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Abstract

Remediation investment projects are commonly evetlbased on traditional NPV (net
present value) method. The traditional NPV methmlyever, is often misleading because it
does not take into account the uncertainty of theré and the flexibilities the manager has in
terms of adjusting the remediation strategy on demaypical imbedded real options during
remediation projects include deferring, stoppind awitching: deferring means to watch and
to investigate (such as done in monitored natutahaation, MNA); stopping means that the
site manager can stop the remediation once tha garget is met; switching means to replace
a technology in operation by another technologydopthat may become more appropriate in
the future. Since these contingent managementrggptace not considered by traditional NPV
method, remediation strategies offering ample sadgkexibilities can be easily undervalued
and, thus, the decisions made based on the tnaalithéPV method can be wrong.

This study introduces a new approach for optimadadiation strategy making applying
real options theory. MNA, pump-and-treat (P&T) an@ermeable reactive barrier (PRB) are
considered in this study as example technologiesdemonstrate the approach. The
remediation time frame is divided into a numbemanagement periods, in which available
options may be exercised. Introducing the concgairaf the contaminant as the underlying
asset, exercise of the options is triggered byatiteal level of contamination compared to the
given threshold levels. Uncertainty in concentmatievel is quantified with Monte Carlo
simulations. The real options analysis provides #xpected values of the alternative
strategies. These strategies will be ranked basdbeir expected values. A hypothetical case
is taken to demonstrate the approach and the seysif the results to the changes of
parameters is investigated. It is shown that tle& @pproach is capable of identifying the
optimal remediation strategy in terms of cost arfitciiveness. It is an improvement
compared with traditional economic decision-makiechniques. The results suggest that real
options theory is particularly appropriate to vatamediation strategies with flexibility facing
future uncertainties, thus having the potentiakignificantly improve remediation decision
making. It is demonstrated that the optimal deais®very much depending on underlying
conditions with respect to target and regulatiorele, site conditions, economic assumptions,
technologies’ effectiveness and their uncertaindduntarily postponing MNA and applying
more active remedial technology instead is reconueeérfor projects where high economic

value of cleaned land calls for high effectiveness.



Zusammenfassung

Sanierungsprojekte werden im Allgemeinen nach elittonellen Kapitalwertmethode
bewertet. Diese berticksichtigt jedoch weder diei¢hesheiten bezilglich der Entwicklung
von EingangsgrofRen in der Zukunft noch die Fleidiil die Sanierungsstrategie in Laufe
eines Projektes an die Nachfrage anzupassen, wimispielsweise durch Aufschub oder
Stopp der Sanierung, oder durch das Wechseln deier8agsstrategie geschehen kann.
Typisch fir den Aufschub der Sanierung ist beispieise das Uberwachen naturlicher
Schadstoffminderungsprozesse (engl.. Monitored mdatuAttenuation, MNA). Ein
Sanierungsstopp ist gegeben, wenn der ProjektldieerSanierungsmassnahmen einstellen
kann, weil das vorgegebene Ziel erreicht ist. Welthgler Sanierungsstrategie ist dann eine
Maglichkeit, wenn die betriebene Technologie dueaie andere Technologie/ Option, die in
Zukunft besser geeignet sein kann, zu ersetzerseDmtglichen Management Optionen
werden durch die traditionelle Kapitalwertmethodeht bertcksichtigt. Deshalb werden
Sanierungsstrategien, welche viel Spielraum flxiBlktat bieten, leicht unterbewertet, was
dazu fuhrt, dass Entscheidungen, die auf der ioadilen Kapitalwertmethode beruhen,
falsch sein konnen.

Diese Arbeit fihrt einen neuen Ansatz zur Entwiokjwptimierter Sanierungsstrategien
unter Anwendung der Real-Optionen-Theorie ein. ®ie&tudie pruft beispielhaft die
Technologien MNA, pump-and-treat (P&T) und reaktMé&and (engl.: permeable reactive
barrier, PRB) zur Demonstration des Ansatzes. [ralim der Sanierung wird in mehrere
Managementperioden unterteilt, in denen die verdigh Optionen angewendet werden
kénnen. Die Konzentration des Schadstoffes wird Gigndlage betrachtet, so dass die
Anwendung der Optionen durch den aktuellen Grad Biglastung, verglichen mit dem
vorgegebenen  Grenzwert bestimmt wird. Die Unsiokierh im Grad der
Schadstoffkonzentration wird durch Monte Carlo Sationen quantifiziert. Die Optionen-
Analyse bestimmt den Erwartungswert der alternati8¢rategien. Diese Strategien werden
nach ihrem erwarteten Optionenwert geordnet. Zum@uestration des Ansatzes wird ein
hypothetischer Fall vorgefiihrt und die Sensitivitét Ergebnisse gegeniiber Anderungen der
Parameter untersucht. Es wird gezeigt, dass diesene Ansatz die optimale
Sanierungsstrategie hinsichtlich der Kosten undk®éimkeit identifizieren kann. Dies ist eine
Verbesserung  gegenuber den  traditionellen  6kondrarsc Methoden — zur
Entscheidungsfindung. Die Ergebnisse weisen danauf dass die Real-Optionen-Theorie
sich besonders dazu eignet, SanierungsstrategienFlexibilitdt gegentber zuklnftigen

Unsicherheiten zu bewerten. Somit haben sie dasnRal die Entscheidungsfindung bei



Sanierungsprojekten signifikant zu verbessern. Hsd wgezeigt, dass die optimale
Entscheidung sehr stark von den RahmenbedingungdBezug auf Sanierungszielwerte,
Standort-Bedingungen, ©6konomische Annahmen sowien wer Wirksamkeit der
Technologien und ihren Unsicherheiten abhéngt. Emwilliger Verzicht oder ein
freiwilliges Aufschieben von MNA zu Gunsten der Aemdung einer aktiven
Sanierungstechnologien wird fir Projekte empfolidendenen eine hoher Wert der sanierten

Flache eine hohe Wirksamkeit verlangen.
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1. Introduction

1.1 Problem description

Remediation investment projects are commonly evetuay the traditional NPV (net
present value) method. This method, however, ignofhisleading because it does not take
into account the uncertainty of the future and flegibilities the manager has in terms of
adjusting the remediation strategy on demand. dum®s a static decision-making process,
where the decisions are made at the beginning ufititee management’s ability to change
over time. Decisions made based on this manneeasity undervalue remediation strategies
offering ample scope of flexibilities, and thushe®t be optimal.

Figure 1-1 shows the deficiency of traditional noettior remediation decision making
by a greatly simplified example. When choosing best remediation strategy, traditional
approach will define the strategies first, suppgdhat they will not be changed. For example,
two strategies are compared: strategy 1 is to impie¢ P&T (pump and treat) for the entire
decision time frame; strategy 2 is to implement RR&meable reactive barrier) for the entire
decision time frame. The traditional method willuethese two strategies based on the cash
flows shown in Figure 1-1a and b. Assuming a distoate of 5%, the NPV (in terms of cost)
of the P&T strategy would be 45,460 ERU, whereas NV of the PRB strategy would
amount to only 33,546 ERU (see chap. 2 for moraildgt However, it is not taken into
account that one technology (here: P&T) might beenrftexible than the other one (here:
PRB) if the conditions at the site develop difféhgthan expected. To give an example: What
if the concentration after some years of P&T is kewough to switch to a cheaper option like
MNA (monitored natural attenuation)? In this cabe cash flow will look like Figure 1-1c
instead of a. A switch from P&T to cheaper MNA wbukduce the cost of this strategy to
32,492 EUR, which is cheaper than the NPV of th& BRategy. In another case, what if the
remediation target is met after some years of P&fé& cash flow will look like Figure 1-1d
instead of a. If after three years of P&T the remagon target could be met, strategy cost will
become even lower (28,594 EUR).

Situations shown in Figure 1-1c and d are only sxamples out of numerous cases
which are not considered by traditional method. the advantage of more flexible
technologies such as P&T compared with less flexibthnologies such as PRB is not taken

into account by the traditional method.
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Figure 1-1. Schematic illustration of the problem & implementing traditional method
for remediation strategy making

Real options theory develops together with theicisin and dissatisfaction of the
commonly used traditional NPV method. Real optiomsthod can be an alternative to the
traditional way of valuing strategies. It considersltiple decision pathways as a consequence
of management’s flexibility to choose the optimaitions along the decision path when
uncertainty becomes resolved. It provides greaglms into the value of flexibility facing
future uncertainties. Since the real options thebag not yet been much extended to
remediation strategy making, there are not readgemaal options models which can be
adapted. There are a lot of difficulties and oldssgavhich have to be overcome.

Firstly, options in remediation projects are unliik@ancial options, which are legally
defined contracts. Important features such as tidenlying asset and so-called embedded
options in remediation projects need to be defibefibre the analysis. This has to be done
fulfilling the common spirit of real options valiuah in general while reflecting the most
critical features of remediation strategy makinghat same time. The common spirit of real
options valuation is that it is a technique for lagéing investments under conditions of
uncertainty. The manager has the flexibility to reise a certain option depending on the
actual outcome of the underlying asset. So therst im@! uncertainties in the development of

the underlying asset. The manager must have thkébifiees to decide what to do. The



decisions will be made according to the underlyaisget. These main elements have to be
identified in remediation projects so that the i@gations theory can be applied.

Secondly, there is not much research done for mglwomplicated path-dependent
remediation options. Standard financial optionsuafibn techniques such as Black-Scholes
model or the binomial tree and standard real optialuation method in a common sense
such as partial diferential equation method arefeasible for the given problem. Because the
underlying asset in remediation projects can nairéeed; it may not even be necessarily an
economic term. And thus it is not possible to makeeplicating portfolio as done in the
classic way of real options valuation. (A repliagtiportfolio is a portfolio of assets whose
changes in value match those of a target asseexXanple, a portfolio replicating an option
can be constructed with certain amounts of thekstimclerlying the option and bonds. This is
the method used in the Black-Scholes model.) Maggavot like a plain option in financial
market, there are multiple options involved in tleenediation decision making. In a plain
European call option, the option holder has thktrig buy a certain stock at a certain price on
a certain date in the future. He will only exerctee option when the stock price turns out
higher than the exercise price of the option. Therenly one option (option to buy) and no
further consequences. And it does not influencadthelopment of the underlying stock price.
In remediation decision making, there are multggéions involved and any decision made is
going to influence the future uncertainty of thelerlying and flexibility on that path. A new
innovative option valuation approach is needed &al dwith the specific problem in
remediation strategy making.

Thirdly, the method developed is greatly simplifiggl one of the first attempts to solve
remediation decision making problems by real ogtiealuation. There is future research
potential to extend the method to solve more sdighied problems and to improve its

applicability and accuracy.

1.2 Thesis objectives

The first objective of this thesis is to examine #hortcomings of the traditional way of
remediation strategy making from a financial pectipe to compare with the innovative real
options method. The purpose is to indicate thanebheugh the traditional way is widely
taught and easy to implement, it is not propemifost of the investment projects in real world,
including remediation investments. Extra insightwdld be given by the real options approach

to provide better strategy recommendation.



Even though there are some methods which are dpmievalue real options, direct
application of any classic method of real optioatuation in remediation projects would end
up with searching for proper questions to the giwegthods. The second objective of this
thesis is to develop and illustrate a new apprdhah is specially designed for remediation
real options valuation. This new approach will Ippleed to compare remediation strategies
guantitatively in terms of their costs and effeetiess facing uncertainty with the help of the
real options method. By means of a hypotheticaé dady it will be demonstrated how a
strategy valuation based on real options may psowécision makers with practically
improved and theoretically founded guidance foriropt long term remediation strategy
making.

The third objective is to investigate the sendiivf the results to changing parameters.
Five categories of parameters are investigated:ulagge, site-specific, economic,
technology-related, and time parameters. Regulapaeameters are related with the
thresholds. These thresholds can change whenasiesontaminated on different levels and
when the regulations change. Site-specific paramételude aquifer thickness, conductivity
and total width of the contaminated area. Site-fjpguarameters are highly dependent on the
conditions of different contaminated sites. Ecormnpmarameters include land value,
technology cost and discount rate. Technology-edlatarameters include effectiveness and
uncertainties of technologies’ effectiveness. Tpaeameters include total time frame of the
project and number of decision periods in the mtoji is intended to generalize the roles of
these parameters in the optimal strategy making.

The fourth objective of this thesis is to identifye research potentials and opportunities
in the future regarding the further development apglication of this new approach for
remediation strategy making. This study does naowige a final solution but a pioneer
method with several simplifications. It uses alttd descriptions of technology effects and
costs, is based on several simplifying assumptiand,possesses some limitations with regard
to its applicability. Hence there is a great patdrib continue and improve the work started in
this thesis. The inspiration for future researchl$® an important goal of this study.

1.3 Thesis outline

Traditional NPV method and real options theory

In this chapter, at first, the traditional NPV medh which is commonly used in
investment valuation, and its shortcomings aregmesl. This method is applied to a simple
example of remediation project to demonstrate fitscples and limits. After that, the real



options theory is introduced. Its origins from fic#él option pricing theory and some
common methods of real options valuation are pitesen

Previous real options applications for environmenthprojects

This chapter provides an overview of previous workthe application of real options
theory to environmental projects. It first revieweme work on general environmental
projects, concerning their methods and findingghisecond part special attention is paid to
the application on remediation projects. A critiagsessment of the previous studies of other
researchers in this area is provided.

Real options valuation model for optimal remediatio strategy making

This chapter describes how the real options valnatiodel is built up in this study step
by step. Firstly, the main uncertainty involvedr@mediation projects is identified. Then the
options that the decision maker has during theegtdjfe time are investigated. After that a
decision tree to solve this problem is built. Thems demonstrated how the strategies are
valued and the optimal strategy is defined and menended. Finally, it shows how the
optimization algorithm solves the problem whennhenber of periods becomes big.

Application of the valuation model to a hypothetichcase

In this chapter, the real options valuation modeldptimal remediation strategy making
is applied to a hypothetical case. After definidigtlae relevant assumptions concerning the
regulative parameters, site parameters, economamaers, technology parameters and time
parameters, the strategies are evaluated with tieehdeveloped in this study. It is shown
how the optimal strategy can be identified anddpgmal remedial activity to start with can
be recommended.

Parameter sensitivity analysis

This chapter describes the results of the sengit@rialysis. Using the previous case as a
reference case, a comprehensive analysis of diffayges of parameters (regulative, site-
specific, economic, technology-related, and timeapeeters) is conducted, in order to assess
these parameters’ influence on the outcome of valua

Future research

This chapter focuses on the future research patemiurther studies are needed for a
more successful application of real options thetwythe optimal strategy making for
remediation projects. The possible directions séaech needed are listed.

Conclusions and discussion

This chapter provides the main conclusions andfitia discussion of this PhD thesis

about the application of real options theory taropt remediation strategy making.



2. Traditional NPV method and real options theory

2.1 Traditional NPV method and its shortcomings

Net present value (NPV) is used to calculate thesgmt value of multiple future cash
flows. The nominal net value of any future (pasn@tary benefits and costs is discounted
(accumulated) to its present value. There are teasons for discounting: time value of
money and risk. In other words, one Euro today esttvmore than one Euro in the future;
One Euro which is safe is worth more than one Euhizh is risky. The common formula for
NPV is as follows:

T CFt

NPV =
s (L+ 1)

(Eq. 2-1)

Where, t is the time when the cash flow occurss The total time of the project, r is the
discount rate, and GIs the net cash flow, which is the cash inflow nsnthe cash outflow at
time t.

Even though the traditional NPV rule is relativeiynple, widely taught and accepted,
its assumptions neglect two main issues in decisi@king: 1, the fact that there are
uncertainties in the project, which can not be lggsiedicted today. 2, the management’s
strategic flexibility to make the decisions as thescertainties become known over time.

Table 2-1 shows the main assumptions of NPV compawith reality.

Table 2-1: Comparison of traditional NPV assumptiors and the realities

Traditional NPV assumptions Realities
Decisions are made now and never changedt all decisions are made today; some |are
again. open for the future when uncertainties

become resolved. Decisions can be changed
in the future.
Future scenarios are fixed according to |tR@iture scenarios are uncertain; the

prediction today. development is usually stochastic and risky
in nature.

Once the decision is made, the project wil project is usually actively managed

be passively managed. through the project’s life.

In the introduction, two remediation strategies aoenpared by the traditional NPV
method. The detailed calculation is shown belowsukse that P&T costs 10,000 EUR every
year. PRB costs 30,000 EUR in the first year a®®@ EUR every year after the first year.
According to equation 2-1, the present value of ¢bsts of these two strategies can be

calculated as the following:



10,000 10000 10,000 10,000
= + +..+

4
NPVoer = z

- = . . - = 454505
0o (L+5%) (@+5%)" (@+5%) (L+5%)
4. 30,000 1,000 1,000 1,000
NPV, = = + +..+——— =335460
PRE ; 1+5%) (1+5%)° (L+5%) (1+5%)* 3

As mentioned in the introduction, the decision mddesed on this method is not
optimal. This is because of three reasons: 1. Blextechnologies, such as P&T are
undervalued. 2. The active management is not ginadme. 3. Potential better strategies are
not investigated. As a result, another valuationthom@ which is more capable for the
remediation strategy making is needed.

This is not to say that NPV should be abandonedllikinds of investment decision
making. NPV method was first developed to valuedband stocks held passively by the
investors (Trigeorgis, 1996). Fisher’'s book “Thee®dhy of Interest” in 1930 and Williams’
book in 1938 “The Theory of Investment Value” weltee first to express the DCF
(discounted cash flows) method in modern econoniics proper for investment projects
with low uncertainty and passive management (Figi#. An example for this kind of
investment is government bond. The future cashdlave certain. And the bond holders are
passive investors because there is little they dmro bonds to alter the cash flows. For
investment projects with uncertainty and active aggment, which is the case for most of the
investment projects including remediation projetis, traditional NPV method is not feasible
because it becomes impossible to forecast exastefutash flows and companies are not
passive investors. Facing uncertainty, companiee tiae flexibility to sell the asset, invest
further, wait and do nothing, or abandon the ptoj€kbe alternative valuation method for this

kind of investments is the real options methode(Bigure 2-1)
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Figure 2-1: The difference between traditional NPVimethod and the real options method

2.2 Real options theory

The real options theory origins from the optioncpng theory in financial market. So
before introducing the real options theory, a bm#foduction of financial options shall be

given below.

2.2.1 Financial options and option valuation

The concept of options exists since ancient tirfmeancient Greece, Thales used options
to secure a low price for olive presses in advaridee harvest. In the early 1600s, trading in
tulip options blossomed in Holland during the tuti@nia. The planted tulip bulbs are only
payable at the buying date if the harvested butleeds a certain weight. (Brach, 2003) The
common spirit in options is that it is a right bt an obligation to take a certain action. The
action will only be realized if the actual situationeets a certain criterion. Above are some
early examples of options. When stocks appearddstory, options on stocks also existed.
But they were not traded on an exchange. Buyerssatldrs had to find each other by
themselves and prices are arbitrary. Options wefiewdt to deal with and were very illiquid
at that time. The birth of modern options came witk work of Black and Scholes and
Merton on option pricing in 1973, which could deténe the fair market value of options.
Within the same year, the Chicago Board of Tradened the Chicago Board Options
Exchange. Since then, modern financial options ptadame into existence. A financial
option is defined as follows: An option providese tholder with the right, but not the
obligation to buy or sell a specified quantity of anderlying asset at a predetermined price
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(called a strike price or an exercise price) abefore the expiration date of the option. A call
option gives the holder the right to buy the unglag asset at or before a certain date for a
certain price. A put option gives the holder thghtito sell the underlying asset at or before a
certain date for a certain price. The option whioeim be exercised at any time before the
expiration date is called an American option. Tipgan which can be only exercised at the
expiration date is called a European option. (Dedainformation please find in Hull (2005),
Natenberg (1994), Kolb (2002), and Fontanills (2005

Attempts to value derivatives such as options havdong history, the French
mathematician Louis Bachelier showed one of theesarattempts in his doctoral thesis, The
Theory of Speculation (Bachelier, 1900). He triesptice options on French Government
bonds. He used Brownian motion (BM) to model theetiiation of stock prices on the market.
He was on the right track. But BM allows stock prio be negative. However, it is under
Bachelier's work that the geometric Brown motiotefaon became a basic model for a stock
price process in the modern theory of finance. Sdasom (1965) considered perpetual
American options (an option with an infinite expioa date is considered to be perpetual). He
used geometric Brownian motion (GBM) to model thedom behavior of stock. GBM limits
the values strictly greater than zero compared ®i it is a more reasonable description of
stock price dynamics. In his model, the expected o& return of the stock and the discount
rate for the option is depending on the unique cis&racteristics of the underlying stock and
the option. Thus, this model is greatly arbitrapcéuse of the arbitrary discount rate. Until
then, no one could figure out consistently how moghions should cost for people with
different risk aversions which cause different disat rates. The breakthrough came with the
work of Black and Scholes (1973) and Merton (1973)ey also use GBM to model the
development of the stock price. But their work asé&d on the no-arbitrage condition in a risk
neutral world. No arbitrage requires that the maikecomplete and there are sufficient
amount of active investors with complete informatieho will notice any possible mispricing,
put a lot of pressure on it, and quickly eliminate As a result, there are no arbitrage
opportunities. In a risk neutral world the investequires no excess return for taking risks,
and the expected return on all securities is tlefree rate. In their model all cash flows are
discounted at the risk free rate. In 1997, Schaled Merton won the Nobel Prize in
economics for this seminal work (Black had died1®95), which made derivatives very
popular financial instruments and lead to the ragridwth of financial market in the last
decades. The Black and Scholes model is stillntlest widely used option pricing model

used by traders today.



In order to derive the formula, Black and Scholesstruct a risk-free portfolio
consisting of a certain amount of options and dageramount of stocks. Assuming no
arbitrage, this portfolio earns the risk free iesdrrate. The derivation of the differential
equation is out of the scope of this thesis. Iistte@ readers can have a look at classic finance
text books for details (Hull, 2005). The differettequation is:

02 f
—+1IS—+=0%S*—— =1f Eq. 2-2
o “os 29 s (Eq. 2-2)

f is the price of an option (it can be both a cali@n and a put option},Is the timey is the
risk free rateSis the stock prices is the volatility of the stock price. Depending different
boundary conditions, formulas for different optiypes can be derived. In case of a European

call option on a non-dividend paying stock, the@rmf the option at time zero is:
c=S,N(d,) - Xe"" N(d,) (Eg. 2-3)
In case of a put option, it is:
p=Xe TUN(-d,) - SN(-d,) (Eq. 2-4)
Where

_In(S, I X) +(r +0° 12T

d
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(Eq. 2-5)

_IN(S I X)+(r=a® 12T _ ]
d, = e =d, -ovJT (Eq. 2-6)

c is the price of call option, p is the price oftmption, X is the striking price of the
underlying asset, T is the time to maturity, ana)N¢ the cumulative probability function of
a standardized normally distributed variable x.ngsbther boundary conditions, formulas for
other types of options can be derived.

Some option values may be solved through closad-fmalytical solutions such as the
Black-Scholes formula, but some can not. In caseetlis no analytical solution, numerical
methods must be used. Simulation, binomial latdod finite difference method are three

commonly used methods.
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Boyle (1977) proposed a Monte Carlo simulation apph for European option
valuation. Simulation models simulate thousandpassible paths of the value evolution of
the underlying asset from time zero to the expratiate. Decisions can be made according to
the outcomes. The expected value is discountechdyisk free rate back to time zero to
obtain the option value. It is very useful for vialyi options where the payoff is dependent on
the path of the underlying asset or where there nandtiple underlying variables. The
binomial technique was originally developed by Cerss and Rubinstein (1979). The life of
the option is divided into a number of small timéervals of lengtiat. They assumed that in
each time interval, the value of the underlyingeadds either moves up toV or down todV.
The binomial tree showing the development of theeulying asset can be drawn. The option
value at each final node can be calculated. Itag f(S-X), 0] for a call option, and max [(X-
S), 0] for a put option. (S is the value of the aiging asset, X is the exercise price.) With

the risk-neutral probabilityPry = (R-d)/(u-d),(R=&", u =e?V d = 1/u) the value of an
option iSOV = ( Prny *OV, + (1- Pry)*OVg)*e™. The expected option value at each time step
can be calculated backwards. The value for the eginning node in the binomial tree is the
value of the option value in questiofhe finite difference method was first proposed by
Schwartz (1977). The partial differential equatiaich represents the option value is
replaced by a set of difference equations by distng all state variables. The first and
second derivatives are replaced by a finite diffeee approximation. The continuous
differential equation is approximated with a diserelifference equation. Option value is
calculated by solving the difference equation. €hare two state variables, stock price and
time to maturity. Time is discretized into M intets and price into N intervals. This can be
shown in an M by N grid. Knowing the stock pricenaturity, the option value at maturity is
max [(S-X), 0] for a call option, and max [(X-S)] for a put option. The other boundary
conditions are: when the stock price is zero, optialue is K for a put option, O for a call
option; when the stock price is N, option valu®ifor a put option, (N-X) for a call option
(N>X). The option value is calculated backwardsrfrthe maturity time to time zero. For a
detailed description of these three methods, sdig(2005).

