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1.1 Intracellular delivery- Cell Penetrating Peptides 

Many biological techniques make use of a number of proteins and DNA-based strategies to 

understand cellular functions and mechanisms e.g. antisense mediated gene silencing, gene 

therapy or, therapeutic antibodies. Such techniques render manipulation of gene expression and 

regulation to therapeutic applications. In spite of the tremendous potential of these applications 

they are limited by the inefficiency of the active molecules to pass through plasma membranes. 

The plasma membrane of a cell serves as a barrier to hydrophilic drugs, peptides and proteins. 

Thus, in order to achieve any therapeutical effects with these agents, an effective delivery system 

is mandatory. Only a narrow range of molecules of certain molecular weight, polarity and net 

charge are capable of diffusing through cell membranes. To overcome the limitation of breaching 

the membrane barrier for conventional and gene drug delivery, various methods have been 

developed. Approaches like liposome based delivery (Caplen et al., 2001; Martins et al., 2002), 

viral transfection (Hemann et al., 2003) electroporation (Siegmund et al., 2002) and 

microinjection (Usui et al., 2003) are used. These methods are mainly utilized to deliver 

hydrophobic molecules. Furthermore, the side effects associated with these methods like 

cytotoxicity or inefficient delivery, experimental conditions and the fact that their utilization is 

limited to in vitro or ex vivo uses have prevented them from becoming an efficient means to 

deliver compounds to the cell in order to treat diseases and conditions. Thus a more efficient and 

non-invasive delivery technique for the delivery of hydrophilic drugs and other substances was 

needed.  

In the 1990s the discovery of Cell Penetrating Peptides (CPPs), also called protein transduction 

domains (PTDs) or membrane translocation sequences (MTS), proved that the translocation of 

larger molecules through the cell membrane is possible. CPPs are composed of short peptides 

upto 30 amino acids capable of penetrating the plasma membrane and they are generally net 

positively charged and amphipathic. These peptides are generally classified into protein derived 

CPPs, model peptides and designed peptides (Table 1) depending upon the origin of the peptides.  
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Table 1: Classification of exemplary CPPs 

Name Sequence Class Reference 

Tat 48-60 GRKKRRQRRRPPQ Protein derived CPP Vives et al, 1997 

Penetratin RQIKIWFQNRRMKWKK Protein derived CPP Derossi et al, 
1994 

Transportan GWTLNSAGYLLGKINLKALAALAKISIL Designed CPP Pooga et al, 1998 

SP-NLS MGLGLHLLVLAAALQGAWSQPKKKRK Designed CPP Chaloin et al, 
1997 

Pep-1 KETWWETWWTEWSQPKKKKRKV Designed CPP Morris et al, 2001 

Oligo-
arginines (R)7 Model CPP Rothbard et al, 

2002 

 

CPPs originating from protein consist of a minimal effective sequence capable of membrane 

translocation also known as Protein Transduction Domain (PTD). Prominent examples are Tat 

(Green and Loewenstein, 1988) and Antennapedia (Joliot et al., 1991). Tat is the nuclear 

transcription activating protein from HIV-1 virus consisting of 86 amino acids with three 

functional domains: - an acidic N-terminal RNA binding region (Weeks et al., 1991), a highly 

basic domain featuring nuclear and nucleolar localization (Ruben et al, 1989) and a cysteine rich 

DNA binding region important for metal-linked dimerization in vitro (Frankel et al., 1988). The 

basic region of Tat49-57 (RKKRRQRRR) remains in random coil conformation and is continuously 

applied as Nuclear Localization Sequence (NLS) and a delivery tool. The first non-viral protein 

transduction domain was Antennapedia derived from Drosophilia homeodomain protein. It is a 

60 amino acid DNA binding homeodomain structured in three α-helices and one β-turn (Czajlik 

et al, 2002). The minimal region from the third helix was responsible for translocation of the 

entire protein. This region of 16 amino acids residues, 43-58, is also referred to as penetratin 

(Derossi et al., 1998; Derossi et al., 1994). Designed CPPs are for example chimeric peptides 

comprised of a hydrophilic and hydrophobic domain from different sources e.g. transportan 

which is a 27 amino acid long peptide consisting of a peptide sequence from the neuropeptide 

galanin linked via lysine to the wasp venom peptide, mastoparan. Model peptides are sequences 
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that in general mimic other CPPs for improvement of the internalization properties e.g. 

oligoarginines. 

Due to their ability of intracellular delivery accompanied with low cytotoxicity, synthesis 

procedures that offer the possibility easy routine synthesis with the possibility for diverse 

modifications qualify CPPs as efficient delivery agents for therapeutic and diagnostic 

applications.  

1.2 Mechanism of internalization 

It was long questioned which features were necessary for a CPP to exert a translocation function. 

So far the only aspect found consistently is a high content of basic amino acids resulting in a net 

positive charge. Although the primary structure of CPPs varies, some common characteristics 

necessary for uptake can be predicted. Apart from a positive charge, especially originating from 

arginines (Futaki et al., 2001; Wender et al., 2000) the presence of hydrophobicity arising from 

amino acids with bulky side chains (Derossi et al., 1998) seems to be beneficial for the uptake. 

Not only the presence of these motifs but also the location in the peptide chain of these amino 

acids seemed to be important as it was shown for the tryptophan in penetratin (Dom et al., 2003). 

Generally, an alpha-helical secondary structure seems to be of benefit for CPPs but cannot be 

taken as a general prerequisite.  
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However, the high structural diversity that was seen in CPPs implicates an internalization-

mechanism being different for distinct CPPs.  The mechanism of uptake has been reported to be 

a multistep process. Cationic CPPs bind electrostatically to the negatively charged head groups 

of lipids or proteins in the cell membrane (Zorko et al., 2005; Gupta et al., 2005). Charge is 

important but not sufficient, as evident from the comparison of the uptake efficiencies of 

polyarginines and similar length polymers of lysine and histidine. The highly efficient cellular 

uptake of oligoarginines was attributed to the ability of the guanidine to form bidendate 

hydrogen bonds with phosphates or sulphates of the membrane (Mitchell et al., 2000). Apart 

from the presence of the guanidinium headgroup their spatial preference is also significant in 

membrane adherence. An electrostatic interaction and bidendate hydrogen bonds develops 

between the guanidinium groups and the hydrogen bond acceptors anchored on the surface of the 

plasma membrane. As the arginine rich peptide reaches the negatively charged surface of the 

plasma membrane the polar cationic and anionic functionalities converts into lipophilic ion pair.  



The bidendate hydrogen bonds with carboxylate, phosphates, and sulphates also contribute to 

this association (Rothbard et al., 2004) (Figure 1). 

 

Figure 1: Initial step of CPP and membrane interaction. 
Enlarged - Interaction of the positive charged CPP with negative charged phosphates present in the lipid bilayer.  
 

Different uptake mechanisms for CPPs were proposed in the literature. The entry can be 

supported by an energy-dependent endocytotic mechanism or via an energy-independent passive 

transport mechanism. Endocytosis is a well regulated process that falls into two broad categories: 

Phagocytosis (engulfing large particles, performed by specialized cells) and pinocytosis. In the 

latter case extracellular molecules are encapsulated into lipid vesicles which are then 

internalized. In pinocytosis can be further divided into four models: macropinocytosis, clathrin-

mediated, lipid-raft mediated and clathrin-caveolae independent endocytosis.  

These mechanisms differ from each other on the basis of the size of vesicles, mechanism of 

formation of the vesicles, and the nature of the cargo. Clathrin-mediated endocytosis starts with 

receptor-binding followed by accumulation of receptors in coated pits on the plasma membrane. 

Caveolae are a type of lipid rafts, small and flask shaped depressions of the plasma membrane. 

Macropinocytosis is characterized by protrusion of the plasma membrane formed upon activation 
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by growth factors or other signals and leads to the formation of macropinosomes. This type of 

uptake is highly dependent on the actin activity on the cell surface. Another, less defined 

mechanism is the non-caveolae dependent endocytosis. This pathway is closely linked to the 

presence of lipid rafts and is distinguished into dynamin dependent and dynamin independent 

endocytosis. Though less characterized it seems to be functional for the delivery of various 

molecules. The direct uptake of peptides is possible by disturbing the membrane integrity 

(Henriques et al., 2005). 

Since these different uptake mechanisms can operate simultaneously during internalization of 

extracellular cargo, it will be difficult to predict an exact mechanism of internalization for CPPs. 

It is therefore not surprising that this is still a matter of debate for most CPPs and is not yet 

resolved completely. For example, it has been shown that endocytosis plays a dominant role in 

the import of Antp, Tat and nonaarginines (Duchardt et al., 2007). However, it was also reported 

that the uptake mechanism is strongly cargo specific. A change in uptake mechanism was 

observed from lipid raft-mediated endocytosis (Fittipaldi et al., 2003) to clathrin-dependent 

endocytosis when CPP was conjugated to a protein instead of a fluorophore (Richard et al., 

2005). 

1.3 Applications 

The efficacy and non-invasive nature of CPP-mediated transmembrane passage allows various 

applications in biomedical research. The delivery of a wide range of biomolecules like antisense 

oligonucleotides or peptide nucleic acids (PNA) across the plasma membrane had been a major 

challenge before the advent of the CPPs. Research is now focused on further investigating 

efficacy of delivery and also toxic effects of the peptides. The peptide concentration, cargo 

molecules and the coupling strategies can also have a direct effect on these parameters 

(Andaloussi et al., 2007). Especially the delivery efficiency and its mechanism are dependent on 

the attachment of cargo to the CPP. Studies have been undertaken to investigate the effect of 

different cargos on the penetration abilities of CPPs (Dietz et al., 2004).  

Also, different coupling strategies have been employed for CPP cargo conjugation (Meade et al., 

2008; Crombez et al., 2007), e.g. covalent conjugation (Fischer et al., 2006) and non covalent 

linkage (Morris et al., 2001). Another promising strategy that was applied linking peptides and 
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PNA was the use of disulphide linkages (Snyder et al., 2004). The advantage of this procedure is 

an active cleavage of the disulphide bridges in the reducing environment of the cytosol and 

consequently dissociation of the cargo molecule from the vector after internalization. Fusion 

schemes can be selected depending on the requirement and the nature of the cargo.  

Furthermore, CPPs are already and widely used as delivery vectors in such different areas as 

cancer immunotherapy, gene delivery and, cellular imaging. Despite of the high delivery 

efficiency CPPs lack specificity for different cell types. Thus, depending on the requirement of 

the targeted tissue, a ligand of selective property could optionally be conjugated to the CPP. In 

this regards, CPPs are already used to carry a wide range of molecules into the cell to fulfill their 

respective biological actions e.g. DNA, antibodies, contrast agents (CA) (Allen et al., 2004), 

proteins as large as 120 kDa (Schwarze et al., 2000; Gupta et al., 2005), siRNA (Muratovska and 

Eccles, 2004), plasmids (Singh et al., 1999), peptide nucleic acids (Pooga et al., 1998), peptides 

(Prochiantz et al.,1996), and even nanoparticles (Lewin et al., 2000). 

1.4 Limitations and solutions 

Though CPPs are non-invasive carriers of broad range of cargos through the plasma membrane 

one of the major hurdles in the therapeutic strategies like gene and antisense therapy and vaccine 

development is the cytoplasmic availability of the biomolecular drugs. The prerequisites for such 

cargo approaches are that the designed molecules ably penetrate the cell membrane and the 

interaction with the target, presumably located in the cytosol, will be facilitated. As endocytosis 

is the exclusive or predominant mechanism of uptake for most of the CPPs, a limiting factor for 

CPP-based delivery approaches is the confinement in the endosomes (Figure 2) with concomitant 

degradation in the lysosomes restricting their use as cytosolic/nuclear targeting agents.  

Various attempts have been made to achieve endosomal escape, like the application of 

lysosomotropic agents, fusogenic peptides, and the use of high concentrations of the CPP 

construct. 
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Endocytosis mediated delivery
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Figure 2: Proposed mechanism of internalization of cargos attached to CPP by endocytosis. 

Localization in the nucleus or in the cytosol of these previously investigated peptides was 

observed together with endosomal trapping, albeit under only a restricted set of conditions (short 

term incubations, CPP concentration above 10 µM) (Duchardt et al., 2007). At such extracellular 

concentrations, however, elongated incubations (required in the presence of serum) result in a 

30-40% increased cell death (unpublished data from our laboratory). These restrictions clearly 

suggest that the setback of endosomal encapsulation for targeting approaches using CPPs need 

further investigations. 

HA2 fusion peptide, derived from influenza virus has also been used for the endosomal release 

of various oligonucleotides and proteins (Wadia et al., 2004; Turner et al., 2005). At 

physiological pH (7.4) these peptides exist in ionized form and in hydrophilic state whereas in 

endosomes and especially having lower pHs the peptide becomes protonated. Destabilization of 

the endosomal membrane facilitates the escape of the peptide conjugates (Planck et al., 1994). 

Modifications of the CPP have been made to overcome the endosomal entrapment. EB1, a 

penetratin analogue was designed by replacing certain amino acids by histidine to improve the 

endosomolytic property. In principle, EB1, upon protonation in endosomes forms an α-helix 
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leading to endosomolysis. The proof of its application has been shown by down regulation of 

luciferase expression (Lundberg et al., 2007). 

Endosomal release is a real challenge for the therapeutic effects of large hydrophilic molecules. 

Coupling of the endosome disrupting peptides to a CPP makes the carrier larger than the cargo 

itself. This not only makes the synthesis more complex but also raises a doubt about the in vivo 

administration and efficiency. 

Another attempt for the cytoplasmic release of the potential biotherapeutics was achieved by the 

use of pH sensitive polymers mimicking the viral peptides. These polymers contain both acidic 

groups as well as hydrophobic alkyl chains. The polymers showed increased hydrophobicity 

when protonated at endosomal pHs, followed by membrane disruption. One example reported is 

a glutathione sensitive, functionalized smart polymer bearing pH dependent membrane 

disruptive potential. This polymer is shown to be a cytoplasmic delivery vector for biomolecule 

complexes like with ODNs (Bulmus et al., 2003).  

The development of efficient delivery systems capable of endosomal release of biotherapeutics 

offers numerous applications. An interesting study about the polypeptide, Crotamine (Kerkis et 

al., 2004) might offer a potential solution to the problem of endosomal entrapment. 

1.5 Crotamine 

The major neurotoxins present in the venom of the South American rattle snake Crotalus 

durissus terrificus are crotoxin (a presynaptically acting neurotoxin, Faure et al., 1994), 

convulxin (protein responsible for producing convulsions, De Sousa-e-Silva et al., 2003), gyroxin 

(a toxin possessing thrombin like activity, De Sousa-e-Silva et al., 2003) and crotamine (Toyama 

et al., 2000). Crotamine constitutes approximately 10% of dry weight of the venom, and is the 

most abundant of all the components present in the venom (Yamane et al., 2006). Crotamine is a 

low molecular-weight polypeptide bearing a single chain of 42 amino acids 

(YKQCHKKGGHCFPKEKICLPPSSDFGKMDCRWRWKCCKKGSG), enriched in basic 

amino acids such as arginines, lysines and containing 6 cysteines, the latter are all involved in 

disulphide-bonds (Kerkis et al., 2004). Crotamine was first isolated by Goncalves and Vieira in 

1950. 
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1.5.1 Structure of Crotamine 

In solution NMR studies, Crotamine comprises a small α-helix at the N-terminus (residues 3-7) 

and a 3-stranded anti-parallel β-sheet, (residues 9-12, 24-25 and 35-38) arranged in αβ1β2β3 

structural topology (Figure 3) (Nicastro et al., 2003, Oguiura et al., 2005) where both first and 

second strands run antiparallel to the third one. All six cysteines are reticulated by three 

disulphide-bonds: Cys4/Cys36 (connects β-sheet to the N-terminal α-helix), Cys11/Cys30, and 

Cys18/Cys37 which also constitutes the central hydrophobic core (Fadel et al., 2005).  

 

Figure 3: Three dimensional structure of Crotamine (adapted from Oguiura et al., 2005) 

1.5.2 Functions of Crotamine 

Crotamine acts as a myotoxin and causes the paralysis of the hind limbs of mice in less than 15 

min when injected intraperitoneally (Yamane et al., 2006). It alters the performance of voltage-

sensitive sodium channels in the sarcolemma of the skeletal muscles. An abnormal influx of 

sodium ions into the skeletal muscle cells, leads to depolarization and finally muscle contraction. 

Consequently, the effect result in necrosis of the muscle fibers as characterized by massive 

vacuolization of the sarcoplasmic reticulum and disruption of actin and myosin filaments 

(Toyama et al., 2000). 
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Apart from this action Crotamine was also shown to release histamine from mast cells and to 

have an analgesic activity, 30-fold more effective than morphine (Mancin et al., 1998). 

1.5.3 Biological Activity of Crotamine 

Kerkis et al., 2004 have shown the biological effect of Crotamine bearing the ability to transport 

molecules across the plasma membrane. Apart from this Crotamine also possesses a specific cell 

targeting capacity for actively proliferating cells (Yamane et al., 2006; Kerkis et al., 2004). It is 

similar with other known CPPs with respect to cationic character, high basic amino acid content 

and low molecular weight. Crotamine is shown to be non-toxic at submicromolar concentrations 

Crotamine is markedly different from other CPPs because of the 6 cysteines in its sequence. The 

fold obtained by the 3 disulphides bonds in crotamine yields to conformational restriction and 

charge distribution with unique properties. 

Its size, sequence, charge, and structural conformation indicated its cell-penetrating activity. 

Kerkis et al., 2004 also proposed the penetration ability might not be due to the complete 

polypeptide but small domains are responsible for transduction 

(YKQCHKKGGHCFPKEKICLPPSSDFGKMDCRWRWKCCKKGSG). Crot(2-18) and 

Crot(27-39) were the two most promising NLS (Figure 4). Crot(2-18): 

KQCHKKGGHCFPKEKIC -  17 amino acid long at the N-terminal part and Crot(27-39): 

KMDCRWRWKCCKK - 13 amino acid long representing  the C-terminus. 
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Figure 4: Backbone presentation of crotamine. Crot(2-18) and Crot(27-39) highlighted in 

grey. 
 

