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Zusammenfassung

Mit den wachsenden Mdglichkeiten von Modellierungssofewand 3D Scannern ist
die Anzahl verfigbarer 3D Modelle stetig gewachsen. Aniomen von 3D Modellen sind
weltweit verbreitet und bilden heute eine der gréf3ten Arduagen digitaler Medientech-
nologie. Um einen hohen Realitdtsgrad zu erreichen, wekderplexe und hochdetail-
lierte 3D Objekte verwendet - moglicherweise mit Millionemm Polygonen und Punkten
- fur lange Sequenzen. Die Ursprungsformate solch groReM8DBelle bendtigen viel
Speicherplatz und Bandbreite.

Das Problem des Speicherns und Ubertragens ist gut untéfénstatische Meshes.
Hierflr gibt es eine grol3e Anzahl an erfolgreichen Kompoesserfahren. Das Haupt-
ziel dieser Dissertation ist das Entwickeln neuer Verfahie die Komprimierung sta-
tischer und dynamischer 3D Modelle, welche durch Dreieeksnreprasentiert werden,
und neuer Segmentierungsverfahren, welche notwendigaietfiziente Komprimieren
animierter 3D Modelle sind.

Die Arbeit gliedert sich in funf Teile. Der erste Teil behattdDefinitionen, traditio-
nelle Kompressionsverfahren und Vorarbeiten auf dem GdbreKompression statischer
und dynamischer Meshes sowie ihrer Segmentierung.

Der zweite Teil stellt ein Verfahren fur statische Geongewor. Es werden nicht die
drei Koordinaten eines Punktes kodiert, sondern seineetarage und normale Kompo-
nenten. Neue Vorhersagetechniken werden eingefuhrtheelas Normalenkodieren ver-
bessern.

Der dritte Teil behandelt Segmentierungen von sich zeitierandernder Meshgeo-
metrie. Drei neue Verfahren werden hier vorgestellt: EigiBe Growing Verfahren, ein
statisches Clustering und ein adaptives Clustering. Diegeilen die dynamischen Mes-
hes in quasi-rigide Bereiche unter Verwendung einer lok&learakteristik.

Der vierte Teil stellt Verfahren fur sich zeitlich verandde Meshgeometrie mit kon-
stanter Konnektivitat vor.

Der erste Algorithmus ist eine fast verlustlose SingleeRé&mpression fur animierte
Meshes. Er verallgemeinert das vorgestellte VerfahreigiiKodierung statischer Mes-
hgeometrie. Er zeigt, dass die lokalen Koordinatensysteimegroferes zeitliches und
raumliches Clustering-Verhalten aufweisen als das Welthoatensystem. Die Kombi-



nation beider Clustering-Verfahren fuhrt zu einer ertei®n Reduktion der Bitrate. Ver-
schiedene Prediktoren werden vorgestellt fir tangenKalmponenten und Normalen-
komponenten.

Der zweite neue Algorithmus ist eine auf der Relative-Le@ahcipal-Component-
Analysis (RLPCA) basierende Kompression. Er verbindetwtagestellte Clustern mit
LPCA, ausgefiuhrt im lokalen Koordinatensystem. Es wirdeggtz dass eine einfache Ab-
bildung der originalen Koordinaten in ein lokales Koorderasystem jede Region quasi-
invariant Gber die Zeit und damit sehr gut komprimierbar R@A macht. Um den Algo-
rithmus weiter zu verbessern, wird eine Rate-Distortiotit®ierung eingefuhrt.

Der dritte Kompressionsalgorithmus basiert auf predédivCodern und Discrete-
Cosinus-Transform-Codern (PDCT). Nach dem Clustern windpeediktives Kodieren
durchgefuhrtim lokalen Koordinatensystem jedes Clusteetches zu sehr kleinen Delta-
Vektoren fuhrt (prediktive Fehler). Die Delta-Vektorennden dann in den Frequenzraum
transformiert mit DCT. Die resultierenden DCT Koeffiziem&@nd besser komprimierbar
als die Vektorkoordinaten. Die originale Mesh-Sequenznkegkonstruiert werden von
nur wenigen DCT Koeffizienten, welche ungleich Null sindnetgrof3en Verlust an visu-
eller Qualitat.

Abschliel3end diskutiert der funfte Teil die Ergebnisse ateldlt experimentelle Er-
gebnisse vor. Es wird gezeigt, dass die vorgestellten NMegfaden Vergleich mit anderen
aktuellen Arbeiten standhalten.



Abstract

With the advancements and variety of sources to model 30ctsbgeich as scanning
technologies and modelling softwares, 3D models are betpmvidely available. An-
imation also attracted worldwide attention and has beconead the most successful
application of digital media technology. As a result, it istabecoming easier to acquire
animated models. In order to achieve a higher degree osreathore complex and highly
detailed three-dimensional objects — possibly out of omlé of vertices and polygons —
are created with large sequences. When storing, downlgadiruploading these 3D se-
quences of objects in their standard forms over a networge ldata rows consume large
amounts of storage space and network bandwidth.

This problem of storage and transmission has been widetiextior static meshes
and wealth of successful compression schemes have beaysptbpl he main goal of this
thesis is to develop new powerful compression techniquesdioce storage requirements
and transmission times of static and dynamic 3D models septed by triangulated mesh
and introduce new and efficient animation segmentationcagmbes that are very useful
for different purposes, typically 3D dynamic mesh compiass

This work covers five main parts. The first part presents defirg, traditional data
compression techniques and reviews the existing techsiguéhe fields of static and
dynamic mesh compression and segmentation.

The second part introduces a new algorithm for static geyrdeta. Instead of encod-
ing the three coordinates of a vertex, its tangential andhabcomponents are encoded.
New advanced prediction techniques are proposed to impheveormal encoding.

The third part concerns segmentation of time varying mesimgéry. Three new
approaches have been developed: A region growing basedaabpas well as static and
adaptive clustering based methods. These break down trerdgmmeshes into quasi-
rigid parts using local characteristic.

The fourth part presents successive contributions to temgnrg mesh geometry com-
pression where the connectivity remains constant over.time

The first new algorithm is a single rate near-lossless cossjpya for animated meshes.
It generalizes the proposed static mesh geometry codirngholivs that the local spaces
exhibit higher temporal and spatial clustering behaviantthe world space, and the com-



bination of both clusterings yield significant reductiomitirates. Different predictors are
proposed for tangential and normal components.

The second novel algorithm is a Relative Local Principal @orent Analysis (RLPCA)
based-compression. It combines the proposed clusteriig \WICA, performed in the lo-
cal space. We will show that simply mapping the original cliates into local space
makes each region quasi-invariant over time and well-cesgble by using PCA. To
further enhance this algorithm, a rate-distortion optatian is introduced.

The third compression algorithm is based on Predictive aisdrBte Cosine Trans-
form coders (PDCT). After, clustering process, predictioding is performed in the local
space of each cluster resulting in very small delta vectorsdiction errors). The delta
vectors are then transformed into the frequency domairgu3@T. The resulting DCT
coefficients are more compressible than the vector coasraend the original sequence
of meshes can be reconstructed from only a few non-zero DEfficents without sig-
nificant loss in visual quality.

Finally, the fifth part discusses and provides the expertalersults. We will show
that our methods are competitive when compared to the efétee-art techniques.
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CHAPTER 1

Introduction

Computer graphics is one of the most exciting sectors in eaengsciences. This
sector is growing rapidly, possibly more than any other elspiecomputer technology and
increasedly incorporated in a various domains such astg@eangineering and medical
applications, games, movies for special effects and aeinfdtns. In these applications,
the use of the computer graphics would not be possible witBBugeometric data or
more generally 3D objects. The shape of these objects caroleled through irregular
polygonal meshes, a set of faces connected with points. Tds common geometric
representation used by the designer either in the statit thiei dynamic case, is triangle
meshes to suit the requirements of computer graphics vzatiain systems. There are
also other popular representations include parametriaces, point sampled surfaces,
implicit surfaces and voxel based representation.

Computer animation is one of the most highly regarded pdrt®mputer graphics.
It attracted worldwide attention and has become one of thet sweccessful applications
of digital media technology. Computer animation has rettohized the world of movies
and TV, and has built the computer games industry. It hasfalsad its way into many
other fields such as marketing, arts, sciences, scientdfualization and flight simulation.

Animation allows the creation of more realistic and natw@@nes, a more complete
comprehension of complex problems, the display of charsdteat never existed, and
access to places that are difficult or impossible to treaather words, it transports the
users into another world where the impossible becomesigessi

Three dimensional animation simply gives life to static 3Beats, creating a se-



2 Introduction

guence of static meshes each of which represents one fraxday, Tanimation technology
has also become more sophisticated and accessible. Morés\egpplications have be-
come more and more widespread and often demand animated @&lsvamd scenes with
a high degree of realism. As 3D animation becomes more tieadisd more complex, the
corresponding meshes become bigger and bigger, consunuregand more space. It is
therefore indispensable to compress 3D static and animdétasets.

1.1 Problem Statement

With the advancements and variety of sources to generatel83@dobjects such as
scanning technologies and modelling softwares, 3D modeldacoming widely avail-
able. In order to achieve a higher degree of realism, morgyt®oand highly detailed
3D objects possibly out of millions of vertices are creafBloe standard representation of
triangle meshes uses a list of floating point values to descthe vertex positions (geom-
etry), a list of integer values that specify the vertex irgi¢connectivity), and sometimes,
properties such as normals and textures coordinates wheckpgcified in similar way.
When storing, downloading, or uploading these 3D objectheair standard forms over a
network, large data rows consume large amounts of storage smd network bandwidth.

This problem often arises in animation. Today, it is easi@dquire animated models.
In parallel, there is rapidly increase in the use of thesenated objects in many appli-
cations (particulary in computer generated movies, speffiects films, and computer
games). Finally, the models are becoming more realistierimre complex. To store an
animated objet, i.e. a sequence of meshes, one has to seoreest for each frame. As-
suming that the connectivity is constant over time and oelyrgetry information changes
over time, the representation of the geometry informatiotie sequence will requiré’
times the information of each frame, i.€7,x V' x 3 x 32 bits, whereF' andV" are the
number of frames and vertices, respectively. Each one dhtiee coordinates of a frame
is represented usirgp bits. For large sequences and detailed and high accuracglsjod
the uncompressed representation results in large filesweriE expensive to store or to
deliver over networks.

The problem of storage and transmission has been wideliestéat static meshes and
a wealth of successful compression schemes has been pdopdsevever, the current
static techniques for the compression of sequences of meéstiependently are ineffi-
cient. Key-frameanimation is one of the most famous traditional and domiaaimhation
representations used in the industry to represent the animeompactly. A set of key
frames are chosen to describe certain important key posé® ianimation sequence at
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certain times. Then all frames in-between are generated) usierpolation techniques.
For such applications, even the number of key-frames camrbelarge, requiring a large
memory space and effective compression techniques. Mamyitues have been pro-
posed and there is still room for better encodings of anichgemmetry.

The goal of this thesis is to develop new powerful compresgchniques to reduce
storage requirements and transmission times of staticyamahaic 3D models represented
by triangulated meshes. This type of data is used in many atengraphics applications.

The segmentation of deforming triangular meshes is a nesarel area. It is rapidly
becoming important in many computer graphics applicatiolmsthe context of com-
pression, its is used to achieve better compression peafucen Typically, it reduces
the amount of time needed to handle or transform large datakecan also reduce the
amount of time needed to extract the coherent rigid partshvieiads to a more compact
representation. This thesis introduces several new aralesffianimation segmentation
approaches that can be useful not only for compression saotfat different purposes.

Static meshes

Early work in this field concentrated on finding efficient aqpdimal connectivity cod-
ing schemes for static meshes. They encode the connegtifatynation first then they
encode the geometry information in terms of traversal oused to encode the connec-
tivity. Later, the geometry-driven compression techngjemerged.

Most of the proposed paradigms to reduce the amount of vpdsitions use the fol-
lowing combination: prediction to exploit the high corrabe between the positions of
adjacent mesh vertices, quantization to reduce the flogibngt to finite precision, and
entropy encoding to reduce the statistical redundanciefolw the same paradigm and
propose new approaches for the static vertex positionsn&wadea is to split the coding
into tangential and normal encodin8g 8]. For tangential encoding, we investigated the
current approached.17, 25]. For the normal encoding, we introduced higher order pre-
dictors based on surface and sphere fitting. In surfacegjtive examined two approaches
to fit polygonal surfaces to a set of points using explicit emnglicit polynomial functions.

Dynamic meshes

During an animation, the vertex positions (geometry) cleafigm frame to frame.
Sometimes, the connectivity or the number of vertices alap change in time. Through-
out this dissertation, we assume that the sequence of melaess the same connectiv-
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ity and only the vertex positions change in time. The focusanimated meshes with
fixed connectivity may be justified by the fact that often theaation creators maintain
constant connectivity throughout the animation, in oraealtow for easy and efficient
manipulation of the sequence. Thus, the connectivity oftleeh is first defined, then the
vertices are moved or deformed depending on the way the &oima generated.

Often the meshes differ only slightly between neighboriragrfes, leading to a large
redundancy between frames (temporal redundancy) and eetmeaghboring vertices in
the same frame (spatial redundancy). In order to developrgaot representation that
significantly reduces the storage space and transmissiendf animated models, both
spatial and temporal coherence should be exploited. I @tbeds, the large amount of
inherent redundancy between frames should be eliminated.

This thesis introduces several compression approach@sioolossyor near-lossless
to lossyfor animated meshes of constant connectivity. For not l@ssypression, we
generalize the idea developed for static mesh compreskipt3]. The local coordinates
exhibit a high degree of clustering behavior not only in ghat also in the temporal
domain. However, a simple predictive-based encoding dfi eamponent gives a better
bit rate. For lossy compression, two algorithms are intoedu The first algorithm is
based on local Principal Component Analysis (PCA)10] and the second approach is
based on a predictive approach and Discrete Cosine TramgCT) [12, 13]. Both of
these two techniques are combined with a clustering approac

The choice or the design of a compression scheme involvds-ttis along several
features. Two of these features are: the compressed fil®@stbe compactness and the
amount of distortion introduced by the compression pracése better the quality, the
lower the compactness is.

Segmentation

3D Mesh segmentation is a process that partitions the mesheals that have the
same properties into regions. It has become a necessarintooimputer graphics and
geometric modelling and it is used for various applications

Recently, segmentation of deforming triangular mesheghased much interest and
it is used in several contexts in animation, typically, skinmg mesh animationsf], ray
tracingB7], and compressiorv[7, 38, 102 84).

While static mesh segmentation aims at detecting mearlipgits and breaks the
mesh into sub-meshes of similar features within a specifitaxa, 3D dynamic mesh seg-
mentation approaches exploit the temporal informationaxtifpon the mesh into quasi-
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rigid components.

Compared with the huge number of algorithms proposed fticsteeshes, segmenta-
tion is rarely used in the context of dynamic mesh compressimtext. Moreover, most
of the proposed methods are more suitable for skin meshemduliot efficient to or are
even inapplicable for deforming triangular meshes thaehats of motion, particulary in
context of compression.

This thesis develops novel segmentation approaches,rinatdependent of how the
animation is generated and can be useful not only for corspmesut also for other
applications.

The objective of partitioning the deforming mesh into negid components is to de-
crease the computational costs as well as to preserve thalgloape of the mesh because
some compression algorithms such as DCT and PCA basedepccalindestroy important
features of the mesh when very few PCA components or very f&% Poefficients are
used to recover the original datasets. Thus, it leads to @ swnpact representation and
one can achieve high compression rates with high recongtnuguality. In PCA based
coding [7, 10], we want to transform the nonlinear behavior of verticea tmear fashion
by grouping the vertices of similar motion into sets. Thenoaa efficiently perform the
PCA in each group. Thereby, few components can be encoddd thie global shape
is well preserved. In DCT based-coding that we combine witghgdredictive coding, the
segmentation allows an efficient prediction through time, @imereby, having vertices dis-
placements between two successive frames close to zere. atsr, the clustering will
preserve the global shape when DCT coding is performedié&iyain each cluster.

1.2 Overview of Thesis

This thesis describes new algorithms for static and anidndE: mesh compression,
yielding a significant reduction in bit-rates and introdsieenew, simple and efficient ani-
mation segmentation method that is very useful for compras3 hese contributions are
organized in the following chapters:

Chapter 2 presents some definitions and a description of some gereeedcoding
schemes. These are often used in compression pipelinesrad atfige. Then, it gives
a description of the geometric representation of 3D objactsof animation — the input
data for our algorithms. These are followed by a review asdudision of the most im-
portant published works on static and animated 3D objects.
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Chapter 3 describes a novel, near lossless geometry compressidmilee 36, 8.
The new geometry encoding strategy follows the predictbgiregy paradigm, and is based
on a region growing encoding order. Only the coordinateshefdorrection vectors are
encoded in a local coordinate system. The vertex coordirate expressed in term of
tangential and normal components. For the tangential coemgs encoding, we investi-
gated the parallelogram or multi-way prediction. For anriowed encoding of the normal
component, we introduce the so-called higher order priedicA higher order surface is
fit to the so far encoded geometry. Here, two approaches asdaped to fit polygonal
surfaces to a set of points. In the first approach, we fit thptgfér, y) of a polynomial
function defined over the tangential coordinateandy. In the second approach, we fit a
polynomial implicit functiong(z, y, z) such that the zero set represents the surface. This
has the advantage that there is no need for guessing thentalgpace. As the normal
component is encoded as a bending angle, it is found by edeng the higher order
surface with the circle defined by the tangential compond&m®vercome the high com-
putational time involved in the gathering and weight fittprgcesses, we develop a faster
predictor based on sphere fitting.

Chapter 4 introduces motion-based segmentation for animated md3héas, 14].
The main idea is to decompose the 3D object into sub-meshg®ops of vertices with
similar motions, then compress each group separately., Herpresent three approaches:
region growing, clustering, and adaptive clustering baggatoaches. These algorithms
can be applied to different kinds of animated meshes (argitnimation) whose connec-
tivity and number of vertices are constant over time. Moegpwe do not need informa-
tion about how the motion is generated. These approachebecaary useful for other
applications.

Chapter 5 introduces single-rate near lossless compression foraaammeshes of
fixed connectivity based on a simple predictive technidiie 15]. The algorithm can be
seen as a generalization of static mesh compression peelsenthapteB. The connec-
tivity is encoded once, then the geometry (vertex locaj)i@encoded by a connectivity
traversal of the mesh. Connectivity determines the ord#éreo¥ertices and provides infor-
mation for predictions. We are going to show that splitting toordinate into parametric
and geometric information in animation, is a very efficieatywof developing simple pre-
dictive coding. Indeed, the local spaces exhibit higherperal and spatial clustering
behavior than the world space, and the combination of batstetings should yield sig-
nificant reduction in bit-rates. We also going to involvdeiént predictors for tangential
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and normal components: time-only, space-only and spate{redictors.

Chapter 6 presents a novel Relative Local Principal Component Anal(RLPCA)
based-compression scheme for dynamic meshe$(. We use Principal Component
Analysis (PCA) to represent the original data by very few poments and coefficients.
Generally, the behavior of the vertices is often non-linad difficult to extract by a
simple global PCA. Therefore, we perform PCA locally. Weledl the mesh vertices
into groups of similar motion using a region growing baskgbathm or motion based-
clustering (Chapte#), and thus transform the original vertex coordinates iht |bcal
coordinate frame of their cluster or segment. This opendeads to a strong clustering
behavior of vertices and makes each region invariant to afgrohation over time. The
local vertex coordinates are then transformed into andthsis which allows for very
efficient compression.

To improve the PCA-based compression, we introduce a ratertion optimization
that trades off between rate and the quality of the recocgduanimations. Thus, the
appropriate number of basis vectors to recover the origiagh of each group with a
certain accuracy is optimally selected using a bit allarapirocess.

To the best of our knowledge, performing a PCA on the locatdinate system rather
than the world coordinates and performing rate distortiptinoization has never been
performed before.

Chapter 7 combines predictive and spectral techniquEs [L3]. The compression
algorithm does not need the connectivity information antbigs to the cluster based
prediction approach. The animated mesh is segmented imosalrigid clusters. Then
the predictive and DCT coding is performed in each clustamé after frame.

Note that the clustering in this approach is used in the ptedi phase. We want
to have the displacements between two successive fram&s tdaero, thereby the effi-
ciency of the prediction over time increases. Moreover,distering will preserve the
global shape when DCT coding is performed in each cluster.

Chapter 8 discusses and evaluates different parameters that atiegbression per-
formance, presents the experimental results of the propapproaches and compares
them with the current one.

Chapter 9 concludes this dissertation with a summary of contribigiand future re-
search directions.



8 Introduction

The work described in this thesis has been published inrdifteconferences and
journals B6, 7, 10, 13, 11, 15, 14] as well as technical report8,[9, 7, 14].
1.3 Contributions of Thesis

The main contributions of this thesis are summarized asvidal

e A Higher order prediction for static mesh compression basesurface fitting and
sphere fitting 36).

Single rate near lossless compression of animated gearmékyapproach is vertex
based-predictive codind.], 15]

Motion based segmentation methods for animated meshe®nrggpwing based
approach, static and adaptive clusteridgllo, 14].

A novel relative local principal component analysis basehjgression scheme for
dynamic meshes/[ 10].

A new rate distortion optimization for PCA based-codidg|[

Predictive-DCT based compression scheme for dynamic nreg$Rel 3]



CHAPTER 2

Background

In order to explain and understand the new techniques ddtailthe next chapters,
it is necessary to go through the main approaches in thatiter of static and animated
mesh compression and mesh segmentation. This chapterisiped as follows. The first
section provides a background on compression. Se&idpresents general encoding
schemes such as Huffman coding and arithmetic coding whieglféen used by a com-
pression pipeline as final stage. SectiB describes geometric representations of 3D
objects and animations. Secti@m covers the most important published works on static
meshes and animated meshes. Sedli@2presents some segmentation algorithms de-
veloped for static meshes and dynamic meshes.

2.1 Compression

Compression is the conversion of one representation ofidtanother representa-
tion with smaller size. The data reduction results from tiiaation of redundancy of
the information while preserving content. Data comes inrgdaariety of forms includ-
ing written text, speech, 2D stillimages, video, 3D grapibiects and 3D graphic scenes.
Beside compression, there is a decompression process ojechtes on the compressed
representation in order to reconstruct the original data.
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Why do we need compression?

With the advances of computer technology, millions of cotepusers increasingly
produce and consume a lot of data such as text documents;,miggos or graphical
data. Day by day a lot of them need to communicate via thergtesr other networks
exchanging documents while other users use complex s@&twals like video editors or
video games that need or produce a tremendous amount of Idagddition, all people
want to do their job easier and faster. With the increasing dize, efficient storage sys-
tems or transmission techniques are necessary. Consguentpression technologies
are required to optimize the amount of memory required teesdata and to minimize the
required bandwidth of network transmissions.

Compression becomes a part of daily life for millions of peofDigital TV or fast
communication via internet would not be possible withoyptssticated compression
technologies.

The choice or the design of a compression scheme involvds-tytis along several
features. Two of these features are the compressed file iszetlle compactness of
compressed data) and the amount of distortion introducetthdyompression process.
Often, the better the quality is the lower the compactnessBasically, compression
technigues can be divided into two broad categories depgrah whether the original
data can be exactly recovered or not, nanhebgless compressi@mndlossy compression

2.1.1 Lossless Compression

A lossless compression scheme is a scheme that allows tiradriata to be recon-
structed from compressed data without any loss. Losslasp@ssion is necessary for
sensitive or very important data when the decompressedwagtbe identical to the orig-
inal data. Typical data types for lossless compressioreatgdxecutable code or medical
images. Typical compression schemes are run-length emgodictionary coders (like
LZ77 [13Q or LZW [127)), and entropy coding such as Huffman coding and arithmetic
coding.

2.1.2 Lossy Compression

A lossy compression scheme is a scheme that sacrificesipresisorder to achieve
high compression ratios. The original data can be recowerddsome loss of fidelity.
Therefore, a lossy compression scheme often archives haginepression ratios than a
lossless compression scheme without greater degradafios.compression ratio is in-
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versely proportional to degree of quality. Usually, apgiions can use lossy compression
schemes if the loss of precision is not perceivable or sicamti such as video applica-

tions, still image editing or audio. Typical lossy compiesgechniques are MP3, JPEG,

Fractal compression and MPEG.

2.2 General Compression Techniques

Various Compression techniques are designed dependingeotyppe of data to be
compressed. As mentioned before, these techniques adedivito two classes. Lossless
compression schemes which aegersibleand lossy Compression schemes which accept
some loss of data. Note that there are also approaches timdire® both lossless and
lossy compression which are categorized under lossy aatego

Many applications require the decoding process to be ablettn real time like video
applications. In contrast, the encoding process is ofténatired to run in real time and
can thus be more computational expensive than the decorbegss. But note that this is
not always the case as e.g. for speech compression. In@ddite decoding or encoding
process must often be implemented with an integrated twhich has to be considered
during the design phase.

This section reviews some lossless techniques that areriampdor many compres-
sion techniques (e.g. for compression of mesh geometrye riéxt sectior2.4 will
present some lossy compression techniques that are rédetteel work of this thesis.

Most information to be encoded is a sequence of symbols whimh contain a large
redundancy. Entropy encoding reduces the quantity of déteout loss of information
based on a probability distribution of symbols. It assigndes to symbols such that the
code length matches the probabilities of symbols.

Let A = a4, ..., a;, be an alphabet witk different symbols. Each symbol has a prob-
ability P(a;) assigned to it. The amount of information for a single symhdk given

by:
1
I(a;) = — 2.1
() = loga 5 (2.)
So, the higher the probability of a symbol is, the lower isritermation value. In contrast,
the lower the probability of a symbol is, the higher is itsamrhation value.
Now, given a sequencg of symbols, i.e. a string of symbols, its entroflycan be
calculated as .
H(S) = Zp(az‘)l%hm (2.2)
acA
The entropy is a measure for the average number of bits neededcode strings of
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symbols of the alphabed with the given probabilities”(a;). Although there can be a
string which can be encoded with a bit rate lower tifanthe average number of bits
for all possible strings cannot drop beldw In that meaning, the informatiof{(«;) of a
single symbol is a measure for the number of bits needed bynamai code to encode
this symbol.

The most popular type of entropy encoding are: arithmetickdufman coding. They
are lossless and do not offer a good compression ratio byigplamportant role in a very
large number of compression techniques for text, audio, @@reetric objects, standards
such as JPEG and MPEG. They are often used in a final stagetherfianhance the
compression ratio.

There are also other lossless algorithms such as Run-lengtiding (RLE), Lempel-
Ziv-Welch (LZW) or Golomb coding which will not be discussadthis thesis and we
refer the reader tdl03. We only want to discuss briefly the two techniques aboveckvh
are used by a post-processing step in current mesh compresdgorithms, and by our
approaches presented in the next subsequent chapters.

2.2.1 Huffman Coding

This technique was developed by David Huffman in 1984).[ The algorithm uses
a variable length code to encode each symbol. The symbolerm@ded with lengths
that are inversely proportional to the frequencies of thalsyls. For example, the sym-
bols that occur more frequently (have a higher probabilitgppearance), have a shorter
code length (are encoded with fewer bits) than the symbaisdbcur less frequently.
To generate the code, a binary tree is created with the syaidhe leaves. The code
is then defined by the path from the root of the tree to each |&aich symbol is as-
signed 0, if the left child is traversed andl’ if the right child is traversed. Now, let’s
see how the tree is designed. Given an alphabet a4, as, as, as, a; having probabil-
itiesP = 0.2,0.25,0.05,0.35,0.15 (see table2.1). To generate the Huffman code, first
the symbols are sorted in a descending probability ofiget,, a1, a5, az (see table.2),
where each symbal; forms a leaf in the first queue as describe@ih Then, the two
symbols with lowest probabilities are merged producingnglsi node having a probabil-
ity equal to the sum of their probabilities. The new nodeeated as symbol and inserted
into the queue. The nodes are again sorted and the same aplglisd to generate a new
parent node for the two symbols with the lowest probabditi&his process is repeated
till all nodes are merged and only one is left. The resultingffdan tree is illustrated in
figure2.1

To obtain the code of each symbol, the tree is read backwatdgjng at the root
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Table 2.1 Symbols with their corresponding probabilities
Symbols Probabilities

aq 0.20
Qs 0.25
as 0.05
ay 0.35
as 0.15

Table 2.2 Symbols with their corresponding probabilities in deséegarder
Symbols Probabilities

ay 0.35
Qs 0.25
aq 0.20
as 0.15
as 0.05

and going to each leaf node, recordigif the left branch is crossed and”if the right
branch is crossed. The codewords of the sequence of symbals as, ay, a5 are then
10,01, 111,00, 110 (see table.3).

The Huffman coding is near optimal in the sense of having amum code length
for the set of symbols. It is prefix code which means that tteecaf each symbol cannot
be a prefix or start of the code of another symbol. And it presid fast decoding process.
According to GallagherdQ] the average code length that Huffman coding can achieve
is bounded by the entropy and by the entropy pius, + 0.086:

H(S) <lg < H(S) + pmas + 0.086 (2.3)

Therebyp,,.... is the largest probability in the set of symbols probalasti

If the alphabet size is large, the probabilities are not gkvandp,,.. is small. Thus,
Huffman coding achieves a rate close to the entropy. If tpaaet is small, the prob-
abilities of different symbols are skewed, .. can be quite large and the amount of the
deviation from the entropy is large. Thus, Huffman codingdrees inefficient. The cod-
ing becomes quite good if the size of alphabet is increasegtduyping several symbols
together and generating a single codeword for each groupaidof generating a code-
word for each symbol. Suppose that the size of the alphaldet tncoded i¢ and the
size of each group is then the total number of all possible groups of sizds k™.
However, the total number of codewords:ig. If the sequence of symbols to be encoded
is large, then Huffman tree will grow exponentially, cawgsincrease in time consuming
procedure and memory usage. In this case, Huffman codingt iv@ appropriate coding
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Figure 2.1 A Huffman tree

Table 2.3 Huffman codes
Symbol Probability Binary Code

as 0.35 00
as 0.25 01
a 0.20 10
as 0.15 110
as 0.05 111

(impractical). Arithmetic coding which will be discussetdthe next section overcomes
this problem. Arithmetic coding encodes the whole sequehsgmbols as a block rather
than encoding several blocks and can get the coding rateclesg to the entropy bound,
even for short alphabets or highly skewed symbols’s praibiaisi

Adaptive Huffman Coding Huffman coding requires a priori knowledge of the proba-
bilities of the symbols. It is then a two pass process: one pamputes the probability
of each symbol and constructs the Huffman tree and transh@tsee, and a second pass
encodes and transfers the data. In other words, the tabée stoalild be sent to the re-
ceiver with the encoded stream in order to decompress tlze d&ie size of the coding
table therefore becomes large when data size increasegolr in practice, the proba-
bilities are not always known a priori and may change oveetiin such cases, a method
that compresses data in one pass is need. Therefore, aivaddpifman coding is used
that allows to build adaptively the Huffman code dependingh® sequence of symbols.
So, the Huffman code can change if new symbols are consuntedoriginal algorithm
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Table 2.4 arithmetic codes
Symbol Probability Cumulative probability Sub-Interval

a 0.4 0.4 [0.0;0.4)
as 0.1 0.5 [0.4; 0.5)
a 0.2 0.7 [0.5;0.7)
a4 0.3 1.0 0.7, 1.0)

has been developed by Fall&9 and Gallagher30] and has later been improved by
Knuth [68] and Vitter [L120. The main idea is to start coding with an empty Huffman tree,
then update the symbol account and the tree as being readamulessed/decompressed.
Both the encoding and decoding start with the same tree amlifyribin the same way.
Thus, both processes are synchronized.