2.2.2 From financial options to real options

As implied by the name, real options evaluate paisical assets, instead of financial
assets. They have some similarities with finangf@ions. An important feature for both of
them is flexibility. A real option is commonly dagd as any decision that creates the right,

but not the obligation, to pursue a subsequentsaeti The highlight is that business
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decisions are flexible in the context of stratetapital investment decision making. It is very
often related with strategic planning.

Real options theory develops together with theictsin and dissatisfaction of the
traditional way of capital budgeting, the commoniyed NPV method. In the traditional
approach, the future cash flows of an investmemtcatculated and discounted to the present.
If this present value minus the cost is greaten thero, it is said that the NPV is positive and
the investment decision is a “go”; otherwise ndtor( remediation projects, NPV can be
negative.) It assumes that either the investmenteigersible, or, if the investment is
irreversible, it is a now or never problem. It inegsl that the cash flows are fixed and the
manager acts passively. These assumptions argugofdr most of the investments in the
world. As mentioned by Brennan and Schwartz (198f),major deficiency of this approach
is the neglect of the stochastic nature of cashifland the capability of managers to respond.
This method can easily undervalue projects withedd®d options, because the value of
flexibility is considered to be zero. Thus the ttithal NPV method, which is applied very
often due to its simplicity, must be recognizedpt@vide wrong results in many cases.
Realising the limitation of the traditional NPV rhetl and the value of flexibility, there are
some extensions of the traditional method, suclsahario analysis and expected value
analysis. These methods model the future developaseseveral different outcomes to find
the expected return. They are an improvement cosdpaith traditional NPV method. Still,
there is no management reaction involved. So theswaf flexibility is still not reflected.

In the 1970s Arrow and Fisher (1974) and Henry §)9iitroduced the term of “quasi-
option value” in environmental economics. Theittisgtis that the future cost of the current
irreversible environmental damage is uncertain. their framework, the option value
represents the value of the information that becmailable when uncertainty is resolved
over time. At the same time with the breakthroudiBlack-Scholes option pricing model
(Black and Scholes, 1973, Merton, 1973) in finaribe, techniques for pricing real options
has been developed independently in the investmesetarch. The term “real options” was
coined by Stewart Myers in 1977, referring to tipplecation of option pricing theory to the
valuation of real physical investments with leaghand flexibility. Today, the term of real
options has been broadened. It is not restricteédet@pplication of option pricing theory from
finance. Real options approach became a systemadidntegrated approach using financial
theory, economic analysis, management sciencesidacciences, statistics and econometric
modelling in valuing real physical assets in a dyitaand uncertain business environment.

Typical real options include deferring (to wait bef taking an action until more is known or
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the timing is expected to be more favorable), edpanor contracting (to increase or decrease
the scale of a operation in response to the aditizdtion), switching (to alter the mix of
inputs or outputs of a production process) and daing (to discontinue an operation and
liquidate the assets).

The first applications of real options theory w&senatural resource investments. After
that, it was applied in other areas such as relsemnd development, development of new
technologies, company valuation and so on. Bre@n&chwartz (1985) demonstrated how to
apply real options theory to value natural resoymagects and to derive optimal decisions.
McDonald & Siegel (1986) stress the option valuga$tponing an irreversible investment.
Dixit & Pindyck (1994) provided conceptual real iopis frameworks for capital budgeting
decisions. The application of real options thearydmediation projects is an idea still in its
infancy. Some applications in environmental prgdatcluding remediation projects will be

discussed in Chapter 3.

2.2.3 Methods of valuing real options

The methods for valuing real options are contingdaitms (the same method introduced
in session 2.2.1, this term is given by Dixit anhdyck (1994) when dealing with real
options), dynamic programming and integrated decisiee & Monte Carlo based method.
Different kinds of real options can be solved d#fgly by different methods. Each of these

methods has its specific features which limit thermertain kinds of problems.

2.2.3.1 Contingent claims approach based on “no iardige” assumption

Since we are treating investment opportunitiesp®ios instead of static cash flows, it
is a straightforward idea to apply directly optipricing theory from finance. This is the
method introduced in session 2.2.1. Either theemianalytic solution as in the Black-Scholes
model or it needs to be solved numerically, thedassumption is the no arbitrage condition
in a risk neutral world. Dixit and Pindyck (1994fer to this approach with the general term
“contingent claims”. The basic idea is the condtacof a replicating portfolio of existing
assets for the real option in question. Discoute ra not subjectively set. All values are
discounted at the risk free rate. It has been revemded by Brennan and Schwartz (1985),
Trigeorgis and Mason (1987), Copeland, Koller andriih (1994) and Trigeorgis (1999).
Amram and Kulatilake (1999) have the most extensxposition of this approach. They
assume that capital markets are complete. All qatpanvestments have equivalents in the
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capital markets and can be effectively hedged tyinoa traded tracking portfolio. The
calculated value is the “no arbitrage” value of itneestment.

The contingent claims approach employs the standapticating portfolio way of
thinking for financial option pricing, as in thedk-Scholes model (Black and Scholes, 1973,
Merton, 1973). The basic idea is to derive a pladiiferential equation reflecting the value of
a risk free option-stock portfolio, with gradualaciges in its composition approaching the
maturity of the option. The key to the problem he tsolution to certain partial differential
equations. Brennan and Schwartz (1985) demonsttatedto use this approach to value
natural resource projects and to derive optimaisitats as one of the first applications of real
options. With the concern of remediation projedtentz and Tse (1995) used the option
pricing approach to value real estate contaminatddhazardous materials.

One important drawback of contingent claims apgndac real options valuation is that
the “no arbitrage” condition may not hold in sonases in real options. Dixit and Pindyck
(1994) stated that “Specifically, capital marketast be sufficiently “complete” so that, at
least in principle, one could find an asset or tmas a dynamic portfolio of assets...the price
of which is perfectly correlated with V. ... Howeydhere may be cases in which this
assumption will not hold.” (V is the real optionlya in question) For these cases in real
options, “no arbitrage” is usually hard to provdidiaThe principle of no arbitrage does not
require every individual in the market be fullyiosal, but it does require that sufficiently
many motivated decision makers with access to @efft resources notice any possible
mispricing, put a lot of pressure on it, and quyckliminate the mispricing. And thus, there is
no risk-free net profit. This is much too rigid farot of real asset markets. Another objection
to contingent claims is that a risk free portfotian not be constructed because these real
assets based on which the real options are vaheedod even traded. So, even though getting
inspiration from the option pricing theory in findal market, contingent claims approach is

not a proper way for a lot of real options basedeah assets.

2.2.3.2 Dynamic programming

Dixit and Pindyck (1994) propose the use of dynapnagramming in those cases where
“no arbitrage” is not a reasonable assumption. Dyoaprogramming is an approach
developed by Bellman and others in the 1950's ltsed extensively in management science.
It formulates the problem in terms of a Hamiltoalai-Bellman equation and solves
backwards with respect to time for the value of disset. The word “programming” has no

connection to computer programming. It comes fromterm “mathematical programming”,
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a synonym for optimization. The “dynamic programgiimentioned in this chapter is the
method presented by Dixit and Pindyck (1994) aldoaw to value in continuous time the
option of waiting. The idea is that the whole seweeof decisions is split into two parts: the
immediate choice and the remaining choice; thenagdtidecision can be found by working
backwards. A partial differential equation can legived and the solution to it is the option
value. By solving the equation, the optimal timingexercise the option can also be indicated.
When the differential equation cannot be solvedydically, it needs numerical methods as in
contingent claims analysis. Attention should bedpai the discount rate used in contingent
claims and dynamic programming. No arbitrage assiempn a risk neutral world is the
condition for applying risk free discount rate iontingent claims approach. When the
assumption does not hold, dynamic programming @ieqly a discount rate other than risk
free rate has to be set subjectively. Insley (20@29d dynamic programming and finite
difference approach to estimate the optimal timaigthe option to harvest a forest. For
remediation projects, the market for land after ediation is far from complete, no-arbitrage
condition does not hold. Thus dynamic programmimgjgad of contingent claims should be
applied. As remediation projects are concerned,r&brand Lopez (2002) developed an
option-pricing model to rank investments that mighprove water quality. They suppose that
the development of the concentration of the paflutaser time is a Brownian motion. They
consider the damage based on the concentrationegbdllutant as an underlying asset, the
costs as exercise price (see also chap. 3).

One disadvantage of dynamic programming is theestibp assessment of the discount
rate. Another disadvantage of this method is thet only valuing one option: the option of

deferring. When there are several options involitscthn not handle the problem.

2.2.3.3 Integrated decision tree & Monte Carlo bdseal options analysis

Decision tree analysis is very often used to asgisision makers choose among various
decision options in time when these options waldeo uncertain consequences. The problem
is demonstrated over time in a hierarchical stmgctid nodes. Figure 2-2 shows an example of
a decision tree for a three-stage decision problEne squares are decision nodes. They
represent the decisions made based on the adwaien among all possible decision options.
The circles are probability nodes. They represést firobabilities of the sequences after
taking a decision. A utility function is set by thecision maker. The expected value of the
utility function is calculated for different comlation of decision nodes bases on the

probabilities. The result of the decision tree gsial is the best combination of all the
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decisions maximizing the utility function. It hada of advantages which make it a proper
tool to identify and structure real options. Fiisthas the strength in addressing sequential
decisions. Second, it is very flexible in capturthg underlying and the decisions. Last but
not least, it is not a black box; it is easy to lakpto the management. A lot of economic
models which deal with real options valuation assdd on the underlying principles of

decision tree analysis. Some examples are givéreinext chapter.

v

Time

Figure 2-2: Typical structure of a decision tree

The Monte Carlo simulation was originally developedddress the issue of uncertainty.
Basically it generates an ensemble of realizatadritse output based on random sampling of
probability distributions of the input variable. iiincreasing number of realizations, the
results become more reliable. In capital budgef@ming uncertainty, it became a very useful
tool. The use of Monte Carlo simulation to valugficial options was introduced by Boyle in
1977. For valuing real options, Monte Carlo simolais also a very practical tool, which can
be combined with other techniques such as a decisige as a parameter determining
technique.

As discussed previously, contingent claims apprasctot proper for most real options
problems because of the rigid “no arbitrage” asdionpDynamic programming approach is
not proper for projects with multiple options. Theegrated decision tree & Monte Carlo
simulation based technique provides a new inspmafor real option valuation. It is a
practical tool because of the flexibility to deatwdifferent kinds of management flexibilities

facing various types of uncertainty sources. ltsdoet require complete market nor complete
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information. There can be more than one optionslied in the valuation. The uncertainty
does not have to be a typical process used inngerit claims and dynamic programming
such as GMB. This integrated approach involvesdingl a tree representing all alternatives,
all possible situations and the rational respor@®is of the management. Expected cash
flows are calculated based on the probabilitiesckvire calculated based on the Monte Carlo
realizations simulating the future uncertaintieee discount rate is chosen usually using the
weighted average cost of capital (WACC). The oplisteategy and its associated value are
determined based on a backwards calculation.dtvsry straightforward way to demonstrate
the sources of uncertainties and the future dewsidmram and Kulatilaka (2000) showed
how to use this method, using pharmaceutical R&RArasxample.

This method shares a disadvantage with the dynaragramming approach; it applies a
fixed subjective discount rate to the analysis. deev, this method is proper to illustrate the
idea of real options and approximate the valudexilhility. More research is needed for the
justification of discount rate proper for remedatiprojects, which accurately represent the
risks involved in the projects. However, the distotate discussion is out of the scope of this

thesis.
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3. Previous real options analysis for environmentgbrojects

3.1 Applications to general environmental projects

As mentioned in the previous chapter, economist® lextended the financial options
theory to real options theory to value real assetse real world. They are aware of the value
of flexibilities and active management facing f@wmcertainty. For environmental projects,
like the other investments projects, there are liysadot of flexible options to choose when a
decision has to be made. The management is noiveassestors. They are able to make
rational decisions facing the actual situation. Mo$ these decisions have irreversible
consequences. These characteristics of environigmijgcts are especially proper for real
options valuation.

“Quasi-option value” was introduced by Arrow andtter (1974), and Henry (1974). In
both studies, the analysis of the land developraoader uncertainty was conducted in a two-
period model. The decision maker has to choosedmtyreservation and development. They
show that for the “development” plan, “the expectedue of benefits under uncertainty is
seen to be less than the value of benefits undtaicy” (Arrow and Fisher, 1974). The value
of this difference is called quasi-option valueisTis the extra value for preserving an option
under uncertainty. Ignoring this value, irreversitdlevelopment” plan would be overvalued.
They showed that flexibility has value in enviromted decision making. Making an
irreversible decision eliminates this option vatigreservation.

Greenley et al. (1981) developed a procedure faasoméng the option value of water
quality and applied it to a case study in the SdRithite River Basin, Colorado, US. The
objective of the study was “to test empirically @ygplication of the Henry framework in the
measurement of benefits of water quality improvetidstilising the model of Henry (1974)
they compare the benefit from a large expansiamimng development and the option value
of postponing the decision and preserve the watality. Similarly, they also compare the
benefit from the current water based recreation asd the option value of non-use
preservation values. They “provide an empiricak t@ls Weisbrod’'s (1964) proposal that
option value and other preservation values shoelddiled to the aggregate consumer surplus
of recreation activities to determine the total dfénof environmental amenities to society”
(Greenley et al. 1981).

Lentz & Tse (1995) used the option pricing approtchalue real estate contaminated
with hazardous materials. They assumed that theepiyp owner has the option to remove the

hazardous materials and further more redeveloptbperty. They followed the contingent
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claims method presented by Dixit and Pindyck, assgrthe property cash flows and the
redevelopment cost to be stochastic processes.diffezential equation was derived and
closed-form solutions are provided. The criteriad&termine the value maximizing strategy
were developed. The option value of real estate #ed optimal removal and optimal
redevelopment point are identified.

Conrad (1997) applied the real option approachterdecision problem of whether or
not to cut an old-growth forest. It is assumed tthat value of the old-growth forest is a
known constant; the amenity value is a GBM procéhs. partial differential equation for the
option value is derived and analytic solution isyided. The critical amenity value can be
identified to decide when to cut the forest.

Forsyth (2000), building on Conrad (1997), usedawppricing theory to decide whether
or not to preserve a wilderness area. She followexl dynamic programming method
demonstrated by Dixit and Pindyck, assuming the raityevalue of the wilderness area
follows a stochastic process. A numerical methaaitéf difference) was used to solve the
differential equation. Critical levels for amenitsalue necessary to justify preserving a
wilderness area were calculated. She demonstragetnportance of the assumed stochastic
process to the results by showing the dramaticcefie the critical value by changing the
stochastic process from GBM to a logistic growtbgass. Since the movements of a lot of
underlying assets of real options are not likelsfmice, which can be described by GBM, the
assumed process should be carefully chosen.

Conrad & Lopez (2002) presented an option-pricingdet to rank investments that
might improve water quality. They applied the framek demonstrated by Dixit and Pindyck
to value investment options for the provision desdrinking water for New York City. It was
assumed that the pollutant concentration is stdidadly increasing over time, and that the
pollution causes damage if pollutant concentraBaneeds a given threshold. Two options,
the implementation of a watershed management mammprove water quality, and the
filtration of water were considered. Differentialquations were derived and solved
analytically for the critical barriers (concentmti or damage), which would trigger the
implementation of a particular project. They cownled that “the option-pricing approach
provides the theoretically correct way to rank pot§ that might improve water quality. It
provides a logical framework for integrating stosti@models of water quality with economic
measures of cost and damange” (Conrad & Lopez,)2002

Bosetti et al. (2004) applied an optimal adaptiegedopment strategy option valuation

model to consider development possibilities of |émat has been degraded through previous
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economic activities. They built up a discrete-tirschastic model and applied it to Ginostra,
a town on Stromboli island in Italy. Three optioase considered: 1. preservation, 2.
remediation, 3. development. Expected present sahwe calculated for different strategies.
The optimal adaptive development strategy is datexdchand the option value is calculated.

3.2 Applications to remediation projects

The real options involved in a remediation proje mainly the remedial activities that
should be implemented and their timing. These digssinclude: 1. wait and do nothing, 2.
choose a certain technology and remediate, antbf.ifsthe remediation target is met. The
underlying parameter in these decision makingtseconomic terms. It is the contaminant
concentration. The contaminant concentration dscidbether the remediation has to start
right away or it is allowed to wait; it decides whitechnologies are allowed to be
implemented; it also decides if the target is mehat. Some integrated decision supporting
tools involving real options were investigated byne researchers to assist remediation
decision making.

Bage & Samson (2002) developed a multistage technanomic model (METEORS)
to select the optional strategy for the remediatba contaminated site and to determine the
strategy value. They extended the traditional bestefit analysis (mentioned as traditional
NPV method in this thesis) by considering irreveiigy of remediation technologies,
technology effectiveness, and uncertainty of comation development. Benefit is generated
from selling or development of the site and costsgenerated by the remedial activities and
information acquisition. Two technologies were ddased: bioventing and biopile. They
considered the implementation of an ex situ teabmlbioplile requiring irreversible
excavation (once the material is excavated, th@wopmif in situ remediation is permanently
eliminated); while it is considered reversible topiement an in situ technology bioventing
which preserves the option to switch to a differesghnology (either in situ or ex situ). In
their multistage model, there are three alternatatethe beginning of each new stage: select a
technology, acquiring new information and then &eéetechnology, and do nothing. Three
site situations are considered in the model (hgasohtaminated, moderately contaminated
and weakly contaminated). It is assumed that thec@feness of the technology decides the
probability of attaining a given situation from amtial site situation. Through consideration
of all possible site situations and their probailesi of occurrence due to different combination
of technology choices, the expected value of tteeremediation strategy can be expressed as
a weighted mean of the values of the remediatiguliegh to each of the situations (value
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means benefit minus cost). The technical and ecanewaluation of a remediation strategy is
integrated into this single expected value. Thesaes for different strategies are compared
and an optimal strategy is the one with the highgategy value.

Wang and McTernan (2002) developed an environmetdeision analysis model to
identify optimum remediation approaches for contaated aquifer systems. They combined
stochastic hydrology, risk assessment, simulati@aeting, cost analysis into the decision
making process for a Superfund site in the southkmited States. Monte Carlo simulation of
transport modeling was employed to define the out of contaminant excursions.
Bayesian modeling was used to define the worthdafiteonal data. These modeling were
combined with a decision tree to identify optimusmediation configurations. Sensitivity
analysis was performed to investigate the effeatleafision parameters (capital, operational
and maintenance costs). Two technologies were deresi: 1. bioremediation and 2. pump
and treat. The time required to remediate thevgite set to be 10 years, which is the same for
all remedial action alternatives. Their researchsjons are: is remediation necessary? when
should the remediation start, and what remediatechnique should be employed? A
geostatistical approach called conditional simalativas used to determine the size, location
and concentration distribution of the plume. Thst&tes of nature were used based on the
concentration of contaminant within the groundwagaching the POC (point of compliance).
The probabilities for these states of nature geadray the groundwater models using Monte
Carlo simulation were used in the decision tredyaisto calculate the expected cost. The
costs considered are the costs due to the remactiglty and the cost of failure (failure is
defined as exceeding a certain level of the comtanticoncentration). It is a cost minimizing
decision model. The optimal strategy is the oné wie lowest cost.

The work of Bage & Samson (2003) describes an egotn of the model METEORS
presented in Bage & Samson (2002) to a hypothedital The same two technologies, three
alternatives at the beginning of each stage, am thite situations as stated in the 2002 paper
are considered in the application. Two stages awelved in the project. The biopile
treatment effectiveness index was fixed to 100%&amng that it is guaranteed to produce a
final site situation that is weakly contaminatetiebioventing treatment effectiveness was set
to be less than 100%, which are given for differengiinal levels of contamination. They
built up a decision tree showing all choices wiiffedent paths and the probabilities of
occurrence. Expected strategies values are catculatlculation method described in 2002
paper) and the strategy with the highest stratedyevis the optimal. They commented that

for more complex simulations (more available tedbgi@s, more stages or more possible
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situations), the implementation of the model becommore difficult. When the amount of
possible strategies becomes large, strategy vahleulation and the optimal strategy
identification will need the assistance from congpydrogramming
Bage & Samson (2004) presented another applicaiddETEORS to a real diesel-

contaminated site. The same two technologies, tltematives, three site situations as stated
in 2002 paper are considered. The effectivenessoplile is fixed to 100%. An effectiveness
index for bioventing was developed to quantify gnebability of reaching a given state from
a given situation. Eight parameters (associateth wite and contaminant) were weighted
using a two by two comparison methods to calculaesffectiveness of bioventing. Different
time constraints were tested which could resthet et of available technologies. Different
time restrictions have been tried using the modatying from one to five years (stages),
along with one simulation without time restrictidithe output of the model is a remediation
strategy that guides, year after year, the seledfdhe most optimal technology considering

the evolution of the remediation.”

3.3 Discussion

The previous research work on the application @& tbal options methodology in
environmental decision making, in particular fortio@al remediation strategy making,
provide inspiration, concepts, and methods thatdcba followed in this thesis. Connections
to this thesis: 1. The remediation technologies et timing as real options. 2. The future
contaminant concentration as the underlying a8séthe decision tree as a tool to analyze the
problem. 4. Monte Carlo simulation as a tool totaeg uncertainty of the future contaminant
concentration. 5. Cost and benefit sources andxpedied value calculation method. But
there are also shortcomings that had to be fixedrder to develop a suitable valuation
framework for remediation strategies.

The research of Bage and Samson from 2002 to 2@Q4des an interesting framework
for a proactive way of thinking for the remediatistrategy making. But there are some
limitations to their work. First of all, there i®megulation restrictions on the two technologies
considered in their model. The decision maker damose either one of them. In realisty,
some technologies might have a stricter thresholfet allowed to implement than others.
These thresholds are like the exercise pricesnanttial options. This is a very important
aspect for real options valuation. It reflects ¥hakue of active management facing uncertainty
making the decision “what to do if something haggieithis is not an issue in the Bage and

Samson’s work. Secondly, it is not mentioned inrthwrk how many stages are there when
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there is no time restriction. Interpreting fromitheffectiveness of technologies assumptions,
it may not exceed the number of years that gena@tmany strategies that the computer
program can not handle. So how to solve the probddrman the number of strategy is too
many to solve remains a question. Thirdly, in tiveark, the optimal strategy is set guiding
the remedial activity stage after stage at theeturknowledge and not changed again in the
future. But it has to be realized that the optistahtegy is only expected to be optimal at the
time when the analysis is done. When the next stagees, the situation and knowledge may
change, the strategy made based on the old exijpectasy be outdated. last but not least, the
uncertainty associated with the technology effertess is not considered in Bage and
Samson’s work. In their papers, the probability achieve a certain site situation after
implementing a certain technology for a certaitiahsite situation is set without uncertainties.
This problem is dealt with better in Wang and Maiger's work.

Wang and McTernan’s work provide inspiration on himadescribe the uncertainty of
the contaminant concentration with Monte Carlo datian. But there are some limitations to
their work which have to be overcome. First of @lltheir work, they only valued the option
of postponing the investment. The flexibilities yided by technologies to be switched are
not given value. When an action is decided to Bertaone technology is chosen and
implemented for ten years. There is no switchingvben technologies even though it is
possible. Secondly, Sensitivity analysis is onlyfgrened for two costs parameters, capital
and operational costs. Other important parametech @s technology effectiveness and
regulative parameters were not investigated.