1.6 Aim of the study 

 

The aim of this study was to circumvent the drawback of CPP and cargo confinement in 

endosomes limiting the practical application of this cell delivery approach. The snake toxin 

Crotamine from the South American rattle snake Crotalus durissus terrificus was used as a 

promising candidate to achieve this goal and therefore was the guiding motif for this work. 

  

The main goal was the development of a novel CPP which circumvents the drawback of 

endosomal encapsulation and showing improved intracellular delivery ability. Furthermore, the 

import efficiency and cellular distribution of the developed CPP has been evaluated with the 

attachment of various cargos. 

 

(1) To achieve this goal this work should be directed in the first section towards the optimization 

of Crot(27-39) by structure activity relationship (SAR) studies. Variations should be introduced 

into the sequence of this NLS either by deletions and/or substitutions of amino acids like 

cysteine, tryptophan, and methionine. This should also ease the synthesis and reduce the side 

reactions rendered by these amino acids during the synthesis and work up procedures. Later, all 

the peptides should be labeled with a fluorophore (FITC) and screened for their internalization 
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and distribution in NIH/3T3 cells by fluorescence spectroscopy and microscopy. The best 

peptide (regarding uptake efficiency and cytosolic distribution) obtained as a result of these 

studies should be further optimized with respect to stereochemistry and position and type of the 

fluorophore. The potency of internalization of our newly developed CPPs should be compared 

with existing CPPs Tat, penetratin and octaarginine. The impact of oxidation during cellular 

import will also be determined by synthesizing the oxidized form of the optimal peptide. 

 

(2) In the second section of this work the capacity of the optimal peptide as a delivery agent 

should be evaluated. For this purpose it was covalently coupled to cargos of various sizes and 

nature. The influence of cargo on the internalization and distribution should be investigated. 

One main part herein is the application as intracellular contrast agent (CA) for MRI by 

covalently attaching a MR reporter (Gd-DOTA) to this peptide. The ability to enhance contrast 

in solution as well as after uptake in cells was evaluated and compared with other intracellular 

contrast agents synthesized in our laboratory using CPPs like Tat and octaarginine. 

Furthermore, two peptides, penetratin and the bioactive SmacN7, should be coupled to 

investigate the capability of the peptide to be used as a delivery tool. To evaluate its use in 

antisense targeting, a conjugate with a neutral peptide nucleic acid sequence targeting DsRed 

gene expression should be studied. 
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PART 2 

IDENTIFICATION AND OPTIMIZATION OF A NEW CYSTEINE RICH 

CELL PENETRATING PEPTIDE 
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2. IDENTIFICATION AND OPTIMIZATION OF A NEW CYSTEINE RICH CELL 
PENETRATING PEPTIDE 

As proposed by Kerkis et al., 2004, the ability of crotamine to penetrate the cell membrane may 

not be due to the complete polypeptide 

(YKQCHKKGGHCFPKEKICLPPSSDFGKMDCRWRWKCCKKGSG) but two small 

domains within the sequence might be responsible for nuclear localization. Thus, Crot(2-18) and 

Crot(27-39) were proposed as the two putative Nuclear Localization Signals (NLS). The C-

terminal Crot(27-39) was selected as our starting sequence for Structure Activity Relationship 

(SAR)  studies because of length and high content of lysines and arginines (expected features for 

the cell penetration). Crot(27-39) (Figure 5) is a tridecapeptide bearing three cysteine residues 

(marked orange). 

 

Figure 5: Structure of Crotamine. NLS Crot(27-39) KMDCRWRWKCCKK, marked in grey. 

High cysteine content in the peptides and proteins are known to influence the biological activity 

of the peptide by their ability to form intra- and intermolecular bridges and hence promote 

oligomerization (Andreu et al., 1994). However, cysteine, methionine and tryptophan moieties in 

peptides might also cause side reactions such as racemization, oxidation and alkylation (Siedler 

et al., 1996; Huang et al., 1999; Wünsch et al., 1977; Giraud et al., 1999). Therefore, efforts 

were carried out to evaluate the functional significance of these residues. The positively charged 

amino acids were unaltered considering the requirement of cationic residues for membrane 
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adherence (Futaki et al., 2001; Wadia et al., 2005). SAR studies were performed to achieve the 

sequence optimized for efficient cell penetration, as well as for robust production and shelf life 

time. Variations were introduced in Cro(27-39) including deletions and/or substitutions (Figure 

6). Peptides were synthesized on solid phase by Fmoc/tBu chemistry and were then compared for 

their uptake efficiency and cellular distribution on NIH/3T3 cells by fluorescence spectroscopy 

and microscopy. 

 

Crot (27-39)
KMDCRWRWKCCKK

DeletionSubstitution Deletion & substitution

MDCRWRWKCCKK
DCRWRWKCCKK
CRWRWKCCKK
RWRWKCCKK

KMDXRWRWKCCKK
KMDXRWRWKXCKK
KMDXRWRWKXXKK
KMDXRWRWKCXKK
KMDCRWRWKCXKK

MDCRWRWKXCKK
DCRWRWKXCKK
DCRWRWKCXKK
CRWRWKXCKK
CRWRWKCXKK
RWRWKXCKK

MDCRWRWKXXKK
DCRWRWKXXKK
CRWRWKXXKK
RWRWKXXKK

KMDCRWRWKCKK
KMDCRWRWKKK
KMDRWRWKKK

CRWRWKCCKK

Substitution of cysteine
 by serine

Substitution of cysteines
 and tryptophans

KMDCRWRPKCCKK
KMDCRPRPKCCKK
KMDXRPRPKCCKK
KMDXRPRPKXCKK
KMDXRPRPKCXKK
KMDCRPRPKXCKK
KMDCRPRPKCXKK

KMDCRWRWKCSKK
KMDCRWRWKSCKK
KMDSRWRWKCCKK
KMDCRWRWKSSKK
KMDSRWRWKSSKK
KMDSRWRWKSCKK
KMDSRWRWKCSKK

KDCRWRWKCCKK
KCRWRWKCCKK
KRWRWKCCKK

Random deletions

 

Figure 6: Various modifications introduced into Crot(27-39) 
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2.1 Results  

2.1.1 General synthesis 

Peptides were synthesized on solid phase by Fmoc/tBu strategy using DIC/HOBt mediated 

coupling (Figure 7) on a preloaded TCP-resin. Fmoc deprotection was performed by 20% 

piperidine/DMF and each coupling was performed for 60 min. Deprotection and couplings were 

monitored by Kaiser Test (Sarin et al., 1981) in case of manual synthesis of the peptides. For 

structure activity studies all peptides were labeled with FITC through a Boc-Lys(Fmoc)-OH as a 

linker where the ε-group of N-terminal lysine was labeled with FITC. In order to avoid side 

reactions coupling of fluorophore was performed on resin at the end of the synthesis. Peptide 

fluorescein conjugates were cleaved off the resin by Reagent K after 2h and precipitated with 

MTBE two times. Samples were dissolved in water and tert-butanol (1:4) containing 2% acetic 

acid and freeze-dried. Screening of the peptides was done in the crude form where peptide purity 

was above 85%. 60 peptides were screened for internalization and cellular distribution and only 

selected samples showing considerable uptake were purified and tested again. 
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Figure 7: Schematic representation of the peptide synthesis 
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2.1.2 Resin selection (C-terminal functional group) 

The effect of minimal structural differences on internalization was addressed for peptides with a 

free or amidated C-terminus. Amide group at the C-terminus renders stability towards exogenous 

peptidases and also maintains the native structure of the peptide, if the peptide is derived from 

natural source. Thus, comparison of protease stable C-terminal amide and protease susceptible 

free C-terminal end was made. Peptides were synthesized on TCP as well as Rink amide resin 

offering -COOH or -CONH2 groups, respectively, at the C-terminus. A decrease in the uptake in 

case of the amide compared to free C- terminus was observed. 

2.1.3 Racemization  

The application of peptides as drug and other biological targeting agents essentially requires the 

stereochemical integrity of the peptides. Therefore, measures are taken to maintain 

stereochemical fidelity of the diverse molecules. Racemization is a serious problem in the 

peptide synthesis (Siedler et al., 1996). Irrespective of the thiol protecting groups used in the 

synthesis of cysteine rich peptides, propensity of racemization still persists. Also the ester 

linkage to the resin has an impact on the rate of racemization. Activation protocols incorporating 

the presence of base, results in measurable level of racemization (Han et al., 1997). For example 

during the coupling reaction performed by TBTU/HOBt in the presence of the base considerable 

racemization was shown whereas in the absence of the base (via pentafluorophenylester) 

epimerization was suppressed (Siedler et al., 1996). Therefore, a judicious choice of the 

parameters like resin as well as the coupling reagents used has a direct impact on the 

epimerization.  

Some of the potential steps to minimize racemization- 

 HOBt as a racemization suppressing additive is used as it is known to suppress the chiral 

purity (Wieland and Bodanszky, 1991) 

 Level of racemization was reduced immensely by avoiding the preactivation step in case of 

BOP, HATU, HBTU mediated couplings and introducing 5 min preactivation in case of 

DIC/HOBt couplings (Han et al., 1997). 
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 Application of a weaker base like 2, 4, 6 trimethylpyridine (TMP, collidine) instead of 

DIPEA, NMM, reduction in the amount of base or optimization of the solvent preference 

DMF to less polar DCM: DMF (1:1) (Han et al., 1997). 

 Enantiomerization is observed in activation of Fmoc-Cys(Trt)-OH with base mediated 

coupling reagents like TBTU (Han et al., 1997). Proper choice of the coupling conditions 

are required to reduce this problem. 

In this concern avoiding the base during the coupling steps and uronium type coupling agents 

advocates the need to optimize the coupling conditions for these syntheses of multiple cysteine 

containing peptides. Thus, the coupling reagent used in this synthesis was DIC/HOBt as it 

induces minimal racemization in the course of the synthesis (Han et al., 1997). Stereochemical 

purity of peptide was determined by GC-MS analysis and was found to be >95% (C.A.T. 

GmbH&Co, Chromatographie und Analysentechnik KG, Tübingen, Germany) ensuring the 

chiral integrity of the peptide backbone. 

2.1.4 Optimization of cleavage cocktail 

As the peptides in this study are rich in cysteine, the presence of a reductive environment is 

necessary in order to keep this amino acid in the reduced state. Therefore appropriate choice of 

scavengers was necessary. Therefore, various cleavage cocktails were prepared and tested in 

order to achieve an optimal ratio of the required scavengers (Table 2). Peptides were exposed to 

the cleavage mixture for 1 h and the precipitate was tested by ESI-MS. Amongst five cleavage 

cocktails tested, Reagent K gave the best results. Thus, Reagent K was further used as a cleavage 

mixture for the peptides. 
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Table 2: List of tested cleavage cocktails  

S.No. Composition Percentage 

1 TFA: phenol: water: thioanisole: EDT (Reagent K) 82.5:5:5:5:2.5 

2 TFA: thioanisole: EDT: anisole (Reagent R) 90:5:3:2 

3 TFA: phenol: water: thioanisole: EDT 95:2:1:1:1 

4 TFA: Reagent K: TMSBr 85:14.5:0.5 

5 TFA: phenol: water: thioanisole: EDT 85:2.5:5:5:2.5 

 

2.1.5 Ether selection 

In order to confirm the contribution of the ether in tert-butylated byproduct DEE and MTBE 

were used as precipitating agents. Peptide was cleaved by reagent K followed by precipitation 

with DEE or MTBE. In contrast to the report of De La Torre and Andreu, 2008, the effect of the 

ether was not significant emphasizing that the precipitating agent plays no role and indicating a 

direct scavenging of the tert-butyl cation by any of the alkylation prone amino acid residue like 

Trp or Cys. 

2.1.6 Counter ion purity- TFA and acetate content 

TFA is a common additive to the solvent system used during reverse-phase HPLC purification of 

peptides. It is effective in solubilizing hydrophobic peptides because of its high acidity. It is also 

a purification contaminant as it binds to side chain of exposed arginine, lysine and histidine. 

Though it is a volatile component, it is known to bind to the proteins as revealed by IR data and 

induces structural modifications in proteins and peptides (Gaussier et al., 2002, Cornish et al. 

1999). As it is harmful for cells it needs to be eliminated from the samples. Prior to the biological 

evaluations, efforts have been made to eliminate TFA from the samples by passing through 

dialysis membranes or multiple freeze drying in the presence of HCl. Concentration of HCl in 

the range of 2-10 mM was reported to be effective in removing TFA impurities without affecting 

the peptide (Andrushchenko et al., 2007). Therefore, multiple freeze drying with 2 mM HCl was 

done. 
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Another attempt to get rid of this counter ion from the samples was freeze drying with tert- 

butanol and water (4:1) containing 2% acetic acid. The sample was checked for its TFA and 

acetate content by GC-MS. Measured content of 19.5% TFA and only 0.1% acetate indicates that 

probably 2% acetic acid was not sufficient for complete exchange of TFA. Thus, the percentage 

was increased to 5% acetic acid. 

Both methods of TFA exchange were comparable, therefore, drying with tert- butanol and 5% 

acetic acid was carried out for further samples. 

2.1.7 Uptake studies 

Cell experiments were performed with NIH/3T3 mouse fibroblast cells. Cells were cultured in 96 

well microplates for 24 h followed by incubation with fluorescent labeled peptides for additional 

18 h. After incubation, cells were counter stained with H33342 for nuclear labeling. External 

fluorescence was quenched by trypan blue for 3 mins followed by repeated HBSS washings. Cell 

related FITC fluorescence (CA, green) and nuclear fluorescence (H33342, blue) was evaluated in 

a multi-plate reader. Subsequently, fluorescence microscopy was performed with the same cells 

to observe the cellular localization. 

2.1.8 Structure Activity Relationship Studies 

The initial tridecapeptide Crot(27-39) (peptide 1) was proposed to bear the cell penetrating 

property (Yamane et al., 2006). The presence of lysines and arginines was proposed to support 

this prediction. Therefore, Crot(27-39) was synthesized and tested on cells for its uptake 

properties. Apart from being an appropriate candidate as a Cell Penetrating Peptide (CPP) it 

displayed a unique quality of cytosolic distribution at low concentrations. This additional feature 

distinguishes it from other CPPs and opens a new avenue for the further optimization. Crot(27-

39) includes three cysteine residues, tryptophans, aspartic acid, and methionine along with six 

basic amino acids (arginine and lysine). Substitution and/or deletion of various amino acids 

except lysine and arginines (like cysteine, tryptophan, methionine, aspartic acid) in Crot(27-39) 

were further studied (Table 3).  

 

 
 
 

23 
 



2.1.8.1 Substitution of cysteine residues  

Because of the side reactions associated with cysteine, these residues in Crot(27-39) were 

substituted by serine and α-amino-n-butyric acid (Abu). Cysteines were replaced one by one and 

then all together to study the effect of exchange as well as the tolerated number of cysteines 

being substituted. A set of seven serine substituted peptides with single cysteine exchange 

[peptide 2-4], dual substituted cysteines [peptide 5-7] and replacement of all 3 cysteines [peptide 

8] by serine were synthesized and compared to the initial sequence peptide 1.  

Results show a decrease in the cellular uptake along with the number of cysteine substitutions 

(Figure 8). Complete substitution resulted in complete loss of uptake as well as decrease in the 

cytosolic gain in the cells. 

 

Figure 8: Influence of cysteine substitution by serine on internalization 

In order to confirm the reduced uptake and distribution as a function of cysteine replacement by 

serine, another set of peptides with cysteines substituted by α-amino-n-butyric acid (Abu) was 

studied. Five different mutants with replacement of one, two and three cysteines were 

synthesized [Peptides 9-13]. Internalization studies showed a decrease in uptake efficiency along 

with the decrease in the number of cysteines (Figure 9).  
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Figure 9: Influence of cysteine substitution on internalization 

2.1.8.2 Deletion of cysteine residues 

Determining the optimal length of the sequence was also one of the main concerns for SAR 

studies. Thus, still focusing on the cysteines, peptides were synthesized by the deletion of 

cysteines one by one [Peptides 14-16]. The results confirmed the observation made with 

serine/Abu substituted peptides of Crot(27-39). A regular decrease in uptake and cytosolic 

appearance with the number of deleted cysteines was observed (Figure 10).   
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Figure 10: Influence of deletion of cysteines on internalization 

2.1.8.3 Substitution of tryptophan by proline residues 

Inclusion of a small hydrophobic moiety (biotin) in Tat peptide is shown to increase the cellular 

uptake (Chen et al., 1995). Alterations in the hydrophobic and hydrophilic content of Hel 

amphipathic peptide, showed an efficient DNA delivery by the region of highest hydrophobic 

amino acid residues. This could be attributed to the formation of aggregates on delivering the 

non-covalently bound DNA (Ohmori et al., 1998). Effect of modulating the hydrophobicity was 

also seen in case of penetratin (Dom et al., 2003). Lipophilization at the N-terminus by stearoyl, 

lauroyl, or cholesteryl group is another example where the influence of hydrophobicity on 

intracellular delivery was studied in case of Tat and polyarginines (Futaki et al., 2001). Thus 

from these observations it was believed that in addition to electrostatic surface interactions 

hydrophobic interactions also contribute significantly to the process of transmembrane delivery.  

Therefore, the role played by tryptophan residues was also verified by replacing them one by one 

with the prolines residues.  

The results show a decrease of the uptake efficiency by substitution of tryptophan by prolines 

(Figure 11). Loss of uptake and cytosolic distribution was observed.  
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2.1.8.4 Substitution of tryptophan by proline residues and cysteine residues by Abu 

In order to study the cumulative effect of both tryptophans and cysteines, a set of peptides with 

cysteines substituted by Abu concomitant with tryptophan replaced by prolines were synthesized 

[Peptides 17-23]. A significant decrease in the uptake efficiency and intracellular distribution 

was observed (Figure 11) supporting the importance of both amino acids in the peptide sequence 

to maintain the internalization behavior. 

