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Introduction

The n-dimensional projective space P over C can be defined as the
quotient (C"*1\ {0})/C*. A similar quotient construction was pro-
posed by David Cox for any toric variety X [Cox95]. Let X be an
n-dimensional toric variety defined by a rational polyhedral fan 2. We
denote by A(1) the set of all 1-dimensional cones in A and by Cl(X)
the divisor class group of X. Then the algebraic group (quasitorus)

T := Homgz(Cl(X),C")

has a natural linear action on the affine space C2™ such that the cat-
egorical (C2M\ Z) /T exists and it is isomorphic to X where Z is Zariski
closed subset defined by some homogeneous ideal in the coordinate ring
(C['T07 T wrn]-

A quasihomogeneous SL(2)-variety is a normal 3-dimensional alge-
braic variety X over an algebraic closed field k together with a regular
action of SL(2) which has an open dense orbit in X. For the simplic-
ity we consider only the case k = C. In this work we give a geometric
method to construct a special class of SL(2)-varieties X as a categorical
quotient.

As a first step of our investigation we consider the case of affine
S L(2)-varieties |BHO8|. These varieties were classified by Popov [P73].
Every affine SL(2)-variety F is uniquely determined by a pair of num-
bers: a rational number h = p/q (ged(p,q) =1, 0 < h < 1) called the
height of E and a natural number m called the degree of E. The corre-
sponding variety SL(2)-variety will be denoted by Ej, ,,,. We prove that
E}, m is isomorphic to the categorical quotient of the affine hypersurface
H,_, C C° defined by the equation

X7 = X, X, — X X5

modulo the action of the diagonalizable group Gy x G,, C D(5,C),
where

Go 22 C* = {diag (t,t7,t7,4%,49); £ € C}, G = fim = (o),
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where G, C D(5,C) is generated by diag (1,1, ¢t Gy Gn)-

In order to make our next step we remark that the affine SL(2)-
varieties belong to a larger class of SL(2)-varieties having an addi-
tional C*-action which commutes with the SL(2)-action. We will call
these varieties by SL(2)-varieties with C*-action. It is very important
that SL(2)-varieties with C*-action can be considered as spherical G-
varieties with respect to a regular action of the reductive 4-dimensional
algebraic group

G :=SL(2) x C*,

i.e., the stabilizer H C G of a point in the open SL(2)-orbit is a 1-
dimensional spherical subgroup of G. For this reason we call SL(2)-
varieties with C*-action also spherical quasihomogeneous SL(2)-variet-
1€8.

Spherical varieties are generalizations of toric varieties and they
are classified by colored fans of strictly convex colored cones. Using
the combinatorics of these fans one can determine certain geometric
properties of these varieties for example: smoothness, completeness,
or projectivity (see [K91]). We remark that the open dense SL(2)-
orbit in a spherical SL(2)-variety X is isomorphic to SL(2)/C,,, where
Cp, is a cyclic group of order m. This number is a generalization of
the degree of an affine SL(2)-variety Ej,, to an arbitrary spherical
quasihomogeneous SL(2)-variety X.

Using the theory of spherical varieties, we can describe an arbit-
rary spherical quasihomogeneous SL(2)-variety X = X(X) by a 2-
dimensional colored fan ¥ in R?. Let vq,...,v, € Z? be the set of
all lattice generators of 1-dimensional cones in ¥ where v; = (—p;, —q;)
such that ged(p;,¢;) = 1; 1 <@ < r. Then we show that X (X) can be
obtained as a GIT-quotient of the affine hypersurface in C"*:

Y1p1+q1 . Y;pﬂrqr — X1X4 _ X2X4

modulo the action of the diagonalizable group Gy x G,,, C D(r +4,C),
where Gy = (C*)" and G,, is a cyclic group of order m.

From this construction it was not difficult to show that Cox ring
of such varieties is defined by a unique equation. Similar examples of
algebraic varieties whose Cox ring is defined by a unique equation were
considered in [BHO7]. In the affine case this description of Cox ring can
be used as a good illustration of more general recent results of Brion
on Cox ring of spherical varieties |BO7|.
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D. Luna and Th. Vust in [LV83] have discovered combinatorial
diagrams for describing arbitrary normal SL(2)-embedding X (we call
them Luna-Vust diagrams). These diagrams give information about the
local rings of SL(2)-orbits in X. In this work, for any spherical SL(2)-
variety X = X (X) we give a method to construct the corresponding
Luna-Vust diagram from the 2-dimensional colored fan 3.

2-dimensional colored fans defining SL(2)-varieties with C*-actions
are very convenient for the investigation of their birational morphisms.
Using colored fans, we give a classification of all smooth SL(2)-varieties
with C*-action with the Picard number < 3. From these varieties we
have classified all minimal smooth varieties, i.e., varieties which are
not the blow-up of another varieties. This generalizes the results of
L. M. Jauslin [Ja87] in the special case minimal smooth SL(2) and
PGL(2)-embeddings. Furthermore we have found minimal smooth
S L(2)-varieties with C*-action which are toric.

In chapter 1 we give an overview of quotients by a torus action
and explain the notion Cox ring of a quasiprojective varieties. For
this purpose we introduce the language of geometric invariant theory
(GIT-quotients).

In chapter 2 we consider the normal affine SL(2)-variety E}, ,,. Then
define

k= ged(q —p,m), b:= (¢ —p)/k.

We prove that the variety FEj ., is also isomorphic to the categorical
quotient of the affine hypersurface H, C C° defined by the equation

VP = X1X, — XoX3

modulo the action of the diagonalizable group Gy x G, C D(5,C),
where

Gy = C* = {diag (t*,t7P,t7P, 19, 19); t € C*}, Gy = g = (Ca),
where G, is generated by diag (1,{; !, (1, (4, C.). From this alternative
construction we could prove that Cox ring of the variety E}, ,, is defined
by the following equation

C[Yo, X1, Xo, X3, X4]/(Yy — X1X4 + X2 X3).

This quotient construction together with the first one are new and were
overlooked in the classical theory of affine SL(2)-varieties [Kr84].
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Furthermore, we give a geometric description of SL(2)-equivariant
flips in the case that Ej, ., is an arbitrary singular normal affine quasi-
homogeneous S L(2)-variety.

The chapter 3 contains a basic survey of Luna-Vust theory for G-
equivariant embeddings X of spherical homogeneous spaces G/ H where
G is a connected reductive algebraic group and H C G is spherical
algebraic subgroup of G [LV83] (see also [K91]). These embeddings
are corresponded to colored fans consisting of colored cones. We apply
this theory to the classification of affine SL(2)-varieties, to SL(2)-flips
and to the Panyushev minimal resolution. In particular we describe
SL(2)-flips from the point of view of the theory of spherical varieties
developed by Luna and Vust and give a spherical description of the
resolution of singularities of affine normal quasihomogeneous SL(2)-
varieties proposed by Panyushev [Pa9l].

In chapter 4 we prove that the open SL(2)-orbit in SL(2)-varieties
with C*-action is isomorphic to SL(2)/C,,, where C,, is a cyclic group
of order m and these varieties are spherical where we can describe them
combinatorial in 2-dimensional colored fans. These fans are used in two
quotient constructions which generalize the two quotient constructions
in the affine case. We give simple examples of this construction for
some classical smooth projective SL(2)-varieties. Furthermore as in
the case affine SL(2)-varieties we show that Cox ring of these varieties
is defined by the following single equation:

T
(C[xla L2, L3, T4,Y15 - - - >Z/r]/($1$4 — ToX3 — Hyii—i_qi)?
i=1
where r is the number of the 1-dimensional colored cones in the colored
fan corresponding to the considered variety.

In chapter 5 we introduce the generalized Luna-Vust diagrams of
SL(2)/T-embeddings in the case when I' = C,, is a cyclic group of or-
der m. These generalized diagrams were introduced by Jauslin-Moser
in [Ja87]. After this we give a method to get generalized Luna-Vust
diagrams from colored fans of SL(2)-varieties with C*-action. Our
next purpose is to classify all smooth projective spherical quasihomo-
geneous SL(2)-varieties which a minimal. Such a classification prob-
lem was considered by Mukai and Umemura [MUS83|, Jauslin-Moser
[Ja87, Ja90|, Nakano [N87|, and Kebekus [K00]. Our classification of
minimal models uses the language of 2-dimensional colored fans. We
show that the Picard number of a minimal spherical SL(2)-variety is
at most 3. Therefore we first classify all 2-dimensional colored fans of



smooth SL(2)-varieties with C*-action with Picard number < 3 and
afterwards determine those varieties which are minimal. Finally, we
use Cox rings in order to find all minimal smooth spherical quasihomo-
geneous SL(2)-varieties which are toric.
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Chapter 1

Quotients by a torus action

1.1 Categorical quotients

Let G be a connected reductive affine algebraic group and X be a G-
variety over the algebraically closed field C, where G acts on X via the
following regular morphism

p:Gx X — X; (g,2) = p(g,z).

A morphism ¢ : X — Y is called G-invariant if it is constant along
the orbits, i.e., if

o(gr) = ¢(x) VYr € X and Vg € G.

The morphism ¢ is called affine if for any open affine subset V' C Y
the preimage ¢ !(V) is again affine subset in X. Let O(X) be the ring
of regular functions of X. Then define the following subset of O(X)

OX)¢ :={fcOX)| flgzx) = f(x)V g € GandVx € X}.
This set is called the G-invariant ring of O(X).

Definition 1.1.1. Let G be a reductive affine algebraic group and
X be a G-variety. An algebraic variety Y together with a morphism
p: X — Y is called a good quotient of X over C by G if it satisfies
the following properties

(i) ¢ is affine and G-invariant,
(ii) For every open subset V' C Y, the pullback
Py O(V) = O(p H(V)©

is an isomorphism.
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The variety Y together with a morphism ¢ : X — Y is called a geo-
metric quotient if it is a good quotient and its fibers are precisely the
G-orbits. We denote the good quotient of X by G by X/G and the
geometric quotient by X/G.

Remark 1.1.2. Let X be an affine algebraic G-variety and G a reduc-
tive algebraic group. Then the O(X)Y C O(X) is a finitely generated
C-algebra [Kr84, 11.3.2]. This guarantess existence of a good quotient
¢ : X — Y, where Y := Spec(O(X)%).

Remark 1.1.3. [ADHL09] If G is not reductive but O(X)¢ is finitely
generated, then the good quotient still exists.

Example 1.1.4. Consider the following C*-action on X := C?
C'x X — X,
(t, (z,y)) — (t%z, t%y).

(i) If a = b = 1. Then C*-invariant functions are the constants and
the map ¢ : X — {pt} defines a good quotient.

(ii) If @ = 0 and b = 1. Then the ring of C*-invariant functions is
generated by x and the following map

p: X —C (v,y) —a
defines a good quotient.

(iii) If @ = 1 and b = —1. Then the ring of C*-invariant functions is
generated by zy and the map

p: X =G (z,y) —ay
is a good quotient.
All these cases are not geometric quotients.
Example 1.1.5. Consider the C*-action on X := C?\{0} as follows:
C*'x X — X; (t,(u,v)) — (tu, tv).

The map
0: X — Pl (u,v) — [u: ]

defines a geometric quotient, because the smallest closed and G-invariant
subsets are exactly the G-orbits and two different G-orbits are mapped
to two different points.

14



The following theorem lists the properties of good quotients:

Theorem 1.1.6. Let G be a reductive algebraic group acts on the var-
tety X. Then every good quotient ¢ : X — Y has the following prop-
erties:

(i) G-closeness: If Z C X is a closed G-invariant set, then p(Z) is
closed in Y .

(ii) G-separation: If Zy, Zo C X are closed, G-invariant sets, where
71N Zy =0, then o(Zy) N p(Zs) = 0.

Proof. Tt is suffices to prove this theorem in case X is affine, because
@ is affine and the statments are local with respect to Y. This is done
in [Kr84, 11.3.2]. O

Corollary 1.1.7. Let GG be a reductive algebraic group and X be a
G-variety. If ¢ : X — Y is a good quotient, then ¢ is surjective and
for every y € Y we have:

(a) The fiber ¢ ~!(y) contains exactly a unique closed G-orbit G.
(b) Every orbit in ¢~!(y) contains Gz in its closure.
Proof. The proof of this corollary depends on the above theorem and
on the truth that for every action G : X there is a closed G-orbit. [

Corollary 1.1.8. Let G be a reductive algebraic group acts on the
variety X, and ¢ : X — Y be a good quotient. Then:

(a) The quotient space Y carries the quotient topology with respect
to the map .

(b) For every G-invariant morphism ¢ : X — Z, there is a unique
morphism v : Y — Z such that ¢ = 1 o .

Proof. The proof of (a) follows from the theorem 1.1.6 and the proof of
(b) follows from the corollary 1.1.7 and from property (ii) in 1.1.1 and
from the first statement. O

Definition 1.1.9. A good quotient ¢ : X — Y satisfies the property
(b) in 1.1.8 is called categorical quotient. This implies that the
categorical quotient is unique up to isomorphism.
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Example 1.1.10. Let the additive group C acts on C? by
(t,(c1,¢2)) ¥ (c1,¢e2 +ter); t € C, (e, ¢9) € C
This induces C-action on Clxy, xs] as follows:
(t, p(x1, 22)) = p(ay, z2 + tx1).

The invariant functions are C[zy,75]® = C[z;]. Thus the projection
onto the first coordinate is a categorical quotient, but it is not a geo-
metric quotient, because the two closed C-invariant points (0,0) and
(0,1) are projected onto the same point.

We consider the following two examples, which were studied by A.
A’Campo-Neuen and J. Hausen in [AHOG6].

Example 1.1.11. Let X be the smooth four-dimensional toric variety
obtained by glueing the two affine charts

U :=C', Uy:=C*xC*
along the common subset (C x C*)? by the map
(t1,to, g, tg) — (tits, 151 3, 1g).
Let T := (C*)* be the torus acts on X and let
H:={t?*1,tt);teC}cCT

be the one-dimensional subtorus. If one consider the H-action on X,
then there is no categorical quotient by this action on X.

Example 1.1.12. Consider the subvariety X := C*x (C*)?U(C*)?*x C?
of C* with the regular C*-action given by

t (1,9, 73,24) 1= (txl,tx27a:3,t_13:4).

It was shown that there is no categorical quotient by this action on X
in the category of algebraic varieties.

Proposition 1.1.13. (JADHLO09]) Let G be a reductive algebraic group
acts on the variety X, and let ¢ : X — Y be a good quotient. Then

(i) If V. CY is an open subset, then the restriction
pr (V) >V
s a good quotient by the restricted G-action.
(i) If Z C X is a closed G-invariant subset, then the restriction
p:Z— p(Z)

s a good quotient by the restricted G-action.
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1.2 Linearized line bundles

We keep all notations in the last section; G is a connected reductive
affine algebraic group acts on the normal algebraic variety X by the
regular morphism p. We denote by px the natural projection on X;

px :Gx X — X.

Definition 1.2.1. A linear fibration over X is an algebraic variety F
together with a surjective morphism 7 : £ — X of algebraic varieties
such that: for every x € X, there is a vector space structure on the fiber
E, = m~!(x). The variety E is called the total space of the fibration
and the fibre over z is denoted by E,. The bundle

XxC —- X

defined by projection on the first factor is called the trivial fibration
of rank r. Let 7 : F — X, 7’ : ' — X be two fibrations. Then a
morphism f : E — E’ of varieties is called a morphism of linear
fibrations, if it satisfies the properties:

(i) Tof=m
(ii) For every x € X, the induced map f, : E, — E. is linear.
For every U C X, we denote by E | the fibration
N U) = U

defined by ristriction on U. An algebraic vector bundle of rank r
on X is a linear fibration E — X such that: For every z € X, there
exists an open neighbourhood U of z and an isomorphism of fibrations

o:FE|ly—UxC".

A vector bundle L of rank one on X, 7 : L — X, will be called a line
bundle.

Definition 1.2.2. A G-linearization of the line bundle L is a G-action
¢:G x L — L on L with the following properties:

(i) 7 : L — X is G-equivariant, i.e., 7(gy) = gn(y) holds Vg €
G,VyelL;

(ii) ¢ is linear on the fibers, i.e., for every ¢ € G and every = € X,
the map ¢, : L, — L, is linear.
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Example 1.2.3. Let the algebraic group G acts on X by p. Then
consider the trivial line bundle L := X x C. A linearisation of L can
be given by choosing a character y of G, i.e., y € Hom(G,C*), with a
G-action ¢ on L defined by

o(g, (z,1)) := (u(g, ), x(9)t)
where g € G and (z,t) € X x C.

Corollary 1.2.4. From the last example follows that a G-linearisation
is not unique.

Remark 1.2.5. For any G-linearization of L, the following diagram

Gx L2~

Gx Xt sx

is commutative. This diagramm is a pull-back, i.e., it induces an iso-
morphism

G x L= px(L) =5 (1)
of line bundles on G x X.

The following lemma shows that the invers is also true.

Lemma 1.2.6. [KKLV] Let ¢ : G x L — L be a morphism. Assume
that the diagram

Gx L2~
idxrl lﬂ
Gx X2t sx

is a pull-back diagram, such that ¢(e,z) = z for all z € L and that
&(g, %) maps the zero section of L into itself for all g € G. Then ¢ is a
G-linearization of L.

Lemma 1.2.7 ([KKLV]). The line bundle L is G-linearizable if and
only if the two bundles p*(L) and p% (L) on G x X are isomorphic.

Proposition 1.2.8 (|[KKLV]). Let L be a line bundle on a normal
G-variety X. Then there is a number d > 0 such that L% is G-
linearizable.
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1.3 Semistable points and GIT-quotients

Let G be a connected reductive linear algebraic group acts on a normal
algebraic variety X and 7 : L — X be a G-linearised line bundle over
X. For any G-invariant section f of L (d > 0), we define the following
set Xy

X ={reX | f(x)#0}.
Then the set Xy is an open G-invariant subset of X.

Definition 1.3.1. A point x € X is called semistable point if for
some positive integer d, there exists a G-invariant section f of L®9
such that f(z) # 0 and X/ is affine. The point x is called stable if it
is semistable and has a finite stabilizer and the G-action is closed on
Xy¢. We denoted by X*° the set of all semistable points of X and by
X the set of all stable points of X.

Example 1.3.2. Consider the general linear group G := GL(n) over
C and the set X := M(n) of all (n x n)-matrices over C. Let G acts
on X by conjugation. Then

X% = {non-nilpotent matrices},

X*® = {non-nilpotent diagonalizable matrices}.

Example 1.3.3. Let G := SL(2) the special linear group of 2 x 2-
matrices over C and X := M (2 x n) the set of all (2 x n)-matrices over
C. Let G acts on X by the left multiplication. Then

X% = X* = {(2 x n) — matrices of rank 2}.

Example 1.3.4. Let X C P" be a projective variety and L the restric-
tion to X of the hyperplane bundle O(1). Any linear action induces an
L-action and

X*(L)=X* X°(L) = X",

Theorem 1.3.5 ([KKMS74|). Let X be a variety and L a line bundle
over X. Then for any G-linearization of L of a reductive group G on
X holds:

(i) There exists a good quotient p : X**(L) — Y andY = X**(L) )G
18 quasi-projective.

(1) There exists a Zariski-open subset Y* of Y such that ¢ (Y*) =
X*(L) and Y* = X*(L)/G is a geometric quotient of X*(L).
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(111) Let x1,x9 € X**(L). Then
o(x1) = o(x2) if and only if Gz1 N Gry N X**(L) # 0.
(iv) Let v € X**(L). Then

x is stable < x has finite stabilizer and Gx is closed in X**(L).

Example 1.3.6. Consider the following C*-action on the projective
space P" (n > 2):

(t,[xo st xy]) = [twg -+t by, g 1t "y
Given z := [z : - -+ : z,] € P", then:
(1) « is stable if z,, # 0 and x¢, -+ ,x,_1 are not all zero.
(2) zis not semistable if v = [zg: -+ 2,1 :0Jorxz=[0:---:0:1].

(3) There are no strictly semistable points.

Thus (P")* = (P")*® can be identified with C" \ {0} and the action of
C* becomes

N A R %) n1x07"'7 Tp—1]-
(t.[ ) ", ]

Hence
(B")*/C* = (@) JC* =P,

1.4 Cox ring of quasiprojective varieties

Let X be a normal algebraic variety over C with a free finitely generated
divisor class group Cl(X). Denote by WDiv(X) the free abelian group
generated by all irreducible divisors.

Definition 1.4.1. Let K be the subgroup of WDiv(X) such that the
canonical map

K — CI(X); D [D]

is an isomorphism. Then the Cox ring of X is the algebra of global
sections;

R(X):= € TI(X, 0x(D)).

[D]€CI(X)
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Example 1.4.2. Let X be the projective space P* and D C P" be
a hyperplane. Then [D] generates C1(P") freely. Define K to be the
subgroup of WDiv(P") generated by D. Then Cox ring is the ring:

R(P") = Clto, t1,- - , ta).

Remark 1.4.3. Let X C P" is a normal subvariety whose divisor class
group is generated by a hyperplane section and let X C C"*! be the
cone over X. Then R(X) coincides with T'(X, O) if and only if X is
projectively normal.

Remark 1.4.4. Let s denote the rank of Cl(X). Then the Cox ring
R(X) is realized as a subring of the Laurent polynomial ring

This inclusion gives rise to an isomorphism of the quotient fields
Quot(R(X)) =2 C(X)(Ty, -, Ty).

Proposition 1.4.5 ([ADHL09|). Let X be a normal variety with free
finitely generated divisor class group. Then

(1) The Coz ring R(X) is a unique factorization domain.
(i) The units of the Cox ring are given by R(X)* =T'(X, O*).

Now we extend the definition of Cox to normal varieties X with a
finitely generated divisor class group Cl(X), i.e., CI(X) may have a
nontrivial torsion.

Definition 1.4.6. [ADHLO09| Let X be a normal variety with I'(X, O%)
= C*. Fix a finitely generated subgroup K C WDiv(X) projecting onto
CI(X), let K° C K be the kernel of the map ¢ : K — CI(X) sending
D € K to its class [D] € CI(X) and fix a character of K° with values

in the field of rational functions on X, i.e., a group homomorphism,
X : K® — C(X)* such that

div o x(E) = idko.