To overcome the shortcomings of the previous rebear this thesis tries to implement
the following points: 1. Thresholds for differerdchnologies. 2. Optimization when the
number of strategies becomes too big. 3. Sensitanalysis for more parameters. 4. The idea

of doing the analysis at the beginning of eachestag
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4. Real options valuation model for optimal remedifion strategies

In practice the majority of site remediation prageare evaluated through cost — benefit
analysis based on the traditional NPV method. Tdet fs that site remediation decision
making can be very complex facing various sourcésumcertainties and flexibilities
imbedded in the strategies. As previously discusHeal traditional way can not assist the
decision making properly. For optimal remediatidrategy making, where more than one
options are involved and the uncertainty is patpedéent, direct application of financial
option pricing and dynamic programming are not ifdas decision tree based analysis
combined with Monte Carlo simulation will be applien this thesis. The purpose is to
develop an integrated approach using financialriheeconomic analysis, decision science,
statistics, hydrology and simulation modeling tosists optimal decision making for
remediation projects. This approach can take intmant the risks a remediation project may

face and the value that proactive management mag.br

4.1 State of the environment under uncertainty

In financial option valuation, the uncertain unggry asset is the stock price. The
decision of exercising an option is depending @astochastic development of stock price. In
remediation projects, the underlying asset whictinsertain is no longer an economic term.
Uncertainty mainly stems from the inability to acely predict the effectiveness of the
remediation technology in terms of improving thevimmnmental quality at the site. In this
study, Monte Carlo simulation is used to repred@st uncertainty concerning the further
development of environmental quality. For simpliciquality is described by means of a
single value of contaminant concentration in grouaigr. In each point of time, depending on
the previous path of combination of technologiestoghastic model simulates the distribution
of the concentration outcomes uniquely.

Monte Carlo simulation approximates the probabibfycertain outcomes by running
multiple trial runs using random variables. Eachthadse runs is called a realization. It is a
stochastic technique based on the use of randonbensnmand probability statistics. It is
especially useful when a system is too complexaforanalytical solution. With the help of
Monte Carlo simulation, a complex system can be pbadnin a number of random
configurations, which are used to describe theesysis a whole. With a higher number of

random runs, the statistics of the ensemble ofzaans approaches a better description of
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the system. It is a proper tool for this study tmdate the possible outcomes of future
contaminant concentration.

To describe the state of the environment, a siraptégaminant degradation equation as
follows is used.

C(t)=C,*e™ (Eq. 4-1)

C(t) is the concentration at time ty {S the concentration at time zekas decay rate constant.
The values ofA may be assumed different for individual technadsgi This simple
degradation formula can be replaced by any othprogpiate model, e.g. an analytical or
numerical contaminant transport model.

To describe the uncertainty, a random part is addete formula. MATLAB function
randn() is used to generate arrays of random néyrdatributed numbers with mean of zero
and variance of one. Equation 4-2 can generat&aora normally distributed numbers with
mean G*e™", and standard deviation of Std. It is used to abeuthe future outcomes of the

contaminant concentration after a certain technolsgmplemented.

C(t) =C,* e + Std* randn(l, n) (Eq. 4-2)

4.2 Options and option thresholds

Options

Flexibility exists due to the ability of the manage make a decision on technologies to
apply depending on the actual situation he or sitieface in future. Typical imbedded real
options of remediation projects include deferrisgppping and switching: deferring means to
watch and to investigate (= MNA); stopping meanat tthe site manager can stop the
remediation once the given target is met; switchingans to replace a technology in
operation by another technology/option that mayobex more appropriate in the future
because of an altered distribution of the contatiunaswitching e.g. from pump-and-treat,
P&T, to monitored natural attenuation, MNA). In ghmodel, we consider four options:
“P&T”, “PRB”, “MNA” and “Stop”. P&T and PRB are ma active techniques than MNA,
but also more expensive. P&T and MNA are more Hexito be switched to other
technologies compared with PRB.

Option thresholds

Different technologies have different threshold aitions which allow them to be

implemented. Normally this is regulated by the autl. For example, there are more
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restricted criteria for MNA to be applied than P&hd PRB. MNA is said to be a gentle
option to manage contaminated land and groundwaatdrmay not be applied if pollution
levels are above a certain value. This certainevéd the threshold value for MNA. When the
concentration is above this value, P&T or PRB llbd implemented. P&T and PRB are
more effective techniques compared with MNA. Thaydrmuch higher costs than MNA. It
is supposed that P&T and PRB will be switched toAM$ soon as the concentration is lower
than the MNA threshold. The option “Stop” will balg possible if the concentration value
representing the environmental state is at or bdlmevtarget level of remediation, which
serves here as threshold value. So each optiothaaghresholds which control the exercise
of this option. Some options can share the sanmeshioid. These thresholds are defined by
concentration of the contaminant. Of course, wittiia range allowed by regulations, the
thresholds can be changed by the management tchskgra potential better strategy. This

will be discussed in the later part which invediggandividual parameters.

4.3 Decision tree

Decision tree analysis is a tool which can be usegituations where optimal decisions
depend on uncertain events and the decisions nrati these events. A tree structured graph
illustrating future uncertainties, future decisi@rgl their possible consequences is composed.
A decision tree for remediation projects can loak @s shown in Figure 4-1. It is shown in
this tree all the possible decisions and their ttage consequences - the different levels of
possible future contaminant concentrations. Theis@ets according to these future
concentrations are also shown in the tree, whiehdmcided by the threshold values. By
calculating the expected strategy value, the optstrategy with the highest strategy value
can be chosen among all possible strategies. Ifotloaving part, the main elements in the

decision tree for a typical remediation projectl wé elaborated.
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Period 1 Period 2 Period 3 ven Period N
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P,.._» |_P&TIPRB
PETIPRE |<p, > L MNA
Pa1o
P,su,_» |_P&T/PRB
A — [ wna
Pazo

|:| Decision of P&T or PRB |:'Other options

Figure 4-1: A decision tree for remediation projecs

Length of the entire decision framework

This is the length of the total planning time. #incvary from project to project. Some
remediation projects are long term, they can tae@ades. Some are short term, they can take
only several years. The length of the entire denisiamework does not have a big influence
on the structure of the decision tree. But it cawehvery big influence on the total cost,
benefit and the optimal strategy chosen in the &ndt, generally speaking, with a longer
decision framework, the total cost is higher foe thame technology mainly due to the
operational cost. The benefit is higher becaugeritore likely to meet the target. Second, the
effect is different for different technologies dadeng on the cash flow structure. It has more
impact on technology with more evenly distributedit outflows such as P&T. For PRB, the
cost is very high at the beginning of the projedieveas operational cost is rather low
compared with P&T. A longer total frame of the gajwill have less effect on costs of PRB
than P&T. Compared with PRB, a longer decision auork increases the total cost of P&T
more tremendously (under reasonable discount rate).thus, with similar expected benefit,
technologies such as P&T have a lower chance favmeed compared with the situation in a
shorter decision framework. For a technology wikv loperational cost, the effect of the
length of decision framework is lower, and thuseréhis a higher chance for these
technologies to be favored compared with a shaoleersion framework. Third, with the same
target level, a shorter length of the decision gamrk may favor a more active strategy.
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Periods

A decision period is the time period between thmtpof time when a decision is made
and the end of this chosen activity. Except fopstbe next decision has to be made again at
the end of each decision period. The number ofst@tiperiods (NP) is depending on the
length of the entire decision framework (T), and kngth of each decision period XINP =
T / Dt. With the same length of the entire decision framrd, the more periods there are, the
more accurate the decision making can be. Thigasuse the length of each decision period
is shorter. Thus, the decision maker can readtaattual situation more actively in a shorter
time. This can result in better strategy making pared to the same project with less decision
periods. It also provides a more accurate strategye calculation. Of course, because of
reality reasons, the length of each decision pestamlld be within a reasonable range.

Decision points

The squares shown in Figure 4-1 are the decisiamgorhe gray squares represent the
choice of a technology between P&T and PRB. Thesettee decisions which have to be
made when the concentration is above MNA threshgdith different combinations of these
two technologies through the entire tree, the reateh plan for the site can change. So these
points are very critical for the decision makingpeTwhite squares in Figure 4-1 represent the
other options. These options are “MNA” and “Stophese decisions are within certain limits
because the decision is made only according tohttesholds. Whether MNA will have to be
applied in the next management period or the reahegtivity can be stopped depends on the
actual contaminant concentration and the threshalige set. So if the concentration turns out
to be lower than the stop thresholdrCthe remedial activity will be stopped. If the
concentration turns out to be below the MNA thrédl{@una), and above € MNA will be
implemented.

Extension of the decision tree

As shown in Figure 4-1. The decision tree alwaygetgs in the same pattern. As long
as the branch does not stop, it will always divite three branches. When the period number
is big, it is neither possible nor necessary towdif@e whole decision tree to demonstrate the
problem. But we can still solve the problem witte thelp of computer and programming

algorithms.
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4.4 Strategy and strategy valuation

Strategy

A strategy is defined as a decision map with al decisions specified at the decision
points for P&T and PRB in the decision tree. Eaomiination of the decision points for
P&T and PRB(seeFigure 4-1) makes one strategy. When the numbpendds isNP, there

are as many ag’"" possible strategies in one decision tree. Fige2astan example of one
strategy out of 16 strategies in total for a thpeeod project. Figure 4-2 is a decision tree for
one strategy. It is used as an example in the feterto demonstrate how a strategy is valued.
A strategy map captures the remedial decision®@etter period through the entire decision
frame. But this is the expectation at the presamttpof time. At the end of this decision
period, the situation is likely to be different thavhat we expect at the present day. Our
knowledge of the site and technologies will chanbgen a new round of analysis has to be
done all over again. So special attention shoulgaeé to the very first decision point, which

indicates what should be implemented for the flestision period.

Period 1 Period 2 Period 3

1 Scenario 1
Pz, LU P&T p:

MNA p2 Scenario 2

P2,1,D Stop p3 Scenario 3
S io4
Pz,z,u PRB p4 Scenario
Sl MNA P> Scenario 5
2M

P2,2,D Stop p6 Scenario 6
p7 Scenario 7

|:| Decision of P&T or PRB |:|Other options O Monte Carlo points

Probability
P..

Concentration

Figure 4-2: One strategy example for a three-periodemediation project
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Scenario and scenario probability

A scenario is one path through the decision treeafoertain strategy, from the very
beginning till the end. A strategy is composed cfed of scenarios. The strategy example
illustrated in Figure 4-2, contains e.g. seven aden. Each scenario has different scenario
probabilities. Each of them is cumulated from thegibning of the tree to the end. For
example, pl=P;*P21u All scenario probabilities add up together equiesone. So
pl+p2+...+p7=1. With time passes by, when we ardeatend of the entire decision frame,
only one scenario will be realized. But at the pahtime at the beginning of the decision
frame, it is uncertain which scenario will becomeetin the future. So the strategy value is an
expected value calculated to make the decisiorecban our best knowledge of the site and
technologies today. It is not necessarily exatte/iumber which turns out in the end.

Monte Carlo points and probability branches

Probability branches show that after a remediaiviagttakes place, there can be
uncertain outcomes in the future with differenthabilities. These probabilities are based on
the result of Monte Carlo simulations. The circles Figure 4-2 are the Monte Carlo
simulation points. After each remediation activigychosen, random uncertain concentration
outcomes are generated by Monte Carlo simulaticsiszsissed in 4.1. These realizations are
grouped into three categories according to thestiuigls. If the concentration is below,@he
remedial activity will be stopped. If the concetia is between €and Gina, MNA will be
implemented in the next period. If the concentrati® above Gna, P&T or PRB has to be
implemented in the next period. The number of radilbns in one category divided by the
total number of realizations equals the probabdityhis category.

Strategy value calculation and optimal strategy sektion

Once a remediation project is started, the manhgserthe option to switch between
certain technologies and switch to the option “Stapce the target is met. The uncertainty in
the future concentration of the contaminant is dieed by a stochastic process. This is
similar to the underlying asset in financial opgoMonte Carlo simulation is used to simulate
the outcome probability density function (pdf) obncentration at the end of each
management period after a certain option has bgercised. At the end of each decision
period, a decision will be made on which technoltmyse if remediation has to be continued.
The value of flexibility to choose among differaqtions (technologies) should be taken into
account when remediation strategies are set-us. similar to a compound option in the
financial market. On each decision point, a deaissomade and the right for the next option
is bought.
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The decision tree shown in Figure 4-3 illustrates problem for a three-period project.
Suppose that at the beginning of the remediatienctirrent concentration ispCwhich is
above Guna. Since the concentration is not low enough to wppiNA, a decision has to be
made on the technology to be used in the firstoper\fter this first period, there is a certain
probability R ; p that the concentration will be below.Gn this case, the remediation can be
stopped. At probability £, v, the concentration will be abover But below Gina, then MNA
will be applied in the next period. With probabili®; ; y, the concentration will turn out to be
above Guna, and then the site manager has to choose betw&€raid PRB again. That is,
he or she has to decide whether to continue theatpe of the technology used in the first
management period or to switch to an alternatiivéhd remediation is not stopped after the
first period, then at the end of the second pedecisions have to be made again in the same
manner as at the end of the first period. For geptowith more than three periods, the
decision tree will expend in this pattern. It isvius that, in this example, MNA and Stop
options depend totally on the actual concentratompared with the thresholds. It is the

decision between P&T and PRB that is critical t® whole problem.

Period 1 Period 2 Period 3

Ps1u P&T/PRB
<o
Past

Pa2u P&T/PRB
o

|:| Decision of P&T or PRB |:|Other options

Figure 4-3: Decision tree for a three-period remedition project

Figure 4-2 shows one example strategy out of 1&iplesstrategies. If 1 is used to
indicate P&T and 0 is used to indicate PRB, thatsgy in Figure 4-2 can be indicated as
string 0110. Each digit indicates a decision poimta certain position of the decision tree, the
order is from left to right, from top to bottom. AlBscussed previously, it is the decision
between P&T and PRB that is critical to the whol®htem, every strategy can be
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characterized by a single string representing timehination of P&T and PRB decisions. For
the whole decision problem, it is the first digfttbe string which is the most important. It
tells the decision maker which technology to chofwsethe first decision period under the
current conditions.

The optimal strategy is the one with the highegieexed option value (Equation 4-3).
This (net) expected value will be calculated fdmpalssible strategies (in this three period case,
optimization is not needed). The expected valua strategy is the weighted average value of
all scenarios. The weights are expressed by prbtiedbiof the scenarios (see Equation 4-4).
Each scenario probability depends on the probegdslin the previous parts of the path, for
example, P1 =P y* P21u (See Figure 4-4.) These probabilities in the joney parts of the
path are calculated from the pdfs of contaminanteatration resulting from a Monte Carlo
simulation. This simulation can be based on anyehtitht is seen to be an appropriate means
to make the required prediction under uncertaifriythe example presented here a simple
decay model is used, whereas the value of thectstant is based on the respective option
chosen in the previous management period. The tnaleabilities By, Bjm and Rjp are
calculated from the entire pdf according to theeshiold concentrations. (i is the index for
longitudinal positions of the Monte Carlo points tre tree, j is the index for latitudinal
positions of the Monte Carlo points on the treee E&gure 4-2. ) The mean of each of the
three parts of the pdf is taken as the new startimgcentration for the next management
period. The scenario value is the present valud@fexpected land value minus the present
value of the cumulative cost. (Equation 4-5) Thpested land value is the clean land value
times the chance to meet the target in this scerfgquation 4-6). The present value of the
scenario cost is the cumulative present valuelauoaits that occur in this scenario.

The weighted average of all the scenarios’ chatc@seet the targetV) is the chance
to meet the target of this stratedy)( The weights are the scenario probabilities. ¢fiqu 4-

7) For scenarios which do not end up with the stofton in Figure 4-2 (scenarios 1, 2, 4 and
5), Monte Carlo simulation is performed to calcal#tte chances of meeting the target after
the third period for these scenarios, as showndarE 4-4. The chance to meet the target of
the strategy is not totally shown in Figure 4-2efiehare chances that the target will be met for
scenarios 1, 2, 4 and 5, as shown in Figure 4ghduld be kept in mind that the total chance

to meet the target is higher than the sum of seepaobabilities of scenarios 3, 6 and 7.

Soptimal = MaX(E(Vl)’ E(\/Z)’!E(Vn)) (Eq 4'3)

32



E(V,) =Y pi *V (Eq. 4-4)

V, = E(B,.) —E(C) (E55)
E(B,4) =M, *V, (Eq. 4-6)
E(M):Zpi*Mi (Eq. 4-7)

The parameters and variables are defined as fallows

Soptimal value of the optimal strategy
expected value

Vn value of the strategy n
pi probability of scenario i
Vi value of scenario i
Biand benefit from selling the land
G cost of scenario i
Vi value of clean land
M; chance to meet the target for scenario i
M strategy chance to meet the target
Parlod 1 Parfoad 2 Parliod 3
Py PaT pi Scanaro | _'Q_"
[ma__]p? sonuaz ——_p—| Cance
Pz,n:l _|:-3 scanaro 3t |
po sumaa s —w(mm | 10
e ~ o4 scaommas. —+(O |y,
Foep Stop p% Scenatog ———————
targst
PP SN ENn §  —
|:| Decisionof P&T or FRE I:l Other options O‘ Monte Carlo poirts

J

Frotanling | >
Cobi |E11u:-|

Figure 4-4: Scheme of individual strategy valuation

To find the best strategy, all possible strategiesinvestigated. Due to the uncertainty

of the Monte Carlo simulation, the value of eadlatsgy can vary from time to time slightly.
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This is why the optimal strategy can change whenesetrategies have very similar strategy
values. To catch all possible candidates, the tigestson is done for ten times. Each time an
optimal strategy is chosen. After ten times, tendt@ate optimal strategies are listed (in a
three-period case). Most of them are exactly thmesarhere are one or two other strings
chosen. With increasing number of runs, no new iclatel strings are found. It shows that ten
runs are enough to capture all possible candidatienal strategies for a three-period project.
In case that they are not the same, each of thenruar for 100 times to calculate their
strategy value. The mean and standard deviatioeach candidate’s strategy value are
calculated. Based on this, the decision maker eaidd which one is the best depending on
their requirement of the mean and the standardatlewni In this case, it is supposed that the
decision maker wants to maximize the mean straiedye while minimize the standard
deviation. Suppose the decision maker providesctiterion as: when strategy value is
positive, Max (mean/Std.); when strategy valueggative, Min (Jmean|*Std.).

Except for the uncertainty of Monte Carlo simulatiomore than one candidate
strategies can also be caused by the characterddtithe strategy itself. For example, when
the probability of reaching a certain decision parzero, it doesn’t matter what to choose on
this point any more. In this situation, there vii# strategies which are actually the same in
pairs. For example (see Figure 4-3),4fBis zero, the decision between P&T and PRB in the
next period has no importance. That means the thgitl of the strategy string does not matter.
Then, strategies in pairs, for example, stratedy0Cdnd strategy 0100 are the same.

It is important to keep in mind that it is the fidecision point that is concerned. The
whole analysis is done to decide what to do forfits¢ period! It is an optimal choice based
on the best knowledge of the decision maker atrttosnent. It is not a strategy which will
guide in the later periods regardless of the newwhkadge and the outcomes of the
uncertainties. At the end of each period, the amlwill be done again according to the
actual situation and the best knowledge at thag.tim

As shown in the valuation, both costs and stratdftgctiveness are taken into account.
The strategy effectiveness is represented by thaacehto meet the target. A higher chance to
meet the target will generate more benefit. Lownast avill increase the total strategy value.
According to the conceptual framework set in tlhissis, the strategy having the maximum
total expected strategy value is the optimal oheshbuld be noted that additional criteria,
targets or rules (e.g. to meet a minimum threskalde of the chance to meet given demand

for good environment) are not considered.
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Discounting

For projects with long time frame, discounting igesty important issue for the valuation.
The further in the future does a cash flow happlesmore it is discounted. So with a higher
discount rate, the future cash flows play a legsoirtant role in the valuation. In this model,
all values are in terms of present value, which maethat they are all discounted. The
discounting is done step by step. First the cashdlare discounted back to the beginning of
each period. Then the sum of cash flows of eacloghés discounted back to time zero and
then summed up. In this study, it is supposedttieatand will be sold as soon as the target is
met. The sooner the land can be sold, the less tha@l benefit from sales revenue be
discounted, and the larger the net strategy vailldoa: We take a three-period project as an
example (Figure 4-5a). Suppose that it is a nireg peoject. There are three periods in this
project. There are three years in each period. &ethat the cash flow in each year is€
Ci2= ... = G3= 5000 EUR. The discount rate is 5%.

The discounting steps are demonstrated in Figuse-d- Step 1, the cash flows are
discounted back to the beginning of each periodp &, they are summed up within each
period as the cumulative cash flow of each perigp 3, the cumulative cash flows are
discounted back to time zero. Step 4, the periodutative present values are summed up as

the present value of all the cash flows. This ésphesent value of all the cash flows.
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Figure 4-5: Discounting method applied to the straggy valuation



4.5 Steps to build up the model

To sum up, there are six steps in the framework:

Step I Identify the uncertainties and options

Step 2 Build up a decision tree demonstrating all pdssibutcomes and decision
reactions in actual situations

Step 3 Expected strategy values are calculated

Step 4 Optimal strategy is identified based on certaiteda; the decision for the first
decision stage is recommended

Step 5 Sensitivity analysis

Step 6 At the beginning of the next decision stage,ahalysis is done in the same way

based on the new knowledge and new situation atitha

4.6 Optimization algorithm for projects with more than four periods

As mentioned before, when the number of periodsRs there are as many 25
possible strategies to be valued. When NP is bigjgen 4, it takes very long time to go
through all possible strategies or even imposdiblgo through all strategies with present
calculation capacities. In this situation, an ofetion algorithm can be used to select the
optimal strategy. In this study, a Genetic Algamti{GA) is used for the optimization. The
implementation is adapted from the codes provideHduchk, Joines and Kay (1996)

GA is a stochastic search method which operatea papulation of solutions. Under
GA, a population of representations (called chramnuss) of candidate solutions (called
individuals) evolves towards better solutions. iéates a population of chromosomes then
applies crossover and mutation to the individualsthe population to generate new
individuals. Individuals are ranked by comparisan & particular fitness function. The
chromosomes in the first population are generatediomly covering the entire range of
possible solutions. The population size dependhemature of the problem. A proportion of
existing population is selected to breed a new geioa. Better solutions (with better fitness
values) are more likely to be selected. The avefiigess of the next generation will increase
since only the best organisms from the first geimraare selected for breeding the next
generation. The generational process terminates véhdéermination condition has been
reached, e.g. a fixed number of generations has fe@ehed. The discussion about GA is out
of the scope of this thesis. See Goldberg (1989nfare details about GA.

1 Website:http://www.ise.ncsu.edu/mirage/GAToolBox/gaot/
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Under GA, individuals are represented as binaipgdrof Os and 1s. In the remediation
strategy optimization problem investigated in tthissis, the critical decision is between P&T
and PRB when the concentration turns out to bednighan the MNA threshold. When 0
represents PRB and 1 represents P&T, putting alsda points between P&T and PRB in a
string, every strategy can be represented by desargl unique string. For example, when NP
= 5, there are 16 decision points for P&T and PRBhie decision tree. One strategy can be
represented by string 1001010000011110.

