
Compression of Static and Dynamic

Three-Dimensional Meshes

Dissertation
der Fakultät für Informations- und Kognitionswissenschaften

der Eberhard-Karls-Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Rachida Amjoun

Tübingen
2009

Tag der mündlichen Qualifikation: 21.07.2009
Dekan: Prof. Dr. Oliver Kohlbacher
1. Berichterstatter: Prof. Dr.-Ing. Dr.-Ing. E.h. Wolfgang Straßer
2. Berichterstatter: Prof. Dr. Andreas Schilling

Zusammenfassung

Mit den wachsenden Möglichkeiten von Modellierungssoftware und 3D Scannern ist
die Anzahl verfügbarer 3D Modelle stetig gewachsen. Animationen von 3D Modellen sind
weltweit verbreitet und bilden heute eine der größten Anwendungen digitaler Medientech-
nologie. Um einen hohen Realitätsgrad zu erreichen, werdenkomplexe und hochdetail-
lierte 3D Objekte verwendet - möglicherweise mit Millionenvon Polygonen und Punkten
- für lange Sequenzen. Die Ursprungsformate solch großer 3DModelle benötigen viel
Speicherplatz und Bandbreite.

Das Problem des Speicherns und Übertragens ist gut untersucht für statische Meshes.
Hierfür gibt es eine große Anzahl an erfolgreichen Kompressionsverfahren. Das Haupt-
ziel dieser Dissertation ist das Entwickeln neuer Verfahren für die Komprimierung sta-
tischer und dynamischer 3D Modelle, welche durch Dreiecksnetze repräsentiert werden,
und neuer Segmentierungsverfahren, welche notwendig für das effiziente Komprimieren
animierter 3D Modelle sind.

Die Arbeit gliedert sich in fünf Teile. Der erste Teil behandelt Definitionen, traditio-
nelle Kompressionsverfahren und Vorarbeiten auf dem Gebiet der Kompression statischer
und dynamischer Meshes sowie ihrer Segmentierung.

Der zweite Teil stellt ein Verfahren für statische Geometrie vor. Es werden nicht die
drei Koordinaten eines Punktes kodiert, sondern seine tangentiale und normale Kompo-
nenten. Neue Vorhersagetechniken werden eingeführt, welche das Normalenkodieren ver-
bessern.

Der dritte Teil behandelt Segmentierungen von sich zeitlich verändernder Meshgeo-
metrie. Drei neue Verfahren werden hier vorgestellt: Ein Region Growing Verfahren, ein
statisches Clustering und ein adaptives Clustering. Diesezerteilen die dynamischen Mes-
hes in quasi-rigide Bereiche unter Verwendung einer lokalen Charakteristik.

Der vierte Teil stellt Verfahren für sich zeitlich verändernde Meshgeometrie mit kon-
stanter Konnektivität vor.

Der erste Algorithmus ist eine fast verlustlose Single-Rate Kompression für animierte
Meshes. Er verallgemeinert das vorgestellte Verfahren fürdie Kodierung statischer Mes-
hgeometrie. Er zeigt, dass die lokalen Koordinatensystemeein größeres zeitliches und
räumliches Clustering-Verhalten aufweisen als das Weltkoordinatensystem. Die Kombi-

ii

nation beider Clustering-Verfahren führt zu einer erheblichen Reduktion der Bitrate. Ver-
schiedene Prediktoren werden vorgestellt für tangentialeKomponenten und Normalen-
komponenten.

Der zweite neue Algorithmus ist eine auf der Relative-Local-Principal-Component-
Analysis (RLPCA) basierende Kompression. Er verbindet dasvorgestellte Clustern mit
LPCA, ausgeführt im lokalen Koordinatensystem. Es wird gezeigt, dass eine einfache Ab-
bildung der originalen Koordinaten in ein lokales Koordinatensystem jede Region quasi-
invariant über die Zeit und damit sehr gut komprimierbar mitPCA macht. Um den Algo-
rithmus weiter zu verbessern, wird eine Rate-Distortion Optimierung eingeführt.

Der dritte Kompressionsalgorithmus basiert auf prediktiven Codern und Discrete-
Cosinus-Transform-Codern (PDCT). Nach dem Clustern wird ein prediktives Kodieren
durchgeführt im lokalen Koordinatensystem jedes Clusters, welches zu sehr kleinen Delta-
Vektoren führt (prediktive Fehler). Die Delta-Vektoren werden dann in den Frequenzraum
transformiert mit DCT. Die resultierenden DCT Koeffizienten sind besser komprimierbar
als die Vektorkoordinaten. Die originale Mesh-Sequenz kann rekonstruiert werden von
nur wenigen DCT Koeffizienten, welche ungleich Null sind, ohne großen Verlust an visu-
eller Qualität.

Abschließend diskutiert der fünfte Teil die Ergebnisse undstellt experimentelle Er-
gebnisse vor. Es wird gezeigt, dass die vorgestellten Verfahren den Vergleich mit anderen
aktuellen Arbeiten standhalten.

Abstract

With the advancements and variety of sources to model 3D objects such as scanning
technologies and modelling softwares, 3D models are becoming widely available. An-
imation also attracted worldwide attention and has become one of the most successful
application of digital media technology. As a result, it is also becoming easier to acquire
animated models. In order to achieve a higher degree of realism, more complex and highly
detailed three-dimensional objects – possibly out of millions of vertices and polygons –
are created with large sequences. When storing, downloading, or uploading these 3D se-
quences of objects in their standard forms over a network, large data rows consume large
amounts of storage space and network bandwidth.

This problem of storage and transmission has been widely studied for static meshes
and wealth of successful compression schemes have been proposed. The main goal of this
thesis is to develop new powerful compression techniques toreduce storage requirements
and transmission times of static and dynamic 3D models represented by triangulated mesh
and introduce new and efficient animation segmentation approaches that are very useful
for different purposes, typically 3D dynamic mesh compression.

This work covers five main parts. The first part presents definitions, traditional data
compression techniques and reviews the existing techniques in the fields of static and
dynamic mesh compression and segmentation.

The second part introduces a new algorithm for static geometry data. Instead of encod-
ing the three coordinates of a vertex, its tangential and normal components are encoded.
New advanced prediction techniques are proposed to improvethe normal encoding.

The third part concerns segmentation of time varying mesh geometry. Three new
approaches have been developed: A region growing based approach as well as static and
adaptive clustering based methods. These break down the dynamic meshes into quasi-
rigid parts using local characteristic.

The fourth part presents successive contributions to time varying mesh geometry com-
pression where the connectivity remains constant over time.

The first new algorithm is a single rate near-lossless compression for animated meshes.
It generalizes the proposed static mesh geometry coding. Itshows that the local spaces
exhibit higher temporal and spatial clustering behavior than the world space, and the com-

iv

bination of both clusterings yield significant reduction inbit-rates. Different predictors are
proposed for tangential and normal components.

The second novel algorithm is a Relative Local Principal Component Analysis (RLPCA)
based-compression. It combines the proposed clustering with LPCA, performed in the lo-
cal space. We will show that simply mapping the original coordinates into local space
makes each region quasi-invariant over time and well-compressible by using PCA. To
further enhance this algorithm, a rate-distortion optimization is introduced.

The third compression algorithm is based on Predictive and Discrete Cosine Trans-
form coders (PDCT). After, clustering process, predictivecoding is performed in the local
space of each cluster resulting in very small delta vectors (prediction errors). The delta
vectors are then transformed into the frequency domain using DCT. The resulting DCT
coefficients are more compressible than the vector coordinates and the original sequence
of meshes can be reconstructed from only a few non-zero DCT coefficients without sig-
nificant loss in visual quality.

Finally, the fifth part discusses and provides the experimental results. We will show
that our methods are competitive when compared to the state-of-the-art techniques.

Acknowledgements

I would like to express my gratitude and sincere appreciation to my advisor Prof.

Wolfgang Straßer for his guidance, help and continuous support throughout the course of

my doctoral studies.

I also want to express my appreciation to Prof. Andreas Schilling for the valuable

support and the fruitful discussions.

I would like to thank Prof. Stefan Gumhold from university ofDresden, who directly

contributed to the work presented in the third chapter.

I would like to express my gratitude and thanks to PD. Dr. Douglas W. Cunningham

from Max Planck Institute of Tuebingen, and Dr. Ralf Sondershaus from Automotive

Lighting Reutlingen GmbH, for the proof-reading, valuableadvice and helpful discus-

sions, and to Dr. Zein Salah from University of Magdeburg foruseful discussions and

advice.

Sincere thanks are extended to GRIS’s office Manager Ms. Christ Constance who

provided help and assistance in numerous ways. Also, my thanks go to all my colleagues

at WSI/GRIS for the friendly environment and discussions that helped me complete the

present work.

Finally, I would like to thank my family and friends for theircomplete and unwavering

support. Special thanks go to my mother and my father, to whomI dedicate this work, for

their incessant support and love, and for being there whenever I needed them. Without

their help and encouragement, I would not be able to completethis work successfully.

vi

Contents

Zusammenfassung i

Abstract iii

1 Introduction 1

1.1 Problem Statement .2

1.2 Overview of Thesis .5

1.3 Contributions of Thesis .8

2 Background 9

2.1 Compression .9

2.1.1 Lossless Compression .10

2.1.2 Lossy Compression .10

2.2 General Compression Techniques .. 11

2.2.1 Huffman Coding .12

2.2.2 Arithmetic Coding .15

2.3 3D Data Representation .17

2.3.1 Static 3D Object .17

2.3.2 Dynamic 3D Object .20

2.4 Prior Mesh Compression Techniques 20

2.4.1 Static Mesh Compression .23

2.4.1.1 Single-Rate Encoders23

2.4.1.2 Progressive Compression35

2.4.2 Animated Mesh Compression37

viii CONTENTS

2.4.2.1 Clustering-based Compression38

2.4.2.2 Vertex-Prediction based Compression40

2.4.2.3 PCA-based Compression43

2.4.2.4 Wavelet-based Compression44

2.4.3 Level of Details for Dynamic Meshes44

2.5 Segmentation .45

2.5.1 Static Mesh Segmentation .45

2.5.2 Dynamic Mesh Segmentation46

2.5.3 Discussion and Summary .48

3 Compression of Static Meshes: Higher Order Predictor 51

3.1 Introduction .51

3.2 Geometry Encoding and Decoding Algorithm 53

3.2.1 Avoidance of Error Accumulation55

3.2.2 Local Coordinate System .56

3.2.3 Tangential Prediction .57

3.2.4 Binary Coding of Coordinates57

3.3 Higher Order Prediction .57

3.3.1 Gathering of Fit Vertices .58

3.3.2 Higher Order Surface Fitting .60

3.3.3 Intersecting Higher Order Surfaces with a TangentialCircle . . . 62

3.4 Alternative Approaches .62

3.4.1 Fitting of Implicit Function .63

3.4.2 Sphere Fitting .65

3.5 summary .65

4 Animated 3D Object Segmentation 69

4.1 Introduction .69

4.2 Overview .71

4.3 Definitions .72

4.4 Region Growing based Approach .72

4.4.1 Segment Initialization .73

4.4.2 Seed Selection .73

4.4.3 Mesh Growing Process .73

4.4.4 Results .74

4.5 Clustering based Segmentation .. . 74

4.5.1 Initialization and Seed Selection 74

CONTENTS ix

4.5.2 Local Coordinate Frames Construction 74

4.5.3 Vertex Clustering .75

4.5.4 Results .76

4.6 Adaptive Processing .77

4.6.1 Results .78

4.7 Evaluation of Segmentation Approaches 78

4.8 Computation Time .79

4.9 Discussion and Summary .82

5 Connectivity-Guided Compression of 3D dynamic Meshes 91

5.1 Introduction .91

5.2 Predictive Coding of the animated vertices 93

5.3 System Overview of SplitCoder .94

5.3.1 Mesh Traversal .95

5.3.2 Geometry Coding .95

5.3.2.1 Transforming World into Cylindrical Coordinates .. . 96

5.3.2.2 Tangential and Normal Components Prediction98

5.3.2.3 Binary Coding of Coordinates100

5.3.3 Geometry Decoding .101

5.4 summary .101

6 Motion based PCA Compression 103

6.1 Introduction .103

6.2 Overview .104

6.3 Compression pipeline .106

6.3.1 Segmentation .107

6.3.2 Transforming Vertex Positions into the Local Space 107

6.3.3 Compression of Local Coordinate Frames 107

6.3.4 Principal Component Analysis108

6.3.5 Quantization and Arithmetic Coder109

6.4 Decompression .110

6.5 Rate-Distortion Optimization for PCA based Coding 110

6.5.1 Description of the Problem .111

6.5.2 Problem Statement .112

6.5.3 Incremental Computation of the Rate-Distortion Optimization . . 113

6.6 Compression Parameters .113

6.7 Conclusion .114

x CONTENTS

7 Predictive-DCT based Compression 117

7.1 Introduction .117

7.2 Overview .118

7.3 Compression Pipeline .120

7.3.1 Local Coordinate Frames .120

7.3.1.1 Seed Triangles Selection121

7.3.1.2 Local Coordinate Frame Construction121

7.3.2 Motion in LCF based Clustering121

7.3.3 Differential Coding of LCFs .122

7.3.4 Spatial-Temporal Predictive Coding 122

7.3.5 DCT Coding .123

7.3.6 Quantization and Arithmetic Coder124

7.3.7 Reconstruction .124

7.4 Conclusion .125

8 Evaluation and Comparison 127

8.1 Implementations .127

8.2 Input Datasets .128

8.3 Measurement .128

8.4 Higher Order Prediction for Static Geometry Coding 131

8.5 Near-lossless Predictive Coding for Dynamic Meshes 136

8.5.1 Evaluation of Different Predictors 136

8.5.1.1 Tangential components136

8.5.1.2 Normal component138

8.5.2 SplitCoder vs. State-of Art .142

8.6 RLPCA based Compression for Dynamic Meshes 145

8.6.1 Compression Parameters .145

8.6.2 RLPCA vs. LPCA .145

8.6.3 RLPCA and ORLPCA vs. State of Art147

8.6.4 Timings .149

8.7 Predictive-DCT based Compression 152

8.7.1 Compression Parameters .152

8.7.2 PDCT vs. State of Art

157

8.8 Comparison of the Proposed Methods 161

9 Conclusion and Future Work 177

CONTENTS xi

Bibliography 180

xii CONTENTS

CHAPTER 1

Introduction

Computer graphics is one of the most exciting sectors in computer sciences. This

sector is growing rapidly, possibly more than any other aspect of computer technology and

increasedly incorporated in a various domains such as scientific, engineering and medical

applications, games, movies for special effects and animated films. In these applications,

the use of the computer graphics would not be possible without 3D geometric data or

more generally 3D objects. The shape of these objects can be modeled through irregular

polygonal meshes, a set of faces connected with points. The most common geometric

representation used by the designer either in the static or in the dynamic case, is triangle

meshes to suit the requirements of computer graphics visualization systems. There are

also other popular representations include parametric surfaces, point sampled surfaces,

implicit surfaces and voxel based representation.

Computer animation is one of the most highly regarded parts of computer graphics.

It attracted worldwide attention and has become one of the most successful applications

of digital media technology. Computer animation has revolutionized the world of movies

and TV, and has built the computer games industry. It has alsofound its way into many

other fields such as marketing, arts, sciences, scientific visualization and flight simulation.

Animation allows the creation of more realistic and naturalscenes, a more complete

comprehension of complex problems, the display of characters that never existed, and

access to places that are difficult or impossible to tread. Inother words, it transports the

users into another world where the impossible becomes possible.

Three dimensional animation simply gives life to static 3D objects, creating a se-

2 Introduction

quence of static meshes each of which represents one frame. Today, animation technology

has also become more sophisticated and accessible. Moreover, its applications have be-

come more and more widespread and often demand animated 3D models and scenes with

a high degree of realism. As 3D animation becomes more realistic and more complex, the

corresponding meshes become bigger and bigger, consuming more and more space. It is

therefore indispensable to compress 3D static and animation datasets.

1.1 Problem Statement

With the advancements and variety of sources to generate model 3D objects such as

scanning technologies and modelling softwares, 3D models are becoming widely avail-

able. In order to achieve a higher degree of realism, more complex and highly detailed

3D objects possibly out of millions of vertices are created.The standard representation of

triangle meshes uses a list of floating point values to describe the vertex positions (geom-

etry), a list of integer values that specify the vertex indices (connectivity), and sometimes,

properties such as normals and textures coordinates which are specified in similar way.

When storing, downloading, or uploading these 3D objects intheir standard forms over a

network, large data rows consume large amounts of storage space and network bandwidth.

This problem often arises in animation. Today, it is easier to acquire animated models.

In parallel, there is rapidly increase in the use of these animated objects in many appli-

cations (particulary in computer generated movies, special-effects films, and computer

games). Finally, the models are becoming more realistic butmore complex. To store an

animated objet, i.e. a sequence of meshes, one has to store one mesh for each frame. As-

suming that the connectivity is constant over time and only geometry information changes

over time, the representation of the geometry information of the sequence will requireF

times the information of each frame, i.e.,F ∗ V ∗ 3 ∗ 32 bits, whereF andV are the

number of frames and vertices, respectively. Each one of thethree coordinates of a frame

is represented using32 bits. For large sequences and detailed and high accuracy models,

the uncompressed representation results in large files which are expensive to store or to

deliver over networks.

The problem of storage and transmission has been widely studied for static meshes and

a wealth of successful compression schemes has been proposed. However, the current

static techniques for the compression of sequences of meshes independently are ineffi-

cient.Key-frameanimation is one of the most famous traditional and dominantanimation

representations used in the industry to represent the animation compactly. A set of key

frames are chosen to describe certain important key poses inthe animation sequence at

1.1 Problem Statement 3

certain times. Then all frames in-between are generated using interpolation techniques.

For such applications, even the number of key-frames can be very large, requiring a large

memory space and effective compression techniques. Many techniques have been pro-

posed and there is still room for better encodings of animated geometry.

The goal of this thesis is to develop new powerful compression techniques to reduce

storage requirements and transmission times of static and dynamic 3D models represented

by triangulated meshes. This type of data is used in many computer graphics applications.

The segmentation of deforming triangular meshes is a new research area. It is rapidly

becoming important in many computer graphics applications. In the context of com-

pression, its is used to achieve better compression performance. Typically, it reduces

the amount of time needed to handle or transform large datasets. It can also reduce the

amount of time needed to extract the coherent rigid parts which leads to a more compact

representation. This thesis introduces several new and efficient animation segmentation

approaches that can be useful not only for compression but also for different purposes.

Static meshes

Early work in this field concentrated on finding efficient and optimal connectivity cod-

ing schemes for static meshes. They encode the connectivityinformation first then they

encode the geometry information in terms of traversal orderused to encode the connec-

tivity. Later, the geometry-driven compression techniques emerged.

Most of the proposed paradigms to reduce the amount of vertexpositions use the fol-

lowing combination: prediction to exploit the high correlation between the positions of

adjacent mesh vertices, quantization to reduce the floatingpoint to finite precision, and

entropy encoding to reduce the statistical redundancies. We follow the same paradigm and

propose new approaches for the static vertex positions. Thenew idea is to split the coding

into tangential and normal encoding [36, 8]. For tangential encoding, we investigated the

current approaches [117, 25]. For the normal encoding, we introduced higher order pre-

dictors based on surface and sphere fitting. In surface fitting, we examined two approaches

to fit polygonal surfaces to a set of points using explicit andimplicit polynomial functions.

Dynamic meshes

During an animation, the vertex positions (geometry) change from frame to frame.

Sometimes, the connectivity or the number of vertices also may change in time. Through-

out this dissertation, we assume that the sequence of meshesshares the same connectiv-

4 Introduction

ity and only the vertex positions change in time. The focus onanimated meshes with

fixed connectivity may be justified by the fact that often the animation creators maintain

constant connectivity throughout the animation, in order to allow for easy and efficient

manipulation of the sequence. Thus, the connectivity of themesh is first defined, then the

vertices are moved or deformed depending on the way the animation is generated.

Often the meshes differ only slightly between neighboring frames, leading to a large

redundancy between frames (temporal redundancy) and between neighboring vertices in

the same frame (spatial redundancy). In order to develop a compact representation that

significantly reduces the storage space and transmission time of animated models, both

spatial and temporal coherence should be exploited. In other words, the large amount of

inherent redundancy between frames should be eliminated.

This thesis introduces several compression approaches from not lossyor near-lossless

to lossyfor animated meshes of constant connectivity. For not lossycompression, we

generalize the idea developed for static mesh compression [11, 15]. The local coordinates

exhibit a high degree of clustering behavior not only in space but also in the temporal

domain. However, a simple predictive-based encoding of each component gives a better

bit rate. For lossy compression, two algorithms are introduced. The first algorithm is

based on local Principal Component Analysis (PCA) [7, 10] and the second approach is

based on a predictive approach and Discrete Cosine Transform (DCT) [12, 13]. Both of

these two techniques are combined with a clustering approach

The choice or the design of a compression scheme involves trade-offs along several

features. Two of these features are: the compressed file sizeor the compactness and the

amount of distortion introduced by the compression process. The better the quality, the

lower the compactness is.

Segmentation

3D Mesh segmentation is a process that partitions the mesh elements that have the

same properties into regions. It has become a necessary toolin computer graphics and

geometric modelling and it is used for various applications.

Recently, segmentation of deforming triangular meshes hasgained much interest and

it is used in several contexts in animation, typically, skinning mesh animation [54], ray

tracing[37], and compression [77, 38, 102, 84].

While static mesh segmentation aims at detecting meaningful parts and breaks the

mesh into sub-meshes of similar features within a specific context, 3D dynamic mesh seg-

mentation approaches exploit the temporal information to partition the mesh into quasi-

1.2 Overview of Thesis 5

rigid components.

Compared with the huge number of algorithms proposed for static meshes, segmenta-

tion is rarely used in the context of dynamic mesh compression context. Moreover, most

of the proposed methods are more suitable for skin meshes butare not efficient to or are

even inapplicable for deforming triangular meshes that have lots of motion, particulary in

context of compression.

This thesis develops novel segmentation approaches, that are independent of how the

animation is generated and can be useful not only for compression but also for other

applications.

The objective of partitioning the deforming mesh into near-rigid components is to de-

crease the computational costs as well as to preserve the global shape of the mesh because

some compression algorithms such as DCT and PCA based-coding can destroy important

features of the mesh when very few PCA components or very few DCT coefficients are

used to recover the original datasets. Thus, it leads to a more compact representation and

one can achieve high compression rates with high reconstruction quality. In PCA based

coding [7, 10], we want to transform the nonlinear behavior of vertices toa linear fashion

by grouping the vertices of similar motion into sets. Then wecan efficiently perform the

PCA in each group. Thereby, few components can be encoded while the global shape

is well preserved. In DCT based-coding that we combine with the predictive coding, the

segmentation allows an efficient prediction through time and, thereby, having vertices dis-

placements between two successive frames close to zero. Here also, the clustering will

preserve the global shape when DCT coding is performed (spatially) in each cluster.

1.2 Overview of Thesis

This thesis describes new algorithms for static and animated 3D mesh compression,

yielding a significant reduction in bit-rates and introduces a new, simple and efficient ani-

mation segmentation method that is very useful for compression. These contributions are

organized in the following chapters:

Chapter 2 presents some definitions and a description of some general data encoding

schemes. These are often used in compression pipelines as a final stage. Then, it gives

a description of the geometric representation of 3D objectsand of animation – the input

data for our algorithms. These are followed by a review and discussion of the most im-

portant published works on static and animated 3D objects.

6 Introduction

Chapter 3 describes a novel, near lossless geometry compression thechnique [36, 8].

The new geometry encoding strategy follows the predictive coding paradigm, and is based

on a region growing encoding order. Only the coordinates of the correction vectors are

encoded in a local coordinate system. The vertex coordinates are expressed in term of

tangential and normal components. For the tangential components encoding, we investi-

gated the parallelogram or multi-way prediction. For an improved encoding of the normal

component, we introduce the so-called higher order prediction. A higher order surface is

fit to the so far encoded geometry. Here, two approaches are developed to fit polygonal

surfaces to a set of points. In the first approach, we fit the graph f(x, y) of a polynomial

function defined over the tangential coordinatesx andy. In the second approach, we fit a

polynomial implicit functiong(x, y, z) such that the zero set represents the surface. This

has the advantage that there is no need for guessing the tangential space. As the normal

component is encoded as a bending angle, it is found by intersecting the higher order

surface with the circle defined by the tangential components. To overcome the high com-

putational time involved in the gathering and weight fittingprocesses, we develop a faster

predictor based on sphere fitting.

Chapter 4 introduces motion-based segmentation for animated meshes[7, 10, 14].

The main idea is to decompose the 3D object into sub-meshes orgroups of vertices with

similar motions, then compress each group separately. Here, we present three approaches:

region growing, clustering, and adaptive clustering basedapproaches. These algorithms

can be applied to different kinds of animated meshes (arbitrary animation) whose connec-

tivity and number of vertices are constant over time. Moreover, we do not need informa-

tion about how the motion is generated. These approaches canbe very useful for other

applications.

Chapter 5 introduces single-rate near lossless compression for animated meshes of

fixed connectivity based on a simple predictive technique [11, 15]. The algorithm can be

seen as a generalization of static mesh compression presented in Chapter3. The connec-

tivity is encoded once, then the geometry (vertex locations) is encoded by a connectivity

traversal of the mesh. Connectivity determines the order ofthe vertices and provides infor-

mation for predictions. We are going to show that splitting the coordinate into parametric

and geometric information in animation, is a very efficient way of developing simple pre-

dictive coding. Indeed, the local spaces exhibit higher temporal and spatial clustering

behavior than the world space, and the combination of both clusterings should yield sig-

nificant reduction in bit-rates. We also going to involve different predictors for tangential

1.2 Overview of Thesis 7

and normal components: time-only, space-only and space-time predictors.

Chapter 6 presents a novel Relative Local Principal Component Analysis (RLPCA)

based-compression scheme for dynamic meshes [7, 10]. We use Principal Component

Analysis (PCA) to represent the original data by very few components and coefficients.

Generally, the behavior of the vertices is often non-linearand difficult to extract by a

simple global PCA. Therefore, we perform PCA locally. We collect the mesh vertices

into groups of similar motion using a region growing based-algorithm or motion based-

clustering (Chapter4), and thus transform the original vertex coordinates into the local

coordinate frame of their cluster or segment. This operation leads to a strong clustering

behavior of vertices and makes each region invariant to any deformation over time. The

local vertex coordinates are then transformed into anotherbasis which allows for very

efficient compression.

To improve the PCA-based compression, we introduce a rate distortion optimization

that trades off between rate and the quality of the reconstructed animations. Thus, the

appropriate number of basis vectors to recover the originaldata of each group with a

certain accuracy is optimally selected using a bit allocation process.

To the best of our knowledge, performing a PCA on the local coordinate system rather

than the world coordinates and performing rate distortion optimization has never been

performed before.

Chapter 7 combines predictive and spectral techniques [12, 13]. The compression

algorithm does not need the connectivity information and belongs to the cluster based

prediction approach. The animated mesh is segmented into almost rigid clusters. Then

the predictive and DCT coding is performed in each cluster, frame after frame.

Note that the clustering in this approach is used in the prediction phase. We want

to have the displacements between two successive frames close to zero, thereby the effi-

ciency of the prediction over time increases. Moreover, theclustering will preserve the

global shape when DCT coding is performed in each cluster.

Chapter 8 discusses and evaluates different parameters that affect compression per-

formance, presents the experimental results of the proposed approaches and compares

them with the current one.

Chapter 9 concludes this dissertation with a summary of contributions and future re-

search directions.

8 Introduction

The work described in this thesis has been published in different conferences and

journals [36, 7, 10, 13, 11, 15, 14] as well as technical reports [8, 9, 7, 14].

1.3 Contributions of Thesis

The main contributions of this thesis are summarized as follows

• A Higher order prediction for static mesh compression basedon surface fitting and

sphere fitting [36].

• Single rate near lossless compression of animated geometry. The approach is vertex

based-predictive coding [11, 15]

• Motion based segmentation methods for animated meshes: region growing based

approach, static and adaptive clustering [7, 10, 14].

• A novel relative local principal component analysis based compression scheme for

dynamic meshes [7, 10].

• A new rate distortion optimization for PCA based-coding [10]

• Predictive-DCT based compression scheme for dynamic meshes [12, 13]

CHAPTER 2

Background

In order to explain and understand the new techniques detailed in the next chapters,

it is necessary to go through the main approaches in the literature of static and animated

mesh compression and mesh segmentation. This chapter is organized as follows. The first

section provides a background on compression. Section2.2 presents general encoding

schemes such as Huffman coding and arithmetic coding which are often used by a com-

pression pipeline as final stage. Section2.3 describes geometric representations of 3D

objects and animations. Section2.4covers the most important published works on static

meshes and animated meshes. Section7.3.2presents some segmentation algorithms de-

veloped for static meshes and dynamic meshes.

2.1 Compression

Compression is the conversion of one representation of datainto another representa-

tion with smaller size. The data reduction results from the elimination of redundancy of

the information while preserving content. Data comes in a large variety of forms includ-

ing written text, speech, 2D still images, video, 3D graphicobjects and 3D graphic scenes.

Beside compression, there is a decompression process whichoperates on the compressed

representation in order to reconstruct the original data.

10 Background

Why do we need compression?

With the advances of computer technology, millions of computer-users increasingly

produce and consume a lot of data such as text documents, music, videos or graphical

data. Day by day a lot of them need to communicate via the Internet or other networks

exchanging documents while other users use complex software tools like video editors or

video games that need or produce a tremendous amount of data.In addition, all people

want to do their job easier and faster. With the increasing data size, efficient storage sys-

tems or transmission techniques are necessary. Consequently, compression technologies

are required to optimize the amount of memory required to store data and to minimize the

required bandwidth of network transmissions.

Compression becomes a part of daily life for millions of people. Digital TV or fast

communication via internet would not be possible without sophisticated compression

technologies.

The choice or the design of a compression scheme involves trade-offs along several

features. Two of these features are the compressed file size (i.e. the compactness of

compressed data) and the amount of distortion introduced bythe compression process.

Often, the better the quality is the lower the compactness is. Basically, compression

techniques can be divided into two broad categories depending on whether the original

data can be exactly recovered or not, namelylossless compressionandlossy compression.

2.1.1 Lossless Compression

A lossless compression scheme is a scheme that allows the original data to be recon-

structed from compressed data without any loss. Lossless compression is necessary for

sensitive or very important data when the decompressed datamust be identical to the orig-

inal data. Typical data types for lossless compression are text, executable code or medical

images. Typical compression schemes are run-length encoding, dictionary coders (like

LZ77 [130] or LZW [122]), and entropy coding such as Huffman coding and arithmetic

coding.

2.1.2 Lossy Compression

A lossy compression scheme is a scheme that sacrifices precision in order to achieve

high compression ratios. The original data can be recoveredwith some loss of fidelity.

Therefore, a lossy compression scheme often archives higher compression ratios than a

lossless compression scheme without greater degradation.The compression ratio is in-

2.2 General Compression Techniques 11

versely proportional to degree of quality. Usually, applications can use lossy compression

schemes if the loss of precision is not perceivable or significant such as video applica-

tions, still image editing or audio. Typical lossy compression techniques are MP3, JPEG,

Fractal compression and MPEG.

2.2 General Compression Techniques

Various Compression techniques are designed depending on the type of data to be

compressed. As mentioned before, these techniques are divided into two classes. Lossless

compression schemes which arereversibleand lossy Compression schemes which accept

some loss of data. Note that there are also approaches that combine both lossless and

lossy compression which are categorized under lossy category.

Many applications require the decoding process to be able torun in real time like video

applications. In contrast, the encoding process is often not required to run in real time and

can thus be more computational expensive than the decoding process. But note that this is

not always the case as e.g. for speech compression. In addition, the decoding or encoding

process must often be implemented with an integrated circuit which has to be considered

during the design phase.

This section reviews some lossless techniques that are important for many compres-

sion techniques (e.g. for compression of mesh geometry). The next section2.4 will

present some lossy compression techniques that are relatedto the work of this thesis.

Most information to be encoded is a sequence of symbols whichmay contain a large

redundancy. Entropy encoding reduces the quantity of data without loss of information

based on a probability distribution of symbols. It assigns codes to symbols such that the

code length matches the probabilities of symbols.

Let A = a1, ..., ak be an alphabet withk different symbols. Each symbol has a prob-

ability P (ai) assigned to it. The amount of information for a single symbolai is given

by:

I(ai) = log2
1

P (ai)
(2.1)

So, the higher the probability of a symbol is, the lower is itsinformation value. In contrast,

the lower the probability of a symbol is, the higher is its information value.

Now, given a sequenceS of symbols, i.e. a string of symbols, its entropyH can be

calculated as

H(S) =
∑

a∈A
P (ai)log2

1

P (ai)
(2.2)

The entropy is a measure for the average number of bits neededto encode strings of

12 Background

symbols of the alphabetA with the given probabilitiesP (ai). Although there can be a

string which can be encoded with a bit rate lower thanH, the average number of bits

for all possible strings cannot drop belowH. In that meaning, the informationI(ai) of a

single symbol is a measure for the number of bits needed by a minimal code to encode

this symbol.

The most popular type of entropy encoding are: arithmetic and Huffman coding. They

are lossless and do not offer a good compression ratio but play an important role in a very

large number of compression techniques for text, audio, 3D geometric objects, standards

such as JPEG and MPEG. They are often used in a final stage to further enhance the

compression ratio.

There are also other lossless algorithms such as Run-lengthencoding (RLE), Lempel-

Ziv-Welch (LZW) or Golomb coding which will not be discussedin this thesis and we

refer the reader to [103]. We only want to discuss briefly the two techniques above, which

are used by a post-processing step in current mesh compression algorithms, and by our

approaches presented in the next subsequent chapters.

2.2.1 Huffman Coding

This technique was developed by David Huffman in 1952 [44]. The algorithm uses

a variable length code to encode each symbol. The symbols areencoded with lengths

that are inversely proportional to the frequencies of the symbols. For example, the sym-

bols that occur more frequently (have a higher probability of appearance), have a shorter

code length (are encoded with fewer bits) than the symbols that occur less frequently.

To generate the code, a binary tree is created with the symbols at the leaves. The code

is then defined by the path from the root of the tree to each leaf. Each symbol is as-

signed ’0’, if the left child is traversed and ’1’ if the right child is traversed. Now, let’s

see how the tree is designed. Given an alphabetA = a1, a2, a3, a4, a5 having probabil-

ities P = 0.2, 0.25, 0.05, 0.35, 0.15 (see table2.1). To generate the Huffman code, first

the symbols are sorted in a descending probability ordera4, a2, a1, a5, a3 (see table2.2),

where each symbolai forms a leaf in the first queue as described in2.1. Then, the two

symbols with lowest probabilities are merged producing a single node having a probabil-

ity equal to the sum of their probabilities. The new node is treated as symbol and inserted

into the queue. The nodes are again sorted and the same rule isapplied to generate a new

parent node for the two symbols with the lowest probabilities. This process is repeated

till all nodes are merged and only one is left. The resulting Huffman tree is illustrated in

figure2.1.

To obtain the code of each symbol, the tree is read backwards,starting at the root

2.2 General Compression Techniques 13

Table 2.1 Symbols with their corresponding probabilities

Symbols Probabilities
a1 0.20
a2 0.25
a3 0.05
a4 0.35
a5 0.15

Table 2.2 Symbols with their corresponding probabilities in descending order

Symbols Probabilities
a4 0.35
a2 0.25
a1 0.20
a5 0.15
a3 0.05

and going to each leaf node, recording ’0’ if the left branch is crossed and ’1’ if the right

branch is crossed. The codewords of the sequence of symbolsa1, a2, a3, a4, a5 are then

10, 01, 111, 00, 110 (see table2.3).

The Huffman coding is near optimal in the sense of having a minimum code length

for the set of symbols. It is prefix code which means that the code of each symbol cannot

be a prefix or start of the code of another symbol. And it provides a fast decoding process.

According to Gallagher [30] the average code lengthlH that Huffman coding can achieve

is bounded by the entropy and by the entropy pluspmax + 0.086:

H(S) ≤ lH ≤ H(S) + pmax + 0.086 (2.3)

Thereby,pmax is the largest probability in the set of symbols probabilities.

If the alphabet size is large, the probabilities are not skewed, andpmax is small. Thus,

Huffman coding achieves a rate close to the entropy. If the alphabet is small, the prob-

abilities of different symbols are skewed,pmax can be quite large and the amount of the

deviation from the entropy is large. Thus, Huffman coding becomes inefficient. The cod-

ing becomes quite good if the size of alphabet is increased bygrouping several symbols

together and generating a single codeword for each group instead of generating a code-

word for each symbol. Suppose that the size of the alphabet tobe encoded isk and the

size of each group ism then the total number of all possible groups of sizem is km.

However, the total number of codewords iskm. If the sequence of symbols to be encoded

is large, then Huffman tree will grow exponentially, causing increase in time consuming

procedure and memory usage. In this case, Huffman coding is not the appropriate coding

14 Background

)35.0(4a

)15.0(5a)05.0(3a

)25.0(2a)20.0(1a 20.0

40.060.0

0.1

10

11

1

0

0

0

Figure 2.1 A Huffman tree

Table 2.3 Huffman codes

Symbol Probability Binary Code
a4 0.35 00
a2 0.25 01
a1 0.20 10
a5 0.15 110
a3 0.05 111

(impractical). Arithmetic coding which will be discussed in the next section overcomes

this problem. Arithmetic coding encodes the whole sequenceof symbols as a block rather

than encoding several blocks and can get the coding rate veryclose to the entropy bound,

even for short alphabets or highly skewed symbols’s probabilities.

Adaptive Huffman Coding Huffman coding requires a priori knowledge of the proba-

bilities of the symbols. It is then a two pass process: one pass computes the probability

of each symbol and constructs the Huffman tree and transmitsthe tree, and a second pass

encodes and transfers the data. In other words, the table code should be sent to the re-

ceiver with the encoded stream in order to decompress the data. The size of the coding

table therefore becomes large when data size increases. Moreover, in practice, the proba-

bilities are not always known a priori and may change over time. In such cases, a method

that compresses data in one pass is need. Therefore, an adaptive Huffman coding is used

that allows to build adaptively the Huffman code depending on the sequence of symbols.

So, the Huffman code can change if new symbols are consumed. The original algorithm

./phd-Pics/background/HuffmanTree.eps

2.2 General Compression Techniques 15

Table 2.4 arithmetic codes

Symbol Probability Cumulative probability Sub-Interval
a1 0.4 0.4 [0.0; 0.4)
a2 0.1 0.5 [0.4; 0.5)
a3 0.2 0.7 [0.5; 0.7)
a4 0.3 1.0 [0.7; 1.0)

has been developed by Faller [29] and Gallagher [30] and has later been improved by

Knuth [68] and Vitter [120]. The main idea is to start coding with an empty Huffman tree,

then update the symbol account and the tree as being read and compressed/decompressed.

Both the encoding and decoding start with the same tree and modify it in the same way.

Thus, both processes are synchronized.

2.2.2 Arithmetic Coding

Unlike Huffman coding which assigns a code word to each symbol and uses an in-

teger number of bits (at least one bit to encode each symbol),arithmetic coding encodes

the entire sequence to a rational number in [0,1). All probabilities of the symbols fall

into the range [0,1). The algorithm starts with the unit interval [0,1), and transforms the

possibilities into subintervals. As each symbol is processed, the algorithm divides the cur-

rent interval into subintervals, each subinterval represents a certain symbol, and its size

depends on the symbol probability. Then, the subinterval ofprocessed symbol is selected

to be the new currently interval. For example, let us supposethat we have an alphabet

A = a1, a2, a3, a4 with probabilitiesP = 0.4, 0.1, 0.2, 0.3 as shown in table2.4.

We define the cumulative density (cdf) function as

F (i) =

i∑

k=1

P (ak)

P (ak) is the probability of the the symbolak. The cumulative probabilities are then

given in table2.4 (column3). Thecdf is used to divide the unit interval [0,1) into subin-

tervals of the form[F (i− 1), F(i)) (column4), each symbol has it own subinterval, where

the minimum value ofcfd is zero and the maximum value is one.

