Neue Verbindungen der Selten-Erd-Carbodiimide Synthesen und Strukturen

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)

> vorgelegt von Leonid Unverfehrt

> > Tübingen 2011

Tag der mündlichen Qualifikation: Dekan:

- 1. Berichterstatter:
- 2. Berichterstatter:

11.04.2011 Prof. Dr. Wolfgang Rosenstiel Prof. Dr. Hans-Jürgen Meyer Prof. Dr. Eberhard Schweda

Englischer Abstract

New compounds of the rare-earth-carbodiimides

synthesis and structures

The continuation of the synthesis of new rare-earth carbodiimide compounds was performed with the preparative tool of solid-state metathesis (SSM) reactions by combining rare-earth fluorides with carbodiimide sources like Li₂CN₂, Na₂CN₂, or SrCN₂. This research of SSM has been performed for various molar ratios of reaction partners. The homologous series rareearth carbodiimides having the formula $RE_2(CN_2)_3$ has been added by the new Eu₂(CN₂)₃, and the dimorphic character of Tm₂(CN₂)₃ has been explored. The new mixed-valent europium fluoride carbodiimide compound Eu₄F₅(CN₂)₂ was prepared and its crystal structure was refined by X-ray single-crystal diffraction. The ratio of Eu³⁺- and Eu²⁺-ions in the structure of Eu₄F₅(CN₂)₂ was confirmed by Mößbauer spectroscopy and by magnetic measurements.

New compounds having the composition of $\text{Li}RE(\text{CN}_2)_2$ (RE = La, Ce, Pr) were synthesized by solid-state metathesis reactions and their structures were refined by single-crystal diffraction.

The thermal conversion of $\text{Li}RE(\text{CN}_2)_2$ (RE = La, Ce) has lead to the first rare-earth carbodiimide nitrides having the composition $RE_3(\text{CN}_2)_2\text{N}$. The structure was refined by single-crystal X-ray diffraction in space group P2₁2₁2₁.

A novel family of carbodiimide compounds was discovered from SSM reactions containing homoleptic and heteroleptic cyanamidoaluminate ions. The first example of a homoleptic tetracyanamidoaluminate having the composition $\text{Li}M_2[\text{Al}(\text{CN}_2)_4]$ (M = Sr, Eu) was characterized by X-ray single-crystal diffraction. The first example of a heteroleptic cyanamidoaluminate having the composition Eu₃[AlF₂(CN₂)₃(CN)] was synthesized and characterized by X-ray single-crystal diffraction, Raman-, and IR-spectroscopy.

Neue Verbindungen der Selten-Erd-Carbodiimide

Synthesen und Strukturen

Die Fortführung der Untersuchungen der Synthese von Selten-Erd-Carbodiimiden durch das präparative Instrument der Festkörpermetathesereaktion führte zu zahlreichen noch unbekannten Verbindungen der Selten-Erd-Carbodiimiden. Durch die Synthese von Eu₂(CN₂)₃ konnte die Reihe der Seltenerdcarbodiimide vervollständigt werden, und Untersuchungen über das dimorphe Verhalten von Tm₂(CN₂)₃ wurden durchgeführt. Die Synthese und Struktur eines gemischt valenten Europiumfluoridcarbodiimids der Zusammensetzung $Eu_4F_5(CN_2)_2$ konnte durch Kristallstrukturanalyse, Mößbauer-Spektroskopie und magnetische Messungen geklärt werden. Neue Verbindungen des Typs LiLa(CN₂)₂ konnten synthetisiert und strukturell aufgeklärt werden. Die thermischen Zersetzungen von LiSE(CN₂)₂ (La, Ce) führten zu den ersten Selten-Erd-Carbodiimid-Nitriden mit der Zusammensetzung $SE_3(CN_2)_3N$ deren Strukturen durch Kristallstrukturanalyse bestimmt werden konnten.

dieser Arbeit soll auch die neue Verbindungsklasse der homoleptischen In Tetracyanamidoaluminate mit der Zusammensetzung $LiM_2[Al(CN_2)_4]$ (M = Eu , Sr) vorgestellt werden. Für die beiden ersten Vertreter LiEu₂[Al(CN_2)₄] und LiSr₂[Al(CN_2)₄] konnten Synthesewege gezeigt und die Struktur aufgeklärt werden. Als erster Vertreter der heteroleptischen Cyanamidoaluminate konnte die Verbindung Eu₃[AlF₂(CN₂)₃(CN)] synthetisiert werden. Die strukturellen Untersuchungsmethoden hier waren Kristallstrukturanalyse, Raman- und IR-Spektroskopie.

Die vorliegende Arbeit wurde von Juli 2007 bis November 2010 am Institut für Anorganische Chemie der Eberhard-Karls-Universität Tübingen unter der Leitung von Herrn Prof. Dr. H.-Jürgen Meyer angefertigt.

Meinem Doktorvater

Herrn Prof. Dr. H.-Jürgen Meyer

danke ich sehr herzlich für die Überlassung des Themas dieser Arbeit, die guten und angenehmen Arbeitsbedingungen, die ständige Gesprächsbereitschaft und die bei den durchgeführten Arbeiten gewährten weitreichenden Freiheiten.

Bedanken möchte ich mich bei allen die meine Arbeit unterstützt haben, insbesondere bei Michael Neukirch der mich zusammen mit Katharina Gibson in die Grundtechniken der Festkörperchemie geradezu mütterlich einführte. Ebenso standen mir unsere ehemaligen Mitarbeiterinnen Sonja Tragl und Martina Weisser jederzeit bei wichtigen und unwichtigen Fragen zur Seite. Als Langzeitdauerbetreuer waren immer Jochen Glaser und Markus Ströbele zur Stelle, wenn guter Rat teuer war. Bei Jochen Glaser bedanke ich mich besonders für seine Hilfe bei allen Fragen der Festkörperchemie, und die Anfertigung der magnetischen Messungen. Auch der gründliche und nie enden wollende Einführungskurs in die Einkristallstrukturanalyse von Markus und Jochen wird mir für immer in Erinnerung bleiben. Frau Barbara Saller und Markus Kalmutzki danke ich für die Aufnahme von IR-Spektren, ebenso bei Ines Dreiling, die zusätzlich noch zahlreiche Raman-Spektren für mich anfertigte und bei der Interpretation und Literaturrecherche unentbehrlich war. Bei Herrn Professor Dr. Schweda und seiner Arbeitsgruppe Jens Kaiser und Steffi Meyer bedanke ich mich für zahlreiche hilfreiche Literaturgaben und Tips für meine Arbeit. Herrn H.-J. Kolb und Markus Ströbele danke ich für das Anfertigen der DTA-Untersuchungen. Auch bei Professor Dr. Pöttgen und seinen Mitarbeitern möchte ich mich für die Aufnahme der Mößbauer-Spektren bedanken. Herr Karl-Heinz Ableitner danke ich für rechtzeitig reparierte Pulver und Einkristalldiffraktometer. Ebenso danke ich einigen Praktikanten für fleißiges Präparieren, den Mitarbeitern von den Werkstätten und der Glasbläserei für einige Reparaturen und Einzelanfertigungen. Sollte ich jemand vergessen haben, so soll sie oder er mir bitte verzeihen.

Inhaltsverzeichnis

1	Einleitung	1
1.1	Entwicklungen auf dem Gebiet der Metall-Carbodiimide bzwCyanamide	1
2	Zielsetzungen	9
3	Experimenteller Teil	10
3.1	Verwendete Chemikalien und Reagenzien	10
3.2	Arbeiten unter Schutzgas und präparative Vorgehensweise	
3.3	Analytische Untersuchungsmethoden	
3.3.1	Röntgendiffraktometrie	
3.3.2	Kristallstrukturanalysen	
3.3.3	Mößbauer-Spektroskopie	
3.3.4	Magnetische Messungen	
3.3.5	Differentialthermoanalyse	
3.3.6	IR-Spektroskopie	
3.3.7	Raman-Spektroskopie	
3.4	Verwendete Computerprogramme	
4	Übersicht über ausgewählte Metall-Carbodiimide bzw. Cyanamide	14
4.1	Reaktion von SrCl ₂ mit Li ₂ CN ₂	16
4.2	Reaktion von EuCl ₂ mit Li ₂ CN ₂	
5	Synthese von Selten-Erd-Carbodiimiden, Synthesen von Ausgangsstoffen	19
5.1	Synthese von Li ₂ CN ₂	19
5.2	Synthese von Na ₂ CN ₂	19
5.3	Synthese der verwendeten Selten-Erd-Trifluoride	
5.4	Synthese von wasserfreiem CaCl ₂	
5.5	Synthesen von CaCN2 und SrCN2 durch Festkörpermetathese	21
5.5.1	Reaktion von CaCl ₂ mit Li ₂ CN ₂	21
5.5.2	Reaktion von CaF2 mit Li2CN2 im molaren Verhältnis 1:1	
5.5.3	Reaktion von SrF2 mit Li2CN2 im molaren Verhältnis 1:1	
5.5.4	Synthese von EuCl ₂ und EuCl ₃	

5.5.5	Synthese von EuF ₂ 2	5
5.5.6	Synthese von Lanthannitrid und Cernitrid2	5
5.5.7	Synthese von AlF ₃	6
5.6	Metathesereaktionen von SEF3 mit Li2CN2 im molaren Verhältnis 1:12	6
5.7	Reaktion von LaF ₃ mit Na ₂ CN ₂	9
5.8	Festkörpermetathesereaktionen von SEX3 mit Li2CN2	
	im molaren Verhältnis 2:3 (X = F, Cl)	0
5.8.1	Synthese von Selten-Erd-Carbodiimiden	0
5.8.2	Synthese von Europiumcarbodiimid	2
5.8.3	Synthese von dimorphem Thuliumcarbodiimid	4
6	Ein gemischt valentes Europiumfluoridcarbodiimid $Eu_4F_5(CN_2)_2$	5
6.1	Synthesewege und Pulverdiffraktometrie	5
6.1.1	DTA der Reaktion von EuF ₃ mit Li ₂ CN ₂ im molaren Verhältnis 1:1	9
6.2	Kristallstrukturanalyse von $Eu_4F_5(CN_2)_2$	2
6.3	Mößbauer-Spektroskopie von $Eu_4F_5(CN_2)_2$	0
6.4	Magnetische Eigenschaften von $Eu_4F_5(CN_2)_2$	2
6.5	IR-Spektroskopie von $Eu_4F_5(CN_2)_2$	4
7	Verbindungen des Typs LiLa(CN ₂) ₂	5
7.1	Reaktion von LaF ₃ mit Li ₂ CN ₂ im molaren Verhältnis 1:25	5
7.2	Pulverdiffraktometrie von LiLa(CN ₂) ₂	6
7.3	Kristallstruktur von LiLa(CN ₂) ₂	7
7.4	IR-Spektroskopie von LiLa(CN ₂) ₂	3
7.5	Weitere Verbindungen des Typs $LiSE(CN_2)_2$ (SE = Ce, Pr)6	3
8	Ce ₃ (CN ₂) ₃ N das erste binäre Selten-Erd-Carbodiimidnitrid	5
8.1	Synthese von $Ce_3(CN_2)_3N$	5
8.2	Kristallstruktur von Ce ₃ (CN ₂) ₃ N	5
8.3	Syntheseversuche von $La_3(CN_2)_3N$ und $Ce_3(CN_2)_3N$	4
8.4	Pulverdiffraktometrie von $Ce_3(CN_2)_2N$	6
8.5	IR-Spektroskopie von La ₃ (CN ₂) ₃ N	7
9	Cyanamidoaluminate und Tetracyanamidoaluminate7	8

9.1	$Eu_3[AlF_2(CN_2)_3CN]$ ein heteroleptisches Cyanamidoaluminat
9.1.1	Kristallstruktur von Eu ₃ [AlF ₂ (CN ₂) ₃ CN]78
9.1.2	Synthese und Pulverdiffraktometrie von Eu ₃ [AlF ₂ (CN ₂) ₃ CN]87
9.1.3	IR-Spektroskopie von Eu ₃ [AlF ₂ (CN ₂) ₃ CN]
9.1.4	Raman-Spektroskopie von Eu ₃ [AlF ₂ (CN ₂) ₃ CN]
9.2	Die homoleptischen Tetracyanamidoaluminate
	$LiEu_2[Al(CN_2)_4] \ und \ LiSr_2[Al(CN_2)_4] \91$
9.2.1	Die Kristallstruktur von LiEu ₂ [Al(CN ₂) ₄]91
9.2.2	Syntheseweg und Pulverdiffraktometrie von LiEu2[Al(CN2)4]
9.2.3	Synthesewege und Pulverdiffraktometrie von LiSr ₂ [Al(CN ₂) ₄] 100
9.2.4	IR-Spektroskopie von LiEu ₂ [Al(CN ₂) ₄]101
9.2.5	Vergleich der IR-Spektren von $Eu_3[AIF_2(CN_2)_3CN]$
	und $\text{LiEu}_2[\text{Al}(\text{CN}_2)_4]$
10	Zusammenfassung und Ausblick104
11	Publikationsliste
12	Literaturverzeichnis

Einleitung

1.1 Entwicklungen auf dem Gebiet der Metall-Carbodiimide bzw. -Cyanamide

Schon Anfang des 20. Jahrhunderts waren in der organischen Chemie Verbindungen der beiden Strukturtautomere Cyanamid und Carbodiimid bekannt [1]. Während das Cyanamidmolekül gekühlt bei Temperaturen um 0 °C längere Zeit stabil ist, gelang der Nachweis von Carbodiimid nur in Argonmatrix bei 20 K [2]. Ersetzt man im Carbodiimidmolekül die beiden H-Atome durch voluminöse Reste, so resultieren relativ stabile substituierte Carbodiimide. Diese finden in der organischen Synthesechemie vielfältige Anwendungen.

$H\overline{N}=C=\overline{N}H$ $H_2\overline{N}-C=N$

Abb. 1.1: Carbodiimid (links) und Cyanamid (rechts).

Die N — C — N-Einheit in einem mit gleichen Resten disubstituierten Carbodiimid ist linear, weist gleiche C — N-Abstände auf und ist rotationssymmetrisch ($D_{\infty h}$) [3]. In der Kristallstruktur von Cyanamid hingegen zeigt die N — C — N-Einheit eine leichte Abweichung von der Linearität (178,11(9) °) und die C — N-Bindungslängen liegen bei C — N(1) = 1,314(1) Å und C — N(2) = 1,152(1) Å [4]. Die CN₂-Ionen können mit Metall-Ionen Verbindungen bilden, wodurch neue Strukturen entstehen. Dabei kann man folgende mesomere Grenzstrukturen der CN₂-Ionen formulieren:

$$\left[\left\langle \mathbf{N} = \mathbf{C} = \mathbf{N} \right\rangle\right]^{2^{-}} \langle = = \mathbf{N} | \mathbf{J}^{2^{-}} \langle = = \mathbf{N} | \mathbf{J}^{2^{-}} \langle = \mathbf{N} |$$

Diese können dann als Metall-Carbodiimide bzw. Metall-Cyanamide unterschieden werden. Der Unterschied zwischen reinem Metall-Carbodiimid zu einem Metall-Cyanamid ist in Strukturen oft fließend [5]. Eine Möglichkeit der Vorhersage, ob ein Metall-Carbodiimid oder ein Metall-Cyanamid vorliegt, bietet das Pearson-Konzept. So bevorzugen harte Metall-Ionen (klein und hochgeladen) die Bildung von Metall-Carbodiimiden, während weiche Metall-Ionen (groß, geringe Ladung und leicht polarisierbar) eher Metall-Cyanamide bilden [6]. Eine Möglichkeit den Nachweis zu führen, ob die CN₂-Einheit eher den Charakter eines Carbodiimides oder Cyanamides besitzt, bietet die Infrarotspektroskopie. Nach dem Ausschlussprinzip (Alternativverbot) gilt für die IR- bzw. Raman-Aktivität von Molekülen

oder Ionen (mindestens dreiatomig) mit einem Inversionszentrum: $\Delta \mu = 0$; $\Delta \alpha \neq 0$ und $\Delta \mu \neq 0$; $\Delta \alpha = 0$ (zeitlich veränderbares Dipolmoment $\Delta \mu$, zeitlich veränderbare Polarisierbarkeit $\Delta \alpha$). Das bedeutet, wenn eine Schwingung bei Molekülen wie CO₂ oder dem Carbodiimid-Ion IRaktiv ist, kann sie nicht gleichzeitig Raman-aktiv sein und umgekehrt [7]. Auf Grund der Auswahlregeln ist die symmetrische Valenzschwingung des Carbodiimid-Ions nicht IR-aktiv dafür aber Raman-aktiv, da es ein Inversionszentrum besitzt und somit kein zeitlich veränderbares Dipolmoment ($\Delta \mu \neq 0$) vorhanden ist. Die in der Infrarotspektroskopie inaktive symmetrische Valenzschwingung bei Carbodiimid-Ionen bzw. das Auftreten einer manchmal oft auch schwächeren Absorptionsbande im Wellenzahlenbereich von 1152 cm⁻¹ (H₂CN₂) [8] bis zu 1301 cm⁻¹ [9] bei Cyanamid-Einheiten, ist eine Unterscheidungsmöglichkeit. IR-aktiv sind bei Metall-Cyanamiden bzw. Carbodiimiden die asymmetrische Valenzschwingung bei ca. 1900 bis ca. 2200 cm⁻¹ und die Deformationsschwingung bei ca. 600 bis 700 cm⁻¹. In der englischsprachigen Literatur hingegen wird nicht unterschieden zwischen Metall-Carbodiimiden und Metall-Cyanamiden. Der in unserer Arbeitsgruppe verwendete Oberbegriff Dinitridocarbonat könnte die Unterschiedlichkeit bei der Bezeichnung einzelner Verbindungen als Cyanamid oder Carbodiimid sinnvoll ersetzen. Allgemein soll im Folgenden in dieser Arbeit Metall-Dinitridocarbonat hier benutzt werden. Im Falle geklärter Strukturen soll die Bezeichnung Metall-Carbodiimid verwendet werden, für Strukturen die eher eine symmetrische CN2-Einheit aufweisen und Metall-Cyanamid für Strukturen die eine deutlich unsymmetrische N — C — N-Einheit zeigen. Einige Metall-Cyanamide waren schon länger bekannt aber die genaue Strukturaufklärung gelang erst zum Teil Jahrzehnte später. Hier seien als Beispiele Silbercyanamid [10] und Kalkstickstoff (CaCN₂) genannt, dessen Synthese von F. Rothe 1898 erstmalig durchgeführt wurde, aber die genaue Struktur-Aufklärung gelang erst 2008 [11]. In der Vergangenheit wurden zahlreiche neue Metall-Dinitridocarbonate synthetisiert und deren Strukturen aufgeklärt. Die Synthesemöglichkeiten von Metall-Dinitridocarbonaten sind sehr vielseitig. In diesem Zusammenhang wurden Reaktion von Feststoffen mit Gasen (HCN, NH₃ bzw. N₂), Festkörperreaktionen, Reaktionen in absolutierten Lösungsmitteln und Festkörpermetathesereaktionen durchgeführt. Einige Beispiele der Vorgehensweise verschiedener Arbeitsgruppen sollen im folgenden einen kleinen Überblick verschaffen. Eine der ältesten bekannten Reaktionen um CaCN2 zu präparieren ist die Reaktion von CaC2 mit Stickstoff. Das hier erhaltene Calciumcarbodiimid ist mit Kohlenstoff verunreinigt und ist deshalb dunkelgrau gefärbt. Dieses großtechnisch hergestellte Produkt wird unter anderem als Dünger verwendet.

 $CaC_2 + N_2 \xrightarrow{1100 \circ C} CaCN_2 + C$ (Kalkstickstoff; F. Rothe 1898) (1.2)

Die Ammonolyse ist eine der älteren Methoden, um Metall-Dinitridocarbonate zu erhalten. Im Falle des Lithiumcarbonats sind einige Reaktionsdurchgänge notwendig, um reines Li₂CN₂ zu präparieren [12].

$$Li_2CO_3 + 2 NH_3 \xrightarrow{600-650 \circ C} Li_2CN_2 + 3 H_2O$$
 (1.3)

Auch die Reaktion von Carbonaten mit HCN kann möglicherweise zu Metall-Dinitridocarbonaten führen [13].

$$La_2O_3 + 6 HCN \xrightarrow{600-700 \circ C} La_2(CN_2)_3 + 3 CO/+ 3 H_2/$$
 (1.4)

Eine Alternative hierzu ist die Umsetzung von Metallnitrid mit Melamin [14]. Diese Syntheseroute kann auch dazu dienen Lithiumcarbodiimid herzustellen [15].

 $EA_{3}N_{2} + C_{3}N_{6}H_{6} \longrightarrow 3 EACN_{2} + 3 NH_{3}$ (EA = Mg, Sr, Ba) (1.5)

Eine gebräuchliche Methode zur Synthese von Natriumcarbodiimid ist die Umsetzung von Cyanamid mit Natriumethanolat in absolutiertem Ethanol [16]. Dieser erste Reaktionsschritt führt zu Natriumhydrogencyanamid (1.6). Im zweiten Reaktionsschritt wird Natriumhydrogencyanamid durch Umsetzung von Natriumamid zu Natriumcarbodiimid deprotoniert [17].

$$H_2CN_2 + NaOC_2H_5 \xrightarrow{absol. Ethanol} NaHCN_2 + C_2H_5OH$$
 (1.6)

$$NaHCN_2 + NaNH_2 \longrightarrow Na_2CN_2 + NH_3$$
 (1.7)

Durch Reaktion von Europiumnitrid mit Kohlenstoff und Natriumazid als Stickstoffquelle bei Temperaturen von über 1000 °C konnte das erste binäre Selten-Erd-Carbodiimid hergestellt und strukturell charakterisiert werden [18].

$$EuN + C + NaN_3 \xrightarrow{1030 \circ C} Eu(CN_2) + \dots$$
(1.8)

Die von der Arbeitsgruppe Dronskowski bevorzugte Azid-Cyanid-Route ist eine weitere Möglichkeit zur Synthese von EuCN₂ bei 700 °C. Ebenso konnten durch die Azid-Cyanid-Route bei Temperaturen von 800 °C Verbindungen des Typs $M_2Cl_2CN_2$ (M = Eu, Sr) präpariert werden [19].

$$2 \operatorname{MCl}_2 + \operatorname{NaN}_3 + \operatorname{NaCN} \longrightarrow \operatorname{M}_2 \operatorname{Cl}_2 \operatorname{CN}_2 + 2 \operatorname{NaCl} + \operatorname{N}_2$$
(1.9)

Zahlreiche Verbindungen, wie Selten-Erd-Carbodiimide [20], Selten-Erd-Halogen-Carbodiimide [21], Selten-Erd-Chlorid-Carbodiimid-Nitride [22] aber auch Übergangsmetall-Carbodiimide [23] lassen sich durch Festkörpermetathesen synthetisieren. Die moderaten Heiztemperaturen, die dabei verwendet werden (z.B. 400 – 500 °C) lassen Produkte entstehen, die sich bei den sonst üblichen hohen Temperaturen von 800 – 1000 °C wieder zersetzen. Im folgenden sollen einige Festkörpermetathesereaktionen als Beispiele gezeigt werden, mittels derer verschiedene Metall-Cyanamide erhalten werden konnten. In diesen Reaktionen dient Lithiumcarbodiimid als Carbodiimidionenspender und Lithiumnitrid als Nitridionenspender. So entstand bei der Festkörpermetathesereaktion von wasserfreien Selten-Erd-Chloriden mit Lithiumcarbodiimid im molaren Verhältnis 1:1 LaClCN₂ [21]. Ab ca. 850 °C begann die thermische Konvertierung von LaClCN₂ in La₂Cl(CN₂)₂N.

$$LaCl_3 + Li_2CN_2 \xrightarrow{450 - 750 \, ^{\circ}C} LaClCN_2 + 2 LiCl$$
 (1.10)

 $2 (\text{LaClCN}_2 + 2 \text{LiCl}) \xrightarrow{850 \,^{\circ}\text{C}} \text{La}_2 \text{ClCN}_2 \text{N} + 4 \text{LiCl} + \dots$ (1.11)

Durch multilaterale Festkörpermetathese entstand schon bei 500 °C La₂ClCN₂N als Pulver [22].

Die Festkörpermetathese von wasserfreien Selten-Erd-Chloriden mit Li₂CN₂ im molaren Verhältnis 2:3 führte zu einer ganzen Reihe von Selten-Erd-Carbodiimiden mit der Zusammensetzung SE₂(CN₂)₃, die in zwei verschiedenen Strukturtypen kristallisieren. Während die größeren Selten-Erd-Carbodiimide monoklin in der Raumgruppe C2/m (SE = Ce – Er ohne Eu, Pm) kristallisieren, konnte bei den kleineren Selten-Erd-Carbodiimiden festgestellt werden, dass diese rhomboedrisch in der Raumgruppe R $\overline{3}$ c kristallisieren [20]. 2 SECl₃ + 3 Li₂CN₂ $\xrightarrow{450-600 \circ C}$ SE₂(CN₂)₃ + 6 LiCl (1.13)

Bei der Festkörpermetathesereaktionen von den als reaktionsträge geltenden Selten-Erd-Trifluoriden mit Lithiumcarbodiimid im molaren Verhalten 1:1 entstanden zwei neue Verbindungen. Die Umsetzung von LaF₃ mit Li₂CN₂ führte zu LaFCN₂, während die Reaktion mit einigen Selten-Erd-Trifluoriden, die kleiner sind als La (SE = Ce – Nd) zu Verbindungen der Zusammensetzung LiSE₂F₃(CN₂)₂ führte (Abschnitt 5.6) [24].

$$LaF_3 + Li_2CN_2 \xrightarrow{500\ \text{C}} LaFCN_2 + 2 \text{ LiF}$$
(1.14)

$$2 \Pr F_3 + 2 \operatorname{Li}_2 \operatorname{CN}_2 \xrightarrow{500 - 750 \circ C} \operatorname{Li}_{\operatorname{Pr}_2} F_3(\operatorname{CN}_2)_2 + 3 \operatorname{Li}_F$$
(1.15)

Die Kristallstruktur von LaFCN₂ zeigt beim Vergleich mit dem natürlich vorkommenden Mineral Bastnäsit ($Ce_{0,5}La_{0,5}FCO_3$) vergleichbare Strukturmotive. Wie in Abbildung 1.2 zu erkennen ist, findet man in beiden Strukturen alternierende Schichten aus [LaF] bzw. [$Ce_{0,5}La_{0,5}F$] und aus [CN_2] bzw. [CO_3].

Abb. 1.2: Vergleich der Kristallstruktur von LaFCN₂ (links); und Ce_{0,5}La_{0,5}FCO₃ [25] (rechts).

Eine Übersicht der überwiegenden Zahl der bis heute bekannten Metall-Dinitridocarbonate und ihre Gitterkonstanten ist in den Tabellen 1.1 bis 1.6 zusammengestellt.

Substanz	Raumgruppe	Gitterkonstanten	Lit.
Li_2CN_2	I4/mmm	a = 3,687(3) Å, $c = 8,668(4)$ Å; $V = 117,9(2)$ Å ³ ; $Z = 2$	[26]
Na ₂ CN ₂	C2/m	a = 5,0475(6) Å, b = 5,0010(6) Å, c = 5,5354(5) Å, β = 110,083(9) °; V = 131,23(4) Å ³ ; Z = 2	[17]
K_2CN_2	C2/m	a = 5,7877(1) Å, b = 5,7030(1) Å, c = 5,7857(2) Å, β = 109,016(1) °; V = 180,55(6) Å ³ ; Z = 2	[27]
MgCN ₂	$R\overline{3}m$	a = 3,2734(1) Å, c = 14,1282(5) Å; V = 131,10(1) Å ³ ; Z = 3	[14]
CaCN ₂	R 3m	a = 3,6900(3) Å, c = 14,775(3) Å; V = 174,23(4) Å ³ ; Z = 3; (160 K)	[11]
α-SrCN ₂	Pnma	a = 12,410(2) Å, b = 3,963(2) Å, c = 5,389(2) Å; V = 265,1(2) Å ³ ; Z = 4	[14]
ß-SrCN ₂	R 3m	a = 3,9732(5) Å, c = 15,028(3) Å;V = 205,45(5) Å ³ ; Z = 3	[29]
BaCN ₂	R3c	a = 15,282(2) Å, c = 7,013(2) Å; V = 1418,4(5) Å ³ ; Z = 18	[14]

 Tabelle 1.1: Übersicht bekannter Alkali- bzw. Erdalkali-Carbodiimide.

 Tabelle 1.2: Übersicht weiterer bekannter Hauptgruppen- Dinitridocarbonate.

Substanz	Raumgruppe	Gitterkonstanten	Lit.
In _{2,24} (CN ₂) ₃	R 3c	a = 6,0609(4) Å, c = 28,844(2) Å; V = 917,6(1) Å ³ ; Z = 6	[29]
NaIn(CN ₂) ₂	Cmcm	a = 9,6130(6) Å, b = 7,1684(5) Å, c = 6,0365(4) Å; V = 415,97(5) Å ³ ; Z = 4	[29]
PbCN ₂	Pnma	a = 5,5566(4) Å, b = 3,8677(2) Å, c = 11,7350(8) Å; V = 252,2 Å ³ ; Z = 4	[30]

Substanz	Raumgruppe	Gitterkonstanten	Lit.
$Cr_2(CN_2)_3$	$R\overline{3}c$	a = 5,4751(1) Å, c = 27,9696(3) Å; V = 726,610(2) Å ³ ; Z = 6	[31]
MnCN ₂	R 3m	a = 3,3583(4) Å, c = 14,346(2) Å; V = 140,13 Å ³ ; Z = 3	[23]
FeCN ₂	P6 ₃ /mmc	a = 3,2689(2) Å, c = 9,400(1) Å; V = 87,00(1) Å ³ ; Z = 2	[32]
CoCN ₂	P6 ₃ /mmc	a = 3,2129(4) Å, c = 9,390(2) Å; V = 83,94 Å ³ ; Z = 2	[33]
NiCN ₂	P 6 ₃ /mmc	a = 3,1533(8) Å, c = 9,272(3) Å; V = 79,84(4) Å ³ ; Z = 2	[33]
CuCN ₂	Cmcm	a = 2,9916(5) Å, b = 6,1782(1) Å, c = 9,4003(2) Å; V = 173,77(0) Å ³ ; Z = 4	[34]
Ag ₂ CN ₂	$P2_1/c$	a = 7,3147(6) Å, b = 6,0096(5) Å, c = 6,6839(6) Å, β =102,29(0) °; V = 287,1(3) Å ³ ; Z = 4	[10]
ZnCN ₂	$I\overline{4} 2d$	a = 8,8047(2) Å, c = 5,4329(2) Å; V = 421,17(2) Å ³ ; Z = 8	[35]
CdCN ₂	R 3m	a = 3,5321(7) Å, c = 14,557(4) Å; V = 157,28(6) Å ³ ; Z = 3	[36]
HgCN ₂	Pbca	a = 10,4851(1) Å, b = 6,5138(1) Å, c = 6,8928(1) Å; V = 470,76(1) Å ³ ; Z = 8	[37]
HgCN ₂	P2 ₁ /a	a = 6,8521(4) Å, b = 6,9797(4) Å, c = 5,5516(4) Å, β = 113,212(4) °; V = 244,02 Å ³ ; Z = 4	[38]

 Tabelle 1.3: Übersicht bekannter Übergangsmetall-Dinitridocarbonate.