In the remediation strategy optimization probletre fitness function is set to be the
strategy value. It is calculated for each solutamtording to the method introduced in the
previous chapter. The purpose is to find the stuinily the highest strategy value possible.
The population size of each generation is 50. FB6t random strings of Os and 1s are
generated and evaluated. Then by applying crossmmutation to the best individuals, the
next generation of individuals is generated. Themiper of generations is 10. One
optimization run terminates when this number i<hea. Ten runs of optimization are done
and the best string is the one with the highese&$ value. This number of generation is
considered to be enough because the results ohigation runs are identical in the first digit
of the string, which indicates the decision in fhist period. Bigger number of generations

does not provide different result for the firstitliogf the optimal string.
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5. Application of the real options valuation model

5.1 Overview

This chapter applies the real option valuation métho a hypothetical case and
investigates the sensitivity of the results to ttileganges of parameters. Through the
hypothetical case of a three-period project, ghewn how optimal strategy can be made for
remediation projects with uncertainties in the fatuconcentration development and
management flexibilities when the uncertaintie®hess by time. Input parameters set for this
case include regulative parameters, site parametmsnomic parameters, technology
parameters and time parameters. The valuationns docording to the framework built up in
the previous chapter. Conclusions and strategymetendations are given. Then this case
will be used as a reference case for the sengitwviallysis. The input parameters are changed
and the impacts of these parameters on the opSinalegy making are investigated. The
purpose is to shed light on the optimal strategikingafor sites with different characteristics,
projects with different time scope, and for sitaa when regulation and market price for

land are changed, and when technology costs aadtigness are different.
5.2 Reference case

5.2.1 Assumptions

The total planning time frame is T = 30 years, iienber of decision periods is NP = 3.
This means that the decision will be made everytsns. The current concentration is set to
be 1, serving as a (dimensionless) reference vdlbe.threshold concentrations are set to
Cuna = 0.15, G = 0.01. That means, the groundwater quality hdsetanproved by a factor
of 100 compared to the current situation in orddoe considered “clean”. The price of “clean
land” is expected to be 400 €nassuming a site area of 2.5 hectare. Decaycoatstants are
set todpgr = 0.21,4prg = 0.12,Auna = 0.02. 10,000 realizations are made as demondtiate
Equation 4-2 for each Monte Carlo simulation pauith the same standard deviation for all
technologies (Stdr = Stdbrs = Stdana = 0.07). We distinguish 4 types of costs: instaila
cost, reactivation cost, operational cost and stappost. Estimates for different options were
calculated according to Kubert (2002), Birger et(2003) and Bayer et al. (2005) for the
following set of site parameters: depth to the gowater table is 2 m, thickness of the
aquifer is 5 m, the conductivity is 0.0005 m/s, Hyaraulic gradient is 0.001, total width of

the contaminated area is 100 m. Parameters fonodmiies are: two pumping wells (P&T),
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unit drilling and well construction cost is 2000r€ equipment cost for P&T is 15,000 €, unit
cost of reactive material for water treatment i &nt (same for both P&T and PRB), site
preparation and mobilization costs for P&T and PRE0,000 €, material cost for funnel
installation is 250 €/ MNA requires 10 monitoring wells at drilling cost 200 €/m, and
MNA sampling cost is 250 € for each sample. Theeg rate is set to be twice a year. Cost
for regular checks and controls of the operatingtesy is 2000 €/year. Estimated costs are

shown in Table 5-1. The discount rate is set t8%e

Table 5-1: Cost assumptions for different technolags in the reference case

Cost type P&T PRB MNA
Installation cost (€) 85,005 311,250 20,000
Reactivation cost (€) 17,005 77,817 6,000
Operational cost per year (€) 17,873 2,100 7,000
Stopping cost (€) 6,800 3,113 2,000

5.2.2 Results

5.2.2.1 Optimal strategy

After enumerating all possible strategies, the roglistrategy is identified, which is
1111 as shown in Figure 5-1. The strategy recomatents are: (I) Apply P&T whenever the
concentration exceedsuta. (I1) Apply MNA whenever the concentration is bel@yna, but
the target is not met. (Ill) Stop the remediation &ell the land whenever the target is met.
Due to the random element in Monte Carlo simulatitve strategy value calculated for the
same strategy varies for each run. The mean valtidbe strategy value, strategy cost,
strategy benefit and chance to meet the targetGdmruns are shown. The results are: strategy
value = 2,170,600 EUR, chance to meet the targé8.Z8%, expected benefit = 2,521,200
EUR, expected cost = 350,520 EUR. The most impbirtahication from this analysis is that
P&T should be implemented in the first decisioniquer

In Figure 5-2a, the bars show the scenario proitiakiland the stars show the scenario
values. Scenario 1 has a very low probability comgavith the other scenarios. This means
that, under the current assumptions, especiallgtineent concentration and the effectiveness
of P&T, after two periods of P&T, it is not likekp end up with concentration levels calling
for a continuation of P&T in the third period. Seens 3, 6 and 7 all end up with “Stop”
option after the second period or even in the faestiod, respectively. This means that the
target is met and the land can be sold. It shoealkdpt in mind that there are also chances that,

after the third period, scenarios 1, 2, 4 and 3 miet the target and the land will be sold.
40



Figure 5-2b shows the cumulative cost, benefitstrategy value. The benefit occurs more in
the later periods because the target is more litcelye met when the time is longer. It is also
shown that the slope of cumulative benefit is dasireg with time. One reason is that the
concentration reduction is not linear to the chaggof time (see Eqg. 4-1). As a result, the
increasing of benefit is not linear. With stratdggnefit being the main influencing factor, the
slope of strategy value has the same characterisie second reason is that the discounting
effect reduces the value further in future. In th@se, the strategy benefit is very high
compared with the strategy costs. The developmektiteostrategy value is mainly driven by
the benefit. Figure 5-2c shows the frequency ofviddaes calculated for strategy 1111 for 100
times.

After going through all the strategies ten timésré are two candidate strings for the
best strategy, which are 1111 and 1101. They atmlacthe same. The reason can be found
when the scenarios which are associated with tHegges are investigated (see Figure 5-1).
These scenarios are scenarios 1, 2, 3 and 4. Asnsho Figure 5-2a, the probability of
scenario 1 (pl) is very low. It is almost zero.ti¢ same time the probabilities of scenarios 2,
3 and 4 are higher. The reason why p1 is almost @@n not be £, yis almost zeroBecause
if P1.1,uis almost zero p2 and p3 will be also low, whiclmas true. So the only reason is;B
is almost zero. This indicates that the third dafitthe string does not matter because it is
almost impossible that this decision will need ® rhade. As s result, 1111 and 1101 are

identical.

Period 1 Period 2 Period 3
1 Scenario 1
Po1u P&T P
p2 Scenario 2
e Oz
P2,1,D Stop p3 Scenario 3

Pa2y P&T p4 Scenario 4

= [ A ] senaros
2M

P&T

Py2p Stop p6 Scenario 6
p7 Scenario 7
D Decision of P&T or PRB Ebther options O Monte Carlo simulation

Figure 5-1: Decision tree for the optimal strategyL111 for the reference case
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Figure 5-2: Results of the optimal strategy 1111 fdhe reference case

5.2.2.2 Alternative strategies

To gain more insight of the result for the optirettategy, two alternative strategies are
compared with the optimal strategy. One is “AppRBras long as the concentration is above
Cwuna’ (strategy 0000 shown in Figure 5-3). This stratégytypically considered as an
alternative to P&T and is very often used in pr@etiAs will be shown, it is a more expensive
strategy with lower chance to meet the target coetpavith the optimal strategy. So it is
worse in both perspectives of cost and effectiven€be other one is “Commence with PRB
in the first period, but apply (switch to) P&T ifi¢ concentration is abov@una” (Strategy
0111 shown in Figure 5-5). The purpose of analyting strategy is to show that managerial
reasons (in this study, it refers to the switchimgINA as soon as the concentration is lower

than Guna) can have big influence on the decision making.
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Strategy 0000
The results of this strategy are: strategy valug,353,700 EUR, chance to meet the

target = 30.91%, expected cost of 376,510 EUR, @rgdebenefit = 1,430,300 EUR. This
strategy is ranked worse because it has a lowategly value due to a higher expected cost
and lower expected benefit compared with the optstrategy.

1. The expected cost of the comparative strate@0 08 higher than the cost of the
optimal strategy. This is because of the high Ifstan cost of PRB. Under the current
settings, strategy 1111 has cost advantage.

2. The lower benefit is because of the lower cbancmeet the target compared to the
optimal strategy. Figure 5-4a shows the scenarmbaiilities and the scenario values.
Compared with the optimal strategy (shown in Fight2a), the outcomes of the comparative
strategy concentrate very much within the firseéhscenarios. This is due to the assumption
that P&T has a higher effectiveness than PRB. &uo Hfe first period of PRB there is a larger
likelihood to switch to go to the first branch hetsecond period. This will lead to scenarios 1,
2 and 3.

Period 1 Period 2 Period 3

PRB pl Scenario 1

MNA p2 Scenario 2

P2,1,D Y p3 Scenario 3

Psou PRB p4 Scenario 4
PRB PS5 scenario 5
2,M
Pz,z,D p6 Scenario 6
p7 Scenario 7
D Decision of P&T or PRB DOther options Q Monte Carlo simulation

Figure 5-3: Decision tree for the alternative stragégy 0000 for the reference case
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Strategy 0111
The results of the optimal strategy 1111 and gsat®11 are compared in Table 5-2.

As shown, opposite to strategy 0000, strategy @Ela higher chance to meet the target than
strategy 1111.

Table 5-2: Comparison of the strategy valuation radts of strategy 1111 and strategy
0111

Strategy Strategy value (€) |Cost (€) Benefit(€) Ch ance to meet the target
1111 (optimal) 2,170,600 350,520 | 2,521,200 48.78%
0111 (comparative) 2,0793,00 539,720 | 2,619,000 52.34%

Starting with PRB, its results also concentrateywauch in the first three scenarios for
the same reason as strategy 0000 discussed bdateit applies the more effective
technology P&T in the second period if the concatiin should be abov@yna after the first
period. As a result, the effectiveness of strateyyyl is clearly better than those of strategy
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0000. This can be seen in the high probability agnsrio 3 (it ends up with stop, i.esM
100%) compared with strategy 1111 and strategy .0000

The optimal strategy starts with the more effecteghnique P&T. The result is that its
results do not concentrate so much in the firgdlscenarios as the strategies starting with
PRB. This is the reason for the low probabilityscEnario 3. As shown in Figure 5-2a, the
probabilities of scenarios 4, 5, 6 and 7 are higih@n the comparative strategies. This
indicates that after the first period of P&T, itnsore likely to switch to the cheaper but
considerably less effective technology MNA or topstafter the first period. The higher
probability values of scenarios 6 and 7 for straté§jl1l are favorable since both scenarios
feature a “Stop” option thus intensively contrilmgtito the value of the respective strategy.

As discussed above, looking at the “stop scenarfss&narios 3, 6 and 7) shown in
Figure 5-2a and Figure 5-6a, strategy 0111 hasehigtobability of scenario 3, while strategy
1111 has higher probability in scenarios 6 and ut. tBe probability of scenarios 6 and 7 of
strategy 1111 can not compare with the high prdiatuf scenario 3 of strategy 0111. The
total probability of stop scenarios (scenarios 3ald 7) for strategy 0111 is higher than
strategy 1111. This can be better seen from thgradson of Table 5-3 and Table 5-4 (Sc.:
scenario). The comparison demonstrates the cotibibwf individual scenarios to the

strategy benefit.

Table 5-3: Scenario benefits of the optimal stratggl111 in the reference case

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sum
Expected scenario | 0.50% 5.20% 13.98% | 3.90% 9.03% 10.49% | 5.68% 48.78%
chance to meet the
target

Scenario benefit (€) | 2,0328 21,1416 | 76,7431 | 158,562 | 366,929 | 575,703 | 420,785 | 2,521,200

Table 5-4: Scenario benefits of comparative stratgg0111 in the reference case

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sum
Expected scenario | 2.47% 14.96% | 34.36% 0.20% 0.19% 0.16% 0% 52.34%
chance to meet the
target

Scenario benefit (€) | 100,423 | 608,228 | 1,885,717 | 8,131 7,725 8,781 0 2,619,000

Strategy 0111 has a lower strategy value. Thiseabse its cost is much higher than
strategy 1111 due to the high installation cosPBB and the switching cost from PRB to
P&T. After all, it has a lower strategy value. Asesult, strategy 1111 is ranked better due to

its cost advantage. It indicates that when benafissimilar, which means one strategy does
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not have an absolute advantage in benefit, thewitisplay a critical

cost are important for the composition of the siggtvalue.

role. Both benefit and

Period 1 Period 2 Period 3
Pa1u P&T pl Scenario 1
1M
Pz,z,u P&T p4 Scenario 4
PRB MNA PS scenario 5
2,M
p7 Scenario 7

[] Decision of P&T or PRB

DOther options

O Monte Carlo simulation

Figure 5-5: Decision tree for alternative strategy111 for the reference case
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Figure 5-6: Results of alternative strategy 0111 fahe reference case

5.2.2.3 Conclusions from the reference case

Comparing the optimal strategy and the comparaivaegies, under the assumptions

applied to create a reference case, it can be wdedlthat:

1. The recommendation would be to apply P&T duthwmgfirst decision period.

2. The strategy value is more driven by the exmetienefit than the expected cost.

Strategies with higher effectiveness have a clela@tage. This finding might be less
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pronounced or inapplicable for other relationshyeswveen assumed land value and level of
given cost parameters.

3. PRB, due to relatively high installation castdisadvantageous compared to P&T.
Possible advantages because of low operational dmstot influence the result in this
reference case. However, when assumptions chdang@dvantage may show effect.

5. Due to different technology effectiveness, theategies considered here have
different scenario probability distribution patteffihe strategy with higher probabilities of
scenarios end up with “Stop” option is likely tovieaa higher benefit.

Furthermore, the results give some first indicatidhat the outcome of an optimal
strategy search largely depends on the given mituads specified by the set of input
parameters. With different assumptions about tharpaters, the results can be different. The
optimal strategy can change. This will be invesgdain the sensitivity analysis in the next

section.

5.3 Parameter sensitivity analysis

This section investigates the sensitivity of theufes to the changes of parameters. It
shows the influences of different parameters on dtnategy making. The reference case
discussed above will be used as a benchmark. Pamanage divided into 5 groups: regulative
parameters, site parameters, economic parametechindlogy parameters and time

parameters.

5.3.1 Regulative parameters

Regulative parameters refer to the determinativestiolds according to which the
remedial activity can be switched or stopped. Sappihe current concentration ig, @he
threshold levels are set to be relative values @wetp with the current concentration.
Normally, these parameters are set according tgetavalues fixed in the regulation or
negotiations with responsible authority. For exanphe thresholds for stopping (the target
level, G) and switching to MNA (Gna) are like this. When the concentration is beloyy C
the remedial activity can be stopped. When the ewoination is below fa, but above €
MNA will be applied. Otherwise more intensive renadctivities such as P&T and PRB
have to be applied. In the following, the assuniand parameter values ofiéa and G
are systematically varied compared to the refererase, and the implications of these

variations to the result of the strategy valuatiaresdiscussed.
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The cases created through new parameter settiegsliiaded into three groups (all
setting changes are constant for all periods):

1. Both G and Guna are lower: compared with the reference case, gtosip refers
either to cases of more severely contaminated srtés situations where planned land use is
more sensitive and calls for more strict targetis Tneans it is more difficult to stop and to
switch to MNA. G and Guna are lowered in steps of 10% compared with theipusvcase;

2. Both G and Guna are higher: these are less severely contamindtiesi @ompared
with the reference case;@nd Guna are both higher. And thus it is easier to stop@witch
to MNA. Here, G and Guna are stepwise increased by 10%;

3. Guna is voluntarily lowered: in these cases, the retipgathresholds are the same as
the reference casewfea is voluntarily adjusted within the range alloweglthe regulation to
search for better strategies. In other words, MNAot applied for a certain concentration
range even though the regulation allows to. Diffi€@ases are considered, loweringy& in
steps of 10% compared with the previous case. &bdts are shown in Table 5-5. All values
are the averages of 100 runs. All parameters noitioreed in the table are the same as the
reference case. The first digit of the best stahgws the optimal decision for the first period.
1 represents P&T, O represents PRB. As shown, datedistrings are different from each
other in each case. The reasons have been discussattion 4.4, and will be further

discussed in section 5.3.2.1.
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Table 5-5

. Sensitivity analysis results for regulave parameters

Parameters | Candidate Best Strategy Cost (€) |Benefit (€) | Chance to
strings string value (€) meet the
target
Co=1 1111 1111 | 2,170,600 | 350,520 | 2,521,200 48.78%
Reference Cr=0.01 1101
Cuna = 0.15
Case Co = 1 1111 1101 | 2,347,200 | 357,650 | 2,704,900 52.31%
53.1-1 Cr = 0.009 1101
Cuna = 0.135
Case Co =1 1111 1111 | 2,528,100 | 360,080 | 2,888,200 55.95%
Both 5.3.1-2 Cr = 0.0081, 1101
C and Cuna = 0.1215 1110
G Case Co =1 1111 1111 | 2,667,000 | 364,350 | 3,031,300 58.74%
are lower 5.3.1-3 Cr = 0.0073 1101
Cuna = 0.1094 1110
Case Co =1 1111 1111 | 2,776,700 | 368,290 | 3,147,100 61.04%
5.3.1-4 Cr = 0.0066,
Cuna = 0.0984
Case Co =1 0111 0110 | 2,042,100 | 537,400 | 2,579,500 51.34%
5.3.1-5 C; = 0.011 0110
Cuna = 0.165
Case Co =1 0111 0111 | 2,007,500 | 535,110 | 2,542,600 50.50%
Both 5.3.1-6 Cr=0.0121] 0110
Crand Cuna = 0.1815
S Case Co =1 0101 0111 | 1,951,200 | 531,370 | 2,482,500 49.26%
are higher 5.3.1-7 Cr=0.0133 0100
Cuna = 0.1997 0110
0111
case Co =1 0111 0111 | 1,856,600 | 525,860 | 2,382,500 47.29%
5.3.1-8 Cr = 0.0146| 0101
Cuna = 0.2196 0110
Case Co = 1 1111 1111 | 2,400,000 | 355,130 | 2,755,200 53.27%
5.3.1-9 C;=0.01 1101
Cuna = 0.135
Case Co =1 1111 1111 | 2,598,000 | 359,480 | 2,957,500 57.13%
Crn 5.3.1-10 Cr=0.01] 1101
is Cuna = 0.1215
voluntarily Case Co =1 1111 1111 | 2,763,400 | 363,560 | 3,127,000 60.38%
lowered 5.3.1-11 C;=0.01]
Cuna = 0.1094
Case Co =1 1111 1111 | 3,480,700 | 396,850 | 3,877,500 75.46%
5.3.1-12 C;=0.01 1110
Cwna =0

5.3.1.1 Both @ and Gyna are lower

1. In this case, the decision of what to do infile period does not change compared
with the reference case. P&T should be appliedHefrfirst period.

2. The cost increases with lower threshold levElss is because the more expensive
techniques can not be switched to a cheaper teobsig easily. This can be seen from Figure
5-2a and Figure 5-7a. Compared with the referemase,cthe probabilities of the first three

scenarios in case 5.3.1-4 are higher. This is lzecali the more severe contamination or a
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stricter target level. After the first period of P&it is more likely to apply intensive remedial
activities in the second period. It is less likebyswitch to a cheaper technology MNA or to

stop. As a result, the strategy is more expensive.
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3. The benefit from selling the land increases wtigashold levels are lower. Lower
threshold levels represent either a more sevemijaminated site or a stricter regulation due
to e.g. a more sensitive land-use, which make®rerdifficult to switch to MNA. This means
more intensive techniques such as P&T and PRB taye applied. The result is that the
chance to meet the target is higher. This can be s&en comparing Figure 5-2a and Figure
5-7a. The scenarios in which the remedial actigéy be stopped after the second period (or
earlier) and the land can be sold are scenari6saB8d 7. With the probabilities of scenarios 6

and 7 being similar, the probability of scenariin8reases from the reference case to case

50



5.3.1-4. This is ultimately the reason for the @aging benefit with decreasing threshold
levels Guna and G. This surprising result of an increasing effeatiess of the remediation
with lower (i.e. stricter) targets is caused by agarial reasons, namely by applying the rule
“switching to MNA as soon as it is possible {Cuna)”. The implication for management is
that MNA should not be applied too early if effeetness is very important. This will be
further discussed in section 5.3.1.3 whemCis voluntarily lowered.

4. The strategy value (benefit minus cost) increasenpared to the reference case with
decreasing threshold levels. This is shown cleasiyparing Figure 5-2b and Figure 5-7b. In
the cases considered here, the effectiveness [{essemted by the chance to meet the target)
i.e. the benefit of a strategy is obviously domimgtthe result. Remediation cost plays a
minor role. The relative influence of benefit anmstis closely related to the assumed land
value, which was evidently set relatively high. 8een though the cost increases with
decreasing threshold levels, the strategy valllkeirstreases because of the more significant
increase of the strategy benefit. Figure 5-2c aigirE 5-7c¢ show the distributions of the
strategy values of both cases. The role of the {aatde will be investigated in detail further
below (see section 5.3.3.1).

5. The same strategy represented by one stringifiagent implications (i.e. outcomes)
when settings change. This is because differemtasime probability distributions depend on
the given threshold levels. The latter plays a veigortant role in the likelihood of scenario
realization in reality. Whether better strategy ¢tenidentified by changing threshold levels

within allowed range will be discussed in sectiod..3.

5.3.1.2 Both @ and Gyna are higher

1. When the site is less severely contaminatedaymed land use is rather insensitive
and allows for a higher remediation target, theomemended decision of what to do in the
first period changes compared with the referense.c8trategy 0111 is optimal, and PRB
should be applied in the first period.

The evaluation results of the ‘former’ optimal ségy 1111 for the new parameter
settings (cases 5.3.1-5 to 5.3.1-8) reveals tkastiategy value is distinctly lower than the
value of strategy 0111. This is mainly due to thadr chance to meet the target (32.52%):
The results for strategy 1111 are: strategy co383;230 EUR, strategy benefit = 1,715,900
EUR, strategy value = 1,382,700 EUR.

51



0.8

* ScenaﬂovaMesF10ﬁ

0.6

*

0.4r

[ 1 Scenario probabilities

0.2 D -
of =—LU° S

Scenario probability and scenario value

0.2 | . . |

Scenario

(a) Scenario probabilities and values

20

-
(%))
T

Frequency
=

1975 1.8 1.85

Strategy Value

(c) Frequency of strategy values (100 runs)

1.9 1
x 10

.95
6

value (€)

2'5x 10 N
/
/
2+ _—
/A/
1.5/ e
1+ / /
S -
@/ %= Cumulat?ve cost .
—— Cumulative benefit
—e— Cumulative strategy value
-0.5 !
1 2 3
Period

(b) Cumulative cost, benefit and value

Regulative parameters

Case 5.3.1-8
Parameter changed compared to
reference case:

CT =0.0146
CMNA =0.2196

Figure 5-8: Results of optimal strategy 0111 for e 5.3.1-8

o
®

*  Scenario values(*107)
[ Scenario probabilities

<
@

<
~

o
[N

+

o

*

Scenario probability and scenario value

+
__’—*—‘!—H—|
1 2 L) 4

5

Scenario

=
6 7

(a) Scenario probabilities and values

value (€)

1.5F

2><10

6

—+- Cumulative cost
—e— Cumulative benefit A
—— Cumulative strategy value | _.—

Period

(b) Cumulative cost, benefit and value

Figure 5-9: Results of comparative strategy 1111 fecase 5.3.1-8

52



The reason why strategy 0111 is more effective #gteategy 1111 has been discussed in
previously in section 5.2.2.2. In case 5.3.1-8irsg#t when the site is less contaminated, it is
the same reason. Applying P&T in the first peristtategy 1111 is more likely to switch to
MNA after the first period. As a consequence, sgatl111 will be less effective over the
entire planning period of 30 years than strategylOkswitch to MNA is less likely due to less
effective technique PRB in first period). The effean be shown in the higher probability of
the first three scenarios for strategy 0111 congangh strategy 1111 (see Figure 5-8a and
Figure 5-9a). In the reference case, even thougkegly 1111 has a lower strategy benefit, it
still has a higher strategy value due to the loa@st. But in the case 5.3.1-8 settings, the
lower cost advantage of strategy 1111 can not cosgie the much lower benefit. As a result,
strategy 0111 is ranked better because of the hlggreefit (see Figure 5-8b and Figure 5-9b).
The frequency of the strategy values of these tinategies are shown in Figure 5-8c and
Figure 5-9c.

The results show the complex relation between kbaga Strategy value is decided by
cost and benefit. The slight change in parametéinge can change the proportion of the cost
and benefit in the strategy value. And thus, chantie result. With different scenario
probability distribution, the expected cost and défgncan change. For example, the same
strategy 0111 is not optimal under the referense sattings. But under case 5.3.1-8 settings,
0111 becomes the optimal strategy due to changespected cost and benefit caused by the
slight change in regulative parameters. The inggrpff different parameters and variables and
the relation between these parameters and variatdegle the valuation result. These
variables include various aspects involved in raatexh decision making besides regulative
parameters: site parameters, economic parameteinsasuland value and costs, technology
effectiveness and effectiveness’ uncertainties,tand parameters. These parameters will be
investigated in the discussion from section 5.8.8dction 5.3.5.

2. For strategies starting with the same technglagpen the threshold levels are higher,
the strategy cost, the strategy benefit, the giyatalue and the chance to meet the target all
decrease. The reasoning is the opposite to pdmtpdint 4 of section 5.3.1.1. Therefore it is

not repeated here.

5.3.1.3 Gyna is voluntarily lowered
The upper limits of the thresholds levels,,gand Gina,up are set by the regulation i.e.
they both can not be increased without permisstamce G, demarcates the environmental

status “clean”, it is obvious that it will not bewered voluntarily: € = Gy p. The decision
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maker’s flexibility that remains is to lower the¢shold level for switching to MNA: fna <
Cmnaup- The effect of doing so is not straightforwardeTiesults are discussed below.

1. When Gyna is voluntarily lowered, the optimal strategy i® thkame as the reference
case, which indicates that P&T should be appliedHe first period.

2. When Guna is voluntarily lowered, the strategy cost, thetsgy benefit, the strategy
value and the chance to meet the target all iner€lise cost increases because switching to
MNA requires lower concentration values that canabkieved only by prolongation of the
operation time of active remediation. At the sameef the chance of meeting the target is
increased, which yields an increased strategy ber&fice the strategy benefit increases
more significantly than the cost, the strategy gahcreases.

