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Abstract 

Remediation investment projects are commonly evaluated based on traditional NPV (net 

present value) method. The traditional NPV method, however, is often misleading because it 

does not take into account the uncertainty of the future and the flexibilities the manager has in 

terms of adjusting the remediation strategy on demand. Typical imbedded real options during 

remediation projects include deferring, stopping and switching: deferring means to watch and 

to investigate (such as done in monitored natural attenuation, MNA); stopping means that the 

site manager can stop the remediation once the given target is met; switching means to replace 

a technology in operation by another technology/option that may become more appropriate in 

the future. Since these contingent management options are not considered by traditional NPV 

method, remediation strategies offering ample scope of flexibilities can be easily undervalued 

and, thus, the decisions made based on the traditional NPV method can be wrong. 

This study introduces a new approach for optimal remediation strategy making applying 

real options theory. MNA, pump-and-treat (P&T) and a permeable reactive barrier (PRB) are 

considered in this study as example technologies to demonstrate the approach. The 

remediation time frame is divided into a number of management periods, in which available 

options may be exercised. Introducing the concentration of the contaminant as the underlying 

asset, exercise of the options is triggered by the actual level of contamination compared to the 

given threshold levels. Uncertainty in concentration level is quantified with Monte Carlo 

simulations. The real options analysis provides the expected values of the alternative 

strategies. These strategies will be ranked based on their expected values. A hypothetical case 

is taken to demonstrate the approach and the sensitivity of the results to the changes of 

parameters is investigated. It is shown that this new approach is capable of identifying the 

optimal remediation strategy in terms of cost and effectiveness. It is an improvement 

compared with traditional economic decision-making techniques. The results suggest that real 

options theory is particularly appropriate to value remediation strategies with flexibility facing 

future uncertainties, thus having the potential to significantly improve remediation decision 

making. It is demonstrated that the optimal decision is very much depending on underlying 

conditions with respect to target and regulation levels, site conditions, economic assumptions, 

technologies’ effectiveness and their uncertainties. Voluntarily postponing MNA and applying 

more active remedial technology instead is recommended for projects where high economic 

value of cleaned land calls for high effectiveness.   



 

Zusammenfassung 

Sanierungsprojekte werden im Allgemeinen nach der traditionellen Kapitalwertmethode 

bewertet. Diese berücksichtigt jedoch weder die Unsicherheiten bezüglich der Entwicklung 

von Eingangsgrößen in der Zukunft noch die Flexibilität, die Sanierungsstrategie in Laufe 

eines Projektes an die Nachfrage anzupassen, wie es beispielsweise durch Aufschub oder 

Stopp der Sanierung, oder durch das Wechseln der Sanierungsstrategie geschehen kann. 

Typisch für den Aufschub der Sanierung ist beispielsweise das Überwachen natürlicher 

Schadstoffminderungsprozesse (engl.: Monitored Natural Attenuation, MNA). Ein 

Sanierungsstopp ist gegeben, wenn der Projektleiter die Sanierungsmassnahmen einstellen 

kann, weil das vorgegebene Ziel erreicht ist. Wechseln der Sanierungsstrategie ist dann eine 

Möglichkeit, wenn die betriebene Technologie durch eine andere Technologie/ Option, die in 

Zukunft besser geeignet sein kann, zu ersetzen. Diese möglichen Management Optionen 

werden durch die traditionelle Kapitalwertmethode nicht berücksichtigt. Deshalb werden 

Sanierungsstrategien, welche viel Spielraum für Flexibilität bieten, leicht unterbewertet, was 

dazu führt, dass Entscheidungen, die auf der traditionellen Kapitalwertmethode beruhen, 

falsch sein können.  

Diese Arbeit führt einen neuen Ansatz zur Entwicklung optimierter Sanierungsstrategien 

unter Anwendung der Real-Optionen-Theorie ein. Diese Studie prüft beispielhaft die 

Technologien MNA, pump-and-treat (P&T) und reaktive Wand (engl.: permeable reactive 

barrier, PRB) zur Demonstration des Ansatzes. Der Zeitraum der Sanierung wird in mehrere 

Managementperioden unterteilt, in denen die verfügbaren Optionen angewendet werden 

können. Die Konzentration des Schadstoffes wird als Grundlage betrachtet, so dass die 

Anwendung der Optionen durch den aktuellen Grad der Belastung, verglichen mit dem 

vorgegebenen Grenzwert bestimmt wird. Die Unsicherheit im Grad der 

Schadstoffkonzentration wird durch Monte Carlo Simulationen quantifiziert. Die Optionen-

Analyse bestimmt den Erwartungswert der alternativen Strategien. Diese Strategien werden 

nach ihrem erwarteten Optionenwert geordnet. Zur Demonstration des Ansatzes wird ein 

hypothetischer Fall vorgeführt und die Sensitivität der Ergebnisse gegenüber Änderungen der 

Parameter untersucht. Es wird gezeigt, dass dieser neue Ansatz die optimale 

Sanierungsstrategie hinsichtlich der Kosten und Wirksamkeit identifizieren kann. Dies ist eine 

Verbesserung gegenüber den traditionellen ökonomischen Methoden zur 

Entscheidungsfindung. Die Ergebnisse weisen darauf hin, dass die Real-Optionen-Theorie 

sich besonders dazu eignet, Sanierungsstrategien mit Flexibilität gegenüber zukünftigen 

Unsicherheiten zu bewerten. Somit haben sie das Potential, die Entscheidungsfindung bei 



 

Sanierungsprojekten signifikant zu verbessern. Es wird gezeigt, dass die optimale 

Entscheidung sehr stark von den Rahmenbedingungen in Bezug auf Sanierungszielwerte, 

Standort-Bedingungen, ökonomische Annahmen sowie von der Wirksamkeit der 

Technologien und ihren Unsicherheiten abhängt. Ein freiwilliger Verzicht oder ein 

freiwilliges Aufschieben von MNA zu Gunsten der Anwendung einer aktiven 

Sanierungstechnologien wird für Projekte empfohlen bei denen eine hoher Wert der sanierten 

Fläche eine hohe Wirksamkeit verlangen. 
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 1 

1. Introduction 

1.1 Problem description 

Remediation investment projects are commonly evaluated by the traditional NPV (net 

present value) method. This method, however, is often misleading because it does not take 

into account the uncertainty of the future and the flexibilities the manager has in terms of 

adjusting the remediation strategy on demand. It assumes a static decision-making process, 

where the decisions are made at the beginning without the management’s ability to change 

over time. Decisions made based on this manner can easily undervalue remediation strategies 

offering ample scope of flexibilities, and thus, can not be optimal.   

Figure 1-1 shows the deficiency of traditional method for remediation decision making 

by a greatly simplified example. When choosing the best remediation strategy, traditional 

approach will define the strategies first, supposing that they will not be changed. For example, 

two strategies are compared: strategy 1 is to implement P&T (pump and treat) for the entire 

decision time frame; strategy 2 is to implement PRB (permeable reactive barrier) for the entire 

decision time frame. The traditional method will value these two strategies based on the cash 

flows shown in Figure 1-1a and b. Assuming a discount rate of 5%, the NPV (in terms of cost) 

of the P&T strategy would be 45,460 ERU, whereas the NPV of the PRB strategy would 

amount to only 33,546 ERU (see chap. 2 for more details). However, it is not taken into 

account that one technology (here: P&T) might be more flexible than the other one (here: 

PRB) if the conditions at the site develop differently than expected. To give an example: What 

if the concentration after some years of P&T is low enough to switch to a cheaper option like 

MNA (monitored natural attenuation)? In this case, the cash flow will look like Figure 1-1c 

instead of a. A switch from P&T to cheaper MNA would reduce the cost of this strategy to 

32,492 EUR, which is cheaper than the NPV of the PRB strategy. In another case, what if the 

remediation target is met after some years of P&T? The cash flow will look like Figure 1-1d 

instead of a. If after three years of P&T the remediation target could be met, strategy cost will 

become even lower (28,594 EUR).  

Situations shown in Figure 1-1c and d are only two examples out of numerous cases 

which are not considered by traditional method. So the advantage of more flexible 

technologies such as P&T compared with less flexible technologies such as PRB is not taken 

into account by the traditional method.  
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Figure 1-1: Schematic illustration of the problem of implementing traditional method 
for remediation strategy making 
 

Real options theory develops together with the criticism and dissatisfaction of the 

commonly used traditional NPV method. Real options method can be an alternative to the 

traditional way of valuing strategies. It considers multiple decision pathways as a consequence 

of management’s flexibility to choose the optimal options along the decision path when 

uncertainty becomes resolved. It provides great insights into the value of flexibility facing 

future uncertainties. Since the real options theory has not yet been much extended to 

remediation strategy making, there are not ready made real options models which can be 

adapted. There are a lot of difficulties and obstacles, which have to be overcome.  

Firstly, options in remediation projects are unlike financial options, which are legally 

defined contracts. Important features such as the underlying asset and so-called embedded 

options in remediation projects need to be defined before the analysis. This has to be done 

fulfilling the common spirit of real options valuation in general while reflecting the most 

critical features of remediation strategy making at the same time. The common spirit of real 

options valuation is that it is a technique for evaluating investments under conditions of 

uncertainty. The manager has the flexibility to exercise a certain option depending on the 

actual outcome of the underlying asset. So there must be uncertainties in the development of 

the underlying asset. The manager must have the flexibilities to decide what to do. The 
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(c) Cash flow of the project: P&T for 5 years – possible outcome 1 
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(d) Cash flow of the project: P&T for 5 years – possible outcome 2 



 3 

decisions will be made according to the underlying asset. These main elements have to be 

identified in remediation projects so that the real options theory can be applied.  

Secondly, there is not much research done for valuing complicated path-dependent 

remediation options. Standard financial options valuation techniques such as Black-Scholes 

model or the binomial tree and standard real options valuation method in a common sense 

such as partial diferential equation method are not feasible for the given problem. Because the 

underlying asset in remediation projects can not be traded; it may not even be necessarily an 

economic term. And thus it is not possible to make a replicating portfolio as done in the 

classic way of real options valuation. (A replicating portfolio is a portfolio of assets whose 

changes in value match those of a target asset. For example, a portfolio replicating an option 

can be constructed with certain amounts of the stock underlying the option and bonds. This is 

the method used in the Black-Scholes model.) Moreover, not like a plain option in financial 

market, there are multiple options involved in the remediation decision making. In a plain 

European call option, the option holder has the right to buy a certain stock at a certain price on 

a certain date in the future. He will only exercise the option when the stock price turns out 

higher than the exercise price of the option. There is only one option (option to buy) and no 

further consequences. And it does not influence the development of the underlying stock price. 

In remediation decision making, there are multiple options involved and any decision made is 

going to influence the future uncertainty of the underlying and flexibility on that path. A new 

innovative option valuation approach is needed to deal with the specific problem in 

remediation strategy making.  

Thirdly, the method developed is greatly simplified as one of the first attempts to solve 

remediation decision making problems by real options valuation. There is future research 

potential to extend the method to solve more sophisticated problems and to improve its 

applicability and accuracy. 

1.2 Thesis objectives 

The first objective of this thesis is to examine the shortcomings of the traditional way of 

remediation strategy making from a financial perspective to compare with the innovative real 

options method. The purpose is to indicate that even though the traditional way is widely 

taught and easy to implement, it is not proper for most of the investment projects in real world, 

including remediation investments. Extra insight should be given by the real options approach 

to provide better strategy recommendation.  



 4 

Even though there are some methods which are applied to value real options, direct 

application of any classic method of real options valuation in remediation projects would end 

up with searching for proper questions to the given methods. The second objective of this 

thesis is to develop and illustrate a new approach that is specially designed for remediation 

real options valuation. This new approach will be applied to compare remediation strategies 

quantitatively in terms of their costs and effectiveness facing uncertainty with the help of the 

real options method. By means of a hypothetical case study it will be demonstrated how a 

strategy valuation based on real options may provide decision makers with practically 

improved and theoretically founded guidance for optimal long term remediation strategy 

making.  

The third objective is to investigate the sensitivity of the results to changing parameters. 

Five categories of parameters are investigated: regulative, site-specific, economic, 

technology-related, and time parameters. Regulative parameters are related with the 

thresholds. These thresholds can change when sites are contaminated on different levels and 

when the regulations change. Site-specific parameters include aquifer thickness, conductivity 

and total width of the contaminated area. Site-specific parameters are highly dependent on the 

conditions of different contaminated sites. Economic parameters include land value, 

technology cost and discount rate. Technology-related parameters include effectiveness and 

uncertainties of technologies’ effectiveness. Time parameters include total time frame of the 

project and number of decision periods in the project. It is intended to generalize the roles of 

these parameters in the optimal strategy making.  

The fourth objective of this thesis is to identify the research potentials and opportunities 

in the future regarding the further development and application of this new approach for 

remediation strategy making. This study does not provide a final solution but a pioneer 

method with several simplifications. It uses abstracted descriptions of technology effects and 

costs, is based on several simplifying assumptions, and possesses some limitations with regard 

to its applicability. Hence there is a great potential to continue and improve the work started in 

this thesis. The inspiration for future research is also an important goal of this study.  

1.3 Thesis outline 

Traditional NPV method and real options theory 

In this chapter, at first, the traditional NPV method, which is commonly used in 

investment valuation, and its shortcomings are presented. This method is applied to a simple 

example of remediation project to demonstrate its principles and limits. After that, the real 
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options theory is introduced. Its origins from financial option pricing theory and some 

common methods of real options valuation are presented.  

Previous real options applications for environmental projects  

This chapter provides an overview of previous work on the application of real options 

theory to environmental projects. It first reviews some work on general environmental 

projects, concerning their methods and findings. In the second part special attention is paid to 

the application on remediation projects. A critical assessment of the previous studies of other 

researchers in this area is provided.  

Real options valuation model for optimal remediation strategy making 

This chapter describes how the real options valuation model is built up in this study step 

by step. Firstly, the main uncertainty involved in remediation projects is identified. Then the 

options that the decision maker has during the project life time are investigated. After that a 

decision tree to solve this problem is built. Then it is demonstrated how the strategies are 

valued and the optimal strategy is defined and recommended. Finally, it shows how the 

optimization algorithm solves the problem when the number of periods becomes big.  

Application of the valuation model to a hypothetical case  

In this chapter, the real options valuation model for optimal remediation strategy making 

is applied to a hypothetical case. After defining all the relevant assumptions concerning the 

regulative parameters, site parameters, economic parameters, technology parameters and time 

parameters, the strategies are evaluated with the model developed in this study. It is shown 

how the optimal strategy can be identified and the optimal remedial activity to start with can 

be recommended.  

Parameter sensitivity analysis  

This chapter describes the results of the sensitivity analysis. Using the previous case as a 

reference case, a comprehensive analysis of different types of parameters (regulative, site-

specific, economic, technology-related, and time parameters) is conducted, in order to assess 

these parameters’ influence on the outcome of valuation.  

Future research  

This chapter focuses on the future research potential. Further studies are needed for a 

more successful application of real options theory to the optimal strategy making for 

remediation projects. The possible directions of research needed are listed. 

Conclusions and discussion 

This chapter provides the main conclusions and the final discussion of this PhD thesis 

about the application of real options theory to optimal remediation strategy making.  
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2. Traditional NPV method and real options theory 

2.1 Traditional NPV method and its shortcomings 

Net present value (NPV) is used to calculate the present value of multiple future cash 

flows. The nominal net value of any future (past) monetary benefits and costs is discounted 

(accumulated) to its present value. There are two reasons for discounting: time value of 

money and risk. In other words, one Euro today is worth more than one Euro in the future; 

One Euro which is safe is worth more than one Euro which is risky. The common formula for 

NPV is as follows: 
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(Eq. 2-1) 

 

Where, t is the time when the cash flow occurs, T is the total time of the project, r is the 

discount rate, and CFt is the net cash flow, which is the cash inflow minus the cash outflow at 

time t.  

Even though the traditional NPV rule is relatively simple, widely taught and accepted, 

its assumptions neglect two main issues in decision making: 1, the fact that there are 

uncertainties in the project, which can not be easily predicted today. 2, the management’s 

strategic flexibility to make the decisions as these uncertainties become known over time. 

Table 2-1 shows the main assumptions of NPV comparing with reality. 

 

Table 2-1: Comparison of traditional NPV assumptions and the realities 

Traditional NPV assumptions Realities 
Decisions are made now and never changed 
again. 

Not all decisions are made today; some are 
open for the future when uncertainties 
become resolved. Decisions can be changed 
in the future. 

Future scenarios are fixed according to the 
prediction today. 

Future scenarios are uncertain; the 
development is usually stochastic and risky 
in nature. 

Once the decision is made, the project will 
be passively managed. 

A project is usually actively managed 
through the project’s life. 

 

In the introduction, two remediation strategies are compared by the traditional NPV 

method. The detailed calculation is shown below. Assume that P&T costs 10,000 EUR every 

year. PRB costs 30,000 EUR in the first year and 1,000 EUR every year after the first year. 

According to equation 2-1, the present value of the costs of these two strategies can be 

calculated as the following: 
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As mentioned in the introduction, the decision made based on this method is not 

optimal. This is because of three reasons: 1. Flexible technologies, such as P&T are 

undervalued. 2. The active management is not given value. 3. Potential better strategies are 

not investigated. As a result, another valuation method which is more capable for the 

remediation strategy making is needed.  

This is not to say that NPV should be abandoned in all kinds of investment decision 

making. NPV method was first developed to value bond and stocks held passively by the 

investors (Trigeorgis, 1996). Fisher’s book “The Theory of Interest” in 1930 and Williams’ 

book in 1938 “The Theory of Investment Value” were the first to express the DCF 

(discounted cash flows) method in modern economics. It is proper for investment projects 

with low uncertainty and passive management (Figure 2-1). An example for this kind of 

investment is government bond. The future cash flows are certain. And the bond holders are 

passive investors because there is little they can do to bonds to alter the cash flows. For 

investment projects with uncertainty and active management, which is the case for most of the 

investment projects including remediation projects, the traditional NPV method is not feasible 

because it becomes impossible to forecast exact future cash flows and companies are not 

passive investors. Facing uncertainty, companies have the flexibility to sell the asset, invest 

further, wait and do nothing, or abandon the project. The alternative valuation method for this 

kind of investments is the real options method. (See Figure 2-1) 
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Figure 2-1: The difference between traditional NPV method and the real options method 
 

2.2 Real options theory 

The real options theory origins from the option pricing theory in financial market. So 

before introducing the real options theory, a brief introduction of financial options shall be 

given below.  

2.2.1 Financial options and option valuation 

The concept of options exists since ancient times. In ancient Greece, Thales used options 

to secure a low price for olive presses in advance of the harvest. In the early 1600s, trading in 

tulip options blossomed in Holland during the tulip mania. The planted tulip bulbs are only 

payable at the buying date if the harvested bulb exceeds a certain weight. (Brach, 2003) The 

common spirit in options is that it is a right but not an obligation to take a certain action. The 

action will only be realized if the actual situation meets a certain criterion. Above are some 

early examples of options. When stocks appeared in history, options on stocks also existed. 

But they were not traded on an exchange. Buyers and sellers had to find each other by 

themselves and prices are arbitrary. Options were difficult to deal with and were very illiquid 

at that time. The birth of modern options came with the work of Black and Scholes and 

Merton on option pricing in 1973, which could determine the fair market value of options. 

Within the same year, the Chicago Board of Trade opened the Chicago Board Options 

Exchange. Since then, modern financial options market came into existence. A financial 

option is defined as follows: An option provides the holder with the right, but not the 

obligation to buy or sell a specified quantity of an underlying asset at a predetermined price 

Real Options 

NPV 

High 

High 

Low 

Low Uncertainty 

Active management 
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(called a strike price or an exercise price) at or before the expiration date of the option. A call 

option gives the holder the right to buy the underlying asset at or before a certain date for a 

certain price. A put option gives the holder the right to sell the underlying asset at or before a 

certain date for a certain price. The option which can be exercised at any time before the 

expiration date is called an American option. The option which can be only exercised at the 

expiration date is called a European option. (Detailed information please find in Hull (2005), 

Natenberg (1994), Kolb (2002), and Fontanills (2005). 

Attempts to value derivatives such as options have a long history, the French 

mathematician Louis Bachelier showed one of the earliest attempts in his doctoral thesis, The 

Theory of Speculation (Bachelier, 1900). He tries to price options on French Government 

bonds. He used Brownian motion (BM) to model the fluctuation of stock prices on the market. 

He was on the right track. But BM allows stock price to be negative. However, it is under 

Bachelier’s work that the geometric Brown motion later on became a basic model for a stock 

price process in the modern theory of finance. Samuelson (1965) considered perpetual 

American options (an option with an infinite expiration date is considered to be perpetual). He 

used geometric Brownian motion (GBM) to model the random behavior of stock. GBM limits 

the values strictly greater than zero compared with BM; it is a more reasonable description of 

stock price dynamics. In his model, the expected rate of return of the stock and the discount 

rate for the option is depending on the unique risk characteristics of the underlying stock and 

the option. Thus, this model is greatly arbitrary because of the arbitrary discount rate. Until 

then, no one could figure out consistently how much options should cost for people with 

different risk aversions which cause different discount rates. The breakthrough came with the 

work of Black and Scholes (1973) and Merton (1973). They also use GBM to model the 

development of the stock price. But their work is based on the no-arbitrage condition in a risk 

neutral world. No arbitrage requires that the market is complete and there are sufficient 

amount of active investors with complete information who will notice any possible mispricing, 

put a lot of pressure on it, and quickly eliminate it. As a result, there are no arbitrage 

opportunities. In a risk neutral world the investor requires no excess return for taking risks, 

and the expected return on all securities is the risk-free rate. In their model all cash flows are 

discounted at the risk free rate. In 1997, Scholes and Merton won the Nobel Prize in 

economics for this seminal work (Black had died in 1995), which made derivatives very 

popular financial instruments and lead to the rapid growth of financial market in the last 

decades.  The Black and Scholes model is still the most widely used option pricing model 

used by traders today.  
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In order to derive the formula, Black and Scholes construct a risk-free portfolio 

consisting of a certain amount of options and a certain amount of stocks. Assuming no 

arbitrage, this portfolio earns the risk free interest rate. The derivation of the differential 

equation is out of the scope of this thesis. Interested readers can have a look at classic finance 

text books for details (Hull, 2005). The differential equation is:  
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(Eq. 2-2) 

 

f is the price of an option (it can be both a call option and a put option), t Is the time, r is the 

risk free rate, S is the stock price, σ is the volatility of the stock price. Depending on different 

boundary conditions, formulas for different option types can be derived. In case of a European 

call option on a non-dividend paying stock, the price of the option at time zero is: 
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In case of a put option, it is: 
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(Eq. 2-6) 

 

 

c is the price of call option, p is the price of put option, X is the striking price of the 

underlying asset, T is the time to maturity, and N(x) is the cumulative probability function of 

a standardized normally distributed variable x. Using other boundary conditions, formulas for 

other types of options can be derived.  

Some option values may be solved through closed-form analytical solutions such as the 

Black-Scholes formula, but some can not. In case there is no analytical solution, numerical 

methods must be used. Simulation, binomial lattice and finite difference method are three 

commonly used methods.  
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Boyle (1977) proposed a Monte Carlo simulation approach for European option 

valuation. Simulation models simulate thousands of possible paths of the value evolution of 

the underlying asset from time zero to the expiration date. Decisions can be made according to 

the outcomes. The expected value is discounted by the risk free rate back to time zero to 

obtain the option value. It is very useful for valuing options where the payoff is dependent on 

the path of the underlying asset or where there are multiple underlying variables. The 

binomial technique was originally developed by Cox, Ross and Rubinstein (1979). The life of 

the option is divided into a number of small time intervals of length ∆t. They assumed that in 

each time interval, the value of the underlying asset V either moves up to uV or down to dV. 

The binomial tree showing the development of the underlying asset can be drawn. The option 

value at each final node can be calculated. It is max [(S-X), 0] for a call option, and max [(X-

S), 0] for a put option. (S is the value of the underlying asset, X is the exercise price.) With 

the risk-neutral probability PRN = (R-d)/(u-d),(R=er∆t, teu ∆= σ , d = 1/u) the value of an 

option is OV = ( PRN *OVu + (1- PRN)*OVd)*e
-rt. The expected option value at each time step 

can be calculated backwards. The value for the very beginning node in the binomial tree is the 

value of the option value in question. The finite difference method was first proposed by 

Schwartz (1977). The partial differential equation which represents the option value is 

replaced by a set of difference equations by discretising all state variables. The first and 

second derivatives are replaced by a finite difference approximation. The continuous 

differential equation is approximated with a discrete difference equation. Option value is 

calculated by solving the difference equation. There are two state variables, stock price and 

time to maturity. Time is discretized into M intervals and price into N intervals. This can be 

shown in an M by N grid. Knowing the stock price at maturity, the option value at maturity is 

max [(S-X), 0] for a call option, and max [(X-S), 0] for a put option. The other boundary 

conditions are: when the stock price is zero, option value is K for a put option, 0 for a call 

option; when the stock price is N, option value is 0 for a put option, (N-X) for a call option 

(N>X). The option value is calculated backwards from the maturity time to time zero. For a 

detailed description of these three methods, see Hull (2005). 

2.2.2 From financial options to real options 

As implied by the name, real options evaluate real physical assets, instead of financial 

assets. They have some similarities with financial options. An important feature for both of 

them is flexibility. A real option is commonly defined as any decision that creates the right, 

but not the obligation, to pursue a subsequent decision.  The highlight is that business 
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decisions are flexible in the context of strategic capital investment decision making. It is very 

often related with strategic planning.  