Let us for example encode the sequencea1, a2, a3, a4. The first symbol to be en-

coded isa1, the corresponding subinterval[0.0; 0.4) is selected to be the new current

interval. This interval is divided similarly as the interval [0,1) yielding the following

subintervals:[0.0; 0.16), [0.16; 0.20), [0.20; 0.28), [0.28; 0.40) corresponding to the sym-

bols a1, a2, a3, a4. The next symbol to encode isa2. The corresponding subinterval

16 Background

4.0

5.0

7.0

0.0

0.1

2a

1a

3a

4a

16.0

20.0

28.0

0.0

2a

1a

3a

4a

176.0
2a

1a

3a

4a

1832.0

1840.0

1856.0

1880.0

2a

1a

3a

4a
4.0

160.0

200.0

1800.0

180.0

188.0

Figure 2.2 Arithmetic coding process

is [0.16; 0.20). We divide this interval in similar way as before producing new subin-

tervals: [0.160; 0.176), [0.176; 0.180), [0.180; 0.188), [0.188; 0.200). To encode the next

read symbola3, the interval[0.180; 0.188) is partitioned further to give[0.1800; 0.1832),

[0.1832; 0.1840), [0.1840; 0.1856), [0.1856; 0.1880). This process of subdivision for the

input sequencea1, a2, a3, a4 is graphically illustrated in Figure2.2. The final interval

which assigned to last symbolsa4 is finally [0.1856; 0.1880).

To encode the sequence of symbolsa1a2a3a4, an unique identifier or the tag should

be generated. This tag can be any number in the final interval ([0.1856; 0.1880)). On can

choose for example the lower limit of the interval or midpoint or upper and lower limits

of the interval. In our example one can choose0.1868 as our identifier for the sequence.

Notice that the tag appear in the subinterval of each symbols.

In arithmetic coding, the decoding process is similar to theencoding process. To re-

construct the sequence, we need to know two information: theprobabilities of the symbols

and the tag. First, we calculate thecdf for the symbols in the same way as in encoding

process. We will get the same values of the cumulative probabilities and subintervals

shown in table2.4. Then, we check in which subintervals the tag belongs. The tag resides

in the subinterval[0.0; 0.4) which is assigned to the symbola1. Thus the first decoded

symbol isa1. Next, the subinterval becomes the current interval, it is divided into the

same subintervals as in figure2.2. The tag is now reside in the subinterval[0.16; 0.20)

./phd-Pics/background/arithmetic.eps

2.3 3D Data Representation 17

corresponding to the symbola2. The process continues till all symbols are decoded.

Arithmetic coding is more efficient and can get the coding rate very closer to the en-

tropy bound than Huffman coding but it runs more slowly, particulary for real time data

processing since it encodes the sequence of symbols one by one. Therefore, adaptive

arithmetic coding which exploits the same idea as adaptive Huffman, is used.

Adaptive Arithmetic Coding Adaptive arithmetic coding reduces the two pass to two to

one pass process, where the probabilities of symbols are updated depending on data pro-

cessed. Thus, eventually, the coding initializes the probability distributions of one or more

of symbols to some predefined values, such as1. Then the cumulative distributions are

updated after each symbol is encoded. Adaptive coding can becomputationally expensive

and complex because of the updating process of the cumulative distributions. To reduce

this complexity, different approaches of updating processare developed (see [99]).

Note that arithmetic Coding is used in many compression standards such as H.264 and

JPEG2000.

2.3 3D Data Representation

Text, audio, image, video, etc. are examples of data that computer users almost daily

use and need to compress either for storage or transmission.This thesis is being carried

out to develop new compression techniques for static and dynamic 3D models represented

by triangle meshes, a type of data used in many computer graphics applications.

2.3.1 Static 3D Object

Today, we find 3D objects in many areas such as industrial visualization, medicine

applications, video games, movies etc. These objects can berepresented in different ways

such as boundary representation, parametric surfaces, point sampled surface, implicit sur-

faces or voxel based representations. The most prevalent representation of an object and

the one which will be the input of our all algorithms is the boundary representation. The

most common geometric representation for boundary 3D geometric objects is the irregu-

lar polygonal meshes which consist of a setV of vertices, a setE of edges and a setF of

faces. A vertex represents a node or point. An edge is a straight line that connects two a

pair of vertices. A face consists of a set of connected edges defining a triangle, a quad or

some higher degree face. Triangle meshes are widely used to represent three-dimensional

objects or scenes. One reason for this widespread use of thistype of polygons is due to

the current graphics hardware which efficiently supports triangles for realtime rendering

18 Background

MMMM

MMMM

0.013905-0.0401610.023175v

0.013605-0.0383030.022199v

0.018927-0.0404280.013177v

0.000141-0.086570.041727v

0.000294-0.0629370.051767v

0.000126-0.0891390.045819v

zyx

252

251

250

3

2

1

MMMM

201210252f

252210250f

210251250f

3

2

1

Vertices

Triangles

Figure 2.3 A mesh example: Cow model (2904 vertices,5804 triangles). Top left: shaded
display. Top right: wireframe. Bottom: triangle mesh representation (vertex and face arrays

of objects at different complexity. Moreover, all other forms of polygons are typically

converted into triangles by the graphics hardware before rendering. Figure2.3 shows an

example of a 3D mesh.

Basically, triangle meshes consist of thegeometrydata andconnectivitydata.

Mesh Geometry

Mesh geometry is represented by an arrayV of vertex positions in 3D space, i.e. each

vertex position is defined by its coordinates (x, y, z) specified by floating point numbers

(see figure2.3).

./phd-Pics/background/staticCowShaded.eps
./phd-Pics/background/staticCowblue.eps
./phd-Pics/background/staticCowlist.eps

2.3 3D Data Representation 19

MMMM

MMMM

0.013961-0.0335650.023435v

0.013695-0.0317690.022458v

0.019043-0.0337760.013298v

0.000277-0.0804810.042351v

0.00023-0.0567710.0522v

0.000386-0.0833040.046557v

zyx

252

251

250

3

2

1

MMMM

201210252f

252210250f

210251250f

3

2

1

Triangles

MMMM

MMMM

0.011699-0.0194490.034885v

0.011582-0.0173550.034788v

0.017516-0.0143270.025513v

0.00342-0.0858640.03134v

0.0018390.0697350.048645v

0.004761-0.0928210.033529v

zyx

252

251

250

3

2

1

MMMM

MMMM

0.014815-0.076690.024837v

0.014997-0.0740280.026118v

0.019155-0.066880.019256v

0.001887-0.1486380.001772v

0.004508-0.1387160.02231v

0.004662-0.1579170.001296v

zyx

252

251

250

3

2

1

MMMM

MMMM

0.027586-0.1166630.049509-v

0.028449-0.1130450.049832-v

0.026298-0.1059420.059486-v

0.013328-0.2110110.022598-v

0.02649-0.1922040.016816-v

0.015099-0.2233010.01892-v

zyx

252

251

250

3

2

1

Frame 1 Frame 6 Frame 1 6 Frame 29

Figure 2.4 Sample frames of cow sequence (top) and the standard mesh representation (bottom)

Mesh Connectivity

The mesh connectivity is represented by an arrayF (sometimes notedT) of indexed

triangles, describing how the vertices are connected. Eachtrianglefi is defined by three

indices that point into vertex list, as illustrated in figure2.3.

Mesh Formats

Many different 3D formats have emerged to import and export the meshes such as:

OBJ, WRL , PLY or DXF. The use of the format may differ from application to applica-

tion depending on its content that requires different specification.

./phd-Pics/background/frame2.eps
./phd-Pics/background/frame7.eps
./phd-Pics/background/frame16.eps
./phd-Pics/background/frame30.eps
./phd-Pics/background/animationlistcow.eps

20 Background

2.3.2 Dynamic 3D Object

Animation gives life to static 3D objects. It attracted a surprising amount of attention

from marketing, arts, sciences, television and particulary in the computer games industry,

and special effects in movies. In animations, we have to takeinto account that the object

may change over time. To model the animation different approaches can be used. Gener-

ally, the animation can be either generated using motion capturing systems or simulated

by sophisticated software tools like Maya and Max 3D. The popular representation of

these animated objects is a triangle mesh to suit the requirements of computer graphics

visualization systems. A dynamic 3D object is then a sequence of meshes, each mesh

represents one frame, which we call also mesh frame.

During an animation, the vertex positions (geometry) change from frame to frame,

eventually, the connectivity or the number of vertices alsomay change in time. Through-

out this dissertation, we assume that the sequence of meshesshare the same connectivity

and only the vertex positions change over time, because, very often the number of vertices

and the connectivity of the mesh is first defined, then the vertices are moved or deformed

depending on the way of generating the animation. Figure2.4 shows sample frames of

the cow sequence.

In 3D animation, various formats are provided such asMAX , MDL , MS3D or FBX.

2.4 Prior Mesh Compression Techniques

With the advancements and variety of sources to model 3D objects such as scanning

technologies and modelling softwares, 3D models are becoming widely available. In or-

der to achieve a higher degree of realism, more complex and highly detailed 3D objects

possibly out of millions of vertices are created. As seen in the previous section the stan-

dard representation of the triangle meshes uses a list of floating points to describe the

vertex positions and a list of integer values that specify the vertex indices and, eventually,

a list of floating proprieties attached to the mesh (normals,textures, etc).

The storage cost of uncompressed mesh geometry informationis V ∗ 3 ∗ 32, whereV

is the number of mesh vertices,3 are the three coordinates of each vertex (X, Y andZ)

and32 is the number of bits required to store the floating point value of each coordinate.

The cost of the uncompressed mesh connectivity isT ∗ 3 ∗ 32, whereT is the number

of triangles and3 is the three vertex indices (per triangle) and32 is the number of bits

required to store these three integer indices.

When storing and downloading or uploading these 3D objects over networks, in their

standard form, the large raw data sets will consume a large amount of storage space and

2.4 Prior Mesh Compression Techniques 21

Figure 2.5 Intermediate stage during the reconstruction of mesh usinga single rate scheme(top)
and a progressive scheme (bottom). (Figure taken from [6])

network bandwidth.

This problem heavily arises in the animation case. Today, itbecomes easier to acquire

animated models. In parallel, there is unceasing increase in the use of these models in

many applications (particulary in computer generated movies, computer games). More-

over, the animation technology is becoming more sophisticated and allowing to make

animation more realistic but more complex. To store a sequence of meshes, one has to

store one mesh for each frame. Assuming that the connectivity is constant over time and

only the geometry information changes over a time, the representation of the geometry

information of the sequence will requireF times the geometric information of each frame

i.e. F ∗V ∗3∗32 bits, whereF is the number of frames. For large sequences and detailed

and high accuracy models, the uncompressed representationresults in large file expensive

to store or to deliver over networks.

Different approaches have been developed to reduce the sizeof the polygonal mesh

and time of transmission. These techniques can be classifiedinto single-rate encodersand

progressive encoders(see figure2.5illustrates).

Single-rate encoders encode the original mesh as whole and once. These schemes

are dedicated to reduce bandwidth between rendering pipeline and local memory. Most

of these schemes use a fixed mesh traversal strategy to encodethe connectivity, then the

geometry is driven. Connectivity encoding is often based ona set of rules that describe

a particular traversal order of mesh based on vertices, edges or triangles. Typical, in

triangle based traversal, for each new traversed triangle,new symbol is generated and

entropy encoded.

./phd-Pics/background/singleRateProgressive.eps

22 Background

Geometry coding is often guided by traversal order used to encode the connectivity.

For each new encountered vertex, its 3D coordinates are predicted from the already tra-

versed vertices and the differences between the original and the predicted locations is

encoded. The difference is calledresidualor delta vectoror prediction erroror some-

timesoffset. The residual can be encoded in different ways. Most single rate compression

schemes quantize the residuals into a uniform integer grid and often the user has to specify

the number of bits that define the grid resolution. For further compression the resulting

integer residuals are entropy encoded.

Progressive encoders first create a simplified version of the original full resolution

mesh using simplifications operations (such as vertex elimination, edge collapse). The

coarsest version of the mesh is then encoded -using a single rate compression techniques-

with a sequence of reversed simplification operations: the refinement operations (vertex

insertion,vertex split). Each operation specifies how to add edges and vertices to the mesh

of currentlevel of detailsto obtain a new level. After transmission, the base mesh is first

decoded and reconstructed, then gradually refined as the bitstream is being received and

decoded.

The advantage of progressive compression is that it allows to see a first approximation

of the original modelvery quickly, the quality of the model gradually is improved and the

transmission can be stopped at any resolution desired by theuser.

Single-rate techniques can also be categorized into lossless and lossy techniques de-

pending on whether the decompression process recovers exactly the original mesh (loss-

less) or only an approximation (lossy). The remeshing and simplification are always lossy.

In recent years, the compression of animated meshes has gained an increasing interest

and many techniques have been developed for dynamic meshes of constant connectivity.

This topic is a relatively young research area and still attracts much interest. There are

still many open problems to be addressed for further research such as the compression of

animated meshes of variable number of vertices and distortion measurement of animation

sequences.

As in the static case, 3D animation compression schemes can also be categorized

into single-rate and progressive compression, taking intoconsideration the spatial and

temporal coherence.

The next sections review the most important compression approaches developed for

static and animated meshes. For more details on static and animated mesh compression

techniques, we refer the reader to [97, 6, 94, 83].

2.4 Prior Mesh Compression Techniques 23

2.4.1 Static Mesh Compression

The base of the mesh compression has been laid by Deering in1995. His goal was to

reduce the amount of information, which has to be sent to the graphics accelerator, and

was constraint to a simple decompression algorithm that canbe supported in a hardware

implementation. This algorithm was the first step to developsingle-rate compression for

triangle mesh. Afterwards, mesh compression has undergonerapid developments.

2.4.1.1 Single-Rate Encoders

Most of the mesh compression techniques encode two mesh components separately,

the connectivity and the geometry information. The early work concentrated on finding

an efficient and optimal connectivity coding scheme. However, they encode the connec-

tivity information first before they encode the geometry information in terms of traversal

order which is used to encode the connectivity. These approaches are called connectiv-

ity driven compression schemes. In contrast, the geometry-driven compression techniques

have emerged. These approaches encode the geometry first then the connectivity is driven.

The number of contributions to static geometry compressionis very low compared

with the large number of published work on connectivity compression. In contrast, in the

animation case, most contributions are in animated geometry mesh compression.

2.4.1.1.1 Connectivity Coding Typically, the mesh connectivity is described by a list

of faces, each face represented by three vertex indices. If the number of vertices isV then

the number of faces is approximated by2V , requiring about6⌈log2(n)⌉n bits of storage

[42]. If a vertex is shared by six triangles and for each trianglethree vertices should be

transmitted then the transmission of each vertex become expensive. Indeed, in average,

each vertex should be transmitted six times.

Triangle Strip based Techniques

In graphics API such as OpenGL or Direct3D, the triangle are rearranged instripsfor

compact representation and efficient rendering of 3D polygonal meshes. Triangle strips

use a buffer of two vertices and allow to reduce the number of times to transmit each

vertex. Since two consecutive triangles share one edge, to render a new triangle, only

one new vertex is needed and added to the two vertices of the joined vertex. Thus , for

each triangle only one vertex is transmitted. Figure2.6(a) shows an example of a triangle

strip. A triangle fanis another structure in computer graphics that reduces storage space

and processing time. As shown in2.6 (b), all adjacent triangles share the same vertex.

24 Background

1

2
8

4

3

6

7

9

5

1

2

4

3

6

7

5

Triangle strip: 1 2 3 4 5 6 7 8 9 Triangle fan: 12 3 4 5 6 7

Figure 2.6 Example of triangle strip and triangle fan.

Generalized triangle strip

2 3 4 5 6 8 9 10 11 12

:

1 7

1

2 8

4

3

6

7

9

5

12 11

10

Figure 2.7 Example of generalized triangle strip

A more general structure is thegeneralized triangle stripwhich is a mixture of triangle

strips and triangle fans.

To further reduce the cost of the connectivity information,Deering [28] proposed

the generalized triangle mesh, well-suited for hardware implementation. He suggested

in his pioneering algorithm to use generalized triangle strips with an on-line buffer in

the graphics pipeline where sixteen vertices can be stored.To render each triangle one

vertex is specified either from the stack buffer or a new vertex is picked out and pushed

onto the stack replacing an existing vertex and referenced in the future if it is needed.

Figure2.7shows a generalized triangle strip and a generalized triangle mesh. Chow [23]

further improved this approach. He introduced local and global meshing algorithms to

decompose an arbitrary triangulated meshes into generalized triangle meshes.

Turan [118] proposed to encode planar graphs in constant number of bitsper vertex

using a spanning tree. Taubin and Rossignac [116] extended Turan’s work and developed

the topological surgerymethod. They first cut the mesh through avertex spanning tree,

producing a connected triangulated surface without internal vertices whose dual graphic

is triangle spanning tree. Then, they encoded the triangle and vertex-spanning tree sep-

arately. The Topological Surgery scheme has been included into the three dimensional

Mesh Coding (3DMC) algorithm in MPEG-4, the ISO/IEC standard developed by MPEG

./phd-Pics/background/triangleStripFan.eps
./phd-Pics/background/generaliyedStrip2.eps

2.4 Prior Mesh Compression Techniques 25

C C
R C

R
C C

R
C

R

C
R

C
R

R
C

R
C

R
R

C

C
R

C
R

R

C
R

C
R

C
R

R

C R

R

Figure 2.8 Face based coding:Edgebreaker yields the sequence of symbols: CRCRRCRR...

(Moving Picture Experts Group), charged with the development of video and audio en-

coding standards.

Growing Region based Techniques

Alternative approaches to triangle strip and spanning treebased techniques areregion

growingmethods. The basic idea is to start with single triangle thengrow the region over

the mesh and continuously encode the new adjacent triangle and edges, producing a se-

quence of symbols or labels that describe the connectivity information. This sequence

is entropy encoded. The region growing techniques can be classified into three classes:

face-based, edge-basedandvertex-based, depending on the mesh elements based traver-

sal.

Face-based methods.The Cut Border Machine (CBM) of Gumhold and Straßer [35] and

Edgebreaker of Rossignac [96] are two examples of face-based methods. Both methods

are quite similar. They perform either depth-first traversal order or breadth-first traversal

order. The encoding process starts with mesh border or an arbitrary triangle then grows

the region over the mesh. This region is bounded by a border ofedges which enclose

the inner region containing the set of triangles already processed and the outer region of

triangles which have to be processed. This border is called the cut border. At least one

edge in the cut border is incident to one triangle in the innerregion and the other incident

triangle that have to be added to the growing region. This edge is called gate. The coding

starts with the initial triangle as inner region, and one of its three edges is selected to be

the active gate. Then in each step, the inner region grows by the unprocessed adjacent

incident to the active gate. The triangle is encoded by specifying a label that defines the

./phd-Pics/background/facebased.eps

26 Background

way in which the new triangle is located relative to the gate edge and the inner part and

it is called cut border operation. The label is assigned a code, the triangle is inserted into

inner part and marked as visited, the cut border is updated, and a new gate is selected.

The process of iteration stops when all triangles in the meshare processed. Note that all

vertices contained in the cut border are buffered to avoid tosend the vertex more than

once.

To define how the new triangle is incorporated into region growing, Edgebreaker uses

the five labels C, R, L, S and E, each label corresponds to one operation. CBM uses

additionaloffsetassociated with the split operation or label S.

Both techniques reconstruct the connectivity using the same traversal used during the

encoding process. The decoding in the Cut border machine is simple, fast and well-suited

for hardware implementation. The Edgebreaker decoding uses a look-ahead procedure

during split operation (S) and exhibits a non-linear time complexity. Therefore, two de-

coding schemes ofclers: Wrap&Zip [98] and Spiral Reversi [52], have been proposed to

improve the worst case time complexity fromO(n2) to O(n). The Wrap&Zip needs mul-

tiple traversals during the encoding and decoding process for meshes with handles and/or

boundary. The Spiral Reversi performs only a single traversal and reconstructs the mesh

in reverse order as well in linear time.

Edge-based methods.In contract to the face-based methods which encode triangles, the

edge-based schemes encode edges. Indeed each edge is assigned one label. Face Fixer

of Isenburg and Snoeyink [51] is an example of edge-based method, inspired by the face

based Edgebreaker method and it is developed for polygonal meshes.

The encoding process (in Triangle Fixer), first defines an active boundary. One of

its edges is selected to be active gate. In each iteration theactive gate is labeled with

either T, R, L, S, E, H, or M depending on its adjacency relation to the boundary. Then

this boundary is updated and new active gate is selected. Thesequence of labels are

compressed using order-3 adaptive arithmetic coder [123].

In opposite to the Edgebreaker and CBM schemes which use the same traversal order

during compression and decompression, the Fixer Face processes the label sequence in

reversed order to reconstruct the connectivity of trianglemeshes.

Vertex-based methodsThese techniques are also called vertex degree-based and valence-

based. They encode the connectivity information as a streamof vertex valences in spec-

ified order. The valence or the degree of a vertex is the numberof connected edges to

it.

2.4 Prior Mesh Compression Techniques 27

conquered edge

free edges

focus vertex

focus vertex

Figure 2.9 Vertex based coding: TG coder yields66657566...

The methodTriangle Mesh Compressionof Touma and Gotsman [117] (TG) is one

of these schemes that encodes the vertex degrees in spiral way. The encoding process

starts with an initial triangle, constructs an initial cut border with its three edges and an

active list with its three vertices. One of these vertices ischosen to be a focus vertex.

The region grows by conquering the free edges -untraversed edges- incident on the focus

vertex in counter-clockwise order, pushing the free vertices down into the active list and

recording their valence. The free vertex is the one connected to the focus vertex by the

free edge. When all free edges (connected to focus vertex) have been processed the focus

is conquered and the focus is moved to the next vertex in the active list. The process

continues until all vertices are full, i.e. all edges are processed.

During the conquest procedure, special cases may arise and for such cases additional

code are needed. Indeed, it can happen that the free edge of the focus vertex is connected

to another vertex in the active list, in such case the active list is split into two separated

active lists and a new command is generated:split with the vertex valence. Another case

may arise is when the free vertex is connected to a vertex in another active list. In this case,

both active lists are merged to generate one active list and the symbolmergeis output. If

the mesh has boundaries then before the encoding process adummyvertex is temporally

added to each boundary and connected to all boundary vertices, in order to have a closed

mesh. When dummy vertex is hit then the number of its valence and the code "dummy"

are output. Note that the dummy vertices are removed after mesh decoding.

For large number of triangle meshes, the distribution of thevalance is very law and

often the mesh contains a large number of vertices with the valence of six. In such a

mesh, the sequence of vertices valences can be well encoded with the entropy encoding.

For regular meshes, TG compress the connectivity down to0.2 bvp and between2 and3.5

bvp otherwise.

./phd-Pics/background/vertexBased.eps

28 Background

TG’s algorithm is further improved by Alliez and Desbrun [4] by using an adaptive

conquest over the mesh to avoid as much as possible thesplit operations. The sequence of

valences and the few additional codes are encoded using an adaptive arithmetic encoder.

For large, arbitrary meshes, they achieve an upper bound of4.24 bpv.

Isenburg and Snoeyink [50] performed a series of edge contraction and division to

collapse the whole mesh into a single vertex. For each edge contract operation, the degree

of vertex is output and for each edge division, a start and an end is output. The entropy

encoding of the resulting code sequence yields a compact bitstreams of1 to 4 bpv.

There are many others algorithms have been proposed for compressing the mesh con-

nectivity and often in lossless way, such as [17, 53, 59]. An efficient coding of the symbol

stream such as Huffman coding or arithmetic coding allows coding the connectivity with

often less than2 bits per vertex and never more than4 bits per vertex.

2.4.1.1.2 Geometry Coding

Geometry Coding is the compression of vertex coordinates(x, y, z). Traditionally,

each vertex coordinate is represented with an IEEE 32-bit floating-point number. The

early research on mesh compression focused mostly on efficient lossless coding of trian-

gle mesh connectivity, as mentioned before, achieving the best bit-rates of 1.5-4 bits per

vertex on an average (as reported in [70]). In contrast, the compression performance of

geometry has not been as well impressive. Indeed, the vertexpositions are mostly en-

coded in traversal order induced by the connectivity code. This leads usually to near or

non-optimal geometry coding. Moreover, the geometry code dominates the total com-

pressed data size. Therefore, the researches later shiftedmore to geometry coding, where

also geometry-driven compression schemes have been proposed.

Most of the proposed paradigms to reduce the amount of vertexpositions use the fol-

lowing combination: prediction to exploit the high correlation between the positions of

adjacent mesh vertices, quantization to reduce the floatingpoint to finite precision, and

entropy encoding to reduce the statistical redundancies. Spectral methods are another type

of methods for geometry coding that generalize 1D and 2D signals to 3D geometry. It em-

ploys as well quantization and entropy encoding, in order toachieve a higher compression

rates.

2.4 Prior Mesh Compression Techniques 29

4p

1p
2p

3p

4q

1q
2q

3qquantization

() ii qpQ =

Figure 2.10 Quantization grid

Quantization

It is a standard technique, commonly used to compress numerical data. It reduces the

precision of data prior to that data being encoded with finiteprecision. The resulting val-

ues are represented with a limited number of bits and they canbe compressed efficiently.

Quantization is an irreversible process, i.e. it is impossible to recover the original coor-

dinates once encoded. The inverse process is calleddequantization. Quantization allows

for higher compression ratio at the expense of distortion inthe reconstructed data. We

distinguish between two type of quantization: scalar and vector quantization.

Scaler quantization (SQ). SQ truncatesuniformly the vertex coordinate of 32- or 64-

bits floating point values to desired accuracy and converts them into integers of, typically,

16 bits with very negligible loss in data fidelity. This reduces the range of input dataset

before the encoding stage. To do this, first the bounding box of a mesh is computed.

Given a number of bit length for each coordinaten, the bounding box is divided into2n

grids alongX, Y andZ axis. The side length of each cell isLmax/2n, wherelmax =

(max − min) is the tight axis-aligned bounding box, defined by the maximum max and

the minimummin of the coordinatesx, y andz. Then, each vertex is aligned with the

nearest grid intersecting point. The new positions in the grid system is the new integers

coordinates. The parameters of bounding box (max andmin) must also be sent with

the compressed data to be able to construct the bounding box and to recover the original

quantized points at decoding step.

Figure2.10shows quantization of8 two dimensional points to uniform8 × 8 grid.

Since the original coordinates cannot be recovered and onlyan approximation is recon-

structed, the quantization then occurs an error. The lower the quantization level (the

coarser the grid resolution), the more compact data, and thelarger the error between the

./phd-Pics/background/quantizationGrid.eps

30 Background

original and reconstructed data, resulting in model with blocky structure.

Quantization can be uniform or non-uniform. In uniform quantization, a given the

number of quantization, the bounding box is partitioned into a uniformly spaced grid

structure, meaning that all grid cells are of equal side length, as describe before. In oppo-

site, in non-uniform quantization, the cells have different lengths.

To encode vertex coordinates, Deering [28] suggests to quantize uniformly each ver-

tex coordinate to at most16 bits. At this precision, the reconstructed mesh vertices are

visually indistinguishable from the true ones. To achieve higher compression, Chow [23]

subdivides the mesh into different regions based on triangle size and the curvature. The

regions are then uniformly quantized with different precision depending on the level of

detail present. The highly detailed regions are assigned more bits than the less detailed

ones.

Vector quantization (VQ).VQ is extension of the scalar quantization. It operates on

vectors instead of individual values. It maps the input dataset into small set of vectors

or representatives called thecodebook, minimizing the total distortion incurred by the

quantization. The advantage of VQ over SQ is that it exploitsthe correlation between the

vertex coordinates and results in lower distortion than SQ,but its complexity increases

with the codebook size. Since the aim is to generate a codebook that minimizes the

distortion between the input data and the codebook, the performance of compression then

depends on the codebook generation method. The most popularcodebook design is the

Linde-Buzo-Gray (LBG) algorithm [79], also known as Generalized Lloyd Algorithm

(GLA). The algorithm is an iterative algorithm. Its starts with one codevector chosen as

the average of the entire all training vectors. Then, at eachstep the algorithm refines the

codebook using splitting procedure until the number of desired codevectors is obtained.

VQ has also been proposed for geometry coding [73, 22, 18]. In the literature, it

is often used after prediction process. Therefore, sometimes are categorized under pre-

dictive techniques. VQ based techniques will then be reviewed later in the next paragraph.

Prediction Coding

There is a large correlation between the positions of the adjacent mesh vertices. To

exploit this high correlation and to reduce the redundancy,most techniques use prediction

rules. The prediction uses a set of known positions of vertices to a decoder, to predict the

position of a new vertex. The differences between the original and the predicted values

have distribution which is close to zero. Then, instead of encoding the true values, it

is sufficient to store and to encode these differences. Thesecan be well encoded with

2.4 Prior Mesh Compression Techniques 31

entropy encoding, resulting in fewer bits than would be results from the entropy encoding

of the quantized original positions.

The type of this technique is called predictive method. As aforementioned before, the

connectivity information plays a crucial role during the encoding geometry. It defines not

only the order of vertices in which are encoded but also the set of vertices that are used for

prediction. The better prediction is, the smaller error is and the better compression per-

formance we achieve. Today it becomes common for geometry compression to quantize

the coordinates with a number between10 and16 bits.

In the literature, different predictions have been proposed such as delta predictor, span-

ning tree predictor and parallelogram predictor. The satisfactory predictor is the one who

predict a position close to its current position. Thereby, the prediction error will be small

and requires fewer bits.

Delta Prediction.Often, the coordinates of two successive vertices are highly corre-

lated. The difference between their positions is quite small. Therefore, Deering suggested

to use the previously transmitted vertex positionpi−1 to predict the position of the new

vertexpi and encoded the differences instead of the original coordinates. The first step

in his algorithm is to normalize the mesh into an unit cube andquantize each vertex co-

ordinate to 16 bits precision. Then, the difference betweenthe previous and the current

quantized positions is computed and further compressed with the entropy coding.

Spanning tree predictor.A more efficient predictor is the spanning tree predictor [114]

of Taubin and Rossignac. As a preprocessing, Taubin and Rossignac quantize the original

vertex locations to a user specified number of bits per coordinates (typically8, 10 or 12

bits). Then they constructed a vertex spanning tree and exploited for the prediction of

each vertex locationp, the locationspi of the vertices in the path fromp to the root of the

vertex spanning tree.

p =

K∑

i=1

λipi (2.4)

The weights for the locationspi are chosen to minimize the squared lengths of the

delta vectors over all vertices
∑ ‖ǫ‖2. The delta vectors are computed and can be encoded

with Huffman coding or arithmetic coding, resulting in about 13 bits per vertex at 8 bit

quantization level (as reported in [117]).

Spanning tree predictor can be seen as generalization of delta prediction. This one uses

only one ancestor i.e.K = 1 andλ = 1, while Spanning tree predictor uses weighted

linear combination ofK ancestors in the vertex spanning tree.

32 Background

reference triangle
0p

2p 1p

p

pp

1a

pa

2a 210 ppppp -+=

preda

gate edge

Figure 2.11 Parallelogram prediction

Parallelogram Prediction.More sophisticated prediction scheme is parallelogram pre-

diction introduced by Touma and Gotsman [117]. Each newly encountered vertexvnew

during the traversal of the connectivity constructs with two vertices(u, v) in the active list

a triangle that is adjacent to the already encoded triangle (reference triangle)(u, v, w) of

the growing region (see figure2.11). Based on the assumption that two adjacent triangles

tend to form a parallelogram, the positionpnew of the vertexvnew can then be predicted as

ppred = pv + pu − pw (2.5)

A good predictor is also the one that performs well for large class of meshes, meaning

that prediction errors are very small. Parallelogram provides a good prediction if the

shape is almost planar (meaning that the two triangles are (or near) co-planar), and gives a

poor prediction if the shape has high curvature (meaning that the two triangles are highly

non-planar). Therefore, for more accurate prediction, Touma and Gotsman combined this

linear prediction with a curvature estimate. After the firstprediction, thecrease angle

between the two adjacent triangles along the gate(u, v) is predicted as average of the

available crease angles of two other edges incident to the reference triangle. At8 bit

quantization level, this approach requires approximately9 bits per vertex.

Parallelogram predictor has extensively been used and extended up to now. It has also

been adopted for the MPEG-4 standard for mesh geometry coding [2]

Vector quantization.Lee and Ko [73] applied vector quantization to geometry coding.

They used a local coordinate frame defined upon the previously visited triangle. The re-

sulting set of model-space vectors is encoded with a typicalvector quantization scheme,

achieving in average6.7 bits per vertex for a quantization to8 bits per coordinate, which is

./phd-Pics/background/parallelogram.eps

2.4 Prior Mesh Compression Techniques 33

Figure 2.12 Multi-way prediction

seldom sufficient. Chou and Meng [22] proposed Predictive Vector Quantization scheme

(PVQ), where the vertex position is first predicted then the prediction error is quantized by

vector quantization. Very recently, Bayazit et al. also developed predictive vector quan-

tization, where the prediction error is represented in the local coordinate system prior to

vector quantization. They employ an extension to the entropy constrained of the predic-

tive vector quantization, unlike the other VQ based approaches [73, 22] which aimed to

design a code book vector with the minimum distortion without constraints on the rate.

Other techniques

Kronrod and Gotsman [70] suggested to encode the connectivity in such way that opti-

mizes the parallelogram prediction rule. Unlike the previously described approaches that

are connectivity-driven compression, this methods is geometry-driven approach. They

constructedprediction treewhere the mesh is traversed in some order to produce a good

prediction and simultaneously encode the mesh connectivity. The entropy coding of the

geometry is reduced by up to50% on TG’s algorithm [117]. However, its disadvantage is

the complexity of the encoder.

As opposite to the parallelogram prediction which based on asingle triangle in one

direction, Cohen-Or et al. suggestedk-way predictor(or Multiway predictor) that uses

a multiple directions to predict the location of a vertex. Inorder to allow more than one

way prediction, the mesh is traversed in a special order suchthat the vertex with highest

degree of prediction is selected. Figure2.12shows an example of 3-way prediction that

uses three triangles. Each triangles (already encoded) predicts a point, and the average is

./phd-Pics/Pics_predictive/multiPP.eps

34 Background

the final predicted position of a vertex. Typically, this yields smaller prediction error than

the 1-way prediction.

Isenburg and Alliez [47] generalized the geometry coder of Touma and Gotsman to

polygonal meshes. They let the polygonal connectivity dictate where to apply the paral-

lelogram rule. As polygons tend to be flat in typical models, they tried to predict vertex

locations within polygons rather than across polygons. Leeet al. [74] proposed to encode

the dihedral angle along the gate, between the two neighboring faces and to transform

the tangential coordinates into the interior angles of the spanning triangle. All angles

are uniformity quantized then compressed with an arithmetic coder. This angle based

scheme results in approximately20% better compression ratio for geometry only than

TG’s scheme [117], at the same level of geometric distortion.

In predictive techniques, the coordinates are quantized toa number of bits typically

lying between 10 and 14 with a negligible loss of accuracy. For low compression ratio, a

coarse quantization level can be used, resulting in significant loss in data possible caus-

ing high visible degradation. Therefore these technique are not well-suited for very low

bit-rate. Therefore, usingHigh-pass quantizationalgorithm [112], the high-frequency

distortion can be transformed into low-frequency which arealmost invisible. The ver-

tices coordinates are then first transformed into another space by applying the Laplander

operator. Then the new transformed coordinates are quantized. This allows aggressive

quantization without introducing visually disturbing artifacts.

There are several other geometry compression techniques such as [59, 109, 91, 49].

More deeply survey about static mesh compression, can be found in [94, 6].

Spectral Coding

Spectral methods are widely used for lossy compression of images such as the popular

JPEG which is based on the DCT. In these methods, the data are expressed as linear com-

bination of orthogonal basis functions, each basis function is weighted by a coefficient.

Karni and Gotsman [61] introduced the spectral theory method for geometry com-

pression purpose. They computed the eigenvectors of the mesh Laplacian matrix then

projected the mesh geometry onto the new orthonormal basis vectors. The spectral co-

efficients are quantized to typically between10 and16 bits followed by the quantization

of the coefficient vector. The resulting integers are entropy coded with Huffman or arith-

metic coder. For a mesh of large number of vertices, the computation of the eigenvectors

of the Laplacian is prohibitively expensive. Therefore, itis more practical to decompose

2.4 Prior Mesh Compression Techniques 35

the mesh into submeshes and encode each mesh separately.

The results showed to be significant for relatively smooth models. The algorithm

achieves about a half to a third of the bitrate of TG’s algorithm [117] at the same visual

quality.

This approach enables the progressive transmission. The spectral coefficients can be

sorted then transmitted from low frequency to high frequency to the decoder. At the client

side, an approximation of the mesh may be reconstructed using a few spectral coefficients,

and it is incrementally refined by using more coefficients.

Geometry Image.It is a technique that remeshes an irregular triangle meshesonto regular

grid which calledgeometry image. This can simply be encoded using traditional 2D

image compression schemes. Geometry image representationis simple and well-suited

for hardware rendering.

Basically, the mesh is first cut along a set of edge paths to produce a mesh that has

the topology of a disk. This allows then to parameterize the cut surface onto the square

domain of the image and sampled on 2D regular grid in this domain. This 2D grid forms a

geometry image where the vertex coordinates (x,y,z) are encoded as an RGB image. The

geometry images is compressed using wavelet-based coders.

2.4.1.2 Progressive Compression

Hoppe is the first who introduced the concept of progressive mesh representation

(PM) [42]. This is another scheme for storing and transmitting arbitrary triangle meshes.

As described before, progressive scheme encode a base mesh or a coarse version of the

mesh with a sequence of refinement operations. After the basemesh has been sent, it is

first reconstructed and gradually refined as the bitstream ofrefinement operation is being

received, decoded and parallel rendered until the originalmesh or its close approximation

is recovered. In progressive scheme, the transmission or decompression of the mesh can

be stopped at any accuracy.

Progressive techniques can also be categorized into lossy and lossless depending on

that if the original connectivity and geometry informationare recovered or not. In lossless

techniques the mesh is continuously simplified into a coarsemesh, and at each step the

simplification operation is stored. To retrieve the original mesh, the inverse of these oper-

ations are applied to the base mesh simplification. In lossy techniques often the remeshing

and the wavelet are used. The mesh is decomposed into coarse mesh with hierarchy of fine

detail. The distortion in lossy techniques is measured as the geometric distance between

the surfaces.

36 Background

1v 1v¢
2v

edge collapse

vertex split

2v1v

Figure 2.13 Edge collapse and vertex split operation.

In his progressive scheme [42], Hoppe showed that only one single simplification op-

eration which isedge collapse, is sufficient to effectively simplify a mesh. This operation

involves eliminating an edge by merging its two end verticesv1 andv2 into a single vertex

v′
1 (see figure2.13. Thus, it reduces the mesh by one vertex and one triangle if the edge

is on the boundary or two triangles otherwise. The inverse ofedge collapse operation

is calledvertex split. It split the vertexv′
1 back intov1 andv2, recovering the original

connectivity.

To obtain the coarse mesh, a successive collapse operationsecoli are applied to the

original mesh. At each iteration an edge that minimizes the distortion is selected to pre-

serve the overall appearance of the mesh during the reconstruction. The progressive rep-

resentation of the original mesh is then the base mesh and thesequence of vertex split

operations: (M0, split1, split2, ..., splitk). To generate finely progressive coding, PM en-

codes the mesh by collapsing only one edge and encoding only one vertex, at time. This

operation uses a large number of bits per vertex. Thus, it wasnot efficient for compres-

sion. To enhance the coding efficiency, PM was extended by several researchers.

Taubin et al. developed [115] compression approach. Instead of using single vertex

split operation, they introduced theforest splitoperation which split a group of edges at the

same time. At each step, the mesh is cut along a forest of edges, then the resulting crevice

is triangulated and finally, the new vertices are displaced into their new position. This

operation achieves much higher compression ratios than PM.Pajarola and Rossignac [89]

proposed thecompressed progressive mesh. To minimize the cost of each vertex split,

they group the mesh edges into batches. At each batch the edges are collapsed, then

the information to reverse these steps are encoded. At the batch refinement, the number

./phd-Pics/background/SplitCollapse.eps

2.4 Prior Mesh Compression Techniques 37

of vertices is increased by up to50%. Khodakovsky et al. [67] developed Progressive

Geometry Compression for highly detailed and densely sampled meshes. First, the input

mesh is remeshed into a semi-regular mesh using Maps algorithms. Then, a loop wavelet

transform is applied on the semi-regular mesh outputting a coarsest base mesh and a

sequence of wavelet coefficients which represent the difference between successive levels.

The coarse base mesh is encoded with non-progressive technique while the sequence of

wavelet coefficients is progressively encoded using zerotree whose concept can be found

in [107].

Later, Khodakovsky and Guskov [66] developed another wavelet based approach based

on the the normal mesh representation [40] which designed to produce detail coefficients

with one scalar value only instead of 3D vectors. Furthermore, they used unlifted But-

terfly wavelets as predictor. Alliez and Desbrun [5] proposed an new algorithm based on

the valence of vertices in a mesh. They observed that the entropy encoding depend on the

valence distribution. In their approach, the decimation conquest subdivides the mesh into

patches (1-rings). Then, each patch center vertex is removed, it valence is output and the

resulting patch hole is re-triangulated.

