Constructing a Relational Query Optimizer
for Non-Relational Languages

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultat
der Eberhard Karls Universitat Tiibingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
Jan Rittinger

aus Karlsruhe

Tiibingen
2010

11

Tag der miindlichen Qualifikation:
Dekan:

1. Berichterstatter:

2. Berichterstatter:

08.04.2011

Prof. Dr. Wolfgang Rosenstiel
Prof. Dr. Torsten Grust

Prof. Dr. Guido Moerkotte

Zusammenfassung

Die Speicherung von Daten in flachen, ungeordneten Tabellen sowie eine deklara-
tive Anfragesprache sind Griinde fiir den Erfolg relationaler Datenbanksysteme:
Sie erlauben einem Datenbankoptimierer nicht nur die Auswahl verschiedener
Algorithmen, sondern auch die Wahl der besten Auswertungsreihenfolge. Dank
jahrzehntelanger Forschung und Entwicklung zéhlen relationale Datenbanksysteme
zu den besten Auswertungsplattformen fiir grole Datenmengen.

In den meisten Programmiersprachen werden, im Gegensatz zu Datenbanksys-
temen, sortierte und mitunter verschachtelte Datenstrukturen verwendet. Die
meisten Software-Entwickler arbeiten taglich mit diesen Datenstrukturen in
der Programmiersprache ihrer Wahl, was dazu fithrt, dass das Schreiben von
Datenbankanfragen oft ein Umdenken erfordert, beziehungsweise eine potentielle
Fehlerquelle darstellt. Um die Vorteile von relationalen Datenbanksystemen
fiir Entwickler in ihrer bekannten Umgebung nutzbar zu machen, stellen wir
eine nicht-relationale Sprache vor, die mit Ordnung, verschachtelten Listen und
komplexeren Datenstrukturen, wie zum Beispiel Tupeln, benannten Records
und XML-Daten, umgehen kann. Wir iibersetzen in dieser Sprache formulierte
Anfragen in ungeordnete relationale Anfragen, die auf Tabellen arbeiten.

Die Ubersetzung ist integraler Bestandteil des Compilers Pathfinder und
beruht auf dem Konzept des loop lifting: Sie stellt die genaue Transformation der
“fremden” Sprachkonzepte in die relationale Welt sicher. Die Zielsprache ist eine un-
geordnete logische Algebra, deren Operatoren aus bekannten Algebra-Operatoren
der Datenbankliteratur sowie zusétzlichen Nummerierungs- und XML-Operatoren
besteht. Die zusitzlichen Operatoren ermdglichen die genaue Ubersetzung von
Ordnung, verschachtelten Listen und komplexeren Datenstrukturen.

Im Gegensatz zu normalen Datenbankanfragen besteht ein Algebraplan durch-
schnittlich nicht aus dutzenden, sondern aus hunderten von Operatoren. Die Kom-
bination aus Grofle des Plans, Vernetzung der Operatoren und Nummerierungsop-
eratoren iiberfordert alle von uns getesten Datenbankoptimierer. In dieser Arbeit
stellen wir einen eigenen Optimierer vor, der die logischen Algebrapline analysiert
und jeden Operator mit Annotationen versieht. Diese Anmerkungen beschreiben
Eigenschaften des umgebenden Planes und werden verwendet um gezielt lokale
Plantransformationen vorzunehmen. Die Optimierungen werden durch Heuristiken
gesteuert und fiihren jeweils zu einer inkrementellen Verbesserung des Plans. Ziel

111

iv ZUSAMMENFASSUNG

der Optimierungen ist das Entfernen moglichst vieler Operatoren—im Speziellen
der Nummerierungsoperatoren—unter Beriicksichtigung semantischer Aquivalenz.

Die vereinfachten Anfrageplane werden entweder in SQL-Anfragen oder in
Skripte fiir das Hauptspeicher-Datenbanksystem MonetDB/XQuery iibersetzt.
MonetDB/XQuery kann, dank vieler XML-spezifischer Algorithmen und Er-
weiterungen, Anfragen auf XML-Daten sehr effizient auswerten. Die generierten
SQL-Anfragen konnen stattdessen auf fast jedem relationalen Datenbanksystem
ausgewertet werden und profitieren zusatzlich von den eingebauten Anfrageop-
timierern der Datenbanksysteme. In unseren Experimenten analysieren wir die
Qualitét der optimierten Anfrageplane und vergleichen die Auswertungszeiten. Die
untersuchten, optimierten Anfragen erinnern in ihrer Effizienz an handgeschriebene
Anfragen.

Die Kombination aus Ubersetzung in logische Algebrapline, Optimierung
und Generierung von Datenbankanfragen ergibt einen Compiler, der den Einsatz
von relationalen Datenbanksystemen als effiziente Laufzeitumgebungen fiir nicht-
relationale Sprachen erméglicht.

Abstract

Flat, unordered table data and a declarative query language established today’s
success of relational database systems. Provided with the freedom to choose the
evaluation order and underlying algorithms, their complex query optimizers are
geared to come up with the best execution plan for a given query. With over
30 years of development and research, relational database management systems
belong to the most mature and efficient query processors (especially for substantial
amounts of data).

In contrast, ordered lists of possibly nested data structures are used throughout
in programming languages. Most developers handle these constructs on a daily
basis and need to change their programming style, when confronted with a
relational database system. To leverage the potential of the relational query
processing facility in the context of non-relational languages—without the need
for a context switch—we provide a query language that copes with order, nesting,
and more complex data structures (such as tuples, named records, and XML data).
Queries expressed in this language are compiled into relational queries over flat,
unordered tables.

We take great care in the faithful mapping of the “alien” language constructs.
This work describes the Pathfinder compiler achieving the transformation based
on the loop lifting compilation strategy. The compiler transforms the input queries
into logical algebra plans. The operators of this unordered algebra consist mainly
of standard table algebra operators. Additional numbering and XML operators
generate surrogate values to ensure an accurate representation of order, nesting,
and more complex data structures.

Because of the exotic plan shape—the average plan consists of hundreds of
operators and a large number of sharing points—and the numbering operators, the
query optimizers of all tested database systems fail to come up with an efficient
execution plan. We faced this challenge ourselves and describe an optimization
framework that annotates the operators with plan properties and performs local
rewrites based on the collected properties. The optimizations are guided by
heuristics that are geared to significantly decrease the number of operators and
order constraints.

The resulting plans are either turned into declarative SQL queries or scripts
written for more specialized relational database systems, most notable Mon-

vi ABSTRACT

etDB/XQuery. Whereas MonetDB/XQuery ships with a highly tuned runtime for
XML processing, the generated SQL code allows to additionally benefit from the
builtin optimizers of relational database systems. Experiments as well as plan
analyses show that, in contrast to the initial plans, most optimized plans resemble
queries from an ordinary database workload and are evaluated efficiently.

In summary, the compiler turns relational database systems into high-perfor-
mance query processors for non-relational languages.

Contents

Zusammenfassung

Abstract

1

2

Introduction

1.1 Optimizations in the Context of Pathfinder
1.2 Logical Query Optimization
1.3 Outline.
1.4 Prior Publications

Loop Lifted Query Compilation
2.1 Loop Lifting
2.2 An Algebra for Non-Relational Languages
2.3 Algebraic List Processing L.
2.3.1 The Compilation Scheme
2.3.2 Literals and Lists
2.3.3 ITteration
2.3.4 Operations and Conditionals
2.3.5 Loop Lifting in Action
2.4 More Order Constructs
2.5 Adding Data Diversity
2.5.1 Support for XML Data
2.5.2 An Ordered View of Tables
2.5.3 A Uniform Variant of SQL/XML
2.6 A Flat Representation of Nesting
2.6.1 (Un)Boxing
2.6.2 Compilation of Nesting
2.6.3 Nesting in Action
2.7 Summary and Related Work
2.7.1 Logical Algebra and Order
2.7.2 Representing Nesting
2.7.3 More Loop Lifting

vil

iii

viii CONTENTS
3 Back-End Code Generation 35
3.1 MonetDB/XQuery 35
3.1.1 MonetDB 36

3.1.2 MonetDB Interpreter Language 37

3.1.3 Plan Generation for MonetDB 37

3.1.4 MIL Code Generation 40

3.2 SQL Code Generation 40
3.2.1 Translating Algebra Plans to SQL 41

3.3 A First Quantitative Assessment 42
3.4 Summary ... 44

4 Logical Query Optimization 47
4.1 Peephole Optimization 48
4.2 House Cleaning 50
4.2.1 Empty Table Propagation 50

4.2.2 Standard Operator Simplification 51

4.2.3 An Alternative to Selection Pushdown 58

4.2.4 An Alternative to Projection Pushdown 62

4.2.5 Common Subplan Elimination 65

4.2.6 Related Work 70

4.3 Order Minimization 71
4.3.1 Order Simplification 71

4.3.2 Numbering Operator Conversion 73

4.3.3 Order Pushup 74

4.3.4 Related Work 76

4.4 Query Unnesting 78
4.4.1 Equi-Join Pushdown 78

4.4.2 Distinct Operator Relocation 81

4.4.3 Dependency Disentanglement 83

4.44 Related Work 86

4.5 Improving XML Queries 87
4.6 Summary 89

5 Optimization Assessment 91
5.1 Analyzing the Query Plan Shape 91
5.1.1 Detection of Value-Based Joins 92

5.1.2 Query Formulation 96

5.2 Quantitative Evaluation 99
5.2.1 XMark on MonetDB/XQuery 100

5.2.2 Join Graph Isolationon DB2 102

5.2.3 Loop Lifting an Ordinary Database Workload 107

CONTENTS

6 Summary and Outlook
6.1 Contributions

6.1.1 Optimization of Large Query Plans

6.1.2 Order Minimization

6.1.3 Unnesting of Loop Lifted Query Plans
6.1.4 MonetDB/XQuery and Pathfinder

6.2 Conclusion
6.3 Open Problems and Future Work

6.3.1 More XML Related Optimizations for XQUERY
6.3.2 Surrogate Values in Optimized Query Plans

6.3.3 Automatization of Rewrites
Bibliography

Acknowledgments

1X

111
111
112
112
112
113
113
114
114
114
115

117

127

CONTENTS

Chapter 1

Introduction

Relational database systems are among the best execution engines, when it comes
to the processing of substantial amounts of data. Over the last 30 years, relational
query processing infrastructure has been tuned to excel at the evaluation of
regular-shaped table data. Most relational database systems rely on the complex
query rewrite facilities of their optimizers to speed up the query evaluation. These
optimizers have been designed to exploit the intricacies of the flat, unordered data
model.

Vast amounts of software connect to relational database systems and issue
queries against it. Although the language of choice to access a database system
probably is the host language a program is implemented in, a developer typically
needs to write database queries using the declarative language SQL. The developer
needs to substitute the rich data model of the host language for SQL’s flat,
unordered data model and adjust himself to the new query language.

Although there exist several approaches that try to hide the database layer,
their disadvantages are hard to ignore. The most prominent approach are object-
relational mappings, which make database tables available as lists of host language
objects. A developer may use the host language to query the data. Most generated
SQL queries, however, retrieve only base table data and perform the remaining
computation on the programming language’s heap. The object-relational mappings
thus ignore the advanced query facilities of a database system and misuse the
database system as a data storage.

We are interested to supply a side effect free query language embedded in the
host language that may query ordered lists of possibly nested data structures and
at the same time employs a relational database system to evaluate the complete
query. In the best case, we are able to evaluate the whole language on a database
system: XQUERY [16] is such a language. In all other cases, a language subset
might suffice to conveniently express complex queries without leaving the host
language. Microsoft’s LINQ [88] represents such a sensible language subset and is
integrated into C# and VISUAL Basic. LINQ already ships with a query provider
that generates SQL queries. This LINQ provider however fails to correctly cope

2 CHAPTER 1. INTRODUCTION

with the ordered data model in a variety of cases [110].

Here, we describe how to narrow the gap between programming languages
and relational database systems. We describe the internals of the Pathfinder
compiler!', which faithfully copes with ordered lists of possibly nested data struc-
tures. Pathfinder was originally designed to compile XQUERY queries into both
SQL queries or algebra queries targeting the main-memory database system
MonetDB [18]. Pathfinder drives the XQUERY to algebra compilation of the high-
performance XQUERY processor MonetDB/XQuery [21], but also performs the SQL
code generation for a number of non-relational languages such as HASKELL [98],
LiNQ [88], and RUBY [105], which turn the back-end database system into an
integral part of the program execution.

Pathfinder compiles an input language into an unordered logical table algebra
based on the loop lifted compilation scheme [63], which ensures a faithful mapping
of order, nesting, and data structures such as tuples, named records, and XML
trees to tabular-shaped data. As the relational back-ends are overwhelmed by the
size—an average query plan consists of hundreds of operators—and the unusual
plan shape—the resulting query plans form directed acyclic graphs (DAGs)—a
optimization phase becomes necessary before the back-end code is generated.

To ensure the acceptance of a relational database back-end as evaluation
runtime, we need to guarantee its performance. In the scope of this work, we
therefore only sketch the loop lifted compilation and the back-end code generation
and focus on the optimization of the relational algebra plans.

1.1 Optimizations in the Context of Pathfinder

The Pathfinder project stimulated a fair amount of research topics. While the
first topics in 2002 revolved around efficient XPath processing, the focus shifted in
2004 to the compilation of XQUERY. Based on the loop lifted compilation, many
sub-projects spawned touching compilation, optimization, and runtime topics
(Figure 1.1). All of the subjects rely on the performance of the relational back-end
and thus indirectly on the complexity of the resulting algebra plans.

In the following, we briefly sketch how the optimization of the logical algebra
plans affect the various topics:

(1) XPath Accelerator [50,62,67]. The research articles about the XPath
acceleration mainly discuss relational node encodings and the efficient eval-
uation of XPath steps. In [62], however, we relied on the optimization of
existential quantifications to observe early-out semantics in the back-end’s
execution plans.

(2) Staircase Join [65,66,84]. The family of Staircase Join algorithms require

http://www.pathfinder-xquery.org

1.1. OPTIMIZATIONS IN THE CONTEXT OF PATHFINDER 3

Com

(» Loop Lifting

@ Debugging

®) XQUERY Type
Matching

Program Execution

(») XPath Accelerator
(2) Staircase Join

(3 Validation

(6) Updates

@ SQL Code Generator
@ Runtime Optimization

Stand-Off Axes
(» PF/Tijah
XRPC

(™ MonetDB/XQuery
& Pathfinder
Recursion

(@ Cardinality
Forecasts

Join Graph
Isolation

(5) Properties and Rewrites

Figure 1.1: Research topics in the Pathfinder project categorized by the three
main themes: Compilation, Optimizations, and Runtime. (Topics in overlapping
regions touch multiple subjects.)

an ordered input and therefore may benefit from the removal of conflicting
order constraints.

(3) Schema Validation [52].

(@) Loop Lifting [57,63,64]. The plan shape of the loop lifted algebra plans
is best described as exotic: A vast number of operators and large number
of sharing points can be observed. Relational database systems are not
prepared to cope with such a workload and fail to deliver results in a
reasonable time. Optimizations can significantly decrease the number of
operators and sharing points.

() Properties and Rewrites [51,61,103].

(s) XQUERY Updates [19,23]. XQUERY’s updates are embedded in normal
queries and therefore benefit from efficient query evaluation.

(» MonetDB/XQuery & Pathfinder [20,21,117,120]. MonetDB/XQuery—
the combination of the compiler Pathfinder and the relational back-end

CHAPTER 1. INTRODUCTION

MonetDB integrating runtime XML support such as the Staircase Join
algorithms—requires the optimizations to avoid Cartesian products, which
stem from the iterative evaluation of nested loops.

Stand-Off Axes [8-10].

(») PF/Tijah [68]. The text retrieval extension PF/Tijah relies on the perfor-
mance of MonetDB/XQuery.

XRPC [126-128]. The distributed XQUERY extension XRPC relies on the
performance of MonetDB/XQuery.

@ SQL Code Generator [55]. The size of the generated SQL code directly
corresponds to the size of the query plan. Some database systems struggle
with the sheer size of the query text for unoptimized loop lifted algebra
plans.

() Declarative Debugging [58,60]. A debugger relies on its interactivity.
Therefore the performance of the relational back-end plays an important
role.

@ XQUERY Type Matching [118]. XQUERY type matching extends the loop
lifted compilation and thus introduces additional operators. As the type
matching is employed only in some queries, optimizations may selectively
remove this overhead.

Recursion [4,5]. We extended the loop lifted compilation with a fixed point
recursion. Code for a more efficient version of this recursion is integrated,
if the recursion body is distributive—a property that may be expressed by
rewrite rules.

@) Cardinality Forecasts [119]. Cardinality misestimations increase with
the number of plan operators. Optimizations that decrease the operator
count therefore improve the cardinality forecasts.

Join Graph Isolation [53,54].

@ Runtime Optimization [74,75]. The runtime optimizations require iso-
lated join graphs—bundles of relations interconnected with join predicates—
as input. Such isolated join graphs are available only after optimizations
have been performed.

Program Execution [56,59,110]. The compilation of ordered, nested
data structures leads to plans that are very much alike to the plans in (2).
Consequently, optimizations are mandatory to turn the relational back-end
into an efficient query processor.

1.2. LOGICAL QUERY OPTIMIZATION 5
1.2 Logical Query Optimization

Finding the optimal query plan is a very challenging topic, as the potential
search space is affected by both the number of operators and rewrites. Query
optimization in database systems therefore ignores large parts of the search space:
Query optimization is limited to finding better plans.

Whereas physical query optimization can compare two query plans based on
their cost and choose the better one, there is no absolute comparison possible in
logical query optimization. Minimizing the number of operators and the number
of ordering constraints might be worthwhile, but does not guarantee a better
query plan.

As SQL belongs to our back-end languages of choice, we are limited to logical
query optimization and can follow only heuristics that lead to good query plans for
many queries. A large share of the optimizations discussed in this work therefore
consist of query plan simplifications, which, for example, decrease the number of
operators and ordering constraints.

1.3 Outline

This work discusses the three main compilation stages of Pathfinder (a) loop
lifted compilation, (b) optimization of the logical algebra plans, and (c¢) back-end
code generation. In Chapter 2 we combine the ideas from the research topics
(1) and () to describe the loop lifted compilation of ordered and possibly nested
sequences of atomic values, tuples, and XML fragments into a logical table algebra.
Chapter 3 discusses the back-end code generation for the relational XQUERY back-
end MonetDB/XQuery as well as the SQL code generation. A first experimental
evaluation performed on MonetDB/XQuery and DB2 indicates the necessity of
the optimizations for both back-ends.

The optimization of the logical algebra plans that stem from the loop lifted
compilation is the topic of Chapter 4. To cope with query plans consisting of
hundreds of operators, we apply a peephole-style rewrite strategy that performs
local rewrites only. Three main heuristics, which perform (a) house cleaning,
(b) order minimization, and (c) query unnesting, drive the optimizations. Whereas
excerpts of the properties and rewrites were introduced in the publications of the
topics (5) and (i), we substantially extend this set here and relate them to logical
optimizations described in the database literature.

Various experiments in Chapter 5 demonstrate the effect of the optimizations.
We assess the change of the operator distribution and the evaluation times
of the rewritten queries. We however also analyze the effect of the rewrites
from a different perspective and verify the robustness of the simplifications for
syntactically differing, yet equivalent input queries. Finally, we turn the optimized
query plans into SQL queries and observe the effectiveness of DB2’s cost-based

6 CHAPTER 1. INTRODUCTION

query optimizer, before Chapter 6 concludes this work.

1.4 Prior Publications

Results of this work are partially published in a number of scientific articles
[20,21,53-59,61,103,110]. Further publications indirectly benefit from the ideas
and concepts described here [4,5,13,19,23,60,62]. I would like to thank Loredana
Afanasiev, Stefan Aulbach, Peter Boncz, Simone Bonetti, Jan Flokstra, Torsten
Grust, Dean Jacobs, Alfons Kemper, Stefan Manegold, Maarten Marx, Manuel
Mayr, Sjoerd Mullender, Sherif Sakr, Tom Schreiber, Jens Teubner, and Maurice
van Keulen for this fruitful collaboration.

Chapter 2

Loop Lifted Query Compilation

What does SQL and the iteration primitives in XQUERY [16], Microsoft’s LINQ [88],
Wadler’s three-tier language LINKS [31], the purely functional language HASKELL
[98], the dynamic languages RUBY [105] and PyTHON [100], and other lan-
guages [73] have in common? They share a common semantic ground: list
comprehensions [123]. The iteration primitives of these companion languages
describe the iterative evaluation of an expression ey, under bindings of an
unmodifiable loop or iteration variable (Figure 2.1).

(XQUERY) for $y in e; return ey, (RuUBY) ein.collect{lyl epoay}
(LINQ) ein -Select(y => epogy) (HASKELL) [epogy | ¥ <= €in 1]
(LINKS) for (y <= ein) [epodayl (PYTHON) [epogy for y in e, 1]

Figure 2.1: Iteration primitives in various companion languages.

Here, we are especially interested in loops without side-effecting computation
such that the individual iterations may be evaluated independently. For SQL,
XQUERY, LINKS, and HASKELL this is a given. For LINQ, RUBY, and PYTHON
this requires programming discipline. As the individual iterations cannot interfere,
the language processor may evaluate the loops in arbitrary order—or even in
parallel.

The common semantic roots allow a closer interaction between database queries
and iterative companion languages. We take advantage of an even deeper integra-
tion of database query functionality into programming languages (as exemplified
by ACTIVERECORD or AMBITION in the RUBY ecosystem [1,11], LINQ, and
LINKS), in which selected iterative host programming language fragments may
be translated into set-oriented algebraic programs. In what follows, we lay the
groundwork for database-supported language runtimes that do not stumble if
programs consume huge input data instances.

In the next section we shed light on a compilation technique, coined loop lifting
in [63], which has been designed to let a relational database back-end directly

7

8 CHAPTER 2. LOOP LIFTED QUERY COMPILATION

participate in the evaluation of programs (or queries) written in an iterative style.
The loop lifting compiler emits algebraic code for execution on the back-end,
which then realizes the semantics of the input program. Loop lifting fully realizes
the welcome independence of the iterated evaluations and enables the relational
query engine to take advantage of its set-oriented processing paradigm.

We briefly discuss the relational operators and its semantics in Section 2.2,
before we delve into the details of the compilation in Sections 2.3 to 2.6. We
describe the compilation process based on a generic language LL! that combines
the characteristics of the various companion languages (Section 2.3). In its basic
variant LL operates only on ordered lists and thus provides a clear view on the
loop lifting technique applied in the compilation. Subsequently, we extend LL
as well as the compilation with sequence order modifications (Section 2.4), more
complex data structures (Section 2.5), and nesting (Section 2.6).

2.1 Loop Lifting

The principal data structures in all companion languages except for SQL are
ordered lists (sequences (1,9, ... ,2,) of items z; in XQUERY, values of type
[al, Array, and IEnumerable<T> in HASKELL, RUBY, and LINQ, respectively).
To properly reflect this order on the inherently unordered relational database back-
end, we embed order in the data and use binary tables with columns
pos|item (shown on the right) to represent such sequences. The values
in column pos need not be dense and not even be of type integer; any
ordered domain will do. In specific cases the required order may already
reflected by the items z; themselves (think of a sequence of encoded nodes
resulting from XPath location step evaluation in XQUERY)—column
item may then assume the role of pos.

The complete loop lifting approach [63] is centered around the iteration concept:
An iteration primitive (Figure 2.1) introduces a new scope s;, in which any
subexpression is considered to be iteratively evaluated. The top level expression e
is assumed to be wrapped inside the scope sg of a pseudo single-iteration loop
where the iteration variable does not occur free in e. The fundamental idea behind
loop lifting is to produce algebraic code that consumes and emits a “fully unrolled”
tabular representation of e’s value. Here, unrolling refers to the principle that

a single ternary table with schema iter|pos|item holds the encoding of all
values that e assumes during its iterative evaluation.

Generally, such a table has key (iter, pos), since e may yield a sequence of items in

each distinct iteration. A row (i,p,v) in the table may invariantly be read as “in
iteration ¢, expression e yields item value v at the sequence position corresponding

'In reference to the core concept of the compilation—Iloop lifting—we named the language LL.

2.2. AN ALGEBRA FOR NON-RELATIONAL LANGUAGES 9

S0
for $y in (4,5, 6)
return S1

$y + 1

(a) Query Q. (b) Associated intermediate result tables.

Figure 2.2: Loop lifting in XQUERY. Annotations sy ; denote iteration scopes.

to p’s rank in column pos”. An empty list, in consequence, is represented by the
absence of an iteration value i—in scope so (with only a single iteration) an empty
iter|pos|item table depicts the empty list.

Figure 2.2(a) depicts Query ()1 together with its iteration scopes. The top-level
expression (4, 5, 6) is evaluated in the pseudo scope sg: all 3 sequence items
have been produced in the first and only iteration of scope sq (iter = 1 in all rows),
in the order indicated by column pos (leftmost table in Figure 2.2(b)). From
this, the algebraic program derives that three iterations will be performed in the
inner scope s;: variable $y is bound to one integer in the sequence (4, 5, 6) in
each iteration. The constant 1 is loop lifted and invariantly evaluates to 1 for all
iterations (rightmost table in Figure 2.2(b)).

2.2 An Algebra for Non-Relational Languages

The compilation emits plans over a table algebra, whose operators (Table 2.1)
have been selected to reflect the capabilities and execution model of modern
SQL-based relational database management systems. Most of these operators
are purist RISC-like style variants of classical algebra operators. The selection
operator oy, for example, does not evaluate predicates on its own, but relies on the
presence of a Boolean column b. Duplicates are removed explicitly by operator 4.

The few non-textbook operators include the column attachment operator e,
the family of numbering operators (#, ¥, and ¥), and the placeholders for XML
support. The former @,.,q(e) is equivalent to (e) x and eases the optimization
of constant columns.

The numbering operators enable the compilation to encode iteration, order,
and nesting information in the data. The row numbering operator ;a:<b1,.‘.,bn) Jbgrp 18
equivalent to the ROW_NUMBER clause in SQL:1999 [89]. For every group in by, the
row numbering operator provides a consecutive numbering in column a starting
from value 1, based on the ordering criteria by,...,b,. If no absolute order is
present, an arbitrary order is chosen. Figures 2.3(a) and 2.3(b) exemplify the
semantics of operator #.

Similarly the row ranking operator & follows the semantics of the SQL:1999
DENSE_RANK clause [89]. In contrast to the row numbering, operator & provides

10 CHAPTER 2. LOOP LIFTED QUERY COMPILATION
Operator Description
Tay:by,....an:bn projection and column renaming
o select rows with b = true
X Cartesion product
X by=by > Xy equi—join
Nb1A1911)2A1/\'~~/\bl.n9nbgn theta_.jOin (9 € {:7 <7 >> S? 27 7&})
1) duplicate elimination
Wby, bn2 s \bi,...bn2 disjoint union, difference (on columns by, ..., by)

GRP)0, (b1),eosan: on (bn) /barp aggregation/grouping (o € {MAX, SUM, COUNT, ... })

o O e (empty) literal table

e database table reference

@g:val column attachment (with constant value val)
©@a:(by ... bn) n-ary comparison/arithmetic/Boolean operator o
CASTZ{?; type casting

%a:(bl,‘..,bm/bm row numbering (with order (bi,...,by), grouping bgp)
Ya:(by,.osbn) row ranking (with order (by,...,b,))

Ca: (b, sbn) (arbitrary) row ranking (with order (by,...,by,))
df;’fw XML path step-join (along axis o and node test v)
DOCq.(p) XML document lookup

#Ba:(5) XML node atomization

Db b, (bserssbr) plan root (with payload columns (bs, ..., b,))

Table 2.1: Table algebra dialect consisting of RISC-like relational operators. (a
represents fresh and b existing input column names.)

consecutive numbers for every distinct group of values—equal ordering criteria
lead to the same value (Figure 2.3(c)). In the loop lifted compilation scheme these
two operators produce iteration identifiers, absolute position values as well as
grouping identifiers.

The ranking operator &, on the other hand, may generate relative positions
and thus provides more optimization potential. U represents a less restrictive
variant of ¥ that may construct values of any domain as long as they reflect the
ranking criteria (Figure 2.3(d)).

The algebra supports XML processing independent of the underlying XML
encoding. The algebra assumes the existence of node surrogates that implement
the XML concepts of node identity and document order—for example, ORDPATH
labels [95] or a variant of the preorder encodings [67,80] serve this purpose. The
XML tree knowledge is encapsulated in the three placeholder operators: DOC,

2.3. ALGEBRAIC LIST PROCESSING 11

0
1
4
4

(a) ;’Eres:<i2>/i1- (b) %ZFES:<i1,i2>‘ (C) res:(il,i2>' (d) @res:<i1,i2)-

Figure 2.3: Semantics of the numbering operators. (Column res depicts the
differences.)

o, and #. For every input string, the document operator DOC retrieves the
corresponding document node surrogate . For every node surrogate v, the
atomization operator # returns a single string that stores the (concatenated) text
content of the corresponding XML subtree.

XML tree traversal—in the style of XPath—is performed by «]. The XML path
step join operator i]z‘:’z’w consumes column b, which contains the node surrogates
v;, and applies a structural join with a wuniversal XML document table. The
structural join predicate is described by the axis a and the node test v. The flat
join result features all input columns and a new result column a, which stores the
matching node surrogates. In contrast to the XPath step semantics, &1 does not
remove duplicates and guarantees no output order.?

The serialization operator ¢, ,, 4.,y forms the plan root of every query
plan. ¢ stores the roles of its input columns: column b; represents the grouping
information, column by the sequence order, and columns (bs,...,b,) store the
payload information.

2.3 Algebraic List Processing

While the companion languages XQUERY, LINQ, LINKS, HASKELL, RUBY and
PYTHON share their side effect free iteration semantics, they differ in their syntactic
form (Figure 2.1) and their data types. XQUERY, for example, operates on flat
item sequences, whereas the other languages handle records and nesting. We
deploy the loop lifting compilation scheme of the generic language LL, which
represents the common aspects of all companion languages. Language extensions
(described in the following sections) then account for the varying aspects of the
companion languages.

Figure 2.4 describes a basic variant of LL that supports atomic values, arith-
metics, comparisons, (empty) lists, iteration, conditionals, and aggregates. In this
basic variant LL incorporates XQUERY’s sequence semantics: All lists are flat—for
example, the ForEzpr returns a flat list—and a constant value v is equivalent to

2Peek forward to Query Q3 at page 22 for an example involving XML operators.

12 CHAPTER 2. LOOP LIFTED QUERY COMPILATION

Ezpr ::= Integer | Boolean | String
| (Ezpr Op Ezpr)
| empty
| append (Expr (, Expr)*)
| ForExpr
| Var
| IfExpr
| AggrEzpr
ForExpr = for Var in Expr return Fapr
Var = $Identifier
IfEzpr = if (Expr) then Fzpr else Expr
AggrEzpr ::= count (Fxpr)
Integer = -[0-9]*
Boolean ::= true|false
String = "..0"
Op n=4 =]k |div]=[>]<] ...

Identifier ::= [A-Za-z0-9]"
Figure 2.4: Grammar of the input language (basic LL).

a list containing the single constant value: [v]?®.

2.3.1 The Compilation Scheme

The compilation process from LL to the table algebra of Section 2.2 is described
in terms of inference rules. An inference rule of the form

I';loop Fe= q

implements a mapping where, given a variable environment I and the iteration
context loop, a LL expression e compiles to an algebraic query plan ¢. I" holds
the algebraic query plans that represent the free variables that are currently in
scope. The iteration context loop refers to a query plan representing all available
iterations (in column iter).

The compilation process starts with an empty environment I', the singleton
loop table (encoding the iteration scope sy discussed in Section 2.1), and
the top-level LL expression. The inference rules are truly compositional, as any
rule invariantly expects and provides the same table format—a table with an
(iter, pos, item) schema.

3We use square brackets ([...]) to depict list-valued results.

2.3. ALGEBRAIC LIST PROCESSING 13

2.3.2 Literals and Lists

The algebraic representation of literal values depends on the iteration context loop:
A constant value is “loop lifted” to all iterations. For every iteration Rule CONST
produces a singleton sequence containing the literal val.

CoONST
F; Zoop F val & @pos:1 (@item:val (loop))()

Likewise, a literal empty sequence is mapped to all iterations. Its evaluation
however will always result in an empty table.

['; loop - empty & loop X _(EMPTY)
In LL, a list is constructed with append. Rule APPEND dispatches the compi-
lation for the n arguments, before it concatenates the resulting n query plans with
union operators. While the correct order within the arguments is encoded in col-
umn pos, column ord stores the concatenation order of the n sequences. Together
columns ord and pos correctly describe the overall sequence order. To guarantee
the compositionality—an (iter, pos, item) output schema—the two columns are
merged into a new position column pos,,,, by operator ©.

