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Zusammenfassung 

Retrotransposons sind mobile genetische Elemente, die sich über einen "copy-and-

paste" Mechanismus replizieren, bei dem eine neue Kopie ihrer DNA im Genom 

erzeugt wird. Sie spielten eine wichtige Rolle in der Evolution von eukaryotischen 

Genomen. Im humanen Genom ist LINE-1 (L1) das am häufigsten vorkommende 

Retrotransposon, wo es 17% der gesamten genomischen DNA ausmacht. L1 hatte 

somit einen großen Einfluss auf die Evolution des humanen Genoms und ist auch 

heute noch aktiv.  Es wird als wichtigste Quelle für humane interindividuelle 

genomische Variation betrachtet. Des Weiteren wird es in Zusammenhang mit 

verschiedenen menschlichen Krankheiten gebracht. Während die Datenfülle zur 

Bedeutung des L1 Elements über die letzten Jahre ständig anwuchs, blieben die 

mechanistischen Grundlagen des Retrotranspositionsprozesses weiterhin 

weitgehend unverstanden. 

Die Retrotransposition von L1 verläuft über "target-primed reverse 

transcription" (TPRT). Hierbei sind die reverse Transkription eines RNA-

Intermediates des mobilen Elementes und die Integration der entstehenden Kopie in 

das Genom direkt gekoppelt.  Dies ist der typische Mechanismus für non-LTR 

Retrotransposons, d.h. für Retrotransposons, die keine langen terminalen 

Sequenzwiederholungen aufweisen ("long terminal repeats", LTRs). Die beiden von 

L1 kodierten Proteine, L1ORF1p und L1ORF2p, sind beide essentiell für die 

Retrotransposition. L1ORF2p enthält eine Endonukleasedomäne und eine Domäne 

für die reverse Transkriptase. Die Rolle von L1ORF1p hingegen war zu Beginn 

dieser Arbeit wesentlich unklarer, da keine Sequenzhomologie zu Proteinen 

bekannter Funktion erkennbar war. Es war lediglich bekannt, dass die N-terminale 

Hälfte von L1ORF1p eine "coiled coil" enthält, die für die Oligomerisierung zuständig 

ist, und dass die C-terminale Hälfte positiv geladen ist und Nukleinsäuren bindet. Um 

die Funktionsweise und Phylogenie des L1ORF1p zu verstehen, beabsichtigten wir 

deshalb dessen Struktur mittels Röntgenkristallographie zu ermitteln. 

Im ersten Teil dieser Arbeit identifizierten wir mittels bioinformatischer 

Methoden eine nicht-kanonische RRM (RNA recognition motif) Domäne sowohl im 

humanen L1ORF1p Protein als auch in vielen phylogenetisch unverwandten ORF1p 

Proteinen anderer non-LTR Retrotransposons. Damit konnten wir zeigen, dass die 

ORF1p Proteine von non-LTR Retrotransposons trotz der häufigen Präsenz von 
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Gag-ähnlichen CCHC Zinkfingern nicht mit dem retroviralen protein Gag verwandt 

sind. Insgesamt besteht das humane L1ORF1p Protein somit aus einer N-terminalen 

"coiled coil", einer zentralen RRM Domäne und einer zusätzlichen C-terminalen 

Domäne (CTD). Wir bestimmten die Grenzen der drei genannten Domänen auf 

experimentelle Weise und zeigten, dass die "coiled coil" sowohl notwendig als auch 

hinreichend für eine Trimerisierung des Proteins ist. Am wichtigsten war dabei die 

Kristallstruktur, die wir für die isolierte humane RRM Domäne bestimmen konnten. 

Diese zeigt konservierte Salzbrücken, die verlängerte Schleifen der L1ORF1p RRM 

Domäne stabilisieren und ein besonderes Charakteristikum der L1ORF1p RRM 

Domäne darstellen. Des Weiteren zeigten wir, dass für die Nukleinsäurebindung die 

RRM- und die CTD Domäne auf einer gemeinsamen Polypeptidkette liegen müssen. 

Es werden vorrangig einzelsträngige Substrate gebunden, und wir bestimmten für die 

Bindung notwendige Aminosäuren (Khazina und Weichenrieder, 2009). Anhand einer 

NMR Struktur, die wir für ein RRM-CTD Konstrukt bestimmt haben, sieht man 

allerdings, dass zwischen den beiden Domänen in der Abwesenheit der N-terminalen 

keine spezifischen Bindungen ausgebildet werden. Somit blieb weiterhin unklar, wie 

die RRM und CTD Domänen bei der Nukleinsäurebindung kooperieren, welche Rolle 

die "coiled coil" dabei spielt, und warum einzelsträngige Substrate bevorzugt werden. 

Diese Fragen wurden im zweiten Teil dieser Arbeit beantwortet. Hierzu lösten 

wir die Strukturen dreier Kristallformen des humanen L1ORF1p Trimers, aus denen 

ersichtlich wird, dass die "coiled coil" als zentrales Gerüst für die flexible 

Verankerung der RRM und CTD Domänen fungiert. Der Aufbau erinnert an die 

trimeren "coiled coils" von viralen Fibern und Membranfusionsproteinen, auch auf 

Grund von Ionen, die von polaren Resten im Kern der "coiled coil" koordiniert 

werden. Des Weiteren bieten die Strukturen einen grundsätzlichen Einblick in die 

Flexibilität eines RNA Bindeproteines, das aus mehreren Domänen besteht. Es wird 

ersichtlich, wie die RRM und CTD Domänen zusammen Nukleinsäuren binden 

können, ohne dabei gegenseitig spezifische Bindungen auszubilden. Das 

Oberflächenpotential des Proteins legt nahe, dass einzelsträngige Nukleinsäuren um 

das Molekül herum, in den besonders stark positiv geladenen Spalten zwischen den 

RRM und CTD Domänen, binden. Da die Abmessungen und Verkrümmungen dieser 

Spalten eine Bindung doppelsträngiger Substrate nicht zulassen würde, ergibt sich 

aus diesem Modell auch die Präferenz für einsträngige Substrate. Um diesen 

vorgeschlagenen Substratbindemodus zu verifizieren machten wir Bindeexperimente 
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in vitro, wobei wir Präferenzen für bestimmte Nukleinsäuresubstrate feststellen 

konnten. Abschließend führten wir in vivo eine Mutationsanalyse durch, die nicht nur 

bestätigt, dass die filigrane Architektur von L1ORF1p höchst relevant für die 

Retrotransposition ist, sondern auch auf weitere mögliche Funktionen von L1ORF1p 

hinweist, die über RNA-Bindung hinausgehen. (Khazina et al., 2011). 

Die Resultate dieser Arbeit bieten einen wichtigen Einblick sowohl in die 

Funktion und molekularen Mechanismen des L1ORF1p Proteins, als auch in seine 

evolutionäre Geschichte. Sie werden die Forschung in vielen Feldern wie 

Zellbiologie, Strukturbioloie, Virologie, Genomevolution und Medizin erheblich 

vorantreiben. 
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Summary 

Retrotransposons are mobile genetic elements, which replicate via a “copy-and-

paste” mechanism, thereby creating a new copy of their DNA in the genome. 

Retrotransposons have played an important role in the evolution of eukaryotic 

genomes. LINE-1 (L1) is the most abundant retrotransposon in the human genome, 

directly accounting for 17% of the genomic DNA. L1 has shaped the human genome 

in many ways during evolution and is still active nowadays. It is considered as the 

major source of human interindividual genetic variation, and has been implicated in 

several human diseases as well. While data on the impact and significance of the L1 

element has been accumulating in recent years, the understanding of the underlying 

molecular mechanism of retrotransposition has been lagging behind. 

L1 retrotransposes via target-primed reverse transcription (TPRT), where the 

reverse transcription of an RNA intermediate is coupled to the integration of the new 

copy of mobile element into the genome. This mechanism is typical for all 

retrotransposons that lack long terminal repeats (non-LTR retrotransposons). L1 

encodes two proteins called L1ORF1p and L1ORF2p. Both proteins are essential for 

retrotransposition. L1ORF2p contains a nicking endonuclease and a reverse 

transcriptase domain. The role of L1ORF1p was much more elusive in the beginning 

of this PhD thesis, because it lacks sequence homology with any protein of known 

function. It only was known that the N-terminal half of the L1ORF1p contains a coiled 

coil, which mediates multimerization of the protein, and that the C-terminal half of the 

protein is positively charged and binds nucleic acids. To understand the molecular 

mechanics and phylogeny of L1ORF1p we decided to obtain a high resolution 

structure of the protein. 

In the first part of my thesis we used bioinformatics to identify a non-canonical 

RRM (RNA recognition motif) domain within human L1ORF1p, as well as in the 

ORF1p proteins from many phylogenetically unrelated non-LTR retrotransposons. 

This showed that the ORF1p proteins from non-LTR retrotransposons are not related 

to the retroviral protein Gag, despite the presence of Gag-like CCHC zinc knuckles in 

many of them. 

In addition to the central RRM domain of the L1ORF1p, we experimentally 

determined the domain boundaries of the coiled coil and of a C-terminal domain 

(CTD), and we showed that coiled coil is necessary and sufficient for a trimerization 
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of human L1ORF1p. Most importantly, we crystallized the human RRM domain and 

determined a high resolution crystal structure, revealing extended loops stabilized by 

conserved salt bridges as a characteristic feature of the L1ORF1p RRM domain. 

Furthermore, we found that nucleic acid binding requires both RRM and CTD 

domains on the same polypeptide chain, and we identified residues required for that 

function (Khazina and Weichenrieder, 2009). However, an NMR structure that we 

determined for the RRM-CTD construct did not reveal any contact between the RRM 

and CTD domains in the absence of the coiled coil. As a consequence, it still was not 

clear how RRM and CTD domains cooperate in nucleic acid binding, why single-

stranded substrates would be preferred and what the role of the coiled coil was. 

These questions were answered in the second part of my thesis. For that, we 

solved three crystal forms of the human L1ORF1p trimer, which show that the coiled 

coil serves as a scaffold for the flexible attachment of the RRM and CTD domains. 

The assembly is similar to the trimeric coiled coils of viral fibres and membrane fusion 

proteins, also because of ions that are coordinated by polar residues in the core of 

the coiled coil. Furthermore, the structures provide an insight into the flexibility of a 

multidomain RNA binding protein and suggest how the RRM and CTD domains can 

cooperate in nucleic acid binding without directly contacting each other. The surface 

potential of the protein indicates single-stranded nucleic acids to bind around the 

molecule in the highly positively charged cleft between RRM and CTD domains. The 

depth and curvature of this cleft do not allow accommodation of a double-stranded 

nucleic acid substrate, explaining the preference for single strands. To validate the 

putative nucleic acid binding surfaces, we did in vitro binding experiments that also 

revealed preferences for certain nucleic acid substrates. Finally, we did a mutational 

analysis in vivo showing that the delicate architecture of L1ORF1p is highly relevant 

for retrotransposition and indicating functions of L1ORF1p that go beyond RNA 

binding (Khazina et al., 2011). 

Together, the results obtained during my PhD studies provide an important 

insight into the function and molecular mechanics of the L1ORF1p, as well as its 

evolutionary history. These data will advance research in many fields including cell 

and structural biology, virology, genome evolution and medicine. 
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1 Introduction 

1.1 Different types of mobile elements in the human 
genome 

The completion of the first human genome sequence revealed that nearly half of our 

genome is derived from transposable elements (also known as ‘jumping genes’), 

discrete pieces of DNA that can move within the genome. This fact is especially 

striking because the protein-coding regions comprise only 1.5% of the human 

genomic DNA (Lander et al., 2001) (Fig.1). 

 

Fig. 1. Composition of the human genome. 

Based on the mechanism used for transposition, mobile elements can be divided into 

two major classes: DNA transposons and retrotransposons. DNA transposons can 

excise themselves from the genome, move as DNA and insert themselves into new 

genomic sites (Craig, 2002). This is called ‘cut-and-paste’ mechanism. Nowadays, 

DNA transposons are not active in the human genome, but they were active during 

early primate evolution until ~ 37 million years (Myr) ago (Pace and Feschotte, 2007). 

Retrotransposons replicate via an RNA intermediate that is reverse 

transcribed and inserted into a new genomic location (Craig, 2002) (Fig.2). This way 

of transposition is also known as ‘copy-and-paste’ mechanism. 
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Fig. 2. Propagation of retrotransposons. 

Retrotransposons can be subdivided into two groups distinguished by the presence 

or absence of long terminal repeats (LTRs). LTRs are repetitive sequences of 300 - 

1000 bp in length that are found directly at 5’ and 3’ ends of long terminal repeat 

(LTR) retrotransposons and retroviruses. The replication mechanism of LTR 

retrotransposons is very similar to the one used by retroviruses. An example for 

human LTR elements is endogenous retroviruses (HERVs), which along with related 

elements account for ~ 8% of the genomic DNA (Fig.1). Most HERVs inserted in the 

human genome more than 25 Myr ago, and presently are virtually inactive (Lander et 

al., 2001) (Mills et al., 2007). 

Non-LTR retrotransposons (NLRs, lacking LTRs) replicate via the target-

primed reverse transcription (TPRT), which is fundamentally different from the 

replication mechanism used by LTR retrotransposons and retroviruses. LINE-1 (L1) 

is the most abundant non-LTR element in the human genome, directly accounting for 

17% of genomic DNA, and is still active nowadays. The insertion rate is estimated to 

be 1 insertion in every 100 newborns (Huang et al., 2010). Alu and SVA elements 

comprise another 11% of the genome and are also active through the use of the L1 

retrotransposition machinery (Lander et al., 2001) (Belancio et al., 2008) 

(Dewannieux et al., 2003). 

1.2 Non-LTR retrotransposons in the human genome 

Non-LTR retrotransposons are currently the only active elements in the human 

genome, as mentioned above. Therefore it is interesting to look more in detail at the 

structure of these elements and mechanism of transposition. 
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1.2.1 The L1 element – gene structure and retrotransposition 
cycle 

There are more than 500.000 copies of L1 in the human genome, but only ~ 100 of 

them are functional full-length elements (Brouha et al., 2003). The full-length L1 is ~ 

6 kb long and consists of a 5’ UTR containing an internal RNA polymerase II 

promoter (shown as a black arrow in Fig.3), two open reading frames (L1ORF1p and 

L1ORF2p) and a 3’ UTR ending with an oligo(A)-rich tail of variable length (see for a 

recent review Cordaux and Batzer, 2009) (Fig.3). 

 

Fig. 3. A full-length L1 element. 

L1ORF1p encodes a 40 kDa protein, which binds single-stranded nucleic acid and is 

necessary for RNP formation (see below). L1ORF2p encodes a 150 kDa multidomain 

protein containing an N-terminal endonuclease (EN), a reverse transcriptase (RT), 

and a cysteine-rich C-terminal CCHC zinc-knuckle motif (Z) of unknown function. The 

crystal structure of the endonuclease domain shows that it is closely related to the 

human apurinic/apyrimidinic DNA repair endonuclease (APE1) and its nicking 

specifity together with other parameters is important for integration site selection. 

(Weichenrieder et al., 2004) (Repanas et al., 2007) (Fig 4). 

 

Fig. 4. The crystal structure of L1 endonuclease. 
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The reverse transcriptase seems most closely related to telomerase RT, both 

mechanistically and on the sequence level (A.M. Schneider and O. Weichenrieder, 

unpublished data). 

The molecular machinery encoded by L1ORF1p and L1ORF2p is required for 

L1 retrotransposition. First, the transcribed L1 RNA is exported into the cytoplasm, 

where it is translated. Both encoded proteins, L1ORF1p and L1ORF2p associate with 

the L1 RNA molecule, from which they have been translated (Fig. 5) (Wei et al., 

2001). 

 

Fig. 5. Retrotransposition cycle of L1. 

The mechanism for this apparent cis-preference is not yet understood, but it assures 

that only functional L1 RNA is incorporated into L1 RNPs (Wei et al., 2001). After 

RNPs are imported back into the nucleus, the endonuclease domain of L1ORF2p 

nicks chromosomal DNA at a preferential site. This frees a 3’ hydroxyl group on the 

nicked DNA strand that serves as a substrate for the reverse transcriptase domain of 

L1ORF2p to carry out the reverse transcription. It is unclear how the second DNA 

strand is nicked and how the integration of the element is finished. This process of 

the L1 integration into a genome is also known as target-primed reverse transcription 

(TPRT) (Luan et al., 1993) (Cost et al., 2002). 

Both L1ORF1p and L1ORF2p are essential for the L1 retrotransposition. The 

fact that L1 encodes its own reverse transcriptase makes it the only autonomous 
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element in the human genome. Other non-LTR retrotransposons use the L1 

machinery for their propagation, and therefore are called non-autonomous elements. 