Substanz	Raumgruppe	Gitterkonstanten	Lit.
Sm ₂ (CN ₂) ₃ ^{a)}	C2/m	a = 14,534(2) Å, b = 3,8880(8) Å, c = 5,2691(9) Å, β = 95,96(2) °; V = 296,13 Å ³ ; Z = 2	[20]
$Yb_2(CN_2)_3 \ ^{b)}$	R 3c	a = 6,3002(3) Å, c = 29,473(3) Å; V = 1013,1(1) Å ³ ; Z = 6	[39]
$Lu_2(CN_2)_3 \ ^{b)}$	R 3c	a = 6,2669(9) Å, c = 29,367(6) Å; V = 998,8(3) Å ³ ; Z = 6	[40]
EuCN ₂ ^{c)}	Pnma	a = 12,3241(9) Å, b = 3,9526(3) Å, c = 5,3943(4) Å; V = 262,77(3) Å ³ ; Z = 4	[18]

Tabelle 1.4: Übersicht bekannter Selten-Erd-Carbodiimide.

^{a)} $SE_2(CN_2)_3$ Verbindungen mit SE = Y, Ce - Sm und Gd - Er sind isotyp.

^{b)} SE₂(CN₂)₃ Verbindungen mit SE = Tm – Lu sind isotyp

^{c)} α-SrCN₂ kristallisiert isotyp zu EuCN₂.

 Tabelle 1.5: Übersicht bekannter Selten-Erd-Halogen-Carbodiimide.

Substanz	Raumgruppe	Gitterkonstanten	Lit.
Eu ₂ Cl ₂ CN ₂	C2/m	a = 9,620(2) Å, b = 4,2299(7) Å, c = 7,222(1) Å, β = 98,002 °; V = 291,0(2) Å ³ ; Z = 2	[19]
LaClCN ₂	P2/m	a = 5,330(1) Å, b = 4,0305(8) Å, c = 7,544(1) Å, β = 100,75(2) °; V = 159,2(6) Å ³ ; Z = 2	[21]
La ₂ ClCN ₂ N	Cmmm	a = 13,3914(8) Å, b = 9,6345(7) Å, c = 3,9568(2) Å; V = 510,50(5) Å ³ ; Z = 4	[22]
LaFCN ₂	Cmcm	a = 3,8772(8) Å, b = 8,693(2) Å, c = 7,803(2) Å; V = 263,0(1) Å ³ ; Z = 4	[24]
$LiPr_2F_3(CN_2)_2^{a)}$	C2/c	a = 11,562(2) Å, b = 6,563(1) Å, c = 8,471(1) Å, β = 115,32(2) °; V = 581,1(2) Å ³ ; Z = 4	[24]

^{a)} $LiSE_2F_3(CN_2)_2$ Verbindungen mit SE = Ce - Nd sind isotyp.

Substanz	Raumgruppe	Gitterkonstanten	Lit.
La ₂ O ₂ CN ₂	I 4/mmm	a = 4,0964(2) Å, c = 12,333(1) Å; V = 206,95(2) Å ³ ; Z = 2	[41]
La ₂ O(CN ₂) ₂	C2/c	a = 13,530(2) Å, b = 6,250(1) Å, c = 6,1017(9) Å, β = 104,80(2) °; V = 498,8(2) Å ³ ; Z = 4	[42]
$Y_2O_2CN_2$	$P\overline{3}m1$	a = 3,7042(1), c = 8,1806(2); V = 97,21(4) Å ³ ; Z = 1	[43]
KLa[Si(CN ₂) ₄]	P 2 ₁ 2 2 ₁	a = 7,601(1) Å, b = 6,854(1) Å, c = 9,487(2) Å; V = 494,3(1) Å ³ ; Z =2	[44]
RbLa[Si(CN ₂) ₄]	IĀ	a = 8,556(1) Å, c = 6,852(1) Å; V = 501,6 (1) Å ³ ; Z = 2	[44]
Y ₂ (SiO ₄)(CN ₂)	C2/m		[43]

Tabelle 1.6: Sonstige publizierte Selten-Erd-Dinitridocarbonate.

2. Zielsetzungen

Wie schon in der Einleitung gezeigt, führten einige Festkörpermetathesereaktionen von Selten-Erd-Halogeniden zu neuen und bisher unbekannten Strukturen. Festkörpermetathesereaktionen von Selten-Erd-Trifluoriden mit einem Carbodiimid-Ionendonator in verschiedenen molaren Verhältnissen könnten zu weiteren neuen Verbindungen führen. Farblose Wirtsgitter, welche aus Y, La, Gd oder Lu gebildet werden, könnten von technischem Interesse für Leuchtdioden sein. Werden solche Wirtsgitter mit Ce, Eu oder Tb dotiert, so können dotierte Wirtsgitter Lumineszenzeigenschaften zeigen. Vor kurzem Cedotiertes Y₂(CN₂)₃ als Leuchtstoff in eine Leuchtdiode eingesetzt [45]. Im Rahmen meiner Dissertation sollten die Untersuchungen der Reaktionen der Selten-Erd-Trifluoride mit Lithiumcarbodiimid im molaren Verhältnis 1:1 weiter untersucht werden. Weiterhin sollte noch fehlende Verbindungen wie bisher unbekannte angestrebt werden, das Lanthancarbodiimid La₂(CN₂)₃ durch Metathesereaktionen zu synthetisieren, um dessen aufzuklären. Reaktionen Selten-Erd-Trifluoriden mit Struktur Dazu sollten von Lithiumcarbodiimid im molaren Verhältnis 2:3 durchgeführt werden. Auch sollte die Verwendung von Natriumcarbodiimid oder Silbercyanamid als Carbodiimid-Quelle für

Festkörpermetathesereaktionen mit Selten-Erd-Trifluoriden überprüft werden. Die Reaktionen der Selten-Erd-Trifluoride mit Lithiumcarbodiimid im molaren Verhältnis 1:2 oder auch 1:3, also mit einem Überschuss an Lithiumcarbodiimid, der nicht in die Festkörpermetathesereaktion mit eingeht, wurde auch ein Teil dieser Arbeit. Auch sollte eine geeignete Synthese von Calciumcarbodiimid entwickelt werden. Dieses technische Produkt ist mit Kohlenstoff verunreinigt (Reaktionsgleichung 1.2) und ist deshalb für Festkörpermetathesen ungeeignet. Es scheint als ob die Umsetzung von Calciumnitrid mit Melamin nicht zum gewünschten $CaCN_2$ führt, obwohl EACN₂ (EA = Mg, Sr, Ba) durch diese Methode erhalten werden konnten [14]. Hier sollten Festkörpermetathesereaktionen von Erdalkalifluoriden bzw. Chloriden (EA = Ca, Sr)mit Lithiumcarbodiimid erprobt werden. In späteren Untersuchungen sollten EACN₂ (EA = Ca,Sr) als Carbodiimidquelle für Festkörpermetathesereaktionen eingesetzt werden.

Experimenteller Teil

3.1 Verwendete Chemikalien und Reagenzien

Li₂CO₃ (Merck, 99,99 %) LaCl₃ (ABCR, 99,9%) NH₄Cl (Merck, 99,99 %) KCl (Merck, 99,5 %) La₂O₃ (Merck, 99,99 %) Ce₂O₃ (Ventron, 99,99 %) Pr₄O₁₁ (Rhône-Poulenc, 99,9 %) Nd₂O₃ (Ventron, 99,99 %) Sm₂O₃ (Ampere, 99,9%) Eu₂O₃ (Rhône-Poulenc, 99,9%) Gd₂O₃ (Ampere, 99,9%) Tb₄O₇ (Ventron, 99,99 %) Dy₂O₃ (Rhône-Poulenc, 99,9 %) Ho₂O₃ (Ventron, 99,99 %) Er₂O₃ (Ventron, 99,99 %) Tm₂O₃ (Ventron, 99,99 %)

3.

Yb₂O₃ (Ventron, 99,99 %) Lu₂O₃ (Ventron, 99,99 %) Y₂O₃ (Rhône-Poulenc, 99,99%) NH₄F (Merck, 99,99 %) Al₂O₃ γ-Tonerde (Merck 99,9 %) HCl (Merck, 32%) Argon 5.0 (Messer-Griesheim) Argon/Wasserstoff 93 % / 7 % (Messer-Griesheim) NH₃ (Gerling Holz + Co3.8, 99,98 %) LiCl (Merck 99,5 %) Li₃N (Strem, 99,5 %) Melamin (Fluka \geq 99 %) Natriumamid (Merck ~ 95 %) SrF₂ (Riedel de Haen 99,99 %) SrCl₂ (Riedel de Haen 99,99 %) La (Strem 99,99 %) Ce (Strem 99,99 %)

3.2 Arbeiten unter Schutzgas und präparative Vorgehensweise

Die präparativen Manipulationen mit hydrolyseempfindlichen Substanzen wurden unter Argon Schutzgasatmosphäre (Argon 5.0) in einem Handschuhkasten (Braun LabMaster 130, Fa. M. Braun GmbH, Garching) durchgeführt. Die Kupferampullen (Reaktionscontainer) wurden aus handelsüblichem Kupferrohr hergestellt, und das Kupferrohr in konzentrierter Salzsäure von anhaftendem Oxid befreit. Nach mehrfachem Waschen mit vollentsalztem Wasser, entfetten mit Aceton und Trocknen am Vakuum, wurden die Kupferampullen an einem Ende zugekniffen und am Vakuum zugeschweißt. Die Länge der Kupferampullen (Wandungsstärke 1 mm) betrug ca. 5 cm (Innendurchmesser 6 mm). Im Allgemeinen betrugen die Ansatzgrößen 0.5 - 2 mmol. Die einzelnen Substanzen wurden in einer Achatschale gut vermengt und mit einem Achatpistill gründlich verrieben. Anschließend wurde das Substanzgemisch auf drei oder vier Kupferampullen (ca. 200 mg) und zwei Kieselglasampullen (ca. 100 mg) verteilt. Die Kupferampullen wurden am Vakuum zugeschweißt und anschließend in Kieselglasampullen (Innendurchmesser 14 mm, Außendurchmesser 16 mm) eingeschmolzen. Bei den Reaktionen wurden als Heizquelle selber gebaute Kieselglasröhrenöfen bzw. Glasröhrenöfen und Simon-Müller-Öfen verwendet. Weitere Heizquellen waren Kastenöfen (Carbolite 1200, 1300) und Klappröhrenöfen (Heraeus). Nach beendeter Reaktion wurden die Kupferampullen oder Kieselglasampullen im Handschuhkasten geöffnet.

3.3 Analytische Untersuchungsmethoden

3.3.1 Röntgendiffraktometrie

Zur Aufnahme der Pulverdiffraktogramme wurden die Proben zwischen Mylarfolien gebracht und dann mit einem StadiP Diffraktometer (Stoe Darmstadt) unter Verwendung von Germanium-monochromatisierter Cu-K_{α 1} Strahlung ($\lambda = 1,540598$ Å) aufgenommen. Bei Routinemessungen wurde eine Aufnahme im 2 θ -Bereich von 10 ° bis 60 ° durchgeführt. Pulverdiffraktogramme mit höherer Auflösung wurden im 2 θ -Bereich von 3 ° – 130 ° in Stufen von 0,2 ° mit 120 Sekunden Strahlungsdauer pro Stufe wurden angefertigt, wenn eine neue Verbindung vermutet wurde.

3.3.2 Kristallstrukturanalysen

Luftstabile Einkristalle wurden unter einem Mikroskop herausgesucht und mittels Vakuumfett auf der Spitze eines Glasfadens fixiert. Die Aufnahme eines Intensitätsdatensatzes erfolgte mit einem Röntgen-Einkristalldiffraktometer (STOE IPDS) unter Verwendung von Graphitmonochromatsierter Mo-K_{α 1} (λ = 0,71073 Å).

3.3.3 ¹⁵¹Eu-Mößbauer Spektroskopie

Für die Mößbauer spektroskopischen Untersuchungen wurde der 21,53 keV Übergang des 151 Eu Isotops mit einer Aktivität von 130 MBq (2 % der Gesamtaktivität einer 151 Sm:EuF₃-Quelle) in der gebräuchlichen Übertragungsgeometrie genutzt. Die Messungen wurden in einem kommerziellen Heliumbad-Kryostat durchgeführt. Die Temperatur des Absorbers wurde zwischen 4,2 und 330 K variiert, während die Quelle bei Raumtemperatur gehalten wurde. Die Temperatur wurde durch ein Widerstandsthermometer (±0,5 K Genauigkeit) kontrolliert. Die Proben wurden in kleine PVC - Behälter mit einer Probendicke von ca. 10 mg Eu/cm² eingefüllt.

Magnetische Messungen

Zur Untersuchung der magnetischen Eigenschaften wurden die Proben unter Schutzgasatmosphäre in einem Achatmörser verrieben und mit Baumwollwatte in eine Gelatinekapsel eingefüllt. Die Messung erfolgte bei einem Feld von 100 Oe in einem SQUID-Magnetometer (Quantum Design MPMS) im Temperaturbereich von 5 K < T < 300 K.

3.3.5 Differenzthermoanalyse

Die thermischen Untersuchungen wie Differenzthermoanalyse (DTA) und Thermogravimetrie (TG) erfolgten unter Argon als Inertgasatmosphäre. Die Ampullen wurden mit 60 bis 100 mg Substanzgemisch befüllt. Die DTA- und TG- Messungen erfolgten in evakuierten Kieselglasampullen bzw. zugekniffenen Kupferampullen die aus tiefgezogenen Kupferstäben gefertigt waren auf den DTA/TG-Geräten Netzsch STA 409 und STA 449 F3 Jupiter, mit einer Aufheiz- bzw. Abkühlrate von 2 K pro Minute.

3.3.6 IR-Spektroskopie

Die Messungen wurden auf einem Bruker Tensor 27 und einem Vertex 70-FT-IR-Spektrometer durchgeführt in einem Bereich von 400 - 4000 cm⁻¹ unter Verwendung von KBr-Presslingen.

3.3.7 Ramanspektroskopie

Raman-Spektren wurden mit einem Horiba Yobin HR 800 Raman Spektrometer unter Anregung eines Nd-YAG-Lasers (250 mW, 5032 nm) bei Raumtemperatur aufgenommen.

3.4 Verwendete Computerprogramme

Für die Indizierung der Pulverdiffraktogramme wurde mit den Algorithmen von Werner oder Visser des Programms STOE WinXPOW gearbeitet [46].

Strukturlösungen erfolgte über Direkte Methoden des Programms ShelxS [47].

Kristallstrukturen und Strukturausschnitte wurden mit dem Programm DIAMOND Version

3.1 gezeichnet. Die IR-Spektren und DTA-Kurven wurden mit Origin 7.0 gezeichnet.

13

3.3.4

4 Übersicht über ausgewählte Metall-Carbodiimide

Der Formeltyp SE₂(CN₂)₃ ist durch zwei verschiedene Kristallstrukturen charakterisiert. In Abbildung 4.1 sind die beiden Kristallstrukturen der Selten-Erd-Carbodiimide gezeigt [20], [39]. Abbildung 4.2 zeigt eine Auftragung der Zellvolumina pro Anzahl der Formeleinheiten in der Elementarzelle gegen die Ordnungszahl. Entsprechend der Lanthanoidenkontraktion nehmen die Zellvolumina der monoklin kristallisierenden Selten-Erd-Carbodiimide von Ce₂(CN₂)₃ bis hin zu Tm₂(CN₂)₃ ab. Den selben Trend zeigen die rhomboedrisch kristallisierenden Selten-Erd-Carbodiimide Tm₂(CN₂)₃ bis Lu₂(CN₂)₃.

Abb. 4.1: Elementarzelle von Sm₂(CN₂)₃ (C2/m) (links). Elementarzelle von Yb₂(CN₂)₃ (R3m) (rechts).

Abb. 4.2: Verlauf des Volumens pro Formeleinheit der Selten-Erd-Carbodiimide. Zellvolumina von $SE_2(CN_2)_3$ -Verbindungen mit monoklin kristallisierenden Verbindungen (SE = Ce – Er, Tm) und rhomboedrisch kristallisierenden Verbindungen (SE = Tm, Yb, Lu).

Durch multilaterale Festkörpermetathesereaktionen konnten Alkali-Selten-Erd-Tetracyanamidosilikate mit der Zusammensetzung ASE[Si(CN₂)₄] präpariert werden [44]. Die Verbindung mit der Zusammensetzung KLa[Si(CN₂)₄] (Abbildung 4.3) zum Beispiel wurde durch Festkörpermetathesereaktionen von LaCl3 mit K2SiF6 und Li2CN2 im molaren Verhältnis 1:1:4 erhalten. In der Struktur von KLa[Si(CN₂)₄] sind die Silizium-Atome von der CN₂-Ionen tetraedrisch umgeben. Die [Si(CN₂)₄]⁴-Ionen vier N-Atomen (Tetracyanamidosilikat-Ionen) sind von sechs Selten-Erd-Atomen umgeben und bilden verzerrte Oktaeder. Die Selten-Erd-Ionen sind von sechs Tetracyanamidosilikat-Ionen koordiniert und bilden ebenso einen verzerrten Oktaeder. Zusammengenommen ergibt diese Anordnung der beiden Strukturmotive eine dreidimensionales Netzstruktur, in der die Silizium-Atome und die Selten-Erd-Atome eine Anordnung zeigen, die der NaCl-Struktur sehr ähnlich ist. Die Hälfte, der durch diese Anordnung gebildeten Tetraederlücken werden durch die Alkalimetall-Atome besetzt.

Abb. 4.3: Blick auf die orthorhombische Elementarzelle von KLa[Si(CN₂)₄] entlang der b-Richtung .

4.1 Reaktion von SrCl₂ mit Li₂CN₂

In dieser Arbeit sollte durch Festkörpermetathesereaktion von SrCl₂ bzw. EuCl₂ mit Li₂CN₂ im molaren Verhältnis 1:1 (Ansatz: 2 mmol, Gesamtmasse: 0,4249 g) SrCN₂ bzw. EuCN₂ (Abschnitt 4.2) präpariert werden. Aber es entstand nicht wie erwartet Strontiumcarbodiimid sondern das Pulverdiffraktogramm der bei 300 °C mit einer Reaktionszeit von 100 Stunden in Kieselglasampullen durchgeführten Reaktion zeigte Reflexe des Eduktes SrCl₂, des Metathesesalzes LiCl und wie sich später herausstellte Reflexe von Sr₂Cl₂CN₂. Die Festkörpermetathesereaktion von SrCl₂ mit Li₂CN₂ im molaren Verhältnis 1:2 (Ansatz: 2 mmol, Gesamtmasse: 0,5327 g) führte dann zur Bildung von Sr₂Cl₂CN₂ und LiCl. Abbildung 4.1.1 zeigt das Pulverdiffraktogramm des bei 300 °C erhaltenen Produktes. Hier sind Reflexe von Sr₂Cl₂CN₂ und LiCl zu erkennen aber auch von überschüssigem Li₂CN₂. Das Pulverdiffraktogramm wurde indiziert. Anhand von 57 Reflexen konnte eine C-zentrierte monokline Zelle a = 9,617(1) Å, b = 4,2584(5) Å, c = 7,267(1) Å, β = 97,90(1) °, V = 294,84(9) Å³ bestimmt werden. Diese stimmten gut mit den Literaturwerten überein [19].

Abb. 4.1.1: Berechnete Diffraktogramme von Li₂CN₂ und Sr₂Cl₂CN₂ und Pulverdiffraktogramm des Reaktionsproduktes gemäß Reaktionsgleichung 4.1.1 (grüne Linien: Pulverdatenbankeintrag-[74-1972] für LiCl; violette Linien: Indizierte Reflexe).

Da die früher durchgeführte Reaktion von $SrCl_2$ mit Li_2CN_2 im molaren Verhältnis 1:1 noch Reflexe des Eduktes $SrCl_2$ aufwies, musste ein großer Überschuss von Li_2CN_2 eingesetzt werden, um eine vollständige Umsetzung zu erreichen. Die Reaktionsgleichung der Festkörpermetathesereaktion von $SrCl_2$ mit Li_2CN_2 im molaren Verhältnis 1:2 lautet:

 $2 \operatorname{SrCl}_2 + 4 \operatorname{Li}_2 \operatorname{CN}_2 \xrightarrow{300 \circ \operatorname{C} 100 \operatorname{h}} \longrightarrow \operatorname{Sr}_2 \operatorname{Cl}_2 \operatorname{CN}_2 + 2 \operatorname{LiCl} + 3 \operatorname{Li}_2 \operatorname{CN}_2$ (4.1.1) Die Reaktionsgleichung für die Festkörpermetathesereaktion zur Bildung von Sr₂Cl₂CN₂ lautet:

 $2 \operatorname{SrCl}_2 + \operatorname{Li}_2 \operatorname{CN}_2 \longrightarrow \operatorname{Sr}_2 \operatorname{Cl}_2 \operatorname{CN}_2 + 2 \operatorname{LiCl}$ (4.1.2)

Der Verbindungstyp $M_2Cl_2CN_2$ (M = Eu, Sr) wurde zuvor über eine Azid-Cyanid-Route (Gleichung 4.1.3) durch Umsetzung von wasserfreien Metalldichloriden mit Natriumazid und Natriumcyanid bei 800 bzw. 880 °C in Tantalampullen hergestellt. Die Struktur konnte durch Einkristallstrukturanalyse geklärt werden. Aufgrund der ähnlichen Ionenradien von Eu²⁺ und Sr²⁺ kristallisieren beide Verbindungen isotyp [19].

 $2 \text{ MCl}_2 + \text{NaN}_3 + \text{NaCN}$ $\blacktriangleright M_2 \text{Cl}_2 \text{CN}_2 + 2 \text{ NaCl} + \text{N}_2$ (4.1.3) (M = Eu, Sr)

In dieser Festkörpermetathesereaktion zeigten sich deutlich die Vorteile dieses Syntheseweges. So konnten die beiden Verbindungen mit der Zusammensetzung M₂Cl₂CN₂

(M = Eu, Sr) bei wesentlich tieferen Temperaturen präpariert werden als durch die Azid-Cyanid-Route.

4.2 Reaktion von EuCl₂ mit Li₂CN₂

Bei der Reaktion von EuCl₂ mit Li₂CN₂ im molaren Verhältnis 1:1 (Ansatz: 2 mmol, Gesamtmasse: 0,5496 g) entstand nicht wie erwartet das isotyp zu α -SrCN₂ kristallisierende EuCN₂. Hier wurden im Pulverdiffraktogramm des Reaktionsproduktes nach 100 Stunden Reaktionszeit bei 300 °C in Kieselglasampullen noch Reflexe von EuCl₂ und Li₂CN₂ aber auch von Eu₂Cl₂CN₂ beobachtet. Ab 350 °C war die Umsetzung vollständig. Abbildung 4.2.1 zeigt das Pulverdiffraktogramm des gelben Pulvers das bei 400 °C nach 100 Stunden in einer Kieselglasampulle entstanden war. Aus den zur Indizierung verwendeten 37 Reflexen, konnte eine C-zentrierte monokline Zelle bestimmt werden (a = 9,623 (1) Å, b = 4,2372(5) Å, c = 7,2367(8) Å, β = 98,075(7) °, V = 292,17(8) Å³) die mit der bekannten Zelle von Eu₂Cl₂CN₂ lässt sich eine Festkörpermetathesereaktion formulieren:

Abb. 4.2.1: Berechnet Diffraktogramm von Eu₂Cl₂CN₂ und gemessenes Pulverdiffraktogramm des Reaktionsproduktes der Reaktion von EuCl₂ mit Li₂CN₂ im molaren Verhältnis 1:1 (rote Linien: Pulverdatenbankeintrag [74-1972] für LiCl; schwarze Linien: Indizierte Reflexe).

Die Synthesen von Sr₂Cl₂CN₂ bzw. Eu₂Cl₂CN₂ gelangen über den Weg der Festkörpermetathese bei wesentlich geringeren Temperaturen als über die Azid-Cyanid-Route [19].

5 Synthese von Selten-Erd-Carbodiimiden Synthesen von Ausgangsstoffen

5.1 Synthese von Li₂CN₂

Zur Synthese von Li₂CN₂ wurde trockenes Lithiumcarbonat (ca. 2 Gramm) in ein Korundschiffchen gefüllt, im Kieselglasrohr unter striktem Sauerstoffausschluss innerhalb von zwei Stunden auf 600 °C erhitzt und über Nacht in einem Ammoniakstrom (etwa zwei Blasen pro Sekunde) zur Reaktion gebracht. Danach wurde die nur teilweise umgesetzte Substanz zur Reinheitskontrolle im Handschuhkasten zermörsert, ein Pulverdiffraktogramm aufgenommen und erneut eine Nitridierung gestartet. Dieser Zyklus musste mehrfach wiederholt werden bis röntgenreines Lithiumcarbodiimid entstand [12].

 $Li_2CO_3 \xrightarrow{NH_3/600 \circ C} Li_2CN_2 + 3 H_2O$ (5.1.1)

Neben der Nitridierung von Lithiumcarbonat wurde auch die Umsetzung von Lithiumnitrid mit Melamin zur Präparation von Lithiumcarbodiimid verwendet [13].

5.2 Synthese von Na₂CN₂

Die Umsetzung von Natriumamid mit Melamin führte zu Na₂CN₂. Dazu wurden 2,4576 g NaNH₂ (0,0630 Mol) mit 1,2612 g Melamin (0,01 Mol) im Handschuhkasten in einer Achatschale gründlich verrieben. Danach wurde das Gemisch in ein Korundschiffchen überführt und unter Argonatmosphäre im Reaktionsrohr jeweils 2 Stunden bei 50 °C, 100 °C, 150 °C, 200 °C und danach 16 Stunden bei 250 °C belassen. Schon bei Temperaturen von 100 °C war eine Ammoniakentwicklung zu beobachten. Um überschüssiges Melamin zu entfernen und entstandenes Natriumcarbodiimid zu kristallisieren, wurde das Produkt mit einer Heizrate von 5 °C/Minute auf 500 °C erhitzt und anschließend mehrere Stunden bei dieser Temperatur gehalten. Danach wurde das farblose Produkt noch auf 600 °C erhitzt und eine Stunde bei dieser Temperatur gehalten. Anschließend wurde der Ofen abgeschaltet. Zur Reinheitskontrolle wurde von dem Produkt ein Röntgenpulverdiffraktogramm angefertigt. Es zeigten sich allerdings wenige Fremdreflexe geringer Intensität (I \leq 5 %). 6 NaNH₂ + C₃N₆H₆ \longrightarrow 3 Na₂CN₂ + 6 NH₃ (5.2)

5.3 Synthese der verwendeten Selten-Erd-Trifluoride

Die Ammoniumfluoridmethode lässt sich hervorragend zur Fluorierung von Selten-Erd-Sesquioxiden verwenden, wobei die luftstabilen und gegen Hydrolyse beständigen Selten-Erd-Trifluoride entstehen. Dazu wurden in einem Korundtiegel das entsprechende Lanthanoidsesquioxid und Ammoniumfluorid im molaren Verhältnis 1:10 (Ansatz: 10 mmol, Gesamtmasse: 6,632 g) innigst vermengt und im Simon-Müller-Ofen bei 100 °C zur Reaktion gebracht. Dabei sublimierte überschüssiges Ammoniumfluorid ab und es entstand ein komplexes Ammoniumsalz.

 $SE_2O_3 + 10 \text{ NH}_4\text{F} \xrightarrow{100 \text{ °C}} 2 (\text{NH}_4)_2 \text{SEF}_5 + 6 \text{ NH}_3 + 3 \text{ H}_2\text{O}$ $SE = \text{La} - \text{Lu} \neq \text{Pm}$ (5.3.1) In einer Zersetzungsreaktion wurden diese Komplexe im Korundtiegel an der Luft im Simon-Müller-Ofen bei 380 °C gespalten, wobei röntgenreine Selten-Erd-Trifluoride entstanden. Diese Reaktion eignete sich auch für die Fluorierung von Cerdioxid, wobei ebenfalls das Trifluorid entsteht [48].

 $(NH_4)_2 SEF_5 \xrightarrow{380 \circ C} SEF_3 + 2 NH_4 F$ (5.3.2)

5.4 Synthese von wasserfreiem CaCl₂

Wasserfreies CaCl₂ wurde durch die Reaktion von CaCO₃ mit NH₄Cl erhalten. Dazu wurde CaCO₃ mit (NH₄)Cl (Ansatz: 10 mmol, Gesamtmasse: 3,6754 g) im molaren Verhältnis 1:5 innigst vermengt, in ein Korundschiff überführt und anschließend im Reaktionsrohr unter geringem Argonfluss (eine Blase/Sekunde) langsam mit einer Heizrate von 0,2 °C/Min auf 250 °C erhitzt und dann bei dieser Temperatur gehalten. Nach 16 Stunden wurde der Ofen abgeschaltet und nach dem Erkalten überschüssiges NH₄Cl am dynamischen Vakuum durch langsames Erhitzen des Produktes bis auf 350 °C entfernt. Von dem farblosen Produkt wurde zur Reinheitskontrolle eine Pulveraufnahme angefertigt, welche nur die Reflexe von wasserfreiem CaCl₂ zeigte [49].

5.5 Synthesen von CaCN₂ und SrCN₂ durch Festkörpermetathese

Die Suche nach einem anderen Carbodiimidionenspender als Li_2CN_2 für Festkörpermetathesereaktionen mit Selten-Erd-Halogeniden führte dazu die Systeme CaCl₂/Li₂CN₂, CaF₂/Li₂CN₂ und SrF₂/Li₂CN₂ näher zu betrachten.

5.5.1 Reaktion von CaCl₂ mit Li₂CN₂

Reaktionen von CaCl₂ mit Li₂CN₂ im molaren Verhältnis 1:1 wurden bei 300 bis 500 °C durchgeführt (Ansatz: 3,333 mmol, Gesamtmasse: 0,5496 g). Die in Kieselglas bei 300 °C erhitzten Pulver zeigten nach 100 Stunden noch Eduktreflexe. Bei 400 °C war die Umsetzung vollständig und das entstandene Produkt zeigte sich als farbloses Pulver. Die bei 500 °C erhaltenen Proben waren braune Pulver.