3. An extreme example is case 5.3.1-12, where MBIAat applied at all. Shown in
Figure 5-10a, the probabilities of scenarios B dnd 6 are zeros because MNA is not applied
(see Figure 5-1 for the tree structure). It hadhhstppping scenario probabilities after the
second period compared with the reference casedgsgos 3, 6 and 7 in Figure 5-2a). Even
though the cost increases, the strategy valudrstilbases because of the much higher benefit
(compare Figure 5-2b and Figure 5-10b). Figure &dlfows the frequency of the strategy
value of the optimal strategy in case 5.3.1-121fa0 runs.

A comparative strategy 0111 is taken under the Ba3d-12 settings. In the previous
comparisons, it is concluded that strategy OllIne effective because strategy 1111
switches to MNA too early. It may be taken wrongaasiversal conclusion for all situations
that strategy 0111 is more effective than stratebyl. It is important to point out that this is
not true any more in the settings in case 5.3.1atfn MNA is not applied any more. The
results of strategy 0111 and strategy 1111 unde¥ 6&8.1-12 settings are compared in Table
5-6. As can be seen, strategy 1111 is more effethian strategy 0111. (See Figure 5-10 and
Figure 5-11 for detailed information about these strategies under case 5.3.1-12 settings.)
In this case, strategy 1111 has higher strategyevaécause of higher benefit and lower cost

compared with the comparative strategy 0111.
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Table 5-6: Results of strategy 1111 and 0111 usingse 5.3.1-12 parameters

Strategy Strategy value (€) |Cost (€) Benefit(€) Ch ance to meet the
target
1111 (optimal) 3,480,700 396,850 | 3,877,500 75.46%
0111 (comparative) 2,695,400 565,970 3,261,400 67.97%

5.3.1.4 Conclusion

1. The regulative parameters have significant arilte on strategy cost, strategy benefit
(due to the influence on strategy effectiveness), after all, strategy value.

2. Under the condition of high land value, effeetiess is a more dominant factor
compared with cost.

3. When the threshold levels are lower, the morectfe technology, P&T, is
preferable for the first period. When the thresHelekls are higher, PRB is preferable for the
first period.

4. The same strategy represented by one stringmaan quite different actions over
time depending on scenario probabilities. The stemeiobability distribution depends on the
given threshold levels. Therefore, the thresholkle play a very important role in the
optimal remedial activity identification.

5. Voluntarily lowering Gana is investigated in this case for all periods. des not
change the optimal remedial action for the firstigme But it does increase the estimated
strategy value by changing cost and the stratef@etefeness. As discussed previously, by
changing the scenario probability distribution,can change the actual realized remedial
activities over time. When effectiveness is the nmaiterion in the decision making, MNA

should not be applied too early even though thestiold is met.

5.3.2 Site parameters

Site parameters include aquifer thickness (mAg)daativity (k) and total width of the
contaminated area (y). In the following part, thie& of changing assumptions about these
parameters to the result will be examined. The ltesare shown in Table 5-7. If not

mentioned, the parameters are the same as thenmegecase.
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Table 5-7: Sensitivity analysis results for site pameters

Parameters  |Candidate Best Strategy Cost (€) |Benefit (€) |Chance to
strings string | value (€) meet the
target
Reference mAq =5m 1111 1111 | 2,170,600 | 350,520 | 2,521,200 48.78%
k = 0.0005 m/s 1101
y =100
Case 1111 1101 | 2,263,500 | 242,730 | 2,506,200 | 48.47%
5.3.2-1 mAg=2m 1101
Aquifer 0110
thickness Case mAg = 10 m 1101 1101 | 1,978,000 | 533,470 | 2,511,500 | 48.57%
5.3.2-2 1111
Case | k=0.0001m/s 1111 1101 | 2,300,000 | 207,400 | 2,507,400 | 48.48%
5.3.2-3 1101
Conductivity Case 1111 1111 | 2,022,800 | 495,580 | 2,518,400 | 48.71%
5.3.2-4 | k=0.0009 m/s 0111
1101
Case | k=0.0015m/s 0110 0111 | 1,872,600 750,150 | 2,622,700 | 52.41%
5.3.2-5 0111
Case | k=0.0030 m/s 0101 0111 | 1,550,300 | 1,065,600 | 2,615,900 | 52.28%
5.3.2-6 0110
0111
Case 1111 1111 | 2,258,900 | 259,840 | 2,518,700 | 48.73%
5.3.2-7 y=50m 0111
0110
0110 0110 | 2,386,500 | 230,530 | 2,617,000 | 52.30%
Case y=20m 0111
Total width of | 5.3.2-8 0101
contaminated 0100
area Case y=10m 0111 0111 | 2,423,500 | 191,950 | 2,615,400 | 52.27%
5.3.2-9 0110
0100
Case y=200m 1111 1111 | 1,985,100 | 531,960 | 2,517,000 | 48.72%
5.3.2-10 1101

5.3.2.1 Aquifer thickness

1. When the aquifer thickness changes, the optierakdial action for the first period
does not change. P&T should be applied.

2. When the aquifer thickness reduces (case 5)3.thd strategy cost reduces. This is
because the remedial activity needs less matarargy and labor. Because of the same
reason, when the aquifer thickness increases,tthtegy cost increases (case 5.3.2-2). The
changes in aquifer thickness do not influence treegyy effectiveness so much. As a result,
the benefit does not change significantly. So thategy value is changed mainly due to the
changing costs.

3. Candidate strings are different from each othezach case. The two reasons for it
have been discussed in section 4.4: similar styatafues and identical strings. Case 5.3.2-1
is taken here as an example to demonstrate thesee@wsons. Strategy 1111 and 1101 are
identical strings. This can be seen in Figure 571 probability of scenario 1 is almost zero.
As discussed in section 4.4, the third digit of $tiing does not matter. As a result, 1111 and
1101 are identical. Strategy 0110 is listed asralicate string because of the other reason. It
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has similar strategy value as strategy 1101 (111Hg.results for strategy 0110 are: strategy
value = 2,250,400 EUR, strategy cost = 364,050 E&iRtegy benefit = 2,614,500 EUR,
chance to meet the target = 52.24%. This strategyhigher benefit due to the higher chance
to meet the target. It is a more expensive stratgy to the high installation cost and
switching cost. After all, Strategy 0110 has a Emstrategy value with the optimal strategy.
As a result, strategy 0110 is also listed as aidatel string. As discussed in section 4.4, it is
supposed that the decision maker provides therionteas: when strategy value is positive,
Max (mean/Std.); when strategy value is negative) ffmean|*Std.). According to these
criteria, the optimal strategy is chosen. The samiteria are applied in this study when

multiple candidate strings appear.
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Figure 5-12: Scenario probabilities and values fostrategy 1111 and 1101 in case 5.3.2-1

5.3.2.2 Conductivity

1. The change of conductivity can change the optieraedial action for the first period
when it is increased to a certain level. In cage255 and case 5.3.2-6, the optimal decision
for the first period would be to apply PRB. The gqmarison of strategy 1111 and strategy
0111 is shown in Table 5-8. The detailed informatadbout these two strategies using case
5.3.2-5 parameters is shown in Figure 5-13 andrEigul4. The reason why strategy 0111 is
more effective has been discussed in chapter 3.2Therefore it is not repeated here.
Comparing the costs in Table 5-2 and Table 5-8aisvinat, with a higher conductivity, the
low cost advantage of strategy 1111 is no longgnicant using case 5.3.2-5 parameters
compared with the reference case. As a result, aviightly higher cost and much higher
benefit, the strategy 0111 has a much higher glyatalue compared with strategy 1111, as
shown in Figure 5-13b and Figure 5-14b.
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Table 5-8: Comparison of results of strategy 1111ra 0111 in the reference case, case
5.3.2-3, case 5.3.2-4, case 5.3.2-5 and case %.3.2-

Reference Case Case Case Case
Strategy case 5.3.2-3 5.3.2-4 5.3.2-5 5.3.2-6
Strategy 1111 350,520 207,400 495,580 714,370 | 1,257,200
cost (€) 0111 539,720 455,570 623,870 750,150 | 1,065,600
Strategy 1111 2,521,200 | 2,507,400 | 2,518,400 | 2,512,900 | 2,519,000
benefit (€) 0111 2,619,000 | 2,618,100 | 2,618,500 | 2,622,700 | 2,615,900
Strategy 1111 2,170,600 | 2,300,000 | 2,022,800 | 1,798,600 | 1,261,700
value (€) 0111 2,079,300 | 2,162,600 | 1,994,600 | 1,872,600 | 1,550,300
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2. Conductivity influences mainly the cost, not #teategy effectiveness and thus, not
the benefit. When the conductivity is lower, thestcis lower. This is true for both P&T and
PRB. It is because when the conductivity is lowRgT needs a lower pumping rate. The
lower pumping rate causes less cost. For PRB, loaeductivity means that the barrier needs
less filling material. With the same reasoning,ighlr conductivity causes higher cost. The
influence is different for these two technologiés shown in Table 5-8, the effect of
changing cost due to changing conductivity on P&Tbigger than PRB. Therefore, the
influence on the cost of strategy 1111 is biggantktrategy 0111. This is also the reason why
optimal strategy switches. By influencing the casinductivity influences the strategy value,
while the influence on strategy benefit is not gigant. After all, when the conductivity
increases, the strategy value decreases; whenotiductivity decreases, the strategy value

increases.

5.3.2.3 Total width of the contaminated area

1. The change of total width of the contaminatezharan change the optimal remedial
action for the first period when it is reduced toegtain level. In case 5.3.2-8 and case 5.3.2-9
strategy 0110 is optimal. A comparison with strgté@11 is shown in Table 5-9. As can be
seen, the reason is the same as discussed inrs&s8id.2: the cost advantage of strategy
1111 is no longer significant enough to overconeedisadvantage of lower effectiveness.

2. If one looks at the strategies starting with slane technology for the first period,
total width of the contaminated area influencesntyaihe cost, not the benefit. The benefit is
changing slightly because of little deviations e tprobability distribution of C (Eq. 4-2)
produced by Monte Carlo simulation from one rurthe next. When the total width of the
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contaminated area is shorter, the cost is lowdnnfer total width of the contaminated area
causes higher cost. By influencing the cost, cotidtic influences the strategy value, while
the influence on strategy benefit is not significafdfter all, when the total width of the

contaminated area increases, the strategy valueatsss; when the total width of the

contaminated area decreases, the strategy valieasss.

Table 5-9: Comparison of results of strategy 1111 mnal 0110 using case 5.3.2-8
parameters

Strategy Strategy value (€) |Cost (€) Benefit (€) Ch ance to meet the target
0110 (optimal) 2,386,500 230,530 | 2,617,000 52.30%
1111 (comparative) 2,312,000 205,450 | 2,517,400 48.71%

5.3.2.4 Conclusion

1. The site parameters mainly have influence onscaghey do not have significant
influence on the strategy effectiveness. As a teghdy do not influence the benefit so much.

2. A thicker aquifer, higher conductivity and lomgetal width of contaminated area
will cause higher costs and thus lower strategyesad thinner aquifer, lower conductivity
and shorter total width of the contaminated arel @@use lower costs, and thus higher
strategy value.

3. P&T cost is more sensitive to conductivity anthk width of the contaminated area
than PRB. As a result, when these two parameteasgeh P&T can loose the low cost
advantage in the reference case.

4. When the conductivity is very high or the toiadith of the contaminated area is short,
PRB is preferred for the first decision period; wttee conductivity is low or the total width
of the contaminated area is long, P&T is prefefaedhe first decision period.

5.3.3 Economic parameters

Economic parameters include: land value, technologsts and discount rate. Land
value (Mc) is the value of the land as if it was clean.gui@s the land price multiplied by the
land area. Recall that the strategy benefit islgokalized by selling the land whereas the
benefit equals to ¥ multiplied by M (chance to meet the target). Texthgy cost is the cost
associated with a certain technology. It incluahessallation cost, reactivation cost, operational
cost and stopping cost. The role of technology ostnalyzed by multiplying a cost factor
(e.g. + 30% or -30%) to all costs. The interestdiscount) rate (r) has a very big influence on

the future cash flows. Future cash flows are leg®ortant with a larger the discount rate. The
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results of the study with respect to economic patans are shown in Table 5-10. All

parameter values not mentioned in the table arsdhee as the reference case.

Table 5-10: Sensitivity analysis results for econoim parameters

Parameters Candidate Best Strategy | Cost (€) [Benefit (€) | Chance to
strings string value (€) meet the
target
Reference V. = 10" € 1111 1111 |2,170,600| 350,520 | 2,521,200 48.78%
Costs (Table 5-1) 1101
r=3%
Case 5.3.3-1 V=2*10" € 0110 0111 |4,695,200| 539,760 | 5,234,900 52.33%
0101
0111
1101
1111
Land value | Case 5.3.3-2 V=10° € 1111 1111 -325,350 | 350,530 | 251,840 48.71%
Case 5.3.3-3 V=0 1111 1111 -350,500 | 350,300 0 48.72%
Case 5.3.3-4 PRB costs 1101 1111 |2,168,300| 350,560 | 2,518,800 48.74%
increase 30% 1111
Case 5.3.3-5 | PRB costs reduce 0110 0110 2,173,000 440,660 | 2,613,600 52.23%
30% 0111
1101
1111
Case 5.3.3-6 |P&T costs increase 1101 1111 |2,078,000| 438,180 | 2,516,200 48.68%
30% 0111
1111
Case 5.3.3-7 P&T costs 1111 1111 |1,933,900| 584,210 | 2,518,100 48.73%
Technology increase 80% 0111
cost 0110
1101
Case 5.3.3-8 P&T costs 0111 0110 1,913,500 703,440 | 2,617,000 52.29%
increase 90% 1111
0110
0101
1101
Case 5.3.3-9 P&T costs 1101 1111 |2,257,500| 262,860 | 2,520,400 48.75%
reduce 30% 1111
Case 5.3.3-10 r=0% 0110 0111 |4,569,500| 659,560 | 5,229,000 52.29%
0111
Discount | Case 5.3.3-11 r=2% 1101 1101 [2,735,000| 378,740 | 3,113,700 48.53%
rate 0110
1111
Case 5.3.3-12 r=6% 1111 1111 |1,062,000| 290,270 | 1,352,300 48.70%
1101

5.3.3.1 Land value

As discussed previously, land valuefVis the source of strategy benefit, which
represents strategy effectiveness. Thus, whenvahg increases, effectiveness plays a more
important role than strategy cost. This can be &een the switching of optimal action for the
first period when \ is increased to 2*T0OEUR in case 5.3.3-1. As discussed in section
5.2.2.2, strategy 0111 is a more effective stratedly higher cost than strategy 1111. In case
5.3.3-1, 0111 becomes the optimal strategy beaafube higher effectiveness. The switching
point of the land value {*) when the optimal action for the first period dges is \. =
2*10" €. When the land value decreases, the optimakgyaloes not change.
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Figure 5-15: Results of optimal strategy 1111 forase 5.3.3-3

An extreme example is case 5.3.3-3. When the landot sold even though the
remediation is finished, the land value is setéabro. In this case, there is only cost without
benefit for the project. Detailed information aba#tise 5.3.3-3 is shown in Figure 5-15.
Because the land value is zero, in Figure 5-15astienario values are actually the scenario
costs. In Figure 5-15b, it is shown that the cutivdabenefit is always zero. The strategy
value is the same amount of the strategy cost.r&igul5¢c shows the frequency of the
strategy value for 100 runs.

Changing discount rate and total time frame under ero land value assumption

When \f. is zero, benefit is not an influencing factor angre. As a result, cost is the
only criterion for the strategy valuation. The ghest strategy is the optimal. Discount rate
and the total time frame play very important roleghis situation because the cost is very

sensitive to them. This is due to the differenthclisw structures of different technologies.

63



The sensitivity of the results to changing discaaté and total time frame is shown in Table
5-11. If not mentioned, the parameters are seetié same as the reference case.

PRB has a very high installation cost at the bagmmand rather low operational cost
afterwards. P&T has lower installation cost at bieginning, but relatively high operational
cost thereafter. As discussed previously, discoat® has a bigger effect on the operational
cost of P&T compared with PRB. When discount ratel% (case 5.3.3-13), the cheapest
strategy is 0000. In this situation, the advantaigew operational cost makes PRB preferable.
But when the discount rate increases to 3% (cal3e3-34), strategy 1111 becomes the
cheapest strategy. Both costs of strategy 000QLahd are lower because of the discounting.
But the effect on strategy 1111 is bigger thantagyy 0000. With a bigger discount rate, the
high operational cost disadvantage of P&T becommaller. As a result, strategy 1111
becomes the optimal in case 5.3.3-14.

Except for low discount rate, the low operationagtcadvantage of PRB can also show
effect when the time frame is very long. When tingetframe is increased to 70 years (case
5.3.3-15), strategy 0000 becomes cheaper thaegyrat11.

If discount rate is reduced and total time frammaseased at the same time, the effect is
more significant. This can be seen from case 518.3t takes shorter time than case 5.3.3-15

to show the low operational cost advantage of PRB.

Table 5-11: Results for optimal strategies and congyative strategies with changing
discount rate and total time frame when land valueas zero

Zero land value Parameters Strategy Cost (€) Chance to meet
the target
Case 5.3.3-13 r=1% Optimal strategy 0000 402,260 30.93%
Discount Comparative strategy 1111 408,900 48.67%
rate Case 5.3.3-14 r=3% Optimal strategy 1111 350,520 48.78%
Comparative strategy 0000 376,510 30.91%
Total Case 5.3.3-15 70 years Optimal strategy 0000 410,590 65.50%
time frame Comparative strategy 1111 437,060 79.38%
Total time frame & Case 5.3.3-16 60 years Optimal strategy 0000 445,880 58.14%
Discount rate r=2% Comparative strategy 1111 457,430 76.30%

5.3.3.2 Technology cost

1. When the technology costs are changed, the aptuction for the first period can
change. This is shown in case 5.3.3-5, when thé&s aflsPRB are reduced by 30%, PRB
should be applied for the first period. As disculsbefore, under the reference case settings,
strategy 0111 (same as 0110) is more effective skrategy 1111, strategy 1111 has a higher
strategy value due to the cost advantage (showrlote 5-2). In case 5.3.3-5 settings, when

PRB cost is reduced the cost advantage of strat&fjy can no longer overcome the benefit
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disadvantage. Strategy 0110 becomes the optinzégir. The same effect can be seen when
P&T costs are increased. But to achieve the safeeteP&T costs have to be increased by
90%. This is again because of the discounting effae to the cash flow structure of P&T. If
discount rate is reduced to 1%, 0111 becomes thienapstrategy when P&T costs are
increased by 25%. The comparison of strategy 01tD1411 with r = 1% and P&T costs
increase 25% is shown in Table 5-12.

2. For the same strategy (for example, strategyt 11 the reference case and case 5.3.3-
6), when the technology cost decreases, the syrategy reduces, the strategy value increases.

When the cost increases, the effect is the opposite

Table 5-12: Comparison of strategies when r = 1%, &T costs increase by 25%
(mean of 100 runs, other parameters are the same s reference case)

r=0% Strategy value (€) |Cost (€) |Benefit (€) Chance to meet the
target
0110 (optimal) 3,472,300 672,370 | 4,144,700 52.32%
1111 (comparative) 3,408,600 490,250 | 3,898,900 48.79%

5.3.3.3 Discount rate

1. The net present values of cost, benefit andegfyavalue decrease with increasing
discount rate. This is why the cost, benefit amdtegy value all increase when the discount
rate decreases as shown in Table 5-10.

2. Discount rate has different levels of influemcedifferent cash flows. It has a bigger
effect on future cash flows. A bigger discount naigkes the future cash flows less important.
A smaller discount rate makes the future cash flowese important. As mentioned, under the
condition of high land value, the technology effeetess plays a very important role. This is
reflected on the strategy benefit. Since benefiuog in the further future compared with the
cost, discount rate has a bigger impact on bettedit cost (see also point 3. further below).
With a smaller discount rate, the future benefitmiere important. In other words, with a
smaller discount rate, the strategy effectivengsaare important. This is shown very clearly
if we compare strategy 1111 and strategy 0111 utltkercondition of the reference case
parameters (r = 3%) and case 5.3.3-10 parameters Q%). The comparison is shown
comparing Table 5-2 and Table 5-13. In both castategy 0111 is more effective than
strategy 1111, which is shown by the chance to tieetarget. In the reference case, strategy
1111 is optimal because of the cost advantage.igesissed before, when r is decreased, the
influence of effectiveness is increased. As a tethe cost advantage of strategy 1111 can no
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longer overcome the benefit disadvantage. Stra@byl becomes the optimal strategy.
Detailed information about the optimal strategy emdase 5.3.3-10 settings is shown in
Figure 5-16.

Table 5-13: Comparison of strategies using case 33310 parameters (mean of 100 runs)

r=0% Strategy value (€) | Cost (€) |Benefit (€) Chan ce to meet the
target
0111 (optimal) 4,569,500 659,560 5,229,000 52.29%
1111 (comparative) 4,425,800 445,830 4,871,600 48.72%
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Figure 5-16: Results of optimal strategy 0111 forase 5.3.3-10

3. For P&T and PRB, the effect of discount rat@ifferent. P&T has less installation
cost and more operational cost than PRB. PRB hesyaintensive cost at the beginning but
not so intensive cost afterwards. So P&T cost isemavenly distributed in time while P&B
cost is very much distributed at the beginning.aA®sult, the cost of P&T is more sensitive

to the discount rate than PRB. This can be seermpanng the strategy costs in Table 5-2 and
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Table 5-13. When interest rate is reduced from 8%% the cost of strategy 0111 increases
less than those of strategy 1111 (strategy 011228046, strategy 1111 by 27.2%).

5.3.3.4 Conclusion

1. The land value is the source of benefit, whiepresent the strategy effectiveness.
Higher land lave increases the importance of gyatffectiveness in the optimal strategy
selection.

2. Cost plays an important role in the strateguatbn. When land value is very low,
cost becomes a more important criterion for optistedtegy selection. When land value is
zero, cost is the only criterion. The cheapestiegnais the optimal. If the decision maker
wants to add the effectiveness as a criterion,ramuim chance to meet the target can be set.

3. Discount rate can change the relative importafigefactor to the valuation compared
with other factors. A higher discount rate decreabe importance of effectiveness and thus
relatively increases the importance of cost. A lodiscount rate has the opposite effect.

4. Discount rate can change the cost and bendiittste of a strategy. All values are
reduced after being discounted, including the cbenhefit and the strategy value. It has a
higher effect on the cash flows which occur in thgher future. It has more effect on the
benefit compared with the cost. It also has mofecefon the cost of P&T than PRB. PRB
becomes preferable when discount rate is lower.

5. Changing of the project time frame can influetioe optimal strategy making. The
low operational cost advantage of PRB is more al/im longer time frame. When time
frame is long enough, PRB becomes the optimal mcfitis will be further discussed in
section 5.3.5.1.

5.3.4 Technology parameters

Technology parameters refer to the effectiveneslsumtertainties of the effectiveness.
In this study, the effectiveness is representedhigydecay rate constant. It is different for
different technologies. For example, P&T is typiga@xpected to be more effective than PRB
(due to the effect of active pumping as opposegui@ passive treatment with PRB). The
assumptions made in the reference case are acglyrdime decay rate constant of P&Rp4r)
is higher than the one of PRBekg). Within the reasonable range, the rates are a@wrand
the effects on the results are examined below.cArs® issue analyzed here is the uncertainty
attributed to the technologies’ effectiveness.His study, this uncertainty is represented by
stochastic representation of the development ofatnimant concentration C over time (see eq.

4-2), resulting in a normally distributed probatyilidensity function of C, the standard
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deviation (Std.) of which is an input parametert tten assume any reasonable value. In the
reference case, the standard deviations of the@mds after a period of P&T, PRB and MNA
are set to be the same, which is 0.07. In theviafig, it will be discussed how a change in
standard deviation of different technologies wifeet the results of the strategy evaluation.

5.3.4.1 Effectiveness of technologies

The effectiveness of technologies can not be estinexactly in virtually all cases. This
can over estimate or under estimate the effectserndoreover, because of the development
of technologies, the effectiveness can improve.aAgsult, the investigation of technology
effectiveness is done by both increasing and dstrgdhe decay rate constah}. (The decay
rate constant defining the effectiveness of teabgies are changed in two ways: 1. either
ApsT OF Aprp IS Changed, while keeping the other one the sartbeareference case (the first
two groups in Table 5-14); 2pgt andApgs are changed at the same time (the last two groups
in Table 5-14). It is assumed that PRB can not beeneffective than P&T. The results are
shown in Table 5-14. If not mentioned in the talthe parameter values are the same as the

reference case.