There exist a long series of improvement in the progressive compression and trans-

mission of static meshes such as [43, 95, 31, 93, 78]. In this section, only few approaches

are reviewed and for more detail we refer the reader to [6, 111].

2.4.2 Animated Mesh Compression

As animation technologies have become more sophisticated and accessible, their ap-

plications become more widespread. Application such as computer games, Movies, edu-

cation, medicines, etc. often demand animated 3D models, and scenes with highly degree

of realism. As animation becomes more realistic and more complex, the corresponding

frame meshes become bigger and bigger, consuming more and more space. It is therefore

indispensable to compress the animation datasets.Key-frameanimation is one of the most

famous and dominant animation representations used in the industry to represent the ani-

mation compactly. A set of key frames are chosen to describe certain important key poses

in the animation sequence at certain times. Then all frames in between are generated us-

ing interpolation techniques. For such applications, eventhe number of key-frames can be

very large, requiring a large memory space and need for effective compression techniques.

During more than one decade, extensive research has been done on static mesh com-

pression, producing a large number of schemes as cited before. While research still fo-

cuses on efficient compression for huge static meshes [48], animated meshes have become

more and more important and useful every where. However, thecurrent static techniques

38 Background

for the compression of sequences of meshes independently are inefficient.

Often the meshes differ only slightly between neighboring frames, leading to a large

redundancy between frames (temporal redundancy) and between neighboring vertices in

the same frame (spatial redundancy). In order to develop a compact representations that

significantly reduce the storage space of animated models, both the space and time coher-

ence should be exploited.

The current coders are dedicated to compress the triangularmeshes of fixed connec-

tivity so that the connectivity needs to be encoded, stored or transmitted once, then the

geometry coding comes into play. The focus on animated meshes with fixed connectivity

may be justified by the fact that often the animation creatorsmaintain the connectivity

constant throughout the animation, in order to allow for easy and efficient manipulation

of the sequence.

The previous section has shown how to compress static 3D meshes. This section

will review the current compression algorithms for compression of animated meshes.

Here, we distinguish between four approaches, according tothe scheme adopted for com-

pression: predictive based methods [JCS02, IR03], PCA based representations [AM00,

KG04, SSK05], wavelet based techniques [GK04, PA05] and clustering-based approaches

[Len99, ZO04]. These techniques can also be are classified into single-rate and progres-

sive coders.

Lengyel provided a description of severalanimation primitivesused to create the an-

imated model: Free Form Deformations, Key-Shapes, Weighted Trajectories, and Skin-

ning. The encoding of the primitive used in generating the animation yields the best com-

pact representation of all. This is possible if the primitive is determined a priori. However,

there are many animation tools. Finding the way in which the animation of each object is

generated, is difficult or unfeasible. Therefore, it is morepractical to develop compression

tool that compresses animated object independently from how the animation is generated

or even how complex (linear or non linear) it is. The efficiency of the method depend

on how much the redundancy is removed, eventually, on the speed of the compression

and decompression algorithm. Yet, we need compression algorithms that allow for small

compressed representations that maintain good visual fidelity.

2.4.2.1 Clustering-based Compression

The basic idea of a clustering-based compression approach is to split the mesh vertices

into several groups of similar motion and to encode the motion of each group using few

representative vectors or parameters.

2.4 Prior Mesh Compression Techniques 39

Affine Transformation. In his approach, Lengyel [77] partitioned the mesh into sub-

meshes and described the motion of the submeshes by rigid body transformations. The

rigid body transformation of a submesh was thereby estimated to best match the trajecto-

ries of its vertices. The compression was achieved by encoding the base submeshes, the

parameters of the rigid body transformations, and the differences between the original and

the estimated locations. This approach is very effective when large parts of an animated

model can be described well by rigid body transformations. The other four modeling

primitives can also replace the rigid transformation.

Lengyel’s approach is improved [26], by encoding the mesh animation with a se-

quence of rigid transforms without residuals. A base mesh issegmented into rigidly trans-

forming segments, using a new weighted least squares segmentation process. Then, to

exploit the temporal coherence, these transformations areaggregated. The reconstructed

animation may not be enough smooth in time and space. To rectify this effect, a spatial-

temporal smoothing scheme is applied. Affine Transformation is also used to develop a

Level of Details for Dynamic Meshes (see section2.4.3).

Octree based Method. This approach is based on spatial clustering, based on an octree

decomposition of the object. The basic idea is to represent all motion vectors of the

vertices enclosed in each cell with only few representativemotion vectors.

Assuming that the previous frame is already encoded, the motion vectors are computed

as the differences between the position of vertices in the current and the previous frames

∆ν. Starting with a cube bounding box surrounding the 3D objectas initial cell, eight

representative motion vectorsm1, ..., m8 are associated with the eight corners of the cell.

The motion vectors of the enclosed vertices within the cell are then predicted bytri-linear

interpolationin the form of weighted sum of the eight representative vectors.

∆ν =

8∑

i=1

wimi (2.6)

The representative vectors for a given cell are computed using least square estimation.

If the motion of the enclosed vertices is well approximated,meaning that the error is below

a specified threshold, the representatives for the octant are quantized and entropy encoded.

If the error exceeds the specified threshold, the cell is thenrefined into 8-octants and for

each new octant 8-motion vectors are computed to estimate the motion of its enclosed

vertices. The process continues until the error is below thethreshold. The accuracy of

the approximation can be measured in terms of maximum or average Euclidean distances

between the original and the reconstructed motion vectors of the vertices within a cell. The

40 Background

compression is achieved by quantizing and entropy encodingthe representative motion

vectors.

This approach is improved to the so called Differential 3D Mesh Coder (D3DMC) [63],

which is followed by a rate-distortion optimized version (D3DMC-RD) [87].

Iterative Closest Point. The idea of ICP is to find point matches between two meshes.

In [38], the ICP is used to estimate the motion of the vertices in each cluster in terms

of affine parameters and residuals. The mesh is initially segmented into clusters by the

topological partitioning algorithm [41]. Then the clustering is refined to separate the

vertices that can be encoded with the affine transforms only and those that need further

encoding the residuals.

2.4.2.2 Vertex-Prediction based Compression

Prediction techniques assume that the connectivity of the meshes does not change

over time and use the previously recovered vertex locationsto predict the location of each

new vertex. The vertex path (or vertex displacements) may beestimated using linear or

non-linear predictors in space and (or) in time. The delta vectors are compressed up to a

user-defined error. In such technique, the mesh triangles are traversed in an order suitable

for the predictor and the first frame is encoded using static compression schemes. Here,

we distinguish three type of predictors: spatial predictor, temporal predictor and space-

time Predictor.

Spatial predictor exploits the coherence between neighboring vertices in each frame sep-

arately using for example the parallelogram predictor (seefigure2.14).

Temporal Predictor exploits the redundancy between the positions of the vertexin sub-

sequence frames. The position of the vertexpf is simply predicted from the position of the

vertexpf−1
i in the previous framef−1 or as a linear or quadratic combination, taking into

consideration the vertex positions in the two or three previous frames (pf−1, pf−2, pf−3).

Spatio-Temporal Predictor takes into account both the spatial and temporal correlation.

For instance dynapack uses two space-time predictors:

Extended Lorenzo Predictor (ELP)

This predictor uses a parallelogram prediction to exploit spatial coherence, and then per-

forms temporal prediction on the spatial details. It is a prefect predictor for a subset of the

2.4 Prior Mesh Compression Techniques 41

fo

fn

()v, fpredict

fp

Figure 2.14 Space-only predictor: parallelogram prediction.

mesh undergoing pure translation from the previous frame.

predict(v, f) = nf + pf − of + vf−1 − nf−1 − pf−1 + of−1

Replica Predictor

This predictor expresses the location of the vertex relative to the locations of three vertices

of an adjacent triangle as local coordinate system. The vertex location in the new frame

is estimated by its relative coordinates from the previous frame. This predictor replicates

perfectly the local geometry undergoing any combinations of translations, rotations, and

uniform scaling (see figure2.15).

predict(v, f) = of + aA′ + bB′ + cC ′ (2.7)

A′ = pf − of

B′ = nf − of

C ′ =
A′ × B′

√

‖ A′ × B′ ‖3

(2.8)

The position of thevf−1 can be written as :pf−1+aA+bB+cC. Then, the coefficients

a, b andc are computer from the previous frame as.

a =
A.D ∗ B.B − B.D ∗ A.B

A.A ∗ B.B − A.B ∗ A.B

b =
A.D ∗ A.B − B.D ∗ A.A

A.B ∗ A.B − B.B ∗ A.A

c = D.
A × B

‖A × B‖

(2.9)

where

./phd-Pics/background/spacepredictor.eps

42 Background

fo

1o -f

1v -f

()v, fpredict

cC

fp

A

B

Cc ¢

D¢B¢

A¢

frame f-1

frame f

1n -f

1p -f

fn

D

Figure 2.15 Replica predictor.

A = pf−1 − of−1

B = nf−1 − of−1

C =
A × B

√

‖ A × B ‖3

(2.10)

A similar predictor, introduced by Stefanoski and Ostermann [113], is a perfect pre-

dictor that preserves the angle between the reference triangle and the spanning triangle.

The difference between this predictor and the Replica Predictor lies in the coordinate sys-

tem used to express the vertex location. Yang et al. proposed, before, first and second

order predictors for the vertices displacements within some Lagrange Multiplier scheme.

The interpolation compression (AFX-IC) [55] is a tool adopted by the MPEG-4 stan-

dard and aims at exploiting the redundancies between the theset of key frames. The main

concept is to reduce the number of keys trough an interpolator process and compress the

remaining key frames using the differential coding and entropy coding.

Predictive methods are simple, efficient and have a low computational cost which

makes them well suited for real time compression and decompression. The drawback is

that they do not support progressive compression and that they are not efficient at very low

bit rates which would require a coarse level quantization, which leads to blocky structure

as discussed before.

Vertex based predictive approaches, focus on frame to framechanges to exploit local

coherence. They process vertex after vertex. In opposite, There are other approaches that

analyze the global coherence by using, for example, a PCA. This examines the entire mesh

./phd-Pics/background/replica.eps

2.4 Prior Mesh Compression Techniques 43

sequence and represents the sequence by a few principal components and coefficients.

2.4.2.3 PCA-based Compression

Principal Component Analysis (PCA) is a statistical technique that can reduce the

dimensionality of a dataset. It determines linear combinations of the original dataset

which contain maximal variation and represents them in an orthogonal basis. The original

data can then be compactly represented by a few principal components and coefficients. If

we have for example,F frames of3V dimension each and V is the number of the vertices,

PCA produces a reduced numberL ≪ F of principal components that represent the

original dataset. On can then see the PCA as a transformationof the original coordinates to

a new coordinate system such that the direction of the first axis is pointed in the direction

of the greatest variance in the datasets, the direction of the second axis in the direction of

the second greatest variance and so on.

Alexa and Müller [3] were the first who suggested PCA to achieve a compact rep-

resentation of animation sequences. First, all frames are translated so that the center of

mass of the model coincides with the origin. Then, an affine transformation is computed

minimizing the squared distance of corresponding verticeswith respect to the first frame.

All frames are gathered to form a matrix of dimension three times the number of vertices

times the number of frames. To find out a compact representation for the sequences, they

perform PCA on that Matrix using singular value decomposition (SVD) to extract the

eigenvectors and the coefficients. This method was improved[62] by applying second-

order Linear Prediction Coding (LPC) to the PCA coefficientssuch that the large temporal

coherence present in the sequence is further exploited.

Animated meshes exhibit highly nonlinear behavior, which is globally difficult to cap-

ture using standard PCA. Therefore, for more efficient compression, the clustered PCA

(CPCA) was introduced [102]: the mesh is segmented into meaningful clusters using

Lloyd’s algorithm [82] in combination with principal component analysis. These clusters

are then compressed independently using a few PCA components only. This technique

outperforms the standard PCA and the combined PCA with LPC scheme, since they ex-

plore a robust segmentation which is based on a data analysistechnique. But it remains

expensive.

PCA based approaches support progressive transmission andlevel-of-detail. The qual-

ity of the animation increases with the number of PCA coefficients. From the computa-

tional viewpoint it is expensive, but the decompression process is very fast.

44 Background

2.4.2.4 Wavelet-based Compression

Wavelet transform aims to decorrelate geometric data and togenerate a sequence of

detail coefficients. In irregular meshes, the wavelet detail is computed every time a vertex

is removed from the current level of progressive mesh hierarchy and defined as the differ-

ence between the actual location of the removed vertex and the predicted location from

the coarse level.

Guskov et al. [39] used wavelets for a multiresolution analysis and exploited the para-

metric coherence in animated sequences. The resulting wavelet detail coefficients were

progressively encoded with predictive coding scheme.

The idea of this algorithm is to separate the geometric and the parametric information

for parametrically coherent mesh sequences. The sequence of meshes sharing the same

connectivity, also share a similar local parametrization.Hence, the connectivity and the

parametrization need to be encoded and transmitted only once then use it to decorrelate

the geometry of each frame. Indeed, the encoder first processa specific mesh which is

called parametric mesh, then uses the information of this mesh to compress the geometry

of the remaining meshes, frame by frame.

Payan et al. [92] introduced thelifting schemeto exploit the temporal coherence. The

wavelet coefficients are thereby optimally quantized by minimizing the reconstructed

mean square error for specific user-given target bitrate.

Video Geometry[19] is an alternative way that treats the animated meshes as video se-

quence. It is based on theGeometry Imagerepresentation developed for static mesh.

The sequence of meshes are then transformed into geometry images which are then com-

pressed using standard video compression.

2.4.3 Level of Details for Dynamic Meshes

Shamir et al. [106] introduced a multiresolution model for dynamic geometry se-

quence of meshes called TDAG. It supports spatial and temporal level of detail. They

first extract the affine transformation relative to the first frame then encode the residual

in the TDAG structure. Through the TDAG structure, the construction approximation of

each mesh is governed by a metric function that combines spatial constrains and temporal

constraints.

2.5 Segmentation 45

2.5 Segmentation

3D Mesh segmentation is a process that breaks mesh elements having the same prop-

erties into regions. It has become a necessary tool in computer graphics and geometric

modelling. And it is used for various applications such as metamorphosis [33, 131, 110],

compression [61, 84, 10, 102], parametrization [100, 69] simplification [132, 32] and

skeleton extraction [54]. For detailed survey in literature on segmentation, we refer the

reader to [105].

2.5.1 Static Mesh Segmentation

Segmentation of static mesh partitions the mesh into regions using the mesh attributes

as segmentation criteria, depending on the applications. This may impose different re-

quirements and criteria. The most criteria functions used for partitioning process are

geodesic distance [65, 64], curvature [104, 34, 72], normal [125], etc. Of course, the de-

cision to assign each vertex or triangle to the same segment affects heavily on the results

of the segmentation. Thus, the quality of the method is strongly related to its application.

A various approaches have been proposed to decompose the static meshes into visually

meaningful parts such as region growing [72, 119, 90, 57, 127, 86, 20], watershed [88,

132], hierarchical clustering [32, 16, 46, 108, 71], iterative clustering [110, 101, 58, 124],

spectral analysis methods [61, 80, 81, 128, 129], implicit methods, etc.

For instance, theregion growing approach collects the elements of similar feature.

These elements can be vertices, triangles or region. The strategy of region growing starts

with a number of elements which are either selected randomlyor using geometrical cri-

teria. Then, it grows sub-meshes incrementally (eventually, in parallel) under a set of

criteria that determines if the new element can be added to the current region and the

growing stop criteria. The main differences between various methods arises typically on

growing criteria, seeds selection process and dealing withthe small regions or merging

criteria. In this approach the result of segmentation depends heavily on the number of the

choice of initial seeds and its number.

Theclustering approaches can be either hierarchical or iterative.Hierarchical clus-

tering initializes all elements as clusters, then merges the clusters of low cost to one

cluster. The number of final clusters in this approach is unknown. Iterative clustering is

introduced to find an optimal segmentation. Often, this category uses the popular Lloyd’s

algorithm [82], some time referred to as k-means.

Given a number of clusters, the approach searches iteratively the best segmentation.

The algorithm starts withk representatives ofk clusters and assigns each element to one

46 Background

of these clusters. Then, the iterative procedure updates the k representatives from the

clusters until they stop changing. Generally, the iterative process can be automatically

stopped when stopping criterion is met, typically, the estimated improvement stays below

a predefined threshold value or the maximum of iterations is reached.

TheSpectral analysisapproach uses generally the eigenvectors of the affinity matrix

to break the mesh into parts. Spectral clustering is one of these well-known spectral

approaches. It uses the eigenvectors of weighted graph Laplacian matrix to construct a

low dimensional embedding in which the clustering would be easier than clustering the

original data points.

2.5.2 Dynamic Mesh Segmentation

Recently, segmenting dynamic 3D meshes gained much interest and it is used in

several contexts in animation [37, 102, 54, 64, 75, 76], typically, skinning mesh anima-

tion [54], ray tracing[37], and compression [77, 38, 102, 84].

While static mesh segmentation aims at detecting meaningful parts and breaks the

mesh onto sub-meshes of similar specific features within a specific context, 3D dynamic

mesh segmentation approaches exploit the temporal information to partition the mesh into

quasi-rigid parts. In other words, group the vertices that undergo similar motion. Beside,

the spatial information or features can also be exploited.

The literature on 3D dynamic mesh partitioning is poor compared with the large liter-

ature on static mesh partitioning. For instance, in skinning deformable mesh animation,

James and Twigg [54] usedmean shiftalgorithm [21, 27] to cluster triangles with simple

rotation sequences to identify the near-rigid structures of deformable meshes and esti-

mates their transformations. This kind of clustering performs well for virtual characters

but not for extremely deformed animation where the most component are not near-rigid.

To ray trace animations, Günter e al. [37] decomposed the mesh into rigid parts un-

derlying a similar transformation by clustering the triangles. Residual motion is then

captured in a singlefuzzy kd-tree for the entire animation. Note that kd-tree subdivides

a region enclosed by a bounding box into irregular areas.

Lee et al. [76] introduced a method that find near-rigid sub-meshes. The algorithm ini-

tially extracts feature triangles on the mesh. Then, the remaining triangles are assigned to

different partitions, depending on the distance between the face and the feature faces. The

distance metric which is used combines geodesic distance with the deformation distance.

The drawback of this algorithm is computationally costly for practical purpose.

For dynamic mesh compression purpose, segmentation is rarely used compared with

the huge number of algorithms proposed for static meshes. The most proposed approaches

2.5 Segmentation 47

assumes that the sequence of meshes have the same connectivity and only geometry

change over time.

Usually, the objective of using partitioning the mesh in thecompression context to de-

crease the computational costs as well as to preserve the global shape of the mesh because

some compression algorithms such as some spectral based techniques (DCT, PCA, etc.)

can destroy important features of the mesh. Another objective is to find near-rigid com-

ponents whose motion can be described by affine transforms which lead to more compact

representation. In all cases, the algorithm employed to partition mesh vertices into near-or

rigid parts heavily affects compression performance.

To find the vertices that have similar motion, Lengyel [77] proposed that one select a

set of seed triangles randomly and compared their trajectories. Triangles with a similar

motion are combined. Then the vertices are associated with the triangle whose trajectory

best fit theirs. Gupta et al. [38] use multilevelk-way partitioning algorithm [41] on the

basis of proximity in the connectivity and the number of parts given by the user.

Mamou et al. [85] proposed to partition the mesh vertices into clusters whose motion

can be described by unique 3D affine transforms, by applying k-means [60]. Amjoun et

al. [7] proposed region growing based approach. Starting from several seed points. The

regions grow uniformly around the set of selected seed points by first traversing the closest

neighboring vertices over time until all vertices of the mesh are visited (see chapter4).

These approaches use the connectivity information for segmentation, eventually with

the geometry information. Generally, the approach that is connectivity-based clustering

only is not well-suited for time geometry-variant.

Alternative approaches use the geometry information only,and they are characterized

as motion clustering based techniques [102, 10] which analyze the vertex motion over

time.

Sattler et al. [102] proposed to cluster the trajectories of vertices using Lloyd’s algo-

rithm in combination with PCA. Then, they compress each cluster independently. In this

approach, unlike [54], they don’t analyze the motion of each triangle but the motion each

vertex. However, the experiment results showed that the cutting boundary may deviate

from the deformable regions. Thus, the near-rigid is not always obtained as cited in [76].

Amjoun and Strasser [10] proposed another scheme based on the motion of vertices

relative to the local coordinate system defined for each cluster.(see more details in chap-

ter4).

As mentioned in static case, in animation the segmentation process also depends on

the applications which may impose different requirements,and the quality of the results

depends strongly on the applications.

48 Background

Note that the static mesh segmentation can also be well used in animation case as an

initial segmentation which is then refined based on the motion information.

2.5.3 Discussion and Summary

This chapter began with an overview of compression data. Twocategories of compres-

sion were described: lossless and lossy compression. General compression techniques

were presented. Two entropy techniques are described: Huffman coders and arithmetic

coders. These techniques are lossless techniques often used in mesh compression. A de-

scription of 3D geometric models for the static and animatedcase are presented. Triangle

meshes are a frequently used representation to model three-dimensional object or scene.

Then the most popular techniques of mesh compression have been reviewed. These tech-

niques can be classified into intosingle-rate encodersandprogressive encoders. Single-

rate encoders encode the original mesh as whole and once. They are dedicated to reduce

bandwidth between rendering pipeline and local memory.

A wealth of successful compression schemes have been proposed. Earlier works fo-

cused on the efficient coding of the connectivity data driving the encoding of the geometry

data, i.e. a vertex location is encoded at the time, when the connectivity-coding scheme

encounters the vertex for the first time. As connectivity coding techniques became near

optimal within the last years, the researchers started to concentrate on the encoding of the

geometry whose code dominates the total compressed data size. The geometry driven cod-

ing have then been emerged to encode the geometry in near optimal way, independently

of connectivity coding. This is then guided by the geometry coding.

Progressive schemes have also been widely studied. Progressive approach first creates

a simplified version of the original full resolution mesh using simplifications operations.

After transmission, the base mesh is first decoded and reconstructed, then gradually re-

fined as the bitstream is being received and decoded. In geometry driven compression, the

geometry is progressively encoded without restraint of connectivity. Then the connectiv-

ity changes between two levels of details are encoded.

While research still focuses on efficient compression for huge static meshes, animated

meshes have become more and more important and useful every where. However, the cur-

rent techniques for the compression of sequences of meshes independently are inefficient.

The current coders are dedicated to compress the animated triangular meshes of fixed

connectivity so that the connectivity needs to be encoded, stored or transmitted once, then

the geometry coding comes into play.

There are several criteria by which developed coding techniques can be distinguished.

One of these criteria is the methods used to encode dynamic geometry. In PCA based

2.5 Segmentation 49

techniques, the global linear behavior of the vertices through all frames is approximated

in terms of linear space. The animation sequence can be reduced to a few principal com-

ponents and coefficients. The efficiency of this technique increases when the datasets are

segmented or clustered, so that each group is individually encoded by PCA. This type of

method supports progressive transmission. The drawback ofthis approach is it is com-

putationally expensive. In predictive methods, for each frame, the difference between the

predicted and the current locations is encoded with very fewbits. These approaches are

simple, not expensive and well-suited for real-time applications. The drawback of these

methods is that they do not support progressive transmission. Affine transformations well

approximate the behavior of sets of vertices relative to theinitial position (the first frame,

eventually the I-frame). This type of method is very effective for animations based on

motion capturing, if the mesh is well partitioned into almost rigid parts, since the vertices

are attached to the bones and move according to their representative joints. Therefore, ex-

ploiting the coherence in this animation and finding the transformation that best matches

each group of vertices is easier than finding a transformation that approximates each part

in deformed meshes (like a cow animation). The drawback of this technique is that it can

be computationally expensive depending on the splitting process or the affine transforma-

tion optimization.

Wavelet based approaches which also support the progressive transmission, have showed

to be efficient. There is a method that separates the parametrization and the geometry. It is

assumed that the connectivity and the parametrization component are constant throughout

time. Thus, they encoded and transmitted only once and then use it use the parametric

information to de-correlate the geometry of each frame. Lifting scheme exploit the tem-

poral coherence by transforming the vertex position into high and low frequencies. The

wavelet coefficients are thereby optimally quantized. Geometry images is also extended

to geometry video which are compressed using standard videocompression

We end up the chapter with mesh segmentation. We discussed different methods pro-

posed for static and dynamic meshes in different application. Particulary, we presented

the most proposed approaches in the 3D dynamic mesh compression context. The goal

of almost all methods is to partition the mesh into near or rigid parts, taking advantage of

the motion correlation property. Many of them focus on articulated characters and may

be less efficient for deforming meshes.

Basically, There are methods which we call geometry-based segmentation techniques.

They use the geometry information only to cluster the mesh vertices, independent of the

mesh connectivity. The connectivity-based segmentation techniques use the vertex adja-

cency to partition the mesh. These approaches are not well-suited for partitioning, since

50 Background

the geometry is changing over a time. There are methods that use both geometry and

the connectivity information for partitioning, often theyassume that the connectivity is

constant over time and only geometry changes over a time.

CHAPTER 3

Compression of Static Meshes: Higher Order Predictor

This chapter describes a new geometry encoding strategy that follows the predictive

coding paradigm, which is based on a region growing encodingorder. Only the delta

vectors between original and predicted locations are encoded in a local coordinate system,

which splits into two tangential and one normal component.

We introduce so-called higher order prediction for an improved encoding of the nor-

mal component. The tangential components are encoded with parallelogram prediction.

Then, a higher order surface is fit to the so far encoded geometry. As the normal com-

ponent is encoded as a bending angle, it is found by intersecting the higher order surface

with the circle defined by the tangential components. Because of computational time of

gathering vertices during fitting process, we come up with higher order predictor based

on sphere fitting to speed up higher order prediction.

3.1 Introduction

There are two main criteria by which static coding techniques can be distinguished.

The first criterion is whether the method isprogressive, i.e. allows for incremental trans-

mission, or not. In the latter case the scheme is calledflat. Progressive methods tend

to be a bit less efficient as flat methods and in this paper we propose a flat compression

scheme. The second criterion is whether the geometry is encodedlossyor “not lossy”. In

the lossy setting it is allowed to move vertices over the surface as long as theL2-norm or

52 Compression of Static Meshes: Higher Order Predictor

the Hausdorff distance between encoded and decoded mesh is less than a prescribed limit.

It is even allowed to change the connectivity. Typically, tools like Metro [24] are used

to measure the distance between original and decoded mesh. The proposed method is

"not lossy", where we quote this notion as it also introducessome loss. In the "not lossy"

setting the coordinates of the original vertex locations are quantized to a user specified

number of bitsq relative to the maximum extendemax of the bounding box of the model,

or a bit more general: the error between the original vertex locationpi and the decoded

vertex locatioñpi may not exceed

‖pi − p̃i‖ ≤ emax/2q. (3.1)

This is the setting that we used in this chapter.

As most other proposed methods for geometry coding we also follow the predictive

coding paradigm. Here the triangular mesh is traversed in a region growing order, which

is either driven by the connectivity coding algorithm or canbe chosen, as we do, as a

breadth-first traversal of the connectivity after the connectivity has been decoded. One

initializes the growing region, which contains the so far encoded geometry, with one tri-

angle and encodes the incident vertex locations in uncompressed form. The three edges of

the initial triangle are pushed onto a FiFo. The traversal loop pops the currently first edge

from the FiFo and defines it as the so calledgate, at which the region grows. The gate is

incident to at least one triangle in the growing region. The other incident triangle is added

to the growing region if it is not already part of it and new potential gate edges are pushed

onto the FiFo. Every time a new vertex is encountered during the traversal, one predicts

its location from the so far encoded geometry and only encodes the delta vectors

δi
def
= pi − ppred,i

between the original vertex locationpi and the predicted locationppred,i. The traversal

loop is iterated until the FiFo is empty and all vertices havebeen encoded. The decoding

algorithm just performs the same traversal and does the sameprediction, but decodes the

delta vector and reconstructs the original vertex location.

Previous work [73] has shown that it is advantageous to split the coding in tangential

and normal components by expressing the delta vectors in a coordinate system aligned

with the so far encoded geometry. We follow this approach as described in more detail

in section3.2.2. We also split the prediction into a tangential and a normal prediction.

For thetangential predictionof the two tangential componentsppred,tan, we investigated

the two existing methods of parallelogram prediction and multi-way prediction. But our

3.2 Geometry Encoding and Decoding Algorithm 53

Build local coordinate system

Split vertex location

tanpTangential Components

p

Bending angle a

Tangential Encoding

1. Prediction
2. Quantization
3. Arithmetic coding

Angle Encoding

1. Higher order prediction
2. Quantization
3. Arithmetic coding

Decode tangential
coordinates

tan
~p

Decode bending angle

a~

Transform back the world coordinatep~

decoded
vertices

original
vertices

Figure 3.1 Geometry coding process.

main contribution is the so calledhigher order predictionfor the prediction of the normal

component. The normal component is encoded as the bending angle between the triangles

incident to the gate. After the encoding of the tangential components we fit a higher order

surface to the so far encoded geometry and intersecting it with a circle defined by the

tangential components.

3.2 Geometry Encoding and Decoding Algorithm

Our geometry-coding scheme is based on a breadth-first region growing traversal of

the mesh as described before. Here, we detail the coding algorithm for the vertex locations

of vertices that are newly encountered during the traversalof the connectivity.

The block diagram of the encoder is shown in figure3.1. We decompose the geometry

encoding into the following steps.

./phd-Pics/StaticMesh/coding.eps

54 Compression of Static Meshes: Higher Order Predictor

Geometry Encoding Algorithm

1. build local coordinate system

2. transform original vertex location into tangential coordinates and bending angle

3. tangential prediction (parallelogram or multi-way)

4. compute, quantize and encode tangential delta vector

5. decode tangential coordinates

6. higher order prediction of bending angle with decoded tangential coordinates

7. compute, quantize and encode bending delta angle

8. decode bending angle

9. replace original vertex location with decoded location transformed back to the world

coordinate system

Firstly, we compute the local coordinate system by splitting the coordinates into two tan-

gential components and a normal component represented by a bending angle (see subsec-

tion 3.2.2). In the second step, we transform the original vertex into the local coordinates.

Next we predict the two tangential components as described in section3.2.3and com-

pute, quantize and encode the delta vector with an arithmetic coder as will be described

in section3.2.4. Steps5 and8 are crucial for the avoidance of error accumulation. By

simulating the decoding process, we make sure that we use during encoding exactly the

same information also available to the decoding algorithm.In step6 the main contribu-

tion of the paper comes into play, when we predict the bendingangle. This is detailed in

section3.3. Again we compute the delta angle, i.e. the difference to thebending angle

measured from the original point, quantize and encode the bending delta angle. Finally,

we decode the bending angle also known by the decoder, transform the local decoded

coordinates back to the world system and replace the original vertex location with the

decoded one, what ensures avoidance of error accumulation.

The decoding algorithm uses the same traversal of the connectivity and performs the

following steps:

3.2 Geometry Encoding and Decoding Algorithm 55

reference
triangle

-y

x

a

spanning
triangle

gate
edge

p

ptan

p0

p2 p1

x = (p− o) · x̂
t = (p − o) · ŷ
z = (p− o) · ẑ
y =

√
t2 + z2

α = atan2(z, t)

Figure 3.2 Illustration and computation of local coordinates: tangential coordinatesx, y and
normal component given as bending angleα.

Geometry Decoding Algorithm

1. build local coordinate system

2. tangential prediction (parallelogram or multi-way)

3. decode and undo quantization of tangential delta vector

4. compute tangential components

5. higher order prediction of bending angle

6. decode and undo quantization of bending angle

7. compute bending angle

8. transform local coordinates back to world coordinates

3.2.1 Avoidance of Error Accumulation

As we use predictive coding and do the quantization in a localcoordinate system, the

quantization errors normally accumulate. Lee and Ko [73] had the same problem with

their vector quantization strategy and proposed to encode additional correction vectors

every time the accumulated quantization error exceeded theerror tolerance. As we only

encode correction vectors, a careful design of the encodingalgorithm is necessary to avoid

error accumulation. We simply simulate the decoding process also during the encoding,

and store the decoded vertex locations of each vertex. From these we compute the local

./phd-Pics/StaticMesh/coordinates.eps

56 Compression of Static Meshes: Higher Order Predictor

coordinate system (step1 of encoding algorithm) and the prediction (step3). The deltas

of the tangential components (step4) and of the bending angle (step7) are computed be-

tween the original vertex locations and the prediction computed from the decoded vertex

locations, such that only one quantization step can introduce error and error accumulation

is avoided.

3.2.2 Local Coordinate System

Figure3.2 illustrates the local coordinate system, that we use in our geometry coding

algorithm. When a new vertex is encountered the gate edge is always incident to an

already encoded triangle in the growing region, which we call the reference triangle,

and to a triangle incident to the new vertex, which is called the spanning triangle. The

local coordinate system is defined on the reference trianglewith origin o at the center of

the gate,x-axis along the gate edge andy-axis orthogonal tox-axis in the plane of the

reference triangle. As third coordinate we use the bending angleα between the normals

of reference and spanning triangle resulting in a cylindrical coordinate system withy as

radius. We kept the notationx andy because they refer to tangential components. To

compute the local coordinates (see Figure3.2) we also determine thêz-axis orthogonal to

x̂ andŷ. The transformation back to world coordinates is simply

p = xx̂ + y cos(α)ŷ + y sin(α)ẑ + o.

Figure 3.3 In the multi-way prediction mode all possible reference triangles are exploited for
parallelogram predictions.

./phd-Pics/StaticMesh/multiway.eps

3.3 Higher Order Prediction 57

3.2.3 Tangential Prediction

In parallelogram prediction mode for the tangential components we use the formula of

Touma and Gotsman but use the decoded vertex locations in order to avoid error accumu-

lation. In the multi-way prediction mode we exploit the ideas proposed by Cohen-Or et

al. [25]: when a new vertex is encountered there can be more than one possible reference

triangle as illustrated in Figure3.3. The idea is to use all possible reference triangles for

parallelogram predictions and average the resulting predicted locations in world coordi-

nates. This is exactly what we do before we transform the averaged predicted location to

the local coordinate system of the actually selected gate edge.

3.2.4 Binary Coding of Coordinates

For the final encoding of the local coordinates we have to quantize the coordinates

according to the error bounds as given by equation3.1. For the tangential components

this quantization step is straightforward. Integer valuesare derived according to

ix
def
= ⌊x/emax · 2q + 1/2⌋

iy
def
= ⌊y/emax · 2q + 1/2⌋

For the angular component, one has to account for the radius given by they coordinate of

the cylindrical coordinate system. Computing the arc length yields

iα
def
= ⌊yα/emax · 2q + 1/2⌋

The inversion of the quantization process is simple as our algorithm makes sure thaty is

known beforeα needs to be decoded.

The resulting signed integer values are encoded with an adaptive arithmetic coder [123],

which generates new symbols for every newly encountered index. We use two different

encoding contexts one forx andy and one forα.

3.3 Higher Order Prediction

In this section we describe our new approach for the prediction of the normal direction,

i.e. the bending angle, of the local coordinate system. Figure3.4shows an example. The

red arrow shows the gate edge and illustrates the localx-direction. The green arrow is the

local y-direction and the blue one the virtualz-direction. The vertices illustrated by blue

spheres are the already encoded vertices close to the gate. These vertices are used to fit a

58 Compression of Static Meshes: Higher Order Predictor

Figure 3.4 Snapshot during the higher order prediction of the cow model(polynomial graph
function).

higher order surface as shown in cyan and are therefore called fit vertices. The dark circle

around the gate illustrates all points corresponding to thedecoded tangential components

x and radiusy and is called thetangential circle. The intersection of the circle with the

higher order surface defines two or more possible predictionanglesα. The angle closest

to α = 0 is chosen and the resulting predicted locations is illustrated by the red ball in

Figure3.4. In the following three subsections we detail the gatheringof fit vertices, the

fitting of higher order surfaces and the intersection of the higher order surface with the

tangential circle.

3.3.1 Gathering of Fit Vertices

As shown in figure3.5, the fit vertices were gathered in a region growing strategy

starting at the reference triangle. In order to ensure that the decoder could collect the

same vertex locations, we collected the decoded locations of already encoded vertices

only.

As it does not make sense to fit a smooth surface in the presenceof sharp edges, we

additionally restricted the search for fit vertices to a flat region around the reference trian-

./phd-Pics/StaticMesh/higherorder.eps

3.3 Higher Order Prediction 59

Figure 3.5 Gathering process. If the angle between the triangle normaland the reference normal
is smaller than a given threshold then the decoded incident vertex is collected (right) otherwise it
is not used for surface fitting(left).

gle. First we computed the so calledreference normalof the reference triangle, gathered

its three vertices and initialized the growing region to thereference triangle by placing its

three edges onto a stack. As long as the stack was not empty, wepopped an edge from it

and checked if the incident triangle outside of the growing region could be incorporated.

This check included whether all vertices incident to the triangle had already been encoded

and whether the angle between the triangle normal and the reference normal was smaller

than a given threshold. We used a threshold of sixty degrees in all our measurements. If a

triangle succeeded all tests, we incorporated it into the growing region and pushed all new

edges on the region border onto the stack. If the third vertexof the triangle was newly

encountered, we collected its decoded location. The normalcheck also ensures that we

can always fit a graphf(x, y) to the gathered vertices with thex- andy-axes in the plane

of the reference triangle.

During fitting we weighted the fit vertices by their 3D distance r from the center of

the gate via1/re, wheree is the so-calledweighting exponent.

To find out the best number of to be gathered vertices and the best weighting exponent,

we plotted the number of bits per vertex consumed by the normal component for different

weighting exponents over the number of gathered fit vertices. The bits per vertex were av-

./phd-Pics/StaticMesh/gathering.eps

60 Compression of Static Meshes: Higher Order Predictor

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

6 8 10 12 14 16 18 20 22

Maximum number of gathered vertices

N
u

m
b

e
r

o
f

b
it

s
p

e
r

v
e
rt

e
x

(n
o

rm
a
l

c
o

m
p

o
n

e
n

t)

0,5

0,7

0,98

1,372

1,92

2,68

3,76

5,27

7,37

10,33

14,46

TG

weighting
exponent

Figure 3.6 Plot of bits per vertex consumed for the normal component with different number
of gathered fit vertices and different weighting exponents.The straight red line illustrates the
performance of the angle prediction via Touma and Gotsman.

eraged over the collection of sample models (see chapter8, Figure8.1). The resulting plot

in Figure8.6shows a minimal coding cost for eighteen gathered vertices and a weighting

exponent of approximately1.3. More results will be reported later in8

3.3.2 Higher Order Surface Fitting

For higher order surface fitting we fit the graphf(x, y) of a polynomial function de-

fined over the tangential coordinatesx andy, where in this casey is not the radius but the

actual direction in the plane of the reference triangle.f(x, y) is the virtualz component

of the local coordinate frame. An arbitrary polynomial function in two variables with

maximum degreed is given by its Taylor representation

f(x, y) =

m∑

j=1

αjφj(x, y),

with m = (d+1)(d+2)
2

basis functionsφi(x, y) = (1, x, y, x2, xy, y2, . . . , yd and them

parametersαi. For example for degreed = 2 there arem = (d + 1)(d + 2)/2 = 6 basis

./phd-Pics/StaticMesh/Graph.eps

3.3 Higher Order Prediction 61

functions, and for degree3 there are ten basis functions. The vector notation

Φ(x, y) = (φ1(x, y), . . . , φm(x, y))t

A = (α1, . . . , αm)t

allows us to simplify the expression forf to

f(x, y) = AtΦ(x, y).

Suppose we are given a set ofk 3D pointspi = (xi, yi, zi)
t, i = 1 . . . k with weightsωi

resulting from the gathering phase. Fitting off corresponds to the minimization of the

squaredz-distances

Afit = min
A

arg

[

E2
f (A) =

k∑

i=1

ωi

(
AtΦ(xi, yi) − zi

)2

]

.

As A is independent of the summation indexi, it can be taken out of the sum resulting in

E2
f (A) = At(FA − 2f),

F =

k∑

i=1

ωiΦ(xi, yi)Φ(xi, yi)
t, (3.2)

f =

k∑

i=1

ωiΦ(xi, yi)

with the symmetricm × m matrix F. The vectorAfit minimizing the squared distances

can be found by setting the gradient∇AE2
f (Afit) to zero, what yields

FAfit = f .

