variable holds the dimension of the histogram and is negative
if the axes-ranges can be overwritten by an input from file. The scalingparameter
gives the relative scaling of the histogram in the picture,>1 leaves space on top,
<1 cuts away the uppermost point(s).

D.6.4 filesManager

The filesManager class is a class containing only static variables and methods. It
is no use defining an object of that type.
It keeps the information on the files for the different data sets you may want to plot.
The following possible data-sets are defined:

• Data: raw data
• Simulation: simulated events
• Through Detector: simulated events that passed a virtual detector and were

reconstructed as data was.
2normalized canvas coordinates: (0,0) at lower left corner,(1,1) at upper right.

170

• Corrected: recently added it is now possible to read the corrected datahis-
tograms from file.

Of type Data or Corrected you may have only one set, but you mayhave any num-
ber of sets of Simulations and Through Detector histograms,assigning Through
Detector to a Simulation-set to make it possible to calculate an efficiency out of
that combination.
Each Simulation is identified by a name or an ID.
Additionally it is possible to define amarking that is added to a LATEX-file in the
footer of each page. Many methods ask for a character parameter type, that can be
“d” for data, “c” for corrected data, “s” for simulation or “m” or “t” for Through
Detector sets (case doesn’t matter). The most important methods are:

D.6.5 histoStack1 and histoStack2

The drawings in chapters 7 and C contain in one picture a stackof histograms.
There is the yellow-filled phase-space, the black dots for corrected data and many
colored lines, that correspond to different simulations. They are all stored in the
histoStack-classes, that not only do the drawing and correct scaling of the different
histograms, but also assign the color-schemes and calculate efficiency and cor-
rected histograms.

histoStack

In principle one base-classhistoStackwould have been enough, perhaps a derived
class for the 2D-histograms, because the error-propagation has to be done by hand
there and also the draw-method is different. But unfortunately the root-classes
do not permit polymorphism and therefore the histogram-variables as well as the
getters and setters had to be implemented for both classes separately.
Each histogram-stack contains a property-variable (sec. D.6.3), that defines the
axes-ranges and titles. It also contains for each histogramin the stack the root-
drawing-option and a relative scaling factor. There is a flagfor logarithmic (y-axis
for 1D, z-axis for 2D) plotting, the color for applied cuts and hits (e.g.Λ-mass in
fig. 7.5(a)) and most important which simulation to use for correction and which
simulation-set corresponds to which Through-Detector-set.

histoStack1

This class contains a stack on 1-dimensional histograms, with two colorSchemes
for each set (one common, one for black-and-white printing). Each object contains
a list of x-positions for vertical lines (first two will be ofcutColor, the rest will have
hintColor). There exists the possibility to normalize the histogramsnot to common
integral, but to have a common height at some position; for this purpose you can
set the special normalizer-flag and set the x-position at which the histograms all

171

have the same height.
It can produce corrected data-histograms if all necessary histograms (raw-data,
simulation and corresponding simulation-through-detector) are available; it applies
the right colorSchemes and scales and draws the histograms to a selected canvas.

histoStack2

The class histoStack2 contains a stack of histograms of typeTH2F. As the 1D-
version, this class can also produce corrected-data-histograms as well as draw the
histograms to canvas. But for 2D-histograms, no colorScheme is needed, all his-
tograms are drawn with the option “col”. This reduces the disc-space of the result-
ing “.eps”- or “.ps”-files and time to draw enormously compared to scatter-plots.

D.6.6 Reaction-types

The reaction-types do the filling of the histograms for the differential cross section
spectra, they can apply cuts, define a tree-format containing all interesting infor-
mation about this reaction, file-IO for data and methods to plot the graphs and do
some nice LATEX-file to include the plots, say something about the data-sources and
calculate the total cross-section.
For full flexibility an abstract base classreaction typewas defined. It implements
the general functions of these classes, as well as static functions to allocate installed
plot-reactions. The general –implemented– methods are:

• void setBeamMomentum(float value)Set the momentum of the beam-
particle. There are 2 particles in the initial state: target-proton and beam-
proton. Target is at rest. In units of GeV

• float beamMomentum()constReturns the momentum of the beam-particle
in GeV.

• void setCrossectionPerEntry(float value,float error)Sets the cross-section
per entry in the data-histograms (probably determined using some reference
reaction eg. pp-elastic-scattering) along with its error in mBarn.

• float crossectionPerEntry()constReturns the cross-section for each event
in data in mBarn.

• float crossectionPerEntryError()const Returns the error for the cross-section
per entry-value.

• reaction type(string iname) Constructor. Won’t ever be called directly but
only via derived classes.

• virtual reaction type() Destructor.
• string name()constReturns the name of the reaction. Set variablefnamein

your constructor.
• int nParticles()constReturns the number of particles, that will be displayed

for this reaction.
• int nAngles()const Returns the number of angle-parameters that will be

saved in PreCutTree-format for this reaction.

172

• int nMissingMasses()constReturns the number of missing-mass-parameters
that will be saved in PreCutTree-format for this reaction.

• int nInvariantMasses()constReturns the number of invariant-mass-parameters
that will be saved in PreCutTree-format for this reaction.

• int n1D()const Returns the number of 1D-histograms defined for this reac-
tion.

• int n2D()const Returns the number of 2D-histograms defined for this reac-
tion.

• void setUse(int pos, bool value)Set the use of theposth cut.
• static vector<string> reactionNames()Static function that returns the names

of all defined reactions.
• static reaction type *getReaction(const string& name)Returns a pointer

to an object of the reaction of the specified name. Returns theNULL-pointer
if name is not valid. Take care that you delete the object after use.

• void resetStruct(trackstruct& stru) Sets the values of the structure to de-
fault values.

• void initWriteOutTree(TTree *tree, writeOutStruct &str, string pre) Ini-
tializes a tree for the PreCutTree-format.

• bool getHistos(TFile *f, TH1F ***histos1, TH2F ***histos2 , string pres)
Retrieves the histograms for this reaction from file and saves them in the
arrays for 1D-histograms and 2D-histograms. Specify a string that can be
prepended to the name of the histograms.

• void fillWriteOutTree(TTree* tree, writeOutStruct &str,T Tree* inTree)
• string precuttree eventList quality(bool use[20| , int cuton, float* masses)

If you have a tree in PreCutTree-format, you can apply cuts easily using
the generation of a TEventList-object with the TTree::Draw-method. This
method returns the cut-string for all events where at least one of the used
cuts passed.

• string precuttree eventList observables(bool use[20|, int cuton, float* masses)
If you have a tree in PreCutTree-format, you can apply cuts easily using
the generation of a TEventList-object with the TTree::Draw-method. This
method returns the cut-string for all events where all of theused cuts passed.

• bool getPreCutTreeLeaves(TLeaf ** hdr, TLeaf ** lvs, TTree *tree, string
pre) Extracts from a tree in trackTree-format the leaves of the hearder

• void refillStruct(TLeaf** hdr, TLeaf** leaves, writeOutSt ruct &str, int
offsetPos)Copies the current content of the leaves (retrieved viagetPreCut-
TreeLeaves()) to the struct.

• void addEventsToPrecuttree(TTree *inTree, TTree* outTree, writeOut-
Struct &str,string pre) If inTreeandoutTreeare both of PreCutTree-format
this method appends the entries frominTree to outTree. pre can be some
string that is prepended to the leaf-names in theinTree.

• void getAllMyDataFromFile(histoStack1 *histo1D, histoStack2 *histo2D,
bool fitted, bool show=true)This very potent method uses all files defined
in classfilesManagerfor each of the data-sets defined infilesManagerand

173

histoStackand reads the content from the input files (possibly applyingcuts)
and saves it in the defined output-files and most important in the histostack-
arrays, that have to have the right dimension for this reaction.

• void plotToDirectory(histoStack1 *histo1D, histoStack2*histo2D,string
pathname) For each 1D-hisogram this method produces one .eps-file in
the specified directory containing the canvas-Print()-output, with the drawn
histogram-stacks. The numbering of the files is successive:
pathname/drawings$i $ASPECT.eps. The $ASPECT can be “a” for an
aspect-ratio of

√
2 or “b” for an aspect-ratio of 1.

2D-histograms will be plotted each histogram in a separate file:
pathname/drawings$(i+N1D) $j b.eps, with
0 raw data
1 corrected data
2 efficiency
3· · ·Nsim simulations
3+Nsim· · ·3+Nsim+NthroughDetector simulation through detector

• void makeTexFile(string pathname, int nData, int nSim, intnThrough)
Generates a LATEX-file that contains all plots and other available information
for this reaction and the input-data. You will have to apply LATEXthis file
later.

• void fillCompareTree(TTree* tree, writeOutStruct &inStru ct, writeOut-
Struct& outStruct, TChain* inTree, TChain* outTree, int tp 1, int tp2,
bool ch1, bool ch2,string pre1,string pre2)This method will combine a
simulation-data-set (inTree) and a simulation-through-detector-set (outTree)
to a single PreCutTree (tree). The trees can have different format (tp1,
tp2, where 0 means track-tree-format, 1 PreCutTree-format), possibly be
TChains (ch1, ch2) and have some string prepended to the leaves in the trees.
The only events written will be the ones where both trees havean entry for
the same event number.

• void produceCompareTree(vector<string> filesMC, vector<int> type-
sMC, vector<string> filesGIN, vector<int> typesGIN, string outfile)
Produce a tree conaining simulation and simulation-through-detector-data.
CallsfillCompareTree(...).

