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PRÉCIS 

In recent years, research on the human representation of number, its development, and 

its related capabilities (e.g., mental arithmetic) has flourished.  A latest model of numerical 

processing, the Triple Code Model (Dehane & Cohen, 1995; 1997) is even quite explicit on 

the involved representations (i.e., visual number form, rote verbal knowledge, and an 

analogue magnitude representation) and their associated neural correlates. However, the 

dominating organizational principle of our Arabic number system, i.e., its place-value 

structure, has received much less interest. This is reflected by the lack of a systematic 

evaluation of the influence of the place-value structure of the Arabic number system on 

number processing. The current thesis aimed at making a first step towards a more elaborate 

understanding of place-value influences as regards its representation in adult number 

processing, its influence on the development of numerical representations as well as 

arithmetic capabilities, and its neuro-cognitive underpinnings.  Consolidated evaluation of the 

results of the individual studies provided converging evidence that place-value constraints 

exhibit a task invariant influence on human numerical cognition and its development 

suggesting that (i) the mental number line is not analogue holistic in nature but incorporates 

place-value information as well, (ii) place-value processing seems to develop culture invariant 

but is nevertheless influenced by a language’s number word system, and (iii) on a 

neurofunctional level specific neural correlates of processing place-value information can be 

identified. Evidence for these conclusions comes from a variety of tasks administred to 

different populations and assessed using differing methodologies (including eye-tracking and 

fMRI). Taken together, the results obtained by the current thesis can be recapitulated as 

indicating a comprehensive, culture invariant but linguistically influenced and 

developmentally relevant influence of the place-value structure of the Arabic number system 

on human numerical cognition. 
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ZUSAMMENFASSUNG 

Das wissenschaftliche Interesse an der menschlichen Fähigkeit zur Repräsentation und 

Verarbeitung von Zahlen ist in den letzten Jahren stärker geworden. Die beteiligten 

Repräsentationen wie z.B. die der visuellen Zahlenform, des verbalen Faktenwissens und der 

analogen Größenrepräsentation, sowie deren neuronalen Korrelate werden in einem aktuellen 

Modell der Zahlenverarbeitung (z.B. Triple Code Model, Dehaene & Cohen, 1995; 1997) 

bereits sehr genau beschrieben. Jedoch fehlt bisher eine systematische Untersuchung zum 

Einfluss des dominierenden Organisationsprinzips unseres arabischen Zahlsystems, dem Platz 

x Wert System, auf die Zahlenverarbeitungfähigkeit. Die vorliegende Studie stellt dabei einen 

ersten Schritt in Richtung eines besseren Verständnisses von Platz x Wert Einflüssen, deren 

Auswirkungen auf die Endwicklung der Zahlenverarbeitungsfähigkeiten bei Kindern und 

ihrer neurokognitiven Grundlagen dar. Zusammenfassend lässt sich sagen, dass die einzelnen 

Studien der vorliegenden Arbeit übereinstimmend zeigen, dass Aufgaben übergreifende 

Einflüsse des Platz x Wert Systems bei Erwachsenen und Kindern nahelegen, dass (i) der 

mentale Zahlenstrahl Informationen zur Platz x Wert Kodierung von mehrstelligen Zahlen 

beinhaltet, (ii) dass sich die Verarbeitung von Platz x Wert Information kulturinvariant zu 

entwickeln scheint, aber doch Spracheinflüssen unterliegt, und (iii) dass sich auf 

neurofunktioneller Ebene spezifische neuronale Korrelate der Verarbeitung von Platz x Wert 

Information identifizieren lassen. Ergebnisse, die diese Schlussfolgerungen untermauern 

kommen dabei von einer Vielzahl numerischer Aufgaben, die von unterschiedlichen 

Stichproben bearbeitet wurden und deren Ergebnisse mittels verschiedener experimenteller 

Methoden erhoben wurden (u.a., Eye-Tracking und fMRT). Grundsätzlich lassen diese 

Ergebnisse den Schluss auf unfassende, Kultur übergreifende, aber von Sprache moderierte 

und entwicklungsrelevante Einflüsse der Platz x Wert Struktur des arabischen Zahlsystems 

auf die menschliche Fähigkeit zur Zahlenverarbeitung zu.  
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Number, the simplest and most universal idea;  

for number applies itself to men, angels, actions, thoughts,  

– every thing that either doth exist or can be imagined.  

(John Locke, 1689) 

 

 

GENERAL INTRODUCTION 

 

No other set of symbols is so widely spread in its use and understanding as the Hindu-

Arabic or Western number system (henceforth referred to as Arabic number system). Its 

constituting digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) are known to and understood in their 

meaning by literate but also a lot of illiterate individuals all over the world, thereby, being 

more prevalent and more universally employed than any language or script.  

Nevertheless, the Arabic number system is only one out of the approximately 100 

systems of numerical notation known. According to Chrisomalis (2004, p. 38) “a numerical 

notation system is a visual but primarily non-phonetic structured system for representing 

numbers”. Thus, numerical notation systems can be clearly differentiated from lexical 

numeral systems reflecting the number words used to transcode symbolic digital numerical 

input into spoken or written number words (henceforth referred to as number word system). 

Obviously, there are specific correspondences between the numerical notation system and the 

lexical numerical system. For instance, in the herodianic Greek number system the symbols 

representing 5, 10, 100, 1000, and 10,000 were derived from the first letter from their 

corresponding number words (see Löffler, 1912 for a more detailed dicussion). However, 

unlike digital numerical notation systems such as the Arabic number system, number word 
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systems differ between languages and even within the same language different regional 

influences can be observed. In this context it is interesting that the left-to-right order of tens 

and units in two-digit numbers is not retained in their corresponding number words in all 

languages (e.g., 27 � twenty seven), rather the units are spoken before the tens in some 

languages’ number words (e.g., 27 � achtundzwanzig in German [seven and twenty]). This 

so-called inversion property is found among others in German, Maltese, Arabic, Norwegian, 

etc. (see Comrie, 2005 for an overview). On the other hand, there are also intra-language 

variations. For instance, in the Czech language the non-inverted number words are officially 

used and taught at school. Nevertheless, in some parts of Czech inverted number words are 

primarily used in everyday life (see Pixner, 2009; see also Seron, Deloche, & Noël, 1992; 

Seron & Fayol, 1994 for differences in French number words used in Belgium and France). 

Taken together, these examples illustrate quite nicely that although there are correspondences 

between the numerical notation system and the number words used to vocalize symbolic 

numbers, most number word systems involve a lot irregularities that are not inherent in the 

numerical notation system they actually refer to (i.e., the Arabic number system). 

In this vein, the generality of the Arabic number system is striking. In the following, a 

typology of numerical notation systems shall be introduced (cf. Chrisomalis, 2004). 

Subsequently, the most important characteristics of the currently dominating Arabic number 

system shall be outlined.  

 

The Arabic number system in a typology of notational systems 

Apart from very simple tally-like notational approaches relying on one-to-one 

correspondence between the to-be-counted objects and an equal number of markings or body 

parts all numerical notation systems have to be structured in a specific way as this is a 

prerequisite of their actual function: to represent any given number (in the best case) by a 
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limited set of symbols. To achieve this goal numerical notation systems are dimensionally 

organized into bases and powers, for instance, the Arabic number system is a base-10 system. 

In all notational systems the powers of the base are of special designation (as can be 

mathematically indicated by an exponent 10
0
 = 1; 10

1
 = 10, 10

2
 = 100 etc. for the Arabic 

number system). However, please note that there are also numerical notation systems with 

more than one base for which a comprehensive mathematical description is more complex 

(e.g., the Roman notation system with the main base 10 and its power levels, i.e., 10
0
 = I; 10

1
 

= X, 10
2
 = C etc. and the sub-base 5 and its power levels 5

1 
x 10

0
 = V; 5

1
 x 10

1 
= L, 5

1
 x 10

2
 = 

D). When expressing e.g., the number of items in a set by their corresponding number there 

are different possibilities to code the quantity to-be-represented at each individual power level 

but also in the way the single power levels are integrated into a coherent overall 

representation of a given number are possible. In his recent typology for numerical notation, 

Chrisomalis (2004) used exactly such intra- as well as interexponential (referring to the 

exponent coding the power dimension) characteristics of notation systems to develop a clearly 

structured typology (see also Guitel, 1975 as well as Zhang & Norman, 1995 for possible 

typologies relying on different structural aspects of numerical notation systems). Both of 

these dimensions differentiate between a number of principles determining the way numerical 

representation is organized.  

According to Chrisomalis (2004) the intraexponetial dimension can be subdivided into 

cumulative, ciphered, and multiplicative organization subtypes. In systems with a cumulative 

intraexponential structure any power of the base is indicated by repeating number symbols 

until the sum of these symbols equals the to-be-represented quantity at the particular power 

level (e.g., CCC represents 300 in the Roman number system, literally meaning 100 + 100 + 

100). Contrarily, in ciphered numerical notation systems each power level is represented by 

only one number symbol. Thus, coding a given number requires as many number symbols as 
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the number involves power levels. Thus, to transcode sixty eight into the symbolic notation 

two number symbols are necessary, one for the 10
0
 and another one for the 10

1
 power level. 

Finally, multiplicative intraexponential organization is indicated when the representation of 

each power level incorporates two number symbols: a power sign reflecting the actual power 

level, and a unit sign specifying the quantity at the respective power level (e.g., the traditional 

Chinese number system, see Table 1).  

On the second dimension interexponential organization can be separated into additive 

and positional structuring principles. In the latter, positionally structured, notational systems 

the value of a particular number symbol is principally defined by its position within the string 

of symbols representing a given number. For example, in the positional Arabic number 

system the digit 3 in 36 reflects a quantity different from that represented by the same digit in 

63 because they hold different positions, thereby, reflecting different power levels. On the 

other hand, in notational systems with an additive interexponential structure the total value of 

the number can be achieved by just adding up the values quantified at each individual power 

level. The Roman notational system is the best known example of additive interexponential 

structuring (see Table 1).  

As can easily be derived from the two-dimensional typology of notational systems 

introduced above the Arabic number system is a ciphered positional notation system – 

ciphered as each power level is represented by just one number symbol and positional as it 

has a clear place-value structure with the value of the digits being unambiguously determined 

by their position within the digit string. Thereby, place-value coding is much more 

parsimonious than e.g., the Roman notation system in which different values (in particular the 

powers of the bases) are coded by different symbols instead of using the same set of symbols. 

From Table 1 it can be observed that there are or have been numerical notation 

systems complying with the constraints of almost every possible combination of intra- and 
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interexponential structuring principles. The only exception is presented by the combination of 

positional and multiplicative structuring which is just logically impossible. A number system 

in which the quantity at a certain power level and this power level itself are represented by 

two distinct symbols (i.e., multiplicative organization) cannot comply with the limitation of 

coding the value of a number symbol not only by its shape but also by its position within the 

string of number symbols (i.e., positional structuring). In a positional system the unit sign and 

the power sign used for multiplicative coding of one power level would rather reflect two 

adjacent power levels, thereby making the combination of multiplicative and positional 

coding impossible.  

 

Table 1: Intra- and interexponential structuring and their combinations in known numerical notation 

systems 

 Interexponetial Structure 

Additive 
Power levels are summed up to 

obtain total value 
 
 

Positional 
Value of power levels multiplied 
with positionally coded multiplier 

(e.g., hundreds) before 
summation 

In
tr

a
e

x
p

o
n

e
n

ti
a
l 

s
tr

u
c

tu
re

 

Cumulative 
Sum of signs per power 
value indicate total value 
 

Roman numerals 
 

678 = DCLXXVIII 
 

(500+100+50+10+10+5+1+1+1) 

Babylonian cuneiform 
 

678 =  
 

(10 + 1) x 60 + (10 +8) x 1 

Ciphered 
Total value represented 
by only one sign 
 

Greek alphabetic 
 

678 =  
 

(600 + 70 + 8) 

Arabic number system 
 

678 
 

(6 x 100 + 7 x 10 + 8) 

Multiplicative 
Total value computed by 
multiplication of unit 
sign(s) and a power sign 

Traditional Chinese 
 

678 =  
 

6 100 7 10 8 

Logically excluded 

 

From the fact that the Arabic number system is by far the dominating numerical 

notation system one may conclude that “the evolution of written numeration converges [in the 

Arabic number system] […] because place-value coding is the best available notation” as 
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Dehaene (1997, p. 101) claims (see also Boyer, 1944 for discussion of this point). On the one 

hand, such an assumption is corroborated by considering the historical development of 

numerical notation systems. In a detailed evaluation of transformation processes of numerical 

notation systems Chrisomalis (2004) found that cumulative notation systems did not develop 

from by non-cumulative antecessors and positional notation systems were never followed up 

by additive ones. However, on the other hand, Chrisomalis (2004) also noted that knowing 

which systems were used and then replaced by which other system is only part of the story. It 

also has to be considered for which purposes (i.e., administrative or technical needs, formal 

mathematics) a notational system was used and how good the different structural and 

organizational aspects of the respective notation system coped with the related requirements. 

In this vein, the Arabic number system with its characteristic place-value structure may be 

one of the (maybe the) best-suited notation systems for the current state in science, 

economics, and everyday life. Convergent evidence for this argument comes from Zhang and 

Norman (1995) who evaluated the applicability of different numerical notation systems by the 

degree to which they allow for an external representation of information required to perform 

arithmetic procedures such as multi-digit multiplication. In this context, external means that 

the respective information can be read from the symbolic notation of a given number while 

information being exclusively represented internally has to be retrieved from memory. For the 

case of the Arabic number system this means that e.g., the power levels are represented 

externally as indicated by the position a certain digit holds within a given number. On the 

other hand, the semantic meaning of the individual digits, i.e., the quantity they represent, has 

to be retrieved from memory as the shape of the digits does not directly code the quantity they 

represent as e.g., the number of marks in any tally-like system does. When analyzing the 

relation of externally to internally available information needed to multiply two multi-digit 

numbers Zhang and Norman (1995) proposed that such multiplication involves six steps [i.e., 
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(i) separating power and base dimensions, (ii) get base values, (iii) multiply base values, (iv) 

get power values, (v) add power values, and (vi) attach power values to the product of the 

base values] of which four [i.e., steps (i), (iv), (v), and (vi)] and thus more than in any other 

numerical notation system are based on externally available information in the Arabic number 

system. Based on this observation Zhang and Norman (1995) argue that such comprehensive 

use of external representations by the Arabic number system may be the most important 

reason why it is so widely established and has been recognized as on of the most genius 

inventions in human history. Nevertheless, it is almost impossible to say whether future 

developments may or may not come up with requirements incompatible with the structuring 

of the Arabic number system, thereby, leading to transformational processes or even to its 

replacement. 

Yet, for the moment the Arabic number system is a vital part of almost everybody’s 

everyday life. Being numerate (in addition to being literate) is already an integral prerequisite 

of managing one’s life at the beginning of the 21
st
 century. Indeed, Bynner and Parsons (1997, 

see also Parsons & Bynner, 2005) found insufficient numeracy to be a more pronounced 

impairment regarding job and promotion prospects as compared to poor literacy. Against this 

background an understanding of how numerical information is cognitively represented 

complying with the specifications of the Arabic number system in general and its structural 

place-value organization in particular is of specific importance to corroborate elaborate and 

efficient teaching and training of numerical/mathematical competencies (see above for the 

representational advantages of the Arabic number system). As a first step it may be interesting 

to evaluate in what way the representation of the place-value structure of the Arabic number 

system is implemented in current models of numerical cognition. The following section will 

address this issue. 
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Arabic place-value coding in current models of number processing 

 In the following, the two models of numerical cognition by McCloskey (1992) and 

Dehaene and Cohen (1995; 1997) shall be described and evaluated by their capability to 

represent the place-value structure of the Arabic number system. 

  

The Abstract Code Model 

The Abstract Code model (McCloskey, 1992; McCloskey & Macaruso, 1994, 1995, 

see Figure 1) proposes that its subsystems (i.e., comprehension, calculation and response 

production) communicate through a single, abstract, semantic quantity code. The 

comprehension subsystem transforms different numerical inputs into the abstract code on 

which calculation and response generation subsequently operate. This abstract code is seen as 

a decomposition of numbers into their powers of ten complying with the place-value structure 

of the Arabic number system (e.g. 358 is represented as: {3} 10
2 

{5} 10
1
 {8} 10

0
). Access to 

this abstract code is necessarily required before any other numerical process is possible. The 

calculation subsystem operates only on this code and is supposed to include a memory of 

basic number facts and rules, such as 2 * 4 = 8, and N * 0 = 0, respectively. Finally, the 

production subsystem transcodes the abstract code back into Arabic, written or spoken verbal 

number format as required by the current task. To account for observed dissociations of 

number naming (i.e., transcoding) and calculations in neuropsychological patients Cipolotti 

and Butterworth (1995) proposed an additional asemantic route involved in transcoding 

numbers from one notation into another which bypasses the central abstract semantic quantity 

code (see also Ablinger, Weniger, & Willmes, 2006 for an intervention study on transcoding 

performance in an aphasic patient with spared calculation ability). 
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Figure 1: McCloskey’s Abstract Code Model (adapted from Cohen & Dehaene, 1995, p.132) 

 

The Triple Code Model 

Dehaene’s (1992, Dehaene & Cohen, 1995, 1997; see also Dehaene, Piazza, Pinel & 

Cohen, 2003 and Hubbard, Piazza, Pinel, & Dehaene, 2005 for model specifications) Triple 

Code Model postulates three codes upon which number processing is based: (i) an analogue 

holistic magnitude representation, (ii) a visual-Arabic number form, and (iii) an auditory-

verbal code (see Figure 2). In contrast to the Abstract Code Model (McCloskey, 1992) these 

three codes can directly activate one another without the central bottleneck of an amodal, 

semantic code. Thus, if a problem is encountered in a non-specialised modality the 

information will be transcoded directly to the relevant modality for further processing (see 

also Cipolotti & Butterworth, 1995 for a similar proposal extending McCloskey’s abstract 

code model). On the other hand, and in accordance with McCloskey’s model, task specificity 

is assumed for each of the components of the Triple Code Model: For instance, any kind of 

quantity comparison and approximate calculation are believed to mainly rely on the analogue 

magnitude code. From the beginning the Triple Code Model was conceptualized as a neuro-

functional model, thereby, intended to make predictions about where in the human brain the 

Abstract semantic 
quantity code 

Verbal number 
Comprehension 

two x four = ? 

Arabic number 
Comprehension 

2 x 4 = ? 

Arabic number 
Production 

8 

Verbal number 
Production 

“eight“ 

Calculation 
Subsystem 

arithmetic facts 

{2} x {4} = {8} 

Abstract Code Model 
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three representations proposed are to be localized. While the neuro-anatomical correlate of the 

analogue magnitude representation remained quite vague in the first compositions of the 

model (Dehaene & Cohen, 1995; 1997), Dehaene and colleagues (2003) circumscribed the 

cortex sites assumed to be specifically involved in magnitude processing more precisely: On 

the one hand, the core processing of quantity information is proposed to be subserved by the 

horizontal parts of the intraparietal sulcus (IPS) as an abstract and notation invariant 

representation of magnitude. This magnitude representation is suggested to be spatially 

organized by means of a left-to-right oriented mental number line. When processing 

magnitude information the corresponding parts of this mental number line are assumed to be 

activated. Thereby, performing numerical tasks as basic as magnitude comparisons requires 

attentional navigating along the mental number line to integrate the necessary information. 

Dehaene and colleagues (2003) postulated such processes of mental navigation calling upon 

the spatial attributes of the mental representation of number magnitude to be subserved by 

posterior superior parts of the parietal lobe (PSPL) adjacent to the (IPS). Thus, in its latest 

version the Triple Code Model specifically includes a spatial representation of number 

magnitude apart from an abstract magnitude code. However, please note that generally 

magnitude representation in the Triple Code Model is assumed to be holistic in nature, 

meaning that multi-digit numbers are represented as one integrated entity rather than 

decomposed into their constituting digits. Thus, the place-value structure of the Arabic 

number system is not retained in the magnitude representation postulated by the Triple Code 

Model. Finally, the neuro-anatomical correlates of the auditory-verbal representation 

(including arithmetic, e.g., multiplication fact knowledge) as well as the visual Arabic number 

form are suggested to be found in the left angular gyrus and the temporo-occipetal junction 

respectively. Yet, as the current thesis is primarily concerned with aspects of the magnitude 

representation and in particular with evaluating the representation of the place-value structure 
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of the Arabic number system within the representation of number magnitude, the neuro-

functional implications of the auditory-verbal and the visual number form representation will 

not be specified any further.  

 
 

Figure 2:  Dehaene & Cohen’s (1995) Triple Code Model (adapted from Cohen &  

Dehaene, 1995, p. 132) 

 

In summary, it is evident, that the two models differ substantially in respect of the 

implementation of the place-value structure of the Arabic number system. On the one hand, 

an amodal semantic representation of number magnitude is at the heart of McCloskey’s model 

and this magnitude representation is organized along place-value constraints. On the other 

hand, within the framework of the Triple Code Model place-value structuring is not assumed 

for the representation of analogue magnitude. Instead, the magnitude of any number is 

represented by a holistic code not including place-value information. Anyway, there is some 

inconsistency within the Triple Code Model regarding the influence of place-value 

information. For the case of multi-digit arithmetic, in particular addition and subtraction 

Dehaene and Cohen (1995) propose a solution process based on repetitively solving single 

digit problems at corresponding place-value positions, i.e., at the same power level [e.g., 24 + 

61 = (2 + 6) * 10
1
 + (4 + 1) * 10

0
]. 

Autitory verbal 
Code 

arithmetic facts 

two x four = “eight“ 

Analog magnitude 
Representation 

Comparison 

Estimation 

Visual Arabic 
Number form 

{1, 2 ,…8 ,9} 

Triple Code Model 
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However, at this point it has to be emphasized that although sufficiently implementing 

the place-value structure of the Arabic number system, the model by McCloskey and 

Colleagues (McCloskey, 1992; McCloskey & Macaruso, 1994; 1995) is more or less 

disproved. In particular, the assumption of a central representation of number magnitude upon 

which all numerical operations such as transcoding, calculation, comparison, etc. operate was 

not supported by empirical evidence. In this respect the Triple Code Model by Dehaene and 

Cohen (1995; 1997) is the more powerful and influential model that is largely backed by 

behavioural data, neuropsychological patient data, and neuro-imaging data (see Dehaene et 

al., 2003; Dehaene, 2009 for a reviews). For the current thesis two specificities of the Triple 

Code Model will be of particular relevance. On the one hand, the Triple Code Model serves as 

a starting point for any functional interpretation of the observed brain activation pattern for 

any neuro-cognitve / neuro-imaging evaluation of the underlying processes in numerical 

cognition such as the number bisection task (see Study 5 of the current thesis) as it allows for 

functional and neuro-anatomical predictions. On the other hand, and even more importantly, 

the assumption of a holistic analogue representation of number magnitude was the dominant 

view in research of numerical cognition and is still promoted (e.g., Dehaene, Dupoux, & 

Mehler, 1990; Ganor-Stern, Pinhas, & Tzelgov, 2009; Hinrichs, Yurko, & Ho, 1981; Moyer 

& Landauer, 1967; Poltrock & Schwartz, 1984; Restle, 1970; Zhou, Chen, Chen, & Dong, 

2008).  

 

An alternative account: decomposed processing of tens and units 

The assumption of holistic number magnitude representation (Dehaene & Cohen, 

1995; 1997) was also questioned in recent years. In 2001 Nuerk and colleagues (Nuerk, 

Weger, & Willmes, 2001) observed the so-called unit-decade compatibility effect indicating 

decomposed processing of tens and units in two-digit number comparison. Unlike most 
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previous studies on two-digit number comparison Nuerk et al. (2001) did not use a fixed 

standard (e.g., 55 or 66, cf. Dehaene et al., 1990) to which a presented number had to be 

compared. Instead, participants had to single out the larger number of a pair of two-digit 

numbers. Generally, when comparing two two-digit numbers separate comparisons of tens 

and units may result in either compatible or incompatible decision biases. For instance, in the 

number pair 38_53 the larger number contains the smaller unit digit. Thereby, although the 

overall relation also holds for the comparison of the tens digits it this is not the case for 

comparing the unit digits (i.e., 28 < 53 and 2 < 5, but 8 > 3). Thus, separate comparisons of 

tens and unit result in antidromic, i.e., incompatible decision biases. On the other hand, in a 

number pair such as 42_57 the decision biases for the separate comparisons of tens and units 

are both congruent with the overall decision (i.e., 42 > 57, 4 < 5, and 2 < 7). Nuerk and co-

workers observed that although overall distance was held constant between compatible and 

incompatible number pairs (e.g., 15 in both examples above) incompatible number pairs were 

followed by longer response latencies and more errors than their compatible counterparts. As 

overall distance was matched between compatible and incompatible number pairs, no 

compatibility effect should be obtained if an exclusively analogue (holistic) magnitude 

representation were engaged. Replications of the compatibility effect for Arabic stimuli 

arranged in different layouts (Nuerk, Weger, Willmes, 2004a; Ratinckx, Nuerk, van Dijk & 

Willmes, 2006) and also for number words (Nuerk, Weger & Willmes, 2002a; 2005; Macizo, 

& Herrera, in press) indicated that it is not a purely perceptual effect. Additionally, 

interactions of the compatibility effect with distance measures of tens and units implicated 

that it is not a common attentional congruity effect (i.e., large unit distances were associated 

with a more pronounced compatibility effect for RTs, whereas the same relation was 

observed for small decade distances and the compatibility effect for error rates). In other 

words, the results cannot be explained by exclusively assuming a response conflict because 
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unit and decade distance must be processed separately to result in the antidromic influence 

just mentioned (see also Nuerk & Willmes, 2005 for a more detailed discussion of this point.  

Yet, to account for the compatibility effect a model is necessary that allows us to 

differentiate between processing the tens digits and processing the unit digits complying with 

the place-value structure of the Arabic number system: a strictly decomposed or at least a 

hybrid model of two-digit number representation. In the strictly decomposed model the 

magnitudes of tens and units are represented separately (possibly on concomitant number 

lines, cf. Verguts & De Moor, 2005; see Nuerk and Willmes, 2005 for a review) and the 

overall magnitude of a two-digit number is achieved by integrating the single digits’ of tens 

and units magnitudes into their respective position within the place-value structure of the 

Arabic number system (henceforth referred to as place-value integration, see also Poltrock & 

Schwartz, 1984 for an early inclusion of place-value knowledge into the decision process in 

number comparison). Thereby, the place-value structure is a necessary prerequisite for 

correctly representing multi-digit numbers. In the hybrid model (cf. Nuerk et al., 2001; Nuerk 

& Willmes, 2005) above described decomposed representation is accompanied by a holistic 

representation of the number’s overall magnitude, meaning each number to be represented as 

an integrated entity of all its constituting digits without retaining the place-value structure. 

So, brought up by the observation of the compatibility effect (Nuerk et al., 2001) decomposed 

processing of tens and units in two-digit number comparison and on a broader level the 

possibility of an (additional) representation of number magnitude in terms of separate coding 

of each power level (cf. McCloskey, 1992) had to be considered as an alternative to the 

traditional assumption of an analogue holistic representation of all numbers disregarding the 

place-value structure of the Arabic number system (cf. Dehaene et al., 1990).  

Nevertheless, although there is cumulating evidence for the notion of decomposed 

processing of multi-digit numbers from more and more numerical tasks (see below for a brief 
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review), questions concerning representational universality / generality versus specificity are 

still under debate. Therefore, it was the aim of the current thesis to provide converging 

evidence for the existence and the importance of the place-value structure of the Arabic 

number system being retained in the human representation of number magnitude. This issue 

was pursued by evaluating effects possibly driven by separate representations of the 

individual power levels of multi-digit numbers in a variety of numerical tasks, using different 

methodologies and assessing diverse populations. However, before turning to a more explicit 

description of the present thesis recent evidence suggesting the place-value structure of the 

Arabic number system to be represented in the human understanding of number semantics 

will be reviewed briefly. 

 

Further evidence for decomposed processing of tens and units 

In recent years evidence for the existence of decomposed processing of number 

magnitude has accumulated. Extending the original results recent studies also using a number 

comparison paradigm revealed that the influence of the place-value structure of the Arabic 

number system on numerical cognition is generally language invariant (Moeller, Fischer, 

Nuerk, & Willmes, 2009a; Verguts & De Moor, 2005), although slightly moderated by 

characteristics of a language’s number word system (Nuerk et al., 2005; Pixner, 2009), starts 

early in numerical development (Nuerk, Kaufmann, Zoppoth, & Willmes, 2004b; Pixner, 

Moeller, Zuber, & Nuerk, 2009), and is relatively independent from literacy (Wood, Nuerk, 

Freitas, Freitas, & Willmes, 2006a for data of Brazilian semi illiterates). Furthermore, Moeller 

et al., 2009a showed that separate processing of tens and units is performed in parallel rather 

than sequentially as suggested by Poltrock and Schwartz (1984). Moreover, Wood, Nuerk, 

and Willmes (2006b) were able to pinpoint the neural correlates of place-value integration 

(i.e., the compatibility effect) to the depths of the intraparietal sulcus (IPS, see also Goebel, 
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Johansen-Berg, Behrens, & Rushworth, 2004 and Knops, Nuerk, Sparing, Foltys, & Willmes, 

2006 for TMS data corroborating such a notion). Apart from this, effects of place-value 

integration were not limited to studies employing number comparison tasks. Nuerk, Geppert, 

van Herten, and Willmes (2002b) found evidence for a reliable influence of place-value 

integration on performance in a verification version of the number bisection task (NBT). 

Response latencies for evaluating whether a central number also represented the arithmetic 

mean between the two outer numbers of a triplet were significantly prolonged for triplets 

crossing a decade boundary as compared to triplets staying within the same decade, even 

when controlling for the overall range of the triplet (e.g., 25_28_31 vs. 23_26_29). 

Additionally, several studies investigating the development of numerical cognition found 

converging evidence that place-value understanding is reflected in children’s transcoding 

performance (e.g., Pixner, 2009; Zuber, Pixner, Moeller, & Nuerk, 2009; see also Krinzinger 

et al., in press for language effects), develops differently in different cultures and number 

word systems (Miura & Okamoto, 1989; Miura et al., 1994; Pixner, 2009), and even 

influenced the development of spatial numerical representations as conceptualized by the 

mental number line (Moeller, Pixner, Kaufmann, & Nuerk, 2009b). Finally, processes of 

place-value integration have also been identified to determine performance in arithmetic tasks 

such as addition and multiplication. In addition the requirement of a carry is generally agreed 

to determine task difficulty (e.g., Kong et al., 2005; Deschuyteneer, de Rammelaere, & Fias, 

2005). The execution of a carry in two-digit addition requires updating the decade digit of the 

result by the to-be-carried decade digit of the unit sum (i.e., 36 + 29 � 6 + 9 = 15 with 5 

being the unit digit of the result and 30 + 20 + 10 = 60 with the last addend reflecting the to-

be-carried decade digit of the unit sum, e.g., Klein et al., under revision) – a specific variant of 

place-value integration (analogue for the borrowing effect in subtraction). For multiplication 

the case is a little bit different. Generally, it has been observed for multiplication that 
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responses are easier (i) for problems involving small as compared to large operands (e.g., 2 x 

3 is easier than 8 x 7, e.g., Stazyk, Ashcraft, & Hamann, 1982), (ii) for problems involving 5 

as an operand (e.g., 8 x 5 is easier than 8 x 4; Siegler, 1988) and (iii) for tie problems (e.g., 7 

x 7, Lefevre et al., 1996). Additionally, Campbell & Graham (1985; see also Butterworth, 

Marchesini, & Girelli, 2003; Campell, 1994; 1997) found that the majority of multiplication 

errors are so-called operand errors in which the erroneous result represents the correct result 

of a neighbouring problem [i.e., in which one of the operands is mistakenly decreased or 

increased by 1, e.g., 4 x 6 = 28 which would be correct for 4 x (6 + 1)]. Evidence for 

decomposed processing of tens and units in multiplication comes from two observations. 

First, Verguts and Fias (2005a) were able to show in a computational modelling approach that 

problem size, five, and tie effect can be accounted for by a model assuming an initially 

decomposed representation of tens and units of the correct result. Second, Verguts and Fias 

(2005b; see also Domahs, Delazer, & Nuerk, 2006; Domahs et al., 2007) introduced the 

concept of unit-decade consistency to account for performance specificities in multiplication 

as described above. In this context consistency basically reflects the extent to which two 

neighbouring problems share the same decade or unit digit [e.g., 4 x 8 = 32; consistent probe: 

36 = 4 x (8 + 1) vs. inconsistent probe: 28 = 4 x (8 – 1)]. The finding that in multiplication 

verification decade consistent, but nevertheless incorrect solutions probes, are harder to reject 

than decade inconsistent probes (Domahs et al., 2007, see Domahs et al., 2006; Verguts & 

Fias, 2005b for data from a production task again argues for a decomposed representation of 

two-digit numbers. In this vein, processing a decade digit identical to the decade digit of the 

correct result might drive the decision in one direction even when this decision bias is not 

confirmed by the processing of the unit digit, thereby suggesting separate processing of tens 

and units. 
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Taken together, recent empirical evidence (as outlined above) clearly suggests an 

important role of processes of place-value integration not only in very basic numerical task 

such as magnitude comparison but also in more complex tasks involving the coordination and 

integration of different numerical representations (e.g., magnitude, parity and fact knowledge 

in the NBT) and even in basic arithmetical operations. This indicates that place-value 

understanding is an important factor to correctly integrate the single digits constituting a 

given number into one comprehensive representation of this number. However, as already 

described above, the nature of the mental representation of multi-digit numbers is still 

debatable. Even though there is accumulating evidence corroborating the notion of 

decomposed processing of multi-digit number complying with the place-value structure of the 

Arabic number system representational aspects of place-value coding are still to be clarified. 

Even more particularly, questions concerning the importance of place-value understanding for 

the development of numerical / arithmetical capabilities are still untouched and remain to be 

to be investigated – as intended by the current thesis.  

At the same time above arguments raise the question whether the place-value structure 

of the Arabic number system may be considered its own number representation apart from 

representational codes as introduced by Dehaene (1992; see also Dehaene & Cohen, 1995; 

1997; Dehaene et al., 2003) in the Triple Code Model, for instance. This issue will be 

addressed in the next paragraph. 

 

An independent representation of place-value structuring 

Acknowledging the important role of an intact representation of the place-value 

structure of the Arabic number system in such a variety of numerical tasks Nuerk and 

colleagues (Nuerk, Graf, & Willmes, 2006) proposed place-value understanding to be an 

autonomous numerical representation (see also Moeller, Pixner, Klein, Cress, & Nuerk, 
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2009c). Based on the framework of the Triple Code Model (Dehaene & Cohen, 1995; 1997) 

Nuerk et al. (2006, see also Moeller et al., 2009c) derived six basic numerical representations: 

(i) a visual number form necessary to decode number symbols (ii) a semantic representation 

of number magnitude coding the quantity a number represents (iii) a verbal representation of 

numbers required for transcoding, additionally, it is assumed that numerical fact knowledge 

(e.g., multiplication facts) is represented in verbal format (iv) a spatial representation of 

number magnitude, i.e., a mental number line (v) conceptual, procedural, and strategic 

knowledge basically involved in performing arithmetic operations (e.g., 2 + 5 = 5 + 2 or 4 x 0 

= 0)
1
 as well as (vi) a representation of the place-value structure of the Arabic number system. 

Unlike other conceptualizations associating numerical cognition with an underlying general 

number sense (cf. Dehaene, 1997) or a number module (cf. Butterworth, 1999) the 

conceptualization by Nuerk and co-workers (2006) considers numerical cognition as an 

interplay of multiple basic numerical representations.  

Each of these basic components contributes to mature numerical cognition in a very 

specific way. For instance, Holloway and Ansari (2009) observed that children who 

performed better in a number comparison task (indicating a more elaborate number magnitude 

representation) also scored higher in a standardized mathematics achievement test. Moreover, 

Dehaene and Cohen (1997) reported a double dissociation between the representations of 

number magnitude and multiplication fact knowledge in brain damaged patients indicating 

specific influences of either basic representation to numerical cognition (see also Delazer, 

Karner, Zamarian, Donnemiller, & Benke, 2006; Lemer, Dehaene, Spelke, & Cohen, 2003 for 

similar observations). Furthermore, Booth and Siegler (2008) were able to show that children 

                                                 
1
 Please note that this category is quite heterogeneous and can be further differentiated. For instance, conceptual 

knowledge such as 4 x 0 = 0 may reflect a different representation as compared to more procedural aspects such 

as knowing when a carry is needed in addition and how it is executed. Finally, strategic aspects may involve e.g., 

children’s strategy to count on from the larger of two numbers that are to be added (i.e., 2 + 7 = 7 + 1 + 1). 
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whose spatial representation of number magnitude is more precise also achieved higher scores 

in a mathematics achievement test. Additionally, a better spatial representation of number 

magnitude was also predictive of children’s learning of unfamiliar arithmetic problems.  

In summary, it can be concluded that for most of above introduced basic numerical 

representations their importance for numerical cognition in general has already been subject 

to several studies. However, so far a comprehensive evaluation of the importance of processes 

of unit-decade integration into the place-value structure of the Arabic number system is still 

missing. The current thesis aimed at closing this gap by evaluating influences and 

implications of place-value integration for questions addressing the (i) nature of two-digit 

number magnitude representation, (i) the development of place-value representations, (iii) the 

neurocognitive underpinnings of unit-decade integration/place-value understanding, as well as 

(iv) a computational model replicating basic numerical effects. The motivation behind each of 

these issues will be introduced briefly.  

 

Regarding the nature of two-digit number representation accumulating evidence 

suggests that decomposed processing of tens and units exists (see above). However, the 

generality of decomposed processing is still debatable. On the one hand, recent research (e.g., 

Ganor-Stern et al., 2009; Zhou et al., 2008) claimed that decomposed processing of tens and 

units in two-digit number comparison is limited to the case when the two to-be-compared 

numbers are presented simultaneously, i.e., externally when arguing with Zhang & Norman 

(1995; see also Zhang & Wang, 2005). On the other hand, so far, evidence for decomposed 

processing of two-digit number magnitude has only been reported for very basic numerical 

tasks such as number magnitude comparison (e.g., Nuerk et al., 2001; Moeller et al., 2009a; 

Ratinckx et al., 2006) and number bisection (Nuerk et al., 2002b) while evidence for 

decomposed processing of multi-digit numbers in more complex arithmetical tasks is still 
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scarce (but see Domahs et al., 2006; 2007). Therefore, the general aim of the current thesis 

was to provide further evidence for the generality of a decomposed representation of two-digit 

number magnitude. On the level of basic research on the representation of two-digit number 

magnitude this goal was pursued by two studies. Based on the origins of the notion of 

decomposed processing of two-digit numbers Study 1 investigated whether there are indeed 

representational differences between internal and external magnitude representations as 

claimed by Zhang and Wang (2005) with only the external representation being decomposed 

complying with the place-value structure of the Arabic number system while the internal 

representation of number magnitude were holistic instead. Going beyond the case of such 

basic numerical tasks Study 2 was intended to offer new evidence for the generalizability of 

decomposed processing of tens and units to the case of mental arithmetic by evaluating the 

case of two-digit addition. However, when interested in the general validity of the account of 

decomposed processing of multi-digit number magnitude an important aspect refers to the 

influence of place-value properties on the development of numerical cognition which will be 

addressed in Studies 3 and 4. Study 3 follows up on a recent study by Moeller et al. (2009b) 

in which the authors presented an alternative account for the development of the spatial 

representation of number magnitude up to 100 suggesting two separate representations of 

single- and two-digit numbers; thereby considering place-value properties of the Arabic 

number system. In Study 3 of the current thesis the validity of their account is evaluated in a 

trans-lingual study also allowing for an evaluation of influences determined by differences in 

the number word systems of German and Italian on a non-verbal numeric task, i.e., the 

number line estimation task. Thus, apart from the obvious investigation of place-value 

influences in numerical development Study 3 also aimed at extending the notion of 

decomposed processing of tens and units to the case of the number line task.  
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From a developmental point of view it is interesting that none of the current models of 

numerical development (e.g., von Aster & Shalev, 2007; Butterworth, 2005; Wilson & 

Dehaene, 2007; Rubinsten & Henik, 2009) considers the role of place-value understanding, 

explicitly. Nevertheless, based on recent findings suggesting particular effects of place-value 

processing in children (e.g., Nuerk et al., 2004; Moeller et al., 2009c; Pixner et al., 2009) 

Study 4 specifically addressed the question of place-value understanding in numerical 

development in a longitudinal design. Therein, indices of place-value processing from a 

variety of basic numerical tasks such as magnitude comparison and transcoding were assessed 

in first grade and their predictive value for children’s performance in an addition task 

administered two years later was inspected. To date, such longitudinal influences have only 

been investigated for the case of children’s number magnitude representation (Holloway & 

Ansari, 2009; Halberda, Mazzocco, & Feigenson, 2008) but not for structural aspects such as 

place-value understanding. So, Study 4 of the current thesis aimed at replicating previous 

findings but for another basic numerical representation by combining specific aspects of prior 

studies (e.g., Zuber et al., 2009 on the influence of place-value information in transcoding; 

Pixner et al., 2009 on place-value integration in first-graders performing a two-digit 

magnitude comparison; Study 2 on decomposed processing in two-digit addition) to 

investigate the longitudinal development of numerical capabilities as determined by children’s 

mastery of the place-value structure of the Arabic number system. 

As the evidence corroborating the notion of decomposed processing of multi-digit 

number from classical behavioural and developmental studies accumulates, further neuro-

psychological aspects regarding such processing are of particular interest. On the one hand, 

the question if and if so in what way place-value processing is affected by neuropsychological 

disorders such as hemi-spatial neglect arises. On the other hand, the question regarding 

possible neural correlates of place-value processing comes up. Both of these were addressed 
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by Studies 5 and 6 of the current thesis. Against the background of the findings suggesting a 

disruption of the mental number line by hemi-spatial neglect (e.g., Zorzi, Priftis, & Umltà, 

2002; Priftis, Zorzi, Meneghello, Marenzi, & Umltà, 2006) and the suggested existence of 

multiple number lines (i.e., one for each power level: units, tens, etc, see Nuerk et al., 2001; 

Nuerk & Willmes, 2005 for a more detailed discussion) the question comes up in how far 

hemi-spatial neglect affects place-value attributes of the to-be-processed numbers. In Study 5 

the number bisection task was employed to evaluate the consequences of hemi-spatial neglect 

on the processing of place-value information. Thereby, using a task for which a crucial 

influence of place-value knowledge on task performance is known (see Nuerk et al., 2002) to 

assess place-value influences in neuropsychologically relevant group of participants to 

increase our knowledge on the generalizability of decomposed processing of two-digit 

numbers. In Study 6 the same task is again employed to evaluate possible neural correlates of 

place-value processing in particular. Wood and colleagues (2006b) were able to narrow down 

specific processes of place-value integration as reflected by the compatibility effect in two-

digit magnitude comparison to a small area within the intraparietal sulcus. Thus, it was 

hypothesized that place-value processing as required in the number bisection task should lead 

to specific neural activation at a comparable site. Thereby, converging evidence for specific 

neural processing related to place-value representations would be provided from a different 

task, again corroborating the notion of decomposed processing of tens and units to be a quite 

general characteristic of multi-digit number processing. 

Finally, the interpretation of empirical evidence should be guided by theoretical 

considerations, possibly formalized by a theoretical model. Nuerk and Willmes (2005, see 

also Nuerk et al., 2001 for first sketches and Knops, 2006 for further specifications) provided 

such a model of decomposed processing for the case of two-digit number comparison. 

Moreover, in recent years, a growing number of studies tried to implement the constraints of 
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particular theoretical considerations on the mental representation of number magnitude into 

computational neural network models to evaluate differing notions regarding scaling 

properties of the mental number line, for instance (e.g., Zorzi & Butterworth, 1999; Dehaene 

& Changeaux, 1993; Grossberg & Repin, 2003; Verguts & Fias, 2004; 2008; Verguts, Fias, & 

Stevens, 2005). However, there is currently no computational model trying to realize a 

decomposed representation of two-digit number magnitude. Actually, most models did not 

even aim to account for two-digit number magnitude but were focused on single-digit or, at a 

maximum, teen numbers (but see Grossberg & Repin, 2003). Therefore, apart from promoting 

the generalizability of the notion of decomposed processing of two-digit numbers, an integral 

aim of the current thesis was to provide first computational evidence corroborating recent 

empirical results. In this vein, Study 7 pursued this goal by a direct comparison of three 

computational model each reflecting one of the current models of number magnitude 

representation (i.e., holistic, strictly decomposed, or hybrid, see above) by evaluating in how 

far modelled data replicated empirical effects such as the distance and unit-decade 

compatibility effect. Thereby, we wished to add a further line of evidence for the validity of 

the notion of decomposed processing of two-digit number magnitude the findings from classic 

behavioural (Studies 1 and 2), developmental (Studies 3 and 4), and neuro-psychological 

(Studies 5 and 6) experiments. 

 

In the following section, the theoretical background and the intention of the studies 

pursuing above introduced issues will be discussed briefly to serve as an outline of what will 

be investigated why and in which way in each of the individual studies. 
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OVERVIEW OVER THE STUDIES INCORPORATED INTO THE PRESENT 

THESIS 

As already mentioned above, the current thesis set off to investigate the importance of 

place-value understanding under different empirical aspects of two-digit number processing. 

The two studies of the second section follow up on basic research questions clarifying 

representational characteristics of two-digit numbers regarding place-value integration in (i) 

behavioural number magnitude comparison task (cf. Study 1) as well as (ii) in an eye-tracking 

experiment on addition verification (cf. Study 2). In the third section two studies evaluating 

(i) the influence of the place-value structure of the Arabic number system on the development 

of the spatial representation of number magnitude (cf. Study 3) as well as (ii) the longitudinal 

developmental trajectories of early place-value understanding for later arithmetic performance 

will be presented (cf. Study 4). Following on these developmental aspects section 4 addresses 

neuropsychological questions: (i) the neural correlates of place-value integration will be 

examined in a within task approach using functional magnetic resonance imaging (cf. Study 

5) and (ii) the consequences of representational hemi-spatial neglect on place-value 

integration will be dealt with in patient study (cf. Study 6). In section 5 a computational 

model of two-digit number processing is introduced and validated by its performance in two-

digit number magnitude comparison. Finally, section 6 shall provide a general discussion of 

the results of the individual studies together with a conclusive evaluation and further 

perspectives for the relevance and the investigation of the representation of the place-value 

structure as present in the Arabic number system. 

Before presenting each of these studies the most important points reflecting the 

motivation and the rationale of these studies shall be considered in turn. 
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Section 2: On task general influences of the place-value structure of the Arabic number 

system in human number representation  

1. Study 1: Internal number magnitude representation is not holistic, either.  

Regarding the way in which two-digit number magnitude is represented there is 

still an ongoing controversy among researchers. After the unit-decade compatibility 

effect (indicating decomposed processing of tens and units) has been published it was 

criticised to be just a perceptual artefact of the column-wise presentation of the two to-

be-compared numbers one below the other. By replicating the compatibility effect 

with different display layouts (Nuerk et al, 2004) as well as for German number words 

(Nuerk et al., 2005) these notion could be refuted. Nevertheless, in 2005 Zhang and 

Wang presented evidence suggesting that decomposed processing of tens and units 

may depend on the presentational format employed (see also Zhou et al., 2008; Ganor-

Stern et al., 2009). The authors found evidence for separate processing of tens and 

units when the standard to which a given probe number had to be compared and the 

probe itself were externally displayed at the same time. On the other hand, they did not 

observe any indication of decomposed processing when the probe had to be compared 

to an internally memorized standard. In the current study possible reasons why 

decomposed processing of tens and units may not have been detected in previous 

studies using a fixed internal standard are outlined. Additionally, an experiment is 

presented in which most of these confounds were controlled for.  

 

2. Study 2: On the cognitive instantiation of the carry effect – Evidence from eye-

tracking.  

Previously, the carry effect in addition was assumed to reflect the execution of 

asemantic procedural rules rather than involving specific magnitude processing. Such 
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a view was corroborated by a variety of neuro-imaging studies in which processing 

carry addition problems as compared to non-carry problems was associated with 

increased frontal activation indicating increased demands on e.g., working memory 

(e.g., Ashcraft & Kirk, 2001; Fürst & Hitch, 2000), cognitive control (e.g., Miller, 

2000) or . At the same time no specific increase in parietal activation around the IPS 

(known to subserve the processing of magnitude information) was found. However, 

recently, the data of Klein and Co-workers (under revision) suggested a special role of 

the unit digits of the summands in two-digit addition verification. In several regression 

analyses the authors could show that the carry effect did not seem to be purely 

categorical. Instead, the continuous predictor reflecting the sum of the unit digits of 

the summands turned out to be a reliable predictor of task performance. The specific 

influence of the unit digits only again indicated decomposed processing of two-digit 

numbers even in the case of basic arithmetic in the way that tens and units of two-digit 

numbers are seemingly processed separately rather than holistically as their influences 

on performance can be dissociated. However, the question remains whether it is the 

recognition of a carry that makes carry addition problems more difficult (only if the 

sum of the unit digits of the summands is equal or larger than 10 a carry is required) or 

rather the execution of the carry procedure involving processes of place-value, i.e., 

unit-decade integration as indicated by specific processing of either tens or units. The 

present study addressed this issue by recording participants’ eye fixation behaviour in 

a two-digit addition verification paradigm. According to the eye-mind and the 

immediacy assumption on eye fixation behaviour above mentioned processes of 

recognizing vs. executing the carry should be distinguishable from each other. While 

the former should be associated with a specific increase of fixations on the unit digits 
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of the summands for carry compared to non-carry addition problems, the latter should 

lead to particular increase of fixations on the decade digit of the result.  

 

Section 3: On the importance of place-value integration for arithmetic development  

1. Study 3: Language effects on children’s non-verbal number line estimations. 

In a recent study Zuber et al. (2009) showed the importance of place-value 

understanding for transcoding numbers from one notation into another as well as the 

specific difficulties arising in a language (such as German) in which the order of tens 

and units is reversed in number words as compared to their symbolic instantiation 

when written in Arabic digits. Moreover, Moeller et al. (2009b) showed that in 

German speaking children place-value understanding is related to the development of 

the spatial representation of number magnitude: mastery of the place-value structure of 

the Arabic number system seems to be associated with the precision of children’s 

estimates when asked to mark the position of a given number on a hypothetical 

number line. Children’s estimation performance was accounted for best by a two-

linear model suggesting two separate representations of single- and two-digit numbers 

indicating different processing of numbers which require or do not require place-value 

integration to correctly understand their overall magnitude, thereby, again highlighting 

the impact of place-value properties. However, from these studies it remains 

questionable whether this relation is specific for the German language (maybe driven 

by its inversion property) or rather culture invariant. This question was pursued in a 

cross cultural study replicating the results of Moeller et al. (2009b) in Italian speaking 

children who use a number word system without inversion and contrasting the results 

of German and Italian-speaking children in regard to the influence of place-value 

understanding on the results in a number line task.. This is particularly interesting as it 
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would indicate influences of verbal number word representations on performance in a 

non-verbal numerical task and thus raising the question of the influence of verbal 

recoding on performance in non-verbal task. 

2. Study 4: Early place-value understanding as a precursor for later arithmetic 

performance – a longitudinal study on numerical development. 

In a cross-sectional approach Holloway and Ansari (2009) showed that an 

elaborate basic numerical representation of number magnitude as indicated by the 

performance in a number comparison task is associated with children’s performance in 

a standardized mathematics achievement test. The better children performed in the 

comparison task the higher did they score in the achievement test (see Booth & 

Siegler, 2008 for a similar interrelation of the spatial representation of number 

magnitude and mathematics achievement). However, the possible importance of early 

place-value understanding for later numerical/mathematical development has not been 

evaluated yet. Based on the notion of multiple numerical representation to determine 

numerical cognition (see above) it is of interest on a theoretical level whether 

measures of early place-value understanding such as the transcoding performance (cf. 

Zuber et al., 2009) and more specifically the number of transcoding errors related to 

inversion in German-speaking children as well as the compatibility effect (cf. Pixner 

et al., 2009) is predictive of later arithmetic performance in general and for effects of 

place-value integration in later arithmetic (i.e., the carry effect in addition), in 

particular. The current study addressed this question by conducting a longitudinal 

investigation of whether and how transcoding and/or number comparison performance 

(in particular inversion errors and/or the compatibility effect) observed in first grade 

assessment are reliable predictors of addition performance in third grade and more 

particularly the carry effect (being driven specific and prominent processing of the 
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unit digits indicating decomposed processing of two-digit number magnitude, see also 

Study 2) as obtained in third grade assessment.  

 

Section 4: The neuro-cognitive underpinnings of place-value integration  

1. Study 5: All for one but not one for all: How multiple number representations are 

recruited in one numerical task.  

Recently, Goebel et al. (2004) were the first to dissociate the neural correlates of 

the representations of single- and two-digit numbers within the IPS suggesting 

separate representations for these two power levels. Further on, Wood and colleagues 

(2006b) investigated the neural underpinnings of the unit-decade compatibility effect 

to evaluate whether there is a specific cortex area (possibly within the IPS) subserving 

processes of unit-decade integration. The data by Wood and colleagues (2006b, see 

also Knops et al., 2006) were informative on this point and indicated that indeed 

neural activation in a circumscribed part of the IPS was determined by unit-decade 

compatibility. However, these results were obtained in a magnitude comparison task, 

assumed to primarily assess the representation of number magnitude. Therefore, it 

would have been interesting to evaluate the validity of these results in a more complex 

task known to recruit different numerical representation and requiring participants to 

integrate these representations to solve the task. The NBT fulfilled these criteria (cf. 

Nuerk et al., 2002b). In an fMRI using a verification version of the NBT we aimed at 

investigating the influence of processes of unit-decade integration, in this case the 

impact of decade crossings on task performance (e.g., 24_28_32 vs. 20_24_28; see 

Nuerk et al., 2002b).  
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2. Study 6: Impairments of the mental number line for two-digit numbers in neglect.  

In their seminal paper Zorzi et al. (2002; see also  Zorzi, Priftis, Meneghello, 

Marenzi, & Umiltà., 2006) observed that hemi-spatial neglect not only distorts the 

representation of intra- and extra-personal space but that this impairment generalizes 

to the spatial representation of number magnitude, thereby disrupting the mental 

number line. Interestingly, the spatial mental representation of number magnitude was 

affected by hemi-spatial neglect in the same way as mental representation of physical 

space. In a NBT with numbers up to 29 Zorzi and co-workers (2002) observed that 

patients’ bisection errors mirrored the error pattern in physical line bisection: first, 

neglect patients misplaced the numerical mean of a given interval to the right (e.g., 

indicating 7 to be the midpoint between 1 and 9), second, the deviation between the 

correct and the indicated midpoint of a given interval increased as the range of the 

interval increased, and third, a cross-over effect was observed for very small interval 

ranges. As the NBT requires orienting and navigating along the mental number line we 

were interested whether such neglect effects could also be observed for the whole 

range of two-digit numbers. More particularly, we were interested whether hemi-

spatial neglect had influences on the processing of place-value information as well. 

According to Nuerk and colleagues (2001, see also Nuerk and Willmes, 2005) there 

may not exist just one analoge mental number line but separate number lines for the 

different power levels of the Arabic number system (i.e., tens, units, etc.). 

Consequently, evaluation of the performance of neglect patients in a two-digit number 

bisection task may be informative for clarifying whether processing of structural 

aspects of the Arabic number system is also impaired in neglect patients. Therefore, 

the impact of neglect on the processing of decade crossings within the to-be-judged on 

triplets is of particular interest as in these triplets processing of place-value 
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intergration is specifically relevant. When neglect patients would exhibit particular 

impairments in these triplets this would indicate that neglect not only hinders the 

processing of magnitude information but also of structural information when presented 

with two-digit numbers. In turn, this would imply that the mental number line 

incorporates such structural place-value information.   

 

Section 5: A computational model of place-value integration in two-digit number 

comparison 

Study 7: Two-digit number processing – holistic, decomposed or hybrid? A 

computational modelling approach 

This last study is not an empirical study, but aimed at clarifying an issue for 

which there is currently no empirical resolution. At the moment there are three 

different conceptualizations of how number magnitude representation may be 

organized. The assumption of a holistic representation sees the magnitude of a number 

to be represented as a single integrated entity, thereby not retaining the place-value 

structure of the Arabic number system. Contrarily, the strictly decomposed view 

assumes that each power level of a given number (e.g., tens and units of two-digit 

numbers) is represented separately. Finally, the hybrid model of number magnitude 

representation is a combination of the former two models assuming both decomposed 

representations of the individual power levels as well as an overall holistic 

representation of a given number. In particular, the strictly decomposed and the hybrid 

model cannot be differentiated on the based of empirical data. Therefore, three 

network models corresponding to each of above mentioned representational models 

were programmed to evaluate which of these models accounts best for the 

accumulated empirical data. Particular interest was paid whether the models would 
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replicate processes of unit-decade integration in number comparison, namely the 

compatibility effect. Furthermore, we aimed at investigating in how far the model data 

correspond to the empirical data for both comparisons to an external (e.g., Nuerk et al., 

2001, Moeller et al., 2009a) as well as internal standard (cf. Moeller et al., 2009d, 

Study 1 of this thesis). Therefore, the data produced by either of the three models was 

contrasted to the empirical data of the studies by Moeller et al. (2009a, using a 

variable standard, i.e., singling out the larger number of a pair of numbers) and 

Moeller et al., 2009d, using an fixed standard, i.e., comparing a given number to an 

internally memorized standard).  

 

Taken together, the current thesis aimed at investigating the influence of the place 

value structure of the Arabic number system on two-digit number processing in respect of 

four different aspects: (i) further clarification of basic representational characteristics of place 

value integration in magnitude comparison and addition (cf. Studies 1 and 2), (ii) 

investigating the developmental implications of early place value understanding (cf. Studies 3 

and 4), (iii) evaluating the neuropsychological correlates of place value integration and its 

impairments (cf. Studies 5 and 6), (iv) introducing a computational model of two-digit 

number processing validated by empirical results pursuing basic representational questions 

(cf. Study 7). In the following, the individual studies, each addressing one of above mentioned 

issues, will be presented in turn. 
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OBJECTIVES BEYOND THE SCOPE OF THE INDIVIDUAL STUDIES 

On a more general and abstract but less structuring level, the main aim of the current 

thesis was to provide a comprehensive evaluation of the impact of structural place-value 

attributes of the Arabic number system on numerical cognition. In the general discussion this 

goal will be pursued by considering and evaluating two different lines of evidence offered by 

the compilation of studies of the current thesis.  

The first line of evidence to be followed will appraise the impact of the results of the 

current thesis as regards the generalizability of decomposed processing of two-digit number 

magnitude as general processing characteristic in multi-digit number processing. Therefore, 

particular interest was paid to new observations extend existing evidence [i] for the nature of 

the mental number line in terms of external vs. internal number magnitude representation and 

their impairments by hemi-spatial neglect (see Study 1 and 6), [ii] by evidence for 

decomposed processing from other basic numerical tasks such as the number line estimation 

task (see Study 3) as well as basic arithmetic procedures such as addition (see Studies 2 and 

4), [iii] by evaluating longitudinal developmental influences of children’s early place-value 

knowledge, which have been investigated exclusively for the case of number magnitude 

representations so far (see Studies 3 and 4), [iv] by investigating processing specificities of 

decomposed processing of two-digit numbers in respect of their neural correlates as well as its 

computational validity as compared to other models of number magnitude representation (see 

Studies 5 and 7). 

The second line of evidence considered in the general discussion will evaluate in what 

way the results of the individual study not only provide evidence for a general processing 

principle driven by place-value properties of the Arabic number system. Instead, evidence on 

the relevance of individual (cf. Study 4) and cultural differences (cf. Study 3) in the influence 

of the place-value structure of the Arabic number system on numerical cognition and its 
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determinants shall be reviewed. Moreover, as the evidence for individual and cultural 

differences as observed in the current thesis comes from developmental studies, the 

consequences and implications of these results for the case of adult number processing will be 

discussed and a possible implementation of place-value understanding into a current model of 

the development of numerical cognition (von Aster & Shalev, 2007) is suggested. 
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ABSTRACT 

Over the last years, evidence accumulated that the magnitude of two-digit numbers is 

not only represented as one holistic entity, but also decomposed for tens and units. Recently, 

Zhang and Wang (2005) suggested such separate processing may be due to the presence of 

external representations of numbers while holistic processing became more likely when one 

of the to be compared numbers was already internalized. The latter conclusion essentially 

rested on unit-based null effects. However, Nuerk and Willmes (2005) argued that 

unfavourable stimulus selection may provoke such null effects and misleading conclusions 

consequently. Therefore, we tested the conclusion of Zhang and Wang for internal standards 

with a modified stimulus set. We observed reliable unit-based effects in all conditions 

contradicting the holistic model. Thus, decomposed representations of tens and units can also 

be demonstrated for internal standards. We conclude that decomposed magnitude processing 

of multi-digit numbers does not rely on external representations. Rather, even when two-digit 

numbers are internalized, the magnitudes of tens and units seem to be (also) represented 

separately. 
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INTRODUCTION 

Number magnitude has long been assumed to be represented holistically along a 

mental number line, even for multi-digit Arabic numbers (Dehaene, Dupoux, & Mehler, 

1990). In recent years, evidence has accumulated that questions the assumption of purely 

holistic two-digit number processing in different tasks such as magnitude comparison 

(Korvorst & Damian, in press; Nuerk, Weger, & Willmes, 2001; Verguts & de Moor, 2005, 

Wood, Mahr, & Nuerk, 2005), multiplication (Domahs, Delazer & Nuerk, 2006; Verguts & 

Fias, 2005), addition (Deschuyteneer, De Rammelaere, & Fias, 2005; Kong, Wang, Kwong, 

Vangel, Chua, & Gollub, 2005) or the number bisection task (Nuerk, Geppert, van Herten, & 

Willmes, 2002; Wood et al., 2008). In sum, there is ample evidence now that multi-digit 

numbers can be processed in a decomposed fashion (for a review, see Nuerk & Willmes, 

2005). Therewith, the debate has turned to the question under which conditions decomposed 

processing occurs. 