To solve these equations independent of a potentially singular symmetric matrixF, we

decomposedF with an eigenvalue decomposition into an orthogonal matrixO and a di-

agonal matrixΛ

F = OΛOt

If the matrixF has full rankm, Afit computes toOΛ−1Otf . In the case of a rankr smaller

thanm suppose the columns ofO are arranged such that

Λ = diag(λ1, . . . , λr,

m−r
︷ ︸︸ ︷

0, . . . , 0),

62 Compression of Static Meshes: Higher Order Predictor

and we set

Afit =

r∑

i=1

Oi
1

λi

(
Ot

if
)
.

3.3.3 Intersecting Higher Order Surfaces with a TangentialCircle

Now that we are able to fit a higher order surface to a set of weighted vertex locations,

we finally have to find out how to compute the intersection of the tangential circle with

the higher order surfaces. The tangential circle corresponding to the coordinatesxtan and

ytan is defined by the two equations

xtan = x

y2
tan = y2 + z2.

The points on the higher order surface obeyz = f(x, y), such that we have to solve the

polynomial of maximum degree2d

y2
tan = y2 + f 2(xtan, y) (3.3)

for y. In the case ofd = 2 the resulting quartic equation can be solved in closed form.For

higher degree an iterative solver is necessary. In our experiments we restricted ourselves

to the case withd = 2.

After having solved equation3.3 for y, we computed for each solutionyi the corre-

spondingz valuezi = f(xtan, yi). Finally, we computed up to four potential prediction

anglesαi and selected the one minimizing the absolute value. In the case of no solution,

we used the bending angle prediction strategy of Touma and Gotsman. In all measure-

ments we performed this happened in less than one percent of the cases.

3.4 Alternative Approaches

We develop alternative approaches for the prediction of thenormal component that

could replace the height field fitting. The first is fitting of implicit function that are more

expensive to compute but do not depend on a good estimate of the tangential space of the

surface. The second is fitting of spheres, what neither depends on a tangential space but

is much faster to compute as implicit fitting.

3.4 Alternative Approaches 63

3.4.1 Fitting of Implicit Function

In this approach, we make the fitting process independent of the local coordinate sys-

tem, we propose to fit implicit function g(x, y, z) such that the zero set represents the

surface.

A polynomial function in three variables with maximum degreed can be written as

g(x, y, z) =

d(d+1)(d+2)
6∑

j=1

βjγj(x, y, z),

with the basis functionsγj(x, y) = (1, x, y, z, x2, xy, y2, yz, z2, zx, x3, . . . , xyz, . . . , zd

and the parametersβj . With the vector notation

Γ(x, y, z) =
(

γ1(x, y, z), . . . , γ d(d+1)(d+1)
6

(x, y, z)
)t

B =
(

β1, . . . , β d(d+1)(d+2)
6

)t

allows to simplify the expressions ofg to

g(x, y, z) = BtΓ(x, y, z)

Suppose we are given a set ofk three dimensional pointspi = (xi, yi, zi)
t, i = 1 . . . k

with weightsωi. Fitting g corresponds to the minimization of the squared analytic dis-

tancesg2(xi, yi, zi):

Bfit = min
B

arg

[

E2
g (B) =

k∑

i=1

ωi

(
BtΓ(xi, yi, zi)

)2
.

]

As B independent of the summation indexi, it can be taken out of the sum resulting in

E2
g (B) = BtGB,

G =

k∑

i=1

ωiΓ(xi, yi, zi)Γ(xi, yi, zi)
t,

with the symmetrick × k matricesG. The minimum of the squared distances is achieved

by setting∇BE2
g (Bfit) = 0 which yields

GBfit = 0

64 Compression of Static Meshes: Higher Order Predictor

Figure 3.7 Snapshot during the higher order prediction of the torus model (polynomial implicit
function).

To solve these equations independent of potentially singular symmetric matricesG we

decompose them with an eigenvalue decomposition into an orthogonal matrixOg and a

diagonal matrixΛg

G = OgΛgO
t
g

If the matrixG has full rankm, Bfit computes toOgΛ
−1
f Ot

g. In the case when of a rank

m smaller thank, we suppose the columns ofOg are arranged such that the eigenvalues

λg,i are sorted by decreasing absolute value. Then the eigenvector Og,k corresponding to

the eigenvalueλg,k with the smallest absolute value will minimize the squared error and

we set

Bfit = Og,k.

The same strategy of surface fitting described before is followed. To find out the

predicted bending angle, we compute the intersection between the tangential circle and the

higher order surface. Figure3.8shows an example. The intersection point is represented

by the violet ball.

./phd-Pics/StaticMesh/implicitfitting1.eps
./phd-Pics/StaticMesh/implicitfitting2.eps

3.5 summary 65

3.4.2 Sphere Fitting

Sphere based prediction is another predictor that estimates the curvature from the

triangles adjacent to the reference triangle. Sphere fitting is based on the assumption

that four neighboring vertices (p1, p2, p3, p4) which are noncoplanard, form an unique

sphere whose radiusr and and its center coordinates(x0, y0, z0) can be found by resolving

the following cartesian set of equations:

(xi − x0)
2 + (zi − z0)

2 + (zi − z0)
2 = r2 i = 1, ..., 4

Figure shows3.8higher order prediction based sphere fitting. To the three points of the

reference triangle and the incident point in the adjacent triangle (left), we fit a sphere with

radiusRl and centerCl. The radius of this sphere estimates the inverse of the curvature at

reference triangle. Similarly, on the right side we construct another sphere with radiusRr

and centerCr. We compute the average of both radii, and with the points of the reference

triangle, we reconstruct a new sphere with the average radius r. Finally, we find out the

predicted angle by intersecting the tangential circle withthis new sphere (see the bottom

row of figure3.8). Also, here, we choose the intersection point corresponding to the angle

closer to zero.

Similar to the surface fitting, before fitting, we consider the following condition: if the

adjacent triangle is available and if the angle between its normal and the reference normal

is smaller than a given threshold. The radius is then defined by:

r =

{
rl+rr

2
if two adjacents triangles are availble and fit the condiction

rr or rl if only one sphere is available (right or left side)

}

(3.4)

In the case of no reference spheres are fit, then we use the bending angle prediction

method of Touma and Gotsman.

3.5 summary

We have presented a higher order prediction scheme for geometry compression, which

is based on the splitting of the vertex locations in its tangential and normal components

in the local coordinate system. The normal component is encoded as bending angle. For

its prediction, we first fit a polynomial surface to the previously encoded vertices in the

vicinity of the current gate edge. Then, we intersect the tangential circle given by the

tangential components, which are encoded in advance, with the polynomial surface yield-

66 Compression of Static Meshes: Higher Order Predictor

(a) (b)

Figure 3.8 Higher order prediction process based on sphere fitting. Top: fit sphere to four points
that connect the reference triangle with its adjacent decoded triangle. (a) shows the right side and
(b) the left side. Bottom: given the average radiuses of the above spheres,we fit a new sphere to
three previously decoded points.

./phd-Pics/StaticMesh/sphereright.eps
./phd-Pics/StaticMesh/sphereleft.eps
./phd-Pics/StaticMesh/sphere.eps

3.5 summary 67

ing the prediction for the bending angle. We examined two approaches to fit polygonal

surfaces to a set of points. In the first approach we fit the graph f(x, y) of a polynomial

function defined over the tangential coordinatesx andy. In the second approach we fit a

polynomial implicit functiong(x, y, z) such that the zero set represents the surface. This

has the advantage that there is no need for guessing the tangential space.

We will see in chapter8 the gain of our method is best for smooth objects, the proposed

gathering strategy for the fit vertices ensures an improvement of bending angle prediction

for all models. We showed that our approach can be combined with different prediction

schemes for the tangential components, in specific the parallelogram prediction rule and

the multi-way prediction proposed by Touma and Gotsman [117] and Cohen-Or et al. [25]

respectively, and allows to save in average one bit per vertex for the normal component

for smooth objects (see chapter8). Higher-order prediction can also be combined with the

Angle Analyze [74] and we believe that it would also improve the compression rates by

one bit per vertex. We also introduced a new normal encoding algorithm based on sphere

fitting to speed up higher order prediction. Hence, we fit sphere to a small number of

vertices as a fast compromise between graph fitting and simple angle prediction.

68 Compression of Static Meshes: Higher Order Predictor

CHAPTER 4

Animated 3D Object Segmentation

Segmentation of dynamic 3D objects has recently gained muchinterest and is used in

various contexts such as compression parametrization, raytracing, morphing and skinning

mesh animation.

The aim of this chapter is to introduce new segmentation strategies to be used in

the compression of 3D dynamic meshes. We propose three approaches based on region

growing, clustering, and adaptive clustering. The aim is todecompose the 3D deforming

triangular mesh into near-rigid components, i.e. to group vertices with similar motions,

then compress each group separately and thereby, to reduce the computation complexity

and to achieve better compression performance.

These algorithms can be well applied to different kinds of deforming meshes whose

connectivity and the number of vertices does not change overtime, and no information

about how the motion is generated, is necessary.

4.1 Introduction

3D Mesh segmentation has become a necessary operation for many applications in

computer graphics and geometric modelling. It is a process that divides a mesh into com-

ponents depending on the applications. The quality of the method is strongly related to

its application which may impose different requirements and criteria. Various approaches

have been proposed for static meshes, including the region growing, watershed, clustering

and spectral analysis methods.

70 Animated 3D Object Segmentation

While static mesh segmentation aims at detecting meaningful parts and subsequently

breaking the mesh into sub-meshes of similar specific features within a specific context,

3D dynamic mesh segmentation approaches exploit temporal information to partition the

mesh into quasi-rigid parts. In other words, 3D dynamic meshsegmentation approaches

group the vertices that undergo similar motion.

Different approaches have been proposed (see chapter2). The central aim is how to

partition the deforming mesh into quasi-rigid components.Of course, this relies heavily

on the application and its objective. Generally, a partitioning scheme that works well in

one application, may not even be applicable in another application. Indeed, some methods

were introduced specifically for special kinds of input meshes. For example, James and

Twigg’s approach [54] performs well for virtual characters but not for extremelydeformed

animation sequences where most components are not rigid.

In the context of 3D dynamic mesh compression, segmentationis rarely used com-

pared with the huge number of algorithms proposed for staticmeshes (see chapter2).

Lengyel [77] proposed that one select a set of seed triangles randomly and compared their

trajectories. Triangles with a similar motion are combined. Then the vertices are associ-

ated with the triangle whose trajectory best fit theirs. Gupta et al. [38] use a multilevel

k-way partitioning algorithm [41]. Mamou et al. [85] proposed that one partition the mesh

vertices into clusters whose motion can be described by unique 3D affine transforms, by

applying k-means [60]. These approaches use the connectivity information for segmenta-

tion, potentially also using the geometry information. Generally, any approach that only

uses connectivity-based clustering is not well-suited forgeometry that changes over time.

An alternative approach has been proposed by Sattler et al. [102]. They analyze the

motion of each vertex independent of the connectivity information. They clustered the

trajectories of vertices using Lloyd’s algorithm in combination with PCA. Then, they

compress each cluster independently. However, the experimental results showed that the

cutting boundary may deviate from the deformable regions. Thus, the property of near-

rigidity is not always obtained as cited in [76].

Most of the current approaches are either computationally expensive, or are not effi-

cient for our problem, due to using other criteria which may not fit our objective.

This chapter presents new segmentation methods for dynamicmesh compression.

These approaches are designed so they can be combined with the proposed compression

schemes to achieve high compression rate with high quality reconstruction.

4.2 Overview 71

4.2 Overview

Usually, the objective of partitioning a mesh in the contextof geometry compression is

to decrease the computational costs as well as to preserve the global shape of the mesh be-

cause some compression algorithms such as some spectral based techniques (DCT, PCA,

etc.) can destroy important features of the mesh.

Another objective is to find near-rigid components to decorrelate the sequence of

meshes during a pre-processing stage in the compression pipeline. This leads to a more

compact representation. In all cases, the algorithm employed to partition mesh vertices

into near-rigid parts heavily affects compression performance.

Our goal is to gather the vertices which have similar movement. Therefore, perform-

ing segmentation for one frame using the spatial information only and then applying it to

all frames in an animation would not make sense. Moreover, criteria based segmentation

process that works well for one frame may not necessarily be appropriate or efficient for

the other frames. We want to take into consideration both thetemporal and spatial infor-

mation, i.e. consider the motion of the vertex and of its neighbors over all frames. This

would allow us to gather the vertices into groups of near-rigid motion, and consequently

achieve better compression performance by using, for example, PCA. Thus, segmentation

is a crucial step in the compression pipeline. Its effectiveness lies in its ability to segment

an animated object into rigid-bodies.

This chapter presents new segmentation approaches for dynamic meshes. The first

method is based on region growing. We involve both connectivity information and the

vertex positions over time to gather the vertices of similarmotion. The algorithm starts

with several selected seed triangles and grows a region incrementally. The growing crite-

ria, or cost function that decides if a newly encountered vertex can be added to the current

region, is defined by the Euclidian distance of the vertex position to the seed triangle over

time.

The second approach involves the geometry information only. The process of cluster-

ing starts with several seed points and defines for each cluster one LCF. Then, it groups

the mesh vertices into clusters by analyzing the local motion relative to a local coordinate

system defined for each cluster, in which the cluster motion will be encoded. The relation-

ship between the proposed segmentation and compression strategies is an another reason

that let us to develop new clustering method that is more suitable for our coding. Indeed,

we are minimizing the vertex displacement relative to the LCFs, while the existing meth-

ods try to minimize certain criterion function using globalfeature or distance function in

the global coordinate frame. Thereby, they are not efficientfor our problem. The results

of both of the proposed segmentation methods depends on the initial seed selection.

72 Animated 3D Object Segmentation

The third approach, which uses an adaptive process, is introduced to find a more flexi-

ble clustering process. We want to minimize the deviation inthe LCF to obtainlow-motion

partitioning.

The idea is to start with an initial partitioning of very small number of clusters then

iteratively find new see point, add a new cluster and update the partitioning until the cost

function converges or the predefined number of clusters is attended.

4.3 Definitions

In this section, we introduce a set of definitions and notation which will be used

throughout the current and the next chapters.

Let M1, M2, M3, ..., MF be a sequence ofF meshes. Each meshMi is called frame or

mesh frame. V and T are the numbers of vertices and triangles in the mesh, respectively.

Both V and T are constant over time. LetG be the set of all vertices (vertex position and

index) in a mesh. The segmentation of the meshM means partitioning the mesh into N

subsets of element, i.e.:

N⋃

n=1

Gi = G, Gi ⊂ G, Gi ∩Gj = ∅, i, j = 1, ..., N, i 6= j

Gi is characterized byVi vertices

For a sequence of meshes, letGf
i be thei−th segment of thef−th frame,i = 1, ..., N

andf = 1, ..., F . A single segmentGi thus consists ofF segments (one for each frame):

Gi = {G1
i , G

2
i , G

3
i , ..., G

F
Vi
}

The segmentation process depends on the criteria used to associate vertices to segment

Gi. This criteria is chosen as an objective function that depends on the application or the

context of segmentation. The segmentation can then be treated as an optimization problem

of given criteria.

4.4 Region Growing based Approach

This approach assumes that all meshes have the same connectivity. The basic idea is

to grow regions starting from several seed points. The regions grow uniformly around the

set of selected seed points by first traversing the closest neighboring vertices over time

until all vertices of the mesh are visited. Each region is also called segment.

4.4 Region Growing based Approach 73

4.4.1 Segment Initialization

The segmentation process initializesN setsGi of Vi vertices, wherei = 1, ..., N . All

sets are empty and all vertices are marked as unvisited vertices.

4.4.2 Seed Selection

To collect the mesh vertices intoN regions, it is necessary to selectN seeds using, for

example, the far distance approach [126]:

1. The first seed is the vertex corresponding to the largest euclidian distance from the

geometrical center of all vertices in the first frame.

2. The next seeds are selected sequentially until allN seeds are selected. After select-

ing i − 1 seeds, thei − th seed is the vertex with the farthest distance from the set

of i − 1 already selected seeds, that satisfy : max(min(distance(vertexv, seedj))),

wherej is a seed vertex in the set ofi − 1 seeds,v is a vertex from the remaining

mesh vertices.

3. The process above is iterated until allN seeds are selected

We associate with each seed one of its incident triangles andcall this triangle the seed

triangle. The regions are initialized as(vf
i,1, v

f
i,2, v

f
i,3) the three vertices of seed triangle of

i-th segment.

4.4.3 Mesh Growing Process

This algorithm grows the regions starting from the seed triangles. Every region has an

interior, i.e. all triangles that belong to the region, and an exterior, i.e. all triangles that

have not been visited. Every region has a queue associated with it which consists of edges

who separate between the interior of the region and the exterior.

The queues drive the growing process. Every edge connects two triangles, one inside

the region and one outside the region, which is called acandidate triangle. The vertex of

the outside triangle that does not lie on the edge is called acandidate vertex. The queue

of every regionGi is initialized to the (three) edges of its seed triangle. Theedges of the

queues are sorted by the distance of their candidate vertices to the seed vertex; we use the

average of all position of a vertex in all frames as vertex position.

We iterate over all regions and for every region we add the candidate triangle whose

candidate vertex has the lowest distance to the region. Thiscandidate vertex can easily be

found because it is the candidate vertex of the top-most edgeof the region’s queue. The

74 Animated 3D Object Segmentation

iteration stops if no more edges are in the queues. (i.e. no more candidate vertices exist

and all triangles are sorted into the regions).

When a candidate triangle is added to a region, it is marked asvisited. The queue is

updated by removing the edge and by adding the two remaining edges of the candidate

triangle.

4.4.4 Results

The region growing based segmentation algorithm is tested on several different anima-

tions. Figures4.6 and4.7 illustrate some results for segmentation into different number

of regions. Figure4.6shows sample frames from the dance and chicken animations seg-

mented into14 and20 segments, and10 and18 segmnets, respectively. Figure4.7shows

samples frames from the elephant, dolphin, and cow animations segmented into10 and

20, 9 and20, and6 and20 segments, respectively.

4.5 Clustering based Segmentation

The basic idea of this algorithm is to transform the originalvertex coordinates into

severalLCFs defined by seed triangles. OneLCF (one seed triangle) is associated with

each cluster. Then the clustering is obtained by assigning the vertices to the cluster where

they have minimal local coordinate variation across the F frames. Minimal coordinate

variation means that the vertex and the LCF have very similarmotion. Note that this

approach needs the connectivity only once to construct one LCF. The clustering process

consists of the following steps:

4.5.1 Initialization and Seed Selection

Similar to region growing based segmentation, the algorithm initializes theN setsGi,

wherei = 1, ..., N , to be empty and all vertices are unvisited. Then it selects anumber of

vertices using the approach described above. After choosing N seeds, we associate with

each seed one of its incident triangles (seed triangle). Then, each cluster is initialized with

its three vertices(vi,1, vi,2, vi,3) of seed triangle ofi-th cluster.

4.5.2 Local Coordinate Frames Construction

Figure7.2 illustrates the LCF which was used in the clustering process. We assume

that each cluster is initialized with a seed triangle(vi,1, vi,2, vi,3), and the positions of its

4.5 Clustering based Segmentation 75

Figure 4.1 Illustration of the local coordinate frame

vertices are(p1,p2,p3), respectively. Each clusterGi has its ownLCF defined on the

seed triangle. The origino is the center of one of its three edges (typically(p1,p2)), the

x-axis (red arrow) points down the edge(p1,p2), they-axis (green arrow) is orthogonal

to thex-axis in the plane of the seed triangle and thez-axis is orthogonal to thex- andy-

axis. The transformation of a pointp to its local coordinate systemq can be accomplished

by an affine transformation with a translationo and a linear transformationT:

q̂ = T(p − o)

T is an orthonormal matrix, it meansT−1 = Tt.

For a sequence of meshes, for each framef (1 ≤ f ≤ F) and for each frame cluster

Gf
i ∈ Gi (1 ≤ i ≤ N), we computed{Tf

i , o
f
i } from the points of the seed triangle

(pf
i,1,p

f
i,2,p

f
i,3).

Note that there is no restriction on how the local coordinates are reconstructed upon

the seed triangle. The origin also can be the center of the seed triangle or one of its three

vertices.

4.5.3 Vertex Clustering

Given an unvisited vertexpf
k , we do the following: First, we transform its world coor-

dinates into theN local coordinate frames constructed in each framef , so: {q1,f
k ,q2,f

k , ...,qN,f
k },

(f = 1, ..., F). Second, we compute the total deviation (motion) of the vertex between

each two adjacent framesf andf − 1 in euclidian space, which is also equivalent to the

displacements in the LCF:

θk,i =

F∑

f=1

‖qi,f
k − q

i,f−1
k ‖2 (4.1)

./phd-Pics/segmentation/LCS.eps

76 Animated 3D Object Segmentation

Figure 4.2 Illustration of the local coordinate frame

θk,i represents the total motion differences of the vertexk in theLCF associated with the

clusteri. A small value means that the vertex position has motion thatis similar toCi.

Thus the vertex should belong to the clusteri for which the deviation is very small, note

imin. Equivalently, we want to minimize the vertex displacementin the LCF:

imin := argmin1≤i≤N{θk,i} (4.2)

We iterate over all vertices, adding the unvisited vertex whose local coordinates are

almost invariant in theLCF to the clusterCi.

The iteration stops if no more candidate vertices exist. When a vertex is added to a

cluster, it is marked as visited. We end up withN clusters that haveVi vertices each.

4.5.4 Results

The output of the clustering process is shown in the figures4.8 and4.9. Figure4.8

shows sample frames of dance, and chicken animations clustered into14 and20, and10

and18 clusters respectively . Figure4.9shows samples frames from the elephant, dolphin

and cow animations clustered into10 and20, 9 and20, and6 and20 clusters, respectively.

./phd-Pics/segmentation/cowLCS.eps

4.6 Adaptive Processing 77

4.6 Adaptive Processing

The clustering approach basically consists of two passes. Given a desired number

N of fixed clusters,N seed points are selected using the distance approach. Then,the

vertices are grouped into hierarchical clusters so that thevertices belonging to a cluster

have a smaller deviation in the LCF of their cluster than theywould in the other clusters.

In order to find better clusters and to make the process more flexible, we designed an

adaptive process. This is an enhancement to minimize the deviation in the LCF so as to

obtainlow-motion partitioning.

The idea is to start with an initial partitioning ofk clusters (typically 1 or 2) then iter-

atively add a new cluster and update the partitioning until the cost function converges or

the predefined number of cluster is attained.

Initial Seeding and Clustering

Givenk seed points, we partition the vertices intok clusters by minimizing the cost

of function4.2as described before.

New Cluster Insertion

In order to find better partitioning, in each iteration step,we first go through all clusters

i (1 ≤ i ≤ N) in the current partitioningRi and find the clusterimax with maximum

average deviation-maximum cost function:

imax := argmax1≤i≤N{
1

Vi

Vi−3∑

k=4

θk,i} (4.3)

This means that the clusterimax contains some vertices whose motion is not similar to

the cluster motion. Therefore, within it, we pick the vertexvmax with the large deviation

in the local coordinate frame.

vmax := argmax4≤k≤Vimax
{θk,imax

} (4.4)

vmax is chosen as a new seed that creates a new cluster, and one of its incident triangle

is selected as seed triangle.

To obtain a new partitioningRi+1, we update the clustering as follows: upon the new

seed triangle we construct a new LCF, we add a new cluster, andinitialize it with the three

incident vertices of the seed triangle. The existing clusters are newly initialized with the

vertices of their seed triangles. Then, by minimizing the cost function4.2, the vertices are

assigned to the correct cluster.

78 Animated 3D Object Segmentation

The iteration process stops when the maximum number of cluster is achieved or when

the overall average deviation is below the specified threshold.

For further improvement, a pair of clusters can also be merged when the average

deviation of the resulting cluster is less than the average deviation of both individual

clusters. Likewise, a cluster with very few vertices (typically 3 or 4 vertices) can be also

deleted and its vertices newly clustered.

4.6.1 Results

Figures4.10shows sample frames of dance, and chicken animations adaptively clus-

tered into14 and20, and10 and18 clusters respectively . Figure4.11shows samples

frames from the elephant, dolphin and cow animations adaptively clustered into10 and

20, 9 and20, and6 and20 clusters, respectively.

4.7 Evaluation of Segmentation Approaches

It currently says that the evaluation of the segmentation process is dependent on

whether or not the segmentation process makes the right segments. This is a tautology.

In the context of compression, a good segmentation process is the one which leads to the

best bit-rate compression – of course, if the complexity of segmentation and process time

is excluded. The goal of the segmentation in this thesis is togather the vertices of similar

motion. Thereby, the redundancy existing between the sequence of frames is reduced a

priori. The process should assign each vertex to the segment/cluster where its deviation

(motion) is relatively very small or it motion with the groupis almost rigid.

To evaluate the quality of the segmentation approaches, we need to define some metric

or error. Therefore, we decided to use the cost function usedin the clustering approach.

This function provides a very efficient indication of how similar the motion within a group

of vertices is. The idea is to assign to each group one LCF (as described in section4.5).

The coordinates of vertices are then converted into LCF of their segment/cluster and the

motions between each two successive frames are computed. The motion deviation is also

defined as residual motion.

The average deviation of each groupGi is defined to be the average of motion vertices

between two successive instants over all frames, in the LCF.

Deviationaver(Gi) =
1

F (Vk − 3)
(

F∑

f=1

Vc∑

i=4

‖qi,f
k − q

i,f−1
k ‖2)

4.8 Computation Time 79

F is the number of frames,Vi is the number of vertices inGi. i is the cluster index.

q
i,f
k is the local coordinates of the vertexk in framef . It starts with the index4. The first

three vertices1, 2 and3 were used to construct the LCF.

The accuracy of segmentation is then defined by the average deviation over all seg-

ments/clusters.

Deviationaver(G) =
1

N

N∑

i=1

Deviation(Gi)

whereN is the number of segments or clusters.

Intuitively, the vertices that belong to the cluster shouldhave minimum residual mo-

tion in the LCF of their cluster, meaning that their motion isrelatively almost invariant.

Thus, better segmentation is the one that leads to small deviation over all groups (the

differences between two frames tend to be zero) and thereby better compression perfor-

mance can be achieved by using for example predictive coding(as we will see in the next

chapters).

Figure4.3 illustrates the average displacements or the average errorof all clusters (or

segments) of the chicken, dance and cow animations. The clustering approaches are more

efficient than growing region based approach. The performance of the clustering comes

close to the adaptive clustering approach where we obtain less variation of the vertices in

the LCF (almost rigid) than in the region growing approach (less rigid). Thus, the removal

of the redundancy a priori seems to be very efficient, allowing the predictive and spectral

methods to be efficiently performed for further compression(also see section4.9).

Note that since we use a metric which is similar to the one usedfor the clustering

approaches, it is obvious that their results will be better than the results of the region

growing approaches. However we found that this metric is thebest one that can be used

for our measurement for our algorithms and fit the goal of segmentation and compression.

4.8 Computation Time

Table8.6shows the run time for different segmentation approaches. The second, third

and fourth columns show the number of frames, vertices and triangles in each model,

respectively. The column RG lists the time required for region growing segmentation.

The column Clu lists the time needed for clustering processes and column AdaptClu

list the time needed for adaptive clustering. The timing results were measured on AMD

Athlon(TM)XP 3000+, 2.10 GHz, 1.00GB of Ram.

Region growing is intuitively the fastest approach. The computation is done in the

80 Animated 3D Object Segmentation

5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

0.02

0.025

Number of clusters

Lo
ca

l d
ev

ia
tio

n
(L

2_
no

rm
)

Chicken sequence

Region growing
Clustering
AdptClust2
AdptClust5

5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

Number of clusters

Lo
ca

l d
ev

ia
tio

n
(L

2_
no

rm
)

Dance sequence

Region growing
Clustering
AdptClust2
AdptClust5

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8
x 10

−3

Number of clusters

Lo
ca

l d
ev

ia
tio

n
(L

2_
no

rm
)

Cow sequence

Region growing
Clustering
AdptClust2
AdptClust5

Figure 4.3 Evaluation of segmentation approaches.

C:/Pics_Thesis/pics/chicken.eps
C:/Pics_Thesis/pics/dance.eps
C:/Pics_Thesis/pics/cow.eps

4.8 Computation Time 81

world coordinate system while clustering approaches require extra time for transforma-

tion. Indeed, in order to determine the correct cluster to which each vertex should belong,

we have to computerN ×F times transformations from WCF (World Coordinate Frame)

into N × F LCF per vertex. In the adaptive process, which starts with aninitial number

of seedsk selected by distance approach as described before, the restof seeds(N − k)

are selected incrementally and new clusters are created. The number of transformations

per vertex is aboutk × F + F
∑N

j=k j making the run-time longer.

Table 4.1 Timing statistic for segmentation results on different animations in seconds (sec). RG:
Region Growing, clu: clusters and adaptClu: adaptive clustering.

Models vertices triangles frames N RG (sec) clu(sec) adaptClu (sec)
chicken 3030 5664 400 5 0.14 3 14

10 0.14 7 45
20 0.30 15 184
30 0.36 23 385
40 0.41 31 644

dolphin 6179 12337 101 5 0.23 1 6
10 0.28 3 23
20 0.33 7 80
30 0.39 10 173
40 0.45 14 299

cow 2904 5804 204 5 0.2 1 6
10 0.24 3 22
20 0.27 6 77
30 0.30 10 164
40 0.33 15 288

dance 7061 14118 201 5 0.5 4 16
10 0.56 12 54
20 0.63 16 187
30 0.7 24 398
40 0.78 36 702

elephant 42321 84638 48 5 0.92 6 25
10 1.31 12 78
20 1.63 23 270
30 1.95 35 578
40 2.34 47 995

82 Animated 3D Object Segmentation

A

B

A
A A

Figure 4.4 Clustered dance animation. The region (A) shows a cluster that is almost rigid.
However, it is not necessary to group the vertices int two clusters at (B)

4.9 Discussion and Summary

In this chapter, robust segmentation approaches were designed for all types of anima-

tion including high deformable animations.

These algorithms are tested on different mesh animations generated in different ways.

Figure4.5summarizes the results of the three segmentation approaches. For more results

see4.4.4, 4.5.4and 4.6.1.

The region growing based strategy is simple and fast. It allows one to group the

vertices through connectivity and their distance to the seed triangles assuming that the

connectivity remains constant over a time.

In contrast, the second strategy is based on the clustering process and does not need

the connectivity information, except during LCF construction. The process assigns each

vertex to the cluster where its displacement is relatively very small. In both techniques,

the number of segments is given a priori and the seed points are fixed using the distance

approach. In order to overcome this limitation and to obtainlow-motion partitioning, an

adaptive clustering strategy is introduced. The process ofclustering incrementally creates

seeds and updates the clustering.

Dynamic 3D mesh segmentation aims to group the vertices of similar motion for all

types of animation. However, the vertices may not always be grouped into visually mean-

ingful parts but can be grouped into groups of similar motion, such as dance animation.

For example, in figure4.4, the region (A) of the figure visually may be not well seg-

mented visually and it would be better if the vertices are segmented in such way that two

regions are created at (B). In contrast, in our context, thisanimation is well segmented be-

cause the vertices in this region have similar motion over time as seen in the four frames

C:/Pics_Thesis/pics/danceRegionA.eps

4.9 Discussion and Summary 83

(3, 56, 92, 137): both sides of (B) move almost rigidly over time.

In order to evaluate the segmentation approaches the displacement between frames is

measured. We found that this measurement, which is derived from the cost function (used

in the clustering), is well-suited for evaluation. For example in the prediction phase, we

want to have a prediction that produces a small prediction error. Good segmentation, is

then, the one that produces small clusters of similar motion, meaning that if we predict the

vertex coordinates from the previous frame (displacement)relative to the LCF, the error

would be very small.

Visually as well as metrically, clustering approaches exhibit better partitioning than

the region growing based algorithm.

For the computation time, the growing region based algorithm is very fast compared

with the clustering approach. This needs to transform the world coordinates into local

coordinates, thereby more time is required. The processingtime becomes longer when

adaptive clustering is used.

Note that the processing time grows with the number of clusters and segments as

shown in figure8.6

Unfortunately, we could not compare our approaches with existing techniques for sev-

eral reasons. First, their implementations are not available. Second, our algorithms are

designed with respect to the proposed compression techniques, meaning they are tailored

to fit the encoding algorithms to achieve better compressionperformance.

Each cluster or region is initialized with a seed triangle, from which we construct an

LCF. By assigning the vertex to the cluster in which its deformation over time is small,

we are able to segment the dynamic mesh into approximately rigid components, and quasi

invariant to their LCF. Then each cluster will be encoded in its LCF.

It is important to note that the process of clustering can be seen as minimization of the

vertex displacements relative to LCF. Consequently, performing for example the predic-

tive coding leads to prediction errors that are very small (see chapter7). And performing

PCA in quasi-invariant region will lead to more compact representation than quasi-rigid

component. The algorithm will require fewer principal components at similar reconstruc-

tion error than with global PCA (where PCA is performed on thewhole animated meshes)

(see chapter6).

84 Animated 3D Object Segmentation

(RG)

(Clu)

(AdptClu)

(RG)

(Clu)

(AdptClu)

Figure 4.5 From top to bottom: results of region growing (RG), clustering (Clu) and adaptive
clustering (AdptClu) approaches. Elephant(10 and20 clusters), cow (6 and20 clusters), chicken
(106 and18 clusters), dolphin (9 and20 clusters) and dolphin (14 and20 clusters) .

C://Pics_Thesis/pics/elephant_RG10_0.eps
c:/Pics_Thesis/pics/cow_RG6_59.eps
c:/Pics_Thesis/pics/chicken_RG10_280.eps
C:/Pics_Thesis/pics/dolphin_RG9_0.eps
c:/Pics_Thesis/pics/dance_RG14_80.eps
C://Pics_Thesis/pics/elephant_Clu10_0.eps
c:/Pics_Thesis/pics/cow_Clu6_59.eps
c:/Pics_Thesis/pics/chicken_Clu10_280.eps
C:/Pics_Thesis/pics/dolphin_Clu9_0.eps
c:/Pics_Thesis/pics/dance_Clu14_80.eps
C://Pics_Thesis/pics/elephant_AdaptClu10_0.eps
c:/Pics_Thesis/pics/cow_AdaptClu6_59.eps
c:/Pics_Thesis/pics/chicken_AdaptClu10_280.eps
C:/Pics_Thesis/pics/dolphin_AdaptClu9_0.eps
c:/Pics_Thesis/pics/dance_AdaptClu14_80.eps
C://Pics_Thesis/pics/elephant_RG20_0.eps
c:/Pics_Thesis/pics/cow_RG20_59.eps
c:/Pics_Thesis/pics/chicken_RG18_280.eps
C:/Pics_Thesis/pics/dolphin_RG20_0.eps
c:/Pics_Thesis/pics/dance_RG20_80.eps
C://Pics_Thesis/pics/elephant_Clu20_0.eps
c:/Pics_Thesis/pics/cow_Clu20_59.eps
c:/Pics_Thesis/pics/chicken_Clu18_280.eps
C:/Pics_Thesis/pics/dolphin_Clu20_0.eps
c:/Pics_Thesis/pics/dance_Clu20_80.eps
C://Pics_Thesis/pics/elephant_AdaptClu20_0.eps
c:/Pics_Thesis/pics/cow_AdaptClu20_59.eps
c:/Pics_Thesis/pics/chicken_AdaptClu18_280.eps
C:/Pics_Thesis/pics/dolphin_AdaptClu20_0.eps
c:/Pics_Thesis/pics/dance_AdaptClu20_80.eps

4.9 Discussion and Summary 85

Figure 4.6 Results of region growing based segmentation. From top to bottom: sample frames
from the dance (14 and20 clusters) and chicken (10 and18 clusters) animations.

C:/Pics_Thesis/pics/dance_RG14_1.eps
c:/Pics_Thesis/pics/dance_RG14_20.eps
c:/Pics_Thesis/pics/dance_RG14_30.eps
c:/Pics_Thesis/pics/dance_RG14_50.eps
c:/Pics_Thesis/pics/dance_RG14_80.eps
C:/Pics_Thesis/pics/dance_RG20_1.eps
c:/Pics_Thesis/pics/dance_RG20_20.eps
c:/Pics_Thesis/pics/dance_RG20_30.eps
c:/Pics_Thesis/pics/dance_RG20_50.eps
c:/Pics_Thesis/pics/dance_RG20_80.eps
C:/Pics_Thesis/pics/chicken_RG10_394.eps
c:/Pics_Thesis/pics/chicken_RG10_313.eps
c:/Pics_Thesis/pics/chicken_RG10_280.eps
c:/Pics_Thesis/pics/chicken_RG10_240.eps
C:/Pics_Thesis/pics/chicken_RG18_394.eps
c:/Pics_Thesis/pics/chicken_RG18_313.eps
c:/Pics_Thesis/pics/chicken_RG18_280.eps
c:/Pics_Thesis/pics/chicken_RG18_240.eps

86 Animated 3D Object Segmentation

Figure 4.7 Results of region growing based segmentation. From top to bottom: sample frames
from the elephant(10 and20 clusters), dolphin (9 and20 clusters) and cow (6 and20 clusters)
animations.

C://Pics_Thesis/pics/elephant_RG10_0.eps
c:/Pics_Thesis/pics/elephant_RG10_7.eps
c:/Pics_Thesis/pics/elephant_RG10_11.eps
c:/Pics_Thesis/pics/elephant_RG10_28.eps
C://Pics_Thesis/pics/elephant_RG20_0.eps
c:/Pics_Thesis/pics/elephant_RG20_7.eps
c:/Pics_Thesis/pics/elephant_RG20_11.eps
c:/Pics_Thesis/pics/elephant_RG20_28.eps
C:/Pics_Thesis/pics/dolphin_RG9_0.eps
c:/Pics_Thesis/pics/dolphin_RG9_30.eps
c:/Pics_Thesis/pics/dolphin_RG9_60.eps
c:/Pics_Thesis/pics/dolphin_RG9_80.eps
C:/Pics_Thesis/pics/dolphin_RG20_0.eps
c:/Pics_Thesis/pics/dolphin_RG20_30.eps
c:/Pics_Thesis/pics/dolphin_RG20_60.eps
c:/Pics_Thesis/pics/dolphin_RG20_80.eps
C://Pics_Thesis/pics/cow_RG6_10.eps
c:/Pics_Thesis/pics/cow_RG6_44.eps
c:/Pics_Thesis/pics/cow_RG6_59.eps
c:/Pics_Thesis/pics/cow_RG6_99.eps
c:/Pics_Thesis/pics/cow_RG6_111.eps
C://Pics_Thesis/pics/cow_RG20_10.eps
c:/Pics_Thesis/pics/cow_RG20_44.eps
c:/Pics_Thesis/pics/cow_RG20_59.eps
c:/Pics_Thesis/pics/cow_RG20_99.eps
c:/Pics_Thesis/pics/cow_RG20_111.eps

4.9 Discussion and Summary 87

Figure 4.8 Results of clustering approach. From top to bottom: sample frames from the dance
(14 and20 clusters) and chicken (10 and18 clusters) animations.

C:/Pics_Thesis/pics/dance_Clu14_1.eps
c:/Pics_Thesis/pics/dance_Clu14_20.eps
c:/Pics_Thesis/pics/dance_Clu14_30.eps
c:/Pics_Thesis/pics/dance_Clu14_50.eps
c:/Pics_Thesis/pics/dance_Clu14_80.eps
C:/Pics_Thesis/pics/dance_Clu20_1.eps
c:/Pics_Thesis/pics/dance_Clu20_20.eps
c:/Pics_Thesis/pics/dance_Clu20_30.eps
c:/Pics_Thesis/pics/dance_Clu20_50.eps
c:/Pics_Thesis/pics/dance_Clu20_80.eps
C:/Pics_Thesis/pics/chicken_Clu10_394.eps
c:/Pics_Thesis/pics/chicken_Clu10_313.eps
c:/Pics_Thesis/pics/chicken_Clu10_280.eps
c:/Pics_Thesis/pics/chicken_Clu10_240.eps
C:/Pics_Thesis/pics/chicken_Clu18_394.eps
c:/Pics_Thesis/pics/chicken_Clu18_313.eps
c:/Pics_Thesis/pics/chicken_Clu18_280.eps
c:/Pics_Thesis/pics/chicken_Clu18_240.eps

88 Animated 3D Object Segmentation

Figure 4.9 Results of clustering approach. From top to bottom: sample frames from the
elephant(10 and20 clusters), dolphin (9 and20 clusters) and cow (6 and20 clusters) animations.