[loop e B 1
Qlest = @ord:1(q1)
[';loop Fe; B q;
! Qi-ext = q(i—1)-ext Uiter,ord,pos,item (@ord:i(¢i))
4 = Titer,pos:pos,,,,, ,item (posnew:<ord,pos>(qn~ea:t))

['; loop - append (e, ... ,e,) B ¢

(APPEND)

2.3.3 Iteration

The for-loop is the centerpiece of the loop lifting compiler. Based on the algebraic
representation of the binding expression e;,, Rule FOR generates fresh iteration
values (operator #). This numbering becomes the new iteration context loop, on
which all free variables during the compilation of the return part e,cs depend.
In addition to the already existing free variables, which are loop lifted to the
new iteration scope, the fresh environment I';, stores the mapping from $v to its
algebraic representation gq,.

After the compilation of the body expression €,em, an equi-join aligns the
former iteration values in column outer with the resulting plan. The replacement
of the inner iter column by the previous iteration column outer re-establishes the
former iteration scope. Furthermore, similar to Rule APPEND, the values of the
position column pos are re-calculated to correctly reflect the sequence order.

14 CHAPTER 2. LOOP LIFTED QUERY COMPILATION

{...,2—=qu,...};loop F ey B G

Qin-ext = ﬁinner:(iter,pos) (Qm)

Qv = @poszl (Witer:inner,item (inext))

loopv = Witer:inner(Qmext)

map, = 71-outer:iter,inner,posom:pos(qm-ext)

Fv = { RN Tliter:inner,pos,item (Qx M iter=outer mapv)7 s }
+{$v g}

Fv; ZOOpU - Ereturn 9 Qreturn

Qreturn-ext = Greturn Witer=inner mapv

q = Titer:outer,pos:pos,,.,,, ,item (POS,, ¢4 (POS 1 ,POS) (QTeturn-ezt>)

: . (For)
{-..;2 qu,...};loop F for $v in e;, return €, pm B ¢

As Rule FOR maintains the correct representation of all free variables, a
variable lookup simply results in a reference to the corresponding algebraic query
plan.

VAR
{...,$vr—>q,...};loop|—$V|3q()

2.3.4 Operations and Conditionals

For binary operations such as arithmetics or comparisons, an equi-join position-
ally aligns the rows of the two input algebra plans on column iter (Rule Op).
Subsequently, operation o is performed row-wise by the corresponding operator ©.

[loop e B 1
['; loop - es B ¢
q= @res:<item,itemr> (ql Miter (ﬂ'iter,item,«:item (Q2)))

(Op)
F; loop F(eioe) B 7'f'iter,pos,item:res<(])

Aggregates, which consume a list of values, map to relational aggregates
(Rule CounT). The correct treatment of empty lists, however, requires special
care. Based on the iteration context loop, empty sequences are detected (qempty)
and their replacement is added to the remaining aggregate results (qgu)-

I';loop Fe= q
Qaggr = GRPitem:COUNT(*)/iter(Q)
Qempty = @jtem:0 (loop \iter (Qaggr))

qfull = @pos:1 (Qaggr L'Jiter,item Qempty)

(CounT)
I'; loop = count (e) B qpu

2.3. ALGEBRAIC LIST PROCESSING 15

Rule IFTHENELSE compiles conditional expressions. Query plan g; is used
to split the iteration context based on the values in column item into two groups.
Because the new iteration contexts loop,,., and loop,,, are disjoint, the query
plans for the two branches g,., and ¢, both operate on their restricted, distinct
iteration subset.

{.. ;2= qu...};loop ey B g

100D y1er, = Titer(Titem (¢if)

Cihen ={- -, @ Niter L00D oy - - - }

Linen; 100D en 1= €then B Gthen

loop s, = 7Titer<0-itemneg © item peq: (item) ((]z'f)))

Letse =1, > Qo Niter 100D e, - - - }

Leise; 100p ige 1= €ctse B Gese
if (eif)

{..,7 > G, ... };loop - then emen B> Gihen Uiter,pos,item Jelse

else e,

(IFTHENELSE)

2.3.5 Loop Lifting in Action

With the basic variant of LI we can already build atomic lists, perform compar-
isons and arithmetics, and apply filters to them. One query instance that takes
these concepts into account is Query (Js. The query builds a literal list [20,
30, 10], filters out the third iteration binding (10), and returns the flat literal
sequence [20, 30].

S0
for $a in append (20, 30, 10) 1 (Qs)
return S2 S3 2
if (($a > 10)) then [$a else [empty
Query)y is annotated with iteration scopes (sq, ..., s3). These scopes mark

the places where the iteration context loop changes. In scope sq, for example, only
a single iteration is active, whereas in scope s, there exist two iterations—mnamely
for the bindings $a = 20 and $a = 30.

Figure 2.5 shows the algebraic query plan generated for Query ();. For
every inference rule application we attached an annotation that shows the query
construct, the scope it is evaluated in, and the intermediate result that would be
observed.

The effect of loop lifting can be observed by comparing the two different repre-
sentations of the constant value 10: In nested scopes (here scope 1), expressions
are compiled in dependence of the current iteration context in a fully unrolled
fashion.

16 CHAPTER 2. LOOP LIFTED QUERY COMPILATION

for in return (sg)

iter pos item
0

HHE

if then else (s1)

iter pos item
BB

iter pos Item [EEEEE.

iter pos ite.m
1 30
1 10

30 (SQ)
iter pos item

iter pos item
LI TT]20]
10 (so0) U
LI T]10]

? iter,pos, (item)

" Titer:outer,pos:pos item

POS e : <posout ’ pOS>
\

iter=inner

~
L'Jiter,pos,item
|

- X 71'outer:iter,inner,posom:pos
V; X os Item
Miter Titer -

Titer O-itemneg

| \
Oitem @itemneg:<item)

N

o Tter,pos,item:res
|
®res:<item,itemr)
\
Miter
Ve AN
@pos:1 Titer,item,.:item
\
S @posit

Tliter:inner,item @jtem:10

Tliter:inner
\
#inner:<iter,pos>
\
- Tliter,pos:pos

POS,, .., : (Ord,pos)

new*

new?

=

new>Ite€M

U iter,ord,pos,item

4 N
Uiter,ord,pos,item @ord:3
]
@ord:1 @ord:2
R |
@poszl ' @poszl L @poszl
B /
 @item:20 @item:30 @item:10

iter

Figure 2.5: Algebraic query plan encoding Query ()» with annotations. Tables
on the left-hand side depict the corresponding query constructs, iteration scopes

(307~ .

., $3), and intermediate result representations.

24. MORE ORDER CONSTRUCTS 17

Ezxpr =...
| reverse (Ezpr)
| unordered (Expr)

ForExpr = ...
| for Var at Var in Ezpr
order by Ezpr (, Exzpr)* return Expr

Figure 2.6: Order constructs that extend the grammar of basic LL (Figure 2.4).

2.4 More Order Constructs

The first extension to the basic variant of LL adds list order manipulation. The
extension provides means to change the sequence order, ignore it, and filter values
based on their sequence position. Figure 2.6 extends the grammar of Figure 2.4
with the order-manipulating language constructs. Grammar rule Ezpr is extended
with the two functions reverse and unordered. Grammar rule ForExzpr has a
second iteration primitive that provides position information and result ordering
by means of a position variable (at Var) and an order by clause.

The inference rules for reverse and unordered manipulate the position column
pos, but ignore the iteration and value columns. Rule REVERSE uses a rank
operator ¥ with a descending ordering criterion to reverse the direction of the
values in column pos. Rule UNORDERED generates a new pos column in an
undefined order. The projection, discarding the previous pos column, is crucial as
it serves as an indicator for subsequent optimizations: any order maintenance in
the upstream plan may be removed.

[loop FeB= g

(
F; lOOp - reverse (e) =4 Tliter,pos:pos,, ., ,item (posnew:<pos:desc> (Q))

REVERSE)

[';loop Fe & q
I'; loop - unordered (e) &= ;’époszo (Titer item (q))

(UNORDERED)

Rule ORDEREDFOR extends Rule FOR and considers the position variable $p
and the order by clause. For each iteration, the additional operator ;Posabst<905> Jiter
creates the absolute position values from the relative positions in column pos.
The values created by this row numbering operator implement the positions
bound to the position variable $p. Adding the mapping $p — ¢, to the variable
environment makes the algebraic representation of the position variable visible
during the compilation of order by and return clauses.

For each iteration, the compilation of the order by expressions ey,...,e,
provides at most one order value. Missing values are handled similarly to empty

18 CHAPTER 2. LOOP LIFTED QUERY COMPILATION

lists in aggregates—compare gj.empty With Geppyy, in Rule COUNT on page 14.
The plans ¢;.pu extend the mapping map, with additional order information.
Ultimately, this order information is used to influence the output list order in

operator .
Although the ordering criteria affect the order only inside the for loop (column

pos,,;) they overrule the default order in column pos. The ord; columns ensure
that the position values for missing values are ignored and empty lists are treated
as if they were smaller than any other value.*

{..,— qu...};loop F ey B qim
Qin-ext = #}inner:(iter,pos) (;posabs:<pos>/iter(Qin))
Gy = @poszl (Witer:inner,item (inext))
dp = @poszl (Witer:inner,item:posabs (qm-e:rt))
lOOpv = 7Titer:inner(quxt)
map, = 7Touter:iter,innelr,posout:pos((]z’we:ct)
Fv = { ey X = 7Titer:innenpos,item (qz‘ % iter=outer mapv), s }
+{$v—=q} + {$p— ¢}
map, = map,,
Ly; loop, e & g
Qi~empty = @poszl <@item:1 (ZOOPU \iter (%)))
qi-full = <@ord:1<Qi-empty)) Uiter,ord,pos,item (@ord:Q(Qi))
map; = map;_, D:qinner (ﬂ-inner:iter,ordi:ord,posi:item (szull))
Fv; lOOpU |_ Creturn 9 return
QTeturwext = QTeturn ™ iter=inner mapn
QTeturmpos = posnew:(posout,ordl,posl,...,ordn,posn,pos> (QTeturn-ext)
q = Titer:outer,pos:pos, .., item (CIreturn-pos)
for $v at $p in ey,
{...,2+— qu,...};loop F order by ey, ...,e, B q
return €,etyurn

(ORDEREDFOR)

2.5 Adding Data Diversity

Up til now all LL. queries operated on lists of atomic values. Here, we extend LL
with additional data types available in the various companion languages. XML
data processing is one of the most important aspects of XQUERY. An ordered
view on database-resident tables by means of list of hashes, tuples, and named
records is available in RUBY, LINKS, and LINQ.

4This corresponds to XQUERY’s order option empty least.

2.5. ADDING DATA DIVERSITY 19

Expr..= ...

| doc (Ezxpr)

| Bzpr/a::n

| d-d-o (Ezpr)

| value (Ezpr)
« = child|descendant | parent| ...
n == element (ID) |[text O | ...

Figure 2.7: XML constructs extending the grammar of basic LL (Figure 2.4).

We first add support for XML data processing, before we extend the compilation
scheme to cope with data structures consisting of multiple elements such as tuples.

2.5.1 Support for XML Data

The companion languages XQUERY and LINQ provide support for XML data
processing. In both languages XML documents can be accessed, their tree structure
can be traversed by XML path steps, and the text representation of XML nodes
can be extracted. Figure 2.7 shows the XML constructs extending the LI, grammar
of Figure 2.4. doc provides the document lookup, /a: :n and d-d-o represent the
path step semantics, and value transforms the XML node content into a string.

As the path step semantics of XQUERY and LINQ differ slightly—an XPath
location step consumes a context sequence and returns its result in distinct
document order, whereas, for example, function Descendants () in LINQ consumes
a single XML node and returns a list of element nodes in document order (without
duplicate elimination)—we separate the XML path step traversal (/a: :n) from
the call to the distinct document order function (d-d-o).

As mentioned in Section 2.2, we use algebraic placeholders to represent the
XML functionality. This allows different back-ends to use different XML encodings.
In Rule DoC column item is replaced by the result of the document lookup
operator DOC.

[loop F e q
F; ZOOp = doc (6) 9 Tliter,pos,item:res (Docres:<item)<Q)>

(Doc)

/a::n consumes an arbitrary list of XML nodes and, for each context node,
collects all accessible document nodes that match the structural predicate in « as
well as the node test in v, and returns them in document order. Rule PATHSTEP
splits the path step semantics: operator o] collects the result nodes and the ranking
operator ¥ adjusts the position information to reflect the surrogate order. As

20 CHAPTER 2. LOOP LIFTED QUERY COMPILATION

Expr..= ...
| table ID (Integer, Integer)
| tuple (Ezpr (, Expr)*)
| Expr. Integer

Figure 2.8: Tuple support extending the grammar of basic LL (Figure 2.4).

discussed in Section 2.2, we expect the surrogate values to encode the document
order.

['yioopFeB= q
F; lOOp Fel/a::nE pos:(item) <7Titer,item:res (ﬂi’g@tem)(@))

(PATHSTEP)

For each iteration, Rule DISTINCTDOCORDER eliminates all duplicate node
surrogates (0) and adjusts the position information based on the document order
(©).

Iy loop e q
F; lOOp F d-d-o (6) =4 pos:(item) (5 (Witer,item <Q)))

(D1STINCTDOCORDER)

In Rule STRINGVALUE the node atomization operator # extracts the string
values of the XML node list. While the underlying implementation of this operator,
dependent on the context’s node kind, may be quite complex—for example, the
implementation of # for an element node needs to collect and merge the text
nodes of the complete subtree—operator @ always produces a single string for
each context node.

['yloop e q (
F, lOOp F value (e) & Tliter,pos,item:res <@res:<item) (q)>

STRINGVALUE)

2.5.2 An Ordered View of Tables

So far, the compilation rules invariantly return operators with an iter|pos|item
schema. The generated algebraic query plans store all their payload data in
a single column item. If we want to query database-resident tables, construct
tuples, and fetch the individual entries from a tuple and thus extend the basic LL
grammar of Figure 2.4 with the grammar rules in Figure 2.8, we have to modify
the invariant.

2.5. ADDING DATA DIVERSITY 21

In a language where wider tables exist and hashes, named records, and tuples
are built on top of it, we adjust our compilation scheme to replace the single item
column by n item columns (itemy, ..., item,) where n corresponds to the number
of columns or entries a table or tuple provides. In consequence, our compilation
rules then invariantly produce a iter|pos|item;| ... |item, schema (with columns
iter and pos still encoding the iteration and position information). Not all tuples
and tables have the same width n—instead the width is prescribed by the number
of item columns in the input plans.

To align all previous rules (Rules CONST to STRINGVALUE) with the new
invariant, (a) any projection argument on column item without renaming is
replaced by all n item columns visible in the input plans (7__jem is transformed
Into 7__item,....item,,) a1d (b) every remaining occurrence of column item is replaced
by column item;.

Rule TABLE makes a database table T" with n columns (and a key in the i-th
column) accessible in LL. The compilation generates a table reference with n item
columns, whose position information is based on the key column (operator 9).
The cross product with loop establishes the correct loop lifted representation of
the table.

q= loop X (pos:(itemi> (@T(iteml,...,itemn)))
I'; loop - table T'(n,i) B ¢q

(TABLE)

In Rule TUPLE all n input expressions e; are compiled and merged into a single
table. The query plans ¢, ..., q, are required to encode the same duplicate-free
set of values in column iter to guarantee the correct alignment of the tuple values.
The maintenance of ¢; and ¢;.4,, as well as the projection in ¢;..,; ensures that no
name conflicts between column names arise.

[loop -e1 B ¢

c1 = |q1.cols — {iter, pos}|

Cl.sum = C1

Q-ext = q1

I'; loop - e; & q;

¢; = |q;.cols — {iter, pos}|

i=2,..n | Cigum = C(i—1)~5um + ¢

Qi-ext = q(i—1)-ext X iter (ﬂ-iter,itemC(i1>'sum+1iitem1,(%>>

‘..,ltemc(i_l)'sunl+ci:|temci

(TupLE)
['; loop F tuple (e, ..., €,) B Qncat

Rule POSACCESS accesses an individual table column or tuple component by

22 CHAPTER 2. LOOP LIFTED QUERY COMPILATION

projecting away all other item columns.

[';loop F e q

F; lOOp I_ e.1 '3 Witer,pos,itemlzitemi(q

(POSAcCCESS)

2.5.3 A Uniform Variant of SQL/XML

The extended version of LL may be used to operate on the same data structures
as SQL/XML [69], namely tables with XML columns. In contrast to SQL/XML,
however, LL does not require two separate languages (SQL and XQUERY) to
query these data types.

Query 3 exemplifies the compilation, with extended order support, XML
data, and tuple-aware rules with multiple item columns. The outcome is a table
with an XML column.

for $op at $pos in d-d-o (doc ("algebra.xml")
/descendant: :element (op)) (Q3)
return tuple ($pos, $op)

Figure 2.9 shows the corresponding query plan for Query Q3 with annotations
of intermediate results based on the XML document algebra.xml in Figure 2.10.
We refer to the nodes of the XML document using the node surrogates o, . . ., 7.
The evaluation of doc, for example, leads to 7p—the root node surrogate.

The descendant path step collects all reachable subtree element nodes with
name op (e, 74, V6)- Based on these nodes, a new position column is calculated.
As operator ¥ is allowed to return values of an arbitrary domain, column pos in
the intermediate result of the path step might simply feature the values s, 74,
and 7. The same is true for the upper rank operator describing the position
information for the duplicate elimination (d-d-o). Operator #pos., :(pos) /iter €nforces
the generation of absolute position values for the position variable $pos.

Note how the resulting plan in Figure 2.9 features columns item; and item,
to accommodate tuples. In the query plan the tuple constructor boils down to a
single equi-join and a projection, which correctly renames the second item column.

2.6 A Flat Representation of Nesting

The data model of most companion languages allows arbitrary nesting of tuple
and list constructors. With explicit list construction we extend LL to handle
these nested data structures (Figure 2.11). Query @4 for example, generates a
nested list that evaluates to [[10,20], [30,40]].

list (1ist (10, 20), list (30, 40)) (Q,)

2.6. A FLAT REPRESENTATION OF NESTING 23

for at in return ?iter,pos,(itemﬂtemg)
iter pos itemy itemo . . .
7T|ter:outer,pos:posnew,Iteml,ltemz

1 Y2 -
2 Y4
3 Y6 \

112
113
POSy e <posout ,pOS>

tuple () |
iter pos itemy itemo _

211 % zi Witer=inner
311 3 Y6 _ e

Miter

$pos / |

iter bos |te1 e - @poszl Tliter,itema:item
\

3
.. @pos:1 Tlouter:iter,inner,pos,,,,;:pos

$op

iter pos item | |FEEEEEERE.
72

2 Y4

3 6

d-d-o ()

iter os itemq

/descendant: :element (op)
iter pos item;

2
113 6

\
Tliter:inner,itemy :pos,,s Niter:inner,item;
T~ \
#inner:<iter,pos>
R \
#posabs :(pos) /iter
\
pos:(iteml)
\
4}

I
Tliter,item,
\
pos:(item1)
\

7Titer,itemlsres

1 descendant,element (op)

res:itemp
doc () ‘
iter pos item; Tliter,pos,item :res
[L[7 | ‘

DOCres:item1

"algebra.xml" |
iter pos item; @pos:l
"algebra.xml" ‘

Q@item 1:"algebra.xml"

iter

Figure 2.9: Algebraic query plan encoding Query ()3 with annotations. Tables on
the left-hand side depict correspondence to LL query construct and intermediate
result representation.

24 CHAPTER 2. LOOP LIFTED QUERY COMPILATION

(v0)
<alg> ?
<op>project</op> alg (n)
<op>select</op> / | \
<op>cross</op> OP (72) OP (v4) OP (76)
</alg> { ‘ ‘
"project" (v3) "select" (vs) "cross" (1)
(a) algebra.xml. (b) Tree representation of algebra.xml.

(Y0, - - -, y7 depict node surrogate values.)

Figure 2.10: XML document algebra.xml in textual and tree representation.

Expr..= ...
| list (Ezpr (, Expr)*)
| concat (Ezpr)
| group (Ezpr, Expr)

Figure 2.11: Grammar extension of basic LL (Figure 2.4) to support nesting.

The LL extensions in Figure 2.11 furthermore provide means to flatten nested
lists (via concat) and to group lists. The grouping primitive group positionally
aligns its two arguments and subsequently groups the elements of the second
argument by the corresponding grouping keys in the first argument.

We realize the nested data structures in our flat, first normal form algebra via
surrogate (foreign key) values, variants of which have been used to realize non-first
normal form database systems in the late 1980s [106]. For Query @y, for example,
two query plans Q49 and Q4. together realize the nesting (Figure 2.12(a)): The
outer query links to the inner query by means of the columns item; and iter,
respectively.

Q-1~l)

iter positem;

111]1
112](2

(a) Encoding the nested result of Query Q4. (b) Encoding a generic nested list.

Figure 2.12: Relational runtime encoding of nesting on the database back-end.
(Q4.0 and @ p.o represent the outer lists; Q4.1 and Qp. all inner lists.)

2.6. A FLAT REPRESENTATION OF NESTING 25

In general, if a LL program produces a nested list value (of length n, n > 1)
[[x11,%12, - o510) s oo o s [@p1 5 T2,y - -« Tne, 1], the compiler forks the compila-
tion process to translate the program into two separate relational queries:

1. one query that computes the relational encoding of the outer list [@q,...,

@,,] where all inner lists (including empty lists) are represented by surrogates
Q; (Qpo), and
2. one query that produces the encodings of all inner lists—assembled into a

single table. If the ¢th inner list is empty, its surrogate @; will not appear in
this table (Qp.1).

Figure 2.12(b) depicts the resulting tabular encodings produced by the relational

query pair. Note that the constituent queries are still flat queries to be evaluated

over a first normal form database.

2.6.1 (Un)Boxing

The number of algebra plans for a given LL expression directly corresponds to its
type: For every list type constructor [a], one query plan is generated. Query Q4
for example, has a result type [[integer]] and thus is encoded by two query
plans. Similarly Query Qs—encapsulating Query Q,—has result type [integer]
and produces a single algebraic plan.

for $a in 1list (1ist (10, 20), 1list (30, 40))
return count ($a)

(Qs)

But where does the information to split or merge the query plans come from?
The compilation forks or fuses the query translation process through the insertion
of calls to the helper functions box and unbox, respectively. The translation of
function box (e) results in two query plans (Qp.g and Qp.1) where the iteration
context loop builds the basis for () p.g and the relational representation of expression
e turns into Qp.;. Similarly, function unbox (e) consumes two query plans and
triggers the algebraic compiler to schedule a foreign key join between)p.o and
Q) p.1, which, effectively, dereferences the surrogates.

The introduction of box and unbox is performed by a simple, bottom-up static
analysis phase that precedes algebraic compilation. This analysis—reminiscent of
an inference of coarse types—is implemented by the set of inference rules shown
in Figure 2.13. Judgment e = ¢’ : 7 inspects LL input subexpression e to decide
whether the relational encoding of the result of e (a) consists of individual tuples
of atomic values or surrogates (7 = row), or (b) comes in tabular form (7 = tbl).
Given this, the analysis infers LL output expression €, which features the required
box and unbox invocations.

The following query depicts Query (5 after the static analysis phase:

for $a in list (box (list (10, 20)), box (1ist (30, 40)))
return count (unbox ($a))

26 CHAPTER 2. LOOP LIFTED QUERY COMPILATION

2 3
val = val : row empty = empty : tbl $v=¢%v: row()

/
€ =€, T,

i=1,...,n

append (e1, ... ,e,) = append (U}},(¢}), ..., M7 (er,)) : tl

(4)

/ /
;=€ 1 T; e=¢€e T

(e10e9) = (I];Imw(oMz, (eh)) : row (5) count (e) = count ([II,,,(¢')) : row

;= e(LT
if (e1) then ey else e3 = if ([II]},,(e1)) then [II}2,,(e2) else [I72,, (e3) : row

/
e=e T

(8)

reverse (e) = reverse ([Q;(e’)) : tbl
e=¢:7

unordered (e) = unordered ([I7,(e’)) : tbl

9)

. /
i=1in,return,l,..., n‘ei:e LT

for $v at $p ine;, for $v at $p in m:ﬁ(n)
order by e1,...,e, = order by ML, (e}), ... M7, (el,) : tbl

return ey return [J]]return (eﬁnetum)
/ /
e=¢: e=¢:
(11) (12)
doc (e) = doc (Emw(Nt row e/a::n=[,,(€)/a :n : thl
e=¢€:1 e=¢€:1

13 14
d-d-o (e) = d-d-o (M}, (') : tbl() value (e) = value (], (€') : row()

e=¢€:row
. : (15) 7 (16)
table T'(n,i) = table T'(n,7) : thl e.n=c¢e.n:row

. !
1=1,.. ,n}ei:ei:n

17
tuple (e, ... ,e,) = tuple (@71, (e)), ... ,0m,(e)) : row()

i=l.n|ei=¢;: 7
list Cep, ... e,) = list (@72, (e)),Mz, (eh)) : thl

(18)

e=e ! T

concat (e) = concat ([};(e)) : tbl

. /
z:1,2’61':€i2’7"

group (e1,e2) = group ({7} (e]), 7% (€5)) : tbl

Figure 2.13: Static analysis: introduction of box () and unbox () calls. The

auxiliary function [J] introduces box or unbox calls whenever the inference rule set

implementing the judgment e = ¢’ : 7 encounters tbl/row mismatches ([(e) =

box (e); Ml (e) = unbox (e); [l (e) =e).

2.6. A FLAT REPRESENTATION OF NESTING 27

As expression list (Boxing Rule 18) expects a tuple instead of a list, the static
analysis resolves the [J*) mismatch by introducing a call to box. Similarly, the
aggregate count (Boxing Rule 6) requires a list, but initially consumes a tuple:
unbox resolves this mismatch by dereferencing the nested lists.

Note that in a nested data model the semantics of the for loop has changed:
Boxing Rule 10 expects tuples in €,e, and returns nested lists, if the return part

of the for loop features lists.

2.6.2 Compilation of Nesting

To correctly reflect nesting in the inference rule set, we need to record the surrogate
information that serves to relate the query plans. The adjusted compilation scheme
defines the judgment

[;loop e = (q, cs,ts)

which, unlike the original judgment defined in Section 2.3.1, returns a result
triple. The enhanced compilation maintains the following central invariant: if
e is of type [(t1,...,t,)], plan ¢ will produce a table with schema iter|pos|cs
(with cs = itemq] ... |item,,), in which column item; contains the values occurring
at the ith tuple position. If ¢; is a list type [«;], then item; will be a column
populated with surrogate values. In this case, the mapping ts will contain an
entry item; — (g;, cs;, ts;) that features an independent algebraic plan ¢;, which
computes the list contents.

The inference rules discussed so far can be categorized into two groups:
rules that generate plans without nesting (Rules CONST, EMPTY, OP, COUNT,
and Doc-TABLE) and rules that ignore the plans in ts and propagate them with-
out modification (Rules VAR, IFTHENELSE, FOR, ORDEREDFOR, REVERSE,
UNORDERED, POSACCESS, and TUPLE). Rule APPEND forms an exception as
merging nested lists requires special care to avoid conflicting surrogate values.
Rule APPEND needs to introduce new unique surrogate values for all nested lists.
We omit the details here and refer the interested reader to [109] for more details.

Rule LisT shares the compilation with Rule APPEND—its only distinction is
the expected input type (compare Boxing Rules 4 and 18).

I'; loop I~ append (eq, ... ,e,) B q
I';loop - 1ist (eq, ... ,e,) B¢

Rule CONCAT consumes a list of lists and flattens it to produce a single list.
The compilation of its input expression e leads to a query plan with a single
surrogate column item;. A foreign key join with query plan gem,, describing the
nested data, along the surrogate values leads to the expected flat representation.

Fa lOOp e 9 (q> [item1]> {iteml — (Qitemm CSitemy » tsitem1)}>

q= posnew:(posout,pos) (Witerout:iter,iter:iteml,pos -pos<Q) Miter Qitem1>

out*

PJ lOOp I concat (6) = (ﬂ-iter:iter(mt,pos:posnew,csiteml (q)a CSitemy » tSitem1>

(CONCAT)

28 CHAPTER 2. LOOP LIFTED QUERY COMPILATION

The grouping operator group consumes two aligned lists where the first list
describes the grouping keys and the second list describes the values to be grouped.
Its result is a list of distinct group keys together with the corresponding lists of
grouped values.

i=1,2| s loop = e1 B (qi, s, ts;)
Q1-ext = grp:(iter,cs1>(q1)

item = item|cg, 41

Qgrp =9 (ﬂ-iter,pos:grp,csl,itemigrP(QLemt))

Qzip = (;posabsz<pos>/iter(QQ>) Miter,pos . (ﬂ—iter,posabs,grp (;posabs:<pos>/iter((h~ext)))

q= Tliter:grp,pos, csa (CZzip)

GRrOUP
I'; loop = group (e1,e2) B (Qgrp, [cS1, item], {item — (q, csa, ts2)}) ()

Rule GROUP creates the surrogate information for the nested lists by means
of the row ranking operator €. The created column (grp) becomes (a) the new
surrogate column item for the grouped table (¢4) and (b) the new iter column for
the table storing the group values (¢). A distinct operator ¢ performs the grouping
for the outer table, whereas an equi-join on the iterations (column iter) and the
absolute position values (column pos,,, calculated based on the relative positions
in column pos) maps the surrogate values to the inner table (g,;). Note how
the result in Rule GROUP returns both query plans together with the correlation
information (column item).

Rule Box introduces a new plan based on the iteration context loop (qp.o). As
q already encodes the matching iteration information in column iter, no additional
code is required to create other surrogate values.

I'; loop F e B (g, cs, ts)
gpo = @poszl (ﬂ-iter,itemlziter(loop))

I'; loop F box (e) B (qp.o, [itemy], {item; — (g, cs, ts)})

(Box)

To implement unboxing the inference rule has to apply the same foreign key join
along the surrogate values as in Rule CONCAT. Rule UNBOX thus delegates the
compilation to Rule CONCAT. The only minor difference is that unbox operates on
a single tuple (instead of a list of tuples) and the first ordering criterion (column
pos,,;) of operator ¥ always provides the constant value 1.

I'; loop F concat (e) B ¢
I'; loop unbox (e) B g

(UNBOX)

As calls to box and unbox cancel each other out (unbox (box (e)) =€), we
expect the resulting query plans to be agnostic of the presence of superfluous
unbox /box pairs. This is not true for the initial plans, as every call to Rule UNBOX
leads to an additional join and a ranking operator. The optimizations in Chapter 4,

2.7. SUMMARY AND RELATED WORK 29

however, ensure the above equivalence: The rewrites basically remove the joins
and ranking operators, because the positions can be described by the old pos
column and the join with loop will always deliver a single hit for each input row.

2.6.3 Nesting in Action

The following query presents Query)4 with boxing annotations after the static
analysis phase:

list (box (1ist (10, 20)), box (list (30, 40)))

The query compiles into the algebra plans shown in Figure 2.14. The output
features two query plans that describe the outer list as well as the nested lists. The
evaluation of these plans leads to the result representation previously illustrated in
Figure 2.12(a). Note that the outer lists can be compiled without any knowledge
about the nested lists—the outer list depends on the initial loop relation only.

Previously, we mentioned the modification necessary to adjust Rule APPEND
to the nested model. In Figure 2.14 we call the adjusted Rule APPEND via
Rule LisT. The generated plan merges the input tables as well as the nested lists
and replaces possibly conflicting surrogate values. The row numbering operators
in Figure 2.14 introduce such new surrogate values, which are mapped to the
nested lists if any exist, by means of an equi-join on the old surrogate value and
column ord.

2.7 Summary and Related Work

Loop lifting was originally developed to directly compile XQUERY expressions to
SQL [63]. Follow-up work describes a loop lifted XQUERY compilation strategy
targeting a logical algebra [64]. Although this algebra is closely related to the
algebra in Section 2.2, the operator semantics of some operators (e.g., 1) has
slightly changed and new operators (e.g., the numbering operators € and ©) were
added. In this work XQUERY’s capabilities are expressed by LL and its order
and XML extensions. Our compilation rules mainly differ from the original ones
in [63,64] in the relative encoding of sequence position information.

In the scope of the research prototype Ferry [42,56]—a compiler for the purely
functional language FERRY operating on database-resident tables—we extended
the loop lifting compilation with tuples and nesting [109]. The tuple and nesting
extensions of LL reflect these enhancements to the loop lifted compilation. LL
and its order, tuple, and nesting extensions imitate FERRY’s capabilities as well
as the comprehensive core of the companion languages LINKS, HASKELL, RUBY,
and PYTHON.

