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Chapter 1

Introduction

Quantum theory is the most precise predictive tool known to man. The underlying formal-

ism is nearly universal in scope, and has been used to explain phenomena from sub-nuclear

to cosmic scales. Modern devices exploiting quantum physics are now ubiquitous. One

need look no further than the modern computer. Hard drive read heads and transis-

tors utilizing quantum effects have fueled a technological revolution, ironically, in classical

computing. Classical computation has in turn brought insight into the quantum realm via

approximate numerical methods, such as quantum Monte Carlo simulations. However, an

exact calculation of a quantum many-body systems is untenable, even by the fastest super-

computers, since the full simulation of an N-body quantum system requires exponentially

greater classical resources with increasing N (Nie00). In 1981, Feynman pointed out that

quantum computers can handle certain problems, such as exact simulations of quantum

many-body dynamics, more efficiently than classical computers (Fey82). Despite recent

pioneering demonstrations of quantum calculations (Lan10), many challenges remain to

the construction of a fully functional quantum computer.

Decoherence is one of the central obstacles to quantum computing (Zur03; Sho95).

To minimize decoherence, it is advantageous to decouple a system from the influence of

its environment. Trapped gasses of cold neutral atoms in vacuum have the advantage of

being very weakly coupled to their environment. Furthermore, such systems are readily

condensed into the ground state of their confining potential by a combination of laser

and evaporative cooling. This makes them a potentially useful testbed in which to store

quantum information. To make use of such a storage protocol requires that information

be readily and coherently transferable to and from the atomic system. On this front, if

an atomic cloud could be efficiently coupled to a solid state system, it would open up new

avenues toward the realization of scalable devices for quantum computing (Sør04; Pet08;

Sin09).

Since their inception, magnetic microtraps (atom chips) have proven a promising tool

for the investigation of quantum gases. In 2001, two groups independently created a Bose-

Einstein condensate (BEC) using lithographically patterned wires on a substrate (Ott01;
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INTRODUCTION

Hän01). Since then, many interesting experiments have been carried out, demonstrating

for instance BEC diffraction from a magnetic lattice potential (Gün07), and tight one

dimensional traps for quantum gases (Es09). These experiments utilize the key feature of

atom chips, namely the ability to bring the atoms in close proximity to a conducting solid.

In this way, larger gradients and higher trap frequencies can be realized. Traditionally

the conducting wires of the atom chip are at room temperature or greater due to resistive

heating. The question then naturally arises, to what extent does this surface influence the

atomic cloud, nine orders of magnitude colder, and just microns away?

To investigate this question theoretically, Henkel et al. (Hen99) consider a magnetically

trapped atom in the presence of an arbitrary linear (and local) dielectric half space. A

magnetic atom can undergo spin flip transitions when subjected to magnetic field fluctua-

tions at the Larmor frequency. Since only those atomic spin states whose Zeeman energy is

minimized at the trap center experience a trapping potential, the coupling among Zeeman

sublevels leads to atom loss. The authors identify the source of the fluctuating magnetic

field as emanating from microscopic electrical current fluctuations (Johnson noise) within

the solid, which are intrinsic to any resistive material. Furthermore, they derive a scaling

law for the expected decay rate of an atomic cloud as a function of its distance from the

surface. This decay rate, which is (trivially) inversely related to the trap lifetime, has been

measured in atom chip systems utilizing normally conducting wires (Har03; Jon03).

These measurements highlight a significant limitation when approaching within 100 µm

of a metallic surface at room temperature. Here the lifetime was observed to drop below

the background value of 120 s, to less than 5 s at 20 µm, in good quantitative agreement

with theoretical models.

It was noted that superconductors offer a particularly elegant way to circumvent the

deleterious effects of Johnson noise. In an ideal superconductor, dissipation is absent. In

accordance with the fluctuation-dissipation theorem, the problematic magnetic field fluc-

tuations vanish. Theoretical accounts considering atom-chip style geometries show that

the corresponding lifetime (after taking into account finite temperature effects) is expected

to be orders of magnitude greater near an ideal superconductor than near a normal con-

ductor (Sch05; Ska06; Hoh07). What is more, cryogenically cooled atom chips enable the

integration of superconducting devices, such as Josephson junctions, and SQUIDs.

This led our group and two others to construct first generation cryogenic microtrap

systems. The group of S. Haroche has created the first BEC on a superconducting atom

chip (Rou08), and subsequently measured the cloud lifetime in the normal conducting re-

gion of their atom chip (Emm09). Their results for the lifetime near copper are consistent

with our own. In particular, an increase of the lifetime was observed near the low temper-

ature normal metal, but was still limited by Johnson noise . The group of Shimizu built

an atom trap formed of a closed superconducting loop (Muk07), and has subsequently

investigated vortices in superconducting thin films (Huf09; Shi09).

We have built an experiment capable of trapping ultracold atoms as close as 20 µm

2



from a superconducting surface. The setup combines a room temperature BEC apparatus

with a separate, niobium-wire trap mounted on a thermally shielded helium flow cryo-

stat. Atoms are transported via magnetic and optical fields into the cryogenically cooled

superconducting microtrap, where we have measured the Meissner effect of the wire on

the trap position (Can08a), and the lifetime of trapped atoms as a function of surface

distance (Kas10). The latter measurements demonstrate that superconductors can lead

to trapping lifetimes which exceed the Johnson noise limit for normal metals at cryogenic

temperatures. This is the central result of this thesis.

The result points the way towards atom chip devices in which the long lived spin

coherence of atomic clouds at micron distances from the surface is essential. Such devices

are important for proposals aimed at realizing the coupling of atomic samples to solid

state structures.

This thesis is laid out as follows: in chapter 2 the theory behind the Meissner effect

in superconducting microtraps is presented, and additionally, the spin flip rate for clouds

trapped near normal metals is derived. This allows us to estimate the expected lifetime

near cold copper, which acts as our reference material. Ch. 3 details the experimental

setup. In Ch. 4, we present the measurement results, demonstrating the absence of

Johnson noise from a superconductor to within our experimental sensitivity. Finally, in

Ch. 5, we conclude with an outlook toward promising future experiments with ultracold

atoms in cryogenic environments. Appendix A gives details of the experimental computer

control, and Appendix B shows the hyperfine spectrum of rubidium, the atomic species

used for our experiments.
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Chapter 2

Theoretical foundations

This chapter contains two sections. In the first, I will present the London theory of super-

conductivity, and use it to calculate the properties of a magnetic trap near a cylindrical

wire in the Meissner state. The second section is concerned with deriving the spin-flip

rate for an atomic cloud trapped near a conducting surface. The resulting expression may

be applied to calculate the expected lifetime of an ultracold cloud as a function of its

separation from the surface of a normal, or superconductor.

2.1 The Meissner effect in magnetic traps

This section shows how the London theory of superconductivity, which dictates the exclu-

sion of magnetic fields at a superconductor surface within the London penetration depth,

effects the properties of a nearby magnetic trap. Analytical expressions for the position,

gradient, trap frequency, and trap depth are found.

2.1.1 London theory of superconductivity

The first observation of superconductivity came nearly a century ago, when in 1911,

Kamerlingh Onnes and coworkers at the University of Leiden measured the vanishing

resistance of mercury below 4.2 K. It was not until 1933 that Meissner and Ochsenfeld

demonstrated experimentally the expulsion of static magnetic fields from the region within

a superconductor. The brothers Fritz and Heinz London subsequently provided a phe-

nomenological description of superconductivity that successfully explained the Meissner-

Ochsenfeld effect.

The London equations for the magnetic and electric fields produced by a supercurrent,

Js, are (Buc04)

∇× Js = − 1

µ0λ2
L

B (2.1)

∂Js
∂t

=
1

µ0λ2
L

E (2.2)

5
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where the London penetration depth, defined as

λL =

√
m

nse2µ0
(2.3)

describes the characteristic length scale over which the magnetic field exponentially decays

within an ideal superconductor. Here m is the electron mass, e is the elementary charge,

and ns is the density of superconducting electrons. In the London theory, the number

density of superconducting electrons as a function of temperature is

ns(T ) = n0

(
1−

(
T

Tc

)4
)

(2.4)

This quantity rapidly approaches zero near the transition temperature, whereas at T = 0,

all n0 electrons are superconducting.

The London theory provides no insight into the mechanism behind superconductivity.

By 1938, in another landmark publication (Lon38), F. London proposed a description of

superfluidity in He II relying on the concept of macroscopic occupation of the energetic

ground state, Bose-Einstein condensation. Although appealing, it was not clear how this

concept could apply to a fermi sea of electrons in a metal. In 1946, R. Ogg put forward the

idea that superconductivity results from the condensation of spatially separate, localized

electron pairs (Ale03). This idea did not take hold, since it did not account for exper-

imental measurements. In 1957, L. Cooper showed that electrons, which couple to the

background ionic lattice, could form an attractive interaction via the exchange of virtual

phonons, thereby lowering their energy with respect to the fermi sea. In this formulation,

electrons of equal an opposite momentum form pairs, with a high degree of spatial over-

lap. The superconducting ground state forms, consisting of a macroscopic occupation of

cooper-paired electrons.

Before the microscopic pairing mechanism was understood, Ginzburg and Landau

made a crucial contribution to the understanding of superconductivity by postulating

the existence of an order parameter to describe the superconducting state Ψ (Gin50). By

expanding in powers of Ψ, they elucidated the thermodynamics of the superconducting

state. This theory was used e.g. to show that vortices in a mixed-state type II supercon-

ductor arrange in a regular triangular array (Ess67), the so called Abrikosov lattice. The

size of a vortex core is typically of the order ξ0, i.e. the coherence length introduced by

Pippard to account for experimental variations of the London penetration depth due to

non-local effects (Pip53).

With the invention of BCS theory (Bar57), low temperature superconductivity has

been described at the microscopic level. The theory has been highly successful in this

regime in predicting quantities such as the magnitude of the energy gap. In many sim-

ple cases BCS theory dictates only a small perturbation to quantities calculated via the

Ginzburg-Landau or London theories. In fact Gor’kov showed the Ginzburg-Landau the-

ory can be viewed as a limiting case of the BCS theory at temperatures near Tc with no

external magnetic field.

6



2.1. The Meissner effect in magnetic traps

BCS theory is directly applicable to superconductors that exhibit s-wave symmetry in

the energy gap (described by the order parameter). For high temperature superconductors,

extensions of Eliashberg theory have been used that take into account the observed d-wave

symmetry of the energy gap (Sch03). Despite this considerable series of advancements,

the microscopic mechanism behind high temperature superconductors remains unknown.

2.1.2 Superconducting wire trap parameters

Let us consider a straight (infinitely long) cylindrical superconducting wire of radius R

carrying a current I. With I = 0, we apply a constant external bias field Bx along x.

The Meissner effect leads to the complete exclusion of magnetic fields from the interior of

a superconductor by generating screening currents in the wire. An inhomogeneous total

bias field Bb results. In cylindrical coordinates, the field has components (Dik09),

Br = Bx

(
1−

(
R2

ρ2

))
sin θ (2.5)

Bθ = Bx

(
1 +

(
R2

ρ2

))
cos θ (2.6)

where ρ is the distance from the wire center, and θ is the angle with the z-axis. Qualita-

tively, circulating currents within a thin surface layer exactly cancel the externally applied

field just inside the surface. Fields parallel to the surface plane can jump to a finite value

discontinuously at the surface boundary, whereas orthogonal fields cannot. The magnetic

field has two zeros at the surface boundary, precisely where the parallel fields vanish.

Now imagine we slowly increase the wire current from zero. The resulting magnetic

field magnitude as a function of the distance, z, from the wire center, is given by the usual

expression

BI =
µ0I

2πz
(2.7)

For small currents, the wire field is not able to cancel the bias field. However, the locations

of the zeros on opposite sides of the wire surface are shifted symmetrically toward the

bottom of the wire. At the same time, a saddle point approaches from infinity, forming a

local minimum along z at

zsp =
µ0BxR

2

4πI
(2.8)

and a local maximum along x. As the wire field is further increased, the surface zeros travel

toward the each other along quarter-circular paths, eventually merging with each other

(and the approaching saddle point) at the wire surface where x = 0. Further increasing

the wire field leads to a cancelation of the bias field away from the wire surface, i.e. a

magnetic quadrupole minimum suitable for trapping atoms. Fig. 2.1 shows contours of

the total field magnitude, starting at I = 0 (2.1a). At intermediate fields (2.1b and c),

the saddle point is seen to approach the wire surface. Finally, at sufficiently high current

(2.1d), a magnetic quadrupole minimum appears and moves away from the surface.

7
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Figure 2.1: Contour plots of the magnetic field magnitude for four different

values of wire current. The external bias field is 20 G in all plots, and the wire

current is: (a) I = 0 A, (b) I = 0.7 A, (c) I = 1.1 A, (d) I = 1.5 A
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2.1. The Meissner effect in magnetic traps

We now restrict our attention to the field along the z-axis, where the bias field points

purely in the x-direction,

Bb = Bx

(
1 +

(
R

z

)2
)

(2.9)

The field equals 2Bx at the surface, z = R, with no current in the wire. Conversely the

field approaches Bx in the limit x→∞. The inhomogeneity introduced onto the bias field

by the deformation of the field lines around the wire adds an additional term to the field

gradient. At the trap minimum, z0,SC , we have,

a0,SC =
Bx
z0,SC

(
z0,NC

z0,SC
− 2

(
R

z0,SC

)2
)

(2.10)

Using the equality

z0,NC

z0,SC
= 1 +

(
R

z0,SC

)2

(2.11)

this reduces to

a0,SC =
Bx
z0,SC

(
1−

(
R

z0,SC

)2
)

(2.12)

Table 2.1 provides a comparison of trap properties for normal and superconducting wires.

Table 2.1: Some key properties of normal and superconducting traps.

Trap feature Normal conducting (NC) Superconducting (SC)

Minimum (z0) µ0I
2πBx

µ0I
4πBx

+

√(
µ0I

4πBx

)2
−R2

Gradient (a0) −2πB2
x

µ0I
Bx
z0,SC

(
1−

(
R

z0,SC

)2
)

Depth (B∆′) Bx − µ0I
2πR

(
Bx − µ0I

2πR

)
+ 1

4Bx

(
µ0I
2πR

)2

We now show the expression for the curvature of the field along z,

d2B

dz2
=

6BxR
2

z4
− µ0I

πz3
(2.13)

which can be used to calculate the theoretical frequency in the z direction from,

ωz =
1

2π

{
1

mRb

(
−mF gFµB

d2B

dz2

∣∣∣∣
z=z0

)}
(2.14)

Unlike in the normal conducting case, the trap curvature has a local maximum as we

approach the wire by reducing the current. The distance z∗ at which the trap frequency

9
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is maximized can be calculated by setting the derivative of the curvature to zero. The

maximum trap frequency occurs at a distance

z∗ =
√

3R (2.15)

from the wire center.

2.1.3 Trap depth

To calculate the depth B∆,SC of a superconducting wire trap, we consider the fields at

the wire surface, and very far from the wire. Whichever of these two quantities is smaller

limits the magnetic field trap depth. The two possibilities are,

B∆′′,SC = Bx if I > 2πRBx
µ0

(Far)

B∆′,SC = (Bb −BI)|x=R if I < 2πRBx
µ0

(Close)

Here the double/single prime denotes a trap formed far/close to the wire surface, re-

spectively. For a superconductor, the trap depth is limited by the wire surface when

I < 2πRBx/µ0. Interestingly, this condition is exactly reversed for a normal conductor,

in which case the surface field is smaller than the external bias when I > 2πRBx/µ0. Far

from the wire, the superconducting trap depth is simply Bx. In practice, the trap depth

is reduced by gravity, which introduces a potential gradient equivalent to ≈ 15 Gauss/cm.