 

Figure 11: Influence of cysteine and tryptophan substitution on internalization 

2.1.8.5 Deletions and substitution of cysteine residues 

Deletions as well as substitutions had a great impact on the intracellular localization. Therefore, 

deletions were further accompanied by substitution of cysteines by Abu in order to study the 

combined effect of both variations [peptides 24-33]. Various mutants with simultaneous cysteine 

substitution by Abu and N-terminal deletion of amino acid residues were synthesized. This 

resulted in a significantly reduced cellular uptake and cytosolic gain (Figure 12). Though there 

seems to be an influence of length of the peptide chain on the internalization properties but a 

more pronounced effect was observed for the substitution of cysteine residues. 
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Figure 12: Influence of deletion and substitution on internalization 

2.1.8.6 Deletions 

Keeping the positively charged amino acids untouched, deletions of other amino acids like 

methionine or aspartic acid were investigated. Therefore mutants with deletion of methionine, 

aspartic acid and cysteine were synthesized and analyzed [peptide 34-36]. Similarly, systematic 

deletion of amino acid residues other than arginines and lysines one by one from the N-terminus 

in peptide 1 [peptides 37-40] were also done to get an idea about the minimal length required to 

maintain the uptake efficiency. 

Difference in the uptake behaviour and cytosolic distribution were observed with the removal of 

amino acids one by one from N-terminus or randomly in the sequence. Deletion of methionine, 

aspartic acid and cysteine showed a decrease in internalization whereas in the case of systematic 

deletions variations in the uptake efficiency of these peptides was observed (Figure 13). One 

amongst these i.e. peptide 39 showed the highest uptake efficiency and cytosolic distribution 

pattern.  
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Figure 13: Influence of deletions on internalization 

Screening of the peptides for their intracellular delivery and distribution figured out peptide 39 as 

the best mutant showing highest delivery efficiency. Therefore studies were further carried out to 

optimize this peptide. Peptide 39 will from now on be referred to as CyLoP-1 (Cytosol 

Localizing Peptide). 

2.1.9 Distinct features of CyLoP-1 

CyLoP-1 is a short cysteine rich peptide of ten amino acids showing the best internalization 

efficiency amongst all tested variants. This fragment was three amino acids shorter and more 

efficient than the initial starting sequence.  
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CyLoP-1 = Cytosol Localizing Peptide-1 

• Short peptide CRWRWKCCKK 

• Cysteine rich 

• Best internalization efficacy (of all mutants) 

• Mainly cytosolic (diffused) localization at 2.5 µM 

 

Interestingly, CyLoP-1 showed an approximately 20% more efficient uptake compared to 

peptide 1 (Figure 14) and exhibited uniformly distributed cytoplasmic fluorescence along with 

endosomal, vesicular fluorescence (Figure 15) at concentration of 2.5 µM.  

 

Figure 14:  Comparison of intracellular uptake of Peptide 1 and CyLoP-1 
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Figure 15: Intracellular fluorescence distribution of K(FITC)-coupled CyLoP-1 in 3T3 cells.  

The bright punctate and encapsulated FITC fluorescence was categorized as vesicular uptake while fluorescence 

distributed in the entire cell with similar intensity was designated as diffused. The bar represents 20 μm. 

2.1.10 Optimization of CyLoP-1 

Since CyLoP-1 showed the best results in the initial screening, further studies were carried out to 

evaluate and eventually optimize this fragment. Here again more specifically substitution of 

cysteines and tryptophans were tested along with stereochemical modifications (Figure 16). 

CRWRWKCCKK

Substitution 
of cysteine

Substitution 
of tryptophan

CRWRWKCSKK
CRWRWKSSKK
SRWRWKSSKK
SRWRWKCSKK
SRWRWKSCKK
SRWRWKCCKK

CRFRWKCCKK
CRWRFKCCKK
CRFRFKCCKK

Stereochemical changes

crwrwkcckk
kcckwrwrck

CrWRWKCCKK
CRwRWKCCKK
CRWrWKCCKK
CRWRwKCCKK
CrwrwKCCKK

CyLoP-1

 

Figure 16: Various mutations included in CyLoP-1 
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2.1.10.1 Cysteine substitution by serine residue in CyLoP-1 

The significance of cysteines for internalization in CyLoP-1 was determined by replacing 

cysteine residues with serine. Substitution of one to three cysteine(s) by serine(s) in CyLoP-1 

[peptides 41-46] revealed a regular decrease in the uptake efficiency with the number of 

cysteines being replaced. Total exchange led to a nearly complete loss of activity (Figure 17). 

Therefore, the number of cysteines in CyLoP-1 is vital for internalization and especially for 

cytosolic diffusion.  

 

Figure 17: Influence of cysteine substitution by serine in CyLoP-1 on internalization 

2.1.10.2 Tryptophan substitution 

The presence of tryptophans had been illustrated to participate in membrane permeation. Dom et 

al, 2003 showed an effect of modulating the hydrophobicity, on the cellular uptake in case of 

penetratin. Almost complete loss of internalization was observed after the change of the 

tryptophan 6 residue (W6) into a phenylalanine (W6F mutant). Tryptophans are reported to 

destabilize the membrane once the peptide is adhered to the surface (Dom et al., 2003).  

To examine these effects in CyLoP-1, replacement of one or both tryptophans by phenylalanine 

was investigated [peptides 47-49]. A decreased uptake and almost complete loss of diffusion was 

observed (Figure 18). 
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Figure 18: Influence of tryptophan substitution by serine in CyLoP-1 on internalization 

2.1.10.3 Stereochemical effects 

CPP based delivery approach is potentially hampered by the instability of the vector to 

endogenous peptidases (Wender et al., 2000). A potential solution to this hurdle could be the use 

of D-amino acids instead of the naturally occurring L-amino acids, or the use of beta-peptides 

(Rueping et al., 2002) or peptoids (Wender et al., 2000) to enhance vector stability. In this 

concern we studied further analogues of CyLoP-1 to evaluate the influence of the 

stereochemistry of the peptide backbone (enantiomeric purity of CyLoP-1 was about 95% as 

shown by GC-MS analysis on chiral phase, C.A.T. GmbH&Co, Chromatographie und 

Analysentechnik KG, Tübingen, Germany) as well as the sequence alignment. The incorporation 

of D-amino acids and reversal of the sequence (inverse isomers) of the peptide is shown to 

increase the transmembrane delivery in the case of the Tat peptide (Wender et al., 2000). 

Therefore, the D-isomer (peptide 50) and L-inverse as well as D-inverse isomers of CyLoP-1 

(peptide 51, peptide 52) were synthesized. Unexpectedly, these analogues showed reduced 

uptake by about 50% (Figure 19).  

In addition, the Arg-Trp-Arg-Trp domain of the peptide sequence seems to be a key feature in 

CyLoP-1 CPP paradigm, as indicated from the results of the SAR studies. Thus the effects of 

configurational changes were examined with restriction to this region [peptide 53-57, 102]. As a 

 
 

33 
 



result the internalization was reduced to about 40% accompanied with a decrease in cytoplasmic 

diffusion as compared to CyLoP-1. These results demonstrate that chiral inversion of the 

residues has a clear effect on cellular uptake of CyLoP-1. Unlike known CPPs, CyLoP-1 proved 

to be most efficient in its natural L-amino acid form.  

 

Figure 19: Influence of stereochemistry of CyLoP-1 on internalization 

 

 

 

 

 

 

 

 

 

 

 
 

34 
 



Table 3: List of all the synthesized peptides, the calculated and observed molecular masses are 

shown. X= α-amino-n-butyric acid. All peptides were elongated with K or k FITC at the N-terminus. 

Intracellular fluorescence intensity values in NIH/3T3 cells were measured after a labeling period of 18 h at 2.5 µM. 

D-amino acids are represented in lower case.  

Peptide Sequence 
Molecular weight 

Intracellular 
fluorescence intensity 

[corr. f.u.] % of CyLoP-1 
   Expected 
   (M+H)+ 

   Observed 
   (M+H)+ 

Mean 
 

SEM 

       

1 KMDCRWRWKCCKK 

Peptide 1 

2288.7 2288.6 3176 271 78 

2 KMDCRWRWKCSKK 2272.7 2274 2335 99 58 

3 KMDCRWRWKSCKK 2272.7 2274.4 1188 398 29 

4 KMDSRWRWKCCKK 2272.7 2274.4 987 181 24 

5 KMDCRWRWKSSKK 2256.6 2257.2 615 87 15 

6 KMDSRWRWKSCKK 2256.6 2257.6 856 171 21 

7 KMDSRWRWKCSKK 2256.6 2259 1244 350 31 

8 KMDSRWRWKSSKK 2240.5 2240.8 496 156 12 

9 KMDCRWRWKCXKK 2142.5 2143.6 1542 433 38 

10 KMDXRWRWKCCKK 2270.7 2272 1943 114 48 

11 KMDXRWRWKXCKK 2252.6 2253.2 734 149 18 

12 KMDXRWRWKCXKK 2252.6 2253.8 2816 317 70 

13 KMDXRWRWKXXKK 2234.6 2236 162 74 4 

14 KMDCRWRWKCKK 2185.6 2186.4 1516 181 37 

15 KMDCRWRWKKK 2082.4 2084.7 1202 218 30 

16 KMDRWRWKKK 1979.3 1979.6 100 50 2 

17 KMDCRWRPKCCKK 2199.6 2200 1272 255 31 

18 KMDCRPRPKCCKK 2110.5 2110.8 347 68 9 

19 KMDXRPRPKCCKK 2092.5 2092.8 251 62 6 
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20 KMDXRPRPKXCKK 2074.4 2074.6 222 8 5 

21 KMDXRPRPKCXKK 2074.4 2075.8 257 12 6 

22 KMDCRPRPKXCKK 2092.5 2093.6 294 33 7 

23 KMDCRPRPKCXKK 2092.5 2092.8 353 15 9 

24 MDCRWRWKXCKK 2142.5 2142 1937 335 48 

25 MDCRWRWKXXKK 2124.5 2124.8 1256 187 31 

26 DCRWRWKXCKK 2011.3 2013 1741 427 43 

27 DCRWRWKCXKK 2011.3 2011.6 943 313 23 

28 DCRWRWKXXKK 1993.3 1993.8 872 554 22 

29 CRWRWKXCKK 1896.2 1897 2044 408 50 

30 CRWRWKCXKK 1896.2 1896.6 1347 171 33 

31 CRWRWKXXKK 1878.2 1880 1390 199 34 

32 RWRWKXCKK 1793.1 1793.1 1211 529 30 

33 RWRWKXXKK 1775 1776.2 405 109 10 

34 KDCRWRWKCCKK 2157.5 2159.2 1043 137 26 

35 KCRWRWKCCKK 2042.4 2043 1583 246 39 

36 KRWRWKCCKK 1939.3 1940.8 1226 120 30 

37 MDCRWRWKCCKK 2160.5 2162 3344 374 83 

38 DCRWRWKCCKK 2029.3 2031 1909 272 47 

39 CRWRWKCCKK 

CyLoP-1 

1914.3 1914 4050 322 100 

40 RWRWKCCKK 1809.1 1811.3 1511 256 37 

41 CRWRWKCSKK 1898.2 1899 2172 597 54 

42 SRWRWKCCKK 1898.2 1898.6 1867 367 46 

43 SRWRWKCSKK 1882.1 1881.9 572 94 14 

44 SRWRWKSCKK 1882.1 1882.4 475 77 12 
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45 CRWRWKSSKK 1882.1 1882.6 415 109 10 

46 SRWRWKSSKK 1866.1 1866 193 89 5 

47 CRFRWKCCKK 1875.2 1875.6 2656 320 66 

48 CRWRFKCCKK 1875.2 1875.8 2476 382 61 

49 CRFRFKCCKK 1836.2 1836.8 2569 197 63 

50 KKCCKWRWRC 1914.3 1914.8 2109 503 42 

51 crwrwkcckk 1914.3 1914.9 1713 148 52 

52 kcckwrwrck 1914.3 1914.9 1449 295 36 

53 CrWRWKCCKK 1914.3 1916 1529 163 38 

54 CRwRWKCCKK 1914.3 1914.8 1229 40 30 

55 CRWrWKCCKK 1914.3 1915 1304 345 32 

56 CRWRwKCCKK 1914.3 1915.8 1412 456 35 

57 CrwrwKCCKK 1914.3 1915 1488 360 37 

 

2.2 Discussion 

Different mutants of Peptide 1 were synthesized by Fmoc/tBu strategy. All variants were labeled 

with FITC at the N-terminus on the ε-amino group of the linker lysine. Synthesis was optimized 

to ensure minimal racemization which is a serious problem in case of cysteine rich peptides. 

Choice of coupling agents comprising of DIC/HOBt was suggested to minimize racemization 

(Hans et al, 1997) thus it was used in the synthesis of the peptides. In order to maintain the 

reduced state of cysteines, proper choice of the cleavage cocktail was also optimized. Thus, the 

choice of scavengers like EDT was considered. Apart from maintaining the reduced state it is 

also know to be an extremely good scavenger for tert-butyl cations released during the cleavage 

of the peptide. It also helps to remove the trityl protecting group and prevents acid catalyzed 

oxidation of tryptophan residues. On the other hand, prolonged exposure of tryptophan 

containing peptides to EDT/ TFA mixtures could lead to enhanced substitution of mercaptan into 

the indole nucleus (Johnson et al., 1991). Therefore exposure of the peptide to cleavage cocktail 

was limited to 60-90 min. As the peptide sequence is rich in tryptophan and cysteine one could 
 
 

37 
 



think about tert-butyl cation being scavenged by these residues. De La Torre and Andreu, 2008, 

showed the effect of the ether on alkylation of peptide and PNA sequences. They showed that the 

tert-butyl cation could be released from the butyl based protecting group but also during MTBE 

workup as MTBE can undergo cleavage under the strong prevailing acidic cleavage conditions. 

Thus, for sequences with increasing number of aromatic residues (PNA monomers) or alkylation 

prone residues (Trp, Tyr, Cys, and Met) the use of DEE over MTBE was strongly recommended.  

Therefore, DEE was preferred over MTBE as precipitating agents in our studies. However no 

significant difference was observed in the reduction if tBu cation irrespective of the used ether. 

Different methods to reduce the TFA content in the peptides were also optimized. FITC labeled 

mutants of peptide 1 were screened as crude products (purity >85%) for intracellular uptake and 

distribution by fluorescence spectroscopy and microscopy. 

Peptide 1 consists of amino acids like methionine, cysteines, tryptophans that are more prone to 

side reactions like oxidation, racemization and tert-butylation (Siedler et al., 1996; Huang et al., 

1999; Wünsch et al., 1977; Giraud et al., 1999). Thus, in order to reduce the side products, SAR 

studies were performed by substituting and/or deleting these amino acids to achieve and optimal 

sequence. Variants with cysteines substitutions (with serine or Abu) and deletions were 

synthesized. Serine is a highly isosteric analogue of cysteine in terms of geometry and volume 

occupancy therefore generally used as cysteine substituent for structure activity relationship 

studies (Moroder et al., 2005). Abu is also shown to be isosteric with cysteine (Karim et al., 

2001) and generally used as a substituent for cysteines. Substitutions by serine or Abu reduced 

the cellular uptake and cytosolic distribution. These results were in concordance with the results 

obtained by deletion of cysteines. Thus it can be concluded that cysteines are important as well 

as their number and location in the peptide also plays an important role in maintaining their 

function. Replacement or deletion of amino acids like cysteine and tryptophans negatively 

affected uptake and distribution pattern indicating that these amino acids are substantial in the 

sequence. The considerable hydrophobicity provided by tryptophans adds to the positive charge 

of the sequence. The high intracellular delivery and distribution might be the combined effect of 

both factors and could be involved in the mechanism of membrane penetration.  

SAR studies resulted in, CyLoP-1, showing the best cellular internalization and cytosolic 

diffusion at low concentrations of 2.5 µM. CyLoP-1, a small cysteine rich decapeptide, is active 
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in its native L-form. Contrary to the Tat peptide, where the incorporation of D-amino acids and 

reversal of the sequence (inverse isomers), showed increase in internalization (Wender et al., 

2000), CyLoP-1 showed reduction in the cellular uptake of such variants. Thus, a negative effect 

of the stereochemical modification and sequence reversal was observed in case of CyLoP-1. 

Reduced cytosolic distribution and uptake by substitution of tryptophan with phenylalanine also 

signifies the substantial role played by the tryptophan residues. Results suggest that not only the 

presence but also the number of tryptophans are inevitable to maintain the required 

hydrophobicity and well functioning of CyLoP-1 

Assuming both positive charge and hydrophobicity as key requirement for the internalization, 

uptake of CyLoP-1 can be divided in a two step process. First, the interaction of the peptide with 

the cell surface which is dependent on the charge neutralization as well as hydrophobicity (Dom 

et al., 2003) followed by membrane destabilization and penetration. Reduction in the uptake and 

distribution profiles of the stereochemical analogues of CyLoP-1 also gives an indication of the 

specific orientation required for the facile permeation or the involvement of the receptors in the 

uptake of CyLoP-1. The molecular mechanism for the uptake of CyLoP-1 has not been 

determined yet but cytosolic diffusion may be the result of either direct uptake of the peptide or 

due to release from endosomes because of membrane disruption.  

Because of the high reactivity of the thiol side chain, cysteine constitutes an important structural 

and functional component of proteins. The disulphide linkages within a polypeptide chain offer a 

secondary structure to the protein. Thus the role of cysteine in the peptide sequence is of shell 

importance and should be well considered. Though cysteine containing peptides increases 

complexities during synthesis and storage but adds to the differences in the biological activity 

when they are present in reduced or oxidized forms. The replacement of cysteine residues in 

CyLoP-1 by its isosteric analogues serine and Abu, showed a significant decrease in the uptake 

and distribution inside the cell implying the importance of cysteine in CyLoP-1. Thus not only 

the number of cysteine but also the position of cysteine residues in the sequence is of paramount 

importance. Hence in our case, it has been found that CyLoP-1 actually requires all three 

cysteines and two tryptophans to show optimal internalization properties. 

Therefore one could foresee the role played by the cysteine residues in membrane permeation. 

They could be involved in the cross linking with the serum proteins at physiological conditions 
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conferring a special structure enhancing the uptake. NMR studies however show that no definite 

structure was obtained by CyLoP-1 at pH 4 or pH 6.5 in aqueous solution. Presuming the effect 

of oxidation on the uptake mechanisms further studies were done to elucidate this concept. 