LINQ operates on (possibly) nested records and allows to query both XML and
table data. Taken together, the LL language constructs match the capabilities

30 CHAPTER 2. LOOP LIFTED QUERY COMPILATION

list (box (...), box (...)) (Q4.0)
iter pos item;

112 2

<fiter,pos,(itemﬂ <fiter,pos,(itemﬁ

71-iter,pos:posnw sitemy:surrpey Tliter:surr,pos,item1

(Q41)

iter pos itemy
10

IR posnew:(ord,pos) Miter,ord

211

212 -~

Tliter:itemy,ord,surr:surrpeq
/
#surrncw:<iter,ord,pos> #surrncw:<iter,ord,pos>
\ \
box (1ist (30, 40)) Uiter,ord,pos,iteml Uiter,ord,pos,iteml
iter pos itemy
EERNERE - /N / I
T @ord:1 @ord:2 @ord:1 Q@ord:2

box (Llist (10, 20)) /o \

iter pos item @poszl @poszl
E'

Titer,itemy:iter Titer,itemy :iter

list (10, 20)
iter pos item;

Tliter,pos:pos,, ., ;item1 Tliter,pos:pos, ., ,item1
e |
posnew:<ord,pos> posnew:<ord,pos>
list (30, 40) N | — |
iLer Dos Itl #surrnew:(iter,ordpos) #surrnew:<iter,ord,pos>
1 40 I i
Uitelr,ord,pos,iteml Uiter,ord,pos,iteml
~ N / AN
@ord:1 @ord:2 @ord:1 @ord:2
@pos:1 @pos:1 @pos:1 @pos:1
\ I / |

@item;:10 @item;:20 @item;:30 @item;:40

Figure 2.14: Algebraic query plan encoding Query), with annotations. Tables
on the left-hand side depict the corresponding LL query constructs as well as the
intermediate results.

2.7. SUMMARY AND RELATED WORK 31

of LINQ’s standard query operators. Microsoft’s current LINQ implementation
restricts the mixed evaluation of XML and table data in a single query: Database
queries access table data, whereas XML data has to processed in the common
language runtime, that is, on the programming language’s in-memory heap. [115]
tries to overcome this deficiency by storing XML data with an user-definable
mapping in tables. An alternative approach transforms LINQ queries into a mix
of XQUERY and SQL queries [116]. Our compilation approach offers a viable
alternative to these approaches as we can target schema-less XML documents
and do not have to bridge the gap between XQUERY and SQL [59]. The same
observation might help to build a compiler for SQL/XML [69] without the “slash”.

Database-supported program execution has come a long way from the first
successful integrated database language Pascal/R [108] in the late 1970’s to today’s
approaches like the ActiveRecord component of Ruby on Rails [101], Microsoft’s
LINQ to SQL provider [82], and the ADO.NET Entity Framework [39]. Loop
lifting adds to this a viable alternative that is able to port more language concepts
to a database back-end than any of these approaches [59,110].

2.7.1 Logical Algebra and Order

The algebra described in Section 2.2 consists of RISC-like style operators. In
most cases a large number of operators is necessary to, for example, represent the
equivalent of a single SELECT box in IBM DB2’s query graph model [99]. While
the loop lifted compilation scheme introduces plan sharing in various places, which
leads to DAG shaped query plans, the resulting plans tend to be more verbose
than textbook style plans [38,112]. A typical plan feature hundreds, not tens, of
operators, but can be evaluated on a wide variety of back-end systems. Among
others, this includes most SQL processors [55] and MonetDB/XQuery [21].°

The most important difference to other approaches, however, is our represen-
tation of order. Since the seminal work on interesting orders [111], order (and its
propagation) is a concept located in the physical plan generation phase [38,112].
In the presence of ordered domains—for example, item sequences in XQUERY—
query compilers therefore directly generate physical plans [21] or introduce order-
preserving logical algebras [24,71,114,124]. The loop lifting approach, on the
other hand, follows a different approach and represents order as data. Order is
manipulated by means of the row numbering and row ranking operators #, ©,
and ©. This representation gives us the freedom to minimize order constraints
independently of a particular back-end. Furthermore, these optimizations are
orthogonal to any cost-based order optimization (such as [48,91,111]).

5More information on the code generators follows in Chapter 3.

32 CHAPTER 2. LOOP LIFTED QUERY COMPILATION

2.7.2 Representing Nesting

The introduction of box and unbox by the compiler in Section 2.6.1 is inspired
by techniques originally invented for the optimized translation of polymorphic
primitives in programming languages [93]. Here, since we target relational database
systems, we let box control the forking of the compilation process that emits
bundles of SQL queries.

Note that there is a correspondence with the operators v/u (or nest/unnest)
introduced in the context of non-first normal form database systems [44, 106].
However, operators v/u unfold their effect at runtime when a query is evaluated
over a nested database, whereas box/unbox are compile-time concepts, which
guide code generation for a flat first normal form relational database system.

Our use of the surrogates @; resembles an ordered variant of van den Bussche’s
approach to the simulation of the nested algebra via the flat relational algebra [122].
Whereas van den Bussche’s work derives variable-width surrogate keys from the
data itself, we opted to employ compact #- or U-generated surrogates.

As of today, the elegance and conceptual beauty of the LINQ approach is
not fully met by the LINQ provider implementations originally supplied by Mi-
crosoft. Whereas the current LINQ to SQL provider emits SQL statements and
thus delegates query evaluation to a back-end database management system, all
operations performed by the LING to XML provider are performed in-memory (on
heap-resident representations of XML nodes). This mismatch of execution sites
leads to asymmetries: in a nested LINQ query comprehension, the provider in
charge for the outermost enclosing iteration “takes the lead”.

If the LINQ to XML provider is in charge of the outer iteration, each iteration
leads to the invocation of the LINQ to SQL provider. This mode of evaluation
hits the relational database management system with an avalanche of (often
similar) SQL queries, whose results have to be transferred into the heap for further
evaluation by LINQ to XML (given that main-memory capacity suffices). In our
setup it is exclusively a query’s result type—mnot the database instance size—that
determines the number of initiated database queries. The above mentioned query
avalanche effect is avoided. This marks a significant deviation from Microsoft’s
original implementation and can have a profound performance impact [59].

2.7.3 More Loop Lifting

In Section 2.1 we started out with the basic idea of loop lifting and extended it
with various language aspects. In this section we briefly sketch further additions.
We skip the details of these extensions as they either do not affect the shape of
the query plans or introduce new algebraic operators that are agnostic to most
rewrites.

Although we added position information by means of column pos to represent
ordered lists, we can also remove this column and thus understand unordered

2.7. SUMMARY AND RELATED WORK 33

data. One use case for this scenario might be a loop lifted SQL compilation.
Although nobody needs yet another SQL compiler, in the context of XQUERY we
have observed that loop lifting provides an excellent opportunity for declarative
debugging [60]. A loop lifted SQL compilation thus provides especially good hooks
for observations of intermediate expressions [58]. A similar extension enhances
the loop lifted compiler with a new column type to support XQUERY type
matching [118]. Equivalently, XQUERY fulltext scores [12] might be represented
by a score column.

Additional relational placeholder operators allow us to faithfully integrate
missing XQUERY concepts such as node construction, runtime errors, and recursion.
The compilation of XQUERY’s node constructors is described in [64] and [120].
Although side effects such as runtime errors contradict with the algebraic paradigm,
we incorporated support for these errors by means of an additional query whose
non-empty result indicates an error. Furthermore, instead of arbitrary recursion,
we extended the loop lifting compiler with a controlled form or recursion, namely
tail recursion [4,5].

A large number of additional, yet straightforward inference rules is needed to
extend LL with XQUERY’s function library [83], LINQ’s complete set of standard
query operators [81], or XQUERY 1.1’s windowing functions [57]. Loop lifting
allows us to express any positional constraint algebraically. Even the compilation
of LINQ’s standard query operator .Zip(), performing positional alignment of
(unrelated) lists, leads to a straightforward translation. Microsoft’s LINQ to SQL
provider on the other hand fails to support this standard query operator as well
as most other standard query operators involving sequence order [110].

Finally, loop lifting embraces higher-order functions (as proposed in the
XQUERY 1.1 Working Draft [104]). The loop lifted compilation of higher-order
functions follows the same surrogate value strategy chosen for nested lists: A
surrogate value representing a function item is generated when the function is
defined and then dereferenced during function application (similar to calls of
box and unbox). On application of a function, its function item—the surrogate
value—is used to choose the correct expanded function body and to correctly loop
lift a snapshot of all variables that were in scope at the function definition site,
thus achieving the same effect as defunctionalization [102] in functional languages.

34

CHAPTER 2. LOOP LIFTED QUERY COMPILATION

Chapter 3

Back-End Code Generation
for Loop Lifted Query Plans

The loop lifted compilation described in the previous chapter leads to algebraic
plans, whose characteristics differ significantly from the relational query plans
found in database textbooks [38,112]. The loop lifted algebra plans typically
feature (a) a large overall number of operators with many numbering and mapping
join operators, (b) plan sharing, and (c) XML placeholder operators.

To quantify these observations we compiled the 20 queries of the XMark bench-
mark [107]—a well-known benchmark in the XQUERY domain—with Pathfinder.
Table 3.1 lists the operator distribution averaged over all queries. An average
XMark query contains around 35 numbering operators and 25 structural and
mapping joins (<], ®). Because of the loop lifted compilation, the query plans
feature no value-based join—that is, joins comparing values of the XMark doc-
ument. In total, the 20 query plans sum up to 5253 operators and 445 sharing
points—operators with two or more parent operators.

In the following sections we discuss Pathfinder’s two main back-end code
generators as well as the evaluation of such algebra plans in the scope of the
main-memory database system MonetDB/XQuery and in terms of SQL queries
evaluated on top of IBM DB2.

3.1 MonetDB/XQuery

MonetDB/XQuery is the tight coupling of the relational main-memory database
system MonetDB [18] and the XQUERY compiler Pathfinder. MonetDB was
designed to exploit modern CPU and memory hardware for query-intensive
database management applications. We briefly sketch its main characteristics in
the next section.

MonetDB/XQuery extends MonetDB in two places: It incorporates the compiler
Pathfinder that emits its algebra plans in terms of MonetDB’s query language and

35

36 CHAPTER 3. BACK-END CODE GENERATION

Operator Category Subsumed Average # Fraction of

Operators of Operators Operators
Projections T 130.65 49.7%
Row Operators o, @, ©, CAST 39.55 15.1%
Numbering Operators #4899 35.25 13.4%
XML Operators +, boc, &, N 25.70 9.8%
Mapping Joins X 14.45 5.5%
Duplicate Elimination) 6.75 2.6%
Set Operators W, \ 6.40 2.4%
Value-Based Joins M, X 0.00 0.0%
Others fn @R o, GRP 3.90 1.5%
Overall 262.65 100.0%

Table 3.1: Categorized operator distribution for the average XMark query. (N
represents node constructors.)

extends MonetDB’s runtime with XML support. The runtime extensions feature,
among others, XML shredding and serialization functionality, highly tuned (loop
lifted) implementations of the Staircase Join path step algorithms [21,66], and
efficient implementations of XML node constructors, XML document lookup, and
node atomization.

3.1.1 MonetDB

MonetDB is an open-source relational database system. Queries in MonetDB
Version 4 are expressed in the MonetDB Interpreter Language (MIL) operating
on an ordered binary table algebra [22]. This decomposed storage model [32, 78]
is backed by Binary Association Tables (BATs) with exactly two columns: head
and tail, whose storage structure are two aligned arrays of values.

MonetDB encodes a table with n columns by n BATSs, in which all head columns
are of of type void. A column of type void contains virtual object identifier values.
Such a column stores only a single base object identifier offset, to represent a list
of dense and ascending integer values (offset, offset+1,. .., offset+n). A foreign
key join along void columns leads to positional array lookups (shifted by the value
of the base object identifier offset).

The vertical fragmentation improves queries with a small number of columns
as sequential scans of a few columns greatly reduce the main-memory access costs
(by making optimal use of the CPU cache lines). This observation furthermore
led to a fully materialized processing model where the processing of an operator
only starts once all of its input rows are provided. Query processing algorithms,
tuned to exploit the capabilities of modern CPUs, support this processing model.

3.1. MONETDB/XQUERY 37

Query optimization in MonetDB Version 4 consists of strategic and tactical
query optimization. The strategic optimization is performed by the front-end
that determines a good order of the operations in a query plan. The tactical
optimization then chooses at runtime, based on runtime table characteristics, the
best processing algorithm for a given operator.

3.1.2 MonetDB Interpreter Language

The interface language in MonetDB Version 4 is MIL—a procedural language
extended with functions that represent the operators of the relational algebra such
as join(), select (), and sort () as well as functions that manipulate the binary
table model (e.g., reverse() and mark()). The algebra functions follow the
characteristics of standard algebra operators—join(a,b) for example, performs
an equi-join between the inner columns (tail of a and head of b) and returns a BAT
where the join columns are projected out (resulting in the head of a and the tail of
b). reverse(a) switches head and tail columns of a BAT a and mark(a, offset)
replaces the tail column of @ with a new dense key column of type void that starts
from the object identifier offset.

The example MIL program in Figure 3.1(a) demonstrates the main charac-
teristics of the resulting programs. The program creates a table with columns
a and b, sorts this table by (a,b) and generates a new order column c. The
program then filters the rows where b equals 1, projects onto column a, c, and
a’s square (in column f), and finally serializes the table with columns a and f£.
The intermediate results for each of the variable assignment in Figure 3.1(a) are
shown in Figures 3.1(b) to 3.1(0). Missing frames indicate columns of type void,
which are not materialized.

The main observations with respect to Pathfinder’s MIL code generation are:
(a) Secondary orderings can be expressed by a concatenation of calls to sort and
CTrefine (lines 5-6); (b) The result of CTrefine—an ordered grouping—can be
also used to implement the operators ¥ and ¢ (line 9), (c¢) Columns are aligned
with a new order or a selection (lines 7, 11-12, and 15-19) by means of an order-
preserving leftjoin; (d) The materialization of intermediate results is used to
exploit plan sharing—column a for example, is scanned twice by the implicit join
on the head columns, before the values within each matching row are multiplied
(line 21).

3.1.3 Plan Generation for MonetDB

Pathfinder, as a front-end of MonetDB, performs a limited form of strategic
optimizations. The logical query plans are transformed into plans expressed
in an intermediate physical algebra over n-ary tables in which, for example,
the numbering operators are replaced by explicit (n-ary) sorting and physical
numbering operators such as mark. The physical algebra features a number of

38

~ (=2} ot S w

oo

10
11

12

13

14

15

16

17

18

19

20

21

22

23

CHAPTER 3. BACK-END CODE GENERATION

fill literal table
:= bat(void,int) .seqbase(0@0) .append(4) .append(3) .append(3);
bat(void,int) .segbase (0Q0) .append (1) .append (1) .append(2) ;

oo H
]

sort by a then by b
vl := a.reverse().sort().reverse();
v2 := v1.CTrefine(b)
v2.mark (0@0) .reverse();

<
o
I

assign the order extend to c
:= v2.reverse() .mark(000) .reverse();

#

c

adjust old columns to the new order with an order-preserving join
a := v3.leftjoin(a);

b := v3.leftjoin(b);

#

select b=1
v4 := b.select(l);
vb := v4.mark(0@0) .reverse();

apply filter to the columns with an order-preserving join
:= vb.leftjoin(a);
vb.leftjoin(b);
v5.leftjoin(c);

project onto a, f:=a*a

= [x](a, a);

mark columns for garbage collection
= nil;

= o H* HHE 0O O H

serialize a, f
print(a, £);

(a) Example MIL program.

(i) Line 12. (j) Line 14. (k) Line 15. (1) Line 17. (m)Line 18. (n) Line 19. (o) Line 21

Figure 3.1: An example MIL program performing sorting, selection, and arith-
metics (a) and its intermediate results (b)—(0). (The gray entries x@0 indicate
columns of type void.)

3.1. MONETDB/XQUERY 39

important order-preserving operators, such as leftjoin, an n-ary sort-refine
(similar to the MIL operator CTrefine), an order-aware merge-union operator,
as well as the family of Staircase Join path step operators.

A cost model that severely punishes any sorting operator guides Pathfinder’s
plan enumeration. This leads to plans in which the row order is reused as
often as possible (e.g., by means of sort-refine) and a minimum number of
sorting operators remain to ensure the correctness of the query. An early version of
MonetDB/XQuery, where the query plan was always ordered by columns (iter, pos),
proved this fundamental decision a good choice [21].

The second most important goal of the cost

model is to choose plans in which duplicates

Peciah S€T1 (af) o . .
are eliminated as early as possible. Dupli-
@%:1 cate elimination is especially cheap whenever
Tac project, .. & semi-join, a general comparison join [21, Sec-
\ ! tion 4.2], or the physical path step operator
®f:(a.a) multsiaa) Staircase Join [66] is chosen to prune dupli-
U‘e sel eL:tb=1 cates on the fly. Furthermore, to avoid large
\ intermediate results, additional duplicate elim-
Oe:(b,d) ination operators are introduced whenever ap-
@(‘1-1 rank,, () propriate.!
| T The rewrite rules of Pathfinder’s plan gen-
Yei(a,b) SOTt ayp) erator are rather limited. Although more
. ‘ . . ‘ . complex selection operators—read: standard
1)1 41 algebraic selections—are formed, no join-
reordering is applied. Therefore the shape of

the resulting query plans always stays similar
to their logical equivalents.

Figure 3.2 shows the logical query plan and
its corresponding physical counterpart (lead-
Figure 3.2: Logical query plan and ing to the MIL program in Figure 3.1). A
its physical equivalent (resulting rank operator ¢ is transformed into a sort
in the MIL program of Figure 3.1). and a rank operator. The physical select

operator replaces the three logical operators
@, ®, and 0. Whereas the shape of the query plan stays the same, the physical
plan now operates on an ordered data model. The plan enumeration enforces
the correct output order and thus avoids the necessity to sort on the ordering
criterion (column c) in the serialization point ser.

(b) Physical
query plan.

(a) Logical
query plan.

'Duplicate elimination is performed, whenever the input contains no key candidate and the
removal of duplicates does not affect the overall result. Properties key and set discussed in
Chapter 4 ease the detection of such situations.

40 CHAPTER 3. BACK-END CODE GENERATION

3.1.4 MIL Code Generation

The MIL code generation can be described as a straightforward translation. A
bottom-up, cost-based pattern matcher with uniform costs for any pattern chooses
the rules that translate a group of one or more physical operators into a sequence
of MIL assignments.? This translation transforms n-ary tables into n BATs (as in
Figure 3.1). Whenever a physical operator modifies the order or cardinality of its
inputs, a batch of MIL leftjoins align the affected BATs.

The translation of the physical query plan in Figure 3.2(b), for example,
treats the combination of rank and sort as a single pattern and thus issues six
translation rules in total. Figure 3.1 depicts the result of this translation.

In case a physical plan fragment is referenced more than once, because of
the DAG structure of the query plans, its corresponding set of MIL variables,
representing the n-ary output table, is reused.

Dead Code Elimination

Before the resulting MIL program is executed on MonetDB, an additional program
analysis is performed. A dead code elimination analysis starts out from the side-
effecting operations (e.g., print in Figure 3.1) and removes all assignments
to unreferenced variables. The dead code elimination in the MIL program of
Figure 3.1, for example, removes the generation and maintenance of column c
(lines 9 and 19) and the last adaptation of column b (line 18). In a sense, the
dead code elimination in MIL is a restricted form of projection pushdown known
from logical query optimization [72].

3.2 SQL Code Generation

Pathfinder’s SQL code generator does not target a specific back-end, but a wide
range of possible relational back-ends. The code generator consumes a logical
algebra plan and produces an equivalent SQL:1999 query. While we lose control
over the execution of the generated SQL code, we gain extensive database support—
for example, first-class cost-based query optimizers.

The SQL code generation relies on support for common table expressions
(WITH-clauses) and SQL:1999’s ROW_NUMBER and DENSE_RANK numbering functions
to represent the DAG structure of the query plans as well as the numbering
operators.

Regarding the XML-specific operators, we can make use of any relational
XML encoding [45,67,80,95], as long as the semantics of the XML placeholder
operators are guaranteed. On IBM DB2, Microsoft SQL Server, and PostgreSQL
we successfully applied various different encodings, for example, an edge-based

2The uniform costs ensure that the pattern matching favors larger patterns over single operators.

3.2. SQL CODE GENERATION 41

1 <open_auction id="1"> - AT i nET

e pre size level kin name value data
> <initial> 019 0 |DOC [au- - xml
s 15 18| 1 |[ELEMjopen_- - -
4 </initial> 20| 2 |ATTR|id 1 1.0
5 <bidder> 3|1 2 |ELEM|initial 15(15.0
6 <time>18:43</time> 410 | 3 |TEXT 15|15.0
7 <increase> 5 4 2 ELEM blddeI‘
s 4.20 6|1 3 |ELEM|time 18:43
o </increase> 710 4 |TEXT 18:43

. 8| 1| 3 |[ELEM|incre---| 4.20| 4.2

1 </bidder> 9| 0| 4 |TEXT 4.20| 4.2

11 </open_auction>

Figure 3.3: Encoding of the infoset of XML document auction.xml. Column
data carries the nodes’ typed decimal values.

pre/parent encoding [45] as well as region-based pre/post [67], pre/size/level [62],
and ORDPATH encodings [95].

In the experiments performed in this work, DB2 operates on a table DOC,
which stores an encoded version of persistent XML infosets [33]. We use a schema-
oblivious node-based encoding of XML nodes in which, for each node v, key
column pre holds v’s unique document order rank to form—together with columns
size (number of nodes in subtree below v) and level (length of path from v to
its document root node)—an encoding of the XML tree structure (Figure 3.3
and [62]). XPath kind and name tests access columns kind and name—multiple
occurrences of value DOC in column kind indicate that table DOC hosts several
trees, distinguishable by their document URIs (in column name). For nodes with
size < 1, table DOC supports value-based node access in terms of two columns
that carry the node’s untyped string value [37, §3.5.2] and, if applicable, the
result of a cast to type xs:decimal® (columns value and data, respectively).

3.2.1 Translating Algebra Plans to SQL

The SQL code generation consumes a logical query plan and partitions it into query
blocks. The semantics of each such internal query block can be represented in
terms of a single SELECT-FROM-WHERE expression. An internal query block consists
of (a) a FROM-list collecting table references and literal table definitions, (b) a
SELECT-list mapping logical column names to expressions, and (c) a WHERE-list
storing conjunctive predicate expressions.

The partitioning algorithm that drives the translation starts at the plan leaves
and greedily consumes operators until either an operator with multiple parent
operators or one of the operators 4, U, \, GRP, #, J, or ¥ is reached.

Whenever the greedy operator consumption stops, the internal query block is

3In the interest of space, we omit a discussion of the numerous further XML Schema built-in
data types.

42 CHAPTER 3. BACK-END CODE GENERATION

WITH
-- binding because of rank operator
ctel (a, b, c) AS
(SELECT tl.a, tl1.b,
DENSE_RANK() OVER (ORDER BY tl.a ASC, tl.b ASC) as c
FROM (VALUES (4, 1), (3, 1), (3, 2)) AS t1 (a, b))

SELECT 1 AS g, t2.c AS ¢, t2.a, t2.a * t2.a as f
FROM ctel as t2

WHERE t2.b =1

ORDER BY g ASC, c ASC;

Figure 3.4: Generated SQL code for the logical query plan in Figure 3.2(a).

transformed into a SELECT-FROM-WHERE expression. This expression is extended
(e.g., with an additional GROUPBY clause) to correctly reflect the semantics of
the operator that stopped the consumption and forms a new common table
expression. The partitioning continues with a name reference to the new common
table expression and completes at the serialization point ¢ where the last internal
query block is turned into the top-level SELECT-FROM-WHERE expression. For more
information on Pathfinder’s SQL code generation we refer the interested reader
to [85].

Figure 3.4 shows the generated SQL code for the logical query plan in Fig-
ure 3.2(a). The blocking rank operator @ stops the partitioning and leads to the
common table expression bound to the name ctel. The internal query block of
operator © is filled with references to the common table expression (FROM-list:
ctel) and its corresponding column expressions for all three visible columns
(SELECT-list: a — a,b — b,c — c¢).

Operators @ and © add two more entries to the SELECT-list (d — 1,e =+ b = 1)
and the translation of operator o copies the expression for column e from the
SELECT-list to the WHERE-list (b = 1). At the end the serialization point prunes
the SELECT-list, builds a SELECT-FROM-WHERE expression, and orders the result by
the iteration and position values in columns g and c.

3.3 A First Quantitative Assessment

Both back-end code generators sketched in the previous sections, are built into
Pathfinder. To get a first impression of the runtime characteristics, we compiled
both MIL and SQL code for XMark Query 8 with Pathfinder and executed
the resulting queries on MonetDB/XQuery v0.36 and DB2 V9.7 against XMark

3.3. A FIRST QUANTITATIVE ASSESSMENT 43

sf0.01 sf0.1 sf1

MonetDB/XQuery 182 11,870 2,278,786
Pathfinder + DB2 477 2,346,302 -

Table 3.2: Evaluation times of XMark Query 8 (in msec, averaged over 10 runs)
with varying scale factors (sf) where sf1 corresponds to an XML document of
110 MB size. (No optimizations have been performed yet.)

instances of scale factor 0.01, 0.1, and 1.4

XMark Query 8 features 11 XPath steps, two nested for loops, a predicate
formulating a value-based join, three node constructors, and an aggregate. The
query returns its result in the document order of the person nodes:

for $p in doc("auction.xml")/site/people/person
let $a := for $t in doc("auction.xml")/site
/closed_auctions/closed_auction
where $t/buyer/@person = $p/@id
return $t
return <item person="{$p/name/text()}">{count($a)}</item>

The loop lifted compilation of XMark Query 8 leads to a tall stacked algebra
plan with 286 algebra operators that features a typical operator distribution
matching the distribution of the average XMark query in Table 3.1 and 25 sharing
points. The resulting MIL code amounts to 3282 lines of MIL text (107 KB) and
the generated SQL query consists of 466 lines with 56 common table expressions
(22 KB). DB2’s execution plan for XMark Query 8 features 171 operators with 15
sort and 42 join operators.

Table 3.2 shows the evaluation times for the varying XML document sizes
(ranging from 1.1 MB to 110 MB) both on MonetDB/XQuery and DB2. Although
the query runs in interactive time on the smallest document, the query scales
quadratically with the document size in MonetDB/XQuery and even worse on
DB2. These slow evaluation times are not surprising, as the loop lifted query
plans prescribe an evaluation strategy: For every person element, the execution
plan of XMark Query 8 retrieves all closed_auction elements before the filter
$t/buyer/@person = $p/@id is applied.

For other XMark queries MonetDB/XQuery, however, demonstrates that the
prescribed evaluation order of the loop lifted algebra plans does not necessarily
lead to bad execution plans. 13 out of the 20 XMark queries are executed within
100 milliseconds on scale factor 0.1 and in less than 1 second for scale factor
1.> These queries have in common that they do not generate large intermediate
results.

4Peek forward to Section 5.2 for more details on the setup of the experiment.
5For more details peek forward to Table 5.2 in Chapter 5.

=W N =

© oo ~ [=2] w

10

11

44 CHAPTER 3. BACK-END CODE GENERATION

var bl := bat(find(monet_guide,"site.people.person.id@"));

var b2 := bat(find(monet_guide,"site.people.person.name"));
var b3 := bat(find(monet_guide,"site.people.person.name.cdata"));
var b4 := bat(find(monet_guide,"site.people.person.name.cdata.string@"));

var b5 := bat(find(monet_guide,
"site.closed_auctions.closed_auction.buyer.person@")) ;
var b6 := outerjoin(bl,reverse(b5));
var b7 := join(join(b2,b3),b4d);
var b8 := histogram(reverse(b6));
b8@batloop()
{ printf("<item person=\"%s\">%i</item>\n", find(b7,$h), $t); }

Figure 3.5: MIL formulation of XMark Query 8 in [107, System D].

Compared to the “baseline” measurements in the original XMark article [107],
the results in Table 3.2 differ significantly: For XMark Query 8 on scale factor 1
the authors report less than 10 seconds evaluation time for the slowest system
(on a slower machine). Interestingly, the fastest time reported in [107, Table 3]—
470 msec—was measured on MonetDB. Figure 3.5 shows the MIL code used
to observe the reported time. The MIL code uses an XML encoding based on
DataGuides [47] and is the result of an hand-optimized translation of the XMark
query semantics. The MIL query features calls to outerjoin and histogram and
differs strikingly from the automatically generated query plans produced by the
loop lifting compiler. Although this “baseline” comparison might be unfair, we
accept the fact that more work is necessary to turn our compositional compilation
of arbitrary non-relational queries into a competitive approach.

3.4 Summary

With the two back-end code generators in place, we can now turn a large number
of database systems into query processors for non-relational query languages.
The SQL code generator allows us to target any database system supporting
the SQL:1999 dialect, while relying on their built-in optimization and index
infrastructure. With MonetDB/XQuery, on the other side, we are able to drive a
fast main-memory database system with extensive XML support.

Furthermore there are currently efforts underway to extend Pathfinder with
back-end code generators for the next generation database systems MonetDB
Version 5 [77] and X100 [17]. In general, any database system that supports the
algebra dialect described in Section 2.2 might be turned into an evaluation back-
end for non-relational queries. Because of the abstraction of the XML operators,
this statement is also true for any XML-processing database system (e.g., native
XML database systems such as Natix [43]).

The analysis in Section 3.3 revealed that both MonetDB/XQuery and DB2

3.4. SUMMARY 45

were not able to change the implicit evaluation order prescribed by the loop
lifted compilation scheme described in Chapter 2. For MonetDB/XQuery a more
advanced strategic query optimizer and a better cost model would certainly
improve the quality of the execution plans. In this setting, a good query optimizer
would need to take into account (a) the DAG shape of the query plans, (b) the
large number of non-traditional numbering operators, (c¢) a large number of
mapping joins, and (d) MonetDB’s intermediate result materialization strategy.
When we analyzed the execution plans of DB2 and other SQL database systems
it turned out that their optimizers, too, were overwhelmed by just these plan
characteristics, namely (a) the common table expressions, (b) the SQL incarnations
of the numbering operators—the window functions ROW_NUMBER and DENSE_RANK—
and (c) the large number of mapping joins.

In what follows, we aim to improve the execution plans of all possible back-
ends, instead of bringing one system to perfection. The optimizations discussed
in Chapter 4 target the logical algebra plans and thus affect all back-ends.

46

CHAPTER 3. BACK-END CODE GENERATION

Chapter 4

Logical Query Optimization
for Loop Lifted Algebra Plans

For over 30 years database systems have now excelled in providing fast access to
large quantities of data. Whereas logical query optimization in database textbooks
is restricted to select-project-join queries [38,112], most database systems take a
much larger set of rewrites into account and apply more advanced rewrites such
as decorrelation of nested subqueries. The query shape of the loop lifted algebra
plans, however, overwhelmed any query optimizer we had on our workbench. For
all back-ends the combination of plan size, plan sharing, numbering operators, and
mapping joins resulted in execution plans whose evaluation strategy largely reflects
the structure of the surface queries—for example, an execution plan calculates a
Cartesian product and only afterwards applies a predicate to implement a surface
query with two nested for loops and a filter expression.

Here, we take the characteristics of the loop lifted algebra plans into account
and provide a set of rewrite rules that considerably simplify the logical query
plans. Our goal is to provide plans with join graphs—algebra plans consisting of
bundles of base table references and joins—and subsequent plan tails performing
grouping, duplicate elimination, and ordering, whenever possible. Relational
database systems are specifically tuned to cope with this class of queries. To
generate such queries we optimize the query plans based on the following three
heuristics:

e House Cleaning (Section 4.2). The rewrites that implement this heuristic
prune unnecessary operators and reduce the operators’ arguments: They
remove plan fragments that are guaranteed to yield an empty table, sim-
plify operators based on key and constant information, perform variants of
selection and projection pushdown [72], and eliminate common subplans.

e Order Minimization (Section 4.3). The group of order rewrites are geared
to exploit as much information as possible to simplify and remove order

47

48 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

constraints—the row numbering and ranking operators—from the query
plans.

e Query Unnesting (Section 4.4). Two distinct sets of rewrite rules relate
to query unnesting. The first set removes the explicit column alignment—
the mapping joins—and abridges the duplicate elimination. Based on the
resulting straight-line chain of operators the second set of rules disentangles
independent operator groups.

Before we delve into the heuristics’ details, the following section gives an
overview of the rewrite framework used to optimize the large DAG shaped algebra
plans.

4.1 Peephole Optimization

A holistic query optimization approach does not fit well with the large number of
operators and the plan sharing we are faced with. From the world of compiler con-
struction we therefore adopt a local rewrite technique: peephole optimization [87].
Similar to local inspections of object code, the optimizer takes patterns consisting
of only a few algebraic operators into account.

The peephole optimization is supported by a simple form of plan analysis that
detects a variety of column and operator properties. Based on these properties
interesting operators—matching the conditions of a rewrite rule—are spotted and
become subject to simplification. A property is synthesized in either a single
top-down or a single bottom-up walk of the DAG. As a side effect of the property
inference each plan operator is annotated with with the property information.

The rewrite framework that performs the optimizations is not limited to any
number of rewrite rules or properties. The set of rewrite rules described in this
work is grouped into sensible units—heuristics—and on a more fine-grained level
into rule classes, similar to the rule engine in [99]. Each rule class relies on a
number of plan properties. Here, we make use of 12 different properties, but
additional properties may improve the property inference of existing properties
and provide further information for rewrites.

Property Inference and Rewrite Notation

The rewrites take various properties into account. These properties collect informa-
tion on keys (key), constant columns (const) that store the same value in all rows,
abstract domain relationships (dom), functional dependencies (fd), available as
well as required columns (cols, icols), the use of columns (use), expected selection
values (req), duplicates (set), operator cardinality (empty and card1), and the
number of parent operators (#ref). We present each property in more detail at
its first point of reference (either by a rewrite or another property).