The optimal trap depth occurs when Bx = (Bb −BI)|x=R or I = 2πRBx/µ0. In this

case,

B∆∗,SC =
1

4

(
µ0I

2πR

)
(2.16)

Close to the wire (i.e. Bx < µ0I/2πR), the trap opens toward the surface and the expres-

sion becomes,

B∆′,SC =

(
Bx −

µ0I

2πR

)
+

1

4Bx

(
µ0I

2πR

)2

(2.17)

Because the first and second terms have opposite sign, there is a reduction of the trap

depth by
1

4Bx

(
µ0I

2πR

)2

(2.18)

with respect to a normal conducting trap which has a maximum trap depth close to the

wire (when there is no offset field) of

B∆′,NC = Bx −
µ0I

2πR
(2.19)

Introducing a homogeneous offset field (along the y-axis) reduces the trap depth. The

Meissner effect, however, plays only a minor role since the demagnetization factor in this

direction is negligible (Can08b).

Fig. 2.2 shows the trap depth (a), and the analytical radial trap frequency (b) for a

superconducting wire trap with experimentally realistic parameters.

The trap depth falls with decreasing cloud-surface distance as d2 from an energy of

≈ kB × 25µK at 50µm to less than kB × 2µK at 20µm.
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2.1. The Meissner effect in magnetic traps
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Figure 2.2: The trap depth (a), and radial frequency (b) calculated from

Eq. 2.17 and Eqs. 2.14, 2.13, respectively. The maximum trap frequency oc-

curs at z∗ =
√

3R. The trap depth falls to zero sub-linearly at the trap surface

in contrast to a normally conducting trap.

2.1.4 Hamiltonian of a magnetic dipole

We now consider the interaction of an atom with an inhomogeneous magnetic field, such

as a magnetic trap. The atom carries a magnetic dipole moment µ, which in the presence

of a field B has magnetic potential energy given by the Zeeman Hamiltonian,

HZ = −µ ·B (2.20)

= −mF gFµB|B| (2.21)

where the second line arises in cases where the atomic magnetic moment can smoothly

follow the changing magnetic field. More precisely, the atom retains its magnetic substate

so long as the adiabatic condition, expressed as dωL/dt � ω2
L, is fulfilled. Here we have

introduced the Larmor frequency,

ωL = gFµB|B|/h̄ (2.22)

which in the classical case is simply the precession frequency of the magnetic moment

about the axis of a homogeneous field. A photon at the Larmor frequency can induce an

atomic ”spin-flip” transition between two neighboring Zeeman substates.

The Lande factor, gF , describes the ratio of the magnetic moment and the angular

momentum quantum number. Both the electronic (spin-orbital) and nuclear g-factors

contribute to gF .

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
− gI

µN
µB

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
(2.23)

where µN = eh̄/2mp is the nuclear magnetic moment. For rubidium in its ground state

gF ≈ −1/2 to within 1 part in 1000 (approximately the ratio of the electron and proton
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masses). The difference from 1/2 arises from the contribution of the nuclear magnetic

moment, as well as the anomalous gS factor of the electron spin. For an atom trapped in

the hyperfine state mF = 2, the minimum potential energy occurs in regions of weakest

field. Such atoms are thus referred to as ”weak-field seekers”.

2.2 Atomic spin coherence near surfaces

In this section, we seek the expression for the electromagnetic fields emanating from an

electrical conductor with fluctuating currents resulting from finite temperature and re-

sistance. This has been a subject of considerable interest, with broad applicability in

quantum and atom optics. We follow the general theoretical framework laid out by Vo-

gel and Welsch (Vog06), Scheel and coworkers (Sch98; Sch99), and earlier by Agarwal

(Aga75a; Aga75b). Henkel et al. (Hen99; Hen05), and Rekdal et al. (Rek04) derive

the atomic spin flip rate for a cloud trapped near dielectric matter in a half plane, and

two-layered wire configuration respectively. Scheel et al. (Sch05) first extended the anal-

ysis to include superconducting structures, a topic which was further elaborated upon by

Hohenester et al. (Ska06).

2.2.1 Spectral density of thermal magnetic field fluctuations

We consider a local, linear dielectric1 medium. The material’s response to external fields

is represented by its electric permittivity, with ε0 denoting the vacuum permittivity. The

permittivity is related to the electric susceptibility by

ε(r, ω) = 1 +

∫ ∞
0

dτeiωtχ(r, τ) (2.24)

where the latter term is the fourier transform (FT) of the time dependent susceptibil-

ity, yielding an expression in the frequency domain. Inhomogeneities are accounted for

by the spatial and frequency dependence of ε(r, ω), which has both real and imaginary

parts corresponding to dispersion and absorption respectively. Causality dictates that the

permittivity satisfies the Kramers-Kronig relations (Dun98).

Details regarding the specific composition and geometry of the dielectric make their

way into the Green tensor, which (with the appropriate boundary conditions) uniquely

solves the inhomogeneous Helmholz equation with δ-function driving term. The noise

process within the material is described by introducing a noise polarization (or current),

whose operators necessarily satisfy the equal-time commutation relations (Sch98). Dissi-

pation resulting from the finite resistance implies current fluctuations in accordance with

the fluctuation-dissipation theorem.

1Although the term ”dielectric” typically refers to semiconducting materials, here we use the term to

denote any material with finite electric polarizability, including metals.
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2.2. Atomic spin coherence near surfaces

Exterior to the surface, the field fluctuations arise essentially from the material’s near-

field blackbody radiation (i.e. δ-correlated noise following Bose-Einstein statistics). Elec-

tromagnetic screening damps interior fluctuations on the length scale of the skin depth,

defined as

δ =
√

2/ωµ0σ(T ) (2.25)

It is the material within one skin depth of the surface that largely determines the noise

properties at the location of the trapped atoms. Fluctuations of the magnetic field at

the Larmor frequency (ω = ωL) directly out-couple atoms from the magnetic trap by the

spin-flip chain |F = 2,mF = 2 >→ |F = 2,mF = 1 >→ |F = 2,mF = 0 >. We shall

now derive an expression for the spectral density of the magnetic field noise in terms of

the Green tensor (Eq. 2.51), from which specific (geometry dependent) loss rates can be

calculated.

2.2.2 Maxwell’s equation in Fourier space

Let us begin at the starting point of most arguments of electromagnetic theory. Maxwell’s

equations in the presence of dielectric matter (in SI units) can be written

∇ ·B = 0 (2.26)

∇×E +
∂

∂t
B = 0 (2.27)

∇ ·D = ρf (2.28)

∇×H− ∂

∂t
D = Jf (2.29)

where D = ε0E + P, and H = 1
µ0
B −M for linear media. We restrict our attention to

non-magnetic materials (M = 0). Furthermore we focus on the source-free case ρf = 0,

Jf = 0, since we are primarily concerned with field fluctuations.

We proceed by taking the FT of the above equations, from which we obtain the corre-

sponding equations in the frequency domain (Gru96). Upon rearranging,

∇ ·B(r, ω) = 0 (2.30)

∇×E(r, ω) = iωB(r, ω) (2.31)

ε0∇ · (ε(r, ω)E(r, ω)) = −∇ ·PN (r, ω) (2.32)

∇×B(r, ω) +
iω

c2
ε(r, ω)E(r, ω) = −iωµ0PN (r, ω) (2.33)

where we have inserted an expression for the electric displacement,

D(r, ω) = ε0ε(r, ω)E(r, ω) + PN (r, ω) (2.34)

The noise polarization PN (r, ω) plays the role of a local source term for spontaneous

fluctuations of the electric field within the medium. To determine the electric field we

13
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plug Eq. 2.31 into 2.33 and multiply through by iω to find

∇×∇×E(r, ω)− ω2

c2
ε(r, ω)E(r, ω) = ω2µ0PN (r, ω) (2.35)

This is a generalized form of the inhomogeneous Helmholtz wave equation. In cases where

the charge distribution is homogeneous it reduces to the standard Helmholtz equation via

the vector identity ∇×∇×E = ∇(∇ ·E)−∇2E.

2.2.3 Method of Green’s functions

Equation 2.35 can be solved using the powerful methods of Green’s functions. For a rigor-

ous treatment of Green’s functions, see e.g. Ref. (Byr92). An excellent short introduction

set in a historical context is given in Ref. (Cha03). The basic idea is as follows: for a

linear differential operator L (in <3), we seek the solutions of u(r) satisfying

Lu(r) = f(r) (2.36)

where f(r) represents an arbitrary driving term. Inverting this equation yields

u(r) = L−1f(r) ≡ Kf(r) (2.37)

Clearly K has properties of an integral operator (being the inverse of a differential oper-

ator). The solutions of u(r) are written

u(r) =

∫
dr′G(r, r′) · f(r′) (2.38)

where we have used the Green function, defined via the relation

LG(r, r′) = δ(r − r′) (2.39)

The Green function determines the field at r due to a point source at r′, or arbitrary

arrangement of such sources. To arrive at a unique solution for G(r, r′) (and likewise for

u(r)) we must specify the boundary conditions. In free space we have that G(r, r′) → 0

as r →∞. At the interface of a metal with the vacuum, the simplest boundary conditions

keep the magnetic and electric fields continuous. The normal component of the electric

field goes to zero at the surface, however surface currents lead to a magnetic field jump

across the interface.

From the above arguments, we now make the following correspondences for a given

frequency ω: L is the linear (generalized) Helmholtz operator, u(r)→ E(r, ω), G(r, r′)→
G(r, r′, ω), and f(r)→ PN (r, ω).

Applying Eq. 2.39 to our problem, the Green tensor is seen to satisfy the equation

∇×∇×G(r, r′, ω)− ω2

c2
ε(r, ω)G(r, r′, ω) = δ(r − r′)U (2.40)

where U is the identity dyadic tensor.

14



2.2. Atomic spin coherence near surfaces

2.2.4 Field operators

From Eq. 2.38, the electric field is given by

E(r, ω) = ω2µ0

∫
d3r′G(r, r′, ω) ·PN (r′, ω) (2.41)

According to Eq. 2.31, the magnetic field is given by

B(r, ω) =
1

iω
∇×E(r, ω) (2.42)

The noise term for the polarization density, PN , can be constructed from the elemen-

tary excitations as

P̂N (r, ω) = i

√
h̄ε0
π
εI f̂(r, ω) (2.43)

The fundamental field operators have been chosen to be consistent with the fluctuation-

dissipation theorem, and they satisfy the equal time commutation relations. The time

evolution of the fundamental field operators f̂(r, ω) (and h.c.) can be deduced by solving

the Heisenberg equations of motion.

From the fundamental field operators, the electric and magnetic field operators can be

obtained by plugging into the equations 2.43, 2.41, and 2.42.

2.2.5 Hamiltonian of a single atom interacting with an electromagnetic

field

The Hamiltonian for a system composed of a single two level atom interacting with the

electromagnetic field in the electric-dipole and rotating-wave approximations is given by

(Vog06),

Ĥ = ĤF + ĤInt (2.44)

=

∫
d3r

∫ ∞
0

dωh̄ωf̂ †(r, ω)f̂(r, ω) (2.45)

−i
√

h̄

πε0

∫ ∞
0

dω
ω2

c2

∫
d3r′d21G(r, r′, ω)f̂(r′, ω)Â21 (2.46)

Where Â21 = |2〉〈1|, and d21 = 〈2|d̂|1〉 is the dipole operator matrix element between the

states |1〉 and |2〉.

2.2.6 Calculation of the spectral density

The field excitation spectrum is calculated by forming a correlation function of the field

operators (Fer06),

〈f̂α(r, ω)f̂ †β(r′, ω′)〉 = (n̄th + 1)δαβδ(r − r′)δ(ω − ω′)U (2.47)

where α and β represent cartesian coordinates. At T = 0, the noise is strictly delta-

correlated, arising from zero-temperature spontaneous vacuum fluctuations, whereas at
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finite temperatures it includes a component proportional to the mean thermal photon

occupation number, n̄th. The familiar result from Bose-Einstein statistics is

n̄th =
1

eh̄ω/kBT − 1
(2.48)

Ultimately we are concerned with the spectral density of the magnetic field fluctuations

at the Larmor frequency, which according to the Wiener-Khinchin theorem is given by the

Fourier transform of the auto-correlation function,

SαβB (r, r′;ωL) =

∫ ∞
−∞

dτ〈Bα(r, t+ τ)Bβ(r′, t)〉eiωLτ (2.49)

From the properties of the FT,

SαβB (r, r′;ω, ω′) = 2πδ(ω − ω′)〈Bα(r, ω)Bβ(r′, ω′)〉 (2.50)

Invoking the fluctuation-dissipation theorem, the spectral density can also be expressed

in terms of the Green tensor as

SαβB (r, r′;ω, ω′) = 2h̄µ0(n̄th + 1)δ(ω − ω′)Im[∇×∇′ × G(r, r′, ω)]αβ (2.51)

2.2.7 Derivation of the spin-flip rate

Let us now consider an atomic cloud, magnetically trapped in the ground state at position

rA near a finite temperature dielectric. For a Ioffe-type trap, magnetic fields at the Larmor

frequency (ωL from Eq. 2.22) lead to stimulated emission by the atoms on the transition

|F,mF 〉 = |2, 2〉 → |2, 1〉, and likewise |2, 1〉 → |2, 0〉. Whereas atoms in the |2, 1〉 state

experience 1/2 the trapping potential, |2, 0〉 are not trapped. In this way, spin-flips usually

correspond to loss from the magnetic trap.

The transition rate between the Zeeman substates (|i〉 → |f〉) on the atomic hyperfine

manifold can be calculated via Fermi’s golden rule (For07).

ΓB(rA, ωL) =
∑

α,β=x,y,z

〈f |µ̂α|i〉〈i|µ̂β|f〉
h̄2 SαβB (rA;ωL) (2.52)

Expressed in terms of the Green tensor, this becomes

ΓB(rA, ωL) = µ0
2(µBgF )2

h̄
(n̄th+1)

∑
α,β=x,y,z

〈f |F̂α|i〉〈i|F̂β|f〉×Im[∇×∇′×G(rA, rA, ωL)]αβ

(2.53)

In this equation we have also substituted in a representation for the magnetic moment

operators acting on the hyperfine manifold using

〈f |µ̂α|i〉 = µBgF 〈f |F̂α|i〉 (2.54)

These operators follow the usual angular momentum commutation rules (For07; Hen99).

16



2.2. Atomic spin coherence near surfaces

2.2.8 Spin-flip rate near a normal conductor

The above formalism has been used to calculate the magnetic field fluctuations near various

material geometries by solving the Green tensor for the specific boundary conditions.

The free-space lifetime due to blackbody radiation in the far field is given by,

τ0 =
1

ΓB0
=

3πh̄c3

µ0ω3
∑

α=x,y,z µ
2
Bg

2
F |〈f |F̂α|i〉|2

(2.55)

=
6πh̄c3

µ0ω3µ2
B

(2.56)

which exceeds the age of the universe at room temperature. However, when the atom-

surface distance, d, is exceeded by the wavelength of the transition (λ = 2πc/ω � d), the

atom is said to be in the near-field of the surface, and the lifetime is reduced considerably

from the free space value.

In a geometry typical of an atom chip, with a thin metallic surface layer of thickness

h acting as the nearby current carrier, the lifetime is given by Eq. (4) in Ref. (Sch05),

τsf =

(
8

3

)2 τ0

n̄th + 1

(ωL
c

)3 d4

3δL
(2.57)

This expression is valid when δL � d, h, i.e. the skin depth at the Larmor frequency is

much less than either the atom-surface distance or the thickness of the metal layer. The

result is equally valid for bulk niobium (the limit of large h), as for the atom chip geometry.