• void add pkl(TTree *tree, TH1F ***histos1, TH2F ***histos2, Float t
initM, float chiCut, bool invalues, bool converged, int filetype) Adds
events from a track-tree to a set of histograms, applying cuts. UsesleafToStruct(...),
observablesFill(...), qualityFill(...) .

• void fillHistosFromPrecuttree(TTree *tree,TH1F ***histo s1, TH2F ***his-
tos2,bool invalues,bool converged, string preH, string preS)Adds events
from a PreCutTree to a set of histograms applying defined cuts. UsesleafToStruct(...),
observablesFill(...), qualityFill(...) .

• void fillData2PTtrees(istream &input, writeOutStruct& Pt racks, TTree
*Ptree, trackstruct &Ttracks, TTree *Ttree, const momentum4D &init-

174

System)Read from a dat-input-stream. This will be filled to a track-tree and
a PreCutTree. Usesevent2Pstruct(...)andcopyPTstructs(...).

• void fillData2histosTree(istream &input, writeOutStruct & tracks, track-
struct &Ttracks, TTree *tree, const momentum4D &initSystem,TH1F***
histos1, TH2F*** histos2,int which, int cuton, bool converged)Read from
a dat-input-stream. This will be filled to a track-tree and the histograms.
Usesevent2Pstruct(...), copyPTstructs(...), observablesFill(...), quality-
Fill(...).

• void fillData2histos(istream &input, writeOutStruct& tra cks, const mo-
mentum4D &initSystem,TH1F*** histos1, TH2F*** histos2,i nt which,
int cuton, bool converged)Read from a dat-input-stream. This will be filled
to histograms. Usesevent2Pstruct(...), observablesFill(...), qualityFill(...) .

• void fillData2Ptree(istream &input, writeOutStruct& trac ks, TTree *tree,
const momentum4D &initSystem)Read from a dat-input-stream. This will
be filled to a PreCutTree. Usesevent2Pstruct(...).

To specify the individual behavior for each reaction, you have to derive new classes
from reaction typeimplementing the purely virtual methods and perhaps defining
new methods and variables. Each of the following methods have to be overwritten
(using keywordvirtual):

• int* getIDs() Allocate an array of integer, fill it with the GEANT-IDs of the
particles in this reaction and return the pointer to it. Don’t return a pointer to
a local object.

• float *getMasses()Allocate an array of floats, fill it with the masses of the
particles in this reaction and return the pointer to it. Don’t return a pointer to
a local object.

• void setBaseUse()Set the base-use array for the 20 cuts with default values.
• vector<string> getCutNames()Return a vector of strings with the names

of the individual cuts. Will be used in GUI and for display.
• string makeComment(bool use[20], int nCuts)Returns a LATEX-string with

all the cuts, that are currently used. Will be added as caption to the graphs
on each page of the LATEX-file.

• void fillCuts(writeOutStruct &stru, int cuton, int nCuts, b ool *cuts, float
*masses, bool converged)Assuming the current event is filled intostru, the
cuts-array shall be filled with boolean values whether the corresponding cut
was passed.cutondefines the index to use for the cuts of thestru arrays (0:
unfitted, 1: fitted).

• void getStrings(string strings[20], bool use[20], int cuton, float* masses)
Since in PreCutTree-format all important values have already been calcu-
lated and stored, an event-list can be generated using a cut string. This func-
tion shall return the strings for the individual cuts so theycan be used in the
TTree::Draw()-method.

175

• void qualityFill(TH1F*** histos1, TH2F*** histos2, write OutStruct &stru,
int which, int cuton, int nCuts, bool *cuts, bool use[20], float *masses,
bool converged, float weight=1)This method calls thefillCuts(...)-method
and shall fill all histograms showing the quality applying all cuts but the one
shown in this histogram.

• void observablesFill(TH1F*** histos1, TH2F*** histos2, writeOutStruct
&stru, int which, float weight=1) This method doesn’t care about cuts,
that’s done in the method calling this one. It simply fills allhistograms de-
fined as observable histograms –the ones that will be drawn innice color.

• void addDrawingLines(histoStack1 *h1, histoStack2 *h2, float *masses)
Perhaps you want to indicate cuts you are applying, or guide the eye by
putting a line to a position where a peak shall be. This is the function to add
some line to the corresponding histogram-stack.

• void setHistoPropertiesDefault(const momentum4D &inputmomentum)
This method defines the default description of the histograms you want to fill
and draw. You can read the properties from file, but here in this method you
define the default, that doesn’t need any files.
Each histogram-property is defined by name, title, axes-titles, binning of the
axes (will be multiplied by 10), axes-ranges, the position of the title-box and
the draw-mode (true for observable, false for quality-draw).

• bool leafToStruct(TLeaf** leav, writeOutStruct &stru, mo mentum4D
&cms, momentum4D &inM, momentum4D moment[4][4], momentum4D
inter[4], momentum4D Pcms[2][3], momentum4D Jmoment[2][3][3], mo-
mentum4D jbm[2][3], float *mass,int id[4],vector3D &lDir) Depreciated
function, see description for method below.

• bool leafToStruct(TLeaf** leav, writeOutStruct &stru, mo mentum4D
&cms, momentum4D &inM, float *mass,int *id) This method fills the
struct stru with all properties, that will be drawn later from the leavesof
track-tree-format-leaves. Very basic method, take care ofthis one!

• bool trackTreeStruct2WoStruct(trackstruct &tr, writeOu tStruct& stru,
momentum4D &cms, momentum4D &inM, float *mass)For this method
you copy the basic properties from a track-tree-struct to a PreCutTree-struct
and calculate all important properties for this reaction.

• void event2Pstruct(istream &input, writeOutStruct& trac ks, const mo-
mentum4D &initSystem, int *particleids) This method reads the event
from an dat-input-stream and converts it into the PreCutTree-struct, calcu-
lating not only center-of-mass values and velocity but alsoinvariant- and
missing-masses and angles.

• void setTexFile(texFileMakeup &makeup)With this method you define
how your LATEX-file shall look in the end. How many pages and how many
rows and columns shall the individual page have. Which plotsto show in
which slot and with which a aspect-ratio. This is what you define here.

176

Class D.1Definition of class histoStack.

c l a s s h i s t o S t a c k
{

p r o t e c t e d :
h i s t o P r o p e r t i e s p r o p e r t y ;
boo l f l o g a r i t h m i c ;
s t a t i c i n t f c o r r e c t W i t h ;
s t a t i c ve c t o r<i n t > mcAssign ;
s t a t i c i n t nBins ;

i f d e f USELEGEND
TLegend∗ l egend ;

e n d i f
p u b l i c :

s t a t i c ve c t o r<f l o a t > drawS imu la t i on ;
s t a t i c ve c t o r<f l o a t > drawMC ;
s t a t i c f l o a t drawData ;
s t a t i c f l o a t d r a w C or r e c t i on ;
s t a t i c f l o a t d r a w E f f i c i e n c y ;
s t a t i c i n t c u t C o l o r ;
s t a t i c i n t h i n t C o l o r ;
s t a t i c ve c t o r<s t r i n g> s i m u l a t i o n O p t i o n ;
s t a t i c ve c t o r<s t r i n g> mcOption ;
s t a t i c s t r i n g da t a O p t i on ;
s t a t i c s t r i n g c o r r e c t e d D a t a O p t i o n ;
s t a t i c s t r i n g e f f i c i e n c y O p t i o n ;
s t a t i c ve c t o r<s t r i n g> s imula t ionName ;

p u b l i c :
vo id s e t P r o p e r t i e s (c ons t h i s t o P r o p e r t i e s &hs) ;
s t r i n g name () c ons t ;
s t r i n g t i t l e () c ons t ;
s t a t i c i n t b i ns () ;
s t a t i c vo id s e t B i n s (i n t b) ;
s t a t i c i n t c o r r e c t i o n S i m () ;
s t a t i c i n t cor rec t ionMC () ;
s t a t i c s t r i n g o p t i o n (char tp , s t r i n g iname) ;
s t a t i c vo id s e t O p t i o n (char tp , s t r i n g iname , s t r i n g c) ;
s t a t i c f l o a t d rawFac to r (char tp , s t r i n g iname) ;
s t a t i c vo id se tD rawFac to r (char tp , s t r i n g iname , f l o a t v) ;
vo id s e t L o g a r i t h m i c (boo l v) ;
boo l l o g a r i t h m i c () c ons t ;
s t a t i c i n t c o r r e c t W i t h () ;
s t a t i c vo id s e t C o r r e c t i o n (s t r i n g name) ;
s t a t i c vo id s e t C o r r e c t i o n (i n t num) ;

} ;

177

Class D.2Definition of class histoStack1.