C://Pics_Thesis/pics/elephant_Clu10_0.eps
c:/Pics_Thesis/pics/elephant_Clu10_7.eps
c:/Pics_Thesis/pics/elephant_Clu10_11.eps
c:/Pics_Thesis/pics/elephant_Clu10_28.eps
C://Pics_Thesis/pics/elephant_Clu20_0.eps
c:/Pics_Thesis/pics/elephant_Clu20_7.eps
c:/Pics_Thesis/pics/elephant_Clu20_11.eps
c:/Pics_Thesis/pics/elephant_Clu20_28.eps
C:/Pics_Thesis/pics/dolphin_Clu9_0.eps
c:/Pics_Thesis/pics/dolphin_Clu9_30.eps
c:/Pics_Thesis/pics/dolphin_Clu9_60.eps
c:/Pics_Thesis/pics/dolphin_Clu9_80.eps
C:/Pics_Thesis/pics/dolphin_Clu20_0.eps
c:/Pics_Thesis/pics/dolphin_Clu20_30.eps
c:/Pics_Thesis/pics/dolphin_Clu20_60.eps
c:/Pics_Thesis/pics/dolphin_Clu20_80.eps
C://Pics_Thesis/pics/cow_Clu6_10.eps
c:/Pics_Thesis/pics/cow_Clu6_44.eps
c:/Pics_Thesis/pics/cow_Clu6_59.eps
c:/Pics_Thesis/pics/cow_Clu6_99.eps
c:/Pics_Thesis/pics/cow_Clu6_111.eps
C://Pics_Thesis/pics/cow_Clu20_10.eps
c:/Pics_Thesis/pics/cow_Clu20_44.eps
c:/Pics_Thesis/pics/cow_Clu20_59.eps
c:/Pics_Thesis/pics/cow_Clu20_99.eps
c:/Pics_Thesis/pics/cow_Clu20_111.eps

4.9 Discussion and Summary 89

Figure 4.10 Results of adaptive clustering approach. From top to bottom: sample frames from
the dance (14 and20 clusters) and chicken (10 and18 clusters) animations.

C:/Pics_Thesis/pics/dance_AdaptClu14_0.eps
c:/Pics_Thesis/pics/dance_AdaptClu14_20.eps
c:/Pics_Thesis/pics/dance_AdaptClu14_30.eps
c:/Pics_Thesis/pics/dance_AdaptClu14_50.eps
c:/Pics_Thesis/pics/dance_AdaptClu14_80.eps
C:/Pics_Thesis/pics/dance_AdaptClu20_0.eps
c:/Pics_Thesis/pics/dance_AdaptClu20_20.eps
c:/Pics_Thesis/pics/dance_AdaptClu20_30.eps
c:/Pics_Thesis/pics/dance_AdaptClu20_50.eps
c:/Pics_Thesis/pics/dance_AdaptClu20_80.eps
C:/Pics_Thesis/pics/chicken_AdaptClu10_394.eps
c:/Pics_Thesis/pics/chicken_AdaptClu10_313.eps
c:/Pics_Thesis/pics/chicken_AdaptClu10_280.eps
c:/Pics_Thesis/pics/chicken_AdaptClu10_240.eps
C:/Pics_Thesis/pics/chicken_AdaptClu18_394.eps
c:/Pics_Thesis/pics/chicken_AdaptClu18_313.eps
c:/Pics_Thesis/pics/chicken_AdaptClu18_280.eps
c:/Pics_Thesis/pics/chicken_AdaptClu18_240.eps

90 Animated 3D Object Segmentation

Figure 4.11 Results of adaptive clustering approach. From top to bottom: sample frames from
the elephant (10 and20 clusters), dolphin (9 and20 clusters) and cow (6 and20 clusters) anima-
tions.

C://Pics_Thesis/pics/elephant_AdaptClu10_0.eps
c:/Pics_Thesis/pics/elephant_AdaptClu10_7.eps
c:/Pics_Thesis/pics/elephant_AdaptClu10_11.eps
c:/Pics_Thesis/pics/elephant_AdaptClu10_28.eps
C://Pics_Thesis/pics/elephant_AdaptClu20_0.eps
c:/Pics_Thesis/pics/elephant_AdaptClu20_7.eps
c:/Pics_Thesis/pics/elephant_AdaptClu20_11.eps
c:/Pics_Thesis/pics/elephant_AdaptClu20_28.eps
C:/Pics_Thesis/pics/dolphin_AdaptClu9_0.eps
c:/Pics_Thesis/pics/dolphin_AdaptClu9_30.eps
c:/Pics_Thesis/pics/dolphin_AdaptClu9_60.eps
c:/Pics_Thesis/pics/dolphin_AdaptClu9_80.eps
C:/Pics_Thesis/pics/dolphin_AdaptClu20_0.eps
c:/Pics_Thesis/pics/dolphin_AdaptClu20_30.eps
c:/Pics_Thesis/pics/dolphin_AdaptClu20_60.eps
c:/Pics_Thesis/pics/dolphin_AdaptClu20_80.eps
C://Pics_Thesis/pics/cow_AdaptClu6_10.eps
c:/Pics_Thesis/pics/cow_AdaptClu6_44.eps
c:/Pics_Thesis/pics/cow_AdaptClu6_59.eps
c:/Pics_Thesis/pics/cow_AdaptClu6_99.eps
c:/Pics_Thesis/pics/cow_AdaptClu6_111.eps
C://Pics_Thesis/pics/cow_AdaptClu20_10.eps
c:/Pics_Thesis/pics/cow_AdaptClu20_44.eps
c:/Pics_Thesis/pics/cow_AdaptClu20_59.eps
c:/Pics_Thesis/pics/cow_AdaptClu20_99.eps
c:/Pics_Thesis/pics/cow_AdaptClu20_111.eps

CHAPTER 5

Connectivity-Guided Compression of 3D dynamic

Meshes

This chapter aims at compressing animated objects represented by triangular meshes

of fixed connectivity using predictive technique. We propose a new connectivity-driven

coding which we call SplitCoder. The connectivity is encoded once then the geometry

(vertices locations) is encoded by a connectivity traversal of the mesh. Connectivity de-

termines the order of the vertices and provides informationfor predictions. The algorithm

is near-lossless, simple, efficient, fast and well-suited for real time applications.

5.1 Introduction

Often, the meshes differ only slightly between neighboringframes, leading to large

amounts of inherent redundancy between frames and between neighboring vertices in

the same frame. Thus, the static mesh compression techniques for the compression of

sequences of meshes independently are inefficient. Therefore, for efficient coding, one

should also exploit inter-frame coherence. There are several criteria by which developed

coding techniques can be distinguished. One of these criteria is whether coherence is

globally or locally analyzed. In a global approach, on mightexamine the entire mesh (or

submesh) sequence by using, for example, a principal component analysis (PCA) trans-

form. Locally, one might focus on frame to frame changes to exploit local coherence

by using, for example predictive coding. In this work, we focus on local compression

schemes based on the predictive coding. Such schemes tend tobe simple, fast, and well-

92 Connectivity-Guided Compression of 3D dynamic Meshes

suited for real time application (unlike PCA based approaches). We categorized this ap-

proach vertex based-predictive coding.

Given a number of framesMf , f = 0, 1, ..., F , a predictive method assumes that

connectivity does not change over time. For each newly encountered vertex in the current

frame, its location is predicted from the locations of neighbor vertices in the current frame

or/and in the previous frame(s). Then, the error between theoriginal vertex location and

the predicted vertex locatioñpf
i is compressed to a user-defined error.

Prediction step is the key of the good compression rate and good prediction lie in its

accuracy. Thus, the more the predicted point is close the actual position of the vertex, the

more the prediction good is and the lower entropy of prediction errors is achieved.

Current predictive methods predict the position of the vertex either in global coordi-

nates or in local coordinates. However, almost all methods,to our knowledge, compute

and quantize the coordinates of the residuals in world space.

Local coordinate frames have many properties that are useful for many 3D animation

processing applications. One of these properties is clustering behavior. Generally, the

3D positions of vertices are scattered over wide area and thebehavior of the vertices is

often non-linear. Fortunately, the correlation between the neighboring vertices, as well as

between the successive positions of a single vertex, is veryhigh. In other words, neigh-

boring vertices tend to move together. Thus, we might exploit this property to guess the

location of the vertex relative to its neighbors, to obtain abetter prediction than space, time

or space-time predictions in world space would provide. Therefore, one can construct a

local coordinate frame upon the locations of three of these neighbors. The coordinates

of each individual vertex tend to concentrate around one point over time, which we call

temporal clustering. Another clustering, which we callspatial clustering, arises in each

frame: the model tends to form very few clusters (depending on the model). The combi-

nation of both clusterings should yield significant reduction in bit-rates.

In this chapter, we introduce new and simple predictive scheme for single-rate com-

pression for animated meshes of fixed connectivity (guided), it can be seen as generaliza-

tion of static mesh compression presented in chapter3 to animation case. Our geometry

encoding strategy is based on a region growing encoding order and only the delta vectors

between the original and the predicted locations are encoded in a local coordinate sys-

tem, which splits into two tangential and one normal components. We call this approach

SplitCoder.

5.2 Predictive Coding of the animated vertices 93

5.2 Predictive Coding of the animated vertices

We distinguish three ways to encode the animated vertex positions. One way considers

each frame independent of other frames and uses only the existing static compression

techniques such as the popular parallelogram and multi-wayprediction. The second way

is to encode the trajectory of each vertex through time independent of the motion of its

neighbors, so only the temporal redundancy is exploited. Typical predictor is a first-

order time only predictor that returns the position of the vertex in the previous frame,

eventually the predictor can be a higher order predictor. A more sophisticated way is

to join the coherence in both space and time domains to approximate the vertex motion

such as Extended Lorenzo Predictor (ELP), Replica Predictor (RP) and Angle Preserving

Predictor.

ELP is an extension of the parallelogram predictor to incorporate coherence over time.

Replica predictor expresses the location of the vertex in the previous frame as in a coor-

dinate system derived from the adjacent triangle. Then, thesame coordinates are used in

the current frame to predict the position of the vertex with respect to the new location of

the same adjacent triangle. An algorithm similar to ReplicaPredictor is Angle Preserving

Predictor that preserves the angle between the reference triangle and the spanning trian-

gle. Our algorithm belongs to this category of predictive based-compression methods. We

let the connectivity information dictate the compression of animated vertices.

As aforementioned before, in world space, the coordinates of vertices scatter in a wide

range. In a local coordinate frame constructed upon each reference triangle, however, the

coordinates of each mesh vertices tend to cluster around a few points and the trajectory of

each vertex tend to cluster around one points.

Since a good prediction is when the residual is small as much as possible, the estima-

tion can be done in the local space producing residual close to zero, rather in the world

space. Thereby, the entropy of the sequence of the residualsis very small.

Moreover, a large of animated meshes are highly complex and very irregular, thus it

is more advantageous to exploit the prediction and the compression of the residual in the

local than world space for example as is done here. This may avoid a poor prediction that

may be produced using parallelogram prediction only, or combination with the temporal

linear prediction in the global coordinates.

We present a new single rate compression algorithm for animated meshes of constant

connectivity. We propose to move the coding of the vertex positions into a new local co-

ordinate frame that splits the coordinates into two tangential and one normal components.

The tangential components describe the parametric information of the shape while the

normal components hold the geometric information. Local spaces exhibit higher temporal

94 Connectivity-Guided Compression of 3D dynamic Meshes

Figure 5.1 Multi-way prediction.

reference
triangle

gate edge

X̂

Ŷ-

0p

2p
1p

p

tan
p

a

spanning
triangle

o

Ẑ

Figure 5.2 Local coordinates represented as tangential coordinatesptan and normal component
given as bending angleα.

and spatial clustering behavior than the world space. Looking at a sequence of animated

meshes in model space, we observe that the meshes share the same tangential components

and that the surface animation can then be viewed as a very low-magnitude movement of

the geometric information only. The geometric informationis quite constant, at least over

a few frames. Therefore, our algorithm, after transformation, predicts and quantizes each

component in the new LCF and entropy is encoded.

Another advantage of splitting is that moving the tangential coordinates in tangent

plane of the surface may not alter visual error, while movingthe point on the normal

direction can cause visible artifacts on the surface. In other words, visual distortion is

more influenced by the coding of the normal component than thecoding of the tangential

components. This observation can be very useful when a lossycompression is used. In

this chapter, we only considernear-losslesscompression.

5.3 System Overview of SplitCoder

Given a sequence of triangle meshesMf ; f = 1, ..., F with V vertices andF frames

(meshes), we encode the first frame separately from the rest of the frames in the sequence

using static mesh compression described in previous chapiter 3. Then we encode frame

by frame and vertex by vertex.

Our coding needs to store only the decoded local coordinatesof the vertices in the

./phd-Pics/Pics_predictive/multiPP.eps
./phd-Pics/Pics_predictive/HOPnew.eps

5.3 System Overview of SplitCoder 95

Figure 5.3 Region growing.

previous frame and thedecodedlocations in the current frames, in buffer memory.

5.3.1 Mesh Traversal

The triangular mesh of each frame is traversed in a region growing order (see Fig-

ure 5.3) as described in previous chapter3, which is driven by the connectivity coding

algorithm using a breadth-first traversal of the connectivity after the connectivity has been

decoded. One initializes the growing region, which contains the so far encoded geometry,

with one triangle and encodes the incident vertex locationsin uncompressed form. The

three edges of the initial triangle are pushed onto a FiFo. The traversal loop pops the cur-

rent first edge from the FiFo and defines it as the so called gate, at which the region grows.

The gate is incident to at least one triangle in the growing region. The other incident tri-

angle is added to the growing region if it is not already part of it and new potential gate

edges are pushed onto the FiFo. Every time a new vertex is encountered during the traver-

sal, one predicts its location from the so far encoded geometry in the previous and the

current frames and only encodes the delta vectors between the predicted and the original

locations.

5.3.2 Geometry Coding

For the first three vertex positions in each mesh component have no local predictor.

Therefore, we predict them from their position in the previously decoded frame in world

space (delta coding), we quantize and encode delta vectors and reconstruct the three vertex

./phd-Pics/Pics_predictive/RegionGrowing.eps

96 Connectivity-Guided Compression of 3D dynamic Meshes

positions to then encode all following vertices in local space.

First, we construct the local coordinate frame by splittingthe coordinates into two

tangential components and a normal component represented by a bending angle (see Fig-

ure5.2). In the second step, we transform the original vertex into the local coordinates.

Next, we predict the two tangential components from their coordinates in the previous

frame and compute, quantize, and encode the delta vector with an arithmetic coder. We

simulate the decoding process during the encoding to make sure that we use exactly the

same information that will be available to the decoding algorithm during encoding. Simi-

larly, the bending angle is predicted from the bending anglein the previous frame. Again

we compute the delta angle, i.e., the difference from the bending angle measured from

the original point, quantize, and encode the bending delta angle. Finally, we decode the

bending angle also known by the decoder, transform the localdecoded coordinates back

to the world system, and replace the original vertex location with the decoded one, which

avoids error accumulation. Note that the decoded tangential components and bending

angle stored and then may be used to encode the location of thevertex in the next frame.

5.3.2.1 Transforming World into Cylindrical Coordinates

We follow the same strategy described in chapter3 to construct the local coordinate

frame. We defined the local coordinate system on the reference triangle with origin o at

the center of the gate, x_axis along the gate edge and y_axis orthogonal to x_axis in the

plane of the reference triangle. As a third coordinate, we use the bending angleα between

the normals of reference and spanning triangle resulting ina cylindrical coordinate system

with r as radius. We also determine the z-axis orthogonal to x_axisand y_axis.

x = (p− o) · X̂
y = (p − o) · Ŷ
z = (p− o) · Ẑ
r =

√

y2 + z2

α = atan2(z, y)

The transformation back to world coordinates is simply

p = xX̂ + rcos(α)Ŷ + rsin(α)Ẑ + o

The results of the local space transformation are illustrated in Figures5.4and 6.1.

Figure5.4 illustrates the behavior of two different classes of meshesin local space.

5.3 System Overview of SplitCoder 97

Figure 5.4 Spatial clustering of two different type of model in space model: cow (2029 vertices)
and dance (7061 vertices) models. Left: the red points correspond to tangential components of the
vertices of the first frame and the blue points correspond to their world coordinates x and y. Right:
the corresponding bending angles.

./phd-Pics/Pics_predictive/spaceClusteringTang_Dance.eps
./phd-Pics/Pics_predictive/spaceClusteringAngle_Dance.eps
./phd-Pics/Pics_predictive/spaceClusteringTang_Cow.eps
./phd-Pics/Pics_predictive/spaceClusteringAngle_Cow.eps

98 Connectivity-Guided Compression of 3D dynamic Meshes

The world coordinates x and y (blue points) of the vertices are distributed over large inter-

val while the tangential components have a tendency to gather together to form clusters.

Figure6.1shows the locations of a single vertex (dance animation) over time in world

and local spaces. The world x and y-coordinates and z-coordinates are represented by the

blue points in Figure6.1 (a) and (b) respectively, while the tangential and the bending

angle are represented by the red points in (a) and (b) respectively.

The world coordinates are scattered across a wide area and have non linear behavior.

In the local space, the tangential components are highly concentrated around one point

(the red point in Figure6.1(a)). This means that parametric information does not change

over time and it is shared by all frames. Therefore, the prediction from the previous frame

would be very efficient and produces delta vectors that are very small or even zero. The

bending angles cluster around few points (the red points in Figure6.1(b)). Their clustering

behavior is less pronounced than the tangential componentsbut the bending angle is still

preserved between the adjacent frames and the prediction from the previous frame is very

efficient. Of course that clustering degree varies depending on the model.

5.3.2.2 Tangential and Normal Components Prediction

Once the vertex locationpf
i is transformed into local coordinates defined as tangential

components and bending angle(pf
tan,v, α

f
v), each component is encoded separately using

predictive coding.

The prediction assumes that the tangential components of the current point do not

change relative to the LCF, and that the curvature at the gatewill be preserved indepen-

dently of the tangential components coding as mentioned above.

5.3.2.2.1 Tangential Components

For each new vertexv in the framef , one predicts its tangential components from the

decoded tangential component in the previous framef − 1 by:

predicttan(v, f) = p̃f−1
tan,v

The delta vectors are computed:

δf
v = pf

tan,v − predicttan(v, f)

5.3.2.2.2 Normal Component

Similarly, the bending angle is predicted by:

5.3 System Overview of SplitCoder 99

(a) (b)

Figure 5.5 Temporal clustering of a single vertex. The blue points in (a) represent the x and y
world coordinates and in (b) z world coordinates over time. The red points in (a) represent the
tangential components and in (b) the bending angles over time.

(a) (b)

Figure 5.6 The resulting differences between the original and the predicted locations of a single
vertex over time, when temporal prediction is used in the world and in the local space. In the world
space, the vectors are represented by three coordinates: x and y-coordinates (a) and z-coordinates
(b), (blue points). In the local space, the differences are represented by 2D delta vectors (a) of
tangential components and delta angles (b) of the bending angle, (red points) .

./phd-Pics/Pics_predictive/xy.eps
./phd-Pics/Pics_predictive/alpha_z.eps
./phd-Pics/Pics_predictive/delta_xy.eps
./phd-Pics/Pics_predictive/delta_z_alpha.eps

100 Connectivity-Guided Compression of 3D dynamic Meshes

predictang(v, f) = α̃f−1
v

The delta angles are computed:

θf
v = αf

v − predictang(v, f)

The predictor we introduced for both components duplicatesperfectly the parametric

and the curvature information from frame to frame. It is goodfor meshes with smooth

or/and sharp creases, and whatever the motion the vertices undergo.

Figure5.6 illustrates the results of the delta vectors and angles of a single vertex over

time. The blue points represent the differences between theoriginal and the predicted

coordinates from the location in the previous frame in the world space. The red points

define the delta vectors and angles in the local space. The delta vectors tend to be zero

((0,0)), which tells us again that the parametric information does not change and that the

prediction is (or near) optimal.

The predictor described in this section duplicate exactly the parametric and the cur-

vature. Thus, we call itDuplicata Predictor(DP). We also implemented other predictors

such us space-only predictor and space-time predictor, which will be described in chap-

ter8 with the experiment results.

Note that unlike the current predictive animated mesh compression techniques [56,

45, 63, 113] where the delta vectors are encoded in a world coordinate frame, here they

are computed in the local coordinates and each component is encoded separately.

5.3.2.3 Binary Coding of Coordinates

For further compression, the coordinates (32 or 64 bits) are often quantized to a user

specified number of bits per coordinate relative to the maximum extent of the bounding

box of the model. In the case of an animation, the quantization is often performed ac-

cording either to the tight axis-aligned bounding box for each frameef
max or to the largest

bounding box for all framesemax = max{ef
max, f = 0, .., F}. In our algorithm, we con-

sider the largest bounding boxemax for all previously visited frames. The tangential delta

vector is then quantized to a user specified number of bitsq:

x̄ = ⌊x/emax · 2q + 1/2⌋
ȳ = ⌊y/emax · 2q + 1/2⌋

For the angular component, one has to consider the radius given by the y coordinate

of the cylindrical coordinate system. Computing the arc length yields

θ̄ = ⌊yθ/emax · 2q + 1/2⌋

5.4 summary 101

At reconstruction, the tangential components are first decoded, sincey needs to be known

beforeα can be decoded.

as illustrated in figure5.6 the delta vectors tend to be smaller than delta angles.

Thereby, the entropy of the delta vectors will be lower than that of the delta angles. For

entropy coding, it is more advantageous beneficial to encodethe data of lower and higher

entropy separately. Therefore, we encode the resulting signed integer values of delta vec-

tors and angles separately with an adaptive arithmetic coder [123], using different coding

contexts.

5.3.3 Geometry Decoding

The decoding algorithm uses the same traversal of the connectivity. First we decode

the first frame and the locations of the first three vertices ofeach component. Then for

each new vertex in the current frame we do the following: we first build the local coordi-

nate system, we predict the tangential components, we undo the quantization of tangential

delta vectors and we compute tangential components. Then for the normal component, we

predict the bending angle, we undo the quantization of deltaangle and compute bending

angle. Finally, we transform the local coordinates back to world coordinates.

5.4 summary

We have presented a new compression scheme SplitCoder for animated meshes with

constant connectivity. Our coding traverses the triangular mesh of each frame in a region

growing order. Every time a new vertex is encountered duringthe traversal, we split its

position into its tangential and normal components. Then, we encode each component

separately using prediction and quantization coding.

We showed the coordinates in tangential and normal spaces exhibit high temporal

clustering behavior that is well-suitable for temporal prediction in model space rather

than in the world space. For both components, we implementeddifferent predictors:

space-only predictor, time-only predictor and space-timepredictor. We will see in the

experiment results that time-only predictor (relative to the local space) out performs the

other predictors.

Unlike the current predictive animated mesh compression techniques where the delta

vectors are encoded in world coordinate frame, here they arecomputed in the local coor-

dinates and each component is encoded separately.

This approach exploits the coherence frame by frame and vertex by vertex, the next

102 Connectivity-Guided Compression of 3D dynamic Meshes

chapter will propose an new approach that exploits the coherence over all frames once

and represents the set of vertices by very few components andcoefficients.

.

CHAPTER 6

Motion based PCA Compression

This chapter aims at compressing animated object using principal component analysis.

The approach first segment a mesh into several segments or clusters using region growing

based algorithm and motion based clustering described in previous chapter. The goal

behind the segmentation is to gather the vertices which havesimilar motion. Each set

of vertices is then efficiently encoded using the PCA in the local coordinate frame. We

also introduce the rate distortion optimization for PCA coding. Our main objective is

to achieve an optimal tradeoff between the bitrate and the quality of the reconstructed

animations.

6.1 Introduction

In previous chapter we presented near-lossless compression based on predictive cod-

ing. The coding of the geometry is dictated by the connectivity. The coding is classified

with the local compression techniques which exploit the coherence frame by frame. This

chapter present a new technique based on PCA. This techniqueis lossy compression and

belongs to the global techniques that exploit the coherenceover all frame once.

The advantage of using PCA is that it captures the linear correlations present in the

datasets. The set of vertices can be represented by very few components and coefficients

depending on the user’s desired visual quality. The PCA is a good compressor for rigid

motion and provides a more compact representation for temporally-invariant meshes. In

many applications, however, animated meshes exhibit highly nonlinear behavior, which

104 Motion based PCA Compression

is globally difficult to capture using standard PCA. Locally, the neighboring vertices have

a strong tendency to behave and to move in a similar way. The nonlinear behavior can

therefore be described in a linear fashion by grouping the vertices of similar motion into

clusters or by segmenting the mesh into meaningful parts. Then PCA is performed in each

group. The process to construct this representation is called Local Principal Component

Analysis (LPCA).

On the other hand, introducing a local coordinate frame (LCF) in each cluster may

lead to extra clustering of the coordinates before performing the PCA. If the segmentation

or clustering process is efficient then it would be highly probable that these coordinates

change very slightly relative to the coordinate frame of their cluster. Of course, the number

of clusters/segments will also affect the compression. If the number of clusters is very

small, then a cluster might contain vertices that have different behaviors. To overcome

this problem one might possible improve on the present approach by automatizing the

selection of the number of clusters.

Figure6.1 demonstrates the idea of using local coordinate systems. Figure6.1 (a)

shows the path of six points of a dance animation in the world coordinate system. Note

the highly nonlinear behavior of the trajectories. Figure6.1 (b) shows the path of the

points using a local coordinate system. Note the relative small changes and the tendency

of the trajectory of individual points to cluster. In previous chapter, we used for each new

vertex one local coordinates frame constructed upon previously traversed frame. Here, we

construct one local coordinate frame for each group of vertices. Thus, if we use clustering

based segmentation, we will need the connectivity information only once at reconstruction

of the LCF for each segment or cluster.

In our approach, we perform a PCA on the local coordinate system rather than the

world coordinates. The advantage of combining PCA with theLCF is now obvious:

if the motion of a group of vertices is rigid in the world coordinates, the positions of

the vertices are slightly invariant relative to theirLCF. Therefore, performing a PCA in

these invariant groups of vertices leads to a more compact representation than the original

data, and a large number of PCA coefficients are close to zero.In order to achieve an

optimal tradeoff between the bitrate and the quality we haveintroduced the rate distortion

optimization for PCA based on an incremental computation ofthe convex hull [121]

6.2 Overview

For animated mesh compression, we present a new technique based on the local PCA.

The basic idea is to aggregate the vertices of similar trajectories using region growing

6.2 Overview 105

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 6.1 The position of six different vertices over time (illustrated with different colors) are
represented with global coordinates (left) and local coordinates system (right).

algorithm or a clustering approach, then transform the original positions of the vertices

into the local coordinate frame of their segment/cluster.

This automatically "transforms" the nonlinear behavior ofthe original vertices into

the clustering behavior which is very well compressible. The vertex positions will tend to

cluster around the same position over time (see Fig.6.2). Thus, the segments themselves

are almost invariant to any deformation. A PCA is then performed on each segment such

that the (local) vertex coordinates are transformed into another basis which allows for very

efficient compression. An error accumulation scheme ensures that the decompression

does not introduce severe artifacts.

Our clustering process (eventually the region growing approach), produces clusters

of different sizes. If one chooses a fixed number of basis vectors for all clusters, then

there may be too few eigenvectors to recover the clustered vertices at a desired accuracy

and eventually too many eigenvectors for other clusters which we callunderfittingand

overfitting, respectively. Moreover, the number of bits needed to encode the unnecessary

basis vectors inoverfittingcases may be better allocated for other clusters inunderfitting

cases. Therefore the selection of the best number of basis vectors to be extracted from

animation data is necessary to properly recover the original data of each cluster with a

certain accuracy. We introduce a rate distortion optimization that trades off between rate

and the total distortion. To our knowledge thecombination of local coordinates and PCA

with the optimization processhas never been performed before. We call our approach

Relative Local Principal Component Analysis (RLPCA) compression. We use the term

Relativeas the LPCA is performed in local coordinates.