2.3 OXIDATION STUDIES 

Disulphide bonds are the essential structural element in extracellular peptides and proteins (eg. 

toxins, enzymes inhibitors, growth factors). They impart considerable conformational restraints 

and serve to induce and maintain bioactive foldings. Intramolecular disulphides could covalently 

crosslink the far regions of a linear polypeptide sequence giving it a close three-dimensional 

structure. Intermolecular cysteines lead to cysteine networks (from isomeric to polymeric 

products). Complexities increases with increasing the number of cysteines. Regioselective 

disulphide formation is still a challenge in the synthesis of cysteine containing peptides and 

proteins. Intermolecular oligomerizations often lead to low yields, disulphide scrambling as well 

as modifications of the side chain of sensitive amino acids. Careful experimental conditions are 

required for accomplishing the correct folding.  

As CyLoP-1 is rich in cysteines there are number of potential intra and intermolecular cysteine 

connectivities. CyLoP-1 consists of three cysteines at positions 1, 7, 8 bearing a pair of adjacent 

cysteines. The chance of intramolecular disulphide linkage is relatively rare unless both the 

cysteines are present in the cis-form which is thermodynamically favorable. In order to 

comprehend the role of cysteine on the uptake efficiency various disulphide analogues of 

CyLoP-1 were synthesized (Table 4). 

2.3.1 Results 

2.3.1.1 Synthesis 

The synthesis scheme was not changed to generate these peptides with the exception of the 

protecting groups used for the cysteine side chain protection. In case of the reduced peptides 

Fmoc-Cys(Trt)-OH was used as a common protecting group for sulphydryl groups. But in case 

of the oxidized peptides different protecting groups were used in order to specifically cleave and 

oxidize two cysteines without affecting the third one. 

 
 
 

40 
 



2.3.1.1.1 Synthesis of tBu protected CyLoP-1 peptides 

Syntheses of tBu protected peptides were done on solid phase by the general scheme discussed in 

the experimental section. Different cysteine side chain protecting groups were used at different 

position in order to achieve the defined product. Fmoc-Cys(tBu)-OH is stable to TFA cleavage 

conditions, therefore, Fmoc-Cys(Trt)-OH along with the cysteine tert butyl derivative was used 

for this synthesis. After synthesis, peptides were cleaved off the resin by Reagent K, containing 

EDT, yielding the reduced protected product.  
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Table 4: Synthesized combinations of intramolecular disulphide linkages in CyLoP-1 

S.No. Sequence 

1. 
K(FITC)-C-R-W-R-W-K-C-C-K-K

S(tBu) S(tBu)
S(tBu)  

2. 
K(FITC)-C-R-W-R-W-K-C-C-K-K

S(tBu)  

3. 
K(FITC)-C-R-W-R-W-K-C-C-K-K

S(tBu)  

4. 
K(FITC)-C-R-W-R-W-K-C-C-K-K

S(tBu)  

5. 
K(FITC)-C-R-W-R-W-K-C-C-K-K

S S S(tBu)  

6. 

K(FITC)-C-R-W-R-W-K-C-C-K-K

S S
S(tBu)  

7. 
K(FITC)-C-R-W-R-W-K-C-C-K-K

S SS(tBu)  

8. 
K(FITC)-C-R-W-R-W-K-C-C-K-K

S S  

9. 
K(FITC)-C-R-W-R-W-K-C-C-K-K

S S  

10. 
K(FITC)-C-R-W-R-W-K-C-C-K-K

S S  

 

On the other hand, for the synthesis of oxidized protected peptides oxidation has to be performed 

on resin before cleavage. Therefore the side chain protecting groups of cysteines were changed. 
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Synthesis was performed by using two Fmoc-Cys(Acm)-OH which can be oxidized on resin by 

iodine treatment and the third cysteine was still protected by Fmoc-Cys(tBu)-OH which is stable 

to iodine treatment. Finally; after oxidation peptide was cleaved by TFA: TIPS: water (Figure 

20). The cleavage cocktail was changed here in order to maintain the oxidized state of the 

cysteine which is not possible in case of Reagent K due to the presence of EDT. 

K(FITC)-C R W R W K C C K K

K(FITC)-C R W R W K C C K K

S S

K(FITC)-C R W R W K C C K K

S S

I2  in DMF/H20

TFA:TIPS:Water

tBu

tBu

tBu

 

Figure 20: Scheme for the synthesis of protected oxidized peptides 

2.3.1.1.2 Synthesis of the oxidized peptides 

Syntheses of defined oxidized peptides were done by two different schemes discussed 

individually: 

2.3.1.1.2.1 Scheme 1 

In this case Fmoc-Cys(Mmt)-OH and Fmoc-Cys(Acm)-OH were used in order to achieve 

defined disulphide linkages. Fmoc-Cys(Acm)-OH can be selectively oxidized by iodine in 

DMF/water and finally the peptide was cleaved from the resin by TFA:TIPS:water (95:2.5:2.5) 

(Figure 21). 
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K(FITC)-C R W R W K C C(Mmt) K K

K(FITC)-C R W R W K C C(Mmt) K K

S S

K(FITC)-C R W R W K C C K K

S S

I2 (10 eq ) DMF/H20

TFA:TIPS:Water

Figure 21: Schematic representation of defined disulphide linkages 

2.3.1.1.2.2 Scheme 2 

Peptides were synthesized with cysteines protected with two Mmt groups and one trityl group at 

indicated positions (Figure 22). Mmt group can be selectively cleaved by 1% TFA whereas trityl 

group is cleaved only under 95% TFA. Therefore, Mmt group was cleaved with DCM/TFA/TIPS 

(94:1:5) in nitrogen atmosphere for 5 min (3×). As reported by Wacker et al., 2008, cyclization 

was performed by air oxidation, bubbling air through the resin in N-methylpyrrolidone with 0.1 

TEA for 3 days. Peptides were cleaved from the resin by TFA: TIPS: water (95: 2.5: 2.5) for 2 h, 

followed by purification and analysis. Cyclized fractions were identified by ESI-MS showing 

reduction of molecular mass by two units compared to the reduced form. 
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K(FITC)-C R W R W K C C K K

Mmt

Trt

Mmt Mmt Removal
DCM/TFA/TIPS(94:1:5)

K(FITC)-C R W R W K C C K K

Trt

Cyclization by air oxidation
Cleavage

K(FITC)-C R W R W K C C K K

S

SH SH

S
 

Figure 22: Schematic representation of defined disulphide linkages 

2.3.2 Internalization studies 

The cellular uptake and cytosolic distribution was reduced for the tBu protected CyLoP-1 

compounds compared the cyclized tBu CyLoP-1 analogues (data not shown). However tBu 

protected CyLoP-1 (cyclized or noncyclized) showed comparatively lower internalization in 

comparison to the CyLoP-1 itself. 

The three combinations with specific disulphide bridges CyLoP-1 (S1-S7), CyLoP-1 (S1-S8), and 

CyLoP-1 (S7-S8) were synthesized. Results show better internalization of the oxidized forms 

compared to the reduced CyLoP-1. Amongst the three oxidized mutants of CyLoP-1 the 

compounds S7 (ox. CyLoP-1(C1-C7)) and S8 (ox. CyLoP-1(C7-C8)) showed significantly higher 

uptake and exclusively high cytosolic distribution compared to the other analogues (Figure 23).  
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Figure 23: Comparison of internalization efficiency of reduced and oxidized analogues of 

CyLoP-1 

2.3.3 Discussion 

As concluded from the SAR studies cysteines were inevitable in CyLoP-1 for the internalization. 

Therefore, cysteines might be involved in the mechanism of uptake. To visualize the role of 

oxidation in uptake and distribution inside the cell, participation of the cysteine residues in the 

cystine formation need to be investigated. Due to the presence of three cysteines there are 

considerable chances of disulphide scrambling at physiological conditions. Thus, studies were 

initiated with one cysteine selectively protected with tBu amongst three in CyLoP-1 and the 

other two involved in disulphide formation. This will reduce the chance of disulphide 

scrambling. 

Various combinations with one cysteine protected with tBu were synthesized in reduced and 

oxidized form and tested for their uptake. Cellular uptake as well as cytosolic gain of the peptide 

was reduced when cysteines were present in protected form. Nevertheless, the peptides with 

intramolecular disulphide bonds were better internalized and distributed in cytoplasm compared 

to its reduced form, thus, highlighting the participation of oxidation in the uptake process. 

Though the scheme of synthesis was directed for the defined cysteine linkages, still the 
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formation of inter-molecular disulphides could not be excluded, thus, increasing the complexity 

of purification and analysis.  

2.4 EFFECT OF FLUOROPHORES ON INTERNALIZATION 

In order to quantify the import efficiency of CPPs, fluorophores generally serve as the reporter 

unit. Fluorophores covering the visible spectral range with different spectral properties are 

available. The differences in the spectral characteristics also provide an opportunity for dual or 

triple labeling of the peptides. For the purpose of tracking the intracellular distribution of CPPs 

dyes like fluorescein or TAMRA are generally used. Therefore, studies were carried out with 

FITC, carboxyfluorescein (CF), TAMRA derivatives of CyLoP-1 in order to study the influence 

of position and nature of fluorophore on internalization. 

2.4.1 Results 

2.4.1.1 Fluorophore at N or C terminus 

To investigate the effect of dye in the sequence, FITC was coupled to CyLoP-1 at N-terminus 

and C-terminus [sample 1 and 2, Table 5]. A significant reduction in the internalization was 

observed for the C-terminal labeled peptide (Figure 24). Thus, fluorophore location affected 

significantly the cellular uptake and cytosolic localization.  

 

Figure 24: Influence of location of fluorophore (terminus) in CyLoP-1 on internalization 
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Table 5: List of CyLoP-1 coupled to various fluorophores 

S. No. Fluorophore Terminus Sequence 

1 FITC 
N-terminal(ε-

position of 
lysine) 

K(FITC)-
CRWRWKCCKK 

2 FITC 
C-terminal (ε-

position of 
lysine) 

KCRWRWKCCK(FITC)K

3 Carboxyfluorescein(CF) N-terminal (α- 
position) (CF)-KCRWRWKCCKK 

4 Carboxyfluorescein 
N-terminal (ε- 

position of 
lysine) 

K(CF)-CRWRWKCCKK 

5 FITC 
N-terminal(ε-

position of 
lysine) 

K(FITC)-
CRWRWKCCKK 

6 TAMRA N-terminal (α-  
position) 

(TAMRA)-
KCRWRWKCCKK 

7 TAMRA 
N-terminal (ε- 

position of 
lysine) 

K(TAMRA)-
CRWRWKCCKK 

8 FITC, TAMRA 
TAMRA-N-

terminus, FITC-
C-terminus 

K(TAMRA)-
CRWRWKCCK(FITC)K 

   

2.4.1.2 Position of fluorophore (amino group of N-terminal lysine) 

To determine the optimal position i.e. α- or ε-position of N-terminal lysine of CyLoP-1 

conjugates with carboxyfluorescein labeled at either one position were synthesized [sample 3, 4, 

Table 5]. A significant influence of the position of selected amino group on the intracellular 

delivery was observed (Figure 25). K(ε-CF)-CyLoP-1 showed higher uptake compared to similar 

FITC analogue. Comparison of CF labeled peptides with and without a linker lysine, CF-K-

CyLoP-1 and CF-CyLoP-1, a strong reduction in the activity was observed in case of CF-
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CyLoP-1. Thus all the analogues were synthesized with labeling at the ε-position of lysine to 

keep the α-amino group free for the attachment of the cargos to the peptide. 

 

Figure 25: Influence of the fluorophore position in CyLoP-1 on internalization 

2.4.1.3 Nature of fluorophore 

Charge and hydrophobicity of fluorophore is known to have an impact on the efficiency of 

internalization (Derossi et al., 1994; Futaki et al., 2001). On this basis the effect of dyes with 

different physicochemical properties on the ability of penetration was investigated. A set of 

analogues of CyLoP-1 with different reporters (FITC, carboxyfluorescein, TAMRA) were 

synthesized. A significant difference was observed in the distribution pattern of CyLoP-1 labeled 

with FITC, carboxyfluorescein or TAMRA indicating the dependence of the physiochemical 

properties of the dyes on the uptake of the CPP conjugates.  

The cytosolic distribution pattern was different for fluorescein and TAMRA conjugates. FTIC 

and carboxyfluorescein labeled peptides were distributed both in cytosol as well as embraced in 

the vesicles whereas TAMRA labeled peptides were exclusively entrapped in the endosomes. 

This observation was in accordance with results reported by Fischer et al. 2002.  
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The distribution pattern differed according to the structure of the dye as seen in case of FITC, 

CF, and TAMRA labeled peptides. A switch to exclusively vesicular uptake was observed with 

the TAMRA labeled peptide.  

2.4.1.4 Dual labeling 

Dual labeling of the CPP was described for the simultaneous detection of two fluorophore on a 

CPP with within a single cell (Fischer et al 2006). Here they visualize the concept of protease 

activity in the endosomal pathway with the help of two reporter units. Based on similar concept 

CyLoP-1 was synthesized with two fluorophores at both ends in order to study the degradation of 

the peptide. Chasing experiments were performed by incubating peptides with FITC or TAMRA 

labeled peptide alone as well as with the dual labeled peptide and various time points.  

2.4.2 Discussion 

Fluorescence based methods suffer from various drawbacks questioning their utility. For 

example fluorophore affects the intracellular distribution (Fisher et al., 2002), uptake and 

cytotoxicity (Andaloussi et al., 2007). Localization of fluorophore peptide conjugate within the 

cell does not necessarily correlate with the actual bioavailability of the cargo inside the cell 

(Lundberg et al., 2007; Lundin et al., 2008). Nevertheless fluorescence based techniques are 

equally applied to track the intracellular distribution of the molecules covering the wide spectral 

range. The uptake and distribution of the fluorescein (FITC, CF) and TAMRA conjugates of 

CyLoP-1 was studied. The fluorescein differs from TAMRA in being negatively charged 

whereas the latter being zwitter ionic.  

Position of the fluorescein in the peptide seems to be important as indicated by the uptake 

studies. K(ε-CF)-CyLoP-1 was better internalized compared to K(ε-FITC)-CyLoP-1. On the 

other hand when position of CF was changed to α-amino group the uptake efficiency decreased 

indicating an effect of the position of the fluorophore position on the uptake. FITC was 

substituted by carboxyfluorescein as the former is prone to Edman Degradation if coupled at the 

α-NH2 group and when treated with TFA. Upon comparison of carboxyfluorescein labeled 

peptides CF-K-CyLoP-1 and CF-CyLoP-1 a reduction in the activity was observed for CF-

CyLoP-1. The cysteine side chain adjacent to the bulky and hydrophobic fluorescein group might 

hinder the function of the cysteine thiol group which is not the case in CF-K-CyLoP-1 where a 
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lysine linker separates the peptide and the dye. Influence of the dye on the structure of CyLoP-1 

was observed in the NMR spectra of CyLoP-1 and K(FITC)-CyLoP-1: They indicated that the 

introduction of the dye orients the peptide to a spatial arrangement. A well defined structure was 

not obtained in both the cases. But an effect on the internalization behavior was observed. 

Internalization as well as cytosolic diffusion is more pronounced with the dye conjugated at N-

terminus of the peptide compared to the C-terminus. These results indicate that not only the 

terminus but also the availability of the α-amino group influences the uptake and intracellular 

distribution of the peptide. 

The distribution pattern differed according to the nature of the dye as seen in the cases of FITC, 

CF, and/or TAMRA labeled peptides. A switch to exclusively vesicular uptake was observed in 

case of all TAMRA labeled peptide. Fluorophores might differ in their physicochemical 

properties rendering the difference in their uptake behavoiur. 

2.5 COMPARISON OF UPTAKE EFFICIENCY OF CyLoP-1 WITH OTHER CPPs 

CPPs like Tat, penetratin and oligoarginines are widely studied as delivery vectors for a variety 

of cargos (Dietz et al., 2004). Tat and octaarginines are highly cationic whereas penetratin and 

CyLoP-1 apart from being positively charged are rich in hydrophobic residues. Verification of 

the carrier ability of CyLoP-1 was done by comparing with the well characterized CPP (Tat, 

penetratin, octaarginines) (Table 6). Accumulative evidences showed D-Tat 49-57, D-Tat 57-49 and 

D-R8 to be better internalized in comparison to their native L-form (Wender et al., 2000). 

Therefore, these peptides were synthesized as their D-analogues. To avoid the discrepancies of 

the results all peptides were synthesized in parallel and analysed under similar experimental 

conditions.  
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Table 6: List of the CPPs synthesized 

S. No. CPP Sequence 

1 Octaarginine rrrrrrrr 

2 D-Tat 49-57 rkkrrqrrr 

3 D-Tat 57-49 rrrqrrkkr 

4 Penetratin RQIKIWFQNRRMKWKK 

 

These most studied CPPs were less internalized compared to CyLoP-1 at 2.5 µM and with 

predominantly vesicular distribution. At concentrations above 10 µM, cytosolic distribution was 

also seen in such peptides (Duchardt et al., 2007) whereas CyLoP-1 was proficiently taken up by 

cells at a subtoxic concentration of 2.5 µM (Figure 26), interestingly showing cytosolic 

distribution along with vesicular uptake. Other distinctive features were the influence of the 

chirality of amino acids as well as the sequence order on the cellular uptake. The L-amino acid 

stereoisomer of CyLoP-1 was better internalized and localized in the cells compared to the D-

isomer analogues with reversed sequence.  

 

Figure 26: Comparison of internalization efficiency of CyLoP-1 and other known CPPs 
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2.6 SUMMARY 

A series of peptides was synthesized by continuous solid phase peptide synthesis. FITC was 

coupled to each peptide as optical reporter for the detection of intracellular uptake and 

distribution by fluorescence spectroscopy and microscopy. The influence of chemical properties 

of the side chain functionalities of amino acids on internalization and distribution was compared 

in SAR studies. SAR studies resulted in CyLoP-1, showing the best intracellular delivery in 

NIH/3T3 cells at 2.5 µM and specifically cytosolic diffusion along with vesicular uptake.  The 

role of amino acids like cysteine and tryptophan in peptides was critical for biological effects. 

