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Abstract

Metagenomics is a rapidly growing field of research that aims at studying un-
cultured organisms to understand the true diversity of microbes, their functions,
cooperation and evolution, in environments such as soil, water, ancient remains
of animals, or the digestive system of animals and humans.

The recent development of ultra-high throughput sequencing technologies,
which do not require cloning or PCR amplification, are fueling a vast increase in
the number and scope of metagenome projects. Bioinformatics is faced with the
problem of how to handle and analyze these datasets in an efficient and useful
way. One goal of these metagenomic studies is to get a basic understanding
of the microbial world both surrounding and within us. In a quest for better
understanding our microbial community, a main challenge is to compare multiple
datasets. Despite the improvements of various techniques, still there is a need
for new ways of comparing metagenome datasets, and for fast and user-friendly
implementations of such approaches.

This thesis introduces a number of new methods for interactively exploring,
analyzing and comparing multiple metagenome datasets:

- The first is a visualization technique for the visual comparison of many large
metagenomes in the tree hierarchy;

- the second includes statistical methods for highlighting the significant dif-
ferences in a pairwise metagenome comparison; and

- the third is a novel approach for visualizing the relationships between mul-
tiple metagenome samples combining the use of taxonomic/functional anal-
ysis, ecological indices and non-hierarchical clustering to provide a network
representation between different datasets. Importantly, the networks pro-
vide both the visual definition and metric quantification of non-rooted re-
lationships between metagenome samples.
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Abstract 2

The methods are illustrated using several published data sets of different types,
and are applicable to metagenomes, metatranscriptomes and 16S ribosomal pro-
files. Not only designed for datasets coming from second generation sequencing
platforms, these methods will be applicable to the upcoming third generation
sequencing datasets also.

Most metagenome sequencing projects so far have been based on Sanger
or Roche-454 sequencing, as only these technologies provide long enough reads,
while Illumina sequencing has not been considered suitable for metagenomic stud-
ies due to a short read length of only 35 bp. However, now that reads of length
75 bp can be sequenced in pairs, Illumina sequencing has become a viable option
for metagenome studies. To this end the performance of two second-generation
sequencing technologies are compared by simulating metagenomes. The tech-
nical aspects and usefulness of paired reads and different clone length are also
portrayed.

All the methods described in this thesis are implemented and freely available
with the stand-alone metagenome analysis tool MEGAN.



Chapter 1
Introduction and Background

1.1 Microbes: The Small Wonders

The diversity of species on earth is high. Most of them are microorganisms.
They are everywhere. For example, one microliter surface seawater has been es-
timated to contain thousands of different bacteria, archaea, and ten thousands of
different viruses [Azam and Malfatti, 2007]. Bacteria are the main players in the
microbial world, performing tasks that include everything from causing disease
to fixing nitrogen in the soil. According to en estimate by microbiologist William
B. Whitman, there are typically 40 million bacterial cells in one gram of soil
and a million bacterial cells in a millilitre of fresh water; alltogether, there are
approximately five nonillion (5 x 1030) bacteria on Earth, forming most of the
world’s biomass [Whitman et al., 1998]. Microbes play a significant role in global
carbon and nutrient cycling. “You can think of microbes as canaries in the coal
mine, if you will, because they have an extremely rapid response time. They can
double in a day or less. If we can read those responses, and how they might in-
fluence cycles, then we would have a very sensitive probe into how environmental
changes are occurring” explained Edward F. DeLong [Parson, 2005]. According
to Lily Whiteman, “with their mighty collective muscle, microbes control every
ecological process, from the decay of dead plants and animals to the production of
oxygen” [Whiteman, 2008]. Microbes that colonize the human body during birth
or shortly thereafter, and they remain throughout life, are referred to as normal
flora [Salyers and Whitt, 2000]. “If all of Earth’s microbes died, so would every-
thing else, including us,” says Matt Kane. “But if everything else died, microbes
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Chapter 1. Introduction and Background 4

would do just fine”. Therefore, Kane concludes, “we need microbes more than they
need us”. So we can easily say that microbes run the world [Whiteman, 2008].

1.2 Metagenomics

“When we try to pick out anything by itself, we find it is tied to
everything else in the universe.” – John Muir, 1911

Muir’s quote is particularly applicable to the microbial world. It seems to be
impossible to identify, classify, and research all microbes. Standard genomics try
to enrich pure cultures and study them: for example the taxonomy, the genome,
the genes and the pathways. However, only a miniscule fraction – most scientists
estimate only about 1% of all microbes can be cultured because of their complex
symbiosis with other organisms. Several times scientists have given different
estimates of representative genes on Earth, but every new project demonstrated
something new, a previously unfathomed repository of biodiversity. “So when you
think about biodiversity, and the extent of diversity on the planet, you really get
a sense of how little we know about this undiscovered world. We are at the stage
of discovery where, everywhere we look, we see new species” says microbiologist
Roberto Kolter [Shaw, 2007].

Genomic studies are limited. Because, single organism genome studies in-
volves cloning of its entire genome, which is not often possible due to the in-
teraction of a species within the community with other habitats and sometimes
with the host organisms. These studies can not achieve the extend of microbial
diversity. The scientific community gained new options with the development of
new sequencing techniques and high throughput analysis. The pace of genomic
investigations in environmental microbiology and microbial ecology is accelerat-
ing. Nowadays a sample can be obtained from a habitat and sequenced directly
from the environment. The collective genomes of microbes have been termed
the ‘metagenome’ and these environmental studies are ‘metagenomic studies’ or
shortly ‘metagenomics’ [Handelsman et al., 1998]. Metagenomics can fill the gap
of normal genomics, as sequence data can be obtained directly from the envi-
ronment where they are with their natural habitats. This is a rapidly growing
field of research that aims at studying uncultured organisms to understand the
true diversity of microbes, their functions, cooperation and evolution,in environ-
ments such as soil, water, ancient remains of animals, or the digestive system of
animals and humans. Although it is clear that communities of microbes play a
vital role in such systems, a more detailed understanding is only beginning to
emerge. In metagenomics, scientists apply the power of genome analysis to entire
communities of microbes, without isolating and culturing individual organisms.
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A main promise of metagenomics is that it will accelerate drug discovery and
biotechnology by providing new genes with novel functions.

1.2.1 The Metagenomics Process

The first step in metagenomic studies begin with obtaining a sample from a par-
ticular environment such as marine, soil, or the human biome, extracting genetic
material from ideally all of the organisms in the sample and then analyzing the
DNA as a collection to gain insights on how members of the community interact,
change, and perform complex functions. Typically, laboratory bacteria are then
induced to take up and replicate the fragments of the extracted DNA, creating
a ‘library’ containing the genomes of all the bacteria and archaea found in the
sampled environment (new technologies facilitate studying a community’s DNA
directly, bypassing the creation of a library) [Committee on Metagenomics, 2007].
The DNA of the community can then be studied in different approaches. In this
thesis we will focus on two main ways: sequence-based metagenomics (studying
the community structure, species richness and distribution or taxonomic anal-
ysis) and function-based metagenomics (studying the metabolic potential of a
community or functional analysis).

1.2.2 Metagenomics Projects

Environmental genomics projects originated from Norm Pace’s cultivation
independent survey approach for studying natural microbial populations.
[Pace et al., 1985, Olsen et al., 1986]. Later advances in DNA sequencing tech-
nology, development of improved cloning vectors and streamlined cloning tech-
niques helped the recovery and sequencing of large DNA inserts from naturally
occurring microbes. Since 1998, after Jo Handelsman [Handelsman et al., 1998]
used the term metagenomics for the first time, many different metagenomics
projects have been reported providing remarkable insights into diverse ecological
systems. Advances in bioinformatics, refinements of DNA amplification, and the
rise of computational power have greatly aided the analysis of DNA sequences re-
covered from environmental samples. In 2002, Mya Breitbart, Forest Rohwer, and
colleagues used environmental shotgun sequencing to show that 200 liters of sea-
water contains over 5000 different viruses [Breitbart et al., 2002]. After that two
remarkable studies “changed the landscape significantly, and showcase the power
and potential of shotgun sequencing approaches to characterize natural microbial
populations” [DeLong, 2004]. The first focused on an acid mine drainage biofilm
[Tyson et al., 2004]. With only 76Mbp of sequences Tyson and colleagues showed
it was possible to assemble ‘near complete’ composite genomes of constituent Bac-
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teria (Leptospirillum species) and Archaea (Ferroplasma species). The second
spectacular study, the Global Ocean Sampling (GOS) was undertaken by Ven-
ter and colleagues. In early 2003, they circumnavigated the globe and collected
metagenomic samples throughout. The pilot project, carried out in the Sargasso
Sea, discovered DNA from nearly 2000 different species, including 148 types of
bacteria never seen before [Venter et al., 2004]. As of 2009, Venter and colleagues
thoroughly explored the West Coast of the United States. Currently they are in
the midst of a two-year expedition to explore the Baltic, Mediterranian and Black
Seas. The Sorcerer II GOS Expedition yielded an extensive dataset consisting of
7.7 million sequencing reads (6.3 billion bp) [Rusch et al., 2007]. “Simply on the
basis of size alone, the GOS dataset is a milestone in the endeavour to understand
the magnitude and scope of efforts that will be required to make sense of micro-
bial genomic and functional diversity in the sea” [DeLong, 2007]. In addition
there are many other projects devoted to marine metagenomics, see for example
[Gilbert et al., 2008a, Gilbert et al., 2009, Woyke et al., 2009].

We already know that microbes inhabit the human body. In fact, every
person has more than 10 times as many microbes living on and inside his or
her body as they have human cells. Although most frequently associated with
disease, our microbial community helps us much more than it harms us. As
a result, a global initiative was started to characterize the interaction between
microbes and the various parts of the human body [Turnbaugh et al., 2007].
Several results have been already reported such as, [Turnbaugh et al., 2006,
Gill et al., 2006, Qin et al., 2010]. The National Institutes of Health’s Human
Microbiome Project (HMP) is one the most important projects designed to take
advantage of metagenomic analysis to study human health. The HMP started
with the mission of generating resources enabling comprehensive characterization
of the human microbiota and analysis of its role in human health and disease. In
May 2010, the researchers published a first genomic collection of human microbes
[Human Microbiome Jumpstart Reference Strains Consortium et al., 2010].

Sequencing of the soil metagenome will represent the third major microbial
sequencing effort after the human microbiome and the marine metagenome. The
soil environment has a higher complexity than any other environment on Earth
and a concerted international effort is required to obtain the soil metagenome
[Handelsman et al., 1998, Tringe et al., 2005, Urich et al., 2008]. After a meet-
ing in Lyon, France in December 2008, an international group of scientists
from 23 countries, formed a consortium named ‘TerraGenome’, solely dedicated
to soil metagenomics. The goal is to establish a working public international
consortium for the complete sequencing of the metagenome of a reference soil
[Vogel et al., 2009]. There are many other projects dedicated to soil metage-
nomics, for example [Schloss and Handelsman, 2006c, van Elsas et al., 2008].
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Most of the studies focus on prokaryotic sequences. However, there
are also studies on viral metagenomes for example [Breitbart et al., 2002,
Culley et al., 2006, Williamson et al., 2008, Li et al., 2010] and many more.
Metagenomics has also enriched the recently emerging paleogenomics research.
While metagenomics helps us to understand our microbial community, paleoge-
nomics unveils increasingly precise picture of our ancestral vertebrate genomes
based on genome sequences and new algorithmic developments. [Hofreiter, 2008].
The method of this research is very similar to typical metagenomic approach.
Many recent studies have focused on the ancient bone [Poinar et al., 2006,
Green et al., 2006, Ramérez et al., 2009] or hair samples [Gilbert et al., 2007,
Miller et al., 2009, Gilbert et al., 2008b] and many others.

The microbial habitats now being examined in metagenomic studies are
diverse and expanding. For example typical applications include the study of
the microbes in honey bee colony collapse disorder [Cox-Foster et al., 2007],
the hindgut microbiata of termites [Warnecke et al., 2007], in a glacier
ice metagenome [Simon et al., 2009], the bacterial metagenome of cigarettes
[Sapkota et al., 2010], and many others. The Genomes Online Database
(GOLD)1, provides information regarding complete and ongoing microbial
projects around the world.

1.3 Role of Statistics in Metagenomics

Metagenomics is a rapidly developing science, promising expansion towards dis-
coveries that can help in the comprehension, cure and prevention of many dis-
eases, in monitoring the impact of pollutants on ecosystems (e.g. for cleaning
up contaminated environments) and in mining the rich genetic resource of non-
culturable microbes that may lead to the discovery of new genes, enzymes, and
natural products.

Statistics has a very important role to play in this because it can provide
models and methods to better understand or analyze the data and phenomena
in question. Statistics can help to develop innovative and efficient methods that
can help to deal with the sparse sampling as well as with the analysis of data
from meta-genomics, -transcriptomics, -proteomics. In words of philosopher Ian
Hacking, “The quiet statisticians have changed our world, not by discovering new
facts or technical developments, but by changing the ways we reason, experiment,
and form our opinions” (quoted in [Hastie et al., 2009]).

The advances in the throughput and cost-efficiency of sequencing technology
1http://www.genomesonline.org/cgi-bin/GOLD/bin/gold.cgi?page_requested=

Microbial

http://www.genomesonline.org/cgi-bin/GOLD/bin/gold.cgi?page_requested=Microbial
http://www.genomesonline.org/cgi-bin/GOLD/bin/gold.cgi?page_requested=Microbial
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is fueling a rapid increase in the number and size of metagenomic datasets being
generated (see 1.4.6,). Bioinformatics is facing the problem of how to handle and
analyze this enormous amount of data in an efficient and useful way. This situa-
tion can be described with the words of Rutherford D. Rogers: “We are drowning
in information and starving for knowledge” (quoted in [Branin and Case, 1998]).
In order to make informed decisions, it is important for all the studies, to separate
facts from speculations by applying valid statistical analyses.

1.4 DNA Sequencing and Different Technologies

1.4.1 History of DNA

We all know that Crick and Watson, together with Maurice Wilkins, won the 1962
Nobel Prize in Medicine for their discovery of the structure of Deoxyribonucleic
acid (DNA). The importance of this breakthrough discovery often overshadows
the fact that research into DNA had already begun 75 years before.

DNA was first observed and isolated by the Swiss physician Friedrich Mi-
escher, in the laboratory of Felix Hoppe-Seyler at the University of Tübingen
in 1869. He discovered a microscopic substance in the pus of discarded surgical
bandages. Since he had isolated it from the cells’ “nuclei”, he named it “nuclein”,
a name preserved in today’s designation deoxyribonucleic acid [Dahm, 2008].
In 1919, Phoebus Levene identified the four bases: adenine (A), thymine (T),
guanine (G), and cytosine (C) and the sugar and phosphate nucleotide unit
[Levene, 1919]. In 1937 William Astbury produced the first X-ray diffraction pat-
terns that showed that DNA had a regular structure [Astbury, 1937]. The middle
of the twentieth century witnessed some of the most fundamental discoveries in
DNA research. In 1944 Oswald T. Avery, Colin MacLeod and Maclyn McCarty
suggested in their landmark paper that DNA, not proteins as previously widely
believed, was the carrier of genetic information ([Avery et al., 1944]). After that
Erwin Chargaff discovered that the base composition of DNA varies between
species, but within each species the bases are always present in fixed ratios: the
same number of adenine as thymine bases and the same number of cytosine as
guanine bases [Chargaff et al., 1949, Chargaff, 1951]. In 1952, Alfred Hershey and
Martha Chase confirmed DNA as the genetic material [Hershey and Chase, 1952],
and Rosalind Franklin and Maurice Wilkins, decided to try to make a crystal
of the DNA molecule. If they could get DNA to crystallize, then they could
successfully make an X-ray pattern, thus resulting in understanding how DNA
works. Although the first attempt of Astbury (1937) to propose the correct
structure of DNA was not successful, as Astbury’s insights led directly to the
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work of Franklin and Wilkins. Finally, one year later, based on that single X-ray
diffraction image, Francis Crick and James Watson proposed a model the struc-
ture of DNA, which is now accepted as the correct double-helix model of DNA
[Watson and Crick, 1953b, Watson and Crick, 1953a].

1.4.2 Sequencing Process

DNA molecules consist of repeating nucleotides, which are the bases of DNA.
The basic principle of DNA sequencing is simple and consists of two main steps.
In the first step, labeled nucleotides are inserted into copies of a DNA fragment
that involves a technique called DNA amplification. In the second step, the DNA
sequence is derived from the locations of the labeled nucleotides which involves
separating the DNA fragments according to their lengths. This is often done by
electrophoresis in a polyacrylamide gel. The base at the end of each fragment is
identified, allowing reconstruction of the DNA sequence. Here we will not describe
the extensive details of the different sequencing techniques, but will briefly discuss
the fundamental aspects, advantages and disadvantages of them in the following.

1.4.3 1st-Generation Sequencing Techniques

After the discovery of the double-helix structure of DNA, it took almost fif-
teen years for the first determination of a DNA sequence. When talking about
1st generation sequencing techniques we usually think of the Maxam-Gilbert
[Maxam and Gilbert, 1977] and - even more - of the Sanger method published
independently in the 1977 [Sanger et al., 1977]. Both inventors shared the Nobel
Price in chemistry in 1980 for their works [Gilbert, 1980, Sanger, 1980].

Maxam-Gilbert’s technology

In 1976-1977, Allan Maxam and Walter Gilbert developed a DNA sequencing
method (also known as “chemical sequencing”) based on chemical modification of
DNA and subsequent cleavage at specific bases [Maxam and Gilbert, 1977]. At
first Maxam-Gilbert’s idea became more popular since purified DNA could be
used directly, while the initial Sanger method required that each read need to
be cloned for production of single-stranded DNA. Due to the use of hazardous
chemicals like the extremely toxic hydrazine and because Maxam-Gilbert’s tech-
nique could not be adopted for large scale automated use, more and more people
switched to Sanger sequencing.
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Sanger Sequencing

The first of the recent sequencing methodologies was described by Frederick
Sanger in 1975 and is widely known as the “Sanger Technique” or “Chain-
termination method”. Sanger’s method is based on the use of dideoxynu-
cleotides (ddNTP’s) in addition to the normal nucleotides (NTP’s) found in DNA
[Sanger et al., 1977]. This method has greatly simplified DNA sequencing.

For many years the Sanger method was the only method used in practice,
and over the years it was optimized to make it cheaper and more efficient. It is
still used today since it can be used without any special tools in almost every lab.
For long reads up to 1000 base pairs, however, more advanced accompanying kits
are necessary. The best read length, among the currently available sequencing
platforms, makes it still essential for many de-novo sequencing projects. However,
Sanger sequencing is still considered to be very expensive and slow. Sequencing
one megabase costs $500 dollars - about 1000 times the cost of the cheapest 2nd

generation technique.

1.4.4 2nd-Generation Sequencing Techniques

2nd or next-generation sequencing (NGS) techniques apply the idea of “se-
quencing by synthesis”. They are designed for sequencing large amount of
DNA substantially faster and cheaper that the early methods by the construc-
tion of cyclic-array processes. Three platforms for massively parallel DNA se-
quencing read production are in reasonably widespread use at present: the
Roche/454 FLX (http://www.454.com), the Illumina/Solexa Genome Analyzer
(http://www.illumina.com), and the Applied Biosystems SOLiDTM System
(http://www.appliedbiosystems.com).

Roche/454 pyrosequencing

The 454 system was the first of the 2nd-generation techniques. It became avail-
able commercially in 2005 by 454 Life Sciences. It amplifies DNA inside water
bubbles in an oil solution, each bubble containing a single initial DNA molecule
and a single primer-coated bead that the DNA can attach to and form a clonal
colony (emulsion PCR). The technique is known as ‘pyrosequencing’ which was
developed by Mostafa Ronaghi and Pål Nyrén at the Royal Institute of Technol-
ogy in Stockholm. The read length is now much longer (400 bases) than those of
other 2nd generation sequencing techniques, but it is significantly shorter than
those obtained by Sanger sequencing. The overall read accuracy has been con-
stantly improved over the years. [Margulies et al., 2005] reports an accuracy of

http://www.454.com
http://www.illumina.com
http://www.appliedbiosystems.com
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96% for the GS20 platform. Later in 2008, [Droege and Hill, 2008] reported a
single-read accuracy of > 99.5% over the first 200 bases. At present (Aug 2010)
Roche 454 claims an accuracy of 99% for the 400 bp reads and higher for less bases
for the GS FLX Titanium Series (http://www.454.com/products-solutions/
system-features.asp). However insertion and deletions are the most common
errors since it is difficult to determine the correct number of same nucleotides
added in sequence by the measured light intensity. Sequencing errors occasion-
ally result from the misinterpretation of homopolymer runs, i.e. stretches of
the same base (e.g., TTTTT or AAA). This leads to single-base insertion or
deletions (“overcalling”, “undercalling”), rather than to substitutions which occur
rarely [Droege and Hill, 2008]. In 2007, the preparation of a paired-end library
was introduced for 454 sequencing [Korbel et al., 2007].

Illumina (Solexa)

Solexa developed a sequencing technology based on reversible dye-terminators.
DNA molecules are first attached to a primer on a slide and amplified so that
local clonal colonies are formed (bridge amplification). In 2006, Solexa 1GGenetic
Analyzer was launched with a claim to re-sequence a human genome for about
$100, 000 in three months. The Solexa platform has its origins in work by Turcatti
and colleagues [Turcatti et al., 2008]. The original company Solexa was bought
by Illumina in 2007. Since then the platform is sold under the new name. The
current sequencer model is the Genome AnalyzerIIe claims to offer a powerful
combination of accuracy, read lengths, and paired-end insert sizes at a lower
per base ($2 range for a megabase) than 454 (http://www.illumina.com). The
major disadvantage is the read lengths that are considerably shorter than 454
reads (between 36 and 125 bp). By incorporating chain-terminating nucleotides,
complications regarding the homopolymer detection are avoided.

SOLiD

The SOLiD platform is sold by Applied Biosystems (http://www.
appliedbiosystems.com). It was developed by Kevin McKernan and his
colleagues at Agencourt Personal Genomics in 2006. The methodology was first
described in 2005 [Shendure et al., 2005]. This technology employs sequencing
by ligation. A pool of all possible oligonucleotides of a fixed length are labeled
according to the sequenced position. The ligase-based approach helps to avoid
polymerase induced errors, but, the length of the reads remains rather short (up
to 50 bp). The rate of correctness is about 99.94% over the whole read length
according to Applied Biosystems. Since insertions and especially deletions are

http://www.454. com/products-solutions/system-features.asp
http://www.454. com/products-solutions/system-features.asp
http://www.illumina.com
http://www.appliedbiosystems.com
http://www.appliedbiosystems.com
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technically unlikely, substitutions are the most common error due to hybridized
octamers with one mismatch [Mardis, 2008].

Paired-end or mate-pairs sequencing

Next-generation sequencing platforms achieved impressively low costs and high
throughputs (see Table 1.1) but most of them are limited by short read lengths.
To overcome this limitation, an immediate solution is paired-end tag (PET):
to sequence a DNA molecule from the two ends of individual fragments and
to keep track of the paired data. The term ‘paired-end’ refers to the two
ends of the same DNA molecule, the two sequences are called ‘paired-end
reads’. The first description of a paired-end sequencing method can be found
by [Hong, 1981]. The first published description of the use of paired ends was
in [Edwards and Caskey, 1991]. After that many improvements have been pub-
lished. Three main 2nd-generation sequencing technologies (454, Illumina and
SOLiD) support paired-end modules. Sometimes they are called ‘mate pairs’.
More accurately, ‘paired-end’ or ‘mate pairs’ refers to how the library is made,
and then how it is sequenced. The unique ‘paired-end’ sequencing protocol allows
the end user to choose the length of the insert (200−500 bp) and sequence either
end of the insert. Whereas ‘mate pair’ library sequencing enables the generation
of libraries with inserts from 2 to 5 kb in size.

At first Illumina was the only next-generation sequencing platform with
the unique combination of short- and long-insert paired-end sequencing libraries
(or clones): short clone libraries of an average length of 200 bp, say, and long
clone libraries, of an average length of 2, 000 bp. The paired-end module of
Illumina’s Genome AnalyzerIIe enables paired-end sequencing up to 2 x 100
bp for fragments ranging from 200 bp to 5 kb (http://www.illumina.com).
Currently Roche/454’s powerful GS FLX Titanium series provide multi-span
(3 kb, 8 kb, 20 kb) paired end and long shotgun reads (http://www.454.com).
The newest SOLiDTMPI System (under development) promises to provide 75
bp fragments with 2 x 75 bp mate-pair and 75 x 35 bp paired-end option
(http://www.appliedbiosystems.com). Figure 1.1 provides a schematic view
of paired-end sequencing methodology.

http://www.illumina.com
http://www.454.com
http://www.appliedbiosystems.com
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Figure 1.1: A schematic view of paired-end sequencing methodology. Figure taken from
[Fullwood et al., 2009].
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1.4.5 3rd-Generation Sequencing Techniques

The 3rd generation or next-next-generation sequencing (NNGS) technologies
share a characteristic feature of the “direct” and fast sequencing of single DNA
molecules, which distinguish them from the 2nd generation (NGS) technologies.
Currently three technology platforms comprise this third generation. Two achieve
single-molecule sequencing by incorporating and detecting fluorescently labeled
nucleotides: Helicos’ Genetic Analysis System http://www.helicosbio.com,
and Pacific Biosciences’ Single Molecule Real Time (SMRT) technology http:
//www.pacificbiosciences.com. The third, Oxford Nanopore’s nanopore se-
quencing uses a fairly different approach to read the DNA molecule http:
//www.nanoporetech.com/.