Real options theory develops together with the criticism and dissatisfaction of the 

traditional way of capital budgeting, the commonly used NPV method. In the traditional 

approach, the future cash flows of an investment are calculated and discounted to the present. 

If this present value minus the cost is greater than zero, it is said that the NPV is positive and 

the investment decision is a “go”; otherwise not. (For remediation projects, NPV can be 

negative.) It assumes that either the investment is reversible, or, if the investment is 

irreversible, it is a now or never problem. It implies that the cash flows are fixed and the 

manager acts passively. These assumptions are not true for most of the investments in the 

world. As mentioned by Brennan and Schwartz (1985), the major deficiency of this approach 

is the neglect of the stochastic nature of cash flows and the capability of managers to respond. 

This method can easily undervalue projects with imbedded options, because the value of 

flexibility is considered to be zero. Thus the traditional NPV method, which is applied very 

often due to its simplicity, must be recognized to provide wrong results in many cases. 

Realising the limitation of the traditional NPV method and the value of flexibility, there are 

some extensions of the traditional method, such as scenario analysis and expected value 

analysis. These methods model the future development as several different outcomes to find 

the expected return. They are an improvement compared with traditional NPV method. Still, 

there is no management reaction involved. So the value of flexibility is still not reflected. 

In the 1970s Arrow and Fisher (1974) and Henry (1974) introduced the term of “quasi-

option value” in environmental economics. Their setting is that the future cost of the current 

irreversible environmental damage is uncertain. In their framework, the option value 

represents the value of the information that becomes available when uncertainty is resolved 

over time. At the same time with the breakthrough of Black-Scholes option pricing model 

(Black and Scholes, 1973, Merton, 1973) in finance, the techniques for pricing real options 

has been developed independently in the investment research. The term “real options” was 

coined by Stewart Myers in 1977, referring to the application of option pricing theory to the 

valuation of real physical investments with learning and flexibility. Today, the term of real 

options has been broadened. It is not restricted to the application of option pricing theory from 

finance. Real options approach became a systematic and integrated approach using financial 

theory, economic analysis, management science, decision sciences, statistics and econometric 

modelling in valuing real physical assets in a dynamic and uncertain business environment. 

Typical real options include deferring (to wait before taking an action until more is known or 
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the timing is expected to be more favorable), expanding or contracting (to increase or decrease 

the scale of a operation in response to the actual situation), switching (to alter the mix of 

inputs or outputs of a production process) and abandoning (to discontinue an operation and 

liquidate the assets).  

The first applications of real options theory were to natural resource investments. After 

that, it was applied in other areas such as research and development, development of new 

technologies, company valuation and so on. Brennan & Schwartz (1985) demonstrated how to 

apply real options theory to value natural resource projects and to derive optimal decisions. 

McDonald & Siegel (1986) stress the option value of postponing an irreversible investment. 

Dixit & Pindyck (1994) provided conceptual real options frameworks for capital budgeting 

decisions. The application of real options theory to remediation projects is an idea still in its 

infancy. Some applications in environmental projects including remediation projects will be 

discussed in Chapter 3.  

2.2.3 Methods of valuing real options 

The methods for valuing real options are contingent claims (the same method introduced 

in session 2.2.1, this term is given by Dixit and Pindyck (1994) when dealing with real 

options), dynamic programming and integrated decision tree & Monte Carlo based method. 

Different kinds of real options can be solved differently by different methods. Each of these 

methods has its specific features which limit them to certain kinds of problems.  

 

2.2.3.1 Contingent claims approach based on “no arbitrage” assumption 

Since we are treating investment opportunities as options instead of static cash flows, it 

is a straightforward idea to apply directly option pricing theory from finance. This is the 

method introduced in session 2.2.1. Either there is an analytic solution as in the Black-Scholes 

model or it needs to be solved numerically, the basic assumption is the no arbitrage condition 

in a risk neutral world. Dixit and Pindyck (1994) refer to this approach with the general term 

“contingent claims”. The basic idea is the construction of a replicating portfolio of existing 

assets for the real option in question. Discount rate is not subjectively set. All values are 

discounted at the risk free rate. It has been recommended by Brennan and Schwartz (1985), 

Trigeorgis and Mason (1987), Copeland, Koller and Murrin (1994) and Trigeorgis (1999). 

Amram and Kulatilake (1999) have the most extensive exposition of this approach. They 

assume that capital markets are complete. All corporate investments have equivalents in the 
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capital markets and can be effectively hedged through a traded tracking portfolio. The 

calculated value is the “no arbitrage” value of the investment.  

The contingent claims approach employs the standard replicating portfolio way of 

thinking for financial option pricing, as in the Black-Scholes model (Black and Scholes, 1973, 

Merton, 1973). The basic idea is to derive a partial differential equation reflecting the value of 

a risk free option-stock portfolio, with gradual changes in its composition approaching the 

maturity of the option. The key to the problem is the solution to certain partial differential 

equations. Brennan and Schwartz (1985) demonstrated how to use this approach to value 

natural resource projects and to derive optimal decisions as one of the first applications of real 

options. With the concern of remediation projects, Lentz and Tse (1995) used the option 

pricing approach to value real estate contaminated with hazardous materials.  

One important drawback of contingent claims approach for real options valuation is that 

the “no arbitrage” condition may not hold in some cases in real options. Dixit and Pindyck 

(1994)  stated that “Specifically, capital markets must be sufficiently “complete” so that, at 

least in principle, one could find an asset or construct a dynamic portfolio of assets…the price 

of which is perfectly correlated with V.  … However, there may be cases in which this 

assumption will not hold.” (V is the real option value in question) For these cases in real 

options, “no arbitrage” is usually hard to prove valid. The principle of no arbitrage does not 

require every individual in the market be fully rational, but it does require that sufficiently 

many motivated decision makers with access to sufficient resources notice any possible 

mispricing, put a lot of pressure on it, and quickly eliminate the mispricing. And thus, there is 

no risk-free net profit. This is much too rigid for a lot of real asset markets. Another objection 

to contingent claims is that a risk free portfolio can not be constructed because these real 

assets based on which the real options are valued are not even traded. So, even though getting 

inspiration from the option pricing theory in financial market, contingent claims approach is 

not a proper way for a lot of real options based on real assets.  

 

2.2.3.2 Dynamic programming 

Dixit and Pindyck (1994) propose the use of dynamic programming in those cases where 

“no arbitrage” is not a reasonable assumption. Dynamic programming is an approach 

developed by Bellman and others in the 1950’s. It is used extensively in management science. 

It formulates the problem in terms of a Hamilton-Jacobi-Bellman equation and solves 

backwards with respect to time for the value of the asset. The word “programming” has no 

connection to computer programming. It comes from the term “mathematical programming”, 
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a synonym for optimization. The “dynamic programming” mentioned in this chapter is the 

method presented by Dixit and Pindyck (1994) about how to value in continuous time the 

option of waiting. The idea is that the whole sequence of decisions is split into two parts: the 

immediate choice and the remaining choice; the optimal decision can be found by working 

backwards. A partial differential equation can be derived and the solution to it is the option 

value. By solving the equation, the optimal timing to exercise the option can also be indicated. 

When the differential equation cannot be solved analytically, it needs numerical methods as in 

contingent claims analysis. Attention should be paid to the discount rate used in contingent 

claims and dynamic programming. No arbitrage assumption in a risk neutral world is the 

condition for applying risk free discount rate in contingent claims approach. When the 

assumption does not hold, dynamic programming is applied; a discount rate other than risk 

free rate has to be set subjectively. Insley (2002) used dynamic programming and finite 

difference approach to estimate the optimal timing of the option to harvest a forest. For 

remediation projects, the market for land after remediation is far from complete, no-arbitrage 

condition does not hold. Thus dynamic programming instead of contingent claims should be 

applied. As remediation projects are concerned, Conrad and Lopez (2002) developed an 

option-pricing model to rank investments that might improve water quality. They suppose that 

the development of the concentration of the pollutant over time is a Brownian motion. They 

consider the damage based on the concentration of the pollutant as an underlying asset, the 

costs as exercise price (see also chap. 3).  

One disadvantage of dynamic programming is the subjective assessment of the discount 

rate. Another disadvantage of this method is that it is only valuing one option: the option of 

deferring. When there are several options involved, it can not handle the problem.   

 

2.2.3.3 Integrated decision tree & Monte Carlo based real options analysis 

Decision tree analysis is very often used to assist decision makers choose among various 

decision options in time when these options will lead to uncertain consequences. The problem 

is demonstrated over time in a hierarchical structure of nodes. Figure 2-2 shows an example of 

a decision tree for a three-stage decision problem. The squares are decision nodes. They 

represent the decisions made based on the actual situation among all possible decision options. 

The circles are probability nodes. They represent the probabilities of the sequences after 

taking a decision. A utility function is set by the decision maker. The expected value of the 

utility function is calculated for different combination of decision nodes bases on the 

probabilities. The result of the decision tree analysis is the best combination of all the 
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decisions maximizing the utility function. It has a lot of advantages which make it a proper 

tool to identify and structure real options. First, it has the strength in addressing sequential 

decisions. Second, it is very flexible in capturing the underlying and the decisions. Last but 

not least, it is not a black box; it is easy to explain to the management. A lot of economic 

models which deal with real options valuation are based on the underlying principles of 

decision tree analysis. Some examples are given in the next chapter.  

 

 

Figure 2-2: Typical structure of a decision tree 
 

The Monte Carlo simulation was originally developed to address the issue of uncertainty. 

Basically it generates an ensemble of realizations of the output based on random sampling of 

probability distributions of the input variable. With increasing number of realizations, the 

results become more reliable. In capital budgeting facing uncertainty, it became a very useful 

tool. The use of Monte Carlo simulation to value financial options was introduced by Boyle in 

1977. For valuing real options, Monte Carlo simulation is also a very practical tool, which can 

be combined with other techniques such as a decision tree as a parameter determining 

technique.  

As discussed previously, contingent claims approach is not proper for most real options 

problems because of the rigid “no arbitrage” assumption. Dynamic programming approach is 

not proper for projects with multiple options. The integrated decision tree & Monte Carlo 

simulation based technique provides a new inspiration for real option valuation. It is a 

practical tool because of the flexibility to deal with different kinds of management flexibilities 

facing various types of uncertainty sources. It does not require complete market nor complete 

Time 
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information. There can be more than one options involved in the valuation. The uncertainty 

does not have to be a typical process used in contingent claims and dynamic programming 

such as GMB. This integrated approach involves building a tree representing all alternatives, 

all possible situations and the rational response options of the management. Expected cash 

flows are calculated based on the probabilities, which are calculated based on the Monte Carlo 

realizations simulating the future uncertainties. The discount rate is chosen usually using the 

weighted average cost of capital (WACC). The optimal strategy and its associated value are 

determined based on a backwards calculation. It is a very straightforward way to demonstrate 

the sources of uncertainties and the future decisions. Amram and Kulatilaka (2000) showed 

how to use this method, using pharmaceutical R&D as an example.  

This method shares a disadvantage with the dynamic programming approach; it applies a 

fixed subjective discount rate to the analysis. However, this method is proper to illustrate the 

idea of real options and approximate the value of flexibility. More research is needed for the 

justification of discount rate proper for remediation projects, which accurately represent the 

risks involved in the projects. However, the discount rate discussion is out of the scope of this 

thesis.  
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3. Previous real options analysis for environmental projects 

3.1 Applications to general environmental projects 

As mentioned in the previous chapter, economists have extended the financial options 

theory to real options theory to value real assets in the real world. They are aware of the value 

of flexibilities and active management facing future uncertainty. For environmental projects, 

like the other investments projects, there are usually a lot of flexible options to choose when a 

decision has to be made. The management is not passive investors. They are able to make 

rational decisions facing the actual situation. Most of these decisions have irreversible 

consequences. These characteristics of environmental projects are especially proper for real 

options valuation.  

 “Quasi-option value” was introduced by Arrow and Fisher (1974), and Henry (1974). In 

both studies, the analysis of the land development under uncertainty was conducted in a two-

period model. The decision maker has to choose between preservation and development. They 

show that for the “development” plan, “the expected value of benefits under uncertainty is 

seen to be less than the value of benefits under certainty” (Arrow and Fisher, 1974). The value 

of this difference is called quasi-option value. This is the extra value for preserving an option 

under uncertainty. Ignoring this value, irreversible “development” plan would be overvalued.  

They showed that flexibility has value in environmental decision making. Making an 

irreversible decision eliminates this option value of preservation.  

Greenley et al. (1981) developed a procedure for measuring the option value of water 

quality and applied it to a case study in the South Platte River Basin, Colorado, US. The 

objective of the study was “to test empirically the application of the Henry framework in the 

measurement of benefits of water quality improvement.” Utilising the model of Henry (1974) 

they compare the benefit from a large expansion in mining development and the option value 

of postponing the decision and preserve the water quality. Similarly, they also compare the 

benefit from the current water based recreation use and the option value of non-use 

preservation values. They “provide an empirical test of Weisbrod’s (1964) proposal that 

option value and other preservation values should be added to the aggregate consumer surplus 

of recreation activities to determine the total benefit of environmental amenities to society” 

(Greenley et al. 1981). 

Lentz & Tse (1995) used the option pricing approach to value real estate contaminated 

with hazardous materials. They assumed that the property owner has the option to remove the 

hazardous materials and further more redevelop the property. They followed the contingent 



 
 

19 

claims method presented by Dixit and Pindyck, assuming the property cash flows and the 

redevelopment cost to be stochastic processes. The differential equation was derived and 

closed-form solutions are provided. The criteria to determine the value maximizing strategy 

were developed. The option value of real estate and the optimal removal and optimal 

redevelopment point are identified.  

Conrad (1997) applied the real option approach for the decision problem of whether or 

not to cut an old-growth forest. It is assumed that the value of the old-growth forest is a 

known constant; the amenity value is a GBM process. The partial differential equation for the 

option value is derived and analytic solution is provided. The critical amenity value can be 

identified to decide when to cut the forest.  

Forsyth (2000), building on Conrad (1997), used option pricing theory to decide whether 

or not to preserve a wilderness area. She followed the dynamic programming method 

demonstrated by Dixit and Pindyck, assuming the amenity value of the wilderness area 

follows a stochastic process. A numerical method (finite difference) was used to solve the 

differential equation. Critical levels for amenity value necessary to justify preserving a 

wilderness area were calculated. She demonstrated the importance of the assumed stochastic 

process to the results by showing the dramatic effect on the critical value by changing the 

stochastic process from GBM to a logistic growth process. Since the movements of a lot of 

underlying assets of real options are not like stock price, which can be described by GBM, the 

assumed process should be carefully chosen.  

Conrad & Lopez (2002) presented an option-pricing model to rank investments that 

might improve water quality. They applied the framework demonstrated by Dixit and Pindyck 

to value investment options for the provision of safe drinking water for New York City. It was 

assumed that the pollutant concentration is stochastically increasing over time, and that the 

pollution causes damage if pollutant concentration exceeds a given threshold. Two options, 

the implementation of a watershed management plan to improve water quality, and the 

filtration of water were considered. Differential equations were derived and solved 

analytically for the critical barriers (concentration or damage), which would trigger the 

implementation of a particular project. They concluded that “the option-pricing approach 

provides the theoretically correct way to rank projects that might improve water quality. It 

provides a logical framework for integrating stochastic models of water quality with economic 

measures of cost and damange” (Conrad & Lopez, 2002) 

Bosetti et al. (2004) applied an optimal adaptive development strategy option valuation 

model to consider development possibilities of land that has been degraded through previous 
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economic activities. They built up a discrete-time, stochastic model and applied it to Ginostra, 

a town on Stromboli island in Italy. Three options are considered: 1. preservation, 2. 

remediation, 3. development. Expected present values are calculated for different strategies. 

The optimal adaptive development strategy is determined and the option value is calculated.   

3.2 Applications to remediation projects 

The real options involved in a remediation project are mainly the remedial activities that 

should be implemented and their timing. These activities include: 1. wait and do nothing, 2. 

choose a certain technology and remediate, and 3. stop if the remediation target is met. The 

underlying parameter in these decision makings is not economic terms. It is the contaminant 

concentration. The contaminant concentration decides whether the remediation has to start 

right away or it is allowed to wait; it decides which technologies are allowed to be 

implemented; it also decides if the target is met or not. Some integrated decision supporting 

tools involving real options were investigated by some researchers to assist remediation 

decision making. 

Bage & Samson (2002) developed a multistage technicoeconomic model (METEORS) 

to select the optional strategy for the remediation of a contaminated site and to determine the 

strategy value. They extended the traditional cost-benefit analysis (mentioned as traditional 

NPV method in this thesis) by considering irreversibility of remediation technologies, 

technology effectiveness, and uncertainty of contamination development. Benefit is generated 

from selling or development of the site and costs are generated by the remedial activities and 

information acquisition. Two technologies were considered: bioventing and biopile. They 

considered the implementation of an ex situ technology bioplile requiring irreversible 

excavation (once the material is excavated, the option of in situ remediation is permanently 

eliminated); while it is considered reversible to implement an in situ technology bioventing 

which preserves the option to switch to a different technology (either in situ or ex situ). In 

their multistage model, there are three alternatives at the beginning of each new stage: select a 

technology, acquiring new information and then select a technology, and do nothing. Three 

site situations are considered in the model (heavily contaminated, moderately contaminated 

and weakly contaminated). It is assumed that the effectiveness of the technology decides the 

probability of attaining a given situation from an initial site situation. Through consideration 

of all possible site situations and their probabilities of occurrence due to different combination 

of technology choices, the expected value of the site remediation strategy can be expressed as 

a weighted mean of the values of the remediation applied to each of the situations (value 
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means benefit minus cost). The technical and economic evaluation of a remediation strategy is 

integrated into this single expected value. These values for different strategies are compared 

and an optimal strategy is the one with the highest strategy value.  

Wang and McTernan (2002) developed an environmental decision analysis model to 

identify optimum remediation approaches for contaminated aquifer systems. They combined 

stochastic hydrology, risk assessment, simulation modeling, cost analysis into the decision 

making process for a Superfund site in the southern United States. Monte Carlo simulation of 

transport modeling was employed to define the outcomes of contaminant excursions. 

Bayesian modeling was used to define the worth of additional data. These modeling were 

combined with a decision tree to identify optimum remediation configurations. Sensitivity 

analysis was performed to investigate the effect of decision parameters (capital, operational 

and maintenance costs). Two technologies were considered: 1. bioremediation and 2. pump 

and treat. The time required to remediate the site was set to be 10 years, which is the same for 

all remedial action alternatives. Their research questions are: is remediation necessary? when 

should the remediation start, and what remediation technique should be employed? A 

geostatistical approach called conditional simulation was used to determine the size, location 

and concentration distribution of the plume. Three states of nature were used based on the 

concentration of contaminant within the groundwater reaching the POC (point of compliance). 

The probabilities for these states of nature generated by the groundwater models using Monte 

Carlo simulation were used in the decision tree analysis to calculate the expected cost. The 

costs considered are the costs due to the remedial activity and the cost of failure (failure is 

defined as exceeding a certain level of the contaminant concentration). It is a cost minimizing 

decision model. The optimal strategy is the one with the lowest cost.  

The work of Bage & Samson (2003) describes an application of the model METEORS 

presented in Bage & Samson (2002) to a hypothetical site. The same two technologies, three 

alternatives at the beginning of each stage, and three site situations as stated in the 2002 paper 

are considered in the application. Two stages are involved in the project. The biopile 

treatment effectiveness index was fixed to 100%, meaning that it is guaranteed to produce a 

final site situation that is weakly contaminated. The bioventing treatment effectiveness was set 

to be less than 100%, which are given for different original levels of contamination. They 

built up a decision tree showing all choices with different paths and the probabilities of 

occurrence. Expected strategies values are calculated (calculation method described in 2002 

paper) and the strategy with the highest strategy value is the optimal. They commented that 

for more complex simulations (more available technologies, more stages or more possible 
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situations), the implementation of the model becomes more difficult. When the amount of 

possible strategies becomes large, strategy value calculation and the optimal strategy 

identification will need the assistance from computer programming   

Bage & Samson (2004) presented another application of METEORS to a real diesel-

contaminated site. The same two technologies, three alternatives, three site situations as stated 

in 2002 paper are considered. The effectiveness of bioplile is fixed to 100%. An effectiveness 

index for bioventing was developed to quantify the probability of reaching a given state from 

a given situation. Eight parameters (associated with site and contaminant) were weighted 

using a two by two comparison methods to calculate the effectiveness of bioventing. Different 

time constraints were tested which could restrict the set of available technologies. Different 

time restrictions have been tried using the model, varying from one to five years (stages), 

along with one simulation without time restriction. “The output of the model is a remediation 

strategy that guides, year after year, the selection of the most optimal technology considering 

the evolution of the remediation.”  

3.3 Discussion 

The previous research work on the application of the real options methodology in 

environmental decision making, in particular for optimal remediation strategy making, 

provide inspiration, concepts, and methods that could be followed in this thesis. Connections 

to this thesis: 1. The remediation technologies and their timing as real options. 2. The future 

contaminant concentration as the underlying asset. 3. The decision tree as a tool to analyze the 

problem. 4. Monte Carlo simulation as a tool to capture uncertainty of the future contaminant 

concentration. 5. Cost and benefit sources and 6. Expected value calculation method. But 

there are also shortcomings that had to be fixed in order to develop a suitable valuation 

framework for remediation strategies.  

The research of Bage and Samson from 2002 to 2004 provides an interesting framework 

for a proactive way of thinking for the remediation strategy making. But there are some 

limitations to their work. First of all, there is no regulation restrictions on the two technologies 

considered in their model. The decision maker can choose either one of them. In realisty, 

some technologies might have a stricter threshold to be allowed to implement than others. 

These thresholds are like the exercise prices in financial options. This is a very important 

aspect for real options valuation. It reflects the value of active management facing uncertainty 

making the decision “what to do if something happens”. This is not an issue in the Bage and 

Samson’s work. Secondly, it is not mentioned in their work how many stages are there when 
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there is no time restriction. Interpreting from their effectiveness of technologies assumptions, 

it may not exceed the number of years that generate so many strategies that the computer 

program can not handle. So how to solve the problem when the number of strategy is too 

many to solve remains a question. Thirdly, in their work, the optimal strategy is set guiding 

the remedial activity stage after stage at the current knowledge and not changed again in the 

future. But it has to be realized that the optimal strategy is only expected to be optimal at the 

time when the analysis is done. When the next stage comes, the situation and knowledge may 

change, the strategy made based on the old expectation may be outdated. last but not least, the 

uncertainty associated with the technology effectiveness is not considered in Bage and 

Samson’s work. In their papers, the probability to achieve a certain site situation after 

implementing a certain technology for a certain initial site situation is set without uncertainties. 

This problem is dealt with better in Wang and McTernan’s work. 

Wang and McTernan’s work provide inspiration on how to describe the uncertainty of 

the contaminant concentration with Monte Carlo simulation. But there are some limitations to 

their work which have to be overcome. First of all, in their work, they only valued the option 

of postponing the investment. The flexibilities provided by technologies to be switched are 

not given value. When an action is decided to be taken, one technology is chosen and 

implemented for ten years. There is no switching between technologies even though it is 

possible. Secondly, Sensitivity analysis is only performed for two costs parameters, capital 

and operational costs. Other important parameters such as technology effectiveness and 

regulative parameters were not investigated.  

To overcome the shortcomings of the previous researches, this thesis tries to implement 

the following points: 1. Thresholds for different technologies. 2. Optimization when the 

number of strategies becomes too big. 3. Sensitivity analysis for more parameters. 4. The idea 

of doing the analysis at the beginning of each stage.  
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4. Real options valuation model for optimal remediation strategies  

In practice the majority of site remediation projects are evaluated through cost – benefit 

analysis based on the traditional NPV method. The fact is that site remediation decision 

making can be very complex facing various sources of uncertainties and flexibilities 

imbedded in the strategies. As previously discussed, the traditional way can not assist the 

decision making properly. For optimal remediation strategy making, where more than one 

options are involved and the uncertainty is path dependent, direct application of financial 

option pricing and dynamic programming are not feasible; decision tree based analysis 

combined with Monte Carlo simulation will be applied in this thesis. The purpose is to 

develop an integrated approach using financial theory, economic analysis, decision science, 

statistics, hydrology and simulation modeling to assist optimal decision making for 

remediation projects. This approach can take into account the risks a remediation project may 

face and the value that proactive management may bring.  

4.1 State of the environment under uncertainty 

In financial option valuation, the uncertain underlying asset is the stock price. The 

decision of exercising an option is depending on the stochastic development of stock price. In 

remediation projects, the underlying asset which is uncertain is no longer an economic term. 

Uncertainty mainly stems from the inability to accurately predict the effectiveness of the 

remediation technology in terms of improving the environmental quality at the site. In this 

study, Monte Carlo simulation is used to represent the uncertainty concerning the further 

development of environmental quality. For simplicity, quality is described by means of a 

single value of contaminant concentration in groundwater. In each point of time, depending on 

the previous path of combination of technologies, a stochastic model simulates the distribution 

of the concentration outcomes uniquely. 

Monte Carlo simulation approximates the probability of certain outcomes by running 

multiple trial runs using random variables. Each of these runs is called a realization. It is a 

stochastic technique based on the use of random numbers and probability statistics. It is 

especially useful when a system is too complex for an analytical solution. With the help of 

Monte Carlo simulation, a complex system can be sampled in a number of random 

configurations, which are used to describe the system as a whole. With a higher number of 

random runs, the statistics of the ensemble of realizations approaches a better description of 
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the system. It is a proper tool for this study to simulate the possible outcomes of future 

contaminant concentration.  