Let
S=EP Sp, Sp:=0x(D)
DeK
be the divisorial sheaf associated to K and denote by Z the sheaf of
ideals of S locally generated by the sections 1 — x(F), where £ € K°
and x(FE) is homogeneous of degree —F. Consider the quotient sheaf
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R := &/ and the projection 7 : S — R. We define the Cox sheaf of
X to be R together with the Cl(X)-grading

R = @ T @ Spr

[D]eCI(X) D'ec—1([D])

The Cox ring of X is the ring of global sections

= P X Rp).

[D]eCI(X)

Remark 1.4.7. The above definitions of Cox sheaf and Cox ring are
independent of choices of K and the character x : K — C(X)*. For
any open set U C X, the canonical homomorphism

nu,S)/I'U,Z) — T'(UR)
is an isomorphism. In particular, we have
R(X)=T(X,S5)/I'(X,I).

The assumption I'(X,0*) = C* is crucial for the uniqueness of Cox
sheaves and rings.

1.5 Toric varieties and their Cox ring

An n-dimensional toric variety is a normal variety with an open orbit
T isomorphic to the algebraic torus (C*)™ such that the action of the
torus on itself can be extended to a regular action on X. We describe

the Cox ring R(X) of a toric variety X and show how to reconstruct
X from R(X).

Definition 1.5.1. Let N =2 Z" be a lattice and N := N ®7 R its real
extension. A strongly convex rational polyhedral cone o in Ny is
a cone with apex at the origin, generated by a finite number of vectors
in N and contains no line through the origin. Let M = Hom(N,Z) be
the dual lattice of N. We denote the dual cone of o by ¢¥ which is also
a strongly convex rational polyhedral cone in Mr := M ®; R. A fan
A in N is a collection of strongly convex rational polyhedral cones in
Ng satisfying the conditions: every face of a cone in A is also a cone
in A, and the intersection of two cones in A is a face of each cone.

Remark 1.5.2. A rational polyhedral fan A in N specifies a toric
variety X (A) as follows:
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(1) Every cone o € A defines an affine set

U, := Spec (C[o¥ N M]).

(2) Every cone 0 € A and a face 7 =< ¢ define
(U,), := Spec (Clg¥ N M]).,
where w € 0¥ N M determines a supporting hyperplane for 7.

(3) For o1, 09 € A define (U, )o, := Upynoy- Then X(A) is the var-
iety obtained by glueing the U, along the isomorphisms obtained
by composing

(Um)oz — Yoinoy — (UUQ)UI'

Remark 1.5.3. The set Uy = Spec (C[M]) = (C*)™ is an open subvar-
iety of X(A) and denoted by Ty.

Conversely: Every toric variety X can be specified by a fan X(A) as
above.

Remark 1.5.4. The lattices M, N and the fan A € N have natural
geometric interpretations

(i) The points of the torus Ty are C-algebra homomorphisms ¢ :
C[M] — C and every element m € M corresponds to coordinates
on the torus via a group homomorphisms x,,(¢) = ¢(m) to C*
called characters. Thus the lattice M is lattice the characters
of the torus.

(ii)) The elements n € N correspond to one-parameter subgroups \,.
The coordinates of the point A, () are given by X, (A, (t)) = t™™),

(iii) Let A(1) denote the set of rays of the fan A. A ray v € A(1)
determines an irreducible, torus-invariant, one-codimension sub-
variety Y (v) of X (A). Moreover, the subvarieties Y (v) generate
the group of Weil divisors modulo principal divisors, i.e., generate
Cl(X) and we have the following exact sequence:

0— M — 272" = Cl(X) — 0,

where Z~() is the free group generated by Y (v) for v € A(1).
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Example 1.5.5. Consider the variety X := P! x P! with the action of
T := (C*)? given by
(t1,t2) - ([uo : w1l [vo : v1]) := ([truo : wal, [tavo = v1]).
The fan A(X) has four maximal cones with the rays:
er = (1,0), ex :=(0,1), —ey, —es
of N = 7% Moreover CI(X) = Z2.
Theorem 1.5.6. (/Coz95]) The Cox ring R(X) of the toric variety X
18 the polynomaial ring
R(X) :=C[{v|veAd)}
multigraded by deg(v;) = [v;], where [v;] denotes the class of Y (v;) €
Cl(X).
Definition 1.5.7. Let X be a toric variety and A is the corresponding
fan of X. For every o € A let v” be the product of the variables v
corresponding to rays not contained in o. The irrelevant ideal of
R(X) is the ideal: B
Jx = ({v7 | o € A}).
(C*)2™) = Hom(Z*M,C*) acts diagonally on R(X). Thus induces an
action of the group G := Hom(Cl(X), C*) via the inclusion
0 — Hom(Cl(X),C*) — Hom(Z*W,C*) — Hom(M,C*) — 0,
which we obtain from applying Hom(;C*) on the sequence
0— M — 272" = Cl(X) — 0.
Theorem 1.5.8. ([LV]) The toric variety X is the categorical quotient
of the open set Spec(R(X)) \ V(Jx) by the action of G.
Example 1.5.9. Consider the fan A with a single cone o C Z?;

o :=Ryov1 + Ryovo,

such that vy := 2e; — eg and vy := e5. Cox ring R(X) of the variety
X of A is Clvy,vq]. The irrelevant ideal is Jx = (1) and R(X)Y is
isomorphic to C[z?, xy, y?], i.e., X = Spec(R(X)%) is the cone over a
smooth quadric.

Example 1.5.10. Consider the fan A\, of the toric variety of the Hirze-
bruch surface F,,. The Cox ring R(F,,) is the Zs-graded polynomial ring
klvi, -+ ,v4], where deg(vy) = deg(vs) = (1,0), deg(vy) = (—n, 1) and
deg(vy) = (0,1). The irrelevant ideal is

Jx = <Ul’027 V2V3, U3y, U4U1>-
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Chapter 2

Affine SL(2)-varieties

2.1 The Popov classification of affine SL(2)-
varieties

The complete classification of normal affine quasihomogeneous SL(2)-
varieties has been obtained by Popov [P73] but shorter modern pres-
entation of this classification is contained in the book of Kraft [Kr84,
I11.4.1].

Let p, = ((,) be the cyclic group of n-th roots of unity. Then define
the following closed subgroups of SL(2)

T:—{(é t01> :tEC*}, B:—{(é ta1> :tGC*,OzEC},
Un::{<g €Q1> :aeC, f"zl}, U::{<; (1)) :BE(C}.

Lemma 2.1.1. [Kr8/, III.4.1] Any one-dimensional subgroup of the
algebraic group SL(2) is conjugated to one of the above mentioned sub-
groups.

Theorem 2.1.2. [P73] Every 3-dimensional normal affine quasihomo-
geneous SL(2)-variety containing more than one orbit is uniquely deter-
mined by a pair of numbers (h,m) € {QN(0,1]} xN. The corresponding
variety denoted by Ej p,.

Definition 2.1.3. The rational number A is called the height of Ej, ,,
and we write it as h = §, where p and ¢ are relative prime numbers.
The number m is called the degree of £}, ,, and it equals the order of
the stabilizer of a point in the open dense SL(2)-orbit U C Ej . This

stabilizer is always a cyclic group.
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Remark 2.1.4. If h = 1, then F,,, is smooth and it contains two
S L(2)-orbits:
U=SL12)/Cpand D= SL(12)/T.

The geometric description of £} ,, is easy and well-known
El,m = SL(Q) X7 (C,

where the torus 7" acts on C by character x,,, : ¢ — t™. Thus E} ,, can
be considered as a line bundle over SL(2)/T.

Remark 2.1.5. If 0 < h < 1, then Ej,,, contains a unique SL(2)-
invariant singular point O. If h = £, where ged(p,q) = 1, then we
define m

k:=ged(m,q —p), a:= T

Then Ej,,, contains three SL(2)-orbits
U=SL2)/Cp, D= SL(2)/Uspiq, and {O}.

The explicit construction of Ej,, given in [P73| and |[Kr84| involves
finding a system of generators of the following semigroup

Mhm’l = {(Z7j) € ZZEO : j < h‘Z7 m‘@ _j)}

i-j=m i-j=2m ‘i-j=3m /

Remark 2.1.6. Let V,, be the standard (n+ 1)-dimensional irreducible
representation of SL(2) in the space of binary forms of degree n. Denote
by (i1,1)s---, (ir, Jr) @ system of generators of the semigroup Mj .

Then E},,, is isomorphic to the closure SL(2)v of the SL(2)-orbit of
the vector

V= (X“le, . ,XiTYjT) S ‘/;14_]'1 b---B ‘/ir-i-jr'
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Example 2.1.7. Let m = (¢ — p)a, where a € N, then the semigroup
My, , 1s minimally generated by ap + 1 elements

{(m,0),(m+1,1), (m+2,2),..., (aq,ap)}
and
vi= (X" XY XYY ) € Vo @ Vo @ @ Vagrap =2 Vg @ Vap-

Remark 2.1.8. It is easy to see that the numbers h and m are uniquely
determined by the embedding of the monoid M)}, into ZQZO.

Conversely: If v € V,,, & --- @V, for some n; € N, is a vector such
that O € SL(2)v and v has a stabilizer which is isomorphic to the cyclic
group fi,, where SL(2)v is an SL(2)-affine variety E},,,, then in order
to appoint the height of £}, ,,, write the n; component v; € V,,, of v as

follows

v; = a;z" iy + Z agjalitiysiy
3>0
with n; = t; + s;, a; # 0 and t; > s;. Then define

S.
h(v) = maxi_; =

=1y
Then the variety Ej,,, has the height h(v).
There exists another relation between the submonoid My, ,,, C Z2, and
E}, mm which is described through the following theorem

Theorem 2.1.9. [Kr8/, I11,4.3] Let E be a normal affine 3-dimensional
quasihomogeneous SL(2)-variety with the affine coordinate ring C[E].
Denote by C[E]Y the U-invariant subring. We can consider C[E]Y as
a subring of C[SL(2)]Y = C[X,Y], where C[X,Y] is the algebra of
reqular functions on SL(2)/U = C?\ {(0,0)}. Then the monomials
{XY7| (i,5) € Mpm} form a C-basis of C[E]Y, i.e.

Apm = (X'Y? ¢ j < hi, m|(i - j)) C C[X,Y] = C[SLy]",

where we have denoted C|Ej )Y by Apm.

2.2 Affine SL(2)-varieties as a categorical
quotient

In this section we show that the quasihomogeneous affine SL(2)-variety
Ehpm (h = §7 where ged(p, ¢) = 1) is isomorphic to a categorical quo-
tient of a 4-dimensional affine hypersurface H,_, in C°. This description
of this variety is new and simple [BHO08|.
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Denote by V,, the standard (n + 1)-dimensional irreducible repres-
entation of SL(2) in the space of binary forms of degree n. We consider
C5 with the coordinates Xo, X1, X, X3, X4 as Vo @ Vi @ V4. Identify
the coordinates X7, X5, X3, X, with the coefficients of the 2 x 2-matrix

X1 X3
Xy X4/
Let the algebraic group SL(2) acts on C° by left multiplication on

X1, Xo, X3, Xy and trivial on Xy. We denote by D(5,C) the group of
diagonal matrices of order 5 acting on C°.

The next theorem includes our discription of £}, ,, as a categorical quo-
tient:

Theorem 2.2.1. Let Ej,,, be a normal affine SL(2)-variety of height
h=p/q <1 (ged(p,q) =1) and of degree m. Then E}, , is isomorphic
to the categorical quotient of the affine hypersurface H, , C C° defined

by the equation
XIP =X1X, — X0 X3

modulo the action of the diagonalizable group Gox G, C D(5,C), where
Go = C* consists of diagonal matrices {diag (t,t7P, 7P t9,19) ; t € C*}
and G, = i, = (Gn) @8 generated by diag (1,0, C0 G, Gn)-

Proof. CASE 1: h=1. Then p=q=1,
Go:= {diag (t,t ', t 71 t,t); t € C*},
G = {diag (1,(7, ¢ G0 5 €€ pimby
and the hypersurface Hy is defined by the following equation
1=X1X4 — X0 X5,

The algebraic group Gy x G, can be written as a direct product in
another way:

G()XGm:G()XG;n,
where G), := {diag (¢,1,1,1,1) ; ( € pm}. We remark that the
hypersurface

HO = {(3607:171,:172,:173,334) S C5;$1$4 — Tolk3 = 1}

is isomorphic to the product SL(2) x C. Moreover, the Gy-action on the
first factor SL(2) is the same as the action of the maximal torus 7" by
right multiplication. On the other hand, Hy /G’ is again isomorphic
to SL(2) x C, because G/, acts trivially on SL(2) and C//G!, = C (one
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replaces the coordinate X, on C by a new G -invariant coordinate Yy =
X{"). So the Go-action on the second factor Cin SL(2) x C = Hy /G,
is defined by the character y,, : t — t" . Thus, we come to the already
known description of E),, as a T-quotient (see Remark 2.1.4):

El,m = SL(Z) X7 C.

CASE 2: m =1, h =p/q < 1. The SL(2)-action on C* commutes with
the Go-action and the hypersuface H,_, defined by the equation

XIP = X, X, — X5 X;.

is invariant under this Gy x SL(2)-action. Moreover, the Gy x SL(2)-
stabilizer in the point = := (1,1,0,0,1) € H,_, is trivial. Therefore
H,_, is the closure of the Gy x SL(2)-orbit of z in C° and

Xpq = Spec C[H,_p]

is an affine SL(2)-embedding. One can identify the open dense SL(2)-
orbit U in X, , with the Go-quotient of the open subset in H,_, defined
by the condition Xy # 0. Moreover, the affine coordinate ring C[U/] is
generated by the Gy-invariant monomials

X =XPX,, Y= X;9Xs, Z:= XXy, W= X;9X,

satisfying the equation

det ()Z( %) = Xg_qX1X4 — Xg_qXQXg =1.

By a theorem of Luna-Vust [Kr84, I11,3.3|, the normality of
Xpq = SPGCC[qu]GO

follows from the normality of C[X, |V = C[H,_,]%*V. It is easy to see
that
C[H,,)" = C[Xy, X1, X3].

Since U-action and Gyp-action commute, it remains to compute the G-
invariant subring C[Xj, X1, X3]° under the C*-action of Gy on C3
defined by diag (t,¢77,t9). Straightforward calculations show that
the ring C[Xy, X1, X5]%° has a C-basis consisting of all monomials
XiYT = XPYXiX] € CU)Y = C[X,Y] such that pi —qj >0, i >0,
j=>0,ie., (i,5) € M;,. By 2.1.8 and 2.1.9, we obtain simultaniously
that X, , is normal and that X, , = E}, ;.
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CASE 3: m > 1, h = p/q < 1. Let X" be the categorical quotient of

H, , by Gy x Gy, where G, = i, = (() acts by

diag (1,1 0 Gy G-

By the same arguments as above, one obtains that
C[X;:Lq]U = C[X07 le X3]GO><Gm7

where G,, = p, acts on C* by diag (1,¢.,', () and Gy on C? by
diag (t,t77,t7). Therefore the ring C[X]"]Y C C[U]Y = C[X,Y] has a
C-basis consisting of all monomials of the form:

XY = XEUXIXG: (i) € My,

The condition m|(j — i) follows from the G-invariance of monomials
XPUXiX3, By 2.1.8 and 2.1.9 we get that X = By O

It will be important to have the following another similar description
of an arbitrary affine normal quasihomogeneous SL(2)-variety Ej,,, as
a categorical quotient of an affine hypersurface:

Theorem 2.2.2. Let Ej,,, be a normal affine SL(2)-variety of height
h=p/q<1 (ged(p,q) =1) and of degree m. We define

k= ged(q — p,m) and b := (¢ — p)/k.

Then By, is isomorphic to the categorical quotient of the affine hyper-
surface Hy, C C° defined by the equation

YY = X1 X, — X0 X3

modulo the action of the diagonalizable group G := G x G, C D(5,C),
where G, = C* consists of diagonal matrices

{diag (t*,t7P t7P 7, 19); t € C*}
and G, = e = (C,) is generated by
{diag (1,¢,", ¢ Cas Ca) }-

Proof. By Theorem 2.2.1, we have E},,,, = H,—,//(Go X Gp,). We note
that the conditions k = ged(q¢ — p,m) and ged(q,p) = 1 imply that
ged(k,p) = ged(k,q) = 1. Since (% is a generator of py and since
the maps z — 2P and 2z — 29 are bijective on p; we can find another
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generator { € py, such that £PCY = £9¢7 = 1. Thus, Gy x G, contains
the following element

g=diag (§,1,1,1,1) = (£,£77, 77,667 - (1,6 G G G-
Consider the homomorphism
Vi © D(5,C) = D(5,C), (Ao, A1, Az, Az, Ag) — (AG, A1, Az, Az, Ag).
Then ¢, (Gy) = G and
k= Ker ¢y N (Go x Gr) = (g) = {diag (¢,1,1,1,1) ; ¢ € i}
So we obtain a short exact sequence
1 -G, — Gy x Gy — Gy x G, — 1,

where

G, = {diag (1,71, ¢ ¢€) ¢ € € o}
Therefore the categorical G-quotient of H,_, can be divided in two
steps. First we divide H,_, by the subgroup G} C G¢ x G, and after
that divide by the group G{, x G,. Using a new (j-invariant coordinate
Yo = X}, we see that H, /G is isomorphic to the hypersurface H,
defined by the equation

VY = XXy — Xo X3
Since Gy acts on Y, by character ¢t — t*,
Eh,m = XI??(I = Hq_p//(GQ X Gm)

is isomorphic to the categorical quotient of H, modulo the above Gj, x
G,-action. O

2.3 Cox ring of an affine SL(2)-variety

Let A be a finitely generated abelian group. We need the following
criterion for a finitely generated factorial A-graded C-algebra R with
R* = C* to be a Cox ring of a normal quasiprojective algebraic variety
X with A = Cl(X).

Theorem 2.3.1. Let Y be an irreducible affine algebraic variety over C
with a factorial coordinate ring R = C[Y]|. We assume that I'(Y,0%) =
C* and that Y admits a reqular action G XY — Y of a diagonalizable
group G, or, equivalently, R admits an A-grading by the group A =
Hom,, (G, C*) of algebraic characters of G. Then R is a Coz ring of

some normal quasiprojective algebraic variety X such that C1(X) = A
and I'(X, O%) = C* if and only if the following conditions are satisfied:
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(1) there exists an open nonsingular G-invariant subset U C'Y such
that codimy (Y \ U) > 2 and G acts freely on U;

(ii) there exists a character x € Hom,,(G,C*) such that U is con-
tained in Y*°(L) as a saturated open subsel with respect to the

quotient Y**(L) — Y*°(L) /|G, where L is the G-linearization of
the trivial line bundle over'Y corresponding to x.

Proof. Assume that Y admits a regular G-action such that conditions
(i), (ii) are satisfied. We define X to be Y**(L)/G. Then X is a normal
irreducible quasiprojective variety and I'(X,0%) = I'(Y,0%)¢ = C*.
Moreover, U := U/G is a smooth open subset of X, because U is
a saturated open subset of Y**(L). Let us show that Cl(X) = A,
where A = Homy,,(G,C*). Since R is factorial and U is a smooth open
subset of Y, we have Pic(U) = Cl(U) = 0. By a general result in
[KKV89, 5.1], the Picard group of U is isomorphic to the group of G-
linearizations of the trivial line bundle over U. On the other hand, since
codimy (Y'\U) > 2 and Y is normal, all invertible regular functions on
U extend to invertible regular functions on Y, i.e., they are constant.
By [KKV89], the latter implies that the group of G-linearizations of
the trivial line bundle over U is isomorphic to the group of characters
of G, i.e.,

Pic(U) = Hom,,,(G,C*) = A.

Since Pic(U) = CI(U), it remains to show that codimy (X \ U) > 2.
Assume that there exists an irreducible nonempty divisor Z C X such
that U N Z = (. Since X is normal, the local ring Ox 7 is a discrete
valuation ring, i.e., there exists an affine open subset U’ C X such that
Z''=U'NZ#0,UNZ =0, and Z'is a principle divisor in U’ defined
by a regular function g € C[U’]. Consider the morphism

T Y¥(L) — X.

We can assume U’ := 7~'(U’) is an affine open subset in Y**(L) and
C[U'] = C[U"®. Then the element § := 7*(g) € C[U’] defines a princi-
ple divisor Z/ := (§) C U’ such that Z/NU = § and Z' # . The latter
contradicts to codimﬁ(ﬁ\ (57 NU)) > codimy (Y \U) > 2, ie., we
must have Z' = ().

In order to identify R = @, 4 R, with the Cox ring of X we consider a
finite subset {aq,...,a,.} C A such that the homogeneous components
R, ..., R,, generate the algebra R and R,, # 0 for all i € {1,...,r}.
Since the class of any effective divisor in X is a nonnegative integral
linear combination of aq, ..., a,, we obtain that a, ..., a, are generators
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of A. We choose r nonzero elements g; € R,;, j € {1,... ,7} which

define r effective principal divisors D; = (g;) in Y. Then we obtain r
effective divisors in X:

D; = (D;,NY*(L))G, je{1,...,r}.

Consider the epimorphism ¢ : Z" — A. For any k = (ky,...,k.) € Z"
we define a rational function

g(k) == gf* -~ gf € C(Y)
and a divisor
D(k) := k1Dy + - -+ k. D, € Div(X).

If a},...,d. is a Z-basis of Ker ¢, then s rational functions f; := g(a})
(1 =1,...,s) are G-invariant, i.e., elements of C(X). So we obtain s
principle divisors D} := D(a}) = (f;) in X. On the other hand, for any
k € Z", one has

L(D(k)) = {% €C(X) : he R@(k)}.

