Cyclovoltammetrische Bestimmung elektrochemischer Parameter von Ferrocen und einem Bis-Ferrocen mit Platinelektroden

Wissenschafliche Prüfung für das Lehramt an Gymnasien Wissenschaftliche Arbeit im Fach Chemie

vorgelegt von

Janina Janisch

 ${\rm Mai}\ 2010$

Ich erkläre, dass ich die Arbeit selbständig angefertigt und nur die angegebenen Hilfsmittel benutzt habe. Alle Stellen, die dem Wortlaut oder dem Sinn nach anderen Werken, gegebenenfalls auch elektronischen Medien, entnommen sind, sind von mir durch Angabe der Quelle als Entlehnung kenntlich gemacht. Entlehnungen aus dem Internet sind durch Ausdruck belegt.

Tübingen, im Mai 2010

Janina Janisch

Die vorliegende Arbeit wurde unter Anleitung von Herrn Prof. Dr. Speiser im Zeitraum von November 2009 bis Mai 2010 am Institut für Organische Chemie der Eberhard-Karls Universität Tübingen durchgeführt.

Danksagungen

Diese Arbeit wäre nicht entstanden ohne Anregung und Unterstützung von vielen Seiten.

An erster Stelle bedanke ich mich bei Herrn Professor Speiser für die Vergabe des interessanten Themas, für seine geduldige und hervorragende Betreuung bei allen Arbeitsschritten sowie für die zahlreichen und hilfreichen fachlichen Diskussionen.

Den Mitarbeitern des Arbeitskreises - Steffi Benthin, Adrian Ruff, Judith Schäfer, Britta Rochier, Miriam Scheurer, Torsten Novotny und Jonas Zigelli - danke ich für das produktive und angenehme Klima, das Spaß am Arbeiten möglich gemacht hat. Besonders dankbar bin ich Steffi für die Einweisung in die Arbeit mit $\mathbb{L}^{ATE}X$ sowie ihre unbezahlbare Hilfe bei jeglichen aufgetretenen Problemen, Judith für die Herstellung des Bis-Fc und natürlich Adrian, der mich nicht nur bei der Einarbeitung in das Thema unterstützt hat, sondern mir auch mit unendlicher Geduld bei allen Fragen und Problemen zur Seite gestanden hat.

Korrekturgelesen haben diese Arbeit Steffi Benthin, Adrian Ruff, Judith Schäfer, Teresa Dapp und Caren Niemann - ein großes Dankeschön dafür!

Abschließend und besonders herzlich möchte ich auch meinen Eltern Jutta und Helmut Janisch dafür danken, dass sie mir mein Studium ermöglicht und mich immer und in jeder Hinsicht unterstützt haben.

Inhaltsverzeichnis

1	Einle	eitung		8			
2	Problemstellung						
3	Resi	ıltate u	nd Diskussionen	12			
	3.1	Cyclov 3.1.1	voltammetrische Untersuchung von Ferrocen in Propylencarbonat. Mathematische Hintergründe Franzenkerische Frankrische GW Mesensibe witz Elektronie	$\begin{array}{c} 12\\ 12 \end{array}$			
		3.1.2	von Ferrocen in Propylencarbonat	16			
		3.1.3	Exemplarische Ergebnisse einer CV-Messreihe mit Elektrode A von Ferrocen in Propylencarbonat	18			
		3.1.4	Exemplarische Ergebnisse einer CV-Messreihe mit Elektrode B von Ferrocen in Propylencarbonat	23			
		3.1.5	Ergebnisse der gesamten CV-Messungen von Ferrocen in Propy- lencarbonat	31			
		3.1.6	Diskussion der Messergebnisse von Ferrocen in Propylencarbonat	36			
	3.2	Cyclov	voltammetrische Untersuchung von Ferrocen in Acetonitril	37			
		3.2.1	Exemplarische Ergebnisse einer CV-Messreihe mit Elektrode \mathbf{C} von Ferrocen in Acetonitril	38			
		3.2.2	Exemplarische Ergebnisse einer CV-Messreihe mit Elektrode \mathbf{A}	40			
		292	Freebnisse der gesemten CV Messungen von Ferrogen in Agetenitril	40			
		0.⊿.0 3.9.4	Diskussion der Messergebnisse von Ferrogen in Agetonitril	40			
	3.3	Cyclov	voltammetrische Untersuchung von N,N'-Bis(ferrocenoyl)diamino-	-1-1			
		ethan : 3.3.1	in Propylencarbonat \ldots	46			
		3.3.2	von N, N' -Bis(ferrocenoyl)diaminoethan in Propylencarbonat Exemplarische Ergebnisse einer CV-Messreihe mit Elektrode A	46			
		333	von N, N' -Bis(ferrocenoyl)diaminoethan in Propylencarbonat Ergebnisse und Diskussionen der gesamten CV-Messungen von	48			
		0.0.0	N, N'-Bis(ferrocenoyl)diaminoethan in Propylencarbonat	53			
4	Zusa	amment	fassung	60			
5	Expe	eriment	eller Teil	61			
	5.1	Chemi 5.1.1	kalien	61 61			

6	Date	enverze	eichnis	69
	5.5	m-file	zur nicht-linearen Optimierung mit MATLAB	68
	5.4	NMR-	Messungen	67
		5.3.7	Auswertung der Messung	65
		5.3.6	Reinigung der Geräte	64
		5.3.5	Durchführung der Messung	64
		5.3.4	Vorbereiten und Anschließen der Messzelle	64
		5.3.3	Herstellung der Substratlösung	63
		5.3.2	Herstellung der Silberperchloratlösung	63
		5.3.1	Herstellung des Elektrolyten	63
	5.3	Cyclov	voltammetrische Messungen	63
		5.2.3	Elektroden	62
		5.2.2	Messzelle	62
		5.2.1	Potentiostat	62
	5.2	Geräte	3	62
		5.1.4	N, N'-Bis(ferrocenoyl)diaminoethan (Bis-Fc)	62
		5.1.3	Acetonitril (MeCN)	62
		5.1.2	Propylencarbonat (PC)	61

Abkürzungen

Α	Makroelektrode
В	Mikroelektrode
Bis-Fc	N, N'-Bis(ferrocenoyl)diaminoethan
С	Ultramikroelektrode
Fc	Ferrocen
Fc^+	Ferroceniumion
MeCN	Acetonitril
PC	Propylencarbonat
TBAHFP	Tetra-n-butylammoniumhexafluorophosphat

Symbole

А	elektroaktive Fläche der Arbeitselektrode
c^0	Substratkonzentration
D	Diffusionskoeffizient
Е	Potential
$E_{\rm p}^{\rm ox}$	Peakpotential der Oxidation
$E_{\rm p}^{\rm red}$	Peakpotential der Reduktion
$\Delta E_{\rm p}$	Peakpotentialdifferenz
E^0	Formalpotential
ΔE^0	Differenz der Formalpotentiale
i	Strom
$i_{\rm ss}$	Grenzstrom
$\left(i_{\rm p}^{\rm ox}\right)_0$	Oxidationspeakstrom
$\left(i_{\rm p}^{\rm red} ight)_0$	Reduktionspeakstrom
$i_{ m sp}^0$	Stromwert am Umkehrpotential
$i_{\rm p}^{\rm ox}/i_{\rm p}^{\rm red}$	Peakstromverhältnis
$i_{\rm p}^{\rm norm}$	normierte Ströme planarer Diffusion
$i_{\rm ss}^{\rm norm}$	normierte Ströme hemisphärischer Diffusion
n	Anzahl der übertragenen Elektronen
r	Radius
R_h	Fehler bei hemisphärischer Diffusion
R_p	Fehler bei planarer Diffusion
v	Vorschubgeschwindigkeit

1 Einleitung

Elektroanalytische Methoden ermöglichen auf Basis der Beziehung zwischen Strom und Spannung die Untersuchung elektrochemischer Reaktionen.[1] Die Cyclovoltammetrie beruht auf relativ leicht zugänglichen Messtechniken und diagnostischen Kriterien, die auch ohne viel mathematisches Hintergrundwissen angewendet werden können.[2]

Die Bestimmung elektrochemischer Parameter wie Diffusionskoeffizienten (D), Radien (r) oder Flächen (A) der Arbeitselektroden, Konzentration der redoxaktiven Spezies (c_0) sowie Anzahl der umgesetzten Elektronen (n) ist mittels der Randles-Ševčik-Gleichung möglich.[3, 4] Diese und viele weitere Anwendungsgebiete machen die Cyclovoltammetrie zu einer der vielseitigsten elektroanalytischen Methoden.[5]

Ultramikroelektroden haben in den letzten Jahrzehnten einen wichtigen Beitrag zu den Entwicklungen in der elektrochemischen Forschung geleistet. [6] Sie können die Grenzen planarer Diffusion überschreiten und erweitern somit die Messmöglichkeiten und die Vielfältigkeit der chemischen Experimente, in denen sie zum Einsatz kommen. Zum Beispiel werden die aus dem Widerstand der Lösung hervorgehenden Einflüsse durch den iR-Drop bei Messungen mit Ultramikroelektroden vermindert. [6–11]

Für diese Arbeit ist besonders der Aspekt der Cyclovoltammetrie unter stationären Bedingungen von Bedeutung. Bei planaren Ultramikroelektroden entsteht in kürzester Zeit ein hemisphärisches Diffusionsfeld, wodurch sich ein stationärer Zustand einstellt. Aus den Steady-State-Cyclovoltammogrammen kann der Grenzstrom, der linear mit D, r, c_0 und n zusammenhängt, entnommen werden.[10, 11]

Eine interessante Frage ist, nach welcher Zeit und bei welchem Radius der Ultramikroelektrode die hemisphärische Diffusion und somit der stationäre Zustand erreicht wird. Die Sphärizität σ , in deren Berechnung der Diffusionskoeffizient, der Radius der Arbeitsfläche, die Anzahl der übergehenden Elektronen und die Vorschubgeschwindigkeit eingehen, gibt hierüber Auskunft.[10] Die Abstimmung von Elektrodengröße und Vorschubgeschwindigkeit ist dabei relevant. So wird hemisphärische Diffusion eher bei kleinen Elektroden und langsamen Vorschubgeschwindigkeiten auftreten. Planare Diffusion wird dagegen bei schnellen Vorschubgeschwindigkeiten und großen Elektroden beobachtet.[6]

Die Abhängigkeit der elektrochemischen Parameter untereinander ist bei hemisphärischer und planarer Diffusion unterschiedlich. Dadurch eröffnet sich die Möglichkeit zwei unbekannte elektrochemische Parameter simultan zu bestimmen. In der Literatur sind Beispiele für eine Vielzahl von simultanen Bestimmungen von Diffusionskoeffizient und einer weiteren unbekannten Größe unter verschiedensten Bedingungen zu finden.[12–28]

Am häufigsten wurden der Diffusionskoeffizient und die Konzentration der redoxak-

tiven Substanz gleichzeitig bestimmt. Dazu wurden Messungen in flüssigen Elektrolyten,[12–14,22] in ionischen Flüssigkeiten,[24,28] in Membranen,[16,17] in Gelen[23] oder in Feststoffen[21,25] durchgeführt. Wesentlich seltener wurde der Radius gleichzeitig mit dem Diffusionkoeffizienten bestimmt.[19,22] In der Literatur wurde die simultane Bestimmung des Diffusionskoeffizienten und der Anzahl der übergehenden Elektronen mehrfach beschrieben.[15,18,20,26] In all diesen Fällen wurde auf die unterschiedlichsten Vorgehensweisen, wie nicht-lineare Optimierung,[22,25] den Vergleich von simulierten und experimentellen Messungen[24] sowie das Messen des Radius mit Hilfe eines Elektronenmikroskopes[19] zurückgegriffen. Sowohl die Cyclovoltammetrie[19,23,27] wie auch die Chronoamperometrie[12–22,24–26,28] kamen bei diesen Experimenten zum Einsatz.

Ferrocen (Fc) ist in der Elektrochemie eine häufig benutzte Standardsubstanz, die zusammen mit ihrer oxidierten Form, dem Ferricinium-Ion (Fc⁺), oft als Referenzsystem (Fc/Fc⁺) verwendet wird.[29,30] Dieses Metallocen wurde in den Lösungsmitteln Acetonitril (MeCN) und Propylencarbonat (PC) schon vielfach untersucht. Dabei wurde insbesondere der Diffusionskoeffizient bestimmt. Die Literaturangaben zum Wert von *D* in MeCN,[9,31,32] und vor allem in PC[33–37] sind sehr unterschiedlich, da die Wahl des Leitsalzes, welches den Ladungstransport durch die Lösung übernimmt,[1] seine Konzentration sowie der Wassergehalt des Elektrolyten eine nicht unbedeutende Rolle spielen.

N,N'-Bis(ferrocenoyl)diaminoethan (Bis-Fc) hat im Gegensatz zu Fc zwei redoxaktive Zentren. Aufgrund der hohen Aktivierungsenergie ist es sehr unwahrscheinlich, dass die Elektronenübertragungen bei elektrochemischen Untersuchungen in *einem* Elementarschritt ablaufen. Abhängig von den Potentialen, der in einzelnen Schritten ablaufenden Redoxreaktionen, können mehreren Fälle auftreten:.[2]

In der Literatur wird zum Beispiel (i)die gegenseitige Wechselwirkung zwischen zwei, über eine π -Brücke verknüpfte, Fc-Einheiten beschrieben.[38] (ii)Eine andere Arbeit beschreibt hingegen das Auftreten der besonders auffälligen Potentialinversion.[39]

Abbildung 1.1: Ferrocen

Abbildung 1.2: $N\!,\!N'\!\text{-}\mathrm{Bis}(\mathrm{ferrocenoyl})\mathrm{diaminoethan}$

2 Problemstellung

Im Rahmen der vorliegenden wissenschaftlichen Arbeit sollen elektrochemische Parameter von Fc und Bis-Fc mittels cyclovoltammetrischer Messungen bestimmt werden. Durch den Einsatz von Makro- (Durchmesser > 1 mm), Mikro- (Durchmesser zwischen 25 μ m und 1 mm) und Ultramikroelektroden (Durchmesser < 25 μ m) sollen die Untersuchungen bei hemisphärischer und planarer Diffusion durchgeführt werden.[10]

Zuerst soll untersucht werden, ob es möglich ist, den Diffussionskoeffizienten von Fc in PC zu bestimmen, obwohl die Flächen bzw. Radien der Arbeitselektrode nicht bekannt sind. Durch den unterschiedlichen Zusammenhang von D und r in den Gleichungen der hemisphärischen und planaren Diffusion besteht die Möglichkeit, diese beiden unbekannten Parameter simultan zu bestimmen.

Aus den experimentell ermittelten Radien soll dann einerseits der Diffusionskoeffizient von Ferrocen in Acetonitril bestimmt werden. Um diesen Wert mit zwei vergleichbaren Methoden berechnen zu können, werden die cyclovoltammetrischen Messungen ebenfalls bei hemisphärischer und bei planarer Diffusion durchgeführt.

Desweiteren sollen die unbekannten Parameter D und n des Bis-Fc in Propylencarbonat mit den experimentell ermittelten Radien bestimmt werden. Auch in diesem Fall müssen die Messungen sowohl bei hemisphärischer wie auch bei planarer Diffusion durchgeführt werden, um den unterschiedlichen Zusammenhang von D und n in den Gleichungen zur simultanen Berechnung nutzen zu können.

3 Resultate und Diskussionen

Für die cyclovoltammetrischen Messungen wurden drei Arbeitselektroden verwendet, die im Folgenden mit **A**, **B** und **C** bezeichnet werden. Von den Herstellern werden die Radien mit einer bestimmten Varianz angegeben (siehe Tabelle 3.1). Diese sogenannten nominalen Radien werden mit $r_{\rm A}^{\rm nom}$, $r_{\rm B}^{\rm nom}$, $r_{\rm C}^{\rm nom}$ abgekürzt. Die im Laufe der Auswertung experimentell ermittelten Radien der Elektroden werden mit $r_{\rm A}^{\rm exp}$, $r_{\rm B}^{\rm exp}$, $r_{\rm C}^{\rm exp}$ angegeben.

Tabelle 3.1: Nominale Radien der Arbeitselektroden.

A: $r_{\rm A}^{\rm nom} = 1,5 \text{ mm} \pm 0,05 \text{mm}$ B: $r_{\rm B}^{\rm nom} = 0,05 \text{ mm} \pm 0,005 \text{ mm}$ C: $r_{\rm C}^{\rm nom} = 0,005 \text{ mm} \pm 0,0005 \text{ mm}$

Genauere Angaben zu den Elektroden sind im experimentellen Teil unter 5.2.3 zu finden.

3.1 Cyclovoltammetrische Untersuchung von Ferrocen in Propylencarbonat

Es wurden insgesamt elf Messreihen mit Fc in PC an den Elektroden A, B und C durchgeführt. In dieser und allen weiteren Messungen wurde Tetra-n-butylammoniumhexafluorophosphat (TBAHFP) als Leitsalz in einer Konzentration von 0,1 M verwendet. Dabei wurden jeweils vier bis sechs Konzentrationen zwischen 0,0304 mM und 0,3103 mM aus sieben verschiedenen Substratlösungen gemessen. Die Vorschubgeschwindigkeiten variieren bei den einzelnen Arbeitselektroden. Der Potentialbereich liegt immer bei -300 mV bis +300 mV. In diesem Abschnitt wird der Diffusionskoeffizient von Fc in PC (D_{PC}) sowie die drei Radien der Arbeitselektroden r_{A}^{exp} , r_{B}^{exp} und r_{C}^{exp} bestimmt. Es wird dabei angenommen, dass der Diffusionskoeffizient für beide Redoxformen derselbe ist.[40]

3.1.1 Mathematische Hintergründe

Zur simultanen Bestimmung des Diffusionskoeffizienten und der Radien der Arbeitselektrode wurden zwei verschiedene rechnerische Methoden angewendet, die in diesem Kapitel hergeleitet und erläutert werden.

Für den Oxidationspeakstrom eines reversiblen Elektronentransfers bei planarer Diffusion gilt die Randles-Ševčik-Gleichung:[3,4]

$$i_{\rm p}^{\rm ox} = n \cdot \mathbf{F} \cdot A \cdot c^0 \sqrt{\frac{D \cdot n \cdot \mathbf{F} \cdot v}{\mathbf{R} \cdot T}} \cdot 0,4463$$
(3.1)

Der Grenzstrom bei hemisphärischer Diffusion wird hingegen mit folgender Gleichung beschrieben:[10]

$$i_{\rm ss} = 4 \cdot r \cdot n \cdot \mathbf{F} \cdot D \cdot c^0 \tag{3.2}$$

Die beiden rechnerischen Methoden basieren auf der Tatsache, dass in den Gleichungen (3.1) und (3.2) unterschiedliche Zusammenhänge zwischen D und r bestehen.