To describe the state of the environment, a simple contaminant degradation equation as 

follows is used.  

teCtC *
0 *)( λ−=                 (Eq. 4-1) 

C(t) is the concentration at time t, C0 is the concentration at time zero, λ is decay rate constant. 

The values of λ may be assumed different for individual technologies. This simple 

degradation formula can be replaced by any other appropriate model, e.g. an analytical or 

numerical contaminant transport model. 

To describe the uncertainty, a random part is added to the formula. MATLAB function 

randn() is used to generate arrays of random normally distributed numbers with mean of zero 

and variance of one. Equation 4-2 can generate n random normally distributed numbers with 

mean C0*e
-λ*t, and standard deviation of Std. It is used to simulate the future outcomes of the 

contaminant concentration after a certain technology is implemented.  
 

),1(**)( *
0 nrandnStdeCtC t += −λ           (Eq. 4-2) 

 

4.2 Options and option thresholds 

Options 

Flexibility exists due to the ability of the manager to make a decision on technologies to 

apply depending on the actual situation he or she will face in future. Typical imbedded real 

options of remediation projects include deferring, stopping and switching: deferring means to 

watch and to investigate (= MNA); stopping means that the site manager can stop the 

remediation once the given target is met; switching means to replace a technology in 

operation by another technology/option that may become more appropriate in the future 

because of an altered distribution of the contamination (switching e.g. from pump-and-treat, 

P&T, to monitored natural attenuation, MNA). In this model, we consider four options: 

“P&T”, “PRB”, “MNA” and “Stop”. P&T and PRB are more active techniques than MNA, 

but also more expensive. P&T and MNA are more flexible to be switched to other 

technologies compared with PRB.  

Option thresholds 

Different technologies have different threshold conditions which allow them to be 

implemented. Normally this is regulated by the authority. For example, there are more 
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restricted criteria for MNA to be applied than P&T and PRB. MNA is said to be a gentle 

option to manage contaminated land and groundwater and may not be applied if pollution 

levels are above a certain value.  This certain value is the threshold value for MNA. When the 

concentration is above this value, P&T or PRB has to be implemented. P&T and PRB are 

more effective techniques compared with MNA. They have much higher costs than MNA. It 

is supposed that P&T and PRB will be switched to MNA as soon as the concentration is lower 

than the MNA threshold. The option “Stop” will be only possible if the concentration value 

representing the environmental state is at or below the target level of remediation, which 

serves here as threshold value. So each option has their thresholds which control the exercise 

of this option. Some options can share the same threshold. These thresholds are defined by 

concentration of the contaminant. Of course, within the range allowed by regulations, the 

thresholds can be changed by the management to search for a potential better strategy. This 

will be discussed in the later part which investigates individual parameters.  

4.3 Decision tree 

Decision tree analysis is a tool which can be used in situations where optimal decisions 

depend on uncertain events and the decisions made under these events. A tree structured graph 

illustrating future uncertainties, future decisions and their possible consequences is composed. 

A decision tree for remediation projects can look e.g. as shown in Figure 4-1. It is shown in 

this tree all the possible decisions and their uncertain consequences - the different levels of 

possible future contaminant concentrations. The decisions according to these future 

concentrations are also shown in the tree, which are decided by the threshold values. By 

calculating the expected strategy value, the optimal strategy with the highest strategy value 

can be chosen among all possible strategies. In the following part, the main elements in the 

decision tree for a typical remediation project will be elaborated.  
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Figure 4-1: A decision tree for remediation projects 
 
 

Length of the entire decision framework 

This is the length of the total planning time. It can vary from project to project. Some 

remediation projects are long term, they can take decades. Some are short term, they can take 

only several years. The length of the entire decision framework does not have a big influence 

on the structure of the decision tree. But it can have very big influence on the total cost, 

benefit and the optimal strategy chosen in the end. First, generally speaking, with a longer 

decision framework, the total cost is higher for the same technology mainly due to the 

operational cost. The benefit is higher because it is more likely to meet the target. Second, the 

effect is different for different technologies depending on the cash flow structure. It has more 

impact on technology with more evenly distributed cash outflows such as P&T. For PRB, the 

cost is very high at the beginning of the project whereas operational cost is rather low 

compared with P&T. A longer total frame of the project will have less effect on costs of PRB 

than P&T. Compared with PRB, a longer decision framework increases the total cost of P&T 

more tremendously (under reasonable discount rate). And thus, with similar expected benefit, 

technologies such as P&T have a lower chance to be favored compared with the situation in a 

shorter decision framework. For a technology with low operational cost, the effect of the 

length of decision framework is lower, and thus, there is a higher chance for these 

technologies to be favored compared with a shorter decision framework. Third, with the same 

target level, a shorter length of the decision framework may favor a more active strategy.  
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Periods 

A decision period is the time period between the point of time when a decision is made 

and the end of this chosen activity. Except for stop, the next decision has to be made again at 

the end of each decision period. The number of decision periods (NP) is depending on the 

length of the entire decision framework (T), and the length of each decision period (Dt). NP = 

T / Dt. With the same length of the entire decision framework, the more periods there are, the 

more accurate the decision making can be. This is because the length of each decision period 

is shorter. Thus, the decision maker can react to the actual situation more actively in a shorter 

time. This can result in better strategy making compared to the same project with less decision 

periods. It also provides a more accurate strategy value calculation. Of course, because of 

reality reasons, the length of each decision period should be within a reasonable range.  

Decision points  

The squares shown in Figure 4-1 are the decision points. The gray squares represent the 

choice of a technology between P&T and PRB. These are the decisions which have to be 

made when the concentration is above MNA threshold. With different combinations of these 

two technologies through the entire tree, the remediation plan for the site can change. So these 

points are very critical for the decision making. The white squares in Figure 4-1 represent the 

other options. These options are “MNA” and “Stop”. These decisions are within certain limits 

because the decision is made only according to the thresholds. Whether MNA will have to be 

applied in the next management period or the remedial activity can be stopped depends on the 

actual contaminant concentration and the threshold value set. So if the concentration turns out 

to be lower than the stop threshold (CT), the remedial activity will be stopped. If the 

concentration turns out to be below the MNA threshold (CMNA), and above CT, MNA will be 

implemented. 

Extension of the decision tree 

As shown in Figure 4-1. The decision tree always develops in the same pattern. As long 

as the branch does not stop, it will always divide into three branches. When the period number 

is big, it is neither possible nor necessary to draw the whole decision tree to demonstrate the 

problem. But we can still solve the problem with the help of computer and programming 

algorithms.  
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4.4 Strategy and strategy valuation  

Strategy 

A strategy is defined as a decision map with all the decisions specified at the decision 

points for P&T and PRB in the decision tree. Each combination of the decision points for 

P&T and PRB (see Figure 4-1) makes one strategy. When the number of periods is NP, there 

are as many as 
122

−NP

 possible strategies in one decision tree. Figure 4-2 is an example of one 

strategy out of 16 strategies in total for a three-period project. Figure 4-2 is a decision tree for 

one strategy. It is used as an example in the later part to demonstrate how a strategy is valued. 

A strategy map captures the remedial decisions period after period through the entire decision 

frame. But this is the expectation at the present point of time. At the end of this decision 

period, the situation is likely to be different than what we expect at the present day. Our 

knowledge of the site and technologies will change. Then a new round of analysis has to be 

done all over again. So special attention should be paid to the very first decision point, which 

indicates what should be implemented for the first decision period.  
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Figure 4-2: One strategy example for a three-period remediation project 
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Scenario and scenario probability 

A scenario is one path through the decision tree for a certain strategy, from the very 

beginning till the end. A strategy is composed of a set of scenarios. The strategy example 

illustrated in Figure 4-2, contains e.g. seven scenarios. Each scenario has different scenario 

probabilities. Each of them is cumulated from the beginning of the tree to the end. For 

example, p1=P1,1,U*P2,1,U. All scenario probabilities add up together equals to one. So 

p1+p2+…+p7=1. With time passes by, when we are at the end of the entire decision frame, 

only one scenario will be realized. But at the point of time at the beginning of the decision 

frame, it is uncertain which scenario will become true in the future. So the strategy value is an 

expected value calculated to make the decision, based on our best knowledge of the site and 

technologies today. It is not necessarily exactly the number which turns out in the end.  

Monte Carlo points and probability branches 

Probability branches show that after a remedial activity takes place, there can be 

uncertain outcomes in the future with different probabilities. These probabilities are based on 

the result of Monte Carlo simulations. The circles in Figure 4-2 are the Monte Carlo 

simulation points. After each remediation activity is chosen, random uncertain concentration 

outcomes are generated by Monte Carlo simulation as discussed in 4.1. These realizations are 

grouped into three categories according to the thresholds. If the concentration is below CT, the 

remedial activity will be stopped. If the concentration is between CT and CMNA, MNA will be 

implemented in the next period. If the concentration is above CMNA, P&T or PRB has to be 

implemented in the next period. The number of realizations in one category divided by the 

total number of realizations equals the probability of this category.  

Strategy value calculation and optimal strategy selection 

Once a remediation project is started, the manager has the option to switch between 

certain technologies and switch to the option “Stop” once the target is met. The uncertainty in 

the future concentration of the contaminant is described by a stochastic process. This is 

similar to the underlying asset in financial options. Monte Carlo simulation is used to simulate 

the outcome probability density function (pdf) of concentration at the end of each 

management period after a certain option has been exercised. At the end of each decision 

period, a decision will be made on which technology to use if remediation has to be continued. 

The value of flexibility to choose among different options (technologies) should be taken into 

account when remediation strategies are set-up. It is similar to a compound option in the 

financial market. On each decision point, a decision is made and the right for the next option 

is bought. 
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The decision tree shown in Figure 4-3 illustrates the problem for a three-period project. 

Suppose that at the beginning of the remediation the current concentration is C0, which is 

above CMNA. Since the concentration is not low enough to apply MNA, a decision has to be 

made on the technology to be used in the first period. After this first period, there is a certain 

probability P1,1,D that the concentration will be below CT. In this case, the remediation can be 

stopped. At probability P1,1,M, the concentration will be above CT but below CMNA, then MNA 

will be applied in the next period. With probability P1,1,U, the concentration will turn out to be 

above CMNA, and then the site manager has to choose between P&T and PRB again. That is, 

he or she has to decide whether to continue the operation of the technology used in the first 

management period or to switch to an alternative. If the remediation is not stopped after the 

first period, then at the end of the second period decisions have to be made again in the same 

manner as at the end of the first period. For a project with more than three periods, the 

decision tree will expend in this pattern. It is obvious that, in this example, MNA and Stop 

options depend totally on the actual concentration compared with the thresholds. It is the 

decision between P&T and PRB that is critical to the whole problem.   
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Figure 4-3: Decision tree for a three-period remediation project 

 

Figure 4-2 shows one example strategy out of 16 possible strategies. If 1 is used to 

indicate P&T and 0 is used to indicate PRB, the strategy in Figure 4-2 can be indicated as 

string 0110. Each digit indicates a decision point on a certain position of the decision tree, the 

order is from left to right, from top to bottom. As discussed previously, it is the decision 

between P&T and PRB that is critical to the whole problem, every strategy can be 
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characterized by a single string representing the combination of P&T and PRB decisions.  For 

the whole decision problem, it is the first digit of the string which is the most important. It 

tells the decision maker which technology to choose for the first decision period under the 

current conditions.  

The optimal strategy is the one with the highest expected option value (Equation 4-3). 

This (net) expected value will be calculated for all possible strategies (in this three period case, 

optimization is not needed). The expected value of a strategy is the weighted average value of 

all scenarios. The weights are expressed by probabilities of the scenarios (see Equation 4-4). 

Each scenario probability depends on the probabilities in the previous parts of the path, for 

example, P1 = P1,1,U * P2,1,U. (See Figure 4-4.) These probabilities in the previous parts of the 

path are calculated from the pdfs of contaminant concentration resulting from a Monte Carlo 

simulation. This simulation can be based on any model that is seen to be an appropriate means 

to make the required prediction under uncertainty. In the example presented here a simple 

decay model is used, whereas the value of the rate constant is based on the respective option 

chosen in the previous management period. The three probabilities Pi,j,U, Pi,j,M and Pi,j,D are 

calculated from the entire pdf according to the threshold concentrations. (i is the index for 

longitudinal positions of the Monte Carlo points on the tree, j is the index for latitudinal 

positions of the Monte Carlo points on the tree. See Figure 4-2. ) The mean of each of the 

three parts of the pdf is taken as the new starting concentration for the next management 

period. The scenario value is the present value of the expected land value minus the present 

value of the cumulative cost. (Equation 4-5) The expected land value is the clean land value 

times the chance to meet the target in this scenario (Equation 4-6). The present value of the 

scenario cost is the cumulative present value of all costs that occur in this scenario. 

The weighted average of all the scenarios’ chances to meet the target (Mi) is the chance 

to meet the target of this strategy (M). The weights are the scenario probabilities. (Equation 4-

7) For scenarios which do not end up with the stop option in Figure 4-2 (scenarios 1, 2, 4 and 

5), Monte Carlo simulation is performed to calculate the chances of meeting the target after 

the third period for these scenarios, as shown in Figure 4-4. The chance to meet the target of 

the strategy is not totally shown in Figure 4-2. There are chances that the target will be met for 

scenarios 1, 2, 4 and 5, as shown in Figure 4-4. It should be kept in mind that the total chance 

to meet the target is higher than the sum of scenario probabilities of scenarios 3, 6 and 7.  

 

))(),...,(),(( 21 noptimal VEVEVEMaxS =                       (Eq. 4-3) 
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∑=
i

in VpiVE *)(                                                     (Eq. 4-4) 

 

 )()( ilandi CEBEV −=                                                (Eq. 4-5) 
 

                           lciland VMBE *)( =                                                       (Eq. 4-6) 
 

                           ∑=
i

iMpiME *)(                                                    (Eq. 4-7) 

 
The parameters and variables are defined as follows: 

Soptimal  value of the optimal strategy  
E   expected value 
Vn   value of the strategy n 
pi   probability of scenario i  
Vi                      value of scenario i  
Bland  benefit from selling the land  
Ci  cost of scenario i  
Vlc   value of clean land 
Mi              chance to meet the target for scenario i 
M               strategy chance to meet the target 
 

 

 

 

Figure 4-4: Scheme of individual strategy valuation  

 

To find the best strategy, all possible strategies are investigated. Due to the uncertainty 

of the Monte Carlo simulation, the value of each strategy can vary from time to time slightly. 
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This is why the optimal strategy can change when some strategies have very similar strategy 

values. To catch all possible candidates, the investigation is done for ten times. Each time an 

optimal strategy is chosen. After ten times, ten candidate optimal strategies are listed (in a 

three-period case). Most of them are exactly the same. There are one or two other strings 

chosen. With increasing number of runs, no new candidate strings are found. It shows that ten 

runs are enough to capture all possible candidate optimal strategies for a three-period project. 

In case that they are not the same, each of them are run for 100 times to calculate their 

strategy value. The mean and standard deviation of each candidate’s strategy value are 

calculated. Based on this, the decision maker can decide which one is the best depending on 

their requirement of the mean and the standard deviation. In this case, it is supposed that the 

decision maker wants to maximize the mean strategy value while minimize the standard 

deviation. Suppose the decision maker provides the criterion as: when strategy value is 

positive, Max (mean/Std.); when strategy value is negative, Min (|mean|*Std.).  

Except for the uncertainty of Monte Carlo simulation, more than one candidate 

strategies can also be caused by the characteristics of the strategy itself. For example, when 

the probability of reaching a certain decision point is zero, it doesn’t matter what to choose on 

this point any more. In this situation, there will be strategies which are actually the same in 

pairs. For example (see Figure 4-3), if P2,1,U is zero, the decision between P&T and PRB in the 

next period has no importance. That means the third digit of the strategy string does not matter. 

Then, strategies in pairs, for example, strategy 0110 and strategy 0100 are the same.  

It is important to keep in mind that it is the first decision point that is concerned. The 

whole analysis is done to decide what to do for the first period! It is an optimal choice based 

on the best knowledge of the decision maker at this moment. It is not a strategy which will 

guide in the later periods regardless of the new knowledge and the outcomes of the 

uncertainties. At the end of each period, the analysis will be done again according to the 

actual situation and the best knowledge at that time. 

As shown in the valuation, both costs and strategy effectiveness are taken into account. 

The strategy effectiveness is represented by the chance to meet the target. A higher chance to 

meet the target will generate more benefit. Lower cost will increase the total strategy value. 

According to the conceptual framework set in this thesis, the strategy having the maximum 

total expected strategy value is the optimal one. It should be noted that additional criteria, 

targets or rules (e.g. to meet a minimum threshold value of the chance to meet given demand 

for good environment) are not considered. 

 



 
 

35 

Discounting 

For projects with long time frame, discounting is a very important issue for the valuation. 

The further in the future does a cash flow happen, the more it is discounted. So with a higher 

discount rate, the future cash flows play a less important role in the valuation. In this model, 

all values are in terms of present value, which means that they are all discounted. The 

discounting is done step by step. First the cash flows are discounted back to the beginning of 

each period. Then the sum of cash flows of each period is discounted back to time zero and 

then summed up. In this study, it is supposed that the land will be sold as soon as the target is 

met. The sooner the land can be sold, the less will the benefit from sales revenue be 

discounted, and the larger the net strategy value will be. We take a three-period project as an 

example (Figure 4-5a). Suppose that it is a nine year project. There are three periods in this 

project. There are three years in each period. Suppose that the cash flow in each year is C11 = 

C12 = … = C33 = 5000 EUR. The discount rate is 5%.  

The discounting steps are demonstrated in Figure 4-5b-e. Step 1, the cash flows are 

discounted back to the beginning of each period. Step 2, they are summed up within each 

period as the cumulative cash flow of each period. Step 3, the cumulative cash flows are 

discounted back to time zero. Step 4, the period cumulative present values are summed up as 

the present value of all the cash flows. This is the present value of all the cash flows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

36 

T0

time
T1 T2 T3

€

Period 1 Period 2 Period 3

C11 C12 C13 C21 C22 C23 C31 C32 C33

T0

time
T1 T2 T3

€

Period 1 Period 2 Period 3

C11 C12 C13 C21 C22 C23 C31 C32 C33

 
(a) Project cash flows  
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(b) Step 1  
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(c) Step 2 
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(d) Step 3  
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(e) Step 4 

 

Figure 4-5: Discounting method applied to the strategy valuation 
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4.5 Steps to build up the model 

To sum up, there are six steps in the framework: 

Step 1: Identify the uncertainties and options  

Step 2: Build up a decision tree demonstrating all possible outcomes and decision 

reactions in actual situations 

Step 3: Expected strategy values are calculated 

Step 4: Optimal strategy is identified based on certain criteria; the decision for the first 

decision stage is recommended 

Step 5: Sensitivity analysis  

Step 6: At the beginning of the next decision stage, the analysis is done in the same way 

based on the new knowledge and new situation at that time 

4.6 Optimization algorithm for projects with more than four periods 

As mentioned before, when the number of periods is NP, there are as many as 
122

−NP

 

possible strategies to be valued. When NP is bigger than 4, it takes very long time to go 

through all possible strategies or even impossible to go through all strategies with present 

calculation capacities. In this situation, an optimization algorithm can be used to select the 

optimal strategy. In this study, a Genetic Algorithm (GA) is used for the optimization. The 

implementation is adapted from the codes provided by Houchk, Joines and Kay (1996)1.  

GA is a stochastic search method which operates on a population of solutions. Under 

GA, a population of representations (called chromosomes) of candidate solutions (called 

individuals) evolves towards better solutions. It creates a population of chromosomes then 

applies crossover and mutation to the individuals in the population to generate new 

individuals. Individuals are ranked by comparison to a particular fitness function. The 

chromosomes in the first population are generated randomly covering the entire range of 

possible solutions. The population size depends on the nature of the problem. A proportion of 

existing population is selected to breed a new generation. Better solutions (with better fitness 

values) are more likely to be selected. The average fitness of the next generation will increase 

since only the best organisms from the first generation are selected for breeding the next 

generation. The generational process terminates when a termination condition has been 

reached, e.g. a fixed number of generations has been reached. The discussion about GA is out 

of the scope of this thesis. See Goldberg (1989) for more details about GA.    

                                                 
1 Website: http://www.ise.ncsu.edu/mirage/GAToolBox/gaot/ 
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Under GA, individuals are represented as binary strings of 0s and 1s. In the remediation 

strategy optimization problem investigated in this thesis, the critical decision is between P&T 

and PRB when the concentration turns out to be higher than the MNA threshold. When 0 

represents PRB and 1 represents P&T, putting all decision points between P&T and PRB in a 

string, every strategy can be represented by a single and unique string. For example, when NP 

= 5, there are 16 decision points for P&T and PRB in the decision tree. One strategy can be 

represented by string 1001010000011110.  

In the remediation strategy optimization problem, the fitness function is set to be the 

strategy value. It is calculated for each solution according to the method introduced in the 

previous chapter. The purpose is to find the string with the highest strategy value possible.  

The population size of each generation is 50. First, 50 random strings of 0s and 1s are 

generated and evaluated. Then by applying crossover and mutation to the best individuals, the 

next generation of individuals is generated. The number of generations is 10. One 

optimization run terminates when this number is reached. Ten runs of optimization are done 

and the best string is the one with the highest fitness value. This number of generation is 

considered to be enough because the results of optimization runs are identical in the first digit 

of the string, which indicates the decision in the first period. Bigger number of generations 

does not provide different result for the first digit of the optimal string.   
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5. Application of the real options valuation model 

5.1 Overview 

This chapter applies the real option valuation method to a hypothetical case and 

investigates the sensitivity of the results to the changes of parameters. Through the 

hypothetical case of a three-period project, it is shown how optimal strategy can be made for 

remediation projects with uncertainties in the future concentration development and 

management flexibilities when the uncertainties resolves by time. Input parameters set for this 

case include regulative parameters, site parameters, economic parameters, technology 

parameters and time parameters. The valuation is done according to the framework built up in 

the previous chapter. Conclusions and strategy recommendations are given. Then this case 

will be used as a reference case for the sensitivity analysis. The input parameters are changed 

and the impacts of these parameters on the optimal strategy making are investigated. The 

purpose is to shed light on the optimal strategy making for sites with different characteristics, 

projects with different time scope, and for situations when regulation and market price for 

land are changed, and when technology costs and effectiveness are different.  

5.2 Reference case  

5.2.1 Assumptions 

The total planning time frame is T = 30 years, the number of decision periods is NP = 3. 

This means that the decision will be made every ten years. The current concentration is set to 

be 1, serving as a (dimensionless) reference value. The threshold concentrations are set to 

CMNA = 0.15, CT = 0.01. That means, the groundwater quality has to be improved by a factor 

of 100 compared to the current situation in order to be considered “clean”. The price of “clean 

land” is expected to be 400 €/m2, assuming a site area of 2.5 hectare. Decay rate constants are 

set to λP&T = 0.21, λPRB = 0.12, λMNA = 0.02. 10,000 realizations are made as demonstrated in 

Equation 4-2 for each Monte Carlo simulation point with the same standard deviation for all 

technologies (StdP&T = StdPRB = StdMNA = 0.07). We distinguish 4 types of costs: installation 

cost, reactivation cost, operational cost and stopping cost. Estimates for different options were 

calculated according to Kübert (2002), Bürger et al. (2003) and Bayer et al. (2005) for the 

following set of site parameters: depth to the groundwater table is 2 m, thickness of the 

aquifer is 5 m, the conductivity is 0.0005 m/s, the hydraulic gradient is 0.001, total width of 

the contaminated area is 100 m. Parameters for technologies are: two pumping wells (P&T), 
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unit drilling and well construction  cost is 2000 €/m, equipment cost for P&T is 15,000 €, unit 

cost of reactive material for water treatment is 600 €/m3 (same for both P&T and PRB), site 

preparation and mobilization costs for P&T and PRB is 30,000 €, material cost for funnel 

installation is 250 €/m2, MNA requires 10 monitoring wells at drilling cost of 200 €/m, and 

MNA sampling cost is 250 € for each sample. The sampling rate is set to be twice a year. Cost 

for regular checks and controls of the operating system is 2000 €/year. Estimated costs are 

shown in Table 5-1. The discount rate is set to be 3%.  

 

Table 5-1: Cost assumptions for different technologies in the reference case  

Cost type  P&T PRB MNA 

Installation cost (€) 85,005 311,250 20,000 

Reactivation cost (€) 17,005 77,817 6,000 

Operational cost per year (€) 17,873 2,100 7,000 

Stopping cost (€) 6,800 3,113 2,000 
 

5.2.2 Results 

5.2.2.1 Optimal strategy 

After enumerating all possible strategies, the optimal strategy is identified, which is 

1111 as shown in Figure 5-1. The strategy recommendations are: (I) Apply P&T whenever the 

concentration exceeds CMNA. (II) Apply MNA whenever the concentration is below CMNA, but 

the target is not met. (III) Stop the remediation and sell the land whenever the target is met. 

Due to the random element in Monte Carlo simulation, the strategy value calculated for the 

same strategy varies for each run. The mean values of the strategy value, strategy cost, 

strategy benefit and chance to meet the target for 100 runs are shown. The results are: strategy 

value = 2,170,600 EUR, chance to meet the target = 48.78%, expected benefit = 2,521,200 

EUR, expected cost = 350,520 EUR. The most important indication from this analysis is that 

P&T should be implemented in the first decision period.  