1.2.2 The Alu element 

The most abundant non-autonomous non-LTR retrotransposons in the human 

genome are Alu elements. With more than 1 million copies they are the most 

successful elements in the genome in terms of copy number (Lander et al., 2001). A 

full-length Alu element is ~ 300 bp long and has a dimeric structure formed by the 

fusion of two monomers derived from the 7SL RNA gene (a component of the signal 

recognition particle) (Ullu and Tschudi, 1984) (Fig.6). 

 

Fig. 6. Alu element. 

The monomers are separated by an A-rich linker region. The 5’-region contains an 

internal RNA polymerase III promoter (A and B boxes, shown as arrows in Fig.6) and 

the element ends with an oligo(A)-rich tail of variable length (Batzer and Deininger, 

2002). Alu elements do not encode proteins, but, likely, use the L1 retrotransposition 

machinery and transpose via the TPRT mechanism (Dewannieux et al., 2003). It is 

not clear how they recruit the L1ORF2p protein so efficiently, because, as mentioned 

above, L1 encoded proteins show a strong cis-preference for L1 RNA. After 

transcription Alu RNA is exported to the cytoplasm, where it forms RNPs with SRP9 

and SRP14 proteins (Chang et al., 1996). One likely hypothesis is that the Alu RNPs 

interact with ribosomes positioning Alu RNA in proximity to the nascent L1ORF2p 

(Boeke, 1997). Another possibility is that Alu RNPs recruit L1ORF2p in the nucleus 

and then directly proceed with TPRT (GarciaPerez et al., 2007). L1ORF1p seems not 

required, but can enhance the Alu retrotransposition (Dewannieux et al., 2003) 

(Wallace et al., 2008). 
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1.2.3 The SVA element 

Another example of non-autonomous non-LTR rerotransposons are SVA elements. 

There are ~ 3000 copies of SVA element in the human genome. A full-length SVA 

element is ~ 2 kb long and consists of a hexamer repeat region, an Alu-like region, a 

region composed of a variable number of tandem repeats (VNTR), a HERV-K10-like 

region and an oligo(A)-rich tail of variable length (Ostertag et al., 2003) (Wang et al., 

2005) (Fig.7). 

 

Fig. 7. SVA element. 

SVA elements lack an internal promoter, so they have to rely on promoter activity in 

flanking regions. It was suggested that SVA elements are transcribed by RNA 

polymerase II. SVA elements, like Alu elements, do not encode any proteins and are 

mobilized by the L1 retrotransposition machinery (Ostertag et al., 2003) (Wang et al., 

2005). It is still unclear which determinants in an SVA element allow it to gain access 

to the L1ORF2p protein and at which stage of retrotransposition this happens 

(Hancks and Kazazian, 2010). 

1.3 Impact of non-LTR retrotransposons on the human 
genome evolution 

Although the first mobile elements were discovered in the 1940s by Barbara 

McClintock (McClintock, 1956), their functional significance has been long 

underestimated. Transposable elements were even called selfish DNA or “junk DNA”. 

But over the past decades the knowledge about how mobile elements affect our 

genome has accumulated, revealing that non-LTR retrotransposons have a huge 

impact on both the structure and function of the genome. 
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1.3.1 Impact of non-LTR retrotransposons on human genome 
structure 

There are 65 cases known where non-LTR retrotransposons insertions caused 

heritable human diseases, such as haemophilia, cystic fibrosis, neurofibromatosis 

and others (reviewed in Han and Boeke, 2005). Insertional mutagenesis that 

occurred in these cases is only one of the many ways in which retrotransposons can 

generate genomic instability (Fig. 8). 

 

Fig. 8. Impact of retrotransposons on human genome structure (adopted from 

Cordaux and Batzer, 2009). 

L1 can integrate into DNA with double-strand breaks (DSBs) in an endonuclease-

independent way, thereby repairing the DSBs (Morrish et al., 2002). L1ORF2p can 

also generate DSBs itself, many of which are not associated with the L1 insertions 

and are prone to recombination (Gasior et al., 2006) (Fig.8b). Disfunctional 

telomeres also can serve as a substrate for the endonuclease-independent L1 

insertions. This lead to the hypothesis by Morrish et al. that the endonuclease-

indepent retrotransposition is an ancient mechanism of RNA-mediated DNA repair, 

which existed before L1 acquired an endonuclease activity (Morrish et al., 2007). 

ORF2p 
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L1 and SVA elements can sometimes carry upstream or downstream flanking 

sequences, which also become integrated in the genome along with the mobile 

element sequence. This process is called 5’ or 3’ transduction, respectively (Fig. 8c). 

5’ transduction occurs when transcription starts from the promoter located upstream 

and continues into the retrotransposon sequence. In case of 3’ transduction, the RNA 

transcription does not terminate at the weak polyadenylation signal in the mobile 

element, but at an alternative signal located further downstream (Wang et al., 2005) 

(Moran et al., 1999). Transduction can lead to the exon shuffling and creation of new 

genes. One example is the SVA-mediated transduction of the AMAC1 (acyl-malonyl 

condensing enzyme 1) gene, which resulted in the formation of a new gene family in 

the human genome (Xing et al., 2006). 

Due to the high copy number of L1 and Alu elements in the genomic DNA, 

recombination between non-allelic copies of these elements can occur (Fig. 8d). 

Such recombination can lead to deletions, duplications or inversions of the genome 

fragments. In particular, Alu elements are known to be significantly enriched at the 

boarders of the segmental duplications in the human genome. Segmental 

duplications are quite large stretches of DNA (>10 kb) with more than 90% sequence 

identity. The role of Alus in creating segmental duplications might be important since 

about 5% of the human genome has been duplicated in the past 40 Myr (Bailey et al., 

2003). Deletions mediated by the recombination between retrotransposons are also 

an important source of genetic variation, and in several cases such deletions have 

been reported to cause diseases (Deininger and Batzer, 1999) (Han et al., 2008). 

Deletions of the integration site can be also occasionally generated by L1 and 

Alu elements in the retrotransposition process (Fig. 8e). One of the examples is the 

L1 mediated deletion of 46 kb DNA from the gene encoding pyruvate dehydrogenase 

complex, component X (PDHX), which caused the pyruvate dehydrogenase complex 

deficiency (Mine et al., 2007). 

1.3.2 Impact of non-LTR retrotransposons on human gene 
expression 

Apart from changing the human genome structure in the ways described above, 

retrotransposons also have a considerable effect on the gene expression, since 

about 80% of human genes contain a L1 insertion.  
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One way how L1 and Alu elements affect the gene expression is providing 

alternative splicing sites and promoting exonization (Fig. 9a). Another, more subtle 

way is an attenuation of the gene expression. Transcription levels of the genes 

containing L1 insertions can decrease because polymerase is known to stall in the L1 

sequence. Polyadenylation signals in the mobile element can also lead to a 

premature termination of the gene transcript (Han et al., 2004) (Fig. 9b). 

The third way, in which L1 can modulate gene expression, is generation of 

transcripts in both directions from its sense and antisense promoters. Transcription 

from the antisense promoter may regulate the expression of some genes (Fig. 9c) 

(Faulkner et al., 2009). 

Finally, L1 and Alu insertions are often silenced through the DNA methylation, 

which is one of the mechanisms used by cells to protect the genome. Silencing could 

also spread to genes nearby the insertion and repress their transcription (Hata and 

Sakaki, 1997) (Rubin et al., 1994) (Fig. 9d). L1 induced silencing is important for X 

chromosome inactivation in eutherians (Chow et al., 2010). 

 

Fig. 9. Impact of retrotransposons on gene expression (adopted from Cordaux 
and Batzer, 2009). 

1.3.3 Mechanisms used by the cell to control non-LTR 
retrotransposition 

With so many ways of how retrotransposons can affect the genome structure and 

function, the cell has developed several mechanisms in order to protect the integrity 

of the genome. 
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One of these ways is methylation of retrotransposon sequences, as 

mentioned above. It is especially important in the germline cells. In mice, a knockout 

of the Dnmt3L gene, which encodes a de novo methyltransferase, leads to the 

activation of L1 and other retrotransposons in the sperm cells precursors, and, 

consequently, to a failure of the male germline (Bourchis and Bestor, 2004). 

Recently, another type of chromatin modification, histone deacetylation, has 

been involved to play a role in the silencing of freshly delivered engineered L1 

insertions in human embryonic carcinoma cells (GarciaPerez et al., 2010). This 

silencing requires the insert to be integrated via TPRT. 

It is suggested that RNA-based silencing mechanisms are used for the 

retrotransposon inhibition as well. The activity of the L1 antisense promoter leads to 

production of small antisense RNAs, and it has been shown that depletion of Dicer in 

the cells transfected with L1 element results in decreased levels of retrotransposition 

(Yang and Kazazian, 2006). Several studies have shown piRNAs to be involved in 

the repression of retrotransposition during the germline development. Mutations in 

Piwi proteins in mice lead to the increase in activity of L1 and other elements in 

spermatocytes (Aravin et al., 2007). However, this does not seem to be a 

consequence of RNA slicing activity of the Piwi proteins, but rather an indirect effect 

of the piRNAs on DNA methylation patterns. This view is corroborated by recent 

studies showing that Tudor domain-containing (TDRD) proteins are also involved in 

piRNA mediated repression of retrotransposons. MILI and MIWI2 proteins, which are 

responsible for piRNA biogenesis in mice, interact with TDRD1 and TDRD9, 

respectively. MILI/TDRD1 complex localizes to pi-bodies, which are the hypothetical 

sites for processing transposon transcripts into piRNAs (Aravin et al., 2009) (Reuter 

et al., 2009). Activity of this complex is crucial for de novo methylation of 

retrotransposons in the mouse germ line (Aravin et al., 2008). TDRD9 is essential for 

male fertility. Tdrd9 mutant germ cells lack L1-derived piRNAs and are also defective 

in de novo methylation of L1 retrotransposons (Shoji et al., 2009). MIWI2 and TDRD9 

localize to cytoplasmic granules, distinct from pi-bodies. These granules contain 

components typical for P-bodies, enriched in translationally repressed mRNAs, such 

as GW182, DCP1a and DDX6 (Shoji et al., 2009). The existence of such chimeric 

piP-bodies suggests cooperation between the piRNA and RNA silencing pathways. 

Another line of retrotransposition control is carried out by the APOBEC 

proteins. There are seven different APOBEC3 protein forms encoded in the human 
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genome. They were first identified due to their role in the HIV replication inhibition. 

APOBEC3A inhibits L1 retrotransposition, with APOBEC3B and 3C involved in this 

process to a lesser extent. APOBEC3G inhibits Alu activity. The mechanism of 

retrotransposon inhibition by APOBEC proteins is not clear (see Schumann, 2007 for 

a review). 

1.3.4 L1 retrotransposition activity in the germline and somatic 
cells 

Despite different control mechanisms, in some cells non-LTR retrotransposons are 

active. It would be beneficial for a mobile element to retrotranspose in germline cells 

or their precursors in the embryo, so that the new insertion is passed to future 

generations, and this is really the case: L1 insertions and higher levels of L1ORF1p 

have been observed in mouse germ cells, theca cells of adult ovaries and in 

embryonic testis (Ostertag et al., 2002) (Trelogan and Martin, 1995). 

L1ORF1p and full-length RNA transcripts have been detected also in several 

transformed cell lines (Garcia-Perez et al., 2007). In a recent study Iskow et al. 

detected new L1 insertions occuring at high frequency in human lung cancer 

genomes. Genome-wide analyses of methylation status suggest that altered DNA 

methylation may be responsible for the high levels of L1 retrotransposition observed 

in these tumors (Iskow et al., 2010). In general, the loss of methylation associated 

with cancer could lead to derepression of mobile elements, while new insertions 

would further promote the genetic instability in cancer cells (Schulz, 2006). 

However, in some cases L1 retrotransposition has been observed in somatic 

cells as well. First, it was shown that L1 can retrotranspose in the brain stem cells in 

transgenic mice (Muotri et al., 2005). Then, human neural progenitor cells, derived 

either from fetal brain or from embryonic stem cells, were found to support L1 

retrotransposition as well. A highly sensitive quantitative PCR method was used to 

show that retrotransposition occurs in neural progenitor cells also in vivo (Coufal et 

al., 2009). These results suggest that L1 plays a role in creating interindividual 

differences through its activity in brain cells. 

The role of L1 retrotransposition in creating interindividual genetic variation is 

supported also by recent genome-wide assays, which draw a much more dynamic 

portrait of our genome than previously appreciated (Beck et al., 2010) (Ewing and 

Kazazian, 2010) (Huang et al., 2010) (Iskow et al., 2010). Remarkably, the bulk of L1 
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retrotransposition activity results from only ~80 to 100 highly active elements in each 

individual human genome, which generally are very dimorphic (allele frequencies < 

5%) and hence not systematically explored yet (Beck et al., 2010) (Huang et al., 

2010). 

1.4 Origin and function of the L1ORF1p 

Many non-LTR retrotransposons encode a protein (ORF1p) upstream of the reverse 

transcriptase and endonuclease (ORF2p). For L1ORF1p and some other ORF1p 

proteins it has been shown that the protein binds nucleic acids and forms RNPs with 

the retrotransposon RNA. This triggered comparisons to the retroviral RNA 

packaging protein Gag that is also found in the context of LTR retrotransposons, and 

also to RNA packaging proteins from RNA viruses. In the following section I will 

therefore summarize the functional data on L1ORF1p, which was available at the 

beginning of my thesis, and then briefly describe the RNA binding proteins of LTR 

retrotransposons, retroviruses and RNA viruses. 

1.4.1 L1ORF1p 

Both proteins encoded by L1 are necessary for retrotransposition, as mentioned 

above. In case of L1ORF2p it is known that its endonuclease and reverse 

transcriptase enzymatical activities are needed for the propagation of L1. The role of 

the L1ORF1p in the retrotransposition remained much more elusive for a long time, 

because the amino acid sequence of the protein lacked homology with any protein of 

a known function (Hohjoh and Singer, 1996). L1ORF1p is a 40 kDa protein in 

humans. Its size varies across species as the N-terminal region is not conserved 

regarding both sequence and length (Furano et al., 2004) (Martin, 2006). 

Sedimentation studies and atomic force microscopy indicate that purified murine 

L1ORF1p forms unusual, dumbbell-shaped trimers that are held together by a coiled 

coil formed between sequences in the N-terminal halves of the monomers (Basame 

et al., 2006) (Martin et al., 2003). The other, well-conserved half of murine L1ORF1p 

is highly basic and binds nucleic acids. It is known that L1ORF1p binds single-

stranded RNA and DNA with high affinity (Hohjoh and Singer, 1997) (Kolosha and 

Martin, 1997). At the beginning of this thesis no classical sequence motifs were 

identified in the L1ORF1p, which would help to understand the mode of nucleic acid 

binding. Later on, the NMR structure of the murine L1ORF1p C-terminal domain 
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(CTD) became available (Janusczyk et al., 2007). The structure shows a rare 

αβββαα fold (no futher examples in the PDB) and does not relate L1ORF1p to any 

protein of known function. The CTD domain alone has very low affinity to nucleic 

acids, and therefore cannot explain the properties of the trimeric form (Fig.10). 

 

Fig. 10. NMR structure of the CTD from mouse L1ORF1p. 

Other facts, which were known about L1ORF1p in the beginning of the thesis are the 

following. L1ORF1p is thought to be a nucleic acid chaperone with annealing and 

displacement activities. (Kulpa and Moran, 2005) (Martin, 2006). Like L1ORF2p, 

L1ORF1p shows a remarkable cis-preference, that is, it associates preferentially with 

its encoding transcript (Wei et al., 2001) (Kulpa and Moran, 2005). L1ORF1p can be 

localized in the cytoplasm (in putative stress granules) as well as in the nucleus 

(Goodier et al., 2007) (Kirilyuk et al., 2008), and it can also be identified in large L1 

RNPs fractionated from cytoplasmic extracts (Kulpa and Moran, 2005) (Martin, 1991) 

(Hohjoh and Singer, 1996). 

1.4.2 The Gag proteins of retroviruses and LTR 
retrotransposons 

RNA packaging proteins of non-LTR retrotransposons on the sequence level are 

unrelated to their counterparts from LTR elements, which resemble RNA binding 

proteins of retroviruses in their architecture and post-translational processing. 

Proteins responsible for RNA binding in LTR retrotransposons and retroviruses are 

called nucleocapsids. A nucleocapsid protein is translated initially as a part of 

multidomain precursor protein called Gag. After viral particle assembly and 

maturation, Gag is proteolytically processed by the retroelement- or virus-encoded 

protease into several fragments, including the nucleocapsid protein. Zinc finger motifs 

are a characteristic feature of nucleocapsid proteins. It has been shown also that 
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nucleocapsids possess nucleic acid chaperone activity, that is, they facilitate 

arrangement of nucleic acids into thermodynamically most stable form (see Wu et al., 

2010 for review). 