Explizite Bestimmung von D und r

Zur *expliziten Bestimmung* von D und r wird Gleichung (3.1) nach D aufgelöst, wobei für die Fläche $A = \pi \cdot r^2$ eingesetzt wird:

$$D = \frac{(i_{\rm p}^{\rm ox})^2 \cdot \mathbf{R} \cdot T}{n^3 \cdot \mathbf{F}^3 \cdot \pi^2 \cdot r^4 \cdot (c^0)^2 \cdot v \cdot 0,4463^2}$$
(3.3)

Gleichung (3.2) wird nach r aufgelöst:

$$r = \frac{i_{\rm ss}}{4 \cdot n \cdot \mathbf{F} \cdot D \cdot c^0} \tag{3.4}$$

Anschließend wird Gleichung (3.4) in Gleichung (3.3) eingesetzt und nach D aufgelöst:

$$D = \frac{(i_{\rm p}^{\rm ox})^2 \cdot \mathbf{R} \cdot T}{n^3 \cdot \mathbf{F}^3 \cdot \pi^2 \cdot \left(\frac{i_{\rm ss}}{4n \mathrm{F} D c^0}\right)^4 \cdot (c^0)^2 \cdot v \cdot 0,4463^2}$$
$$D = \frac{(i_{\rm p}^{\rm ox})^2 \cdot \mathbf{R} \cdot T \cdot 4^4 \cdot n^4 \cdot \mathbf{F}^4 \cdot D^4 \cdot (c^0)^4}{n^3 \cdot \mathbf{F}^3 \cdot \pi^2 \cdot (i_{\rm ss})^4 \cdot (c^0)^2 \cdot v \cdot 0,4463^2}$$
$$\frac{1}{D^3} = \frac{(i_{\rm p}^{\rm ox})^2 \cdot \mathbf{R} \cdot T \cdot 4^4 \cdot n \cdot \mathbf{F} \cdot (c^0)^2}{\pi^2 \cdot (i_{\rm ss})^4 v \cdot 0,4463^2}$$

$$D^{3} = \frac{\pi^{2} \cdot (i_{ss})^{4} \cdot v \cdot 0,4463^{2}}{(i_{p}^{ox})^{2} \cdot \mathbf{R} \cdot T \cdot 4^{4} \cdot n \cdot \mathbf{F} \cdot (c^{0})^{2}}$$
$$D = \frac{\pi^{\frac{2}{3}} \cdot (i_{ss})^{\frac{4}{3}} \cdot v^{\frac{1}{3}} \cdot 0,4463^{\frac{2}{3}}}{(i_{p}^{ox})^{\frac{2}{3}} (\mathbf{R} \cdot T)^{\frac{1}{3}} \cdot 4^{\frac{4}{3}} \cdot n^{\frac{1}{3}} \cdot \mathbf{F}^{\frac{1}{3}} \cdot (c^{0})^{\frac{2}{3}}}$$

Durch Einsetzen der Konstanten F = 96485 As · mol⁻¹, [41] T = 298, 15 K, $\pi = 3, 14159$ und R = 8, 314 J · mol⁻¹ · K⁻¹[42] ergibt sich:

$$D = \frac{(i_{\rm ss})^{\frac{4}{3}} \cdot v^{\frac{1}{3}}}{(i_{\rm p}^{\rm ox})^{\frac{2}{3}} \cdot n^{\frac{1}{3}} \cdot (c^0)^{\frac{2}{3}}} \cdot 31,7836 \cdot 10^{-6} \frac{\rm cm^2}{\rm s}$$
(3.5)

Zur Berechnung von D setzt man in Gleichung (3.5) die Zahlenwerte in den in Tabelle 3.2 angegebenen Einheiten ein:

Tabelle 3.2: Einheiten	der	einzusetzenden	Größen.
------------------------	----------------------	----------------	---------

$$\begin{array}{lll} i_{\rm ss} & {\rm in} & \mu {\rm A} \\ i_{\rm p}^{\rm ox} & {\rm in} & \mu {\rm A} \\ v & {\rm in} & {\rm mV} \cdot {\rm s}^{-1} \\ r & {\rm in} & {\rm cm} \\ c^0 & {\rm in} & {\rm mM} \end{array}$$

Mit Gleichung (3.4) wird durch Einsetzen des für D ermittelten Zahlenwertes (in 10^{-6} cm²s⁻¹) schließlich r berechnet. Für die explizite Bestimmung wird vorausgesetzt, dass beide Grenzfälle der Diffusion (hemisphärisch und planar) mit *einem* Radius erreicht werden können.

Abschätzung von D und r durch nicht-lineare Optimierung

Es kann davon ausgegangen werden, dass jeder experimentell ermittelte Stromwert einen gewissen Fehler gegenüber dem theoretischen Strömen enthält. Dieser Fehler wird für die hemisphärische Diffusion mit $R_{\rm h}$ und für die planare Diffusion mit $R_{\rm p}$ bezeichnet. Dabei sind $i_{\rm ss}$ und $(i_{\rm p}^{\rm ox})_0$ die experimentell gemessenen Stromwerte. Die entsprechenden Einheiten der Größen sind bereits in Tabelle 3.2 angegeben. Um die relativen Fehler zu erhalten, werden $R_{\rm h}$ und $R_{\rm p}$ durch $i_{\rm ss}$ bzw. $(i_{\rm p}^{\rm ox})_0$ geteilt. Durch Einsetzen von F und den Einheiten erhält man die Gleichungen (3.6) und (3.7).

$$R_{\rm h} = i_{\rm ss} - 4 \cdot r \cdot n \cdot F \cdot D \cdot c^{0}$$

$$R_{\rm h} = i_{\rm ss} \cdot 10^{-6} - r \cdot n \cdot D \cdot c^{0} \cdot 3,8594 \cdot 10^{-7}$$

$$R_{\rm h}^{\rm rel} = \frac{i_{\rm ss} \cdot 10^{-6} - r \cdot n \cdot D \cdot c^{0} \cdot 3,8594 \cdot 10^{-7}}{i_{\rm ss} \cdot 10^{-6}} \qquad (3.6)$$

$$R_{\rm p} = i_{\rm p}^{\rm ox} - n \cdot F \cdot A \cdot c^{0} \sqrt{\frac{D \cdot n \cdot F \cdot v}{R \cdot T}} \cdot 0,4463$$

$$R_{\rm p} = i_{\rm p}^{\rm ox} \cdot 10^{-6} - 2,6689 \cdot 10^{-5} \cdot n \cdot r^{2} \cdot c^{0} \cdot \sqrt{D} \cdot \sqrt{v}$$

$$R_{\rm p}^{\rm rel} = \frac{i_{\rm p}^{\rm ox} \cdot 10^{-6} - 2,6689 \cdot 10^{-5} \cdot n \cdot r^{2} \cdot c^{0} \cdot \sqrt{D} \cdot \sqrt{v}}{i_{\rm p}^{\rm ox} \cdot 10^{-6}} \qquad (3.7)$$

Die nicht-lineare Funktion $R(D, r_1, ..., r_n)$ mit $R : \mathbb{R}^{n+1} \mapsto \mathbb{R}^m$ beschreibt diese relativen Fehler, wobei n die Anzahl der Elektroden und m die Anzahl der Einzelmessungen ist. Es handelt sich um ein übersetztes System von nicht-linearen Gleichungen mit den Unbekannten D und r.

Mit Hilfe des Levenberg-Marquardt-Algorithmus können nicht-lineare Optimierungsprobleme gelöst werden. Der Algorithmus kombiniert das Gauß-Newton-Verfahren, bei welchem die Funktion in jedem Schritt mittels Taylorentwicklung linearisiert wird, mit einer Zusatzbedingung, der so genannten Gradientenmethode. Dadurch konvergiert der Algorithmus auch in größeren Umgebungen, also unter schlechteren Startbedingungen, mit hoher Wahrscheinlichkeit.[43]

Mit MATLAB (The MathWorks) wurde ein Programm (m-file) geschrieben (siehe Experimenteller Teil 5.5), welches die Funktion R mit den eingelesenen Datensätzen aufstellt. Die nicht-lineare Optimierung von R wurde mit dem Befehl fsolve unter Angabe des Startwertes x_0 durchgeführt. Auf die zusätzliche Option des vorimplementierten Levenberg-Marquardt-Algorithmus kann mit einem Parameter zugegriffen werden.

Die nicht-lineare Optimierung kann auch angewendet werden, wenn die hemisphärische und planare Diffusion an unterschiedlichen Elektroden gemessen wurden.

3.1.2 Exemplarische Ergebnisse einer CV-Messreihe mit Elektrode C von Ferrocen in Propylencarbonat

In diesem Abschnitt wird eine der Messungen mit der Ultramikroelektrode C genauer betrachtet. Es wurden Vorschubgeschwindigkeiten von 1 bis 100 mVs⁻¹ gemessen. Für die Auswertung konnten die Cyclovoltammogramme ab 20 mVs⁻¹ jedoch nicht verwendet werden, da sie, einen Artefakt aufweisen, der sich durch Oszillation zu erkennen gibt (Abbildung 3.1). Bei Vorschubgeschwindigkeiten von 1 bis 10 mVs⁻¹ findet hemisphärische Diffusion statt. Die Konzentrationen der vier Messreihen lagen zwischen 0,0539 mM und 0,2094 mM.

Die korrigierten Steady-State-Kurven beginnen mit einen waagrechten Abschnitt, dessen Abstand zur Nulllinie des Stroms höchstens 1 % des Oxidationspeakstroms beträgt. Durch einen Wendepunkt geht die Kurve nach ihrem Anstieg in den waagrechten Oxidationsstrom über. Beim Zurückfahren überdecken sich die Kurven im Allgemeinen.

Die Grenzströme und die normierten Ströme (i_{ss}^{norm}) wurden mit Gleichung (5.5) ermittelt und sind in den Tabellen 3.3 und 3.4 dargestellt.

Abbildung 3.1: Cyclovoltammogramm von Fc in PC mit C bei $v = 20 \text{ mVs}^{-1}$ und c = 0,0539 mM.

Die aus der Gleichung (3.2) ersichtliche Unabhängigkeit der Grenzströme von der Vorschubgeschwindigkeit ist gegeben und wird in Abbildung 3.2 graphisch dargestellt.

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$			
	$0,\!0539$	$0,\!1068$	$0,\!1586$	0,2094
1	0,0401	0,0787	0,1164	0,1535
2	0,0398	0,0794	0,1164	$0,\!1526$
5	0,0401	0,0795	0,1168	$0,\!1537$
10	$0,\!0401$	$0,\!0795$	$0,\!1167$	$0,\!1548$

Tabelle 3.3: Cyclovoltammetrie von Fc in PC: Grenzströme $i_{\rm ss}$ in nA einer exemplarischen Messreihe.

Tabelle 3.4: Cyclovoltammetrie von Fc in PC: Normierte Ströme $i_{\rm ss}^{\rm norm}$ in nA·mM⁻¹ einer exemplarischen Messreihe.

$v/{\rm mVs^{-1}}$	$c({ m Fc})/{ m mM}$					
	0,0539	0,1068	0,1586	0,2094		
1	0,744	0,737	0,734	0,733		
2	0,738	0,744	0,734	0,729		
5	0,744	0,745	0,737	0,734		
10	0,744	0,745	0,736	0,739		
Ø	0,742	0,743	0,735	0,734		
	$\varnothing = 0,738 \pm 0,005$					

Die Konstanz der statistisch verteilten normierten Ströme wird durch die geringe Varianz des Mittelwertes von weniger als 1% bestätigt.

Abbildung 3.2: Cyclovoltammogramme von Fc in PC mit C bei v = 1 und 10 mVs⁻¹ und c = 0,0539 mM.

Die Ergebnisse der exemplarischen Messungen werden später in die Auswertung aller Messungen des entsprechenden Substrats im jeweiligen Lösungsmittel einbezogen.

3.1.3 Exemplarische Ergebnisse einer CV-Messreihe mit Elektrode A von Ferrocen in Propylencarbonat

Die Auswertung von Cyclovoltammogrammen planarer Diffusion, wie in Abbildung 3.3 dargestellt, wird an einer Messung mit **A** erläutert. Bei Vorschubgeschwindigkeiten von 20 bis 5038 mVs⁻¹ wurden vier Konzentrationen von 0,0538 mM bis 0,2088 mM gemessen.

Die Tabellen 3.5 und 3.6 geben die Peakpotentiale der Oxidation und der Reduktion an. Daraus wurden nach den Gleichungen (5.1) und (5.2) (siehe Experimenteller Teil) die Werte für die Peakpotentialdifferenz und das Formalpotential berechnet. Sie sind in den Tabellen 3.7 und 3.8 dargestellt. Alle Potentialwerte sind gegen die $Ag/Ag^+-Referenzelektrode aufgetragen.$

Abbildung 3.3: Cyclovoltammogramm von Fc in PC mit A bei $v=200~{\rm mVs^{-1}}$ und $c=0,2088~{\rm mM}.$

Tabelle 3.5: Cyclovoltammetrie von Fc in PC: Peak potentiale der Oxidation $E_{\rm p}^{\rm ox}$ in mV einer exemplarischen Mess reihe.

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$					
	$0,\!0538$	0,1064	$0,\!1581$	0,2088		
20	86	87	87	86		
50	87	87	88	88		
100	88	87	87	85		
200	85	88	87	85		
500	88	88	88	86		
1000	86	88	88	89		
1993	87	89	89	90		
5038	87	93	94	94		

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$					
	0,0538	0,1064	0,1581	0,2088		
20	21	22	20	21		
50	20	21	21	22		
100	21	22	21	21		
200	20	22	20	20		
500	19	21	17	20		
1000	19	21	19	19		
1993	20	19	20	16		
5038	16	17	15	17		

Tabelle 3.6: Cyclovoltammetrie von Fc in PC: Peakpotentiale der Reduktion $E_{\rm p}^{\rm red}$ in mV einer exemplarischen Messreihe.

Tabelle 3.7: Cyclovoltammetrie von Fc in PC: Peakpotential differenzen $\Delta E_{\rm p}$ in mV einer exemplarischen Messreihe.

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$					
	0,0538	0,1064	0,1581	0,2088		
20	65	65	67	65		
50	67	66	67	66		
100	67	65	66	64		
200	65	66	66	65		
500	69	67	68	66		
1000	67	67	69	71		
1993	67	70	69	74		
5038	71	76	79	77		

$v/{\rm mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	$0,\!0538$	0,1064	$0,\!1581$	0,2088	
20	54	55	54	54	
50	54	54	55	55	
100	55	57	54	53	
200	53	55	54	53	
500	54	55	54	53	
1000	53	55	54	55	
1993	54	54	55	53	
5038	52	55	55	56	

Tabelle 3.8: Cyclovoltammetrie von Fc in PC: Formal potentiale E^0 in mV einer exemplarischen Messreihe.

Die Oxidations- und Reduktionspeakströme sowie die ermittelten Peakstromverhältnisse und normierten Ströme sind den Tabellen 3.9 bis 3.12 aufgelistet.

Tabelle 3.9: Cyclovoltammetrie von Fc in PC: Oxidationspeakströme $(i_p^{ox})_0$ in μA einer exemplarischen Messreihe.

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$					
	$0,\!0538$	$0,\!1064$	$0,\!1581$	0,2088		
20	0,2831	$0,\!5774$	0,8277	$1,\!039$		
50	$0,\!4387$	$0,\!8850$	$1,\!264$	$1,\!693$		
100	$0,\!6117$	$1,\!244$	1,788	$2,\!382$		
200	$0,\!8499$	1,737	2,518	$3,\!364$		
500	$1,\!300$	2,714	$3,\!934$	$5,\!258$		
1000	$1,\!684$	$3,\!665$	$5,\!363$	$7,\!262$		
1993	$2,\!554$	$5,\!343$	$7,\!948$	$10,\!42$		
5038	$4,\!320$	$8,\!215$	$11,\!87$	$16,\!01$		

Die Peakpotentiale sind annähernd konstant und von der Konzentration unabhängig. Nur bei hohen Vorschubgeschwindigkeiten steigt das Potential der Oxidation etwas an, das Potential der Reduktion wird hingegen etwas kleiner. Die Peakpotentialdifferenz ist folglich bis zu $v = 1000 \text{ mVs}^{-1}$ konstant und nimmt nur bei hohen Vorschubgeschwindigkeiten etwas zu. Von der Konzentration ist $\Delta E_{\rm p}$ nahezu unabhängig. Ein leichter kontinuierlicher Anstieg mit der Vorschubgeschwindigkeit liegt beim Peakstromverhältnis vor, welches insbesondere bei v = 1993 und 5038 mVs⁻¹ und bei kleiner Konzentration etwas zu hoch ist. Aus diesen Gründen wurden für die Berechnung der Mittelwerte und insbesondere für die simultane Bestimmung von $D_{\rm PC}$ und den Radien nur die Wer-

$v/{\rm mVs^{-1}}$		$c({ m Fc})$	$/\mathrm{mM}$	
	0,0538	$0,\!1064$	$0,\!1581$	0,2088
20	-0,1958	-0,3908	-0,5586	-0,6952
50	-0,3062	$-0,\!6240$	-0,9124	-1,157
100	-0,4350	-0,8829	-1,278	$-1,\!692$
200	-0,6127	-1,253	-1,810	-2,414
500	-0,9224	-1,936	-2,789	-3,793
1000	-1,157	-2,591	-3,822	-5,197
1993	-1,930	-4,014	-5,794	-7,508
5038	-3,869	-6,153	-8,959	-11,98

Tabelle 3.10: Cyclovoltammetrie von Fc in PC: Reduktionspeakströme $(i_p^{\text{red}})_0$ in μ A einer exemplarischen Messreihe.