Table 5-14: Sensitivity analysis results for effeateness of technologies

Parameters Candidate Best Strategy | Cost (€) |Benefit (€) | Chance to
strings string | value (€) meet the
target
Reference Aper =0.21 1111 1111 | 2,170,600 | 350,520 | 2,521,200 48.78%
Aprg = 0.12 1101
case 5.3.4-1 | Reduce Apgr by 25% 1111 1111 | 1,831,500 | 381,480 | 2,213,000 | 45.04%
Changing Apg7r=0.16 1110
effectiveness 1101
of P&T case 5.3.4-2 | Reduce Apgrto 0.12 0000 0000 | 1,055,100| 376,510 | 1,431,700 30.95%
(same as Aprp) 0001
0011
case 5.3.4-3 | Increase Apgr by 25% 1111 1111 | 2,850,400 | 326,270 | 3,176,700 55.84%
Apgr = 0.26 1101
case 5.3.4-4 | Reduce Aprg by 25% 1111 1101 | 2,153,800 | 351,690 | 2,505,500 48.41%
Apgg = 0.09 1101
Changing case 5.3.4-5 | Increase Apgg by 25% 1111 1101 | 2,163,300 | 351,660 | 2,514,900 48.63%
effectiveness Apgs = 0.15 1101
of PRB case 5.3.4-6 | In crease Apgpt0 0.21 1111 1111 | 2,163,000 | 357,920 | 2,520,900 48.78%
(same as Apg7) 1110
1000
1100
1101
P&T and PRB case 5.3.4-7 Reduce both 1111 1111 | 1,827,500 | 381,470 | 2,209,000 44.96%
are both Apgr and Apgg by 25% 1101
less effective Apgr=0.16
Aegg = 0.09
P&T and PRB case 5.3.4-8 Increase both 1111 1111 | 2,851,100 | 326,200 | 3,177,300 55.81%
are both Apgr and Apgg by 25% 1101
more effectvie Aogr = 0.26
Aegg = 0.15
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5.3.4.1.1 Changing effectiveness of P&T

1. Whenipgr is reduced to the level dfrs (case 5.3.4-2), the optimal action for the
first period becomes PRB. Two strategies 1111 ahtil Oare compared below with the
optimal strategy 0000 under case 5.3.4-2 settifigs.results are shown in Table 5-15.

Because of the same effectiveness, the chancegeab thre target for all strategies are
similar. Again, small variations are caused byuheertainty in Monte Carlo simulation. As a
result, cost becomes the main criterion for thenogit strategy selection. Strategy 0111 is the
most expensive strategy among the three due toswhiehing cost from PRB to P&T.
Strategy 0000 is the cheapest one due to the levatipnal cost. Please note that relative
economic advantages or disadvantages of eithenaddmyy are governed by assumptions
underlying the cost calculation. When installatmrst of PRB is more expensive or when
operational cost of P&T is reduced, strategy 0000 get relatively more expensive
compared with the other strategies which involveTP&d may therefore be not optimal
under altered conditions. The time frame of rem@&mhamay also influence the outcome, e.g.
when time frame is very short, P&T will be relaliveheaper than PRB, thus impairing the
relative value of strategy 0000.

Table 5-15: Comparison of strategies using case & parameters (mean of 100 runs)

Strategy Strategy value (€) Cost (€) Benefit (€) Ch ance to meet the target
0000 (optimal) 1,055,100 376,510 1,431,700 30.95%
1111 1,024,400 404,990 1,429,400 30.90%
0111 875,760 554,890 1,430,700 30.92%

2. Increasingpet does not change the optimal action of the firsigqoe P&T should be
applied. Cost is reduced compared with the referecase. This is because when the
technology is more effective, there is a biggerbpiolity to switch the more intensive
technique to MNA or to stop. In the case of MNAg ttost is much cheaper. In the case of
stop, there will be no further costs. This can &éensvery clearly if we compare Figure 5-17a
and Figure 5-2a. The results of reference caseectrate more in scenarios 1, 2 and 3
compared with case 5.3.4-3. These scenarios areni® which have to continue P&T after
the first period of P&T. In other words, there isnach higher probability for case 5.3.4-3 to
switch to MNA or to stop after the first period B&T compared with the reference case. The
opposite trend can be concluded wheggr is reduced.

Whenpgr is higher (case 5.3.4-3), expected benefit otespa1111 increases. This is

because of the increase of the chance to meeattett The total value of strategy 1111 also
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increases, due to the increase of benefit andebeedse of cost. (Compare Figure 5-17b and
Figure 5-2b.)

The chance to meet the target increases at higitebda because overall higher
effectiveness is dominating i.e. surmounts the oblthe increased likelihood of switching to
MNA.
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Figure 5-17: Results of optimal strategy 1111 forase 5.3.4-3

5.3.4.1.2 Changing effectiveness of PRB

WhenApgrg is changed, the results are not influenced verghmiihe optimal remedial
activity for the first period is still P&T. As disssed in the previous section, whefr is
reduced to the same leveligizg (Case 5.3.4-2Ztpet = Apre = 0.12), strategy 0000 is optimal.
This is not the case whéggg is increased to the same levelhpfr (case 5.3.4-Bipgr = ArrB
=0.21). To have a closer look to this apparenbmsistency, strategy 1111 shall be compared
with strategy 0000 and 0111 under case 5.3.4-thgst(see Table 5-16). Both in case 5.3.4-2
and 5.3.4-6, a%psgt = Aprs and strategies have hence a similar effectiverthssexpected
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benefits are similar. Cost is the main criteriomr the optimal strategy selection. The
difference is that under case 5.3.4-6 settingseasing the effectiveness of PRB to the same
level as P&T does not make strategy 0000 optimaat&yy 1111 becomes the cheapest one.
The costs of strategy 1111 and 0000 are listed difierent 2 in Table 5-17, under the
condition ofApgt = Aprs = A. As shown, wheri. increases, strategy 1111 becomes cheaper
while strategy 0000 becomes more expensive. Wghdritechnology effectiveness, there is a
higher likelihood for both strategies to switch MNA. As shown in Table 5-1, the
operational cost of MNA is higher than PRB, butagher than P&T. So switching from PRB
to MNA will increase the cost while switching froR&T to MNA will reduce the cost. As a

result, in case 5.3.4-2 strategy 0000 is cheap@tewn case 5.3.4-6 strategy 1111 is cheaper.

Table 5-16: Comparison of strategies using case 536 parameters (mean of 100 runs)

Strategy Strategy value (€) Cost (€) Benefit (€) Ch ance to meet the target
1111 (optimal) 2,163,000 357,920 2,520,900 48.78%
0000 2,119,900 397,880 2,517,800 48.71%
0111 2,059,100 460,080 2,519,200 48.75%

Table 5-17: Comparison of strategy costs for stragyy 1111 and strategy 0000 with the
samek

Aper = Aprg = A Strategy costs
1111 0000
A=0.12 404,990 376,510
A=0.15 387,640 380,980
A=0.18 368,770 390,910
A=0.21 357,920 397,880

5.3.4.1.3 Changing effectiveness of both P&T andBPR

1. Increasing or decreasinggt andiprg at the same time does not change the optimal
action for the first period. P&T is still the optain

2. When)pgr and Aprg increase, the strategy value increases. This ¢ause of the
increasing benefit due to the increasing chanaedet the target, and the decreasing of cost.
Increasing chance to meet the target is caused idpyeh effectiveness of technology.
Decreasing cost is because there is a higher pitipab switch to a cheaper technology and

to stop. When th&pgt andiprgs are decreased, the effect is the opposite.
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5.3.4.2 Uncertainty ofechnologies’ effectiveness

In reality, the levels of uncertainties associatéth technologies’ effectiveness are
believed to be different for individual technologlieThe effectiveness of widely used
technologies like e.g. P&T and PRB can be predi@stimated) with more certainty than the
effectiveness of MNA. Moreover, the knowledge affteologies’ effectiveness may improve
over time due to increasing experience. As a reguibbability density function of
concentration can change. To examine these effinessettings are changed in two ways: 1.
Std. of effectiveness is changed for all techn@egl. Std. of effectiveness is changed for
individual technologies only. The results are shoimn Table 5-18. Unless otherwise

mentioned, the parameters are the same as thenmegecase.

Table 5-18: Sensitivity analysis results for uncedinty of technologies’ effectiveness

Parameters Candidate Best Strategy | Cost (€) |Benefit (€) |Chance to
strings string | value (€) meet the
target
Reference Std pgr = 0.07 1111 1111 | 2,170,600 | 350,520 | 2,521,200 48.78%
Std PRB = 0.07 1101
Std MNA — 0.07
DEEmise Case Stdpgr = 0 1111 1111 | -335,730 | 335,730 0 0.00%
case 5.3.4-9 Stdpgg = 0
SthNA =0
All Std.s Case Stdper = 0.03 0111 0110 |1,046,600] 545,840 1,592,500 | 32.68%
are smaller 5.3.4-10 Stdpgg = 0.03 0110
SthNA =0.03 0101
Case Stdpgr = 0.1 1111 1111 | 3,043,000]| 347,150 | 3,390,100 62.19%
5.3.4-11 Stdprg = 0.1 1101
All Std.s Stdyna = 0.1
are bigger Case Stdpgr = 0.3 1111 1111 | 4,514,300 335,460 | 4,849,700 | 80.12%
5.3.4-12 Stdpgrg = 0.3
SthNA =0.3
Case Stdyna = 0.02 0111 0111 |1,464,000| 539,580 | 2,003,600 37.28%
Changing 5.3.4-13 0110
Std of 0101
MNA Case Stdyna = 0.3 1111 1111 |3,064,100| 355,380 | 3,419,500 65.88%
5.3.4-14 1101
Case Stdpgt = 0.02 0110 0100 [1,291,500( 547,970 1,839,500 42.22%
Changing 5.3.4-15 0101
Std of 0100
P&T 0111
Case Stdper = 0.3 1111 1111 |4,193,300| 333,620 | 4,527,000 73.54%
5.3.4-16 1110
Changing Case Stdprg = 0.02 1111 1101 (2,141,700 351,740 2,493,400 48.15%
Std of 5.3.4-17 1101
PRB Case Stdprg = 0.3 0001 0001 |3,019,800] 362,940 | 3,382,800 60.39%
5.3.4-18 0000
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5.3.4.2.1 Deterministic case: All standard deviatsoequal zero

1. An extreme case is when Std. = 0 (case 5.3.448%. is called a deterministic case.
As shown, the optimal action for the first perioged not change. Seen from Figure 5-18a,
strategy 1111 has only one scenario, scenariognhaio 5 shows that after the first period of
P&T, it will be switched to MNA. Then MNA will comue to be applied for the third period.
This decision path is according to the assumpti@t tlecision maker will switch to MNA
whenever it is possible. This may not be the cakenwthe decision maker delays the
application of MNA for a more effective remediatias discussed in section 5.3.1.3. In case
5.3.4-9, there is no benefit from selling the lasde Figure 5-18b). Since the Std. is zero,
there is no uncertainty in the result. This is shaearly in Figure 5-18c. When the Std. is
zero, under the current settings fog, Cr, Cuna and?a, there is no strategy which has the
chance to meet the target. There is no benefinyncases. To choose the optimal strategy,

cost is the only criterion. The cheapest strateghe optimal. In this case, it is strategy 1111.
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Figure 5-18: Results of optimal strategy 1111 forase 5.3.4-9
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The results for strategy 0111 and 0000 are compaitidthe optimal strategy in Table
5-19. As shown, all strategies have zero chancmdet the target. Therefore, there is no
benefit. The cheapest strategy is 1111. The saepaoibabilities of strategy 0111 and 0000
are shown in Figure 5-19. These two strategies batle only scenario 2. Action path of
strategy 0111: after the first period of PRB, iswitched to P&T. After the second period of
P&T, it will be switched to MNA for the third perib Action path of strategy 0000: after two
periods of PRB, it will be switched to MNA for thieird period.

Table 5-19: Comparison of results of strategy 111listrategy 0111 and strategy 0000
using case 5.3.4-9 parameters

1111 0111 0000

Cost 335,730 | 553,430 | 387,980
Chance to meet the target 0% 0% 0%
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Figure 5-19: Scenario probabilities of strategy 011 and strategy 0000 using case 5.3.4-9
parameters

2. The deterministic case’s chance to meet theetangll remain zero for a more
severely contaminated site or a stricter targe¢lleempared with case 5.3.4-9 (wheRi€
lower). In case of less severely contaminated @ita less strict target level compared with
case 5.3.4-9 (when:QGs higher), the chance to meet the target canree When ¢ is
increased to 0.11, strategy 1111 ends up with “Sédier the second periods (scenario 6).
The case with €= 0.11 (other parameters are the same as cage%.& taken as another
deterministic case to investigate the sensitivitghe results to uncertainty of technologies’

effectiveness. Again, the strategy has only onaaoe, which is scenario 6 (see Figure 5-
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20a). That means the strategy start with P&T fer first period, and switch to MNA for the
second period. After the second period, the tangébe met. The cumulative strategy value,
cost and benefit are shown in Figure 5-20b. Becatizero Std., there is no uncertainty of the
strategy value (see Figure 5-20c). The comparidostrategy 0111, 1111 and 0000 under
these settings is shown in Table 5-20. All straediave a chance to meet the target of 100%
and thus the same benefit. As a result, the cheapedegy is the best. Under the current
settings, strategy 1111 is the optimal one. Theigelty analysis results for uncertainty of
technologies’ effectiveness wher €0.11 are shown in Table 5-21.
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Figure 5-20: Results of optimal strategy 1111 forase 5.3.4-9 when €= 0.11

Table 5-20: Comparison of strategy 0111, strategyll1 and strategy 0000 (€= 0.11,
other parameters same as case 5.3.4-9 settings)

Strategy Strategy value Cost (€) Benefit (€) Chance to meet the target
0111 4,975,600 512,490 5,488,100 100%
1111 5,185,000 303,140 5,488,100 100%
0000 5,143,100 345,020 5,488,100 100%
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Table 5-21: Sensitivity analysis results for uncedinty of technologies’ effectiveness
(Cr=0.11)

Parameters Candidate Best | Strategy | Cost (€) |Benefit (€) |Chance to
strings string | value (€) meet the
target
Deterministc Std pgr =0 1111 1111 |5,185,000| 303,140 | 5,488,100 100.00%
case Std prg = 0
Std MNA — 0
CT =0.11
Reference Std pgt = 0.07 1101 1111 |5,623,900| 308,470 | 5,932,400 95.74%
case Std prg = 0.07 1111
with C T= 0.11 Std MNA = 0.07
Cr=0.11
Case Stdpgr = 0.03 1100 1100 |5,222,100| 306,430 | 5,528,600 92.47%
All Std.s 5.3.4-19 Stdprg = 0.03 1111
are smaller SthNA =0.03 1101
Cr=0.11 1110
Case Stdpgr = 0.3 1111 1111 5,408,100 320,140 5,728,200 90.74%
All Std.s 5.3.4-20 Stdpgs = 0.3 1110
are bigger Stdyna = 0.3
Cr=0.11
Case Stdyna = 0.02 1111 1110 |5,647,100| 304,830 5,952,000 95.78%
Changing 5.3.4-21 Cr=0.11 1110
Std of 1100
MNA Case Stdyna = 0.3 1111 1111 |5,638,200| 310,960 | 5,949,200 96.24%
5.3.4-22 Cr=0.11 1101
Case Stdpgt = 0.02 1101 1101 | 4,987,500 313,290 5,300,800 93.45%
Changing 5.3.4-23 Cr=0.11 1111
Std of Case Stdper = 0.3 1111 1110 (5,419,800 ( 320,810 5,740,600 91.03%
P&T 5.3.4-24 Cr=0.11 1110
Changing Case Stdprg = 0.02 1000 1000 |5,711,800]| 347,700| 6,059,500 97.62%
Std of 5.3.4-25 Cr=011 1010
PRB Case Stdprg = 0.3 1111 1111 |5,624,100| 308,500 | 5,932,600 95.75%
53426 Cr=0.11 1101

5.3.4.2.2 Analysis with small standard deviations

1. When all Std.s of the technologies’ effectivenase set to be 0.03 (see Table 5-18:
case 5.3.4-10) the optimal remedial action forfitst period changes: PRB should be applied
for the first period.

To analyze the reasons, the performance of straté@y under the condition of case
5.3.4-10 is compared with the optimal strategy Oihl€ase 5.3.4-10. The results are shown in
Table 5-22. It can be seen that strategy 0110e&lgl more effective than strategy 1111, and
has therefore a much higher strategy value evengthat is more expensive. Detailed
information about these two strategies is showRigure 5-21 and Figure 5-22.

In contrast, under the condition in case 5.3.4-ith wll Std.s also being 0.03, the
optimal action for the first period does not changader this condition, the results for
strategy 0110 are: strategy value = 4,954,600 E&iRytegy benefit = 5,467,400 EUR,
strategy cost = 512,800 EUR, chance to meet tigettar 99.75%. Compared with the optimal
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strategy 1100, strategy 0110 is more effective arade expensive. Under case 5.3.4-19

settings, the effectiveness advantage does notawer the cost disadvantage. As a result,

strategy 1100 is the optimal. It can be argued tmatertainty about the technologies’

effectiveness, if represented by normally distoutates and the value of the distributions

Std.s, can have different effect on the strategkingadepending on the result of the

underlying deterministic case. If the latter yiell®% chance to meet the target, the optimal

remedial action is more likely subject to a chaagemall Std.s than in the case where the

underlying deterministic case has a 100% chanoeetet the target.

Table 5-22: Comparison of strategies using case %310 parameters (mean of 100 runs)

Strategy Strategy value Cost (€) Benefit (€) Chance to meet the target
0110 (optimal) 1,046,600 545,840 1,592,500 32.68%
1111 (comparative) 222,790 346,310 569,100 11.62%
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Figure 5-22: Results of comparative strategy 111bf Case 5.3.4-10

2. The distribution of scenario probabilities fdrasegy 1111 develop from a single
scenario distribution for the case with Std. = @fe 5-18a) into a distribution of scenarios
for cases with Std. = 0.03, and reference case=S8d)7 (Figures 5-22a and Figure 5-2a). In
this way, technology uncertainty is influencing naluation significantly by changing the
outcome probability density function (pdf) of cont&tion.

3. As shown in Table 5-18 and Table 5-21, with $10.03, in case 5.3.4-10 and 5.3.4-
19, the chance to meet the target is smaller comdpavith the their reference cases
respectively. It can be seen in Figure 5-21a thtt smaller Std.s the outcomes concentrate in
scenarios 2 and 3. Compared with Figure 5-2a, iclear that the stopping scenario
probabilities (scenarios 3, 6 and 7) are much lawease 5.3.4-10.

Figure 5-23 shows the results of the reference witbealtered @ (0.11 instead of 0.01).
All other parameters are the same as in the referease. Figure 5-24 shows the result of
case 5.3.4-19. The smaller Std.s increase very ttingcprobabilities of scenarios 5 and 6. The
other scenarios are reduced. The reduction of sosna and 7 yields a reduction in the final

chance to meet the target.
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Figure 5-24: Results of optimal strategy 1100 forase 5.3.4-19

5.3.4.2.3 Analysis with big standard deviations

1. When all Std.s are bigger, the optimal remedaion for the first period does not
change. This can be seen in Table 5-18 and TaBle 5-

2. With bigger Std.s, the distribution of scengpimbabilities concentrates more and
more in scenarios 1, 3 and 7. This trend can be cearly if we compare Figure 5-2a, Figure
5-25a and Figure 5-26a. This is because afteritbieperiod of P&T, with a higher standard
deviation, the results distribute more widely. Thsult of bigger Std.s is that it is more likely
to develop into the first (R y or the last branch (R p) after the first period of P&T (see
Table 5-23). These branches lead to scenarios &,dd 7. (See Figure 5-1 for the tree
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structure.) The trend of the result is that it @ases the proportion of outcomes which end up
in extreme directions, either very good, or verg.bEhe same reason applies for the outcomes
after the second period of P&T (see Table 5-23anBhes P; y and B plead to scenarios 1
and 3. In this case, the probability of scenaris Bbwered. After all, with a higher Std., the
probabilities of scenarios 1, 3 and 7 increaseb&liities of scenarios 4, 5 and 6 are lowered
because of the lower Py. Scenario 5 is further lowered by the lower R The same trend
can be observed for the investigated casesrat @11 (compare Figure 5-20a and Figure 5-
23a).

Table 5-23: Comparison of probability branches forthe reference case, case 5.3.4-11 and
case 5.3.4-12

After the first period After the second period
Probability branches [Py 3y Piim P11p Poiu  [P2im P21p Paou P22m P22p
Reference case 33.52% 161.21% |5.27% 13.52% |54.27% |42.21% ]14.15% [69.01% |16.84%
Case 5.3.4-11 39.30% |47.67% |13.03% 111.20%]45.90% |42.90% ]21.56% |51.14% |27.29%
Case 5.3.4-12 46.48% [18.54% [34.98% [36.60%{19.02% [44.41% |38.57% |18.88% [42.56%
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Figure 5-26: Results of optimal strategy 1111 forase 5.3.4-12

3. At Cr = 0.01, when the deterministic case’s chance tetrttee target is zero, the
strategy chance to meet the target (and hencerditegy value) increases with higher Std.s.
This is due to the increasing probability of sceyaB and 7 (they end up with stop after the
second period). As a result, the strategy bengfitigher. With the similar cost, the strategy
value is influenced by the strategy benefit, aretdfore, it increases. But at € 0.11, when
the deterministic case’s chance to meet the téasgeie, the strategy chance to meet the target
decreases with higher Std.s (Case 5.3.4-20). Congpkigure 5-20a and Figure 5-27a, it can
be seen that higher Std.s increase the probabiflisgenario 1 and reduce the probabilities of
scenarios 4, 5 and 6. The reduction of scenargidp (scenario) in this case is the reason for
the lower chance to meet the target.

4. Normally, a higher chance to meet the targeicatds a higher benefit. But when
chance to meet the target decreases from the detstimcase at €= 0.11 (100%) to case
5.3.4-20 (90.74%), the strategy benefit increadesl thus, the strategy value is higher. This
is due to the higher scenario probability of scendr(compare Figure 5-20a and Figure 5-
27a). Scenario 3 indicates that the target is mettlae land is sold after the first period, while
in the deterministic case the land is sold afterdbcond period. This means that in case 5.3.4-
20, the benefit occurs earlier compared with themienistic case. It can be seen if Figure 5-
20b and Figure 5-27b are compared. As discussetbpsty, the later cash flow will be more
discounted. The earlier selling of the land makies benefit increase because of the
discounting effect. As a result, the strategy vahsreases although the chance to meet the

target is lower.
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Figure 5-27: Results of optimal strategy 1111 forase 5.3.4-20

5.3.4.2.4 Changing standard deviation of MNA

1. At Gr = 0.01 (chance to meet the target is zero forrpetestic case):

When Stgna decreases, PRB becomes the optimal action foffitbie period (case
5.3.4-13). Comparison with strategy 1111 (Tabledp+2veals that strategy 1111 has a lower
effectiveness than strategy 0111 for the same neasavas discussed several times before:
too early switching to MNA of strategy 1111 resuitsa lower chance to meet the target. This
is particularly true if the assumed standard demiabf the effectiveness of MNA is smaller
than in the reference case. In this case, thetefé@ess disadvantage of strategy 1111 is so
big that the cost advantage can not overcome itaAssult, strategy 0111 becomes the

optimal strategy.

Table 5-24: Comparison of strategies using case 3313 parameters (mean of 100 runs)

Strategy Strategy value (€) [Cost (€) Benefit (€) Gh ance to meet the target
0111 (optimal) 1,464,000 539,580 | 2,003,600 37.28%
1111 (comparative) 897,920 348,640 | 1,246,600 21.12%

When St@na is increasesd (case 5.3.4-14), the optimal adtonhe first period does
not change: P&T should be applied. Detailed infdramis shown in Figure 5-28. The
probabilities of scenarios 4 and 6 are increasedpened with the reference case (Figure 5-
2a). The probability of scenario 5 decreases. Thibecause of the high MNA standard
deviation. It makes the result more spread intaugy@er or lower classes after applying MNA
for a period.
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When Stgna increases, the strategy value increases. Thisetause the stopping

possibility after MNA is higher due to the highdarsdard deviation. Therefore, scenario 6

(see Figure 5-1, it is the scenario to stop afier second period of MNA) has a higher
probability in case 5.3.4-14 (Sida = 0.3, Figure 5-28a) than in the reference casl(® =
0.07, Figure 5-2a). As a result, the chance to rtieetarget of the strategy is higher, which

makes the strategy benefit higher.
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Figure 5-28: Results of optimal strategy 1111 forase 5.3.4-14

2. At Cr = 0.11 (chance to meet the target is one for oehestic case):

When Stgna is changed, the results do change only slightlysi@wn in Figure 5-23a,

the outcomes of the reference case with=@.11concentrate very much in scenarios 3 and 7.