In Figure 5-2a, the bars show the scenario probabilities and the stars show the scenario 

values. Scenario 1 has a very low probability compared with the other scenarios. This means 

that, under the current assumptions, especially the current concentration and the effectiveness 

of P&T, after two periods of P&T, it is not likely to end up with concentration levels calling 

for a continuation of P&T in the third period. Scenarios 3, 6 and 7 all end up with “Stop” 

option after the second period or even in the first period, respectively. This means that the 

target is met and the land can be sold. It should be kept in mind that there are also chances that, 

after the third period, scenarios 1, 2, 4 and 5 will meet the target and the land will be sold. 
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Figure 5-2b shows the cumulative cost, benefit and strategy value. The benefit occurs more in 

the later periods because the target is more likely to be met when the time is longer. It is also 

shown that the slope of cumulative benefit is decreasing with time. One reason is that the 

concentration reduction is not linear to the changing of time (see Eq. 4-1). As a result, the 

increasing of benefit is not linear. With strategy benefit being the main influencing factor, the 

slope of strategy value has the same characteristic. The second reason is that the discounting 

effect reduces the value further in future. In this case, the strategy benefit is very high 

compared with the strategy costs. The development of the strategy value is mainly driven by 

the benefit. Figure 5-2c shows the frequency of the values calculated for strategy 1111 for 100 

times.  

After going through all the strategies ten times, there are two candidate strings for the 

best strategy, which are 1111 and 1101. They are actually the same. The reason can be found 

when the scenarios which are associated with these digits are investigated (see Figure 5-1). 

These scenarios are scenarios 1, 2, 3 and 4. As shown in Figure 5-2a, the probability of 

scenario 1 (p1) is very low. It is almost zero. At the same time the probabilities of scenarios 2, 

3 and 4 are higher. The reason why p1 is almost zero can not be P1,1,U is almost zero. Because 

if P1,1,U is almost zero p2 and p3 will be also low, which is not true. So the only reason is P2,1,U 

is almost zero. This indicates that the third digit of the string does not matter because it is 

almost impossible that this decision will need to be made. As s result, 1111 and 1101 are 

identical.  
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Figure 5-1: Decision tree for the optimal strategy 1111 for the reference case



 
 

42 

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Scenario

S
ce

na
rio

 p
ro

ba
bi

lit
y 

an
d 

sc
en

ar
io

 v
al

ue Scenario values(*107)
Scenario probabilities

 

(a) Scenario probabilities and values 

1 2 3
0

0.5

1

1.5

2

2.5
x 10

6

Period

va
lu

e 
(€

)

Cumulative cost
Cumulative benefit
Cumulative strategy value

 

(b) Cumulative cost, benefit and value
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Figure 5-2: Results of the optimal strategy 1111 for the reference case 

 

5.2.2.2 Alternative strategies 

To gain more insight of the result for the optimal strategy, two alternative strategies are 

compared with the optimal strategy. One is “Apply PRB as long as the concentration is above 

CMNA” (strategy 0000 shown in Figure 5-3). This strategy is typically considered as an 

alternative to P&T and is very often used in practice. As will be shown, it is a more expensive 

strategy with lower chance to meet the target compared with the optimal strategy. So it is 

worse in both perspectives of cost and effectiveness. The other one is “Commence with PRB 

in the first period, but apply (switch to) P&T if the concentration is above CMNA” (strategy 

0111 shown in Figure 5-5). The purpose of analyzing this strategy is to show that managerial 

reasons (in this study, it refers to the switching to MNA as soon as the concentration is lower 

than CMNA) can have big influence on the decision making.  

 

Reference case parameters: 
 
C0 = 1; CT = 0.01; CMNA = 0.15 
 

mAq = 5 m, k = 0.0005 m/s; y = 100 m 
 

V lc = 107  €, r = 3%. 
 

λP&T = 0.21; λPRB = 0.12; λMNA = 0.02 
 

StdPT = StdPRB = StdMNA = 0.07 
 

30-year plan; 3 periods 
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Strategy 0000 
The results of this strategy are: strategy value = 1,053,700 EUR, chance to meet the 

target = 30.91%, expected cost of 376,510 EUR, expected benefit = 1,430,300 EUR. This 

strategy is ranked worse because it has a lower strategy value due to a higher expected cost 

and lower expected benefit compared with the optimal strategy. 

1. The expected cost of the comparative strategy 0000 is higher than the cost of the 

optimal strategy. This is because of the high installation cost of PRB. Under the current 

settings, strategy 1111 has cost advantage. 

2.  The lower benefit is because of the lower chance to meet the target compared to the 

optimal strategy. Figure 5-4a shows the scenario probabilities and the scenario values. 

Compared with the optimal strategy (shown in Figure 5-2a), the outcomes of the comparative 

strategy concentrate very much within the first three scenarios. This is due to the assumption 

that P&T has a higher effectiveness than PRB. So after the first period of PRB there is a larger 

likelihood to switch to go to the first branch in the second period. This will lead to scenarios 1, 

2 and 3.  
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Figure 5-3: Decision tree for the alternative strategy 0000 for the reference case 
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Figure 5-4: Results of alternative strategy 0000 for the reference case 

 

Strategy 0111 
The results of the optimal strategy 1111 and strategy 0111 are compared in Table 5-2. 

As shown, opposite to strategy 0000, strategy 0111 has a higher chance to meet the target than 

strategy 1111.  

 

Table 5-2: Comparison of the strategy valuation results of strategy 1111 and strategy 
0111 

 

Starting with PRB, its results also concentrate very much in the first three scenarios for 

the same reason as strategy 0000 discussed before. But it applies the more effective 

technology P&T in the second period if the concentration should be above CMNA after the first 

period. As a result, the effectiveness of strategy 0111 is clearly better than those of strategy 

Strategy Strategy value (€) Cost (€) Benefit (€) Ch ance to meet the target 
1111 (optimal)  2,170,600 350,520 2,521,200 48.78% 

  0111 (comparative) 2,0793,00 539,720 2,619,000 52.34% 
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0000. This can be seen in the high probability of scenario 3 (it ends up with stop, i.e. M3 = 

100%) compared with strategy 1111 and strategy 0000.  

The optimal strategy starts with the more effective technique P&T. The result is that its 

results do not concentrate so much in the first three scenarios as the strategies starting with 

PRB. This is the reason for the low probability of scenario 3. As shown in Figure 5-2a, the 

probabilities of scenarios 4, 5, 6 and 7 are higher than the comparative strategies. This 

indicates that after the first period of P&T, it is more likely to switch to the cheaper but 

considerably less effective technology MNA or to stop after the first period. The higher 

probability values of scenarios 6 and 7 for strategy 1111 are favorable since both scenarios 

feature a “Stop” option thus intensively contributing to the value of the respective strategy.  

As discussed above, looking at the “stop scenarios” (scenarios 3, 6 and 7) shown in 

Figure 5-2a and Figure 5-6a, strategy 0111 has higher probability of scenario 3, while strategy 

1111 has higher probability in scenarios 6 and 7. But the probability of scenarios 6 and 7 of 

strategy 1111 can not compare with the high probability of scenario 3 of strategy 0111. The 

total probability of stop scenarios (scenarios 3, 6, and 7) for strategy 0111 is higher than 

strategy 1111. This can be better seen from the comparison of Table 5-3 and Table 5-4 (Sc.: 

scenario). The comparison demonstrates the contribution of individual scenarios to the 

strategy benefit.  

 

Table 5-3: Scenario benefits of the optimal strategy 1111 in the reference case  

 Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sum 
Expected scenario 
chance to meet the 
target 

0.50% 5.20% 13.98% 3.90% 9.03% 10.49% 5.68% 48.78% 

Scenario benefit (€) 2,0328 21,1416 76,7431 158,562 366,929 575,703 420,785 2,521,200 

 
 
Table 5-4: Scenario benefits of comparative strategy 0111 in the reference case  

 Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6 Sc. 7 Sum 
Expected scenario 
chance to meet the 
target 

2.47% 14.96% 34.36% 0.20% 0.19% 0.16% 0% 52.34% 

Scenario benefit (€) 100,423 608,228 1,885,717 8,131 7,725 8,781 0 2,619,000 

 

Strategy 0111 has a lower strategy value. This is because its cost is much higher than 

strategy 1111 due to the high installation cost of PRB and the switching cost from PRB to 

P&T. After all, it has a lower strategy value. As a result, strategy 1111 is ranked better due to 

its cost advantage. It indicates that when benefits are similar, which means one strategy does 
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not have an absolute advantage in benefit, the cost will play a critical role. Both benefit and 

cost are important for the composition of the strategy value.  
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Figure 5-5: Decision tree for alternative strategy 0111 for the reference case 
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(a) Scenario probabilities and values 

 

 (b) Cumulative cost, benefit and value

Figure 5-6: Results of alternative strategy 0111 for the reference case 

 

5.2.2.3 Conclusions from the reference case 

Comparing the optimal strategy and the comparative strategies, under the assumptions 

applied to create a reference case, it can be concluded that:  

1. The recommendation would be to apply P&T during the first decision period.  

2. The strategy value is more driven by the expected benefit than the expected cost. 

Strategies with higher effectiveness have a clear advantage. This finding might be less 
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pronounced or inapplicable for other relationships between assumed land value and level of 

given cost parameters. 

3. PRB, due to relatively  high installation cost, is disadvantageous compared to P&T. 

Possible advantages because of low operational cost do not influence the result in this 

reference case. However, when assumptions change, this advantage may show effect.  

5. Due to different technology effectiveness, the strategies considered here have 

different scenario probability distribution pattern. The strategy with higher probabilities of 

scenarios end up with “Stop” option is likely to have a higher benefit. 

Furthermore, the results give some first indications that the outcome of an optimal 

strategy search largely depends on the given situation as specified by the set of input 

parameters. With different assumptions about the parameters, the results can be different. The 

optimal strategy can change. This will be investigated in the sensitivity analysis in the next 

section.  

5.3 Parameter sensitivity analysis 

This section investigates the sensitivity of the results to the changes of parameters. It 

shows the influences of different parameters on the strategy making. The reference case 

discussed above will be used as a benchmark. Parameters are divided into 5 groups: regulative 

parameters, site parameters, economic parameters, technology parameters and time 

parameters.  

5.3.1 Regulative parameters 

Regulative parameters refer to the determinative thresholds according to which the 

remedial activity can be switched or stopped. Suppose the current concentration is C0, the 

threshold levels are set to be relative values compared with the current concentration. 

Normally, these parameters are set according to target values fixed in the regulation or 

negotiations with responsible authority. For example, the thresholds for stopping (the target 

level, CT) and switching to MNA (CMNA) are like this. When the concentration is below CT, 

the remedial activity can be stopped. When the concentration is below CMNA, but above CT, 

MNA will be applied. Otherwise more intensive remedial activities such as P&T and PRB 

have to be applied. In the following, the assumptions and parameter values of CMNA and CT 

are systematically varied compared to the reference case, and the implications of these 

variations to the result of the strategy valuations are discussed.  



 48 

The cases created through new parameter settings are divided into three groups (all 

setting changes are constant for all periods): 

1. Both CT and CMNA are lower: compared with the reference case, this group refers 

either to cases of more severely contaminated sites or to situations where planned land use is 

more sensitive and calls for more strict targets. This means it is more difficult to stop and to 

switch to MNA. CT and CMNA are lowered in steps of 10% compared with the previous case; 

2. Both CT and CMNA are higher: these are less severely contaminated sites compared 

with the reference case. CT and CMNA are both higher. And thus it is easier to stop or to switch 

to MNA. Here, CT and CMNA are stepwise increased by 10%; 

3. CMNA is voluntarily lowered: in these cases, the regulative thresholds are the same as 

the reference case. CMNA is voluntarily adjusted within the range allowed by the regulation to 

search for better strategies. In other words, MNA is not applied for a certain concentration 

range even though the regulation allows to. Different cases are considered, lowering CMNA in 

steps of 10% compared with the previous case. The results are shown in Table 5-5. All values 

are the averages of 100 runs. All parameters not mentioned in the table are the same as the 

reference case. The first digit of the best string shows the optimal decision for the first period. 

1 represents P&T, 0 represents PRB. As shown, candidate strings are different from each 

other in each case. The reasons have been discussed in section 4.4, and will be further 

discussed in section 5.3.2.1.  
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Table 5-5: Sensitivity analysis results for regulative parameters 

Parameters Candidate 
strings

Best 
string

Strategy 
value (€)

Cost (€) Benefit (€) Chance to 
meet the 

target
C0 = 1 1111

Reference C T = 0.01 1101
CMNA = 0.15

C0 = 1 1111

CT = 0.009 1101

CMNA = 0.135

C0 = 1 1111

Both CT = 0.0081 1101
CT and CMNA = 0.1215 1110

CMNA C0 = 1 1111

are lower CT = 0.0073 1101

CMNA = 0.1094 1110
Case C0 = 1 1111 1111 2,776,700 368,290 3,147,100 61.04%

5.3.1-4 CT = 0.0066

CMNA = 0.0984
C0 = 1 0111

CT = 0.011 0110
CMNA = 0.165

C0 = 1 0111

Both CT = 0.0121 0110
CT and CMNA = 0.1815
CMNA C0 = 1 0101

are higher CT = 0.0133 0100

CMNA = 0.1997 0110
0111

C0 = 1 0111

CT = 0.0146 0101

CMNA = 0.2196 0110
C0 = 1 1111

CT = 0.01 1101
CMNA = 0.135

C0 = 1 1111

CMNA CT = 0.01 1101

is CMNA = 0.1215

voluntarily Case C0 = 1 1111 1111 2,763,400 363,560 3,127,000 60.38%

lowered 5.3.1-11 CT = 0.01
CMNA = 0.1094

C0 = 1 1111

CT = 0.01 1110

CMNA = 0

75.46%

2,755,200355,130

Case 
5.3.1-12

1111 3,480,700 396,850 3,877,500

53.27%

Case 
5.3.1-10

57.13%

Case 
5.3.1-9

1111 2,400,000

1111 2,598,000 359,480 2,957,500

2,382,500 47.29%

Case 
5.3.1-7

0111 1,951,200

case 
5.3.1-8

0111 1,856,600 525,860

2,542,600 50.50%

531,370

537,400 2,579,500

2,482,500 49.26%

Case 
5.3.1-6

0111 2,007,500 535,110

2,704,900 52.31%

2,888,200 55.95%

364,350 3,031,300 58.74%

Case 
5.3.1-5

0110 2,042,100 51.34%

Case 
5.3.1-2

1111 2,528,100

350,5201111 2,170,600

357,650

360,080

2,521,200 48.78%

Case 
5.3.1-1

1101 2,347,200

Case 
5.3.1-3

1111 2,667,000

 

 

5.3.1.1 Both CT and CMNA are lower 

1. In this case, the decision of what to do in the first period does not change compared 

with the reference case. P&T should be applied for the first period.  

2. The cost increases with lower threshold levels. This is because the more expensive 

techniques can not be switched to a cheaper technique so easily. This can be seen from Figure 

5-2a and Figure 5-7a. Compared with the reference case, the probabilities of the first three 

scenarios in case 5.3.1-4 are higher. This is because of the more severe contamination or a 
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stricter target level. After the first period of P&T, it is more likely to apply intensive remedial 

activities in the second period. It is less likely to switch to a cheaper technology MNA or to 

stop. As a result, the strategy is more expensive.  
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(a) Scenario probabilities and values  

 

(b) Cumulative cost, benefit and value

 

 

 

 (c) Frequency of strategy values (100 runs)     

Figure 5-7: Results of optimal strategy 1111 for case 5.3.1-4 

 

3. The benefit from selling the land increases when threshold levels are lower. Lower 

threshold levels represent either a more severely contaminated site or a stricter regulation due 

to e.g. a more sensitive land-use, which makes it more difficult to switch to MNA. This means 

more intensive techniques such as P&T and PRB have to be applied. The result is that the 

chance to meet the target is higher. This can be seen when comparing Figure 5-2a and Figure 

5-7a. The scenarios in which the remedial activity can be stopped after the second period (or 

earlier) and the land can be sold are scenarios 3, 6 and 7. With the probabilities of scenarios 6 

and 7 being similar, the probability of scenario 3 increases from the reference case to case 

 
Regulative parameters  
 
Case 5.3.1-4  
Parameter changed compared to 
reference case: 
 

CT = 0.0066 
CMNA = 0.0984 
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5.3.1-4. This is ultimately the reason for the increasing benefit with decreasing threshold 

levels CMNA and CT. This surprising result of an increasing effectiveness of the remediation 

with lower (i.e. stricter) targets is caused by managerial reasons, namely by applying the rule 

“switching to MNA as soon as it is possible (C ≤ CMNA)”. The implication for management is 

that MNA should not be applied too early if effectiveness is very important. This will be 

further discussed in section 5.3.1.3 when CMNA is voluntarily lowered. 

4. The strategy value (benefit minus cost) increases compared to the reference case with 

decreasing threshold levels. This is shown clearly comparing Figure 5-2b and Figure 5-7b. In 

the cases considered here, the effectiveness (as represented by the chance to meet the target) 

i.e. the benefit of a strategy is obviously dominating the result. Remediation cost plays a 

minor role. The relative influence of benefit and cost is closely related to the assumed land 

value, which was evidently set relatively high. So even though the cost increases with 

decreasing threshold levels, the strategy value still increases because of the more significant 

increase of the strategy benefit. Figure 5-2c and Figure 5-7c show the distributions of the 

strategy values of both cases. The role of the land value will be investigated in detail further 

below (see section 5.3.3.1). 

5. The same strategy represented by one string has different implications (i.e. outcomes) 

when settings change. This is because different scenario probability distributions depend on 

the given threshold levels. The latter plays a very important role in the likelihood of scenario 

realization in reality. Whether better strategy can be identified by changing threshold levels 

within allowed range will be discussed in section 5.3.1.3. 

 

5.3.1.2 Both CT and CMNA are higher  

1. When the site is less severely contaminated or planned land use is rather insensitive 

and allows for a higher remediation target, the recommended decision of what to do in the 

first period changes compared with the reference case. Strategy 0111 is optimal, and PRB 

should be applied in the first period.  

The evaluation results of the ‘former’ optimal strategy 1111 for the new parameter 

settings (cases 5.3.1-5 to 5.3.1-8) reveals that its strategy value is distinctly lower than the 

value of strategy 0111. This is mainly due to the lower chance to meet the target (32.52%): 

The results for strategy 1111 are: strategy cost = 333,230 EUR, strategy benefit = 1,715,900 

EUR, strategy value = 1,382,700 EUR. 
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(b) Cumulative cost, benefit and value

 

  (c) Frequency of strategy values (100 runs) 

Figure 5-8: Results of optimal strategy 0111 for case 5.3.1-8 

 

 

 

(a) Scenario probabilities and values 

 

(b) Cumulative cost, benefit and value

Figure 5-9: Results of comparative strategy 1111 for case 5.3.1-8 
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The reason why strategy 0111 is more effective than strategy 1111 has been discussed in 

previously in section 5.2.2.2. In case 5.3.1-8 settings, when the site is less contaminated, it is 

the same reason. Applying P&T in the first period, strategy 1111 is more likely to switch to 

MNA after the first period. As a consequence, strategy 1111 will be less effective over the 

entire planning period of 30 years than strategy 0111 (switch to MNA is less likely due to less 

effective technique PRB in first period). The effect can be shown in the higher probability of 

the first three scenarios for strategy 0111 compared with strategy 1111 (see Figure 5-8a and 

Figure 5-9a). In the reference case, even though strategy 1111 has a lower strategy benefit, it 

still has a higher strategy value due to the lower cost. But in the case 5.3.1-8 settings, the 

lower cost advantage of strategy 1111 can not compensate the much lower benefit. As a result, 

strategy 0111 is ranked better because of the higher benefit (see Figure 5-8b and Figure 5-9b). 

The frequency of the strategy values of these two strategies are shown in Figure 5-8c and 

Figure 5-9c. 

The results show the complex relation between variables. Strategy value is decided by 

cost and benefit. The slight change in parameter settings can change the proportion of the cost 

and benefit in the strategy value. And thus, changes the result. With different scenario 

probability distribution, the expected cost and benefit can change. For example, the same 

strategy 0111 is not optimal under the reference case settings. But under case 5.3.1-8 settings, 

0111 becomes the optimal strategy due to changes in expected cost and benefit caused by the 

slight change in regulative parameters. The interplay of different parameters and variables and 

the relation between these parameters and variables decide the valuation result. These 

variables include various aspects involved in remediation decision making besides regulative 

parameters: site parameters, economic parameters such as land value and costs, technology 

effectiveness and effectiveness’ uncertainties, and time parameters. These parameters will be 

investigated in the discussion from section 5.3.2 to section 5.3.5. 

2. For strategies starting with the same technology, when the threshold levels are higher, 

the strategy cost, the strategy benefit, the strategy value and the chance to meet the target all 

decrease. The reasoning is the opposite to point 2 to point 4 of section 5.3.1.1. Therefore it is 

not repeated here.  

 

5.3.1.3 CMNA is voluntarily lowered 

The upper limits of the thresholds levels, CT,up and CMNA,up are set by the regulation i.e. 

they both can not be increased without permission. Since CT,up demarcates the environmental 

status “clean”, it is obvious that it will not be lowered voluntarily: CT = CT,up. The decision 
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maker’s flexibility that remains is to lower the threshold level for switching to MNA: CMNA < 

CMNA,up. The effect of doing so is not straightforward. The results are discussed below. 

1. When CMNA is voluntarily lowered, the optimal strategy is the same as the reference 

case, which indicates that P&T should be applied for the first period.  

2. When CMNA is voluntarily lowered, the strategy cost, the strategy benefit, the strategy 

value and the chance to meet the target all increase. The cost increases because switching to 

MNA requires lower concentration values that can be achieved only by prolongation of the 

operation time of active remediation. At the same time, the chance of meeting the target is 

increased, which yields an increased strategy benefit. Since the strategy benefit increases 

more significantly than the cost, the strategy value increases. 

3. An extreme example is case 5.3.1-12, where MNA is not applied at all. Shown in 

Figure 5-10a, the probabilities of scenarios 2, 4, 5 and 6 are zeros because MNA is not applied 

(see Figure 5-1 for the tree structure). It has high stopping scenario probabilities after the 

second period compared with the reference case (scenarios 3, 6 and 7 in Figure 5-2a). Even 

though the cost increases, the strategy value still increases because of the much higher benefit 

(compare Figure 5-2b and Figure 5-10b). Figure 5-10c shows the frequency of the strategy 

value of the optimal strategy in case 5.3.1-12 for 100 runs.  

A comparative strategy 0111 is taken under the case 5.3.1-12 settings. In the previous 

comparisons, it is concluded that strategy 0111 is more effective because strategy 1111 

switches to MNA too early. It may be taken wrong as a universal conclusion for all situations 

that strategy 0111 is more effective than strategy 1111. It is important to point out that this is 

not true any more in the settings in case 5.3.1-12, when MNA is not applied any more. The 

results of strategy 0111 and strategy 1111 under case 5.3.1-12 settings are compared in Table 

5-6. As can be seen, strategy 1111 is more effective than strategy 0111. (See Figure 5-10 and 

Figure 5-11 for detailed information about these two strategies under case 5.3.1-12 settings.) 

In this case, strategy 1111 has higher strategy value because of higher benefit and lower cost 

compared with the comparative strategy 0111.  
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(a) Scenario probabilities and values 

 

(b) Cumulative cost, benefit and value 

 

(c) Frequency of strategy values (100 runs) 

Figure 5-10: Results of optimal strategy 1111 for case 5.3.1-12 
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(a) Scenario probabilities and values 

 

(b) Cumulative cost, benefit and value

Figure 5-11: Results of comparative strategy 0111 for case 5.3.1-12 
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Table 5-6: Results of strategy 1111 and 0111 using case 5.3.1-12 parameters 

 
 

5.3.1.4 Conclusion 

1. The regulative parameters have significant influence on strategy cost, strategy benefit 

(due to the influence on strategy effectiveness), and after all, strategy value.  

2. Under the condition of high land value, effectiveness is a more dominant factor 

compared with cost.  

3. When the threshold levels are lower, the more effective technology, P&T, is 

preferable for the first period. When the threshold levels are higher, PRB is preferable for the 

first period.   

4. The same strategy represented by one string may mean quite different actions over 

time depending on scenario probabilities. The scenario probability distribution depends on the 

given threshold levels. Therefore, the threshold levels play a very important role in the 

optimal remedial activity identification.  

5. Voluntarily lowering CMNA is investigated in this case for all periods. It does not 

change the optimal remedial action for the first period. But it does increase the estimated 

strategy value by changing cost and the strategy effectiveness.  As discussed previously, by 

changing the scenario probability distribution, it can change the actual realized remedial 

activities over time. When effectiveness is the main criterion in the decision making, MNA 

should not be applied too early even though the threshold is met.         

 

5.3.2 Site parameters 

Site parameters include aquifer thickness (mAq), conductivity (k) and total width of the 

contaminated area (y). In the following part, the effect of changing assumptions about these 

parameters to the result will be examined. The results are shown in Table 5-7. If not 

mentioned, the parameters are the same as the reference case.  