At the core of this debate is the unit-decade compatibility effect (Nuerk, Weger, & 

Willmes, 2001; 2004; 2005). In two-digit number magnitude comparison compatible number 

pairs for which separate comparisons of tens and units bias the response in a similar direction 

(e.g. 42_57, 4 < 5 and 2 < 7) are evaluated faster than number pairs resulting in incompatible 

decision biases (47_62, 4 < 6, but 7 > 2). As overall distance was matched between 

compatible and incompatible pairs, the assumption of holistic number magnitude 

representation cannot account for the compatibility effect. Therefore, Nuerk et al. (2001) have 

suggested a hybrid model of two-digit number processing that assumes collateral mental 

number lines for tens and units in addition to a (holistic) mental number line representing 

overall number magnitude (see also Nuerk & Willmes, 2005, but see Verguts & de Moor, 

2005). 

Zhang and Wang (2005) argued that such separate representations of tens and units 

may be only or at least particularly valid for the external representation of two-digit numbers. 
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The authors used a magnitude comparison task with standard numbers 55 and 65. In an 

external representation condition, the standard was presented together with a probe whereas in 

the internal representation condition, the probe was presented alone and had to be compared 

to an internal standard presented 3 seconds before. For the external standard condition, Zhang 

and Wang observed reliable influences of the unit digits’ magnitude on task performance in 

the external condition: (i) discontinuity effects (i.e. the RT difference between 69 and 70 

differed significantly from the difference between 68 and 69) at decade boundaries or (ii) 

even a reversed distance effect (i.e. at the boundary of 30s and 40s RTs to probes 36 through 

39 were on average slower than those to probes 41 through 44 even though overall distance is 

larger for the former probes). Quite to the contrary, the authors reported mixed results when 

the standard was internal. While they observed unit-based effects in a two-way (decades × 

units) ANOVA, they completely failed to find any discontinuity or reversed distance effects. 

Thus, Zhang and Wang concluded that the influence of the unit digit in number comparison is 

determined by the representational format. Only when both numbers (i.e. standard and probe) 

are represented externally, decomposed processing of tens and units is assumed. 

However, we do not think that these null unit-effects warrant conclusions that 

decomposed representations have to rely on external representations of numbers. We have 

pointed out previously why null unit-effects could be observed (Nuerk & Willmes, 2005). As 

this claim has guided the design of the current study a brief sketch will be given on how such 

null unit effects come about. 

 

How to observe unit-based null effects in two-digit number comparison  

1. Use of small unit distances in the stimulus set 

We observed repeatedly that the compatibility effect is more pronounced when unit 

distances are large and possibly not even present when unit distances are small (Nuerk et al., 

2001; 2005; Nuerk, Kaufmann, Zoppoth, & Willmes, 2004). When using a standard with the 
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unit 5 (e.g. 65), unit distances are limited to a maximum of 4 (when excluding multiples of 

ten). For such rather small unit differences, the unit-based compatibility effect is weakest and 

possibly not significant. Therefore, if one intends to find null unit-effects, standards like 65 or 

- for the comparison of two numbers - only small unit distances should be presented. 

 

2. Use of no or only a few within-decade trials 

We observed that the compatibility effect is larger when within-decade trials (e.g., 

53_57) are included in the stimulus set (Knops, 2006; Nuerk & Willmes, 2005, for a review). 

So, when units are irrelevant in all or the vast majority (e.g. only 15.5 % within-decade trials 

in Dehaene et al., 1990) of trials, unit-effects may be smaller as attention may be focussed on 

the tens, as these are decisive in all or almost all trials. Consequently, such an attentional bias 

towards the tens’ digit(s) leads to a weakening of possible unit-based effects. Therefore, if one 

wishes to observe null unit-effects using exclusively or at least a majority of between-decade 

trials would be a good advice. 

 

3. Ignore congruity effects in magnitude comparison 

We observed automatic within-number comparison of tens and units (e.g. for 62, 6 < 

2; Wood et al., 2005) to influence response latencies when this respective number had to be 

compared to another number presented 100 ms later (e.g. 62_47). In this example the result of 

comparing tens and units within 62 is congruent with the overall decision: the decade digit of 

62 is larger than its unit digit (i.e. 6 > 2) and is also larger than the decade digit of 47 (i.e. 6 > 

4). Hence, the task-relevant decision (i.e. 62 > 47) is facilitated. Contrarily, respective but 

incongruent comparisons as for the number pair 42_57, i.e. the decade digit of 57 is smaller 

than its corresponding unit digit (i.e. 5 < 7) but larger than the decade digit of 42 (i.e. 5 > 4), 

inhibit the relevant decision (i.e. 42 < 57). 
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Such congruency is important as most compatible trials are incongruent whereas most 

incompatible trials are congruent (see Wood et al., 2005; Nuerk & Willmes, 2005). Therefore, 

when using a fixed internal standard the congruency effect works against the unit-based 

compatibility effect and helps to produce unit-based null effects. 

 

Objectives 

We have briefly outlined how unit-based null effects can most likely be produced. 

However, there is the problem that such null effects observed under the conditions stated 

above are not conclusive. If one does not find unit-based effects under unfavourable 

conditions, this does not mean that unit-based effects do not exist at all. Consequently, the 

absence of unit-based effects under unfavourable conditions does not imply holistic 

processing, especially not when unit-based effects can be obtained under more favourable 

conditions. 

The current study aimed to evaluate the conclusion of a holistic internal representation 

of two-digit numbers as drawn by Zhang and Wang (2005) under more favourable conditions. 

In their study the authors did not control for the above three unfavourable conditions: (i) Only 

small unit distances were used as the standards were 55 and 65. (ii) The unit digits were 

largely irrelevant in their study as only 13 % of the trials required within-decade comparisons. 

(iii) In the internal representation condition, only one two-digit number was presented so that 

the congruency effect worked against unit-based effects. 

Based on these considerations the objective of the study is straightforward: Do the 

results of Zhang and Wang (2005) indicating a holistic internal representation of two-digit 

numbers hold even under conditions more favourable to detect unit-based effects indicative of 

decomposed internal representations of tens and units? To directly test this, the experimental 

design of Zhang and Wang was changed in two essential aspects: (i) The standards 53 and 57 

were chosen to allow for larger unit distances. (ii) 50% within-decade trials were used to 
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preclude any attentional bias towards the tens, making decade and unit digits equally relevant. 

If two-digit numbers were represented internally in a holistic fashion, these changes should 

not matter. However, if numbers were represented internally in a decomposed fashion, these 

changes should be relevant and should produce significant unit-based effects, in particular the 

compatibility effect. Note that this prediction is made although we could do nothing about the 

third problem as the congruency effect is inevitably confounded with the examination of 

internal representations. 

 

METHOD 

Participants: 19 students of the University of Salzburg (11 female) participated in the 

experiment. Mean age was 21.8 years (SD: 2.4 years; range: 18 - 27 years). All participants 

reported normal or corrected to normal vision and were right-handed. 

Stimuli: In the current experiment two-digit numbers ranging from 31 to 79 had to be 

compared to the two standard numbers 53 and 57. The stimulus set did not contain multipliers 

of ten and - depending on the standard employed - either the number 53 or 57 was omitted. 

Probe numbers smaller or larger than the standard were balanced in frequency of occurrence 

as was the number of between- (e.g. 53_45) and within-decade trials (e.g. 53_58). This latter 

requirement was met by selective repetitions of within-decade stimuli. Altogether, 72 probe 

numbers had to be compared to either standard. 36 probe numbers were between-decade 

stimuli, 18 smaller (31 - 49 excluding 40) and 18 larger than the standard (61 - 79 excluding 

70). Additionally, 36 within-decade stimuli were presented, again 18 smaller and 18 larger 

than the standard. To attain this balanced stimulus set, for the standard 57, each number from 

51 - 56 was presented 3 times, and 58 and 59 both 9 times, and accordingly we included 9 

times both 51 and 52 and 3 times 54 - 59 for the standard 53. 

All probes were shown in Arabic notation using the “Times New Roman” font (size 

24) and were presented at the centre of a 17‘ monitor. 
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Procedure: After ten randomly chosen practice trials the first of 2 runs with 10 blocks 

each was started. Each block consisted of all 72 probe numbers for one of the two standards. 

Half of the participants started with ten blocks of comparing the probe to the internal standard 

53 while the other half started with the internal standard 57
1
. Trial order was randomized for 

each participant separately. Viewing distance was approximately 60 cm. 

In each trial, a fixation mark located at the centre of the screen was presented for 500 

ms. Then the probe number appeared and remained on the screen until a response was given. 

Participants had to press the up-arrow key of a standard keyboard with their right index finger 

when the probe was larger than the standard and the down-arrow key with their left index 

finger when the probe was smaller than the standard. 

Mode of analysis: For between-decade trials the factors standard number (53 vs. 57), 

unit-decade compatibility (compatible vs. incompatible, e.g. 57_43 vs. 53_37), and unit 

distance (small: 1 – 3 vs. large: 4 – 6) were discerned. Please note that no 

compatible/incompatible distinction is possible for probes deviating from the standard by a 

multiple of ten. Therefore, these probes were not considered in the analysis. Based on this 

classification, overall distance would have been larger for compatible than for incompatible 

number pairs making it impossible to distinguish holistic from decomposed accounts. 

Therefore, 6 selectively chosen compatible as well as incompatible probes were excluded 

based on the constraint of balancing overall distance for compatible and incompatible trials. 

Note that matched overall distance can only be achieved by excluding specific, not randomly 

chosen probes (see Appendix A for details). However, it is impossible to match both overall 

distance and problem size (½ * (standard + probe)). Therefore, the latter was incorporated in 

the analyses as a covariate. As problem size can only be computed for trials but not 

                                                 
1
 Please note that this procedure is even stricter than in Zhang and Wang’s (2005) study as it leaves much more 

time to internalize standards. In Zhang and Wang, standards could be internalized for 3 seconds for one 

comparison, while in our study the standard could be internalized for 720 trials being more comparable to the 

procedure used by Dehaene and colleagues (1990). 
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participants for between-decade trials an ANCOVA was conducted over all included items 

incorporating above mentioned factors. Additionally, a stepwise regression analysis was run 

over all included items including the following predictors: (i) overall absolute distance, (ii) 

logarithm of the absolute distance, (iii) distance of the logarithmic magnitudes, (iv) decade 

distance, (v) logarithmic decade distance, (vi) problem size, (vii) logarithmic problem size, 

(viii) unit distance ranging from -6 for e.g. 71_57 to +6 for e.g. 53_69, (ix) absolute unit 

distance and (x) compatibility.  

As within-decade trials were only included to preclude participants from focussing 

their attention exclusively on the decade digit, these were treated as filler items and no further 

analysis was carried out. 

 

RESULTS 

Overall mean error rate was very low (standard 53: 3.0 %, standard 57: 3.5 %) and 

will not be considered here in greater detail. However, in line with earlier findings (e.g. Nuerk 

et al., 2001) a reliable compatibility effect was present for error rates, too [F(1, 18) = 7.06, p < 

.05, compatible: 1.7 % vs. incompatible: 3.0 % errors]. 

 

ANCOVA: Although the incorporated covariate, i.e. problem size, accounted for a 

significant part of the variance [F(1, 39) = 5.13, p < .05], a reliable compatibility effect [F(1, 

39) = 8.22, p < .01] was observed in the ANCOVA: compatible trials (492 ms) were followed 

by shorter response latencies than incompatible trials (504 ms)
2
. Neither the main effect of 

standard number [F(1, 39) < 1] or unit distance [F(1, 39) < 1] nor any interaction [all F < 

1.47, all p > .24] was significant. However, when differentially evaluating the compatibility 

effect for small and large unit distances, separate ANCOVAs with problem size as a covariate 

showed that the overall main effect of compatibility was mainly driven by a reliable 

                                                 
2
 Note that the compatibility effect was also reliable when running the analysis over participants instead [12 ms, 

F(1, 18) = 8.04, p < .01] indicating that it was not moderated by problem size differences. 
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compatibility effect for large unit distances [16 ms, F(1, 11) = 13.07, p < .01, see Figure 1], 

while there was no significant compatibility effect for small unit distances [7 ms, F(1, 27) = 

2.34, p = .14], suggesting particular influence of large unit-distances. 

Regression: The regression analysis on mean RT corroborated the ANCOVA results. 

The multiple correlation was highly predictive (R = .717, adjusted R
2
 = .488, p < .001) by 

incorporating only two significant predictors: Response latencies became faster with 

increasing distance between the logarithms of standard and probe (β = - .599) and increasing 

(compatible) unit distance (β = - .413). As unit distance ranges from -6 in incompatible to +6 

in compatible trials this result indexed that the compatibility effect is not categorical, but 

increases as incompatible unit distance increases. Note that within-decade probes could not be 

included in the regression analyses as the (positive or negative) unit distance is defined with 

regard to the compatibility of the decade digits’ comparison, for which the decade digits have 

to be different. 

 

 

Figure 1:  Means of response latencies for the respective stimulus groups.  

Error bars indicate the standard error of the mean (SEM). 
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DISCUSSION 

Internal or external decomposed representations? 

The objective of the present study was straightforward: Does the assumption of a 

strictly holistic internal representation of two-digit numbers hold under conditions more 

favourable to detect unit-based effects? The current data indicate that the answer should be 

no. When allowing for unit distances larger than 4 and employing a balanced number of 

between- and within-decade trials, a reliable unit-decade compatibility effect was observed. 

Such a compatibility effect in an internal condition cannot be explained by a holistic 

representation, but is consistent with an independent contribution of the unit digit’s 

magnitude. 

In line with the hypothesis, the changes introduced in the experimental design did help 

to observe unit-based effects: (i) besides the significant unit-decade compatibility effect, the 

present data also showed that this effect was mainly driven by a compatibility effect for large 

unit distance (i.e. 4 - 6). This not only corroborated the objections against the use of a 

standard involving the unit digit 5 as raised in the introduction, but also indicates that the 

compatibility effect is not a simple attentional congruity effect. It rather reflects processing of 

the unit digit’s magnitude and thus points to the importance of the units in two-digit number 

comparison. (ii) In accordance with the findings of Knops (2006) the current results imply 

that the use of a considerable proportion of within-decade trials in which comparing the unit 

digits is decisive (e.g. 53_58) seems to be necessary to prevent participants from exclusively 

focusing their attention on the decade digits and therefore to reduce the possibility to obtain 

unit-based effects. Finally, the significant compatibility effect is particularly relevant as it 

emerges even against the impact of the congruency effect described in the introduction which 

is inevitably confounded with the use of an internally represented standard. 

Although reliable, the compatibility effect in the present study was smaller than that 

reported in previous studies (12 ms vs. 31 ms in Nuerk et al., 2001; 29 ms in Nuerk et al., 
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2004). So, increasing the maximum unit distance from 4 (e.g. Zhang & Wang, 2005) to 6 

contributed to the observation of the compatibility effect, but it still seems to be the largest 

possible unit distances (i.e. 7 and 8) that particularly enhance the compatibility effect. Nuerk 

and Willmes (2005) had hypothesized that such limited unit distance may account for the lack 

of unit-based effects in comparisons to a standard involving the unit digit 5. However, the 

current study is the first in which this hypothesis was directly tested. 

However, even when these results are hard to reconcile with the notion of two-digit 

numbers to be exclusively represented as integrated entities, this does not preclude holistic 

processing of two-digit numbers entirely. Decomposed representations of the magnitudes of 

tens and units as indicated by the compatibility effect may exist in addition to an 

(approximate) holistic representation of their integrated magnitude (see also Liu, Wang, 

Corbly, Zhang, & Joseph, 2006 for neuro-imaging data corroborating this notion). Such a 

view has been expressed explicitly in the hybrid model of two-digit number representation 

(Nuerk & Willmes, 2005). The authors suggest that these three magnitude representations are 

activated in parallel and influence each other. In particular, an excitatory influence facilitating 

the correct response is assumed for the case of compatible separate comparisons of tens and 

units (e.g. 42_57, 4 < 5 and 2 < 7). In contrast, when separately comparing tens and units 

yields incompatible decision biases (e.g. 47_62, 4 < 6 but 7 > 2) the correct response is 

inhibited. The regression analysis in this study corroborates earlier analyses in that both 

predictors related to holistic processing (i.e. distance between the logarithms of standard and 

probe) and of decomposed processing (i.e. unit-distance) were entered into the model. 

However, it must be noted that as for the Nuerk et al. (2001) data (see Verguts & De Moor, 

2005, for a reanalysis) the regression model does not get much worse if decade distance is 

forced to be a predictor in the regression analysis (adjusted R
2
 = .486 compared to .488 in the 

original analysis). So, although we personally favour a hybrid processing model, a fully 

decomposed model cannot be rejected on the basis of these data. 
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The debate under which conditions holistic two-digit number processing dominates or 

replaces decomposed processing of tens and units continues (Zhou, Chen, Chen, & Dong, in 

press; see Nuerk & Willmes, 2005 for a review). The current data have a clear message 

concerning this controversy: decomposed processing does not rely on external 

representations, but can also be demonstrated even when internal representations are 

involved. This suggests that two-digit numbers can be represented in a decomposed fashion 

irrespective of their representational format (i.e. external or internal). And actually, this 

finding has an everyday implication as whenever we judge whether a price is expensive or 

not, we compare this price to an internal standard which deems us (approximately) 

appropriate. However, a possible limitation of this interpretation may be that both Zhang and 

Wang (2005) and Zhou et al. (in press) report unit-based null effects when the to be compared 

numbers were presented serially rather than simultaneously. Therefore, the particular 

influence of this distinction cannot be answered by the current results but has to be addressed 

in future research. Nevertheless, what the current results do indicate is that the decomposition 

of two-digit numbers is not limited to the external representational format but generalizes to 

the internal representation as well.  

 

A word on the logarithmic fitting of overall distance 

Previously, (e.g. Dehaene et al., 1990) logarithmic fittings of the distance effects for 

two-digit numbers have been used to indicate holistic rather than decomposed processing. It 

was argued before (Nuerk & Willmes, 2005, see also Verguts & de Moor, 2005, for similar 

arguments) that a good fit of overall logarithmic distance can be produced by decomposed as 

well as by holistic models. In the present study, some parameters have been changed as 

compared to previous studies: different standards (53 and 57) allowing for larger unit 

distances were used together with 50 % of within-decade trials as compared to a much lower 
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proportions in earlier studies. Therefore, it might be an interesting question whether these 

changes also affect the goodness of logarithmic fitting. 

In Figure 2, the results of fitting this logarithmic predictor can be found. Generally, the 

logarithmic fitting of overall distance is still good for the present design. However, it is 

influenced by the standard used. For the standard 53 fitting is better for numbers larger than 

53 (see Figure 2, Panel A), whereas for the standard 57 fitting is better for numbers smaller 

than 57 (see Figure 2, Panel B). The reasons for this asymmetry might be twofold: (i) In the 

conditions showing better fits, there were more (i.e. 6) relatively slower within-decade 

numbers. Thus, the larger within-decade distance effect might have determined the 

logarithmic slope close to the standard. Contrarily, there were only few (i.e. 2) within-decade 

numbers in the conditions showing worse fits, which may not be favourable to lead to a 

pronounced within-decade distance effect. Additionally, these 2 within-decade numbers were 

repeated quite often which may have affected their RT to a certain extent
3
. (ii) The 

logarithmic fit was worse in the conditions with more incompatible trials. Considering the 

standard 53, there are 6 compatible trials per decade for probes larger than the standard (e.g. 

53_67) but only 2 incompatible ones (e.g. 53_71) whereas this pattern is reversed for probes 

smaller than the standard (e.g. compatible: 53_41; incompatible: 53_37). For the standard 57 

the compatible-incompatible pattern is reversed. The worse fit in these conditions may 

indicate that enhanced decomposed processing of tens and, in particular, units is required here 

to overcome unit-decade incompatibility. In turn, such an increase in decomposed processing 

may reduce the influence of the holistic representation as reflected in a worse fit. 

 

                                                 
3
 Note that the compatibility effect in this study was based on between-decade stimuli which were all presented 

equally often only once per block. 
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All in all, good logarithmic fits were observed in the current study underlining that 

even in the presence of decomposed processing, logarithmic overall distance can be an 

additional good predictor of performance (Nuerk & Willmes, 2005). However, the data also 

indicate that the steeper slope of the within-decade distance effects based on sufficient within-

decade numbers as well as a balanced number of compatible and incompatible trials may be 

important for good logarithmic fits. 

 

 

 

Figure 2:  Results of logarithmic fitting (regression equation and R
2
) depicted separately for  

standard 53 (Panel A) and standard 57 (Panel B). 
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CONCLUSIONS 

In summary, the conclusions to be drawn are twofold: first, these data present 

evidence that the representation of two-digit numbers does not generally depend on 

representational format (i.e. internal vs. external) as proposed by Zhang and Wang (2005). If 

the internal representation of two-digit numbers were holistic, allowing for larger unit 

distances and balancing the number of within-decade trials should not have changed the 

results. However, as these changes mattered and produced a significant compatibility effect, 

internal two-digit number representation can hardly be considered to be exclusively holistic. 

Rather, these data suggest two-digit numbers to be represented in a decomposed fashion 

independent of an internal or external representational format for the comparison standard. 

Second, these data illustrate that a careful choice of stimuli and experimental 

conditions is necessary in investigations of multi-digit number processing. Two modifications 

are considered particularly important in this study: (i) the use of large unit-distances for 

examining compatibility effects and (ii) the use of within-decade stimuli to prevent attentional 

biases. The data suggest that these factors should also be considered in future studies 

investigating the nature of multi-digit number processing under different conditions. 
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APPENDIX A 

Overall distance and problem size of the respective stimulus groups 

Standard  53  57 

Compatibility  compatible  incompatible  compatible  incompatible 

Unit Distance  small  large  small  large  small  large  small  large 

Before adjustment                 

Overall distance  16.8  20.0  13.2  10.0  16.8  20.0  13.2  10.0 

Log overall distance  1.23  1.30  1.12  1.00  1.23  1.30  1.12  1.00 

Problem size  54.8  63.0  51.8  48.0  55.2  47.0  58.2  62.0 

After adjustment                 

Overall distance  14.6  15.0  15.4  15.0  14.6  15.0  15.4  15.0 

Log overall distance  1.16  1.18  1.19  1.18  1.16  1.18  1.19  1.18 

Problem size  50.8  60.5  53.0  45.5  59.1  49.5  57.0  64.5 

 

Adjustment comprised exclusion of selective trials to match overall distance between 

all stimulus groups. Such an adjustment is important because otherwise compatibility effects 

and distance effects are confounded and holistic processing cannot be distinguished from 

decomposed processing. Due to this adjustment the incompatible probes 44, 45, 46, 47, 48, 49 

as well as the compatible probes 74, 75, 76, 77, 78, 79 were excluded in the standard 53 

condition. Probes 31, 32, 33, 34, 35, 36 (compatible) and 61, 62, 63, 64, 65, 66 (incompatible) 

were omitted from the analysis for standard 57. Please note that the role of problems size was 

addressed in the ANCOVA and in the regression analysis. 
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On the cognitive instantiation of the carry effect in addition 
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Evidence from eye-tracking 
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ABSTRACT 

Recent research indicated that processes of unit-decade integration pose particular 

difficulty on multi-digit addition. In fact, longer response latencies as well as higher error 

rates have been observed for addition problems requiring a carry operation (e.g., 18 + 27) 

compared to problems not requiring a carry (e.g., 13 + 32). However, the cognitive 

instantiation of this carry effect remained unknown. In the current study this question was 

pursued by tracking participants’ eye-movements during addition problem verification. 

Analyses of the eye-fixation data suggested a differential influence of decade and unit digits 

on mental addition: While the necessity of a carry operation specifically increased total 

reading times on the unit digits of the summands, total reading times were particularly 

increased on the decade digit of the result. This indicated that both recognizing the 

requirement of a carry (by means of calculating the sum of the unit digits of the summands) as 

well as its completion on the decade digit of the result determine the difficulty of carry 

addition problems. On a more general level, this study shows how the nature of numerical-

cognitive processes can be further differentiated by the evaluation of eye movement measures.  
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INTRODUCTION 

One of the probably most robust findings in multi-digit addition is the very strong 

influence of the requirement of a carry operation on task performance. Whenever a carry is 

required, both response latencies and error rates increase considerably (Deschuyteneer, De 

Rammelaere, & Fias, 2005; Fürst & Hitch, 2000; Imbo, Vandierendonck, & De Rammelaere, 

2007; Klein, Nuerk, Wood, Knops, & Willmes, 2009; Kong et al., 2005). Generally, whether 

or not a carry operation is needed is determined by the summands of the addition problem: 

Whenever the sum of the unit digits of the summands is 10 or larger a carry is necessary to 

compute the correct result (e.g., 7 + 8 = 15 in 47 + 28), whereas no carry is needed whenever 

the sum of the units is smaller than 10 (e.g., 2 + 3 = 5 in 52 + 23). For the above example 47 + 

28, the carry operation is executed by adding 1 (representing the decade digit of the unit sum) 

to the sum of the decade digits of the summands. In this case, the sum of the unit digits is 15, 

so the unit digit of the result (i.e., 75) is 5 and the decade digit of the result is derived by 

updating the sum of the decade digits of the summands by 1 (i.e., 4 + 2 + 1 = 7). However, not 

only the mere requirement of a carry operation influences performance. Rather, Imbo and 

colleagues (2007) showed that both response latencies and error rates also increased with the 

number of carries required in one addition problem (e.g., 81 + 56 = 137 vs. 59 + 78 = 137) as 

well as the value of a carry (e.g., in 24 + 18 + 29 unit sum equals 21 with the carry being 2).  

Taken together, it is established that carry addition problems are more difficult than 

non-carry problems and that this difficulty further increases with the number as well as the 

value of carries required in a problem. However, our knowledge on the specificities 

determining this higher difficulty of carry addition problems is still patchy. In the following, 

different aspects proposed to account for the difficulty of carry addition problems shall be 

reviewed briefly. 
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Sources of difficulty in carry addition problems 

On a theoretical/conceptual level difficulties arising with the requirement of at least 

one carry have been suggested to originate from different sources. On the one hand, Kalaman 

and LeFevre (2007) argued that the carry effect represents an increased demand on working 

memory resources for e.g., keeping track of intermediate results (see also Imbo et al., 2007; 

Kazui, Kitagaki, & Mori, 2000; Zago et al., 2001). On the other hand, Nuerk, Graf and 

Willmes (2006) associated the increased difficulty of carry addition problems with a higher 

workload for the correct classification (i.e., units, tens, etc.) and manipulation of digits within 

the base-10 structure of the Arabic number system (i.e., carrying from one position to 

another). Finally, Green, Lemaire, and Dufau (2007) suggested that the carry effect may also 

reflect processes necessary to adapt solution strategies to the actual problem (see also 

Torbeyns, Verschavel, & Ghesquiere, 2002). In sum, these data suggest that there seem to be 

different sources of difficulty for the carry operation. 

At this point, evaluating eye fixation behaviour may supplement the interpretation of 

response latencies and error rates when investigating the temporal dynamics of number 

processing (cf. Brysbaert, 1995). According to the immediacy and eye mind assumption (i) 

the eyes tend to fixate those objects from which visual information is extracted to support 

their cognitive evaluation (e.g., Just & Carpenter, 1980; Rayner & Pollatsek, 1989). 

Additionally, (ii) fixation durations are agreed to reflect a reliable measure of how long 

processing of a particular stimulus takes (for a review see Rayner, 1998). Thereby, evaluation 

of participants’ eye fixation behaviour may be a valuable tool to dissociate cognitive 

processes in numerical cognition.  

However, in contrast to other neuro-cognitive domains such as e.g., reading research 

only few studies in the domain of numerical cognition have yet tapped the potential of eye-

tracking data. Nevertheless, the eye-tracking methodology has already been employed to 

study basic as well as more complex numerical processes. First evidence for the validity of 
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eye fixation behaviour for the evaluation of basic numerical processes has come from studies 

on basic number related tasks such as number reading (Brysbaert, 1995) and magnitude 

comparison (Moeller, Fischer, Nuerk, & Willmes, 2009a) as well as more complex tasks such 

as the number bisection task (Moeller, Fischer, Nuerk, & Willmes, 2009b) . As regards 

addition, a first study evaluating eye fixation behaviour has been reported by Green et al. 

(2007). Yet, the authors employed eye-tracking to validate the use of strategies, which the 

participants were instructed to apply, but did not use the eye fixation data to investigate the 

nature of the cognitive mechanisms underlying the difficulty of carry operations in multi-digit 

addition. This will be the main focus of the current study.  

In summary, eye movement measures seem to be well-suited to offer new insights into 

the sequence and the nature of cognitive processes employed in both rather basic and more 

complex numerical tasks. Based on this the current study aimed at dissociating two different 

processes associated with solving carry addition problems. These processes may help to better 

understand what makes carry addition problems more difficult than their non-carry 

counterparts.   

 

Objectives of the current study 

Despite the fact that it is widely agreed that the requirement of a carry is a crucial 

predictor of difficulty in multi-digit addition, the question what exactly causes the difficulty 

associated with the carry operation is not yet resolved. We suggest that at least two processes 

involved in processing a carry in addition can be differentiated which may drive the increased 

difficulty of these problems. 

(i) Before any carry procedure can be executed it has to be recognized that a carry is 

needed to compute the correct result. One way to determine whether a carry is needed 

or not is to keep track of the sum of the to-be-added unit digits: a carry is required 

whenever the unit sum is equal or larger than 10. In this case, the decade digit of the 
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unit sum has to be carried to the decade digit of the result. Consider here for instance 

25 + 39: the sum of the unit digits is 5 + 9 = 14 and thus a carry is necessary to obtain 

the correct result. Thereby, the necessity of a carry is driven by calculation processes 

upon the unit digits. 

(ii) After it has been recognized that a carry is needed the carry procedure still has to be 

executed properly: This means that the carry, i.e., the decade digit of the unit sum, has 

to be added to the sum of the decade digits of the summands. In above mentioned 

example, the decade digit of the unit sum is 1 (from 14). Adding this to the sum of the 

decade digits of the summands, i.e., 2 + 3 + 1 = 6 (italics indicating carry) results in 

the decade digit of the correct result (25 + 39 = 64). 

 

The carry effect in addition has mainly been investigated by reaction time experiments 

(Deschuyteneer et al., 2005; Fürst & Hitch, 2000; Klein et al., submitted) as well as functional 

Magnetic Resonance Imaging (fMRI) studies (Kong et al., 2005). However, to investigate the 

nature and sequence of the basic cognitive processes underlying the carry effect in addition a 

more fine-grained analysis by a supplemental evaluation of participants’ eye fixation 

behaviour may be informative since eye fixations are an established indicator of what is being 

processed at the moment (e.g., Rayner & Pollatsek, 1989). Applied to an addition problem 

this means that identifying which digit is fixated at a time also indicates which digit is 

actually processed. 

In the current study, we applied this assumption to an addition verification task and 

derived specific hypotheses for the influence of underlying cognitive processes on the eye 

fixation behaviour in addition problems with and without carry. First, the validity of eye 

movement data can be studied for this effect. Eye movement research has shown that 

increasing task difficulty is resolved by either more fixations and/or longer total reading times 
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(see Rayner, 1998 for a review). Transferred to the addition task this implies longer total 

reading times in carry as compared to non-carry problems.  

However, as already outlined above, the goal of the current study was not a mere 

replication of RT data. Rather, following up on above considerations on two possible origins 

of difficulty in carry addition problems, more specific hypotheses for the eye fixation 

behaviour can be derived:  

(i) When the difficulty associated with a required carry operation arises at the unit 

calculation stage then longer total reading times should be observed on the unit 

digits of the summands for carry addition problems than for non-carry problems. 

Additionally, regressions from the second to the first summand should specifically 

involve the unit digits. This should be the case as specific evaluation of the units 

(i.e., the unit sum being equal or larger than 10) determines whether or not a carry is 

required. 

(ii) When difficulty is associated with the execution of the carry procedure itself, then 

longer total reading times on the decade digit of the result should be found as the 

sum of the decade digits of the summands has to be updated by the carry to obtain 

the correct result (e.g., adding 1 to the sum of the decade digits). Accordingly, 

regressions from the result back to the summands should be prominently focused on 

the decade digits.  

The present study pursued these questions. 

 

METHOD 

Participants: 20 students (15 female) of the Paris-Lodron University of Salzburg 

participated in the study as partial fulfilment of course requirements. Mean age was 22.7 years 

with a standard deviation (SD) of 2.4 years (range: 20 - 31 years). All participants reported 

normal or corrected to normal vision. 
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Apparatus: Eye fixation behaviour was recorded online using an EyeLink 1000 eye-

tracking device (SR Research, Mississauga, Ontario, Canada) and stored for offline analysis. 

The EyeLink 1000 provides a spatial resolution of less than 0.5 degrees of visual angle at a 

sampling rate of 1000 Hz. Stimuli were presented on a 21’’ monitor with resolution set to 

1024 x 768 pixels and driven at a refresh rate of 120 Hz. Participants’ heads were placed in a 

chin rest throughout the experiment to keep viewing distance (50 cm) and viewing angle 

constant. 

Task, Stimuli, and Design: Participants had to evaluate whether displayed addition 

problems were solved correctly by simultaneously presented probes or not. The addition 

problems consisted of one- and two-digit numbers with a sum not exceeding 99. The stimulus 

set comprised 96 addition problems. In a factorial 2 x 2 design problem size (small vs. large, 

i.e. sum < 40 vs. sum > 40) and the requirement of a carry operation (required vs. not 

required) were manipulated orthogonally. Each problem was presented twice once together 

with the correct result and once with an incorrect probe. Incorrect probes deviated from the 

correct result by either 2 or 10 to prevent parity based solution strategies with average split 

kept constant (i.e., zero) across item groups (for an overview of stimulus properties see the 

Appendix). Addition problems were presented in the form xx  +  xx  =  xx at a position 

slightly to the right of the centre of the screen. To ensure that all participants started to encode 

the addition problem at the first summand a fixation point to the left of this summand was 

used (x/y coordinates: 112/384). Digits and arithmetic symbols were shown in white against a 

black background using the unproportional font New Courier (size: 48; style: bold). At this 

size each digit subtended 1.4 degrees of visual angle in width and 1.9 degrees in height. The 

distance between the both summands as well as between the second summand and the result 

equalled 10.4 degrees of visual angle to keep influences of parafoveal preprocessing at a 

minimum.  
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Procedure: After being seated with their head stabilized by a chinrest, participants 

were instructed to evaluate as fast and as accurate as possible whether the subsequently 

displayed addition problems were solved correctly or not: When a problem was presented 

together with its correct solution the right button of a response device had to be pressed by the 

index finger of the right hand whereas a button press by the left index finger on a left button 

indicated that a problem was presented with an incorrect solution. Then a nine-point 

calibration of the eye-tracking system was conducted to maximize spatial resolution for each 

participant. Thereafter, participants had to evaluate ten practice trials to familiarize with 

display layout and task requirements. The experiment was set up in four blocks of 48 items 

each and lasted about 45 minutes. 

Analysis: All subsequent analyses exclusively incorporated data from items presented 

with a correct solution probe. This restriction was necessary as incorrect solution probes may 

be rejected following non-computational strategies (e.g., matching of intermediate unit sum). 

Additionally, evaluation processes of incorrect probes may be driven by factors such as split 

between incorrect probe and correct result which do not play a role in the evaluation of 

correct solution probes as they do not even exist for these (e.g., Klein et al., 2009; Klein et al., 

submitted). Furthermore, Menon et al. (2002) were able to show that responses to correct and 

incorrect probes differ even in their neural correlates: In incorrect addition problems specific 

cortex areas were additionally recruited in left dorsolateral and ventrolateral prefrontal cortex 

– areas usually not associated with the processing of domain specific numerical information. 

Instead, these areas seem to play a role in monitoring contextual information (e.g., Cabeza, 

Locantore, & Anderson, 2003; Ranganath, Johnson, & D’Esposito, 2000) and the generation 

of alternative solutions to a given problem (e.g., Donohue et al., 2005; Goel & Vartarian, 

2005). As we were specifically interested in processes necessary for deriving the correct 
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solution to an addition problem we restricted analyses to those items involving a correct 

solution probe
1
. 

Classification performance in terms of response latencies and error rates was evaluated 

by a two-way ANOVA (analysis of variance) incorporating the factors problem size (small vs. 

large) and carry (required vs. not required). To approximate normal distribution error rates 

were arcsine transformed prior to the analysis.  

For the analysis of the eye fixation behaviour only problems with a large problem size 

were recruited. In the group of problems with a small problem size there were several 

problems involving a single-digit summand (e.g. 9 + 14 = 23). As in these trials the number of 

decade digits may vary, focussing on the problems with a large problem size ensured that the 

subsequent evaluation of the distribution of fixations over tens and units was not confounded 

by the fact that sometimes there were no decade digits to look at. For the subsequent 

evaluation of eye fixation behaviour in terms of total reading times on either the decade or 

unit digit of the first summand, the second summand, and the result areas of interest were 

defined: Each digit was centred in an area of interest 75 pixels wide and 180 pixels high. 

Whenever a fixation fell within one of these interest areas it was considered as a fixation on 

the corresponding decade or unit digit. Subsequently, the total reading time for each interest 

area was computed and submitted to a 2 × 3 × 2 ANOVA (analysis of variance) with the 

factors carry (required vs. not required), problem element (first summand vs. second 

summand vs. result) and digit identity (decade vs. unit digit). Whenever necessary, post-hoc 

comparisons were conducted using the Games-Howell test at a significance level of p < .05 to 

account for differing variances. Additionally, in the cases the sphericity assumption of the 

ANOVA was violated the Greenhouse-Geisser coefficient (GG) is given to allow for an 

                                                 
1
 Please note that we are well aware that analyzing the data of the incorrectly solved problems may be 

informative on possible strategy differences between processing these and correctly solved problems and thus, 

may further substantiate the observations by Menon et al. (2002). However, for the sake of brevity and lucidity 

the current study focused on evaluating processes underlying the carry effect in correctly solved addition 

problems. 
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adjustment of the degrees of freedom. To further investigate in what way a carry operation 

influenced the number of regressions (i.e., leftward saccades to a previous interest area) 

initiated from either tens or units of both the second summand as well as the result a 2 x 2 

ANOVA was conducted discerning the factors digit identity (decade vs. unit digit) and carry 

(required vs. not required). Finally, despite the origin of the regressions also the target of the 

regressions was appraised. For regressions from the second summand to the first summand a 2 

x 2 ANOVA with the factors digit identity (decade vs. unit digit) and carry (required vs. not 

required) was conducted while regressions originating from the result were analyzed by a 2 x 

2 x 2 ANOVA involving the factors problem element (first vs. second summand), digit 

identity (decade vs. unit digit), and carry (required vs. not required). 

 

RESULTS 

Participants who performed at or below chance level in at least one of the 

experimental conditions where excluded from further analyses. This affected one participant. 

For the other participants error rates ranged from 1.0 % to 13.3 % with the mean at 7.0 % and 

a standard deviation of 3.4 %. Only response latencies followed by a correct classification 

were considered for the RT analysis. Additionally, a trimming procedure eliminated all 

latencies shorter than 200 ms and longer than 5000 ms in a first step. Subsequently, all RTs 

falling below or above three standard deviations of an individual participant’s mean were 

excluded from the analyses in a second step. For the analyses of the eye fixation data only 

data from trials already included in the RT analysis were considered. 

 

Classification performance 

ANOVA: The ANOVA showed that both response latencies as well as error rates were 

reliably influenced by problem size [RT: F(1, 18) = 86.26, p < .001; errors: F(1, 18) = 16.09, 

p < .001, see Figure 1, Panel A]: addition problems with a relatively larger problem size 
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resulted in longer latencies (2772 ms) and a higher error rate (9.6 % errors) as compared to 

problems with a small problem size (1730 ms and 4.3 % errors). Moreover, carry also had a 

consistent influence on RTs and error rates [RT: F(1, 18) = 121.92, p < .001; errors: F(1, 18) 

= 5.13, p < .05, see Figure 1; Panel B] with increased latencies and more errors being 

associated with addition problems which require a carry operation (2471 ms and 9.3 % errors) 

than with problems not requiring a carry (2031 ms and 4.7 % errors). Finally, a significant 

interaction of problem size and carry was present for latencies [F(1, 18) = 8.35, p < .01] but 

not for error rates [F(1, 18) < 1], indicating that the carry effect for RTs was more pronounced 

for addition problems with a large problem (540 ms) size than for problems with a small 

problem size (341 ms). 

 

Figure 1: Response latencies 

(Panel A) and error rates (Panel 

B) separated for carry and non-

carry problems with either large 

or small problem size. Error bars 

depict 1 Standard Error of the 

Mean (SEM). 
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Eye fixation behaviour 

 

 

Figure 2: Distribution of total reading times across decade and unit digits of the summands 

and the result separated for carry and non-carry problems (Panel A). The carry effect 

in ms total reading time (i.e., TRT carry - TRT non-carry) on either of the summands  

or the result is shown in Panel B. Please note that the carry effect on the decade digit 

of the first summand as well as the unit digit of the result is actually not zero  

(i.e., - 1 ms and + 2 ms, respectively), but too small to be depicted in the figure at this  

resolution. Error bars reflect 1 SEM. 
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Total reading time on target
2
: The ANOVA discerning the factors carry (required vs. 

not required), problem element (first summand vs. second summand vs. result), and digit 

identity (decade vs. unit digit) revealed reliable main effects of carry [F(1, 18) = 42.29, p < 

.001] and problem element [F(2, 36) = 35.47, p < .001, see Figure 2, Panel A]. This indicated 

that addition problems requiring a carry operation were associated with a higher average total 

reading time per digit as compared to non-carry problems (354 ms vs. 267 ms, respectively). 

Additionally, fixations were not distributed equally between the two summands and the result. 

Post-hoc evaluations by the Games-Howell test indicated that total reading times were longest 

on the second summand followed by the first summand and the result (450 ms vs. 293 ms vs. 

187 ms, respectively). The main effect of digit identity was not significant [F(1, 18) = 1.40, p 

= .25]. Moreover, the interaction of carry and problem element was reliable [F(2, 36) = 23.33, 

p < .001, see Figure 2, Panel A]. Post-hoc comparisons by the Games-Howell test showed that 

the increase in total reading time due to a required carry operation was most pronounced on 

the second summand but did not differ between the first summand and the result (+ 156 ms 

vs. + 64 ms vs. + 44 ms, respectively). Furthermore, problem element and digit identity 

interacted significantly [F(2, 36) = 26.36, GG = 0.81, p < .001]. Post-hoc testing by the 

Games Howell test indicated that the effect of digit identity (TRT on the unit digits – TRT on 

the decade digits) was largest on the first summand but did not differ between the second 

summand and the result (+ 399 ms vs. – 114 ms vs. – 170 ms, respectively). Additional t-tests 

revealed that upon the first summand the unit digits were fixated reliably longer than the 

decade digits (492 ms vs. 93 ms, respectively; t(18) = 7.22, p < .001), whereas this pattern 

was reversed for the result. Here, longer TRT were observed on the decade digit than on the 

unit digit (272 ms vs. 102 ms fixations, respectively; t(18) = 4.35, p < .001). However, for the 

second summand no significant difference between the total reading times on either the unit 

                                                 
2
 Please note that the analyses of the eye fixation behaviour were based on addition problems with a large 

problem size only. As addition problems with a small problem size also involved single-digit numbers the 

distribution of fixations across decade and unit digits would have been biased for these trials. 
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or the decade digits was found (393 ms vs. 507 ms, respectively; t(18) = 1.46, p = .16). 

Finally, the two-way interaction of carry and digit identity was significant [F(1, 18) = 4.85, p 

< .05] indicating that the requirement of a carry led to a reliably stronger increase of total 

reading times on the unit digits than on the decade digits of the problem (+ 111 ms  vs. + 65 

ms). Interestingly, this two-way interaction was further specified by the reliable three-way 

interaction of carry, problem element and digit identity [F(2, 36) = 12.40, p < .001]. Breaking 

down this interaction in its constituting two-way interactions revealed a significant interaction 

of carry and digit identity for the first summand [F(1, 18) = 13.58, p < .01] and the result 

[F(1, 18) = 24.35, p < .001] while it was only marginally significant for the second summand 

[F(1, 18) = 4.46, p = .06]. However, a closer inspection of the marginal means showed that 

for the first summand as well as for the second summand a required carry operation resulted 

in a more pronounced increase of total reading time on the unit digits compared to the decade 

digits (first summand: + 119 ms vs. ± 0 ms; second summand: + 205 ms vs. + 101 ms, see 

Figure 2, Panel B). Contrarily, for the result the carry effect on total reading time was stronger 

on the decade digit than on the unit digit (+ 80 ms vs. + 2 ms fixations, respectively, see 

Figure 2, Panel B).  

 

Origin of regressions: The ANOVA evaluating the number of regressions from the 

second summand back to the first summand showed that carry addition problems were 

associated with a reliably higher number of regressions [0.87 vs. 0.61 regressions; F(1, 18) = 

27.58, p < .001]. Moreover, the significant interaction of carry and digit identity [F(1, 18) = 

4.26, p = .05] indicated that, in particular, the number of regressions from the unit digit of the 

second summand back to the first summand (as compared to regressions from the decade digit 

of the second summand) was increased in carry addition problems (+ 0.37 vs. + 0.15 

regressions). The main effect of digit identity was not significant [F(1, 18) = 2.37, p = .14]. 
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Comparably, also the number of regressions from the result back to the summands was 

moderated by the requirement of a carry operation [F(1, 18) = 8.68, p < .01]: in carry addition 

problems participants looked back to the summands significantly more often than in non-carry 

problems (0.54 vs. 0.46 regressions, respectively). Additionally, the main effect of digit 

identity indicated that more regressions to the summands started from the decade digit as 

compared to the unit digit of the result. This was further specified by the reliable two-way 

interaction of carry and digit identity [F(1, 18) = 17.24, p < .001]. The requirement of a carry 

specifically increased the number of regressions from the decade digit of the result back to the 

summands (+ 0.15 vs. ± 0 regressions). 

 

Target of regressions: Examining the regressions from the second summand back to 

the first summand, the ANOVA showed a reliable effect of carry [F(1, 18) = 11.72, p < .01] 

with more regressions to the first summand for carry addition problems as compared to non-

carry problems (0.58 vs. 0.44 regressions, respectively). Additionally, the main effect of digit 

identity was significant as well [F(1, 18) = 42.20, p < .001] indicating that the majority of 

regressions was directed to the unit digit when looking back to the first summand (0.83 vs. 

0.19 regressions). Furthermore, the reliable interaction of these two factors [F(1, 18) = 6.55, p 

< .05] implied that the increase of regressions towards the first summand due to the 

requirement of a carry was more pronounced on the unit digit than on the decade digit of the 

first summand (+ 0.13 vs. + 0.05 regressions, respectively). 

 

In line with these results, the ANOVA evaluating the regressions from the result back 

to the two summands also revealed a significant carry effect [F(1, 18) = 27.22, p < .001]: 

more regressions from the results to the summands were observed for carry than for non-carry 

problems. Furthermore, also the two main effects of problem element [F(1, 18) = 18.42, p < 

.001] and digit identity [F(1, 18) = 26.21, p < .001] were reliable. This indicated that more 
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regressions were directed to the second summand as compared to the first summand (0.37 vs. 

0.10 regressions, respectively) as well as to the decade than to the unit digits (0.31 vs. 0.16 

regressions, respectively) of both summands. Moreover, all possible two-way interactions 

were statistically reliable but not the three-way interaction [F(1, 18) < 1]. The interaction of 

problem element and carry [F(1, 18) = 21.27, p < .001] indicated that the increase of 

regressions to the summands due to a carry was larger for the second summand than for the 

first summand (+ 0.17 vs. ± 0.00 regressions). Additionally, the interaction of summand and 

digit identity [F(1, 18) = 12.71, p < .01] meant that the effect of digit identity (i.e., more 

regressions to the decade digit) was more pronounced on the second summand (+ 0.26 vs. + 

0.03 regressions). Finally, the interaction of carry and digit identity [F(1, 18) = 4.50, p < .05] 

implied that the increase of regressions towards the two summands due to a required carry 

was stronger for regressions towards the decade as compared to the unit digit (+ 0.12 vs. + 

0.05 regressions, respectively). 

 

In summary, the present results indicated dissociable influences of the requirement of 

a carry operation on the eye fixation patterns on the summands and the result in the addition 

verification paradigm employed. On the one hand, the need of a carry operation specifically 

increased total reading times on the unit digits of the summands (in particular on the unit digit 

of the second summand), possibly reflecting processes related to evaluating whether of not a 

carry is required. On the other hand, longer total reading times were observed on the decade 

digit of the results in carry addition problems assumed to indicate processes of carry 

execution. These results were further substantiated by the results of the analyses of origin and 

target of the observed regressions. 
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DISCUSSION 

The current study set off to investigate the underlying basic processes from which the 

carry effect arises. On the one hand, specifically increased total reading times on the unit 

digits of the summands were hypothesized for carry as compared to non-carry problems. 

Moreover, regression from the second back to the first summand should specifically involve 

the unit digits as well. These findings would suggest an association of the carry effect with 

recognizing that a carry operation is needed which would be realized by specific evaluation of 

/ calculations upon the units to derive whether or not a carry is required (i.e., is the unit sum 

being equal or larger than 10?). On the other hand, the difficulty of carry addition problems 

may be associated with the execution of the carry procedure itself. In this case we 

hypothesized to observe increased total reading times on the decade digit of the result for 

carry compared to non-carry problems as the sum of the decade digits of the summands has to 

be updated by the carry to obtain the correct result (e.g., by adding 1 to the sum of the sum of 

the decade digits). Based on these considerations, regression from the result back to the 

summands should also primarily involve the decade digits. The present data were meaningful 

on both aspects suggesting that the carry effect in multi-digit addition seems to originate from 

both increased processing demands for unit based calculations (to determine whether a carry 

is needed) as well as to finally execute the carry procedure rather than being a question of 

either/or. Results on each of these two issues and their implications will be discussed in turn. 

 

Unit based calculations indexing that a carry is required 

In line with our hypothesis that the recognition of a carry may be a factor determining 

problem difficulty we observed that the requirement of a carry specifically increased total 

reading times on the unit digits of the summands. This finding seems reasonable as it is the 

sum of exactly these unit digits which indicates whether a carry is needed, i.e., for all unit 

sums equal or larger than 10. Thus, the current data suggest that while the problem is encoded 
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the requirement of a carry is determined by unit-based calculations as soon as it becomes 

apparent that the sum of the unit digits becomes a two-digit number. This interpretation is 

corroborated by a number of further observations. First, when assuming that participants 

performed the addition task from left to right (as implicated by the fixation sign on the left of 

the first summand) the necessity of a carry can be recognized first when encoding the unit 

digit of the second summand. Therefore, the increase of total reading times on the unit digits 

of the summands should be more pronounced on the unit digit of the second summand than on 

the unit digit of the first summand because no inference on a possibly required carry can be 

drawn from encoding the unit digit of the first summand only. The eye fixation pattern 

confirmed this hypothesis. The increase of total reading times on the unit digit of the second 

summand was indeed more pronounced than the corresponding carry effect on the unit digit 

of the first summand. Finally, additional evaluation of the number of regressions, in particular 

from the second back to the first summand substantiated this interpretation. Not only that the 

requirement of a carry led to a specific increase of regressions from the unit digit of the 

second back to the first summand, it was also observed that upon the first summand the 

majority of regressions was directed to the unit digits and particularly so when a carry was 

required. This again corroborates the notion that (i) unit-based calculation processes may be 

applied to evaluate whether a carry is required or not and (ii) the requirement of a carry 

specifically increases processing demands as regards the unit digits of the summands. As the 

former can only be decided while processing the unit digit of the second summand (before 

any regressions occurred), this suggests that gaze duration on the unit digit of the second 

summand (i.e., the sum of all fixation durations from first entering a region to first leaving it) 

should be sensitive to the size of the unit sum (see Brysbeart, 1995 for the sensitivity of gaze 

duration to magnitude processing). A correlation analysis confirmed this assumption. As the 

sum of the unit digits increased, gaze duration on the unit digit increased as well on the 
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second summand but not on the first summand [r = .68, p < .001, n = 48; r = - .22, p = .13, n = 

48, respectively].  

 

Executing the carry – rule-based updating of the decade digit of the result 

Moeller and colleagues (2009b) proposed a two-stage processing model of eye 

fixation behaviour for numerical tasks. In an initial bottom-up processing stage (indicated by 

influences on gaze duration) the constituting digits of the first number may be identified 

largely automatic and assigned their stimulus-driven lexical values (e.g., place-value position) 

by extracting their physical features and activating the memorized visual number forms (cf. 

Henik & Tzelgov, 1982; Moeller et al., 2009b). After integrating the constituting digits of a 

number into the place-value structure of the Arabic number system, the magnitude of the 

number may be accessed. The second processing stage reflecting a subsequent top-down 

driven wrap-up stage is supposed to be initiated after all the numbers of the actual problem 

have been encoded. At this stage, the numbers of an arithmetical problem may be integrated 

and put into relation with the other numbers by checking top-down mediated plausibility 

and/or processing rules using the lexical attributes of the single numbers. This process is 

supposed to be reflected by eye-movement measures capturing rather late processing such as 

total reading time. Based on their model of eye fixation behaviour in numerical tasks Moeller 

and colleagues (2009b) predicted longer total reading times on the decade digit of the result in 

carry addition problems than in non-carry problems. The authors suggested that calculating 

the sum of the decade digits and, in particular, updating this sum by the carry in carry addition 

problems (e.g., 25 + 39 = 64, units: 5 + 9 = 14; tens: 2 + 3 + 1 = 6) represents the 

application/execution of a specific processing rule. This should be reflected in eye movement 

measures associated with rather late top-down processing such as the total reading time on a 

given interest area.  
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In line with this prediction, total reading times on the decade digit of the result were 

specifically increased in carry as compared to non-carry addition problems. This finding 

indeed corroborated the interpretation that the execution of the carry procedure may represent 

the application of a procedural rule (i.e., “when the sum of the unit digits is equal or larger 

than 10 add the decade digit of the unit sum to the sum of the decade digits of the 

summands”). As for the unit-based calculations upon the unit digits of the summands, 

inspection of the regressions was also informative on processes related to executing the carry. 

In line with the argument that the execution of the carry may be specifically associated with 

processing the decade digit of the result (seeming to reflect processes of updating the decade 

sum of the summands by the carry) it was observed that most regressions from the result back 

to the summands started from the decade digit. Moreover, it was found that most of these 

regressions were directed to the decade digits of the summands and to the decade digit of the 

second summand, in particular. On the one hand, this corroborates the interpretation that 

processes concerning the execution of a carry in an addition verification paradigm involved 

specific processing of the decade digit of the result and its constituents, i.e., the decade digits 

of the summands. On the other hand, the results of analyzing the regressions also indicate that 

the increase of total reading time as observed upon the decade digit of the second summand 

may be driven by reinspections of this particular digit to come to the correct decade digit of 

the result in carry addition problems (see Figure 2 B) rather than being associated with 

initially evaluating whether a carry is needed or not. 

 

Taken together, the present results are meaningful in three respects: First, in line with 

the results of Moeller et al. (2009a) the unbalanced distribution of fixations between tens and 

units corroborated the notion of tens and units being processed separately rather than 

integrated as the holistic representation of the whole number they constitute. Second, the 

results of analyzing the regressions indicated that, in the current paradigm, processes 
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associated with actually calculating the correct result may not be finished completely before 

participants processed the solution probe and decided whether it was the correct solution to 

the problem at hand or not. Finally, and most importantly for the research question at hand, 

the data suggested that it does not seem to be an either/or distinction between unit based 

calculations determining that a carry is required and its processing. Instead, the present 

observations on the increased processing demands associated with a carry operation indicated 

that the carry effect in multi-digit addition seems to originate from both specific processing of 

the unit digit of the summands to evaluate by calculation that a carry is needed as well as 

particular processes reflecting the execution of the carry procedure (mostly associated with 

the decade digit of the result).  

 

CONCLUSIONS / PERSPECTIVES 

Previous studies indicated that processes of unit-decade integration as required by a 

carry operation pose particular difficulty on mental addition. In particular, response latencies 

as well as error rates are increased for addition problems requiring a carry operation (e.g., 18 

+ 27) compared to problems not requiring a carry (e.g., 13 + 32, e.g., Deschuyteneer et al., 

2005; Kong et al., 2005). However, the cognitive underpinnings of this carry effect remained 

unclear. The current study aimed at pursuing this question by tracking participants’ eye-

movements during addition problem verification. Analyses of the eye-fixation data revealed a 

differential influence of decade and unit digits on mental addition: On the one hand, the 

requirement of a carry operation particularly increased total reading times on the unit digits of 

the summands, whereas total reading times were particularly increased on the decade digit of 

the result on the other hand. Furthermore, this dissociation was accompanied by a specific 

increase of regressions from the units of the second to the units of the first summand as well 

as from the tens of the result to the tens of the summands in carry addition problems 

compared to non-carry problems. This implies that processing a carry is not a unitary process. 
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Instead, it seems to involve different aspects that can be differentiated by the evaluation of 

participants’ eye fixation behaviour. The current data indexed that both correctly recognizing 

the requirement of a carry (i.e., evaluating whether the unit sum is equal or larger than 10) as 

well as its execution (i.e., updating the decade sum by the carry) seem to be associated with 

increased processing demands of carry addition problems as compared to non-carry problems. 

In the long run, there is the possibility that the finding of specific differences in the fixation 

patterns for carry and non-carry problems may be informative for understanding math 

impairments. For instance, evaluating the fixation pattern of children with poor mathematical 

abilities may offer the possibility to distinguish whether a required carry is just not recognized 

or rather not executed. Finally, the current study indicates that evaluating eye fixation 

behaviour in mental arithmetic can be a promising tool to identify the basic cognitive 

processes underlying complex behavioural effects such as the carry effect.  

 

 



 

83 

APPENDIX A 

Stimulus properties of the used item set 

 Small problem size Large problem size 

 Non-carry Carry Non-carry Carry 

Summand 1 9.92 10.38 41.29 38.46 

Summand 2 10.42 10.29 41.58 43.21 

Problem size categorical 1 1 2 2 

Carry yes/no 0 1 0 1 

Correct sum (= problem size) 20.33 20.67 82.88 81.67 

log correct sum 1.28 1.29 1.92 1.91 

Decade sum 1.25 0.75 7.58 6.83 

Unit sum 7.83 13.17 7.04 13.33 

Smaller summand left 0.50 0.50 0.50 0.50 

Parity summand 1 1.67 1.29 1.46 1.46 

Parity summand 2 1.33 1.46 1.42 1.46 

Parity correct sum 1.25 1.33 1.38 1.33 

5 in unit position of summand 1 0.17 0.17 0.17 0.17 

5 in unit position of summand 2 0.17 0.17 0.17 0.17 

5 in unit position of correct sum 0.08 0.08 0.08 0.08 

5 in decade position of summand 1 0.00 0.00 0.04 0.04 

5 in decade position of summand 2 0.00 0.00 0.04 0.04 

5 in decade position of correct sum 0.00 0.00 0.00 0.00 

Decade of summand 1 0.58 0.38 3.75 3.21 

Decade of summand 2 0.67 0.38 3.83 3.63 

Unit of summand 1 4.08 6.63 3.79 6.38 

Unit of summand 2 3.75 6.54 3.25 6.96 

Decade of correct sum 1.25 1.75 7.58 7.83 

Unit of correct sum 7.83 3.17 7.04 3.33 

Incorrect solution probe (distractor) 22.00 22.33 84.54 83.33 

log distractor 1.31 1.33 1.92 1.92 

Distance between sum/distractor -1.67 -1.67 -1.67 -1.67 

Absolute value distance 

sum/distractor 
6.00 6.00 6.00 6.00 

Decade crossing sum/distractor 0.50 0.50 0.50 0.50 
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ABSTRACT 

The mental number line of children is usually assumed to be language-independent; 

however, this independency has not yet been studied. In this cross-cultural study we examined 

the influence of language properties on a non-verbal version of the number-line task in 

Italian- and German-speaking first grade children. The essential difference between the two 

languages concerns the inversion property of most German multi-digit numbers (e.g., 48 � 

“eight-and-forty”), whereas in Italian number-words no inversion is found. The analysis 

revealed two language-specific differences in the number line task: (1) generally, the 

estimates of Italian children were more accurate than those of Austrian children, even when 

controlling for general cognitive abilities. (2) Italian children performed particularly better 

when inversion errors led to large estimation errors. In conclusion, these findings indicate that 

the organization of children’s mental number-line is indeed influenced by language properties 

even in non-verbal settings.  
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INTRODUCTION 

 

The understanding and processing of numerical quantities constitutes one of the most 

far reaching steps in the development of numerical cognition. It is not only decisive for 

performance in basic numerical tasks such as estimation or number comparison; but also it is 

thought to serve as a building block for competences in higher levels of numerical cognition 

such as calculation (e.g., Holloway & Ansari, 2008; Laski & Siegler, 2006). Thus, given the 

importance of this basic numerical competency, understanding their developmental 

trajectories and their cognitive underpinnings seems crucial. However, knowledge on how the 

representation of symbolic number magnitude develops and on the factors which determine 

this development (e.g., language) is still rather patchy.  