2.2.2 Arithmetic Coding

Unlike Huffman coding which assigns a code word to each syrabd uses an in-
teger number of bits (at least one bit to encode each symdrthmetic coding encodes
the entire sequence to a rational number in [0,1). All prdiies of the symbols fall
into the range [0,1). The algorithm starts with the unit &t [0,1), and transforms the
possibilities into subintervals. As each symbol is proedsthe algorithm divides the cur-
rent interval into subintervals, each subinterval represa certain symbol, and its size
depends on the symbol probability. Then, the subintervpltotessed symbol is selected
to be the new currently interval. For example, let us supplaewe have an alphabet
A = ay, as, az, ay With probabilitiesP = 0.4,0.1,0.2, 0.3 as shown in tabl@.4.

We define the cumulative densitydf) function as

F(i) =) Pla)

P(ay) is the probability of the the symbal.. The cumulative probabilities are then
given in table2.4 (column3). Thecdf is used to divide the unit interval [0,1) into subin-
tervals of the formjF'(i — 1), F(i)) (column4), each symbol has it own subinterval, where
the minimum value o€fd is zero and the maximum value is one.

Let us for example encode the sequengen,, as, ay. The first symbol to be en-
coded isa;, the corresponding subintervgl.0;0.4) is selected to be the new current
interval. This interval is divided similarly as the intehj&,1) yielding the following
subintervals:[0.0;0.16), [0.16; 0.20), [0.20; 0.28), [0.28; 0.40) corresponding to the sym-
bols a1, as, a3, as. The next symbol to encode i5. The corresponding subinterval
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Figure 2.2 Arithmetic coding process

is [0.16;0.20). We divide this interval in similar way as before producingansubin-
tervals: [0.160;0.176), [0.176;0.180), [0.180; 0.188), [0.188;0.200). To encode the next
read symbol;, the interval[0.180; 0.188) is partitioned further to givé).1800; 0.1832),
[0.1832;0.1840), [0.1840;0.1856), [0.1856;0.1880). This process of subdivision for the
input sequence, as, as, a, iS graphically illustrated in Figur@.2 The final interval
which assigned to last symbals is finally [0.1856; 0.1880).

To encode the sequence of symbeaia,azas, an unique identifier or the tag should
be generated. This tag can be any number in the final intefvaB}6; 0.1880)). On can
choose for example the lower limit of the interval or midgan upper and lower limits
of the interval. In our example one can choOsE868 as our identifier for the sequence.
Notice that the tag appear in the subinterval of each symbols

In arithmetic coding, the decoding process is similar togheoding process. To re-
construct the sequence, we need to know two informatiorprbieabilities of the symbols
and the tag. First, we calculate tbéf for the symbols in the same way as in encoding
process. We will get the same values of the cumulative pribbeb and subintervals
shown in table2.4. Then, we check in which subintervals the tag belongs. Tdedsides
in the subinterval0.0; 0.4) which is assigned to the symbe|. Thus the first decoded
symbol isa;. Next, the subinterval becomes the current interval, itivéddd into the
same subintervals as in figuke2 The tag is now reside in the subinteryal16; 0.20)
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corresponding to the symbal. The process continues till all symbols are decoded.

Arithmetic coding is more efficient and can get the coding radry closer to the en-
tropy bound than Huffman coding but it runs more slowly, garttary for real time data
processing since it encodes the sequence of symbols oneebyTdrerefore, adaptive
arithmetic coding which exploits the same idea as adaptiviénthin, is used.

Adaptive Arithmetic Coding Adaptive arithmetic coding reduces the two pass to two to
one pass process, where the probabilities of symbols ar&tegpdepending on data pro-
cessed. Thus, eventually, the coding initializes the dodibadistributions of one or more
of symbols to some predefined values, such.a$hen the cumulative distributions are
updated after each symbol is encoded. Adaptive coding canrbputationally expensive
and complex because of the updating process of the cumaildistributions. To reduce
this complexity, different approaches of updating pro@sdeveloped (se89)).

Note that arithmetic Coding is used in many compressiordstals such as H.264 and
JPEG2000.

2.3 3D Data Representation

Text, audio, image, video, etc. are examples of data thapaten users almost daily
use and need to compress either for storage or transmisBnig thesis is being carried
out to develop new compression techniques for static andrdiyn3D models represented
by triangle meshes, a type of data used in many computer igsagpplications.

2.3.1 Static 3D Object

Today, we find 3D objects in many areas such as industriablimation, medicine
applications, video games, movies etc. These objects cepbesented in different ways
such as boundary representation, parametric surfaces,qaonpled surface, implicit sur-
faces or voxel based representations. The most prevajamtsentation of an object and
the one which will be the input of our all algorithms is the bdary representation. The
most common geometric representation for boundary 3D gaanabjects is the irregu-
lar polygonal meshes which consist of a ¥etf vertices, a seE of edges and a sé&t of
faces. A vertex represents a node or point. An edge is a Btring that connects two a
pair of vertices. A face consists of a set of connected edggsindg a triangle, a quad or
some higher degree face. Triangle meshes are widely usegresent three-dimensional
objects or scenes. One reason for this widespread use df/g@sof polygons is due to
the current graphics hardware which efficiently supporégles for realtime rendering
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Vertices
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Figure 2.3 A mesh example: Cow modeRg04 vertices, 5804 triangles). Top left: shaded
display. Top right: wireframe. Bottom: triangle mesh reganetation (vertex and face arrays

of objects at different complexity. Moreover, all otherrws of polygons are typically
converted into triangles by the graphics hardware befardeeng. Figure2.3 shows an
example of a 3D mesh.

Basically, triangle meshes consist of tgometrydata andconnectivitydata.

Mesh Geometry

Mesh geometry is represented by an arfragf vertex positions in 3D space, i.e. each

vertex position is defined by its coordinates (X, y, z) spedifty floating point numbers
(see figure2.3).
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Figure 2.4 Sample frames of cow sequence (top) and the standard meskeafation (bottom)

Mesh Connectivity

The mesh connectivity is represented by an afrajgometimes noted’) of indexed
triangles, describing how the vertices are connected. Eauiygle f; is defined by three
indices that point into vertex list, as illustrated in fig@&.

Mesh Formats

Many different 3D formats have emerged to import and exgwtrheshes such as:
OBJ, WRL, PLY or DXF. The use of the format may differ from application to applica
tion depending on its content that requires different dfmtion.


./phd-Pics/background/frame2.eps
./phd-Pics/background/frame7.eps
./phd-Pics/background/frame16.eps
./phd-Pics/background/frame30.eps
./phd-Pics/background/animationlistcow.eps 

20 Background

2.3.2 Dynamic 3D Object

Animation gives life to static 3D objects. It attracted apsiging amount of attention
from marketing, arts, sciences, television and partigutathe computer games industry,
and special effects in movies. In animations, we have toitakeaccount that the object
may change over time. To model the animation different aggnes can be used. Gener-
ally, the animation can be either generated using motiotuciag systems or simulated
by sophisticated software tools like Maya and Max 3D. Theutaprepresentation of
these animated objects is a triangle mesh to suit the regaires of computer graphics
visualization systems. A dynamic 3D object is then a seqei@ianeshes, each mesh
represents one frame, which we call also mesh frame.

During an animation, the vertex positions (geometry) cleafigm frame to frame,
eventually, the connectivity or the number of vertices atsy change in time. Through-
out this dissertation, we assume that the sequence of melsesthe same connectivity
and only the vertex positions change over time, becausg oftem the number of vertices
and the connectivity of the mesh is first defined, then thecestare moved or deformed
depending on the way of generating the animation. Fi@ueshows sample frames of
the cow sequence.

In 3D animation, various formats are provided suctvi#sX , MDL , MS3D or FBX.

2.4 Prior Mesh Compression Techniques

With the advancements and variety of sources to model 30ctsbgeich as scanning
technologies and modelling softwares, 3D models are bewpmidely available. In or-
der to achieve a higher degree of realism, more complex agtdyhdetailed 3D objects
possibly out of millions of vertices are created. As seer@yrevious section the stan-
dard representation of the triangle meshes uses a list dingppoints to describe the
vertex positions and a list of integer values that speciénértex indices and, eventually,
a list of floating proprieties attached to the mesh (norntaigures, etc).

The storage cost of uncompressed mesh geometry information 3 x 32, wherel”

Is the number of mesh verticesare the three coordinates of each vert& {” and 2)
and32 is the number of bits required to store the floating point #altieach coordinate.
The cost of the uncompressed mesh connectivily is3 x 32, whereT" is the number
of triangles and is the three vertex indices (per triangle) aiilis the number of bits
required to store these three integer indices.

When storing and downloading or uploading these 3D objeats wetworks, in their
standard form, the large raw data sets will consume a largriatrof storage space and
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Figure 2.5 Intermediate stage during the reconstruction of mesh wssiggle rate scheme(top)
and a progressive scheme (bottom). (Figure taken f&n [

network bandwidth.

This problem heavily arises in the animation case. Tod&gdbmes easier to acquire
animated models. In parallel, there is unceasing incraasieel use of these models in
many applications (particulary in computer generated mgvtomputer games). More-
over, the animation technology is becoming more sophtstitand allowing to make
animation more realistic but more complex. To store a secpi@h meshes, one has to
store one mesh for each frame. Assuming that the conngasviionstant over time and
only the geometry information changes over a time, the sgm&tion of the geometry
information of the sequence will requirétimes the geometric information of each frame
l.e. F'xV % 3% 32 bits, wheref is the number of frames. For large sequences and detailed
and high accuracy models, the uncompressed representasidgis in large file expensive
to store or to deliver over networks.

Different approaches have been developed to reduce thefsihe polygonal mesh
and time of transmission. These techniques can be classifesingle-rate encoderand
progressive encodelsee figure2.5illustrates).

Single-rate encoders encode the original mesh as whole and once. These schemes
are dedicated to reduce bandwidth between rendering pgahd local memory. Most
of these schemes use a fixed mesh traversal strategy to etheodennectivity, then the
geometry is driven. Connectivity encoding is often base@ @et of rules that describe
a particular traversal order of mesh based on vertices,sedgériangles. Typical, in
triangle based traversal, for each new traversed triamge, symbol is generated and
entropy encoded.
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Geometry coding is often guided by traversal order used tods the connectivity.
For each new encountered vertex, its 3D coordinates arecpgddrom the already tra-
versed vertices and the differences between the origindiltlae predicted locations is
encoded. The difference is callegsidualor delta vectoror prediction erroror some-
timesoffset The residual can be encoded in different ways. Most siregeecompression
schemes quantize the residuals into a uniform integer gddé&en the user has to specify
the number of bits that define the grid resolution. For furtt@mpression the resulting
integer residuals are entropy encoded.

Progressive encoders first create a simplified version of the original full resadut
mesh using simplifications operations (such as vertex sétron, edge collapse). The
coarsest version of the mesh is then encoded -using a satglesmpression techniques-
with a sequence of reversed simplification operations: ¢fieaement operations (vertex
insertion,vertex split). Each operation specifies how edyes and vertices to the mesh
of currentlevel of detaildo obtain a new level. After transmission, the base meshsis fir
decoded and reconstructed, then gradually refined as tteghiin is being received and
decoded.

The advantage of progressive compression is that it allowse a first approximation
of the original modelery quickly the quality of the model gradually is improved and the
transmission can be stopped at any resolution desired hystre

Single-rate techniques can also be categorized into kEssled lossy techniques de-
pending on whether the decompression process recovergyetkecoriginal mesh (loss-
less) or only an approximation (lossy). The remeshing amgbfication are always lossy.

In recent years, the compression of animated meshes hasigairincreasing interest
and many techniques have been developed for dynamic mekbesstant connectivity.
This topic is a relatively young research area and stilaats much interest. There are
still many open problems to be addressed for further reke;arch as the compression of
animated meshes of variable number of vertices and digtomieasurement of animation
sequences.

As in the static case, 3D animation compression schemeslsarba categorized
into single-rate and progressive compression, taking cotasideration the spatial and
temporal coherence.

The next sections review the most important compressionoagpes developed for
static and animated meshes. For more details on static amcimd mesh compression
techniques, we refer the reader €76, 94, 83).
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2.4.1 Static Mesh Compression

The base of the mesh compression has been laid by Deerir®§3n His goal was to
reduce the amount of information, which has to be sent to taplgcs accelerator, and
was constraint to a simple decompression algorithm thabeasupported in a hardware
implementation. This algorithm was the first step to develogle-rate compression for
triangle mesh. Afterwards, mesh compression has underggpic developments.

2.4.1.1 Single-Rate Encoders

Most of the mesh compression techniques encode two meshoranis separately,
the connectivity and the geometry information. The earlyknoncentrated on finding
an efficient and optimal connectivity coding scheme. Howeey encode the connec-
tivity information first before they encode the geometryommhation in terms of traversal
order which is used to encode the connectivity. These appesaare called connectiv-
ity driven compression schemes. In contrast, the geontigiven compression techniques
have emerged. These approaches encode the geometry firti¢lennectivity is driven.

The number of contributions to static geometry compressorery low compared
with the large number of published work on connectivity coegsion. In contrast, in the
animation case, most contributions are in animated gegmetsh compression.

2.4.1.1.1 Connectivity Coding Typically, the mesh connectivity is described by a list
of faces, each face represented by three vertex indicdse Hfumber of vertices I8 then
the number of faces is approximated by, requiring about[log,(n)|n bits of storage
[42]. If a vertex is shared by six triangles and for each triarigtee vertices should be
transmitted then the transmission of each vertex becomensxge. Indeed, in average,
each vertex should be transmitted six times.

Triangle Strip based Techniques

In graphics API such as OpenGL or Direct3D, the triangle asgranged istripsfor
compact representation and efficient rendering of 3D paigjmeshes. Triangle strips
use a buffer of two vertices and allow to reduce the numbemoés to transmit each
vertex. Since two consecutive triangles share one edgenider a new triangle, only
one new vertex is needed and added to the two vertices of iiedjoertex. Thus , for
each triangle only one vertex is transmitted. Fig2u@(a) shows an example of a triangle
strip. Atriangle fanis another structure in computer graphics that reduceaggmpace
and processing time. As shown 26 (b), all adjacent triangles share the same vertex.
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Triangle strip: 123456789 Triangle fan: 1234567

Figure 2.6 Example of triangle strip and triangle fan.

Generalized triangle strip:
1234567891011 12

12 11

Figure 2.7 Example of generalized triangle strip

A more general structure is tlgeneralized triangle stripvhich is a mixture of triangle
strips and triangle fans.

To further reduce the cost of the connectivity informati@eering R8] proposed
the generalized triangle meshvell-suited for hardware implementation. He suggested
in his pioneering algorithm to use generalized trianglgstwith an on-line buffer in
the graphics pipeline where sixteen vertices can be stofedender each triangle one
vertex is specified either from the stack buffer or a new weidepicked out and pushed
onto the stack replacing an existing vertex and referencdte future if it is needed.
Figure2.7 shows a generalized triangle strip and a generalized teangsh. ChowZ3]
further improved this approach. He introduced local andalaneshing algorithms to
decompose an arbitrary triangulated meshes into geneddtimngle meshes.

Turan [L18 proposed to encode planar graphs in constant number opéitsertex
using a spanning tree. Taubin and Rossigdd&[extended Turan’s work and developed
the topological surgerymethod. They first cut the mesh throughextex spanning tree
producing a connected triangulated surface without irlerartices whose dual graphic
is triangle spanning tree Then, they encoded the triangle and vertex-spanning &ge s
arately. The Topological Surgery scheme has been inclutdtedhe three dimensional
Mesh Coding (3DMC) algorithm in MPEG-4, the ISO/IEC startideveloped by MPEG
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Figure 2.8 Face based coding:Edgebreaker yields the sequence of syMiiRCRRCRR...
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(Moving Picture Experts Group), charged with the develophté video and audio en-
coding standards.

Growing Region based Techniques

Alternative approaches to triangle strip and spanningliessed techniques aregion
growingmethods. The basic idea is to start with single triangle tiremw the region over
the mesh and continuously encode the new adjacent triandledges, producing a se-
quence of symbols or labels that describe the connectinftyrination. This sequence
is entropy encoded. The region growing techniques can lssitiked into three classes:
face-basegedge-base@ndvertex-baseddepending on the mesh elements based traver-
sal.

Face-based method$he Cut Border Machine (CBM) of Gumhold and Stral35] and
Edgebreaker of Rossigna@f] are two examples of face-based methods. Both methods
are quite similar. They perform either depth-first traveosder or breadth-first traversal
order. The encoding process starts with mesh border or @maayttriangle then grows
the region over the mesh. This region is bounded by a bordedgés which enclose
the inner region containing the set of triangles alreadgg@ssed and the outer region of
triangles which have to be processed. This border is catlectut border. At least one
edge in the cut border is incident to one triangle in the imagion and the other incident
triangle that have to be added to the growing region. Thigeslgalled gate. The coding
starts with the initial triangle as inner region, and onetstiree edges is selected to be
the active gate. Then in each step, the inner region growsidymnprocessed adjacent
incident to the active gate. The triangle is encoded by $pagia label that defines the
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way in which the new triangle is located relative to the gatgesand the inner part and
it is called cut border operation. The label is assigned & cthek triangle is inserted into
inner part and marked as visited, the cut border is updateti aanew gate is selected.
The process of iteration stops when all triangles in the naestprocessed. Note that all
vertices contained in the cut border are buffered to avoisetad the vertex more than
once.

To define how the new triangle is incorporated into regiomgng, Edgebreaker uses
the five labels C, R, L, S and E, each label corresponds to oemtpn. CBM uses
additionaloffsetassociated with the split operation or label S.

Both techniques reconstruct the connectivity using theesiaversal used during the
encoding process. The decoding in the Cut border machimades fast and well-suited
for hardware implementation. The Edgebreaker decoding adeok-ahead procedure
during split operation (S) and exhibits a non-linear timenptexity. Therefore, two de-
coding schemes aflers Wrap&Zip [98] and Spiral Reversig2], have been proposed to
improve the worst case time complexity frab{n?) to O(n). The Wrap&Zip needs mul-
tiple traversals during the encoding and decoding procesnéshes with handles and/or
boundary. The Spiral Reversi performs only a single traleasd reconstructs the mesh
in reverse order as well in linear time.

Edge-based method#n contract to the face-based methods which encode triantjle
edge-based schemes encode edges. Indeed each edge ischesigabel. Face Fixer

of Isenburg and Snoeyink]] is an example of edge-based method, inspired by the face
based Edgebreaker method and it is developed for polygoesihes.

The encoding process (in Triangle Fixer), first defines aivadtoundary. One of
its edges is selected to be active gate. In each iteratiomadtiee gate is labeled with
either T, R, L, S, E, H, or M depending on its adjacency refatmthe boundary. Then
this boundary is updated and new active gate is selected. s@tpgence of labels are
compressed using order-3 adaptive arithmetic coti2g[

In opposite to the Edgebreaker and CBM schemes which usathe saversal order
during compression and decompression, the Fixer Face gges¢he label sequence in
reversed order to reconstruct the connectivity of triamgéshes.

Vertex-based method$ese techniques are also called vertex degree-based lemdea

based. They encode the connectivity information as a stodarartex valences in spec-
ified order. The valence or the degree of a vertex is the numibeonnected edges to
it.
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focus vertex conquered edge
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Figure 2.9 Vertex based coding: TG coder yield8657566...

The methodTriangle Mesh Compressiasf Touma and Gotsmarll7 (TG) is one
of these schemes that encodes the vertex degrees in spyalfwa encoding process
starts with an initial triangle, constructs an initial cuirer with its three edges and an
active list with its three vertices. One of these verticeshissen to be a focus vertex.
The region grows by conquering the free edges -untravedgeise incident on the focus
vertex in counter-clockwise order, pushing the free vegidown into the active list and
recording their valence. The free vertex is the one conddct¢he focus vertex by the
free edge. When all free edges (connected to focus verter)lbeen processed the focus
is conquered and the focus is moved to the next vertex in theedtst. The process
continues until all vertices are full, i.e. all edges aregessed.

During the conquest procedure, special cases may ariseasddh cases additional
code are needed. Indeed, it can happen that the free edgefotts vertex is connected
to another vertex in the active list, in such case the acistad split into two separated
active lists and a new command is generasglit with the vertex valence. Another case
may arise is when the free vertex is connected to a vertexathanactive list. In this case,
both active lists are merged to generate one active listladymbolmergeis output. If
the mesh has boundaries then before the encoding processrayvertex is temporally
added to each boundary and connected to all boundary \&riicerder to have a closed
mesh. When dummy vertex is hit then the number of its valendetlae code "dummy"
are output. Note that the dummy vertices are removed aftshrdecoding.

For large number of triangle meshes, the distribution ofvildance is very law and
often the mesh contains a large number of vertices with thenga of six. In such a
mesh, the sequence of vertices valences can be well encattetheventropy encoding.
For regular meshes, TG compress the connectivity dowr2tbvp and betwee and3.5
bvp otherwise.
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TG’s algorithm is further improved by Alliez and Desbrud] py using an adaptive
conquest over the mesh to avoid as much as possibsptheperations. The sequence of
valences and the few additional codes are encoded usingagtialarithmetic encoder.
For large, arbitrary meshes, they achieve an upper bouha@obpv.

Isenburg and Snoeyinlb()] performed a series of edge contraction and division to
collapse the whole mesh into a single vertex. For each edgeand operation, the degree
of vertex is output and for each edge division, a start andnani€output. The entropy
encoding of the resulting code sequence yields a compattdams ofl to 4 bpv.

There are many others algorithms have been proposed forressipg the mesh con-
nectivity and often in lossless way, such 3,53, 59]. An efficient coding of the symbol
stream such as Huffman coding or arithmetic coding alloveirapthe connectivity with
often less thar bits per vertex and never more thabits per vertex.

2.4.1.1.2 Geometry Coding

Geometry Coding is the compression of vertex coordinateg, z). Traditionally,
each vertex coordinate is represented with an IEEE 32-katifig-point number. The
early research on mesh compression focused mostly on affloigsless coding of trian-
gle mesh connectivity, as mentioned before, achieving &st lhit-rates of 1.5-4 bits per
vertex on an average (as reported 70]). In contrast, the compression performance of
geometry has not been as well impressive. Indeed, the vpdsixions are mostly en-
coded in traversal order induced by the connectivity codas Teads usually to near or
non-optimal geometry coding. Moreover, the geometry coolmidates the total com-
pressed data size. Therefore, the researches later siftexito geometry coding, where
also geometry-driven compression schemes have been pahpos

Most of the proposed paradigms to reduce the amount of vpdsixions use the fol-
lowing combination: prediction to exploit the high corriten between the positions of
adjacent mesh vertices, quantization to reduce the flogibngt to finite precision, and
entropy encoding to reduce the statistical redundancigsct&l methods are another type
of methods for geometry coding that generalize 1D and 2Dadsgio 3D geometry. It em-
ploys as well quantization and entropy encoding, in ordectueve a higher compression
rates.
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Figure 2.10 Quantization grid

Quantization

It is a standard technique, commonly used to compress noaheiata. It reduces the
precision of data prior to that data being encoded with fiprexision. The resulting val-
ues are represented with a limited number of bits and theypeatompressed efficiently.
Quantization is an irreversible process, i.e. it is implolgsio recover the original coor-
dinates once encoded. The inverse process is cadgdantizationQuantization allows
for higher compression ratio at the expense of distortiotheareconstructed data. We
distinguish between two type of quantization: scalar aradorequantization.

Scaler quantization (SQ¥BQ truncatesiniformlythe vertex coordinate of 32- or 64-
bits floating point values to desired accuracy and convieemitinto integers of, typically,
16 bits with very negligible loss in data fidelity. This re@scthe range of input dataset
before the encoding stage. To do this, first the bounding bax mesh is computed.
Given a number of bit length for each coordinateéhe bounding box is divided int2n
grids alongX, Y and Z axis. The side length of each cell Is,.. /2", wherel,,.. =
(max — min) is the tight axis-aligned bounding box, defined by the maximuax and
the minimummin of the coordinates, y andz. Then, each vertex is aligned with the
nearest grid intersecting point. The new positions in the gystem is the new integers
coordinates. The parameters of bounding bexi{ andmin) must also be sent with
the compressed data to be able to construct the boundingriabtoaecover the original
guantized points at decoding step.

Figure 2.10 shows quantization of two dimensional points to uniforrd x 8 grid.
Since the original coordinates cannot be recovered andambpproximation is recon-
structed, the quantization then occurs an error. The loierquantization level (the
coarser the grid resolution), the more compact data, anthtger the error between the
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original and reconstructed data, resulting in model witttky structure.

Quantization can be uniform or non-uniform. In uniform gtization, a given the
number of quantization, the bounding box is partitionea iatuniformly spaced grid
structure, meaning that all grid cells are of equal sidetleras describe before. In oppo-
site, in non-uniform quantization, the cells have différiemgths.

To encode vertex coordinates, Deeri@|[suggests to quantize uniformly each ver-
tex coordinate to at mog6 bits. At this precision, the reconstructed mesh vertices ar
visually indistinguishable from the true ones. To achieigghlr compression, Chov28]
subdivides the mesh into different regions based on treasgle and the curvature. The
regions are then uniformly quantized with different premmsdepending on the level of
detail present. The highly detailed regions are assignee iinits than the less detailed
ones.

Vector quantization (VQVQ is extension of the scalar quantization. It operates on
vectors instead of individual values. It maps the input da&tiainto small set of vectors
or representatives called tleedebook minimizing the total distortion incurred by the
quantization. The advantage of VQ over SQ is that it explbiescorrelation between the
vertex coordinates and results in lower distortion than B@,its complexity increases
with the codebook size. Since the aim is to generate a codtethad minimizes the
distortion between the input data and the codebook, thepednce of compression then
depends on the codebook generation method. The most pamaabook design is the
Linde-Buzo-Gray (LBG) algorithm9], also known as Generalized Lloyd Algorithm
(GLA). The algorithm is an iterative algorithm. Its startglwone codevector chosen as
the average of the entire all training vectors. Then, at ségh the algorithm refines the
codebook using splitting procedure until the number of @elscodevectors is obtained.

VQ has also been proposed for geometry coding P2, 18]. In the literature, it
is often used after prediction process. Therefore, sonastiane categorized under pre-
dictive techniques. VQ based techniques will then be resdehater in the next paragraph.

Prediction Coding

There is a large correlation between the positions of thacaait mesh vertices. To
exploit this high correlation and to reduce the redundamost techniques use prediction
rules. The prediction uses a set of known positions of vestio a decoder, to predict the
position of a new vertex. The differences between the ocaigamd the predicted values
have distribution which is close to zero. Then, instead afoeing the true values, it
is sufficient to store and to encode these differences. Toasde well encoded with
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entropy encoding, resulting in fewer bits than would be itsftom the entropy encoding
of the quantized original positions.

The type of this technique is called predictive method. Aserhentioned before, the
connectivity information plays a crucial role during theceding geometry. It defines not
only the order of vertices in which are encoded but also thefseertices that are used for
prediction. The better prediction is, the smaller errornd ¢ghe better compression per-
formance we achieve. Today it becomes common for geometnpoEssion to quantize
the coordinates with a number betweénand16 bits.

In the literature, different predictions have been propaseh as delta predictor, span-
ning tree predictor and parallelogram predictor. The &atisry predictor is the one who
predict a position close to its current position. Therebg, prediction error will be small
and requires fewer bits.

Delta Prediction.Often, the coordinates of two successive vertices are Yigire-
lated. The difference between their positions is quite kni&erefore, Deering suggested
to use the previously transmitted vertex positjgn; to predict the position of the new
vertexp; and encoded the differences instead of the original coaté@ The first step
in his algorithm is to normalize the mesh into an unit cube quantize each vertex co-
ordinate to 16 bits precision. Then, the difference betwtberprevious and the current
quantized positions is computed and further compresseddtigt entropy coding.

Spanning tree predictoA more efficient predictor is the spanning tree predicidd
of Taubin and Rossignac. As a preprocessing, Taubin anddgdaesquantize the original
vertex locations to a user specified number of bits per caatds (typicallys, 10 or 12
bits). Then they constructed a vertex spanning tree andiegdlfor the prediction of
each vertex locatiop, the location®; of the vertices in the path fromto the root of the
vertex spanning tree.

K
b= Z AiDi (2.4)
i=1

The weights for the locationg; are chosen to minimize the squared lengths of the
delta vectors over all verticés ||¢||?. The delta vectors are computed and can be encoded
with Huffman coding or arithmetic coding, resulting in abd3 bits per vertex at 8 bit
quantization level (as reported ih]7]).

Spanning tree predictor can be seen as generalizationtafffediction. This one uses
only one ancestor i.eK = 1 and)\ = 1, while Spanning tree predictor uses weighted
linear combination of< ancestors in the vertex spanning tree.
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Figure 2.11 Parallelogram prediction

Parallelogram PredictionMore sophisticated prediction scheme is parallelogram pre
diction introduced by Touma and Gotsmdri}]. Each newly encountered vertey..,
during the traversal of the connectivity constructs witb tertices(u, v) in the active list
a triangle that is adjacent to the already encoded triamgferénce triangleju, v, w) of
the growing region (see figu11). Based on the assumption that two adjacent triangles
tend to form a parallelogram, the positipn.,, of the vertexv,,.,, can then be predicted as

Ppred = Pu + Pu — Pw (25)

A good predictor is also the one that performs well for largss of meshes, meaning
that prediction errors are very small. Parallelogram piesia good prediction if the
shape is almost planar (meaning that the two triangles aree@) co-planar), and gives a
poor prediction if the shape has high curvature (meaningthigatwo triangles are highly
non-planar). Therefore, for more accurate predictionyffaand Gotsman combined this
linear prediction with a curvature estimate. After the fpsediction, thecrease angle
between the two adjacent triangles along the date) is predicted as average of the
available crease angles of two other edges incident to fleeerece triangle. AR bit
quantization level, this approach requires approximé&iddifs per vertex.

Parallelogram predictor has extensively been used andasdieup to now. It has also
been adopted for the MPEG-4 standard for mesh geometryg@2lin

Vector quantizationLee and Ko ¥ 3] applied vector quantization to geometry coding.
They used a local coordinate frame defined upon the preyiaisited triangle. The re-
sulting set of model-space vectors is encoded with a tymeetior quantization scheme,
achieving in average.7 bits per vertex for a quantization &bits per coordinate, which is
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Figure 2.12 Multi-way prediction

seldom sufficient. Chou and MengJ] proposed Predictive Vector Quantization scheme
(PVQ), where the vertex position is first predicted then tteglction error is quantized by
vector quantization. Very recently, Bayazit et al. alsoedeped predictive vector quan-
tization, where the prediction error is represented in tlwall coordinate system prior to
vector quantization. They employ an extension to the egtoogmstrained of the predic-
tive vector quantization, unlike the other VQ based appreadr3, 22] which aimed to
design a code book vector with the minimum distortion withoanstraints on the rate.

Other techniques

Kronrod and Gotsmary[] suggested to encode the connectivity in such way that opti-
mizes the parallelogram prediction rule. Unlike the prergiyg described approaches that
are connectivity-driven compression, this methods is ggoyvdriven approach. They
constructegrediction treewhere the mesh is traversed in some order to produce a good
prediction and simultaneously encode the mesh connactiVite entropy coding of the
geometry is reduced by up §0% on TG'’s algorithm L17]. However, its disadvantage is
the complexity of the encoder.

As opposite to the parallelogram prediction which based smgle triangle in one
direction, Cohen-Or et al. suggestieavay predictor(or Multiway predicto) that uses
a multiple directions to predict the location of a vertex.ohder to allow more than one
way prediction, the mesh is traversed in a special order thaitthe vertex with highest
degree of prediction is selected. Fig@&d2shows an example of 3-way prediction that
uses three triangles. Each triangles (already encodedicsea point, and the average is
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the final predicted position of a vertex. Typically, thislgi® smaller prediction error than
the 1-way prediction.