 $CaCl_2 + Li_2CN_2 \xrightarrow{350-500 \circ C \ 100 h} CaCN_2 + 2 LiCl$ (5.5.1)

Abb. 5.5.1: Gemessenes Pulverdiffraktogramm des gemäß Reaktionsgleichung (5.5.1) bei 500 °C erhaltenen Reaktionsproduktes (rote Linien: Pulverdatenbankeintrag [32-161] für Calciumcarbodiimid, grüneLinien: [4-664] für LiCl).

In Abbildung 5.5.1 ist das Röntgen-Pulverdiffraktogramm dargestellt. Der Vergleich mit den Pulverdatenbankeinträgen von CaCN₂ und LiCl zeigt, dass das gewünschte Produkt entstanden ist, bis auf mehrere unbekannte Reflexe mit geringer Intensität (z.B. bei ca. 33 °). Hierbei handelt es sich um keines der bekannten Calciumoxidchloride oder um Ca₄N₂CN₂

bzw. $Ca_{11}N_6(CN_2)_2$. Einkristalle von $CaCN_2$ wurden schon früher durch Festkörpermetathesereaktion von $CaCl_2$ mit Na_2CN_2 bei 800 °C präpariert. In der Struktur von $CaCN_2$ wechseln sich Schichten aus Metallatomen und $CN_2^{2^2}$ -Ionen ab [11]. Die Gitterkonstanten sind in Tabelle 1.1 aufgeführt. Das so erhaltene $CaCN_2$ sollte in späteren Versuchen zusammen mit LiCl zu weiterführenden Metathesereaktionen verwendet werden.

5.5.2 Reaktion von CaF₂ mit Li₂CN₂ im molaren Verhältnis 1:1

Erstaunlich war die Entstehung von Calciumcarbodiimid aus den als sehr stabil geltenden Fluoriden der Erdalkalimetalle (EA = Ca, Sr). Bei der Umsetzung von Calciumfluorid mit Lithiumcarbodiimid (Ansatz: 5 mmol, Gesamtmasse: 0,6599 g) in Kupferampullen bei 600 °C und einer Reaktionszeit von 50 Stunden entstanden CaCN₂ und LiF in einer Metathesereaktion nach folgender Reaktionsgleichung:

Abb. 5.5.2: Berechnetes Diffraktogramm von CaCN₂ und gemessenes Pulverdiffraktogramm der gemäß Reaktionsgleichung (5.5.2) entstandenen Reaktionsprodukte (rote Linien: Pulverdatenbankeintrag [45-1460] für LiF, grüne Linien: [89-4794] für CaF₂).

In Abbildung 5.5.2 ist das Pulverdiffraktogramm des Produktes projiziert. Es ist zu erkennen, dass die Reflexe von CaF_2 vollständig verschwunden sind, während die Reflexe von $CaCN_2$ mit denen des Reaktionsproduktes übereinstimmen. Daraus folgt, dass die Umsetzung vollständig gelungen ist. Dies ist insofern erstaunlich, da CaF_2 als sehr stabil gilt. Bei einer Temperatur ab 700 °C war die Reaktion unvollständig. Hier waren wieder Reflexe von CaF_2 zu erkennen. Dies mag eine Folge der Zersetzung von Li_2CN_2 bei den zu hohen Reaktionstemperaturen sein. Vorteil dieser Methode zur Synthese von Calciumcarbodiimid gegenüber der mit CaCl₂ ist, dass offensichtlich keine Nebenprodukte entstehen.

5.5.3 Reaktion von SrF₂ mit Li₂CN₂ im molaren Verhältnis 1:1

Die Umsetzung von SrF₂ mit Li₂CN₂ (Ansatz: 3,333 mmol, Gesamtmasse: 0,5387 g) beginnt bei ca. 500 °C. Nach 200 Stunden Reaktionszeit wurden im Pulverdiffraktogramm neben α und β - Strontiumcarbodiimid noch Reflexe der Edukte gefunden. Bei Reaktionstemperaturen ab 600 °C und einer Reaktionsdauer von 50 Stunden in Kupferampullen bildeten sich weiße bis hellgraue Pulver, die ab 650 °C schmelzen.

Abb. 5.5.3.1: Berechnete Diffraktogramme von α -SrCN₂ und β -SrCN₂ im Vergleich mit einem Pulverdiffraktogramm des Reaktionsproduktes das gemäß Reaktionsgleichung 5.5.3 entstanden war, zum Vergleich ist ein Pulverdiffraktogramm von SrF₂ gegeben (rote Linien: Pulverdatenbankeintrag [45-1460] für LiF).

In Abbildung 5.5.3.1 sind die Pulverdiffraktogramme von α - und β -Strontiumcarbodiimid simuliert aus Einkristalldaten dargestellt. Beim Vergleich des gemessenen Pulverdiffraktogramms mit den Reflexen von α - und β - Strontiumcarbodiimid findet man vollkommene Übereinstimmung der Reflexe. Die Reflexe von SrF2 sind vollständig verschwunden.. Somit kann auch hier von einer vollständigen Umsetzung der Edukte ausgegangen werden. In Abbildung 5.5.3.2 ist ein Ausschnitt aus den Pulverdiffraktogrammen von α - und β -Strontiumcarbodiimid gezeigt. Vergleicht man die Pulverdiffraktogramme von Produkten, die bei verschiedenen Reaktionstemperaturen entstanden sind, so zeigt sich, dass die Reflexintensitäten von ß-Strontiumcarbodiimid bei höheren Temperaturen an Intensität gewinnen (Reflexe bei 2 Θ = 17 und 22 °). Die Reflexe geringer Intensität z.B. bei 26,2 ° stammen von Li₂CN₂, welches im Überschuss zugesetzt wurde. Dies steht im Gegensatz zu Beobachtungen bei der Bildung von SrCN₂ durch Ammonolyse von SrCO₃. Dabei entstand bei 600 °C bevorzugt β-Strontiumcarbodiimid und ab 900 °C bildete sich α-Strontiumcarbodiimid [50]. Dieses Resultat wurde auch in anderen Arbeiten berichtet [51]. Ein vergleichbares Resultat ergab auch die Phasenumwandlung von rhomboedrisch kristallisierendem Thuliumcarbodiimid hin monoklin kristallisierendem zu Thuliumcarbodiimid mit zunehmender Heiztemperatur (Abschnitt 5.8.3). Häufig jedoch findet man. dass die Hochtemperaturphase eine höhere Symmetrie als die Tieftemperaturphase hat.

Abb. 5.5.3.2: Berechnete Diffraktogramme von α-SrCN₂ und β-SrCN₂ im Vergleich mit Pulverdiffraktogrammen der Reaktionsprodukte die gemäß Reaktionsgleichung 5.5.3 bei 600 °C und 700 °C entstanden waren.
Synthese von EuCl₂ und EuCl₃

5.5.4

Die Synthese von EuCl₂ bzw. EuCl₃ erfolgte über die Zwischenstufe des komplexen Ammoniumsalzes (NH₄)₃EuCl₆. Dazu wurde die Ammoniumchloridmethode benutzt. Bei der Ammoniumchloridmethode wird das Sesquioxid des Europiums mit 12-fachen molaren Überschuss an Ammoniumchlorid unter Argonatmosphäre bei einer Temperatur von 200 °C zur Reaktion gebracht (Ansatz: 2 mmol, Gesamtmasse: 1,9877 g).

 $Eu_2O_3 + 12 NH_4Cl \xrightarrow{200 \circ C} 2 (NH_4)_3 EuCl_6 + 6 NH_3 / + 3 H_2O / (5.5.4.1)$

Im zweiten Reaktionsschritt erfolgte die Zersetzung des komplexen Ammoniumsalzes (NH₄)₃EuCl₆ (zur Synthese von EuCl₃) oder die Reduktion mit Wasserstoff (zur Synthese von EuCl₂). Zur Zersetzung und Reduktion des komplexen Ammoniumsalzes wurde im Argon-Wasserstoffstrom (93 % Ar / 7 % H₂) das Edukt im Korundschiffchen in einem Kieselglasrohr unter striktem Sauerstoff- und Feuchtigkeitsausschluss in mehreren Schritten langsam auf 470 °C erhitzt. Zuerst wurde im Argon-Wasserstoffstrom überschüssiges Ammoniumchlorid bei ca. 100 ° - 120 °C absublimiert. Bei höheren Temperaturen, ab ca. 250 °C begann die Zersetzung des komplexen Ammoniumsalzes unter Ammoniumchloridabspaltung. Nach der vollständigen Entfernung von NH4Cl durch Sublimation bildete sich nach langsamen Erhitzen auf 300 °C gelbes EuCl₃. Ab ca. 470 °C begann die Reduktion und es bildete sich weißes EuCl₂ [52].

 $2 (NH_4)_2 EuCl_5 + H_2 \xrightarrow{470 \circ C} 2 EuCl_2 + 4 NH_4 Cl + 2 HCl$ (5.5.4.2)

5.5.5 Synthese von EuF₂

Zur Synthese von EuF_2 wurde EuF_3 im Argon-Wasserstoffstrom (93 % Ar / 7 % H₂) im Korundschiffchen (Ansatz: 5 mmol, Gesamtmasse: 1,0448 g) in einem Kieselglasrohr bei 700 °C ca. 16 Stunden erhitzt. Das entstandene Produkt wurde im Handschuhkasten zerkleinert. Die Reaktion wurde mehrfach wiederholt, bis keine Reflexe von EuF_3 im Pulverdiffraktogramm mehr zu erkennen waren [53].

5.5.6 Synthese von Lanthannitrid und Cernitrid

Zur Synthese von Lanthannitrid und Cernitrid wurde von den Metallen ausgegangen (Ansatz 10 mmol, 1,3891 g La bzw. 1,4012 g Ce), welche in einem Reaktionsrohr im Argon-Wasserstoff-Strom (93 % Ar / 7 % H₂) im Korundschiffchen bei 600 °C mehrere Stunden

hydriert wurden. Die entstandenen Hydride wurden im Handschuhkasten zerkleinert. Anschließend wurden die Selten-Erd-Hydride zuerst für drei Stunden bei 800 °C unter einem Ammoniakstrom im Korundschiffchen zur Reaktion gebracht. Das Produkt wurde im Handschuhkasten zerkleinert und ein zweites Mal bei 900 °C nochmals zwei Stunden im Ammoniakstrom umgesetzt. Es entstand schwarzes LaN und goldgelbes CeN [54].

5.5.7 Synthese von AlF₃

Korund kann wie die Selten-Erd-Sesquioxide mit Ammoniumfluorid zu AlF₃ reagieren. Dazu wurde Al₂O₃-Pulver mit einem großen Überschuss an NH₄F (molares Verhältnis 1:15) (Ansatz 10 mmol, Gesamtmasse 6,5757 g) vermengt und im Korund-Tiegel auf 100 °C erhitzt und einen Tag bei dieser Temperatur belassen. Danach wurde weiter auf 150 °C erhitzt und diese Temperatur zwei Tage gehalten. In einem weiteren Schritt wurde auf 450 °C erhitzt bis kein Ammoniumfluorid mehr absublimierte. Es entstand AlF₃ als farbloses Produkt.

5.6 Metathesereaktionen von SEF₃ mit Li₂CN₂ im molaren Verhältnis 1:1 Synthese von CeFCN₂ und LiSE₂F₃(CN₂)₂ (SE = Ce – Gd)

Wie schon unter Abschnitt 1 beschrieben wurde, bildeten sich beim Erhitzen von LaF₃ mit Li_2CN_2 (Ansatz: 3,333 mmol, Gesamtmasse; 0,8327 g) ab 500 °C nach 50 Stunden LaFCN₂ und LiF [24].

LaF₃ + Li₂CN₂ $\xrightarrow{500-850 \circ C}$ LaFCN₂ + 2 LiF (1.14) Bei den analog durchgeführten Festkörpermetathesereaktionen von CeF₃ mit Li₂CN₂ (Ansatz: 2 mmol, Gesamtmasse: 0,502 g) war bei 500 °C die Bildung von CeFCN₂ und des Metathesesalzes LiF zu beobachten und ab ca. 700 °C erfolgte die Bildung von LiCe₂F₃(CN₂)₂.

$$CeF_3 + Li_2CN_2 \longrightarrow CeFCN_2 + 2 LiF$$
(5.6.1)

Pulverdiffraktogramme von Produkten deren Reaktionstemperatur bei ca. 600 °C bis 700 °C lagen zeigten Reflexe von CeFCN₂, LiCe₂F₃(CN₂)₂ und LiF. So könnte man LiCe₂F₃(CN₂)₂ als ein Addukt aus 2 CeFCN₂ + LiF betrachten. In Abbildung 5.6.1 sind die Pulverdiffraktogramme der Reaktionsprodukte, die nach Reaktionsgleichung (5.6.2) bei 500 °C und 700 °C entstanden gezeigt. Wie in Abbildung 5.6.1 zu erkennen ist, liegen die Reflexe

des Pulverdiffraktogramms des Produktes der bei 500 °C durchgeführten Reaktion etwas verschoben zu denen des LaFCN₂. Das Pulverdiffraktogramm des Produktes, der bei 700 °C durchgeführten Reaktion hingegen, zeigt das Reflexmuster von LiPr₂F₃(CN₂)₂.

Abb. 5.6.1: Berechnete Diffraktogramme von $\text{LiPr}_2F_3(\text{CN}_2)_2$ und LaFCN_2 im Vergleich mit den Pulverdiffraktogrammen der Reaktionsprodukte gemäß der Reaktionsgleichungen (5.6.1) und (5.6.2) (rote Linien: Pulverdatenbankeintrag [45-1460] für LiF).

Isotyp zur Kristallstruktur von LiPr₂F₃(CN₂)₂ kristallisierten LiCe₂F₃(CN₂)₂ und LiNd₂F₃(CN₂)₂. In dieser Arbeit konnte festgestellt werden dass auch LiSm₂F₃(CN₂)₂, LiEu₂F₃(CN₂)₂ und LiGd₂F₃(CN₂)₂ dieselbe Kristallstruktur besitzen wie LiPr₂F₃(CN₂)₂. In Tabelle 5.6 sind die verfeinerten Gitterkonstanten zusammengefasst.

Tabelle 5.6: Gitterkonstanten (Å), monokliner Winkel (°), Zellvolumen (Å³), und Anzahl der einfach indizierten Reflexe der Verbindungen $LiSE_2F_3(CN_2)_2$ (C2/c).

Verbindung	a	b	с	β	V	indizierte Reflexe
$LiCe_2F_3(CN_2)_2$	11,663(1)	6,641(1)	8,555(1)	115,434)	598,4(2)	40
$LiPr_2F_3(CN_2)_2$	11,597(1)	6,583(1)	8,498(1)	115, 381(6)	586,1(2)	42
$LiNd_2F_3(CN_2)_2$	11,553(2)	6,537(1)	8,456(1)	115,330(8)	577,2(2)	47
$LiSm_2F_3(CN_2)_2$	11,465(3)	6,457(2)	8,382(2)	115,315(1)	560,9(4)	33
$LiEu_2F_3(CN_2)_2$	11,417(4)	6,422(3)	8,343(3)	115,78(2)	552,7(6)	30
$LiGd_2F_3(CN_2)2$	11,401(3)	6,382(2)	8,323(2)	115,401(3)	548,2(3)	30

In Abbildung 5.6.2 sind die Pulverdiffraktogramme von LiSE₂F₃(CN₂)₂ (SE = Gd, Eu, Sm) im Vergleich mit einem simulierten Diffraktogramm von LiPr₂F₃(CN₂)₂ gezeigt. Die Verschiebung der Reflexe hin zu größeren Winkeln in der Reihe LiPr₂F₃(CN₂)₂ bis LiGd₂F₃(CN₂)₂ zeigt die Verringerung der Zellvolumina gemäß der Lanthanoidenkontraktion. Das Pulverdiffraktogramm von LiEu₂F₃(CN₂)₂ und LiF zeigt zusätzliche Reflexe der bis dahin unbekannten Verbindung von dreiwertigem Europiumcarbodiimid (Eu₂(CN₂)₃).

Abb. 5.6.2: Berechnetes Diffraktogramm von LiPr₂F₃(CN₂)₂ im Vergleich mit Pulverdiffraktogrammen der Produkte die gemäß Reaktionsgleichung (5.6.2) entstanden waren (rote Linien: Pulverdatenbankeintrag [45-1460] für LiF).

Festkörpermetathesereaktionen von SEF₃ mit Li₂CN₂ (Ansatz: 2 mmol, Gesamtmasse: ca. 0,5 g) zeigten für SE = Y, Tb – Lu einen anderen Reaktionsverlauf. Hier entstanden Selten-Erd-Carbodiimide, Verbindungen mit der Zusammensetzung LiSEF₄ und als Metathesesalz LiF. Gemäß der beobachteten Produkte konnte folgende Reaktionsgleichung formuliert werden: $3 \text{ SEF}_3 + 3 \text{ Li}_2 \text{CN}_2 \xrightarrow{500-650 \circ \text{C}}$ $\text{SE}_2(\text{CN}_2)_3 + \text{Li}_3 \text{SEF}_4 + 5 \text{ LiF}_4$ (5.6.3)Die Festkörpermetathesereaktion der Selten-Erd-Trifluoride mit Lithiumcarbodiimid im molaren Verhältnis 1:1 konnte also je nach Selten-Erd-Element durch die Reaktionsgleichungen (5.6.1), (5.6.2) und (5.6.3) beschrieben werden: SEF₃ + Li₂CN₂ $\xrightarrow{500 \circ C 60 \text{ H}}$ SEFCN₂ + 2 LiF (SE = La, Ce)(5.6.1) $2 \text{ SEF}_3 + 2 \text{ Li}_2 \text{CN}_2 \xrightarrow{500-600 \circ \text{C}} \text{LiSE}_2 F_3(\text{CN}_2)_2 + 3 \text{ LiF}$ (SE = Ce - Gd) (5.6.2) $3 \text{ SEF}_3 + 3 \text{ Li}_2\text{CN}_2 \xrightarrow{500-650 \text{ °C}} SE_2(\text{CN}_2)_3 + \text{Li}\text{SEF}_4 + 5 \text{ LiF} (\text{SE} = \text{Y}, \text{Tb} - \text{Lu})$ (5.6.3)

Reaktion von LaF₃ mit Na₂CN₂

5.7

Schon 1948 wurde versucht Lanthancarbodimid $(La_2(CN_2)_3)$, welches damals als Lanthancyanamid bezeichnet wurde nach Reaktionsgleichung (1.4) durch Umsetzung von La₂O₃ mit HCN bei 800 °C zu präparieren. Die Zusammensetzung des erhaltenen Produktes wurde ausschließlich durch Elementaranalysen bzw. durch Anionennachweis mit chemischen Methoden bestimmt [13]. Um die bisher noch unbekannte Verbindung La₂(CN₂)₃ herzustellen, sollte die Festkörpermetathesereaktion von LaF₃ mit Na₂CN₂ im molaren Verhältnis 2:3 (Ansatz: 1 mmol, Gesamtmasse: 6,6498 g) erprobt werden. Die anvisierte Reaktionsgleichung lautete:

 $2 \text{ LaF}_3 + 3 \text{ Na}_2 \text{CN}_2 \xrightarrow{350-550 \circ \text{C}} \rightarrow \text{La}_2(\text{CN}_2)_3 + 6 \text{ NaF}$ (5.7.1)

Nach einer Reaktionsdauer von 100 Stunden und einer Heiztemperatur von 500 °C in Kieselglasampullen war ein farbloses Pulvergemenge aus NaLa₂F₃(CN₂)₂ und LiF entstanden. NaLa₂F₃(CN₂)₂ zeigte ein fast identisches aber verschobenes Reflexmuster wie LiPr₂F₃(CN₂)₂ und kristallisierte isotyp zu LiPr₂F₃(CN₂)₂. Bei dieser Reaktion wurde die wohl stabilere Verbindung NaLa₂F₃(CN₂)₂ gebildet. Bei höheren Reaktionstemperaturen verschwanden die Reflexe von NaLa₂F₃(CN₂)₂ und es wurden andere Produkte gebildet. In Abbildung 5.7 ist das Pulverdiffraktogramm der Reaktion von 2 LaF₃ mit 3 Na₂CN₂ und eines simulierten Pulverdiffraktogramms von LiPr₂F₃(CN₂)₂ gezeigt. Eine Indizierung des Diffraktogramms, eines Kristallpulvers entstanden gemäß Reaktionsgleichung (5.7.2), gelang anhand von 47 Reflexen und zeigte eine monoklin C-zentrierte Zelle (a = 11,981(5) Å, b = 6,750(3) Å, c = 8,583(3) Å; $\beta = 115,40(2)$ °; V = 627,1(6) Å³). Beim Vergleich mit LiPr₂F₃(CN₂)₂ mit dem Zellvolumen von 586,1(2) A³ lässt sich erkennen, dass Natrium in der Struktur von NaLa₂F₃(CN₂)₂ die Zelle aufweitet. Auch die Festkörpermetathesereaktionen von LaF₃ mit Na₂CN₂ und NaF. Die Reaktionsgleichung für diese Festkörpermetathesereaktion muss also lauten:

 $2 \text{ LaF}_3 + 2 \text{ Na}_2 \text{CN}_2 \longrightarrow \text{NaLa}_2 F_3(\text{CN}_2)_2 + 3 \text{ NaF}$ (5.7.2)

Abb. 5.7: Berechnetes Diffraktogramm von LiPr₂F₃(CN₂)₂ im Vergleich mit einem Pulverdiffraktogramm des Reaktionsproduktes gemäß Reaktionsgleichung (5.7.1) (rote Linien: Pulverdatenbankeintrag [36-1455] für NaF, grüne Linien: Indizierungslinien von NaLa₂F₃(CN₂)₂).

5.8 Festkörpermetathesereaktionen von SEX₃ mit Li₂CN₂ im molaren Verhältnis 2:3 (X = F, Cl)

5.8.1 Synthese von Selten-Erd-Carbodiimiden

Festkörpermetathesereaktionen zur Herstellung von Selten-Erd-Carbodiimiden sind gut bekannt.

 $2 \operatorname{SECl}_{3} + 3 \operatorname{Li}_{2} \operatorname{CN}_{2} \xrightarrow{450-600 \,^{\circ} \mathrm{C}} \operatorname{SE}_{2}(\operatorname{CN}_{2})_{3} + 6 \operatorname{LiCl}$ (1.13)

Das entstandene LiCl ließ sich durch zweimaliges Waschen mit vollentsalztem Wasser entfernen [20]. Bei den in dieser Arbeit analog mit Selten-Erd-Trifluoriden durchgeführten Reaktionen entstanden Selten-Erd-Carbodiimide, aber auch das bis dahin unbekannte Europiumcarbodiimid mit Europium in der Oxidationsstufe +3 (Eu₂(CN₂)₃). Ebenso konnte monoklin kristallisierendes Thuliumcarbodiimid rein hergestellt und indiziert werden sowie auch das als Tieftemperaturphase rhomboedrisch kristallisierende Thuliumcarbodiimid (Tabelle 5.8.1).

 $2 \text{ SEF}_3 + 3 \text{ Li}_2\text{CN}_2 \xrightarrow{450 \circ \text{C} - 600 \circ \text{C}}$ SE₂(CN₂)₃ + 6 LiF (SE = Ce – Lu, ohne Pm) (5.8.1) Das entstandene LiF ist in Wasser nur schwerlöslich, deswegen wurde auf das Waschen der Proben verzichtet. Die Zellvolumina dieser neuen Selten-Erd-Carbodiimide fügen sich gut in die Grafik des abnehmenden Zellvolumens in der Reihe der Selten-Erd-Carbodiimide ein (Abbildung 5.8.1). In Tabelle 5.8.1 sind die Gitterkonstanten der indizierten Selten-Erd-Carbodiimide angegeben.

Tabelle 5.8.1: Gitterkonstanten (Å), monokliner Winkel (°), Zellvolumina (Å³), und Anzahl der einfach indizierten Reflexe der Verbindungen $SE_2(CN_2)_3$.

Verbindung	a	b	c	β	V in	diz. Reflexe	V/Z
Raumgruppe C2/m	z = 2						
$Ce_2(CN_2)_3$	15,001(5)	4,038(1)	5,347(2)	96,33(2)	322,0(3)	29	161,0
$Pr_2(CN_2)_3$	14,882(6)	3,999(2)	5,332(2)	96,17(2)	315,5(3)	23	157,75
$Nd_2(CN_2)_3$	14,726(4)	3,947(1)	5,297(2)	96,04(1)	306,1(2)	29	154,05
$Sm_2(CN_2)_3$	14,591(6)	3,901(1)	5,281(2)	95,19(2)	299,1(3)	29	149,55
$Eu_2(CN_2)_3$	14,504(2)	3,8708(6)	5,268(1)	95,815(9)	294,2(1)	41	147,1
$Gd_2(CN_2)_3$	14,456(6)	3,846(2)	5,257(2)	95,84(3)	290,8(3)	35	145,4
$Tb_2(CN_2)_3$	14,337(3)	3,8117(8)	5,231(1)	95,70(1)	284,4(2)	34	142,2
$Dy_2(CN_2)_3$	14,291(4)	3,791(1)	5,226(1)	95,743(2)	281,7(2)	28	140,85
$Ho_2(CN_2)_3$	14,268(2)	3,776(5)	5,2197(8)	95,714(7)	279,8(1)	53	139,9
$Er_2(CN_2)_3$	14,158(1)	3,7431(3)	5,1981(4)	95,599(4)	274,18(6)	57	137,09
$Tm_2(CN_2)_3$	14,102(1)	3,7257(3)	5,1878(3)	95,503(4)	271,31(5)	62	135,67
Raumgruppe $R\overline{3}c$,	Z = 3						
$Tm_2(CN_2)_3$	6,339(1)		14,752 (2)		513,5 (2)	26	171,33
$Yb_2(CN_2)_3$	6,3123(6)		14,7473(9)		508,8(8)	32	169,63
$Lu_2(CN_2)_3$	6,278(1)		14,707(2)		502,1(2)	32	167,42

Abb.5.8.1: Verlauf des Volumens pro Formeleinheit von Verbindungen des Formeltyps $SE_2(CN_2)_3$.

Synthese von Europium(III)carbodiimid

5.8.2

Durch die Festkörpermetathesereaktion von EuX₃ (X = F, Cl) mit Li₂CN₂ im molaren Verhältnis 2:3 gelang die Herstellung von Eu₂(CN₂)₃. Die mit EuF₃ entstandenen Pulver (Ansatz: 2 mmol, Gesamtmasse: 1,1593 g) waren abhängig von der Reaktionstemperatur gelborange (450 – 550 °C, 100 Stunden, in Kieselglasampullen) bis hin zu braun (600 – 650 °C, 100 Stunden, in Kupferampullen) gefärbt. LiF ist in Wasser nur schwerlöslich, deswegen wurde auf das Waschen der Proben verzichtet. Aber auch die Festkörpermetathesereaktion von EuCl₃ mit Li₂CN₂ (450 – 500 °C, 100 Stunden, in Kieselglasampullen, Ansatz: 1 mmol, Gesamtmasse: 0,6784 g) führte zu Europium(III)carbodiimid. Eu₂(CN₂)₃ kristallisiert isotyp zu Sm₂(CN₂)₃ in der Raumgruppe C2/m.

$$2 \operatorname{EuF}_3 + 3 \operatorname{Li}_2 \operatorname{CN}_2 \xrightarrow{450-600 \,^\circ \mathrm{C}} \operatorname{Eu}_2(\operatorname{CN}_2)_3 + 6 \operatorname{LiF}$$
(5.8.2.1)

$$2 \operatorname{EuCl}_3 + 3 \operatorname{Li}_2 \operatorname{CN}_2 \xrightarrow{400-500 \,^{\circ} \mathrm{C}} \operatorname{Eu}_2(\operatorname{CN}_2)_3 + 6 \operatorname{LiCl}$$
(5.8.2.2)

Wie Abbildung 5.8.2.1 zeigt stimmen die Reflexlagen von $Eu_2(CN_2)_3$ als Produkt nach Reaktionsgleichung (5.8.2.1) gut mit den für $Sm_2(CN_2)_3$ berechneten Daten überein. Geringe Verschiebungen der Reflexe des Diffraktgramms von $Sm_2(CN_2)_3$ hin zu kleineren Winkeln sind auf den etwas größeren Atomradius von Samarium im Vergleich zu Europium zurückzuführen.

Abb. 5.8.2.1: Berechnetes Diffraktogramm von $Sm_2(CN_2)_3$ im Vergleich mit einem Pulverdiffraktogramm des Reaktionsproduktes entstanden gemäß Reaktionsgleichung (5.8.2.1), (rote Linien: Pulverdatenbankeintrag [45-1460] für LiF, grüne Linien: Indizierungslinien von Eu₂(CN₂)₃).

Die monokline Zelle von Sm₂(CN₂)₃ ist in Abbildung 4.1 gezeigt. Das Pulverdiffraktogramm von Eu₂(CN₂)₃ wurde anhand von 40 Reflexen indiziert. (a = 14,4941(1) Å, b = 3,8660(3) Å, c = 5,2581(5) Å; β = 95,777(5) °; V = 293,14(7) Å³).

Die IR-spektroskopische Untersuchung von $Eu_2(CN_2)_3$ zeigte dieselbe, für homologe Selten-Erd-Carbodiimide, vierfache Aufspaltung der intensiven Deformations-Schwingung der CN₂-Einheiten bei Wellenzahlen von 618, 639, 674 und 709 cm⁻¹. Die starke und breite Absorptionsbande bei 2035 cm⁻¹ ist der asymmetrischen Valenzschwingung der Carbodiimideinheiten in der Struktur von $Eu_2(CN_2)_3$ zuzuordnen.

Die DTA der Reaktion von EuF₃ mit Li₂CN₂ im molaren Verhältnis 2:3 zeigt einen exothermen Peak bei ca. 505 °C. Bei einer Aufheiz- und Abkühlraterate von zwei Kelvin pro Minute wurden 100 mg Reaktionsgemisch im Kupfertiegel zur Reaktion gebracht (Abbildung 5.8.2.2). Von dem entstandenen Produkt wurde eine Pulveraufnahme angefertigt. Diese zeigte die Reflexe von Eu₂(CN₂)₃ und LiF.

Abb. 5.8.2.2: DTA der Reaktion von 2 EuF₃ mit 3 Li₂CN₂ im Cu-DTA-Tiegel im molaren Verhältnis 1:1 (Aufheizkurve (rot), Aufheizrate: 2K/min; Max. Temperatur: 600 °C, Abkühlkurve (blau), Abkühlrate: 2K/min).