c l a s s h i s t o S t a c k 1 : p u b l i c h i s t o S t a c k
{

p u b l i c :
s t a t i c vec to r<colorScheme> s i m u l a t i o n C o l o r ;
s t a t i c vec to r<colorScheme> mcColor ;
s t a t i c co lorScheme d a t a C o l o r ;
s t a t i c co lorScheme c o r r e c t e d D a t a C o l o r ;
s t a t i c co lorScheme e f f i c i e n c y C o l o r ;
s t a t i c vec to r<colorScheme> s imula t ionColorALT ;
s t a t i c vec to r<colorScheme> mcColorALT ;
s t a t i c co lorScheme dataColorALT ;
s t a t i c co lorScheme cor rec tedDataCo lo rALT ;
s t a t i c co lorScheme e f f i c i encyCo lo rALT ;

p u b l i c :
s t a t i c vo id c l e a n S t u f f () ;
s t a t i c vo id s e t D a t a C o l o r (co lorScheme c , s t r i n g drawOpt ion) ;
s t a t i c vo id s e t D a t a C o l o r (co lorScheme c , co lorScheme ac , st r i n g drawOpt ion) ;
s t a t i c vo id setDataColorALT (co lorScheme c) ;
s t a t i c vo id s e t C o r r e c t e d D a t a C o l o r (co lorScheme c , s t r i n gdrawOpt ion) ;
s t a t i c vo id s e t C o r r e c t e d D a t a C o l o r (co lorScheme c , co lorScheme ac , s t r i n g drawOpt ion) ;
s t a t i c vo id se tCor rec tedDa taCo lo rALT (co lorScheme c) ;
s t a t i c vo id s e t E f f i c i e n c y C o l o r (co lorScheme c , s t r i n g drawOpt ion) ;
s t a t i c vo id s e t E f f i c i e n c y C o l o r (co lorScheme c , co lorScheme ac , s t r i n g drawOpt ion) ;
s t a t i c vo id s e t E f f i c i e n c y C o lo rA LT (co lorScheme c) ;
s t a t i c vo id a d d S i m u l a t i o n C o l o r (s t r i n g name , co lorSchemec , s t r i n g drawOpt ion) ;
s t a t i c vo id a d d S i m u l a t i o n C o l o r (s t r i n g name , co lorSchemec , co lorScheme ac , s t r i n g drawO
s t a t i c vo id addS imula t ionColorALT (s t r i n g name , co lorScheme c) ;
s t a t i c vo id addMCColor (s t r i n g name , co lorScheme c , co lorScheme ac , s t r i n g drawOpt ion) ;
s t a t i c vo id addMCColorALT (s t r i n g name , co lorScheme c) ;

s t a t i c co lorScheme c o l o r (cha r tp , s t r i n g iname) ;
s t a t i c co lorScheme colorALT (cha r tp , s t r i n g iname) ;
s t a t i c vo id s e t C o l o r (cha r tp , s t r i n g iname , co lorScheme c);
s t a t i c vo id setColorALT (cha r tp , s t r i n g iname , co lorScheme c) ;

h i s t o S t a c k 1 () ;
˜ h i s t o S t a c k 1 () ;
h i s t o S t a c k 1 (c o n s t h i s t o P r o p e r t i e s& hs) ;
TH1F ∗ d a t a H i s t o () c o n s t ;
TH1F ∗mcHisto () c o n s t ;
TH1F ∗ s imH is to () c o n s t ;
i n t nHis tograms () c o n s t ;
vo id s e t S p e c i a l N o r m a l i z e r (boo l v) ;
vo id se tNorma l i ze rX (f l o a t x) ;
vo id addL ine (f l o a t xva lue) ;

TH1F ∗makeHistogram (s t r i n g p r e s) ;
vo id se tDa taH is tog r am (TH1F∗ h i s t o) ;
vo id a d d S i m u l a t i o n H i s t o (TH1F∗ h i s t o , s t r i n g name , s t r i n g p r e s) ;
vo id addMChisto (TH1F∗ h i s t o , s t r i n g name , s t r i n g p r e s) ;
vo id addMChisto (TH1F∗ h i s t o , i n t ass i gnsTo , s t r i n g p r e s) ;

vo id addHis togram (s t r i n g name , s t r i n g pre , cha r tp , TH1F∗ h i s t o) ;
vo id s e t H i s t o g r a m (i n t num , cha r tp , TH1F∗ h i s t o) ;
TH1F∗ h i s tog ram (i n t num , cha r t p) ;

vo id c o r r e c t () ;
vo id draw (boo l debugMode , f l o a t s igmaEnt ry) ;
vo id upda te () ;
vo id updateALT () ;

} ;

178

Class D.3Definition of class histoStack2.

c l a s s h i s t o S t a c k 2 : p u b l i c h i s t o S t a c k
{

p u b l i c :
s t a t i c vo id a ddS i m u l a t i onO p t i on (s t r i n g name , s t r i n g drawOpt ion) ;
s t a t i c vo id addMCOption (s t r i n g name , s t r i n g drawOpt ion)
s t a t i c vo id s e t D a t a O p t i on (s t r i n g drawOpt ion) ;

h i s t o S t a c k 2 () ;
˜ h i s t o S t a c k 2 () ;
h i s t o S t a c k 2 (c ons t h i s t o P r o p e r t i e s& hs) ;
TH2F ∗ d a t a H i s t o () c ons t ;
TH2F ∗mcHisto () c ons t ;
TH2F ∗ s imH is to () c ons t ;
i n t nH is tograms () c ons t ;

TH2F ∗makeHistogram (s t r i n g p r e s) ;
vo id addHis togram (s t r i n g name , s t r i n g pre , char tp , TH2F∗ h i s t o ,

boo l draw= t r u e) ;
vo id s e t H i s t og r a m (i n t num , char tp , TH2F∗ h i s t o) ;
TH2F∗ h i s t og r a m (i n t num , char t p) ;
vo id s e t D a t a H i s t og r a m (TH2F∗ h i s t o) ;
vo id a ddS i m u l a t i o n H i s t o (TH2F∗ h i s t o , s t r i n g name , s t r i n g pres ,

boo l draw= t r u e) ;
vo id addMChisto (TH2F∗ h i s t o , s t r i n g name , s t r i n g pres ,

boo l draw= t r u e) ;
vo id addMChisto (TH2F∗ h i s t o , i n t ass ignsTo , s t r i n g pres ,

boo l draw= t r u e) ;

s t r i n g nameOfSet (i n t which) ;
vo id add (f l o a t xva lue , f l o a t yva lue , f l o a t rx , f l o a t ry) ;
vo id c o r r e c t () ;
boo l draw (i n t which , f l o a t s igmaEnt ry) ;
vo id upda te () ;

} ;

179

Class D.4Definition of general part of the class reactiontype.

c l a s s r e a c t i o nt y p e
{

p r o t e c t e d :
i n t fN2D ;
i n t fN1D ;
i n t f N p a r t i c l e s ;
i n t f N an g l es ;
i n t fNmiss ingMasses ;
i n t f N i n v a r i an t Masses ;
i n t f k i n f i t N d F ;
f l o a t BEAMMOMENTUM;
f l o a t SIGMA ENTRY ;
f l o a t SIGMA ENTRY ERROR;
vo id co p y P Ts t r u c t s (t r a c k s t r u c t& t r a c k s , w r i t e O u t S t r u c t& s t r u) ;
vo id g e t T r ack Tr eeLeav es (TLeaf∗∗ l vs , TTree ∗ t r e e) ;
TTree∗ g e t T r eeF r o m F i l e (TF i l e∗myf i le , i n t &f i l e T y p e) ;
vo id checkLeaves (boo l i sCha in , TChain∗ t r ee , i n t &t e s t T r e e , i n t tp , TLeaf∗∗ l eav es , TLeaf∗∗headers , s t r i n g p r e) ;
vo id event2momenta (i s t r e a m &i n p u t , v ec t o r<vector3D> &momenta , v ec t o r<i n t> &ids , i n t& eventNumber , i n t &runNumber ,

i n t &t r i g g e r , f l o a t &ch i , i n t &i t e r a t i o n s) ;
vo id event2momenta (i s t r e a m &i n p u t , v ec t o r<vector3D> &momenta , v ec t o r<i n t> &ids , i n t& eventNumber , i n t &runNumber ,

i n t &t r i g g e r , f l o a t &ch i , i n t &i t e r a t i o n s , f l o a t &beam) ;
vo id copyFromLeaves (t r a c k s t r u c t &t r a c k s , TLeaf∗∗ l e a v e s) ;
boo l baseUse [2 0] ;
vo id se t U se (boo l u ses [2 0]) ;

p u b l i c :
h i s t o P r o p e r t i e s∗H i s t o g r a m D e f i n i t i o n D e f a u l t ;
h i s t o P r o p e r t i e s∗H i s t o g r a m D e f i n i t i o n ;
f l o a t cu t V a l u eA r r ay [2 0] ;

p u b l i c :
vo id setBeamMomentum(f l o a t v a l u e) ;
f l o a t beamMomentum () co n s t ;
vo id s e t C r o s s e c t i o n P e r E n t r y (f l o a t va lue , f l o a t e r r o r)
f l o a t c r o s s e c t i o n P e r E n t r y () co n s t ;
f l o a t c r o s s e c t i o n P e r E n t r y E r r o r () co n s t ;
r e a c t i o n t y p e (s t r i n g iname) ;
v i r t u a l ˜ r e a c t i o n t y p e () ;
s t r i n g name () co n s t ;
i n t n P a r t i c l e s () co n s t ;
i n t nAngles () co n s t ;
i n t nMiss ingMasses () co n s t ;
i n t n I n v a r i an t Masse s () co n s t ;
i n t n1D () co n s t ;
i n t n2D () co n s t ;
vo id se t U se (i n t pos , boo l v a l u e) ;
s t a t i c v ec t o r<s t r i n g> reac t ionNames () ;
s t a t i c r e a c t i o n t y p e ∗g e t R e a c t i o n (co n s t s t r i n g& name) ;

vo id r e s e t S t r u c t (t r a c k s t r u c t& s t r u) ;
vo id i n i t W r i t e O u t T r e e (TTree∗ t r ee , w r i t e O u t S t r u c t &s t r , s t r i n g p r e) ;
vo id f i l l D a t a 2 P T t r e e s (i s t r e a m &i n p u t , w r i t e O u t S t r u c t& Pt r ack s , TTree∗P t r ee , t r a c k s t r u c t &T t r ack s , TTree∗Tt ree ,

co n s t momentum4D &i n i t S y s t e m) ;
vo id f i l l D a t a 2 h i s t o s T r e e (i s t r e a m &i n p u t , w r i t e O u t S t r u ct& t r a c k s , t r a c k s t r u c t &T t r ack s , TTree∗ t r ee ,

co n s t momentum4D &i n i t S y s t em , TH1F∗∗∗ h i s t o s 1 , TH2F∗∗∗ h i s t o s 2 , i n t which , i n t cu ton , boo l converged) ;
vo id f i l l D a t a 2 h i s t o s (i s t r e a m &i n p u t , w r i t e O u t S t r u c t& t ra c k s , co n s t momentum4D &i n i t S y s t em , TH1F∗∗∗ h i s t o s 1 ,