Isenburg and Alliez47] generalized the geometry coder of Touma and Gotsman to
polygonal meshes. They let the polygonal connectivityadeivhere to apply the paral-
lelogram rule. As polygons tend to be flat in typical moddigyttried to predict vertex
locations within polygons rather than across polygons.édtes. [74] proposed to encode
the dihedral angle along the gate, between the two neighdpdaices and to transform
the tangential coordinates into the interior angles of h@nsing triangle. All angles
are uniformity quantized then compressed with an arithenetider. This angle based
scheme results in approximate)% better compression ratio for geometry only than
TG’s scheme]17], at the same level of geometric distortion.

In predictive techniques, the coordinates are quantizedriomber of bits typically
lying between 10 and 14 with a negligible loss of accuracy.|&w compression ratio, a
coarse quantization level can be used, resulting in sigmfitoss in data possible caus-
ing high visible degradation. Therefore these techniqeenat well-suited for very low
bit-rate. Therefore, usingligh-pass quantizatiomalgorithm [L12), the high-frequency
distortion can be transformed into low-frequency which almost invisible. The ver-
tices coordinates are then first transformed into anothecespy applying the Laplander
operator. Then the new transformed coordinates are geantizhis allows aggressive
guantization without introducing visually disturbingiéatts.

There are several other geometry compression techniqebsasup9, 109, 91, 49].
More deeply survey about static mesh compression, can el io 94, 6].

Spectral Coding

Spectral methods are widely used for lossy compressionag&s such as the popular
JPEG which is based on the DCT. In these methods, the datamessed as linear com-
bination of orthogonal basis functions, each basis funasaveighted by a coefficient.

Karni and Gotsmandl] introduced the spectral theory method for geometry com-
pression purpose. They computed the eigenvectors of tha fregdacian matrix then
projected the mesh geometry onto the new orthonormal bastors. The spectral co-
efficients are quantized to typically betwethand16 bits followed by the quantization
of the coefficient vector. The resulting integers are enticgled with Huffman or arith-
metic coder. For a mesh of large number of vertices, the ctatipn of the eigenvectors
of the Laplacian is prohibitively expensive. Thereforasitnore practical to decompose
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the mesh into submeshes and encode each mesh separately.

The results showed to be significant for relatively smootidet® The algorithm
achieves about a half to a third of the bitrate of TG’s aldonitf117] at the same visual
quality.

This approach enables the progressive transmission. atrapcoefficients can be
sorted then transmitted from low frequency to high freqydndhe decoder. At the client
side, an approximation of the mesh may be reconstructed adew spectral coefficients,
and it is incrementally refined by using more coefficients.

Geometry Imagdt is a technique that remeshes an irregular triangle meshtesegular
grid which calledgeometry image This can simply be encoded using traditional 2D
image compression schemes. Geometry image representgasonple and well-suited
for hardware rendering.

Basically, the mesh is first cut along a set of edge paths tdyo® a mesh that has
the topology of a disk. This allows then to parameterize thtesarface onto the square
domain of the image and sampled on 2D regular grid in this dionidnis 2D grid forms a
geometry image where the vertex coordinates (x,y,z) aredattas an RGB image. The
geometry images is compressed using wavelet-based coders.

2.4.1.2 Progressive Compression

Hoppe is the first who introduced the concept of progressiesmrepresentation
(PM) [42]. This is another scheme for storing and transmitting eabyttriangle meshes.
As described before, progressive scheme encode a base mesloarse version of the
mesh with a sequence of refinement operations. After therbasé has been sent, it is
first reconstructed and gradually refined as the bitstrearafisfement operation is being
received, decoded and parallel rendered until the origireah or its close approximation
is recovered. In progressive scheme, the transmissioncomngaression of the mesh can
be stopped at any accuracy.

Progressive techniques can also be categorized into logkjoasless depending on
that if the original connectivity and geometry informatiare recovered or not. In lossless
techniques the mesh is continuously simplified into a coaresh, and at each step the
simplification operation is stored. To retrieve the oridgimesh, the inverse of these oper-
ations are applied to the base mesh simplification. In lossyrtiques often the remeshing
and the wavelet are used. The mesh is decomposed into coasbenith hierarchy of fine
detail. The distortion in lossy techniques is measured ag#ometric distance between
the surfaces.
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Figure 2.13 Edge collapse and vertex split operation.

In his progressive schemé3], Hoppe showed that only one single simplification op-
eration which isedge collapsgs sufficient to effectively simplify a mesh. This operatio
involves eliminating an edge by merging its two end vertigesnduv, into a single vertex
v] (see figure2.13 Thus, it reduces the mesh by one vertex and one triangle iédge
Is on the boundary or two triangles otherwise. The inversedgfe collapse operation
is calledvertex split It split the vertexv] back intov; andw,, recovering the original
connectivity.

To obtain the coarse mesh, a successive collapse operatighsire applied to the
original mesh. At each iteration an edge that minimizes te®dion is selected to pre-
serve the overall appearance of the mesh during the reactistr. The progressive rep-
resentation of the original mesh is then the base mesh ansktiigence of vertex split
operations: {/y, splity, splits, ..., split;). To generate finely progressive coding, PM en-
codes the mesh by collapsing only one edge and encoding aelyartex, at time. This
operation uses a large number of bits per vertex. Thus, itneaefficient for compres-
sion. To enhance the coding efficiency, PM was extended lBrakeresearchers.

Taubin et al. developed.Ll5 compression approach. Instead of using single vertex
split operation, they introduced tif@rest splitoperation which split a group of edges at the
same time. At each step, the mesh is cut along a forest of githgesthe resulting crevice
is triangulated and finally, the new vertices are displaced their new position. This
operation achieves much higher compression ratios tharPR@jdrola and Rossignagq
proposed theompressed progressive mesfo minimize the cost of each vertex split,
they group the mesh edges into batches. At each batch the edgeollapsed, then
the information to reverse these steps are encoded. At tich befinement, the number
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of vertices is increased by up @%. Khodakovsky et al.§7] developed Progressive
Geometry Compression for highly detailed and densely sathpleshes. First, the input
mesh is remeshed into a semi-regular mesh using Maps &lgwitThen, a loop wavelet
transform is applied on the semi-regular mesh outputtingarsest base mesh and a
sequence of wavelet coefficients which represent the driffee between successive levels.
The coarse base mesh is encoded with non-progressive geehwhile the sequence of
wavelet coefficients is progressively encoded using zeeotrhose concept can be found
in[107].

Later, Khodakovsky and Gusko&§] developed another wavelet based approach based
on the the normal mesh representatidi®] which designed to produce detail coefficients
with one scalar value only instead of 3D vectors. Furtheemtitey used unlifted But-
terfly wavelets as predictor. Alliez and Desbri&h proposed an new algorithm based on
the valence of vertices in a mesh. They observed that themnéncoding depend on the
valence distribution. In their approach, the decimationqreest subdivides the mesh into
patches (1-rings). Then, each patch center vertex is retihdvwealence is output and the
resulting patch hole is re-triangulated.

There exist a long series of improvement in the progressivepcession and trans-
mission of static meshes such 48,[95, 31, 93, 78]. In this section, only few approaches
are reviewed and for more detail we refer the reade6ta11].

2.4.2 Animated Mesh Compression

As animation technologies have become more sophisticaigéecessible, their ap-
plications become more widespread. Application such apoten games, Movies, edu-
cation, medicines, etc. often demand animated 3D modeadss@mes with highly degree
of realism. As animation becomes more realistic and moreptexnthe corresponding
frame meshes become bigger and bigger, consuming more amedspece. It is therefore
indispensable to compress the animation dataketsframeanimation is one of the most
famous and dominant animation representations used imthesiry to represent the ani-
mation compactly. A set of key frames are chosen to descetiaio important key poses
in the animation sequence at certain times. Then all framégtween are generated us-
ing interpolation techniques. For such applications, ¢ékemumber of key-frames can be
very large, requiring a large memory space and need forteffecompression techniques.

During more than one decade, extensive research has beemdatatic mesh com-
pression, producing a large number of schemes as citedebefdhile research still fo-
cuses on efficient compression for huge static mest@sdnimated meshes have become
more and more important and useful every where. Howeveguhent static techniques
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for the compression of sequences of meshes independeatiyadficient.

Often the meshes differ only slightly between neighbori@gfes, leading to a large
redundancy between frames (temporal redundancy) and eetmeighboring vertices in
the same frame (spatial redundancy). In order to developrgact representations that
significantly reduce the storage space of animated modgls the space and time coher-
ence should be exploited.

The current coders are dedicated to compress the triangu@sines of fixed connec-
tivity so that the connectivity needs to be encoded, storadansmitted once, then the
geometry coding comes into play. The focus on animated nsestitle fixed connectivity
may be justified by the fact that often the animation creatoagtain the connectivity
constant throughout the animation, in order to allow foryeasd efficient manipulation
of the sequence.

The previous section has shown how to compress static 3D e@seshhis section
will review the current compression algorithms for comgres of animated meshes.
Here, we distinguish between four approaches, accorditigetscheme adopted for com-
pression: predictive based methods [JCS02, IR03], PCAdagwesentations [AMOO,
KGO04, SSKO05], wavelet based techniques [GK04, PA05] ansteting-based approaches
[Len99, ZOO04]. These techniques can also be are classifiedimgle-rate and progres-
sive coders.

Lengyel provided a description of seveaadimation primitivesused to create the an-
imated model: Free Form Deformations, Key-Shapes, Weightajectories, and Skin-
ning. The encoding of the primitive used in generating thenation yields the best com-
pact representation of all. This is possible if the pringtis determined a priori. However,
there are many animation tools. Finding the way in which tienation of each object is
generated, is difficult or unfeasible. Therefore, it is mana&ctical to develop compression
tool that compresses animated object independently fromthe animation is generated
or even how complex (linear or non linear) it is. The efficigrmé the method depend
on how much the redundancy is removed, eventually, on thedspéthe compression
and decompression algorithm. Yet, we need compressiomnithgs that allow for small
compressed representations that maintain good visuaityidel

2.4.2.1 Clustering-based Compression

The basic idea of a clustering-based compression appre&eisplit the mesh vertices
into several groups of similar motion and to encode the matioeach group using few
representative vectors or parameters.
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Affine Transformation. In his approach, Lengyelr[/] partitioned the mesh into sub-
meshes and described the motion of the submeshes by rigidttetsformations. The
rigid body transformation of a submesh was thereby estidtatbest match the trajecto-
ries of its vertices. The compression was achieved by engdtie base submeshes, the
parameters of the rigid body transformations, and themiffees between the original and
the estimated locations. This approach is very effectivewlarge parts of an animated
model can be described well by rigid body transformationte other four modeling
primitives can also replace the rigid transformation.

Lengyel’'s approach is improve@§|, by encoding the mesh animation with a se-
quence of rigid transforms without residuals. A base meshgsnented into rigidly trans-
forming segments, using a new weighted least squares ségoenprocess. Then, to
exploit the temporal coherence, these transformationaggeegated. The reconstructed
animation may not be enough smooth in time and space. Tdydgis effect, a spatial-
temporal smoothing scheme is applied. Affine Transfornmaigcalso used to develop a
Level of Details for Dynamic Meshes (see sectib4.3.

Octree based Method This approach is based on spatial clustering, based ontegeoc
decomposition of the object. The basic idea is to represémh@tion vectors of the
vertices enclosed in each cell with only few representahie¢ion vectors.

Assuming that the previous frame is already encoded, thesmeg¢ctors are computed
as the differences between the position of vertices in tieentiand the previous frames
Av. Starting with a cube bounding box surrounding the 3D obgecinitial cell, eight
representative motion vectors,, ..., mg are associated with the eight corners of the cell.
The motion vectors of the enclosed vertices within the agellthen predicted biyi-linear
interpolationin the form of weighted sum of the eight representative vscto

8
Av = Z w;m; (2.6)
i=1

The representative vectors for a given cell are computedjusast square estimation.
If the motion of the enclosed vertices is well approximatedaning that the error is below
a specified threshold, the representatives for the octamfuantized and entropy encoded.
If the error exceeds the specified threshold, the cell is teBned into 8-octants and for
each new octant 8-motion vectors are computed to estimatenttion of its enclosed
vertices. The process continues until the error is belowtliheshold. The accuracy of
the approximation can be measured in terms of maximum ongedtuclidean distances
between the original and the reconstructed motion vecftdhewertices withina cell. The
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compression is achieved by quantizing and entropy encadtli@gepresentative motion
vectors.

This approach isimproved to the so called Differential 3Dsk€oder (D3DMC)63],
which is followed by a rate-distortion optimized version3@MIC-RD) [87].

Iterative Closest Point The idea of ICP is to find point matches between two meshes.
In [38], the ICP is used to estimate the motion of the vertices irhedigster in terms

of affine parameters and residuals. The mesh is initiallyrggged into clusters by the
topological partitioning algorithm4l]. Then the clustering is refined to separate the
vertices that can be encoded with the affine transforms amiythose that need further
encoding the residuals.

2.4.2.2 \Vertex-Prediction based Compression

Prediction techniques assume that the connectivity of thehms does not change
over time and use the previously recovered vertex locatmpsedict the location of each
new vertex. The vertex path (or vertex displacements) magstienated using linear or
non-linear predictors in space and (or) in time. The deltaors are compressed up to a
user-defined error. In such technique, the mesh triangéesarersed in an order suitable
for the predictor and the first frame is encoded using staticpression schemes. Here,
we distinguish three type of predictors: spatial predictemporal predictor and space-
time Predictor.

Spatial predictor exploits the coherence between neighboring vertices in #ame sep-
arately using for example the parallelogram predictor (gpege2.14).

Temporal Predictor exploits the redundancy between the positions of the ventexb-
sequence frames. The position of the veféis simply predicted from the position of the
vertepof*1 in the previous framég — 1 or as a linear or quadratic combination, taking into
consideration the vertex positions in the two or three mesiframesg’—*, p/ 2, p/=3).

Spatio-Temporal Predictor takes into account both the spatial and temporal correlatio
For instance dynapack uses two space-time predictors:

Extended Lorenzo Predictor (ELP)
This predictor uses a parallelogram prediction to explogttgl coherence, and then per-
forms temporal prediction on the spatial details. It is dguepredictor for a subset of the
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predict(y, ')

Py
Figure 2.14 Space-only predictor: parallelogram prediction.

mesh undergoing pure translation from the previous frame.
predict(V, f) = Np+Pp—=0p+Vyq —Npy—Psy+05

Replica Predictor

This predictor expresses the location of the vertex reddbvthe locations of three vertices
of an adjacent triangle as local coordinate system. Thexdwotation in the new frame

is estimated by its relative coordinates from the previoase. This predictor replicates
perfectly the local geometry undergoing any combinatidrnsamslations, rotations, and

uniform scaling (see figur2.15).

predict(v, ) = 0y + aA’ + bB' + C’ (2.7)
r_ _
B = Ny — Oy (28)
A ' x B

/

VI A B

The position of thev;_; can be written asp,_; +aA+bB+cC. Then, the coefficients
a, b andc are computer from the previous frame as.

ADxB.B—B.DxA.B

T AA«BB-AB+AB
b_A.D*A.B—B.D*A.A 29
~ AB%xAB-—-BBxAA (2.9)
Ax B
D"
|A x Bl

where
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predict(v, f)

frame f

frame f-1

Figure 2.15 Replica predictor.

A= Pr_1— 01
B= Np1=0m (2.10)
B Ax B
[Ax B

A similar predictor, introduced by Stefanoski and OstermHIri3, is a perfect pre-
dictor that preserves the angle between the referencegleiamd the spanning triangle.
The difference between this predictor and the Replica Btedies in the coordinate sys-
tem used to express the vertex location. Yang et al. propdmsdre, first and second
order predictors for the vertices displacements withinstagrange Multiplier scheme.

The interpolation compression (AFX-1C3%] is a tool adopted by the MPEG-4 stan-
dard and aims at exploiting the redundancies between treetted key frames. The main
concept is to reduce the number of keys trough an interpgbeitcess and compress the
remaining key frames using the differential coding andamtrcoding.

Predictive methods are simple, efficient and have a low caatipmal cost which
makes them well suited for real time compression and decessn. The drawback is
that they do not support progressive compression and tewgtte not efficient at very low
bit rates which would require a coarse level quantizatidmctvleads to blocky structure
as discussed before.

Vertex based predictive approaches, focus on frame to frdraeges to exploit local
coherence. They process vertex after vertex. In oppodieelare other approaches that
analyze the global coherence by using, for example, a PCia.elamines the entire mesh
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sequence and represents the sequence by a few principabonentp and coefficients.

2.4.2.3 PCA-based Compression

Principal Component Analysis (PCA) is a statistical tegluei that can reduce the
dimensionality of a dataset. It determines linear comimnat of the original dataset
which contain maximal variation and represents them in #rogonal basis. The original
data can then be compactly represented by a few principgboonents and coefficients. If
we have for exampld; frames of3V/ dimension each and V is the number of the vertices,
PCA produces a reduced numher< F' of principal components that represent the
original dataset. On can then see the PCA as a transfornwdtibe original coordinates to
a new coordinate system such that the direction of the fiistisxypointed in the direction
of the greatest variance in the datasets, the directioneas¢lcond axis in the direction of
the second greatest variance and so on.

Alexa and Mdiller B] were the first who suggested PCA to achieve a compact rep-
resentation of animation sequences. First, all framesranslated so that the center of
mass of the model coincides with the origin. Then, an affiaegformation is computed
minimizing the squared distance of corresponding vertigés respect to the first frame.

All frames are gathered to form a matrix of dimension threees the number of vertices
times the number of frames. To find out a compact representéir the sequences, they
perform PCA on that Matrix using singular value decomposit{SVD) to extract the
eigenvectors and the coefficients. This method was imprpggdoy applying second-
order Linear Prediction Coding (LPC) to the PCA coefficiesush that the large temporal
coherence present in the sequence is further exploited.

Animated meshes exhibit highly nonlinear behavior, whecglobally difficult to cap-
ture using standard PCA. Therefore, for more efficient ca@sgon, the clustered PCA
(CPCA) was introduced1DZ: the mesh is segmented into meaningful clusters using
Lloyd’s algorithm B2] in combination with principal component analysis. Thelsters
are then compressed independently using a few PCA componaht This technique
outperforms the standard PCA and the combined PCA with LP@ree, since they ex-
plore a robust segmentation which is based on a data an&bgsisique. But it remains
expensive.

PCA based approaches support progressive transmissi¢evahaf-detail. The qual-
ity of the animation increases with the number of PCA coedfits. From the computa-
tional viewpoint it is expensive, but the decompressiorcess is very fast.
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2.4.2.4 Wavelet-based Compression

Wavelet transform aims to decorrelate geometric data aggnerate a sequence of
detail coefficients. In irregular meshes, the wavelet tietaomputed every time a vertex
is removed from the current level of progressive mesh hebgaand defined as the differ-
ence between the actual location of the removed vertex ang@riédicted location from
the coarse level.

Guskov et al. 39 used wavelets for a multiresolution analysis and exptbitee para-
metric coherence in animated sequences. The resultingletaletail coefficients were
progressively encoded with predictive coding scheme.

The idea of this algorithm is to separate the geometric ardotirametric information
for parametrically coherent mesh sequences. The sequémncestes sharing the same
connectivity, also share a similar local parametrizatidlence, the connectivity and the
parametrization need to be encoded and transmitted onky thren use it to decorrelate
the geometry of each frame. Indeed, the encoder first pr@spgcific mesh which is
called parametric mesh, then uses the information of thshn@ compress the geometry
of the remaining meshes, frame by frame.

Payan et al. 92] introduced thdifting schemeto exploit the temporal coherence. The
wavelet coefficients are thereby optimally quantized byimining the reconstructed
mean square error for specific user-given target bitrate.

Video Geometryl9] is an alternative way that treats the animated meshes &9 \@e-
quence. It is based on tH@eometry Imageepresentation developed for static mesh.
The sequence of meshes are then transformed into geometgganvhich are then com-
pressed using standard video compression.

2.4.3 Level of Details for Dynamic Meshes

Shamir et al. 10§ introduced a multiresolution model for dynamic geometey s
guence of meshes called TDAG. It supports spatial and temhjp@rel of detail. They
first extract the affine transformation relative to the firsinfie then encode the residual
in the TDAG structure. Through the TDAG structure, the cangton approximation of
each mesh is governed by a metric function that combinesa$panstrains and temporal
constraints.
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2.5 Segmentation

3D Mesh segmentation is a process that breaks mesh elenamittg Ithe same prop-
erties into regions. It has become a necessary tool in canpguaphics and geometric
modelling. And it is used for various applications such asam®rphosis33, 131, 110,
compressiongl, 84, 10, 102, parametrization 00 69] simplification [132 32] and
skeleton extraction94]. For detailed survey in literature on segmentation, werrrdfe
reader to 105.

2.5.1 Static Mesh Segmentation

Segmentation of static mesh partitions the mesh into regismg the mesh attributes
as segmentation criteria, depending on the applicatiommss may impose different re-
quirements and criteria. The most criteria functions usedpfrtitioning process are
geodesic distancéb, 64], curvature 04, 34, 72], normal [125, etc. Of course, the de-
cision to assign each vertex or triangle to the same segrifentsaheavily on the results
of the segmentation. Thus, the quality of the method is glyorelated to its application.

A various approaches have been proposed to decomposetibewshes into visually
meaningful parts such as region growiri®[ 119, 90, 57, 127, 86, 20], watershed §8,
137, hierarchical clusteringd2, 16, 46, 108 71], iterative clustering110, 101, 58, 124,
spectral analysis method8l] 80, 81, 128 129, implicit methods, etc.

For instance, theegion growing approach collects the elements of similar feature.
These elements can be vertices, triangles or region. Tategyrof region growing starts
with a number of elements which are either selected randomilysing geometrical cri-
teria. Then, it grows sub-meshes incrementally (eventuadl parallel) under a set of
criteria that determines if the new element can be addedeauirent region and the
growing stop criteria. The main differences between varimethods arises typically on
growing criteria, seeds selection process and dealing tétsmall regions or merging
criteria. In this approach the result of segmentation dépéeavily on the number of the
choice of initial seeds and its number.

Theclustering approaches can be either hierarchical or iteratiierarchical clus-
tering initializes all elements as clusters, then merges the erlsigif low cost to one
cluster. The number of final clusters in this approach is omkn Iterative clustering is
introduced to find an optimal segmentation. Often, thisg@atguses the popular Lloyd’s
algorithm B2], some time referred to as k-means.

Given a number of clusters, the approach searches itdgative best segmentation.
The algorithm starts witlh representatives df clusters and assigns each element to one
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of these clusters. Then, the iterative procedure updates tiepresentatives from the

clusters until they stop changing. Generally, the itemfvocess can be automatically
stopped when stopping criterion is met, typically, thereated improvement stays below
a predefined threshold value or the maximum of iterationeashed.

The Spectral analysisapproach uses generally the eigenvectors of the affinityixnat
to break the mesh into parts. Spectral clustering is one egetwell-known spectral
approaches. It uses the eigenvectors of weighted graplatiapl matrix to construct a
low dimensional embedding in which the clustering would bsier than clustering the
original data points.

2.5.2 Dynamic Mesh Segmentation

Recently, segmenting dynamic 3D meshes gained much intenesit is used in
several contexts in animatioB7, 102 54, 64, 75, 76|, typically, skinning mesh anima-
tion [54], ray tracingB7], and compressiorv[7, 38, 102, 84].

While static mesh segmentation aims at detecting mearlipgits and breaks the
mesh onto sub-meshes of similar specific features withireaiBp context, 3D dynamic
mesh segmentation approaches exploit the temporal inf@m@ partition the mesh into
quasi-rigid parts. In other words, group the vertices tmatargo similar motion. Beside,
the spatial information or features can also be exploited.

The literature on 3D dynamic mesh partitioning is poor coragavith the large liter-
ature on static mesh partitioning. For instance, in skigrdaformable mesh animation,
James and Twiggpf] usedmean shiftalgorithm 1, 27] to cluster triangles with simple
rotation sequences to identify the near-rigid structufedeformable meshes and esti-
mates their transformations. This kind of clustering perf® well for virtual characters
but not for extremely deformed animation where the most camept are not near-rigid.

To ray trace animations, Gunter e aB7] decomposed the mesh into rigid parts un-
derlying a similar transformation by clustering the trilkesy Residual motion is then
captured in a singl&uzzy kd-tree for the entire animation. Note that kd-tree subdivides
a region enclosed by a bounding box into irregular areas.

Lee etal. F6] introduced a method that find near-rigid sub-meshes. Tgaiéhm ini-
tially extracts feature triangles on the mesh. Then, theareimg triangles are assigned to
different partitions, depending on the distance betweeridbe and the feature faces. The
distance metric which is used combines geodesic distartbeté deformation distance.
The drawback of this algorithm is computationally costly oactical purpose.

For dynamic mesh compression purpose, segmentation Ig tesed compared with
the huge number of algorithms proposed for static meshesmidst proposed approaches
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assumes that the sequence of meshes have the same cohnectvionly geometry
change over time.

Usually, the objective of using partitioning the mesh in¢benpression context to de-
crease the computational costs as well as to preserve thalgloape of the mesh because
some compression algorithms such as some spectral basengiees (DCT, PCA, etc.)
can destroy important features of the mesh. Another obgdito find near-rigid com-
ponents whose motion can be described by affine transfornthwdad to more compact
representation. In all cases, the algorithm employed titjgermesh vertices into near-or
rigid parts heavily affects compression performance.

To find the vertices that have similar motion, Lengyél][proposed that one select a
set of seed triangles randomly and compared their trajestofiriangles with a similar
motion are combined. Then the vertices are associated mettriangle whose trajectory
best fit theirs. Gupta et al.38] use multilevelk-way partitioning algorithm 41] on the
basis of proximity in the connectivity and the number of paiven by the user.

Mamou et al. 85] proposed to partition the mesh vertices into clusters whmostion
can be described by unique 3D affine transforms, by applyingekns $0]. Amjoun et
al. [7] proposed region growing based approach. Starting froraraégeed points. The
regions grow uniformly around the set of selected seed powfirst traversing the closest
neighboring vertices over time until all vertices of the mase visited (see chaptéy.

These approaches use the connectivity information for seggtion, eventually with
the geometry information. Generally, the approach thabmectivity-based clustering
only is not well-suited for time geometry-variant.

Alternative approaches use the geometry information @mg,they are characterized
as motion clustering based techniqu&8g, 10] which analyze the vertex motion over
time.

Sattler et al. 102 proposed to cluster the trajectories of vertices usingd®algo-
rithm in combination with PCA. Then, they compress eachtelusidependently. In this
approach, unlike 44], they don’t analyze the motion of each triangle but the mogach
vertex. However, the experiment results showed that thinguboundary may deviate
from the deformable regions. Thus, the near-rigid is nobgswobtained as cited i §).

Amjoun and Strasset ] proposed another scheme based on the motion of vertices
relative to the local coordinate system defined for eacht@fifsee more details in chap-
ter4).

As mentioned in static case, in animation the segmentatiocess also depends on
the applications which may impose different requiremeauts] the quality of the results
depends strongly on the applications.
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Note that the static mesh segmentation can also be well nsgairmation case as an
initial segmentation which is then refined based on the matitormation.

2.5.3 Discussion and Summary

This chapter began with an overview of compression data.cbiegories of compres-
sion were described: lossless and lossy compression. @eamnpression techniques
were presented. Two entropy techniques are describedmdnficoders and arithmetic
coders. These techniques are lossless techniques ofteémusesh compression. A de-
scription of 3D geometric models for the static and animatesk are presented. Triangle
meshes are a frequently used representation to modeldimresisional object or scene.
Then the most popular techniques of mesh compression havereegewed. These tech-
niques can be classified into insngle-rate encoderandprogressive encodersingle-
rate encoders encode the original mesh as whole and oncg.afdéedicated to reduce
bandwidth between rendering pipeline and local memory.

A wealth of successful compression schemes have been gap&srlier works fo-
cused on the efficient coding of the connectivity data dgvime encoding of the geometry
data, i.e. a vertex location is encoded at the time, whenaheexctivity-coding scheme
encounters the vertex for the first time. As connectivityingdechniques became near
optimal within the last years, the researchers startedrioarttrate on the encoding of the
geometry whose code dominates the total compressed datd siz geometry driven cod-
ing have then been emerged to encode the geometry in nearabptay, independently
of connectivity coding. This is then guided by the geometgling.

Progressive schemes have also been widely studied. Psograpproach first creates
a simplified version of the original full resolution meshngisimplifications operations.
After transmission, the base mesh is first decoded and reootedd, then gradually re-
fined as the bitstream is being received and decoded. In gepdreren compression, the
geometry is progressively encoded without restraint oheativity. Then the connectiv-
ity changes between two levels of details are encoded.

While research still focuses on efficient compression fgestatic meshes, animated
meshes have become more and more important and useful elerg.Wwowever, the cur-
rent techniques for the compression of sequences of mastesandently are inefficient.

The current coders are dedicated to compress the animetedular meshes of fixed
connectivity so that the connectivity needs to be encodedsd or transmitted once, then
the geometry coding comes into play.

There are several criteria by which developed coding teghes can be distinguished.
One of these criteria is the methods used to encode dynaroioejey. In PCA based
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techniques, the global linear behavior of the verticesughoall frames is approximated
in terms of linear space. The animation sequence can beeadda@ few principal com-
ponents and coefficients. The efficiency of this techniqaesiases when the datasets are
segmented or clustered, so that each group is individuattp@ed by PCA. This type of
method supports progressive transmission. The drawbattkoapproach is it is com-
putationally expensive. In predictive methods, for eaelmie, the difference between the
predicted and the current locations is encoded with veryld#sy These approaches are
simple, not expensive and well-suited for real-time agtlans. The drawback of these
methods is that they do not support progressive transmiséitine transformations well
approximate the behavior of sets of vertices relative tarfiml position (the first frame,
eventually the I-frame). This type of method is very effeetfor animations based on
motion capturing, if the mesh is well partitioned into almiogid parts, since the vertices
are attached to the bones and move according to their repagise joints. Therefore, ex-
ploiting the coherence in this animation and finding thegfarmation that best matches
each group of vertices is easier than finding a transformakiat approximates each part
in deformed meshes (like a cow animation). The drawbackisftéthnique is that it can
be computationally expensive depending on the splitting@ss or the affine transforma-
tion optimization.

Wavelet based approaches which also support the progeg¢ssnsmission, have showed
to be efficient. There is a method that separates the paraat&in and the geometry. Itis
assumed that the connectivity and the parametrization oaemt are constant throughout
time. Thus, they encoded and transmitted only once and thentwse the parametric
information to de-correlate the geometry of each frametirigfscheme exploit the tem-
poral coherence by transforming the vertex position inghrand low frequencies. The
wavelet coefficients are thereby optimally quantized. Getoynmages is also extended
to geometry video which are compressed using standard col@pression

We end up the chapter with mesh segmentation. We discusexedt methods pro-
posed for static and dynamic meshes in different applinatParticulary, we presented
the most proposed approaches in the 3D dynamic mesh conmressitext. The goal
of almost all methods is to partition the mesh into near adngarts, taking advantage of
the motion correlation property. Many of them focus on atited characters and may
be less efficient for deforming meshes.

Basically, There are methods which we call geometry-basgohentation techniques.
They use the geometry information only to cluster the mestices, independent of the
mesh connectivity. The connectivity-based segmentagohrtiques use the vertex adja-
cency to partition the mesh. These approaches are not wigddsfor partitioning, since
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the geometry is changing over a time. There are methods #ebaoth geometry and
the connectivity information for partitioning, often thegsume that the connectivity is
constant over time and only geometry changes over a time.