Since the scenarios associated with MNA are saemdi 5 and 6. The probabilities of these
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scenarios are very low. As a result, the influenEehanging Stgna on the result is not

significant.

5.3.4.2.5 Changing standard deviation of P&T

1. At Gr = 0.01 (chance to meet the target is zero forrpetestic case):

When St@gr decreases, the chance to meet the target is sntaliepared to the
reference case. Benefit and the strategy valueedseras well. In case 5.3.4-15, the optimal
action for the first period is changed into PRBat&gy 0100). Compared to strategy 1111,
strategy 0100 is much more effective (Table 5-Figure 5-29 shows detailed information
about strategy 1111. At smaller ¢l the results converge towards the deterministi@ cas
(scenario 5).

When Stggr increases, the effect is the opposite of whateiscdbed above. When
Stdbgt increases, the optimal action for the first peramkes not change. P&T should be

applied for the first period.

Table 5-25: Comparison of strategies using case 3315 parameters (mean of 100 runs)

Strategy Strategy value (€) Cost (€) Benefit (€) Ch ance to meet the
target
0100 (optimal) 1,291,500 547,970 1,839,500 42.22%
1111 (comparative) 1,131,900 349,910 1,481,900 32.13%
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Figure 5-29: Results of comparative strategy 111Dbf case 5.3.4-15

84



2. At Cr = 0.11 (chance to meet the target is one for oehestic case):

When St@er decreases from 0.07 to 0.02 (case 5.3.4-23) arehV8iger increases
from 0.07 to 0.3 (case 5.3.4-24), the chance tot rtieetarget reduces in both cases. The
scenario probabilities and values of the optimadtegies for case 5.3.4-23 and case 5.3.4-24
are shown in Figure 5-30 and Figure 5-31. In ca8&183, compare with the reference case
in Figure 5-23a, the probabilities of scenariosb4and 6 are increased. The reduction of
scenarios 3 and 7 causes the reduction in chanceett the target compared with the
reference case. In case 5.3.4-24, seen from Figy3 scenario probability of scenario 1 is
increased while scenarios 4, 5 and 6 are reduckd. significant reduction of scenario 6

causes the reduction in chance to meet the target.
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Figure 5-31: Results of optimal strategy
1110 for case 5.3.4-24

Figure 5-30: Results of optimal strategy
1101 for case 5.3.4-23

5.3.4.2.6 Changing standard deviation of PRB

1. At Gr = 0.01 (chance to meet the target is zero forrnetestic case):

When St@rg decreases, the optimal action for the first pedogs not change. P&T
should be applied for the first period. Strategydi#¢ and strategy value decrease. When
Stdbrg iNcreases, the optimal action for the first pefiedomes PRB. The strategy benefit and
strategy value increase. The results of strate@i @0 case 5.3.4-18 are shown in Figure 5-32.
As shown, due to the increasing of &gl scenario probabilities of scenarios 1, 3 and 7
increase (compared with the reference case showmgure 5-2). And thus, the chance to

meet the target is increased.
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Figure 5-32: Results of optimal strategy 0001 forase 5.3.4-18

2. At Gr = 0.11 (chance to meet the target is one for detestic case):

When St@rg decreases, the chance to meet the target is hilghttre optimal strategy,
the decrease of $gkhas the effect of converging to the determiniséisec As a result, the
chance to meet the target is higher. Wherpggtihcreases, the optimal strategy is 1111.
Stobrg does not have effect on the result.

5.3.4.2.7 Conclusion

Uncertainty about technologies’ effectiveness hasfect on the strategy evaluation
and decision making. It directly governs the uraiaty in the description of the situation after
a particular management period, as is quantifiednegns of a probability density function
(pdf) of concentration. Scenario probabilities daparcorrespondingly. Higher uncertainty
with respect to e.g. the effectiveness of P&T aRBMhcreases the probabilities of scenarios
1, 3 and 7 and reduces the probabilities of scesdj 4, 5 and 6. Scenarios 3, 6 and 7 are
stopping scenarios, which influence the strateggnck to meet the target. Changes in
uncertainty of technology effectiveness cause caaield trade-off of probabilities between
these scenarios. The effect is very different ddppmnon the specific cases considered i.e.
assumptions made with respect to other settings.

5.3.5 Time parameters

Parameters investigated below comprise (a) the tiote frame of the project and (b)
the number of management periods distinguishecesaribe the process of flexible decision
making over time. Both projects with longer and réfo time frames compared to the

reference case are considered in the followingudsion. The effect of the number of
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management periods is examined by introducing 4, @nd 10 periods (reference case: 3
periods). Given the same total time frame, thetleio each decision period becomes shorter
with increasing number of periods. This means thatdecision maker can react to the actual
situation in a shorter time in a more flexible mannThe results are shown in Table 5-26.
(The results for NP = 10 are shown in Table 5-2Hh)ess otherwise mentioned in the table,

the parameter values are the same as the referagee

Table 5-26: Sensitivity analysis results for time grameters

Parameters | Candidate Best string Strategy Cost (€) |Benefit (€) | Chance to
strings value (€) meet the
target
Reference 30 years 1111 1111 2,170,600 | 350,520 | 2,521,200 48.78%
3 periods 1101
Case 5.3.5-1 10years 1111 1111 1,183,800 | 240,560 | 3,589,400 4.84%
1110
Total Case 5.3.5-2 20years 1111 1111 2,063,800 | 318,600 | 2,382,400 38.73%
1110
time frame | Case 5.3.5-3 40 years 1101 1101 2,645,900 | 366,770 | 3,012,600 60.75%
1111
Case 5.3.5-4 60 years 1000 1000 2,891,800 | 411,150 | 3,303,000 75.98%
1111
1101
1110
Case 5.3.5-5 | 4 periods 11111111 11111111 2,741,500 | 348,460 | 3,090,000 56.84%
Number of 11110111
Periods 11111101
Case 5.3.5-6 | 5 periods a* a** 2,895,300 | 342,640 | 3,237,900 58.44%
Case 5.3.5-7 | 6 periods b* b** 2,914,300 | 340,650 | 3,254,900 59.29%
Note: a* 1111110111111001 b* 11111111111110101111111100011111
1110110111110101 11111100111100010101011101110001
11112111111111010 11111101111111010101011111101011
1111111101110001 11111111011100001111111101100101
1111111112111111 11111110011110110011111100011000
1111111111110111 11101101111110110111111101101010
1111111111111001 11111111111111011111111100100001
1110111110010001 11111101111111001111111111100100
1111111001111011 11111100111111011111011101011100
1111110111011111 11111100111111111111111101111110
a**:1111111111111010 b**:11111110011110110011111100011000

5.3.5.1 Total time frame

1. With a shorter time frame (case 5.3.5-1 and &3&-2), the chance to meet the
target is lower. As a result, the benefit is rerabii lower (see Figure 5-33b). The cost is
lower because the reduction of operational cosiceSthe decreased benefit is dominating the
evaluation, the strategy value is distinctly redlicempared to the reference case. The shorter
time of treatment is the reason for lower effeatees. Correspondingly, the results
concentrate almost all in the first two scenarieigiire 5-33a). Both strategy benefit and total

value are lower than the reference case.
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Figure 5-33: Results of optimal strategy 1111 forase 5.3.5-1

2. With longer time frame (case 5.3.5-3 and ca8é51), both the cost and the benefit
(the chance to meet the target) increases. As slmwigure 5-34a, the probabilities of the
stop scenarios, scenarios 6 and 7, are higher seaduonger time of remediation compared

with the reference case (see Figure 5-2a). As @trdbe strategy value increases due to the

increasing strategy benefit (Figure 5-34b and FEduB4c).

3. PRB becomes more favorable when the time frameniger. More 0Os appear in the
candidate strings when the total time frame is ésndVhen T = 70 years, or when other

conditions change, such as discount rate, PRB wam leecome the optimal action for the first

period (see section 5.3.3.1, Table 5-11).

8

(b) Cumulative cost, benefit and value
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5.3.5.2 Number of periods

1. When the number of periods increases, the nupfterenarios increases significantly.
Figure 5-35a shows the scenarios when there agedidcision periods. With the same total
time frame, when the number of periods is increatiesl length of each decision period is
shorter. This means that the decision maker cast tedhe actual situation in a shorter time
in a more flexible manner. For example, the remeatiéivity can be switched to a cheaper

technology or to stop when the target is met inharter time period. Therefore, the

management flexibilities are more accurately réfldcin the analysis compared with less

decision periods for the same project.
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Figure 5-35: Results of optimal strategy 1111 forase 5.3.5-6

2. With a higher number of periods, the strategluevaincreases. This is due to
decreasing of the expected cumulative cost andnitreasing of the expected cumulative
benefit.

To see more clearly the effect of increasing pemodhbers on one certain strategy,
strategy “P&T whenever the concentration is aboygaC (strategy 1...1) is examined. The
period number will be increased to 10 for the sairetegy. The results of strategy value, cost,
benefit and chance to meet the target are showalite 5-27. The cumulative strategy values
are shown in Figure 5-36.

As shown in Figure 5-36, when the number of perimd$arge, e.g. 10 periods, the
cumulative value is reduced in the earlier periadsi)e the cumulative value is increased in
the later periods. At the beginning of the remedratprojects, there is almost only cost
without benefit. This is because the benefit wiltor later when the target is met. When each
decision period is very short, this trend can lenseery clear. The starting positions (vertical)

of three curves are different. The starting positad the curve for three periods is higher
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because there is already a chance to meet the iarte first period (the first ten years). As a
result, the strategy value is positive in the fatstision period. In the curve for ten periods,
there is no chance to meet the target in the tlivetperiods (the first six years). As a result,
the strategy value remains negative in the firsd fveriods. In the ten periods curve, the
cumulative strategy value even reduces in the seperiod. This is due to the increase of the
operational cost. The cumulative strategy valuencseased in the later periods when the
number of periods is bigger. The shorter the deciperiod is, the sooner can the land be sold.
Therefore the benefit will be less discounted. Agsult, the benefit increases. After all, the

expected strategy value increases.

Table 5-27: Strategy “Apply P&T whenever the concefration is above Guna” (Strategy
1...1) with different number of periods

Periods NP=3 NP=6 NP=10
Strategy value 2,170,600 2,914,000 3,478,700
Cost 350,520 340,700 338,090
Benefit 2,521,200 3,254,700 3,816,800
Chance to meet the target 48.78% 59.29% 67.87%
6
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Figure 5-36: Strategy values of strategy “P&T wheneer the concentration is above
Cwmna” (strategy 1...1) for different number of managemat periods using the reference
case parameters
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3. When NP <= 4, optimization is not needed. Ipassible to go through all possible
strings and identify the optimal string with “Bruterce”. The case with NP = 4 (case 5.3.5-5)
is tested with both “Brute Force” and “Optimizatioithe results from ten optimization runs
are shown in Table 5-28. As shown, there are tlwa®didate strings selected after ten
optimization runs, which are identical with the dattate strings selected by “Brute Force”
(see Table 5-26). The strategy value, strategy, sbsttegy benefit and chance to meet the
target of the optimal strategy chosen by the og@ton are shown in Table 5-28 (mean of
one hundred valuations). When NP > 4, optimizai®applied to perform the valuation. As
discussed in section 4.6, ten optimization runsdaree and the best string is the one with the
highest strategy value. The results for NP = 5;a6¢ 5.3.5-6 and case 5.3.5-7) are shown in
Table 5-26. The optimization results (ten runs)Mér = 10 are listed in Table 5-29. There are
512 digits in each string. Only the first twentgits are shown in Table 5-29. The candidate
strings are different from each other. But thetfaiggit is always identical. And thus, the

optimal remedial activity indicated for the first@sion periods is identical.

Table 5-28: Optimization results for the referencecase with NP = 4

Parameters

Candidate
strings

Best string

Strategy
value (€)

Cost (€)

Benefit (€)

Chance to
meet the
target

4 periods

11111111

11111111

2,746,000

348,480

3,094,500

56.93%

11110111
11111101

Table 5-29: Optimization results for the referencecase with NP = 10

Chance to
meet the
target
65.39%

Parameters Candidate strings
(each string has 512 digits,
first 20 are shown)

11101100111010111111...
11111111111001111111...
11101010111111001111...
11111101111110101101...
11111101111101001111...
11101101111100110111...
11101111111011111111...
11111001110011011111...
11101111110110101111...
11101100111111001111...

Best string
(512 digits, first 20 shown)

Strategy | Cost (€) | Benefit
value (€) Q)

10 periods 11101111111011111111... 3,362,900 | 344,040 | 3,706,900
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6. Future research

As presented in the previous chapters, the reseamtiucted on the application of real

options theory to remediation projects providesreagtive and dynamic way of optimal

strategy making compared with the traditional pcactMeanwhile, the research has raised

some new questions that require further investgatvhich will improve the implementation

of this new approach. The areas of future reseaeeldded are discussed below.

A more appropriate model to describe the developrokthe environmental situation
over time needs to be implemented. In this thesisimple decay model is used to
describe the development of the contaminant coretgorh with and without the effect
of technical measures. This simple model can bé&ced by a more accurate and
more sophisticated model, which can better predie development of the
contaminant concentration and, even more importamt reflect uncertainty stemming
from incomplete knowledge of site conditions magalistically than the hypothetical
parameter distributions employed in this thesis.

More accurate descriptions of the effectiveness amzkrtainties of the technologies
are needed. Quantitative description of the teduiet’ effect needs to be more
detailed. In this thesis, the assumptions are rasiraple. The effectiveness and
uncertainty are supposed not to change after tie sachnology is implemented for a
period. Future research can focus on the chandfegtieness and uncertainties of
the technologies in different point of time.

A continuous reduction in uncertainty due to immdvknowledge from ongoing
monitoring and additional site investigations dsoanot taken into account here. The
role of gaining knowledge for optimal strategy maki should therefore be
incorporated in future research.

Future research is needed to improve the modelaimmre adaptive one. In this thesis,
there are only three technologies considered. Aretet are certain rules for the
technologies to switch between each other. Wherethee more technologies and
different ways of switching between them, the matkleloped can not function any
more. There is a need to increase the flexibilitthe model in terms of a general
applicability to a wide range of remediation prégedviore research is needed for a
different and more powerful algorithm to perforne thaluation in two ways: strategy

valuation and strategy optimization.
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Attention should be paid to the discount rate taloerihe analysis. As discussed in the
previous chapters, the discount rate has a verympgct on the strategy valuation. In
this thesis, the discount rate is taken as giveoreMesearch is needed about the
discount rate itself. Research is needed to consfdeich economic model should be
used to calculate the discount rate? Is there taingr about discount rate? If there is,
how to take it into account in the valuation?

Further research is needed for the uncertainty hef ¢osts. In this thesis, the
uncertainties of the costs are not very much ingattd. There is some discussion on
it in the sensitivity analysis. But still, the cegif technologies are set to be the same
during the time when the technologies are impleegkniore research is needed on
how to build the cost uncertainty into the model ke it into account in the strategy
valuation. To achieve this, the uncertainties ef¢bsts have to be investigated.

In this thesis, the valuation using the real oiamethod is only shown for
hypothetical cases. Using a combination of thetesgsavaluation model and the flow
and contaminant transport model (s&étém in the list) will allow applications to real
site problems that are required to further prontloéereal options approach. This kind
of application will possibly raise further questsrentailing additional research topics

not listed here.
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7. Conclusions

This thesis presents a new approach for optimakdestion strategy making applying
real options theory. The goal was to improve tlaglitonal way of strategy making from a
static and passive way into a dynamic and proaciwag. By doing this, the value of
management flexibility can be taken into accounirfg future uncertainty.

It is demonstrated that the traditional NPV metfardremediation strategy making does
not take into account the future uncertainties @edflexibilities of management. As a result,
the strategies with various imbedded options amevalued. The optimal strategy chosen
based on the traditional method is thus not reaftyimal. A new approach which can
overcome these shortcomings of the traditional @festrategy making is needed.

The herein presented real options framework isntetk from the findings of the option
pricing theory in finance. Combining the decisioeet analysis and Monte Carlo simulation,
all possible strategies providing different opticare valued. The future uncertainty of the
contaminant concentration and the reaction of #w@sibn maker to the actual situation are all
taken into account in the valuation. The uncertaintaminant concentration is seen as the
underlying asset. The flexible choices of the denisnaker are seen as options. The different
thresholds allowing different technologies to bglemented are considered as exercise prices.
By calculating the expected strategy values, tretesjies are ranked. The optimal strategy is
the one with the highest expected strategy value.

The sensitivities of the results to the changeshef parameters are investigated. It is
shown that when land value of the site is very hitjle effectiveness is a more important
factor than the cost. When the land value is Idve, tost is the dominating factor in the
optimal strategy making. Moreover, voluntarily pgosting the application of MNA can
improve the effectiveness of the strategy. FurtlieenPRB is more preferable when the total
time frame of the project is very long. The semgitianalysis also indicates that increasing
the number of periods can increase the strategyevahd more accurately capture the
management flexibility.

After all, in this study, it is shown that the hier@resented real options framework is
capable of supporting remediation strategy makiing remediation strategy that is optimal in
terms of cost and effectiveness can be identifieduide the remediation action through the
entire decision period. It is an improvement comegawith traditional economic decision-
making techniques for remediation projects becausdkes into account both the uncertainty

in contaminant concentration development in time imherent management flexibilities. Real
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options change remedial planning from a passivesgatt pattern into an active and dynamic
pattern. But the model presented here is greathpldied. The application shown in the
thesis illustrates the concept rather than spedificcomparing the technical options
considered. For an in-depth analysis, there arat duéure research potentials. Among others,
the incorporation of site-specific conditions indilhg the implementation of a groundwater
flow and transport model (instead of the simpleagemodel used here) seems to be the most

relevant research topic in near future.
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9. Appendix

9.1 Program structures

9.1.1 Program for projects with NP <=4

BestString gives the optimal string. It calls thrdenctions (bruteForce,

fitSVLimitation10 and OneStringFigure).

bruteForce calls one function (fitSVLimitation1@®).runs through all possible strings
and find one candidate optimal string.

fitSVLimitation10 gives the value of a given string

OneStringFigure is based on fitSVLimitation10. Tdwy difference is that it plots the
outputs as figures. It will not be listed in appintD.2.

bruteForce

1

BestString « | fitSVLimitation10

\ OneStringFigure

Figure 9-1: Relations between functions when NP<=4

BestString

1. Eun bruteforce far Mrun times and get Mrun candidate

2. Fun each candidate string through fitSYLimitation 10 for

3. Setuser defined critena based on the trade-off between :

the mean and Std. :> (frequency figure,
4. Choose the optimal string according to the critena. scenano figure and
5. Run the optirmal string through fitSylimitation 10 for WM WE]

B. Fun COnestringFigure for the optimal string and plot the

Strings.

Outputs: The optirmal
string and three
figures for this string

i times and calculate mezn and Std. for each
cancidate string.

times and plot the frequency figure.

fiqures scenanowise and perodwise.

Figure 9-2: Optimal string selection and figures geeration
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bruteForce

1. Calculate how many possible
strings are there

2. Go through all possible strings
and calculate their values
through fitsVLimitation10

2. Show the string with the
fughest value

Output: one candidate
aptimal string

Figure 9-3: Function bruteForce - going through dlpossible strings

Input: a oven

Figure 9-4: Function fitSVLimitation10 - single sting valuation

fitSVLimitation10

Prepare for the valuation
calculate yearlky costs:
installation costs,
reactiveation costs,
aperational costs and
stopping costs

Five-step valuation

Step 1. Set up the decision
It

Step 2. Set up the cost
matree

Step 3 Setupthe
concentration and probability
matrices and calculate the
strateqy benefit and cost

Step 4. Calculate the
strategy walue

Step 5. Calculate the
chance to meet the target

utputs: strategy value,
strategy benefit, strategy cost,

chance to meet the target
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9.1.2 Programs for projects with NP > 4

As discussed in section 4.6, GA is a stochasticchkemethod which operates on a
population of solutions. To use this method for thal options valuation in this study, two
drivers are written by Claudius Burger.

One driver program is called myGAOpt. It defines garameters for the valuation such
as length of the project, NP and costs. It alsmdsfnumber of optimization runs, population
size of each run and the number of fithess funotieauations per run. It calls GA which is
written by Houchk, Joines and Kay. The output ofGAYpt is the results of ten optimization
runs.

The other driver is called EMOFIT. It converts stgies into representing binary strings.
It is called by GA. It calls FitSVLimitation9_gl.

A fitness function is calculated by FitSVLimitat®ngl to value each strategy.
FitSVLimitation9 gl is adapted from fitSVLimitatid® (code is provided in the next section).
It is called by EMOFit and returns a fitness valo&MOFit.

FitSVLimitation9 gl is almost the same as fitSVLiation10. So it is not repeated. The
codes for GA written by Houchk, Joines and Kayraselisted in the appendfx.

myGAOpt

T

GA

fitSVLimitation9_gl

Figure 10-5: Relations between functions when NP 4 (optimization)

2 These codes can be found on website://www.ise.ncsu.edu/mirage/GAToolBox/gagiist viewed on
26.04.09)
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9.2 MATLAB codes

9.2.1 The optimal string identification

function bestS=BestString %% file name: BestStr ing.m

%% This function gives the optimal string. It runs bruteForce for Nrun times and
%% finds the Nrun listed best strings (some are the same). Then it runs each
%% candidate string through fitSVLimitation10 (file name: fitOneStringinfo.m) for N
%% times, then finds out the mean and STD of the re sults of each string. The best
%% string is the one chosen according to the criter ia given by the user.

%% In the end, the frequency of the optimal string for NN time will be shown. The

%% scenario and period figures will also be shown.

%%% Set the parameters %%%6%%%%%%%%%%% %% % %% % % Pa04a6569/0% %
global LDP %% length of the total decision period

global NP %% number of periods

global r %% discount rate

%%future uncertainties of the concentration

global StdPT %% standard deviation of the concent ration after a period of P&T
global StdPRB %% standard deviation of the concent ration after a period of PRB
global StdMNA %% standard deviation of the concent ration after a period of MNA

%%effectiveness of the technologies

global Dpt %% decay rate constant of P&T
global Dmna %% decay rate constant of MNA
global Dprb %% decay rate constant of PRB

%%tresholds
global ConStop %% threshold to stop, the target le vel
global ConMna %% threshold to switch to MNA

%%land price
global PP %% land price euros/m”2

LDP=30;

NP=3;

r=0.03;

StdPT=0.07;

StdPRB=0.07;
StdMNA=0.07;

Dpt=0.21;

Dmna=0.02;

Dprb=0.12;

currentconc=1; %current concentration (=100% - refe rence value)
ConStop=0.01*currentconc;
ConMna=0.15*currentconc;

PP=400;

Nrun=10; %% number of time that bruteForce will be run

N=100; %% number of runs of each candidate stri ng to calculate the Mean and Std.
NN=100; %% number of runs for the frequency figur e

%%%6%%% %% % %%%% %% %% % %% %% %% %% %% % % %6%6%6%% %% %% % % %% %%
result=[];

SSSS=[];

cost=[];

string=[];

%% run bruteForce Nrun times and get the candidate strings
for i=1:Nrun
result(i,:)=bruteForce ;
end
result;
value=result(:,1)";
S=result(:,2:end)
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%%%%% run each candidate string for N times and cal
%%%%% and find the optimal string according to the

HH=[];
for j=1:Nrun
for i=1:N;
HH(j,i)=fitOneStringInfo(S(j,:));
end
end
HH;
m=[J;
for j=1:Nrun;
m(j,:)=[mean(HH(j,:)),std(HH(,:))];
end
m

gg=mean(m(:,1));

%% user defined criteria
if qg>=0

md=zeros(Nrun,1);

for j=1:Nrun

md(j,1)=m(j,1)/m(j,2);

end

max(md);%% when the strategy value is possitive
%% of value/Std;

[a,b]=find(md==max(md));
elseif qq<0

md=zeros(Nrun,1);

for j=1:Nrun

md(j,1)=(-m(j,1))*m(.2);

end

min(md);%%when the strategy value is negative,
%% (-m(j,1))*m(j,2);

[a,b]=find(md==min(md));
end
a
bestS=S(a,:) %% this is the optimal string

%%%%%%%%%%%%%%%%% generate the frequency figure for

99=[l;

for i=1:NN
[fitness,InflowTotal,SstrategyCost,Pm]=fitOneStrin

g9=[gg;[fitness,InflowTotal,SstrategyCost,Pm]];

end

figure(111)
COLORMAP(white)
hist(gg(:,1))
xlabel('Strategy Value')
ylabel('Frequency")
hAll = findall(gcf);
for idx = 1 : length(hAll)
try
set(hAll(idx),'fontsize',18);
catch
end
end

gg=mean(gg);
Svalue=gg(1,1) %% strategy value of the optimal s

Sbenefit=gg(1,2) %% strategy benefit of the optima
Scost=gg(1,3) %% strategy cost of the optimal s
SprobMeet=gg(1,4) %% chance to meet the target of t

OnesStringFigure(bestS) %% generate the scenario an
%% string

culate the mean and Std.
criteria set by the user

, try to find the biggest ratio

try to find the smallest

the optimal string

glnfo(bestS);

tring

| string

tring

he optimal string

d period figures of the optimal

106



9.2.2 Going through all possible strings

function result=bruteForce %% file name: bruteFor ce.m

%% This function runs through all possible strings and finds out the best string.