 

The mental number line and its development 

It is widely agreed that number magnitude processing operates upon a spatially 

organized representation of numbers along a mental number line (MNL; e.g., Dehaene & 

Cohen, 1995; Restle, 1970; but see van Opstal, Gevers, de Moor, & Verguts, 2008, for a 

different view). Upon this MNL, relatively smaller numbers are associated with the left side, 

whereas numbers are represented further and further to the right with increasing magnitude 

(e.g., Dehaene, Bossini, & Gireaux, 1993; Zorzi, Priftis, & Umiltà, 2002; Zorzi, Priftis, 

Meneghello, Marenzi, & Umiltà, 2006; Priftis, Zorzi, Meneghello, Marenzi, & Umiltà, 2006; 

but see Shaki, Fisher, & Petrusic, 2009; Zebian, 2005 for evidence on a reversed orientation 

of the mental number line in cultures reading from right to left). Commonly, this spatial 

mapping of numbers is thought to develop around the age of 7 (Berch, Foley, Hill, & Ryan, 

1999; van Galen, & Reitsma, 2008; but see Opfer, Thompson, & Furlong, in press; Opfer & 

Furlong, this issue for evidence suggesting first spatial-numerical associations even in 
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preschoolers aged 4). However, the developmental trajectories of this spatial representation of 

number magnitude and the determining factors are still under debate (Booth, & Siegler, 2006; 

Ebersbach, Luwel, Frick, Onghena, & Verschaffel, 2008; Moeller, Pixner, Kaufmann, & 

Nuerk, 2009a; Barth & Paladino, in press). 

The typical task to assess children’s spatial representation of number magnitude 

requires them to determine the spatial position of a specific number on a physical line flanked 

by two numbers denoting the range of this hypothetical number line (e.g., 0-to-100; see 

Siegler & Opfer, 2003; Siegler & Booth, 2004; Booth & Siegler, 2006; Muldoon, Simms, 

Towse, Burns, & Yue, this issue; see also Opfer & Siegler, 2007; Opfer & Thompson, 2008 

for the 0-to-1,000, and Thompson & Opfer, in press, for the 0-to-10,000 number range). In the 

context of this so-called number line task, children’s ability to estimate a number’s spatial 

position on this line is assumed to reflect their internal representation of numbers along the 

MNL. It is suggested that the coding of number magnitude in children changes gradually from 

logarithmic to linear representation as a function of age and experience (e.g., Booth & Siegler, 

2008; Opfer & Siegler, 2007). This means that at first the spatial mapping of number 

magnitude is best conceptualized as being logarithmically compressed so that the perceived 

distances between two adjacent numbers on the MNL decrease as their magnitudes increase 

(e.g., Dehaene, 1992; 2001). With increasing age and experience the MNL is suggested to be 

organized in a linear fashion so that distances between two adjacent numbers become 

invariant to increasing magnitude (e.g., Gibbon & Church, 1981; Brannon, Wusthoff, 

Gallistel, & Gibbon, 2001). 

However, two recent studies suggest the alternative view that performance in a 

number line task may not necessarily reflect a change from logarithmic to linear coding of 

number magnitude, but rather a change from a two-linear representation to a linear one 

(Ebersbach et al., 2008; Moeller et al., 2009a, see also Barth & Paladino, in press for an 

account based on a power model of proportion judgements). Using segmented regression 
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analyses Ebersbach and colleagues (2009) observed that the breakpoint of the two-linear 

representation was correlated to children’s counting abilities. The authors interpreted this 

finding to suggest two separate representations of numbers within and outside the children’s 

counting range with an identifiable change point reflected by the breakpoint of a two-linear 

fitting function. Picking up on the idea of an initially two-linear representation of number 

magnitude, Moeller and coworkers (2009a) argued that performance changes with age and 

experience can also be interpreted as an improvement in integrating the single digits’ 

magnitudes of tens and units in compliance with the place-value structure of the Arabic 

number system. That is, to correctly solve the number line task, one has to be aware that the 

distance between 0 and 40 is ten times as large as the distance between 0 and 4, as this is an 

attribute of the base-10 structure of the Arabic number system. However, when children have 

not yet acquired a comprehensive understanding of this relationship, they may consequently 

overestimate one-digit number intervals (i.e., misplacing them towards the right). 

Consequently, the remaining two-digit numbers (in the case of the 0-to-100 interval is 

assessed) have to be located in a compressed manner upon a relatively short segment of the 

hypothetical number line. This would suggest two linear representations in a number line task 

from 0-to-100 with a theoretically fixed breakpoint at 10: one for single digit numbers and 

one for two-digit numbers. In segmented regression analyses Moeller et al. (2009a) observed 

that a two-linear model with an assumed breakpoint at 10 (reflecting two separate 

representations for single- and two-digit numbers) fits the empirical data even better than a 

logarithmic model. Based on this intriguing finding, Moeller et al. (2009a) concluded that to 

estimate the magnitude of a given number in the number line task correctly, integration of the 

single digits’ magnitude of tens and units complying with the place-value structure of the 

Arabic number system is inevitable. In this view the magnitude of a two-digit number is not 

represented holistically but built up by integrating tens and units into a coherent 

representation: This decomposed account states that the magnitude of the constituting digits is 
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still represented even when only the overall magnitude of the number is task relevant; this has 

been demonstrated successfully in other tasks such as number magnitude comparison (see 

also Nuerk, Kaufmann, Zoppoth, & Willmes, 2004; Pixner, Moeller, Zuber, & Nuerk, 2009, 

for children data; Nuerk, Weger, & Willmes, 2001; 2004; Moeller, Nuerk, & Willmes, 2009b, 

for adult data; Nuerk & Willmes 2005, for a review) and has now also been applied to the 

number line task (cf. Moeller et al., 2009a). Taken together, Moeller et al. (2009a) specified 

the basic two-linear model as proposed by Ebersbach et al. (2008) by the assumption of a 

fixed breakpoint at 10 driven by theoretical consideration regarding the place-value structure 

of the Arabic number system as retained by decomposed processing of tens and units. Against 

this common background of the Ebersbach et al. (2008) and Moeller et al. (2009a) model one 

aim of the current study was to differentiate the notion of decomposed processing from the 

assumption of a holistic representation of overall magnitude as reflected by the logarithmic 

model. 

However, the implementation of the place-value system differs in important aspects 

between the number word systems of various languages regarding for instance the order in 

which tens and units are referenced in number words (see Comrie, 2005, 2006 for a more 

detailed discussion). Thus, one might ask whether these specific differences may affect the 

acquisition of the mental representation of number magnitude. For example, more complex 

number word systems might be expected to impede this acquisition process whereas 

transparent number word systems, in particular regarding place-value structures, might ease 

the acquisition.  

To further pursue this question, we will briefly review to what extent language 

specificities have been found to influence numerical understanding. Subsequently, it will be 

outlined in which way the notion of language-specific effects may affect results in a number 

line task.  
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Language specificities and their influence on number representation  

In general, the idea of language-specific influences on numerical cognition is not new 

(Hunt & Agnoli, 1991; Miura, Okamoto, Kim, Steere, & Fayol 1993; Nuerk, Weger, & 

Willmes, 2005; Seron & Fayol, 1994; Zuber, Pixner, Moeller, & Nuerk, 2009; see also 

Krinzinger et al., this issue, for a comprehensive evaluation of language, sex and curricula on 

performance in a standardized mathematics achievement test for children from France, 

Belgium, Germany and Austria). More specifically, we aim to study the influence of 

inversion: In several number word systems (e.g., German, Dutch, Arabic, Maltese, Malagasy, 

etc.; Comrie, 2005), the order of tens and units in number words as compared to digital 

notation is inverted. Inversion means that tens and units are spoken in reversed order, for 

example 21 is spoken as “one-and-twenty”. Contrasting calculation performance of French 

(non-inverted number words) and Dutch speaking adults (inverted number words) revealed 

that inversion seems to impede calculation performance in some conditions (Brysbaert, Fias, 

& Noël, 1998). Furthermore, inversion influences were even observed in magnitude 

comparison tasks in adults (Nuerk et al., 2005). Finally, inversion also affects number 

processing performance in children with the inversion property seeming to pose an additional 

obstacle on the acquisition of numerical abilities. For instance, transcoding performance of 

German speaking children has been found to be mainly influenced by language-specific 

attributes like inversion (Zuber et al., 2009).  

However, the influences observed by Zuber and colleagues (2009) have been observed 

in a verbal task like transcoding: In their study, children had to write down Arabic numbers to 

dictation. Thus, there is a verbal component in this tasks and correct understanding of number 

words is absolutely necessary to perform such a transcoding task. In the case that a more 

complex number word structure would only influence tasks in which number words are 

directly involved, such a finding would not be very dramatic as number processing and/or 

calculation procedures with non-verbal symbols should not be affected by such a cultural 
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specificity. Yet, in adults it has been observed that the inversion property influences even 

non-verbal tasks such as Arabic number comparison (Nuerk et al., 2005). In this non-verbal 

task, the integration of tens and units seemed to be more difficult in a language with inversion 

(i.e., German) than in a language without inversion (i.e., English). However, Moeller et al. 

(2009a) recently argued that the integration of the ten’s and unit’s magnitudes is also essential 

for the performance pattern in the number line task making the general objective of this study 

straightforward: When inversion influences unit-decade – integration into the place-value 

structure of the Arabic number system and when this integration is essential for performance 

in the number line task, inversion should also influence performance in the number line task. 

In particular, we should observe specific cross-cultural language differences in a task which 

was previously assumed to index (non-verbal) spatial magnitude representation of numbers. 

 

Objectives 

As outlined above, the current study aimed at investigating whether language as 

reflected by the structure of its number word system influences performance in a non-verbal 

spatial-numerical task. This issue was pursued by comparing German-speaking children using 

an inverted number word system to Italian-speaking children using a regular non-inverted 

number word system regarding their performance in a number line task. Thus, the inversion 

property of German number words is used to evaluate whether the reversed order of tens and 

units poses particular difficulty on children developing and/or applying the mental spatial 

representation of two-digit number magnitude. 

More specifically, the hypotheses were three-fold:  

- In a first step differences in overall estimation accuracy between Italian and Austrian 

(native German-speaking) children when performing the number-line task were of 

interest. It was expected that the reversed order of tens and units in German increases the 

estimation error in Austrian children.  
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- In a second step it was investigated whether apart from the log-to-linear assumption 

children’s overall estimation performance may also be explained by a two-linear model 

proposing two separate representations of one- and two-digit numbers (cf. Moeller et al., 

2009a). When there is evidence for the validity of such a two-linear model this would 

imply that developing a mental representation of number magnitude incorporates the 

mastery of the place-value structure of the Arabic number system.  

- Finally, in a third step it was evaluated whether a possible confusion in assigning the 

correct value to the individual digits as determined by their position within the number 

(i.e., mixing up tens and units) can account for the general hypothesized poorer 

estimation performance of German-speaking children. In the context of place value 

integration German-speaking children’s estimations should be particularly erroneous for 

numbers with a large inter-digit distance (e.g., 6, as in 82 which may be mixed up with 

28, thereby resulting in a large estimation error) compared to numbers with a small inter-

digit distance (e.g., 2, as in 54 which may be mixed up with 45, thereby leading to a 

rather small estimation error), as confusing tens and units is especially detrimental in 

these numbers. Related to this even a more specific hypothesis can be made. When the 

performance of German-speaking children confuse tens and units more often than Italian-

speaking children possibly due to the inversion property of German number words, 

German-speaking children should specifically underestimate numbers such as 82 where 

mixing up tens and units results in a smaller number (� 28). Contrarily, they should 

overestimate numbers such as 27 for which mixing up tens and units results in larger 

number (� 72). As there is no inversion in Italian number words, this under-

/overestimation should be more pronounced in German-speaking children. 
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METHOD 

The reported experiment was part of a larger cross-cultural project investigating the 

early development of numeracy in children with different number words systems. Children in 

Italy and Austria were examined in a variety of numerical and non-numerical tasks. For the 

sake of brevity, this article will focus on the cross-cultural effects on performance in the 

number line task.  

 

Participants: 130 German-speaking first graders (63 girls; see Moeller et al., 2009a) 

and 107 Italian speaking first graders (55 girls) participated in the study
1
. The German-

speaking children were recruited from five Austrian elementary schools and were speaking 

German as their native language. Their mean age was 7 years 4 month (SD = 7.1 month). The 

Italian speaking children were recruited from two elementary schools in Italy, speaking Italian 

as their native language. Their mean age was 6 years 11 months (SD = 3.4 months).  The age 

difference between the two samples was significant [t(236) = 6.68, p > .01]. The higher mean 

age of Austria children can be attributed to the fact that in Austria some children go to 

preschool first, thus entering first grade one year later. All children had normal or corrected to 

normal vision.  

The study took place at the end of first grade. Please note that the curriculum 

regarding math education is virtually identical in Austria and Italy. In particular, children in 

both countries should have mastered the numbers up to 20 (including 0) under consideration 

of cardinality, ordinality as well as first arithmetic operations (i.e., addition and subtraction) 

within this range. Furthermore, basic numerical competencies such as quantity discrimination 

and matching as well as quantity comparisons should have been acquired. 

                                                 
1
 Please note that the German-speaking sample was identical to that investigated by Moeller et al. (2009a). 
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Children with an IQ (measured by CFT1; Catell, Weiss & Osterland, 1997) more than 

1 SD below the average were excluded from the initial sample. This affected 2 children in 

Austria and 10 children in Italy.  

 

Stimuli and design: The number-line task used was a paper-pencil version of a 

number-to-position task, requiring children to estimate the position of a given number on an 

empty number-line. Each stimulus of the task involved a 10-cm line with the left end labeled 

“0”, and the right end labeled “100”. The numbers to be estimated were printed centrally 

above the line in Arabic notation. Participants had to mark the position of the following 

numbers on the hypothetical number line in the given order: 27, 2, 64, 35, 7, 13, 99, 75, 47, 3, 

11, 82, 95, 9, 17, 6, 18, and 53. Most important for the current study was the fact that no 

verbal number word was (explicitly) involved in the task neither at the presentation nor at the 

response level. 

 

Procedure: Participants were tested in a one-to-one single session with the 

experimenter. Trials were presented sequentially one by one. Children were told to neither 

count nor use any other strategy but estimating the position of the presented number on the 

line. The number-line task started with an initial orienting problem, followed by the 

experimental problems. On the orienting problem, children were asked to estimate the 

position of the number 50 for practice purposes. Neither further information before the 

practice trial (e.g., indicating 50 to be the middle of the scale) nor feedback on performance 

after the practice trials or any of the critical trials was given. 

 

Analysis: In a first step, the deviation of estimated position from true position for 

every single item was measured automatically to the nearest millimetre and the individual 

deviation error of the estimated from the actual value (in percent) was computed for each 
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child separately to obtain estimation accuracy. To compare overall estimation accuracy 

between Italian and Austrian children an univariate ANCOVA with the factor language and 

the covariate T-value of CFT1 was computed.  

In a second step, R² adjusted by the number of free parameters of the respective model 

(i.e., 2 in the case of the logarithmic model vs. 3 in the case of the two-linear model with fixed 

breakpoint) as a measure of goodness of fit independent of influences of model proximity 

(e.g., Kyllonen, Lohman, & Woltz, 1984) was computed for a linear and a logarithmic fitting 

function for each child individually (see also Appendix A for further discussion and analyses 

addressing the issue of possible model overfitting). Analogous to Moeller et al. (2009a), for 

the scale 0-100 adjusted R² for a segmented two-linear regression with the fixed break point at 

10 was computed for each child individually. Mean adjusted R² values for the different fitting 

models (simple linear, logarithmic, and two-linear) for the Italian-speaking children were 

compared by paired samples t-tests. All pair wise comparisons were Bonferroni-Holm 

corrected (Holm, 1979) to account for alpha accumulation in multiple comparisons. 

Additionally, R² values were arcsine transformed prior to the analyses as they cannot be 

assumed to be normally distributed. 

Finally, in a last step estimation performance for items with a small interdigit distance 

(i.e., 2; to-be-estimated numbers: 35, 53, 64, and 75) were contrasted to items with a large 

interdigit distance (i.e., 3-6; to-be-estimated numbers: 27, 47, 82, 95) to evaluate the origin of 

possible language differences. Please note that these two sets of items did not differ in 

problem size as reflected by the mean magnitude of the four numbers each [PS; t(3) = 0.35, p 

= .75; mean PS for small interdigit distance: 56.75; large interdigit distance: 62.75]. To 

substantiate the interpretation of the latter analysis it was evaluated whether the under-

/overestimation possibly provoked when confusing tens and units of these numbers was more 

pronounced in German- as compared to Italian-speaking children. As both German- and 

Italian-speaking children underestimated above mentioned two-digit numbers (i.e., 27, 35, 47, 
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53, 64, 75, 82, and 95) we first computed the mean estimation error over all participating 

children and then subtracted each child’s individual estimation error from it. A negative 

difference thus indicated that a child underestimated a given number even stronger than 

expected by the mean estimation error whereas a positive difference indicated that a child 

underestimated a given number less than expected by the mean estimation error, thus 

reflecting a relative overestimation. Additionally, to ensure that possible language differences 

were not driven by differences in the distribution of the computed difference scores between 

German- and Italian-speaking children a z-transformation of these individual difference 

scores was conducted. Subsequently, we directly tested the hypothesis that German-speaking 

children’s under-/overshoot should be more pronounced and thus the difference between 

items provoking either of it should be reliably larger for them using a t-test.  

 

RESULTS 

CFT-1: The results of the CFT-1 are presented first as they have an influence on the 

following analyses. A t-test for independent samples revealed a significant difference of T-

values in CFT-1 between the two countries, t(223) = 10.32, p < .001, with Italian children 

showing a significant lower average T-value (48.27, SD = 6.5) than Austrian children (58.59, 

SD = 8.1). We examined whether this effect was due to the fact that the Italian children were 

younger than the Austrian children. However, even when taking the age group instead of 

grade as reference in the CFT-1, Italian children still scored significantly lower. For that 

reason, individual T-values were included as a covariate in all further analyses. 

 

Overall estimation accuracy:  

An univariate ANCOVA on each child’s mean percent absolute error revealed a 

reliable main effect of language for the 0-to-100 scale [F(1, 223) = 7.97, p < .01] with a mean 

estimation error of 17.78% for Italian and 21.06% for Austrian children (see Figure 1). This 
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indicated that Italian children’s estimates are in general more accurate than Austrian 

children’s estimates. Additionally, the covariate (i.e., individual CFT-1 T-values) reached 

significance [F(1, 223) = 13.83, p < .001].  

 

Figure 1: Mean estimation error in percent for 

Italian and Austrian children. Error bars reflect 1 

Standard Error of the Mean (SEM). 

 

 

 

 

 

 

 

Fit of simple linear, logarithmic and two-linear regression models: 

The results of the Austrian children have already been described in great detail in 

Moeller et al. (2009). Therefore, the results relevant for the present article will only be 

summarized briefly. For the 0-to-100 scale logarithmic fitting was better as compared to the 

simple linear one [adj. R²log = .70 vs. adj. R²lin =.61]. However, when contrasting the 

logarithmic fitting to that of the two-linear model, the two-linear model accounted for a 

reliably larger part of the variance than the logarithmic model [adj. R²two-lin = .81 vs. adj. R²log 

= .70, see Figure 2, please note that for illustrating purposes the results of the item analysis 

are depicted]. Furthermore, inspection of the children’s individual breakpoints showed that 95 

out of 128 children assessed exhibited a breakpoint around 10 with the median of the 

breakpoints at 11.33. While this is a little bit above the proposed breakpoint at 10 it 

nevertheless corresponds nicely to the first two-digit numbers children had to position upon 

the hypothetical number line. 
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Figure 2: Results of both logarithmic (dashed line) and two-linear (solid line) fitting 

for the mean estimates across all German-speaking children  

(see Moeller et al., 2009 for further details) 

 

Similar to the Austrian children, for Italian children logarithmic fitting accounted for a 

reliably larger part of overall variance than did simple linear fitting for the 0-to-100 scale 

[t(96) = 3.46, p < .01] with R²log = .68 and R²lin = .63. However, comparable to the results for 

the German-speaking children two-linear fitting was significantly better than the logarithmic 

fitting in terms of descriptive adequacy for Italian children as well [t(96) = 11.73; p < .001]. 

Average adjusted R²two-lin was .82 compared to an R²lin of .68.
2
 

Two more observations corroborate the superior fit of the two-linear model. First, as 

found for the German-speaking sample, inspection of the correlation between the slopes of the 

two linear segments of the two-linear model showed that these were negatively correlated (r = 

- .42; n = 97; see Moeller et al., 2009a for detailed explanations). Second, inspection of the 

distribution of the individual breakpoints of the participating children revealed another 

                                                 
2
 Please note that results were identical when excluding all teen numbers from the analyses which are 

constructed differently in German and Italian number words [Italian-speaking: t(96) = 13.82, p < .001, mean of 

individual R
2
 for logarithmic fitting R

2
log = .69, mean R

2
two-lin = .84; German-speaking: t(127) = 5.82, p < .001, 

mean R
2

log = .70, mean R
2

two-lin = .83]. This suggested that the current results were not driven by differences at 

the level of teen numbers which are a special case in both languages. 
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striking similarity between the original German-speaking participants and the Italian children. 

Again, the vast majority of children (71 out of 97 Italian-speaking children) had a breakpoint 

around the hypothesized change from one- to two-digit number representation at 10 (see 

Figure 3). This is also reflected by the median of the individual breakpoints equaling 9.82 (M 

= 21.19, SD = 45.95). 

Figure 3: Distribution of individually computed breakpoints  

(rounded to the nearest integer) and arranged in clusters 

around the multiples of 10.  

 

Taken together, our results strengthen the assumption of two separate but linear 

representations for singe-digit and two-digit numbers as both Austrian and Italian children’s 

estimates on the 0 - 100 scale are accounted for best by a two-linear model with an assumed 

break point at 10 (see Figure 4 for an illustration of regression models based on the mean 

estimation of all children). This also implies that the representations of two-digit numbers 

may be an integration of the two single digits constituting the number. As German and Italian 

differ in the way two-digit numbers are verbalized (see above) we were interested whether the 

performance differences observed for the 0 - 100 scale were specifically driven by the 

inversion properties of the German number-word system, albeit an identical underlying 
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representation of two-digit numbers for German-speaking and Italian-speaking children as 

assessed in the number line task  

Figure 4: Regression lines based on the mean estimates of all children per data point showing the differences of 

overall logarithmic (dashed line) versus simple linear (solid line, Panel A) and two-linear fitting (solid 

line, Panel B) of the 0-to-100 scale. Please note that the data presented here reflects an item analysis and 

thus does not directly correspond to the participant-based analyses previously described. These data were 

chosen to be given as they allow for a better illustration of differences and similarities of the logarithmic 

and the two-linear model. Please also note that an additional two-linear regression in which the optimal  

break-point was computed instead of using the theoretically driven breakpoint at 10 revealed an identical 

adjusted R
2
 of .97 with the optimal break-point at 9.57. 
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Inversion influences on estimation accuracy  

Estimation performance for items with large and small inter-digit distance: 

From the notion of the representation of two-digit numbers reflecting the integration of 

its constituting digits it can be hypothesized that Austrian children might sometimes mix up 

tens and units of Arabic two-digit numbers, as in the German verbal notation the order of tens 

and units is reversed compared to the Arabic notation. Misplacements of the digits within the 

place x value structure of the Arabic number system would then lead to wrong magnitude 

estimations upon the hypothetic number-line. For testing this hypothesis, items from the 0 - 

100 scale were grouped according to the distance relations between their constituting digits 

(e.g., for 82: 8-2 = 6). For items with a small inter-digit distance (i.e., in our stimulus sample a 

distance of 2, such as in 64, 35, 75, 53), mixing up the digits should lead to smaller deviations 

in number-line estimation as compared to items in our stimulus sample with a digit distance 

larger than 2 (i.e., 47, 95, 27, 82). Accordingly, an ANCOVA on mean absolute error 

incorporating the within-subject factor interdigit distance (i.e., small vs. large), the between 

subject factor language (i.e., German- vs. Italian-speaking) and the individual CFT T-scores 

as covariate revealed a reliable interaction of interdigit distance and language [F(1,222) = 

11.41, p < 0.001]. This indicated that for items with a small interdigit distance no effect of 

language was present (mean error: 12.65% for Italian and 14.11% for Austrian children 

[t(223) = 0.90, p = .37], see Figure 5A) whereas the language effect for items with a large 

interdigit distance was reliable (mean error: 15.89% for Italian and 21.66% for Austrian 

children [t(223) = 2.88, p < .01]). Moreover, in line with the results for all items German-

speaking children’s estimations were more deviant from the to-be-estimated number than the 

estimations of the Italian-speaking children as indicated by a reliable main effect of language 

[14.27% vs. 17.89% estimation error for Italian- and German-speaking children, respectively; 

F(1, 222) = 12.28, p < .01]. Furthermore, the significant main effect of interdigit distance 

[F(1, 222) = 11.41, p < 0.001] indicated that estimates for items with a small interdigit 
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distance were generally more accurate than estimates for items with a large interdigit distance 

(18.77% vs. 13.38% error, respectively). Finally, the influence of the covariate (i.e., 

individual CFT-1 T-values) also reached significance [F(1, 222) = 4.93, p < 0.05]. 

 

More specific under- and/or overestimation in German-speaking children 

Directly testing whether the hypothesis that German-speaking children’s under-

/overshoot should be more pronounced revealed that the difference in relative estimation 

accuracy between items provoking underestimation and items provoking overestimation was 

stronger in German- than in Italian-speaking children [t(224) = 1.70, p < .05, tested one-

sided]. As can be observed from Figure 5B this meant that relative under-/overestimations 

were indeed more pronounced in German-speaking children.  

 

To sum up, we did not find significant performance differences between Italian and 

Austrian children for items with a small digit distance, whereas reliable differences were 

present for items with large inter-digit distances. This indicated language-specific differences 

only for those items where inversion errors would lead to a large deviance between the 

misunderstood and the actual value of the to-be-estimated number. This interpretation is 

further corroborated by the finding that German-speaking children exhibited a more 

pronounced estimation performance difference between items either provoking under- or 

overestimation of the given number in the expected direction. Taken together, this 

corroborates our general interpretation that the poorer performance of German-speaking  

children on the number line estimation task seems to be influenced by the German number 

word system being less transparent regarding the retention of the place-value structure of the 

Arabic number system. 
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Figure 5:  The mean estimation 

error in percent for Italian- and 

German-speaking children separated 

for items with a small and large 

interdigit distance is depicted in 

Panel A. The relative under-/over-

estimation of specific numbers as 

possibly caused by confusing tens 

and units is given in Panel B, again 

separated for the two langusge 

groups. Error bars indicate 1 SEM. 

 

 

 

 

 

 

 

 

 

 

DISCUSSION 

This study set out to examine the role of language in the development of the mental 

number-line in children. Indeed, we observed two major differences between Italian- and 

German-speaking first graders. First, the Italian children showed a reliably more accurate 

estimation performance than the Austrian children despite somewhat lower general cognitive 

abilities in our sample. Second, on the 0-to-100 scale estimation performance was determined 

significantly by interdigit distance for German- but not for Italian-speaking children: when 

processing the inversion property of German number words incorrectly lead to a number 

deviating largely from the correct number (e.g., 72 instead of the correct 27) number-line 
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estimation was particularly poorer in German- as compared to Italian-speaking children. 

However, no such language difference was present for items with a small interdigit distance 

(e.g., “five and thirty” � 53 instead of the correct 35), where incorrect processing of tens and 

units resulted in a much less deviation error. Finally, the current data for Italian-speaking 

children corroborated the assumption of first-graders’ initially having two separate and linear 

representations for single and two-digit numbers (Moeller et al., 2009a) rather than one 

overall logarithmic representation (e.g., Opfer & Siegler, 2007). Actually, the current results 

for Italian-speaking children were identical to those observed for their German-speaking 

counterparts as reported by Moeller and colleagues (2009a). In the remainder of this article 

the implications of these results will be discussed in turn. 

 

Language differences in estimation accuracy 

On a general level we observed the number line estimates of Italian-speaking children 

to be more accurate than the estimates of the German-speaking children on the 0-to-100 scale. 

Interestingly, this difference did not seem to be driven by differences in age or IQ-test scores 

since the German-speaking children who performed poorer on the number line task were on 

average older and scored higher on the CFT-1 than the children of the Italian sample who 

nevertheless performed better on the number line task
3
. Incorporating the T-values of the 

CFT-1 as a covariate in all analyses did not change this overall result pattern. Moreover, as 

the first grade curriculum for mathematics is more or less identical in Italy and Austria (both 

comprising the mastery of numbers up to 20 and their cardinal and ordinal relations as well as 

first arithmetic procedures within this range, see above) it is unlikely that differences in 

mathematics education account for the observed performance differences favouring the 

Italian-speaking children. Thus, age, intelligence-test scores or schooling differences do not 

                                                 
3
 Please note that this difference remained even when taking the age group instead of grade as the reference 

suggesting that it was not driven by differences in the age of the participants. 
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seem to be the origin of the performance dissociation between German- and Italian-speaking 

children. To briefly recapitulate, the German number word system differs from the Italian one 

as far as for all two-digit numbers above 20 (excluding multiples of 10) the order in which 

tens and units are spoken is reversed as compared to the order of symbolic digits constituting 

a given number (e.g., 27 � “siebenundzwanzig” [seven and twenty]). On the other hand, the 

Italian number word system is fully transparent on this (e.g., 27 � “ventisette” [twenty 

seven]). To evaluate the influence of this inversion property of the German number word 

system, the used two-digit items (above 20) were distinguished by the interdigit distance 

between their constituting digits, thereby, capturing the estimation error resulting from a 

misconception of tens and units in this number. For instance, when mixing up tens and units 

of the number 27 and consequently trying to locate 72 on the hypothetic number line, this 

leads to a larger misplacement upon the mental number-line than mixing up 45 and 54. As 

unit-decade integration into the place-value structure of the Arabic number system may be 

more difficult in a language with inversion (cf. Nuerk et al., 2005), German-speaking children 

should be more likely to may mix up tens and units. Following this argument, we expected 

general estimation performance to be driven by particular difficulties of the German-speaking 

children for the items with a large interdigit distance as these were especially affected by 

inversion errors. Our analyses confirmed the hypothesized language-specific (inversion) 

effect: German-speaking children’s estimates were particularly less accurate for items with a 

large digit distance, whereas no language difference could be observed for items with a small 

digit distance for which estimation errors were almost identical. Taken together, these results 

indicate that estimation accuracy of German-speaking children is particularly poor for items 

for which inversion plays a major role in the accurate representation of number magnitude. In 

summary, these findings suggest that the observed language-specific performance difference 

on the 0-to-100 scale can be attributed to the inversion property of German number words. 
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Implications for the theoretical understanding of numerical cognition 

As outlined above we observed particular language differences in estimation accuracy 

in the number-line task. In the following paragraph the implications of this finding concerning 

the theoretical conceptualization of number processing as proposed by the most influential 

model, i.e., the so-called Triple Code model (Dehaene & Cohen, 1995; 1997; Dehaene, 

Piazza, Pinel, & Cohen, 2003) shall be addressed. The Triple Code model postulates three 

distinct representation systems for numerical information that are directly interlinked: a visual 

system representing the visual identities of the digital input, a verbal system involving number 

words and arithmetic facts and a quantity system coding numerical magnitude information. 

Numerical input can directly access all three of the systems dependent on the format in which 

it is presented. The input information is then transcoded into the appropriate representation for 

solving the task. This means, depending on task demands one or more of the representation 

systems are involved. From the beginning, the representation of number magnitude in the 

quantity system was assumed to be organized as an internal MNL with numbers being 

arranged in ascending order from left to right upon this MNL (cf. Dehaene et al., 1993; 

Dehaene & Cohen, 1995). Consequently, number magnitude seems to be associated with 

physical space (see Bueti & Walsh, 2009; de Hevia, Vallar, & Girelli, 2008; Umiltà, Priftis, & 

Zorzi, 2009 for recent reviews on different aspects of spatial-numerical associations; Wood, 

Willmes, Nuerk, & Fischer, 2008; for a review and a meta-analysis). In this context, the 

number-line task intends to measure the nature and stability of (linear) spatial-numerical 

associations.  

How can language properties exert an influence on the spatial representation of 

number magnitude? According to the model, at least three processing steps would be required 

for number-line estimation: (i) access to the numbers to-be-estimated through the visual 

Arabic system; (ii) transmission to the spatial representation system where magnitude is 

processed analogously upon a mental number-line; and (iii) direct retrieval of the output from 
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this system. In this case no language-specific effects would be predicted. In order to explain 

the influence of language properties on the spatial representation system an interaction with 

the verbal system needs to be assumed. Such an interaction has been proposed by Nuerk et al. 

(2005) who reported language effects in a task as basic as magnitude comparison. Their 

results indicated that the verbal representation of numbers interacts with the magnitude 

representation, even for the case that numbers are presented in Arabic digital notation. Despite 

the fact that magnitude comparisons should be possible to perform without involving the 

verbal representations of the respective numbers, Nuerk et al. (2005) suggested that the Triple 

Code model does not per se exclude the possibility of a co-activation of the verbal 

representation even when it is not of primary relevance for the task at hand. 

Considering the current study, the data clearly corroborate the assumption that the 

verbal number representation influences the number line task, which is usually assumed to 

exclusively assess the spatial representation of number magnitude. A possible explanation of 

this influence in the present study may stem from the development of the neural circuitry 

underlying numerical cognition. Recent functional MRI studies indicated that the cortex areas 

associated with the three representational codes of numerical information are much less 

distinct in children than in adults (Kaufmann et al., 2006; Kaufmann et al., 2008; Rivera, 

Reiss, Eckert, & Menon, 2005). This means, for the same numerical task children activate a 

more wide-spread neural network possibly including activation of several representations in 

parallel, even when they are not primarily needed for solving the task. Thus, in number-line 

estimation the to-be-estimated numbers seem to co-activate their verbal word frame. In 

German-speaking children inverted two-digit number words on the verbal and non-inverted 

digital Arabic representation may both be elicited and thus compete for use. When the 

influence of the verbal representation is larger for one item it would necessarily determine a 

misplacement of the item on the hypothetical number-line. As such an influence would be 
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especially detrimental in items with a large interdigit distance, language differences should be 

most pronounced in these items – as they were in the current study. 

It may be important to note that these data do not necessarily imply that the spatial 

representation of numbers is verbal. Rather, they could imply both (i) that the access to the 

spatial representation of number magnitude may be verbally mediated or (ii) that the spatial 

representation of numbers itself is moderated by verbal co-activations. In research on spatial 

number representations in neglect patients, this point has received much interest recently 

(Priftis et al., 2006; Umiltà et al., 2009). Neglect patients do not only have problems with the 

spatial representation of number magnitude per se, but also with the integration of tens and 

units in the place-value system in the neglected portion of the number line (cf. Hoeckner et 

al., 2008). Future cross-cultural studies with neglect patients may help to evaluate the 

question whether the magnitude representation itself (including place-value attributes) or the 

access to it is influenced by language differences. 

In summary, the observed language-specific effects on the number-line task can best 

be accounted for by assuming a less specific activation of the distinct numerical 

representations in children as compared to adults. In our view, the Triple Code model 

(Dehaene & Cohen, 1995; 1997) can only be applied to children data, when a more integrative 

interaction of its single systems is assumed during the acquisition of number processing skills 

(see also Cohen & Dehaene, 2000, for similar suggestions to account for adult patient 

behavior). 

 

Logarithmic vs. two-linear representation of numbers up to 100 

In a recent study Moeller and colleagues (2009a) showed that the mental 

representation of numbers up to 100 in German-speaking first graders may not only be 

accounted for by a logarithmic model (e.g., Siegler & Booth, 2004) or a two-linear model 

with a breakpoint associated with children’s familiarity with numbers, but alternatively by a 
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two-linear model with one linear representation of one-digit numbers and another linear 

representation of two-digit numbers. In the data of Moeller and colleagues (2009a) both 

models captured the data well (i.e., the logarithmic as well as the two-linear with a fixed 

breakpoint at 10). However, in direct comparison and some critical tests the two-linear model 

outperformed the logarithmic model reliably in terms of descriptive adequacy (i.e., R
2
) in a 

German-speaking children sample. From this finding, Moeller et al. (2009a) conclude that the 

spatial coding of numerical magnitude along the MNL may not develop from logarithmic to 

linear with increasing age and experience as previously suggested by Siegler and colleagues 

(e.g., Opfer & Siegler, 2007; Siegler & Booth, 2004). Instead, the developmental change may 

involve the mastery of the place-value structure of the Arabic number system. As observed by 

Moeller and co-workers (2009) as well as by many others (e.g., Siegler & Opfer, 2003; Opfer 

& Siegler, 2007) children seem to systematically overestimate the space reflecting the 

position of one-digit numbers towards the right in the beginning (i.e., locating 7 at the actual 

position of approximately 30). However, on average they also adhere to the ordinal order of 

the to-be-estimated numbers. Moeller et al. (2009a) interpreted this as indicating that children 

already seem to know that, for instance, 40 is somehow larger than 4; nevertheless, they are 

not yet capable of correctly representing the ratio of this “larger” complying with the base-10 

place-value structure of the Arabic number system (i.e., the distance between 0 and 40 is 10 

times as large as the distance between 0 and 4). When the “somehow” in above sentence 

means not 10 times larger, but 2 or 3 times larger, this could potentially produce data patterns 

which are well fitted by a logarithmic fitting although the underlying data may not be 

logarithmic
4
. Thus, it may not be a logarithmic to linear change of children’s magnitude 

                                                 
4
 Please note that this argument holds for both directions. Data produced by a logarithmic model can also be well 

fitted by a two-linear model, at least when no fixed break points around 10 is assumed as in the model of 

Ebersbach et al. (2008). Thus, descriptive adequacy alone cannot prove that the underlying data are also 

produced by either model fitting the data (cf. Myung & Pitt, 1997, see also Appendix A for further discussion 

of this point). 
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representation but rather progress in children’s understanding of the place-value structure that 

underlies performance improvements with age and experience.  

Moeller and colleagues (2009a) presented evidence indicating a better fit of the two-

linear compared to the logarithmic model in various indices for German-speaking children 

only. However, it is known that the intransparent German number word system, in particular 

its inversion property, has a reliable influence on children’s numerical development (cf. Zuber 

et al., 2009). Therefore, it was still to be shown that the results reported by Moeller and co-

workers (2009a) were not determined by this peculiarity of the German number word system. 

In the present study, we evaluated the spatial representation of number magnitude in 107 

Italian-speaking first graders. As there is no inversion of tens and units in the Italian number 

word system, replicating the better two-linear as compared to a logarithmic fit would 

corroborate the notion of children’s mastery of the place-value structure of the Arabic number 

system to determine children’s spatial representation of number magnitude irrespective of 

differences in the number word systems. 

The current data support the latter assumption. The results of the Italian-speaking 

children mirrored those of the German-speaking ones in each and every aspect: (i) comparing 

logarithmic to two-linear fittings on an individual basis showed that the two-linear model 

provided a reliably better fit; (ii) the vast majority of children exhibited a breakpoint around 

ten, and (iii) the slope of the linear segment representing one-digit numbers was negatively 

correlated to the slope of the segment for two-digit numbers. Taken together, the results for 

the Italian-speaking children were identical to those previously observed for German-

speaking children (cf. Moeller et al., 2009a). In our view, this data indicate that the mastery of 

the base-10 place-value structure of the Arabic number system to be a corner stone in the 

development of the MNL in different cultures. Even more, the present results imply that the 

general way in which children learn to represent numbers complying with the base-10 

property of the place-value structure of the Arabic number system (i.e., the distance between 0 
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and 40 is 10 times as large as the distance between 0 and 4) is not influenced by language 

differences. Finally, Booth and Siegler (2008) also showed that performance in the number 

line task is associated with actual mathematics achievement and in particular the ability to 

solve unlearned problems. To substantiate these findings we evaluated whether the size of the 

individual mean estimation error in first grade predicted the mathematics mark two years later 

by the end of grade three for a subsample of 50 of the German-speaking children. And indeed, 

in line with the results of Booth and Siegler (2008) we observed that third grade mathematics 

mark became better, the smaller the number line estimation error was in first grade (r = .40; n 

= 50). Synced with above findings suggesting two separate representations of single- and two-

digit numbers one could as well assume that as an alternative account to the logarithmic-to-

linear shift, place-value understanding serves as a building block for later arithmetic 

competencies.  

 

SUMMARY AND CONCLUSIONS 

This study set off to gain new insights in the development of the spatial representation 

of number magnitude and the role of language properties on this representation system by 

evaluating performance of Italian- and German-speaking first grade children in a number-line 

estimation task. The latter languages were chosen as they differ in the organization of their 

number word systems. While the order of tens and units in German number words is reversed 

as compared to the digital notation (i.e., 27 � seven and twenty), no such inversion is present 

in Italian. Recently, the inversion property of German number words was shown to pose 

specific problems to children when acquiring the Arabic notation of multi-digit numbers 

(Zuber et al., 2009). The present data are informative in two respects reflecting language 

independent as well as language dependent development:  

First, it was observed that comparable to previous results for German-speaking 

children estimation performance of Italian-speaking children was accounted for best by a two-
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linear model as well. In line with Moeller et al. (2009a) we argue that this corroborates the 

notion that performance improvements with age and experience may be driven in by progress 

in the children’s understanding of the base-10 place-value structure of the Arabic number 

system. In this context, the current results indicate that the process of mastering the base-10 

property of the place-value structure may be language invariant as we observed no differences 

between German- and Italian-speaking children.  

On the other hand, despite the fact that the underlying processes may be the same in 

both languages language differences in the number word system nevertheless influenced the 

execution of these processes. Estimation performance for two-digit numbers was particularly 

worse in German-speaking children when confusing tens and units in integrating the 

individual digits into the overall number (due to their inverted order in German number 

words) results in large differences between the actual and the misunderstood number (i.e., 

seven and twenty � 72 instead of 27). This indicated that although German-speaking children 

refer to the same underlying process of integrating tens and units into one coherent 

representation of a two-digit number, the fact that the input to this process is diverse (verbal 

vs. digital notation) takes its toll on estimation accuracy.  

To conclude, we want to emphasize the importance of translingual studies for 

investigating the development of numerical cognition. The present study indicated that there 

are language-independent as well as language-dependent influences. However, in both cases 

general as well as language specific processing within a language could only be identified 

with the reference to at least one other language. Without such a direct contrast between two 

languages with e.g., different number word systems it is almost impossible to dissociate 

language specificities from more general developments of numerical competencies. In this 

vein, future translinguistic studies provide the possibility to better understand which aspects 

of numerical development follow rather language invariant trajectories as well as which 

language-specific properties influence these trajectories and how this influence looks like. 
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APPENDIX A 

A remark on how to evaluate the logarithmic vs. two-linear issue 

There are different ways of evaluating whether the logarithmic or the two-linear model 

provide a better fit of the empirical data. In the following, these different approaches shall be 

summarized. Generally, (i) approaches averaging data across participants can be distinguished 

from (ii) approaches contrasting individual performance measures.  

 

Averaging across participants (fixed effects analysis): 

(a) After averaging the estimates for each to-be-located number across all participants 

a comparison may be of interest which of the two models (logarithmic vs. two-linear) 

provides a better fit of the empirical data (e.g., in terms of adjusted R
2
). This can be done for 

instance by a stepwise multiple regression analysis in which both a linear as well as a 

logarithmic predictor is entered. By the logic of the stepwise regression analysis the predictor 

which accounts for the largest part of the variance is included in the model first. Any further 

predictor will only be incorporated into the model when it adds significantly to the variance 

explained by the final regression model. Thereby, it would be possible to identify which of the 

two predictors (i.e., linear or logarithmic) is incorporated into the regression model first and to 

evaluate whether the inclusion of the other predictor would add reliably to the explanatory 

power of the model or not. When running this stepwise regression analysis on mean estimates 

of all Italian-speaking children it could be observed that only the two-linear predictor was 

considered in the final regression model while the logarithmic predictor was not incorporated 

[R = .99, adj. R
2
 = .97, F(1, 16) = 553.59, p < .001, btwo-lin = .99, p < .001, blog = - .35, p = 

.18]. This observation was substantiated by the results of two forward regression analyses. 

When entering the logarithmic and the two-linear predictor successively the logarithmic 

predictor on its own was found to be a reliable predictor of estimation performance [b = .96, p 

< .001]. However, when entering the two-linear predictor the logarithmic predictor was no 
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longer a reliable predictor of estimation performance [R = .99, adj. R
2
 = .97, F(2, 15) = 

295.11, p < .001; see Table A]. On the other hand, when starting the regression analysis with 

the two-linear predictor and then adding the logarithmic predictor the latter did not account 

for a reliable portion of additional variance [R = .99, adj. R
2
 = .97, F(1, 16) = 553.59, p < 

.001, btwo-lin = .99, p < .001, blog = - .35, p = .18]. Please note that the results for the German-

speaking sample were identical. 

 

Table A: Results of the first logarithmic then two-linear forward regression  

 analysis for Italian-speaking children   

Predictor B 
Standardized 

b 
Change in 

R² 
t p 

Logarithmic - .36 - .35 .93 1.42 .18 

Two-linear 1.35 1.33 .05 5.43 .001 

 

 (b) Identifying the optimal break-point in a two-linear regression may provide 

additional information. Only if the optimal break-point falls near the theoretically proposed 

break-point the two-linear model seems appropriate. As can be seen from Figure 2 adjusted R
2
 

for the two-linear model is descriptively larger than that for the logarithmic model. 

Furthermore, the optimal break-point of 9.57 for the Italian-speaking as well as 11.33 for the 

German-speaking sample was indeed very close to the hypothesized break-point of 10.  

 

(c) Finally, running separate analyses for one- and two-digit numbers may also be of 

particular interest for two main reasons. First, when assuming each of these two 

representations to be linear with a fixed breakpoint at 10 instead of an overall logarithmic 

representation of number magnitude such analyses reflect a crucial test of the predictions of 

the two-linear model. On the other hand, when assuming an overall logarithmic representation 

not differentiating between single- and two-digit numbers separate analyses for each of these 

intervals should nevertheless reveal that the estimates are fitted best by a logarithmic function. 
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Splitting the overall interval in two should do nothing to the validity of the logarithmic model. 

This may be of particular interest for the segment representing two-digit numbers as the 

proposition of a linear representation of all two-digit numbers seems to be a strong claim 

against the background of the problem size effect, which should be tested prior to any further 

analysis. Given the case there is no problem size effect for the two-digit numbers (or e.g., the 

larger half of the items), interpreting the relatively good fit of a logarithmic function to 

indicate a logarithmic magnitude representation may be premature as there might actually be 

no explicit representation of the magnitude of these items. Instead, this might reflect the case 

of intact magnitude representation up to a given quantity (e.g., 10) with each magnitude above 

this point corresponding to a rather fuzzy representation of “many”. Please note that the 

assumption of an overall magnitude representation as claimed by the logarithmic model is 

violated by such a data pattern. On the other hand, a two-linear model as proposed by 

Ebersbach et al. (2008) would be able to account for the data pattern in a more appropriate 

way. Possible confounds to a logarithmic interpretation of this kind may for instance be 

inherent in the data pattern reported by Opfer, Thompson, & Furlong (in press, Figure 5, p. 8) 

interpreted to indicate a logarithmic magnitude representation of even preschoolers (see also 

Brysbeart, 1995; Muldoon, Simms, Towse, Burns, & Yue, this issue for comparable data 

patterns). Second, by running linear and logarithmic analyses separate for one- and two-digit 

numbers as testing specific model predictions of the two-linear model with a breakpoint at 10 

no special adjustment for the degrees of freedom of the two models is necessary as these are 

identical (i.e., linear: y = a·x + b; logarithmic: y = a·log(x) + b).  

 

Fitting individual participants (random effects analysis): 

(a) When intending to evaluate model adequacy on a more individual basis a measure 

of model fit (e.g., adjusted R
2
) can also be calculated for both the logarithmic as well as the 

two-linear model for each participant individually. Afterwards the two matrices are directly 
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contrasted. In the current study it was observed that the model fit of the two-linear model was 

reliably better than that of the logarithmic model for Italian-speaking children (see also 

Moeller et al., 2009a for a more detailed description of identical results for the German-

speaking sample).  

 

(b) Alternatively, one may also be interested in the results of separate analyses for one- 

and two-digit numbers as described above on an individual bases.  

 

(c) It is also possible to compute the optimal break-point of the two-linear model for 

each individual participant and then evaluate the distribution of these break-points. Only if the 

optimal break-points of the vast majority of participants fall close to the hypothetisized break-

point the two-linear model should be considered. Again, this was given in the present data set: 

the majority of Italian-speaking participants had an optimal break-point around 10 (see also 

Moeller et al., 2009a for similar results concerning the German-speaking participants).  

However, as already pointed out in the introduction even in a situation where the data 

undoubtedly follow a two-linear function, a logarithmic model would provide a very good 

model fit and vice versa. Therefore, we evaluated this issue by comparing the distributions of 

individual breakpoints of the empirical data and 100 simulated participants produced by a 

100% logarithmic model. Figure A, Panel I depicts the distribution of breakpoints as observed 

for the simulated data whereas the individual breakpoints empirically found for both German- 

as well as Italian-speaking children are to be found in Figure A, Panels II and III, respectively. 

As can be observed from these figures the pattern differs considerably: For the simulated data 

the vast majority of breakpoints was found to be located between 13 and 17 with the median 

at 14.37 and the mean being very close at 15.39. Contrarily the majority of breakpoints for the 

empirical data was found to be located between 8 and 12 (median at 9.8 and 11.8 for Italian- 

and German-speaking children, respectively; Means: 21.2 and 25.3, respectively) and thus 
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much closer to the proposed breakpoint at 10 reflecting two different representations for 

single- and two-digit numbers. On the other hand, we are not aware of any theoretical 

assumption suggesting differing representations of numbers below and above 14. Another 

interesting finding is that of the 100 individual breakpoints of the simulated data only 4 were 

to be found below 10 whereas the number of breakpoints below 10 was higher for the 

empirical data (German-speaking: 34; Italian-speaking: 42) of which the majority was located 

on 8 and 9 (German-speaking: 21; Italian-speaking: 26).  

 

Figure A: Distribution of 

breakpoints for the data 

simulated by a logarithmic 

model (Panel I), German-

speaking (Panel II) and Italian-

speaking (Panel III) children 
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(d) Finally, a correlation analysis of the individual slopes of the two linear or two 

logarithmic segments for one- and two-digit numbers may be informative. Under the 

assumption of the two-linear model suggested by Moeller et al. (2009a) the slopes of the two 

linear segments of the two-linear model should be negatively correlated: the steeper the slope 

of the segment for single digit numbers the further to the right are one-digit numbers placed 

on the hypothetical number line. Thereby, all two-digit numbers have to be located on a very 

limited part of the number line leading to a relatively flat slope for these two-digit numbers. 

On the other hand, the slopes of two logarithmic segments meeting at a fixed breakpoint 

should be positively correlated. Thereby, evaluating the correlation of the slopes of the two 

linear segments for one- and two-digit numbers is a critical test for the applicability of the 

two-linear model and the two separate representations of one-and two-digit numbers it 

reflects. For both the Italian- as well as the German-speaking sample the correlation between 

the slopes of the two linear segments was significantly negative. 

 

It is obvious that both approaches follow the same logic either across items (see 

above) or across participants. However, in the latter approach model fit is assessed on an 

individual level, thereby, taking into account possible individual differences in development 

which are treated as measurement error in the item-based approach. Therefore, we think that 

III 
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the individual approach may be more suited to investigate developmental trajectories of the 

spatial dimension of number magnitude representation. 

 

Addressing the problem of possible model overfitting 

Finally, a general issue in science regards the question of model overfitting in the way 

of evaluating whether it is signal which is modeled by a given model or rather signal plus 

noise. In the latter case, one runs the risk of capitalizing on measurement error due to a more 

complex model with a higher number of degrees of freedom (see Myung & Pitt, 1997; Pitt, 

1999, Pitt, Myung, & Zhang, 2002 for a discussion of this point). Transferred to the current 

study this taps on the different number of free parameters between the logarithmic and the 

two-linear model. While the logarithmic model [based on a function such as y = a log(x) + b] 

has the two free parameters a and b, a two-linear model without a fixed breakpoint has four 

free parameters (a1, a2 and b1, b2) two for each linear part of the model (i.e., y = a1 x +b1 for 

the first part and y = a2 x +b2 for the second part). Yet, when using a fixed breakpoint (as 

assumed for the current two-linear model) the number of free parameters comes down to 

three. When the first linear segment is described by the function y = a1 x +b1 with two free 

parameters and the constraint of ending at a fixed breakpoint (e.g., 10) it defines a fixed point 

at this endpoint which the second linear part of the model has to cut. Thereby, the second part 

of the two-linear model with a fixed breakpoint is described sufficiently by one further free 

parameter, be it either constant or slope. As the second linear element has to cut a fixed point 

at the breakpoint its slope is fixed when the constant is estimated while on the other hand the 

constant is fixed when the slope is estimated. Taken together, the proposed two-linear model 

with fixed breakpoint at 10 has exactly one free parameter more than the logarithmic model. 

Nevertheless, this could make the difference. To account for the higher number of free 

parameters in our model as compared to both the simple linear as well as the logarithmic 

model R
2
 values were adjusted by the number of free parameters of either model prior to any 
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analyses. However, in the following, the results of two additional analyses will be presented 

addressing the problem of possible overfitting of the data by the more complex two-linear 

model. 

 

In a first approach it was evaluated in how far the results observed depended on the 

inclusion of one particular data point (i.e., to-be-estimated number) to examine over-fitting of 

the data. When iteratively omitting one item from the analysis results in considerable changes 

of each of the models’ performance this indicates that the overall result is highly dependable 

on the inclusion of particular data points. On the other hand, when results do not change 

considerably this argues for a high stability of the overall result indicating that it is rather 

invariant to the exclusion of specific items. A respective analysis for the current data showed 

that the results for both models were very stable (logarithmic: mean adjusted R
2
 = .68, SEM < 

0.001; two-linear: mean adjusted R
2
 = .82, SEM < 0.001; mean number of participants with an 

optimal break-point around 10: 62.72, SEM = 0.87; mean slope of single digit segment: 3.93, 

SEM < 0.01; mean slope of two-digit segment: 0.32, SEM < 0.001). More interestingly, the 

two-linear model outperformed the logarithmic one reliably in terms of adjusted R
2
 no matter 

which data point was omitted from the analysis (all t > 10.23, all p < .001). Note that this 

stability is true for a logarithmic model and for a two-linear model with a fixed break point. A 

model with a variable break point could be potentially more flexible and thus more variable 

when single data points are omitted.  

Another way to address the point of possible overfitting of the two-linear model is to 

evaluate in how far a two-linear model accounts for data produced by a logarithmic model and 

vice versa. Generally, data produced by logarithmic model (including some random noise) 

must not be accounted for better by two-linear fitting as compared to logarithmic fitting. 

When data produced by a logarithmic model is accounted for better by two-linear fitting than 

by logarithmic fitting this would suggest overfitting of the data by the two-linear model. 
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Contrarily, data produced by a two-linear model (again including some random noise) must 

not be fitted better by a logarithmic model. To test these predictions we simulated the data of 

100 participants using both a logarithmic as well as a two-linear model incorporating a 

Gaussian random error term and fitted the resulting data in a logarithmic and a two-linear 

regression analysis for each of these modelled data sets. Subsequently, adjusted R
2
 resulting 

from either regression were compared using paired t-tests. The results of the t-tests showed 

that logarithmic fitting did account for reliably more variance of the data produced by a 

logarithmic model than did two-linear fitting [t(99) = 1.99, p < .05; R
2

log = .94 vs. R
2

two-lin = 

.93]. On the other hand, two-linear fitting resulted in a higher adjusted R
2
 than did logarithmic 

fitting for the data produced by a two-linear model [t(99) = 10.28, p < .001; R
2

log = .87 vs. 

R
2

two-lin = .93]. Apart from the fact that all analyses were run on R
2
 values adjusted for 

differing numbers of free parameters this finding again argues against an overfitting of the 

empirical data by the two-linear model. 
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ABSTRACT 

It is assumed that basic numerical competencies serve as a cognitive scaffold for the 

development of more complex arithmetic skills. The current study aims to take a first step in 

evaluating this interrelation in a longitudinal approach involving typically developing 

children. It was investigated whether first graders’ performance in basic numerical tasks in 

general as well as specific cognitive processes involved in such tasks (e.g., place-value 

understanding) reliably predicted their performance in a complex addition task in third grade. 

The results indicated that not only overall performance in basic numerical tasks 

influenced later arithmetic achievement. More particularly, an early understanding of the 

place-value structure of the Arabic number system was observed to be the most reliable 

predictor for specific aspects of arithmetic performance. Therefore, we suggest that a 

representation of the place-value structure of the Arabic number system should be considered 

in current models of numerical development. Implications of the role of basic numerical 

competencies for the acquisition of complex arithmetic and its impairment are discussed.  
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INTRODUCTION 

 

Dealing with (multi-digit) numbers is maybe one of the most important abilities 

learned at school as it has a wide range of everyday applications. As a consequence, impaired 

numeracy poses substantial problems for children’s educational development (Bynner & 

Parsons, 1997) as well as post-educational experiences throughout life (Parsons & Bynner, 

1997; 2005). Thus, given the importance of these skills understanding their developmental 

trajectories and their cognitive underpinnings seems crucial. 

Indeed, in recent years the research interest in calculation processes, calculation 

strategies as well as their underlying cognitive architecture increased steadily with a clear 

focus on investigating addition (e.g., Adams & Hitch, 1997). Addition is the first arithmetic 

operation taught at school. Moreover, according to Ashcraft (1992) successful mastery of 

addition rules and procedures constitutes an essential building block for the development of 

more advanced mathematical skills (e.g., multiplication; Cooney, Swanson, & Ladd, 1988). 

When developmental trajectories of more advanced mathematical skills are 

investigated, it is important to know which more basic cognitive characteristics underlie such 

advanced mathematical skills. Recently, there has been intriguing research investigating 

(multi-digit) addition identifying different characteristics of addition problems moderating 

task difficulty such as problem size (Deschuyteneer, De Rammelaere, & Fias, 2005; Imbo & 

Vandierendonck, 2007a; Stanescu-Cosson et al., 2000), carry over, (Klein, Nuerk, Wood, 

Knops, & Willmes, 2009; Imbo, Vandierendonck, & De Rammelaere, 2007a), solution 

strategies depending on these characteristics (Roussel, Fayol, & Barrouillet, 2002; Imbo, 

Vandierendonck, & Rosseel, 2007b) and their relation to working memory (e.g., De Smedt et 

al., 2009a; Imbo, Vandierendonck, & Vergauwe, 2007c).  

On the other hand, knowledge of which basic numerical precursor competencies 

predict the acquisition of addition skills reliably is still rather patchy. Although many authors 
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have claimed that basic numerical knowledge serves as an important precursor for later 

addition performance and arithmetic achievement in general (e.g., Butterworth, 2005; 

Dehaene, 1997), systematic investigation of this relationship has only began recently. In a 

cross-sectional approach, Holloway and Ansari (2009) found children’s early ability to 

compare symbolically coded numerical magnitudes to be a predictor of their mathematical 

skills. The authors assessed children’s ability to compare symbolic (i.e., digital notation) and 

non-symbolic (i.e., dot patterns) magnitudes. They found that only the distance effect 

observed in symbolic magnitude comparison reliably correlated with their performance in a 

standardized mathematical test. These findings provide direct empirical evidence that 

complex calculation performance relies upon basic numerical skills, such as magnitude 

understanding (see also Kaufmann, Handl, & Thoeny, 2003). However, apart from this 

important observation, the study is innovative for another aspect: Unlike the majority of 

previous studies (e.g., Booth & Siegler, 2008) Holloway and Ansari (2009) did not index one 

(numerical) representation by one numerical task (henceforth: task approach; e.g., indexing 

the quality of magnitude representation by overall error rate in a number comparison task). 

Rather, Holloway and Ansari (2009) used a specific numerical effect, i.e., the numerical 

distance effect, as a more stringent index for the underlying representation, i.e., number 

magnitude representation (henceforth: effect approach).  

As the distinction between task approach and effect approach is crucial for the current 

study and beyond, we will elaborate on that distinction a bit more. Consider the following as 

an example for the task approach: Dehaene and Cohen (1997) concluded that the magnitude 

representation of their patient MAR was impaired as he was moderately to severely impaired 

(i.e., exhibiting an abnormally high error rate) in a number of quantitative numerical tasks 

including magnitude comparison and number bisection amongst others. Thus, a specific task 

(in this case number magnitude comparison) is used to index a specific representation (in this 

case number magnitude representation). At first sight, this may seem convincing. However, it 
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has been shown that other representations influence task performance in such tasks as well. 

For instance, Nuerk, Weger, and Willmes (2005) have shown non-magnitude-related language 

effects in the magnitude comparison task whereas Nuerk, Geppert, van Herten, and Willmes 

(2002, see also Korvorst & Damian, 2008; Wood et al., 2008) observed reliable non-

magnitude effects of parity and multiplication fact knowledge in the number bisection task. 

On the other hand, following the effect approach an underlying cognitive 

representation (e.g., magnitude representation) is reflected by the size of a specific effect 

associated with this representation (e.g., the numerical distance effect). As the distance effect 

is one of the most robust effects in numerical cognition (observed even in non-human 

primates, e.g., Nieder, Diester, & Tudusciuc, 2006) its disappearance, reversion, or inflation 

can be used to indicate impairments of the underlying number magnitude representation. In 

this vein, Delazer and colleagues (Delazer, Karner, Zamarian, Donnemiller, & Benke, 2006) 

observed an increased distance effect to indicate impaired number magnitude processing 

capabilities (despite the fact that overall error rate in a magnitude comparison task did not 

seem conspicuous). Thereby, the effect approach allows for a more fine-grained evaluation of 

performance even in situations where overall performance measures (e.g., overall error rates) 

may be too unsubtle and thus undifferentiated. Therefore, focusing on a specific numerical 

effect within a task instead of overall performance in this task may provide additional 

information when investigating mastery of a particular underlying representation (see also 

Hoeckner et al., 2008; Korvorst & Damian, 2008; Nuerk et al., 2002; Wood et al., 2008). 