Tabelle 3.11: Cyclovoltammetrie von Fc in PC: Peakstromverhältnis $i_{\rm p}^{\rm ox}/i_{\rm p}^{\rm red}$ einer exemplarischen Messreihe.

v/mVs^{-1}		c(Fc)	/mM	
	0,0538	0,1064	0,1581	0,2088
20	$0,\!9661$	0,9686	0,9712	0,9359
50	0,9918	1,002	1,016	0,9814
100	0,9938	$1,\!000$	1,007	$1,\!004$
200	1,011	1,011	1,011	$1,\!010$
500	1,012	$1,\!01$	$1,\!005$	1,02
1000	1,035	1,026	1,022	1,023
1993	1,043	$1,\!040$	1,014	1,019
5038	$1,\!132$	$1,\!046$	$1,\!058$	$1,\!080$

$v/{ m mVs^{-1}}$		c(Fc)	/mM	
	$0,\!0538$	$0,\!1064$	$0,\!1581$	0,2088
20	$1,\!178$	1,213	$1,\!171$	$1,\!171$
50	$1,\!154$	$1,\!176$	$1,\!13$	$1,\!147$
100	$1,\!138$	$1,\!169$	$1,\!131$	$1,\!141$
200	$1,\!118$	$1,\!153$	$1,\!125$	$1,\!139$
500	$1,\!082$	$1,\!14$	$1,\!113$	$1,\!126$
1000	$0,\!991$	$1,\!089$	$1,\!073$	$1,\!100$
1993	$1,\!064$	$1,\!124$	$1,\!126$	$1,\!118$
5038	$1,\!132$	$1,\!087$	$1,\!058$	$1,\!080$

Tabelle 3.12: Cyclovoltammetrie von Fc in PC: normierte Ströme $i_{\rm p}^{\rm norm}$ in $\mu A \sqrt{s}/mM \sqrt{mV}$ einer exemplarischen Messreihe.

te der Vorschubgeschwindigkeiten 20 bis 1000 mVs⁻¹ verwendet. Eine Erklärung für die Verzerrungen der Kurven könnte der bei hohen Vorschubgeschwindigkeiten auftretenden iR-Drop sein.[1] Bei dem verwendeten Potentiostaten kann die iR-Kompensation nur in größeren Schritten eingestellt werden, wodurch eine optimale Eliminierung des iR-Drops nicht möglich war.

Für die Peakpotentialdifferenzen ergibt sich aus den Messwerten ein durchschnittlicher Wert von $\Delta E_{\rm p} = 66 \pm 1$ mV, der etwas über den 58 mV für einen idealen reversiblen Elektronentransfer liegt.[4,44] Auf die Formalpotentiale hat dieser Effekt jedoch keinen Einfluss und sie nehmen einen Mittelwert von $E^0 = 54 \pm 1$ mV, der nahe am Literaturwert von $E^0 = 56$ mV liegt.[11] Die Peakstromverhältnisse mit einem Mittelwert von 1 ± 0.02 entsprechen den Erwartungen und die normierten Ströme nehmen einen mittleren Wert von $i_{\rm norm} = 1, 13 \pm 0, 04 \ \mu A \sqrt{s}/mM \sqrt{mV}$ an. In Abbildung 3.4 wird die Konstanz der normierten Ströme graphisch dargestellt, indem sich durch Auftragen des Oxidationspeakstrom gegen $\sqrt{v} \cdot c$ eine Gerade ergibt.

3.1.4 Exemplarische Ergebnisse einer CV-Messreihe mit Elektrode B von Ferrocen in Propylencarbonat

Im Folgenden werden die Ergebnisse einer Messreihe mit **B** von Fc in PC exemplarisch dargestellt, wobei vier Konzentrationen mit Vorschubgeschwindigkeiten von 1 bis 1993 mVs⁻¹ gemessen wurden. Bei Messungen mit **B** erhält man je nach v sowohl konventionelle Cyclovoltammogramme bei planarer Diffusion wie auch Steady-State-Kurven bei hemisphärischer Diffusion. In der Abbildung 3.5 ist der Übergang von hemisphärischer zu planarer Diffusion dargestellt.

Die Form der Cyclovoltammogramme bei den Vorschubgeschwindigkeiten 1 und 2 mVs⁻¹ deutet auf hemisphärische Diffusion hin. Die Kurven ab einer Vorschubgeschwindigkeit von 50 mVs⁻¹ sprechen eher für eine planare Diffusion.

Abbildung 3.4: Normierte Ströme der exemplarischen Messung von Fc in PC mit \mathbf{A} .

Abbildung 3.5: Cyclovoltammogramm von Fc in PC mit **B** bei $v=1,\,100$ und 1000 $\rm mVs^{-1}$ und c=0,0539 mM.

Auswertung der Cyclovoltammogramme bei hemisphärischen Diffusion

In den Tabellen 3.13 und 3.14 werden die Grenzströme und die normierten Ströme angegeben.

Tabelle 3.13: Cyclovoltammetrie von Fc in PC: Grenzströme $i_{\rm ss}$ in nA einer exemplarischen Messreihe.

$v/{ m mVs^{-1}}$		c(Fc)	$/\mathrm{mM}$	
	$0,\!0539$	0,1068	$0,\!1586$	0,2094
1	0,4408	0,8404	1,200	$1,\!611$
2	$0,\!4276$	$0,\!8319$	1,212	$1,\!594$

Tabelle 3.14: Cyclovoltammetrie von Fc in PC: normierte Ströme $i_{\rm ss}^{\rm norm}$ in nA·mM $^{-1}$ einer exemplarischen Messreihe.

$v/{ m mVs^{-1}}$		c(Fc)	$/\mathrm{mM}$	
	$0,\!0539$	$0,\!1068$	$0,\!1586$	0,2094
1	8,18	7,87	$7,\!57$	$7,\!69$
2	$7,\!93$	7,79	$7,\!64$	$7,\!61$
		$\emptyset = 7,7$	$9 \pm 0, 20$	

Durch die Unabhängigkeit der Grenzströme von der Vorschubgeschwindigkeit sowie die Konstanz der normierten Ströme wird die Annahme der hemisphärischen Diffusion bestätigt.

Auswertung der Cyclovoltammogramme bei planaren Diffusion

Zunächst werden die Peakpotentiale der Oxidation und der Reduktion sowie die daraus berechneten Werte für die Peakpotentialdifferenz und das Formalpotential in den Tabellen 3.15 bis 3.18 dargestellt. Dabei sind alle Potentialwerte gegen die Ag/Ag^+ -Referenzelektrode aufgetragen.

Bei den langsameren Vorschubgeschwindigkeiten treten größere E_p^{ox} -Werte bzw. kleinere E_p^{red} -Werte auf. Beim reversiblen Elektronentransfer sollte die Peakpotentialdifferenz unter planaren Diffusionsbedingungen nach der Theorie jedoch unabhängig von der Vorschubgeschwindigkeit sein und demnach einen konstanten Wert annehmen.[44] Somit kann davon ausgegangen werden, dass bei den niedrigen Vorschubgeschwindigkeiten noch keine planare Diffusion auftritt. Die Kinetik des Elektronentransfers könnte eine Begründung für die immer noch leicht erhöhten Peakpotentialdifferenzen bei v = 1 und 2 mV s⁻¹ sein. Die Formalpotentiale hingegen nehmen bei allen Vorschubgeschwindigkeiten wert an.

v/mVs^{-1}		$c({ m Fc})$	$/\mathrm{mM}$	
	$0,\!0539$	0,1068	$0,\!1586$	0,2094
50	102	102	103	104
100	98	96	97	97
200	93	93	95	94
500	90	90	96	94
1000	90	90	90	95
1993	94	93	92	96

Tabelle 3.15: Cyclovoltammetrie von Fc in PC: Peak potentiale der Oxidation $E_{\rm p}^{\rm ox}$ in mV einer exemplarischen Mess reihe.

Tabelle 3.16: Cyclovoltammetrie von Fc in PC: Peakpotentiale der Reduktion $E_{\rm p}^{\rm red}$ in mV einer exemplarischen Messreihe.

v/mVs^{-1}		$c({ m Fc})$	$/\mathrm{mM}$	
	$0,\!0539$	0,1068	$0,\!1586$	0,2094
50	9	9	8	7
100	11	17	14	13
200	15	16	16	15
500	19	19	20	15
1000	19	17	17	15
1993	16	17	18	16

Tabelle 3.17: Cyclovoltammetrie von Fc in PC: Peakpotential differenzen $\Delta E_{\rm p}$ in mV einer exemplarischen Messreihe.

$v/{ m mVs^{-1}}$		$c({ m Fc})$	$/\mathrm{mM}$	
	0,0539	0,1068	$0,\!1586$	0,2094
50	93	93	95	97
100	87	79	83	84
200	78	77	79	79
500	72	72	76	79
1000	72	74	74	80
1993	78	76	74	80

$v/{\rm mVs^{-1}}$		$c({\rm Fc})$	$/\mathrm{mM}$	
	$0,\!0539$	0,1068	$0,\!1586$	0,2094
50	56	56	56	56
100	55	56	55	55
200	54	54	55	54
500	55	55	58	54
1000	55	54	54	55
1993	55	55	55	56

Tabelle 3.18: Cyclovoltammetrie von Fc in PC: Formal
potentiale E^0 in mV einer exemplarischen Messreihe.

Die Oxidations- $(i_p^{\text{ox}})_0$ und Reduktionspeakströme $(i_p^{\text{red}})_0$, sind in den Tabellen 3.19 und 3.20 aufgelistet.

Tabelle 3.19: Cyclovoltammetrie von Fc in PC: Oxidationspeakströme $(i_p^{ox})_0$ in nA einer exemplarischen Messreihe.

$v/{ m mVs^{-1}}$		c(Fc)	/mM	
	$0,\!0539$	0,1068	$0,\!1586$	0,2094
50	7,475	$14,\!51$	$21,\!24$	$27,\!83$
100	$9,\!376$	$18,\!31$	$26,\!83$	$35,\!04$
200	$12,\!19$	$23,\!83$	$34,\!87$	$45,\! 6$
500	$17,\!92$	$34,\!95$	$51,\!1$	66,22
1000	$23,\!85$	$46,\!69$	$68,\!64$	$88,\!68$
1993	$32,\!69$	$64,\!39$	$93,\!62$	120

Mit steigender Konzentration und Vorschubgeschwindigkeit werden die Oxidationspeakströme erwartungsgemäß positiver und die Reduktionspeakströme entsprechend negativer. Die daraus resultierenden Peakstromverhältnisse und normierten Ströme sind den Tabellen 3.21 und 3.22 zu entnehmen.

Die Peakstromverhältnisse sind erst bei Vorschubgeschwindigkeiten von 1 und 2 V/s annähernd 1. Die normierten Ströme nehmen ebenfalls erst bei Vorschubgeschwindigkeiten von 1 und 2 V/s einen annähernd konstanten Wert an.

Die Kriterien für planare Diffusion sowie den reversiblen bzw. quasireversiblen Elektronentransfer sind somit erst bei den Vorschubgeschwindigkeiten 1 und 2 mV s⁻¹ näherungsweise erfüllt.[2,4,45] Der Mittelwert der Formalpotentiale weicht mit $55 \pm 1 \text{ mV}$ kaum von dem Literaturwert $E^0 = 56 \text{ mV}$ ab.[11]

Bei dieser Elektrode kann die explizite Bestimmung von D und n nun angewendet werden, da beide Grenzfälle der Diffusion (hemisphärisch und planar) auftreten. Durch

$v/{\rm mVs^{-1}}$		$c({ m Fc})$	$/\mathrm{mM}$	
	$0,\!0539$	0,1068	0,1586	0,2094
50	-2,715	-5,353	-7,911	-10,36
100	-4,228	-8,331	-12,28	-16,06
200	-6,41	$-12,\!61$	-18,51	-24,19
500	-10,52	$-20,\!69$	$-30,\!62$	-39,27
1000	-14,84	-29,1	-42,59	-54,93
1993	-21,19	$-41,\!63$	-60,97	-77,42

Tabelle 3.20: Cyclovoltammetrie von Fc in PC: Reduktionspeakströme $(i_p^{\rm red})_0$ in nA einer exemplarischen Messreihe.

Tabelle 3.21: Cyclovoltammetrie von Fc in PC: Peakstromverhältnis $i_{\rm p}^{\rm ox}/i_{\rm p}^{\rm red}$ einer exemplarischen Messreihe.

$v/\rm mVs^{-1}$	$c({ m Fc})/{ m mM}$			
	0,0539	0,1068	0,1586	0,2094
50	0,8106	0,8159	0,8215	0,8242
100	0,8618	0,8642	0,8709	0,8738
200	0,9090	0,9082	0,9145	0,9154
500	0,9356	0,9417	0,9510	0,9515
1000	0,9644	0,9627	0,9623	0,9674
1993	$0,\!9760$	0,9773	0,9828	0,9878

Tabelle 3.22: Cyclovoltammetrie von Fc in PC: normierte Ströme $i_{\rm p}^{\rm norm}$ in $nA\sqrt{s}/mM\sqrt{mV}$ einer exemplarischen Messreihe.

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$					
	$0,\!0539$	0,1068	$0,\!1586$	0,2094		
50	19,61	$19,\!22$	18,94	18,79		
100	$17,\!39$	$17,\!15$	$16,\!92$	16,73		
200	$15,\!99$	15,78	$15,\!55$	$15,\!40$		
500	$14,\!87$	$14,\!64$	$14,\!41$	$14,\!14$		
1000	$13,\!99$	$13,\!83$	$13,\!69$	$13,\!39$		
1993	$13,\!58$	$13,\!51$	$13,\!22$	$12,\!84$		

Kombination der Messwerte je einer Vorschubgeschwindigkeit der hemisphärischen und einer der planaren Diffusion wurden Wertepaare für D und r berechnet (siehe Tabelle 3.23).

c(Fc)/mM	$v_{\rm h}/{\rm mVs^{-1}}$	$v_{\rm p}/{\rm mVs^{-1}}$	$D/10^{-6} {\rm cm}^2 {\rm s}^{-1}$	$r_{ m B}/{ m cm}^2$
0,0539	1	1000	$4,\!19$	0,00506
$0,\!0539$	1	1993	4,27	0,00496
$0,\!0539$	2	1000	4,02	0,00511
$0,\!0539$	2	1993	$4,\!10$	0,00501
$0,\!1068$	1	1000	4,01	0,00509
$0,\!1068$	1	1993	4,07	0,00501
$0,\!1068$	2	1000	$3,\!96$	0,00510
$0,\!1068$	2	1993	4,02	0,00503
$0,\!1586$	1	1000	$3,\!83$	0,00511
$0,\!1586$	1	1993	$3,\!92$	0,00500
$0,\!1586$	2	1000	$3,\!88$	0,00510
$0,\!1586$	2	1993	$3,\!97$	0,00498
0,2094	1	1000	$3,\!97$	0,00502
0,2094	1	1993	4,09	0,00488
0,2094	2	1000	$3,\!92$	0,00503
0,2094	2	1993	4,03	0,00489
		Ø	$4,01 \pm 0,11$	$0{,}00502\ {\pm}0{,}00007$

Tabelle 3.23: Explizite Berechnung von $D_{\rm PC}$ und $r_{\rm B}$ aus Daten an Elektrode **B**.

Durch nicht-lineare Optimierung nach dem Levenberg-Marquardt-Algorithmus wurden für $D_{\rm PC}$ und $r_{\rm B}$ folgenden Werte ermittelt:

$$D_{PC}^{exp} = 4,01$$

 $r_{B}^{exp} = 0,00502$

Beide Methoden zur simultanen Berechnung von D und r liefern das gleiche Ergebnis. Mit diesem vorerst ermittelten, auf $D_{\rm PC} = 4, 0 \cdot 10^{-6} {\rm cm}^2 {\rm s}^{-1}$ gerundeten Wert werden die σ -Werte, welche die Sphärizität der Diffusion angeben, mit der Formel 3.8 berechnet und in Tabelle 3.24 dargestellt:

$$\sigma = \sqrt{\frac{D \cdot R \cdot T}{v \cdot n \cdot F \cdot r^2}} \tag{3.8}$$

Bei $\sigma = 0$ liegt planare Diffusion mit konventionellen Cyclovoltammogrammen vor, die für $\sigma > 1$ in Steady-State-Kurven übergehen.[46] Das hemisphärische bzw. planare Diffusionsverhalten bei niedrigen bzw. hohen Vorschubgeschwindigkeiten wird von den

Tabelle 3.24: Sphärizität σ von Fc in PC mit der Elektrode **B** und $D_{\rm PC} = 4 \cdot 10^{-6} \text{cm}^2 \text{s}^{-1}$.

$v/{\rm mVs^{-1}}$	$\sigma\text{-Wert}$
1	2,0275
2	$1,\!4336$
1000	0,0641
2000	$0,\!0453$

 σ -Werten also bestätigt, liegt aber dennoch eher im Grenzbereich. Die Form der Kurven, die etwas unter 1 liegenden Peakstromverhältnisse sowie die nicht ganz konstanten normierten Strömen haben bereits auf dieses grenzwertige Verhalten hingewiesen.

Für die Elektroden **A** und **C** erhält man bei niedrigen bzw. hohen Vorschubgeschwindigkeiten hingegen σ -Werte (Tabelle 3.25 und 3.26), die die wesentlich eindeutigere planare bzw. hemisphärische Diffusion dieser Elektroden bestätigen.

Tabelle 3.25: Sphärizität σ von Fc in PC mit der Elektrode **A** und $D_{PC} = 4 \cdot 10^{-6} \text{cm}^2 \text{s}^{-1}$.

$v/{ m mVs^{-1}}$	$\sigma\text{-Wert}$
$\begin{array}{c} 20\\ 1000 \end{array}$	0,000478 0,000068

Tabelle 3.26: Sphärizität σ von Fc in PC mit der Elektrode **C** und $D_{PC} = 4 \cdot 10^{-6} \text{cm}^2 \text{s}^{-1}$.

$v/{ m mVs^{-1}}$	$\sigma\text{-Wert}$
1	20,275
10	$6,\!4114$

3.1.5 Ergebnisse der gesamten CV-Messungen von Ferrocen in Propylencarbonat

Alle Messungen von Fc in PC wurden wie in den exemplarischen Untersuchungen beschrieben ausgewertet. Mit **C** wurden 14 Messreihen mit Konzentrationen zwischen 0,0534 mM und 0,2191 mM durchgeführt. In jeder Messreihe nehmen die normierten Ströme einen konstanten Wert an, dessen Mittel über alle Messungen $i_{\text{norm}} = 0,749 \pm 0,010 \text{ nA} \cdot \text{mM}^{-1}$ beträgt.

Insgesamt wurde Fc in PC mit **B** bei 15 verschiedenen Konzentrationen zwischen 0,0538 mM und 0,2204 mM gemessen und wie im obigen Beispiel beschrieben ausgewertet. Dabei ergibt sich für die normierten Ströme der hemisphärsichen Diffusion ein Mittelwert von $i_{ss}^{norm} = 7,89 \pm 0,22 \,\mathrm{nA} \cdot \mathrm{mM}^{-1}$.