 

 

 

 

 

Strategy Strategy value (€) Cost (€) Benefit (€) Ch ance to meet the 
target 

1111 (optimal) 3,480,700 396,850 3,877,500 75.46% 
  0111 (comparative) 2,695,400 565,970 3,261,400 67.97% 
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Table 5-7: Sensitivity analysis results for site parameters 

Parameters Candidate 
strings

Best 
string

Strategy 
value (€)

Cost (€) Benefit (€) Chance to 
meet the 

target
mAq = 5 m 1111

k = 0.0005 m/s 1101
y = 100

Case 1111
5.3.2-1 mAq = 2 m 1101

Aquifer 0110

thickness Case mAq = 10 m 1101

 5.3.2-2 1111
Case k = 0.0001 m/s 1111

5.3.2-3 1101
Case 1111

5.3.2-4 k = 0.0009 m/s 0111
1101

Case k = 0.0015 m/s 0110 0111 1,872,600 750,150 2,622,700 52.41%
5.3.2-5 0111
Case k = 0.0030 m/s 0101 0111 1,550,300 1,065,600 2,615,900 52.28%

5.3.2-6 0110
0111

Case 1111
5.3.2-7 y = 50 m 0111

0110
0110 0110 2,386,500 230,530 2,617,000 52.30%

Case y = 20 m 0111
Total width of 5.3.2-8 0101
contaminated 0100

area Case y = 10 m 0111 0111 2,423,500 191,950 2,615,400 52.27%
5.3.2-9 0110

0100
Case y = 200 m 1111

5.3.2-10 1101

2,517,000 48.72%

259,8402,258,900 48.73%2,518,7001111

1111 1,985,100 531,960

2,518,400 48.71%Conductivity 1111 2,022,800 495,580

2,507,400 48.48%

1101 1,978,000 533,470

1101 2,300,000 207,400

Reference 1111 2,170,600

48.57%

1101 2,263,500 242,730

350,520

2,511,500

2,521,200 48.78%

2,506,200 48.47%

 

 

5.3.2.1 Aquifer thickness 

1. When the aquifer thickness changes, the optimal remedial action for the first period 

does not change. P&T should be applied. 

2. When the aquifer thickness reduces (case 5.3.2-1), the strategy cost reduces. This is 

because the remedial activity needs less material, energy and labor. Because of the same 

reason, when the aquifer thickness increases, the strategy cost increases (case 5.3.2-2). The 

changes in aquifer thickness do not influence the strategy effectiveness so much. As a result, 

the benefit does not change significantly. So the strategy value is changed mainly due to the 

changing costs.  

3. Candidate strings are different from each other in each case. The two reasons for it 

have been discussed in section 4.4: similar strategy values and identical strings. Case 5.3.2-1 

is taken here as an example to demonstrate these two reasons. Strategy 1111 and 1101 are 

identical strings. This can be seen in Figure 5-12. The probability of scenario 1 is almost zero. 

As discussed in section 4.4, the third digit of the string does not matter. As a result, 1111 and 

1101 are identical. Strategy 0110 is listed as a candidate string because of the other reason. It 
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has similar strategy value as strategy 1101 (1111). The results for strategy 0110 are: strategy 

value = 2,250,400 EUR, strategy cost = 364,050 EUR, strategy benefit = 2,614,500 EUR, 

chance to meet the target = 52.24%. This strategy has higher benefit due to the higher chance 

to meet the target. It is a more expensive strategy due to the high installation cost and 

switching cost. After all, Strategy 0110 has a similar strategy value with the optimal strategy. 

As a result, strategy 0110 is also listed as a candidate string. As discussed in section 4.4, it is 

supposed that the decision maker provides the criterion as: when strategy value is positive, 

Max (mean/Std.); when strategy value is negative, Min (|mean|*Std.). According to these 

criteria, the optimal strategy is chosen. The same criteria are applied in this study when 

multiple candidate strings appear.  
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(a) Strategy 1101 

Figure 5-12: Scenario probabilities and values for strategy 1111 and 1101 in case 5.3.2-1 

 

5.3.2.2 Conductivity 

1. The change of conductivity can change the optimal remedial action for the first period 

when it is increased to a certain level. In case 5.3.2-5 and case 5.3.2-6, the optimal decision 

for the first period would be to apply PRB. The comparison of strategy 1111 and strategy 

0111 is shown in Table 5-8. The detailed information about these two strategies using case 

5.3.2-5 parameters is shown in Figure 5-13 and Figure 5-14. The reason why strategy 0111 is 

more effective has been discussed in chapter 5.2.2.2. Therefore it is not repeated here. 

Comparing the costs in Table 5-2 and Table 5-8 reveals that, with a higher conductivity, the 

low cost advantage of strategy 1111 is no longer significant using case 5.3.2-5 parameters 

compared with the reference case. As a result, with a slightly higher cost and much higher 

benefit, the strategy 0111 has a much higher strategy value compared with strategy 1111, as 

shown in Figure 5-13b and Figure 5-14b.  
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Table 5-8: Comparison of results of strategy 1111 and 0111 in the reference case, case 
5.3.2-3, case 5.3.2-4, case 5.3.2-5 and case 5.3.2-6 
 

  Strategy  
Reference  

case 
Case  

5.3.2-3 
Case  

5.3.2-4 
Case  

5.3.2-5 
Case  

5.3.2-6 
Strategy 1111 350,520 207,400 495,580 714,370 1,257,200 
cost (€) 0111 539,720 455,570 623,870 750,150 1,065,600 
Strategy 1111 2,521,200 2,507,400 2,518,400 2,512,900 2,519,000 

benefit (€) 0111 2,619,000 2,618,100 2,618,500 2,622,700 2,615,900 
Strategy 1111 2,170,600 2,300,000 2,022,800 1,798,600 1,261,700 
value (€) 0111 2,079,300 2,162,600 1,994,600 1,872,600 1,550,300 

 

               

 
(a) Scenario probabilities and values 

 

(b) Cumulative cost, benefit and value

 

(c) Frequency of strategy values (100 runs) 

Figure 5-13: Results of optimal strategy 0111 for case 5.3.2-5 

 

 

 
Site parameters  
 
Case 5.3.2-5  
Parameter changed compared to 
reference case: 
 

k = 0.0015 m/s 
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(a) Scenario probabilities and values 

 

(b) Cumulative cost, benefit and value 

Figure 5-14: Results of comparative strategy 1111 for case 5.3.2-5 

 

2. Conductivity influences mainly the cost, not the strategy effectiveness and thus, not 

the benefit. When the conductivity is lower, the cost is lower. This is true for both P&T and 

PRB. It is because when the conductivity is lower, P&T needs a lower pumping rate. The 

lower pumping rate causes less cost. For PRB, lower conductivity means that the barrier needs 

less filling material. With the same reasoning, a higher conductivity causes higher cost. The 

influence is different for these two technologies. As shown in Table 5-8, the effect of 

changing cost due to changing conductivity on P&T is bigger than PRB. Therefore, the 

influence on the cost of strategy 1111 is bigger than strategy 0111. This is also the reason why 

optimal strategy switches. By influencing the cost, conductivity influences the strategy value, 

while the influence on strategy benefit is not significant. After all, when the conductivity 

increases, the strategy value decreases; when the conductivity decreases, the strategy value 

increases.  

 

5.3.2.3 Total width of the contaminated area 

1. The change of total width of the contaminated area can change the optimal remedial 

action for the first period when it is reduced to a certain level. In case 5.3.2-8 and case 5.3.2-9 

strategy 0110 is optimal. A comparison with strategy 1111 is shown in Table 5-9. As can be 

seen, the reason is the same as discussed in session 5.3.2.2: the cost advantage of strategy 

1111 is no longer significant enough to overcome the disadvantage of lower effectiveness. 

2. If one looks at the strategies starting with the same technology for the first period, 

total width of the contaminated area influences mainly the cost, not the benefit. The benefit is 

changing slightly because of little deviations in the probability distribution of C (Eq. 4-2) 

produced by Monte Carlo simulation from one run to the next. When the total width of the 
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contaminated area is shorter, the cost is lower. A longer total width of the contaminated area 

causes higher cost. By influencing the cost, conductivity influences the strategy value, while 

the influence on strategy benefit is not significant. After all, when the total width of the 

contaminated area increases, the strategy value decreases; when the total width of the 

contaminated area decreases, the strategy value increases. 

 

Table 5-9: Comparison of results of strategy 1111 and 0110 using case 5.3.2-8 
parameters 

 
 

5.3.2.4 Conclusion 

1. The site parameters mainly have influence on costs. They do not have significant 

influence on the strategy effectiveness. As a result, they do not influence the benefit so much.  

2. A thicker aquifer, higher conductivity and longer total width of contaminated area 

will cause higher costs and thus lower strategy value; a thinner aquifer, lower conductivity 

and shorter total width of the contaminated area will cause lower costs, and thus higher 

strategy value.  

3. P&T cost is more sensitive to conductivity and total width of the contaminated area 

than PRB. As a result, when these two parameters change, P&T can loose the low cost 

advantage in the reference case.  

4. When the conductivity is very high or the total width of the contaminated area is short, 

PRB is preferred for the first decision period; when the conductivity is low or the total width 

of the contaminated area is long, P&T is preferred for the first decision period.  

5.3.3 Economic parameters 

Economic parameters include: land value, technology costs and discount rate. Land 

value (Vlc) is the value of the land as if it was clean. It equals the land price multiplied by the 

land area. Recall that the strategy benefit is solely realized by selling the land whereas the 

benefit equals to Vlc multiplied by M (chance to meet the target). Technology cost is the cost 

associated with a certain technology. It includes installation cost, reactivation cost, operational 

cost and stopping cost. The role of technology cost is analyzed by multiplying a cost factor 

(e.g. + 30% or -30%) to all costs. The interest (or discount) rate (r) has a very big influence on 

the future cash flows. Future cash flows are less important with a larger the discount rate. The 

Strategy Strategy value (€) Cost (€) Benefit (€) Ch ance to meet the target 
0110 (optimal) 2,386,500 230,530 2,617,000 52.30% 

  1111 (comparative) 2,312,000 205,450 2,517,400 48.71% 
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results of the study with respect to economic parameters are shown in Table 5-10. All 

parameter values not mentioned in the table are the same as the reference case.  

 

Table 5-10: Sensitivity analysis results for economic parameters 

Parameters Candidate 
strings

Best 
string

Strategy 
value (€)

Cost (€) Benefit (€) Chance to 
meet the 

target
1111
1101

Case 5.3.3-1 Vlc=2*107 € 0110 0111 4,695,200 539,760 5,234,900

0101
0111
1101
1111

Land value Case 5.3.3-2 Vlc=105 € 1111 1111 -325,350 350,530 251,840 48.71%

Case 5.3.3-3 Vlc=0 1111 1111 -350,500 350,300 0 48.72%

Case 5.3.3-4 1101
1111

Case 5.3.3-5 0110
0111
1101
1111

Case 5.3.3-6 1101
0111
1111

Case 5.3.3-7 P&T costs 1111 1111 1,933,900 584,210 2,518,100
increase 80% 0111

0110
1101

Case 5.3.3-8 P&T costs 0111 0110 1,913,500 703,440 2,617,000
increase 90% 1111

0110
0101
1101

Case 5.3.3-9 P&T costs 1101 1111 2,257,500 262,860 2,520,400
reduce 30% 1111

Case 5.3.3-10 0110
0111

Case 5.3.3-11 1101
0110
1111

Case 5.3.3-12 1111
1101

350,520Reference Vlc = 107 €
Costs (Table 5-1)

r = 3%

1111 2,170,600

378,740 3,113,700 48.53%

r = 6% 1111 1,062,000 290,270 1,352,300 48.70%

Discount 
rate

r = 2% 1101 2,735,000

659,560 5,229,000 52.29%

PRB costs 
increase 30%

1111

440,660 2,613,600 52.23%

2,168,300 350,560

r = 0% 0111 4,569,500

2,521,200

2,518,800

52.33%

48.78%

48.74%

Technology 
cost

PRB costs reduce 
30%

0110 2,173,000

48.75%

P&T costs increase 
30%

1111 2,078,000

48.73%

52.29%

438,180 2,516,200 48.68%

 

 

5.3.3.1 Land value 

As discussed previously, land value (Vlc) is the source of strategy benefit, which 

represents strategy effectiveness. Thus, when land value increases, effectiveness plays a more 

important role than strategy cost. This can be seen from the switching of optimal action for the 

first period when Vlc is increased to 2*107 EUR in case 5.3.3-1. As discussed in section 

5.2.2.2, strategy 0111 is a more effective strategy with higher cost than strategy 1111. In case 

5.3.3-1, 0111 becomes the optimal strategy because of the higher effectiveness. The switching 

point of the land value (LV*) when the optimal action for the first period changes is Vlc = 

2*107 €. When the land value decreases, the optimal strategy does not change.  
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(a) Scenario probabilities and values 

 

(b) Cumulative cost, benefit and value 

 

   (c) Frequency of strategy values (100 runs) 

Figure 5-15: Results of optimal strategy 1111 for case 5.3.3-3 

 

An extreme example is case 5.3.3-3. When the land is not sold even though the 

remediation is finished, the land value is set to be zero. In this case, there is only cost without 

benefit for the project. Detailed information about case 5.3.3-3 is shown in Figure 5-15. 

Because the land value is zero, in Figure 5-15a, the scenario values are actually the scenario 

costs. In Figure 5-15b, it is shown that the cumulative benefit is always zero. The strategy 

value is the same amount of the strategy cost. Figure 5-15c shows the frequency of the 

strategy value for 100 runs. 

Changing discount rate and total time frame under zero land value assumption 

When Vlc is zero, benefit is not an influencing factor any more. As a result, cost is the 

only criterion for the strategy valuation. The cheapest strategy is the optimal. Discount rate 

and the total time frame play very important roles in this situation because the cost is very 

sensitive to them. This is due to the different cash flow structures of different technologies. 

 
Economic parameters  
 
Case 5.3.3-3  
Parameter changed compared to 
reference case: 
 

V lc = 0 
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The sensitivity of the results to changing discount rate and total time frame is shown in Table 

5-11. If not mentioned, the parameters are set to be the same as the reference case.  

PRB has a very high installation cost at the beginning and rather low operational cost 

afterwards. P&T has lower installation cost at the beginning, but relatively high operational 

cost thereafter. As discussed previously, discount rate has a bigger effect on the operational 

cost of P&T compared with PRB. When discount rate is 1% (case 5.3.3-13), the cheapest 

strategy is 0000. In this situation, the advantage of low operational cost makes PRB preferable. 

But when the discount rate increases to 3% (case 5.3.3-14), strategy 1111 becomes the 

cheapest strategy. Both costs of strategy 0000 and 1111 are lower because of the discounting. 

But the effect on strategy 1111 is bigger than strategy 0000. With a bigger discount rate, the 

high operational cost disadvantage of P&T becomes smaller. As a result, strategy 1111 

becomes the optimal in case 5.3.3-14.  

Except for low discount rate, the low operational cost advantage of PRB can also show 

effect when the time frame is very long. When the time frame is increased to 70 years (case 

5.3.3-15), strategy 0000 becomes cheaper than strategy 1111.  

If discount rate is reduced and total time frame is increased at the same time, the effect is 

more significant. This can be seen from case 5.3.3-16. It takes shorter time than case 5.3.3-15 

to show the low operational cost advantage of PRB.  

 

Table 5-11: Results for optimal strategies and comparative strategies with changing 
discount rate and total time frame when land value is zero 
 

  
 

5.3.3.2 Technology cost 

1. When the technology costs are changed, the optimal action for the first period can 

change. This is shown in case 5.3.3-5, when the costs of PRB are reduced by 30%, PRB 

should be applied for the first period. As discussed before, under the reference case settings, 

strategy 0111 (same as 0110) is more effective than strategy 1111, strategy 1111 has a higher 

strategy value due to the cost advantage (shown in Table 5-2). In case 5.3.3-5 settings, when 

PRB cost is reduced the cost advantage of strategy 1111 can no longer overcome the benefit 

Zero land value  Parameters Strategy  Cost (€)  Chance to meet 
the target

Case 5.3.3-13 r = 1% Optimal strategy 0000 402,260 30.93% 
Discount  Comparative strategy 1111 408,900 48.67% 

rate Case 5.3.3-14 r = 3% Optimal strategy 1111 350,520 48.78% 
Comparative strategy 0000 376,510 30.91% 

Total  Case 5.3.3-15 70 years Optimal strategy 0000 410,590 65.50% 
time frame Comparative strategy 1111 437,060 79.38% 

Total time frame &  Case 5.3.3-16 60 years Optimal strategy 0000 445,880 58.14% 
Discount rate r = 2% Comparative strategy 1111 457,430 76.30% 
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disadvantage. Strategy 0110 becomes the optimal strategy. The same effect can be seen when 

P&T costs are increased. But to achieve the same effect, P&T costs have to be increased by 

90%. This is again because of the discounting effect due to the cash flow structure of P&T. If 

discount rate is reduced to 1%, 0111 becomes the optimal strategy when P&T costs are 

increased by 25%. The comparison of strategy 0110 and 1111 with r = 1% and P&T costs 

increase 25% is shown in Table 5-12. 

2. For the same strategy (for example, strategy 1111 in the reference case and case 5.3.3-

6), when the technology cost decreases, the strategy cost reduces, the strategy value increases. 

When the cost increases, the effect is the opposite. 

 

Table 5-12: Comparison of strategies when r = 1%, P&T costs increase by 25% 
(mean of 100 runs, other parameters are the same as the reference case) 
 

r=0% Strategy value (€) Cost (€) Benefit (€) Chance  to meet the 
target 

0110 (optimal) 3,472,300 672,370 4,144,700 52.32% 
1111 (comparative) 3,408,600 490,250 3,898,900 48.79% 

 

 

5.3.3.3 Discount rate 

1. The net present values of cost, benefit and strategy value decrease with increasing 

discount rate. This is why the cost, benefit and strategy value all increase when the discount 

rate decreases as shown in Table 5-10. 

2. Discount rate has different levels of influence on different cash flows. It has a bigger 

effect on future cash flows. A bigger discount rate makes the future cash flows less important. 

A smaller discount rate makes the future cash flows more important. As mentioned, under the 

condition of high land value, the technology effectiveness plays a very important role. This is 

reflected on the strategy benefit. Since benefit occurs in the further future compared with the 

cost, discount rate has a bigger impact on benefit than cost (see also point 3. further below). 

With a smaller discount rate, the future benefit is more important. In other words, with a 

smaller discount rate, the strategy effectiveness is more important. This is shown very clearly 

if we compare strategy 1111 and strategy 0111 under the condition of the reference case 

parameters (r = 3%) and case 5.3.3-10 parameters (r = 0%). The comparison is shown 

comparing Table 5-2 and Table 5-13. In both cases, strategy 0111 is more effective than 

strategy 1111, which is shown by the chance to meet the target. In the reference case, strategy 

1111 is optimal because of the cost advantage. As discussed before, when r is decreased, the 

influence of effectiveness is increased. As a result, the cost advantage of strategy 1111 can no 
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longer overcome the benefit disadvantage. Strategy 0111 becomes the optimal strategy. 

Detailed information about the optimal strategy under case 5.3.3-10 settings is shown in 

Figure 5-16. 

 

Table 5-13: Comparison of strategies using case 5.3.3-10 parameters (mean of 100 runs) 
 

r = 0% Strategy value (€) Cost (€) Benefit (€) Chan ce to meet the 
target 

0111 (optimal) 4,569,500 659,560 5,229,000 52.29% 
1111 (comparative) 4,425,800 445,830 4,871,600 48.72% 
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    (c) Frequency of strategy values (100 runs) 

Figure 5-16: Results of optimal strategy 0111 for case 5.3.3-10 

 

3. For P&T and PRB, the effect of discount rate is different. P&T has less installation 

cost and more operational cost than PRB. PRB has a very intensive cost at the beginning but 

not so intensive cost afterwards. So P&T cost is more evenly distributed in time while P&B 

cost is very much distributed at the beginning. As a result, the cost of P&T is more sensitive 

to the discount rate than PRB. This can be seen comparing the strategy costs in Table 5-2 and 

 
Economic parameters  
 
Case 5.3.3-10 
Parameter changed compared 
to reference case: 
 

r=0 
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Table 5-13. When interest rate is reduced from 3% to 0% the cost of strategy 0111 increases 

less than those of strategy 1111 (strategy 0111 by 22.2%, strategy 1111 by 27.2%).  

 

5.3.3.4 Conclusion 

1. The land value is the source of benefit, which represent the strategy effectiveness. 

Higher land lave increases the importance of strategy effectiveness in the optimal strategy 

selection.   

2. Cost plays an important role in the strategy valuation. When land value is very low, 

cost becomes a more important criterion for optimal strategy selection.  When land value is 

zero, cost is the only criterion. The cheapest strategy is the optimal. If the decision maker 

wants to add the effectiveness as a criterion, a minimum chance to meet the target can be set. 

3. Discount rate can change the relative importance of a factor to the valuation compared 

with other factors. A higher discount rate decreases the importance of effectiveness and thus 

relatively increases the importance of cost. A lower discount rate has the opposite effect.  

4. Discount rate can change the cost and benefit structure of a strategy. All values are 

reduced after being discounted, including the cost, benefit and the strategy value. It has a 

higher effect on the cash flows which occur in the further future. It has more effect on the 

benefit compared with the cost. It also has more effect on the cost of P&T than PRB. PRB 

becomes preferable when discount rate is lower. 

5. Changing of the project time frame can influence the optimal strategy making. The 

low operational cost advantage of PRB is more obvious in longer time frame. When time 

frame is long enough, PRB becomes the optimal action. This will be further discussed in 

section 5.3.5.1. 

5.3.4 Technology parameters 

Technology parameters refer to the effectiveness and uncertainties of the effectiveness. 

In this study, the effectiveness is represented by the decay rate constant. It is different for 

different technologies. For example, P&T is typically expected to be more effective than PRB 

(due to the effect of active pumping as opposed to pure passive treatment with PRB). The 

assumptions made in the reference case are accordingly: the decay rate constant of P&T (λP&T) 

is higher than the one of PRB (λPRB). Within the reasonable range, the rates are changed, and 

the effects on the results are examined below. A second issue analyzed here is the uncertainty 

attributed to the technologies’ effectiveness. In this study, this uncertainty is represented by 

stochastic representation of the development of contaminant concentration C over time (see eq. 

4-2), resulting in a normally distributed probability density function of C, the standard 
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deviation (Std.) of which is an input parameter that can assume any reasonable value. In the 

reference case, the standard deviations of the outcomes after a period of P&T, PRB and MNA 

are set to be the same, which is 0.07. In the following, it will be discussed how a change in 

standard deviation of different technologies will effect the results of the strategy evaluation.  

 

5.3.4.1 Effectiveness of technologies 

The effectiveness of technologies can not be estimated exactly in virtually all cases. This 

can over estimate or under estimate the effectiveness. Moreover, because of the development 

of technologies, the effectiveness can improve. As a result, the investigation of technology 

effectiveness is done by both increasing and decreasing the decay rate constant (λ). The decay 

rate constant defining the effectiveness of technologies are changed in two ways: 1. either 

λP&T or λPRB is changed, while keeping the other one the same as the reference case (the first 

two groups in Table 5-14); 2. λP&T and λPRB are changed at the same time (the last two groups 

in Table 5-14). It is assumed that PRB can not be more effective than P&T. The results are 

shown in Table 5-14. If not mentioned in the table, the parameter values are the same as the 

reference case. 

 

Table 5-14: Sensitivity analysis results for effectiveness of technologies 

Parameters Candidate 
strings

Best 
string

Strategy 
value (€)

Cost (€) Benefit (€) Chance to 
meet the 

target
Reference λP&T = 0.21 1111 1111 2,170,600 350,520 2,521,200 48.78%

λPRB = 0.12 1101

case 5.3.4-1 Reduce λP&T by 25% 1111 1111 1,831,500 381,480 2,213,000 45.04%

Changing λP&T = 0.16 1110

effectiveness 1101
of P&T case 5.3.4-2  Reduce λP&T to 0.12 0000 0000 1,055,100 376,510 1,431,700 30.95%

(same as λPRB) 0001

0011
case 5.3.4-3 Increase λP&T by 25% 1111 1111 2,850,400 326,270 3,176,700 55.84%

λP&T = 0.26 1101

case 5.3.4-4 Reduce λPRB by 25% 1111 1101 2,153,800 351,690 2,505,500 48.41%
λPRB = 0.09 1101

Changing case 5.3.4-5 Increase λPRB by 25% 1111 1101 2,163,300 351,660 2,514,900 48.63%

effectiveness λPRB = 0.15 1101

of PRB case 5.3.4-6 In crease λPRB to 0.21 1111 1111 2,163,000 357,920 2,520,900 48.78%

(same as λP&T) 1110
1000
1100
1101

P&T and PRB case 5.3.4-7 Reduce both 1111

are both  λP&T and λPRB by 25% 1101

 less effective λP&T = 0.16

λPRB = 0.09

P&T and PRB case 5.3.4-8 Increase both 1111 1111 2,851,100 326,200 3,177,300 55.81%

are both  λP&T and λPRB by 25% 1101

 more effectvie λP&T = 0.26
λPRB = 0.15

1,827,500 381,470 2,209,000 44.96%1111
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5.3.4.1.1 Changing effectiveness of P&T 

1. When λP&T is reduced to the level of λPRB (case 5.3.4-2), the optimal action for the 

first period becomes PRB. Two strategies 1111 and 0111 are compared below with the 

optimal strategy 0000 under case 5.3.4-2 settings. The results are shown in Table 5-15. 

Because of the same effectiveness, the chances to meet the target for all strategies are 

similar. Again, small variations are caused by the uncertainty in Monte Carlo simulation. As a 

result, cost becomes the main criterion for the optimal strategy selection. Strategy 0111 is the 

most expensive strategy among the three due to the switching cost from PRB to P&T. 

Strategy 0000 is the cheapest one due to the low operational cost. Please note that relative 

economic advantages or disadvantages of either technology are governed by assumptions 

underlying the cost calculation. When installation cost of PRB is more expensive or when 

operational cost of P&T is reduced, strategy 0000 will get relatively more expensive 

compared with the other strategies which involve P&T and may therefore be not optimal 

under altered conditions. The time frame of remediation may also influence the outcome, e.g. 

when time frame is very short, P&T will be relatively cheaper than PRB, thus impairing the 

relative value of strategy 0000. 