Complete removal of cysteines resulted in almost complete loss of cellular uptake and cytosolic 

diffusion. Similar behavior was observed by substitution of tryptophans by phenylalanine.  

CyLoP-1 was better internalized in its native L-form compared to its stereochemical analogues 

stating the influence of the role of chirality of peptide backbone on the internalization ability. 

Modifications of the peptide sequence had a direct effect on the uptake and distribution 

indicating the participation of the chemical properties of different side-chains of the amino acids. 

Not only the chemical nature but also the spatial arrangement of these amino acids played a 

significant role in maintaining the properties of CyLoP-1.  

The role of cysteines was further elucidated by comparing the internalization efficiency of the 

reduced as well as oxidized CyLoP-1. Therefore, the three possible intramolecular cystine 

bridges of CyLoP-1 were synthesized and it was observed that the oxidized form of CyLoP-1, 

especially Ox-CyLoP-1 (C1-C7), was better taken up and distributed when compared to its 

reduced analogue. 

When compared to other well studied CPPs like Tat, penetratin, oligoarginines, CyLoP-1 showed 

proficient uptake and cytosolic distribution with endosomal uptake at concentrations as low as 

2.5 µM accompanied by cytosolic distribution unusual for other CPPs at this concentration. 

The application of CyLoP-1 as a delivery vector to transport different sizes of cargos inside the 

cell was further studied and is discussed in the next part of the thesis. 

 

 

 
 

53 
 



 
 

54 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

PART 3 

APPLICATION OF CyLoP-1 AS A DELIVERY TOOL 
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3.1 EFFICIENT INTRACELLULAR DELIVERY OF A MR IMAGING    

PROBE BY CyLoP-1 

3.1.1 Introduction 

Magnetic Resonance Imaging (MRI) has emerged as an important noninvasive medical 

diagnostic tool for molecular imaging in the past decades. In order to amplify the differences in 

signal intensities from normal and diseased tissues, so-called contrast agents (CAs) are used. 

MRI CAs are usually compounds capable of altering the relaxation times of the water protons in 

the surrounding they are taken up. The term relaxivity is generally used to express the efficiency 

of an MRI CA. By definition, relaxivity is the ability of 1 mM CA to shorten the relaxation time 

(Frullano et al, 2004). Relaxivity results from an electron-nuclear dipolar interaction between the 

paramagnetic metal complex and the water molecules either bound in the inner coordination 

sphere of the metal ion (inner-sphere relaxivity) or due to the bulk water in the vicinity of the 

complex (outer-sphere relaxivity). The contribution of the inner-sphere is influenced by the 

rotational correlation time, the water/proton exchange rate, the hydration number and the 

longitudinal and transverse relaxation rates of the Gd(III) electron spin. Generally used CAs are 

complexes of Gd(III) because of its high magnetic moment and long relaxation times. Due to the 

toxic nature of free Gd(III) it is complexed with suitable ligands to avoid free Gd(III) and by this 

reduce toxicity. In this respect, macrocyclic metal chelates are often used in order to study in 

vivo pharmacokinetics.  

Common CAs are restricted to extra-organ and extracellular regions. Nevertheless, various 

intracellular CAs with a variety of applications were also reported (Su et al., 2007; Wolf et al., 

2007; Mier et al., 2004, Hyodo et al., 2006). The major hurdle in the development of MR 

contrast agents for the detection of intracellular processes is the intracellular delivery of the 

agent. In order to facilitate intracellular delivery, MR reporters (i.e. the Gd(III)-complex) could 

be coupled to so-called cell penetrating peptides (CPPs). Gd-DOTA or Gd-DTPA conjugated 

bound to CPPs like arginines and Tat have been widely studied (Pranter et al., 2003; Allen et al., 

2004).  

Other than these, numerous other applications have been investigated for multimodality imaging 

studies (Zhang et al., 2005). 
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Intracellular targeted CAs not only requires a high intracellular accumulation, high relaxivity but 

also specific biochemical interactions. As a proof of principle, one of the first examples was 

“EgadMe”, a β–galactosidase responsive CA (Louie et al., 2000). With “EgadMe” an increase in 

relaxivity was observed as result of the removal of galactopyranose by the activity of the beta-

galactosidase enzyme. This allowed an exposure to an additional coordination site for water 

exchange in the Gd-complex, thus increasing relaxivity. As mentioned above, this model 

suffered from the limitation of intracellular delivery which is one of the prerequisite for the 

success of this model. Such obstacles can be overcome by CPPs that have been proben to be 

efficient carriers for transmembrane delivery for a variety of cargoes attached to them (Zorko et 

al. 2005; Langel et al. 2001). 

In order to simplify the concept of intracellular delivery, CPPs with a MR-reporter were first 

standardized without a targeting moiety. In these cases the intracellular delivery and relaxivity 

studies were performed with several CPPs (Allen et al., 2004; Pranter et al., 2003). Although, 

such conjugates showed sufficiently high relaxivities, they were mostly restricted to cellular 

vesicles, i.e endosomes and lysosomes. This endosomal entrapment is a major hurdle for a 

molecule with a cytosolic target. Therefore, next to intracellular delivery it is also desirable to 

achieve access to the cytosol.  

In this second part of the study, the work is focused on the synthesis of a bimodal intracellular 

CA applying CyLoP-1 as a delivery tool coupled to DOTA as gadolinium chelator for MRI and 

FITC as an optical reporter molecule. The coupling of a fluorophore allows the visualization of 

intracellular uptake and distribution via fluorescent microscopy while the MR reporter enables 

target tracking by MRI. Confirmations of intracellular delivery by fluorescence spectroscopy and 

microscopy and relaxivity-studies are discussed herein. 

 
3.1.2 Results 

3.1.2.1 General synthesis 

Continuous Fmoc SPPS was used to synthesize CyLoP-1 on preloaded 2-chlorotrityl resin using 

DIC/ HOBT mediated coupling chemistry (Figure 27). Fmoc deprotection was performed twice 

by 20 % piperidine in DMF for 10 min. CyLoP-1 was N-terminally elongated by Fmoc-Lys 

(Dde) for orthogonal coupling of two different reporter molecules. To synthesize the peptide-

based intracellular CA, carboxylate of DOTA was coupled to the free alpha amino group of the 
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peptide at the N-terminus after removal of the Fmoc protecting group. Similarly, selective 

removal of the Dde group by 2% hydrazine in DMF resulted in a free amino group, now readily 

available to couple a fluorescein moiety. FITC was coupled in the presence of TEA (FITC: TEA, 

1:2) in DMF overnight. Completeness of coupling and deprotection was confirmed by the Kaiser 

Test. The peptide was cleaved from the resin with a cleavage cocktail of TFA (8.5 ml), Reagent 

K (1.45 ml) and TMSBr (0.05 ml) for 2 h. The filtrate was triturated in DEE two times and then 

freeze-dried. Finally the conjugate was purified by preparative HPLC and the product was 

analysed by ESI-MS. 
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Figure 27: Route for synthesis of (Gd)-DOTA-K(FITC)-CyLoP-1. 

3.1.2.2 Gadolinium loading 

The purified ligand was dissolved in water and the pH was adjusted to ~ 6.5 with NaOH 

followed by addition of GdCl3.6H2O. The solution was stirred for 8 h at 45 °C and then 

overnight at room temperature. The pH was periodically checked to be maintained between 6-6.5 

with 1 N NaOH or 1N HCl as required. After Gadolinium loading the sample was purified again 

by HPLC with 0.05 % TFA in ACN/water and then analysed with ESI-MS. The samples were 

freeze dried yielding an orange powder. Since the samples were purified under TFA conditions it 
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is likely for TFA to bind to the positively charged amino acids. Therefore the concentration of 

the peptide was determined by UV-Vis absorption of FITC at 485nm. The similar scheme and 

the analytical conditions were adapted to synthesize octaarginine- and Tat-based CAs. 

3.1.2.3 Structure 

CyLoP-1 was covalently attached to the chelate framework to hold Gd(DOTA) and FITC at the 

α- and the ε-position, respectively of the N-terminal lysine (Figure 28).  

 

Figure 28: Schematic structure of Gd-DOTA-K(FITC)-CyLoP-1 

The success of the synthesis and purification of the CA was determined by ESI-MS and 

analytical HPLC. The detected purity was >90%. The analytical data (Figure 29) show the 

successful incorporation of gadolinium into the ligand. The molecular ion peak corresponds to a 

single gadolinium in the molecules also shown by gadolinium isotopic pattern obtained (insert). 
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Figure 29: ESI-MS of purified Gd-DOTA-K(FITC)-CyLoP-1. The detected molecular ions for Gd-

DOTA-K(FITC)-CyLoP-1 were (M+H) += 2456.5, (M+2H) 2+= 1229.3, (M+3H) 3+= 820.3, (M+4H) 

4+= 614.7. They were consistent with the calculated mass of the desired product (2454.9). 

Peaks of 390.1 and 1035.2 are fragment ions. The insertion in Figure 29 shows the gadolinium 

isotopic pattern confirming the presence of one gadolinium in the peptide construct. 

 
3.1.2.4 Internalization studies 

Coupling of Gd-DOTA to K(FITC)-CyLoP-1 only slightly decreased the uptake compared to the 

CyLoP-1 itself whereas the cytosolic localization of the conjugate was maintained (Figure 30). 

 

Figure 30: Cellular internalization of K(FITC)-CyLoP-1 with and without coupling of Gd-DOTA. 

The uptake of the conjugate, Gd-DOTA-K(FITC)-CyLoP-1 (Figure 28) was tested in NIH/3T3 

mouse fibroblast (Figure 31). Fluorescence microscopic images showed efficient uptake of this 

compound into the cells, indicating cytosolic targeting along with vesicular entrapment. 
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Figure 31: Intracellular fluorescence distribution of Gd-DOTA-K(FITC)-CyLoP-1 in NIH/3T3 cells 

after incubation of 2.5 µM for 18 h. The bright punctate and encapsulated FITC fluorescence was categorized 

as vesicular uptake while fluorescence distributed in the entire cell with similar intensity was designated as diffused. 

The bar represents 20 μm. 

Furthermore, uptake efficacy of D-octaarginine (Gd-DOTA-K(FITC)-D-R8), D-Tat (Gd-DOTA-

K(FITC)-D-Tat) and CyLoP-1 (Gd-DOTA-K(FITC)-CyLoP-1) based CAs were compared at 2.5 

μM concentration (Figure 32).  

 

Figure 32: Microscopic images of NIH-3T3 cells after loading with 2.5 µM of contrast agents A 

(Gd-DOTA-K(FITC)-D-R8), B (Gd-DOTA-K(FITC)-D-Tat), C (Gd-DOTA-K(FITC)-CyLoP-1) for 18 

hours.  The bright punctate and encapsulated FITC fluorescence was categorized as vesicular uptake while 

fluorescence distributed in the entire cell with similar intensity was designated as diffused. The bar represents 20 μm. 

Bars represent 20 µm 
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Lower and exclusively vesicular uptake was observed in case of D-octaarginine- and Tat-based 

CAs  whereas diffused along with endosomal uptake was visualized for CyLoP-1 based CA. 

Compared to another well-known CPP (D-form of the Tat-peptide) the uptake of the CyLoP-1-

coupled version was significantly higher (Figure 33). Thus, our CyLoP-1 conjugate showed a 

better uptake and a distinct distribution pattern when compared to other CPP- constructs. 

 

Figure 33: Intracellular flurescence of NIH-3T3 cells after loading with 2.5 µM of contrast agents 

Gd-DOTA-K(FITC)-D-Tat and Gd-DOTA-K(FITC)-CyLoP-1 for 18 hours. **, p<0.01, significantly 

different compared to CyLoP-1 (student’s t-test). 

3.1.2.5 Relaxivity studies 

Measurements in an aqueous solution were performed for the CyLoP-1-coupled CA at a 

magnetic field strength of 3T at room temperature. The relaxivity obtained in solution for Gd-

DOTA-K(FITC)-CyLoP-1 was 16.8 ±0.7 mM-1s-1 at 2.5 μM.  It is measured by taking the slope 

of the plot of R1 relaxation rate versus concentration.  

Cellular relaxation rates of Gd-DOTA-K(FITC)-CyLoP-1 were determined by in vitro MR 

studies. Labeling of NIH/3T3 cells with 2.5 μM of gadolinium containing conjugate was done in 

tissue culture flasks for 18 h and MR analysis of labeled cells was performed in Eppendorf tubes 

(1×107 cells /tube). Relaxation rates were obtained from axial slices as well as T1-weighted 

images of saggital slices. A continuous increase in the cellular relaxation rates was observed with 

increasing concentrations. The cellular relaxation rate R1, cell was increased to 245 and 425% of 

control at 2.5 and 5 μM, respectively (Figure 34). This resulted in a highly significant contrast 
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enhancement in MR images already at low micromolar concentrations (Figure 35) clearly visible 

in the T1-weighted images of labeled cells compared to cells without CA (tube C in Figure 35). 

Control cell images are comparatively darker than the images of the cells loaded with CA at 

different concentrations.  

 

Figure 34: Cellular relaxation rate R1,cell after labeling for 18 hours at indicated concentrations in 
µM. ***, p<0.001 significantly different compared to control (ANOVA, Bonferroni's Multiple Comparison Test). 

B C2.5 2.55  

Figure 35: Contrast enhancement of Gd-DOTA-K(FITC)-CyLoP-1 in 3T3 cells at 2.5 and 5 µM. 

T1-weighted images. B: medium blank without cells, C: unlabelled control cells. 
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3.1.2.6 Comparison with other CPP-conjugates 

The intracellular relaxation rates of the D-octaarginine-, l-Tat- and D-Tat-coupled CAs were also 

measured under the same experimental conditions like before. The CyLoP-1 conjugate showed a 

significantly higher contrast enhancement than the other CAs (Figure 36). 

co
ntro

l

CyL
oP-1

d-R
8

49
-57

l-T
at 57

-49

d-Tat

0

100

200

300
***

Gd-DOTA-K(FITC)-peptide

R
1,

ce
ll 

[%
 o

f c
on

tr
ol

]

 

Figure 36: Contrast enhancement of Gd-DOTA-K(FITC)-CyLoP-1 compared to three other well-

known CPP-conjugates in 3T3 cells. Cellular relaxation rate R1, cell after labeling for 18 hours at 

2.5 µM. ***, p<0.001 significantly different compared to CyLoP-1 (ANOVA, Bonferroni's Multiple Comparison Test). 

 
3.1.3 Discussion 

3.1.3.1 Tert-Butylation 

Tert-butylation was a problem during the synthesis of Gd-DOTA-K(FITC)-CyLoP-1 and 

affected the yield of the product. Various conditions were tested to reduce the extent of side 

product formation. 

• Choice of cleavage cocktail- 

Use of two different cleavage cocktails (Reagent K and TFA: TMSBr: Reagent K). 

Reagent K alone gave a continuation of symmetrical peaks in ESI-MS spectra of the 
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product corresponding to +1tBu, +2tBu whereas this side product could be reduced by 

substituting reagent K with TFA: TMSBr: Reagent K.  

• Choice of ether 

Another aspect was the choice of the ether when DEE was applied as a precipitating 

agent. It showed reduction in the side product formation compared to MTBE. 

• Resin quantity 

Another way to reduce the tert-butylated product is the cleavage of the resin in small 

portions.  

The above optimizations resulted in significant decrease in the tert-butylated side product. 

3.1.3.2 Removal of excess gadolinium 

Excess gadolinium was a problem in context of cytotoxicity and erroneous high relaxivity 

values. Therefore, in order to assure complete removal of unbound gadolinium various 

purification techniques were tested.  

3.1.3.2.1 HPLC purification  

Gadolinium containing compounds are sensitive to low pH which increases the probability of 

gadolinium leaching from the ligand. Gd-DOTA complexes are reported to be stable at pH 2 

with a half–life of about 4,000 h (Lukeš et al., 2001; Sturzu et al., 2009). In order to avoid the 

release of toxic free gadolinium, purification of the gadolinium loaded compounds was 

conducted in low percentage of TFA (0.05% TFA in water/ ACN) (pH= ~3) unlike 0.1 % TFA 

(pH= ~1) used for normal purifications.  

3.1.3.2.2 Dialysis 

After HPLC-purification the samples were further purified by dialysis in order to remove free 

gadolinium and other inorganic impurities. Dialysis was performed for 48 h after which samples 

were freeze-dried and obtained as an orange powder. 

3.1.3.2.3 Varian Solid Phase Extraction 

Another procedure that was used for the complete removal of excess gadolinium was Solid Phase 

Extraction, by passing the samples through the Varian ABS ELUT- NEXUS, 500 MG, 12 ML.  
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The relaxivity measurements were then done with the samples just after HPLC-purification, 

HPLC followed by dialysis and HPLC followed by Solid Phase Extraction. No significant 

differences were obtained showing the efficiency of HPLC purification for removal of excess or 

loosely bound gadolinium (data not shown).  

3.1.3.3 Factors influencing the uptake 

 
In order to achieve a detectable contrast enhancement by MRI cells have to be efficiently labeled 

with at least 107-108 Gd(III) complexes per cell (Cabella et al., 2006). Most of the current 

intracellular CAs for MRI uses CPPs like penetratin, Tat, or oligoarginines as delivery vectors. 

However, differences in the delivery have been observed with different CPPs owing to the cargo 

as well as to the chemical structure (e.g. position or type of the chemical connection between 

CPP and Gd-complex). Peptide length and sequence, and choice of the chelating agent seem to 

have an influence on the intracellular delivery of the CA. For example, Sturzu et al. 

demonstrated a difference in the uptake behavior of penetratin- and Tat- based bimodal CAs in 

U373 glioma cells. A reduced internalization was observed with both CAs when compared to the 

respective monolabeled conjugates, thus highlighting that two reporter molecules impair the 

internalization capacity of the CPPs. 

