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1 ABBREVIATIONS 
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(A)KBA (3-O-acetyl)-11-keto boswellic acid 
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cPGES cytosolic prostaglandin E2-synthase 

CYP450 cytochrome P450 

DAG  diacylglycerol 

DMSO  dimethylsulfoxide 

DTT  dithiothreitol 

E. coli Escherichia coli 

EDTA  ethylenediaminetetraacetate 

EET epoxyeicosatrienoic acid 

ELISA enzyme-linked immunosorbent assay 

ERK  extracellular signal-regulated kinase 

FCS  fetal calf serum 

FLAP  5-lipoxygenase-activating protein 

fMLP  N-formyl-methionyl-leucyl-phenylalanine 

GPCR G protein-coupled receptor 

 



1  ABBREVIATIONS 12 

GSH  glutathione 

H(P)ETE  hydro(per)oxy-eicosatetraenoic acid 

HEPES N-2-Hydroxyethylpiperazine-N’-2-ethanesulfonic acid 

HLE  human leukocyte elastase 

HPLC high pressure liquid chromatography 

i.p. intraperitoneal 

IgG / IgM immunoglobuline G/M 

IKK  I κB-kinase 

IL interleukin 

IP3  inositoltrisphosphate 

LB-medium  Luria Broth base - medium 

LO lipoyxgenase 

LPS  lipopolysaccharide 

LT leukotriene 

MAPEG membrane-associated proteins involved in eicosanoid 
and glutathione metabolism 

MAPK  mitogen-activated protein kinase 

MK-886 (3-[1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-
2-yl]-2,2-dimethylpropanoic acid)  

MM6  human monocytic-like cell line  

mPGES mircosomal prostaglandin E2-synthase 

MQ  Milli Q water 

MS  mass spectrometry 

NFκB  nuclear factor κ B 

NSAIDs  non-steroidal anti-inflammatory drugs 

OA osteoarthritis 

OD  optical density 

p12-LO  platelet-type 12-lipoxygenase 

PAF  platelet-activating factor 

PAR  protease-activated receptor  

PBS  phosphate-buffered saline 

PC phosphatidylcholine 

PDGF  platelet-derived growth factor 



1  ABBREVIATIONS 13 

PG  prostaglandin 

PG buffer PBS plus 1 mg/ml glucose  

PGC buffer PG buffer plus 1 mM CaCl2 

PGES prostaglandin E2-synthase 

PI3K  phosphatidylinositol-3 kinase 
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PMNL  polymorphonuclear leukocytes 
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SDS  sodium dodecylsulfate 

SDS-b  2× SDS loading buffer 

SDS-PAGE  SDS-polyacrylamide gel electrophoresis 

Seph  EAH-Sepharose 4B 

SPR surface plasmon resonance 

TBS  tris-buffered saline 

TFA trifluoro acetic acid 

TNFα  tumor necrosis factor alpha 

TXA2 thromboxane A2 

w/o  without 

WB  Western blot 
 
 



2  INTRODUCTION 14 

2 INTRODUCTION 

2.1 Boswellic acids 

2.1.1 Origin and historical background 

Frankincense (also termed olibanum or salai guggal) is the natural oleum gum resin obtained 

from Boswellia species (B. spec.), including B. carterii, B. sacra, and B. serrata belonging to the 

family of Burseraceae. The “boswellia tree” (Figure 2.1) is native to Arabia (Yemen and Oman), 

East Africa (Eritrea, Somali and Sudan) and India. Frankincense has a long tradition for use e.g., 

in religious ceremonies, perfume production and its medicinal properties are reported since 

millennia, firstly described in the Ebers papyrus, 16 th century BC [1] and also mentioned in 

scripts of Hippocrates and Celcus [2]. Lipophilic preparations of frankincense (mainly derived 

from B. serrata) are traditionally applied in the Indian ayurvedic medicine with various 

therapeutic indications including diarrhea, cardiotonic actions and mainly inflammatory-related 

disorders. Indeed, analgesic, anti-inflammatory and antiarthritic effects of B. spec. extracts in 

animals were published in initial studies [3, 4]. In the last two decades cumulating evidence from 

experimental animal models and human clinical studies confirmed an anti-inflammatory, 

immunomodulatory and anti-tumor potential of frankincense preparations (for review see [5, 6]). 

Today, the dried gum resin from B. serrata is listed as a monograph in the European 

Pharmacopoeia (6.0) and a dried ethanolic extract of B. serrata resin (H15® Gufic), approved in 

a part from Switzerland, was designated by the EMEA (European Agency for the evaluation of 

Medicinal Products) in 2002 as an orphan drug for the treatment of peritumoral brain edema.  

 

 

Figure 2.1: Boswellia serrata tree (left) and frankincense (right). 
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The gum resin of B. serrata is composed of ∼10% volatile oil (mono- and sesquiterpenes), ∼15-

20% water-soluble gum (polysaccharides) and lipophilic di- and triterpenes (~ 70%) [5]. Within 

the lipophilic fraction of frankincense, the pentacyclic triterpenes boswellic acids (BAs) were 

identified as the major constituents [7] (Table 2.1) and are regarded as the pharmacological 

principles of these preparations. Note that also structurally related amyrins and ursolic acid were 

detected in considerable amounts. 

Table 2.1: Contents of various BAs in the dry extract of B. serrata gum resin (adopted from [7]). 

Compound Content in % 

β-BA 18.2 

Aβ-BA 

KBA 

10.5 

6.1 

AKBA 

α-BA 

3.7 

13.2 

 

BAs (Figure 2.2) exist in a α- (geminal methyl groups C-20) or β-configuration (vicinal methyl 

groups C-19/C-20) and several pharmacological studies confirmed a superior effectiveness of β-

configurated BAs (β-BAs) over the α-form [6]. Further structurally variation is given by the 

occurrence of a carbonyl moiety at position C-11, yielding 11-keto-BAs and the presence of an 

acetyl group at the hydroxyl function at C-3. It was reported that these structural differences are 

crucial determinants for the potency of BAs to interfere with several targets or signaling 

pathways [9-11]. The related pentacyclic triterpene α-amyrin lacks essential functional 

characteristics, namely the 4-carboxylic group. These properties render α-amyrin a useful 

pharmacological tool, serving as negative control. 
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Figure 2.2: Chemical structures of BAs and αααα-amyrin  
β-BA (β-boswellic acid); Aβ-BA (3-O-acetyl-β-boswellic acid); KBA (11-keto-β-boswellic acid) AKBA (3-O-
acetyl-11-keto-β-boswellic acid); α-BA (α-boswellic acid). 
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2.1.2 Pharmacokinetic properties of BAs 

Since the bioavailability reflects the extent of therapeutically active drug that reaches systemic 

circulation and its disposability at the site of action, pharmacokinetic knowledge of a given drug 

is a crucial factor to evaluate its pharmacological efficacy [12]. Initial pharmacokinetic studies 

conducted in humans revealed comparably low concentrations of 11-keto-BAs in plasma [13, 

14]. After single dose application of up to 1600 mg B. spec. extract, plasma levels of max. 2 µM 

KBA and no detectable amounts of AKBA were found, whereas BAs lacking the 11-oxo moiety 

were not determined. The plasma concentration of KBA declined with an elimination half life of 

approx. 6 h, indicating the prerequisite of a repeated application per day. A detailed analysis of 

pentacyclic triterpenes, including all four major β-BAs performed by Buechele and Simmet [7] 

revealed plasma levels as follows: 0.1 µM AKBA, 0.34 µM KBA, 2.4 µM Aβ-BA and 10.1 µM 

β-BA. Notably, these plasma levels were detected after the daily intake of 4 × 786 mg B. serrata 

extract for 10 days. Finally it was found that administration of a B. spec. extract concomitantly 

with a high-fat meal led to approx. 3-fold increased bioavailability of β-configurated BAs [15]. 

Ongoing efforts to address factors responsible for the poor bioavailability of 11-keto-BAs 

demonstrated an extensive phase I metabolism for KBA in vitro and in vivo. In contrast, AKBA 

was metabolically unaffected and a deacetylation to KBA was excluded [16]. Moreover, poor 

permeability for both 11-keto-BAs in the Caco-2 model became evident and in contrast to a 

previous study [17], AKBA and KBA were not identified as substrates of P-glycoprotein [18]. 

Nonetheless, an interference with the activity of organic anion transporter B113 and multidrug 

resistance protein 2 in a cellular model was observed [18]. Since nonselective interference of 

BAs with cytochrome P450 (CYP450) enzymes has been demonstrated before [19], 

pharmacologically relevant interactions with other anionic substances (e.g. bile acids or drugs) 

should be considered while administering B. spec. extracts to humans. 



2  INTRODUCTION 17 

2.1.3 Therapeutic value of BAs in disease treatment 

As mentioned above, multiple experimental animal models indicate a beneficial impact of 

isolated BAs or frankincense preparations containing BAs for the treatment of inflammation-

related disorders such as atherosclerosis [20], arthritis [21-23], ileitis [24], colitis [25-27], 

hepatitis [28, 29], autoimmune encephalomyelitis [30], gastric ulcer [31]. Also cancer [32, 33], 

pain [3, 34], hyperlipidemia [35], allergy [36] and diabetes [37] were modulated.  

The clinical effectiveness of diverse B. serrata preparations has been studied in several human 

trials. At least the methodological quality of these studies differs concerning number of patients, 

content and strength of medication as well as placebo control or comparison against active 

treatments [38], thus, hampering explicit evaluation. Promising effects of B. spec. extracts were 

reported for the treatment of osteoarthritis (OA) manifested in reduced pain and increase in knee 

flexion [39, 40], and more recently a significant decrease in the WOMAC (Western Ontario Mac 

Master) Index was reported for the OA-suffering collective versus the placebo group [41, 42]. 

However, a clinical trial analyzing the impact of H15® treatment in addition with steroids and/or 

nonsteroidal anti-inflammatory drugs (NSAIDs) on rheumatoid arthritis (RA) revealed no 

significant reduction of efficacy parameters (e.g. pain) [43].   

Patients suffering from chronic inflammatory bowel diseases encompassing ulcerative colitis, 

Crohn`s disease and collagenous colitis were treated with H15® or other B. serrata preparations 

and a remarkable improvement in disease parameters (stool frequency, histopathology, remission 

and Crohn`s Disease Activity index) confirmed clinical relevance, being almost equipotent or 

even superior to sulfasalazine or mesalazine [44-46]. In 1998, a trial with bronchial asthma 

patients [47] reported clinical relevance (70% remission) for the B. spec. extract-treated 

collective. The efficacy of H15® administration for several months in patients suffering from 

intracranial tumors [48] or glioblastoma and leukoencephalopathy [49] was investigated. In both 

studies no anti-proliferative or anti-neoplastic effects were observed but tumor-associated 

progressive edema was significantly attenuated [49]. Moreover, for some patients amelioration in 

health parameters and neurological symptoms was registered suggesting beneficial effects for 

H15® application in central nervous system tumors. These results eventually led to the orphan 

drug status of H15® for the treatment of peritumoral brain edema (see above). Side effects of B. 

spec. extracts in all clinical trials were minute and not different from those noted in placebo 

groups. No markedly differences in safety and laboratory (hematological, biochemical or 

histological) parameters were evident during the studies [39, 41, 50] and recently, moderate to 

low toxicity for B. serrata extracts and AKBA on the skin after topical application was 

demonstrated [51].  

All trials conducted to demonstrate effectiveness of B. serrata preparations were carried out with 

small patient numbers, sometimes even lacking essential study parameters, and except for OA 
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independent replications are still missing. Nevertheless, these data together imply an efficacy 

and therapeutic value of B. spec. extracts to treat various diseases caused or maintained by 

inflammatory processes but additional well-controlled investigations are required to warrant 

treatment with B. spec. extracts or purified BAs a convincing therapy.  

 

2.1.4 Pharmacological actions and proposed molecular targets of BAs  

In order to identify pharmacological principles and mechanisms of action of frankincense 

responsible for the effectiveness observed in clinical trials and in experimental animal models 

multitude of experiments on the cellular and molecular level employing isolated BAs, mixtures 

of them or crude B. spec. extracts were performed. It should be emphasize that in general AKBA 

was assumed to be the most potent and pharmacologically relevant BA analogue and many 

studies neglected other natural occurring BAs as potential key players. Initially, frankincense 

extracts were found to inhibit leukotriene (LT)B4 formation in activated rat polymorphonuclear 

leukocytes (PMNL) [52] and also isolated BAs blocked LT formation in this assay [53]. Since 

BAs interfere with 5-lipoxygenase (5-LO), the key enzyme in LT biosynthesis [54-57], a 

molecular mechanism underlying the anti-inflammatory effectiveness of frankincense 

preparations was proposed. Among the four major β-configurated BAs from frankincense, 

AKBA is the most potent analogue with IC50 values in the range of 1.5 to 50 µM, depending on 

the assay conditions (e.g. species, cell type, cell-free or cell-based assays, stimuli etc.) described 

by [57] and this study. AKBA seemingly belongs to the class of nonredox-type 5-LO inhibitors 

[53] and interferes in the presence of Ca2+ with a fatty acid-binding site of 5-LO distinct from the 

substrate binding cleft which was shown using a photoaffinity analogue of AKBA [55]. The 

interference with other arachidonic acid (AA) metabolizing enzymes such as 12-lipoxygenase 

(12-LO) or cyclooxygenase (COX) has long been excluded [53] but was later reconciled by 

Poeckel et al. [8] for platelet-type (p)12-LO and by Frank and Unger [19] for CYP450 enzymes 

and in this thesis for COX-1.  

Further attempts to elucidate molecular targets of BAs identified the human leukocyte elastase 

(HLE). HLE release from PMNL is activated through a broad range of stimuli and connected to a 

variety of inflammatory and hypersensitivity-related disorders. Direct inhibition of HLE activity 

was found for AKBA (IC50 = 15 µM) but also β-BA and other related pentacyclic triterpenes 

including amyrin and ursolic acid (IC50 ≤ 2 µM) were active [58, 59]. Recently, nonselective 

inhibition of recombinant CYP enzymes (CYP 2C8, 2C9, 3A4) by AKBA, KBA and β-BA in 

the range of 5-10 µM [19] as well as for several B. spec. extracts has been described, indicating a 

possible influence on drug metabolism in vivo.  
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In addition, key players of intracellular signaling such as protein kinase B (PKB/Akt) and the 

mitogen-activated protein kinases (MAPK) ERK1/2 and p38 MAPK were objects of intensive 

investigations. It was found that AKBA (> 15 µM) impaired ERK1/2 activation in platelet-

derived growth factor (PDGF)-stimulated meningioma cells [60] but failed to do so in tumor 

necrosis factor (TNF)-α activated human myeloid cells [61]. Interestingly, in lipopolysaccharide 

(LPS)-challenged peripheral blood mononuclear cells (PBMC) the extract of B. serrata 

prevented phosphorylation of the MAPKs c-Jun N-terminal kinase (JNK) and p38MAPK while no 

inhibition was seen for ERK phosphorylation [62]. In MM6 cells AKBA (30 µM) markedly 

attenuated fMLP-induced phosphorylation of p38MAPK and in contrast also impaired activation of 

ERK1/2 which was accompanied by decreased basal and agonist-induced intracellular Ca2+ 

levels [10]. Whereas in human PMNL, 11-keto-BAs (30 µM) induced Ca2+ mobilization, 

activated p38MAPK and ERK1/2, evoked reactive oxygen species (ROS) formation, and caused 

AA-release, BAs lacking the 11-keto moiety were less effective [9, 63]. Also in human platelets, 

BAs differentially interfered with cellular signaling pathways. Thus, BAs lacking the 11-oxo 

moiety (i.e. β-BA) exhibited agonistic effects on Ca2+ mobilization, induced phosphorylation of 

Akt, p38MAPK and ERK1/2 and caused liberation of AA, generation of thrombin and delayed 

platelet aggregation. In contrast, the 11-keto analogues, AKBA and KBA were hardly effective 

or even failed at all in this respect [64 and this study]. The effect of BAs on AA-release and p12-

LO activity in human platelets was studied in more detail. Whereas both, β-BA and AKBA 

enhanced the release of AA via cytosolic phospholipase A2, the former generation of the p12-LO 

product 12-hydro(per)oxy-eicosatetraenoic acid (12-H(P)ETE) was markedly induced only by β-

BA and cell-free assays revealed detrimental effects of AKBA (IC50 = 17 µM) on 12-H(P)ETE 

formation. In addition, immobilized KBA selectively precipitated p12-LO from platelet lysates 

implying p12-LO as a select molecular target of BAs [8] (Table 2.2). Regarding the anti-

inflammatory potential of 3-O-acetyl-BAs (i.e., AKBA and Aβ-BA), the interference with 

nuclear factor (NF)-κB signaling in peripheral monocytes was reported. Thus, AKBA limited 

TNF-α signaling presumably by direct interference with inhibitor of NF-κB (IκB)-kinase (IKK) 

[65], and reduced TNF-α-induced expression of pro-inflammatory matrix metalloproteases and 

the adhesion receptors VCAM-1 and ICAM-1 in human microvascular cells were reported [66]. 
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Table 2.2: Proposed molecular targets of AKBA (modified according to [6]). 