Die thermische Konvertierung von $Eu_2(CN_2)_3$ in $EuCN_2$ wurde im dynamischem Vakuum untersucht. Bei ca. 650 – 700 °C trat eine Gasentwicklung auf, und das Produkt war dunkel gefärbt. Im Pulverdiffraktogramm waren Reflexe von $EuCN_2$ zu erkennen.

5.8.3 Synthese von dimorphem Thuliumcarbodiimid

Bei der Umsetzung von wasserfreiem Selten-Erd-Trichloriden mit Lithiumcarbodiimid im molaren Verhältnis 2:3 entstanden durch Festkörpermetathesereaktion Selten-Erd-Carbodiimide und LiCl (Abschnitt 1). Die Reaktion von TmCl₃ mit Li₂CN₂ führte bei 500 °C zur Bildung von rhomboedrisch kristallisierendem Tm₂(CN₂)₃ [20].

In dieser Arbeit wurde monoklines $Tm_2(CN_2)_3$ aus 2:3 molaren Ansätzen aus TmF_3 und Li_2CN_2 (Ansatz: 1 mmol, Gesamtmasse: 0,6136 g) bei 500 – 600 °C synthetisiert. Reaktionen die mit einem Unterschuss Li_2CN_2 durchgeführt wurden ergaben Li TmF_4 als zusätzliches Nebenprodukt (Reaktion (5.6.3)).

Die Gitterkonstanten der monoklinen Zelle von $Tm_2(CN_2)_3$ sind in Tabelle 5.8.1 angegeben. $2 \text{ TmF}_3 + 3 \text{ Li}_2 \text{CN}_2 \xrightarrow{450-600 \text{ °C}, 100 \text{ h}} \text{Tm}_2(\text{CN}_2)_3 + 6 \text{ LiF}$ (5.8.3)Die Festkörpermetathesereaktion von 2 TmF3 mit 3 Li2CN2 begann bei ca. 370 °C. Die Reaktion durchgeführt in Kieselglasampullen zeigte nach 100 Stunden Reaktionsdauer noch Reflexe des Eduktes TmF₃ und von entstandenem LiTmF₄ sowie von LiF. Wurde die Reaktion bei 400 °C durchgeführt, so waren im Pulverdiffraktogramm die Reflexe des höhersymmetrischen rhomboedrisch kristallisierenden Tm₂(CN₂)₃ zu erkennen und Reflexe von LiTmF₄ sowie von LiF. Die bei 450 °C durchgeführte Reaktion zeigte fast ausschließlich Reflexe von rhomboedrisch und isotyp zu $Lu_2(CN_2)_3$ kristallisierendem $Tm_2(CN_2)_3$ und LiF. Die rhomboedrische Zelle von Lu₂(CN₂)₃ ist in Abbildung 4.1 gezeigt. Aus der Indizierung von 26 unabhängigen Reflexen konnten die Gitterkonstanten einer rhomboedrischen Zelle bestimmt werden. Die Gitterkonstanten sind in Tabelle 5.8.1 angegeben und das Zellvolumen fügt sich gut in die Abbildung 5.8.1 ein. Weiteres Erhitzen auf 500 °C eines rhomboedrisch kristallisierenden Pulvers führte zur Phasenumwandlung hin zu monoklinem Tm₂(CN₂)₃. In Abbildung 5.8.3.1 sind bei dem Pulverdiffraktogramm bei 450 °C Reflexe von monoklinem und rhomboedrischem Tm₂(CN₂)₃ zu erkennen. Um den Phasenübergang von rhomboedrisch kristallisierendem Tm₂(CN₂)₃ hin zu monoklin kristallisierendem Tm₂(CN₂)₃ beobachten zu können, wurde eine DTA angefertigt. Hier waren keine thermischen Effekte messbar. Dies könnte auf die große Verdünnung durch das entstandene Metathesesalz LiF zurückzuführen sein.

Abb. 5.8.3.1: Berechnete Diffraktogramme von $Sm_2(CN_2)_3$ und $Lu_2(CN_2)_3$ im Vergleich mit Pulverdiffraktogrammen des Produktes entstanden gemäß Reaktionsgleichung (5.8.3) 500 °C, 100 h; 450 °C, 100 h; 400 °C, 100 h (grüne Linien: Pulverdatenbankeintrag [27-1265] von LiTmF₄, rote Linien: Pulverdatenbankeintrag [45-1460] von LiF).

6 Ein gemischt valentes Europiumfluoridcarbodiimid $Eu_4F_5(CN_2)_2$

6.1 Synthesewege und Pulverdiffraktometrie

Die Reaktion von EuF₃ mit Li₂CN₂ im molaren Verhältnis 1:1 (Ansatz: 3,333 mmol, Gesamtmasse: 0,8762 g) bei Heiztemperaturen von 500 – 600 °C führte zu LiEu₂F₃(CN₂)₂, LiF und Eu₂(CN₂)₃ als Nebenprodukt. Der ideale Reaktionsverlauf ist in Gleichung (5.6.2) gegeben. Die Ursache für die Bildung von Eu₂(CN₂)₃ ist nicht geklärt (Abschnitt 5.6). Der Vergleich eines simulierten Pulverdiffraktogramms von LiPr₂F₃(CN₂)₂ mit einem Pulverdiffraktogramm der Reaktionsprodukte, die gemäß Reaktionsgleichung (5.6.2) nach 100 Stunden bei 600 °C in Kupferampullen entstanden waren, zeigt die Bildung von LiEu₂F₃(CN₂)₂, LiF und Eu₂(CN₂)₃ (Abbildung 6.1.1).

Abb. 6.1.1: **Berechnetes** Diffraktogramm von LiPr₂F₃(CN₂)₂ im Vergleich mit einem Pulverdiffraktogramm gemäß des Reaktionsproduktes Reaktion (5.6.2)(rote Linien: Pulverdatenbankeintrag [45-1460] für LiF, grüne Linien: Indizierungslinien von Eu₂(CN₂)₃).

Die röntgenographisch abschätzte Ausbeute an $Eu_2(CN_2)_3$ betrug 20 – 30 %. Als Hauptprodukt entstand LiEu₂F₃(CN₂)₂. Die Verschiebung der Reflexe zwischen LiEu₂F₃(CN₂)₂ und LiPr₂F₃(CN₂)₂ ist auf die Lanthanoidenkontraktion zurückzuführen. Erhöhte Reaktionstemperaturen (650 - 750 °C) hatten eine thermischen Konvertierung des Reaktionsgemisches bestehend aus LiEu₂F₃(CN₂)₂, Eu₂(CN₂)₃ und LiF zur Folge. Dies führte zu Gasdruck (Cyanidgeruch) und in einigen Fällen zu Durchbrüchen bei den Kupferampullen. Als Nebenprodukt entstanden rote und luftstabile Kristalle, deren spätere strukturelle Aufklärung die Zusammensetzung Eu₄F₅(CN₂)₂ bzw. Eu³⁺Eu₃²⁺F₅(CN₂)₂ ergab. Eu₄F₅(CN₂)₂ kristallisiert tetragonal in der Raumgruppe P $\overline{42}_1$ c mit den Gitterkonstanten a = 16,052(1) Å, c = 6,5150(6) Å mit V = 1678,8(3) Å³ und Z = 8. In Abschnitt 6.2 ist die Elementarzelle von Eu₄F₅(CN₂)₂ gezeigt. Große Kristalle erscheinen hydrolysebeständig, sehr fein zu Pulver zerriebene Kristalle zersetzten sich beim Waschen. Die Einkristalldaten der Strukturverfeinerung von Eu₄F₅(CN₂)₂ sind in Tabelle 6.2.1 gezeigt. Abbildung 6.1.2 zeigt ein Pulverdiffraktogramm von ausgelesenen Einkristallen im Vergleich mit einem simulierten Pulverdiffraktogramm von Eu₄F₅(CN₂)₂.

Abb. 6.1.2: Vergleich eines berechneten Diffraktogramms von $Eu_4F_5(CN_2)_2$ mit einem Pulverdiffraktogramm von ausgelesenen roten Einkristallen (rote Linien: Pulverdatenbankeintrag [45-1460] für LiF, grüne Linien: Indizierungslinien von $Eu_4F_5(CN_2)_2$).

Anhand von 23 Reflexen des Pulverdiffraktogramms ausgelesener Einkristalle von Eu₄F₅(CN₂)₂ konnte eine Indizierung durchgeführt werden. Diese ergab eine tetragonal primitive Zelle mit den Gitterkonstanten a = 16,030(1) Å, c = 6,5085(4) Å mit V = 1672,4(3)Å³. Nachfolgend konnten drei Synthesewege zur Herstellung von Eu₄F₅(CN₂)₂ gefunden werden (Reaktionsgeichungen 6.1.1, 6.1.2, 6.1.3). Bei allen Präparationen wurden bei 550 Heiztemperaturen oberhalb von °C Kupferampullen verwendet. Für die Festkörpermetathese wurde eine Einwaage entsprechend Summenformel von Eu₄F₅(CN₂)₂ durchgeführt (Ansatz: 1 mmol, Gesamtmasse: 0,8867 g):

EuF₃ + 3 EuF₂ + 2 Li₂CN₂ $\xrightarrow{650 \circ C}$ Eu₄F₅(CN₂)₂ + 4 LiF (6.1.1) In den Pulverdiffraktogrammen von Reaktionsprodukten die gemäß Reaktion (6.1.1) bei 550 °C mit einer Reaktionsdauer von 100 Stunden in Kieselglasampullen durchgeführt wurden, waren nur Reflexe von LiF, Eu₂(CN₂)₃ und des Eduktes EuF₂ zu erkennen. Hier hatte sich das gewünschte Produkt Eu₄F₅(CN₂)₂ noch nicht gebildet. In diesem ersten Reaktionsschritt reagierte EuF₃ mit Li₂CN₂ zu Europiumcarbodiimid. EuF₂ hatte nicht an der Reaktion teilgenommen. Das gewünschte Produkt Eu₄F₅(CN₂)₂ bildete sich erst bei Heiztemperaturen von ca. 630 °C. Die höchste Ausbeute wurde bei ca. 645 °C und einer Reaktionsdauer von 50 Stunden erzielt. Der Vergleich mit einem simuliertem Diffraktogramm aus Einkristalldaten von Eu₄F₅(CN₂)₂ zeigt eine röntgenographisch abgeschätzte Ausbeute von ca. 80 % Reaktionsumsatz. Da im ersten Reaktionsschritt bei 550 °C Europiumcarbodiimid (Abschnitt 5.8.2) entstanden war, wurde über eine zweistufige Festkörpermetathesereaktion $Eu_4F_5(CN_2)_2$ präpariert. In einem ersten Reaktionsschritt gemäß Reaktionsgleichung 5.8.2.1 wurde $Eu_2(CN_2)_3$ hergestellt. Im zweiten Reaktionsschritt wurde das ungewaschene $Eu_2(CN_2)_3$ mit EuF_2 und Li_2CN_2 (Ansatz: 0,5 mmol, Gesamtmasse: 0,8867 g) nach Gleichung (6.1.2) bei Heiztemperaturen von 630 bis 670 °C und Reaktionszeiten von 30 bis 200 Stunden in Kupferampullen umgesetzt.

 $(Eu_2(CN_2)_3 + 6 \text{ LiF}) + 6 \text{ EuF}_2 + \text{Li}_2\text{CN}_2 \xrightarrow{650 \text{ }^\circ\text{C} 100 \text{ h}} 2 \text{ Eu}_4\text{F}_5(\text{CN}_2)_2 + 8 \text{ LiF}$ (6.1.2) Bei dieser Umsetzung wurde das Produkt $Eu_4\text{F}_5(\text{CN}_2)_2$ nur mit bis zu 70 % Ausbeute erhalten. Diffraktogramme wiesen neben den Reflexen von EuF_2 und LiF auch Reflexe geringerer Intensität unbekannter thermisch konvertierter Produkte von $Eu_4\text{F}_5(\text{CN}_2)_2$ auf. Eine weitere Variante der Festkörpermetathesereaktion (Reaktionsgleichung 6.1.3) zeigte die höchste Ausbeute an $Eu_4\text{F}_5(\text{CN}_2)_2$. Ein Überschuss an Li_2CN_2 sollte als reaktives Medium zur Herstellung von $Eu_4\text{F}_5(\text{CN}_2)_2$ dienen (Ansatz 1 mmol, Gesamtmasse 0,9406 g). Hier konnten Ausbeuten von 90 % erreicht werden.

 $EuF_3 + 3 EuF_2 + 3 Li_2CN_2 \xrightarrow{650 \circ C} Eu_4F_5(CN_2)_2 + 4 LiF + Li_2CN_2$ (6.1.3)In Abbildung 6.1.3 ist ein Pulverdiffraktogramm des Produktes gezeigt, welches nach Reaktionsgleichung (6.1.3) bei 650 °C und 50 Stunden Reaktionszeit in Kupferampullen entstanden war. Beim Vergleich der Reflexlagen und Intensitäten, kann man erkennen, dass ca. 20 % EuF₂ und eine röntgenographische Ausbeute von 80 % des gewünschten Produktes Eu₄F₅(CN₂)₂ entstanden waren. Die Reaktionsprodukte, die nach den Reaktionsgleichungen (6.1.1), (6.1.2), (6.1.3) präpariert wurden, erschienen im Tageslicht schwarz. Erst unter dem Lichtmikroskop waren kleine rote Kristalle von Eu₄F₅(CN₂)₂ zu erkennen. Proben die nach kürzeren Reaktionszeiten entstanden waren enthielten noch Eu2(CN2)3, ersichtlich an gelbbraunen Pulvern. Die thermische Zersetzung von Eu₄F₅(CN₂)₂ begann ab 650 °C, was an der Bildung von gelben durchsichtigen Kristallen zu erkennen war. Reaktionstemperaturen von 700 °C führten zur vollständigen Zerstörung von Eu₄F₅(CN₂)₂. Die Kupferampullen waren aufgebläht von Gasen die bei dieser thermischen Zersetzung entstanden. Dabei wurden gelbe Kristalle mit der vermuteten Zusammensetzung EuF_{2,267} gebildet deren Strukturlösung nur ungenügend gelang. Von ähnlichen gemischt valenten Europiumfluoriden wurde auch schon in der Literatur berichtet, so z.B. EuF_{2,25} was einer Zusammensetzung Eu₄F₉ entsprechen würde ($Eu_4F_9 = Eu^{3+}Eu_3^{2+}F_9$) [55].

Abb. 6.1.3: Berechnete Diffraktogramme von EuF₂ und Eu₄F₅(CN₂)₂ im Vergleich mit einem Pulverdiffraktogramm der Produkte entstanden gemäß Reaktionsgleichung (6.1.3), (rote Linien: Pulverdatenbankeintrag [45-1460] für LiF).

6.1.1 DTA der Reaktion von EuF₃ mit Li₂CN₂ im molaren Verhältnis 1:1

Zur Untersuchung bei welcher Temperatur die reduzierende Wirkung von CN_2^{2-} -Ionen auf Eu^{3+} -Ionen durch thermische Effekte auftreten, wurden zwei Reaktionen von EuF_3 mit Li_2CN_2 im molaren Verhältnis 1:1 bei 600 und 700 °C mit der Differenzthermoanalyse untersucht. Bei Heiztemperaturen von 600 °C erwartete man anhand der Ergebnisse aus den Ampullenreaktionen die Bildung nicht reduzierter Produkte gemäß Reaktionsgleichung (5.6.2). Bei der Reaktion mit einer Heiztemperatur von 700 °C sollten dann Produkte entstehen die Eu^{2+} enthalten. Dazu wurde ein Gemisch aus EuF_3 und Li_2CN_2 im molaren Verhältnis 1:1 (Gesamtmenge: 200 mg) innigst in einer Achatschale verrieben und zu gleichen Teilen in zwei aus Kupfer tiefgezogenen DTA Tiegel eingefüllt. Die DTA-Tiegel wurden anschließend zugekniffen und doppelt umgefalzt. Unter Argonfluss wurde eine DTA durchgeführt mit einer Aufheizrate von 2 K pro Minute bis auf 600 °C und mit derselben Rate wurde auf Raumtemperatur abgekühlt. Der Verlauf der Aufheiz- bzw. Abkühlkurve ist in Abbildung 6.1.1.1 dargestellt. Hier ist ein breiter exothermer Peak bei ca. 520 °C zu erkennen. Das Diffraktogramm des Reaktionsproduktes zeigte sich als gelbes Pulver und enthielt wie erwartet nur die nichtreduzierten Produkte aus Gleichung (5.6.2).

Abb. 6.1.1.1: DTA der Reaktion von EuF₃ mit Li₂CN₂ in Cu-DTA-Tiegel im molaren Verhältnis 1:1 (Aufheizkurve (rot), Aufheizrate: 2K/min, Max. Temperatur: 600 °C, Abkühlkurve (blau), Abkühlrate: 2K/min).

Abb. 6.1.1.2: DTA der Reaktion von EuF₃ mit Li₂CN₂ in Cu-DTA-Tiegel im molaren Verhältnis 1:1 (Aufheizkurve (rot), Aufheizrate: 2K/min, Max. Temperatur: 700 °C, Abkühlkurve (blau), Abkühlrate: 2K/min).

In Abbildung 6.1.1.2 ist die DTA-Kurve der Reaktion dargestellt. In der Aufheizkurve (rot) sind zwei exotherme Effekte zu erkennen. Der erste exotherme Effekt bei 500 °C ist auf die Reaktion von EuF₃ mit Li₂CN₂ zurückzuführen. Hier entstanden bei Reaktionstemperaturen von 500 bis 600 °C LiEu₂F₃(CN₂)₂ und Eu₂(CN₂)₃. Die in Ampullenreaktionen mit Reaktionszeiten von 30 bis 100 Stunden gezeigte reduzierende Wirkung der CN₂-Einheiten auf Europium in der Oxidationsstufe +3 tritt hier in Form eines exothermen Peaks bei ca. 662 °C auf. Bei Ampullenreaktionen konnte die Reduktion von Eu^{3+} zu Eu^{2+} schon ab einer Temperatur von ca. 635 °C beobachtet werden. Angedeutet zeigt sich in der Aufheizkurve auch ein eventuell überlagerter endothermer Effekt (ca. 680 °C), der auf die Bildung einer Schmelze hindeutet. Dies ist in der Abkühlkurve zu erkennen, da hier der entsprechend verschobene exotherme Peak zu sehen ist (ca. 645 °C), der auf die Rekristallisation der Schmelze hindeutet. Möglicherweise bildet das Metathesesalz LiF (Smp. 845 °C) ein Eutektikum mit weiteren Produkten. Nach Beendigung der Reaktion war bedingt durch die bei der Reaktion entstehenden Gase der Kupfer-DTA-Tiegel trotz doppelter Umfalzung übergelaufen und etwas oxidiert. Von den gelben, dunkelroten und kristallinen Reaktionsprodukt des DTA Rückstandes der Reaktionen wurde ein Pulverdiffraktogramm angefertigt (Abbildung 6.1.1.3).

Abb. 6.1.1.3: Berechnete Diffraktogramme von $EuF_{2,267}$ und $Eu_4F_5(CN_2)_2$ im Vergleich mit einem Pulverdiffraktogramm des DTA Rückstandes der aus der Reaktion von EuF_3 mit Li_2CN_2 bei 700 °C entstand (rote Linien: Pulverdatenbankeintrag [45-1460] für LiF, grüne Linien als Indizierungslinien von $Eu_2(CN_2)_3$).

Wie aus den Pulverdiffraktogrammen zu erkennen ist, waren bei der Festkörpermetathesereaktion von EuF₃ mit Li₂CN₂ im molaren Verhältnis 1:1 Eu₂(CN₂)₃ und LiF entstanden, aber auch EuF_{2,267} und Eu₄F₅(CN₂)₂, die aus der reduzierenden Wirkung von CN₂-Einheiten resultieren.

6.2 Kristallstrukturanalyse von $Eu_4F_5(CN_2)_2$

 $Eu_4F_5(CN_2)_2$ bildete sich bei (650 – 750 °C). Es entstanden rote Kristalle. In Tabelle 6.2.1 sind die Gitterkonstanten und die Daten der Strukturverfeinerung angegeben. Zur Beschreibung der Kristallstruktur von $Eu_4F_5(CN_2)_2$ könnte man drei Strukturmotive der Anordnung der Europiumatome verwenden. Die a,b-Projektion der tetragonalen Elementarzelle enthält Säulen aus kantenverknüpften Tetraederketten aus Europiumatomen (Abbildung 6.2.1).

Abb. 6.2.1: Elementarzelle von $Eu_4F_5(CN_2)_2$, Blick entlang der c-Achse (links); kantenverknüpfte Tetraedersäulen aus Europiumatomen (rechts).

Durch die Kombination dieser Tetraederketten aus Europiumatomen lassen sich Säulen aus quadratischen Antiprismen entlang der c-Achse entwickeln. Das Zusammenfügen dieser beiden Strukturmotive führt zum Modell von zwei interpenetrierenden hexagonalen Schichten von Europiumatomen, die jeweils einer Schicht der Graphitstruktur entsprechen (Abbildung 6.2.2 rechts). Die Verbindungslinien zwischen den Europiumatomen repräsentieren keine Eu — Eu-Bindungen, da die Eu — Eu-Abstände mehr als 3,69 Å betragen. Die Carbodiimid-Einheiten befinden sich in den Kanälen der quadratischen Antiprismen, die aus Europiumatomen gebildet werden (Abbildung 6.2.2 links). In der Struktur von Eu₄F₅(CN₂)₂ ist die Ausrichtung der Carbodiimid-Einheiten unterschiedlich. Da die Europiumatome in Eu₄F₅(CN₂)₂ in zwei verschiedenen Oxidationsstufen Eu²⁺ (rote Kugeln) und Eu³⁺ (gelbe Kugeln) vorliegen, resultieren unterschiedliche Umgebungen für die N — C — N-Einheiten in den quadratischen Antiprismen.

Abb. 6.2.2: Elementarzelle von $Eu_4F_5(CN_2)_2$ (links) und interpenetrierende Schichten aus Europiumatomen (rechts).

Abb. 6.2.3: Elementarzelle von Eu₄F₅(CN₂)₂; Aufsicht auf die b c-Ebene.

Abb. 6.2.4: Elementarzelle von $Eu_4F_5(CN_2)_2$; C1, C2, C3 für die drei kristallographisch verschiedenen Carbodiimideinheiten.

Abb. 6.2.5: Verzerrt quadratisch-antiprismatische Umgebung der N — C — N-Einheiten durch Eu^{3+} (gelbe Kugeln) und Eu^{2+} (rote Kugeln).

Der Blick durch die Elementarzelle entlang der a-Achse zeigt drei Schichten von Europiumatomen mit den dazwischenliegenden CN_2 -Einheiten und Fluoratomen (Abbildung 6.2.). In der Kristallstruktur von $Eu_4F_5(CN_2)_2$ befinden sich vier kristallographisch verschiedene Europiumatome und drei kristallographisch verschiedene Carbodiimideinheiten, die als C-Atome C1, C2 und C3 gekennzeichnet sind (Abbildung 6.2.4). Diese befinden sich entlang der c-Achse in den Kanälen aus quadratisch antiprismatisch angeordneten

Europiumatomen. Folgt man dieser Richtung zeigen die Carbodiimid-Einheiten, die zu C3 gehören, eine 90 ° Rotation um die c-Achse herum. Betrachtet man die Carbodiimid-Einheiten, mit der Bezeichnung C1 bzw. C2, so erkennt man eine ganz andere Rotation. Diese verschiedenen Orientierungen der CN2-Einheiten lässt sich durch unterschiedliche Umgebungen mit Eu-Atomen erklären (Abbildung 6.2.5). Wie in Tabelle 6.2.3 aufgeführt, sind die Eu-F bzw. Eu-N-Abstände von Eu1 deutlich kürzer, als die der anderen Eu-Atome. Deswegen kann man hier eine gemischt valente Verbindung Eu3⁺Eu3²⁺F₅(CN₂)₂ annehmen. Eu1 repräsentiert Eu³⁺ als gelbe Kugeln und Eu2, Eu3, Eu4 zeigen Eu²⁺ als rote Kugeln. Die verschiedenen Umgebungen der drei kristallographisch unterschiedlichen CN₂-Einheiten gibt eine mögliche Erklärung für deren ungleiche Ausrichtungen. Das N-Atom der Carbodiimideinheit zeigt immer auf drei Eu-Atome, wobei die Bindungsachse der CN₂-Einheit bevorzugt in Richtung der Eu³⁺-Ionen weist. Abbildung 6.2.5 zeigt die Ausrichtung der CN₂-Einheit C1 (links). Hier befinden sich die beiden CN₂-Einheiten in einem quadratisch antiprismatischen Käfig, der eine symmetrische Anordnung von Eu²⁺ bzw. Eu³⁺ aufweist. Die beiden Enden der CN₂-Einheiten zeigen dabei in Richtung der höhergeladenen Eu³⁺-Ionen. Deswegen weichen diese vermutlich von der 90 ° Ausrichtung entlang der c-Achse ab. Man findet auch nur eine leichte Abweichung des N - C - N Bindungswinkels von der Linearität. Der N3 – C1 – N3-Bindungswinkel beträgt 178,3(4) °, was aber als Packungseffekt angesehen werden kann. Da die N3 – C1-Atomabstände 1,225(9) Å betragen liegt eine Carbodiimid-Einheit vor. Die CN₂-Einheiten C2 (Abbildung 6.2.5 Mitte) liegen in einem quadratisch-antiprismatischen Käfig, der von einer Seite aus drei Eu³⁺-Ionen besteht. Da hier die CN₂-Einheit an einem Ende eine reine Eu²⁺-Umgebung hat und am anderen Ende eine Umgebung aus Eu³⁺ aufweist, findet man unterschiedliche Bindungslängen von C2 — N1 und C2 — N4 mit 1,201(9) Å und 1,233(9) Å. Wie erwartet zeigen die längeren C — N-Bindungslängen bedingt durch die höhere Ionenladung und den kleineren Ionenradius von Eu³⁺-in Richtung der Eu³⁺-Umgebung. Trotz der etwas unterschiedlichen C — N-Atomabstände kann man diese CN2-Einheit als Carbodiimid-Einheit ansehen. In einer ausschließlich von Eu²⁺-Ionen gebildeten quadratisch antiprismatischen Umgebung befindet sich die CN₂-Einheit C3 (Abbildungen 6.2.5 rechts). Die CN₂-Einheit N2 — C3 — N2 zeigt gleiche C3 — N2-Atomabstände von 1,212(8) Å und einen N2 — C3 — N2 Bindungswinkel von 179,3(7) °. Hier liegt also eine Carbodiimid-Einheit vor. Entlang der c-Achse findet man alternierend um 90 ° gedreht angeordnete Carbodiimideinheiten.

Abb. 6.2.6: Koordinationspolyeder von Europiumatomen in der Struktur von Eu₄F₅(CN₂)₂.

Eine genaue Analyse der Koordinationssphäre der vier kristallographisch verschiedenen Eu-Atome in der Struktur von Eu₄F₅(CN₂)₂ unterstützt die Zuweisung auf lokalisierte Atomlagen für zwei und dreiwertiges Europium. Im allgemeinen können zwei und dreiwertige Europiumionen anhand von niedrigerer Koordinationszahl und kleinerer Bindungslängen bei Eu³⁺ unterschieden werden. Man findet Eu³⁺ — F Abstände von 2,359 – 2,477 Å und Eu²⁺ — F-Abstände von 2,448 – 2,605 Å. Die Eu³⁺ — N(CN)-Abstände liegen im Bereich von 2,534 – 2,669 Å, während die Eu²⁺-N(CN)-Abstände im Bereich von 2,638 – 2,901 Å liegen. In der Struktur von Eu³⁺Eu₃²⁺F₅(CN₂)₂ zeigen die Eu-Atome verzerrte Polyeder mit Koordinationszahlen von Sieben bis Neun. Einige ausgewählte Bindungslängen der vier kristallographisch unterschiedlichen Europiumatome sind in Tabelle 6.2.3 aufgeführt. Abbildung 6.2.6 zeigt vier Koordinationspolyeder von Europium in der Struktur von Eu₄F₅(CN₂)₂.

Summenformel	Eu ₄ F ₅ (CN ₂) ₂
Raumgruppe	$P\overline{4}2_1c$
Gitterkonstanten (Å)	a = 16,053(1), c = 6,5150(6)
Zellvolumen ($Å^3$)	1678,8(2)
Z	8
Molmasse (g/mol)	782,90
Röntgenographische Dichte (g/cm ³)	6,195
Absorptionskoeffizient μ (mm ⁻¹)	29,525
Kristallgröße (mm)	0,12 x 0,16 x 0,2
Einkristalldiffraktometer	Stoe IPDS
Strahlung λ (Å); Monochromator	Mo-K _{α} (0,71073), Graphit
Messtemperatur T(K)	293(2)
F(000)	2696
Messbereich (°)	2,54 - 25,90
Indexbereich	$\textbf{-19} \leq h \leq 19, \textbf{-19} \leq k \leq 19, \textbf{-7} \leq l \leq 8$
Anzahl der gemessenen Reflexe	18038
Anzahl der unabhängigen Reflexe	1631
R(int)	0,0649
Absorptionskorrektur	numerisch mit X-Red, X-Shape
Verfeinerungsmethode N	lethode der kleinsten Fehlerquadrate bzgl. F^2
Daten, Einschränkungen, Parameter	1631 / 0 / 138
Güte der Verfeinerung bzgl. F ²	0,959
R-Werte $[I > 2\sigma(I)]$	$R_1 = 0,0203, wR_2 = 0,0441$
R-Werte (alle Daten)	$R_1 = 0,0275, wR_2 = 0,0459$
Max. und min. Restelektronendichte $(e \cdot \text{\AA}^{-3})$	1,012 und -1,299

 $\label{eq:constant} \textbf{Tabelle 6.2.1}: Einkristalldaten von Eu_4F_5(CN_2)_2.$

12441 5(C172)2.						
	Х	у	Z	U_{eq}		
Eu(1)	0,4136(1)	0,1653(1)	0,0090(1)	0,0092(1)		
Eu(2)	0,6683(1)	0,0804(1)	0,0173(1)	0,0104(1)		
Eu(3)	0,4200(1)	0,3328(1)	0,5114(1)	0,0108(1)		
Eu(4)	0,3266(1)	0,4220(1)	-0,0043(1)	0,0117(1)		
F(1)	0,2448(2)	0,5040(3)	-0,2521(4)	0,0139(9)		
F(2)	0,3166(3)	0,4302(3)	0,3702(5)	0,0142(7)		
F(3)	0,3166(3)	0,0674(3)	0,1344(5)	0,0140(7)		
F(4)	0,5545(2)	0,1719(2)	-0,0970(6)	0,016(1)		
F(5)	0,4243(3)	0,3078(3)	-0,0936(5)	0,0171(9)		
C(1)	1/2	0	0,291(2)	0,020(3)		
C(2)	0,2512(4)	0,2450(4)	0,271(2)	0,008(2)		
C(3)	1/2	1/2	-0,264(2)	0,023(4)		
N(1)	0,2361(4)	0,3210(5)	-0,240(1)	0,024(2)		
N(2)	0,4254(5)	0,4885(4)	-0,2626(8)	0,023(2)		
N(3)	0,4764(4)	0,0726(4)	0,289(1)	0,021(1)		
N(4)	0,3247(4)	0,2249(4)	0,2950(9)	0,021(1)		

Tabelle 6.2.2: Atompositionen und isotrope Auslenkungsparameter (Å³) in der Struktur von $Eu_4F_5(CN_2)_2$.