Our previous screening of CAs based on Tat and octa-arginine coupled with Gd-DTPA or Gd-

DOTA as gadolinium chelators also supported the influence of the CPP and chelator on 

internalization (Jha et al., 2007; Su, 2007). DTPA-based CAs were better taken up better by cells 

when compared to DOTA when conjugated to octa-arginines whereas in Tat-based CAs the 

internalization seemed to be independent of the type of the conjugated chelator. However, on 

increasing the concentration the cellular uptake of the CAs was enhanced, but also accompanied 

by higher cytotoxicity. Similar results were obtained in a study from Endres et al., 2006 where a 

higher uptake for DTPA compared to DOTA based CA was reported. Inspite of all these 

observations proving DTPA to be the superior CA over DOTA-based CA one cannot ignore the 

lower thermodynamic stability of Gd-DTPA complexes (Crich et al., 2006). Leaching of 

gadolinium could lead to cytotoxicity. Therefore, based on these discussions in our studies 

DOTA was selected as gadolinium chelator to avoid the cytotoxicity issues. Intracellular 

fluorescence of Gd-DOTA-K(FITC)-CyLoP-1 in NIH/3T3 cells at 2.5 µM after 18 h incubation 

showed both cytosolic diffusion as well as vesicular entrapment whereas in the case of Gd-
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DOTA-K(FITC)-D-Arg and Gd-DOTA-K(FITC)-D-Tat the distribution was exclusively 

vesicular (under the same experimental conditions). This difference of the intracellular 

localization can be attributed to the disparity in the chemical structure of the CPPs. Arginines 

and Tat are positively charged peptides whereas CyLoP-1 also constitutes hydrophobic moieties 

along with positively charge amino acids. Apart from this, CyLoP-1 also contains three cysteines 

which may lead to aggregation in physiological media that could influence the import into the 

cell. 

3.1.3.4 High relaxivity 

Commercially available CAs like Dotarem, Prohance, Magnevist and Omniscan have relaxivities 

in the range of 3.4-3.5 mM⎯1sec⎯1 at 20 MHz and 39° C (Cabella et al., 2006). Achievement of 

high relaxivities is the key objective of the researchers working with CAs for MRI. Efforts have 

been made to increase the sensitivity of CAs by either increasing the number of gadolinium per 

molecule or by optimizing the parameters that have a direct influence on the relaxation-

enhancement like the rotational correlation time or the hydration number (Zhang et al., 2005). 

For example, coupling of gadolinium chelates to polymeric materials seems to influence the 

rotational correlation time and hence increases the relaxivity per gadolinium atom (Caravan et 

al., 1999). Another aspect of such a concept was also shown by the Gd-DTPA derivative of MS-

325, targeting serum albumin. Albumin binding increases the rotational correlation time and thus 

increasing the relaxivity (Caravan et al., 2002). 

Similarly, Gd-DOTA conjugated to CPPs like oligoarginines and Tat has been widely studied 

(Allen et al., 2004; Pranter et al., 2003; Sturzu et al., 2009). The values for the longitudinal 

relaxivity (r1) of such conjugates have been observed in the range of 6-9 mM-1s-1. In detail, a 

relaxivity of 6.8 mM-1s-1at 3T for Gd-DOTA-(R8) (Allen et al., 2004) and 7.94 mM-1s-1 at 4.7 T 

for Gd-DOTA-D-Tat (Pranter et al., 2003) were determined. R1 relaxivities can also vary 

depending on the molecular weights of the compound (Ranganathan et al., 1998). Generally, 

molecular weights of most of the CPP conjugates of Gd-DOTA or Gd-DTPA are in the range of 

2200 to 2400 Daltons. High values of relaxivities are also reported for the DOTA-based 

prochelater conjugated to a Bombesin analogue. Furthermore, a two-fold increase in relaxivity 

was observed for a divalent analogue compared to the monovalent compound (Keelara et al., 

2008).  
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Gd-DOTA-K(FITC)-CyLoP-1, discussed here showed a relaxivity r1 of 16.8 ±0.7 mM-1s-1 at 3T 

in water, which is about a factor of two higher than for the above mentioned similar CAs coupled 

to CPPs. This could be attributed to an increase in rotational correlation time which is influenced 

by the molecular weight (Caravan et al., 2002). Since the molecular weight of Gd-DOTA-

K(FITC)-CyLoP-1 is in a similar range as that for other CPP-conjugates, the difference in the 

chemical structure of CyLoP-1 could be another reason for the higher relaxivity. Rigidity of a 

molecule is also known to have a positive impact on relaxivity (Aime et al., 1999; Ranganathan 

et al., 1998).  

Apart from the differences seen in the solution-measurements the intracellular relaxation rates 

were also higher for the CyLoP-1-conjugated CA compared with the other CPP-analogues at 

concentrations of 2.5 and 5 µM. We demonstrated, that Gd-DOTA-K(FITC)-CyLoP-1 was better 

accumulated inside the cells leading to a higher intracellular gadolinium concentration. We also 

observed a difference in the distribution pattern between the CyLoP-1-CA (diffused as well as 

vesicular) and the octaarginine- and Tat-based CA (both exclusively vesicular) at 2.5 µM 

concentrations. Confinement of the CA in vesicles decouples it from the cytosol resulting in a 

high local relaxation rate and a slow water exchange rate because of the small volume, thus 

decreasing the relaxivity. On one hand vesicular entrapment results in quenching, on the other 

hand cytosolic diffusion leads to a higher accumulation inside the cell as well as access to a 

larger pool of water molecules, thus increasing the relaxivity (Terreno et al., 2006; Crich et al., 

2006; Strijkers et al., 2009). Another aspect in case of CyLoP-1 based CA could be the increase 

in molecular weight by formation of aggregrates due to the presence of three cysteines in the 

molecule. High intracellular relaxation rates may also result from the binding of this CA with 

macromolecules inside the cell. 

3.1.3.4 Summary and conclusion 
 
This study focused on the synthesis and characterization of Gd-DOTA-K(FITC)-CyLoP-1. The 

intracellular uptake and distribution of this new CA was determined by fluorescence 

spectroscopy and microscopy. Cytosolic diffusion with vesicular uptake, high relaxivity in 

solution and extremely high intracellular longitudinal relaxation rates at low micromolar 

concentrations differentiate this CA from other CPP-based probes for MRI. 
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This work illustrates the potential of utilizing CyLoP-1 as a transporter for optical and MR 

reporters. Such combination of a fluorescent dye and Gd-DOTA makes the compound very 

useful for bimodal imaging. Thus, the novel peptide CyLoP-1 proved to be efficient in 

transmembrane delivery of imaging agents and is expected also to be useful as a vector for 

delivery of probes specifically targeted to cytosolic constituents. This will be discussed in the 

next chapter. 



 

 
3.2  CyLoP-1 AS CARRIER FOR PEPTIDES 

3.2.1 Introduction  

The application of Cell Penetrating Peptides (CPPs) for transmembrane delivery of hydrophilic 

drugs and gene delivery is getting increasing attention. Covalent coupling of such agents to CPPs 

helps to circumvent limitations in their application. Although delivery of biologically active 

proteins into cells and still retaining biological functions is a challenging task, it has been shown 

that the fluorescence of the Green Fluorescent Protein (GFP) coupled to the CPP transportan was 

maintained when delivered intracellularly (Pooga et al., 2001). Similarly, activity of β-

galactosidase coupled to Tat could be detected in vivo (Fawell et al., 1994). Not only proteins but 

also antibodies have been successfully delivered with CPPs like Tat or transportan (Pooga et al., 

2001). CPPs conjugated to inhibitory peptides can be easily prepared using SPPS by conjugation 

via disulphide bonds (Gil-Parrado et al., 2003). However, the intracellular uptake can vary from 

cargo to cargo (Fischer et al., 2002).  

In order to establish the delivery capacity of CyLoP-1 for different cargo-peptides, it was 

conjugated to SmacN7 and penetratin (Antp) at its N-terminus. SmacN7 (AVPIAQK) is a small 

bioactive pro-apoptotic peptide derived from the N-terminus of the so-called second 

mitochondria-derived activator of caspase (Smac) protein. Smac is released from mitochondria in 

response to apoptotic stimuli and promotes caspase activation by binding to the inhibitor of 

apoptosis proteins (IAPs) and abolishes their inhibitory activity (Sun et al., 2008; Fandy et al., 

2008). Alone SmacN7 cannot pass through the membrane of cells and was therefore coupled to 

other CPPs in order to achieve its apoptotic effect (Duchardt et al., 2007). It was shown that the 

derived sequence SmacN7 is sufficient enough to maintain the original function of SmacN7, also 

clear signs of cell death were observed after coupling SmacN7 to polyarginines (Heckl et al., 

2008).  

Another example of a peptide used in this study is Antp, a CPP derived from the third helix of 

antennapedia. Antp is known to deliver numerous molecules through the plasma membrane 

(Derossi et al., 1994; Derossi et al., 1998). Antp, a 16 amino acid long peptide 

(RQIKIWFQNRRMKWKK), shows similarity with CyLoP-1 with respect to the amino acid 
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composition. Except cysteine residues all amino acids are common in both peptides. These two 

peptides are different in size as well as function. The effect of conjugating CyLoP-1 on the cell 

penetration of SmacN7 and Antp was studied to evaluate the influence of size as well as type of 

cargo on the internalization of peptidic CyLoP-1 conjugates. 

3.2.2 Results 

3.2.2.1 Synthesis Considerations 

 
The peptide-CyLoP-1 conjugate with SmacN7 or Antp were synthesized on 2-chloro-trityl resin 

by continuous solid phase synthesis with DIC/HOBt- mediated coupling starting with the 

sequence of CyLoP-1.  Each coupling was followed by a capping to block the unreacted reactive 

sites on the resin. Fmoc-Lys(Dde)-OH was introduced as a linker in between CyLoP-1 and the 

other peptide for further coupling to the fluorophore FITC. FITC was coupled after removal of 

the Dde protecting group by 2% hydrazine in DMF. On completion of the synthesis the 

conjugate was cleaved from the resin by Reagent K for 3 h followed by precipitation in MTBE 

and centrifugation. Conjugates were purified and analyzed by ESI-MS.  

Penetratin CyLoP-1 conjugate- 

Ac-RQIKIWFQNRRMKWK-K(FITC)-CRWRWKCCKK 

SmacN7 CyLoP-1 conjugate- 

Ac-AVPIAQK-(FITC)-CRWRWKCCKK 

3.2.2.2 Uptake Studies 

Successful synthesis of K(FITC)-SmacN7, Smac-N7-K(FITC)-CyLoP-1, K(FITC)-Antp, and 

Antp-K(FITC)-CyLoP-1 were performed. K(FITC)-SmacN7 was synthesized as a control as 

SmacN7 itself cannot penetrate the cells alone. The intracellular fluorescence distribution in 

NIH/3T3 cells showed an increase in intracellular import when peptides like Antp and SmacN7 

were coupled to CyLoP-1 and when compared to peptides without CPP at 2.5 µM concentration 

(Figure 37). Nevertheless, a lesser uptake as well as intracellular cytosolic distribution (Figure 

38) was observed when compared to CyLoP-1 alone. 
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Figure 37: Intracellular fluorescence of peptide CyLoP-1 conjugates. ***, p<0.001 significantly 

different compared to K(FITC)-CyLoP-1 (ANOVA, Bonferroni's Multiple Comparison Test). a, p<0.05 significant 

difference between cargo alone and cargo CyLoP-1 conjugate. All conjugates were also coupled to FITC. 

For Antp less uptake was observed compared to CyLoP-1 at 2.5 µM. When coupled to CyLoP-1 

the uptake efficiency was enhanced and fluorescence appeared in the cytosol though not as much 

as with CyLoP-1 alone (Figure 38). Thus, a combined effect of the two peptides was detected 

regarding internalization and distribution inside the cell. 
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  CyLoP-1                Antp                          Antp-CyLoP-1 

Figure 38: Intracellular fluorescence and distribution pattern of CyLoP-1, Antp and Antp-CyLoP-

1  conjugate. The bright punctate and encapsulated FITC fluorescence was categorized as vesicular uptake while 

fluorescence distributed in the entire cell with similar intensity was designated as diffused.  

When SmacN7 was coupled to CyLoP-1 there was an efficient intracellular delivery along with 

cytosolic diffusion (Figure 39). Internalization as well as cytosolic distribution was reduced 

when compared to CyLoP-1 alone (Figure 36) and showing the effect of cargo on the 

internalization properties of CyLoP-1. 

                                   

             CyLoP-1      SmacN7  SmacN7-CyLoP-1 

Figure 39: Intracellular fluorescence and distribution pattern of CyLoP-1, SmacN7 and 

SmacN7-CyLoP-1 conjugate. The bright punctate and encapsulated FITC fluorescence was categorized as 

vesicular uptake while fluorescence distributed in the entire cell with similar intensity was designated as diffused. 
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3.2.3 Discussion 

In order to be bioactive, SmacN7 peptide requires the successful delivery into the cytosol. 

Duchardt et al., 2007 showed the ability of Antp and nonaarginines (R9) to deliver SmacN7 into 

the cytoplasm at various concentrations. When coupled to Antp, a concentration dependent 

vesicular staining was observed. In case of SmacN7-R9 conjugate an exclusively vesicular 

confinement was observed at 5 µM which shifted to an efficient delivery into the cytoplasm and 

the nucleus at 20 µM. An increase in the apoptotic activity was also observed with increasing 

concentrations, by this showing the biological activity of SmacN7. In our system, an access to 

cytosol was observed with SmacN7-CyLoP-1 at 2.5 µM which was observed for other CPP 

conjugates only above 10 µM (Duchardt et al., 2007) highlighting the efficient cytosolic delivery 

of CyLoP-1 at low concentrations. Experiments will have to be undertaken to determine the 

apoptotic effect of SmacN7-CyLoP-1. 

Our results indicate a strong influence of the cargo type on the cellular uptake. Antp though 

longer in sequence was better internalized and distributed into the cytosol compared to the 

shorter SmacN7 sequence. Reduction in delivery efficiency of both the conjugates could be the 

effect of difference in lipophilic nature of the cargo or the rigidity of the molecule induced by the 

coupling of the cargo to CyLoP-1. Assuming the role of aggregation in the pronounced uptake of 

CyLoP-1, attachment of the cargo might hinder this effect and result in reducing the import and 

cytosolic diffusion. 

3.2.4 Summary and Conclusion  

The effect of two peptides (Antp and SmacN7) of different lengths and nature on the uptake 

efficiency of CyLoP-1 was studied. Reduction in intracellular uptake and distribution into the 

cytosol was observed compared to CyLoP-1 alone. However, this effect was more pronounced in 

case of the smaller SmacN7-CyLoP-1 conjugate compared to the Antp-CyLoP-1 conjugate 

indicating the dominance of the nature of the cargo peptide on internalization rather on its size. 

The cytosolic distribution of the SmacN7-CyLoP-1 conjugate already at 2.5 µM can prove it to 

be an efficient carrier peptide to study its pro-apoptotic activity at low incubation concentrations 

and without the use of endosomolytic agents. Summarizing, CyLoP-1 has an enormous potential 

to deliver a range of small peptides attached to it into the cell and possibly into the cytosol. 
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3.3  APPLICATION OF CyLoP-1 AS A CARRIER FOR ANTISENSE 

TARGETING 

3.3.1 Introduction  

Antisense technology emerged as a powerful tool in therapeutics owing to its potential to down 

regulate any desired gene. In such cases an oligonucleotide analogue (so-called silencing RNA or 

siRNA) binds to the matching mRNA sequences in a specific manner interfering with the 

expression of the respective proteins. Peptide Nucleic Acids (PNAs) are nucleic acid analogues 

with an uncharged pseudopeptide backbone and are extensively used in antisense and antigene 

applications (Nielson, 1995). PNAs are DNA-mimics because of their hybridization abilities 

with complementary DNA sequences following Watson and Crick base pairing rules (Larsen et 

al. 1999). Under physiological conditions PNAs have a better binding affinity with DNA/RNA 

compared to DNA/DNA counterparts, mainly because of the lack of electrostatic repulsive forces 

that are acting between DNA/DNA or DNA/RNA (Díaz-Mochón et al., 2005). PNAs are also 

extremely stable against enzymatic degradation. However, poor solubility in physiological 

buffers, inefficient internalization, poor biodistribution due to rapid excretion limits the 

application of unmodified PNAs. 

Adequate in vivo bioavailability of the antisense-molecules inside the cells is one of the major 

challenges in intracellular targeted approaches using antisense techniques. PNA-molecules are 

large (MW>2000) and neutral molecules that a very poorly taken up by cells (Nielson et al., 

2005). It has been shown, that intracellular DNA-delivery can be achieved by applying a number 

of transfection agents (e.g. formation of lipoplexes). However, such delivery approaches are 

restricted in case of PNA as they lack formal charges present in DNA (Díaz-Mochón et al., 

2005). In order to deliver PNAs into cells inclusion of multiple positive charges into the PNA 

backbone (Barawkar et al., 1998) or conjugating PNAs to CPPs were employed (Koppelhus et 

al, 2003). Various CPPs like Transportan (Pooga et al., 1998) or penetratin (Braun et al., 2002) 

have been used for PNA delivery.  

Our results (see Part I) showed efficient intracellular delivery properties of CyLoP-1. Therefore, 

CyLoP-1 was tested for its potential in antisense targeting. The prerequisite for such an approach 

is the abundant cytosolic accumulation of PNA for high and selective binding to the desired 
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mRNA target. The antisense PNA chosen for this study targets a unique part in the mRNA 

sequence of the red fluorescent DsRed protein. The gene coding for the DsRed protein originates 

from a coral of the Discosoma genus and is commonly used as a transfection marker (Baird et 

al., 2000). In order to investigate the ability of CyLoP-1 to enhance the intracellular delivery of 

PNA, a conjugate to a 12mer PNA targeting a unique region of the DsRed mRNA (Su et al., 

2007) was studied. 

3.3.2 Results 

3.3.2.1 Synthesis Considerations 

 

PNA-peptide conjugation was achieved by continuous Fmoc solid phase synthesis (Figure 40). 