4.1. PEEPHOLE OPTIMIZATION 49

Column Property cols

Tay:b1,..,an:bn <q> cols + {CLl, e 7an}
o (q) cols « q.cols

X (q1,q2), Mpy=b, (q1,G2),

cols « qy.cols U qy.cols
NblA191b2.1/\~“/\blmﬂnb}n (Ql> q2)

d(q) cols < q.cols
Wby, (015 62), \bu,.ovn (01, G2) cols « {b1,... by}
GRPa1101(bl),...,an:on(bn)/bwp (Q) cols « {bgrpa ay, ... ,an}

g, o, cols = {ar,. an}

@a:(bl,...,bn> (q), %:(bl,...,bn)/bgrp (qgav
Yaibr,esbn) (@)5 astor,on) (@), Doy (@)

Dby ,ba,(bs,...bn) (¢) cols « {by,...,b,}

cols « q.cols U {a}

Table 4.1: Bottom-up inference of the column property cols that collects the set
of visible columns.

To keep the rewrite rules as well as the property inference notation compact,
we replace the algebra operators @q.vai; @a:(by....bn) CASTS{Z;, DOCq:(t), and &,
in the following by a generic row-based operator @g.s,,...b,).- These five operators
share their operator characteristics for most properties and rewrites.

Table 4.1 denotes the inference of the column property cols that collects the
emitted columns for each operator. The property is inferred bottom-up. The
left-hand side of Table 4.1 indicates the affected operators and their arguments.
The right-hand side shows the corresponding property inference rule. For example,
for the projection operator 7 the right-hand side reads: “Assign to cols—the
column property cols of the current operator—the set of columns ay, ..., a,”, thus
matching the columns of the projection argument. ¢.cols similarly refers to the
column property of the child operator ¢ and U indicates the set union of two sets
of properties.

All other properties follow the same notation as the column property in
Table 4.1. The following property inference rule, for example, stems from the
derivation of the constant property (Table 4.3):

Tayiby..an:bn (4) const < {(a;,v)| (b;,v) € q.const}

Based on the constant information of operator ¢, the rule performs a lookup
for all (name, value) pairs that match an input column by, ..., b, and binds the
corresponding constant value to v. For each match a new entry (a;,v), where i
corresponds to the respective index of b;, is generated. As this form of notation
heavily relies on pattern matching, it helps us to keep the notation of the inference

50 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

rules compact. Additionally, we share the property inference of multiple operators,
whenever possible (such as operators x, &, and » in Table 4.1).

Some property inference phases make use of additional information on con-
stants (CONST, CONST-VAL), keys (KEY), and cardinality (CARD), whenever the
information is available for literal and database tables.!

Rewrites are described using an inference rule notation where an operator
(or a pair of operators) on the left-hand side is rewritten into a different plan
if all conditions in the premise are fulfilled. The following example shows a
typical rewrite rule where a projection 7 is removed—resulting in the input plan
g—whenever the set of available columns in ¢ is identical to the set of projection
columns {aq,...,a,}:

{ai,...,an} = q.cols

7Ta17~~~7an (q) — q

As for the properties, we make use of a form of pattern matching to keep the
rewrite rules compact. In addition to the set comparison ({...} =...), we use €
and C to check for the existence of one and multiple items in a set, respectively.

4.2 House Cleaning

The first heuristic aims to perform house cleaning. To achieve this effect, the
heuristic prunes plan fragment that yield an empty table (Section 4.2.1), applies
common simplifications (Section 4.2.2), incorporates variants of the well-known
selection and projection pushdown heuristics (Section 4.2.3 and Section 4.2.4),
and detects and eliminates common subplans (Section 4.2.5).

4.2.1 Empty Table Propagation

The first rule class removes plan fragments that evaluate to an empty table. The
roots of these subplans are statically detected by the empty-input property empty
(Table 4.2), which propagates information on empty literal tables up in the plan.
Possible values of empty are the Boolean values ‘true and ‘false.

The following three rewrite rules are capable to remove all possible subplans
that yield an empty table detected by the empty-input property inference. Instead
of replacing all combinations of operators that reference an empty literal table
by an empty literal table, the rewrites analyze only the places where the value of
empty might change and remove the subplans that are guaranteed to not emit
any result row.

q1.empty) q.empty @ € {U,\} @)
Q1 Upy,...b, 42 = Ty, 0,42 q1 ®by,...by, 42 = Tby,....bq1

!The unavailability of this information does not break the property inference phases, but might
lead to less applications of rewrites.

4.2. HOUSE CLEANING 51

Empty-Input Property empty

Tayb,anibn (1) Ob(Q) empty « q.empty

X (q1,92)s Nby—by (q1,G2),

empty < qi.empty V qs.empt
Nb1.191b2.1/\~~-/\b1.n€nbz.n (q17 q2) p y Q1 p y QQ p y

d(q) empty <+ q.empty

Uby,..bn (41, 42) empty < qi.empty A ga.empty
\br .. (415 02) empty < qi.empty

GRPg, 0 (b1),....an0n (bn) /byry () empty « q.empty

empty < ‘true

| empty < ‘false

@a:(bh...,bn) (q>7 %‘Za5<b1 ----- bn)/bgrp (q>7 o
Fastbrrobn) (@5 Baz(on,...bn) (@), o by (@), empty < q.empty
©b1,b2,(b3,...,bn) (q)

Table 4.2: Bottom-up inference of the empty-input property empty that derives
whether the evaluation of an operator produces no rows at runtime.

Ot sbs(bssebn) (D) ™ Vb1 b (b) (R

For the query plan of Query Q)2 (Figure 2.5; page 16), for example, Rewrite 2
removes the top-most union operator together with its right-hand side subplan—
the rewrite effectively prunes the else branch of Query Qs.

4.2.2 Standard Operator Simplification

All simplifications proposed in this section operate on standard operators available
in every relational database system. Because most rewrites require more context
information than currently available, we will interleave the discussion of the
rewrites with the introduction of new properties.

Rewrites 4 and 5 both remove superfluous projection operators that either do
not affect the input ¢ or are superseded by a parent projection.

{ai,...,an} = q.cols

Tat,nan (@) = 4 Tay,....an (Wbl,...,bm (@) = Tay,....an (@)

(®)

The conditions of Rewrites 6 to 10 depend on the constant property const
defined in Table 4.3. The constant property inference collects pairs of columns

52 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

Constant Property const

Tay:by,anbn (4) const < {(a;,v) | (b;,v) € g.const}
o (q) const « q.const U {(b, ‘true)}

X (q1,G2)5 Moy —by (q1,G2),

const < qi.const U qo.const
Mb1.101b2.1 A+ A1 Onba.n <Q1, C]2)

4 (q) const « q.const

Wby, bn (@15 02) const < {(b;,v) | (b;,v) € q1.const,
(b;,v) € go.const}

\br,-obn (415 G2) const « {(bi,v) [(b;,v) € q1.const}

GRPal501(bl)7---7anzon(bn)/bg7'p (q> ConSt = {(bgrp7 U) ’ (bgrp7 U) E qCOHSt} U
{(ai,v) | (b;,v) € q.const,
o; € {AVG, MAX, MIN, THE}}

AR const « @

[, const « {(a;, CONST-VAL(q;)) |i € {1,...,n},
CONST(a;) }

@geval () const < q.const U {(a,val)}

@ai(by,..bn) (Q) const « q.const

Da: (b ,bs) (q) const < q.const U

{(a,v1 A vg) | (by,v1) € q.const,
(ba,v9) € q.const}
Da:(by,b2) (0) const « q.const U
{(a,v1 V)| (by,v1) € g.const,
(ba, v2) € q.const}
Oa:py () const « q.const U
{(a,—v) | (b,v) € q.const}
@Bt resbr) by (@)
a:(by,...,bn) (), Ma:(by,....bn) (q), const « q.const

a,v

aiib) (@) @by bty (@)

M, @ 3l

Table 4.3: Bottom-up inference of the constant property const that derives the
set of constant columns together with their corresponding value.

4.2. HOUSE CLEANING 53

together with their corresponding constant values. New constant pairs are in-
troduced for e operators and constant columns in base tables. The constant
information is propagated to the downstream plan operators.

The inference of const, for example, propagates constants in a union U, if two
matching columns share the same constant value, and maintains the constant
information of some aggregates for grouping operators. For the Boolean operators
®, @, and © the output values are calculated based on their constant input
information. For the operators summarized by @, the result values are not
precomputed, to avoid inconsistent changes: The rounding precision of operations
on floating numbers, for example, might differ between the optimizer and the
back-end database system.

Based on the constant property const, Rewrites 6 and 8 replace a selection
operator. Note how the successful application of Rewrite 6 enables Rewrites 1
to 3 to further simplify the query plan.

(b, ‘false) € const {c1,...,¢n} = cols (©) {(a,v), (b,v)} C const .

oy (q) — [@ Fa=b G2 = q1 X @2
(b, ‘true) € const const # &)
op(q) = q
{(b1,v1),...,(bn,vn)} C g.const {o1,...,0n} C {AVG, MIN, MAX, THE}

GRPa1:01(bl),...,an:on(bn)/bgrp (q) -0 (ﬂbgrp (q)) X ()

The right-hand side of Rewrite 9 introduces a projection based on the argument
cols \ const, indicating the set of non-constant columns. In the remainder of this
work, we assume that N, U, and \ are able to correctly intersect, union, and
subtract arguments based on their column names only: The argument cols\ const,
for example, matches a column ¢; € cols with a pair (c1,v1) € const.

Rewrite 10 considers, in addition to the well-known aggregates AVG, MAX, and
MIN, the aggregate THE available, for example, in Haskell [73]. THE returns an
arbitrary element of a non-empty list of equal elements.

The key property inference (Tables 4.4 and 4.5) collects the sets of columns
forming candidate keys. The bottom-up DAG traversal introduces single-column
keys at the base tables based on the cardinality? and the existing key information
(KEY(a)). Operators x, %, x, 0, #, and o furthermore introduce keys consisting

of multiple columns.
Based on the key property, Rewrites 11 and 12 throw away superfluous ¢ and
GRP operators.

{oup} € key {01, 00} £ {COUNT}
GRPa1:o1(b1),...,an:on(bn)/bgrp (Q) 7 Mbgrp,a1:b1,eeyn:bn (Q)

k € q.key
5(a) = q

(11) (12)

2Table 4.6 shows the inference of cardl. cardl records if an operator produces exactly one row.

o4 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

Key Property key

Ty :bysanbn (4) key « {{a;|b; € k} |k € q.key, k C{by,...,b,}}
o (q) key « q.key
X (q1, q2) key < {k|k € q.key, ga.cardl } U

{k|k € q.key,q1.cardl } U
{k1 U ka| k1 € qu.key, ko € qo.key}

by =by (q1, G2) key < {k|k € q.key, go.cardl } U
{k|k € qa.key, q.cardl } U
{k|k € q.-key, {bs} € go-key}U
{k|k € g2.key,{b1} € q1.key}U
{(Fr\ {b1}) Uka [{b2} € g2.key,
k1 € q1.key,
ky € qo.key} U
{k1 U (k2 \ {b2}) [{b1} € q1-key,
k’l € ql.key,
ko € qo.key} U
{k1 U ko | k1 € q1.key, ko € go.key}
X by 101b9y A Ab1nBnban (G1,G2) key < {k|k € q1.key, qa.cardl } U
{k|k € qa.key, q1.cardl } U
{k|k € q1.key,i € {1,...,n},
0; € {=},{b2.i} € @2.hey}U
{k|k € qu.key,i € {1,...,n},
0; € {=},{bri} € q.key}U
{k1 U ko | k1 € q1.key, ko € go.key}
d(q) key < q.key U {cols}
..... b (q1,42) key < {{b:} | {b:} € q1.key, {b:} € qa.key,
(bz : dl) S ql.dom,
(b; : d2) € qo.dom,
disjointDom (dy, dz)}
\oy.bn (q1,G2) key < {k|k € q1.key,k C {by,...,b,}}
GRPay:0,(by)..anion(bn) /bgry (1) K€y = {{bgrp}}

i e key « {{a}|a € {ay,...,a,}, cardl V KEY (a)}

Table 4.4: Bottom-up inference of the key property key that derives the sets of
key candidate columns.

4.2. HOUSE CLEANING 95

Key Property key (continued)

@a:(br,..bn) (7) key <« q.key U {{a}|q.cardl}

#a(br,bn) /bgrp () key « q.key U {{a}|q.card1} U {{a, by }}

#a:(bl ,,,,, bn) (Q) k@y = qk€y U {{(I}}

St (), key ey U {{a} |.cardt} U

as(by,..bn) (4) {{a} U (k\{b1,...,b.}) | k € q.key,
kn{by,...,b,} # 2}

ﬂi’fb> (9) key < {{a}|q.cardl} U

{{a} U k|k € q.key} U
{{a} U (E\A{0}) |k € q.-key, kN {b} # 2,
« € {attribute, child,
self}} U
{k|k € q.key,a € {self}}

Pb1,b2,(bs,...bn) (q) key « q.key

Table 4.5: Bottom-up inference of the key property key that derives the sets of
key candidate columns.

Single-Row Property card1

Tayib,..anbn (4) cardl « q.cardl

oy (q) cardl « ‘false

X (q1, q2) cardl « qy.cardl A go.cardl
Xy =by (q15G2)5 M by101bgaA-AbynOnban (15 G2) cardl « “false

4 (q) cardl « q.cardl

cardl « ‘false

- cardl < CARD =1
ai ... anname ‘
B, cardl « “Jalse

cardl « q.cardl

) cardl « ‘false
Pb1,b2, (b3, sbn) (q) cardl « q.cardl

.....

Table 4.6: Bottom-up inference of the single-row property card! that derives
whether the evaluation of an operator produces exactly one row at runtime.

56 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

The more elaborate key inference rules for equi-joins (<, x with §; € {=})
and rank operators (9) follow from functional dependencies. [113, Section 5.2.1]
gives a more detailed account of the equi-join key inference. The U operator
propagates key columns, whenever its input columns store disjoint values.?> The
row numbering operator # provides different keys, based on the existence of its
grouping criterion bgy.,: Either the newly generated column a on its own or the
combination of the columns {a, by, } form a new key. The key property inference
of 1 takes into account XML specific knowledge about the semantics of axis a.

The single-row property card! (Table 4.6) is the second property—in addition
to property empty—that enables decisions based on the cardinality of literal tables
and their downstream plans. The single-row property is extensively used in the
key property inference and plays an important role in the rewrites described in
Section 4.3. cardl cannot be guaranteed for U and operators performing variants
of selections (o, ,x, and #1). For most other operators however the cardinality
stays the same and card! is propagated.

For the query plan of Query Q3 (Figure 2.9; page 23) the single-row property
is used to infer the keyness of column res in operator «J. The key information is
then propagated to the downstream operators where it enables the application of
Rewrite 11 at operator 9.

The domain property dom (Table 4.7) creates abstract active domains and
establishes a relationship between them for all columns. Two abstract domains d;
and do can be compared for their subdomain relationship or domain disjointness
(subDom (dy,ds) or disjointDom (dy,dy)). All domains are a subdomain of the
domain universe . An entry in dom either consists of the relationship d; = do
between the right-hand side (super-)domain dy and a domain identifier d; or the
disjointness relationship d || do. D(c) describes a domain identifier taking column
c and the current operator into account.

Because of the abstract nature of the domain property—the property is
independent of any values—only columns generated by the same operator may be
in a subdomain or disjoint domain relationship. In the scope of loop lifted algebra
plans with operator sharing, this abstract domain property still plays an import
role.

The bottom-up domain property inference shown in Table 4.7 introduces new
subdomain relationships for the operators, potentially filtering out some rows.
The inference introduces new domains—being direct subdomains of &/—for base
tables and operators that introduce new columns and preserves the input domains,
if the value distribution does not change.

For an equi-join operator & the domain property inference aligns the domain
of the two join columns. A distinct operator ¢ removes duplicates only and thus
does not change the domains. The union operator U builds new subdomains based

3Peek forward to Table 4.7 for details on the domain property dom inference.

4.2. HOUSE CLEANING

57

Domain Property dom

Tay:by,..,an:bn (q>
oy (q)
X (C]h Q2)

My =by (q1,G2)

bl b1.1601b2.1A-Ab1.,,0n b2y (qIJ QQ)

5)) [A1]...[0n

@a:(bl bn) (Q)a
f(z:(bl bn>/bg7‘p (q)7
a:(b1 bn) <q>7 a:<b1 7777 bn) (q)

dom « {(a;,d) | (b;,d) € g.dom}

dom — {(c,D(e) € d)|(e,d) € g.dom}
dom « {(c,D(c) & d)|(c,d) € ¢.dom} U
{(eD(e) €)| (c,d) € . dom}
dom « {(b1, D(by) < U (dy,da)),
(b2, D(by) < U(dy, ds))
| (b1,dy) € q1.dom, (bg,d2) € go.dom} U
{(¢,D(c) & d)| (e ,d) € qi1.dom,c # b1} U
{(c.D(c) — d)|(c,d) € qa.dom,c # by}
dom « {(c,D(c) & d)|(c,d) € ¢.dom} U
{(&;D(e) € d)| (¢, d) € . dom}

.d
d) | (bz, d) € q;.dom}

E
b1) <= d) | (b1, d) € qi.dom} U
{ b1) || d) | (b1, d) € go-dom}
dom « {(bgrp,d) | (byrp,d) € g.dom} U
{(ai, D(a;) < d)
| (b, d) € q.dom,
o; € {MAX, MIN, THE} } U
{(a;, D(a;) < U)
lie{l,...,n},
o; ¢ {MAX, MIN, THE} }
dom « {(a;, D(a;) < U)|i € {1,...,n}}

—~
=

dom « q.dom U {(a : D(a) < U)}

dom « {(¢,D(c) < d)| (¢,d) € g.dom} U
{(a:D(a) & U)}

dom « q.dom

Table 4.7: Bottom-up inference of the domain property dom that derives the
domain relationship of its columns.

58 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

on lca ()—the lowest common ancestor domain of the input domains. Disjoint
domains are introduced only for difference operators operating on a single column
¢1 \b g2 as we can guarantee that the resulting domain is disjoint of the domain in
qz-

If property dom infers that the active domain on the left-hand side of an
one-column difference operator is already a subdomain of the right-hand side,
Rewrite 13 can replace the difference by an empty table:

(b,d1) € q1.dom (b,d2) € g2.dom subDom(dy, d2)
a1 \b g2 —

(13)

Interaction between the key and domain properties. Most equi-join op-
erators g Mp,—p, g2 introduced in the loop lifted compilation scheme compare
columns that originate in the same (numbering) operator. Based on the key
information {by} € go.key, we know that an equi-join will match every row in
input ¢; with at most one row in ¢s. For every possible value of b; in ¢, we can
furthermore derive, based on the domain information (by,d;) € gi.dom A (bs, ds) €
ga-dom A subDom (dy, ds), that go provides at least one matching value in column
bs. The combination of key and domain property information ensures that every
row in ¢; finds exactly one match in go. This observation is the most important
aspect of the domain property inference, as it paves the ways for many important
rewrites in the following sections.

The functional dependency property fd (Table 4.8) performs a bottom-up
traversal of the DAG to collect a set of functional dependencies (a — b), indicating
that column b functionally depends on column a. The property relies heavily on
the key property to introduce new functional dependencies. fd is especially useful
to describe the relationship between the input and result columns of the ranking
operators ¥ and ¥, and operator .

Rewrite 14 uses the functional dependency property to turn a grouping operator
into a distinct operator, if all aggregate columns by, ..., b, functionally depend
on the grouping column b,, (and the aggregates do not depend on the input
cardinality):

{(bgrp = b1), ..., (bgrp = bn)} C q.fd {01,...,0n} C {MIN, MAX, AVG, THE}

GRPa1:01(b1),...,an:on(bn)/bgrp (Q) -9 (ﬂbgrp,al:bl,...,an:bn (Q))

(14)

4.2.3 An Alternative to Selection Pushdown

Selection pushdown as described in database textbooks [38,112] takes an arbitrarily
complex selection, merges parts of it with other selections, cross products, or joins,
and pushes the remaining predicates down through unaffected projections, cross
products, and joins.

4.2. HOUSE CLEANING 29

Functional Dependency Property fd

Tayby,anbn (4) fd < {(a;i = a;)| (b = b;) € ¢.fd}
a3 (q) fd < q.fd
X (q1,92) fd <« q1.fd U qo.fd U
{(k = ¢)|{k} € key,c € cols, k # c}
by =by (41, 02) Jd < q.fd U ga.fd U

{(k = ¢)|{k} € key,c € cols,k # c} U
{(bg — Cl) | (bl — 01) € Chfd} U
{(bl — CQ) | (b2 — CQ) € QQfd} U
{(k = ¢)|{b1} € q1.key,
{k} € qukey, k # by,
(bg — C) € QQfd} U
{(k = ¢) | {b2} € qo.key,
{k} € qa.key, k # by,
(by = ¢) € q1.fd}
by 101631 AAbt nbnban (Q15G2) fd < qu.fd U ga.fd U
{(k = ¢)|{k} € key,c € cols, k # c}

5 (q) fd < q.fd
WUay,..bn (1, 02) fd < {(k — b)) [{k} € key,k # b} U
{(bi — o) | (0,v) € const,o # b;}

(
by, (01, 02) fd = {(b; — b;) | (bi — b;) € qu.fd}
GRPay:01(b1),....ani0n (bn)/borp (@) fd < {(bgp = a;)|i €{L,...,n}}
[e o fd — {(k — ¢)|{k} € key,c € cols,k # c}U
(

{(c = 0) | (0,v) € const,c € cols,o # c}

@g:vat (q) fd « {(c = a)|c€ q.cols}
@a: (b, bn) (Q) fd « q.fd U
{(k = ¢)|{k} € key,c € cols, k # c} U

|
{(c=a)|

(c—b)€qfd,...,

(c —by,) € q.fd}
Fai(br,erbn) fogry () Jd < q.fd
#a:(b1,...bn) (Q) fd < q.fd U {(a = ¢)|c € q.cols}
Cactbrobn) (@) Cartor, oy (@) fd « qfd U {(a—b;)|ie{l,...,n}}
fﬂg:’(vm (q) Jd < q.fd U

{(k = ¢)|{k} € key,c € cols,k # ¢} U
{(a = b)|a € {attribute, child, self}}

Pb1,b2, (b3, ,bn) (q) fd < q.fd

.....

Table 4.8: Bottom-up inference of the functional dependency property fd that
derives the set of functional dependencies.

60 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

Reference Counting Property #ref

Tay:b1,...an:bn (Q)7 Op (q) q.#’I’Ef ~ Q-#ref + 1
X Xp.

<q17QZ)7 My =by (Q1aq2)7 Q1-#T€f - ql_#ref +1
Mbl‘19162.1/\---Ab1,n9nb2‘n <QI7 q2)
X Xp.

<QI>Q2>7 Mby=by (Q17QQ)7 QQ.#’Fef - QQ-#Tef 41
Nb14191()2.1/\“'/\&)1.”9”[22% <q17 q2)
d (q) q-#ref < qfref +1
Wby, (01562), \bu,on (01, G2) q-#ref < qufFref +1
Wby, (415G2)5 \ba,...bn (415 G2) qo-F#ref « qu.Aref +1
gRPal101(bl),...,anlon(é;n)/bg'rp (Q), ®a1<b1,--.,bn> (q)7
#a:(b11.0.50) bary (D)5 Casor,bn) (@), q.#ref « q#ref +1

a<b17,bn> (Q)7 [ﬂ;«?}b) (Q)7 Qb17b27(b377bn> (Q>

Table 4.9: Top-down inference of the reference counting property #ref that derives
the number of parent operators. (#ref is seeded with 0.)

In our algebra, a selection with a single predicate consists of at least two
operators: a selection o and a comparison (e.g., ©). Although this design decision
prohibits a standard approach to selection pushdown, it fits our compositional
translation in which selections and comparisons are generated by separate compi-
lation rules. This separation of concerns furthermore simplifies the optimization
process. Property inference and rewrite rules need to cope only with simple
operators—as opposed to operators whose arguments themselves consist of com-
plex expression trees. We support an alternative variant of selection pushdown
by means of a property inference phase that traces selected columns together
with their expected Boolean value (see property req below) in a top-down DAG
traversal.

A top-down property inference phase seeds the property value for every op-
erator. A second run then combines, for every operator ¢, the inferred property
information of its parent operators (gp,,-..,q,,). The traversal of ¢’s children
thus proceeds only after all parents gy, ..., gy, pushed down their properties to g.

The reference counting property #ref (Table 4.9) collects the number of
parent operators for each operator ¢, based on which all other top-down inferred
properties can easily detect, when an operator is visited the last time during a
top-down property inference. For all operators #ref is seeded with 0 and—as
opposed to the other top-down properties—traverses the children of an operator
the first time the operator is reached.

The required value property req (Table 4.10) collects the selection columns and

4.2. HOUSE CLEANING 61

Required Value Property req

Ta1ba, b (4) q.req < {(bi,v)[(a; : v) € req}
o (q) qg.req < {(b,‘true)} U {(c,v)|(c,v) € req,c # b}

X (q1,92)s Mpy—by (q1,G2),

.req < {(c,v) | (c,v) € req,c € qy.cols
Mb1.101b2.1/\---/\b1‘n0nb2.n <QI> QQ) QI q {<) | () q QI }

X (q1,92)s Mpy—by (G1,2),

.req <+ {(c,v) | (c,v) € req,c € gs.cols
Nbl.191bQ.1/\---/\b14n9nb2.n <Q17 QZ) q2 q {<) | () q Q2 }

3 (q) g.req <« req

WUy, b (@15 2) q1-req < {(bi,v) | (bi,v) € req}
WUpy,...bn (q1,2) qa-req < { (b, v) | (bi,v) € req}

by, (01, 2) qu-req < {(bi,v) | (bi,v) € req}
\by,...bn (G1,G2) Ga-req <)

GRPyy 0 (b1),ocsanion (bn) fborp (1) G-T€G < 0

@a:(by,....bn) (7) qg.req < {(c,v)|(c,v) € req,c # a}
B (b1) () greq <« {(c,v) | (¢, v) € reg, ¢ # a} U

{(b1, ‘true), (by, ‘true) | (a, ‘true) € req}

Das(br ba) (4) g-req < {(c,v) [(¢, v) € reg,c # a} U
{(b1, ‘false), (by, ‘false) | (a, ‘false) € req}

@a:<b) (Q> q.req < {(Ca U) | (C, U) € req,c 7é (I} U
_ @ {(b,~v) | (a,v) € req}
#a:(by,....bn) /bgrp \)5

> S req < ()

a:(b1 bn) (q) e

Fas(br,bn) (Q), ﬂj;}’w (q) qg.req < {(c,v)|(c,v) € req,c # a}
Qb17b2,<b3 bn> (q) q.req < @

Table 4.10: Top-down inference of the required value property req that infers
selection columns and their expected Boolean value. (gq.req is inferred only for
q.#ref = 1. req is seeded with 0.)

62 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

their expected Boolean value and pushes this information down into the subplans.
To avoid inconsistent requirements, the property limits, based on the reference
counting property, the propagation of req to the operators with a single parent
reference.

For each selection operator o, the inference of req introduces new entry
consisting of the column and its corresponding expected Boolean value. The
operators @®, @, and © propagate the information to additional columns. Operators
\, GRP, #, and © reset the required value property, to prohibit rewrites that may
incorrectly change the cardinality of an input. All other operators propagate the
set of required value pairs to their children.

Rewrites 15 and 16 use property req to detect selection criteria that would
reject all incoming rows. In consequence, the operators are replaced by empty
literal tables—which, in turn, triggers Rewrites 1 to 3.

(b, ‘false) € req {c1,...,en} = cols

C1 Cn, (15)

oy (q) —

(a,—wal) € req {c1,...,en} = cols
Qq:val (Q) —

(16)

(a, ‘true) € req
®a:<b1,b2> (Q) — Qq:‘true (Jbl (0'1)2 (q)))

(17)

Although this form of selection pushdown seems rather limited, it is an
important part of the house cleaning heuristic. Based on these rewrites, for
example, XQUERY’s ubiquitous ezistential semantics are simplified in Pathfinder.
A textbook-style selection pushdown process is orthogonal to this approach and
may be additionally performed by the back-end.

4.2.4 An Alternative to Projection Pushdown

The required columns property icols (Table 4.11) and the accompanying rewrite
rules (Rewrites 18 to 28) have an effect similar to a standard technique in relational
query processors: projection pushdown [72]. In a top-down DAG traversal, the
required columns property (icols) infers those columns that are strictly required
to evaluate an operator: The compositional translation may have introduced
operators that yield columns that remain unreferenced in the downstream plan.
In a second traversal, Rewrites 18 to 28 prune unreferenced columns and remove
any unnecessary operator.

The required column property is seeded with the empty set (). Any operator
inherits the required columns of its parents and extends the set with all columns
that are necessary to compute the operator’s result. For the operators GRP, @, #,

4Pathfinder uses an advanced variant of the required value property that additionally copes with
the correct combination of (possibly conflicting) inferred properties.

4.2. HOUSE CLEANING 63

Required Columns Property icols

Ty byoosanibn (4) q.icols « q.icols U
{bi|a; € (icols N {ay,...,an})}

oy (q) q.icols « q.icols U icols U {b}

X (q1,q2) q1-icols « qy.icols U (icols N qy.cols)

x (q1,q2) qa-icols <« qa.icols U (icols N qg.cols)

X by —by (41, G2) q1-icols « qy.icols U (icols N qy.cols) U {b1}

Kby =by (G15G2) qa.1cols < ga.icols U (icols N ga.cols) U {ba}

X by 101bg1 A AbLnOnban (1,G2) q1-ic0ls < qq.icols U (icols N qy.cols) U
{b11,...,b1.0}

Xy 101bg1 A AbLnOnban (1,G2) Go-ic0ls < go.icols U (icols N qy.cols) U
{bo1,...,ban}

d(q) q.icols « q.icols U q.cols

Wby ,...bn (G015 G2) qi1.icols « qq.icols U icols

Wpy..m (015 G2) go.icols « qo.icols U icols

\ov,bn (€1, G2) q1.icols « qy.icols U {by,..., by}

) ga-icols « qo.icols U {by,..., by}

GRP, 0, (b1),....anion (bn) /by (@) q-iCOls < q.icols U
{bi|a; € (icols N {ay,...,an})} U

{bgrp }

@ai(by,...bn) (7) q.icols « q.icols U (icols \ {a}) U
{b1,..., b, | {a} Nicols ={a}}
#a:br,.. b fbary (@) q.icols « q.icols U (icols \ {a}) U

{b1,..., b,]| {a} Nicols = {a}} U
{bgrp | {a} Nicols = {a}}

Casbrbn) (@)s Farior,pn) (@) qeicols « q.icols U (icols \ {a}) U
{b1,...,b,| {a} Nicols = {a}}

Doy (@) q.icols « q.icols U (icols \ {a}) U {b}
© by b (B o) (q) q.icols « q.icols U {by,...,b,}

,,,,,

Table 4.11: Top-down inference of the required column property icols that infers
the set of required input columns. (icols is seeded with ().)

64 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

¥, and © the propagation of the icols property information depends on the use of
their result column a: The argument columns are marked only if a is a required
input column ({a} Nicols = {a}).

Rewrites 18 to 28 are, in contrast to the previous rewrite rules, interconnected.
A rewrite results in a correct query plan only if all applicable icols-specific rewrites
in the downstream plan have been performed first. Otherwise, a rewrite might
lead to a plan where parent operators refer to already pruned columns.

icols # & {a1,...,an} \ icols # @ ga.cardl ga.icols = @

(18) (19)
Tay:by,...,an:by (q) — W{a1:b1,...7an:bn}ﬂicols(Q) q1 X q2 — q1
{b} = ga.icols {c1,...,¢en} = cols \ icols
(b,d1) € q1.dom (b,d2) € g2.dom {a1,...,an} C icols
subDom(dy, d2) {b} € q2.key (20) {(a1 = c1)y...,(an = cn)} C fd(21)
@ Xpq2 — Q1 6(aq) = 0 (Ticots (q))
const \ icols # & (22) icols # & {b1,...,b,} \ icols # @ (23)
6((]) —9 (ﬂ-cols\(const\icols) (Q)) q1 Uby,...b, @2 — Q1 U{bl,...,bn}ﬂicols q2
{a1,...,an} Nicols = &

(24)
GRPal:01(bl),‘..,an:on(bn)/bgrp (Q) — 5(7rbgrp (Q))

icols # & {a1,...,ap} \ icols # @

(25)
GRPa1:01(b1)7~--7an10n(bn)/bgrp (q> - GRP{‘H:OI(bl)w:an5°n(bn)}mwl$/bm (q)
icols # & {a1,...,an} \ icols # @ {c1,...,cm} = icols
(26)
) —
icols = @ n>1 a ¢ icols ®c{®,#,0,0
e 2f 0255 5
i e ®a:..(9) = ¢

Rewrite 18 prunes projection lists. Note how the right-hand side chooses a
compact notation (N)—as mentioned in the discussion of Rewrite 9 on page 53—to
express an intersection of the output column names that ignores the input column
names during the matching.