Eu(1) - F(1)	2,426(3)		
Eu(1) - F(3)	2,359(4); 2,477(3)		
Eu(1) — F(4)	2,366(4)		
Eu(1) - F(5)	2,389(4)		
Eu(1) - N(3)	2,560(6); 2,699(6)		
Eu(1) — N(4)	2,534(6); 2,629(6)		
Eu(2) - F(1)	2,516(3)		
Eu(2) — F(2)	2,496(5)		
Eu(2) — F(3)	2,504(5)		
Eu(2) — F(4)	2,460(4); 2,548(4)		
Eu(2) — N(1)	2,638(7); 2,894(7)		
Eu(2) — N(3)	2,715(6)		
Eu(3) - F(1)	2,518(3)		
Eu(3) — F(2)	2,458(4); 2,540(5)		
Eu(3) - F(3)	2,536(4)		
Eu(3) - F(5)	2,605(4)		
Eu(3) — N(2)	2,645(6); 2,901(7)		
Eu(3) — N(4)	2,707(6)		
Eu(4) - F(1)	2,462(3)		
Eu(4) — F(2)	2,448(3)		
Eu(4) — F(4)	2,597(4)		
Eu(4) — F(5)	2,481(4); 2,567(4)		
Eu(4) — N(1)	2,662(6)		
Eu(4) — N(2)	2,547(6)		
N(3) - C(1) - N(3)	1,225(9), 1,225(9)	< N(3) — C(1) — N(3)	178(1)
N(4) - C(2) - N(1)	1,233(9), 1,201(9)	< N(4) - C(6) - N(1)	176(1)
N(2) - C(3) - N(2)	1,212(8), 1,212(8)	< N(5) - C(1) - N(4)	179(1)

Tabelle 6.2.3: Ausgewählte Bindungslängen (Å), Winkel ($\langle, \text{ in }^\circ\rangle$) in der Struktur von Eu₄F₅(CN₂)₂.

6.3 ¹⁵¹Eu-Mößbauer Spektroskopie von Eu₄F₅(CN₂)₂

Die Mößbauer-Spektroskopie ist eine wichtige Methode die dazu dienen kann, in Verbindungen verschiedene Oxidationsstufen von bestimmten Elementen, in diesem Fall Eu^{2+}/Eu^{3+} zu ermitteln [56]. Die frisch hergestellten Proben wurden unter Argon präpariert. Die Herstellung folgender Proben erfolgte gemäß folgender Gleichungen.

Probe 1: $EuF_3 + 3 EuF_2 + 2 Li_2(CN_2) \rightarrow Eu_4F_5(CN_2)_2 + 4 LiF$ (6.1.1)

Probe 2: $EuF_3 + 3 EuF_2 + 3 Li_2(CN_2) \rightarrow Eu_4F_5(CN_2)_2 + 4 LiF + Li_2(CN_2)$ (6.1.3)

Die Isomerieverschiebung beträgt bei der ¹⁵¹Eu-Mößbauer-Spektroskopie im allgemeinen für Verbindungen des Europium in der Oxidationsstufe +2 ca. -11 – -15 mm \cdot s⁻¹. Dagegen findet man Isomerieverschiebungen (δ) bei Europiumverbindungen in denen Europium in der Oxidationsstufe +3 vorliegt von ca. 0 – 1,5 mm \cdot s⁻¹ [57]. Bei Eu₄F₅(CN₂)₂ wurden Werte der Isomerieverschiebung von -13,01 – -13,17 mm \cdot s⁻¹ für Eu²⁺ und bei Eu³⁺ Isomerieverschiebungen von 0,21 – 0,45 mm \cdot s⁻¹ beobachtet. In Tabelle 6.3.1 sind die Anpassungsparameter der beiden Proben von Eu₄F₅(CN₂)₂ bei 78 K bzw. 298 K aufgeführt und in Abbildung 6.3.1 sind die Messkurven der beiden Proben bei 78 K bzw. 298 K gezeigt. In Eu₄F₅(CN₂)₂ beträgt das Verhältnis Eu²⁺ zu Eu³⁺ drei zu eins. Das Verhältnis des Gehaltes beider Oxidationsstufen von Europium in der Verbindung ist durch das Verhältnis der Flächen unter den Messkurven von Eu²⁺ zu Eu³⁺ gegeben. Hier findet man Werte von ca. 2,85 und 3,13 der beiden Proben bei gekühlter Messung und 2,4 bzw. 2,3 der Messungen durchgeführt bei Raumtemperatur (298 K). Dies entspricht in etwa dem erwarteten Wert.

Probe	Temp.	Element	δ_1	ΔE_{Q1}	Γ	Flächenanteil
	(K)		$(\text{mm} \cdot \text{s}^{-1})$	$(\text{mm} \cdot \text{s}^{-1})$	$(mm \cdot s^{-1})$	(%)
1	78	Eu(II)	-13,17(1)	4,8(2)	3,79(6)	74(2)
		Eu(III)	0,29(2)	2,7(2)	2,12(7)	26(2)
	298	Eu(II)	-13,12(4)	4,3(6)	3,5(2)	71(2)
		Eu(III)	0,21(5)	2,9(5)	1,8(2)	29(2)
2	78	Eu(II)	-13,01(1)	5,4(2)	4,42(6)	73(2)
		Eu(III)	0,45(1)	2,2(3)	2,75(8)	27(2)
	298	Eu(II)	-13,10(3)	4,7(3)	3,7(1)	70(2)
		Eu(III)	0,35(3)	2,0(6)	2,5(2)	30(2)

Tabelle 6.3.1: Anpassungsparameter von zwei Proben von Eu₄F₅(CN₂)₂ bei 78 K und 298 K.

Das schlechte Signal-Rauschverhältnis bei höheren Temperaturen ist methodenbedingt. Es ist darauf zurückzuführen, dass bei steigender Temperatur der substanzspezifische Lamb-Mößbauer-Faktor, und damit die Anzahl der γ -Quanten, die ohne Rückstoß emittiert und absorbiert werden, immer kleiner wird. Dadurch nimmt das Signal der Probe ab.

Abb. 6.3.1: Mößbauer-¹⁵¹Eu-Spektren zweier Proben von $Eu_4F_5(CN_2)_2$, hergestellt nach den Reaktionsgleichungen (6.1.1) und (6.1.3), gemessen bei 78 K und 298 K.

Ähnliche Verschiebungen von Eu^{3+} und Eu^{2+} -Ionen findet man auch in anderen gemischt valenten Europiumverbindungen wie Eu_3S_4 [58], $Eu_3F_4S_4$ [59] und der Zintl-Verbindung $Eu_{14}MnSb_{11}$ [60].

6.4 Magnetische Eigenschaften von $Eu_4F_5(CN_2)_2$

 Eu^{3+} besitzt sechs f-Elektronen, womit sich ein ${}^{7}F_{0}$ -Grundterm ergibt. Die Gesamtspinquantenzahl S beträgt S = 6/2. Die Gesamtbahndrehimpulsquantenzahl beträgt L = 3. Da weniger als Halbbesetzung vorliegt gilt nicht J = L + S, sondern J = L - S. Die Spin-Bahnkopplungskonstante J ergibt somit J = L - S = 0

Der Landefaktor $g_j = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)} = 1$

Somit ergibt das magnetische Dipolmoment μ für Eu³⁺: $\mu^2 = g_j^2 J(J+1) = 0 \mu_B^2$ $\mu = 0 \mu_B$

Daraus folgt, dass Eu^{3+} nur einen magnetischen Beitrag zum TUP hat und keinen Curie-Paramagnetismus [61] Eu^{2+} besitzt sieben f-Elektronen, damit ergibt sich ein ${}^{8}S_{7/2}$ -Grundterm. Die Gesamtspinquantenzahl S beträgt S = 7/2. Die Gesamtbahndrehimpulsquantenzahl beträgt L = 0. Die Spin-Bahnkopplungskonstante J ergibt somit J = L+S = 7/2.

 $\label{eq:constraint} Der \ Landefaktor \ g_j = 1 + \frac{J(J+1)+S(S+1)-L(L+1)}{2J(J+1)} = 2$

Somit ergibt das magnetische Dipolmoment μ für Eu²⁺: $\mu^2 = g_j^2 J(J+1) = 63 \mu_B^2$

 $\mu = 7,94 \ \mu_{\rm B}$

Es gilt $\chi_{mol} \sim \mu^2$, da 3 Eu²⁺ in Eu₄F₅(CN₂)₂ angenommen werden ergibt sich für μ^2 pro Formeleinheit ein Wert von 3 x 63 = 189 μ_B^2 . Bei 3 Eu²⁺ pro Formeleinheit erwartet man also einen Wert von $\mu = \sqrt{189} \ \mu_B^2 = 13,75 \ \mu_B$.

Bei drei Eu²⁺ pro Formeleinheit erwartet man einen theoretischen Wert von $\mu = 13,75 \mu_B$. Zur Messung der magnetischen Eigenschaften von Eu₄F₅(CN₂)₂ wurden drei Proben verwendet, die durch verschiedene Reaktionen (Gleichungen 6.1.1 - 6.1.3) hergestellt wurden und einen röntgenographischen Phasenbestand von > 90 Masse-% an Eu₄F₅(CN₂)₂ hatten.

$$EuF_3 + 3 EuF_2 + 2 Li_2(CN_2) \rightarrow Eu_4F_5(CN_2)_2 + 4 LiF$$
 (6.1.1)

$$Eu_2(CN_2)_3 + 6 LiF + 6 EuF_2 + Li_2(CN_2) \rightarrow 2 Eu_4F_5(CN_2)_2 + 8 LiF$$
 (6.1.2)

$$EuF_3 + 3 EuF_2 + 3 Li_2(CN_2) \rightarrow Eu_4F_5(CN_2)_2 + 4 LiF + Li_2(CN_2)$$
 (6.1.3)

Die Massen der Nebenprodukte wurden zur Bestimmung der magnetischen Suszeptibilität entsprechend berücksichtigt. Die Messungen (Zero Field Cooled und Field Cooled) erfolgten in einem SQUID-Magnetometer der Firma Quantum Design in einem magnetischen Feld von 100 Oe im Temperaturbereich von 5 K < T < 300 K. Eu₄F₅(CN₂)₂ verhält sich nahezu ideal paramagnetisch und zeigt keinerlei Kopplungen der magnetischen Momente (Abbildung 6.4.1). Die 1/ χ gegen T-Kurven aller Proben verlaufen nahezu linear (Abbildung 6.4.2). Der

Fit der $\chi(T)$ -Kurven aller drei Proben nach dem Curie-Weiss-Gesetz ergab 13,3 μ_B , 13,2 μ_B und 12,5 μ_B , jeweils pro Formeleinheit, was sehr gut mit dem erwarteten Wert von 13,75 μ_B für drei Eu²⁺ pro Formeleinheit Eu₄F₅(CN₂)₂ übereinstimmt.

Abb. 6.4.1: χ(T)-Kurve (ZFC und FC) von Eu₄F₅(CN₂)₂ gemessen bei 100 Oe.

Abb. 6.4.2: 1/χ gegen T-Kurve von Eu₄F₅(CN₂)₂ gemessen bei 100 Oe.

IR-Spektroskopie von Eu₄F₅(CN₂)₂

Die Anwesenheit von CN2²⁻-Ionen zeigt sich im Schwingungsverhalten und erlaubt in der Regel eine Zuordnung von Carbodiimid- und Cyanamid-Ionen. Beim Cyanamid-Ion ist die symmetrische Valenzschwingung IR-aktiv wegen der ungleichen C - N-Abstände. Beim Carbodiimid-Ionen ist die symmetrische Valenzschwingung IR-inaktiv aber dafür Ramanaktiv, wegen der symmetrischen Struktur dieser CN2²-Ionen. Beim Abweichen von der Carbodiimid-Struktur in die Cyanamid-Struktur wird diese Schwingung als schwache Bande im Infrarotspektrum sichtbar im Bereich von 1152 cm⁻¹ bei H₂CN₂ [9] bis 1296 cm⁻¹ in LaClCN₂ [5]. In Tabelle 6.5.1 sind die Absorptionsbanden von $Eu_4F_5(CN_2)_2$ angegeben. Bei Eu₄F₅(CN₂)₂ zeigt die intensive Absorptionsbande der asymmetrischen Valenzschwingung eine geringe Strukturierung in der drei Banden bei Wellenzahlen von 2023 bzw. 1994 und 1978 cm⁻¹. Die Absorptionsbande bei 650 cm⁻¹ entspricht der Deformationsschwingung der Absorptionsbanden CN₂-Einheiten in $Eu_4F_5(CN_2)_2$. Die drei schwachen im Wellenzahlenbereich von ca. 1200 - 1300 cm⁻¹ können einerseits durch die etwas ungleichen C — N-Abstände der beiden CN₂-Eineiten C1 und C2 bedingt sein, können aber auch durch die beginnende Hydrolyse, die zur Amid- und Carbonatbildung begründet werden. In anorganischen Salzen liegen die Absorptionsbanden von Carbonat-Ionen bei 1410 – 1450 cm⁻ ¹, aber auch die Carbonylschwingungen von organischen Verbindungen kann bei 1050 -1300 cm⁻¹ liegen [62].

Tabelle. 6.5.1: IR-Schwingungsfrequenzen (in cm⁻¹) von $Eu_4F_5(CN_2)_2$.

Verbindung	$v_{as} (CN_2^{2-})$	$v_{s} (CN_{2}^{2})$	$\delta (CN_2^{2-})$	
$Eu_4F_5(CN_2)_2$	2023/1994/1978	1288/1248/1193	650	

54

Verbindungen des Typs LiLa(CN₂)₂

7.1 Reaktion von LaF₃ mit Li₂CN₂ im molaren Verhältnis 1:2

7

Eine Festkörpermetathesereaktion von LaF₃ mit Li₂CN₂ im molaren Verhältnis 1:2 (Ansatz: 3,333 mmol, Gesamtmasse: 1,0124 g) bei 500 °C und 50 Stunden Reaktionszeit in Kieselglasampullen ergab ein farbloses Pulver. Das Produkt der Reaktion von LaF₃ mit Li₂CN₂ im molaren Verhältnis 1:3 (Ansatz: 3,333 mmol, Gesamtmasse: 1,1921 g) zeigte ein identisches Diffraktogramm (Abbildung 7.2.1). Als Produkt dieser Reaktion wurden bei 650 °C und 50 Stunden Reaktionszeit in Kupferampullen farblose Einkristalle der Zusammensetzung LiLa(CN₂)₂ erhalten [63]. Da nach Reaktionsgleichung (7.1.2) unter identischen Reaktionsbedingungen nur Pulver und keine Einkristalle erhalten wurden, kann vermutet werden, dass eine Schmelze von überschüssigem Li₂CN₂ die Kristallisation unterstützt hatte. Denkbar wäre auch die Bildung eines Eutektikums aus Li₂CN₂ und LiF. Auch die Reaktion (7.1.1) von wasserfreiem LaCl₃ mit Li₂CN₂ im molaren Verhältnis 1:2 in Kieselglasampullen zeigte dasselbe Produkt (Ansatz: 2 mmol, Gesamtmasse: 0,7062 g). Jedoch begann bei dieser Reaktion die thermische Konvertierung von LiLa(CN₂)₂ unter Bildung weiterer Produkte.

$$LaCl_3 + 2 Li_2CN_2 \xrightarrow{450 \circ C - 550 \circ C} LiLa(CN_2)_2 + 3 LiCl$$
 (7.1.1)

$$LaF_3 + 2 Li_2CN_2 \xrightarrow{500 \circ C - 650 \circ C} LiLa(CN_2)_2 + 3 LiF$$
 (7.1.2)

$$LaF_3 + 3 Li_2CN_2 \xrightarrow{650 \circ C} LiLa(CN_2)_2 + 3 LiF + Li_2CN_2$$
 (7.1.3)

Beim Öffnen der Kieselglasampullen der Reaktionsprodukte die bei 500 °C und 50 Stunden Reaktionszeit entstanden, war Cyanidgeruch wahrnehmbar. Bei Temperaturen von mehr als 600 °C blähten sich die Kupferampullen auf und einige platzten. LiLa $(CN_2)_2$ zeigte sich über mehrere Wochen hinweg als hydrolysebeständig an Luft. Als Produkt bei der Festkörpermetathesereaktion von LaF₃ mit Li₂CN₂ im molaren Verhältnis 2:3 (Ansatz 1 mmol, Gesamtmasse 0,5535 g) entstand bei 500 °C und 100 Stunden Reaktionszeit in Kieselglasampullen statt des erwarteten La₂(CN₂)₃ ebenfalls LiLa(CN₂)₂. Die Produkte, welche bei höheren Heiztemperaturen bis 750 °C in Kupferampullen entstanden, zeigten Reflexe von LaFCN₂.

Pulverdiffraktometrie von LiLa(CN₂)₂

7.2

In Abbildung 7.2.1 sind die Pulverdiffraktogramme der Produkte der Reaktionen (7.1.2) und (7.1.3) gezeigt. Auch der Einsatz von mehr Li₂CN₂ führte zu keinem neuen Produkt wie der Vergleich der Reflexmuster der unteren mit der oberen Kurve zeigt. Beide Kurven zeigen dieselben Linien wie das simulierte Diffraktogramm von LiLa(CN₂)₂. Aus 30 unabhängigen Reflexen des Pulvers konnte eine primitive monokline Zelle mit den Gitterkonstanten a = 10,106(4) Å, b = 3,781(2) Å, c = 5,414(2) Å³, β = 101,36(2)° mit V = 202,9(2) Å³ indiziert werden.

Abb. 7.2.1: Berechnetes Diffraktogramm von LiLa(CN₂)₂ im Vergleich mit Pulverdiffraktogrammen der Reaktionsprodukte die nach den Reaktionsgleichungen (7.1.2) und (7.1.3) entstanden waren (rote Linien: Pulverdatenbankeintrag [45-1460] für LiF).

Kristallstruktur von LiLa(CN₂)₂

Die Kristallstruktur von LiLa $(CN_2)_2$ wurde anhand von Einkristallen bestimmt (Tabellen 7.3.1 - 7.3.3). In Abbildung 7.3.1 ist die Elementarzelle von LiLa $(CN_2)_2$ projiziert.

Abb. 7.3.1: Monokline Elementarzelle von LiLa(CN₂)₂; Durchsicht entlang der b-Achse.

In der Struktur von LiLa(CN₂)₂ sind Schichten aus Lanthanatomen durch zwei kristallographisch unterschiedliche CN₂-Einheiten (C1 und C6) getrennt. Innerhalb dieser CN₂-Schichten befinden sich Lithiumatome, die verzerrt tetraedrisch von Stickstoffatomen der beiden verschieden ausgerichteten CN₂-Einheiten umgeben sind (Abbildung 7.3.2 rechts). Die Lithium – Stickstoffabstände in dem Li – N₄-Tetraeder liegen bei 2,09 – 2,11 Å. Eine Sorte von CN₂-Einheiten (C6) ist in Abbildung 7.3.1 als nahezu vertikal verlaufend zu erkennen. Die annähernd horizontal verlaufende Sorte von CN₂-Einheiten (C1) verknüpft die Lithiumatome untereinander. In der Struktur von LiLa(CN₂)₂ ist Lanthan verzerrt quadratisch antiprismatisch von N-Atomen der beiden kristallographisch verschiedenen CN₂-Einheiten umgeben. Dieses verzerrte Koordinationspolyeder könnte man auch als zweifach überkapptes trigonales Prisma ansehen (Abbildung 7.3.2 links).

Abb. 7.3.2: Koordinationspolyeder von Lanthan KZ 8 (links) und Lithium KZ 4 (rechts) in der Struktur von LiLa(CN₂)₂.

In LiLa(CN₂)₂ betragen die Lanthan — Stickstoffabstände 2,594(3) — 2,681(5) Å. Die beiden CN₂-Einheiten weichen von der idealen D_{∞h}-Symmetrie von Carbodiimid-Ionen ab. Die C — N-Abstände der N5 — C1 — N4-Einheit betragen 1,208(8) Å (C1 — N5) und 1,255(8) Å (C1 — N4). Etwas weniger ausgeprägt sind die Unterschiede der Bindungslängen in der N2 — C6 — N1-Einheit, die 1,238(8) Å (C6 — N2) und 1,220(8) Å (C6 — N1) betragen, weshalb hier unter Berücksichtigung der üblichen Fehlerbreiten (3 σ -Kriterium) von einer Carbodiimid-Einheit ausgegangen werden kann.

Abb. 7.3.3: Doppelstrang von Li(CN₂)₄-Tetraedern in der Struktur von LiLa(CN₂)₂, Blick auf die b-c-Ebene.

Die Li — N_4 -Tetraeder bilden entlang der b-Achse Stränge, die über Ecken verknüpft sind. In Abbildung 7.3.3 ist die Verknüpfung der Stränge über die beiden Stickstoffatome der Carbodiimid-Einheit (C1) gezeigt. Die Doppelstränge der über Ecken verknüpften Li(CN₂)₄-Tetraeder alternieren mit Schichten aus Lanthanatomen (Abbildung 7.3.4).

Abb. 7.3.4: Strukturausschnitt von LiLa(CN₂)₂ mit Doppelsträngen aus eckenverknüpften Li(CN₂)₄-Tetraedern; Blick auf die a, c-Ebene.

Tabelle 7.3.2 zeigt Atompositionen und isotrope Auslenkungsparameter und in Tabelle 7.3.3 sind einige ausgewählte Bindungslängen von LiLa $(CN_2)_2$ dargestellt.
Summenformel	LiLa(CN ₂) ₂
Raumgruppe	P2 ₁ /m
Gitterkonstanten (Å)	a = 10,143(1), b = 3,790(1), c = 5,431(1)
Winkel (°)	$\beta = 101,33$
Zellvolumen (Å ³)	204,74(7)
Z	2
Molmasse (g/mol)	225,91
Röntgenographische Dichte (g/cm ³)	3,673
Absorptionskoeffizient μ (mm ⁻¹)	10,285
Kristallbeschreibung	farblos, nadelförmig
Kristallgröße (mm ⁻³)	0,12 x 0,04 x 0,04
Einkristalldiffraktometer	Stoe IPDS
Strahlung λ (Å); Monochromator	Mo-K _{α} (0,71073); Graphit
Messtemperatur T (K)	210(2)
Messbereich (°)	3,83 - 25,89
Indexbereich	$-6 \le h \le 6, -4 \le k \le 4, -12 \le l \le 12$
Anzahl der gemessenen Reflexe	2273
Anzahl der unabhängigen Reflexe	434
Absorbtionskorrektur	numerisch mit X-Red, X-Shape
Verfeinerungsmethode	Methode der kleinsten Fehlerquadrate bzgl. F ²
F(000)	200
R(int)	0,0299
Daten / Parameter	434/49
Güte der Verfeinerung bzgl. F ²	1,112
R-Werte $[I > 2\sigma(I)]$	$R_1 = 0.0188, wR2 = 0.0423$
R Werte (für alle Daten)	$R_1 = 0,0199, wR2 = 0,0426$
Restelektronendichte ($e \cdot Å^{-3}$)	1,099 and -0,909
CSD-Number	420440

Tabelle7.3.1:Einkristalldaten, Messparameter und Ergebnisse zur Kristallstruktur-
bestimmung von LiLa $(CN_2)_2$.

	1	1	01	(-	/
		X	У	Z	U_{eq}
La(1)	0,9832(1)	1/4	0,1934(1)	0,0102(1)	
N(1)	0,6502(9)	-1/4	0,1585 (5)	0,0131(9)	
C(6)	0,426(1)	-1/4	0,1093(6)	0,014(1)	
N(2)	0,8038(9)	1/4	-0,0658(5)	0,014(1)	
N(5)	0,7576(9)	1/4	0,4048(5)	0,016(1)	
C(2)	0,220(1)	-1/4	0,4741(6)	0,012(1)	
N(4)	0,2071(9)	-1/4	0,3491(5)	0,014(1)	
Li(1)	0,595(2)	-1/4	0,357(1)	0,020(2)	

Tabelle 7.3.2: Atompositionen und isotrope Auslenkungsparameter ($Å^3$) von LiLa(CN₂)₂.

Tabelle 7.3.3: Einige ausgewählte Bindungslängen (Å), Winkel (\langle , in °) und Multiplizitäten in der Struktur von LiLa(CN₂)₂.

La(1) - N(1)	2,594(3) 2x		
La(1) - N(2)	2,614(5) 1x; 2,681(3) 2x	
La(1) - N(4)	2,608(4) 2x		
La(1) - N(5)	2,667(5) 1x		
Li(1) — N(1)	2,10(1) 1x		
Li(1) - N(4)	2,09(1) 1x		
Li(1) - N(5)	2,107(5) 2x		
N(5) - C(1) - N(4)	1,208(8), 1,255(8)	< N(5) — C(1) — N(4)	177,5(6)
N(1) - C(6) - N(2)	1,220(8), 1,238(8)	< N(1) - C(6) - N(2)	176,8(6)

7.4 IR-Spektroskopie von LiLa(CN₂)₂

Die intensive Absorptionsbande im Wellenzahlenbereich um 2100 cm⁻¹ zeigt eine Strukturierung. Die drei sich überlagernden Banden bei 2103, 2010 und 1979 cm⁻¹ können der asymmetrischen Valenzschwingung der zwei kristallographisch unterscheidbaren Carbodiimideinheit in der Struktur von LiLa(CN₂)₂ zugeordnet werden. Im typischen Bereich für die symmetrische Valenzschwingung der CN₂-Einheit ist eine Bande geringerer Intensität bei 1252 cm⁻¹ zu erkennen. Das Auftreten dieser Schwingungsbande ist mit der Abweichung der CN₂-Einheiten von der Carbodiimid-Form zu begründen. Die Deformationsschwingung der Carbodiimideinheiten von LiLa(CN₂)₂ zeigt sich in Form einer starken und aufgespaltenen Absorbtionsbande bei Wellenzahlen von 666/652 cm⁻¹.

Tab. 7.4: IR-Schwingungsfrequenzen (in cm⁻¹) von LiLa(CN₂)₂.

Verbindung	$v_{as} (CN_2^{2-})$	$v_{s}(CN_{2}^{2})$	$\delta (CN_2^{2-})$
LiLa(CN ₂) ₂	2103/2010/1979	1252	666/652

7.5 Weitere Verbindungen des Typs $LiSE(CN_2)_2$ (SE = Ce, Pr)

Durch die Festkörpermetathesereaktion von CeF₃ bzw. PrF_3 mit Li₂CN₂ im molaren Verhältnis 1:2 konnten die isotyp zu LiLa(CN₂)₂ kristallisierenden Verbindungen LiCe(CN₂)₂ und LiPr(CN₂)₂ hergestellt werden.

SEF₃ + 2 Li₂CN₂ $\xrightarrow{500 \circ C - 600 \circ C}$ LiSE(CN₂)₂ + 3 LiF (SE = Ce, Pr) (7.5) In Abbildung 7.5 sind die Pulverdiffraktogramme der Produkte der Reaktionen von SEF₃ + 2 Li₂CN₂ für SE = La, Ce und Pr im Vergleich zu simulierten Diffraktogrammen von LiLa(CN₂)₂ und Sm₂(CN₂)₃ gezeigt Im Falle der Reaktion von PrF₃ mit Li₂CN₂ im molaren Verhältnis 1:2 entstand als Hauptphase Pr₂(CN₂)₃ und nur ein geringer Anteil von LiPr(CN₂)₂. Erst durch die Umsetzung von PrF₃ mit Li₂CN₂ im molaren Verhältnis 1:3 wurde die Bildung von Pr₂(CN₂)₃ zurückgedrängt und es entstand ein höherer Anteil von LiPr(CN₂)₂, so dass eine Indizierung möglich wurde.

Abb. 40: Berechnete Diffraktogramme von Sm₂(CN₂)₃ und LiLa(CN₂)₂ im Vergleich mit Pulverdiffraktogrammen der Produkte die nach Reaktionsgleichung (7.5) entstanden (rote Linien: Pulverdatenbankeintrag [45, 1460] für LiF).

Tabelle 7.5: Gitterkonstanten (Å), monokline Winkel (°), Zellvolumina (Å³) und Anzahl der einfach indizierten Reflexe der Verbindungen LiSE(CN₂)₂ mit SE = La, Ce und Pr (P2₁/m).

Verbindung	a	b	c	β	V	indizierte Reflexe
LiLa(CN ₂) ₂	10,106(4)	3,781(2)	5,414(2)	101,36(2)	202,9(2)	30
LiCe(CN ₂) ₂	10,088(2)	3,7450(8)	5,419(1)	101,21(1)	200,8(1)	33
LiPr(CN ₂) ₂	10,0759(8)	3,7160 (3)	5,4236(4)	101,129(4)	199,25(4)	58

Erwartungsgemäß findet man auch hier entsprechend der Lanthanoidenkontraktion eine Verkleinerung der Zellvolumina in der Reihe von LiLa $(CN_2)_2$ bis LiPr $(CN_2)_2$.

8 Ce₃(CN₂)₃N das erste binäre Selten-Erd-Carbodiimidnitrid

8.1 Synthese von Ce₃(CN₂)₃N

Die Herstellung von Ce₃(CN₂)₃N erfolgte über eine thermische Zersetzung von LiCe(CN₂)₂ bei 650 °C. Die Herstellung der Verbindung erfolgte in zwei Stufen. Zuerst wurde LiCe(CN₂)₂ (bei 500 °C, 100 Stunden) in Kieselglasampullen hergestellt. Im zweiten Schritt wurde das Reaktionsprodukt aus LiCe(CN₂)₂ und LiF (ca. 150 mg) in einer Kupferampulle über zwei Wochen bei 550°C und 100 Stunden bei 650 °C thermisch behandelt. Als Produkt entstanden transparente, orangefarbene Kristalle von Ce₃(CN₂)₃N [65].