Target EC50/IC 50 Reference 

human/rat 5-LO 1.5-50 µM [53, 54, 57] 

HLE 

human topoisomersases I/IIa 

15 µM 

30 µM 

[58] 

[80] 

human recombinant IκB kinase α/β 

human recombinant CYP450 

30 µM 

5-10 µM 

[65] 

[19] 

human p12-LO 15-20 µM [8] 

 

There are reports about the interference of several BAs with the humoral and cellular immune 

response such as suppression of leukocyte infiltration [67] and anti-complementary activity 

through inhibition of C3-convertase [68], modulation of T helper cell cytokine production, and 

enhanced T-lymphocyte proliferation [69, 70]. Also, numerous studies were performed 

describing effects of BAs, in particular of AKBA on cell proliferation, differentiation, and cell 

death. Multiple investigation demonstrated cell growth inhibition by BAs in various leukemia 

cell lines [71, 72] with an IC50 ≈ 30 µM for AKBA [73], as well as for colon cancer cells and 

meningioma cells [60, 74]. Effects on cell differentiation were shown for B. spec. extracts and 

isolated BAs [71, 75, 76]. These effects were related to induction of apoptosis [77-79] and 

continuing analysis revealed the inhibition of topoisomerase I and IIa as responsible molecular 

targets of BAs with IC50 = 1-50 µM, depending on their structure [73, 76, 80]. Further studies 

elucidated that BAs trigger apoptosis via the caspase 8-mediated pathway [81-83]. However, the 

expected interaction with the upstream receptor Fas/FasL was excluded [84] and for AKBA the 

death receptor 5-mediated pathway seemed to be responsible for capase 8 activation in prostate 

cancer cells [85]. Recently, an inhibitory effect of AKBA (30 µM) on the androgen receptor by 

interference with SP1 binding activity in prostate cancer cells was reported [86]. Moreover, after 

AKBA treatment (10-50 µM) gene products connected to cell proliferation (e.g. cyclin-D1) and 

anti-apoptosis (Bcl-2, Bcl-XL, survivin, mcl-1) were suppressed. These effects were preferably 

related to interruption of NF-κB-signaling on the “Akt level” [61] rather then to direct 

interaction with IKK [87]. Besides interference with the NFκB route repression of signal 

transducers and activators of transcription (STAT)-3 in multiple myeloma cells via protein 

tyrosine phosphatase SHP-1 by AKBA was demonstrated [88].   

Conclusively, modulation of cell death signaling by BAs shares common apoptotic mediators 

and functional downstream effectors but remain to be clearly illustrated. 

In summary, isolated BAs and diverse B. spec. extracts modulate a large number of pivotal 

cellular and molecular mechanisms involved in inflammation and cancer. Nevertheless, there are 
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evident discrepancies in the efficacy of purified BAs (also depending on their structure) and the 

crude B. spec. extract. Obviously, there are stimulatory as well as inhibitory effects exerted by 

the same compound depending on the experimental conditions (e.g. cell type or stimulus). 

Moreover, the required concentration of AKBA (the most extensive addressed BA) to induce any 

biological effect is far above the reachable plasma level after oral application of frankincense 

preparations, and therefore the interference with the assumed targets, especially in a 

physiological context, remains questionable. 
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2.2 Inflammation 

Inflammation is a biological response of the immune defense against challenges originating from 

the surrounding environment. Challenge of host tissues due to traumatic, infectious or toxic 

injury or lesions lead to a complex series of vascular and cellular events carried out by the 

organism to remove the injury and to initiate the healing process, resulting in the release of 

different biochemical mediators. These events give in turn rise to the initial cardinal signs of 

inflammation defined by Celcus AD40: rubor (redness), calor (heat), tumor (swelling) and dolor 

(pain) [89]. They reflect vasodilatation and its resulting increased blood flow, enhanced 

permeability of blood vessels and peripheral nervous tissue stimulation. The host protective 

response is normally followed by a timely resolution of inflammation, which ensures a self-

limitation of the process. However, depending on the extent of the insult, prolonged 

inflammation can lead to a chronic condition and eventually to loss of function (functio laesio), 

if a complete healing of the tissue fails.   

The inflammatory challenge consists of a large and complex regulated number of biochemical 

events including cellular, molecular and physiological changes in response to the harmful 

stimuli. They involve the immune system (e.g. complement system), the local vascular system, 

and cells resident within the injured tissue (e.g. mast cells). These cells produce multiple early 

inflammatory mediators including cytokines (e.g. interleukin 1 (IL-1), TNF), plasma proteins 

(bradykinin, thrombin), histamine, and bioactive lipids. These early events enable the successive 

recruitment of leukocytes (neutrophils, monocytes/macrophages and lymphocytes) from the 

blood which, in turn, release further pro-inflammatory signals (mediators) [90]. Among these 

mediators, the lipid metabolites derived from the precursor AA, the so-called eicosanoids, are 

well established to play key role(s) as signaling molecules in inflammation [91]. Thus, 

pharmacological modulation of eicosanoid formation is considered as an appropriate intervention 

with beneficial effects in the treatment of inflammatory disorders including atherosclerosis, 

inflammatory bowel diseases, asthma, arthritis and also of cancer. 

 

2.2.1 The arachidonic acid cascade 

Arachidonic acid (AA) is a carboxylic acid with a 20-carbon chain and four cis-configurated 

double bonds (all-cis 5,8,11,14-eicosatetraenoic acid): the first double bond is located at the sixth 

carbon from the omega end (20:4;ω-6). The polyunsaturated AA is abundantly incorporated in 

an esterified form (sn-2) into membranous phospholipids (e.g. phosphatidylcholine (PC) or 

phosphatidylethanolamine). Cellular activation by an appropriate stimulus (e.g. platelet 

activation with thrombin) induces the release of AA from cellular membrane phospholipids via 
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the activity of the enzyme phospholipase A2 (PLA2) (see 2.2.2). Once liberated, free AA 

functions as a second messenger itself [92], is re-incorporated into phospholipids, or serves as 

the premier precursor of eicosanoid biosynthesis in mammalian cells. The conversion of AA into 

eicosanoids is govern by three classes of enzymes (Figure 2.3) which initially incorporate 

oxygen at different positions of the substrate: i) cyclooxygenases (COXs), which initiates the 

synthesis of prostaglandins (PGs) and thromboxanes (TXs), altogether termed prostanoids; ii) 

lipoxygenases (LOs), such as 5-LO, which catalyses the formation of leukotrienes (LT) as well 

as 12- and 15-LOs yielding hydroxy-eicosatetraenoic acids (HETEs); and iii) a class of CYP 450 

enzymes which form epoxyeicosatrienoic acids (EETs) [93]. Since, all generated products have 

different biological activities (physiological or pathophysiological) but originate from the same 

substrate; AA plays a cardinal role in the regulation of the inflammatory process. 

 

Arachidonic acid

COXs LOs CYP450

Prostanoids LTs & HETEs EETs

PLA2

 

Figure 2.3: Arachidonic acid pathways  
Free arachidonic acid is released by phospholipase A2 (PLA2) and subjected to further metabolism by 
cyclooxygenases (COXs), lipoxygenases (LOs) or cytochrome P (CYP)450 enzymes to their respective products. 
They include prostanoids, leukotrienes (LTs) & hydroxy-eicosatetraenoic acids (HETEs) and epoxyeicosatrienoic 
acids (EETs). 
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2.2.2 Phospholipase A2 

The phospholipase A2 (PLA2) superfamily constitutes of different enzymes catalyzing the 

hydrolysis of the fatty acid at the sn-2 position of membrane phospholipids. The products of this 

reaction in vivo, an unsaturated fatty acid and a lysophospholipid, can be further metabolized to 

important second messengers (e.g. eicosanoids and platelet activating factor (PAF), respectively) 

with essential (patho)physiological impact. There are five main classes of PLA2s: secreted 

(s)PLA2s; Ca2+-dependent cytosolic (c)PLA2s; Ca2+-independent (i)PLA2s; PAF 

acetylhydrolases, and lysosomal PLA2s [94]. The cPLA2s class (Group IV), consists of 6 (α-ζ) 

subtypes with molecular weights of 61-114 kDa. Within this class, the cPLA2α is the most 

extensively studied isoform, first characterized and purified from platelets, macrophage cell 

lines, and various tissues [95-98]. Due to its exclusive specificity for sn-2 esterified AA, the 

cPLA2α is believed to be mainly responsible to provide free AA for eicosanoid (prostanoid and 

LT) biosynthesis in the cell in response to a variety of extracellular stimuli. Receptor-mediated 

cellular stimulation by collagen or thrombin as well as receptor-circumventing ionophores (Ca2+-

ionophore A23187) causes cPLA2-depending formation of the eicosanoid-precursor AA. Cellular 

activation with exogenously applied AA bypasses cPLA2 activity and the substrate is directly 

subjected to eicosanoid metabolism via the respective downstream enzymes.  

Genetic ablation of cPLA2α in various animal models or studies with PLA2 inhibitors resulted in 

lower production of eicosanoids and related physiological and pathophysiological processes [99]. 

Besides cPLA2α, members of the low-molecular weight sPLA2-family have been proposed to 

participate in cellular eicosanoid generation but clear evidences has not yet provided for such a 

role [100]. The physiological function of iPLA2s is considered to lipid remodeling, apoptosis and 

insulin secretion [101-103]. Lysosomal phospholipase A2 is an acidic PL that is highly expressed 

in alveolar macrophages and that may play a role in the catabolism of pulmonary surfactant 

[104]. PAF acetylhydrolases (which act also in Ca2+-independent manner) catalyze the 

hydrolysis of phospholipids containing short chain sn-2 acyl groups and thereby inactivate PAF 

[105].  

Regulation of cPLA2α involves its translocation from the cytosol to membranes to access the 

substrate. Cellular stimulation induces a rise in [Ca2+] i , where Ca2+ binds to the C2 domain of the 

enzyme and induces translocation to the nuclear envelope and endoplasmatic reticulum (ER). 

Ca2+ largely enhances the affinity of the enzyme for membranes but is not necessary for catalysis 

[106]. Binding of phosphatidylinositol-(4,5)-bis-phosphate (PIP2) [107] has been shown to 

significantly activate the enzyme and direct interference with ceramide-1-phosphate [108] 

reduces dissociation from the membrane surface also in the absence of Ca2+. Moreover, cPLA2α 

contains different phosphorylation sites (Ser-505, Ser-515, and Ser-727), which are 
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phosphorylated by MAPKs, calmodulin kinase II (CamKII) and MAPK-interacting kinase 

(MNK1), respectively [109]. Phosphorylation events either activate the enzyme or facilitate its 

translocation to cellular membranes. Taken together, cPLA2α plays a pivotal role in agonist-

induced release of AA as the upstream regulatory enzyme in cellular production of primarily 

pro-inflammatory bioactive lipid mediators, including PAF, LTs and prostanoids. 

 

2.2.3 Cyclooxygenases and prostanoids 

Once AA is liberated by cPLA2, it can be further metabolized via cyclooxygenase (COX) 

enzymes. In humans, two isoforms of COX exist, namely COX-1 and -2. These enzymes show 

approx. 65% sequence identity. COX-1 is constitutively expressed in a variety of mammalian 

cells and tissues [110], such as blood vessel wall, smooth muscle cells, intestinal cells, platelets, 

renal tubulus and seminal vesicles, and is considered to be mainly responsible for formation of 

PGs with homeostatic functions. However, strong evidence for its contribution to inflammatory 

processes has also been provided [111, 112]. In contrast, COX-2 is considered to be inducible 

and is expressed in response to cytokines (e.g. IL-1β, IL-6, TNFα, lipopolysaccharide (LPS)), 

growth factors (e.g. PDGF, TGFβ) or others [113]. Nevertheless, constitutively expressed COX-

2 was found in brain, kidney, female reproductive tract and evidence for a homeostatic role in 

the cardiovascular system is given [114, 115]. Expression of the COX-2 gene can be suppressed 

by anti-inflammatory cytokines (IL-4 or IL-10) and glucocorticoids. Recently, a COX-enzyme 

derived from a splicing variant of the COX-1 mRNA, termed COX-3, was found in canine and 

human celebral cortex but its function is still a matter of debate [116].  

The reactions catalyzed by COX enzymes comprise the conversion of AA including 

incorporation of two molecules of O2 to give the intermediate PGG2 (cyclooxygenase reaction) 

and a subsequent peroxidase reaction, which reduces PGG2 to PGH2. In turn, PGH2 is then 

further metabolized by downstream enzymes into different prostanoids, depending on the cell 

type (Figure 2.4). 
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Figure 2.4: Formation of prostanoids derived from arachidonic acid by cyclooxygenase enzymes.  
Arachidonic acid (AA), prostaglandin (PG), 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid (12-HHT), 
thromboxane (TX), malonedialdehyde (MDA)  
 

The peroxidase activity is necessary to activate COX reaction and can operate independently of 

the cyclooxygenase reaction [117, 118] while suicide inactivation is assumed for both, 

peroxidase and cyclooxygenase activity [119]. COX-2 is known to utilize both, free fatty acids 

and 2-arachidonyl glycerol as substrates, whereas COX-1 appears to exclusively convert 

unbound fatty acids, such as free AA [120]. However, AA is the preferential substrate for both 

isoforms with nearly the same Km (5 µM). Interestingly, an unusual negative allosteric effect was 

reported for COX-1 at low AA concentration (≤ 1 µM), which seems to be hydroperoxide-

dependent. This might be the reason for the preferred in vivo conversion of endogenous substrate 

amounts (AA ∼ 1 µM) by COX-2, when both isoenzymes are expressed in the same cell [121]. 

In cells expressing COX-1, an immediate pulsatile burst of PG formation occurs in response to 

an appropriate stimulus (e.g. G protein-coupled receptor (GPCR) agonists) but, at least in certain 

cells types, a second phase of PG generation 30 - 60 min begins after the initial burst and 

continues for a few hours. This second more gradual phase involves primarily PGs derived from 

COX-2 and its expression is in turn partially promoted by the PGs formed via COX-1 [122].   

Another important difference between the two COX isoforms is the structure of the active site, a 

hydrophobic tunnel where the substrate is converted (and where also COX-inhibitors bind). 

Thus, the COX-2 active site is larger than that of COX-1, due to differences in three amino acids 

(COX2: Val434, Val523, Arg513; COX-1: Ile434, His513, Ile523) forming a side pocket, and to 

a different position of a helix in the membrane binding domain (D1 helix), altering the position 

of Arg120 (responsible for the binding of carboxylic groups of fatty acids and COX-inhibitors) 



2  INTRODUCTION 27 

[123]. In fact, this knowledge led to the development of the COX-2 specific inhibitors (coxibs), 

e.g. the diarylheterocycle class, including celecoxib and rofecoxib (see below).  

Studies on subcellular localization of COX-1/2 showed that both isoforms reside in the ER and 

nuclear envelope. However, COX-1 seems to be equally distributed, whereas COX-2 localized 

preferentially (about twofold) at the nuclear envelope [124]. Selective coupling of PLAs to COX 

enzymes has been reported in several studies [125] but largely depends on expression patterns 

and the amplitude of the activation of individual PLAs caused by different stimuli. Similarly, 

attempts to elucidate the coupling of COX isoforms to downstream enzymes of prostanoid 

formation were carried out. Different functional interferences with PGE synthases [126] (see 

2.2.4), coupling between COX-2 and PGI synthase in the cardiovascular system as well as 

between COX-1 and TXA2 synthase in platelets have been shown [127]. However, protein 

interaction, kinetic properties or simple localization of the terminal synthases might result in 

selective coupling but still need further elucidation.   

De novo synthesized prostanoids, including PGE2, PGD2, PGF2α, PGI2 and TXA2 are widely 

distributed in a variety of tissues and cells in humans and serve as short-living autocrine or 

paracrine mediators, acting through specific GPCRs to exert multiple biological functions (Table 

2.3). However, interactions with nuclear peroxisome proliferator-activated receptors (PPAR) 

were also reported for certain PGs [128].  

Table 2.3: Prostanoid receptor functions and diverse biological activities of prostanoids. 

Receptor  Ligand Signaling Effect 

EP1 PGE2 Gq /Ca2+↑ pain (spinal neurons) 

EP2 PGE2 Gs /cAMP ↑ maturation for ovulation and fertilization 

EP3 PGE2 Gi /cAMP ↓ fever (brain); protection of gastric mucosa 

EP4 PGE2 Gs /cAMP ↑ bone resorption (osteoclast) 

DP1 PGD2 Gs /cAMP ↑ vasodilatation  

DP2 PGD2 Gs /cAMP↑ chemotaxis (Th2 lymphocyte) 

FP PGD2α Gq /Ca2+↑ contraction of uterus 

TPα/β TXA 2 Gq /Ca2+↑ vasoconstriction, platelet aggregation 

IP PGI2 Gs /cAMP↑ rennin secretion, vasodilatation, anti-aggregatory 

 

Inhibition of prostanoid formation by targeting COX enzymes is considered a major 

pharmacological anti-inflammatory intervention. In fact, interference of COX enzymes with 

NSAIDs targeting both isoforms and the more COX-2 selective coxibs is a common 

therapeutically strategy to reduce acute and/or chronic inflammatory diseases [129].   

Typical NSAIDs inhibit both COX isoforms but generally bind more tightly to COX-1 [130]. 
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Due to competition with AA for binding to the active site, NSAIDs appear to exhibit one of three 

modes of inhibition: i) rapidly, reversible (e.g. ibuprofen); ii) time-dependent slowly 

(pseudoirreversible) reversible binding (indomethacin) or iii) rapid, reversible binding followed 

by covalent modification (aspirin, acetylation at Ser530) [131, 132]. Interestingly, aspirin treated 

COX-2, in contrast to COX-1 is not simply enzymatically inoperative but is rather able to 

convert AA to the anti-inflammatory group of lipoxins [133]. Unfortunately, the permanent use 

of NSAIDs is associated with severe side-effects, mainly gastrotoxicity related to the reduction 

of COX-1-derived PGE2 [134]. Search for selective COX-2 inhibitors, in order to improve the 

safety profile of NSAIDs, led to the development of coxibs. Inhibition of COX-2 activity by 

these compounds corresponds to a three step-model of interaction leading to time-dependent, 

pseudoirreversible mechanism, whereas COX-1 is only marginal affected in a rapid and 

reversible fashion [135]. However the use of coxibs is associated with an increase risk of 

cardiovascular severe adverse events, mainly due to the suppression of endothelial PGI2 

generated by COX-2 [136] and therefore limiting their use.  