CHAPTER 3

Compression of Static Meshes: Higher Order Predictor

This chapter describes a new geometry encoding strategyoll@avs the predictive
coding paradigm, which is based on a region growing encodimdgr. Only the delta
vectors between original and predicted locations are estoda local coordinate system,
which splits into two tangential and one normal component.

We introduce so-called higher order prediction for an invgencoding of the nor-
mal component. The tangential components are encoded antiiigogram prediction.
Then, a higher order surface is fit to the so far encoded gegm&s the normal com-
ponent is encoded as a bending angle, it is found by intengettte higher order surface
with the circle defined by the tangential components. Bezafi€omputational time of
gathering vertices during fitting process, we come up witihér order predictor based
on sphere fitting to speed up higher order prediction.

3.1 Introduction

There are two main criteria by which static coding techngjoen be distinguished.
The first criterion is whether the methodpsogressivei.e. allows for incremental trans-
mission, or not. In the latter case the scheme is cdlid Progressive methods tend
to be a bit less efficient as flat methods and in this paper wegsea flat compression
scheme. The second criterion is whether the geometry idebassyor “not lossy”. In
the lossy setting it is allowed to move vertices over theaagfas long as the,-norm or
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the Hausdorff distance between encoded and decoded mesk than a prescribed limit.
It is even allowed to change the connectivity. Typicallypltolike Metro [24] are used
to measure the distance between original and decoded md®hproposed method is
"not lossy", where we quote this notion as it also introdismse loss. In the "not lossy"
setting the coordinates of the original vertex locatiores guantized to a user specified
number of bitg; relative to the maximum extend,... of the bounding box of the model,
or a bit more general: the error between the original verdeationp; and the decoded
vertex locationp; may not exceed

le - f)’LH S emax/Qq- (31)

This is the setting that we used in this chapter.

As most other proposed methods for geometry coding we alkawfohe predictive
coding paradigm. Here the triangular mesh is traversed @gi@mn growing order, which
is either driven by the connectivity coding algorithm or daa chosen, as we do, as a
breadth-first traversal of the connectivity after the cartivéty has been decoded. One
initializes the growing region, which contains the so fac@ited geometry, with one tri-
angle and encodes the incident vertex locations in uncasspdsform. The three edges of
the initial triangle are pushed onto a FiFo. The traversaplpops the currently first edge
from the FiFo and defines it as the so caltgde at which the region grows. The gate is
incident to at least one triangle in the growing region. Ttieoincident triangle is added
to the growing region if it is not already part of it and newguatial gate edges are pushed
onto the FiFo. Every time a new vertex is encountered duhegraversal, one predicts
its location from the so far encoded geometry and only erstuedelta vectors

def
5i é Pi — Ppred,i

between the original vertex locatigsn and the predicted locatiop,,.q ;. The traversal
loop is iterated until the FiFo is empty and all vertices hiagen encoded. The decoding
algorithm just performs the same traversal and does the pagdection, but decodes the
delta vector and reconstructs the original vertex location

Previous work T3] has shown that it is advantageous to split the coding ingatigl
and normal components by expressing the delta vectors im@ioate system aligned
with the so far encoded geometry. We follow this approachessiibed in more detail
in section3.2.2 We also split the prediction into a tangential and a normedjgtion.
For thetangential predictiorof the two tangential componeni§,cq t.n, We investigated
the two existing methods of parallelogram prediction andtirway prediction. But our
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Figure 3.1 Geometry coding process.

main contribution is the so callddgher order predictiorfor the prediction of the normal
component. The normal componentis encoded as the bendihglzatween the triangles
incident to the gate. After the encoding of the tangentialponents we fit a higher order
surface to the so far encoded geometry and intersectingtht avcircle defined by the
tangential components.

3.2 Geometry Encoding and Decoding Algorithm

Our geometry-coding scheme is based on a breadth-firstrrggawing traversal of
the mesh as described before. Here, we detail the codingthlgdor the vertex locations
of vertices that are newly encountered during the traverfsle connectivity.

The block diagram of the encoder is shown in fig8ré We decompose the geometry
encoding into the following steps.
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Geometry Encoding Algorithm

=

. build local coordinate system

2. transform original vertex location into tangential adioates and bending angle
3. tangential prediction (parallelogram or multi-way)

4. compute, quantize and encode tangential delta vector

5. decode tangential coordinates

6. higher order prediction of bending angle with decoded¢atial coordinates

7. compute, quantize and encode bending delta angle

8. decode bending angle

9. replace original vertex location with decoded locatramsformed back to the world
coordinate system

Firstly, we compute the local coordinate system by splttime coordinates into two tan-
gential components and a nhormal component representeddaydiny angle (see subsec-
tion 3.2.2. In the second step, we transform the original vertex ineddcal coordinates.
Next we predict the two tangential components as describes@ction3.2.3and com-
pute, quantize and encode the delta vector with an aritleroetier as will be described
in section3.2.4 Stepsb and8 are crucial for the avoidance of error accumulation. By
simulating the decoding process, we make sure that we usggdemcoding exactly the
same information also available to the decoding algorithmstep6 the main contribu-
tion of the paper comes into play, when we predict the bendimge. This is detailed in
section3.3. Again we compute the delta angle, i.e. the difference tdotreding angle
measured from the original point, quantize and encode thdibg delta angle. Finally,
we decode the bending angle also known by the decoder, oramghe local decoded
coordinates back to the world system and replace the ofigeréex location with the
decoded one, what ensures avoidance of error accumulation.

The decoding algorithm uses the same traversal of the ctmitygand performs the
following steps:
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gate
edge .-
reference N
triangle
....... ) “‘ r = (p — 0) X
=Ptan". t = (p-0)-y
M) SR, * z = (p — 0) -7
. y = Vit2+ 22
spanning a = atan2(z,t)

triangle

Figure 3.2 lllustration and computation of local coordinates: tartggrcoordinatese, y and
normal component given as bending angle

Geometry Decoding Algorithm

1. build local coordinate system

2. tangential prediction (parallelogram or multi-way)

3. decode and undo quantization of tangential delta vector
4. compute tangential components

5. higher order prediction of bending angle

6. decode and undo quantization of bending angle

7. compute bending angle

8. transform local coordinates back to world coordinates

3.2.1 Avoidance of Error Accumulation

As we use predictive coding and do the quantization in a looafdinate system, the
quantization errors normally accumulate. Lee and K8 had the same problem with
their vector quantization strategy and proposed to encddéi@enal correction vectors
every time the accumulated quantization error exceededrtioe tolerance. As we only
encode correction vectors, a careful design of the encadguayithm is necessary to avoid
error accumulation. We simply simulate the decoding preedso during the encoding,
and store the decoded vertex locations of each vertex. Anesetwe compute the local
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coordinate system (stefpof encoding algorithm) and the prediction (s@®p The deltas
of the tangential components (stépand of the bending angle (st&pare computed be-
tween the original vertex locations and the prediction coteg from the decoded vertex
locations, such that only one quantization step can inteduror and error accumulation
Is avoided.

3.2.2 Local Coordinate System

Figure3.2illustrates the local coordinate system, that we use in eontgetry coding
algorithm. When a new vertex is encountered the gate edgkves/s incident to an
already encoded triangle in the growing region, which we tted reference triangle
and to a triangle incident to the new vertex, which is calleelgpanning triangle The
local coordinate system is defined on the reference triangkeorigin o at the center of
the gatez-axis along the gate edge apehxis orthogonal tac-axis in the plane of the
reference triangle. As third coordinate we use the bendngdeax between the normals
of reference and spanning triangle resulting in a cylirdraoordinate system with as
radius. We kept the notatian andy because they refer to tangential components. To
compute the local coordinates (see FigBi® we also determine th&axis orthogonal to
% andy. The transformation back to world coordinates is simply

p = zXx + ycos(a)y + ysin(a)z + o.

/

—predicted
\ .
= locations
® - \‘\
>

reference
triangles

Figure 3.3 In the multi-way prediction mode all possible referencarigles are exploited for
parallelogram predictions.
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3.2.3 Tangential Prediction

In parallelogram prediction mode for the tangential congaa we use the formula of
Touma and Gotsman but use the decoded vertex locationsen twrdvoid error accumu-
lation. In the multi-way prediction mode we exploit the idgaoposed by Cohen-Or et
al. [29]: when a new vertex is encountered there can be more thanamséope reference
triangle as illustrated in Figurg.3. The idea is to use all possible reference triangles for
parallelogram predictions and average the resulting predilocations in world coordi-
nates. This is exactly what we do before we transform theagest predicted location to
the local coordinate system of the actually selected gaje.ed

3.2.4 Binary Coding of Coordinates

For the final encoding of the local coordinates we have to tgmithe coordinates
according to the error bounds as given by equa8dn For the tangential components
this quantization step is straightforward. Integer valaiesderived according to

iy = |T/emax 29+ 1/2]
iy = |Y/€max-27+1/2]

For the angular component, one has to account for the radies gy they coordinate of
the cylindrical coordinate system. Computing the arc lbrygglds

lo = |ya/emax 27+ 1/2]

The inversion of the quantization process is simple as @ordthm makes sure thatis
known beforex needs to be decoded.

The resulting signed integer values are encoded with artiadapithmetic coder]23,
which generates new symbols for every newly encountereekind/e use two different
encoding contexts one farandy and one fok.

3.3 Higher Order Prediction

In this section we describe our new approach for the prexshatf the normal direction,
i.e. the bending angle, of the local coordinate system.reigu shows an example. The
red arrow shows the gate edge and illustrates the loclilection. The green arrow is the
local y-direction and the blue one the virtualdirection. The vertices illustrated by blue
spheres are the already encoded vertices close to the degse Vertices are used to fit a
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Figure 3.4 Snapshot during the higher order prediction of the cow m@pelynomial graph
function).

higher order surface as shown in cyan and are thereforeddallertices The dark circle
around the gate illustrates all points corresponding taldeded tangential components
x and radiugy and is called théangential circle The intersection of the circle with the
higher order surface defines two or more possible predietigiese. The angle closest
to o« = 0 is chosen and the resulting predicted locations is illtstrdy the red ball in
Figure3.4. In the following three subsections we detail the gathedhfit vertices, the
fitting of higher order surfaces and the intersection of tlyhér order surface with the
tangential circle.

3.3.1 Gathering of Fit Vertices

As shown in figure3.5, the fit vertices were gathered in a region growing strategy
starting at the reference triangle. In order to ensure tmatdiecoder could collect the
same vertex locations, we collected the decoded locatibasr@ady encoded vertices
only.

As it does not make sense to fit a smooth surface in the preséstarp edges, we
additionally restricted the search for fit vertices to a féagion around the reference trian-
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growing region

reference triangle

P> oy B<B...

vertex not vertax
g ath@‘ gathered
\

Figure 3.5 Gathering process. If the angle between the triangle noamthe reference normal
is smaller than a given threshold then the decoded incideméx is collected (right) otherwise it
is not used for surface fitting(left).

gle. First we computed the so callezgference normabf the reference triangle, gathered
its three vertices and initialized the growing region toteierence triangle by placing its
three edges onto a stack. As long as the stack was not emppgpped an edge from it
and checked if the incident triangle outside of the growiegjon could be incorporated.
This check included whether all vertices incident to thartgle had already been encoded
and whether the angle between the triangle normal and teeerefe normal was smaller
than a given threshold. We used a threshold of sixty degrealé our measurements. If a
triangle succeeded all tests, we incorporated it into tbevgrg region and pushed all new
edges on the region border onto the stack. If the third vestdke triangle was newly
encountered, we collected its decoded location. The nocimatk also ensures that we
can always fit a graplfi(z, y) to the gathered vertices with the andy-axes in the plane
of the reference triangle.

During fitting we weighted the fit vertices by their 3D distancfrom the center of
the gate vial /r¢, wheree is the so-calledveighting exponent

To find out the best number of to be gathered vertices and steuggghting exponent,
we plotted the number of bits per vertex consumed by the nlaromaponent for different
weighting exponents over the number of gathered fit verti€ae bits per vertex were av-
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Figure 3.6 Plot of bits per vertex consumed for the normal component ditferent number
of gathered fit vertices and different weighting exponerithie straight red line illustrates the
performance of the angle prediction via Touma and Gotsman.

eraged over the collection of sample models (see ch&8pkegure8.1). The resulting plot
in Figure8.6shows a minimal coding cost for eighteen gathered vertindsaaveighting
exponent of approximately.3. More results will be reported later B

3.3.2 Higher Order Surface Fitting

For higher order surface fitting we fit the graphr, y) of a polynomial function de-
fined over the tangential coordinateandy, where in this caseg is not the radius but the
actual direction in the plane of the reference triandlér, y) is the virtualz component
of the local coordinate frame. An arbitrary polynomial ftina in two variables with
maximum degreé€ is given by its Taylor representation

f(x,y) = Zaj¢j(x7y>7

(d+1)2(d+2) basis functions;(z,y) = (1, z,y, 22, zy,y>, ...,y* and them

parametersy;. For example for degreé = 2 there aren = (d + 1)(d + 2)/2 = 6 basis

with m =
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functions, and for degregthere are ten basis functions. The vector notation

@(IL‘,y) = (gbl(xvy)v SR ¢m(x7y))t

A = (ag,...,00)
allows us to simplify the expression f@rto

flz,y) = A'®(z,y).

Suppose we are given a set/oBD pointsp; = (z;, v, 2;)", i = 1...k with weightsw;
resulting from the gathering phase. Fitting otorresponds to the minimization of the
squarec-distances

k
. 2 2
Ag = minarg Ef(A) = lei (At@(:pi, yi) — zz)
As A is independent of the summation indgx can be taken out of the sum resulting in

E}(A) = A'(FA-2f),

k
F = Zwiq)(l‘iuyi)@(xiayi)ta (3.2)
i=1

k
f = Z wiq)(xia Z/i)
i=1

with the symmetrien x m matrix F. The vectordg, minimizing the squared distances
can be found by setting the gradievity £7( Ay, ) to zero, what yields

FAﬁt — f

To solve these equations independent of a potentially angymmetric matrixF, we
decomposed with an eigenvalue decomposition into an orthogonal ma@iand a di-
agonal matrixA

F = OAO!

If the matrixF has full rankm, Ag, computes t@ A~1O'f. In the case of a ranksmaller
thanm suppose the columns €F are arranged such that

m—-r

A =diag(Ay, ..., A, 0,...,0),
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and we set

T

1
Ap =) Oi+ (Oif).
i=1 v

3.3.3 Intersecting Higher Order Surfaces with a TangentialCircle

Now that we are able to fit a higher order surface to a set ofwtetyvertex locations,
we finally have to find out how to compute the intersection &f tdingential circle with
the higher order surfaces. The tangential circle corredipgrto the coordinates,,,, and
Yian IS defined by the two equations

Ttan = X

Yo = Y+ 2%

The points on the higher order surface obey f(x,y), such that we have to solve the
polynomial of maximum degre#l

yt2an - y2 + f2 (xtanu y) (33)

for y. In the case offl = 2 the resulting quartic equation can be solved in closed féon.
higher degree an iterative solver is necessary. In our @rpets we restricted ourselves
to the case withl = 2.

After having solved equatio8.3 for y, we computed for each solutigp the corre-
spondingz valuez; = f(zwn,y;). Finally, we computed up to four potential prediction
angleso; and selected the one minimizing the absolute value. In tke cano solution,
we used the bending angle prediction strategy of Touma aridn@m. In all measure-
ments we performed this happened in less than one percdm oftses.

3.4 Alternative Approaches

We develop alternative approaches for the prediction ofnibrenal component that
could replace the height field fitting. The first is fitting ofpiitit function that are more
expensive to compute but do not depend on a good estimate tdrigential space of the
surface. The second is fitting of spheres, what neither dbpen a tangential space but
is much faster to compute as implicit fitting.
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3.4.1 Fitting of Implicit Function

In this approach, we make the fitting process independetiedbical coordinate sys-
tem, we propose to fit implicit function g(x, y, z) such thaéthero set represents the
surface.

A polynomial function in three variables with maximum degecan be written as

d(d+1)(d+2)

M

9(x,y,2) = Bivi(x,y, 2),

1

J

with the basis functions;(x,y) = (1, z,y, z, 2, 2y, y* yz, 2%, zz, 23, ... 2yz, ..., 2
and the parameter$. With the vector notation

t
[(x,y,2) = (71(20, YsZ)ynns Vs (z,y, z))
t
B = (ﬂl, e ,ﬁd(d+16)(d+2)>
allows to simplify the expressions gfto
9(x,y,2) = BT (2,y, 2)

Suppose we are given a setiothree dimensional poings; = (z;, y;, z;), i =1...k
with weightsw;. Fitting g corresponds to the minimization of the squared analytie dis
tancesy®(z;, vi, 2:):

k
. 2
Bg = minarg ES(B): g w; (BtF(xi,yi,zi)) )

i=1

As B independent of the summation indgxt can be taken out of the sum resulting in
2 _ t
E;(B) = B'GB,

k
G = Z wil (x4, yi, 20) U (s, yi, 1)’
i=1

with the symmetrid: x & matricesG. The minimum of the squared distances is achieved
by settingV s £2(Bg:) = 0 which yields

GBﬁt - 0
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Figure 3.7 Snapshot during the higher order prediction of the torusehfablynomial implicit
function).

To solve these equations independent of potentially sargeymmetric matriceé&x we
decompose them with an eigenvalue decomposition into d&ogonal matrixO, and a
diagonal matrixA,

G = 0,A,0;

If the matrix G has full rankm, Bg; computes t(OgA;lOtg. In the case when of a rank
m smaller thank, we suppose the columns 6, are arranged such that the eigenvalues
Ag,: are sorted by decreasing absolute value. Then the eigen@g}, corresponding to
the eigenvalue\, , with the smallest absolute value will minimize the squaredreand
we set

By = Oy .

The same strategy of surface fitting described before isi@t. To find out the
predicted bending angle, we compute the intersection letwee tangential circle and the
higher order surface. Figu8shows an example. The intersection point is represented
by the violet ball.
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3.4.2 Sphere Fitting

Sphere based prediction is another predictor that estarthe curvature from the
triangles adjacent to the reference triangle. Spherediignbased on the assumption
that four neighboring vertices (p1, p2, p3, p4) which areaomtanard, form an unique
sphere whose radiusand and its center coordinates, o, zo) can be found by resolving
the following cartesian set of equations:

(2 — 20)2 + (2 — 20)> + (2 — z)2 = r? i=1,..,4

Figure shows.8higher order prediction based sphere fitting. To the thregtpof the
reference triangle and the incident point in the adjacémtgle (left), we fit a sphere with
radiusR,; and center’;. The radius of this sphere estimates the inverse of the turevat
reference triangle. Similarly, on the right side we condtanother sphere with radius.
and center’,.. We compute the average of both radii, and with the pointe®féference
triangle, we reconstruct a new sphere with the averagesadikinally, we find out the
predicted angle by intersecting the tangential circle whik new sphere (see the bottom
row of figure3.8). Also, here, we choose the intersection point correspaidi the angle
closer to zero.

Similar to the surface fitting, before fitting, we considez fbllowing condition: if the
adjacent triangle is available and if the angle betweenditsial and the reference normal
is smaller than a given threshold. The radius is then defiged b

% if two adjacents triangles are availble and fit the conditcti
r= . : . : _ (3.4)
r. orr; if only one sphere is available (right or left side)

In the case of no reference spheres are fit, then we use thengeatgle prediction
method of Touma and Gotsman.

3.5 summary

We have presented a higher order prediction scheme for gepooenpression, which
is based on the splitting of the vertex locations in its tanige and normal components
in the local coordinate system. The normal component isggit@as bending angle. For
its prediction, we first fit a polynomial surface to the preisty encoded vertices in the
vicinity of the current gate edge. Then, we intersect thgeatial circle given by the
tangential components, which are encoded in advance, athdlynomial surface yield-
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(b)

Figure 3.8 Higher order prediction process based on sphere fitting. flicgphere to four points
that connect the reference triangle with its adjacent dedddangle. (a) shows the right side and
(b) the left side. Bottom: given the average radiuses of bwva spheres,we fit a new sphere to

three previously decoded points.
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ing the prediction for the bending angle. We examined twaagghes to fit polygonal
surfaces to a set of points. In the first approach we fit thetgfap, y) of a polynomial
function defined over the tangential coordinateandy. In the second approach we fit a
polynomial implicit functiong(z, y, z) such that the zero set represents the surface. This
has the advantage that there is no need for guessing thenteaigpace.

We will see in chapteB the gain of our method is best for smooth objects, the prapose
gathering strategy for the fit vertices ensures an impronewidoending angle prediction
for all models. We showed that our approach can be combintdddifferent prediction
schemes for the tangential components, in specific thelpkrgtam prediction rule and
the multi-way prediction proposed by Touma and Gotsmdr][and Cohen-Or et al25]
respectively, and allows to save in average one bit perxéotethe normal component
for smooth objects (see chap&r Higher-order prediction can also be combined with the
Angle Analyze 4] and we believe that it would also improve the compressitesray
one bit per vertex. We also introduced a new normal encodgwyithm based on sphere
fitting to speed up higher order prediction. Hence, we fit sphie a small number of
vertices as a fast compromise between graph fitting and siergle prediction.
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CHAPTER 4

Animated 3D Object Segmentation

Segmentation of dynamic 3D objects has recently gained nmietest and is used in
various contexts such as compression parametrizatiotraeing, morphing and skinning
mesh animation.

The aim of this chapter is to introduce new segmentatiortegji@s to be used in
the compression of 3D dynamic meshes. We propose threeag@® based on region
growing, clustering, and adaptive clustering. The aim iddoompose the 3D deforming
triangular mesh into near-rigid components, i.e. to groegizes with similar motions,
then compress each group separately and thereby, to rdeeicernputation complexity
and to achieve better compression performance.

These algorithms can be well applied to different kinds dbdaing meshes whose
connectivity and the number of vertices does not change tovey; and no information
about how the motion is generated, is necessatry.

4.1 Introduction

3D Mesh segmentation has become a necessary operation mgrapalications in
computer graphics and geometric modelling. It is a prodestsdivides a mesh into com-
ponents depending on the applications. The quality of thi#hoakeis strongly related to
its application which may impose different requirementd ariteria. Various approaches
have been proposed for static meshes, including the regowimg, watershed, clustering
and spectral analysis methods.
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While static mesh segmentation aims at detecting mearipgfts and subsequently
breaking the mesh into sub-meshes of similar specific featwithin a specific context,
3D dynamic mesh segmentation approaches exploit tempdcaimation to partition the
mesh into quasi-rigid parts. In other words, 3D dynamic mesimentation approaches
group the vertices that undergo similar motion.

Different approaches have been proposed (see chaptdihe central aim is how to
partition the deforming mesh into quasi-rigid compone@scourse, this relies heavily
on the application and its objective. Generally, a partiig scheme that works well in
one application, may not even be applicable in another eggpdn. Indeed, some methods
were introduced specifically for special kinds of input messhFor example, James and
Twigg’s approach34] performs well for virtual characters but not for extremegformed
animation sequences where most components are not rigid.

In the context of 3D dynamic mesh compression, segmentéicgrely used com-
pared with the huge number of algorithms proposed for staBshes (see chaptgy.
Lengyel [7/7] proposed that one select a set of seed triangles randomlganpared their
trajectories. Triangles with a similar motion are combin&€ten the vertices are associ-
ated with the triangle whose trajectory best fit theirs. @ugdtal. B8 use a multilevel
k-way partitioning algorithm41]. Mamou et al. 85] proposed that one partition the mesh
vertices into clusters whose motion can be described byuerdp affine transforms, by
applying k-meansdQ]. These approaches use the connectivity information fomasta-
tion, potentially also using the geometry information. &elly, any approach that only
uses connectivity-based clustering is not well-suitedymetry that changes over time.

An alternative approach has been proposed by Sattler etGH. [They analyze the
motion of each vertex independent of the connectivity imfation. They clustered the
trajectories of vertices using Lloyd’s algorithm in coméiion with PCA. Then, they
compress each cluster independently. However, the expatahresults showed that the
cutting boundary may deviate from the deformable regiortsus] the property of near-
rigidity is not always obtained as cited ird].

Most of the current approaches are either computationapgmesive, or are not effi-
cient for our problem, due to using other criteria which mayfit our objective.

This chapter presents new segmentation methods for dynarastr compression.
These approaches are designed so they can be combined evilofiosed compression
schemes to achieve high compression rate with high quaaymnstruction.
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4.2 OQverview

Usually, the objective of partitioning a mesh in the contehdeometry compression is
to decrease the computational costs as well as to presergéotbal shape of the mesh be-
cause some compression algorithms such as some specgdltbabniques (DCT, PCA,
etc.) can destroy important features of the mesh.

Another objective is to find near-rigid components to deslate the sequence of
meshes during a pre-processing stage in the compressielngip This leads to a more
compact representation. In all cases, the algorithm enepldgy partition mesh vertices
into near-rigid parts heavily affects compression perfamoe.

Our goal is to gather the vertices which have similar movemeEnerefore, perform-
ing segmentation for one frame using the spatial infornmatioly and then applying it to
all frames in an animation would not make sense. Moreovieeria based segmentation
process that works well for one frame may not necessarilyppeogriate or efficient for
the other frames. We want to take into consideration botheimooral and spatial infor-
mation, i.e. consider the motion of the vertex and of its hkeas over all frames. This
would allow us to gather the vertices into groups of neadrigotion, and consequently
achieve better compression performance by using, for eb@mQA. Thus, segmentation
is a crucial step in the compression pipeline. Its effectdss lies in its ability to segment
an animated object into rigid-bodies.

This chapter presents new segmentation approaches fomilymaeshes. The first
method is based on region growing. We involve both conniéztimformation and the
vertex positions over time to gather the vertices of simmtartion. The algorithm starts
with several selected seed triangles and grows a regioanmamtally. The growing crite-
ria, or cost function that decides if a newly encounteretiexeran be added to the current
region, is defined by the Euclidian distance of the vertextjposto the seed triangle over
time.

The second approach involves the geometry information drilg process of cluster-
ing starts with several seed points and defines for eacheclase LCF. Then, it groups
the mesh vertices into clusters by analyzing the local nmatdative to a local coordinate
system defined for each cluster, in which the cluster motitilbe encoded. The relation-
ship between the proposed segmentation and compressabegsss is an another reason
that let us to develop new clustering method that is moreblégtfor our coding. Indeed,
we are minimizing the vertex displacement relative to thé&&Gnhile the existing meth-
ods try to minimize certain criterion function using glolb@ture or distance function in
the global coordinate frame. Thereby, they are not effid@nbur problem. The results
of both of the proposed segmentation methods depends onitiaéseed selection.
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The third approach, which uses an adaptive process, islinted to find a more flexi-
ble clustering process. We want to minimize the deviatich&L CF to obtairlow-motion
partitioning.

The idea is to start with an initial partitioning of very stalmber of clusters then
iteratively find new see point, add a new cluster and upda&gahntitioning until the cost
function converges or the predefined number of clusterdended.

4.3 Definitions

In this section, we introduce a set of definitions and notatiich will be used
throughout the current and the next chapters.

Let M, M5, Ms, ..., M be a sequence df meshes. Each medli; is called frame or
mesh frame. V and T are the numbers of vertices and trianglg®imesh, respectively.
Both V and T are constant over time. L@&tbe the set of all vertices (vertex position and
index) in a mesh. The segmentation of the mésmeans partitioning the mesh into N
subsets of element, i.e.:

G, is characterized by; vertices

For a sequence of meshes,(]étbe thei—th segment of thg¢ —th frame,i =1,.... N
andf =1,..., F. Asingle segmentx; thus consists of’ segments (one for each frame):

G = {G!, G2, G3,...GE Y

The segmentation process depends on the criteria usedimatsssertices to segment
G;. This criteria is chosen as an objective function that ddpem the application or the
context of segmentation. The segmentation can then betraatan optimization problem
of given criteria.

4.4 Region Growing based Approach

This approach assumes that all meshes have the same cuitpettie basic idea is
to grow regions starting from several seed points. The reggoow uniformly around the
set of selected seed points by first traversing the closeghinering vertices over time
until all vertices of the mesh are visited. Each region is alslled segment.
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4.4.1 Segment Initialization

The segmentation process initializ8ssetsG; of V; vertices, where = 1,..., N. All
sets are empty and all vertices are marked as unvisiteadgstti

4.4.2 Seed Selection

To collect the mesh vertices inf@ regions, it is necessary to selé¢tseeds using, for
example, the far distance approad2:

1. The first seed is the vertex corresponding to the largeditéan distance from the
geometrical center of all vertices in the first frame.

2. The next seeds are selected sequentially untVakeds are selected. After select-
ing i — 1 seeds, the — th seed is the vertex with the farthest distance from the set
of i — 1 already selected seeds, that satisfy : max(min(distaate®w, seed)))),
wherej is a seed vertex in the set bf- 1 seedsy is a vertex from the remaining
mesh vertices.

3. The process above is iterated until Allseeds are selected

We associate with each seed one of its incident trianglesalhthis triangle the seed
triangle. The regions are initialized &g/, v/,, v/;) the three vertices of seed triangle of
i-th segment.

4.4.3 Mesh Growing Process

This algorithm grows the regions starting from the seedglies. Every region has an
interior, i.e. all triangles that belong to the region, amdeaterior, i.e. all triangles that
have not been visited. Every region has a queue associated which consists of edges
who separate between the interior of the region and theiexter

The queues drive the growing process. Every edge conneatiamgles, one inside
the region and one outside the region, which is calledradidate triangle The vertex of
the outside triangle that does not lie on the edge is calleahaidate vertexThe queue
of every regionG; is initialized to the (three) edges of its seed triangle. &tiges of the
gueues are sorted by the distance of their candidate vetodbe seed vertex; we use the
average of all position of a vertex in all frames as vertextpns

We iterate over all regions and for every region we add thelickate triangle whose
candidate vertex has the lowest distance to the region.cEmdidate vertex can easily be
found because it is the candidate vertex of the top-most efltee region’s queue. The
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iteration stops if no more edges are in the queues. (i.e. me candidate vertices exist
and all triangles are sorted into the regions).

When a candidate triangle is added to a region, it is markedsg#ged. The queue is
updated by removing the edge and by adding the two remairdggseof the candidate
triangle.

4.4.4 Results

The region growing based segmentation algorithm is testexdweeral different anima-
tions. Figuredt.6 and4.7 illustrate some results for segmentation into differennber
of regions. Figurel.6 shows sample frames from the dance and chicken animatigns se
mented intol4 and20 segments, antl) and18 segmnets, respectively. Figuter shows
samples frames from the elephant, dolphin, and cow animagegmented intd0 and
20, 9 and20, and6 and20 segments, respectively.

4.5 Clustering based Segmentation

The basic idea of this algorithm is to transform the origimaltex coordinates into
severalLCFsdefined by seed triangles. Oh€F (one seed triangle) is associated with
each cluster. Then the clustering is obtained by assighmgertices to the cluster where
they have minimal local coordinate variation across theafmfs. Minimal coordinate
variation means that the vertex and the LCF have very similation. Note that this
approach needs the connectivity only once to construct @fe Lhe clustering process
consists of the following steps:

4.5.1 Initialization and Seed Selection

Similar to region growing based segmentation, the algorithitializes theN setsG;,
wherei = 1, ..., N, to be empty and all vertices are unvisited. Then it seleotsnaber of
vertices using the approach described above. After chgdgiseeds, we associate with
each seed one of its incident triangles (seed triangle)nTéech cluster is initialized with
its three vertice$v; 1, v; 2, v; 3) Of seed triangle of-th cluster.