1.4.3 RNA packaging proteins from RNA viruses 

There are myriads of different RNA viruses, but all of them have to package their 

genome into virus particles. The two main ways for protecting the viral genome are:  

(1) the process known as encapsidation, which is used by most positive-

sense RNA and double-stranded RNA viruses. In this case, the viral genome 

is placed into a protein shell, called capsid. Encapsidation can take different 

functional and structural forms. 

(2) coating the length of genomic RNA with a nucleocapsid protein, which 

is common for negative-sense RNA viruses (Raymond et al., 2010). 

The latter mechanism, coating, is more similar to the NLR RNA packaging 

than the encapsidation. Most of the negative-sense RNA viruses, such as human 

respiratory syncytial virus (RSV) (Tawar et al., 2009),vesicular stomatitis virus (VSV) 

(Ge et al., 2010) and others, have symmetrical ring-like or helix-like RNPs, however. 

A regular helical architecture has not been described for non-LTR retrotransposons 

RNPs so far. But, interestingly, a recent structure of Rift Valley fever virus (RVFV) 

RNP determined by EM showed string-like appearance, without any helical symmetry 

(Raymond et al., 2010). A similar organization was described for the reconstituted 

complex of L1ORF1p with RNA visualized by AFM (Basame et al., 2006). 

Structures of some nucleoproteins were solved, including influenza A virus (Ye 

et al., 2006), rabies virus (Albertini et al., 2006), HRSV (Tawar et al., 2009), VSV 

(Green et al., 2006), and Borna disease virus (BDV) (Rudolph et al., 2003). These 

proteins have a common bilobal architecture, and the connection between the lobes 

is suggested to be a hinge point providing flexibility for the protein upon interaction 

with the viral polymerase or other factors (Green et al., 2006) (Tawar et al., 2009). 

The interior between two lobes is often positively charged and serves as the 

RNA binding site, contacting primarily the backbone and leaving the bases exposed 

to different extent. Both lobes can have highly flexible protrusions, which are 

responsible for the interaction with the neighbouring subunits in the RNP (Fig.11) 

(Albertini et al., 2006) (Green et al., 2006) (Tawar et al., 2009). 
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Fig. 11. 3D fold of RSV, BDV and VSV N. (Left) The variable region is in orange, 
with the β hairpin highlighted and labeled with the RSV604 resistance mutation sites. 
The BDV (center) and VSV (right) N structures, respectively, oriented and colored 
identically to RSV N. The conserved domains are red and yellow. The RNA is colored 
in blue and black (adopted from Tawar et al., 2009). 

Nucleoproteins are essential for the viral RNA replication, because naked, not 

coated, RNA cannot serve as a template for efficient synthesis of a new genome 

copy. It was suggested that due to the likely flexibility of nucleoproteins the local 

change in the RNP structure is possible, which would result in the transient opening 

of the RNA binding groove during the readout by polymerase (Tawar et al., 2009) 

(Albertini et al., 2006) (Green et al., 2006). 

Some mutations in nucleoproteins show defects in the viral RNA synthesis, but 

do not affect the RNA binding properties. Together with other lines of evidence this 

points to the fact that nucleoproteins are involved in interactions with viral and cellular 

factors necessary for RNA transcription and replication (Ortin, 2003). 

Despite the common architecture and RNA binding principles, nucleoproteins 

from different viruses are very divergent on the protein sequence level, which makes 

it not possible to predict their common ancestor and rather suggests that they might 

be the result of convergent evolution (Albertini et al., 2008). 

1.5 Aims of the work 

Despite a huge impact of L1 mediated retrotransposition and its consequences on 

the human genome, the molecular details of the L1 propagation were poorly 
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understood at the beginning of this work. The role of the L1ORF1p in 

retrotransposition was particularly obscure. The most important questions necessary 

for understanding the L1ORF1p function were: 

- what is the domain structure of the protein 

- how it binds nucleic acids 

- what is the evolutionary origin of L1ORF1p and L1 retrotransposon. 

To answer these questions, we first identified distinct domains within 

L1ORF1p computationally, and then verified the predictions experimentally. Then, we 

used X-ray crystallography and NMR to determine the structures of individual 

domains, as well as of the trimeric L1ORF1p. From these studies L1ORF1p emerges 

as a highly sophisticated RNA binding protein that shows an unprecedented flexibility 

in the arrangement of its individual domains. These structures together with in vitro 

and in vivo experiments also suggest how single-stranded nucleic acids are bound by 

the trimer. 

Phylogenetic analyses of a mammalian L1ORF1p suggest an ancient origin of 

the RRM domain and support the modular evolution of non-LTR retrotransposons. 

Finally, the trimeric structure of L1ORF1p is interesting, when compared to viral fibres 

and membrane fusion proteins, which form similar trimers. This provides a new twist 

in the discussion about the origin of non-LTR retrotransposons. 
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2 Materials and methods 

The methods used in the experimental part of this thesis were carried out as 

described in standard laboratory manuals. In this section, only modified methods are 

described in detail. 

2.1 Materials 

2.1.1 Chemicals 

All chemicals were purchased at analytical grade from the following companies 

unless stated otherwise: Invitrogen, Serva, Sigma, Sigma Aldrich, PeqLab, 

Applichem, Alfa Aesar, Roche, Aldrich, Applied Biosystems, Qiagen, Merck, Roth, 

Gibco, Riedel-de Haen, Acros Organics, Fluka, Bio-Rad, New England Biolabs, 

Hampton, Promega. 

2.1.2 Enzymes 

DNA modifying enzymes, e.g. restriction endonucleases, T4 ligase, DNase I and Pfu 

polymerase were obtained from Stratagene, New England Biolabs, and Roche. 

Reactions were carried out according to manufacturer's directions. 

2.1.3 Buffers and solutions 

Coomassie staining solution 45% Methanol 

 10% Acetic acid 

 1 g/l Brilliant Blue R-250 Coomassie 

Destaining solution 25% Isopropanol 

 10% Acetic acid 

2x protein sample buffer 100 mM Tris/HCl pH 6.8 

 4% SDS 

 0.05% bromphenol blue 

 10% β-mercaptoethanol 



Materials and methods 

28 

1x Laemmli buffer 0.1% SDS 

 190 mM Glycine 

 24.8 mM Tris base 

10x M9 salts 420 mM Na2HPO4 

 220 mM KH2PO4 

 86 mM NaCl 

 0.13 mM NH4Cl 

 pH 7.2 

5x DNA Agarose dye 20% Ficoll 400 

 1 mM EDTA 

 0.1% SDS 

 0.05% Bromphenol blue 

1x TBE buffer 89 mM Tris, pH 8.3 

 89 mM Boric acid 

 2.5 mM EDTA 

1000x Vitamin mix 2.86 mM Choline chloride 

 1.13 mM Folic acid 

 2.1 mM Panthotenic acid 

 5.55 mM Myo-Inositol 

 2.02 mM Pyridoxal phosphate 

 1.48 mM Thymidine HCl 

 0.13 mM Riboflavin 

 4.09 mM Biotin 



Materials and methods 

29 

2.1.4 Media 

LB medium 300 mM NaCl, pH 7.0 

 1% Peptone 

 0.5% Yeast extract 

LB agar 300 mM NaCl, pH 7.0 

 1% Peptone 

 0.5% Yeast extract 

 2% Bacto agar 

Minimal medium for  

Se-methionine cultures 1x M9 salts 

 1 mM MgSO4 

 0.1 mM CaCl2 

 0.2% Glucose 

 1x Vitamin mix 

Minimal medium for  
15N-, 13C- cultures 1x M9 salts containing 128 mM 15NH4Cl 

 2 mM MgSO4 

 0.1 mM CaCl2 

 0.2% Glucose 

 1x Vitamin mix 

DMEM culture medium Dulbecco's Modified Eagle Medium with  

 25 mM D-Glucose 

 1 mM Sodium Pyruvate 

 no L-Glutamine 
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2.1.5 Bacterial strains 

Escherichia coli XL1-blue (K12) (cloning strain, Invitrogen) 

Escherichia coli Rosetta 2 (DE3) (protein expression strain, Novagen) 

2.2 Methods 

2.2.1 Bioinformatics 

Individual NLRs and their ORF1p sequences were identified by tBLASTn searches 

using queries from the literature or from RepBase (Jurka et al., 2005). ORF1p 

sequences were analyzed for similarity to known domains using profile hidden 

Markov models as implemented in HHpred (Söding et al., 2005). 

2.2.2 Cloning 

DNA sequences corresponding to the different human L1ORF1p constructs were 

PCR amplified from a plasmid (pJM103) encoding a functional human L1 element 

(Moran et al., 1999). PCR products were purified using QIAquick PCR Purification Kit 

(Qiagen). 

Restriction digest of the purified PCR products and respective vectors was 

done according to the enzyme supplier’s instructions. Digestion products were 

separated on a preparative agarose gel and then isolated using the Qiagen Gel 

Extraction Kit and then ligated. 

For standard cloning steps chemically competent E.coli XL1-blue cells were 

used for transformation of plasmid DNA. 

To generate plasmids containing mutations in the protein of interest site-

directed PCR mutagenesis was used. A typical reaction mixture for mutagenesis 

PCR contains the following components: 

10x Pfu Ultra buffer 5 µl 

Pfu Ultra DNA Polymerase 1 µl 

primer forward (2 µM) 1 µl 

primer reverse (2 µM) 1 µl 

dNTPs (10 mM each) 1 µl 
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template DNA 200 ng 

sterile H2O filled up to a total volume of 50 µl 

The performed PCR program was the following: 

step temperature time 

denaturation 94°C 5 min 

denaturation 94°C 1 min 

primer annealing 56°C 1 min  35 cycles 

elongation 68°C 2 min/kb template 

final elongation  68°C 10 min 

After PCR 20 U of DpnI restriction enzyme were added to the reaction to 

digest (Dam)-methylated, non-mutated template DNA. After incubation for 2h at 

37°C, 5 μl of the digested reaction mixture were used for transformation of chemically 

competent E.coli XL1-blue cells, or in case of large plasmids (~18 kb) for 

electroporation of electrocompetent E.coli XL1-blue cells. 

M121A/M125I/M128I triple mutation corresponding to the murine sequence 

had been introduced into all trimeric L1ORF1p constructs to avoid aberrant initiation 

of bacterial translation. 

Plasmid DNA was isolated using the Qiagen Mini Prep Kit and the sequences 

of cloning or mutagenesis products were verified by DNA sequencing. 

2.2.3 Protein expression and purification 

We have used several vectors for protein expression: pETM11 (derived from pET24d 

(Novagen), with a cleavable His-tag), pET15b ((Novagen), with a short uncleavable 

His6-tag), pETM60 ((derived from pET24d (Novagen), with a cleavable NusA-tag) 

and pGEX6p1 ((GE Healthcare), with a cleavable GST-tag). 

pETM11 was used for cloning and expression of hL1ORF1p-C (tagMVS254-

R328), pET15b for hL1ORF1p-∆N/1 (MAS106-Q330HHHHHH) and hL1ORF1p-∆N/2 

(MAS106-N326HHHHHH), hL1ORF1p-MCH6 (MGN157-Q330HHHHHH), pETM60 for 
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hL1ORF1p-M (GAMGN157-D252), and pGEX6p1 for hL1ORF1p-MC (GPLGSN157-

Q330). Proteins were expressed in the E. coli strain Rosetta 2(DE3) (Novagen) at 

20°C overnight. To uniformly label hL1ORF1p-MCH6, hL1ORF1p-M, hL1ORF1p-C 

with 15N/13C or 15N, cells were grown in M9 minimal medium supplemented with 
15NH4Cl with or without 13C6-glucose. Selenomethionine containing minimal medium 

was used to produce Se-Met substituted proteins. 

Proteins were purified from cleared cell lysates by Ni2+ - or glutathione affinity 

steps. The proteins with uncleavable His-tag were directly subjected to gel filtration. 

In other cases the affinity tags were removed by proteolyitc cleavage (hL1ORF1p-

MC, hL1ORF1p-M, hL1ORF1p-C) and proteins were further purified by heparin-

affinity chromatography (hL1ORF1p) and gel filtration. Dithiothreitol was added to the 

samples of the pure proteins for nuclear magnetic resonance (NMR) spectroscopy to 

the final concentration of 1 mM. 

2.2.4 Crystal growth and optimization 

hL1ORF1p-M 

Crystalline clusters of hL1ORF1p-M (9.7 mg/ml in 5 mM Tris/Cl, pH 8.0, and 300 mM 

NaCl) were obtained by vapor diffusion at 18°C mixing 0.8 μl of protein solution with 

0.8 μl of reservoir (2.2M Na-malonate, pH 7.0) over 500 μl reservoir. Crystals were 

optimized by hair-seeding (1.7-1.9 M Malonate) and flash frozen in liquid nitrogen 

without additional cryoprotection. 

hL1ORF1p-∆N/1 and hL1ORF1p-∆N/2 

Initial crystals of hL1ORF1p-∆N/1 (18 mg/ml in 5 mM Tris/Cl, pH8.0, and 300 mM 

NaCl, 2.0 mM β-ME) were obtained in many conditions by vapor diffusion (18°C) 

mixing 0.2 μl of protein solution with 0.2 μl of reservoir over an 80 μl reservoir. 

Crystals were optimized by manual screening around several initial conditions and 

flash frozen in liquid nitrogen with additional cryoprotection. 

The best-diffracting crystal (2.1 Å resolution) belonged to cfI and was obtained 

with protein (hL1ORF1p-∆N/1) containing seleno-methionine. It was obtained in 

sitting drops by mixing 0.3 μl sample (18 mg/ml in 5 mM Tris/Cl, pH8.0, and 300 mM 

NaCl, 2.0 mM β-ME) and 0.3 μl reservoir (100 mM Na-Hepes (pH=7.0), 1.1 M Na-
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malonate), suspended over a reservoir of 80 μl. Cryoprotection was achieved by a 

final concentration of 2.0 M Na-malonate. 

Crystals of cfII were grown from native protein (hL1ORF1p-∆N/2, 24 mg/ml in 

5 mM Tris/Cl, pH8.0, and 300 mM NaCl, 2.0 mM β-ME) over a reservoir of 200 mM 

K-citrate, 20% PEG 3350 and were cryoprotected with 10% PEG 400. Crystals of cfIII 

were grown from selenomethionine-containing protein (hL1ORF1p-∆N/2, 16 mg/ml in 

5 mM Tris/Cl, pH8.0, and 300 mM NaCl, 2.0 mM β-ME) over a reservoir of 100 mM 

Tris-Cl (pH=8.5), 100 mM Mg-acetate, 12% PEG 8000 and were cryoprotected with 

25% PEG 400. 

2.2.5 Data collection, structure determination and refinement 

hL1ORF1p-M 

Crystals containing seleno-methionine diffracted better than the initial crystals from 

the native protein. Diffraction data for the selenomethionine derivative were collected 

at a single wavelength (0.97154 Å) on beamline PXII of the Swiss Light Source. 

Images were processed by XDS (Kabsch, 2010). The structure was solved by single 

anomalous dispersion (SAD). We used autoSHARP (Vonrhein et al., 2007) to search 

for three selenium sites per molecule. Assignment of the correct hand and solvent 

flattening (optimum contrast at 51.6%) was done automatically. In the resulting map, 

ARP/wARP (Cohen et al., 2008) was able to trace 92% of the final model and built 

43% of the side chains. The model was completed manually in COOT (Emsley et al., 

2010), including alternative conformations. Refinement was done in REFMAC 

(Murshudov et al., 1997) and COOT iteratively, using anisotropic B-factors. 

hL1ORF1p-∆N/1 and hL1ORF1p-∆N/2 

Diffraction data were collected on a Mar 225 CCD detector on beamline PXII 

(X10SA) of the Swiss Light Source (Villigen, Switzerland) at a temperature of 90 K 

(see Table 3 for Data Collection and Refinement Statistics). Data were recorded at 

multiple wavelengths; at the selenium absorption peak (0.97868 Å, K-edge) and at a 

high energy remote point (0.97100 Å). Images were processed with XDS (Kabsch, 

2010). 

The structure of cfI was solved by a combination of single wavelength 

anomalous dispersion (SAD) and molecular replacement (MR). In a first step a 
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polyalanine model (derived from PDB-ID: 2wpq) of the coiled coil could be placed by 

molecular replacement using Phaser MR (McCoy et al., 2007) from within the CCP 

package (CCP4, 1994) and the dataset collected at the peak wavelength. In a 

second step, using the resulting phase information, Phaser EP (McCoy et al., 2007) 

identified potential seleno-methionine sites, twelve of which had previously been 

found independently by SHELX C/D/E (Sheldrick, 2008). Six of these sites allowed us 

to manually place three copies of the RRM-domain high resolution crystal structure 

that we had determined previously (PDB-ID: 2w7a); the other six sites helped to build 

the CTD domains in the subsequent steps. 