In view of the therapeutic benefit, intervention with PG biosynthesis by NSAIDs and coxibs has 

long been established and still is successfully applied to treat various inflammatory disorders. 

However, in regard of their severe side effects, compounds interfering with selective terminal PG 

synthases or PG-receptor antagonists might be of significant advantage. 

 

2.2.4 Microsomal prostaglandin E2 synthase-1 

Among the PGs originating form the COX pathway, PGE2 acts at least through four different 

receptors (EP1-4) and regulates key responses in the major human systems including 

reproductive, gastrointestinal, neuroendocrine and immune functions [137]. In fact, PGE2 is 

accepted as a key mediator in fever, pain and inflammatory responses [138]. Isomerization of 

COX-derived PGH2 to PGE2 is catalyzed by PGE2 synthases (PGES). Many attempts have been 

attributed to identify and purify these proteins [139, 140]. Meanwhile, three different isoforms 

have been successfully identified and characterized, namely cytosolic PGE2 synthase (cPGES), 

microsomal PGES-1 (mPGES-1) and mPGES-2 [141-144]. The cPGES is a 26 kDa enzyme, 

constitutively expressed in a variety of tissues (testis, heart, brain and stomach) and 

preferentially converts PGH2 derived from COX-1 [141] to maintain homeostatic PGE2 

production. However, initial reports claimed a possible role of this enzyme in inflammation, at 

least in certain tissues [145]. The mPGES-2 is a 33 kDa enzyme, which is also ubiquitously 

expressed (brain, heart, skeletal muscle). It is functionally linked to both isoforms of COX 

enzymes [146] and converts PGH2 in a glutathione (GSH)-independent manner.  

In contrast, mPGES-1 is markedly induced by pro-inflammatory stimuli such as IL-1β, TNFα 
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and LPS in a variety of cell types including A549 cells, synovial cells, monocytes, human 

endothelial cells, macrophages, and osteoblasts [147-150] and its induction is suppressed by 

glucocorticoids and TNFα blockers [150-152]. Low constitutive expression levels of mPGES-1 

have been observed in urogenital organs, spleen, stomach and kidney. It has been demonstrated 

that this enzyme preferentially metabolizes COX-2-derived PGH2 [141, 153] and requires GSH 

as cofactor for its catalytically activity [154, 155]. The mPGES-1 is a 16kDa enzyme and is 

mainly located in the perinuclear membrane and, at least in part, colocalizes with COX-2 [156, 

157]. It belongs to the family of “membrane-associated proteins involved in eicosanoid and 

glutathione metabolism” (MAPEG). Further members of this superfamily are 5-lipoxygenase-

activating protein (FLAP), LTC4 synthase and microsomal glutathione transferases (MGST) 1-3. 

A recent study by Jegerschöld et al. [158] demonstrated that mPGES-1 is a homotrimer of four 

transmembrane helix bundles consistent with other structurally characterized MAPEG members. 

GSH is bound in an u-shape form at the interface between the subunits of the trimer and this 

binding involves conserved residues of Arg70/Tyr117 and Arg126/Tyr130. A cytoplasmatic cleft 

between helices 1 and 4 is suggested to form the active site of the enzyme and promote PGH2 

catalysis, which is facilitated by GSH thiolate and Arg126.   

Accumulating evidence indicates a pivotal role of mPGES-1 for inflammatory diseases such as 

arthritis, pain, fever, stroke as well as in cancer [159-162]. As demonstrated in several studies 

using mPGES-1 deficient mice, inhibition of mPGES-1 provides an efficient pharmacological 

approach for the treatment of these pathological conditions [153, 163-166] with only marginal 

effects on the formation of physiologically important and homeostatic PGs. So far, a number of 

small molecules were described as direct mPGES-1 inhibitors, such as arachidonic acid and 15-

deoxy-∆12,14-PGJ2 (IC50 = 0.5 µM, both) [167], the indole analogue MK-886 (IC50 = 1.6 µM) and 

certain derivatives as well as pirinixic acid derivatives [168-170]. Additionally, some 

phenanthrene imidazoles including the selective, potent and orally available compound MF63 

(IC50 = 1 nM) have been described [162, 171].   

Since inflammation and related pathophysiological conditions are closely linked to the increased 

formation of PGE2 originated from up-regulated mPGES-1 [172], pharmacological intervention 

with mPGES-1 is assumed to be an attractive alternative to NSAIDs and coxibs with presumably 

higher safety, due to reduced risk of classical adverse effects of these drugs. Nevertheless, 

additional experiments and even adequately designed prospective clinical trials are needed to 

determine a superior effect of selective mPGES-1 inhibitors.  
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2.2.5 5-Lipoxygenase 

Besides biosynthesis of PGs by COX enzymes, AA can be converted through the lipoxygenase 

(LO) pathway yielding LTs and HETEs. There are have been several LOs described in humans, 

including 5-LO, p12-LO, epidermis-type 12-LO, and 15-LO-I and -II. Among LO enzymes, the 

5-LO seems to play a critical role in the regulation of the inflammatory response and therefore 5-

LO-derived LTs are of particular interest. LTs exert physiological roles in innate immune 

responses, are regarded as pathophysiological mediators in inflammatory associated diseases 

encompassing asthma, allergic rhinitis, atherosclerosis, myocardial infarction, and stroke [173]. 

The generation of LT (Figure 2.5) in inflammatory cells (neutrophils, macrophages eosinophils 

and mast cells) is initiated by several immune and pro-inflammatory stimuli. Available amounts 

of AA are converted via 5-LO into 5-hydro(per)oxy-eicosatetranoic acid (5-H(P)ETE), by 

incorporation of molecular oxygen (oxygenase activity) and subsequent formation of the 

unstable epoxide intermediate LTA4 (LTA4 synthase activity). The latter can be metabolized by 

LTA4 hydrolase to give LTB4, a potent neutrophil chemoattractant [174, 175] which also 

mediates adhesion of leukocytes to vascular endothelium, T cell recruitment to inflamed tissues, 

and causes superoxide release from phagocytes [176, 177]. On the other hand, conjugation of 

LTA4 with GSH by LTC4-synthase (mainly expressed in eosinophils, macrophages and mast 

cells) may occur, yielding cysteinyl LTs (Cys-LTs), namely LTC4, LTD4 and LTE4 [178]. Cys-

LTs are bronchoconstrictive agents and increase vascular permeability, resulting in a pro-

inflammatory action. As the prostanoids, also LTs act through specific GPCRs: two receptors for 

LTB4 (BLT1 and BLT2) and at least two receptors for Cys-LT (CysLT1 and CysLT2) mainly 

expressed on leukocytes, smooth-muscle cells or endothelial cells [179]. Notably, 5-H(P)ETE is 

also partially reduced via cellular peroxidases to give its correspondent alcohol 5-HETE and in 

turn, 5-HETE oxidation leads to 5-oxo-ETE. Both metabolites possess diverse biological 

functions, including tumor promotion and granulocyte recruitment, respectively [180, 181]. 

Various studies demonstrated anti-inflammatory properties of LO-derived (5-/12-/15-LO) 

metabolites, the lipoxins (LXA4 and LXB4), suggesting a certain role also in resolution of 

inflammation [182, 183]. 
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Figure 2.5: Leukotriene biosynthetic pathway  
Free arachidonic acid (AA) is subjected to the 5-lipoxygenase (5-LO) pathway. Leukotriene (LT)A4 hydrolases and 
LTC4 synthase; cysteinyl (Cys); glycin (Gly); glutamine (Glu); hydro(per)oxy-eicosatetranoic acid (H(P)ETE) 

 

The 5-LO active site contains a non-heme iron which is essential for the catalytic activity of the 

enzyme [184, 185]. The iron functions as an electron donor or acceptor during the catalysis, thus, 

the inactive form of 5-LO contains iron in the ferrous state (Fe2+), and the iron is oxidized to the 

active (ferric, Fe3+) state by cellular hydroperoxides [186]. Several cofactors and complex 

activation pathways regulate 5-LO activity. Hence, an increase of intracellular Ca2+ strongly 

stimulate LT formation in intact cells [187] and reversible binding of Ca2+ at the C2-like domain 

of 5-LO enzyme has been confirmed [188]. Binding of Ca2+ in turn, supports association of the 

enzyme with phosphatidylcholine (PC), directing 5-LO towards membranes.   

Interference with ATP increases 5-LO activity by stabilizing effects on the enzyme. Besides the 

catalytic site, 5-LO contains a second putative regulatory fatty-acid-binding site [189]. 

Glycerides including 1-oleoyl-2acetyl-sn-glycerol (OAG) were reported to activate 5-LO in the 

absence of Ca2+ [190] and binding of coatosin-like protein (CLP) to 5-LO supports Ca2+-induced 

enzymatic activity [191]. 5-LO is also regulated by phosphorylation by p38 MAPK-regulated 

MAPKAP-2/3 (MK-2/3), ERK1/2, CaMKII and PKA [192, 193]. While phosphorylation by 

MKs and ERKs promote membrane translocation and up-regulate 5-LO product formation [192, 

194], PKA-mediated phosphorylation impairs 5-LO activity [195]. In the majority of cells 

(neutrophils, peritoneal macrophages), 5-LO resides in the cytosol and translocate to the nuclear 

membrane upon cellular stimulation. After association of 5-LO with the nuclear membrane, 
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released AA is transferred to 5-LO by FLAP to allow metabolism by 5-LO [196]. FLAP is a 

member of the MAPEG family and is co-expressed with 5-LO in many tissues. Interestingly, 

exogenous supply of free AA to the cells (transcellular mechanism or experimental conditions) 

circumvents FLAP activity and can be metabolized by cytosolic 5-LO [197].  

Targeting the biosynthesis of pro-inflammatory LTs is regarded to represent a rational 

therapeutic goal to block certain allergic and inflammatory diseases. Direct inhibition of 5-LO is 

achieved by either redox active compounds (phenols e.g., caffeic acid) which reduce the active 

site iron, iron-ligand inhibitors (BWA4C, zileuton) chelating the active site iron and non-redox 

type inhibitors (ZM230487) competing with binding of the substrate (AA) to 5-LO. Therein, 

zileuton is the only compound which entered the market (USA) and is approved for the treatment 

of asthma. However, it only showed marginal effects in rheumatoid arthritis or inflammatory 

bowel diseases [198]. An alternative way to suppress LT synthesis is to inhibit FLAP. Using the 

FLAP inhibitor MK-886, 5-LO product formation is potently attenuated in intact leukocytes but 

the compound is significantly less efficient (about 500 times) in whole blood and no inhibition of 

purified 5-LO or LT formation in cell homogenates were observed [199]. Also, addition of 

exogenous AA to activated cells strongly impairs the potency of MK-886 [57]. Thus, by 

supplementation of exogenous AA to cells, the possibility is given to circumvent PLA2 inhibition 

and to estimate FLAP interference of a given compound [200]. Nevertheless, recent findings 

concerning FLAP suggest a therapeutic potential of novel FLAP inhibitors [173].  

In summary, a complex regulation of 5-LO activity through several cofactors including substrate 

supply, FLAP, Ca2+and phospholipids leading to LT synthesis is established and thus, the 

efficacy of 5-LO inhibitors, in intact cells as well as in cell-free assays largely depends on the 

assay conditions.  
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2.3 Platelet physiology and biochemistry 

Platelets are specialized human blood cells derived from megakaryocytes. They are produced in 

the bone marrow and released into the circulation. Platelets play crucial roles in hemostasis and 

wound healing as well as they are involved in the pathophysiological processes of thrombosis 

and inflammation [201]. Injury of a vessel wall exposing the unveiled subendothelial matrix 

induces platelets to form a hemostatic plug and close the leakage. Also, platelets are accounted 

for thrombus formation at sites of ruptured atherosclerotic plaques and consequently trigger heart 

attacks and strokes [202]. The first interaction (adhesion) of platelets is mediated by specific 

glycoproteins (GP) with the van Willebrand factor (vWF) on the surface of the subendothelium. 

This interaction enables a firm platelet capture further strengthen by binding of subendothelial 

collagen to its respective platelet receptors GPIa/IIa and major collagen signaling GPVI receptor 

[203]. This preliminary stimulation per se together with activation by agents from the 

surrounding environment (e.g. ADP, thrombin, TXA2) transduce a rise in intracellular Ca2+ 

concentrations ([Ca2+] i). The increase of [Ca2+] i is substantially linked to spreading, activation of 

cPLA2 followed by PG formation (i.e. TXA2) as well as granule secretion and activation of 

GPIIb/IIIa (integrin αIIbβIIIa), causing binding of soluble fibrinogen (inside-out signaling) [204-

206]. Secreted products from dense bodies are ADP or serotonin. ADP and TXA2 exert an 

important role in additional autocrine/paracrine platelet activation and hemostatic plug growth 

[207]. The α-granules of platelets contain adhesive proteins (vWF, thrombospondin), mitogenic 

factors (PDGF and TGF-β), coagulation factors as well as glycoproteins such as P-selectin 

(CD62) and CD40 ligand. The latter are well recognized to mediate platelet binding to 

neutrophils and monocytes and to induce inflammatory processes in the microenvironment 

including VCAM-1 expression, release of tissue factor, enhanced migration of leukocytes as well 

as an increase in ROS and chemokine production by endothelial cells [208-212].  

Activation-induced binding of fibrinogen to GPIIb/IIIa is the primary mechanism of platelet 

aggregation and the cross-linking of two GPIIb/IIIa molecules on neighboring platelets results in 

a firm connection and depend on [Ca2+] i  [213]. The increase of [Ca2+] i  also evokes activation of 

the scramblase enzyme which promotes phospholipid translocation in the cell membrane leading 

to an anionic membrane surface. This provides binding sites for enzymes and cofactors of 

coagulation processes in a Ca2+-depending manner, facilitating efficient generation of thrombin 

and finally of fibrin, to form a stable plug [214] (Figure 2.6). 
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Figure 2.6: Model of platelet-mediated thrombin formation (adopted from [202])  
Activated platelets can bind coagulation factors and cofactors via Ca2+ and specific receptors. The concerted actions 
of coagulation factors on the platelet surface lead to a burst of thrombin generation, enabling a stable fibrin clot 
formation. 

Negative regulation of platelet physiology is essential to prevent uncontrolled thrombosis. In this 

the regard the role of nitric oxid and PGI2 derived from the endothelium are well established. 

These mediators induce an intracellular increase of cyclic nucleotides cGMP/cAMP via adenyl 

and guanyl cyclases, respectively [215] and therefore decrease platelet activity. Antiplatelet 

agents such as aspirin and ridogrel suppressing TXA2 activity, clopidogrel affecting ADP 

receptors and abciximab blocking the GPIIb/IIIa receptor are used to impair platelet activation 

[216].  

Platelet activators such as thrombin or collagen are considered as strong agonists whereas, ADP, 

serotonin, or TXA2 require autocrine/paracrine stimulation to induce the entire platelet response 

[205]. Soluble platelet agonists, including thrombin, PAF, ADP or TXA2, typically activate 

specific GPCRs (Figure 2.7), leading to the activation of phospholipase (PL)Cβ [217, 218]. PLC 

catalyses the hydrolysis of PIP2 to inositol trisphosphate (IP3) and diacylglycerol (DAG). 

Activated IP3 receptors meditate Ca2+ mobilization from the intracellular stores (dense tubula 

system) and this, in turn, leads to massive Ca2+ influx from the extracellular space [219]. DAG-

mediated activation of protein kinase C (PKC) and downstream effectors also participate in 

platelet activation process.  
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The sustained increase of [Ca2+] i  is associated with phosphorylation of myosin-light chain by it 

respective kinases leading to shape change of platelets as well as the various responses 

mentioned above including PLA2-activation, granule secretion, conformational changes and 

activation of GPIIb/IIIa (integrin αIIbβIIIa) and providing of catalytically active platelet surfaces. 

 

PLCββββ

PLA2 

DAG
PKC

cAMP

 

Figure 2.7: G-protein coupled receptor signaling in platelets.   
Input signals regulate calcium dynamics and induce secondary pathways potentiating platelet activation. PIP2, 
phosphatidylinositol-(4,5)-bis-phosphate; IP3, inositol trisphosphate; PAR protease activated receptor; AC, 
adenylate cyclase; PKC, protein kinase C; [202]. 

 

On the other hand, collagen, the most abundant protein of the extracellular matrix, promotes 

platelet activation through its binding to platelet GPIa/IIa and GPVI. Binding of collagen to 

GPVI stimulates a non-receptor protein-tyrosine kinase. Cross-linking of GPVI/Fc-receptor γ 

chain (FcRγ) by collagen ligation results in phosphorylation of the immunoreceptor tyrosine-

based activation motif (ITAM) of FcRγ by the Src-kinase family members Lyn and Fyn [220, 

221], with subsequent binding and activation of nonreceptor tyrosine kinase Syk. Participation of 

linker for activation of t cells (LAT) and Src homology 2 domain-containing leukocyte 

phosphoprotein of 76 kDa (SLP76) results in activation of PLCγ2 (Figure 2.8) [222, 223]. LAT 

also recruits phosphatidylinositol-3 kinase (PI3K) and PI3K-dependent signalling through at 

least PKB (Akt) contributing to platelet adhesion, spreading and granule secretion [224].  
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Figure 2.8: Collagen signaling via nonreceptor tyrosine kinase [202].  
Tyrosine kinases, c-Src, Lyn/ Fyn; non receptor tyrosine kinase, p72syk, syk; adapter molecules LAT, Grads, SLP76. 

 

Stimulation of PLCγ2 leads to IP3 synthesis and the same subsequent downstream pathways are 

induced as described for Gq-coupled receptors. Notably, activated GPIIb/IIIa enables binding of 

soluble agonist leading to Syk activation, the so-called outside-in signaling.  