TH2F∗∗∗ h i s t o s 2 , i n t which , i n t cu ton , boo l converged) ;
vo id f i l l D a t a 2 P t r e e (i s t r e a m &i n p u t , w r i t e O u t S t r u c t& t r ac k s , TTree ∗ t r ee , co n s t momentum4D &i n i t S y s t e m) ;
boo l g e t H i s t o s (TF i l e∗ f , TH1F ∗∗∗h i s t o s 1 , TH2F∗∗∗h i s t o s 2 , s t r i n g p r es) ;
vo id f i l l W r i t e O u t T r e e (TTree∗ t r ee , w r i t e O u t S t r u c t &s t r , TTree∗ i n T r ee) ;
vo id ad d p k l (TTree ∗ t r ee , TH1F ∗∗∗h i s t o s 1 , TH2F∗∗∗h i s t o s 2 , F l o a t t in i tM , f l o a t ch iCut , boo l i n v a l u es ,

boo l converged , i n t f i l e t y p e) ;
s t r i n g p r e c u t t r e ee v e n t L i s t q u a l i t y (boo l use [2 0] , i n t cu ton , f l o a t∗ masses) ;
s t r i n g p r e c u t t r e ee v e n t L i s t o b s e r v a b l e s (boo l use [2 0] , i n t cu ton , f l o a t∗ masses) ;
boo l g e t P r eCu t T r eeLeav es (TLeaf∗∗ hdr , TLeaf ∗∗ l vs , TTree ∗ t r ee , s t r i n g p r e) ;
vo id r e f i l l S t r u c t (TLeaf∗∗ hdr , TLeaf∗∗ l eav es , w r i t e O u t S t r u c t &s t r , i n t o f f s e t P o s) ;
vo id f i l l H i s t o s F r o m P r e c u t t r e e (TTree∗ t r ee , TH1F ∗∗∗h i s t o s 1 , TH2F∗∗∗h i s t o s 2 , boo l i n v a l u es , boo l converged ,

s t r i n g preH , s t r i n g preS) ;
vo id ad d Ev en t sTo P r ecu t t r ee (TTree∗ i nTree , TTree∗ outTree , w r i t e O u t S t r u c t &s t r , s t r i n g p r e) ;
vo id getA l lMyDataFromFi le (h i s t o S t a c k 1∗h is to1D , h i s t o S t a c k 2∗h is to2D , boo l f i t t e d , boo l show= t r u e) ;
vo id p l o t T o D i r e c t o r y (h i s t o S t a c k 1∗h is to1D , h i s t o S t a c k 2∗h is to2D , s t r i n g pathname) ;
vo id makeTexFi le (s t r i n g pathname , i n t nData , i n t nSim , i n tnThrough) ;
vo id f i l l Co m p a r eTr ee (TTree∗ t r ee , w r i t e O u t S t r u c t &i n S t r u c t , w r i t e O u t S t r u c t& o u t S t r uc t , TChain∗ i nTree ,

TChain∗ outTree , i n t tp1 , i n t tp2 , boo l ch1 , boo l ch2 , s t r i n g pre1 , s tr i n g pre2) ;
vo id produceCompareTree (v ec t o r<s t r i n g> f i lesMC , v ec t o r<i n t> typesMC , v ec t o r<s t r i n g> f i l esGIN ,

v ec t o r<i n t> typesGIN , s t r i n g o u t f i l e) ;

180

Class D.5Definition of abstract part of class reactiontype.

v i r t u a l i n t ∗ ge t IDs () = 0 ;
v i r t u a l f l o a t ∗ getMasses () = 0 ;
v i r t u a l vo id setBaseUse () = 0 ;
v i r t u a l ve c t o r<s t r i n g> getCutNames () = 0 ;
v i r t u a l s t r i n g makeComment (boo l use [2 0] , i n t nCuts) = 0 ;
v i r t u a l vo id f i l l C u t s (w r i t e O u t S t r u c t &s t r u , i n t cuton , i nt nCuts ,

boo l ∗ cu ts , f l o a t ∗masses , boo l converged) = 0 ;
v i r t u a l vo id g e t S t r i n g s (s t r i n g s t r i n g s [2 0] , boo l use [2 0],

i n t cuton , f l o a t∗ masses) = 0 ;
v i r t u a l vo id q u a l i t y F i l l (TH1F∗∗∗ h i s t o s 1 , TH2F∗∗∗ h i s t o s 2 ,

w r i t e O u t S t r u c t &s t r u , i n t which , i n t cuton , i n t nCuts ,
boo l ∗ cu ts , boo l use [2 0] , f l o a t∗masses , boo l converged ,
f l o a t we ight =1)=0;

v i r t u a l vo id o b s e r v a b l e s F i l l (TH1F∗∗∗ h i s t o s 1 , TH2F∗∗∗ h i s t o s 2 ,
w r i t e O u t S t r u c t &s t r u , i n t which , f l o a t we ight =1)=0;

v i r t u a l vo id addDrawingL ines (h i s t o S t a c k 1∗h1 , h i s t o S t a c k 2 ∗h2 ,
f l o a t ∗masses) = 0 ;

v i r t u a l vo id s e t H i s t o P r o p e r t i e s D e f a u l t (
c ons t momentum4D &inputmomentum) = 0 ;

v i r t u a l boo l l e a f T o S t r u c t (TLeaf∗∗ l eav , w r i t e O u t S t r u c t &s t r u ,
momentum4D &cms , momentum4D &inM , momentum4D moment [4] [4] ,
momentum4D i n t e r [4] , momentum4D Pcms [2] [3] ,
momentum4D Jmoment [2] [3] [3] , momentum4D jbm [2] [3] ,
f l o a t ∗mass , i n t i d [4] , vec tor3D &l D i r) = 0 ;

v i r t u a l boo l l e a f T o S t r u c t (TLeaf∗∗ l eav , w r i t e O u t S t r u c t &s t r u ,
momentum4D &cms , momentum4D &inM , f l o a t∗mass , i n t ∗ i d) = 0 ;

v i r t u a l boo l t r a c k T r e e S t r u c t 2 W o S t r u c t (t r a c k s t r u c t &t r ,
w r i t e O u t S t r u c t& s t r u , momentum4D &cms , momentum4D &inM ,
f l o a t ∗mass) = 0 ;

v i r t u a l vo id e v e n t 2 P s t r u c t (i s t r e a m &inpu t , w r i t e O u t S t r uc t& t r a c k s ,
c ons t momentum4D &i n i t S ys t e m , i n t∗ p a r t i c l e i d s) = 0 ;

v i r t u a l vo id s e t T e x F i l e (texF i leMakeup &makeup) = 0 ;
} ;

181

Class D.6Definition of class filesManager.

c l a s s f i l e s M a n a g e r
{

p u b l i c :
s t a t i c vo id se tMark i ng (s t r i n g m) ;
s t a t i c s t r i n g marking () ;

s t a t i c vo id a d d D a t a F i l e (s t r i n g f i l ename , i n t f i l e T y p e) ;
s t a t i c vo id a d d D a t a F i l e (s t r i n g f i l ename , i n t f i l e T y p e , colorScheme c) ;
s t a t i c vec to r<s t r i n g> d a t a I n p u t F i l e s (vec to r<i n t > &t y p e s) ;
s t a t i c vec to r<s t r i n g> d a t a O u t p u t F i l e s (vec to r<i n t > &t y p e s) ;

s t a t i c vo id a d d S i m u l a t i o n F i l e (s t r i n g f i l ename , i n t f i l e Ty p e , s t r i n g name) ;
s t a t i c vo id a d d S i m u l a t i o n F i l e (s t r i n g f i l ename , i n t f i l e Ty p e , s t r i n g name , i n t t o) ;
s t a t i c vo id a d d S i m u l a t i o n F i l e (s t r i n g f i l ename , i n t f i l e Ty p e , s t r i n g name ,

co lorScheme c) ;
s t a t i c vo id a d d S i m u l a t i o n F i l e (s t r i n g f i l ename , i n t f i l e Ty p e , s t r i n g name , i n t to ,

co lorScheme c) ;
s t a t i c i n t n S i m u l a t i o n s (){ r e t u r n s i m u l a t i o n F i l e s . s i z e () ;}
s t a t i c vec to r<s t r i n g> s i m u l a t i o n I n p u t F i l e s (i n t num , vec to r<i n t >& t y p e s) ;
s t a t i c vec to r<s t r i n g> s i m u l a t i o n O u t p u t F i l e s (i n t num , vec to r<i n t >& t y p e s) ;