8.2 Kristallstruktur von Ce₃(CN₂)₃N

Die Kristallstruktur von Ce₃(CN₂)₃N wurde anhand von orangefarbenen, stäbchenförmigen Einkristallen bestimmt (Tabelle 8.2.1 - 8.2.4). Röntgenographische Untersuchungen von grünen Kristallplättchen, die in geringer Zahl im Reaktionsprodukt zu finden waren, ergaben $Ce_2O(CN_2)_2$ (a = 13,384(4) Å, b = 6,199(1) Å, c = 6,061(2) Å, β = 104,66(3) °, V = 486,1 (3) Å³ und Z = 4). Ce₂O(CN₂)₂ (C2/c) kristallisiert isotyp zu La₂O(CN₂)₂ [42]. In Abbildung 8.2.1 ist ein Blick durch die orthorhombische Elementarzelle von Ce₃(CN₂)₃N entlang der a-Achse gezeigt. In der Struktur von Ce₃(CN₂)₃N befinden sich sechs kristallographisch verschiedene Ce-Atome, sechs kristallographisch verschiedene CN₂-Einheiten und zwei kristallographisch unabhängige Nitridionen. Die Ce-Ce-Abstände in Ce₃(CN₂)₃N betragen 3,8350(8) - 4,0226(8) Å. In der Elementarzelle von Ce₃(CN₂)₃N sind vertikal verlaufende Schichten von Metallatomen zu erkennen, die durch CN2-Einheiten und N-Atome getrennt sind. Die Umgebung der sechs verschiedenen Carbodiimid-Einheiten in der Struktur von Ce₃(CN₂)₃N besteht aus sechs Ce-Atomen. Deren Anordnung kann man als mehr oder weniger verzerrte trigonale Prismen bzw. Antiprismen beschreiben. In Abbildung 8.2.2 ist die Koordinationsumgebung der CN₂-Einheiten gezeigt. Alle CN₂-Einheiten sind etwas unsymmetrisch mit C — N-Abständen von 1,21(1) - 1,25(1) Å und nahezu linear in einem N - C - N-Winkelbereich von ca. 178 (1) - 179(1) ° (Tabelle 8.2.4).

Abb. 8.2.1: Blick entlang der a-Achse von Ce₃(CN₂)₃N.

Abb. 8.2.2: Koordinationspolyeder von Carbodiimideinheiten in der Struktur von Ce₃(CN₃)₃N.

Die sechs kristallographisch unterschiedlichen Ce-Atome und ihre Umgebung sind in Abbildung 8.2.3 dargestellt. Wegen der starken Verzerrung der Koordinationsumgebung der Ceratome in der Struktur von $Ce_3(CN_2)_3N$ wird hier auf eine Definition der geometrischen Form verzichtet. Die Ceratome zeigen eine Koordinationszahl von sechs bis acht mit Stickstoffatomen von Nitridionen und der Carbodiimid-Einheiten. Ce5 ist als einziges Ceratom ausschließlich von Carbodiimid-Einheiten umgeben.

Abb. 8.2.3: Koordinationspolyeder der sechs kristallographisch verschiedenen Ceratome in der Struktur von Ce₃(CN₃)₃N.

Die Ce — N(Nitrid)-Abstände sind gegenüber den Ce — N(Carbodiimid)-Abständen deutlich verkürzt. So liegen die Ce - N(Nitrid)-Abstände im Bereich von 2,295(7) - 2,473(8) Å während die Ce - N(Carbodiimid)-Abstände im Bereich von 2,503(8) - 3,026(9) Å zu finden sind. Abbildung 8.2.4 zeigt einen Strukturausschnitt der verzerrt tetraedrischen Koordinationsumgebung von Nitrid-Stickstoffatomen in der Struktur von Ce₃(CN₃)₃N. verschiedenen Ebenfalls zu erkennen sind die Verknüpfungen der beiden Carbodiimideinheiten. Hier können die beiden endständigen N-Atome einer CN2-Einheit oder ein N-Atom einer CN2-Einheit zwei Ceratome verbrücken.

Abb. 8.2.4: Strukturausschnitt aus $Ce_3(CN_3)_3N$. Zwei kantenverknüpfte Ce_4N -Tetraeder mit verschieden Koordinationsmöglichkeiten von Carbodiimid-Einheiten.

Die kanten- und spitzenverknüpften Ce₄N-Tetraeder bilden entlang der b-Achse Ketten. In Abbildung 8.2.5 ist die Elementarzelle von Ce₃(CN₃)₃N mit Ketten aus Ce₄N-Tetraedern dargestellt. Analog zur thermischen Konvertierung von LiCe(CN₂)₂ führte die Zersetzung von LiLa(CN₂)₂ zu La₃(CN₂)₃N, welches isotyp zu Ce₃(CN₂)₃N kristallisierte. Farblose stäbchenförmige Kristalle von La₃(CN₂)₃N konnten für die Einkristallstrukturanalyse ausgewählt werden. Die Daten der Strukturverfeinerung von La₃(CN₂)₃N und Ce₃(CN₂)₃N sind in Tabelle 8.2.1 gezeigt.

Abb. 8.2.5: Elementarzelle von Ce₃(CN₃)₃N mit Ketten aus kanten- und spitzenverknüpften Ce₄N-Tetraedern entlang der b-Achse.

Tabelle 8.2.1. Einkristalldaten, Messparameter und Ergebnisse zur Kristallstruktur-
bestimmung von $SE_3(CN_2)_3N$ (SE = La, Ce).

Summenformel	$La_3(CN_2)_2N$	$Ce_3(CN_2)_2N$	
Kristallsystem	orthorhombisch		
Raumgruppe	P 2 ₁ 2 ₁ 2 ₁		
Gitterkonstnaten (Å)	a = 6,780(1)	a = 6,7297(9)	
	b = 13,239(1)	b = 13,098(2)	
	c = 17,073(2)	c = 16,977(3)	
Volumen (Å ³)	1532,4(3)	1496,4(4)	
Z	8	8	
Molmasse (g/mol)	550,83	586,46	
F(000)	1904	2056	
Röntgenographische Dichte (g/cm ³)	4,775	5,206	
Absorbtionskoeffizient μ (mm ⁻¹)	16,378	17,929	
Kristallbeschreibung	farblose Stäbchen	orange Stäbchen	
Kristallgröße (mm ³)	0,2 x 0,08 x 0,08	0,24 x 0,05 x 0,05	

Einkristalldiffraktometer	St	oe IPDS	
Strahlung λ (Å)	М	o-K _α (0,71073)	
Monochromator	G	raphit	
Messtemperatur T (K)	29	93(2)	
Messbereich (°)	2,39 - 26,00	2,40 - 25,83	
Indexbereich	$-8 \le h \le 8,$	$-8 \le h \le 8,$	
	$-16 \le k \le 16$,	$-16 \le k \le 16$,	
	$-20 \le l \le 20$	$-20 \le l \le 20$	
Anzahl der gemessenen Reflexe	14472	16256	
Anzahl der unabhängigen Reflexe	2993	2870	
Absorptionskorrektur numerisch mit X-Red, X-Shape			
Verfeinerungsmethode	Methode der kleinsten Fehlerquadrate bzgl. F^2		
R(int)	0,0633	0,0584	
Daten / Parameter	2993/236	2870/236	
Güte der Verfeinerung bzgl. F ²	1,024	1,003	
Absolute Strukturparameter	0,40(4)	0,24(4)	
R-Werte $[I > 2\sigma(I)]$	$R_1 = 0,0229$	$R_1 = 0,0228$	
	$wR_2 = 0,0496$	$wR_2 = 0,0523$	
R-Werte (für alle Daten)	$R_1 = 0,0252$	$R_1 = 0,0252$	
	$wR_2 = 0,049$	$wR_2 = 0,0528$	
Restelektronendichte /e $\cdot Å^{-3}$	1,388 und -0,780	1,685 und -0,962	
CSD-Number	-	420507	

	Х	У	Z	U(eq)
La(1)	0,8369(1)	0,0798(1)	0,3989(1)	0,0010(1)
La(2)	0,6172(1)	0,1204(1)	0,1663(1)	0,0010(1)
La(3)	0,4004(1)	-0,813(1)	0,3181(1)	0,0010(1)
La(4)	0,3581(1)	0,2149(1)	0,3329(1)	0,0010(1)
La(5)	0,4144(1)	0,697(1)	0,5666(1)	0,0010(1)
La(6)	0,1320(1)	0,2460(1)	0,1096(1)	0,0010(1)
N(1)	0,3290(9)	0,930(5)	0,0568(4)	0,0012(1)
C(1)	-0,112(1)	0,4106(7)	0,0107(4)	0,0009(2)
N(2)	-0,0526(9)	0,4138(6)	0,0789(4)	0,0015(2)
N(3)	0,295(1)	0,3111(6)	-0,0286(5)	0,0017(2)
C(2)	0,365(1)	0,3824(7)	0,0087(5)	0,0013(2)
N(4)	0,433(1)	0,4525(6)	0,0469(5)	0,0015(2)
N(5)	0,416(1)	-0,904(6)	0,1626(4)	0,0020(2)
C(3)	0,56(1)	-0,815(7)	0,1184(5)	0,0013(2)
N(6)	0,701(1)	-0,0713(7)	0,0761(5)	0,0024(2)
N(7)	0,581(1)	0,1996(6)	0,4610(5)	0,0014(2)
C(4)	0,124(1)	0,2229(7)	0,5041(5)	0,0014(2)
N(8)	0,166(1)	0,1457(6)	0,4692(4)	0,0012(1)
N(9)	-0,031(1)	0,2731(6)	0,3492(5)	0,0016(2)
C(5)	-0,09(1)	0,2736(6)	0,2809(5)	0,0013(2)
N(10)	-0,1425(9)	0,02731(6)	0,2123(4)	0,0013(2)
N(11)	0,1244(9)	0,0621(6)	0,2959(4)	0,0013(2)
C(6)	0,06(1)	0,0638(6)	0,2299(5)	0,0011(2)
N(12)	0,5070(9)	-0,0669(6)	0,6625(4)	0,0015(2)
N(13)	0,397(1)	0,2619(6)	0,1949(4)	0,0015(2)
N(14)	0,5827(9)	0,0794(6)	0,3011(4)	0,0012(1)

Tabelle 8.2.2: Atompositionen und isotrope Auslenkungsparameter ($Å^3$) von La₃(CN₂)₂N.

	Х	У	Z	U_{eq}
Ce(1)	0,8365(1)	0,0791(1)	0,3986(1)	0,0138(1)
Ce(2)	0,6181(1)	0,1212(1)	0,1663(1)	0,0136(1)
Ce(3)	0,4035(1)	-0,0815(1)	0,3169(1)	0,0139(1)
Ce(4)	0,3583(1)	0,2139(1)	0,3328(1)	0,1381(1)
Ce(5)	0,4149(1)	0,0691(1)	0,5663(1)	0,0137(1)
Ce(6)	0,1319(1)(1)	0,2459(1)	0,1101(1)	0,0138(1)
N(1)	0,328(1)	0,0934(6)	0,0578(4)	0,016(2)
C(1)	-0,109(1)	0,4096(7)	0,0107(5)	0,015(2)
N(2)	-0,048(1)	0,4150(7)	0,0777(4)	0,018(2)
N(3)	0,296(1)	0,3098(6)	-0,0278(4)	0,016(1)
C(2)	0,365(1)	0,3815(7)	0,0093(5)	0,017(2)
N(4)	0,435(9)	0,4531(6)	0,0480(4)	0,018(2)
N(5)	0,414(1)	-0,0927(7)	0,1631(4)	0,022(2)
C(3)	0,560(1)	-0,0819(7)	0,1184(5)	0,017(2)
N(6)	0,705(1)	-0,0706(8)	0,0759(5)	0,028((2)
N(7)	0,580(1)	0,1992(6)	0,4597(4)	0,018(2)
C(4)	0,122(1)	0,2219(7)	0,5040(5)	0,015(2)
N(8)	0,165(1)	0,1433(6)	0,4693(4)	0,017(2)
N(9)	-0,029(1)	0,2743(7)	0,3490(5)	0,021(2)
C(5)	-0,88(1)	0,2740(7)	0,2804(5)	0,018(2)
N(10)	-0,145(1)	0,2747(6)	0,2115(4)	0,016(2)
N(11)	0,125(1)	0,0611(6)	0,2979(4)	0,017(2)
C(6)	0,057(1)	0,0632(6)	0,2306(5)	0,011(2)
N(12)	0,506(1)	-0,0673(7)	0,6631(4)	0,018(2)
N(13)	0,394(1)	0,2617(6)	0,1956(4)	0,018(2)
N(14)	0,584(1)	0,0790(7)	0,3006(4)	0,018(2)

Tabelle 8.2.3: Atompositionen und isotrope Auslenkungsparameter ($Å^3$) von Ce₃(CN₂)₂N.

Ce(1) - Ce(4)	3,8350(8)		
Ce(1) - Ce(3)	3,8543(8);		
Ce(1) - Ce(5)	4,0226(8)		
Ce(2) — Ce(4)	3,9067(9)		
Ce(2) — Ce(6)	3,9405(8)		
Ce(3) — Ce(4)	3,8898(9)		
Ce(3) — Ce(2)	3,9067(9)		
Ce(2) — N(13)	2,430(8)		
Ce(3) — N(13)	2,473(8)		
Ce(4) — N(13)	2,425(7)		
Ce(6) — N(13)	2,295(7)		
Ce(1) — N(14)	2,380(7)		
Ce(2) — N(14)	2,358(7)		
Ce(3) — N(14)	2,442(8)		
Ce(4) — N(14)	2,391(8)		
Ce — N (NCN)	2,503(8)-302,6(9)		
N(1) - C(1) - N(2)	1,24(1), 1,21 (1)	< N(1) - C(1) - N(2)	178(1)
N(3) - C(2) - N(4)	1,22(1), 1,24(1)	< N(3) - C(2) - N(4)	178,9(9)
N(5) - C(3) - N(6)	1,25(1), 1,22(1)	< N(5) - C(3) - N(6)	179(1)
N(7) - C(4) - N(8)	1,24(1), 1,22(1)	< N(7) - C(4) - N(8)	178,8(9)
N(9) - C(5) - N(10)	1,23 (1), 1,23(1)	< N(9) - C(5) - N(10)	179(1)
N(11) - C(6) - N(12)	1,23(1), 1,22(1)	< N(11) - C(6) - N(12)	178(1)

Tabelle 8.2.4: Ausgewählte Bindungslängen (Å) und Winkel (<, in °) in der Struktur von</th> $Ce_3(CN_2)_2N$.

8.3 Syntheseversuche von La₃(CN₂)₃N und Ce₃(CN₂)₃N

Wie schon erwähnt, entstanden die beiden Verbindungen La₃(CN₂)₃N und Ce₃(CN₂)₃N durch thermische Konvertierung von LiLa(CN₂)₂ bzw. LiCe(CN₂)₂. Es sollte auch hier versucht werden, La₃(CN₂)₃N und Ce₃(CN₂)₃N durch multilaterale Festkörpermetathesereaktionen nach Gleichung 8.3.1 bzw. 8.3.2 bei niedrigeren Temperaturen (450 – 650 °C) darzustellen.

$$3 \text{ SEX}_3 + 3 \text{ Li}_2 \text{CN}_2 + \text{ Li}_3 \text{N} \longrightarrow \text{SE}_3(\text{CN}_2)_3 \text{N} + 9 \text{ LiX}$$
 (8.3.1)

$$2 SEX_3 + SEN + 3 Li_2CN_2 \longrightarrow SE_3(CN_2)_3N + 9 LiX$$
(8.3.2)
(SE = La, Ce); (X = F, Cl)

Hier entstanden jedoch andere Produkte, so dass in diesem Fall andere Synthesewege gesucht werden mussten. Zur Synthese von $La_3(CN_2)_3N$ konnte der Weg über eine zweistufige Festkörpermetathesereaktion erfolgreich beschritten werden. Im ersten Reaktionsschritt wurde LaFCN₂ nach Gleichung (1.14) hergestellt (Ansatz: 3,333 mmol, Gesamtmasse: 0,8327 g). $LaF_3 + Li_2CN_2 \xrightarrow{500 \circ C, 60 h} LaFCN_2 + 2 LiF$ (1.14)In einem zweiten Reaktionsschritt wurde das Produktgemisch aus LaFCN₂ und 2 LiF mit Li₃N im molaren Verhältnis 3:1 umgesetzt (Ansatz: 1 mmol, Gesamtmasse: 0,7842 g): 3 (LaFCN₂ + 2 LiF) + Li₃N \longrightarrow La₃(CN₂)₃N + 9 LiF (8.3.3)Diese zweite Stufe der Festkörpermetathesereaktion wurde bei 700 °C über 100 Stunden Reaktionszeit in Kupferampullen durchgeführt. Offensichtlich bedarf es bei der Umsetzung des sehr stabilen LaFCN₂ mit Li₃N höheren Temperaturen. Dieser Reaktionsweg war im Fall der Synthese von $Ce_3(CN_2)_3N$ nicht begehbar, da wie schon in Reaktionsgleichung (5.6.2) beschrieben ab 600 °C die Bildung von LiCe₂F₃(CN₂)₂ bevorzugt wird, so dass hier bei der Umsetzung mit Li₃N andere Produkte entstehen. Eine weitere Möglichkeit zur Synthese von $SE_3(CN_2)_3N$ (SE = La, Ce) bietet die Umsetzung von Selten-Erd-Nitridfluoriden der Zusammensetzung SE₃NF₆ mit Li₂CN₂ im molaren Verhältnis 1:3. Der erste Schritt ist hier die Festkörperreaktion von SEF3 mit SEN bei 900 °C in Pt-Ampullen mit einer Reaktionsdauer von einer Woche nach Gleichung (8.3.4) [66] [67]. In diesem Fall wurden Kupferampullen verwendet (Ansatz: 2 mmol, Gesamtmasse: 1,0894 g für SE = La und 1,0967

g für
$$SE = Ce$$
)

$$2 \operatorname{SEF}_3 + \operatorname{SEN} \longrightarrow \operatorname{SE}_3 \operatorname{NF}_6 \tag{8.3.4}$$

SE₃NF₆ + 3 Li₂CN₂ \longrightarrow SE₃(CN₂)₃N + 6 LiF (SE = La, Ce) (8.3.5) Der zweite Schritt ist dann eine Festkörpermetathesereaktion von SE₃NF₆ mit Li₂CN₂ (Gleichung 8.3.5). Diese Umsetzung wurde bei 650 °C und einer Reaktionszeit von 50 Stunden in Cu-Ampullen durchgeführt (Ansatz: 1 mmol, Gesamtmasse: 0,7064 g für SE = La und 0,7101 g für SE = Ce). Im Fall von La₃(CN₂)₃N entstand ein farbloses Pulver. Ce₃(CN₂)₃N hingegen zeigte sich als gelboranges Pulver. Lanthannitridfluorid ließ sich auch durch Festkörpermetathesereaktion von LaF₃ mit Li₃N bei niedrigeren Temperaturen von 650 °C und 50 Stunden Reaktionszeit in Cu-Ampullen gewinnen. Erwartet wurde eigentlich, dass ein Reaktion von LaF₃ mit Li₃N im molaren Verhältnis 3:1 zum gewünschten Produkt führt. Aber die Umsetzung war nicht vollständig. Trotz eines Überschusses von ca. 10 % bei der Einwaage von Li₃N blieb nicht umgesetztes LaF₃ übrig. Erst die Umsetzung von LaF₃ mit Li₃N im molaren Verhältnis 2:1 (Ansatz: 2 mmol, Gesamtmasse: 0,8533 g) führte zum gewünschten Produkt jedoch mit der vermuteten Zusammensetzung La₂NF₃ (Gleichung 8.3.6). Dies wurde auch schon 1971 von Tanguy festgestellt. Diese Verbindung bildet eine Fluoritstruktur in der Stickstoffatome die Fluoratome von den kubisch primitiven Gitterplätzen verdrängen und Fluoratome dafür die unbesetzten Würfellücken besetzen. Dadurch ergibt sich eine Phasenbreite die sich durch die Zusammensetzung SEN_xF_{3-3x} (SE = Ce, Pr) beschreiben lässt [64], [65].

 $2 \operatorname{LaF}_3 + \operatorname{Li}_3 N \longrightarrow \operatorname{La}_2 NF_3 + 3 \operatorname{LiF}$ (8.3.6)

Aber auch die Umsetzung der Metatheseprodukte mit Li₂CN₂ aus Gleichung (8.3.6) im molaren Verhältnis 1:3 führte zu La₃(CN₂)₃N (Ansatz: 2 mmol, Gesamtmasse: 1,1767 g). Durch Sauerstoffeinschleppung aus einer unbekannten Quelle konnte La₃(CN₂)₃N nur mit einer Ausbeute von ca. 60 % (röntgenographisch abgeschätzt) erhalten werden. Als Nebenprodukt bildete sich La₂O(CN₂)₂. Die Reaktionen von La₃NF₆ mit 3 Li₂CN₂ nach Reaktionsgleichung (8.3.6) zeigte vergleichbare Ausbeuten von La₃(CN₂)₃N, aber als Nebenprodukt entstand La₂O₂CN₂. Mit 27 einfach indizierten Reflexen konnte eine Indizierung von La₃(CN₂)₃N durchgeführt werden. Die Gitterkonstanten sind a = 13,228(9) Å; b = 17,06 (1) Å; c = 6,755(5) Å. Die Gitterkonstanten stimmen gut mit denen die aus Einkristallmessungen ermittelt wurden überein (Tabelle 8.2.1).

8.4 Pulverdiffraktometrie von Ce₃(CN₂)₂N

Abbildung 8.4 zeigt den Ausschnitt eines Pulverdiffraktogramm von ausgelesenen Einkristallen von $Ce_3(CN_2)_2N$ im Vergleich mit einem Pulverdiffraktogramm berechnet aus Einkristalldaten von $Ce_3(CN_2)_2N$. Bis auf wenige Reflexe von anhaftendem $Ce_2O(CN_2)_2$ und LiF ist hier eine gute Übereinstimmung festzustellen.

Abb. 8.4: Berchnete Diffraktogramme von La₂O(CN₂)₂ und von Ce₃(CN₂)₂N im Vergleich mit einem Pulverdiffraktogramm von ausgelesenen Einkristallen von Ce₃(CN₂)₂N (rote Linien: Pulverdatenbankeintrag [45-1460] für LiF; grüne Linien: Indizierungslinien von Ce₂(CN₂)₃N).

Die Elementarzelle von $Ce_3(CN_2)_2N$ konnte mit 77 einfach indizierten Reflexen indiziert werden. Die Gitterkonstanten sind a = 13,110(2) Å, b = 16,987(2) Å, c = : 6,726(1) Å. Auch hier sind die Gitterkonstanten vergleichbar mit denen der Einkristalldaten von $Ce_3(CN_2)_2N$ (Tabelle 8.2.1).

8.5 IR-Spektroskopie von La₃(CN₂)₃N

Das IR-Spektrum von La₃(CN₂)₃N zeigt die Absorptionsbanden der asymmetrischen Valenzschwingung bei den Wellenzahlen 1951 cm⁻¹ und 2050 cm⁻¹. Bei 1193 cm⁻¹ und 1302 cm⁻¹ liegen die Schwingungsbanden der symmetrischen Valenzschwingung aber mit geringerer Intensität, da die Carbodiimid-Einheiten auch nur gering von der idealen Symmetrie abweichen. Möglicherweise sind die Banden bei 1193 cm⁻¹ und 1302 cm⁻¹ auch der Carbonat-Bildung durch beginnende Hydrolyse zuzuordnen. Die Banden bei 639, 660 und 679 cm⁻¹ entsprechen den Deformationsschwingungen der CN₂-Einheiten.

Tabelle 8.5: IR-Schwingungsfrequenzen (in cm^{-1}) von La₃(CN₂)₃N.

Verbindung	$v_{as} (CN_2^{2-})$	$v_{s}(CN_{2}^{2})$	$\delta (CN_2^2)$
$La_3(CN_2)_3N$	2050/1951	1302/1193	679/660/639

9 Cyanamidoaluminate und Tetracyanamidoaluminate

Komplexe Verbindungen mit Cyanamidoliganden sind bisher nur aus Verbindungen mit Tetracyanamidosilikaten bekannt. Die in dieser Arbeit durchgeführten Versuchsserien haben zur Synthese und Charakterisierung von homoleptischen Tetracyanamidoaluminaten und einem heteroleptischen Cyanamidoaluminat geführt, deren Struktur und Synthesen im Folgenden vorgestellt werden.

9.1 Eu₃[AlF₂(CN₂)₃CN] ein heteroleptisches Cyanamidoaluminat

9.1.1 Kristallstruktur von Eu₃[AlF₂(CN₂)₃CN]

Eu₃[AlF₂(CN₂)₃CN] bildet durchsichtige, gelbe Kristalle die orthorhombisch kristallisieren. Die Strukturlösung erfolgte in der Raumgruppe Pnma. In Tabelle 9.1.1.2 sind die Daten zur Strukturverfeinerung gegeben In Abbildung 9.1.1.1 ist die Elementarzelle von Eu₃[AlF₂(CN₂)₃CN] mit Blick in Richtung der b-Achse gezeigt. Die roten Oktaeder symbolisieren die [AlF₂(CN₂)₃CN]⁶⁻-Anionen. Das Aluminiumatom ist in der Struktur von Eu₃[AlF₂(CN₂)₃CN] umgeben von zwei Fluoratomen, einer Cyanideinheit und drei Cyanamideinheiten und bildet so das Zentrum eines verzerrten Oktaeders (Abbildung 9.1.1.2). Die Al — N-Abstände der zwei kristallographisch unterschiedlichen CN₂-Einheiten liegen bei 1,949(4) Å (N3 - CN) und 1,926(5) Å (N5 - CN). Zum Vergleich von Al - N-Abständen könnte auch Li₃AlN₂ herangezogen werden, aber für Li₃AlN₂ liegen nur sehr ungenaue Daten vor, da die Struktur aus Pulverdaten verfeinert wurde und auch keine Standartabweichungen vorliegen [66]. Der Al - (CN)-Abstand mit der Cyanidgruppe in [AlF₂(CN₂)₃CN]⁶⁻ beträgt 2,038(6) Å. Interessant erscheint ein Vergleich mit der Struktur von Al(CN)₃ in der die CN-Liganden fehlgeordnet sind woraus ein gemittelter Al — CN-Abstand von 2,020(2) Å resultiert [67]. In Tabelle 9.1.1.1 ist eine tabellarische Gegenüberstellung einiger Al — N-Abstände und C — N-Cyanid-Abstände zum Vergleich des Al — N- und C - N-Cyanid-Abstandes in Eu₃[AlF₂(CN₂)₃CN] gezeigt.

In der Struktur von $Eu_3[AlF_2(CN_2)_3CN]$ ist nur zweiwertiges Europium zu finden. Die drei CN_2 -Einheiten im $[AlF_2(CN_2)_3CN]$ -Oktaeder sind facial angeordnet.

Abb. 9.1.1.1: Blick durch die orthorhombische Elementarzelle von $Eu_3[AIF_2(CN_2)_3CN]$ entlang der b-Achse mit $[AIF_2(CN_2)_3CN]$ -Oktaedern.

In der Struktur von $Eu_3[AlF_2(CN_2)_3CN]$ befinden sich zwei kristallographisch verschiedene Europiumatome. Eu1 ist in Form eines verzerrten einfach überkappten trigonalen Prismas von fünf CN₂-Einheiten und von zwei Fluoratomen umgeben. Die Koordinationssphäre von Eu2 wird aus einer Cyanid-Gruppe, fünf Carbodiimid-Einheiten und zwei Fluoratomen gebildet. Der aus der Koordinationszahl Acht resultierende Koordinationspolyeder stellt ein verzerrtes quadratisches Antiprisma dar.

Die verschiedenen Umgebungen von Eu1 bzw. Eu 2 sind in Abbildung 9.1.1.3 gezeigt.

Die Orientierung der CN-Einheit bezüglich des Aluminiumatoms konnte bei der Verfeinerung nicht eindeutig geklärt werden, deswegen kann man von einer Fehlordnung bezüglich der Cund N-Atome der Cyanid-Gruppe ausgegangen werden. Im Folgenden wird das N4-Atom so dargestellt, dass es auf das Aluminiumatom weist (Abbildung 9.1.1.2), während das C3-Atom in einen kleinen Hohlraum der Struktur weist (Abbildung 9.1.1.6).

Abb. 9.1.1.2: Verzerrt oktaedrische Umgebung von Al im ([AIF₂(CN₂)₃CN]⁶⁻-Ion.

Abb. 9.1.1.3: Koordinationspolyeder von Europium in der Struktur von Eu₃[AlF₂(CN₂)₃CN].

Die Verknüpfung der beiden kristallographisch unterschiedlichen Europiumatome über die $[AlF_2(CN_2)_3CN]$ -Einheit ist in Abbildung 9.1.1.4 zu sehen. So verbinden endständige N-Atome der gemeinsamen CN₂-Einheiten aber auch innere N-Atome der CN₂-Einheiten die beiden verschiedenen Europiumkoordinationspolyeder. An der Verknüpfung der Koordinationspolyeder sind auch die Fluoratome beteiligt. Das N4-Atom der Cyanid-Einheit verknüpft die $[AlF_2(CN_2)_3CN]$ -Einheit mit Eu2.

Abb. 9.1.1.4: Verknüpfung der kristallographisch unterschiedlichen Europiumatome über ein $[AIF_2(CN_2)_3CN]$ -Oktaeder in der Struktur von Eu $_3[AIF_2(CN_2)_3CN]$.

Die Cyanid-Einheit ragt mit dem Kohlenstoffatom C3 in einen kleinen Hohlraum der Struktur. Da der Abstand zum nächsten Eu-Atom mit ca. 3,003 Å zu groß ist, kann dieses Kohlenstoffatom kaum an gerichteten Bindungen zu Metallatomen beteiligt sein. Die beiden kristallographisch verschiedenen CN₂-Einheiten sind von fünf Europiumatomen und einem Aluminiumatom in Form eines verzerrten trigonalen Antiprismas umgeben (Abbildung 9.1.1.5) und weichen mit 177,7(5) ° etwas ab von der Linearität für die CN₂-Einheit N3 — C1 — N6 und mit 178,1(7) ° für die CN₂-Einheit N2 — C2 — N5.

Abb. 9.1.1.5: Koordinationspolyeder der zwei kristallographisch verschiedenen Cyanamideinheiten in der Struktur von Eu₃[AlF₂(CN₂)₃CN].

Abb. 9.1.1.6: Erweiterte Koordinationssphäre des Kohlenstoffatoms C3 der Cyanidgruppe in der Struktur von $Eu_3[AlF_2(CN_2)_3CN]$.