Together, Ca2+ is a pivotal second messenger in the platelet activation cascade modulating 

important platelet functions including aggregation, thrombin formation and others. Beside the 

important role of platelets in hemostasis and thrombosis, it has become evident that platelets also 

contribute to the progression of inflammation. Therefore, profound knowledge about alterations 

in character and function of platelets is basically required in the development of anti-

inflammatory drugs. 
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2.4 Aim of this work 

In the last decades, a growing public interest for herbal medicine and nature-derived remedies as 

an alternative therapeutic aspect became more and more evident and therefore, a variety of 

herbal remedies entered the market. Among those, especially frankincense preparations 

experienced resurgence. In the traditional medicine from India and China extracts of B. spec. 

have long been recognized for their anti-inflammatory potential and recent clinical trials 

demonstrated the efficacy of B. spec. preparations in the treatment of OA, inflammatory bowel 

diseases and certain cancer forms. However, for therapeutic use of such crude extracts in the 

modern phytotherapy it is mandatory to characterize pharmacological principles and molecular 

mechanisms responsible for their beneficial effects. Thus, BAs were found to be bioactive 

compounds of frankincense preparations and 5-LO was proposed as a relevant molecular target 

[53]. Extensive studies on this topic suggested AKBA (the most potent BA analogue in this 

respect) as a direct and nonredox–type 5-LO inhibitor, responsible for the suppression of pro-

inflammatory LT formation observed in vitro, whereas interference with other AA-metabolizing 

enzymes has been excluded. Further investigations, most focused on AKBA or KBA, proposed 

several other targets including HLE, topoisomerases, IκB kinases, CYP 450 enzymes and p12-

LO [58, 80, 65, 19, 8]. These hypotheses constituted attractive models to explain the anti-

inflammatory and anti-tumor potential of frankincense preparations but there are serious doubts 

due to their in vivo relevance as the interference of BAs with these targets in vivo or in test 

systems reflecting in vivo conditions has been essentially neglected. Moreover, the discrepancies 

between reachable plasma levels of BAs and the effective concentrations required to affect these 

targets, questioned the pharmacological relevance.  

The aim of this work was to identify novel molecular targets and anti-inflammatory actions of 

BAs as well as to functionally characterize and evaluate new and existing interactions in view of 

their biological relevance. To this purpose, putative interferences of BAs with AA-metabolizing 

enzymes and functional modulation of platelet physiology by BAs were investigated. 

Preliminary work to characterize cellular and molecular effects of BAs in neutrophils, monocytes 

and platelets was provided by the thesis of Anja Altmann [225] and was expanded by the work 

of Daniel Poeckel [226]. The latter specified the identification of p12-LO as a selective 

molecular target of BAs. Recently, the thesis of Lars Tausch [227] revealed cathepsin G (CatG) 

as a novel, pharmacologically relevant and anti-inflammatory target of BAs. Partially based on 

these findings, studies were continued or expanded to other related topics, governing 

inflammatory processes in humans. 
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This work investigated the properties of BAs to influence signaling pathways and related 

functional characteristics of platelets in response to physio-pathophysiological stimuli. 

Furthermore, COX-1 and mPGES-1 were identified as direct molecular targets of BAs and 

functional consequences of these results were extensively studied. Detailed biochemical 

characterizations and critical analysis concerning the pharmacological relevance are provided. 

Finally, an explicit re-evaluation of the interference between 5-LO and BAs revealed novel 

aspects regarding the molecular mechanism and in vivo relevance of this interaction. 
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3 MATERIALS  & METHODS 

3.1 Materials 

AA Sigma-Aldrich (Deideshofen, Germany) 

[3H]AA BioTrend Chemicals (Köln, Germany) 

[3H-PGE2] Perkin Elmer Life Sciences (Milan, Italy) 

11β-PGE2 BioTrend Chemicals (Köln, Germany) 

6-keto-PGF1α Cayman Chemical (Ann Arbor, MI, USA) 

α−amyrin Extrasynthèse (Genay, France) 

Anti-mouse-IgG-6-keto-PGF1α-antibody  Dr. T. Dingermann (Frankfurt, Germany) 

ATP Roche Diagnostics (Mannheim, Germany)  

β-mercaptoethanol Carl Roth (Karlsruhe, Germany) 

Boswellia serrata resin extract (H15® 
Gufic) 

Gufic Chem (Belgaum, Karnataka, India) 

Boswellic acids prepared as described [228] 

BWA4C Dr. L. G. Garland (Wellcome Research 
Laboratories, London, UK) 

Ca2+-ionophore A23187 Sigma-Aldrich (Deideshofen, Germany) 

Calcitriol Dr. H. Wiesinger (Schering, Berlin) 

CDC Biomol (Plymouth Meeting, PA, USA) 

Celecoxib WITEGA Laboratories (Berlin, Germany) 

Collagen  Nykomed Pharma (Unterschleißheim, Germany) 

Coomassie brilliant blue G250 Applichem (Darmstadt, Germany) 

COX-1 (ovine)  Cayman Chemical (Ann Arbor, MI, USA) 

COX-2 (human recombinant) Cayman Chemical (Ann Arbor, MI, USA) 

DMEM/High glucose (4.5 g/l) medium PAA (Coelbe, Germany) 

DMSO Carl Roth (Karlsruhe, Germany) 

EAH-Sepharose 4B GE Healthcare Bio-Sciences (Freiburg, 
Germany) 

Fatty acid-free BSA Sigma-Aldrich (Deideshofen, Germany) 

fMLP Sigma-Aldrich (Deideshofen, Germany) 

Fura-2/AM  Alexis Corp (Lausen, Switzerland) 

Insulin  Aventis (Frankfurt, Germany) 

IPTG Applichem (Darmstadt, Germany) 

Leupeptin Applichem (Darmstadt, Germany9 
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LPS Sigma-Aldrich (Deideshofen, Germany) 

Methanol Merck (Darmstadt, Germany) 

MK-886 BioTrend Chemicals (Köln, Germany) 

Nycoprep PAA (Coelbe, Germany) 

Penicillin PAA (Coelbe, Germany) 

PGH2 Larodan (Malmö, Sweden) 

Plastic/PS-materials Greiner bio-one (Frickenhausen, Germany) 

PP2 and PP3 Cayman Chemical (Ann Arbor, MI, USA) 

Roti®-Nanoquant  Carl Roth (Karlsruhe, Germany) 

SDS Carl Roth (Karlsruhe, Germany) 

Streptomycin PAA (Coelbe, Germany) 

SU5665 Cayman Chemical (Ann Arbor, MI, USA) 

Thrombin Sigma-Aldrich (Deideshofen, Germany) 

Trypsin/EDTA solution PAA (Coelbe, Germany) 

Tween 20 Carl Roth (Karlsruhe, Germany) 

U-46619 Calbiochem (Bad Soden, Germany) 

Ultima GoldTM XR  Perkin Elmer (Boston, MA, USA) 

VBSE extract Pharmasan (Freiburg, Germany) 

λ-carrageenan type IV from Gigartina 
aciculaire & Gigartina pistillata 

Sigma-Aldrich (Milan, Italy) 

 

All other chemicals were purchased in analytical grade from Sigma-Aldrich (Deideshofen, 

Germany) unless stated otherwise. 
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3.2 Methods 

3.2.1 Cell culture 

Human cell lines were cultured in incubators (HERAcell, Kendro Laboratory Products, Hanau, 

Germany) at 37 °C, 6% CO2 and saturated humidity. 

 

3.2.1.1 Mono Mac 6 cells 

Mono Mac 6 (MM6) cells, a human monocyte-like cell line, were obtained form Dr. D. 

Steinhilber (University Frankfurt, Germany). Cells were maintained in RPMI 1640 medium with 

glutamine supplemented with 10% (v/v) heat-inactivated fetal calf serum (FCS), penicillin (100 

U/ml), streptomycin (100 µg/ml), 1 mM sodium pyruvate, 1× nonessential amino acids, 1 mM 

oxalacetic acid and 10 µg/ml insulin. Cultures were seeded at a density of 2 × 105/ml.  

 

3.2.1.2 A549 cells 

A549 (human lungepithelial carcinoma cell line) cells were obtained from Dr. O. Rådmark 

(Karolinska Institute, Stockholm, Sweden). Cells were cultured in DMEM/High glucose (4.5 g/l) 

medium supplemented with FCS (10%, v/v), penicillin (100 U/ml) and streptomycin (100 

µg/ml). After 3 days, confluent cells were detached using 1× trypsin/ethylenediaminetetraacetate 

(EDTA) solution and reseeded at 2 × 106 cells in 20 ml medium. 

 

3.2.2 Cell viability 

Cell viability of A549 cells was measured using the colorimetric 3-(4,5-Dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) dye reduction assay [229] in a 96-well format. Briefly, 

A549 cells (5 × 104 cells/100 µl medium) were plated into a 96-well microplate and incubated at 

37 °C and 6% CO2 for 16 h. Then, 30 µM of all four BAs and α-amyrin or solvent (DMSO) was 

added and the samples were incubated for another 5 h, MTT (20 µl, 5 mg/ml) was added and the 

incubations were continued for 4 h. The formazan product was solubilized with sodium 

dodecylsulfate (SDS) (10%, (w/v) in 20 mM HCl) and the absorbance of each sample was 

measured at 595 nm relative to that of vehicle (DMSO)-treated control cells using a multiwell 

scanning spectrophotometer (Victor3 plate reader, PerkinElmer, Rodgau-Juegesheim, Germany). 

Neither α-amyrin nor one of the four β-BAs (30 µM, each) significantly reduced cell viability 

within 5 h versus DMSO as vehicle, excluding possible acute cytotoxic effects of the compounds 
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in the cellular assays using A549 cells. Influence on the viability of platelets in response to any 

agent (BAs, thrombin, or Ca2+-ionophore A23187) could be excluded as described [64]. To 

exclude acute cytotoxic effects of BAs during preincubation periods in assays using MM6 cells, 

cell viability was analyzed by light microscopy and trypan blue exclusion. Incubation with 100 

µM of any of the BAs at 37 °C for up to 30 min caused no significant change in MM6 cell 

viability [11]. 

 

3.2.3 Isolation of human PMNL from venous blood 

Human PMNL were freshly isolated from buffy coats obtained from the Blood Centre, 

University Hospital Tübingen (Germany). In brief, venous blood from healthy donors was taken 

and leukocyte concentrates were prepared by centrifugation at 4,000 × g, 20 min, room 

temperature (RT). Buffy coats were diluted 1:1 (v/v) with phosphate buffered saline pH 7.4 

(PBS) and then with ice-cold 5% dextran (w/v in PBS) in a ratio 4:5 (v/v), for 45 min. After 

dextran sedimentation neutrophils were immediately isolated by centrifugation at 1000 × g, 10 

min, RT, w/o brake (Heraeus sepatech, Varifuge 3.0, Hanau , Germany) on Nycoprep cushions, 

and hypotonic lysis of erythrocytes as described [230]. PMNL (7.5 × 106 cells /ml; purity > 96-

97%) were finally resuspended in PBS plus 1 mg/ml glucose (PG buffer) or in PG buffer plus 1 

mM CaCl2 (PGC buffer) as indicated. 

 

3.2.4 Isolation of human platelets from venous blood 

Platelets were isolated from supernatants after centrifugation of leukocyte concentrates on 

Nycoprep cushions (see 3.2.3) to obtain platelet rich plasma (PRP). PRP was then mixed with 

PBS pH 5.9 (3:2, v/v), centrifuged (1,000 × g, 10 min, RT) and the pelleted platelets were 

resuspended in PBS pH 5.9/NaCl 0.9% (1:1, v/v) and washed by centrifugation (1,000 × g, 10 

min, RT). Preparation of platelets at pH 5.9 is thought to minimize temperature-induced 

activation. Finally, platelets were resuspended in PG or PGC buffer as specified.  

In experiments investigating platelet aggregation, human platelets were freshly isolated from 

venous blood of healthy donors (Blood Center, University Hospital Tübingen, Germany) who 

had not taken any medication for at least 10 days. Briefly, venous blood was collected in 

monovettes (Monovette®, Sarstedt, Nümbrecht, Germany) containing 0.106 mol/l trisodium 

citrate solution. PRP was obtained after centrifugation of whole blood at 200 × g for 15 min at 

RT w/o brake and placed into 15-ml conical tubes containing 10% (v/v) ACD-buffer (85 mM 

trisodium citrate, 65 mM citric acid, 100 mM glucose) [231]. PRP was centrifugated at 800 × g 

for 10 min at RT, pelleted platelets were washed twice and finally resuspended in Tyrode´s 
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buffer (129 mM NaCl, 8.9 mM NaHCO3, 0.8 mM KH2PO4, 0.8 mM MgCl2, 5.6 mM glucose, 10 

mM N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES) pH 7.4.  

For the thrombin generation assay, PRP was prepared from freshly drawn blood (see above) and 

platelet count in PRP was adjusted with platelet poor plasma (centrifugation of PRP at 3000 × g, 

10 min, RT) to 2 × 108/ml. 

 

3.2.5 Isolation of human peripheral blood monocytes 

Monocytes were obtained from leukocyte concentrates after dextran sedimentation and 

centrifugation on Nycoprep cushions. The mononuclear cells including lymphocytes and 

monocytes appear as a layer on Nycoprep cushion after centrifugation. The cells were washed 

three times with ice-cold PBS and resuspended in RPMI-1640 medium supplemented with 2 mM 

glutamine, 100 µg/ml streptomycin, 100 U/ml penicillin, and 10% FCS, and spread (2 × 107 /ml) 

in cell culture flasks at 37 °C and 6% CO2. After 2 h, lymphocytes in suspension were removed, 

and adhered monocytes were gently detached and resuspended in medium (incl. 2% FCS). 

 

3.2.6 Expression and purification of human recombinant 5-LO from E. coli 

Human recombinant 5-LO protein was expressed in E. coli JM 109 cells, transfected with the 

plasmid pT3-5LO, and purification of 5-LO was performed via affinity chromatography as 

described [232]. Cells were grown overnight in LB medium supplemented with 100 µg/ml 

ampicillin, transferred to M9 minimal medium (48 mM Na2HPO4, 22 mM KH2PO4, 8.5 mM 

NaCl, 19 mM NH4Cl, 6.3 mM NaOH, glycerol 2% and 100 µg/ml ampicillin, pH 7.4 casein 2 

g/l) and expression of 5-LO was induced with 200 µM isopropyl-β-D-thiogalactopyranoside. 

Cells were harvested by centrifugation (7,700 × g, 15 min, 4 °C) lysed by incubation in 50 mM 

triethanolamine/HCl pH 8.0, 5 mM EDTA, soybean trypsin inhibitor (60 µg/ml), 1 mM 

phenylmethylsulfonylfluoride (PMSF), 1 mM dithiothreitol (DTT), and lysozyme (500 µg/ml), 

homogenized by sonification (3 × 15 s) (Bandelin, Sonoplus HD 200) on ice and centrifuged at 

40,000 × g for 20 min at 4 °C (Sorvall RC 5B plus).The resulting 40,000 × g supernatant (S40) 

was immediately used for 5-LO activity assays or applied to an ATP-agarose column, and the 

column was eluted with 20 mM ATP in PBS plus 1 mM EDTA [233] to yield partially purified 

5-LO, which was subsequently used for in vitro 5-LO activity assays. 
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3.2.7 Cell-free expression of human mPGES-1 

Human mPGES-1 was obtained by the continuous-exchange cell-free expression (CECF) system 

according to [234]. Cell free expression is an elegant and versatile technique to produce 

functionally folded membrane proteins (MPs) in high amount avoiding serious problems (e.g.: 

toxicity due to overloading of the translocon machinery, inclusion bodies, mis-targeting and 

protein degradation) often emerged by over-expression of MPs in vivo. The CECF system 

comprises a reaction mixture (RM) that contains the E. coli S30 extract (derived from the A19 

strain), T7 polymerase, tRNAs, pyruvate kinase and the template DNA for human mPGES-1 

(cloned in the pBH4 vector derived from pET19b, Novagen, NJ 08027 USA). The RM is 

dialysed against the so called feeding mixture (FM) that supplies amino acids, energy 

equivalents acetyl phosphate and phosphoenolpyruvate as well as nucleotides. Reactions are 

usually incubated at 30 °C for up to 20 h. Protein synthesis take place in the RM and up to 1.5 

mg of mPGES-1 per ml of RM can be obtained in the precipitate-forming cell-free expression 

(P-CF) mode as described [235]. This work was entirely performed by Sina Reckel (Goethe 

University of Frankfurt). 

 

3.2.8 Stimulation of A549 cells and isolation of microsomes 

Preparation of A549 cells was performed as described [142]. In brief, cells (2 × 106 in 20 ml 

medium) were plated in 175 cm2 flasks and incubated for 16 h at 37 °C and 6% CO2. 