Consider the Z"-graded ring

R =P L(D(k))

keZr

together with the surjective homogeneous homomorphism

B:R—->R=E)R.

acA

whose restriction to k-th homogeneous component is an isomorphism
B+ LID(k)) = R

defined by multiplication with g(k). Then the elements

(g(};f) - g(/f}jraé)> - (ﬁ - Q(Z)fi) € Rie © Rovars

VEk € Z', VYh € Rogy = Roerar), Vi € {1,..., 5}

are contained in Ker 3. Therefore, § induces a surjective homogeneous
homomorphism of the Cox ring R/Z to R. By comparing the homo-
geneous components of R/Z and R, we obtain that R/Z = R.
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Now assume that a factorial A-graded C-algebra R is the Cox ring
of some normal irreducible quasiprojective variety X with Cl1(X) = A.
Using the same idea as in Cox ring definition, we can define a sheaf-

theoretical version of the Cox ring of X (see [H08, Section 2|):

R =P Ox(a)

a€A

which is a A-graded Ox-algebra such that I'(X, R) = R. Define Y’ :=
Specx(ﬁ) as a relative spectrum over X. By [HO8, Prop.2.2], Y/ C Y :=
Specc(R) is an open embedding and the morphism 7 : Y’ — X is a
categorical quotient by the action of G := Spec C[A]. Moreover, G acts
freely on the open subset U := 7—1(U), where U := X \ Sing(X) C X
the set of all smooth points of X and codimy (Y \ U) > 2. We consider
a locally closed embedding 7 : X — P" and define £ := 7*O(1). Since
Cl(Y’) = 0, the pullback L := #*L is a trivial line bundle over Y’
having a G-linearization. Since all invertible global regular functions
on Y’ are constants, this G-linearization is determined by a character
X € Hom,, (G, C*) = A. Since 7 : Y' — X is a good G-quotient and X
is quasiprojective, by [H04, Theorem 3.3(ii)|, Y’ is contained in Y**(L)
is an open saturated subset. So U (U C Y’ C Y*(L)) is open and
saturated in Y**(L). Theorem is proved. O

Remark 2.3.2. Methods in [HO8| allow to formulate and prove a more
general version of Theorem 2.3.1 for algebraic varieties X which are not
necessary quasiprojective. Moreover, in Theorem 2.3.1 it is enough to
assume only A-graded factoriality of R, i.e., that every A-homogeneous
divisorial ideal is principal.

Now we begin with the following observation:

Proposition 2.3.3. The affine coordinate ring C[H,| of the hyper-
surface Hy, C C® is factorial. Invertible elements in C[Hy| are ezactly
nonzero constants.

Proof. Consider the open subset U, C H, defined by X, # 0. Since
U, is isomorphic to a Zariski open subset in C*, we obtain C1(U;") = 0.
The complement S+ := H, \ U5 is a principle divisor (X5). We note
that S+ defined by the binomial equation Yob = XX, which shows that
S+ s isomorphic to the product of C (with the coordinate X3) and a
2-dimensional affine toric variety with a A,_;-singularity defined by the
equation Y = X, X,. Therefore, S+ is irreducible and the short exact
localization sequence

7Z — Cl(Hy) — CIUS) — 0

1 —  [S7]
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shows that [§jr] = 0 € CI(H,), i.e., the image of Z in CI(H,) is zero.
Thus, we obtain Cl(H,) = 0. In order to prove the second statement
we consider the following two cases.

CAseE 1: b = 0. Then H, = SL(2) x C. Since all invertible el-
ements in the coordinate ring of SL(2) are constants, we obtain the
same property for the coordinate ring of SL(2) x C.

CASE 2: b > 0. Then we can define a Z>o-grading of C[H,] by
setting deg X; = deg Xy = deg X3 = deg Xy = b and deg Y, = 2.
Since the 0-degree component of C[Hy] is C, we obtain that all invertible
elements in C[H,] are nonzero constants. O

Proposition 2.3.4. Consider the following Zariski open subset in Hy_,:
U .= Hq—p \ ({Xl == XQ == O} U {Xg == X4 == O})

Denote Uy = Epm \ Sing(Enm) C Enm, where Sing(Ey,,) = 0 if
h =1 and Sing(Eh ) = {O} if h < 1. Then the group (Gox G,,)/G), =
Gy x G, acts freely on U/G), C Hy and Up;m 2 U/ (Go X Gp).

Proof. Let x = (yo, z1, %2, 3, 24) be a point in U and g € G = Gy x G,
an element such that gr = x. We write g as a product of two elements

g =diag (¢,t7P,t7P,t9,t7) - diag (1,¢,,%, (.5, ¢ C)y € C L G € .

Then t77(* = 1 (because at least one of x; and x5 is nonzero), and
t9¢s, = 1 (because at least one of x3 and x4 is nonzero). Therefore,
t7PC,°t¢, = t77P = 1. We consider two cases:

CASE 1: yp # 0. Then we have t = 1. Then (J, =1 and g = 1.

CASE 2: yp = 0. Then we have
1P =11, =1 =17".

Therefore t € f1,_,. Since ged(p, ¢ —p) = 1 the element ¢ has the same
order as t. On the other hand, t* = (,° € p,,. So the order of ¢ is a
common divisor of ¢ — p and m. In particular, we have t* = 1. This
implies that g € G.

Now we remark that the open subset U/G) C Hy, is SL(2)-invariant

and has nonempty intersection with the SL(2)-invariant divisor D :=
{Yo = 0} C H,. Therefore, the smooth SL(2)-variety U/(Go x G,,)
contains more than one SL(2)-orbit. So U/(Gy x G,,) coincides with
Ep o \ Sing(Ep ) = Upm (see Remarks). O
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Corollary 2.3.5. For any affine SL(2)-variety E},,,, one has

Cox(Epm) = C[Hy] = C[Yy, X1, Xo, X3, X4l /(YE — X1 X4 + X X3).

Proof. Let Ly be trivial G-linearized line bundle over H,, ie., Oy, =
Opn,(Lo) as G-bundles. Then H{*(Ly) = H, and H;*(Lo) /G = Ep .
By 2.3.4, the group (G x G,,,)/G). = Gy x G, acts freely on U/G), C H,
and codimpy, (H, \ U/G), C H,) = 2. By 2.3.1, the affine coordinate
ring of Hj, is isomorphic to the Cox ring of Ej, ,,. ]

Corollary 2.3.6. [Ga08] An affine SL(2)-variety Ej,,, is toric if and
only if b =1, i.e., ¢ — p divides m.

Proof. If b = 0 (i.e. h = 1), then Ej,, is smooth and Cl(E,,,) = Z.
However, the divisor class group of any smooth affine toric variety is
trivial. Hence, £}, is not toric.

In general, if X is a normal affine toric variety such that all invert-
ible elements in C[X]| are constant, then Cox(X) is a polynomial ring
[Cox95]. In particular, the spectrum of Cox(X) is nonsingular. On the
other hand, if b > 1, then the hypersurface H, C C° defined by the
equation Yob — X1 Xy + XyX3 = 0 is singular. Therefore, Ej,,, is not
toric if b > 1. If b = 1, then H, & C*, so Ej,, = C*/G is toric. O

Using 2.3.5, we obtain a simple interpretation of the following compu-
tation of Cl(E},,,) due to Panyushev:

Proposition 2.3.7. [Pa92, Th.2] For any normal affine SL(2)-variety
Ey o, one has

ClUEpn) = Z & C,.

Let D C Ej,, be the closure of the unique 2-dimensional SL(2)-orbit
D. Denote by ST C Ep(resp. by S~ C Ey) the closure in Ep n, of
the B-orbit in U = SL(2)/C,, defined by the equation Z™ = 0 (resp.
by W™ =0). Then Cl(Ep,,) is generated by two elements [D] and [ST]
(respectively, by [D] and [S™]) satisfying the unique relation:

ap[D] + m[ST] =0,

or, respectively,
—aq[D]+m[ST] = 0.
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Proof. The isomorphisms
Cl(Eh,m) = HOIIlalg<G, (C*) = Homalg(Gf), C*)@Homalg(Ga, C*) = Z@Ca.

follow immediately from 2.3.5. Let D' C E},,, be an arbitrary nonzero
effective irreducible divisor. Consider the surjective morphism 7 :
U/G), — U/(Go*xGy,) = Up . Then the support of D’ has a nonempty
intersection with U, because codimg, , Sing(Ep,) > 2. Then the

closure D' of 7Y D'NUy,m) C Hy is a G-invariant principal irreducible
divisor (see 2.3.3). Therefore, ﬁjs defined by zeros of a polynomial
f (Yo, X1, Xo, X3, X4) such that f(gx) = x(9)f(x) and x = xp €
Hom,s (G, C*) is the character representing the class [D'] € Cl(E},,).
It is easy to see that the irreducible divisors 5, S’:, S-c H,, are defined
respectively by polynomials Yy, Xo, X4. The corresponding characters
x of G = C* x p, are :

XD(tv C) = tka Xs+ (t7 C) = tipcila Xs- (t7 C) = th'

Since ged(p, k) = ged(q, k) = 1 each pair {xp, xs+} and {xp, xs-}
generate the character group of C* x u,. Moreover, we have

X5 (8 QX (8,C) = xp™ (£, OXG-(,¢) = 1 VE € C, V( € piq-
This implies the following two relations in Cl(E}, )
ap|D] +m[ST] = —aq[D] + m[S~] = 0.
Consider two natural surjective homomorphisms
vt 2% — CUEn,), (ki, k) — ki[D] + ko[ST],

@Z)_ . Z2 - Cl(Eh,m)y (k’l, ]{?2) = k?l [D] + l{?Q[S_]

Then
Keryt = ((ap,m)), Keryp~ = ((—aq,m)),

because each of two elements (p, k), (—q,k) € Z? generates a direct
summand of Z?, and, by ka = m, we have

Z*/((pa,m)) = Z & Co = 27 /{(—qa,m)).
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2.4 SL(2)-equivariant flips

Let us start with toric SL(2)-equivariant flips. It is known that if
m = a(q — p) then the toric variety Ej,,, is isomorphic to the closure
of the orbit of the highest vector in the irreducible SL(2) x SL(2)-
module V,, ® V,, [Pa92, Prop.2|. In this case, Ej,,, is isomorphic to the
affine cone in V,,®V,, = Clar+1)x(@a+1) with vertex 0 over the projective
embedding of P! x P! into a projective space by the global sections of the
ample sheaf O(ap, aq). The closure D of the 2-dimensional SL(2)-orbit
D in E},, is isomorphic to the affine cone over a(p + ¢)-th Veronese
embedding of P! considered as diagonal in P' x P!, If e, es,e5 is a
standard basis of R? then the toric variety E}, m is defined by the cone
o =37 Rogu; where

V1 = €1, Vg = —e1 + ages, V3 = €2,y = —e + apes,

i.e., vy, v, v3, vy satisfy the equation pvy + pvg = qus + qus. Let Ej
be the blow up of 0 € Ej,,, C Clw+bx(aatl) [t corresponds to the
subdivion of ¢ into 4 simplicial cones having a new common ray Rsovs
(vs = e3) and generated by the following 4 sets of lattice vectors

{U17U37U5}7 {U27U37U5}7 {U27U47U5}7 {U4,U1,U5}.

The exceptional divisor D’ over 0 corresponding to the new lattice
vector vs is isomorphic to P! x P'. Moreover, the whole variety Ej ,, is
smooth and can be considered as a line bundle of bidegree (—agq, —ap)
over P! x P!. Consider two 2-dimensional simplical cones

0'+ = Rzovg -+ R20U4, and o~ = Rzovl + Rzovg.
There exist two different subdivisons of ¢ into pairs of simplicial cones
g = (Rzo’l)l +U+) U (RZOUQ —|—O’+) and o = (Rz(ﬂ}g —|—O‘_) U (RZOU4 +U_).

We denote toric varieties corresponding to these subdivisions by £,

and E,J[m respectively. Then one obtains the following diagram of toric

morphisms:
/

E
N
Ey ., E,:fm
Eh,m
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The morphisms v~ and v restriced to D’ are projections of P! x P!
onto first and second factors. We denote by C~ (reps. C*) the 7~ -
image (resp. y"-image) of D' in £, (resp. E;m) Then singularities
along C~ (reps. along CT) are determined by the 2-dimensional cone
o~ (resp. o). The relations

V3 + Vg4 = APUs, U1 + Uy = AqUs

show that the 2-dimensional affine toric variety X,- (resp. X,+) is an
affine cone over P! embedded by O(ap) (resp. by O(aq)) to P (resp.
Pe7). By 1 < p < ¢, we obtain that E, ,, 1s always singular and E,J[’m is
nonsingular if and only if ap = 1. Simple calculations in Chow rings of
toric varieties £, and E; show that
_ Mg —
O_'KEf :—2<07 C+'KE+ :<q—2p)>0

h,m a q h,m ap

So the birational map
E};m — — > E;:m

is a toric flip.

Now we consider a general case for an affine SL(2)-variety Ej .
Let us begin with the calculation of the canonical class of an arbitrary
SL(2)-variety Ej ,, which has been done by Panyushev in [Pa92, Prop.4
and 5]

Proposition 2.4.1. For any normal affine SL(2)-variety Ey, ., one
has
KEh,m, = _(1 + b) [D]

Proof. Using the description of E}, ,, as a categorical quotient H, /G of
the hypersurface H, C C°, we can consider Ej, ,, as a hypersurface in the
4-dimensional affine toric variety 7y, ,, := C?JG. 1t is well-known that
the canonical divisor of any toric variety consists of irreducible divisors
in the complement to the open torus orbit taken with the multiplicity
—1. If we consider Yy, X, Xo, X3, X4 as homogeneous coordinates of
the toric variety 7y, ,,, then the canonical class of 7, corresponds to
the character y : G — C*

x(t, Q) = t7R(PC)2(t7I¢)? = ¢RI

On the other hand, G acts on the polynomial Yob — X1 Xy + X2 X3 by
the character

X'(t,¢) = t7F.
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Therefore, by adjunction formula, the canonical class of FEj ,, corre-
sponds to the character x* = y +

Xt Q) =t

Since the class [D] € Cl(E},,) is defined by the character xp(t,¢) = t*,
we obtain that

]

Proposition 2.4.2. Let L™ be the trivial line bundle over H, together
with the linearization corresponding to the character x*, then

HgS(LJr) == (]+ = Hb \ {Xl == XQ == 0}

Proof. The space I'(H,, (L*)®")¢ consists of all regular functions f on
Hy such that f(gz) = (xT(9))"f(z). It is easy to see that T'(H,, (LT)®™)¢
is generated as a C-space by restrictions of monomials Y X ¥t X7 X %8 X k4
satisfying the above homogeneity condition, i.e.,

tk()k—k1p—k2p+k:sq+k4qC—/ﬁ—k2+k’3+k’4 — ¢—k+tp—a) it o C* V(€ pyg.
The last condition implies a|(ks + k4 — k1 — ko) and
kok — kip — kap + k3q + kag = n(—k +p — q).

Since n(—k +p—¢q) <0 and k; > 0 (0 < ¢ < 4), we obtain that at
least one of the integers k; and ko must be positive, i.e., all monomials
Yo X XD X0 X € T(Hy, (LT)®")C vanish on the subset {X; = X, =
0} N Hy. On the other hand, if at least one of two coordinates X; and
X5 of a point x € H, is not zero, then one of the monomials

‘X'il(q—p-f-k)7 X;(q—p—f—k:) c F(Hb, (L+>®p>G
does not vanish in x. Hence, H*(L*) =U". O

Proposition 2.4.3. Let L™ be the trivial line bundle over H, together
with the linearization corresponding to the character x~ = —x™, then

Hgs(L_) =U" = Hb \ {Xg = X4 = 0}
Proof. The condition f(gz) = (x"(9))"f(x) for a monomial
f= )/E)kon1X§2X§3Xi€4 c F(Hb, (L—)®n)G
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implies that

tk0k7k1p7k2p+k3q+k4q<°7k17k2+k’3+k4 _ tn(k#»qu) Vt c C* VC c ,U/a
3 .

Since n(k + ¢ — p) > 0, we obtain that at least one of three integers
ko, k3, ks must be positive. Therefore, all monomials

Yoo XX XX € T(Hy, (L7))°

vanish on the subset {Yy = X3 = X, =0} N H, = {X3 = X, =0} N H,.
On the other hand, if at least one of two coordinates X3 and X, of a
point x € Hy is not zero, then one of the monomials

X;L(q—p+k)7 Xz(q—erk) € I(H,, (L7)®q)G
does not vanish in z. Hence, H*(L™) =U". O
Theorem 2.4.4. Define
E, .. =H(L7) )G, E,J{m = H*(L1))G.
Then the open embeddings
HP(L™)=U" CH,, H?(L")=U"C H,
define two natural birational morphisms
o B

+ . +
h,m - Ehv"“ ¥ : Eh,m - Eha"“

and the SL(2)-equivariant flip

Eh_m _______ >Ef—z~_,m
Eh,m

Proof. The statement follows immediately from the isomorphisms

E,,, = Proj @ T (H,, (L7)*") = Proj @D T (Epm. O(—nKp, )

n>0 n>0
and
E;f,, = Proj @D T (H,, (LT)*")¢ = Proj @ T(Epm, O(nKg,,,)).
n>0 n>0
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Corollary 2.4.5. One has the following isomorphisms:

E,,, = Proj T (Eym, O(—nD)), Ef, = Proj @T(Ejm, O(nD)).

n>0 n>0

Proof. These isomorphisms follow from the equation Kp, , = —(1 +
b)[D] (2.4.1) and from the isomorphism

Proj EB R, = Proj @ R,

n>0 n>0

for any noetherian graded ring R = P, -, R, and for any positive
integer [. [l

In order to describe the geometry E, ~—and E; in more detail
we need two 2-dimensional affine varieties ST and S~ having regular
B-actions (see also 2.3.7).

Proposition 2.4.6. Let ST C E},, be the closure of an B-orbit ob-
tained as categorical quotient of W+ := H,_, N {X2 = 0} by Gy x G,.
Then ST is isomorphic to the normal affine toric surface Spec (C[Mh*m]

Proof. We note that W+ = H,_, N {X, = 0} C C® is a 3-dimesional
affine toric variety which is a product of C and a 2-dimensional affine
toric variety defined by the binomial equation XJ ” = X;X,. Let us
compute the categorical quotient W7 J/Gq. Since the group Gy acts on
Xo, X1, X3, X4 by diag (¢,t77,t%,t7) for every nonconstant Go-invariant
monomial X X' X122 X5 (k; € Zo) the condition ko—pki+qks+qks =
0 implies k; > 0. If at the same time k4 > 0, then

XPXPXPXE — XX p i X B X e (W),

Using the equation X{ ¥ = XX, several times, we can get another
monomial X0 X% X5 such that X} x5 Xk xb_xloxF x5 e rw+),
i.e., vanishes on W, Therefore, the coordinate ring of W+ /Gy contains
a C-basis consisting of all Gy-invariant monomials in X, X7, X3. These
monomials have form XZ* =9 X7 xks — X*y*s where pky — gks > 0,
(i.e., (k1,ks) € My ). So the coordinate ring of ST = W+ /(G x
G,,) has a C-basis consisting of G,,-invariants monomials X*Y* =
XPhoah xki ks which correspond to lattice points (ki k3) € My, =
Myfy O {(k1y k) € Z = m(ky — ks)}, ie. ST 2 Spec C[M,], . O

Proposition 2.4.7. Let S~ C K}, be the closure of an B-orbit ob-
tained as categorical quotient of W~ = H,_, N { Xy = 0} by Gy X G,
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Then S~ is isomorphic to the normal affine toric surface Spec C[M,;m],
where the monoid M, C 7?2 is defined as follows:

M, =A{(,5) € Z? : j <hi, i >0, m|(i—j)}.

See the following Figure:

i /!/
O ’ ,0// I3 . [
+ . . @
/‘/ p :L . . /’/
/(/ . o ib K4 /i/ o
. - & . .
- P i
. /‘ . . . Vi
. . ] A . Mh m
’ . IS /o/ . p/
i_j:m/ . /d/, o . //o// . . //o// . . //o// . . /(/ .
o . . /;/ . o .
. ' 4 o/// o . )
i—j=2m

Proof. We note that W~ = H,_, N {Xy = 0} C C° is a 3-dimesional
toric variety which is a product of C and a 2-dimensional toric variety
defined by the equation XJ ” = —X,X3. Again the computation of
the categorical quotient W~ /Gy reduces to finding all Gy-invariant
monomials X5 X' X52 X5 Under the condition X¢ 77 = —X,X3 we
can assume that at least one of two variables X5, or X3 does not appear
in XgoXF X2 X8 (ie., ky = 0, or ks = 0). If ky = 0, then we come
to the same situation as in 2.4.6 and obtain Gy-invariant monomials
Xhyhs = xphoav X XIS (ky k) € M. If ks = 0, then we obtain

Go-invariant monomials X" P2 xkixh: — xkizke (k) k) € Zsg).
The equation X{ * = —X, X3 implies that on W~ /Gy we have YZ =
Xy 9Xo X X3 = —1. So in case ky = 0 we obtain the monomials in

Xkv(y=1k2 (ky, ko € Zs). Unifying both cases, we get all Go-invariant
monomials X'Y7, (i,j) € M}. The action of the finite group G,, on
X and Y gives rise to an additional restriction: m|(i — 7). Therefore,
Gy X G,,-invariant monomials can be identified with the set of all lattice

points (i,j) € M, .. O
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Remark 2.4.8. If m = a(q — p) (i.e. Ej,, is toric), then S~ = X -
and ST = X+, where 0~ and o are 2-dimensional cones as above.

Definition 2.4.9. Let S be an algebraic surface with a regular action
B x S — S of a Borel subgroup B C SL(2). We denote by SL(2) x5 S
the SL(2)-variety (SL(2)xS)/B, where B is considered to act on SL(2)
by right multiplication:

(()Z( vi)(é tiﬂ))H@( v?)(é t?‘l)_l,

()Z( VYV) € SL(2).

Theorem 2.4.10. One has the following isomorphisms
E; .= SL(2) x5 S™, Ef, =25L2) xp5*.

Proof. Since UT = H, \ {X; = Xy = 0} and G acts on (X1, X5) by
scalar matrices, we obtain a natural SL(2)-equivariant morphism

at o B =UY)G P (Yo, X1, Xo, X3, Xy) — [Xy X
Analogously, we obtain a natural SL(2)-equivariant morphism
a” B =U G- P (Yo, X1, Xo, X3, Xy) — [X3: Xyl
By 2.4.6 and 2.4.7, we have
St =(a")M1:0], S” = (am)"!1:0].

Since the morphisms o™ and o~ are SL(2)-equivariant and SL(2) acts
transitively on P!, we have

St (a™)(2), ™2 (a) () VzeP,

ie., By (resp. Ej ) is a fibration over P' with fiber S* (resp. S7).
On the other hand, the projection SL(2) x S* — SL(2) defines two
natural morphisms SL(2)-equivariant morphisms

7" 1 SL(2) xp ST — SL(2)/B = P!,

m : SL(2) xS~ — SL(2)/B = P!,

such that SL(2) x5 ST (resp. SL(2) x5 S™) is a fibration over P! with
fiber ST (resp. S7). Consider the morphisms

Bt SL(2)x ST —UYG, = : SL2)x S~ = U~ /G
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defined by
3*(g,2) = gz, Vg€ SL(2), Vo € §F = (o) 7Y[1:0).