Bei der planare Diffusion nehmen die Peakpotential differenzen einen durchschnittlichen Wert von $\Delta E_{\rm p}=80\pm5~{\rm mV}$ an. Für die Formal potentiale wurde ein mittlerer Wert von $E^0=56\pm1~{\rm mV}$ berechnet, der mit dem Literaturwert übere instimmt.[4,11,44] Die Peakstromverhältnisse liegen mit einem Mittel von $0,99\pm0,02$ nahe an der 1 und die normierten Ströme nehmen relativ konstante Werte mit einen Durchschnitt von $i_{\rm norm}=1,33\pm0,05\mu{\rm A}\sqrt{\rm s}/{\rm mM}\sqrt{\rm mV}$ an.

Die Messungen mit Elektrode **A** wurden mit zwölf unterschiedlichen Konzentrationen von 0,0535 mM bis 0,2204 mM durchgeführt. Die Peakpotentialdifferenzen haben einem Mittelwert von $\Delta E_{\rm p} = 70 \pm 5$ mV und das Formalpotential liegt mit einen durchschnittlichen Wert von $E^0 = 54 \pm 2$ mV in der Nähe der Literaturangaben.[11] Der mittlere Wert der normierten Ströme beträgt $i_{\rm norm} = 1, 11 \pm 0, 04 \,\mu A \sqrt{s/mM} \sqrt{mV}$ und die Peakstromverhältnisse nehmen mit $1 \pm 0,02$ den nach der Theorie erwarteten Wert an.

Die Berechnung von D_{PC} und den Radien von \mathbf{A} , \mathbf{B} und \mathbf{C} wurde auf drei verschiedene Weisen durchgeführt.

Explizite Bestimmung von D_{PC} und der Radien von A, B und C

Zunächst wurden $D_{\rm PC}$ und $r_{\rm B}$ für alle mit **B** durchgeführten Messungen nach der expliziten Methode berechnet. Anschließend konnten aus den Werten der mit **A** und **C** durchgeführten Messungen $r_{\rm A}^{\rm exp}$ und $r_{\rm C}^{\rm exp}$ mittels der Gleichnungen 3.1 und 3.2 und dem für $D_{\rm PC}$ ermittelten Durchschnittswert berechnet werden (Tabelle 3.27).

$D_{\rm PC}^{\rm exp}$	=	4,10	±	$0,\!15$	$\cdot 10^{-6} \text{cm}^2 \text{s}^{-1}$
$r_{\rm A}^{\rm exp}$	=	1,44	±	0,024	mm
$r_{\rm B}^{\rm exp}$	=	$0,\!050$	\pm	0,001	mm
$r_{\rm C}^{\rm exp}$	=	0,00473	\pm	0,000064	mm

Tabelle 3.27: Explizit berechnete Werte für $D_{\rm PC}$ und die Radien von A, B und C.

Bestimmung von D_{PC} und der Radien von A, B und C durch lineare Optimierung

Mit Hilfe der nicht-linearen Optimierungsmethode über die Werte aller Messungen mit A, B und C erhält man die in Tabelle 3.28 dargestellten Werte.

Bei der nichtlinearen Optimierung ist es nicht möglich die Varianz der Werte anzugeben. Um diesen Nachteil zu vermeiden, wurden D_{PC} und die Radien **A**, **B** und **C** bestimmt, indem die einzelnen Messungen mit **B**, die im Weiteren mit Experiment 1 - 5 bezeichnet werden, jeweils mit allen Messungen an den Elektroden **A** und **C** kombiniert wurden.

Die Ergebnisse dieser fühl nicht-linearen Optimierungsläufe sind in Tabelle 3.29 zusammengefasst.

$D_{\rm PC}^{\rm exp}$	=	4,1	$\cdot 10^{-6} \text{cm}^2 \text{s}^{-1}$
$r_{\rm A}^{\rm exp}$	=	$1,\!44$	mm
$r_{\rm B}^{\rm exp}$	=	$0,\!050$	mm
$r_{\rm C}^{\rm exp}$	=	0,00473	mm

Tabelle 3.28: Auswertung durch nicht-lineare Optimierung: $D_{\rm PC}$ und die Radien A, B und C.

Tabelle 3.29: Nicht-lineare Optimierung: $D_{\rm PC}$ und die Radien **A**, **B** und **C** mit den Werten von Experiment 1-5.

Experiment	$D_{\rm PC}^{\rm exp}/10^{-6}{\rm cm}^2{\rm s}^{-1}$	$r_{\rm A}^{\rm exp}/{\rm mm}$	$r_{\rm B}^{\rm exp}/{\rm mm}$	$r_{\rm C}^{\rm exp}/{ m mm}$
1	4,01	$1,\!44$	0,050	0,00483
2	4,00	$1,\!45$	$0,\!050$	0,00485
3	4,20	$1,\!43$	0,049	0,00462
4	4,30	$1,\!42$	0,048	0,00450
5	$4,\!19$	1,43	0,050	0,00463

Durch Berechnung der Mittelwerte dieser fünf Datensätze erhält man die in Tabelle 3.30 angegebenen Ergebnisse, die nun mit Varianz angegeben werden können.

$D_{\rm PC}^{\rm exp}$	=	4,11	±	$0,\!12$	$\cdot 10^{-6} \text{cm}^2 \text{s}^{-1}$
$r_{\rm A}^{\rm exp}$	=	1,44	\pm	$0,\!01$	mm
$r_{\rm B}^{\rm exp}$	=	$0,\!050$	\pm	0,0006	mm
$r_{\rm C}^{\rm exp}$	=	0,00473	±	0,00013	mm

Tabelle 3.30: Nicht-lineare Optimierung: $D_{\rm PC}$ und die Radien A, B und C mit Varianz.

Bestimmung von D_{PC} und der Radien von A und C durch nichtlineare Optimierung

Aufgrund des grenzwertigen Diffusionsverhaltens bei **B** wurde vermutet, dass konsistentere Ergebnisse erzielt werden könnten, wenn die Messungen mit **B** nicht in die Berechnung einbezogen werden. Aus den obigen Ergebnissen kann auf eine zufriedenstellende Genauigkeit der nichtlinearen Optimierung geschlossen werden. Somit wurden $D_{\rm PC}$ und die Radien von **A** und **C** nur aus den Messwerten dieser beiden Elektroden ermittelt (Tabelle 3.31). Dies kann nur mittels der nichtlinearen Optimierung erfolgen, da eine explizite Auswertung mit nur zwei Gleichungen aber drei unbekannten Variablen nicht möglich ist.

Tabelle 3.31: Nicht-lineare Optimierung: D_{PC} und die Radien A und C.

$D_{\rm PC}^{\rm exp}$	=	$3,\!87$	$\cdot 10^{-6} \mathrm{cm}^2 \mathrm{s}^{-1}$
$r_{\rm A}^{\rm exp}$	=	$1,\!4657$	mm
$r_{\rm C}^{\rm exp}$	=	0,00501	mm

In diesem Fall werden die Varianzen ebenfalls wieder über die Mittelwerte der nichtlinearen Optimierung einzelner Datensätze berechnet. Dazu wurden je eine Messung mit \mathbf{A} (Experimente A1 bis A3) und eine mit \mathbf{C} (Experimente C1 bis C3) miteinander kombiniert. Diese Ergebnisse sind in der Tabelle 3.32 und die Mittelwerte mit Varianzen schließlich in Tabelle 3.33 dargestellt.

Bei allen nicht-linearen Optimierungsläufen wurden verschiedene Startwerte gewählt, die bis zu 20% gegenüber den erwarteten Werten variiert wurden. Dies hatte keine Veränderung der Ergebnisse zur Folge. Die über einzelne Datensätze bestimmten Werte sind näherungsweise konstant. Diese beiden Gründe zeigen die Stabilität des nichtlinearen Optimierungsverfahrens.

Experimente	$D_{\rm PCexp}/10^{-6}{\rm cm}^2{\rm s}^{-1}$	$r_{\rm A}^{\rm exp}/{\rm mm}$	$r_{\rm C}^{\rm exp}/{\rm mm}$
A1 und C1	3,86	0,00495	1,46
A1 und C2	$3,\!88$	0,00499	$1,\!46$
A1 und C3	$3,\!90$	0,00504	$1,\!46$
A2 und C1 $$	3,87	0,00495	$1,\!46$
A2 und C2 $$	$3,\!88$	0,00500	$1,\!46$
A2 und C3 $$	$3,\!90$	0,00504	$1,\!46$
A3 und C1	3,83	0,00499	$1,\!45$
A3 und C2 $$	$3,\!85$	0,00503	$1,\!45$
A3 und C3	$3,\!86$	0,00509	1,44

Tabelle 3.32: nicht-lineare Optimierung: $D_{\rm PC}$ und die Radien **A** und **C** mit den Werten von Experiment A1-3 und C1-3.

Tabelle 3.33: nicht-lineare Optimierung: $D_{\rm PC}$ und die Radien A und C mit Varianz.

$D_{\rm PC}^{\rm exp}$	=	3,87	±	0,02	$\cdot 10^{-6} {\rm cm}^2 {\rm s}^{-1}$
$r_{\rm A}^{\rm exp}$	=	$1,\!457$	\pm	0,009	mm
$r_{\rm C}^{\rm exp}$	=	0,00501	\pm	0,00005	mm

3.1.6 Diskussion der Messergebnisse von Ferrocen in Propylencarbonat

Die aus den Daten von **A** und **B**, ermittelten Formalpotentiale sind mit $E^0 = 54 \pm 2 \text{ mV}$ und $E^0 = 55 \pm 1 \text{ mV}$ statistisch nicht unterscheidbar. Da für alle Messungen von Fc in PC dieselbe Silberperchloratlösung verwendet wurde, war zu erwarten, dass die Formalpotentiale ähnliche Werte annehmen. Außerdem weichen beide Werte kaum vom Literaturwert $E^0 = 56 \text{ mV}$ bei Benutzung einer 0,01 M Silberperchloratlösung ab.[11]

Aufgrund der Form der Cyclovoltammogramme von Messungen mit **B** wurde bereits vermutet, dass bei dieser Elektrode nur Übergänge zu hemisphärischer wie auch planarer Diffusion auftreten. Die normierten Ströme der planaren Diffusion weisen bei Messungen mit **A** eine höhere Konstanz auf als bei den Messungen mit **B**. Die Mittelwerte für die Peakpotentialdifferenz liegen bei den Messungen mit **A** näher am idealen Wert für einen reversiblen Elektronentransfer als bei den mit **B** ermittelten Daten. In der Theorie wird für einen reversiblen oder quasireversiblen Ladungstransfer ohne Folgereaktion ein Peakstromverhältnis von 1 erwartet.[2,4] Nicht zuletzt sprechen die in den Tabellen 3.25 und 3.26 dargestellten σ -Werte für ein eindeutigeres hemisphärisches bzw. planares Verhalten bei **C** und **A**. Zudem nehmen die normierten Ströme bei Elektrode **A** konstantere Werte als bei Messungen mit **B** an.

Aus konstanten normierten Strömen lässt sich zwar auf einen diffusionskontrollierten Übergang schließen, allerdings kann die Messung dennoch fehlerhaft sein. Bei systematischen Fehlern für den Diffusionkoeffizient, die elektroaktive Fläche oder die Konzentration würden ebenfalls konstante normierte Ströme auftreten. Zum Beispiel wurde bei einigen Voruntersuchungen für die Arbeitselektrode \mathbf{A} eine doppelt so große Fläche ermittelt, wie vom Hersteller angegeben. In diesen Fällen wurden 0,1 ml Substratlösung mittels einer 1 ml Einwegspritze zugegeben. Zur Überprüfung des Fehlers der Spritze wurden 0,1 ml destilliertes Wasser aufgezogen und mit einer Feinwaage gewogen, wobei ein Fehler von ca. 100 % festgestellt wurde. Sofern man einen unbekannten Diffusionskoeffizienten nur mit Messungen unter planaren *oder* hemisphärischen Bedingungen bestimmt, würde ein Fehler in der Konzentration vielleicht nicht erkannt werden, wenn keine Vergleichswerte, wie Herstellerangaben bei den Arbeitselektroden, zur Verfügung stehen.

Beim Vergleich der Ergebnisse der expliziten Berechnung und der nicht-linearen Optimierung erhalten wir durch beide Methoden nahezu gleiche und zufriedenstellende Werte. Der Vorteil der expliziten Berechnung besteht darin, dass im Gegensatz zur nicht-linearen Optimierung die Standardabweichung des Mittelwertes bestimmt werden kann. Um bei nicht-linearer Optimierung dennoch Mittelwerte und Fehler für die berechneten Größen angeben zu können, wurde auf die oben beschriebene Hilfsmethode zurückgegriffen. Andererseits werden die Werte der Messungen mit **B** für die Berechnung mittels nicht-linearen Optimierung nicht benötigt. Es ist demnach möglich, die gesuchten Größen nur aus den Messungen mit **C** und **A**, welche jeweils ein wesentlich eindeutigeres Diffusionsverhalten aufweisen, zu bestimmen.

Angesichts der aufgeführten Gründe werden die mittels nicht-linearer Optimierung aus den Messungen mit \mathbf{C} und \mathbf{A} bestimmten und in Tabelle 3.33 dargestellten Werte als richtig angenommen und für die Auswertung der weiteren Untersuchungen verwendet.
Der Radius von **A** liegt mit $r_{\rm A} = 1,457 \pm 0,009$ mm in der Varianz des Herstellers und $r_{\rm C} = 0,00501 \pm 0,00005$ mm stimmt mit den Herstellerangaben sogar fast exakt überein. Für **A** ergibt sich mittels $A = r^2 \cdot \pi$ eine elektroaktive Fläche von $6,67 \pm 0,08$ mm², die ca. 6 % kleiner ist als die aus dem nominalen Radius $r_{\rm A}^{\rm nom} = 1,5$ mm berechnete Fläche von 7,07 mm².

Für den Diffusionskoeffizient von Fc in PC sind in der Literatur einige unter unterschiedlichen Bedingungen bestimmte Werte zu finden, die in Tabelle 3.34 angegeben sind. Sowohl die Wahl des Leitsalzes, seine Konzentration und der Wassergehalt des Elektrolyten scheinen einen Einfluss auf den Diffusionskoeffizienten zu haben. Somit ordnet sich der experimentell ermittelte Wert von $D_{\rm PC} = 3,87 \pm 0,02 \cdot 10^{-6} {\rm cm}^2 {\rm s}^{-1}$ gut in die Literarturwerte ein.

Leitsalz	c/M	Wassergehalt	$D_{\rm PC}^{\rm lit} \cdot 10^{-6} / {\rm cm}^2 {\rm s}^{-1}$	Literatur
$LiClO_4$	0,1	_	$5,6{\pm}0,1$	[33]
$LiClO_4$	0,1	-	$6,5{\pm}0,2$	[34]
NaClO_4	0,1	-	$7,0{\pm}0,2$	[34]
NaClO_4	0,5	$0{,}2~\%~{\rm H_2O}$	$_{3,0}$	[35]
NaClO_4	0,5	$5~\%~{ m H_2O}$	3,4	[35]
NaClO_4	0,1	0,2-5 % $\mathrm{H_2O}$	7-6	[36]
$\mathrm{NEt}_4\mathrm{ClO}_4$	0,1	-	$4,\!4$	[37]

Tabelle 3.34: Literaturwerte für $D_{\rm PC}$ bei unterschiedlichen Bedingungen.

In einer wissenschaftlichen Arbeit[47] wurde für den Diffusionkoeffizienten von Fc in PC unter denselben Bedingungen ein Literaturwert von $2, 8 \pm 0, 1 \cdot 10^{-6} \text{ cm}^2 \text{s}^{-1}$ ermittelt. Unter der Annahme des Literaturwertes $D_{\text{MeCN}}^{\text{lit}} = 2, 4 \cdot 10^{-5} \text{cm}^2 \text{s}^{-1}$ [31] für den Diffusion-koeffizient von Fc in MeCN wurde, dabei zuerst die elektroaktive Fläche der Elektrode und darüber der Diffusionskoeffizient von Fc in PC bestimmt. Durch den Vergleich der normierten Ströme mit denen der vorliegenden Arbeit wird vermutet, dass der Fehler in der Konzentration des Substrats bei den Messungen von Fc in MeCN liegen könnte.

Der Radius $r_{\rm B}^{\rm exp}$ wurde aufgrund des grenzwertigen Diffusionsverhaltens bei Messungen von Fc in PC an Elektrode **B** nicht bestimmt. Dazu müssten Messungen in einem Lösungsmittel mit eindeutigerem hemisphärischen oder auch planaren Diffusionsverhalten durchgeführt werden.

3.2 Cyclovoltammetrische Untersuchung von Ferrocen in Acetonitril

Die Untersuchung von Fc in MeCN zur Bestimmung des Diffusionskoeffizienten (D_{MeCN}) wurden nur noch mit den Elektroden **A** und **C** durchgeführt. Bei Messungen mit **B** ist in diesem Lösungsmittel aufgrund der niedrigeren Viskosität das Auftreten von planarer Diffusion nicht zu erwarten.

3.2.1 Exemplarische Ergebnisse einer CV-Messreihe mit Elektrode C von Ferrocen in Acetonitril

Analog zu den Untersuchungen von Fc in PC werden zuerst die Auswertung einer Messung mit C exemplarisch dargestellt. Es wurden fünf Messreihen mit Konzentrationen zwischen 0,0565 mM und 0,2716 mM und Vorschubgeschwindigkeiten von 1 bis 20 mVs⁻¹ durchgeführt. Die Tabellen 3.35 und 3.36 geben die ermittelten Grenzströme und normierten Ströme an.

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	$0,\!0565$	0,1118	0,1661	0,2193	$0,\!2716$
1	0,268	$0,\!539$	$0,\!843$	$1,\!128$	$1,\!357$
2	0,269	$0,\!542$	$0,\!847$	$1,\!128$	1,369
5	$0,\!270$	$0,\!543$	$0,\!852$	$1,\!129$	$1,\!369$
10	$0,\!271$	$0,\!545$	0,855	$1,\!129$	1,369
20	$0,\!271$	$0,\!549$	$0,\!858$	$1,\!139$	$1,\!377$

Tabelle 3.35: Cyclovoltammetrie von Fc in MeCN: Grenzströme $i_{\rm ss}$ in nA einer exemplarischen Messreihe.

Tabelle 3.36: Cyclovoltammetrie von Fc in MeCN: normierte Ströme $i_{\rm ss}^{\rm norm}$ in nA·mM⁻¹ einer exemplarischen Messreihe.