Such an effect approach has already been successfully applied to the domain of 

numerical development by Holloway and Ansari (2009). They observed that children who 

exhibited a comparatively larger symbolic distance effect (i.e., more errors when comparing 

two numbers close to each other than two numbers further apart, e.g., 3_4 vs. 1_6) scored 

lower on a standardized mathematics achievement test (see also De Smedt, Verschaffel, & 

Ghesquière, 2009a; Landerl & Kölle, 2009 for similar results).  
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The current study follows up and extends the effect approach used in the innovative 

study of Holloway and Ansari (2009). It aims at extending the study of Holloway and Ansari 

(2009) in four aspects: (i) Holloway and Ansari (2009) used an effect approach only on the 

side of the predictor variable (i.e., the symbolic distance effect), while we will use numerical 

effects as the predictor and the dependent variable. Thus, not only the representation 

predicting later performance is measured within-task, but also the processes and 

representations indexed by the criterion variables are measured by specific numerical effects 

in addition to overall performance measures. (ii) While Holloway and Ansari (2009) tested a 

cross-sectional sample of children, the present study presents longitudinal data on the 

developmental trajectories from basic numerical competencies (first grade) to later arithmetic 

performance (third grade). (iii) The stimulus sets used to assess basic numerical competencies 

in this study (i.e., transcoding and magnitude comparison) were almost entirely composed of 

at least two-digit numbers while single-digit numbers were employed by Holloway and 

Ansari (2009). This directly relates to the last point: (iv) As Holloway and Ansari (2009) only 

used single-digit stimuli they could not address the issue of place-value understanding as an 

important precursor of later arithmetic ability in their study. Contrarily, the issue of mastery 

of the place-value structure of the Arabic number system will be the central question of the 

current study. Therefore, the relevance of the place-value concept as well as children’s 

difficulties in acquiring this concept will be reviewed in the remainder of this introduction. 

 

The place-value structure of the Arabic number system 

Obviously, complex (multi-digit) arithmetic does not only require an activation of 

number magnitude (e.g., Dehaene & Cohen, 1995; Holloway & Ansari, 2009), but also 

requires at least basic understanding of the place-value structure of the Arabic number system 

(Moeller, Pixner, Kaufmann, & Nuerk, 2009a; Nuerk, Kaufmann, Zoppoth, & Willmes, 

2004a; Nuerk, Graf, & Willmes, 2006; Nuerk & Willmes, 2005, for a review). The Arabic 
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number system as formalized by its 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) is formally simple 

because assembling a number by its constituting digits follows the so called place-value 

principle (Zhang & Norman, 1995). The place-value concept signifies that the value of a digit 

is defined by its position within the sequence of digits constituting the respective number 

(Zhang & Norman, 1995): Starting from the rightmost digit the power of 10 is increasing by 

one with each step to the left (e.g., 368 = {3} 10
2
 {6} 10

1
 {8} 10

0
; cf. McCloskey, 1992). 

Taking this into account, complex addition requires quite elaborate understanding of the 

place-value concept. For instance, consider the problem 36 + 57. Here, unit and decade digits 

need to be manipulated and arranged correctly to obtain the result 93, i.e., considering the 

carry, overwriting of zeros: 90 � 93. Thus, more advanced mathematical skills might not 

only be predicted by a general activation of magnitude representations, but might, in 

particular, rely on the understanding of the place-value system and the integration of 

constituting digits in this system as well (Kaufmann & Nuerk, 2007; Nuerk et al., 2004a; 

Nuerk et al., 2006).  

In what follows children’s difficulties in the acquisition of the understanding of the 

place-value system will be briefly sketched and the possible impact on the specific 

characteristics of complex addition problems will be outlined to allow for a deduction of 

specific longitudinal hypotheses later. 

 

Understanding the Arabic place-value concept 

Several studies indicated that children experience specific difficulties acquiring this 

principle. One of these difficulties is reflected by problems in mastering the correspondence 

between verbal number words and the place-value principles for Arabic digits (e.g., Camos, 

2008; Power & Dal Martello, 1990; 1997; Zuber, Pixner, Moeller, & Nuerk, 2009). These 

problems seem to be mainly driven by the fact that in most Western languages the verbal 

number-word system is not structured along place-value constraints (cf. Comrie, 2005). This 
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argument is corroborated by the important results of Miura and colleagues (1994) who 

consistently found that Asian children (i.e., Chinese, Japanese, and Korean) experiencing a 

totally regular and transparent number word system (42 � four ten two) outperformed their 

western counterparts (i.e., France, Sweden, and the U.S.) in recoding given numbers into non-

symbolic sets of tens and units blocks (see also Miura & Okamoto, 1989; Miura, 1987). In 

this vein, the verbal number word system in most western languages is much more complex 

than the symbolic Arabic number system as it is organised by different classes of number 

words: (i) units (0 to 9), (ii) decades (10, 20, etc.), (iii) teens (13, 14, etc.), (iv) hundreds, 

thousands, etc. For the verbalization of multi-digit numbers these number word classes are 

combined by two syntactic rules, i.e., multiplicative composition as well as additive 

composition (involving the requirement to overwrite zeros). For instance, three hundred 

eighty-nine builds upon a product relationship of 3 x 100 and a sum relationship of 300 + 89 

� 389 (cf. Power & Dal Martello, 1990). Typically, when children are required to transcode 

verbal number words (e.g., twenty-five) into the corresponding string of Arabic digits (i.e., 

25) or vice versa, their errors are almost exclusively related to the understanding of these 

syntactic principles (Barrouillet, Camos, Perruchet, & Seron, 2004; Camos, 2008; Power & 

Dal Martello, 1990; 1997; Seron & Fayol, 1994; Zuber et al., 2009).  

To illustrate this, consider a child who was dictated 124 but wrote 10024 or 1024. 

Both of these errors reflect a misconception of the base-10 place-value system; in particular 

the necessity to overwrite zeros (Power & Dal Martello, 1990). However, the syntactic 

structure of number words differ between languages as for instance in German unit and 

decade digit are spoken in reversed order (43 is spoken as three and forty). This inversion 

property of the German language has only recently been identified to pose a major obstacle 

for transcoding performance. In this vein, Zuber and colleagues (2009) assessed transcoding 

performance in 130 German-speaking first graders who had to write down 64 numbers that 

were dictated to them. The authors observed that, besides other common syntactic errors (e.g., 
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124 � 10024, see Deloche & Seron, 1982; Power & Dal Matello, 1990 for a taxonomy of 

transcoding errors), about one half of the German speaking children’s transcoding errors were 

related to inversion (e.g., forty-three – spoken as three and forty in German – was written as 

34). Thus, when number words are not transparent in regard of the place-value system, 

successful integration of tens and units into the place-value system becomes even more 

difficult. Taken together, these findings nicely illustrate, that especially for multi-digit 

numbers transcoding not transparent notational formats poses specific difficulties on children 

as it requires elaborate understanding and application of rules in reference to the place-value 

structure of the Arabic number system. (e.g., Proios, Weniger, & Willmes, 2002; Zuber et al., 

2009).  

Furthermore, children’s specific difficulties in the acquisition of the place-value 

concept do not only become evident from their transcoding errors. Even in tasks as basic as 

two-digit number magnitude comparison, children are need to understand and more or less 

automatically apply place-value rules. For example, when comparing 42 and 57 tens and units 

need to be put in the correct bins (e.g., Nuerk, Weger, & Willmes, 2001), meaning that one 

has to segregate which digits represent the to-be-compared decades (i.e., 4 < 5) and which the 

units (i.e., 2 < 7). Such unit-decade identification within the place-value system is especially 

important when the presented number pair is unit-decade incompatible; meaning that the unit 

digit of the smaller number is larger than the unit digit of the larger number (e.g., 47_62, 4 < 

6, but 7 > 2). Above chance performance in incompatible trials requires necessarily – at least 

some implicit – place-value understanding (see Table 1; for examples and illustration). 

Furthermore, it has to be noticed that even for children and adults with an elaborate place-

value understanding, unit-decade incompatibility is associated with increased response 

latencies and error rates (i.e., the so-called unit-decade compatibility effect) as for 

incompatible number pairs the separate comparisons of tens and units result in antidromic 

decision biases (e.g., Nuerk et al., 2001; Nuerk, Weger, & Willmes, 2004b; Korvorst & 
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Damian, 2008; Moeller, Fischer, Nuerk, & Willmes, 2009b; see Nuerk & Willmes, 2005 for a 

review; see also Nuerk et al., 2004b; Pixner, Moeller, Zuber, & Nuerk, 2009 for children 

data). Similar to the observed language-specific effects in transcoding, number word attributes 

like e.g., inversion have also been found to influence number magnitude comparison 

performance (see Nuerk et al., 2005 for adult data; Pixner, 2009, for children data).  

 

Table 1: Place-value understanding and its consequences for the correctness of response for compatible and 

incompatible trials 

 
 Unit-Decade Compatibility 

 
 Compatible Incompatible 

 
 Example Response Example Response 

Place-value 

understanding 

Correct 

(Decades most 

relevant – as 

indicated by 

capitalization) 

57 

V V 

42 

� correct 

response 

as 5 > 4 

62 

V Λ 

47 

� correct 

response 

as 6 > 4 

Incorrect 

(Units most 

relevant – as 

indicated by 

capitalization) 

57 

V V 

42 

� correct 

response 

as 7 > 2 

62 

V Λ 

47 

� 
incorrect 

response 

as 2 < 7 

 

When place-value understanding is correctly applied decade digits are assigned a higher weight (indicated 

by capitalization) as their influence on the comparison outcome is theoretically ten times as large as the 

influence of the unit digits. Both compatible and incompatible items are correctly responded to when place-

value understanding is correct (see upper row). However, in the case of incorrect place-value understanding 

(resulting in an over weighting of the units), the correctness of response differs (see lower row). For 

incompatible trials, such an incorrect place-value understanding leads to an incorrect response: the smaller 

number with the larger units (e.g., 47) is wrongly categorized as larger because e.g., the unit 7 of 47 is larger 

than the unit 2 of 62. Importantly, this is different for compatible trials. A correct response might be observed 

even for incorrect place-value understanding because the units lead to the same response as the decades (e.g., 

42_57; 4 < 5 and 2 < 7). So, even if the magnitude judgement is incorrectly based on the units, this can still 

yield a correct response in compatible trials. Therefore, such incorrect place-value understanding produces 

much more errors in incompatible trials. Consequently, the compatibility effect for errors is enlarged in 

children with a poorer, more often incorrect, place-value understanding. 
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Please note that in contrast to Miura and colleagues (1994; 1989) we were not 

interested in the pure explicit knowledge of place-value principles as required to recode 

numbers into non-symbolic sets of tens and units blocks. Instead we paid particular attention 

to effects of the place-value structure of the symbolic Arabic number system inherent in 

specific numerical tasks. This means that we aimed at specifically focusing on the way place-

value knowledge is applied in symbolic numerical tasks for which mastery of the place-value 

structure may be beneficial. Nevertheless, these tasks were not designed to explicitly assess 

children’s knowledge of digital and positional values within a number by transformations into 

non-symbolic sets. Thus, the current study goes a step beyond the research by Miura and 

colleagues (1994; 1989) who showed that the strategies used to recode numbers into sets of 

tens and units blocks depend on language specificities in number word systems. However, 

Miura and co-workers did not investigate in which way these language effects as mediated by 

mastery of the place-value structure of the Arabic number system determine performance in 

other symbolic numerical tasks; and more particularly whether or not such differences 

implicitly influence the further development of arithmetical competencies such as addition.  

In summary, recent research clearly indicates that mastery of the place-value structure 

of the Arabic number system is not only crucial for successful transcoding (see above) but is 

also essentially involved in tasks as easy as number comparison. In the final paragraph, the 

influences of basic place-value understanding on addition performance will be reviewed 

briefly. 

 

The Arabic place-value structure and arithmetic performance 

Comparable to the tasks introduced above the acquisition of more complex arithmetic 

problem solving (e.g., addition) might depend on a correct understanding of the place-value 

concept. Whenever the result of an addition problem contains more than one digit the single 

digits of the result have to be integrated into one coherent number according to the Arabic 
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place-value structure. For instance, consider the problem 132 + 257. Here, unit, decade and 

hundred digits need to be manipulated and arranged correctly to obtain the result 389, i.e., 

overwriting of zeros: 300 and 89 � 389. Moreover, when addition problems become more 

difficult, e.g., by involving a carry operation, correct integration of digits into the place-value 

system gets more demanding as well. Considering the problem 132 + 259, this means that not 

only the correct result (i.e., 391) has to be integrated into the place-value structure. 

Additionally, one needs to keep track of the carry required at the unit position (i.e., 9 + 2 = 

11; 11 ≥ 10 � carry 1).  

Thus, it is reasonable to assume that apart from the use of procedures, strategy 

selection and strategy efficiency (Imbo & Vandierendonck, 2008b) multi-digit addition 

involves a profound knowledge of basic numerical skills, in particular, the understanding of 

the place-value structure of the Arabic number system. Interestingly, Gervasconi and Sullivan 

(2007) reported that in first and second grade about 10% and 27% of children, respectively, 

exhibited problems in understanding the place-value structure of the Arabic number system. 

Hence, it is sensible to suppose that a better understanding of basic numerical concepts and 

especially of the place-value structure of the Arabic number system during early school years 

may have an influence on calculation performance later on
1
. 

 

Objectives and hypotheses  

To test this prediction, the current study investigated whether third graders’ addition 

performance as a measure of calculation ability was affected by their basic numerical 

knowledge, i.e., their place-value understanding as indexed by transcoding and magnitude 

comparison in first grade. It is generally agreed that calculation competencies are determined 

by both individual intelligence (e.g., Aiken, 1971; Hale, Fiorello, Bertin, & Sherman, 2003; 

                                                 
1
 Please note that we do not claim that the ability to name a number correctly to be a necessary prerequisite for 

calculation. However, we propose that the capability of naming a number correctly early on, involving mastery 

of the place-value structure of the Arabic number system, shall be a valid predictor of later arithmetic 

competencies such as addition performance. 
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Roid, Prifitera, & Weiss, 1993; see Sattler, 2001 for a review) as well as working memory 

capabilities (e.g., Geary, Hoard, Byrd-Craven, & DeSoto, 2004; McLean & Hitch, 1999; 

Swanson & Sachse-Lee, 2001; see Zago, Petit, & Turbelin, 2008 for adult imaging data). 

Moreover, influences of working memory capabilities have also been associated with 

children’s development of numerical representations in recent models of typical as well as 

atypical development of numerical cognition (von Aster & Shalev, 2007; Rubinsten & Henik, 

2009, respectively). Against this background it is important to account for rather unspecific 

effects of intelligence and working memory in our longitudinal analyses because we were 

only interested in the specific effects of early place-value understanding on later addition 

performance. So, by the inclusion of these variables (i.e., intelligence and working memory) 

we aimed at isolating these specific effects as the beta weights observed in the multiple 

regression analyses are then free from influences of intelligence and/or working memory and 

can be considered of reflecting the particular influence of children’s early place-value 

understanding. 

To particularly investigate influences of the Arabic place-value structure, this study 

focused on German speaking children. As outlined above, the German language inherits an 

inversion of tens and units in number words compared to digital notation. In the context of the 

current study this specificity may allow for a more comprehensive investigation of children’s 

competencies in place-value understanding. As understanding the principle of reversed 

sequences of unit and decade-digits poses a particular complicacy (Zuber et al., 2009), a 

higher error variance for German-speaking participants can be expected compared to 

participants with other first languages (e.g., Brysbaert, Fias, & Noël, 1998). Since some 

precursors of mathematical achievement might remain undetected due to low-variance 

performances, the more not transparent German number-word system may thus allow for a 

more solid identification of basic numerical precursor competencies as it increases 

performance variance.  
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Following the progression of research approaches from one task – one representation 

(task approach) over the influence of specific numerical effects on overall performance to the 

investigation of the relevance of basic numerical effects for specific associated effects in later 

arithmetic (effect approach; see above) the hypotheses for the current study were three-staged:  

In a (i) step it shall be investigated whether overall performance in basic numerical 

tasks in first grade (i.e., the overall error rate of magnitude comparison and transcoding) is a 

valid predictor of overall calculation performance in third grade. It is expected that children 

who commit few errors in magnitude comparison and/or transcoding also perform better in 

the calculation task (this analysis follows the task approach). 

In the (ii) step the influence of specific numerical representations in first grade (i.e., 

place-value understanding) on overall addition performance in third grade shall be analysed 

(reflecting an effect approach of predictors; see also Holloway and Ansari, 2009, for a similar 

design). Specifically, it is expected that  

a) difficulties in implementing the reversed order of tens and units in first grade, 

i.e., an increased number of pure inversion transcoding errors should be 

associated with a higher overall error rate in addition.  

b) problems in unit-decade identification in first grade, i.e., a more pronounced 

unit-decade compatibility effect in number magnitude comparison is assumed 

to be accompanied by an increased overall error rate in addition.  

In the (iii) step, analyses shall be focused on the question of whether specific 

numerical effects attributed to a single representation (i.e., pure inversion errors and place-

value understanding) in first grade predict specific effects related to the same underlying 

representation in an arithmetic task two years later (i.e., pure inversion errors and the carry 

effect in addition). So far, only the predictors of numerical development have been 

operationalized in an effect based approach (e.g., Holloway & Ansari, 2009). Applying a 

similar approach to the criterion variables extends previous studies as to our knowledge the 
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effect-based approach has never been employed in longitudinal studies on numerical 

development before. In particular, it is hypothesized that  

c) the number of pure inversion transcoding errors in first grade should 

particularly predict difficulties in applying a required carry operation in 

addition, hence, specifically increasing the number of errors in addition 

problems involving a carry as well as the carry effect.  

d) a relatively larger unit-decade compatibility effect indexing less elaborate 

identification of tens and units should also be associated with a specifically 

increased error rate in carry problems as well as a more pronounced carry 

effect. 

 

METHOD 

Participants: The current study was part of a large-scale project evaluating children’s 

basic numerical development (see also Zuber et al., 2009; Pixner et al., 2009). In this 

longitudinal study, a total of 94 children (48 girls
2
) from five Austrian elementary schools 

were assessed on a variety of tasks (see below) by the end of grade 1 (mean age: 7 years 4 

months, standard deviation (SD) = 7.1 months; range: 6 years 5 months to 8 years 7 months) 

and at the end of grade 3 (mean age: 10 years and 3 months, SD = 5.1 months; range = 9 years 

4 months to 11 years 5 months). For selection purposes consent of school principles and 

school districts was obtained first. Then all parents of children in the respective schools were 

informed about the study and were kindly asked for the participation of their child. Only after 

parental informed consent was obtained the child was included in the study.  

                                                 
2
 Please note that the sample of first graders originally comprised 130 children. However, 36 children could not 

be considered for the assessment in third grade which represents a relatively high drop-out rate. As children were 

recruited from five elementary schools different reasons may account for this: children either had to repeat a 

grade, did no longer attend the respective school or no signed consent form was provided. Nevertheless, the 

drop-out did not bias the results in first grade systematically as both the distribution of transcoding errors as well 

as the compatibility effect did not differ substantially between the original and the reduced sample of first 

graders. At both occasions children were assessed individually during school hours in one-on-one sessions in a 

quiet room. All tasks were administered in German, the native language of all participating children. 
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 As the current manuscript focuses on addition as an indicator of arithmetic abilities the 

Austrian curriculum concerning addition and its counterpart subtraction, which are introduced 

simultaneously, shall be described briefly. In Austria children should master numbers up to 20 

as well as additions and subtractions within this range by the end of grade one. At the 

beginning of grade two the to-be-mastered number range is extended to 100 and after a recap 

of single-digit addition and subtraction mental addition and subtraction of two-digit numbers 

is introduced. Finally, in grade three the written procedures for two-digit addition and 

subtraction are dealt with. 

 

Tasks, stimuli and procedure: 

First grade assessment: In first grade, children were administered a transcoding task 

as well as a number magnitude comparison task, amongst others; lasting about 10 to 15 

minutes each. Additionally, general cognitive measures such as intelligence (CFT-1, Cattell, 

Weiß, & Osterland, 1997) and WM capacity (paradigms to be described below) were 

assessed. For all numerical tasks employed in the current study Spearman-Brown corrected 

split-half reliability was computed in an item analysis on error rates. 

(i) In the Transcoding task children were asked to write down 64 numbers to dictation. 

The item set consisted of 4 one-digit numbers (e.g., 4), 20 two-digit numbers (e.g., 15, 78), 

and 40 three-digit numbers (e.g., 281, 306; for a detailed description of the stimuli please refer 

to Zuber et al., 2009). Errors were coded according to the five disjoint subgroups of 

transcoding errors as introduced by Zuber et al. (2009): (i) lexical errors (substitution of 

lexical primitives, e.g., 71 � 81), syntactic errors such as (ii) pure inversion errors (e.g., 71 

� 17), (iii) additive composition errors (e.g., 171 � 10071), (iv) multiplicative composition 

errors (e.g., 571 � 5171) and (v) combination errors (e.g., combination of additive 

composition and inversion: 571 � 50017). In its current version a split-half reliability of rtt = 

.95 was obtained for the transcoding task. 
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(ii) In the magnitude comparison task children had to evaluate 120 two-digit number 

pairs and indicate which one of the two numbers presented above each other on a computer 

screen was larger by pressing the corresponding response key. The two to-be-compared 

numbers were presented in Arial font (size: 60) until one of the two response buttons was 

pressed. The stimulus set comprised 80 between-decade trials for which decade distance (i.e., 

small vs. large; e.g., 23_47 vs. 21_85) and unit-decade compatibility (i.e., compatible vs. 

incompatible; e.g., 42_57 vs. 47_62) was manipulated in a 2 x 2 within participant design. 

Additionally, the stimulus set involved 40 within-decade trials (e.g., 32_37). The split-half 

reliability of the magnitude comparison task was rtt =.45. 

(iii) The WM tasks were designed to tap the three WM components suggested by 

Baddeley (1986): verbal, visuo-spatial WM and central executive: a) verbal WM was assessed 

by a letter repetition task. This task involves the presentation of spoken sequences of letters 

for immediate serial recall. After a practice trial, a maximum of three lists were presented to 

the children at each length, starting with a two-item sequence. Only when two of three lists of 

a particular length were recalled correctly, list length was increased by one otherwise testing 

was stopped. Letters were presented at a rate of approximately one per second. The maximum 

sequence length at which two lists were correctly recalled was then used a measure of verbal 

WM span. b) Visuo-spatial WM was measured by the Corsi block tapping task (Corsi, 1972). 

The location of a certain number of cubes on a board had to be remembered and reproduced in 

correct order. After a practice trial subsequent procedure and classification of results was 

similar to that for the letter repetition task. c) For central executive (CE) assessment each 

child had to recall sequences of spoken letters and Corsi blocks in reversed order (for a 

similar consideration of backward spans as a central executive task see e.g., Gathercole & 

Pickering, 2000). Practice trials ensured that the concept of “reverse” was correctly 

understood by each child. Subsequent procedure and scoring were identical to that described 

above for forward span tasks. 
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Follow-up assessment: Two years later (i.e., in third grade) children’s calculation 

ability was assessed by an addition task. The addition task comprised 48 two-digit addition 

problems of which 24 required a carry operation, lasting approximately 10 to 15 minutes. In 

the applied choice reaction version children had to indicate which one of two proposed 

solution probes was correct. Incorrect probes deviated from the correct result by either ±2 or 

±10 to prevent parity based solution strategies. Additionally, average split of incorrect 

solution probes was zero for both carry and no-carry problems and problem size was matched 

between the item categories. Problems were presented in the form xx + xx at the x-/y-

coordinates (0/-120) while the two probes appeared at (-250/120) and (250/120) with screen 

resolution set to 1024 x 768. Both, addition problems as well as solution probes were 

presented simultaneously in white against a black background (font: Arial; size: 60) until one 

of the two corresponding response buttons was pressed: when the left probe was correct the 

Alt button of a standard keyboard had to be pressed whereas the Alt Gr button had to be 

pressed when the right probe was correct. No feedback was given as to the correctness of 

children’s responses. After one of the response buttons had been pressed and the next item 

was presented following an inter-stimulus interval was 560 ms. Prior to the 48 critical trials 

each child completed 10 practice trials to familiarize with display layout and task 

requirements. For the addition task a split-half reliability of rtt = .91 was observed.  

 

Analysis: Performance in all numerical tasks incorporated in the analyses was 

measured in terms of error rates. As error rates cannot be assumed to be normally distributed 

error rates were arcsine transformed [i.e., 2*arcsine(sqrt(error rate))] to approximate normal 

distribution. Error rates instead of reaction times were chosen due to two main arguments: 

First, reaction times obtained from children often show extreme intra- as well as inter-subject 

variance that could drive effects in one or another direction. Against the background of the 
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problem of capitalizing on differences in and between individual variance by using reaction 

times in children, error rates seemed to the more reliable measure of task performance to us. 

Second, we did not record reaction times for the transcoding task as it is questionable 

up to which point in time reaction time should be defined. Considering response onset (i.e., 

starting to write down the first digit) seems inappropriate as transcoding, especially for multi-

digit numbers, is a lengthy and often sequential process in which the correct digital symbols 

have to be arranged in the correct order. Thus, such a measure of reaction time would not 

reflect the end of the transcoding process but only a sub-step on the way to the correct result. 

On the other hand, taking the time until the answer is completed would be to measurement 

error due to differences in motor and writing skills, the child being distracted or even 

restarting transcoding after losing track of the solution. Finally, in most cases only reaction 

times of correctly solved trials are analyzed. However, in the current study we were explicitly 

interested in what kind of errors the children committed. Most importantly, reaction times are 

not capable of coding what kind of error a child made, which was the critical question in the 

current study. Therefore, it was decided to run all subsequently described analyses on arcsine 

transformed error rates. 

Please note that incorporating gender into the analyses revealed no reliable influences 

of gender, neither in the factorial nor in the regression analyses. Therefore, the data for boys 

and girls was pooled for all analyses reported. 

 

RESULTS 

Intelligence and Working Memory 

In first grade, average intelligence level as assessed by the CFT 1 (Cattell et al., 1997) 

was T = 59 (95% CI: 57.7 – 60.9). At the same time children’s average score in the visuo-

spatial WM task (Corsi block) was 4.10 (95% CI: 3.96 – 4.23). In the verbal WM task (letter 

repetition) the average score was 4.31 (95% CI: 4.17 – 4-44). The mean score of both 
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backward span tasks was chosen as an index for the CE (see Barrouillet, Mignon, & 

Thevenot, 2008 for a similar approach). Hence, the mean CE score was 2.70 (95% CI: 2.57 – 

2.84). 

 

Numerical task results 

The results of the transcoding task and the magnitude comparison task administered in 

first grade were reported in great detail and discussed extensively in Zuber et al. (2009) and 

Pixner et al. (2009), respectively. However, this study focuses on the longitudinal relevance of 

first-grade performance. Therefore, the first-grade results will only be briefly summarized 

below to provide the reader with the information necessary to follow the subsequent 

longitudinal analyses. 

 

Transcoding in first grade 

Generally, the error pattern in the longitudinal sample of the current study (n = 94) 

was similar to that reported by Zuber et al. (2009; n = 130). For the reduced sample 

Bonferroni-Holm corrected t-tests (Holm, 1979) showed that combination errors and additive 

composition errors were the most frequent error types [M = 16.7% errors (95% CI: 13.2% – 

20.2%) vs. M = 15.5% errors (95% CI: 12.2% – 18.8%), respectively; tcombination vs. add. 

composition(93) = 0.93, p = .35, d = .07; all other t > 2.84, all p < .01, all other d > .62] followed 

by pure inversion errors (M = 7.1%; 95% CI: 5.7% – 8.6%), lexical errors (M = 2.7%; 95% 

CI: 2.0% – 3.4%) and multiplicative composition errors (M = 0.8%; 95% CI: 0.2% – 1.4%, 

see Figure 1).  
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Figure 1: Distribution of error types as categorized by Zuber et al. (2009) in the reduced sample (n = 94)  

of the current study. Please note that the error rates given reflect the respective percent of erroneous 

items in reference to all transcoding items and thus are not supposed to add up to 100%. 

 

Magnitude comparison in first grade 

An ANOVA showed that both the compatibility effect as well as the (decade) distance 

effect were highly significant for errors in the reduced sample [distance: F(1, 93) = 36.97, p < 

.001, ηp
2
 = .28; compatibility: F(1, 93) = 88.61, p < .001, ηp

2
 = .49]. This indicated that first 

graders’ classifications in the magnitude comparison task were more accurate for number 

pairs involving a large compared to a small (decade) distance [large: M = 18.1% errors (95% 

CI: 14.6% – 21.6%) vs. small: M = 23.2% errors (95% CI: 19.6% – 26.8%)] as well as for 

compatible than for incompatible number pairs [compatible: M = 9.6% (95% CI: 7.2% – 

12.0%) vs. incompatible: M = 31.6% errors (95% CI: 26.1 – 37.2%]. 

Please note that even for the most difficult so-called incompatible number pairs 

children clearly performed above chance level. As in these trials the larger number contains 

the smaller unit identification of tens and units and their associated value is inevitably 

necessary to solve the task successfully. Almost 70% correct responses indicate, that the 

Error Categories (cf. Zuber et al., 2009)
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participating children understood the place-value principle at least implicitly, i.e. that the 

decade digits have a higher importance than the unit digits. Thus, these children were not 

assessed too early in their numerical development.  

 

Addition task in third grade 

The influence of a required carry procedure on error rates in the addition task was 

appraised using a paired samples t-test. The t-test revealed that children committed reliably 

more errors in those addition problems which required a carry operation (M = 11.7% errors; 

95% CI: 9.7% - 13.6%) compared to problems not requiring a carry [M = 9.7% errors; 95% 

CI: 7.6% - 11.8%; t(93) = 2.15, p < .05, d = .24]. 

 

Longitudinal analysis: Influence of basic numerical competencies on calculation ability 

(i) Task approach analysis: Interrelations of overall performance of basic numerical 

task and mental arithmetic 

In this first step, we were interested whether addition performance in general (in terms 

of error rate) was determined by general transcoding performance and/or overall performance 

in the number magnitude comparison task. This analysis followed the task approach (see 

above), as overall error rates of the respective tasks serving as measures of task performance 

were Pearson correlated to evaluate a possible interrelation between magnitude comparison 

and transcoding as well as the predictive power of the latter two tasks on overall addition task 

performance in grade three. Additionally, the differential influences of these two variables 

were examined in a multiple regression analysis. Apart from above described variables 

measures of intelligence, verbal as well as visuo-spatial WM and CE were considered in 

correlation as well as regression analyses of each of the two steps. 

The correlation analysis of overall performance (in terms of error rate) showed that 

performance in transcoding as well as in number comparison as assessed in first grade was 
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positively correlated with overall performance in the third grade addition task. This indicated 

that children who committed relatively more errors in either transcoding or number 

comparison also exhibited a higher error rate in an addition task administered two years later 

(see Table 2, Panel A). Furthermore, in the current data set no reliable association between 

addition performance and either intelligence or WM capacity could be observed (see Table 2, 

Panel A). So, only the numerical predictors in first grade were associated reliably with 

addition performance in third grade, while the non-numerical variables did not predict any 

variance in the addition task. 

When running a multiple stepwise regression analysis incorporation all variables of 

the correlation matrix in Table 1, Panel A to evaluate the differential influences of overall 

comparison and/or transcoding performance on overall addition performance, overall 

performance in the magnitude comparison task turned out to be the only reliable predictor [b 

= .25, t = 2.48, p < .05] incorporated in the model [R = .25, adjusted R
2
 = .05, F(2, 92) = 6.13, 

p < .05, f
2
 = .07]. As already indicated by the positive correlation, a higher error rate in the 

magnitude comparison task in grade one was associated with a higher error rate in the 

addition task two years later. The fact that overall transcoding performance was not found to 

be a reliable predictor of overall addition performance may be attributed to the very high 

intercorrelation of overall performance in magnitude comparison and transcoding (see Table 

2, Panel A). 

 

. 
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Table 2: Correlation matrix depicting the influence of basic numerical tasks (Panel A) as well as the influence  

of specific numerical effects (Panel B) on overall addition performance  

 

A Task 1. 2. 3. 4. 5. 6. 7. 

Numeric 1. Addition (3
rd

 grade) - .25* .24* .01 .03 .09 - .12 

 2. Comparison (1
st
 grade)  - .54** - .08 .00 - .20(*) - .33** 

 3. Transcoding (1
st
 grade)   - - .19(*) .00 - .27* - .33** 

Non-numeric 4. Intelligence (1
st
 grade)    - .00 - .04 .21* 

 5. Verbal WM (1
st
 grade)     - .27** .14 

 6. Spatial WM (1
st
 grade)      - .38** 

 7. CE (1
st
 grade)       - 

B Task/Effect 1. 2. 3. 4. 5. 6. 7. 8. 

Numeric 1. Addition (3
rd

 grade) - - .17(*) .24* .35** .00 .03 .09 - .12 

 2. Distance effect (1
st
 grade)  - - .04 .05 - .19(*) - .19(*) .03 - .07 

 3. Compatibility effect (1
st
 grade)   - .13 .04 .04 - .01 - .21* 

 4. Inversion (1
st
 grade)    - .01 - .19(*) - .16 - .25* 

Non-numeric 5. Intelligence (1
st
 grade)     - .00 - .04 .21* 

 6. Verbal WM (1
st
 grade)      - .27** .14 

 7. Spatial WM (1
st
 grade)       - .38** 

 8. CE (1
st
 grade)        - 

(
*

)
 = p < .10; * = p < .05; ** = p < .01 
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(ii) Effect approach analyses of predictors: Predictions from specific basic numerical 

competencies on overall performance in mental arithmetic 

In the second more differential analysis the relevance of specific effects observed in 

first grade assessment and supposed to reflect specific mastery of an associated numerical 

representation for overall addition performance was investigated (i.e., an effect approach for 

the numerical predictors; see Holloway & Ansari, 2009 for a similar approach). In particular, 

the influence of the (decade) distance effect (reflecting number magnitude understanding), the 

compatibility effect (reflecting integration of tens and units) as well as the percentage of pure 

inversion errors in transcoding (reflecting place-value understanding) on the overall error rate 

in the addition task were evaluated in correlation and multiple regression analyses Again, 

measures of intelligence, verbal as well as visuo-spatial WM and CE were considered in 

correlation as well as regression analyses. 

Following the approach suggested by Holloway and Ansari (2009) the influence of 

specific numerical effects indexing specific basic numerical competencies on addition 

performance were investigated in a correlation analysis. In contrast to Holloway and Ansari 

(2009) we observed the distance effect (reflecting number magnitude understanding) to be 

negatively correlated with addition performance in regard of error rate (see Table 2, Panel B). 

So, children exhibiting a comparably larger (decade) distance effect in grade one also 

committed less errors in the addition task in grade three. In addition, we also identified 

indices of early place-value understanding in first grade (such as the compatibility effect and 

the percentage of pure inversion errors) to be correlated with addition performance two years 

later (see Table 2, Panel B). This meant that children with a more pronounced compatibility 

effect in magnitude comparison also had a relatively higher error rate in the third grade 

addition task compared to children with a small compatibility effect. Furthermore, those 

children who committed comparably more pure inversion errors in the transcoding task also 

exhibited a higher error rate in third grade addition. 
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Again, a multiple stepwise regression analysis was conducted to evaluate the 

differential influences of the variables depicted in Table 2, Panel B on overall addition 

performance in third grade. The final model [R = .44, adjusted R
2
 = .16, F(4, 90) = 6.99, p < 

.001, f
2
 = .23] included the three predictors a) number of pure inversion transcoding errors, b) 

compatibility effect, and c) (decade) distance effect (see Table 3). Inspection of the beta 

weights indicated that children who committed more pure inversion transcoding errors in first 

grade also exhibited a higher overall error rate in the third grade addition task. Similarly, 

children with a relatively large compatibility effect in the first grade magnitude comparison 

task committed more errors in the addition task two years later. This indicated that in both 

cases flawed mastery of the place-value concept in first grade was associated with an 

increased overall error rate in the addition task in third grade. Finally, in contrast to the 

findings of Holloway and Ansari (2009) a larger (decade) distance effect in first grade implied 

better overall performance in the third grade arithmetic task.  

 

Table 3: Regression model predicting the overall number of errors in the addition task on the basis of specific 

numerical effects 

Predictor B 95% CI b 
Change in 

R
2
 

t sig. raw partial 

Constant .45 .34 – .56   8.19 < .001   

Inversion errors (1
st
 grade) .30 - .13 – .48 .33 .12 3.47 < .001 .35 .34 

Compatibility effect (1
st
 grade) .09 - .003 – .18 .18 .04 1.93 < .05

(
*

)
 .24 .20 

Distance effect (1
st
 grade) - .18 - .38 – .01 - .18 .03 1.87 < .05

(
*

)
 - .17 - .19 

CI = Confidence interval; 
(
*

)
 = tested one-sided 

 

(iii) Effect approach analyses of predictors and criterion variables: Influence of 

specific basic numerical competencies on related effects in mental arithmetic 

Finally, taking a step beyond Holloway and Ansari (2009) the effect approach was 

generalized to both, predictor and criterion variables. That is, we examined in how far mastery 

of specific basic numerical competencies, in particular place-value understanding, serves as a 

predictor for specific effects in later arithmetic performance. In particular, it was investigated 
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whether the carry effect for addition (as requiring correct place-value integration) in grade 

three can be traced back to indices of basic numerical competency in first grade, such as the 

distance effect and, more particularly, to indices of place-value understanding such as the 

compatibility effect or the rate of inversion errors. Additionally, we were interested whether 

the percentage of errors in carry problems is accounted for best by the same basic numerical 

competencies as is the error rate in non-carry problems. To evaluate these most differential 

aspects of longitudinal numerical development three stepwise regression analyses were 

conducted. All regression analyses incorporated the same predictors but varied with regard to 

the dependent variable (i.e., carry effect for addition errors vs. error rate in carry problems vs. 

error rate in non-carry problems). The included predictors were: (i) the (decade) distance as 

well as (ii) the compatibility effect for errors in the magnitude comparison task, the five 

disjoint subgroups of transcoding errors as introduced by Zuber et al. (2009): (iii) lexical 

errors, (iv) inversion errors (v) additive composition errors, (vi) multiplicative composition 

errors and (vii) combination errors. In addition to these predictors reflecting basic numerical 

competencies number-unrelated measures of IQ, verbal as well as visuo-spatial WM and CE 

were also incorporated as predictors. Thereby, it was aimed to distinguish possible non-

numerical influences of intelligence or WM capacity from effects attributable to children’s 

basic numerical competencies such as transcoding, number magnitude as well as place-value 

understanding. 

Please note that for this last step only the results of the regression analyses will be 

reported in the main text body for reasons of lucidity and brevity. To provide the reader with a 

full overview over all results nevertheless, all correlation analyses are given in Appendix A.  

Carry effect: The stepwise multiple regression analysis produced a significant model 

[R = .29, adjusted R
2
 = .06; F(3, 91) = 4.08, p < .05, f

2
 = .09] incorporating the first grade CE 

score and the percentage of pure inversion transcoding errors as the only reliable predictors 

(see Table 4, Panel A). The positive beta weight for both predictors indicated that a relatively 
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higher score in the CE working memory task as well as a higher percentage of pure inversion 

errors in first grade was associated with a more pronounced carry effect in third grade. 

Neither the (decade) distance effect nor the compatibility effect was found to predict the size 

of the carry effect reliably (see Table 4, Panel A). However, contrary to what one would 

assume intelligence [all t = 0.36, all p = .72] was not a reliable predictor for the size of the 

carry effect. 

 

To further investigate the hypothesized specific influence of the ability to successfully 

integrate tens and units into the place-value structure of the Arabic number system on carry 

problems compared to non-carry problems the regression analysis was rerun on the 

percentage of errors separately for carry as well as non-carry problems. 

Carry problems: For the number of errors for the carry problems the regression 

analysis identified a model [R = .46, adjusted R
2
 = .19; F(4, 90) = 8.14, p < .001, f

2
 = .27] 

incorporating the predictors a) percentage of pure inversion errors, b) visuo-spatial WM span, 

and c) compatibility effect, each as observed in first grade (see Table 4, Panel B). In line with 

our hypotheses, children who committed relatively more inversion errors in first grade also 

exhibited a higher error rate for carry problems in third grade. Additionally, responses of 

children with a relatively more pronounced compatibility effect for errors in grade one were 

also observed to be more error prone for carry problems (see Table 4, Panel B). However, 

again, a WM measure was positively correlated with the dependent variable: Children who 

scored higher on the visuo-spatial WM task in grade one also made comparatively more errors 

in third grade addition problems involving a carry operation. Comparable to the results for the 

carry effect the (decade) distance effect was not a reliable predictor of error rate in carry 

problems (see Table 4, Panel B). Again, intelligence was not a reliable predictor in the 

regression model [all t = 0.79, p > .43]. 
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Non-carry problems: For the percentage of errors in the non-carry problems the results 

were completely different. The final regression model comprised the predictors percentage of 

combination errors and (decade) distance effect in first grade [R = .36, adjusted R
2
 = .11; F(3, 

91) = 9.81, p < .01, f
2
 = .15]. A closer look at the beta weights showed that the percentage of 

combination errors in first grade was positively associated with the percentage of errors in no 

carry addition problems in third grade (see Table 4, Panel C). So, children who committed 

relatively more combination error in the transcoding task administered in grade one also had a 

higher error rate for no-carry addition problems in third grade. Additionally, children 

exhibiting a more pronounced (decade) distance effect in grade one committed fewer errors in 

non-carry addition problems in third grade. However, for both effects reflecting specific 

place-value understanding, i.e., the rate of inversion errors as well as the compatibility effect, 

no significant influence on the error rate for non-carry problems could be observed (see Table 

4, Panel C). As for above reported analyses, intelligence was not considered as a reliable 

predictor in the regression model for non-carry problems (all t < 0.07, p > .95). 
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Table 4: Regression model predicting the carry effect in third grade (Panel A), the number of errors for carry 

problems (Panel B) as well as the number of errors in non-carry problems (Panel C) on the basis of specific 

numerical effects 

A Predictor B 95% CI b 
Change in 

R
2
 

t sig. raw partial 

Constant - .43 - .81 – - .09   2.27 < .05   

CE (1
st
 grade) .15 .03 – .27  .26 .04 2.47 < .05 .20 .25 

Inversion errors (1
st
 grade) .25 .003 – .49 .21 .04 2.00 < .05 .14 .21 

Distance effect (1
st
 grade) - - .06  0.56 .58 .05 .06 

Compatibility effect (1
st
 grade) - - .02  0.14 .89 - .01 .02 

B Predictor B 95% CI b 
Change in 

R
2
 

t sig. raw partial 

Constant - . 06 - .49 – .38   .26 .80   

Inversion errors (1
st
 grade) .42 .21 – .62 .39 .14 4.03 < .001 .38 .39 

Visuo-spatial WM (1
st
 grade) .10 .01 – .20 .20 .04 2.11 < .05 .14 .22 

Compatibility effect (1
st
 grade) .10 - .004 – .20 .18 .03 1.91 < .05

(
*

)
  .23 .20 

Distance effect (1
st
 grade) - - - .15 - 1.60 .12 - .13 - .17 

C Predictor B 95% CI b 
Change in 

R
2
 

t sig. raw partial 

Constant .43 .30 – .55   6.76 < .001   

Combination errors (1
st
 grade) .22 .08 – .35 .31 .10 3.20 < .01 .31 .32 

Distance effect (1
st
 grade) - .23 - .49 – .02 - .18 .13 1.82 < .05

(
*

)
  - .17 - .19 

Inversion errors (1
st
 grade) - - .10 - 0.94 .35 .21 .10 

Compatibility effect (1
st
 grade) - - .11 - 1.07 .29 .23 .11 

CI = Confidence interval; 
(
*

)
 = tested one-sided 

 

 

DISCUSSION 

The aim of the current study was to investigate the influence of early basic numerical 

competencies such as transcoding or number comparison on later arithmetic capabilities in 

typically developing children. Therein, we set out to resolve several limitations in the hitherto 

investigation of this developmental trajectory: (i) most of the existing evidence supporting 

this notion comes from studies employing a simpler task approach in which one particular 

representation is indexed by an overall performance measure (e.g., error rates) of one 

particular task. (ii) The stimulus sets used to assess basic numerical competencies in previous 

studies mostly comprised one-digit numbers only instead of multi-digit numbers (e.g., 

Holloway & Ansari, 2009). (iii) Consequently, when only single-digit stimuli were used 

examination of the influence of place-value understanding as an important precursor of later 

arithmetic ability was not possible in past research. (iv) Finally, a developmental trajectory 
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from basic numerical concepts to arithmetic has never been observed in a longitudinal 

approach to date. 

In addressing these issues our proceeding was three-staged: (i) We were interested 

whether overall performance in number comparison and/or transcoding as assessed in first 

grade were reliable predictors of overall addition performance in third grade. (ii) More 

specifically, attention was paid to whether mastery of specific basic numerical concepts in 

first grade (e.g., place-value understanding) as indexed by related numerical effects (e.g., 

compatibility effect) predicts overall addition performance two years later (see Holloway & 

Ansari, 2009, for a similar approach). (iii) Most specifically, the quality of such specific basic 

numerical effects (e.g., compatibility effect) serving as predictors for specific effects in later 

addition (e.g., carry effect) that can be attributed to the same underlying concept of place-

value understanding, was of interest. 

Our results were straightforward on each of these questions:  

(i) We clearly identified overall transcoding and number comparison performance in 

first grade to be precursor competencies of general arithmetic performance in third grade.  

(ii) When following the approach suggested by Holloway and Ansari (2009) we were 

not able to replicate their findings concerning the (decade) distance effect but took a 

successful next step in identifying precursors of arithmetic capability. On the one hand, we 

observed a more pronounced (decade) distance effect in first grade to be associated with a 

lower error rate in third grade arithmetic, whereas Holloway and Ansari (2009) found that a 

relatively smaller distance effect was associated with better mathematics performance (see 

below for detailed interpretation of these differences). On the other hand, we extended the 

results of Holloway and Ansari (2009) in that reliable influences of both the compatibility 

effect as well as of the number of pure inversion errors in first grade on overall arithmetic 

performance were present in our data: a larger compatibility effect and more pure inversion 

errors in transcoding implied a higher error rate in third grade arithmetic performance. 
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Thereby, the present data allowed for particularly pinpointing measures reflecting 

understanding of the place-value structure of Arabic numbers for both tasks to be most 

relevant for the prediction of overall arithmetic performance in later numerical development. 

(iii) Finally, examining the influence of specific numerical effects in first grade (e.g., 

compatibility effect, pure inversion errors) on corresponding effects in third grade arithmetic 

(e.g., carry effect, error rate in carry problems) revealed several meaningful interrelations. 

The size of the carry effect in third grade addition was predicted reliably by the first 

grade measure of CE functioning and the number of pure inversion transcoding errors: A 

higher number of pure inversion errors in first grade transcoding reliably predicted a more 

pronounced carry effect in third grade addition. Thus, flawed understanding of the place-value 

positions of tens and units in first grade is related to difficulties in later arithmetic 

performance in additions requiring a carry operation in which correct integration of tens and 

units is essential. We suggest that both variables tap the same underlying concept of place-

value understanding in a basic numerical task in first grade (i.e., pure inversion errors in 

transcoding) as well as in a complex numerical task in third grade (i.e., addition involving 

carry over). Thereby, the present data indicate that if the place-value concept is not mastered 

in early schooling difficulties in the successful application of this concept will evolve in later 

numerical development. To our knowledge, these are the first longitudinal data which directly 

evidence the importance of early place-value understanding. Additionally, the CE component 

of WM was also positively correlated with the size of the carry effect: the better the CE in 

first grade the larger the carry effect in third grade indicating an influence of WM on complex 

addition which has previously also been observed in adults (e.g., Imbo et al., 2007a; 2007c). 

The regression model predicting the number of errors committed in carry addition 

problems incorporated three reliable predictors: a) the number of pure inversion errors in 

transcoding, b) visuo-spatial WM span and c) the size of the compatibility effect in number 

comparison. So, children who had problems to identify tens and units successfully in 
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transcoding and/or who showed relatively larger interference effects due to a worse 

integration of tens and units in two-digit number comparison also committed particularly 

more errors on addition problems requiring a carry operation. Again, poor performance in a 

task specifically involving place-value updating and integration is predicted best by basic 

numerical competencies reflecting exactly these requirements. Moreover, a higher visuo-

spatial WM span in first grade was associated with an increased number of errors for carry 

problems. This positive correlation is not in line with standard hypotheses as one would 

assume a larger WM span to be associated with better performance. We will elaborate on this 

finding below.  

Finally, for the number of errors for non-carry addition problems the number of 

combination errors in transcoding and the size of the (decade) distance effect turned out to be 

the only reliable predictors: In line with the results of the regression analysis for overall 

addition performance a larger distance effect in first grade was associated with fewer errors 

for non-carry addition problems indicating a major influence of the representation of number 

magnitude on easier problems. Furthermore, children with a higher number of combination 

errors also committed more errors in non-carry addition problems. Importantly, the fact that 

combination errors and not pure inversion errors were the best predictor of performance for 

non-carry problems may indicate that for these simpler problems demands on place-value 

understanding are not as specific as for carry problems. Obviously, place-value understanding 

is required for all two-digit addition problems. However, incorrect ordering of tens and units, 

as reflected by pure inversion errors, is particularly detrimental for carry problems: To 

correctly solve a carry problem the units must be summed first. Subsequently, the tens and the 

carry from the units must be summed to obtain the correct result. Contrarily, the order of 

computations is irrelevant for non-carry problems as there is no carry from the units to the 

tens. So, whether the tens or the units are summed first yields identical results as long as the 

position of the single digits within the place-value system is applied correctly. For this reason, 
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it is conclusive that the number of inversion errors (indexing wrong order in transcoding) 

specifically predicted performance for carry problems while the less pure category of 

combination errors became a predictor for non-carry problems. Such an interpretation 

corroborates our argument that understanding the place-value structure of Arabic numbers 

should be of particular relevance in situations requiring place-value updating and/or 

integration. 

 

Taken together, the results of the present longitudinal evaluation clearly indicated 

early place-value understanding to be a highly predictive precursor competency of later 

arithmetic performance in general and in particular for the capability to integrate tens and 

units into the Arabic place-value system as required in basic arithmetic operations such as 

addition problems requiring a carry. Yet, at the same time intelligence was not considered to 

be a reliable predictor of task performance in any of our analyses. At a first look this might 

seem awkward. However, this observation is in line with recent data that also showed no 

reliable interrelation between intelligence and basic numerical tasks such as number 

magnitude comparison (De Smedt et al., 2009b; Halberda, Mazzocco, & Feigenson, 2008) as 

well as number reading (De Smedt et al., 2009b) and transcoding (Zuber et al., 2009). Most 

importantly, this finding seems invariant to the fact which intelligence scale was used. While 

Zuber and colleagues (2009) also used the CFT-1 and De Smedt and co-workers (2009b) 

employed a comparable matrices test (i.e., Raven’s standard progressive matrices, Raven, 

Court, & Raven, 1992), Halberda et al. (2008) measured intelligence by the WASI (Wechsler 

abbreviated scale of intelligence, Wechsler, 1999). Synced with the fact that there were no 

peculiarities during the testing sessions at any of the involved schools, the current data do not 

corroborate the notion of a direct link between intelligence and basic numerical concepts such 

as place-value understanding, thereby replicating previous results (De Smedt et al., 2009b, 

Halberda et al., 2008). 
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A word on the validity of the current study 

Although statistically reliable influences of place-value understanding in first grade on 

arithmetic performance in third grade were observed in the current study, the results tell little 

about the external validity of these influences. To evaluate the validity of the current results 

we ran an additional regression analysis involving third grade mathematics school grades as 

the dependent variable. Unfortunately, it was not possible to get the mathematics grades from 

all children due to reasons of data protection. Nevertheless, we were able to collect the 

mathematics grades of a subsample of 54 children. A stepwise regression analysis was 

conducted predicting the mathematics grade by the same predictors as incorporated in all 

other analyses with one exception. Due to the reduced sample we only differentiated between 

inversion related and inversion unrelated transcoding errors. The group of inversion related 

errors comprised all errors (including combination errors) that involved an error in digit order 

in at least one position, while all other errors were pooled in the category inversion unrelated 

errors. In line with our argument that place-value understanding may be a crucial building 

block for later arithmetic competencies it was observed that inversion related transcoding 

errors assessed in first grades were the only reliable predictor of mathematics grade two years 

later (R = .50, adjusted R
2
 = .22; F(2, 51) = 8.59, p < .001, f

2
 = .33; b = .40, t = 3.15, p < .01) 

whereas inversion unrelated errors did not account for any additional variance (b = .15, t = 

1.13, p = .27). Based on this result we are confident that our tasks provide a reliable (see 

above) and valid estimate of children’s numerical competencies. 

The fact that the compatibility effect was not found to be a reliable predictor of 

mathematics grade (b = - .05, t = 0.38, p = .71) might be caused by the lower reliability of the 

magnitude comparison task as compared to the transcoding task. The reliability of the 

magnitude comparison task might be lower because it involved numbers up to 100 and was 

thus rather difficult in general. In this context, it has to be noted that by the end of grade one 

(i.e., the time of assessing our participants) children in Austria are supposed to just master the 
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numbers up to 20 and their arithmetic relations. Nevertheless, in the task approach analysis 

the magnitude comparison task was a reliable predictor of later addition performance. This 

seems to imply that this significant predictive power we observed could eventually be 

augmented and maybe even specified to the compatibility effect when the magnitude 

comparison task is made more reliable (e.g., by employing more and different stimuli).  

 

The distance effect and later arithmetic performance 

Recent results concerning the influence of the distance effect are controversial. On the 

one hand, Holloway and Ansari (2009) observed a larger distance effect to be associated with 

worse performance in typically developing children (see also De Smedt et al., 2009b for 

similar results; but see Nuerk et al., 2004a for contrasting findings). Additionally, Delazer and 

colleagues (2006) reported a larger distance effect in a neurological patient (suffering from 

posterior cortical atrophy) exhibiting difficulties in magnitude representation and arithmetic. 

Finally, Kaufmann and Nuerk (2008) found that children with ADHD-C also had a larger 

distance effect than their non-ADHD peers, which has been interpreted as reflecting group 

differences in number representations (i.e., a larger distance effect possibly being due to more 

noisy number magnitude representations). 

However, in the present study, a positive correlation between the distance effect and 

performance was obtained suggesting a larger distance effect to be associated with better 

performance. Nevertheless, such a (cor)relation is corroborated by the results of Rousselle and 

Noël (2007). Comparable to the present data these authors also report a relatively larger 

distance effect being associated with better arithmetic performance. As Rousselle and Noël 

(2007) investigated a sample of dyscalculic children they attributed this finding the possibility 

of some children relying on some “peculiar strategies” (Rousselle & Noël, 2007, p. 387) when 

comparing two numbers. Such back-up strategies (e.g., counting) may have been necessary as 

direct access to the numbers’ magnitude representation was impaired. This interpretation can 
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be adapted for the results of the present study (as well as for results reported by Nuerk et al., 

2004a). The number comparison task administered in grade one required children to single 

out the larger of two two-digit numbers ranging from 12 to 98. As by the end of grade one 

only the numbers up to 20 and their interrelations were taught at schools in Austria this opens 

the possibility that some children may have employed strategies other than magnitude 

comparisons (e.g., counting). Hence, when eliminating all participants with a negative 

distance effect to account for this possibility (see Rousselle & Noël, 2007 for a similar 

proceeding) the (decade) distance effect was no longer a reliable predictor of either overall 

addition performance or error rate for non-carry problems (both t < 0.95, both p > .35). Thus, 

the unexpected influence of the (decade) distance effect on arithmetic performance may be 

associated with the difficulty of the number comparison task (for a similar argumentation see 

Nuerk et al., 2004a). 

In fact, in our view, these results suggest that the relationship between the distance 

effect and arithmetic performance may not be monotone (see Figure 2). What are the 

prerequisites to obtain such a monotone relation? One needs a large magnitude effect to 

explain much variance of numerical distance and one needs low error variance attributable to 

the fact that all participants need to process numerical magnitude in a similar analogue way, 

without using any back-up strategies producing much error variance and thereby making the 

effect more fuzzy. We assume that worse access to analogue magnitude is associated with a 

larger distance effect (see Kaufmann & Nuerk, 2008, for an elaboration of that argument). 

However, we also assume that when access to magnitude is not always possible anymore in 

an analogue form this may result in much larger error variance (e.g., because of back-up 

counting strategies). This increased error variance may then account for a reduction or even a 

disappearance of the distance effect. So, in the study by Holloway and Ansari (2009) and that 

by Kaufmann and Nuerk (2008) the children exhibited normal performance in arithmetic tasks 

and were confronted with a rather simple single-digit magnitude comparison task they could 
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easily solve. As no backup strategies are necessary in such simple experiments in normally 

developing children, a larger distance effect was observed to be associated with worse access 

to the mental number line and – consequently – worse performance in complex arithmetic 

task. In contrast, consider now the studies by Rousselle and Noël (2007) as well as the present 

study. As laid out above, Rousselle and Noël (2007) argued that some dyscalculic children 

may have used back-up strategies even for simple single-digit number comparison. These 

back-up strategies increased error variance with respect to the distance effect and thus, the 

distance effect decreased (see Figure 2). Comparably, in the current study the comparison task 

involved two-digit numbers, of which not all have been taught at school by the time children 

were assessed in first grade. Nevertheless, most children could do the task. However, for such 

a complex task even normally developing children may have resorted to back-up strategies 

similar to that employed by dyscalculic children in more simple tasks. Notably, Nuerk et al. 

(2004a) report similar findings for children attending grades two to five. In particular, 

children with a higher error rate (in the number comparison task) were found to exhibit a 

smaller (decade) distance effect than children with a comparably lower error rate (see Fig. 4). 

Following the above argument, the children relying on backup-strategies may have boosted 

error variance and thereby, the distance effect diminished or even disappeared. Put differently, 

those children able to produce an analogue distance effect in first grade could represent two-

digit numbers in an analogue way without major problems (or back-up strategies) and such 

early magnitude representation of two-digit numbers may corroborate future arithmetic 

development. To summarize, we suggest that the seemingly contradictory data can be 

integrated if one postulates a curvilinear relation between distance effect and arithmetic 

performance which relies on both, explained magnitude variance and disturbing error variance 

with the latter depending on interactions of task difficulty and individual capability (and 

especially the need for backup-strategies). 
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Figure 2: A hypothetical curvilinear model of a non-monotone relationship between the distance effect and 

arithmetic performance (see text for details). It is suggested that the size of the distance effect might be 

determined by two factors: First, increasingly precise and automatic access to the magnitude representation 

(i.e., higher capability) decreases the explained variance of the distance effect. Second, the distance effect also 

depends on the error variance which is increased by backup strategies (e.g., counting) necessary for tasks of 

very high complexity. However, too much of such non-systematic error variance may diminish the distance 

effect or even make it disappear. The model in Figure 2 accounts for the seemingly antidromic correlations of 

the distance effect and arithmetic capabilities by assuming that the numerical capability as well as task 

complexity differ between the cited studies. In Rousselle and Noël’s (2007) study, capability is very low 

(dyscalculic children) while in our study relative task complexity is very high (two-digit number comparison for 

first graders). In this capability/complexity range, a higher distance effect is particularly associated with less 

error variance (e.g., less backup strategies) so that a larger distance effect indicates better numerical 

competencies and better arithmetic performance. Other studies (e.g., Holloway & Ansari, 2009) employed a 

less complex task (single-digit comparison) and the participants should have had higher individual capabilities 

(as older children were assessed). For such individually simple tasks, no backup strategies (which boost error 

variance) are to be expected in normally developing children. Therefore, a smaller distance effect might then 

indicate more efficient access to the magnitude representation leading to a negative relation between the 

distance effect and arithmetic performance in this capability/complexity range. Please note that this model 

remains to be tested empirically, however, at the moment it offers a possible explanation for seemingly 

contradictory results. 

 

Working memory and later arithmetic performance 

There was one other somewhat unexpected finding in our data. CE and visuo-spatial 

WM capacity were positively correlated with the carry effect or the error rate for carry 
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problems, respectively. This was surprising and needs further explanation because usually 

WM capacity in negatively correlated with addition performance in adults (e.g., Imbo et al, 

2007c).  

In our view there are at least two possible explanations accounting for these 

unexpected results. (i) Zuber et al. (2009) observed transcoding performance to be reliably 

moderated by WM capacity in a sample of first graders from which the sample of the present 

study was recruited. Therefore, possible influences of WM capacity on addition performance 

in the present study may have been driven by its interrelation with transcoding performance. 