Subsequently, the culture medium was replaced by fresh DMEM/High glucose (4.5 g/l) medium 

containing FCS (2%, v/v). In order to induce mPGES-1 expression, IL-1β (1 ng/ml) was added, 

and the cells were incubated for another 72 h. Thereafter, cells were detached with 

trypsin/EDTA, washed with PBS and frozen in liquid nitrogen. Ice-cold homogenization buffer 

(0.1 M potassium phosphate buffer pH 7.4, 1 mM PMSF, 60 µg/ml soybean trypsin inhibitor, 1 

µg/ml leupeptin, 2.5 mM GSH and 250 mM sucrose) was added and after 15 min, cells were 

resuspended and sonicated on ice (3 × 20 s). The homogenate was subjected to differential 

centrifugation at 10,000 × g for 10 min and at 174,000 × g for 1 h at 4 °C. The pellet 

(microsomal fraction) was resuspended in 1 ml homogenization buffer and the protein 

concentration was determined by the Roti®-Nanoquant approach (see 3.2.35). 
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3.2.9 Determination of release of [3H]-labeled AA from intact platelets 

Human PRP was labelled with 19.2 nM [3H]AA (1 µCi/ml, specific activity 200 Ci/mmol) for 2 

hours at 37 °C. Then, cells were washed twice with PBS pH 5.9 plus 1 mM MgCl2, 11.5 mM 

NaHCO3, 1 mg/ml glucose, and 1 mg/ml fatty acid-free BSA. Platelets were finally resuspended 

in PGC buffer (108/ml) and subsequently stimulated with thrombin (2 U/ml), β-BA or AKBA 

(30 µM, each) for 5 min at 37 °C and then put on ice for 10 min, followed by centrifugation 

(5,000 × g, 15 min). Aliquots (300 µl) of the supernatants were measured (Micro Beta Trilux, 

Perkin Elmer) to detect the amounts of [3H]-labeled AA released into the medium. In order to 

ascertain that the radioactivity released is AA and not an AA metabolite, we directly analyzed 

the AA released from unlabelled platelets after separation by solid phase extraction, coupling to 

dimethoxyaniline hydrochloride (DMA-HCl) in presence of N-Ethyl-N'-(3-

dimethylaminopropyl)carbodiimide (EDC) in methanol and the derivatized AA was analyzed by 

RP-HPLC at a wave length of 272 nm [236]. 

 

3.2.10 Determination of COX-1 product in intact human platelets 

Freshly isolated platelets (108/ml in PG buffer) were supplemented with 1 mM CaCl2. Since BAs 

act differentially on p12-LO (11-methylene-BAs stimulate, 11-keto-BAs inhibit) and thus, to 

avoid differential conversion of AA by p12-LO, the selective 12-LO inhibitor CDC (10 µM) 

[237], commonly used to block 12-LO activity in studies of platelet functions [10, 238], was 

included in all incubations to assure comparable AA levels for conversion by COX-1. COX-1 is 

the major enzyme in platelets converting AA into oxidized metabolites including 12-HHT [239, 

240]. Washed platelets were pre-incubated with the indicated agents for 5 min at RT and COX-1 

product formation was initiated by thrombin (2 U/ml), A23718 (2.5 µM), collagen (10 µg/ml) 

AA (5 µM). After further incubation for 5 min at 37 °C the reaction was stopped with 1 ml of 

ice-cold methanol and then, 30 µl HCl, 200 ng prostaglandin B1 ((PGB1), internal standard) and 

500 µl PBS were added. The COX-1 product (12-HHT) was extracted and then analyzed by 

HPLC as described [241, 242]. In detail, after centrifugation (800 × g, 10 min, RT) samples were 

applied to C-18 solid-phase extraction columns (100 mg; IST, Mid Glamorgan, UK), which have 

been preconditioned with methanol and water (1ml, each). The columns were washed with 1 ml 

water and 1 ml methanol 75% (v/v) and COX-1 products were eluted with 300 µl methanol and 

then diluted with 120 µl water. 100 µl diluted extract were analyzed by HPLC on a Nova-Pak® 

C18 column (5 × 100 mm, 4 µm particle size, Waters (Eschborn, Germany)) using 76% 

methanol aq. + 0.007% trifluoro acetic acid (v/v) as mobile phase at a flow rate of 1.2 ml/min 

and UV detection at 235/280 nm. The amount of 12-HHT was determined by peak area 

integration. COX-1 product formation is expressed as ng of 12-HHT per 108 cells. 
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3.2.11 Determination of COX-2 product formation in intact MM6 cells 

The release of 6-keto-PGF1α from LPS-stimulated MM6 cells expressing COX-2 was assessed 

by ELISA as described [241]. In brief, MM6 cells were differentiated with 50 nM calcitriol for 

96 h, LPS (100 ng/ml) was added and after 6 h, cells were harvested and resuspended in PGC 

buffer (3 × 106 cells/ml). Cells were pre-incubated with the test compounds at the indicated 

concentrations for 15 min at 37 °C, and then stimulated with AA (30 µM) for another 15 min at 

37 °C. The amount of 6-keto-PGF1α released was determined by ELISA using a monoclonal 

antibody against 6-keto-PGF1α according to the protocol described by Yamamoto et al., 1987 

[243]. The monoclonal antibody (0.2 µg in 200 µl) was coated to microtiter plates via a goat 

anti-mouse-IgG antibody. 6-keto PGF1α (15 µg) was linked to bacterial β-galactosidase (0.5 mg) 

and the enzyme activity bound to the antibody was determined in an ELISA reader (SynergyHT, 

BioTEK, Germany) at OD550 nm (reference wavelength: 630 nm) using chlorophenol-red-β-D-

galactopyranoside (Roche Diagnostic GmbH, Germany) as substrate. 

 

3.2.12 Activity assays of isolated COX-1 and -2 

Inhibition of the activities of isolated ovine COX-1 and human COX-2 was performed as 

described [244, 245]. Though the purified COX-1 is not of human origin, ovine COX-1 is 

generally used for inhibitor studies when examining the effectiveness of compounds on the 

activity of isolated COX-1 enzyme [245]. Briefly, purified COX-1 (ovine, 50 units) or COX-2 

(human recombinant, 20 units) were diluted in 1 ml reaction mixture containing 100 mM Tris 

buffer pH 8, 5 mM GSH, 5 µM haemoglobin, 100 µM EDTA at 4 °C and pre-incubated with the 

test compounds for 5 min. Samples were pre-warmed for 60 s at 37 °C and AA (5 µM) was 

added to start the reaction for additional 5 min at 37 °C. In wash-out experiments COX-1 was 

incubated with or w/o 30 µM AKBA, 50 µM aspirin or 30 µM ibuprofen for 10 min at RT, each. 

Then, samples were splitted and one aliquot was diluted with assay buffer ten-fold, whereas the 

other one was not altered, and 5 µM AA was added to each aliquot to start the COX-1 reaction. 

COX product 12-HHT was extracted and then analyzed by HPLC as described for intact human 

platelets. 
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3.2.13 Determination of COX-1 product formation in whole blood 

For assays in whole blood, freshly withdrawn blood from healthy adult donors was obtained by 

venipuncture and collected in monovettes containing 16 IE heparin/ml (Sarstedt, Nümbrecht, 

Germany). Aliquots of 2 ml were pre-incubated with the test compounds or with vehicle 

(DMSO) for 10 min at 37 °C, as indicated, and formation of COX-1 product formation was 

started by addition of A23187 (30 µM). The reaction was stopped on ice and the samples were 

centrifuged at 600 × g, 10 min, 4 °C (Thermofisher MicromaxRX, Fisher Scientific, Schwerte, 

Germany). Aliquots of the resulting plasma (500 µl) were then mixed with 2 ml of methanol and 

200 ng PGB1 were added as internal standard. The samples were placed at -20 °C for 2 h and 

centrifuged again (600 × g, 15 min, 4 °C). The supernatants were collected and diluted with 2.5 

ml PBS and 75 µl HCl (1M). Formed 12-HHT was extracted and analyzed by HPLC as 

described for intact human platelets. 

 

3.2.14 Determination of 5-LO product synthesis in human PMNL 

For determination of cellular 5-LO product formation, 5 × 106 freshly isolated PMNL in 1 ml 

PGC buffer with or without bovine serum albumin (BSA) were pre-incubated with test 

compounds or with vehicle (DMSO) for 10 min at 37 °C, as indicated. 5-LO product formation 

was started by addition of A23187 (2.5 µM) with or without 20 µM AA. The reaction was 

stopped after 10 min with 1 ml of methanol and then 30 µl of 1 N HCl, 200 ng PGB1 and 500 µl 

of PBS were added. Formed 5-LO metabolites were extracted and analyzed by HPLC in analogy 

to 3.2.10. 5-LO product formation is expressed as ng of 5-LO products per 106 cells which 

includes LTB4 and its all-trans isomers, 5(S),12(S)-di-hydroxy-6,10-trans-8,14-cis-

eicosatetraenoic acid (5(S),12(S)-DiHETE), and 5-H(P)ETE. 5-HETE and 5-HPETE coelute as 

one major peak, integration of this peak represents both eicosanoids. Cys-LTs (LTC4, D4 and E4) 

were not detected and oxidation products of LTB4 were not determined.  

 

3.2.15 Determination of 5-LO product synthesis in 40,000 ×××× g supernatants of 

E. coli and of partially purified 5-LO 

Aliquots of the S40 of E. coli lysates (corresponding to 4 ml E. coli culture) or 0.5 µg partially 

purified recombinant 5-LO, were diluted with ice-cold PBS containing 1 mM EDTA, and 1 mM 

ATP and PC as well as the test compounds (or DMSO as vehicle) were added, as indicated. After 

10 min on ice, samples were pre-warmed for 30 s at 37 °C and AA (2 or 20 µM) was added 

together with or without 2 mM CaCl2, as indicated. The reaction was stopped after 10 min at 37 

°C by addition of 1 ml of ice-cold methanol and 200 ng PGB1 were added. Formed 5-LO 

metabolites were extracted and analyzed by HPLC as described above. 
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3.2.16 Determination of 5-LO product synthesis in human whole blood 

Freshly withdrawn venous blood was obtained as described in 3.2.13. Aliquots of 2 ml (A23187) 

or 3 ml (LPS/fMLP) were pre-incubated with the test compounds or with vehicle (DMSO) for 10 

min at 37 °C, as indicated. Formation of 5-LO products was started by addition of fMLP (1 µM) 

after 30 min priming with 1 µg/ml LPS, or by addition of A23187 (30 µM). The reaction was 

stopped on ice after 15 (fMLP) or 10 (A23187) min and the samples were centrifuged (600 × g, 

10 min, 4 °C). Aliquots of the resulting plasma (500 µl) were then mixed with 2 ml of methanol 

and 200 ng PGB1 were added as internal standard. The samples were placed at -20 °C for 2 h and 

centrifuged again (600 × g, 15 min, 4 °C). The supernatants were collected and diluted with 2.5 

ml PBS and 75 µl HCl 1N. Formed 5-LO metabolites were extracted and analyzed by HPLC as 

described for intact PMNL. 

 

3.2.17 Determination of PGE2 synthase activity in microsomes of A549 cells 

PGE2 synthase activity was measured as described [142]. In brief, microsomal membranes of 

A549 cells were diluted in potassium phosphate buffer (0.1 M, pH 7.4) containing 2.5 mM GSH 

(100 µl total volume) and PGE2 formation was initiated by addition of PGH2 (20 µM, final 

concentration). After 1 min at 4 °C, the reaction was terminated with 100 µl of stop solution (40 

mM FeCl2, 80 mM citric acid and 10 µM of 11β-PGE2), PGE2 was separated by extraction using 

C-18 solid-phase extraction columns (100 mg; IST, Mid Glamorgan, UK), preconditioned with 

acetonitrile and water (1 ml, each). he columns were washed twice with water (400 µl) and PGE2 

was eluted with acetonitrile (200 µl), diluted with water (400 µl), and analyzed by RP-HPLC 

(30% acetonitrile aq. (v/v) + 0.007% TFA (v/v), Nova-Pak® C18 column, 5 × 100 mm, 4 µm 

particle size, flow rate 1 ml/min) with UV detection at 195 nm. 11β-PGE2 was used as internal 

standard to quantify PGE2 product formation by integration of the area under the peaks. 

 

3.2.18 Determination of PGE2 formation in intact A549 cells 

A549 cells (2 × 106 cells) were plated in a 175 cm2 flask and incubated for 16 h at 37 °C and 6% 

CO2. Thereafter, medium was replaced by fresh DMEM high glucose (4.5 g/l) medium 

containing FCS (2%, v/v) and the cells were stimulated with IL-1β (1 ng/ml) for 72 h. 

Stimulation of A549 for 72 h with IL-1β results in co-expression of COX-2 and mPGES-1 [150], 

whereas COX-1 is essentially absent under such conditions [246]. After trypsination, the cells 

were washed twice with PBS. For determination of PGE2, 2 × 106 cells resuspended in PBS (0.5 

ml) containing CaCl2 (1 mM) were pre-incubated with the indicated compounds at 37 °C for 10 

min and PGE2 formation was started by the addition of ionophore A23187 (2.5 µM), AA (1 µM) 
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and [3H]AA (18.4 kBq). The use of exogenous A23187 and AA to induce PGE2 formation 

excludes effects of BAs on receptor-coupled signal transduction and/or on endogenous substrate 

supply for COX-2. The reaction was stopped after 15 min at 37 °C and the samples were put on 

ice. After centrifugation (800 × g, 5 min, 4 °C), the supernatant was acidified to pH 3 by addition 

of 20 µl citric acid (2 M) and the internal standard 11β-PGE2 (2 nmol) was added. Solid phase 

extraction and HPLC analysis were performed as described in 3.2.17. The amount of 11β-PGE2 

was quantified by integration of the area under the eluted peaks. For quantification of 

radiolabeled PGE2, fractions (0.5 ml) were collected and mixed with Ultima GoldTM XR (2 ml) 

for liquid scintillation counting in a LKB Wallac 1209 Rackbeta Liquid Scintillation Counter. 

 

3.2.19 Determination of PGE2 and 6-keto-PGF1αααα in whole blood 

Determination of PGE2 formation in whole blood was assayed according to [247]. Peripheral 

blood from healthy adult volunteers was obtained as described in 3.2.13. Aliquots of whole 

blood (0.8 ml) were mixed with the thromboxane synthase inhibitor CV4151 (1 µM) [248] and 

aspirin (50 µM). A total volume of 1 ml was adjusted with sample buffer (10 mM potassium 

phosphate buffer pH 7.4, 3 mM KCl, 140 mM NaCl and 6 mM D-glucose). After pre-incubation 

with the indicated compounds for 10 min at RT, the samples were stimulated with LPS (10 

µg/ml) for 5 h at 37 °C. The reaction was stopped on ice and the samples were centrifuged 

(2300 × g, 10 min, 4 °C). On aliquot of the supernatant was used to analyze the formation of 6-

keto-PGF1α by ELISA. The other aliquot was acidified by addition of citric acid (30 µl, 2 M) and 

after another centrifugation step (2300 × g, 10 min, 4 °C), solid phase extraction and HPLC 

analysis of PGE2 were performed as described (3.2.17). The PGE2 peak (3 ml), identified by co-

elution with authentic standard, was collected and acetonitrile was removed under a nitrogen 

stream. The pH was adjusted to 7.2 by addition of 10 × PBS buffer pH 7.2 (230 µl), before PGE2 

was quantified using a PGE2 High Sensitivity EIA Kit (Assay Designs, Ann Arbor, USA) 

according to the manufacturer's protocol.  

 

3.2.20 Carrageenan-induced paw edema 

Animal care complied with Italian protocols (Ministerial Decree 116192) as well as with the 

European Economic Community regulations (Official Journal of E.C. L 358/1 12/18/1986). Male 

adult CD1 mice (25-35 g, Harlan, Milan, Italy) were divided into groups (n = 10 for each group) 

and lightly anaesthetized with enflurane 4% mixed with O2, 0.5 l/min, and N2O, 0.5/l min. Each 

group of animals received subplantar administration of saline (0.05 ml) or λ-carrageenan 1% 
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type IV (w/v) (0.05 ml) in saline. The paw was marked in order to immerge it always at the same 

extent in the measurement chamber. The volume was measured by using a hydropletismometer, 

specially modified for small volumes (Ugo Basile, Milan, Italy) immediately before subplantar 

injection and 2, 4 and 6 h thereafter [249]. The assessment of paw volume was performed always 

in double blind and by the same operator. In the treated group of animals, β-BA (0.25 and 1 

mg/kg) or indomethacin (5 mg/kg) was given intraperitoneal (i.p.), 30 min before carrageenan. 

The vehicle-treated group of mice received (DMSO 2%, i.p.) instead of test compounds. The 

increase in paw volume was calculated by subtracting the initial paw volume (basal) to the paw 

volume measured at each time point. Data represent the mean ± S.E. of 10 mice. Experiments 

were conducted in collaboration with the laboratory of Dr. L. Sautebin (University of Naples 

Federico II, Italy). 

 

3.2.21 Carrageenan-induced pleurisy 

Animal care complied with Italian protocols (Ministerial Decree 116192) as well as with the 

European Economic Community regulations (Official Journal of E.C. L 358/1 12/18/1986). Male 

Wistar Han rats (200-220 g, Harlan, Milan, Italy) were anaesthetized with enflurane 4% mixed 

with O2, 0.5 l/min, N2O, 0.5 l/min, and submitted to a skin incision at the level of the left sixth 

intercostal space. The underlying muscle was dissected, and saline (0.2 ml) or λ-carrageenan 

type IV 1% (w/v) (0.2 ml) was injected into the pleural cavity. The skin incision was closed with 

a suture, and the animals were allowed to recover. At 4 h after the injection of λ-carrageenan, the 

animals were killed by inhalation of CO2. The chest was carefully opened, and the pleural cavity 

was rinsed with 2 ml saline solution containing heparin (5 U/ml). The exudate and washing 

solution were removed by aspiration, and the total volume was measured. Any exudate that was 

contaminated with blood was discarded. The amount of exudate was calculated by subtracting 

the volume injected (2 ml) from the total volume recovered. Leukocytes in the exudate were 

resuspended in PBS and counted with an optical light microscope in a Burker’s chamber after 

vital trypan blue staining. In the treated group of animals, AKBA and β-BA (1 mg/kg, each) was 

given i.p. 30 min before carrageenan. Indomethacin (5 mg/kg) were used as reference compound 

and  vehicle-treated group of rats received DMSO (4% (v/v), i.p.) 30 min before 

carrageenan.The amount of PGE2, 6-keto-PGF1α and LTB4 in the supernatant of centrifuged 

exudate (800 × g for 10 min) was assayed by radioimmunoassay and ELISA, respectively (Assay 

Designs, Inc., Ann Arbor, USA), according to manufacturer’s protocol. The results are expressed 

as ng per rat and represent the mean ± S.E. of 10 rats. Experiments were conducted in 

collaboration with the laboratory of Dr. L. Sautebin (University of Naples Federico II, Italy). 
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3.2.22 Immobilization of BAs and protein pull-down assays 

For immobilization of BAs, β-BA and KBA were linked to EAH Sepharose 4B beads, via the 

C3-OH group using glutaric acid as a linker as described before [11] yielding Glutaroyl-(K)BA-

Sepharose ((K)BA-Seph) (Figure 3.1). Preparation of immobilized BAs was performed by Dr. 