HeliScope:

The HeliScope is the first NNGS platform and was commercially released
in 2008 by Helicos BioSciences Corporation. HeliScope’s “true single-
molecule sequencing” technology (tSMS) is based on the method described in
[Braslavsky et al., 2003]. The read length is rather short (24 − 32 bp). As of
Aug 2010, helicos claimes a read length of 25 to 55 base pairs with the ac-
curacy remaining constant regardless of the read length. Main error types
are deletions (3%) and insertions (1.5%), whereas substitutions occur rarely
(0.2%) ( http://www.helicosbio.com). [Pushkarev et al., 2009] describes the
first single-molecule sequencing of a human genome using the Helicscope technol-
ogy. This project accomplished the sequencing in $48, 000, reasonably lower than
previous human sequencing projects [Check Hayden, 2009],

Pacific Biosciences:

Pacific Biosciences was founded in 2004 with the goal of developing “Single
Molecule Real Time” (SMRTTM) DNA sequencing technology. SMRT sequencing
utilizes the “Zero-mode waveguide” (ZMW), developed in the laboratory of Harold
G. Craighead at Cornell University [Levene et al., 2003]. When a nucleotide is
incorporated by the DNA polymerase, the fluorescent tag is cleaved off and dif-
fuses out of the observation area where its fluorescence is no longer observable.
A detector detects the fluorescent signal of the nucleotide incorporation, and the
base call is made according to the corresponding fluorescence of the dye. This
technology enables, for the first time, the observation of natural DNA synthesis
by a DNA polymerase as it occurs. According to the company the approach is
based on eavesdropping on a single DNA polymerase molecule working in a con-
tinuous, processive manner http://www.pacificbiosciences.com. As reported

http://www.helicosbio.com
http://www.pacificbiosciences.com
http://www.pacificbiosciences.com
http://www.nanoporetech.com/
http://www.nanoporetech.com/
http://www.helicosbio.com
http://www.pacificbiosciences.com
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in [Metzker, 2010], currently the average read length is 964bp (max: 2, 805bp).
According to recent news, the CEO Hugh Martin updated that prediction and
said “average read length will be 1000-1250 bases, fractionally longer than 454
or Sanger sequencing, with 5% reads between 3-5 kb”. This will definitely take
(meta)genomic research to the next level very soon. The company is in prepara-
tion for the commercial launch of its SMRT DNA sequencing system at the end
of this year (2010).

Ion Torrent:

Ion Torrent has developed a DNA sequencing system that directly translates
chemical signals (A,C,G, T ) into digital information (0, 1) on a semiconductor
chip. The result is a sequencing system that is simpler, faster, more cost effective
and scalable than any other technology available. This is an entirely new approach
of sequencing that enables a direct connection between chemical and digital in-
formation. Ion TorrentTM technology doesn’t use light – it’s the first commer-
cial PostLightTM sequencing technology. This sequencing technology requires no
proprietary chemistries or optics because it’s based on a well-characterized bio-
chemical process. When a nucleotide is incorporated into a strand of DNA by a
polymerase, a hydrogen ion is released as a byproduct. That hydrogen ion carries
a charge, which can be detected by the proprietary ion sensor. If a nucleotide,
for example a C, is added to a DNA template and a signal is detected, then it is
known that the nucleotide was incorporated. Dr. Jonathan Rothberg, a pioneer
of high-speed, massively parallel DNA sequencing, founded ion Torrent in Au-
gust 2007. Ion Torrent is expected to launch the ‘Ion Personal Genome Machine
sequencer’ in late 2010. The instrument will cost under $US100, 000 and can
complete a run in about an hour.

Oxford Nanopore Technologies:

Nanopore sequencing is not a new idea, however the technology made progress
during the last few years. The idea is simple: A single α-hemolysin pore, a 33kD
protein isolated from Staphylococcus aureus, is build into a lipid bilayer separating
two compartments. The single stranded DNA is given to one compartment and is
forced through the pore following an electrical field put on the chamber filled with
physiologic buffer into the other compartment. While DNA passes through, the
pore is partly blocked and the ionic current is modulated in a specific way. This
technique was first described by John Kasianowicz in 1996 to measure the length
of a DNA fragment [Kasianowicz et al., 1996]. Similar to the SMRT technology
of Pacific Biosciences, the nanopore technology has the potential to generate
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long reads (up to several thousand base pairs). According to [Rusk, 2009] read
accuracy is quite high (99.8%), and the error correction is expected to be straight-
forward. As of Aug 2010, Oxford Nanopore Technologies, has not yet disclosed
the timelines for introduction of their first sequencing system.

1.4.6 Advances in Technologies

By the beginning of 1990s, only a limited number of groups were able to se-
quence DNA up to 100, 000 bases at extremely high costs. The race between
Celera Genomes and the Human Genome Project to sequence the human genome
inspired scientists and engineers to come up with automated techniques that not
only speed up the process of DNA sequencing but also substantially lower its
cost. DNA sequencing is now done routinely all round the world. There are now
many laboratories that can sequence 100 million bases or more every year.

Next-generation DNA sequencing has started a revolution in genomics and
created the opportunity for large-scale sequencing projects. To further motivate
the research in sequencing technologies, the X-Prize Foundation announced the
Archon Genomics X-Prize on October 4, 2006 as a joint effort of the X-Prize
Foundation and the J. Craig Venter Science Foundation. The team that first
sequences 100 diploid human genomes with 6 billion bp each, in 10 days for less
than $10, 000 per genome with a coverage of 98% and with not more than 1
error per 100, 000 bases; will be awarded $10 million prize donated by diamond
prospector Stewart Blusson (http://genomics.xprize.org). According to J.
Craig Venter, the overall probability that this goal will be ever achieved is “close
to 100%” [Pennisi, 2006]. A comparison of the performance and cost of different
sequencing platforms is provided in Table 1.1. At the moment Sanger sequencing
and the four major NGS contenders are being used for metagenomics. Advantage
of Sanger sequencing is based on the long read length and the high read accuracy
(up to 99,999%). However, NNGS technologies are knocking on the door and will
hit the market very soon with the promise to produce even longer reads than
Sanger.

Rapid Growth in Genomic data

New sequencing technologies are accelerating the generation of biological sequenc-
ing data. The phenomenal growth of sequence data (Figure 1.2) in GenBank is
unabated and challenging to manage.

http://genomics.xprize.org
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Figure 1.2: Exponential growth of genetic data due to next-generation sequencing technolo-
gies. Data taken from: http://www.ddbj.nig.ac.jp/breakdown_stats/dbgrowth-e.html
and ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt.

The GenBank release notes of October 2007 state that “from 1982 to the
present, the number of bases in GenBank has doubled approximately every
18 months”. As of 15 June 2010, GenBank release-178.0, genetic sequence-
data has reached 115, 624, 497, 715 bases, from 120, 604, 423 reported sequences
(ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt). Upcoming sequencing tech-
nologies will accelerate this growth by several magnitudes.

http://www.ddbj.nig.ac.jp/breakdown_stats/dbgrowth-e.html
ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt
ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt


Chapter 2
Main Computational Challenges

The goal of metagenomics is to understand the extent, diversity, ecology and
evolution of microbial ecosystems. Characterizing the complexity of microbial
communities will help us to understand ecological processes. As mentioned in
Chapter 1, the developments of DNA sequencing technologies have had an enor-
mous impact on genomic research. With metagenomics, microbial biology is
experiencing a remarkable period of rapid expansion. Different sampling meth-
ods and DNA extraction techniques represent challenge for standardizing the
metagenomics methods. The sheer mass of DNA fragments of a heterogenous
environmental sample presents a major computational challenge.

The analysis of such sequence datasets is aimed at determining and com-
paring the biological diversity and the functional activity of different microbial
communities. The initial aim of the computational analysis of a metagenomic
dataset is to answer the following two questions:

- Who is out there?
Determine the taxonomic content of a dataset by estimating which taxa are
present in which relative proportions. Additionally, determine the presence
or absence of key species of interest.

- What are they doing?
Determine the functional content of a dataset by estimating what types of
genes are present in which relative proportions. Additionally, determine
which metabolic pathways of interest are supported.

Improvements in novel methods, culturing techniques, and physical separa-
tion methods, along with the generation of complete genome sequences for model
microorganisms, and in some cases the assembly of whole genomes, are necessary

19
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to interpret metagenomic sequence data. Computationally, species identification
relies on the use of reference databases or reference phylogenies that contain
sequences of known origin and gene function. The most prominent databases
are the NR and NT databases [Benson et al., 2005]. Unfortunately, substantial
database biases toward model organisms present a major hurdle for metagenomic
analysis, and in a typical metagenome dataset as much as 90% of the reads may
exhibit no similarity to any known sequence.

There is a need for new computational tools to solve these problems. As
an initiative, in 2007, our group published and released the first stand-alone
analysis tool for metagenomic data, called MEGAN (MEta Genome ANalyzer)
[Huson et al., 2007]. Initially, the aim was to provide a tool for studying the
taxonomic content of a single dataset. In Chapter 3, details about taxonomic
and functional analysis using MEGAN are presented.

As already described in Section 1.4, the recent development of new, less
expensive, ultra-high throughput sequencing technologies [Margulies et al., 2005,
Bentley, 2006] that can produce huge numbers of DNA reads at an affordable
cost, has boosted the number and scope of metagenomic sequencing projects.
It has resulted into a dramatic increase in the volume of sequence data that
must be analyzed. The analysis of metagenomic datasets is an immense con-
ceptual and computational challenge. First two basic computational problems
in metagenomics are to estimate the taxonomic content and the functional con-
tent of a given dataset. A further task is to compare the contents of different
metagenomic datasets. The basic question that comes in mind is:

- How does content of different metagenomes differ?
Compare the taxonomic and functional content of multiple datasets in an
attempt to correlate significant differences of the genomic content to envi-
ronmental differences.

Taxonomic and functional differences between metagenomic samples can help
us to understand the influence of different biological factors on interaction of
microbial life in a wide range of habitats. There are a number of different systems
and resources for metagenome or similar analysis. These are offered in the form of
databases, web portals, web services, small packages and basic stand-alone pro-
grams [Overbeek et al., 2005, Krause et al., 2008, Markowitz et al., 2006,
Markowitz et al., 2008, von Mering et al., 2007, McHardy et al., 2006,
Dutilh et al., 2008, Seshadri et al., 2007, Teeling et al., 2004, Meyer et al., 2008].

These resources are mainly focused on the analysis of individual
metagenomes and currently do not have the capacity for rapid and highly-
interactive comparison of multiple datasets. Furthermore, many of these resources
allow taxonomic analyses. In our experience currently only the MG-RAST web
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server [Overbeek et al., 2005, Meyer et al., 2008] provides a readily useable ser-
vice for the analysis of a new metagenomic dataset. Moreover, while web portals
are attractive because they offer large computational resources for data analy-
sis, some scientists have concerns about uploading their unpublished data to a
website.

The initial motivation for this work was to develop improved meth-
ods for metagenome comparison, while providing a freely available soft-
ware tool. Interest for pursuing this study also grew from a desire to
apply statistical methods to the field of metagenomics. Several tools or
packages have been developed in recent years for comparing communities
considering statistical aspects [Singleton et al., 2001, Schloss et al., 2004,
Schloss and Handelsman, 2005, Schloss and Handelsman, 2006a,
Lozupone et al., 2006, Schloss and Handelsman, 2006b]. However, as de-
scribed in [Schloss et al., 2009], “a number of limitations will affect their use
as sequencing capacity increases and studies become more complex”. An
implementation of these algorithms while focusing to overcome their limitations
for handling large data can be found in [Schloss et al., 2009].

Still all of “these methods aim to assess whether, rather than how two
communities differ” [White et al., 2009]. ‘How’ is important to understand the
contribution of microbes to the community. Until the beginning of our research
in 2007, there was only one published work that applied statistical method to
addressed this question [Rodriguez-Brito et al., 2006].

All the above mentioned tools including [White et al., 2009] can only be
used to the data obtained from 16S rRNA surveys and are not suitable for
random high-throughput metagenome projects. In a similar time of pursuit
of our study other applications have been developed for the statistical anal-
ysis [Kristiansson et al., 2009] and for assessing differences between groups of
metagenomes [Gianoulis et al., 2009]. Still there was a lack of readily available
tool for complete analysis and interactive comparison of metagenome samples.

Our intention was to provide a software tool that can compare metagenome
datasets visually and statistically to detect significant differences in occurrence
of taxa between two metagenomes. The methods are described in Chapter 4. In
contrast to existing software our approach is able to provide p-values informa-
tion for each node in a pairwise comparison of metagenomes [Mitra et al., 2009].
Following our path later in 2010, [Parks and Beiko, 2010] wanted to look at this
question more closely considering biological relevance.

Later on, we moved forward with a more complex and obvious question:

- How to compare multiple datasets?
Compare multiple metagenome datasets simultaneously.
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This question of multiple comparison is first addressed [White et al., 2009] for
a clinical setting. However, their method is limited to the comparison of two
treatment populations each comprising multiple samples. At the beginning of
our study there was no method or tool available to compare different multi-
ple datasets simultaneously. Our method brings together established approaches
from three different domains (metagenomics, ecology and phylogenetics) in a
novel way. Chapter 5 outlines this algorithmic approach. This method provides
a network representation of the relationships between different datasets and is
applicable to metagenomes, metatranscriptomes as well as 16S ribosomal profiles
[Mitra et al., 2010a].

As described in Section 1.4, many different sequencing techniques are avail-
able, with different pros and cons. That leads to another question:

- Which technology is most suitable for a given metagenomic project?
Comparison of available technologies based on their performance and cost.

To answer this question, in Chapter 6 the performance of two second-generation
sequencing technologies is compared by simulating metagenomes. The technical
aspects and usefulness of paired reads and different clone length are also por-
trayed.

In Chapter 7 we apply the introduced analysis methods in four diverse
metagenome projects.

Chapter 8 concludes the topics of this thesis and reviews the achievements
of this work in the context of current research and developments in the field of
metagenomics.



Chapter 3
Metagenome Analysis using
MEGAN

In this chapter we describe the taxonomic and functional analysis of metagenome
sample using MEGAN with an objective to answer the previously mentioned
questions:

- Who is out there?

- What are they doing?

3.1 Getting Started with MEGAN

MEGAN is a software tool that was initially developed for taxonomic analysis,
using a homology-based method to bin sequence reads. The analysis infers taxon
assignments by comparing sequence reads with known sequences contained in
databases. The ideal setup for performing metagenome analyses using MEGAN
is a powerful desktop work-station with at least 8 GB of main memory and a large
and fast local disk. The program is written in Java and requires a JRE version
1.5 or newer. Installers for all major operating systems are available from:
www-ab.informatik.uni-tuebingen.de/software/megan.

Pre-processing of sequence reads: Given a file of DNA sequence
reads obtained by sequencing an environmental sample using environmental
shotgun sequencing [Mardis, 2008, Shendure and Ji, 2008], the first computa-
tional step is to compare the reads against one or more reference databases
using a pairwise alignment tool such as BLAST (a sequence similarity search

23
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tool) [Altschul et al., 1990]. This is usually the computationally most demand-
ing step of any computational analysis of metagenomic data. For example,
one giga-base of sequence requires on the order of 10, 000 CPU hours for a
BLASTX comparison against the NCBI-NR database. Typical analyses are a
comparison against the NCBI-NR [Benson et al., 2005] database using BLASTX
[Altschul et al., 1990], against the NCBI-NT [Benson et al., 2005] database using
BLASTN [Altschul et al., 1990], or against one or more whole-genome sequences
using BLASTZ [Schwartz et al., 2003]. However, MEGAN is not tied to any par-
ticular comparison method or database.

MEGAN needs to parse the header lines associated with entries in the ref-
erence database to extract taxonomic and functional information. Thus the pro-
gram requires that input is provided either in the BLAST ‘standard format’ (plain
text, -m 0) or the ‘XML format’ (-m 7), but not the ‘tab delimited format’ (-m
8).

Upon launch, MEGAN first loads its own version of the NCBI-taxonomy and
then displays the first three levels of the taxonomy (Figure 3.1). Once this step

Figure 3.1: MEGAN window after launch with its own version of NCBI taxonomy.

is completed, the user can start a new analysis by importing a BLAST file using
the ‘Import from BLAST’ option (Figure 3.2). MEGAN will parse the BLAST
file (and the reads file, if present) and will then perform an initial taxonomic and
functional analysis of the data. All reads, matches and results of the analysis
are saved in an “RMA” file. (RMA stands for Read-Match-Archive. This is a
compressed binary format especially designed for metagenomic data. The size
of an RMA file is typically about 20–30% of the size of the original reads and
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Figure 3.2: Importing BLAST file in MEGAN.

BLAST file.) The initial analysis of a dataset by MEGAN can take a number
of hours and may require a lot of computer memory, depending on the size of
the dataset. However, once the initial analysis has been completed, opening and
working with multiple RMA files is very fast and memory efficient.

Example dataset under consideration: In this chapter, we will illus-
trate the metagenome analysis process using a published mouse gut dataset ob-
tained using random shotgun sequencing, as a running example. In more detail,
this is the “obese mouse” dataset (ob1: 677,384 reads) from a study reported in
[Turnbaugh et al., 2006].

3.2 Taxonomic Analysis

The diversity of the microbial world is believed to be huge. However, only about
6, 000 microbial species have been named [Kuever et al., 2005] and many of these
are represented by only a few genes, at most, in public sequence databases. More-
over, current databases are biased toward organisms of specific interest and were
not explicitly populated to represent a wide sampling of biodiversity. For this
reason, taxonomic analysis currently cannot be based on high similarity sequence
matching, but rather depends on the detection of homologies using quite sensitive
methods.
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One approach is to use phylogenetic markers to distinguish between differ-
ent species in a sample. The most widely used marker gene is the SSU rRNA
gene; others include RecA, EF-Tu, EF-G, HSP70 and RNA polymerase B (RpoB)
[Venter et al., 2004]. Advantages of this approach are that such genes have been
studied in detail and for some there are high quality phylogenies available that can
be used as a reference to place reads from a metagenomic dataset. However, this
approach is not unproblematic: On the one hand, the use of “universal” primers to
target specific genes suffers from the problem that such primers are not truly uni-
versal and so only a portion of the true diversity is captured [Wu and Eisen, 2008].
On the other hand, while the use of a random shotgun approach can overcome
this problem, less than 1% of the reads in a random shotgun dataset will cor-
respond to commonly used phylogenetic marker genes [von Mering et al., 2007],
which seems very wasteful, as 99% percent of the reads will remain unused (and
unclassified).

Moreover, the goal of taxonomic analysis is not only to provide an estimation
of the types of organisms present in a sample, but also to corral the sequence reads
by taxonomic identity to facilitate further analysis, for example to study the GC
content or to attempt the assembly of particular genomes.

Our approach is to compare reads against the NCBI-NR database (or some
other appropriate database) to find homologous sequences, thus making use of
the fact that homologies are easier to detect on the protein level. For the above-
mentioned reason that current databases provide only a poor coverage of the
true diversity of organisms, we treat all sequence matches of high significance as
equally valid indications that the given read represents a gene that is present in
the corresponding organism. In more detail, we place each read on the lowest
common ancestor (in the NCBI taxonomy) of all the organisms that are known
to contain the gene present in the read. So, in essence, the placement of a read
is governed by the gene content of the available reference genomes and thus we
will refer to our method as the LCA-gene content approach.

An attractive feature of this “LCA-gene content” approach is that it is in-
herently conservative and is more prone to error toward non-informative assign-
ments of reads (to high-level nodes in the taxonomy) than toward false-positive
assignments (placing reads from one species onto the node of another species).
In particular, genes that are susceptible to horizontal gene transfer will not be
assigned to any of the participating species, as long as more than one is hit in
the reference database. MEGAN uses the NCBI taxonomy to bin all reads of
a given metagenome dataset. The NCBI taxonomy provides names and IDs for
over 568, 000 taxa, including approximately 287, 000 eukaryota, 28, 000 bacteria
and 62, 000 viruses 1. The species are hierarchically classified at the levels of:

1Visit http://www.ncbi.nlm.nih.gov/Taxonomy/txstat.cgi for updated numbers.

http://www.ncbi.nlm.nih.gov/Taxonomy/txstat.cgi
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superkingdom, kingdom, phylum, class, order, family, genus, and species (and
some unofficial clades in between like groups, subspecies).

To perform a taxonomic analysis, MEGAN places each read of a given
dataset onto one of the taxa (or “nodes”) of the NCBI taxonomy, based on the
BLAST matches provided for the read. If a read has significant matches to
sequences in more than one species, MEGAN will assign the read to the “lowest
common ancestor” (LCA) node of the species in the taxonomy, thus using a simple
LCA algorithm [Huson et al., 2007].

We will now describe how to perform a taxonomic analysis with MEGAN
using the obese mouse data from the above mentioned mouse gut datasets
[Turnbaugh et al., 2006]. The first step is to compare the 677, 384 reads against
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Figure 3.3: Figure shows a part of taxonomic analysis of 677, 384 reads of the obese mouse
gut dataset [Turnbaugh et al., 2006] by MEGAN. Each circle represents a node of the NCBI
taxonomy and is labeled by the number of reads assigned to the node. The sizes of the circles
are logarithmically scaled to visually represent the numbers.

the NCBI-NR database using BLASTX. The result of this step is a file of size
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10.57 GB consisting of 311, 755, 132 BLAST alignments of reads to sequences in
the database. The second step is then to process the BLAST file and reads using
MEGAN to obtain an RMA file Obese.rma of size 3.44 GB, in which all reads
have been taxonomically placed using the LCA algorithm. MEGAN can then be
used to interactively explore the dataset. In Figure 3.3 we show the assignment
of reads to the NCBI taxonomy, down to the taxonomic rank of class (a part of
the image is displayed here). In this figure, each node is labeled by the number
of reads assigned to it and the size of the nodes are scaled logarithmically to
represent the number of reads. The program provides the exact numbers of reads
assigned to any given node, and the number of hits in to any nodes in the subtree
rooted at the node. Moreover, with different chart tools one can visualize the
distribution of the assigned reads. The program also allows one to interactively
inspect the assignment of reads to a specific node, to drill down to the individual
BLAST hits that support the assignment of a read to a node, and to export all
reads (and their matches, if desired) that were assigned to a specific part of the
NCBI taxonomy.

3.3 Functional Analysis

Initially, MEGAN was designed only to provide a taxonomic analysis of a
dataset. For the functional analysis the first approach was based on NCBI’s
Clusters of Orthologous Groups (COG) classification [Tatusov et al., 1997,
Tatusov et al., 2003], which was developed to cluster annotated genes into func-
tionally related groups. As an example, in Figure 3.4 we display a chart of
abundances for several COG categories for the obese mouse gut dataset as com-
puted by MEGAN. This chart corresponds closely to a similar analysis reported
in [Turnbaugh et al., 2006]. A COG analysis is easy for MEGAN to perform when
given the result of a BLAST comparison against the NCBI-NR database because
the representatives of the COG families are present in that database. However,
while COGs are still used in publications, the COG classification in no longer
curated and has thus become stale.

As a next step towards a sophisticated functional analysis, MEGAN used
the Gene Ontology (GO) [Ashburner et al., 2000] as a classification structure
for binning environmental sequences. The Gene Ontology provides three sets
of structured vocabularies (ontologies): Molecular function, biological process
and cellular component. GO is regularly updated and widely used in many
biological databases, gene expression and annotation studies, and has been re-
ferred to as “the most successful example of systematic description of biology”
[Rhee et al., 2008]. The GO ontology currently contains around 28, 000 terms.
As the large number of terms and relationships can be unwieldy for some ap-
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Figure 3.4: Abundances of several COG categories for the obese mouse gut dataset
with description of COG categories. The result complies with the fact that presented in
[Turnbaugh et al., 2006].

plications, the Gene Ontology Consortium also provides reduced, summarizing
ontologies called ‘GO-slims’. At present, four slims are provided on the GO web-
site: the generic GO slim, GOA and whole proteome analysis, plant GO slim
and yeast GO slim. Additionally, a prokaryotic subset of all GO terms is also
provided. MEGAN has the ability to summarize results based on GO slims.
MEGAN uses an LCA-like approach to assign each read to at most one node in
each of the three GO onotologies. Since GO identifiers are not reported directly
in a BLAST result file, MEGAN employs ref-seq identifiers [Pruitt et al., 2009]
and a lookup-table to assign GO terms to read matches. In Figure 3.5 we show a
part of a MEGAN analysis focused on the metabolic process ontology and generic
GO slim, for the obese mouse dataset. As in the case of a taxonomic analysis,
in a functional analysis the user can search for specific nodes of interest, view all
reads (and their matches) assigned to a given node, or save all reads (and their
matches, if desired) assigned to a given node.