 

Table 5-15: Comparison of strategies using case 5.3.4-2 parameters (mean of 100 runs) 
 

Strategy Strategy value (€) Cost (€) Benefit (€) Ch ance to meet the target 
0000 (optimal) 1,055,100 376,510 1,431,700 30.95% 
1111  1,024,400 404,990 1,429,400 30.90% 
0111 875,760 554,890 1,430,700 30.92% 

          

2. Increasing λP&T does not change the optimal action of the first period. P&T should be 

applied. Cost is reduced compared with the reference case. This is because when the 

technology is more effective, there is a bigger probability to switch the more intensive 

technique to MNA or to stop. In the case of MNA, the cost is much cheaper. In the case of 

stop, there will be no further costs. This can be seen very clearly if we compare Figure 5-17a 

and Figure 5-2a. The results of reference case concentrate more in scenarios 1, 2 and 3 

compared with case 5.3.4-3. These scenarios are the ones which have to continue P&T after 

the first period of P&T. In other words, there is a much higher probability for case 5.3.4-3 to 

switch to MNA or to stop after the first period of P&T compared with the reference case. The 

opposite trend can be concluded when λP&T is reduced. 

When λP&T is higher (case 5.3.4-3), expected benefit of strategy 1111 increases. This is 

because of the increase of the chance to meet the target. The total value of strategy 1111 also 



 70 

increases, due to the increase of benefit and the decrease of cost. (Compare Figure 5-17b and 

Figure 5-2b.) 

The chance to meet the target increases at higher lambda because overall higher 

effectiveness is dominating i.e. surmounts the role of the increased likelihood of switching to 

MNA. 

 

 

(a) Scenario probabilities and values 
 

(b) Cumulative cost, benefit and value 

 
      (c) Frequency of strategy values (100 runs) 

Figure 5-17: Results of optimal strategy 1111 for case 5.3.4-3 

 

 

5.3.4.1.2 Changing effectiveness of PRB 

When λPRB is changed, the results are not influenced very much. The optimal remedial 

activity for the first period is still P&T. As discussed in the previous section, when λP&T is 

reduced to the same level of λPRB (case 5.3.4-2: λP&T = λPRB = 0.12), strategy 0000 is optimal. 

This is not the case when λPRB is increased to the same level of λP&T (case 5.3.4-6: λP&T = λPRB 

= 0.21). To have a closer look to this apparent inconsistency, strategy 1111 shall be compared 

with strategy 0000 and 0111 under case 5.3.4-6 settings (see Table 5-16). Both in case 5.3.4-2 

and 5.3.4-6, as λP&T = λPRB and strategies have hence a similar effectiveness, the expected 

 
Technology parameters  
 
Case 5.3.4-3 
Parameter changed compared to 
reference case: 
 

λP&T = 0.26 
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benefits are similar. Cost is the main criterion for the optimal strategy selection. The 

difference is that under case 5.3.4-6 settings, increasing the effectiveness of PRB to the same 

level as P&T does not make strategy 0000 optimal. Strategy 1111 becomes the cheapest one. 

The costs of strategy 1111 and 0000 are listed with different λ in Table 5-17, under the 

condition of λP&T = λPRB = λ. As shown, when λ increases, strategy 1111 becomes cheaper 

while strategy 0000 becomes more expensive. With higher technology effectiveness, there is a 

higher likelihood for both strategies to switch to MNA. As shown in Table 5-1, the 

operational cost of MNA is higher than PRB, but cheaper than P&T. So switching from PRB 

to MNA will increase the cost while switching from P&T to MNA will reduce the cost. As a 

result, in case 5.3.4-2 strategy 0000 is cheaper, while in case 5.3.4-6 strategy 1111 is cheaper.  

 

Table 5-16: Comparison of strategies using case 5.3.4-6 parameters (mean of 100 runs) 
 

Strategy Strategy value (€) Cost (€) Benefit (€) Ch ance to meet the target 
1111 (optimal) 2,163,000 357,920 2,520,900 48.78% 
0000 2,119,900 397,880 2,517,800 48.71% 
0111 2,059,100 460,080 2,519,200 48.75% 

 

 

Table 5-17: Comparison of strategy costs for strategy 1111 and strategy 0000 with the 
same λ 

 

Strategy costs λP&T = λPRB = λ 
1111 0000 

λ = 0.12 404,990 376,510 
λ = 0.15 387,640 380,980 
λ = 0.18 368,770 390,910 
λ = 0.21 357,920 397,880 

 

 

5.3.4.1.3 Changing effectiveness of both P&T and PRB 

1. Increasing or decreasing λP&T and λPRB at the same time does not change the optimal 

action for the first period. P&T is still the optimal. 

2. When λP&T and λPRB increase, the strategy value increases. This is because of the 

increasing benefit due to the increasing chance to meet the target, and the decreasing of cost. 

Increasing chance to meet the target is caused by higher effectiveness of technology. 

Decreasing cost is because there is a higher probability to switch to a cheaper technology and 

to stop. When the λP&T and λPRB are decreased, the effect is the opposite.  
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5.3.4.2 Uncertainty of technologies’ effectiveness 

In reality, the levels of uncertainties associated with technologies’ effectiveness are 

believed to be different for individual technologies. The effectiveness of widely used 

technologies like e.g. P&T and PRB can be predicted (estimated) with more certainty than the 

effectiveness of MNA. Moreover, the knowledge of technologies’ effectiveness may improve 

over time due to increasing experience. As a result, probability density function of 

concentration can change. To examine these effects, the settings are changed in two ways: 1. 

Std. of effectiveness is changed for all technologies. 2. Std. of effectiveness is changed for 

individual technologies only. The results are shown in Table 5-18. Unless otherwise 

mentioned, the parameters are the same as the reference case. 

 

Table 5-18: Sensitivity analysis results for uncertainty of technologies’ effectiveness 

Parameters Candidate 
strings

Best 
string

Strategy 
value (€)

Cost (€) Benefit (€) Chance to 
meet the 

target
Reference Std P&T = 0.07 1111

Std PRB = 0.07 1101
Std MNA = 0.07

Deterministc Case StdP&T = 0 1111

case 5.3.4-9 StdPRB = 0

StdMNA = 0

All Std.s Case StdP&T = 0.03 0111

are smaller 5.3.4-10 StdPRB = 0.03 0110

StdMNA = 0.03 0101

Case StdP&T = 0.1 1111

5.3.4-11 StdPRB = 0.1 1101

All Std.s StdMNA = 0.1

are bigger Case StdP&T = 0.3

5.3.4-12 StdPRB = 0.3

StdMNA = 0.3

Case 0111
Changing 5.3.4-13 0110

Std of 0101
MNA Case 1111

5.3.4-14 1101
Case 0110

Changing 5.3.4-15 0101
Std of 0100

P&T 0111
Case 1111

5.3.4-16 1110
Changing Case 1111

Std of 5.3.4-17 1101
PRB Case 0001

5.3.4-18 0000

StdPRB = 0.02 1101

StdPRB = 0.3 0001

StdP&T = 0.02

73.54%

3,019,800 362,940

2,141,700 351,740

3,382,800 60.39%

2,493,400 48.15%

StdP&T = 0.3 1111 4,193,300 333,620

1,839,500 42.22%

4,527,000

0111

0100 1,291,500

1,464,000 539,580

547,970

2,003,600 37.28%

StdMNA = 0.3 1111 3,064,100 355,380 3,419,500 65.88%

StdMNA = 0.02

1111 1111 4,514,300 335,460

62.19%

4,849,700 80.12%

1111

0110 1,046,600 545,840 32.68%

3,043,000 347,150 3,390,100

1,592,500

1111 2,170,600 350,520 2,521,200

1111

48.78%

-335,730 335,730 0 0.00%
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5.3.4.2.1 Deterministic case: All standard deviations equal zero 

1. An extreme case is when Std. = 0 (case 5.3.4-9). This is called a deterministic case. 

As shown, the optimal action for the first period does not change. Seen from Figure 5-18a, 

strategy 1111 has only one scenario, scenario 5. Scenario 5 shows that after the first period of 

P&T, it will be switched to MNA. Then MNA will continue to be applied for the third period. 

This decision path is according to the assumption that decision maker will switch to MNA 

whenever it is possible. This may not be the case when the decision maker delays the 

application of MNA for a more effective remediation as discussed in section 5.3.1.3. In case 

5.3.4-9, there is no benefit from selling the land (see Figure 5-18b). Since the Std. is zero, 

there is no uncertainty in the result. This is shown clearly in Figure 5-18c. When the Std. is 

zero, under the current settings for C0, CT, CMNA and λ, there is no strategy which has the 

chance to meet the target. There is no benefit in any cases. To choose the optimal strategy, 

cost is the only criterion. The cheapest strategy is the optimal. In this case, it is strategy 1111.          
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   (c) Frequency of strategy values (100 runs) 

Figure 5-18: Results of optimal strategy 1111 for case 5.3.4-9 

 
Technology parameters  
 
Case 5.3.4-9  
Parameter changed compared to 
reference case: 
 

StdP&T = 0 
StdPRB = 0 
StdMNA = 0 
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The results for strategy 0111 and 0000 are compared with the optimal strategy in Table 

5-19. As shown, all strategies have zero chance to meet the target. Therefore, there is no 

benefit. The cheapest strategy is 1111. The scenario probabilities of strategy 0111 and 0000 

are shown in Figure 5-19. These two strategies both have only scenario 2. Action path of 

strategy 0111: after the first period of PRB, it is switched to P&T. After the second period of 

P&T, it will be switched to MNA for the third period. Action path of strategy 0000: after two 

periods of PRB, it will be switched to MNA for the third period.  

 

Table 5-19: Comparison of results of strategy 1111, strategy 0111 and strategy 0000 
using case 5.3.4-9 parameters 
 

  1111 0111 0000 
Cost 335,730 553,430 387,980 

Chance to meet the target 0% 0% 0% 
 

 

 

Strategy 0111 

 

Strategy 0000 

Figure 5-19: Scenario probabilities of strategy 0111 and strategy 0000 using case 5.3.4-9 
parameters 
 

2. The deterministic case’s chance to meet the target will remain zero for a more 

severely contaminated site or a stricter target level compared with case 5.3.4-9 (when CT is 

lower). In case of less severely contaminated site or a less strict target level compared with 

case 5.3.4-9 (when CT is higher), the chance to meet the target can be one. When CT is 

increased to 0.11, strategy 1111 ends up with “Stop” after the second periods (scenario 6). 

The case with CT = 0.11 (other parameters are the same as case 5.3.4-9) is taken as another 

deterministic case to investigate the sensitivity of the results to uncertainty of technologies’ 

effectiveness. Again, the strategy has only one scenario, which is scenario 6 (see Figure 5-
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20a). That means the strategy start with P&T for the first period, and switch to MNA for the 

second period. After the second period, the target will be met. The cumulative strategy value, 

cost and benefit are shown in Figure 5-20b. Because of zero Std., there is no uncertainty of the 

strategy value (see Figure 5-20c). The comparison of strategy 0111, 1111 and 0000 under 

these settings is shown in Table 5-20. All strategies have a chance to meet the target of 100% 

and thus the same benefit. As a result, the cheapest strategy is the best. Under the current 

settings, strategy 1111 is the optimal one. The sensitivity analysis results for uncertainty of 

technologies’ effectiveness when CT = 0.11 are shown in Table 5-21.  

 

(a) Scenario probabilities and values 

 

(b) Cumulative cost, benefit and value
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Figure 5-20: Results of optimal strategy 1111 for case 5.3.4-9 when CT = 0.11 

 

Table 5-20: Comparison of strategy 0111, strategy 1111 and strategy 0000 (CT = 0.11, 
other parameters same as case 5.3.4-9 settings) 
 

Strategy Strategy value Cost (€) Benefit (€) Chance  to meet the target 
0111 4,975,600 512,490 5,488,100 100% 
1111 5,185,000 303,140 5,488,100 100% 
0000 5,143,100 345,020 5,488,100 100% 
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Table 5-21: Sensitivity analysis results for uncertainty of technologies’ effectiveness     
(CT = 0.11) 
 

Parameters Candidate 
strings

Best 
string

Strategy 
value (€)

Cost (€) Benefit (€) Chance to 
meet the 

target
Deterministc Std P&T = 0 1111

case Std PRB = 0
Std MNA = 0
CT = 0.11

Reference Std P&T = 0.07 1101
case Std PRB = 0.07 1111

  with C T = 0.11 Std MNA = 0.07
CT = 0.11

Case StdP&T = 0.03 1100

All Std.s 5.3.4-19 StdPRB = 0.03 1111

are smaller StdMNA = 0.03 1101

CT = 0.11 1110

Case StdP&T = 0.3

All Std.s 5.3.4-20 StdPRB = 0.3

are bigger StdMNA = 0.3

CT = 0.11

Case 1111
Changing 5.3.4-21 1110

Std of 1100
MNA Case 1111

5.3.4-22 1101

Case 1101

Changing 5.3.4-23 1111

Std of Case 1111

P&T 5.3.4-24 1110

Changing Case 1000

Std of 5.3.4-25 1010

PRB Case 1111

5.3.4-26 1101

100.00%

1111 5,623,900 308,470 5,932,400

1111 5,185,000 303,140 5,488,100

95.74%

1100 5,222,100 306,430 5,528,600 92.47%

StdMNA = 0.02
CT = 0.11

1110 5,647,100 304,830 5,952,000 95.78%

1111
1110

1111 5,408,100 320,140 5,728,200 90.74%

StdMNA = 0.3
CT = 0.11

1111 5,638,200 310,960 5,949,200 96.24%

5,740,600 91.03%

StdP&T = 0.02
CT = 0.11

1101 4,987,500 313,290 5,300,800 93.45%

6,059,500 97.62%

StdP&T = 0.3
CT = 0.11

1110

StdPRB = 0.02
CT = 0.11

1000 5,711,800 347,700

5,419,800 320,810

5,932,600 95.75%StdPRB = 0.3
CT = 0.11

1111 5,624,100 308,500

 

 

 

5.3.4.2.2 Analysis with small standard deviations  

1. When all Std.s of the technologies’ effectiveness are set to be 0.03 (see Table 5-18: 

case 5.3.4-10) the optimal remedial action for the first period changes: PRB should be applied 

for the first period.  

To analyze the reasons, the performance of strategy 1111 under the condition of case 

5.3.4-10 is compared with the optimal strategy 0110 in case 5.3.4-10. The results are shown in 

Table 5-22. It can be seen that strategy 0110 is clearly more effective than strategy 1111, and 

has therefore a much higher strategy value even though it is more expensive. Detailed 

information about these two strategies is shown in Figure 5-21 and Figure 5-22.  

In contrast, under the condition in case 5.3.4-19 with all Std.s also being 0.03, the 

optimal action for the first period does not change. Under this condition, the results for 

strategy 0110 are: strategy value = 4,954,600 EUR, strategy benefit = 5,467,400 EUR, 

strategy cost = 512,800 EUR, chance to meet the target = 99.75%. Compared with the optimal 
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strategy 1100, strategy 0110 is more effective and more expensive. Under case 5.3.4-19 

settings, the effectiveness advantage does not overcome the cost disadvantage. As a result, 

strategy 1100 is the optimal. It can be argued that uncertainty about the technologies’ 

effectiveness, if represented by normally distributed rates and the value of the distributions 

Std.s, can have different effect on the strategy making depending on the result of the 

underlying deterministic case. If the latter yields a 0% chance to meet the target, the optimal 

remedial action is more likely subject to a change at small Std.s than in the case where the 

underlying deterministic case has a 100% chance to meet the target.  

 

Table 5-22: Comparison of strategies using case 5.3.4-10 parameters (mean of 100 runs) 
 

Strategy Strategy value Cost (€) Benefit (€) Chance  to meet the target 
0110 (optimal) 1,046,600 545,840 1,592,500 32.68% 
1111 (comparative) 222,790 346,310 569,100 11.62% 

 

 

 

(a) Scenario probabilities and values 

 

(b) Cumulative cost, benefit and value

 

    (c) Frequency of strategy values (100 runs) 

Figure 5-21: Results of optimal strategy 0110 for case 5.3.4-10 

 
Technology parameters  
 
Case 5.3.4-10  
Parameter changed compared to 
reference case: 
 

StdP&T=0.03 
StdPRB=0.03 
Std =0.03 
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(a) Scenario probabilities and values 

 

(b) Cumulative cost, benefit and value

Figure 5-22: Results of comparative strategy 1111 for Case 5.3.4-10 

 

2. The distribution of scenario probabilities for strategy 1111 develop from a single 

scenario distribution for the case with Std. = 0 (Figure 5-18a) into a distribution of scenarios 

for cases with Std. = 0.03, and reference case Std. = 0.07 (Figures 5-22a and Figure 5-2a). In 

this way, technology uncertainty is influencing the evaluation significantly by changing the 

outcome probability density function (pdf) of concentration.  

3. As shown in Table 5-18 and Table 5-21, with Std = 0.03, in case 5.3.4-10 and 5.3.4-

19, the chance to meet the target is smaller compared with the their reference cases 

respectively. It can be seen in Figure 5-21a that with smaller Std.s the outcomes concentrate in 

scenarios 2 and 3. Compared with Figure 5-2a, it is clear that the stopping scenario 

probabilities (scenarios 3, 6 and 7) are much lower in case 5.3.4-10.  

Figure 5-23 shows the results of the reference case with altered CT (0.11 instead of 0.01). 

All other parameters are the same as in the reference case. Figure 5-24 shows the result of 

case 5.3.4-19. The smaller Std.s increase very much the probabilities of scenarios 5 and 6. The 

other scenarios are reduced. The reduction of scenarios 3 and 7 yields a reduction in the final 

chance to meet the target. 
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(a) Scenario probabilities and values 
 

(b) Cumulative cost, benefit and value

Figure 5-23: Results of optimal strategy 1111 for the reference case with CT = 0.11  

 

 

 

(a) Scenario probabilities and values 

 

(b) Cumulative cost, benefit and value

Figure 5-24: Results of optimal strategy 1100 for case 5.3.4-19 
 

5.3.4.2.3 Analysis with big standard deviations  

1. When all Std.s are bigger, the optimal remedial action for the first period does not 

change. This can be seen in Table 5-18 and Table 5-21.  

2. With bigger Std.s, the distribution of scenario probabilities concentrates more and 

more in scenarios 1, 3 and 7. This trend can be seen clearly if we compare Figure 5-2a, Figure 

5-25a and Figure 5-26a. This is because after the first period of P&T, with a higher standard 

deviation, the results distribute more widely. The result of bigger Std.s is that it is more likely 

to develop into the first (P1,1,U) or the last branch (P1,1,D) after the first period of P&T (see 

Table 5-23). These branches lead to scenarios 1, 2, 3 and 7. (See Figure 5-1 for the tree 
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structure.) The trend of the result is that it increases the proportion of outcomes which end up 

in extreme directions, either very good, or very bad. The same reason applies for the outcomes 

after the second period of P&T (see Table 5-23). Branches P2,1,U and P2,1,D lead to scenarios 1 

and 3. In this case, the probability of scenario 2 is lowered. After all, with a higher Std., the 

probabilities of scenarios 1, 3 and 7 increase. Probabilities of scenarios 4, 5 and 6 are lowered 

because of the lower P1,1,M. Scenario 5 is further lowered by the lower P2,2,M. The same trend 

can be observed for the investigated cases at CT = 0.11 (compare Figure 5-20a and Figure 5-

23a). 

 

Table 5-23: Comparison of probability branches for the reference case, case 5.3.4-11 and 
case 5.3.4-12 

 

 

 

 

(a) Scenario probabilities and values 
 

(b) Cumulative cost, benefit and value 

Figure 5-25: Results of optimal strategy 1111 for case 5.3.4-11 

 

 

     After the first period  After the second period  
Probability branches P 1,1,U P 1,1,M P 1,1,D P 2,1,U P 2,1,M P 2,1,D P 2,2,U P 2,2,M P 2,2,D

Reference case 33.52% 61.21% 5.27% 3.52% 54.27% 42.21% 14.15% 69.01% 16.84%
Case 5.3.4-11 39.30% 47.67% 13.03% 11.20% 45.90% 42.90% 21.56% 51.14% 27.29%
Case 5.3.4-12 46.48% 18.54% 34.98% 36.60% 19.02% 44.41% 38.57% 18.88% 42.56%
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(a) Scenario probabilities and values 

 

(b) Cumulative cost, benefit and value 

Figure 5-26: Results of optimal strategy 1111 for case 5.3.4-12 

 

3. At CT = 0.01, when the deterministic case’s chance to meet the target is zero, the 

strategy chance to meet the target (and hence the strategy value) increases with higher Std.s. 

This is due to the increasing probability of scenarios 3 and 7 (they end up with stop after the 

second period). As a result, the strategy benefit is higher. With the similar cost, the strategy 

value is influenced by the strategy benefit, and therefore, it increases. But at CT = 0.11, when 

the deterministic case’s chance to meet the target is one, the strategy chance to meet the target 

decreases with higher Std.s (Case 5.3.4-20). Comparing Figure 5-20a and Figure 5-27a, it can 

be seen that higher Std.s increase the probability of scenario 1 and reduce the probabilities of 

scenarios 4, 5 and 6. The reduction of scenario 6 (stop scenario) in this case is the reason for 

the lower chance to meet the target.  

4. Normally, a higher chance to meet the target indicates a higher benefit. But when 

chance to meet the target decreases from the deterministic case at CT = 0.11 (100%) to case 

5.3.4-20 (90.74%), the strategy benefit increases. And thus, the strategy value is higher. This 

is due to the higher scenario probability of scenario 3 (compare Figure 5-20a and Figure 5-

27a). Scenario 3 indicates that the target is met and the land is sold after the first period, while 

in the deterministic case the land is sold after the second period. This means that in case 5.3.4-

20, the benefit occurs earlier compared with the deterministic case. It can be seen if Figure 5-

20b and Figure 5-27b are compared. As discussed previously, the later cash flow will be more 

discounted. The earlier selling of the land makes the benefit increase because of the 

discounting effect. As a result, the strategy value increases although the chance to meet the 

target is lower.  

 



 82 

 

(a) Scenario probabilities and values 

 

(b) Cumulative cost, benefit and value 

Figure 5-27: Results of optimal strategy 1111 for case 5.3.4-20 

 
 

5.3.4.2.4 Changing standard deviation of MNA 

1. At CT = 0.01 (chance to meet the target is zero for deterministic case): 

When StdMNA decreases, PRB becomes the optimal action for the first period (case 

5.3.4-13). Comparison with strategy 1111 (Table 5-24) reveals that strategy 1111 has a lower 

effectiveness than strategy 0111 for the same reason as was discussed several times before: 

too early switching to MNA of strategy 1111 results in a lower chance to meet the target. This 

is particularly true if the assumed standard deviation of the effectiveness of MNA is smaller 

than in the reference case. In this case, the effectiveness disadvantage of strategy 1111 is so 

big that the cost advantage can not overcome it. As a result, strategy 0111 becomes the 

optimal strategy.  

 

Table 5-24: Comparison of strategies using case 5.3.4-13 parameters (mean of 100 runs) 
 

Strategy Strategy value (€) Cost (€) Benefit (€) Ch ance to meet the target 
0111 (optimal) 1,464,000 539,580 2,003,600 37.28% 
1111 (comparative) 897,920 348,640 1,246,600 21.12% 

 

 

When StdMNA is increasesd (case 5.3.4-14), the optimal action for the first period does 

not change: P&T should be applied. Detailed information is shown in Figure 5-28. The 

probabilities of scenarios 4 and 6 are increased compared with the reference case (Figure 5-

2a). The probability of scenario 5 decreases. This is because of the high MNA standard 

deviation. It makes the result more spread into the upper or lower classes after applying MNA 

for a period.  
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When StdMNA increases, the strategy value increases. This is because the stopping 

possibility after MNA is higher due to the higher standard deviation. Therefore, scenario 6 

(see Figure 5-1, it is the scenario to stop after the second period of MNA) has a higher 

probability in case 5.3.4-14 (StdMNA = 0.3, Figure 5-28a) than in the reference case (StdMNA = 

0.07, Figure 5-2a). As a result, the chance to meet the target of the strategy is higher, which 

makes the strategy benefit higher.  

 

 

(a) Scenario probabilities and value 
 

(b) Cumulative cost, benefit and value 

 

       (c) Frequency of strategy values (100 runs) 

Figure 5-28: Results of optimal strategy 1111 for case 5.3.4-14 

 

2. At CT = 0.11 (chance to meet the target is one for deterministic case): 

When StdMNA is changed, the results do change only slightly. As shown in Figure 5-23a, 

the outcomes of the reference case with CT = 0.11 concentrate very much in scenarios 3 and 7. 

Since the scenarios associated with MNA are scenarios 4, 5 and 6. The probabilities of these 

 
Technology parameters  
 
Case 5.3.4-14 
Parameter changed compared to 
reference case: 
 

StdMNA=0.3 
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scenarios are very low. As a result, the influence of changing StdMNA on the result is not 

significant.   

 

5.3.4.2.5 Changing standard deviation of P&T 

1. At CT = 0.01 (chance to meet the target is zero for deterministic case): 

When StdP&T decreases, the chance to meet the target is smaller compared to the 

reference case. Benefit and the strategy value decrease as well. In case 5.3.4-15, the optimal 

action for the first period is changed into PRB (strategy 0100). Compared to strategy 1111, 

strategy 0100 is much more effective (Table 5-25). Figure 5-29 shows detailed information 

about strategy 1111. At smaller StdP&T the results converge towards the deterministic case 

(scenario 5).  

When StdP&T increases, the effect is the opposite of what is described above. When 

StdP&T increases, the optimal action for the first period does not change. P&T should be 

applied for the first period.  