The structure containing the coiled coil and the RRM domains was used to 

start automated model building using ARP/wARP (Cohen et al., 2008) and 

BUCCANEER (Cowtan, 2006). This resulted in models containing large parts of the 

coiled coil and of the RRM domains that were subsequently refined in REFMAC 

(Murshudov et al., 1997) using the dataset collected at the remote wavelength. The 

failure to auto-build the CTD domains probably results from the weaker electron 

density for this part of the structure. Most likely this is due to static disorder in the 

crystal, considering the flexibility within the structure and the fact that different 

domain orientations are found with almost identical unit cell parameters (see below, 

cfII and cfIII). The structure was completed by iterative cycles of BUCCANEER runs 

and manual building in COOT (Emsley et al., 2010) combined with REFMAC 

refinement of the partial model after each of such cycles. 

Chloride ions were assigned based on the similarity to other coiled coils, on 

suitable coordination distances and on crystallographic evidence (i.e. refinement as 

chlorides leads to temperature factors that are similar to the surrounding residues 

and to a good agreement with the crystallographic data). 

Two other crystal forms (cfII and cfIII) were identified by molecular 

replacement (PHASER MR) using different CTD truncations of cfI as input models. 

The missing CTD domains were placed manually in the electron density 

obtained from the respective molecular replacement solution, and the structures were 

rebuilt and completed manually in COOT. 

Final refinement rounds for all three structures were done in PHENIX (Adams 

et al., 2010), refining TLS parameters for the individual domains between the hinges 

in addition to individual B-factors. Stereochemical properties were analyzed with 

MOLPROBITY (Davis et al., 2007) and WHATCHECK (Hooft et al., 1996). 
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2.2.6 Figures and homology modelling 

Figures were generated in Pymol (http://pymol.org/) using the APBS plugin to 

visualize electrostatic surface potentials (Baker et al., 2001). The homology model for 

the ZfL2 esterase was created via HHPred (Söding et al., 2005) using MODELLER 

(Sali et al., 1995). 

2.2.7 Nucleic acid binding experiments 

Analytical size-exclusion chromatography was done on an AKTA™ Purifier-10 

equipped with a Superdex200 10/300GL or Superdex75 10/300GL column (GE 

Healthcare), monitoring optical density (OD) simultaneously at 230 nm, 260 nm, and 

280 nm. Protein concentrations were estimated from the theoretical molar extinction 

coefficients ɛ280 at 280 nm. Nucleic acid concentrations were estimated from ɛ260 as 

provided by the manufacturers. The relative contributions of nucleic acid and protein 

to the total absorption at each wavelength were calculated assuming constant ratios 

of ɛ230/ɛ280 for each substance (Müller et al., 2006).  

c(P)=(OD230(tot)-Q(R)*OD280(tot)) / (ɛ280(P)*d*(Q(P)-Q(R)) 

c(R)=(OD230(tot)-Q(P)*OD280(tot)) / (ɛ280(R)*d*(Q(R)-Q(P)), 

where Q(P)=OD230(P) / OD280(P) and Q(R)=OD230(R) / OD280(R), P=protein, 

R=RNA. 

Components were mixed in chromatography buffer (20 mM Tris/HCl, pH 8.0, 

200-300 mM NaCl, and 0-10 mM MgCl2) using starting concentrations between 20 

and 100 µM. After 5 min at 18°C or 20°C, 100 μl were injected on the column (18°C) 

at a flow rate of 0.5 ml/min. 

2.2.8 Cell culture 

Mutants of the L1 reporter construct were generated by site-directed mutagenesis as 

described above using the plasmid pJM101/L1.3 as a template (Fig.12). DNA 

sequencing was used to verify that no other mutations were introduced in the L1 

reporter construct. Plasmid DNA for transfection was isolated using the Qiagen Midi 

Prep Kit. 
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Fig. 12. Schematic representation of pJM101/L1.3. Regulatory elements of the 
plasmid backbone are shown in light violet color, the parts of the L1 reporter 
construct are shown as following: L1 5’UTR in white and the L1 promoter is indicated 
as a black arrow; L1ORF1 in green, L1ORF2 in light blue; the neomycin resistance 
gene in dark blue; the intron in gray, with splicing sites indicated above and SV40 
promoter as a black arrow. 

The retrotransposition cell culture assay was modified from reference (Moran et al., 

1996) (Fig.14). Briefly, wild type L1 reporter construct and mutant variants were 

transfected in HeLa cells (with confluency ~90-100%) in a six-well plate. For 

monitoring the transfection efficiency, luciferase reporter vector (modified from 

pCINeo-Rluc, Promega, Fig.13) was co-transfected with each L1 construct. 

pCIneo-RLuc
5122 bp

AmpR

RLuc

CMV enhancer

SV40 polyadenylation signal

promoter P1

T7 prom

T3 promoter

Kozak-Sequence

f1 origin  

Fig. 13. Plasmid map of the modified pCINeo-Rluc.  

Cells in each well were split 48h posttransfection into two wells. One half of the cells 

was used to measure the luciferase activity levels on day 3 posttransfection. The 

other half of the cells was grown for 12-13 days in DMEM containing G418. The 



Materials and methods 

37 

G418r cells were fixed and stained with Giemsa, colony numbers were scored, and 

the retrotransposition frequency was determined as the number of G418r colonies per 

number of transfected cells. 

 

Fig. 14. Schematic representation of L1 retrotransposition assay. In the 
transfected plasmid, transcription of the L1 reporter construct is driven from CMV 
promotor. Transcription of the neomycin resistance gene from SV40 promotor cannot 
yield a functional protein product, because there is an intron in the gene in the 
orientation opposite to the transcription direction. After transcription of the L1 
construct from CMV promotor, the intron can be spliced out. If retrotransposition of 
the reporter construct occurs, the neomycin resistance gene can be transcribed from 
the SV40 promotor and also can be translated due to the absence of the intron. This 
confers the resistance of the cells to neomycin, and allows the colony growth. 

2.2.9 Luciferase assay 

To measure the levels of luciferase activity, the cells were washed with ice-cold PBS 

on the next day after splitting, then incubated with 500 μl of the Passive Lysis Buffer 

(Promega) per well for 1h at room temperature. After the incubation the plates were 

frozen at -20°C to improve the lysis, then thawed and the lysed cells in each well 

were resuspended manually. 4 μl of lysed cells from each well in the 6-well plate 

were pipetted into 96-well plate, this was done in triplicate to improve the 

measurement accuracy. The luciferase activity was measured using the reagent for 

Renilla luciferase from the Dual-Luciferase Reporter Assay system (Promega). 
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3 Results 

3.1 The L1ORF1p encodes an RRM domain 

3.1.1 Identification of three distinct domains in the human 
L1ORF1p 

To identify structured domains in the human L1ORF1p, we subjected the sequence 

of the protein to a search for remote protein domain homologues using the HHpred 

server (Söding et al., 2005). This is a very sensitive and reliable tool for remote 

homology detection, which is based on pair-wised comparison of profile hidden 

Markov models (HMMs). In contrast to most conventional search methods HHpred 

searches not sequence, but alignment databases, like Pfam or SMART. These 

alignments are used then for calculating profile HMMs. HMMs are similar to simple 

sequence profiles, but in addition to the amino acid frequencies in the columns of a 

multiple sequence alignment they contain information about the frequency of inserts 

and deletions at each column, which helps to further improve the sensitivity (Söding, 

2005b). 

The HHpred search revealed a potential RRM (RNA recognition motif) domain 

in the L1ORF1p, which is known to be the most common eukaryotic RNA-binding 

domain. The RRM (M) domain is followed by the CTD (C) domain (Januczyk et al., 

2007), which has no structural homologues in other proteins and is unique to 

vertebrate L1ORF1p proteins. 

 

Fig. 15. Structure-based sequence alignments of the RRM and CTD domains. 
(L1O1-RRM, top) and CTD (L1O1-CTD, bottom) domains show highly conserved 
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residues boxed in red. Surface residues only conserved in placental mammals (group 
I) or only outside of placental mammals (group II) are boxed separately. Residues 
forming the conserved salt bridges are shaded in blue. Residues providing aromatic, 
RNA-binding side-chains in canonical RRMs are shaded in yellow. Triangles mark 
residues mutated in this study with a strong (red), moderate (orange) or negligible 
(green) effect on RNA-binding. Additional motifs mutated in a previous study 
(Moran1996) are shaded in gray. The C-terminal sequences of Sp and Nv cannot be 
confidently aligned to the mammalian-type CTD domain. Gene identifiers: Hs, Homo 
sapiens (gi:307098); Mm, Mus musculus (gi:198644); Cf, Canis familiaris 
(gi:116175029); Bt, Bos taurus (gi:66734172); Ss, Sus scrofa (gi:148645275); Me, 
Macropus eugenii (gi:151302550); Xt, Xenopus tropicalis (gi:85740540); Ol, Oryzias 
latipes (gi:3746501), Sp, Strongylocentrotus purpuratus (gi:111740418); Nv, 
Nematostella vectensis (gi:149338150). 

The N-terminal half of the protein is predicted to contain 14 repeats of the 

coiled coil, which leads to trimerization of the L1ORF1p in case of the murine 

homologue (Martin et al., 2003) (Basame et al., 2006) (Fig.15, 16). 

 

 

Fig. 16. Domain organisation of the human L1ORF1p. The hL1ORF1p contains 
the coiled coil domian (cc, shown in gray) in the N-terminal half of the protein, which 
was known to be responsible for trimerization of the murine homologue, and RRM- 
and CTD-domains in the C-terminal half (shown in red and blue, respectively), which 
is responsible for nucleic acid binding. 

We mapped the preliminary domain boundaries more precisely by the deletion 

analysis of the protein. To find out where the coiled coil C-terminal boundary is, we 

have designed a series of L1ORF1p constructs containing only the C-terminal half of 

the protein. After expression and purification of these recombinant constructs we did 

size exlusion chromatography followed online by multiangle static laser-ligtht 

scattering (MALLS). This allows do determine both hydrodynamic radius and 

molecular weight of the protein. The largest monomeric fragment (L1ORF1p-MC) that 

we could identify comprises both RRM- and CTD-domains and is rather globular as 

indicated by an rH of approximately 20Å (Fig. 17). 

 

 

cc RRM CTD 
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Fig. 17. The RRM-CTD construct is monomeric in solution. (a) Schematic 
representation of the RRM-CTD construct. (b) Size-exclusion chromatography and 
MALLS support a globular, monomeric state. 

This represents a significantly larger portion of the protein as compared to previous 

studies with the murine protein (Basame et al., 2006) (Januczyk et al., 2007) (Martin 

et al., 2000). Furthermore, we can show that the predicted RRM- and CTD-domains 

(hL1ORF1p-M and hL1ORF1p-C, respectively) are soluble independently from each 

other and remain monomeric at concentrations up to 100 µM (Fig 18a, b). When 

mixed at these concentrations, they also do not detectably interact with each other 

(Fig. 18c). Such conclusion can be made because the elution volume of the domain 

mixture is the same as of the domains alone, whereas the formation of higher 

molecular weight complex would lead to an earlier elution in gel filtration. 

 

Fig. 18. The RRM and CTD domains do not interact in solution. Size –exclusion 
chromatography indicates that RRM domain is monomeric in solution (a), the CTD 
domain is monomeric as well (b), and there is no interaction between RRM- and CTD 
domains in solution (c), as can be concluded from the elution volume of the mixture. 

3.1.2 The crystal structure of the RRM domain in L1ORF1p 
shows extended loops and noncanonical RNP motifs 

RRM CTD 

a 

b 

a b c 
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To verify the presence of the predicted RRM domain in the L1ORF1p and to reveal 

its molecular details we determined the crystal structure of hL1ORF1p-M. 

 

Fig. 19. Crystal structure of the RRM domain of human L1ORF1p (stereo). 
Ribbons representation with α-helices in yellow and β-strands in green. Blue sticks, 
side chains forming the conserved salt-bridges; gray sticks, side chains of the N-
terminal N157 and of the C-terminal D252. 

The structure was solved by single-wavelength anomalous dispersion (SAD) 

from seleno-methionine substituted protein and was refined at 1.4 Å resolution to an 

Rfree of 18.5 %. (Fig. 19, Table 1). 

The protein shows a classical RRM fold with the typical βαββαβ topology, 

where the two α-helices are packed against one surface of the four-stranded, anti-

parallel β-sheet (2.8 Å r.m.s.d. over 76 Cα positions compared with the classical U1A-

RRM; PDB-ID: 1oia; see Fig. 20). In the present case there is an additional small β-

hairpin (β3’/β4-N) that is located between helix α2 and strand β4, and an extra α-helix 

α1’ within the loop L(α1-β2). Whereas the β-hairpin is occasionally observed in other 

RRM domains, the helix α1’ has not been seen before. The two salt bridges (E165-

R215 and E169-R202) that are formed between loop L(β1-α1) and the extended loop 

L(β2-β3) are another unique feature of the hL1ORF1p RRM domain. These salt 

bridges stabilize the structures of the loops and fix their relative orientations (Fig. 15, 
19). They likely are of functional importance, since a single point mutation (E165G) 

results in a strong nucleolar localization of the protein (Goodier et al., 2007). 

Interestingly, the unique parts of the RRM-domain interact with each other in the 

crystal; helix α1’ fits nicely into the cleft between the loops L(β1-α1) and L(β2-β3), but 

there is no evidence so far that this might be physiologically relevant. 
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Table 1: Data collection, phasing and refinement statistics for hL1ORF1p-M 

 
Data Collection SeMet data (SAD) 
Wavelength, Å 0.97154 
Resolution range, Å 56 - 1.4 
Space group P21 
Unit cell  
    dimensions (a / b / c), Å 32.4 / 54.7 / 57.8 
    angles (α / β / γ), ° 90 / 103.0 / 90 
Rmerge, % a  5.4 (53.3)  
Completeness, % a 99.4 (96.6)  
    Completeness (anomalous), % a 97.9 (94.7)  
Mean I/σ(I) a 13.9 (2.8)  
Number of unique reflections a 38608 (2754)  
Multiplicity a 3.7 (3.5)  
    Multiplicity (anomalous) a 1.9 (1.8)  
          
Phasing  
Rcullis   0.922 
Phasing power 0.60 
Mean figure of merit 0.20 
  
Refinement  
Rcryst, % 14.2 
Rfree, % 18.6 
Number of 
    molecules per asymmetric unit  

    protein molecules 2 
    malonate ions 2 
    atoms (excluding water) 1717 
    water molecules 298 
Average B-factor (anisotropic), Å2 14.1 
Ramachandran plot  
    most favored regions, % 97.1 
    allowed regions, %   2.9 
 R.m.s.d. from ideal geometry    
    bond lengths, Å   0.015 
    bond angles, ° 1.58 
a Values in parentheses correspond to those in the outer resolution shell (1.40-1.44 Å) 
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Canonical RRM domains are characterized by two conserved sequence 

signatures, RNP1 ([RK]-[G]-[FY]-[GA]-[FY]-[ILV]-[X]-[FY]) located on β-strand β3, and 

RNP2 ([ILV]-[FY]-[ILV]-X-N-L) located on β-strand β1 (Fig. 20). These strands 

provide aromatic side chains on the surface of the β-sheet (positions 3, 5 in RNP1 

and position 2 in RNP2) that are frequently involved in base-stacking or in 

hydrophobic interactions with nucleic acid substrates (Maris et al., 2005). In the 

human L1ORF1p RRM domain the RNP1 (P-R-H-I-I-V-R-F) and RNP2 (L-R-L-I-G-V) 

sequences deviate significantly from the consensus signature (Fig. 15, 20). This may 

explain why this RRM domain was not identified earlier and raises the question if and 

how the β-sheet surface of this domain is involved in nucleic acid binding. 

 

Fig. 21. Structural comparison of different RRM-domains. Ribbons 
representations with α-helices in yellow and β-strands in green. Canonical residues 
in the RNP motifs are shown in black, non-canonical ones in red. 

3.1.3 Sequence conservation and the distribution of surface 
charge indicate the interface involved in nucleic acid binding 

The C-terminal half of L1ORF1 is highly positively charged but the isolated CTD 

domain is not sufficient to mediate strong nucleic acid binding (Janusczyk et al., 

2007). As a classical single-strand specific nucleic acid binding domain the presently 

identified RRM domain may therefore play a major role. The structure shows a highly 

asymmetric distribution of charges with a strongly basic surface that includes the 
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canonical β-sheet but also the adjacent surface of the extended loop L(β2-β3) that is 

unique to the present RRM domain (Fig. 21). 