./phd-Pics/pca/global.eps
./phd-Pics/pca/local.eps

106 Motion based PCA Compression

Figure 6.2 Illustration of the local coordinate frame

Encoder

Segmentation

LCFs

residuals

Quantization

Geometry data

Connectivity

Static
compression

 Stream

LCFs
reconstruction

Output:
,,, F21 MMM

~~~
��

Connectivity

 Stream 

PCA details + residuals 

LCS to WCS
Transformation

LCSs

reconstruction

Decoder

PCA1, PCA2,.., PCAN,

Input:
M ,,, �� F21 MM

WCS to LCS
Transformation

Figure 6.3 Compression and decompression pipeline.

As the connectivity of the animated meshes remains constantover time, we encode

the connectivity once.

6.3 Compression pipeline

In this section, we describe in detail the core of our compression algorithm for the

motion of vertices of animated triangle meshes. An overviewof compression and decom-

pression pipeline is illustrated in Figure6.3.

Given a sequence of triangle meshesMf , f = 1, .., F of constant connectivity withV

vertices andF frames (meshes), we first group the mesh vertices intoN segments, where

each segment containsVi, i = 1, .., N, vertices.

./phd-Pics/pca/cowLCS.eps
./phd-Pics/pca/LCS.eps
./Phd-Pics/pca/diagram.eps


6.3 Compression pipeline 107

6.3.1 Segmentation

Segmentation is an important step in our algorithm. Indeed,the compression per-

formance depends on the segmentation into correct group, meaning that the better the

vertices can be partitioned into almost rigid parts the better PCA based compression will

be.

Basically, two simple and fast segmentation algorithms described in chapter4 were

used:

• Region Growing: This approach assumes that all meshes have the same connectiv-

ity. The basic idea is to grow regions starting from several seed points. The regions

grow uniformly around the set of selected seed points by firsttraversing the closest

neighboring vertices over time until all vertices of the mesh are visited.

• Clustering: The basic idea of this algorithm is to transformthe original vertex co-

ordinates into severalLCFsdefined by seed triangles. OneLCF (one seed triangle)

is associated with each cluster. Then the clustering is obtained by assigning the

vertices to the cluster where they have minimal local coordinates variation across

the F frames. Minimal coordinate variation means that the vertex and the LCF have

almost similar motion. The clustering is also developed in adaptive way but the

process becomes more slower.

6.3.2 Transforming Vertex Positions into the Local Space

Expressing the vertex locations in a LCF is an near optimal way of exhibiting clus-

tering behavior. It makes the clusters quite invariant overtime to any rotation and/or

translation. This representation can be very compressiblewith the PCA. This is one of the

key features of this new algorithm.

After segmentation, the world coordinates of the vertices of each segment are trans-

formed into local coordinate frame of their cluster as described in chapter4. In the case of

the clustering approach, we transformed the vertex coordinates into LCFs to find out its

true corresponding cluster. To avoid a second transformation into LCFs during compres-

sion, we store the local coordinates once during the clustering for further compression.

6.3.3 Compression of Local Coordinate Frames

Once the mesh vertices are clustered, their coordinate systems need to be encoded

using PCA. In order to be able to transform back to the world coordinates during the

decoding step, we also have to encode the world coordinate ofthe points of seed triangles



108 Motion based PCA Compression

(used to construct the transformations). The affine transformation should then be correctly

computed (at decoding) without loss of information. We propose to encode the seed

triangle points separately with delta encoding.

Given the sequence of the seed triangle points(pi,f
1 ,pi,f

2 ,pi,f
3 ), we first encode their

world coordinates in the first frame. Then, the differences between each two adjacent

frames in the sequence are computed. To avoid error accumulation during animation,

these residuals are computed between the coordinates of thepointpi,f
j in the current frame

and their recovered coordinatesp̃
i,f−1
j in the previous frame:

δi,f
j = p

i,f
j − p̃

i,f−1
j , (j = 1, 2, 3)

wherei = 1, ..., N andf = 1, ..., F .

6.3.4 Principal Component Analysis

We adopt the PCA to compress the resulting local coordinate systems of each segment.

The objective of the PCA is to reduce the dimensionality of a dataset. It determines linear

combinations of the original datasets and represents them in an orthogonal basis.

For a sequence ofF frames of3V dimension each, PCA produces a reduced number

L ≪ F of principal components that represent the original datasets.

We now consider how a cluster evolves over the frames of the animation. LetGf
i be

the i-th cluster in thef -th frame,i = 1, ..., N andf = 1, ..., F . A single clusterGi thus

consists ofF clusters (one for each frame)Gi = {G1
i , G

2
i , ..., G

F
i } whereGf

i represents

the vector with the geometry of the clusteri in framef

Gf
i = (qf

i,4,q
f
i,5, ..,q

f
i,Vi

)t,

whose elements are the local coordinates of corresponding vertices (except the coordinate

of the seed triangle). All these vectorsG
f
i have the same length3(Vi − 3), and construct

a geometric matrixAi with 3Vi − 9 rows andF columns (Vi is the number of vertices of

the clusterCi).

Ai =
[

G1
i G

2
i ...G

F
i

]

A singular value decomposition onAi is

Ai = UiDiV
t
i

whereUi is a (3Vi − 9) × F column-orthogonal matrix that forms an orthogonal ba-

sis and contains the eigenvectors of theAiAi
t. Di is a diagonal matrix whose nonzero



6.3 Compression pipeline 109

elements represent the singular values and are sorted in decreasing order. ThusDi =

diag{λ1, λ2, ..., λF}. V is aF × F orthogonal matrix.

To reduce the datasets, we pick only the firstL eigenvectors (L is a user specified

number). So,U
′

i = {ui,l, l = 1, ..., L} contains the most important principal components

ui that correspond to the largest eigenvaluesλ1, ..., λL. Then each clusterGf
i is projected

into the new basisU
′

i to get a new matrix of coefficientsC
′

i of sizeL × F .

C
′

i = U
′t
i Ai

After performing the PCA for all N clustersCi, we getN new sets{U′

1,U
′

2, ...,U
′

N}
and coefficient matrices{C′

1,C
′

2, ...,C
′

N} with different sizes.

6.3.5 Quantization and Arithmetic Coder

For further compression, the floating-point values (32 or 64 bits) are often quantized

to a user specified number of bits per coordinate relative to the maximum extend of

the bounding box of the model. The quantized values are encoded with an arithmetic

coder [123].

In the case of an animation, the quantization is often performed according either to

the tight axis-aligned bounding box for each frame or to the largest bounding box for all

frames. Since we have to encode the basis vector values and the coefficients rather than

the vertex coordinates, we use two different encoding contexts. The first concerns the

matrices and the second the delta vectors. The basis matrixU
′

i and the coefficient matrix

C
′

i of each clusterCi are truncated using a fixed number of bitsqu andqc respectively

(typically qu = qc).

We first compute the minimum and the maximum values(umin,i, umax,i), (cmin,i, cmax,i)

of U
′

i andC
′

i respectively. Let

emax,ui
= umax,i − umin,i

emax,ci
= cmax,i − cmin,i

The integer values are straightforwardly derived according to

uiq(m, j) = ⌊ui(m, j)/umax,i − umin,i · 2qu + 1/2⌋
ciq(j, f) = ⌊ci(j, f)/cmax,i − cmin,i · 2qc + 1/2⌋



110 Motion based PCA Compression

where1 ≤ m ≤ 3Vi − 9 , 1 ≤ j ≤ L and1 ≤ f ≤ F .

The resulting signed integer values of the matrices are encoded with an adaptive arith-

metic coder and sent with the extreme numbers.

For delta vectors, the coordinates are encoded according tothe bounding box of each

frame. Using a fixed number of bitsq∆, the coordinates of the delta vectors are mapped

into integers as follows:

δi,f
xq

= ⌊δi,f
x /emax∆ · 2q∆ + 1/2⌋

δi,f
yq

= ⌊δi,f
y /emax∆ · 2q∆ + 1/2⌋

δi,f
zq

= ⌊δi,f
z /emax∆ · 2q∆ + 1/2⌋

for i = 1, 2, ...N andf = 1, 2, ...F

The resulting signed integer values are encoded separate from PCA details with an

adaptive arithmetic coder.

We assume that the quantization errors of PCA details are negligible up to 12 bits

quantization. Note that the total number of bits needed for storing delta vectors is very

small. It ranges between0.01 and1 bit per vertex per frame when the quantization ranges

between12 and16 bits depending on the number of eigenvectors, the level of quantization,

and the number of clusters.

6.4 Decompression

Figure6.3 illustrates the decoding process. After receiving the sequences of the PCA

details and the delta vectors (or residuals), we decode and undo quantization of delta

vectors, we reconstruct the points of the seed triangles of each cluster in each frame,

then reconstruct the LCFs. In the second stage, we undo the quantization of all basis

vector values and coefficients, we reconstruct the local coordinates of all vertices in each

cluster and transform them back to world coordinates. Finally, we collect all clusters to

reconstruct the sequence of meshes.

6.5 Rate-Distortion Optimization for PCA based Coding

Our clustering process (eventually the region growing approach), produces clusters

of different sizes. If one chooses a fixed number of basis vectors for all clusters, then

there may be too few eigenvectors to recover the clustered vertices at a desired accuracy

and eventually too many eigenvectors for other clusters which we callunderfittingand



6.5 Rate-Distortion Optimization for PCA based Coding 111

Slope 8

Distortion

Rate

=

Figure 6.4 Lagrangian optimization

overfitting, respectively). Moreover, the number of bits needed to encode the unnecessary

basis vectors inoverfittingcases may be better allocated for other clusters inunderfitting

cases. Therefore the selection of the best number of basis vectors to be extracted from

animation data is necessary to properly recover the original data of each cluster with a

certain accuracy. We introduce a rate distortion optimization that trades off between rate

and the total distortion.

6.5.1 Description of the Problem

In LPCA-based techniques often PCA is performed using a fixednumber of compo-

nents per cluster, neglecting the fact that whole mesh sequences are often not rigid and the

different parts can have different behavior (i.e., their motion is not similar). Thus, using a

fixed number of components per cluster may result in an insufficient number to represent

a given cluster at the desired accuracy while having too manyfor the representation of

other clusters.

To improve the PCA based compression and avoid this overfitting and underfitting,

we introduce the Rate-Distortion Optimization (RDO) whichis also known asbit allo-

cation. The objective is to find the best tradeoff between the bitrate and the distortion of

coordinates of the vertices.

./Phd-Pics/PCA_segmentation/lagrange.eps


112 Motion based PCA Compression

6.5.2 Problem Statement

Given N clustersGi, i = 1, ..., N that we have to encode separately, and a set of

eigenvectorsI = {l0, l1, ..., lL}. For each clusterGi, let (Rli
i , Dli

i , ) denote the rate-

distortion (RD) point for each numberli ∈ I, (typically li = 1, ...., 40 components).

The rateRli
i represents the number of bits required to encode the basis vector values and

the coefficients. The distortionDli
i is the root square error between the original and the

reconstructed coordinates of all vertices in the cluster. (Thus we can define for each cluster

a set of rate distortion pointsPi = {(Rli
i , Dli

i ) : li ∈ I}.

Let Rtarget be the given total bit rate for all clusters. Then the optimization problem is

to find the optimal number of componentsli for the clusteri, (i = 1, ..., N) that minimize

the overall distortion:

D =

N∑

i=1

Dli
i (6.1)

subject to the constraint
N∑

i=1

Rli
i ≤ Rtarget. (6.2)

This constrained optimization problem can be reformulatedinto an unconstrained

problem by using the Lagrangian multiplier approach:

min
N∑

i=1

Dli
i + λ ·

N∑

i=1

Rli
i , li ∈ I (6.3)

whereλ is Lagrange multiplier.

The problem of Lagrange multiplier is to find a value ofλo, that yields the least dis-

tortion under target rate constraints. The bisection search can be applied over all possible

values ofλ to find the suitable value. For a constantλ the minimization can also be done

for each cluster independently.

Geometrical Interpretation

Considering the set of RD pointsPi for the clusterGi. The lagrange optimization

can be interpreted with a series of parallel lines of constant slopeλ. The optimal solution

(R
l∗i
i , D

l∗i
i ) is obtained when the line is tangent to the lower convex hull of the set RD

pointsPi as illustrated in figure6.4.

Furthermore, alternatively, the optimal solution can be found by direct computation of

the lower convex hulls of all setPi, (i = 1, ..., N) 6.4.



6.6 Compression Parameters 113

6.5.3 Incremental Computation of the Rate-Distortion Optimization

In our compression algorithm, we introduce an R-D optimization which is based on

an incremental computation of the convex hull [121].

For simplicity, and since the number of bits increases with the size of the basis vectors,

we define the rateR as the number of basis vectors rather than the number of bits.Briefly,

we define the optimization algorithm in the following:

1. For each clusterCi we compute:

• The number of componentsli that corresponds to the smallest rate;

• The number of componentski that corresponds to the next rate-distortion point

on the lower convex hull;

• The slopeλi between the points(Rli
i , Dli

i ) and(Rki

i , Dki

i ).

2. We compute the total rateRt =
∑N

i=1 Rli
i

3. As long as (
∑N

i=1 Rli
i ≤ Rtarget) is verified, we:

• Select the clusterSn whoseλn is minimal;

• UpdateRt

• Modify the number of componentsli of the clusterCi by ki;

• Determine the number of componentski that corresponds to the next rate-

distortion point on the lower convex hull;

• Computeλn.

6.6 Compression Parameters

The compression parameters define the desired amount of compression. In our ap-

proach, there are three parameters that govern the compression ratio:

• The number of basis vectors/rate L: If this number is fixed for all clusters, then the

user defines it (depending on the desired accuracy). The larger this number is, the

better reconstruction will be (at the expense of less compression). If the RDO is

used, then we will need only to specify the amount of compression (rate) or the

maximum number of basis vectors that are to be used to approximate each cluster

as we do in our coding. The number of vectors in each cluster isthen optimally



114 Motion based PCA Compression

selected such that the total rate is below the given user-specified rate (or the total

number of vectors is below the given user-specified maximum number of vectors).

• The number of clustersN : If this number is very small, then the cluster may contain

vertices of different behavior and their local coordinateswill have a large variation

over time. However, it is difficult to find a linear space that efficiently represents

these coordinates using PCA.

• The reconstruction error: This error presents the deviation of the reconstructed po-

sitions from the original one. It is measured using L2-norm or the metric which we

call da [102, 62]. Moreover, the metric L2-norm controls the compression during

the RDO. This number should increase with a decrease in the number of clusters or

the number of eigenvectors.

6.7 Conclusion

We introduced a new compression technique for the animated meshes which is based

on LPCA. The mesh vertices are clustered using the motion in theLCF. Then, the world

coordinates of each cluster are transformed into local coordinates. This step enables the

algorithm to compress an animated mesh efficiently. It exploits the "local" behavior of the

local coordinates. Finally, an LPCA is performed in each cluster with the rate distortion

optimization. The experimental results are detailed in chapter6, section 8.6.

This approach is simple, outperforms the SplitCoder. It also achieves similar or bet-

ter results than other current existing compression techniques. We obtain a better rate

distortion performance than the standard PCA [3], LPC (Linear predictive Coding) and

TG [117]. This result is obvious since the animation coding based onstatic techniques

(TG) only exploit the spatial coherence and the linear prediction coding only uses the tem-

poral coherence. Furthermore, the standard PCA only approximates the global linearity

and is less effective for nonlinear animation. For the CPCA (based on local PCA) [102]

and AWC (based on wavelet) [39] algorithms, we achieve better or similar results. More

results are given in section8.6.

This method is computationally inexpensive compared to a global PCA for the full

mesh and its decompression process is very fast. It is applicable to meshes and point-

based models. It performs well for animations with a large number of vertices and well-

suited for progressive transmission. For very long sequences, we suspect that the motion

of a local coordinates also becomes complex and non-linear.Therefore, one can split the

sequences into small clips and perform RLPCA.



6.7 Conclusion 115

As seen before, the algorithm considers the entire sequenceof meshes and exploits

the coherence globally in term of linear space. The drawbackof this approach is that the

compression is computationally expensive.

In order, to exploit the coherence locally and achieve very low bitrate (unlike the Split-

Coder), we develop compression approach based on Predictive and Discrete Cosine Trans-

form coders (PDCT) and encode the mesh sequence frame by frame (see next chapter).

We benefit from the clustering and encode each cluster with few non-zero coefficients.



116 Motion based PCA Compression



CHAPTER 7

Predictive-DCT based Compression

In chapter5 we presented connectivity-guided predictive coding belonging to the ver-

tex based coding approach. This chapter introduces a new approach based on predictive

and spectral techniques. The algorithm is independent of the connectivity information and

belongs to the cluster based prediction approach. We followthe same strategy presented

in previous chapters, the animated mesh is segmented into almost rigid clusters, then the

predictive and DCT coding is performed in each cluster, frame per frame, instead of PCA.

7.1 Introduction

Two algorithms have been previously proposed for animated meshes. The first algo-

rithm exploits the coherence locally frame by frame. It is vertex based predictive coding

where one vertex is processed at a time in almost lossless way. These approaches are sim-

ple, not expensive, near-lossless and well-suited for real-time applications. The drawback

of these methods is that they do not support progressive transmission. The second algo-

rithm is cluster based coding, where a set of vertices are processed at a time and encoded

in a lossy way using PCA. The algorithm considers the entire sequence of sub-meshes

and exploits the coherence globally. The global linear behavior of the vertices through all

frames is approximated in terms of linear space. The animation sequence can be reduced

to a few principal components and coefficients. The efficiency of this technique increases

when the datasets are segmented or clustered, so that each group is individually encoded

by PCA. This type of method supports progressive transmission. The drawback of this



118 Predictive-DCT based Compression

approach is that it is computationally expensive

This chapter presents an alternative compression algorithm based on predictive and

DCT transform in the local coordinate systems. In contrast to vertex based predictive

coding, the algorithm is cluster based predictive coding.

The method is inspired from video coding. We first split the animated mesh into

several clusters (similar to macroblocks in video coding) using the simple and efficient

clustering process developed previously. Then, we performa prediction in the local co-

ordinate systems. Finally, we transform the resulting delta vectors (between the predicted

and the original vertex locations) of each cluster in each frame into the frequency domain

using Discrete Cosine Transform.

7.2 Overview

In such sequence of meshes, neighboring vertices have a strong tendency to behave

similarly and the degree of dependencies between their locations in two successive frames

is very large which can be efficiently exploited using a combination ofPredictiveandDCT

coders (PDCT).

The local coordinate system has an important property that exhibits a large clustering

over time and the locations of the vertex tend to form a cluster around one position (over

all frames). Regardless what kind of deformation the vertices undergo, i.e. rotation, or

translation or scaling or combination of all three relations, the vertices will generally keep

their positions, at least between two successive frames. This property was used in different

ways and in different contexts in previous chapters: in segmentation and in PCA based

compression.

The proposed technique in this chapter also uses this property to perform a predic-

tive coder followed by DCT algorithm which transforms the resulting residuals from the

spatial domain to the frequency domain.

The vertices of each cluster have small variation over a timerelative to the LCF. There-

fore, the location of each new vertex is well-predicted fromits location in the previous

frame relative to the LCF of its cluster. The difference between the original and the

predicted local coordinates are then transformed into frequency domain using DCT. The

resulting DCT coefficients are quantized and compressed with entropy coding. The orig-

inal sequence of meshes can be reconstructed from only a few non-zero DCT coefficients

without significant loss in visual quality.

Basically, the algorithm consists of four steps:

1. Clustering process:As described in the previous chapter, the vertices are clustered



7.2 Overview 119

into a given number of clusters depending on their motion in the LCFs. Indeed,

the vertex should belong to the cluster where its deviation in the LCF through all

frames is very small compared to the other LCFs. Thereby, thevertices displace-

ments between two successive frames will be close to zero andthe efficiency of

the prediction through time increases. Moreover, the clustering will preserve the

global shape when DCT coding is performed (spatially) in each cluster. Note that

the clustering is used in this chapter in the concept of prediction.

In PCA based algorithm the goal of segmentation was to cluster the vertices into

near rigid bodies. Relative to LCF these regions are near invariant. Thus, perform-

ing PCA in the LCF yields large number of PCA coefficients thatare close to zero.

Thereby, low bitrate is archived.

2. Lossless coding of LCFs:The locations of the vertices that contribute to the con-

struction of the LCF of each cluster should be losslessly encoded. In order to ensure

that the decoder could use the same LCF, we decode and reconstruct the LCF to be

used during the compression of the remaining vertices.

3. Predictive coding: This step allows the reduction of space-time redundancy. Itis

performed on the local coordinates rather than the world coordinates, which makes

the coding more efficient. It produces very small predictionerrors. The power-

fulness of the predictor strongly relies on the clustering process. If the vertex is

associated with a LCF whose motion is not similar to its motion then the local

coordinates of the vertex will have a large variation over all frames and the pre-

diction will produce large delta vectors. In chapter5, we presented an alternative

connectivity-guided predictive algorithm, this algorithm processes one vertex at a

time. For each vertex one LCF is defined upon a previously traversed triangle and

its coordinates are split into two components: tangential and normal components.

In contrast, in this chapter we proposed predictive coding that requires one LCF per

cluster.

4. Transform-based coding or DCT: For further compression, the coordinates of

delta vectors are represented as 1D signals then transformed into frequency domain

using DCT, producing uncorrelated coefficients. These coefficients are more com-

pressible with the entropy coding than delta vectors. Moreover, many coefficients

of low values can be zeroed without significant loss in visualquality.

To avoid error accumulation that may occur, we simulate the decoding process during

encoding to make sure that during the encoding, we use exactly the same information



120 Predictive-DCT based Compression

tM¢
~

( )tC
'
i

( )tid
~

-
+

( )tid

+

+
Arithmetic
Coder

Inv.

Quant.

Quant.DCT

Differential Coding of  LCFs

Reconstr. Of  LCFs

Inv.
DCT

( )tC
'

i

~

1tM -¢
~

Clusters
collect.

Memory

Transf. To
World Space

ttM
~

Output

Transf. To
Local Space

1tM -¢
~

F21 M...,MM ,

Input Connectivity
Coding

Figure 7.1 Overview of the compression pipeline

available to the decoding algorithm. After the compressionof each frame, we should

substitute the original vertex locations by the decoded locations.

7.3 Compression Pipeline

Given a sequence of triangle meshesMf , f = 1, ..., F with V vertices andF frames,

we encode the first frame separately from the rest of the frames in the sequence using

static mesh compression presented in chapter3.

An overview of the whole compression pipeline is illustrated in Figure7.1.

7.3.1 Local Coordinate Frames

We follow the same strategy described in the chapter4 section4.5.2 to select seed

triangles and to construct the local coordinate frames.

d:/LocalProject/Papers/paperAccepted/JVRB_Final/Pics/coding.eps


7.3 Compression Pipeline 121

Figure 7.2 Illustration of the local coordinate frames assigned to theclusters

7.3.1.1 Seed Triangles Selection

The first step in our algorithm is to findN seed triangles upon which we construct

the LCFs as described in section4.4.2in chapter4, using the far distance approach [126].

Then, we associate with each seed one of its incident triangles and call this triangle the

seed triangle. We denote the three vertices of seed triangleof k-th cluster in thef -th frame

as(pf
k,1,p

f
k,2,p

f
k,3)

7.3.1.2 Local Coordinate Frame Construction

Each cluster is initialized with the three vertices of the seed triangle. Each clusterCk

has its own LCF defined on the seed triangle(p1,p2,p3) as illustrated in Figure7.2(and

as described in the previous chapters).

The transformation of a pointp to its local coordinate systemq can be accomplished

by an affine transformation with a translationo and a linear transformationT (T is an

orthonormal matrix):

q = T(p− o)

For each framef (1 ≤ f ≤ F ) and for each clusterCf
k (1 ≤ k ≤ N), we have{Tf

k , o
f
k}

computed from the points of the seed triangle(pf
k,1,p

f
k,2,p

f
k,3).

7.3.2 Motion in LCF based Clustering

The clustering process starts with several seed triangles upon which the LCFs are

constructed. Then, the clustering is obtained by assigningthe vertices to the seed triangle

where they have minimal local coordinate deviation across the F frames according to

θk,i =

F∑

f=1

‖qf
k,i − q

f−1
k,i ‖2

D:/LocalProject/Papers/paperAccepted/JVRB_Final/Pics/cowLCS.eps


122 Predictive-DCT based Compression

qk,i are the local coordinates of the vertexi with clusterk and θk,i represents its total

motion in the LCF associated with the clusterk.

The vertex should then belong to the clusterk for which the deviation is very small,

notekmin:

kmin := argmin1≤k≤N{θk,i}

7.3.3 Differential Coding of LCFs

Generally, our approach first transforms the world coordinates of each vertex into local

coordinate frame of its cluster. Then, it performs the compression. At reconstruction,

the local coordinates are decoded then transformed back to world coordinates. A lossy

compression of the vertices of the seed triangle may damage the coordinate frames at

the decoding step and as a result, the transformed local coordinates will be damaged.

Therefore, the LCF of each cluster should be encodedlosslessly.

We assume that the LCFs of the first frame is already encoded. For each frame and

for each new LCF, we encode the locations of their three vertices with the differential

encoding. We subtract their coordinates in previously encoded frame from its current

coordinates. We quantize the prediction differences, we apply the arithmetic coder to the

resulting integers and we update the current locations withthe decoded locations.

7.3.4 Spatial-Temporal Predictive Coding

Once the segmentation process is finished, and all LCFs are decoded (during the cod-

ing), the prediction assumes that the current point does notchange relative to the LCF of

its cluster. So, for each new pointp
f
k,i in the clusterCf

k of the framef , one transforms

its world coordinate into local coordinatesqf
k,i. Then, one predicts its location from the

decoded local coordinates of its location in previous framef − 1 by:

pred = q̃
f−1
k,i

The delta vectors are computed:

δf
k,i = q

f
k,i − pred

Unlike the current predictive animated mesh compression techniques [56, 45, 63]

where the delta vectors are encoded in world coordinate frame, here they are computed in

the local coordinates.



7.3 Compression Pipeline 123

7.3.5 DCT Coding

After prediction, we represent the x,y,z coordinates of thedelta vectors of each cluster

Cf
k as 1D separate signals of lengthVk − 3 (Vk − 3 is the number of vertices in the cluster

Ck, minus the three vertices of seed triangle) and encode them with DCT coding.

For each cluster we have three signals:

X
f
k = {xf

k,4, x
f
k,5, ..., x

f
k,Vk

}
Y

f
k = {yf

k,4, y
f
k,5, ..., y

f
k,Vk

}
Z

f
k = {zf

k,4, z
f
k,5, ..., z

f
k,Vk

}

wherek ∈ 1, ..., N andf ∈ 1, ..., F .

For the whole sequences, the number of signals we obtain isN ×3×F . We transform

each signal vector into the frequency domain using 1D DCT to obtain a more compact

representation. Simple 1D DCT is defined as:

X f
k,l = α(l)

Vk∑

i=4

xf
k,icos(

π(l − 4)(2(i − 4) + 1)

2(Vk − 3)
)

for l = 4, ..., Vk, andα(l) is defined as:

α(l) =







1√
Vk−3

for l = 4
√

2
Vk−3

for l 6= 4

The inverse DCT is similarly defined as:

xf
k,i =

Vk∑

l=4

α(l)X f
k,lcos(

π(l − 4)(2(i− 4) + 1)

2(Vk − 3)
)

wherei = 4, ..., Vk.

After DCT transform, the majority of signal energy concentrates on the low frequen-

cies and little on the high frequencies. Hence the high frequencies (insignificant coeffi-

cients) can be zeroed yielding a significant reduction in theoverall entropy and the signal

can then be represented by few high value coefficients without significant distortion. Note

that the high frequencies close to zero can also be set to zeroautomatically using quanti-

zation module only.



124 Predictive-DCT based Compression

In our algorithm, we arrange the DCT coefficients from high tolow values to easily

set the coefficients to zero from bottom to a certain number ofcoefficients depending on

the compression rate and the desired quality.

7.3.6 Quantization and Arithmetic Coder

The low frequency coefficient (high values) correspond to the coarse details of the

cluster while the high frequency coefficients (low values) correspond to the fine details.

On the other hand the human eye can perceive the coarse details much more accurately

than the fine details. This means that if we use a coarse quantization or set the low value

coefficients to zero, the cluster will still retain an acceptable visual quality and we will

obtain better compression ratios.

In this version of the algorithm, we uniformly quantize the coefficients to a user spec-

ified number of bits per coefficient. Typically, we use a number between 8 and 12 bits,

depending on how many DCT coefficients are zeroed. The more coefficients that are ze-

roed, the more coarser the quantization is, and that better the compression will be at the

expense of visual appearance. The finer details can be preserved when only a finer quan-

tization is used and few coefficients are thrown away. For example, if 50% of coefficients

have zero values then we use10 bits quantization. If90% we use8 bits only.

One might possibly improve on the present quantization approach by introducing dif-

ferent levels of quantization in each cluster. The high frequencies can be coarsely quan-

tized while the low frequencies can be finely quantized.

Note that, the delta vectors of the first frame are encoded using 12 bits quantization

while the delta vectors of the LCFs in the whole sequence are quantized to 16 bits.

For further compression the resulting integer values are well encoded with an arith-

metic coder [123].

7.3.7 Reconstruction

To reconstruct the original data cluster, we simply de-quantize the coefficients and per-

form the inverse DCT to find out the delta vectors and add theselatter to the predicted lo-

cation from the perviously decoded frame to recover the original local coordinates. Then,

we transform them to world coordinates.



7.4 Conclusion 125

7.4 Conclusion

This chapter introduced a simple and efficient compression technique for dynamic 3D

meshes based on predictive and DCT coding. First, the algorithm clusters the vertices into

a given number of clusters depending on their motion in theirLCF. Second, the location

of each new vertex in the current frame, is predicted from itslocation in the previous

frame. The effectiveness of prediction coding depends strongly on the clustering process.

Indeed, if the vertices are well-clustered then the motion relative to the LCF between two

successive frames tends to be zero. Third, the delta vectorsare further encoded with DCT

transform to reduce the code length since the entropy in frequency domain is smaller than

the entropy coding of delta vectors. The resulting DCT coefficients are quantized and

encoded with an arithmetic coder.

The experimental results are detailed in chapter7, section 8.7. This algorithm is

lossy techniques, computationally expensive compared with SplitCoder, requiring more

computation steps for DCT and inverse DCT but it allows low bit rate. The distortion

introduced by PDCT is almost less than the distortion produced by SplitCoder. At similar

bitrate (see section8.8), PDCT yields better reconstruction due to DCT based codingthat

may reduces the blocky artifact at low bitrate. Indeed, after DCT transform, the majority

of signal energy concentrates on the low frequencies and little on the high frequencies.

Hence, the high frequencies can be zeroed yielding a significant reduction in the overall

entropy. The signal can then be represented by few high valuecoefficients without sig-

nificant distortion. The gain of PDCT method over SplitCoderis up to73%. Of course,

the gain varies with compression parameters and animation sequences. Experimental re-

sults also show that our algorithm is competitive when compared to the state-of-the-art

techniques. It performs better than the standard PCA [3], LPC, KG [62] and TG [117]

and comes close to CPCA [102] and wavelet AWC [39] algorithms. PDCT is applica-

ble to meshes and point-based models regardless of how the animation is generated. The

drawback of the proposed approach is that it does not supportprogressive transmission.



126 Predictive-DCT based Compression



CHAPTER 8

Evaluation and Comparison

In previous chapters, we have presented our new approaches,and we have detailed the

theory and the design of each algorithm. This chapter presents the experimental results.

We discuss and evaluate different parameters that affect compression performance, we

compare the proposed techniques with other methods and we also compare between our

approaches.

Note that the experimental results of segmentation methodsare given in chapter4.

This chapter is restricted to the results of the compressionapproaches only.

8.1 Implementations

We have implemented our algorithms in c++ programming language and Matlab. We

also used an object oriented framework called DaViS (Data Visualization System), a very

powerful tool for evaluating new algorithms and visualization techniques. The imple-

mentation runs on a standard PC with Pentium 4 with 2.53 GHz, Nvidia Geforce 4 MX

420, 750 MB of RAM (it is used for timing results of compression algorithms) and AMD

Athlon(TM) XP 3000+ 2.10 GHz, 1.00GB of RAM (it used for timing results of segmen-

tation algorithms).



128 Evaluation and Comparison

Models vertices Triangles Frames
chicken 3030 5664 400
dance 7061 14118 201
dolphin 6179 12278 101
cowheavy 2904 5804 204
snake 9179 18354 134

Table 8.1 Characteristic of animation sequences used for analysis.

8.2 Input Datasets

To evaluate our approaches, we used different static and dynamic triangular meshes,

used by the majority of the current existing approaches. Theproposed approaches are

independent of how the input datasets (particulary the animation) are generated. Indeed,

we consider different animations generated in different ways.

Figure8.1and Figure8.2show the static and dynamic models, respectively, used for

the evaluation. Their characteristics are reported in tables8.1and8.4respectively.

All tested 3D models have different shape and smoothness, aswell as movements of

different degrees of complexity in the animated case. The chicken character is distributed

solely for the purpose of comparison of geometry compression techniques. The Dance

animation has been created by skinning a skeleton with motion capture data. Its movement

is quite smooth and its mesh is quite regular. The Cow animation consists of extreme

deformations and the mesh is very irregular. The Dolphin animation is generated with

sinusoidal movements and the snake animation of large body deformation.

8.3 Measurement

To show the efficiency of our schemes, we measured the number of bits per vertex for

static meshes and number of bits per vertex per frame (bpvf) for animated meshes. To

measure the distortion in the reconstructed animation withregard to the original anima-

tion, we used a metricdasimilar to [102, 62]. The error is defined as follows:

da = 100
‖M− M̂‖

‖M− E(M)‖
whereM is the geometric matrix (3V × F ) containing the original geometry sequence.

M̂ is the reconstructed geometry sequence.E(M) is an average matrix whose columns

contain the average vertex positions of all meshes over time.

We also computed the distortion per frame using theL2norm of all reconstructed ver-

tex positions relative to the original positions of each frame.



8.3 Measurement 129

Figure 8.1 The static models used for analysis: head, fandisk, random,cow, horse, dino and
feline. These models are provided us by Pierre Alliez and LeeHaeyoung.

./phd-Pics/StaticMesh/head.eps
./phd-Pics/StaticMesh/fandisk.eps
./phd-Pics/StaticMesh/random.eps
./phd-Pics/StaticMesh/cow.eps
./phd-Pics/StaticMesh/Horse.eps
./phd-Pics/StaticMesh/dino.eps
./phd-Pics/StaticMesh/feline.eps


130 Evaluation and Comparison

Figure 8.2 The animations used for analysis. The dance animation was created by the MIT
CSAIL Graphics Lab. The chicken character is property of Microsoft Inc. and was created by
Andrew Glassner, Tom McClure, Scott Benza and Mark Van Langeveld. The dolphin animation is
given us by Zachi Karni. The cow and snake animations can be found in [1].

./phd-Pics/Models/dance.eps
./phd-Pics/Models/cow.eps
./phd-Pics/Models/chicken.eps
./phd-Pics/Models/snake.eps
./phd-Pics/Models/dolphin.eps


8.4 Higher Order Prediction for Static Geometry Coding 131

8.4 Higher Order Prediction for Static Geometry Coding

In this approach, we have developed a higher order prediction scheme for geometry

compression. Instead of encoding the coordinates of the vertex, we encode its tangential

components and its normal component as bending angle. The tangential components are

encoded with parallelogram prediction. For the normal encoding, we first fit a polynomial

surface to the previously encoded vertices in the vicinity of the current gate edge. Then,

we intersect the tangential circle given by the tangential components, which are encoded

in advance, with the polynomial surface yielding the prediction for the bending angle. We

also fit a sphere to a small number of vertices as a fast compromise between polynomial

surface fitting and simple angle prediction.

In order to see the gain of the higher order prediction schemebased on polynomial

graph function fitting (explicit function), we measured theconsumed bits per vertex sep-

arately for the tangential and normal components. Table8.2 shows the results, when the

parallelogram prediction is used for tangential prediction, and table8.3the results for the

multi-way prediction.

In both tables the second columns give the number of bits consumed for the tangential

components. The third columns contain the cost for the bending angle, when predicted

as proposed by Touma and Gotsman [117]. In the fourth columns the result of the higher

order prediction scheme can be seen and in the last columns weentered the gain in the

angular component in percent. Both tables show, that there is an average gain of 20% in

the coding of the bending angle independent of the tangential prediction strategy.

We summarize the experimental results in table8.4, where we compare the total cod-

ing cost for the used models with the official implementationof the approach of Touma

and Gotsman. The third column shows the cost for the connectivity in bits per vertex con-

sumed by Touma and Gotsman’s method. The fourth and fifth columns compare the total

geometry cost of Touma and Gotsman’s approach to ours. In thelast column we finally

tabulate the gain of the total cost in percent – geometry and connectivity.

On the first sight, the result for the cow in table8.4 is surprising as there is a gain

in tables8.2 and8.3 for our implementation of the Touma-Gotsman angle predictor. It

turned out that no angle prediction yielded an over all compression result of20.2 bits

per vertex. Thus we suspect that also the official implementation of the Touma-Gotsman

coder turns off angle prediction, when there is no gain.

Figure8.5also shows the total coding cost when we fit polynomial graph (HOPE) and

implicit (HOPI) function and sphere (HOPS) as well as the total geometry cost of Touma

and Gotsman’s approach. In the last three columns we tabulate the gain of the total cost

in percent. On can see that the polynomial graph performed better on a subset of the used



132 Evaluation and Comparison

Models x, y αTG αHO gain(α)
horse 11.41 4.16 3.61 13.22
random 12.32 3.12 1.85 40.70
sphere 4.25 1.97 0.85 56.85
head 9.92 4.10 3.19 22.20
dino 12.53 5.65 5.00 11.50
fandisk 9.72 4.24 2.68 36.80
feline 10.68 4.04 3.71 8.17
cow 14.90 7.52 7.08 5.85
Average 10.70 4.35 3.50 24.41

Table 8.2 Geometry coding results for the parallelogram prediction:cost for tangential com-
ponentsx andy in bits per vertex, cost for normal component with bending angle prediction ac-
cording to Touma and Gotsman (subscript TG) and according tohigher order prediction (subscript
HO) and the gain of our method in percent.

Models x, y αTG αHO gain(α)
horse 10.64 4.16 3.61 13.07
random 11.01 3.13 1.84 41.07
sphere 3.39 1.77 0.83 52.64
head 8.91 4.08 3.19 21.59
dino 12.01 5.65 4.99 11.53
fandisk 10.14 4.23 2.71 35.71
feline 9.98 4.07 3.76 7.59
cow 14.47 7.54 7.05 6.44
Average 10.07 4.32 3.50 23.71

Table 8.3 Geometry coding results for the multi-way prediction with the same columns as ta-
ble8.2.

Models vrts Conn. Geom. ours gain
horse 19851 2.34 15.16 14.26 5.94
random 4338 0.41 15.64 12.85 17.80
sphere 10242 0.02 6.95 4.23 39.13
head 11703 0.45 12.64 12.11 4.21
dino 14070 2.39 17.40 17.01 2.24
fandisk 6475 1.08 13.82 12.86 6.93
feline 49864 2.38 14.17 13,74 3.03
cow 2904 1.88 20.38 21.52 -5.65
Average 1.37 14.52 13.57 9.20

Table 8.4 Models and final coding results : number of vertices, connectivity and geometry
coding cost in bits per vertex for Touma and Gotsman’s method, geometry cost for our method,
total gain in percent, using 12 bits quantization, a weighting exponent of 1.3 and a maximum
number of 18 gathered fit vertex.



8.4 Higher Order Prediction for Static Geometry Coding 133

models than the other two prediction schemes. And non of these two methods proofed to

be superior on most of the cases.

In order to find out the best maximum number of vertices to be gathered, the weighting

exponent and the threshold angle cosine, we plotted the number of bits consumed by the

normal component for different values of these parameters for cow model. The resulting

plots are illustrated in figures8.4, 8.5and8.3. On can see that with higher order prediction

based explicit function fitting the gain becomes important with the growing of the number

of vertices to be gathered to fit a surface while with implicitfunction, the gain is nearly

constant and both methods are superior than TG’s method. HOPE and HOPI show a