It is only when the atom-surface distance drops below the skin depth that distinct scaling

behavior is expected. Since the atom-surface distance is > 20µm in our experiment, while

the skin depth is on the order of a few microns, it is reasonable to expect that the above

formula is applicable.

Eq. 2.57 has been plotted for several different offset fields at a constant temperature of

4.2 K, and at several different temperatures with a constant offset field of 2.44 G (Fig. 2.3).

Whereas increasing the offset field leads to longer lifetimes according to the scaling τsf ∝
ω

3/2
L , increasing the temperature leads to a strong reduction of the lifetime. The scaling

is determined by the temperature dependence of the conductivity, which enters into the

expression for the skin depth (Eq. 2.25), and by the average thermal occupation which is

well approximated by n̄th ≈ kBT/h̄ωL over the entire temperature range considered here.

For reference, the skin depth vs. temperature is plotted in Fig. 2.4. The skin depth for

OFHC copper (red curve) (E.D) drops from about 50µm at room temperature to less than

5µm at 4.2 K. The corresponding change in the expected lifetime is dramatic, increasing

by a factor of 100.
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Figure 2.3: Left : Theoretical trap lifetime vs. surface distance above a normally

conducting slab at several temperatures (with offset field B0 = 2.44 G). Right :

Trap lifetime vs. surface distance at several offset fields (T = 4.2 K)
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Figure 2.4: The skin depth vs. temperature for copper (red) and normal state

niobium (blue). See Fig. 3.7 for a plot of the conductivity data from which this

is based.
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2.2. Atomic spin coherence near surfaces

2.2.9 Spin-flip rate near a super conductor

To derive the scaling behavior of the decay rate of a trapped cloud near a superconductor,

Skagerstam et al. consider the dielectric response function of a London superconductor2

(Ska06) using a two fluid model. They obtain,

ε(ω) = 1− 1

k2λ2
L(T )

+ i
2

k2σ2(T )
(2.58)

This leads to an expression for the transition rate between Zeeman sublevels given by,

ΓBSC ≈ ΓB0 (n̄th + 1)

[
1 + 2

(
3

4

)3 c3

ω3σ2(T )

λ3
L(T )

z4

]
(2.59)

= ΓB0 (n̄th + 1)

1 + 2

(
3

4

)3 c3µ0

2ω2

(
T

Tc

)4
(

1−
[
T

Tc

]4
)−3/2

σλ3
L(0)

z4

 (2.60)

where the second line is a straightforward algebraic reduction to highlight the expected

temperature dependence. The value of λL(0) enters as a free parameter. Estimating

the T = 0 London depth to be λL(0) = 50 nm, and with a niobium conductivity σ =

2× 109 Ω−1m−1 (Cas05), we can estimate the lifetime as a function of temperature. The

result is shown for three atom-surface distances of 5, 20, and 50µm in Fig. 2.5.

Apparently the onset of superconductivity is accompanied by a reduction of the atomic

spin flip rate by orders of magnitude. This has been attributed to a combination of effects:

electromagnetic screening, a reduced mode volume in which to host fluctuating currents,

and the formation of a superconducting gap. In the two fluid model, the reduction of

the lifetime from the free space value can be attributed to the finite fraction of thermal

electrons. Although the condition for London superconductivity is not necessarily satisfied

at low temperatures, so far only local media have been considered. As was mentioned,

non-local effects can be accounted for phenomenologically by considering an increase in

the T = 0 London penetration depth.

The two fluid model does not account for the quasi-particle states arising from thermal

fluctuations. Hohenester et al. (Hoh07) provide an analysis, deriving an expression for

the optical conductivity in the framework of BCS theory, which allows for quasi-particles,

and Eliashberg theory, which additionally accounts for the absorption and emission of real

phonons.

2A London superconductor is one for which λL � ξ0. For a slab of pure niobium, measurements give

ξ0 ≈ 38 nm
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Figure 2.5: The lifetime near a superconducting slab in dependence of tem-

perature. The inability of a superconducting electrons to host electromagnetic

fluctuations below the energy gap (2.1 THz for niobium with Tc = 9.2 K), com-

bined with electromagnetic screening leads to orders of magnitude enhancement

of the lifetime below Tc.
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Chapter 3

Experimental apparatus

In this chapter, we present an experimental setup which was designed and built in order

to realize a superconducting microtrap for ultracold atoms. The key elements of the

apparatus are shown in Fig. 3.1.

3.1 Vacuum System

In order to sufficiently insulate a cold atomic cloud from the room temperature envi-

ronment, the vacuum system must be able to continuously pump to pressures around

10−11 mbar. Reaching UHV pressures (anything below 10−9 mbar) requires various types

of pump, and presents several challenges. Great care must be taken to avoid introducing

parts, materials or contaminants that are not UHV compatible (nas). Each part must be

cleaned before entering the UHV. The standard procedure involves an hour or more in an

ultrasonic bath, first with Tickopur RW 77 (a specialty cleaner for ultrasonic baths), then

with Acetone, and lastly with methanol or isopropyl alcohol. Finally the entire chamber

has to be baked out at 140 ◦C or more (taking care not to exceed the maximum bakeout

temperature of sensitive components). The bakeout typically lasts for at least one week,

or until the pressure stabilizes.

3.1.1 Vacuum Chamber

We designed the vacuum chamber in order to combine an experimental setup suitable for

preparing clouds of ultracold atoms, with a cryogenic environment in which low tempera-

ture superconductivity could be achieved. The design work was done using the Solidworks

CAD program, and the chamber itself was machined by Hositrad with two in-line valves

welded into place (to reduce the tube length). A schematic of the chamber and pumps is

shown in Fig. 3.2. It shows the main chamber, the various pumps (Rough pump, TMP,

TSP, IP), and the locations of pressure sensors (VM). The cryostat enters at a flange

670 mm above the cold finger surface. The vertical position of the cold finger can be

coarsely adjusted by a Z-translator (Z-trans.). The preparation of ultracold atoms occurs
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EXPERIMENTAL APPARATUS

(a) (b)

Figure 3.1: (a): Inside setup photo showing the cryostat shielding (left) and the

adjacent BEC apparatus (right) as seen from the front viewport. (b): A CAD

graphic showing the same structures. The cryostat shielding has been made

partly transparent for display purposes. The 6 MOT beams, shown in red, enter

the chamber from 4 directions. A pair of dispensers mounted nearby enhances

the loading rate.

adjacent to the cryostat, in a thermally separate setup. The electrical feedthroughs (EF)

on the top flange supply the in-vacuum conductors used to capture and cool a cloud to

temperatures of a few µK. The large front view port provides broad optical access.

The chamber is made of stainless steel, and all seals (out to the TMP exhaust) are

between a pair of ConFlat (CF) flanges, and a ring of oxygen-free high conductivity

(OFHC) copper which is placed concentrically between them. As the flanges are screwed

together, the knife edge of the flange is forcibly pressed into the softer OFHC copper. This

type of seal is a similar to the principle behind in-line valves, where the knife edge can be

repeatedly separated and re-engaged with a copper ring (the Thermionics valves in use

accept a torque range from 12 to 25 ft · lbs). These metal-metal seals are very effective,

and enable UHV pressures, however leaks can arise from defects. We inspected knife edges

and copper rings, and cleaned them with acetone, isopropyl alcohol, and compressed air

immediately before use.

3.1.2 Vacuum Pumps

The approximate operating range and achievable pressures of the various vacuum pumps

employed in our chamber setup are listed in Table 3.1. Note that these values are specific

to the types of pump, and exact configuration of our experiment, and should not be

considered general. For a detailed account, see Ref. (O’H03).

From the central science chamber, a bakeable straight through (in-line) UHV valve

leads to a pumping stage, consisting of a turbo-molecular pump (TMP) and a diffusion
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Figure 3.2: Schematic of the vacuum system showing the main chamber, cryo-

stat, pumps and sensors.
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Table 3.1: Pump pressure guide for the vacuum chamber (units: mbar).

Pump type Operating range Min. pressure Min. pressure

(pre-bake) (post-bake)

Rough 103 − 10−4 1× 10−3 NA

Turbo-Molecular (TMP) 10−2 − 10−10 1× 10−6 5× 10−9

Ion (IP) 10−5 − 10−12 1× 10−7 1× 10−12

Ti-sublimation (TSP) 10−8 − 10−12 NA 1× 10−12

(rough) pump connected in series. The exhaust of the TMP forms the intake of the rough

pump with a Klein Flange (KF) valve between them. The rough pump is not an oil free

pump, meaning that (bakeable) filters are also needed in this section to insure no oil vapors

enter the chamber. Exhaust from the rough pump is led to an exhaust outlet and removed

from the lab.

Using this setup, we can pump to high vacuum pressures. To reach UHV, additional

pumps are required. In parallel with the TMP and rough pump, an ion pump (IP) and

titanium sublimation pump (TSP) are connected below the chamber. We use a Varian

VacIon plus Starcell 75 IP which uses large electric fields to ionize and accelerate gas

molecules into a getter material such as titanium. A strong magnetic field causes the

charged particles to move along helical paths, increasing the ionization efficiency (O’H03).

The TSP is a type of getter pump where background gas molecules are absorbed by the

pump’s reactive metal walls. The gas either diffuses into the metallic layer, or reacts to

form non-evaporable compounds. The IP and TSP have no moving parts and are therefore

able to be run continuously during experiments without causing mechanical vibrations.

3.1.3 The road to UHV

After sealing the chamber, the rough pump was switched on. The TMP can operate at

1bar, but only becomes efficient at pressures below 10−3 mbar or so. With both pumps

operating, pre-bakeout pressures of below 10−6 mbar were possible.

The next step was to bake the chamber. Numerous heating tapes were wound around

the chamber, with several strategically placed temperature sensors. The entire chamber

was then wrapped in aluminum foil. We used controllers to monitor and regulate the

temperature. We then slowly increased the temperature (5− 10 ◦C/hour) to between 150

and 200 ◦C. The IP can be switched on during this phase as long as the pressure does

not exceed a few 10−5 mbar. Arcing may occur if the pressure is too high. In general ion

pumps should be switched on at the lowest possible pressure to extend their lifetime. After

a week at high temperature, when the pressure had stabilized, the chamber was cooled

slowly back to room temperature in about 3 days. The vacuum improved dramatically

during this phase reaching a few 10−10 mbar.

24



3.2. BEC apparatus

The final stage for producing UHV utilized the TSP. The principle of its operation is as

follows: a current of 50 A for up to 30 seconds is applied to a titanium wire which extends

into the central region of the chamber. Resistive heating causes the titanium to become

very hot. Sublimation occurs and the titanium particles stick to the chamber walls. After

an initial climb, the pressure typically falls rapidly due to efficient getter pumping. Regu-

lar titanium flashes (at least once per month) were applied to re-coat the chamber walls,

usually after filling the pump with liquid nitrogen. Operating the pump with liquid nitro-

gen had little effect on the pressure during experiments at cryogenic temperatures. This

is because the cryostat itself acts as an even more efficient vacuum pump in the region of

the atoms. The pumping mechanisms, cryocondensation and cryosorption, can effectively

pump a wide range of gases, including hydrogen (O’H03). Furthermore, outgassing from

cryogenic surfaces is completely negligible. These are significant advantages conferred by

including in-vacuum cryogenics.

3.1.4 Background pressure

In practice, it is impossible to create a perfect vacuum due to leaks, outgassing, hydrogen

and helium diffusion through the metal walls, and pump limitations. In addition, during

experiments, rubidium is heated from a dispenser releasing thermal rubidium atoms as well

as molecular ”dirt” which briefly contaminate the chamber. Continuous measurement of

the vacuum can be taken below 10−4 mbar by a pressure sensor between the main chamber

and the TSP. It was often the case that pressures below 10−11 mbar were measured while

operating the cryostat. After opening and resealing the chamber in June 2008, the best

obtainable pressure rose slightly to about 3× 10−11 mbar.

During the measurements presented in Sect. 4.2, the vacuum limited lifetime of the

atomic cloud allows us to estimate the background vacuum in the region of experiments.

The residual background gas density nbg leads the atom number to decay on a time

scale, 1/τbg = nbgσbgv̄bg, where the average particle velocity is v̄bg 1000 m/s at room

temperature, and σbg 10−13 cm2 is the background cross section (Wei03a). The observed

decay rate of σbg = 0.006 s−1 puts an upper limit on the background vacuum pressure of

about 6× 10−11 mbar.

3.2 BEC apparatus

In this section, we describe UHV compatible apparatus capable of cooling a 87Rb cloud

to quantum degeneracy. During normal operation, this device was used to cool an atomic

cloud of 2.5× 106 atoms to a temperature 1µK. For a description of the procedure used,

see Sect. 3.7.
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3.2.1 In-vacuum setup

We have constructed an in-vacuum BEC apparatus, which is used to prepare an ultracold

cloud for transport to the cryogenic region. The construction is attached to the top

flange, and is powered via three electrical feedthroughs there. This entire setup is at room

temperature, with a 19 mm diameter OFHC copper rod acting as a heat sink. In this

way, the heat generated by the coils (which can exceed 30 W during evaporative cooling)

is removed from the chamber. A two-component UHV compatible ceramic glue was used

to improve the thermal contact between, e.g. the coil holders and the wires.

All coils are wound with 1 mm thick kapton-coated wire. The coil holders were made

in-house by machining OFHC copper. Thin radial extruded cuts were made to minimize

the formation of eddy currents while switching on and off current. The setup consists of

three coil pairs and a pair of vertical adjacent wires. The MOT coils consist of 151 windings

each (height 10 mm, inner/outer radius 16.5/32 mm), with a center-to-center separation

of 42 mm. The transfer coils consist of 50 windings each (height 6 mm, inner/outer ra-

dius 12.5/24 mm), with a center-to-center separation of 24 mm. The Ioffe coils consist of

46 windings each (height 10 mm, inner/outer radius 5.5/12 mm), with a center-to-center

separation of 18 mm. The Ioffe wires are actually a single 1.5 mm diameter OFHC copper

wire which doubles back. They run parallel and equidistant to the Ioffe (and transfer) coil

axes, but are each offset by about 3 mm.

The reason for this elaborate construction is ultimately to avoid Majorana losses during

evaporative cooling (Bri06). The magnetic trap formed by the MOT coils alone has a

quadrupole minimum (magnetic field zero), and in this region, atoms which violate the

adiabatic condition are lost from the trap. An Ioffe trap, with its finite field trap minimum,

makes this loss process negligible. However, creating an Ioffe trap requires the inclusion of

additional magnetic field generating elements: in this case an Ioffe wire pair. It is difficult

to include such elements directly adjacent to a MOT while maintaining optical access.

The magnetic transfer alleviates this problem. In addition, the Ioffe coils allow the trap

to be compressed increasing the trap frequencies, and hence the cooling efficiency.

After the transfer, the Ioffe trap frequencies were measured to be ωr/2π = 272 Hz

radially, and ωa/2π = 45 Hz axially. The offset field at the trap minimum is approximately

1 Gauss. To realize evaporative cooling in the Ioffe trap, we apply a radio frequency sweep

(source: BK precision rf generator), from an initial value of 15 MHz down to 1 MHz (at

constant amplitude) over 10 to 16 seconds. The circuit used to add the rf signal onto

the Ioffe wires is shown in Fig. 3.3. Long evaporation times improve the efficiency of the

process and ensure that the cloud remains in thermal equilibrium.