$v/{\rm mVs^{-1}}$		c(Fc)	/mM		
	$0,\!0565$	0,1118	$0,\!1661$	0,2193	$0,\!2716$
1	4,746	4,823	$5,\!077$	$5,\!142$	4,998
2	4,764	$4,\!843$	$5,\!101$	$5,\!1425$	$5,\!040$
5	4,780	$4,\!853$	$5,\!127$	$5,\!147$	$5,\!039$
10	4,799	$4,\!875$	$5,\!148$	$5,\!146$	$5,\!041$
20	4,799	$4,\!910$	$5,\!165$	$5,\!192$	$5,\!070$

Bei den Vorschubgeschwindigkeiten 1 bis 5 mVs⁻¹ sind die Grenzströme je einer Konzentration nahezu konstant. Die lineare Abhängigkeit der Grenzströme von der Konzentration wird von den normierten Strömen bestätigt und ist in Abbildung 3.6 graphisch dargestellt, indem die Mittelwerte der Grenzströme bei den Vorschubgeschwindigkeiten 1 bis 5 mVs⁻¹ gegen die Konzentrationen aufgetragen wurden. Die Ausgleichsgerade wurde mittels linearer Regression berechnet.

Durch Umformen der Gleichung (3.2) erhält man zur Berechnung der in Tabelle 3.37 aufgelisteten Diffusionskoeffizienten die Gleichung (3.9).

$$D = \frac{i_{\rm ss}}{4 \cdot r \cdot n \cdot F \cdot c^0} \tag{3.9}$$

Abbildung 3.6: Fc in MeCN: Normierten Ströme (i_{ss} gegen c) von Fc in MeCN mit C.

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	$0,\!0565$	0,1118	0,1661	0,2193	0,2716
1	2,46	$2,\!50$	$2,\!63$	$2,\!66$	2,59
2	$2,\!47$	$2,\!51$	$2,\!64$	$2,\!66$	$2,\!61$
5	$2,\!48$	$2,\!51$	$2,\!66$	$2,\!67$	$2,\!61$
Ø	$2,\!47$	$2,\!51$	2,64	$2,\!66$	2,60
	$\varnothing = 2,58 \pm 0,08$				

Tabelle 3.37: Diffusionskoeffizienten $D_{\text{MeCN}}^{\mathbf{C}}$ in $10^{-5} \text{cm}^2 \text{s}^{-1}$.

3.2.2 Exemplarische Ergebnisse einer CV-Messreihe mit Elektrode A von Ferrocen in Acetonitril

Um die Messbedingungen und die Reproduzierbarkeit des Diffusionskoeffzienten zu überprüfen, wird dieser, wie im Folgenden beschrieben, auch mit **A** bestimmt. Die dazu augewählte Messung mit **A** wurde mit Konzentrationen zwischen 0,0529 mM und 0,2055 mM bei Vorschubgeschwindigkeiten von 20 bis 1993 mVs⁻¹ durchgeführt.

Die Potentialwerte der Oxidations- und Reduktionspeaks, sowie die daraus berechneten Peakpotentialdifferenzen und Formalpotentiale sind in den Tabellen 3.38 bis 3.41 gegen die Ag/Ag⁺-Referenzelektrode aufgetragen. Die Peakpotentialdifferenzen nehmen einen überwiegend konstanten Wert an und steigen lediglich bei hohen Vorschubgeschwindigkeiten, wie auch schon bei den Messungen von Fc in PC, etwas an.

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	$0,\!0529$	0,1048	$0,\!1556$	$0,\!2055$	
20	119	120	121	120	
50	118	120	120	120	
100	118	119	119	119	
200	119	118	119	120	
500	119	121	121	121	
1000	120	120	124	124	
1993	121	124	124	126	

Tabelle 3.38: Cyclovoltammetrie von Fc in MeCN: Peakpotentiale der Oxidation $E_{\rm p}^{\rm ox}$ in mV einer exemplarischen Messreihe.

In den Tabellen 3.42 bis 3.45 sind die Oxidations- und Reduktionspeakströme, das Peakstromverhältnis und die normierten Ströme angegeben.

Die von der Konzentration praktisch unabhängigen normierten Ströme werden mit zunehmender Vorschubgeschwindigkeit etwas kleiner. Die Peakstromverhältnisse nehmen

$v/{\rm mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	$0,\!0529$	0,1048	$0,\!1556$	$0,\!2055$	
20	50	51	50	50	
50	51	51	50	52	
100	51	54	51	51	
200	51	51	51	51	
500	50	52	50	50	
1000	51	51	50	49	
1993	50	50	48	48	

Tabelle 3.39: Cyclovoltammetrie von Fc in MeCN: Peakpotentiale der Reduktion $E_{\rm p}^{\rm red}$ in mV einer exemplarischen Messreihe.

Tabelle 3.40: Cyclovoltammetrie von Fc in MeCN: Peakpotential differenzen $\Delta E_{\rm p}$ in mV einer exemplarischen Messreihe.

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	0,0529	0,1048	$0,\!1556$	0,2055	
20	69	69	71	70	
50	67	69	70	68	
100	67	65	68	68	
200	68	67	68	69	
500	69	69	71	71	
1000	69	69	74	75	
1993	71	74	76	78	

Tabelle 3.41: Cyclovoltammetrie von Fc in MeCN: Formal
potentiale E^0 in mV einer exemplarischen Messreihe.

$v/{\rm mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	$0,\!0529$	0,1048	$0,\!1556$	0,2055	
20	85	86	86	85	
50	85	86	85	86	
100	85	87	85	85	
200	85	85	85	86	
500	85	87	86	86	
1000	86	86	87	87	
1993	86	87	86	87	

$v/{\rm mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	$0,\!0529$	$0,\!1048$	$0,\!1556$	$0,\!2055$	
20	0,6941	$1,\!379$	2,047	2,715	
50	$1,\!063$	$2,\!123$	$3,\!152$	$4,\!177$	
100	$1,\!499$	$2,\!976$	$4,\!411$	$5,\!850$	
200	$2,\!090$	4,163	$6,\!179$	8,181	
500	3,262	$6,\!498$	$9,\!627$	12,75	
1000	$4,\!592$	$9,\!122$	$13,\!55$	$17,\!88$	
1993	6,505	$12,\!87$	$19,\!00$	$25,\!04$	

Tabelle 3.42: Cyclovoltammetrie von Fc in MeCN: Oxidationspeakströme $(i_p^{ox})_0$ in μA einer exemplarischen Messreihe.

Tabelle 3.43: Cyclovoltammetrie von Fc in MeCN: Reduktionspeakströme $(i_p^{red})_0$ in μA einer exemplarischen Messreihe.

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	$0,\!0529$	0,1048	$0,\!1556$	0,2055	
20	-0,4337	-0,8481	-1,238	-1,631	
50	-7,002	-1,382	-2,027	-2,670	
100	-0,9913	-1,967	-2,908	-3,835	
200	-1,413	-2,798	-4,141	-5,471	
500	-2,221	-4,409	-6,503	$-8,\!615$	
1000	$-3,\!154$	-6,249	-9,213	-12,18	
1993	-4,538	-8,891	-13,13	-17,23	

Tabelle 3.44: Cyclovoltammetrie von Fc in MeCN: Peakstromverhältnis $i_{\rm p}^{\rm ox}/i_{\rm p}^{\rm red}$ einer exemplarischen Messreihe.

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	$0,\!0529$	0,1048	$0,\!1556$	$0,\!2055$	
20	0,9638	$0,\!9549$	0,9443	0,9422	
50	0,9879	0,9814	0,9737	0,9714	
100	$0,\!9867$	0,9865	0,9861	0,9828	
200	$0,\!9988$	$0,\!9958$	$0,\!9940$	0,9925	
500	$1,\!003$	$1,\!001$	0,9983	0,9991	
1000	$1,\!007$	$1,\!007$	1,002	1,006	
1993	1,017	$1,\!013$	1,014	1,014	

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$					
	$0,\!0529$	0,1048	$0,\!1556$	0,2055		
20	$2,\!934$	2,943	2,941	$2,\!954$		
50	$2,\!842$	$2,\!866$	$2,\!864$	$2,\!875$		
100	$2,\!834$	$2,\!841$	$2,\!834$	$2,\!847$		
200	2,794	$2,\!810$	$2,\!808$	$2,\!815$		
500	2,758	2,774	2,767	2,775		
1000	2,745	2,753	2,753	2,751		
1993	2,755	2,752	2,735	2,730		

Tabelle 3.45: Cyclovoltammetrie von Fc in MeCN: normierte Ströme $i_{\rm p}^{\rm norm}$ in $\mu A\sqrt{s}/mM\sqrt{mV}$ einer exemplarischen Messreihe.

hingegen mit steigender Vorschubgeschwindigkeit etwas zu. Gerade bei der Vorschubgeschwindigkeit 20 mVs⁻¹ sind die normierten Ströme relativ groß, das Peakstromverhältnis hingegen etwas zu klein. Bei langsamen Vorschubgeschwindigkeiten kann insbesondere in nicht sehr viskosen Lösungsmitteln die Diffusion des Substrats zur Arbeitselektrode durch Konvektion gestört werden. Dies ist eine mögliche Erklärung für diese Artefakte, welche im viskoseren PC bei $v = 20 \text{ mVs}^{-1}$ nicht aufgetreten sind.[48]

Aufgrund des Verhaltens der direkten und indirekten Messgrößen wurden für die Berechnung der Mittelwerte und des Diffusionskoeffizienten nur die Werte bei Vorschubgeschwindigkeiten von 50 bis 500 mVs⁻¹ verwendet.

Die Formalpotentiale liegen mit einem durchschnittlichen Wert von $E^0 = 85 \pm 1,0$ mV etwas unter dem Literaturwert von $E^0 = 93$ mV, der Mittelwert der Peakpotentialdifferenzen hingegen ist mit $\Delta E_{\rm p} = 68 \pm 2$ mV größer als die Differenz von 58mV eines idealen reversiblen Elektronentransfer.[4, 11, 44] Das Mittel der Peakstromverhältnisse von 0,99 ± 0,01 ist nahezu 1 und die normierten Ströme nehmen einen Wert von $i_{\rm p}^{\rm norm} = 2,82 \pm 0,04 \,\mu {\rm A} \sqrt{\rm s} / {\rm mM} \sqrt{\rm mV}$ an. Zur Berechung des Diffusionskoeffizienten wird Gleichung (3.3) angewendet (Tabelle

Zur Berechung des Diffusionskoeffizienten wird Gleichung (3.3) angewendet (Tabelle 3.46).

3.2.3 Ergebnisse der gesamten CV-Messungen von Ferrocen in Acetonitril

Es wurden insgesamt vier Messungen, zwei mit **C** und zwei mit **A**, durchgeführt, für die jeweils eine gesonderte Substratlösung angesetzt wurde. Für die neun mit **C** gemessenen Konzentrationen zwischen 0,0543 mM und 0,2716 mM nehmen die grundsätzlich konstanten normierten Ströme einen Mittelwert von $i_{\text{norm}} = 4,923 \pm 0,015 \text{ nA} \cdot \text{mM}^{-1}$ an. Für den Diffusionskoeffizient wurde über alle Messungen mit **C** ein Wert von $D_{\text{MeCN}}^{\text{C}} = 2,55 \pm 0,08 \cdot 10^{-5} \text{cm}^2 \text{s}^{-1}$ ermittelt.

Mit **A** wurden acht Konzentrationen von 0,0493 mM bis 0,2055 mM gemessen. Der Mittelwert des Formalpotentials $E^0 = 86 \pm 1 \,\mathrm{mV}$ ist ungefähr um 7 mV geringer als der Literaturwert. Abweichungen der Konzentration der Silberperchloratlösung sowie

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	$0,\!0529$	$0,\!1048$	$0,\!1556$	$0,\!2055$	
50	2,51	$2,\!55$	$2,\!54$	$2,\!56$	
100	$2,\!49$	$2,\!50$	$2,\!49$	$2,\!51$	
200	$2,\!42$	$2,\!45$	$2,\!45$	$2,\!46$	
500	$2,\!36$	$2,\!39$	$2,\!37$	$2,\!39$	
Ø	2,45	2,47	2,46	2,48	
		$\varnothing = 2, 4$	$7 \pm 0,07$		

Tabelle 3.46: Diffusionskoeffizienten $D_{\text{MeCN}}^{\mathbf{A}}$ in $10^{-5} \text{cm}^2 \text{s}^{-1}$.

veränderte Messbedingungen könnten dies erklären. [11] Die Peakpotential
differenz weicht mit $\Delta E_{\rm p}=70\pm2\,{\rm mV}$ um einen ähnlichen Betrag von den 58 mV bei
 idealen Bedingungen ab, wie auch schon bei den Messungen von Fc in PC. Mit einem durchschnittlichen Wert von 0,99 \pm 0,01 ist das Peakstromverhältnis fast 1 und das Mittel der normierte Ströme über alle Messungen liegt mit $i_{\rm p}^{\rm norm}=2,81\pm0,05\,\mu{\rm A}\sqrt{\rm s}/{\rm mM}\sqrt{\rm mV}$ in der Varianz der normierten Ströme des exemplarischen Beispiels. In Abbildung 3.7 wurden die Oxidationspeakströme von allen acht Messreihen gegen $\sqrt{v}\cdot c$ aufgetragen. Die Konstanz der normierten Ströme wird durch die eingezeichnete Ausgleichsgerade bestätigt.

Für den Diffusionskoeffizient ergibt sich aus den Messungen mit **A** ein Mittelwert von $D_{\text{MeCN}}^{\mathbf{A}} = 2,45 \pm 0,09 \cdot 10^{-5} \text{cm}^2 \text{s}^{-1}$.

Aus den ingesamt 59, mit **C** und **A** bestimmten Werten für den Diffusionskoeffizienten, ergibt sich ein Mittelwert von $D_{\text{MeCN}} = 2,49 \pm 0,09 \cdot 10^{-5} \text{cm}^2 \text{s}^{-1}$.

3.2.4 Diskussion der Messergebnisse von Ferrocen in Acetonitril

Die bereits im obigen Abschnitt angegebenen Ergebnisse der Auswertung erfüllen die geforderten Kriterien für die entsprechende Diffusion. Die Konstanz der normierten Ströme ist bei allen Messungen gegeben. Die Werte der Peakpotentialdifferenz, der Formalpotentiale und des Peakstromverhältnisses sprechen für einen quasireversiblen bzw. reversiblen Ein-Elektronentransfer ohne Folgereaktionen[11].[2]

Die aus den Messungen mit **C** und **A** berechneten Diffusionskoeffizienten von Fc in MeCN $D_{\text{MeCN}}^{\mathbf{C}} = 2,55\pm0,08\cdot10^{-5}\text{cm}^2\text{s}^{-1}$ und $D_{\text{MeCN}}^{\mathbf{A}} = 2,45\pm0,09\cdot10^{-5}\text{cm}^2\text{s}^{-1}$ liegen jeweils knapp außerhalb der Standardabweichung des anderen Wertes. Der aus allen Messungen von Fc in MeCN ermittelte Diffussionskoeffizient liegt mit $D_{\text{MeCN}} = 2,49\pm0,09\cdot10^{-5}\text{cm}^2\text{s}^{-1}$ jedoch in der Standardabweichung dieser Werte.

Die Annahme, dass der Diffusionskoeffizient von Fc in MeCN aufgrund der wesentlich geringeren Viskosität von MeCN wesentlich größer ist als der von Fc in PC, wird von den Ergebnissen bestätigt.

In der Literatur ist für den Diffusionskoeffizienten von Fc in MeCN ein Wert von

Abbildung 3.7: Cyclovoltammetrie von Fc in MeCN: Normierte Ströme (alle 8 Messreihen mit ${\bf A}).$

 $2,4\cdot10^{-5}{\rm cm}^2{\rm s}^{-1}$ angegeben, der allerdings aus Daten von Messungen in einer 0,2 M ${\rm LiClO_4/MeCN-L\ddot{o}sung}$ ermittelt wurde. [31] Trotz der unterschiedlichen Wahl und Konzentration des Leitsalzes liegt dieser Wert nah an dem in der vorliegenden Arbeit experimentell ermittelten Wert.

Wesentlich größere Differenzen des experimentellen Wertes treten gegenüber einem anderen Literaturwert $D_{\text{MeCN}}^{\text{lit}} = 1,85 \cdot 10^{-5} \text{cm}^2 \text{s}^{-1}$ auf.[32] Außer einer höheren Konzetration von Fc wurde dieser Wert unter denselben Bedingungen ermittelt. Ein weiterer Literaturwert $D_{\text{MeCN}}^{\text{lit}} = 2,6 \cdot 10^{-5} \text{cm}^2 \text{s}^{-1}$ wurde durch Untersuchungen

Ein weiterer Literaturwert $D_{\text{MeCN}}^{\text{int}} = 2, 6 \cdot 10^{-5} \text{cm}^2 \text{s}^{-1}$ wurde durch Untersuchungen mit Mikroelektroden (r = 10 oder 25 μ m) bestimmt.[49] Er liegt in der Standardabweichung des mit **C** gemessenen Diffusionskoeffizienten $D_{\text{MeCN}}^{\mathbf{C}}$ und durchaus in der Nähe des Diffusionskoeffizienten, der über alle Messungen von Fc in MeCN bestimmt wurde.

Mittels NMR-Messungen wurde für Fc in 0,1 M TBAHFP / MeCN-Lösung ein Diffusionskoeffizient von $D_{\rm MeCN}^{\rm nmr} = 2,53\pm0,06\cdot10^{-5}{\rm cm}^2{\rm s}^{-1}$ bestimmt. Dieser Wert und der experimentell ermittelte Wert sind statistisch nicht unterscheidbar.

Die Tatsache, dass der für D ermittelte Wert in der Nähe der Literaturangaben liegt und insbesondere mit dem durch NMR-Messungen bestimmten Wert nahezu übereinstimmt, bestätigt das Ergebnis.

3.3 Cyclovoltammetrische Untersuchung von N,N'-Bis(ferrocenoyl)diaminoethan in Propylencarbonat

In diesem Teil der Arbeit sollen als unbekannte Größen die Zahl der Elektronen n und der Diffusionskoeffizent D des N, N'-Bis(ferrocenoyl)diaminoethan (Bis-Fc) bestimmt werden. In der Literatur ist eine Methode zur Bestimmung von n bei unbekanntem D durch die Kombination von cyclovoltammetrischen und chronoamperometrischen Messungen beschrieben.[45] Im Folgenden wird dargestellt wie n und D simultan aus cyclovoltammetrischen Messungen bei hemisphärischer und planarer Diffusion berechnet wurden.