45.2 Local Coordinate Frames Construction

Figure7.2illustrates the LCF which was used in the clustering proc¥gs assume
that each cluster is initialized with a seed triangle;, v; », v; 3), and the positions of its
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seed triangle

Figure 4.1 lllustration of the local coordinate frame

vertices argp1, p2, ps), respectively. Each clusté€k; has its ownLCF defined on the
seed triangle. The origia is the center of one of its three edges (typicdiy, p2)), the
x-axis (red arrow) points down the ed@e, , p2), they-axis (green arrow) is orthogonal
to thez-axis in the plane of the seed triangle and thexis is orthogonal to the- andy-
axis. The transformation of a poiptto its local coordinate systemqcan be accomplished
by an affine transformation with a translatiorand a linear transformatidh:

q="T(p-o)

T is an orthonormal matrix, it mearg ! = T*.

For a sequence of meshes, for each frghié < f < F') and for each frame cluster
G € G, (1 < i < N), we computed{T/, 0/} from the points of the seed triangle
(p!1, Lo, pLy).

Note that there is no restriction on how the local coordisae reconstructed upon

the seed triangle. The origin also can be the center of thiets@agle or one of its three
vertices.

4.5.3 Vertex Clustering

Given an unvisited verte[a,’:, we do the following: First, we transform its world coor-
dinates into theéV local coordinate frames constructed in each frairso: {q,lg’f , qi’f R qu o |
(f =1,...,F). Second, we compute the total deviation (motion) of theexebetween
each two adjacent framgsand f — 1 in euclidian space, which is also equivalent to the
displacements in the LCF:

F
Ori = > _ Ny’ — " | (4.1)
f=1
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Figure 4.2 lllustration of the local coordinate frame

0y.; represents the total motion differences of the vektéxthe LCF associated with the
clusteri. A small value means that the vertex position has motionithaimilar toC;.
Thus the vertex should belong to the clustéor which the deviation is very small, note
imin. EQuivalently, we want to minimize the vertex displacemarthe LCF:

imin = argminlSiSN{Qk,i} (42)

We iterate over all vertices, adding the unvisited vertexséhlocal coordinates are
almost invariant in th&. CF to the cluster;.

The iteration stops if no more candidate vertices exist. Wh&ertex is added to a
cluster, it is marked as visited. We end up withclusters that have; vertices each.

45.4 Results

The output of the clustering process is shown in the figdt8and4.9. Figure4.8
shows sample frames of dance, and chicken animations dst&o 14 and20, and10
and18 clusters respectively . Figuge9shows samples frames from the elephant, dolphin
and cow animations clustered intd and20, 9 and20, and6 and20 clusters, respectively.
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4.6 Adaptive Processing

The clustering approach basically consists of two passegenG desired number
N of fixed clusters,N seed points are selected using the distance approach. fheen,
vertices are grouped into hierarchical clusters so thav#ntces belonging to a cluster
have a smaller deviation in the LCF of their cluster than tiweyld in the other clusters.
In order to find better clusters and to make the process moxiblite we designed an
adaptive process. This is an enhancement to minimize thiattevin the LCF so as to
obtainlow-motion partitioning

The idea is to start with an initial partitioning éfclusters (typically 1 or 2) then iter-
atively add a new cluster and update the partitioning uhéldost function converges or
the predefined number of cluster is attained.

Initial Seeding and Clustering
Given k seed points, we partition the vertices irkt@lusters by minimizing the cost
of function4.2 as described before.

New Cluster Insertion

In order to find better partitioning, in each iteration step,first go through all clusters
i (I < ¢ < N) in the current partitioningk; and find the clustef,,,, with maximum
average deviation-maximum cost function:

V-3
1 1
Tmax ©= argmaxlgigN{v Z Or.i} (4.3)

k=4
This means that the clustér,, contains some vertices whose motion is not similar to
the cluster motion. Therefore, within it, we pick the vertgy,. with the large deviation
in the local coordinate frame.

Upaz := argmazs<p<vi — {Okine. } (4.4)

Umaz 1S ChOSEN as a new seed that creates a new cluster, and an@oident triangle
is selected as seed triangle.

To obtain a new partitionin® ;. ;, we update the clustering as follows: upon the new
seed triangle we construct a new LCF, we add a new clusteinéradize it with the three
incident vertices of the seed triangle. The existing chsséee newly initialized with the
vertices of their seed triangles. Then, by minimizing thstéonction4.2, the vertices are
assigned to the correct cluster.
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The iteration process stops when the maximum number ofeslissachieved or when
the overall average deviation is below the specified thigsho

For further improvement, a pair of clusters can also be niekgleen the average
deviation of the resulting cluster is less than the averageation of both individual
clusters. Likewise, a cluster with very few vertices (tyglig 3 or 4 vertices) can be also
deleted and its vertices newly clustered.

4.6.1 Results

Figures4.10shows sample frames of dance, and chicken animations adlyptius-
tered into14 and 20, and 10 and 18 clusters respectively . Figu#11shows samples
frames from the elephant, dolphin and cow animations adagtclustered intol0 and
20, 9 and20, and6 and20 clusters, respectively.

4.7 Evaluation of Segmentation Approaches

It currently says that the evaluation of the segmentatiarcgss is dependent on
whether or not the segmentation process makes the rightesggmThis is a tautology.
In the context of compression, a good segmentation prosdhke ione which leads to the
best bit-rate compression — of course, if the complexityeginsentation and process time
is excluded. The goal of the segmentation in this thesis gather the vertices of similar
motion. Thereby, the redundancy existing between the seguef frames is reduced a
priori. The process should assign each vertex to the sedehesier where its deviation
(motion) is relatively very small or it motion with the grougpalmost rigid.

To evaluate the quality of the segmentation approachesee® to define some metric
or error. Therefore, we decided to use the cost function us#te clustering approach.
This function provides a very efficient indication of how disnthe motion within a group
of vertices is. The idea is to assign to each group one LCFdssritbed in sectiod.5).
The coordinates of vertices are then converted into LCF @f segment/cluster and the
motions between each two successive frames are computedndton deviation is also
defined as residual motion.

The average deviation of each groGpis defined to be the average of motion vertices
between two successive instants over all frames, in the LCF.

F Ve

. 1 i if-
Deviationge.(G;) = m(z Z H%’f - Qk;f 1H2)

f=1 i=4
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I is the number of frameg/; is the number of vertices i6;. 7 is the cluster index.
qﬁ;f is the local coordinates of the vertéxn frame f. It starts with the indexX. The first
three verticeg, 2 and3 were used to construct the LCF.

The accuracy of segmentation is then defined by the averagatida over all seg-

ments/clusters.

N
Deviationgwe,(G) = % ; Deviation(G;)

whereN is the number of segments or clusters.

Intuitively, the vertices that belong to the cluster shdudédre minimum residual mo-
tion in the LCF of their cluster, meaning that their motiomeatively almost invariant.
Thus, better segmentation is the one that leads to smalati@viover all groups (the
differences between two frames tend to be zero) and theretvgrizompression perfor-
mance can be achieved by using for example predictive cqdmwe will see in the next
chapters).

Figure4.3illustrates the average displacements or the averagedratirclusters (or
segments) of the chicken, dance and cow animations. Thedhugapproaches are more
efficient than growing region based approach. The perfocmanf the clustering comes
close to the adaptive clustering approach where we obtagmMariation of the vertices in
the LCF (almost rigid) than in the region growing approaeis$lrigid). Thus, the removal
of the redundancy a priori seems to be very efficient, allgvire predictive and spectral
methods to be efficiently performed for further compresgaiso see sectiof.9).

Note that since we use a metric which is similar to the one dgethe clustering
approaches, it is obvious that their results will be bett@mtthe results of the region
growing approaches. However we found that this metric idotst one that can be used
for our measurement for our algorithms and fit the goal of ssgation and compression.

4.8 Computation Time

Table8.6shows the run time for different segmentation approachlkes.sécond, third
and fourth columns show the number of frames, vertices aaddies in each model,
respectively. The column RG lists the time required for eeggrowing segmentation.
The column Clu lists the time needed for clustering processel column AdaptClu
list the time needed for adaptive clustering. The timingitsswere measured on AMD
Athlon(TM)XP 3000+, 2.10 GHz, 1.00GB of Ram.

Region growing is intuitively the fastest approach. The patation is done in the
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Figure 4.3 Evaluation of segmentation approaches.


C:/Pics_Thesis/pics/chicken.eps
C:/Pics_Thesis/pics/dance.eps
C:/Pics_Thesis/pics/cow.eps

4.8 Computation Time

81

world coordinate system while clustering approaches regextra time for transforma-
tion. Indeed, in order to determine the correct cluster tectvkach vertex should belong,
we have to computeV x F' times transformations from WCF (World Coordinate Frame)
into N x F' LCF per vertex. In the adaptive process, which starts witmaial number

of seedsk selected by distance approach as described before, thef resedsy N — k)

are selected incrementally and new clusters are createglnlimber of transformations
per vertex is about x F + FZj.V:kj making the run-time longer.

Table 4.1 Timing statistic for segmentation results on differentaaiions in seconds (sec). RG:

Region Growing, clu: clusters and adaptClu: adaptive ehirsg.

Models || vertices 5 N | RG (sec)| clu(sec)| adaptClu (sec
chicken 3030 5 0.14 3 14
10 0.14 7 45
20 0.30 15 184
30 0.36 23 385
40 0.41 31 644
dolphin 6179 5 0.23 1 6
10 0.28 3 23
20 0.33 7 80
30 0.39 10 173
40 0.45 14 299
cow 2904 5 0.2 1 6
10 0.24 3 22
20 0.27 6 77
30 0.30 10 164
40 0.33 15 288
dance 7061 5 0.5 4 16
10 0.56 12 54
20 0.63 16 187
30 0.7 24 398
40 0.78 36 702
elephant|| 42321 5 0.92 6 25
10 1.31 12 78
20 1.63 23 270
30 1.95 35 578
40 2.34 47 995
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Figure 4.4 Clustered dance animation. The region (A) shows a clusggrithalmost rigid.
However, it is not necessary to group the vertices int twstels at (B)

4.9 Discussion and Summary

In this chapter, robust segmentation approaches werergekigr all types of anima-
tion including high deformable animations.

These algorithms are tested on different mesh animatiamsrgeed in different ways.
Figure4.5summarizes the results of the three segmentation appreaébemore results
seed4.4.4 4.5.4and 4.6.1

The region growing based strategy is simple and fast. Itwallone to group the
vertices through connectivity and their distance to theldeangles assuming that the
connectivity remains constant over a time.

In contrast, the second strategy is based on the clusterogtggs and does not need
the connectivity information, except during LCF constroit The process assigns each
vertex to the cluster where its displacement is relativelgyvsmall. In both techniques,
the number of segments is given a priori and the seed poiatxa&d using the distance
approach. In order to overcome this limitation and to oblam-motion partitioning, an
adaptive clustering strategy is introduced. The procestustering incrementally creates
seeds and updates the clustering.

Dynamic 3D mesh segmentation aims to group the verticeswfasi motion for all
types of animation. However, the vertices may not alwaysrbaged into visually mean-
ingful parts but can be grouped into groups of similar magtgurch as dance animation.
For example, in figurel.4, the region (A) of the figure visually may be not well seg-
mented visually and it would be better if the vertices arersagted in such way that two
regions are created at (B). In contrast, in our context,ghismation is well segmented be-
cause the vertices in this region have similar motion oveetas seen in the four frames
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(3,56,92,137): both sides of (B) move almost rigidly over time.

In order to evaluate the segmentation approaches the despént between frames is
measured. We found that this measurement, which is deneedthe cost function (used
in the clustering), is well-suited for evaluation. For exaenin the prediction phase, we
want to have a prediction that produces a small predictioor.efG00d segmentation, is
then, the one that produces small clusters of similar mptie@aning that if we predict the
vertex coordinates from the previous frame (displacemmeta}ive to the LCF, the error
would be very small.

Visually as well as metrically, clustering approaches bihetter partitioning than
the region growing based algorithm.

For the computation time, the growing region based algoriihvery fast compared
with the clustering approach. This needs to transform thddamordinates into local
coordinates, thereby more time is required. The procedsimg becomes longer when
adaptive clustering is used.

Note that the processing time grows with the number of clasted segments as
shown in figureB.6

Unfortunately, we could not compare our approaches witsterg techniques for sev-
eral reasons. First, their implementations are not avalaBecond, our algorithms are
designed with respect to the proposed compression teatsliqueaning they are tailored
to fit the encoding algorithms to achieve better compregsesformance.

Each cluster or region is initialized with a seed triangtent which we construct an
LCF. By assigning the vertex to the cluster in which its defation over time is small,
we are able to segment the dynamic mesh into approximaggtycomponents, and quasi
invariant to their LCF. Then each cluster will be encodedsriLiCF.

It is important to note that the process of clustering canga® @1s minimization of the
vertex displacements relative to LCF. Consequently, periog for example the predic-
tive coding leads to prediction errors that are very smak (shapter). And performing
PCA in quasi-invariant region will lead to more compact esantation than quasi-rigid
component. The algorithm will require fewer principal campgnts at similar reconstruc-
tion error than with global PCA (where PCA is performed onwimle animated meshes)
(see chapted).
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Figure 4.5 From top to bottom: results of region growing (RG), clusigr(Clu) and adaptive
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Figure 4.6 Results of region growing based segmentation. From top tiotno sample frames
from the danceld and20 clusters) and chickernl () and18 clusters) animations.
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Figure 4.7 Results of region growing based segmentation. From top tioino sample frames
from the elephant() and 20 clusters), dolphinq and20 clusters) and cow6(and 20 clusters)
animations.
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Figure 4.8 Results of clustering approach. From top to bottom: sanmpimés from the dance
(14 and20 clusters) and chickeri( and18 clusters) animations.
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Figure 4.9 Results of clustering approach. From top to bottom: sampeés from the
elephant(0 and20 clusters), dolphinq and20 clusters) and cow6(and20 clusters) animations.
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Figure 4.10 Results of adaptive clustering approach. From top to bottsample frames from
the dance 14 and20 clusters) and chickeri( and18 clusters) animations.
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Animated 3D Object Segmentation

Figure 4.11 Results of adaptive clustering approach. From top to bottsample frames from
the elephant1(0 and20 clusters), dolphinq and20 clusters) and cow6(and20 clusters) anima-
tions.
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CHAPTER b

Connectivity-Guided Compression of 3D dynamic
Meshes

This chapter aims at compressing animated objects refegsby triangular meshes
of fixed connectivity using predictive technique. We prapasnew connectivity-driven
coding which we call SplitCoder. The connectivity is encdbasce then the geometry
(vertices locations) is encoded by a connectivity trayesséhe mesh. Connectivity de-
termines the order of the vertices and provides informdbopredictions. The algorithm
is near-lossless, simple, efficient, fast and well-suiteddal time applications.

5.1 Introduction

Often, the meshes differ only slightly between neighboffiagnes, leading to large
amounts of inherent redundancy between frames and betwsighboring vertices in
the same frame. Thus, the static mesh compression teclsniguéhe compression of
sequences of meshes independently are inefficient. Thierdfwr efficient coding, one
should also exploit inter-frame coherence. There are akugteria by which developed
coding techniques can be distinguished. One of these iariewhether coherence is
globally or locally analyzed. In a global approach, on migkamine the entire mesh (or
submesh) sequence by using, for example, a principal coemp@malysis (PCA) trans-
form. Locally, one might focus on frame to frame changes tol@klocal coherence
by using, for example predictive coding. In this work, weudsmn local compression
schemes based on the predictive coding. Such schemes tbadgtmple, fast, and well-
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suited for real time application (unlike PCA based appreathWe categorized this ap-
proach vertex based-predictive coding.

Given a number of frames/;, f = 0,1, ..., F, a predictive method assumes that
connectivity does not change over time. For each newly amteoad vertex in the current
frame, its location is predicted from the locations of néighvertices in the current frame
or/and in the previous frame(s). Then, the error betweertiggnal vertex location and
the predicted vertex Iocatiq?;{ is compressed to a user-defined error.

Prediction step is the key of the good compression rate and geediction lie in its
accuracy. Thus, the more the predicted point is close thebgosition of the vertex, the
more the prediction good is and the lower entropy of pregircérrors is achieved.

Current predictive methods predict the position of theeserither in global coordi-
nates or in local coordinates. However, almost all methtmsur knowledge, compute
and quantize the coordinates of the residuals in world space

Local coordinate frames have many properties that are Lisgfonany 3D animation
processing applications. One of these properties is clagtdehavior. Generally, the
3D positions of vertices are scattered over wide area anti¢havior of the vertices is
often non-linear. Fortunately, the correlation betweenrtbighboring vertices, as well as
between the successive positions of a single vertex, isiigty. In other words, neigh-
boring vertices tend to move together. Thus, we might expihis property to guess the
location of the vertex relative to its neighbors, to obtalretter prediction than space, time
or space-time predictions in world space would provide. réfuge, one can construct a
local coordinate frame upon the locations of three of thesghioors. The coordinates
of each individual vertex tend to concentrate around onatpmmier time, which we call
temporal clustering Another clustering, which we cadlpatial clustering arises in each
frame: the model tends to form very few clusters (dependmthe model). The combi-
nation of both clusterings should yield significant redoictin bit-rates.

In this chapter, we introduce new and simple predictive sehér single-rate com-
pression for animated meshes of fixed connectivity (Quidédan be seen as generaliza-
tion of static mesh compression presented in chepteranimation case. Our geometry
encoding strategy is based on a region growing encoding ardkonly the delta vectors
between the original and the predicted locations are ertoda local coordinate sys-
tem, which splits into two tangential and one normal comptsieWe call this approach
SplitCoder
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5.2 Predictive Coding of the animated vertices

We distinguish three ways to encode the animated vertetipasi One way considers
each frame independent of other frames and uses only thengxg&atic compression
techniques such as the popular parallelogram and multipregiction. The second way
is to encode the trajectory of each vertex through time ieddpnt of the motion of its
neighbors, so only the temporal redundancy is exploitedpichy predictor is a first-
order time only predictor that returns the position of thetexe in the previous frame,
eventually the predictor can be a higher order predictor. dxersophisticated way is
to join the coherence in both space and time domains to appabe the vertex motion
such as Extended Lorenzo Predictor (ELP), Replica PrediBi#®) and Angle Preserving
Predictor.

ELP is an extension of the parallelogram predictor to inocae coherence over time.
Replica predictor expresses the location of the vertexerptievious frame as in a coor-
dinate system derived from the adjacent triangle. Thens#nee coordinates are used in
the current frame to predict the position of the vertex wébpect to the new location of
the same adjacent triangle. An algorithm similar to RepHoadictor is Angle Preserving
Predictor that preserves the angle between the refereaogle and the spanning trian-
gle. Our algorithm belongs to this category of predictivedzkcompression methods. We
let the connectivity information dictate the compressibammated vertices.

As aforementioned before, in world space, the coordindtesrtices scatter in a wide
range. In a local coordinate frame constructed upon eaeherede triangle, however, the
coordinates of each mesh vertices tend to cluster aroundl pdmts and the trajectory of
each vertex tend to cluster around one points.

Since a good prediction is when the residual is small as msigossible, the estima-
tion can be done in the local space producing residual ctogero, rather in the world
space. Thereby, the entropy of the sequence of the resiguadsy small.

Moreover, a large of animated meshes are highly complex andixregular, thus it
is more advantageous to exploit the prediction and the cesspyn of the residual in the
local than world space for example as is done here. This maig aypoor prediction that
may be produced using parallelogram prediction only, orlmoation with the temporal
linear prediction in the global coordinates.

We present a new single rate compression algorithm for aenhmaeshes of constant
connectivity. We propose to move the coding of the vertextjpos into a new local co-
ordinate frame that splits the coordinates into two tangeanhd one normal components.
The tangential components describe the parametric infiiomaf the shape while the
normal components hold the geometric information. Locatgs exhibit higher temporal
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Figure 5.2 Local coordinates represented as tangential coordipgatgesand normal component
given as bending angle.

and spatial clustering behavior than the world space. Lapki a sequence of animated
meshes in model space, we observe that the meshes sharmth@sgential components
and that the surface animation can then be viewed as a veryniagnitude movement of
the geometric information only. The geometric informatiequite constant, at least over
a few frames. Therefore, our algorithm, after transfororgtpredicts and quantizes each
component in the new LCF and entropy is encoded.

Another advantage of splitting is that moving the tangeérmirdinates in tangent
plane of the surface may not alter visual error, while mowvimg point on the normal
direction can cause visible artifacts on the surface. leotords, visual distortion is
more influenced by the coding of the normal component thardkéeng of the tangential
components. This observation can be very useful when a mssypression is used. In
this chapter, we only considaear-losslessompression.

5.3 System Overview of SplitCoder

Given a sequence of triangle meshids; [ = 1, ..., F with V' vertices andF frames
(meshes), we encode the first frame separately from thefrést rames in the sequence
using static mesh compression described in previous @r&pifThen we encode frame
by frame and vertex by vertex.

Our coding needs to store only the decoded local coordiradtédse vertices in the
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previous frame and th@ecodedocations in the current frames, in buffer memory.

5.3.1 Mesh Traversal

The triangular mesh of each frame is traversed in a regiowiggporder (see Fig-
ure 5.3 as described in previous chapfrwhich is driven by the connectivity coding
algorithm using a breadth-first traversal of the connetstiziter the connectivity has been
decoded. One initializes the growing region, which corgaime so far encoded geometry,
with one triangle and encodes the incident vertex locationsicompressed form. The
three edges of the initial triangle are pushed onto a FiFe.tmdversal loop pops the cur-
rent first edge from the FiFo and defines it as the so called gateéhich the region grows.
The gate is incident to at least one triangle in the growimggore The other incident tri-
angle is added to the growing region if it is not already p&it and new potential gate
edges are pushed onto the FiFo. Every time a new vertex isiatexed during the traver-
sal, one predicts its location from the so far encoded gegnietthe previous and the
current frames and only encodes the delta vectors betwegoréidicted and the original
locations.

5.3.2 Geometry Coding

For the first three vertex positions in each mesh componerg ha local predictor.
Therefore, we predict them from their position in the prexgly decoded frame in world
space (delta coding), we quantize and encode delta vectdrgaonstruct the three vertex
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positions to then encode all following vertices in localspa

First, we construct the local coordinate frame by splittihg coordinates into two
tangential components and a normal component represengtdnding angle (see Fig-
ure5.2). In the second step, we transform the original vertex ihlocal coordinates.
Next, we predict the two tangential components from theordmates in the previous
frame and compute, quantize, and encode the delta vectorawiarithmetic coder. We
simulate the decoding process during the encoding to maketlsat we use exactly the
same information that will be available to the decoding &t during encoding. Simi-
larly, the bending angle is predicted from the bending angtbe previous frame. Again
we compute the delta angle, i.e., the difference from thealingnangle measured from
the original point, quantize, and encode the bending deligea Finally, we decode the
bending angle also known by the decoder, transform the timebded coordinates back
to the world system, and replace the original vertex locatidh the decoded one, which
avoids error accumulation. Note that the decoded tandesdiaponents and bending
angle stored and then may be used to encode the location eéitex in the next frame.

5.3.2.1 Transforming World into Cylindrical Coordinates

We follow the same strategy described in cha@éo construct the local coordinate
frame. We defined the local coordinate system on the refergrangle with origin o at
the center of the gate, x_axis along the gate edge and y_dkisgonal to x_axis in the
plane of the reference triangle. As a third coordinate, veetiis bending angle between
the normals of reference and spanning triangle resultiagiylindrical coordinate system
with r as radius. We also determine the z-axis orthogonal to x aards/_axis.

T :(p—o)-f{
y =(p-0)-Y
z =(p—o0)-Z
r — y2+22

The transformation back to world coordinates is simply
p = 2X + rcos(a)Y + rsin(a)Z + o

The results of the local space transformation are illustrat Figures.4and 6.1
Figure5.4 illustrates the behavior of two different classes of meshdecal space.
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Figure 5.4 Spatial clustering of two different type of model in spacedelo cow (2029 vertices)
and dance (7061 vertices) models. Left: the red points spamd to tangential components of the

vertices of the first frame and the blue points correspontdiv tvorld coordinates x and y. Right:
the corresponding bending angles.
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The world coordinates x and y (blue points) of the verticestastributed over large inter-
val while the tangential components have a tendency to gaigether to form clusters.

Figure6.1shows the locations of a single vertex (dance animatiomn)tove in world
and local spaces. The world x and y-coordinates and z-comtels are represented by the
blue points in Figureés.1 (a) and (b) respectively, while the tangential and the bandi
angle are represented by the red points in (a) and (b) resgkyct

The world coordinates are scattered across a wide area &adba linear behavior.
In the local space, the tangential components are highlgerdnated around one point
(the red point in Figur&.1(a)). This means that parametric information does not chang
over time and it is shared by all frames. Therefore, the ptexh from the previous frame
would be very efficient and produces delta vectors that ang srmall or even zero. The
bending angles cluster around few points (the red pointgyurE6.1(b)). Their clustering
behavior is less pronounced than the tangential compobentbe bending angle is still
preserved between the adjacent frames and the prediotiontfre previous frame is very
efficient. Of course that clustering degree varies depgnaiinthe model.

5.3.2.2 Tangential and Normal Components Prediction

Once the vertex locatiop! is transformed into local coordinates defined as tangential
components and bending ang}g‘m,v, al), each component is encoded separately using
predictive coding.

The prediction assumes that the tangential componentseotulrent point do not
change relative to the LCF, and that the curvature at thewjititbe preserved indepen-
dently of the tangential components coding as mentionedeabo

5.3.2.2.1 Tangential Components

For each new vertex in the framef, one predicts its tangential components from the
decoded tangential component in the previous fragmel by:
pT@diCtmn(U, f) = ﬁ{a;iv

The delta vectors are computed:
51{ = p{an,v - p'r’edz’ctmn (U7 f)

5.3.2.2.2 Normal Component
Similarly, the bending angle is predicted by:
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Figure 5.6 The resulting differences between the original and theipted locations of a single
vertex over time, when temporal prediction is used in thdavand in the local space. In the world
space, the vectors are represented by three coordinatest y«@ordinates (a) and z-coordinates
(b), (blue points). In the local space, the differences epmasented by 2D delta vectors (a) of
tangential components and delta angles (b) of the bendigig afied points) .
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predictyn, (v, f) = &l
The delta angles are computed:
0/ = of — predictan, (v, f)

The predictor we introduced for both components duplicagstectly the parametric
and the curvature information from frame to frame. It is gdodmeshes with smooth
or/and sharp creases, and whatever the motion the vericksgo.

Figureb.6illustrates the results of the delta vectors and angles fgdesvertex over
time. The blue points represent the differences betweermrigénal and the predicted
coordinates from the location in the previous frame in theldvepace. The red points
define the delta vectors and angles in the local space. The ditors tend to be zero
((0,0)), which tells us again that the parametric inform@atioes not change and that the
prediction is (or near) optimal.

The predictor described in this section duplicate exatté/garametric and the cur-
vature. Thus, we call iDuplicata Predictor(DP). We also implemented other predictors
such us space-only predictor and space-time predictoghwlill be described in chap-
ter 8 with the experiment results.

Note that unlike the current predictive animated mesh cesgon technique$6,

45, 63, 113 where the delta vectors are encoded in a world coordinatedt here they
are computed in the local coordinates and each componemtdsled separately.

5.3.2.3 Binary Coding of Coordinates

For further compression, the coordinatd ¢r 64 bits) are often quantized to a user
specified number of bits per coordinate relative to the maxrmnextent of the bounding
box of the model. In the case of an animation, the quantizatimften performed ac-
cording either to the tight axis-aligned bounding box fozteframee/, . or to the largest

bounding box for all frames, ., = max{el ... f =0,.., F}. In our algorithm, we con-

max?

sider the largest bounding bey,,. for all previously visited frames. The tangential delta
vector is then quantized to a user specified number of,bits

T = |z/ema 27+ 1/2]
g - Ly/emaz'2q+1/2J

For the angular component, one has to consider the radies ¢y the y coordinate
of the cylindrical coordinate system. Computing the argtaryields

0 = |y0/emaz - 27 +1/2]
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At reconstruction, the tangential components are first dedpsince, needs to be known
before«a can be decoded.

as illustrated in figures.6 the delta vectors tend to be smaller than delta angles.
Thereby, the entropy of the delta vectors will be lower thzet bf the delta angles. For
entropy coding, it is more advantageous beneficial to entteeldata of lower and higher
entropy separately. Therefore, we encode the resultimgdigteger values of delta vec-
tors and angles separately with an adaptive arithmeticrdd@8], using different coding
contexts.

5.3.3 Geometry Decoding

The decoding algorithm uses the same traversal of the ctwiecFirst we decode
the first frame and the locations of the first three verticesawh component. Then for
each new vertex in the current frame we do the following: wat fiuild the local coordi-
nate system, we predict the tangential components, we edpuantization of tangential
delta vectors and we compute tangential components. Théndmormal component, we
predict the bending angle, we undo the quantization of @geltde and compute bending
angle. Finally, we transform the local coordinates back éol@vcoordinates.

5.4 summary

We have presented a new compression scheme SplitCoderifoataad meshes with
constant connectivity. Our coding traverses the triangukash of each frame in a region
growing order. Every time a new vertex is encountered duttiegtraversal, we split its
position into its tangential and normal components. Thes,ewcode each component
separately using prediction and quantization coding.

We showed the coordinates in tangential and normal spadebitekigh temporal
clustering behavior that is well-suitable for temporaldiction in model space rather
than in the world space. For both components, we implemediféetent predictors:
space-only predictor, time-only predictor and space-tpregdictor. We will see in the
experiment results that time-only predictor (relativehe tocal space) out performs the
other predictors.

Unlike the current predictive animated mesh compressicmiigues where the delta
vectors are encoded in world coordinate frame, here thegarputed in the local coor-
dinates and each component is encoded separately.

This approach exploits the coherence frame by frame anéwest vertex, the next



102 Connectivity-Guided Compression of 3D dynamic Meshes

chapter will propose an new approach that exploits the eviver over all frames once
and represents the set of vertices by very few componentsaefticients.



CHAPTER O

Motion based PCA Compression

This chapter aims at compressing animated object usingipahcomponent analysis.
The approach first segment a mesh into several segmentssterslusing region growing
based algorithm and motion based clustering describedewviqus chapter. The goal
behind the segmentation is to gather the vertices which bemgar motion. Each set
of vertices is then efficiently encoded using the PCA in tlel@oordinate frame. We
also introduce the rate distortion optimization for PCA iogd Our main objective is
to achieve an optimal tradeoff between the bitrate and tladitgjuof the reconstructed
animations.

6.1 Introduction

In previous chapter we presented near-lossless compndsaszd on predictive cod-
ing. The coding of the geometry is dictated by the conndgtiviihe coding is classified
with the local compression techniques which exploit theezehce frame by frame. This
chapter present a new technique based on PCA. This techisitpgsy compression and
belongs to the global techniques that exploit the coheremeeall frame once.

The advantage of using PCA is that it captures the linearetairons present in the
datasets. The set of vertices can be represented by veryofewanents and coefficients
depending on the user’s desired visual quality. The PCA isagompressor for rigid
motion and provides a more compact representation for teafiponvariant meshes. In
many applications, however, animated meshes exhibit yigbhlinear behavior, which
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is globally difficult to capture using standard PCA. Locathe neighboring vertices have
a strong tendency to behave and to move in a similar way. Thénsar behavior can
therefore be described in a linear fashion by grouping timeces of similar motion into
clusters or by segmenting the mesh into meaningful partsn HCA is performed in each
group. The process to construct this representation isctalbcal Principal Component
Analysis (LPCA).

On the other hand, introducing a local coordinate fraln@F) in each cluster may
lead to extra clustering of the coordinates before perfogtihe PCA. If the segmentation
or clustering process is efficient then it would be highlylable that these coordinates
change very slightly relative to the coordinate frame oirtblester. Of course, the number
of clusters/segments will also affect the compressionhdfmumber of clusters is very
small, then a cluster might contain vertices that have diffebehaviors. To overcome
this problem one might possible improve on the present ambrdy automatizing the
selection of the number of clusters.