This interpretation is backed by the current results as a measure of first grade WM span was 

incorporated in the regression model predicting the carry effect (i.e., CE) and the model 

accounting for performance for carry addition problems (i.e., visuo-spatial WM span). In this 

context, it may be important to note that the raw visuo-spatial correlation with later addition 

performance is not significant and that visuo-spatial WM only became a predictor due to its 

negative correlation with pure inversion errors in transcoding: Thus, better performance in 

first grade transcoding (i.e., fewer errors) is associated with better WM (see also Camos, 

2008; Zuber et al., 2009). So, the beneficial influences of WM may already be partially 

considered by the variance explained by the numerical predictors. The remaining influence 

may be attributed to WM serving as a suppressor variable; by suppressing irrelevant variance 

of the numerical predictors this resulted in a higher overall R
2
. (ii) Another possible reason 

why we did not obtain reliable influences of WM on addition performance may be that unlike 

Imbo et al. (2007a) the addition task employed in the current study required choosing the 

correct result from two presented solution probes rather than actively producing the correct 

result. Hence, partial results necessary to be kept in mind when trying to compute the result 

could have been verified by comparing unit and/or decade digit of a preliminary result to the 

corresponding digits of the solution probes. However, it may have been the case that children 

with a good WM might not have tried to bypass the addition task by checking the plausibility 
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of the probes unit and/or decade digit but may have tried to calculate the correct result before 

pressing the corresponding response button. As this reflects the more difficult and thus more 

error prone strategy these children may have committed more errors which in turn would 

account for the negative correlation of WM measures with addition performance. 

 

Basic numerical competencies as precursors of future performance 

First evidence indicating the relevance of basic numerical competencies as precursors 

of later arithmetic achievement comes from cross-sectional evaluation of typically developing 

children (Holloway & Ansari, 2009; see also De Smedt et al., 2009b; Landerl & Kölle, 2009) 

as well as from dyscalculia intervention (Kaufmann et al., 2003). The current results fit nicely 

with both lines of evidence identifying basic numerical concepts such as symbolic/non-

symbolic magnitude representation or counting principles to serve as fundamentals for later 

arithmetic achievement. However, as previous studies have only used single digit stimuli in 

basic numerical tasks, they have not been able to address the issue of place-value integration.  

In this way, the current study extends the findings of Holloway and Ansari (2009) in 

two important aspects: (i) Here, it was observed that when evaluating the predictive power of 

performance in a magnitude comparison task effective magnitude representation (as reflected 

by the distance effect) is only part of the story. Rather, it was found that successful 

identification and comparison of the single digit magnitudes of tens and units complying with 

the place-value structure of Arabic numbers (as indexed by the unit-decade compatibility 

effect) is of crucial importance for the further development of arithmetic competencies as 

well. Please note that in line with this argument Landerl and Kölle (2009) observed the 

compatibility effect to be reliably more pronounced in children with dyscalculia than in a 

typically developing sample of control children. This suggests that poor integration of tens 

and units into the place-value structure of the Arabic number system may be a key symptom 

of developmental dyscalculia. (ii) The present study was the first to evaluate the 
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developmental trajectories of basic numerical competencies and their influence on arithmetic 

performance in a longitudinal approach. Thereby, these are the first data that clearly indicate 

the prominent role of an understanding of basic numerical concepts as a precursor of 

arithmetic capabilities in typical numerical development.  

A second line of evidence corroborating the importance of basic numerical 

competencies for later arithmetic capabilities comes from recent intervention studies. Dowker 

(2001) proposed a modular intervention program that incorporated a distinct module covering 

“understanding the role of place-value in number operations and arithmetic” (Dowker, 2001, 

p. 7) despite other modules on counting principles, written symbolism for numbers and 

arithmetical estimation. More recently, Kaufmann and colleagues (2003) picked up on this 

and aimed to investigate possible differential influences of basic numerical concepts such as 

counting, transcoding and place-value understanding as well as arithmetic fact knowledge, 

and procedural knowledge in an intervention programme training dyscalculic children. Post 

interventional evaluation of children’s performance on corresponding numerical tasks 

revealed that it was the training of basic numerical competencies from which dyscalculic 

children particularly benefitted. Based on these findings Kaufmann et al. (2003) argue that 

training of basic numerical knowledge should be a key part of dyscalculia intervention. 

However, even these intervention results do not automatically qualify the generalisation of 

basic numerical competencies serving as developmental precursors for arithmetic 

competencies in typically developing children. In this context, the results of the current study 

are meaningful. In a longitudinal approach we observed basic numerical competencies and in 

particular place-value understanding in first grade to be a reliable predictor of arithmetic 

ability in third grade. Thereby, the present study not only provides first evidence that the 

interrelation between early basic numerical competencies and later arithmetic capabilities as 

observed in dyscalculia intervention may also hold for typical numerical development. More 

particularly, the present results indicate that among basic numerical competencies mastery of 
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the place-value structure of the Arabic number system is of exceptional relevance when it 

comes to narrowing down precursor competencies of future arithmetic capabilities. However, 

we wish to make explicit that although the results of the current study point to a crucial role of 

place-value understanding in the development of numerical capabilities, we would not claim 

that there are no other basic numerical competencies that serve as a building block of later 

arithmetic achievement. 

 

Implications for models of numerical development 

Interpreting the present results within the framework of current developmental models 

of numerical cognition remains at a rather hypothetical level as current models of numerical 

development are mostly theoretical in nature, yet awaiting empirical validation. For instance, 

the developmental model of numerical cognition proposed by von Aster and Shalev (2007) 

suggested a four-staged development. In this model the authors attempted to link specific 

numerical/calculation abilities (arising at consecutive developmental stages) to the relevant 

brain areas subserving these abilities, on the one hand, and to the cognitive representations 

underlying these capabilities, on the other hand. Interestingly, while the first two stages (i.e., 

core magnitude system and verbal number system) are assumed to be acquired by the time of 

school enrolment acquisition of the third and fourth stage (i.e., Arabic number system and the 

ordinality of the mental number line) are conceptualized as separate and provisionally later 

developmental stages to be determined by schooling (see von Aster & Shalev, 2007, Figure 

1). Though place-value understanding is not explicitly conceptualized within this model (and 

to the best of our knowledge in no other neurocognitive model of numerical development), it 

seems plausible to speculate that place-value understanding emerges at stages three and four 

(or in later – yet unspecified – stages) of the von Aster and Shalev (2007) model. This 

assumption is based on the consideration that at least implicit place-value knowledge is a 

crucial prerequisite for appreciating the numerical value of one-digit and more importantly 
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multi-digit numbers which in turn paves the way for development and the formation of a 

linear representation of numerical magnitude along a mental number line reflecting also the 

base-10 property of the Arabic place-value structure (e.g., Moeller et al., 2009a). 

With respect to non-numerical domain-general capacities influencing numerical 

development, the developmental model by von Aster and Shalev (2007) considers – beyond 

visuo-spatial skills – also WM to be relevant. Indeed, there is accumulating evidence that WM 

impacts on mathematics performance (e.g., Passolunghi & Mammarella, in press; see 

Kaufmann & Nuerk, 2005 for an overview) and that WM even seems to be a good predictor 

of later mathematics achievement (e.g., De Smedt et al., 2009a). Therefore, examining (as 

well as controlling for) the impact of WM and its components on different aspects of number 

processing and calculation seems crucial when interested in the developmental trajectories of 

particular numerical properties such as place-value understanding. Based on such 

considerations WM measures have been incorporated in the present study (see above). 

Although we acknowledge that (and present) empirical evidence supporting 

theoretical ideas of quite circumscribed areas of numerical development exists (e.g., number 

magnitude representations: Siegler, 1996; transcoding: Barrouillet et al., 2004; Power & Dal 

Martello, 1997), we wish to emphasize that there is currently no comprehensive and 

empirically validated developmental model of numerical development of multi-digit number 

processing and of the development of place-value integration processes, in particular. 

Moreover, as already mentioned above, mathematics competency not only depends on well 

established basic and more complex number processing and calculation skills but rather, 

flawless mathematics performance requires the interplay of elaborate numerical and non-

numerical skills (such as WM for instance). Regarding numerical skills, most research to date 

was targeted at the representation of number magnitude. Hence, the present study goes one 

step further by systematically examining developmental trajectories of place-value 

understanding (being key to complex written arithmetic) in elementary school children. 
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Therefore, we believe that this study is important in that it adds constraints for further 

refinement of developmental models of multi-digit (place-value integrated) numerical 

processing. 

 

CONCLUSIONS 

In the current study we investigated the influence of basic numerical competencies, in 

particular, place-value understanding, on later arithmetic performance in a longitudinal 

approach. Our results clearly indicate that successful mastery of the place-value concept in 

first grade is a reliable precursor of arithmetic capabilities in third grade. In this way, the 

present study extends previous findings on the importance of basic numerical knowledge on 

the development of arithmetic capabilities in three aspects. (i) This is the first longitudinal 

observation of an interrelation between basic numerical knowledge and later calculation 

performance in a sample of typically developing children. (ii) Among basic numerical 

competencies, we pinpointed early place-value understanding to be of major relevance for 

later arithmetic abilities in general. (iii) More particularly, we were even able to show that 

specific numerical effects attributed to a single representation in first grade specifically 

predict effects related to the same underlying representation in an arithmetic task two years 

later.  

The conclusions for future research are then straightforward. Multi-digit number 

processing and in particular, the importance of place-value understanding should – in our 

view – receive greater attention as a unproblematic development of place-value knowledge 

cannot be taken for granted in all children (e.g., Gervasconi & Sullivan, 2007). Instead, early 

deficits in place-value understanding still exert their influence on later more complex 

arithmetic processes. This calls for research not focusing on single-digit numbers processing 

but which also incorporates representations and concepts necessary to successfully process 

multi-digit numbers. However, such an approach should not only be restricted to basic 
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research. The present data rather suggest that more specific teaching and training of place-

value understanding in education contexts may endorse children’s numerical development.  
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APPENDIX A:  Correlation tables of step three analyses evaluating the intercorrelations of specific numerical effects with the carry effect (Panel A),  

the number of errors for carry problems (Panel B) as well as the number of errors for non-carry problems (Panel C)  

A Task/Effect 1. 2. 3. 4. 5. 6. 7. 8. 

Numeric 1. Carry effect (3
rd

 grade) - .05 - .01 .14 .09 - .07 .12 .20* 

 2. Distance effect (1
st
 grade)  - - .04 .05 - .19(*) - .19(*) .03 - .07 

 3. Compatibility effect (1
st
 grade)   - .13 .04 .04 - .01 - .21* 

 4. Inversion (1
st
 grade)    - .01 - .19(*) - .16 - .25* 

Non-numeric 5. Intelligence (1
st
 grade)     - .00 - .04 .21* 

 6. Verbal WM (1
st
 grade)      - .27** .14 

 7. Spatial WM (1
st
 grade)       - .38** 

 8. CE (1
st
 grade)        - 

B Task/Effect 1. 2. 3. 4. 5. 6. 7. 8. 

Numeric 1. Carry errors (3
rd

 grade) - - .13 .23* .38** .08 - .02 .14 .02 

 2. Distance effect (1
st
 grade)  - - .04 .05 - .19(*) - .19(*) .03 - .07 

 3. Compatibility effect (1
st
 grade)   - .13 .04 .04 - .01 - .21* 

 4. Inversion (1
st
 grade)    - .01 - .19(*) - .16 - .25* 

Non-numeric 5. Intelligence (1
st
 grade)     - .00 - .04 .21* 

 6. Verbal WM (1
st
 grade)      - .27** .14 

 7. Spatial WM (1
st
 grade)       - .38** 

 8. CE (1
st
 grade)        - 

C Task/Effect 1. 2. 3. 4. 5. 6. 7. 8. 9. 

Numeric 1. Non-carry errors (3
rd

 grade) - - .17(*) .23* .21* .31** - .03 .05 .00 - .20(*) 

 2. Distance effect (1
st
 grade)  - - .04 .05 .02 - .19(*) - .19(*) .03 - .07 

 3. Compatibility effect (1
st
 grade)   - .13 .39** .04 .04 - .01 - .21* 

 4. Inversion (1
st
 grade)    - .42** .01 - .19(*) - .16 - .25* 

 5. Combination errors (1
st
 grade)      - .17 - .03 - .28** - .37** 

Non-numeric 6. Intelligence (1
st
 grade)      - .00 - .04 .21* 

 7. Verbal WM (1
st
 grade)       - .27** .14 

 8. Spatial WM (1
st
 grade)        - .38** 

 9. CE (1
st
 grade)         - 

(
*

)
 = p < .10; * = p < .05; ** = p < .01 
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 The neurocognitive underpinnings of  

place-value integration 
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All for one but not one for all:  

How multiple number representations are recruited in one 

numerical task 

 

 

 

 

 



 

175 

 

ABSTRACT 

Mental arithmetic and calculation rely on a complex network of multiple numerical 

representations. Usually the components of this network are examined in a between-task 

approach, which presents the disadvantage of relying upon different instructions, tasks and 

inhomogeneous stimulus sets across experimental conditions. A within-task approach may 

avoid these disadvantages and may access the numerical representations more specifically. In 

the present study we employed a within-task approach to investigate the numerical 

representations activated in the number bisection task (NBT) in a parametric rapid event-

related fMRI study. The only required instruction was to judge whether the middle number of 

a triplet was also their arithmetic mean (23_26_29) or not (23_25_29). Activity in the left 

inferior parietal cortex was associated with the deployment of verbal number (fact) 

representations, while activation of the intraparietal cortex was associated with deeper 

magnitude processing, instrumental aspects of calculation and activation of the base-10 

structure of two-digit numbers. These results replicate strong evidence from the literature. 

Furthermore, activation in the dorsolateral and ventrolateral prefrontal cortex reveals 

mechanisms of feature monitoring and inhibition and allocation of cognitive resources in 

order to solve a specific triplet. We conclude that the network of numerical representations 

should be studied in a within-task approach and not only with between-task approaches. 
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INTRODUCTION 

Dealing with and the processing of numbers is a highly complex ability relying on 

multiple cognitive representations such as numerical magnitude (Dehaene, Piazza, Pinel, & 

Cohen, 2003; Hubbard, Piazza, Pinel, & Dehaene, 2005), arithmetic fact knowledge (Dehaene 

et al., 2003; Delazer et al., 2003), and procedural knowledge (Butterworth, 2005; Delazer et 

al., 2004). These different number representations could recently be associated with the 

activation of specific neuroanatomical structures. Typically, number magnitude processing 

activated the intraparietal cortex, bilaterally (e.g. Eger, Sterzer, Russ, Girald, & Kleinschmidt, 

2003; Dehaene et al., 2003) while arithmetic fact knowledge was associated with activation in 

the left inferior parietal cortex, in particular the left angular gyrus (Cohen, Dehaene, Chochon, 

Lehéricy, & Naccache, 2000; Dehaene et al. 2003; Delazer, et al., 2003). However, when 

calculation problems become more complex, apart from magnitude processing and arithmetic 

fact knowledge, procedural knowledge coordinating all required processes is necessary 

(Delazer et al., 2003; Semenza, 2004). It usually subsumes abilities as to select the 

appropriate strategies and production rules as well as integrating all information needed to 

solve the task at hand (Delazer et al., 2003). Such procedural knowledge was recently 

associated with prefrontal and basal ganglia activation (Delazer et al., 2004). 

To date, studies investigating the neural correlates of those different number 

representations and procedural knowledge used a large variety of tasks and materials 

(Chochon, Cohen, van de Mortele, & Dehaene, 1999; Cohen et al., 2000; Delazer et al., 2004; 

Fullbright et al., 2000; Goebel, Johansen-Berg, Behrens, & Rushworth, 2004; Menon, Rivera, 

White, Glover, & Reiss, 2000; Pinel, Dehaene, Riviére, & Le Bihan, 2001; Pinel, Piazza, Le 

Bihan, & Dehaene, 2004, Simon, Mangin, Cohen, Le Bihan, & Dehaene, 2002; Stanescu-

Cosson et al., 2000; Wood, Nuerk, & Willmes, 2006). Due to this diversity of experimental 

procedures and task requirements, a comparison of brain activation patterns between different 

studies is very difficult. In many cases, specific numerical processing such as magnitude 
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manipulations cannot be distinguished from more general processes (e.g. response selection, 

see Goebel et al., 2004). In these cases, differences in brain activation patterns associated with 

either procedural or fact knowledge, or magnitude representations cannot definitely be 

attributed to the critical involvement of these constructs, but also to task requirements and 

stimuli used. Therefore, employing a within-task approach instead of a between-task approach 

to examine the interactions between procedural and fact knowledge, as well as magnitude 

representation would be desirable. 

Addressing this issue, Nuerk, Geppert, van Herten, and Willmes (2002) presented a 

modified version of the number bisection task (NBT) as initially used by Dehaene and Cohen 

(1997) to assess spared numerical abilities in an acalculic patient. In Nuerk et al.’s (2002) 

verification version of the NBT, healthy adult participants were to determine whether the 

central number of a triplet also represents the arithmetic mean of the interval (e.g. 23_25_27) 

or not (e.g. 23_25_29; see also Hoeckner et al., 2008 for results in hemineglect patients). As 

performance in the NBT is supposed to rely exclusively on magnitude manipulations, the 

NBT is commonly used to assess number magnitude representation (Cohen et al., 2000; 

Dehaene and Cohen, 1997). However, Nuerk et al. (2002) showed that different number 

representations specifically influenced speed and accuracy in the NBT. In their factorial 

design, Nuerk et al. (2002) identified multiplicativity (i.e. whether or not a triplet was part of 

a multiplication table) and bisection range (i.e. distance between the outer numbers) to be the 

most important predictors of performance for correctly bisected triplets. Whereas for triplets 

not correctly bisected, distance from the central number to the arithmetic mean of the interval 

and bisection possibility (i.e. whether or not the interval can be bisected by an integer) 

reliably predicted behavioural performance. 

Additionally, Nuerk and colleagues (2002) conducted a regression analysis on item RT 

to investigate the impact of item properties not manipulated in their stimulus set. Thereby, 

decade crossing and measures of problem size were identified to generally influence 
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behavioural performance in the NBT: First, classification was systematically faster and less 

error prone for triplets staying within the same decade (e.g. 23_26_29 vs._25_28_31), and 

second for triplets with a relatively smaller problem size (e.g. 11_14_17 vs. 81_84_87). In 

summary, the results of Nuerk and co-workers (2002) suggest that apart from a crucial 

involvement of magnitude manipulations, also numerical information from other sources (e.g. 

multiplicativity, procedural rules) is monitored and recruited where beneficial. 

For the present study, these six numerical determinants of behavioural performance in 

the NBT have been selected to investigate their neuronal correlates. Three neural networks 

incorporating different aspects of these numerical determinants can be distinguished: first, a 

fronto-parietal network including the intraparietal cortex bilaterally, involved in magnitude 

processing. Second, the superior frontal and inferior parietal cortex, including the left angular 

gyrus, which subserves monitoring and applying of procedural rules as well as inhibiting 

cognitive sets, and finally, the right ventrolateral prefrontal cortex subserving cognitive set 

changes. Following this differentiation, predictions on the impact of the six determinants 

introduced above on the activation within each of the three neural networks can be derived: 

Range: A large bisection range should lead to a stronger fMRI signal in the intraparietal 

cortex as more difficult magnitude manipulations are required. Additionally, activation is 

expected to extend to the posterior superior parietal lobule due to more large-scale navigation 

on the mental number line (Dehaene et al., 2003). Probably, activation in prefrontal regions as 

well as in the SMA and pre-SMA regions may be observed, which can be associated with task 

difficulty (Garavan, Ross, & Stein, 1999). In contrast, when bisection range is small, the 

intraparietal cortex should be less engaged. Moreover, activation in the inferior parietal 

lobule, particularly in the left angular gyrus should increase as smaller, less complex 

problems were to be solved (Qin et al., 2004). 

Problem size: Since the frequency of occurrence of a number decreases as its 

magnitude increases (Dehaene and Mehler, 1992), the representation of relatively smaller 
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numbers is assumed to be more precise and solid (Dehaene, 2001). The angular gyrus is 

expected to be activated more strongly for triplets with a small problem size. In contrast, 

when number magnitude increases, deeper magnitude processing is required and thus 

increased activation in the intraparietal cortex is expected. 

Decade crossing: Decade crossing reflects the interaction between magnitude 

processing and the structure of the symbolic base-10 Arabic system (Wood et al., 2006). 

When there is no decade crossing, no such symbolic transformations need to be performed, 

thus activation in the intraparietal cortex should less pronounced. Similar to small bisection 

ranges an increase in fMRI signal in the left angular gyrus is expected, as familiarity is 

enhanced when all three numbers of a triplet are from the same decade and, actually, only the 

unit digits of the triplet have to be bisected. 

Distance to the mean: Triplets with a small distance to the correct mean of the interval 

should lead to increased activation in the intraparietal cortex compared to triplets with a large 

distance to the mean. This may be attributed to more fine-grained magnitude processing 

required to differentiate the central number of the interval from its correct mean when these 

are numerically close to each other. 

Multiplicativity: Multiplicatively related triplets should activate the left angular gyrus 

more strongly than triplets that are not part of a multiplication table indicating retrieval 

processes for well-learned arithmetic problems (Delazer et al. 2004, Cohen et al., 2000). In 

contrast, for multiplicatively unrelated triplets, more intense magnitude processing and 

manipulation is required. Therefore, activation in prefrontal and intraparietal regions should 

be increased (cf. Delazer et al., 2004). 

Bisection possibility: Finally, evaluating bisection possibility might reflect a cognitive 

set change. When the interval cannot be bisected by an integer, the central (integer) number 

cannot be the correct response. Therefore, in these triplets all subsequent magnitude 

manipulations should be discontinued. It is expected that brain activation for triplets 
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impossible to bisect by an integer should specifically activate regions in prefrontal cortex 

which are involved in cognitive set changes. Whereas for triplets possible to bisect increased 

activation of the intraparietal cortex would indicate reliance upon magnitude manipulations to 

derive the correct answer. 

 

METHOD 

Participants: Seventeen male right-handed volunteers (mean age=24.2 years, range 

21-30 years) took part in the study after having given their written consent in accord with the 

protocol of the local Ethics Committee of the Medical Faculty. 

Experimental task: 360 one- and two-digit number triplets including integer numbers 

ranging from 1 to 99 were presented in a 2 x 2 within participant design in Arabic notation for 

both bisected (e.g. 23_26_29) and non-bisected triplets (e.g. 23_25_29). For bisected triplets, 

multiplicativity (number triplets part/not part of a multiplication table, e.g. 21_24_27 vs. 

22_25_28) and bisection range (the distance between the outer numbers; small: 4-8, e.g. 

23_26_29 vs. large 12-18, e.g. 22_30_38) were varied. For non-bisected triplets, we 

manipulated bisection possibility (whether the mean of the interval is an integer, e.g. 

21_24_29, mean = 25, or not e.g. 21_24_28, mean = 24.5) and distance of the second number 

to the mean of the interval (far: 2-8, e.g. 6_7_18 vs. near: 0.5 – 1.5, e.g. 6_11_18). 

Problem size, overall magnitude, average parity, parity homogeneity, decade crossing and 

inclusion of multiples of ten were matched between the respective stimulus groups. In 

addition to these variables, bisection range and size of the central number relative to the 

correct mean (i.e. larger/smaller) were matched for non-bisected triplets. 

Procedure: Participants were lying in the fMRI scanner while responding to the 

stimuli. The stimuli were rear-projected on a screen via a mirror attached to the head coil of 

the scanner at a distance of 12 cm from the participants. Participants were instructed to decide 

as quickly and accurately as possible whether the interval between the two outer numbers was 
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correctly bisected by the second number (right hand key) or not (left hand key). Each triplet 

was presented for 3 seconds, followed by an ISI of 1.5 seconds in which only the fixation 

marks ( _ _ ) were visible. RTs longer than 3 seconds were not recorded. After every eighth 

trial, there was a longer ISI of 5.6 seconds. All stimuli were presented in Courier New 150. 

360 triplets were presented in 5 blocks, each lasting approximately 6 minutes. Between 

blocks, there was a break of approximately 3 minutes. Trial order was pseudo-randomized so 

that each stimulus condition appeared about equally often in each block. The experiment was 

preceded by 30 warm-up trials. 

fMRI acquisition: Five functional imaging runs sensitive to blood oxigenation level-

dependent (BOLD) contrast were recorded for each participant in a Philips 1.5T Gyroscan 

MRI system (T2*-weighted echo-planar sequence, TR = 2500 ms; TE = 50 ms; flip angle = 

90°; FOV = 220 mm, 64 x 64 matrix; 30 slices, voxel size = 3.4 x 3.4 x 4 mm). Five runs of 

146 scans each were acquired. In a rapid event-related design, 360 trials were presented in a 

pseudo-randomized sequence at a rate of 4.5 seconds in 45 small blocks of 8 trials interleaved 

with null events of 5.6 seconds. The fMRI time series was corrected for movement artifacts 

and unwarped using SPM2. Images were resampled every 3 mm to a standard template using 

sinc interpolation to interpret them in Talairach coordinates (Talairach and Tournoux, 1988), 

and smoothed with a 6 mm Gaussian kernel. 

We convolved brain activation separately for bisected and non-bisected triplets with 

the canonical hemodynamic response function (HRF) and estimated the effects of parametric 

regressors. For bisected triplets regressors coding for multiplicativity, decade crossing, 

bisection range, and problem size were entered as parametric predictors of activation. For 

non-bisected triplets, regressors coding bisection possibility, decade crossing, bisection range, 

problem size and distance between the central number and the mean of the interval were 

entered as parametric predictors of activation. The effects of different regressors on the fMRI 

signal were estimated using the first-order term of the polynomial expansion of the typical 
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HRF function (Büchel, Holmes, Rees and Friston, 1998). In order to compare the activation 

produced by each of these coefficients, the parametric regressors were standardized to a mean 

of 0 and a standard deviation of 1 in each session. In a random-effects second-level analysis, 

cortical regions showing modulation of signal specifically due to the parametric regressors 

were evaluated. 

 

RESULTS 

Classification performance  

Results concerning RT and errors acquired in the fMRI scanner have already been 

published (Nuerk et al., 2002) and will only be briefly summarised here (see Table 1). To 

exclude effects produced by responses to just a subset of items (Nuerk et al., 2001; Nuerk et 

al., 2002; see also Clark, 1973), we also carried out an analysis of variance (ANOVA) over 

items (F2). 

 

ANOVA: Response latencies were shorter for the evaluation of bisected triplets being 

part of a multiplication table (150 ms; F1(1, 16) = 97.52; p < .001; F2(1, 176) = 14.59; p < 

.001) as well as for triplets spanning a relatively smaller range (410 ms; F1(1, 16) = 109.36; p 

< .001; F2(1, 176) = 112.46; p < .001). For non-bisected triplets a relatively larger distance 

between the central number of the interval and its correct mean (256 ms; F1(1, 16) = 197.35; p 

< .001; F2(1, 176) = 37.77; p < .001) or the interval being impossible to be bisected by an 

integer led to faster reaction times (RT) (49 ms; F1(1, 16) = 8.41, p < .01; F2(1, 176) = 1.81, p 

= .18). In particular, this main effect of bisection possibility was driven by a significant effect 

of bisection possibility on RT for isolated non-bisected triplets (57 ms, t(16) = 3.2, p < .01), it 

did not reach significance for non-bisectable triplets preceded by another non-bisectable 

triplet(-17 ms, t(16) =0.41, p = .68). Comparison of the effect of bisectability in isolated vs. 

preceded triplets also did reveal a significant difference (t(16)=2.26, p< .05). 
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Table 1: Behavioural performance in the NBT as reported in Nuerk et al. (2002). RT in ms and percentage of 

errors (with SD in parentehesis). 

  Bisectable Non-Bisectable 

RT in ms Related Unrelated  Possible Impossible 

Small range 1468 (148) 1594 (140) Large distance 1629 (116) 1599 (132) 

Large range 1853 (140) 2029 (125) Small distance 1913 (109) 1846 (147) 

Errors in % Related Unrelated  Possible Impossible 

 
Small range 3 (3) 4 (4) Large distance 4 (3) 2 (2) 

Large range 10 (7) 20 (10) Small distance 13 (5) 7 (5) 

 

Regression analysis: RT data were reanalysed in two regression analyses to 

specifically examine the influence of the above described determinants. Note that the 

differences between results of the new and the original analysis (see Nuerk et al., 2002, p. 

703) are due to the predictors entered in the respective analyses. In the current analysis, range, 

decade crossing, sum and multiplicativity were included as predictors in the regression model 

for bisected triplets. For non-bisected triplets, range, decade crossing, sum, bisectability and 

distance to the mean were included as predictors. Regression models accounted for a 

considerable proportion of variance in bisectable (R²=0.52) and non-bisectable RT (R²=0.51; 

see Table 2). Range, decade crossing, sum and multiplicativity were significant predictors of 

RT in bisected triplets. For non-bisected triplets, range, decade crossing, sum, and distance to 

the mean were significant predictors of RT. Although bisectability was not a significant 

predictor of RT, we have included it in the general linear model examining fMRI signal in 

non-bisected triplets, since the main effect of bisectability was significant in the ANOVA. 
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Table 2: Regresion analysis for bisectable and non-bisectable triplets. 

Bisectable triplets (adjusted R² = .52) 

Predictor 
Standardized 

beta 
t(175) 

Raw 

correlations 

Partial 

correlations 

Range .519 8.89** .650 .457 

Decade crossing .255 4.37** .516 .224 

Problem size .132 2.56* .178 .132 

Multiplicativity -.206 -4.01** -.219 -.206 

Non-Bisectable trials (adjusted R² = .51) 

Predictor 
Standardized 

beta 
t(174) 

Raw 

correlations 

Partial 

correlations 

Range .351 5.30* .425 .276 

Decade crossing .441 7.22* .556 .376 

Problem size .111 2.03* .111 .106 

Bisection possibility .055 1.04 .086 .054 

Distance to mean -.446 -7.94** -.258 -.414 

* p<.05; ** p<.005, two-sided. 

 

fMRI 

Bisection Range, decade crossing and problem size (operationalized as the sum of the 

three numbers of a triplet) were common predictors in both bisected and non-bisected triplets. 

The pattern of activation elicited by these predictors was identical for both bisected and non-

bisected triplets and will be described jointly. Multiplicativity was a parametric predictor of 

bisected triplets only, while bisection possibility and distance to the mean were parametric 

predictors of non-bisected triplets. 

 

Large range > small range: When bisection range increased, fMRI signal increased 

bilaterally in large portions of the left and right intraparietal cortex, with projections to the 

extrastriate and striate cortex. Additionally, cortex areas at the left temporo-occipital junction 

were activated. Furthermore, activation was observed in the left and the right supplementary 

motor area as well as the premotor cortex, bilaterally. Finally, different clusters of activation 
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were found bilaterally in the dorsolateral and ventrolateral prefrontal cortex as well as in the 

homologue of Broca`s area (Figure 1A, Table 3). 

 

Small range > large range: When bisection range decreased, increased fMRI signal 

was found in the anterior cingulate, the right dorsolateral prefrontal cortex, and the 

retrosplenial cortex (Figure 1A, Table 3). 

 

Decade crossing > non-crossing: Activation in a large network of cortical regions was 

observed for triplets crossing a decade boundary (Figure 1B, Table 4). The intraparietal cortex 

as well as areas in the temporo-occipital junction was activated bilaterally as was the 

extrastriate cortex. Further clusters of activation were found bilaterally in the dorsolateral 

prefrontal cortex, in the SMA and the premotor cortex. Finally, the ventrolateral prefrontal 

cortex was activated bilaterally. 

 

No-decade-crossing > decade crossing: Stronger fMRI signal was registered in the 

angular gyrus as well as in the supramarginal gyrus bilaterally. Further activation clusters 

were observed in the dorsolateral prefrontal cortex, anterior cingulate and retrosplenial cortex 

bilaterally (Figure 1B, Table 4). 

 

Large problem size > small problem size: When problem size increased, activation 

was increased in the striate and extrastriate cortex bilaterally, in the left temporo-occipital 

junction and medial portions of the cerebellum (Figure 1C, Table 5). 
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Figure 1: fMRI signal for parametric predictors common to bisected and non-bisected triplets. All constrasts 

were thresholded at p = .001, voxelwise uncorrected, and minimal cluster size set to k = 10. 1A: Bisection range. 

Regions coloured red depict voxels showing stronger signal for large bisection range. Regions coloured green 

represent voxels exhibiting stronger signal for small bisection range. 1B: Decade crossing. Regions coloured 

red represent voxels showing stronger signal for triplets with at least one decade crossing, than for triplets 

without decade crossing. Regions coloured green depict voxels exhibiting stronger signal for triplets without 

decade crossing than for triplets with at least one decade crossing. 1C: Problem size. Regions coloured red 

represent voxels showing stronger signal for large problem size than for small. Regions coloured green indicate 

voxels showing stronger signal for small problem size than for large. 
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Table 3: Brain areas activated by bisection range (all p < 0.001, voxelwise uncorrected) 

Large range > small range 

Region 
Talairach coordinates 

x, y, z 

t-value 

df=16 
BA 

Cluster 

size k 

Right intraparietal cortex 50, -33, 49 8.26 40 263 

Right intraparietal cortex 35, -53, 52 7.79 7 - 

Left posterior intraparietal cortex -9, -73, 48 8.56 7 276 

Left anterior intraparietal cortex -50, -36, 46 4.85 40 10 

Right extrastriate cortex 30, -71, 39 9.26 19 29 

Right striate cortex 39, -90, 2 4.75 18 26 

Left extrastriate cortex -27, -71, 39 7.27 19 76 

Left temporo-occipital juction -39, -68, -12 6.31 19/37 50 

Left striate cortex -36, -82, -11 5.26 18 16 

Right supplementary motor area 6, 20, 43 10.97 8 44 

Left supplementary motor area -3, 17, 49 10.33 8 29 

Right premotor cortex 30, 14, 44 8.44 6 52 

Left premotor cortex -24, 12, 50 7.55 6 104 

Right dorsolateral prefrontal cortex 50, 31, 34 5.62 9/46 23 

Left dorsolateral prefrontal cortex -45, 4, 27 8.81 9 110 

Right homologue of Broca`s area 42, 20, 2 4.74 45 18 

Right ventrolateral prefrontal cortex 39, 17, -6 7.22 47 27 

Left ventrolateral prefrontal cortex -30, 20, -4 5.14 47 19 

Small range > large range 

Anterior cingulate -3, 46, -10 8.06 32 363 

Right dorsolateral prefrontal cortex 18, 32, 51 7.52 9 13 

Retrosplenial cortex -3, -45, 33 8.53 7/31 234 

 

Small Problem size > large problem size: The left inferior parietal cortex and to a 

smaller extent the right inferior parietal cortex exhibited increased fMRI signal as a result of 

small problem size. (Figure 1C, Table 5). In the left hemisphere, a small cluster of activation 

was present projecting from the inferior to the superior parietal cortex. 

 

Small distance to the mean > large distance to the mean: When distance to the mean 

decreased, stronger fMRI signal was observed in the following regions: Left anterior 

intraparietal cortex, posterior intraparietal and neighbouring extrastriate cortex bilaterally, 
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Broca’s area, SMA/pre-SMA, frontal eye-fields and in the frontal operculum bilaterally 

(Figure 2A). 

 

Table 4: Brain areas activated by decade crossing (all p < 0.001, voxelwise uncorrected) 

Decade crossing > no decade crossing 

Region 
Talairach coordinates 

x, y, z 

t-value 

df=16 
BA 

Cluster 

size k 

Right intraparietal cortex 33, -53, 50 8.52 7/40 250 

Right intraparietal cortex 33, -59, 44 7.55 7 - 

Left intraparietal cortex -39, -33, 40 9.49 5/7 327 

Left intraparietal cortex -30, -65, 50 8.00 7 - 

Right extrastriate cortex 33, -74, 40 6.87 19 77 

Left extrastriate cortex -27, -74, 37 10.02 19 117 

Right temporo-occipital juction 42, -68, -12 6.62 19/37 14 

Left temporo-occipital juction -45, -62, -12 7.66 19/37 52 

Right dorsolateral prefrontal cortex 59, 22, 27 5.81 9/46 19 

Left dorsolateral prefrontal cortex -45, 4, 30 7.46 9 42 

Left dorsolateral prefrontal cortex -45, 30, 21 5.83 9/46 38 

Right supplementary motor area 6, 17, 43 9.32 8 41 

Left supplementary motor area -3, 17, 49 8.90 8 28 

Right premotor cortex 30, 11, 44 6.48 6 56 

Left premotor cortex -35, -9, 47 8.34 6 216 

Right ventrolateral prefrontal cortex 39, 17, -6 5.09 47 22 

Left ventrolateral prefrontal cortex -30, 20, -9 4.99 47 13 

No decade crossing > decade crossing 

Right angular gyrus 56, -63, 31 5.56 39 102 

Left angular gyrus -53, -60, 28 6.85 39 88 

Right supramarginal gyrus 59, -25, 26 7.95 40 78 

Left supramarginal gyrus -62, -25, 18 5.38 40 28 

Right dorsolateral prefrontal cortex 21, 48, 34 5.92 9 11 

Left dorsolateral prefrontal cortex -12, 51, 31 5.72 9 49 

Right retrosplenial cortex 9, -48, 27 5.87 31 64 

Anterior cingulate gyrus 0, 43, -12 6.70 32 35 

 

Large distance to the mean > small distance to the mean: When distance to the mean 

increased, stronger fMRI signal was registered in the inferior parietal cortex and the anterior 
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portion of the superior frontal gyrus, both bilaterally. A further activation cluster was 

observed in the right medial temporal gyrus (Figure 2A, Table 6). 

 

Possible > impossible: No region exhibited an increase in activation for this contrast at 

the voxelwise uncorrected threshold of p = .01. 

 

Impossible > possible: Increased activation in the right ventro-lateral prefrontal cortex 

was observed for triplets impossible to bisect by an integer (BA47, Talairach coordinates: 40, 

20, -4, k = 10, t(16) = 5.99, p < .001, uncorrected, see Figure 2B and Table 6). 

 

Multiplicative > non-multiplicative: When the triplet was part of a multiplication 

table, the left angular gyrus and a small portion of prefrontal cortex was specifically activated 

(Figure 3, Table 7). 

 

Table 5: Brain areas activated by problem size (all p < 0.001, voxelwise uncorrected) 

Large sum > small sum 

Region 
Talairach coordinates 

x, y, z 

t-value 

df=16 
BA 

Cluster 

size k 

Right extrastriate cortex 33, -90, -3 6.28 19 602 

Left strate cortex -9, -81, 6 5.94 17/18 - 

Left extrastriate cortex -15, -93, 0 5.03 19 - 

Right strate cortex 3, -84, 15 5.07 17/18 - 

Left temporo-occipital junction -42, -53, -20 5.82 19/37 28 

cerebellum -6, -74, -19 7.49 - 85 

Small sum > large sum     

Left inferior parietal cortex -48, -62, 47 5.50 39 66 

Right inferior parietal cortex 53, -69, 23 5.33 39 26 
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Non-multiplicative > multiplicative: For triplets not part of a multiplication table, 

increased fMRI signal was observed bilaterally in the intraparietal cortex, in posterior 

portions of the middle frontal gyrus, SMA/pre-SMA, and in the left temporo-occipital 

junction (Figure 3, Table 7). 

 

 

Figure 2: fMRI signal for parametric predictors only included for non-bisected triplets. All contrasts were 

thresholded at p = .001, voxelwise uncorrected, and minimal cluster size set to k = 10. 2A: Distance to the 

correct mean. Red coloured regions represent voxels exhibiting stronger signal for larger distances to the mean 

than for smaller ones. Regions coloured green represent voxels showing stronger signal for smaller distances to 

the mean than for larger ones. 2B: Bisection possibility. Regions coloured green depict voxels showing stronger 

signal when the interval was impossible to bisect by an integer. 
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Figure 3: fMRI signal for parametric predictors only included in bisected triplets. All contrasts were thresholded 

at p = .001, voxelwise uncorrected, and minimal cluster size set to k = 10. Red coloured regions indicate voxels 

showing stronger signal for triplets not part of a multiplication table. Green coloured regions represent voxels 

showing stronger signal for triplets part of a multiplication table. 

 

Table 6: Brain areas activated by distance to correct mean (all p < 0.001, voxelwise uncorrected) 

Small distance to correct response > large distance to correct response 

Region 
Talairach coordinates 

x, y, z 

t-value 

df=16 
BA 

Cluster 

size k 

Left anterior intraparietal cortex -39, -42, 44 5.73 40 52 

Left posterior intraparietal/extrastrate cortex -21, -56, 50 5.61 7 50 

Right posterior intraparietal/extrastrate cortex 15, -55, 58 7.91 7 165 

Left dorsolateral prefrontal cortex -50, 10, 27 5.82 46 50 

SMA/pre-SMA 0, 11, 49 11.44 8 467 

Right frontal eye field 30, 0, 61 6.44 8 59 

Left frontal eye field -39, -1, 47 5.51 8 169 

Left frontal operculum -30, 27, -3 6.29 45 25 

Right frontal operculum 33, 23, 2 5.54 45 18 

Left occipital cortex -39, -75, -1 5.56 19/37 23 

Large distance to correct response > small distance to correct response 

Left inferior parietal cortex -45, -54, 33 7.09 39/40 123 

Right inferior parietal cortex 45, -59, 36 6.15 39/40 192 

Left dorsolateral prefrontal cortex -15, 51, 31 6.15 9 40 

Right dorsolateral prefrontal cortex 18, 35, 51 8.87 9 69 

Right medial temporal gyrus 65, -41, 0 7.03 21 18 
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Table 7: Brain areas activated by multiplicativity (all p < 0.001, voxelwise uncorrected) 

Multiplicative > non-multiplicative 

Region 
Talairach coordinates 

x, y, z 

t-value 

df=16 
BA 

Cluster 

size k 

Left angular gyrus -50, -60, 25 5.24 39 17 

Left dorsolateral prefrontal cortex -15, 48, 36 5.31 9 12 

Non-multiplicative > multiplicative 

Left anterior intraparietal cortex -48, -36, 43 5.23 40 21 

Right anterior intraparietal cortex 42, -44, 52 5.96 40 24 

Left posterior intraparietal/extrastrate cortex -33, -75, 23 8.12 7/19 201 

Right posterior intraparietal/extrastrate cortex 18, -67, 56 8.14 7/19 67 

Left dorsolateral prefrontal cortex -45, 7, 25 5.62 46 74 

Right dorsolateral prefrontal cortex 56, 13, 24 4.57 46 22 

SMA/pre-SMA -3, 20, 43 6.50 8 231 

Left frontal operculum -27, 21, 4 4.71 45 29 

Right frontal operculum 39, 23, -11 7.09 45 47 

Left temporo-occipital junction -45, -64, -7 5.63 19/37 28 

 

DISCUSSION 

As the behavioural data were extensively discussed in Nuerk et al. (2002) the 

following will concentrate on discussing fMRI activation patterns. Results show that specific 

numerical representations influence the fMRI signal. Cortical areas activated in the present 

study are associated with three groups of cognitive processes: the first one includes a bilateral 

fronto-parietal network subserving magnitude processing, symbolic base-10 processing, and 

other instrumental aspects of number processing. The second one includes regions in the 

dorsolateral prefrontal- and inferior parietal cortex, in particular the left angular gyrus, which 

are associated with monitoring of different sources of information and arithmetic fact 

knowledge, respectively. The third one involves specific regions in the ventrolateral 

prefrontal cortex responsible for cognitive set changing. The determinants of the neural 

activation observed in each one of these neural networks will be discussed in turn. 
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The fronto-parietal network and the intraparietal cortex 

Two components of the activation of the network involving prefrontal and parietal 

regions can be distinguished: First, the recruitment of general cognitive processes such as 

working memory, visual attention and response selection were recurrently associated with 

fronto-parietal activation. Second, specific numerical processes such as magnitude processing 

(Hubbard et al., 2005) and symbolic base-10 processing (Wood et al., 2006; Hoeckner et al., 

2008; Knops, Nuerk, Sparing, Foltys, & Willmes, 2006) were found to activate a fronto-

parietal network. 

On the one hand, more complex mental arithmetic activates the fronto-parietal network 

including the intraparietal cortex bilaterally (Kong et al., 2005). Therefore, activation within 

these neural structures may reflect the deployment of instrumental resources required for 

more demanding tasks (Gruber, Indefrey, Steinmetz, & Kleinschmidt, 2001). On the other 

hand, recent research showed that number processing might selectively activate the 

intraparietal cortex even when controlling for task complexity and response selection 

demands (Ansari, Dhital, & Siong, 2006a; Ansari, Fugelsang, Dhital, & Venktraman, 2006b; 

Piazz, Izard, Pinel, Le Bihan, & Dehaene, 2004). Finally, activation in the posterior superior 

parietal lobule was associated with navigating upon the mental number line (Dehaene et al. 

2003) and with symbolic magnitude processing (Wood et al., 2006). Since the activation 

patterns found in the present study are similar to those found in the studies mentioned above, 

we suggest that both, general and specific numerical, processes can be associated with 

activation in the fronto-parietal network. The specific contribution of each of these processes 

to the overall activation pattern will be discussed. 

 

Magnitude processing 

Stronger activation of number magnitude was observed in three contrasts: (i) when 

triplets spanned a larger number range, (ii) when the distance to the mean was small 
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(applicable only for non-bisected triplets), and (iii) when triplets were not part of the 

multiplication table (applicable only for bisected triplets). 

Increased activation in the bilateral intraparietal cortex was found for triplets spanning 

a large range. This reflects more demanding magnitude processing in these triplets as 

magnitude representation becomes less accurate in larger numerical intervals (i.e. according to 

the Weber-Fechner law, see Dehaene et al., 2003). Activation in the bilateral intraparietal 

cortex also increased when distance between the middle number and the correct mean was 

small. So, difficulty in rejecting the middle number was inversely proportional to the distance 

between the central number and the mean of the two outer numbers. This result can be 

interpreted as a distance effect for the magnitude comparison between a standard (i.e. the 

correct mean of the interval) and a probe (i.e. the actual central number of the triplet; Goebel 

et al., 2004; Pinel et al., 2001, Wood et al., 2006). 

Moreover, when triplets were not part of a multiplication table stronger activation of 

the fronto-parietal network was observed. Again, this increase in activation indicates deeper 

magnitude processing in these triplets. A trivial item difficulty explanation cannot account for 

stronger frontoparietal activation in non-multiplicative triplets, since overall magnitude, range 

and problem size were matched between multiplicative and non-multiplicative triplets. 

Therefore, when evaluating non-multiplicative triplets, participants rely more on the 

magnitude representation than in multiplicative triplets. This result is in line with an 

interpretation for the changes in neuroanatomical regions activated before and after training 

arithmetical problems (Delazer et al., 2003; 2005; Ischebeck et al., 2006; Ischebeck, 

Zamariaan, Egger, Scjocke, & Delazer, 2007). In their training studies, participants practiced 

arithmetical problems for some days. Without practice, brain activation was stronger in the 

intraparietal cortex. Whereas, after practice the main locus of activation for trained items was 

in the left angular gyrus. The authors accounted for this change in activation by the formation 

of lexical representations for items repeatedly presented during training. 
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Finally, increased activation in the posterior superior parietal lobule was also observed 

in the contrasts discussed above. Activation in this area is commonly attributed to the 

activation of visuo-spatial representations, which may reflect mental navigation on a spatially 

oriented number line (Dehaene et al., 2003). 

 

Symbolic base-10 processing 

Decade crossing also activated the fronto-parietal network, particularly the 

intraparietal cortex bilaterally. When a decade boundary had to be crossed, determining the 

correct mean of the interval not only seemed to activate the holistic magnitude representation 

of the involved numbers, but also the decomposed magnitudes of tens and units. As range was 

matched between triplets with and without decade crossing this effect cannot be attributed to 

the activation of overall number magnitude, but corroborates the interpretation of decomposed 

magnitude representations for tens and units (Wood et al., 2006). Recent fMRI studies have 

shown that the magnitudes of tens and units of a two-digit number are represented separately 

within the intraparietal cortex (Wood et al. 2006; Knops et al. 2006). The decomposed 

magnitude representations of tens and units seem to rely heavily upon visuo-spatial 

representations. For hemineglect patients Hoeckner et al. (2008) observed a larger impairment 

in triplets with a decade crossing between the first and the central number than in triplets with 

a decade crossing between the central and the third number in the NBT. This is equivalent to a 

specific deficit in accessing the magnitude of relatively smaller decade digits represented 

further to the left of the mental number line (Zorzi, Priftis, & Umiltà, 2002). Therefore, the 

effect of decade crossing on fMRI signal may indicate a close interaction between the 

intraparietal sulcus and the posterior superior parietal lobule, which was proposed to be 

responsible for precise navigation on the mental number line (Dehaene et al. 2003). 
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Other areas associated with the fronto-parietal network 

In general, activation in the intraparietal cortex extended to the adjacent extrastriate 

cortex BA 19, bilaterally. Activation in the extrastriate cortex seems to be driven by top-down 

processes originating from the intraparietal cortex. In particular, Weiss, Marshall, Zilles, and 

Fink (2003) showed that parietal regions exerted top-down regulation over the activation in 

the extrastriate cortex when visuo-spatial processing became more demanding. Such 

activation of large portions of bilateral visual cortex accompanying the activation of the 

intraparietal cortex in tasks involving number magnitude processing has been reported in 

previous studies (Pinel et al., 2001; Wood et al., 2006). Another area activated in parallel with 

the intraparietal cortex is the temporo-occipital area, also known as the visual number form 

area (Cohen et al., 2002; Cohen et al., 2004). Activation in this region, mainly in the left 

hemisphere, can be explained by more intensive processing of the visual identity of Arabic 

digits in more complex triplets. Deeper visual processing was again required by the bisection 

of large numerical ranges, by the computation of small distances to the mean, by non-

multiplicative triplets, and by decade crossing. 

Finally, the prefrontal area activated in contrasts demanding deeper magnitude 

processing in the present study overlapped with those regions that Doricchi et al. (2005) 

associated with the deficit in numerical bisection performance of hemineglect patients. The 

patients examined by Doricchi, Guariglia, Gasparini, and Tomaiuolo (2005) had more 

pronounced lesions in the prefrontal cortex than other hemineglect patients. Additionally they 

were also more impaired in a task of spatial working memory. Thereby, the activation in the 

dorsolateral prefrontal cortex observed in the NBT may be attributed to spatial working 

memory processes necessary for bisecting numerical intervals. 

In sum, items that are more complex led to increased magnitude processing in the 

intraparietal cortex. Moreover, via top-down regulation, this activation also spread into the 

posterior superior parietal lobule as well as other areas subserving visuo-spatial processes. 
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Inferior parietal cortex, the angular gyrus and fact knowledge 

The fMRI signal in the angular gyrus was stronger (i) when numerical range was 

small, (ii) when problem size was small, (iii) when numbers were part of a multiplication 

table, (iv) when no decade crossing occurred, and (v) when the distance to the mean 

increased. Two main reasons for the activation of the angular gyrus shall be discussed: First, 

the unspecific familiarity with relatively smaller numbers, and second, the capacity to monitor 

procedural and rule-based information from different sources. 

 

Familiarity with arithmetic problems 

Small and more frequently encountered arithmetic problems establish stronger 

representations. Therefore, they are solved more efficiently than larger and less frequent 

problems (Domahs, Delazer and Nuerk, 2006). In the present study, stronger fMRI signal was 

found in the anterior cingulate gyrus and retrosplenial cortex when range was small (Figure 

1A). Additionally, when problem size was small (i.e. a triplet consisting of relatively small 

numbers, e.g. 3_5_8), increased activation was observed in the left angular gyrus and in the 

right angular gyrus to a smaller extent (Figure 1C). Generally, increased activation in the 

anterior cingulate gyrus and the retrosplenial cortex is associated with processing more 

familiar information (Sugiura, Shah, Zilles, & Fink, 2005; Shah et al., 2001). For the case of 

the NBT this means that activation in the retrosplenial cortex and angular gyrus is associated 

with the processing of smaller and/or easier triplets. Specifically, these are triplets with a 

small problem size and spanning a small range. Thus, the higher familiarity with the numbers 

constituting such triplets can be interpreted as a corollary of the higher exposure to them. 

Additionally, activation in the angular gyrus was often accompanied by a small portion of the 

superior prefrontal cortex being activated (e.g. Figure 3, multiplicative>non multiplicative 

triplets contrast). Activation in this region may reflect the involvement of executive 

mechanisms responsible for monitoring different cognitive features of the triplet (Brass and 
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von Cramon, 2004) and inhibition of a cognitive set (Konishi, Jimura, Asari, & Miyashita, 

2003). Such mechanism may monitor the occurrence of information dispensable or redundant 

for solving the NBT, but which can be useful to solve it more efficiently. We will elaborate 

more on this point in the next section and relate it to the processing of multiplicativity and 

distance to the correct mean. 

 

Monitoring numerical information from different sources and inhibition 

Activation of the superior frontal gyrus and the angular gyrus have been associated 

with the monitoring of information from different sources (Brass and von Cramon, 2004), 

inhibition of a cognitive set (Konishi et al., 2003) and verification of rules (Skosnik et al., 

2002), respectively. In the current study, the angular gyrus was activated when numerical 

distance to the mean was large, when no decade crossing occurred, and when triplets were 

part of a multiplication table (Figures 1B, 2A and 3, respectively). The superior frontal gyrus 

bilaterally and the posterior cingulate gyrus, were also activated in these contrasts as well as 

the supramarginal cortex for the contrasts small distance to the mean > large distance to the 

mean and no decade crossing > decade crossing. Despite a great disparity between the 

numerical properties represented in these contrasts, there is a crucial similarity common to all 

of them. They all convey a procedural rule, which, when correctly applied, were useful for 

solving a triplet. When the middle number was numerically close to one of the outer numbers 

– being consequently far from the correct mean- (e.g. 32_33_41), computations might be 

interrupted, as it is very unlikely that the central number is the correct mean of the interval. 

Similarly, when no decade crossing occurred, the decade digits might be ignored, since they 

were all in the same decade (e.g. 92_95_98). Furthermore, when a triplet was part of a 

multiplication table, the central number is per definition the mean of the interval. Always 

when these rules can be applied, further computations involving magnitude comparison were 

unnecessary. However, information about decade crossing and multiplicativity is not 
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primarily necessary for solving the NBT. Therefore, participants need to verify the 

applicability of these rules for each trial. For that, it is necessary to monitor in parallel the 

different numerical properties of the triplet as well as to inhibit the magnitude processing. In 

the present study, participants were able to monitor for multiplicativity, presence of decade-

crossing distance from the central number to the mean and number magnitude. Furthermore, 

part of the activation observed in the superior frontal gyrus may be due to inhibition processes 

(Konishi et al., 2003) suppressing magnitude manipulations as these are not required in 

triplets for which the correct response can be inferred by using a procedural rule. For instance, 

in triplets without decade crossing participants may have inhibited the magnitude of tens 

because the comparison of unit distances is sufficient for responding correctly. Furthermore, 

in multiplicative triplets the central number is per definition the correct mean of the interval. 

Therefore, no magnitude processing would be needed at all. Additionally, in triplets with a 

large distance to the mean, the central number is numerically too close to one of the outer 

numbers to be the correct mean of the interval. Again, magnitude manipulations may be 

discontinued in these cases
1
. 

In the particular case of the stronger activation in the angular gyrus found for 

multiplicatively related triplets, a second account for the current data is possible. Apart from 

the above-mentioned monitoring and inhibitory mechanisms, activation of the left angular 

gyrus has also been associated with arithmetic fact knowledge (Delazer et al. 2003; 2005). 

Such an interpretation is also compatible with the data pattern observed for multiplicativity. 

Therefore, the increased activation in the (left) angular gyrus may also indicate table-related 

multiplication facts are accessed while performing the NBT (Cohen et al., 2000). 

In summary, when numbers keep well-learned relations with each other and these 

relations are more frequently activated and manipulated, activation in the left inferior parietal 

cortex, especially in the angular gyrus increased. Moreover, activation of the superior frontal 

gyrus increased when a triplet could be solved by applying procedural rules. When none of 
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the rules applied, participants needed to determine the mean of the interval and compare it 

with the magnitude of the central number
1
. However, in the case of non-bisectable triplets the 

number that correctly bisects the interval is not an integer. Therefore, per definition the 

central number of the triplet cannot be the correct mean of the interval. In this particular case, 

there is no need to compare the magnitudes of the central number and the correct mean of the 

interval. In other words, the procedure of comparing the magnitude of the central number with 

the correct mean of the interval becomes meaningless in the case of non-bisectable triplets. 

Changes in the relevance of mental rules are associated with the activation of a specific region 

in the ventrolateral prefrontal cortex. 

 

Ventrolateral prefrontal cortex 

Imaging and patient studies show that the ventrolateral prefrontal cortex is associated 

with controlled retrieval of mental rule meanings and generation of alternative solutions for a 

problem (Donohue,Wendelken, Crone, & Bunge, 2005, Miller & Tippet, 1996). Miller and 

                                                 
1
 Note that the NBT can be solving using different strategies: participants may for instance subtract the first 

number from the central, add the result to the central number again and compare it with the third number. 

Alternatively, participants may calculate the mean of the two outer numbers and compare the result with the 

central one. In both cases, triplets with small bisection ranges may be solved by recruiting fact retrieval while 

trials large bisection ranges and/or decade crossing may be more demanding and may result in stronger 

activation of the fronto-parietal network. However, there are important similarities between the two strategies: in 

both cases, a distance is computed and compared with a standard. In the first case, the distance to the third 

number, in the other case the distance to the middle is calculated. Independently of the strategy used, however, in 

both cases an effect of decade crossing, problem size, range, bisection possibility and distance to mean are 

expected. Finally, it is possible that the underscore character used to separate the numbers in the NBT induced 

the use of subtraction strategies in the present study. Since subtraction strategies are associated with magnitude 

manipulation, the use of procedural rules may be even stronger when the underscore character is not utilized. In 

follow-up studies, this aspect should be investigated further. 
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Tippet (1996) have shown that patients with brain lesions extending to the right ventral 

prefrontal cortex were selectively impaired in tasks involving the generation of alternative 

solutions for a problem. Furthermore, Goel and Vartarian (2005) reported increased activation 

in this region when participants successfully generated alternative solutions for a task. 

In the present study, the right ventrolateral prefrontal cortex was the only region (see 

Figure 2B) showing more activation for non-bisectable triplets. These results suggest that the 

right ventrolateral prefrontal cortex is relevant for checking, whether the comparison between 

the mean of the interval and the central number should be completed or not. When the mean 

of the two outer numbers is not an integer number (e.g. for 21_25_30 the mean of 21 and 30 

is 25.5), number magnitude comparison should be discontinued, because the central number 

cannot be the correct response of the bisection. Behavioural data are in line with 

neurofunctional evidence showing that activation in the ventrolateral prefrontal cortex is 

specific for cognitive set changes (Goel & Vartarian, 2005). While responses to non-

bisectable triplets presented in isolation were significantly faster than to bisectable triplets, 

response latencies for non-bisectable triplets following another non-bisectable triplet did not 

differ from that for bisectable triplets. This increase in reaction time may reflect costs 

imposed by again activating the original cognitive set which specified a comparison between 

the mean of the interval and the central number. 

Since right ventrolateral prefrontal cortex is engaged in the rational use of cognitive 

resources and cognitive set changes, we suggest that this area may be considered part of the 

neural system subserving procedural and conceptual knowledge about numbers and their 

manipulations. 

 

CONCLUSIONS 

The results of the present study strongly suggest that different neurocognitive systems 

dedicated to (i) magnitude and symbolic base-10 processing, (ii) familiarity, monitoring and 
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inhibiting irrelevant information and fact knowledge, and (iii) cognitive set changes, are 

selectively activated in the number bisection task. Activation of the intraparietal cortex was 

increased when problems were numerically more complex, while activation in the left inferior 

parietal cortex, particularly in the left angular gyrus was more related to the retrieval of well-

learned problems and of rule-based information integration. Finally, activation of the right 

ventrolateral prefrontal cortex was associated with cognitive set changes complying with 

strategy use in the NBT. 

We wish to emphasize that the differential activations reported in this study cannot 

rely on different task properties since the same task was used in all conditions. Fine-grain 

within-task manipulations have been previously used to examine and validate the neural 

correlates of one specific number representation (Naccache & Dehaene, 2001; Pinel et al., 

2001). In the present study, different numerical representations were examined within one 

task and we suggest that such a within-task approach may be a promising tool to understand 

the interplay of different representations in the number processing network. 
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ABSTRACT 

Humans represent numbers along a left-to-right orientated mental number line (MNL). 

Neglect patients seem to neglect the left part of the MNL, namely the smaller numbers within 

a given numerical interval. However, until now all studies examining numerical 

representation have focussed on single-digit numbers or two-digit numbers smaller than 50. In 

this study, the full range of two-digit numbers was assessed in neglect patients and two 

control groups. Participants were presented with number triplets (e.g. 10_13_18) and asked 

whether or not the central number is also the arithmetical middle of the interval. The factors 

manipulated were decade-crossing (e.g. 22_25_28 vs. 25_28_31), distance to the arithmetical 

middle (e.g. 18_19_32 vs. 18_24_32), and, most importantly, whether the central number was 

smaller or larger than the arithmetical middle (e.g. 11_12_19 vs. 11_18_19). Neglect patients 

differed from controls in that they benefited less when the middle number was smaller than 

the arithmetical middle of the interval. Neglect patients thus seem to have particular problems 

when accessing the left side of numerical intervals, also when adjusted to two-digit numbers. 

Such an impaired magnitude representation in neglect seems to have detrimental effects on 

two-digit number processing as the helpful spatial metric of magnitude cannot be properly 

activated. 
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INTRODUCTION 

Patients suffering from neglect usually fail to attend to or respond to objects and/or 

people in the hemispace contralateral to their lesion site (Kerkhoff, 2000; Robertson & 

Halligan, 1999). When asked to bisect a physical line, neglect patients misallocate the true 

midpoint of the line and place it towards the right (Marshall & Halligan, 1989). Furthermore, 

neglect not only impairs the perception of visual objects but also affects representational 

space in general (Bisiach & Luzzatti, 1978). 