 

Fig. 21. Electrostatic potential mapped on the molecular surface of the RRM 
domain (pI = 10.6). Potentials are contoured from -10 kT/e (red) to +10 kT/e (blue). 
Left: view as in Fig. 19, onto the surface of the β-sheet and the adjacent loop L(β2-
β3). Right: backside view, 180° from left. 

Furthermore, we analyzed the sequence conservation of the RRM domain among 

five placental mammals and found that the most highly conserved surface side 

chains cluster on and around the basic β-sheet surface (Fig. 15, 22). These side-

chains include N157 and D252 that link the N-and C-termini of the RRM domain (Fig. 
19), R159 on strand β1, H216, I218 and R220 on strand β3 and K227, E228 and 

R235 on helix α2.  

 

Fig. 22. Sequence conservation of the RRM surface. Sequence similarity among 
placental mammals (Fig. 15, group I) is color-ramped: white (50% or less) to orange 
(100%). 

Many of those residues do not fulfill any obvious structural roles and are likely 

conserved for functional reasons. To test if they are important for nucleic acid binding 

we constructed a series of point mutants (see below). 
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3.1.4 Efficient nucleic acid binding requires the cooperation of 
the RRM and CTD domains 

To test for stable nucleic acid binding under constant buffer conditions we used 

analytical size exclusion chromatography, monitored by triple wavelength UV 

absorption spectroscopy. We estimated the concentrations of the individual protein 

and RNA components as they eluted from the column, providing insight into the 

stoichiometry of the complexes. 

No interaction was detected between the isolated RRM domain (hL1ORF1p-

M) and a 27-mer poly(U) RNA substrate (27U RNA), at concentrations up to 75 µM. 

Similarly, we did not detect any interaction with the isolated CTD domain 

(hL1ORF1p-C) or with a protein sample where the individual RRM and CTD domains 

were pre-mixed at equimolar concentrations (Fig. 23). 

 

Fig. 23. The mixture of isolated RRM- and CTD-domains does not bind RNA. 
Size exclusion chromatography was done with 27U RNA (red line) and the mixture of 
RRM- and CTD-domains (blue line). Elution volumes of the components are indicated 
by arrows and dashed gray lines. 

With both RRM and CTD domains on a single polypeptide chain (hL1ORF1p-MCH6), 

however, the RNA substrate was bound quantitatively. The majority of the RNA was 

found in an equimolar complex with the human L1ORF1p-MCH6 fragment. Even with 

an excess of protein only a small fraction of the RNA bound additional protein 

molecules (probably up to three) (Fig. 24). 
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Fig. 24. The RRM- and CTD-domains expressed on one polypeptide chain bind 
RNA. Size exclusion chromatography was done with 27U RNA (red solid line) and 
the RRM-CTD construct (blue line). Chromatography run with the RNA only is shown 
as red dashed line. Elution volumes of the components are indicated by arrows and 
dashed gray lines. 

The enhanced RNA affinity of the RRM-CTD fragment over the mixture of the 

individual domains can be explained by their cooperation and by the extremely short 

linker sequence that probably constrains the relative positions of the two domains 

(Shamoo et al., 1995). 

For the more detailed analysis of the RRM-CTD binding properties we have 

done a number of point mutations in both RRM and CTD domains. We have selected 

conserved surface residues, which do not have an obvious structural role, and some 

of them have been shown previously to be important for the L1 retrotransposition in 

the cell culture assay (Moran et al., 1996).  

The mutational analysis confirms that both domains participate in RNA-binding 

(27U RNA). As a result, in size exclusion chromatography, the RNA no longer co-

elutes with the mutated protein (strong effect) or elutes significantly later than in the 

complex with the wild-type RRM-CTD fragment (intermediate effect) (Fig. 25).  
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Fig. 25. Localization of mutated side-chains. The RRM (left) and CTD (right, PDB-
ID 2jrb (Janusczyk et al., 2007)) domains are shown as ribbons with selected side 
chains as sticks (for colors see triangles in Fig. 15; asterisks: aromatic side chain in 
canonical RRMs). 

The most severe effects are shown by the R206A/R210A/R211A triple mutant 

on the extended loop L(β2-β3) of the RRM domain and by the R261A mutant on helix 

α1 of the CTD domain. The single R220A, R159A, I218Y and R235A mutants on the 

RRM domain have an intermediate effect, while the Y282A/K285A mutant on the 

loop L(β1-β2) of the CTD domain behaves quasi identically to the wild-type protein 

(Fig. 15, 25, 26).  

Although none of the mutants abolished RNA binding completely, the results 

confirm the importance of the basic protein surface of the RRM domain for RNA 

binding and show that cooperation with the CTD domain is essential. Many of the 

exchanged arginine residues may solely make contacts to the phosphate-ribose 

backbone of the RNA, thereby fixing its conformation. R159 and R261, however, 

appear particularly important, as they are invariant in sequence alignments and are 

functionally required at several steps in retrotransposition (Moran et al., 1996) (Kulpa 

and Moran, 2005) (Goodier et al., 2007) (Martin et al., 2005). They may be involved 

in multiple contacts, possibly stacking on bases or locking the relative orientations of 

the RRM and CTD domains on the RNA. Furthermore, the shallow surface cavity 

centered over the hydrophobic I218 seems essential, since the tyrosine substitution 

frequently found in canonical RRM domains (position 3 in the RNP1 motif) reduces 

RNA binding. The negligible effect of the Y282A/K285A mutation on RNA binding 

indicates that the Y282PAKLS motif in the CTD domain probably does not interact 

directly with RNA. It rather plays a structural role and the original alanine substitution 

of the entire motif is likely to affect the structural integrity of the CTD (Moran et al., 

1996) (Janusczyk et al, 2007). A similar effect can be expected for the original 

alanine substitution of the R235EKG motif (Moran et al., 1996) on the RRM domain, 

although we see an RNA-binding defect for the single R235A substitution alone. 
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Fig. 26. Mutational analysis of the RNA-binding properties of the human 
L1ORF1p RRM-CTD double domain. Size exclusion chromatography was done 
with 27-mer poly(U) RNA (27U RNA, 40 µM at start, red lines) in the absence 
(dashed lines) or in the presence (solid lines) of RRM-CTD (hL1ORF1p-MCH6) 
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protein variants (50 µM at start, blue solid lines). Elution volumes of the free 
components and of the complexes are indicated by arrows and dashed gray lines, 
while apparent concentrations are calculated from the relative absorption properties 
of the components. The respective mutations are indicated. Colors signal strong 
(red), moderate (orange) and negligible (green) effects on RNA-binding. 

3.1.5 The RRM-CTD fragment binds single-stranded nucleic 
acid and competes with the formation of base-paired structures 

To exclude that complex formation simply results from electrostatic attraction of the 

negatively charged RNA backbone by the positively charged protein surface, we 

tested highly structured Alu RNA (SA86) (Weichenrieder et al., 2000) as a substrate 

in size exclusion chromatography. Most of the phosphate-ribose backbone of this 86-

mer RNA is conformationally fixed and most of its nucleotides are involved in base-

pair interactions. In the gel filtration assay it did not bind to the RRM-CTD fragment 

(Fig. 27).  

 

Fig. 27. The RRM-CTD construct expressed does not bind Alu RNA. Size 
exclusion chromatography was done with Alu RNA, SA86 (red solid line) and the 
RRM-CTD construct (blue line). Elution volumes of the components are indicated by 
arrows and dashed gray lines. 

To test whether weak secondary structures or the nucleotide composition of the RNA 

substrate affect the interaction with the RRM-CTD fragment, we selected an 

alternative 27-mer (5’ UAACAAUAUUAACUUUAAAUAUAAAUG 3’) derived from the 

human L1 RNA (27L1 RNA). It corresponds to the 3’-terminal nucleotides of a longer 

41-mer that specifically copurifies with endogenous human L1ORF1p (Hohjoh and 

Singer, 1996). In size exclusion chromatography 27L1 RNA is delayed with respect to 

27U RNA, indicating that it folds into a more compact stem-loop structure. 

Nevertheless, 27L1 RNA also binds quantitatively to hL1ORF1p-MCH6. In contrast to 

27U RNA, each 27L1 RNA molecule recruits at least two or even three protein 

monomers (Fig. 28). 
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Fig. 28. The RRM-CTD construct binds 27L1 RNA. Size exclusion chromatography 
was done with 27L1 RNA (red solid line) and the RRM-CTD construct (blue line). 
Chromatography run with the RNA only is shown as red dashed line. Elution volumes 
of the components are indicated by arrows and dashed gray lines. 

This shows that the RRM-CTD fragment can distinguish between RNA sequences 

and will consequently have preferential binding sites on longer RNA substrates. 

Apparently, hL1ORF1p-MCH6 is able to melt the 27L1 RNA stem-loop and stabilizes 

the unfolded conformation of the RNA substrate with one protein monomer occupying 

around nine nucleotides. 

To investigate whether binding to hL1ORF1p-MCH6 is limited to RNA we also 

tested a 29-mer DNA of mixed sequence (29 DNA) as well as its reverse complement 

(29c DNA) (Martin and Bushman, 2001). In the absence of protein, each sample 

elutes as a single peak at the same position as the other, indicating an extended 

conformation without secondary structure. In the presence of a slight molar excess of 

hL1ORF1p-MCH6 29 DNA is bound with equimolar stoichiometry (Fig. 29). 

 

Fig. 29. The RRM-CTD construct binds single stranded DNA. Size exclusion 
chromatography was done with 29-mer DNA (red solid line) and the RRM-CTD 
construct (blue line). Chromatography run with the DNA only is shown as red dashed 
line. Elution volumes of the components are indicated by arrows and dashed gray 
lines. 
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The same is true for 29c DNA (data not shown). When both complexes are mixed 

together, the DNA strands readily anneal to form a duplex, quantitatively liberating 

the bound protein (Fig. 30). 

 

Fig. 30. The RRM-CTD construct releases DNA duplex. Size exclusion 
chromatography was done with 29 DNA and 29c DNA pre-mixed with the RRM-CTD 
construct separately and then mxed together. The resulting 29 DNA duplex is shown 
as red solid line and the released RRM-CTD construct as blue line. Elution volumes 
of the components are indicated by arrows and dashed gray lines. 

In conclusion, hL1ORF1p-MCH6 preferably binds flexible, single-stranded nucleic 

acid, and the identical elution volumes of the 27U and 27L1 RNA complexes indicate 

that weakly base-paired structures like 27L1 RNA can be unwound by the protein. As 

a consequence, the RRM-CTD fragment could help resolve kinetically trapped 

nucleic acid structures, providing a path to the thermodynamically most favorable 

conformation. 

3.1.6 Solution structures of RRM and CTD domains 

Experiments showed that the RRM and CTD domains expressed in cis (i.e. on the 

same polypeptide chain) are required for the efficient nucleic acid binding. But the 

structural basis for this cooperativity, as well as for the selectivity for certain nucleic 

acids, was unknown. Therefore we were interested in obtaining the structure of the 

RRM and CTD domains in cis. Crystallization trials with various constructs containing 

both these domains were unsuccessful. We decided to use NMR for determining the 

structure of the RRM-CTD fragment as an alternative to crystallography. The 

molecular weight of the RRM-CTD construct is 21.5 kDa, which presents some 

difficulties for assigning the peaks in the NMR spectra. To overcome this problem we 

decided to first determine the NMR structures of the RRM and CTD domains 

separately, and then use the obtained spectra for facilitating the assignment of the 
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RRM-CTD fragment. (Table 2). The NMR structures were determined in collaboration 

with Dr. Murray Coles and Dr. Vincent Truffault. 

The NMR structure of the human RRM domain (residues N157-D252) is very 

well defined and confirms the classical βαββαβ fold observed in the crystal structure 

(Khazina and Weichenrieder, 2009). In solution, the extended loop L(β2-β3) is flexible 

and disordered between residues P204 and T213 (yellow, Fig. 31), while the highly 

conserved salt bridges (E165-R215 and E169-R202) are still observed. 

 

Fig. 31. NMR ensemble for the RRM domain. The disordered loop L(β2-β3) is 
highlighted in yellow (P204-T213) and the conserved salt-bridges are shown as 
sticks. 

The NMR structure of the human CTD domain (residues S254-M323) is also 

well defined. It contains a highly conserved cis-proline (P283) as part of the α-hairpin 

(Chou, 2000) forming the loop L(β5-β6) that was not modeled as such in the murine 

homologue (Januszyk et al., 2007). The human CTD domain also contains a 40° kink 

after W264, separating helices α3N and α3 (green, Fig. 32). This kink might also 

exist in the murine homologue considering the deposited data and likely is highly 

relevant as a hinge (hinge 3, see below) in terms of L1ORF1p function. Furthermore, 

the C-terminal helix (helix α5) is longer in the human homologue and oriented to pack 

against helix α3 in an antiparallel fashion, leading to an overall ααβββαα fold for the 

human CTD domain. In strong contrast to the RRM domain, there are currently no 

further examples of this fold in the database. 
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Fig. 32. NMR ensemble for the CTD domain. The hinge at W264 is highlighted in 
lime and important sidechains (Y282 and cis-proline P283) from the conserved α-
hairpin are shown as sticks. 

A construct containing both RRM and CTD domains on a single polypetide chain is 

monomeric in solution. The respective NMR spectra do not show any peak shifts with 

respect to the isolated RRM and CTD domains (Fig. 33). 
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Fig. 33. NMR spectra (15N-HSQC) of the isolated RRM and CTD domains 
superimposed on the spectrum of the RRM-CTD fusion construct. 15N-HSQC 
spectra were recorded at 291K on a Bruker Avance III spectrometer at 600 MHz. 
Blue: Spectrum for the isolated RRM domain (hL1ORF1p-M). Green: Spectrum for 
the isolated CTD domain (hL1ORF1p-C). Red: Spectrum for the RRM-CTD fusion 
construct (hL1ORF1p-MCH6). The spectrum for the RRM-CTD construct corresponds 
to the sum of the other two spectra and does not reveal additional peaks or 
significant peak shifts. This indicates that the RRM and CTD domains do not interact 
in a defined manner in solution and do not adopt a defined orientation with respect to 
each other. 

This indicates that the RRM and CTD domains do not interact with each other in a 

defined way and that their relative orientations are not fixed in solution. These results 

raised the question if in the ORF1p trimer, which is the biologically relevant form of 

the protein, the orientation of the domains is not fixed either, or if it gets fixed in the 

presence of the coiled coil. 
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Table 2. Solution structure statistics for hL1ORF1p-MCH6. 

 SA <SA>r 

A.  Structural statistics1 

Distance restraints (Å)   

 

    

   

 All (902) 0.010 ± 0.001 0.009 
 Intra-residue (133) 0.001 ± 0.001 0.001 
 Inter-residue sequential  

 
0.011 ± 0.001 0.011 

 Medium range (153) 0.014 ± 0.001 0.013 
 Long range (248) 

 

 

0.009 ± 0.001 0.009 
 H-bond (95) 0.003 ± 0.001 0.003 
 Persistent violation 

 
0.05  

    
Dihedral restraints (°)   
 All (456) 0.033 ± 0.002  0.031 
 Persistent violations2 0.2  
   H-bond restraints3 (Å/°) (89)   
 Distance  2.16 ± 0.10  2.16 ± 0.10 
 Antecedent angle 13.7 ± 6.9  13.6 ± 7.0 
    

  
  

 Bonds (Å × 10-3) 11.4 ± 0.1 11.3 
 Angles (°) 0.57 ± 0.01 0.56 
 Impropers (°) 1.00 ± 0.01 0.99 
Structure quality indicators4   
 Ramachandran Map (%) 98.1 / 1.9 / 0.0 98.3 / 1.7 / 0.0 
 

B.  Atomic R.M.S. D (Å)5  

 SA vs <SA> SA vs <SA>r <SA> vs <SA>r 
All residues 15   
 Backbone heavy atoms 0.82 ± 0.17 1.43 ± 0.32 

   

   

1.20 

 

 

 All heavy atoms 1.12 ± 0.20 1.77 ± 0.28 

 

1.42 
RMM domain    
 Backbone heavy atoms 0.08 ± 0.02 0.11 ± 0.02 0.08 
 All heavy atoms 0.74 ± 0.09 0.98 ± 0.08 0.80 
CTD domain    
 Backbone heavy atoms 0.18 ± 0.04 0.20 ± 0.04 0.09 
 All heavy atoms 0.74 ± 0.05 0.98 ± 0.06 0.78  

1 Violations are expressed as RMSD ± SD unless otherwise stated. Numbers in brackets indicate 
the number of restraints of each type. 
2 Persistent violations are defined as those occurring in at least 75% of all structures. The 
thresholds at which no persistent violations occur are tabulated. 
3 Hydrogen bonds were treated as pseudo-covalent bonds. Deviations are expressed as the 
average distance/average deviation from linearity for restrained hydrogen bonds. 
4 Defined as the percentage of residues in the favoured/allowed/outlier regions of the 
Ramachandran map as determined by RAMPAGE (Lovell et al., 2003) 
5 Structures are labelled as follows: SA, the final set simulated of 15 annealing structures; <SA>, the 
structure calculated by averaging the coordinates of SA structures after fitting over secondary 
structure elements; <SA>r, the structure obtained by regularising the mean structure under 
experimental restraints. RMSD values were obtained based on heavy atoms superimpositions over 
ordered residue (defined as N5-I9, G19-T51 and H64-V99 for RMM and S102-N170 for CTD). 
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3.2 Trimeric structure and flexibility of the L1ORF1p 

3.2.1 Crystal structure of the trimer 

The structures of the L1ORF1p domains separately or even the solution structure of 

the RRM-CTD fragment did not explain the molecular mechanism of the protein 

function in the cell. To understand this mechanism, we seeked determining the 

structure of the L1ORF1p in its trimeric state. After several trials we succeeded in 

crystallization of a construct, which is an N-terminal truncation of the human protein 

(hL1ORF1p-∆N/1) retaining only the conserved, C-terminal half of the coiled coil (Fig. 
34). 