 

Table 5-25: Comparison of strategies using case 5.3.4-15 parameters (mean of 100 runs) 
 

Strategy Strategy value (€) Cost (€) Benefit (€) Ch ance to meet the 
target 

0100 (optimal) 1,291,500 547,970 1,839,500 42.22% 
1111 (comparative) 1,131,900 349,910 1,481,900 32.13% 

 

 

 

(a) Scenario probabilities and value 

 

(b) Cumulative cost, benefit and value 

Figure 5-29: Results of comparative strategy 1111 for case 5.3.4-15 
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2. At CT = 0.11 (chance to meet the target is one for deterministic case): 

When StdP&T decreases from 0.07 to 0.02 (case 5.3.4-23) and when StdP&T increases 

from 0.07 to 0.3 (case 5.3.4-24), the chance to meet the target reduces in both cases. The 

scenario probabilities and values of the optimal strategies for case 5.3.4-23 and case 5.3.4-24 

are shown in Figure 5-30 and Figure 5-31. In case 5.3.4-23, compare with the reference case 

in Figure 5-23a, the probabilities of scenarios 4, 5 and 6 are increased.  The reduction of 

scenarios 3 and 7 causes the reduction in chance to meet the target compared with the 

reference case. In case 5.3.4-24, seen from Figure 5-31, scenario probability of scenario 1 is 

increased while scenarios 4, 5 and 6 are reduced. The significant reduction of scenario 6 

causes the reduction in chance to meet the target.  

 

 

Figure 5-30: Results of optimal strategy 

1101 for case 5.3.4-23 

 

Figure 5-31: Results of optimal strategy 

1110 for case 5.3.4-24 

 
 

5.3.4.2.6 Changing standard deviation of PRB 

1. At CT = 0.01 (chance to meet the target is zero for deterministic case): 

When StdPRB decreases, the optimal action for the first period does not change. P&T 

should be applied for the first period. Strategy benefit and strategy value decrease. When 

StdPRB increases, the optimal action for the first period becomes PRB. The strategy benefit and 

strategy value increase. The results of strategy 0001 in case 5.3.4-18 are shown in Figure 5-32. 

As shown, due to the increasing of StdPRB scenario probabilities of scenarios 1, 3 and 7 

increase (compared with the reference case shown in Figure 5-2). And thus, the chance to 

meet the target is increased.  
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(a) Scenario probabilities and value 

 

(b) Cumulative cost, benefit and value 

Figure 5-32: Results of optimal strategy 0001 for case 5.3.4-18 

 

2. At CT = 0.11 (chance to meet the target is one for deterministic case): 

When StdPRB decreases, the chance to meet the target is higher. In the optimal strategy, 

the decrease of StdPRB has the effect of converging to the deterministic case. As a result, the 

chance to meet the target is higher. When StdPRB increases, the optimal strategy is 1111. 

StdPRB does not have effect on the result.  

 

5.3.4.2.7 Conclusion 

Uncertainty about technologies’ effectiveness has an effect on the strategy evaluation 

and decision making. It directly governs the uncertainty in the description of the situation after 

a particular management period, as is quantified by means of a probability density function 

(pdf) of concentration. Scenario probabilities change correspondingly. Higher uncertainty 

with respect to e.g. the effectiveness of P&T and PRB increases the probabilities of scenarios 

1, 3 and 7 and reduces the probabilities of scenarios 2, 4, 5 and 6. Scenarios 3, 6 and 7 are 

stopping scenarios, which influence the strategy chance to meet the target. Changes in 

uncertainty of technology effectiveness cause complicated trade-off of probabilities between 

these scenarios. The effect is very different depending on the specific cases considered i.e. 

assumptions made with respect to other settings. 

5.3.5 Time parameters 

Parameters investigated below comprise (a) the total time frame of the project and (b) 

the number of management periods distinguished to describe the process of flexible decision 

making over time. Both projects with longer and shorter time frames compared to the 

reference case are considered in the following discussion. The effect of the number of 
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management periods is examined by introducing 4, 5, 6, and 10 periods (reference case: 3 

periods). Given the same total time frame, the length of each decision period becomes shorter 

with increasing number of periods. This means that the decision maker can react to the actual 

situation in a shorter time in a more flexible manner. The results are shown in Table 5-26. 

(The results for NP = 10 are shown in Table 5-29.) Unless otherwise mentioned in the table, 

the parameter values are the same as the reference case. 

 

Table 5-26: Sensitivity analysis results for time parameters 

Parameters Candidate 
strings

Best string Strategy 
value (€)

Cost (€) Benefit (€) Chance to 
meet the 

target
1111
1101

Case 5.3.5-1 1111
1110

Case 5.3.5-2 1111
1110

Case 5.3.5-3 1101
1111

Case 5.3.5-4 60 years 1000 1000 2,891,800 411,150 3,303,000 75.98%
1111
1101
1110

Case 5.3.5-5 4 periods 11111111 11111111
Number of 11110111

Periods 11111101
Case 5.3.5-6 5 periods a* a** 2,895,300 342,640 3,237,900 58.44%

Case 5.3.5-7 6 periods b* b** 2,914,300 340,650 3,254,900 59.29%

Note: a*:  1111110111111001 b*:  11111111111110101111111100011111 
      1110110111110101        11111100111100010101011101110001  
      1111111111111010        11111101111111010101011111101011
      1111111101110001        11111111011100001111111101100101   
      1111111111111111        11111110011110110011111100011000
      1111111111110111        11101101111110110111111101101010
      1111111111111001        11111111111111011111111100100001 
      1110111110010001        11111101111111001111111111100100  
      1111111001111011        11111100111111011111011101011100      
      1111110111011111        11111100111111111111111101111110

a**: 1111111111111010 b**: 11111110011110110011111100011000

2,741,500 348,460 3,090,000 56.84%

2,382,400 38.73%

366,770time frame 40 years 1101 2,645,900 3,012,600 60.75%

20years 1111 2,063,800 318,600

350,52030 years
3 periods

1111 2,170,600 2,521,200 48.78%

Total

10years 1111 1,183,800 240,560 3,589,400 4.84%

Reference

 
 

 

5.3.5.1 Total time frame 

1. With a shorter time frame (case 5.3.5-1 and case 5.3.5-2), the chance to meet the 

target is lower. As a result, the benefit is remarkably lower (see Figure 5-33b). The cost is 

lower because the reduction of operational cost. Since the decreased benefit is dominating the 

evaluation, the strategy value is distinctly reduced compared to the reference case. The shorter 

time of treatment is the reason for lower effectiveness. Correspondingly, the results 

concentrate almost all in the first two scenarios (Figure 5-33a). Both strategy benefit and total 

value are lower than the reference case.  
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(a) Scenario probabilities and value 

 

(b) Cumulative cost, benefit and value 

 

       (c) Frequency of strategy values (100 runs) 

Figure 5-33: Results of optimal strategy 1111 for case 5.3.5-1 

 

2. With longer time frame (case 5.3.5-3 and case 5.3.5-4), both the cost and the benefit 

(the chance to meet the target) increases. As shown in Figure 5-34a, the probabilities of the 

stop scenarios, scenarios 6 and 7, are higher because of longer time of remediation compared 

with the reference case (see Figure 5-2a). As a result, the strategy value increases due to the 

increasing strategy benefit (Figure 5-34b and Figure 5-34c).  

3. PRB becomes more favorable when the time frame is longer. More 0s appear in the 

candidate strings when the total time frame is longer. When T = 70 years, or when other 

conditions change, such as discount rate, PRB can even become the optimal action for the first 

period (see section 5.3.3.1, Table 5-11). 

 

 
Time parameters  
 
Case 5.3.5-1  
Parameter changed compared to 
reference case: 
 

T = 10 years 
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(a) Scenario probabilities and value 

 
(b) Cumulative cost, benefit and value 

 
   (c) Frequency of strategy values (100 runs) 

Figure 5-34: Results of optimal strategy 1101 for case 5.3.5-3 

 

5.3.5.2 Number of periods 

1. When the number of periods increases, the number of scenarios increases significantly. 

Figure 5-35a shows the scenarios when there are five decision periods. With the same total 

time frame, when the number of periods is increased, the length of each decision period is 

shorter. This means that the decision maker can react to the actual situation in a shorter time 

in a more flexible manner. For example, the remedial activity can be switched to a cheaper 

technology or to stop when the target is met in a shorter time period. Therefore, the 

management flexibilities are more accurately reflected in the analysis compared with less 

decision periods for the same project.  

 

 
Time parameters  
 
Case 5.3.5-3  
Parameter changed compared to 
reference case: 
 

T = 40 years 
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(a) Scenario probabilities and value 

 

(b) Cumulative cost, benefit and value 

 

   (c) Frequency of strategy values (100 runs) 

Figure 5-35: Results of optimal strategy 1111 for case 5.3.5-6 

 

2. With a higher number of periods, the strategy value increases. This is due to 

decreasing of the expected cumulative cost and the increasing of the expected cumulative 

benefit.  

To see more clearly the effect of increasing period numbers on one certain strategy, 

strategy “P&T whenever the concentration is above CMNA” (strategy 1...1) is examined. The 

period number will be increased to 10 for the same strategy. The results of strategy value, cost, 

benefit and chance to meet the target are shown in Table 5-27. The cumulative strategy values 

are shown in Figure 5-36.  

As shown in Figure 5-36, when the number of periods is large, e.g. 10 periods, the 

cumulative value is reduced in the earlier periods, while the cumulative value is increased in 

the later periods. At the beginning of the remediation projects, there is almost only cost 

without benefit. This is because the benefit will occur later when the target is met. When each 

decision period is very short, this trend can be seen very clear. The starting positions (vertical) 

of three curves are different. The starting position of the curve for three periods is higher 

 
Time parameters  
 
Case 5.3.5-6  
Parameter changed compared to 
reference case: 
 

NP = 5 
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because there is already a chance to meet the target in the first period (the first ten years). As a 

result, the strategy value is positive in the first decision period. In the curve for ten periods, 

there is no chance to meet the target in the first two periods (the first six years). As a result, 

the strategy value remains negative in the first two periods. In the ten periods curve, the 

cumulative strategy value even reduces in the second period. This is due to the increase of the 

operational cost. The cumulative strategy value is increased in the later periods when the 

number of periods is bigger. The shorter the decision period is, the sooner can the land be sold. 

Therefore the benefit will be less discounted. As a result, the benefit increases. After all, the 

expected strategy value increases.  

 

Table 5-27: Strategy “Apply P&T whenever the concentration is above CMNA ” (strategy 
1…1) with different number of periods 
 

Periods NP=3 NP=6 NP=10 
Strategy value 2,170,600 2,914,000 3,478,700 

Cost 350,520 340,700 338,090 
Benefit 2,521,200 3,254,700 3,816,800 

Chance to meet the target 48.78% 59.29% 67.87% 
 

 

 

Figure 5-36: Strategy values of strategy “P&T whenever the concentration is above 
CMNA ” (strategy 1...1) for different number of management periods using the reference 
case parameters  



 92 

3. When NP <= 4, optimization is not needed. It is possible to go through all possible 

strings and identify the optimal string with “Brute Force”. The case with NP = 4 (case 5.3.5-5) 

is tested with both “Brute Force” and “Optimization”. The results from ten optimization runs 

are shown in Table 5-28. As shown, there are three candidate strings selected after ten 

optimization runs, which are identical with the candidate strings selected by “Brute Force” 

(see Table 5-26). The strategy value, strategy cost, strategy benefit and chance to meet the 

target of the optimal strategy chosen by the optimization are shown in Table 5-28 (mean of 

one hundred valuations). When NP > 4, optimization is applied to perform the valuation. As 

discussed in section 4.6, ten optimization runs are done and the best string is the one with the 

highest strategy value. The results for NP = 5, 6 (case 5.3.5-6 and case 5.3.5-7) are shown in 

Table 5-26. The optimization results (ten runs) for NP = 10 are listed in Table 5-29. There are 

512 digits in each string. Only the first twenty digits are shown in Table 5-29. The candidate 

strings are different from each other. But the first digit is always identical. And thus, the 

optimal remedial activity indicated for the first decision periods is identical.  

 

Table 5-28: Optimization results for the reference case with NP = 4  

Parameters Candidate 
strings

Best string Strategy 
value (€)

Cost (€) Benefit (€) Chance to 
meet the 

target
4 periods 11111111 11111111

11110111
11111101

2,746,000 348,480 3,094,500 56.93%

 

 

Table 5-29: Optimization results for the reference case with NP = 10 

Parameters Candidate strings
(each string has 512 digits,

first 20 are shown)

Best string
(512 digits, first 20 shown)

Strategy 
value (€)

Cost (€) Benefit 
(€)

Chance to 
meet the 

target
10 periods 11101100111010111111... 11101111111011111111... 3,362,900 344,040 3,706,900 65.39%

11111111111001111111...
11101010111111001111...
11111101111110101101...
11111101111101001111...
11101101111100110111...
11101111111011111111...
11111001110011011111...
11101111110110101111...
11101100111111001111...  
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6. Future research  

As presented in the previous chapters, the research conducted on the application of real 

options theory to remediation projects provides a proactive and dynamic way of optimal 

strategy making compared with the traditional practice. Meanwhile, the research has raised 

some new questions that require further investigation which will improve the implementation 

of this new approach. The areas of future research needed are discussed below. 

• A more appropriate model to describe the development of the environmental situation 

over time needs to be implemented. In this thesis, a simple decay model is used to 

describe the development of the contaminant concentration with and without the effect 

of technical measures. This simple model can be replaced by a more accurate and 

more sophisticated model, which can better predict the development of the 

contaminant concentration and, even more important, can reflect uncertainty stemming 

from incomplete knowledge of site conditions more realistically than the hypothetical 

parameter distributions employed in this thesis.  

• More accurate descriptions of the effectiveness and uncertainties of the technologies 

are needed. Quantitative description of the technologies’ effect needs to be more 

detailed. In this thesis, the assumptions are rather simple. The effectiveness and 

uncertainty are supposed not to change after the same technology is implemented for a 

period. Future research can focus on the changing effectiveness and uncertainties of 

the technologies in different point of time.  

• A continuous reduction in uncertainty due to improved knowledge from ongoing 

monitoring and additional site investigations are also not taken into account here. The 

role of gaining knowledge for optimal strategy making should therefore be 

incorporated in future research.  

• Future research is needed to improve the model into a more adaptive one. In this thesis, 

there are only three technologies considered. And there are certain rules for the 

technologies to switch between each other. When there are more technologies and 

different ways of switching between them, the model developed can not function any 

more. There is a need to increase the flexibility of the model in terms of a general 

applicability to a wide range of remediation projects. More research is needed for a 

different and more powerful algorithm to perform the valuation in two ways: strategy 

valuation and strategy optimization.  
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• Attention should be paid to the discount rate taken for the analysis. As discussed in the 

previous chapters, the discount rate has a very big impact on the strategy valuation. In 

this thesis, the discount rate is taken as given. More research is needed about the 

discount rate itself. Research is needed to consider: Which economic model should be 

used to calculate the discount rate? Is there uncertainty about discount rate? If there is, 

how to take it into account in the valuation? 

• Further research is needed for the uncertainty of the costs. In this thesis, the 

uncertainties of the costs are not very much investigated. There is some discussion on 

it in the sensitivity analysis. But still, the costs of technologies are set to be the same 

during the time when the technologies are implemented. More research is needed on 

how to build the cost uncertainty into the model and take it into account in the strategy 

valuation. To achieve this, the uncertainties of the costs have to be investigated.  

• In this thesis, the valuation using the real options method is only shown for 

hypothetical cases. Using a combination of the strategy valuation model and the flow 

and contaminant transport model (see 1st item in the list) will allow applications to real 

site problems that are required to further promote the real options approach. This kind 

of application will possibly raise further questions, entailing additional research topics 

not listed here. 
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7. Conclusions  

This thesis presents a new approach for optimal remediation strategy making applying 

real options theory. The goal was to improve the traditional way of strategy making from a 

static and passive way into a dynamic and proactive way. By doing this, the value of 

management flexibility can be taken into account facing future uncertainty. 

It is demonstrated that the traditional NPV method for remediation strategy making does 

not take into account the future uncertainties and the flexibilities of management. As a result, 

the strategies with various imbedded options are undervalued. The optimal strategy chosen 

based on the traditional method is thus not really optimal. A new approach which can 

overcome these shortcomings of the traditional way of strategy making is needed.  

The herein presented real options framework is oriented from the findings of the option 

pricing theory in finance. Combining the decision tree analysis and Monte Carlo simulation, 

all possible strategies providing different options are valued. The future uncertainty of the 

contaminant concentration and the reaction of the decision maker to the actual situation are all 

taken into account in the valuation. The uncertain contaminant concentration is seen as the 

underlying asset. The flexible choices of the decision maker are seen as options. The different 

thresholds allowing different technologies to be implemented are considered as exercise prices. 

By calculating the expected strategy values, the strategies are ranked. The optimal strategy is 

the one with the highest expected strategy value.  

The sensitivities of the results to the changes of the parameters are investigated. It is 

shown that when land value of the site is very high, the effectiveness is a more important 

factor than the cost. When the land value is low, the cost is the dominating factor in the 

optimal strategy making. Moreover, voluntarily postponing the application of MNA can 

improve the effectiveness of the strategy. Furthermore, PRB is more preferable when the total 

time frame of the project is very long. The sensitivity analysis also indicates that increasing 

the number of periods can increase the strategy value and more accurately capture the 

management flexibility.  

After all, in this study, it is shown that the herein presented real options framework is 

capable of supporting remediation strategy making. The remediation strategy that is optimal in 

terms of cost and effectiveness can be identified to guide the remediation action through the 

entire decision period. It is an improvement compared with traditional economic decision-

making techniques for remediation projects because it takes into account both the uncertainty 

in contaminant concentration development in time and inherent management flexibilities. Real 
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options change remedial planning from a passive and static pattern into an active and dynamic 

pattern. But the model presented here is greatly simplified. The application shown in the 

thesis illustrates the concept rather than specifically comparing the technical options 

considered. For an in-depth analysis, there are great future research potentials. Among others, 

the incorporation of site-specific conditions including the implementation of a groundwater 

flow and transport model (instead of the simple decay model used here) seems to be the most 

relevant research topic in near future.  
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9.  Appendix 

9.1 Program structures 

9.1.1 Program for projects with NP <= 4 

• BestString gives the optimal string. It calls three functions (bruteForce, 
fitSVLimitation10 and OneStringFigure).  

• bruteForce calls one function (fitSVLimitation10). It runs through all possible strings 
and find one candidate optimal string.  

• fitSVLimitation10 gives the value of a given string.  
• OneStringFigure is based on fitSVLimitation10. The only difference is that it plots the 

outputs as figures. It will not be listed in appendix 10.2.  
 
 
 

 
Figure 9-1: Relations between functions when NP<=4 

 
 
 

 

 
Figure 9-2: Optimal string selection and figures generation  
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Figure 9-3:  Function bruteForce - going through all possible strings 
 

 
 

 
 

Figure 9-4:  Function fitSVLimitation10 - single string valuation 
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9.1.2 Programs for projects with NP > 4 

As discussed in section 4.6, GA is a stochastic search method which operates on a 
population of solutions. To use this method for the real options valuation in this study, two 
drivers are written by Claudius Bürger.  

One driver program is called myGAOpt. It defines the parameters for the valuation such 
as length of the project, NP and costs. It also defines number of optimization runs, population 
size of each run and the number of fitness function evaluations per run. It calls GA which is 
written by Houchk, Joines and Kay. The output of myGAOpt is the results of ten optimization 
runs. 

The other driver is called EMOFIT. It converts strategies into representing binary strings. 
It is called by GA. It calls FitSVLimitation9_gl.  

A fitness function is calculated by FitSVLimitation9_gl to value each strategy. 
FitSVLimitation9_gl is adapted from fitSVLimitation10 (code is provided in the next section). 
It is called by EMOFit and returns a fitness value to EMOFit. 

FitSVLimitation9_gl is almost the same as fitSVLimitation10. So it is not repeated. The 
codes for GA written by Houchk, Joines and Kay are not listed in the appendix.2       
 
 

myGAOpt

GA

EMOFit

fitSVLimitation9_gl  
 
 

Figure 10-5:  Relations between functions when NP > 4 (optimization) 
 
 
 
 
 
 
 
 
 
 
 
                                                 
2 These codes can be found on website: http://www.ise.ncsu.edu/mirage/GAToolBox/gaot/ (last viewed on 
26.04.09) 



 105 

9.2 MATLAB codes 

9.2.1 The optimal string identification 

function bestS=BestString     %% file name: BestStr ing.m 
 
%% This function gives the optimal string. It runs bruteForce for Nrun times and   
%% finds the Nrun listed best strings (some are the  same). Then it runs each       
%% candidate string through fitSVLimitation10 (file  name: fitOneStringInfo.m) for N 
%% times, then finds out the mean and STD of the re sults of each string. The best  
%% string is the one chosen according to the criter ia given by the user. 
%% In the end, the frequency of the optimal string for NN time will be shown. The  
%% scenario and period figures will also be shown. 
 
%%% Set the parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global LDP %% length of the total decision period 
global NP  %% number of periods 
global r   %% discount rate 
 
%%future uncertainties of the concentration 
global StdPT   %% standard deviation of the concent ration after a period of P&T 
global StdPRB  %% standard deviation of the concent ration after a period of PRB 
global StdMNA  %% standard deviation of the concent ration after a period of MNA 
 
%%effectiveness of the technologies 
global Dpt   %% decay rate constant of P&T 
global Dmna  %% decay rate constant of MNA 
global Dprb  %% decay rate constant of PRB 
 
%%tresholds  
global ConStop  %% threshold to stop, the target le vel 
global ConMna   %% threshold to switch to MNA 
 
%%land price 
global PP %% land price euros/m^2 
 
LDP=30; 
NP=3; 
r=0.03; 
StdPT=0.07;  
StdPRB=0.07; 
StdMNA=0.07; 
Dpt=0.21;  
Dmna=0.02;   
Dprb=0.12;   
currentconc=1; %current concentration (=100% - refe rence value) 
ConStop=0.01*currentconc;  
ConMna=0.15*currentconc;   
PP=400;   
Nrun=10;  %% number of time that bruteForce will be  run 
N=100;     %% number of runs of each candidate stri ng to calculate the Mean and Std. 
NN=100;   %% number of runs for the frequency figur e 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
result=[]; 
SSSS=[]; 
cost=[]; 
string=[]; 
 
%% run bruteForce Nrun times and get the candidate strings 
for i=1:Nrun 
    result(i,:)=bruteForce ;   
end 
result; 
value=result(:,1)'; 
S=result(:,2:end) 
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%%%%% run each candidate string for N times and cal culate the mean and Std.  
%%%%% and find the optimal string according to the criteria set by the user 
 
HH=[];  
for j=1:Nrun 
    for i=1:N; 
HH(j,i)=fitOneStringInfo(S(j,:)); 
    end 
end 
HH; 
 
m=[]; 
for j=1:Nrun; 
m(j,:)=[mean(HH(j,:)),std(HH(j,:))]; 
end 
m 
 
qq=mean(m(:,1)); 
 
%% user defined criteria 
if qq>=0 
    md=zeros(Nrun,1); 
    for j=1:Nrun 
        md(j,1)=m(j,1)/m(j,2); 
    end 
    max(md);%% when the strategy value is possitive , try to find the biggest ratio 
%% of value/Std;  
    [a,b]=find(md==max(md)); 
elseif qq<0 
    md=zeros(Nrun,1); 
    for j=1:Nrun 
        md(j,1)=(-m(j,1))*m(j,2); 
    end 
    min(md);%%when the strategy value is negative, try to find the smallest  
%% (-m(j,1))*m(j,2); 
    [a,b]=find(md==min(md)); 
end 
a 
bestS=S(a,:)  %% this is the optimal string 
 
 
%%%%%%%%%%%%%%%%% generate the frequency figure for  the optimal string 
gg=[]; 
for i=1:NN 
 [fitness,InflowTotal,SstrategyCost,Pm]=fitOneStrin gInfo(bestS); 
gg=[gg;[fitness,InflowTotal,SstrategyCost,Pm]]; 
end 
 
figure(111) 
COLORMAP(white) 
hist(gg(:,1)) 
xlabel('Strategy Value') 
  ylabel('Frequency') 
  hAll = findall(gcf); 
for idx = 1 : length(hAll) 
  try 
    set(hAll(idx),'fontsize',18); 
  catch 
  end 
end 
   
gg=mean(gg); 
Svalue=gg(1,1)   %% strategy value of the optimal s tring 
Sbenefit=gg(1,2)  %% strategy benefit of the optima l string 
Scost=gg(1,3)     %% strategy cost of the optimal s tring 
SprobMeet=gg(1,4) %% chance to meet the target of t he optimal string 
 
OneStringFigure(bestS)  %% generate the scenario an d period figures of the optimal                                   
%% string 
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9.2.2 Going through all possible strings 

function result=bruteForce   %% file name: bruteFor ce.m 
 
%% This function runs through all possible strings and finds out the best string. 
 