s t a t i c i n t nThroughDe tec to r s (){ r e t u r n t h r o u g h D e t e c t o r F i l e s . s i z e () ;}
s t a t i c vec to r<s t r i n g> t h r o u g h D e t e c t o r I n p u t F i l e s (i n t num , vec to r<i n t >& t y p e s) ;
s t a t i c vec to r<s t r i n g> t h r o u g h D e t e c t o r O u t p u t F i l e s (i n t num , vec to r<i n t >& t y p e s) ;
s t a t i c vo id a d d T h r o u g h D e t e c t o r F i l e (s t r i n g f i l ename , i n tf i l e T y p e , s t r i n g name) ;
s t a t i c vo id a d d T h r o u g h D e t e c t o r F i l e (s t r i n g f i l ename , i n tf i l e T y p e , i n t a s s i) ;
s t a t i c vo id a d d T h r o u g h D e t e c t o r F i l e (s t r i n g f i l ename , i n tf i l e T y p e , s t r i n g name ,

co lorScheme c) ;
s t a t i c vo id a d d T h r o u g h D e t e c t o r F i l e (s t r i n g f i l ename , i n tf i l e T y p e , i n t a s s i ,

co lorScheme c) ;
s t a t i c vo id s e t T h r o u g h D e t e c t o r (i n t pos , s t r i n g name) ;
s t a t i c vo id s e t T h r o u g h D e t e c t o r (i n t pos , i n t fromSim) ;
s t a t i c i n t c o r r e c t i o n I D () ;
s t a t i c i n t throughToSim (i n t pos) ;
s t a t i c vo id s e t C o r r e c t i o n (i n t c) ;

s t a t i c f l o a t draw (cha r tp , i n t num) ;
s t a t i c vo id setDraw (cha r tp , i n t num , f l o a t va lue) ;
s t a t i c i n t e n t r i e s (cha r t p) ;
s t a t i c vec to r<s t r i n g> I n p u t F i l e s (i n t num , cha r tp , vec to r<i n t >& t y p e s) ;
s t a t i c vec to r<s t r i n g> O u t p u t F i l e s (i n t num , cha r tp , vec to r<i n t >& t y p e s) ;
s t a t i c s t r i n g names (i n t num , cha r t p) ;
s t a t i c vo id removeS imu la t i on (i n t num) ;
s t a t i c vo id removeThroughDetec to r (i n t num) ;
s t a t i c vo id a d d F i l e (s t r i n g name , s t r i n g f i l ename , i n t f i l et y p e , cha r tp ,

co lorScheme c) ;
s t a t i c vo id removeF i l e (i n t num , s t r i n g f i l ename , cha r t p) ;
s t a t i c boo l hasType (i n t num , cha r tp , i n t f i l e t y p e) ;
s t a t i c vo id readF romF i l e (s t r i n g f i l ename , c o n s t vec to r<i n t >& commandl ineIDs ,

c o n s t vec to r<i n t >& commandl ineTypes , c o n s t vec to r<s t r i n g>& commandl ineF i les ,
boo l show= t r u e) ;

s t a t i c vo id s t a t u s (os t ream &o u t p u t =cout , boo l texMode= f al s e) ;
s t a t i c vo id c l e a n () ;

} ;
182

Class D.7Definition of struct histoProperties.

s t r u c t h i s t o P r o p e r t i e s
{

s t r i n g name ;
s t r i n g t i t l e ;
s t r i n g t i t l e X ;
s t r i n g t i t l e Y ;
i n t nBinsX ;
i n t nBinsY ;
f l o a t xMin ;
f l o a t xMax ;
f l o a t yMin ;
f l o a t yMax ;
f l o a t posX ;
f l o a t posY ;
boo l drawAl l ;
f l o a t s c a l i n g ;
i n t t p ;
h i s t o P r o p e r t i e s () ;
h i s t o P r o p e r t i e s (s t r i n g nme , s t r i n g t i t l ,

s t r i n g t i t l x , s t r i n g t i t l y , i n t nB , f l o a t f r , f l o a t t o) ;
h i s t o P r o p e r t i e s (s t r i n g nme , s t r i n g t i t l ,

s t r i n g t i t l x , s t r i n g t i t l y , i n t nB , f l o a t f r , f l o a t to ,
f l o a t px , f l o a t py) ;

h i s t o P r o p e r t i e s (s t r i n g nme , s t r i n g t i t l ,
s t r i n g t i t l x , s t r i n g t i t l y , i n t nB , f l o a t f r , f l o a t to ,
i n t nB2 , f l o a t f r2 , f l o a t to2) ;

h i s t o P r o p e r t i e s (c ons t h i s t o P r o p e r t i e s& pr) ;
h i s t o P r o p e r t i e s& o p e r a t o r =(c ons t h i s t o P r o p e r t i e s& pr) ;

} ;

183

Class D.8Definition of class texFileMakeup.

c l a s s texF i leMakeup
{
p u b l i c :

texF i leMakeup () ;
˜ texF i leMakeup () ;
vo id s e t D e f i n i t i o n (ve c t o r<pa i r<i n t , i n t > > rowsAndColumnsOnPages ,

ve c t o r<i n t > pages2D) ;
i n t nPages () c ons t ;
i n t nRows (i n t page) c ons t ;
i n t nColumns (i n t page) c ons t ;
s t r i n g s u b S t r i n g (i n t page) c ons t ;
i n t ID (i n t page , i n t row , i n t column) c ons t ;
i n t n2Dpages () c ons t ;
i n t ID2d (i n t page) c ons t ;
vo id setRows (i n t page , i n t va l ue) ;
vo id setColumns (i n t page , i n t va l ue) ;
vo id s e t S u b S t r i n g (i n t page , s t r i n g va l ue) ;
vo id s e t I D (i n t page , i n t row , i n t column , i n t va l ue) ;
vo id se t ID2d (i n t page , i n t va l ue) ;
vo id s e t P a ge (i n t page , i n t id1 , i n t id2 , i n t id3 , i n t id4 ,

i n t i d5 =−1, i n t i d6 =−1, i n t i d7 =−1, i n t i d8 =−1);
} ;

Class D.9Definition of struct colorScheme.

s t r u c t colorScheme
{

i n t l i n e C o l o r ;
i n t l i n e S t y l e ;
i n t f i l l C o l o r ;
i n t f i l l S t y l e ;
i n t markerColor ;
i n t m a r ke r S t y l e ;
f l o a t s i z e ;
colorScheme (i n t lc , i n t l s , i n t fc , i n t fs , i n t mc , i n t ms , f l oa t mz) ;
colorScheme () ;
colorScheme& o p e r a t o r =(c ons t colorScheme&c) ;
colorScheme (c ons t colorScheme&c) ;
vo id app lyToH is to (TH1F∗ h i s t o , c ons t h i s t o P r o p e r t i e s &hp) ;
boo l o p e r a t o r ==(c ons t colorScheme&c) ;

} ;

184

185

D.7 Picture Gallery

(a) Run-widget (b) Beam-time-widget

(c) Data-Basis-widget (d) Default-shapes-widget

186

(e) Material-widget (f) Experiment-widget

(g) Detector-Geometry-widget (h) Algorithms-widget

187

(i) Analysis-order-widget (j) Input-Algorithm-widget

(k) Analysis-widget (l) View-Selection-widget

Figure D.5: Analysis widgets

188

(a) Algorithm-installation page 1 (b) Algorithm-installation page 2

(c) Algorithm-installation page 3 (d) Algorithm-installation page 4

189

(e) Shape-installation page 1 (f) Shape-installation page 2

(g) Shape-installation page 3 (h) Shape-installation page 4

190

(i) correction performing widget (j) simulation widget

(k) main widget (l) detector widget

191

192

Appendix E

Detector dimensions and
materials

E.1 Quirl detector

Straight layer: wedges, Left and
right layers: spiral.

elements straight 48
elements left bent 24
elements right bent 24
inner radius 42 mm
outer radius 580 mm
thickness 5 mm
bending 184.62 mm/rad
read out QDC&TDC
zPosition S 3356mm
zPosition L 3367mm
zPosition R 3378mm
phi of 1st element 0

E.2 Ring detector

Straight layer: wedges, Left and
right layers: spiral.

elements straight 96
elements left bent 48
elements right bent 48
inner radius 568 mm
outer radius 1540 mm
thickness 5 mm
bending 618.807 mm/rad
read out QDC&TDC
zPosition S 3317.38 mm
zPosition L 3326.38mm
zPosition R 3335.38mm
phi of 1st element 0

E.3 Barrel detector

One wedge-cone layers. Readout at
both sides.

elements 96
radius base 1553.5 mm
radius at cut 1488.5 mm
length of cone-stump 2854 mm
thickness 15 mm
read out QDC&TDC
zPosition base 367 mm
phi of 1st element 0deg

E.4 Start detector

Two wedge-layers.
elements A 12
elements B 12
inner radius 1 mm
outer radius 76 mm
thickness 1 mm
read out QDC&TDC
zPosition A 19.715 mm
zPosition B 20.715 mm
phi of 1st element A 0deg
phi of 1st element b 15deg

193

E.5 2-layered Hodoscope

Two fiber-layers.
elements X 192
elements Y 192
length 524 mm
width 2.0316 mm
thickness 2 mm
read out QDC
zPosition X 192.344mm
zPosition Y 194.35mm
angle from x-axis X -33.9deg
angle from x-axis Y 56.1deg