Once cooled to about 1µK, the atoms can efficiently be loaded into an optical dipole

trap. The procedure requires a careful alignment of the optical trap focus with the Ioffe

trap center. A discussion can be found in Sect. 3.4.3.

We performed extensive magnetic field simulations to better understand the magnetic
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Figure 3.3: Circuit used for adding a radio frequency to the Ioffe wires (with

resistance Riw in Ohms). The circuit uses a capacitance (C1) to transmit rf onto

the wires while protecting the function generator from the High Finesse (15 A)

dc current supply (in red). Inductance (L1) is a low pass that directs the rf onto

the Ioffe wires.

transfer and Ioffe trap formation. For this, I wrote a library of routines in Matlab, with

which wires and coils can be modeled. The latter relies on exact formulas for the field of

a current loop, calculated using elliptic integrals. This code (for a single current loop) is

reproduced in Appendix A.

3.3 MOT overview

Central to nearly all cold atom experiments is the magneto-optical trap (MOT). The

first MOT is described by E.L. Raab and collogues at Bell Laboratories (Raa87). By

illuminating a spherical quadrupole magnetic field with counter propagating, circularly

polarized beams from orthogonal directions (see Fig. 3.4), they could trap and cool sodium

atoms to temperatures as low as 300µK. The exact dynamics of a MOT are complex, with

many regimes to consider (Tow95). Roughly speaking, cooling occurs due to the Doppler

shift, whereby atoms of a certain velocity class are blue-shifted into resonance with the

oncoming beam (which is red-detuned from resonance). Trapping arises from the Zeeman

effect. Atoms that are displaced from the zero of the quadrupole preferentially absorb

that beam which kicks them toward the trap center. For rubidium, the minimum cloud

temperature according to the Doppler limit is h̄γ/2kB = 145µK, where γ = 2π×6.07 MHz

corresponds to the D2 transition linewidth (Steb).

Early experiments with MOTs demonstrated cloud temperatures lower than the Doppler

limit (Let88; She89). This was attributed to polarization gradient cooling, or Sisyphus

cooling. The effect has been explained for the case of both lin↔lin and σ+ ↔ σ− (Dal89).

In both cases, the counter propagating beams form a standing wave. The mechanism

governing the cooling, however, is different. With σ+ ↔ σ− (relevant to our experiment),

the polarization is linear but rotates along the beam axis in a helix. The atomic electric

dipole moment aligns with the electric field. With cold atoms, the atomic polarization

easily follows the rotating electric field. In the rotating frame of the atoms, this introduces
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a term which resembles a constant magnetic field along the beam direction. As an atom

travels along the beam path it is optically pumped and preferentially occupies a state

with a higher probability of absorbing the oncoming beam (as determined by the different

Clebsch-Gordan coefficients). This leads to a drag force with a net cooling effect. In the-

ory, the minimum achievable temperature, Trecoil = 2Erc/kB of 362 nK for 87Rb is limited

by the recoil energy, Erc = h̄2k2/2m, associated with the wavevector k of the photon

emitted by the atom. In practice such temperatures are difficult to attain due to radiation

trapping within the MOT (Cas98). Subsequently, narrow-line cooling of strontium was

used to reach the recoil temperature in a MOT (Kat99).

3.4 Laser system

In this section we describe the MOT laser system, and the imaging setup in our experiment.

The spectrum of rubidium can be found in Figure B.1 of the Appendix.

3.4.1 Laser components

Two types of lasers were constructed: grating stabilized (master) lasers, and injection

locked (slave) lasers. The master lasers use a grating injection scheme known as the Littrow

configuration, detailed in Ref. (Ric95). In this setup, the first order of the diffracted beam

is coupled back into the diode forming a resonator. To perform an injection lock, a portion

of the light from a master laser is spatially overlapped with the outgoing beam of the slave

laser operating in the same frequency range. This results in a mode matching whereby

the slave laser follows the master laser, essentially amplifying the master laser output.

Different diodes were used for these two locking methods. Hitachi (part no: HL7851G)

have moderate output power (about 50 mW) but provide a linewidth of less than 1 MHz.

These lasers are appropriate for rubidium spectroscopy, and as master lasers for injecting

other diode types. For the slave lasers we used diodes from Sharp (part no: GH0781JA2C).

These diodes provide higher output power (about 100 mW) but are not ideal for spec-

troscopy due to a broader linewidth. A tapered amplifier (TA) acts much like a slave

laser, but is capable of higher output power. We injected a TA from Eagleyard Photonics,

which produces an output power of 500 mW.

These output powers do not take into account the losses at the various components.

Optical isolators (optical analogs of diodes) have transmission coefficients of 90% or less.

Standard components like mirrors, lenses, and λ-plates, though anti-reflection coated,

scatter a small fraction of the incident beam. Finally, single-mode optical fibers are a

major source of loss, rarely transmitting more than about 50%. Polarization maintaining

fibers have been used throughout, lessening the sensitivity of the fiber itself to mechan-

ical vibrations. But the in-coupling remains sensitive to small mechanical drifts, which

typically arise from temperature changes in the lab.
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Figure 3.4: MOT diagram showing the orientation of magnetic fields and light

polarizations. The magnetic field (blue) is cylindrically symmetric about the

coil axes. The top and bottom beams consist of σ− and σ+ light respectively,

however, these do not correspond to opposite polarization in the lab frame (rather

to the reversal of the quantization axis that occurs at the MOT center). It

should be noted that the polarization of the vertical beams (e.g. right circular)

is opposite to that of the horizontal beams (left circular) in the lab frame.

3.4.2 MOT light

The MOT light entering the chamber in 6 beams consists of 100 mW cooling overlapped

with 20 mW repumping light. The top and bottom MOT beams enter through the large

(CF150) front viewport. They are reflected by a pair of in-vacuum dielectric mirrors

mounted with aluminum holders on the coil setup (the details of which are presented in

Sect. 3.2). The cooling light, 18 MHz red-detuned from the
∣∣5S1/2,F = 2

〉
→
∣∣5P3/2,F = 3

〉
transition, has a wavelength 780.24606 nm. The repumper addresses those atoms which

land in the state
∣∣5S1/2,F = 1

〉
. From the selection rules it is clear that these are atoms

that experience off resonant excitation
∣∣5S1/2,F = 2

〉
→
∣∣5P3/2,F = 2

〉
from the cool-

ing beam, only to subsequently decay to
∣∣5S1/2,F = 1

〉
. The repumper illuminates the∣∣5S1/2,F = 1

〉
→
∣∣5P3/2,F = 2

〉
resonance, with wavelength 780.23268 nm. Both cool-

ing and repumping beam consists of circularly polarized light with the same orientation,

depicted in a diagram of the MOT in Fig. 3.4.

The exact method for producing the correct frequencies is somewhat arbitrary. We have

built standard polarization spectroscopies using the feedback of the difference signal of a

photodiode pair to adjust the Laser’s diffraction grating angle. The repump laser is locked

to the repumper frequency, while the reference laser is locked to the
∣∣5S1/2,F = 2

〉
→∣∣5P3/2,F = 2/F = 3

〉
crossover peak in the hyperfine structure of 87Rb at 780.24629 nm.

This light is split and frequency shifted with acousto-optic modulators (AOMs). By shift-
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ing the frequency +133 MHz, the light is resonant with
∣∣5S1/2,F = 2

〉
→
∣∣5P3/2,F = 3

〉
,

and is used for imaging (with linear polarization). By shifting −133 MHz we reach the∣∣5S1/2,F = 2
〉
→
∣∣5P3/2,F = 2

〉
transition. This optical pumping light enters the chamber

after it is overlapped at a beam splitter with the lower MOT beam and likewise imbued

(σ+) circular polarization by a λ/4-plate. The optical pumping beam has 500µW power

and lasts for 80µs. The OP AOM not only shifts the frequency, but can act as a fast

shutter with switching times less than 1µ s. It is used in combination with a physical

shutter to guarantee full beam extinction.

The optical pumping light is nearly 267 MHz red-detuned from the imaging frequency.

It acts as a reference for the generation of a beat signal with the MOT master cooling laser.

We lock the beat signal at 248 MHz, thus giving the above stated detuning of just over

18 MHz during the MOT capture phase. By biasing the lock point, we can vary the MOT

detuning by more than 75 MHz. This has allowed us to implement polarization-gradient

(Sisyphus) cooling.

Light from the MOT master laser is used to inject a tapered amplifier (TA) with up

to 40 mW. The tapered amplifier output is specified as 1 W, however following an optical

and a single mode fiber, it produces nearly 200 mW, which is more than enough to power

the MOT. A schematic layout of the laser system for the MOT and imaging can be seen

in Fig. 3.5.

3.4.3 Optical dipole trap and transfer

The optical tweezers, also referred to as optical dipole trap (ODT), is a versatile tool

for trapping particles ranging in size from the atomic scale (sub-nm) to several microns.

No magnetic fields are required, making it a technique ideally suited to studying, e.g.

Feshbach resonances in atomic systems (Cou98), in which homogeneous magnetic fields

can be used to tune the scattering length. We also find it the optimal tool for quickly

transporting thermal clouds to the cryogenic trap without introducing an additional heat

load.

The trapping of an atom by a focused, red-detuned laser can be understood by consid-

ering the interaction of the atomic ground state with the laser field. In the dressed state

scenario, a two level atom with transition frequency ω0, and a driving laser with frequency

ω leads to a light shift of the ground state given by I/∆, where ∆ ≡ ω − ω0. For a laser

red-detuned from resonance (∆ < 0), the shift is negative, and it is energetically favorable

for atoms to reside in the region of highest intensity. A focused laser beam, with it’s

gaussian intensity profile I(r) leads to a harmonic potential to second order both axially

and radially.

Following Grimm et al. (Gri99), we use the classical damping rate, Γ, to determine

the potential and scattering rates,

Udip(r) = −3πc2

2ω3
0

(
Γ

−∆
+

Γ

ω0 + ω

)
I(r) (3.1)
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Figure 3.5: Optical table setup schematic showing the lasers used for creating a

MOT (consisting of cooling and repump beams overlapped after the fibers). Also

shown are the various components used to generate light for optical pumping and

imaging.
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Γsc = − 3πc2

2h̄ω3
0

(
ω

ω0

)3( Γ

−∆
+

Γ

ω0 + ω

)2

I(r) (3.2)

For simulating the ODT we use the full semi-classical equations. The rotating wave

approximation has not been employed since it underestimates the trap depth by about

10%.

We used a IPG ytterbium fiber laser with λ = 1064 nm, operating with 0.7 W of

output power. A single beam was focused through an AOM which was primarily used as

a shutter: the intensity of the deflected beam is proportional to the applied rf-power. We

also demonstrated that by modulating the applied rf-frequency, the atomic cloud could be

shifted by up to 100µm (limited by the size of the optics). However, this heated the cloud

and was therefore not employed during experiments.

Alignment of the ODT with the Ioffe trap was accomplished as follows. First the

ODT beam was approximately positioned to the position of the Ioffe trap by observing

with an IR viewer that it struck the Ioffe wires at the place. A weak
∣∣5S1/2,F = 2

〉
→∣∣5P3/2,F = 3

〉
resonant beam was carefully overlapped with the ODT beam. Then the

experiment was run in order to prepare an ultracold cloud in the Ioffe trap. The resonant

beam was used to illuminate the atoms for about 0.25 s, causing them to be heated rapidly

and ejected from the trap. The better the spatial overlap with the cloud, the fewer

atoms were observed in subsequent absorption images. As the overlap is improved by

adjustments to the ODT lens (mounted on a three-axis translation stage), the power was

reduced accordingly to sharpen the atom number minimum. Ultimately, about 1µW was

sufficient. Once this alignment was performed, the experiment was run using the fiber laser

in place of the resonant beam. At this stage, usually the effect of the ODT beam could be

observed, and must then be aligned to optimize the Ioffe to ODT loading. Loading into

the ODT typically heated the cloud from 1µK to about 1.5µK. This is likely a result of

the mode mismatch of the Ioffe and optical dipole traps.

The final mirror and lens with focal length f = 250 mm are mounted on a translation

stage with 50 mm travel. An air bearing stage (Aerotech ABL 1000) is used to minimize

mechanical vibrations. Such vibrations are known to be responsible for heating atomic

clouds in optical traps (Sav97; Geh98).

After loading the cloud into the optical tweezers, the acceleration of the stage was

ramped sinusoidally. The total travel of 44 mm takes place in 570 ms. Once positioned

near the cryostat the cloud was loaded into the niobium wire trap by ramping up the

magnetic potential, and subsequently ramping down the optical tweezers power.

3.5 Cryogenic trap

Here we describe the cryostat, and our setup which enables loading from and optical dipole

trap into a superconducting microtrap operating at temperatures of 3 to 8.5 K.
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Figure 3.6: This graphic shows the measured transition in the niobium wire

from normal to superconductor. This measurement was made using a GPIB

compatible current supply, and voltage readout in the 4-point configuration. The

resistance drop occurs at the onset of superconductivity below 9.14 K. At 9.02 K,

the wire is fully superconducting, and current no longer flows through the copper

shunt.

3.5.1 Cryostat

The cryostat (Janis ST-400) delivers a continuous flow of liquid helium to a copper cold

finger inside the vacuum chamber. To power experiments near the cryogenic surfaces, two

electrical feedthroughs enter the cryostat flange. The liquid helium source is a helium

can which holds 100 L, enough for 4 days of experiments at 4.2 K. Liquid helium flows to

the cold finger through a transfer line. This transfer line consists of a flexible metal tube

evacuated to 10−6 mbar. Inside, another flexible metal tube surrounded by spacers and

radiation shielding carries the liquid helium. The line leads into the cryostat through an

elongated nozzle. The helium boils atop the cyrostat cold finger, then travels out through

an exhaust line where it is recycled. In this way the cold finger can be cooled below the

transition temperature of niobium, measured to be 9.02 K (see Fig. 3.6).

The nominal cooling power of the cryostat at 4.2 K is 3 W, sufficient to keep the cold

finger in thermal equilibrium during experiments. We note that lower cryostat tempera-

tures (down to 2.8 K) can be achieved by evacuating the helium exhaust. However this

increases the helium consumption dramatically from 1 `/hour to nearly 2 `/hour. Alter-

natively, above the boiling point of helium, a resistive heater at the cold finger allows us

to stabilize the temperature with a temperature controller to within 0.5 ◦K.

The cold finger is surrounded by a gold plated copper radiation shielding. A small

cut-out in the shielding allows optical access for the optical tweezers and imaging. The

shielding is cooled by the helium exhaust to ≈ 25 K. This shielding works by reflecting

and absorbing the blackbody radiation from the surroundings. To quantify the power we
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use the Stefan-Boltzmann law, which states that the power per unit area is P/A = σ×T 4,

where the factor σ = 5.6704× 10−8 [W/m2 ◦K4] is Stefan’s constant, and T is the body’s

temperature. The shielding prevents 0.05 W/cm2 or about 5 W total of radiation power

from impinging the cryostat.

Thermal conduction, and electrical resistance are other potential heat sources. In UHV,

and at cryogenic temperatures, thermal heat sinking becomes a significant challenge. This

is due to a lack of tested materials that can provide high thermal conductivity interfacing.

As a solution, each wire leading from the electrical feedthroughs was pressed between two

copper heat sinks attached to the cryostat at four locations along the 670 mm length. The

final heat sink is attached just above the shielding and is assumed to be at T = 30 ◦K.

Each wire that leads to the wire trap is wound so as to decrease the thermal gradient. To

minimize thermal conduction, long thin wires are ideal, while resistive heating is minimized

by short thick wires. We use 1 mm diameter kapton coated wires for the majority of the

length of the cryostat. After the final heat sink, thinner wires (120µm) are used to supply

the wire trap.