3.3.1 Exemplarische Ergebnisse einer CV-Messreihe mit Elektrode C von N,N'-Bis(ferrocenoyl)diaminoethan in Propylencarbonat

Aufgrund der Form der Cyclovoltammogramme wurden die Werte der Vorschubgeschwindigkeiten von 1 bis 10 mVs⁻¹ für die Auswertung der exemplarischen Messung mit **C** verwendet. In Abbildung 3.8 ist ein repräsentatives Cyclovoltammogramm von Bis-Fc in PC dargestellt. Die sechs Messreihen wurden mit Konzentrationen zwischen 0,0501 mM und 0,2745 mM durchgeführt. Aus den von der Vorschubgeschwindigkeit unabhängigen Grenzströmen (Tabelle 3.47) wurden die normierten Ströme berechnet (Tabelle 3.48).

Die Konstanz der statistisch verteilten normierten Ströme bestätigt die lineare Abhängigkeit der Grenzströme von der Konzentration.

Abbildung 3.8: Cyclovoltammogramm von Fc in PC mit C bei $v=20~{\rm mVs^{-1}}$ und $c=0,0539~{\rm mM}.$

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$					
	$0,\!0501$	0,0973	$0,\!0,\!1563$	$0,\!1978$	$0,\!2372$	$0,\!2745$
1	0,0342	0,0634	$0,\!103$	$0,\!128$	$0,\!154$	$0,\!176$
2	0,0340	0,0637	$0,\!103$	$0,\!129$	$0,\!154$	$0,\!145$
5	0,0339	0,0640	$0,\!103$	$0,\!129$	$0,\!154$	$0,\!176$
10	$0,\!0341$	$0,\!0643$	$0,\!103$	$0,\!131$	$0,\!154$	$0,\!178$

Tabelle 3.47: Cyclovoltammetrie von Bis-Fc in PC: Grenzströme $i_{\rm ss}$ in nA einer exemplarischen Messreihe.

$v/{\rm mVs^{-1}}$	$c({ m Fc})/{ m mM}$					
	$0,\!0501$	$0,\!0973$	$0,\!0,\!1563$	$0,\!1978$	$0,\!2372$	0,2745
1	0,683	$0,\!652$	$0,\!657$	0,649	0,647	0,639
2	$0,\!679$	$0,\!655$	$0,\!656$	$0,\!653$	$0,\!646$	$0,\!639$
5	$0,\!677$	$0,\!657$	$0,\!657$	$0,\!654$	$0,\!648$	$0,\!643$
10	$0,\!680$	$0,\!660$	$0,\!657$	$0,\!660$	$0,\!651$	$0,\!648$
Ø	0,680	$0,\!656$	$0,\!657$	$0,\!654$	0,648	0,642
	$arnothing = 0,656\pm 0,012$					

Tabelle 3.48: Cyclovoltammetrie von Bis-Fc in PC: normierte Ströme $i_{\rm ss}^{\rm norm}$ in nA·mM⁻¹ einer exemplarischen Messreihe.

3.3.2 Exemplarische Ergebnisse einer CV-Messreihe mit Elektrode A von N,N'-Bis(ferrocenoyl)diaminoethan in Propylencarbonat

In Abbildung 3.9 ist ein repräsentatives Cyclovoltammogramm für die Messungen von Bis-Fc in PC mit **A** dargestellt. Die Messungen wurden bei Vorschubgeschwindigkeiten von 20 bis 5037,76 mVs⁻¹ mit insgesamt vier Konzentrationen zwischen 0,0500 mM und 0,1840 mM durchgeführt.

Die Peakpotentiale der Oxidation und der Reduktion sowie die berechneten Peakpotential
differenzen und Formalpotentiale sind in den Tabellen 3.49 bis 3.52 aufgeführt. Alle angegebenen Potentialwerte sind gegen den ermittelten Ferrocenstandard
 $E^0=54\pm 2$ mV korrigiert.

Tabelle 3.49: Cyclovoltammetrie von Bis-Fc in PC: Peakpotentiale der Oxidation $E_{\rm p}^{\rm ox}$ in mV einer exemplarischen Messreihe.

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$					
	$0,\!0500$	$0,\!0972$	0,1418	0,1840		
20	216	216	214	214		
50	214	215	213	214		
100	214	216	215	213		
200	215	214	214	214		
500	216	216	216	215		
1000	215	217	219	220		
1993	220	220	217	220		
5038	224	219	219	221		

In den Tabellen 3.53 bis 3.56 sind die Oxidations- und Reduktionspeakströme sowie die ermittelten Peakstromverhältnisse und normierten Ströme aufgelistet.

Abbildung 3.9: Cyclovoltammogramm von Bis-Fc in PC mit A bei $v=200~{\rm mVs^{-1}}$ und $c=0,0500~{\rm mM}.$

Tabelle 3.50: Cyclovoltammetrie von Bis-Fc in PC: Peakpotentiale der Reduktion $E_{\rm p}^{\rm red}$ in mV einer exemplarischen Messreihe.

$v/{\rm mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	$0,\!0538$	0,1064	$0,\!1581$	0,2088	
20	137	137	135	135	
50	137	139	135	136	
100	138	139	135	136	
200	137	137	134	136	
500	138	136	134	132	
1000	137	135	132	131	
1993	135	133	133	131	
5038	126	132	130	128	

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	0,0500	0,0972	0,1418	0,1840	
20	79	79	79	79	
50	77	76	78	78	
100	76	77	80	77	
200	78	77	80	78	
500	78	80	82	83	
1000	78	82	87	88	
1993	84	87	84	89	
5038	95	87	89	93	

Tabelle 3.51: Cyclovoltammetrie von Bis-Fc in PC: Peakpotential differenzen $\Delta E_{\rm p}$ in mV einer exemplarischen Messreihe.

Tabelle 3.52: Cyclovoltammetrie von Bis-Fc in PC: Formal potentiale E^0 in mV einer exemplarischen Messreihe.

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	0,0500	0,0972	0,1418	0,1840	
20	177	177	175	175	
50	176	177	174	175	
100	176	178	175	175	
200	176	176	174	175	
500	177	176	175	174	
1000	176	176	176	176	
1993	178	177	175	176	
5038	177	176	175	175	

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	0,0500	$0,\!0972$	0,1418	0,1840	
20	0,3168	$0,\!6212$	0,9084	$1,\!150$	
50	0,5048	0,9687	$1,\!407$	$1,\!867$	
100	0,7039	$1,\!371$	$2,\!007$	$2,\!621$	
200	$1,\!005$	$1,\!945$	$2,\!846$	3,723	
500	1,579	$3,\!066$	$4,\!493$	$5,\!885$	
1000	$2,\!183$	$4,\!291$	$6,\!314$	8,261	
1993	$3,\!128$	$6,\!079$	$8,\!574$	$11,\!33$	
5038	$4,\!807$	$8,\!375$	$12,\!83$	$17,\!10$	

Tabelle 3.53: Cyclovoltammetrie von Bis-Fc in PC: Oxidationspeakströme $(i_p^{ox})_0$ in μA einer exemplarischen Messreihe.

Tabelle 3.54: Cyclovoltammetrie von Bis-Fc in PC: Reduktionspeakströme $(i_{\rm p}^{\rm red})_0$ in μ A einer exemplarischen Messreihe.

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	$0,\!0500$	$0,\!0972$	0,1418	0,1840	
20	-0,2235	-0,4194	-0,6112	-0,8187	
50	-0,3497	$-0,\!6744$	-1,001	-1,276	
100	-0,4974	-0,9541	-1,405	-1,835	
200	-0,7037	-1,368	-2,006	-2,621	
500	-1,114	-2,157	-3,164	-4,138	
1000	-1,530	-3,025	-4,449	-5,814	
1993	-2,249	-4,344	-5,771	-7,592	
5038	$-3,\!438$	-6,639	-9,892	-13,02	

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	$0,\!0500$	$0,\!0972$	0,1418	0,1840	
20	1,029	1,001	1,000	1,036	
50	$1,\!015$	$1,\!020$	$1,\!034$	1,011	
100	1,020	1,019	1,023	1,023	
200	1,023	1,024	1,026	1,026	
500	1,028	1,027	1,028	1,027	
1000	1,033	1,032	1,032	1,032	
1993	1,045	1,042	1,020	1,012	
5038	$1,\!051$	$1,\!135$	$1,\!120$	1,094	

Tabelle 3.55: Cyclovoltammetrie von Bis-Fc in PC: Peakstromverhältnis $i_{\rm p}^{\rm ox}/i_{\rm p}^{\rm red}$ einer exemplarischen Messreihe.

Tabelle 3.56: Cyclovoltammetrie von Bis-Fc in PC: normierte Ströme $i_{\rm p}^{\rm norm}$ in $\mu {\rm A}\sqrt{\rm s}/{\rm mM}\sqrt{\rm mV}$ einer exemplarischen Messreihe.

$v/{ m mVs^{-1}}$	$c({ m Fc})/{ m mM}$				
	0,0500	0,0972	0,1418	0,1840	
20	$1,\!416$	$1,\!429$	1,432	1,397	
50	$1,\!427$	$1,\!409$	$1,\!403$	$1,\!435$	
100	$1,\!407$	$1,\!410$	$1,\!415$	$1,\!424$	
200	$1,\!420$	$1,\!415$	$1,\!419$	$1,\!430$	
500	$1,\!411$	$1,\!410$	$1,\!417$	$1,\!430$	
1000	$1,\!380$	$1,\!400$	$1,\!408$	$1,\!419$	
1993	$1,\!401$	$1,\!401$	$1,\!354$	$1,\!379$	
5038	$1,\!354$	$1,\!214$	$1,\!275$	$1,\!309$	

Die Peakpotentiale und somit auch die Peakpotentialdifferenzen sind bis zu einer Vorschubgeschwindigkeit von $v = 500 \,\mathrm{mVs^{-1}}$ annähernd konstant und von der Konzentration unabhängig. Bei den höheren Vorschubgeschwindigkeiten wird $\Delta E_{\rm p}$ größer, da die Reduktionspeakpotentiale kleiner, die Oxidationspeakpotentiale jedoch größer werden.

Die Oxidationspeakströme werden mit zunehmender Konzentration und Vorschubgeschwindigkeit größer, die Reduktionspeakströme hingegen kleiner. Bis zu einer Vorschubgeschwindigkeit von $v = 500 \text{ mVs}^{-1}$ sind die normierten Ströme ebenfalls konstant, nehmen aber ab $v = 1000 \text{ mVs}^{-1}$ unabhängig von der Konzentration mit steigender Vorschubgeschwindigkeit kontinuierlich ab. Alle Peakstromverhältnisse liegen etwas über 1, nehmen aber bis zu $v = 500 \text{ mVs}^{-1}$ einen statistisch verteilten, konstanten Wert nahe 1 an. Die Mittelwerte und die simultan bestimmten Werte für D und n werden nur mit den Daten der Vorschubgeschwindigkeiten 20 bis 500 mVs⁻¹ berechnet.

Somit ergibt sich für die Peakpotentialdifferenzen ein durchschnittlicher Wert von $\Delta E_{\rm p} = 79 \pm 2 \text{ mV}$, und die Formalpotentiale nehmen einen Mittelwert von $E^0 = 176 \pm 1 \text{ mV}$ an. Die Peakstromverhältnisse liegen mit $1,02 \pm 0,01$ nahe 1 und die normierten Ströme haben einen Mittelwert von $i_{\rm norm} = 1,42 \pm 0,01 \,\mu A \sqrt{s}/\text{mM} \sqrt{\text{mV}}$.

3.3.3 Ergebnisse und Diskussionen der gesamten CV-Messungen von N,N'-Bis(ferrocenoyl)diaminoethan in Propylencarbonat

Alle Messungen von Bis-Fc in PC wurden analog zu den exemplarischen Beispielen ausgewertet.

Es wurden insgesamt 14 Messreihen mit der Ultramikroelektrode **C** bei Konzentrationen zwischen 0,0498 mM und 0,2745 mM durchgeführt. Für die normierten Ströme ergibt sich ein Mittelwert von $i_{ss}^{norm} = 0,688 \pm 0,036 \text{ nA} \cdot \text{mM}^{-1}$

Mit Elektrode **A** wurde das Bis-Fc in zwei unabhängigen Experimenten mit acht verschiedenen Konzentrationen zwischen 0,0500 mM und 0,1892 mM gemessen. Die Potentialdifferenz über alle Messungen der planaren Diffusion ist mit $\Delta E_{\rm p} = 79 \pm 2$ mV etwas größer als bei den cyclovoltammetrischen Untersuchungen von Fc in PC. Die Formalpotentiale nehmen einen durchschnittlichen Wert von $E^0 = 176 \pm 1$ mV an. Das Mittel der Peakstromverhältnisse ist mit 1,03 \pm 0,01 nahe 1 und die Konstanz der normierten Ströme mit einen Mittelwert von $i_{\rm norm} = 1,39 \pm 0,04 \,\mu A \sqrt{s/mM} \sqrt{mV}$ wird durch eine Standardabweichung von weniger als 3% bestätigt.

Zuerst soll geklärt werden, ob bei der Reaktion ein oder zwei Elektronen übertragen werden.

Für den Fall n = 2 läuft die Oxidation des Bis-Fc nach dem EE-Mechanismus ab. Dabei werden die beiden Elektronen in getrennten Reaktionsschritten übertragen.

$$BisFc \rightleftharpoons BisFc^{+} + e^{-} \qquad E_{1}^{0}$$
$$BisFc^{+} \rightleftharpoons BisFc^{2+} + e^{-} \qquad E_{2}^{0}$$

Es wird zwischen drei verschiedenen Fällen unterschieden, die allerdings fließend ineinander übergehen. Die Einteilung erfolgt über die Differenz zwischen E_2^0 und E_1^0 , also über die Größe von $\Delta E^0 = E_2^0 - E_1^0.[18,50]$

- 1. Wenn $E_2^0 > E_1^0$, ab ca. $\Delta E^0 > 110$ mV, sind in dem Cyclovoltammogramm zwei konventionelle Einelektronentransferstufen zu sehen, die jeweils eine Peakpotentialdifferenz von ungefähr 58 mV haben. Dabei wird für die Übertragung des ersten Elektrons mehr Energie benötigt als für den zweiten Elektronentransfer. Umso mehr sich die Peaks dabei überlagern, desto kleiner ist ΔE^0 . Dies erklärt sich durch einen elektrostatischen Einfluss der ersten oxidierten Fc-Einheit auf die zweite.
- 2. Für den Fall, dass E_1^0 und E_2^0 ungefähr gleich groß sind ($\Delta E^0 = 35, 6 \text{ mV}$; statistischer Entropiefaktor[50, 51]), erscheint im Cyclovoltammogramm jeweils nur noch ein Oxidations- und Reduktionspeak. Dabei entspricht die Strom-Spannungskurve der additiven Überlagerung zweier hypothetischer Voltammogramme von Einelektronentransfers. Die beiden redoxaktiven Zentren beeinflussen sich in diesem Fall nicht.
- 3. Potentialinversion tritt auf, wenn $E_1^0 > E_2^0$ bzw. $\Delta E^0 \approx -100$ mV ist. In diesem Fall wird für den zweiten Elektronentransfer weniger Energie benötigt als für den ersten. Das Cyclovoltammgramm hat auch in diesem Fall nur *eine* Welle und ist von einem einzelnen reversiblen Zweielektronentransfer nicht zu unterscheiden. Die Peakpotentialdifferenz beträgt in diesem Fall $\Delta E_p \approx 58/2 \,\mathrm{mV} = 29 \,\mathrm{mV}$ und der messbare Strom ist $n^{\frac{3}{2}} \approx 2$, 8-mal so groß wie bei einem entsprechenden Einelektronentransfer. Dieser Fsll tritt häufig auf, wenn Strukturänderungen mit den Elektronenübertragungen verknüpft sind.[52]

Die Form der Kurve ist somit ein erster Anhaltspunkt für die Interpretation der Cyclovoltammogramme. In Abbildung 3.10 sind die Cyclovoltammogramme einer Messreihe bei den Vorschubgeschwindigkeiten v = 20 bis 500 mVs⁻¹ zu sehen.

Da jeweils nur ein Peakpaar in den Kurven zu erkennen ist, kann davon ausgegangen werden, dass sich die zwei Einelektronentransferstufen überlagern und Fall 1 somit ausgeschlossen werden kann. Die Peakpotentialdifferenz ist mit $\Delta E_{\rm p} = 78 \pm 2$ mV größer als 29 mV, wodurch auch die Potentialinversion (Fall 3) ausgeschlossen werden kann. Für Fall 2 ist es nicht möglich, allein anhand der Cyclovoltammogramme zu entscheiden, ob ein oder zwei Elektronen übertragen werden. Um weitere Schlussfolgerungen ziehen zu können, werden zunächst D und n simultan bestimmt. Die Randles-Ševčik-Gleichung gilt nur für simultan übertragene Elektronen und könnte somit zum Beispiel bei der Potentialinversion herangezogen werden. In Fall 2 muss allerdings eine veränderte Form der Gleichung für die Berechnung verwendet werde. Da eine additive Überlagerung von zwei einzelnen Cyclovoltammogrammen vorliegt, wird in die Randles-Ševčik-Gleichung n = 1 eingesetzt und anschließend der ganze Term mit 2 multipliziert. Eine ähnliche Vorgehensweise beschreiben Amatore et al..[18]

Abbildung 3.10: Cyclovoltammotrie von Bis-Fc in PC mit A beiv=20bis 500 mVs^{-1} und c=0,0500 mM.

Herleitung der simultanen Berechnung von D und n

Für die Auswertung der planaren Diffusion wird eine abgeänderte Form der Randles-Ševčik-Gleichung (3.10) verwendet:

$$i_{\rm p}^{\rm ox} = n \cdot \left(1 \cdot \mathbf{F} \cdot A \cdot c^0 \sqrt{\frac{D \cdot 1 \cdot \mathbf{F} \cdot v}{\mathbf{R} \cdot T}} \cdot 0,4463 \right)$$
(3.10)

Für die Steady-State-Kurven kann Gleichung (3.2) mit hemisphärischer Diffusion herangezogen werden.

Zwischen D und n bestehen in den Gleichungen (3.2) und (3.10) unterschiedliche Zusammenhänge. Dadurch können D und n simultan bestimmt werden.