E.6 3-layered Hodoscope

Three fiber-layers, X and Y extended
rectangular.

elements X 96
elements Y 96
elements D 136
length 382 mm
width 2 mm
thickness 2 mm
read out QDC
zPosition X 98.72 mm
zPosition Y 96.72 mm
zPosition D 94.72 mm
angle from x-axis X 89.657deg
angle from x-axis Y -0.343deg
angle from x-axis D 134.657deg

E.7 Micro-Strip-ring de-
tector

Straight layer: wedges, ring layer:
rings. Note: rotation sense is oppo-
site to other circular detectors.

elements phi 128
elements R 100
inner radius 3.1 mm
outer radius 31 mm
∆r 0.279 mm
thickness 0.5mm
read out QDC
zPosition Phi 26.485 mm
zPosition R 26.465 mm
phi of 1st element 44.819 deg

E.8 Micro-Strip-spiral
detector

Left and right layers: spiral.
elements left bent 128
elements right bent 128
inner radius 2.8mm
outer radius 31mm
thickness 0.52mm
bending 480mm/rad
read out TDC
zPosition L -
zPosition R -
phi of 1st element -

194

Name ID element
shape

material readout thickness
[mm]

zPosition
[mm]

Quirl-Straight 0 wedge scintillator QDC&TDC 5 3356
Quirl-Left 1 spiral scintillator QDC&TDC 5 3367
Quirl-Right 2 spiral scintillator QDC&TDC 5 3378
Ring-Straight 3 wedge scintillator QDC&TDC 5 3317.38
Ring-Left 4 spiral scintillator QDC&TDC 5 3326.38
Ring-Right 5 spiral scintillator QDC&TDC 5 3335.38
Barrel-Front 6 wedge scintillator QDC&TDC 15 367
Barrel-Back 7 wedge scintillator QDC&TDC 15 367
Start-A 15 wedge scintillator QDC&TDC 1 19.715
Start-B 16 wedge scintillator QDC&TDC 1 20.715
Hodoscope X 17 fiber scintillator QDC 2.02 98.72
Hodoscope Y 18 fiber scintillator QDC 2.02 96.72
Hodoscope D 23 fiber scintillator QDC 2.02 94.72
int. Hodoscope X 19 fiber scintillator QDC 2.02 192.344
int. Hodoscope Y 20 fiber scintillator QDC 2.02 194.35
Micro-Strip-Phi 21 wedge silicium QDC 0.51 26.485
Micro-Strip-Rad 22 ring silicium QDC 0.51 26.485
Calorimeter 25 hexprism scintillator QDC&TDC 450 ∼3390

Table E.1: Table with detector properties of the COSY TOF detector

195

Appendix F

Analysis

The following analysis-steps have been performed on the data:

1. conversion to hit-tree-file

2. calibration-generation for the individual run

3. prompt tracking

4. vee tracking

5. extraction

6. kinematical fit

7. luminosity calculation

8. plotting

F.1 Hit-tree-file generation

This step contains five algorithms:
parameter name value

Read from tade

Teufel Correction
file for reference data Teufel/stable/meanvaluesrun5140.log
Detectors to correct 15,16

Calibration
Correct QDC 0, 1, 2, 3, 4, 5, 6, 7, 15, 16, 17, 18, 19, 20, 21, 22, 23
Correct TDC 0, 1, 2, 3, 4, 5, 6, 7, 15, 16

Get the hit-shapes

Write Hits to tree
use local directory false

196

F.2 Calibration-generation

Read Hits from tree
search for event false
Use as event input list false
Use local directory false

Calibration
Correct QDC 0, 1, 2, 3, 4, 5, 6, 7, 15, 16, 17, 18, 19, 20, 21, 22, 23
Correct TDC 0, 1, 2, 3, 4, 5, 6, 7, 15, 16

Quirl pixel
pixel ID 0
first layer 0
second layer 1
third layer 2
Parallel projection false
Special projection plane false
Origin for projection point false
Target for projection point false
Use time difference false
Correct light flight time false
Triangle approximation true
min-max delta phi -1 – 1
minimum number of elements 2
number of spiral-spiral-crossings 23
maximum time difference 10mm

Ring pixel
pixel ID 1
first layer 3
second layer 4
third layer 5
Parallel projection false
Special projection plane false
Origin for projection point false
Target for projection point false
Use time difference false
Correct light flight time false
Triangle approximation true
min-max delta phi -1 – 1
minimum number of elements 2
number of spiral-spiral-crossings 23
maximum time difference 10mm

197

Micro-strip pixel
Use hit-cluster false
PixelID 5
ID Ring shaped detector 21
ID Wedge shaped detector 22

Line Track search
use vertex as start true
use angular distance false
max number of elements in 2 tracks 2
pixel stop-IDs 0, 1, 5
pixel min # elements on track 9, 9, 9
pixel: essential detector IDs (0: 15, 16), (1: 15, 16), (5: 15, 16, 6)
start-pixel IDs none
detectors 0 1 2 3 4 5 6 7 15 16 17 18 19 20 21 22 23
element search mode 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

max element distance
0 0 0 0 0 0 0 0 1 1 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 1 1 2 2 2 2 2 2 2
0 0 0 0 0 0 2 2 1 1 3 3 3 3 1 1 3

check pixel IDs 5
cluster stop-IDs none
cluster min # elements on track none
cluster: essential detector IDs none
pixel: max chi squared for track 25, 25, 50
theta restriction for stop (0.062-0.18), (0.16-0.45), (0.4-0.84)
phi restriction for stop (-π, π),(-π, π),(-π, π)
max distance 4mm, 4mm, 8mm
cluster: max chi squared for track none

198

Calibration algorithm
do geometry calibration false
do beam calibration false
do WALK calibration true
do TDC-Offset calibration true
do Barrel calibration true
do on event basis false
kill file on end false
read from file false
n Events for cal 100000
number of iterations 4
print pattern 401
detectors to calibrate 15, 16, 6, 7, 1, 2, 4, 5, 0, 3
pixel based -1, -1, -1, -1, 0, 0, 1, 1, 0, 1
measures against 1, 0, 3, 2, 5, 4, 7, 6, 45, 76
is Stop pixel 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
has 2-sided readout -1, -1, 3, 2, -1, -1, -1, -1, -1, -1,
pixels dets -1, -1, -1, -1, 1, 2, 1, 2, 0, 0
pixel det references to det -1, -1, -1, -1, 6, 7, -1, -1, 8, -1
walk do only single iteration 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
do light-run-correction 0, 0, 0, 0, 1, 1, 1, 1, 0, 0
reference pixels 0 1

mean, width for tdc offset
(-60 6), (-60 6), (-78 4), (-78 4), (-60 20),

(-60 20), (-60 20), (-57 20), (-80 15), (-77 20)

min, max for qdc
(100 1500), (100 1500), (0 2000), (0 3000), (0 3000),

(0 3000), (0 2500), (0 2500), (0 4000), (0 3000)

min, max for lrp
(0 80), (0 80), (0 3550), (0 3550), (0 300),

(0 300), (0 300), (0 300), (0 3000), (0 3000),
calibration Output Path $KTOFPACK/data/calibration/Calibration
author K. Ehrhardt

199

F.3 Prompt tracking

Read Hits from tree
search for event false
Use as event input list false
Use local directory false

Calibration
Correct QDC 0, 1, 2, 3, 4, 5, 6, 7, 15, 16, 17, 18, 19, 20, 21, 22, 23
Correct TDC 0, 1, 2, 3, 4, 5, 6, 7, 15, 16

Hodo pixel
Pixel ID 4
ID first layer 19
ID second layer 20

Quirl pixel
pixel ID 0
ID first layer 0
ID second layer 1
ID third layer 2
Parallel projection false
Special projection plane false
Origin for projection point false
Target for projection point false
Use time difference false
Correct light flight time false
Triangle approximation true
min-max delta phi -1 1
minimum number of elements 2
number of spiral-spiral-crossings 23
maximum time difference 10

Ring pixel
pixel ID 1
ID first layer 3
ID second layer 4
ID third layer 5
Parallel projection false
Special projection plane false
Origin for projection point false
Target for projection point false
Use time difference false
Correct light flight time false
Triangle approximation true
min-max delta phi -1 1
minimum number of elements 2
number of spiral-spiral-crossings 23
maximum time difference 10

200

Barrel pixel
PixelID 2
ID Front channel 6
ID Back channel 7
Pixel size 25

Line Track search
use vertex as start true
use angular distance false
max number of elements in 2 tracks 2
pixel stop-IDs 0, 1, 2, 4
pixel min # elements on track 9, 9, 6, 8
pixel: essential detector IDs (0:15, 16), (1: 15, 16), (2: 15, 16), (4: 15, 16, 6)
start-pixel IDs none
detectors 0 1 2 3 4 5 6 7 15 16 17 18 19 20 21 22 23
element search mode 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

max element distance

0 0 0 0 0 0 0 0 1 1 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 1 1 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 1 1 5 5 5 5 5 2 5
0 0 0 0 0 0 3 3 1 1 3 3 3 3 1 1 3

check pixel IDs 5
cluster stop-IDs none
cluster min # elements on track none
cluster: essential detector IDs none
pixel: max chi squared for track 25, 25, 100, 50
theta restriction for stop (0.07-0.2), (0.14-0.45), (0.8-1.36), (0.1-1.1)
phi restriction for stop (-π,π), (-π,π), (-π,π)
max distance 4, 4, 20, 8
cluster: max chi squared for track none