While such symptoms of neglect concerning external space have been studied 

extensively, the impact of neglect on the representation of number magnitude as well as its 

processing has only more recently been focussed on (Goebel, Calabria, Farnè, & Rossetti, 

2006; Priftis, Zorzi, Meneghello, Marenzi, & Umilà, 2006; Rossetti et al., 2004; Vuilleumier, 

Ortigue, & Brugger, 2004 and Zorzi, Priftis, & Umiltà, 2002; Zorzi, Priftis, Meneghello, 

Marenzi, & Umiltà, 2006). Number magnitude is assumed to be represented along a 

continuous (Priftis et al., 2006; Rossetti et al., 2004) and spatially organized Mental Number 

Line (MNL; Dehaene & Cohen, 1995; Restle, 1970), upon which smaller numbers are 

represented on the left and larger numbers are associated with the right (Dehaene, Bossini, & 

Gireaux, 1993; Gevers, Verguts, Reynvoet, Caessens, & Fias, 2006; Zorzi et al., 2006; Zorzi 

et al., 2002; Priftis et al., this issue, but see Vuilleumier et al., 2004). 

In a seminal study, Zorzi et al. (2002) orally presented neglect patients with two 

numbers (e.g. “one” and “nine”) that defined a numerical interval and asked them to bisect 

this interval by naming the arithmetical middle (e.g. “five”) without doing any calculations. 

The size of the numerical interval was varied much as the line length is in the commonly used 

line bisection task. The authors observed that error rates increased as a function of the interval 

size as did the relative magnitude of the erroneous responses. For instance, all neglect patients 

produced errors such as falsely naming “6”, “7”, or “8” as being the midway between 1 and 9. 

On the other hand errors such as “2”, “3”, or “4” did not occur. So, neglect patients 



 

206 

systematically neglected the left part of a numerical interval when bisecting it. This shifting to 

the right of a numerical interval closely mirrors the difficulties they commonly exhibit when 

bisecting a physical line. 

However, until now almost all studies that have investigated number processing in 

neglect have focused on single-digit numbers (but see Rossetti et al., 2004). Moreover, all 

previous studies of neglect and number representation used the production version of the 

Number Bisection Task (NBT; e.g. Priftis et al., 2006; Rossetti et al., 2004 and Zorzi et al., 

2002; 2006). 

As pointed out by Nuerk, Geppert, van Herten, and Willmes (2002) a production version 

of the NBT may not be well-suited for assessing two-digit number processing due to the 

increased perceptual and cognitive demands imposed by two-digit numbers. Two-digit 

number processing requires the integration of different number representations (Nuerk et al., 

2002): (i) spatial and magnitude information of a number complying with the place x value 

structure of the Arabic system (for a review, see Nuerk & Willmes, 2005), as well as (ii) a 

number being part of a multiplication table or not (i.e. multiplicativity; Nuerk et al., 2002). 

However, Nuerk et al. (2002) showed that such different number representations can be 

assessed by a verification version of the NBT. In this verification version participants have to 

decide whether the central number of a triplet is also the arithmetical middle between the two 

outer numbers (i.e. a bisected triplet, e.g. 22_25_28) or not (i.e. a non-bisected triplet, e.g. 

22_27_28).  

In particular, Nuerk et al. (2002) observed that, among bisected triplets, multiplicatively 

related triplets (e.g. 21_24_27 vs. 22_25_28) were responded to faster and more accurately 

than non-multiplicative triplets (e.g. 25_28_31 vs. 22_25_28). As multiplication fact 

knowledge can be recruited to solve the task, more time-consuming magnitude manipulations 

can be bypassed (Delazer et al., 2006; Nuerk et al., 2002). Additionally, as known from other 

calculation tasks (e.g. carry-over effect in addition, Deschuyteneer, De Rammelaere, & Fias, 
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2005), triplets in which the interval crossed a decade boundary were more difficult than 

triplets in which the interval did not cross into the next decade (e.g. 22_25_28 vs. 25_28_31, 

see Nuerk et al., 2002). 

For non-bisected triplets it was easier to classify triplets with a far distance of the 

(presented) central number to the actual arithmetical middle than triplets with a central 

number close to the arithmetical middle (e.g. 21_22_29 vs. 21_24_29; arithmetical middle 

25). Most importantly, for the present study, an effect of the relative size of the central 

number was found (Nuerk et al., 2002; Moeller, 2006). Triplets with a central number smaller 

than the arithmetical middle of the interval (i.e. a relatively small central number within the 

interval, e.g. 18_19_32) are easier to reject than triplets with a central number larger than the 

arithmetical middle of the interval (e.g. 18_31_32). 

But how do these item characteristics affect neglect patients? As elaborated above, 

neglect patients neglect the left side of a presented numerical interval. They do so in a 

production task and in particular for one-digit numbers. We suggest that this effect of neglect 

on the number magnitude representation generalizes to the full range of two-digit numbers 

and to the verification version of the NBT. Therefore, for non-bisected triplets we hypothesize 

that, unlike in healthy participants, the advantage for triplets involving central numbers 

smaller than the arithmetical middle of the numerical interval should be less pronounced or 

even disappear in neglect patients compared to non-neglect controls. If an interaction with 

distance to the middle were observed, the effect of size relative to the arithmetical middle 

should be more prominent for triplets with far distances to the middle and less prominent for 

close distances to the middle. This should be observed because, for far distances, the central 

number is much farther into the neglected part of the mental numerical interval. 

For bisected triplets we do not expect strong modulations of the multiplicativity effect as 

this effect is not related to the spatial representation of number magnitude and was observed 

even in the absence of any distance effects in a patient with posterior cortical atrophy (Delazer 
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et al., 2006). However, we hypothesize that the effect of decade crossing might be altered by 

neglect. Neglect patients may have particular difficulties with triplets in which a decade 

boundary is crossed: in such decade-crossing triplets, not only perception and representation 

of the units is required, but in addition the decade digits, which are perceptually and perhaps 

mentally on the neglected left side within a two-digit number, need to be processed. This can 

be accounted for by a deeper magnitude and base-ten processing required to correctly classify 

these triplets (Nuerk et al., 2002; Wood, Nuerk, & Willmes, 2006). More specifically, the 

impact of decade crossing should be more pronounced for those triplets that involve a decade 

crossing between the first and the central number as deeper magnitude evaluation on the left 

of a given numerical interval is needed. 

In summary, neglect patients should be particularly affected (i) in triplets involving 

central numbers smaller than the arithmetical middle of the interval (which are presumably 

located on the left of the mental numerical interval) and (ii) in triplets crossing a decade 

boundary; they should not be affected by (iii) general distance properties or (iv) 

multiplicativity. 

 

MATERIALS AND METHODS 

Participants: Eighteen German-speaking participants took part in this study. 

Participants were pooled into three groups of 6 persons matched for age, gender, education 

and time post-lesion (4 males/2 females each, see Table 1): a patient group including 6 

patients with right-sided lesions who suffered from left-sided neglect; a patient control group 

involving 6 patients with right-sided lesions but no clinical signs of neglect; and a healthy 

control group of 6 participants with no history of neurological or psychological illness. In all 

cases of stroke, (patient group and patient control group) lesions were confirmed by either 

MRI or CT. However, one patient (patient control group) was tested four years post-lesion 

and could not be matched for the parameter time post-lesion. 
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Visual field assessment showed no sign of hemianopia in any one of the participants. All 

participants had normal or corrected-to-normal vision, and were right-handed. Participation in 

this study was voluntary. 

To diagnose neglect (patient group) and to rule out neglect (patient control group), a 

standardised neuropsychological neglect test-battery was carried out: Neglect Test (NET; Fels 

& Geissner, 1997 adapted German version of the Behavioural Inattention Test - BIT; Wilson, 

Cockburn, & Halligan, 1987). This test-battery includes 17 different tasks that can be 

allocated into the categories conventional sub-tests (e.g. line bisection, line and star crossing, 

figure and shape copying, representational drawing) and behavioural subtests (e.g. picture 

scanning, menu reading, article reading, telling the time from analogue and digital clock 

faces, set the time). Moreover, to rule out degenerative cognitive processing, the SIDAM 

(Structured Interview for the Diagnosis of dementia of the Alzheimer type, Multi-infarct 

dementia and dementias of other aetiology; Zaudig et al., 1996) was carried out. The SIDAM 

is a questionnaire for diagnosing dementia according to international diagnostic guidelines 

(ICD 10, DSM IV). This instrument includes simple questions and problems covering areas 

such as orientation, instantaneous recall, memory (short-, long-term), intellectual/cognitive 

abilities, verbal and numerical abilities, visual-spatial abilities, Aphasia and Apraxia. 

Additionally, the SIDAM also includes the Mini-Mental State Examination (MMSE; Folstein, 

Folstein, & McHugh, 2000), a dementia screening. 

The participants’ numerical and mathematical abilities were further evaluated using the 

EC 301 R (Claros Salinas, 1994). The EC 301 R is a test battery for assessing calculation and 

number processing in brain-damaged patients. It comprises the subtests: dot counting, free 

backward counting, number transcoding, mental arithmetic, array on a physical number line, 

number comparison (auditory as well as symbolically), multi-digit arithmetic (i.e. addition, 

subtraction and multiplication), as well as perceptive and contextual estimations. 
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None of the participants showed clinical signs of dementia or degenerative processes 

and all had good to perfect numerical and mathematical abilities, so that the EC 301 R showed 

no sign of acalculia in any one patient. Table 2 summarizes the test results of the NET, EC 

301 R and SIDAM. For detailed results of the subtests of the NET (e.g. line crossing: patient 

M.M. correctly marked 17 out of 36 lines) and EC 301 R (e.g. dot counting: patient M.M. was 

not able to count the presented dots) see Appendix A. 

 

Stimuli and design: 160 triplets of two-digit numbers (ranging from 11 to 99) were 

used in this study. The triplets were presented in Arabic notation. Overall distance, problem 

size, average parity, parity homogeneity, decade-crossing, the inclusion of decade numbers as 

well as tie numbers were matched between the respective stimuli groups. 

80 non-bisected triplets were organized in a fully crossed 2 x 2 design incorporating the 

factors distance to the arithmetical middle (close vs. far) and size relative to the arithmetical 

middle (smaller or larger than the arithmetical middle). Distance to the middle refers to the 

distance of the presented middle number to the true arithmetical middle of the interval. In the 

triplet 21_22_35, the presented central number 22 has a far distance to the arithmetical middle 

(i.e. 28 - 22 = 6) while in 21_27_35, 27 is close to the arithmetical middle (i.e. 28 - 27 = 1). 

Size relative to the arithmetical middle refers to the position of the central number in relation 

to the arithmetical middle of the given interval. For the triplet 33_34_47 the presented middle 

number 34 is smaller than the arithmetical middle 40, while in 21_34_35 the number 34 is 

larger than the arithmetical middle 28. 
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Table 1: Demographic and clinical data of all participants 

Neglect patients M.M. K.R. S.I. S.G. H.E. R.R. Mean(SD) 

Sex Male Male Female Male Female Male  

Age 57 46 45 62 55 63 54.7(7.7) 

Education 8 13 9 8 9 9 9.3(1.9) 

Time post lesion (weeks) 12 3 6 17 14 10 10(5.2) Median 12 

Lesion etiology IS IS HS(SAH) HS IS IS  

Lesion site RH; PO RH;TP RH; RH; BN RH; FP RH; TP  

Affected 

blood vessel 

Middle 

cerebral artery 

Middle 

cerebral artery 

Middle 

cerebral artery 

Middle 

cerebral artery 

Middle 

cerebral artery 

Middle 

cerebral artery 
 

Control patients H.G. F.C. B.R. B.H. O.H. G.D.  

Sex Male Male Female Male Female Male  

Age 58 46 46 60 54 69 55.5(8.8) 

Education 9 9 10 9 10 9 9.3(0.5) 

Time post lesion (weeks) 10 6 5 44 17 200 47(76.3)Median 14 

Lesion etiology IS IS IS IS SAH IS  

Lesion site LH; P RH; BS RH; T LH; Pons Bilat. F RH;FP  

Affected 

blood vessel 

Middle 

cerebral artery 

Artery 

verti- 

bralis 

Cerebral 

posterior 

artery 

Arteria 

pontis 
 

Middle 

cerebral artery 
 

Healthy controls R.M. Z.R. L.H. F.K. S.G. B.H.  

Sex Male Male Female Male Female Male  

Age 57 47 48 63 55 67 56.2(7.3) 

Education 12 9 8 9 9 13 10(2) 
1
This patient was tested four years post lesion and could not be matched for the parameter time post lesion  

HS - hemorrhagic stroke, IS - ischemic stroke, SAH - subarachnoidal hemorrhagic 

LH - left hemisphere, RH - right hemisphere  

BN - basal nuclei, BS - brain stem, F - frontal, O - occipital, P - parietal, T - temporal 

 



 

212 

Table 2: Scores of each participant in the NET, SIDAM and EC 301 R; Individual mean RT and error rate 

Neglect Group M.M. K.R. S.I. S.G. H.E. R.R. 
NET Standard value 78 163 136 99.5 147 71 

 Diagnosis Considerable Low Considerable - low Considerable Low Very Considerable 

SIDAM Raw data 43/55
1
 54/55 50/55 37/55

1
 44/55

1
 52/55 

EC301R Raw data 84/135
2
 130/135 115/135

2
 Missing data.

3
 123/135

2
 103/135

2
 

NBT (RT) ms 8493 2425 7133 6436 5660 7452 

NBT (Errors) % 15.00 5.60 7.50 21.30 26.90 10.00 

Patient group H.G. F.C. B.R. B.H. O.H. G.D. 
NET Diagnosis No Negelct No Negelct No Negelct No Negelct No Negelct No Negelct 

SIDAM Raw data 54/55 53/55 55/55 55/55 46/55 50/55 

EC301R Raw data 135/135 134/135 134/135 135/135 133/135 123/135 

NBT (RT) ms 2190 3332 2954 2738 3467 4421 

NBT (Errors) % 1.30 1.90 1.90 5.60 10.60 4.40 

Healthy group R.M. Z.R. L.H. F.K. S.G. B.H. 
NET Diagnosis No Negelct No Negelct No Negelct No Negelct No Negelct No Negelct 

SIDAM Raw data 55/55 51/55 49/55 46/55 54/55 54/55 

EC301R Raw data 133/135 134/135 130/135 133/135 135/135 135/135 

NBT (RT) ms 3778 3336 5800 2860 5061 6387 

NBT (Errors) % 2.50 11.30 6.30 1.30 1.30 3.80 
1
Due to neglect symptoms some items of the SIDAM could not be successfully processed (e.g. copying shapes) 

2
Due to neglect symptoms some items of the EC310R could not be successfully processed (e.g. counting dots) 

3
This patient was tested on the following numerical and mathematical abilities: comparing single- and multi-digit Arabic numbers, 

  mental arithmetic (addition, subtraction, multiplication, division) and written arithmetic (addition and subtraction). 

  The patient’s tested abilities were intact. 
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For 80 bisected triplets the factors multiplicativity (yes vs. no) and decade crossing (yes 

vs. no) were manipulated. Bisected triplets could not be fully crossed, as triplets which are 

part of a multiplication table larger than three would always cross into the next decade. 

Therefore, the factors decade-crossing (yes vs. no) and multiplicativity (yes vs. no) were 

assessed in distinct item sets. 

The three numbers were presented above each other in the centre of the screen’s right 

half. Each two-digit number extended 7 cm horizontally and 4.5 cm vertically. The numbers 

were vertically separated by 4.5 cm. The stimuli were presented in bold Arial font (size 48), 

white on black background. 

In this study neglect patients’ performance in the verification version of the NBT was 

compared to that of non-neglect controls. 

 

Procedure: The experiment was run on a 1.6 GHz laptop and participants were seated 

approximately 50 cm in front of a 15´´ screen driven at a resolution of 1024x768 pixels. 

The left and right arrow keys located at the bottom right-hand corner of the keyboard 

functioned as response buttons: bright orange stickers with the letters “J” for “yes” (in 

German “Ja”) and “N” for “no” (in German “Nein”) covered the left and right arrow keys, 

respectively. All other keys were covered up with white cardboard. Participants were 

instructed to indicate their decision by pressing one of the two response buttons as fast and as 

accurately as possible. 

The instruction was followed by 20 practice trials incorporating one- and two-digit 

numbers. To ensure that patients perceived the presented numbers correctly all participants 

were asked to read out the numbers of the first four practice trials aloud. All patients were 

able to do so without mistakes. Participation in the critical experiment was only allowed when 

more than 2/3 (14 out of 20) practice trials were classified correctly. The experiment involved 
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4 blocks of 40 trials each, which the participant initiated by pressing one of the response keys. 

Trial order was randomized for each participant. 

Before each trial a fixation cross was presented in the centre of the screen for 500ms. 

Then the three numbers were presented for 15,000 ms followed by a ISI of 5,000 ms. The 

experiment took approximately 15 to 25 minutes, depending on how long participants rested 

between blocks. 

 

RESULTS 

For statistical analyses RT and error data were used. Only RTs followed by a correct 

response were considered for further analysis. A trimming procedure eliminated trials with 

RTs shorter than 200 ms and longer than 15,000 ms and – in a second step – RTs outside +/- 3 

SD of each participant’s individual mean. In total 92.33 % of all trials fulfilled these criteria 

and were used for further analyses. As stroke patients show a greater variability in their RTs 

than healthy participants, a z-transformation on individual item RT, using the mean and 

standard deviation per participant for standardization, was carried out. Error rates were arcsine 

transformed prior to the analyses. There was no speed accuracy trade-off present in our data 

as indicated by the absence of a reliable negative correlation of error rate and RT in any item 

condition (all r > - .40, all p > .10, N = 18). 

The main interest of the current study was to contrast patients suffering from neglect and 

those without neglect in terms of their performance in the NBT. Therefore, the two control 

groups (patient controls and healthy controls) were pooled into one group for the main 

analyses of this study. For the interested reader Appendix B reports all results separated for 

the single control groups. As neglect patients do not only neglect the left side of space but 

also the left parts of numerical intervals (e.g. Zorzi et al., 2002), processing numbers on the 

left side of a numerical interval (i.e. the central number being smaller than the arithmetical 

middle of the interval) should be relatively more impaired. 
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Factorial Analyses (ANOVA and t-tests) 

Non-bisected triplets (RT and error data):  

Response latencies: An analysis of variance (ANOVA) incorporating the factors 

distance to the middle, size relative to the middle and group was conducted on z- transformed 

RTs. Most importantly, and in accordance with the hypothesis, a reliable interaction between 

size relative to the arithmetical middle and patient group was obtained [see Figure 1A, F(1, 

16) = 6.40, p < .05]. This indicates that neglect patients did benefit reliably less from a central 

number smaller than the triplet’s arithmetical middle than did control participants (426 ms vs. 

637 ms). However, this disadvantage for neglect patients did not seem to be modulated by 

distance to the arithmetical middle. This was indicated by the non-significant three-way 

interaction of distance to the middle, interval side and group [F(1, 16) < 1]. However, from 

the notion of a spatially oriented MNL (e.g. Dehaene et al., 1993), it can be inferred that 

neglect patients should exhibit a more pronounced disadvantage in triplets such as 21_22_35 

compared to e.g. 21_27_35. On the one hand, both central numbers are smaller than the 

arithmetical middle of the interval (e.g. 28) in these examples. But on the other hand, they 

differ in their distance to the middle: while 27 is numerically close to the arithmetical middle 

of the interval (e.g. 28), 22 is far smaller than the middle. Assuming an ascending left-to-right 

orientation of the MNL, 22 would be located further to the left than 27 and should thus be 

even more neglected. To directly test this hypothesis the absolute effects of the factor size 

relative to the arithmetical middle were contrasted for neglect patients vs. non-neglect 

controls separately for triplets with a central number either numerically close to the 

arithmetical middle or far from it using Bonferroni-Holm corrected t-tests (Holm, 1979). The 

beneficial effect of the central number being smaller than the arithmetical middle only tended 

to be less pronounced for neglect patients [t(16) = 1.95, p = .07, one-sided], whereas neglect 

patients benefited reliably less from a second number far smaller than the arithmetical middle 

[t(16) = 2.19, p < .05, one-sided]. This indeed indicates a greater relative disadvantage for 
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neglect patients for triplets involving a central number far smaller than (i.e. further to the left 

of) the arithmetical middle. 

Additionally, the ANOVA showed strong main effects of distance to the arithmetical 

middle [F(1, 16) = 47.44, p < .001] and size relative to the middle [F(1, 16) = 27.18, p < 

.001]. So, triplets in which the central number was numerically far from the arithmetical 

middle were rejected faster than triplets with a central number numerically close to the middle 

(4759 ms vs. 5470 ms). Moreover, triplets with a second number smaller than the arithmetical 

middle were responded to faster than triplets with a second number larger than the middle 

(4849 ms vs. 5380 ms). Furthermore, the interaction of distance to the middle and size relative 

to the middle was reliable [F(1, 16) = 15.02, p < .01]. This means that for far numerical 

distances to the middle the beneficial effect of a central number smaller than the arithmetical 

middle was more pronounced than for close distances (948 ms vs. 114 ms). Finally, the two 

groups, i.e. neglect and no neglect did not differ reliably in terms of RT [F(1, 16) < 1]. 

 

 

Figure 1:  The beneficial effect in ms for triplets with a central number smaller than the arithmetical middle of 

the interval separately for Non-neglect controls and neglect patients is depicted in Panel A. Panel B 

gives the detrimental effect of decade crossing in % errors separated for non-neglect controls and 

neglect patients. 
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Errors: The ANOVA revealed a main effect of participant group [F(1,16) = 13.52, p < 

.01], indicating that neglect patients committed reliably more errors than non-neglect controls 

(7.9 % vs. 2.9 % errors). Additionally, the interaction of distance to the middle and size 

relative to the middle was significant [F(1, 16) = 4.84, p < 05.]. This indicates that, for triplets 

with a central number numerically close to the arithmetical middle, rejection was more error-

prone when the central number was smaller than the middle compared to when it was larger 

than the middle (7.9 % vs. 4.8 % errors, respectively). However, this pattern was reversed for 

triplets with a central number far from the middle (smaller: 2.5 % vs. larger: 6.5 %). There 

were no further significant main effects for the manipulated item characteristics [all F < 2.43, 

all p > .14] or interactions of group with any of them [all F < 2.35, all p > .15]. 

 

Bisected triplets (RT and error data):  

Decade crossing: In line with the hypothesis, a marginally significant interaction of 

decade crossing and participant group was observed for errors [F(1, 16) = 4.06, p = .06], but 

not for response latencies [F(1, 16) < 1]. When directly testing the hypothesis of neglect 

patients’ performance being more impaired for triplets crossing into the next decade, the 

absolute effects of decade crossing were contrasted for neglect patients vs. non-neglect 

controls. The t-test revealed [t(16) = 2.02, p < .05, one-sided] that the increase of errors in 

triplets crossing a decade boundary was more pronounced in neglect patients (+ 18.4 % errors, 

see Figure 1B) than in non-neglect controls (+ 3.3 % errors). However, one could argue that 

neglect patients committed more errors as they were not able to correctly perceive and 

identify the decade digits of the two-digit numbers constituting the numerical interval. To 

evaluate this potential constraint a regression analysis on item RTs was conducted 

incorporating problem size (operationalised by the arithmetic mean of a triplet) as predictor
1
. 

It was observed that problem size reliably predicted item RT [b = .21, t(159) = 2.67, p < .01] 

                                                 
1
 Please note that there were too many perfect scores to run a meaningful analysis on mean item error rates. 
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meaning that larger problem size was associated with longer response latencies. This suggests 

that neglect patients were not only able to perceive the decade digits of the involved two-digit 

numbers but also processed their magnitude. 

Furthermore, a strong main effect for decade-crossing was found for both speed and 

accuracy [RT: F(1, 16) = 34.59, p < .001, accuracy: F(1, 16) = 15.95, p < .001]. Triplets that 

did not cross a decade boundary were responded to faster (4620 ms) and more accurately (5.4 

% errors) than triplets which crossed into the next decade (5195 ms and 16.3 % errors). 

Exclusively for response latencies this effect was even further differentiated: while non-

neglect controls benefited (-168 ms) from a decade crossing occurring between the first and 

the central number of a triplet (e.g. 28_31_34 vs. 25_28_31), this had a deteriorating effect on 

neglect patients [+908 ms, t(16) = 2.79, p < .05]. This suggests that the cognitively more 

demanding processing of a decade crossing is especially impaired when it occurs in the 

neglected part of the numerical interval. 

Moreover, the ANOVA revealed a reliable difference between neglect patients and non-

neglect controls for RT [F(1, 16) = 5.85, p < .05] as well as errors committed [F(1, 16) = 8.06, 

p < .05]. So, neglect patients exhibited longer response latencies (6330 ms) and made more 

errors (17.4 %) compared to non-neglect controls (3485 ms and 4.2 % errors).  

Multiplicativity: A main effect for multiplicativity was observed neither for RT nor for 

errors [RT: F(1, 16) < 1, errors: F(1, 16) = 2.02, p = .17]. However, neglect patients and non-

neglect controls differed significantly in respect to errors committed [F (1, 16) = 11.23, p < 

.01] but not for response latencies [F (1, 16) = 1.09, p = 31]. Neglect patients’ performance 

was more error prone (24.2 % errors) than that of non-neglect controls (7.3 % errors). Finally, 

multiplicativity and participant group did not interact reliably for either RT or errors [RT: F(1, 

16) < 1, errors: F(1, 16) < 1].  
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DISCUSSION 

The effects of neglect on the bisection of numerical intervals in the present study can be 

summarized as follows: First, the ANOVA revealed that neglect patients benefited reliably 

less when the central number was smaller than the arithmetical middle (e.g. 21_22_35) 

compared to when it was larger (e.g. 21_34_35). Second, it was observed that neglect patients 

were especially impaired for triplets crossing a decade boundary (e.g. 25_28_31) compared to 

triplets within the same decade (e.g. 22_25_28). Finally, neglect patients were not generally 

impaired in all numerical representations: Neither the effect of distance to the arithmetical 

middle nor that of multiplicativity differed between neglect patients and non-neglect controls. 

According to Nuerk et al. (2002; see also Moeller, 2006), participants’ response 

latencies are shorter for triplets with the central number being numerically smaller than the 

arithmetical middle compared to triplets with a central number larger than arithmetical 

middle. This general beneficial effect was replicated in the present study. However, neglect 

patients benefited reliably less than non-neglect controls when the central number was smaller 

than the arithmetical middle. From this it can be inferred that neglect patients neglect the left 

side of a given numerical interval. 

It can be hypothesized that the effect of neglect on the mental numerical interval is 

stronger for numbers farther towards the left side of that interval than for numbers which are 

on the left side of the interval but relatively close to the middle. Although there was no 

reliable three-way interaction between group, size relative to the middle, and distance to the 

middle, fine-grained analyses revealed that this hypothesis tended to be true. While for 

numbers close to the arithmetical middle, neglect patients and controls differed only 

marginally; for numbers far from the middle, there was a significant group effect: For those 

far distances, neglect patients benefited significantly less when the central number was 

smaller than the arithmetical middle than when it was larger. These findings extend previous 

results from Zorzi et al. (2002; and later Priftis et al., 2006; Rossetti et al., 2004 and Zorzi et 
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al. 2006). Neglect not only impairs access to relatively smaller numbers in the one-digit or 

small two-digit range, it does so for the full range of two-digit numbers. 

The second hypothesis outlined in the introduction was that neglect patients may have 

particular difficulties with two-digit number triplets which cross a decade boundary compared 

to triplets from within one decade. Indeed, we did not only observe a general decade crossing 

main effect, but a reliable interaction with participant group: Neglect patients exhibited a 

larger decade crossing effect than their non-neglect counterparts; i.e. they had particular 

difficulties when the numbers of a triplet were from different decades. 

The effect of decade crossing on behavioural performance (Nuerk et al. 2002) and fMRI 

signal (Wood et al., 2008) has been interpreted as resulting from a deeper processing of 

number magnitude and the base-10 structure of the Arabic number system required when 

different decade digits are encountered in the task. Processing different decades seems to 

demand the integration of decomposed decade digit and unit digit magnitudes (cf. Nuerk & 

Willmes, 2005 for a discussion). Neglect patients may have problems mentally representing 

the magnitude of two-digit numbers in a decomposed fashion, as they may have problems 

representing the decade digit’s magnitude. This may lead to the more pronounced decade 

crossing effect observed for neglect patients in the current study. 

A perceptual account for this larger decade crossing effect is that neglect patients may 

have difficulties perceiving the decade digit which is located on the left within a two-digit 

number. This perceptual account is however not consistent with the diagnostic data of our 

patients: All neglect patients were able to read aloud the two-digit numbers of a triplet 

presented above each other without errors. Moreover, in the NET, the neglect patients were 

even able to read four-digit digital clock times without major problems (one single error in 

two of six patients). Moreover, this perceptual account is also disproved by more fine-grained 

analyses: (Decade digit driven) problem size was a highly significant predictor of neglect 

patients’ performance. So, neglect patients did not only perceive the visual presence of the 
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decade digits but they even processed their magnitude. Finally, we wish to point out that the 

visual presentation of the number triplets with the numbers above each other was identical in 

all experimental conditions. Only the mental spatial representation in the mental numerical 

interval differed between conditions. 

For all these reasons, it can be suggested that the differences between conditions are not 

due to perceptual impairments in neglect, but to impairments of the mental (spatial) 

representation of the presented two-digit numbers. 

Interestingly, the group difference in the decade crossing effect seemed to be modulated 

by the location of this decade crossing within the numerical interval: A detailed comparison 

of triplets with decade crossing occurring between the first and the central number (e.g. 

28_31_34) and triplets with decade crossing between the central and the third number (e.g. 

25_28_31) revealed that the deficit present for neglect patients was more pronounced in 

triplets with decade crossing between the first and the central number. In those triplets, the 

decade crossing is on the left side of the mental numerical interval to which access seems 

particularly impaired in neglect. Therefore, this detailed analysis of the decade crossing effect 

corroborates the assumption of an oriented MNL influencing performance in the NBT.  

In the remaining paragraphs, the results regarding hypotheses (iii) and (iv) will be 

discussed: With regard to the factors distance to the arithmetical middle and multiplicativity 

no group differences between neglect patients and non-neglect controls were observed. 

As the distance to the arithmetical middle effect is a magnitude-related effect, it may 

seem surprising at first that no group difference was observed because, for the other 

magnitude-related factors, neglect patients showed specific impairments as discussed above. 

For the distance to the middle effect, this was different. A possible reason for this lack of 

difference between the two groups may be that magnitude processing can be subserved by the 

IPS bilaterally (cf. Dehaene et al., 2003). General difficulties to process number magnitude 

(e.g. with regard to the distance effect) are usually only observed when both IPS areas are 
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affected (e.g. Dehaene & Cohen, 1997; Delazer et al., 2006, but see Ashkenazi, Henik, 

Ifergane, & Shelef, this issue for differing results). However, the left IPS was preserved in our 

neglect patients as they all had right-hemispheric lesions. Thus, this left IPS area might have 

compensated for the loss of the right IPS with regard to general magnitude and numerical 

distance processing. 

Nuerk et al. (2005) employed a magnitude comparison task in an Eriksen flanker 

paradigm. They found that the magnitude of the distractors was processed. However, the 

magnitude of the distractors was not spatially represented on a MNL as no SNARC effect was 

observed for the distractors’ magnitudes while a robust distance effect was present. 

Consequently, number magnitude can be processed without automatic activation of its spatial 

code. This spatial code may only be activated in conditions in which spatial processing is 

salient and does not require much attention. 

In the current study, the mental numerical interval may be the most salient spatial 

reference frame. If the right IPS region were mainly responsible for linking number 

magnitude and spatial representation, damage to this right IPS region would be particularly 

impairing for this most salient spatial reference frame. In contrast, magnitude processing 

which is less spatially salient may be less impaired as the left IPS, which may be less involved 

in spatial representation of magnitude, can take over. Although this hypothesis of differential 

involvement of the two IPS in the spatial processing of magnitude offers an account for the 

result pattern observed in the current study, it should be further investigated in the future. 

Finally, the fact that we did not observe any group differences with regard to 

multiplicativity may be due to two reasons: First, multiplication fact knowledge is presumably 

located in the left gyrus angularis (cf. Dehaene et al., 2003; Delazer et al., 2003) which was 

not lesioned in our neglect patients (see Table 1 for lesion sites of neglect patients). Second, 

in contrast to previous studies, we did not even observe a main effect of multiplicativity. The 

absence of an effect of multiplicativity may be explained by two related factors: first, the low 
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strategic value of retrieving this information, since multiplicative triplets formed only 12.5 % 

of all triplets instead of 25 % in the original study by Nuerk et al. (2002); and second, by 

reduced executive resources of both controls and patients. In the original study by Nuerk et al. 

(2002), 25 % of all triplets were part of a multiplication table. Therefore, activating the 

representation of multiplicativity was relevant for improving performance, as half of the 

“Yes” responses could be determined by the recognition of multiplicatively related triplets. In 

the present study, only 12.5 % of all triplets were part of a multiplication table. This 

difference in the proportion of multiplicatively related triplets may have an impact on the 

strategic relevance of multiplicativity. As it is strategically less relevant in the present study, 

the effect of multiplicativity may have disappeared. 

Moreover, automatically activating multiplication fact knowledge may have been 

hampered by general reductions in the capacity of neglect patients and control participants to 

monitor and integrate information from different sources in parallel due to age. In a recent 

fMRI study on the NBT, Wood et al. (submitted) showed that the left angular gyrus and in the 

superior frontal gyrus were sensitive to multiplicativity. While the left angular gyrus may be 

associated with the retrieval of multiplication facts (cf. Dehaene et al., 2003; Delazer et al., 

2003), the superior frontal gyrus was linked to the monitoring of potentially relevant 

information from different sources (e.g. Brass & von Cramon, 2005). Although there is no 

reason to doubt that older patients as well as neglect patients can access the representation of 

multiplicativity, they may not have monitored for the multiplicativity in the present study due 

to limitations in executive resources and working memory (Doricchi, Guariglia, Gasparini, 

Tomaiuolo, 2005). 

 

CONCLUSIONS 

Neglect impairs number processing of two-digit numbers in a specific way: neglect 

patients seem to neglect the left part of a given numerical interval activated on a spatially 
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oriented MNL. Moreover, our data also indicate that neglect patients have specific difficulties 

in processing decomposed magnitudes of two-digit numbers. In particular, neglect patients 

may have difficulties accessing the magnitude of the decade digit, which is on the left within a 

two-digit number. However, diagnostic data and additional analyses suggested that this deficit 

was not due to perceptual limitations. 

These results extend previous findings in several theoretical and methodological aspects. 

Neglect not only impairs the spatial numerical representation of one-digit and small two-digit 

numbers, but also the representation of the whole two-digit number range. In particular, 

neglect not only impairs the spatial holistic magnitude representation of two-digit numbers in 

general, it specifically impairs the integration of tens’ and units’ magnitude representation of 

two-digit numbers. Finally, neglect not only impairs performance in actively producing the 

middle number of a numerical interval, it also impairs the verification of whether a given 

number is the arithmetical middle of an interval or not.  
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APPENDIX A 

Test results of patients suffering from neglect in all sub tests of the NET 

NET Patients 

Subtests (max. raw score) M.M. K.R. S.I. S.G. H.E. R.R. 
Line crossing (36) 17 36 36 18 36 33 

Letter cancellation (40) 26 37 33 26 34 13 

Star crossing (54) 15 54 47 19 51 18 

Figure copying (star) (3) 0 3 2 0 3 0 

Figure copying (rhombus) (3) 2 3 0 3 3 1 

Figure copying (flower) (3) 0 3 2 2 2 0 

Line bisection (9) 2 9 5 6 5 2 

Representational drawing (3) 2 2 3 2 2 0 

Article reading (140) 66 140 93 93 93 71 

Copy address (88) 50 88 85 70 85 61 

Picture scanning (menu) (8)  6 8 8 6 8 5 

Picture scanning (sink) (9) 9 8 9 6 9 2 

Picture scanning (room) (15) 13 14 15 8 14 5 

Menu reading (24) 19 24 24 12 12 11 

Tell the time (digital) (3) 3 3 2 3 3 2 

Tell the time (analogue) (3) 1 3 3 1 3 2 

Set the time (analogue) (3) 2 3 2 1 3 3 

ΣΣΣΣ Raw score1 233 438 369 270 366 229 
ΣΣΣΣ Standardized scores2 78 163 136 99 147 71 
1
Σ max. raw score for all subtests 444 

2
Σ max. standardized scores for all subtests 170 (Diagnostic guidelines for neglect: 0-72 very considerable, 73-135 

considerable, 136-166 low) 

 

Test results of patients suffering from neglect in all sub tests of the EC 301 R 

EC 301 R Patients 

Subtests (max. raw score) M.M. K.R. S.I. S.G.3 H.E. R.R. 
Counting dots (6) 0

2
 5 6  6 3

2
 

Free backward counting (2) 2 2 2  2 2 

Transcoding       

   →   writing (12) 12 12 12  12 11 

   →   reading (12) 12 12 12  12 12 

   →   1 � one (12) 0
2
 12 12  0

2
 4

2
 

Mental arithmetic (16) 15 16 15  16 16 

Physical number line (10) 8 10 10  10 10 

Number comparison       

   →   auditory (16) 16 16 16  16 16 

   →   written (16) 0
2
 16 4

1
  16 4

1
 

Multi-digit arithmetic       

   →   addition (4) 0
2
 2 4  4 4 

   →   subtraction (4) 0
2
 4 4  4 4 

   →   multiplication (7) 3 7 2  7 1
2
 

Perceptive estimations (8) 8 8 8  8 6 

Contextual estimations (10) 8 8 8  10 10 

ΣΣΣΣ Raw score1 84 130 115  123 103 
1
Σ max. raw score for all subtests 135 

2Due to neglect symptoms this subtest could not be carried out successfully  
3This patient was tested on the following numerical and mathematical abilities: comparing single- and multi-digit Arabic 

numbers, mental arithmetic (addition, subtraction, multiplication, division) and written arithmetic (addition and subtraction). 

The patient’s tested abilities were intact.
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APPENDIX B 

Factorial analyses (ANOVA and t-tests) differentiating between all three 

participant groups: 

Non-bisected triplets (RT and error data): 

Response latencies: An analysis of variance (ANOVA) incorporating the factors distance to 

the middle, size relative to the middle and participant group was conducted on z-transformed 

RTs. The ANOVA revealed that the interaction between size relative to the arithmetical 

middle and patient group was marginally significant [F(2, 15) = 3.01, p = .08]. Subsequently, 

Bonferroni-Holm corrected t-tests were conducted to directly test the hypothesis that neglect 

patients should benefit less from a central number smaller than the arithmetical middle of the 

interval: Neglect patients did benefit reliably less (-426 ms) from a second number smaller 

than the triplet’s middle than did either patient controls [-527 ms, t(10) = 1.82, p = .05, one-

sided] or healthy controls [-747 ms, t(10) = 2.15, p < .05, one-sided
a
]. The three-way 

interaction of distance to the middle, size relative to the middle and participant group [F(2, 

15) < 1] was not reliable indicating that the disadvantage for neglect patients was not 

modulated by distance to the arithmetical middle. 

Additionally, the ANOVA showed strong main effects for of distance to the middle 

[F(1, 15) = 48.29, p < .001] and size relative to the middle [F(1, 15) = 38.71, p < .001]. So, 

triplets in which the central number was numerically far from the arithmetical middle were 

rejected faster than triplets with a central number numerically close to the middle (4424 ms 

vs. 5043 ms). Moreover, triplets with a second number smaller than the arithmetical middle 

were responded to faster than triplets with a second number larger than the middle (4451 ms 

vs. 5017 ms). Furthermore, the interaction of distance to the middle and size relative to the 

middle was reliable [F(1, 15) = 13.94, p < .01]. This means that for far numerical distances to 

                                                 
a
 Note: Similar results were obtained when directly contrasting the effects of decade crossing in an one-way 

ANOVA with subsequent post-hoc Dunnett t-tests: neglect vs. patient control p = .05, neglect vs. healthy control 

p < .05. 
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the middle the beneficial effect of a central number smaller than the arithmetical middle was 

more pronounced than for close distances (930 ms vs. 203 ms). Finally, the three participant 

groups did not differ reliably in terms of RT [F(2, 15) < 1].  

Errors: In the error analysis a main effect of group was observed [F(2,15) = 6.83, p < 

.01]. Bonferroni-Holm corrected t-tests showed that neglect patients committed reliably more 

errors than control patients [+5.0 %, t(10) = 3.41, p < .01, one-sided] as well as healthy 

controls [+5.0 %, t(10) = 3.12, p < .01, one-sided]. Additionally, the interaction of distance to 

the middle and size relative to the middle was significant [F(1, 15) = 5.23, p < 05.]. This 

indicates that for triplets with a central number numerically close to the arithmetical middle 

rejection was more error prone when than when the central number was smaller than the 

middle compared to when it was larger than the middle (6.4 % vs. 3.9 % errors, respectively). 

However, this pattern was reversed for triplets with a central number far from the middle 

(smaller: 1.9 % vs. larger: 6.1 %). There were no further significant main effects of the 

manipulated item characteristics [all F < 1.16, all p > .30 or interactions of group with any of 

them [all F < 1.11, all p > 13]. 

 

Bisected triplets (RT and error data):  

Decade crossing: In line with the hypothesis, the interaction of decade crossing and 

participant group was reliable for errors [F(2, 15) = 6.53, p < .01], but not for response 

latencies [F(2, 15) < 1]. Bonferroni-Holm corrected t-tests were conducted to directly test the 

hypothesis of neglect patients’ performance being impaired most for triplets crossing into the 

next decade. Therefore, the absolute effects of decade crossing were contrasted for neglect 

patients vs. patient controls [t(10) = 0.90, p = .20, one-sided] as well as for neglect patients vs. 

healthy controls [t(10) = 2.82, p < .05, one-sided
b
]. This indicates that the increase of errors 

                                                 
b
 Note: Again, similar results were obtained when directly contrasting the effects of decade crossing in an one-

way ANOVA with subsequent post-hoc Dunnett t-tests: neglect vs. patient control p = .37, neglect vs. healthy 

control p < .01. 
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for triplets crossing a decade boundary was more pronounced in neglect patients (+ 18.4 % 

errors) than in healthy controls (- 0.8 % errors) but not when compared to patient controls (+ 

7.5 % errors). 

Furthermore, a strong main effect for decade-crossing was found for both speed and 

accuracy [RT: F(1, 15) = 40.74, p < .001, accuracy: F(1, 15) = 17.38, p < .001]. So, triplets 

that did not cross a decade boundary were responded to faster (4164 ms) and more accurate 

(4.4 % errors) than triplets which crossed into the next decade (4702 ms and 12.8 % errors). 

Moreover, the ANOVA revealed that the three participant groups differed reliably regarding 

errors committed [F(2, 15) = 3.78, p < .05] but not RT [F(2, 15) = 2.76, p = .10]. Bonferroni-

Holm corrected t-tests confirmed the hypothesis that neglect patients did more errors 

compared to patient controls [+13.7 %, t(10) = 2.22, p = .05, one-sided] as well as healthy 

controls [+13.7 %, t(10) = 1.94, p < .05, one-sided]. 

Multiplicativity: A main effect for multiplicativity was observed neither for RT nor for 

errors [RT: F(1, 15) < 1, errors: F(1, 15) = 1.59, p = .23]. However, neglect patients and non-

neglect controls differed significantly for errors committed [F (2, 15) = 5.27, p < .05] but not 

for response latencies [F (2, 15) < 1]. Again, Bonferroni-Holm corrected t-tests showed that 

neglect patients’ performance was more error prone  compared to that of patient controls 

[+16.7 %, t(10) = 2.62, p < .05, one-sided] as well as healthy controls [+14.1 %, t(10) = 2.72, 

p < .05, one-sided]. Finally, multiplicativity and participant group did not interact reliably for 

either RT or errors [RT: F(2, 15) < 1, errors: F(2, 15) < 1]. 
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A computational model of place-value integration in 

two-digit number comparison 
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Two-digit number processing – holistic, decomposed or 

hybrid? 

A computational modelling approach 

 

 

 



 

232 

ABSTRACT 

Currently, there are three competing theoretical accounts of the nature two-digit 

number magnitude representation: a holistic, a strictly decomposed, and a hybrid model. 

Observation of the unit-decade compatibility effect (Nuerk et al., 2001) challenged the view 

of two-digit number magnitude to be represented as one integrated entity. However, at the 

moment there is no way to distinguish between the decomposed and the hybrid model 

empirically. The present study addressed this issue using a computational modelling 

approach. Three network models complying with the constraints of either of the three 

theoretical models were programmed and trained on two-digit number comparison. 

Evaluation of the data produced indicated that by means of their power to account for 

empirical effects in the most parsimonious way the empirical data were simulated best by the 

strictly decomposed model. Although the more complex hybrid model accounted for all 

empirical effects as well. Implications of these results on our understanding of the nature of 

the human number magnitude representation are discussed. 
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INTRODUCTION 

 

The internal representation of numerical magnitude is a central component in all 

cognitive models of number processing in humans (e.g., Campbell, 1994; Cipolotti & 

Butterworth, 1995; Dehaene & Cohen, 1995, 1997; Dehaene, Piazza, Pinel, & Cohen, 2003; 

McCloskey, 1992; for an overview see Deloche & Willmes, 2000). These models differ in the 

number and kind of postulated representations and their interactions, but the goal of all 

attempts was to develop a model that is sufficiently detailed to explain magnitude processing 

in both normal and cognitively impaired persons. There are at least two empirical findings 

that any proposed form of number magnitude representation should account for: the distance 

effect and the problem size effect. First, the distance effect indicates increased speed and 

precision in discriminating between two numbers with increasing numerical distance between 

them (e.g., Hinrichs, Yurko, & Hu, 1981; Moyer & Landauer, 1967). Second, the problem 

size effect denotes that performance in number processing or calculation worsens with 

increasing numerical magnitude of the numbers involved (e.g., Brysbaert, 1995; see also 

Zbodroff & Logan, 2005 for a review).  

However, the specifics of mental number magnitude representation, which can 

account for these basic effects in numerical cognition, are still under debate. On the one hand, 

most models of number processing agree about (or at least do not oppose) the existence of 

one (or several) mentally represented number line(s) involved in numerical tasks such as 

magnitude comparison or mental arithmetic. On the other hand, the way this number line is 

organized in detail as well as the characteristics driving the mapping of numbers onto this 

mental number line is subject to controversial discussions among researchers. To address this 

issue, the case of two-digit numbers will be dealt with in the following section. 
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Two-digit number processing 

Basically, Arabic numbers are structured in a two-dimensional place-value system. 

First, the base dimension is reflected by the ten digits from 0 to 9, whereas, second, the power 

dimension is coded by the positions of the digits with a base ten. The position within a digit 

string defines the value of each digit on a power of ten dimension (cf. Zhang & Norman, 

1995; Chrisomalis, 2004). However, the way in which these two dimensions of numbers are 

represented psychologically on the mental number line is subject to controversial debates. At 

the moment three models accounting for the organization of this number line can be 

discerned.  

 

1. The holistic model 

According to the holistic model (e.g., Dehaene, Dupoux, & Mehler, 1990) numbers 

are transformed into an integrated entity mapped onto a holistic magnitude representation 

before any magnitude comparison or numerical manipulation is performed. In the context of 

number magnitude comparison this property implies that performance should be exclusively 

determined by the overall distance between the numbers to-be-compared, thereby, overriding 

the base-10 structure of two-digit numbers. 

However, to account for the problem size effect additional assumptions are required. 

In this context, either linear coding of numbers along the mental number line with scalar 

variability or logarithmic coding of numbers with fixed variability have been suggested (for a 

recent discussion see Brannon, Wusthoff, Gallistel, & Gibbon, 2001; Dehaene, 2001). The 

latter model implies that magnitudes of larger numbers may be compared more slowly 

because magnitude is assumed to be represented along a logarithmically compressed mental 

number line. Consequently, the distance between the logarithmic magnitudes of two relatively 

larger numbers is smaller than the distance between the logarithmic magnitudes of two 

relatively smaller numbers. As variability is assumed to be constant for the representation of 
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all numbers the overlap for larger numbers is suggested to be gets relatively larger. Due to 

this larger overlap more interference with the magnitude representations of neighbouring 

numbers occurs slowing down magnitude comparison of larger numbers compared to 

magnitude comparison of two smaller numbers with the same absolute distance. 

Alternatively, when linear coding with scalar variability is assumed, numbers are mapped 

with equal separations onto the mental number line but the variability of their entries 

increases with their size. Again, the overlap between two larger numbers is relatively larger 

and the comparison is slowed down correspondingly. 

 

2. The decomposed model 

The decomposition model (e.g., Verguts & De Moor, 2005) predicts that the 

magnitudes in two-digit numbers are represented separately for each of the constituting digits. 

Thus, the magnitude of a two-digit number is not mapped onto one mental number line as an 

entity. Instead, each digit constituting a two-digit number is mapped onto its own number 

line. Considering the base-10 structure of the Arabic number system, these mental number 

lines must then be labelled by referring to the place-value of the digit represented. In number 

comparison, separate comparisons of corresponding digits at equivalent positions (e.g., units, 

tens, etc.) within the to-be-compared numbers are assumed. The representation of the 

individual numbers (i.e., 0 - 9) on the separate number lines is supposed to be organized in an 

analogue way comparable to the one postulated by the holistic model of magnitude 

representation. This assumption allows accounting for the problem size effect based on the 

increasing magnitude of the individual digits on their respective number lines (see above for 

the distinction between linear coding with scalar variability and logarithmic coding with fixed 

variability).  
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3. The hybrid model 

The hybrid model (e.g., Nuerk, Weger, & Willmes, 2001; Nuerk & Willmes, 2005) 

suggests that both, decomposed as well as holistic representations of number magnitude get 

activated in a comparison task. Magnitude comparison is assumed to operate in parallel on 

both representations, but depending on task requirements either one may be of more 

relevance (e.g., the holistic representation for approximation). As the hybrid model is 

assumed to incorporate characteristics of both of its constituting models the distance as well 

as the problem size effect are accounted for accordingly.  

 

Because each of the three models can account for the distance as well as the problem 

size effect, another distinguishing feature is required. Nuerk and colleagues presented 

evidence suggesting “decade breaks in the mental number line” (Nuerk et al., 2001, p. B25): 

the unit-decade compatibility effect. In the next paragraph a distinction between the three 

approaches based on the compatibility effect will be discussed, and open questions will be put 

forward afterwards. 

 

The Compatibility effect 

The decade-unit-compatibility effect (Nuerk et al., 2001; Nuerk, Weger, & Willmes, 

2002; 2004a; 2005; Moeller, Fischer, Nuerk, & Willmes, 2009a; Pixner, Moeller, Zuber, & 

Nuerk, 2009; Wood, Nuerk, & Willmes, 2006) describes the finding that it takes participants 

significantly longer to single out the larger number of e.g. the pair 38_53 than the pair 42_57. 

This is supposed to be the case because in the first example separate comparisons of tens and 

units lead to transient incompatible decision biases (i.e., 38_53 � 3 < 5, but 8 > 3) whereas in 

the latter, compatible pair of numbers no such incompatibility occurs (i.e., 42_57 � 4 < 5 and 

2 < 7). Because the absolute overall distance is 15 in both examples, no compatibility effect 

should be observed if an exclusively analogue (holistic) magnitude representation for two-
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digit numbers were engaged. Additionally, the observed interaction of compatibility with unit 

distance (i.e., a more pronounced compatibility effect for large as compared to small unit 

distances) indicates that no common attentional congruity effect can be taken to be 

responsible for that finding. Thus, a model accounting for the compatibility effect must allow 

to differentiate between processing the tens numeral and the unit numeral – hence a model of 

decomposed two-digit number processing. 

Nuerk and co-workers repeatedly observed (logarithmic) overall distance to be a 

reliable predictor of item RT in multiple stepwise regression analyses (cf. Nuerk et al., 2001; 

2002; Moeller et al., 2009a; Wood et al., 2006). The authors interpreted the impact of overall 

distance between the to-be-compared numbers to be due to a holistic representation of the 

overall magnitude of the numbers involved, which cannot be accounted for by strictly 

decomposed representations of tens and units (see Nuerk & Willmes, 2005, for a detailed 

discussion of this argument). Based on these considerations, Nuerk and Willmes (2005) 

proposed the hybrid model of two-digit number processing (see also Nuerk et al., 2001). The 

decomposition part of the model accounts for the compatibility effect (which is hard to 

reconcile with a purely holistic magnitude representation), while the holistic part of the model 

would account for the influence of (logarithmic) overall distance. 

 

Taken together, there is considerable empirical evidence for the existence of 

decomposed processing in multi-digit numbers (e.g., Nuerk et al., 2001; Moeller et al., 2009a; 

see also Domahs, Delazer, & Nuerk, 2006; Hoeckner et al., 2008; Nuerk et al., 2002; 

Ratinckx, Nuerk, van Dijk, & Willmes, 2006; Verguts & de Moor, 2005; for further evidence 

on decomposed processing other than the compatibility effect). So far there is no empirical 

way to distinguish between the strictly decomposed and the hybrid model based on their 

implications for number comparison. Another weakness is the qualitative nature of the 

models of two-digit number processing. Neither the holistic nor the decomposed or the hybrid 
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model allow for quantitatively predicting the RT pattern in a magnitude comparison task. In 

all cases, the models can only make ordinal predictions about mean RT differences under 

different conditions (e.g., small vs. large distances between the to-be-compared numbers); 

however, it is not possible to quantify these differences. At this point, computational models 

would be informative as they offer the possibility to evaluate model predictions 

quantitatively. Therefore, the current study aimed at differentiating between the three models 

of two-digit number processing described above via a computational modelling approach 

validated by empirical data from number magnitude comparison. In particular, we intended to 

distinguish between the strictly decomposed and the hybrid processing model by means of 

their modelled data as these two models cannot be differentiated by empirical RT/error data. 

Nevertheless, evaluation of the fit of the data produced by either of these models and the 

empirical data would be informative about the plausibility and validity of both strictly 

decomposed as well as hybrid processing of two-digit numbers. 

Before turning to modelling specifics, differences between the current study and the 

rationale behind other recent attempts to implement number magnitude representation into 

computational neural networks shall be discussed briefly. 

 

Computational models of number magnitude representation 

As already touched on before, computational models offer the possibility to evaluate 

the plausibility and validity of a proposed model not only qualitatively but also on a more fine 

grain quantitative level. Quantitative computational models allow for a statistical appraisal of 

the fit between modelled and empirical data – thereby, qualifying a more objective validation 

of models predictions. For the case of number processing, most previous computational 

models of number magnitude representation incorporated some kind of number line 

assumption (e.g., McCloskey & Lindemann, 1992; Viscuso, Anderson, & Spoehr 1989, Zorzi 

& Butterworth, 1999). Following this conceptualization each number is represented by a 
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single node in an ordered sequence of input nodes. In several studies by different authors and 

model architectures it was observed that empirical data from different numerical tasks was 

associated reliably with the modelled data (number comparison: e.g., Dehaene & Changeux, 

1993; Zorzi & Butterworth, 1999; number naming: e.g., Grossberg & Repin, 2003; Verguts et 

al., 2005; number priming: Verguts, Stevens, & Fias, 2005; Zorzi, Stoianov, & Umiltà, 2005).  

However, almost all of these models were focused on small numbers and numerosities up to 

15 (Verguts et al., 2005; up to 5 in Dehaene & Changeux, 1993; 9 in Zorzi & Butterworth, 

1999; but see the discussion of the Grossberg & Repin, 2003 model below). Moreover, 

considering the relevant literature revealed that most of the papers on computational models 

of number representation were concerned with questions regarding the actual coding 

characteristics upon the assumed and implemented number line representation. Recently, 

summation or numerosity coding (i.e., representing magnitude by the number of nodes 

activated, e.g., Zorzi & Butterworth, 1999) and place coding (i.e., representing a specific 

number by the activation of a node actually reflecting its position on the number line as well 

as the preceding and subsequent one, e.g., Verguts & Fias, 2004; Verguts et al., 2005) were 

evaluated. Neither of these coding schemes differentiates between the representations of 

single-digit and two-digit numbers: in the first case all nodes along the number line up to the 

i
th

 node are activated to code magnitude i and in the latter case only the i
th

 node is activated to 

do so. In both cases no differentiation between e.g., tens and units for two-digit numbers is 

assumed (but see Grossberg & Repin, 2003). Taken together, to date computational modelling 

was primarily employed to clarify coding and scaling aspects of numerical magnitude along 

the mental number line rather than distinguishing between different processing models (see 

Verguts et al., 2005 for a more detailed discussion of this point).  

However, the model by Grossberg and Repin (2003) presents an exception to these 

considerations. In this model, representations of single- and multi-digit numbers are 

discerned. The authors assume multi-digit numbers to be represented by an interaction of the 
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ventral “what” and the “dorsal” where stream of processing visual stimuli: In this way the one 

dimensional representation of single-digit numbers is augmented by a second dimension 

coding the base-10 property of the Arabic number system. However, Grossberg and Repin 

(2003) did not specify whether this two-dimensional coding of multi-digit numbers also 

manifests itself in separate representations of e.g., tens and units or rather converges on one 

holistic representation, upon which the comparison process is based. Nevertheless, inspection 

of Figures 22B as well as 23A (Grossberg & Repin, 2003, p. 1130) provides at least 

descriptive evidence suggesting compatibility like effects for both error and RT data produced 

by the model. From the distribution of relative errors committed by the model (see Figure 

22B, Grossberg & Repin, 2003, p. 1130) one can derive that for number smaller as well as 

larger than the standard (i.e., 55) incompatible comparisons (e.g., 38_55 or 55_72) were 

associated with more errors than compatible comparisons with even smaller overall distance 

(e.g., 41_55 or 55_69, see also Dehaene et al., 1990 for a discussion about these 

discontinuities, i.e., reversed distance effects at decade boundaries). A similar effect is evident 

for the original simulated RT data (mainly for probes smaller than the standard) with the 

effect being most pronounced at the transition from the second to the third decade (see Figure 

23A, Grossberg & Repin, 2003, p. 1130). Taken together, these observations implicate that 

the model by Grossberg & Repin (2003) may be based on the assumption of decomposed 

processing of tens and units but in the paper there is no explicit statement on this issue. Most 

importantly for the current study, Grossberg and Repin (2003) did not aim at differentiating 

between the strictly decomposed and the hybrid processing approach. 

 

The present study 

Nevertheless, in the present study we were not interested to further add to the ongoing 

debate about possible coding and scaling characteristics of the mental number line and their 

implementation in computational models. Instead, we aimed at employing computational 
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modelling to evaluate the plausibility and validity of above introduced models of two-digit 

number processing (i.e., holistic, decomposed, and hybrid processing) for the case of two-

digit number comparison. So far, there is ample evidence for decomposed processing of two-

digit numbers (e.g., Nuerk et al., 2001; Moeller et al., 2009a). However, at the moment there 

is no empirical variable allowing a reliable differentiation between the strictly decomposed 

and the hybrid model. Therefore, particular interest was paid to the question whether the 

assumption of an additional holistic representation of overall magnitude as proposed by the 

hybrid model (cf. Nuerk & Willmes, 2005) is actually necessary to account for the empirical 

data. This question is specifically interesting as the hybrid model is the most complex one and 

following the principle of parsimony/theoretical economy it should only be chosen when the 

other models and in particular the strictly decomposed model (cf. Verguts & De Moor, 2005) 

do not account for the data at hand.  

In summary, the current study set off to distinguish between three proposed models of 

number magnitude representation (i.e., holistic, decomposed, and hybrid model) in a 

computational modelling approach. In a first step, the validity of the computational models is 

evaluated by their ability to account for the distance effect, a standard effect observed in 

numerical cognition research. It is expected that all three models should be able to account for 

the distance effect. In a second step, it is aimed to evaluate the influence of decomposed 

processing of tens and units as indicated by the compatibility effect. Here, it is hypothesized 

that the holistic model should fail to account for the unit-decade compatibility effect while 

both the strictly decomposed and the hybrid model should be capable of accounting for the 

compatibility effect. Third, it shall be appraised whether incorporation of a predictor 

reflecting a measure of overall distance [i.e., (logarithmic) overall distance or the distance 

between the logarithms of the to-be-compared numbers] necessarily requires a holistic 

magnitude representation as previously argued by Nuerk and Willmes (2005, see also Nuerk 

et al., 2001; Knops, 2006). If so, such a predictor should only be included in the final 
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regression model evaluating the data produced by the hybrid model, but not in the regression 

model for the strictly decomposed data as the latter model does not incorporate a 

representation of overall magnitude. Finally, following Occam’s razor the hybrid model 

should only be chosen as the model predicting the empirical data in the best way when its 

performance is found to be reliably superior to the performance of the strictly decomposed 

model which is the more parsimonious one. 

In the next section the architecture and the implementation of the three models will be 

described before actually reporting the models’ performance in two-digit number comparison. 

 

METHODS 

Model description 

According to the model assumptions on the mental representation of two-digit numbers 

put forward to account for the empirical data, three different neural network models were 

programmed: (i) a holistic model in which to-be-compared two-digit numbers (i.e., indicated 

as #1 and #2) are represented as integrated entities (see Figure 1, Panel A), (ii) a strictly 

decomposed model with two distinct representations of tens and units (see Figure 1, Panel B) 

and (iii) a hybrid model in which the characteristics of the former two models are combined 

so that separate representations of tens and units operate in parallel with a holistic 

representation of overall magnitude of the respective number (see Figure 1, Panel C). The 

neural networks reflecting each of these models were programmed using MatLab 7.4.0.
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Figure 1:  Schematic layout of the architecture of the three computational models used in the current study: Panel A depicts the holistic model  

 (e.g., Dehaene et al., 1990), Panel B illustrates the strictly decomposed model (cf. Verguts & De Moor, 2005), and Panel C reflects  

 the hybrid model of two-digit number representation (e.g., Nuerk & Willmes, 2005). 
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The detailed description of the three neural network models will first focus on depicting 

the characteristics common to all three models before covering the specific features of each 

model in turn.  