Gleichung (3.10) wird nach D aufgelöst, wobei für die Fläche $A = \pi \cdot (r_A)^2$ eingesetzt wird:

$$D = \frac{(i_{\rm p}^{\rm ox})^2 \cdot \mathbf{R} \cdot T}{n^2 \cdot \mathbf{F}^3 \cdot \pi^2 \cdot (r_{\rm A})^4 \cdot (c^0)^2 \cdot v \cdot 0,4463^2}$$
(3.11)

Gleichung (3.2) wird nach n aufgelöst:

$$n = \frac{i_{\rm ss}}{4 \cdot r_{\rm C} \cdot {\rm F} \cdot D \cdot c^0} \tag{3.12}$$

Daraufhin wird Gleichung (3.12) in Gleichung (3.11) eingesetzt und nach D aufgelöst:

$$D = \frac{(i_{\rm p}^{\rm ox})^2 \cdot \mathbf{R} \cdot T}{\left(\frac{i_{\rm ss}}{4r_{\rm C} \mathrm{FD}c^0}\right)^2 \cdot \mathbf{R}^3 \cdot \pi^2 \cdot (r_{\rm A})^4 \cdot (c^0)^2 \cdot v \cdot 0,4463^2}$$

$$D = \frac{(i_{\rm p}^{\rm ox})^2 \cdot \mathbf{R} \cdot T \cdot 4^2 \cdot (r_{\rm C})^2 \cdot \mathbf{F}^2 \cdot D^2 \cdot (c_{\rm C}^0)^2}{(r_{\rm A})^4 \cdot \mathbf{F}^3 \cdot \pi^2 \cdot (i_{\rm ss})^2 \cdot (c_{\rm A}^0)^2 \cdot v \cdot 0,4463^2}$$

$$\frac{1}{D} = \frac{(i_{\rm p}^{\rm ox})^2 \cdot \mathbf{R} \cdot T \cdot 4^2 \cdot (r_{\rm C})^2 \cdot (c_{\rm C}^0)^2}{(r_{\rm A})^4 \cdot \mathbf{F} \cdot \pi^2 \cdot (i_{\rm ss})^2 \cdot (c_{\rm A}^0)^2 \cdot v \cdot 0,4463^2}$$

$$D = \frac{(r_{\rm A})^4 \cdot \mathbf{F} \cdot \pi^2 \cdot (i_{\rm ss})^2 \cdot (c_{\rm A}^0)^2 \cdot v \cdot 0,4463^2}{(i_{\rm cx})^2 \cdot \mathbf{R} \cdot \mathbf{T} \cdot 4^2 \cdot (v_{\rm C})^2 \cdot (v_{\rm C}^0)^2}$$

$$\left(i_{\mathrm{p}}^{\mathrm{ox}}
ight)^{-}\cdot\mathrm{R}\cdot T\cdot 4^{2}\cdot\left(r_{\mathrm{C}}
ight)^{2}\cdot\left(c_{\mathrm{C}}^{\mathrm{o}}
ight)^{-}$$

Die Konstanten F = 96485 As · mol⁻¹, [41] T = 298, 15 K, $\pi = 3, 14159$ und R = 8, 314 J · mol⁻¹ · K⁻¹[42] werden eingesetzt und man erhält:

$$D = \frac{(r_{\rm A})^4 \cdot (i_{\rm ss})^2 \cdot (c_{\rm A}^0)^2 \cdot v}{(i_{\rm p}^{\rm ox})^2 \cdot (r_{\rm C})^2 \cdot (c_{\rm C}^0)^2} \cdot 4782 \cdot 10^{-6} \frac{\rm cm^2}{\rm s}$$
(3.13)

Um D zu berechnen setzt man die Zahlenwerte in den entsprechenden Einheiten (siehe Tabelle 3.2) in Gleichung (3.13) ein. Letztendlich wird n durch Einsetzen von D in $(10^{-6} \text{ cm}^2 \text{s}^{-1})$ in Gleichung (3.12) berechnet.

Auf diese Weise wurden die Messwerte aller Vorschubgeschwindigkeiten der Experimente bei hemisphärischer Diffusion jeweils mit allen durch planare Diffusion ermittelten Daten kombiniert, um D und n simultan zu bestimmen. Von den insgesamt je 2016 Werten für D und n wurden die Mittelwerte berechnet (Tabelle 3.57).

Tabelle 3.57: simultan berechnete Werte für $D_{\rm PC}^{\rm BisFc}$ und n.

$D_{\rm PCexp}^{\rm BisFc}$	=	2,1	±	$0,\!3$	$\cdot 10^{-6} \mathrm{cm}^2 \mathrm{s}^{-1}$
$n_{\rm exp}$	=	1,7	\pm	0,1	

Für die Anzahl der übergehenden Elektronen wurde ein Wert von n = 1,7 berechnet. Da n nur ganze Zahlen annehmen kann, wird davon ausgegangen, dass 2 Elektronen übertragen werden. Die Differenz der Peakpotentiale ist mit $\Delta E_{\rm p} = 78 \pm 2$ mV etwas größer als bei den Messungen von Fc in PC. Dies deutet darauf hin, dass eine geringe Wechselwirkung zwischen den Fc-Einheiten besteht, die die Peaks auseinander driften lässt, allerdings noch keine Aufspaltung zur Folge hat. In diesem Fall gilt die veränderte Randles-Ševčik-Gleichung in dieser Form nicht streng. Die Abbildung 3.11 stellt durch den direkten Vergleich von Fc und Bis-Fc die größere Peakpotentialdifferenz und die daraus resultierende Aufweitung der Peaks dar.

Unter der Annahme n = 2, kann nun der Diffusionskoeffizient aus den Werten der Messungen von Bis-Fc in PC mit **A** berechnet werden. Dafür wird die Gleichung (3.2) nach D aufgelöst und man erhält Gleichung (3.14).

$$D = \frac{i_{\rm ss}}{4 \cdot n \cdot \mathbf{F} \cdot r \cdot c^0} \tag{3.14}$$

Aus den insgesamt 14 Messreihen mit **A** wurden 56 Werte für den Diffusionskoeffizient von Bis-Fc in PC berechnet. Es ergibt sich ein Mittelwert von $D_{\rm PC}^{\rm BisFc} = 1,8 \pm 0,1 \cdot 10^{-6} \rm \ cm^2 s^{-1}$.

Manchmal verhalten sich die Diffusionskoeffizienten von zwei Substanzen in demselben Lösungsmittel nahezu umgekehrt proportional zu deren molaren Massen.[53] Die molaren Massen für Fc und Bis-Fc betragen $M_{\rm Fc} = 186, 04 \,\mathrm{g \cdot mol^{-1}}$ und $M_{\rm BisFc} = 484, 17 \,\mathrm{g \cdot mol^{-1}}$. Für den Diffusionskoeffizient von Fc in PC wurde ein Wert von $D_{\rm PC} = 3,87 \pm 0,02 \cdot 10^{-6} \mathrm{cm}^2 \mathrm{s}^{-1}$ ermittelt. Mit dem hypothetischen Zusammenhang wird der Diffusionkoeffizient von Bis-Fc in PC auf $1, 5 \cdot 10^{-6} \mathrm{cm}^2 \mathrm{s}^{-1}$ geschätzt und liegt somit in der Nähe des experimentell ermittelten Wertes $1, 8 \pm 0, 1 \cdot 10^{-6} \mathrm{cm}^2 \mathrm{s}^{-1}$.

Abbildung 3.11: Cyclovoltammogramm von Fc und Bis-Fc in PC mit **A** bei v = 200 mVs⁻¹ und $c_{\rm Fc} = 0,209$ mM bzw. $c_{\rm BisFc} = 0,184$ mM; die Potentialachse für die beiden Strom-Spannungskurven ist unterschiedlich und auf das E^0 der jeweiligen Verbindung bezogen.

Die hier dargestellte Vorgehensweise stellt somit eine geeignete Methode zur simultanen Bestimmung der unbekannten elektrochemischen Parameter D und n dar. Leider war es im Rahmen dieser Arbeit nicht mehr möglich, dies durch die Untersuchung weiterer Verbindungen mit unterschiedlich vielen redoxaktiven Zentren zu überprüfen.

4 Zusammenfassung

In der vorliegenden Arbeit wurden die elektrochemischen Parameter von Ferrocen und N, N'-Bis(ferrocenoyl)diaminoethan cyclovoltammetrisch untersucht. Alle Messungen wurden mit Ultramikroelektroden und Makroelektroden durchgeführt. Für die Untersuchungen von Ferrocen in Propylencarbonat wurde zusätzlich eine Mikroelektrode eingesetzt.

Für den Diffusionskoeffizienten von Ferrocen in Propylencarbonat wurde mittels nichtlinearer Optimierung ein Wert von $D_{\rm PC} = 3,87 \pm 0,02 \cdot 10^{-6} {\rm cm}^2 {\rm s}^{-1}$ berechnet. In die Auswertung mit der Gleichung der hemisphärischen Diffusion gingen dabei die Werte bei Vorschubgeschwindigkeiten von 1 bis 10 mVs⁻¹ ein. An der Makroelektrode lief der Elektronentransfer bei Vorschubgeschwindigkeiten von 20 bis 1000 mVs⁻¹ diffusionskontrolliert ab. Simultan wurden die Radien der Arbeitselektroden **A** und **C** mit $r_{\rm Aexp} = 1,457 \pm 0,009$ mm und $r_{\rm Cexp} = 0,00501 \pm 0,00005$ mm bestimmt.

Die Untersuchungen von Ferrocen in Acetonitril ergaben einen Diffusionskoeffizienten von $D_{\text{MeCN}} = 2,49 \pm 0,09 \cdot 10^{-5} \text{cm}^2 \text{s}^{-1}$. In die Berechnung gingen zum einen die Werte der hemisphärischen Diffusion bei Vorschubgeschwindigkeiten von 1 bis 10 mVs⁻¹ ein. Andererseits wurden die Werte der planaren Diffusion bei Vorschubgeschwindigkeiten von 50 bis 1000 mVs⁻¹ berücksichtigt.

Die Übereinstimmung des Resultats mit Ergebnissen in der Literatur und aus NMR-Messungen untermauern die Ergebnisse.

Die cyclovoltammetrischen Messungen von N, N'-Bis(ferrocenoyl)diaminoethan wurden in Propylencarbonat durchgeführt. Aus den konventionellen Cyclovoltammogrammen unter planaren Diffusionsbedingungen und den Steady-State-Kurven bei hemisphärischer Diffusion wurde durch nicht-lineare Optimierung die Anzahl der übergehenden Elektronen mit $n = 1, 7 \pm 0, 1$ berechnet. Dies wurde als n = 2 interpretiert und somit aus den Messungen der Ultramikroelektrode ein Diffusionskoeffizient von Bis-Fc in PC mit $D_{\rm PC}^{\rm BisFc} = 2, 1 \pm 0, 3 \cdot 10^{-5} {\rm cm}^2 {\rm s}^{-1}$ bestimmt.

5 Experimenteller Teil

5.1 Chemikalien

Propylencarbonat (99 %), wasserfreies Silberperchlorat, Ammoniumhexafluorophosphat (99,5 %), Tetra-n-butylammoniumbromid (98 %) wurden von Alfa Aesar, Acetonitril (HPLC) von J.T. Baker, Phosphorpentaoxid von Riedel de Haën, Calciumhydrid von Merck, Aluminiumoxid von Bühler und Ferrocen (98 %) von Ega-Chemie bezogen. Die Reinheit des Argons liegt bei 99,999%. Um Schutzgasatmosphäre zu schaffen, wurde die sogenannte Schlenktechnik angewendet.

5.1.1 Tetra-n-butylammoniumhexafluorophosphat (TBAHFP)[54]

In 250 ml Aceton werden 100 g $(n-Bu)_4$ NBr gelöst und mit einer Lösung von 50 g NH_4PF_6 in 350 ml Aceton versetzt. Durch einen Glastrichter mit Faltenfilter wird das ausgefallene NH_4Br abfiltriert und daraufhin das TBAHFP mit ca. 1,5 l H_2O ausgefällt. Mit Hilfe einer Porzellan-Nutsche wird das TBAHFP von der flüssigen Phase getrennt und anschließend unter starkem Rühren in einer Lösung von 5 g NH_4PF_6 in 200 ml Aceton gelöst. Es ist nötig nochmal ca. 150 ml Aceton zuzugeben, damit sich das TBAHFP vollständig auflöst. Das TBAHFP wir erneut in ca. 1 l H_2O ausgefällt und abgesaugt.

Es wird viermal gewaschen, indem das TBAHFP eine Stunde in einer Lösung von 100 ml $\rm H_2O$ in 300 ml Ethanol stark gerührt und nach ca. zehnstündigem Lagern im Kühlraum bei 6°C abgesaugt wird. Zuletzt wird das so erhaltene TBAHFP 24 Stunden bei 100°C unter Vakuum getrocknet.

5.1.2 Propylencarbonat (PC)[55]

Unter Schutzgas werden 1,5 l Propylencarbonat (PC) dreimal über eine 0,5 m lange Vigreuxkolonne unter Vakuum destilliert.

Es wird jeweils ein Vorlauf von ungefähr 100 ml aufgefangen sowie ein Rückstand von 50-100 ml in der Destillationsblase gelassen. Während der Destillation wird der Druck durch ein Manometer konstant auf 120 mbar gehalten. Unter den beschriebenen Bedingungen benötigt man für einen Durchgang sechs bis sieben Stunden. Nach dem letzten Durchgang wird zur Hauptfraktion aktiviertes Molsieb als Trockenmittel gegeben und diese unter Argon und Lichtausschluss, wie schon nach den ersten beiden Destillationen, aufbewahrt.

Das Molsieb (3 Å) wird aktiviert, indem es zuerst zwei Tage im Trockenschrank bei 80°C vorgetrocknet und anschließend über Nacht bei 400°C und unter Vakuum im Ofen getrocknet wird.

5.1.3 Acetonitril (MeCN)[54, 55]

Der Ansatz von 1,5 l Acetonitril (MeCN) wurde zuerst zwei Tage über Calciumchlorid vorgetrocknet. Nach der Zugabe von 15-20 g Phosphorpentaoxid wurde vier Stunden lang am Rückfluss gekocht und anschließend abdestilliert. Am nächsten Tag wurde das destillierte MeCN mit ungefähr 5 g Calciumhydrid versetzt, ebenfalls vier Stunden gekocht und daraufhin abdestilliert. Im letzten Durchgang wurden 7-10 g Phosphorpentaoxid zugegeben und nach vierstündigem Kochen erneut abdestilliert. Daraufhin wurde zum gereinigten MeCN neutrales Aluminumoxid gegeben, das über Nacht bei 230°C im Ofen getrocknet wurde. Bei allen drei Schritten wurde unter Schutzgas gearbeitet.

5.1.4 N,N'-Bis(ferrocenoyl)diaminoethan (Bis-Fc)

Das untersuchte N, N'-Bis(ferrocenoyl)diaminoethan (Bis-Fc) fällt bei der Synthese von *N*-Ferrocenoyldiaminoethan als Nebenprodukt an.[56] Ebenso kann es durch Zugabe von Ferrocencarbonsäurechlorid zu N-Ferrocenoyldiaminoethan gewonnen werden. Das verwendete Bis-Fc lag in ¹H-NMR-Reinheit vor.

5.2 Geräte

5.2.1 Potentiostat

Zur Durchführung der cyclovoltammetrischen Messung wurde ein Autolab PGSTAT100 Potentiostat des Herstellers Metrohm (Filderstadt, Deutschland) mit der Steuerungssoftware GPES in der Version 4.9.007 verwendet.

5.2.2 Messzelle

Es wurde eine gläserne Messzelle für ein Elektrolytvolumen von 15 ml verwendet. Die Zelle ist mit fünf Schliffen (NS 14 und NS 12) zum Einsetzen der verschiedenen Elektroden sowie zum Befüllen ausgestattet. Desweiteren verfügt sie über einen Hahn zum Einleiten von Schutzgas.

5.2.3 Elektroden

Für die Messungen wurden drei verschiedene Arten von Elektroden verwendet.

Arbeitselektroden

Es kamen drei Platinelektroden mit verschiedenen Durchmessern zum Einsatz.

Die Makroelektrode besteht aus einer Rotierenden-Scheiben-Elektrode der Firma Metrohm (6.1204.310 Pt; Seriennummer: 11124511) mit Polyetheretherketon(PEEK)-Fassung und einem nominalen Durchmesser von 3 mm \pm 0,1 mm, die auf ein mit Teflon ummanteltes Gewinde geschraubt wird.

Die Platindrähte der Mikroelektrode mit einem nominalen Durchmesser von 0,1 mm \pm 0,01 mm und der Ultramikroelektrode mit einem nominalen Durchmesser von 10 μm

 \pm 1 $\mu{\rm m}$ sind in Glas eingeschmolzenen und ebenfalls an einem Teflonschaft befestigt.[10] Beide wurden von der Firma Bioanalytical Systems bezogen und werden unter den Nummern MF-2150 bzw. MF-2005 geführt.

Gegenelektrode

Als Gegenelektrode wurde ein schraubenförmig gewickelter 1 mm dicker Platindraht verwendet, der an einem Wolframdraht befestigt wurde. Zum Fixieren in der Zelle ist der Wolframdraht in einen Schliff eingeschmolzen.

Referenzelektrode[57]

Als Referenzsystem dient eine Ag/Ag⁺–Elektrode, die über zwei Zwischenfritten mit einer Haber Luggin-Kapillare (HL-Kapillare) verbunden ist. Diese wird über einen Kondensator mit einem Platindraht verbunden, der an einen Kupferdraht gelötet und in Glas eingeschmolzen ist.

5.3 Cyclovoltammetrische Messungen

5.3.1 Herstellung des Elektrolyten

Um den Elektrolyten mit einer Konzentration von 0,1 M herzustellen werden 1,94 g in 50 ml oder 3,87 g in 100 ml Lösungsmittel gegeben. Das TBAFHP wird in einen Kolben aus braunem Glas eingewogen, anschließend wird Schutzgasatmosphäre geschaffen. Im Argongegenstrom wird das ebenfalls unter Schutzgas gelagerte Lösungsmittel im entsprechenden Volumen mit einer 20 ml Einwegspritze zugegeben. Zusätzlich wird der Elektrolyt entgast, indem mit einer Pasteurpipette 15 Minuten lang Argon durch die Lösung gespült wird.

5.3.2 Herstellung der Silberperchloratlösung

Zur Herstellung der 0,01 M AgClO₄ / 0,1 M TBAHFP / MeCN-Lösung wird das Siberperchlorat mit einer Feinwaage in einen 50 ml Messzylinder eingewogen und anschließend mit der vorab hergestellten 0,1 M TBAHFP / MeCN-Lösung (siehe Herstellung des Elektrolyten) aufgefüllt. Die Lösung wird wegen ihrer Lichtempfindlichkeit in einen braunem Schraubdeckelglas aufbewahrt.