Particle speed
do charged prompt true
do neutral prompt false
do min angle secs true
do min+1 angle secs true
ID of closest start detector 15
ID of start detectors 15, 16
ID of stop detectors 0, 1, 2, 3, 4, 5, 6, 7

Write Tracks to tree
Search for read event false
Use local directory false

201

F.4 Vee tracking

Read Hits from tree
search for event false
Use as event input list false
Use local directory false

Calibration
Correct QDC 0, 1, 2, 3, 4, 5, 6, 7, 15, 16, 17, 18, 19, 20, 21, 22, 23
Correct TDC 0, 1, 2, 3, 4, 5, 6, 7, 15, 16

Read Tracks from tree
Search for read event false
use as event input list true
read event pattern false
Use local directory false
event pattern 2 0 0

Hodo pixel
Pixel ID 4
ID first layer 19
ID second layer 20
Use hit-cluster false
Use middle plane false
Use phi modulation function false

Hodo pixel 3 layers
Pixel ID 3
ID D layer 23
ID X layer 18
ID Y layer 17
Use hit-cluster false

Micro-strip pixel
PixelID 5
ID Ring shaped detector 21
ID Wedge shaped detector 22
Use hit-cluster false

202

Quirl pixel
pixel ID 0
ID first layer 0
ID second layer 1
ID third layer 2
Parallel projection false
Special projection plane false
Origin for projection point false
Target for projection point false
Use time difference false
Correct light flight time false
Triangle approximation true
min-max delta phi -1 – 1
minimum number of elements 2
number of spiral-spiral-crossings 23
maximum time difference 10

Ring pixel
pixel ID 1
ID first layer 3
ID second layer 4
ID third layer 5
Parallel projection false
Special projection plane false
Origin for projection point false
Target for projection point false
Use time difference false
Correct light flight time false
Triangle approximation true
min-max delta phi -1 – 1
minimum number of elements 2
number of spiral-spiral-crossings 23
maximum time difference 10

Barrel pixel
PixelID 2
ID Front channel 6
ID Back channel 7
Pixel size 25

203

V-Line Track search
use only elements unused of Prompt false
do projection search false
max number of elements in 2 tracks 1
min # elements on track-vertex-track 13
max elements in common with prompt for pixel 3
max Distance Vertex-Plane 10
maximum chi for track-vertex-track 1.5
max angle diff pri to secondary 0.05
max Distance pixel-plane 2
pixel stop-IDs 0, 1, 2
pixel min # elements on track 7, 7, 6
pixel: essential detector IDs 0, 0, 0
cluster stop-IDs none
cluster min # elements on track none
cluster: essential detector IDs none
pixel start-IDs 3, 4
cluster start-IDs none
min start objects per plane 2, 2
detectors 17, 18, 19, 20, 23
element search mode 0, 0, 0, 0, 0
must not detectors 22

max suspect-element distance
2 2 2 2 2 1
2 2 2 2 2 1
4 4 4 4 4 1

pixel: max chi squared for track 4, 4, 10
cluster: max chi squared for track none
max distance 2, 2, 5
vertex z-position from target 25, 100

Apply Signal Run Correction
detectors to apply 0, 1, 2, 3, 4, 5, 6, 7
type of calibration 1, 101, 101, 1, 101, 101, 100, 100

Particle speed
do charged prompt true
do neutral prompt false
do min angle secs true
do min+1 angle secs true
ID of closest start detector 15
ID of start detectors 15, 16
ID of stop detectors 0 1 2 3 4 5 6 7

Write Tracks to tree
Search for read event true
Use local directory false
Write only pattern false

204

F.5 Extraction

The extraction – or first-step data-reduction – is, as well asthe next steps, done in
a separate executable. The extractor reads an ascii-file containing the names of the
runs to process. The data-basis is read and the run-data of all runs to process is
stored.

initialize output-track-tree-file(s)
for all runsi do

open hit and track files
synchronize hit and track trees
for all events in run[i] do

if track-pattern other than for pp-elastic orpK+Λ then
skip event

end if
read hits of event
calibrate hits of event
recalculateβ of each track
fill tree

end for
end for
close files

The TDC-calibration applied here not only contains the usual offset- and binning-
calibration and the signal-run-time (lrp) correction for the archimedian spirals but
also the lrp-correction for the wedge shaped elements, thatwas fixed with pp-
elastic-scattering and the geometrically reconstructedpK+Λ-events.
Command-line-options are:

help—-h show this help and exit
DB=FILENAME specify a data-basis-file

runs=FILENAME
specify a file containing runs to use (all
file specified this way will be used)

elastic=FILENAME write elastic events in sample to file
pkl=FILENAME write PKL-candidates in sample to file
lrp=FILENAME read and do lrp-corrections from file FILENAME
makeLRP=FILENAME generate lrp-corrections from sample and write them to FILENAME
tmpTree=FILENAME write a temporary tree to file
show show specified files and parameter

F.6 Kinematical fit

The kinematical fit as described in Appendix B was encapsuledinto a separate
executable. The properties for the fit are read from file, these are the number of
particles to fit, the assignment to the track-structures (prompt or vees), the mo-

205

mentum and the particle ID of beam and target particles and, for each particle,
the particle IDs (GEANT), the representation in which to fit,the way the property
is treated (measured, unmeasured, fixed) and the participation in any additional
constraint (e.g. decayed offΛ). Additionally it contains the maximum number of
iterations and theε-value, the maximum deviation of the sum of 4-momenta from
momentum and energy conservation.
There are a lot of different ways to perform the fit, especially how the velocities of
the particles shall be treated. As Command-line-parameters there are defined:

option description
help produce help message
show show set parameters
input-file arg input files
i arg (=kinfit.init) init file
d arg setup file
n arg maximum number of events to process
start arg (=0) start at entry arg
progress show a progress bar
error-branch write branches with errors
sigma-branch write branches with sigmas
true-branch write branches with true values (MC-only)
check-LAMBDA add constraint for lambda decay
SIGMA-LAMBDA check for sigma and lambda reaction both
erlangenIDs do purely geometric particle identification

erlangenPlus
do purely geometric particle identification
including phase-space-cuts

reconstructBadBetas ignore betas if larger than 1
reconstructBadDproton ignore beta of decay proton
reconstructBadPion ignore beta of decay pion
geometry do only geometrical reconstruction ignore betas
vee-fits do vee-fits on each vertex
errors-from-tree use errors from tree if available
ERRORS arg file with errors and corrections
Correction arg external correction file
largePerror arg (=1) multiply prompt track errors by arg
largeDerror arg (=1) multiply decay track errors by arg
geoTest fit and write only data that passes geometry test
cuts fit only reasonable pkl-data
dataReduction write only converged data to file
o arg (=out.root) out file name

206

The used command is

> kinfitter --i=kinfit.init --ERRORS=errorfile.data --s how
--progress --reconstructBadBetas --cuts --o=outputFile .root
--check-LAMBDA inputFile.root

The file “kinfit.init” contains the aforementioned particleinformation, the file
“errorfile.data” contains an error-lookup-table for thepK+Λ-reaction, derived from
monte-carlo-simulations (see sec. 6.8.1). The velocitieswith β > 1 will be recon-
structed using energy and momentum conservation, reducingthe number of over-
constraints for this event. The constraint ofΛ-decay is added and only events that
match – very loose – cuts will be fitted at all.

F.7 Luminosity calculation

The luminosity in mBarn/event is calculated using pp-elastic scattering. The ex-
tractor (sec. F.5) produces not only a file for thepK+Λ-events but also a file con-
taining all 2-track, coplanar (∆φ < π±0.05rad) pp-elastic (1√

tanθ1 tanθ2
< γ±0.1)

events. These are kinfitted (using geometrically reconstructed velocities, the elas-
tic init-file and no additional constraints). The actual luminosity then is calculated
in a small program, that reads three track-tree input-files:one for fitted data (pp-
elastic), one for purely simulated pp-elastic (using the SAID [39] differential cross-
section) and one with these simulated events having passed the virtual detector and
the analysis program. For each of these the cosθcm-distribution is generated. The
SAID differential cross-section for this distribution hasbeen hard-coded into the
program. The two simulated files allow for an efficiency correction of the data.
Normalizing the corrected data-distribution to the SAID-differential cross-section,
the luminosity in mBarn/event can be extracted.
Command-line-options are:

Option description
B=STRING set the name of the branch to plot
S=FILENAME simulation file name
M=FILENAME simulation through detector file name
D=FILENAME data file name
F=FILENAME histogram file name
min=NUMBER set the minimum-x of the histograms
max=NUMBER set the maximum-x of the histograms
bin=NUMBER set the number of bins for the histograms
O=STRING set the out-file-pattern
PPRINTER set the print-flag and the printer for printing
b=NUMBER set the x-position, where to normalize the histograms
beam=NUMBER set the beam-momentum in GeV/c

range=NUMBER#NUMBER
add a range to the list of ranges
use at least one!