 

Features common to all three models 

The number zero was not implemented in any of the three models as the mental 

representation of zero seems to be special as compared to the other single digits: For instance, 

Brysbaert (1995) observed that reading zero took participants reliably longer than reading any 

other single digit number. Moreover, Nuerk, Iversen and Willmes (2004b) provided additional 

evidence based on nonmetric multidimensional scaling analyses that the number zero may not 

be represented on the same number line as the other numbers. However, these studies cannot 

clarify whether the specificity of zero originates from the fact that zero occurs less frequently 

in daily life or from difficulties with the conception of a number symbol representing nothing 

(e.g., Frobisher, 1999; Levenson, Tsamir, & Tirosh, 2007). Taken together, it is still 

debateable whether the mental number line starts at zero or at one.  

Finally, because all computational models of number magnitude representation start 

with a representation of one (e.g., Verguts et al., 2005; Grossberg & Repin, 2003; Zorzi & 

Butterworth, 1999) – zero was also left out in our modelling study. Basically there would be 

two different possibilities of how to implement zero, either by a separate node preceding the 

node associated with one or by no specific node at all. Because the latter alternative would 

result in no specific neural activation when semantically processing the number zero, this 

conceptualization seems problematic because the missing representation of zero would also 

result in missing representations of single-digit numbers and decade numbers: At least in the 

fully decomposed model a representation of zero is inevitable to account for numbers such as 

04, 08, etc as well as 20, 30, etc, respectively. Please note that in contrast to the prolonged 

processing times observed for the number zero processing multiples of 10 is faster than 
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expected considering their magnitude. To guarantee a valid representation of all numbers in 

all three models the number range implemented in the current models goes from 11 to 99 with 

exclusion of all multipliers of ten. The empirical data about the compatibility effect were also 

obtained without the employment of decade numbers. Nevertheless, modelling the role of 

zero in multi-digit numbers poses a challenge for the future. 

The representation of number magnitude as assumed in the present study was identical 

to Verguts et al. (2005) in their models of small number representation. Each node represents 

one number, with numbers being aligned in ascending order from left to right. For instance, 

when presenting the number 5, the fifth node from the left gets maximally activated, with all 

preceding and adjacent nodes being co-activated symmetrically to some degree, depending on 

their distance to the maximally activated node. Nevertheless, activation always reaches its 

maximum of for the number actually presented.  

All three models were programmed as feedforward networks with the decomposed as 

well as the hybrid model comprising an input layer, one hidden layer and an output layer. The 

holistic model is set up without a hidden layer (see below for a discussion). For all three 

models the hyperbolic tangent [a commonly used transfer function in neural network 

modelling, e.g., Harrington, 1993; Hérvas-Martínez et al., 2009; Ngaopitakkul & Kunakorn, 

2009] was chosen as the activation function of the hidden layer and the output layer.  

The propagation function is given in equation (1) with τ  representing a model 

constant determining how fast the maximum activation of a node is reached and )(tnet j  

reflects the average input over time for a respective node j: 

 

)1()1()()()( −−+== tnettnettnetta jjjj ττ  (1) 
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The output function of the hidden layer was the identity function making the output 

equal to the activation. The output of the output layer was determined as follows: The two 

nodes of the output layer reflect two distinct decisions. When the activation of the left node 

exceeds a threshold level θ, this indicates that the first number was the larger one of the pair. 

Contrarily, when the threshold θ is first exceeded by the right node, this means that the second 

number was larger. The threshold was set to θ = 0.5 in all of the current networks (cf. Verguts 

et al., 2005; for a similar approach). Because activations approach a certain level in an 

asymptotic manner, there is the possibility that none of both activations exceeds θ and the 

loop would run forever. To prevent overly long “responses”, a time limit was introduced after 

which the decision process was terminated. The actual choice of a time limit is dependent on 

the choice of the parameter τ. For smaller/larger values of τ the loop takes longer/faster to 

reach maximum activation. A τ-value of 0.01 and a time limit of rtmax = 50 loops were found 

to maximize the range of the simulated reaction time distribution while at the same time 

minimizing the number of time limits actually reached. 

After the network model solved the comparison task for one pair of numbers within 

the given time limit, activation of the output nodes is compared to the correct output. For 

instance, when comparing 43 to 78, activation of the left node may be 0.12 and 0.67 for the 

right node. However, in this case, the correct output tj for the left node would be 0 and 1 for 

the right node. Nevertheless, it is not mandatory that the obtained activations equal the correct 

output (cf. Verguts et al., 2005). For a correct decision the actual activation just needs to be 

closer to the true value for that particular output node than to the true value for the other 

output node, or put differently: in case the difference between the actual activation and the 

correct output does not exceed a difference of d > 0.5 the correct output is returned by the 

model. For our example, the output for the left node would be 0, because 5.0012.0 <−  and 
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the output of the right node would be 1, because 5.0167.0 <− , respectively. Generally, the 

output is calculated as follows: 
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Where tj denotes the correct output and aj reflects the actual activation of node j. 

 

Differences between the models 

The decomposed model comprises an input layer with four separate input arrays each 

representing one single digit. Going from left to right, the first input array reflects the decade 

digit of the first number, followed by the input array of the decade digit of the second number. 

The third input array represents the unit digit of the first number followed by the input array 

fort he unit digit of the second number (see Figure 1). These arrays are connected to a hidden 

layer, whereupon the decade digits project to one node and the unit digits project to another 

node of the hidden layer. At these nodes decade digits and unit digits of the two to-be-

compared numbers are compared separately. The nodes of the hidden layer are then connected 

to an output layer in which the left node reflects the “first number larger” decision, whereas 

the right node is associated with the “second number larger“ decision. Thereby the three 

layers can be associated with representations of the single digits (input layer), a comparison 

process (hidden layer), and a response field (output layer). 

The hybrid model expands the decomposed model by a holistic comparison process. 

The input of the holistic part of the model comprises two arrays reflecting a holistic 

representation of the two to-be-compared numbers. These arrays project on a node in the 

hidden layer which in turn projects on the response related nodes in the output layer. 
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In the holistic model, two input arrays, each reflecting a holistic representation of the 

numbers ranging from 11 to 99, are implemented. These input arrays are connected to two 

output nodes, whereof the left one represents the “first number larger“ decision and the right 

one the “second number larger” decision. 

 

Training of connection weights 

The initial connection weights were pseudo-random values ranging from 0 to 1 taken 

from a uniform distribution. Basically, the same learning algorithm was used for all three 

models. Nevertheless, as the fully decomposed and the hybrid model involved a hidden layer 

learning followed a back-propagation approach in these two models. For the holistic model 

which did not incorporate a hidden layer the learning algorithm used reflected delta rule 

guided learning, respectively. Please note that back-propagation is a generalization of the 

delta rule approach to networks involving at least one hidden layer (cf. Rumelhart, Hinton, & 

Williams, 1986). Based on this and the fact that the same mathematical algorithm was used 

for the training of connection weights in all three models we are confident that differences in 

the learning algorithm did not determine the current results. Finally, the learning constant η 

was arbitrarily set to 0.1.  

The training phase comprised 50.000 for all models. In each training circle two 

randomly chosen numbers between 11 and 99 (excluding multiples of 10) were presented to 

the network. The frequency of occurrence of each number during the training cycles was 

determined by its frequency of occurrence in daily life as assessed by taking the entries 

referenced in Google for the respective numbers as an estimate of their every-day occurrence 

(see Appendix A; Verguts & Fias, 2008 for a similar approach). 

The procedure of the training phase will be described for the case of the decomposed 

model: At first, two numbers between 11 and 99 were randomly chosen with the exception of 

tie numbers (e.g., 44) and multiples of 10 as empirical studies showed anomalous processing 



 

249 

advantages for these numbers (see above for a discussion). Then these numbers were split into 

their decade and unit digits. On the basis of these single digits the respective input pattern was 

computed. Then, the net activation of the hidden layer was determined. The hyperbolic 

tangent of this net weight was then used as the actual activation. The output function of the 

hidden layer was the identity function. The net activation of the output nodes was again 

computed by formula (1) with the hyperbolic tangent as the activation function. This was 

repeated until (i) the activation of one of the output nodes exceeded the threshold or (ii) the 

time limit was reached
1
. The actual output was then calculated using formula (2). Finally, the 

back propagation learning algorithm was applied meaning that the connection weights were 

adjusted on the basis of the difference between the activation of the output and the hidden 

layer of the network model.  

The network model representing the holistic model was trained quite similarly, however, 

without breaking up the numbers presented into tens and unit digits. Nevertheless, as in this 

model the hidden as well as the output layer would consist of two nodes connected by an 

identity function (which would not alter the connection weights) no hidden layer was realized 

in this model. Thus, the holistic computational model comprised an input and an output layer 

only. Thereby, just one matrix of weights had to be learned, following the delta rule approach.  

 

MODEL PERFORMANCE 

For the case of brevity the way the connection weights developed while training the 

models will not be illustrated in the main text of this article. Nevertheless, for the interested 

reader Appendix B provides a detailed description of the development of the connection 

weights for each of the three models. 

 

                                                 
1
 Please note that for each of the three models the mean of the simulated RTs was more than 4 standard 

deviations from the upper time limit indicating that in the vast majority of trials a the neural network models 

had come to a decision far before the time limit was reached. 
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Modelling two-digit number comparison – analysis and results 

Simulated reaction times produced by either of the models were analyzed according to 

the constraints of the studies of Nuerk et al. (2001) for comparisons to a variable standard 

(i.e., singling out the larger of two numbers) and Moeller, Nuerk, and Willmes (2009b) for 

comparisons to a fixed memorized standard and will be reported in turn. As the simulated RTs 

only ranged between 0 and 50 corresponding RTs on the millisecond scale were estimated by 

a linear regression approach. The slope and the intercept of the regression equation were 

computed by predicting the actual empirical RTs by the simulated RTs for the comparison to 

a variable standard (cf. Nuerk et al., 2001) and a fixed standard (Moeller et al., 2009b). All 

analyses reported subsequently will be conducted over item RTs. In the case of the empirical 

data this means the mean RT per item over all participants. However, in the case of the model 

data this reflects RTs per item averaged over 10 simulation rounds (cf. Verguts et al., 2005 for 

a similar proceeding). Analyses of both the model data concerning comparisons with a 

variable external standard and comparisons to a fixed standard involved a categorical 

AN(C)OVA as well as a multiple stepwise regression analysis (see Nuerk et al., 2001 for a 

similar procedure)
2
.  

The univariate ANOVA for comparisons to a variable standard incorporated the fixed 

factors data origin (empirical vs. modelled), unit-decade compatibility (compatible vs. 

incompatible number pairs), decade distance (small: 1 - 3 vs. large: 4 - 8), and unit distance 

(small: 1 - 3 vs. large: 4 - 8). The corresponding regression analysis included the predictors (i) 

overall absolute distance, (ii) logarithm of the absolute distance, (iii) distance of the 

logarithmic magnitudes, (iv) absolute problem size, (v) logarithmic problem size, (vi) unit 

distance (e.g., ranging from –8 for 49_61 to +8 for 51_69), (vii) absolute unit distance, and 

(viii) compatibility (see Nuerk et al., 2001; Moeller et al., 2009a for similar proceedings). 

                                                 
2
  Please note that results were identical when using the activation difference between the two output nodes 

instead of simulated RT as the dependent variable suggesting the present approach of simulating RTs to be 

valid. 
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Finally, a regression analysis only incorporating the four reliable predictors of item RT as 

identified by Nuerk and colleagues (2001; i.e., logarithmic distance, problem size, unit 

distance, and absolute unit distance) was conducted to evaluate in how far the predictors for 

empirical item RT also hold for modelled item RT.  

For the comparisons with a fixed standard an ANCOVA was conducted to account for 

the influence of problem size which cannot be matched between compatible and incompatible 

comparisons when controlling for overall distance at the same time. Apart from the covariate 

problem size the ANCOVA discerned the factors unit-decade compatibility (compatible vs. 

incompatible) and unit distance (small: 1_3 vs. large: 4_6). Furthermore, a stepwise multiple 

regression analysis was run over item RTs including the following predictors: (i) overall 

absolute distance, (ii) logarithm of the absolute distance, (iii) distance of the logarithmic 

magnitudes, (iv) problem size, (v) logarithmic problem size, (vi) unit distance ranging from -6 

for e.g., 71_57 to +6 for e.g., 53_69, (vii) absolute unit distance and (vii) compatibility
3
. 

Again, in a final step a regression analysis only incorporating the four reliable predictors of 

empirical item RT as identified by Moeller and colleagues (2009b; i.e., logarithmic distance 

and unit distance) was conducted.  

Before turning to the results of the network models, the original results for the 

empirical RT data of the two original studies (i.e., Nuerk et al., 2001 and Moeller et al., 

2009b) will be summarized briefly. 

 

                                                 
3
  Please note that classifying items according to these constraints would have resulted in a larger overall 

distance for compatible than for incompatible number pairs, thereby confounding the distinction between 

effects of overall distance and unit-decade compatibility. Thus, to balance overall distance between compatible 

and incompatible comparisons selectively chosen probes were excluded from further analyses in each of the 

two item croups. It is important to note that overall distance cannot be matched by excluding randomly chosen 

probes (see Moeller et al., 2009b for a more detailed discussion of this point). Additionally, as it is not 

possible match compatible and incompatible comparisons for both overall distance and problem size (½ * 

(standard + probe)), the latter was considered as a covariate in all analyses.  
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Comparisons to a variable standard 

In the study originally reporting the compatibility effect Nuerk et al. (2001) observed a 

compatibility effect with response latencies following incompatible number pairs being 

reliably longer than latencies for compatible pairs (759 ms vs. 728 ms). Additionally, the 

compatibility effect was reliably moderated by unit distance as it was more pronounced for 

large unit distances as compared to small unit distances (52 ms vs. 12 ms; see Figure 2, Panel 

A).  

 

Holistic model 

ANOVA 

On the one hand predicting empirical RTs on the basis of the holistic model data 

yielded a R
2
 of .42, which was reliable [r = .65; F(1, 238) = 171.71, p < .001]. However, 

closer inspection revealed that important empirical effects cannot be accounted for by the 

holistic model. In the item ANOVA for the data produced by the holistic model there was 

only a reliable main effect of decade distance [F(1, 232) = 211.04, p < .001]. This indicated 

that according to the model data number pairs with large decade distance were responded to 

significantly faster than number pairs with a small decade distance (710 ms vs. 778 ms). Yet, 

neither the compatibility effect nor its interaction with unit distance were statistically reliable 

[main effect: F(1, 232) < 1; interaction: F(1, 232) < 1, see Figure 2, Panel B]. Moreover, no 

other main effect or interaction was found to be significant [all F < 1.59, all p > .21]. Taken 

together, this indicated that a reliable correlation of modelled and empirical RT data of its 

own is not a sufficient index of model validity. 

 

Regression 

The final model of the stepwise regression analysis on the model data produced by the 

holistic model accounted for a considerable amount of variance [adj. R
2
 = .84, R = .92, F(4, 
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236) = 417.38, p < .001] and incorporated the three predictors: problem size, difference 

between the logarithmic magnitudes of the two to-be-compared numbers, and logarithm of 

problem size (see Table 1). Evaluation of the beta weights revealed that response latencies 

increased as (i) distance between the logarithms of the numbers decreased, (ii) absolute 

problem size as well as (iii) logarithmic problem size decreased. Thus, comparable to the 

results of the ANOVA no indication of an influence of unit-decade compatibility was 

observed in the RT data modelled by the holistic model. 

Please note the unexpected direction of the influence of the predictors absolute and 

logarithmic problem size in the final model. However, the reversed problem size effect does 

not necessarily disprove the holistic model as it is probably driven by the interrelation of 

problem size and the difference between the logarithms of the two numbers. As explained in 

greater detail in Appendix C this interrelation is not linear as assumed in the regression 

analysis, but curvilinear instead meaning that up to a problem size of about 65, problem size 

is positively correlated with distance, which in turn drives the reversed problem size effect. 

 

Table 1: Predictors included in the final regression model for the holistic data 

Predictor B b t sign. 
Change in 

R
2 

Raw 
correlation 

Partial 
correlation 

Constant 1226.38 - 10.16 < .001 - - - 

Inclusion of absolute overall distance    .50   

Problem size -1.53 - .39 2.08 < .05 .33 - .55 - .13 

Diff Log distance - 216.83 - .74 23.91 < .001 .01 - .55 - .84 

Exclusion of absolute distance   - .001   

Log problem size - 185.89 - .37 1.99 < .05 .003 - .61 - .13 

 

Finally, the multiple regression including the four reliable predictors of item RT 

identified by Nuerk et al. (2001) produced a model predicting modelled RTs reliably [adj. R
2
 

= .81, R = .90, F(5, 235) = 254.29, p < .001] and without a substantial loss of descriptive 

adequacy. However, when looking at the beta weights of the individual predictors it was 
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found that only the influence of logarithmic overall distance [constant = 1060.03; B = -

126.03; b = - .72, t = 25.29, p < .001] and problem size [B = -2.25; b = - .58, t = 20.53, p < 

.001] was significant. Item RTs increased as logarithmic overall distance and problem size 

decreased. Contrarily, the influence of unit distance [B = 0.26; b = .02, t = 0.72, p = .47] as 

well as absolute unit distance [B = 1.24; b = .05, t = 1.67, p = .10] was not reliable. Again, 

these results indicated item RTs as produced by the holistic model not to be determined by 

unit-decade compatibility, but rather by measures of overall distance and problem size. 

 

Decomposed model 

ANOVA 

Corroborating our expectations predicting the empirical RTs by the modelled RT data 

showed a reliable R
2
 of .50 [r = .71; F(1, 238) = 241.13.99, p < .001] indicating a shared 

variance of 50%. More particularly, analyzing the RT data produced by the strictly 

decomposed model revealed a reliable main effect of compatibility [F(1, 232) = 23.68, p < 

.001] with response latencies following a compatible number pair being significantly shorter 

than latencies following a incompatible pair (735 ms vs. 753 ms, respectively). Moreover, this 

main effect was moderated by the interaction of compatibility and unit distance in the 

expected direction [F(1, 232) = 6.28, p < .05, see Figure 2, Panel C]: the compatibility effect 

was reliably more pronounced for number pairs with a large unit distance as compared to 

pairs with a small unit distance (28 ms vs. 9 ms, respectively). Thereby, these results clearly 

corroborate the notion of decomposed processing of tens and units. Finally, the main effect of 

decade distance indicated that number pairs with a large decade distance were responded to 

faster than number pairs with a small decade distance [699 ms vs. 789 ms, respectively; F(1, 

232) = 573.17, p < .001]. No further main effect or interaction was statistically reliable [all F 

< 1.35, all p > .25].  
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Regression 

The stepwise regression analysis on the modelled RT data of the strictly decomposed 

model resulted in a final model including the predictors difference between the logarithms of 

the to-be-compared numbers and unit distance [adj. R
2
 = .91, R = .95, F(3, 237) = 1199.20, p 

< .001, see Table 2]. Closer inspection of the beta weights indicated that reaction times 

increased as the difference between the logarithms of the two numbers decreased and, most 

importantly, response latencies also increased as the unit distance decreased. As unit distance 

is negative for incompatible number pairs but positive for compatible pairs this clearly 

indexed an influence of unit-decade compatibility on item RTs estimated by the strictly 

decomposed model.  

 

Table 2: Predictors included in the final regression model for the decomposed data 

Predictor B b t sign. 
Change in 

R
2 

Raw 
correlation 

Partial 
correlation 

Constant 834.62 - 354.23 < .001 - - - 

Difference of logarithms  -303.40 - .94 48.20 < .001 .89 - .94 - .95 

Unit distance - 1.84 - .13 6.90 < .001 .02 - .17 - .41 

 

 Again, a multiple regression incorporating the four significant predictors of item RTs 

as observed by Nuerk et al. (2001) accounted for a considerable amount of variance [adj. R
2
 = 

.85, R = .92, F(5, 235) = 325.56, p < .001] without a substantial loss of predictive power. 

Moreover, inspecting the beta weights revealed that apart from logarithmic overall distance 

[constant = 938.76; B = -168.35; b = - .87, t = 34.18, p < .001] and problem size [B = 0.86; b 

= .20, t = 7.93, p < .001], unit distance [B = -2.02; b = - .15, t = 5.78, p < .001] reliably 

predicted item RT in the expected direction. Item RT increased as logarithmic overall distance 

decreased, problem size increased and, most importantly, as unit distance increased; thereby, 

indicating a significant influence of unit-decade compatibility on Item RT. On the other hand, 

absolute unit distance was not a reliable predictor of item RTs [B = 1.27; b = .04, t = 1.73, p = 
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.09]. Taken together, analyzing the data produced by the strictly decomposed model provided 

further evidence for the validity of the notion of decomposed processing. 

 

Hybrid model 

ANOVA 

Generally, the results for the data produced by the hybrid model were quite similar to 

those observed for the data of the strictly decomposed model. Predicting the empirical RTs on 

the basis of the modelled RT data resulted in a R
2
 of .40 [r = .63; F(12, 238) = 159.29, p < 

.001]. Moreover, the ANOVA over items showed a significant main effect of compatibility 

indicating estimated RTs for compatible number pairs to be reliably faster than RTs for 

incompatible number pairs [734 ms vs. 754 ms, respectively; F(1, 232) = 26.70, p < .001, see 

Figure 2, Panel D]. Additionally, the expected interaction of compatibility and unit distance 

was present in the data [F(1, 232) = 11.65, p < .01]. So, the compatibility effect was larger for 

number pairs with a large unit distance than for number pairs with a small unit distance (34 

ms vs. 7 ms, respectively). Again, of the remaining contrasts and interactions only the main 

effect of decade distance [F(1, 232) = 322.74, p < .001] was significant despite the marginally 

significant interaction of compatibility and decade distance [F(1, 232) = 3.39, p = .07; all 

other F < 1]. This indicated that number pairs with a large decade distance were followed by 

shorter RTs as compared to number pairs with a small decade distance (708 ms vs. 779 ms, 

respectively). Additionally, the compatibility effect tended to be stronger for number pairs 

with a large decade distance than for pairs with a small decade distance (26 ms vs. 13 ms, 

respectively). . 

Regression 

For the RT estimates produced by the hybrid model the stepwise multiple regression 

analysis yielded an adjusted R
2
 of .76 [R = .87, F(6, 234) = 149.79, p < .001]. The final model 

incorporated the following five predictors: the difference of the logarithms of the two to-be-



 

257 

compared numbers, unit distance, logarithmic problem size, absolute overall distance as well 

as absolute problem size (see Table 3). Inspecting the beta weights showed that modelled RTs 

increased with (i) decreasing difference between the logarithms of the two numbers, (ii) 

decreasing logarithmic problems size (iii) increasing overall distance, and increasing absolute 

problem size. Finally, in line with the assumptions on unit-decade compatibility estimated 

RTs also increased as unit distance decreased. Please note that the unexpected positive 

interrelation of modelled RTs with absolute distance may be driven by intercorrelations of the 

predictors included in the final model. Looking at the raw correlation reveals an initial 

influence in the expected direction. 

 

Table 3: Predictors included in the final regression model for the hybrid data 

Predictor B b t sign. 
Change in 

R
2 

Raw 
correlation 

Partial 
correlation 

Constant 1761.05 - 11.07 < .001 - - - 

Difference of logarithms - 503.53 -1.75 9.31 < .001 .63 - .80 - .54 

Unit distance - 2.66 - .22 6.76 < .001 .05 - .25 - .40 

Log. problem size - 657.56 -1.33 5.46 < .001 .04 - .03 - .34 

Abs. overall distance 2.46 .99 5.57 < .001 .03 - .77 .34 

Abs. problem size 3.40 .90 3.79 < .001 .01 .05 .24 

 

At last, the regression analysis including the four reliable predictors of item RT 

obtained by Nuerk et al. (2001) resulted in a significant model [adj. R
2
 = .62, R = .79, F(4, 

235) = 99.81, p < .001]. Nevertheless, compared to the stepwise regression analysis R2 was 

reduced considerably. Looking at the beta weights showed that item RT increased 

significantly when logarithmic overall distance [constant = 933.29; B = -129.60; b = - .75, t = 

18.93, p < .001] as well as unit distance [B = -2.83; b = - .23, t = 5.82, p < .001] decreased, 

again indicating unit-decade compatibility to determine item RTs produced by the hybrid 

model. However, no reliable influence of problem size [B = 0.04; b = .01, t = 0.28, p = .78] 

and absolute unit distance [B = 0.22; b = .01, t = 0.21, p = .83] was observed. In summary, the 
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data again indicated that decomposed representations of tens and units are necessary to 

account for the compatibility effect, even though they did not seem to preclude the existence 

of a concomitant representation of overall magnitude. 

 

Contrasting the correlations with empirical data 

Finally, to directly compare the individual correlation coefficients reflecting the 

interrelation between modelled and empirical data these correlation coefficients were 

transformed into Fisher’s Z-values. Contrasting the Z-values showed that the data produced 

by the decomposed (Zdecomposed = .89) exhibited a descriptively better fit to the empirical data 

than the holistic or the hybrid model which was however not statistically reliable (Zholistic = 

.78; Zhybrid = .74; difference in z-scores: Zdecomposed vs. Zholistic = 1.22; Zdecomposed vs. Zyhbrid = 

1.59; critical difference at the .05 significance level = ±1.96). The difference between the 

model fit of the holistic and the hybrid model was also not statistically reliable (difference in 

Z-scores = 0.37). 

In summary, the current computational results for comparisons to a variable standard 

indicated that (i) all three models were able to simulate the distance effect, (ii) the 

compatibility effect cannot be accounted for by a holistic representation of number 

magnitude, (iii) the inclusion of a predictor reflecting a measure of overall difference such as 

the difference of the logarithms of the to-be-compared numbers was not necessarily 

determined by the presence of a holistic representation either and (iv) the more complex 

hybrid model did not perform better than the more parsimonious strictly decomposed model. 
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Figure 2:  Reaction times for compatible and incompatible number pairs separated for small and large unit 

distances. Panel A depicts the RT pattern as observed by Nuerk et al. (2001). Panel B shows the RT pattern as 

simulated by the holistic model, while Panels C and D reflect the results as found for the data produced by the 

strictly decomposed and the hybrid model, respectively. Error bars indicate 1 Standard Error of the Mean 

(SEM). 

 

Model Comparisons to empirical date in a magnitude comparison task with a fixed 

standard 

In their recent study Moeller et al. (2009b, i.e., Study 1 of the current thesis) presented 

evidence that the existence of decomposed processing of tens and units is not limited to an 

external representation of the to-be-compared numbers (cf. Zhang & Wang, 2005; Ganor-

Stern, Pinhas, & Tzelgov, 2008). Instead, their results suggested that tens and units are 
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represented separately also in the internal representation of two-digit numbers as the authors 

observed a reliable compatibility effect for comparisons of a given number to an internally 

memorized standard (RT for compatible comparisons: 492 ms vs. incompatible comparisons: 

504 ms, see Figure 3, Panel A). Furthermore, this compatibility effect was found to be 

particularly driven by the compatibility effect for comparisons with a large unit distance (+ 16 

ms) while it could not be obtained for comparisons with a small unit distance (+ 8 ms). 

 

Holistic Model 

ANCOVA 

A regression analysis revealed that modelled RT data accounted for only 10% of the 

variance in the empirical RT data [r = .32; F(2, 86) = 9.73, p < .01]. Furthermore, analyzing 

the RT estimates produced by the holistic model showed that neither the main effect of 

compatibility nor its interaction with unit distance was statistically reliable [all F < 1]. 

Additionally, separate analyses for comparisons for large and small unit distances revealed 

that the compatibility effect was not significant in both analyses [both F < 1] indicating no 

modulation of the compatibility effect by unit distance (see Figure 3, Panel B). Nevertheless, 

the influence of the covariate problem size was significant in all analyses [two-way ANOVA: 

F(1, 39) = 14.53, p < .001; large unit distance: F(1, 9) = 6.22, p < .05; small unit distance: 

F(1, 29) = 9.16, p < .01]. Thus, as has been the case for comparisons to a variable standard 

(see above) the holistic model could not account for the unit-decade compatibility effect.  

 

Regression 

The final regression model for the data produced by the holistic model accounted for a 

significant amount of variance [adj. R
2
 = .31, R = .59, F(2, 37) = 9.67, p < .001] and included 

the predictors absolute problem size and difference between the logarithmic magnitudes of the 

two to-be-compared numbers (see Table 4). Evaluation of the beta weights revealed that 
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response latencies increased as distance between the logarithms of the numbers decreased and 

absolute problem decreased. As for the ANOVA results no indication of an influence of unit-

decade compatibility was observed in the regression analysis on RT data modelled by the 

holistic model. 

 

Table 4: Predictors included in the final regression model for the holistic data 

Predictor B b t sign. 
Change in 

R
2 

Raw 
correlation 

Partial 
correlation 

Constant 566.18 - 40.46 < .001 - - - 

Problem size - .85 - .38 4.39 < .001 .25 - .55 - .13 

Diff Log - 90.63 - .36 2.28 < .05 .09 .02 - .35 

 

Finally, the regression analysis incorporating only the two predictors found to reliably 

predict item RT by Moeller et al. (2009b) was predictive as well. However, the descriptive 

adequacy was considerably reduced as compared to the stepwise regression model [adj. R
2
 = 

.16, R = .45, F(2, 41) = 5.13, p < .01]. Closer inspection of the beta weights revealed that only 

the influence of logarithmic overall distance on item RT was significant [constant = 543.12; B 

= -29.84; b = - .42, t = 2.99, p < .01], whereas no reliable influence of unit distance could be 

observed [B = 0.49; b = .17, t = 1.22, p = .23]. Item RT increased as the logarithmic distance 

between the to-be-compared numbers decreased. Taken together, the current analyses again 

indicate that the compatibility effect is hard to reconcile with the notion of a purely holistic 

representation of number magnitude. 

 

Decomposed model 

ANCOVA 

For the interrelation of modelled and empirical RT it was observed that predicting 

empirical RT by the model data yielded a R
2
 of .54 indicating a shared variance of 54% [r = 

.74; F(2, 70) = 82.89, p < .001]. Furthermore, the ANCOVA on the RT data produced by the 



 

262 

strictly decomposed model revealed a reliable main effect of compatibility [F(1, 39) = 6.03, p 

< .05] meaning that estimated RTs for compatible comparisons were significantly shorter than 

estimated RTs for incompatible comparisons (496 ms vs. 506 ms, respectively). Moreover, 

both the main effect of unit distance and the interaction of compatibility and unit distance 

were not reliable [both F(1, 39) < 1]. Yet, when evaluating the compatibility effect separately 

for comparisons with either a large or a small unit distance it was found that the compatibility 

effect was present only for comparisons with a large unit distances [496 ms vs. 508 ms 

respectively; F(1, 9) = 13.16, p < .01] but missed significance for the comparisons with small 

unit distances [498 ms vs. 504 ms respectively; F(1, 29) = 2.02, p = .17, see Figure 3, Panel 

C]. Comparably to the analyses on the data produced by the holistic model the influence of 

the covariate problem size was reliable in all analyses [two-way ANOVA: F(1, 39) = 15.27, p 

< .001; large unit distance: F(1, 9) = 7.71, p < .05; small unit distance: F(1, 29) = 10.79, p < 

.01]. These results not only indicated that the strictly decomposed model accounted for a 

larger part of the variance of the empirical RTs in general, but also showed that the 

compatibility effect was simulated successfully. 

 

Regression 

The final model of the stepwise regression analysis on the modelled RT data of the 

strictly decomposed incorporated the predictors difference between the logarithms of the to-

be-compared numbers, unit distance and logarithmic unit distance [adj. R
2
 = .80, R = .90, F(3, 

40) = 59.49, p < .001, see Table 5]. A closer look at the beta weights revealed that reaction 

times increased as the overall distance between the to-be-compared numbers decreased and 

problem size increased. More particularly, response latencies also increased as unit distance 

decreased. As unit distance is positive for compatible pairs but negative for incompatible 

number pairs the inclusion of this predictor reflects a reliable influence of unit-decade 

compatibility on response latencies estimated by the strictly decomposed model.  
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Table 5: Predictors included in the final regression model for the decomposed data 

Predictor B b t sign. 
Change in 

R
2 

Raw 
correlation 

Partial 
correlation 

Constant 491.63 - 78.30 < .001 - - - 

Overall Distance  -2.04 -  .69 10.16 < .001 .48 - .69 - .85 

Problem size .74 .50 7.42 < .001 .25 .50 .76 

Unit distance - 1.14 - .29 4.33 < .001 .09 - .30 - .57 

 

At last, the regression analysis including only the two predictors identified to 

significantly predict item RT in the study by Moeller et al. (2009b) resulted in a reliable 

model [adj. R
2
 = .51, R = .73, F(2, 41) = 23.23, p < .001]. However, descriptive adequacy of 

the model was considerably reduced as compared to the final model of the stepwise regression 

analysis. Nevertheless, both variables predicted item RTs reliably. Inspection of the beta 

weights revealed that item RTs increased as logarithmic overall distance [constant = 575.48; 

B = -63.81; b = - .66, t = 6.20, p < .001] as well as unit distance [B = -1.12; b = - .29, t = 2.68, 

p < .01] decreased. Again, the reliable negative influence of unit distance indicated item RTs 

to be driven by unit-decade compatibility. In summary, these analyses consistently indicated a 

good fit between the data produced by the strictly decomposed model and the empirical 

results, not only regarding descriptive adequacy, but also concerning the reliable simulation of 

the relevant effects (i.e., distance and compatibility effect). 

 

Hybrid model 

ANCOVA 

Overall, predicting empirical RTs by the RT estimates produced by the hybrid model 

resulted in a R
2
 of .43 [r = .65; F(2, 70) = 52.24, p < .01]. However, unlike previously 

observed for the comparisons to a variable standard (see above) the strictly decomposed and 

the hybrid model did not perform similarly for comparisons to an internal standard. No 
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reliable main effect of compatibility was present in the RT data produced by the hybrid model 

[F(1, 39) = 1.24, p = .27, see Figure 3, Panel D]. This indicated that modelled RTs for 

compatible comparisons were not reliably faster than RTs for incompatible comparisons (501 

ms vs. 505 ms, respectively). Also, the interaction of compatibility and unit distance was not 

statistically reliable [F(1, 39) < 1]. In line with this, separate analyses for comparisons with 

large and small unit distances did not reveal the expected dissociation: neither for 

comparisons with a large unit distance [F(1, 9)  = 1.38, p = .27] nor for comparisons with a 

small unit distance [F(1, 29) < 1] a reliable compatibility effect was found. This means that 

the hybrid model could not account for the compatibility effect as observed for comparisons 

to a fixed standard. Problem size as incorporated by a covariate did not exhibit a reliable 

influence in any ANCOVA [F(1, 39) = 1.85, p = .18; large unit distance: F(1, 9) = 3.44, p = 

.10; small unit distance: F(1, 29) < 1].  

 

Regression 

The only reliable predictor incorporated into the final regression model for the RT data 

modelled by the hybrid model was overall distance between the to-be-compared numbers [adj. 

R
2
 = .46, R = .69, F(1, 38) = 37.56, p < .001]. Looking at the beta weight showed that reaction 

times increased as the distance between the two numbers decreased [constant = 533.22; B = -

2.03; b = - .69, t = 6.13, p < .001].  

Rerunning the regression analysis with incorporation of the two reliable predictors as 

identified by Moeller et al. (2009b) did result in a statistically reliable model without 

considerable loss of predictive power [adj. R
2
 = .42, R = .67, F(2, 41) = 16.39, p < .001]. 

However, inspection of the beta weights showed that only the influence of the predictor 

logarithmic overall distance was significant [constant = 575.50; B = -62.72; b = - .66, t = 5.62, 

p < .001] while unit distance did not predict item RT reliably [B = - .43; b = - .11, t = 0.95, p 

= .35].  
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Taken together, these results revealed that the compatibility effect for comparisons to a 

fixed standard could not be simulated by the hybrid model. 

 

Figure 3:  Response latencies for compatible and incompatible comparisons to a fixed standard separated for 

small and large unit distances. Again, Panel A depicts the empirically observed RT pattern (Moeller 

et al., 2009b), whereas Panels B, C, and D indicate the RT pattern for the data produced by either the 

holistic, the strictly decomposed, or the hybrid model, respectively. Error bars reflect 1 SEM. 

 

Contrasting the individual models’ correlations with empirical data 

Finally, individual correlation coefficients reflecting the interrelation between 

modelled and empirical data were transformed into Fisher’s Z-values to directly contrast 
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them. As could already been inferred from the raw correlations the data produced by the 

decomposed and the hybrid model (Zdecomposed = .95; Zhybrid = .78) showed a significantly 

better fit to the empirical data than the holistic model (Zholistic = .001; difference in z-scores: 

holistic vs. decomposed = 5.40, holistic vs. hybrid = 4.50; critical difference at the .05 

significance level = ±1.96). However, the difference between the model fit of the strictly 

decomposed and the hybrid model was not statistically reliable (difference in z-scores = 0.90). 

 

In summary, the results pattern for the comparisons to a fixed standard only partly 

mirrored that observed for comparisons to a variable standard: (i) Again, all current 

computational models were able to simulate the distance effect. Additionally, (ii) the 

inclusion of the predictor overall difference in the final regression model was also not 

necessarily determined by the presence of a holistic representation. However, (iii) the 

compatibility effect could not be accounted for by the two models involving a holistic 

representation of number magnitude, i.e., the purely holistic and the hybrid model. 

Nevertheless, (iv) the strictly decomposed model did not perform better than the more 

complex hybrid model in terms of descriptive adequacy. Anyway, the data obtained from the 

strictly decomposed as well as the hybrid model achieved a satisfactory fit to the empirical 

data and performed reliably better than the holistic model.  

 

DISCUSSION 

The present study set off to provide a first comparison of the three currently proposed 

modes of two-digit number magnitude representations (i.e., holistic, strictly decomposed, or 

hybrid) using a computational modelling approach. It was expected that all three models 

should be able to account for the distance effect, whereas only the strictly decomposed and 

the hybrid model, but not the holistic model, should successfully simulate the unit-decade 

compatibility effect. Additionally, when incorporation of a predictor representing a measure 
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of overall distance necessarily requires a holistic no such a predictor should be incorporated in 

the final regression model evaluating the data produced by the strictly decomposed model. 

Finally, due to reasons of model parsimony the hybrid model should only be chosen to be the 

most appropriate model when it outperforms the strictly decomposed model reliably. 

Evaluation of the data produced by either of these models yielded results that were 

straightforward on all of these aspects. First, a reliable influence of the numerical distance 

between the to-be-compared numbers on RT was present in the data produced by each of the 

three computational models. Thereby, indicating that the distance effect was successfully 

accounted for by all three models for both, comparisons to a variable (as e.g., in Nuerk et al., 

2001) as well as to a fixed standard (as e.g., in Moeller et al., 2009b; Study 1 of the present 

thesis). Second, as regards unit-decade compatibility our hypothesis was confirmed as the 

compatibility effect could not be observed for the data produced by the holistic model in 

general. Concerning the hybrid and the strictly decomposed model the results on the 

compatibility effect were less consistent. Although, the empirical data was accounted for 

comparably well by the strictly decomposed as well as the hybrid model in terms of 

descriptive adequacy, the compatibility effect could be simulated by both the strictly 

decomposed as well as the hybrid model only for the case of comparisons to a variable 

standard. Moreover, here, even the characteristic interaction of compatibility and unit distance 

was observed. The compatibility effect for modelled item RTs was consistently larger for 

number pairs with a large unit distance as compared to pairs with a small unit distance. 

Additionally, the categorical effect was specified by the results of the stepwise regression 

analyses for both the decomposed and the hybrid model. Unit distance was identified to be a 

reliable predictor of item RT for both models. Item RT increased as unit distance decreased. 

As unit distance is positive for compatible but negative for incompatible number pairs this 

again indicated the influence of unit-decade incompatibility on simulated item RTs.  
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Nevertheless, the results pattern was not so similar for the decomposed and the hybrid 

model when comparisons to a fixed standard were evaluated. Although both models did not 

differ reliably regarding descriptive adequacy, the compatibility effect was only found for the 

data produced by the strictly decomposed model. For the hybrid model data the compatibility 

effect was found in the expected direction, however, missed statistical significance. In line 

with this, the continuous predictor unit distance was a reliable predictor of item RT only in the 

regression analysis for the data produced by the strictly decomposed model. As for the 

comparisons to a fixed standard unit distance was limited to a maximum of ±6 and this 

maximal unit distance was present in only a small number of items, this may once again argue 

for the importance of large unit distances when looking for unit-based effects (see Moeller et 

al., 2009b) for a more detailed discussion (see also below for a discussion on possibly 

different origin of the compatibility effect within the strictly decomposed and the hybrid 

model). Taken together, this inconsistency in the replication of the compatibility effect 

between the decomposed and the hybrid model may be a first indicator of the superiority of 

the strictly decomposed model. Such an interpretation is corroborated by a general principle 

of model selection as well as another result of the current simulations.  

On the one hand, taking into account that the hybrid model is the less parsimonious 

one and following Occam’s razor the current computational data again suggest that multi-digit 

number magnitude is represented in a decomposed fashion retaining the place-value structure 

of the Arabic number system (see Myung & Pitt, 1997 for a discussion on model selection 

criteria). On the other hand, this interpretation can be further specified when considering the 

results of the regression analyses. Basically, the incorporation of a holistic representation of 

overall number magnitude in the hybrid model (Nuerk & Willmes, 2005) resulted from 

repeated findings that apart from predictors indicating decomposed processing of tens and 

units a measure of overall distance between the to-be-compared numbers (i.e., absolute 

distance, logarithmic distance, distance between the logarithms of the two numbers) was the 
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most important predictor in a multiple regression analysis (e.g., Nuerk et al., 2001; 2002; 

2004a; Moeller et al., 2009b; Wood et al., 2006). However, the current data indicated that a 

holistic representation (as in the purely holistic or the hybrid model) is not a mandatory 

prerequisite for an important influence of overall distance measures in the regression analyses. 

Instead, it was observed that even for the data produced by the strictly decomposed model a 

measure coding overall distance (i.e., distance between the logarithms of the to-be-compared 

numbers) was identified to be the most important predictor of item RT. Thus, this means that 

the inclusion of such a predictor is not a direct indicator for the existence of a holistic 

representation of number magnitude as it was also found for data produced by a model 

without any integrated representation of two-digit number magnitude.  

 

In summary, the present results indicated that the distance effect could be accounted 

for by each of the three models, whereas the compatibility effect required decomposed 

representations of tens and units as suggested by Nuerk et al. (2001; see also Nuerk & 

Willmes, 2005 for a review). Additionally, the reliable influence of an overall distance 

measure in the regression analyses was not a necessary consequence of a holistic 

representation. Thus, the current data provide first computational evidence for the assumption 

of two-digit number magnitude representation to be organized in compliance with the place-

value structure of the Arabic number system, thereby representing each power of ten (i.e., 

units, tens, etc.) separately. Under consideration of model parsimony the empirical data were 

accounted for best by a strictly decomposed model realizing separate representations of tens 

and units. 
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Different origins of the compatibility effect in the hybrid and the strictly decomposed 

model 

When inspecting the development of the connection weights (see Appendix B) in the 

strictly decomposed as well as the hybrid model there are similarities but also important 

differences. On the one hand, the output of both models was significantly driven by the digits 

at the tens position. However, as indicated by a reliable unit-decade compatibility effect 

observed for the modelled RT data as well as the significant influence of unit distance in the 

stepwise regression analyses there seemed to be a considerable influence of the unit digits as 

well. Modelled item RT was reliably longer for incompatible than for compatible number 

pairs. Additionally, the compatibility effect was more pronounced for large as compared to 

small unit distances. Finally, item RT increased as unit distance decreased. As unit distance is 

negative for incompatible number pairs (e.g., 37_ 62 � decade distance: 6 - 3 = 3; unit 

distance: 2 - 7 = -5) the latter result again corroborates the interpretation of the compatibility 

effect to be determined by the magnitude of the unit distance. Taken together, these findings 

suggest that the results pattern observed in the empirical data (cf. Nuerk et al., 2001) can be 

simulated by both the strictly decomposed as well as the hybrid model of two-digit number 

representation. 

Nevertheless, a closer look at the development of the connection weights also showed 

that the influence of the digits at the unit position was not identical in the strictly decomposed 

and the hybrid model. In the decomposed model the compatibility effect is determined by 

specific activation differences of the unit digits for compatible and incompatible number pairs 

and thus in line with the considerations by Nuerk and Willmes (2005; see also Knops, 2006). 

Yet, for the hybrid model, the direct influence of the unit digits on the output was less 

emphasized. Instead, the connection weights for the unit digits between the input layer and the 

hidden layer of the hybrid model were not altered considerably by the learning procedure and 

remained by far smaller than the weights for the tens digits and overall magnitude. As the 
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activation of the output layer is a combination of the activation of the hidden layer for the 

comparisons of tens, units, and overall magnitude this indicated a very small and unspecific 

influence of the unit digits on the output in the hybrid model. For the compatibility effect this 

implies that its successful simulation by the hybrid model for the case of comparisons to a 

variable standard may not be primarily driven by specific activation differences of the unit 

digits between compatible and incompatible number pairs. Rather, the compatibility effect 

may be due to systematic differences in the difference between the activations for overall 

magnitude and that for the tens digit. As the separate representations of tens, units, and overall 

magnitude were assumed to be linear in the current computational models the latter difference 

nevertheless provides an indirect measure of the unit distance. Thereby, the compatibility 

effect observed for the data produced by the hybrid model is not based on the direct 

comparisons of the unit digits of the two to-be-compared numbers but by a derivate of the 

comparisons of overall magnitude and the tens. However, this indirect influence of the unit 

digits on overall performance differs from the influence originally assumed by Nuerk and 

Willmes (2005) for the hybrid model. 

In summary, evaluation of the connection weights indicated the compatibility effect to 

originate from different sources in the strictly decomposed and the hybrid model. 

Interestingly, only the compatibility effect observed for the data by the decomposed model 

seemed to arise from the separate comparisons of tens and units of the to-be-compared two-

digit numbers. On the other hand, the compatibility effect found for the hybrid model data 

seemed to be the result of differences between the representations of overall magnitude and 

the tens digits. Thus, only the comparison process realized by the decomposed model is in line 

with the original assumptions of the hybrid model as promoted by Nuerk and Willmes (2005; 

see also Knops, 2006). A probable reason for the obtained pattern of result may be linear 

dependency between overall magnitude, tens magnitude, and unit magnitude when assuming 

linear coding of all of these symbolic representations.  
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As already mentioned in the introduction the only other neural network model 

accounting for the whole range of two-digit numbers is the one by Grossberg and Repin 

(2003). Please note that Grossberg and Repin (2003) postulate the origin of the representation 

of multi-digit numbers within their model to be driven by verbal number words. This means, 

that their model was not explicitly organized along place-value constraints but assumed that 

apart from a primary number line coding single-digit numbers (but not being necessarily 

limited to these) so-called number categories associated with verbal markers (such as e.g., the 

suffix -ty) form the basis for the representation of multi-digit numbers. Thereby, the number 

categories should be more or less language specific as e.g., the Basque number word system 

inherits a combination of base-20 and base-10 properties. Nevertheless, although their model 

seemed to produce compatibility like effects (cf. Figure 23, p. 1130) the authors did not 

evaluate these systematically and neither did they interpret these effects in terms of place-

value integration as proposed by the current study. Taken together, the model by Grossberg 

and Repin (2003) should also be capable of accounting for the compatibility effect as long as 

the number words used for training the model retain the base-10 place-value structure of the 

Arabic number system. 

 

Finally, another aspect of input format apart from the number word dependency in the 

Grossberg and Repin (2003) model may be worth considering. As the separation of tens and 

units is only possible in symbolic numerical notations but not in non-symbolic notation (e.g., 

dot pattern) decomposed processing of tens and units may be limited to symbolic 

presentations. On the other hand, the representation of overall magnitude is not tied to 

symbolic notation that closely. Thereof, the question arises whether the representation of 

overall magnitude is mandatorily symbolic and linear as well – an issue discussed in the 

following section. 
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The nature of the representation of overall magnitude 

 Basically, the successful simulation of empirical effect by the present models 

assuming place coding of numerical magnitude argues for the employment of a symbolic 

representation of the to-be-compared numbers (cf. Verguts et al., 2005). However, in 

principle, the representation of two-digit number magnitude may indeed be a combination of 

symbolic and non-symbolic representations with non-symbolic coding being reflected by 

summation- rather than place coding (e.g., Roggeman, Veguts, & Fias, 2007; see also Verguts 

& Fias, 2008 for a discussion). In particular, for the hybrid model one could argue that only 

the decomposed part of the model follows symbolic place-value constraints whereas the 

holistic part may rather represent some kind of non-symbolic approximate overall magnitude. 

Regarding model architecture such a conceptualization could be implemented by employing 

some kind of summation recoding for the overall magnitude representation. In the model of 

number representation by Verguts et al. (2005) such summation coding was assumed only for 

the case of non-symbolic input. However, the Zorzi and Butterworth (1999) model used 

summation coding for any kind of numerical input.  Thus, there is the possibility that the 

representation of overall magnitude as proposed for the hybrid model of two-digit number 

representation may not be symbolic in nature but rather recodes the symbolic input into some 

kind of numerosity representation more similar to that assumed for non-symbolic quantities. 

Thereby, the hybrid model would be integrating numerical information in the most 

comprehensive way as both notation specific power as well as notation unspecific information 

can be considered. In this context, for instance, separate representations of digital magnitude 

complying with the power levels of the place-value structure of the Arabic number system 

would reflect notation specific representations. On the other hand, the numerosity 

representation reflecting overall magnitude of an involved number may be rather notation 

invariant. Taken together, under these considerations the hybrid model of number 

representation may open up a new way within the actual debate on whether number 



 

274 

magnitude representation is notation specific (e.g., Cohen-Kadosh, Cohen-Kadosh, Kaas, 

Henik, & Goebel, 2007) or rather independent from input notation and thus amodal (e.g., 

Piazza, Pinel, Le Bihan, & Dehaene, 2007). This controversy was addressed in a recent target 

article by Cohen Kadosh and Walsh (2009). Therein, the authors argued for non-abstract 

notation specific representations of number magnitude in humans. However, as becomes 

evident from the commentaries by Cantlon, Cordes, Libertus, and Brannon (2009), Dehaene 

(2009), Ganor-Stern (2009), Grabner (2009) and others there is also considerable evidence 

suggesting an abstract notation invariant representation of number magnitude. Interestingly, 

Kucian and Kaufmann (2009) addressed this issue by claiming that this diverging pattern of 

empirical results may indicate that there are indeed notation dependent representations which 

nevertheless overlap to a certain degree, thereby mimicking an abstract notation independent 

representation of number magnitude. So, the question may not be either notation specific or 

notation unspecific but to what extend are notation specific and unspecific representations 

involved in human number processing capabilities? The latter notion was briefly mentioned 

by Cohen Kadosh and Walsh (2009, p. 322) but not elaborated on further. However, the 

hybrid model of number magnitude representation (Nuerk & Willmes, 2005) may offer a first 

theoretical framework for guiding future research on this question. 

 

LIMITATIONS / PERSPECTIVES 

When evaluating the computational results of the current study a number of 

presuppositions and limitations that have been taken when setting up the computational 

models should be kept in mind. Most importantly, programming of the current models was 

largely determined by the psychological implications of the theoretical models. This means 

that the separate representations of tens and units in the strictly decomposed model as well as 

the separate representations of tens, units, and overall magnitude have been kept apart by the 

present model architecture  until their respective activations are evaluated at the output stage. 
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Thereby, possible interactions and interferences between the processing of the separate 

representations were not implemented into the current versions of the decomposed as well as 

the hybrid model. In turn, this rather minimalistic model architecture did not cover the entire 

complexity of  the hybrid model, in particular, for which specific inhibitory and excitatory 

interrelations of the single representations are assumed (cf. Nuerk & Willmes, 2005). In this 

sense, the decomposed comparisons of tens and units as assumed in the current models do 

also not take into account possible comparison processes between the tens digit of the one 

number and the unit digit of the other or even between the two digits constituting one number 

which have been observed to occur when comparing two two-digit numbers (Wood, Nuerk, & 

Mahr, 2005). Taken together, it has to be noted that the results of the present study have been 

achieved using rather prototypical and simplified architectures for the three models of two-

digit number representations to-be-compared. Nevertheless, these results suggested that 

computational modelling may be a fruitful methodological approach to evaluate the validity 

of theoretical models on the structure of two-digit number magnitude representation. 

Therefore, it is up to future studies to investigate whether the current findings also hold when 

more specific aspects of the individual models are implemented into the architecture of the 

computational models.  

Another important point does not directly concern model architecture but more general 

aspects of cognitive processing. Nuerk and co-workers have argued repeatedly that attentional 

processes may play a role in two-digit number comparison (e.g., Nuerk & Willmes, 2005; 

Moeller et al., 2009b). In particular, the size of the compatibility effect was found to be 

influenced by the number of within-decade trials (e.g., 43_48) in the stimulus set. As in 

within-decade trials the unit digit is decisive increasing number of within-decade trials means 

that attentional focusing on the decade digits of the two to-be-compared numbers becomes 

less and less beneficial. This results in a more balanced relevance of tens and units for the 

decision and leads to a more pronounced compatibility effect. Additionally, in their current 
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versions the strictly decomposed as well as the hybrid model assumes that processing of tens 

and units (and overall magnitude) works in perfect parallelism not allowing for any temporal 

gradient possibly delaying the processing of e.g., the units. At the moment the present 

computational models are not capable to account for such an effect of attentional modulation 

or any temporal specifications in the processing of the single representations. Again, future 

studies are required to investigate whether such processes indeed contribute to the processing 

of two-digit magnitude. 

 

Taken together, it has to be noted that there are a number of questions still to be 

answered regarding both the implementation of processing specificities of the individual 

models as well as more general processing characteristics. Nevertheless, the current study 

indicated that computational modelling is a valuable tool for distinguishing between different 

models of two-digit number magnitude representation as it successfully discriminated 

between three theoretical models taking into account their capability to simulate standard 

effects observed in two-digit number comparison. 

 

CONCLUSIONS 

The aim of the present study was to provide first computational evidence for 

evaluating the validity of three current models of number magnitude representation: the 

holistic (e.g., Dehaene et al., 1990), the strictly decomposed (cf. Verguts & de Moor, 2005), 

and the hybrid model (e.g., Nuerk & Willmes, 2005). In particular, we were interested in 

distinguishing between the strictly decomposed and the hybrid model as there is currently no 

empirical way to discern the two models. The computational results were informative: As 

expected, the holistic model could not account for the compatibility effect whereas the 

decomposed and the hybrid model did. Moreover, a measure of overall distance between the 

to-be-compared numbers was the most important predictor of item RT even though the strictly 
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decomposed model did not include an explicit representation of the overall magnitude of these 

two numbers. Synced with the fact that the decomposed model was the more parsimonious 

one the analyses indicated that the empirical data by Nuerk and colleagues (2001) and 

Moeller and co-workers (2009b) was accounted for best by the strictly decomposed model. In 

summary, the present study presented further evidence suggesting that two-digit number 

magnitude may not be represented holistically as has been claimed only recently (Ganor-Stern 

et al., 2008; Zhou, Chen, Chen, & Dong, 2008) but rather decomposed complying with the 

power levels of the place-value structure of  the Arabic number system (e.g., tens and units). 
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APPENDIX A 

 
Figure A: Frequency of occurrence of individual numbers from 11 to 99 (excluding multiples of 10) as obtained 

from a Google survey and used to train the neural network models 
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APPERNDIX B 

Development of connection weights 

Holistic model 

For the holistic model training resulted in a diametrically opposed development of 

connection weights of the two output nodes for the two numbers: connection weights to one 

output node were comparatively high for small numbers and decreased with increasing 

magnitude of the number while this pattern was reversed for the connection weights to the 

other output node. Here, connection weights increased as the magnitude of the to-be-

represented number increased. As can be seen from Figure 1 increase / decrease of connection 

weights with increasing magnitude did not follow a linear function, but rather seems to be of 

compressed (logarithmic) nature (see below for a discussion).  

 

 

Figure B:  Connection weights from the input to the output node for each of the  

two to-be-compared numbers and each output node as observed for  

the holistic model (after 1.000, 10.000 and 50.000 training cycles).  
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Decomposed model 

The connection weights of the two numbers (from the input to the hidden layer) as 

well as those for tens and units (from the hidden to the output layer) developed in 

diametrically opposed ways as described for the holistic model. Moreover, for the connection 

from the input to the hidden layer the connection weight pattern for decade and unit digits did 

not have a linear slope. Instead, as already observed in the model by Verguts et al. (2005) the 

pattern is described best by a compressed function as generally, differences between the 

connection weights of two successive numbers are larger for relatively smaller numbers (i.e., 

2_3 vs. 7_8). According to Verguts and colleagues (2005) this pattern is determined by the 

frequency distribution of the single digits (i.e., 1 - 9) used for training the model, rather than 

allowing any kind of inferences on the scaling properties (i.e., logarithmic vs. linear) of the 

underlying magnitude representation. Importantly, in the present simulations the connection 

weights for the decade digits were stronger than the weights for the unit digits (with the 

difference between the minimum and maximum weight being about three times larger for the 

connection weights of the decade digits, see Figure C); thereby suggesting a more prominent 

influence of the decade digits in two-digit number magnitude comparison. This mirrors results 

repeatedly observed in regression analyses on empirical RT data. Here, the beta weights of for 

the predictor decade distance (when considered in the final model) were found to be two to 

four times higher than the beta weights for the unit distance (e.g., Knops, 2006; see Nuerk & 

Willmes, 2005 for a discussion). 
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Figure C:  Development of connection weights as observed for the strictly decomposed model  

(after 1.000, 10.000 and 50.000 training cycles). In the first row weights for the connection 

between input and hidden layer for the decade digits of the two to-be-compared numbers  

are given. The second row depicts the analogue for the unit digits. In the third row the 

connection weights between the hidden layer and the output layer are shown separated  

for tens and units. 

 

Hybrid model 

The connection weights in the decomposed part of the hybrid model developed in a 

way similar to that in the strictly decomposed model. Again, the connection weights for the 

decade digits were higher than those for the unit digits. For the holistic part of the model the 
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learning pattern mirrored the one found for the purely holistic model with the diametrically 

opposed development of connection weights for the two to-be-compared numbers. 

Importantly, for the connection between the hidden layer and the output layer the connection 

weights for the holistic part of the model developed similarly to the connection weights of the 

unit digits of the decomposed part of the model and diametrically opposed to the weights for 

the decade digits. 

 

 

Figure D:  Development of connection weights as observed for the decomposed part of the hybrid model (after 

1.000, 10.000 and 50.000 training cycles). Again, the first row depicts connection between input and 

hidden layer for the decade digits while the weights for the units are given in the second row. The 

third row reflects the connection weights between hidden and output layer separated for tens and 

units. 
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Figure E:  Development of connection weights for the holistic part of the hybrid model (after 1.000,  

10.000 and 50.000 training cycles). The first row reflects the connection weights between the 

input and the hidden layer for each of the two numbers whereas in the second row the  

connection weights between the input and the output layer are depicted. 
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Appendix C 

On the interrelation of problem size and distance in the stimulus set used 

As can be seen from Figure F the interrelation between the two reliable predictors of 

item RT produced by the holistic model (i.e., difference between the logarithms of the two 

numbers and problem size) is curvilinear rather than linear. However, the multiple linear 

regression analysis is not able to account for this. Closer inspection of the figure shows that 

the curvilinear relation means that up to a problem size of about 65 the difference between the 

logarithms is positively correlated with problem size. Only for items with a problem size 

larger than this the correlation becomes negative. 

 

 

Figure F:  Simple linear and curvilinear fitting of the interrelation of the two reliable  

predictors of item RT difference between the logarithms and problem size  

 

At the same time, inspection of Figure G reveals that item RT decreases with 

increasing problem size up to exactly the same point of a problem size of about 65; thereby, 

indicating a reversed problem size effect. Only for items with a problem size above 70 a 

regular problem size effect of item RT increasing together with problem size can be observed. 
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Interestingly, one might infer from this that the distance effect dominates the problem size 

effect. However, at this point this conclusion has to remain speculative. Taken together, these 

additional analyses suggest that the unexpected negative influence of problem size on item RT 

may be determined by aspects of the stimulus set, rather than representing a shortcoming of 

the programming of the holistic model or the holistic magnitude representation in general. 

 

 

Figure G:  Simple linear and curvilinear fitting of the interrelation between  

problem size and item RT. 
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Section 6 

 

Summary 
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SUMMARY 

 

Before evaluating the implications of the preceding results in the General Discussion a 

short summary of each of the seven studies shall be given in turn to recapitulate the most 

important results. Please note that the summary will be focused on illustrating the most 

important results of the individual studies while the interpretation of the results will be kept at 

a minimum here and will be given in the Synopsis and Evaluation / Discussion sections of the 

General Discussion.  