Rewrite 19 replaces a Cartesian product by its first child ¢, if the second child
@2 neither changes the cardinality of the result, nor adds required columns to it.
An analogous rewrite that swaps the roles of ¢; and g, exists for Rewrite 19 (and
many others). Here, we omit these straightforward variants as they provide no
additional insight.’

Rewrite 20 trades an equi-join for its child gs, if no column of ¢, is required
in the downstream plan and, for each row in ¢, there is exactly one match in ¢s.

5In Pathfinder, both the rewrite and its dual variant are implemented.

4.2. HOUSE CLEANING 65

The check on icols ensures the former condition, while the interaction between
keys and domains, as discussed on page 58, guarantees the latter.

Based on functional dependencies, Rewrite 21 prunes unreferenced columns
that functionally depend on a required column. Similarly, Rewrite 22 makes use
of the constant property. Rewrites 23 to 27 all prune unreferenced columns.

Rewrite 28 removes operators, if their result column is not referenced in
the downstream plan. The rewrite plays an important role with respect to the
minimization of order constraints. Whenever order is not required, for example,
because of the subsequent application of aggregates, XPath location steps, or
XQUERY’s fn:unordered function, the position information of the subplan is
ignored, which leads to the removal of numbering operators that implement order
maintenance [61].

Performing projection pushdown. Figure 4.1(a) shows the query plan of
Query Q3 annotated with the required column property.® At various places
(annotations @-@) operators introduce unreferenced columns.

Rewrite 28 removes the position maintenance at @ and @), Rewrite 18 removes
the unreferenced pos column at @), and Rewrite 28 again prunes the last superfluous
operator at @. Figure 4.1(b) shows the result of the rewrite process. Because
of the first round of rewrites, the cols information at annotation @) changed.
Subsequently, Rewrite 4, which prunes the projection operator above @), is
triggered.

After the simplification, two adjacent projection operators still exist at annota-
tion @. While they may be merged by a more advanced variant of Rewrite 5, the
common subplan elimination phase described in the next section removes most
projections as a side effect of detecting common subplans.

4.2.5 Common Subplan Elimination

Although the loop lifted compilation shares plan fragments whenever possible,
the query text often contains redundant information. In the XQUERY benchmark
XMark, for example, most queries perform a subset of their path steps multiple
times. Because of its materialization strategy, MonetDB/XQuery can exploit
additional sharing—most probably, this applies to other database systems as well.

Here, we build on the ideas of global common subexpression elimination in
compiler construction [30] and provide a global simplification—common subplan
elimination—that is able to detect identical subplans. The common subplan
elimination replaces all duplicate subplans by a reference to the initial matching
subplan root—that is, a DAG edge is introduced.

Figure 4.2 and Table 4.12 describe a common subplan elimination algorithm
cse. The algorithm ignores column names and thus—as a side effect—provides new

SEvery operator has its own icols property information attached. We, however, summarized
adjacent equivalent properties to increase the readability.

66

icols
icols

icols

icols

icols

icols

icols

icols

icols

icols

icols
icols

icols

icols

CHAPTER 4. LOGICAL QUERY OPTIMIZATION

iter,pos,
(iteml,item2>

T

Tliter:outer,pos:pos

@ POS et (posout) pos)

iter=inner

: {iter,pos

itemy,itema} I new-it€M1, itemo

: {outer,pos,, ..,
itemy,itema}

X

: {iter,pos,itemy ,itema }

AN

icols: {outer,pos
pos,
itemy,itema}

Niter
\

@pos:1 Titer,itema:item;

. . out?
: {iter,pos,item; }

:{iter, | N\icols: {iter,itemy}
|tem1} N) @pos;l - -
u ol outer:iter,
7Titer:inner, h T ‘ . inner,
item1:posabs iter:inner,itemy POS ¢ :POS
:{inner,iter 7. . icols: {outer,inner
{ os o : #mner:(lter pos) { ’ ’
p a_bs7 ’ posout}
pos,item; } \

. #pos,y,:(pos) iter
: {iter,pos s, |
pos,item; }
pos:(iteml)

: {iter,pos,item; } 3 \
U Titer,itemy
: {iter,itemy } : ‘
pos:(item1>
Tliter,itemy:res
:{iter,res} ‘
o . [ﬂdescendannelement(op)
res:itemy
: {iter,itemy } ‘
. Tliter,pos,itemy :res
: {iter,res} : ‘
B DOCres:item1
: {iter,item; } ‘
@poszl
@item;:"algebra.xml"
iter} 1 ‘

iter

|

(a) Query plan annotated with icols property.

™

iter,pos,
(itemy ,itema)

T

Tliter:outer,pos:pos

@ POSyew! <p°sout ,pOS>

new-itemi,itemo

Miter=inner
e
N iter
/
@pos:1 . \
Tliter,itemo:itemy
7'(' .
| ‘ outer:iter,

iter:inner, inner,

item1:pos ., Tliter:inner,item;
#inner:<iter,pos>
|
#posabs :(pos) /iter

pos:(item1>

|

Tliter,itemy:res

descendant,element (op)
res:itemq

|

Tliter,itemy:res

DOCres:item1

|

@item;:"algebra.xml"

iter

(b) Simplified query plan.

pOS,,,,;:POS

|

Figure 4.1: The effect of icols-based projection pushdown: The query plan
encoding Query ()3 with icols property annotations in (a) is rewritten into the
query plan in (b) by applying Rewrite 28 at places @, @), @ and Rewrite 18 at

®.

4.2. HOUSE CLEANING
1 cse(®)
2 (op-list, op, proj) = traverse(L, ®)
s | return op (extract the new ¢ operator)
1+ traverse (op-list, ®) (traverse the subplan of ®)
5 if ® has two children q; and q,
6 (op-list’, opy, proj,) = traverse (op-list, q;)
7 (op-list”, op,, proj,) = traverse (op-list’, q5)
8 else if ® has one child q
0 L (op-list”, op, proj) = traverse (op-list, q)
10 else
1 | op-list” = op-list
12 (®, ®cse, Tese) € Table 4.12 (look up ®.se and Tese)
13| return ref (op-list”, ®cse, Tese) (collect the correct reference of ®)
14 ref (op-list, ®, proj) (traverse op-list and find a match for ®)
15 if op-list is L (no matches found)
16 for each *; in ® (assign new column names to ® and proj)

17

18

19

20

21

22

23

24

25

26

27

28

29

30

generate new column name c;
replace *; in ® by ¢;
replace *; in proj by c;

| return ((®, 1), ®, proj) (use ® as new representative)
else
(op, op-list’) = op-list (split up op-list)
if op matches ®
for each *; in ® (adjust proj)

find corresponding column ¢; in op
replace *; in proj by c;

| return (op-list, op, proj) (apply cse — reuse operator op)

else (no match — traverse the remainder of the list)

(op-list”, ®’, proj’) = ref (op-list’, ®, proj)

return ((op, op-list”), &, proj’)

Figure 4.2: Common subplan elimination algorithm cse.

67

68 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

® ®cse Tese

Tar:byonbn op [{ai:b1,. .., an: by} proj

b O b (OP) proj

X Op; X Opy proj; U proj,

Xy =by OP1 X by Jproj, =[b2] proj, OP2 proj; U projp

X 101ba 1 AN OP1 " [y 4 Tyroj, 01 [b2-1Tprojy A--A OP2 PFOJ1 U Projp

b1 Onb2n [b1-Jprod, O [62-n Jprois

0 6 (T [cols]e; (OP)) proj

Wby, b (7r[[*1 b1yt b Jorey (op;)) W {b1:*1,...,bnixn}
(T Lr2b1 1 b prajy (OP2))

\by....bn (W[[*l b1 b Jpro (op1)) \ {by:%1,...,bpi%p}
(W[[*l b1 e % b Jprogy (ops))

GRPy o) (b),... GRP[y, 0, (by),.., (op) {a1:*1,...,an %n}

an:on (bn)/bgrp #n:0n (bn)/bgrpJproj

{ar:ix1, ..., an %y}

{ap:*1,...,an:%n}
EaNPRE {ag:%1,...,an %}

@ a: (b1, b) @ [1:(b11.vesb) Tpro; (OP) {a:x1} U proj

Fai(b1ebn) fbarp OP) Fs1:(b1, b} /bgrplores (OP) {a:*1} U proj

Sailbrbn) F1:(b1 b oreg (OP) {a:#1} U proj

Fa:(br,embn) Ie1:(b1,eebn) e (OP) {a:*1} U proj

oty [ﬂﬁl’f:(bﬂ]m (op) {a:%1} U proj

Ob1,bs, (b (@) Oy bbb Tores (OP) -

Table 4.12: Look-up table used by function traverse in Figure 4.2 that maps
the input operators ® to new operators ®.s and their corresponding projection
lists 7.s.. Oop and proj in the above table refer to the local variables in function
traverse. ®. and 7. introduce wildcard column names 1, ..., %, and apply
largs]pro; to rename the arguments args based on the projection list proj.

4.2. HOUSE CLEANING 69

column names and removes most projection operators. Algorithm cse traverses
the given algebra plan (function traverse). For every operator, traverse returns
a subplan without duplicate operators (op) and a projection list mapping the
newly assigned column names to the original ones (proj).

The duplicate subplan removal is performed by function ref. The function
consumes a duplicate-free list of operators (op-list), an operator blueprint (®.s.),
and its corresponding projection list (7.5). The input operator and the projection
list are generated by a lookup in Table 4.12. For each original operator ®, an
equivalent representation that consumes the (now) distinct children operators is
build.

To correctly cope with column names, Table 4.12 introduces the notion of
largs] pro; that renames the input columns in args based on the projection list
proj. The renaming of the following projection list [{a:b, C}]]{a;iteml,b:itemg,c:itemg}7
for example, matches columns b and c, thus leading to {a:items, c:items}.

To express the independence of column names,

Titerw’pos ., Table 4.12 furthermore introduces wildcard column
(posg.itemo) pnames *q,...,%, for new output column names.
Ppos;y:(pos; 1 ,posg) The wildcard column names *; in ®.,, and 7.,
| are linked in terms of their index i. Because of the

/N iter7 wildcard column names, the resulting operators
Siter, ®se are merely blueprints that ease the matching

/ \ Titers, process of function ref in Figure 4.2.
Qposy:] ﬂ:t:::}:item 'ptz:tz';z;; ; Function ref _recursively traverses the distinct
~ | operator list op-list (Lines 29-30) and generates

Fivern: fters posg) a new distinct operator from ®, if no matching
| operator was found (Lines 16-20). Line 23 of Fig-

;posﬁ: (poss) iter ure 4.2 checks, if an already existing operator op
| has the same children and characteristics as the
Uposs:(itema) blueprint operator ®. In this comparison the wild-

\ card column names %; are ignored. In case of a
ndescendant,element (op) gyccessful match, the wildcard names in the pro-

itemy:item
T ’ jection list proj are replaced by the corresponding

DOCitems:item column names (Lines 24-26) and a reference to

| operator op is returned.
@items:"algebra. xml" Figure 4.3 shows the result of applying com-
‘ mon subplan elimination to the query plan of Fig-
itery ure 4.1(b). The only visible effects are the removal
of four projection operators and the renaming of

the column names. Naming conflicts at the equi-
join operators led to the introduction of two ad-
ditional projections, which provide new column

Figure 4.3: Query ()3 after
common subplan elimination.

(Input to function cse was the ——

query plan in Figure 4.1(b).) The algorithm in Figure 4.2 and Table 4.12

70 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

regards the input plan as a tree. Treating the
input query plan as a DAG significantly reduces the optimization time of the
common subplan elimination, yet increases the complexity of the algorithm. The
algorithm furthermore ignores name collisions for the binary operators x, %, and
x. Whenever both children operators refer to the same column names a renaming
projection has to be introduced.

The current algorithm can detect structurally equivalent plans only. Two
adjacent operators with identical characteristics, for example, performing the
same comparison, are not combined, however. Although such equivalences are
detected by most SQL database back-ends, MonetDB/XQuery will evaluate the
redundant operations. For operators @, #, €, and U an extension of algorithm
cse might take their subtrees into account: A modified algorithm can search for
operators with identical characteristics up to the point where the semantics of
the operators changes—# and © for example, require the input cardinality to stay
unchanged.

4.2.6 Related Work

The simplification of loop lifted algebra plans discussed so far, are linked to various
well-known properties and optimization techniques. We integrate many ideas
on logical optimizations of Jarke and Koch’s survey on query optimization in
database systems [72, Section 3 Query Transformation].

To exemplify, in [72, Table 3|, Jarke and Koch sketch methods that simplify
empty relations at runtime. With the empty-input property empty and Rewrites 1
to 3, we are able to achieve a similar effect for all statically empty relations at
compile time.

Based on transitivity laws constant propagation is able to detect and remove
constant predicates [72]. Constant predicates are used to reduce the number
of lines in a tableau [7]—this reduces the number of join predicates, effectively.
The constant property const provides a similar way of constant propagation and
Rewrites 6 to 8 remove the constant predicates.

The query rewrite facility in Starburst [99] provides several rules to get rid
of duplicate elimination operations. [99, Rule 2. Distinct Pullup] describes an
incarnation of Rewrite 11 taking a one-tuple-condition or a quantifier-nodup-
condition into account. The former condition corresponds to the single-row
property cardl, while the latter is a variant of the key property. Here, the
cardinality information of the single-row property extends the key information
and thus Rewrite 11 needs to consider the keys only.

The domain property dom provides a data flow analysis similar to the active
domains in [79]. Rewrite 13, which is based on domain inclusion, could be seen as
an instance of an unsatisfiable predicate discussed in [72].

The functional dependency propagation for most of our algebra operators
is equivalently described in [34]. The operators subsumed by @, for example,

4.3. ORDER MINIMIZATION 71

correspond to the extension operator. [113] extends the property inference of [34]
and provides key and functional dependency property explanations that directly
match parts of our key and functional dependency properties [113, Section 5.2.1].
The functional dependency inference of [113] is furthermore extended by [125],
whose additional observations for equi-joins (Identity 3.1 and Identity 3.2) are
depicted by the separate treatment of = and x in Table 4.8.

Sections 4.2.3 and 4.2.4 already gave an account of how our rewrites relate to
projection and selection pushdown as described in [72]. The idempotency rules
in [72, Rules M4 a)-j), Table2] are supposed to eliminate common subexpressions.
Looking at our set of simplifying rewrites, these rules—especially Rules M4 d),
g), and h)—relate to the combination of the Boolean required value property req
and Rewrites 15 and 16.

With respect to MonetDB/XQuery, the required column dependency analysis
bears some close resemblance with the dead code (or dead variable) elimination
found in programming language compilers [35]: For every column, the code
generator for MonetDB/XQuery generates procedural-style assignments that get
evaluated regardless of their later usage. Unreferenced code fragments thus
correspond to dead program code.

The common subplan elimination is a more explicit variant of share equivalence
[92]. Both, share equivalent plan construction and the common subplan elimination
synthesize the plans bottom up and ignore column renaming. Thanks to additional
removal of projections, our common subplan elimination is less restrictive. Two
projections sharing the same subplan are always share equivalent regardless of
the number of projected columns.

4.3 Order Minimization

The second heuristic provides an unusual view on order optimization. In contrast
to all other approaches we are aware of, we optimize ordering constraints on
an unordered logical algebra. Our means to express order are the numbering
operators #, 9, and &, which we treat as first class algebra citizens.

The loop lifted compilation strategy ensures the correct order representation
at any point in the query plan. In relational back-ends, however, these numbering
operators enforce a physical order and thus restrict the back-ends in their freedom
to optimize the execution plans. In what follows, we reduce and simplify the order
constraints as much as possible. Any physical order optimization is orthogonal
and may be performed by the back-end in addition.

4.3.1 Order Simplification

In Section 4.2.4 we introduced Rewrite 28, which removes any unreferenced
numbering operator. This rule is especially effective in queries that feature

72 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

grouping, aggregates, or path steps, as these language concepts ignore the sequence
order of their inputs [61].

Rewrite 29 provides an equally important rule. The rewrite replaces a rank
operator ¥ by a renaming projection whenever a single column b describes the
ordering.”

(29)
@a: (Q) — Ta:b,q.cols (Q)

The semantics of —column a may be populated with values of any domain
as long as they reflect the ranking criteria—ensures the correctness of this rewrite.
A similar rewrite, however, is incorrect for the numbering operators # and

In addition to the previous two house cleaning rewrites for order constraints,
Rewrites 30 to 36 provide further simplifications for the numbering operators that
take various properties into account.

card1 ® € {#,6,0} 30) ® € {#,6,9} const NV {b1,...,bp} # @

®a:...(Q) - @azl(Q) ®a:(b1,...,bn) (Q) - ®a:<b1,...,bn>\const...(q)

(31)

® € {#,6,0} {bi} € key i<n
®a:<b1,...,bn> (Q) - ®a:(bl,...,bi) ((])
® € {#,5,0 b; = b;) € fd | < j ® € {9,u
G.95) Giob)efd i<i g GO P
®ai(by,...) .. (@) = Bz (b1 by 1,bj1150,bn) (9 :

{bgrp} € key (35)
#a:(b1,...,bn)/bgrp(q> — @4:1(q) #a:(by,....bn) /byrp (q) = #a (b1,....bn)(Q)

rp, V) € const
(bgrp, v) (36)

Rewrites 31 to 33 consider constant and key columns as well as functional
dependencies, to prune the list of ordering criteria. Rewrites 35 and 36 analyze the
grouping column b, of a # operator and eliminate the operator or the grouping
column.

Figure 4.4(a) shows an annotated variant of the query plan of Query @3 after
common subplan elimination (Figure 4.3). The annotations list property entries
that might be used during the order simplifications.® At annotation @), Rewrite 29
trades the rank operator for a projection (Figure 4.4(b)). Rewrites 31 and 36 use
the constant information to prune arguments of the row numbering operators at
and @). The argument of the rank operator at annotation @ can be simplified
by either Rewrite 31, Rewrite 32, or Rewrite 33. The inferred properties enable

"For ease of presentation we omitted the order direction for the sort criteria. (Most rewrites retain
the order directions. Exceptions are Rewrite 29, which requires an ascending order direction to
perform the rewrite, Rewrite 38, which introduces ascending directions, and Rewrite 40, which
needs to reverse the order of criteria ¢q, ..., ¢, in case the order direction of b; is descending.)

8 Annotating the properties of all operators is impractical—the # operator at in Figure 4.4(a),
for example, carries the information about 2 constant columns, 7 keys, and 10 functional
dependencies.

4.3. ORDER MINIMIZATION

iter10,pos; g,
(posg,itemg)
const: (posg:1),...

key: {posiy },.- p0512:<posll,posg>
fd: (posy; —posg), ... ‘

X

itery
/
X iters

/ | 7riter7,
7Titer7, iteryp:itery,
@posg:1 itemg:itemy pos;1:poss
o~ | /
#iter7:<iter1 ,poss)

\
-
#posﬁ:(pos5)/iter1

|

@pos5:<item4)

descendant,element (op)
itemy:items

DOCitemg:item2

@items:"algebra.xml"

itery

const: (iteri:1),...

const: (itery:1),...

il

73

iter10,pos; ,
(posg,itemg)

7rp0512:posll Jitery,itemo,itemg,itemy,
pOss,posg,itery,posg,itemg,iter1g,posy

itery

X

/
X iters

/ | 7Titer7,
7Titer7, iterip:itery,
@posgzl itemg:itemy pOS;1:pOSs
~ \ /
iter7:(poss)
|
-
pos:(poss)
|
poss:itemy,itery,itemo,items,itemy

descendant,element (op)
itemy:items

DOCitemg:itemg

@itemy:"algebra.xml"

itery

(b) Query plan of Query Q3 after

s

]

(a) Cleaned up query plan of Query Q3
(Figure 4.3) with property annotations.

order simplifications (at @-@).

Figure 4.4: The effect of order simplification.

any of the three rewrites to prune column posg. The resulting rank operator with
a single ordering criterion is again subject to Rewrite 29.

4.3.2 Numbering Operator Conversion

The different ordering operators relate to each other. A row numbering operator
without grouping criterion can be safely replaced by a row ranking operator ,
if the sorting criteria either form a key or can be extended to form a key. Row
ranking operators & furthermore can be transformed into ranking operators ©, if
their result is used only as order, grouping, or distinct criterion—that is, if the
generated values are immaterial.

Converting the ordering operators into less restrictive variants allows the
peephole-style optimization to better exploit the operator characteristics. In

74 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

addition to Rewrite 29, for example, Section 4.3.3 introduces more rewrites that
can benefit from such a conversion.

Rewrites 37 to 39 exploit the relationship between the different ordering
operators. The usage property use (Table 4.13), which forms the pre-condition
in Rewrite 39, is inferred top-down and records if a column’s actual values are
required to provide the correct result.

kek kO {bL, ... by} =k kek
- tbr S =Fan Y (38)
#a:<b1,...,bn>(Q> - @a:<b1,...,bn>(q> #a:(>(Q) - @a:(k’) (Q)

a ¢ use

ga:<b1,...,bn> (Q> — @a:(bl,...,bn> (Q)

(39)

Rewrite 37, for example, transforms the # operators at annotations @ and
in Figure 4.4(b). The house cleaning rewrites described in Section 4.2 might
further simplify the plan in Figure 4.4(b) by removing the unreferenced @os,:1
operator and the projections at @ and @).°

4.3.3 Order Pushup

The compilation scheme described in Chapter 2 uses rank operators & to correctly
maintain the sequence order of the input query. The absolute sequence positions,
however, can be observed only by accessing the designated sequence position
values (Rule ORDEREDFOR in Section 2.4). These absolute position values are
provided by a row numbering operator #. Similarly, the generation of surrogate
values is achieved by # and © operators. The sequence order maintained by
operators merely yields the correct ordering criteria for these numbering operators.

To minimize the order-maintaining rank operators, Rewrites 40 to 45 push up
the ¥ operators through almost any other operator. Rewrite 40 replaces a rank’s
result column by its ordering criteria whenever possible. The helper function
cols(p) used in Rewrites 42 and 43 determines the columns used in argument p.'°
The Rewrites 40 to 45 are applied until operator ¥ is either not referenced anymore
(and gets pruned by Rewrite 28), gets stuck underneath a (J or GRP operator,
or reaches the plan root ¢. A rank operator may pass all filtering operators (o,
%, x, and) as it may provide arbitrary rank values—regardless of domain or
density. As the ordering criteria of a rank operator functionally depend on the
result column, operator ¥ furthermore does not affect the result of a distinct
operator.

® € {#,0,0}

(40)

9Peek forward to Figure 4.5(a) (page 82) to observe these effects.
10The compilation rules in Chapter 2 ensure that condition a ¢ cols(p) always holds (if Rewrite 40
is performed before Rewrite 42).

4.3. ORDER MINIMIZATION 75

Usage Property use

Tayby....anbn (4) q.use < q.use U {b;|a; € use}
op (q) q.use < q.use U {b} U use
X (q1,q2) q.use < qr.use U {c|c € qy.cols,c € use}
X (q1, q2) qa.use < qa.use U {c|c € ga.cols,c € use}
X by —by (15 q2) q.use < qr.use U {b} U
{c|c € q.cols, c € use}
Ry, =by (1, G2) qa.use < qa.use U {by} U
{c|c € ga.cols, c € use}
X by 101 b3y A Ab1nOnban (15 2) qr.use — q.use U {by;|ie{l,...,n}} U
{c|c € q.cols,c € use}
X by 101 by A Ab1nOnban (415 2) go.use — ga.use U {by;|i € {1,...,n}} U
{c|c € ga.cols, c € use}
4 (q) q.use <« q.use U use

Ubl,..-,bn (qla QZ), \bl,m,bn (Qb Q2> d1-uUse < {g1.use U {bl ‘7’ S {17) 7n}}
Ubl,---,bn (qlv qQ)a \b1,...,bn <Q1a C]2) G2.US€ < ({2.US€ U {bz |7J S {17 cee 7n}}

GR‘PaJ:Ol(bl)7---7an50n(bn)/bgr7) <Q) q.-use < q.use U {bl |Z € {]'7 toee 7”}} U
{bgrp | bgrp € use}
@a:(by,....bn) (@) q.use < q.use U {b;lie{l,...,n}} U

{c|c € use,c #a}

%a:<b1,...,bn>/bw (Q),

use <+~ qg.use U 1c CGUSE,C a
Caitbrbn) (@) Gazor .. b0 (@) q q {c| £ a)

oty (0) q.use « q.use U {b} U {c|c € use,c # a}
Qb1,b2,(b3 bn) (q) q.use <~ {bz|l - {1,3,,”}}

Table 4.13: Top-down inference of the column usage property use that infers the
set of columns whose values may not be modified to ensure the correct result.
(use is seeded with 0).)

76 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

(41)
Ta,c1,....cm (@a:<b1,...,bn>(q)) — @a:(bh...,bn) (ﬂ-bl,...,bn,cl,...,cm (Q))

® € {Jp,é,@p,%p,@p,ﬂg’v} a ¢ cols(p)
® Gzt) (@) = Gaz(on,...) (®(Q))
® € {x, %p, Mp} a ¢ cols(p)
Bar(br,bn) (@1) @ @2 = Faipy by (@1 @ G2)

42)

(43)

(44)

(bgrp = a) €U a # bgrp

(45)
GRP4:115(a), ... /bgrp (Pa:(b1,sbn) (€)= Cacbr,.bn) (CRPY (b). b THE (), .. bgrp (D))

Workhorse Queries. Flat queries that do not read positional variables, never
invoke aggregate functions, and do not construct sequences will feature no #,
¥, GRP, and U operators. An XQUERY dialect with these characteristics is
XQUERY’s data-bound “workhorse”, a term we coined in [54]. In such a language
fragment, the rewrites ensure the complete order push up where at most a single
rank operator in the plan tail—right underneath the plan root ¢—remains.
Instead of applying Rewrite 29 at in Figure 4.4(a), the sequence of
Rewrites 40, 42, 40, 42, 28, 28, 41, 43, 40, and 28 could have pushed the
operator up in the plan, leading to a similar effect: All references of its result
columns are replaced (Rewrite 40) and the operator can be eliminated (Rewrite 28).

4.3.4 Related Work

Since the seminal work on interesting orders [111], various approaches concentrated
on order optimization [91,113,114,125]. Similar approaches, in the context of
XQUERY, further underline the need for order optimization [41,97,124].

Except for [41], all of these approaches optimize the order based on an ordered
algebra. Our optimizations, however, are based on an unordered logical algebra.
The rewrites are not designed to yield an optimal execution plan. Instead they
heuristically try to minimize the number of ordering operators. Any order
optimization on a physical algebra is orthogonal and may, for example, push down
the remaining order constraints.!!

Simmen, Shekita, and Malkemus describe an approach to reduce the order
constraints of interesting orders [113, Section 4.1]. They base their decision on
constant columns, keys, and functional dependencies. Their order reduction
removes ordering criteria similar to Rewrites 31 to 33. The effect of Rewrites 32
and 33 is also described by Identities 1 and 4 of [125, Figure 4]. Identity 3

'We observed DB2 pushing down the remaining order constraints [54].

4.3. ORDER MINIMIZATION 7

describes the effect of algorithm Reduce Order in [113] and might be supported
in our setup by a more advanced inference of functional dependencies.

Wang and Cherniack furthermore take groupings into account, which could be
interesting in our simplifications as well [125]. Currently we express a grouping
with the help of the ordered ¥ operator to guarantee stable surrogate values, which
allow to link separate queries that together encode a nested result. In case the
surrogate values are only visible inside a single query, we could, however, exploit
the grouping optimizations described in Identities 2 and 5 by means of a new
grouping operator that behaves like a ¥ operator without the guarantee of an
ascending output order.

The order rewrites in [114, Section 4.3] push down a sort operator through all
operators of an order-preserving algebra. Putting the direction of the rewrites
aside, this approach relates to the rank pushup in Section 4.3.3. Rewrite rule S8
for example, constitutes a variant of expressing the functional dependency for
grouped aggregates (Rewrite 45). Whereas the © operator enables a similar order
maintenance as the sort operator in [114], our algebra retains more freedom as its
operators are completely independent of the back-end implementation.

The authors of [41] remove order constraints based on the XQUERY Core
representation—an effect achieved by Rewrite 28. Whereas their rewrites suffice
to remove order constraints in XPath queries, the principal data structure of
XQUERY—item sequences—prohibits merging of multiple orders as performed
by Rewrite 40. Despite that, we might still benefit from the optimization in [41],
as it takes more XPath step knowledge into account. Except for the property
inference of keys and functional dependencies, we currently ignore the path step
information and thus may end up ordering query results on more columns than
strictly necessary.

An algebra over ordered tables is the subject of order optimization in [124]. An
order context framework provides minimal ordered semantics by removing—much
like Rewrite 28—superfluous Sortby operators. In addition, order is merged in
join operators and pushed through the plan in an Orderby Pullup phase much
like in Section 4.3.3. In the presence of order-destroying operators such as 9, the
technique of [124] however fails to propagate order information to the plan tail
(compare with Rewrite 42).

The XML database system Timber [71] implements the TLC algebra, which ma-
nipulates sets of heterogeneous, ordered, label trees. Sequence order is supported
by an extension of the tree algebra [97]. This algebra—coined TLC-C—consists
of order-preserving logical operators and a sort operator. In comparison to the
loop lifted compilation, order is added after the query translation, leading to
plans whose order constraints are placed near the plan root—as in our rewritten
query plans. In Timber, iteration order, sequence order, and document order
is equivalent—mnote that this simplification of matters violates the XQUERY se-
mantics. Our compilation technique, on the other hand, can differentiate these
different concepts. We can, for example, correctly treat XQUERY’s positional

78 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

predicates, but can also exploit loosened order constraints, such as XQUERY’s
ordering mode unordered [61].

4.4 Query Unnesting

The application of the house cleaning and order minimization heuristics already
leads to a significant number of simplifications. The resulting query plans, however,
still reflect the nested iteration semantics of the loop lifted compilation scheme.
The numbering operators that encode the iteration values in the compilation rules’
iter columns and the large number of aligning equi-joins along these iteration
columns still enforce a particular evaluation order on the various back-ends.

In most cases, the compilation rules introduced the aligning equi-joins to
combine columns of a table that were split earlier in the compilation process. This
section’s heuristic aims to get rid of the aligning equi-joins (Section 4.4.1) and sub-
sequently unnest the nested query plans (Section 4.4.3). To support this heuristic,
we furthermore relocate the duplicate elimination operators (Section 4.4.2). The
0 operators are pushed up in the plan, leading to a more effective query unnesting
and providing the back-ends with more freedom to perform join reordering [54].

4.4.1 Equi-Join Pushdown

The removal of aligning equi-join is performed by a sequence of peephole rewrites
that push down an equi-join until it directly references the split point and thus can
be eliminated. The rewrites replace one of the child operators @ by its respective
input and create a copy of ® on top of the & operator. If the two input operators
of an equi-join are identical, we may remove the < operator in many situations.

To avoid that an & is pushed to the bottom of a plan (e.g., first through all its
left children and then through all its right children) before it references the same
operator twice, we take the DAG structure of the query plan into account. We
use = to denote the reachability relation of the DAG—¢ = &, for example, holds
for all operators ® in the query plan. Based on the reachability check ¢; % go
we can prohibit that an equi-join ¢; % g9 is pushed through operator ¢, (and thus
farther down than necessary). The relationship ¢; = ¢2 A ¢ = ¢; furthermore
ensures the operator identity of ¢; and g,.'2

Rewrites 46 to 51 remove aligning equi-joins. These rewrites all reference
the same node twice, as the reachability checks enforce that ¢; is identical to gs.
Rewrite 46 represents the simplest form of equi-join removal: an % operator on
the key column b is guaranteed to return the input unmodified and can be pruned.
Rewrite 47 is a variation of Rewrite 46 with an additional renaming projection.

12For any operator q; # ¢, the relationship ¢; = ¢2 A g2 = ¢1 would incorrectly indicate a cycle
in the DAG.

4.4. QUERY UNNESTING 79

Q= q ©=>q {b} € key

- (46)
q1 Xpq2 — q1

Q= q ©2=q {b1} € q2.key

(7Ta11b1,~-,anibn (ql)) D:qa1:b1 q2 — 77{(11:bl,...,an:bn}Uqg.cols(Q1)

(47)

91 = q2 ©=>q set {(a1 — a2),...,(a1 — a,)} C fd

(ﬂalzblyn-,an:bn (ql)) D:4111:b1 q2 — 7T{a1:bl,...,an:bn}Uqg.cols (ql)

(48)

Q> q P =q
(Fai(bronbn) /oy (41)) Fbyia (Fas(or,enbn) /oy (42)) = Fai(br,.oobn) fgry (1)

(49)

q1 = q2 P =>q
(GRP, jby, (1)) Hb,,, (GRPp, 1, (02)) = GRPy, by, (01)
Q= q ©=>q set {(bgrp = 1), (bgrp = cm)} C @o.fd

(GRPp/bg'rp (‘H)) D:qbgrp (ﬂ-bgrp,clv“'vcm (QZ)) — GRPp,Cl:THE(Cl),...,Cm:THE(Cm)/bgrp (‘H)

(50)

(51)

In case the query plans features an < operator joining along a non-key column,
Rewrite 48 may remove the equi-join operator, if all columns functionally depend
on the join column a; and the result is subject to duplicate elimination (set). The
set property set (Table 4.14) is inferred in a top-down DAG traversal and marks
all operators, whose result is affected by a 6 operator in the downstream plan.
The set property inference can be seen as a more modular representation of Rule
3. Distinct Pushdown From/To described in [99].