207

The actual command was:

> luminosity --B="cos(theta cm kf)" --F=fitted-elastic.root
--b=37 --range=-0.68#-0.43 --range=0.43#0.68 --range=- 0.28#-0.18
--range=0.18#0.28 --min=-0.8 --max=0.8 --O=luminosityF ile

F.8 Plotting

The final cuts and the plotting are done in an additional external program, reading
readily filled histograms, files with track-tree-format or the PreCutTree-format, that
also includes missing- and invariant-masses, in essence all values that will be plot-
ted to histogram (This format has been introduced since it ismuch faster to plot
and still contains all event data, so cuts can still be applied).
Meanwhile this functionality has been included into thetypeCaseGUI.

208

List of Algorithms

3.1 Initialization process for algorithms 26
3.2 Execution of algorithms . 27
3.3 Finalization process for algorithms 27
3.4 Calculation of pixel in 3-layered hodoscope 39
3.5 Prompt tracking algorithm used in Jülich 41
3.6 Neutral-decay tracking algorithm used in Jülich 43

209

Bibliography

[1] The Erlangen analysis program.

[2] The Jülich-Tübingen analysis program: tof++.

[3] The WASA kinFit.

[4] Wikipedia, The Free Encyclopedia.http://en.wikipedia.org .

[5] A. Böhm. Untersuchung der Reaktion pp→ pnpi+: Aufbau des Detectors
COSY-NUS und erste Ergebnisse. PhD thesis, TU Dresden, 1998.

[6] A. Filippi, R. Geyer, D. Hesselbarth. Track fitting and pattern recognition
in the COSY-TOF Experiment. Technical report, COSY-TOF, 2001. Jülich
Internal Note.

[7] A. Ucar. Developments for the TOF Straw Tracker. PhD thesis, Rheinischen
Friedrich-Wilhelms-Universität Bonn, 2006.

[8] L. Alvarez-Ruso. Two-pion decay modes of the N*(1440) innp→ dpipi.
2000.

[9] W. Brodowski, R. Bilger, H. Calén, H. Clement, C. Ekstr¨om, K. Fransson,
J. Greiff, S. Häggström, B. Höistad, J. Johanson, A. Johansson, T. Johansson,
K. Kilian, S. Kullander, A. Kupść, P. Marciniewski, B. Morosov, W. Oel-
ert, J. Pätzold, R. J. M. Y. Ruber, M. Schepkin, W. Scobel, I.Seluzhenkov,
J. Stepaniak, A. Sukhanov, A. Turowiecki, G. J. Wagner, Z. Wilhelmi, J. Za-
bierowski, and J. Zlomanczuk. Exclusive measurement of thepp→ ppπ+π−
reaction near threshold.Phys. Rev. Lett., 88:192301, Apr 2002.

[10] C. Rohlof. Protokoll der Vermessung eines geraden und eines gewunde-
nen Szintillatorstreifens aus dem Quirl. Technical report, COSY-TOF, 1995.
COSY-TOF-NOTES, BO-11-1995.

[11] CERN, 1211 Geneva 23, Switzerland.GEANT-Detector Description and
Simulation Tool, 1993. CERN Program Library Long Writeup W5013.

[12] COSY-TOF-Collaboration. The cosy-tof home-page. web. http://www.
fz-juelich.de/ikp/COSY-TOF .

210

[13] F. Schmidt. Untersuchung des Gasgemisches Ar-CO2-CF4der HERMES-
Driftkammern BC 1-4. Master’s thesis, Friedrich-Alexander-Universität
Erlangen-Nürnberg, 1996.

[14] G. Breit, E. Wigner. Capture of slow neutrons.Phys. Rev., 49:519, 1936.

[15] H. Bethe. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch
Materie.Annalen der Physik, 397:3, 1930.

[16] H. Kämmerling. TOF-Szintillator-Ringdetektor. Technical report, Zentral-
abteilung Technologie, Forschungszentrum Jülich, 1999.

[17] HIRES Collaboration. High resolution study of theΛp final state interaction
in the reactionp + p→ K+ +(Λp). Physics Letters B, 687:31–35, 2010.

[18] J. Wächter. Ein doppelseitiger Ringmikrostreifendetektor für COSY-TOF.
Master’s thesis, Universität Erlangen, 1998.

[19] F. James. MINUIT - Function Minimization and Error Analysis - Reference
Manual. http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.html,
2000.

[20] F. James and M. Roos. Minuit: A system for function minimization and anal-
ysis of the parameter errors and correaltion. 1975. Comput.Phys. Commun.
10, 343-367.

[21] Jochen Kress.Entwicklung und Installation eines Zentralkalorimeters und
Messungen der Reaktion p p→ p p pi+ pi- mit spin-polarisierten Proto-
nen am Flugzeitspektrometer COSY-TOF. PhD thesis, Universität Tübingen,
2003.

[22] J.R. Christman. SU(3) and the quark model, 2001. Project PHYSNET. Uni-
versity of Michigan.

[23] K.Ehrhardt. The typeCase home-page. http://www.pit.physik.
uni-tuebingen.de/˜ehrhardt/KTOF .

[24] M Abd el-Bary. Development of a Cryogenic Target System wit Optimal
Access to Reaction Detectors. PhD thesis, Forschungszentrum Jülich, 2004.

[25] M. Dahmen et al. The quirl scintillator.Nuclear Instruments and Methods in
Physics Research, A 348:97, 1994.

[26] M. Röder. Private communications, 2011.

[27] M. Schulte-Wissermann. The Dresden analysis program TofRoot. [31].

[28] Maier, R. et al. Cooler synchrotron COSY.Nucl. Phys., A626:395c–403c,
1997.

211

[29] Marc Wagner. Entwicklung und Bau eines intermediärenSzintillatorfaser-
Hodoskops für COSY-TOF. Master’s thesis, Universität Erlangen, 1997.

[30] Marc Wagner. Assoziierte Strangeness-Produktion in der Reaktion pp→
K0Σ+p am COSY-Flugzeitspektrometer. PhD thesis, Universität Erlangen,
2002.

[31] Martin Schulte-Wissermann.Investigation of Meson Production at COSY-
TOF Using the Analysis Framework TofRoot. PhD thesis, Universität Dres-
den, 2004.

[32] P. Ringe. Quirl-Geometrie. Technical report, COSY-TOF, 1994. COSY-TOF-
NOTES, BO-9-1994.

[33] P. Wintz et al. Status Report of the Straw Tracking Detector for COSYTOF.
Technical report, Institut für Kernphysik, Forschungszentrum Jülich, 2001.
Jahresbericht des IKP des Forschungszentrums Jülich 2001.

[34] P. Wintz et al. The New Straw Tracker For COSY-TOF. Technical report,
Institut für Kernphysik, Forschungszentrum Jülich, Jülich/Germany, 2003.
IKP Annual Report 2003.

[35] P. Wintz et. al. Resolution and Eciency of the Straw Tracker for COSY-TOF.
Technical report, Forschungszentrums Jülich, 2004. Jahresbericht des IKP
des Forschungszentrums Jülich.

[36] P. Wintz et al. Aging Tests of Straw Tubes for the PANDA Experiment.
Technical report, Forschungszentrums Jülich, 2007. Jahresbericht des IKP
des Forschungszentrums Jülich.

[37] Rochester G.D., et al. Evidence for the existance of newunstabe elementary
particles.Nature, page 855, 1947.

[38] S. Wirth. Erste Experimente am COSY-Flugzeitspektrometer zur Unter-
suchung des assoziierten Strangeness-Produktion im Proton-Proton-Stoss.
PhD thesis, , 1995.

[39] SAID, R. A. Arndt et al. .Scatteringanalysisinteractivedialin.
telnet/ssh: said.phys.vt.edu oder said-hh.desy.de, Username “said”
WWW: http://said.phys.vt.edu oder http://gwdac.phys.gwu.edu/.

[40] P. Schönmeier.Untersuchung der assoziierten Strangenessproduktion in der
Reaktion pp→ K+Σ+n mit dem COSY-Flugzeitspektrometer. PhD thesis,
Technische Universität Dresden, 2003.

[41] M. Schulte-Wissermann. Production ofΛ andΣ0 hyperons in proton-proton
collisions. EPJ A, 2010.

212

[42] T. Czarnecki. Bau und Test eines Szintillationsfaserhodoskops für ein Hyper-
onexperiment bei COSY. Master’s thesis, Universität Erlangen, 1994.

[43] T. Nakano et al. Evidence for a Narrow S=+1 Baryon Resonance in Photo-
production from the Neutron.Phys. Rev. Lett., 91(012002), 2003.

[44] The COSY-TOF Collaboration. Evidence for a narrow resonance at 1530
MeV/c2 in theK0p – system of the reactionpp→ Σ+K0p from the COSY-
TOF experiment.Physics Letters B, 595:127, 2004.

[45] The COSY-TOF Collaboration. Improved study of a possible Theta+ produc-
tion in thepp→ pK0Σ+ reaction with the COSY-TOF spectrometer.Physics
Letters B, 649:252, 2007.

[46] The Particle Data Group. Booklett, 2010.

[47] Trolltech. The Qt project. web:http://trolltech.com .

[48] W. Gast. The Silicon Microstrip Quirl Telescope SQT. Technical report,
Institut für Kernphysik, Forschungszentrum Jülich, 2008. Jahresbericht des
IKP des Forschungszentrums Jülich 2008.

[49] Wolfgang Schröder.Untersuchung der assoziierten Strangeness-Produktion
in den Reaktionen pp→ K+Λ+ und pp→ K+Σ0p am Flugzeitspektrometer
COSY-TOF. PhD thesis, Universität Erlangen, 2003.

[50] Shi-Lin Zhu. Pentaquarks.Int.J.Mod.Phys. A, 2004.

213