It is possible to calculate the thermal conductivity characterized by electrical conduc-

tivity data using the Wiedemann-Franz Law: the ratio of thermal (κ) to electrical (σ)

conductivity of a metal is directly proportional to the temperature,

LT = κ/σ (3.3)

The constant L = 2.45× 10−8 [WΩ/ ◦K2] is called the Lorenz number. The electrical con-

ductivity of OFHC copper is known from (E.D). There is also data for normal conducting

niobium, where superconductivity is quenched below T = 9.25 ◦K by a large external mag-

netic field (Web69). In each case, a fifth order polynomial fit functions to the measured

electrical conductivity has been extrapolated. The electrical and associated thermal con-

ductivities are shown as a function of temperature for niobium (blue) and copper (red) in

Fig. 3.7. It is interesting to note that the electrical (and thermal) conductivity of niobium

exceeds that of copper at ≈ 15 ◦K, well before the superconducting transition.

With the onset of superconductivity, the thermal conductivity is no longer dominated

by the electronic contribution, but rather by lattice phonons (Buc04), resulting in negli-

gible heat transport.

Let us assume that the wires can thermalize to the heat sinks on the cryostat. To

approximate the heat flow along the wires, we estimate the temperature difference ∆T

between two points separated by a length of wire ∆x. For a wire with cross sectional area

A, the amount of heat ∆Q which flows per unit time ∆t is ∆Q/∆t = Aκ∆T/∆x where

κ depends on the temperature and therefore the position. This leads to a differential

equation that can be solved using finite-difference methods. Commercial software such

as Comsol is well suited to this task. We are only concerned with the heat that reaches

the cold finger. Between T = 30 ◦K and T = 4 ◦K, the heat flow along 20 centimeters

of 120µm diameter copper wire is just 3 mW. This can be compared with the resistive
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Figure 3.7: Top: Thermal conductivities are calculated using the Wiedemann-

Franz Law in eq. 3.3. Bottom: Best fit to data for the electrical conductivity of

copper and niobium.

heating of 5mW/A/cm which for typical operating currents plays a more dominant role.

The thermal connection between the cryostat and the wires is crucial. Early trials with

Stycast and silver paste were unsuccessful in reaching the superconducting transition. To

ensure a good thermal contact between the niobium wire and cold finger, the entire length

of the straight niobium wire is clamped by solid copper (with the exception of a 1 mm gap

along the wire axis to allow clearer imaging access near the niobium surface. See Sect.

3.5.2 for further details).

3.5.2 Cryogenic wire trap

We now describe the cryogenic wire trap. The setup allows comparative measurements of

the lifetime near a superconductor or normal metal to be performed in close proximity.

However, there is a significant drawback with this setup, namely that we are unable to

form a trap when the niobium wire is above its transition temperature.

At the copper cold finger, we attached a copper mount, pictured in Fig. 3.8. This

mount has adjacent copper plates which can be pressed together by screws. In this way,

the entire length of the straight niobium wire is clamped by solid copper (Fig. 4.6), except

for a 1 mm gap along the wire axis where the whole wire is free-standing. This provides

free optical access for imaging the atoms just below the wire surface.

Atoms are loaded into a Ioffe type microtrap, which is created by a superconducting
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Figure 3.8: Photo (left) of the copper mount attached to the cold finger of the

cryostat during measurements of the Meissner effect (Sect. 4.1). After opening

the chamber, the right-most of the three vertically oriented capping wires was

moved to the middle region. A schematic of the connection scheme (right) shows

the wire trap configuration during lifetime measurements. The niobium wire

current flows from I to J. A four-point measurement was possible by measuring

the voltage across U-V. The capping wires labeled a,b, and c provided axial

confinement.

niobium wire of radius R = 62.5µm, plus externally applied bias (Bx) and offset (By)

fields generated by coils external to the chamber. Additional wires running parallel to the

x-axis are used to increase the axial confinement and evaporative cooling efficiency. The

procedure for trap loading is discussed in Sect. 3.7, and a time series plot is shown in A.2

This microtrap is used to bring atoms close to the cold surface, where we measure

the spin coherence time of atoms near superconducting niobium and normal conducting

copper separately, but in close proximity.

3.6 Imaging

Absorption imaging is the leading method for gaining information about cold atomic cloud

properties. For this reason, the topic has been covered extensively by numerous authors.

It should be noted that a stable frequency is crucial for this type of resonant imaging,

since fluctuating frequency maps to fluctuations in the observed atom number. Likewise

it is very important to keep the intensity constant to prevent unwanted offsets. Where

applicable, we have removed these offsets during the gaussian fitting routine.

Fig. 3.9 shows a view inside the chamber from above encompassing the region of the

Ioffe, optical dipole, and superconducting traps. Imaging in the SCMT typically takes

place along axis #2 (x-axis) during experiments. However, using a set of replaceable

optics, axis #1 (y-axis) could image both the Ioffe trap, and the SCMT. The latter was

used for the angular calibration which allowed us to determine the cloud surface distance

36



3.6. Imaging

Imaging 
axis #2

Imaging 
axis #1

MOT 
center

+

Cryostat 
shielding

Superconducting 
microtrap

Ioffe, optical 
dipole trap

Optical dipole trap 
translation vector

ODT

x

y
z

Figure 3.9: View from top showing the imaging axes, and ODT beam before

translation to the superconducting microtrap.

when measuring the lifetime near copper.

For imaging path #2, we use an f = 150 mm, D = 50.8 mm lens, with an image

magnification of 1.3. The diffraction limited resolution is 1.22λf/D = 3µm. The camera

is a SIS1-s285 with an internally cooled CCD chip (1392 × 1040, 6.45µm square pixels)

to reduce dark counts. Along imaging path #1, a Sony XC-56 (640× 480, 7.4µm square

pixels) was used, with a magnification of 2.2 and a diffraction limited resolution of 7.5µm.

Three images are taken. The first is an absorption image which produces a shadow

depth proportional to the logarithm of the integrated column density of the atomic cloud.

The second is an image of the laser field used to illuminate the atoms. The third image is

of the background taken when the imaging laser is shut.

In a purely harmonic trap, thermal clouds have a gaussian density profile, with a

spatial extent that depends on their temperature and the trap frequency:

σx =
√
kBTcloud/mRb87ω2

x (3.4)

Here, σx is the standard deviation of the density profile along the x direction. The gaussian

FWHM (F ) is then F = 2
√

2 ln 2 × σx. For a cloud with Tcloud = 150 nK, and a radial

trapping frequency of ωr/2π = 100Hz, the cloud size in this direction is of the order

F = 15µm. This translates to about 3 pixels in the imaging plane.

In order to better resolve cloud features, images are usually taken in time-of-flight
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(TOF) where the cloud is allowed to freely expand for several milliseconds while falling

under gravity, before being illuminated with resonant light. In this way, information on the

atomic momentum distribution, and hence the cloud temperature is obtained. From two

measured FWHMs (F1,2) at two different TOFs (t1,2), the temperature can be calculated

by,

Tcloud =
C
(
F2

2 − F2
1

)
t22 − t21

(3.5)

where C = mRb87/8kB ln (2).

3.7 Experimental timing

In this section we will detail the events of a single typical experimental run during the

lifetime measurements. The experimental timing is controlled by an ADwin Pro II. This

system has a built-in dedicated 300 MHz processor, and is connected via ethernet to a

control computer. On the control computer, the AdwinControl GUI allows to initiate

an event sequence, and when necessary to halt execution (there is no pause capability).

The event sequences are detailed in self-coded AdwinControl scripts (see Appendix A).

Upon loading such a script into AdwinControl, it is possible to change external variable

values representing times or voltages before executing the run. This obviates the need for

continually updating the code to reflect the most recent experimental parameters, since

these can readily be saved and loaded.

The voltage control signals are produced by a single digital card with 32 channels

and 2 analog cards with 8 channels each. Voltages can be applied to several channels

synchronously, whereas changes on a single channel require a 4µs settling time. Adwin is

not able to output large currents, so a current amplifier has been used for devices which

draw a current of greater than 5 mA. This is required e.g. to control the AOM driver used

for switching the optical tweezers.

To represent the timing of the experiment, we show various relevant parameters (rows)

as a function of time. Since several orders of magnitude are present during the preparation

of ultracold clouds, the plots are divided vertically into columns which display a certain

time window.

Fig. A.1 shows the timing during Sisyphus cooling, optical pumping, and magnetic

trap formation phases. The Rb dispenser current (not shown) is applied during the first

14 s to feed the MOT. By monitoring the fluorescence, we observed that the atom number

in the MOT peaks several seconds after the dispensers are turned off. To optimize the

lifetime in the Ioffe trap, however, a balance must be found between high atom numbers

and minimal background pressure. For this reason, the Sisyphus cooling phase begins at

22 s, a few seconds after the MOT reaches peak fluorescence.

Thermal fluctuations of the AOM due to switching the 1.5 W rf input on and off can

lead to significant power fluctuations in the first diffraction order, which were seen to
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degrade the performance and repeatability of optical pumping. The OP AOM has there-

fore been left on for the majority of the experimental run in order to maintain thermal

equilibrium. The OP AOM extinguishes the beam 10 ms before the OP shutter is opened.

Approximately 0.25 s later, the OP AOM is turned on for 80µs of optical pumping. Some-

what after the physical OP shutter is closed, and the OP AOM goes on again for the

remainder of the experimental run.

Fig. A.2 shows the magnetic transfer process. The starting time here is immediately

after atoms are magnetically trapped by the MOT coils. After a 1s hold time in a static

quadrupole trap to allow thermalization, the center of the quadrupole is shifted by 32 mm

to be concentric with the transfer and Ioffe coils. This is realized in about 1s by gradually

reducing the MOT coil currents, while increasing the fields created by the transfer and

compression coils. The resulting temperature and atom number were found to be stable

to moderate changes in the ramping scheme, indicating that the adiabatic condition is

easily satisfied. The Ioffe wires are turned on before the end of the transfer process (while

the MOT coils are still on) in order to optimize the cloud temperature, and minimize the

number of atoms that are lost due to surface spilling. At the very end of the time window

depicted in Fig. A.2, the Ioffe trap is static and evaporative cooling begins.

The cloud is evaporatively cooled with a 16 s rf sweep. The frequency as a function

of time roughly resembles a negative exponential of the form ν(t) = F0 × exp(−t/τc),
where τc ≈ 6.5 s is the characteristic 1/e time for the frequency, and F0 = 12 MHz is

the starting frequency. The actual shape of the curve, however, is crafted from a piece-

wise optimization of the phase space density, and differs significantly from the negative

exponential. In general, the cooling efficiency is less sensitive during the early stages of

evaporation, but highly sensitive to variations in the final frequency or ramp time.

The cold cloud is next loaded into an optical tweezers. The procedure is simple,

relying on careful alignment rather than careful timing (see Sect. 3.4.3). The Ioffe trap

is expanded in 100 ms by slowly ramping off the TR coils which adiabatically cools the

cloud. Next the tweezers light is ramped up in 300 ms, after which the Ioffe coils and wires

are switched off in 20 ms. Once the cloud is loaded into the ODT, we shift it in 570 ms to

the region of the superconducting microtrap (SCMT).

Fig. A.3 depicts the loading procedure into the superconducting niobium wire trap,

as well as the subsequent experimental routine. The left column shows the loading. An

important point is that the loading current is limited by the resistive heating (at the

NC-SC contacts), and must therefore be kept small (< 1.6 A). This puts a cap on the

maximum distance from the wire where the cloud can be loaded. Typically we observed

better loading efficiency with smaller loading current (here we use 0.73 A). The SCMT

is turned on in 1.2 s, at which time the AOM is turned off in 300 ms. Although the

mode match is poor, the loading captures %40 of the atoms at about %40 of their initial

temperature.

Between the second and first column of Fig. A.3, there is an rf evaporative cooling
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EXPERIMENTAL APPARATUS

stage lasting 8 s. The resulting cloud acts as our probe for the superconducting surface.

The second column of the figure shows the the experimental procedure for the lifetime

measurements near niobium (Sect. 4.2). In order to measure the lifetime, the cloud is

moved from the cooling position to an intermediate hold position and allowed to thermalize

for 1 s. Then it is moved to a distance d from the niobium surface, and held for a variable

time (indicated by a blue stripe), after which it is ramped to a set distance from the

surface for time of flight imaging.

Finally, the imaging process uses two physical shutters to allow full extinction, in

conjunction with an AOM, which enables the short (30µs) exposure time. One of the

physical shutters is in the closed position 2 ms both before and after the start of the

exposure. While the shutters are closed, the AOM is left on to keep it thermalized, as

with the OP AOM above. Two exposures are required to form and absorption image.

These occur 0.5 s from each other due to the camera’s limited read out speed of the CCD

chip.
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Chapter 4

Measurements in the

superconducting microtrap

In this section we present the results of measurements in the superconducting microtrap.

These measurements demonstrate for the first time the Meissner effect in an atom trap,

and trapping lifetimes in excess of the Johnson noise limit at the near-field distances.

4.1 Meissner effect

In this section, we describe measurements of the Meissner effect in the superconducting

microtrap. It is shown that, at low temperatures (T < 6 K), the cylindrical wire creates

a deviation of the trap position with respect to the normal conducting case in perfect

agreement with theoretical expectations. As the wire temperature is increased, the Meiss-

ner effect weakens allowing partial magnetic field penetration. This is manifested as a

decrease in the wire’s effective superconducting radius. For a more complete discussion of

the topics covered here, see the PhD thesis of Daniel Cano (Can09) and the publication

of Cano et al. (Can08a).

To measure the Meissner effect, we begin by loading a cloud into the SCMT using

a slightly different loading procedure1 than that shown in Fig. A.3. The trap is formed

by ramping up the trap currents in 100 ms, and then ramping down the AOM power in

300 ms. In this way we load 4×105 atoms at 5µK into a trap formed by a niobium current

of I = 1.6 A, a capping current of Icap−A,C = 0.01 A, an external bias field of Bx = 6.4 G,

and an offset field of B0 = 1 G. The radial and axial trap frequencies are ωr/2π = 160 Hz,

ωa/2π = 2 Hz. Once loaded, the atoms are moved adiabatically to their final position in

0.5 s by reducing the niobium current. After a short hold time, the atomic cloud position

is imaged in the trap (without time-of-flight).

1Although the procedure is not optimal in terms of the phase space density of the captured cloud,

this does not have an adverse effect on the cloud position measurements. The loading was subsequently

optimized for the lifetime measurements.
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MEASUREMENTS IN THE SUPERCONDUCTING MICROTRAP

Z

Figure 4.1: The Meissner effect at different cryostat temperatures. Below 6 K

the niobium wire is in the pure Meissner state. At higher cryostat temperatures,

as flux penetration occurs, the wire trap position more closely resembles that of

a normally conducting trap. The inset shows the decrease of the wire’s effective

radius, R, as the temperature approaches Tc.
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4.1. Meissner effect

To determine the distance of the cloud to the wire surface for a particular wire current,

a fitting procedure is employed. The cloud position is determined by fitting the atomic

density profile to Boltzmann’s expression for the thermal occupation of levels in a trapping

potential U(z, x) = mF gFµB|B| −mgz. The fit takes into account the effects the linear

gravitational potential, which shifts the minimum of the harmonic trap. This gravitational

sag is given by (For07),

∆g =
g

ω2
z

(4.1)

=
mgB0

mF gFµBa0
(4.2)

and is on the order of a couple microns for typical trap parameters. The deviation of

the potential from a purely harmonic trap is also accounted for by using a more realistic

expression for the magnetic field in the trapping region.