Rewrite 49 removes an equi-join that positionally aligns its inputs by means
of a # operator. Such an aligning % operator is, for example, introduced by
Rule GrROUP in Chapter 2. If the grouping columns and the ordering criteria of
the numbering operators coincide, the join columns are aligned and form a key.
Consequently Rewrite 49 prunes the equi-join.

The grouping operators in Rewrite 50 ensure the keyness of column bgy,.
Rewrite 50 prunes the % operator and merges the arguments p; and py of the
GRP operators.!> Rewrite 51 can be seen as the combination of Rewrite 50
and Rewrite 48 where the projection columns are transformed into THE aggregates.

Rewrites 52 to 61 push down an equi-join operator through its left input
operator. We skipped the equivalent rewrites for the right-hand side input
operators, as they add no new insight and may be easily constructed based on
the existing rewrites. The combination of key and domain property checks in
Rewrites 59 to 61 guarantee—as discussed on page 58—that the cardinality of
the left input operator is not changed by the rewrites. The test on #ref in
Rewrites 60 and 61 furthermore prohibits numbering operators to be split into
two independent operators. Such a split leads to incomparable abstract active

13In this section we use p to denote the arguments of an arbitrary operator.

80 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

Set Property set

Tarbu,sanitn (0)s 75 () g.set « q.set A sel

X (q1,q2); Moy=b, (41, 02),
N1)1.191b2.1/\~~~/\l)1.,,10nb2.»,1 (Qh qZ)

X (q1,q2); Moy=b, (q1,02),
Nl)1.191172.1/\~~~/\l)14n@nb2.n (Qh qQ)

qq-set <« qi.set N\ set

qo.5et « qo.5€t N\ set

4 (q) q.set « q.set A\ ‘true
WUb,bn (01, G2) q1.set < qi.set N\ set
Wby, (01, 02) q2.5et <« qo.set A set
\brsbn (€15 G2) q1.set < ‘false

\bl,...,bn (q1,q2) q2.5€t « go.set N\ ‘true
GRPa, 01 (by),....an:0n (bn) /bory (1) g.set « ‘false
®@a:(br,... o0 (0) q.set « q.set A set
#a(br,osbn) /bgry () q.set « ‘false
Fa(brreobn) (@)s Fas o pm) () ﬂ;“;fw () q.set < g.set A set
by ba.(bs...bm) (@) q.set < ‘false

Table 4.14: Top-down inference of the Boolean set property set that infers whether
the output rows will undergo duplicate elimination in the upstream plan. (set is
seeded with ‘true.)

domains for the two numbering operators and thus prohibits the application of
Rewrites 59 to 61.

G BT q1.cols N qy.cols = @

- ! (52)
(ﬂ-aliblm((ﬂ)) May1=bs 42 = T{a;:by,p}Ugs.cols (ql Mby=by QQ)
@ € {Up7®p7p7ff—r];’v} (I2 % ® b]. € QI-COZS
®(q1) Kp=by @2 — S(q1 Moy =by G2)

(53)

® € {x,®p, Mp} 37 ® ba € qo.cols
(01 ® q2) Mpy—bs g3 = q1 ® (g2 Mpy—p, q3)
q2 7 0 k € qa.key
0(q1) Wy =by g2 — 0(q1 My, =by G2)

q3 % U

(91 Uby p q2) b, =bs 43 = (1 Xby=bs 43) U by p}ugs.cols (42 by =bs 43)

(54)

(55)

(56)

4.4. QUERY UNNESTING 81

a3 %\ {bs} € gs.key
(91 \by,p 92) Rby=b3 43 — (q1 Mby=b3 43) \{b1 p}Ugs.cols (42 Xby=bs G3)
g2 7> GRP {b2} € qo.key {c1,...,cn} = qa.cols
(GRPy . (q1)) Mbyy=by G2 = GRP . irun(cr),..oson THE(e) /byrp (A1 X bgrp—=bz G2)

g2 7 GRP {b2} € qo.key {c1,...,cn} = qa.cols
(b1,d1) € q1.dom (be,d2) € q2.dom subDom (dy, d2)

(GRPQ;THE(bl),p/bW (Q1)) Ma=by 2 —
GRPa:THE(bl),p,Cl:TIIE(Cl),...,cn:TIIE(CQ)/bng (Q1 M by =bs QQ)

#p(qu).#ref =1 {b2} € go.key b1 € q1.cols
(b1,dy) € q1.dom (be,d3) € g2.dom subDom (dy, d2)

;p((h) My =by G2 — ;p((h X by =bo q2)

p(qr).#ref =1 b1 € q1.cols
(b1,d1) € q1.dom (be,d3) € g2.dom subDom (dy, d2)

Up(q1) Ry —by G2 — Fp(q1 Ry —by G2)

(57)

(58)

(59)

(60)

(61)

Rewrite 54 pushes an equi-join operator through another equi-join. Although
this rewrite is useful in some situations, it may lead to an infinite loop where
two adjacent X operators are rewritten alternately. One possibility to resolve
the infinite recursion is to split the rewrites into rounds. The & operators are
scheduled for rewrites based on their maximum distance from a leaf—that is, the
bottom-most equi-join is pushed down first. If an < operator cannot be pushed
further down, it is suspended til the end of the round.

Starting from the query plan in Figure 4.5(a), Rewrite 47 removes the lower
equi-join operator. Subsequently, Rewrite 52 pushes the upper equi-join through
the projection resulting from the previous rewrite, before Rewrite 47 prunes the
operator (Figure 4.5(b)). Algorithm cse and Rewrite 28 clean up the remaining
projection operators and the now unreferenced numbering operator %tem;@tem 2
(Figure 4.5(c)). All remaining operators are necessary to correctly implement the
query. In comparison to the initial query plan (Figure 2.9; page 23), more than
75 percent of the operators were pruned by the rewrites.

4.4.2 Distinct Operator Relocation

Excessive duplicate elimination slows down most database back-ends. With the
set property inference (Table 4.14) we introduced a means to propagate the
duplicate elimination information into an operator’s complete subplan. Because
of property set, additional § operators may be introduced or removed without
changing the query semantics. Rewrite 62 takes this information into account and
reduces the amount of duplicate elimination operators.

set (62) —set ® ¢ {9,0} k € key k C icols
3(q) = ¢ ®(q) = 6 (Ticots (®(q)))

(63)

82 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

iterg,posg,
(poss,item7)

iterg,posg, 7Titer1,itemz,itemg,item4,pos5,
(poss,item7) iterg,itemy:itemy,iterg,posg
quiter6 _ I
e N iter6
X iterg \
| 7Titer(;, ﬂ-iterg,
ﬂ—iterg, iterg:itery, iterg:itery,
itemy:itemy posg:itemy posg:itemy
iterg:(item4) iterG:(item4> itery,itemy,
‘ ‘ (poss,itemy)
@p055:<item4> @pos5:<item4) @possz(item4>
\ \ |
ddescendantelement (op) [I_r]descendant,element (op) [ﬂdescendant,element (op)
itemy:items itemy:items itemy:items
\ \ |
Docitemgzitemg Docitemgzitemz DOCitemgzitemg
@itemy:"algebra.xml" @items:"algebra.xml" @item,:"algebra.xml"
itery itery itery
(a) Query plan of Query Q3 (b) Query plan of (a) (c) Query plan of (b) after
after house cleaning and after application of application of Rewrites 47
order rewrites. Rewrites 47 and 52. and 28, and cse simplifica-
tion.

Figure 4.5: The effect of equi-join pushdown.

With Rewrite 62 in place, we now completely imitate Rule 3. Distinct Push-
down From/To of [99]. In combination with Rewrite 55, we effectively push
distinct operators up in the plan and thus extend their scope with respect to the
set information. Minimizing the number of § operators, however, requires distinct
operators to be pushed up actively.

Rewrite 63 implements the distinct operator pushup. The main idea of
Rewrite 63 is to place a single d near the plan root thus allowing all other distinct
operators to be pruned. As this rewrite is neutralized by Rewrite 11 these two
rewrites may never be used in the same rewrite class. A rewrite phase with
Rewrites 62 and 63 active will ensure that a small number of distinct operators
is placed nearest to the plan root. A subsequent application of Rewrite 11 may
then remove the remaining, now superfluous, d operators.

4.4. QUERY UNNESTING 83

4.4.3 Dependency Disentanglement

For queries in the XQUERY workhorse dialect defined in [54]—that is, queries
without positional variables, aggregates, and sequence construction—the rewrites
proposed so far suffice to generate SQL queries that database systems are able to
evaluate efficiently. Query ()¢ is such a workhorse query that gets rewritten into
the query plan shown in Figure 4.6(a).

for $a in doc ("dblp.xml")/dblp/*

where doc ("dblp.xml")/dblp/*[title = "Join Graph Isolation"]
/author = $a/author

return $a/title

(Qs)

The plan features a single numbering operator and duplication elimination in the
plan tail. The plan is turned into a single SELECT DISTINCT-FROM-WHERE-ORDER BY
expression by the greedy SQL code generator. All conditions end up in a single
conjunctive WHERE clause and the back-end may decide the evaluation order based
on its statistics.

With respect to MonetDB/XQuery, the operator order in Figure 4.6(a) however
is prescribed and follows the nested-loop semantics of the original query text:
Before the first selection is performed, for example, a quadratic intermediate result
is constructed.

The rewrites proposed in this section disentangle the dependencies leading to
query plans in which independent plan fragments are split into separate subplans.
As a side effect of the query unnesting, more sharing opportunities may be detected.
In Figure 4.6(a), for example, two almost identical sets of operators implement
the path doc ("dblp.xml")/dblp/*.

The basic idea of the dependency disentanglement is to push up cross products
and joins. Rewrites 64 to 78 implement these transformations. As in Section 4.4.1,
p represents an arbitrary argument, = describes the operator reachability, and
the dual rewrite rules are omitted.

® € {x,np} cols(p) C{a1,...,an,b1,...,bm}
{ai,...,an} C q1.cols {b1,...,b;m} C ga.cols

(64)
Tt setnbisebm (41 ® G2) = (Tay,...a0 (q1)) ® (Toy... 5, (42))
® € {x,xp} b € q.cols ® € {x,xp} (66)
op(q1 ® q2) = (0b(q1)) ® (g2) (1 ®q) X g3 = q1 @ (g2 X g3)

® € {x,np} a € ga.cols
(01 ® q2) Ma=bq3 — @1 ® (g2 Ma=b G3)

(67)

{a11,...,a1.n} C q1.cols {b11,...,b1.m} C ga2.cols

(68)

(ql X QZ)Mal‘191a2.1/\--~/\a1.n9na24n/\b1,101b2,1/\--~/\b1.m0mb2.m qs3 —
1™ ai1.101a2.1N\Aa1.nbnaz.n (Q2 X b1.101b2. 1A Ab1.mOmba.m Q3)

84 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

?iterl,posm,(itemlg)

@posm:(itemg,,itemw)
|
)
!
Tlitems ,item1g
!
- child,element (title)
Iitemjg:items
|

Uitemlg
|
@item18:<item15,item17>
|

@itemN:(itemw)
|
- child,element (author)
itemig:itemg
I

@itemm:(iteml‘;)
1 chilc‘i,element (author)
itemy4:itemg
|
0item13
I
@ item13:<item11 ,itemu)
I
Q@item12:"Join Graph Isolation"
|

@itemH:(itemlo)
I
- child,element (title)
itemyg:itemg
I

B child,element ()
itemg:itemg
|
child,element (dblp)
itemg:itemy
I
DOCitem7:item6
I
@itemg:"dblp.xml"
|
- child,element ()
items:itemy
|
child,element (dblp)
itemy:itemg
I
DOCitem3 [itemo
I
@items: "dblp.xml"
I

itery

(a) Query plan of Query Q.

ol

o

Qiter;3,pos, 4,(item7)

pos4:(itemy,itemy)
I

X

| n
iteris

0
Tlitemy,itemy
|
X itemg=item1o
~
Mitemg=item1g

- N
"Join Graph Isolation" @itamm:(itemll}
|

- child,element (title) 1 child,element (author)
item7:itemy itemq:itemy
| |

@item(;:(itemg)) @itemm:(itemg)
I I
- child,element (author) - child,element (title)
items:itemy itemg:itemy
\ /
dchild,element O
itemy:items
|
child,element (dblp)
items:itemg
I
DOCitemg:iteml
[

itemy

(b) Query plan of Query Qg after query unnesting.

ol

Figure 4.6: The effect of dependency disentanglement.

4.4. QUERY UNNESTING 85

{a1.1,...,a1.n} C qi.cols {b1.1,...,b1.m} C qa.cols

(69)
(ql Np QQ) Ma1.101a2.1 A Aa1.0n0na2.,Ab1.10102. 1A Ab1 .1 Omb2.m 43 —
q1 Mp/\ay1916!,2.1/\---/\61,1%9”&2% (qQ Nb14191b2.1/\---/\b1.membz.m Q3)
® € {x,mp} Q= q3 3= q ® € {x,mp} 91 = q3 Q33(h(71)
(1 ®@)U(@B®qu) = q®(@Uq) (1®@)\ (B3®qu) = q®(q)\qu)
bi,...,bn} C qq.cols byrp € qa.cols
{b1 nt C @1 grp € 42 (72)
GRPa1:01(bl),...,an:on(bn)/bm) (Q1 X Q2) —
(7Ta1,...7an (GRPa1:ol(bl),...,an:on(bn)/bgm (@bm,;l(fh)))) X (ﬂ'bm‘p (Q2))
® € {x,x bi,....,bn} C qq.cols

@a:val(q) —qXx ®a:(b1,A..,bn>(Q1 ® 6]2) - (@a:(bl,...,bn>(Q1)) ® q2

(a,v) € req b1 € q1.cols by € ¢o.cols
(®,v,0) € {(&, ‘true, =), (O, ‘false, #), (8, ‘true, >), (S, ‘false, <)}

(75)
®a:(by b)) (@1 X q2) = (@a:0(q1)) Xby00,92
(a,v) € req b1 € ¢1.cols by € ¢o.cols
(©.0.0) € (8, true, =), (8, fals,). (8.t >). (@ fulbe,)} -

®a:(b1,bo) (717p @2) = (@azv(q1)) X pab, 06,02
{b1,...,bn} C qi.cols bgrp € q2.cols
;a:<b1,...,bn)/bgrp(Q1 X q2) = (;a:<b1,...,bn>(ql)) X g2

(77)

® € {x,xp} b € qq.cols
A% (a1 @ @) = (A0 (a)) @ ao

(78)

Similar to the equi-join pushdown rewrites, cross products and joins are pushed
through their own kind in Rewrites 66 to 69. To guarantee the completion of the
dependency disentanglement phase, the rewrites are scheduled in rounds where
the operator closest to the plan root is pushed up first. If this operator cannot
be pushed up further it is suspended til the next, and the next cross product or
join is pushed up. The phase completes once Rewrites 66 to 69 were the only
applicable rules in a round.

While the SQL code generator is able to overcome the operator nesting for
many queries—as sketched in Figure 4.6(a)—the SQL-consuming database systems
also benefit from the Rewrites 70 to 72 and the Rewrite 77, which decrease the
input cardinality of the U, \, GRP, and # operators.

More unnesting potential is introduced by Rewrite 73, which transforms an e
operator into a cross product. Rewrites 75 and 76 collect additional join predicates,
if a comparison whose result is subject to a selection in the downstream plan
(req), references columns from both inputs ¢; and go.'

14 To mark the selection operator in the downstream plan for deletion, Rewrites 75 and 76 replace
the result of the comparison by constant values.

86 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

The query plan in Figure 4.6(a) is subject to Rewrites 65, 73, 74, 75, and
78. Rewrite 73 turns the three @ operators into three independent literal tables.
The subsequent rewrites effectively push down the £1, #, and DOC operators into
these independent branches. Rewrite 75 turns two of the three cross products
into joins. Figure 4.6(b) shows the resulting plan where—in addition to the
unnesting rewrites—house cleaning and algorithm cse have been applied. The
common subplan elimination was able to eliminate one instance of the common
path doc ("dblp.xml")/dblp/x*.

4.4.4 Related Work

The equi-join pushdown rewrites presented in Section 4.4.1 are (closely) related to
the removal of correlations in nested subqueries. In other query compilers [43,96],
nested subqueries are represented by a dependent join operator [29,46]. From the
dependent join operator Apply (A*) in [46] we adopt its definition:

A, Q= U ({7“} X Q2[{r}/Qbind]) ;

TEq1

where ¢[/y] denotes the consistent replacement of free occurrences of y in ¢ by
x. This definition mirrors the semantics of the for loop construct: g» (the loop
body) is treated like a function with parameter g;,4 that is iteratively evaluated
for each row r of table ¢;.

Rule FOR' demonstrates how the loop lifted compiler may be aligned with the
approaches just mentioned. Instead of using numbering operators and equi-joins
to provide the loop information and align the result of the nested subquery with
the outer query, respectively, the dependent join operator expresses the nested
evaluation semantics (Greturn-apply)-

['; loop = €4, = Gin

Qv = Qiter:1 <@pos:1 <7Titem (Qbind)))
F + {$U = qv} ; Titer (QU) l_ €return '3 Greturn

_ X
qreturn-apply = Qin Aqu(i (7Tp052:pos,item2:item (QTeturn))

q = Titer,pos:pos,,,,, item:itema (posnew:<pos,posg) (QTeturn-apply)) (FOR/)
I'; loop = for $v in e, return € epum 5 ¢

As the evaluation of dependent joins is based on a nested-loop paradigm, [46]
proposes a set of rewrite rules that push down the dependent joins. A dependent
join is pushed down into its right-hand subtree until the right child contains no
more references to the free row variables in gpi,q. The rules in [46, Figure 4] are
directly comparable to the rewrites in Section 4.4.1. Identity 1 that replaces the
dependent join by a cross product, for example, corresponds to Rewrites 46 and 47.
The only difference can be observed in Identity 7 (as opposed to Rewrite 54) where

4.5. IMPROVING XML QUERIES 87

a dependent join is pushed through both inputs of a cross product. Our equi-join
pushdown detects where the iteration references originate and thus provides a
more well-informed rewrite by pushing down the equi-join into a single input only.

As mentioned in Section 4.4.2; [99] removes superfluous distinct operators by
taking downstream distinct operators into account. We share these ideas also
with [41], which removes distinct operators based on the analysis of XQUERY
Core queries.

The dependency disentanglement in Section 4.4.3 applies peephole-style rewrites
based only on the required value property. [51] proposes an alternative variant,
based on degenerated multi-valued dependencies [15,40], that allows a more
holistic rewrite to unnest a complete subplan. By pushing up cross products and
joins, however, we maintain the degenerated multi-valued dependencies in each
rewrite. Ultimately, this leads to similar query plans.

The query unnesting that results from the rewrites in Section 4.4.3 turns long
chains of operators into bushy join graphs where more common subplans can
be detected by algorithm cse. In consequence, the intermediate result size can
decrease significantly.

Thanks to its materialization of intermediate results, MonetDB/XQuery benefits
from both the unnested query plans and the common subplan elimination. The
query plan in Figure 4.6(b), for example, runs orders of magnitudes faster in
MonetDB/XQuery than its equivalent in Figure 4.6(a). The SQL code generator,
on the other hand, hides the bushy nature of the resulting query plans. In many
cases, the SQL back-ends, however, may still benefit from the query unnesting as
the remaining numbering operators consume less rows.

4.5 Improving XML Queries

The algebra introduced in Section 2.2 comes with a number of XML-specific
placeholder operators. Except for the key and functional dependency property
inference, we however ignored their XML characteristics in the last sections.
Additional XML-related properties and rewrites might significantly enhance the
query plan optimization, for example, for XQUERY queries. In this section we
briefly sketch rewrites integrated in Pathfinder as well as possible extensions that
might further improve the generated query plans.

Rewrite 79 is one of the most effective simplifications in Pathfinder. The
rewrite turns the algebraic core of the XQUERY shorthand //% into a descendant
path step join. This rewrite becomes applicable only after the order information
is removed.

b ¢ icols

child,v descendant-or-self node() descendant,v
da:(b) ([ﬂb:<c> (q)> - [ﬂa:(c) (Q)

(79)

15Tn XQUERY, // is expanded into /descendant-or-self::node()/ [16].

88 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

A query consisting of a chain of child path steps and a final descendant
path step turns into a sequence of] operators and a distinct operator on the top.
The query ctr/a/b/descendant: :c, for example, turns into the query plan

5 (e (e (i (22 ()

where the § operator may be removed as the context nodes of the descendant
step are located in non-overlapping parts of the XML document. In Pathfinder, we
deploy an additional level property that records their statically inferred level—the
length of a path leading from a node to its document root—for columns of type
node (if applicable). The level property is maintained for path step joins along the
non-recursive axes child, attribute, parent, self, following-sibling, and
preceding-sibling and removed for all other axes.

The level information extends the key and functional dependency property
inference for path step joins and thus indirectly leads to the additional removal of
distinct operators:

Aoty (@) key « ... U {{a} U (E\{b})](b:v) € q.level,
k € q.key, kN {b} # @,
a € {descendant,
descendant-or-self}}
Ao (@) fd < ... U{a—>b[(b:v) € glevel,
a € {descendant,descendant-or-self}}

Pathfinder supports XML node construction by means of additional placeholder
operators. The compilation rules that integrate the node constructors are described
in [120]. We ignored these operators so far as they play only a minor role
during optimization. Nevertheless, node constructors may become a performance
bottleneck, because of their subtree copy semantics.

By generating query plans for twig constructors instead of single node con-
structors, we limit the construction overhead. Pathfinder furthermore collects
usage information for columns of type node. This additional node usage property
is used in the physical plan generation for MonetDB/XQuery to decide whether
subtree copies may be replaced by references.

A heuristic that is currently not implemented in Pathfinder is the pushdown
of &1 operators operating on constructed transient nodes. In certain scenarios, the
node constructors and the path step joins operating on them could cancel each
other out. Such a set of rewrites could lead to XQUERY queries that effectively
operate on a sequence of tuples instead of a sequences of generated nodes.

In [76], a fusion of XPath steps and node constructors is introduced. The
fusion rewrites operate on the XQUERY level and take special care to correctly
handle document order and node identity. They, however, fail to detect tuples, as

4.6. SUMMARY 89

XQUERY operates on sequences of items only. The approach we sketched above,
in contrast, focuses on the collapse of <] operators and node constructors, whose
newly generated document order and node identity is immaterial, by taking into
account the icols and use properties.

Specific knowledge about XML document structure may be integrated with the
optimization in terms of DataGuides [47]. This can unlock additional optimization
potential. Pathfinder can take an extended variant of such path summaries into
account that additionally records the minimum and maximum number of node
occurrences for every guide child node. Pathfinder uses this information to improve
the already existing properties (key, fd, level, etc.).

The DataGuide information may also be used to replace a chain of £] operators
by a single, new operator 4 that performs a guide index join and thus avoids
the evaluation of a potentially large number of path step joins. Such a rewrite
would, however, rely on a back-end and an algebra operator 4 that both encode
the DataGuide information. As our objective is to keep the query compiler
independent of the back-end and, more importantly, independent of a particular
XML encoding, we let this chance to improve the query plans pass.

4.6 Summary

In Chapter 3 we identified (a) the DAG shape of the query plans, (b) the large
number of non-traditional numbering operators, and (c) the large number of
mapping joins as the main obstacles any query optimizer has to overcome to
provide an efficient evaluation for loop lifted queries.

In this chapter we proposed three heuristics consisting of peephole-style rewrite
rules taking the characteristics of the loop lifted algebra plans into account.

e House Cleaning. These rewrites prune a large number of superfluous
operators and clean up leftovers of the other heuristics.

e Order Minimization. These rewrites minimize the amount of numbering
operators that encode order information. The remaining numbering opera-
tors are necessary to either provide the overall output order or to implement
a query’s access to the sequence position.

e Query Unnesting. These rewrites resolve the mapping joins and disen-
tangle dependencies. These rewrites also remove the references to most
of the remaining numbering operators that encoded the iteration values.
Subsequent house cleaning prune the unreferenced operators.

Once these optimizations are applied, for many queries traces of the loop
lifted compilation strategy—-clearly present in the initial plans—are no longer
recognizable. Similarly, syntactic variants of the input programs are indistin-
guishable after the rewrites. The generated SQL code for many queries resembles

90 CHAPTER 4. LOGICAL QUERY OPTIMIZATION

the preeminent SELECT-FROM-WHERE queries most database back-ends are geared
to support efficiently. The remaining plan sharing is handled by the back-end:
The sharing might be resolved by either replication [99], a DAG-aware query
processor [90], or a back-end with plan recyclers [70].

For back-ends that evaluate the resulting plans more or less unmodified, such
as MonetDB/XQuery, query unnesting plays an important role. The optimizations
proposed here, however, provide only amelioration—mno optimal plan. The rewrites,
for example, do not prescribe the order of the two joins in Figure 4.6(b). Similarly,
the evaluation order of the author and title path step joins may be changed.

Physical query optimization [26,48,72], on the other hand, takes data charac-
teristics into account and may provide an optimal execution plan. The complete
body of work on physical query optimization is orthogonal to our approach. Any
database back-end may further improve the query plans.

In the context of MonetDB/XQuery, groups of operators (without numbering,
distinct, aggregate, union, and difference operators) form join graphs that are
subject to runtime query optimizations [74]. Sampling and zero-investment algo-
rithms detect data correlation and decide for the most efficient evaluation order
at runtime. This approach further improves join tree planning and overcomes
selectivity misestimation issues of classical optimizers. While this runtime opti-
mizer is not yet integrated with MonetDB/XQuery, in a future version it might
provide an optimal execution plan for the query plan in Figure 4.6(b).

Chapter 5

Optimization Assessment

The previous chapter provided a glimpse of the optimizations’ impact. Here, we
examine the effects of the rewrite process in more detail. We analyze the query
shape of the resulting query plans as well as the query plan stability with respect
to different query formulations (Section 5.1). Section 5.2 gives an impression on
how the back-ends MonetDB/XQuery and DB2 react to the optimized workloads.
We analyze the performance of XQUERY queries on MonetDB/XQuery and let
DB2 perform optimizations on the rewritten plans. A performance comparison
of the TPC-H benchmark queries [121] with their loop lifted counterparts finally
underlines the robustness of the rewrites with respect to evaluation time.

5.1 Analyzing the Query Plan Shape

As the optimizations are independent of any back-end query processor, in the
following we focus on the quality of the resulting query plans. In Chapter 3 we
analyzed the operator distribution for the XMark benchmark query set. Table 5.1
replicates Table 3.1 and extends the table with the operator counts and their
distribution after Pathfinder has optimized the initial loop lifted query plans.

In comparison to the initial loop lifted query plans, the average rewritten
query plan features a sixth of the operators (43.50 instead of 262.65 operators),
of which over 50 percent are XML operators. The rewrites eliminated more than
95 percent of the numbering operators, mapping joins, and distinct operators and
furthermore detected 6 value-based joins in XMark Queries 8 to 12.

Most of the 20 XMark query plans consist of one or more join graph bundles—
operators that can be turned into a single SELECT-FROM-WHERE expression—and a
subsequent plan tail that performs, duplicate elimination, aggregation and node
construction. Figure 5.1 shows the rewritten query plan for XMark Query 8. The
optimizations led to a significantly smaller plan—31 instead of the initial 286
operators—consisting of four join graph bundles (below the dotted line), which
perform most of the work, and a plan tail with duplicate elimination, aggregation,

91

92 CHAPTER 5. OPTIMIZATION ASSESSMENT

Operator Category Loop Lifted Query Plans Optimized Query Plans

Average # Fraction of Average # Fraction of
of Operators Operators of Operators Operators

Projections 130.65 49.7% 7.20 16.6%
Row Operators 39.55 15.1% 7.90 18.2%
Numbering Operators 35.25 13.4% 0.45 1.0%
XML Operators 25.70 9.8% 22.40 51.5%
Mapping Joins 14.45 5.5% 0.45 1.0%
Duplicate Elimination 6.75 2.6% 0.60 1.4%
Set Operators 6.40 2.4% 1.30 3.0%
Value-Based Joins 0.00 0.0% 0.30 0.7%
Others 3.90 1.5% 2.90 6.7%
Overall 262.65 100.0% 43.50 100.0%

Table 5.1: Categorized operator distribution for the average XMark query before
and after optimization.

and constructors (above the dotted line in Figure 5.1). This clear separation is
characteristic for most XMark queries.

An assessment of the rewrites’ effect on the evaluation times of the XMark
queries follows in Section 5.2.1. First, however, we examine the robustness of the
optimizations with respect to the initial loop lifted query plans for two further
query scenarios.

5.1.1 Detection of Value-Based Joins

In [2], Afanasiev describes a micro-benchmark for value-based equi-joins. This
benchmark is used to showcase the MemBeR micro-benchmarking methodology [6]
and the XCheck benchmark platform [3]. The benchmark provides a comprehen-
sive view on the performance of various query processors on value-based joins
without looking into the engines’ internals. One of the systems evaluated in [2] is
MonetDB/XQuery.

As the experiments conducted with MonetDB/XQuery relied on the optimiza-
tions described in Chapter 4, we think of this micro-benchmark as especially
interesting. Here, we delve into Pathfinder’s internals and analyze the rewritten
query plans. The observations collected during the examination allow us to better
explain the performance characteristics reported in [2] and, more interestingly,
provide an insight into the capabilities of the optimizations.

Afanasiev takes seven parameters into account: (a) syntactic pattern, (b) num-
ber of join conditions, (c¢) Boolean connectives, (d) join type, (e) join selectivity,
and (f) join input size. Only the first three parameters lead to different input

5.1. ANALYZING THE QUERY PLAN SHAPE 93

? itemay ,items, (item20>

@item21:1

Ntwig(itemg,,itemgg)

Nelem(itemg, ,itemg)

—

Nattr(items,itemlo,itemg) Ntext(itemg,,itemlg)
. . : string
Q@itemg:"item" @Itemloz"person" CASTitemyg:(itemlS)
| |
@itemg:(itemg) Uitemg,,itemlg
! /
child,text () @:
[I—r]itemg:item7 'teTls‘O
|
[I_r]child,element (name) \
item7:items items

AN

GRPitem 18:COUNT () /items

0 plan tail

7Titem5,item14

bl itemio=itemy7

join graph

e ™~
@itemm:(itemn) @itemN:(itemw)
/ \
dattribute,attribute (id) dattribute,attribute (person)
itemy:items itemig:items
~ I
1 child,element (person) N child,element (buyer)
items:itemy itemys:itemyg
/

N child,element (closed_auction)
itemy4:itemys
/
n child,element (people) " child,element (closed_auctions)

itemy:items itemq3:items
\ /

) child,element (site)
items:itemo

\
Docitemgziteml

\
itemy

"auction.xml"

Figure 5.1: Rewritten algebraic query plan of XMark Query 8.

94 CHAPTER 5. OPTIMIZATION ASSESSMENT

queries and affect the query plan analysis. In the following, we briefly summarize
the specification of the three parameters.

In [2], Afanasiev discusses four different syntactic patterns to express a value-
based equi-join. The following query skeletons sketch the different patterns:

(Where) for $a in A, $b in B
where $a/@attl = $b/Qatt2

return C

(Predicate) for $a in A, $b in B[$a/@attl = ./@att2]
return C

(If) for $a in A, $b in B

return if ($a/@attl = $b/Gatt2)
then C else ()

(Filter) for $a in A, $b in B
return C'[$a/@attl = $b/0att2] ,

where A and B represent independent path expressions' and C' is the sequence
construction ($a/@attl,$b/@att2). Afanasiev furthermore makes use of five
combinations of Boolean connectives and a variety of join conditions:

Cond,) a single join condition (as sketched in the skeletons above),

Conda.p) two conjunction conditions,

(

(

(Condy.y) two disjunctive conditions,
(Conds.a.n) three conjunctive conditions, and
(

Conds.a.v) two conjunctive conditions followed by a disjunctive condition.

Based on these criteria we now repeat the analysis. We first inspect the four
different syntactic patterns in combination with a single join condition (Cond;)
and a simple binding for C', namely $b. As $a does not appear free in B, the
rewrites can always unnest B. All four syntactic patterns lead to the same
rewritten query plan depicted in Figure 5.2. For these four queries we therefore
expect identical evaluation times.