N. Kather (University Saarbrücken). 
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Figure 3.1: Chemical structure of immobilized BAs 

 

For protein pull-down experiments, 1 × 107 A549 cells, 1 × 109 human platelets or 3 × 107 MM6 

cells were lysed in 375 µl (A549 cells) or 1 ml (platelets and MM6 cells) lysis buffer (50 mM 

HEPES pH 7.4, 200 mM NaCl, 1 mM EDTA, 1% (v/v) Triton X-100, 2 mM PMSF, 10 µg/ml 

leupeptin, 120 µg/ml soybean trypsin inhibitor). After sonification (3 × 8 s) on ice and 

centrifugation (12,000 × g, 10 min, 4 °C) 125 µl (500 µl for human platelets and MM6 cells) of 

the sepharose slurries (50%, v/v) were added to the lysates and incubated at 4 °C over night 

under continuous rotation.  

For pull-down experiments using in vitro-translated mPGES-1, the enzyme was resuspended in 

50 mM potassium phosphate buffer pH 7.4, 1 mM GSH, 10% glycerol and 2% (w/v) LysoFos12 

choline (Anatrace, Maumee, OH, USA) for 2 h at 30 °C. Then insoluble parts were removed by 

centrifugation (10,000 × g 10 min, 10 °C) and finally, 200 ng of the purified enzyme was diluted 

into 500 µl lysis buffer containing 1000-fold excess of E. coli (BL21 strain) protein [250] and 

100 µl of the sepharose slurries (50%, v/v) were added.  

For pull-down of purified COX-1/2, 10 units of the purified enzyme were diluted into 500 µl of 

lysis buffer containing 0.1 µg/ml BSA (as blocking agent), and 200 µl of sepharose slurry (50%, 

v/v) was added. After incubation over night the sepharose beads were spun down and intensively 

washed (3 ×) with 10 volumes of binding buffer (HEPES pH 7.4, 200 mM NaCl, 1 mM EDTA) 

and precipitated proteins were finally separated and denatured by addition of sodium SDS 

sample loading buffer (SDS-b; 20 mM Tris-HCl, pH 8, 2 mM EDTA, 5% (m/v) SDS, 10% (v/v) 

β-mercaptoethanol). After boiling (95°C, 6 min), beads were removed by centrifugation 

(10,000 × g, 10 min, RT) and the proteins in the supernatant were separated by SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) (see 3.2.31) and visualized by silver or 
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Coomassie staining (3.2.32 and 3.2.33, respectively) or detected by WB analyses (3.2.34). 

Ponceau S staining of the membranes after blotting assured comparable unspecific protein-

binding by Seph, KBA-Seph and b-BA-Seph, respectively. 

 

3.2.23 In-gel digestion and nanoflow liquid chromatography tandem MS 

(nano-LC-ESI-MS/MS)  

Proteins of interest were in-gel digested overnight using porcine trypsin (sequencing grade, 

Modified; Promega, Mannheim, Germany) at 37 °C and reversed-phase nano-LC-MS/MS was 

performed as described [11, 251]. Finally proteins were identified by correlating the data from 

the MS/MS spectra with the NCBI nr-protein sequence database (version 20060511, taxonomy 

Homo sapiens) applying the search engine MASCOT (Matrix Science Ltd. London, UK). This 

work was done in collaboration with the Proteom Center Tübingen (Dr. A. Nordheim). 

 

3.2.24 Surface plasmon resonance experiments 

All experiments were carried out on a BIAcore® X device (GE Healthcare Freiburg, Germany). 

In vitro-translated mPGES-1 (100 µg/ml) in 10 mM Na-acetate pH 6.0 was coupled to a 

carboxymethylated dextran surface (CM-5 chip, GE Healthcare) using standard amine coupling 

chemistry according to the manufacturer’s directions. There are two flow cells on each chip, 

whereas flow cell 1 wasn’t altered and functioned as reference, mPGES-1 (236 fmol/mm2) was 

immobilized to flow cell 2 corresponding to 4700 resonance units (RU). Equilibration of the 

baseline was completed by passing a continuous flow of assay buffer (10 mM HEPES, 150 mM 

NaCl, 0.01% surfactant P20, and 1% DMSO, pH 7.4) through the chip for 2 h. During the SPR 

experiments the stock solution of test compounds (dissolved in DMSO) was diluted into assay 

buffer. All measurements were performed at 25 °C and a flow rate of 30 µl/min. 

After recording association, the liquid phase was replaced by assay buffer and the dissociation 

was monitored. The binding profiles were obtained after subtracting the response signal of the 

untreated reference cell 1 and sensograms were processed by using automatic correction for non-

specific bulk refractive index effects using BIAEVALUATION Version 3.1 software (GE 

Healthcare). All experiments were carried out in duplicates. 
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Analysis of binding data:  

To obtain dissociation constants from the equilibrium binding data two different fitting models 

were adopted. First, the change in the equilibrium amount of compound bound as a function of 

the concentration of compound was fit to the equation for a simple 1:1 binding model:  

R = (Rmax*[cmpd]/(KD + [cmpd]); where R is the response, Rmax is the maximum response and 

KD is the dissociation constant. In our case a good fit was obtained by this model. A Scatchard 

analysis was also used to estimate KD. A global analysis using the BIAEVALUATION software 

version 3.1 was used to determine the kinetic data. The integrated rate equation describing a 1:1 

Langmuir interaction was fit simultaneously to the entire concentration range for ox-KBA. This 

fit yielded the association rate Ka, the dissociation rate Kd and the dissociation constant KD [252, 

253]. The goodness of the fit was determined by the χ2 values, as well as the magnitude and 

distribution of the residuals.  

 

3.2.25 Automated docking  

Automated molecular docking of BAs into X-ray structures of COX-1 and COX-2 was 

performed using GOLD 3.1.1, which relies on a genetic algorithm for structure optimization 

[254]. Crystal structure of COX-1, PDB-code 1Q4G at 2.0 Å resolution, with bound inhibitor 2-

(1,1'-biphenyl-4-yl)propanoic acid (BFL), a defluorinated flurbiprofen analog [255] was used. 

For COX-2, the PDB entry 6COX at 2.8 Å resolution, complexed with the selective inhibitor 

SC-558 [256] was selected. Hydrogens were added to the proteins, and energy minimized using 

the AMBER99 force field, within the software MOE 2006.08 (Chemical Computing Group, 

Montreal, Canada). For the co-crystallized inhibitors hydrogen atoms were added, and energy 

minimization was performed using the MMFF94x force field [257]. Starting conformations for 

the 3D structures of the four BAs were calculated with MOE using the MMFF94x force field. 

GOLD parameter settings for the genetic algorithm were: number of operations = 10,000, 

population size = 100, selection pressure = 1.1, number of islands = 1, niche size = 2, migrate = 

0, mutate = 100, crossover = 100. A 10 Å radius around the bound inhibitor in the active site 

defined the binding pocket. The Chemscore function [258] was used for scoring the predicted 

binding poses. Greater positive score values indicate more favorable protein-ligand complexes; 

negative values indicate unfavorable binding modes (non-binding). Each docking run was 

repeated ten times. The same method was used for re-docking of the co-crystallized inhibitors. 

Root mean square deviation (RMSD) values between the PDB X-ray structures and the docking 

solutions were computed, and a mean value with standard deviation was calculated. PyMOL was 

used for visualization of docking poses [259].This work was entirely performed by Dr. Lutz 

Franke and Bettina Hofman (University of Frankfurt). 
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3.2.26 Albumin-binding of BAs 

PG buffer (2.5 ml), supplemented with BSA (0, 1 or 10 mg/ml, as indicated) was incubated with 

50 µM AKBA for 10 min at 37 °C. Separation of AKBA and albumin was carried out by gel 

filtration using a Sephadex® G-25 (PD-10) column (GE Healthcare, Freiburg, Germany). In 

detail, the Sephadex® G-25 column was equilibrated with PG buffer and the sample (2.5 ml) 

was applied. 500 µl aliquots of the eluate were collected and immediately analysed for AKBA by 

HPLC, and for BSA using Roti®-nanoquant (3.2.35) according to the instructions of the 

manufacturer (Carl Roth, Karlsruhe, Germany). Quantification of AKBA by RP-HPLC was 

performed on a Nova-Pak® C18 column (5 × 100 mm, 4 µm particle size, Waters (Eschborn, 

Germany)) using 85% methanol aq. + 0.01% TFA (v/v) as mobile phase at a flow rate of 1.2 

ml/min and UV detection at 250 nm. Calibration was based on the external standard method, 

with the peak area as assay parameter. The concentration of AKBA (without BSA) versus elution 

volume was analysed by a non-linear fit (Gaussian distribution) providing µ, δ and the area 

under the curve (AUC) using the GraphPad Prism 4 (GraphPad software Inc., San Diego, CA, 

USA) program. Based on this evaluation the amount of unbound AKBA was determined by the 

AUC (µ ± 3δ) for incubation with 1 or 10 mg/ml BSA. 

 

3.2.27 Measurement of intracellular Ca2+ levels 

Washed human platelets (6 × 108/ml PG buffer) were incubated with 2 µM Fura-2/AM (1-[2-(5-

carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2'-amino-5'-methyl-phenoxy) ethane-

N,N,N',N'-tetraacetic acid) for 30 min at 37 °C. After washing platelets (108/ml in PG buffer) 

were pre-incubated with the indicated agents for 15 min at RT. Then, the samples were 

transferred into a thermally controlled (37 °C) fluorimeter cuvette in a spectrofluorometer 

(Aminco-Bowman series 2, Thermo Spectronic, Rochester, NY) with continuous stirring. Two 

min prior stimulation with 0.5 U/ml thrombin, 8 µg/ml collagen or 1 µM U-46619, 1 mM CaCl2 

was added. The fluorescence emission at 510 nm was measured after excitation at 340 and 380 

nm, respectively, and [Ca2+] i was calculated according to Grynkiewicz et al. [260]. Fmax 

(maximal fluorescence) was obtained by lysing the cells with 1% Triton-X 100 and Fmin by 

chelating Ca2+ with 10 mM EDTA. 
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3.2.28 Platelet aggregation (turbidimetric) 

Aggregation of washed human platelets was determined using a turbidimetric light-transmittance 

device (two channel Chrono-Log aggregometer, Haverton, PA). Washed human platelets were 

prepared as described in 3.2.4 and adjusted to 2 × 108/ml. The instrument was calibrated with a 

platelet suspension for basal (0%) light transmission and with Tyrode`s buffer alone for 100% 

light transmission. Aliquots of 0.5 ml platelets were incubated with the indicated BAs for 10 min 

at RT. For aggregation, the response to 0.5 U/ml thrombin, 0.6 µg/ml collagen or 1 µM U-46619 

is given as % of the maximal light transmission Amax. CaCl2 (1 mM) was added right before the 

start of the measurement. Aggregation was recorded under continuous stirring (1000 rpm) at 37 

°C for 5 min. 

 

3.2.29 Measurement of thrombin generation 

Thrombin generation was assessed by using a fluorometric assay, based on the cleavage of a 

thrombin-specific fluorogenic substrate, Z-Gly-Gly-Arg-AMC (Bachem, Bubendorf, 

Switzerland) resulting from stimulation of recalcified PRP [261]. 80 µl of PRP untreated or pre-

incubated as indicated and 20 µl of buffer containing the thrombin generation trigger (2 µg/ml 

collagen, 5 µM U-46619, BAs or vehicle (DMSO), as indicated) were added to each well of a 

96-well microtiter plate. The reaction was started by adding 20 µl of substrate solution (20 mM 

Hepes, 150 mM NaCl, BSA 60 mg/ml, 0.1 M CaCl2 and 5 mM fluorogenic substrate) leading to 

the final concentration as follows: substrate: 833 µM; CaCl2: 16.7 mM and DMSO: 0.41 %. The 

fluorometer Fluoroskan Ascent, type 374 with dispenser (ThermoFisher Scientific, Germany) 

was used with excitation wavelength of 390 nm, emission wavelength of 460 nm, and a 

measurement integration time per well of 20 ms. All experiments were standardized by using 

Thrombin Calibrator (Thrombinoscope BV, Maastricht, Netherlands) according to the 

manufacturer`s protocol which allow to calculate the molar concentration of thrombin regardless 

of substrate consumption, inner filter effects or donor-to-donor variability in the color of plasma. 

The first derivative of the fluorescence–time curve reflects the course of thrombin activity in the 

sample. The parameter of interest in the samples using recalcified PRP was the velocity index. 

The velocity index reflects the rate of thrombin generation between lag phase and peak thrombin 

concentration (max. (= peak) thrombin formation/peak time-lag time) in nM/min. All 

experiments were performed in triplicates. 
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3.2.30 Determination of tyrosine phosphorylation and activation of Src family 

kinases and PLCγγγγ 2 in human platelets 

Human platelets were obtained as described (3.2.4) and adjusted to 5 × 108/ml in PG buffer. 

Platelets were pre-incubated with AKBA, PP2 (or its inactive analogue PP3) or vehicle (DMSO) 

for 10 min at RT. Samples were pre-warmed for 30 s at 37 °C and subsequently stimulated with 

collagen (10 µg/ml) or β-BA (30 µM). After 3 min the reaction was terminated by adding a half-

volume of 3× SDS-b. Samples were sonificated (3 × 10 s) and finally subjected to SDS-PAGE 

followed by WB using specific antibodies (3.2.31 and 3.2.34). 

 

3.2.31 SDS-PAGE 

Cell suspensions or given sample preparations were incubated as specified and the reaction was 

stopped by the addition of ice-cold 2 × SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

sample loading buffer (SDS-b; 20 mM Tris/HCl, pH 8, 2mM EDTA, 5% SDS (w/v), 10% (v/v) 

β-mercaptoethanol), vortexed, sonificated (3 × 15 s) if required and heated for 6 min at 95 °C. 

The protein samples (18 µl) were mixed with 4 µl of glycerol/0.1% bromophenolblue (1:1, v/v) 

and analyzed by SDS-PAGE using a Mini Protean system (Bio-Rad, Hercules, CA, USA) 

according to Laemmli [262]. Depending on the molecular weight of the proteins to be analyzed, 

the polyacrylamid (PAA) concentration was adjusted to: 8% (p-Tyr screening, p-PLCγ2), 10% 

(pull-down experiments using platelets lysates as protein source, isolated COX1/2 and p-Src 

family kinases) or 14% (pull-down experiments using A549 lysates as protein source and in 

vitro-translated mPGES-1 experiments). Molecular weight of the proteins was estimated by 

comparison with either prestained or non-stained broad range molecular weight markers 

(peqGOLD IV and peqGOLD II, respectively; PEQLAB Biotchenology, Erlangen Germany).  

 

3.2.32 Coomassie staining 

Washed (in MQ water) gels from SDS-PAGE were fixed and stained 6 - 12 h on a shaking table 

at RT in colloidal staining solution (0.08% Coomassie Brilliant Blue G250 (w/v), 1.6% ortho-

phosphoric acid (v/v), 8% ammonium sulfate (w/v), 20% methanol (v/v)) and destained in MQ 

until background was clear [263]. Proteins of interest were excised and applied to MS-analytics 

(3.2.23). 
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3.2.33 Silver staining 

After SDS-PAGE, proteins in the gels were fixed in 5% acetic acid and 10% methanol (v/v, 4 × 

for 30 min), washed in MQ water and sensitized 2 min in freshly prepared 0.02% Na2S2O3 (w/v) 

solution. After washing in MQ water and incubation in 0.1%, “silver solution” (AgNO3, w/v) for 

30 min the gel was developed several minutes under slow shaking in 2.5% Na2CO3; 0.04% 

formaline and fixed in 1% acetic acid (w/v) [264]. Proteins of interest were excised and applied 

to MS-analytics (3.2.23)  

 

3.2.34 Western Blot  

After electroblot (tank blotting method) of gels from SDS-PAGE to nitrocellulose membrane 

(Amersham Pharmacia, Little Chalfont, UK), membranes were blocked with 5% (w/v) non-fat 

dry milk or BSA blocking buffer (50 mM Tris/HCl, pH 7.4, and 100 mM NaCl (Tris-buffered 

saline (TBS)) plus 0.1% Tween 20 (TBS-Tween)) for 1 h at RT. Correct loading of the gel and 

transfer of proteins to the nitrocellulose membrane was confirmed by Ponceau S staining unless 

stated otherwise. Membranes were washed (TBS-Tween) and then incubated with the respective 

primary antibody (AB) overnight at 4 °C (Table 3.1).  

Table 3.1: Primary antibodies used. 