We now believe that the SEED classification [Overbeek et al., 2005] is more
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Figure 3.5: Example of a functional analysis, showing a part of the metabolic process ontology
of an obese mouse gut dataset. The GOAnalyzer window is divided into three parts: at the
top-left an overview panel shows the whole GO graph, on the left all the GO terms are listed
and on the right the three GO ontologies are displayed in separate subgraphs.

powerful and more popular for functional analysis and our SEED Analyzer will
replace the GOAnalyzer in version 4 of MEGAN.

3.3.1 Functional Assignment Based on MEGAN-SEED

The next major release of MEGAN, version 4, uses the SEED classification
[Overbeek et al., 2005] for functional analysis. In this classification, genes are
assigned to functional roles and different functional roles are grouped into sub-
systems. The SEED classification can be represented by a rooted tree whose
internal nodes represent the different subsystems and whose leaves represent the
functional roles. Note that the tree is “multi-labeled” in the sense that different
leaves may represent the same functional role, if it occurs in different subsystems.
The current tree has about 10,000 nodes.

To perform a functional analysis, MEGAN assigns each read to the func-
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tional role of the highest scoring gene in a BLAST comparison against a protein
database. MEGAN provides a hierarchical representation of SEED, where reads
are mapped to SEED subsystems using the ‘seed2ncbi.gz’ file from the SEED
server2. Figure 3.6 shows a part of the functional analysis of the obese mouse gut
sample. The program reports the numbers of reads assigned to each functional
role.
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Figure 3.6: Figure shows a part of functional analysis of an obese mouse gut dataset based on
the functional content using SEED subsystems, where the subtree of ‘Carbohydrates’ is partly
shown. Each circle represents a node of the SEED subsystem and is labeled by the number
of reads assigned to the node. The sizes of the circles are logarithmically scaled to visually
represent the numbers.

3.3.2 KEGG analysis with MEGAN

To obtain a metabolic pathway (KEGG map), MEGAN attempts to match each
read to a KO-accession number, using the best hit to a reference sequence for
which a KO-accession number is known. MEGAN then calculates the number of
hits to each KEGG pathway and reports these numbers to the user. The user
can request to see the hits to a given pathway and an appropriate image of the

2 ftp://ftp.theseed.org/misc/Data/idmapping/seed2ncbi.gz

ftp://ftp.theseed.org/misc/Data/idmapping/seed2ncbi.gz
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pathway is generated by coloring the pathways based on the KEGG mapping.
MEGAN’s KEGG-Viewer is able to “scale” the color of the enzymes according to
their read abundances (scaled in yellow to red in Figure 3.7. This color gradient

Figure 3.7: Figure shows ‘citrate cycle KEGG map’ as an example of a KEGG analysis with
MEGAN for the obese mouse sample.

can help to visualize the enzyme kinetics as the abundance of reads assigned
to an enzyme can be proportional to the turnover frequency (TOF) associated
with that enzyme. Furthermore MEGAN allows one to analyze several datasets
together, using different colors to show which parts of a pathway are present in
which datasets.

As different genes present in different organisms in a consortium of microbes
often will not operate together in a single pathway, MEGAN allows one to re-
strict the pathway analysis to any taxon or set of taxa in the NCBI taxonomy
[Kanehisa and Goto, 2000].
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3.4 Discussion

In this chapter, we have addressed the basic computational questions in a
metagenome analysis and introduced the taxonomic and functional assignment
techniques implemented in MEGAN that help to answer these questions. Our
next goal is to develop different methods to compare the content of these
metagenomes (or metatranscriptomes).



Chapter 4
Visual and Statistical Comparison
of Metagenomes

In this chapter we describe a visual comparison method for multiple
metagenome samples, and two statistical comparison techniques to find significant
differences in a pairwise comparison of metagenomes. This chapter is committed
in addressing the question:

- How does the content of different metagenomes differ?

Data processing: Throughout this chapter, we illustrate the tech-
niques for comparing metagenome datasets using six published mouse gut
samples, obtained using random shotgun sequencing [Turnbaugh et al., 2006,
Turnbaugh et al., 2008], a human gut sample [Gill et al., 2006] and two highly
different metagenome datasets: a soil sample [Tringe et al., 2005] and a marine
sample [Rusch et al., 2007] obtained using Sanger sequencing technology, as a
running example. Details of the samples are given in Table 4.1.

As discussed in Section 3.1, all the reads were blasted against the NCBI-
NR [Benson et al., 2005] database using BLASTX [Altschul et al., 1990] and then
processed by MEGAN (default settings) to obtain a taxonomic profile of each
metagenome (as illustrated in 3.2). First we describe how to visually compare
multiple datasets (in Section 4.1). Then, we demonstrate two methods to detect
taxa for which the number of assigned reads differs in a statistically significant
way in the comparison of exactly two datasets (in Section 4.2).

34
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Datasets Names Number of reads Associated studies
Obese mouse gut sample obese1 677, 384 [Turnbaugh et al., 2006]Lean mouse gut sample lean1 1, 046, 611

Diet induced western1 9, 072

[Turnbaugh et al., 2008]obesity in western3 10, 997
mouse gut CARB-R1 10, 773
sample FAT-R1 10, 681

Human gut sample human_gut approx. 145, 000 [Gill et al., 2006]
A subset of soil sample soil approx. 140, 000 [Tringe et al., 2005]

A subset of marine sample sea approx. 150, 000 [Rusch et al., 2007]

Table 4.1: Example datasets under consideration for comparison.

4.1 Visual Comparison of Metagenomes

Visualization of biological data can significantly help to reveal structures and
patterns in an easy way before a complex and costly analysis. In a comparative
analysis, different datasets are brought together and compared for taxonomic
and functional content. To compare multiple datasets visually, we defined a
multiple-comparison tree view which is displayed as a hierarchical tree, where
each node shows the taxonomic assignments obtained for the different datasets
under consideration. An important feature is the ability to interactively collapse
or expand the presented tree at different levels of the taxonomy, so as to be able
to start at a high-level view and then to drill down to a low-level comparison.

Visual comparison using taxonomic content:

In order to visually compare the taxonomic content of multiple datasets,
we define a new multiple-comparison tree view in which an arbitrary number of
different datasets are displayed together on a subtree of the NCBI taxonomy. To
perform such a visual comparison using MEGAN 2 (or later version), first all
datasets should be opened in MEGAN. Then the user should select the Compare
menu item to generate a new document that contains a comparison of all datasets.
The comparison can be done using either absolute counts or normalizing over all
reads, the latter choice being of interest when the compared datasets are very
different in size. The comparison document opens in a new window and the user
can then interactively explore the comparison.

As a multiple comparison example, shown in Figure 4.1 we have taken six
mouse gut datasets for comparison. In such a view, each node in the NCBI
taxonomy is shown as a set of “meters” (pie charts or heat maps are also possible)
indicating the number of reads (normalized, if desired) from each dataset that
have been assigned to that node.
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Figure 4.1: Comparative visualization of six mouse gut datasets with the NCBI taxonomy
collapsed at the class level of the NCBI taxonomy.
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Visual comparison using functional content:

In a similar fashion, MEGAN supports the simultaneous analysis and com-
parison of the functional content of multiple metagenomes using a new SEED-
based tree view (see Figure 4.2). After comparing the taxonomic content in
MEGAN we already got the comparison in a new window. Then choosing the
‘SEED’ menu directly from the taxonomic comparison window allowed us to get
the functional comparison of the samples in a new window (Figure 4.2) based on
their SEED content (as described in 3.3.1).
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Figure 4.2: Comparative visualization of six mouse gut datasets based on their functional
content using SEED subsystems. The subtree is shown for only ‘Carbohydrates’.

4.2 Statistical Comparison of Two Metagenomes

Comparative visualizations are useful to obtain an impression of how two datasets
differ. For a more detailed analysis, one requires information on the statistical
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significance of observed differences. Our approach is based on comparing the gene
content of two metagenomes.

4.2.1 Finding Significant Difference with Support Value

To address the question of metagenome comparison, initially we adapted
a test developed for comparing curated subsystems in metagenomic data
[Rodriguez-Brito et al., 2006], which will be described in the following.

Resampling procedures:

For a specific subsystem, the subsequent steps are performed to obtain tests with
nominal level α = 10%.

Step 1: Repeat the following steps 1a to 1c exactly n = 1000 times.

1a: Choose randomly N = 10000 proteins (with replacement) from
metagenome 1 which yields sample 1. Count the number of times the
subsystem is seen in sample 1.
1b: Repeat step 1a with metagenome 2.
1c: Calculate the difference in counts between sample 1 and sample 2.

Step 2: Compute the median of the M differences obtained in step 1.

Step 3: Repeat the following steps 3a to 3c n = 1000 times.

3a: Choose randomly N = 10000 proteins (with replacement) from
either metagenome 1 or metagenome 2 and count the number of times
the subsystem is seen in the sample.
3b: Repeat step 3a.
3c: Calculate the difference in counts between the two samples in 3a
and 3b.

Step 4: Compute the lower and upper α/2-quantile of the differences ob-
tained in step 3. To this end, order theM differences from lowest to highest
and determine the appropriate order statistics; if M = 1000 and α/2 = 5%,
this would be the 50th and 950th element.

Step 5: If the median from step 2 is between the quantiles computed in step
4 there is no statistically significant difference between the two samples. If
the median is smaller than the lower or larger than the upper quantile there
is a statistically significant difference between the two samples.
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This test uses a resampling technique to determine for which subsystems a differ-
ence in counts is significant. However, as mentioned in Chapter 2, this method
only provide information ‘whether’ the two communities differ and doesn’t even
say anything about ‘how’. As an basic initiative towards answering this question,
this method can be extended by defining a support value as the proportion of
deviation given by,

SV = ±2|M − P50|
P95 − P5

(4.1)

based on the average difference M of pairs of values sampled from the two differ-
ent datasets and the percentile values Px obtained by resampling from the same
dataset. A positive support (proportion of deviation) indicates that the differ-
ence is in favour of the first metagenome, whereas a negative sign indicates the
opposite. With MEGAN 2.0, it is possible to apply this test to any level of the
NCBI taxonomy [Huson et al., 2009].

We have applied this test in two case studies; the first using human gut
and obese mouse gut sample and the second using marine and soil sample. Fig-
ure 4.3 and 4.4 are examples of finding significant differences, computed using
the support value test.

Significant differences in the comparison of human gut and mouse gut
metagenomes

As a first example, Figure 4.3 shows the statistically significant different nodes
in a comparison of human and mouse gut metagenomes, five of them listed in
Table 4.2 at two levels (‘phylum’ and ‘class’) of the NCBI taxonomy.

Rank 1 2 3 4 5
Phylum Actinobacteria Firmicutes Euryarchaeota Chordata Ascomycota
Support +282.88 +115.30 +30.93 −10.12 −6.96
Class Actinobacteria Clostridia Methanobacteria Mollicutes Bacilli
Support +282.70 +110.21 +87.0 +46.66 +25.01

Table 4.2: The five most different nodes with respect to the support values in a com-
parison of a human gut metagenome [Gill et al., 2006], and obese mouse gut metagenomes
[Turnbaugh et al., 2006]. A positive support (proportion of deviation) indicates that the dif-
ference is in favour of the human gut dataset, whereas a negative sign indicates the opposite.

As expected, Actinobacteria are more dominant in the human gut, mani-
fested through a high abundance of Bifidobacterium longum, Bifidobacterium ado-
lescentis and Collinsella aerofaciens ATCC 25986. All three species are known
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Figure 4.3: Two comparative tree views of a human gut metagenome [Gill et al., 2006] shown
in red and a mouse gut metagenome [Turnbaugh et al., 2006] shown in green, as computed
by MEGAN 2.0, using normalized counts. In (a), an overview of the taxonomy down to the
phylum level is shown, whereas in (b) a part of a class-level analysis is displayed. In bold the
support values as listed in Table 4.2 are shown. Furthermore pie charts are used to indicate
the abundance of assigned reads for two datasets at each node.

to be normal inhabitants of the human intestine. Also, Firmicutes are more dom-
inant in the human gut, mostly in the form of Clostridia, Lactobacillales and
Mollicutes. Clostridia and Lactobacillales can live in intestinal tracts of animals
and humans, however it is not clear why the levels of abundance differ in the two
datasets. The human dataset also contains Eubacterium dolichum DSM 3991
whose presence has previously been established by its isolation from the human
gut flora. Mesoplasma florum is considered a commensal strain in humans and
an animal parasite.

A striking contrast between the two datasets also seems to be the high
abundance of Euryarchaeota/Methanobacteria. As previously reported, the main
representative of this group is Methanobrevibacter smithii, a well-known archaeal
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inhabitant of the human gut, see [Gill et al., 2006, Eckburg et al., 2005].

The fourth most significant phylum is ‘Chordata’. However, in our expe-
rience, the class of Chordata is always problematic in this type of metagenomic
analysis. This is most likely due to the high complexity and large sequence space
covered by higher eukaryote and especially vertebrate genomes. This is further
aggravated by database biases toward model organisms and the problem of false
annotation of vertebrate genetic elements.

The amount of hits mapped to Ascomycota was significantly higher in the
mouse gut probe, mostly reads assigned to yeast species like Saccharomyces
and Candida. It is well known that these yeast species can be found in
caeca of mouse [Wells et al., 2007] and rat [Lambert et al., 1967]. As stated in
[Turnbaugh et al., 2006], the mouse gut probe was extracted from its caecum,
whereas the human probe was taken from distal gut.

Interestingly, the proportion of mouse gut reads that exhibit no hits to
the NR database is much higher than for the other dataset. This probably re-
flects the different read lengths produced by the employed sequencing technologies
(Sanger for the human gut sample, 454 for the mouse one). An additional poten-
tial explanation may be that there is a bias in NR database that favors human
endosymbionts and parasites.

Significant differences in the comparison of marine and soil
metagenomes

As a second example, Figure 4.4 shows the statistically significant different
nodes in a comparison of marine [Rusch et al., 2007] and soil [Tringe et al., 2005]
metagenomes. The five most statistically significant differences in numbers of
reads assigned to taxon classes in the comparison of marine and soil metagenomes
are listed in Table 4.3.

1 2 3 4 5
Phylum Proteobac. Cyanobac. Acidobacteria Chlorophyta Chloroflexi
Support +37.95 +33.54 −29.31 +22.67 −18.83
Class Prochlorales Thermoprotei Oligohymen. Aconoidasida Prasinophyceae
Support +267.33 +82.36 +52.36 +50.36 +52.33

Proteobac.: Proteobacteria; Cyanobac.: Cyanobacteria; Oligohymen.: Oligohymenophorea

Table 4.3: The five most statistically significant different nodes with respective support values
in a comparison of marine [Rusch et al., 2007] and soil [Tringe et al., 2005] datasets. A positive
support (proportion of deviation) indicates that the difference is in favour of the soil dataset,
whereas a negative sign indicates the opposite.
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Figure 4.4: Two multiple-comparative tree views of a soil metagenome [Tringe et al., 2005]
shown in green and a marine metagenome [Rusch et al., 2007] shown in red, as computed by
MEGAN 2.0. In (a), we show an overview of the taxonomy down to the phylum level, whereas
in (b) we display a part of a class-level analysis. In bold we show the support values as listed
in Table 4.3.

We now briefly discuss some of the main differences summarized in Fig-
ure 4.4 and Table 4.3. Our analysis reiterates the well-known fact that soil
metagenomes are significantly more complex than marine ones. However, this di-
versity is underrepresented in current reference databases. Therefore, more reads
are assigned to the proteobacterial phylum in the marine dataset than in the soil
one, in particular Pseudomonas mendocina ymp, Shewanella (aquatic bacteria),
and some unclassified gamma proteobacteria, such as marine gamma proteobacte-
ria HTCC2080, HTCC2143 and EBAC20E09. Differences in the number of reads
assigned to Cyanobacteria can be attributed to Synechococcus and Prochlorococ-
cus marinus which both belong to the most abundant bacterial species in marine
surface water [Venter et al., 2004].
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Significantly more reads are assigned to Acidobacteria in the soil dataset,
most mapping to Solibacter usitatus Ellin6076, a soil bacterium. However, since
the Acidobacteria are a very divergent class of taxa, this discrepancy could be
due to the low amount of currently sequenced species within this group.

The fact that reads hitting Chlorophyta are more present in the marine
dataset is due to the number of hits to Prasinophyceae, which are marine algae.
The existence of fresh water variants may explain the small number of hits in
soil. Reads that match Chloroflexi are found more often in the soil than in the
marine dataset, in particular Herpetosiphon aurantiacus ATCC 23779, which was
originally isolated from a lake in Minnesota, the same state from which the soil
sample was taken. The fact that Thermoprotei are favored by the marine sample
is due to reads assigned to Nitrosopumilus maritimus SCM1, which is a mesophilic
(not thermophilic) salt-water bacterium. The groups Oligohymenophorea and
Aconoidasida both belong to the phylum Alveolata comprising a very divergent
group of unicellular eukaryotes, some of them are capable of photosynthesis. Ac-
cordingly, the marine dataset contains significantly more reads of these eukary-
otic clades than the soil dataset. Interestingly, most hits within Aconoidasida
belong to the taxon Plasmodium falciparum, the pathogen of malaria. Since it is
known that P. falciparum possesses a chloroplast-like organelle which presumably
was derived in a common ancestor of Apicomplexa [Lang-Unnasch et al., 1998],
a possible explanation may be that these reads come from a marine species that
is closely related to the Aconoidasida, which itself is not well represented in the
NR database.

Some remarks and discussions related to finding significant difference
with resampling procedure

Though we have successfully adapted, extended and applied the resampling test
of [Rodriguez-Brito et al., 2006], there are some drawbacks in the approach. Ac-
cording to the resampling process (described earlier in the beginning of this sub-
section 4.2.1) we reconsider the facts:

1. The use of α = 10%, n = 1000 and N = 1000 is merely an example.

2. Let p1 denotes the proportion of proteins in sample 1 belonging to the
specific subsystem. In step 1a, a sequence of N Bernoulli trials is performed
with probability of success p1. Hence, the random number of counts in step
1a has a binomial distribution with parameters N and p1.
Replacing p1 by p2, the corresponding fact holds for sample 2.

3. In step 3, we draw randomly from a mixture of two binomial distributions
with mixture proportion 0.5.
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4. Assume that we replace the median in step 2 by the mean as an alternative
measure of central location. Then computing the mean of M differences of
counts in N trials is equivalent to the computation of the difference of the
counts in N ·M trials.
This shows that the precision of the estimate of the difference in proportions
in step 2 is essentially based on sample size N ·M .

5. Due to slightly varying definitions of empirical quantiles, we could choose
the 51th and 950th or the 50th and 951th element as well in step 4.

6. In step 5, we have to specify what is meant by “there is no statistically
significant difference between the two samples”. A more precise statement
would be “there is no statistically significant difference of the proportions
of proteins belonging to the specific subsystem between the two samples”.
That means we aim at testing the hypothesis H0 : p1 = p2 against the
alternative H0 : p1 6= p2.

Why the procedure of resampling test might not work properly

There exists a large amount of literature on bootstrap and resampling based
tests, e.g., [Davison and Hinkley, 1997] and [Good, 2004]. Despite the variety of
methods, they usually obey two basic requirements:

1. The test statistic in the resampling step is the same as that used for the
original data.

2. Resampling is done from a distribution which satisfies the relevant null
hypothesis.

Since steps 3a and 3b described above are identical, the two samples obtained
in these steps come from the same mixture distribution; hence, the second point
is satisfied in the procedure of [Rodriguez-Brito et al., 2006]. However, the first
point is clearly violated since the test statistic in the resampling step 3c is solely
the difference of N counts, whereas the original test statistic consists of the me-
dian of M such differences. As a consequence, the variability of the original test
statistic is much smaller than the variability of the resampled statistics. This
leads to a conservative test, i.e. a test which nearly never rejects the hypothesis
if it is true. Hence, the attained level of the test is much smaller than the nominal
level. Such behavior has also a serious effect on the test under the alternative
hypothesis: the power of the test is very low compared with tests which attain
their nominal level.
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4.2.2 Directed Homogeneity Test

In order to find a more sophisticated and statistically valid approach we intro-
duced the Directed Homogeneity test for comparing metagenome samples. The
test is based on basic statistical ideas and helps to investigate significant dif-
ference in a particular taxa in two datasets. The test provides answers to two
questions:

- Is there a significant difference in the proportions of occurrences of reads at
the child node and at the parent node in two datasets? ⇒ up test

- Is there a significant difference in the distribution of reads among the chil-
dren of a particular node in two datasets? ⇒ down test

To answer these questions we combined two tests, the up and the down test, in
our Directed Homogeneity test. Both test proportions. For this test we assume,
in a taxonomy tree ‘up’ means towards the root or parent node (left side in the
tree) and ‘down’ means towards the children or lower level nodes (right side in
the tree).

For better understanding the situation is depicted in Figure 4.5 as a basic
example. In the case of the up test, for each intermediate node we take the
proportion of occurrence of reads at that particular node and at the parent node
for two datasets and perform a two-sample test for equality of proportions with
continuity correction. In Figure 4.5, a and b display this situation. We consider
the proportion of occurrence of reads at the child node and at the parent node
for both the datasets (shown in red and blue). Now if there is a significant
difference in the proportion, then the left side of the child will be highlighted (as
in Figure 4.5.a) and no highlight indicates the opposite (as in Figure 4.5.b).

The down test incorporates Person’s Chi-squared test to compare the distri-
bution of the two datasets on the children of a particular node. Figure 4.5, c and
d display this situation. If there is a significant difference in the distribution of
reads among the children of the parent node, then the right (or down in the tree)
side of the parent will be highlighted (as shown in Figure 4.5.c). No significant
difference in the test causes no highlighting, as displayed in Figure 4.5.d.

The program uses the two tests to highlight all nodes in the whole tree for
which either test asserts a statistically significant difference. To be precise, if the
p-value of the up test is below a critical level (e.g. 0.01), then the part of the
node that faces the parent will be highlighted, whereas a significant p-value for
the down test will result in the part of the node that faces the children being
highlighted (see [Mitra et al., 2009] for details of the test).
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Figure 4.5: Directed Homogeneity test, including up and down test in a comparison of two
datasets (shown in red and blue). Up test: A significant difference in the proportion of occur-
rence of reads at the child node and at the parent node, is causing the left side of the child to be
highlighted (black) in a; whereas in b the difference is not significant. Down test: A significant
difference in the distribution of reads among the children of the parent node, is causing the right
side of the parent to be highlighted (black) in c; whereas in d the difference is not significant.

Note that such a difference may occur due to a number of causes, such
as different sampling or sequencing technologies etc, and so will not necessarily
reflect a biologically interesting difference. If the two datasets were obtained using
different sequencing technologies, some adjustments to the analysis can be made
to account for the different read-length distributions of multiple data sets.

Since a large number of tests are being performed during the comparison of
two datasets, we have to address the problem of multiple testing: in a large num-
ber of tests we will see some false significant results by chance. To address this,
we have implemented two well-known correction methods, namely the Bonfer-
roni and the Holm-Bonferroni corrections [Shaffer, 1995, Holm, 1979]. It should
be emphasized that controlling the family-wise error rate is not always needed,
e.g. in more exploratory screening experiments. In other cases, the main aim is
to decide whether the two samples come from different distributions. The overall
conclusion that this is indeed the case need not be erroneous even if some of the
(sub) null hypotheses are falsely rejected.
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Statistical Background

Here we describe some fundamental knowledge about necessary statistical tests
in the context of our method.

Two-sample test for equality of proportions. By testing equality of
proportions between two samples, we can determine whether two probabilities are
the same. We are interested to test whether proportions of occurrences of reads
on a particular node in two datasets are similar or not. Suppose we consider
the proportion of occurrence of reads on the Gammaproteobacteria node within
Bacteria in two datasets A and B as p1 and p2. In terms of the abundance
parameter, we write the null and alternative hypotheses as, H0 : p1 = p2 vs.
H0 : p1 6= p2, where p1 and p2 are the proportions of occurrences of a particular
node within a higher level node for each datasets. We can perform significance
tests based on the χ2 statistic, as

z =
(p̂1 − p̂2)− 0√

(p(1−p)
n1

) + (p(1−p)
n2

)
and χ2 = z2 (4.2)

where n1 and n2 are the total number of reads in Bacteria for two datasets A and
B; and p = proportion of total reads in Gammaproteobacteria and in Bacteria.
When the p-value of the test is above a critical level (e.g. 0.01), we can say that
the data are consistent with the null hypothesis.