In [2], the syntactic pattern (Filter), however, shows inferior performance for
MonetDB/XQuery. Figure 5.2 marks the regions of the query plan corresponding to
the expressions A, B, and C as well as the left and right join arguments (L and R,
respectively). We use this abstract notation to compare the four rewritten query
plans for the original value of C—($a/@att1,$b/@att2)—used in [2]. Figure 5.3
shows the different plans in which C' represents the sequence construction. The
patterns (Where), (Predicate), and (If) share the same query plan. Thanks to
the greedy nature of the unnesting rewrites the plan in Figure 5.3(a) features two
value-based joins. Pattern (Filter) in Figure 5.3(b) misses these joins as the cross

n [2], the path expressions A and B are used to adjust the input selectivities of the joins.

5.1. ANALYZING THE QUERY PLAN SHAPE 95

?item,pose,(itemB)

pos6:(posA,posB>

|
@iter5:1
: |
C T'pos 4,pos g,item g
- i
N itemo=itemy
/ \
L @itemy(itemﬁ "R @item@(itemg)

|
attribute,attribute(attl)
itemy:item 4

i
A Tpos 4 ,item 4

/N

il

|
attribute,attribute(att2)
items:itemp

|
Tposp,itemp

AN

|

Figure 5.2: Rewritten query plan for all four syntactic patterns of the value-based
equi-join query with a single comparison (Cond;) and C' = $b. (Plan fragments
L and R depict the left and right arguments of the XQUERY join condition.)

h
C-Lh-B-L--0-9-0-a-o

?
)
Q@
i C /U\ R
/N N\
o1 o< <
b e ‘o
L 3 R & S TN
| | e A
-] | - - m <1
| : \ oo N
A ™ ‘BT A ™ B 7
\ \

(a) Patterns (Whére), (Predicate), (If).

(b) Pattern (Filter).

Figure 5.3: Query shape of the rewritten query plans for the different syntactic
patterns of the value-based equi-join query with a single comparison (Cond;) and
C = ($a/0attl,$b/0Catt2).

96 CHAPTER 5. OPTIMIZATION ASSESSMENT

products that stem from the query unnesting of B may not be pushed through the
union operator implementing XQUERY’s sequence construction. With the current
set of rewrite rules, pattern ([Filter) leads to plans in which the plan fragment C
is located below L and R.

This observation explains the evaluation times observed in [2]. We, however,
also witnessed that (Filter) is not, a priori, the inferior alternative (Figure 5.2).
For any XQUERY query in the workhorse dialect, for example, Pathfinder detects
the value-based joins independent of the syntactic pattern.

Interestingly, the two differing query plans in Figure 5.3 lead to the same
execution plan in DB2. DB2 is able to push L, R and the join condition down
through the union operator. With a similar set of rewrites as employed by DB2,
a future Pathfinder version could improve the robustness of MonetDB/XQuery
with respect to syntactic patterns.

Because of Rewrite 17, we are able to resolve ® operators that implement
XQUERY’s and clause. The previous observations thus also apply for the join
conditions (Conds.n) and (Conds.a.). This reasoning is supported by the per-
formance of MonetDB/XQuery measured in [2]. Our rule set, however, does not
feature a rule that is able to split an @ operator that implements XQUERY’s or
clause. For the join conditions (Conds.,) and (Conds.,./) the missing rule results
in query plans in which Rewrites 75 and 76 are not applicable—that is, the cross
products between A and B are not pushed up to form a join. Similar to the (Filter)
pattern, these cross products lead to a performance drop of MonetDB/XQuery
in [2], whereas DB2’s optimizer is able to efficiently support these query plans.

This micro-benchmark demonstrates the robustness of the rewrites (Figure 5.2
and Figure 5.3(a)), but also shows some deficiencies (Figure 5.3(b) and condi-
tions (Condsy.) and (Conds.n.)) with respect to the code generation in Mon-
etDB/XQuery. These shortcomings are no obstacle in general—the generated SQL
code after simplification provides, for example, enough freedom for DB2 to further
optimize the query plans.

5.1.2 Query Formulation

The second scenario operates on the wholesale supplier data from the TPC-H
benchmark [121]. The query we analyze is based on the information need:

“List the order items of the order with the most parts.” (Q7)

We formulate Query @7 from two different perspectives: (a) a programmer,
who takes ordered and complex data structures for granted, and (b) a database
application developer, who tries to compose a query that can be efficiently
evaluated by a relational database system.

The LINQ program in Figure 5.4(a) shows a programmer’s variant of Query Q7.
The program groups lineitems by orderkey, before ordering the groups by the
sum of the quantities within each group. Taking the first group ensures that the

5.1. ANALYZING THE QUERY PLAN SHAPE 97

var q = db.LINEITEM
.GroupBy(1i => 1i.L_ORDERKEY)
.OrderByDescending(g => g.Sum(1li => 1i.L_QUANTITY))
.ElementAt (0);

(a) Query written from a programmer’s point of view (using group,
nesting, and positional information).

var grps = from 1li in db.LINEITEM
group 1li by 1i.L_ORDERKEY into g
select new { ok = g.Key,
sum = g.Sum(1li => 1i.L_QUANTITY)};

var q = from 1i in db.LINEITEM
join grp in grps on 1i.L_ORDERKEY equals grp.ok
where grp.sum == grps.Max(g => g.sum);
select 1i;

(b) Query written from a database application developer’s point of
view (using group, self join, and maximum).

var grps = from 1i in db.LINEITEM
group 1li by 1i.L_ORDERKEY into g
select new { ok = g.Key,
sum = g.Sum(1li => 1i.L_QUANTITY),

lis = g };
var q = from g in grps
from 1i in g.lis
where grp.sum == grps.Max(g => g.sum);

select 1i;

(c) Query with concepts of (a) and (a) mixed (using group, nesting,
and maximum).

var g = db.LINEITEM
.Select(1li => 1i.L_ORDERKEY)
.Distinct ()
.Select (keys
=> new { ok = keys,
lis = db.LINEITEM
.Where(1i
=> 1i.L_ORDERKEY = keys) });

(d) Query snippet replacing LINQ’s grouping construct.

Figure 5.4: LINQ variants of Query (7.

98 CHAPTER 5. OPTIMIZATION ASSESSMENT

items of the order containing the most parts are returned. Within each group
g, LINQ stores the grouping criteria (g.Key) as well as the list of corresponding
records.?

Writing the query with a database background might lead to the LINQ program
in Figure 5.4(b). This variant is written in LINQ’s query syntax as opposed to the
method syntax in Figure 5.4(a). The query uses grouping, a maximum aggregate,
and a self join to retrieve the order items with the most parts. The query is based
on a SQL formulation of the query and ignores LINQ’s nested data model as well
as the list order.

For both query variants, the optimizations significantly simplify the query
plans, leading to almost minimal representations of the queries: Less than 10
operators encode the final plans (Figure 5.5). The query plans in Figure 5.5 differ,
because of the different query formulations: Figure 5.4(a) returns the order items
of a single order, whereas Figure 5.4(b) may return the order items of multiple
orders—those with an identical number of parts. For varying TPC-H scale factors
the queries provide the same result and the evaluation times on DB2 are almost
identical for both query plans (with the position-based approach being slightly
faster).

In addition to the difference of choosing the largest order, the queries in
Figure 5.4(a) and Figure 5.4(b) differ in further query details. The query in
Figure 5.4(a) uses an explicit self join, whereas the query in Figure 5.4(b) takes
advantage of LINQ’s nested data model. In the query plans this difference is not
observable anymore: Both variants encode the relationship between the sums and
the order items with an equi-join (Xjwem,=item,). This observation is supported by
a third variant of Query Q7 (Figure 5.4(c)), which exploits LINQ’s nested data
model to avoid the explicit self join in Figure 5.4(b). The optimizations resolve
the nesting and turn this query into the query plan in Figure 5.5(b).

Further transformations of the queries in Figure 5.4(a) and Figure 5.4(b)
that replace the group by construct by a combination of an explicit duplicate
elimination and a self join that retrieves the order items into a nested result

2We picked LINQ instead of LL as input language, to provide a clear view of the different query
concepts. The following LL query is equivalent to the query in Figure 5.4(a). Its for loops and
the positional (unnamed) access, however, interfere with the readability:

for $g at $p in for $g in group (table LINEITEM (16, (1,4)).1,
table LINEITEM (16, (1,4)))
order by sum (for $1i in $g.2
return $1i.5) descending
return $g
return if ($p = 1)
then $g.2
else empty

5.2. QUANTITATIVE EVALUATION 99

itera1,posgg,
(itemy,...,item1g)

@p0522:<item1,item4)

@iter21:1 iterap,possy;,
‘ (itemq,...,item1g)
Mitem; =item p0521:<item1,item4)
~ |
Uitemgo @iter20:1
\ |
S) itemoo:(pos;g,p0s;g) Mitemig=item;7
\ -~
@poslgsl GrRPitemlgzMAX (itemy7)/items
! |
#p0518:<¢item17) @item;g:1 Mitem=item1
\ \ —
GRPijtem;: sum (items)/itemy GRPitem;: sum (items)/itemy
\\ \\
© LINEITEM (itemy ... item1) © LINEITEM (itemy ... item1g)
(a) Rewritten position-based query (b) Rewritten aggregate-based query
plan of the query in Figure 5.4(a). plan of the query in Figure 5.4(b).

Figure 5.5: Rewritten query plans of Query (7.

(Figure 5.4(d)), still result in the rewritten query plans in Figure 5.5.
The most compact variant of Query (J7, we came up with, is written in RUBY:

LINEITEM.group_by{ |x| x.L_ORDERKEY }
.max_by{ lok,lis| lis.sum { |1i| 1i.QUANTITY } }

The max_by construct calculates its body expression, selects the single, maximal
value, and returns the corresponding argument |ok,lis|—the order items of the
order with the most parts. The query plan resulting from this RUBY query hence
mixes the concepts of both query plans in Figure 5.5 by first performing a filter
on the maximum, before applying the positional predicate.

5.2 Quantitative Evaluation

In the following, we turn our focus to the runtime characteristics of the optimized
query plans. We demonstrate the runtime effect of the simplifications, examine
how DB2 copes with a rewritten XQUERY workload, and assess the overhead of
expressing SQL queries in a non-relational language.

All experiments were conducted on the same host—a Sun Fire X4275 server.
The host is equipped with two Intel Xeon processors X5570 (2.93 GHz; quad core),

100 CHAPTER 5. OPTIMIZATION ASSESSMENT

1,000 4
: 5}
100 + L@ © © £100
0000 g Ouu O.OOUUUQ O s
10‘;.....9 (] ¢ ® @ sf10
1—;0....0’...000..000.. e sfil
0.1 L

Query 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20

Figure 5.6: Normalized evaluation times of the optimized XMark queries, which
emphasize the scalability of MonetDB/XQuery with respect to the document size.

72 GB main-memory, and 6 TB of disk space. The queries were compiled and
optimized with Pathfinder included in MonetDB/XQuery (v0.36.2). measurements
were performed on an IBM DB2 database system (V9.7.0, fixpack 0) and a
MonetDB Server (v4.36.2).

5.2.1 XMark on MonetDB/XQuery

For varying scale factors (sf), we collected the evaluation times of the 20 XMark
queries both for the initial loop lifted query plans (sf0.01-1) and the optimized
query variants (sf0.01-100). We ran each query 10 times and reported the average
wall-clock evaluation time (in milliseconds). Table 5.2 lists the results of the
measurements. No rewritten query performs worse than its initial loop lifted
variant. In fact, the optimized variants of XMark Queries 6 to 12 halved the
evaluation times (see > in Table 5.2) even for the smallest document size (sf0.01).
The positive effect of the rewrites becomes even more evident for larger document
instances. For scale factor 1, 75 percent of the queries are at least twice as fast as
their initial loop lifted variants.

The big performance differences for XMark Queries 6 and 7 shown in Ta-
ble 5.2 stem from the application of Rewrite 79 merging steps of the XQUERY
shorthand // (after the removal of ordering and duplicate elimination operators).
XMark Queries 8 to 12 feature value-based joins, all of which are detected by the
optimizations. In consequence, the rewritten queries run orders of magnitudes
faster.

Figure 5.6 depicts the normalized evaluation times of the optimized query
plans on MonetDB/XQuery (with respect to the evaluation times for scale factor 1).
The graph shows that MonetDB/XQuery scales linearly with the document size.
The only outliers are XMark Queries 11 and 12. In both queries, the bottleneck
is a theta-join (comparison via >) that generates an intermediate result in the
order of 108 tuples for the scale factor 100 document. This concerns the query
result, whose computation cannot be avoided (though the end result becomes
small, thanks to subsequent aggregation).

5.2. QUANTITATIVE EVALUATION 101

XMark sf0.01 sf0.1 sf1 sf10 sf100
Query initial opt initial opt initial opt opt opt
1 19 13 21 15 98 2 37 264 2,216
2 21 16 25 17 117 % 36 247 2,320
3 42 39 61 37 211 % 106 841 7,637
4 33 23 39 25 206 2 78 637 5,578
5 19 15 19 15 41 35 135 1,312
6 22 210 97 ¥ 9 946 ¥ 9 26 69
7 41 2 12 253 ¥ 11 2,482 ¥ 12 292 137
8 182 < 24 11,870 ¥ 34 227878 > 161 1,397 14,322
9 204 2 38 12923 ¥ 47 2,286,729 ¥ 172 1418 14,678
10 144 2 68 1,359 ¥ 110 153,559 > 588 5,176 71,528
11 143 % 29 7,907 ¥ 43 1,509,956 > 547 67,737 DNF
12 60 > 26 2400 ¥ 39 318,396 > 310 86,310 DNF
13 23 19 26 18 66 > 27 113 993
14 28 18 131 %2 57 1,166 3 431 4,669 52,030
15 29 27 31 25 40 32 115 944
16 35 31 36 31 49 38 143 1,194
17 20 18 26 21 117 63 461 5,097
18 15 13 17 13 45 26 168 1,988
19 32 21 70 2 31 496 2 129 1,132 13,217
20 5 2 21 68 2 24 335 2 T4 482 4,607

Table 5.2: A comparison of MonetDB/XQuery’s evaluation times for the queries
of the XMark benchmark: initial loop lifted vs. optimized query plans (in msec,
averaged over 10 runs). 3 indicates that a query’s optimized variant runs at least
x times faster.

102 CHAPTER 5. OPTIMIZATION ASSESSMENT

Pathfinder + DB2 MonetDB/XQuery

sf0.01 sf0.1 sfl sf0.01 sf0.1 sf1
Loop Lifted Query Plans 477 2,346,302 - 182 11,870 2,278,786
Rewritten Query Plans 63 1,982 62,227 24 34 161

Table 5.3: Evaluation times of XMark Query 8 (in msec, averaged over 10 runs).

In comparison to the best evaluation times of the XMark queries reported
in [107], the current version of MonetDB/XQuery can almost keep up. On the
same machine and back-end, the hand-optimized translation of XMark Query 8
(Figure 3.5) is only 2.6 times faster (62 msec).

XMark on DB2. In Section 3.3 we measured the evaluation times of the initial
loop lifted query plan for XMark Query 8 both on MonetDB/XQuery and DB2.
Table 5.3 extends Table 3.2 with the evaluation times of the rewritten query
plans. Although the execution times for the rewritten query plans on DB2 are
much faster, there is still a big performance gap compared to MonetDB/XQuery.
One reason is the complex representation of node constructors on the SQL level.
In [55], we demonstrated that the materialization of intermediate results in terms
of temporary tables can overcome this performance bottleneck, but may pollute
the database table space.

5.2.2 Join Graph Isolation on DB2

The initial loop lifted query plans forced DB2 to execute the queries in the
given order: Because of the numbering operators, DB2 could not reorder any join
operators. After applying our optimizations, DB2 is faced with query workloads for
which its cost-based optimizer may start providing alternative efficient execution
plans.

In the following, we analyze the result produced by DB2’s optimizer—the
execution plan—of an archetypical XQUERY query formulated in the workhorse
dialect [54]. Query Qg operates on XMark data and returns the names of those
auction categories in which expensive items were sold (at prices beyond $500):

let $a := doc ("auction.xml")
for $ca in $a//closed_auction[price > 500],
$i in $a//item,
$c in $a//category (Qs)
where $ca/itemref/@item = $i/@id
and $i/incategory/@category = $c/@id
return $c/name

Based on the XML encoding described in Section 3.2, the rewritten query
plan of Query (g is transformed into the SQL query of Figure 5.7. The query

5.2. QUANTITATIVE EVALUATION 103

SELECT DISTINCT d13.*, d2.pre AS unql, d4.pre AS ung2,
d5.pre AS ung3, dl2.pre as ung4,

N S

FROM poc AS di, ..., poc AS di3
WHERE di1.kind = DOC
AND d1.name = ’auction.xml’
AND d2.kind = ELEM
AND d2.name = ’closed_auction’

AND d2.pre BETWEEN (dl.pre + 1) AND (dl.pre + dl.size)
AND d3.kind = ELEM

10 AND d3.name = ’price’

11 AND d3.pre BETWEEN (d2.pre + 1) AND (d2.pre + d2.size)
12 AND d2.level + 1 = d3.1level

13 AND d3.data > 500

© oo ~ [=2] ot

40 AND d12.kind = ELEM

41 AND d12.name = ’name’

42 AND d12.pre BETWEEN (d5.pre + 1) AND (d5.pre + d5.size)
43 AND d13.pre BETWEEN (d12.pre) AND (d12.pre + d12.size)
44 ORDER BY unql, ung2, unqg3, ung4, d13.pre

Figure 5.7: SQL encoding of Query Qs.

describes a 12-fold self-join over table DOC. The structural node relationships of
the step join operators Z1*V expressed by a are mapped into conjunctive range
join predicates over columns pre, size, and level: Line 8 in Figure 5.7 describes
a step along the descendant axis and Lines 11-12 a child step. Similarly, the
step’s kind and/or name test v yields equality predicates over kind and name (e.g.,
Lines 6-7).

To provide the relational database management system with complete in-
formation about the expected incoming queries, we instructed the compiler to
make the semantics of the serialization point ¢ explicit. This adds one extra
descendant-or-self step to any Query (), originating in its result node sequence:

for $x in () return $x/descendant-or-self::node,

where node matches all node kinds (including attributes). This produces all
XML nodes required to fully serialize the result (surfacing as the additional row
variable d13 in Figure 5.7).

For Query Qs as an representative of the expected query workload, the DB2
automatic design advisor, db2advis [36], suggests the B-tree index set of Table 5.4
(with a total size of 300 MB for a 110 MB instance of the XMark auction.xml
document). Because of the regularity of the emitted SQL code, the utility of
the proposed indexes will be high for any XQUERY workload that exhibits a
significant fraction of XQUERY join graphs.

The majority of the index keys proposed in Table 5.4 are prefixed with low
cardinality column(s), for example, n, nk, or nlk: An XMark XML instance features

104 CHAPTER 5. OPTIMIZATION ASSESSMENT

Index key columns Index deployment

XPath node test and axis step,

access document node (doc(-))

Atomization, value comparison with

subsequent /preceding XPath step

Serialization support (with columns nvkls in
DB2’s INCLUDE(-) clause [36])

p:pre, s:pre + size, l:level, k:kind, n:name, v:value, d:data

Table 5.4: B-tree indexes proposed by db2advis.

77 distinct element tag and attribute names, regardless of the document size.
Similar observations apply to the XML node kinds and the typical XML document
height. A B-tree that is organized primarily by such a low cardinality column will,
in consequence, partition the XML infoset encoding into few disjoint node sets [49].
Note how a name-prefixed index key leads to a B-tree-based implementation of
element tag streams, the principal data access path used in the so-called twig join
algorithms [25,27].

The design advisor further suggests an index with key vnlkp whose value
column prefix supports atomization and the general value comparisons between
(attribute) nodes featured in Query Qg. A B-tree of this type bears some close
resemblance with the XPath-specific indexes (CREATE INDEX ... GENERATE KEY
USING XMLPATTERN ... AS SQL VARCHAR(n)) employed by pureXML™ [14].

XPath Stitching and Branching

How exactly does DB2’s query optimizer deploy the indexes proposed by its
design advisor companion? An answer to this question can be found through
an analysis of the execution plan generated by the optimizer. We have, in fact,
observed a few not immediately obvious “tricks” that have found their way into the
execution plans. Most of these observations are closely related to query evaluation
techniques that have originally been described as XPath—specific [25,86,94], outside
the relational domain.

The optimized DB2 execution plan found for Query Qg is shown in Figure 5.8.3
We are reproducing this execution plan in a form closely resembling the output of
DB2’s Visual Explain facility. Nodes in these plans represent operators of DB2’s
variant of physical algebra—all operators relevant for the present discussion are
introduced in Table 5.5.

We further annotated the execution plan in Figure 5.8 with XPath fragments
that indicate which nodes are affected by the corresponding index lookup. The

30n XMark sf1 the query is evaluated within 544 milliseconds, whereas the initial loop lifted
variant does not finish within days.

5.2. QUANTITATIVE EVALUATION 105

Operator Semantics Operator Semantics
Result row delivery Sort rows (4 duplicate row
elimination)
Nested-loop join Hash join
(left leg: outer) (left leg: probe)
B-tree scan Temporary table scan
Index access DOC XML infoset table access

Table 5.5: Relevant IBM DB2 plan operators.

resumption and continuation points {_} describe the connection between the various
fragments. Consider, for example, the B-tree index with key nkspl: Because of
its nk prefix, this index primarily provides support for XPath name and kind
tests. Additionally, however, the index delivers the infoset properties spl and thus
provides all necessary information to step along any XPath axis. The annotation
with the XPath fragment

in Figure 5.8 therefore describes a lookup in the index nkspl that retrieves columns
nk to (a) perform the due name and kind test (name = ’closed_auction’ Akind =
ELEM) and (b) provides enough information to support the resumption point {_}

XPath resumption and continuation points together by means of residual join
predicates.

The query optimizer decides on the processing order of the XPath axes based
on its “classical” selectivity notion and the availability of eligible access paths:
For a B-tree with name-prefixed keys, the relational database system’s data
distribution statistics capture tag name distribution, whereas value-prefixed keys
lead to statistics about the distribution of the (untyped) element and attribute
values.

In the case of Query (g, this enabled the optimizer to decide that the access
path nkdlp, directly leading to price nodes (key prefix nk) with a typed decimal
value of greater than 500 (key column d), is most selective: Only 9,750 of the
4.7 million nodes in the 110 MB XMark XML instance are price elements and
only a fraction of these have a typed value in the required range.

DB2 builds a hash map on these price nodes and probes the map with the
closed_auction nodes, thus completing the resumption point { . Further, the
hash join operator has its early-out flag set (see x in Figure 5.8) and thus—similar
to the original Query (Qs—serves only as a predicate filter for the closed_auction
nodes.

The B-tree index entries provide sufficient context information to allow for
arbitrary path processing orders. In the terminology of [86], we have observed

106 CHAPTER 5. OPTIMIZATION ASSESSMENT

NLJOIN
NLJOIN IXSCAN

AN
E\ILJQI@V\[XSCAI\D

‘\- it nod.e()
E\ILJéII\D‘\[XSCAI\D serlahzatlon)
F BT g mame 5
[(NLJOIN] EXSCAI\D ,,,,,,,,,,,,

/‘ \ ~ ‘\m Jqt rcategory { ,,,,, e
E\'LJOH\D EXSCA@ (/child
‘\- (i :id/data(.) =g

@g@\@g-
category/datal.)
[(NLJOIN] [XSCAI\D o

B N— \- s
NLJOIN IXSCAN

f \ \V\m e 1tem{ c

E\JLJOH\D [xscm\ﬂ)

\- i rid/datal) =),

E\%Jg@\lxscm\l -
Uy iitem/data()),
[HSJOH\D [xscm\D

I j \- +ivemrer /REEFIBIS,
XSCAN IXSCAN
@ doc("auction.xml"){/descendant},

DOC DOC] {_y: :priceldata(.) >500]

Figure 5.8: DB2 V9 execution plan for Query Qs.

the optimizer to generate the whole variety of Scan (strict left-to-right location
path evaluation), Lindex (right-to-left evaluation), and Bindex plans (hybrid
evaluation, originating in a context node set established via tag name selection;
compare with the initial closed_auction node test in Figure 5.8).

The due context {_J; of the path fragment

:closed_auction{/child},: :price[data(.) >500]

is provided only by the subsequent NLJOIN-IXSCAN pair, which verifies that the
closed_auction elements found so far indeed are descendants of auction.xml’s
document node. Observe that, in this specific evaluation order of the location
steps, the closed_auction nodes now assume the context node role: the plan
effectively determines the closed_auction elements that have the document node

5.2. QUANTITATIVE EVALUATION 107

of auction.xml in their ancestor axis.

In effect, the optimizer mimics a family of rewrites that has been developed
in [94]. These rewrites were originally designed to trade reverse XPath axes
for their forward duals, which can significantly enlarge the class of expressions
tractable by streaming XPath evaluators. Here, instead, we have found the
optimizer to exploit the duality in both directions. The evaluation of rooted
/descendant: :n steps—pervasively introduced in [94] to establish a context node
set of all elements with tag n in a document—is readily supported by the n-prefixed
B-tree indexes. Since the XQUERY compiler implements the full axis feature, it
can actually realize a significant fraction of the rewrites in [94].

Finally note how some continuations are used more than once in the down-
stream execution plan. Continuations with multiple resumption points are
the equivalent of the branching nodes discussed in the context of holistic twig
joins [25,27,28]. Quite differently, though, we (a) support the full azis feature,
(b) let the relational database management system shoulder 100 percent of the
evaluation-time and parts of the compile-time effort invested by these algorithms
(e.g., the join tree planner implements the findOrder(-) procedure of [28] for free),
and (c) use built-in B-tree indexes over table-shaped data where TwigStack [25]
and Twig®Stack [27] rely on special-purpose runtime data structures, for example,
chains or hierarchies of linked stacks and modified B-trees, which call for significant
invasive extensions to off-the-shelf database kernels.

5.2.3 Loop Lifting an Ordinary Database Workload

In our previous experiments, we have mainly used XQUERY queries to observe
the performance impact of the optimizations with respect to the initial loop
lifted query plans. Here, we analyze how the combination of loop lifting and
optimizations affects an ordinary relational database workload.

We use a SQL-to-SQL compiler that translates SQL queries into algebra plans
using a variant of the loop lifted compilation scheme discussed in Chapter 2,
optimizes the given plans, and turns these plans back into SQL queries by means
of the SQL code generator sketched in Section 3.2. In the context of [58], we use
such a SQL-to-SQL compiler to support a declarative language-level debugger.
Because of the loop lifted compilation, the debugger can extract any meaningful
subquery and constructs SQL queries to retrieve the intermediate result computed
by that subquery.

To quantify the effect of the loop lifted compilation on query execution time,
we executed the original SQL queries Q1-Q14 of the TPC-H benchmark [121]
as well as their loop lifted counterparts against two vanilla TPC-H database
instances of scale factor 1 and 10, hosted by DB2. The execution times of the
original TPC-H queries, executed as-is as specified by the benchmark, provide the
performance baseline for the comparison of Figure 5.9. All timings were measured
under the index configuration suggested by DB2’s index advisor db2advis once it

108 CHAPTER 5. OPTIMIZATION ASSESSMENT

TPC-H sf1 (1GB) sf10 (10 GB)

Query original loop lifted original loop lifted 12 1 2
Q1 18.20 18.23 184.29 183.49 Q1 ®

Q2 0.04 0.02 0.48 0.21 Q2 @

Q3 5.43 5.39 98.69 98.33 Q3 ®

Q4 4.43 4.40 99.29 96.30 Q4 @

Q5 1.08 1.08 23.10 23.10 Q5 @®

Q6 0.71 0.59 13.59 12.60 Q6 Q@

Q7 0.48 0.49 7.25 717 Q7 @

Q8 0.29 0.29 5.09 5.08 Q8 ®

Q9 2.86 2.87 76.66 76.29 Q9 @

Q10 1.07 1.07 24.86 24.95 Q10 ®

Q11 0.19 0.37 2.28 4.14 Q11 @
Q12 0.33 0.47 5.03 9.01 Q12 LY6)
Q13 3.25 3.27 45.41 45.55 Q13)

Q1) 0.19 0.19 2.26 2.24 Q14 ®

(a) Query timings (SQL evaluation times, in seconds). (b) Relative execution
times (o =sf1, ® = sf10).

Figure 5.9: A quantification of the performance impact of
the loop lifted compilation strategy (measured on DB2).

had been exposed to the original TPC-H workload.

Figure 5.9(b) reports no significant performance impact for most queries.* A
more thorough comparison of the SQL queries reveals that TPC-H Queries @1,
Q3, Q5, Q6, Q7, Q10, and Q)14 result in almost the same query text: The only
difference is that the SQL code generator introduced a common table binding for
every aggregate operator. For queries with nesting in the FROM clause (Queries ()8,
Q9, and Q13), the SQL code generator returned flat queries and only introduced
an additional common table expression for the nested aggregate in Query Q15.

The loop lifted variant of Query 12 replaces an IN list used in the original
query by a series of OR clauses. For the back-end database system DB2, this small
modification is enough to choose a different (slower) execution plan.

For the remaining three queries (TPC-H Query Q2, @4, and Q11), the gen-
erated SQL code includes SQL language constructs that were not used in the
original query variants. Query ()2 contains a numbering operator that ensures the
alignment of a query block that initially was a nested subquery (ps_supplycost
= (subquery)).

TPC-H Query @4 contains a correlated subquery (Figure 5.10), which the
optimizations were able to resolve: The corresponding loop lifted SQL query
(Figure 5.11) features a uncorrelated query that produces a list of duplicate-free
order keys (ctel). The second table binding cte2 as well as the top-most query

4A mark O on the line labeled “2” would indicate that the loop lifted SQL compiler leads to
doubled query execution times, for example.

5.2. QUANTITATIVE EVALUATION 109

select o_orderpriority,
count (x) as order_count
from orders
where o_orderdate >= date (’1993-07-01)
and o_orderdate < date (’1993-07-01’) + 3 month
and exists (select *
from lineitem
where 1_orderkey = o_orderkey
and 1_commitdate < 1l_receiptdate)
group by o_orderpriority
order by o_orderpriority;

Figure 5.10: Original TPC-H Query Q4.

WITH
-- binding because of duplicate elimination
ctel (iteml) AS
(SELECT DISTINCT t1.1_orderkey AS iteml
FROM lineitem AS t1
WHERE t1.1_commitdate < tl1.1_receiptdate),

—-- binding because of aggregate
cte2 (item2, item3) AS
(SELECT t2.o_orderpriority AS item2,
COUNT (%) AS item3
FROM orders AS t2,
ctel AS t3
WHERE t2.o_orderkey = t3.iteml
AND t2.o_orderdate < date (’1993-07-01’) + 3 month
AND NOT (t2.o_orderdate < date (’1993-07-017))
GROUP BY t2.o_orderpriority)

SELECT t4.item2, t4.item3

FROM cte2 AS t4
ORDER BY t4.item2 ASC;

Figure 5.11: Loop lifted variant of TPC-H Query (4.

110 CHAPTER 5. OPTIMIZATION ASSESSMENT

that features the ORDERBY condition, are again almost identical to the original
query.

For TPC-H Query 11, the optimizations could not eliminate all numbering
operators thus resulting in a slower query evaluation. Because of a multiplication
in the argument of a sum (sum(ps_supplycost * ps_availqty)), Rewrites 50
and 51 failed to remove the mapping joins whose columns referenced the numbering
operators. Asin Section 5.1.1, additional rewrite rules can overcome this limitation.

We conclude that the optimized loop lifted SQL queries are “well-behaved”
in many cases and in general do not overwhelm off-the-shelf relational query
optimizers.

Chapter 6

Summary and Outlook

Pervasive order, data nesting, and the support for tree-structured data were
deliberately ignored for over 30 years in most relational database systems. Here,
we took the ideas of loop lifting [63] to devise a compilation scheme that transforms
side effect free list-based programs with order, nesting, and XML concepts into
algebraic queries (Chapter 2). One such supported language is LINQ, which—
unlike SQL/XML—provides a natural integration of XML in relational query
processing [59)].

The queries resulting from the compilation may be evaluated on any SQL:1999
database system or the highly specialized XQUERY back-end MonetDB/XQuery
(Chapter 3). Because any database system we had on our workbench struggled
with the generated execution plans, this work introduced a logical query optimizer
that copes with the unusual plan shape. A rewrite framework that collects
operator and column properties performs the logical optimization based on local,
peephole-style rewrites (Chapter 4). Three heuristics guide the optimization:
They (a) remove superfluous operators, (b) minimize the order constraints, and
(c) unnest the query plans.

The outcome are significantly simplified query plans, which often may be
automatically turned into a single, flat SELECT DISTINCT-FROM-WHERE-ORDER BY
SQL query, are robust with respect to semantically equivalent, yet syntactically
differing queries, and whose execution times can almost keep up with hand-
optimized queries (Chapter 5).

6.1 Contributions

This work discusses the compilation, optimization, and evaluation of non-relational
queries in the context of relational database systems. The initial compilation
(Chapter 2) and the SQL code generation (Section 3.2) are a joint effort with
Manuel Mayr, Tom Schreiber, and Jens Teubner. The main focus of this work
lies on the optimization of the logical query plans.