Primary antibody Isotype Dilution Company 

Actin goat IgG 1: 1000 Santa Cruz 
Biotechnology 

COX-1 mouse IgG2b 1:200 Cayman  
Chemical 

COX-2 rabbit IgG 1:1000 Biomol 

mPGES-1 mouse IgG 1:200 Cayman  
Chemical 

Phospho-Src family 
(Tyr416) 

rabbit IgG 1:500 Cell  
Signaling 

Phospho-Tyr (PY20) mouse IgG2b 1:2500 Santa Cruz 
Biotechnology 

Phospho-PLCγ2  
(Tyr759) 

rabbit IgG 1:1000 Cell  
Signaling 

 

Antibodies were diluted in TBS Tween, 0.05% NaN3 (v/v), 5% milk or BSA as indicated. The 

membranes were washed and incubated with 1:1000 dilution of secondary AB (alkaline 

peroxidase-conjugated IgGs) for 3 h at RT. After washing (4 × with TBS-Tween and TBS), 

proteins were visualized with nitro blue tetrazolium and 5-bromo-4-chloro-3-indolylphosphate in 
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detection buffer (100 mM Tris/HCl, pH 9.5; 100 mM NaCl, 5 mM MgCl2) All steps regarding the 

incubation of the membrane were performed under gentle agitation.  

 

3.2.35 Determination of protein concentration  

The Roti®-Nanoquant approach based on a modification of the Bradford protein quantification 

method [265, 266] was used for determination of protein concentration. Standard (BSA) and 

protein of interest was diluted in appropriate buffer and pipetted in triplicates, 50 µl per well in a 

96-well plate. After addition of Roti®-Nanoquant (1×) assay reagent (200 µl) the plate was 

agitated for 5 min and measured in a microplate reader (Victor3 plate reader, PerkinElmer, 

Rodgau-Juegesheim, Germany) at 590 nm and 450 nm. The quotient OD590/450 was plotted 

against the amount of standard. 

 

3.2.36 Statistics 

Data are expressed as mean ± S.E.; IC50 and EC50 values, obtained from measurements at 4 - 5 

different concentrations of the compounds, were calculated by GraphPad Prism 4 (GraphPad 

Software Inc., San Diego, CA) and data were fitted using the sigmoidal-concentration response 

equation (variable slope) or are approximations determined by graphical analysis (linear 

interpolation between the points between 50% activity). Statistical evaluation of the data was 

performed by one-way ANOVAs for independent or correlated samples followed by Tukey HSD 

post-hoc tests (GraphPad Software Inc.). Where appropriate, Student´s t test for paired and 

correlated samples was applied. A P value of < 0.05 (*); < 0.01 (**) and < 0.001 (***) was 

considered significant.  

 

All experiments using DMSO, ethanol or methanol as solvent never exceed 1% (v/v) final 

solvent concentration unless stated otherwise.  
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4 RESULTS 

4.1 Interaction of boswellic acids with cyclooxygen ases 

4.1.1 BAs suppress COX-1 product formation in washed human platelets 

Previous experiments revealed that various BAs induce release of AA in human platelets but 

further transformation to 12-H(P)ETE was only caused by 11-methylene-BAs [8]. Accordingly, 

the effects of 11-methylene-BA (i.e. β-BA) and 11-keto-BA (i.e. AKBA) on 12-HHT formation 

in platelets from endogenous AA (Table 4.1) were determined. Both, β-BA and AKBA (30 µM, 

each) caused AA release comparable to thrombin (2 U/ml). Accordingly, β-BA as well as 

thrombin induced formation of 12-HHT, but AKBA was hardly effective (Table 4.1), despite its 

ability to release AA as substrate for COX-1. This work was done in collaboration with Dr. 

Daniel Pöckel (University of Tübingen, Germany). 

Table 4.1 Induction of AA release and 12-HHT formation in washed human platelets.  
For determination of AA release, platelets (108/ml PGC buffer) were incubated with the indicated agents for 5 min 
at 37 °C, DMSO was used as vehicle. [3H]AA released into the medium was measured as described. Data are given 
as counts per minute (cpm), mean ± S.E., n = 5. For determination of 12-HHT formation, platelets (108/ml PGC 
buffer) were incubated with the indicated agents for 5 min at 37 °C and 12-HHT formation was determined. Data 
are given as mean ± S.E., n = 4. 

Compound AA release 

(cpm) 

12-HHT formation 

(ng per 108 cells) 

Vehicle 445 ± 173 3.5 ± 1.3 

Thrombin (2 U/ml) 1255 ± 180 165.4 ± 39.4 

β-BA (30 µM) 921 ± 101 141.2 ± 5.1 

AKBA (30 µM) 1045 ± 117 5.4 ± 1.9 

 

In order to determine if BAs (in particular AKBA) may inhibit agonist-induced COX-1 product 

formation, human washed platelets were pre-incubated with BAs and stimulated with thrombin, 

collagen, and Ca2+-ionophore A23187 (circumventing receptor signaling). AKBA and KBA 

concentration-dependently inhibited COX-1 product synthesis in platelets stimulated with 

A23187 (Figure 4.1A) or thrombin (Figure 4.1B).  
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For AKBA, the IC50 values were determined at approx. 6 µM (stimulation with A23187) and 17 

µM (stimulation with thrombin) and for KBA at approx. 14 and 55 µM, respectively. Also 

collagen-induced COX-1 product formation was significantly reduced by AKBA (IC50 = 10 

µM), whereas for KBA only modest inhibition at comparably high concentration became 

apparent (Figure 4.1C). In contrast, the 11-methylene-BAs are less potent COX-1 inhibitors 

with IC50 values >100 µM, and for thrombin- and collagen-activated platelets, 11-methylene-

BAs even slightly enhanced 12-HHT formation (Figure 4.1B and C). The structural BA 

analogue α-amyrin, lacking the C4-carboxylic moiety (100 µM) gave no significant inhibition 

(88.4 ± 4.6 % of control), whereas the reference drugs aspirin (100 µM) and ibuprofen (30 µM) 

efficiently blocked thrombin-induced 12-HTT formation (3.1 ± 0.5% and 5.9 ± 1.8% of control, 

respectively). To confirm that BAs inhibit COX-1 and to exclude suppressive effects of BAs on 

agonist-induced AA supply the effects of BAs on 12-HHT formation in platelets that received 

exogenous added AA (5 µM) were assessed As shown in Figure 4.1D, a concentration-

dependent inhibition of 12-HHT formation was observed for all BAs with AKBA being most 

potent (IC50 value approx. 23 µM), whereas the IC50 values for other BAs were > 50 µM. The 

negative control α-amyrin was not active up to 100 µM (Figure 4.1D), and aspirin (100 µM) or 

ibuprofen (30 µM) inhibited 12-HTT formation as expected (18 ± 9% and 23.8 ± 6.4% of 

control, respectively). 
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Figure 4.1: Inhibition of COX-1 activity by BAs in intact human platelets.   
Washed human platelets (108/ml PGC buffer) were incubated with the indicated concentrations of the BAs or α-
amyrin. After 5 min at RT, (A) 2.5 µM A23187, (B) 2 U/ml thrombin, (C) 10 µg/ml collagen or (D) 5 µM AA was 
added to induce COX-1 product formation. After additional 5 min at 37 °C the reaction was terminated and 12-HHT 
was determined by HPLC. Data are given as mean + S.E., n = 4-6. 12-HHT formation in the absence of test 
compounds (100%, control) was 104.6 ± 8.9 (A23187), 165.4 ± 39.4 (thrombin), 102.8 ± 11.3 (collagen) and 186.4 
± 17.6 (AA) ng per 108 platelets. 

 

 

4.1.2 BAs suppress the activity of isolated COX-1  

To determine if BAs directly interfere with COX-1 activity, isolated ovine COX-1 was incubated 

with 5 µM AA in the presence of GSH, leading to generation of 12-HHT as the major COX-1 

product [244]. As shown in Figure 4.2A all BAs reduced the activity of COX-1. The IC50 value 

for AKBA was determined at approx. 32 µM being almost equipotent with ibuprofen (IC50 = 25 

µM, data not shown), and α-amyrin (up to 100 µM) failed to suppress 12-HHT synthesis. To 

investigate if AKBA blocks COX-1 in a reversible manner, wash-out experiments were 

performed. As shown in Figure 4.2B, dilution of COX-1 incubations with 50 µM aspirin to a 

final concentration of 5 µM caused no change in the magnitude of COX-1 inhibition, but dilution 

of incubations containing AKBA or ibuprofen resulted in a significant loss of inhibition. To 

determine whether COX-1 inhibition by AKBA is affected by the AA substrate concentration, 

assays were performed at increasing amounts of AA in the absence or the presence of 30 µM 

AKBA or 20 µM ibuprofen. Potent inhibition of COX-1 was obvious for AKBA and ibuprofen 

at low (3 or 5 µM) substrate concentrations but modest inhibition was observed at high (60 µM) 

amounts of AA (Figure 4.2C).  
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Figure 4.2: Inhibition of COX-1 activity by BAs in cell-free assays.  
(A) Concentration-response studies. Isolated COX-1 (50 units) was diluted in 1 ml reaction mixture and pre-
incubated with BAs or α-amyrin for 5 min at 4 °C, as specified. Samples were then pre-warmed for 60 s at 37 °C 
and 5 µM AA was added to start the reaction. After 5 min at 37 °C, 12-HHT was analyzed as described. COX-1 
product formation in the absence of test compounds was (100% control) was 3.46 ± 0.73 ng/U COX-1. (B) 
Reversibility of COX-1 inhibition. Isolated COX-1 (50 units) was incubated with or without 30 µM AKBA, 50 µM 
aspirin, 30 µM ibuprofen, or vehicle (DMSO) for 5 min at RT, each. One aliquot of the samples was diluted with 
assay buffer ten-fold whereas the other one was not altered, and 5 µM AA was added to start the COX-1 reaction. 
For comparison, COX-1 was pre-incubated with 3 µM AKBA, 5 µM aspirin or 3 µM ibuprofen and then 5 µM AA 
was added (no dilution). All samples were incubated for 5 min at 37 °C and formed 12-HHT was analyzed. ** P < 
0.01, one-way ANOVA and Tukey HSD post hoc tests. (C) Effects of variation of the AA concentration. Isolated 
COX-1 (50 units) in 1 ml reaction mixture was pre-incubated with 30 µM AKBA or 20 µM ibuprofen and the 
indicated concentrations of AA were added. All data are given as mean + S.E., n = 4-5.  
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4.1.3 COX-1 binds to immobilized BAs 

In order to assess the binding of COX-1 protein-binding strategy using immobilized BAs was 

applied. Fishing experiments revealed a protein with an apparent mass of 72 kDa in samples of 

β-BA-Seph and KBA-Seph, but not in controls where sepharose beads without ligand (Seph) 

were utilized (Figure 4.3A). In-gel trypsin digestion and subsequent nano-LC-ESI-MS/MS 

analysis (data not shown) identified this protein as human COX-1, confirmed by WB using 

specific AB against COX-1 (Figure 4.3B). To exclude an indirect precipitation of COX-1 via 

any possible linker molecule present in platelet lysates (that could actually be the binding partner 

of BAs), isolated ovine COX-1 (50 ng) was incubated with Seph, KBA-Seph, and β-BA-Seph in 

the presence of BSA (0.1 mg/ml, as blocking agent). Again, KBA-Seph, and β-BA-Seph 

precipitated COX-1 but not Seph without ligand (Figure 4.3C).  
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Figure 4.3: Pull-down of COX-1 by immobilized BAs.  
Supernatants of platelet lysates were incubated over night at 4 °C with either β-BA-Seph, KBA-Seph or with crude 
Seph, as indicated. Precipitates were intensively washed, solubilized by addition of SDS-b and separated by SDS-
PAGE. (A) Proteins were visualized by silver-staining, bands of interest at 72 kDa were excised, in-gel digested and 
analyzed by LC-ESI-MS/MS (data not shown). (B) Proteins were visualized by WB using specific antibodies 
against COX-1. An aliquot of platelet supernatant was used as a positive control. (C) Isolated COX-1 (50 ng) was 
incubated with β-BA-Seph, KBA-Seph, or Seph, in the presence of BSA (0.1 mg/ml). (D) Isolated COX-1 (50 ng) 
was incubated as above in the presence of AA (50 µM), ibuprofen (ibu, 50 µM) or AKBA (100 µM), as indicated. 
COX-1 was visualized by WB. Similar results were obtained in three independent experiments.  
 

Using the pull-down strategy described above, the interaction between COX-1 and KBA-Seph 

was further characterized. Co-incubation with AA (50 µM) or ibuprofen (50 µM) strongly 

reduced the amounts of COX-1 that bound to KBA-Seph (Figure 4.3D). Furthermore, AKBA 

(100 µM) competed with KBA-Seph for binding to COX-1. 
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4.1.4 BAs moderately interfere with COX-2  

Next, the effects of BAs on COX-2 were determined. Therefore, LPS-stimulated MM6 cells that 

had been differentiated with calcitriol were used as a cellular model [241]. 6-keto-PGF1α was 

analyzed as COX-2-derived product after incubation of MM6 cells with 30 µM AA. As shown in 

Figure 4.4A, BAs caused only marginal inhibition of COX-2 product synthesis in MM6 cells 

(IC50 > 100 µM), whereas celecoxib (10 µM) or diclofenac (10 nM), used as positive controls) 

clearly suppressed the formation of 6-keto-PGF1α. To assess direct inhibition of COX-2 in cell-

free assays, isolated human recombinant COX-2 was incubated with AA in the presence of BAs. 

All BAs, suppressed COX-2 product synthesis (Figure 4.4B), although the potencies (IC50 > 100 

µM) were modest as compared to celecoxib (IC50 < 5 µM). Note that also α-amyrin (100 µM) 

slightly affected COX-2 product synthesis (82.2 ± 1.6 % of control). Incubation of isolated 

COX-2 with BA- or KBA-Seph yielded only traces of COX-2 protein (Figure 4.4C) and 

attempts to precipitate COX-2 from lysates of LPS-stimulated MM6 cells (in analogy to the pull-

down experiments for COX-1) failed (Figure 4.4D).  
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Figure 4.4: Interference of BAs with COX-2.   
(A) Inhibition of COX-2 in intact MM6 cells. Cells (3 × 106 /ml PGC) were first pre-incubated with BAs (100 µM, 
each), celecoxib (10 µM), diclofenac (10 nM), or vehicle (DMSO) and then AA (30 µM) was added to start the 
COX-2 product formation. After 15 min at 37 °C the formed amounts of 6-keto-PGF1α were determined by ELISA. 
Results are given as mean + S.E., n = 3. Formation of 6-keto PGF1α in the presence of DMSO (100%, control) was 
2.1 ± 0.2 ng per 106 MM6 cells. One-way ANOVA and Tukey HSD post hoc tests were performed; ** P < 0.01 vs 
vehicle control (DMSO) (B) Inhibition of COX-2 in cell-free assays. Isolated human recombinant COX-2 (20 units) 
was used and experiments were performed in analogy to isolated COX-1. Results are given as mean + S.E., n = 4. 
(C) Isolated COX-2 (82 ng) was incubated with β-BA-Seph, KBA-Seph, and Seph, in the presence of BSA (0.1 
mg/ml). (D) Supernatants of MM6 lysates were incubated over night at 4 °C with either β-BA-Seph, KBA-Seph or 
with crude Seph, as indicated. Precipitates were treated as described and COX-2 was visualized by WB analysis. 
Similar results were obtained in three independent experiments. 
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4.1.5 Docking of BAs into X-ray structures of COX enzymes  

Automated molecular docking of the BAs was performed to find potential binding modes for 

each BA within the active sites of the COX enzymes. As control, the known co-crystallized 

inhibitors BFL (COX-1) and SC-558 (COX-2) were successfully re-docked. Regarding COX-1, 

the RMSD for the inhibitor BFL was 0.34 ± 0.02. The acquired binding mode was identical to 

the X-ray structure, yielding an average Chemscore of 37.3 ± 0.9. Docking of AKBA into the 

same docking box resulted in an average score of 14.5 ± 2.0. Aβ-BA achieved a Chemscore of 

18.5 ± 2.0, KBA 10.9 ± 1.3 and β-BA 15.9 ± 1.1. All four BAs showed the same orientation in 

the binding pocket (Figure 4.5A and B). For COX-2, the RMSD for the inhibitor SC-558 was 

0.49 ± 0.04. The acquired binding mode was identical to the X-ray structure and yielded a 

Chemscore of 30.5 ± 1.0. Docking of BAs into this docking box resulted in comparably low 

docking scores. Thus, the average docking score of AKBA was 2.0 ± 5.0, Aβ-BA achieved a 

Chemscore of 6.6 ± 4.5, KBA 8.6 ± 1.9, and β-BA 8.7 ± 2.4 (Figure 4.5C). 
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Figure 4.5: Automated molecular docking of BAs into X-ray structures of COX-1 and COX-2. . 
(A, B) Scheme of the active site of COX-1 (1Q4G) with the co-crystallized inhibitor BFL displayed in grey. 
Possible hydrogen bonds of the BAs formed with Arg120 and Tyr355 are indicated. (A) β-BA (orange) and Aβ-BA 
(lila) are shown. (B) KBA (green) and AKBA (yellow) are shown in the same orientation as BFL (grey). (C) 
Scheme of the active site of COX-2 (6COX) with co-crystallized inhibitor SC-558, displayed in orange. Potential 
hydrogen bonds from Gln192 to the carboxyl- and acetyl-groups are highlighted, as well as possible interactions of 
the keto-groups with Tyr355. β-BA: blue, Aβ-BA: light blue, KBA: yellow, AKBA: purple. This work was entirely 
performed by Dr. Lutz Franke and Bettina Hofman (University of Frankfurt, Germany).  
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4.1.6 Effects of BAs on COX-1 product formation in whole blood 

Finally, BAs (50 µM, each) were analyzed for their ability to suppress COX-1 product formation 

in whole blood which is regarded to adequately reflect the efficacy in vivo. Human whole blood 

was pre-incubated with the test compounds (10 min) and stimulated with A23187 (30 µM). As 

shown in Figure 4.6, despite the potent inhibition of COX-1 activity in cell-free assays or in 

intact platelets, none of the BAs (50 µM) tested suppressed 12-HHT formation in human whole 

blood. Control inhibitors aspirin (30 µM) and indomethacin (20 µM) efficiently blocked COX-1 

activity in this whole blood assay, as expected.  
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Figure 4.6: Inhibition of COX-1 product formation i n human whole blood.  
Freshly withdrawn blood was pre-incubated with BAs, α-amyrin (50 µM, each), aspirin (30 µM), indomethacin 
(indo, 20µM) or vehicle (DMSO) at 37 °C, and the reaction was started by addition of A23187 (30 µM). COX-1 
product (12-HHT) synthesis in the absence of test compounds (100%, control) was 74.35 ± 7.8 ng/ml blood. Data 
are given as mean + S.E.; n = 3, duplicates. One-way ANOVA and Tukey HSD post hoc tests were performed; *** P 
< 0.001 vs vehicle control (DMSO). 