Multiple testing problem. In statistics, the multiple comparisons, or
multiple testing, problem occurs when one considers a set, or family, of statistical
inferences simultaneously [Miller, 1981].

Family-wise error rate (FWER). This is the probability that we will
get at least one false positive result, when multiple tests are performed. In
order to retain a prescribed familywise error rate α in an analysis involving
more than one comparison, the error rate for each comparison must be more
stringent than α. Many statistical methods have been developed for this. We
will use the Bonferroni correction [Shaffer, 1995] and Holm-Bonferroni correc-
tion [Shaffer, 1995, Holm, 1979].

Bonferroni correction. In this test the target α (typically α = 0.05 or
0.01) is divided by the number of tests being performed. If the unadjusted p-value
is less than the Bonferroni-corrected target α, then the null hypothesis is rejected.
If the unadjusted p-value is greater than the Bonferroni-corrected target α, then
the null hypothesis is not rejected.

Holm-Bonferroni correction. The Bonferroni test is called a “single-
step” method, whereas Holm’s test is a stepwise method. It is also called a
sequential rejection method, because it examines each hypothesis in an ordered



Chapter 4. Visual and Statistical Comparison of Metagenomes 48

sequence, and the decision to accept or reject the null hypothesis depends on the
results of the previous hypothesis tests. This test is less conservative than the
Bonferroni correction, and is therefore more powerful. The Holm’s test uses a
stepwise procedure to examine the ordered set of null hypotheses, beginning with
the smallest p-value, and continuing until it fails to reject a null hypothesis.

Finding Significant Differences with Directed Homogeneity Test

In the pairwise comparison of taxonomic content of two datasets, the user can turn
on the Directed Homogeneity test by selecting the Highlight Differencesmenu item.
The user has the option to choose no correction, Bonferroni or Holm-Bonferroni
for the adjusted p-value correction.

In Figure 4.6 we show the result of a pairwise comparison between the
obese and lean mouse gut datasets [Turnbaugh et al., 2006]. From the black
highlighting and the up p-values we can easily see that the significant differences
between the two datasets mainly lie in the Bacteroidetes/Chlorobi group and
Firmicutes classes. From the down p-values we can say that the difference in
read numbers for the Bacteroidetes node is mostly due to the difference in read
numbers for the Favobacteria class and the difference for the Firmicutes is mostly
due to the difference for the Bacilli class. We didn’t choose any multiple testing
correction for this figure because using no correction will result in a maximum
number of significant different nodes. The user can further investigate all possible
nodes, having significant difference. To inspect any interesting node the user can
refine this view to a lower-level comparison. These differences are similar to the
differences reported in [Turnbaugh et al., 2006].

Moreover, our statistical method provides one p-value for the up-test and
one for the down-test. From the up p-value, we can easily see that the propor-
tional difference in number of reads assigned to the Bacteroidetes/Chlorobi group
(UPv= 0.0) and the Firmicutes (UPv= 0.0) is highly significant between the two
datasets, whereas the down p-value gives us additional comparative information
about the children of these two nodes.

From the down p-value, we can say that the difference in read numbers
for the Bacteroidetes/ Chlorobi group node (DPv= 2.77E − 9) is mostly caused
by the difference in read numbers for Bacteroidetes phyla. The difference for
Firmicutes (DPv= 0.0) is mostly caused by the difference for the Bacilli and
Clostridia classes (see Figure 4.7). Figure 4.8 shows the same part of the tree, only
the p-values are computed using the Bonferroni correction, which augments the p-
values for each particular test based on the number of tests being performed. This
correction is used to reduce problems associated with multiple comparisons, but
it can significantly increases the risk of committing type II errors. In Figure 4.9
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Figure 4.6: Pairwise comparison of two metagenome datasets, one from the gut of a lean
mouse (red) and and one from an obese mouse (blue) collapsed at ‘Class’ level. Black high-
lighting on the left side of a node indicates that the up-test of the Directed Homogeneity test
indicates a significant difference, whereas black highlighting on the right side indicates a signif-
icant difference detected by the down test. The thickness of the highlighting is logarithmically
proportional with the significance.

the p-values are computed using the Holm-Bonferroni correction. Using either of
the corrections, the results for the nodes of interest are still significant.

Testing the Performance of the Directed Homogeneity Test

Finally we tested the performance of our method with highly different
environmental metagenome datasets. We used the above mentioned soil
[Tringe et al., 2005] and marine sample [Rusch et al., 2007] for this study. We
used these to see which differences and/or similarities between these datasets can
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Figure 4.7: A part of the lean and obese mouse datasets comparison view (tree collapsed at
‘Order’ level). The labels UPv and DPv indicate the p-values associated with the up and down
parts of the Directed Homogeneity test (Uncorrected).
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Figure 4.8: Same tree as Figure 4.7, here the p-values are computed using the Bonferroni
correction.
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Figure 4.9: Same tree as Figure 4.7, here the p-values are computed using the Holm-Bonferroni
correction.
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be detected by our method. We will refer to these as the Soil and Sea datasets.
For this experiment, we took 20 random subsamples (with replacement) from
both datasets, each containing 20% of the original data. In this way, we got 20
Sea datasets (approx. 28, 000 reads each) and 20 Soil datasets (approx. 30, 000
reads each). We then conducted a Sea vs. Sea comparison, a Sea vs. Soil compar-
ison and a Soil vs. Soil comparison, focusing our attention on particular bacterial
nodes, namely Gammaproteobacteria, the Bacteroidetes/Chlorobi group and Fir-
micutes. Here all p-values are computed with no correction as we want to find out
every possible differences and correction methods adjust the p-values. A detailed
result including all the up and down p-values for all comparisons can be found
in supplementary Tables C.1.1, C.1.2, C.1.3. We have summarized the results in
Box-and-Whisker plots for each of the three bacterial nodes (Figure 4.10).

If we take “a proportional similarity of reads assigned to a particular node
between two datasets” as a null hypothesis, then in the Soil vs. Soil comparisons
and Sea vs. Sea comparisons, the up p-values (UPv) lie above the significance
level (0.01) in more than 99% of the cases for all three bacterial nodes (Fig-
ure 4.10). Hence, 99% of all cases are consistent with the null hypothesis, that is,
we cannot reject the null hypothesis. On the other hand, the up p-value (UPv)
is close to zero (less than the significance level 0.01) in more than 95% cases
of the Sea vs. Soil comparisons, reflecting a highly significant difference in the
proportion of these three bacterial groups, between subsamples. In Figure 4.10
white boxes represent the up p-values (UPv) for Gammaproteobacteria, the Bac-
teroidetes/Chlorobi group and Firmicutes in all three comparisons.

Moreover, if we take “a proportional similarity between distribution of reads
among the children of a particular node between two datasets" as a null hypoth-
esis, then in the Soil vs. Soil comparisons and Sea vs. Sea comparisons, the down
p-values (DPv) lie above the significance level (0.01) in more than 99% of the cases
(Figure 4.10). Hence, in 99% of all cases, the data sets are consistent with the null
hypothesis that the distribution of reads in the children of the Gammaproteobac-
teria, of the Bacteroidetes/Chlorobi group and of the Firmicutes is similar in the
two datasets (Soil and Sea). For the Soil vs. Sea comparisons (Figure 4.10) for
Gammaproteobacteria and the Bacteroidetes/Chlorobi group nodes, the down p-
value (DPv) is close to zero (less than the significant level 0.01) in more than 99%
cases, reflecting a highly significant difference in the distribution of reads among
the children of these nodes. For Firmicutes, the down p-values (DPv) are close
to zero (less than the significance level 0.01) in only 40% of the cases, reflecting
that the distribution of reads is significantly different among the children of this
node (Firmicutes) between the two datasets only in 40% of the cases. This may
be because Firmicutes are common Gram-positive bacteria present in both ma-
rine and land-based environments [Fierer et al., 2007, Yooseph et al., 2007]. In
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(A)

(B)

(C)

Figure 4.10: Box-and-Whisker plots summarizing the up p-values (UPv: white boxes)
and down p-values (DPv: gray boxes) for (A) Gammaproteobacteria, (B) the Bac-
teroidetes/Chlorobi group and (C) Firmicutes in a Soil vs. Soil comparison, a Sea vs. Sea
comparison and a Soil vs. Sea comparison. Each comparison is based on 20 independent pairs
of subsamples. Dashed line indicates p = 0.01 threshold.
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many cases, the proportional distribution of reads among child nodes of Firmi-
cutes can be similar in different Soil and Sea subsamples. In Figure 4.10 gray
boxes are representing the down p-values (DPv) for Gammaproteobacteria, the
Bacteroidetes/Chlorobi group and Firmicutes in all three comparisons. In the
case of Soil vs. Sea comparisons, most of the time the values are very close to
zero reflecting a highly significant difference between the two subsamples.

This illustrates how the “Directed Homogeneity test” can provide an initial
statistical comparison.

4.3 Discussion

Comparative metagenomics is a rapidly growing field. Fast and user-friendly
tools are needed to analyze metagenomic datasets. In this chapter, we have
introduced some visual comparison techniques for multiple comparison and sta-
tistical approaches for comparing metagenome datasets in a pair. These results
are implemented in MEGAN 3 (or later) and can help users to get a first impres-
sion of the similarity between multiple metagenomes and allow close comparison
of two datasets at a time. Not only metagenomes, these tests are also appli-
cable to metatranscriptome samples. Our next goal is to support sophisticated
comparative analysis of multiple metagenome datasets.



Chapter 5
Multiple Metagenome Comparison
using Networks

As mentioned in Chapter 2, there is a need for the development of new methods
for analysing, comparing and visualizing multiple metagenome datasets simul-
taneously. In this chapter we present a novel approach that combines the use
of taxonomic analysis, ecological indices and non-hierarchical clustering to pro-
vide a network representation of the relationships between different metagenome
datasets. Explicitly, a tool that combines the visualization of relationships with a
metric of distance in a single package which includes appropriate ecological indices
without the need to fit metagenomic data to a root evolutionary dendrogramatic
relationship. The goal of this chapter is to solve the question:

- How can multiple metagenome datasets be compared?

5.1 Theory and Background

Here we describe a few fundamental aspects of numerical ecology, phylogenetic
and non-hierarchical clustering techniques. Besides the description of some meth-
ods, the focus is primarily kept on concepts that are important for this thesis.

5.1.1 Ideas from Ecology

“For almost a century, ecologists have collected quantitative observations
to determine the resemblance between either the objects under study
(sites) or the variables describing them (species or other descriptors)”

54
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[Legendre and Legendre, 1998]. As we discussed in chapter 3 in the study of
metagenomics, we obtain an estimate of the taxonomical content of a sample
using MEGAN [Huson et al., 2007]. We can use these descriptors from multiple
metagenomes to get an estimate of similarity and/or dissimilarity between the
datasets based on the ideas from ecology.

The field of mathematical ecology provides a number of different distance
measures for comparing the population structure of different habitats. We have
tested a broad range of such distance measures to determine the best pos-
sible method for multiple metagenome comparison. After reviewing 27 dif-
ferent ecological measures (listed in [Legendre and Legendre, 1998]), six differ-
ent distance measures were selected and tested in this study, namely the Eu-
clidean distance, three quantitative coefficients (Kulczynski [Odum, 1950], Bray-
Curtis [Bray and Curtis, 1957] and Hellinger [Rao, 1995]) and two probabilistic
coefficients (Chi-square [Lebart et al., 1979] and Goodall’s index [Goodall, 1964,
Goodall, 1966]).

The basic metric measure is the Euclidean distance, which is computed using
Pythagoras’ formula. By determination of the Euclidean distance, the distance
(D) between two metagenome samples (X, Y ) can be calculated using

D(X, Y ) =

√√√√ n∑
i=1

(xi − yi)2 , (5.1)

where xi and yi are the read counts for the ith taxon of the respective metagenome
samples X and Y , which are positioned in an n-dimensional Euclidean space.

The Euclidean distance does not have an upper limit, its value can increase
indefinitely with the number of descriptors and depends on the scale of each de-
scriptor. Czekanowski (1909), Pearson (1926), Mahalanobis (1936), Whittaker
(1952), Williams and Stephenson (1973), Orlóci (1978) and many other mathe-
maticians discussed the drawbacks of Euclidean distance and proposed different
ways. In general double-zero cases1 lead to reduction of distances. It is thus
preferable to abstain from drawing any ecological conclusion from the absence of
a species in two datasets.

In numerical terms, this means skipping double zeros in computations. Co-
efficients of this type are called asymmetrical coefficients. Many coefficients are
available for comparing sites using species presence-absence data such as ‘Jac-
card’ (1900, 1901, 1908), ‘Kulczynski’ (1928), ‘Russell and Rao’ (1940), ‘Stein-
haus’ (1947), ‘Sørensen’ (1948) and many others. Steinhaus’s measure has been

1In comparison of more than two datasets, if a species is absent in two datasets but present
in the other, then this is a double-zero case.
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rediscovered and modified a number of times as ‘Odum’ (1950) or as ‘Bray and
Curtis’ (1957). Among these measures we select ‘Kulczynski’ (5.2) and ‘Bray and
Curtis’ (5.3) distances as the representative of this group for our study, which are
defined as:

D(X, Y ) = 1−1

2

(∑n
i=1 min(xi, yi)∑n

i=1 xi

+

∑n
i=1 min(xi, yi)∑n

i=1 yi

)
= 1−1

2

(W
A

+
W

B

)
(5.2)

and
D(X, Y ) = 1− 2

∑n
i=1 min(xi, yi)∑n

i=1(xi + yi)
= 1− 2W

A+B
, (5.3)

where W is the sum of the minimum abundances of the various species, this
minimum being defined as the abundance in the dataset where the species is the
rarest. A and B are the sums of the abundances of all species at each of the two
datasets or, in other words, the total number of species observed or captured at
each dataset, respectively [Legendre and Legendre, 1998].

There are other measures to calculate the distance among sites using species
abundances such as the χ2 metric by Roux and Reyssac (1975), χ2 distance by
Lebart and Fńelon (1971) and Hellinger distance by Rao (1995). χ2 distance
differs from the χ2 metric in that the terms of the sum of squares are divided
by the probability (relative frequency) of each row in the overall table instead of
its absolute frequency. Among these measures we select χ2 (5.4) and ‘Hellinger’
(5.5) distances for our study, which are defined as:

D(X, Y ) =

√√√√ n∑
i=1

(x̂+ ŷ)

(xi + yi)

(
xi

x̂
− yi

ŷ

)2

,with ŷ =
n∑

i=1

yi (5.4)

and

D(X, Y ) =

√√√√ n∑
i=1

(√
xi

x̂
−
√
yi

ŷ

)2

,with ŷ =
n∑

i=1

yi . (5.5)

The functions so far discussed measure the likeness and/or unlikeness of two
samples X and Y as a composite of n individual quantities, each representing a
similarity and/or dissimilarity value D(X, Y )i of the two samples with respect to
the ith taxon of the n taxons in the samples.

A different approach is Goodall’s probabilistic coefficient [Goodall, 1964,
Goodall, 1966]. It takes into account the frequency distribution of the various
states of each descriptor in the whole set of samples. Indeed, it is less likely
for two datasets to both contain the same rare taxon (or species) than a more
frequent taxon. In this sense, likeliness for a rare species should be given more
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importance than for a common species, when estimating the similarity between
datasets.

In a comparison of multiple datasets, first a partial similarity measure
(Gower’s matrix) for all possible pair combinations (spair) is calculated for each
species i, as:

spairi
= 1−

[
|xi − yi|
Ri

]
,

where Ri is the range (largest difference) of abundance for the ith species across
all the datasets in the study. Then for each pair of datasets, one computes the
proportion of partial similarity values belonging to species i that are larger than
or equal to the partial similarity of the pair of datasets being considered. These
proportions (pi) are combined for the n species by computing the product2 of the
values relative to various species as:

∏
=

n∏
i=1

pi

Finally the similarity (S) between two datasets (X, Y ) can be obtained as the
proportion of the products (

∏
) that are larger than or equal to the product of

the pair of datasets (
∏

pair) considered. The equation is given by

S(X, Y ) =

∑
pairs d

n(n−1)
2

,where d =

{
1 if

∏
≥
∏

pair

0 if
∏
<
∏

pair

. (5.6)

For better understanding, computation of Goodall’s index is explained in sup-
plementary section C.2 with an example. Further details are available in
[Goodall, 1964, Goodall, 1966, Legendre and Legendre, 1998].

Some distance measures do not fulfill the triangle inequality axiom, thus
they are not a metric. As a consequence, they do not allow a proper ordination
of sites in a full Euclidean space. Sørensen’s coefficient is one of them, whereas
Kulczynski, Odum and Bray-Curtis, Goodall are semimetric measures. For both
metric and semimetric measures we can use D = 1−S, where D and S stand for
‘Distance’ or ‘Difference’ and ‘Similarity’.

There are other probabilistic similarity coefficients, such as, Raup and Crick
(1979), McCoy (1986) etc. But these measures only consider species presence-
absence data and so they are not considered in our study.

2For our purpose we have considered this product in a logarithmic scal, as there are many
taxa in a metagenome datasets and this product can become very small.
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5.1.2 Ideas from Phylogeny

There are two popular ways to produce a graphical representation of genetic
distance matrices. The first approach is widely applied in ecological studies,
which includes using a principle component analysis (PCA) or non-metric mul-
tidimensional scaling (NMDS) to obtain a two-dimensional layout. The second
is widely used in evolutionary studies, that involves using rooted trees computed
by a hierarchical clustering method [Rusch et al., 2007]. The advantage of a tree
representation is that it explicitly provides clusters of closely related datasets.
However, metagenomes do not evolve along a tree, and there are numerous envi-
ronmental factors that may affect dataset composition resulting in distances that
reflect incompatible signals. While ordination methods do not suffer from this
problem, they do not link data points into explicit clusters and provide no metric
against which to determine the distance between datasets. Hence, we propose
to use the ‘Neighbor-Net’ method [Bryant and Moulton, 2004], which extends
the ‘Neighbor-Joining’ (NJ) algorithm [Saitou and Nei, 1987], to compute an un-
rooted phylogenetic network that enjoys the advantages of both methods. This
is a special type of phylogenetic network that simultaneously represents both
groupings in the data and evolutionary distances between taxa. Here we use
these networks for clustering multiple datasets. Such networks are not restricted
to being a tree and are able to display an incompatible, that is non-hierarchical,
clustering of the data.

5.2 Multiple Comparison

We combined the different ideas of ecology and phylogeny for comparing mul-
tiple metagenome datasets. First, a taxonomic profile is computed for each
dataset. Second, a matrix of pairwise distances is determined using one of the
six ecological distances described in 5.1.1. Finally, neighbor-net is applied to the
matrix and the network is represented using an appropriate visualization tech-
nique [Dress and Huson, 2004]. We apply the approach to marine metagenomes
or metatranscriptomes from three types of studies; a mesocosm experiment
[Gilbert et al., 2008a], a spatially structured dataset (the Global Ocean Survey)
[Rusch et al., 2007] and a time-series dataset [Gilbert et al., 2009]. Our work sug-
gests that the approach is robust as it produces networks that are very similar
across all ranks of the NCBI taxonomy and, to a lesser extent, across different
ecological indices (see [Mitra et al., 2010a]).
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5.2.1 Methods

In general first we processed all metagenomes and metatranscriptomes aligning
against the NCBI-NR database using the BLASTX tool. The results were im-
ported then into MEGAN using the ‘Import from BLAST’ option. We then
performed multiple comparisons using various ecological indices and constructed
networks using the neighbor-net algorithm [Bryant and Moulton, 2004], as im-
plemented in version 4 of MEGAN. We conducted six case studies as exemplary
to establish our method.

Case 1:

At first, we compared eight published marine datasets consisting of four
metagenomes (DNA) and four metatranscriptomes (cDNA), from a controlled
costal ocean mesocosm study (Bergen, Norway) involving an induced phytoplank-
ton bloom. The samples were taken at two time points, at the peak (Time1 or
13th May) and immediately after the collapse of the bloom (Time2 or 19th May)
and named these eight samples as follows: 1-Time1-Bag1-DNA, 2-Time1-Bag6-
DNA, 3-Time2-Bag1-DNA, 4-Time2-Bag6-DNA, 5-Bag1-13May-cDNA, 6-Bag1-
19May-cDNA, 7-Bag6-13May-cDNA and 8-Bag6-19May-cDNA (please refer to
[Gilbert et al., 2008a] for details). Further we will refer to these as PML-Bergen
datasets.

All datasets were randomly re-sampled to the smallest data set size to al-
low inter-comparison. After opening all the datasets in MEGAN, the ‘Com-
pare’ menu item was used to generate a new document that contains a com-
parison of all datasets. We compared the taxonomical profiles (as MEGAN
files), which contain taxon abundance counts, of these eight datasets. Multi-
ple comparisons of the datasets were then performed using six different eco-
logical distance measures (Euclidean, Kulczynski [Odum, 1950], Bray-Curtis
[Bray and Curtis, 1957], Hellinger [Rao, 1995], Chi-square [Lebart et al., 1979]
and Goodall’s index [Goodall, 1964, Goodall, 1966]) at each of seven taxonomic
ranks (‘kingdom’, ‘phylum’, ‘class’, ‘order’, ‘family’, ‘genus’ and ‘species’) to cre-
ate a total of 42 networks (Figures 5.1, C.2.1, C.2.2, C.2.3). The distances were
processed by the neighbor-net algorithm [Bryant and Moulton, 2004] to obtain a
collection of unrooted phylogenetic networks.

Case 2:

In a second study, we used one random sub-sample of the Sargasso Sea data
[Venter et al., 2004] and one sub-sample from the Sorcerer II Global Ocean Sam-
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pling expedition data (GOS) [Rusch et al., 2007] and the data and setup from
the previous case study. We wanted to visualize the comparison of multiple ma-
rine metagenomes from different environments processed using different sampling
and sequencing strategies. All ten datasets were randomly re-sampled to allow
inter-comparison of taxonomic abundances. In a similar way to the previous
study we compared these ten datasets using four of the distances (Goodall’s in-
dex, Euclidean distance, Hellinger distance and Chi-squared distance) at each of
seven taxonomic ranks to create 28 additional networks. We observed that the
networks obtained using the Kulczynski and Bray-Curtis distances looked very
similar to the networks obtained using Euclidean distances in the previous study
(Figures 5.2, C.2.4, C.2.5). So we decided to drop the Kulczynski and Bray-Curtis
distances from subsequent experiments.

Case 3:

Furthermore we believe that the bacterial taxa are more important for metage-
nomic studies than the eukaryotes and viruses. So we performed multiple com-
parisons using four of the indices (Goodall’s index, Euclidean distance, Hellinger
distance and Chi-squared distance) considering only bacterial taxa at six tax-
onomic ranks. First we did this for eight PML-Bergen datasets and then to-
gether with the sub-sample of the Sargasso Sea and the GOS dataset (i.e. 10
datasets together). This experiment results further 24 networks for each case
(Figures 5.3, C.2.6, C.2.7, 5.4, C.2.8 and C.2.9). Unlike Euclidean distances and
Goodall’s index, two other distances can be applied to raw data. Thus for the
Goodall’s index and Euclidean distances, we randomly normalized the numbers
of bacterial sequences, to standardize the apparent sequencing effort.

Case 4:

Here we investigated the effect of excluding rare taxa from the taxonomical pro-
files. For example, we considered the data at the class rank of the NCBI taxonomy.
The six metagenomes (four Bergen metagenomes, one Sargasso Sea sample and
one GOS sample from the previous study) were duplicated. Then we excluded all
taxa that have an abundance of less than 0.025% of the total community abun-
dance from each duplicated dataset. In Table 5.1 the details of the community
change can be seen. We then compared these six truncated metagenomic datasets
using all six indices, resulting six networks at the ‘class’ level (Figure 5.5).
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Case 5:

In a fifth study we compared all 41 samples of spatially structured GOS data. We
downloaded the GOS data, from the CAMERA website [Seshadri et al., 2007].
All datasets were blasted against the NCBI-NR database and the result was
imported into MEGAN. As for the Bergen samples, we computed taxonomic pro-
files as MEGAN files. We then normalized the datasets to the smallest size to
allow inter-comparison of taxonomic abundances. Next we performed the com-
parison using Goodall’s index at the class rank considering all the sites together
(Figure 5.7.B). We assume that the coastal sites may harbor a more diverse mi-
crobiota than the open ocean sites. So we further compared only the coastal and
open ocean sites (Figure 5.7.C) to illustrate biogeographic clustering.

Case 6:

Finally we studied and analyzed the correlation between 12 16S rRNA V6 tag-
pyrosequencing datasets spanning 12 months of 2007 at a continually monitored
sampling site, L4, in the Western English Channel [Gilbert et al., 2009]. As be-
fore, to allow inter-comparison, we re-sampled these 12 samples to identical se-
quencing depth. The OTU abundance matrix was prepared by adding zeros where
there were no representatives for that sample.