The peptide was synthesized on Rink amide MBHA resin at 0.2mmol/g scale by DIC/ HOBt-

mediated coupling. Fmoc-Lys(Dde)-OH was introduced as a linker for further coupling of the 

PNA monomers and the fluorophore. The PNA chain was elongated by continuous coupling of 

the respective PNA monomers, HATU, DIPEA (1:0.9:2) for 1h, followed by acetylation at each 

step. Fmoc was removed by 20% piperidine for 5 min two times. Regular washing with 

DMF/NMP, DCM, methanol, DCM, DMF/NMP was done to ensure the removal of the reacting 

reagents from the reaction vessel. At the end the fluorophore FITC was attached to the linker 

(lysine) after the removal of Dde by 2% hydrazine in DMF. Once the synthesis of the PNA-

peptide-conjugate was complete, the resin was thoroughly washed by DMF, DCM, and 

methanol, dried and cleaved by reagent K for 3 h. The filtrate was collected and precipitated 

twice with MTBE. The pellet was collected by centrifugation and lyophilized in water: tert-

butanol (1:4) containing 5% acetic acid. The crude Peptide-PNA-conjugate was then purified by 

HPLC and analyzed by ESI-MS. 

PNA CyLoP-1 conjugate- 

Ac-tccgtgaacggc-K(FITC)-CRWRWKCCKK-CONH2 

 

 

 
 

77 
 



 

Resin
X

N
H

O

O

R

Deprotection

ResinH2N
O

O

R

Coupling
DIC/HOBt

ResinN
H

O

O

R

X
H
N

O
Activating group

O

R

X

H
N

O

R

Repeat deprotection
     and coupling

X= Fmoc, Y=PNA Monomer

20% piperidine

ResinCyLoP-1

FITC Coupling

Cleavage

Purification and analysis X
N
H

O

O

R

H Rink Amide resin+

ResinCyLoP-1
Fmoc-Lys(Dde)-OH

X-Lys

(Dde)

ResinCyLoP-1NH2-Lys

(Dde)

ResinCyLoP-1Fmoc-Y-Lys

(Dde)

ResinCyLoP-1Ac-tccgtgaacggc-Lys
(Dde)

ResinCyLoP-1Ac-tccgtgaacggc-Lys
FITC

Repeat deprotection
     and coupling

Coupling
Y:HATU:DIPEA

Deprotection
20% piperidine

  

Figure 40: Synthesis scheme for PNA-CyLoP-1 construct 

3.3.2.2 Uptake Studies 

Fluorescence microscopic images demonstrated an intracellular distribution pattern for the PNA-

CyLoP-1 construct in NIH/3T3 cells at 2.5 μΜ concentrations (Figure 41). The cytosolic 

diffusion was considerably lowered after coupling of the neutral PNA sequence in comparison to 

CyLoP-1 alone. The overall import efficiency as well as the distribution pattern of the PNA-

CyLoP-1 construct was considerably reduced compared to CyLoP-1 itself.  
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Figure 41: Fluorescence microscopic image showing intracellular distribution of PNA-CyLoP-1 

conjugate in NIH/3T3 cells at 2.5 µM. The bright punctate and encapsulated FITC fluorescence was 

categorized as vesicular uptake while fluorescence distributed in the entire cell with similar intensity was designated 

as diffused. 

3.3.3 Discussion 

Reduction in the cellular uptake and cytosolic distribution could be attributed to a shift in the 

uptake mechanism to a more vesicular mechanism on elongation of the peptide chain with the 

PNA sequence. The rigidity introduced by the PNA sequence might hinder the specific 

orientation of the peptide conjugate in physiological media limiting endosomal release or direct 

uptake of the construct. Another aspect could be the C-terminal amide group that prevents the 

enzymatic degradation of the peptide by exopeptidases. As observed in case of CyLoP-1 changes 

of the C-terminus from acid to amide leads to a significant decrease in the intracellular uptake as 

well as the cytosolic diffusion of the peptide. In order to test the role of the functional group at 

the C-terminus on the uptake and distribution behavior PNA-CyLoP-1 conjugate with a free C-

terminal end has to be compared for its import properties. 

3.3.4 Summary and Conclusion  

Herein we showed the efficient synthesis and internalization of a PNA-CyLoP-1-conjugate. 

Though the reduction in the cytosolic distribution and instead promotion of vesicular entrapment 

was dominant, CyLoP-1 proved to be an efficient carrier for cargos of high molecular weights as 

well.  
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3.4 SUMMARY OF THE CARGO STUDIES 

In order to address the influence of the cargo on the uptake and the distribution of CyLoP-1-

coupled compounds, CyLoP-1 was covalently conjugated at the N-terminus to a panel of cargos 

of different sizes: different fluorophores, the magnetic resonance imaging agent (Gd)-DOTA, the 

bio-active peptide SmacN7, the peptide Penetratin or to the PNA molecule (Table 7).   

Table 7: List of various cargoes that were attached to CyLoP-1 

S.No. Cargo Sequence 

1. Fluorophores (FITC, CF, TAMRA) Optical reporter-CyLoP-1 

2. Gd-DOTA MR reporter- CyLoP-1 

3. SmacN7 AVPIAQK - CyLoP-1 

4. Penetratin RQIKIWFQNRRMKWKK(FITC)- CyLoP-1 

5. PNA tccgtgaacggc K(FITC)- CyLoP-1 
 

 

Small and medium sized cargos were selected for this study. They are different not only in their 

size but also in their nature and are otherwise impermeable through the plasma membrane. They 

were covalently linked to CyLoP-1 by a peptide bond via a lysine residue with a fluorophore 

(FITC) attached to it. Thus, the distribution of the payload inside the cell can be ascertained by 

the localization of the fluorophore. Successful delivery of cargos of various sizes attached to 

CyLoP-1 was achieved after incubation of NIH/3T3 cells with these peptide conjugates at the 

concentration of 2.5 µM for 18 h (Figure 42).  

Nevertheless, with the increase in size of the cargo a decreased intracellular uptake and a 

tendency to more vesicular uptake was observed thus promoting the endocytosis of high 

molecular weight cargos.  
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Figure 42: Intracellular fluorescence of various cargoes of different molecular weight attached 

to CyLoP-1. *, p<0.05, ***, p<0.001 significantly different compared to CyLoP-1 (ANOVA, Bonferroni's Multiple 

Comparison Test). All conjugates were coupled to FITC. 

Conjugation of the payload to CyLoP-1 changes the cellular uptake and intracellular distribution 

of the construct. This observation was in accordance with studies from Zorko et al, where they 

also showed no effect of small sized cargo on rate of internalization but a substantial decrease in 

uptake with the increase in size of the cargo. The decrease in the uptake concomitant with the 

increase in the cargo size may also be induced by the nature and size of the cargo. However, the 

differences in the distribution pattern indicated to the delivery of intact molecule into the cell. 

But degradation of the peptide inside the cells could not be ruled out releasing the cargo. 

Nevertheless, our preliminary results with one of the CyLoP-1 cargo conjugate (Gd-DOTA-

K(FITC)-CyLoP-1) showed cargo and FITC were colocalized in the cytoplasm.  

Considering the importance of cysteines in the proficient uptake and significant cytosolic 

diffusion, the attachment of the cargo may induce conformational changes preventing formation 

of disulphide bridges. Though CyLoP-1 alone is unstructured in solution conjugation of the 

cargo might give a stable structure to the peptide in a physiological environment thus altering its 
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function. In addition, different internalization routes could be responsible for diffused and 

vesicular uptake whose predominance might be depending on nature of cargo coupled to CyLoP-

1. 

4 SUMMARY, CONCLUSION AND OUTLOOK 

A potent delivery agent CyLoP-1 was designed, synthesized and characterized which is active in 

its natural form at concentrations as low as 2.5 µM. CyLoP-1 not only possesses the ability of 

intracellular access but also distributes easily into the cytosol. CyLoP-1 has a net positive charge 

and is of lipophilic nature. Any alterations introduced into the peptide sequence had a direct 

effect on the intracellular localization indicating the role played by the chemical properties of 

different side-chains of the amino acids. Cytosolic targeting (as evidenced by diffuse 

fluorescence) was a prominent characteristic of CyLoP-1. This feature is also observed with 

other CPPs but only at higher concentrations and short incubation times, and only in serum free 

medium (which is a non-physiological condition). Thus, efficient intracellular delivery, low 

cytotoxicity and high cytosolic appearance make CyLoP-1 an appropriate candidate for cytosolic 

delivery of small sized cargo molecules. The heterogeneous distribution pattern in the cell might 

allow some part of the CPP-cargo conjugate to reach its destination in either the cytosol or the 

nucleus. As CyLoP-1 was better internalized in its natural form, the possibility of degradation of 

the peptide cannot be ruled out. The reason for cytosolic gain could not be determined 

conclusively but escape from the endosomes also has to be considered (instead of direct cytosolic 

delivery). Also, the mechanism of internalization needs to be investigated further. Despite these 

unknown facts, continued rational design and combinatorial approaches will undoubtly result in 

further improvements of this peptide in the near future. 
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5. EXPERIMENTAL PROCEDURES 

5.1 Apparatus 

Peptide Synthesizers 

Automatic peptide synthesizer 

PreludeTM, Peptides&Elephants (Germany) 

Manual peptide synthesizer 

Heidolph Synthesis 1 synthesizer (Schwabach, Germany) 

HPLC  

Analytical and semipreparative RP-HPLC was performed at room temperature on a Varian 

PrepStar Instrument (Australia) equipped with PrepStar SD-1 pump heads. UV absorbance was 

measured using a ProStar 335 photodiode array detector at 214 nm and 260 nm. A Varian Polaris 

C18-Ether column (4.6 × 250 mm, particle size 5 μm, particle pore diameter 100 Å) was used for 

analytical RP-HPLC. For semipreparative HPLC, a Varian Polaris C18-Ether column (21.2 × 

250 mm, 5 μm, 100 Å) was used.  

ESI-MS 

ESI-MS was performed on ion trap SL 1100 system (Agilent, Germany) with detection in 

positive and negative ion mode.  

Varian Solid Phase Extraction 

Varian ABS ELUT- NEXUS, 500 MG, 12 ML 

Dialysis 

Spectra/Pro, Float-A-Lyzer with Biotech, Cellulose Ester Membranes, MWCO: 1,000; Diameter- 

10mm, Volume- 10 ml. Spectrum Laboratories, Inc. 
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5.2 Chemicals 

All solvents were of peptide synthesis grade. DMF, DCM, TFA, FITC, methanol, HOBt, DIPEA, 

DIC, piperidine, carboxyfluorescein (CF) were purchased from Acros Organics (Belgium). 

Protected Fmoc-amino acids as well as resins were obtained from Novabiochem (United 

Kingdom). The side chains of lysine and tryptophan were protected by Boc, cysteine by Trt, and 

arginine by Pbf. 1,4,7,10-tetraazacyclododecane (cyclen) was obtained from Strem Chemicals 

(Newburyport, USA). PNA monomers (Fmoc-PNA-T-OH, Fmoc-PNA-A(Bhoc)-OH, Fmoc-

PNA-C(Bhoc)-OH, Fmoc-PNA-G(Bhoc)-OH) were purchased from Link technologies Ltd 

(Scotland). HATU was bought from Applied Biosystems (Darmstadt, Germany), TAMRA 

(Fluka, Germany). 

5.3 Synthesis 

5.3.1 Peptide Synthesis 

 (A1) Automatic synthesizer (At EMC microcollections) 

Peptides were prepared by fully automated solid-phase peptide synthesis using the Fmoc/tBu-

strategy on  α-Fmoc-(ε-Boc)-lysine-TCP resin. The resin was distributed in 30 mg aliquots (15 

μmol) into filter tubes, which were positioned in the format of a microtiter plate on valve blocks. 

Fmoc deprotection was carried out two times, 10 min each, with 30% piperidine in DMF (300 

μl). Nine washing steps were done with DMF (300 μl). Fmoc-amino acids (0.5 M) were 

dissolved with HOBt (0.5 M) in DMF. Amino acids were introduced into the reaction vessels in 

a two step procedure using a sevenfold molar excess of the respective Fmoc-amino acid. First 

coupling step with Fmoc-amino acids (200 μl), DIC (3 M in DMF, 50 μl) for 1h. Then, coupling 

reagents were filtered off and the resin was washed with DMF [1 x 200 μl] followed by the 

second coupling step with Fmoc-amino acids (100 μl) with TCTU (0.5 M in DMF, 200 μl) for 

next 1h. After washing with DMF [4 x 400 μl] Fmoc deprotection was carried out two times, 10 

min each, with 30% piperidine in DMF (300 μl). Nine washing steps were done with DMF (300 

μl). All peptides were elongated with Boc-L-Lys(Fmoc)-OH followed by Fmoc deprotection. 

Completeness of thiourea formation was monitored with the Kaiser Test.  
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(A2) Automatic synthesizer (PreludeTM) 

Peptides were prepared by continuous automated solid-phase peptide synthesis using the 

Fmoc/tBu-strategy on Fmoc-(ε-BOC)-lysine-2-chlorotrityl resin (0.66 mmol/g). 50 mg of the 

resin was distributed in each of the reaction vessel. Fmoc deprotection was carried out two times, 

10 min each, with 30% piperidine in DMF (2000 μl) followed by DMF washings (4x, 2000 μl). 

Fmoc protected amino acids (4 fold excess) were coupled with DIC/HOBT activation. Solutions 

of Fmoc-amino acids (1000μl, 136 mM), DIC (300 μl, 906 mM) and HOBt (500 μl, 272 mM) 

were prepared in DMF. Amino acids were first introduced in the reaction vessel with subsequent 

addition of HOBt and DIC respectively and allowed to stir for 90 min. Coupling reagents were 

filtered off and the resin continued by DMF washings [4x 2000 μl]. Fmoc deprotection was 

carried out two times, 10 min each, with 30% piperidine in DMF (2000 μl) followed by DMF 

washings (2000 μl). All peptides were elongated with Boc-L-Lys(Fmoc)-OH followed by Fmoc 

deprotection. Completeness of thiourea formation was monitored with the Kaiser Test. 

Similar synthesis was performed for CyLoP-1 elongated by Penetratin and Smac peptides. Each 

coupling was followed by capping to block the unreacted active sites. Fmoc-Lys(Dde)-OH was 

introduced as a linker in between CyLoP-1 and cargo (penetratin and Smac) for the further 

coupling of the fluorophore. On completion of the synthesis the conjugate was cleaved from the 

resin by reagent K for 3 h followed by precipitation in MTBE and centrifugation. 

B) Manual Peptide Synthesis: 

The synthesis of selected peptides was carried out by solid phase Fmoc chemistry using a manual 

multiple peptide synthesizer (Heidolph Synthesis 1 synthesizer). Peptides were synthesized on α-

Fmoc-(ε-BOC)-lysine-2-chlorotrityl resin (0.83 mmol/g). Fmoc protected amino acids (4 fold 

excess) were coupled with DIC/ HOBT activation for 60 min. Fmoc was removed with 30% 

piperidine in DMF (2 x 10 min). The resin was washed after each cycle of coupling and 

deprotection with DMF (4x). Completeness of coupling and deprotection was monitored with the 

Kaiser Test. Peptides were washed with DMF, DCM, and methanol (4 x each) and dried. The 

peptides were cleaved off the resin and side-chain deprotected with Reagent K (500 μl).  
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Further on, this cleavage reaction was optimized, in particular for the synthesis of DOTA-based 

compounds, by using TFA: Reagent K: TMSBr (8.5:1.45:0.05) for 2 hr instead of Reagent K 

alone. For the oxidized peptides a different cleavage cocktail consisting of TFA:TIPS:H2O was 

used for 1 h followed by the addition of DMSO (5:1) at 0°C for 30 min and stirring for 1 h at RT. 

Coupling of FITC to ε-amino group:  

For structure activity relationship studies all peptides were coupled to FITC through a Boc-

Lysine (Fmoc)-OH as a linker. The ε-group of N-terminal lysine was labeled with FITC (4 fold 

excess) with triethylamine (1:2) in DMF overnight. Peptides were washed with DMF, DCM, and 

methanol (4 x each), dried and cleaved from the resin with Reagent K (500 μl).  

Coupling of TAMRA and carboxyfluorescein: 

Different dyes were coupled at ε-amino group to study the effect of cargo on internalization. 

TAMRA or carboxyfluorescein (CF) were coupled both at α-amino and ε-amino group by DIC, 

HOBt activation for 8h.  

5.3.2 PNA Synthesis  

The selected antisense PNA targets the mRNA of the red fluorescent dsRed protein (Su et al, 

2007). PNA peptide conjugation was achieved by continuous Fmoc synthesis. Peptide was 

synthesized on Rink Amide MBHA resin at 0.2mmol/g scale by continuous solid phase peptide 

synthesis followed by the Fmoc-Lys(Dde)-OH as a linker for further coupling with the 

fluorophore. The PNA-chain was elongated by regular coupling of the respective PNA 

monomers (Fmoc-PNA-T-OH, Fmoc-PNA-A(Bhoc)-OH, Fmoc-PNA-C(Bhoc)-OH, Fmoc-PNA-

G(Bhoc)-OH) using Fmoc/Bhoc chemistry. Coupling with the PNA monomers HATU, DIPEA 

(1:0.9:2) was done for 1h, followed by acetylation after each step. Fmoc-deprotection was 

performed with 20% piperidine for 5 min two times. Washing with DMF/NMP, DCM, methanol, 

DCM, DMF/NMP was done to ensure removal of the reacting reagents from the reaction vessel. 

Completeness of coupling and deprotection was confirmed with the Kaiser Test. FITC was 

attached to the linker (lysine) after removal of Dde with 2% hydrazine in DMF two times. Once 

the synthesis of PNA peptide conjugate was complete, the resin was thoroughly washed with 

DMF, DCM, and methanol, dried and then cleaved by reagent K for 3 h.  
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5.3.3 Synthesis of Gd-DOTA-K(FITC)-CyLoP-1  

Continuous Fmoc SPPS was exploited to synthesize CyLoP-1 on preloaded 2-chlototrityl resin 

using DIC/ HOBT mediated coupling chemistry (Scheme 1). Fmoc deprotection was performed 

twice by 20 % piperidine in DMF for 10 min. CyLoP-1 was N-terminally elongated by Fmoc-

Lys(Dde) for orthogonal coupling of two different reporter molecules. To synthesize the peptide 

based intracellular CA, carboxylate of DOTA (Synthesis of 1,4,7-Tris(tert-

butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane-10-acetic acid was done as shown by 

Mizukami et al., 2008) have been coupled to the free alpha amino group of the peptide at N-

terminus by removal of Fmoc protecting group. Similarly selective removal of Dde group by 2% 

hydrazine in DMF resulted in free amino group readily available to couple a fluorescein moiety. 