Since % (gb™', bx) = 3*(g,x) = g Vb € B, the morphism * descends
to a morphism

B* : SL(2) xp ST = U* |G = E;,..

The latter is an isomorphism, because 3% is SL(2)-equivariant and it
maps isomorphically the fiber of 7% over [1 : 0] to the fiber of a® over
the B-fixed point [B] € SL(2)/B. O

Remark 2.4.11. Since M, is a submonoid of M, we obtain a bi-
rational morphism v : S~ — ST of 2-dimensional normal affine toric
varieties S~ and ST. However, 1 is not B-equivariant, because an

element
t o
(0 t—l) €B

tX)'(tY +aX 1) e C[M,} ]

sends XY € C[M,], ] to

and sends XY € C[M,, | to
(tX —aY 1) (tY)* € C[M,,,].

This is the reason why there is no any birational SL(2)-equivariant
morphism from SL(2) x5 S~ to SL(2) xp ST, but only a flip.

Remark 2.4.12. Let Fj,, — V be a closed embedding, where V' is
an affine space isomorphic to V;, 4, &---®V;, 4, (see 2.1.5). We define
a C*-action on V such that t € C* acts by multiplication with t/~°
on Vii;. The affine subvariety E},, C V is invariant under this C*-
action, because C* acts on the vector v (see 1.3) in the same way as the
maximal torus of SL(2). Consider the weighted blow up § : V — V
of 0 € V with respect to weights of this C*-action. The birational
pullback of Ej,,, under § : V — V is a SL(2)-variety Ej , together
with surjective morphisms 7~ : Ej - — F; " and vt B — Ehfm
such that the following diagram commutes

/
Eh,m

N

- +
Eh,m _______ > Eh,m



The variety Ej ,, contains two SL(2)-invariant divisors D' = P! x P!
and D := §*(D) whose intersection C' = D' N D = P! is the unique
1-dimensional closed SL(2)-orbit in Ej . The morphism »* con-
tracts D' to C* C E, .. The divisor D' corresponds to the SL(2)-
invariant discrete valuation of the function field C(SL(2)) defined by
above C*-action on Ej, ,, such that C(D’) is the C*-invariant subfield
C(SL(2))® = C(SL(2)/C*). We note that the SL(2)-variety Ej  has
also a toroidal structure, i.e., along the closed 1-dimensional SL(2)-
orbit C, it is locally isomorphic to a product of an affine line A' and a 2-
dimensional affine toric surface S” which is isomorphic to Spec C[M; , ]
where

My o =A{(i,j) €Z* : pj—qi >0,j —i € mZso}.

In particular, S” = A%/, and Ej,  is nonsingular along C'if and only
it b =1, ie., ift B}, is toric.

Proposition 2.4.13. The canonical divisor of E,jfm has the following
intersection numbers with the 1-dimensional SL(2)-orbits C* C Effm

1
K o LDk

h,m an

e (LD

K+
) Eh,m CLpQ

Proof. Since Epm, Ey ,, and E,‘fm have the same divisor class group, we
can use 2.3.7 and obtain that

ap[D] +m[S*] = 0 € CI(E,,,).

The divisor ST C E;f  intersects the curve C" transversally, but this

intersection point is an isolated cyclic quotient singularity of type Aqp—1
in S*. Therefore, we have ST .C* = aip and

Dot =— (Mg} .cr =k
ap ap?

By 2.4.1, we get
(1+0b)k

2

O =

+
h,m ap

Kp

Similarly, the intersection point of €™ and S~ C Ej  is an isolated
cyclic quotient singularity of type Ag,,—1 in S™. Therefore, we have
S™.C™ = aiq and, by

—aq[D] +m[S7] =0 € Cl(E,,,,),
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we obtain
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Chapter 3

Spherical varieties

3.1 Spherical subgroups H C G

Let G be an algebraic group over C and denote by R,(G) the largest
normal unipotent subgroup of G. Recall that the group G is called
reductive if R,(G) = {e}. Let H be an algebraic subgroup of G.
Consider the homogeneous space G/H.

Definition 3.1.1. An embedding of the homogeneous space G/H is
a normal G-variety X together with a G-equivariant open embedding
G/H — X, i.e., the stabilizer of a point in the open orbit is isomorphic
to H. A normal embedding X of G/H is called simple, if X has
only one closed G-orbit. The open embedding G/H — X induces an
isomorphism between fields of the rational functions on G/H and X,
e, k(X) = k(G/H).

Definition 3.1.2. A Borel subgroup B C G is a maximal connected
solvable subgroup of G. The homogeneous space G/ H is called spheri-
cal if it contains an open dense B-orbit. In this case the group H is
called spherical subgroup of G. Similarly, a spherical embedding
X of the homogeneous space G/H is an embedding containing an open
dense B-orbit.

Example 3.1.3. A simple example of a spherical homogeneous variety
is an algebraic torus. In this case G = B = (C*)" is a torus and
H = {e} is the trivial subgroup of G.

Example 3.1.4. Let SL(2) be the linear group of 2 x 2-matrices over C
with determinant one. Consider the reductive group G := SL(2) x C*.
Let (n,m) € Z? such that gcd(n, m) = 1 and define the following closed
algebraic subgroup of GG

Hepm) = {((AO Aon) ,Am) BY: C*} C SL(2) x C".
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Let

pe{(3 21 asec)

be a Borel subgroup of SL(2). Then the group B := B x C* is a
3-dimensionl Borel subgroup of G. Let € := eH, ) € G/H(m) Where

(9

We determine the B-stabilizer in e

stz(€) := {b € B; be = &}.

(5 2))

be an arbitrary elemnet of B. Then

e (5 20 (€ ) (052))

(O ) o)

o (5 2) ) €

(GG >aum>=(<zi 7))
)

for some (( 0 MO , b ) € H,,m). The equation € = b-€ is satisfied,

Let

when
(0 BX' = ", 07N = %, AT =0, @A = T, AAT =
This gives: 3 =0, a = 1 and then p™ = £A". Thus (p?")™ = (A\?")™.
On the other side: y?"\?"™ = ;>»™  Therefore v*" = 1, i.e., stp(€) is a
cyclic subgroup of G. We have then
dim Be = dim B — dimstpg(e) =3 — 0 = dim B.

Then Be is an open dense B-orbit. This means that the homogeneous
space G /H, ) is spherical.
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Example 3.1.5. Let X := P? x P!, Define the following SL(2)-action
on X

SL(2) x X — X,

((x y) s (Juo = uq =g, [or vﬂ)) = ([ug : zug + yus : zuy + wug,

zZ w

[zv1 4+ yvg 1 201 + wuy)).
Define also the following C*-action on X

C'x X — X,

(t, ([ug = uy = ug], [v1 : va])) = ([ug : tuy : tug], [t vy : ¢ wy]).

Then consider the group G := SL(2) x C*. Since the C*-action com-
mutes with SL(2)-action, one can regard X as a G-variety. Define the
1-dimensional algebraic subgroup H of G

(s £)) e}

Let ((i g}) ,t) € Gand zg := ([0:0:1],[1:0]) € X. Then the

image of the element

(c ) ) n)

under the G-action is

([0: ty : tw), [t - t712])

Ty
and ((z w) ,t) € ste(zo), when

([0 :ty : tw], [t o t712]) = ([0:0:1],[1:0]).

This gives y = 2 = 0 and * = w™' = t. Therefore stg(xg) = H.
Therefore X defines an GG/ H-embedding. Consider the Borel subgroup
B of the upper triangular matrices of SL(2). Then the group B =
B x C* is a Borel subgroup of G. Tt is easy to prove that the B-
stabilizer in the point p := ([0:0: 1], [0 : 1]) is trivial, i.e., the B-orbit
of p is an open dense., i.e., X is a spherical G/H-embedding.
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3.2 (G-1nvariant valuations and divisors

Let X be an embedding of the homogeneous space G/H and let C(X)
be the rational function field of X.

Definition 3.2.1. A discrete valuation of C(X) is a map
v:CX) —Q
which satisfies the properties:
(i) v(fi + f2) = min{v(fi), v(f2)}; fi. fo, fr + fo € C(X)"
(i) v(fif2) = v(f1) + v(f2).
) v(C) =

If v(f) =0 for all f € C(X)*, then v is called trivial valuation. We
associate to every valuation v a normal local subring O, of C(X) as

O, = {{f € C(X)*u(f) = 0} U{0}} C C(X).

The ring O, is called the valuation ring of v. The maximal ideal
m, of O, 1is

(iii

my = {f € C(X)*|v(f) > 0} U{0}.

Definition 3.2.2. The valuation v is called G-invariant if it satisfies
the relation

v(g-f)=v(f) forall feC(X)" andall g € G.

We denote by V the set of all nontrivial G-invariant discrete valuations

of C(X).
Let B be a Borel subgroup of G. Then we define
Div(X)? ;= {D C X; D is a B-invariant irreducible Weil divisor}.
Every D € Div(X)? is associated to a B-invariant valuation:
vp: C(X)* —Q, f > vp(f)
where vp(f) denotes the order of pole or zero of f on D.

Remark 3.2.3. |Div(X)?| < oo, because every B-invariant divisor D
in Div(X)? is an irreducible component of the complement to X of the
open dense B-orbit Bxy.

Remark 3.2.4. Let D be a divisor of Div(X)5, then
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(i) Either: DN (G/H) # ¢. Then there is some Dy € Div(G/H)?,

where D = Dy. In this case Dy is not G-stable. These divisors
will be denoted by F(X) and elements of F(X) will be called
colores of X.

(ii) Or: DN (G/H) = ¢. Then D is an irreducible component of
the complement to X of (G/H). Since G is connected, then
the divisor D is even G-stable. The set of these divisors will be
denoted by Div(X)¢.

Therefore
Div(X)? = F(X) U Div(X)“.

Example 3.2.5. In the case X := G =T = (C*)" and H is trivial, we
have:
F(T) = Div(T)" =0, Div(X)“ =10,

because G = B = T and the complement of (G/H) to X is the empty
set.

Example 3.2.6. In example 3.1.4 consider the following points

Dy = le(n,m)a Dy 1= pQH(n,m) € G/H(n,m)7

(3 ) (4 ) e

We detremine the B-stabilizer in p; and the in p,. Let

(5 2))

be an arbitrary elemnet of the B-stabilizer in p,. Then every element

o0\
h = <(0 )\_n> S A ) S H(n,m)

satisfies the equation bp; = p1h where

(26 D)= (6 ) )
o (6 9) ()= (1))

From the above equation b is of the form

DD S\ .
(557 )

93
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This gives that the B-orbit in p, is of codimension one. Similary one
gets that the B-orbit in p, is of codimension one. Therefore, the set of
colores of G'/H ;, ) is

f(G/H(mm)) = {D1 = B]_Jl, DQ = B]_QQ}
Since the complement of G/ H, ) to X is the empty set , then
DZ'U(G/H(n,m))G = {@}

Example 3.2.7. In example 3.1.5 (X := P? x P!) we consider the
points

Pr:=(0:1:0],[1:1]), pp:=(0:1:1],[1:0])) € X.

b= ((5 L)) en

Then bp;, = ([0 : at : 0], [( + B)t : a~'t7!]). The equation bp, = p,
is satisfied, when

Let

at=1, (a+pt =1, ot =1
This means that b is of the form

(7))

Therefore the B-orbit in p; is of codimension one. Similary one gets
the B-orbit in P, is of codimension one. We get that

F(X) = {D: = Bp,, D> = BR,}.

Let
g =([0:1:1],[1:1]), g:=([1:1:1],[1:1]) € X.

It is not difficult to prove that the G-orbits in these points are of codi-
mension one and then

Div(X)% = {D) = Gq,, D, := Gg,}.

3.3 Colored cones and fans

We keep all previous notations in this section. Denote by x(B) the
character group of the Borel subgroup B of the algebraic group G, i.e.,
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the set of all algebraic homomorphisms from B to C*. Define C(G/H)?
the set of B-eigenfunctions as follows

C(G/H)? .= {f € C(G/H)* | 3 character Xr € x(B);

f(bx) = x¢(b)- f(x) Vbe B, Yx e G/H}.

Then C(G/H)? is an abelian subgroup of the multiplicative group of
the field C(G/H). This induced the following map

v C(G/H)" — x(B), f— x;.

The homomorphism v is not surjective in general. The image of v is

X(G/H) == {x; | f€C(G/H)"} C x(B).

We denote x(G/H) by A. Kernel of v is exactly the B-invariant func-
tions, i.e., the constants. Thus we get the following short exact sequence

1 —C"— C(G/H)? — A — 0.

The image A of 9 is finitely generated free abelian subgroup of x(B)
and its rank is called the rank of G/H.

Example 3.3.1. If X =G =T = (C*)", then define
Xi: T — C*, (t1,...,tn) — t;

characters of T. Since C(T)T is generated from monoms of the form
... x2%, then f € C(T)" is associated to x; := (ai,...,a,). The
map

7" — x(T), (ay,...,a,) — XT* ... xo»

[

is an isomorphism of algebraic groups. Thus x(T) = Z".

Example 3.3.2. Let us determine the lattice A in 3.1.5. Since st(([O :
0:1],[1:0])) = H, then we get the isomorphism

G/H — SL(2)

Ty at yt!
<(z w) ’t> H— (zt wtl) '

Then the affine coordinate ring of SL(2) can be identified with the
subring H-invariants in C[G] which is generated by 4 regular functions:



and the B-eigenfunctions are all monomials of the form

o, rseZ.

A= ((i 3}) ,t) HeG/H, C = ((8‘ Ofﬂ) ,u) € B,

CA— ((ozm—l—ﬁz ay+ﬁw) ,,ut) I

Let

then:
atz a tw

Images of Z, w under the B-action are:

=zt o, w=wt o ot

L3

Therefore

Remark 3.3.3. Every valuation v of C(G/H) induces a homomor-
phism as follows

C(G/H)” = Q, fov(f).
So it induces a lattice element
po € Homgz(A, Q).
Corollary 3.3.4. The map
VY — Homgz(A,Q), v +— p,.

is injective on the set of G-invariant valuations )V (in general it is not
injective). Therefore we identify V with its image in Homgz(A, Q). We
denote by AV the Homgz(A, Q).

Example 3.3.5. Since Div(T)T = ) in 3.1.3, then the imag of V in
Homgz(x(T), Q) is the empty set.

Example 3.3.6. We determine the vectors p,,, py,, in 3.1.5. The B-
invariant divisors are defined by the equations

D1 = V(UQ>, D2 = V<U2).
The G-invariant divisors are defined by the equations
Dy =V (ug), Dy :=V(uyvy — vyus).
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We define the isomorphism

U:=X\ (D,UD,) — SL(2),

uQU1 uy
([UO SUp u2]7 [Ul : Ug]) — <u1v5(;}1;1u2 g) )

UIV2—VIU2  UQ

The B-eigenfunctions are

~ UV ~ (51
= W= —.
U1V — VU2 Ug

The function Z has a zero of order one along D] and a pole of order one
along D}. The function @ has a pole of order one along D). Thus

Pvi = (17 _1)7 Puy = (_1?0)

and then
AV = {(1,-1D)Z+ (-1,0)Z}.

Proposition 3.3.7. (/K91]) Let X be a spherical embedding of the
homogeneous space G/H. Then the number of G-orbits in X is finite
and each orbit is spherical.

Corollary 3.3.8. Any embedding X of G/H is covered by finitely
many simple open subembeddings.

Remark 3.3.9. Let X be an embedding of G/H and let Y C X be an
orbit. Then define the set

Divy(X)? :={D € Div(X)? ; Y C D}.
The orbit Y determines the following two sets
By(X) :={vp € V; D € Divy(X)? is G-invariant},
Fv(X):={Dn(G/H) € Div(G/H)? ;
D € Divy(X)? is not G-invariant}.

Theorem 3.3.10. (/K91]) A simple embedding X of a homogeneous
space G/H with the closed orbit Y is uniquely determined by the pair
(By (X), Fy (X))

Definition 3.3.11. A subset C of AV is called a cone if it is closed
under addition and multiplication by Q* := {¢ € Q | ¢ > 0}. The
dual cone of C is defined as follows

CV:={aeA|alv)>0 VveCl}
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The cone C is called strictly convex if CN (—C) = 0. If there are
finitely many elements vy, - - - , v, in AV such that C = Qt v, +- - -+Q vy,
then we call C finitely generated cone. A face of the cone C is defined
as follows

{velClalw)=0; aeC'}.

The dimension of the cone C is the dimension of its linear span. A face
of dimension one is called an extremal ray. The relative interior of
C is C with all proper faces removed and it will be denoted by C°.

Definition 3.3.12. There is a natural map
p: Div(G/H)? — AY; D p,,.

which is not injective in general. Define Cy (X) C AY the cone which is
generated by p(Fy (X)) and By (X).

Definition 3.3.13. A colored cone is a pair (C, F) with C C AY and
F C Div(G/H)® where the following properties are satisfied:

(i) The cone C is generated by all p,, such that D € F and by
finitely many elements p,, such that v € V.

(ii) There is v of V such that p, € C°.

The elements of the set F is called colors of the cone C and it may be
empty. A colored cone (C, F) is called strictly convex if C is a strictly
convex cone.

Theorem 3.3.14. ([K91]) There is a bijection between isomorphism
classes of simple embeddings G/H — X with the closed orbit Y and
strictly convex colored cones (Cy(X), Fy(X)).

Definition 3.3.15. A colored fan is a nonempty finite set X of colored
cones satisfies the properties:

(i) For every (C,F) € ¥ and every face C' in the maximal face C¢ of
C, the colored cone (C’,0) belongs again to X.

(ii) For every v € V there is at most one colored cone (C,F) € ¥ such
that v € C°.

A colored fan ¥ is called strictly convex if all elements C of 3 are
strictly convex.

Theorem 3.3.16. (/K91]) There is a bijection between isomorphism
classes of embeddings G/H — X and strictly convex colored fans ¥(X).

58



Example 3.3.17. Let us determine the colored fan of the spherical
variety X = P? x P! (see 3.1.5). We write X as follows

X = SL(2)U (D, U D,),

where D) := V(ug) and D, := V(uyvy — viup). It easy to show that
D; = P! x P'. Define

A:={(u,v) eP' xP'|TgeG; gu=gv} 2P C D,.
1

The complement, of P! to D is an 2-dimensional orbit with a stabilizer
isomorphic to a maximal torus T in SL(2). So

D, = P'USL(2)/T.

The divisor D, intersects D] in P! and the complement of P! to D, is
isomorphic to C? x P! which is a blow-up in (0,0) € C2. So

D, =P UC?\ {0} UP.
Therefore we write X as
X =SL(2)USL(2)/TuP uC?\ {0} UP',

Since X has two 1-dimensional G-orbits, then the colored fan ¥ of X
includes two colored cones. Since one of these orbits is D} N D, and the
divisors D}, D, are associated to the vectors v, := p,, = (1, —1), vy 1=
pu, = (—1,0) respectively, then one of the colored cones oy is generated
of these vectors, i.e.,

o1 .= Rz(ﬂ)l -+ Rz(ﬂ]g.

Since the other 1-dimensional G-orbit lies in the B-divisor Dy := V' (uy)
(which is associated to the vector py), then the other colored cone oy
is defined as follows:

09 = RZQUQ + Rzopg.

Therefore the colored fan > of X is

Y= {(01,0), (02, {p2})}.
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D
pz( l)

Vo= (-1, 0)

(D)

p (D)

lg.\ ///'/

vi= (1, -1)
(D)

3.4 Birational morphisms between spheri-
cal embeddings

Let G/H, G/H' be spherical homogeneous spaces and let ¢ : G/H —
G/H' be a dominant G-equivariant morphism. This induces the injec-
tion

o A A
where A := x(G/H), A" := x(G/H"). So
o, A = A

It clear that p,(V(G/H)) = V(G/H'). Let F, be the subset of-
Div(G/H)® which maps dominantly to G/H'. Then we define:

Definition 3.4.1. Let (C,F), (C',F) be the colored cones of G/H,
G/H' respectively. Then (C,F) maps to (C',F ) if it holds

(i) p(C) SC.
(i) ou(F\Fp) S F.

If ¥, ¥ be the colored fans of G/H, G/H' respectively. Then ¥ maps
to X' if every element of ¥ maps to some element of .

Theorem 3.4.2. ([K91]) Let X, X' be embeddings of G/H, G/H
respectively. Then the morphism ¢ : G/H — G/H' extends to a
morphism X — X' if and only if ©(X) maps to B(X).

Now we apply the language of spherical varieties to the case of affine
S L(2)-varieties and corresponding SL(2)-filps. Let us consider the C*-
action on hypersurface

Hy, : {X)= XX, — XuX3} CC
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defined by the diagonal matrices
diag (1,571,571, 5,8), s € C*

We note that this C*-action commutes with the SL(2)-action and with
the action of G = G{, x G,. So we obtain a natural C*-action on the
categorical quotient H,//G = E},, which commutes with the SL(2)-
action. We note that this C*-action has been already constructed in
2.4.12 using a closed embedding FEj,,, < V. This allows to consider
E} . as an affine SL(2) x C*-variety.

Proposition 3.4.3. The affine variety Ej,,, is spherical with respect
to the above SL(2) x C*-action.

Proof. The open subset U = (H, N {Yy # 0})/G C E},, is obviously
SL(2) x C*-invariant. Since SL(2) x C* acts transitively on U, we have
U = (SL(2) x C*)/H for some closed subgroup H C SL(2) x C*. Tt is
easy to see that

(Hy N {YoXoXs £ 0})/G C U

is an open dense orbit of the 3-dimensional Borel subgroup B := BxC*
in SL(2) x C*. Hence, Ej,,, is a spherical embedding corresponding to
the spherical homogeneous space (SL(2) x C*)/H. O

Remark 3.4.4. There exists one more way to define the same C*-
action on Ej,,,. We identify C* with the maximal torus 7" C SL(2)
which acts on SL(2) by right multiplication. Then this action extends
to a regular action on E},, and commutes with the SL(2)-action by
left multiplication so that we obtain a regular action of SL(2) x T on
Ep . By |Kr84, I11, 4.8, even a more general statement is true: Ej,,,
admits a regular action of SL(2) x B.