First we compared samples using Goodall’s index in combination with
neighbor-net based on all unique OTUs (Figure 5.8.A), then excluding OTUs
found on only one occasion (Figure 5.8.B). Finally comparison is performed con-
sidering only the OTUs found every time (Figure 5.8.c). Beside this we prepared
the principle component analysis (PCA) and non-parametric multidimensional
scaling (NMDS) plots using the same OTU data i.e. for OTUs present in two or
more occasions. For the PCA analysis we used the raw data and for the NMDS
calculation we used a computed Bray-Curtis matrix (Figure 5.9).

5.2.2 Implementation

A program for computing ecological indices from taxonomical profiles (called
MEG2DIST, written in java) is available as open source from the website:
www-ab.informatik.uni-tuebingen.de/software/megan/meg2dist.
We implemented all six ecological indices (Euclidean, Kulczynski [Odum, 1950],
Bray-Curtis [Bray and Curtis, 1957], Hellinger [Rao, 1995], Chi-square
[Lebart et al., 1979] and Goodall’s index [Goodall, 1964, Goodall, 1966]) in
our program. In addition the code is completely integrated into version 4 of
MEGAN, which is available from the website:

www-ab.informatik.uni-tuebingen.de/software/megan/meg2dist
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www-ab.informatik.uni-tuebingen.de/software/megan.
After comparing all the metagenomes, the user can directly compute ecological
indices and visualize networks by choosing ‘Compare Datasets Using Networks’
from the ‘Options’ menu item.

5.2.3 Results and Discussions

Case 1: Comparison of eight marine samples (metagenome and meta-
transcriptomes) from an ocean acidification study. For the analysis of
PML-Bergen samples, all six selected ecological indices produce almost identi-
cal placements of the eight samples within a neighbor network. Only minor
differences are visible in the distances between samples (see Figure 5.1 and sup-
plementary information Figures C.2.1, C.2.2, C.2.3). The placement of these
PML-Bergen samples conforms to reported biological and experimental relation-
ships [Gilbert et al., 2008a], with the metagenomes being well-separated from the
metatranscriptomes. Moreover and the samples from the peak of the induced phy-
toplankton bloom (Time1 or 13th May) appears more separated from the samples
following the collapse of the phytoplankton bloom (Time2 or 19th May) than each
group is to itself. Interestingly, for the ‘Time 2’ or ‘19th May’ metagenomes, the
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Figure 5.1: Neighbor-net based network obtained using six ecological indices showing the
comparison of eight PML-Bergen samples (four metagenomes and four metatranscriptomes)
considering all nodes at the class rank of the NCBI taxonomy.

www-ab.informatik.uni-tuebingen.de/software/megan
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opposite is true. i.e. the differences between these being greater than their simi-
larity to samples within the ‘Time 1’ metagenomes. This indicates the extremely
different ecology of the mesocosm samples that existed following the collapse
of the bloom. This was brought about by the experimental methodology used,
where immediately following the collapse of the bloom ‘Bag1’ was re-bubbled with
CO2 and Bag6 was re-bubbled with air. This significantly altered the community
composition and hence forced these samples apart (for more information refer to
[Gilbert et al., 2008a]).

Case 2: Comparison of multiple marine metagenomic samples
from different studies. To confirm that the Bergen-PML network was robust
in the presence of additional marine samples, we added two additional marine
metagenomes as “decoys”. The first was a subset of reads taken from the pooled
Sargasso Sea study [Venter et al., 2004] and the second was a subset of the larger
Global Ocean Survey (GOS) [Rusch et al., 2007]. To allow an accurate compar-
ison, a random subset of 96,201 sequences (the size of the smallest PML-Bergen
dataset [Gilbert et al., 2008a]) was extracted from each study. After computing
networks with four indices (Figures 5.2, C.2.4, C.2.5), we confirmed that the eight
PML-Bergen samples remain in their original groupings and that the two decoys
are placed at a distance from them. Interestingly, there are clear differences be-
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Figure 5.2: Network obtained using four ecological indices showing the comparison of ten
marine samples (randomly resampled Sargasso Sea and GOS samples together with the eight
PML-Bergen samples) considering all nodes at the class rank of the NCBI taxonomy.

tween the networks based on the Euclidean distance, wherein the decoys are much
more distantly related to the PML-Bergen samples than that for the Goodall’s in-
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dex (Figures 5.2, C.2.4). We hypothesize that this is due to the biases induced by
the vast rare biosphere and the way each index handles low-abundance sequences.
Goodall’s index provide more importance to the likeliness or similarity for a rare
species than for a common species, whereas Euclidean distance is dominated by
the abundant species. The networks based on the Hellinger and Chi-squared
distances (Figures 5.2, C.2.5) are also similar. The GOS sample appears to clus-
ter more closely to the PML-Bergen samples than the Sargasso Sea sample, as
the GOS sample (random sub-sample of all GOS samples) is heavily enriched
from coastal study sites, whereas the Sargasso Sea is an oligotrophic open ocean
[Venter et al., 2004].

Case 3: Multiple metagenome/metatranscriptome comparisons
considering only bacterial nodes. When only bacterial taxa of eight PML-
Bergen samples are considered, the samples come more close to each other, while
remaining mostly in their original grouping (Figures 5.3, C.2.6, C.2.7). This is
because the samples were taken under very different conditions, thus while the
bacterial populations remain unchanged the Eukaryotic populations were quite
different so that we see a lot more Eukaryotic DNA in the mid-bloom (time 1)
samples than in the post-bloom (time 2) samples. As a result, inclusion of all
taxa leads to bigger differences than for the bacteria, but far more subtly.
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Figure 5.3: Network obtained using four ecological indices showing the comparison of eight
PML-Bergen samples (four metagenomes and four metatranscriptomes) considering only bac-
terial nodes at the class rank of the NCBI taxonomy.

For multiple comparison of ten datasets (data similar to the second study)
the Sargasso Sea dataset appears to be more similar to the other datasets than
it does when all taxa are considered (Figures 5.4, C.2.8 and C.2.9). This is be-
cause the Sargasso Sea sample contains a much smaller number of eukaryotic
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reads compared to the other datasets. This reflects the similar water sampling
procedures (e.g. filter size) for the GOS [Rusch et al., 2007] and PML-Bergen
[Gilbert et al., 2008a] datasets, resulting in organisms of a similar size range be-
ing analysed; whereas the Sargasso Sea study used a different sampling procedure
[Venter et al., 2004] which excluded micro-eukaryotes.
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Figure 5.4: Network obtained using four ecological indices showing the comparison of ten
marine samples (randomly resampled Sargasso Sea and GOS samples together with the eight
PML-Bergen samples) considering only bacterial nodes at the class rank of the NCBI taxonomy.

In this study the networks computed using Goodall’s index and Hellinger
distance (Figures 5.3, 5.4 and right column of C.2.6, C.2.7, C.2.8 and C.2.9)
maintain a very similar layout over all ranks of the NCBI taxonomy for the
ten metagenome datasets, whereas the networks using Euclidean distance and
Chi-squared distance (Figures 5.3, 5.4 and left column of C.2.6, C.2.7, C.2.8
and C.2.9) exhibit more variability. Strikingly, unlike the first and second studies,
the PML-Bergen metagenomes tend to group together by time, with the ‘Time
1’ (13th May) being more similar to each other than to the ‘Time 2’ (19th May),
and vice versa. This suggests that the post-bloom bubbling treatment of these
bags had a greater impact on the eukaryotic and archaeal communities than on
the bacterial communities. This is possibly a result of the bubbling-induced lysis
of eukaryotic cells.

Case 4: The effect of rare taxa. To study the effect of rare taxa on
such analyses, we excluded all taxa having an abundance of less than 0.025%
from each of the six metagenomes examined above (now excluding the four meta-
transcriptomes). The resulting truncated data sets were then compared with the
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original full datasets. We observe that the placement of the original metagenomes
remains the same in all the networks computed. The networks based on the Eu-
clidean, Kulczynski and Bray-Curtis distances are unable to distinguish between
the original and truncated metagenomes, placing them at identical locations in the
network (Figure 5.5; left column). Networks obtained using the Chi-Squared and
Hellinger distances place the truncated samples close to the original metagenomes,
but on separate branches (Figure 5.5; right column). Only the network based on
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Figure 5.5: Comparison of six marine metagenomes with six truncated copies in which all
rare taxa were excluded, analyzed at the ‘Class’ level of the NCBI. The displayed networks were
obtained using Euclidian, Kulczynski and Bray-Curtis distances (left column) and Chi-squared,
Hellinger distances and Goodall’s index (right column).

Goodall’s index was able to represent the correct branching within the datasets
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(Figure 5.5).

Interestingly, we observed that the distances between the original and the
truncated datasets are roughly proportional to the percentages of community
change. This can be further understood by combining the result from Table 5.1
and Figure 5.6. For example in ‘1-T1-Bag1’ dataset the total number of identified
‘class’ level taxa was 96. Out of those 96 taxa, 27 taxa had an abundance of read
less than 0.025% of the total community abundance (Table 5.1).

Total number of Total number of % of
Dataset name taxon identified taxon excluded community (taxon)

at ‘Class’ level from original dataset change
in original dataset (abundance < 0.025%) in new dataset

1-Time1-Bag1-DNA 87 27 31.03 %
2-Time1-Bag6-DNA 77 16 20.78 %
3-Time2-Bag1-DNA 89 28 31.46 %
4-Time2-Bag6-DNA 94 26 27.66 %
Sargasso 81 12 14.81 %
GOS 96 34 35.42 %

Table 5.1: Detail numbers of identified and excluded taxa and resulting community change
in truncated datasets.
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Figure 5.6: Network using Goodall’s index from a control study to analyze the effect of
excluding rare taxa. Comparison of six marine metagenomes with six truncated copies in which
all rare taxa were excluded, analyzed at the ‘Class’ level of the NCBI. Number of taxon (Class)
present in each data is reported in red and % of taxa or community (Class) changes in each
control data is reported in blue.

After excluding all the reads from these 27 taxa, the new datasets (‘1-T1-
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Bag1-new’) had 31.03% of community change. From the Figure 5.6 we can easily
visualize that the distance between these two datasets is roughly proportional to
31.03% in relative sense when compared to other differences and proportions.

Case 5: Comparison of the 41 GOS datasets. We applied our ap-
proach to the geospatially-structured GOS data [Rusch et al., 2007] and com-
puted two networks using Goodall’s index, one considering all 41 sites and the
second considering only the open ocean and coastal sites (Figure 5.7). Both net-
works exhibit a star-like structure, reflecting a high level of diversity in the data.
Spatially related samples tend to cluster together, with the open ocean samples
showing apparently fewer sample-specific taxa than the coastal ones.

Case 6: Comparison of 16S rRNA time series data from West-
ern English Channel. To demonstrate the use of our method on 16S rRNA
tag-pyrosequencing datasets, we applied it to the operational taxonomic units
(OTUs) obtained from a continually monitored sampling site in the Western En-
glish Channel spanning Feb-Dec 2007 [Gilbert et al., 2009]. A comparison based
on all 12, 393 OTUs from this time-series data set using Goodall’s index leads to
a highly unresolved network (Figure 5.8.A), which reflects the high abundance
of rare taxa in the data across monthly samples. A more informative network
can be obtained by excluding the OTUs found on only one occasion (considering
2666 OTUs, 22%) from the analysis (Figure 5.8.B). A network based only on
those OTUs present in all data (71 OTUs, 0.5%) exhibits similar clusters, but
as a result, a proportion of the distance information is lost (Figure 5.8.C). This
network visually captures both the relationships between the samples and the sea-
sonality of the dataset as previously described less adequately using traditional
NMDS methods [Gilbert et al., 2009]. This analysis highlights the robust nature
of Goodall’s index in marker-based metagenomic studies, and also the importance
of identifying rare taxa in these datasets.

Finally to establish the benefits of using this network representation, we
prepared PCA and NMDS plot based only on those OTUs present in more than
one time points (Figure 5.9). Unlike the NMDS plot (Figure 5.9.B), the net-
work representation (Figure 5.8.B) provides a clear visualization of the distances
between the different datasets, and unlike the PCA analysis (Figure 5.9.A) it sug-
gests possible sample groupings. An obvious direct benefit is that the network
representations provide a mix of the visual sensitivity of NMDS and PCA with
the quantitative nature of classical dendrograms.
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Figure 5.7: (A) The Global Ocean Sampling Survey (GOS) map (from [Rusch et al., 2007]),
(B) the network considering all 41 sampling sites of GOS data and (C) the network considering
only open ocean and costal sites using Goodall’s index at the class rank of the NCBI taxonomy.
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Figure 5.8: Comparison of 16S rRNA time series data from Western English Channel. Net-
work using Goodall’s index (A) considering all 12, 393 OTUs, (B) Considering OTUs found at
more than one time point ( 22%), (C) Considering OTUs found at all time points ( 0.5%).
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Figure 5.9: Comparison of 16S rRNA time series data from Western English Channel. (A)
PCA Plot considering OTUs found at more than one time point ( 22%), (B) NMDS plot
calculated from Bray-Curtis similarity matrix, obtained from OTUs found at more than one
time point ( 22%)
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5.3 Multiple Comparison of Functional Content
using Networks

As the comparison of taxonomic content, the functional content of a collection of
datasets can also be compared using six different ecological indices in a similar
fashion. In Figure 5.10 we have compared eight above mentioned PLM-Bergen
marine samples based on their functional content using six ecological indices.
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Figure 5.10: Network obtained using six ecological indices showing the functional comparison
of eight PML-Bergen samples (four metagenomes and four metatranscriptomes) using SEED
subsystems.

In these networks, the eight PML-Bergen samples demonstrated very similar
clustering patterns using the functional data for analysis, compared with that ob-
tained using just the taxonomic content. Therefore, this suggests that the chosen
methodology is extremely robust for this type of comparative metagenomics.
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5.4 Conclusion

Upcoming sequencing technologies are fueling a vast increase in the number and
scope of metagenome projects. There is a great need for the development of new
methods for visualizing the relationships between multiple metagenomic data
sets. To address this, we have introduced a novel approach in this chapter that
combines the use of taxonomic analysis, ecological indices and non-hierarchical
clustering to provide a network representation of the relationships between dif-
ferent metagenome data sets. The approach was applied to different types of
published data sets, including metagenomes, metatranscriptomes and 16S ribo-
somal profiles. Application of the approach to the same data using gene content
summarized at different taxonomic levels (and also with functional content) gives
rise to remarkably similar networks, indicating that the analysis is very robust.
Importantly, the networks provide both a visual definition and metric quantifi-
cation of the non-rooted relationship between samples, combining the desirable
characteristics of other tools into one.



Chapter 6
Comparison of Sequencing
Technologies for Metagenomics

From Section 1.4 we already know the theoretical background and advances of
sequencing technologies. This chapter is devoted to solve the previously men-
tioned (in Chapter 2) question:

- Which technology is most suitable for a particular metagenomic project?

6.1 Overview

Most metagenome sequencing projects so far are based on Sanger sequencing
[Venter et al., 2004, Rusch et al., 2007, Woyke et al., 2009]. The main advantage
of Sanger sequencing is that the reads can be up to 1000bp in length. Such
long reads are desirable for a number of reasons. First, longer reads usually help
to achieve longer and better matches to reference sequences, and so such reads
can be assigned to specific taxa with higher confidence. Second, reads of this
length can contain whole open reading frames and thus are very useful for finding
new genes. Finally, the problem of assembling the most abundant species in a
metagenome, when desired, is easier for longer reads. The main drawback of
Sanger sequencing is the high price per base pair.

The first of the so-called “next generation” sequencing technologies, Roche-
454 sequencing [Margulies et al., 2005], has become more and more popular as
an alternative to Sanger sequencing. Now a read length of over 400bp is pos-
sible, for a much lower price per base pair than Sanger sequencing. Short-read
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sequencing technologies do have significant utility in whole genome sequencing
projects because of their low cost and high throughput.

Until quite recently, the second next-generation sequencing technique to be-
come commercially available, Illumina sequencing [Bentley, 2006], was not consid-
ered suitable for metagenomic studies because of its short read length in the range
of 35 bp. Recent improvements support a read length of 75 bp, and such reads
can now be collected in a paired-read protocol (see 1.4.4 for more details). Illu-
mina sequencing has become an even cheaper option for metagenome sequencing
among the currently available ones (see Table 1.1).

In this chapter the performance of two second-generation sequencing tech-
nologies are compared by simulating metagenomes. In particular the problem
of taxonomic analysis of paired reads is addressed. In the simulation study we
investigate the use of Illumina paired-sequencing in a taxonomical analysis and
compare the performance of single reads, short clones and long clones. Because of
the rather short reads (max 50 bp) [Metzker, 2010] SOLiD sequencing technology
is still not suitable for metagenomics, so we exclude this from the comparison. In
addition, we also compare against simulated Roche-454 sequencing runs. As the
Roche-454 pair-end protocol requires an additional cloning step, it is not usually
used in current metagenome projects. Therefore here we only consider Roche-454
single reads for comparison. The main hypothesis in our investigation is that,
although the Illumina technology generates shorter sequences, the presence of
paired reads will produce more specific taxonomical assignments when used with
the “LCA-gene content” (lowest common ancestor) algorithm of MEGAN (see sec-
tion 3.2 for details). We have supported our hypothesis through a large number
of experimental results on three different metagenomes of different complexities.
For the publication associated with this work please refer to [Mitra et al., 2010b].

6.2 Theory and Background

Here we describe a few details about different kinds of metagenome datasets, the
program MetaSim [Richter et al., 2008], used for simulation and some fundamen-
tal technical knowledge about BLAST [Altschul et al., 1990].

6.2.1 Complexity of Metagenome Datasets

As described in 6.3.1, metagenomes can be classified into three different
groups. Microbial communities, represented by a dominant population and
flanked by low-abundance ones, are called ‘low complexity’ (LC) metagenomes.
This type of metagenome can be found in bioreactors [Strous et al., 2006,
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Garcia Martin et al., 2006]. ‘medium complexity’ (MC) communities have
more than one dominant population, also flanked by low abundance ones, as
seen in an acid mine drainage biofilm or the Olavius algarvenis symbionts
[Tyson et al., 2004, Woyke et al., 2006]. If no dominant population is available,
for example in the agricultural soil [Tringe et al., 2005], the community is called
‘high complexity’ (HC).

6.2.2 MetaSim – Metagenome Simulator

MetaSim is a program to generate collections of synthetic reads that reflect the
diverse taxonomical composition of typical metagenome data sets. Based on a
database of given genomes, this program allows the user to design a metagenome
by specifying the number of genomes present at different levels of the NCBI
taxonomy, and then to collect reads from the metagenome using a simulation of
a number of different sequencing technologies.

As input MetaSim takes a set of known genome sequences and an abundance
profile. This profile determines which genome sequences are selected for the
simulation and the relative abundance of each genome sequence in the dataset.
An ‘induced tree view” of the NCBI taxonomy is then integrated. Furthermore
users have the possibility to choose among different (adaptable) error models of
current sequencing technologies, for example Sanger, Roche’s 454 and Illumina.
We used MetaSim for simulating metagenome datasets of different complexity.
For more details of the program please refer to [Richter et al., 2008].

6.2.3 Basic Local Alignment Search Tool (BLAST)

Basic Local Alignment Search Tool, or BLAST [Altschul et al., 1990], is a tool
which finds regions of local similarity between biological sequences, such as the
amino-acid sequences of different proteins or the nucleotides of DNA sequences.
A BLAST search enables researchers to compare a query sequence with a library
or sequence databases by identifying library sequences that resemble the query
sequence above a certain threshold and calculates the statistical significance of
matches.
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6.3 Methods and Analysis

6.3.1 Simulation of Metagenomes and Sequencing

We used the MetaSim simulator to simulate the sequencing of three different
synthetic metagenomes of different complexities using Roche-454 sequencing, Il-
lumina paired-end sequencing of short clones and Illumina pair-end sequencing of
long clones, as described in more detail below. For a fair comparison, the ratio of
the total number of base pairs simulated for the Roche-454 and Illumina technolo-
gies was 1:10, based on the assumption that the price ratio between Roche-454
sequencing and Illumina paired-end sequencing is roughly of that order.

The three synthetic metagenomes were generated using whole-genome
prokaryotic sequences downloaded from the NCBI website (April 2009), in ac-
cordance with the three profiles described in [Mavromatis et al., 2007]. In more
detail, the three metagenomes are:

• A low complexity (LC) metagenome, consisting of 104 species and featuring
the highly abundant species Rhodopseudomonas palustris ;

• Amedium complexity (MC) metagenome, consisting of the same 104 species
including six highly abundant species: Xylella fastidiosa Dixon, Rhodopseu-
domonas palustris BisB5, Bradyrhizobium sp. BTAi1, Xylella fastidiosa
Ann-1, Rhodopseudomonas palustris BisB18 and Rhodospirillum rubrum
ATCC 11170 ;

• A high complexity (HC) metagenome, consisting of the same 104 species,
all at similar levels of abundance.

(Nine taxa mentioned in [Mavromatis et al., 2007] were not found in the NCBI
database and thus were omitted from our analysis. Their taxon ids are: 155920,
155919, 165597, 332415, 322710, 286604, 321955, 333146 and 333849.)

We simulated Roche-454 reads for each of these three datasets with MetaSim
using a setting of 98 flow cycles to obtain reads that are ≈ 250bp in length.
MetaSim models the basic base-calling procedure of Roche-454 sequencing. How-
ever, additional corrective post-processing is not simulated and so the errors re-
ported here may be higher than what one would encounter in practice. For each
dataset, we produced 6, 000 (non-paired) reads (see Table 6.1).

For each of the three synthetic metagenomes, we produced two different sets
of Illumina reads with the goal of simulating the sequencing of both short clone
and long clone libraries. The latest release of the MetaSim software provides
an error profile for Illumina reads of length 36 bp. To obtain an error profile for
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LC-454 MC-454 HC-454
Simulated reads 6,000 6,000 6,000
Simulated base pairs 1,548,902 bp 1,541,252 bp 1,573,651 bp
Average read length 258.15 bp 256.88 bp 262.28 bp
Insertions 35,796 (2.3%) 35,425 (2.3%) 36,013 (2.3%)
Deletions 8,911 (0.5%) 8,839 (0.5%) 9,208 (0.5%)
Substitutions 0 0 0

Table 6.1: Roche-454 reads statistics: Summary of the Roche-454 reads generated by
MetaSim for each of the three synthetic metagenome datasets LC, MC and HC.

longer reads of length 75 bp, we applied a non-linear regression (f(x) = a ·eb·x+c)
to produce the best fitted error model (a = 3.957e − 4, b = 1.319e − 1 and
c = 5.362e− 3).

For the short clone library (S), we set MetaSim to generate clones according
to a normal distribution with µ = 200 bp and σ = 20 bp (see Table 6.2). For the
long clone library (L), we set MetaSim to generate clones according to a normal
distribution with µ = 1, 900bp and σ = 300 bp (see Table 6.3). In total, we
produced nine datasets of simulated reads:

• Roche-454 reads: LC-454, MC-454 and HC-454;

• Illumina reads, short clones: LC-ilm-S, MC-ilm-S and HC-ilm-S;

• Illumina reads, long clones: LC-ilm-L, MC-ilm-L and HC-ilm-L.

LC-ilm-S MC-ilm-S HC-ilm-S
Simulated reads 200,000 200,000 200,000
Read length 75 bp 75 bp 75 bp
Clone length 200 bp 200 bp 200 bp
Simulated base pairs 15,000,000 15,000,000 15,000,000
Insertions 0 0 0
Deletions 0 0 0
Substitutions 227,913 (1.5%) 228,516 (1.5%) 227,279 (1.5%)

Table 6.2: Illumina short-clone reads statistics: Summary of the Illumina short-clone
reads generated by MetaSim for each of the three synthetic metagenome datasets LC, MC and
HC.

To be able to estimate the robustness of the results reported below, we
additionally produced five replicates for each of the described datasets. Due to
time constraints, in these replicates each Illumina datapoint was simulated using
only 10, 000 clones.
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LC-ilm-L MC-ilm-L HC-ilm-L
Simulated reads 200,000 200,000 200,000
Read length 75 bp 75 bp 75 bp
Clone length 1,900 bp 1,900 bp 1,900 bp
Simulated base pairs 15,000,000 15,000,000 15,000,000
Insertions 0 0 0
Deletions 0 0 0
Substitutions 227,880 (1.5%) 228,256 (1.5%) 228,262 (1.5%)

Table 6.3: Illumina long-clone reads statistics: Summary of the Illumina long-clone
reads generated by MetaSim for each of the three synthetic metagenome datasets LC, MC and
HC.

6.3.2 Sequence Similarity Search and MEGAN Analysis

We performed a MEGAN analysis of all nine datasets with their replicates. First,
each of the datasets was compared against the NCBI-nr database (April 3, 2009
version) using BLASTX. Each of the nine BLASTX output files was then parsed
and analyzed using MEGAN, as described in more detail in results (Section 6.4).