The current thesis aimed at investigating the influence of the place-value structure of 

the Arabic number system on numerical cognition in three different respects: (i) In a first set 

of studies questions regarding the cognitive representation / instantiation of the place value 

structure were addressed (cf. Section 2). (ii) Attention was paid to the importance of 

children’s early place-value understanding and its developmental trajectories on the 

development of numerical / arithmetical competencies such as addition (cf. Section 3). (iii) 

The neuropsychological underpinnings of place-value processing were examined in a 

functional MRI study as well as in a patient study evaluating its impairments caused by hemi-

spatial neglect (cf. Section 4). Apart from these empirical data this thesis provided a first 

evaluation of the representational structure of two-digit numbers (i.e., holistic, strictly 

decomposed, or hybrid) using a computational modelling approach (cf. Section 5). The 

summary will follow this structuring as the results of the respective sections will be illustrated 

in turn  

 

Section 2: On task general influences of the place-value structure of the Arabic number 

system in human number representation  

Study 1 of this thesis addressed the nature of the internal representation of two-digit 

number magnitude. Recent research (e.g., Zhang & Wang, 2005; Ganor-Stern, Pinhas, & 

Tzelgov, 2008) proposed that the decomposed representation of two-digit number magnitude 
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may be determined by the presentational format employed in the respective studies. These 

authors argue that evidence suggesting separate processing of decade and unit digit 

magnitudes comes from studies in which both to-be-compared numbers were presented 

externally (e.g., 37_53). Additionally, they presented empirical evidence indicating holistic 

rather than decomposed processing of tens and units when only one number is presented and 

had to be compared to an internally memorized standard (Zhang & Wang, 2005). In the first 

study, when participants had to compare a given probe to an internal standard, empirical 

evidence for decomposed processing of two-digit number magnitude was observed as 

indicated by a standard unit-decade compatibility effect and its characteristic interaction with 

unit distance (i.e., a more pronounced compatibility effect for large unit distances). These 

results are hard to reconcile with the notion of a holistic internal representation of two-digit 

number magnitude in which the place-value structure of the Arabic number system is not 

retained. 

In Study 2 the influence of place-value information on the solving of basic arithmetic 

addition problems was investigated. It was hypothesized that place-value information is 

especially important in addition problems in which the execution of a carry operation is 

needed. In such trials the decade digit of the unit digit sum has to be carried to the result’s 

decade digit to calculate the correct result, thereby, requiring processes of place-value, i.e., 

unit-decade integration. More particularly, it was expected that the basic processes of (i) 

calculating the unit sum to determine whether a carry is needed or not, and (ii) the updating of 

the decade digit of the result should be dissociable by evaluating participants’ eye fixation 

behaviour. Based on the eye-mind and immediacy assumption (cf. Rayner & Pollatsek, 1989), 

a more pronounced increase in the number of fixations on the unit digits of the summands 

should be found if the difficulty of carry addition problems arises from computing the two-

digit sum of these unit digits. Otherwise, if updating the decade digit of the result causes the 

difficulty of carry addition problems, there should be a steeper increase in the number of 
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fixations on the result’s decade digit. In line with these expectations, evaluation of the eye 

fixation data showed that the increase in number of fixations due to the carry operation was 

indeed more pronounced on the unit than on the decade digits of the summands. The reversed 

pattern was found for decade and unit digit of the result. In summary, the results corroborate 

the notion of carry addition problems being associated with specific processes of place-value 

integration.  

 

Section 3: On the importance of place-value integration for arithmetic development  

 Study 3 set off to investigate the differential influence of children’s early place-value 

knowledge on the development of their spatial representation of number magnitude. In a 

recent study, Moeller, Pixner, Kaufmann, and Nuerk (2009) found evidence for children’s 

spatial number magnitude representation to be influenced by the place-value structure of the 

Arabic number system. Their estimates when localizing the position of a given number on a 

hypothetic number line are accounted for best by a two-linear model with a breakpoint at 10 

representing two different representations for single- and two-digit numbers. The validity of 

this finding was evaluated in a cross-cultural study with German- and Italian-speaking 

children using a number word system with and without inversion, respectively. The results 

clearly indicated that the importance of the place-value structure of the Arabic number system 

for the development of a spatial representation of number magnitude was not determined by 

properties of the number word system. Similar to the German-speaking children, Italian-

speaking children’s estimation performance was also conceptualized best by a two-linear 

model reflecting two different representations for single- and two-digit numbers. However, 

estimations of German-speaking children were less accurate and in particular so on items for 

which an inversion error resulted in a large difference between the actual and the wrongly 

understood number (e.g., 29 � 92). Interestingly, evaluation of the direction of the estimation 

error also corroborated the notion of German-speaking children being more prone to mix up 
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tens and units: German-speaking children systematically under-/overestimated the position of 

a given number in accordance to whether mixing up tens and units would bias an under- or 

overestimation (i.e., 72 � 27 vs. 28 � 82, respectively). Although place-value understanding 

influenced estimation performance in both cultures in a very similar way, German-speaking 

children were at a particular disadvantage due to the fact that place-value information 

conveyed by their number word system does not correspond to the ordering of tens and units 

when expressed symbolically.  

 Study 4 was intended to evaluate the importance of children’s early place-value 

knowledge on their later arithmetic performance in a longitudinal approach. So far, most of 

the evidence suggesting basic numerical competencies to be a building block for later 

development of numerical / arithmetical skills and capabilities comes from cross-sectional 

studies (e.g., Holloway & Ansari, 2009). In the present study it was investigated whether early 

place-value knowledge as operationalized by children’s performance in a transcoding as well 

as a magnitude comparison task in first grade is a reliable predictor of performance in an 

addition verification task in third grade. Particular interest was paid to the influence of more 

specific predictors reflecting processes of place-value integration in basic number processing 

(e.g., the number of inversion errors in transcoding or the size of the compatibility effect in 

magnitude comparison) on comparable effects in basic arithmetic three years later (e.g., the 

carry effect). The results indicated that performance in basic numerical tasks served as 

reliable predictors of later arithmetic performance. Apart from this rather general influence of 

basic numerical knowledge on later performance we also observed evidence for a specific 

influence of children’s early place-value knowledge in first grade on addition performance in 

third grade: Children with a more elaborate understanding of the place-value structure in 

grade 1 showed better performance in the arithmetic task three years later. More particularly, 

these children committed less place-value related errors in carry addition problems, thereby 

exhibiting a comparably smaller carry effect. These findings suggest an important role of 
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early place-value understanding for the later development of numerical / arithmetical 

competencies (see also Study 2 for influences of the place-value structure of the Arabic 

number system on adult addition performance).  

 

Section 4: The neuro-cognitive underpinnings of place-value integration  

In Study 5, the neural correlates of place-value integration were investigated by 

functional MRI. In a previous study Nuerk, Geppert, van Herten, and Willmes (2002) found 

that in a verification version of the number bisection task triplets crossing a decade boundary 

were responded to significantly slower than triplets that stayed within the same decade (e.g., 

25_28_31 vs. 23_26_29). The authors interpreted this as indicating the need for additional 

processing of place-value information to evaluate the distance between e.g., the second and 

the third number when crossing a decade boundary. The interest of the current study was to 

examine whether there is a specific neural correlate of place-value processing, implicating a 

cortex area with higher neural activity while processing triplets crossing into the next decade 

compared to triplets with no decade crossing. As previously observed by Wood, Nuerk, and 

Willmes (2006, see also Knops, Nuerk, Sparing, Foltys, & Willmes, 2006), processes of unit-

decade integration were associated with more pronounced activation in the IPS, a cortex 

location affiliated with the processing of magnitude information in general. However, as 

overall range (i.e., the distance between the two outer numbers) was accounted for in the 

parametric analyses for triplets with and without a decade crossing this activation 

dissimilarity cannot be explained by differences in holistic magnitude measures. Instead, the 

data argue for specific processing demands associated with the required processing of place-

value information for triplets crossing into the next decade meaning that place-value 

information is not only retained in the representation of two-digit number magnitude but also 

explicitly processed when participants encounter two-digit numbers. Thereby, these results 

indicate a specific neural correlate of place-value processing / integration.  



 

293 

Study 6 examined the influence of the disruption of the mental number in neglect 

patients – as first reported by Zorzi, Priftis, and Umiltà (2002) – on the processing of place-

value information. Zorzi and co-workers (2002; see also Zorzi, Priftis, Meneghello, Marenzi, 

& Umiltà, 2006) observed that, when asked to indicate the midpoint of a numerical interval, 

patients’ perceived midpoints of the intervals were misplaced to the right (reporting 7 as being 

midway between 1 and 9) similarly to these patients impairments in line bisection. In the 

present study, interest was paid to the question whether neglect-related deficiencies also affect 

the processing of place-value information as conceptualized by decade crossings in a 

verification version of the number bisection task (e.g., 23_26_29 vs. 25_28_31; see also Study 

5). Results showed that neglect patients’ performance for triplets crossing a decade boundary 

was significantly worse than performance of the control group. Furthermore, neglect patients 

were particularly impaired when the decade crossing occurred between the first and the 

second number of the triplet rather than when the decade crossing occurred between the 

second and the third number (e.g., 28_31_34 vs. 25_28_31). These results denote that not 

only the processing of number magnitude information but also the representation of the place-

value structure of the Arabic number system is impaired in neglect patients. 

 

Section 5: A computational model of place-value integration in two-digit number 

comparison 

 Finally, Study 7 provided first computational evidence helping to differentiate 

between three different representational formats of two-digit numbers (i.e., holistic, strictly 

decomposed, or hybrid). Particular attention was paid to the dissociation of the strictly 

decomposed and the hybrid model as there is currently no empirical data that allows 

distinguishing between these two assumptions. To pursue these issues three computational 

models were programmed realizing an either holistic, decomposed or hybrid representation of 

two-digit number magnitude. In both the comparison of a given number to a fixed as well as a 
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variable standard the strictly decomposed model produced the data that fitted the empirical 

data best. However, not only did the decomposed model produce the most realistic data 

pattern, its RT estimates also reflected specific characteristics previously assumed to be 

determined by the holistic part of the hybrid model. In this context, regression analysis 

showed that a predictor representing a measure of (logarithmic) overall distance between the 

to-be-compared numbers accounted for a reliable part of the variance even though there is no 

unitary representation of overall distance in the strictly decomposed model. Interestingly, the 

inclusion of such a predictor was one reason for Nuerk, Weger, & Willmes (2001; Nuerk and 

Willmes, 2005) to propose a holistic number magnitude representation apart from 

representations coding the magnitudes of its constituting digits. Taken together, analysing the 

computational model data implies that the standard effects of numerical cognition on 

symbolic digital input can be accounted for by a model proposing the strictly decomposed 

representation of units, tens, hundreds, etc. 

 

After having summarized the most important aspects of the individual studies 

presented in the current thesis, these so far separate lines of evidence shall be consolidated 

and discussed in the General Discussion section. 
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GENERAL DISCUSSION 

 

In the last section of this thesis a general discussion integrating the results of the 

individual studies shall be given. This discussion will be subdivided into two main 

paragraphs. First, in the synopsis the major results of the current thesis will be evaluated as 

regards their relevance for corroborating the notion of a generalizable influence of place-value 

properties (as reflected by evidence for decomposed processing of tens and units) on different 

aspects of numerical cognition, such as the nature of the mental number line and its 

development. Subsequently, the results concerning individual and cultural differences will be 

discussed. Second, the specific findings of the individual studies going beyond the scope of 

the initial synopsis will be discussed in the discussion and evaluation section following the 

general outline of this thesis differentiating evidence on representational, developmental, 

neuropsychological, and computational aspects of the influence of the place-value structure of 

the Arabic number system on human numerical cognition. Finally, the present thesis will be 

closed by a conclusions section reiterating the most important findings.  
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SYNOPSIS 

At the end of the general introduction, the main aim of the current thesis was identified 

as trying to provide a comprehensive evaluation of the influences of the place-value structure 

of the Arabic number system on numerical cognition by a) further establishing the 

generalizability of decomposed processing of two-digit number magnitude and b) an 

investigation of possible individual and cultural differences. The results of the individual 

studies were meaningful to both of these topics and will be discussed accordingly. 

 

The generalizability of decomposed processing of multi-digit numbers 

Considering the generalizability of decomposed number magnitude processing, it was 

sought to extend existing evidence on four different aspects: (i) the nature of the mental 

number line, (ii) the subject of the numerical tasks for which evidence for decomposed 

processing was obtained, (iii) the longitudinal developmental influences of place-value 

understanding, and (iv) processing specificities of decomposed number magnitude processing 

– each of which will be elaborated on in turn. 

 

The nature of the mental number line 

Concerning the nature of the mental number line the results of Study 1 observing a 

reliable unit-decade compatibility effect for comparisons to a fixed internal (memorized) 

standard is hard to reconcile with the assumption of the internal number magnitude 

representation being holistic in nature. Instead, the present findings suggest that the mental 

number line may also involve representations of the structural characteristics of the Arabic 

number system such as its base-10 place-value properties. This latter interpretation is further 

corroborated by the results of the patient study (cf. Study 6). Hemispatial neglect not only 

affected participants’ performance in a number bisection task regarding analogue scaling 

properties but also the processing of place-value information (i.e., increased difficulty when a 
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to-be-evaluated triplet crossed a decade boundary). These findings again indicated that the 

mental number line incorporates structural information on the place-value organization of the 

Arabic number system – or as Nuerk, Weger, and Willmes (2001) put it, the existence of 

“decade breaks in the mental number line (p. B25).  

 

Further evidence for decomposed processing of tens and units 

The results of Studies 1 and 6 were based on tasks for which there is already evidence 

suggesting decomposed processing of number magnitude, i.e., the number magnitude 

comparison task (e.g., Nuerk et al., 2001; Ratinckx, Nuerk, van Dijk, Willmes,  2006; 

Moeller, Fischer, Nuerk, & Willmes, 2009a) and the number bisection task (see Nuerk, 

Geppert, van Herten, & Willmes 2002, Moeller, 2006). However, the present thesis also 

aimed at gaining further evidence for the importance of structural place-value information 

from tasks previously not primarily considered to be sensitive to place-value related 

influences. At the level of basic arithmetic operations, i.e., addition, it was observed that the 

need of a carry operation (requiring specific processes of place-value integration, e.g., 36 + 

48) specifically increased processing demands on the unit digits of the summands. Moreover, 

as observed in Study 4 of the current thesis it seems that children’s performance in number 

line estimation tasks is accounted for best by a model suggesting two separate representations 

of single- and two-digit numbers. Thereby, the results again indicated that place-value 

attributes of the Arabic number system are retained in the human representation of numerical 

magnitude.  

 

Longitudinal developmental aspects of place-value understanding 

The preceding paragraphs were aimed at establishing decomposed processing of multi-

digit numbers as a general processing principle. Additionally, first evidence for influences of 

children’s place-value knowledge on numerical development was described (cf. Study 4). 
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However, unlike in previous studies (e.g., Holloway & Ansari, 2009) the use of two-digit 

stimuli allowed for the evaluation of place-value processing. In Study 3 of the current thesis it 

was observed that the worse children’s place-value understanding was in first grade the worse 

they performaned in an addition task administered in third grade. Notably, a higher number of 

inversion transcoding errors in first grade was associated with a larger number of errors in 

carry addition problems and a larger carry effect in third grade, both indicating impaired 

processes of place-value integration. Thus, these data not only suggested a reliable influence 

of place-value understanding on numerical development but also indicated rather direct 

developmental trajectories for the representation of the place-value structure of the Arabic 

number system.  

 

Specificities in processing place-value information 

Further indication for the validity of decomposed processing to be a rather general 

characteristic of multi-digit number processing comes from modelling results. On the one 

hand a two-linear model suggesting two separate representations of single- and two-digit 

numbers fitted children’s estimation pattern in the number line task reliably better than did a 

holistic logarithmic model (see Moeller, Pixner, Kaufmann, & Nuerk, 2009b; Study 3). On 

the other hand, directly contrasting all three proposed models of two-digit number magnitude 

representation (i.e., holistic, strictly decomposed, and hybrid) using computational modelling 

revealed that the compatibility effect could not be simulated by the holistic model but by the 

strictly decomposed and the hybrid model. Taking into account model proximity it was found 

that all empirical effects observed for symbolic two-digit number comparison could be 

simulated by a strictly decomposed model. Against this background the question arises 

whether there is a specific neural correlate associated with the processing of place-value 

properties. Assessed by the number bisection task, increased activation in posterior parts of 

the IPS was found for the evaluation of triplets crossing a decade boundary that required 
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specific processing of place-value information (cf. Study 5). This again is in line with the 

interpretation suggesting the mental number line to not only represent analogue magnitude 

information but to also involve information about place-value properties. 

 

Taken together, the results of the current thesis provide further evidence for 

decomposed processing of multi-digit numbers (reflecting a crucial role of the place-value 

structure of the Arabic number system) to be a general processing principle rather than a 

specificity to particular presentational formats, tasks, and/or participant populations. In turn, 

this strongly suggests that place-value information is an inherent part of the mental 

representation of number magnitude (possibly along a mental number line) as it seems to be 

retained in numerical cognition in general.  

 

Future perspectives on the generalizability of place-value processing 

On a more abstract level, the assumption of place-value structuring as a general 

processing characteristic raises important questions regarding the overall validity of previous 

findings in number processing research. In particular, when acknowledging the results of the 

computational modelling study further research is needed to investigate the full range of 

consequences of the fact that typical empirical effects of two-digit number comparison were 

accounted for best by a strictly decomposed model, not incorporating any holistic magnitude 

representation at all. Based on these findings, is it justified to operationalize bisection range in 

a number bisection task in terms of the overall distance between the two numbers defining the 

to-be-bisected interval (e.g., Nuerk et al., 2002; Study 5; Göbel, Calabria, Farnè, & Rossetti, 

2006; Loftus, Nicholls, Mattingly, & Bradshaw, 2008), or the distance between the correct 

middle number and a given probe by giving the overall distance between the probe and the 

correct middle number (e.g., Nuerk et al., 2002; Study 5; Loftus et al., 2008)? The current 

data suggest that it might be more appropriate to distinguish between the decade and the unit 
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distance. And indeed, such a distinction may be useful. Consider the latter case of distance to 

the middle number when the following interval should be bisected e.g., 29_52_75. In such an 

instance rejecting an incorrect middle number should be harder when the probe differs at the 

unit digit only as when it differs at the tens position as well; even when overall difference 

were the same (e.g., 29_56_75 vs. 29_48_75, respectively; please note that absolute overall 

distance to the middle is 4 for both probes). Thus, it may be more appropriate to operatinalize 

the distance between the correct middle number and the probe in terms of its distance at the 

tens as well as the unit position rather than computing an overall distance measure (i.e., 

29_56_75 � decade distance: 0, unit distance 4; 29_48_75 � decade distance: 1, unit 

distance: 6). Similarly, in addition verification (cf. Study 2) it might be the case that for the 

problem 18 + 24 = 32 the probe 35 may be harder to reject as incorrect when compared to the 

probe 29 since it shares the correct tens digit even though overall split between both probes 

and the correct result is identical (i.e., 3 in this example). Again, the results of the current 

thesis imply that it should be more suitable to account for the split in terms of decade and unit 

distance as compared to an overall distance measure not accounting for place-value related 

differences of the probes. In light of the longitudinal results of Study 4 the latter distinction 

becomes even more relevant as it would provide an additional way of analyzing place-value 

influences not only for the correctly solved problems (e.g., 18 + 24 = 32, requiring a “yes” 

response) but also for those solved incorrectly (e.g., 18 + 24 = 35, requiring a “no” response; 

actually representing 50% of all items). So far, incorrect probes have been chosen to differ at 

either the tens or the unit position but did not discern between above introduced decade-

consistent and decade-inconsistent probes. However, Domahs, Nuerk, and Delazer (2006; 

Domahs et al., 2007) were already able to show that such kind of decade consistency had a 

reliable effect on performance in simple multiplication: participants produced more decade-

consistent than inconsistent faulty responses and it took them longer to reject a decade-

consistent as compared to a decade-inconsistent probe (see introduction for a more elaborate 
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explanation of the decade consistency effect in multiplication). Considering this recent 

evidence on place-value influences in mental arithmetic, closer investigation differentiating 

effects of decade and unit distance seems a promising approach to get further insights into the 

generalizability of the influence of the place-value structure of the Arabic number system on 

numerical cognition. 

 

Anyway, apart from the results suggesting place-value related influences to reflect a 

comprehensive processing principle rather than specific effects associated with a particular 

task, the current thesis also provided evidence suggesting that place-value understanding is 

nevertheless subject to individual and cultural differences. Aspects concerning inter-

individual as well as inter-cultural variation in processing place-value information will be 

addressed in the following paragraph. 

 

Individual and cultural differences in processing place-value information 

Even when accepting the assumption that representations of the Arabic number 

system’s place-value structure are vitally involved in numerical cognition, the question of 

possible inter-individual and inter-cultural differences remains.  

As regards the latter, Miura and colleagues (Miura & Okamoto, 1989; Miura et al., 

1994) showed that the transparency of the number word system of a given language 

concerning the way in which units, tens, etc. are verbally recoded is an important determinant 

of children’s mastery of the place-value structure. Against this background Study 3 of the 

current thesis was conducted to evaluate the influence of such language differences of number 

word systems in a totally non-verbal task, the number line estimation task. Despite the fact 

that performance of both German- and Italian speaking children was accounted for best by a 

two-linear model with a fixed breakpoint at 10 (see above for a discussion), German- and 

Italian-speaking children differed reliably in the accuracy of their estimates upon the 
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hypothetical number line. Compared to their Italian-speaking counterparts, not only were 

estimates of German-speaking children less accurate in general, they also specifically under-

/overestimated the position of numbers for which confusing tens and units would result in a 

relatively smaller/larger number as (i.e., marking the position of 27 when asked to estimate 

the position of 72). This finding suggested an important influence of place-value properties in 

numerical cognition (superiority of the two-linear over the logarithmic fitting) as well as a 

moderation of such influences by cultural differences (such as the structure of the number 

word system) even for performance in a completely non-verbal task  

From this a number of questions arise concerning possible language related effects 

(possibly determined by differences in the respective number word systems) on other 

numerical tasks. So far, language differences have been observed and related to differences in 

the verbal coding of place-value information only for the case of number magnitude 

comparison (see Nuerk, Weger, & Willmes, 2005, Macizo & Herrerá, in press for adult; 

Pixner, 2009 for children data; see also Miura & Okamoto, 1989; Miura et al., 1994 for the 

explicit naming of tens and units; Domahs et al., in press, for the case of finger counting). 

When singling out the larger of two numbers presented in digital notation the regular 

compatibility effect was reliably smaller but still significant for English-speaking participants 

as compared to their German-speaking counterparts. Nevertheless, for the case of two-digit 

number words, which follow the decade unit structure of the digital format, English-speaking 

participants showed a marginally significant reversed compatibility effect (see also Macizo, 

Herrerá, Paolieri, & Román, in press for a reversed compatibility effect for non-inverted 

Italian number words).  

Thus, the present results for the number line estimation task suggested that there may 

be even more differences related to the processing of place-value information. For instance, it 

may be hypothesized that the carry effect in addition may be smaller for participants speaking 

a language without an inversion of the order of tens and units in two-digit number words. As 
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verbal recoding of tens and units does not interfere with the order of tens and units in 

symbolic notation executing the required unit-decade integrations due to carrying the decade 

digit of the unit sum might be less time consuming and/or less susceptible to errors. So, it is 

up to future studies to investigate whether differences in place-value coding between different 

number word systems has consequences going even beyond the effects reported in this thesis. 

Against the background of the accumulating evidence for the importance of place-value 

representations such effects should be observable – at least in children whose processing of 

numerical (including place-value) information is less automated. 

With respect to individual differences, the results of Study 4 indicate that there are 

indeed differences in the capability to process place-value information. Also, such differences 

in early place-value understanding are predictive not only for later arithmetic performance in 

general but also for place-value related aspects of later arithmetic, in particular. Please note 

that this is the first time that the longitudinal influence of children’s early place-value 

understanding was investigated. The current data suggest that individual differences in place-

value mastery exist and seem to be relatively stable over time – thereby, implying an 

important but so far largely under-investigated role of place-value understanding in numerical 

development. 

 

Taken together, Studies 3 and 4 of the current thesis provided evidence for both 

individual and cultural differences regarding the mastery of the place-value structure of the 

Arabic number system. This is important for at least two reasons: First, it strongly argues for 

place-value understanding to be considered a specific numerical representation of its own, 

rather than being implicitly subsumed in the representation of number magnitude. Second, it 

raises the question whether these observed individual / cultural differences may be of 

diagnostic and / or predictive value in the way comparable differences for other numerical 

representation have already been employed (see e.g., Delazer et al., 2006; Holloway & 
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Ansari, 2009; Halberda, Mazzocco, & Feigenson, 2009 for the case of number magnitude 

representation). The current data support such a view since children’s early place-value 

understanding serves as a reliable predictor of their later numerical / arithmetical performance 

(see Study 4) and also accounts for language differences concerning the transparency of 

number word systems.  

 

Acknowledging its reliable influence on numerical development a representation of 

the place-value structure of the Arabic number system should be incorporated in any model 

capturing the development of numerical / arithmetical competencies in children. In the 

following paragraph different models of numerical development shall be evaluated regarding 

their comprehension of place-value representations. 

 

Place-value representation in a current model of numerical development 

As already described in the general introduction the dominant structuring principle of 

the Arabic number system apart from its ciphered nature (see Chrisomalis, 2004 and 

introduction for details) is the principle of place-value organization. Additionally, the results 

obtained in the individual studies of the current thesis argue for an important role of place-

value information in the representation of multi-digit numbers as well as for basic arithmetic 

involving such numbers. Nevertheless, to the best of our knowledge there is currently no 

(neuro)cognitive model of numerical development explicitly incorporating place-value 

understanding. For instance, von Aster and Shalev (2007) proposed a four-staged 

developmental model of numerical cognition in which they associated specific 

numerical/calculation competencies to cognitive representations underlying these capabilities 

on the one hand, and to brain areas subserving these abilities. Place-value understanding is not 

explicitly conceptualized within this model as well. Yet, it seems plausible to assume that 

place-value understanding comes into play at stages three and/or four (i.e., Arabic number 
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system and the ordinality of the mental number line, respectively) of the von Aster and Shalev 

(2007) model as it is a general ordering principle of the Arabic number systems and was also 

shown to influence the development of a spatial mental number line representation (cf. 

Moeller et al., 2009b; Study 3). This interpretation is corroborated by the authors’ description 

of typical impairments of children with dyscalculia for each of the four developmental stages. 

For stage three, transcoding errors related to the inversion property of e.g., the German 

number word system are mentioned, clearly tapping place-value processing. Nevertheless, the 

authors did not specify the issue of place-value representations within the context of their 

model of number acquisition. Moreover, even when considering other theoretical 

conceptualizations of numerical development and developmental dyscalculia, in particular, 

the influence of e.g., insufficient place-value understanding is widely neglected. In line with 

Karmiloff-Smith’s developmental theory (1996; 1998), Rubinsten and Henik (2009) 

suggested different underlying deficits and their interactions to determine developmental 

dyscalculia and/or mathematical learning disorders. Amongst others, the authors proposed 

deficits in magnitude/quantity processing, working memory, attentional resources, and 

executive functioning to be relevant for mathematics impairments, but again did not 

specifically address processing of place-value information. 

 

Taken together, there is so far no comprehensive theory of numerical development, 

either typical or atypical, explicitly considering place-value understanding to be a relevant and 

necessary step in emerging numerical cognition. Taking into account the finding obtained in 

the current thesis, in particular the longitudinal influence of early place-value understanding 

on later arithmetic performance it would be desirable to further conceptualize the 

developmental impact of place-value knowledge by explicitly incorporating it into a model of 

numerical development such as the model by von Aster and Shalev (2007). Within this 

framework, implementing a representation of the Place-value structure of the Arabic number 
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system would not be too problematic. As von Aster and Shalev (2007) propose children get 

confronted with the issue of place-value coding first as they experience number words above 

10 (or 20 when acknowledging the special character of teen numbers). Therefore, the 

postulated representation of place-value information should be triggered in step 2 of the von 

Aster and Shalev (2007) model. However, as the authors suggest for the role of working 

memory (dotted arrow in Figure 1) it may be the case that a place-value representation 

develops not in an all-or-nothing manner but gets more and more established and relevant 

over the four developmental steps: For representations of concrete quantity as proposed in 

step 1 no place-value representations should be acquired. However, with the experience of 

number words within and/or above the teen range in step 2 place-value issues become more 

and more important to build up a successful connection between the respective number word 

and its quantitative meaning. In step 3, the role of place-value information is even more 

prominent as within the to-be-learned Arabic number system it reflects one of the core 

organization principles (together with ciphering, see Chrisomalis, 2004). Thus, to correctly 

reflect a given number in symbolic Arabic notation place-value coding has to be understood 

(see Zuber, Pixner, Moeller, & Nuerk, 2009). Yet, the development of place-value 

representations may still be in progress in step 4 when the spatial mental number line 

representation is established. The results of Study 3 clearly show that even non-verbal 

representations of spatial number magnitude representations are influence by place-value 

properties (see also Moeller et al., 2009b). Additionally, the longitudinal influences of early 

place-value understanding on arithmetic performance (cf. Study 4) suggest place-value 

influences to actually generalize to children’s arithmetic thinking. To sum up, a representation 

of the place-value structure of the Arabic number system within the model of von Aster and 

Shalev (2007) may be conceptualized similarly to the influence of working memory (see 

Figure 1, dotted arrow) as an arrow starting in step 2 and ascending until step 4 (see Figure 1, 

broken arrow and shaded area below) representing both the development of the place-value 
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representation itself as well as its increasing importance for the numerical capabilities 

associated with the consecutive developmental steps. 
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Figure 1:  Model of numerical development by von Aster and Shalev (2007, p. 870) adapted and extended by a 

representation of the place-value structure of the Arabic number system (broken arrow and shaded 

area below) 

 

On a closer inspection of the quantity representations proposed for Steps 1, 2, and 3 it 

has to be noted that only from step 2 on symbolic coding (verbal and digital) is assumed while 

step 1 quantity representations rely on non-symbolic coding of concrete quantities. This 

distinction seems to be motivated by observations suggesting that even preverbal infants are 

able to discriminate between numerical quantities (e.g., Feigenson, Carey, & Hauser, 2002; 

Feigenson, Dehaene, & Spelke, 2004; Xu, Spelke, & Goddard, 2005; for a review see Cordes, 

& Brannon, 2008). The place-value structure of the Arabic number system first comes into 

play with the development of symbolic quantity representations in step 2 when tens and units 

have to be discerned when confronted with the respective number words. Decomposed 

processing of tens and units can be assumed to start at this developmental stage as well and to 

get more and more automated with increasing age and experience (cf. Pixner, Moeller, Zuber, 

& Nuerk, 2009) as it allows for representing any given number in a very efficient way by a 

 
P
la
ce
-v
al
ue
 u
nd
er
st
an
di
ng

 



 

310 

limited set of symbols (cf. Verguts & de Moor, 2005). The results of Studies 3 and 4 of the 

present thesis indicated that apart form inter-individual differences the development of 

decomposed processing of multi-digit numbers is also liable to inter-cultural differences. The 

structure of different number word systems may either hinder or corroborate the successful 

mastery of the place-value structure of the Arabic number system. Synced with the results of 

Study 7, in which the strictly decomposed model was found to account best for typical 

empirical effects in two-digit number comparison model, this may have important 

implications for the nature of the human representation of number magnitude. In particular, 

the fact that a holistic representation of two-digit number magnitude is not mandatory to 

simulate typical empirical effects in number comparison suggests that the decomposed 

representations of e.g., tens and unit do not seem to be integrated into one entity representing 

the overall magnitude of a given number, at least for symbolic notation. In turn, the current 

findings imply that at most the representations of single digit numbers up to 9 may be 

grounded on a holistic non-symbolic counterpart whereas representations of multi-digit 

numbers above 10 may involve no direct reference to a non-symbolic quantity representation. 

Please note that this interpretation fits nicely into the ongoing debate on notation dependent or 

notation independent / abstract representation of number magnitude (e.g., Cohen-Kadosh & 

Walsh, 2009; Piazza, Pinel, Le Bihan, & Dehaene, 2007; Cohen-Kadosh, Cohen-Kadosh, 

Kaas, Henik, & Goebel, 2007).  

 

PRÉCIS 

All in all, the results of the this thesis, obtained from a broad variety of numerical 

tasks administered to different populations (i.e., German- and Italian-speaking children, 

healthy adults, and neglect patients) and assessed using different experimental methodologies 

(i.e., reaction time, eye-tracking , and fMRI paradigms) lend further support to the notion that 

a mental representation of the place-value structure of the Arabic number system exists. 
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Furthermore, converging evidence is provided that the latter exhibits a task invariant influence 

on human numerical cognition and its development. Evidence on such a general validity of 

place-value influences comes from studies indicating (i) that the mental number line is not 

analogue holistic in nature but involves place-value information (cf. Studies 1, 5, and 6), (ii) 

that indicators of decomposed processing of two-digit numbers were observed from new basic 

numerical as well as basic arithmetical tasks [i.e., number line estimation (cf. Study 3) and 

addition (cf. Study 2), respectively], (iii) that decomposed processing seems to develop 

culture invariant but is nevertheless influenced by attributes of the respective language’s 

number word system (cf. Study 4), (iv) that models implying decomposed processing 

outperformed models of holistic processing in direct comparisons (cf. Studies 3 and 7), and 

(v) that specific neural correlates of processing place-value information can be identified. 

Hence, the results of this thesis can be summarized as suggesting decomposed processing of 

multi-digit numbers along place-value constraints to be a comprehensive, culture invariant, 

and developmentally important processing characteristic of human numerical cognition. 

 

Apart from this integrative view on the implications of the current thesis going beyond 

the scope of the individual studies, the results of each individual study are nevertheless 

important on its own. Therefore, the following paragraphs address these results in a less 

integrative manner, instead focussing on the scientific contribution of each study on a more 

individual level. 

 

EVALUATION AND DISCUSSION  

In the following section, the results of the previously presented studies will be 

discussed in respect to two major topics: First, it will be evaluated in what way behavioural, 

neuropsychological and computational evidence provided by the individual studies 

corroborated the understanding of how the place-value structure of the Arabic number system 
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is reflected in the human number magnitude representation. In a second paragraph, the 

influence of place-value understanding on the development of numerical competencies will be 

elaborated on.  

 

On the representation of the place-value structure of the Arabic number system 

Addressing the question whether and if so, in what way the place-value structure of 

the Arabic number system is retained in our representation of two-digit numbers, the results of 

Studies 1, 2, 5, 6, and 7 are meaningful regarding (i) the influence of presentational format, 

(ii) place-value processing in more complex numerical tasks such as the number bisection task 

and mental addition, and (iii) the nature of two-digit number magnitude representation (i.e., 

holistic vs. decomposed vs. hybrid). These facets will be discussed in turn. 

 

Presentational format and place-value processing 

Recent criticism suggested that decomposed processing of tens and units may be 

determined by either presentational format or mode of presentation. In 2005, Zhang and Wang 

claimed decomposed processing of tens and units to be limited to the case when both to-be-

compared numbers (i.e., probe and standard) are presented and thus represented externally – 

an argument also put forward by Ganor-Stern, Pinhas, and Tzelgov (2008). On the other hand, 

these authors presented evidence suggesting holistic processing of two-digit numbers in which 

the place-value structure of the Arabic number system is not retained when (i) a given number 

has to be compared to a fixed internally memorized standard (cf. Zhang & Wang, 2005) and 

when (ii) the to-be-compared numbers are presented sequentially instead of simultaneously 

(cf. Ganor-Stern et al., 2008). In this context, the results of Study 1 clearly indicate that 

decomposed processing did not depend on an external and simultaneous presentation of both 

probe and standard. Rather, we were able to show that the lack of unit based effects (such as 

the compatibility effects) in studies using a fixed internal standard may be attributed to 
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methodological problems. In most of these studies (e.g., Zhang & Wang, 2005; Dehaene, 

Dupoux, & Mehler, 1990) a fixed standard ending on five such as 55 or 65 was used. 

Thereby, unit distance was limited to rather small values with a maximum of 4 (e.g., 55_79). 

However, already Nuerk et al. (2001) observed that the compatibility effect was more 

pronounced for large unit distances (i.e., 4 - 8) and weaker or even not significant for small 

unit distances (i.e., 1 - 4). Thus, it is not very surprising that unit-based effects such as the 

compatibility effect have not been observed in studies using a fixed standard ending on 5 (see 

also Nuerk & Willmes, 2005 as well as Study 1 for a more detailed discussion of this point). 

However, by the time Study 1 was conducted the paper by Ganor-Stern and colleagues (2008) 

was not yet published so the issue of simultaneous vs. sequential presentation was not tackled 

in this study but should nevertheless be discussed. 

 

Sequential vs. parallel presentation of to-be-compared numbers 

Ganor-Stern et al., (2008) observed a regular compatibility effect only when the to-be-

compared numbers were presented simultaneously but not when they were presented 

sequentially. From this finding the authors concluded that the internal representation of tow-

digit number magnitude representation is holistic in nature rather than decomposed. However, 

there are a number of theoretical and methodological problems concerning the validity of the 

sequential presentation condition as used by Ganor-Stern et al. (2008). From a theoretical 

point of view it may not be entirely appropriate to directly compare simultaneous and 

sequential processing conditions without referring to the problem of processing stages 

involved in either of the two conditions. Already back in 1977 Banks argued in his 

influencing paper on semantic processing in comparative judgements that differences between 

simultaneous and sequential presentation conditions may be determined by the direction of 

what he called relative coding of the to-be-compared numbers. In the sequential condition 

participants may have build up expectations about the first number being the large or smaller 
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one even before having seen the second number. Thereby, when the second number is 

presented this expectation is either confirmed or disconfirmed. In the first case, no further 

processing of the two numbers magnitude is required and only in the latter case additional 

evaluations of the magnitude relations between tens and units may be initiated. Thereby, the 

results for simultaneous and sequential presentation conditions may stem from two 

completely different underlying processes and thus direct comparisons should be treated with 

caution. 

Moreover, the issue of confirming / disconfirming expectations about the second 

number may be even aggravated by the realization of the sequential presentation condition. 

From a methodological point of view it seems problematic that to-be-compared numbers were 

presented sequentially at exactly the same position and with an inter-number-interval of only 

200 ms without using a backward mask. Even when about one-third within-decade trials such 

as 43_49 were included to prevent participants from focusing on the tens position only (see 

Experiment 2 of Ganor-Stern et al., 2008), at this speed the task is more like a visual 

discrimination task on the tens position than a number magnitude comparison task requiring 

the processing of both tens and units. Imagine the case of a within-decade trial, with an inter-

number-interval of just 200 ms and both numbers being presented at exactly the same position 

such an item is identified immediately by a change of the visual input at the unit position 

only. On the other hand, between-decade trials can be identified 100 % correct by a change of 

visual stimulus properties at the tens position. Thereby, the sequential condition as realized by 

Ganor-Stern et al. (2008) includes visual cues coding which digit is relevant for which trial 

that are 100 % valid. Based on this methodological flaw synced with above considerations on 

possible representational differences between sequential and simultaneous presentation 

conditions the claim of a holistic magnitude representation engaged in the sequential 

processing condition seems much too strong. A future study preventing visual cues to be 100 

% valid by e.g., employing a backward mask presented after each individual number or 
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jittering the positions of the sequentially presented numbers may indeed provide evidence for 

a decomposed processing of tens and units even when the to-be-compared numbers are 

presented sequentially. Finally, Wood, Mahr, and Nuerk (2005) showed that when the to-be-

compared numbers are presented one after the other (with a 100 ms delay) the individual 

digits of the number presented first are compared by their magnitude. The authors also found 

that these intra-number comparisons worked against the overall compatibility effect. Again, 

this questions the conclusions drawn by Ganor-Stern et al. (2008).  

Taking into account above arguments as well as the results of Study 1 it seems 

reasonable to assume that the internal representation of number magnitude may not be holistic 

as claimed by Zhang and Wang (2005) and Ganor-Stern et al. (2008; see also Zhou, Chen, 

Chen, & Dong, 2008) but is decomposed as well, thereby retaining the place-value structure 

of the Arabic number system. 

 

The latter proposition that the place-value structure of the Arabic number system is an 

integral constituent of the human representation of number magnitude is corroborated by the 

variety of tasks for which an influence of place-value knowledge on performance was 

observed in the current thesis. Apart from the very basic number comparison task further 

evidence for the importance of processes of place-value integration come from the number 

bisection task, mental addition as well as a number line task which shall be discussed in the 

following. 
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Further evidence for place-value influences from more complex tasks and mental 

arithmetic 

Place-value information in the number bisection task 

In the number bisection task triplets involving a decade crossing (e.g., 23_27_31) were 

more difficult to evaluate than triplets staying within the same decade (e.g., 21_25_29; Nuerk 

et al., 2002; see also the following discussion on Study 5 below). This is particularly 

remarkable as this specific item property is not primarily important for solving the task. 

Instead, the number bisection task was originally assumed to rely on a default solution 

strategy of magnitude manipulations upon the holistic mental number line, only (e.g., 

Dehaene & Cohen, 1997; Cohen & Dehaene, 2000). Building on this considerations of 

performance in the number bisection task to be driven primarily by analogue number 

magnitude representations (seeing each triplet as a cut-out part of the mental number line), 

thus, may indicate that place-value information is nevertheless represented by the mental 

number line. This interpretation is supported by the results of the patient study (Study 5). Not 

only did the neglect patients exhibit performance impairments associated with them 

neglecting the left part of the mental number line (cf. Zorzi, Priftis, & Umiltà, 2003) and thus 

the numerically left part of each triplet also for the whole range of two-digit numbers. More 

specifically, they had particular problems for decade crossing triplets. The decrease of 

performance accuracy due to a decade crossing was more pronounced for the neglect patients 

than for the participants of the control group. On a representational level this may suggest that 

the processes of integration place-value information are particularly impaired in hemispatial 

neglect. Furthermore, it was observed that the decade crossing effect for neglect patients 

interacted with the position of the decade crossing within the triplet. Neglect patients’ 

performance was reliably worse in triplets in whom the decade crossing occurred between the 

first and the second number (e.g., 28_32_36) compared to the second and third number (e.g., 

24_28_32). So, in addition to their impairment determined by neglecting the relatively smaller 
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numbers within the triplets, processes of place-value, i.e., unit-decade, integration also 

deteriorated the further left they occurred in the neglected area upon the mental number line. 

This finding is of particular interest as the similar gradients of impaired magnitude as well as 

impaired place-value processing again suggested that place-value characteristics of numbers 

may be inherent in the human number magnitude representation. 

Moreover, this evidence from neuropsychological patients was further corroborated by 

a functional MRI study presenting a similar number bisection task to healthy adult 

participants to evaluate the neural correlates of processes of place-value integration such as 

the decade crossing effect. As previously observed for the case of number magnitude 

comparison and in particular the compatibility effect reflecting demands on place-value 

processing (cf. Wood, Nuerk, & Willmes, 2006) increased activation of the intraparietal 

sulcus (IPS), bilaterally was associated with specific processing of decade crossings. 

Interestingly, the IPS is also generally agreed to be essentially involved in the representation 

of number magnitude in general (see Dehaene, Piazza, Pinel, & Cohen, 2003; Nieder & 

Dehaene, 2009, for reviews). And again, these data suggest that the place-value structuring 

principle of the Arabic number system may be implemented into the human representation of 

numerical magnitude. Nevertheless, triplets crossing into the next decade were also associated 

with increased neural activation in prefrontal cortex areas. Previously, increased activation of 

prefrontal sites was observed in mental addition in general and for carry addition problems / 

borrowing subtraction problems, in particular (e.g., Kong et al, 2005; Imbo, Vandierendonck, 

& De Rammelaere, 2007). Both, the carry as well as the borrowing procedure in addition and 

subtraction, respectively, require processes of place-value integration (e.g., updating the sum 

of the decade digits of the summand by the carry). Generally, this increased prefrontal 

activation is interpreted to reflect increased demands of cognitive control / working memory / 

or attentional processes in carry addition / borrowing subtraction problems required for 

keeping intermediate results in mind, monitoring the columnwise solution process and finally 
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executing the carry by updating the decade digit of the result by the decade digit of the unit 

sum. Increased activation at similar sites associated with decade crossing triplets may thus 

implicate processes of unit decade integration to require executive / attentional as well as 

working memory resources supplementing the more demanding processing of magnitude 

information in these triplets. More particularly, this indicated that the structural organizing 

place-value principle of the Arabic number system requires specific processing. Thus, 

processing place-value information is not an inherent aspect of number magnitude 

representation but may involve different magnitude-based as well as more general cognitive 

processes. Moreover, which of these processes are actually performed or not may also depend 

on the task to be performed. While in number magnitude comparison tens and units seem to 

be encoded and processed in parallel (cf. Moeller et al., 2009a) performance in a more 

complex task such as the number bisection task was suggested to involve quite different basic 

numerical processes including bottom-up processing of specific stimulus characteristics as 

well as top-down mediated processes of e.g., plausibility evaluations (cf. Moeller, Fischer, 

Nuerk, & Willmes, 2009c). 

 

Eye-tracking evidence on place-value processing in mental addition 

As described currently, Moeller and colleagues (2009a; 2009c) were able to evaluate 

processing characteristics for numerical tasks. The authors chose the eye-tracking 

methodology to differentiate between different processing strategies (Moeller et al., 2009a) or 

the temporal specificities of different numerical processes (Moeller et al., 2009c). The 

evaluation of participants’ eye fixation behaviour while engaged in a given task seems to be a 

valid tool to distinguish between different basic numerical processes because of two general 

assumptions about eye fixations: (i) According to the eye mind assumption (e.g., Rayner & 

Pollatsek, 1989) the fixation location of the eyes serves as a reliable indicator of what part of 

a stimulus is processed at the moment. And (ii) the immediacy assumption (e.g., Rayner & 
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Pollatsek, 1989) states that an object or stimulus is processed as long as it is fixated. Thereby, 

the number of fixations as well as their durations is a valid predictor of how important 

information from a specific part of a stimulus (e.g., a particular digit) is in the context of 

performing the task at hand.  

Based on above considerations, the eye-tracking methodology should also offer the 

possibility to differentiate between different basic processes underlying place-value 

integration. A question pursued in Study 2 of the current thesis. Here, participants’ eye 

fixation behaviour in an addition verification task was evaluated to investigate possible 

origins of difficulty in carry addition problems. We were able to identify two distinct 

processes associated with the increased difficulty of carry addition problems each reflecting 

processes of place-value integration. On the one hand, performing carry addition problems 

seemed to be associated with specific unit based calculations indicating the requirement of a 

carry when reaching or exceeding a certain level (i.e., a unit sum of ≥ 10). This suggested that 

particular processing of the unit digits of the summand was necessary whenever the sum of 

these digits becomes a two-digit number and thus the decade digit of the unit sum has to be 

carried to the decade position to update the decade digit of the result. On the other hand, the 

results indexed a process of carry execution to add to overall difficulty as well. In carry 

addition problems the decade digit of the result required specific processing, possibly being 

associated by the updating of the sum of the decade digits of the summands by the carry from 

the sum of the unit digits. Thus, being able to dissociate these different processes and to 

associate them with the processing of specific digits (i.e., units of the summands vs. tens of 

the result) again argues for a decomposed representation of number magnitude. When 

assuming the magnitude of a two-digit number to be represented as an integrated entity not 

retaining any place-value information there should performance in two-digit addition should 

not be determined by processes that can certainly be attributed to the processing of either tens 

or units. Thereby, the results of Study 2 not only corroborated earlier findings suggesting a 
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prominent role of the unit digits of the summands in mental addition (Klein et al., under 

revision). Rather, the data also served as a generalization of the findings by Moeller and co-

workers (2009a) as they provide further eye tracking evidence validating the assumption of 

parallel but decomposed processing of two-digit numbers not only in a task as basic as 

number magnitude comparison but also in mental addition. 

So far, the evidence provided by the current thesis regarding the role of the place-value 

structure of the Arabic number system within the human representation of multi-digit number 

magnitude was empirical in nature. However, in Study 7 the question in which way two-digit 

number magnitude is represented (i.e., either holistically thereby not retaining the place-value 

structuring or decomposed or hybrid and thus referencing place-value principles) was pursued 

by a computational approach.  

 

Computational evidence on the nature of two-digit number magnitude representation 

On a more theoretical level the current thesis also added significantly to our 

understanding of how two-digit numbers are represented. As already elaborated on above, the 

empirical findings of the present thesis consistently provide evidence for the notion of two-

digit number magnitude being represented and processed in a decomposed manner separating 

tens and units; and thus explicitly complying with the place-value structure of the Arabic 

number system. However, currently there are two theoretical frameworks capable of 

accounting for such decomposed processing: The notion of a strictly decomposed 

representation of multi-digit numbers separated into their constituting digits (cf. Verguts & De 

Moor, 2005) as well as the hybrid model of multi-digit number representation assuming an 

additional holistic representation of the overall magnitude of a number despite the separate 

representations of units, tens, hundreds, etc. (cf. Nuerk & Willmes, 2005; Nuerk et al., 2001). 

As there is currently no empirical paradigm allowing for differentiating between these two 

theoretical models, we addressed this question by a computational approach. Three 
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computational models were programmed realizing (i) holistic (ii) strictly decomposed, and 

(iii) hybrid representations of number magnitude. When evaluating the descriptive adequacy 

of the data produced by each of these models it was found that the data by the strictly 

decomposed model fitted the empirical data best. In particular, Nuerk and colleagues (2001; 

see also Nuerk & Willmes, 2005) initially assumed a representation of overall number 

magnitude to accompany the separate representations of tens and units as in most regression 

analysis a measure coding the overall distance between the to-be-compared numbers was 

observed to be the most important predictor of task performance. However, assuming such an 

additional holistic representation, because a measure of overall distance between probe and 

standard was included as a reliable predictor in a regression analysis, was proved unnecessary 

by the current data. A measure of overall distance (i.e., difference between the logarithms) 

was found to be the most important predictor of item RT even for the data produced by the 

strictly decomposed model. Thereby, indicating that overall a strictly decomposed model of 

two-digit number representation accounted best for the empirical data. Please note that the 

superiority of the strictly decomposed model was evident even apart from the fact that the 

hybrid model is the least parsimonious model and should thus only be considered when 

controlling for the higher number of free parameters. Nevertheless, the computational data 

clearly argue for the human representation of two-digit number magnitude to comply with the 

power levels of the Arabic number system, thereby, retaining its place-value structure. 

 

In summary, the results of the present thesis were meaningful in addressing the 

question whether and if so in what way the place-value structure of the Arabic number system 

is reflected in the human representation of two-digit numbers. Empirical evidence suggested 

that decomposed processing of tens and units is not driven by an external presentational 

format. Instead, the present data indicate that the internal representation of number magnitude 

is decomposed as well (cf. Study 1). Furthermore, this important initial finding was 
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corroborated by a variety of observations indexing decomposed processing of tens and units 

in more complex numerical tasks such as the number bisection task and even locating a 

specific area within the intraparietal sulcus associated with processes of place-value 

integration (cf. Study 5). These imaging results were accompanied by patient data (cf. Study 

6) again suggesting separate processing of tens and units as well as a representation of place-

value information to be impaired by hemi-spatial neglect in a way previously assumed to be 

affect the spatial representation of number magnitude (i.e., the mental number line) only. 

Thereof, we inferred the mental number line representation of number magnitude to involve at 

least some kind of place-value information. In this vein, the results of Study 2 imply that 

place-value information is not only an important aspect / cue in basic numerical tasks but also 

specifically processed in basic arithmetic such as addition, in particular, when processes of 

place-value integration are required to calculate the correct result as in carry addition 

problems. Finally, these conclusions drawn on the current empirical data are backed by the 

computational results provided by a neural network model of two-digit number comparison. 

Here, it was found that a strictly decomposed model accounted best for the empirical data (cf. 

Study 7), thereby, indicating no need for an additional holistic representation as proposed by 

the hybrid model of two-digit number representation (cf. Nuerk & Willmes, 2005). Taken all 

these evidence together, an essential role of the place-value structuring principle of the Arabic 

number system for the adult human representation of number magnitude seems undisputed.  

 

Nevertheless, recent findings from studies investigating the development of numerical 

competencies reported evidence suggesting an important role of place-value understanding 

even for early numerical development. The findings from the current thesis addressing the 

influence of the place-value structure of the Arabic number system on the development of 

numerical competencies as well as the developmental trajectories of place-value 

understanding will be discussed in the following section.  
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The developmental influence of place-value knowledge 

In discussing the influence of place-value understanding on the development of 

numerical competencies in children two different lines of evidence pursued in the current 

thesis shall first be evaluated and then integrated. On the one hand, the place-value knowledge 

structure of the Arabic number system may influence the way basic numerical representations 

are shaped (cf. Zuber et al., 2009). This aspect of early place-value knowledge was addressed 

by Study 3. On the other hand, early place-value understanding may be an important predictor 

of later arithmetical skills as investigated in Study 4. Such a predictive association has already 

been observed for other basic numerical representations such as the representation of number 

magnitude (cf. Holloway & Ansari, 2009). These two aspects of the developmental influence 

of the place-value structure of the Arabic number system will be discussed in turn. 

 

The influence of early place-value processing on the development of the mental number line 

Only recently, Zuber and colleagues (2009) found that even a task as basic as 

transcoding a number from spoken to written format is influenced by aspects relating to place-

value. The authors found that in German-speaking children about half of all transcoding errors 

committed were related to the inversion property inherent in German number words [e.g., 

writing down 72 instead of 27 when dictated “siebenundzwanzig” (literally: seven and 

twenty)] and thereby possibly determined by confusion in place-value integration of the single 

digits, i.e., difficulties in assigning each digit its corresponding power level as these are 

inverted in German number words as compared to symbolic notation. Thus, this indicated an 

influence of the place-value structure of the Arabic number system on other numerical 

representations such as the verbal representation of number words and related task such as 

transcoding. In this context, Moeller et al. (2009b) observed that place-value influences may 

not be limited to the development of transcoding skills but also to building up the spatial 
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representation of number magnitude. In a number line estimation task Moeller and co-workers 

(2009b) found that children’s estimates of the spatial position of a given number upon a 

hypothetical number line were accounted for best by a two-linear function with a break point 

at 10. From this data, Moeller et al. (2009b) concluded that children’s early mental number 

line representation seems to differentiate between single- and two-digit numbers. In Study 3 

of the present thesis we were able to show that this influence of the structuring principle of the 

Arabic number system exhibits its influence on the development of the spatial representation 

of number magnitude occurs not only in German-speaking children (cf. Moeller et al., 2009b) 

but also in Italian-speaking children, thereby suggesting it to be a rather general principle. 

Nevertheless, we also found evidence for a specific influence of the structure of the 

languages’ number word systems. This was possible because unlike in German number words 

the order of tens and units in Italian number words corresponds to the left-to-right order of 

e.g., tens and units in symbolic notation. Base on this difference in the number word systems 

of German and Italian we hypothesized the estimates of German-speaking children to be less 

accurate as they were more prone to confuse tens and units because of their antidromic order 

in verbal and symbolic notation. The results confirmed our hypothesis: The estimates of 

Italian-speaking children were reliably more precise as those of their German-speaking 

counterparts. Even more interestingly, the finding that this advantage was specifically driven 

by the mislocalizing of items for which the confusion of tens and units leads to a large 

deviation between the correct position of the number and the actually marked position (e.g., 

82 as compared to 65). Taken together, these results indicate that there is a rather general 

influence of the place-value structuring principle of the Arabic number system on the 

development of the spatial representation of number magnitude which is valid independent of 

cultural influences as long as the Arabic number system is used. However, the data also imply 

that this influence is moderated by the language specific attributes such as the number word 

system. When the order of tens and units in a language’s number word system does not 
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correspond to the order of tens and units in symbolic Arabic notation this is detrimental for 

children developing a precise and accurate spatial representation of number magnitude. On a 

broader level, this is interesting as an accurate spatial representation of number magnitude 

seems to be a reliable predictor of actual mathematics achievement as well as children’s 

ability to solve unknown arithmetic problems (Booth & Siegler, 2008).  

 

The influence of early place-value understanding on further numerical development 

At this point and based on the observed influence of the place-value structure of the 

Arabic number system on the development of a spatial representation of number magnitude 

(cf. Moeller et al., 2009b; Study 3 of the present thesis) the question arises whether early 

place-value knowledge itself may serve as a building block for further numerical arithmetical 

development. This issue was pursued in Study 4 of the current thesis in a longitudinal 

approach. As already described above, results indicated that early place value knowledge in 

first class (as operationalized by inversion errors committed in transcoding as well as by the 

compatibility effect in a magnitude comparison task) reliably predicted performance in an 

addition task two years later in third grade. Thereby, Study 4 provided first direct and 

longitudinal evidence for early place-value knowledge to determine the future development of 

children’s numerical / arithmetical competencies. Apart from this very important finding 

Study 4 may be considered innovative for another reason. The predictive value of early place 

value understanding on later arithmetic performance could be specified in an effect based 

approach. Therein, it is not overall performance in third grade addition that is predicted by 

overall performance in magnitude comparison and transcoding assessed in first grade. Instead, 

specific measures reflecting the accuracy of processes of place-value integration in addition 

(i.e., the number of errors in carry addition problems and the carry effect) were reliably 

predicted by inversion transcoding errors and the compatibility effect, again being a measure 

of processes of place-value integration. Thus, Study 4 suggested a persistent influence of 
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place-value knowledge in numerical development, in particular, when evaluating specific 

effects related to the processing of place-value information at different stages of development 

and schooling. This is of specific interest as the results of Study 2 of the present thesis showed 

that influences of place-value processing are still observable in adult arithmetic (i.e., 

particular processing of the unit digits in two-digit addition when a carry is required). Thus, 

there is the possibility that difficulties in early place-value understanding may not only be a 

problem restricted to a certain time in numerical development. Instead, impaired place-value 

understanding at earlier stages of numerical development may determine later arithmetic 

performance even into adulthood. This assumption is further corroborated by the results of a 

recent eye-tracking study comparing the eye-fixation behaviour of children and adults in an 

addition verification paradigm (Moeller, Klein, & Nuerk, under revision). On the one hand, 

results indicated that there are considerable differences as regards the way children and adults 

select the correct probe. While children seemed to primarily rely on calculating the correct 

result, adults seemed to rely on both verifying the correct probe as well as rejecting the 

incorrect probe. On the other hand, the data also showed that the requirement of a carry 

specificall increased the processing times of the unit digits of the summands for both children 

and adults consistently. Synced with the findings of the current thesis this suggests that basic 

principles of place-value processing in mental arithmetic may be acquired early on during 

learning arithmetic may not change qualitatively. Thereby, the importance of successful 

mastery of place-value principles in early stages of numerical development (cf. discussion and 

Figure 1 above) is again emphasized.  

However, as already been reported by Miura and colleagues (1989; 1994) there are 

considerable differences in the accuracy of place-value processing between children but also 

between different countries and languages. Usually, a superiority of Asian over Western 

children is observed when it comes to explicitly producing tens and units of a given number. 

The authors attributed their finding to the fact that the number word systems of most East 
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Asian languages (e.g., Japanese, Korean) are entirely regular and transparent in their coding 

of units, tens, hundreds, etc. For instance, 86 is spoken as hachi-juu-roku (literally translated: 

eight-ten-six). Taking into account these differences it remains to be investigated whether the 

observed association between early place-value understanding and further numerical / 

arithmetical development represents the general presence and importance of the place-value 

structuring principle in the world wide dominant Arabic number system. On the other hand, 

the influence of place-value understanding may be moderated by language specificities such 

as the inversion property in number words in a way similar to the influence of place-value 

structuring on the development of the spatial representation of number magnitude (cf. Study 

3; Moeller et al., 2009b). 

 

In summary, the results of the current thesis addressing influences of the place-value 

structure of the Arabic number system on numerical development are straight forward. 

Extending previous results suggesting place-value information to determine performance in a 

number line estimation task (cf. Moeller et al., 2009b) it was observed that this influence 

generalises to language with a number word system without inversion. Nevertheless, the data 

also indicated that the correspondence between the order of tens and units in a language’s 

number words and symbolical notation serves as a moderating factor of the influence of 

place-value structuring on the development of the spatial representation of number magnitude. 

However, apart from this cross-culturaal observation Study 4 of the current thesis also showed 

that that the influence of the place-value understanding is not limited to basic numerical tasks 

tapping only basic numerical representations. Instead, longitudinal evidence was reported that 

indicates a reliable influence of early place-value understanding on later numerical 

/arithmetical development, in particular, when also requiring processes of place-value 

integration as in solving carry addition problems. Thus, it can be concluded that on a cross-

cultural perspective the place-value ordering principle of the Arabic number system exhibits a 
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strong influence on numerical development in children (cf. Study 3) and that, regarding 

individual differences, sufficient place-value understanding in early years is a building block 

for later arithmetical competencies (cf. Study 4).  

 

CONCLUSIONS 

All in all, a recapitulated view on the results provided by this thesis reveals a number 

of important new insights in the influence of the place-value structure of the Arabic number 

system on numerical cognition. (i) Empirical evidence on decomposed processing of multi-

digit numbers obtained from different numerical tasks administered to different populations 

(i.e., German- and Italian-speaking children, healthy adults, and neglect patients) and assessed 

using different experimental methodologies (i.e., reaction time, eye-tracking , and fMRI 

paradigms) further corroborates the notion that the place-value structure of the Arabic number 

system is retained whenever multi-digit numbers are processed. (ii) Consolidated evaluation 

of the results of the individual studies provides converging evidence that place-value 

constraints exhibit a task invariant influence on human numerical cognition and its 

development. In particular, evidence for the general validity of place-value influences 

originates from studies revealing (i) that the mental number line is not analogue holistic in 

nature but incorporates place-value information as well (cf. Studies 1, 5, and 6), (ii) that 

decomposed processing of two-digit numbers could be observed for new basic numerical as 

well as basic arithmetical tasks [i.e., number line estimation (cf. Study 3) and addition (cf. 

Study 2), respectively], (iii) that decomposed processing is reliably influenced by a 

language’s number word system but seems to develop culture invariant (cf. Study 4), (iv) that 

(computational) models realizing and/or reflecting decomposed processing of tens and units 

outperformed models of holistic processing when compared directly (cf. Studies 3 and 7), and 

(v) that on a neurofunctional level specific neural correlates of processing place-value 

information can be identified. Hence, the results of this thesis can be recapitulated as 
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indicating that decomposed processing of multi-digit numbers complying with the place-value 

structure of the Arabic number system is a comprehensive, culture invariant but linguistically 

influenced and developmentally relevant characteristic of human numerical cognition. 
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