The location of the wire surface can be determined uniquely from the diffraction pattern

it imprints on an imaging beam of uniform intensity, I0. In particular, the imaging light

intensity reaches a maximum of 1.34I0 slightly off the wire, whereas the wire surface is

located where the intensity is exactly 0.25I0 (Hec98).

Fig. 4.1 shows the measured trap position (its distance from the wire center) as a

function of the niobium wire current at various temperatures. The colored curves are fits

to the data using the theoretical expression for the location of the magnetic trap minimum,

given in Table 2.1 as,

z0,SC =
µ0I

4πBx
+

√(
µ0I

4πBx

)2

−R2 (4.3)

When fitting to the data, the wire radius R is held as a free parameter. The value of R

which produces the best fit gives the effective radius of the superconducting wire. The

effective radius matches the real wire radius until the temperature exceeds 6 K. In the

figure, this accounts for the complete overlap of the trap position at 4.5 and 6 K. As

the temperature is further increased, the effective radius drops. This suggests that the

Meissner effect plays a less prominent role in determining the trap position, which begins to

converge with that of a normal trap, shown as a dotted line. The inset shows the effective

reduction of the superconducting wire radius as the temperature approaches Tc ∼= 9 K.

This reduction of the effective radius demonstrates that the edges of the niobium

cylinder are no longer able to maintain superconductivity, and permit the entrance of

magnetic flux. For a type-II superconductor flux penetration involves the formation of

vortices in the mixed state. The exact nature of the flux penetration is not entirely clear.

At these temperatures and magnetic fields, there should be only relatively small changes to

the London penetration depth for pure bulk niobium. Specifically, the penetration depth

scales with temperature as λL(T ) = λ0

[
1− (T/Tc)

4
]−1/2

, while the critical magnetic fields

goes as Bc1 = Bc1(0)
[
1− (T/Tc)

2
]
, where Bc1(0) is on the order 2000 Gauss for niobium
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(Cas05)). This suggests the presence of impurities within the metal, which significantly

effect its superconducting properties.

4.2 Spin coherence lifetime

In this section we present measurements of the trap lifetime for an ultracold cloud held in

the near field of a low temperature superconductor. Here we detail the first observation

of cloud lifetimes in excess of the limit imposed by Johnson noise in normal conducting

traps (Kas10).

4.2.1 Lifetime measurements

Lifetime measurements obtained at different distances to the niobium (copper) surface

consist of measuring the atom number, N , as a function of hold time, thold. The resulting

decay is fit to a decay function given by,

N(thold) = (N0 · exp(−thold/τ1) +N1) · exp(−thold/τ2) (4.4)

This equation reflects the experimental observation that the atom number decays accord-

ing to a double exponential. Bringing the thermal atom cloud close to the surface leads

to a truncation of the Gaussian density profile. The subsequent surface evaporation and

rethermalization (Har03) reduces the number of atoms on a time scale of 1/Γ1 to typically

5 × 104 and the temperature to 50 nK (Fig. 4.2). The initial atom number is N0 + N1,

with N1 the asymptotic atom number after surface evaporation. For hold times longer

than τ1, the atom number decays exponentially on the time scale τ2, which contains all

experimentally relevant loss mechanisms, such as vacuum background collisions and spin

decoherence. We interpret this longer of the two decay times, τ2, as the trap lifetime. It

should be noted that beyond a certain distance (which depends on the cloud temperature),

no initial evaporation is observed. Far from the surface, in the limit τ1 →∞, we determine

τ2 by fitting to a single exponential. The trap lifetime and the associated loss rate are

inversely related by γ = 1/τ , and are often used interchangeably.

In the rate picture, Γ2 represents a direct sum of all loss rates that contribute to the

atom number decay at long hold times. The loss rate due to Johnson noise, therefore,

cannot exceed Γ2.

4.2.2 Niobium measurements

For our niobium measurements, we use the following experimental sequence. The 87Rb

atom cloud is loaded into a magnetic microtrap near the superconducting niobium wire.

The trap has radial frequency ωr/2π = 135 Hz, axial frequency ωa/2π = 4 Hz. The Larmor

frequency is ωL/2π = 1.71 MHz for the spin polarized hyperfine state |F = 2,mF = 2 > at

Boff = 2.44 G. The cloud is cooled by forced evaporation for 11 s, whereby the temperature
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Figure 4.2: Atom number (a) and temperature (b) as a function of hold time

for a cloud at 150 nK at a distance of 25µm from niobium. The reduction of the

cloud temperature indicates surface evaporation. The fit function (solid red) for

the atom number is a double exponential, N(thold)=N0 exp(−thold/(τ1 + τ2)) +

N1 exp(−thold/τ2).
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and atom number are reduced to T ≈ 100 nK and N ≈ 2 × 105, respectively. The atom

cloud is then moved in 1 s to a distance dNb from the niobium surface (figure 4.6) and

held there for a variable hold time thold. During the shift toward the surface the trap

geometry changes: the Meissner effect reduces the radial frequency in our trap geometry.

The offset field, which is the only critical parameter for spin decoherence, is kept constant.

After the hold time thold the cloud is shifted away from the surface within 200 ms after

which the trap is turned off and the atoms are counted by absorption imaging after 5 ms

time-of-flight.

Niobium in the superconducting state is not expected to limit the cloud lifetime in

any measurable way. Johnson noise, though technically not completely absent at finite

temperature, is strongly suppressed within the superconductor. A simple intuitive argu-

ment is that Johnson noise suppression may be attributed to cooper pairing, whereby each

electron is partnered with an electron of equal and opposite momentum. To first order,

fluctuations in the current involving cooper paired electrons average out. Alternatively,

in a dissipation free superconductor, the fluctuation-dissipation theorem no longer neces-

sitates the presence of noise power. To show that a superconductor does not emit radio

frequency noise associated with fluctuating currents, we must show that the measured

loss rate is less than the expected loss rate due to Johnson noise. In principle, one such

measurement is sufficient, providing a counter-example to the hypothesis: Johnson noise

limits the lifetime near a superconductor. Here we present such a counter-example. The

measurements demonstrate for the fist time that a superconducting microtrap beats the

Johnson-noise limit.

Fig. 4.3 shows the measured loss rate near both superconducting niobium (blue circles)

and normally conducting copper (grey points) at 4.2 K as a function of the atom-surface

separation. The dash-dotted line (black) is the Johnson noise loss rate near normal con-

ducting copper at 4.2 K calculated from Eq. 2.57 including the measured vacuum back-

ground loss (black dotted line). The data below the Johnson noise limit give evidence

that magnetic field noise near superconductors is reduced compared with normal metals.

Comparison measurements near copper fall above the Johnson noise curve.

In Fig. 4.4, we show a comparison plot of the approximate lifetimes (without the error

bars) in dependence of distance near a superconductor from our experiment (Tübingen),

near a normal conductor at 4 K (Paris) (Emm09) and at 300 K (JILA) (Har03). The re-

spective Larmor frequencies for these three data sets are (Tübingen, Paris, JILA) ωL/2π =

(1.7, 1.8, 2.2) MHz, whereas the background vacuum lifetimes are roughly (160, 400, 120) s.

The experimental conditions are not identical, nonetheless, meaningful comparisons can

be made. The three theory curves each use Eq. 2.57, and include the effective lifetime

reduction caused by the background vacuum. The red curve is for a conductor at 300 K,

while the green and blue curves are each for 4 K but with a background vacuum values of

400 and 160 s, respectively. The niobium data (black) should be compared with the blue

curve, however the two are only expected to match in the presence of Johnson noise. We
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Figure 4.3: Atom loss rate near superconducting niobium at 4.2 K (blue circles)

as a function of the atom-surface separation. The dash-dotted line (black) is the

Johnson noise loss rate near normal conducting copper at 4.2 K (see Eq. 2.57)

including the measured vacuum background loss (black dotted line). The data

below the Johnson noise limit give evidence that magnetic field noise near super-

conductors is reduced compared with normal metals. A comparison measurement

near copper is shown by the grey data points.

see that at high temperatures, the theoretical lifetime (red curve) no longer matches the

measured values. In this case, better agreement is obtained by a numerical integration of

Eq. 22 from Henkel et al. (Hen99).

The advantage gained by simply cooling the conductors is quite clear. The lifetime

at 35µm, for instance, increases by an order of magnitude. However even at these low

temperatures, the lifetime near a normal conductors is fundamentally limited by Johnson

noise. The advantage conferred by the use of superconductors becomes apparent at dis-

tances below 30µm. Most dramatically, at 24µm the superconducting niobium lifetime

is 6 times the measured copper lifetime. From the figure it is clear that there are losses

within 30µm even for the niobium. These losses have been traced to the the deformation

of the trap parameters, which become exacerbated at such distances.

In Sect. 2.1 it was shown how the Meissner effect, characterized by the radius of the

wire (Can08a; Can08b; Dik09), plays a significant role in the atom loss within 30µm by

changing the trap parameters. Primarily, it reduces the trap depth and magnetic field

gradient, while altering the radial oscillation frequencies, ωr. Closer than (
√

3 − 1)R

from the wire surface, the radial trap frequency drops, eventually allowing the cloud to

evaporate or spill onto the wire. The influence of the Meissner effect hinders approaching

the wire closer than about 20µm. There, the initial evaporation phase removes more than

90% of the atom cloud, leading to a strongly reduced signal to noise ratio in absorption
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Figure 4.4: Lifetime comparison from three different experimental setups

(Tübingen, Paris, and JILA). The black dots represent our data for the esti-

mated lifetimes near a superconductor. Green dots show published lifetimes

near copper at 4 K (Emm09), whereas red dots show data near copper at 300 K

(Har03). The theory curves use experimental values for the Larmor frequency

and background vacuum. The blue curve corresponds to the expected Johnson

noise limited lifetime with our experimental parameters

images. In principle, a linear up-scaling of the fields should lead to higher trap depths.

However in practice, the loss rate was observed to increase. This is thought to have been

the result of parametric heating associated with mechanical vibrations of the trap at some

multiple of the trap frequency.

4.2.3 Niobium distance calibration

As discussed in Sect. 4.1, in-situ absorption images perpendicular to the wire measure not

only the cloud position, but also the characteristic diffraction pattern from the wire and

hence position of the wire surface. This enables an accurate cloud-surface distance to be

obtained. This can be extended to arbitrary distance by creating a fit to the theoretical

trap position with the bias field as a free parameter. The resulting calibration allows us

to obtain the position for arbitrary niobium current to within ±2µm.

4.2.4 Copper measurements

Nearby to the free-standing section of the niobium wire, there is copper clamp used for

fixing the niobium wire position. The clamp is made of bulk OFHC copper and can

therefore be used as a reference material for measurements of the normal conducting

lifetime. The results are plotted in Fig. 4.5. Here we see the copper data, and two curves

based on calculation. The blue dot-dashed line is the same as in Fig. 4.4, i.e. the Johnson-

noise induced spin-flip lifetime prediction for copper at 4 K, together with a constant

48



4.2. Spin coherence lifetime

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

160

180

200

Distance to surface (µm)

L
if

e
ti

m
e

 (
s

)

Figure 4.5: Lifetimes measured near normally conducting copper. The cloud

temperature is 300 nK. The dot-dashed line (blue) indicates theoretical predic-

tions for the lifetime considering Johnson noise and a background vacuum of

160 s. For the solid line (black), evaporation is added and this accounts for an

additional lifetime drop, especially within of 40µm the surface.

vacuum background decay time of 160 s.

For copper, we use a different trap configuration than for the niobium measurements,

with frequencies ωr/2π = 138 Hz, and ωa/2π = 21 Hz. The axial offset field is kept at the

same value as in the copper measurements. After evaporative cooling to T ≈ 300 nK and

N ≈ 2 × 105, the cloud is moved toward the copper, whereby surface cooling leads to a

minimum temperature of T ≈ 150 nK with N ≈ 5× 104 atoms.

4.2.5 Copper distance calibration

To bring the atomic cloud closer to the copper surface, the external bias field is rotated

about the wire axis while keeping the current in the niobium wire constant (see Fig. 4.6).

As the magnetic field along Bz is increased linearly, the field along Bx is decreased so as

to keep the modulus of the field nearly constant. The trap minimum is moved on a circle

around the center of the wire, with the angle of the deflection given by the ratio of vertical

and horizontal magnetic fields, α = arctan(Bz/Bx). The distance of the atomic cloud to

the copper surface is determined by the projection of the trajectory on the z-direction,

d = r(B) cosα− z0 + ∆g, (4.5)

where r(B) represents the distance from the cloud center to the niobium wire center as a

function of the the magnetic field modulus, B =
√
B2
x +B2

z . The height difference between

the copper surface and the wire center is z0, and ∆g is the gravitational sag (Eq. 4.1).

Close to the copper surface, for angles greater than 60 degrees, the atomic cloud

cannot be imaged. The above function is fit to the position measurements up to 60 degrees.
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Figure 4.6: Schematic view along the wire of the approach to copper and

niobium. From an initial position (open dashed circle) at r=250 µm, α=0◦, the

cloud is moved closer to the niobium wire at constant α, or at constant r toward

the copper surface, reaching a final distance of dNb or dCu.

Increasing the vertical field further eventually leads to surface evaporation. By determining

the exact fields at which the trap coincides with the surface, the distance to the copper

surface is calibrated as a function of Bz. By quickly ramping up and down the vertical

field, we measure the atom number vs. distance and choose the value corresponding to

when all atoms are lost. This assumes that the trap remains in the vicinity of the surface

long enough that all atoms can reach the wall. In our case, this approximation introduces

an error in the distance calibration. Additional sources of error result from the cloud

climbing the potential wall as the approaching trap is suddenly reversed, and from the

attractive Casimir-Polder potential which dominates the magnetic potential at a distance

of 1µm from the surface. The total error of the calibration, including statistical error due

to shot-to-shot variation in the measured cloud position, is −3/+ 1µm.

4.2.6 Trap lifetime: contributing factors

The lifetime of an atomic cloud in a magnetic trap is limited by a number of factors. Colli-

sions can, in general, lead to heating an atom loss. The room temperature background gas

sets a limit on the trap lifetime which is independent of the cloud density (see Sect. 3.1.4).

Within the cold cloud, two-body and three-body processes can occur leading to spin relax-

ation, or molecule formation (Wei03b), respectively. The loss rates are density dependent,

and we work with low densities (≈ 10−12 cm−3) so as to minimize their impact.

Majorana losses, which occur when an atom cannot adiabatically follow the magnetic

field, are another significant source of loss in traps that lack a sufficiently smooth magnetic

minimum. However, for an ultracold cloud in a Ioffe trap, this effect is expected to be

negligible.

Perhaps of greatest concern is technical noise. Early on, rf noise emitted from the

translation stage controller was found to couple to the mains voltage, leading to a dras-

tic reduction of the lifetime to ≈ 1 s at 25µm. Once this issue was resolved, we were
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able to measure two orders of magnitude longer lifetimes. Nonetheless, an unexpected

dependence of the cloud lifetime on the Larmor frequency indicates that some residual rf

noise persisted. The presence of a surface introduces two additional loss processes, namely

Johnson noise and surface evaporation. The role of Johnson noise has been discussed in

detail in Ch. 2. Additionally, measurements of the Johnson noise limited lifetime in a

cryogenic environment near normally conducting copper have been performed by Emmert

et. al (Emm09). We shall now cover the topic of surface evaporation.

4.2.7 Surface evaporation

Surface evaporation is a leading concern in the cylindrical wire trap due to the Meissner

effect. The resulting opening of the trap onto the surface makes this the dominant loss

mechanism. Although it reduces the lifetime near the surface, it can also be used to cool

the cloud evaporatively. Radio frequency cooling is most common, but surface evaporation

has been used to create a BEC with similar efficiency (Har03).