6.3.3 Processing paired reads in MEGAN

Reads from metagenomic datasets are usually processed in isolation (unless an
assembly is attempted). MEGAN filters the BLAST matches obtained for a read
by bit score. First, only matches that exceed a minimal bit score of 35, say, are
kept (this is called the min score filter). Second, the hits are filtered further so
that only those that attain a score that is within 10% (say) of the best score seen
for the given read are kept (the top percent filter). For each hit that passes these
two filters, MEGAN determines the corresponding species and then assigns the
read to the LCA of the species of all hits, as outlined in section 3.2. A third
filter, called the min support filter is then applied which removes all taxa from
the reported result that were not hit by a specific number of reads.

To accommodate paired reads (see 1.4.4 for details), we have implemented a
new paired-reads mode in MEGAN. After importing all reads, MEGAN processes
each pair of reads in turn. In more detail, matches to the same organism from the
two different reads are treated as one match. To give one of these paired matches
more weight, we propose to combine the bit scores s1 and s2 from the two reads
using the following equation:

ssum =
r∑

i=1

si+
r · ln(k)− ln(km′n′)− r(r − 1) · (ln(k) + 2 ln(g))− log(r!)

ln(2)
(6.1)
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with r = 2, k = 0.041 (database parameter reported by BLAST), gap size
g = 50, effective length of the query m′ = max

(
1
k
,m− h

)
(For BLASTX

m′ = max
(

1
k
, m

3
− h
)
), query length m, effective HSP h, effective length of the

subject n′ = max
(

1
k
, n− h

)
and subject length n. For more details on these

parameters, see [Korf et al., 2003].

The number of organisms that are hit by both reads of a pair will often
be smaller than the number of different organisms that are hit by either of the
reads on their own. The modified bit score of two combined hits will often be
more than 10% higher than the score of uncombined hits and so, in many cases,
only the combined matches will pass the 10% filter. In consequence, the resulting
LCA placement should be more specific.

MEGAN 4 is able to process sequencing reads in pairs and makes assign-
ments of such reads based on the combined bit scores of their matches to reference
sequences.

6.4 Results and Discussion

6.4.1 Short clones or long clones?

As mentioned before, the LCA-gene-content approach implemented in MEGAN
suffers primary from a lack of resolution. A read that has a highly significant
match to a sequence in the NCBI-nr database will often match with similar se-
quences from other organisms, as well, and thus may be placed on a higher-level
taxon.

Assume that we have a set of reads collected using a paired-read protocol.
If we process two reads (A and B) from the same clone simultaneously, then the
distance between the two reads in the source genome (i.e. the length of the clone
from which they were sequenced) will affect the performance of the LCA-gene
content algorithm: If the two reads are close together, as in the case of short
clones, then it is more likely that the two reads will come from the same gene and
thus will display the same pattern of hits among species. If, on the other hand,
the two reads lie much further apart in the source genome, as in the case of long
clones, then it is more likely that the reads will come from two different genes,
and these might show quite different patterns of conservation among species (see
Figure 6.1). A main hypothesis is that more species will hit (that is, contain
sequences that align to) both A and B if the reads come from a short clone than
would be the case if the two reads come from a long clone.

Indeed, in the simulations reported below, we observed that whenever the
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Figure 6.1: We assume that the intersection of the species hit by two reads A and B will be
larger for pair reads obtained from short clones than for ones obtained from long clones. If this
is the case, then use of the long clones in metagenome projects should lead to a more specific
assignment of reads.

two reads of a short clone matched the same taxon, then this is due to matches
to the same gene in over 80% of the cases, whereas for long clones this is true for
just under 12%.

Thus, if we modify the LCA-gene content algorithm to place more weight
on those species that are hit by both reads, then it should be the case that using
long clones will give rise to more specific taxonomical assignments than when
using short clones, without increasing the number of false-positive assignments.
Moreover, it should, of course, be the case that processing both reads of a pair
together will provide better results than processing each read in isolation.

6.4.2 Analysis of Roche-454 reads

The MEGAN analysis of the three different Roche-454 datasets, LC-454, MC-454
and HC-454, using the full NCBI-nr reference database, produced very few false
negative species. Less than 6% of all species present in the synthetic metagenomes
were not detected. Because of the low number of reads in each of the datasets
(6,000 each), it is not surprising that some species of low abundance were missed.
The false positive rate was zero for the LC-454 and HC-454 datasets, and less
than 2% for the MC-454 dataset. Of course, the number of false negatives and
the number of false positives both depend on the parameters applied, and the
usual trade-off between false positives and false negatives can be observed. For
these datasets, the best settings are min score = 50, top percent = 10 and the
min support = 3 (see Figure 6.2 for the distribution of bit scores for each of the
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three Roche-454 datasets).

Figure 6.2: For each of the three simulated Roche-454 datasets, LC-454, MC-454 and HC-454,
we plot the highest bit scores for all 6, 000 reads.

Note that this analysis addresses only the problem of detecting specific
species in the dataset, not whether individual reads have been correctly assigned.
To obtain an indication of how well the individual reads are assigned to the correct
species, in Figure 6.3, we compare the number of reads assigned to specific species
against the number of reads actually simulated for each species. Here we also have
normalized the data for this comparison. (The corresponding values for the five
replicate datasets differ by between 10% (LC dataset) to 25% (HC dataset)).

a b c

Figure 6.3: Blue bars indicate how many Roche-454 reads were assigned to seven different
taxa, for each of the synthetic datasets LC (a), MC (b) and HC (c). Red bars indicate how
many Roche-454 reads were actually simulated for each of the taxa. For ease of comparison,
we have normalized the counts to a total of 100,000.
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6.4.3 Analysis of Illumina reads

All six files containing simulated Illumina reads, LC-ilm-S, MC-ilm-S, HC-ilm-S,
LC-ilm-L, MC-ilm-L and HC-ilm-L, were compared against the NCBI-nr database
using BLASTX and then analyzed using MEGAN’s paired-read mode. In addi-
tion, to simulate single Illumina reads, we used the reads from our Illumina long
clone files and processed them with MEGAN as single reads.

b ca

Figure 6.4: For each of 100, 000 (normalized) reads sampled from the HC synthetic
metagenome, we plot the highest bit score attained for (a) Illumina single reads (HC-ilm),
(b) Illumina short-clone pairs of reads (HC-ilm-S) and (c) Illumina long-clone pairs of reads
(HC-lim-L). The later two charts include the combined bit scores computed using equation
(6.1). The plots for the LC and MC datasets look very similar and are therefore omitted

In Figure 6.4, we show the distribution of BLASTX bit scores for (a) single
Illumina reads of the synthetic HC dataset and compare it with the distribution
of bit scores for both the (b) short-clone and (c) long-clone libraries. In the latter
two charts, the dark bands centered at 80 bits are scores obtained by combining
the scores of paired reads using equation 6.1, as implemented in MEGAN’s paired-
read mode. These plots clearly show the effect of combining matches from paired
reads. The attained bit scores are much higher and it is clear that using a top
percentage filter setting of 10% will make MEGAN use only those species that
are hit by both reads of a pair in the LCA computation, whenever such hits are
present. While the average combined bit scores are not as high as the bit scores
reported for the simulated Roche-454 reads (see Figure 6.2), they are nevertheless
much higher than the Illumina single read scores (centered at 52 bits (Figure 6.4).

To obtain an indication of how well the individual reads are assigned to the
correct species, in Figure 6.5 we compare the number of reads assigned to specific
species with the number of reads actually simulated for each species, for the same
species as above. Here also we have normalized the data for comparison. (The
corresponding values for the five replicate datasets differ by between 5% (LC
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dataset) to 25% (HC dataset).) In most cases, the number of assigned reads from
long clones is larger than the number from short clones, which in turn is larger
than the number of assigned single reads. In general, the number of false positive
assignments is very small, except in the case of the HC dataset, where about 8%
of the long-clone reads were falsely assigned to Rhodopseudomonas palustris.

a b c

Figure 6.5: For seven key species, we indicate the number of simulated reads (red), along with
the number of simulated Illumina single reads (blue), short-clone reads (green) and long-clone
reads (yellow), assigned to the species by the LCA-gene content algorithm, for each of the three
synthetic metagenome datasets LC (a), MC (b) and HC (c). (All values normalized to 100,000)

Reads are assigned to nodes at different ranks of the NCBI taxonomy, de-
pending on how conserved their sequence is across species. In Figure 6.6, we show
the number of reads assigned to nodes at different ranks of the NCBI taxonomy,
from the phylum level down to the species level.
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Figure 6.6: The number of reads assigned to nodes at different ranks of the NCBI taxonomy,
from the phylum level down to the species level. These numbers are reported for Illumina
single reads (yellow), short-clone reads (blue) and long-clone reads (red), for each of the three
synthetic metagenome datasets. All datasets normalized to 100,000 for ease of comparison.
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The rate of false positive assignments to nodes of the different levels is very
close to zero, and so we do not distinguish between correctly and falsely assigned
reads in this figure. These charts indicate that the assignment of reads to taxa
is most specific for Illumina long-clone reads, slightly less specific for short-clone
reads and even less specific for single reads.

6.4.4 The effect of unknown species

The study described so far simulates the situation in which all organisms in the
metagenome are represented by sequences in the reference database. In practice,
a metagenome usually contains a significant percentage of unknown organisms,
which are not represented in the reference database. To mimic this situation, we
decided to rerun the analysis while ignoring all BLAST matches to any taxon
in the genus of Rhodopseudomonas. In Figure 6.7, we show the performance of
MEGAN for both short clones and long clones. When using the whole of the
NCBI-nr database as a reference, we can assign 60, 000 − 65, 000 reads at the
species level, with a very small number of false positive assignments.

When we remove the genus of Rhodopseudomonas from the reference
database, the percentage of reads assigned to species drops by a number roughly
proportional to the number of reads that were actually sampled from the genus.
In this case, the number of false positive assignments rises to about 2.5%, while
most of the reads that were sourced from the “unknown” genus are classified as
unassigned and are thus considered false negatives. This confirms that the LCA-
gene content method for taxonomical analysis is indeed quite conservative in that
unknown sequences are much more likely to produce false negatives than they are
to produce false positives.

6.4.5 Choice of MEGAN parameters

This taxonomical analysis of simulated Illumina reads was performed using
the following MEGAN parameters: min score = 50, top percent = 10 and
min support = 50. The most crucial parameter is the min score, which pre-
scribes the minimal bit score that a match must achieve to be considered in the
analysis. For single reads of short length, the program’s recommended setting of
this parameter is 35 bits. Figure 6.4 indicates that a min score of 40 or 45 might
be more suitable, as it will be more specific, while still allowing most reads to be
placed.

For paired-reads, Figure 6.4 suggests that using only those BLAST matches
whose bit score exceeds 50 should perform very well. With this setting, for any
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Figure 6.7: In the top row, we show the number of assigned and correctly assigned Illumina
short- and long-clone reads at different taxonomical ranks. In the bottom row, we show the same
quantities for a taxonomical analysis performed with the entire Rhodopseudomonas removed
from the reference database.

pair of reads that has combined matches, only the combined matches will be
used, as the bit scores of single-read matches will not pass the top percent filter.
In cases where a pair of reads does not give rise to a pair of combined matches,
then only very high-scoring single-read matches will be used.

To determine a recommended setting for the min support filter for Illumina
paired reads, we studied the number of false positive and false negative assign-
ments for both short-clones and long-clones for a number of different settings.
All three synthetic metagenomes, LC, MC and HC, gave similar results, and so
we only show the results for the HC dataset in Figure 6.8. Our studies suggest
that min support = 50 is a good choice, as it minimizes both the number of false
positives and false negatives while giving higher or conservative support value.
However choice of parameters always depends on the kind of the study.
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Figure 6.8: For the synthetic HC metagenome, we report the number of false positives for the
short clones (red) and long clones (green), and the number of false negatives for the short-clones
(yellow) and the long clones (brown), as a function of the minimal number of hits required for
a species to be considered detected.

6.4.6 Comparison between Roche-454 and Illumina

How do reads of length 250bp compare against paired reads of length 75 bp? In
Figure 6.9, for each of the three synthetic metagenomes, we report the number of
reads that were correctly assigned on the species level, for Roche-454 sequencing,
and Illumina single reads, short-clone reads and long-clone reads. In all cases,
the number of falsely assigned reads is close to zero. The rest of the correctly
assigned reads are usually assigned to the higher level in the taxonomy. Our
study suggests that a higher percentage (≈ 8%) of Illumina paired reads than of
Roche-454 single reads are correctly assigned to species.

As we indicate above, long clones are more specific than short clones, be-
cause they lead to placements based on well-separated reads. This argument
carries over to Roche-454 reads as well: While the reads are longer and thus
support longer and more significant BLAST matches, the matches will usually
reflect the gene content pattern of only one gene, rather than two.

How much of the difference between the results for the Roche-454 and the
Illumina long-clones sequences is due to the different types of errors produced by
the two different sequencing technologies? To investigate this, we generated an
additional dataset covering all read lengths and clone lengths described above, but
without applying any sequencing error models. Figure 6.10 shows the assignments
for these error-free reads. This analysis is analogous to Figure 6.9 and exhibits
a slightly different ranking of protocols by increasing performance, namely first
short single reads, then short clones, then long single reads and then long clones.
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Figure 6.9: The percentage of correctly assigned reads (dark blue) to nodes at the species
level of the NCBI taxonomy, averaged over the five replicate datasets, with error bars indicating
the range of all five values. These numbers are reported for Roche-454 single reads (labeled
454), Illumina single reads (ilm), Illumina short-clone reads (ilm-S) and Illumina long-clone
reads (ilm-L).

The gain of long-clone data (75 bp paired reads) over long single-read data (250
bp reads) is still significant at ≈ 4%.
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Figure 6.10: The same notations as Figure 6.9, but without applying any sequencing error
models.

6.5 Conclusion

In this chapter, we have investigated the question whether the taxonomical analy-
sis of metagenomic datasets can be performed by Illumina paired reads, and, if so,
whether short clones or long clones should be used. Our simulation study suggests
that Illumina paired reads are well-suited for this task and that long clones are
more specific, even compared to much longer Roche-454 reads (of length 250bp),
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when using the LCA-gene content algorithm. We have represented that this is
due to the fact that the placement of reads from long clones are based on the
gene-content pattern of two different genes, rather than just one. This is a general
observation that will probably affect other analysis methods that consider paired
reads, as well.

Because Illumina sequencing is much cheaper than Roche-454 sequencing,
it is clear that future metagenomics projects will use Illumina sequencing, as well
as Sanger and Roche-454 sequencing.



Chapter 7
Application in Metagenomic
Projects

This chapter describes the application of previously mentioned methods in
four metagenome projects: detection and diversity of pathogenic Vibrio in coastal
Fiji waters, ocean acidification study, seasonal and diel marine bacterial function
and mammoth microbiome. Here I will briefly describe my contributions in these
projects.

7.1 Detection and diversity of pathogenic Vibrio
in coastal Fiji waters

This study1 describes the metagenomic analyses to examine the diversity of Vibrio
species in the coastal waters around Suva, Fiji.

7.1.1 Overview

Members of the genus Vibrio are gram-negative, motile rods. These bacteria
are ubiquitous in marine environments where they form associations with a wide
array of eukaryotes. Strains of several Vibrio species are clinically important

1The content of this section is submitted for publication as a part of the study done by Reema
Singh, Vinay Narayan, Patricia McLenachan, Richard C. Winkworth, Suparna Mitra, Peter J.
Lockhart, Lorraine Berry, Abdulla M.Hatha, William Aalbersberg and Dhana Rao
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human pathogens. Commonly, disease-causing forms are associated with gas-
trointestinal infections (e.g., V. cholerae, V. parahaemolyticus and V. vulnificus).
Perhaps clinically most important is V. cholerae. Toxigenic strains of this species
are the causative agent of cholera, a disease that claimed millions of lives
during the 19th century and currently affects 3 − 5 million people annually
[Thompson and Klose, 2005, Hunt et al., 2008].

Little is known about the distribution and prevalence of disease-causing
Vibrio species in the Pacific Islands. During the late 1970s the O1 El Tor strain
was responsible for a cholera outbreak in the South Pacific. More recently the
identification of non-toxigenic O1 strains in Fiji suggests a silent reservoir of
V. cholerae remains [Nair et al., 2006]. Interestingly, Fijian public health records
indicate an increasing incidence of diarrhea (Ministry of Health Bulletin, 2009).
Although there is no data linking this increase to food-borne disease, given that
fish and shellfish are common vectors and raw fish is frequently eaten in Fiji, it
is possible that these diseases may be linked to Vibrio infections.

The goal of this study is to investigate the occurrence of pathogenic Vibrio
species on fish available for consumption and in the coastal waters around Suva,
Fiji. Biochemical tests were used to screen fish sold at retail outlets in Suva
for the presence of Vibrio. These tests suggest the presence of a moderately
diverse community of these bacteria. Phylogenetic analyses of three markers (i.e.
16S, recA and pyrH) confirm the presence of V. parahaemolyticus and suggest
this species is represented by several genotypes. Both clinical and non-clinical
species were associated with the sampled fish. Illumina GAII sequencing and
MEGAN analyses were used to detect Vibrio in seawater samples; this approach
identified several Vibrio species. Consistent with the fish screening we detect the
pathogenic V. cholerae and V. parahaemolyticus in the coastal water column. This
section describes the metagenomic analysis which is a part of study to examine
the diversity of Vibrio species in the coastal waters around Suva, Fiji.

Methods for Metagenomic Analysis of Seawater Samples

Seawater samples of 60L were collected at a depth of 5m from two open water
sites, one in the Suva Harbour and the other near Beqa Island. Samples were
pre-filtered through 5.0µm membrane disc filters (Milipore) to remove debris and
microorganisms collected by pressure filtration through 0.8µm and 0.22µm fil-
ters (Pall Life Sciences). Total community DNA was extracted using a modified
version of the protocol described by [Venter et al., 2004]; DNA was extracted
separately from 0.8µm and 0.22µm filters with the DNA pooled following ex-
traction.

A paired-end genomic DNA library was prepared by (i) fragmenting puri-
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fied genomic DNA using an Invitrogen nebulisation kit, (ii) ligation of paired-end
index Illumina adaptors and (iii) fragment enrichment using the Illumina Multi-
plex Paired End Genomic DNA library preparation protocol (18 cycles of PCR
were used). Enriched libraries were quantified and quality checked then diluted
to 10 nM using EB buffer (Qiagen) and quantified for optimal cluster density.
Libraries were amplified in a single flow cell lane on the Illumina Cluster Sta-
tion instrument using the Illumina Paired End Cluster Generation kit v2 with a
cluster density of 140, 000 per tile and a molarity of 13 pM. Amplified libraries
were sequenced using a 75 base paired-end indexed run on an Illumina GAII in-
strument; sequencing reactions used the Illumina 36 cycle SBS sequencing kit v3
with Multiplex Sequencing Primers and PhiX control kit v2 (Illumina). After
sequencing, the images were analysed using the Illumina pipeline (version 1.3).

For metagenomic analysis a random sub-sample of 100, 000 pair-end frag-
ments was drawn from the full set of fragments generated by Illumina se-
quencing. Fragments were first aligned against the NCBI-NR (non-redundant
protein; February 2010 version) database using BLASTX (translated DNA to
protein; Altschul et al., 1990). Taxonomic assignment of fragments was then
made using the conservative lowest common ancestor (LCA) algorithm imple-
mented in MEGAN version 4.0 alpha1 [Huson et al., 2007]. Analyses used a
bit score threshold of 35 and the February 2010 version of the NCBI-database
[Benson et al., 2005]. To examine assignment sensitivity a pair of MEGAN anal-
yses were performed. The first analysis, conducted using the standard algorithm,
treated paired end fragments as two single reads (i.e., the 100, 000 paired-reads
are treated as 200, 000 individual reads). The second analysis treated pairs of
reads together, with matches found using both given greater weight (for more
details of paired read mode see [Mitra et al., 2010b]). Final species profiles were
inferred from preliminary lists by excluding taxa with only one assigned read.

7.1.2 Result and Discussion

BLAST searches of the random sub-sample of reads (100, 000 pairs) resulted in
1, 942, 041 significant matches to sequences in the NCBI-NR database (Benson
et al., 2005). Analyzing the BLAST output using LCA algorithm (with a bit
score threshold 35) MEGAN assigned 23, 561 reads to taxonomic groups. Of the
remaining reads, 23, 216 were unassigned because the bit score for matches was
below the threshold and 153, 223 were unmatched to sequences in the NCBI-NR
database; the “Not assigned” and “No hits” categories, respectively. Of assigned
reads, 138 corresponded to the Vibronales clade; 90 of those to the genus Vibrio
and 7 to Photobacterium. The analysis assigned reads to five Vibrio species -
V. cholerae, V. harveyi, V. parahaemolyticus, V. shilonii and V. vulnificus (each
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represented by 7− 14 reads). Further, reads were assigned to strain level within
three species (Figure 7.1.1.A).

Paired-read analysis assigned 42, 354 reads to taxonomic groups; 15, 256
reads were not assigned and 142, 390 had no hits. In general, the number of reads
assigned to a given node in the paired end analysis is close to double that of
the corresponding node in the single read analysis (Figure 7.1.1.B). Paired read
analysis assigned a total of 284 reads to the Vibronales clade and identified three
genera of the Vibrionaceae -Aliivibrio (6 reads), Photobacterium (12 reads) and
Vibrio (185 reads). Within Vibrio, six species (those identified in the single read
analysis plus V. splendidus) and strains within four species were identified using
the paired end approach. Species and strain identifications were based on 6− 29
reads.

Single and paired end MEGAN analyses assigned GAII sequencing reads to
five and six Vibrio species, respectively (Figure 7.1.1). These analyses indicate
both clinical (e.g., V. cholerae and V. parahaemolyticus) and non-clinical (e.g.,
V. harveyi and V. splendidus) species are present in the water column close to
Suva. As with the fish-associated community the presence of clinically important
species represents a potential health risk. All of the species identified in this
analysis were also identified as potential members of the fish-associated commu-
nity. This result suggests that water-column and fish-associated communities are
linked. A result that is perhaps not unexpected. However, if we assume that the
water column species is present when it is among the set of species compatible
with the biochemical results then several species appear to be missing from the
water column. This absence might be explained in several ways. One possibility
is that it reflects real differences between the communities. Perhaps some vibrios
are simply rare in the water column but commonly associated with eukaryotes.
Alternatively these differences may reflect sampling issues. In this context it may
be that our original water samples did not contain representatives of all vibrio
species present in the water column. This seems be likely if certain taxa are
rare; certainly the low number of reads associated with the detected species sug-
gests they are not common community members. Also by sub-sampling reads
we may have influenced the identification of taxa by MEGAN. Again this would
likely have had the most affect on rare community members. Repeating MEGAN
analyses using alternative sub-samples could be used to examine whether this
approach significantly changes the results.

Our analyses suggest a moderately complex Vibrio community is associated
with marine environments close to Suva, Fiji. Although our analyses cannot fully
characterize the community it is clear that clinically important species, including
V. cholerae and V. parahaemolyticus, are among those species present. Further
investigation is needed in order to assess whether the strains present pose direct
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Figure 7.1.1: (A) left hand side - MEGAN taxonomic assignment of single reads; right hand
side - MEGAN taxonomic assignment of pair-end reads. (B) bar plot comparing number of
assigned reads to vibrios for single and pair-end analysis.
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health risks. Given the potentially serious health implications of Vibrio infec-
tion monitoring these bacteria in the environment may provide an important tool
for managing health risks. Towards this end we investigated whether Illumina
GAII sequencing in conjunction with MEGAN analyses could be used to monitor
bacterial communities. Our results suggest that this approach may offer an ef-
fective and efficient method for biomonitoring microorganisms in coastal waters
and presumably other environments.

7.2 Ocean Acidification Study

In this study2 we tried to investigate the impact of ocean acidification on diversity
of Alphaproteobacteria in a coastal mesocosm. The hypothesis of this study is that
Alphaproteobacteria diversity within the community will be altered by reduced pH
conditions as predicted for the year 2100.

7.2.1 Overview

Ocean acidification is the name given to the ongoing decrease in the pH of the
Earth’s oceans. The anthropogenic carbon dioxide (CO2) is absorbed by the
global marine ecosystem, causing an increase in carbonic acid and hence a re-
duction in pH. The pH level is expected to decrease by 0.4 pH units from 8.2
in the present-day to 7.8 in the year 2100 [Nakicenovic et al., 2001]. Since the
19th century, anthropogenic contribution has raised the atmospheric concentra-
tion to nearly 380 parts per million (ppm), which have remained stable at 200
to 280 ppm over the last 400, 000 years. This is mainly due to the uncontrolled
burning of fossil fuels, industry and land use [Feely et al., 2004]. It is extremely
important to understand the impact that this acidification will have on marine
biodiversity and ecosystem functioning. The Royal Society [Riebesell et al., 2007]
report recommended the use of mesocosm experiments, among others, to inves-
tigate the effects of ocean acidification on marine bacterioplankton. Members
of the sub-phylum Alphaproteobacteria are key microbial components of the ma-
rine ecosystem and constitute as much as 50% of the total bacterial abundance,
with global distribution. They play a major role in key biogeochemical cycles,
especially sulphur and carbon cycling.