Figure 6.1 demonstrates the idea of using local coordinate systenturé®.1 (a)
shows the path of six points of a dance animation in the wastardinate system. Note
the highly nonlinear behavior of the trajectories. Fig6ré (b) shows the path of the
points using a local coordinate system. Note the relativallsthanges and the tendency
of the trajectory of individual points to cluster. In preugchapter, we used for each new
vertex one local coordinates frame constructed upon puslydraversed frame. Here, we
construct one local coordinate frame for each group of @esti Thus, if we use clustering
based segmentation, we will need the connectivity infoiomadnly once at reconstruction
of the LCF for each segment or cluster.

In our approach, we perform a PCA on the local coordinateesysather than the
world coordinates. The advantage of combining PCA with It is now obvious:
if the motion of a group of vertices is rigid in the world coordtes, the positions of
the vertices are slightly invariant relative to theiCF. Therefore, performing a PCA in
these invariant groups of vertices leads to a more compptsentation than the original
data, and a large number of PCA coefficients are close to derorder to achieve an
optimal tradeoff between the bitrate and the quality we hiatreduced the rate distortion
optimization for PCA based on an incremental computatiathefconvex hull 121]

6.2 Overview

For animated mesh compression, we present a new technigad ba the local PCA.
The basic idea is to aggregate the vertices of similar trajess using region growing
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(@) (b)

Figure 6.1 The position of six different vertices over time (illusedtwith different colors) are
represented with global coordinates (left) and local cmatgs system (right).

algorithm or a clustering approach, then transform theimaigpositions of the vertices
into the local coordinate frame of their segment/cluster.

This automatically "transforms” the nonlinear behavioitieé original vertices into
the clustering behavior which is very well compressiblee Vartex positions will tend to
cluster around the same position over time (see 8. Thus, the segments themselves
are almost invariant to any deformation. A PCA is then penfed on each segment such
that the (local) vertex coordinates are transformed intalar basis which allows for very
efficient compression. An error accumulation scheme essilna the decompression
does not introduce severe artifacts.

Our clustering process (eventually the region growing aggh), produces clusters
of different sizes. If one chooses a fixed number of basisovedbr all clusters, then
there may be too few eigenvectors to recover the clustergtee at a desired accuracy
and eventually too many eigenvectors for other clustershvine callunderfittingand
overfitting respectively. Moreover, the number of bits needed to emtloe unnecessary
basis vectors imverfittingcases may be better allocated for other clustersterfitting
cases. Therefore the selection of the best number of basisrsdo be extracted from
animation data is necessary to properly recover the olligiat of each cluster with a
certain accuracy. We introduce a rate distortion optinozethat trades off between rate
and the total distortion. To our knowledge tt@mbination of local coordinates and PCA
with the optimization procedsas never been performed before. We call our approach
Relative Local Principal Component Analysis (RLPCA) coegsion. We use the term
Relativeas the LPCA is performed in local coordinates.


./phd-Pics/pca/global.eps
./phd-Pics/pca/local.eps
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Figure 6.3 Compression and decompression pipeline.

As the connectivity of the animated meshes remains conetattime, we encode
the connectivity once.

6.3 Compression pipeline

In this section, we describe in detail the core of our congoesalgorithm for the
motion of vertices of animated triangle meshes. An ovenoésompression and decom-
pression pipeline is illustrated in Figues.

Given a sequence of triangle meshés, f = 1, .., ' of constant connectivity witf’
vertices andt” frames (meshes), we first group the mesh verticeshAsegments, where
each segment contaifg, i = 1, .., N, vertices.


./phd-Pics/pca/cowLCS.eps
./phd-Pics/pca/LCS.eps
./Phd-Pics/pca/diagram.eps
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6.3.1 Segmentation

Segmentation is an important step in our algorithm. Indéled,compression per-
formance depends on the segmentation into correct grouanimg that the better the
vertices can be partitioned into almost rigid parts thedsdCA based compression will
be.

Basically, two simple and fast segmentation algorithmsidlesd in chapted were
used:

e Region Growing: This approach assumes that all meshes hawsaime connectiv-
ity. The basic idea is to grow regions starting from sevesabspoints. The regions
grow uniformly around the set of selected seed points bytfasersing the closest
neighboring vertices over time until all vertices of the imase visited.

e Clustering: The basic idea of this algorithm is to transfahm original vertex co-
ordinates into sever&lCFsdefined by seed triangles. Oh€EF (one seed triangle)
is associated with each cluster. Then the clustering isirdadaby assigning the
vertices to the cluster where they have minimal local cowtdis variation across
the F frames. Minimal coordinate variation means that thitexeand the LCF have
almost similar motion. The clustering is also developeddamive way but the
process becomes more slower.

6.3.2 Transforming Vertex Positions into the Local Space

Expressing the vertex locations in a LCF is an near optimal efeexhibiting clus-
tering behavior. It makes the clusters quite invariant diee to any rotation and/or
translation. This representation can be very compressiitethe PCA. This is one of the
key features of this new algorithm.

After segmentation, the world coordinates of the vertidesach segment are trans-
formed into local coordinate frame of their cluster as diégct in chapte#. In the case of
the clustering approach, we transformed the vertex coateginto LCFs to find out its
true corresponding cluster. To avoid a second transfoamatito LCFs during compres-
sion, we store the local coordinates once during the clunstéor further compression.

6.3.3 Compression of Local Coordinate Frames

Once the mesh vertices are clustered, their coordinateragsheed to be encoded
using PCA. In order to be able to transform back to the worldrdmates during the
decoding step, we also have to encode the world coordinake qioints of seed triangles
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(used to construct the transformations). The affine transition should then be correctly
computed (at decoding) without loss of information. We e to encode the seed
triangle points separately with delta encoding.

Given the sequence of the seed triangle poipts, p5/, p5’), we first encode their
world coordinates in the first frame. Then, the differencesMeen each two adjacent
frames in the sequence are computed. To avoid error acctiorulduring animation,
these residuals are computed between the coordinatesmﬁ'rﬂlt@j’f in the current frame
and their recovered coordinatﬁ;sf‘1 in the previous frame:

5= B G=1.29)

wherei =1,...., Nandf =1,..., F.

6.3.4 Principal Component Analysis

We adopt the PCA to compress the resulting local coordinatiess of each segment.
The objective of the PCA is to reduce the dimensionality odtadet. It determines linear
combinations of the original datasets and represents them orthogonal basis.

For a sequence af frames of3V dimension each, PCA produces a reduced number
L < F of principal components that represent the original détase

We now consider how a cluster evolves over the frames of theation. LetG/ be
thei-th cluster in thef-th frame,; = 1,..., N andf = 1, ..., F. A single clustelG; thus
consists ofF clusters (one for each fram€), = {G!, G2, ..., GF'} whereG? represents

(2

the vector with the geometry of the clusian frame f

G{ = (quAv qzj'if)u ° qr{Vi)ta

whose elements are the local coordinates of corresponeéitiges (except the coordinate
of the seed triangle). All these vectde§ have the same lengt{V; — 3), and construct
a geometric matriXA; with 3V; — 9 rows andF' columns {; is the number of vertices of
the clustelC;).

A= clezar |

A singular value decomposition ok, is
A, =UD,V!

whereU; is a (3V; — 9) x F' column-orthogonal matrix that forms an orthogonal ba-
sis and contains the eigenvectors of theA;*. D; is a diagonal matrix whose nonzero
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elements represent the singular values and are sorted ieas@ng order. Thu®, =
diag{)\i, Xa, ..., A\r}. VisaF x F orthogonal matrix.

To reduce the datasets, we pick only the fitseigenvectors [{ is a user specified
number). SoU; = {u;;,] = 1, ..., L} contains the most important principal components
u; that correspond to the largest eigenvalyes.., A\;,. Then each clust@{ is projected
into the new basi¥J; to get a new matrix of coefficiens; of size L x F.

C; = U/A,

After performing the PCA for all N clustei, we getN new sets{ U, U, ..., Uy}
and coefficient matricesC}, C,, ..., Cy } with different sizes.

6.3.5 Quantization and Arithmetic Coder

For further compression, the floating-point valug® @r 64 bits) are often quantized
to a user specified number of bits per coordinate relativehédomaximum extend of
the bounding box of the model. The quantized values are encwdth an arithmetic
coder L123.

In the case of an animation, the quantization is often peréor according either to
the tight axis-aligned bounding box for each frame or to #rgdst bounding box for all
frames. Since we have to encode the basis vector values améfficients rather than
the vertex coordinates, we use two different encoding ctsiteThe first concerns the
matrices and the second the delta vectors. The basis mi&itaxnd the coefficient matrix
C; of each clusteC; are truncated using a fixed number of hjtsand ¢. respectively
(typically ¢, = ¢c).

We first compute the minimum and the maximum valgs,,..;, tmaz.:)» (Cmin.i> Cmaz.:)
of U, andC; respectively. Let

Cmazu; = Umazi — Umin,i

Cmaz,c; — Cmaz,i — Cmin,i

The integer values are straightforwardly derived accaydn

ui(](m7 j) = Lul (mu j)/umax,i - umin,i : 2qu + 1/2J
Ciq(jv f) - Lci(j7 f)/cmaz,i — Cmingi * 24e + ]./QJ
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wherel <m <3V;—9,1<j<Landl < f<F.

The resulting signed integer values of the matrices aredattwith an adaptive arith-
metic coder and sent with the extreme numbers.

For delta vectors, the coordinates are encoded accorditg toounding box of each
frame. Using a fixed number of bits,, the coordinates of the delta vectors are mapped
into integers as follows:

ivf P ’L,f .
0uf = |65 Jemana - 204 4 1/2]
Oil = 00 [emara - 29 +1/2]
ivf P ’L,f .
0oF = |63 Jemana - 204 4 1/2]

fori=1,2,..Nandf =1,2,..F

The resulting signed integer values are encoded sepammteHCA details with an
adaptive arithmetic coder.

We assume that the quantization errors of PCA details arkgitdg up to 12 bits
guantization. Note that the total number of bits needed tlanirgy delta vectors is very
small. It ranges betwednh01 and1 bit per vertex per frame when the quantization ranges
betweenl 2 and16 bits depending on the number of eigenvectors, the levelahtjzation,
and the number of clusters.

6.4 Decompression

Figure6.3illustrates the decoding process. After receiving the saqes of the PCA
details and the delta vectors (or residuals), we decode add guantization of delta
vectors, we reconstruct the points of the seed trianglesadh €luster in each frame,
then reconstruct the LCFs. In the second stage, we undo thetigation of all basis
vector values and coefficients, we reconstruct the localdionates of all vertices in each
cluster and transform them back to world coordinates. Kinafe collect all clusters to
reconstruct the sequence of meshes.

6.5 Rate-Distortion Optimization for PCA based Coding

Our clustering process (eventually the region growing aggh), produces clusters
of different sizes. If one chooses a fixed number of basisovedor all clusters, then
there may be too few eigenvectors to recover the clustengtee at a desired accuracy
and eventually too many eigenvectors for other clustershvine callunderfittingand
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Distortion

A

» Rate

Figure 6.4 Lagrangian optimization

overfitting respectively). Moreover, the number of bits needed to @atlbe unnecessary
basis vectors imverfittingcases may be better allocated for other clustersterfitting
cases. Therefore the selection of the best number of basisrsdo be extracted from
animation data is necessary to properly recover the olligiat of each cluster with a
certain accuracy. We introduce a rate distortion optinozethat trades off between rate
and the total distortion.

6.5.1 Description of the Problem

In LPCA-based techniques often PCA is performed using a finedber of compo-
nents per cluster, neglecting the fact that whole mesh seggere often not rigid and the
different parts can have different behavior (i.e., theitiomois not similar). Thus, using a
fixed number of components per cluster may result in an irgseiffi number to represent
a given cluster at the desired accuracy while having too ni@anthe representation of
other clusters.

To improve the PCA based compression and avoid this oveditnd underfitting,
we introduce the Rate-Distortion Optimization (RDO) whishalso known a®it allo-
cation The objective is to find the best tradeoff between the lgitesud the distortion of
coordinates of the vertices.


./Phd-Pics/PCA_segmentation/lagrange.eps
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6.5.2 Problem Statement

Given N clustersG;, i = 1,..., N that we have to encode separately, and a set of
eigenvectorZ = {ly,ly,...,I.}. For each clustet;, let (Rﬁi,Dﬁi,) denote the rate-
distortion (RD) point for each numbéy € 7, (typically I; = 1,....,40 components).
The rateR! represents the number of bits required to encode the bastisrwalues and
the coefficients. The distortioP’ is the root square error between the original and the
reconstructed coordinates of all vertices in the clustrué we can define for each cluster
a set of rate distortion poin®, = {(R" D%) : I, € T}.

Let R...4: D€ the given total bit rate for all clusters. Then the optatizn problem is
to find the optimal number of componetitgor the cluster, (i = 1, ..., N') that minimize
the overall distortion:

N
D=) D (6.1)
=1
subject to the constraint
N
Z Ril S Rtarget- (62)

=1
This constrained optimization problem can be reformulat#d an unconstrained
problem by using the Lagrangian multiplier approach:

N N
min» Di+X-> Ri, €T (6.3)
=1 =1

where) is Lagrange multiplier.

The problem of Lagrange multiplier is to find a value)gf that yields the least dis-
tortion under target rate constraints. The bisection $eeao be applied over all possible
values of\ to find the suitable value. For a constarthe minimization can also be done
for each cluster independently.

Geometrical Interpretation

Considering the set of RD poinB; for the clusterG;. The lagrange optimization
can be interpreted with a series of parallel lines of contstlmpe\. The optimal solution
(R?,D?) is obtained when the line is tangent to the lower convex hiuthe set RD
pointsP; as illustrated in figur®.4.

Furthermore, alternatively, the optimal solution can heby direct computation of
the lower convex hulls of all sé®;, (i = 1,..., N) 6.4.
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6.5.3 Incremental Computation of the Rate-Distortion Optmization

In our compression algorithm, we introduce an R-D optimaatvhich is based on
an incremental computation of the convex ha]].

For simplicity, and since the number of bits increases widdize of the basis vectors,
we define the rat® as the number of basis vectors rather than the number oBbitly,
we define the optimization algorithm in the following:

1. For each cluste?; we compute:

e The number of componenisthat corresponds to the smallest rate;

e The number of componentsthat corresponds to the next rate-distortion point
on the lower convex hull;

e The slope\; between the pointsRY, D) and(R.*, Di%).
2. We compute the total rae, = >~ | Rl
3. Aslongas¥. N | Rl < Ryuge) is verified, we:

e Select the clustes, whose),, is minimal,

UpdateR,

Modify the number of componentsof the clusteC; by k;;

Determine the number of componeritsthat corresponds to the next rate-
distortion point on the lower convex hull;

Compute),,.

6.6 Compression Parameters

The compression parameters define the desired amount ofressign. In our ap-
proach, there are three parameters that govern the congresso:

e The number of basis vectors/ratelf this number is fixed for all clusters, then the
user defines it (depending on the desired accuracy). Therldng number is, the
better reconstruction will be (at the expense of less cosgwa). If the RDO is
used, then we will need only to specify the amount of compoesgate) or the
maximum number of basis vectors that are to be used to appadgieach cluster
as we do in our coding. The number of vectors in each clustdreis optimally



114 Motion based PCA Compression

selected such that the total rate is below the given useaifggmbrate (or the total
number of vectors is below the given user-specified maximumber of vectors).

e The number of cluster¥’: If this number is very small, then the cluster may contain
vertices of different behavior and their local coordinatééhave a large variation
over time. However, it is difficult to find a linear space th#tcgently represents
these coordinates using PCA.

e The reconstruction errorThis error presents the deviation of the reconstructed po-
sitions from the original one. It is measured using L2-nomthe metric which we
call da [102 62]. Moreover, the metric L2-norm controls the compressionray
the RDO. This number should increase with a decrease in tidawof clusters or
the number of eigenvectors.

6.7 Conclusion

We introduced a new compression technique for the animagedhes which is based
on LPCA. The mesh vertices are clustered using the motiomedb€F. Then, the world
coordinates of each cluster are transformed into localdinates. This step enables the
algorithm to compress an animated mesh efficiently. It eigpthe "local" behavior of the
local coordinates. Finally, an LPCA is performed in eaclst@uwith the rate distortion
optimization. The experimental results are detailed irpbéb, section 8.6.

This approach is simple, outperforms the SplitCoder. Ib alshieves similar or bet-
ter results than other current existing compression teglas. \We obtain a better rate
distortion performance than the standard PG LPC (Linear predictive Coding) and
TG [117). This result is obvious since the animation coding basedtatic techniques
(TG) only exploit the spatial coherence and the linear mtaeh coding only uses the tem-
poral coherence. Furthermore, the standard PCA only appet&s the global linearity
and is less effective for nonlinear animation. For the CP8#séd on local PCA)10Z
and AWC (based on wavelet39] algorithms, we achieve better or similar results. More
results are given in sectidh6.

This method is computationally inexpensive compared toodal PCA for the full
mesh and its decompression process is very fast. It is aipdidco meshes and point-
based models. It performs well for animations with a largenber of vertices and well-
suited for progressive transmission. For very long segegnee suspect that the motion
of a local coordinates also becomes complex and non-liféerefore, one can split the
sequences into small clips and perform RLPCA.
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As seen before, the algorithm considers the entire sequefinoeshes and exploits
the coherence globally in term of linear space. The drawlbdthkis approach is that the
compression is computationally expensive.

In order, to exploit the coherence locally and achieve vewbitrate (unlike the Split-
Coder), we develop compression approach based on Predicti/Discrete Cosine Trans-
form coders (PDCT) and encode the mesh sequence frame bg {s@® next chapter).
We benefit from the clustering and encode each cluster withmfmn-zero coefficients.
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CHAPTER [/

Predictive-DCT based Compression

In chapters we presented connectivity-guided predictive coding bgilog to the ver-
tex based coding approach. This chapter introduces a nesagpbased on predictive
and spectral techniques. The algorithm is independeneafdhnectivity information and
belongs to the cluster based prediction approach. We fdlh@wsame strategy presented
in previous chapters, the animated mesh is segmented mtasatigid clusters, then the
predictive and DCT coding is performed in each cluster, &grar frame, instead of PCA.

7.1 Introduction

Two algorithms have been previously proposed for animatesh@s. The first algo-
rithm exploits the coherence locally frame by frame. It ist&® based predictive coding
where one vertex is processed at a time in almost losslessiMiage approaches are sim-
ple, not expensive, near-lossless and well-suited fortrewd applications. The drawback
of these methods is that they do not support progressivertrasion. The second algo-
rithm is cluster based coding, where a set of vertices aregssed at a time and encoded
in a lossy way using PCA. The algorithm considers the engrgience of sub-meshes
and exploits the coherence globally. The global linear benaf the vertices through all
frames is approximated in terms of linear space. The anamagquence can be reduced
to a few principal components and coefficients. The effigrefchis technique increases
when the datasets are segmented or clustered, so that eaghigindividually encoded
by PCA. This type of method supports progressive transomnssi he drawback of this
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approach is that it is computationally expensive

This chapter presents an alternative compression algotithsed on predictive and
DCT transform in the local coordinate systems. In contrastertex based predictive
coding, the algorithm is cluster based predictive coding.

The method is inspired from video coding. We first split thenaated mesh into
several clusters (similar to macroblocks in video codingihg the simple and efficient
clustering process developed previously. Then, we perprediction in the local co-
ordinate systems. Finally, we transform the resultingadedtctors (between the predicted
and the original vertex locations) of each cluster in eaam# into the frequency domain
using Discrete Cosine Transform.

7.2 Overview

In such sequence of meshes, neighboring vertices haverggsgndency to behave
similarly and the degree of dependencies between theititosain two successive frames
is very large which can be efficiently exploited using a comalion ofPredictiveandDCT
coders (PDCT).

The local coordinate system has an important property tttabis a large clustering
over time and the locations of the vertex tend to form a chusteund one position (over
all frames). Regardless what kind of deformation the vestiandergo, i.e. rotation, or
translation or scaling or combination of all three relasigtie vertices will generally keep
their positions, at least between two successive framas.pfbperty was used in different
ways and in different contexts in previous chapters: in segation and in PCA based
compression.

The proposed technique in this chapter also uses this gyofmeperform a predic-
tive coder followed by DCT algorithm which transforms theuking residuals from the
spatial domain to the frequency domain.

The vertices of each cluster have small variation over a tetagive to the LCF. There-
fore, the location of each new vertex is well-predicted fribgnlocation in the previous
frame relative to the LCF of its cluster. The difference begw the original and the
predicted local coordinates are then transformed intaugaqy domain using DCT. The
resulting DCT coefficients are quantized and compressddemitropy coding. The orig-
inal sequence of meshes can be reconstructed from only adieveero DCT coefficients
without significant loss in visual quality.

Basically, the algorithm consists of four steps:

1. Clustering process:As described in the previous chapter, the vertices areariedt
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into a given number of clusters depending on their motiorha tCFs. Indeed,
the vertex should belong to the cluster where its deviatiothée LCF through all
frames is very small compared to the other LCFs. Therebyyéhtices displace-
ments between two successive frames will be close to zerdrendfficiency of
the prediction through time increases. Moreover, the ehirsgy will preserve the
global shape when DCT coding is performed (spatially) inrhegaster. Note that
the clustering is used in this chapter in the concept of ptemf.

In PCA based algorithm the goal of segmentation was to aliisgevertices into
near rigid bodies. Relative to LCF these regions are neariant. Thus, perform-
ing PCA in the LCF yields large number of PCA coefficients tua close to zero.
Thereby, low bitrate is archived.

2. Lossless coding of LCFsThe locations of the vertices that contribute to the con-
struction of the LCF of each cluster should be losslesslpéed. In order to ensure
that the decoder could use the same LCF, we decode and neatirise LCF to be
used during the compression of the remaining vertices.

3. Predictive coding: This step allows the reduction of space-time redundanag. It
performed on the local coordinates rather than the worlddinates, which makes
the coding more efficient. It produces very small predictorors. The power-
fulness of the predictor strongly relies on the clusteringcpss. If the vertex is
associated with a LCF whose motion is not similar to its motiben the local
coordinates of the vertex will have a large variation ovéiframes and the pre-
diction will produce large delta vectors. In chapfemwe presented an alternative
connectivity-guided predictive algorithm, this algornitlprocesses one vertex at a
time. For each vertex one LCF is defined upon a previoushetsad triangle and
its coordinates are split into two components: tangentidl @ormal components.
In contrast, in this chapter we proposed predictive codiagjtequires one LCF per
cluster.

4. Transform-based coding or DCT: For further compression, the coordinates of
delta vectors are represented as 1D signals then transtomoeefrequency domain
using DCT, producing uncorrelated coefficients. Thesefwoerts are more com-
pressible with the entropy coding than delta vectors. Meegeanany coefficients
of low values can be zeroed without significant loss in viguellity.

To avoid error accumulation that may occur, we simulate gding process during
encoding to make sure that during the encoding, we use gxthetlsame information
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Figure 7.1 Overview of the compression pipeline

available to the decoding algorithm. After the compressibreach frame, we should
substitute the original vertex locations by the decodedtions.

7.3 Compression Pipeline

Given a sequence of triangle meshds, f = 1, ..., F' with IV vertices and’ frames,
we encode the first frame separately from the rest of the fsaméhe sequence using
static mesh compression presented in chapter

An overview of the whole compression pipeline is illustchie Figure7.1

7.3.1 Local Coordinate Frames

We follow the same strategy described in the chagtsection4.5.2to select seed
triangles and to construct the local coordinate frames.


d:/LocalProject/Papers/paperAccepted/JVRB_Final/Pics/coding.eps
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Figure 7.2 lllustration of the local coordinate frames assigned toclsters

7.3.1.1 Seed Triangles Selection

The first step in our algorithm is to find seed triangles upon which we construct
the LCFs as described in sectiér.2in chapterd, using the far distance approad?f.
Then, we associate with each seed one of its incident tearmhd call this triangle the
seed triangle. We denote the three vertices of seed triahghh cluster in thef-th frame

aS(P£,1> p£,2> pi,:&)

7.3.1.2 Local Coordinate Frame Construction

Each cluster is initialized with the three vertices of theds&iangle. Each clustél,
has its own LCF defined on the seed triangle, p2, ps) as illustrated in Figur&.2 (and
as described in the previous chapters).

The transformation of a point to its local coordinate systemcan be accomplished
by an affine transformation with a translatiorand a linear transformatidi (T is an
orthonormal matrix):

q = T(p-o)

For each fram¢f (1 < f < F) and for each cluste?/ (1 < k < N), we have{T/, o/}
computed from the points of the seed triangs¢ ,, pf ,. P ;).

7.3.2 Motion in LCF based Clustering

The clustering process starts with several seed triangles which the LCFs are
constructed. Then, the clustering is obtained by assigihiagertices to the seed triangle
where they have minimal local coordinate deviation acrbedtframes according to

F
b = Y llaf, —al;'I?
f=1
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qx,; are the local coordinates of the vertewith clusterk and 6, ; represents its total
motion in the LCF associated with the cluster

The vertex should then belong to the clusteior which the deviation is very small,
notek,i,:

Emin = argmini<p<n{0k;:}

7.3.3 Differential Coding of LCFs

Generally, our approach first transforms the world coordisaf each vertex into local
coordinate frame of its cluster. Then, it performs the caspion. At reconstruction,
the local coordinates are decoded then transformed baclotiol woordinates. A lossy
compression of the vertices of the seed triangle may dantegedordinate frames at
the decoding step and as a result, the transformed locatlicabes will be damaged.
Therefore, the LCF of each cluster should be encddsslessly

We assume that the LCFs of the first frame is already encodededeh frame and
for each new LCF, we encode the locations of their three aestivith the differential
encoding. We subtract their coordinates in previously dadoframe from its current
coordinates. We quantize the prediction differences, vipdyape arithmetic coder to the
resulting integers and we update the current locations théldecoded locations.

7.3.4 Spatial-Temporal Predictive Coding

Once the segmentation process is finished, and all LCFs aceldd (during the cod-
ing), the prediction assumes that the current point doeslmanige relative to the LCF of
its cluster. So, for each new poipgi in the clusterC; of the framef, one transforms
its world coordinate into local coordinatqévi. Then, one predicts its location from the
decoded local coordinates of its location in previous frgine1 by:

pred = Qg;l

The delta vectors are computed:
5}:,1' = qi,i — pred

Unlike the current predictive animated mesh compressichnigues $6, 45, 63
where the delta vectors are encoded in world coordinatedyamere they are computed in
the local coordinates.
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7.3.5 DCT Coding

After prediction, we represent the x,y,z coordinates ofdéka vectors of each cluster
(J,f as 1D separate signals of length— 3 (V,, — 3 is the number of vertices in the cluster
Cr, minus the three vertices of seed triangle) and encode théwDET coding.

For each cluster we have three signals:

X[ = {ef vl thy)
Y = {laovls vl
Z£ = {21{,4721{,57"‘721{,%}

wherek € 1,...,. Nandf €1,..., F.

For the whole sequences, the number of signals we obtainds x F'. We transform
each signal vector into the frequency domain using 1D DCTht@io a more compact
representation. Simple 1D DCT is defined as:

Xl = a) in,ic()s(ﬂl - z;)((vzku_ —3;1) 1),

forl =4, ..., Vi, anda(l) is defined as:

1 —
oy~ A ori=d

2

73 for [ £4

The inverse DCT is similarly defined as:

U w(l—4)(2(i — 4) + 1)
xil = Za(l)X,ilcos( ST )

=4

wherei =4, ..., V;.

After DCT transform, the majority of signal energy concates on the low frequen-
cies and little on the high frequencies. Hence the high ®egies (insignificant coeffi-
cients) can be zeroed yielding a significant reduction irowerall entropy and the signal
can then be represented by few high value coefficients witsigaificant distortion. Note
that the high frequencies close to zero can also be set teamomatically using quanti-
zation module only.
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In our algorithm, we arrange the DCT coefficients from highow values to easily
set the coefficients to zero from bottom to a certain numbeoefficients depending on
the compression rate and the desired quality.

7.3.6 Quantization and Arithmetic Coder

The low frequency coefficient (high values) correspond ® ¢barse details of the
cluster while the high frequency coefficients (low valuesirespond to the fine details.
On the other hand the human eye can perceive the coarsesdatath more accurately
than the fine details. This means that if we use a coarse gaéoti or set the low value
coefficients to zero, the cluster will still retain an acadpée visual quality and we will
obtain better compression ratios.

In this version of the algorithm, we uniformly quantize theetficients to a user spec-
ified number of bits per coefficient. Typically, we use a numibetween 8 and 12 bits,
depending on how many DCT coefficients are zeroed. The ma#iacents that are ze-
roed, the more coarser the quantization is, and that béerdmpression will be at the
expense of visual appearance. The finer details can be peelsehen only a finer quan-
tization is used and few coefficients are thrown away. Fompta, if 50% of coefficients
have zero values then we uBgbits quantization. 1H0% we useR bits only.

One might possibly improve on the present quantizationa@ggr by introducing dif-
ferent levels of quantization in each cluster. The highdestcies can be coarsely quan-
tized while the low frequencies can be finely quantized.

Note that, the delta vectors of the first frame are encodetyus? bits quantization
while the delta vectors of the LCFs in the whole sequence @aatiged to 16 bits.

For further compression the resulting integer values aréemeoded with an arith-
metic coder 123.

7.3.7 Reconstruction

To reconstruct the original data cluster, we simply de-gjaarthe coefficients and per-
form the inverse DCT to find out the delta vectors and add ttegtar to the predicted lo-
cation from the perviously decoded frame to recover thamaidocal coordinates. Then,
we transform them to world coordinates.
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7.4 Conclusion

This chapter introduced a simple and efficient compresgidmtique for dynamic 3D
meshes based on predictive and DCT coding. First, the #tgoglusters the vertices into
a given number of clusters depending on their motion in th€iF. Second, the location
of each new vertex in the current frame, is predicted fromatstion in the previous
frame. The effectiveness of prediction coding dependsigtyoon the clustering process.
Indeed, if the vertices are well-clustered then the motedative to the LCF between two
successive frames tends to be zero. Third, the delta veatefsirther encoded with DCT
transform to reduce the code length since the entropy iuneqy domain is smaller than
the entropy coding of delta vectors. The resulting DCT coieffits are quantized and
encoded with an arithmetic coder.

The experimental results are detailed in chagtesection 8.7. This algorithm is
lossy techniques, computationally expensive comparel $titCoder, requiring more
computation steps for DCT and inverse DCT but it allows lowrhte. The distortion
introduced by PDCT is almost less than the distortion preduxy SplitCoder. At similar
bitrate (see sectio®.8), PDCT yields better reconstruction due to DCT based cotfiay
may reduces the blocky artifact at low bitrate. Indeed,rd€T transform, the majority
of signal energy concentrates on the low frequencies atie ¢ih the high frequencies.
Hence, the high frequencies can be zeroed yielding a signifieduction in the overall
entropy. The signal can then be represented by few high vala#icients without sig-
nificant distortion. The gain of PDCT method over SplitCoudenp to73%. Of course,
the gain varies with compression parameters and animatigmesices. Experimental re-
sults also show that our algorithm is competitive when camgao the state-of-the-art
techniques. It performs better than the standard P8ALIPC, KG [62] and TG [L17]
and comes close to CPCAQZ and wavelet AWC 89] algorithms. PDCT is applica-
ble to meshes and point-based models regardless of how ithataom is generated. The
drawback of the proposed approach is that it does not suppmytessive transmission.
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CHAPTER 8

Evaluation and Comparison

In previous chapters, we have presented our new approauitgje have detailed the
theory and the design of each algorithm. This chapter ptesbka experimental results.
We discuss and evaluate different parameters that affenpassion performance, we
compare the proposed techniques with other methods andseeampare between our
approaches.