In order to understand the role of surface evaporation, we have implemented a simple

model which nonetheless provides reasonably good agreement with measured lifetimes for

copper and niobium. Detailed evaporative cooling models assume the cloud is in quasi-

equilibrium, and maintains a truncated Gaussian profile (Lui96). For our purpose, it is

sufficient to assume that the wire introduces a spatial cutoff, which translates to an energy

cutoff under the ergodic assumption. The real trap shape which results from considering

the Meissner effect has been taken into account. For time steps shorter than the thermal-

ization time, we suppose that the cloud exponentially approaches the new temperature,

determined from the average energy of the lost particles and including a heating rate.

The experimentally measured heating rate is less than 5 nK/s. We approximate the loss

mechanism as a linear process within one trap oscillation period, allowing arbitrarily short

time steps to be chosen. The lifetime reduction due to evaporation near the copper sur-

face is shown in Fig. 4.5. Within 20µm, the cloud is lost before it can thermalize to a

lower temperature. Beyond 20µm, the cloud undergoes evaporation, and the lifetime rises

sharply. The finite heating, though small, clearly reduces the lifetimes observed especially

at low trap depth, where it maps directly to atom loss. It generates significant losses over

long hold times considered, reducing the slope until 30µm. Further than this, only a small

fraction of atoms can collide with the wall even at long hold times.
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Chapter 5

Conclusion

In this thesis, I have presented the details of an experiment demonstrating for the first time

the absence of Johnson-noise-limited trap lifetimes for an atomic cloud in close proximity

to a conducting metal. The experiment, which we designed and built for this purpose,

consists of a combination of techniques from experimental atomic, and low temperature

solid-state physics. On the atomic physics side, we have implemented a setup using the

now standard techniques of laser, and evaporative cooling. This allows us to prepare

ultracold atomic clouds, which subsequently act as sensitive probes of the magnetic field

at radio frequencies. Physically (and thermally) separated from this apparatus, a helium

flow cryostat was used to cool a niobium wire to less than 4 K, bringing into reach the realm

of low temperature superconductivity, and thereby enabling investigation into this solid-

state phenomenon. To bring the atoms to the region of the superconducting microtrap,

the focusing lens of a optical tweezers, mounted upon a floating translation stage, was

moved in a highly controlled motion.

Once loaded into the superconducting trap, we have carried out investigations into the

Meissner effect, finding that it distorts the trapping potential in a way which is highly

dependent on the wire geometry. By examining the temperature dependence of this dis-

tortion, it was found that the effective radius of the wire decreases as the temperature

rises above about 2/3 the transition temperature, indicating magnetic field penetration

into the superconductor.

Measurements of the lifetime of atomic clouds as a function of distance to the su-

perconductor revealed no noticeable losses resulting from fluctuating currents within the

metal. Despite a strong reduction of the trap depth toward the surface, we were able

to measure lifetimes in excess of the expected Johnson-noise-limited lifetime of a cloud

near a copper surface at the same temperature (Kas10). This is direct evidence for the

suppression Johnson noise in a superconductor. This result was anticipated on theoretical

grounds due to the effects of electromagnetic screening, and the inability to deposit energy

into a superconductor below the energy gap. However observation of the expected orders

of magnitude increase to the atomic lifetime is currently technically unrealistic. Improving
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the background vacuum and optimizing the wire geometry are realistic steps which can

be taken along these lines.

In future experiments with superconducting atom chips, interesting phenomena may

be explored. A short term goal would be to discover the signature for the onset of vortex

creation in niobium thin-films. When pinned, vortices will lead to a static alteration of

the magnetic field profile. However, even more intriguing is the possibility of investigat-

ing time dependent phenomena, such as vortex flow in a transverse magnetic field. For

this, it would be necessary to implement a non-destructive continuous imaging system,

such as phase-contrast imaging. Furthermore, it would be highly beneficial to decouple

the trapping elements from the sample to be measured. Optical traps would be ideal,

however it is unclear how an optical trap could be used to bring atoms to within microns

of a surface, especially without introducing unwanted effects (such as heating of the sub-

strate). Scheel et al. (Sch07) have suggested observing the Kosterlitz-Thouless transition

in superconducting thin films by observing dephasing of the Zeeman sublevels by Ramsey

interferometry.

Along the lines of device physics, one can envision many fascinating possibilities. One

simple idea is to use the persistent current of superconducting loop (Muk07) to realize

an atom interferometer (Mue08). But considerably richer physics becomes accessible with

the introduction of coherent devices to the atom chip. It is well known that a Josephson

junction provides an extremely stable voltage to frequency conversion at approximately

483 THz/V. By integrating such a device onto an atom chip, it may be possible to address

transitions between rubidium groundstate hyperfine levels at 5.8 GHz.

Josephson junctions are also a key component in superconducting quantum interference

devices (SQUIDs). The detection of the magnetic moment of a spin-polarized atom cloud

with a dc-SQUID appears difficult but feasible. The appeal of this detection method is that

it is non-destructive, and does not require optical access. Large condensates are desirable

since a single atom generates less than 10−9 flux quanta through a micron-sized loop at

one micron distance. Ultimately ac-SQUIDS may also be employed. Such a device could

be used to detect Rabi-oscillations between two hyperfine states via lock-in techniques.

M. Singh proposed generating quantum entanglement between a BEC and the quan-

tized flux states of a superconducting loop. Conceptually, this is one of the more elegant

proposed methods for creating BEC entanglement (Sin09). Technologically, however it

shall prove extremely challenging due to the utter fragility of entangled ”cat” states. The

idea is to prepare a rf-SQUID in a macroscopic superposition of flux states. Indirect

evidence for this type of macroscopic coherent superposition has been demonstrated ex-

perimentally by the observation of a coherent tunneling resonance between flux states

(Wal00; Fri00). For the sake of argument, let us suppose such a state can be formed.

Then, since each flux state creates a distinct magnetic potential for the atoms, the super-

position of flux states creates superposed magnetic traps. Measuring which trap the cloud

occupies forces the SQUID loop to collapse to the corresponding flux orientation. Given
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the weak atom-surface back action, and the huge number of cooper pairs involved in such

a state, this is indeed remarkable! Alternatively, for a BEC, interferometric measurement

would allow a sort of state tomography of the loop, with distinct results for a coherent

macroscopic superposition of flux states, and an incoherent mixture.

A highly sought-after goal is the creation of a strong atom-surface coupling. For this

purpose it has been suggested to use an on-chip coplanar waveguide resonator (Pet08;

Pet09) coupling to an ensemble of Rydberg atoms. Applications include quantum infor-

mation processing utilizing the coherent exchange of information between a solid-state

and cold atom systems. Such hybrid systems have significant potential. In this case, the

cold atoms with long coherence times could be used as quantum memory for a solid state

circuit. The goal is to combine the considerable know-how of the solid state and atomic

physics communities to further both fields.
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Appendix A

Computer control

Here we describe the AdwinControl and Matlab code used to run the experiment and

streamline subsequent analysis.

A.1 ADwinControl

The Adwin system is used to control or trigger each event of the experimental cycle,

from shutters and coils to the translation stage. The sequence of events is coded via the

AdwinControl programming language. It is based on the low-level language ADBASIC.

With relatively few commands, the voltage of a certain channel can be set with microsecond

time resolution. Fortunately conditionals, and even some mathematical operations, with

capabilities similar to a scientific calculator are possible within the code. Looping variable

values can be implemented intrinsically within a single run, but it was not possible to

have a set of variables cycle from run to run between values in an automatic and readily

controllable manner. However there is a work-around described in A.3.2.

In order to run the experiment in a continuous loop, we create an AdwinControl Macro

(*.acm) file with the following commands:

#REPEAT ON

_RUNTIME(run)

where run is a user defined variable which determines the lower bound on the run time.
1 This is the standard way to run an experiment and allows the external variables (see

below) to be modified by the user, with the changes occurring at the beginning of the

following run.

The variable run, is defined in our code, along with the other user-accessible variables,

by including an AdwinControl Include (*.aci) file

#INCLUDE [path]\Modules\External\External_variables.aci

1Note: if an event takes place after the allotted runtime, it automatically extends until the last event.
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Note that throughout this appendix, the string [path] must be replaced by the valid

folder path string in order to obtain valid code. In our case the [path] string is,

C:\Dokumente und Einstellungen\Labor\Desktop\ADwinControl\SCMT Labor

Include files act as though they were manually inserted into the code. This particular file

contains all our #EXTERNAL variables (which may also be inserted manually anywhere in

the code). Variables defined as #EXTERNAL can be changed by the user from one run to

the next through the external variable graphical user interface (EV-GUI). Loading the

variable values into the EV-GUI allows them to be changed by the user. The changes

appear in red and must be certified, after which they appear in yellow. After the code is

compiled and sent to the hardware at the beginning of the run, the values appear in green.

Beside #EXTERNAL, the other variable definitions are #STATIC, or #GLOBAL. The #STATIC

variables are internal. Declaring a variable as #GLOBAL writes its value to a comma-

separated variable (*.csv) as long as the following line is uncommented:

#PROJECT proj_name

and appears before the experimental loop. All globally declared variables are then written

to ’proj_name.csv’. The output can also generate a complete copy of the code that was

sent to the compiler, allowing a full reconstruction of each run.

The backbone of the experimental procedure, which we call main program is as follows:

#INCLUDE [path]\Modules\External\Global_variables.aci

#INCLUDE [path]\Modules\External\External_variables.aci

#INCLUDE [path]\Delays.aci

#INCLUDE [path]\Channel_Assignment.aci

#INCLUDE [path]\Channel_Config.aci

// Record code and global variables

#PROJECT Copper

#REPEAT ON

// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

// BEGINNING OF MAIN PROGRAM LOOP

// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

_RUNTIME(run)

T=0

DSET(1, AdwinTrigger, TriggerZeit, 1)

#INCLUDE [path]\Modules\Inow.aci

IF(AUTO_ON)

#INCLUDE [path]\Modules\Auto\Auto_auto.aci

ENDIF

// also contains Sisyphus and OP

#INCLUDE [path]\Modules\MOT_ON.aci
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IF(MAG_TRAP_y1n0)

#INCLUDE [path]\Modules\Mag_trap.aci

ENDIF

IF(Ioffe_Trap_y1n0)

// FIRST trigger for TR stage (MOT pass -> collection region)

DSET(1, TR_StageTrigger, T, 1)

DSET(1, TR_StageTrigger, T + 50ms, 0)

#INCLUDE [path]\Modules\TR_QPtrap.aci

// EVAPORATIVE COOLING

// 0 - no cooling // 1 - cool to BEC // 2 - cool to thermal cloud

IF(freq_ramp_select)

#INCLUDE [path]\Modules\freq_ramp.aci

ENDIF

// hold time in Ioffe trap (after cooling) for lifetime comparison

T = T + Ioffe_hold

IF(Optical_dipole_trap_y1n0)

#INCLUDE [path]\Modules\DipoleTrap.aci

ELSE

// Target atoms with resonant light (and trigger the TR stage)

#INCLUDE [path]\Modules\TargetAtoms.aci

ENDIF

ELSE

#INCLUDE [path]\Modules\currents_off.aci

#INCLUDE [path]\Modules\Imaging.aci

ENDIF

// End of experimental run

#INCLUDE [path]\Modules\collectMOT.aci

Note that the variable T is regularly updated and loosely represents the ’current time’

in microseconds during and experimental run.

A.2 Experimental timing plots

Here we present plots of critical aspects of the experimental timing. In each plots, adjacent

columns can have different time axes. In this way we can represent details which occur

on significantly different time scales. The experimental timing of the Sisyphus, optical

pumping and magnetic trap formation is shown in Fig. A.1. The magnetic transfer from

the MOT region into an Ioffe trap is shown in Fig. A.2. Finally, the procedure for loading

the superconducting wire trap from the optical tweezers beam is shown in Fig. A.3.
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Figure A.1: Experimental timing: Sisyphus, optical pumping and magnetic

trap formation phases. Columns represent a single time window. Rows display

the values for the experimental parameters. Positive current in both MOT coils

represents the anti-Helmholtz configuration. At 22 s, the Sisyphhus cooling be-

gins. The MOT coils apply a small Helmholtz field to compensate the earth’s

field, while the MOT detuning is increased from 18 MHz to 75 MHz. After 2.5 ms

of status, the TA shutter closes, and optical pumping begins. The Helmholtz

field is increased, and the OP AOM (fast shutter) opens for 80µs (seen as a thin

white stripe in the plot on the right). Subsequently, the OP, and RP shutters are

closed, and the MOT coils return to anti-Helmholtz to capture the spin polarized

cloud with 3A of current.
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Figure A.2: Experimental timing: magnetic transfer. From a magnetic trap

formed by the MOT coils, the cloud is transferred to a Ioffe trap by ramping up

the TR and Ioffe coil currents, as well as an Ioffe wire pair, while ramping down

the MOT coils.
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Figure A.3: Experimental timing: loading from the ODT into the SCMT (left).

Typical parameters during operation of the SCMT are shown in the second col-

umn (right). The atom number is measured after a variable hold time of thold

(shown as a blue vertical stripe) near the niobium surface. An additional pair of

”capping” wires (Icap−A,C not shown), running parallel to Icap-B are used to im-

prove the field configuration during the loading, cooling (with Icap−A,C = 0.2 A)

and holding (with Icap−A,C = 0.1 A).
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A.3 Matlab

In this section, I will present Matlab code used for a range of applications. These include

magnetic field simulations, automatic Adwin script generation for cycling experimental

variable inputs, and a graphical user interface (GUI) for efficiently analyzing an extensive

data set.

A.3.1 Magnetic field simulations

We calculate the magnetic field at an array of points in a (user-specified) 3D region of

space for an given arrangement of coils and wires. The geometry is used to calculate the

magnetic field per amp of current for each of the elements. This information is stored

in a ’*.mat’ file, which can be accessed and scaled accordingly. The field calculation is

then viewed as a ”one time cost” computationally, after which only a linear scaling and

summing is involved to find the total fields. Time evolution of the fields as a function of

the component currents can thus be evaluated readily. Here we reproduce the code for

calculating the field of a current loop using elliptic integrals. Coils are approximated by

an array of current loops.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%- Magnetic field of a unit current loop -%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Brian Kasch

%% July, 2005. University of Tübingen.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% For methodology: see

%% http://www.netdenizen.com/emagnettest/offaxis/?offaxisloop

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% This program calculates the magnetic field in S.I. units. of a

%% circular current (I=1A) loop using elliptical integrals in a

%% region of space determined by x,y,z.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% INPUT %%

%% center: Vector determining the loop center.

%% d: Vector determining the direction of the loop axis (normalized

%% below).

%% radius: Loop radius.

%% x,y,z: e.g. linspace(-5,5,11),linspace(-1,1,21),[-1 0 1].

%% Must be vectors (or scalars). meshgrid converts to arrays.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% OUTPUT %%

%% B_x (resp. B_y, B_z): for the above choice of x,y,z:
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%% (21,11,3) array with values of B_x (resp. B_y, B_z) at the

%% corresponding Xgrid,Ygrid,Zgrid positions.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% USAGE E.G. %%

%% [B_x,B_y,B_z]=unitcurrent_loop([0 0 0],[1,1,0],.01, ...

%% linspace(-1,1,21),linspace(-1,1,21),linspace(-1,1,5))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [B_x,B_y,B_z]=unitcurrent_loop(center,d,radius,x,y,z);

d=d/norm(d); % normalized loop axis direction

mu_0 = pi*4e-7; % permeability of free space [m kg s^-2 A^-2]

B_0 = mu_0/2/radius; % field at center of loop, I=1.