If we identify U with SL(2)/C,, and consider the subgroup H C
SL(2) x C* as a stabilizer of the class of unit matrix in SL(2)/C,,,
then

H = {(diag (¢, ),t™) : t € C*} C SL(2) x C*.

The lattice A of rational E—eigenfunctions on U (up to multiplication
with a nonzero constant) consists of all Laurent monomials Z‘W7 €
C[SL(2)]*™ such that m|(i — j). Therefore, Ej,, is a spherical em-
bedding of rank 2. This rank equals also the minimal codimension of
U-orbits in Ej, ,, (we identify U with the maximal unipotent subgroup
in SL(2) x C*). Let us consider only the case h < 1. In order to de-
scribe spherical varieties Ej,,,, E; | and E,, ,, by combinatorial data,

h,m>

we remark that they contain exactly three B-invariant divisors:

D = H,n{Y, = 0}/C,
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St=H,n{X,=0})G, S~ =H,nN{X,=0}/G.

The restrictions of the corresponding descrete valuations C(U)* — Z
to the lattice A define lattice vectors p, p*, p~ € A* in the dual space
Q := Hom(A, Q). We can consider p*, p~ as a Q-basis of Q. Then the
set of all SL(2) x C*-invariant valuations generate so called valuation
coneV C Q, V={xpt+yp € Q@ : x+y < 0}. The equations
7 =X{Xo, W= X, X, imply

p=pp"—qp” €V.

It is easy to see that Ej ., E; ., and E;f  are simple spherical em-

beddings (i.e., they contain exactly one closed SL(2) x C*-orbit of di-
mension 1, or 0). Therefore, they can be described by colored cones
(C,F), where F is a subset of {p™,p~} and C C Q is a strictly convex
cone generated by F and p.

More precisely we have:
C(Epm) = Qz0p + Qzop™, F(Epm) ={p"p "},

C(E,,,) = Qzop+Qx0p", F(E,,,)={r"},
C(E; ) = Quop+Qs0p™, F(E,,)={r"}

Moreover, the spherical variety Ej  is also simple. However, £}
contains one more SL(2) x C*-invariant divisor D’ such that the re-
strictions of the corresponding discrete valuations to A defines a lattice
vector p' = pt — p~ € V. In this case, we have

C(E},,,) = Qsop + Qxop', F(Ej,,) = 0.

Remark 3.4.5. We note that birational morphisms f : W/ — W of
simple spherical varieties W/, W where f € {¢7,¢",77,7"} has an
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interpretation in terms of colors. In our situation, we see that the set
of colors F(W) is strictly larger than F(W’). In particular, the bira-
tional morphism ¢~ : E, — Ej, combinatorially means that the
cone C(E, ) = C(Ej,m) remains unchanged, but it gets an additional
color p*: F(Epm) = F(E,,,) U{p*}. On the other hand, the bira-
tional morphism ™ : E;[ m — Ehm also adds an additional color p~:
F(Enm) = F(E;,,) U{p~} such that the color p* becomes an inte-
rior point of C(E},,,). This agree with a general description of Mori
contractions in [B93, 3.4, 4.4].

Remark 3.4.6. According to Alexeev and Brion [AB04], every spher-
ical G-variety X admits a flat degeneration to a toric variety Xy. In
general case, there exist several degenerations depending on different
reduced decompositions of the longest element wg in the Weyl group of
the reductive group G. However, in the case G = SL(2) x C* the choice
of such a decomposition is unique. A simplest example of such a toric
degeneration appears in the case X := SL(2) considered as a spherical
homogeneous space of SL(2) x C*. Then Ay = {X1 Xy — Xo X35 =0} is
a singular affine 3-dimensional toric quadric. The corresponding defor-
mation is Xy = limy_o X; where &, := { X1 X, — X0 X3 =t}.

Let T}, be the toric degeneration of Ej, ,,,. Then
Th.m := Spec C[]T/[/hym]
where the semigroup
My = {(i,5.k) € Z2y = ml(j —14), jp—ai 20, i+ >k}

has surjective homomorphism 7 : (i,7,k) +— (4,7) onto M, where
elements (i, j) can be identified with the highest vector X'Y7 € V,;
and the lattice points 7 1(i,5) C ]T/[/;Lm correspond to the standard
basis of V;i;. So the toric degeneration 7}, ,, of Ej,, is defined by a
3-dimensional cone

0o = Rxov1 + Rxova + Rxgv3 + Rxgvy
where vy = (Ov 0, 1)? V2 = (17 L, _1)7 Uz = (0, L, O)» Vs = (p7 —q, 0)
satisfying the relation
pu1 + pug = (p + q)vs + vs.

In the notations of [AB04], the dual 3-dimensional cone &y has a sur-
jective projection onto 2-dimensional momentum cone & where 0 =
C(Ehm) = Rsovs+Rsgvs. The fibers of this projection are 1-dimensional
string polytopes. Since p+q # 1, the affine toric variety 7}, ,, does not
admit a quasihomogeneous SL(2)-action (see also a remark in [Ga08,
Section §]).
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Remark 3.4.7. It is not easy to describe the behavior of toric de-
generations under equivariant morphisms of spherical varieties. The
simplest example in 3.4.6 shows that toric degenerations do not pre-
serve equivariant open embeddings: toric geneneration U, of the open
orbit U C Ej,y, is not an open subset in T}, ,,, the corresponding bira-
tional morphism Uy — T}, ,, contracts a divisor in U,. We remark that if
m = 1 then T;Tm locally isomorphic to product A?/u, x A'. Therefore,

. . +
toric degeneration T;"

ity along the curve Cf C T, as C* C E; . However, the same is
not true for the toric degeneration 7, of E, . For instance, if m =1

)

of E;[m has the same type of toroidal singular-

then 7, has only a single isolated singularity, but singular locus of
E, , is the whole curve C™ C Ej ;.

3.5 Panyushev minimal resolution

Let Ej ., be an SL(2)-affine variety contains more than two orbits.
Then h < 1 and E},,, contains a single singular point O. Panyushev
has described a minimal SL(2)-equivariant resolution of this singular
point ([Pa88]).

Definition 3.5.1. A resoultion of singularities is a proper bira-
tional morphism « : E}, ,, — L}, such that:

(i) Epn is a smooth variety,

(ii) o is an isomorphism over the set of regular points of Ej, ,,, i.e., it
means « is isomorphism over Ej, ,,\O.

The fiber «~(O) will be called the singular fiber.
Theorem 3.5.2. [Pa91] Let

A(t) == (8 tﬂ) €T

and let f be a point from the open orbit in Ej, ,, such that lim, o A(t) f
exists (this limit is the unique orbit O in Ey,,). If we define Yy, =
Spec Apm (Anm was defined in 2.1.9), then Y, = Bf C Ehm for B
a Borel subgroup of SL(2). More precisely, the isomorphism is deter-
maned by the restriction on B_f of the natural morphism Ej, ,, — Y .

We remark that Y} ,,, is an affine toric variety corresponding to the
semigroup algebra Ay, ,,, associated with the semigroup

My = M' 0 My,
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where
M’::{(i,j)EZxZ cm|(i—J)} =2Z X Z.

Let {e, e} is the canonical basis of M := Z2. Then
{wy =me; = (M,0), wy=re;+ey=(1,1)}

is a basis of M’. Then

q—7p
ge1 +pes = (¢ — pler + pler + eg) = wy + pws
is a generator of the 2-dimensional cone:
o= Rzowl + RZO <q ,;prl +pU}2>

where ¢ N M’ = M}, ,,,. The dual cone o C Ny of & is generated by the
vectors

Wy, pwi — Wa,

where {w; = (1/m,—1/m), wy = (0,1)} € Ng is the dual basis of
{wy, we} € Mg. This determines the corresponding cone o of the affine
toric variety X, = Y} .

Remark 3.5.3. For this choice of the basis of M’ the cones & and o
are determined only by the rational number

oo Pmo hm
Cg—p 1-—h
One can easy see that h' # 1.

Remark 3.5.4. The variety Y}, ,,, is smooth if and only if ¢ is generated
by a Z-basis of M’ i.e.;ifp=T1and m | (¢—p) and B’ = m/(q—1) =1/n
for some n € N. Then the natural morphism

B SL(2) %5 Yom — Enm; (9%y) — gy

is a resolution of singularities with singular fiber SL(2)/B = P'. We
note that SL(2) xp Y}, ,, is isomorphic to the spherical variety E;[m

If the variety Y} ,,, is not smooth then one constructs a B-equivariant
resolution of singularities ~ : ffh’m — Y} m by a subdivision of the cone
o C Ny using n vectors v; = (p;,—¢q;) (i = 1,...,n). We denote
hi = pi/q; (i = 1,...,n). The resolution of singularities of Ej,, is a
composition of the morphisms:

Qv Eh,m = SL(Q) *B {/h,m l> SL(Q) *B Yh,m = E}—:m i Eh,m-
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Remark 3.5.5. The singular fiber «'(O) is irreducible if and only if
R =py/q, <1and ¢, =1( mod py) , or A’ is an integer.

The following theorem of Panyushev includes a description of the
resolution of the singular fiber 571(0O).

Theorem 3.5.6. [Pa88] For any affine normal quasihomogeneous SL(2)-
variety By, there exists a minimal equivariant resolution of singular-
ities B 1 Z — Epm, and its singular fiber has the following structure.
Let B/ = hm/(1 — h) = p}/q,, where pj,q) € N. Then:

(i) If py = 1, then 371(0) = PL.
(11) If pl, > 1, then there exists a unique sequence of rational numbers

!/ / / /
h' =hy<hy <---<h, <oo,

where hl = p./q} = {‘j—’}z such that p; > pi 1, p, =1 and p;, ,q; —
piqi = 1 (it is possible that ¢, = 0, i.e., hj, = 1/0 = 00). Then
the singular fiber 371(O) has n irreducible components such that
each component is a ruled surface F., (by fibration over P* with

fiber P ), moreover

{ng +mq}, if hl # oo;
€; —

0, if hi =00
and
S 1
FeimFE': ®’ |Z j|> ,
! ]Pﬂa |Z_]|:1

In the last case the intersection F,, N F., , s a fiber in each of

these fibrations.

141

Remark 3.5.7. In order to find the numbers h, = % one uses the

following algorithm:

(i) If A’ < 1, then decompose A’ into a continued fraction as follows

1
h=———=a,az...,a4.

1
ay +
a9 + e
The number s is called the length of the fraction. Then if the
length is even discard as; and consider [ay,...,as 1] but if the
length is odd decrease as by one and consider [ag, a1, ..., as — 1].
Continuing thus until to get the term [ai] = a—ll This produces
the required ascending sequence of rational numbers h.
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(ii) If #’ > 1, then decompose A’ into a continued fraction as

1

h':a0+—1: lag; ay,as, . .., a.
a; +
a2_|_...
In this case one uses the same procedure but get at the end h], =
L=
Example 3.5.8. Let h = 23—107 and m = 1. Then
1
h' = ho = 30/187 = — 7 - [0;6,4,3,2].
6+
4 + !
5 1
i 2
Then
B = (6,4, = 22, B, = [6,4,2] = —, K, = [6,4,1] = [6,5] = 5/31
1 )y _817 2 y 5y _567 3 y Xy - I -
and hy = [6] = ¢.

Example 3.5.9. Let h = % and m = 3. Then:

2
h/:hg:g:[m], M= 1= T =2 and by = oo

Therefore we gets the following rational numbers sequence

3
h6:§<h’1:2<h’2:oo.
Panyushev resolution is a subdivision of the cone of the toric variety
Y1/3,3. From the theory of spherical varieties we can consider this sub-
division also as a subdivision of the colored cone of the spherical variety

Ef/&g.
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\\1\ u
N +
\\l\ (U3,-1/3)
LN \\l\ :
"
\\ (@13,-513)
p= (1v_3]

p= (11_3)

The subdivision uses the following vectors
Vo = p = (p> _Q) = (L —3),7)1 - (plv _ql) = (2/37 _5/3)7

vg = (pa2, —q2) =: (1/3,—1/3).

Then we obtain

1 2
h():g, hl:g’ h2:1
Using h. = {lj’;;, we get again the numbers
!/ 3 / /

68



Chapter 4

S L(2)-varieties with C*-action

4.1 Preliminary statements

A quasihomogeneous algebraic SL(2)-variety X over the field C is a
variety with a regular action of the group SL(2) includes an open dense
orbit. In this chapter we consider a special class of these varieties,
namely SL(2)-varieties with C*-action. It will be shown that these
varieties are spherical. This allows to describe SL(2)-variety with C*-
action as a quotient of a hypersurface in the affine space modulo an
algebraic group.

Definition 4.1.1. A SL(2)-variety X with C*-action is a quasihomo-
geneous algebraic SL(2)-variety with an effective additional C*-action
on X (ie, Vi, #t, € C, Jo € X, tix # tyr). This Cr-action
commutes with the SL(2)-action. The variety X can be considered as
a G-variety, where G is the reductive group SL(2) x C*.

First we need some statements about general G-equivariant actions
on G/H.

Proposition 4.1.2. Let G be an arbitrary group and H C G a sub-
group. If ¢ : G/H — G/H is a map which commutes with the left
G-action on G/H, then there exists an element x € Ng(H) such that

p(gH) = gzH, Vg € G.
The element v € Ng(H) is uniquely determined modulo H.

Proof. Consider H = {e} € G/H and let © € G be the element such
that p(H) = xH. Since ¢ commutes with the left multiplication by H
we obtain

aeH = ¢(H)=¢(HeH) = Hp(eH) = Hp(H) = HzH.
Thus H = Hzx, i.e., x € Ng(H). O
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Corollary 4.1.3. Let @ be a group acts on G/H,

QxG/H—G/H
where this action commutes with the left G-action on G/H. Then the
map () — Ng(H)/H is a group homomorphism.

Corollary 4.1.4. If H = {e} is the trivial subgroup. Then an Q-action
on G/H = G which commutes with the left G-action is determined by
a homomorphism @) — G.

Corollary 4.1.5. Every automorphism of the variety SL(2) commutes
with left SL(2)-action is uniquely determined by the image of the unit
matrix Fy of SL(2).

Corollary 4.1.6. Since Autgp)(SL(2)) = SL(2), then an effective

C*-action on SL(2 ) acts as a max1mal torus T of SL(2), i.e.,

Proposition 4.1.7. Let X be a SL(2)-variety with C*-action then the
open dense SL(2)-orbit in X is isomorphic to SL(2)/C,,, where C,, is
a cyclic group of a finite order m.

Proof. Since X is a SL(2)-variety, then the open dense SL(2)-orbit in
X is isomorphic to SL(2)/T', where I' is a finite subgroup of SL(2).
Since C* acts on X, then C* acts also on SL(2)/T". By 4.1.3 one has

the homomorphism
C* — Ngr)(I')/T.

Since C* is connected, we have the homomorphism
C* — Nar)(I)°
where the connected group Ngr2)(I')° is either U or B or T

(i) If Ngpe2)(I')° = U, then we obtain an embedding C* < U which
is impossible, because U is unipotent.

(ii) If Ngr2)(I')° = B, then B is connected component of Ng ) ().
It is well-known that Ngz2)(B) = B and Ngz(2)(I')° is normal in
Nsr2)(I). So we get Ngp2)(I') = B. Since ' U = {e}, then we
get the following commutative diagram

Nsr2) \JA/

It follows that I' is a finite subgroup of C*, i.e., I' is cyclic.
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(i) If Ng(2)(T)° = T, then

I'C Nspy(T) =T U { (—S‘l é) } '

If ' ¢ T =2 C* then I is cyclic. Otherwise there is an element

0 s
(—3_1 O> € I' such that:

O &) (o) (0 8= (e ) er

for all ¢ € C*. This contradicts that I' is finite. Therefore I' is
isomorphic to some cyclic group C,, of order m.

Lemma 4.1.8. Let X be a SL(2)-embedding with C*-action. Let G :=
SL(2) x C*, then X is a spherical G-variety.

Proof. From the Corollary 4.1.6 follows that the G-action on X is iso-
morphic to a SL(2) x T-action. Since the open orbit of X is isomorphic
to SL(2), we examine the G-action on SL(2). Let (g,t) € G and
h € SL(2). Since the SL(2)-action commutes with T-action, then

((g,t), h) — gth = ght.

Since all Borel subgroups of SL(2) are conjugate and their intersection
equals to {£FE,}, then there is a Borel subgroup B of SL(2), which
does not include maximal torus T of SL(2). Thus there is an element
h € SL(2), where BAT is of 3-dimensional. Therefore X has an open
dense B-orbit and thus X is spherical. O]

Proposition 4.1.9. Let X be a SL(2)-variety with C*-action. Then
there ezists a SL(2)-embedding Y with C*-action together with a canon-
ical SL(2) x C*-equivariant finite surjective morphismY — X of spher-
ical SL(2) x C*-varieties.

Proof. Since X is a SL(2)-variety with C* action, then the open dense
SL(2)-orbit in X is isomorphic to SL(2)/C,,, where C,, is a cyclic sub-
group of SL(2) of the order m (see 4.1.7). The cyclic group C,, is
contained in some maximal torus T = C* C SL(2). Thus we obtain a
canonical SL(2) x C*-equivariant finite surjective morphism

SL(2) — SL(2)/Con.
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The action of T = C* on SL(2)/C,, is well defined as
{9Cm} — {gtCn}, t €T, ge SL(2),

because the commutative group T contains C,,. In particular, by 4.1.8,
SL(2)/C,, is a spherical SL(2) x C*-variety. Then we define Y to be
the integral closure of SL(2) over X. More precisely, if X = Ule Ui
is a union of affine varieties U;. Then Y = (¥, U!, where the coordi-
nate ring K[U]] consists of all rational functions on SL(2) which are
integral over the coordinate ring K[U;]. So that we have the following
commutative diagram

Y

X
SL(2) —= SL(2)/Cy

with SL(2) x C*-equivariant finite surjective morphism ¥ - X. O

4.2 2-dimensional colored fans

Let us describe the combinatorial data defining the spherical variety X.
We start with the spherical homogeneous variety G/H (G = SL(2) x
C*, H C SL(2) x C*) and identify it with SL(2)/C,,, where the cyclic

group
A0 m

is contained in the maximal torus

s {(5 0). rec).

Now we have a regular action of SL(2) x T on SL(2)/C,,:
(A,1) x {gCm} — {AgtCpi}.

However the action of the torus T is not effective, because elements of
the cyclic subgroup C,, C T act trivially on SL(2)/C,,. So we consider
another 1-dimensional torus T := T/C,, and the corresponding action
of SL(2) x T' on SL(2)/C,,. The surjective homomorphism T — T’
is defined by the homomorphism ¢ — ¢, (¢ € C*). Fix now a Borel
subroup of SL(2) as

p={(5 2)1asec)
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then the group B := B x C* is a Borel subgroup of G = SL(2) x C* of
dimension 3.

Let us first consider the case m = 1. Then SL(2) acts on its self by
left multiplication and T atcs on SL(2) by right multiplication. The
orbit of Ey € SL(2) with respect to G = SL(2) x T-action defines the
surjective morphism

G =SL2) x T — SL(2),

(E0)6A) =0 o)

The stabilizer stg(FE>) is the subgroup

(0 )0 1) e

So we get the isomorphism
G/H — SL(2).

Then the affine coordinate ring of SL(2) can be identified with the
subring H-invariants in C[G| which is generated by 4 regular functions:

Ti=at, g =yt 2= 2t 0 = wt .
Consider the B-action on SL(2):

F0—6 A6

_ (opd 4+ Buz apmly+ fu i
B a~tuz a tutw '

ISR
ISR
ISTERST!
ISR

So the B-eigenfunctions are all monomials of the form
Z'wt, r,seZ
and we obtain the lattice
A={(-1,1)Z+ (-1, -1)Z} € x(B)
with the canonical basis:
ey = ofl;fl, = oflu

which defines two colors in the dual lattice.
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In the case of arbitrary m we have the surjective morphism
SL(2) — SL(2)/Cp,

of degree m. So we get the sublattice A,, C A corresponding to char-
acters o ! of B such that m divides [, i.e., lattice vectors ie; + jes =
(=t — j,i — 7) such that m|(i — j). Thus we have

A, ={ies +jes € A - ml(i —j)} CTA.

Definition 4.2.1. Let N = Z2 be the dual lattice of A. We denote by
p1, p2 the dual basis of N corresponding to the basis e;,es € A. For
any positive integer m, define the dual lattice of A,,:

1 1
N, ={7*+7(—, ——
(42—, -}
with a Z-basis: . )
1 B ——
{( 70)7(m’ m)}

Then we have (N,,)r = Rp; @ Rpo, where (N,,)gr := N, ®z R the real
vector space corresponding to V,,.

Remark 4.2.2. Let X be SL(2)-variety with a C*-action. Then the
set of colors consists exactly of two B-stable divisors

F(X) == {p1, p2}.

Lemma 4.2.3. Let W C C[G/H] be an irreducible G-invariant sub-
space and let v : C(G/H) — 7Z be a G-invariant valuation of the field
of rational functions on G/H. Then v is constant on W\ {0}.

Proof. Let f, f" € W\ {0} be two arbitrary nonzero elements of .
Then for any elements g; € G; and \; € C one has

v Xigi(£)) z minv(igi(f)) = v(f).

Since W is irreducible, the set of linear combinations ) . A\;g;(f) coin-
cides with W. In particular, we obtain v(f") > v(f). By applying the
same arguments to f’, we obtain v(f) > v(f’). O

Lemma 4.2.4. Let v : C(SL(2)) — Z be a SL(2) x C*-invariant val-
uation. We put ny :=v(2), ng := v(w). Then

n1+n2§0.
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Proof. Let Wi (resp. W5) the subspace in C[SL(2)] generated by x and
z (resp. by y and w). Then W, is G-invariant and irreducible. By 4.2.3,
we have

ny =v(x) =v(z), ng=uv(y) =v(w).

This implies
0=v(1) =v(zw — yz) > min{v(zw),v(yz)} = n1 + ns.
[

Proposition 4.2.5. The set of G-invarianten valuations of C(SL(2))
coming from some G-invariant compactification of SL(2) one-to-one
corresponds to the set of primitive lattice vectors (ny,ms) € Z* such
that ny +nqe <0.