5.3.3 Herstellung der Substratlösung

In einen mit Schutzgas gefüllten Kolben werden mit Hilfe einer 10 ml Einwegspritze unter Argongegenstrom 10 ml Elektrolyt gegeben. In einem Glasspatel werden 10 mg Fc abgewogen und im Elektrolyt gelöst. Ferrocen löst sich in den verschiedenen Elektrolyten gut, die Bis-Fc-Lösungen hingegen musste noch eine halbe Stunde lang mit einem Ultraschallbad behandelt werden.

5.3.4 Vorbereiten und Anschließen der Messzelle

In die Messzelle werden die Arbeitselektrode, die Gegenelektrode, die HL-Kapillare und der Platindraht der Referenzelektrode so eingesetzt, dass sich die Kapillaren mittig und mit einem Abstand von 1-3 mm unter Arbeitselektrode befinden. Die HL-Kapillare wird wieder entnommen, und nachdem in der Zelle Schutzgasatmosphäre geschaffen wurde, wird mit einer 10 ml Einwegspritze 10 ml Elektrolyt in die Zelle gefüllt.

Der zweite Teil der Referenzelektrode muss vor dem Einsetzen noch befüllt werden. Hierzu wird die kleine Zwischenfritte zuerst mit der 0,01 M AgClO₄ / 0,1 M TBAHFP / MeCN-Lösung befüllt und der Silberdraht eingesetzt. Die HL-Kapillare und die größere der beiden Zwischenfritten werden mit dem Elektrolyt befüllt und die einzelnen Teile der Reihe nach zusammengebaut.[11,57] Dabei muss darauf geachtet werden, dass sich keine Luftblasen bilden, da sonst zu hohe Widerstände auftreten würden oder keine Leitfähigkeit besteht. Beide Teile der Doppelreferenzelektrode werden miteinander verdrahtet, bevor die Zelle in einem Faradayschen Käfig an einem Stativ befestigt, auf einen Magnetrührer gestellt und an den Potentiostaten angeschlossen wird.

5.3.5 Durchführung der Messung

Für alle Vorschubgeschwindigkeiten, bei denen die redoxaktive Spezies gemessen werden soll, müssen zunächst Grundstromkurven vom reinen Elektrolyten aufgenommen werden. Der Potentialbereich sowie die Abtastrate werden während der gesamten Messung nicht geändert. Das Ruhepotential und der Wert der *i*R-Kompensation müssen hingegen nach jeder Zugabe von Substrat sowie vor der Grundstrommessung neu ermittelt werden.

Die Zugabe des Substrats erfolgte mittels einer Eppendorfpipette oder eines Handdispensers. Für die Eppendorfpipette (4910 000.042) wird vom Hersteller ein Fehler von $\pm 0,8$ %, sowie eine Varianz von weniger als 0,15 % angegeben. Von der Firma Brand wird für den manuellen Handdispenser (705100) ein Fehler von $\pm 0,7$ % mit dem Variationkoeffizienten $\leq 0,8$ % bis $\leq 0,2$ % aufgeführt. In beiden Fällen liegt der Fehler deutlich unter der üblichen Messgenauigkeit für Ströme.[18]

Durch Rühren wurde die Lösung in der Zelle nach jeder Messung und insbesondere nach Zugabe von Substrat gut durchmischt.

5.3.6 Reinigung der Geräte

Die Messzelle, die Kapillaren und die Zwischenfritten werden gründlich mit Aceton gespült und eine halbe Stunde lang im Trockenschrank bei 80°C getrocknet. Der Silberdraht und die Arbeitselektrode werden nach dem Spülen mit Aceton nur an Luft getrocknet.

Für die Arbeitselektroden wurden die folgenden Pflegeanweisungen der Hersteller beachtet: Die 3 mm Scheibenelektrode wird in acht-förmigen Bewegungen mit leichtem Druck etwa eine Minute lang auf einer mit destilliertem H_2O angefeuchteten Polierunterlage mit etwas Al_2O_3 poliert. Anschließend wird sie mit destilliertem H_2O und Aceton gründlich abgespült.

Die 0,1 mm und die 10 μ m Arbeitselektrode werden nach dem Gebrauch ca. eine Minute lang in 0,5 M NaOH-Lösung gestellt und anschließend mit viel destilliertem H₂O abgespült. Vor dem Gebrauch werden sie mit Ethanol und destilliertem H₂O abgewaschen.

5.3.7 Auswertung der Messung

Von allen Cyclovoltammogrammen wird der entsprechende Grundstrom substrahiert und die Kurve gegebenenfalls mit der Fast-Fourier-Transformation für "lineare Graphen" geglättet um Störfrequenzen zu eliminieren.

Den konventionelle Cyclovoltammogrammen bei planarer Diffusion werden folgende Werte entnommen (Abbildung: 5.1):[11]

- Peak
potential der Oxidation $E_{\rm p}^{\rm ox}$ und Oxidation
speakstrom $\left(i_{\rm p}^{\rm ox}\right)_0$
- Peak
potential der Reduktion $E_{\rm p}^{\rm red}$ und Reduktion
speakstrom $\left(i_{\rm p}^{\rm red}\right)_0$
- Stromwert am Umkehrpotential i_{sp}^0

Aus diesen Werten werden mit den gegebenen Formeln folgenden Größen berechnet: Peakpotentialdifferenz:

$$\Delta E_{\rm p} = E_{\rm p}^{\rm ox} - E_{\rm p}^{\rm red} \tag{5.1}$$

Formalpotential:

$$E^{0} = \frac{E_{\rm p}^{\rm ox} + E_{\rm p}^{\rm red}}{2}$$
(5.2)

Peakstromverhältnis:

$$\frac{i_{\rm p}^{\rm ox}}{i_{\rm p}^{\rm red}} = \frac{\left| \left(i_{\rm p}^{\rm red} \right)_0 \right|}{\left| \left(i_{\rm p}^{\rm ox} \right)_0 \right|} + \frac{0,485 \cdot \left| i_{\rm sp}^0 \right|}{\left| \left(i_{\rm p}^{\rm ox} \right) \right|} + 0,086$$
(5.3)

normierter Strom:

$$\dot{v}_{\rm p}^{\rm norm} = \frac{\left(i_{\rm p}^{\rm ox}\right)_0}{c^0 \cdot \sqrt{v}} \tag{5.4}$$

Abbildung 5.1: Direkte Messgrößen eines Cyclovoltammogramms unter planaren Diffusionsbedingungen.

Im Fall einer Steady-State-Kurve (Abbildung 5.2) wird der Grenzstrom i_{ss} dem Diagramm als Differenz der beiden waagrechten Ströme entnommen.[46]

Abbildung 5.2: Direkte Messgrößen eines Cyclovoltammogramms unter hemispärischen Diffusionsbedingungen.

Aus dem Grenzstrom wird der normierte Strom ermittelt:

$$i_{\rm ss}^{\rm norm} = \frac{i_{\rm ss}}{c^0} \tag{5.5}$$

5.4 NMR-Messungen

Die NMR-Messungen zur Bestimmung des Diffusinskoeffizienten von Fc in MeCN wurden von Verena Feldmann und Adrian Ruff durchgeführt.

5.5 m-file zur nicht-linearen Optimierung mit MATLAB

Im Folgenden ist das m-file zur nicht-linearen Optimierung mit MATLAB dargestellt.

```
function F=R2(x,c1,c2,c3,c4,i1,i2,i3,i4,v2,v4)
  F=[Rs100(x,c1,i1)'; Re100(x,c2,i2,v2)';Rs10(x,c3,i3)'; Re3(x,c4,i4,v4)'];
end
%Fehlerberechnung s-Kurve100: i=iss in muA, x(1)=D, x(2)=r, c=Konz in mmol/1
function F = Rs100(x,c,i)
  F=zeros(1,length(c));
  for index=1:length(c)
    F(index)=((i(index)*10^(-6)-x(1)*x(2)*c(index)*3.8594*10^(-7))/
              i(index));
  end
end
%Fehlerberechnung s-Kurve10: i=iss in muA, x(1)=D, x(3)=r, c=Konz in mmol/l
function F = Rs10(x,c,i)
  F=zeros(1,length(c));
  for index=1:length(c)
    F(index)=((i(index)*10^(-6)-x(1)*x(3)*c(index)*3.8594*10^(-7))/
              i(index));
  end
end
%Fehlerberechnung "Ente"100: i=ip in muA, x(1)=D, x(2)=r, c=konz in mmol/1,
%v=Vorschubgeschw. in mV/s
function F = Re100(x,c,i,v)
  F=zeros(1,length(c));
  for index=1:length(c)
    F(index)=((i(index)*10^(-6)-2.6689*10^(-5)*x(2)^2*c(index)*
               sqrt(x(1)*v(index)))/i(index));
  end
end
%Fehlerberechnung "Ente"3: i=ip in muA, x(1)=D, x(4)=r, c=konz in mmol/1,
%v=Vorschubgeschw. in mV/s
function F = Re3(x,c,i,v)
  F=zeros(1,length(c));
  for index=1:length(c)
    F(index)=((i(index)*10^(-6)-2.6689*10^(-5)*x(4)^2*c(index)*
               sqrt(x(1)*v(index)))/i(index));
  end
end
```

6 Datenverzeichnis

Die Daten sind nach folgender Systematik geordnet:

Alle mit Datum gekennzeichneten Unterordner von "Messungen" enthalten die Grundstrommessungen (Grundstrom), die Substratmessungen bei den jeweiligen Konzentrationen (Fc 1, Fc 2, ...) sowie die bereits grundstromkorrigierten und teilweise geglätteten Kurven (Fc 1 korrigiert, Fc 2 korrigiert, ...). Diese sind wiederum nach Vorschubgeschwindigkeiten in mV/s abgespeichert. Alle anderen Dateien sind selbsterklärende Excel-Tabellen.

Die vollständigen Datensätze aller in dieser Arbeit herangezogenen Messreihen können über Herrn Speiser, Universität Tübingen, bezogen werden.

Literaturverzeichnis

- [1] B. SPEISER, Chem. in uns. Zeit 15, 21 26 (1981).
- [2] J. HEINZE, Angew. Chem. 96, 823 840 (1984); Angew. Chem. Int. Ed. Engl. 23, 831 – 847 (1984).
- [3] H. MATSUDA und Y. AYABE, Z. Elektrochem. 59, 494 503 (1955).
- [4] R.S. NICHOLSON und I. SHAIN, Anal. Chem. 36, 706 723 (1964).
- [5] D.H. EVANS, Acc. Chem. Res. 10, 313 319 (1977).
- [6] S. CHING, R. DUDEK und E. TABET, J. Chem. Educ. 71, 602 605 (1994).
- [7] A.M. BOND, M. FLEISCHMANN und J. ROBINSON, J. Electroanal. Chem. 168, 299 – 312 (1984).
- [8] J. HEINZE, Ber. Bunsenges. Phys. Chem. 85, 1096 1103 (1981).
- [9] A.M. BOND, Analyst 119, R1 R21 (1994).
- [10] J. HEINZE, Angew. Chem. 105, 1327 1349 (1993); Angew. Chem. Int. Ed. Engl. 32, 1268 – 1288 (1993).
- [11] B. SPEISER IN K.E. GECKELER UND H. ECKSTEIN (HRSG.), Elektroanalytische Methoden Bioanalytische und biochemische Labormethoden, Vieweg, Braunschweig, 320 – 341 (1998).
- [12] M. KAKIHANA, H. IKEUCHI, G.P. SATÔ und K. TOKUDA, J. Electroanal. Chem. 108, 381 – 383 (1980).
- [13] M. KAKIHANA, H. IKEUCHI, G.P. SATÔ und K. TOKUDA, J. Electroanal. Chem. 117, 201 – 211 (1981).
- [14] K.H. PARKER C.P.WINLOVE und R.K.C.OXENHAM, J. Electroanal. Chem. 170, 293 – 305 (1984).
- [15] A.S. BARANSKI, W.R. FAWCETT und C.M. GILBERT, Anal. Chem. 57, 166 170 (1985).
- [16] D.R. LAWSON, L.D. WHITELEY, C.R. MARTIN, M.N. SZENTIRMAY und J.L. SONG, J. Electrochem. Soc. 135, 2247 – 2253 (1988).
- [17] L.D. WHITELEY und C.R. MARTIN, J. Phys. Chem. 93, 4650 4658 (1989).

- [18] C. AMATORE, M. AZZABI, P. CALAS, A. JUTAND, C. LEFROU und Y. ROLLIN, J. Electroanal. Chem. 228, 45 – 63 (1990).
- [19] J.E. BAUR und R.M. WIGHTMAN, J. Electroanal. Chem. 305, 73 81 (1991).
- [20] G. DENUAULT, M.V. MIRKIN und A.J. BARD, J. Electroanal. Chem. 308, 27 38 (1991).
- [21] P.J. KULESZA und L.R. FAULKNER, J. Am. Chem. Soc. 115, 11878 11884 (1993).
- [22] Y. JUNG und J. KWAK, Bull. Korean Chem. Soc. 15, 209 213 (1994).
- [23] M.M. COLLINSON, P.J. ZAMBRANO, H. WANG und J.S. TAUSSIG, Langmuir 15, 662 – 668 (1999).
- [24] R.G. EVANS, O.V. KLYMENKO, S.A. SADDOUGHI, C. HARDACRE und R.G. COMPTON, J. Phys. Chem. B 108, 7878 – 7886 (2004).
- [25] A. LEWERA, K. MIECZNIKOWSKI, M. CHOJAK, O. MAKOWSKI, J. GOLIMOWSKI und P.J. KULESZA, Anal. Chem. 76, 2694 – 2699 (2004).
- [26] L.M. HAN, Q.L. SUO, M.H. LUO, N. ZHU und Y.Q. MA, Inorg. Chem. Commun. 11, 873 – 875 (2008).
- [27] S. CHANFREAU, P. COGNET, S. CAMY und J.-S. CONDORET, J. Electroanal. Chem. 604, 33 – 40 (2007).
- [28] Y. GUO, M. KANAKUBO, D. KODAMA und H. NANJO, J. Electroanal. Chem. 639, 109 – 115 (2010).
- [29] G. GRITZNER und J. KÜTA, Pure Appl. Chem. 56, 461 466 (1984).
- [30] A. LEWANDOWSKI, L. WALIGORA und M. GALINSKI, *Electroanalysis 21*, 2221 2227 (2009).
- [31] T. KUWANA, D.E. BUBLITZ und G. HOH, J. Am. Chem. Soc. 82, 5811 5817 (1960).
- [32] N.G. TSIERKEZOS und U. RITTER, J. Appl. Electrochem. 40, 409 417 (2010).
- [33] G. FENG, Y. XIONG, H. WANG und Y. YANG, *Electrochim. Acta* 53, 8253 8257 (2008).
- [34] J. REITER, J. VONDRÁK und Z. MIČKA, *Electrochim. Acta* 50, 4469 4476 (2005).
- [35] A.J. ZARA, S.S. MACHADO, L.O. BULHÕES, A.V. BENEDETTI und T. RABOCKAI, J. Electroanal. Chem. 221, 165 – 174 (1987).
- [36] A.V. BENEDETTI, A.J. ZARA, S. SPINOLA MACHADO und L.O.S. BULHÕES, Oxidação Eletroquímica de Ferroceno em Solventes Não-Aquoso e em suas Soluções Aquosas in Proc. 3rd An. Simp. Bras. Eletroquim. Eletroanal. 385 – 390 (1982).
- [37] L.O.S. BULHÕES, H.L. CHUM, D. SORIA und T. RABOCKAI, Eletroquímica em Carbonato de Propileno. I. Oxidação de Complexos Diiminicos de Ferro (II) e Ferroceno in Proc. 1st Simp. Bras. Eletroquim. Eletroanal. 78 – 84 (1978).
- [38] K.-I. SON, S.-Y.KANG, Y. E. OH und D.-Y. NOH, Korean J. Chem. Eng. 53, 79 – 83 (2009).
- [39] C.J. ADAMS, R.C. DA COSTA, R. EDGE, D.H. EVANS und M.F. HOOD, J. Org. Chem. 75, 1168 – 1178 (2010).
- [40] P. HAPIOT und C. LAGROST, Chem. Rev. 108, 2238 2264 (2008).
- [41] H.JAHRREISS UND W.NEUWIRTH, Einführung in die Physik, Deutscher Ärzte-Verlag, 5.Auflage, 265 (1993).
- [42] H.SEWERIN UND N.KRANK, Formelsammlung Mathematik, Verlag Konrad Wittwer GmbH, Stuttgart (2001).
- [43] D.W. MARQUARDT, J. Soc. Indust. Appl. Math. 11, 431 441 (1963).
- [44] B. SPEISER, Chem. in uns. Zeit 15, 62 67 (1981).
- [45] P.A. MALACHESKY, Anal. Chem. 41, 1493 1494 (1969).
- [46] J. HEINZE, Angew. Chem. 103, 175 177 (1991); Angew. Chem. Int. Ed. Engl. 30, 170 – 171 (1991).
- [47] C.WOLFF, Wissenschaftliche Arbeit im Fach Chemie Universität Tübingen (2009).
- [48] W.E.GEIGER IN P.T. KISSINGER UND W.R. HEINEMANN (HRSG.), Electrode Mechanisms, Laboratory Techniques in Electroanalytical Chemistry, 2.Aufl., Marcel Dekker, New York, 691 – 692 (1996).
- [49] T.T. WOOSTER, M.L. LONGMIRE, H. ZHANG, M. WATANABE und ROYCE W. MURRAY, Anal. Chem. 44, 1132 – 1140 (1992).
- [50] A.J. BARD UND L.R. FAULKNER, Electrochemical Methods. Fundamentals and Applications, 2nd ed, Wiley-VCH, New York, 505 – 509 (2001).
- [51] F. AMMAR und J.M. SAVÉANT, J. Electroanal. Chem. 47, 215 221 (1973).
- [52] D.H. EVANS und K. HU, J. Chem. Soc. Faraday Trans. 92, 3983 3990 (1996).
- [53] V.D. PARKER, *Electrochim. Acta* 18, 519 524 (1973).
- [54] S. DÜMMLING, E. EICHHORN, S. SCHNEIDER, B. SPEISER und M. WÜRDE, Curr. Sep. 15, 53 – 56 (1996).
- [55] S.DÜMMLING, Dissertation Universität Tübingen (2000).
- [56] N.PLUMERE, Dissertation Universität Tübingen (2009).
- [57] B. GOLLAS, B. KRAUSS, B. SPEISER und H. STAHL, Curr. Sep. 13, 42 44 (1994).