[Xgrid,Ygrid,Zgrid] = meshgrid(x,y,z);

% Note: size(Xgrid)= (rows cols stacks), effectively swapping x&y

Xgrid=Xgrid-center(1); % offset center

Ygrid=Ygrid-center(2);

Zgrid=Zgrid-center(3);

%% H_grid: height of field point above the plane of the loop.

%% dot product of each field point with d vector

H_grid = d(1)*Xgrid + d(2)*Ygrid + d(3)*Zgrid;

%% R_x: x-coordinate of radial vector normal to loop axis toward

%% field point.

%% These R_ vectors are from the point of closest approach of the

%% loop axis to the field point.

R_X = Xgrid - d(1)*H_grid;

R_Y = Ygrid - d(2)*H_grid;

R_Z = Zgrid - d(3)*H_grid;

R_grid = sqrt(R_X.^2 + R_Y.^2 + R_Z.^2);

%% The operation above seems to cause a slight loss in precision,

%% resulting in tiny non-zero values where we should have

%% R_grid=0. We mark these and actual zeros by F, and replace

%% each resulting NaN with the corrected value.

F=find(R_grid<1e-10);

%% Field points within 1e-10 (0.1nm) of the loop axis are treated

%% as on-axis.

%% Normalize R_X,R_Y,R_Z and remove divide by zero points.

R_X = R_X./R_grid; R_X(F)=0;

R_Y = R_Y./R_grid; R_Y(F)=0;

R_Z = R_Z./R_grid; R_Z(F)=0;
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%% Variables used to calculate field:

%% ------------------------------

%% alpha: scaled radial distance

%% beta: scaled axial distance

%% Q: function of alpha, beta. Always greater than 1

%% M: argument of the elliptic integral.

%% Matlab uses M=k^2 to compute the EI.

alpha = R_grid/radius;

beta = H_grid/radius;

Q = ((1+alpha).^2+beta.^2);

M = 4*alpha./Q; %

% warning off MATLAB:divideByZero;

gamma = H_grid./R_grid;

gamma(F)=0; %changes values NaN (divide by zero) to 0

tol = eps;

%% See help: ’ellipke’ for explanation of elliptic integrals

[K,E] = ellipke(M,tol);

%% Radial field

B_R = (B_0/pi)*(gamma./sqrt(Q)).*(E.*(1 + alpha.^2 + beta.^2)./ ...

(Q-4*alpha)-K);

%% Axial field

B_H = (B_0/pi)*(1./sqrt(Q)).*(E.*(1 - alpha.^2 - beta.^2)./ ...

(Q-4*alpha)+K);

B_x = B_H*d(1) + B_R.*R_X;

B_y = B_H*d(2) + B_R.*R_Y;

B_z = B_H*d(3) + B_R.*R_Z;

A.3.2 Automatic Adwin script generation

A Matlab script ’Auto_coder.m’ was written to print two Adwin-syntax include files:

’Auto_auto.aci’, and ’Ext_auto.aci’ which contain the set of conditionals, and required

variable declarations respectively. The user input is limited to the variable names and their

associated values. Together the output files allow automatic variable cycling, which can

be activated at any time during the experiment by setting the external variable ’AUTO_ON’

to 1 in the EV-GUI. A portion of ’Auto_coder.m’ is shown:

%%%%%%%%%%%%%%%%

%% USER INPUT %%

%%%%%%%%%%%%%%%%

%% VARIABLE NAMES (MUST MATCH CORRESPONDING ADWIN NAMES)

AD_NAMES(1) = cellstr(’T_NB’); %% V_{1}

65



COMPUTER CONTROL

AD_NAMES(2) = cellstr(’I_NB_FINAL’); %% V_{2}

%% VARIABLE VALUES TO CYCLE

AD_NAMES{2,1} = [0 30 60]*1e6; %%

AD_NAMES{2,2} = [0.285 0.29 0.295 0.3]; %%

%%%%%%%%%%%%%%%%%%%%%%%

%% END OF USER INPUT %%

%%%%%%%%%%%%%%%%%%%%%%%

%% Number of variables participating in Auto_mess

N = size(AD_NAMES,2);

%% OPEN (or create) the file ’Auto_auto.aci’ with write privilege

fid = fopen(’Auto_auto.aci’, ’wt’);

fprintf(fid, ’#EXTERNAL AUTO_RUN_NUM\n’);

fprintf(fid, ’AUTO_RUN_NUM = AUTO_RUN_NUM + 1\n’);

fprintf(fid, ’#INCLUDE [path]\\Modules\\Auto\\Ext_Auto.aci\n\n’);

fprintf(fid, ’if(AUTO_RUN_NUM = 1)\n’);

for n=1:N

fprintf(fid, ’\tVAR%g____ = ’, n);

fprintf(fid, ’%s’, AD_NAMES{1,n}) ;

fprintf(fid, ’%g_%g\n’, [n; size(AD_NAMES{2,n},2)]);

end

fprintf(fid, ’ENDIF\n\n’);

for n=1:N

fprintf(fid, ’IF(F%g_VAR%g= 1)\n’, [n; n]);

if n>1

fprintf(fid, ’\tF%g_VAR%g= 0\n’, [n; n]);

end

for m=1:size(AD_NAMES{2,n},2)

fprintf(fid, ’\tIF(AND(VAR%g____ = ’, n);

fprintf(fid, ’%s’, AD_NAMES{1,n}) ;

fprintf(fid, ’%g_%g;thr%g=0))\n’, [n; m; n;]);

fprintf(fid, ’\t\tVAR%g____ = ’, n);

fprintf(fid, ’%s’, AD_NAMES{1,n}) ;

fprintf(fid, ’%g_%g\n’, [n; 1+mod(m,size(AD_NAMES{2,n},2));]);

fprintf(fid, ’\t\tthr%g=1\n’, n);

if m==size(AD_NAMES{2,n},2) && n<N

fprintf(fid, ’\t\tF%g_VAR%g= 1\n’, [n+1; n+1]);

end

fprintf(fid, ’\tENDIF\n’);

end
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fprintf(fid, ’\tthr%g=0\n’, n);

fprintf(fid, ’ENDIF\n\n’);

end

for n=1:N

fprintf(fid, ’%s=VAR’, AD_NAMES{1,n});

fprintf(fid, ’%g____\n’, n);

end

% CLOSE the file ’Auto_auto.aci’

fclose(fid);

The corresponding Adwin code written to the file ’Auto_auto.aci’ is:

#EXTERNAL AUTO_RUN_NUM

AUTO_RUN_NUM = AUTO_RUN_NUM + 1

#INCLUDE [path]\Modules\Auto\Ext_Auto.aci

if(AUTO_RUN_NUM = 1)

VAR1____ = T_NB1_3

VAR2____ = I_NB_FINAL2_4

ENDIF

IF(F1_VAR1= 1)

IF(AND(VAR1____ = T_NB1_1;thr1=0))

VAR1____ = T_NB1_2

thr1=1

ENDIF

IF(AND(VAR1____ = T_NB1_2;thr1=0))

VAR1____ = T_NB1_3

thr1=1

ENDIF

IF(AND(VAR1____ = T_NB1_3;thr1=0))

VAR1____ = T_NB1_1

thr1=1

F2_VAR2= 1

ENDIF

thr1=0

ENDIF

IF(F2_VAR2= 1)

F2_VAR2= 0

IF(AND(VAR2____ = I_NB_FINAL2_1;thr2=0))
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VAR2____ = I_NB_FINAL2_2

thr2=1

ENDIF

IF(AND(VAR2____ = I_NB_FINAL2_2;thr2=0))

VAR2____ = I_NB_FINAL2_3

thr2=1

ENDIF

IF(AND(VAR2____ = I_NB_FINAL2_3;thr2=0))

VAR2____ = I_NB_FINAL2_4

thr2=1

ENDIF

IF(AND(VAR2____ = I_NB_FINAL2_4;thr2=0))

VAR2____ = I_NB_FINAL2_1

thr2=1

ENDIF

thr2=0

ENDIF

T_NB=VAR1____

I_NB_FINAL=VAR2____

The same methods are used to produce the following code for ’Ext_auto.aci’:

#EXTERNAL thr1=0

#EXTERNAL thr2=0

#EXTERNAL F1_VAR1=1

#EXTERNAL F2_VAR2=0

#EXTERNAL T_NB1_1 = 0.000

#EXTERNAL T_NB1_2 = 30000000.000

#EXTERNAL T_NB1_3 = 60000000.000

#EXTERNAL I_NB_FINAL2_1 = 0.285

#EXTERNAL I_NB_FINAL2_2 = 0.290

#EXTERNAL I_NB_FINAL2_3 = 0.295

#EXTERNAL I_NB_FINAL2_4 = 0.300

#EXTERNAL VAR1____=T_NB

#EXTERNAL VAR2____=I_NB_FINAL
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#GLOBAL thr1=0

#GLOBAL thr2=0

#GLOBAL F1_VAR1=1

#GLOBAL F2_VAR2=0

#GLOBAL T_NB1_1 = 0.000

#GLOBAL T_NB1_2 = 30000000.000

#GLOBAL T_NB1_3 = 60000000.000

#GLOBAL I_NB_FINAL2_1 = 0.285

#GLOBAL I_NB_FINAL2_2 = 0.290

#GLOBAL I_NB_FINAL2_3 = 0.295

#GLOBAL I_NB_FINAL2_4 = 0.300

#GLOBAL VAR1____=T_NB

#GLOBAL VAR2____=I_NB_FINAL

// T_NB=VAR1____

To see how the code works, let us consider a set of N variables labeled

{V1;V2; ...;Vn; ...;VN} (A.1)

The variable values are denoted by

Vn = [Vn,1, Vn,2, ..., Vn,a, ..., Vn,Mn ] (A.2)

where Mn is the number of values given for the nth variable. As an example, let’s imagine

there are two variables. The cycling routine (a series of conditionals) increments to the

next variable value, e.g. V1,α → V1,α+1 at constant V2,β. If α = Mn, the following run

begins by setting V1 = V1,1 and V2 = V2,β+1. The values of V1 are then cycled again. This

routine is easily extended to any number of variables. The total time for sampling every

permutation once is given by trun ×
∏N
n=1Mn, where trun is the duration of a single run.

In the case printed above, for a single run time of trun = 1 min, the total time required to

cycle through the entire measurement would be (3× 4) = 12 min.

A.3.3 Data analysis GUI

The data analysis is streamlined by the use of a self-coded Matlab graphical user interface

(GUI). This program, dubbed ’yoda’, merges the ’proj_name.csv’ file with set of measured

values obtained from the processed absorption image, called ’param_set.mat’. While the

’proj_name.csv’ file (also referred to as ’AWC_record’) usually spans several weeks of
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measurements, each day of measurements generates a new ’param_set’ that is stored along

with absorption images in a folder named by the measurement date. The merging and

subsequent filtering makes it possible to examine an arbitrary subset of the measurement.

The results are plotted and organized to aid the subsequent analysis considerably. A

screen shot of the yodaGUI is shown in Fig. A.4. Here we identify the three fields which

take string inputs from top to bottom as:

� Date of measurement: (e.g. 21-Mar-2009).

� ’V_celler’ path. This file contains all user inputs, such as which variables to plot.

� ’AWC_record’ path. This file is a copy of ’proj_name.csv’: the full ADwin record

of global variables.

There are ten active buttons in the GUI. The three ’Browse *’ buttons open a dialog

window (using the Matlab commands ’uigetfile’ or ’uigetdir’) in order to actively

retrieve file or folder paths. The two ’Open *’ buttons open the file at the specified

path in the Matlab editor (using ’open’) or default text editor (using ’winopen’). The

’Create new V_celler’ button attempts to initialize a new user file (with the default

required format), and opens the file in the Matlab editor. The action of the remaining

buttons is summarized as follows:

� Up-date: attempts to access file ’proj_name.csv’ either on the master computer

controlling ADwin, or from a local copy. It compares the file size with the currently

used file and overwrites the local copy when the file sizes are different. The Up-date

button only needs to be pressed when the data to analyze is newer than the locally

stored ’AWC_record’ file.

� ???: this button brings up a text box with some helpful usage tips.

� Initialize date: checks if there is an analysis folder for this date of measurements. If

not, it creates one along with a default ’V_celler’.

� Fertig: runs the routines for merging, filtering, and plotting the data.

Typically, one enters the date of measurement to be analyzed and presses ’initialize date’.

This automatically fills in a default ’V_celler’ path for this date. Once the correct path

is given, along with the proper ’AWC_record’, pressing ’Fertig’ begins the analysis, pro-

ducing plots of the raw data which is output to the workspace in a set of dynamically

named Matlab structs. An important point is that the program automatically detects the

hard drive letter. What is more, all the entered information can be saved and loaded via

the menu options. Usually this is unnecessary, since the program automatically stores the

configuration of the last run and reloads it when yoda is re-called. Due to its length, it

is not feasible to show the code here. Further documentation is available with the source

code.
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Figure A.4: Screen shot of yodaGUI.fig. The yodaGUI figure can be edited

with the Matlab GUI helper ’guide’. Entering ’yoda’ into the command line

brings up the yodaGUI for streamlining measurement analysis.
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Appendix B

Rubidium

B.1 Hyperfine structure

Fig. B.1 shows the rubidium fine and hyperfine structure for the 85 and 87 isotopes with

natural abundances of 72.17% and 27.83%, respectively. This data is from D. Steck (Stea;

Steb). An attempt has been made to draw portions of the spectrum to scale. Hyperfine

splitting of the groundstate 5S1/2 level is roughly an order of magnitude larger that the

hyperfine splitting of the excited P states, therefore the groundstate is scaled down by a

factor of 10.

The hyperfine Hamiltonian in Alkali atoms has been discussed at length in (Ari77).
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Figure B.1: Fine and hyperfine structure of the two most common rubidium

(Z = 37) isotopes. The 5S1/2 groundstate has the largest hyperfine splitting (in

the figure it is scaled by 1/10th with respect to the P levels).

74



Bibliography

[Aga75a] G. S. Agarwal, Quantum electrodynamics in the presence of dielectrics and con-

ductors. I. Electromagnetic-field response functions and black-body fluctuations

in finite geometries, Phys. Rev. A 11, 230 (1975).

[Aga75b] G. S. Agarwal, Quantum electrodynamics in the presence of dielectrics and

conductors. II. Theory of dispersion forces, Phys. Rev. A 11, 243 (1975).

[Ale03] A. S. Alexandrov, Theory of Superconductivity: From Weak to Strong Coupling,

(Institute of Physics, Bristol, 2003).

[Ari77] E. Arimondo, M. Inguscio and P. Violino, Experimental determinations of the

hyperfine structure in the alkali atoms, Rev. Mod. Phys. 49, 31 (1977).

[Bar57] J. Bardeen, L. N. Cooper and J. R. Schrieffer, Theory of Superconductivity, Phys.

Rev. 108, 1175 (1957).

[Bri06] D. M. Brink and C. V. Sukumar, Majorana spin-flip transitions in a magnetic

trap, Phys. Rev. A 74, 035401 (2006).

[Buc04] Werner Buckel and Reinhold Kleiner, Superconductivity, (Wiley-VCH, 2004).

[Byr92] Frederick W Byron and Robert W Fuller, Mathematics of Classical and Quantum

Physics, (Dover Publications, New York, 1992).

[Can08a] D. Cano, B. Kasch, H. Hattermann, R. Kleiner, C. Zimmermann, D. Koelle and
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