minimal coding cost for more than22 and8 gathered vertices, a weighting exponent of

approximately1.37 and2.68, and angle cosine 0.67 and 0.9, respectively.

We also plotted the number of bits per vertex consumed by the normal component for

different weighting exponents over the number of gathered fit vertices where the bits per

vertex were averaged over the collection of sample models illustrated in8.1. Figure8.6

shows a minimal coding cost for eighteen gathered vertices and a weighting exponent of

approximately1.3. Note that these values were used for the measurements in8.3 8.4 8.2

It is quite obvious that the compression and decompression speeds with high-order

prediction are significantly slower than with the simple prediction rule of Touma and

Gotsman. Most of the time is spent for the gathering of the fit vertices and the computation

of matrixF via equation3.2. If a maximum of eighteen vertices are gathered, 72% if the

coding time is consumed for gathering and 22% for the eigenvalue decomposition ofF.

For the simple bending angle prediction only 5% of the higherorder coding time are

consumed. If we only gather 10 vertices as the second minimumin figure 8.6 suggests

gathering is 58%, eigenvalue decomposition is 33% and simple coding is 9% of higher

order coding time, resulting in an eleven times slower coding algorithm. In sphere fitting

we fit sphere to a small number of vertices, i.e. four points. Thus the speed is much lower

than the surface fitting.



134 Evaluation and Comparison

Model: Cow

6.8

7

7.2

7.4

7.6

7.8

8

0.5 0.7 0.98 1.37 1.92 2.68 3.76 5.27 7.37 10.3 14.5

weighthing exponent

N
u

m
b

e
r

o
f

b
it

s
p

e
r

v
e
rt

x
e
(a

lp
h

a
)

explicit

TG

Implicit

Max nbr. of vertices : 18
cosbmax = 0.6

Figure 8.3 Plot of bits per vertex consumed for the normal component with different weighting
exponents for a given angle cosine and maximum number of gathered.

Model: Cow

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

6 8 10 12 14 16 18 20 22 24 26 28

Maximum number of vertices to be gathered

N
u

m
b

e
r

o
f

b
it

s
p

e
r

v
e
rt

e
x
(a

lp
h

a
)

explict

implicit

TG

Weighting exponent : 1.37

cosbmax = 0.6

Figure 8.4 Plot of bits per vertex consumed for the normal component with different number of
gathered fit vertices for a given weighting exponent and threshold angle cosine. The straight red
line illustrates the performance of the angle prediction via Touma and Gotsman.

./phd-Pics/StaticMesh/weightingExponent.eps
./phd-Pics/StaticMesh/numbervertices.eps


8.4 Higher Order Prediction for Static Geometry Coding 135

Model: Cow

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

7.4

7.5

7.6

0.1 0.2 0.3 o.4 0.5 0.6 0.7 0.8 0.9 1

Cosine gathering

N
u

m
b

e
r

o
f

b
it
s

p
e

r
v

e
rt

e
x

(a
lp

h
a

)

implicit

explicit

TG

Max nbr. of vertices : 18

weighting : 1.37

Figure 8.5 Plot of bits per vertex consumed for the normal component with different angle cosine
values for a given weighting exponent and maximum number of gathered.

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

6 8 10 12 14 16 18 20 22

Maximum number of gathered vertices

N
u

m
b

e
r

o
f

b
it

s
p

e
r

v
e
rt

e
x

(n
o

rm
a
l

c
o

m
p

o
n

e
n

t)

0,5

0,7

0,98

1,372

1,92

2,68

3,76

5,27

7,37

10,33

14,46

TG

weighting
exponent

Figure 8.6 Plot of bits per vertex consumed for the normal component with different number
of gathered fit vertices and different weighting exponents.The straight red line illustrates the
performance of the angle prediction via Touma and Gotsman.

./phd-Pics/StaticMesh/cosingathering.eps
./phd-Pics/StaticMesh/Graph.eps


136 Evaluation and Comparison

Models Geom_TG HOPE HOPI HOPS Gain_E Gain_I Gain_S
horse 15.16 14.26 15.00 15.00 5.93 1.00 1.00
random 15.64 12.85 16.00 15.58 17.83 -2.3 0.38
sphere 6.95 4.23 5.60 5.59 39.13 19.42 19.56
head 12.64 12.11 13.64 13.57 4.19 -7.91 -7.35
dino 17.4 17.01 17.70 17.70 2.24 -1.72 -1.72
fandisk 13.82 12.86 12.5 12.91 6.94 9.55 6.58
cow 20.38 21.5 22.1 21.93 -5.49 -8.43 -7.60
Cow 20.38 21.52 22.10 21.93 -5.49 -8.43 -7.60
Average 14.57 13.54 14.64 14.61 10.11 1.38 1.56

Table 8.5 Coding results. Geometry coding cost in bits per vertex for Touma and Gotsman’
method, and our methods based on graphf(x, y), polynomial implicit function and sphere fitting,
their total gain in percent using12 bits quantization.

8.5 Near-lossless Predictive Coding for Dynamic Meshes

This approach, which we called SplitCoder, introduces single rate near lossless com-

pression for animated meshes of fixed connectivity using a predictive technique. The al-

gorithm traverses the triangular mesh of each frame in a region growing order. Every time

a new vertex is encountered during the traversal, we split its position into its tangential

and normal components. Then, we encode each component separately using prediction

and quantization coding.

To find out the best predictive coding for the tangential and normal component, we

implemented different predictors for both components.

8.5.1 Evaluation of Different Predictors

In order to demonstrate the efficiency of each predictor in terms of compression per-

formance for each component, we measured the consumed bits per vertex separately for

the tangential and normal components.

8.5.1.1 Tangential components

Space-only predictor

We implemented a space-only predictor to encode the parametric information of each

frame separately. The coherence is exploited over the direct neighbors only, neglecting

the temporal coherence. Two mode of prediction are evaluated:

• In parallelogram prediction mode (space(PP)), we use the formula of Touma and



8.5 Near-lossless Predictive Coding for Dynamic Meshes 137

Gotsman but we use the decoded vertex locations in order to avoid error accumula-

tion.

predparal = pf
v−1 + pf

v−2 − pf
v−3

• In multi-way prediction mode (space(Multi)), when a new vertex is encountered

there can be more than one possible reference triangle as illustrated in Figure 2.

The idea is to use all possible reference triangles for parallelogram predictions and

average the resulting predicted locations in world coordinates.

predmulti =
∑

i

predparal,i

Then we transform the predicted location to the local coordinate system of the actually

selected gate edge, to then carry out the predicted tangential componentsp′
tan

.

[p′tan,v, α] = transfToLocal(predparal/multi)

predicttan(v, f) = p′tan

Eventually, in multi-way mode, we use all possible reference triangles for parallelo-

gram predictions, then we average the resulting predicted locations in the world coordi-

nates and transform its coordinates into local coordinate frame to find out the tangential

components.

Time only Duplicata Predictor

The Duplicata predictor is a time-only predictor in the model space. Since we use

the local coordinate frame constructed upon three direct neighbors in the current frame

(spatial domain) and the locations in the previous frame (temporal domain), it is therefore

a space-time predictor in the world space.

As described before, the tangential componentsx andy are predicted from their re-

covered tangential components in the previously decoded frame.

predicttan(v, f) = p̃f−1
tan,v

This predictor predict perfectly the parametric information and the prediction errors

are close to zero.



138 Evaluation and Comparison

Space-time predictor

The space-time predictor is an average of the time predictorand space predictor de-

fined by the parallelogram (space(PP)_time) or the multiway(Multi_aver) predictor.

We computed the average of the time predictor (time_only) and the space predictor

defined by the parallelogram (space(PP)_time) or the multiway (space(Multi)_time) pre-

dictor:

predicttan(v, f) =
1

2
(p̃f−1

tan,v + predicttan,space(v, f))

wherepredicttan,space(v, f) is the predicted tangential components from the neighbors

in the current frame (space domain) andp̃f−1
tan is the temporal predicted components (time

domain), the reconstructed tangential components in the previous frame.

Evaluation

The coding of tangential components using the described predictors is evaluated inde-

pendently of the coding of the normal components.

Figure8.7 (a) shows the rate distortion curves of the tangential components, for the

cow animation, using temporal prediction (time_only), theaverage space-time predic-

tions using parallelogram (space(PP)_time) and multiway (space(Multi)_time) prediction.

Time_only shows a significant improvement in the compression ratio independent of the

angle prediction, it saves about26% to41% bits over the space(PP)_time and space(Multi)

_time, and about%31 to 52% over spatial predictors (space(PP), space(Multi)), at similar

distortion levels (da) and using 8 to 15 bits quantization. Recall that here the temporal

prediction is relative to a local space and it is a space-timepredictor in the world space.

Similar, for the dance animation8.8 (a), time_only saves up to46% bits over the

space(PP)_time and space(Multi) _time and up to59% over spatial predictors (space(PP),

space(Multi)) at similar reconstruction error.

8.5.1.2 Normal component

The normal component is predicted in a cylindrical coordinate system around the gate

as the bending angle between the reference triangle and the newly encoded triangle. Sim-

ilar to the tangential component, we tested different predictors for the bending angle:



8.5 Near-lossless Predictive Coding for Dynamic Meshes 139

Space-only Predictor

The space-only predictor approximates the bending angle from the other available

bending angles of the reference triangle:

predictα(v, f) = 180 − (αl
f + αr

f)/2

Time Angle Duplicata Predictor

The bending angle is predicted from the recovered bending angle in the previous

frame:

predictα(v, f) = α̃f−1
v

The curvature or the angle is almost preserved between two successive as seen chap-

ter 5. Therefore, the predictor replicates exactly the curvature at the current edge gate

from the curvature in the previous frame.

Spatial-temporal prediction

The predicted bending angle is obtained by averaging the predicted angles computed

above:

predictα(v, f) = (α′(f − 1) + α′(f))/2

whereα′(f − 1) is the predicted angle using time prediction (time domain) andα′(f)

is the predicted angle using the TG method (space domain).

Evaluation

Figure 8.7 (b) shows the rate distortion of cow and dance animations respectively,

using different predictors. Temporal prediction (in LCF) yielded a better compression

ratio, independent of the tangential prediction strategy.The compression gain over space-

time prediction (in LCF) based coding is up to52% at the same level of distortions and

using 8 to 15 bits quantization. Similar for the dance animation 8.8 (b), the temporal

predictor saves up to65% at similar distortionda.

The significant improvement means that the approximation oflocal coordinates in

the temporal domain is significant and yields delta vectors and angles close to zero, (see

chapter5). Thereby, a significant reduction in the overall entropy can be achieved.



140 Evaluation and Comparison

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Bitrate (bits per vertex per frame)

da
 (

%
)

Rate distortion of tangential components (cow)

Time only
space(PP)_time
space(Multi)_time
space(PP)
space(Multi)

(a)

2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Bitrate (bits per vertex per frame)

da
 (

%
)

Rate distortion of bending angle (cow)

Time only
space_time
space only

(b)

Figure 8.7 Rate-distortion curves of tangential components (a) and for bending angle (b) using
different quantization bits (cow animation). Note that here we call temporal predictor relative to
the LCF but it is space-time domain in world coordinate frame.

./phd-Pics/Pics_predictive/cow_tan_cad.eps
./phd-Pics/Pics_predictive/cow_ang_cad.eps


8.5 Near-lossless Predictive Coding for Dynamic Meshes 141

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Bitrate (bits per vertex per frame)

da
 (

%
)

Rate distortion of tangential components (dance)

time_ only
space(PP)_time
space(Multi)_time
space(PP)
space(Multi)

(a)

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Bitrate (bits per vertex per frame)

da
 (

%
)

Rate distortion of bending angle (dance)

time_ only
space_time
space_only)

(b)

Figure 8.8 Rate-distortion curves of tangential components (a) and for bending angle (b) using
different quantization bits (dance animation).

./phd-Pics/Pics_predictive/dance_tang.eps
./phd-Pics/Pics_predictive/dance_angle.eps


142 Evaluation and Comparison

8.5.2 SplitCoder vs. State-of Art

Figure8.20illustrates the results of running our coder on the cow animation, which

contains extreme deformations, and the dolphin animation,compared with different meth-

ods. To obtain different rate distortion points, we used different levels of resolution

(q = 8, ..., 14). At first glance, we can see that our approach achieves a better rate dis-

tortion performance than the standard TG [117], linear predictive coding (LPC), KG [62]

and PCA [3]. This result is obvious since animation coding based on static techniques

only exploit spatial coherence and the linear prediction coding uses the temporal coher-

ence only. Furthermore, the standard PCA only approximatesthe global linearity and is

less effective for nonlinear animation. The LPCA overcomesthis problem but still ex-

ploits the coherence of local regions over all frames. For the AWC [39] and CPCA [102]

algorithms, we achieve similar results.

In Figure8.10, we compare our approach SplitCoder to the Dynapack algorithm [45]

that uses the Lorenzo predictor, the angle preserving predictor and CPCA. At similar

numbers of bits (Figure8.10(a)), our approach achieves better quality (up to80%) over

Dynapack and (up to22%) over the angle preserving predictor (maverg+angle) [113]. At

similar quality (Figures8.10(b)), our coder archives gains up to3%, 8% and18%, over

(maverg+angle), CPCA and Dynapack, respectively.



8.5 Near-lossless Predictive Coding for Dynamic Meshes 143

5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

d
a
 (

%
)

D
Proposed approach

AWC

CPCA

KG

(a)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

d
a
 (

%
)

D

Proposed approach

CPCA

PCA

LPC

TG

(b)

Figure 8.9 Comparison of our method with different compression algorithms.

./phd-Pics/Pics_predictive/cowPred_LCF.eps
./phd-Pics/Pics_predictive/dolphin.eps


144 Evaluation and Comparison

0

1

2

3

4

5

6

7

8

9

10

TP_L
C
F

m
av

er
g+

an
gl

e

D
yn

ap
ac

k

TP_L
C
F

m
av

er
g+

an
gl

e

D
yn

ap
ac

k

b
v

p
f

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

d
a

(%
)

bvpf da (%)

(a)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

m
av

er
g+

an
gl

e

TP_L
C
F

dy
na

pa
ck

TP_L
C
F

m
av

er
g+

an
gl

e

TP_L
C
F

C
PC

A

d
a

(%
)

0

1

2

3

4

5

6

7

8

9

10

b
v

p
f

da (%) bvpf

(b)

Figure 8.10 Comparison of our method SplitCoder (TP_LCF) with different compression algo-
rithms at similar bitrates (a) and at similar reconstruction error (b)(chicken sequence). TP_LCF
refers to the time only predictor in LCF.

./phd-Pics/Pics_predictive/graph_a.eps
./phd-Pics/Pics_predictive/graph_b.eps


8.6 RLPCA based Compression for Dynamic Meshes 145

8.6 RLPCA based Compression for Dynamic Meshes

This approach segments the mesh vertices into several groups of similar motion. Then,

the local vertex coordinates of each set are transformed into another basis. To find the

appropriate number of PCA components to represent the original data in each set, we

introduce a rate distortion optimization for PCA based coding, that trades off between

rate and the quality of the reconstructed animations. The compression is achieved by

encoding the PCA components and coefficients.

8.6.1 Compression Parameters

In this approach, we consider three parameters that can govern the compression ratio

as discussed before in chapter6. We recall these parameters:

• The number of basis vectors/rate L: If this number is fixed for all clusters, then the

user defines it (depending on the desired accuracy). The larger this number is, the

better reconstruction will be (at the expense of less compression). If the RDO is

used, then we will need only to specify the amount of compression (rate) or the

maximum number of basis vectors that are to be used to approximate each cluster

as we do in our coding. The number of vectors in each cluster isthen optimally

selected such that the total rate is below the given user-specified rate (or the total

number of vectors is below the given user-specified maximum number of vectors).

• The number of clustersN : If this number is very small, then the cluster may contain

vertices of different behavior and their local coordinateswill have a large variation

over time. However, it is difficult to find a linear space that efficiently represents

these coordinates using PCA.

• The reconstruction error: This error presents the deviation of the reconstructed po-

sitions from the original one. It is measured using L2-norm or the metricda. More-

over, the metric L2-norm controls the compression during the RDO. This number

should increase with decreases in the number of clusters or the number of eigenvec-

tors.

8.6.2 RLPCA vs. LPCA

We want to find the influence of the clustering and the local coordinates on the bitrate

and on the reconstruction of animation. We performed LPCA inthe world coordinate sys-

tem as well as in the local coordinate systems for a given numbers of clusters, components



146 Evaluation and Comparison

Figure 8.11 The error plot for the chicken sequence using LPCA in the world (standard LPCA)
and the local coordinates (RLPCA) and using the RD-optimization (ORLPCA) (10 clusters,10
components). The error is measured by the L2-norm between the original and reconstructed frame.

and bits of quantizationN , L andqc respectively. Furthermore, we compared LPCA with

the standard PCA.

Figure8.11 shows the reconstruction results relative the original frame usingqc =

qu = 12 andL = 10 when the LPCA is performed in the world coordinates (green) and

in the local coordinates (blue) and when the R-D optimization is introduced (red) at the

same number of bit per vertex per frame. We can see that the local coordinates are more

compressible than the original coordinates.

The improvement in the second curve (blue) (Figure8.11) is due to the transformation

of the original data into local coordinates which forces thecoordinates of a vertex to

cluster around one point (see chapter6). This improvement increases (red) when the

optimization were introduced.

Figure8.12and Figure8.14(a) shows the effect of the number of clusters and the com-

ponent on the frame reconstruction for the chicken animation using(N, L) ={(20, 10);

(20, 20); (10, 10)} and on the rate-distortion curves for the dance animation using 10, 20

and30 clusters.

Figures8.13shows the reconstructed two frames in the chicken sequence when the

world and the local coordinates are used and when the optimization is introduced using

10 components and10 clusters.

./phd-Pics/pca/chickenwscg1.eps


8.6 RLPCA based Compression for Dynamic Meshes 147

Figure 8.12 The error plot for the chicken sequence using different numbers of clustersN and
componentsL. (N,L) ={(20, 20) (blue); (20, 10) (red); (10, 10)(yellow)}. The error is mea-
sured by the L2-norm between the original and reconstructedframe.

8.6.3 RLPCA and ORLPCA vs. State of Art

Figures8.14 (b) and8.15 also illustrate the comparison to other methods as rate-

distortion curves for the cow (a), dolphin (d), and chicken (c) animations. At first glance,

we can see that our approach achieves a better rate distortion performance than the stan-

dard PCA, LPC and TG for the three models. This result is obvious since the animation

coding based on static techniques only exploit the spatial coherence and the linear pre-

diction coding only uses the temporal coherence. Furthermore, the standard PCA only

approximates the global linearity and is less effective fornonlinear animation.

For the CPCA and AWC algorithms, we achieve better or similarresults. Figure8.15

(a) shows that for the cow animation our method is significantly better than the method of

KG (PCA+ LPCA) and than the CPCA. And it comes close to AWC. Forthe dolphin and

the chicken sequences our method performs better than all the above methods. This im-

provement is due to the segmentation of the model into meaningful parts (whose vertices

move quit similarly) as well as to the use of local coordinates rather than world coordi-

nates. On the other hand, the RLPCA performs well for the models of large number of

vertices in contrast to KG. Therefore, by combining RLPCA with LPC, we might achieve

./phd-Pics/pca/chickenwscg3.eps


148 Evaluation and Comparison

Figure 8.13 Reconstructed chicken: Frame 314 and its zoomed view (the two top raws) and
frame 400 and its zoomed view (the two bottom raws) .From left to right : Original, optimized
RLPCA, RLPCA, and LPCA performed in world coordinates (10 clusters;10 components).

./phd-Pics/pca/chicken/chicken313org.eps
./phd-Pics/pca/chicken/chicken313S10C10opti.eps
./phd-Pics/pca/chicken/chicken313S10C10localFixed.eps
./phd-Pics/pca/chicken/chicken313S10C10worldfixed.eps
./phd-Pics/pca/chicken/zomm/chicken313new.eps
./phd-Pics/pca/chicken/zomm/chicken313_10_10Opti.eps
./phd-Pics/pca/chicken/zomm/chicken313_S10C10fixlocal.eps
./phd-Pics/pca/chicken/zomm/chicken313C10S10world.eps
./phd-Pics/pca/chicken/chicken399org.eps
./phd-Pics/pca/chicken/chicken399S10C10opti.eps
./phd-Pics/pca/chicken/chicken399S10C10localFixed.eps
./phd-Pics/pca/chicken/chicken399S10C10worldfixed.eps
./phd-Pics/pca/chicken/zomm/chicken399_new.eps
./phd-Pics/pca/chicken/zomm/chicken399_10_10optim.eps
./phd-Pics/pca/chicken/zomm/chicken399fixlocal10_10.eps
./phd-Pics/pca/chicken/zomm/chicken399_10_10worl.eps


8.6 RLPCA based Compression for Dynamic Meshes 149

a better compression ratio. Figures8.14(b) and 8.15also demonstrate that the rate dis-

tortion optimization we introduce in our algorithm (ORLPCA) is important for achieving

better compression performances especially when the number of vertices is large and the

animation is complex.

From the computational viewpoint, PCA is computational expensive but in combi-

nation with LPC [62], it gives a better compression performance, particularlyfor a long

sequence of just a few number of vertices. CPCA [102] outperforms both methods since

they explore a robust segmentation which is based on a data analysis technique but re-

mains expensive. In contrast, our RLPCA uses a simple segmentation and transformations

and achieves a better compression ratio.

Our Algorithm achieves an increased compression performance, is computationally

inexpensive compared to a PCA for the full mesh and it is well-suited for progressive

transmission

8.6.4 Timings

Table8.6 shows the timings in seconds of the coding(tenc) and decoding(tdec) pro-

cesses (without optimization) for the four animations witha comparison to CPCA(tFPS

for display while decoding). We observe that for the chickenand cow animations, our

coder is much faster and performs better than CPCA. Our timing results are measured on

Pentium 4 with 2.53 GHz and CPCA on AMD Athlon64 XP 3200+.

Table 8.6 Comparison compression and decompression (RLPCA-Clustering) timings with
CPCA.

CPCA RLPCA
Models bpvf da tenc

(sec) tFPS
(sec) bpvf da N L tenc

(sec) tdec
(sec)

chicken 4.7 0.076 206 214 3.5 0.008 20 20 120 69
2.8 0.139 395 215 2.2 0.043 20 10 115 69
2.8 0.139 395 215 1.5 0.057 10 10 110 47

cow 7.4 0.16 75 145 6.8 0.128 30 20 82 46
3.8 0.5 59 218 4.1 0.470 30 20 40 50
2.0 1.47 55 284 2.2 1.220 10 10 70 23

dolphin 7.1 0.024 - - 3.9 0.016 20 10 74 40
4.1 0.033 - - 2.1 0.018 20 5 78 32
2.1 0.168 - - 1.9 0.066 10 5 39 25



150 Evaluation and Comparison

(a)

(b)

Figure 8.14 Rate distortion curves for dance and chicken sequences.

./phd-Pics/pca/dancewscg_phd.eps
./phd-Pics/pca/chickenwscg2_phd.eps


8.6 RLPCA based Compression for Dynamic Meshes 151

(a)

(b)

Figure 8.15 Rate distortion curves for cow and dolphin sequences using the metricda.

./phd-Pics/pca/cowwscg_phd.eps
./phd-Pics/pca/dolphinwscg_phd.eps


152 Evaluation and Comparison

8.7 Predictive-DCT based Compression

This section shows the results of the algorithmPDCT that is based on cluster based-

prediction and DCT and the effect of different compression parameters on compression

performance.

8.7.1 Compression Parameters

Influence of Cluster Numbers

The number of clustersN is an important compression parameter that affects the com-

pression performance as seen in previous method RLPCA. The bigger this number is, the

smoother the shape reconstruction will be and the lower the bit rate that is obtained. If

this number is too small, the vertices of the same cluster maybehave differently relative

to their LCF. Thereby, the prediction in the LCF becomes pooryielding poor compres-

sion. In contrast, IfN is big, the variation of the vertex relative to the LCF of its cluster

becomes smaller and the prediction is more effective.

Figures8.17and8.16illustrates the curves DCT coefficients/bitrate and coefficients/da

for different numbers of clusters.

Figure8.22also shows the rate-distortion curves for different animations at different

numbers of clusters: dolphin using10 and40 clusters, chicken using10, 25 and40 and

dance using10, 20 and40 clusters. We observe that40 clusters provide better error quality

and bit rate than using10 or 20 clusters.

Influence of DCT Coefficients

To find the influence of the number of DCT coefficients on the rate and on the re-

construction of animation, we have run our coding on different resolution. Figure8.17

and8.16show the results of the number of these coefficients percent for chicken anima-

tion. When more coefficients are discarded, better compression (Figure8.17) is achieved

at the expense of the reconstruction quality (Figure8.16).

The effect of the cluster and coefficient numbers can also be seen in Figures8.18

and8.23.



8.7 Predictive-DCT based Compression 153

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

d
a

PDCT10

PDCT20

PDCT25

PDCT40

Figure 8.16 Influence of different numbers of zeroed DCT coefficients (%)on the reconstruction
quality da using different number of clusters.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10

B
it

ra
te

 (
b

v
p

f)

PDCT10

PDCT20

PDCT25

PDCT40

Figure 8.17 Influence of different numbers of zeroed DCT coefficients (%)on the bitrate using
different number of clusters.

./phd-Pics/predictive_dct/chicken_Coefficient_Distortion.eps
./phd-Pics/predictive_dct/chicken_Coefficient_Bitrate.eps


154 Evaluation and Comparison

original

9.7bpvf, 0.009 1.2bpvf, 0.48 0.9bpvf, 0.49

5.9bpvf,0.009 1.5bpvf,0.12 1bpvf, 0.14

Figure 8.18 Reconstruction frame60 of dolphin sequence, original mesh (top arrow), using10
clusters (middle arrow) and40 cluster(bottom arrow). From left to right: using differentnumbers
of non-zero coefficients (%) and quantization levels: (100%,12 bits), (2%,12 bits) and (2%,8 bits),
at various bit rates in bit per vertex per frame and decoding error (da).

Influence of Quantization Level

Figure8.19illustrates the reconstruction samples of cow animation for different quan-

tization levels6, 8, 12 bits. If a coarse quantization is used then the low value DCT co-

efficients will be zeros. Consequently, the fine details are lost and only the coarse details

are detected. Moreover, the clustering process will retainan acceptable visual quality.

The more coefficients that are zeroed, the more coarser the quantization is, and that

better the compression will be at the expense of visual appearance. The finer details can

be preserved when only a finer quantization is used and few coefficients are thrown away.

For example, if50% of coefficients have zero values then we use10 bits quantization. If

90% we use8 bits only.

Recall that the delta vectors of the first frame are encoded using 12 bits quantization

while the delta vectors of the LCFs in the whole sequence are quantized to 16 bits.

./phd-Pics/predictive_dct/original.eps
./phd-Pics/predictive_dct/10_12_0.eps
./phd-Pics/predictive_dct/10_12_98.eps
./phd-Pics/predictive_dct/10_12_98.eps
./phd-Pics/predictive_dct/40_12_0.eps
./phd-Pics/predictive_dct/40_12_98.eps
./phd-Pics/predictive_dct/40_8_98.eps


8.7 Predictive-DCT based Compression 155

Figure 8.19 Reconstruction sample frames of cow animation using different quantization levels.
From top to bottom:6, 8, 12 bits.

./phd-Pics/predictive_dct/cow40_6_0_frame10.eps
./phd-Pics/predictive_dct/cow40_6_0_frame44.eps
./phd-Pics/predictive_dct/cow40_6_0_frame59.eps
./phd-Pics/predictive_dct/cow40_6_0_frame99.eps
./phd-Pics/predictive_dct/cow40_8_0_frame10.eps
./phd-Pics/predictive_dct/cow40_8_0_frame44.eps
./phd-Pics/predictive_dct/cow40_8_0_frame59.eps
./phd-Pics/predictive_dct/cow40_8_0_frame99.eps
./phd-Pics/predictive_dct/cow40_12_0_frame10.eps
./phd-Pics/predictive_dct/cow40_12_0_frame44.eps
./phd-Pics/predictive_dct/cow40_12_0_frame59.eps
./phd-Pics/predictive_dct/cow40_12_0_frame99.eps


156 Evaluation and Comparison

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

P
D
C
T

m
av

er
g+

an
gl
e

C
PC

A
TLS

d
a

0

1

2

3

4

5

6

b
it

ra
te

(b
p

v
f)

da bpvf

(a)(

0

1

2

3

4

5

6

7

8

P
D
C
T

m
av

er
g+a

ngle

D
yn

ap
ac

k

P
D
C
T

m
av

er
g+a

ngle
TLS

b
it

ra
te

(b
p

v
f)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

d
a

bpvf da

((b)

Figure 8.20 Comparison of our method with different compression algorithms at almost similar
bitrates (a) and at similar reconstruction error (b) (chicken sequence).

./phd-Pics/predictive_dct/chickencomparisonerror.eps
./phd-Pics/predictive_dct/chickencomparisonbit.eps


8.7 Predictive-DCT based Compression 157

8.7.2 PDCT vs. State of Art

Figure8.22illustrate the results of running of our coder on three animations compared

with different methods.

For the three models PDCT preforms better than the standard PCA, LPC, KG and TG.

This is because, as motioned before, the animation coding based on static mesh compres-

sion technique only (TG) exploits the spatial coherence only, the linear prediction coding

(LPC) uses the temporal coherence only and PCA approximatesthe global linearity and

is less effective for nonlinear animation. while PDCT exploit the coherence in both space

a time domain.

For the CPCA and AWC algorithms, we achieve better or similarresults. Figure8.22

(a) shows that for the cow animation which contains extreme deformations, our method

is significantly better than the KG method and comes close to the CPCA and to wavelet

based methods (TLS [92] and AWC).

For the chicken and the dolphin sequences, our method performs better than all the

above methods, including the predictive techniques (Dynapack and maverg+angle). This

improvement is due in one hand to the clustering of the model into rigid parts, making

the prediction more efficient in the local rather than the world, coordinates, and on the

other hand to the further DCT coding, which leads to a significant reduction in the overall

entropy.

The RLPCA method overcomes all other methods, including ours, for chicken anima-

tion while it comes close to our for the other models. Our method PDCT uses as similar

clustering process as RLPCA scheme. However, the difference arises in the way of encod-

ing the local coordinates. The RLPCA considers the entire cluster sequence and exploit

the global coherence using PCA. While PDCT have to encode frame by frame using pre-

dictive and spatial DCT coding, the method is well suited forreal-time compression.

In Figure8.20, we compare our approach against several approaches. At (almost) sim-

ilar quality (Figures8.20(a)), our coder archives gains up to30% and27%, over the angle

preserving predictor (maverg+angle) and CPCA respectively. At (almost) similar num-

bers of bits (Figures8.20(b)), our approach obtains better animation quality from28% up

to 76% over maverg+angle,81% over Dynapack (using Extended Lorenzo Predictor) and

95% over TLS.



158 Evaluation and Comparison

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Bitrate (bpvf)

d
a

Cow sequence

PDCT

RLPCA

AWC

CPCA

TLS

KG

(a)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Bitrate (bpvf)

d
a

Dolphin sequence

PDCT10

PDCT40

RLPCA

CPCA

PCA

LPC

TG

(b)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Bitrate (bpvf)

d
a

Chicken sequence

PDCT10

PDCT25

PDCT40

RLPCA

CPCA

TLS

PCA

LPC

TG

(c)

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Bitrate (bpvf)

d
a

Chicken sequence

PDCT

maverg+angle

Dynapack

(d)

Figure 8.21 Rate distortion curves for the cow (a), dolphin (b), and chicken (c), (d) sequences.

./phd-Pics/predictive_dct/cowbitrate.eps
./phd-Pics/predictive_dct/dolphinbitrate.eps
./phd-Pics/predictive_dct/chickenbitrate.eps
./phd-Pics/predictive_dct/chickenbitratesuite.eps


8.7 Predictive-DCT based Compression 159

2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

Bitrate (bpvf)

d
a

Chicken sequence

PDCT10

PDCT20

PDCT40

PDCT60

(a)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bitrate (bpvf)

d
a

Dance sequence

PDCT10

PDCT20

PDCT40

(b)

Figure 8.22 Rate distortion curves for the chicken (a) and dance (f) sequences using different
number of clusters.

./phd-Pics/predictive_dct/chickenclustersbitrate.eps
./phd-Pics/predictive_dct/dancebitrate.eps


160 Evaluation and Comparison

(original)

(40,12,100)

(40,12,50)

(40,12,30)

(40,12,2)

(10,12,2)

(40,8,2)

(10,8,2)

Figure 8.23 Reconstruction sample frames of dolphin sequence. The numbers in the first column
are the number of clusters, quantization level and coefficient number (%).

./phd-Pics/predictive_dct/original89.eps
./phd-Pics/predictive_dct/original67.eps
./phd-Pics/predictive_dct/original14.eps
./phd-Pics/predictive_dct/dolphin40_12_0_frame89.eps
./phd-Pics/predictive_dct/dolphin40_12_0_frame67.eps
./phd-Pics/predictive_dct/dolphin40_12_0_frame14.eps
./phd-Pics/predictive_dct/dolphin40_12_05_frame89.eps
./phd-Pics/predictive_dct/dolphin40_12_05_frame67.eps
./phd-Pics/predictive_dct/dolphin40_12_05_frame14.eps
./phd-Pics/predictive_dct/dolphin40_12_07_frame89.eps
./phd-Pics/predictive_dct/dolphin40_12_07_frame67.eps
./phd-Pics/predictive_dct/dolphin40_12_07_frame14.eps
./phd-Pics/predictive_dct/dolphin40_12_98_frame89.eps
./phd-Pics/predictive_dct/dolphin40_12_98_frame67.eps
./phd-Pics/predictive_dct/dolphin40_12_98_frame14.eps
./phd-Pics/predictive_dct/dolphin10_12_98_frame89.eps
./phd-Pics/predictive_dct/dolphin10_12_98_frame67.eps
./phd-Pics/predictive_dct/dolphin10_12_98_frame14.eps
./phd-Pics/predictive_dct/dolphin40_8_98_frame89.eps
./phd-Pics/predictive_dct/dolphin40_8_98_frame67.eps
./phd-Pics/predictive_dct/dolphin40_8_98_frame14.eps
./phd-Pics/predictive_dct/dolphin10_8_98_frame89.eps
./phd-Pics/predictive_dct/dolphin10_8_98_frame67.eps
./phd-Pics/predictive_dct/dolphin10_8_98_frame14.eps


8.8 Comparison of the Proposed Methods 161

8.8 Comparison of the Proposed Methods

We already compared our algorithms to some methods from state-of-art based on their

results reported in their papers. Indeed, we did not obtain the reconstructed animation

sequences of these methods. We also did not use their source code of the distortion mea-

surement that computes the reconstruction distortion to ensure the comparison is properly

performed. Of course, the compression parameters affect the sequence reconstruction and

the comparison to the other methods.

In this section, we restricted the final experiments to the comparison between our

implementation codes only.

It is obvious that the method that exploits both spatial and temporal coherence achieves

better compression ratio than the method that exploits onlyone. Our proposed methods

for 3D dynamic mesh compression combine different schemes to exploit the coherence in

both space and time:

1. SplitCoder:

• LCF: spatial coherence

• vertex based-predictor (relative to LCF assigned for each vertex): spatial and

temporal coherence.

2. PDCT:

• clustering: spatial and temporal coherence.

• LCF: spatial coherence.

• differential coding of LCF: temporal coherence.

• cluster based-predictor: spatial and temporal coherence

• DCT: spatial coherence.

3. RLPCA:

• clustering: spatial and temporal coherence.

• LCF: spatial coherence.

• differential coding of LCF: temporal coherence.

• PCA: temporal coherence.

Table8.7summarizes the characteristic of the proposed compressionmethods for an-

imated meshes.



162 Evaluation and Comparison

Table 8.7 Characteristic of the proposed approaches SplitCoder, PDCT, and RLPCA

splitCoder PDCT RLPCA
lossless/lossy not lossy lossy lossy
category vertex-based cluster-based cluster-based
coherence locally (frame by frame) locally (frame by frame) globally
connectivity dependant ∼ independent ∼ independent
complexity * ** **
encoding time * few sec. *** few sec. to min. ** few sec.
decoding time * fast ** * very fast
remarks well-suited for suited for allows progressive

realtime applications realtime applications transmission
more practical

SplitCoder is vertex based-predictor, for each vertex on have to construct LCF and

perform predictive coding. The advantage of SplitCoder is its lossless nature. The dis-

tortion is due only to the quantization. Typically, between10 and12 bits, we obtain an

animation sequence that is indistinguishable from the original one. Moreover, it is simple,

fast (in the order of few seconds), well-suited for real timeapplication, and outperforms

several existing compression techniques based on PCA, or onpredictive coding. The only

disadvantage of this method is that it does not allow very lowbit rates. This is because

at low quantization level (typically 5 and 6 bits), some triangles may become degenerated

and consequently, the reconstruction of the LCF is impossible.

PDCT is lossy technique, more complex than splitCoder but allows low bit rate and

we need only one LCF per cluster. DCT is introduced for further data reduction, yield-

ing uncorrelated coefficients, which are well compressiblethan the delta vectors. This

methods is more expensive than SplitCoder because for each frame and for each cluster,

one have to perform DCT coding and computer the inverse DCT toreconstruct the cur-

rent frame for further encoding. Recall that always the current frame to be encoded, is

predicted from the previously decoded one, to avoid error accumulation.

RLPCA is lossy compression, less complexity than PDCT but more complex than

splitCoder, while decompression algorithm is the most simple and the fastest one, com-

pared to the above methods. When a bit allocation is introduced (ORLPCA), better com-

pression ratio is obtained at the expense of processing timeof encoding.

Figures8.25, 8.26and8.24 illustrate the comparison between the three methods as

rate-distortion curves for the dolphin, dance, cow, chicken and snake animations. One can

see that RLPCA and ORLPCA outperforms PDCT and SplitCoder. At very low bitrate,



8.8 Comparison of the Proposed Methods 163

this later is not efficient. In case of high bitrate, lower distortion is obtained and all

methods come close to each others.

The following figures8.27, 8.28, 8.29, 8.30, 8.31, 8.32, 8.33, 8.34, 8.35and8.36show

the original and the reconstructions of sample frames from the dance, dolphin, cow, snake

and chicken animations, using the proposed approaches at similar bitrate.

At high bitrate it is difficult to see the difference of visualappearance between the

original and the reconstructions. In case of more distortion, high compression ratios is

achieved.

One may also notice that the reconstructed frames using RLPCA are nearly identical

to the original frames. The distortion incurred is always very small compared with the

error incurred by PDCT and SplitCoder methods and the good compression ratios make

the method RLPCA the most attractive one.

The distortion introduced by PDCT is also almost less than the distortion produced by

SplitCoder. This is obvious, at low bitrate, SplitCoder is not efficient. Indeed, the mesh

reconstructions exhibit blocky artifact due to the low quantization level.

At similar bitrate, PDCT yields better reconstruction due to DCT based coding that

may reduces the the blocky artifact at low bitrate. Indeed, after DCT transform, the major-

ity of signal energy concentrates on the low frequencies andlittle on the high frequencies.

Hence, the high frequencies can be zeroed yielding a significant reduction in the over-

all entropy. The signal can then be represented by few high value coefficients without

significant distortion.

Note that the blocking effect also appears in PDCT if the number of coefficients to be

zeroed is very large or if the quantization level is very low.

We also computed the gain of each method at similar level of distortion. We found

that the gain of OLPCA over RLPCA is up to42% due to the bit allocation introduced for

PCA. The gain of RLPCA over DCT and SplitCoder are up to32% and69%, respectively.

The gain of PDCT method over SplitCoder is up to73%. Note that the gain varies with

compression parameters and animation sequences. For example, for the snake animation,

RLPCA come close to PDCT while their gain over SplitCoder is up to 73%. For chicken

animation, the gain of RLPCA over DCT is about36% and over SplitCoder is about48%.



164 Evaluation and Comparison

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Bitrate (bits per vertex per frame)

da

Rate distortion of snake sequence

RLPCA
PDCT
SplitPred

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Bitrate (bits per vertex per frame)

da
 

Rate distortion of snake sequence

RLPCA(N=30)
RLPCA(N=20)
RLPCA(N=10)
RLPCA(N=5)

Figure 8.24 Rate distortion curves for snake sequence using different number of clusters

./phd-Pics/comparison/snake.eps
./phd-Pics/comparison/snakePCA.eps


8.8 Comparison of the Proposed Methods 165

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

Bitrate (bits per vertex per frame)

da
Rate distortion of dolphin sequence

ORLPCA
RLPCA
PDCT
SplitCoder

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bitrate (bits per vertex per frame)

da

Rate distortion of dance sequence

ORLPCA
RLPCA
PDCT
SplitCoder

Figure 8.25 Comparison between the proposed approaches for dolphin anddance animations

./phd-Pics/comparison/dolphin.eps
./phd-Pics/comparison/dance.eps


166 Evaluation and Comparison

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Bitrate (bits per vertex per frame)

da

Rate distortion of cow sequence

ORLPCA
RLPCA
PDCT
SplitCoder

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bitrate (bits per vertex per frame)

da

Rate distortion of chicken sequence

ORLPCA
RLPCA
PDCT
SplitCoder

Figure 8.26 Comparison between the proposed approaches for cow and chicken animations

./phd-Pics/comparison/cow.eps
./phd-Pics/comparison/chicken.eps


8.8 Comparison of the Proposed Methods 167

Original

RLPCA

PDCT

(a) (b) (c)

Figure 8.27 Comparison of RLPCA and PDCT at a similar bitrate. Frame 50: (a) original and
(b) RLPCA and (c) PDCT.

./phd-Pics/results/original/dance4.eps
./phd-Pics/results/original/dance20.eps
./phd-Pics/results/original/dance30.eps
./phd-Pics/results/original/dance50.eps
./phd-Pics/results/original/dance80.eps
./phd-Pics/results/res1/RLPCA/dance4_res1PCA.eps
./phd-Pics/results/res1/RLPCA/dance20_res1PCA.eps
./phd-Pics/results/res1/RLPCA/dance30_res1PCA.eps
./phd-Pics/results/res1/RLPCA/dance50_res1PCA.eps
./phd-Pics/results/res1/RLPCA/dance80_res1PCA.eps
./phd-Pics/results/res1/PDCT/dance4_res1DCT.eps
./phd-Pics/results/res1/PDCT/dance20_res1DCT.eps
./phd-Pics/results/res1/PDCT/dance30_res1DCT.eps
./phd-Pics/results/res1/PDCT/dance50_res1DCT.eps
./phd-Pics/results/res1/PDCT/dance80_res1DCT.eps
./phd-Pics/results/original/dance50.eps
./phd-Pics/results/res1/RLPCA/dance50_res1PCA.eps
./phd-Pics/results/res1/PDCT/dance50_res1DCT.eps


168 Evaluation and Comparison

Original

PDCT

SplitCoder

(a) (b) (c)

Figure 8.28 Comparison of PDCT and SplitCoder at a similar bitrate. Frame 80: (a) original
and (b) PDCT and (c) SplitCoder.

./phd-Pics/results/original/dance4.eps
./phd-Pics/results/original/dance20.eps
./phd-Pics/results/original/dance30.eps
./phd-Pics/results/original/dance50.eps
./phd-Pics/results/original/dance80.eps
./phd-Pics/results/res2/PDCT/dance4_res2DCT.eps
./phd-Pics/results/res2/PDCT/dance20_res2DCT.eps
./phd-Pics/results/res2/PDCT/dance30_res2DCT.eps
./phd-Pics/results/res2/PDCT/dance50_res2DCT.eps
./phd-Pics/results/res2/PDCT/dance80_res2DCT.eps
./phd-Pics/results/res2/SplitCoder/dance4_res2split.eps
./phd-Pics/results/res2/SplitCoder/dance20_res2split.eps
./phd-Pics/results/res2/SplitCoder/dance30_res2split.eps
./phd-Pics/results/res2/SplitCoder/dance50_res2split.eps
./phd-Pics/results/res2/SplitCoder/dance80_res2split.eps
./phd-Pics/results/original/dance80.eps
./phd-Pics/results/res2/PDCT/dance80_res2DCT.eps
./phd-Pics/results/res2/SplitCoder/dance80_res2split.eps