Note that the experimental results of segmentation methoglgiven in chapted.
This chapter is restricted to the results of the compressppnoaches only.

8.1 Implementations

We have implemented our algorithms in c++ programming lagguand Matlab. We
also used an object oriented framework called DaViS (Dasaalization System), a very
powerful tool for evaluating new algorithms and visualiaattechniques. The imple-
mentation runs on a standard PC with Pentium 4 with 2.53 GHmill Geforce 4 MX
420, 750 MB of RAM (it is used for timing results of compressaigorithms) and AMD
Athlon(TM) XP 3000+ 2.10 GHz, 1.00GB of RAM (it used for tingmesults of segmen-
tation algorithms).
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Models vertices| Triangles| Frames
chicken 3030 5664 400
dance 7061 14118 201
dolphin 6179 12278 101
cowheavy 2904 5804 204
snake 9179 18354 134

Table 8.1 Characteristic of animation sequences used for analysis.

8.2 Input Datasets

To evaluate our approaches, we used different static andndigrtriangular meshes,
used by the majority of the current existing approaches. groposed approaches are
independent of how the input datasets (particulary the atiom) are generated. Indeed,
we consider different animations generated in differentava

Figure8.1and FigureB.2 show the static and dynamic models, respectively, used for
the evaluation. Their characteristics are reported iretsthll and8.4respectively.

All tested 3D models have different shape and smoothnesgelhas movements of
different degrees of complexity in the animated case. Tlekeh character is distributed
solely for the purpose of comparison of geometry comprestohniques. The Dance
animation has been created by skinning a skeleton with mo#aipture data. Its movement
is quite smooth and its mesh is quite regular. The Cow anonatonsists of extreme
deformations and the mesh is very irregular. The Dolphimation is generated with
sinusoidal movements and the snake animation of large befdyrdation.

8.3 Measurement

To show the efficiency of our schemes, we measured the nurhbés per vertex for
static meshes and number of bits per vertex per frame (bpvfriimated meshes. To
measure the distortion in the reconstructed animation wveigiard to the original anima-
tion, we used a metridasimilar to [L02 62]. The error is defined as follows:

M — M|
M — EM)]
whereM is the geometric matrix3(/ x F') containing the original geometry sequence.
M is the reconstructed geometry sequenE¢M) is an average matrix whose columns
contain the average vertex positions of all meshes over. time
We also computed the distortion per frame usingfheorm of all reconstructed ver-
tex positions relative to the original positions of eachnfea

da =100
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Figure 8.1 The static models used for analysis


./phd-Pics/StaticMesh/head.eps
./phd-Pics/StaticMesh/fandisk.eps
./phd-Pics/StaticMesh/random.eps
./phd-Pics/StaticMesh/cow.eps
./phd-Pics/StaticMesh/Horse.eps
./phd-Pics/StaticMesh/dino.eps
./phd-Pics/StaticMesh/feline.eps
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Figure 8.2 The animations used for analysis. The dance animation wesext by the MIT
CSAIL Graphics Lab. The chicken character is property of ieoft Inc. and was created by
Andrew Glassner, Tom McClure, Scott Benza and Mark Van Legige The dolphin animation is
given us by Zachi Karni. The cow and snake animations cantoedfn [1].


./phd-Pics/Models/dance.eps
./phd-Pics/Models/cow.eps
./phd-Pics/Models/chicken.eps
./phd-Pics/Models/snake.eps
./phd-Pics/Models/dolphin.eps

8.4 Higher Order Prediction for Static Geometry Coding 131

8.4 Higher Order Prediction for Static Geometry Coding

In this approach, we have developed a higher order predistheme for geometry
compression. Instead of encoding the coordinates of thtexjewe encode its tangential
components and its normal component as bending angle. mgertdal components are
encoded with parallelogram prediction. For the normal divagp we first fit a polynomial
surface to the previously encoded vertices in the vicinftthe current gate edge. Then,
we intersect the tangential circle given by the tangenbahgonents, which are encoded
in advance, with the polynomial surface yielding the pradicfor the bending angle. We
also fit a sphere to a small number of vertices as a fast compedmetween polynomial
surface fitting and simple angle prediction.

In order to see the gain of the higher order prediction schieased on polynomial
graph function fitting (explicit function), we measured ttensumed bits per vertex sep-
arately for the tangential and normal components. Ta8®ehows the results, when the
parallelogram prediction is used for tangential predictiand table8.3the results for the
multi-way prediction.

In both tables the second columns give the number of bitswwoad for the tangential
components. The third columns contain the cost for the gndngle, when predicted
as proposed by Touma and Gotsmah{. In the fourth columns the result of the higher
order prediction scheme can be seen and in the last colummesntee=d the gain in the
angular component in percent. Both tables show, that tisema average gain of 20% in
the coding of the bending angle independent of the tandqmediction strategy.

We summarize the experimental results in teh where we compare the total cod-
ing cost for the used models with the official implementaidrthe approach of Touma
and Gotsman. The third column shows the cost for the corvityat bits per vertex con-
sumed by Touma and Gotsman’s method. The fourth and fiftmoaducompare the total
geometry cost of Touma and Gotsman’s approach to ours. llagteolumn we finally
tabulate the gain of the total cost in percent — geometry andectivity.

On the first sight, the result for the cow in tallet is surprising as there is a gain
in tables8.2 and 8.3 for our implementation of the Touma-Gotsman angle predidto
turned out that no angle prediction yielded an over all casgpion result oR0.2 bits
per vertex. Thus we suspect that also the official implentemaf the Touma-Gotsman
coder turns off angle prediction, when there is no gain.

Figure8.5also shows the total coding cost when we fit polynomial graqgDRE) and
implicit (HOPI) function and sphere (HOPS) as well as thaltgeometry cost of Touma
and Gotsman'’s approach. In the last three columns we tabtllatgain of the total cost
in percent. On can see that the polynomial graph performgdriam a subset of the used
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Models T,y | atg | ago | gaing)
horse 11.41| 4.16| 3.61| 13.22
random || 12.32| 3.12| 1.85| 40.70
sphere 4.25|1.97| 0.85| 56.85
head 9.92|4.10| 3.19| 22.20
dino 12.53| 5.65| 5.00| 11.50
fandisk 9.72| 4.24| 2.68| 36.80
feline 10.68| 4.04| 3.71 8.17
cow 14.90| 7.52| 7.08 5.85
Average|| 10.70| 4.35| 3.50| 24.41

Table 8.2 Geometry coding results for the parallelogram predictioost for tangential com-
ponentsz andy in bits per vertex, cost for normal component with bendinglamrediction ac-
cording to Touma and Gotsman (subscript TG) and accordihigtwer order prediction (subscript

HO) and the gain of our method in percent.

Models x,y | arg | ago | gain()
horse 10.64| 4.16| 3.61| 13.07
random || 11.01| 3.13| 1.84| 41.07
sphere 3.39| 1.77| 0.83| 52.64
head 8.91|4.08| 3.19| 21.59
dino 12.01|5.65| 4.99| 11.53
fandisk || 10.14| 4.23| 2.71| 35.71
feline 9.98| 4.07| 3.76 7.59
cow 14.47| 7.54| 7.05 6.44
Average|| 10.07| 4.32| 3.50| 23.71

Table 8.3 Geometry coding results for the multi-way prediction witle tsame columns as ta-

ble 8.2
Models vrts | Conn.| Geom.| ours| gain
horse 19851 2.34| 15.16| 14.26| 5.94
random || 4338| 0.41| 15.64| 12.85| 17.80
sphere || 10242 0.02| 6.95| 4.23| 39.13
head 11703 0.45| 12.64| 12.11| 4.21
dino 14070, 2.39| 17.40|17.01| 2.24
fandisk | 6475| 1.08| 13.82| 12.86| 6.93
feline 49864| 2.38| 14.17| 13,74 3.03
cow 2904| 1.88| 20.38| 21.52| -5.65
Average 1.37| 14.52| 13.57| 9.20

Table 8.4 Models and final coding results : number of vertices, convigctand geometry
coding cost in bits per vertex for Touma and Gotsman’s methgedmetry cost for our method,
total gain in percent, using 12 bits quantization, a weightéxponent of 1.3 and a maximum

number of 18 gathered fit vertex.
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models than the other two prediction schemes. And non oéttves methods proofed to
be superior on most of the cases.

In order to find out the best maximum number of vertices to lleayad, the weighting
exponent and the threshold angle cosine, we plotted the euailbits consumed by the
normal component for different values of these parametersdw model. The resulting
plots are illustrated in figure& 4, 8.5and8.3. On can see that with higher order prediction
based explicit function fitting the gain becomes importaitihwhe growing of the number
of vertices to be gathered to fit a surface while with implfaiiction, the gain is nearly
constant and both methods are superior than TG’s method. EH®®E HOPI show a
minimal coding cost for more tha22 and8 gathered vertices, a weighting exponent of
approximatelyl .37 and2.68, and angle cosine 0.67 and 0.9, respectively.

We also plotted the number of bits per vertex consumed bydhma component for
different weighting exponents over the number of gathetedkftices where the bits per
vertex were averaged over the collection of sample modelstiated in8.1 Figure8.6
shows a minimal coding cost for eighteen gathered vertindssaveighting exponent of
approximatelyl.3. Note that these values were used for the measureme813 814 8.2

It is quite obvious that the compression and decompressieads with high-order
prediction are significantly slower than with the simpledicsion rule of Touma and
Gotsman. Most of the time is spent for the gathering of thesfitiwes and the computation
of matrix F via equatior3.2 If a maximum of eighteen vertices are gathered, 72% if the
coding time is consumed for gathering and 22% for the eigaevdecomposition oF.
For the simple bending angle prediction only 5% of the highweter coding time are
consumed. If we only gather 10 vertices as the second minimuigure 8.6 suggests
gathering is 58%, eigenvalue decomposition is 33% and siroptliing is 9% of higher
order coding time, resulting in an eleven times slower cgdilgorithm. In sphere fitting
we fit sphere to a small number of vertices, i.e. four pointausithe speed is much lower
than the surface fitting.
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Figure 8.3 Plot of bits per vertex consumed for the normal componertt diiferent weighting
exponents for a given angle cosine and maximum number oégath
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Figure 8.4 Plot of bits per vertex consumed for the normal componertt different number of
gathered fit vertices for a given weighting exponent andstiwkel angle cosine. The straight red
line illustrates the performance of the angle predictiamMuma and Gotsman.


./phd-Pics/StaticMesh/weightingExponent.eps
./phd-Pics/StaticMesh/numbervertices.eps
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Figure 8.5 Plot of bits per vertex consumed for the normal componerit different angle cosine
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Figure 8.6 Plot of bits per vertex consumed for the normal component different number
of gathered fit vertices and different weighting exponerithie straight red line illustrates the
performance of the angle prediction via Touma and Gotsman.


./phd-Pics/StaticMesh/cosingathering.eps
./phd-Pics/StaticMesh/Graph.eps
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Models || Geom_TG| HOPE | HOPI | HOPS| Gain_E| Gain_I| Gain_S
horse 15.16| 14.26| 15.00| 15.00 5.93 1.00 1.00
random 15.64| 12.85| 16.00| 15.58| 17.83 -2.3 0.38
sphere 6.95| 4.23| 5.60| 559| 39.13| 19.42| 19.56
head 12.64| 12.11| 13.64| 13.57 419 -791| -7.35
dino 17.4| 17.01| 17.70| 17.70 224 -1.72| -1.72
fandisk 13.82| 12.86| 12.5| 12.91 6.94 9.55 6.58
cow 20.38| 21.5| 22.1| 21.93| -5.49| -8.43| -7.60
Cow 20.38| 21.52| 22.10| 21.93| -5.49| -8.43| -7.60
Average 14.57| 13.54| 14.64| 14.61| 10.11 1.38 1.56

Table 8.5 Coding results. Geometry coding cost in bits per vertex fourfia and Gotsman’
method, and our methods based on gréph y), polynomial implicit function and sphere fitting,
their total gain in percent usint® bits quantization.

8.5 Near-lossless Predictive Coding for Dynamic Meshes

This approach, which we called SplitCoder, introduceslsingte near lossless com-
pression for animated meshes of fixed connectivity usingediptive technique. The al-
gorithm traverses the triangular mesh of each frame in @negfiowing order. Every time
a new vertex is encountered during the traversal, we splpadisition into its tangential
and normal components. Then, we encode each componenatdparsing prediction
and quantization coding.

To find out the best predictive coding for the tangential anthmal component, we
implemented different predictors for both components.

8.5.1 Evaluation of Different Predictors

In order to demonstrate the efficiency of each predictor im$eof compression per-
formance for each component, we measured the consumecebiteex separately for
the tangential and normal components.
8.5.1.1 Tangential components
Space-only predictor

We implemented a space-only predictor to encode the par@médbrmation of each

frame separately. The coherence is exploited over thetdieighbors only, neglecting
the temporal coherence. Two mode of prediction are evaluate

e In parallelogram prediction mode (space(PP)), we use thmaudia of Touma and
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Gotsman but we use the decoded vertex locations in ordeioid avror accumula-
tion.

predparal - p5_1 + pz{—Q - p£—3

¢ In multi-way prediction mode (space(Multi)), when a newtegris encountered
there can be more than one possible reference triangleuasrdted in Figure 2.
The idea is to use all possible reference triangles for |[gogiram predictions and
average the resulting predicted locations in world coatéis.

prredmulti = E predparal,i
7

Then we transform the predicted location to the local cowtdi system of the actually
selected gate edge, to then carry out the predicted taadjeathponentgy,,,,.

[péan’v, a| = transfToLocal(predyara Jmulti)

prediCttan(Ua f) = p;an

Eventually, in multi-way mode, we use all possible refeeetrangles for parallelo-
gram predictions, then we average the resulting prediceations in the world coordi-
nates and transform its coordinates into local coordinaeé to find out the tangential
components.

Time only Duplicata Predictor

The Duplicata predictor is a time-only predictor in the miosigace. Since we use
the local coordinate frame constructed upon three direighbers in the current frame
(spatial domain) and the locations in the previous frammgeral domain), it is therefore
a space-time predictor in the world space.

As described before, the tangential componensgdy are predicted from their re-
covered tangential components in the previously decodeddr

predictig, (v, f) = ﬁ{a;}v

This predictor predict perfectly the parametric inforratiand the prediction errors

are close to zero.
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Space-time predictor

The space-time predictor is an average of the time predatdrspace predictor de-
fined by the parallelogram (space(PP)_time) or the multifdwlti_aver) predictor.

We computed the average of the time predictor (time_only) the space predictor
defined by the parallelogram (space(PP)_time) or the majti@pace(Multi)_time) pre-

dictor:
. 1 ,
predictg, (v, f) = 3 (p{an%v + predictian space(V, f))
wherepredict,qn, space (v, f) is the predicted tangential components from the neighbors
in the current frame (space domain) aﬁg’f is the temporal predicted components (time

domain), the reconstructed tangential components in tvaqurs frame.
Evaluation

The coding of tangential components using the describetigices is evaluated inde-
pendently of the coding of the normal components.

Figure 8.7 (a) shows the rate distortion curves of the tangential corapts, for the
cow animation, using temporal prediction (time_only), theerage space-time predic-
tions using parallelogram (space(PP)_time) and multispg¢e(Multi) _time) prediction.
Time_only shows a significant improvement in the compressabio independent of the
angle prediction, it saves abalft% to 41% bits over the space(PP)_time and space(Multi)
_time, and about31 to 52% over spatial predictors (space(PP), space(Multi)), atlaim
distortion levels a) and using 8 to 15 bits quantization. Recall that here thepteai
prediction is relative to a local space and it is a space-firedictor in the world space.

Similar, for the dance animatio8.8 (a), time_only saves up t&% bits over the
space(PP)_time and space(Multi) _time and ufdtd over spatial predictors (space(PP),
space(Multi)) at similar reconstruction error.

8.5.1.2 Normal component

The normal component is predicted in a cylindrical coortBrsystem around the gate
as the bending angle between the reference triangle anetig ancoded triangle. Sim-
ilar to the tangential component, we tested different mteds for the bending angle:
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Space-only Predictor

The space-only predictor approximates the bending angla the other available
bending angles of the reference triangle:

predicty(v, f) = 180 — (auf + 7)) /2

Time Angle Duplicata Predictor

The bending angle is predicted from the recovered bendimggean the previous
frame:

predicty (v, f) = &t

v

The curvature or the angle is almost preserved between tecessive as seen chap-
ter 5. Therefore, the predictor replicates exactly the cuneaftrthe current edge gate
from the curvature in the previous frame.

Spatial-temporal prediction

The predicted bending angle is obtained by averaging thdigiesl angles computed
above:

predicta(v, f) = (o/(f = 1) +/(f))/2

whered/(f — 1) is the predicted angle using time prediction (time domang) ( f)
is the predicted angle using the TG method (space domain).

Evaluation

Figure 8.7 (b) shows the rate distortion of cow and dance animationsectely,
using different predictors. Temporal prediction (in LCHglgded a better compression
ratio, independent of the tangential prediction stratddne compression gain over space-
time prediction (in LCF) based coding is upi8% at the same level of distortions and
using 8 to 15 bits quantization. Similar for the dance aniomat8.8 (b), the temporal
predictor saves up 5% at similar distortiona.

The significant improvement means that the approximatiolocdl coordinates in
the temporal domain is significant and yields delta vectacsangles close to zero, (see
chapterb). Thereby, a significant reduction in the overall entropy ba achieved.
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Rate distortion of tangential components (cow)
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Figure 8.7 Rate-distortion curves of tangential components (a) antbéading angle (b) using
different quantization bits (cow animation). Note thatéhere call temporal predictor relative to
the LCF but it is space-time domain in world coordinate frame


./phd-Pics/Pics_predictive/cow_tan_cad.eps
./phd-Pics/Pics_predictive/cow_ang_cad.eps
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Figure 8.8 Rate-distortion curves of tangential components (a) antvéading angle (b) using
different quantization bits (dance animation).


./phd-Pics/Pics_predictive/dance_tang.eps
./phd-Pics/Pics_predictive/dance_angle.eps
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8.5.2 SplitCoder vs. State-of Art

Figure 8.20illustrates the results of running our coder on the cow ationawhich
contains extreme deformations, and the dolphin animatiempared with different meth-
ods. To obtain different rate distortion points, we useded#nt levels of resolution
(¢ = 8,...,14). At first glance, we can see that our approach achieves erbrate dis-
tortion performance than the standard TI3 7], linear predictive coding (LPC), KG5]
and PCA B]. This result is obvious since animation coding based oticstachniques
only exploit spatial coherence and the linear predictioding uses the temporal coher-
ence only. Furthermore, the standard PCA only approxintagglobal linearity and is
less effective for nonlinear animation. The LPCA overcorties problem but still ex-
ploits the coherence of local regions over all frames. FerAWC [39] and CPCA [L0Z
algorithms, we achieve similar results.

In Figure8.10 we compare our approach SplitCoder to the Dynapack algoij#5]
that uses the Lorenzo predictor, the angle preserving giaedand CPCA. At similar
numbers of bits (Figur8.10(a)), our approach achieves better quality (ugit&) over
Dynapack and (up t82%) over the angle preserving predictor (maverg+andlég]. At
similar quality (Figures8.10(b)), our coder archives gains up &, 8% and18%, over
(maverg+angle), CPCA and Dynapack, respectively.
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Figure 8.9 Comparison of our method with different compression atpans.


./phd-Pics/Pics_predictive/cowPred_LCF.eps
./phd-Pics/Pics_predictive/dolphin.eps
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Figure 8.10 Comparison of our method SplitCoder (TP_LCF) with diffareampression algo-
rithms at similar bitrates (a) and at similar reconstrutteror (b)(chicken sequence). TP_LCF
refers to the time only predictor in LCF.


./phd-Pics/Pics_predictive/graph_a.eps
./phd-Pics/Pics_predictive/graph_b.eps
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8.6 RLPCA based Compression for Dynamic Meshes

This approach segments the mesh vertices into severalgodgpnilar motion. Then,
the local vertex coordinates of each set are transformedantther basis. To find the
appropriate number of PCA components to represent thenatigiata in each set, we
introduce a rate distortion optimization for PCA based ogdithat trades off between
rate and the quality of the reconstructed animations. Thmeptession is achieved by
encoding the PCA components and coefficients.

8.6.1 Compression Parameters

In this approach, we consider three parameters that canmgtwe compression ratio
as discussed before in chapéiVe recall these parameters:

e The number of basis vectors/ratelf this number is fixed for all clusters, then the
user defines it (depending on the desired accuracy). Therl#ng number is, the
better reconstruction will be (at the expense of less cossiwe). If the RDO is
used, then we will need only to specify the amount of compoesgate) or the
maximum number of basis vectors that are to be used to appabaieach cluster
as we do in our coding. The number of vectors in each clustdreis optimally
selected such that the total rate is below the given useaifgggerate (or the total
number of vectors is below the given user-specified maximumiyer of vectors).

e The number of cluster¥’: If this number is very small, then the cluster may contain
vertices of different behavior and their local coordinat@§have a large variation
over time. However, it is difficult to find a linear space thé#togently represents
these coordinates using PCA.

e The reconstruction errorThis error presents the deviation of the reconstructed po-
sitions from the original one. It is measured using L2-northe metricda. More-
over, the metric L2-norm controls the compression durirggRDO. This number
should increase with decreases in the number of clusten@animber of eigenvec-
tors.

8.6.2 RLPCAVvs. LPCA

We want to find the influence of the clustering and the localtdmates on the bitrate
and on the reconstruction of animation. We performed LPCiv@world coordinate sys-
tem as well as in the local coordinate systems for a given rustif clusters, components
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L2 error of chicken sequence

—— Optimization of RLPCA at 1.5 bpvf
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N
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Figure 8.11 The error plot for the chicken sequence using LPCA in the dv(standard LPCA)
and the local coordinates (RLPCA) and using the RD-optitiana(ORLPCA) (10 clusters]0
components). The error is measured by the L2-norm betwesoritiinal and reconstructed frame.

and bits of quantizatiotV, L andq,. respectively. Furthermore, we compared LPCA with
the standard PCA.

Figure 8.11 shows the reconstruction results relative the originahfausingg. =
¢, = 12 andL = 10 when the LPCA is performed in the world coordinates (greemn) a
in the local coordinates (blue) and when the R-D optimizaisintroduced (red) at the
same number of bit per vertex per frame. We can see that thédoordinates are more
compressible than the original coordinates.

The improvement in the second curve (blue) (FiguEl) is due to the transformation
of the original data into local coordinates which forces to®rdinates of a vertex to
cluster around one point (see chap&r This improvement increases (red) when the
optimization were introduced.

Figure8.12and Figure3.14(a) shows the effect of the number of clusters and the com-
ponent on the frame reconstruction for the chicken animatging (N, L) ={(20, 10);
(20,20); (10,10)} and on the rate-distortion curves for the dance animatiorgus), 20
and30 clusters.

Figures8.13shows the reconstructed two frames in the chicken sequehea the
world and the local coordinates are used and when the otiioizis introduced using
10 components antl0 clusters.


./phd-Pics/pca/chickenwscg1.eps

8.6 RLPCA based Compression for Dynamic Meshes 147

L2 error of chicken sequence
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Figure 8.12 The error plot for the chicken sequence using different rensibf clustersv and
componentsL. (N, L) ={(20,20) (blue); (20, 10) (red); (10, 10)(yellow)}. The error is mea-
sured by the L2-norm between the original and reconstrucsede.

8.6.3 RLPCA and ORLPCA vs. State of Art

Figures8.14 (b) and8.15 also illustrate the comparison to other methods as rate-
distortion curves for the cow (a), dolphin (d), and chickengnimations. At first glance,
we can see that our approach achieves a better rate distpgiformance than the stan-
dard PCA, LPC and TG for the three models. This result is al/gince the animation
coding based on static techniques only exploit the spatilaéence and the linear pre-
diction coding only uses the temporal coherence. Furthexptbe standard PCA only
approximates the global linearity and is less effectivaimmnlinear animation.

For the CPCA and AWC algorithms, we achieve better or simnéaults. Figure3.15
(a) shows that for the cow animation our method is signifigaretter than the method of
KG (PCA+ LPCA) and than the CPCA. And it comes close to AWC. therdolphin and
the chicken sequences our method performs better thareadilitbve methods. This im-
provement is due to the segmentation of the model into mgéuiparts (whose vertices
move quit similarly) as well as to the use of local coordisatgther than world coordi-
nates. On the other hand, the RLPCA performs well for the soafelarge number of
vertices in contrast to KG. Therefore, by combining RLPCANIPC, we might achieve


./phd-Pics/pca/chickenwscg3.eps
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Figure 8.13 Reconstructed chicken: Frame 314 and its zoomed view (tbhetdw raws) and
frame 400 and its zoomed view (the two bottom rawByom left to right : Original, optimized
RLPCA, RLPCA, and LPCA performed in world coordinaté$ €lusters;10 components).


./phd-Pics/pca/chicken/chicken313org.eps
./phd-Pics/pca/chicken/chicken313S10C10opti.eps
./phd-Pics/pca/chicken/chicken313S10C10localFixed.eps
./phd-Pics/pca/chicken/chicken313S10C10worldfixed.eps
./phd-Pics/pca/chicken/zomm/chicken313new.eps
./phd-Pics/pca/chicken/zomm/chicken313_10_10Opti.eps
./phd-Pics/pca/chicken/zomm/chicken313_S10C10fixlocal.eps
./phd-Pics/pca/chicken/zomm/chicken313C10S10world.eps
./phd-Pics/pca/chicken/chicken399org.eps
./phd-Pics/pca/chicken/chicken399S10C10opti.eps
./phd-Pics/pca/chicken/chicken399S10C10localFixed.eps
./phd-Pics/pca/chicken/chicken399S10C10worldfixed.eps
./phd-Pics/pca/chicken/zomm/chicken399_new.eps
./phd-Pics/pca/chicken/zomm/chicken399_10_10optim.eps
./phd-Pics/pca/chicken/zomm/chicken399fixlocal10_10.eps
./phd-Pics/pca/chicken/zomm/chicken399_10_10worl.eps
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a better compression ratio. Figur@44(b) and 8.15also demonstrate that the rate dis-
tortion optimization we introduce in our algorithm (ORLPL& important for achieving
better compression performances especially when the nuohivertices is large and the
animation is complex.

From the computational viewpoint, PCA is computationalengive but in combi-
nation with LPC B2, it gives a better compression performance, particulemhya long
sequence of just a few number of vertices. CP@BT outperforms both methods since
they explore a robust segmentation which is based on a datgsetechnique but re-
mains expensive. In contrast, our RLPCA uses a simple segti@mmand transformations
and achieves a better compression ratio.

Our Algorithm achieves an increased compression perfocmas computationally
inexpensive compared to a PCA for the full mesh and it is weited for progressive
transmission

8.6.4 Timings

Table8.6 shows the timings in seconds of the codiit¢) and decodingt?) pro-
cesses (without optimization) for the four animations véitbomparison to CPCA79
for display while decoding). We observe that for the chickew cow animations, our
coder is much faster and performs better than CPCA. Our gjmgsults are measured on
Pentium 4 with 2.53 GHz and CPCA on AMD Athlon64 XP 3200+.

Table 8.6 Comparison compression and decompression (RLPCA-Cingjetimings with
CPCA.

CPCA RLPCA
Models | bpvf da t(<) tf;fg bpvf da N L t7e tf(isegc)

chicken| 4.7 0.076 206 214 35 0.008 20 20 120 64
28 0139 395 215 22 0.043 20 10 115 64
28 0139 395 215 15 0.057 10 10 110 4
cow 74 0.16 75 145 6.8 0.128 30 20 82 44
3.8 0.5 59 218 4.1 0470 30 20 40 5(
20 147 55 284 22 1220 10 10 70 28
dolphin | 7.1 0.024 - -l 39 0016 20 10 74 4(
4.1 0.033 - -l 21 0018 20 5 78 32
2.1 0.168 - -1 1.9 0066 10 5 39 25

4 O O7 NI AN Eap N




150 Evaluation and Comparison

Rate distortion of dance sequence

——RLPCA(N=10)
0.35F —T'HLPCA(N:?O) ]
= RLPCA(N=30)

0.1

0.05

Bitrate (bits per vertex per frame)

(@)

Rate distortion of chicken sequence

0.7, :
——ORLPCA
-=-RLPCA
0.6 .................................................
—=—CPCA
TLS
0.5 ..... _,_PCA
g 1 * LPC
,304 1—TG
=
0.3 .........
0 hull. ] L " L L
0 5 10 15 20 25
Bitrate (bits per vertex per frame)

(b)

Figure 8.14 Rate distortion curves for dance and chicken sequences.


./phd-Pics/pca/dancewscg_phd.eps
./phd-Pics/pca/chickenwscg2_phd.eps
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Figure 8.15 Rate distortion curves for cow and dolphin sequences ubmgnetricda.


./phd-Pics/pca/cowwscg_phd.eps
./phd-Pics/pca/dolphinwscg_phd.eps
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8.7 Predictive-DCT based Compression

This section shows the results of the algoritRRCT that is based on cluster based-
prediction and DCT and the effect of different compressiarameters on compression
performance.

8.7.1 Compression Parameters

Influence of Cluster Numbers

The number of clusterd’ is an important compression parameter that affects the com-
pression performance as seen in previous method RLPCA. ighernthis number is, the
smoother the shape reconstruction will be and the lower ithete that is obtained. If
this number is too small, the vertices of the same cluster nednave differently relative
to their LCF. Thereby, the prediction in the LCF becomes poelding poor compres-
sion. In contrast, IV is big, the variation of the vertex relative to the LCF of itaster
becomes smaller and the prediction is more effective.

Figures3.17and8.16illustrates the curves DCT coefficients/bitrate and cokeifitstia
for different numbers of clusters.

Figure8.22also shows the rate-distortion curves for different aniomet at different
numbers of clusters: dolphin usirig and40 clusters, chicken usingo, 25 and40 and
dance usingd0, 20 and40 clusters. We observe th& clusters provide better error quality
and bit rate than usintp or 20 clusters.

Influence of DCT Coefficients

To find the influence of the number of DCT coefficients on the &td on the re-
construction of animation, we have run our coding on difiémesolution. Figure3.17
and8.16show the results of the number of these coefficients percerhicken anima-
tion. When more coefficients are discarded, better comjpre$Bigure8.17) is achieved
at the expense of the reconstruction quality (Figgii5).

The effect of the cluster and coefficient numbers can alsoeke ¢ Figures3.18
and8.23
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Influence of coefficient numbers
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Figure 8.16 Influence of different numbers of zeroed DCT coefficients ¢¥b)he reconstruction
quality da using different number of clusters.
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Figure 8.17 Influence of different numbers of zeroed DCT coefficients (¥b}the bitrate using
different number of clusters.


./phd-Pics/predictive_dct/chicken_Coefficient_Distortion.eps
./phd-Pics/predictive_dct/chicken_Coefficient_Bitrate.eps
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original
/,L-_‘p‘ 7

5.9bpvf,0.009 1.50pvf,0.12 1bpvf, 0.14

Figure 8.18 Reconstruction framé0 of dolphin sequence, original mesh (top arrow), usifig
clusters (middle arrow) antD cluster(bottom arrow). From left to right: using differemimbers
of non-zero coefficientsA) and quantization levels1(00%,12 bits), 2%,12 bits) and £%,8 bits),
at various bit rates in bit per vertex per frame and decoding €da).

Influence of Quantization Level

Figure8.19illustrates the reconstruction samples of cow animatioliiferent quan-
tization levelss, 8, 12 bits. If a coarse quantization is used then the low value D&T ¢
efficients will be zeros. Consequently, the fine details as¢ &nd only the coarse details
are detected. Moreover, the clustering process will redaiacceptable visual quality.