 

Fig. 34. Structure-based alignment of L1ORF1p homologues from selected non-
LTR retrotransposons with placental mammals (group I) at the top, other 
vertebrates in the center (group II) and invertebrates (group III) at the bottom 
(compare to Fig. 15). Interdomain linkers are shaded in lime with hinges marked by 
green arrows. Residues discussed in the text are shaded yellow (conserved surface 
residues) or marked by magenta letters (structurally important sidechains). The a and 
d layers of the coiled coil are shaded in gray. Green and cyan letters indicate the ion-
binding residues and RhxxhE trimerization motifs of the human sequence, 
respectively. Experimentally tested positions are boxed and colored magenta if 
important for retrotransposition. Secondary structure elements are according to 
monomer A of crystal form I (cfI) and letters are grey for residues that are 
unstructured in all of the monomers. For gene identifiers see Fig.15. 

This construct still trimerizes in solution (Fig. 35) and crystallized in one of three 

crystal forms (crystal form I, cfI), containing one trimer per asymmetric unit. 
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Fig. 35. Trimerization of human L1ORF1p-∆N/1. Size exclusion chromatography 
was combined with multiangle static laser-light scattering (MALLS, green line, 
secondary axis). MALLS shows the trimerization of the protein, while the 
hydrodynamic radius (rH) indicates a roughly spherical shape. The expected 
hydrodynamic radius (rH) for a globular trimer of 3x28 kDa is 39 Å. 

The structure was solved at 2.1 Å resolution by a combination of single wavelength 

anomalous dispersion and molecular replacement and was refined to an Rfree of 

26.1% (Fig. 36, Table 3). 
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Table 3. Data collection and refinement statistics for hL1ORF1p-∆N/1 and 
hL1ORF1p-∆N/2. 

 

 

 

Data set cf I peak cf I remote cf II cf III 
Space group P212121 P212121 P212121 P212121 
Unit cell     
    dimensions (a / b / c), Å 72.5/ 84.9/ 111.1 72.7/ 85.4/ 111.5 73.7/ 89.9/ 111.6 71.4/ 91.6/ 107.7 
    angles (α/ β/ γ), ° 90/ 90/ 90 90/ 90/ 90 90/ 90/ 90 90/ 90/ 90 

Data Collection     
Wavelength, Å 0.9790 0.9710 1.0070 0.9787 

Resolution range, Å a 900-2.3 
(2.30-2.36) 

900-2.1 
(2.10-2.15) 

900-3.1 
(3.10-3.18) 

900-3.1 
(3.10-3.18) 

Rsym, % a  4.9 (45.5) 4.9 (49) 8.1 (60) 8.9 (59.1) 
Completeness, % a 99.8 (99.9) 97.2 (97.6) 97.9 (99.6) 8.9 (59.1) 
Completeness (anomalous), % a 98.8 (99.3)    
Mean I/σ(I) a 11.68 (2.1) 10.88 (1.95) 10.79 (1.71) 11.28 (2.23) 
Number of unique reflections 31113 (2277) 40061 (2929) 13701 (1004) 13313 (966) 
Multiplicity a 3.7 (3.8) 2.26 (2.29) 2.42 (2.42) 3.59 (3.69) 
Multiplicity (anomalous) a 1.98 (1.97)    
             
Refinement     
Data range, Å  36.8-2.1 61.5-3.1 69.8-3.1 
Rcryst, %  21.6 24 23.7 
Rfree, %  26.1 27.8 28.6 

Number of  molecules per 
asymmetric unit     

    protein molecules  3 3 3 
    chloride ions  2 2 2 
    atoms (excluding water)  5206 4969 4948 
    water molecules  190 0 0 
Average B-factor, Å2     
    all atoms  51.8 87.3 77.4 
    chloride ions  42.2 54.5 81.8 
    protein atoms  51.9 87.3 77.4 
    water molecules  48.8   
Ramachandran plot     
    favored regions, %  98.3 96.6 97.6 
    disallowed regions, %  0 0 0 
 R.m.s.d. from ideal geometry     
    bond lengths, Å  0.003 0.005 0.002 
    bond angles, °  0.60 0.48 0.51 
a Values in parentheses correspond to those in the outer resolution shell 
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We find trimerization to be mediated indeed by a central parallel coiled coil of α-

helices (helices α0, Fig. 36a, b) that C-terminally extends up to V153 as we 

predicted before and that is followed by a very short linker (K154-P156, for an 

alignment see Fig. 34). After P156, there is an almost 90° turn (hinge 1, Fig. 36b) 

leading directly into the RRM domains (N157-D252). 

 

Fig. 37. Crystal structure of the human L1ORF1p trimer. (a) Overview of cf I with 
the coiled coil in grey, the RRM domains in red and the CTD domains in blue. Central 
chloride ions are shown as yellow spheres. Left: side view, right: top view. (b) 
Comparison of the three monomers with the interdomain linkers in lime and with the 
corresponding hinges marked by green arrows. Residues R261 and Y282 are shown 
as orange sticks to illustrate the different CTD orientations. 

As a consequence, the RRM domains are tethered to the bottom end of the coiled 

coil with their β-sheets (i.e. their putative RNA-binding surfaces) facing up and 

describing a common plane that is perpendicular to the axis of the trimeric coiled coil. 

a 

b 
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In contrast to the solution structure, the RRM-CTD linker (L253-S254) now adopts a 

defined conformation and helps to anchor the CTD domains (S254-M323) to the 

outside of the coiled coil (hinge 2, Fig. 36b) from where helix α3N arcs out, 

suspending the CTDs over the RRM β-sheet plane. This mode of attachment allows 

for a considerable flexibility of the CTD domains that is further increased by the 

previously mentioned hinge 3 at W264 (Fig. 36b) that separates helix α3N from the 

CTD core. 

3.2.2 The core of the coiled coil contains ions coordinated by 
polar residues 

The sequence of the crystallized construct was designed to contain seven heptad 

repeats of the coiled coil (I-VII, counting backwards from the RRM domain, Fig. 34, 
37). Heptad repeats are a sequence signature of coiled coils and positions within 

heptads are generally numbered a-g, where a and d form hydrophobic layers in the 

core of the coiled coil. The N-terminal heptad (VII) is disordered in the crystal, and 

hence only the second of two conserved RhxxhE trimerization motifs is visible (h, 

hydrophobic; x, any amino acid, Kammerer et al., 2005). It stabilizes the parallel, 

trimeric state of the coiled coil by interchain salt bridges and hydrogen bonds 

between R117, S119 and E122 (Fig. 37a). 

 

 

a b c 
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Fig. 37. Details of the coiled coil. Heptad repeats are numbered (I) to (VI) and are 
colored alternatingly grey and bluewhite, with central chloride ions shown as yellow 
spheres. (a) Externally stabilizing hydrogen bonds (including RhxxhE trimerization 
motifs in heptads II and V) are shown as dotted lines, with the corresponding 
residues as cyan sticks. (b) Sidechains in the a and d layers are shown as sticks with 
ion-coordinating residues in green. (c) Conserved and functionally important side 
chains on the surface of the coiled coil are shown as magenta sticks. 

We also find interchain saltbridges between R138 and E143 (Fig. 37a), which belong 

to a similar RhxxhE trimerization motif where the second ‘hydrophobic’ position is 

occupied by a non-canonical asparagine (N142). In addition, the corresponding d-

layer of the coiled coil (heptad II) contains a central chloride ion (Fig. 37a, 37b). Such 

N@d layers with a central anion are important motifs increasing the specificity for the 

trimeric state and they appear to be quite common in parallel trimeric coiled coils of 

bacterial adhesins, viral fibers and fusion proteins (Hartmann et al., 2009). However, 

they have not been described for an intracellular protein so far. Surprisingly, we 

identified a second chloride ion in the a-layer of heptad III (G132). In an 

unprecedented arrangement this chloride ion is coordinated by the guanidino groups 

of the three arginines (R135) that emanate from the following non-canonical d-layer 

(Fig. 37b). 

3.2.3 The three RRM domains are in structurally distinct 
orientations resulting in asymmetric interfaces 

The orientation of the RRM domains with respect to the coiled coil is stabilized by the 

highly conserved K227 that contacts the R155 carbonyl oxygen and by an 

intermolecular bond between N157 and Y152 from the neighboring protein monomer 

(Fig. 38a). 
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Fig. 38. Details of the hinges and asymmetric interfaces of the RRM domains. 
(a)Details of the hinges, side view. (b) Asymmetric interfaces of the RRM domains, 
top view with interdomain hydrogen bonds as dotted lines and with the corresponding 
interface residues as sticks. Helix α3N is drawn as a simple loop for clarity, and the 
fixation of the CTD core by R261 is highlighted in magenta. The black triangle 
indicates the threefold axis of the coiled coil. 

Furthermore, the RRM domains contact their neighbors, but the interfaces are rather 

small (250 Å2 or less of buried surface area). They are formed between the loop 

L(β3-α2) and the N-terminal part of helix α2 from one RRM domain (residues T222-

E228) and the strand β2 (residues Q198-Q201) from the other RRM domain (Fig. 

38b).  

Most interestingly, the arrangement of the RRM domains deviates from the 

threefold symmetry of the coiled coil. This asymmetry is reflected by variable 

interface contacts. Comparing the three monomers A, B, and C, the primary 

interaction in the AB and CA interfaces is a main-chain hydrogen bond from V224 (A, 

C) to Q198 (B, A). In the BC interface this bond is broken. Instead, the main-chain 

nitrogens of V224 (B) and E225 (B) are contacted by the side-chain of E199 (C), 

which is invariant in placental mammals (Fig. 38b). 

Finally, a series of rather conserved side-chains that are in positions to form 

additional contacts across domain interfaces were modeled in double conformations 

(R155 (A), Q201 (B), R220 (A, B), E256 (C)) or are even more strongly disordered 

(E175 (B), Q196, Q198 (B, C), K223 (A), E225 (B, C), Q277 (C), R279 (C), K285 and 

residues 204-213 from loop L(β2-β3)). This suggests alternative ways to optimize the 

interactions of neighboring domains in solution; interactions that are likely to be weak 

and dynamic. 

a b 



Results 

63 

3.2.4 The three CTD domains are flexibly attached to the coiled 
coil and lack defined contacts to their neighbors or to the RRM 
domains 

The three CTD domains (Fig. 36b, 38a) are loosely suspended above the plane 

described by the RRM β-sheets, but without directly contacting the RRM domains. 

Furthermore, and in contrast to the RRM domains, there are also no contacts 

between neighboring CTD domains. As a consequence, the position of the CTD 

domains with respect to the RRM domains is only indirectly determined, allowing 

them to act even more dynamically than the RRM domains and to take individual 

orientations independently of the coiled coil symmetry (Fig. 36a, b).  

Only the very tip of helix α3N gets anchored to the coiled coil (hinge 2) 

involving a network of hydrogen bonds that includes S254 and T257 in the CTD and 

Q147, D151 and K154 in helix α0 (Fig. 37a). This results in considerable leverage, 

such that subtle changes in the length and distance of individual hydrogen bonds 

translate into large reorientations of the CTD and vice versa. 

Additionally, the rigid CTD core can move with respect to helix α3N, as 

observed in monomer C, where the CTD core twists around the internal hinge 3 by 

roughly 45° (Fig. 36b). In this case an important hydrogen bond is lost between the 

ε-nitrogen of the invariant R261 on helix α3N and the carbonyl oxygen of the equally 

invariant cis-proline P283 in loop L(β5-β6) (Fig. 38a). Notably, substitutions of R261 

lead to a dramatic loss of retrotransposition of both human (Kulpa and Moran, 2005) 

and murine (Martin et al., 2005) L1 elements. 

The only other detectable contact of the CTDs to the rest of the trimer is via the 

highly conserved Y282 that protrudes from the tip of the rigid α-hairpin (loop L(β5-

β6)). It likely acts as a counter bearing, preventing the CTD core from collapsing onto 

the coiled coil and helping it to adopt a stable ‘parking’ position as in monomer B 

where Y282 neatly stacks on R155 (Fig. 36b, 38a). 

3.2.5 The cleft between the RRM and CTD domains can open 
up considerably 

Two additional crystal forms were solved at 3.1 Å resolution. They reveal additional, 

significantly different domain orientations, deepening the insight into the flexibility and 

dynamics of the trimer (Fig. 39, Table 3). 
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Fig. 39. Flexibility of the L1ORF1p trimer. Comparison of the three crystal forms, 
cfI (left), cfII (center) and cfIII (right), colored according to monomers. Circles 
highlight the different CTD domain orientations with residues R261(C) and Y282(C) 
as sticks. 

Crystal form II (cfII, Rfree = 27.8 %, Fig. 39) is the most symmetric of the three crystal 

forms and has all three CTDs in roughly similar orientations, in ‘parking’ positions like 

the ones described for monomers A and B of cfI. Thus, the CTD orientation observed 

in monomer C of cfI is not an inevitable consequence of trimerization, but can be 

adopted independently. The RRM domains of cfII remain in orientations comparable 

to cfI, but they move slightly with respect to each other, altering the distances and 

angles of the interface hydrogen bonds.  

Crystal form III (cfIII, Rfree = 28.6 %, Fig. 39) is the most asymmetric of the 

three crystal forms and is characterized by a pronounced upward rotation of the CTD 

domains in monomers B and C by roughly 30° around hinge 2, during which the 

guanidine group of R155 rotates by 90° and Y282 loses all contacts to the coiled coil. 

As a consequence, the cleft between the RRM and CTD domains opens 

considerably. Furthermore, the distance and orientations of the interface contacts 

between the RRM domains are altered yet again, revealing an intriguing adaptability. 

3.2.6 Single-stranded nucleic acids are likely to bind in the 
deep basic clefts between the RRM and CTD domains 

A molecular surface representation of the trimer, colored by the electrostatic surface 

potential shows deep, highly positively charged clefts; horizontally between the RRM 

and CTD domains and vertically between monomers (cfIII, Fig. 40). 
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Fig. 40. Electrostatic potential mapped onto the molecular surface of the 
L1ORF1p trimer (cfIII). NMR ensembles are superimposed for the loops L(β2-β3) 
and are shown as yellow tubes. Potentials are contoured from -15kT/e (red) to 
+15kT/e (blue). Left: front view, Right: back view. 

This suggests a direct interaction primarily with the flexible, negatively charged 

phosphoribose backbone of single-stranded nucleic acid substrates rather than with 

the bases. For the rigid backbones of structured and double-stranded nucleic acids, 

however, the depth and the curvature of these clefts would not allow a continuous 

interaction, effectively selecting against such substrates.  

The horizontal cleft is lined with putative RNA binding residues that face each 

other from the RRM and CTD domains (Fig. 41). 

 

Fig. 41. Details and flexibility of the cleft between the RRM and CTD domains. 
Monomers (B) of cfI (left) and cfIII (right) are shown. Selected sidechains are shown 
as sticks and colored magenta if found important for retrotransposition, grey if found 
irrelevant, and yellow if not tested. Residues with an asterisk are found important for 
nucleic acid binding. 

They are too far apart for directly contacting each other, but they could easily 

accommodate and reach a nucleic acid backbone from the two different sides already 
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when the CTD is in its ‘parking’ position, and even more so as the CTD is lifted up to 

its highest observed position in monomers B and C of cfIII. 

The vertical clefts may be gated by the disordered loops L(β2-β3) of the RRM 

domain (yellow, Fig. 40) and potentially could accommodate nucleic acid strands that 

reach up to the two conserved lysines (K137 and K140) on the surface of heptads II 

and III of the coiled coil (Fig. 37c, 41). 