111

112 CHAPTER 6. SUMMARY AND OUTLOOK

6.1.1 Optimization of Large Query Plans

The initial query plans are DAG-shaped and feature hundreds of operators.
To cope with these large query plans, peephole-style rewrites drive the rewrite
framework. The rewrites are supported by a number of properties, which collect
various properties of an operator’s upstream and downstream plans. Based on
this property information only local rewrites are performed.

All properties may be inferred by a single DAG traversal. These properties
collect information on keys, constants, abstract domain relationships, functional
dependencies, available as well as required columns, the use of columns, expected
selection values, duplicates, operator cardinality, and the number of parent opera-
tors. While many of these properties have already been described in the context
of relational query processing, we adjusted them to cope with the DAG structure
and a number of new operators such as the numbering and XML operators.

A common subplan elimination algorithm cse additionally supplies a global
simplification that merges equivalent subplans irrespective of column naming.
For any back-end that supports plan reuse this optimization increases query
performance.

6.1.2 Order Minimization

Given our unordered logical algebra, the loop lifted compilation encodes order by
means of numbering operators. We refined the initial approach that relies on row
numbering operators # [63] and introduced the less restrictive rank operators
to provide relative order information.

We devised a set of rewrite rules that remove superfluous rank operators
based on required column information, simplify their arguments with the help of
constant, key, and cardinality information, and merge ordering criteria of adjacent
ordering operators. To minimize the order constraints, a further set of rewrite
rules push up the ¥ operators until they either merge into a necessary absolute
ordering (e.g., a positional predicate) or reach the serialization point to encode
the overall output order.

6.1.3 Unnesting of Loop Lifted Query Plans

Nested for loops as well as the intermediate nesting expressed by box/unbox
pairs lead to query plans with a large number of mapping joins. We devised a
set of rewrite rules that take key and domain information into account and push
down equi-joins and subsequently eliminate the superfluous ones.

A second set of rewrite rules consumes the resulting long chains of operators,
detects plan fragments that are independent of their upstream plan, and unnests
these plan fragments. While the former set of rules removes much of the surface

6.2. CONCLUSION 113

query structure, the application of the latter rules results in the detection of
value-based joins.

The query unnesting is the key ingredient turning MonetDB/XQuery into an
efficient and robust XQUERY processor, whose performance—in contrast to its
previous version [21]—is not affected by syntactic variations.

6.1.4 MonetDB/XQuery and Pathfinder

This document represents an excerpt of the implementation performed in the con-
text of Pathfinder and MonetDB/XQuery. The current version of MonetDB/XQuery
constitutes a mature XQUERY processor that can process large quantities of XML
data in interactive time. In addition to compiling XQUERY queries, Pathfinder’s
code base has been extended to consume and optimize arbitrary logical query
plans and to turn the resulting plans into SQL queries. For the non-relational
input languages FERRY, LINKS, LINQ, and RUBY this leads to very convincing
results.

Improvements to MonetDB/XQuery and Pathfinder that were not discussed in
this work include, but are not limited to, (a) XQUERY debugging support [60],
(b) efficient support for recursive queries [4,5], (c) side-effecting error handling that
does not affect the optimizations, (d) fast XML subtree serialization, (e) fast run-
time support for node construction,! (f) twig constructors replacing multiple node
constructors, (g) zero-cost subtree copies for serialize-only subtrees, (h) explicit
query result caching, and (i) the integration of DataGuides [47].2

6.2 Conclusion

We demonstrated that relational database systems are able to efficiently support
languages that operate on ordered and nested structures as well as XML data.
Our optimizations—that is, the combination of the three heuristics house cleaning,
order minimization, and query unnesting—unlock the potential of the relational
back-ends. Together with the SQL code generator, we provide a compiler for
non-relational query languages that turns a large number of relational database
management systems into efficient execution environments for data-intensive
programs.

While the optimizations are guided by heuristics only, we almost always
observed small improvements. For certain “important” classes of queries such
as join graph queries, the optimized variants were orders of magnitudes faster.
Choosing an unordered logical algebra furthermore allowed us to generate SQL

'MonetDB/XQuery does not use a printf-style node construction as in Figure 3.5, but generates
new nodes that can be queried within the same query.

2DataGuide support is not active in MonetDB/XQuery and was switched off for the generated
SQL queries.

114 CHAPTER 6. SUMMARY AND OUTLOOK

queries and thus benefit from orthogonal, cost-based query optimizations already
built into off-the-shelf relational query processors.

Finally, the combination of loop lifting and optimizations enabled and facili-
tated a number of additional research topics such as database-supported program
execution in the scope of FERRY, LINKS, LINQ, and RUBY [56, 59, 109, 110],
efficient support for recursion [4,5], declarative language-level debugging [58,60],
runtime query optimization [74,75], XQUERY full text support [68], XQUERY
statistics [119], and, most notably, the high-performance XQUERY processor
MonetDB/XQuery.

6.3 Open Problems and Future Work

This work started out with a focus on XQUERY processing on large XML docu-
ments, before integrating other approaches into the optimization process as well.
Here, we review three topics that identify current deficiencies and sketch possible
improvements for future Pathfinder versions.

6.3.1 More XML Related Optimizations for XQUERY

We described only a few XML-related optimization opportunities. The integration
of DataGuide support in MonetDB/XQuery mentioned in Section 4.5 might further
speed up MonetDB/XQuery’s query processing.

A more interesting optimization, however, would be to merge XPath steps
operating on transient nodes with the corresponding node constructors [76]. Such a
scenario arises, for example, if a query tries to operate on a tuple-like structure. In
XQUERY, tuples can be expressed only by means of XML trees: Node constructors
align multiple items and subsequent path steps extract these items again.

To integrate such an optimization, we would need to introduce rewrites that
push down & and #: operators and merge them with the node constructors.
Existing properties such as icols and use and additional properties that record
information about nodes (stored vs. transient) and their subtree cardinality (single
item per node vs. multiple items per node) can ensure the correctness of the
rewrites.

6.3.2 Surrogate Values in Optimized Query Plans

Our approach encodes data nesting by means of surrogate values. The numbering
operators # and U provide these values and every invocation of box introduces
a new surrogate-based foreign-key relationship. The optimizations are able to
eliminate the mapping joins and surrogates for combinations of calls to box
and unbox. The optimizations, however, are not able to remove the numbering

6.3. OPEN PROBLEMS AND FUTURE WORK 115

operators for queries with nested result types, as these surrogates end up in
different queries.

In some situations, these remaining numbering operators lead to query plans
in which the calculation of cross products is enforced or a database system’s index
support is effectively disabled. To improve such query plans, Pathfinder would
need to optimize multiple query plans simultaneously to consistently resolve the
foreign-key relationships.

An alternative approach might be a modification of the compilation scheme.
Multiple, already existing columns that form a candidate key could be used
as a replacement for the current single surrogate column [122]. This change
would result in a significantly smaller number of numbering operators, yet more
comparison conditions in the mapping equi-joins. In consequence, however, the
equi-join pushdown rewrites would require a major overhaul.

6.3.3 Automatization of Rewrites

Although the current version of Pathfinder gives its users a fine-grained control over
the optimizations, by default, rewrites are performed in a fixed order and with a
predetermined number of repetitions. Both, order and repetitions, were determined
incrementally based on the manual observation of hundreds of optimized query
plans.

While Pathfinder’s optimizations tend to optimize most queries well, we often
observed queries where a subset of the optimizations already resulted in the same
query plan. But there were also queries whose resulting query plans provided
further potential for optimization. Both scenarios indicate that an adaptive query
optimization approach might save compilation time for simple queries and improve
the query plans for complex queries.

An automated adjustment of the optimizations might furthermore take the
query complexity as well as the sizes of the affected documents into account.
MonetDB/XQuery, for example, evaluates simple XPath queries on moderately
big documents (< 100 MB) very fast regardless of the optimizations.

116 CHAPTER 6. SUMMARY AND OUTLOOK

Bibliography

1]
2]

[10]

AcCTIVERECORD in RUBY ON RAILS. http://ar.rubyonrails.org/.

Loredana Afanasiev. Querying XML: Benchmarks and Recursion. Ph.D.
Thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands, Dec
2009.

Loredana Afanasiev, Massimo Franceschet, Maarten Marx, and Enrico
Zimuel. XCheck: A Platform for Benchmarking XQuery Engines. In Proc.
VLDB, pages 1247-1250, 2006.

Loredana Afanasiev, Torsten Grust, Maarten Marx, Jan Rittinger, and Jens
Teubner. An Inflationary Fixed Point Operator in XQuery. In Proc. ICDE,
pages 1504-1506, 2008.

Loredana Afanasiev, Torsten Grust, Maarten Marx, Jan Rittinger, and Jens
Teubner. Recursion in XQuery: Put Your Distributivity Safety Belt On. In
Proc. EDBT, pages 345-356, 2009.

Loredana Afanasiev, loana Manolescu, and Philippe Michiels. MemBeR: A
Micro-Benchmark Repository for XQuery. In Proc. XSym, pages 144-161,
2005.

Alfred V. Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. Efficient Optimiza-
tion of a Class of Relational Expressions. ACM Transactions on Database
Systems (TODS), 4(4):435-454, 1979.

Wouter Alink, R. A. F. Bhoedjang, Peter A. Boncz, and Arjen P. de Vries.
XIRAF - XML-Based Indexing and Querying for Digital Forensics. Digital
Investigation, 3(Supplement-1):50-58, 2006.

Wouter Alink, R. A. F. Bhoedjang, Arjen P. de Vries, and Peter A. Boncz.
Efficient XQuery Support for Stand-Off Annotation. In Proc. XIME-P,
2006.

Wouter Alink, Valentin Jijkoun, David Ahn, Maarten de Rijke, Peter A.
Boncz, and Arjen P. de Vries. Representing and Querying Multi-Dimensional
Markup for Question Answering. In Proc. NLPXML, April 2006.

117

118

[11]

[12]

[13]

[14]

[15]

[17]

[18]

[19]

[20]

[21]

22]

BIBLIOGRAPHY

AMBITION (RUBY). http://ambition.rubyforge.org/.

S. Amer-Yahia, C. Botev, S. Buxton, P. Case, J. Doerre, M. Holstege,
J. Melton, M. Rys, and J. Shanmugasundaram. XQuery 1.0 and XPath 2.0
Full-Text (Working Draft). W3 Consortium, May 2007. http://www.w3.
org/TR/xpath-full-text-10/.

Stefan Aulbach, Torsten Grust, Dean Jacobs, Alfons Kemper, and Jan
Rittinger. Multi-Tenant Databases for Software as a Service: Schema-
Mapping Techniques. In Proc. SIGMOD, pages 1195-1206, 2008.

Andrey Balmin, Kevin S. Beyer, Fatma Ozcan, and Matthias Nicola. On
the Path to Efficient XML Queries. In Proc. VLDB, pages 1117-1128, 2006.

Catriel Beeri, Ronald Fagin, and John H. Howard. A Complete Axiomatiza-
tion for Functional and Multivalued Dependencies in Database Relations.
In Proc. SIGMOD, pages 47-61, New York, NY, USA, 1977. ACM.

S. Boag, D. Chamberlin, and M. Fernandez. XQuery 1.0: An XML
Query Language. W3 Consortium, January 2007. http://www.w3.org/TR/
xquery/.

P.A. Boncz, M. Zukowski, and N. Nes. X100: Hyper-Pipelining Query
Execution. In Proc. CIDR, pages 225-237, Asimolar, USA, 2005.

Peter A. Boncz. Monet: A Next-Generation DBMS Kernel for Query-
Intensive Applications. Ph.D. Thesis, Universiteit van Amsterdam, Amster-
dam, The Netherlands, May 2002.

Peter A. Boncz, Jan Flokstra, Torsten Grust, Maurice van Keulen, Ste-
fan Manegold, K. Sjoerd Mullender, Jan Rittinger, and Jens Teubner.
MonetDB/XQuery-Consistent and Efficient Updates on the Pre/Post Plane.
In Proc. EDBT, pages 1190-1193, 2006.

Peter A. Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan
Rittinger, and Jens Teubner. Pathfinder: XQuery—The Relational Way. In
Proc. VLDB, pages 1322-1325, Trondheim, Norway, August 2005.

Peter A. Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan
Rittinger, and Jens Teubner. MonetDB/XQuery: A Fast XQuery Processor
Powered by a Relational Engine. In Proc. SIGMOD, pages 479-490, Chicago,
USA, June 2006.

Peter A. Boncz and Martin L. Kersten. MIL Primitives for Querying a
Fragmented World. VLDB Journal, 8(2):101-119, 1999.

BIBLIOGRAPHY 119

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Peter A. Boncz, Stefan Manegold, and Jan Rittinger. Updating the Pre/Post
Plane in MonetDB/XQuery. In Proc. XIME-P, 2005.

Matthias Brantner, Sven Helmer, Carl-Christian Kanne, and Guido Mo-
erkotte. Full-Fledged Algebraic XPath Processing in Natix. In Proc. ICDE,
pages 705-716, 2005.

Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic Twig Joins: Op-
timal XML Pattern Matching. In Proc. SIGMOD, pages 310-321, Madison,
USA, 2002.

Surajit Chaudhuri. An Overview of Query Optimization in Relational
Systems. In Proc. PODS, pages 34-43, 1998.

Songting Chen, Hua-Gang Li, Jun’ichi Tatemura, Wang-Pin Hsiung, Di-
vyakant Agrawal, and K. Selcuk Candan. Twig*Stack: Bottom-Up Process-
ing of Generalized-Tree-Pattern Queries over XML Documents. In Proc.
VLDB, 2006.

Zhimin Chen, H. V. Jagadish, Laks V. S. Lakshmanan, and Stelios Paparizos.
From Tree Patterns to Generalized Tree Patterns: On Efficient Evaluation
of XQuery. In Proc. VLDB, pages 237248, 2003.

Sophie Cluet and Guido Moerkotte. Nested Queries in Object Bases. In
Proc. DBPL, pages 226-242, 1993.

John Cocke. Global Common Subexpression Elimination. SIGPLAN Notices,
5(7):20-24, 1970.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web
Programming Without Tiers. In Proc. FMCO, pages 266-296, 2006.

George P. Copeland and Setrag Khoshafian. A Decomposition Storage
Model. In Proc. SIGMOD, pages 268279, 1985.

John Cowan and Richard Tobin. XML Information Set. W3 Consortium,
February 2004. http://www.w3.org/TR/xml-infoset/.

H. Darwen. The Role of Functional Dependence in Query Decomposition. In
C. J. Date and H. Darwen, editors, Relational Database: Writings 1989-1991,
pages 133-154. Addison-Wesley, Reading, MA, 1992.

Jack W. Davidson and Christopher W. Fraser. The Design and Application
of a Retargetable Peephole Optimizer. ACM TOPLAS Journal, 2(2):191-202,
April 1980.

120

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[48]

[49]

BIBLIOGRAPHY

DB29 for Linux, UNIX and Windows Manuals, 2007. http://www.ibm.
com/software/data/db2/udb/.

D. Draper, P. Fankhauser, M. Fernandez, A. Malhotra, K. Rose, M. Rys,
J. Siméon, and P. Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics. W3
Consortium, January 2007. http://www.w3.org/TR/xquery-semantics/.

Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database
Systems. Addison Wesley, 4th edition, July 2003.

ADO.NET Entity Framework. http://msdn.microsoft.com/en-us/
library/aa697427(VS.80) . aspx.

Ronald Fagin. Multivalued Dependencies and a New Normal Form for
Relational Databases. ACM Transactions on Database Systems (TODS),
2(3):262-278, 1977.

Mary F. Fernandez, Jan Hidders, Philippe Michiels, Jérome Siméon, and
Roel Vercammen. Optimizing Sorting and Duplicate Elimination in XQuery
Path Expressions. In Proc. DEXA, pages 554-563, Copenhagen, Denmark,
2005.

The Ferry Query Compiler. http://www.ferry-lang.org/.

Thorsten Fiebig, Sven Helmer, Carl-Christian Kanne, Guido Moerkotte,
Julia Neumann, Robert Schiele, and Till Westmann. Anatomy of a Native
XML Base Management System. VLDB Journal, 11(4):292-314, 2002.

Patrick C. Fischer and Stephen J. Thomas. Operators for Non-First-Normal-
Form Relations. In Proc. COMPSAC, pages 464-475, 1983.

D. Florescu and D. Kossmann. Storing and Querying XML Data Using an
RDBMS. [EEE Data Engineering Bulletin, 22(3):27-34, September 1999.

César A. Galindo-Legaria and Milind Joshi. Orthogonal Optimization of
Subqueries and Aggregation. In Proc. SIGMOD, pages 571-581, 2001.

Roy Goldman and Jennifer Widom. DataGuides: Enabling Query Formu-
lation and Optimization. In Proc. VLDB, pages 436—445, Athens, Greece,
August 1997.

Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM
Computing Surveys, 25(2):73-170, June 1993.

Goetz Graefe. Sorting and Indexing with Partitioned B-Trees. In Proc.
CIDR, 2003.

BIBLIOGRAPHY 121

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Torsten Grust. Accelerating XPath Location Steps. In Proc. SIGMOD,
pages 109-120, 2002.

Torsten Grust. Purely Relational FLWORs. In Proc. XIME-P, Baltimore,
MD, USA, June 2005.

Torsten Grust and Stefan Klinger. Schema Validation and Type Annotation
for Encoded Trees. In Proc. XIME-P, pages 55-60, 2004.

Torsten Grust, Manuel Mayr, and Jan Rittinger. XQuery Join Graph
Isolation. In Proc. ICDE, pages 11671170, 2009.

Torsten Grust, Manuel Mayr, and Jan Rittinger. Let SQL Drive the XQuery
Workhorse. In Proc. EDBT, 2010.

Torsten Grust, Manuel Mayr, Jan Rittinger, Sherif Sakr, and Jens Teubner.
A SQL:1999 Code Generator for the Pathfinder XQuery Compiler. In Proc.
SIGMOD, pages 1162-1164, 2007.

Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber. Ferry:
Database-Supported Program Execution. In Proc. SIGMOD, pages 1063~
1066, 20009.

Torsten Grust and Jan Rittinger. Jump Through Hoops to Grok the Loops—
Pathfinder’s Purely Relational Account of XQuery-style Iteration Semantics.
In Proc. XIME-P, Vancouver, Canada, June 2008.

Torsten Grust and Jan Rittinger. Observing SQL Queries in their Natural
Habitat, 2010. Submitted.

Torsten Grust, Jan Rittinger, and Tom Schreiber. Avalanche-Safe LINQ
Compilation. In Proc. VLDB, September 2010.

Torsten Grust, Jan Rittinger, and Jens Teubner. Data-Intensive XQuery
Debugging with Instant Replay. In Proc. XIME-P, Beijing, China, June
2007.

Torsten Grust, Jan Rittinger, and Jens Teubner. eXrQuy: Order Indifference
in XQuery. In Proc. ICDE, pages 226-235, Istantbul, Turkey, April 2007.
[EEE Computer Society.

Torsten Grust, Jan Rittinger, and Jens Teubner. Why Off-the-Shelf RDBMSs
are Better at XPath Than You Might Expect. In Proc. SIGMOD, pages
949-958, 2007.

Torsten Grust, Sherif Sakr, and Jens Teubner. XQuery on SQL Hosts. In
Proc. VLDB, pages 252-263, 2004.

122 BIBLIOGRAPHY

[64] Torsten Grust and Jens Teubner. Relational Algebra: Mother Tongue—
XQuery: Fluent. In Proc. Twente Data Management Workshop, pages 9-16,
Enschede, The Netherlands, June 2004.

[65] Torsten Grust and Maurice van Keulen. Tree Awareness for Relational
DBMS Kernels: Staircase Join. In Proc. Intelligent Search on XML Data,
pages 231-245, 2003.

[66] Torsten Grust, Maurice van Keulen, and Jens Teubner. Staircase Join:
Teach a Relational DBMS to Watch its (Axis) Steps. In Proc. VLDB, pages
524-535, Berlin, Germany, September 2003.

[67] Torsten Grust, Maurice van Keulen, and Jens Teubner. Accelerating XPath
Evaluation in Any RDBMS. ACM Transactions on Database Systems
(TODS), 29:91-131, 2004.

[68] Djoerd Hiemstra, Henning Rode, Roel van Os, and Jan Flokstra. PF/Tijah:
Text Search in an XML Database System. In Proc. OSIR, August 2006.

[69] Information Technology-Database Language SQL-Part 14: XML-Related
Specifications (SQL/XML). L1.O. for Standardization (ISO).

[70] Milena Ivanova, Martin L. Kersten, Niels J. Nes, and Romulo Goncalves.

An Architecture for Recycling Intermediates in a Column-Store. In Proc.
SIGMOD, pages 309-320, 2009.

[71] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, Laks V. S. Lak-
shmanan, Andrew Nierman, Stelios Paparizos, Jignesh M. Patel, Divesh
Srivastava, Nuwee Wiwatwattana, Yuqing Wu, and Cong Yu. TIMBER: A
Native XML Database. VLDB Journal, 11(4):274-291, 2002.

[72] Matthias Jarke and Jiirgen Koch. Query Optimization in Database Systems.
ACM Computing Surveys, 16(2):111-152, June 1984.

[73] Simon Peyton Jones and Philip Wadler. Comprehensive Comprehensions:
Comprehensions with “Order by” and “Group by”. In Proc. ACM SIGPLAN
workshop on Haskell, pages 61-72, 2007.

[74] Riham Abdel Kader, Peter A. Boncz, Stefan Manegold, and Maurice van
Keulen. ROX: Run-Time Optimization of XQueries. In Proc. SIGMOD,
pages 615-626, 2009.

[75] Riham Abdel Kader, Peter A. Boncz, Stefan Manegold, and Maurice van
Keulen. ROX: The Robustness of a Run-Time XQuery Optimizer Against
Correlated Data. In Proc. ICDE, pages 1185-1188, 2010.

BIBLIOGRAPHY 123

[76]

[79]

[30]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

3]

[89]

Hiroyuki Kato, Soichiro Hidaka, Zhenjiang Hu, Keisuke Nakano, and Ya-
sunori Ishihara. Context-Preserving XQuery Fusion. In Proc. APLAS,
November 2010.

Martin L. Kersten and Stefan Manegold. Cracking the Database Store. In
Proc. CIDR, pages 213-224, Asimolar, USA, 2005.

Setrag Khoshafian, George P. Copeland, Thomas Jagodis, Haran Boral,
and Patrick Valduriez. A Query Processing Strategy for the Decomposed
Storage Model. In Proc. ICDE, pages 636-643, 1987.

Anthony C. Klug. Calculating Constraints on Relational Expressions. ACM
Transactions on Database Systems (TODS), 5(3):260-290, September 1980.

Quanzhong Li and Bongki Moon. Indexing and Querying XML Data for
Regular Path Expressions. In Proc. VLDB, pages 361-370, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

LINQ Standard Query Operators. http://msdn.microsoft.com/en-us/
library/bb397896.aspx.

LINQ to SQL: .NET Language-Integrated Query for Relational Data. http:
//msdn.microsoft.com/en-us/library/bb425822.aspx.

Ashok Malhotra, Jim Melton, and Norman Walsh. XQuery 1.0 and XPath
2.0 Functions and Operators. W3 Consortium, January 2007. http:
//www.w3.org/TR/xquery-semantics/.

Sabine Mayer, Torsten Grust, Maurice van Keulen, and Jens Teubner. An
Injection of Tree Awareness: Adding Staircase Join to PostgreSQL. In Proc.
VLDB, pages 13051308, 2004.

Manuel Mayr. A SQL:99 Code Generator for Pathfinder. Master Thesis,
Technische Universitdt Miinchen, Munich, Germany, Apr 2007.

Jason McHugh and Jennifer Widom. Query Optimization for XML. In Proc.
VLDB, pages 315-326. Morgan Kaufmann, Sep 1999.

William M. McKeeman. Peephole Optimization. Communications of the
ACM, 8(7):443-444, July 1965.

Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: Reconciling
Objects, Relations, and XML in the .NET Framework. In Proc. SIGMOD,
pages 706-706, 2006.

Jim Melton. Advanced SQL:1999: Understanding Object-Relational and
Other Advanced Features. Morgan Kaufmann Publishers, Amsterdam, 2003.

124

[90]

[91]

[92]

[93]

[94]

[95]

[97]

[98]

[99]

[100]

[101]
[102]

103]

BIBLIOGRAPHY

Thomas Neumann. Efficient Generation and Execution of DAG-Structured
Query Graphs. Dissertation, Universitat Mannheim, July 2005.

Thomas Neumann and Guido Moerkotte. A Combined Framework for
Grouping and Order Optimization. In Proc. VLDB, pages 960-971, Toronto,
Canada, September 2004. Morgan Kaufmann Publishers.

Thomas Neumann and Guido Moerkotte. Generating Optimal DAG-
Structured Query Evaluation Plans. Computer Science - R€D, 24(3):103—
117, 20009.

Atsushi Ohori. Type-Directed Specialization of Polymorphism. Information
and Computation, 155(1-2):64-107, 1999.

Dan Olteanu, Holger Meuss, Tim Furche, and Frangois Bry. XPath: Look-
ing Forward. In Proc. XML-Based Data Management and Multimedia
Engineering, pages 109-127, Prague, Czech Republic, March 2002.

Patrick O’Neil, Elizabeth O’Neil, Shankar Pal, Istvan Cseri, Gideon Schaller,
and Nigel Westbury. ORDPATHs: Insert-Friendly XML Node Labels. In
Proc. SIGMOD, pages 903908, 2004.

Shankar Pal, Istvan Cseri, Oliver Seeliger, Michael Rys, Gideon Schaller,
Peter Kukol, Wei Yu, Dragan Tomic, Adrian Baras, Chris Kowalczyk,
Brandon Berg, Denis Churin, and Eugene Kogan. XQuery Implementation in
a Relational Database System. In Proc. VLDB, pages 1175-1186, Trondheim,
Norway, August 2005.

Stelios Paparizos and H. V. Jagadish. Pattern Tree Algebras: Sets or
Sequences? In Proc. VLDB, pages 349-360, Trondheim, Norway, 2005.

Simon Peyton Jones. The Haskell 98 Language. Journal of Functional
Programming, 13(1), 2003.

Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. Extensible/Rule
Based Query Rewrite Optimization in Starburst. In Proc. SIGMOD, pages
39-48, New York, NY, USA, 1992. ACM.

The Python Programming Language. http://www.python.org/.
Ruby on Rails. http://rubyonrails.org/.

John C. Reynolds. Definitional Interpreters for Higher-Order Programming
Languages. Higher-Order and Symbolic Computation, 11(4):363-397, 1998.

Jan Rittinger, Jens Teubner, and Torsten Grust. Pathfinder: A Relational
Query Optimizer Explores XQuery Terrain. In Proc. BTW, pages 617620,
2007.

BIBLIOGRAPHY 125

[104]

[105]
[106]

107]

[108]

[109]

[110]

111

[112]

[113]

[114]

[115]

[116]

Jonathan Robie, Don Chamberlin, Michael Dyck, and John Snelson. XQuery
1.1: An XML Query Language (Working Draft). W3 Consortium, December
2009. http://www.w3.org/TR/2009/WD-xquery-11-20091215/.

The Ruby Programming Language. http://www.ruby-lang.org/.

Hans-Jorg Schek and Marc H. Scholl. The Relational Model with Relation-
Valued Attributes. Information Systems, 11(2):137-147, 1986.

Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J. Carey, loana
Manolescu, and Ralph Busse. XMark: A Benchmark for XML Data Man-
agement. In Proc. VLDB, pages 974-985, 2002.

Joachim W. Schmidt. Some High-Level Language Constructs for Data of
Type Relation. ACM Transactions on Database Systems (TODS), 2(3):247—
261, 1977.

Tom Schreiber. Translation of List Comprehensions for Relational Database
Systems. Master Thesis, Technische Universitat Miinchen, Munich, Germany,
Mar 2008.

Tom Schreiber, Simone Bonetti, Torsten Grust, Manuel Mayr, and Jan
Rittinger. Thirteen New Players in the Team: A Ferry-Based LINQ to SQL
Provider. In Proc. VLDB, September 2010.

Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Ray-
mond A. Lorie, and Thomas G. Price. Access Path Selection in a Relational
Database Management System. In Proc. SIGMOD, pages 23-34, Boston,
USA, May 1979.

Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database Systems
Concepts. McGraw-Hill, New York, San Francisco, Washington, DC, USA,
5th edition, May 2005.

David E. Simmen, Eugene J. Shekita, and Timothy Malkemus. Fundamental
Techniques for Order Optimization. In Proc. SIGMOD, pages 5767, 1996.

Giedrius Slivinskas, Christian S. Jensen, and Richard T. Snodgrass. Bringing
Order to Query Optimization. SIGMOD Record, 31(2):5-14, 2002.

James F. Terwilliger, Philip A. Bernstein, and Sergey Melnik. Full-Fidelity
Flexible Object-Oriented XML Access. In Proc. VLDB, volume 2, pages
1030-1041, 2009.

James F. Terwilliger, Sergey Melnik, and Philip A. Bernstein. Language-
Integrated Querying of XML Data in SQL Server. Proceedings of the VLDB
Endowment (PVLDB), 1(2):1396-1399, 2008.

126

[117]

[118]

[119]

[120]

[121]
[122]

[123]

[124]

[125]

[126]

127]

[128]

BIBLIOGRAPHY

Jens Teubner. Pathfinder: XQuery Compilation for Relational Database
Targets. In Proc. BTW, pages 465-474, 2007.

Jens Teubner. Scalable XQuery Type Matching. In Proc. EDBT, pages
38-48, Nantes, France, March 2008.

Jens Teubner, Torsten Grust, Sebastian Maneth, and Sherif Sakr. Depend-
able Cardinality Forecasts for XQuery. Proceedings of the VLDB Endowment
(PVLDB), 1(1):463-477, 2008.

Jens T. Teubner. Pathfinder: XQuery Compilation for Relational Database
Targets. Dissertation, Technische Universitat Miinchen, September 2006.

TPC Benchmark H. T. P. P. Council. http://www.tpc.org/tpch/.

Jan van den Bussche. Simulation of the Nested Relational Algebra by
the Flat Relational Algebra, with an Application to the Complexity of
Evaluating Powerset Algebra Expressions. Theoretical Computer Science,
254(1-2):363-377, 2001.

Philip Wadler. Comprehending Monads. In Proc. ACM conference on LISP
and functional programming, pages 61-78, 1990.

Song Wang, Elke A. Rundensteiner, and Murali Mani. Optimization of
Nested XQuery Expressions with Orderby Clauses. Data € Knowledge
Engineering, 60(2):303-325, Feb 2007.

Xiaoyu Wang and Mitch Cherniack. Avoiding Sorting and Grouping in
Processing Queries. In Proc. VLDB, pages 826-837, 2003.

Ying Zhang and Peter A. Boncz. XRPC: Interoperable and Efficient Dis-
tributed XQuery. In Proc. VLDB, pages 99-110, 2007.

Ying Zhang and Peter A. Boncz. XRPC: Distributed XQuery and Update
Processing with Heterogeneous XQuery Engines. In Proc. SIGMOD, pages
13311336, 2008.

Ying Zhang, Nan Tang, and Peter A. Boncz. Efficient Distribution of
Full-Fledged XQuery. In Proc. ICDE, pages 565-576, 2009.

Acknowledgments

The outcome of my master project was the first substantial back-end code generator
for Pathfinder, which compiles XQUERY queries directly into MonetDB’s MIL
code. While this code generator included a syntactic join detection logic and
led to the first successful version of MonetDB/XQuery [21], I was disappointed
that already slight tweaks to the query text led to huge performance penalties.
I thus longed for a better solution. Torsten Grust gave me the opportunity to
unlock MonetDB/XQuery’s potential and offered me a job in his team at the TU
Miinchen, which I gladly accepted. I still do not regret that decision!

During my time at the TU Miinchen and the Universitat Tiibingen, Torsten’s
office was always open, which I shamelessly exploited not only to get feedback,
but also to show off the newest improvement. He supported me in most of my
decisions and guided me, whenever I seemed to reach a dead end. Torsten, thank
you very much for everything.

Further, I would like to thank Jens Teubner. With his intuition to explain even
the most complex problem in an intelligible way, he could very often help me—
especially at the beginning of my work. His thorough attitude was stimulating in
many situations and strongly influenced me.

The improvement of MonetDB/XQuery was my driving force in the first years.
The interest and support of Peter Boncz and Stefan Manegold as well as Sjoerd
Mullender, Lefteris Sidirourgos, Yhing Zhang and Henning Rode from the CWI
Amsterdam and Jan Flokstra, Maurice van Keulen, and Riham Abdel Kader
from the University of Twente motivated me all the time. Loredana Afanasiev,
furthermore, caused me to look at Pathfinder’s compilation from a different
angle during our joint effort to efficiently evaluate recursive queries in XQUERY
efficiently. Thanks to all of you.

In the later years, the focus of Pathfinder shifted to support other non-relational
query languages. I would like to thank Manuel Mayr and Tom Schreiber for many
discussions that led to ever more language concepts the loop lifted compilation
was able to support.

During all the time my family gave me constant support: They supported my
decision to spend more time at the university, endured two moves into new cities,
never failed to believe that I finish this work, and ensured that I kept the balance
between work and relaxation. Thanks a million and I love all of you!

127