%%% Set the parameters %%%6%%%%%%%%%%% %% % %% % % YaPa0a6e/0%
global LDP %% length of the total decision period

global NP %% number of periods

global r %% discount rate

%%future uncertainties of the concentration

global StdPT %% standard deviation of the concent ration after a period of P&T
global StdPRB %% standard deviation of the concent ration after a period of PRB
global StdMNA %% standard deviation of the concent ration after a period of MNA

%%effectiveness of the technologies

global Dpt %% decay rate constant of P&T
global Dmna %% decay rate constant of MNA
global Dprb %% decay rate constant of PRB

%%tresholds
global ConStop %% threshold to stop, the target le vel
global ConMna %% threshold to switch to MNA

%%land price
global PP %% land price euros/m”2

%%9%%%% %% %% %% % %% %% %% %% % %% %% %% % %% % %% %% %% % %% % % %% %

results = [];

SS=[;

%% calculate how many decision points are there %%% %%%%%%%%%% %% %% %%
%% generate a matrix with 9s (when NP is fixed, the size of the matrix is known)

ND=9*ones(3"(NP-1),NP);

%% add MNA decisions %%
for i=1:NP
for j=2:3:(3"(i-1))
ND(j,i)=2;
end
end
%% add stop decisions %%
for i=1:NP
for j=3:3:(3"(i-1))
ND(j,i)=3;
end
end
%% adjust for Stop decisions (once stoped, next dec ision will be stop)
for i=1:(NP-1)
for j=1:(37(i-1))
if ND(j,i)==3
ND((3%j-2),(i+1))=3;
ND((3%-1),(i+1))=3;
ND((3%),(i+1))=3;
end
end
end
%% count how many decisions are there to make
9=0;
for i=1:NP
for j=1:3:(3(i-1))
if ND(j,i)~=3
9=g+1;
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end
end
end
g; %% this is the number of decisions

%% go through all possible strings %%%%%%%%%%%%%%%% %%%%%%%%%%%

for i = 1:2"g %% there are 2"g possible strings
% get binary number
binN = dec2bin(i-1);
% make it a string
binStr = num2str(binN);
% get length of bin string
binLen = length(binStr);
% create leading zeros
S=1;
for j = 1:binLen
S = [S,str2num(binStr(1,j))];
end

if g-binLen ~= 0
zeroVec = zeros(1,g-binLen);
S = [zeroVec,S];
end
[fitness]=fitOneStringInfo(S);

results = [results;fitness'];

SS=[SS;S];
end
results;
SS;
MaxBenef = max(results(:,1)); %% the string with th e highest strategy value is the

%% optimal

lI=find(results == MaxBenef);
SSS=SS(ll,);
result=[MaxBenef SSS]; %% show the optimal strategy value and the optimal string

9.2.3 Calculating the strategy value, strategy befig strategy cost and chance to
meet the target for any given string

function [fitness,InflowTotal,SstrategyCost,Pm]=fit SVLimitation10(S)
%% file name: fitOneStringIinfo.m

%%% This function gives detailed results of a given string.

%%% Set the parameters %%%%%%%% %% %%%%%% %% % % % Y4P6%6/0% %%
global LDP %% length of the total decision period

global NP %% number of periods

global r %% discount rate

%%future uncertainties of the concentration

global StdPT %% standard deviation of the concent ration after a period of P&T
global StdPRB %% standard deviation of the concent ration after a period of PRB
global StdMNA %% standard deviation of the concent ration after a period of MNA

%%effectiveness of the technologies

global Dpt %% decay rate constant of P&T
global Dmna %% decay rate constant of MNA
global Dprb %% decay rate constant of PRB
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%%tresholds
global ConStop %% threshold to stop, the target le vel
global ConMna %% threshold to switch to MNA

%%land price
global PP %% land price euros/m”2

Ns=10000; % number of realizations for each single Monte Carlo simulation point
currentconc=1; % current concentration (=100% - ref erence value)

kprb=250; %% per m"2
PT=2000; %% per m

Repla=100; %%replacement cost per year

%%%%%% P&T=1 PRB=0 MNA=2 stop=3 %%%%%%%%%%%%%%%%%%
LEP=LDP/NP; %% length of each decision period

aa=25000; %% Site area
Vland=aa*PP; %% value of land as if clean.

%%% Site parameters %%%%%%%%%%%%%%%%%%%%%%%%%
mfl=2; %% depth to the ground water table
mAQg=5; %% thickness of the aquafier

eta=0.7; %% efficiency of the pump

k=0.0005; %% m/s

i=0.001; %% hydraulic gradient

y=100; %% unit: m Wtotal of the contaminated area
Q=2*y*k*mAq*i; %% p&T rate [m3/s]

W=1.5*y; %% the total funnel length

H=mfl+mAQg+3;

KEN=0.20;

KAW=1; %% m"3

%%%%%%%%%%% installation costs %%%%%%%%%%%%%%%

Nwell=2; %number of wells

Deln=10; %% meters, same for PT and PRB

equip=15000; %% --> pump, treatment container(s), piping, ...

FiV = 0.7*Q*10/0.45; %% GW flow rate through all ga tes (70% of Q)

%% * contact time in reactor material (10 h)

%% / porosity of reactor material (45%)

Kfim = 600; %% (kfim = unit costs filling material, e.g. 600 EUR per m3)
FiC = Fiv*Kfim; %% filling costs

SiC = 30000; % site installation costs (preparation & mobilization)

MNA=200; %%per meter (MNA)

NMNAwell=10; %%number of wells (MNA)

fregMNA = 2 ; % 2 times a year (MNA)

cMNAsample = 250; % 250 Euro per sample (analysis + transport + personnel) (MNA)

PTinwof=SiC+PT*Nwell*Deln+equip;
PRBinwof=SiC+W*(0.5+mfl+mAq)*kprb;

%%%%Installation costs
PTin=SiC+PT*Nwell*Deln+equip+FiC;
PRBIin=SiC+W*(0.5+mfl+mAq)*kprb+FiC;
MNAiIn=MNA*Deln*NMNAwell;

%%%%%reactivation costs (treated as similar to rein stallation) %%%%%%%%
ptre=0.20*PTinwof+FiC;

prbre=0.25*PRBinwof+FiC;

mnare=0.30*MNAIn;

%%%%%0peration costs (per year) %%%%%%%%%%%%%% %% %%
control = 2000; %% Check & control operating syste m
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elww = 3600*Q*H/eta*KEN+365*KAW*Q*60*60*24; %% ele
%%Q/(60*60*24) per day, insdead of per second
anacost = NMNAwell*freqMNA*cMNAsample; % cost for a

PTop=control+elww+Repla; %% operational cost of P&T
PRBop=control+Repla ; %% operational cost of PRB pe
MNAop=control+anacost; %% operational cost of MNA p

%%% first year of installation for each period: cos
%% operational cost for this year

PTIN=PTin+PTop;
PRBIN=PRBin+PRBop;
MNAIN=MNAin+MNAop;

%% first year of reactive (reactivation cost + oper
PTre=ptre+PTop ;

PRBre=prbre+PRBop;

MNAre=mnare+MNAoOp;

%%%%% operation costs (whole period except for the
%% the value as the first year of the period)

PTope=0;

PRBope=0;

MNAope=0;

c=1:(floor(LEP)-1);

ptope=PTop*exp(-rc);
PTope=sum(ptope)+(LEP-floor(LEP))*PTop*exp(-r*floor
%% is not a integer, it is taken into account by th

prbope=PRBop*exp(-r*c);
PRBope=sum(prbope)+(LEP-floor(LEP))*PRBop*exp(-rfl

mnaope=MNAop*exp(-rc);
MNAope=sum(mnaope)+(LEP-floor(LEP))*MNAop*exp(-r*fl

ctricity and water
nalyses

per year
r year
er year

ts include installation cost,

ation cost)

first year, discounted back to

(LEP)); %% when the length of LEP
e second term

oor(LEP));

oor(LEP));

%%%stopping costs %% %%%%%%% %% %% %% % %% % %% %% %% % %% % %% %

PTst=0.08*PTinwof;
PRBst=0.01*PRBinwof;
MNAst=0.10*MNAin;

%% strategy valuation by 5 steps %%%%%%%%%%%%%%%%%%80%%%%%%%%%%%%

%% Step 1, set up the decisions Matrix %%%%%%%%%%%%

%% generate a matrix with 9s (when NP is fixed, the
ND=9*ones(3"(NP-1),NP);

%% add MNA decisions %%

for i=1:NP
for j=2:3:(3"(i-1))
ND(j,i)=2;
end
end

%% add stop decisions %%

for i=1:NP
for j=3:3:(3"(i-1))
ND(j,i)=3;
end
end

%% adjust for Stop decisions (once stoped, next dec
for i=1:(NP-1)
for j=1:(3(i-1))
if ND(j,i)==3
ND((3%-2),(i+1))=3;

%%%%%%%%%

size of the matrix is known)

ision will be stop)
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ND((3%-1),(i+1))=3;
ND((3%)),(i+1))=3;
end
end
end

%% put the given decision string into the matrix fo
h=0;
for i=1:NP
for j=1:3:(3(i-1))
if ND(j,i)~=3
h=h+1;
ND(j,i)=S(1,h);
end
end
end
ND ;

r P&T PRB decisions%%%

%% Step 2. set up the costs matrix %%%%%%%%%%%%%%%% %%%%%%%

NC=zeros(3N(NP-1),NP); %%the size is the same as th

%% acording to the decisions in the decision matrix
%% they are the first installed)
for i=1:NP
for j=1:(37(i-1))
if ND(j,i)==0
NC(j,i)=PRBIN+PRBope;
elseif ND(j,i)==1
NC(j,i)=PTIN+PTope;
elseif ND(j,i)==2
NC(j,i)=MNAIN+MNAope;
elseif ND(j,i)==3
NC(j,i)=0; %%%
%% will be adjusted later on
else ND(j,i)=ND(j,i);
end
end
end
NC;
%% adjust for the reactivation costs (once a techno
%% following non-very-first first application will
for i=1:(NP-1)
for j=1:(3(i-1))
if ND(j,i)==0
for i=(i+1):NP
for j=1:(37(i-1))
if ND(j,i)==0
NC(j,i)=PRBre+PRBope;
end
end
end
elseif ND(j,i)==1
for i=(i+1):NP
for j=1:(37(i-1))
if ND(j,i)==1
NC(j,i)=PTre+PTope;
end
end
end
elseif ND(j,i)==2
for i=(i+1):NP
for j=1:(37(i-1))
if ND(j,i)==2
NC(j,i)=MNAre+MNAope;
end
end
end
end
end
end

e dicision matrix
, set the costs (all set as if

stopping costs are different, it

logy is installed, all the
be reactivation)
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NC;
%% adjust for different operational costs for diffe rent technologies
for i=1:(NP-1)
for j=1:(3(i-1))
if ND(j,))==0 && ND((3%-2),(i+1))==0
NC((3*j-2),(i+1))=PRBop+PRBope;
elseif ND(j,i)==1 && ND((3*}-2),(i+1))==1
NC((3*j-2),(i+1))=PTop+PTope;
elseif ND(j,i)==2 && ND((3%-1),(i+1))==2
NC((3*j-1),(i+1))=MNAop+MNAope;
end
end
end
NC;
NCstr=NC;

%% adjust for the stopping cost (land value not in cluded)
for i=2:NP
for j=3:3:(3\(i-1))
if ND(j,i)==3 && ND(j/3,(i-1))==0
NCstr(j,))=PRBst;
elseif ND(j,i)==3 && ND(j/3,(i-1))==1
NCstr(j,))=PTst;
elseif ND(j,i)==3 && ND(j/3,(i-1))==2
NCstr(j,i)=MNAst;
end
end
end

%% adjust for the stopping cost and the value of th e clean land
for i=2:NP
for j=3:3:(3"(i-1))
if ND(j,i)==3 && ND(j/3,(i-1))==0
NC(j,i)=PRBst-Vland;
elseif ND(j,i)==3 && ND(j/3,(i-1))==1
NC(j,i)=PTst-Vland;
elseif ND(j,i)==3 && ND(j/3,(i-1))==2
NC(j,i)=MNAst-Vland;
end
end
end
NC;

%%%%%%%%%%%% discount NC %%6%%%%%%%%%%%%%%%
for i=1:NP
for j=1:(37(i-1))
NC(j,i)=NC(j,i)*exp(-r*LEP*(i-1));
end
end
NC;

%%%%%%% %% %% %% discount NCstr %%%%%%%%%%%%
for i=1:NP
for j=1:(37(i-1))
NCstr(j,i)=NCstr(j,i)*exp(-r*LEP*(i-1))
end
end
NCstr;

%%% prepare for calculating the expected cost for each period
NCs=NCstr;

%% Calculating the strategy cost %%%%%%%%%%%%%%%% %%%
%% cumulative costs for each scenario %%
for i=2:NP
for j=1:(37(-1))
if rem(j,3)==1
NCstr(j,i)=NCstr((j+2)/3,(i-1))+NCs tr(j,i);
elseif rem(j,3)==2
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NCstr(j,i)=NCstr((j+1)/3,(i-1))+NCs
else
NCstr(j,i)=NCstr(j/3,(i-1))+NCstr(j
end
end
end
NCstr;

%cumulative values for each scenario%%
for i=2:NP
for j=1:(37(i-1))
if rem(j,3)==1
NC(j,)=NC((j+2)/3,(i-1))+NC(j,i);
elseif rem(j,3)==2
NC(j,)=NC((j+1)/3,(i-1))+NC(j,i);
else
NC(j,i)=NC(j/3,(i-1))+NC(j,i);
end
end
end
NC; %%the costs of all the scenarios are the la

%%%%%%%Step 3.set up the concentration and probabil

%% strategy benefit and cost
NCon=9*ones(3"NP,(NP+1));
NCon(1,1)=currentconc;

Npro=9*ones(3"NP,(NP+1));
Npro(1,1)=1;

for i=1:NP
for j=1:(37(i-1))

%%%Monte Carlo simulation%%%%%%%%%%

if ND(j,i)==1
Con=(NCon(j,i)*exp(-Dpt*LEP
elseif ND(j,i)==0
Con=(NCon(j,i)*exp(-Dprb*LE
elseif ND(j,i)==2
Con=(NCon(j,i)*exp(-Dmna
elseif ND(j,i)==3
Con=-5000+0.07*randn(1,Ns);
%% that the probability will be inherited mainly by
%% three. When it is stop, the concentration is not
end

d1=0; %counter
d2=0; %counter
d3=0; %counter

for k=1:Ns
if Con(k)<ConStop
d3=d3+1;
p3=d3/Ns; %the probab
elseif Con(k)<=ConMna
d2=d2+1;
p2=d2/Ns; %the proba
else
dl=d1+1;
pl=d1/Ns; %the probab
%% period
end
end

Gstop=Con(find(Con<ConStop ));
Gmna=Con(find(Con>=ConStop & C
Gptprb=Con(find(Con>ConMna ));

if(length(Gptprb)~=0)

tr(j,i);

st column in the matrix

ity matrix, and calculate the

%%%%%%% %% %% %%
))+StdPT*randn(1,Ns);
P))+StdPRB*randn(1,Ns);
*LEP))+StdMNA*randn(1,Ns);
%take a huge negative number so

the last branch of the next
relevant anyways

ility of stop for the next period

bility of MNA for the next period

ility of P&T/PRB for the next

on<=ConMna));
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ACptprb=mean(Gptprb);%% the
%% the next period
NCon((3*-2),i+1)=ACptprb;
else p1=0;
NCon((3%*-2),i+1)=-9;%% to
end;

if(length(Gmna)~=0)
ACmna=mean(Gmna);
NCon((3%-1),i+1)=ACmna;
else p2=0;
NCon((3%-1),i+1)=-9;
end;

if(length(Gstop)~=0)

ACstop=0;
NCon((3%)),i+1)=ACstop;
else p3=0;
NCon((3%),i+1)=-9;
end;

Npro((3*-2),i+1)=p1*Npro(j,);
Npro((3*-1),i+1)=p2*Npro(j,i);
Npro((3+)),i+1)=p3*Npro(j,i);

%% once a group is empty, the p
%% will be zero. And because th
%% multiplied by the probabilit
%% next pranches will all be ze

end
end
%%% until here we get all the probabilities
NCon;
Npro;

%%% calculate the expected cost for each peri
NCs;
for i=1:NP

for j=1:(37(i-1))

NCs(j,i)=NCs(j,i)*Npro(j,i);

end
end
NCs;
excost=[];
excost=sum(NCs);

%%% calculate the period landvalue inflow
Inflow=zeros(3"(NP+1),NP+1);
for i=2:NP+1
for j=3:3:(3"(i-1))
Inflow(j,i)=Vland*exp(-r*LEP*(i-1))*Npro(j,
end
end
Inflow;
%% when it is stop, all the following branches can
%% any more
for i=1:NP
for j=1:(37(i-1))
if ND(j,i)==3
Inflow((3*}-2),(i+1))=0;
Inflow((3*j-1),(i+1))=0;
Inflow((3%)),(i+1))=0;
end
end
end
Inflow;
Inflow=sum(Inflow);
InflowTotal=sum(Inflow);

new current concentration for

show that this is an empty group

according to this group

e probability will be

y of the next branches, the
ro

od

not generate land value
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%%%%%%%%%% cumulative cost and cumulative benefi

for uu=1:NP-1
excost(1,uu+l)=excost(1,uu)+excost(l,uu+1);

end

for uu=1:NP
Inflow(1,uu+1)=Inflow(1,uu)+Inflow(1,uu+1);

end

excost;

Inflow;

%%calculate the strategy cost
cc=zeros(3M(NP-1),1);
for j=1:3"(NP-1)
cc(j,1)=NCstr(j,NP)*Npro(j,NP);
SstrategyCost=sum(cc);
end
CC;
SstrategyCost;

%%% adjust for the benefit to get after the last pe
NCC=NC;
i=NP;
for j=1:(37(-1))
if ND(j,i)~=3
if Npro(j,i)~=0
NCC(j,i)=NCC(j,i)-Vland*(Npro(3*j
end
end
end
NCC; %% the last colum contains the fin

%% Comments for Step 3: The cases when it stops and
%% ones deserve more attention. Once it stops, the
%% relevant as long as the probability is carried o

%% the following probabilities later on will be zer

%% Step 4. Calculating the strategy value %%%%%%%%%
cc=zeros(3"(NP-1),1);
for j=1:3"(NP-1)
cc(j,1)=NCC(j,NP)*Npro(j,NP);
Scost=sum(cc);
end
CC;
Scost;
u=sum(Npro(:,NP+1)); %% this should be 1

%% Step 5. Chance to meet the target %%%%%%%%%%%%%

%% generate the matrix containing only the chances
for i=1:(NP+1)
for j=1:(3"(i-1))
if NCon(j,i)<=ConStop
Npro(j,i)=0;
end
end
end
NproN=Npro; %%the matrix of not meeting the target

%%chance to meeting the target
Pm=1-sum(NproN(1:3*(NP),(NP+1)));

strategyValue=InflowTotal-SstrategyCost;
fithess=strategyValue;

riod for each scenario

,i+1)/Npro(j,i))*exp(-r*LEP*NP);

al scenario values

when the group is empty are the
concentration is no longer

n. Once the group is empty, all
0.

%%%%%%%%% % %% %%

%9%%%%%%%%% %%

which will not meet the target

chances
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9.2.4 Driver for GA: myGAOpt

function myGAOpt %% file name: myGAOptDY.m

global LDP

global NP

%%discount rate

global r

%%future uncertainties of the concentration
global StdPT

global StdPRB

global StdMNA

%%effectiveness of the technologies
global Dpt

global Dmna

global Dprb

%%tresholds to switch

global ConStop

global ConMna

%%land price

global PP

LDP=30;

r=0.03;

StdPT=0.07; %Standard deviation of the concentratio n (same for all)
StdPRB=0.07;

StdMNA=0.07;

Dpt=0.21; % degradation rate constant for P&T (appr ox. 50% in 5 years)

Dmna=0.02; % degradation rate constant for MNA
Dprb=0.12; % degradation rate constant for PRB

currentconc=1; %current concentration (=100% - refe rence value)

ConStop=0.01*currentconc; %% we can stop when the c oncentration is bellow this level

ConMna=0.15*currentconc; %%bellow this concentrati on and above ConStop, MNA
%above this concentration, P&T or P RB

PP=400; %% land price per m2
%%%%6%%%%% % %% % %% %% %% %% %% %% %% % %% %% %% %Ry
%%6%%%%%%%% %% %% %% %% %% %% %%

%9%6%%%%% %% %% % %%

NN=100;
NP=4;%%%%%%%%%%%%%%%%%%%number of periods%%%
% set up the decisions Matrix%%%%%%%%%%%% %% %% %% % Y696 %% % %% % %% %

%%generate a matrix with 9s (when NP is fixed, the size of the matrix is
%%known)

ND=9*ones(3"(NP-1),NP);

%%add MNA decisions%%
for i=1:NP
for j=2:3:(3"(i-1))
ND(j,i)=2;
end
end
%%add stop decisions %%
for i=1:NP
for j=3:3:(3"(i-1))
ND(j,i)=3;
end
end
%%adjust for Stop decisions (once stoped, next deci sion will be stop)
for i=1:(NP-1)
for j=1:(37(i-1))
if ND(j,i)==3
ND((3%j-2),(i+1))=3;
ND((3%-1),(i+1))=3;
ND((3%),(i+1))=3;
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end
end
end
%%count how many decisions are there to make
9=0;
for i=1:NP
for j=1:3:(37(i-1))
if ND(j,i)~=3
9=9g+1;
end
end
end

g
precis = 1;

strfun = 'EMOFit’;

filehead ='Optim’;

filetail = '.mat’;

runs = 10; %%%number of runs (this will generate ru
funEval = 500; % number of fitness function evalua

pcross = 0.5; %uniform crossover probability
PopSize = 50; % increase if optimal values are too
%run

pmut = 1/PopSize; Y%mutation rate
NoOfGen=floor(funEval/PopSize)

bounds = [0;(2"g)-1]'

first = true;
save First.mat first

for run = L:iruns
fitn = [];
Popp = [J;
save GaFit.mat fitn Popp
filename = [filehead,num2str(run),filetail];

[iniPop]=initializega(PopSize,bounds,strfun,[],[pr
% iniPop(:,1:end-1)

[x,endPop,bPop,tracelnfo] = ga(bounds,strfun,[],in
1],'maxGenTerm',NoOfGen,'tournSelect',[4],...
'myuniformXover',[pcross],'binaryMutation’,
save(filename,'x','endPop’,'bPop’, tracelnfo’)

load GaFit.mat fitn Popp

save(['Sup',filename],'Popp',fitn’)
dec2bin(x)

end

9.2.5 Driver for GA: EMOFit

function [sepp,fit|l=EMOFit(x,jodel)%%loads the addi
%% file name: EMOFit.m

global NP
global Ns
global g

ns best strings)
tions per run

different for each optimization

ecis 0]);

iPop,[precis 0

[pmut]);

tional parameters, conversions,
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probThresh = 0.700000;
%load theRealData.mat SSS fittt probb retVal

% get binary number
binN = dec2bin(x);
% make it a string
binStr = num2str(binN);
% get length of bin string
binLen = length(binStr);
% create leading zeros
S=1;
for j = 1:binLen

S = [S,strznum(binStr(1,)))];

end

if g-binLen ~= 0
zeroVec = zeros(1,g-binLen);
S = [zeroVec,S];

end

[fitness]=fitSVLimitation9_gI(S);
%fittt = [fittt; fitness(1)];
%probb = [probb; fithess(2)];

%retVal = [retVal,fit];

fit = fitness;

%save theRealData.mat SSS fittt probb retVal
Sepp = X;

118