Proof. By 4.2.4, it remains to show that for any primitive lattice vector
n = (ny,n9) € Z* with the condition n; +n, < 0 there exists a compact-
ification X of SL(2) and a divisor D C X which defines a G-invariant
valuation vp such that n; = vp(z) and ny = vp(w). We define X as a
good quotient of the hypersurface

—ni1—n2

U =W — Yz

in C® with respect to the C*-action
t(z,z,y,w,u) = (t""x, t "z, 72y, t "z, tu), t € C"

Without loss of generality we can assume that ny; < 0. Then we distin-
guish 3 cases:

CASE 1: ny < 0. Then X is a hypersurface in the weighted projec-
tive space

P(—ny, —ny, —ng, —ng, 1) = (C*\ {0})/C*.

CASE 2: ny = 0, ny = —1. Then X = P! x C? together with the
divisor F; C X.
CASE 3: ny > 0. Then X can be choosen as the affine variety. [

Definition 4.2.6. Let X be a spherical SL(2)-variety. The subset of
(N )r defined as follows:

V= {(ni,n) € (Np)r; n1+n2 <0} C (Ny)r

is called the valuation cone of X.
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Corollary 4.2.7. A colored cone o in a colored fan ¥(X) of a spherical
SL(2)-variety X is a cone of one of these forms

(o1, Fr =0), (02, F2 = {p1}), (03, F3 = {p1}), (03, F5 = {p1, p2})

Ne]

.
RO

O3

4.3 Quotient constructions

Definition 4.3.1. Let X(X) be a strictly convex colored fan of a spher-
ical SL(2)-variety X. We consider the lattice N C N, as above.
Let {v1,...,v.} C V be the set of all N-primitive generators of
I-dimensional colored cones (o, F) in X(X) such that F = (. By
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{01,...,0,} we denote the set of all N,,-primitive generators of 1-
dimensional colored cones (o, F) in %(X). We have

V; = klﬁl, k’l < Z>0, kzlm (Z = 1, c. ,7’).
We write the N-primitive lattice generators as
V; = (_pzu_%) € N, 1= 1,...,7”‘

and consider r + 4 variables xy, xo, x3, 4,91, ...,y, as coordinates on
the affine space C"* together with a bijection between the lattice vec-
tors vy, ..., v, and the variables yi,...,y,. Let us denote by Y (X) the
hypersurface in C"™ defined by the equation

Ty — Doy = yh Ty bR Pt
The N,,-primitive lattice generators v; = (1/k;)v; (i = 1,...,k) have
rational coordinates

i e LB
G = (=pi,—@) = (55—

We define another hypersurface Y (X) € C™+* by the equation

Tty — wawy = gy TRl
Remark 4.3.2. The sum p; + ¢; € Z>¢, because if we write 0; as a
linear combination of the base vectors of the lattice N, as

1 1 b b
~i: _~i)_~i = 170 b_a__ = — ) 7b Z
i = (o =) = (L0} + b ) = (e -, ); e,be
Then
. b b
Pi+¢G=—c———+—=—cel
m o m

In particular, k;|(p; + ¢;). We show that
k; = ged(p; + qi,m).

We have seen that k; is a common divisor of p; + ¢; and m. Let [ be
another common divisor of p; + ¢; and m. Then we write
1 1 —Di — ¢ ;
4 ):%(1,0)—1—%(1,—1)6]\%.
Therefore I|k;. The equality k; = ged(pi+qi, m) together with ged(p;, ¢;) =
1 implies that
ged(pi, ki) = ged(gi, ki) = 1.
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We explain two constructions of the 3-dimensional SL(2)-variety
X (X) as quotients of two hypersurfaces Y (X) and Y (X):

X(X)=UX))JGE)

and
X(%):=U%))G(%)

where U () (gesp.U(E)) is an open subset of the hypersurface Y (3) C
C™™ (resp. Y(X) Cc C™™) and G(2) = (C*)" X py (resp. G(3) =
(C*)" X pg)). The order a of the cyclic group g, is defined as follows:

a::ng(alv"'var)y a; ‘= k_, (Z: 1,...,7").

Definition 4.3.3. We define the following algebraic subsets of the
affine space C"+:

Wi i=A{z1 =22 =0}, Wy :={x3=u1z4=0}.
and define for every i € {1,...,r} the set:
Vii={y; =0} c C"*™.
If (0, F) € ¥(X) is a colored cone then we set
U(o, F) = C+4\ (U v;) ul Uw
vigo pi&F

and define

vE)=yEn| |J UlF)

First quotient construction:

Definition 4.3.4. Let
Go:=(C) ={t=(ts,...,t,), t; € C*}.
We define a linear action of the group
G(X) := Go X pim
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on (C*)"** as follows: The group Gy acts on the coordinates x1, ..., 1y,
Y1, ...y, of the affine space C"** by the formulas:

t(xy) = (Htf) x1, t(xg) = (H th) To,
t(x3) = (H t;“) x3, t(ry) = (H t;“) T4,

and
t(yz) == tzyu 1= 1, Lo, T

The cyclic group g, = ((n) acts on the coordinates of C"™™* by the
formula

(xlv sy T4y Yty - e »yr) = (C;zla?la Cn_@lx%CmﬁSamezbyly s 7y7")'

Remark 4.3.5. We identify the affine coordinates x1,--- , x4 with the
coefficients of the 2 x 2-matrix

1 I3
Ty T4
and act with SL(2) by the left multiplication on these coordinates.

Theorem 4.3.6. Given a colored fan > C N,,. Then the categorical
quotient U(X)JG(X) is isomorphic to a quasihomogeneous spherical
SL(2)-variety X(X), i.e., X(X) is a SL(2)-variety with additional C*-

action.

Proof. CASE 1: m = 1. In this case u; acts trivialy on the affine
coordinates xy,- -+ , T4, Y1, -, Yr. Since the hypersurface Y () and the
set (U(a,f)ez U (o, ]—")) are invariant under the Gy x SL(2)-action, then
the intersection U(X) is also Gy x SL(2)-invariant. Morover, the Gy x
SL(2)-stabilizer in the point z = (1,0,0,1,---,1) € U(X) is trivial.
So the Gy x SL(2)-orbit of z in C™** is Zariski dense in U(X) and
its quotient @ modulo Gy is isomorphic to SL(2), i.e., U(X)//Gy is
a SL(2)-embedding. One can identify the open dense SL(2)-orbit O
in U(X) by the condition y; - - -y, # 0. Moreover, the coordinate ring
C|O] is generated by the Gy-invariant monomials

—q1

Xo=y Py, Pran, YVo=y ™y T,

7 = yl_pl .. .yr_per’ W = yl_(h .. .yr_qu‘4
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satisfying the equation

X Y\ - N . .
o (Z W) =y Ty Py =y Ty T

— P1—Qq1 - - —
=1 ey P (pymy — xoy) = 1.

We remark that the group C* acts on C™™ by

<m1’ e gy Yty - - 7y’r‘> = (Ar:Ll'Ih )\1:11:1:27 A’rnx?n A’rnx47y1a s 7y7")

commutes with the Gy x SL(2)-action and U(X) is C*-invariant. Thus
we obtain a SL(2) x C*-action on U(X)//Gp. In order to identify
U(X)//Gy with X (¥) we remark that U(X)//Gy is covered by open
subsets

(Y(2)nU(a,F)) //Go

and every quotient U(o,F)//Gq is a simple spherical variety corre-
sponding to the colored cone (o, F). This can be checked case by case
for every type of colored cone as follows. For example consider a cone
(o, F = ) without colors generated by vy and vgy. Then we have an
open subset

U(o,0) = C+4\ (( U w) U (W, UW2)> .
ik k41
We write Gy as the product of two tori G, x G.:
Gy ={teGy: t;=1Vithkk+1}
G,a = {t € G() . tk :tk+1 = 1}
Then the quotient U(o, () //Gy is isomorphic to the quotient of
CO\ (W UWy)

modulo G,, because the quotient by G/ eliminates r — 2 coordinates
y; (i # k,k 4+ 1). The last quotient is easy to compute explicitly as a
4-dimensional toric variety. The 3-dimensional variety

Y(Z)NU(e, F)) //Go
is a hypersurface defined by the equation
Pk+qk,, Pk+11Tdk41

T1Ty — T2X3 = Y. Y11
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in this 4-dimensional toric variety. If o is a colored cone generated by
a lattice vector vy and a color pp, then

U(o, F) = C™\ <W2 vl m)

ik
and we can split Gy as the product of two tori G, x G.:
Gy, ={teGy : t; =1 Vi#k}
G ={teGy : t, =1}.

The quotient U (o, F)//G is isomorphic to a 4-dimensional toric variety
obtained as quotient of
C*\ Wy

modulo G,, because the quotient by G/ eliminates r — 1 coordinates y;
(i # k). The 3-dimensional variety (Y (X)NU(o,F)) //Gy is a hyper-
surface defined by the equation

_ o, Petak
T1T4 — T2T3 = Y.

in this 4-dimensional toric variety.

CASE 2: m > 1. In this case u,, acts on x1, 2o, 23, X4, Y1, .., Y By

diag(C;L17 C;le Cma <m7 17 ctty 1)

Since U(X) is invariant under the p,,-action and the point
x=(1,0,0,1,---,1) € U(X)

has a cyclic group C,, of order m as a G-stabilizer, then U(X)//G is a
SL(2)/Cp-embedding. By the same argument as above, U(X)//G(X)
has a SL(2) x C*-action. The quotient U(X)//G(X), in this case, is
covered by open subsets

Y (E)NU(o, F)) //Go X pim

and every quotient U(o, F)//Gy X pim, is a simple spherical variety cor-
responding to the colored cone (o, F) as above. As an example the case
of a cone (0, F = ()) without colors generated by vy and vgq one spilt
G(X), as above, as the product of the two tori G, x G, because i,
acts trivialy on the coordinates yq,...,y,. By the same argument the
quotient U(o,0)//G(X) is isomorphic to the quotient of

CO\ (W, UWy)
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modulo G,, which is 4-dimensional toric variety and the 3-dimensional

variety
Y(X)nU(e, F)) //Go

is a hypersurface defined by the equation

_ o PEtqk, Pk+1Tdk+1
T1Ty — T2X3 = Y. Yrt1

in this 4-dimensional toric variety. Other cases can be dealed the same.
[

Second quotient construction: We preserve all the previ-
ous notations.

Definition 4.3.7. We define a linear action of the group

G(E) = GO X g

on (C*)"* such that the group Gy acts on the coordinates zy, ..., x4,
Y1, ...y, of the affine space C"** by:

t(r) = (Htf’) r1, t(xrg) = (H tfi> T,
t(x3) = (Htf) x3, t(xy) = (H t?Z) T4,

t(y) =thy, i=1,...,r
and the cyclic group pu, acts on (z1,...,24,Y1,...,Yr) by
diag(¢; 1, ¢t Car Gan Ly, 1),

Theorem 4.3.8. The categorical quotient U(X) J/G(X) is isomorphic to
a quasihomogeneous spherical SL(2)-variety X (X)), which also defined
through the categorical quotient U(X)JG(X).

Proof. By Theorem 4.3.6, U(X)/G(X) is isomorphic to a quasihomo-
geneous spherical SL(2)-variety X (X). As in the affine case, we split
the quotient in two steps. Let G,,, C D(r +4,C) be the cyclic group of
order m generated by

g:: (Cm?cm?C’r;:l? 7;17 ""7]‘)7

where (, is a primitive m-th root of unity. Then (3 generates a cyclic
group g, of order k; (we use the equality a;k; = m). Since ged(p;, k;) =
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ged(gi, ki) = 1 and k;|p; +¢; there exists another generator &; of 1, such
that

Grel = Goel =1
Counsider the element

gi=1L11,..., &, .)=
N~
i+4

= (e el el gl &) QL NN T 1) € Gy X G

i+4

Let us define the r-dimensional torus

Gy = {diag(] [t T[ & ][ t* thl th )t e €
=1  i=1 =1
Then consider the homomorphism
Y D(r+4,C) — D(r+4,C),

(A17A27>\37>\47a1)" ) ()\la)\Qa)‘3a/\47a1 a"'7akr)’

T

Then ¢(Gy) = G|. However, the elements g1, ..., g, € Gy X G,,, belong
to Ker and they generate a finite subgroup in D(r + 4,C) of order
kiks -+ k.. On the other hand, Kery) C D(r + 4,C) consists of all
elements

{t:=(1,1,1,1,t,....t,) - thi=1,i=1,...,7}.

Therefore Ker ¢ = Ker1|g,x¢g,, and we denote this group by G’. So we
have the short exact sequence

1 -G — Gy x Gy — Y(Gy x G) —

Define
k:=lem (ky, ..., k).

Then ak = m. We show that ¥(Go x G,,,) = Gy X p,. This follows from
the computation of the surjective homomorphism

E : Gm = (GO X Gm)/Go — w(Go X Gm)/G6
Since g;g~% € Gy and v¥(g;) = 1, then we obtain that 1)(¢%) = 1 in

Y(Go x Gp,)/Gj. The elements g™, ..., g% generate a cyclic subgroup
of order k which is generated by ¢g*. Moreover, we have G,,/(g%) = .
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It remains to show Ker1) = (g%), i.e., the inclusion Kerv¢ C (g%). Let
g' € Kert. Then v(g') € G}. So we have

T 7 T T

gl = ( 7ln’ fnaerzlacr;lvl""al) = (Htfz7Htfl7Htgz7Htgl’tllﬂ7’tfr)

=1 i=1 i=1 =1

for some t; € C*. This implies that tfi = 1for 1 <i <r. In particular,
g' € Ker). On the other hand, Ker is generated by g, ..., g,. So we

can write
I8
1 _ li
g = ng‘l-
i=1

We write g; = g% h; for some elements h; € Gy. So we get

gl _ ﬁgailihéi.
=1

We see that the image of ¢’ in (Gy x G,,)/Go = G,, is contained in the
subgroup (g*) generated by g™ ,..., g% . Therefore

W(Gox G) /Gy = (V(Go) x ¥(Gm)) /Gy = (G x ¥(G)) /Gy = (Gm),
Y(Go X Gm)/G6 = E(Gm) = Gn/(9") = ta-
e, ¥(Gp) = e Thus we get the short exact sequence
1 -G — Gy x Gy — Gy X g — 1,

Therefore the categorical Gy x G,,-quotient of U(X) can be divided in
two steps. First we divide U(X) by the subgroup G' C Gy x G,,, and
after that we divide by the group G{, x p,. The first quotient is simple,
because one uses new G’-invariant coordinates y, = y¥ (1 < i < r).

The hypersurface Y (3)/G’ is isomorphic to the hypersurface Y (X).
Since Gy acts on y; by character t — t*:,

X(X) =UE))(Go x Gm)
is isomorphic to the categorical quotient of U(X) modulo the above
G| X pg-action. O
4.4 Examples

Example 4.4.1. (Quadric in P*). Consider the vector v; := (=1, —1) €
N; = Z? and the colored cones:

o1 := Rxop2 + Rxov1, 02 := Ryov1 + Ryop1.
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Then define the following strictly convex colored fan:

¥ = {(o1, p2); (02, p1) }.

V1= (_1’ _1)

The hypersurface Y (X) in C® is defined by the equation
T1X4 — Tolz — y% = 0.
The algebraic torus G(X) = C* acts on C° as follows:
C* x C° — C?,
(t, (21, 29, w3, 24,11)) — (21t 2ot w3t, T4t Y1),
and SL(2) acts on C® as this:

SL(2) x C° — C7,

T
((z g)) 7($1,$2,$37$4ay1)> — (221 + Y3, vX9 + Y2y,

2x1 + Wx3, 2To + WT4, Y1)
It is clear that SL(2)-action commutes with the C*-action. Then

U(oy, p2) i=C°\ {x; = 25 = 0},

U(O'Q,pl) = C5 \ {.773 = T4 = 0}
Thus:

UX)=YE)N{z1 =22 =0} U {3 =24 =0}).

The quotient U(X)/C* is the projective quadric in P*.
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Example 4.4.2. (The flag variety SL(3)/B C P? x P?). Consider the
vectors vy := (—1,0),v; := (0,—1) € Z?* and the colored cones:

o1 := Rxop2 + Rxgvi, 02 := Rygv; + Rxov2, 03 := Rxgva + Rxop1.

Let ¥ be the colored fan generated by the cones (o1, p2), (02, 0), (03, p1)-

03

V= (-1,0)

S,
rd
o)

02 O3

VZ: (0 !_1)

The hypersurface Y (X) C C° is defined by the equation:
14 — Tox3 — Y1yo = 0.
Define the (C*)?-action u on C® by
p((t,t2), (21, -+, y2)) = (B1z1, tro, toxs, toxa, Ty, o).

We consider the left multiplication SL(2)-action on x1, zs, x3, x4 and
the trivial action on y,y.. We have:

Uy, p2) :=C\ ({1 = 22 = 0} U {y = 0}),

U(og,0) :=C°\ ({z1 =20 = 0} U {z3 = 24 = 0}),
U(os,p1) :=C°\ ({z3 =24 =0} U{y; =0}).
Then U(X) is the complement in Y (X) of the closed set:

{r1 =22 =y1 =0} U{z3 = 24 = yo = 0}.

Consider two copies of P? with the homogeneous coordinates 1, z2, o
and x3,x4,y;. Then the quotient:

X(x)=U(2)/(C)*

is the quadric hypersurface in the product P? x P2, i.e., the flag variety
SL(3)/B.
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Example 4.4.3. (The Toric variety X (X) := P! x P?). Take v, =
(—1,0),v = (1,—1) € Z?* and let

o1 = Rxop2 + Ryov1, 02 := Ryovr + Rxovz

be two colored cones. Then define the fan ¥ := {(oy, p2), (02,0)}.

V2: (l! _l)

The hypersurface Y (X) C C° is defined by the equation
T1XTg4 — T2X3 = Y1-
The group G(X) = (C*)? acts on (zy, T, T3, T4, Y1,Y2) by
diag (t1t5 " tity " ta, ta, 1, ta).
We have:
U(or,p2) = C°\ ({z1 = 22 = 0} U {gp = 0}),
U(og,0) :=C®\ ({z1 = 20 =0} U {23 = 24 = 0}).
Since the hypersurface Y'(X) is isomorphic to the affine space C® with

the coordinates x1, o, 3,24, y2, then the open subset U(X) C Y(X) is
the complement to

{3 =24 =y =0} U{xy = 29 = 0}.
Thus the quotient X () = U(X)/(C*)? is isomorphic to the projective
toric variety P! x P2,
Example 4.4.4. Take the lattice Ny := {(1,0)Z + (=3, —3)Z}. Then
consider in Ny the vectors

5 11 1 1
U1 = <_§7 5) - 5(_17 ]-) = 5”1)
1 1 1 1
Vo = (—— ——) = — —1 —1 = —
(% ( 27 2) 2( ) ) 202

and the colored cones
g1 = REOQN}I + Rzof}g, 09 :— RZO@Q + RZOpl-

Define the colored fan ¥ generated by (o1, 0), (02, p1). For the simplic-
ity we denote v, U5 in the next Figure by vy, vo respectively.
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V= (-112,172)

v=(-112 -112)

We apply the second quotient construction. Then m = ky = ky = 2
and a = 1. The equation x1x4 — x9x3 = yo is defined the hyper-
surface Y(X) C C° which is isomorphic to C° with the coordinates
T1, T, T3, T4,y The algebraic torus G, = (C*)? acts on the variables
T1, T2, T3, Tq, Y1 DY

diag (tity, tity, t] ' ta, 1] ta, 7).
We have two open subsets in CS:
U(oy,0) :=C°\ ({1 =25 =0} U {23 = 24 = 0}),

U(aa,pr1) == C°\ ({x3 = 24 = 0} U {yn = 0}).
Then

Uoy, ) UU (09, p1) =CO\ {r1 =29 =91 = 0} U {23 = 24 = 0}).
The open subset (X)) C Y(X) is the complement to C® of the set
{r1 =29 =11 =0} U{z3 =24 =0}
and the variety X(X) = U(X)/G(X) is a P*-bundle over P' which is

a toric variety obtained from P? by blow up of a SL(2) x C*-invariant
line in P3.

4.5 The Cox ring
Definition 4.5.1. Define the lattice
N':=177+  Zi;.
i=1
Then it is clear that Z> C N’ C N,, and | N,,,/Z* |= m.
Proposition 4.5.2. | N,,,/N' |= a.
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Proof. We have the short exact sequence:

0— N"— N,, — N'/N,, — 0.
By the isomorphism theorem, we get

Np/N' 2 (N,,/Z%)/(N'|Z?).

Therefore it remains to compute the cyclic subgroup N’/Z? in the cyclic
group N,,/Z? = 7Z/mZ. The subgroup N'/Z* C N,,/7Z? is generated
by the elements x; := v; + Z* € N,,/Z* (i = 1,...r). By the definition,

x; has order k; in N,,/Z* Therefore, x1,...,z; generate the cyclic
subgroup of order k := lem (ky,..., k). So we get |N'/Z?* = k and
N /N'| = m/k = a. O

Proposition 4.5.3. The coordinate ring C[Y ()] of the hypersurface
Y () € CH" s factorial.

Proof. Consider the open subset U, C Y (X) defined by x5 # 0. Since
U, is isomorphic to a Zariski open subset in C**", we obtain C1(Uy) = 0.
The complement S := Y (£)\Us is a principle divisor (z5). We note that
the divisor S defined by the binomial equation a4 = yP' ™0 ... yPrtar
which shows that S is isomorphic to the product of C (with the coordi-
nate x3) and a r + 1-dimensional affine toric variety with the equation
zyzy = yP' TPt Therefore, S is irreducible and the short exact
localization sequence

Z — ClIY(R)) — ClU,) — 0

1 [S]

shows that [S] = 0 GNCI(Y/(E)), i.e., the image of Z in CL(Y (X)) is zero.
Thus, we obtain CL(Y (X)) = 0 and C[Y'(X)] is factorial. O

Proposition 4.5.4. The divisor class group of X(X) is isomorphic to
7" ®7/dl.

Proof. We identify the lattice A,, with the lattice of B-eigenfunctions.
Every element e € A, defines a principal B-invariant divisor on X ().
We prove the following short exact sequence:

0— A, —Z" - ClI(X(Z)) —0
where the map A,, — Z"2 sends an element e € A,, to

(<67 p1>> <€7 p2>> <€, Ul>7 ) <6, UT‘>)'
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We apply Hom(x*,Z) to the above exact sequence and get
0 — Hom(Cl(X (%)), Z) — Z"*? — N,, — Ext'(Cl(X (X)), Z)) — 0,

where Ext'(Cl(X(X)),Z)) = N,,/N' = Z/aZ is isomorphic to the tor-
sion in Cl(X(X)). This implies that

CUX (X)) 2 Z & Z/dZ.
O

Proposition 4.5.5. Consider the following Zariski open subset in Y (X):

U:=Y(Z)\ (W uW U JVinV))).

i<j
Then the group (Go x Gp) /G’ = G}y X jiq acts freely on U/G' C Y ().