This study aims to assess the phylogenetic diversity of the bacterial sub-
phylum Alphaproteobacteria in mesocosms exposed to high CO2 conditions and

2The content of this section will be submitted for publication as a part of the study done
by Jack A. Gilbert, Samantha Craven, Ana Stores-Fernandez, Suparna Mitra, Ben Temperton,
Colin Munn and Ian Joint.
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present-day conditions using culture-independent metagenomic approaches. The
goal is to investigate the potential impact that ocean acidification will have on
the diversity of this class through the use of three different molecular techniques,
metagenomic pyrosequencing, fosmid clone libraries and 16S rDNA clone libraries.

7.2.2 Methods

An ocean acidification mesocosm experiment was run by Plymouth Marine Lab-
oratory during May 2006 at the large mesocosm facility near Bergen, Norway
[Gilbert et al., 2008a]. Out of six mesocosms, anthropogenic CO2 was induced
to create ocean acidification condition into mesocosms 1− 3 to reduce pH by in-
creasing the pressure of atmospheric CO2 (pCO2) concentration; for the control,
air was bubbled into mesocosms 4 − 6. A phytoplankton bloom was induced by
adding phosphate and nitrate to all six mesocosms. Mesocosms 1 and 6 were
used as experimental bags for this study. The samples were taken at two time
points, at the peak (Time 1 or 13th May) and immediately after the collapse of
the bloom (Time 2 or 19th May) (please refer to [Gilbert et al., 2008a] for details
of the samples). Sampling strategy, DNA extraction and sample preparation for
the four metagenomic sequence databases are detailed in [Gilbert et al., 2008a].

As a part of analysis, the MEGAN software [Huson et al., 2007] was used to
refine and cluster taxonomic output from BLASTX comparison. The ‘Directed
Homogeneity test’ of MEGAN [Mitra et al., 2009], gives an impression of sig-
nificant differences in taxon abundance caused by the induced acidification (see
Section 4.2 for details of this method). Changes in the diversity of the Alphapro-
teobacteria are shown to be significant in a comparison between high CO2 and
present-day CO2 treatments in a coastal marine ecosystem mesocosm.

7.2.3 Result and Discussion

A comparative metagenomic species profile is depicted in Figure 7.2.1 and 7.2.2.
In Figure 7.2.1 we see that for the 13th May datasets the differences between the
communities in each treatment mainly lie in the Alphaproteobacteria node. In Al-
phaproteobacteria the up p-value (UPv = 2.78E−14) value demonstrates that the
difference in the proportions of occurrences of this node in Proteobacteria was sta-
tistically significant between these the datasets. The down p-value (DPv = 0.0;
all p-values < 1E − 37 are 0.0) suggests that the observed difference is not only
due to this node but is also a result of the abundances of low hierarchical taxa
(orders, families, genera and species). Those nodes which most contribute to this
difference are Rhodobacterales (UPv = 0.0, DPv = 4.89E − 6) and Rickettsiales
(UPv = 0.0, DPv = 0.05) (Figure 7.2.1). For Rhodobacterales, the DPv again
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Figure 7.2.1: Pairwise comparison of two mesocosm samples at the peak of the bloom (Time
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Figure 7.2.2: Pairwise comparison of two mesocosm samples, taken immediately after the
collapse of the bloom (Time 2 or 19th). One sample in red (Bag 1 mesocosm) was enriched
with CO2 and the second in blue (Bag 6) was bubbled with air.

indicates that the sub-taxa within this order are in part responsible of the ob-
served difference. However, for Rickettsiales, the DPv is not below the critical
level (0.01) and so the observed difference can be explained entirely based on this
node. When we drill down into Rhodobacterales the observed difference is mostly
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caused by the difference for Hyphomonadaceae (UPv = 2.27E−6, DPv = 0.695).

In Figure 7.2.2 we see the result of a pair-wise comparison between the
Time2-Bag1-DNA (High CO2, 19th May) and Time2-Bag6-DNA (Present Day,
19th May) datasets. As with the 13th May datasets there is the observed signif-
icant difference between the datasets at the Alphaproteobacteria node (UPv =
0.0). Unlike the 13th May datasets, the major differences in the Alphapro-
teobacteria node can be explained by differences in the Rhizobiales (UPv =
9.07E − 12, DPv = 0.71) Rhodobacterales (UPv = 0.0, DPv = 4.55E − 14)
and Rickettsiales (UPv = 0.0, DPv = 3.87E − 24). For both Rhodobacterales
and Rickettsiales the DPv again indicate that lower taxa also contribute. For the
Rhodobacterales node the Hyphomonadaceae (UPv = 4.04E − 6, DPv = 0.56)
and Rhodobacteraceae (UPv = 1.51E − 8, DPv = 1.71E − 4) both contribute
significantly. Yet, while the Hyphomonadaceae is again solely responsible for this
difference, the differences in the Rhodobacteraceae can be explained by differences
in Sulfitobacter (UPv = 7.6E − 4, DPv = 0.48). For Rickettsiales the difference
is due to Rickettsiaceae (UPv = 5.6E − 23, DPv = 0.29) only.

Thus the ‘Directed Homogeneity test’ of MEGAN helped to visualize and
identify significant different nodes between the acidified (Bag1) and the control
(Bag6) samples at both time points (T1 and T2).

7.3 Seasonal and Diel Marine Bacterial Function

This study3 is devoted to investigate seasonal and diel structured functional pro-
files of marine bacteia. Moreover we hypothesize that bacterial diversity will show
little variability between day and night at any given time point during the annual
cycle and the metatranscriptomic profile of the microbial community will vary
between day and night as a direct influence of environmental factors.

7.3.1 Overview

It is expected that the functional diversity of ecosystems will be
vast. This has been well characterized in various biogeographic studies
(e.g. [Rusch and et al., 2007, DeLong et al., 2006]) which have highlighted the
huge number of microbial proteins present in the marine community, e.g. Rusch
and colleagues [Rusch and et al., 2007] demonstrated approximately 4.4 million

3The content of this section will be submitted for publication as a part of the study done by
Jack A. Gilbert, Dawn Field, Paul Swift, Suparna Mitra, Simon Thomas, Denise Cummings,
Ben Temperton, Sue Huse, Margaret Hughes, Ian Joint, Paul Somerfield, Martin Mühling.
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unique genetic fragments from a study of 7.7 million sequences. Such cultivation-
independent genomic surveys have proved a useful approach for characterizing
the genetic potential of microbial communities [Handelsman, 2004, DeLong, 2005,
DeLong et al., 2006]. However, there have been very few studies to determine how
microbial function varies over time, especially using high-throughput metage-
nomic and metatranscriptomic studies.

Marine bacteria demonstrate seasonal patterns in diversity with on aver-
age a higher diversity during the winter than the summer [Murray et al., 1998,
Fuhrman et al., 2006, Gilbert et al., 2009] in pelagic ecosystems. Numerous envi-
ronmental factors have been suggested to influence this diversity (e.g. temperature
and nutrients). This change in community structure over time has to date only
been characterized using taxonomic profiling, and yet it stands to reason that if
the community changes then so must the functional potential of that community.

To test several hypotheses mentioned above, multiple datasets were gener-
ated from pelagic water samples taken during the day and night at 3 annual time
points, January, April and August, representing Winter, Spring and Summer.
To determine whether bacterial and archaeal DNA taxonomy changes between
seasons and diel time points 16S rDNA V 6 profiling (e.g. [Gilbert et al., 2009])
was employed. Additionally, metagenomic shotgun DNA sequencing was also em-
ployed to investigate the impact of seasons and day and night on the functional
potential of the community. Additionally, the impact of season and day/night was
determined by sequencing the metatranscriptome of the community at each time
point. Through provision of this dataset it is intended to show that changes in
bacterial taxonomy relate to change in the functional potential of the community
and additionally the relative impact of seasonal community change.

7.3.2 Methods for Metagenomic Analysis

All samples were collected from the surface water (0 − 2m) of the L4 sampling
station (50.2518N, 4.2089W ) which is part of the Western Channel Observatory4.
The sampling dates were January 28th, April 22nd, August 26th and August 27th.
During January a sample was taken at 15:00 at the L4 station at which point
a minimal impact surface buoy with a 7m current drogue was deployed to track
the surface currents for Lagrangian drift sampling. Approximately one hour post
sun-down at 19:00 a second sample was taken at 50.2611N : 4.2435W . During
April a sample was taken at 16:00 at the L4 station and following a Lagrangian
drift a second sample was taken at 22:00 at 50.253N : 4.1875W . During August
four samples were taken over a 24 hour period following a Lagrangian drift, with

4 http://www.westernchannelobservatory.org.uk

http://www.westernchannelobservatory.org.uk
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the first sample at 16:00 on the 26th at L4, the second sample at 22:00 on the 26th

at 50.2545N : 4.199W , a third at 04:00 on the 27th at 50.2678N : 4.1723W , and
a fourth at 10:00 on the 27th at 50.2665N : 4.1486W . We will not describe the
details of sample preparation, nucleic acid extraction and dataprocessing here in
this section, but rather will emphasis the metagenome analysis using MEGAN
[Huson et al., 2007] . All raw fasta files taken from pyrosequencing analysis were
run through a metatranscriptomic data processing pipeline, to provide data for
statistical analysis and annotation. As a part of this analysis, the MEGAN
software was used to refine and cluster the taxonomic output from the BLASTX
comparison.

7.3.3 Result and Discussion

Previous studies [Gilbert et al., 2009, Craft et al., 2010] demonstrate that bacte-
rial communities in the Western English Channel exist within seasonally struc-
tured communities, exhibiting distinct Winter, Summer and Spring composition
profiles. The aim of this study was to determine whether bacteria demonstrate
seasonal-specific metagenomic and metatranscriptomic profiles, i.e. that the func-
tional profile of the community was also seasonally structured between winter,
spring and summer. A second axis of investigation was used to elucidate the
response of the bacterial community to light availability by sampling this com-
munity in the same water mass between day and night. Bacteria and Archaea
communities are seasonally structured but maintain stable community composi-
tion between day and night.

Metagenomic characterization of community composition and
functionality between samples: Metagenomic taxonomic assignment of func-
tional processes through comparison against the non-redundant NCBI protein
database using the MEGAN platform (as described in 3.2) demonstrates that mi-
crobial communities show both seasonal and day/night induced changes in their
composition. To perform the metagenomic analyses, random subsample of 50,000
metagenomic fragments was processed from each sample. This involved com-
paring each fragment against the NCBI-NR database using BLASTX and then
identifying the closest taxonomic affiliation for each sample using the MEGAN
protocol. In this way the taxonomic profile of the community could be visually
compared between multiple samples for each taxon. MEGAN processing was
performed for all samples together against the entire NR database. We then per-
formed comparisons of each diel sample for January, April and pair wise for the
four August time points, to observe the difference between the dataset in as much
detail as possible. With the visual comparison technique of MEGAN, the relative
abundance of each annotated taxon in this study was investigated. After that
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‘Directed Homogeneity Test (4.2.2) of MEGAN had been employed to investigate
the significant diel responses of the taxonomic lineages of the most abundant
bacterial phylum, the Alphaproteobacteria. To provide statistical significance for
the differences in abundance of each node of the alphaproteobacterial tree in each
sample pair-wise comparisons between each diel system have also been produced
(Figures 7.3.1 – 7.3.5).

For January (Figure 7.3.1) the abundance of Alphaproteobacteria within
Proteobacteria is significant different between day and night (UPv = 3.4e − 7)
and this can be explained by differences in the lower nodes (DPv = 0.0; p-
values ≤ 1E − 37 = 0.0). Rhizobiales is more abundant during the day and
this is mainly due to differences in homologues of the Bradyrhizobiaceae species
Rhodopseudomonas palustris. The Rhodobacteraceae are also significantly differ-
ent in their abundance between day and night, generally due to a greater abun-
dance of Roseobacter clade species during the day. The Rhodospirillaceae are
also more significantly abundant in the day, as are the Rickettsiales, the latter is
mainly due to an increased abundance in functional homologues of Pelagibacter
ubique genes (Figure 7.3.1).

During April (Figure 7.3.2) the exact same trend exists, virtually all Al-
phaproteobacterial taxa show a statistically significant increased abundance in
the day. Of note is a significant increase in Roseovarius and Sphingomonas abun-
dance during the day.

During August the difference between 4 pm and 10 pm on the 27th is less
pronounced with mostly higher-level taxa showing significant difference, one ex-
ception is Pelagibacter (Figure 7.3.3); while between 10 pm and 4 am we see only
small changes in higher level taxa, e.g.Rhodobacterales, Rickettsiales and Sph-
ingomonadales (Figure 7.3.4). The differences between 4 am and 10 am (Fig-
ure 7.3.5) virtually mirror those for 4 pm-10 pm. Overall this demonstrates that
there are more statistically significant functional taxonomic differences in the dis-
tribution for the Alphaproteobacteria during the January day/night cycle than for
April, while August shows very little change apart from a small but significant
increase in Pelagibacter abundance during the day.
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Figure 7.3.1: A part of a comparison of the alphaproteobacterial tree between ‘day’ and
‘night’ -water samples in the month of January.
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Figure 7.3.2: A part of a comparison of the alphaproteobacterial tree between ‘day’ and
‘night’ water samples in the month of April.
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Figure 7.3.3: A part of a comparison of the alphaproteobacterial tree between 4 pm and
10 pm water samples in the month of August.
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Figure 7.3.4: A part of a comparison of the alphaproteobacterial tree between 4 pm and
10 am water samples in the month of August.
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Figure 7.3.5: A part of a comparison of the alphaproteobacterial tree between 4 am and
10 am water samples in the month of August.
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Network analyses of multiple samples: Furthermore, we have per-
formed network analyses of all samples simultaneously, including January (day
and night), April (day and night) and of four time points of August samples (Fig-
ure 7.3.6). Here we can easily observe for January and April that the samples
from day and night are very different (not even clustering together). However,
in August the difference between the samples taken at 4 pm and 10 pm, are less
prominent and they are clustering together. Similar nature can be observed be-
tween the samples taken at 4 am and 10 am. These results also agree with the
observed facts from pair-wise comparison of the samples.

2Apr_Day_pf_50000

7Aug_4pm_pf_50000

5Aug_10pm_pf_50000

9Jan_Day_pf_50000

10Jan-Night_pf_50000

3Apr_Night_pf_50000 4Aug_10am_pf_50000

6Aug_4am_pf_50000

0.01

Figure 7.3.6: Network comparison of genomic DNA samples taken at six time points including
January (day and night), April (day and night) and from four time points of August.

Thus ‘Directed Homogeneity test’ and ‘multiple comparison with networks’
helped to analyze the diversity of the microbial population in the samples between
day and night at different time points during the annual cycle.
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7.4 Analysis of the Mammoth Microbiome

This study5 describes the diversity and community structure of microbes iso-
lated from unique permafrost samples, 13 hair and 1 bone specimen from woolly
mammoths. Comparisons between the mammoth biomes and modern microbial
communities would shed light on not only the ancient microorganisms associated
with woolly mammoths but also on those inhabit the permafrost.

7.4.1 Overview

Numerous microbial communities have been identified in the permafrost or glacial
ice environments. While several studies have focused on permafrost microbial
communities, few have analyzed this habitat in detail using metagenomics.

The woolly mammoth (Mammuthus primigenius) died out several thou-
sand years ago. Since these animals lived and died in a subzero climate, some
woolly mammoth remains are well preserved. The mammoth biome represents a
unique community for research on microbial evolution, low temperature adapta-
tion, and helps elucidate a core set of ancient microbes that coexisted with woolly
mammoths. For this study samples are taken from diverse locations around the
Siberian permafrost.

7.4.2 General features of metagenomic data

In the mammoth genome sequencing project, ∼ 1 Gb metagenomic data derived
from environmental organisms (eg. bacteria, fungi, virus, etc) were generated.
Most of these data were derived from hair shaft samples (M-series; eight samples:
M6, M7, M11-M14, M16, M20) and a small proportion (∼ 9 %) was derived from
mammoth bone (Poinar).

7.4.3 Multiple Comparison of Mammoth Samples

The average read length for the M-series samples (172 bp) is much longer than
that of Poinar sample (102 bp), largely because of updating from a GS 20 to
GS-FLX sequencer (454 Life Sciences, Branford, CT).The mammoth library was
prepared according to the Illumina paired-end library preparation protocol were

5The content of this section is submitted for publication as a part of the study done by
Fangqing Zhao, Ji Qi, Daniel C. Richter, Anne Buboltz, Daniela Drautz, Suparna Mitra, Daniel
H. Huson, Stephan C. Schuster.
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processed using the Illumina pipeline software. For phylogenetic assignment of
metagenomic sequences and network analysis long 454 reads (≥ 120 bp) were
compared against the nonredundant NCBI protein database (12/6/2008) using
BLASTX [Altschul et al., 1990]. Then the MEGAN software [Huson et al., 2007]
was used to assign reads to taxa of the NCBI taxonomy using the parameters:
MinScore= 35, TopPercent= 10, and MinSupport= 5. After collapsing all the
reads to ‘Genus’ level of NCBI taxonomy, we selected only the bacterial leaf
nodes and compared mammoth biome samples using the ‘Compare Datasets Us-
ing Network’ option of MEGAN (See Section 5.2 for details of this method). This
comparison results an unrooted phylogenetic network (using the ‘Neighbor-Net’
method [Bryant and Moulton, 2004]) for the mammoth samples.

Reads putatively mapping to rare taxa were removed from all nine datasets.
Therefore, the differences coming from ‘abundant taxa’ is more robust to measure
the distance among various mammoth biomes. In this study we considered three
distance measures (‘Bray-Curtis’, ‘Chi-square’ and ‘Hellinger’) to observe the
similarity values between all possible pair of samples (pair-combinations) with
respect to each species.

7.4.4 Result and Discussion

We firstly used the similarity and dissimilarity of phylogenetic profiles to assess
genetic distance among these biomes. As shown in Figure 7.4.1, the three different
measurements give rise to quite similar topologies of the phylogenetic network.
As expected, the Poinar datasets is separated from the other hair metagenomes
(M series) by a nearly two-times longer distance. It is notable that the genetic
distances between these metagenomes do not necessarily reflect their geographic
distances. For example, M2 and M3 are geographically closest among the listed
samples, whereas their genetic distance is rather longer than the distance between
M2 and M18.
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Figure 7.4.1: Comparison of eight hair samples (M2, M3, M4, M8, M18, M19, M21 and
M25) and one bone (Poinar) sample from ‘Wooly mammoth’ at ‘Genus’ level of NCBI taxon-
omy. Networks obtained using (A) ‘Bray-Curtis distance’, (B) ‘Chi-square distance’ and (C)
‘Hellinger distance’ measures.



Chapter 8
Summary and Outlook

The work described in this thesis contributes to the emerging field of metage-
nomic research. Several approaches have recently been developed to deal with
the taxonomic and functional analyses of metagenomic sample. However there is
a lack of easy, powerful and readily available tool for such analysis.

Researchers are studying our microbial world from different angles, uding
metagenomics, metatranscriptomics, metaproteomics, metabolomics. New se-
quencing technologies have made DNA sequencing feasible at an affordable cost,
and this has boosted the number and size of metagenome projects. An overwhelm-
ing quantity of DNA sequences are being deposited in the databases. Third-
generation sequencing technologies are on the horizon with their great power,
which will initiate an abrupt change in these research fields. Fast and user-
friendly tools are necessary to analyze multiple metagenomic datasets. MEGAN
attempts to fill this gap.

The initial goal of metagenomic studies is to obtain a vision of the microbial
community, both surrounding us and within us. In a quest for better understand-
ing the silent rulers of different communities, a main challenge is to compare mul-
tiple datasets. While pursuing taxonomic and functional analyses of metagenome
samples, the exploratory work of this thesis is devoted to metagenome compar-
ison. Initial work has been performed to compare the contents of metagenome
samples considering statistical aspects and confidence. The method allows close
comparison of two metagenome datasets, at each node within a tree hierarchy.

To compare multiple metagenomes simultaneously, a novel approach is pre-
sented that combines the use of taxonomic or functional analysis with ecological
indices and non-hierarchical clustering techniques. This method provides a net-
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work representation of the relationships between different metagenome datasets.
In a network it is easy to identify datasets with similar content as they cluster
together. Besides metagenome samples, these approaches are also applicable on
metatranscriptome or 16S rRNA profiles.

Several collaborations which flourished during this research period made it
possible to apply all of these methods to real biological data. The application
results presented at the end of this thesis help serve to demonstrate the impact
of the methods in respective studies. All the methods and ideas described in this
thesis are implemented in MEGAN and are easily available for further use.

The method presented in this thesis for multiple comparison with simul-
taneous visualisation, is the first attempt in this field towards answering such
question. As an outlook of this research, sophisticated statistical methods can
be applied to understand the significance of each edge in a multiple comparison
network more closely. It would be desirable to understand which biological fea-
tures are responsible for the distances. This method can be further motivated
for finding different disease causing genes, when compared to healthy reference
samples, considering functional pathway together with taxonomic profiles. With
the advances of new cost effective and high throughput sequencing technologies,
many research projects will be performed for better understanding the biological
diversity of different communities. The bias towards known organisms will be
improved with more knowledge. Comparative metagenomics will play an impor-
tant role in better understanding the community structure and thus unveiling our
microbial planet.



Appendix A
Publications

A.1 Published Manuscripts

1. Daniel H. Huson, Daniel C. Richter, Suparna Mitra, Alexander F. Auch
and Stephan C. Schuster. Methods for comparative metagenomics.
BMC Bioinformatics 2009, 10 (Suppl 1):S12.

Background: Metagenomics is a rapidly growing field of research
that aims at studying uncultured organisms to understand the true
diversity of microbes, their functions, cooperation and evolution, in
environments such as soil, water, ancient remains of animals, or the
digestive system of animals and humans. The recent development
of ultra-high throughput sequencing technologies, which do not re-
quire cloning or PCR amplification, and can produce huge numbers of
DNA reads at an affordable cost, has boosted the number and scope
of metagenomic sequencing projects. Increasingly, there is a need for
new ways of comparing multiple metagenomics datasets, and for fast
and user-friendly implementations of such approaches.
Results: This paper introduces a number of new methods for in-
teractively exploring, analyzing and comparing multiple metagenomic
datasets, which will be made freely available in a new, comparative
version 2.0 of the stand-alone metagenome analysis tool MEGAN.
Conclusion: There is a great need for powerful and userfriendly tools
for comparative analysis of metagenomic data and MEGAN 2.0 will
help to fill this gap.
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2. Suparna Mitra, Bernhard Klar and Daniel H. Huson. Visual and statisti-
cal comparison of metagenomes. Bioinformatics 2009, 25 (15):1849-55.

Background: Metagenomics is the study of the genomic content of an
environmental sample of microbes. Advances in the through-put and
cost-efficiency of sequencing technology is fueling a rapid increase in
the number and size of metagenomic datasets being generated. Bioin-
formatics is faced with the problem of how to handle and analyze these
datasets in an efficient and useful way. One goal of these metagenomic
studies is to get a basic understanding of the microbial world both
surrounding us and within us. One major challenge is how to compare
multiple datasets. Furthermore, there is a need for bioinformatics tools
that can process many large datasets and are easy to use.
Results: This article describes two new and helpful techniques for
comparing multiple metagenomic datasets. The first is a visualiza-
tion technique for multiple datasets and the second is a new statistical
method for highlighting the differences in a pairwise comparison. We
have developed implementations of both methods that are suitable for
very large datasets and provide these in Version 3 of our standalone
metagenome analysis tool MEGAN.
Conclusion: These new methods are suitable for the visual compari-
son of many large metagenomes and the statistical comparison of two
metagenomes at a time. Nevertheless, more work needs to be done to
support the comparative analysis of multiple metagenome datasets.

3. Suparna Mitra, Max Schubach and Daniel H. Huson. Short clones or
long clones? A simulation study on the use of paired reads in
metagenomics. BMC Bioinformatics 2010, 11(Suppl 1):S12.

Background: Metagenomics is the study of environmental samples
using sequencing. Rapid advances in sequencing technology are fuel-
ing a vast increase in the number and scope of metagenomics projects.
Most metagenome sequencing projects so far have been based on
Sanger or Roche-454 sequencing, as only these technologies provide
long enough reads, while Illumina sequencing has not been considered
suitable for metagenomic studies due to a short read length of only
35bp. However, now that reads of length 75bp can be sequenced in
pairs, Illumina sequencing has become a viable option for metagenome
studies.
Results: This paper addresses the problem of taxonomical analysis of
paired reads. We describe a new feature of our metagenome analysis
software MEGAN that allows one to process sequencing reads in pairs
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and makes assignments of such reads based on the combined bit scores
of their matches to reference sequences. Using this new software in a
simulation study, we investigate the use of Illumina paired-sequencing
in taxonomical analysis and compare the performance of single reads,
short clones and long clones. In addition, we also compare against
simulated Roche-454 sequencing runs.
Conclusion: This work shows that paired reads perform better than
single reads, as expected, but also, perhaps slightly less obviously, that
long clones allow more specific assignments than short ones. A new
version of the program MEGAN that explicitly takes paired reads into
account is available from our website.