The more coefficients that are zeroed, the more coarser d&igation is, and that
better the compression will be at the expense of visual appea. The finer details can
be preserved when only a finer quantization is used and fefficeats are thrown away.
For example, i60% of coefficients have zero values then we W8éits quantization. If
90% we uses bits only.

Recall that the delta vectors of the first frame are encodedyd bits quantization
while the delta vectors of the LCFs in the whole sequence @aatiged to 16 bits.


./phd-Pics/predictive_dct/original.eps
./phd-Pics/predictive_dct/10_12_0.eps
./phd-Pics/predictive_dct/10_12_98.eps
./phd-Pics/predictive_dct/10_12_98.eps
./phd-Pics/predictive_dct/40_12_0.eps
./phd-Pics/predictive_dct/40_12_98.eps
./phd-Pics/predictive_dct/40_8_98.eps
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Figure 8.19 Reconstruction sample frames of cow animation using diffequantization levels.
From top to bottom6, 8, 12 bits.


./phd-Pics/predictive_dct/cow40_6_0_frame10.eps
./phd-Pics/predictive_dct/cow40_6_0_frame44.eps
./phd-Pics/predictive_dct/cow40_6_0_frame59.eps
./phd-Pics/predictive_dct/cow40_6_0_frame99.eps
./phd-Pics/predictive_dct/cow40_8_0_frame10.eps
./phd-Pics/predictive_dct/cow40_8_0_frame44.eps
./phd-Pics/predictive_dct/cow40_8_0_frame59.eps
./phd-Pics/predictive_dct/cow40_8_0_frame99.eps
./phd-Pics/predictive_dct/cow40_12_0_frame10.eps
./phd-Pics/predictive_dct/cow40_12_0_frame44.eps
./phd-Pics/predictive_dct/cow40_12_0_frame59.eps
./phd-Pics/predictive_dct/cow40_12_0_frame99.eps
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Figure 8.20 Comparison of our method with different compression atpans at almost similar
bitrates (a) and at similar reconstruction error (b) (ceitkequence).


./phd-Pics/predictive_dct/chickencomparisonerror.eps
./phd-Pics/predictive_dct/chickencomparisonbit.eps
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8.7.2 PDCT vs. State of Art

Figure8.22illustrate the results of running of our coder on three atiioms compared
with different methods.

For the three models PDCT preforms better than the standa#d IEPC, KG and TG.
This is because, as motioned before, the animation codisedban static mesh compres-
sion technique only (TG) exploits the spatial coherencg,dhé linear prediction coding
(LPC) uses the temporal coherence only and PCA approxinta¢eglobal linearity and
is less effective for nonlinear animation. while PDCT expiloe coherence in both space
a time domain.

For the CPCA and AWC algorithms, we achieve better or sinndaults. Figureé3.22
(a) shows that for the cow animation which contains extreeferthations, our method
is significantly better than the KG method and comes closheéddPCA and to wavelet
based methods (TLR®E] and AWC).

For the chicken and the dolphin sequences, our method pesfbetter than all the
above methods, including the predictive techniques (Dsok@and maverg+angle). This
improvement is due in one hand to the clustering of the mawelrigid parts, making
the prediction more efficient in the local rather than theldiocoordinates, and on the
other hand to the further DCT coding, which leads to a sigaficeduction in the overall
entropy.

The RLPCA method overcomes all other methods, including,dar chicken anima-
tion while it comes close to our for the other models. Our mdtRDCT uses as similar
clustering process as RLPCA scheme. However, the differarises in the way of encod-
ing the local coordinates. The RLPCA considers the entustel sequence and exploit
the global coherence using PCA. While PDCT have to encoaesfiay frame using pre-
dictive and spatial DCT coding, the method is well suitedréal-time compression.

In Figure8.20, we compare our approach against several approachesmagglsim-
ilar quality (Figures8.20(a)), our coder archives gains up@ and27%, over the angle
preserving predictor (maverg+angle) and CPCA respegtiugt (almost) similar num-
bers of bits (Figure8.20(b)), our approach obtains better animation quality f2s¥ up
to 76% over maverg+angl&1% over Dynapack (using Extended Lorenzo Predictor) and
95% over TLS.
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Figure 8.21 Rate distortion curves for the cow (a), dolphin (b), and kait(c), (d) sequences.


./phd-Pics/predictive_dct/cowbitrate.eps
./phd-Pics/predictive_dct/dolphinbitrate.eps
./phd-Pics/predictive_dct/chickenbitrate.eps
./phd-Pics/predictive_dct/chickenbitratesuite.eps
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Figure 8.22 Rate distortion curves for the chicken (a) and dance (f) secgs using different
number of clusters.


./phd-Pics/predictive_dct/chickenclustersbitrate.eps
./phd-Pics/predictive_dct/dancebitrate.eps
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(original)
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(40,12,50)
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Figure 8.23 Reconstruction sample frames of dolphin sequence. The ergbthe first column
are the number of clusters, quantization level and coefficiember (%).


./phd-Pics/predictive_dct/original89.eps
./phd-Pics/predictive_dct/original67.eps
./phd-Pics/predictive_dct/original14.eps
./phd-Pics/predictive_dct/dolphin40_12_0_frame89.eps
./phd-Pics/predictive_dct/dolphin40_12_0_frame67.eps
./phd-Pics/predictive_dct/dolphin40_12_0_frame14.eps
./phd-Pics/predictive_dct/dolphin40_12_05_frame89.eps
./phd-Pics/predictive_dct/dolphin40_12_05_frame67.eps
./phd-Pics/predictive_dct/dolphin40_12_05_frame14.eps
./phd-Pics/predictive_dct/dolphin40_12_07_frame89.eps
./phd-Pics/predictive_dct/dolphin40_12_07_frame67.eps
./phd-Pics/predictive_dct/dolphin40_12_07_frame14.eps
./phd-Pics/predictive_dct/dolphin40_12_98_frame89.eps
./phd-Pics/predictive_dct/dolphin40_12_98_frame67.eps
./phd-Pics/predictive_dct/dolphin40_12_98_frame14.eps
./phd-Pics/predictive_dct/dolphin10_12_98_frame89.eps
./phd-Pics/predictive_dct/dolphin10_12_98_frame67.eps
./phd-Pics/predictive_dct/dolphin10_12_98_frame14.eps
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./phd-Pics/predictive_dct/dolphin40_8_98_frame67.eps
./phd-Pics/predictive_dct/dolphin40_8_98_frame14.eps
./phd-Pics/predictive_dct/dolphin10_8_98_frame89.eps
./phd-Pics/predictive_dct/dolphin10_8_98_frame67.eps
./phd-Pics/predictive_dct/dolphin10_8_98_frame14.eps
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8.8 Comparison of the Proposed Methods

We already compared our algorithms to some methods from-sfedirt based on their
results reported in their papers. Indeed, we did not obtanréconstructed animation
sequences of these methods. We also did not use their smdeetthe distortion mea-
surement that computes the reconstruction distortionsarerthe comparison is properly
performed. Of course, the compression parameters affesettpuence reconstruction and
the comparison to the other methods.

In this section, we restricted the final experiments to thegarison between our
implementation codes only.

Itis obvious that the method that exploits both spatial @natoral coherence achieves
better compression ratio than the method that exploits ong. Our proposed methods
for 3D dynamic mesh compression combine different schemesloit the coherence in
both space and time:

1. SplitCoder:

e LCF: spatial coherence
e vertex based-predictor (relative to LCF assigned for eastex): spatial and
temporal coherence.

2. PDCT:

e clustering: spatial and temporal coherence.

e LCF: spatial coherence.

¢ differential coding of LCF: temporal coherence.

e cluster based-predictor: spatial and temporal coherence

e DCT: spatial coherence.
3. RLPCA:

e clustering: spatial and temporal coherence.
e LCF: spatial coherence.
¢ differential coding of LCF: temporal coherence.

e PCA: temporal coherence.

Table8.7 summarizes the characteristic of the proposed compressatimods for an-
imated meshes.
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Table 8.7 Characteristic of the proposed approaches SplitCoder, TRBxil RLPCA

splitCoder PDCT RLPCA
lossless/lossy|| not lossy lossy lossy
category vertex-based cluster-based cluster-based
coherence locally (frame by frame) locally (frame by frame) globally
connectivity || dependant ~ independent ~ independent
complexity * o *
encoding time| * few sec. *** few sec. to min. ** few sec.
decoding time|| * fast o * very fast

suited for
realtime applications

well-suited for
realtime applications

remarks allows progressive
transmission

more practical

SplitCoder is vertex based-predictor, for each vertex areha construct LCF and
perform predictive coding. The advantage of SplitCodetsddssless nature. The dis-
tortion is due only to the quantization. Typically, betwelénand 12 bits, we obtain an
animation sequence that is indistinguishable from thamaigpne. Moreover, itis simple,
fast (in the order of few seconds), well-suited for real tiapplication, and outperforms
several existing compression techniques based on PCA, anealictive coding. The only
disadvantage of this method is that it does not allow very lbawates. This is because
at low quantization level (typically 5 and 6 bits), somenigées may become degenerated
and consequently, the reconstruction of the LCF is impdssib

PDCT is lossy technique, more complex than splitCoder Hatval low bit rate and
we need only one LCF per cluster. DCT is introduced for furtheta reduction, yield-
ing uncorrelated coefficients, which are well compressib&n the delta vectors. This
methods is more expensive than SplitCoder because for eatie fand for each cluster,
one have to perform DCT coding and computer the inverse DQ€&donstruct the cur-
rent frame for further encoding. Recall that always the entrframe to be encoded, is
predicted from the previously decoded one, to avoid errouilation.

RLPCA is lossy compression, less complexity than PDCT butenommplex than
splitCoder, while decompression algorithm is the most &nand the fastest one, com-
pared to the above methods. When a bit allocation is intred(©RLPCA), better com-
pression ratio is obtained at the expense of processingairecoding.

Figures8.25 8.26 and 8.24 llustrate the comparison between the three methods as
rate-distortion curves for the dolphin, dance, cow, chicked snake animations. One can
see that RLPCA and ORLPCA outperforms PDCT and SplitCodénefy low bitrate,
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this later is not efficient. In case of high bitrate, lowertditon is obtained and all
methods come close to each others.

The following figures3.27, 8.28 8.29, 8.30 8.31, 8.32 8.33 8.34 8.35and8.36show
the original and the reconstructions of sample frames fitwrdince, dolphin, cow, snake
and chicken animations, using the proposed approachewsiédrdbitrate.

At high bitrate it is difficult to see the difference of visumbpearance between the
original and the reconstructions. In case of more distorttogh compression ratios is
achieved.

One may also notice that the reconstructed frames using RLA€ nearly identical
to the original frames. The distortion incurred is alwaysyvemall compared with the
error incurred by PDCT and SplitCoder methods and the goatpoession ratios make
the method RLPCA the most attractive one.

The distortion introduced by PDCT is also almost less thardiktortion produced by
SplitCoder. This is obvious, at low bitrate, SplitCoder & efficient. Indeed, the mesh
reconstructions exhibit blocky artifact due to the low gtization level.

At similar bitrate, PDCT yields better reconstruction daeDCT based coding that
may reduces the the blocky artifact at low bitrate. Inde&dy &CT transform, the major-
ity of signal energy concentrates on the low frequencieditttelon the high frequencies.
Hence, the high frequencies can be zeroed yielding a signtifieduction in the over-
all entropy. The signal can then be represented by few higreveoefficients without
significant distortion.

Note that the blocking effect also appears in PDCT if the nainalb coefficients to be
zeroed is very large or if the quantization level is very low.

We also computed the gain of each method at similar level sibdion. We found
that the gain of OLPCA over RLPCA is up #@% due to the bit allocation introduced for
PCA. The gain of RLPCA over DCT and SplitCoder are up2& and69%, respectively.
The gain of PDCT method over SplitCoder is upr@&yo. Note that the gain varies with
compression parameters and animation sequences. For lexéonphe snake animation,
RLPCA come close to PDCT while their gain over SplitCoderpsai73%. For chicken
animation, the gain of RLPCA over DCT is ab®®% and over SplitCoder is aboug%.
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Rate distortion of snake sequence
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Figure 8.24 Rate distortion curves for snake sequence using differ@mtoer of clusters


./phd-Pics/comparison/snake.eps
./phd-Pics/comparison/snakePCA.eps
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Rate distortion of dolphin sequence
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Figure 8.25 Comparison between the proposed approaches for dolphidaammt animations


./phd-Pics/comparison/dolphin.eps
./phd-Pics/comparison/dance.eps
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Rate distortion of cow sequence
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Figure 8.26 Comparison between the proposed approaches for cow arlcenhanimations


./phd-Pics/comparison/cow.eps
./phd-Pics/comparison/chicken.eps
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Original

RLPCA

PDCT

()

Figure 8.27 Comparison of RLPCA and PDCT at a similar bitrate. Frame ad:ofiginal and
(b) RLPCA and (c) PDCT.


./phd-Pics/results/original/dance4.eps
./phd-Pics/results/original/dance20.eps
./phd-Pics/results/original/dance30.eps
./phd-Pics/results/original/dance50.eps
./phd-Pics/results/original/dance80.eps
./phd-Pics/results/res1/RLPCA/dance4_res1PCA.eps
./phd-Pics/results/res1/RLPCA/dance20_res1PCA.eps
./phd-Pics/results/res1/RLPCA/dance30_res1PCA.eps
./phd-Pics/results/res1/RLPCA/dance50_res1PCA.eps
./phd-Pics/results/res1/RLPCA/dance80_res1PCA.eps
./phd-Pics/results/res1/PDCT/dance4_res1DCT.eps
./phd-Pics/results/res1/PDCT/dance20_res1DCT.eps
./phd-Pics/results/res1/PDCT/dance30_res1DCT.eps
./phd-Pics/results/res1/PDCT/dance50_res1DCT.eps
./phd-Pics/results/res1/PDCT/dance80_res1DCT.eps
./phd-Pics/results/original/dance50.eps
./phd-Pics/results/res1/RLPCA/dance50_res1PCA.eps
./phd-Pics/results/res1/PDCT/dance50_res1DCT.eps
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Original

PDCT

SplitCoder

(b) (c)

Figure 8.28 Comparison of PDCT and SplitCoder at a similar bitrate. Faa@@: (a) original
and (b) PDCT and (c) SplitCoder.


./phd-Pics/results/original/dance4.eps
./phd-Pics/results/original/dance20.eps
./phd-Pics/results/original/dance30.eps
./phd-Pics/results/original/dance50.eps
./phd-Pics/results/original/dance80.eps
./phd-Pics/results/res2/PDCT/dance4_res2DCT.eps
./phd-Pics/results/res2/PDCT/dance20_res2DCT.eps
./phd-Pics/results/res2/PDCT/dance30_res2DCT.eps
./phd-Pics/results/res2/PDCT/dance50_res2DCT.eps
./phd-Pics/results/res2/PDCT/dance80_res2DCT.eps
./phd-Pics/results/res2/SplitCoder/dance4_res2split.eps
./phd-Pics/results/res2/SplitCoder/dance20_res2split.eps
./phd-Pics/results/res2/SplitCoder/dance30_res2split.eps
./phd-Pics/results/res2/SplitCoder/dance50_res2split.eps
./phd-Pics/results/res2/SplitCoder/dance80_res2split.eps
./phd-Pics/results/original/dance80.eps
./phd-Pics/results/res2/PDCT/dance80_res2DCT.eps
./phd-Pics/results/res2/SplitCoder/dance80_res2split.eps
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Original

RLPCA

SplitCoder

Figure 8.29 Comparison of RLPCA and SplitCoder at a similar bitrate.nk@z50: (a) original
and (b) PDCT and (c) SplitCoder.


./phd-Pics/results/original/dance4.eps
./phd-Pics/results/original/dance20.eps
./phd-Pics/results/original/dance30.eps
./phd-Pics/results/original/dance50.eps
./phd-Pics/results/original/dance80.eps
./phd-Pics/results/res3/RLPCA/dance4_res3PCA.eps
./phd-Pics/results/res3/RLPCA/dance20_res3PCA.eps
./phd-Pics/results/res3/RLPCA/dance30_res3PCA.eps
./phd-Pics/results/res3/RLPCA/dance50_res3PCA.eps
./phd-Pics/results/res3/RLPCA/dance80_res3PCA.eps
./phd-Pics/results/res3/SplitCoder/dance4_res3split.eps
./phd-Pics/results/res3/SplitCoder/dance20_res3split.eps
./phd-Pics/results/res3/SplitCoder/dance30_res3split.eps
./phd-Pics/results/res3/SplitCoder/dance50_res3split.eps
./phd-Pics/results/res3/SplitCoder/dance80_res3split.eps
./phd-Pics/results/original/dance50.eps
./phd-Pics/results/res3/RLPCA/dance50_res3PCA.eps
./phd-Pics/results/res3/SplitCoder/dance50_res3split.eps
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Oriainal

Figure 8.30 Comparison of RLPCA and PDCT at a similar bitrate. Frame &:ofiginal and
(b) RLPCA and (c) PDCT.


./phd-Pics/results/original/dolphin10.eps
./phd-Pics/results/original/dolphin30.eps
./phd-Pics/results/original/dolphin60.eps
./phd-Pics/results/original/dolphin80.eps
./phd-Pics/results/res4/RLPCA/dolphin10_res4PCA.eps
./phd-Pics/results/res4/RLPCA/dolphin30_res4PCA.eps
./phd-Pics/results/res4/RLPCA/dolphin60_res4PCA.eps
./phd-Pics/results/res4/RLPCA/dolphin80_res4PCA.eps
./phd-Pics/results/res4/PDCT/dolphin10_res4DCT.eps
./phd-Pics/results/res4/PDCT/dolphin30_res4DCT.eps
./phd-Pics/results/res4/PDCT/dolphin60_res4DCT.eps
./phd-Pics/results/res4/PDCT/dolphin80_res4DCT.eps
./phd-Pics/results/original/dolphin80.eps
./phd-Pics/results/res4/RLPCA/dolphin80_res4PCA.eps
./phd-Pics/results/res4/PDCT/dolphin80_res4DCT.eps
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Original
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/

(b)

Figure 8.31 Comparison of PDCT and SplitCoder at a similar bitrate. Faa@@: (a) original
and (b) PDCT and (c) SplitCoder.


./phd-Pics/results/original/dolphin10.eps
./phd-Pics/results/original/dolphin30.eps
./phd-Pics/results/original/dolphin60.eps
./phd-Pics/results/original/dolphin80.eps
./phd-Pics/results/res5/PDCT/dolphin10_res5DCT.eps
./phd-Pics/results/res5/PDCT/dolphin30_res5DCT.eps
./phd-Pics/results/res5/PDCT/dolphin60_res5DCT.eps
./phd-Pics/results/res5/PDCT/dolphin80_res5DCT.eps
./phd-Pics/results/res5/SplitCoder/dolphin10_res5split.eps
./phd-Pics/results/res5/SplitCoder/dolphin30_res5split.eps
./phd-Pics/results/res5/SplitCoder/dolphin60_res5split.eps
./phd-Pics/results/res5/SplitCoder/dolphin80_res5split.eps
./phd-Pics/results/original/dolphin80.eps
./phd-Pics/results/res5/PDCT/dolphin80_res5DCT.eps
./phd-Pics/results/res5/SplitCoder/dolphin80_res5split.eps

172 Evaluation and Comparison

original

RLPCA

PDCT

(@)

Figure 8.32 Comparison of RLPCA and PDCT at a similar bitrate. Frame 8a9:0figinal and
(b) RLPCA and (c) PDCT.


./phd-Pics/results/original/cow10.eps
./phd-Pics/results/original/cow44.eps
./phd-Pics/results/original/cow59.eps
./phd-Pics/results/original/cow95.eps
./phd-Pics/results/res6/RLPCA/cow10_res6PCA.eps
./phd-Pics/results/res6/RLPCA/cow44_res6PCA.eps
./phd-Pics/results/res6/RLPCA/cow59_res6PCA.eps
./phd-Pics/results/res6/RLPCA/cow95_res6PCA.eps
./phd-Pics/results/res6/PDCT/cow10_res6DCT.eps
./phd-Pics/results/res6/PDCT/cow44_res6DCT.eps
./phd-Pics/results/res6/PDCT/cow59_res6DCT.eps
./phd-Pics/results/res6/PDCT/cow95_res6DCT.eps
./phd-Pics/results/original/cow59.eps
./phd-Pics/results/res6/RLPCA/cow59_res6PCA.eps
./phd-Pics/results/res6/PDCT/cow59_res6DCT.eps
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Figure 8.33 Comparison of RLPCA and SplitCoder at a similar bitrate.nkeab9: (a) original
and (b) RLPCA and (c) SplitCoder.


./phd-Pics/results/original/cow10.eps
./phd-Pics/results/original/cow44.eps
./phd-Pics/results/original/cow59.eps
./phd-Pics/results/original/cow95.eps
./phd-Pics/results/res8/RLPCA/cow10_res8PCA.eps
./phd-Pics/results/res8/RLPCA/cow44_res8PCA.eps
./phd-Pics/results/res8/RLPCA/cow59_res8PCA.eps
./phd-Pics/results/res8/RLPCA/cow95_res8PCA.eps
./phd-Pics/results/res8/SplitCoder/cow10_res8split.eps
./phd-Pics/results/res8/SplitCoder/cow44_res8split.eps
./phd-Pics/results/res8/SplitCoder/cow59_res8split.eps
./phd-Pics/results/res8/SplitCoder/cow95_res8split.eps
./phd-Pics/results/original/cow59.eps
./phd-Pics/results/res8/RLPCA/cow59_res8PCA.eps
./phd-Pics/results/res8/SplitCoder/cow59_res8split.eps
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original

SplitCoder

Figure 8.34 Comparison of RLPCA and SplitCoder at a similar bitrate.nf@ad0: (a) original
and (b) RLPCA and (c) SplitCoder.


./phd-Pics/results/original/snake30.eps
./phd-Pics/results/original/snake40.eps
./phd-Pics/results/original/snake60.eps
./phd-Pics/results/res11/RLPCA/snake30_res11PCA.eps
./phd-Pics/results/res11/RLPCA/snake40_res11PCA.eps
./phd-Pics/results/res11/RLPCA/snake60_res11PCA.eps
./phd-Pics/results/res11/SplitCoder/snake30_res11split.eps
./phd-Pics/results/res11/SplitCoder/snake40_res11split.eps
./phd-Pics/results/res11/SplitCoder/snake60_res11split.eps
./phd-Pics/results/original/snake40.eps
./phd-Pics/results/res11/RLPCA/snake40_res11PCA.eps
./phd-Pics/results/res11/SplitCoder/snake40_res11split.eps
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Figure 8.35 Comparison of RLPCA and PDCT at a similar bitrate. Frame 4Q:ofiginal and
(b) RLPCA and (c) PDCT.


./phd-Pics/results/original/snake30.eps
./phd-Pics/results/original/snake40.eps
./phd-Pics/results/original/snake60.eps
./phd-Pics/results/res12/RLPCA/snake30_res12PCA.eps
./phd-Pics/results/res12/RLPCA/snake40_res12PCA.eps
./phd-Pics/results/res12/RLPCA/snake60_res12PCA.eps
./phd-Pics/results/res12/PDCT/snake30_res12DCT.eps
./phd-Pics/results/res12/PDCT/snake40_res12DCT.eps
./phd-Pics/results/res12/PDCT/snake60_res12DCT.eps
./phd-Pics/results/original/snake40.eps
./phd-Pics/results/res12/RLPCA/snake40_res12PCA.eps
./phd-Pics/results/res12/PDCT/snake40_res12DCT.eps
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original

Figure 8.36 Comparison of RLPCA and PDCT at a similar bitrate. Frame g8y original and
(b) RLPCA and (c) PDCT.


./phd-Pics/results/original/chicken108.eps
./phd-Pics/results/original/chicken226.eps
./phd-Pics/results/original/chicken282.eps
./phd-Pics/results/original/chicken337.eps
./phd-Pics/results/res15/RLPCA/chicken108_res15PCA.eps
./phd-Pics/results/res15/RLPCA/chicken226_res15PCA.eps
./phd-Pics/results/res15/RLPCA/chicken282_res15PCA.eps
./phd-Pics/results/res15/RLPCA/chicken337_res15PCA.eps
./phd-Pics/results/res15/PDCT/chicken108_res15DCT.eps
./phd-Pics/results/res15/PDCT/chicken226_res15DCT.eps
./phd-Pics/results/res15/PDCT/chicken282_res15DCT.eps
./phd-Pics/results/res15/PDCT/chicken337_res15DCT.eps
./phd-Pics/results/original/chicken337.eps
./phd-Pics/results/res15/RLPCA/chicken337_res15PCA.eps
./phd-Pics/results/res15/PDCT/chicken337_res15DCT.eps

CHAPTER 9

Conclusion and Future Work

This thesis addressed the problem of storage space andntssien of static and
dynamic three-dimensional meshes.

We began with a review of static and animated mesh compressihiniques, as well
as some general compression methods which are used as prposssing step in the
current mesh compression algorithms. Then, we presentec¢ompression techniques
for static and animated meshes, and segmentation appsofctenimated meshes.

For static mesh compression, we proposed a higher ordeicpogdtechnique to en-
code the mesh geometry. We split the coding into tangentidlrormal components
and we encoded them separately. For an improved encodirigeafdrmal component,
we developed higher order predictors based on surfacefitiim sphere fitting, taking
advantage of the large correlation between neighborinicest.

In the context of animated mesh compression, we develoggdesgation approaches
to group the vertices of similar motion within all types ofi@ation. Segmentation has
the advantage that it decreases computational costs sgwes global shape when lossy
compression is performed and that it increases predicfiaiency, thereby achieving
the best bit-rate compression. We have proposed three deliased on region growing,
clustering and adaptive clustering, taking advantage efsipatial and temporal coher-
ence. Visually as well as metrically, clustering approaoehibit better partitioning into
almost rigid groups than the region growing based algoritfiimese approaches can be
useful for many applications.
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For animated mesh compression, we have developed threecabes:

The first approach, SplitCoder, is a connectivity-guideddptive compression tech-
nique. The algorithm splits the vertex coordinates intcapeetric and curvature infor-
mation. As result, the coordinate space exhibits a largsteting behavior, allowing
more compact representation. Then, each component is ethseparately using predic-
tive coding and quantization. The proposed predictor pcedwffsets whose distribution
is close to zero and allows a low-entropy. This approachngpkg, efficient and has a
low computational cost which makes it well-suited for réate compression and decom-
pression. The drawback is that it does not support a prageessmpression and is not
efficient at very low bit rate. Introducing vector quantinatmight be very efficient, as
it enables a higher quantization error in the tangentiaation, resulting in a change of
parametrization only and not in a larger geometric errors Phimarily reduces the code
length of the tangential components. Moreover, it will @lloompression at very low bit
rates.

The second approach, RLPCA, is based on the local PCA, wiaigtues the linear
correlations present in the datasets and represent metstesausing very few compo-
nents and coefficients. Taking advantage of mesh clustenhigch produces near-rigid
clusters, we have transformed the original vertex cootdmato the local coordinate
frame of their cluster, making each one slightly invariamahy deformation over time.
Therefore, performing a PCA in these invariant groups ofiees leads to a more com-
pact representation than the original data. In order toeaehan optimal tradeoff between
the bitrate and the quality, we have introduced the rat@diet optimization for PCA,
based on an incremental computation of the convex hull.

The third method, PDCT, is inspired from video coding. In trast to the vertex
based, predictive coding SplitCoder, the algorithm usdaster based predictive coding.
During pre-processing, the animated mesh vertices argipaed into clusters, similar to
macroblocks in video coding. Next, we made predictions anltital coordinate frame.
Then, we transformed the resulting delta vectors of eacstelun each frame into the
frequency domain using a discrete cosine transform to eethe code length, since the
entropy in frequency domain is smaller than the entropyrapdf delta vectors.

The effectiveness of prediction coding depends stronglyhenclustering process.
Indeed, if the vertices are well clustered then the motidatike to the LCF between
two successive frames tends to be zero. The drawback of dpeged approach is that it
does not support progressive transmission. Similar to ttfRGA, the clustering in PDCT
produces clusters of different sizes and one has to choosedafumber of coefficients to
be discarded, for all clusters. Consequently, one may hesefiting and under-fitting.
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Typically, when very few coefficients are used, not all francan be reconstructed at the
same desired level of quality. Therefore, to overcome thasvdack, one can introduce a
rate distortion optimization that trades off between ratd the total distortion. Another
alternative DCT based approach, is to combine the tem@€al-with predictive coding
in the local coordinates. This approach is more suitabl@fogressive transmission.

Note that both approach SplitCoder and PDCT take advantiaigenoe-to-frame co-
herence. SplitCoder processes vertex after vertex and RilSTer by cluster. In con-
trast, RLPCA considers the entire mesh sequence and asdheglobal coherence of
each animated sub-meshes.

For a large sequence of meshes, the animation may becomecomomex and the
clustering can produce poor prediction for some succefsinees. Therefore, we propose
to cut the sequence into short clips and update the clugtésmeach clip separately. In
the PDCT approach, the first frame of each clip should be exeedatially as an I-frame
while in the PCA based approach, the RLPCA can be directlfippeed in each clip.

According to the experimental results, RLPCA yields a gad/distortion ratio, and
significantly outperforms PDCT and SplitCoder. Furtherendhe compression parame-
ters (the number of clusters, the number of PCA componemt&T coefficients and
the level of quantization) strongly affect compressiorf@@nance.

On the other hand, the three approaches are competitive edmepared to the state-
of-the-art techniques. They even provide a significant owement in compression ratio
over some existing coders.

Our methods are significantly better than the KG method amdesoclose or even
better than the CPCA and wavelet based methods (TLS and ARI€t), we achieve rate
distortion performance better than the standard TG whigho#s the spatial coherence
only, the LPC which exploits the temporal cohence only, KGARLPC) and the stan-
dard PCA which approximates the global linearity and it ssleffective for nonlinear
animation.

The proposed approaches also perform better than the pvediechniques (Dyna-
pack andmaverg+angle). For PDCT, the improvement is duédoclustering of the
model into rigid parts making the prediction more efficiemtthe local rather than the
world coordinates and to the further DCT coding which leaxla significant reduction
in the overall entropy. SplitCoder’s efficiency is due thegiction and the quantization
which are performed in the local space. This shows high efirg behavior of the vertex
coordinates as well as the coordinates of delta vectorgeblgea significant reduction in
the overall entropy is achieved.

In the end, it is important to note that our coders PDCT and ®ARs well as the
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clustering process can be applicable to point-based madisds regardless of how the
animation is generated.

Another challenging problem is to develop a new error measant. During our
experiments, we observed that sometimes one may have a &rge but have better
visual quality. It is possible that, for a similar error metda, the visual quality of both
the original and the reconstructed frames, are differemceRtly, some work has been
done in this direction, but there is till much to be done. Wanplo develop a metric
that takes in to consideration both the spatial and the teahpgformation, locally and
globally over all sequences.

To close this dissertation, our experience is the following

For the compression of static meshes, the higher ordergii@discheme based on
polynomial graph function fitting shows to be efficient forceding of mesh geometry.

For the segmentation process, if the time is critical in yapplication then the clus-
tering approach would be efficient to break down the animatgdct into rigid parts,
otherwise the adaptive clustering approach is used. Vagnopft is desirable for many
application to have a segmentation that produces autoafigttbe number of segments.
Typically, in the context of compression, in static clusigr we recommend to use a
number between 18 and 25 clusters. This number should sere#h the complexity of
animation to obtain rigid parts.

For compression of mesh sequences, if all frames are notrktiwen predictive based
compression is the most suited algorithm. If all frames arewkn, and a low bit rate is
desired, then RLPCA is the preferred approach. This algoris cheapest, most efficient
to use and its decompression process is very fast. The ga#tati level is fixed at 16 bit
for the points that construct the local coordinate framesXhfor PCA coefficients.
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