Proof. Let © = (x1,x2,23,24,Y1,...,Y-) be a point in U and g € G =
Gy x G, an element such that gr = x. We write g as a product of two
elements

diag (ﬁtfi,ﬁtfi,ﬁt?,ﬁt?,tl,...,t,,), t; € C*,
=1 i=1 =1 i=1

and
diag (¢%,¢%,C%, (%, 1,...,1), C € pm-

Then [[;_, t"¢®* = 1 (because at least one of z; and xy is nonzero),

and [[;_, t7¢™® = 1 (because at least one of x5 and x4 is nonzero).

Therefore, []i_, 7°¢* [[_, t#¢™° = [, "% = 1. Moreover, if y; # 0

i=1" i=1"
for some i then t; = 1. It follows from the definition of U that at most
one of the coordinates y1,...,y, equals 0. We consider two cases.

CAsE 1: All coordinates ¥, ...,y, are nonzero. Thus t; = --- =
t, =1. Then (* =1 and g = 1.

CASE 2: Only one coordinate y; = 0 and y; # 0 for ¢ # j. Then we
have t; = 1 for all 7 # j. Then we have

Dj s __ 4495 ~—s __ 1 __ 4Pjt+4qj
i =0 =1 = 9

Therefore t; € 1,44, Since ged(p;, pj+gj) = 1 the element té’j has the
same order as ¢;. On the other hand, t?j = ("% € ly- So the order of

t; is a common divisor of p; + ¢; and m. In particular, we have tfj =1.
This implies that g € G'. O
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Corollary 4.5.6. For arbitrary spherical quasihomogeneous SL(2)-
variety X (X), the Cox ring is isomorphic to the affine coordinate ring
of Y(X)

k

(C[ﬂfl,l'z, X3, T4,Y1,- .. ayk}/($1$4 — ToT3 — Hyiﬁi-i-lii)’
i=1

i.e., it is defined by a single equation.

Proof. We apply 2.3.1 and use the statements 4.5.3, 4.5.4 and 4.5.5. [
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Chapter 5

Minimal models of spherical
S L(2)-varieties

5.1 Luna-Vust diagrams of SL(2)-varieties

In this section we represent the combinatorial description of the normal
embeddings of a homogeneous space G/H in the case; G = SL(2) over
C and H = C,, is a cyclic group of order m ([Ja87]).

Definition 5.1.1. An embedding of the homogeneous space SL(2)/C,,
is a reduced irreducible normal algebraic SL(2)-variety X with an
equivariant open injective morphism ¢ : SL(2)/C,, — X.

A normal embedding is characterized by the local rings of its orbits.
Therefore to find all normal embeddings of SL(2)/C,, one has to find
the set of possible local rings of orbits and then to find which of such
local rings can be combined to form a variety.

Let C[SL(2)] be the ring of regular functions on SL(2) and C(SL(2))
be its quotient field. There is an action of SL(2) (resp. Cy,,) on C(SL(2))
induced by left (resp. right) translation. Let C(SL(2))“" be the sub-
field of C(SL(2)) of invariants by right translation by C,,. We define:

V(SL(2)/C,,) = {discrete normalized geometric valuations of

C(SL(2))“™ over C stable by SL(2)},

where a geometric valuation here is a valuation such that its valuation
ring is a localization of an algebra of finite type. Define also:

Vi(SL(2)/Cn) = {v € V(SL(2)/Cu) | *H*C, = C},
where C, is the residue field of v and S“)C, is the subfield of SL(2)-

invariants.
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Fix a Borel subgroup B of SL(2). Then we denote:
BD(SL(2)/C,,) = {irreducible divisors of SL(2)/C,, stable by B}.

Remark 5.1.2. Since B is of codimension one in SL(2), PD(SL(2)/C,,)
is the set of B-orbits in SL(2)/C,,. If C,, = {e}, then BD(SL(2)) =
B\ SL(2) = P! (For the simplicity we write P! instead of P(C)).
Therefore in general we identify ®D(SL(2)/C,,) with P!/C,,.

Let D €8 D(SL(2)/C,) = P'/C, and denote by D the inverse
image of D by the canonical morphism:

SL(2) — SL(2)/Cpn.

For each D € D(SL(2)/C,,), there is some gp € C[SL(2)] such that
gp generates the ideal of functions of C[SL(2)], which vanish on D.
(Since the divisor class group of SL(2) is trivial, then there is such gp)

For such D, we denote

a(D) := the number of irreducible components of D,

m

m(D) = m; m := card C,,,
fo = gp? € CSL(2)]%",
2
r(D) = aD) 1.

Any valuation v € V(SL(2)/C,,) is determined by its values {v(fp)},
where D € P'/C,,. We normalize the elements of V(SL(2)/C,,) such
that their minimal value is (—1). The following proposition classifies
the set V(SL(2)/C,,) as follows:

Proposition 5.1.3. ([Ja87])

(i) Given D € P*/C,, and an r € (—1,7(D)|NQ, then there exists a
unique valuation v(D,r) € V(SL(2)/Cy,) defined by

Ty if D = Dy;

U(D,r)(fDo) = {_1 if D # Dy.

(it) Vi(SL(2)/Cn) = {v(D,r) | D € P1/Cry, 1 € (=1,7(D)] N Q)},

(i1i) V(SL(2)/Cp) — Vi(SL(2)/Cy,) consists of one element v( ,—1)
such that v( ,—1)(fp) = —1 for all D € P'/C,,.

94



Remark 5.1.4. There are two fixed elements D;, Dy of P! and if m

is odd (resp. even), then each other orbit is of order m (resp. 7).
Therefore for each D C P'/C,, either D = D; or Dy, in this case
a(D) = r(D) = 1 or D consists of m elements (resp. of %), in this case

a(D)=m and r(D) = 2 — 1 (resp. a(D) =2 and 7(D) = = — 1).

One can draw a diagram called a Luna-Vust diagram of the set
of V(SL(2)/C,,) which is based on the set

H = {[-1,7(D)]NQ} x P'/C,, ~

of rational intervals [—1,7(D)] N Q parametrized by complex points of
P1/C,, and glued together at the point {—1} € {[-1,r(D)] N Q},

{1} xx~{-1} xy Vz,ye€P'/C,,

one get such a figure:

r(p)

Remark 5.1.5. In case C,, = {e}, i.e., the case of SL(2)-embeddings,
there are two fixed elements and each other orbit is of order one. So
either D one of the fixed elements or consists of one element. Thus we
have alwayes a(D) = r(D) = 1. The Luna-Vust diagram of V(SL(2))
in this case looks like the following one:

= .

Definition 5.1.6. Define:

L}(SL(2)/Cy,) = {local rings of non-open orbits of normal
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SL(2)/Cp,-embeddings}.

An element [ € L7(SL(2)/C,,) is called a locality. [ corresponds to
the local ring O; with the maximal ideal m;. This ring is determined
by its essential valuations stable by B. The set of B-stable valuations
is (see [LV83))

V(SL(2)/Cr) U{vp}perr /e,
where vp is the valuation associated to D on SL(2)/C,. For [ in
LY (SL(2)/Cy), we denote by V, the set of essentail valuations of O,
in V(SL(2)/C,,) and by D; the subset of P!/C,,, whose valuations are
essential for O;.

Proposition 5.1.7. (/Ja90]) Suppose X is an SL(2)/C,,-embedding.
Let Y be an orbit in X. Then there exists an affine B-stable open
subset of X which intersects Y.

Let D be a cofinite subset of P!/C,,. We define
A(D) = {f € C(SL(2))"" | f = gh ;9 € C(SL(2)),

h is an eigenvector of C,,, and vp(h) = 0 VD € D},

where vp is the valuation of C(SL(2))" associated to the divisor D of
SL(2)/Cy,. For W = {wy,...,w,} C V(SL(2)/C,,) a finite set, define

ADW) =AD)N Oy, N---NO,,,
where O,,, is the valuation ring of w; € V(SL(2)/C,,) (i =1,...,n).
Remark 5.1.8. [Ja87]

(i) A(D) is the ring of regular functions on the set

SL(2)/Cr — | | D.

DeD

(ii) A(D,W) is an integrally closed subalgebra of a finite type of
C(SL(2)/Cp).

Corollary 5.1.9. The proposition 5.1.7 gives that there exists a cofi-
nite subset of 2D which contains 2D;, denoted D, such that O; is the
localization of A(D, V) in a prime ideal m := A(D,V,) N m.

Remark 5.1.10. Let D c? D(SL(2)/C,) and W C V(SL(2)/Cy),
then there is at most one [ € L7(SL(2)/C,,) such that D, = D and
V, = W. This means that the locality [ € L} is characterized by the
triple (D, W), v), where D is cofinite and v € V;(SL(2)/C,,).

96



The next proposition describes which triples give rise to localities
of LY(SL(2)/Cp):

Proposition 5.1.11. ([LV83] or [Ja87]) Let D be a cofinite subset of
P/Cp , W ={wr,...,w,} CV(SL(2)/Cp)} withw; =v(Dj,r;), (=
1,...,n), andv € V1(SL(2)/C,,). Then (D, W, v) represents an element
of L1(SL(2)/Cy) if and only if it is one of the following types:

(1) Type A, (n>1)

D =P'/C,—{Ds,...,D,} andD; # Dy if i # j; —1 <r; <r(D;)

andil >1 UEU ) —=1,7(D O —1,7;]).
j=1

DeD j=1
(2) Type AB (n =2)

D, ¢ D and D # P'/C,, — {D:\}; D, = Dy and
—1<ry <ry <r(Dy); veEuv(Dy,|r,rs).

(3) Type By (n=1)

D, €D #PC,; —1 <71 <r(Dy); v€v(Dy,]r,r(D1)]).
(4) Type B- (n=1)

D= ]P’l/Cm — {Dl}, O<r < T(Dl), RS U(Dl,]rl,T(Dl)]).
(5) Type By (n=1)

D =P'/C,; 0<ry <7(Dy); ve€v(Dy,]r,r(Dy)]).

(6) Type C
W = {v}

Definition 5.1.12. Let X be an SL(2)/C,,-embedding. Then define
L(X):={l e L}(SL(2)/C,,) | lis a locality in X}.

The set L(X) is open in the topological space L} (SL(2)/C,,) (topology
of Zariski) and noetherian. If [ € £7(SL(2)/C,,), then the set:

Fi:={v e Vi(SL(2)/C,,); v dominates O, }

is called the facette of [.
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Remark 5.1.13. For each | € L}(SL(2)/C,,), one draw a Luna-Vust
diagram represents [ as follows:

(i) Dark the facette of [ in the diagram for V;(SL(2)/C,,).

(ii) Elements of types B,,B_ and By will be distinguished by la-
belling the facette with a sign 4+, — and 0 respectively.

The diagrams of the elements of £,(SL(2)/C,,) are the followings:

Type Ap,
-1
Type AB
or
-1 -1
Type B,
+

-1 | T or -1

Type B_
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Type B

or

Type C

-1 % or -1

Remark 5.1.14. One notes that orbits of type C are exactly the 2-
dimensional orbits. Orbits of type By are fixed points and the remaining
4 types are 1-dimensional orbits which are isomorphic to P!/C,,.

Definition 5.1.15. Define the following set
L(SL(2)/Cp) = {l € LMNSL(2)/Cy,) | Lis of the type B, and

Vi=A{v(,=1}}-

The following proposition determines for which L of £L7(SL(2)/C,,)
there exists an SL(2)/C,,-embedding X such that L = L(X):

Proposition 5.1.16. [Ja87] Let L be a subset of LY(SL(2)/Cy,). Then
L is a normal embedding if and only if it is satisfies the following prop-
erties:

(1) Ifl € L, then V,N Vi (SL(2)/Cp) C L.

(2) If |l € L and v(,—1) € V,, then L contains a subset cofinite in
L(SL(2)/Cp).

(8) L — L' (SL(2)/Cy,) is finite.
(4) the facettes of the elements in L are disjoint.

Furthermore an embedding L is complete if and only if the union of
the facettes of the localities in L is Vi(SL(2)/Cp,).
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Example 5.1.17. (a) Here is an example of a Luna-Vust diagram,
which represents an SL(2)-embedding with 11 orbits: a fixed
point of type By, three 1-dimensional orbits of types Az, B, and
B_, six 2-dimensional orbits of type C' and the open orbit:

(b) The following diagram does not represent an embedding, because
the first condition in the last proposition is not verified.

5.2 From a colored fan to the Luna-Vust
diagram

We explain in this section our method to move from a colored fan ¥ of
a spherical SL(2)-variety X to its corresponding Luna-Vust diagram.
To do this it will be enough to explain how to go from an arbitrary
colored cone to its corresponding facette in Luna-Vust diagram.

Remark 5.2.1. In Luna-Vust diagram corresponding SL(2)/C,,-em-
bedding with C*-action, we always have a(D) = r(D) = 1, because
in this case every divisor D defines a C*-fixed point in P'/C,, and the
finite morphism P! — P!/C,, is totaly ramified over the C*-fixed points
in P'/C,,, i.e., the divisor D consists of a unique irreducible component.

Definition 5.2.2. Define the square S in the vector space R? as fol-
lows:
S:=[-1,1] x [-1,1].
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Denote by a the side {[—1,1] x {—1}} C S and by b the side {{—1} x
—1,1]} C S.

The Method: We distinguish the cases:

(i) Let vy := (—pk, —qx) # (—1,1) be a vector of N,, and consider
the colored cone (o1, F;), where

01 := Rx0p2 + Rxovy, and Fy = {pa}.

A cone such o is corresponding to a segment [—2 1] of Luna-

Vust diagram with (4) marking end, i.e., oy corresponds an orbit
of the type B, (see Figure (a)).

v=(p.~9) 5 )

o)

(ii) Let v; :== (=pi, =), vir1 = (—Pir1, —Giv1) € Ny two vectors
which are diffrent from the vector (—1,—1), then consider the
colored cone (o9, F3), where

O9 = RZOUZ' + RZOUZ'-H: and "TQ = {@}

A cone such o5 is corresponding in Luna-Vust diagram to a seg-
ment [—zf—i, —27?], i.e., o9 correspods to an orbit of the type AB
of this diagram (see Figure (b)).

)
URSHRY :
02§
Vier =R, T —
v=(-1,-1y" O3 X
vi=tp.-9)
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(iii) In Figure (b) consider the colored cone (o3, F3), where

03 = Rzo(-l, —1) + RZOij and .,ltg = {@}
The cone o3 corresponds to the segment [—1, —Z—;] of Luna-Vust
diagram. That means it corresponds to an orbit of the type Aj.

(iv) In Figure (a) take the colored cone (o4, F}), where
04 = Rzovl + Rzopg and JTZ/L = {pg}

This cone corresponds to the segment [—Z—i, 1] of Luna-Vust dia-
gram with (—) marking end, i.e., it corresponds to an orbit of the
type B_.

(v) In Figure (a) consider the colored cone (o4, F,), where
04 := Rxov; + Rxope and Fy := {p1, p2}.

This cone corresponds to the segment [—% 1] with (0) marking
end. This means it corresponds to an orbit of the type B,.

Remark 5.2.3. If the colored cone of the form (o, F) where F # (),
then if F includes just one color (resp. two colors) then we mark the
end of the segment of the Luna-Vust diagram with (+) (resp. (-)).

Remark 5.2.4. The corresponding Luna-Vust diagram of a colored
fan is a digaram consists of all segments which are corresponding all
2-dimensional colored cones in this fan.

5.3 Smooth SL(2)-embeddings and PGL(2)-
embeddings

Let X be an SL(2)/H-embedding. We consider the case H := {e}
or the case H := {£F,}, i.e., the case SL(2) or PGL(2)-embedding.
Since the set of singular points Sing(X) of X is stable by SL(2)/H,
then every orbit is either contained in Sing(X) or in its complement
Reg(X). We denote by

R(G) :={l € L}(G); O, is a regular local ring}.

An embedding is smooth if an only if the localities of all its orbits are in
R(G). The next theorems determine exactly R(G) in case G = SL(2)
and G = PGL(2).
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Lemma 5.3.1. ([Ja90]) Let 1 be a locality of L}'(G), then

(1) If l is of the type By, then | ¢ R(G).

(i) If I is of the type C, then | € R(G).
Proof. Since X is normal, then any orbit of codimension one is in RegX
which prove the first statment (7). For (i7) Popov has showed in [P73]

that fixed points are always singular. O

Theorem 5.3.2. (/Ja90]) Let | be a locality of L}(SL(2)), then | €
R(SL(2)) if and only if it is one of the following types:

(1) Type Ay with ry = —% and q € N*.
(2) Type Ay withry =ry =0 or withr; =1 and r; = q;ql; q € N*.

(3) Type AB with r; = B (i = 1, 2), where p; and g; are relatively
prime from Z, and pi1qas — paqq = 1.

(4) Type B+ thh r = O orr, = _1
(5) Type B_ with r = % and qe N*.
(6) Type C.

Theorem 5.3.3. ([Ja90]) Let | be a locality of L} (PGL(2)), then | €
R(PGL(2)) if and only if it is one of the following types:

(1) Type Ay with 1 = —52= and n € N*.

2n
(2) Type Ay withr; =1 and r; = q;qQ; q>2.
(3) Type Az withry =1y =13 =1.

(4) Type AB with r; = % (1 =1, 2), (pi and q; in lowest term such
that q; — p; is even and q; > 0), and p1ga — p2qh = 2.

(5) Type By with r = —1.

(6) Type B_ with ry = 5= and n € N*.

2n

(7) Type C.
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5.4 Morphisms and blow-ups of embeddings

The following proposition shows how to read off morphisms between G-
embeddings (G is either SL(2) or PG L(2)) directly from their diagrams.

Proposition 5.4.1. [Ja90] Let X, X' be two G-embeddings. Then the
identity map on G extends unique to a G-morphism ¢ : X — X' if and
only if it for each | € L(X), L(X) C L}(Q) is the set of localities of
orbits of X, there exists | € L(X') such that F; C Fy and if | is of the
type By then so is ', and if | is of the type By (resp. B_) then [ is
either of the same type or of the type By. If v exists, then it is proper
if and only if:
Uierco)F1 = Uperx)Fr

Proposition 5.4.2. [Ja90] Let X and X' are smooth G-embeddings
with a G-morphism ¢ : X — X'. Then ¢ is a composition of blow-
downs.

Definition 5.4.3. A smooth complete embedding is called minimal
embedding if it is not the blow-up of another smooth embedding.

Minimal smooth SL(2)-embeddings:
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’ h
© "

(k)
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Minimal smooth PGL(2)-embeddings:

1/ (2m+1)

-1/(2n+1)

n>1, m>0

(c1)

n> 4 or n=2

(d1)

(el)

U(2n+1
o V@M

n>1

. (o)

5.5 A classification of the smooth varieties

with the Picard number < 3

In this section we classify the smooth SL(2)/C,,-embeddings from their
colored fans. So we distinguish the following cases:

X has the Picard number 1: Let v; := (—p;, —q1) be a

vector of the lattice N,,. Then consider the colored complete fan

Y= {(01,p2), (02,p1)},
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where
o1 :=Rxop2 + Rxov1, 02 := Rxov1 + Rxop1.

R
01\/\// Py
02
vi=(-R .~ q)

We determine the vector v; in case X is a smooth variety. Therefore
we apply the smoothness condition on every colored cone in Y, i.e., on
01,02:

0 —pi| _ 1 |=p 1} _ T
I —q m’ |—¢a 0 m
It follows that: p1 = ¢, = % Thus
1 1
n=n T

Since v; € N,,, we write it as a linear combination in the base vectors

1 1 1 1
=(——,——)=a(l,0) + b(—,——).
0 ( m7 m) CL(, >+ (m7 m)
Then
b 1 b 1
at—=—-——, ——=——,
m m.m m
It follows that b = 1 and ma = —2, which means m | 2. Therefore

either m =1 or m = 2.

m = 1: We get a fan corresponds to a SL(2)-embedding. The
equation
T1T4 — T2X3 = y%

is defined the corresponding hypersurface to this fan. It clear that this
embedding is isomorphic to a quadric in P*
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V= (_1, _1)

m = 2: We get a fan of a PGL(2)-embedding:

v =(-1/2 -1/2) 92

The corresponding hypersurface is defined by the equation:
T1T4 — T2T3 = Y1-
The embedding is isomorphic to the projective space P3.
X has the Picard number 2: One distinguishs the cases

CASE 1. Let v; := (=1, 1) vy := (—p2, —q2) be two vectors of N,,. We

m’m

define the fan
Y :={(01,0), (02, p1) },

where o1 . — Rzovl + Rzo'l}g, 09 1 — Rzoﬂg + RZOPL

5,

vi=(-1/m ,1/m)

el
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We determine the vector vy, when X is smooth. We apply the
smoothness condition on o; and o9

—= —p2| _ L |=pe 1) _ 1
L~ m | O m
It follows that g +p2 =1, g2 = . Then py =1 — + and
1 1
vo=(——1,——) € N,.
m m

So we get the fan:

The corresponding hypersurface to this fan is defined by the fol-
lowing equation:
T1X4 — ToX3 = Y.

CASE 2. Let v, = (—%, %),02 = (—p2, —q2) € N,,,. Consider the fan

Y= {(01, @), (027 {pla p2}) }7
such that: o1 := R>gv; + Rxgv2, 02 1= R>v2 + R5ope.

vi=(-1/m ,1/m)

Apply the smoothness condition on oy, os:
1 ‘—p2 0
7

_ 1 B 1
—q 1| m’

m
1
m

—P2
—q2

This gives: go +py =1, po = —%. Then ¢ =1 % Therefore,
1 1

=(—,—1——) €N,
U2 (m m)
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and we get the fan:

v, =(-1/m, 1/m)

Vo =(1/m, -1-1/m

The corresponding hypersurface is defined by the equation:
T1XT4 — ToX3 = Yo2.