8.8 Comparison of the Proposed Methods 169

Original

RLPCA

SplitCoder

(a) (b) (c)

Figure 8.29 Comparison of RLPCA and SplitCoder at a similar bitrate. Frame 50: (a) original
and (b) PDCT and (c) SplitCoder.

./phd-Pics/results/original/dance4.eps
./phd-Pics/results/original/dance20.eps
./phd-Pics/results/original/dance30.eps
./phd-Pics/results/original/dance50.eps
./phd-Pics/results/original/dance80.eps
./phd-Pics/results/res3/RLPCA/dance4_res3PCA.eps
./phd-Pics/results/res3/RLPCA/dance20_res3PCA.eps
./phd-Pics/results/res3/RLPCA/dance30_res3PCA.eps
./phd-Pics/results/res3/RLPCA/dance50_res3PCA.eps
./phd-Pics/results/res3/RLPCA/dance80_res3PCA.eps
./phd-Pics/results/res3/SplitCoder/dance4_res3split.eps
./phd-Pics/results/res3/SplitCoder/dance20_res3split.eps
./phd-Pics/results/res3/SplitCoder/dance30_res3split.eps
./phd-Pics/results/res3/SplitCoder/dance50_res3split.eps
./phd-Pics/results/res3/SplitCoder/dance80_res3split.eps
./phd-Pics/results/original/dance50.eps
./phd-Pics/results/res3/RLPCA/dance50_res3PCA.eps
./phd-Pics/results/res3/SplitCoder/dance50_res3split.eps


170 Evaluation and Comparison

Original

RLPCA

PDCT

(a)

(b)

(c)

Figure 8.30 Comparison of RLPCA and PDCT at a similar bitrate. Frame 80: (a) original and
(b) RLPCA and (c) PDCT.

./phd-Pics/results/original/dolphin10.eps
./phd-Pics/results/original/dolphin30.eps
./phd-Pics/results/original/dolphin60.eps
./phd-Pics/results/original/dolphin80.eps
./phd-Pics/results/res4/RLPCA/dolphin10_res4PCA.eps
./phd-Pics/results/res4/RLPCA/dolphin30_res4PCA.eps
./phd-Pics/results/res4/RLPCA/dolphin60_res4PCA.eps
./phd-Pics/results/res4/RLPCA/dolphin80_res4PCA.eps
./phd-Pics/results/res4/PDCT/dolphin10_res4DCT.eps
./phd-Pics/results/res4/PDCT/dolphin30_res4DCT.eps
./phd-Pics/results/res4/PDCT/dolphin60_res4DCT.eps
./phd-Pics/results/res4/PDCT/dolphin80_res4DCT.eps
./phd-Pics/results/original/dolphin80.eps
./phd-Pics/results/res4/RLPCA/dolphin80_res4PCA.eps
./phd-Pics/results/res4/PDCT/dolphin80_res4DCT.eps


8.8 Comparison of the Proposed Methods 171

Original

PDCT

SplitCoder

(a)

(b)

(c)

Figure 8.31 Comparison of PDCT and SplitCoder at a similar bitrate. Frame 80: (a) original
and (b) PDCT and (c) SplitCoder.

./phd-Pics/results/original/dolphin10.eps
./phd-Pics/results/original/dolphin30.eps
./phd-Pics/results/original/dolphin60.eps
./phd-Pics/results/original/dolphin80.eps
./phd-Pics/results/res5/PDCT/dolphin10_res5DCT.eps
./phd-Pics/results/res5/PDCT/dolphin30_res5DCT.eps
./phd-Pics/results/res5/PDCT/dolphin60_res5DCT.eps
./phd-Pics/results/res5/PDCT/dolphin80_res5DCT.eps
./phd-Pics/results/res5/SplitCoder/dolphin10_res5split.eps
./phd-Pics/results/res5/SplitCoder/dolphin30_res5split.eps
./phd-Pics/results/res5/SplitCoder/dolphin60_res5split.eps
./phd-Pics/results/res5/SplitCoder/dolphin80_res5split.eps
./phd-Pics/results/original/dolphin80.eps
./phd-Pics/results/res5/PDCT/dolphin80_res5DCT.eps
./phd-Pics/results/res5/SplitCoder/dolphin80_res5split.eps


172 Evaluation and Comparison

original

RLPCA

PDCT

(a) (b) (c)

Figure 8.32 Comparison of RLPCA and PDCT at a similar bitrate. Frame 59: (a) original and
(b) RLPCA and (c) PDCT.

./phd-Pics/results/original/cow10.eps
./phd-Pics/results/original/cow44.eps
./phd-Pics/results/original/cow59.eps
./phd-Pics/results/original/cow95.eps
./phd-Pics/results/res6/RLPCA/cow10_res6PCA.eps
./phd-Pics/results/res6/RLPCA/cow44_res6PCA.eps
./phd-Pics/results/res6/RLPCA/cow59_res6PCA.eps
./phd-Pics/results/res6/RLPCA/cow95_res6PCA.eps
./phd-Pics/results/res6/PDCT/cow10_res6DCT.eps
./phd-Pics/results/res6/PDCT/cow44_res6DCT.eps
./phd-Pics/results/res6/PDCT/cow59_res6DCT.eps
./phd-Pics/results/res6/PDCT/cow95_res6DCT.eps
./phd-Pics/results/original/cow59.eps
./phd-Pics/results/res6/RLPCA/cow59_res6PCA.eps
./phd-Pics/results/res6/PDCT/cow59_res6DCT.eps


8.8 Comparison of the Proposed Methods 173

original

RLPCA

SplitCoder

(a) (b) (c)

Figure 8.33 Comparison of RLPCA and SplitCoder at a similar bitrate. Frame 59: (a) original
and (b) RLPCA and (c) SplitCoder.

./phd-Pics/results/original/cow10.eps
./phd-Pics/results/original/cow44.eps
./phd-Pics/results/original/cow59.eps
./phd-Pics/results/original/cow95.eps
./phd-Pics/results/res8/RLPCA/cow10_res8PCA.eps
./phd-Pics/results/res8/RLPCA/cow44_res8PCA.eps
./phd-Pics/results/res8/RLPCA/cow59_res8PCA.eps
./phd-Pics/results/res8/RLPCA/cow95_res8PCA.eps
./phd-Pics/results/res8/SplitCoder/cow10_res8split.eps
./phd-Pics/results/res8/SplitCoder/cow44_res8split.eps
./phd-Pics/results/res8/SplitCoder/cow59_res8split.eps
./phd-Pics/results/res8/SplitCoder/cow95_res8split.eps
./phd-Pics/results/original/cow59.eps
./phd-Pics/results/res8/RLPCA/cow59_res8PCA.eps
./phd-Pics/results/res8/SplitCoder/cow59_res8split.eps


174 Evaluation and Comparison

original

RLPCA

SplitCoder

(a)

(b) (c)

Figure 8.34 Comparison of RLPCA and SplitCoder at a similar bitrate. Frame 40: (a) original
and (b) RLPCA and (c) SplitCoder.

./phd-Pics/results/original/snake30.eps
./phd-Pics/results/original/snake40.eps
./phd-Pics/results/original/snake60.eps
./phd-Pics/results/res11/RLPCA/snake30_res11PCA.eps
./phd-Pics/results/res11/RLPCA/snake40_res11PCA.eps
./phd-Pics/results/res11/RLPCA/snake60_res11PCA.eps
./phd-Pics/results/res11/SplitCoder/snake30_res11split.eps
./phd-Pics/results/res11/SplitCoder/snake40_res11split.eps
./phd-Pics/results/res11/SplitCoder/snake60_res11split.eps
./phd-Pics/results/original/snake40.eps
./phd-Pics/results/res11/RLPCA/snake40_res11PCA.eps
./phd-Pics/results/res11/SplitCoder/snake40_res11split.eps


8.8 Comparison of the Proposed Methods 175

original

RLPCA

PDCT

(a)

(b) (c)

Figure 8.35 Comparison of RLPCA and PDCT at a similar bitrate. Frame 40: (a) original and
(b) RLPCA and (c) PDCT.

./phd-Pics/results/original/snake30.eps
./phd-Pics/results/original/snake40.eps
./phd-Pics/results/original/snake60.eps
./phd-Pics/results/res12/RLPCA/snake30_res12PCA.eps
./phd-Pics/results/res12/RLPCA/snake40_res12PCA.eps
./phd-Pics/results/res12/RLPCA/snake60_res12PCA.eps
./phd-Pics/results/res12/PDCT/snake30_res12DCT.eps
./phd-Pics/results/res12/PDCT/snake40_res12DCT.eps
./phd-Pics/results/res12/PDCT/snake60_res12DCT.eps
./phd-Pics/results/original/snake40.eps
./phd-Pics/results/res12/RLPCA/snake40_res12PCA.eps
./phd-Pics/results/res12/PDCT/snake40_res12DCT.eps


176 Evaluation and Comparison

original

RLPCA

PDCT

(a) (b) (c)

Figure 8.36 Comparison of RLPCA and PDCT at a similar bitrate. Frame 337:(a) original and
(b) RLPCA and (c) PDCT.

./phd-Pics/results/original/chicken108.eps
./phd-Pics/results/original/chicken226.eps
./phd-Pics/results/original/chicken282.eps
./phd-Pics/results/original/chicken337.eps
./phd-Pics/results/res15/RLPCA/chicken108_res15PCA.eps
./phd-Pics/results/res15/RLPCA/chicken226_res15PCA.eps
./phd-Pics/results/res15/RLPCA/chicken282_res15PCA.eps
./phd-Pics/results/res15/RLPCA/chicken337_res15PCA.eps
./phd-Pics/results/res15/PDCT/chicken108_res15DCT.eps
./phd-Pics/results/res15/PDCT/chicken226_res15DCT.eps
./phd-Pics/results/res15/PDCT/chicken282_res15DCT.eps
./phd-Pics/results/res15/PDCT/chicken337_res15DCT.eps
./phd-Pics/results/original/chicken337.eps
./phd-Pics/results/res15/RLPCA/chicken337_res15PCA.eps
./phd-Pics/results/res15/PDCT/chicken337_res15DCT.eps


CHAPTER 9

Conclusion and Future Work

This thesis addressed the problem of storage space and transmission of static and

dynamic three-dimensional meshes.

We began with a review of static and animated mesh compression techniques, as well

as some general compression methods which are used as a post-processing step in the

current mesh compression algorithms. Then, we presented new compression techniques

for static and animated meshes, and segmentation approaches for animated meshes.

For static mesh compression, we proposed a higher order prediction technique to en-

code the mesh geometry. We split the coding into tangential and normal components

and we encoded them separately. For an improved encoding of the normal component,

we developed higher order predictors based on surface fitting and sphere fitting, taking

advantage of the large correlation between neighboring vertices.

In the context of animated mesh compression, we developed segmentation approaches

to group the vertices of similar motion within all types of animation. Segmentation has

the advantage that it decreases computational costs, it preserves global shape when lossy

compression is performed and that it increases prediction efficiency, thereby achieving

the best bit-rate compression. We have proposed three methods based on region growing,

clustering and adaptive clustering, taking advantage of the spatial and temporal coher-

ence. Visually as well as metrically, clustering approaches exhibit better partitioning into

almost rigid groups than the region growing based algorithm. These approaches can be

useful for many applications.



178 Conclusion and Future Work

For animated mesh compression, we have developed three approaches:

The first approach, SplitCoder, is a connectivity-guided, predictive compression tech-

nique. The algorithm splits the vertex coordinates into parametric and curvature infor-

mation. As result, the coordinate space exhibits a large clustering behavior, allowing

more compact representation. Then, each component is encoded separately using predic-

tive coding and quantization. The proposed predictor produces offsets whose distribution

is close to zero and allows a low-entropy. This approach is simple, efficient and has a

low computational cost which makes it well-suited for real-time compression and decom-

pression. The drawback is that it does not support a progressive compression and is not

efficient at very low bit rate. Introducing vector quantization might be very efficient, as

it enables a higher quantization error in the tangential direction, resulting in a change of

parametrization only and not in a larger geometric error. This primarily reduces the code

length of the tangential components. Moreover, it will allow compression at very low bit

rates.

The second approach, RLPCA, is based on the local PCA, which captures the linear

correlations present in the datasets and represent mesh vertices using very few compo-

nents and coefficients. Taking advantage of mesh clustering, which produces near-rigid

clusters, we have transformed the original vertex coordinates into the local coordinate

frame of their cluster, making each one slightly invariant to any deformation over time.

Therefore, performing a PCA in these invariant groups of vertices leads to a more com-

pact representation than the original data. In order to achieve an optimal tradeoff between

the bitrate and the quality, we have introduced the rate distortion optimization for PCA,

based on an incremental computation of the convex hull.

The third method, PDCT, is inspired from video coding. In contrast to the vertex

based, predictive coding SplitCoder, the algorithm uses a cluster based predictive coding.

During pre-processing, the animated mesh vertices are partitioned into clusters, similar to

macroblocks in video coding. Next, we made predictions in the local coordinate frame.

Then, we transformed the resulting delta vectors of each cluster in each frame into the

frequency domain using a discrete cosine transform to reduce the code length, since the

entropy in frequency domain is smaller than the entropy coding of delta vectors.

The effectiveness of prediction coding depends strongly onthe clustering process.

Indeed, if the vertices are well clustered then the motion relative to the LCF between

two successive frames tends to be zero. The drawback of the proposed approach is that it

does not support progressive transmission. Similar to the RLPCA, the clustering in PDCT

produces clusters of different sizes and one has to choose a fixed number of coefficients to

be discarded, for all clusters. Consequently, one may have over-fitting and under-fitting.



179

Typically, when very few coefficients are used, not all frames can be reconstructed at the

same desired level of quality. Therefore, to overcome this drawback, one can introduce a

rate distortion optimization that trades off between rate and the total distortion. Another

alternative DCT based approach, is to combine the temporal-DCT with predictive coding

in the local coordinates. This approach is more suitable forprogressive transmission.

Note that both approach SplitCoder and PDCT take advantage of frame-to-frame co-

herence. SplitCoder processes vertex after vertex and PDCTcluster by cluster. In con-

trast, RLPCA considers the entire mesh sequence and analyzes the global coherence of

each animated sub-meshes.

For a large sequence of meshes, the animation may become morecomplex and the

clustering can produce poor prediction for some successiveframes. Therefore, we propose

to cut the sequence into short clips and update the clustering for each clip separately. In

the PDCT approach, the first frame of each clip should be encoded spatially as an I-frame

while in the PCA based approach, the RLPCA can be directly performed in each clip.

According to the experimental results, RLPCA yields a good rate/distortion ratio, and

significantly outperforms PDCT and SplitCoder. Furthermore, the compression parame-

ters (the number of clusters, the number of PCA components and DCT coefficients and

the level of quantization) strongly affect compression performance.

On the other hand, the three approaches are competitive whencompared to the state-

of-the-art techniques. They even provide a significant improvement in compression ratio

over some existing coders.

Our methods are significantly better than the KG method and comes close or even

better than the CPCA and wavelet based methods (TLS and AWC).Also, we achieve rate

distortion performance better than the standard TG which exploits the spatial coherence

only, the LPC which exploits the temporal cohence only, KG (PCA+LPC) and the stan-

dard PCA which approximates the global linearity and it is less effective for nonlinear

animation.

The proposed approaches also perform better than the predictive techniques (Dyna-

pack andmaverg+angle). For PDCT, the improvement is due to the clustering of the

model into rigid parts making the prediction more efficient in the local rather than the

world coordinates and to the further DCT coding which leads to a significant reduction

in the overall entropy. SplitCoder’s efficiency is due the prediction and the quantization

which are performed in the local space. This shows high clustering behavior of the vertex

coordinates as well as the coordinates of delta vectors. Thereby, a significant reduction in

the overall entropy is achieved.

In the end, it is important to note that our coders PDCT and RLPCA as well as the



180 Conclusion and Future Work

clustering process can be applicable to point-based modelsalso, regardless of how the

animation is generated.

Another challenging problem is to develop a new error measurement. During our

experiments, we observed that sometimes one may have a larger error but have better

visual quality. It is possible that, for a similar error metric da, the visual quality of both

the original and the reconstructed frames, are different. Recently, some work has been

done in this direction, but there is till much to be done. We plan to develop a metric

that takes in to consideration both the spatial and the temporal information, locally and

globally over all sequences.

To close this dissertation, our experience is the following:

For the compression of static meshes, the higher order prediction scheme based on

polynomial graph function fitting shows to be efficient for encoding of mesh geometry.

For the segmentation process, if the time is critical in yourapplication then the clus-

tering approach would be efficient to break down the animatedobject into rigid parts,

otherwise the adaptive clustering approach is used. Very often, it is desirable for many

application to have a segmentation that produces automatically the number of segments.

Typically, in the context of compression, in static clustering, we recommend to use a

number between 18 and 25 clusters. This number should increase with the complexity of

animation to obtain rigid parts.

For compression of mesh sequences, if all frames are not known then predictive based

compression is the most suited algorithm. If all frames are known, and a low bit rate is

desired, then RLPCA is the preferred approach. This algorithm is cheapest, most efficient

to use and its decompression process is very fast. The quantization level is fixed at 16 bit

for the points that construct the local coordinate frames and 12 for PCA coefficients.



Bibliography

[1] http://www710.univ-lyon1.fr/ hbriceno//research/geometryvideos/.130

[2] Mpeg-4 standard. http://www.mpeg-4.com. Inhttp://www.mpeg-4.com. 32

[3] Marc Alexa and Wolfgang Müller. Representing animations by principal compo-

nents.Computer graphics Forum, 19(3):411–426, 2000.ISSN 0167-7055.43, 114,

125, 142

[4] P. Alliez and M. Desbrun. Valence-driven connectivity encoding for 3D meshes.

In Eurographics ’01 Conference Proceedings, pages 480–489, 2001.28

[5] Pierre Alliez and Mathieu Desbrun. Progressive compression for lossless transmis-

sion of triangle meshes. InSIGGRAPH ’01: Proceedings of the 28th annual con-

ference on Computer graphics and interactive techniques, pages 195–202. ACM,

2001.37

[6] Pierre Alliez and Craig Gotsman. Recent advances in compression of 3d meshes. In

Advances in Multiresolution for Geometric Modelling serie, pages 3–26. Springer,

Berlin, 2005.21, 22, 34, 37

[7] R. Amjoun, R. Sondershaus, and W. Straßer. Compression of complex animated

meshes.Computer Graphics International 2006 Conference, LNCS by Springer,

4035:606–613, June 2006.4, 5, 6, 7, 8, 47

[8] Rachida Amjoun. Compression of 3d dynamic mesh sequences. Technical report,

Wilhelm Schickard Institute for Computer Science, Graphical-Interactive Systems

(WSI/GRIS), University of Tübingen, 2003.3, 6, 8



182 BIBLIOGRAPHY

[9] Rachida Amjoun. Exploiting temporal and spatial coherence in coordinate systems.

Technical Report WSI-2006-14, Wilhelm Schickard Institute for Computer Sci-

ence, Graphical-Interactive Systems (WSI/GRIS), University of Tübingen, 2006.

8

[10] Rachida Amjoun and Wolfgang Straßer. Efficient compression of 3d dynamic mesh

sequences. InJournal of the WSCG, 2007.4, 5, 6, 7, 8, 45, 47

[11] Rachida Amjoun and Wolfgang Straßer. Encoding Animated Meshes in Local Co-

ordinates . InInternational Conference on Cyberworlds (CW’07), NSAGEM, pages

437–446, October 2007.4, 6, 8

[12] Rachida Amjoun and Wolfgang Straßer. Predictive-spectral compression of dy-

namic 3d meshes. In2nd International Conference on Computer Graphics Theory

(Grapp), Mars 2007.4, 7, 8

[13] Rachida Amjoun and Wolfgang Straßer. Predictive-dct coding for 3d mesh se-

quences compression.Journal of Virtual Reality and Broadcasting, 5(6), July 2008.

4, 7, 8

[14] Rachida Amjoun and Wolfgang Straßer. Segmentation andcompression of ani-

mated meshes. Technical report, Wilhelm Schickard Institute for Computer Sci-

ence, Graphical-Interactive Systems (WSI/GRIS), University of Tübingen, 2009.

6, 8

[15] Rachida Amjoun and Wolfgang Straßer. Single-rate nearlossless compression of

animated geometry.Journal of Computer-Aided Design, 2009.4, 6, 8

[16] Marco Attene, Bianca Falcidieno, and Michela Spagnuolo. Hierarchical mesh seg-

mentation based on fitting primitives.Vis. Comput., 22(3):181–193, 2006.45

[17] Chandrajit L Bajaj, Valerio Pascucci, and Guozhong Zhuang. Single resolution

compression of arbitrary triangular meshes with properties. InDCC ’99: Proceed-

ings of the Conference on Data Compression, page 247, Washington, DC, USA,

1999. IEEE Computer Society.28

[18] Ulug Bayazit, Ozgur Orcay, Umut Konur, and Fikret S. Gurgen. Predictive vector

quantization of 3-d mesh geometry by representation of vertices in local coordinate

systems.J. Vis. Comun. Image Represent., 18(4):341–353, 2007.30



BIBLIOGRAPHY 183

[19] Hector M. Briceno, Pedro V. Sander, Leonard McMillan, Steven Gortler, and

Hugues Hoppe. Geometry videos: a new representation for 3d animations. In

SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographicssymposium on

Computer animation, pages 136–146, 2003.44

[20] Bernard Chazelle, David P. Dobkin, Nadia Shouraboura,and Ayellet Tal. Strate-

gies for polyhedral surface decomposition: an experimental study. In SCG ’95:

Proceedings of the eleventh annual symposium on Computational geometry, pages

297–305, New York, NY, USA, 1995. ACM.45

[21] Yizong Cheng. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern

Anal. Mach. Intell., 17(8):790–799, 1995.46

[22] Peter H. Chou and Teresa H. Meng. Vertex data compression through vector quanti-

zation.IEEE Transactions on Visualization and Computer Graphics, 8(4):373–382,

2002.30, 33

[23] Mike M. Chow. Optimized geometry compression for real-time rendering. InVIS

’97: Proceedings of the 8th conference on Visualization ’97, pages 347–ff., Los

Alamitos, CA, USA, 1997. IEEE Computer Society Press.24, 30

[24] Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. Metro: Measuring error

on simplified surfaces.Comput. Graph. Forum, 17(2):167–174, 1998.52

[25] D. Cohen-Or, R. Cohen, and R. Irony. Multi-way geometryencoding. 2002. Tech-

nical Report.3, 57, 67

[26] G Collins and A Hilton. A rigid transform basis for animation compression and

level of detail. InProceedings of the IMA Conference on Vision, Video and Graph-

ics, pages 21–28, 2005.39

[27] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward feature

space analysis. volume 24, pages 603–619. IEEE Computer Society, 2002.46

[28] Michael Deering. Geometry compression. InSIGGRAPH ’95: Proceedings of the

22nd annual conference on Computer graphics and interactive techniques, pages

13–20, New York, NY, USA, 1995. ACM.24, 30

[29] N. Faller. An adaptive system for data compression.Record of the 7th Asilomar

Conference on Circuits, Systems, and Computers, pages 593–597, 1973.15



184 BIBLIOGRAPHY

[30] R.G. Gallagher. Variations on a theme by huffman.IEEE Transactions on Infor-

mation Theory, IT-24(6):668–674, 1978.13, 15

[31] Pierre-Marie Gandoin and Olivier Devillers. Progressive lossless compression of

arbitrary simplicial complexes. InSIGGRAPH ’02: Proceedings of the 29th annual

conference on Computer graphics and interactive techniques, pages 372–379, New

York, NY, USA, 2002. ACM.37

[32] Michael Garland, Andrew Willmott, and Paul S. Heckbert. Hierarchical face clus-

tering on polygonal surfaces. InI3D ’01: Proceedings of the 2001 symposium on

Interactive 3D graphics, pages 49–58, New York, NY, USA, 2001. ACM.45

[33] Arthur D. Gregory, Andrei State, Ming C. Lin, Dinesh Manocha, and Mark A.

Livingston. Interactive surface decomposition for polyhedral morphing.The Visual

Computer, 15(9):453–470, 1999.45

[34] Lavoue Guillaume, Dupont Florent, and Baskurt Atilla.Curvature tensor based tri-

angle mesh segmentation with boundary rectification. InCGI ’04: Proceedings of

the Computer Graphics International, pages 10–17, Washington, DC, USA, 2004.

IEEE Computer Society.45

[35] S. Gumhold and W. Straßer. Real time compression of triangle mesh connectivity.

In SIGGRAPH ’98 Conference Proceedings, pages 133–140, 1998.25

[36] Stefan Gumhold and Rachida Amjoun. Higher order prediction for geometry com-

pression. InInternational Conference On Shape Modelling And Applications,

pages 59–68, 2003.3, 6, 8

[37] Johannes Günther, Heiko Friedrich, Ingo Wald, Hans-Peter Seidel, and Philipp

Slusallek. Ray tracing animated scenes using motion decomposition. Computer

Graphics Forum, 25(3):517–525, September 2006. (Proceedings of Eurographics).

4, 46

[38] Sumit Gupta, Kuntal Sengupta, and Ashraf A. Kassim. Compression of dynamic 3d

geometry data using iterative closest point algorithm.Comput. Vis. Image Underst.,

87(1-3):116–130, 2002.4, 40, 46, 47, 70

[39] Igor Guskov and Andrei Khodakovsky. Wavelet compression of parametrically

coherent mesh sequences. InACM SIG./Eurog. symp. on Comput. anim., pages

183–192, 2004.ISBN. 44, 114, 125, 142



BIBLIOGRAPHY 185

[40] Igor Guskov, Kiril Vidimce, Wim Sweldens, and Peter Schröder. Normal meshes.

In Kurt Akeley, editor,Siggraph 2000, Computer Graphics Proceedings, pages

95–102. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2000. 37

[41] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning

graphs. InSupercomputing ’95: Proceedings of the 1995 ACM/IEEE conference

on Supercomputing (CDROM), page 28, New York, NY, USA, 1995. ACM.40, 47,

70

[42] Hugues Hoppe. Progressive meshes. InProceedings of the 23rd annual confer-

ence on Computer graphics and interactive techniques, pages 99–108. ACM Press,

1996. ISBN 0-89791-746-4.23, 35, 36

[43] Hugues Hoppe. Efficient implementation of progressivemeshes.Computers and

Graphics, 22(1):27–36, 1998.37

[44] David A. Huffman. A method for the construction of minimum-redundancy codes.

Proceedings of the Institute of Radio Engineers, 40(9):1098–1101, 9 1952.12

[45] Lawrence Ibarria and Jarek Rossignac. Dynapack: space-time compression of the

3d animations of triangle meshes with fixed connectivity. InSIG./Eurog. Symp. on

Computer Animation, pages 126–135. Eurographics Association, 2003.100, 122,

142

[46] Keisuke Inoue, Takayuki Itoh, Atsushi Yamada, Tomotake Furuhata, and Kenji

Shimada. Face clustering of a large-scale cad model for surface mesh generation.

Computer-Aided Design, 33(3):251–261, 2001.45

[47] M. Isenburg and P. Alliez. Compressing polygon mesh geometry with parallelo-

gram prediction. InIEEE Visualization ’02 Conference Proceedings, pages 141–

146, 2002.34

[48] Martin Isenburg and Stefan Gumhold. Out-of-core compression for gigantic poly-

gon meshes.ACM Trans. Graph., 22(3):935–942, 2003.ISSN 0730-0301.37

[49] Martin Isenburg, Peter Lindstrom, and Jack Snoeyink. Lossless compression of

predicted floating-point geometry.Computer-Aided Design, 37(8):869–877, 2005.

34

[50] Martin Isenburg and Jack Snoeyink. Mesh collapse compression. InSCG ’99:

Proceedings of the fifteenth annual symposium on Computational geometry, pages

419–420. ACM, 1999.28



186 BIBLIOGRAPHY

[51] Martin Isenburg and Jack Snoeyink. Face fixer: compressing polygon meshes with

properties. InSIGGRAPH ’00: Proceedings of the 27th annual conference on Com-

puter graphics and interactive techniques, pages 263–270. ACM Press/Addison-

Wesley Publishing Co., 2000.26

[52] Martin Isenburg and Jack Snoeyink. Spirale reversi: reverse decoding of the edge-

breaker encoding.Computational Geometry, 20(1-2):39–52, 2001.26

[53] Martin Isenburg and Jack Snoeyink. Early-split codingof triangle mesh connec-

tivity. In GI ’06: Proceedings of Graphics Interface 2006, pages 89–97, Toronto,

Ont., Canada, Canada, 2006. Canadian Information Processing Society.28

[54] Doug L. James and Christopher D. Twigg. Skinning mesh animations.ACM Trans-

actions on Graphics (SIGGRAPH 2005), 24(3), August 2005.4, 45, 46, 47, 70

[55] Euee S. Jang, James D. K. Kim, Seok Yoon Jung, Mahnjin Han, and Sang Oak

Woo. Interpolator data compression for mpeg-4 animation.IEEE Trans. Circuits

Syst. Video Techn., 14(7):989–1008, 2004.42

[56] Yang J.H., Kim C.S., and Lee S.U. Compression of 3-d triangle mesh sequences

based on vertex-wise motion vector prediction.Cir. Sys Video, 12(12):1178–1184,

December 2002.ISSN 1051-8215.100, 122

[57] Zhongping Ji, Ligang Liu, Zhonggui Chen, and Guojin Wang. Easy mesh cutting.

Computer Graphis Forum, 25(3):283–291, 2006.45

[58] Dan Julius, Vladislav Kraevoy, and Alla Sheffer. D-charts: Quasi-developable

mesh segmentation. InComputer Graphics Forum, Proceedings of Eurographics

2005, volume 24, pages 581–590, Dublin, Ireland, 2005. Eurographics, Blackwell.

45

[59] Felix Kälberer, Konrad Polthier, Ulrich Reitebuch, and Max Wardetzky. Freelence

- coding with free valences.Computer Graphics Forum, 24(3):469–478, 2005.28,

34

[60] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth

Silverman, and Angela Y. Wu. An efficient k-means clusteringalgorithm: Analysis

and implementation.IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 24(7):881–892, 2002.47, 70



BIBLIOGRAPHY 187

[61] Zachi Karni and Craig Gotsman. Spectral compression ofmesh geometry. In

SIGGRAPH ’00: Proceedings of the 27th annual conference on Computer graphics

and interactive techniques, pages 279–286, 2000.34, 45

[62] Zachi Karni and Craig Gotsman. Compression of soft-body animation sequences.

Computer and Graphics, 28(1):25–34, 2004.ISSN 0097-8493.43, 114, 125, 128,

142, 149

[63] Matthias Kautzner Peter Eisert Thomas Wiegand KarstenMuller, Aljoscha Smolic.

Predictive compression of dynamic 3d meshes. InInternational Conference on

Image Processing, pages 621–624, 2005.40, 100, 122

[64] Sagi Katz, George Leifman, and Ayellet Tal. Mesh segmentation using feature

point and core extraction.The Visual Computer, 21(8-10):649–658, 2005.45, 46

[65] Sagi Katz and Ayellet Tal. Hierarchical mesh decomposition using fuzzy clustering

and cuts. InSIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pages 954–961, New

York, NY, USA, 2003. ACM.45

[66] Andrei Khodakovsky and Igor Guskov. Compression of normal meshes.Geometric

Modeling for Scientific Visualization. Springer-Verlag, 2003., 2003.37

[67] Andrei Khodakovsky, Peter Schröder, and Wim Sweldens.Progressive geometry

compression. In Kurt Akeley, editor,Siggraph 2000, Computer Graphics Proceed-

ings, pages 271–278. ACM Press / ACM SIGGRAPH / Addison Wesley Longman,

2000.37

[68] Donald E. Knuth. Dynamic huffman coding.J. Algorithms, 6(2):163–180, 1985.

15

[69] Vladislav Kraevoy and Alla Sheffer. Cross-parameterization and compatible

remeshing of 3d models.ACM Trans. Graph., 23(3):861–869, 2004.45

[70] B. Kronrod and C. Gotsman. Optimized compression of triangle mesh geometry

using prediction trees. InInternational Symposium on 3D Data Processing Visual-

ization and Transmission, 2002.28, 33

[71] Yu-Kun Lai, Qian-Yi Zhou, Shi-Min Hu, and Ralph R. Martin. Feature sensitive

mesh segmentation. InSPM ’06: Proceedings of the 2006 ACM symposium on

Solid and physical modeling, pages 17–25, New York, NY, USA, 2006. ACM.45



188 BIBLIOGRAPHY

[72] Guillaume Lavoué, Florent Dupont, and Atilla Baskurt.A new cad mesh seg-

mentation method, based on curvature tensor analysis.Computer-Aided Design,

37(10):975–987, September 2005.45

[73] Eung-Seok Lee and Hyeong-Seok Ko. Vertex data compression for triangular

meshes. InPG0́0: Proceedings of the 8th Pacific Conference on Computer Graph-

ics and Applications, page 225, Washington, DC, USA, 2000. IEEE Computer

Society.30, 32, 33, 52, 55

[74] H. Lee, P. Alliez, and M. Desbrun. Angle-analyzer: A triangle-quad mesh codec.

In Eurographics ’02 Conference Proceedings, pages 383–392, 2002.34, 67

[75] Tong-Yee Lee, Ping-Hsien Lin, Shaur-Uei Yan, and Chun-Hao Lin. Mesh decom-

position using motion information from animation sequences: Animating geomet-

rical models.Comput. Animat. Virtual Worlds, 16(3-4):519–529, 2005.46

[76] Tong-Yee Lee, Yu-Shuen Wang, and Tai-Guang Chen. Segmenting a deforming

mesh into near-rigid components.Vis. Comput., 22(9):729–739, 2006.46, 47, 70

[77] Jerome Edward Lengyel. Compression of time-dependentgeometry. InProceed-

ings of ACM symposium on Interactive 3D graphics, pages 89–95. ACM Press,

1999. ISBN 1-58113-082-1.4, 39, 46, 47, 70

[78] Jiankun Li, Jin Li, and C. C. Jay Kuo. Progressive compression of 3d graphic

models. InInternational Conference on Multimedia Computing and Systems, pages

135–142, 1997.37

[79] Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vectorquantizer design.IEEE

Transactions on communications, 28(1):84–95, January 1980.30

[80] Rong Liu and Hao Zhang. Segmentation of 3d meshes through spectral cluster-

ing. In PG ’04: Proceedings of the Computer Graphics and Applications, 12th

Pacific Conference, pages 298–305, Washington, DC, USA, 2004. IEEE Computer

Society.45

[81] Rong Liu and Hao Zhang. Mesh segmentation via spectral embedding and con-

tour analysis.Computer Graphics Forum (Special Issue of Eurographics 2007),

26(3):385–394, 2007.45

[82] Stuart P. Lloyd. Least squares quantization in PCM.IEEE Transactions on Infor-

mation Theory, IT-28(2):129–137, March 1982.43, 45



BIBLIOGRAPHY 189

[83] Khaled Mamou, Titus Zaharia, and Françoise J. Prêteux.A preliminary evaluation

of 3d mesh animation coding techniques. InMathematical Methods in Pattern and

Image Analysis, volume 5916, pages 44–55, August 2005.22

[84] Khaled Mamou, Titus Zaharia, and Françoise Prêteux. A skinning approach for

dynamic 3d mesh compression.Computer Animation Virtual Worlds, 17, 2006.

ISSN 1546-4261.4, 45, 46

[85] Khaled Mamou, Titus B. Zaharia, and Françoise J. Prêteux. Multi-chart geometry

video: A compact representation for 3d animations. In3DPVT, pages 711–718,

2006.47, 70

[86] Alan P. Mangan and Ross T. Whitaker. Partitioning 3d surface meshes using water-

shed segmentation.IEEE Transactions on Visualization and Computer Graphics,

5(4):308–321, 1999.45

[87] K. Muller, A. Smolic, M. Kautzner, P. Eisert, and T. Wiegand. Rate-distortion-

optimized predictive compression of dynamic 3d mesh sequences.Signal Process:

Image Communication, 21(9):812–828, October 2006.40

[88] D. L. Page, A.F. Koschan, and M. A. Abidi. Perception-based 3d triangle mesh

segmentation using fast marching watersheds.Computer Vision and Pattern Recog-

nition, IEEE Computer Society Conference on, 2:27, 2003.45

[89] Renato Pajarola and Jarek Rossignac. Compressed progressive meshes.IEEE

Transactions on Visualization and Computer Graphics, 6(1):79–93, 2000.36

[90] Xiang Pan, Xiuzi Ye, and Sanyuan Zhang. 3d mesh segmentation using a two-stage

merging strategy. InCIT, pages 730–733, 2004.45

[91] Marais Patrick, James Gain, and Dave Shreiner. Distance-ranked connectivity com-

pression of triangle meshes. InComputer Graphics Forum, volume 26, pages 871–

876, 2007.34

[92] Frederic Payan and Marc Antonini. Wavelet-based compression of 3d mesh se-

quences. InProceedings of IEEE ACIDCA-ICMI’2005, Tozeur, Tunisia, november

2005.44, 157

[93] Jingliang Peng and C.-C. Jay Kuo. Geometry-guided progressive lossless 3d mesh

coding with octree (ot) decomposition.ACM Trans. Graph., 24(3):609–616, 2005.

37



190 BIBLIOGRAPHY

[94] J.L. Peng, C.S. Kim, and C.C.J. Kuo. Technologies for 3dmesh compression: A

survey.JVCIR, 16(6):688–733, December 2005.22, 34

[95] Jovan Popovíc and Hugues Hoppe. Progressive simplicial complexes. InSIG-

GRAPH ’97: Proceedings of the 24th annual conference on Computer graphics

and interactive techniques, pages 217–224, New York, NY, USA, 1997. ACM

Press/Addison-Wesley Publishing Co.37

[96] J. Rossignac. Edgebreaker: Connectivity compressionfor triangle meshes.IEEE

Transactions on Visualization and Computer Graphics, 5(1):47–61, 1999.25

[97] J. Rossignac.Surface simplification and 3D geometry compression. Chapter 54 in

Handbook of Discrete and Computational Geometry 2004.22

[98] Jarek Rossignac and Andrzej Szymczak. Wrap&zip decompression of the connec-

tivity of triangle meshes compressed with edgebreaker.Comput. Geom. Theory

Appl., 14(1-3):119–135, 1999.26

[99] Amir Said. Introduction to arithmetic coding: theory and practice. Technical report,

2004.17

[100] Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. Texture map-

ping progressive meshes. InSIGGRAPH ’01: Proceedings of the 28th annual con-

ference on Computer graphics and interactive techniques, pages 409–416, New

York, NY, USA, 2001. ACM.45

[101] Pedro V. Sander, Zoë J. Wood, Steven J. Gortler, John Snyder, and Hugues Hoppe.

Multi-chart geometry images. InSymposium on Geometry Processing, pages 146–

155, 2003.45

[102] Mirko Sattler, Ralf Sarlette, and Reinhard Klein. Simple and efficient compression

of animation sequences. InACM SIG./Eurog. symp. on Computer animation, pages

209–217. ACM Press, 2005.ISBN 1-7695-2270-X.4, 43, 45, 46, 47, 70, 114, 125,

128, 142, 149

[103] Khalid Sayood.Introduction to data compression. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1996.12

[104] Ariel Shamir. A formulation of boundary mesh segmentation. In 3DPVT ’04: Pro-

ceedings of the 3D Data Processing, Visualization, and Transmission, 2nd Inter-

national Symposium, pages 82–89, Washington, DC, USA, 2004. IEEE Computer

Society.45



BIBLIOGRAPHY 191

[105] Ariel Shamir. A survey on mesh segmentation techniques. Computer Graphics

Forum, 27(6):1539–1556, September 2008.45

[106] Ariel Shamir and Valerio Pascucci. Temporal and spatial level of details for dy-

namic meshes. InVRST ’01: Proceedings of the ACM symposium on Virtual reality

software and technology, pages 77–84, New York, NY, USA, 2001. ACM.44

[107] Jerome M. Shapiro. Embedded image coding using zerotrees of wavelet coeffi-

cients. pages 124–141, San Francisco, CA, USA, 2001. MorganKaufmann Pub-

lishers Inc.37

[108] Alla Sheffer. Model simplification for meshing using face clustering.Computer-

Aided Design, 33(13):925–934, 2001.45

[109] Dinesh Shikhare, Sushil Bhakar, and Sudhir P. Mudur. Compression of large 3d

engineering models using automatic discovery of repeatinggeometric features. In

VMV ’01: Proceedings of the Vision Modeling and Visualization Conference 2001,

pages 233–240. Aka GmbH, 2001.34

[110] Shymon Shlafman, Ayellet Tal, and Sagi Katz. Metamorphosis of polyhedral sur-

faces using decomposition. InComputer Graphics Forum, pages 219–228, 2002.

45

[111] A. Smolic, R. Sondershaus, N. Stefanoski, L. Vasa, K. Mueller, J. Ostermann, and

T. Wiegand. A survey on coding of static and dynamic 3D meshes, volume 0.

Springer Verlag, dez 2007.37

[112] Olga Sorkine, Daniel Cohen-Or, and Sivan Toledo. High-pass quantization for

mesh encoding. InProceedings of the Eurographics/ACM SIGGRAPH Symposium

on Geometry Processing, pages 42–51. Eurographics Association, 2003.34

[113] Nikolce Stefanoski and Joern Ostermann. Connectivity-guided predictive com-

pression of dynamic 3d meshes. InInternational Conference on Image Processing,

pages 2973–2976, oct 2006.42, 100, 142

[114] G. Taubin and J. Rossignac. Geometric compression through topological surgery.

ACM Transactions on Graphics, 17(2):84–115, 1998.31

[115] Gabriel Taubin, André Guéziec, William Horn, and Francis Lazarus. Progressive

forest split compression. InSIGGRAPH ’98: Proceedings of the 25th annual con-

ference on Computer graphics and interactive techniques, pages 123–132, New

York, NY, USA, 1998. ACM.36



192 BIBLIOGRAPHY

[116] Gabriel Taubin and Jarek Rossignac. Geometric compression through topological

surgery.ACM Trans. Graph., 17(2):84–115, 1998.24

[117] Costa Touma and Craig Gotsman. Triangle mesh compression. In Graphics Inter-

face, pages 26–34, 1998.3, 27, 31, 32, 33, 34, 35, 67, 114, 125, 131, 142

[118] G. Turan. Succinct representations of graphs.Discrete Applied Math, 8:289–294,

1984.24

[119] Miguel Vieira and Kenji Shimada. Surface mesh segmentation and smooth surface

extraction through region growing.Comput. Aided Geom. Des., 22(8):771–792,

2005.45

[120] Jeffrey Scott Vitter. Design and analysis of dynamic huffman codes. J. ACM,

34(4):825–845, 1987.15

[121] M. Wagner and D. Saupe. Rd-optimization of hierarchical structured adaptive vec-

tor quantization for video coding. InProceedings of IEEE on Data Compression,

page 576, 2000.104, 113

[122] T. A. Welch. A technique for high-performance data compression. volume 17,

pages 8–19, Los Alamitos, CA, USA, 1984. IEEE Computer Society Press.10

[123] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for data

compression.Communications of the ACM, 30(6):520–540, 1987. ISSN 0001-

0782.26, 57, 101, 109, 124

[124] Jianhua Wu and Leif Kobbelt. Structure recovery via hybrid variational surface

approximation.Comput. Graph. Forum, 24(3):277–284, 2005.45

[125] Hitoshi Yamauchi, Seungyong Lee, Yunjin Lee, Yutaka Ohtake, Alexander

Belyaev, and Hans-Peter Seidel. Feature sensitive mesh segmentation with mean

shift. In SMI ’05, pages 238—245, Washington, DC, USA, 2005. IEEE Computer

Society.45

[126] Zhidong Yan, Sunil Kumar, and C.-C. Jay Kuo. Error-resilient coding of 3-d

graphic models via adaptive mesh segmentation.IEEE Trans. Circ. Syst. Video

Tech., 11(7):860–873, 2001.ISSN 1051-8215.73, 121

[127] Eugene Zhang, Konstantin Mischaikow, and Greg Turk. Feature-based surface

parameterization and texture mapping.ACM Trans. Graph., 24(1):1–27, 2005.45



BIBLIOGRAPHY 193

[128] Hao Zhang and Rong Liu. Mesh segmentation via recursive and visually salient

spectral cuts. InProc. of Vision, Modeling, and Visualization, pages 429–436,

2005.45

[129] Kun Zhou, John Snyder, Baining Guo, and Heung-Yeung Shum. Iso-charts:

Stretch-driven mesh parameterization using spectral analysis. In Symposium on

Geometry Processing, pages 47–56, 2004.45

[130] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data com-

pression.IEEE Transactions on Information Theory, 23:337–343, 1977.10

[131] Malte Zöckler, Detlev Stalling, and Hans-Christian Hege. Fast and intuitive gener-

ation of geometric shape transitions.The Visual Computer, 16(5):241–253, 2000.

45

[132] E. Zuckerberger. Polyhedral surface decomposition with applications.Computers

and Graphics, 26(5):733–743, October 2002.45


	Zusammenfassung
	Abstract
	1 Introduction
	1.1 Problem Statement
	1.2 Overview of Thesis
	1.3 Contributions of Thesis

	2 Background
	2.1 Compression
	2.1.1 Lossless Compression
	2.1.2 Lossy Compression

	2.2 General Compression Techniques
	2.2.1 Huffman Coding
	2.2.2 Arithmetic Coding

	2.3 3D Data Representation
	2.3.1 Static 3D Object
	2.3.2 Dynamic 3D Object

	2.4 Prior Mesh Compression Techniques
	2.4.1 Static Mesh Compression
	2.4.1.1 Single-Rate Encoders
	2.4.1.2 Progressive Compression 

	2.4.2 Animated Mesh Compression
	2.4.2.1 Clustering-based Compression
	2.4.2.2 Vertex-Prediction based Compression
	2.4.2.3 PCA-based Compression
	2.4.2.4 Wavelet-based Compression

	2.4.3 Level of Details for Dynamic Meshes

	2.5 Segmentation
	2.5.1 Static Mesh Segmentation
	2.5.2 Dynamic Mesh Segmentation
	2.5.3 Discussion and Summary


	3 Compression of Static Meshes: Higher Order Predictor
	3.1 Introduction
	3.2 Geometry Encoding and Decoding Algorithm
	3.2.1 Avoidance of Error Accumulation
	3.2.2 Local Coordinate System
	3.2.3 Tangential Prediction
	3.2.4 Binary Coding of Coordinates

	3.3 Higher Order Prediction
	3.3.1 Gathering of Fit Vertices
	3.3.2 Higher Order Surface Fitting
	3.3.3 Intersecting Higher Order Surfaces with a Tangential Circle

	3.4 Alternative Approaches
	3.4.1 Fitting of Implicit Function
	3.4.2 Sphere Fitting

	3.5 summary

	4 Animated 3D Object Segmentation
	4.1 Introduction
	4.2 Overview
	4.3 Definitions
	4.4 Region Growing based Approach
	4.4.1 Segment Initialization
	4.4.2 Seed Selection
	4.4.3 Mesh Growing Process
	4.4.4 Results

	4.5 Clustering based Segmentation
	4.5.1 Initialization and Seed Selection
	4.5.2 Local Coordinate Frames Construction
	4.5.3 Vertex Clustering
	4.5.4 Results

	4.6 Adaptive Processing
	4.6.1 Results

	4.7 Evaluation of Segmentation Approaches
	4.8 Computation Time
	4.9 Discussion and Summary

	5 Connectivity-Guided Compression of 3D dynamic Meshes
	5.1 Introduction
	5.2 Predictive Coding of the animated vertices
	5.3 System Overview of SplitCoder
	5.3.1 Mesh Traversal
	5.3.2 Geometry Coding
	5.3.2.1 Transforming World into Cylindrical Coordinates
	5.3.2.2 Tangential and Normal Components Prediction
	5.3.2.3 Binary Coding of Coordinates

	5.3.3 Geometry Decoding

	5.4 summary

	6 Motion based PCA Compression
	6.1 Introduction
	6.2 Overview
	6.3 Compression pipeline
	6.3.1 Segmentation
	6.3.2 Transforming Vertex Positions into the Local Space
	6.3.3 Compression of Local Coordinate Frames
	6.3.4 Principal Component Analysis
	6.3.5 Quantization and Arithmetic Coder

	6.4 Decompression
	6.5 Rate-Distortion Optimization for PCA based Coding
	6.5.1 Description of the Problem
	6.5.2 Problem Statement
	6.5.3 Incremental Computation of the Rate-Distortion Optimization

	6.6 Compression Parameters
	6.7 Conclusion

	7 Predictive-DCT based Compression
	7.1 Introduction
	7.2 Overview
	7.3 Compression Pipeline
	7.3.1 Local Coordinate Frames
	7.3.1.1 Seed Triangles Selection
	7.3.1.2 Local Coordinate Frame Construction

	7.3.2 Motion in LCF based Clustering
	7.3.3 Differential Coding of LCFs
	7.3.4 Spatial-Temporal Predictive Coding
	7.3.5 DCT Coding
	7.3.6 Quantization and Arithmetic Coder
	7.3.7 Reconstruction

	7.4 Conclusion

	8 Evaluation and Comparison
	8.1 Implementations
	8.2 Input Datasets
	8.3 Measurement
	8.4 Higher Order Prediction for Static Geometry Coding
	8.5 Near-lossless Predictive Coding for Dynamic Meshes
	8.5.1 Evaluation of Different Predictors
	8.5.1.1 Tangential components
	8.5.1.2 Normal component

	8.5.2 SplitCoder vs. State-of Art

	8.6 RLPCA based Compression for Dynamic Meshes
	8.6.1 Compression Parameters
	8.6.2 RLPCA vs. LPCA
	8.6.3 RLPCA and ORLPCA vs. State of Art
	8.6.4 Timings

	8.7 Predictive-DCT based Compression
	8.7.1 Compression Parameters
	8.7.2 PDCT vs. State of Art

	8.8 Comparison of the Proposed Methods 

	9 Conclusion and Future Work
	Bibliography