Die C — N-Abstände liegen für C1 — N3 bei 1,237(6) Å und C1 — N6 bei 1,210(6) Å. Diese CN₂-Einheit kann als Carbodiimid-Einheit angesehen werden. Bei der CN₂-Einheit N2 — C2 — N5 differieren die C — N-Abstände etwas mehr mit einem C — N-Abstand von 1,199(9) Å bei C2 — N2 und 1,247(8) Å bei C2 — N4. Die CN₂-Einheit N2 — C2 — N5 zeigt deutlich unterschiedliche C — N-Abstände, deshalb kann man diese CN₂-Einheit als Cyanamid-Einheit bezeichnen. Die beiden verlängerten C — N-Abstände der beiden CN₂-Einheiten weisen dabei in Richtung des Aluminiumoktaeders. Eine Erklärungsmöglichkeit dafür wäre die höhere Ionenladung von Aluminium. Erweitert man die Koordinationssphäre des Kohlenstoffatoms C3 der Cyanidgruppe auf ca. 3 - 4.5 Å so lässt sich die Umgebung der Cyanid-Einheit zeigen (Abbildung 9.1.1.6). Hier liegen die Eu1 — C3-Abstände zwischen ca. 3,02 - 3,498 Å und die Eu2 — C3-Abstände zwischen ca. 3,003 – 3,971 Å. Der Al4 — N4 — C3 Abstand beträgt 3,2453(3) Å und weicht mit 176,3(6) ° etwas von der Linearität ab. Der Abstand zum nächsten Aluminiumatom liegt bei ca. 4,502 Å. Im Rahmen der Strukturlösung war keine weitere Elektronendichte zu finden, die einen Hinweis auf ein weiteres N-Atom in diesem Hohlraum geben konnte, so dass hier von einer Cyanid-Gruppe ausgegangen werden musste. Der C3 — N4-Abstand dieser Cyanid-Gruppe liegt bei 1,21(1) Å und der Al4 — N4-Abstand liegt bei 2,038(6) Å. Der C — N-Abstand der Cyanid-Gruppe in Al(CN)₃ ist jedoch mit 1,163(3) Å [67] etwas kürzer als der C — N-Abstand in Eu₃[AlF₂(CN₂)₃CN] (Tabelle 9.1.1.1). Betrachtet man jedoch den C - N-Abstand der Cyanid-Gruppe in der Struktur von AgCN so findet man hier C — N-Abstände von 1,112 – 1,257 Å in drei verschiedenen Strukturlösungen in der Raumgruppe R $\overline{3}$ m [68] – [70]. Dies wäre vergleichbar mit dem C — N-Abstand in der Struktur von Eu₃[AlF₂(CN₂)₃CN]. Die Auswahl ob das N-Atom oder das C-Atom am Aluminium koordiniert, kann mit Röntgenstrukturanalyse nicht eindeutig geklärt werden, deswegen kann hier von einer Fehlordnung ausgegangen werden. In Tabelle 9.1.1.4 sind einige ausgewählte Atomabstände zusammengefasst und in Tabelle 9.1.1.3 sind die Atompositionen und isotropen Auslenkungsparameter von Eu₃[AlF₂(CN₂)₃CN] gezeigt.

Tabelle 9.1.1.1: Al — N-Abstände und C — N-Abstände in Verbindungen mit Cyanid-Ionen.

Verbindung	Al — N-Abstand (Å)	C — N-Abstand (Cyanid) (Å)	
AlN	1,889 bis 1,903	-	[71]
Li ₃ AlN ₂	1,88	-	[66]
Al(CN) ₃	2,020(2)	1,163(3)	[67]
$Eu_3[AlF_2(CN_2)_3CN]$	1,949(4) und 1,926(5)	2,038(6)	

<u></u>	
Kristallsystem	orthorhombisch
Raumgruppe	Pnma
Gitterkonstanten (Å)	a = 11,052(1)
	b = 10,160(2)
	c = 8,209(1)
Volumen (Å ³)	921,3(2)
Ζ	4
Molmasse (g/mol)	666,97
Röntgenographische Dichte (g/cm ³)	4,809
Absorbtionskoeffizient μ (mm ⁻¹)	20,282
F(000)	1172
Kristallgröße (mm ³)	0,12 x 0,12 x 0,14
Kristallbeschreibung	gelb, transparent
Einkristalldiffraktometer	Stoe IPDS
Monochromator	Graphit
Strahlung λ (Å)	0,71073
Messtemperatur (K)	293(2)
Messbereich (°)	3,09 - 25,02
Indexbereich	$-13 \le h \le 13, -12 \le k \le 12, -9 \le l \le 9$
Anzahl der gemessenen Reflexe	8703
Anzahl der unabhängigen Reflexe	857
R(int)	0,0529
Absorptionskorrektur	numerisch mit X-Red, X-Shape
Verfeinerungsmethode	Methode der kleinsten Fehlerquadrate bzgl. F^2
Vollständigkeit bis $2\Theta = 25.02^{\circ}$	99,5 %
Daten / Beschränkungen / Parameter	857 / 0 / 88
Güte der Verfeinerung bzgl. F^2	1,047
R-Werte $[I > 2\sigma(I)]$	$R_1 = 0,0172, wR_2 = 0,0387$
R-Werte (für alle Daten)	$R_1 = 0,0201, wR_2 = 0,0396$
Restelektronendichte $(e \cdot Å^{-3})$	0,804 und -0,841

Tabelle 9.1.1.2: Einkristalldaten, Messparameter und Ergebnisse zur Kristallstrukturbestimmung von Eu₂[AlF₂(CN₂)₂CN].

	Х	У	Z	U(eq)
Eu(1)	0,5293(1)	0,5557(1)	0,2322(1)	0,0013(1)
Eu(2)	0,7541(1)	1/4	0,0824(1)	0,0012(1)
Al(1)	0,4228(2)	3/4	0,5795(2)	0,0011(1)
F(2)	0,5458(2)	0,6247(2)	0,5522(3)	0,0015(1)
N(2)	0,6854(5)	3/4	0,2652(6)	0,0016(1)
N(3)	0,6880(3)	0,3878(3)	0,3497(4)	0,0013(1)
N(4)	0,4856(5)	3/4	0,8129(7)	0,0017(1)
N(5)	0,3898(5)	3/4	0,3492(6)	0,0014(1)
N(6)	0,3466(3)	0,5226(3)	0,0257(5)	0,0016(1)
C(1)	0,2683(4)	0,4544(4)	0,0851(5)	0,0011(1)
C(2)	0,7849(6)	3/4	0,2068(8)	0,0013(1)
C(3)	0,5162(8)	3/4	0,9543(12)	0,0038(2)

Tabelle 9.1.1.3: Atompositionen und isotrope Auslenkungsparameter ($Å^3$) von $Eu_3[AlF_2(CN_2)_3CN].$

2,635(4)	Eu(2) - N(2)	2,688(5)
2,629(4)	Eu(2) - N(3)	2,703(4)
3,1307(10)	Eu(2) — N(4)	2,786(6)
2,682(4)		
2,645(4)	Eu(2) - N(6)	2,713(4)
2,658(4)		
3,020(8)		
3,003(9)	Eu(2) - C(3)	3,003(9)
2,679(3)	Eu(2) - F(2)	2,564(2)
2,725(3)		
2,038(6)		
1,949(4)		
1,926(5)		
1,876(3)		
1,21(1)		
3) 1,210(6); 1,237(6)	$\langle N(6) - C(2) \rangle$	1) — N(3): 177,7(5)
5) 1,199(9); 1,247(8)	$\langle N(2) - C(2) \rangle$	2) — N(5): 178,1(7)
(4) 1,21(1); 2,038(6)	< C(3) - N(4)	4) — Al(4): 176,3(6)
2) 1,876(3); 1,876(3)	$\langle F(2) - Al($	1) — F(2): 85,5(2)
5) 1,876(3); 1,926(5)	$\langle F(2) - Al($	1) — N(5); 91,1(2)
3) 1,876(3); 1,949(4)	$\langle F(2) - Al($	1) — N(3): 168,2(2)
(4) 1,926(5); 2,038(4)	$\langle N(5) - Al($	(1) — N(4): 171,0(2)
	2,635(4) 2,629(4) 3,1307(10) 2,682(4) 2,645(4) 2,658(4) 3,020(8) 3,003(9) 2,679(3) 2,725(3) 2,038(6) 1,949(4) 1,926(5) 1,876(3) 1,210(6); 1,237(6) 5) 1,199(9); 1,247(8) 4) 1,21(1); 2,038(6) 2) 1,876(3); 1,876(3) 5) 1,876(3); 1,926(5) 3) 1,876(3); 1,949(4) 4) 1,926(5); 2,038(4)	2,635(4) $Eu(2) - N(2)$ 2,629(4) $Eu(2) - N(3)$ 3,1307(10) $Eu(2) - N(4)$ 2,682(4) 2,645(4) $Eu(2) - N(6)$ 2,658(4) 3,003(9) $Eu(2) - C(3)$ 2,679(3) $Eu(2) - F(2)$ 2,725(3) 2,038(6) 1,949(4) 1,926(5) 1,876(3) 1,210(6); 1,237(6) $< N(6) - C(2)$ 4) 1,21(1); 2,038(6) $< C(3) - N(4)$ 2) 1,876(3); 1,876(3) $< F(2) - Al(2)$ 4) 1,21(1); 2,038(6) $< C(3) - N(4)$ 2) 1,876(3); 1,926(5) $< F(2) - Al(2)$ 4) 1,21(1); 2,038(4) $< F(2) - Al(2)$ 4) 1,21(1); 2,038(4) $< N(5) - Al(2)$ 5) 1,876(3); 1,949(4) $< F(2) - Al(2)$ 5) 1,876(3); 1,949(4) $< F(2) - Al(2)$ 6) $- Al(2) - Al(2) - Al(2)$ 6) $- Al(2) - Al(2) - Al(2) - Al(2)$ 6) $- Al(2) - Al(2) -$

Tabelle 9.1.1.4: Ausgewählte Bindungslängen (Å) und Winkel ($\langle, \text{ in } \circ\rangle$) in der Struktur von Eu₃[AlF₂(CN₂)₃CN].

9.1.2 Synthese und Pulverdiffraktometrie von Eu₃[AlF₂(CN₂)₃CN]

Die Synthese von Eu₃[AlF₂(CN₂)₃CN] erfolgte aus einem 1:2:1:4 molaren Gemenge aus EuF₃, EuF₂, AlF₃ und Li₂CN₂ (Ansatz: 1 mmol, Gesamtmasse: 0,8885 g). Das Gemenge wurde über 50 Stunden bei 650 °C in Kupferampullen erhitzt. Als Produkt wurde eine gelblich kristalline Verbindung erhalten deren Pulverdiffraktogramm in Abbildung 9.1.2 gezeigt ist. Der Vergleich mit dem aus der Kristallstruktur simulierten Diffraktogramm von Eu₃[AlF₂(CN₂)₃CN] zeigt eine gute Übereinstimmung. Die Indizierung des Pulverdiffraktogramms anhand von 51 Reflexen ergab eine primitive orthorhombische Elementarzelle mit den Gitterkonstanten a = 10,137(2) Å, b = 11,026(2) Å, c = 8,195(2) Å und einem Zellvolumen von 916,1(5) Å³. Diese Gitterkonstanten stimmten gut mit den Einkristalldaten von Eu₂[AlF₂(CN₂)₃CN] überein (Tabelle 24). Das Entstehen von Eu₃[AlF₂(CN₂)₃CN] ist vermutlich auf die ab ca. 650 °C einsetzende reduktive Wirkung von CN_2^{2-} -Ionen auf Eu³⁺ zurückzuführen.

Abb. 9.1.2: Berechnetes Diffraktogramm von $Eu_3[AIF_2(CN_2)_3CN]$ im Vergleich mit einem Pulverdiffraktogramm der Produkte der Reaktion eines 1:2:1:4 molaren Gemenge aus EuF_3 , EuF_2 , AIF_3 und Li_2CN_2 (rote Linien: Pulverdatenbankeintrag [45-1460] für LiF; grüne Linien: Indizierungslinien von $Eu_3[AIF_2(CN_2)_3CN]$).

IR-Spektroskopie von Eu₃[AlF₂(CN₂)₃CN]

9.1.3

Die für Selten-Erd-Carbodiimide und Cyanamide typische breite und intensive Absorptionsbande ist hier in Form eines Doppelpeaks bei Wellenzahlen von 2033 und 2090 cm⁻¹ zu erkennen. Die Aufspaltung der Bande könnte von den beiden kristallographisch unterschiedlichen CN₂-Einheiten herrühren. Die für Cyanid Gruppen in Metallaten typische Valenzschwingung liegt bei 2080 – 2175 cm⁻¹ [72] und ist somit überlagert von der breiten Bande der asymmetrischen Valenzschwingung der CN₂-Einheiten. Eine wenig intensive und vierfach aufgespaltene Bande im Bereich von ca. 1220 – 1320 cm⁻¹ könnte der symmetrischen Valenzschwingung von Cyanamid-Einheiten zugeordnet werden, da die Carbodiimideinheiten in Eu₃[AlF₂(CN₂)₃CN] etwas asymmetrisch sind. Die Aluminium-Stickstoffschwingungen zeigen sich hier als sehr intensive und relativ schmale Banden bei 651 und 702 cm⁻¹ [73]. Die Deformationsschwingung der CN₂-Einheiten ist überlagert durch die Al-N-Bande bei 651 cm⁻¹. Jedoch weist diese Bande zwei Schultern bei 613 und 633 cm⁻¹ auf, die den Deformationsschwingungen der CN₂-Einheiten zugeordnet werden könnten (siehe Tabelle 9.1.3).

Tabelle 9.1.3: IR-Schwingungsfrequenzen	(in cm ⁻	1) von Eu ₂ [AlF ₂ (CN)	$_{2}$,),CN]
---	---------------------	--------------------------	-----------------------	---------------

Verbindung	$v_{as} (CN_2^{2-})$	$v_{s}(CN_{2}^{2})$	$\delta (CN_2^{2-})$	Al-N-Schw.
$Eu_3[AlF_2(CN_2)_3CN]$	2090/2033	1319/1298/1255/1224	633/613	702/561

Abbildung 9.1.3 zeigt das Infrarotspektrum von ungewaschenem $Eu_3[AIF_2(CN_2)_3CN]$.

Abb. 9.1.3: Infrarot-Spektrum von Eu₃[AlF₂(CN₂)₃CN] (KBr-Pressling).

9.1.4 Raman-Spektroskopie von Eu₃[AlF₂(CN₂)₃CN]

Der Nachweis der Cyanid-Gruppe in der Struktur von Eu₃[AlF₂(CN₂)₃CN] gelingt durch die Raman-Spektroskopie. Wie schon unter Kapitel 9.1.3 beschrieben, überlagern sich Schwingungsbanden der symmetrischen Valenzschwingung der Cyanid-Gruppe und der asymmetrischen Valenzschwingung der CN₂-Einheiten. Da die asymmetrische Valenzschwingung der CN₂-Einheiten Raman-inaktiv ist, aber die symmetrische Valenzschwingung der Cyanid-Gruppe Raman-aktiv ist, kann hier eine Unterscheidung vorgenommen werden. So gelang auch die Unterscheidung von Cyanid und Cyanamid in der Struktur von Ba₂(CN₂)(CN)₂ [74]. Das Raman-Spektrum von Eu₃[AlF₂(CN₂)₃CN] (Abbildung 9.1.4) zeigt im Wellenzahlenbereich von 2019 - 2131 cm⁻¹ vier Absorptionsbanden unterschiedlicher Intensität. Die intensivste Bande liegt bei 2100 cm⁻¹. Vergleicht man diese gemessenen Werte mit der symmetrischen Valenzschwingung von aliphatischen Cyanid-Gruppen (RA 2234 – 2246 cm⁻¹) und an Aromaten gebundenen Cyanid-Gruppen (2234 – 2219 cm⁻¹) [75], so liegt hier eine relativ große Verschiebung hin zu geringeren Wellenzahlen bei Eu₃[AlF₂(CN₂)₃CN]. Aber in Alkalicyaniden (Na – Cs) findet man Absorptionslinien der symmetrischen Valenzschwingung im Wellenzahlenbereich von 2021 - 2089 cm⁻¹ [76]. In komplexen Cyaniden wie rotem $(K_3[Fe(CN)_6])$ oder gelbem Blutlaugensalz $(K_4[Fe(CN)_6])$ findet man ähnlich wie bei der Valenzschwingung der Cyanid-Gruppe in $\text{Eu}_3[\text{AlF}_2(\text{CN}_2)_3\text{CN}]$ aufgespaltene Banden im Bereich von 2048 – 2133 cm⁻¹ [77].

Verbindung	$v_{as} (CN_2^{2-})$	v _s (CN)
$Eu_3[AlF_2(CN_2)_3CN]$	-	2020/2050/2100/2130

Tabelle 9.1.4: Raman-Schwingungsfrequenzen (in cm⁻¹) von $Eu_3[AlF_2(CN_2)_3CN]$.

Abb. 9.1.4: Ausschnitt aus dem Raman-Spektrum von $Eu_3[AIF_2(CN_2)_3CN]$.

9.2 Die homoleptischen Tetracyanamidoaluminate LiEu₂[Al(CN₂)₄] bzw. LiSr₂[Al(CN₂)₄]

9.2.1 Die Kristallstruktur von LiEu₂[Al(CN₂)₄]

Bei der Reaktion eines 1:2:1:4 molaren Gemisches aus EuF₃, SrF₂, AlF₃ und Li₂CN₂ (Ansatz: 1 mmol, Gesamtmasse: 0,7598 g) wurden nach 50 Stunden bei 650 °C in Kupferampullen transparente orange Kristalle als Nebenprodukt gebildet. Die Strukturverfeinerung erfolgte in der Raumgruppe C2/c und ergab eine Verbindung mit der Zusammensetzung LiEu₂[Al(CN₂)₄]. In der Elementarzelle befinden sich vier Formeleinheiten von LiEu₂[Al(CN₂)₄]. Die Elementarzelle ist in Abbildung 9.2.1.1 dargestellt. Die weiteren Parameter der Einkristallstrukturanalyse sind in Tabelle 9.2.1.2 gegeben.

Abb. 9.2.1.1: Kristallstruktur von LiEu₂[Al(CN₂)₄] mit Blick entlang der c-Achse.

Wie in Abbildung 9.2.1.1 zu erkennen ist verbinden Schichten von CN₂-Einheiten, die leicht gekippt zur b-Achse verlaufen, Metallschichten bestehend aus Europiumatomen, Aluminiumatomen und Lithiumatomen. Lithium- und Aluminiumatome sind von CN₂-Einheiten tetraedrisch umgeben. Die Unterscheidung ob in einem Tetraeder Lithium oder Aluminium eingebaut ist, gelang sowohl durch die Verfeinerung der Atome als auch anhand des Vergleichs der Metall-Stickstoffabstände in Li₃N, AlN bzw. Li₃AlN₂. In allen drei Verbindungen sind die Metallatome tetraedrisch von N-Atomen umgeben. In Tabelle 9.2.1.1

ist eine tabellarische Gegenüberstellung der verschiedenen Lithium- bzw. Aluminium-Stickstoff-Abstände angegeben.

Tabelle	e 9.2.1.1 :	Gegenüberstellung	einiger	Lithium-	bzw.	Aluminium-Stickstoff-Abstär	ıde
zum Ve	rgleich de	er Lithium bzw. Alu	minium-	Stickstoff	abstar	ides in LiEu ₂ [Al(CN ₂) ₄].	

Verbindung	Li — N-Abstand (Å)	Al — N-Abstand (Å)	[LIT]
α-Li ₃ N	1,9406(2), 2,1199(1)		[78]
β-Li ₃ N	2,0902(2), 2,3441(1)		[78]
AlN		1,889 bis 1,903	[71]
Li ₃ AlN ₂	2,15	1,88	[66]
Li ₂ CN ₂	2,068(1)		[26]
LiEu ₂ [Al(CN ₂) ₄]	2,06(2), 2,26(1)	1,822(6), 1,841(5)	

In α -Li₃N betragen die Li — N-Abstand 1,9406(2) und 2,1199(1) Å während in β -Li₃N Li — N-Abstände von 2,0902(2) Å und 2,3441(1) Å vorliegen [78]. In der Struktur von Aluminiumnitrid findet man hingegen kürzere Al - N-Abstände. Diese liegen bei 1,889 -1,903 Å [71]. Den direkten Vergleich zur Analyse von Li – N- bzw. Al – N-Abständen kann anhand der ternären Verbindung Li₃AlN₂ durchgeführt werden. Zum Vergleich von Al - N-Abständen könnte auch Li₃AlN₂ herangezogen werden, aber für Li₃AlN₂ liegen nur sehr ungenaue Daten vor, da die Struktur aus Pulverdaten verfeinert wurde und auch keine Standartabweichungen vorliegen. In Li₃AlN₂ sind LiN₄-Tetraeder über gemeinsame N-Atome mit AlN₄-Tetraedern verknüpft. Hier findet man ebenso längere Li - N-Abstände von 2,15 Å, während die kürzeren Al — N-Abstände bei 1,88 Å liegen [66]. In Li₂CN₂ ist Lithium tetraedrisch von Carbodiimideinheiten umgeben. Hier beträgt der Li - N-Abstand 2,068(1) Å [26]. In der LiEu₂[Al(CN₂)₄]-Struktur von findet man bei den Li(CN₂)₄- bzw. Al(CN₂)₄-Tetraedern diese unterschiedlichen Li- bzw. Al - N-Stickstoffabstände. So findet man zwei verschiedene Li — N-Abstände von 2,06(2) und 2,26(1) Å in den Li(CN₂)₄-Tetraedern, während in den Al(CN₂)₄-Tetraedern ebenfalls zwei verschiedene aber verkürzte Al - N-Abstände von 1,822(6) und 1,841(5) Å vorliegen. In Tabelle 9.2.1.4 sind ausgewählte Bindungslängen gezeigt. In der Struktur von LiEu₂[Al(CN₂)₄] befinden sich zwei kristallographisch unterschiedliche Europiumatome. Beide Eu-Atome sind trigonalprismatisch von zwei kristallographisch verschiedenen CN₂-Einheiten umgeben und scheinen auf den ersten Blick eine identische Umgebung zu haben. Tatsächlich unterscheiden sich aber die Eu1 — N bzw. Eu2 — N Abstände etwas voneinander. Die Eu — Eu- bzw. Eu — Al und Eu — Li-Abstände betragen ca. 3,6 Å (Tabelle 9.2.1.2). Diese fast identischen Koordinationspolyeder von Eu1 bzw. Eu2 sind paarweise über vier kristallographisch gleiche CN_2 -Einheiten verknüpft (Abbildung 9.2.1.2).

Abb. 9.2.1.2: Verknüpfung der Eu1- und Eu2-Koordinationspolyeder in der Struktur von LiEu₂[Al(CN₂)₄].

Entlang der [101]-Richtung ziehen sich Ketten aus eckenverknüpften Li- bzw. Al(CN₂)₄-Tetraeder, welche in Richtung der b-Achse ebenso wie die Eu-Koordinationspolyeder über vier kristallographisch gleiche CN₂-Einheiten kantenverknüpft sind (Abbildung 9.2.1.4). In der Struktur von LiEu₂[Al(CN₂)₄] befinden sich zwei kristallographisch unterschiedliche CN₂-Einheiten N1 — C1 — N2 und N3 — C2 — N4. Die CN₂-Einheit N1 — C1 — N2 besitzt eine verzerrt trigonal-prismatische Umgebung (KZ 6) bestehend aus vier Eu- einem Li- und einem Al-Atom. Die CN₂-Einheit N3 — C2 — N4 hingegen zeigt eine verzerrt quadratisch planare Umgebung bestehend aus zwei Eu-, einem Li- und einem Al-Atom (Abbildung 9.2.1.3). Man findet in der CN_2 -Einheit N1 — C1 — N2 einen Winkel von 177,5(6) °. Der C1 — N1-Abstand beträgt 1,26(1) Å während der C1 — N2-Abstand mit 1,18(1) Å deutlich kürzer ist.

Abb. 9.2.1.3: Koordinationsumgebung der beiden kristallographisch unterschiedlichen CN₂-Einheiten.

Ähnlich unterschiedliche C — N-Abstände findet man bei der CN₂-Einheit N3 — C2 — N4. Der N — C — N-Winkel liegt hier bei 178,8(8) ° und man findet einen N3 — C2-Abstand von 1,192(8) Å und einen wesentlich längeren C2 — N4-Abstand von 1,258(8) Å. Aus diesen gravierenden unterschiedlichen C — N-Abständen der beiden CN₂-Einheiten kann man in diesem Fall die CN₂-Einheiten in der Struktur von LiEu₂[Al(CN₂)₄] als Cyanamidgruppen bezeichnen. Verknüpft werden Al(CN₂)₄-Tetraeder und Li(CN₂)₄-Tetraeder über die Cyanamideinheit N1 — C1 — N2. Dabei zeigt der verkürzte C1 — N2-Abstand auf die Lithiumatome, während der verlängerte C1 — N1-Abstand auf die Aluminiumatome weist. Diese Tatsache konnte auch an der Koordinationsumgebung von Aluminium in Eu₃[AlF₂(CN₂)₃CN] gezeigt werden. In Abbildung 9.2.1.4 ist die Verknüpfung der Al(CN₂)₄und der Li(CN₂)₄-Tetraeder über die Cyanamideinheit N1 — C1 — N2 gezeigt. Die Verbindung der Koordinationspolyeder aller Metallatome ist in Abbildung 9.2.1.5 (links) dargestellt. Hier sind die Strukturmotive entlang der b-Achse gezeigt.

Abb. 9.2.1.4: Verknüpfung der $\text{Li}(\text{CN}_2)_4$ -(rot) bzw. Al $(\text{CN}_2)_4$ -Tetraeder (schwarz) in der Struktur von $\text{LiEu}_2[\text{Al}(\text{CN}_2)_4]$, Aufsicht auf die (-101)-Ebene.

Das Bindeglied zwischen den Europiumatomen und den $Al(CN_2)_4$ - bzw. der $Li(CN_2)_4$ -Tetraedern ist hier die Cyanamideinheit N3 — C2 — N4. Dreht man diese Abbildung um 90 ° mit der b-Achse als Drehachse so erhält man die in Abbildung 9.2.1.5 (rechts) gezeigte Ansicht auf die Verknüpfung der $Al(CN_2)_4$ - und der $Li(CN_2)_4$ -Tetraeder. Eine Gesamtansicht der Metallschichten in der abwechselnd trigonale Prismen der Europiumatome und $Al(CN_2)_4$ bzw. der $Li(CN_2)_4$ -Tetraedern getrennt durch Schichten von Cyanamideinheit N3 — C2 — N4 zu erkennen sind, ist in Abbildung 9.2.1.6 gegeben. Entlang der [101]-Richtung befinden sich Stränge von eckenverknüpften Tetraedern die abwechselnd mit Li bzw. Al besetzt sind. Innerhalb der Metallschichten befinden sich Stränge der trigonal-prismatischen Umgebung von Europium in [101]-Richtung, die über Ecken mit den Li- bzw.- Al-Tetraedern verknüpft sind. Die so gebildeten Schichten aus Metall-Cyanamid-Koordinationspolyedern sind über die Cyanamideinheit N3 — C2 — N4 in Richtung der b-Achse verbunden.

Abb. 9.2.1.5: Verknüpfung der verschiedenen Metallkoordinationspolyeder in $LiEu_2[Al(CN_2)_4]$ entlang der [101]-Richtung (links). Strukturausschnitt um 90 ° gedreht; Blick entlang der [-101]-Richtung (rechts).

Abb. 9.2.1.6: Strukturausschnitt von LiEu₂[Al(CN₂)₄]; Aufsicht auf die (101)-Ebene.
bestimmung von LiLu2[AI(CIv2)4].	
Kristallsystem	monoklin
Raumgruppe	C2/c
Gitterkonstanten (Å)	a = 7,224(2), b = 19,804(4), c = 7,226(2)
	$\beta = 119,47(3)^{\circ}$
Volumen (Å ³)	900,0(4)
Z	4
Molmasse (g/mol)	497,96
Röntgenographische Dichte (g/cm ³)	3,675
Absorbtionskoeffizient μ (mm ⁻¹)	13,882
F(000)	888
Kristallgröße (mm ³)	0,14 x 0,1 x 0,06
Kristallbeschreibung	orange, transparent
Einkristalldiffraktometer	Stoe IPDS
Monochromator	Graphit
Strahlung λ (Å)	0,71073
Messtemperatur (K)	293(2)
Messbereich (°)	3,42 - 24,98
Indexbereich	$\textbf{-8} \leq \textbf{h} \leq \textbf{8}, \textbf{-23} \leq \textbf{k} \leq \textbf{23}, \textbf{-8} \leq \textbf{l} \leq \textbf{8}$
Anzahl der gemessenen Reflexe	4415
Anzahl der unabhängigen Reflexe	789
R(int)	0,0340
Absorptionskorrektur	numerisch mit X-Red, X-Shape
Vollständigkeit bis $2\Theta = 24,98$ °	98,6 %
Verfeinerungsmethode	Methode der kleinsten Fehlerquadrate bzgl. F ²
Daten / Beschränkungen / Parameter	789 / 12 / 75
Güte der Verfeinerung bzgl. F ²	0,981
R-Werte $[I > 2\sigma(I)]$	$R_1 = 0,0220, wR_2 = 0,0519$
R Werte (für alle Daten)	$R_1 = 0,0349, wR_2 = 0,0543$
Restelektronendichte /e $\cdot \text{Å}^{-3}$	0,966 und -0,707

Tabelle 9.2.1.2: Einkristalldaten, Messparameter und Ergebnisse zur Kristallstrukturbestimmung von LiEu₂[Al(CN₂)₄].

$L1Eu_2AI(CN_2)_4.$					
	х	У	Z	U(eq)	
Eu(1)	0	0,3733(1)	3/4	0,0019(1)	
Eu(2)	-1/2	0,3743(1)	1/4	0,0018(1)	
Al(1)	0	0,3670(2)	1/4	0,0007(1)	
N(1)	0,1199(9)	0,3147(3)	1,1294(9)	0,0012(1)	
C(1)	0,1250(8)	0,2508(4)	1,1239(8)	0,0010(1)	
N(2)	0,3663(9)	0,3087(3)	0,8855(9)	0,0013(1)	
N(3)	-0,747(1)	0,4620(2)	-0,007(1)	0,0019(1)	
C(2)	-0,766(1)	0,5219(3)	-0,022(1)	0,0014(1)	
N(4)	-0,7820(9)	0,4148(3)	0,4654(9)	0,0019(1)	
Li(1)	-1/2	0,369(1)	3/4	0,0021(4)	
Al(1) N(1) C(1) N(2) N(3) C(2) N(4) Li(1)	0 0,1199(9) 0,1250(8) 0,3663(9) -0,747(1) -0,766(1) -0,7820(9) -1/2	$\begin{array}{c} 0,3670(2) \\ 0,3147(3) \\ 0,2508(4) \\ 0,3087(3) \\ 0,4620(2) \\ 0,5219(3) \\ 0,4148(3) \\ 0,369(1) \end{array}$	1/4 1,1294(9) 1,1239(8) 0,8855(9) -0,007(1) -0,022(1) 0,4654(9) 3/4	$\begin{array}{c} 0,0007(1)\\ 0,0012(1)\\ 0,0010(1)\\ 0,0013(1)\\ 0,0019(1)\\ 0,0014(1)\\ 0,0019(1)\\ 0,0021(4) \end{array}$	

Tabelle 9.2.1.3: Atompositionen und isotrope Auslenkungsparameter $(Å^3)$ von LiEu₂Al(CN₂)₄

Tabelle 9.2.1.4: Ausgewählte Bindungslängen (Å), Winkel (\checkmark , in °) und Multiplizitäten in der Struktur von LiEu₂Al(CN₂)₄.