CASE 3. Let v; = (=p1, —q1),v2 = (—p2, —q2) € Ny, where vy # (_%7 l)

and vy # (£, —21). Then consider the fan "

Y= {(0-17p2)7 (02a®)7 (037/01) }7
where g1 = Rzopg -+ Rzo'l}l, 09 = RZOUI + Rz(ﬂ)g and 03 ‘=
R>ova + R>op1.
P

VI:(_H ' q’l )

ACTRS

We determine vy, vy when X is smooth. The smoothness condition
on every cone in Y gives:

0 =p|_ 1 |=p0 =po| _ 1 |=po 1) _ 1
I —q m =@ —q m’ |—q2 0 m
This implies: p; = ¢ = % Since vy, v9 € Ny, then they must be
of the form:
11 1 1
= (——= = — b —
U1 ( m: m CL)7 V2 (m ’ )7
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where a, b are strictly positive arbitrary integers. If we replace
the coordinates of vy, v, in the equation p1gs — pPog1 = w%, we get

1+1 1
m=—-+- - —
a b ab

(ab # 0 because a, b are strictly positive integers). This implies
that m = 1, which occurs in the following cases:

(1) a=b=1. Then: v; = (—1,0), v = (0,—1)

P

2

1

Ne)

v= (-1,0)

.

O3

NN\ 7

02

V2: (0 1_1)

The corresponding hypersurface is defined by the following equa-
tion:

T1Tq4 — T2X3 = Y1Y2.

(11) a = 1 and b = 2. Then: v; = (—1,0), vy = (—1,-1).

p2
(O] -
_ N
=
0y %~ os
v,=(-1,-1)

The corresponding hypersurface is:
T1Xy — T2X3 = ylyi-
(111) @ = 1 and b € Z~5. Denote by n := —(1 — b). Then we get

the vectors:
U1 = (_170)7 Vo = (—TL, _1)7

where n € Z1, (because b € Z-,).
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CASE 4.

Ne)

The corresponding hypersurface is defined by the equation:

. n+1
T1Tq4 — T2T3 = Y1Yy -

Let vy = (=p1, —q1),v2 = (=Pp2, —q2) € N, where v, # (—%7 =)

and vy # (L, —L). Then consider the fan "

Y= {(01,02), (027@)7 (037{01,02})}7

where
01 = Rzopz + RZOUL 09 = R20U1 + RZOUZ

03 = RZOUQ + Rzopg.

V2 :(_F% ! _Ci

Determine vq, v in case when X is smooth:

l —P1 P2
m’ = —q

0 —p
I —q

m’ |~ 1 m
It implies that p; = —py = % Replace this in the second deter-
minant equation:

G+ q =1

Since vy, v € N,,, then ¢, ¢; must be of the following form

1 1
G=——+a, g=—+b
m m
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CASE 5.

where a, b are strictly positive integers. From the equation ¢ +
g1 =1 we get b=1—a. Thus
1 1 1 1
v =(——,——a), va=(—,—— +a—1).
1= m’m ), e <m’ m )

Since vy, vy € V, then a is an integer such that: 0 < a < 1. Either
a = 0 or a = 1. This implies that either b = 1 or b = 0, which
contradicts that a, b are strictly positive integers. Therefore there
is no variety corresponds to this fan.

Let v1 = (—p1, —q1), v2 = (—p2, —q2) € Ny, where vy # (—=, +)

and vy # (=, —2). Consider the following fan "

Y= {(01,{p1, p2}), (02,0), (03,{p1,p2}) },

where
o1 := Rxop1 + Rxv1, 02 := Rygvy + R0

O3 (= Rzovg + Rzopg.

Smoothness conditions give:

i —P1 P2
m’ =@ —q

I —p
0 —q

It follows that ¢; = py = —%. Then

1 1
p=—+a @=—+D>,
m m

where a,b are strictly positive integers. Replacing p;, g2 in the
second determinant equation gives:

(a4 - ()=

m m m - m m
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It follows: . ;
JE— a _
=—— (h b+#0).
m pra (here ab # 0)
Since a,b € Z~q, then ab > 0 and 1 —a —b < 0. This implies that
m < 0, which contradicts that m € Z-y. So there is no variety

corresponds to the this fan in this case.

X has the Picard number 3: We distinguish the cases:

CASE 1. Let vy = (—=, L), vy = (—p2, —2), v3 = (&, —L) are three

m’m m’

vectors of the lattice N,,,. We consider the colored fan:

%= {(01,0), (02,0)}
such that: 01 = Rz(ﬂ)l + Rzovg, 09 (= RZOUQ + Rzovg.

5,

v,=(-1/m,1/m)

)
07
: ;

v 2: (_pz ' Cl 02
V,= (1/m ,—-1/m)

We determine v, in case when X is smooth. Therefore we apply
the smoothness condition on all cones in X:

_1

1
m -2
1
m

—P2
—q2

|
[
™o

|
3=

This implies: ps + g2 = 1. Then ¢ = 1 — py and we get

vy = (=p2, —(1 = p2)),
where ps is an arbitrary integer.

Vo= (7R, B-1)< V1= (-1/m ,1/m) P,

v,=(1/m ,-1/m)

The hypersurface corresponds to this fan is defined by the equa-
tion:
T1X4 — T2T3 = Y2.
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CASE 2. Let v; = (=1, 1), vy = (—pa, —q2), v3 = (—p3, —q3) € Ny, such

m’m

that v3 # (=, —=). Then define the cones:

o1 = Rzo’ljl + Rzovz, 09 = Rzovg + Rzovg,

03 .= Rz(ﬂ)g + R20p1~

and consider the fan:

Y= {(01,0), (02,0), (o3, 01)}

We compute vs, v3, when X is a smooth variety:

— 2| _ 1 epe —ps| 1 |eps 1)1
% —q2 m’ | —¢ —q m’ |—¢q 0 m
This gives:
1 1
@+p2=1, pgz —p3sga=—, 3= —.
m m
Then ¢ = 1 — py. Since v3 € N,,, and ¢3 = %, then ps is of the
form:
1
pP3s=—— + a,
m

where a is an strictly positive arbitrary integer. By substitution
in the second determinant equation we get:

—ma(l—p) =0 =1—p,=0 =py=1.
This implies: g =1 — 1 = 0. Therefore

1 1 1 1
V1 = (_E7 E)a Vg = (_170)7 U3 = (E - aﬂ_E%

where a is a strictly positive integer. The hypersurface is:
T1T4 — ToZ3 = Yals; a € Lso.

The corresponding fan is:
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2
=(-1/m ,1/m)
01
= (-1,0) = R
o, %
O3
=(—at+l/m ,-1/m)
a>0
CASE 3. Let vy = (==, 1) vy = (—p2,—q2), v3 = (—p3,—q3) € Ny,
1

where vg # (-, — i —=). Then define in N,, the cones:
o1 = Rzovl + RZOUQ, 09 = Rzovz + Rz(ﬂ)g,

O3 (= Rz(ﬂ)g + Rzopg.

We consider the fan:

Y= {(01,0), (02,0), (o3, {p1.p2})}-

The smoothness condition on each cone in this fan gives:

- - L d=py =ps| _ 1 |=ps O _ 1
T~ m |- -] om |- 1] m
It implies:
1 1
G2+p2=1, Pags —p3ge = —, P3 = ——.
m m
Since vs € N, and p3 = —%, then ¢3 = % + a, where a is some
strictly positive integer. By substitution in the second equation
we get:
1 -1 1

P2(E +a) — (E)(l —p2) = —
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So apy = 0 which implies: p, = 0 and then ¢o = 1. Therefore we
get the vectors:

1 1 1 1
U1 = (_E’ E)’ U2 = (0, —1), U3 = (E, E - a),

where a € Z-~y.

v,=(-1/m ,1/m)

V= (1/m ,-1/m-a

a>0

The hypersurface is defined as follows:

a,
T1T4 — T2X3 = Yays; a € Lxo.

CASE 4. Let vy = (—p1,—q1), v2 = (—p2,—q2), v3 = (—p3, —q3) € N,

where vy # (==, +),v3 # (&, —=). Then consider the fan

Y= {(017p2)7 (0-27@)) (0-37@)7 (0'4,P1)},
Where g1 = RZOpQ + RZOUh 09 = REOUI -+ R20’027

03 1= Rxovz + Rxov3, 04 := Ryov3 + Rxop1.
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From the smoothness condition on every cone we get:

0 —p _i —P1 —D2 :i
I —q m’ | —q m’
—p2 —ps| _ 1 |-ps 1) _ 1
—q@ —q3| m |—q3 0] m
It implies:
1 1 1

P1 =43 = —, D142 — P2g1 = —, P243 — P3qz = —.
m m m

Since vy, v3 € N,,, then

1 1
ql:__+aap3:__+bv
m m

where a, b are some strictly positive integers. By replacing ¢, ps3
in the second and the third determinant equations we get:

P2+ G —peam =1, py+ g2 — gbm = 1.

This implies that:
m(g2b — paa) = 0.
Since m # 0, then ¢2b — pra = 0. So ¢z = 7p2. Replacing in the

smoothness condition equation of oy (or o3) gives

1 1
m==4+-—-—.
a b aps

The fact v, € V gives —py — g2 = —p2(1 + ¢) < 0. It means:
p2 > 0 (if po = 0, then vy = (0,0)). Therefore:

1 1 1 1 1
m=-4-——<-4+-<2
a b aps a b

So m = 1, which occurs when b = p, = 1 and «a is an arbitrary
positive integer. So we get the vectors:

V1 = (—17 1-— a), Vy = (—17 _(l), Vg = (O’ _1)7 a € Z>0'

Then the hypersurface is:

_ a,l+a
T1T4 — T2T3 = Y1Yy Y3

The corresponding fan is:
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CASE 5. Let v; = (=p1, —q1),v2 = (=p2,—q2),v3 = (—p3, —q3) € Np,
where v # (—=+, ), v3 # (=, —=). We define the fan

m’ m

Y= {(o1, p2), (02,0), (03,0), (04,{p1,p2})}

such that:
o1 :=Ryop2 + Rxov1, 09 := Ryov1 + Rxovz,

03 1= Ryova + Rxquz, 04 := Ryqv3 + Rxop2.

Aplly the smoothness condition on all cones in X::

0 —m _i —P1 —D2 :l
I —q m’ | — m’
—P2 —D3 _l —ps 0 :l
¢ —g| m |—¢ 1] m
It gives:
1 1 1

P1= —pP3=—, P192 — P21 = —, P2g3 — P3q2 = —.
m m m
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Since vy, v3 € N,,, then ¢, g3 are of the from

1 1
ql:__+aa q3:_+ba
m m

where a, b are some strictly positive integers. Replace pi, ¢ in the
second determinant equation and ps, q3 in the third one:

P2+ g2 —paam =1, py+ g+ p2bm = 1.

Subtract one of them from the other one: mps(a+b) = 0. Either
a+ b = 0 which contradicts that a, b are strictly positive integers.
Or pos = 0. So g = 1 and then

1 1
v =(——,— —a), ve=(0,-1),
= (=), v = (0,-1)
1 1
v3 = (—,—— —b); a,b€ L.
mom
5,
O
vi=(-1/m, 1/m-a 4
0-2
O3
v,=(0, -1)
v; = (1/m, =1/m-b
a,b>0

The corresponding hypersurface is defined by:

a b.
T1Ty — o3 = Y1Y2Y3; @, 0 € ZLiso.

CASE 6. Let vy = (—=p1,—q1),v2 = (—p2,—q2),v3 = (—p3,—¢q3) € Np,.
Take the fan

Y= {(o1,{p1,p2}), (02,0), (03,0), (04, {p1,2})},

where
o1 :=Rsop1 + Rsov1, 02 1= Rxov1 + Rxovy,
o3 := Rxva + Rygvz, 04 := Rxov3 + Rxp2.
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The smoothness condition on every cone in Y gives:

I —p _i —P1 —D2 :l
0 —q m |G —q m’
—p2 —ps| _ 1 |-ps O] _ 1
—¢ —q| m =@ 1] m
This implies:
1 1 1

g1 =P3 = ——, P192 — P21 = —, D293 — P32 = —.
m m m

Since vy, v3 € N,,, then
1 1
p1:_+a7 Q3:_+b7
m m
where a, b are strictly positive integers. On the other hand one
can write vy as follows:

1 1 d d
= —c(1 d(—,—)=(+— —c¢,——
U2 C( 70)+ (m7 m) (+m ¢, m)a
where d € Z and ¢ € Z~y. So
d

pr=—— e =
m m

If we replace p1,q1,p2, g2 in the second and third determinant
equations, we get: ad+c =1, m = é + % — % respectively. So
d= % and then

1 1 1 1 1 1 1
m= S — == (C -G+ ).

Since m, b, a € Z~q, then
1 1
- —1>0=->1.
c c

It follows that ¢ < 1. This contradicts ¢ € Z~q. Therefore there
is no variety corresponds to such a fan.
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5.6 A classification of minimal smooth va-
rieties

In this section we classify smooth minimal varieties of SL(2)-varieties
with C*-action. Recall a smooth complete embedding is called minimal
if it is not the blow-up of another smooth embedding.

(1). The following fans are fans of minimal models:

R
(OX] pl
v,=(-1/2 -1/2) 2
Vl: (_11 _l)
pz p2
i c,l
vECLO = B v=(10 ]
()
2 O3 03 O3
v,=(-n,-1) n>1 v,=(0,-1)
p2
A =(-1/m, 1/m)
Y
< 1
03 O

Vo =(1/m, —1-1/m
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V; = (1/m, -1/m-b

a,b>0 V= (1/m ,=1/m-a

a>0

Vo= (7R » B-1)< V1= (-1/m ,1/m) P,

v,= (1/m ,-1/m)

P2 € Lo

Here are Luna-Vust diagrams correspond to fans of minimal models
which have not been done by Moser Jauslin:

(hm) (im)
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1/(1+bm)

1/(1-al

a,b>0, m>2

(frm)

(&n)

(11).

o Y/(1+nm)

n>0, m>2

(ki)

(n—m)/n

The following blow-ups of the following colored fans show

that these fans do not represent minmal models of smooth SL(2)/C,,-

embeddings:
R, ;,
v = (-1/2,1/2)
0, Z = R 017 R
v=(-112 -112) G, G,
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o)

vi= (-1, 1-& -
' G5 v, = (0, -1)

v,= (-1, -a) a>0 a>0

O1

V= (-1,0)

=0

o

o
2 I

v,= (-1 ,-1) v =(-1,-1)

v,=(-1/m,1/m)

N7

01
V,= (—1,0%2/

O3

V4= (- at+l/m ,-1/m) V,= (- a+1/m ,-1/m)
a>0
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5.7 Smooth spherical SL(2)-varieties which
are toric

In order to classify all SL(2)-varieties with C*-action which are toric
we use the characterization of toric variety via its Cox rings which must
be a polynomial ring. On the other hand, the Cox ring is defined by
the unique equation

X1 X, — Xo X3 = H Y;fh‘ﬂii
i=1
in C[Xy,...,X4,Y1,...,Y,]. Therefore, X(X) is toric if and only if there
exists a single index i € {1,...,r} such that p; + ¢ > 0. In this case
pi + ¢ =1 and
pj+q; =0, Vj#i.

So we have the equation
XXy —XoX5=Y,.

Hence r < 3 and we can apply our classification of smooth spherical
S L(2)-varieties with the Picard number < 3. By our classification of
spherical SL(2)-varieties, we obtain the following 4 possibilities for the
colored fan X (X):
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v, =(-1/m, 1/m)

0, 0>

Vo =(1/m, =1-1/m

V.= (=R , B~1)< V1= (-1/m ,1l/m) P,

V,= (1/m ,—1/m)
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Zusammenfassung in deutscher
Sprache

Man kann den n-dimensionalen projektiven Raum P" iiber C als den
folgenden Quotienten:

(€ {o})/C

definieren. Eine dhnliche Quotientenkonstruktion fiir eine beliebige
torische Varietdt X wurde von David Cox vorgeschlagen [Cox95]. Sei
X eine n-dimensionale torische Varietdt mit einem rationalen polyhe-
dralen Fécher A. Sei A(1) die Menge aller 1-dimensionaler Kegel von
A und sei Cl(X) die Divisorenklassengruppe von X. Dann wirkt die
algebraische Gruppe (Quasitorus):

T := Homg(Cl(X),C")

auf natiirliche Weise auf dem affinen Raum C*(), so dass der kate-
gorische Quotient (C2W \ Z)/T existiert und isomorph ist zu X. Hier-
bei ist Z eine Zariski abgeschlossene Menge, die durch ein homogenes
Ideal im Koordinatenring Clxo, . .., x,] definiert ist.

Eine quasihomogene SL(2)-Varietét ist eine normale 3-dimensionale
algebraische Varietdt X iiber einem algebraisch abgeschlossenen Korper
k zusammen mit einer reguliren SL(2)-Wirkung, so dass X eine offene
dichte Bahn hat. Zur Vereinfachung betrachten wir den Fall £ = C.
In dieser Arbeit geben wir eine geometrische Methode zur Konstruk-
tion einer speziellen Klasse von SL(2)-Varietiten X als kategorische
Quotienten an.

Als ersten Schritt haben wir den affinen Fall von SL(2)-Varietiten
betrachtet |[BHO8|. Diese Varietdten wurden von Popov [P73| klassi-
fiziert. Jede affine SL(2)-Varietit E ist durch zwei Zahlen eindeutig
bestimmt; einer rationalen Zahl h = p/q (ged(p,q) = 1, 0 < h < 1),
welche die Héhe von E genannt wird, sowie einer natiirlichen Zahl m,
dem sogenannten Grad von E. Die entsprechende affine SL(2)-Varietét
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wird mit Fj, ,,, bezeichnet. Wir haben gezeigt, dass die Varietit £}, ,,
zum kategorischen Quotienten der affinen Hyperflache:

Hy ,: {X{P = X1 X, — XoX3} C CP

nach der Wirkung der diagonalisierbaren Gruppe Gy x G, C D(5,C)
isomorph ist, wobei

Go = C* = {diag (t,t 7, t77,t9,t%); t € C*}, G = ptrn = {Cm)s
so dass G, C D(5,C) von diag (1,1, (.0, Cm, Cm) erzeugt ist.

Wir haben dann bemerkt, dass affine SL(2)-Varietiten zu einer
Klasse von SL(2)-Varietéten gehoren, die eine zusitzliche mit der SL(2)-
Wirkung kommutierende C*-Wirkung besitzen. Diese Varietiten wer-
den wir SL(2)-Varietiten mit C*- Wirkung nennen. Es ist sehr wichtig,
dass SL(2)-Varietdten mit C*-Wirkung als sphdrische G-Varietiten
beziiglich der reguldren Wirkung der reduktiven 4-dimensionalen al-
gebraischen Gruppe

G :=SL(2) x C,

betrachtet werden koénnen, d.h., der Stabilizator H C G eines Punkts
der offenen SL(2)-Bahn 1-dimensionale sphérische Untergruppe von
G ist. Deshalb werden wir SL(2)-Varietiten mit C*-Wirkung auch
sphdrische quasihomogene SL(2)-Varietdten nennen.

Sphérische Varietdten sind eine Verallgemeinerung von torischen
Varietiten und wurden durch gefirbte Facher von strikt konvexen Kegeln
klassifiziert. Durch diese kombinatorische Beschreibung kann man einige
geometrische Eigenschaften von diesen Varietdten wie beispielsweise
Glattheit, Vollstindigkeit oder Projektivitidt bestimmen ([K91]). Wir
bemerken, dass die offene dichte SL(2)-Bahn einer sphérischen SL(2)-
Varietdt X isomorph ist zu SL(2)/C,,, wobei C,, eine zyklische Gruppe
der Ordnung m ist. Die Zahl m ist eine Verallgemeinarung des Grads
im affinen Fall.

Mit Hilfe der Theorie der sphérischen Varietiten kénnen wir eine
beliebige sphérische quasihomogene SL(2)-Varietit X = X () durch
einen 2-dimensionalen geféirbten Fiicher ¥ in R? beschreiben. Seien
v1,...,v, € Z* die Menge aller Erzeuger der Gitter von 1-dimensionalen
Kegeln in X, und v; = (—p;, —¢;), ged(ps, ¢;) =1 (1 < i < r). Wir
zeigen, dass X (X)) als GIT-Quotient der folgenden affinen Hyperflache
in C"+4:

Y1p1+q1 . Y;pr-i-qr — X1X4 _ X2X4
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nach der Wirkung der diagonalisierbaren Gruppe Gy xG,, C D(r+4,C)

realisiert werden kann. Hierbei ist Gy = (C*)" und G,, eine zyklische
Gruppe der Ordnung m.

Mit dieser Konstruktion war es nicht schwierig zu zeigen, dass der
Cox Ring dieser Varietdten durch eine einzige Gleichung definiert ist.
Ahnliche Beispiele von algebraischen Varietiten, deren Cox Ring durch
eine einzige Gleichung definiert wird, wurden in [BHOT7| betrachtet. Im
affinen Fall kann diese Beschreibung von Cox Ringen als eine Illustra-
tion von allgemeineren neuen Resultaten von Brion {iber Cox Ringe von
sphérischen Varietiten verwendet werden [B07].

D. Luna und Th. Vust haben in [LV83| kombinatorische Diagramme
entdeckt um eine beliebige normale SL(2)-Einbettung X zu beschreiben
(wir nennen diese Diagramme Luna-Vust Diagramme). Diese Dia-
gramme geben Informationen iiber die lokalen Ringe von SL(2)-Bahnen
in X. In dieser Arbeit finden wir fiir beliebige sphérische SL(2)-
Varietaten X = X (X)) eine Methode zur Konstruktion des korrespond-
ierenden Luna-Vust Diagramms aus dem 2-dimensionalen gefirbten
Féacher X.

2-dimensionale gefirbte Facher, welche SL(2)-Varietdten mit C*-
Wirkungen definieren, sind sehr gut geeignet fiir die Untersuchung ihrer
birationalen Morphismen. Durch die gefarbten Facher werden wir alle
glatten SL(2)-Varietdten mit C*-Wirkungen und Picard Zahl < 3 klas-
sifizieren. Von diesen Varietdten haben wir alle minimalen glatten Va-
rietdten bestimmt, das sind Varietdten, die keine Aufblasung anderer
Varietiten sind. Dies verallgemeinert die Resultate der L. M. Jauslin
[Ja87] in dem speziellen Fall minimaler glatter SL(2)- und PGL(2)-
Einbettungen. Ferner haben wir minimale glatte SL(2)-Varietaten mit
C*-Wirkung, welche zusatzlich torisch sind, bestimmt.
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