FITC was coupled in the presence of TEA (FITC: TEA, 1:2) in DMF overnight. Completeness of 

coupling and deprotection were confirmed by Kaiser Test. Peptide was cleaved from the resin in 

a cleavage cocktail comprising of TFA (8.5 ml), Reagent K (1.45 ml), and TMSBr (0.05 ml) for 

2 h. The filtrate was triturated in DEE two times and freeze-dried. 

Finally the ligand was purified by HPLC and the product was analysed by ESI-MS. 

Purified ligand was dissolved in water and pH was adjusted to ~ 6.5 by NaOH followed by 

addition of corresponding lanthanides (GdCl3.6H2O or EuCl3.6H2O). Solution was stirred for 8 h 

at 45 °C and then overnight at room temperature. pH was periodically checked to be maintained 

between 6-6.5 by 1 N NaOH or 1N HCl as per requirement. 

After Gadolinium loading the sample was purified again by HPLC with 0.05 % TFA in 

ACN/water and analysed by ESI-MS. Samples were freeze dried and obtained as orange powder. 

As samples were purified under TFA conditions one could expect binding of TFA to the positive 

charged amino acids. Therefore the concentration of the peptide was determined by UV-Vis 

absorption of FITC at 485nm. Similar scheme and analytical conditions were adopted to 

synthesize octaarginine and Tat based CA. 

 

 

 
 

89 
 



 

5.3.4 SAR studies 

To evaluate the uptake efficiency for all 60 peptides they were screened in their crude form. As 

the purity of the crude peptide [Fig. 43 (a), (b)] was considerable, only some selected peptides 

were purified and reevaluated. 

Analytical data of a crude peptide 49 
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Figure 43: ESI-Mass spectra  (a)  and HPLC chromatogram (b) of crude peptide 49. 
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The amino acid sequence of Peptide 49  is CRFRFKCCKK. The peptide was characterized by 

ESI-MS.  The detected molecular ions for peptide 49 conjugated with a lysine linker and FITC 

were (M+2H) 2+= 918.4, (M+3H) 3+= 612.8, (M+4H) 4+= 460.0, (M+5H) 5+ =368.1. They were 

consistent with the calculated mass of the desired product 1836.2. 

5.4 Purification and characterization 

All peptides were precipitated with MTBE. Precipitates were collected by centrifugation and 

resuspended in cold MTBE two times. The pellet was dissolved in a mixture of water, tert-butyl 

alcohol (1:4) and 2% acetic acid, and then lyophilized. CPP and PNA conjugates were purified 

by semi-preparative RP-HPLC using a gradient of water (0.1% TFA) (solvent A)/ACN (0.1% 

TFA) (solvent B) from 20% B to 90% B within 30 min (flow rate: 1 ml/min for analytical and 10 

ml/sec for semipreparative HPLC). The gradient systems were adjusted according to the elution 

profiles and peak profiles obtained from the analytical HPLC chromatograms. 

Mass spectrometry (ESI-MS, Nebulizer, 20.0 psi; Dry gas, 5.0 L/min; Dry temperature 250°C) 

was used for further characterization of the samples. The purified product was dissolved in water 

and tert-butyl alcohol (1:4) with 5% acetic acid, and lyophilized. 

5.4.1 Storage 

Peptides containing cysteines are prone to formation of disulphide bonds due to oxidation, which 

can be formed either intramolecularly, resulting in a cyclic peptide, or intermolecularly, forming 

oligomers or aggregates. As most of the CPPs that were used in this work are cysteine rich 

peptides, care had to be taken during synthesis and storage of the peptides. After lyophilization, 

the peptides were stored under nitrogen at acidic pH. Dissolved aqueous stock solutions for 

internalization studies were aliquoted and stored at -80°C. Dilutions for cell studies were 

prepared fresh. 

5.4.2 GC-MS analysis for enantiomeric purity 

The optical purity of amino acid derivatives and peptides was determined with GC-MS analysis 

by the external company C.A.T. GmbH&Co, Chromatographie und Analysentechnik KG, 

Tübingen, Germany. The exact quantitation of racemate involves hydrolysis with 6N D2O/DCl. 

The amino acids are derivatized using deuterated reagents. Racemization during this sample 
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preparation is accompanied by deuterium exchange in the α-position (deuterium label). The 

proportion of D-amino acid originally present in the peptide is thus represented by the relative 

amounts of the unlabeled form which is monitored by mass spectrometry. The limit of 

quantitation is 0.1% of the optical antipode. The standard deviation is <0.1%. 

5.4.3 Varian Solid Phase Extraction 

Column was conditioned first with 2 ml MeOH then with 1% HCOOH in water avoiding the 

complete dryness of the column. Sample was prepared in 0.1% HCOOH in water (Solvent A) 

and loaded on the cartridge (1-2 ml/min) and washed with solvent A. Later the cartridge was 

washed with Solvent A and 0.1% HCOOH in ACN (Solvent B) 50:50 and with Solvent B. The 

sample was eluted in 50:50 solvent conditions. This fraction was collected and freeze-dried to 

obtain the dried product. 
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5.5 Analytical data 

1. K-(FITC)-CyLoP-1 
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Chemical Formula: C88H120N24O17S4
Exact Mass: 1912.81

Molecular Weight: 1914.31
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The detected molecular ions for CyLoP-1 with FITC in positive mode were (M+H) + = 1914.9, 

(M+2H) 2+= 957.9, (M+3H) 3+= 639.0. They were consistent with the calculated mass of the 

desired product 1914.3. Peaks 390.0 and 763 are fragment ions. 
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The detected molecular ions for CyLoP-1 with FITC in negative mode were (M-H) - = 1911.8, 
(M-2H) 2-= 956.0. They were consistent with the calculated mass of the desired product 1912.  
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2. DOTA-K(FITC)-CyLoP-1 (Ligand) 
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Chemical Formula: C104H146N28O24S4
Exact Mass: 2298.99

Molecular Weight: 2300.71
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The detected molecular ions for DOTA-K(FITC)-CyLoP-1 were (M+H) + = 2301.0, (M+2H) 2+= 

1151.7, (M+3H) 3+= 768.8. They were consistent with the calculated mass of the desired product 

2300.7. Peaks 390.0 and 763 are fragment ions. 
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Gd-DOTA-K(FITC)-CyLoP-1 
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Chemical Formula: C104H143GdN28O24S4
3+

Exact Mass: 2453.89
Molecular Weight: 2454.93
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The detected molecular ions for Gd(DOTA)-K(FITC)-CyLoP-1 were (M+H) + = 2456.5, 

(M+2H) 2+= 1229.3, (M+3H) 3+= 820.3. They were consistent with the calculated mass of the 

desired product 2454.9. Peaks 390.0, 614.7and 1035 are fragment ions. 
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Figure 1               Figure 2 

Isotopic pattern simulated by NIST, Formula and Isotopic Pattern Generator (United States 

Department of Commerce) for Gd(DOTA)-K(FITC)-CyLoP-1 is shown in Figure 1 which 

corresponds to the measured distribution  (Figure 2) 
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3. SmacN7-CyLoP-1 
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Chemical Formula: C117H167N31O25S4
Exact Mass: 2534.16

Molecular Weight: 2536.03
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The detected molecular ions for Smac-CyLoP-1 were (M+H) + = 2538.8, (M+2H) 2+= 1270.4, 

(M+3H) 3+= 847.6, (M+4H) 4+=636.0. They were consistent with the calculated mass of the 

desired product 2536.03. Peak of 390.0 is due to fragment ion. 
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4. Antp-CyLoP-1 
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Chemical Formula: C188H276N56O36S5
Exact Mass: 4054.01

Molecular Weight: 4056.88
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The detected molecular ions for Pen +15 conjugated with a lysine linker and FITC were (M+2H) 

2+= 2029.9, (M+3H) 3+= 1353.0, (M+4H) 4+ =1015.3, (M+5H) 5+ = 812.3, (M+6H) 6+ = 677.2. They 

were consistent with the calculated mass of the desired product 4056.9. Peaks 390.0, 734.5 and 

917.9 are fragment ions. 
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5. PNA-CyLoP-1 
 

Ac-tccgtgaacggc-K(FITC)-CRWRWKCCKK 

O

O

HO O OH

NH

CS

CH
H
N

(CH2)4

NH2

CO
H
C NH

(CH2)4

NH2

CO
H
C NH

(CH2)4

NH2

CO
H
C NH

H2C

SH

C NH
H
C

H2C

NH

O
CO

H
C

H
N

CH2

SH

CO
H
C N

H
(CH2)3

NH
HN

NH2

C NH
H
C

CH2

NH

O
CO

H
C NH

(CH2)3

NH
HN

NH2

CO
H
C N

H
H2C

SH

H2NOC

N
H

N CO

N

N

NH2

O
O

N
H

N C
O

N
NHN

N

O

2HN

O

NHCHC

CH2

CH2

CH2

CH2

NH

O

N
H

N C
O

N
NHN

N

O

2HN

O
N
H

N CO

N

N

NH2

O
O

N
H

N CO

N

N

NH2

O
O

N
H

N C

O

N
NN

N
NH2

O
N
H

N C

O

N
NN

N
NH2

O
N
H

N C
O

N
NHN

N

O

2HN

O

NH
N

O

O

N
H

N C

O

O

NH
N

O

O

N
H

N C

O

O
N
H

N C
O

N
NHN

N

O

2HN

O
N
H

N CO

N

N

NH2

O
O

COH3C

Chemical Formula: C218H281N95O53S4
Exact Mass: 5205.11

Molecular Weight: 5208.43
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The detected molecular ions for PNA +15 conjugated with a lysine linker and FITC were 

(M+2H) 2+= 2605.1, (M+3H) 3+= 1738.8, (M+4H) 4+ =1304.1, (M+5H) 5+ = 1044.6, (M+6H)6+  = 

869.2, (M+7H)7+ = 748.5. They were consistent with the calculated mass of the desired product 

5208.4. A peak of 390.0 is due to fragmentation. 
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5.6 Uptake studies 

5.6.1 Concentration estimation of FITC-labeled compounds 

Compounds were dissolved in purified water (Milli-Q, Millipore) to obtain a 10 mM solution by 

weight. The pH was adjusted to 6.5 with 0.1M NaOH and 0.1M HCl. Especially for peptide 

conjugates this had to be done carefully since pH values >7 led to poorly reversible precipitation 

of the compounds, For the determination of the actual concentration, the stock solutions were 

diluted (1:100) in Dulbecco’s Modified Eagle's Medium (DMEM; Biochrom AG, Germany). 

The absorbance of the diluted solutions was measured in a multiplate reader (BMG Labtech, 

Germany) at 485 nm with ratiometric correction of turbidity at 690 nm. The concentrations of the 

stock solutions were calculated assuming εcarboxyfluorescein 485 nm=81,000 l/(mol·cm) and all further 

dilutions of the stock solutions for cell incubations and relaxivity studies were done according to 

this calculated concentration. 

5.6.2 Cell Culture 

The NIH 3T3 embryonic mouse fibroblast cells (obtained from DSMZ, Germany) and C6 rat 

glioma cells (a kind gift from Prof. B. Hamprecht, University of Tuebingen, Germany) and 

PANC-1 human pancreatic carcinoma cells (obtained from ATCC, USA) were grown as 

monolayers in Dulbecco’s Modified Eagle's Medium (DMEM) supplemented with 10% fetal 

bovine serum, 4 mM L-glutamine, 100 µg/ml streptomycin and 100 U/ml penicillin (all 

purchased from Biochrom AG, Germany) at 37°C with 10% CO2. Confluent cultures were split 

using trypsin/EDTA 0.05/0.02% (w/v) in phosphate-buffered saline (PBS; Biochrom AG, 

Germany) every second to third day, depending on the cell line.  

CCL-11 mouse fibrosarcoma cells (obtained from ATCC, USA) were cultured in an antibiotic-

free mixture of NCTC135 medium supplemented with 10% heat inactivated donor horse serum 

at 37°C with 5% CO2. Subculturing was performed two times a week by trypsinization. 

5.6.3 Internalization 

Internalization experiments on cells were performed in 96 well microplates. At 70-80% 

confluency (after 24 – 48h), cells were incubated with different concentrations of the compounds 

in complete culture medium for the indicated time points (2 – 18h) at routine culture conditions. 
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After incubation, the medium was removed and cells were incubated with Bisbenzimid 33342 

(Hoechst 33342), a nuclear stain, in complete medium for 30 min (100µl/well) in order to 

estimate the cell number. Afterwards, the supernatant was removed and extracellular 

fluorescence was quenched by incubation with cold trypan blue (0.05% (w/v) in PBS, 

100µl/well) for 3 min (ref) followed by two washes with 200µl cold HBSS (Biochrom AG, 

Germany) and the addition of 200µl pre-warmed  (37°C) HBSS. Cell-related FITC fluorescence 

(Ex 485 nm/Em 530 nm) and cell number (Ex 346 nm/ Em 460 nm) were evaluated in the 

multiplate reader. The internalized fluorescence was corrected by the cell number according to 

the following equation and called Corrected fluorescence units (corr. f.u.): 

fluorescence(FITC)/fluorescence(Hoechst) ×1000. 

Cells incubated in absence of CA were used as control and wells without cells but treated with 

Hoechst, Trypan Blue and washed as described above were used as blank. 

Hoechst fluorescence could also be used for the evaluation of cytotoxicity of compounds. 

The cells in plates processed for fluorescence spectroscopic measurement, as mentioned above, 

were used for complementary fluorescence microscopy. Microscopy was performed without 

fixation using a Zeiss Axiovert 200 M microscope (Germany) with an LD Plan NeoFluor 40X 

objective. The imaging conditions were kept constant for all different samples. Cellular 

localization and distribution of the peptide was observed by irradiating with blue light (Ex 

470/40 nm) and observing at the emission (Em) at 525/50 nm. Apart from FITC fluorescence, 

the nuclear staining with Hoechst was observed using Ex 365/15nm and Em 460/50 nm. 

Furthermore, trypan blue fluorescence was viewed at Ex 535/50 and Em 645/75 nm. Phase 

contrast images with differential interference contrast (DIC) microscopy of the same areas were 

made to verify if the cells maintain their normal morphology. Volocity Acquisition and 

Visualization software (Improvision, England) was used for high speed image capture and high 

resolution rendering of data sets as images. 

5.6.4 Statistical analysis 

Data were expressed as means with standard errors of the mean (SEM) for the various statistical 

groups (three or more experiments with six replicate each). To find out whether the two mean 
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values of interest were significantly different, unpaired Student’s t-tests were performed using 

GraphPad Prism version 5.00 for Windows (GraphPad Software, USA). When comparing more 

than two values, a one-way analysis of variance (ANOVA) with Bonferroni’s post test for 

multiple comparisons was performed using GraphPad Prism. 

5.7 Relaxation rates in cells 

For MR imaging of cells, exponentially growing cells were labeled with different concentrations 

of CAs in 175 cm2 tissue culture flasks for 2, 4, or 18h. After two times washing with HBSS and 

once with PBS, cells were trypsinated, centrifuged and re-suspended in 1.5 mL Eppendorf tubes 

to a density of 2 × 107 cells in 500 µl complete medium. Cells were allowed to settle before MR 

measurements. Tubes with medium only and tubes with cells without CA were used as controls. 

MR imaging of the cell pellets at room temperature (~21 ˚C) was done using a 3 T (123 MHz) 

human MR scanner (MAGNETOM Tim Trio, Siemens Healthcare, Germany), with a 12-channel 

RF Head coil and slice selective measurements from a slice with a thickness of 1 mm positioned 

through the cell pellet. T1 was measured using an inversion-recovery sequence, with an adiabatic 

inversion pulse followed by a turbo-spin-echo readout. Between 10 and 15 images were taken, 

with the time between inversion and readout varying from 23 ms to 3000 ms. With a repetition 

time of 10 s, 15 echoes were acquired per scan and averaged six times. For T2, a home written 

spin-echo sequence was used with echo times varying from 19 ms to 1000 ms in about 10 steps 

and a repetition time of 8 s. Diffusion sensitivity was reduced by minimizing the crusher 

gradients surrounding the refocusing pulse. All experiments scanned 2562 voxels in a field-of-

view of 110 mm in both directions resulting in a voxel volume of 0.43 × 0.43 × 1 mm3. Data 

analysis was performed by fitting to relaxation curves with self-written routines with the 

software MATLAB 7.1 R14 (The Mathworks Inc., United States). The series of T1 and T2 

relaxation data were fitted to the following equations: 

a) T1 series with varying t = TI: S = S0 (1 - exp(-t / T1) + S(TI = 0) exp(-t / T1). 

b) T2 series with varying t = TE: S = S0 exp(-t / T2). 

Nonlinear least-squares fitting of three parameters S0, S(TI = 0), and T1/T2 was done for manually 

selected regions-of-interest with the Trust-Region Reflective Newton algorithm implemented in 

MATLAB. The quality of the fit was controlled by visual inspection and by calculating the mean 
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errors and residuals. The obtained T1 and T2 values of the pellets were converted to R1,cell (= 

1/T1) and R2,cell (=1/T2). These were expressed in % of control (R1,cell and R2,cell of cells incubated 

similar in absence of CA): R1,cell (sample)/R1,cell (control) × 100 

5.8 Relaxivity in solution 

Three to five concentrations in the range of 5 – 40 µM were prepared in 800 µl purified (Milli-Q, 

Millipore,) water.  Water was used as blank. Two times 200µl of each sample were transferred to 

a 96well plate and the absorbance was measured at 485nm to verify the exact concentration. 

Afterwards, samples for each concentration were combined and 380µl aliquots were transferred 

into Eppendorf cups for MR measurement (two replicates per concentration). Parameters and 

evaluation were the same as for measurements of relaxations rates in cells. Relaxation rate values 

were plotted versus the exact concentration (in mM) and linear regression was done. The slope of 

the obtained curve is the corresponding relaxivity. Alternatively, relaxivity can also be calculated 

for each concentration according to the following equation: 

(R1,conc. – R1,blank)/c  

R1,conc, relaxation rate for sample with CA at concentration c (in mM) 

R1,blank, relaxation rate for blank 

C, concentration of CA in mM 
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