 
%%% Set the parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global LDP %% length of the total decision period 
global NP  %% number of periods 
global r   %% discount rate 
 
%%future uncertainties of the concentration 
global StdPT   %% standard deviation of the concent ration after a period of P&T 
global StdPRB  %% standard deviation of the concent ration after a period of PRB 
global StdMNA  %% standard deviation of the concent ration after a period of MNA 
 
%%effectiveness of the technologies 
global Dpt   %% decay rate constant of P&T 
global Dmna  %% decay rate constant of MNA 
global Dprb  %% decay rate constant of PRB 
 
%%tresholds  
global ConStop  %% threshold to stop, the target le vel 
global ConMna   %% threshold to switch to MNA 
 
%%land price 
global PP %% land price euros/m^2   
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
results = []; 
SS=[]; 
 
%% calculate how many decision points are there %%% %%%%%%%%%%%%%%%% 
 
%% generate a matrix with 9s (when NP is fixed, the  size of the matrix is known) 
 
ND=9*ones(3^(NP-1),NP); 
 
%% add MNA decisions %%    
    for i=1:NP 
        for j=2:3:(3^(i-1)) 
            ND(j,i)=2; 
        end 
    end 
%% add stop decisions %%    
for i=1:NP 
        for j=3:3:(3^(i-1)) 
            ND(j,i)=3; 
        end 
end 
%% adjust for Stop decisions (once stoped, next dec ision will be stop)  
 for i=1:(NP-1) 
        for j=1:(3^(i-1)) 
        if ND(j,i)==3 
            ND((3*j-2),(i+1))=3; 
            ND((3*j-1),(i+1))=3; 
            ND((3*j),(i+1))=3; 
        end 
        end 
 end 
%% count how many decisions are there to make  
    g=0; 
    for i=1:NP 
         for j=1:3:(3^(i-1)) 
             if ND(j,i)~=3 
             g=g+1;   
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             end 
         end 
    end 
   g; %% this is the number of decisions 
    
%% go through all possible strings %%%%%%%%%%%%%%%% %%%%%%%%%%% 
 
for i = 1:2^g %% there are 2^g possible strings 
    % get binary number 
    binN = dec2bin(i-1); 
    % make it a string 
    binStr = num2str(binN); 
    % get length of bin string 
    binLen = length(binStr); 
    % create leading zeros     
    S = []; 
    for j = 1:binLen 
        S = [S,str2num(binStr(1,j))]; 
    end 
     
    if g-binLen ~= 0 
      zeroVec = zeros(1,g-binLen); 
      S = [zeroVec,S]; 
    end 
     
    [fitness]=fitOneStringInfo(S); 
  
     results = [results;fitness']; 
    
     SS= [SS;S]; 
 
end 
results; 
SS; 
 
MaxBenef = max(results(:,1)); %% the string with th e highest strategy value is the 
%% optimal 
 
 
II=find(results == MaxBenef); 
SSS=SS(II,:); 
result=[MaxBenef SSS]; %% show the optimal strategy  value and the optimal string 
 
 

9.2.3 Calculating the strategy value, strategy benefit, strategy cost and chance to 

meet the target for any given string 

function [fitness,InflowTotal,SstrategyCost,Pm]=fit SVLimitation10(S)  
%% file name: fitOneStringInfo.m 
 
%%% This function gives detailed results of a given  string. 
 
%%% Set the parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
global LDP %% length of the total decision period 
global NP  %% number of periods 
global r   %% discount rate 
 
%%future uncertainties of the concentration 
global StdPT   %% standard deviation of the concent ration after a period of P&T 
global StdPRB  %% standard deviation of the concent ration after a period of PRB 
global StdMNA  %% standard deviation of the concent ration after a period of MNA 
 
%%effectiveness of the technologies 
global Dpt   %% decay rate constant of P&T 
global Dmna  %% decay rate constant of MNA 
global Dprb  %% decay rate constant of PRB 
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%%tresholds  
global ConStop  %% threshold to stop, the target le vel 
global ConMna   %% threshold to switch to MNA 
 
%%land price 
global PP %% land price euros/m^2 
 
Ns=10000; % number of realizations for each single Monte Carlo simulation point 
 
currentconc=1; % current concentration (=100% - ref erence value) 
 
kprb=250; %% per m^2 
PT=2000;  %% per m 
 
Repla=100; %%replacement cost per year 
 
%%%%%% P&T=1  PRB=0  MNA=2 stop=3 %%%%%%%%%%%%%%%%%%%%%%% 
LEP=LDP/NP; %% length of each decision period 
 
aa=25000; %% Site area 
Vland=aa*PP; %% value of land as if clean. 
 
%%% Site parameters %%%%%%%%%%%%%%%%%%%%%%%%% 
mfl=2;  %% depth to the ground water table 
mAq=5; %% thickness of the aquafier 
eta=0.7; %% efficiency of the pump 
k=0.0005; %% m/s 
i=0.001; %% hydraulic gradient 
y=100; %% unit: m Wtotal of the contaminated area 
Q=2*y*k*mAq*i; %% p&T rate [m3/s]              
W=1.5*y; %% the total funnel length 
H=mfl+mAq+3; 
KEN=0.20; 
KAW=1; %% m^3 
 
%%%%%%%%%%% installation costs %%%%%%%%%%%%%%% 
 
Nwell=2; %number of wells 
DeIn=10; %% meters, same for PT and PRB 
equip=15000;   %% --> pump, treatment container(s),  piping, ... 
FiV = 0.7*Q*10/0.45; %% GW flow rate through all ga tes (70% of Q) 
%% * contact time in reactor material (10 h) 
%% / porosity of reactor material (45%) 
Kfim = 600; %% (kfim = unit costs filling material,  e.g. 600 EUR per m3) 
FiC = FiV*Kfim; %% filling costs  
 
SiC = 30000; % site installation costs (preparation  & mobilization) 
 
MNA=200;   %%per meter (MNA) 
NMNAwell=10; %%number of wells (MNA) 
freqMNA = 2 ; % 2 times a year (MNA) 
cMNAsample = 250;  % 250 Euro per sample (analysis + transport + personnel) (MNA) 
 
PTinwof=SiC+PT*Nwell*DeIn+equip; 
PRBinwof=SiC+W*(0.5+mfl+mAq)*kprb; 
 
%%%%Installation costs 
PTin=SiC+PT*Nwell*DeIn+equip+FiC; 
PRBin=SiC+W*(0.5+mfl+mAq)*kprb+FiC; 
MNAin=MNA*DeIn*NMNAwell; 
 
%%%%%reactivation costs (treated as similar to rein stallation) %%%%%%%% 
 
ptre=0.20*PTinwof+FiC;  
prbre=0.25*PRBinwof+FiC; 
mnare=0.30*MNAin; 
 
%%%%%operation costs (per year) %%%%%%%%%%%%%%%%%%%%% 
control = 2000;  %% Check & control operating syste m 



 110 

elww = 3600*Q*H/eta*KEN+365*KAW*Q*60*60*24;  %% ele ctricity and water  
%%Q/(60*60*24) per day, insdead of per second 
anacost = NMNAwell*freqMNA*cMNAsample; % cost for a nalyses 
 
PTop=control+elww+Repla; %% operational cost of P&T  per year 
PRBop=control+Repla ; %% operational cost of PRB pe r year 
MNAop=control+anacost; %% operational cost of MNA p er year 
 
%%% first year of installation for each period: cos ts include installation cost,    
%% operational cost for this year  
 
PTIN=PTin+PTop; 
PRBIN=PRBin+PRBop; 
MNAIN=MNAin+MNAop; 
 
%% first year of reactive (reactivation cost + oper ation cost) 
PTre=ptre+PTop ; 
PRBre=prbre+PRBop; 
MNAre=mnare+MNAop; 
 
%%%%% operation costs (whole period except for the first year, discounted back to   
%% the value as the first year of the period) 
PTope=0; 
PRBope=0; 
MNAope=0; 
 
c=1:(floor(LEP)-1); 
ptope=PTop*exp(-r*c); 
PTope=sum(ptope)+(LEP-floor(LEP))*PTop*exp(-r*floor (LEP)); %% when the length of LEP 
%% is not a integer, it is taken into account by th e second term 
 
prbope=PRBop*exp(-r*c); 
PRBope=sum(prbope)+(LEP-floor(LEP))*PRBop*exp(-r*fl oor(LEP)); 
 
mnaope=MNAop*exp(-r*c); 
MNAope=sum(mnaope)+(LEP-floor(LEP))*MNAop*exp(-r*fl oor(LEP)); 
 
 
%%%stopping costs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
PTst=0.08*PTinwof; 
PRBst=0.01*PRBinwof; 
MNAst=0.10*MNAin; 
 
%% strategy valuation by 5 steps %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%% Step 1, set up the decisions Matrix %%%%%%%%%%%% %%%%%%%%% 
     
%% generate a matrix with 9s (when NP is fixed, the  size of the matrix is known) 
 
ND=9*ones(3^(NP-1),NP); 
 
%% add MNA decisions %%   
    for i=1:NP 
        for j=2:3:(3^(i-1)) 
            ND(j,i)=2; 
        end 
    end 
      
%% add stop decisions %%    
for i=1:NP 
        for j=3:3:(3^(i-1)) 
            ND(j,i)=3; 
        end 
end 
 
%% adjust for Stop decisions (once stoped, next dec ision will be stop)  
 for i=1:(NP-1) 
        for j=1:(3^(i-1)) 
        if ND(j,i)==3 
            ND((3*j-2),(i+1))=3; 
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            ND((3*j-1),(i+1))=3; 
            ND((3*j),(i+1))=3; 
        end 
        end 
 end 
 
%% put the given decision string into the matrix fo r P&T PRB decisions%%% 
h=0; 
    for i=1:NP 
         for j=1:3:(3^(i-1)) 
             if ND(j,i)~=3 
             h=h+1; 
             ND(j,i)=S(1,h); 
             end 
         end 
    end 
    ND ; 
     
%% Step 2. set up the costs matrix %%%%%%%%%%%%%%%% %%%%%%% 
 
NC=zeros(3^(NP-1),NP); %%the size is the same as th e dicision matrix 
%% acording to the decisions in the decision matrix , set the costs (all set as if  
%% they are the first installed) 
                for i=1:NP 
                    for j=1:(3^(i-1)) 
                        if ND(j,i)==0 
                            NC(j,i)=PRBIN+PRBope; 
                        elseif ND(j,i)==1 
                            NC(j,i)=PTIN+PTope; 
                        elseif ND(j,i)==2 
                            NC(j,i)=MNAIN+MNAope; 
                        elseif ND(j,i)==3 
                                    NC(j,i)=0; %%% stopping costs are different, it 
%% will be adjusted later on 
                        else ND(j,i)=ND(j,i); 
                        end 
                      end  
                 end 
                NC; 
%% adjust for the reactivation costs (once a techno logy is installed, all the      
%% following non-very-first first application will be reactivation) 
for i=1:(NP-1) 
        for j=1:(3^(i-1)) 
            if ND(j,i)==0 
                for i=(i+1):NP 
                    for j=1:(3^(i-1)) 
                        if ND(j,i)==0 
                            NC(j,i)=PRBre+PRBope; 
                        end 
                    end 
                end 
            elseif ND(j,i)==1 
                for i=(i+1):NP 
                    for j=1:(3^(i-1)) 
                        if ND(j,i)==1 
                            NC(j,i)=PTre+PTope; 
                        end 
                    end 
                end 
            elseif ND(j,i)==2 
                for i=(i+1):NP 
                    for j=1:(3^(i-1)) 
                        if ND(j,i)==2 
                            NC(j,i)=MNAre+MNAope; 
                        end 
                    end 
                end 
            end 
        end 
end 



 112 

         
  NC;      
%% adjust for different operational costs for diffe rent technologies 
    for i=1:(NP-1) 
        for j=1:(3^(i-1)) 
        if ND(j,i)==0 && ND((3*j-2),(i+1))==0 
            NC((3*j-2),(i+1))=PRBop+PRBope; 
        elseif ND(j,i)==1 && ND((3*j-2),(i+1))==1 
            NC((3*j-2),(i+1))=PTop+PTope; 
        elseif ND(j,i)==2 && ND((3*j-1),(i+1))==2 
            NC((3*j-1),(i+1))=MNAop+MNAope; 
        end 
        end       
    end 
  NC; 
 NCstr=NC; 
  
 %% adjust for the stopping cost (land value not in cluded) 
 for i=2:NP 
        for j=3:3:(3^(i-1)) 
        if ND(j,i)==3 && ND(j/3,(i-1))==0 
            NCstr(j,i)=PRBst; 
        elseif ND(j,i)==3 && ND(j/3,(i-1))==1 
            NCstr(j,i)=PTst; 
        elseif ND(j,i)==3 && ND(j/3,(i-1))==2 
            NCstr(j,i)=MNAst; 
        end 
        end 
 end 
 
%% adjust for the stopping cost and the value of th e clean land 
for i=2:NP 
        for j=3:3:(3^(i-1)) 
        if ND(j,i)==3 && ND(j/3,(i-1))==0 
            NC(j,i)=PRBst-Vland; 
        elseif ND(j,i)==3 && ND(j/3,(i-1))==1 
            NC(j,i)=PTst-Vland; 
        elseif ND(j,i)==3 && ND(j/3,(i-1))==2 
            NC(j,i)=MNAst-Vland; 
        end 
        end 
end        
  NC; 
  
  %%%%%%%%%%%% discount NC %%%%%%%%%%%%%%%%% 
  for i=1:NP 
        for j=1:(3^(i-1)) 
            NC(j,i)=NC(j,i)*exp(-r*LEP*(i-1)); 
        end 
  end 
  NC; 
   
  %%%%%%%%%%%%% discount NCstr  %%%%%%%%%%%% 
  for i=1:NP 
        for j=1:(3^(i-1)) 
            NCstr(j,i)=NCstr(j,i)*exp(-r*LEP*(i-1)) ; 
        end 
  end 
  NCstr; 
   
  %%% prepare for calculating the expected cost for  each period 
  NCs=NCstr; 
 
  %% Calculating the strategy cost %%%%%%%%%%%%%%%% %%% 
  %% cumulative costs for each scenario %%     
        for i=2:NP 
            for j=1:(3^(i-1)) 
                if rem(j,3)==1 
                NCstr(j,i)=NCstr((j+2)/3,(i-1))+NCs tr(j,i); 
                elseif rem(j,3)==2 
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                NCstr(j,i)=NCstr((j+1)/3,(i-1))+NCs tr(j,i);   
                else 
                NCstr(j,i)=NCstr(j/3,(i-1))+NCstr(j ,i);   
                end 
            end 
        end 
  NCstr; 
 
%cumulative values for each scenario%%     
        for i=2:NP 
            for j=1:(3^(i-1)) 
                if rem(j,3)==1 
                NC(j,i)=NC((j+2)/3,(i-1))+NC(j,i); 
                elseif rem(j,3)==2 
                NC(j,i)=NC((j+1)/3,(i-1))+NC(j,i);   
                else 
                NC(j,i)=NC(j/3,(i-1))+NC(j,i);   
                end 
            end 
        end 
    NC; %%the costs of all the scenarios are the la st column in the matrix 
     
%%%%%%%Step 3.set up the concentration and probabil ity matrix, and calculate the  
%% strategy benefit  and cost 
 
 
NCon=9*ones(3^NP,(NP+1));  
NCon(1,1)=currentconc; 
 
Npro=9*ones(3^NP,(NP+1)); 
Npro(1,1)=1; 
 
        for i=1:NP 
            for j=1:(3^(i-1)) 
                %%%Monte Carlo simulation%%%%%%%%%% %%%%%%%%%%%%% 
                    if ND(j,i)==1 
                        Con=(NCon(j,i)*exp(-Dpt*LEP ))+StdPT*randn(1,Ns); 
                    elseif ND(j,i)==0 
                        Con=(NCon(j,i)*exp(-Dprb*LE P))+StdPRB*randn(1,Ns); 
                    elseif ND(j,i)==2 
                           Con=(NCon(j,i)*exp(-Dmna *LEP))+StdMNA*randn(1,Ns); 
                    elseif ND(j,i)==3 
                        Con=-5000+0.07*randn(1,Ns);  %take  a huge negative number so 
%% that the probability will be inherited mainly by  the last branch of the next  
%% three. When it is stop, the concentration is not  relevant anyways   
                    end 
 
                    d1=0; %counter 
                    d2=0; %counter 
                    d3=0; %counter  
                     
                    for k=1:Ns   
                        if Con(k)<ConStop 
                              d3=d3+1; 
                              p3=d3/Ns; %the probab ility of stop for the next period 
                        elseif Con(k)<=ConMna 
                               d2=d2+1; 
                               p2=d2/Ns; %the proba bility of MNA for the next period 
                        else 
                              d1=d1+1; 
                              p1=d1/Ns; %the probab ility of P&T/PRB for the next   
%% period 
                         end 
                    end     
                     
                     Gstop=Con(find(Con<ConStop ));  
                     Gmna=Con(find(Con>=ConStop & C on<=ConMna)); 
                     Gptprb=Con(find(Con>ConMna ));  
 
                     if(length(Gptprb)~=0)  
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                        ACptprb=mean(Gptprb);%% the  new current concentration for  
%% the next period 
                        NCon((3*j-2),i+1)=ACptprb; 
                     else p1=0; 
                         NCon((3*j-2),i+1)=-9;%% to  show that this is an empty group 
                     end;    
 
                     if(length(Gmna)~=0)  
                        ACmna=mean(Gmna); 
                       NCon((3*j-1),i+1)=ACmna; 
                     else p2=0; 
                         NCon((3*j-1),i+1)=-9; 
                     end;   
                      
                     if(length(Gstop)~=0)  
                        ACstop=0; 
                       NCon((3*j),i+1)=ACstop; 
                     else p3=0; 
                         NCon((3*j),i+1)=-9; 
                     end;    
                      
                    Npro((3*j-2),i+1)=p1*Npro(j,i);  
                    Npro((3*j-1),i+1)=p2*Npro(j,i);  
                    Npro((3*j),i+1)=p3*Npro(j,i); 
                    %% once a group is empty, the p  according to this group 
                    %% will be zero. And because th e probability will be 
                    %% multiplied by the probabilit y of the next branches, the 
                    %% next pranches will all be ze ro  
                    
            end 
        end 
      %%% until here we get all the probabilities 
      NCon; 
      Npro; 
       
      %%% calculate the expected cost for each peri od  
     NCs; 
      for i=1:NP 
         for j=1:(3^(i-1)) 
             NCs(j,i)=NCs(j,i)*Npro(j,i); 
         end 
      end 
      NCs; 
      excost=[]; 
      excost=sum(NCs); 
       
      %%% calculate the period landvalue inflow 
Inflow=zeros(3^(NP+1),NP+1); 
    for i=2:NP+1 
        for j=3:3:(3^(i-1)) 
        Inflow(j,i)=Vland*exp(-r*LEP*(i-1))*Npro(j, i); 
    end 
end 
Inflow; 
%% when it is stop, all the following branches can not generate land value 
%% any more 
for i=1:NP 
        for j=1:(3^(i-1)) 
            if ND(j,i)==3 
                Inflow((3*j-2),(i+1))=0; 
                Inflow((3*j-1),(i+1))=0; 
                Inflow((3*j),(i+1))=0; 
            end 
        end 
end 
Inflow;  
Inflow=sum(Inflow); 
InflowTotal=sum(Inflow); 
 
 



 115 

  %%%%%%%%%%  cumulative cost and cumulative benefi t 
  for uu=1:NP-1 
      excost(1,uu+1)=excost(1,uu)+excost(1,uu+1); 
  end 
  for uu=1:NP 
      Inflow(1,uu+1)=Inflow(1,uu)+Inflow(1,uu+1); 
  end 
  excost; 
  Inflow; 
    
%%calculate the strategy cost 
  cc=zeros(3^(NP-1),1); 
    for j=1:3^(NP-1) 
        cc(j,1)=NCstr(j,NP)*Npro(j,NP); 
        SstrategyCost=sum(cc); 
    end 
cc; 
SstrategyCost; 
 
%%% adjust for the benefit to get after the last pe riod for each scenario 
      NCC=NC; 
       i=NP; 
            for j=1:(3^(i-1)) 
              if ND(j,i)~=3 
                  if Npro(j,i)~=0 
                  NCC(j,i)=NCC(j,i)-Vland*(Npro(3*j ,i+1)/Npro(j,i))*exp(-r*LEP*NP); 
                  end 
              end 
            end 
            NCC; %% the last colum contains the fin al scenario values 
 
%% Comments for Step 3: The cases when it stops and  when the group is empty are the 
%% ones deserve more attention. Once it stops, the concentration is no longer      
%% relevant as long as the probability is carried o n. Once the group is empty, all 
%% the following probabilities later on will be zer o.              
 
%% Step 4. Calculating the strategy value %%%%%%%%% %%%%%%%%%%%%%% 
cc=zeros(3^(NP-1),1); 
    for j=1:3^(NP-1) 
        cc(j,1)=NCC(j,NP)*Npro(j,NP); 
        Scost=sum(cc); 
    end 
cc; 
Scost;      
u=sum(Npro(:,NP+1)); %% this should be 1 
 
%%  Step 5. Chance to meet the target %%%%%%%%%%%%% %%%%%%%%%%%% 
 
%% generate the matrix containing only the chances which will not meet the target  
for i=1:(NP+1) 
            for j=1:(3^(i-1)) 
                if NCon(j,i)<=ConStop 
                    Npro(j,i)=0; 
                end 
            end 
end 
NproN=Npro; %%the matrix of not meeting the target chances 
 
%%chance to meeting the target 
       Pm=1-sum(NproN(1:3^(NP),(NP+1))); 
        
  strategyValue=InflowTotal-SstrategyCost; 
  fitness=strategyValue; 
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9.2.4 Driver for GA: myGAOpt 

function myGAOpt   %% file name: myGAOptDY.m 
 
global LDP 
global NP   
%%discount rate 
global r 
%%future uncertainties of the concentration 
global StdPT 
global StdPRB 
global StdMNA 
%%effectiveness of the technologies 
global Dpt 
global Dmna 
global Dprb 
%%tresholds to switch 
global ConStop 
global ConMna 
%%land price 
global PP 
 
LDP=30; 
r=0.03; 
StdPT=0.07; %Standard deviation of the concentratio n (same for all) 
StdPRB=0.07; 
StdMNA=0.07; 
 
Dpt=0.21; % degradation rate constant for P&T (appr ox. 50% in 5 years) 
Dmna=0.02;  % degradation rate constant for MNA 
Dprb=0.12;  % degradation rate constant for PRB 
currentconc=1; %current concentration (=100% - refe rence value) 
ConStop=0.01*currentconc; %% we can stop when the c oncentration is bellow this level 
ConMna=0.15*currentconc;  %%bellow this concentrati on and above ConStop,  MNA 
                %above this concentration, P&T or P RB 
PP=400;  %% land price per m2 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%% 
 
NN=100; 
                 
NP=4;%%%%%%%%%%%%%%%%%%%number of periods%%% 
 
% set up the decisions Matrix%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
%%generate a matrix with 9s (when NP is fixed, the size of the matrix is 
%%known) 
 
ND=9*ones(3^(NP-1),NP); 
 
%%add MNA decisions%%    
    for i=1:NP 
        for j=2:3:(3^(i-1)) 
            ND(j,i)=2; 
        end 
    end 
%%add stop decisions %%    
for i=1:NP 
        for j=3:3:(3^(i-1)) 
            ND(j,i)=3; 
        end 
end 
%%adjust for Stop decisions (once stoped, next deci sion will be stop)  
for i=1:(NP-1) 
        for j=1:(3^(i-1)) 
        if ND(j,i)==3 
            ND((3*j-2),(i+1))=3; 
            ND((3*j-1),(i+1))=3; 
            ND((3*j),(i+1))=3; 
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        end 
        end 
 end 
%%count how many decisions are there to make  
    g=0; 
    for i=1:NP 
         for j=1:3:(3^(i-1)) 
             if ND(j,i)~=3 
             g=g+1;   
             end 
         end 
    end 
   g  
 
precis = 1; 
 
strfun = 'EMOFit'; 
filehead = 'Optim'; 
filetail = '.mat'; 
runs = 10; %%%number of runs (this will generate ru ns best strings) 
funEval = 500;  % number of fitness function evalua tions per run  
 
pcross = 0.5;  %uniform crossover probability 
PopSize = 50;  % increase if optimal values are too  different for each optimization 
%run  
pmut = 1/PopSize; %mutation rate 
 
NoOfGen=floor(funEval/PopSize) 
 
bounds = [0;(2^g)-1]'   
 
first = true; 
save First.mat first   
 
for run = 1:runs 
     
    fitn = []; 
    Popp = []; 
    save GaFit.mat fitn Popp 
 filename = [filehead,num2str(run),filetail]; 
         
 [iniPop]=initializega(PopSize,bounds,strfun,[],[pr ecis 0]); 
    % iniPop(:,1:end-1) 
  
 [x,endPop,bPop,traceInfo] = ga(bounds,strfun,[],in iPop,[precis 0 
1],'maxGenTerm',NoOfGen,'tournSelect',[4],... 
        'myuniformXover',[pcross],'binaryMutation', [pmut]); 
 
    save(filename,'x','endPop','bPop','traceInfo') 
     
    load GaFit.mat fitn Popp 
     
    save(['Sup',filename],'Popp','fitn') 
    dec2bin(x) 
             
end 
 
 
 
 

9.2.5 Driver for GA: EMOFit 

function [sepp,fit]=EMOFit(x,jodel)%%loads the addi tional parameters, conversions,  
%% file name: EMOFit.m 
 
global NP 
global Ns 
global g 
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probThresh = 0.700000; 
 
%load theRealData.mat SSS fittt probb retVal 
 
% get binary number 
    binN = dec2bin(x); 
    % make it a string 
    binStr = num2str(binN); 
    % get length of bin string 
    binLen = length(binStr); 
    % create leading zeros     
    S = []; 
    for j = 1:binLen 
      
        S = [S,str2num(binStr(1,j))]; 
         
    end 
    if g-binLen ~= 0 
      zeroVec = zeros(1,g-binLen); 
      S = [zeroVec,S]; 
    end 
     
    [fitness]=fitSVLimitation9_gl(S); 
     
       %fittt = [fittt; fitness(1)]; 
       %probb = [probb; fitness(2)]; 
 
     
    %retVal = [retVal,fit]; 
    fit = fitness; 
    %save theRealData.mat SSS fittt probb retVal 
    sepp = x; 
 