3.2.7 Each L1ORF1p trimer binds 27-45 nucleotides of single-
stranded nucleic acid 

To test the trimer (hL1ORF1p-∆N/1) and our mutants experimentally for nucleic acid 

binding we used size exclusion chromatography. This allows us to separate stable 

complexes from individual components and to estimate complex stoichiometry from 

the ratio of absorbances at different wavelengths. 

Although each L1ORF1p monomer could bind to a separate 27-mer oligoU 

RNA on its own (Khazina and Weichenrieder, 2009), we never observe more than 

one nucleic acid per trimer. Furthermore, 27 or more nucleotides (oligoU RNA or 

oligoT DNA) are required for a stable interaction and shorter fragments start to 

dissociate in the assay (Fig. 42). 

 

Fig. 42. Minimum length requirement for the nucleic acid binding of the 
L1ORF1p trimer. Size exclusion chromatography was done with various nucleic acid 
substrates (red lines) and L1ORF1p trimers (hL1ORF1p-∆N/1, blue lines, dashed in 
the absence of nucleic acid substrate). Elution volumes of the complexes and of the 
free components are indicated by arrows and dashed grey lines, while apparent 
concentrations are calculated from the relative absorption properties of the 
components. 
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These observations indicate positive binding cooperativity between the individual 

monomers. Larger fragments of nucleic acid start to accommodate more than one 

trimer only if they are longer than 50 nucleotides (Fig.43). 

 

Fig. 43. Length requirements for binding more than one trimer, analyzed with 
poly T DNA. Size exclusion chromatography was done with various nucleic acid 
substrates (red lines) in the absence (dashed lines) or presence (solid lines) of 
L1ORF1p trimers (hL1ORF1p-∆N/1, blue lines). Elution volumes of the complexes 
and of the free components are indicated by arrows and dashed grey lines, while 
apparent concentrations are calculated from the relative absorption properties of the 
components. 

A fragment of 90 nucleotides stably binds two trimers if protein is in excess (i.e. ~45 

nucleotides per monomer), but only one if protein is limiting. This indicates that the 

two trimers do not cooperate in nucleic acid binding. 

3.2.8 L1ORF1p trimers distinguish nucleic acid substrates 
based on structure and sequence 

L1ORF1p has been described to have little or no affinity for double-stranded 

substrates (Hohjoh and Singer, 1997; Kolosha and Martin, 1997; Martin et al., 2008). 

We observe the same behavior with the present, truncated trimer. A single-stranded 

29-mer DNA sequence (5’ GCGAGTTGATGTTAGACTGTGTACTTTTT 3’, Martin 

and Bushman, 2001) binds the trimer with equimolar stoichiometry. The same is true 

for the reverse complement (rc29-mer DNA, data not shown). When both complexes 

are mixed together, the DNA strands readily anneal to form a duplex, quantitatively 

liberating the bound protein (Fig. 44). 
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Fig. 44. Discrimination of L1ORF1p trimers against double-stranded substrates. 
Size exclusion chromatography was done with 29-mer DNA substrates (red lines) 
and of L1ORF1p trimers (hL1ORF1p-∆N/1, blue lines). Elution volumes of the 
complexes and of the free components are indicated by arrows and dashed grey 
lines, while apparent concentrations are calculated from the relative absorption 
properties of the components. 

Hence, there is an obvious balance between the stability of the double stranded DNA 

duplex and the stability of the individual protein-nucleic acid complexes. For the 

latter, both the sequence and the chemical structure of the backbone play an 

important role. Indeed we find that a 27-mer oligoA DNA does not bind the L1ORF1p 

trimer at all, while a 27-mer oligoA RNA forms a stable and separable complex (Fig. 
45). 

 

Fig. 45. Discrimination of L1ORF1p trimers against 27A DNA. Size exclusion 
chromatography was done with 27-mer RNA and DNA substrates (red lines) and of 
L1ORF1p trimers (hL1ORF1p-∆N/1, blue lines, dashed in the absence of nucleic acid 
substrate). Elution volumes of the complexes and of the free components are 
indicated by arrows and dashed grey lines, while apparent concentrations are 
calculated from the relative absorption properties of the components. 

In contrast, 27-mer oligoT DNA and 27-mer oligoU RNA are bound with no significant 

difference (Fig. 42).  

Consequently, the sugar 2’ hydoxyl group is an important but not a dominant 

binding determinant for L1ORF1p, and sequence composition is read out as well. 

The binding data show an exclusive binding to single-stranded substrates of 27 

nucleotides or more. These might wrap around the trimer in the deep clefts between 

the RRM and CTD domains, where the flexibility of the protein permits an optimal 



Results 

69 

adjustment to structural requirements of the phosphoribose backbone, but apparently 

also a specific recognition of bases in certain positions of the sequence (Fig. 46). 

 

Fig. 46. Potential RNA-binding paths on the surface of the L1ORF1p trimer. (a) 
Alternative paths of a 27-mer RNA drawn as a tube with nucleotide spacing as 
spheres. The molecular surface of the L1ORF1p trimer (cfIII) is colored according to 
the electrostatic potential, contoured from -15kT/e (red) to +15kT/e (blue). White 
labels indicate basic residues at the bottom of the coiled coil that are important for 
nucleic acid binding. The inset shows the respective RNA path with the protein 
removed for clarity. Front view. (b) Back view. 

3.2.9 Basic surfaces in all three structural domains mediate 
nucleic acid binding 

The surface properties of the trimer and sequence conservation suggest that nucleic 

acids contact additional amino acids outside of the canonical RNA binding surface on 

b 

a 
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the β-sheet of the RRM domain. We therefore generated a series of mutants in all 

three structural domains and tested them for nucleic acid binding by size exclusion 

chromatography (Fig. 34, 41, 47). 

 

Fig. 47. Mutational analysis of L1ORF1p nucleic acid binding properties. 
Binding of single-stranded RNA (27U RNA, red lines) was tested for variants of 
L1ORF1p (L1ORF1p-∆N/1, blue lines, see Fig. 45 for details). 

In the CTD domain, an R261A mutant (helix α3N) abolishes nucleic acid binding, 

while a R261K mutant does not. This is consistent with previous results (Kulpa and 

Moran, 2005; Martin et al., 2005) and with the present proposition of the arginine (or 
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lysine) to reach and fix the nucleic acid backbone from the opposite side of R235, 

explaining the requirement of both RRM and CTD domains in nucleic acid binding.  

Within the RRM domain, an R235A mutant (helix α2) also shows a binding 

defect as expected from its position adjacent to the β-sheet and opposite R261. 

Surprisingly, an R206A/R210A/R211A triple mutant in the loop L(β2-β3) has an even 

stronger effect, although the loop is disordered in the crystal and NMR structures. 

This suggests the loop adapts to and binds the nucleic acid substrate, consistent with 

a proposed role in gating the vertical clefts of the trimer. 

Finally, the neutralization of the lower, basic surface of the coiled coil 

(K133A/K137A/K140A/R141A) also abolishes nucleic acid binding. This is 

remarkable because, previously, nucleic acid binding was thought to be confined to 

the RRM and CTD domains. The respective surface may thus indeed assist the entry 

or exit of long single-stranded nucleic acids to wrap around the trimer in the clefts 

between the RRM and CTD domains (Fig. 46). 

3.2.10 Retrotransposition critically depends on the structural 
integrity and flexibility of the trimer 

To test the relevance of the identified nucleic acid binding surfaces and to test the 

significance of the observed domain motions for retrotransposition we used a well-

established in vivo assay (Moran et al., 1996). In this assay successful genomic 

integration of a modified L1 element leads to G418-resistant HeLa cell colonies, 

allowing a quantitative comparison (Fig. 34, 48). 
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Fig. 48. Mutational analysis of L1ORF1p retrotransposition activity. Activity was 
scored in a cell-based assay relative to the wildtype protein, using an active site 
mutant of the L1ORF2p reverse transcriptase (D702A) as a negative control. Error 
bars are standard deviations from three independent experiments. 

L1ORF1p mutants were tested in the context of the full-length protein, because an N-

terminal deletion (∆(1-103)) corresponding to the crystallized construct was not 

sufficient to promote retrotransposition. 

Within the a- and d-layers of the coiled coil a M121A/M125I/M128I triple 

mutation corresponding to the murine sequence and used in crystallization was 

tolerated. In contrast, a G132I/R135I/N142I triple mutation, designed to eliminate the 

ions and to stabilize the core by canonical, non-polar residues does no longer allow 

retrotransposition. Although there is no apparent defect of this mutant in trimerization 

or nucleic acid binding in vitro (Fig. 47, 49), there could well be an assembly problem 

in vivo due to a lack of specificity or a functional defect because the coiled coil 

becomes too stable. 

 

Fig. 49. Trimerization of the G132I/R135I/N142I mutant, designed to replace the 
chloride ions by canonical, non-polar side chains. 

On the surface of the coiled coil the conserved acidic residues E116 and D123 are 

crucial as well. Their mutation does not affect RNA binding (Fig. 47), consistent with 

a D159H mutation in the context of the murine protein (D123 in the human sequence, 

Martin et al., 2008). The two residues do not serve any structural role within the 

crystallized trimer (Fig. 37c), but might do so in the context of the full-length protein. 

Alternatively, they could also mediate cooperation of the full-length trimers or 

important interactions with required partner proteins. Finally, a Q147A/D151A/K154A 

mutation (Fig. 38a, 37c), designed to liberate the CTD domain from the coiled coil 



Results 

73 

does not retrotranspose either, illustrating once more the need to structure the RRM 

and CTD domains with respect to the coiled coil scaffold.  

In general, we find that any surface mutation that impairs nucleic acid binding 

of the trimer in vitro also impairs retrotransposition (Fig. 47, 48), demonstrating the 

importance of a proper association with nucleic acid and the involvement of the 

respective residues in that function. Most interesting, however, are three subtle 

mutations in the domain interfaces, which have no apparent defects in trimerization 

or nucleic acid binding, but which nevertheless severely reduce retrotransposition:  

i) The R261K mutant, while still able to bind nucleic acid, probably can no 

longer hold on and stabilize the CTD core around the hinge 3 (Fig. 38a), explaining 

its previously described functional defect (Kulpa and Moran, 2005; Martin et al., 

2005). ii) Similarly, retrotransposition efficiency of a Y282A mutant is lowered 

severely, probably because it affects the movements of the CTD core with respect to 

the coiled coil and around the hinge 2 (Fig. 36b, 38a, 39). iii) Finally, an R220A 

mutation also affects retrotransposition strongly. Although partially disordered in the 

crystals, this residue is expected to play a structural role at the tip of the RRM β-

sheet from where it reaches towards the axis of the trimer, probably controlling the 

orientation of the RRM domains around the hinge 1 (Fig. 40). 

Clearly, the precise control of domain orientations is very important. This 

strongly supports a crucial role for the flexibility of the L1ORF1p trimer in the 

retrotransposition cycle of the L1 element. 

3.3 ORF1p proteins from many NLR clades contain RRM 
domains 

To identify domain architecture of ORF1p proteins from other non-LTR 

retrotransposons, apart from L1, we again used HHpred (Söding et al., 2005) for 

remote protein domain homologues searches. This revealed potential RRM domains 

in nearly all of the major NLR clades that contain an ORF1p. The NLR clades and the 

query sequences used in this study are listed in Tables 4 and 5. 
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Table 4: Identification of RRM domains in selected NLR-ORF1p proteins. 

name speciesa gi-number query 
residues
b 

 

proba 

bility 

E-value P-value PDB-ID 

residues 

 

number of 
RRMs 

Type I NLR ORF1p 

I clade 

I Dr 20146016 081-233 96.1 0.13 3.3E-06 2adc_A 

102-211 

2 

Jockey clade 

Jockey Dm 157823 233-404 97.4 0.0045 1.1E-07 1cvj_A 

235-401 

2 

TART-A Dm 48596445 564-717 97.0 0.027 6.7E-07 2qfj_A 

031-210 

2 

Het_A Dm 14030851 471-623 97.1 0.022 5.4E-07 2qfj_A 

031-208 

2 

R1 clade 

pilger Dm 9369277 235-408 

 

97.1 0.0023 5.8E-08 2dgx_A 

326-396 

1 

Tad1 clade 

Tad1_1 Nc 409759 176-349 97.5 0.00094 2.4E-08 2dny_A 

250-343 

1 

L1(plant) clade 

ATLINE1 At 12321249 082-258 97.0 0.021 5.4E-07 1fje_B 

082-219 

2 

L1(Tx) clade 

Tx1L Xl 214844 141-241 96.1 0.0088 2.2E-07 2o3d_A 

149-240 

1 

         

Type II NLR ORF1p 

L1(vertebrate) clade 

L1.3 

 

Hs 307098 157-252 77.5 8.3 0.00021 3bs9_A 

164-237 

1 

L1(Tx) clade 
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L1(Tx) Nv 149795606 133-221 73.9 9.9 0.00025 2nlw_A 

134-216 

1 

CR1 clade 

CR1 Nv 149844706 076-174 48.8 14 0.00035 2ghp_A 

076-
158(1) 

1 

CR1 

 

Sp 111740418 116-200 23.1 88 0.0022 2dgp_A 

117-212 

1 

         

Type III NLR ORF1p 

CR1 clade 

Q Ag 432429 193-294 93.9 0.1 2.6E-06 2dng_A 

193-287 

1 

T Ag 159642 215-312 93.0 0.16 3.9E-06 2dng_A 

220-305 

1 

 

a Hs, Homo sapiens; Dm, Drosophila melanogaster; Dr, Danio rerio; Nc, Neurospora 
crassa; At, Arabidopsis thaliana; Ag, Anopheles gambiae; Xl, Xenopus laevis; Sp, 
Strongylocentrotus purpuratus; Nv, Nematostella vectensis. 

b amino acids are counted starting with the first methionine 
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Table 5: Query sequencesa used for Table 4. 

 

Type I NLR ORF1p 

 

I_I-DR_Dr_gi_20146016_(081-233) 

VFVRLVQEGATFEDWSPIQLTKALYKEIGEVRCAKKLRNGCLLVSCKDEAQQKKAIKVNKINGKKVKCSEVYD
RKLIRGVITGIPVSESLNNVIEGITNAKIKEAKRLKTRWNGAICDSLSIMLTFDETKLPDKVFIGYMSYEVKMYIP
PPVR 

 

Jockey_Jockey_Dm_gi_157823_(233-404) 

KPPAICVPSVSDPVTLERALNLSTGSSNYYIRISRFGVSRIYTANPDAFRTAVKELNKLNCQFWHHQLKEEKP
YRVVLKGIHANVPSSQIEQAFSDHGYEVLNIYCPRKSDWKNIQVNEDDNEATKNFKTRQNLFYINLKQGPNVK
ESLKITRLGRYRVTVERATRRKELLQ 

 

Jockey_TART-A_Dm_gi_48596445_(564_717) 

IFLSNIQQIIPLIEKLNYKAGVNSFTTKSELGNNIRIQAKTMDAYKAIQNVLLGANIPLHSHQPKSAKGFQIVIRHL
HQSTPTKWIESQLQDIGIATKFIRAMQFRDTRNPMRIHEVEVVPKADGSHLKVLLLKSLGGQTVKVERKRVSK
DPTQ 

 

Jockey_HeT-A_Dm_gi_14030851_(471_623) 

ILVNDVKEIVPLLEKLNYTAGVSSYTTRAIEGNGVRIQAKDMTAYNKIKEVLVANGLPLFTNQPKSERGFRVIIR
HLHHSTPCSWIVEELLKLGFQARFVRNMTNPATGGPMRMFEVEIVMAKDGSHDKILSLKQIGGQRVDIERKN
RTREP 

 

R1_pilger_(waldo)_Dm_gi_9369277_(235-408) 

AKVKPKRLRKKPEALILKKTGEVTYSDMLRKMKAEPSLTEFGKHVRKIRRTQQGELLLELEGKASEVIPSFKN
ELEATLKEIASVRTGAHRTALICSGLDETTTAQDLHNSLVSQFQGIRLEPEDVRGLRRRRDGTQIASVLMCAN
DAIAVINRGVVTVGWSRCRIAQDVRPIR 

 

R1_TRAS1_Bm_gi_940388_(202-378) 

RQPPKCTTLHSIMVSSKDENETGDGILTELRKTASEDEGWVRVERVRKIKDRKIIMSYRTEEERTKATQRLKK
SEGELVVEEIKNKDPLLILYNVLKMHSDEDLQKALRSKNKDLFRNLNKEDDRIEVKYKKSARNPHTHHVVLKV
SPTIWNRALSMGSLHIDIQPVRVADQTPLVQ 

 

Tad1_Tad11_Nc_gi_409759_(176-349) 

RQLTIKGATIAAEFVNRSNEDTKTTLATCLGKKKPGLIVRAATRMPTTGDYVIVFDEPTRTWCWRNQAWAKE
VFGPDAFITMSTVGVLVRGVPWDSVDNYTTAEAISNVAKERNPEASIIRVRPWKRRDGESRGLLLVEVATAS
AACFLQDNLFLWDGGAYPCEPFQASSNVQQ 