3,642(2) 3,613(1)	Al(1)-N(1) Al(1) N(4)	1,822(6) 2x
3,613(1)	A1(1) N(A)	
	$A_1(1) = N(4)$	1,841(5) 2x
3,615(1)	Li(1)-N(2)	2,06(2) 2x
3,615(1)	Li(1)-N(4)	2,26(1) 2x
3,615(1)		
	C(1)-N(1)	1,27(1) 1x
2,697(6) 2x	C(1)-N(2)	1,18(1) 1x
2,655(6) 2x	C(2)-N(3)	1,192(8) 1x
2,524(6) 2x	C(2)-N(4)	1,258(8) 1x
2,709(6) 2x		
2,656(6) 2x	<n(2)c(1)n(1)< td=""><td>177,5(6)</td></n(2)c(1)n(1)<>	177,5(6)
2,526(5) 2x	<n(3)c(2)n(4)< td=""><td>178,8(8)</td></n(3)c(2)n(4)<>	178,8(8)
	3,615(1) 3,615(1) 2,697(6) 2x 2,655(6) 2x 2,524(6) 2x 2,709(6) 2x 2,656(6) 2x 2,526(5) 2x	$\begin{array}{c} 3,615(1) \\ 3,615(1) \\ 3,615(1) \\ 2,697(6) 2x \\ 2,655(6) 2x \\ 2,524(6) 2x \\ 2,656(6) 2x \\ 2,656(5) 2x \\ 3,02(2)N(4) \\ 3,02(2)N(4) \\ 3,010(2)N(4) \\ 3,010(2$

9.2.2 Syntheseweg und Pulverdiffraktometrie von LiEu₂[Al(CN₂)₄]

Durch Festkörpermetathesereaktion von EuF_2 mit AlF₃ und Li₂CN₂ im molaren Verhältnis 2:1:4 konnte bei 650 °C nach 50 Stunden Reaktionszeit in Kupferampullen (Reaktionsgleichung 9.2.2) ein orangerotes grobkristallines Pulver mit Einkristallen erhalten werden (Ansatz: 1 mmol, Gesamtmasse: 0,6795 g).

2 EuF₂ + AlF₃ + 4 Li₂CN₂ \longrightarrow LiEu₂[Al(CN₂)₄] + 7 LiF (9.2.2) Das Pulverdiffraktogramm dieser Probe ist in Abbildung 9.2.2 dargestellt. Zum Vergleich ist ein theoretisches Diffraktogramm simuliert aus Einkristalldaten von LiEu₂[Al(CN₂)₄] gezeigt. Der Vergleich zwischen theoretischem Diffraktogramm und dem des Reaktionsproduktes zeigt eine gute Übereinstimmung der Reflexe bis auf wenige Fremdreflexe geringer Intensität. So gelang auch eine Indizierung anhand von 41 einfach indizierten Linien in der Raumgruppe C2/c. Die berechneten Gitterkonstanten mit a = 7,257(2) Å; b = 19,772(4) Å; c = 7,120(2) Å; $\beta = 119,00$ (1) ° und das Zellvolumen von 893,6(5) Å³ sind gut vergleichbar mit den Gitterkonstanten der Einkristallstrukturanalyse (Tabelle 9.2.1.1).

Abb. 9.2.2: Simuliertes Diffraktogramm von LiEu₂[Al(CN₂)₄] im Vergleich mit einem Pulverdiffraktogramm des Produktes das gemäß Reaktionsgleichung (9.2.2) entstanden war (rote Linien: Pulverdatenbankeintrag [45-1460] für LiF; grüne Linien: Indizierungslinien von LiEu₂[Al(CN₂)₄]).

9.2.3 Syntheseweg und Pulverdiffraktometrie von LiSr₂[Al(CN₂)₄]

Ziel der folgenden Synthese war die Verbindung $\text{LiSr}_2[Al(CN_2)_4]$, die isotyp zu $\text{LiEu}_2[Al(CN_2)_4]$ kristallisieren sollte. Interessant wäre auch die Bildung einer lithiumfreien Strontiumverbindung gewesen, die das komplexe Tetracyanamidoaluminatanion enthalten sollte. Deswegen wurde von Stroniumcarbodiimid und nicht wie in den bisherigen Synthesen von Li_2CN_2 als Carbodiimidquelle für die Festkörpermetathese ausgegangen. Strontiumcarbodiimid wurde durch Festkörpermetathesereaktion nach Gleichung (5.5.3) erhalten und enthielt aber noch LiF.

 $SrF_2 + Li_2CN_2 \xrightarrow{650 \circ C; 50 h} SrCN_2 + 2 LiF$ (5.5.3)

Das Gemisch aus $SrCN_2$ und LiF wurde mit AlF₃ nach Gleichung (9.2.3) in Kupferampullen bei Temperaturen von 600 bzw. 650 °C und einer Reaktionszeit von 50 Stunden im Simon-Müller Ofen umgesetzt (Ansatz: 1 mmol, Gesamtmasse: 0,7941 g).

 $4 (SrCN_2 + 2 LiF) + AlF_3 \longrightarrow LiSr_2[Al(CN_2)_4] + 7 LiF + 2 SrF_2$ (9.2.3) Es wurden hellgraue kristalline Pulver erhalten. Abbildung 9.2.3 zeigt die Pulverdiffraktogramme von am Vakuum getrocknetem SrF_2, das Pulverdiffraktogramm des Reaktionsproduktes, welches bei 600 °C entstanden war und das aus Einkristalldaten simulierten Diffraktogramm von LiEu_[Al(CN_2)_4].

Abb. 9.2.3: Berechnetes Diffraktogram von LiEu₂[Al(CN_2)₄] im Vergleich mit Pulverdiffraktogrammen von SrF₂ und des Reaktionsproduktes nach Reaktionsgleichung (9.2.3) (rote Linien: Pulverdatenbankeintrag [45-1460] für LiF; grüne Linien: Indizierungslinien von LiSr₂[Al(CN_2)₄]).

Der Vergleich der Reflexe zeigt, dass SrF₂ als Metathesesalz entstanden war. Wenige Reflexe geringer Intensität zeigen nicht umgesetztes SrCN₂ an. Wie bei der isotyp kristallisierenden Verbindung LiEu₂[Al(CN₂)₄] gelang eine Indizierung mit 24 Reflexen in der Raumgruppe C2/c. Die Gitterkonstanten sind a = 7,239(1) Å, b = 19.822(3) Å, c = 7,236(3) Å, β = 119,36(1) ° mit ein Zellvolumen von V = 905,0(5) Å³. So kann davon ausgegangen werden, dass Gleichung 9.2.3 gültig ist und offenbar tatsächlich Li-Ionen aus LiF zur Bildung von LiSr₂[Al(CN₂)₄] ausgebaut wurden. In Tabelle 9.2.3 sind die Gitterkonstanten aus der Einkristallstrukturanalyse von LiEu₂[Al(CN₂)₄] mit den Gitterkonstanten der Indizierungen von LiEu₂[Al(CN₂)₄] und LiSr₂[Al(CN₂)₄] und reference von LiEu₂[Al(CN₂)₄] und LiSr₂[Al(CN₂)₄] und reference von LiEu₂[Al(CN₂)₄] und LiSr₂[Al(CN₂)₄] und LiSr₂[Al(CN₂)₄] und LiSr₂[Al(CN₂)₄] zu erkennen, was bei den annähernd gleichen Ionenradien von Eu²⁺ (1,17 Å) bzw. Sr²⁺ (1,18 Å) [79] zu erwarten war.

Tab. 9.2.3: Gitterkonstanten (Å), monokliner Winkel (°), Zellvolumen (Å³) und Anzahl der einfach indizierten Reflexe der Verbindungen $LiM_2[Al(CN_2)_4]$ (M = Eu, Sr) im Vergleich mit Einkristall-Gitterkonstanten von $LiEu_2[Al(CN_2)_4]$ (C2/c).

Verbindung	a	b	c	β	V	Zahl
						indizierter
						Reflexe
$LiEu_2[Al(CN_2)_4]$	7,224(2)	19,804(1)	7,226(2)	119,47(3)	900,0(4)	Einkristall
$LiEu_2[Al(CN_2)_4]$	7,257(2)	19,772(4)	7,120(2)	119,00(1)	893,6(5)	41
$LiSr_2[Al(CN_2)_4]$	7,239(1)	19.822(3)	7,236(3)	119,36(1)	905,0(5)	24

9.2.4 IR-Spektroskopie von LiEu₂[Al(CN₂)₄]

Das Infrarotspektrum von LiEu₂[Al(CN₂)₄] (Abbildung 9.2.4) zeigt eine aufgespaltene, intensive und breite Absorptionsbande bei Wellenzahlen von 2086 und 2035 cm⁻¹, die der asymmetrischen Valenzschwingung von CN₂-Einheiten zugeordnet werden kann. Im Bereich 1223 – 1318 cm⁻¹ sind vier dicht beieinanderliegende Schwingungsbanden der symmetrischen Valenzschwingung mittlerer Intensität zu erkennen. Die intensiven Absorptionsbanden bei 560 und 700 cm⁻¹ entsprechen dem Absorptionsbereich von Aluminium-Stickstoff-Schwingungen [73], wobei hier die Deformationsschwingung der Cyanamid-Einheiten überlagert werden. Dies ist zu erkennen an den Schultern bei 615 bzw. 634 cm⁻¹ (Tabelle 9.2.4).

Abb. 9.2.4: Infrarotspektrum von LiEu₂[Al(CN₂)₄] (KBr-Pressling).

Tabelle 9.2.4: IR-Schwingungstrequenzen (in cm) von LiEu ₂
--

Verbindung	$v_{as} (CN_2^{2-})$	$v_{s} (CN_{2}^{2})$	$\delta (CN_2^{2-})$	Al-N-Schw.
LiEu ₂ [Al(CN ₂) ₄]	2086/2035	1318/1298/1254/1223	634/615	700/560

9.2.5 Vergleich der IR-Spektren von Eu₃[AlF₂(CN₂)₃CN] und LiEu₂[Al(CN₂)₄]

Der Vergleich der beiden IR-Spektren von $Eu_3[AlF_2(CN_2)_3CN]$ und Li $Eu_2[Al(CN_2)_4]$ zeigt, dass die Lage der Banden und auch die Intensitäten nahezu identisch sind (Tabelle 9.2.5). Nur ein signifikanter Unterschied ist in Abbildung 9.2.5 zu erkennen. Die Absorptionsbande von $Eu_3[AlF_2(CN_2)_3CN]$ (obere Kurve) bei 2090 cm⁻¹ ist im Verhältnis zur benachbarten Absorptionsbande bei 2033 cm⁻¹ intensiver als die entsprechende Bande des Infrarot-Spektrums von Li $Eu_2[Al(CN_2)_4]$. Möglicherweise ist die Überlagerung der Absorptionsbande der Cyanid-Valenzschwingung ein Grund dafür.

Abb.9.2.5: Vergleich der IR-Spektren von Eu₃[AlF₂(CN₂)₃CN] (obere Kurve) und LiEu₂[Al(CN₂)₄] (untere Kurve).

Tabelle 9.2.5: Vergleich der IR-Schwingungsfrequenzen (in cm^{-1}) von $\text{Eu}_3[\text{AlF}_2(\text{CN}_2)_3\text{CN}]$ und LiEu2[Al(CN2)].

Verbindung	$v_{as} (CN_2^{2-})$	$v_{s}(CN_{2}^{2})$	δ (CN ₂ ²⁻)	Al-N-Schw.
Eu ₃ [AlF ₂ (CN ₂) ₃ CN]	2090/2033	1319/1298/1255/1224	633/613	702/561
LiEu ₂ [Al(CN ₂) ₄]	2086/2035	1318/1298/1254/1223	634/615	700/560

10 Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit konnten durch das präparative Instrument der Festkörpermetathese Erdalkalicarbodimide (EA = Ca, Sr) aus den Erdalkalihalogeniden (CaF₂, CaCl₂, SrF₂) hergestellt werden, allerdings als Gemisch mit dem jeweiligen Metathesesalz LiCl oder LiF (Abschnitte 5.5). Dies war überraschend, da zumindest die Erdalkalifluoride als sehr stabil gelten. In späteren Versuchen konnte gezeigt werden, dass CaCN2 bzw. SrCN2 trotz Anwesenheit der jeweiligen Metathesesalze als Carbodiimid-Ionen-Spender ebenso eignen wie Lithiumcarbodiimid (Abschnitt 9.2.2). Die Fortführung der 1:1 molaren Reaktion von Selten-Erd-Trifluoriden mit Lithiumcarbodiimid ergab einige isotyp zu LiPr₂F₃(CN₂)₂ kristallisierende Verbindungen $LiSE_2F_3(CN_2)_2$ (SE = Sm, Eu und Gd). Auch konnten Reaktionsprodukte aufgeklärt werden für die analoge Reaktion der kleineren Selten-Erd-Trifluoride mit Lithiumcarbodiimid (Abschnitt 5.6). Ebenso überraschend war die Bildung von zwei Verbindungen der Zusammensetzung M₂Cl₂CN₂ (M = Sr, Eu) bei niedrigen Heiztemperaturen von 300 bzw. 400 °C (Abschnitte 4.1 und 4.2). Bisher war deren Präparation nur bekannt über die Azid-Cyanid-Route bei Temperaturen von 800 bzw. 880 °C [19]. Anknüpfend an die Festkörpermetathesereaktionen zur Präparation von Selten-Erd-Carbodiimiden ist es gelungen, mit der Präparation von Eu₂(CN₂)₃ die Lücke in der Reihe $SE_2(CN_2)_3$ (SE = Ce – Lu) zu schließen. Auch wurde das dimorphe Verhalten von $Tm_2(CN_2)_3$ aufgeklärt (Abschnitt 5.8). Die Klärung der Kristallstruktur der gemischtvalenten Verbindung Eu₄F₅(CN₂)₂ führte zu Untersuchungen der reduzierenden Wirkung von Li₂CN₂ auf EuF₃ mittels Differenzthermoanalyse und Pulverdiffraktometrie. Mehrere Synthesewege durch Festkörpermetathesereaktionen die zu Eu₄F₅(CN₂)₂ führen, wurden gefunden. Durch Mößbauer-Spektroskopie konnte die Gemischtvalenz von Eu₄F₅(CN₂)₂ nachgewiesen werden (Abschnitt 6). Die 1:2 molare Reaktion von LaF₃ und Li₂CN₂ führte zu einer neuen Verbindung der Zusammensetzung LiLa(CN₂)₂. Hier konnte die Struktur geklärt werden, und weitere Verbindungen des Typs $LiSE(CN_2)_2$ (SE = Ce, Pr) konnten identifiziert werden (Abschnitt 7). Die thermische Zersetzung von LiSE(CN₂)₂ (La, Ce) führte zu Einkristallen deren Messung die ersten binären Selten-Erd-Carbodiimidnitride der Zusammensetzung SE₃(CN₂)₃N (La, Ce) ergaben. Hier wurden verschiedene Reaktionswege zur Synthese von SE₃(CN₂)₃N (La, Ce) erschlossen. Eine unbekannte Sauerstoffquelle führte zur Verunreinigung der Reaktionspulver (Abschnitt 8). Die Präparationen mit AlF₃, EuF₂, EuF₃ und Lithiumcarbodiimid führte zu der neuen Verbindungsklasse der Cyanamidoaluminate. Es konnte eine Kristallstruktur geklärt werden, welche ein heteroleptisches Cyanamidoaluminat mit der Zusammensetzung $Eu_3[AlF_2(CN_2)_3CN]$ ergab. Hier konnte der Nachweis der Cyanid-Gruppe durch Raman-Spektroskopie erbracht werden. Die Orientierung der CN-Einheit bezüglich Aluminium konnte bei der Verfeinerung nicht eindeutig geklärt werden. Die Synthese gelang aufgrund der reduzierenden Wirkung von Li₂CN₂ auf EuF₃ im Rahmen einer Metathesereaktion (Abschnitt 9.1). Anhand der Messung von Einkristallen konnte erstmalig ein homoleptisches Tetracyanamidoaluminat mit der Zusammensetzung LiEu₂[Al(CN₂)₄] gefunden und die Struktur geklärt werden. Durch Festkörpermetathesereaktion wurde ein nahezu phasenreines Produkt erhalten. Auch konnte durch Einsatz von SrCN₂ als Carbodiimidspender die isotyp kristallisierende Verbindung LiSr₂[Al(CN₂)₄] hergestellt werden (Abschnitt 9.2).

Im Verlauf dieser Arbeit war es nicht gelungen die noch unbekannte Verbindung $La_2(CN_2)_3$ durch Festkörpermetathesereaktionen aus LaF_3 und Li_2CN_2 bzw. Na_2CN_2 zu erhalten. Hier bildeten sich andere neue Verbindungen. Der Einsatz anderer Carbodiimidquellen könnte hier entweder zu $La_2(CN_2)_3$ oder anderen neuen Strukturen führen.

Die reduzierende Wirkung von CN_2 -Einheiten könnte dazu genutzt werden Elemente in Verbindungen zu reduzieren, um so neue gemischt valente Verbindungen gezielt zu synthetisieren.

Interessant wäre die Synthese der reinen Verbindung $La_3(CN_2)_3N$. Möglicherweise bildet $La_3(CN_2)_3N$ ein Wirtsgitter, welches nach Dotierung mit Cer, Europium oder Terbium technisch interessante Lumineszenzeigenschaften aufweist.

Die neuen Substanzklassen der heteroleptischen Cyanamidoaluminate und der homoleptischen Tetracyanamidoaluminate bieten die Grundlage zu umfangreichen Untersuchungen in denen durch Einsatz anderer Carbodiimidquellen für Metathesereaktionen zahlreiche neue Strukturen und auch dotierbare farblose Wirtsgitter erwartet werden können. 11

- Crystal Structures, Phase-Transition and Photoluminescence of Rare Earth Carbodiimides J. Glaser, L. Unverfehrt, L. Bettentrup, H. Heymann, G. Huppertz, T. Jüstel, H.-J. Meyer, *Inorg. Chem.* 2008, 47, 10455.
- The Versatility of Solid State Metathesis Reactions From Rare Earth Fluorides to Carbodiimides

L. Unverfehrt, J. Glaser, M. Ströbele, S. Tragl, K. Gibson, H.-J. Meyer, Z. Anorg. Allg. Chem. 2009, 635, 479.

- The Many Faces of Rare Earth Carbodiimide Compounds
 L. Unverfehrt, J. Glaser, M. Ströbele, H.-J. Meyer, Z. Anorg. Allg. Chem. 2009, 635, 1957.
- Refined Crystal Structure and Idealized Structure of Mixed-Valent Eu₄F₅(CN₂)₂ Transition Possible

L. Unverfehrt, M. Ströbele, J. Glaser, T. Langer, R. D. Hoffmann, R. Pöttgen, H.-J. Meyer, *Inorg. Chem.* **2011**, 50, 6010.

5) Solid state synthesis of homoleptic tetracyanamidoaluminates

L. Unverfehrt, M. Kalmutzki, M. Ströbele und H.-J. Meyer, *Dalton Trans.* 2011, 40, 9921.

12 Literaturverzeichnis

- O. Diels, *Einführung in die organische Chemie*, Verlagsbuchhandlung J. J. Weber, Leipzig 1925, 5. Auflage, 149.
- [2] S. T. King, J. H. Strope, J. Chem. Phys. 1971, 54, 1289.
- [3] M. Krott, X. Liu, B. P. T. Fokwa, M. Speldrich, H. Lueken, R. Dronskowski, *Inorg. Chem.* 2007, 46, 2204.
- [4] L. Denner, P. Luger, J. Buschmann, Acta Cryst. 1988, C44, 1979.
- [5] R. Srinivasan, *Dissertation* Eberhard-Karls-Universität Tübingen 2004.
- [6] R. G. Pearson, *Chemical Hardness*, Wiley-VCH, Weinheim, New York 1997.
- [7] U. Kunze, I.-P. Lorenz, *Gruppentheorie und Molekülsymmetrie*, *Skriptum zur Vorlesung* **1984**, 54.
- [8] H. J. Verweel, J. M. Bijvoet, Z. Kristallogr. 1938, 100, 210.

- [9] O. Reckeweg, A. Simon, Z. Naturforsch. 2003, B 58, 1097.
- [10] M. Becker, J. Nuss, M. Jansen, Z. Naturforsch., 2000, B 55, 383.
- [11] O. Reckeweg, F. J. DiSalvo, Z. Naturforsch. 2008, B 63, 530.
- [12] A. Perret, Bl. Soc. Ind Mulhouse 1933, 99, 10.
- [13] H. Hartmann, W. Eckelmann, Z. anorg. Chem. 1948, 257, 183.
- [14] U. Berger, W. Schnick, J. Alloys Comp. 1994, 206, 179.
- [15] J. Glaser, L. Bettentrup, T. Jüstel, H.-J. Meyer, Inorg. Chem. 2010, 49, 2954.
- [16] A. Harper, P. Hubberstey, J. Chem. Res. (S) 1989, 194.
- [17] M. Becker, J. Nuss, M. Jansen, Z. Anorg. Allg. Chem. 2000, 626, 2505.
- [18] O. Reckeweg, F. J. DiSalvo, Z. Anorg. Allg. Chem. 2003, 629, 177.
- [19] W. Liao, R. Dronskowski, Z. für Anorg. Allg. Chem. 2005, 631, 496.
- [20] M. Neukirch, S. Tragl, H.-J. Meyer, Inorg. Chem. 2006, 45, 8188.
- [21] R. Srinivasan, J. Glaser, S. Tragl, H.-J. Meyer, Z. Anorg. Allg. Chem. 2005, 631, 479.
- [22] R. Srinivasan, M. Ströbele, H.-J. Meyer, Inorg. Chem. 2003, 42, 3406.
- [23] X. Liu, M. Krott, P. Mueller, C. Hu, H. Lueken, R. Dronskowski, *Inorg. Chem.* 2005, 44, 3001.
- [24] L. Unverfehrt, J. Glaser, M. Ströbele, S. Tragl, K. Gibson, H.-J. Meyer, Z. Anorg. Allg. Chem. 2009, 635, 479.
- [25] Y. Ni, J. M. Hughes, A.N. Mariano, Am. Mineralogist 1993, 78, 415.
- [26] M. G. Down., M. J. Haley; P. Hubberstey, R. J. Pulham, A. E. Thunder, *Inorg. Chem.* 1978, 1978, 1407.
- [27] M. Becker, M. Jansen, Solid State Sciences 2000, 2, 711.
- [28] W. Liao, R. Dronskowski, Acta Crystallogr. E, Structure Reports Online 2000, 60, i124.
- [29] R. Dronskowski, Z. für Naturforsch., 1995, B 50, 1245.
- [30] X. Liu, A. Decker, D. Schmitz, R. Dronskowski, Z. Anorg. Allg. Chem. 2000, 626, 103.
- [31] X. Tang, H. Xiang, X. Liu, M. Speldrich, R. Dronskowski, Angew. Chem. 2010, 122, 4846.
- [32] X. Liu, L. Stork, M. Speldrich, H. Lueken, R. Dronskowski, *Chemistry A European Journal* 2009, 15, 1558.
- [33] M. Krott, X. Liu, B. P. T. Fokwa, M. Speldrich, H. Lueken, R. Dronskowski, *Inorg. Chem.* 2007, 46, 2204.
- [34] X. Liu, M. A. Wankeu, H. Lueken, R. Dronskowski, Z. Naturf., 2005, B 60, 593.
- [35] M. Becker, M. Jansen, Acta Crystallogr. 2001, 57, 347.
- [36] G. Baldinozzi, B. Malinowska, M. Rakib, G. Durand, J. Mat. Chem. 2002, 12, 268.

- [37] M. Becker, M. Jansen, Z. Anorg. Allg. Chem. 2000, 626, 1639.
- [38] X. Liu, P. Müller, P. Kroll, R. Dronskowski, Inorg. Chem. 2002, 41, 4259.
- [39] O. Reckeweg, T. Schleid, F. J. DiSalvo, Z. Naturforsch., 2007, B 62, 658.
- [40] J. Glaser, L. Unverfehrt, L. Bettentrup, H. Heymann, G. Huppertz, T. Jüstel, H.-J. Meyer, *Inorg. Chem.* 2008, 47, 10455.
- [41) Y. Hashimoto, M. Takahashi, S. Kikkawa, F. Kanamaru, J. Solid State Chem. 1995, 114, 592.
- [42] R. Srinivasan, S. Tragl, H.-J. Meyer, Z. Anorg. Allg. Chem. 2005, 631, 719.
- [43] J. Sindlinger, *Wissenschaftliche Arbeit*, Eberhard-Karls-Universität Tübingen 2006.
- [44] J. Glaser, H.-J. Meyer, Angew. Chem. 2008, 47, 7547.
- [45] Y.-C. Wu, T.-N. Chen, C.-H, Chiu, C.-N. Mo, J. Elektrochem. Soc. 2010, 157, 342.
- [46] WinXPOW, Diffraktometersoftware, Version 1.2, Stoe & Cie GmbH, Darmstadt, 2001.
- [47] G. M. Sheldrick: SHELX-97: Programmpaket zur Lösung und Verfeinerung von Kristallstrukturen, Göttingen, 1997.
- [48] K. Rajeshwar, E. A. Secco, Can. J. Chem. 1977, 55, 2620.
- [49] A. Nägele, K. Gibson, J. Glaser, H.-J. Meyer, Z. Anorg. Allg. Chem. 1999, 625, 1.
- [50] B. Wissmann, *Dissertation* Eberhard-Karls-Universität Tübingen 2001.
- [51] M. Krings, M. Wessel, W. Wilsmann, P. Müller, R. Dronskowski, *Inorg. Chem.* 2010, 49, 2267.
- [52] G. Meyer, Inorg. Synth. 1989, 25, 146,
- [53] W. Klemm, W. Döll, Z. Anorg. Allg. Chem. 1939, 241, 233.
- [54] G, Brauer, *Handbuch der Präparativen Anorganischen Chemie 2. Bd.*, 1978, Ferdinand Enke Verlag Stuttgart, 1073, S. 1105.
- [55] B. Tanguy, J. Portier, M. Vlasse, M. Pouchard, Bull. Soc. Chim. 1972, 3, 946.
- [56] W. Göpel, C. Ziegler, Struktur der Materie: Grundlagen, Mikroskopie und Spektroskopie, B. G. Teubner Verlagsgesellschaft Stuttgart Leibzig 1994, 482.
- [57] S. Hüfner, P. Kienle, D. Quitmann, P. Brix, Z. Physik 1965, 187, 67.
- [58] J. Röhler, G. Kaindl, Solid State Comm. 1980, 36, 1055.
- [59] H. Grossholz, I. Hartenbach, G. Kotzyba, R. Pöttgen, H. Trill, B. D. Mosel, T. Schleid, J. Solid State Chem. 2009, 112, 3071.
- [60] R. P. Hermann, F. Grandjean, *Inorg. Chem.* **2004**, 43, 7005.
- [61] H. Lueken, Magnetochemie, Teubner Studienbücher Chemie 1999, S. 38, 153, 273.
- [62] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, Georg Thieme Verlag, Stuttgart New York, 2. Auflage 1984.

- [63] L. Unverfehrt, J. Glaser, M. Ströbele, H.-J. Meyer, Z. Anorg. Allg. Chem. 2009, 635, 1957.
- [64] B. Tanguy, M. Pezat, J. Portier, P. Hagenmüller, Mat. Res. Bull. 1971, 6, 57.
- [65] T. Vogt, E. Schweda, J. P. Laval, B. Frit, J. Solid State Chem. 1989, 83, 324.
- [66] R. Juza, F. Hund, Z. anorg. Chem. 1948, 257, 13.
- [67] D. Williams, B. Pleune, K. Leinenweber, J. Kouvetakis, J. Solid State Chem. 2001, 159, 244.
- [68] O. Reckeweg, A. Simon, Z. Naturforsch. 2002, 57, 895.
- [69] G. A. Bowmaker, B: J: Kennedy, J. C. Reid, Inorg: Chem. 1998, 37, 3968.
- [70] S. J. Hibble, S. M. Cheyne, A. C. Hannon, S. G. Eversfield, *Inorg. Chem.* 2002, 41, 1042.
- [71] H. Schulz, K. H. Thiemann, Solid State Comm. 1977, 23, 815.
- [72] V. Urban, *Dissertation*, FU Berlin 2000.
- [73] H. D. Lutz, N. Lange, H. Jacobs, B. Nöcker, Z. Anorg. Allg. Chem. 1992, 613, 83.
- [74] U. Berger, W. Milius, W. Schnick, Z. Anorg. Allg. Chem. 1995, 621, 2075.
- [75] T. Visser, J. H. van der Maas, J. Raman Spectroscopy 1978, 7, 278.
- [76] D. Durand, L. C. Scavarda do Carmo, F. Lüty, Phys. Rev. B 1989, 39, 6096.
- [77] R. L. Frost, A. W. Musumeci, J. Boucaid, M. O. Adebajo, W. N. Martens, J. T. Kloprogge, J. Solid State Chem. 2005, 178, 1940.
- [78] A. Huq, J. W. Richardson, E. R. Maxey, D. Chandra, C. Wenming, *J. Alloys Compd.* 2007, 436, 256.
- [79] R. D. Shannon, Acta Cryst. 1976, A 32, 751.

Meine akademischen Lehrer waren:

E. Bayer, M. Brendle, H. Eckstein, G. Gauglitz, W. Göpel, G. Häfelinger, H. Hagenmaier, M. Hanack, V. Hoffmann, G. Jung, S. Kemmler-Sack, D. Krug, E. Lindner, I.-P. Lorenz, H. J. Meyer, W. Nakel, H. Oberhammer, D. Oelkrug, H. Pauschmann, G. Pausewang, H. Pommer, V. Schurig, E. Schweda, F. Seelig, H. Stegmann, J. Strähle, W. Voelter, C. Ziegler