4. Suparna Mitra, Jack A. Gilbert, Dawn Field and Daniel H. Huson. Com-
parison of multiple metagenomes using phylogenetic networks
based on ecological indices. ISME J 2010, 4:1236-1242.

Second-generation sequencing technologies are fuelling a vast increase
in the number and scope of metagenome projects. There is a great
need for the development of new methods for visualizing the rela-
tionships between multiple metagenomic datasets. To address this, a
novel approach is presented that combines the use of taxonomic analy-
sis, ecological indices and non-hierarchical clustering to provide a net-
work representation of the relationships between different metagenome
datasets. The approach is illustrated using several published data
sets of different types, including metagenomes, metatranscriptomes
and 16S ribosomal profiles. Application of the approach to the same
data summarized at different taxonomical levels gives rise to remark-
ably similar networks, indicating that the analysis is very robust. Im-
portantly, the networks provide the both visual definition and metric
quantification for the non-rooted relationship between samples, com-
bining the desirable characteristics of other tools into one.

5. Suparna Mitra, Paul Rupek, Daniel C. Richter, Tim Urich, Jack A. Gilbert,
Folker Meyer, Andreas Wilke, Daniel H. Huson. Functional analysis of
metagenomes and metatranscriptomes using SEED and KEGG.
BMC Bioinformatics 2011, 12 (Suppl 1):S12.

Background: Metagenomics is the study of microbial organisms us-
ing sequencing applied directly to environmental samples. Techno-
logical advances in next-generation sequencing methods are fueling a
rapid increase in the number and scope of metagenome projects. While
metagenomics provides information on the gene content, metatran-
scriptomics aims at understanding gene expression patterns in micro-
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bial communities. The initial computational analysis of a metagenome
or metatranscriptome addresses three questions: (1) Who is out there?
(2) What are they doing? and (3) How do different datasets compare?
There is a need for new computational tools to answer these questions.
In 2007, the program MEGAN (MEtaGenome ANalyzer) was released,
as a standalone interactive tool for analyzing the taxonomic content
of a single metagenome dataset. The program has subsequently been
extended to support comparative analyses of multiple datasets.
Results: The focus of this paper is to report on new features of
MEGAN that allow the functional analysis of multiple metagenomes
(and metatranscriptomes) based on the SEED hierarchy and KEGG
pathways. We have compared our results with the MG-RAST service
for different datasets.
Conclusions: The MEGAN program now allows the interactive anal-
ysis and comparison of the taxonomical and functional content of mul-
tiple datasets. As a stand-alone tool, MEGAN provides an alternative
to web portals for scientists that have concerns about uploading their
unpublished data to a website.

A.2 Published Book Chapter

1. Daniel H. Huson and Suparna Mitra. Comparative metagenome anal-
ysis using MEGAN, Handbook of Molecular Microbial Ecology I: Metage-
nomics and Complementary Approaches, De Bruijn FJ, ed., Wiley Blackwell
Publishers, ppXXXX, 2010.

In metagenomics, random shotgun sequencing is used to study a com-
munity of microbes. The first three computational questions are:
What is the taxonomical content of a sample? What is the functional
content of a sample? How do different samples compare? All three
questions can be addressed using the program MEGAN. The result of
comparing a metagenome dataset against a database of reference se-
quences obtained, for example, by using BLASTX against NCBI-NR,
is parsed by the program and then both a taxonomical and functional
analysis are performed. Multiple datasets can be opened simultane-
ously and compared. This chapter demonstrates how to perform such
analyses using a number of published mouse gut datasets.
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A.3 Submitted Manuscripts

1. Simon Domke, Suparna Mitra, Nico Weber, Stephan C. Schuster, Thomas
Rattei and Daniel H. Huson. MEGAN-DB – The MEtaGenome ANa-
lyzer DataBase. (Submitted to Nucleic Acids Research- Database issue),
2010.

The sequencing of genomic or transcribed DNA from environmental
samples (“metagenomics”) allows investigating the structure, function
and metabolism of environmental communities on the molecular level.
Comparative analyses between multiple metagenomes is becoming in-
creasingly informative due to the large, rapidly growing number of
available metagenomic sequences.
MEGAN-DB provides a comprehensive repository of metagenomes and
their taxonomic and functional profiles. Exploration of the database
contents as well as comparative analyses are facilitated by a user-
friendly web portal, providing versatile tools and an integrated inter-
face to the MEGAN software. MEGAN-DB offers direct data access
to the meta-data through web services and to MEGAN input files via
FTP. Users may upload new metagenomes for permanent integration
into MEGAN-DB or for single conversion into MEGAN files.
Frequent updating of MEGAN-DB to integrate new metagenomes
as well as new reference sequences will facilitate comparative
taxonomic and functional interpretation of metagenomes consid-
ering the whole publicly available metagenomic sequence space.
MEGAN-DB is freely available to academic and commercial users via
http://megan-db.org.

2. Fangqing Zhao, Ji Qi, Daniel C. Richter, Anne Budoltz, Daniela Drautz,
Suparna Mitra, Daniel H. Huson and Stephan C. Schuster. Metagenomic
analysis of the microbiome associated with the hairs of extinct
woolly mammoths. (Submitted to PLoS ONE), 2010.

Background: Metagenomics based on random sequencing of micro-
bial community DNA offers the opportunity to understand the phylo-
typic diversity and the functional potential present in microbial com-
munities. Till now, extensive studies have examined a wide range
of microbial habitats, including deep sea, soil, biofilm, human skin
and human gut. However, few studies have been reported on micro-
bial communities associated with paleo specimen isolated from per-

http://megan-db.org
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mafrost. The most significant difference between paleo-metagenomic
analysis and others is that paleo samples likely include a collection of
continuously aged microorganisms, from ancient bacteria to modern
bacteria, as the extremely cold temperature in permafrost provides for
the preservation of ancient DNA.
Methodology/Principal Findings: We studied the diversity and
community structure of microbes isolated from unique permafrost sam-
ples, 13 hair and 1 bone specimen from woolly mammoths. After ana-
lyzing environmental sequences from these specimens, we determined
that the bone sample contained more soil bacteria, suggesting that the
taxonomic composition of bacterial assemblages varies greatly between
these samples. A number of putative ancient bacteria were identi-
fied, as they had an elevated DNA damage rate compared to modern
strains, such as strains from Streptomyces, Caulobacter and Propioni-
bacterium. A small proportion of fungal sequences were found in the
mammoth biomes, with six of the ten most abundant species being
plant pathogens. Psychrophilic Flavobacterium spp., Psychroflexus
spp. and Psychrobacter spp. dominate the cold adapted bacteria.
Conclusions/Significance: Comparisons between the mammoth
biomes and modern microbial communities shed light on both the
ancient microorganisms associated with woolly mammoths and those
that inhabit the permafrost.

3. Reema Singh, Vinay Narayan, Patricia McLenachan, Richard C.
Winkworth, Suparna Mitra, Peter J. Lockhart, Lorraine Berry, Abdulla
M. Hatha, William Aalbersberg and Dhana Rao. Detection and diver-
sity of pathogenic Vibrio from Fiji. (Submitted to Environmental
Microbiology), 2010.

The present study investigates the diversity of pathogenic Vibrio
species on fish available for consumption and in the coastal water col-
umn close to Suva, Fiji. We used biochemical tests to screen fish
sold at retail outlets in Suva; these analyses were consistent with the
presence of both clinical and nonclinical Vibrio species on fish. Phylo-
genetic analyses of three markers (i.e. 16S, recA and pyrH) confirmed
the identity of several isolates as V. parahaemolyticus and suggest this
clinically important species is represented by several genotypes. We
used MEGAN analyses of Illumina GAII single and paired end se-
quencing to investigate the potential of short read DNA sequencing
for identifying Vibrio species in the coastal water column. While both
approaches identified several species, paired end sequencing resulted
in substantially more taxonomic assignments. These analyses suggest
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that a moderately complex Vibrio community containing both clini-
cally important and non-clinical species occurs in the coastal water
column in this area. Our results are very encouraging, it appears that
with even short reads Illumina GAII paired end sequencing may offer
an effective and efficient method for monitoring microorganisms in the
environment.



Appendix B
Contribution

This thesis illustrates several algorithms and contains implementations and appli-
cations of those algorithms in different current research areas. This is the outcome
of my research while pursuing my PhD. At this point, I would like to distinguish
the contributions of my colleagues or collaborators from my own work.

Chapter 3: M etagenome Analysis using MEGAN &

Chapter 4: V isual and Statistical Comparison of Metagenomes:

D. Huson developed and implemented the described taxonomic and func-
tional assignment and visual comparison techniques. I developed the exten-
sion of the statistical technique of [Rodriguez-Brito et al., 2006] for compar-
ing two metagenomes. D. Huson wrote the manuscript [Huson et al., 2009],
where I contributed in writing and performing the statistical comparison.
Later with the help of B. Klar, I found the drawbacks of the Rodriguez-
Brito’s method and developed a sophisticated approach, the ‘Directed Ho-
mogeneity Test’ (which includes the up- and down-tests) and implemented
the methods. D. Huson integrated the statistical methods into MEGAN.
I wrote the manuscript [Mitra et al., 2009], selected the journal and inter-
acted with the editor and reviewers, whereas B. Klar helped me in statistical
aspects and D. Huson contributed many useful comments.

Chapter 5: Multiple Metagenome Comparison using Networks:

I searched a huge amount of literatures in traditional statistics, ecology and
phylogenetics and developed the technique of multiple metagenome com-
parison. I implemented the methods with the help of W. Wu and D. Huson
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integrated this into MEGAN. I rote the manuscript [Mitra et al., 2010a]
and interacted with the editor and reviewers, whereas J. Gilbert, D. Field
and D. Huson contributed many useful comments.

Chapter 6: Comparison of Sequencing Technologies for Metage-
nomics:

I and D. Huson designed the project and wrote the manuscript
[Mitra et al., 2010b]. M. Schubach performed the simulation study and
did the analysis with me. I supervised him in each step of this process and
did several BLAST runs for the study. M. Schubach and D. Huson wrote
necessary scripts for combining paired reads and D. Huson integrated this
into MEGAN.

Chapter 7: Application in Metagenomic Projects:

I contacted many researchers working in the field of metagenomics, commu-
nicated with them regarding their samples and performed all the necessary
steps (such as data analysis planning, BLAST runs and analyses of results)
related to metagenomic analyses of various sample. My analyses (as de-
scribed in Chapter 7) gave extra importance to their study. These results
will be part of different separate publications.
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Supplementary Material

C.1 Chapter 4: Visual and Statistical Compari-
son of Metagenomes

This section includes the supporting tables for Chapter 4.

Data Gammaproteobacteria Bacteroidetes/ Chlorobi Group Firmicutes
Soil vs Soil UPv, DPv UPv, DPv UPv, DPv
20-1-2cmp.megan 0.033, 0.942 0.716, 0.638 0.233, 0.458
20-1-3cmp.megan 0.689, 0.436 0.459, 0.521 0.020, 0.458
20-1-4cmp.megan 0.136, 0.708 0.431, 0.131 0.033, 0.107
20-1-5cmp.megan 0.044, 0.697 0.448, 0.404 0.443, 0.070
20-1-6cmp.megan 0.263, 0.830 0.843, 0.117 0.385, 0.704
20-1-7cmp.megan 0.297, 0.954 0.684, 0.993 0.400, 0.563
20-1-8cmp.megan 0.333, 0.597 0.705, 0.521 0.888, 0.513
20-1-9cmp.megan 0.035, 0.644 0.431, 0.869 0.910, 0.527
20-1-10cmp.megan 0.123, 0.708 0.292, 0.453 0.975, 0.412
20-1-11cmp.megan 0.434, 0.948 0.490, 0.344 0.315, 0.298
20-1-12cmp.megan 0.843, 0.313 0.655, 0.680 0.808, 0.237
20-1-13cmp.megan 0.697, 0.283 0.426, 0.524 0.865, 0.371
20-1-14cmp.megan 0.372, 0.252 0.303, 0.503 0.129, 0.191
20-1-15cmp.megan 0.285, 0.491 0.458, 0.523 0.231, 0.032
20-1-16cmp.megan 0.238, 0.606 0.912, 0.194 0.790, 0.698
20-1-17cmp.megan 0.260, 0.459 0.542, 0.106 0.654, 0.507
20-1-18cmp.megan 0.214, 0.850 0.783, 0.836 0.871, 0.557
20-1-19cmp.megan 0.251, 0.590 0.765, 0.867 0.126, 0.896
20-1-20cmp.megan 0.040, 0.978 0.763, 0.241 0.696, 0.161

Table C.1.1: Comparison within soil data subsamples. First soil subsample is compared
with 20 other subsamples.
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Data Gammaproteobacteria Bacteroidetes/ Chlorobi Group Firmicutes
Sea vs Sea UPv, DPv UPv, DPv UPv, DPv
20-1-2cmp.megan 0.620, 0.530 0.340, 0.960 0.880, 0.570
20-1-3cmp.megan 0.386, 0.840 0.371, 0.988 0.160, 0.910
20-1-4cmp.megan 0.580, 0.970 0.167, 0.830 0.990, 0.380
20-1-5cmp.megan 0.530, 0.830 0.244, 0.910 0.956, 0.169
20-1-6cmp.megan 0.134, 0.867 0.090, 0.966 0.568, 0.450
20-1-7cmp.megan 0.155, 0.745 0.612, 0.864 0.851, 0.111
20-1-8cmp.megan 0.056, 0.786 0.695, 0.817 0.818, 0.478
20-1-9cmp.megan 0.444, 0.530 0.054, 0.998 0.924, 0.279
20-1-10cmp.megan 0.468, 0.706 0.568, 0.999 0.916, 0.266
20-1-11cmp.megan 0.302, 0.548 0.634, 0.282 0.788, 0.072
20-1-12cmp.megan 0.457, 0.103 0.137, 0.924 0.790, 0.340
20-1-13cmp.megan 0.722, 0.841 0.458, 0.968 0.955, 0.215
20-1-14cmp.megan 0.835, 0.626 0.815, 0.558 0.209, 0.065
20-1-15cmp.megan 0.202, 0.152 0.114, 0.286 0.995, 0.066
20-1-16cmp.megan 0.324, 0.703 0.961, 0.359 0.983, 0.171
20-1-17cmp.megan 0.922, 0.079 0.270, 0.588 0.585, 0.207
20-1-18cmp.megan 0.212, 0.245 0.485, 0.972 0.722, 0.002
20-1-19cmp.megan 0.229, 0.740 0.441, 0.700 0.835, 0.204
20-1-20cmp.megan 0.914, 0.753 0.473, 0.991 0.227, 0.102

Table C.1.2: Similar comparison within Sea subsamples.

Data Gammaproteobacteria Bacteroidetes/ Chlorobi Group Firmicutes
Soil vs Sea UPv, DPv UPv, DPv UPv, DPv
20-1-1cmp.megan 0.0, 0.0 0.002, 0.0 0.0, 0.135
20-2-2cmp.megan 0.0, 0.0 2.29e-4, 0.0 0.0, 0.452
20-3-3cmp.megan 0.0, 0.0 0.002, 0.0 0.0, 0.018
20-4-4cmp.megan 0.0, 0.0 0.0, 0.0 0.0, 0.029
20-5-5cmp.megan 0.0, 0.0 5.05e-4, 0.0 0.0, 0.001
20-6-6cmp.megan 0.0, 0.0 0, 0.0 0.0, 0.12
20-7-7cmp.megan 0.0, 0.0 4.4e-5, 0.0 0.0, 0.016
20-8-8cmp.megan 0.0, 0.0 8.72e-5, 2.52e-4 0.0, 0.023
20-9-9cmp.megan 0.0, 0.0 0.0, 0.0 0.0, 0.471
20-10-10cmp.megan 0.0, 0.0 0.009, 0.0 0.0, 0.161
20-11-11cmp.megan 0.0, 0.0 1.52e-5, 0.002 0.0, 0.006
20-12-12cmp.megan 0.0, 0.0 0.0, 1.57e-4 0.0, 0.025
20-13-13cmp.megan 0.0, 0.0 0.0, 0.0 0.0, 0.0
20-14-14cmp.megan 0.0, 0.0 0.071, 1.76e-4 0.0, 0.001
20-15-15cmp.megan 0.0, 0.0 0.0, 4.06e-4 0.0, 7.61e-4
20-16-16cmp.megan 0.0, 0.0 0.002, 0.0 0.0, 9.57e-4
20-17-17cmp.megan 0.0, 0.0 0.0, 0.045 0.0, 0.034
20-18-18cmp.megan 0.0, 0.0 4.26e-4, 0.0 0.0, 2.74e-4
20-19-19cmp.megan 0.0, 0.0 0.0, 0.0 0.0, 0.022
20-20-20cmp.megan 0.0, 0.0 3.21e-5, 0.0 0.0, 1.32e-4

Table C.1.3: Comparison between 20 Soil and 20 Sea subsamples.
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C.2 Chapter 5: Multiple Metagenome Compari-
son using Networks

This section includes the additional materials from Chapter 5.

Example of computing Goodall’s index: The following numerical
example illustrates the computation of Goodall’s index for a small dataset.
In this example, five datasets are characterized by the abundances of eight
taxa. Small numbers are considered for an easy example. Example taken from
[Legendre and Legendre, 1998] and modified for our purposes.

a) The original data:
Data D1 D2 D3 D4 D5 Range Ri

Taxa-1 3 3 0 0 0 3
Taxa-2 0 0 2 2 0 2
Taxa-3 0 2 3 0 2 3
Taxa-4 0 0 4 3 3 4
Taxa-5 4 4 0 0 0 4
Taxa-6 0 2 0 3 3 3
Taxa-7 0 0 0 1 2 2
Taxa-8 3 3 0 0 0 3

b) These five datasets have n(n− 1)/2 = 10 pair combinations to compare with
each other. Now we compute a partial similarity measure (spairi

) for all possible
pair combinations for each ‘Taxa’ (i) resulting in a matrix called Gower’s matrix.
The matrix has 6 rows (for 6 ‘Taxa’) and 10 columns which correspond to the 10
pairs of datasets.

Pair combination of datasets
Data D1 D1 D1 D1 D2 D2 D2 D3 D3 D4

–D2 –D3 –D4 –D5 –D3 –D4 –D5 –D4 –D5 –D5
Taxa-1 1 0 0 0 0 0 0 0 0 0
Taxa-2 0 0 0 0 0 0 0 1 0 0
Taxa-3 0.33 0 0 0.33 0.67 0.33 1 0 0.67 0.33
Taxa-4 0 0 0.25 0.25 0 0.25 0.25 0.75 0.75 1
Taxa-5 1 0 0 0 0 0 0 0 0 0
Taxa-6 0.33 0 0 0 0.33 0.67 0.67 0 0 1
Taxa-7 0 0 0.50 0 0 0.50 0 0.50 0 0.50
Taxa-8 1 0 0 0 0 0 0 0 0 0

c) Now we compute, for each pair of dataset and each row (taxa), the proportion
of partial similarity values in the row that are larger than or equal to the partial
similarity of the pair of datasets being considered. The value under consideration
is itself included in the proportion. For example, for the pair of datasets (D1–D4),
the fourth taxa has a similarity of 0.25. In the fourth row, there are 7 values out
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of 10 that are larger than or equal to 0.25. Thus the ratio associated with the
pair (D1–D4) in the table is 0.7.

Pair combination of datasets
Data D1 D1 D1 D1 D2 D2 D2 D3 D3 D4

–D2 –D3 –D4 –D5 –D3 –D4 –D5 –D4 –D5 –D5
Taxa-1 0.1 1 1 1 1 1 1 1 1 1
Taxa-2 1 1 1 1 1 1 1 0.1 1 1
Taxa-3 0.7 1 1 0.7 0.3 0.7 0.1 1 0.3 0.7
Taxa-4 1 1 0.7 0.7 1 0.7 0.7 0.3 0.3 0.1
Taxa-5 0.1 1 1 1 1 1 1 1 1 1
Taxa-6 0.5 1 1 1 0.5 0.3 0.3 1 1 0.1
Taxa-7 1 1 0.4 1 1 0.4 1 0.4 1 0.4
Taxa-8 0.1 1 1 1 1 1 1 1 1 1

d) Finally in the next table, a Dataset × Dataset symmetric matrix is computed,
that records the products of the terms in each column of the previous table.

Data D1 D2 D3 D4 D5
D1
D2 0.00035 -
D3 1.00000 0.15000 -
D4 0.28000 0.05880 0.01200 -
D5 0.49000 0.02100 0.09000 0.00280 -

From the above mentioned steps we get Goodall’s index. Now as Goodall’s index
is a semimetric measures we can use Distance = 1− Similarity.

Additional networks: All the additional networks from Chapter 5 are
shown on following pages.



Supplementary Material 127

Multiple comparison of eight marine datasets
considering all nodes in respective ranks

Network using Euclidean distance Network using Goodall’s index
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Figure C.2.1: Networks obtained using Euclidean distances (left column) and Goodall’s index
(right column), showing the comparison of eight Bergen marine samples (four metagenomes and
four metatranscriptomes) considering all nodes at the indicated ranks of the NCBI taxonomy.
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Multiple comparison of eight marine datasets
considering all nodes in respective ranks

Network using Bray-Curtis distance Network using Kulczynski distance
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Figure C.2.2: Networks obtained using Bray-Curtis (left column) and Kulczynski distances
(right column), showing the comparison of eight Bergen marine samples (four metagenomes and
four metatranscriptomes) considering all nodes at the indicated ranks of the NCBI taxonomy.
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Multiple comparison of eight marine datasets
considering all nodes in respective ranks

Network using Chi-Squared distance Network using Hellinger distance
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Figure C.2.3: Networks obtained using Chi-Squared (left column) and Hellinger distances
(right column), showing the comparison of eight Bergen marine samples (four metagenomes and
four metatranscriptomes) considering all nodes at the indicated ranks of the NCBI taxonomy.
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Multiple comparison of ten marine datasets
considering all nodes in respective ranks

Network using Euclidean distance Network using Goodall’s index
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Figure C.2.4: Networks obtained using Euclidean distances (left column) and Goodall’s index
(right column), showing the comparison of ten marine samples (Sargasso Sea and GOS samples
together with eight Bergen marine samples) considering all nodes at the indicated ranks of the
NCBI taxonomy.



Supplementary Material 131

Multiple comparison of ten marine datasets
considering all nodes in respective ranks

Network using Chi-Squared distance Network using Hellinger distance
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Figure C.2.5: Networks obtained using Chi-Squared distance (left column) and Hellinger
distance (right column), showing the comparison of ten marine samples (Sargasso Sea and GOS
samples together with eight Bergen marine samples) considering all nodes at the indicated ranks
of the NCBI taxonomy.
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Figure C.2.6: Networks obtained using Euclidean distances (left column) and Goodall’s index
(right column), showing the comparison of eight Bergen marine samples (four metagenomes and
four metatranscriptomes) considering only bacterial nodes at the indicated ranks of the NCBI
taxonomy.
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Figure C.2.7: Networks obtained using Chi-Squared distances (left column) and Hellinger
dintances (right column), showing the comparison of eight Bergen marine samples (four
metagenomes and four metatranscriptomes) considering only bacterial nodes at the indicated
ranks of the NCBI taxonomy.
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Figure C.2.8: Networks obtained using Euclidean distances (left column) and Goodall’s index
(right column), showing the comparison of ten marine samples (Sargasso Sea and GOS samples
together with eight Bergen marine samples) considering only bacterial nodes at the indicated
ranks of the NCBI taxonomy.
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Figure C.2.9: Networks obtained using Chi-Squared distances (left column) and Hellinger
distance s(right column), showing the comparison of ten marine samples (Sargasso Sea and
GOS samples together with eight Bergen marine samples) considering only bacterial nodes at
the indicated ranks of the NCBI taxonomy.
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Internet Resources

• BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi)

• COG database (http://www.ncbi.nlm.nih.gov/COG/)

• GO (http://www.geneontology.org/)

• GO slims (http://www.geneontology.org/GO.slims.shtml)

• GOLD: Genomes OnLine Database (http://www.genomesonline.org/)

• KEGG (http://www.genome.jp/kegg/)

• MEGAN DB (http://www.megan-db.org)

• MEGAN software (http://www-ab.informatik.uni-tuebingen.de/
software/megan)

• NCBI-NR/NT database (ftp://ftp.ncbi.nih.gov/blast/db/)

• Refseq (http://www.ncbi.nlm.nih.gov/RefSeq)

• SEED (ftp://ftp.theseed.org)

• SEED to NCBI mapping file ftp://ftp.theseed.org/misc/Data/
idmapping/seed2ncbi.gz.
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