 

L1_ATLINE1_1_At_gi_12321249_(082-258) 
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GLEVFEAMNSLWKNCMLVKVLGRSVPIAVLSKKLRELWKPIGAMHVVDLPRQYFMVRFESEEEYLTALTGGP
WRVFGSYLLVQAWSPDFDPMKDEIVTTPVWVRLSNIPLNLYHPSILMGITGGLGNLIKVDMTTLTCERARFAR
VCVEVNLRKPLKGTVMINEDRYFVAYEGLTNI 

 

L1Tx_Tx1L_Xl_gi_214844_(141-241) 

GGSYVPVEPLEGLGTRVVLSNVPPFLQDHLLYPHLQALGELKSNMSRIPLGCKESRLRHVLSFKRQVQLLLP
RGQDTIEGSFGVPFEGVLYKIFYSTEEVR 

 

Type II NLR ORF1p 

 

L1_L13_Hs_gi_307098_(157-252) 

NLRLIGVPESDVENGTKLENTLQDIIQENFPNLARQANVQIQEIQRTPQRYSSRRATPRHIIVRFTKVEMKEKM
LRAAREKGRVTLKGKPIRLTVD 

 

L1(Tx)_L1(Tx)_Nv_gi_149795606_(133-221) 

NLRFFGIPEGTNESWNGTEEAVRDFIHKNLKAGPKQAGDVSFERVHRTGTEDKSSPRPIIAKFSFFKDKEEVR
SLAKNLAGTSFGIAED 

 

Cr1_Cr1_Nv_gi_149844706_(076-174) 

CLEFKGIPSLEDENTNDLVIQVAQLAGVELDEDDISISHRLPAANNREWSDYEGNVHPPSPPTIIAKFVRRDIK
DEIYKARFSLKDKTTQDLEHFNCTD 

 

Cr1_Cr1_Sp_gi_111740418_(116-200) 

SVRIFGVPESKGEVTDQLVIKAVSDHLPCEISPSDIDRSHRSGKPRPDAKKPRPILVKFTQYKKKAAMMKDRR
RLKGSGISIQED 

 

Type III NLR ORF1p 

 

CR1_Q_Ag_gi_432429_(193-294) 

PFTDRIWIRLSAYQRPSLWNKWSLSVKRRLATDDVIAYCLLRRGVSVDSMNWLSFKVRVPAILRDAALTPST
WPVGIGVREFFQSRQHDHQTSSPIATRNRF 

 

CR1_T_Ag_gi_159642_(215-312) 

GIAEKVWLYFTNIKSHVSADDMRVWLKAVLPTDNIDVYRLTKKGANLDLMSFISFKVSIPKSLKDLALQSTIWP
VSLTVREFVDRGLPKQRIHERARF 

 

 

a query sequences are labeled according to clade_name_organism_gi_number_(residue range) 
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Since no classic RNA binding domains could be identified in these proteins in the 

past, the discovery of RRM domains was unexpected. It provides an explanation for 

the RNA-binding properties of many NLR ORF1p proteins and clearly establishes 

that they are not related to the Gag proteins encoded by retroviruses and LTR-

retrotransposons (Malik2002). According to the arrangement of the predicted 

structural domains we can roughly distinguish five types of NLR ORF1p proteins (Fig. 
50). 

 

Fig. 50. Identification and organization of RRM domains in phylogenetically 
unrelated NLR-ORF1p proteins. Type I ORF1p is widespread and contains gag-like 
CCHC zinc-knuckles. Type II ORF1p is found in the human L1 element and 
trimerizes via a coiled coil (cc). Other types are described in the main text (see also 
Table 4, 5). CTD, C-terminal domain; PHD, plant homeodomain; ES, esterase 
domain. 

Type I ORF1p is the most widespread type and contains at least one RRM domain 

immediately upstream of a gag-like CCHC zinc-knuckle. A second RRM domain and 

additional zinc-knuckles are frequent. The close association of the zinc-knuckle and 

RRM modules suggests a functional cooperation as observed frequently in other 

RRM proteins (Maris et al., 2005) (Lunde et al., 2007). Type I ORF1p is found from 

vertebrates to plants across at least five different clades, which indicates its ancient 

origin.  

Type II ORF1p is found in the human L1 element. It contains a distinct RRM 

domain that is preceded by additional conserved amino acids leading to a 

trimerization of the molecule via a coiled coil. The CTD domain (Janusczyk et al., 

2007) is conserved in vertebrate type II ORF1p proteins and characterizes the 

lineage of modern L1 elements (also referred to as mammalian-type L1 elements). 

This lineage is distinct from ancient members of the L1 clade that are found in 

amphibians (Garrett et al., 1989), fish (Kojima and Fujiwara, 2004), insects (Biedler 

and Tu, 2003) and plants (Wright et al., 1996) and that contain an ORF1p of type I. 
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For type III ORF1p we predict an occasional C-terminal RRM module in 

addition to a previously described N-terminal plant homeodomain (PHD, (Kapitonov 

and Jurka, 2003)). Type III ORF1p is found in the heterogeneous CR1 clade, which 

also harbors ORF1p proteins of type IV. These contain a functional esterase domain 

that enhances retrotransposition (Kapitonov and Jurka, 2003) (Sugano et al., 2006). 

Finally, there are numerous NLR ORF1p proteins (type V) that cannot be classified 

so far. 

3.3.1 The ancient origin of the RRM domain in type II ORF1p 
supports a modular evolution of NLRs 

So far, type II ORF1p has only been described in vertebrate members of the L1 

clade. We were therefore surprised to identify homologues of the RRM domain in 

NLRs of the starlet see anemone Nematostella vectensis (a non-bilaterian animal) 

and of the purple sea urchin Strongylocentrotus purpuratus (a deuterostomian 

animal) (Fig. 15, Tables 4 and 5). This indicates a deeply rooted origin of this RRM-

domain before the emergence of bilaterians approximately 750 million years ago and, 

possibly, a selective loss from the branch of protostomian animals. The respective 

NLRs do not seem to contain an equivalent for the CTD domain, and according to 

their reverse transcriptases they belong to the Tx group of the L1 clade and to the 

CR1 clade (Malik and Eickbush, 2002) (Jurka et al., 2005). The existence of such 

chimerical elements strongly supports the idea of a modular evolution of NLRs.  
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4 Discussion 

4.1 Identification of RRM domains in NLRs and their 
significance for retrotransposition 

For the last twenty years, NLR ORF1p proteins were studied in the absence of 

detailed structural information, and it was rather obscure if and how the various 

ORF1p proteins would bind RNA. We identified RRM modules in many NLR ORF1p 

proteins, which indicated that they could be generally important for retrotransposition. 

In this case, NLRs that do not encode their own RRM domains should depend on the 

proteins from other NLRs or recruit cell proteins. 

The discovery of RRM domains in many NLR ORF1p proteins clearly 

demonstrates that non-LTR retrotransposons are not related to retroviruses and LTR-

retrotransposons. 

Furthermore, the modular nature of the ORF1p and ORF2p proteins and their 

respective combinations can be exploited technically to clarify ambiguous relations 

among NLRs and can ultimately help to regroup their phylogenetic tree with higher 

resolution. 

4.2 The structure of the L1ORF1p trimer reveals the 
molecular basis for the cooperation between domains and 
for the mode of nucleic acid binding 

The present crystal structures definitely establish the unusual trimerization of 

L1ORF1p and reveal a parallel arrangement of the monomers. They are the first 

structures of an RNA packaging protein from a non-LTR retrotransposon and 

illustrate the importance to analyze this multidomain protein in its trimerized state in 

order to understand its function. The structures rationalize a wealth of mutational data 

(Goodier et al., 2007; Kulpa and Moran, 2005; Martin et al., 2008; Martin et al., 2005; 

Moran et al., 1996) and provide a simple, topological explanation for how the RRM 

domain is assisted by the CTD domain in nucleic acid binding despite the fact that 

both domains do not directly interact with each other. Furthermore, only in the 

trimeric state do the surface properties indicate how a single, continuous strand of 

nucleic acid could wrap around the protein and occupy binding surfaces on each 
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monomer (Fig. 46). Assuming a minimum of ~45 nucleotides per trimer, a single 

L1RNA of ~6000 nucleotides could thus theoretically accommodate up to 130 copies 

of the trimer to protect the L1RNA from nuclease attack, separate it from the general 

mRNA metabolism and mark it for nuclear reimport and retrotransposition. 

Nucleoproteins from single-stranded RNA viruses show conceptually similar 

architectures consisting of two lobes with a basic RNA binding cleft in between. They 

frequently multimerize continuously along the RNA substrate forming regular rings or 

spirals, but string-like RNPs without any helical symmetry have been observed as 

well (Albertini et al., 2008; Raymond et al., 2010). Whether L1ORF1p RNPs also can 

arrange into regular, higher order structures is not clear. However, atomic force 

microscopy on reconstituted murine L1RNPs rather suggests an asymmetric, 

irregular arrangement (Basame et al., 2006). 

4.3 The flexibility of the structure is critical at possibly 
multiple steps of the L1 retrotransposition cycle 

In contrast to most viral RNA packaging proteins (nucleoproteins), we did not only 

obtain a single snapshot of the structure but instead determined three distinct crystal 

structures plus NMR ensembles of the individual domains. This provides valuable 

and crucial additional insight into the molecular dynamics of the L1ORF1p trimer. We 

also observe conserved but malleable domain interfaces (e.g. between the RRM 

domains) as well as functionally important but unstructured loops (e.g. loop L(β2-β3)). 

Similar features have also been discussed for certain viral nucleoproteins (Tawar et 

al., 2009; Ye et al., 2006). They may be quite general for RNA packaging proteins 

that need to adapt to distinct sequence and structure contexts and for RNPs that 

need to undergo structural transitions. For the L1RNP such reorganizations might be 

crucial during the assembly and nuclear import processes. They might also be 

important in the TPRT reaction, where a gradual release of the L1RNA from the RNP 

would assure a smooth and continuous reverse transcription undisturbed by the 

formation of local RNA structures. 

Furthermore, the observed flexibility likely contributes to the proposed function 

of L1ORF1p as a nucleic acid chaperone. First, it probably allows for a gradual, i.e. 

kinetically favorable unwinding of double-stranded nucleic acid substrates and 

second, it probably allows for an optimization of the interactions with the resulting 
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single-strands, keeping them in a hybridization-competent state for the formation of 

alternative structures (i.e. with the bases exposed). As a result, the L1ORF1p trimer 

can resolve kinetically trapped nucleic acid structures, providing a path to the 

thermodynamically most favorable conformation. 

The dependence of L1 retrotransposition on L1ORF1p and the sensitivity to 

mutations is intriguing, especially since other non-LTR retrotransposons encode 

ORF1p proteins with completely different architectures, such as an esterase fold in 

the case of certain CR1/L2 non-LTR retrotransposons (Kapitonov and Jurka, 2003; 

Khazina and Weichenrieder, 2009; Sugano et al., 2006). Indeed, the analysis of 

protein variants affecting domain interfaces clearly demonstrates the functional 

importance of the complex architecture and of flexibility of the trimer. However, the 

requirement and conservation of surface residues like E116 and D123 also points to 

additional functions such as possible interactions with ‘host’ factors or with L1ORF2p 

that might be relevant at some stage of the retrotransposition cycle. Similarly, the N-

terminal half of the coiled coil domain, which is missing from the structure has been 

implied in ‘host’ factor interaction (Boissinot and Furano, 2001).  

Clearly, L1ORF1p has thus acquired specialized functions that go beyond 

simple nucleic acid binding. 

4.4 Non-LTR retrotransposons and the viral world 

LTR retrotransposons are clearly related to retroviruses. In contrast, for non-

LTR retrotransposons no closely related viruses have ever been described, and none 

of their encoded protein sequences could be related to viruses so far (apart from the 

core of the reverse transcriptase). Also the present structure of the mammalian 

L1ORF1p has no clear sequence or structure homologs among viral proteins.  

Nevertheless, there are three remarkable observations: i) A bilobal 

architecture with an RNA binding groove like the one in L1ORF1p (Fig. 51) has 

apparently evolved several times independently in the nucleoproteins of RNA viruses 

(Albertini et al., 2008). 
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Fig. 51. Bilobal architecture and basic RNA binding groove of viral 
nucleoproteins. The ribbons representations (top) of L1ORF1p (cfIII, monomer C) 
and of the nucleoprotein (NP) from the influenza A virus (PDB-ID 2iqh) reveal two 
RNA binding lobes (red and blue) with a positively charged RNA binding cleft in 
between (bottom, electrostatic surface potential contoured between -15 kT/e, red and 
+ 15 kT/e, blue). 

ii) Trimeric coiled coils with ions in the core and stabilizing RhxxhE 

trimerization motifs are rarely found in cytosolic proteins, but frequently in viral fibers 

and membrane fusion proteins (Fig. 52) that undergo substantial rearrangements, 

such as influenza hemagglutinin, HIV gp41, or HTLV gp21 (see Hartmann et al., 

2009, for a compilation).  
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Fig. 52. Trimeric coiled coils of viral membrane fusion proteins. Post-fusion 
structures of HTLV gp21 (PDB-ID 1mg1), HIV gp41 (PDB-ID 1env) and influenza A 
haemagglutinin (PDB-ID 1qu1) reveal variable ‘insertion domains’ (red) and C-
terminal sequences (blue) that are attached to the surface of the coiled coil, as well 
as central chloride ions (yellow spheres, gp21) and an RhxxhE trimerization motif 
(cyan sticks, gp41). Yellow helices: Regions in heamagglutinin undergoing a coil-to-
helix transition upon membrane fusion. 

iii) Certain viral membrane fusion proteins, the hemagglutinin-esterases of 

influenza C, of toroviruses, and of coronaviruses contain a receptor-destroying 

esterase (de Groot, 2006). Such an esterase (Fig. 53) is also found in the ORF1p 

protein from the ZfL2 non-LTR retrotransposon (Sugano et al., 2006) and in related 

elements, although these ORF1p proteins lack L1ORF1p-like features (Khazina and 

Weichenrieder, 2009). 
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Fig. 53. Esterase domains of viral membrane fusion proteins. The fold and the 
active site residues (orange sticks) of the esterase domain from the influenza C virus 
(PDB-ID 1flc) are also found in the ORF1p protein from the ZfL2 non-LTR 
retrotransposon (PDB-ID 1es9 for a homology model) and in related elements that 
lack an L1ORF1p-like protein. 

That the trimeric L1ORF1p is the evolutionary remainder of an ancient virus 

could thus be an intriguing hypothesis. 
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Abbreviations 

Å   Ångström (1 Å = 10-10 m) 

AFM   atomic force microscopy 

APOBEC apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 

cf   crystal form 

CMV   cytomegalovirus 

DCP1   decapping protein 1 

DDX6   DEAD (Asp-Glu-Ala-Asp) box polypeptide 6 

DNA   deoxyribonucleic acid 

DNase  deoxyridonuclease 

Dnmt3L  DNA (cytosine-5)-methyltransferase 3-like gene 

E.coli   Escherichia coli 

EM   electron microscopy 

GST   glutathione S-transferase 

GW182  Gly-Trp repeat containing protein of 182 kDa 

HA   hemagglutinin 

HeLa cell line derived from cervical cancer cells from the patient 

Henrietta Lacks 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HERV   human endogenous retrovirus 

HIV   human immunodeficiency virus 

HSQC   heteronuclear single quantum coherence 

LINE-1 (L1)  long interspersed nuclear element 1 
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LTR   long terminal repeats 

MALLS  multi-angle laser light scattering 

MW   molecular weight 

NLR   non-LTR retrotransposon 

NMR   nuclear magnetic resonance 

OD   optical density 

oligoT   oligodeoxythymidine nucleotide 

oligoU   oligouridine nucleotide 

ORF   open reading frame 

P-body  mRNA processing body 

PDB   Protein Data Bank 

pI   isoelectric point 

pi-body  piRNA processing body 

piRNA   Piwi-interacting RNA 

PIWI   P-element induced wimpy testis 

poly(A)  poly adenine 

poly(T)  poly thymidine 

poly(U)  poly uridine 

r.m.s.d.  root mean square deviation 

Rcryst/ Rwork  crystallographic reliability factor 

Rfree   free crystallographic reliability factor 

rH   hydrodynamic radius 

RNA   ribonucleic acid 
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RNP   ribonuclear particles 

SDS   sodium dodecyl sulfate 

siRNA   small interfering RNA 

SRP   signal recognition particle 

SV40   simian virus 40 

SVA   SINE VNTR Alu 

TEV-protease tobacco etch virus protease 

TPRT   target primed reverse transcription 

Tris   tris(hydroxymethyl)aminomethane 

UTR   untranslated region 
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