 

Together, these results demonstrate that BAs directly interfere with COX-1 and preferably 

AKBA, concentration-dependently suppress cellular and cell-free COX-1 activity in a reversible 

and substrate-dependent manner. In contrast, BAs hardly inhibit COX-2 activity and are not able 

to reduce COX-1 product formation in human whole blood. 
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4.2 Interference of boswellic acids with 5-lipoxyge nase 

4.2.1 Inhibition of 5-LO activity by BAs in cell-free assays and influence of 

assay parameters on the potency 

The efficacy of 5-LO inhibitors largely depends on the assay conditions (for review see [267, 

268]). Previous studies demonstrated that partially purified 5-LO from human PMNL is inhibited 

by AKBA with an IC50 value of 16 µM [54]. Other BAs were not tested. Therefore, the potency 

of natural occurring BAs to inhibit partially purified human recombinant 5-LO from E. coli in a 

well-established and defined cell-free assay using 20 µM AA as substrate and 1 mM Ca2+ as 

supplement [269] was analyzed. The major β-configurated BAs AKBA, KBA, β-BA, and Aβ-

BA inhibited 5-LO product synthesis in a concentration-dependent manner, with IC50 values of 

2.9, 6.3, 23.9, and 30 µM, respectively (Figure 4.7). 
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Figure 4.7: Inhibition of human 5-LO by BAs.  
Partially purified, human recombinant 5-LO was pre-incubated with the indicated concentrations of BAs or vehicle 
(DMSO) in the presence of 1 mM Ca2+ and 1 mM ATP. 5-LO product formation was started by addition of 20 µM 
AA and analyzed by HPLC. Values are given as mean + S.E.; n = 3-4  

 

Of interest, also the α-boswellic acid (α-BA) inhibited 5-LO activity with an IC50 = 15.3 µM, 

whereas the pentacyclic triterpenes α-amyrin (lacking the essential C4-carboxylic moiety) failed 

in this respect (IC50 >> 30 µM) (Table 4.2).  
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Table 4.2: Efficacy of various BAs for inhibition of 5-LO in different test systems.  
IC50 values (µM) of BAs were determined regarding 5-LO activity of human purified 5-LO enzyme, crude 5-LO in 
supernatants of E. coli and in isolated human PMNL stimulated with either 2.5 µM A23187 with or without 20 µM 
AA in the presence of Ca 2+ (1 mM). The synthetic 5-LO inhibitor BWA4C was used as control.  
 

Compound 5-LO purified  

enzyme 

E. coli 

supernatant 

PMNL 

(A23187) 

PMNL 

(A23187 + AA) 

AKBA 2.9 23.5 3.2 3.3 

KBA 6.3 27.1 8.8 2.8 

Aβ-BA >30 >30 >30 >30 

β-BA 23.9 >30 >30 28.1 

α-BA 15.3 18.5 23.1 16 

α-amyrin >>30 >>30 >>30 >>30 

BWA4C 0.1 0.15 0.03 0.05 

 

Subsequent studies under selected assay conditions were carried out with the most efficient 

derivatives, i.e. AKBA and KBA. As observed before [269], removal of Ca2+ from the standard 

activity assay increased 5-LO activity under these incubations conditions about two-fold, but the 

efficacies of KBA and AKBA were not markedly changed (Figure 4.8A). The efficacy of 

AKBA at higher concentrations (10 and 30 µM) was slightly increased in the absence of Ca2+. 

The presence of 25 µg/ml PC in the standard activity assay, often included as stimulatory factor 

in 5-LO activity assays [189, 270], impaired the 5-LO inhibitory potential of AKBA (IC50 = 19.8 

µM), whereas the potency of KBA was essentially unaffected (Figure 4.8B).   
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Figure 4.8: Modulation of inhibition of human 5-LO by BAs in cell-free assays.   
(A) Effect of Ca2+. Partially purified, human recombinant 5-LO was pre-incubated in 1 ml PBS containing 1 mM 
EDTA and 1 mM ATP with the indicated concentrations of AKBA (left panel) or KBA (right panel) or vehicle 
(DMSO) at 4 °C. After 10 min, samples were pre-warmed at 37 °C for 30 s, 2 mM CaCl2 (as indicated) and 20 µM 
AA were added and after another 10 min, 5-LO product formation was determined. (B) Effect of PC. Partially 
purified 5-LO was pre-incubated as in the standard assay together with or w/o 25 µg/ml PC. (C) Inhibition of 5-LO 
by boswellic acids at 2 and 20 µM AA. Partially purified 5-LO was pre-incubated with the test compounds (see 
(A)). In the presence of Ca2+ (1 mM) 5-LO product formation was initiated by AA (2 or 20 µM, as indicated). 
Values are given as mean + S.E.; n = 3-4.  
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Of interest, switching from 20 to 2 µM AA as 5-LO substrate in the standard activity assay 

significantly reduced the potency of both 11-keto-BAs, and the IC50 values were determined at 

21.5 µM for AKBA and > 30 µM for KBA (Figure 4.8C). A weak loss of potency was observed 

also for BWA4C, a well-recognized iron ligand-type 5-LO inhibitor (Table 4.3). 

Table 4.3: Influence of assay parameters on the potencies of AKBA and KBA to inhibit 5-LO.  
IC50 values (µM) for AKBA and KBA assessing the activity of partially purified 5-LO in the presence or absence of 
1 mM free Ca2+. PC (25 µg/ml) and AA (2 or 20 µM) were added as indicated. The synthetic 5-LO inhibitor 
BWA4C was used as control.  

Compound AA (20 µM) AA (20 µM)  

+ Ca2+ 

AA (2 µM)  

+ Ca2+ 

AA (20 µM)  

+ Ca2+ + PC 

AKBA 2.8 2.9 11.5 19.8 

KBA 7.6 6.3 >30 11.4 

BWA4C 0.14 0.1 0.24 0.11 

 

Finally, when 40,000 ×g supernatants of E. coli lysates were used as source of crude 5-LO 

enzyme in the standard activity assay (Figure 4.9), the potency of all four β-configurated BAs 

was strongly impaired. Note that α-BA hardly lost its potency and was the most potent derivative 

with IC50 = 18.5 µM (Table 4.2).  
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Figure 4.9: Effects of BAs on crude 5-LO in supernatants from E. coli lysates.  
Supernatants (40,000 × g) from E. coli lysates in PBS containing 1 mM EDTA, 1 mM PMSF, and 1 mM ATP were 
pre-incubated with the test compounds at 4 °C. After 10 min samples were pre-warmed at 37 °C for 30 s, 2 mM 
CaCl2 and 20 µM AA were added and after 10 min 5-LO product formation was determined. Values are given as 
mean + S.E.; n = 3-4. 
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4.2.2 Inhibition of 5-LO activity by BAs in cell-based assays using isolated 

human PMNL  

PMNL stimulated with A23187 are the classical test system for screening and evaluation of LT 

synthesis inhibitors. AKBA and KBA potently inhibited 5-LO product synthesis in human 

isolated PMNL challenged by A23187 in a concentration-dependent manner with IC50 = 3.2 and 

8.8 µM, respectively (Figure 4.10), and also the frankincense extract H15® blocked 5-LO 

product synthesis by 78 ± 9% at a concentration of 30 µg/ml. Aβ-BA, β-BA, and α-amyrin were 

hardly active (IC50 >> 50 µM), but α-BA suppressed 5-LO product synthesis with an IC50 = 23.1 

µM). Upon stimulation of PMNL with A23187 plus exogenous AA (20 µM), estimating FLAP 

interference, the efficacy of AKBA was not altered, whereas the potency of KBA increased (IC50 

= 2.8) and also α-BA was more active under these conditions (IC50 = 16 µM) (Table 4.2).   
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Figure 4.10: Inhibition of 5-LO product formation i n intact human PMNL.  
Isolated PMNL (5 × 106/ml PGC) were pre-incubated with the test compounds or vehicle (DMSO) at the indicated 
concentrations. After 10 min at 37 °C, cells were stimulated with 2.5 µM A23187 (A) or with 2.5 µM A23187 plus 
20 µM AA (B) and 5-LO products were extracted and determined by HPLC. 5-LO product synthesis in the absence 
of test compounds (100 %, control) was 68.1 ± 6 (A23187) and 276.8 ± 40 (A23187 + AA) ng per 106 PMNL. Data 
are given as mean + S.E.; n = 3. 
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4.2.3 Inhibition of 5-LO activity by BAs in human whole blood 

The ability of a given compound to suppress LT formation in the whole blood assay is assumed 

to reflect its efficacy in vivo. Human whole blood was pre-incubated with the test compounds 

and stimulated either with A23187 or primed with LPS and then challenged with fMLP. 

Stimulation of blood with fMLP following LPS-priming is considered a physiologically relevant 

stimulus, thus, reflecting pathophysiological conditions in vivo. As shown in Figure 4.11, 

despite the potent inhibition of 5-LO activity in cell-free assays or in intact PMNL, neither the 

BAs (50 µM) nor the frankincense extract (30 µg/ml) suppressed 5-LO product formation. The 

control inhibitor BWA4C efficiently inhibited 5-LO activity in the whole blood assay, as 

expected. 

αααα -B
A

DMSO

AKBA 
KBA 

Aß-B
A 

ß-B
A 

am
yr

in
H 1

5 

BW
A4C

 

5-
LO

 p
ro

du
ct

 fo
rm

at
io

n
(%

 o
f c

on
tr

ol
)

0

25

50

75

100

125

A

DM
SO 

AKBA
KBA

Aß-B
A 

ß-B
A 

am
yri

n
H 15

BW
A4C

 

5-
LO

 p
ro

du
ct

 fo
rm

at
io

n
(%

 o
f c

on
tr

ol
)

0

25

50

75

100

125

αααα -B
A

B

***
***

A23187 LPS/fMLP

 
Figure 4.11: Inhibition of 5-LO product formation in human whol e blood.  
Blood was pre-incubated with BAs (50 µM, each), H15® extract (30 µg/ml), BWA4C (3 µM) or vehicle (DMSO), 
and formation of 5-LO products was started by addition of (A) A23187 (30 µM; 10 min, 37 °C) or by (B) fMLP (1 
µM; 15 min, 37 °C) after 30 min priming with LPS (1 µg/ml). The formation of 5-LO products were determined as 
described. 5-LO product synthesis in the absence of test compounds (100%, control) was 196.9 ± 46 (A23187) and 
34.3 ± 0.5 (LPS and fMLP) ng/ml blood. Data are means + S.E.; n = 3-4 (fMLP and LPS), duplicates; n = 3 
(A23187). One way ANOVA + Tukey HSD post-hoc were performed; ***P < 0.001 vs vehicle (DMSO) control. 
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4.2.4 Inhibition of 5-LO activity by BAs in human isolated PMNL is abolished 

by albumin 

Since AKBA and KBA are inactive in whole blood while being efficient in isolated PMNL, and 

because BAs represent lipophilic acids, it appeared reasonable to speculate that plasma protein 

(i.e. albumin)-binding of BAs is responsible for the lack of efficacy in whole blood. Thus, the 

albumin-binding ability of AKBA using a gel filtration method was investigated. As shown in 

Figure 4.12, AKBA (50 µM) extensively bound to 10 mg/ml BSA and to a minor extent when 1 

mg/ml BSA was present. The unbound free AKBA was 0% and 30.9% for 10 and 1 mg/ml 

albumin, respectively. 
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Figure 4.12: Binding of AKBA to albumin.  
BSA (0, 1 or 10 mg/ml, as indicated) was incubated with 50 µM AKBA for 10 min at 37 °C. Separation of AKBA 
and albumin was carried out by gel filtration using a PD-10 column and AKBA was quantified by HPLC analysis. 
The concentration of AKBA (without BSA) vs elution volume was analyzed. Based on this evaluation the amount of 
unbound AKBA was determined by the AUC (µ ± 3δ) for incubation with 1 or 10 mg/ml albumin. Results shown 
are representative for at least 3 independent determinations.  

 

Next, the effects of BSA on inhibition of 5-LO product synthesis by AKBA and KBA in isolated 

PMNL was analyzed. This work was done in cooperation with Dr. Carlo Pergola (University 

Tübingen, Germany). The presence of 1 mg/ml BSA attenuated the potency of AKBA and KBA 

about 2- to 7-fold in PMNL challenged by A23187 without (Figure 4.13) and with 20 µM 

exogenous AA (Figure 4.13). When 10 mg/ml BSA was included, neither KBA nor AKBA 

significantly inhibited 5-LO product formation up to 30 µM. Similarly, also the suppressive 

effect of H15® extract (30 µg/ml) was completely reversed by 10 mg/ml BSA (not shown).   

 



4  RESULTS 74 

[µM]

0 1 3 10 30

5-
LO

 p
ro

du
ct

 fo
rm

at
io

n
(%

 o
f c

on
tr

ol
)

0

25

50

75

100

w/o
+ 1 mg/ml BSA
+ 10 mg/ml BSA

[µM]

0 1 3 10 30

5-
LO

 p
ro

du
ct

 fo
rm

at
io

n
(%

 o
f c

on
tr

ol
)

0

25

50

75

100

w/o 
+ 1 mg/ml BSA
+ 10 mg/ml BSA

[µM]

0 1 3 10 30

5-
LO

 p
ro

du
ct

 fo
rm

at
io

n
(%

 o
f c

on
tr

ol
)

0

25

50

75

100

w/o 
+ 1 mg/ml BSA
+ 10 mg/ml BSA

[µM]

0 1 3 10 30

5-
LO

 p
ro

du
ct

 fo
rm

at
io

n
(%

 o
f c

on
tr

ol
)

0

25

50

75

100

w/o 
+ 1 mg/ml BSA
+ 10 mg/ml BSA

B

A

AKBA KBA

AKBA KBA

A23187

A23187+ AA

 

Figure 4.13: Influence of BSA on the efficacy of BAs to inhibit 5-LO product formation in human PMNL.   
Freshly isolated PMNL (5 × 106/ml PGC) were supplemented with or w/o 1 or 10 mg/ml BSA. AKBA (left panel) 
or KBA (right panel), or vehicle (DMSO) were added at the indicated concentrations. After 10 min at 37 °C, cells 
were stimulated with 2.5 µM A23187 (A) or with 2.5 µM A23187 plus 20 µM AA (B) and 5-LO product formation 
was determined. 5-LO product synthesis in the absence of test compounds (100%, control) was 68.1 ± 6 (A23187), 
40.8 ± 3 (A23187 + 1 mg/ml BSA), 22.2 ± 4 (A23187 + 10 mg/ml BSA), 276.8 ± 40 (A23187 + AA), 78.3 ± 7 
(A23187 + AA + 1 mg/ml BSA), and 32.3 ± 6 (A23187 + AA + 10 mg/ml BSA) ng per 106 PMNL. Values are 
given as mean + S.E., n = 3, duplicates.  
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4.2.5 LTB4 levels in human subjects treated with frankincense extracts 

In a phase 1 clinical trial the safety, tolerability and pharmacokinetics of a single oral dose 

application of B. serrata resin extract (PS0201Bo) in healthy male volunteers (n = 12) was 

investigated. Two capsules of PS0201Bo, each containing 400 mg of native B. serrata resin 

extract (total 800 mg PS0201Bo), were administered to healthy volunteers. Then, blood was 

collected as indicated in Figure 4.14, plasma was prepared, and LTB4 was analyzed by ELISA. 

The plasma levels of LTB4 were not impaired within 24 h of frankincense administration, instead 

a weak but statistically not significant increase was observed 2 to 8 h after intake of the extracts, 

correlating with the plasma concentrations of AKBA and KBA that peaked after approx. 3 h, and 

half maximal concentrations of KBA were determined after 6-8 h (not shown). These 

experiments were carried out at Frankfurt University Hospital under the supervision of Dr. 

Carsten Skarke. 
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Figure 4.14: Effects of single dose orally administered frankincense preparation on LTB4 plasma levels. 
Healthy male volunteers received two capsules containing frankincense extract (PS 0201Bo) as single dose (800 
mg) application. Venous blood was taken at the indicated time points, plasma was prepared and LTB4 in the plasma 
was determined by ELISA. Data are shown as mean + S.E., n = 12 volunteers.  

 

Taken together, both α- and β-configurated BAs (preferentially 11-keto-BAs) act as direct 5-LO 

inhibitors in cell-free and cellular-based experiments, but the potencies strongly depend on the 

defined assay conditions. Furthermore, none of the BAs tested is able to prevent 5-LO product 

synthesis in whole blood assays and also single dose oral administration of frankincense extracts 

to healthy human volunteers causes no reduction of plasma LTB4 levels. 
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4.3 Interference of boswellic acids with the induci ble microsomal 

prostaglandin E 2 synthase-1  

4.3.1 Identification of mPGES-1 as a BA-binding protein by pull-down 

experiments and surface plasmon resonance spectroscopy 

The target fishing approach using immobilized BAs was used in order to investigate whether or 

not BAs interact with mPGES-1. Lysates of Il-1β-treated A549 cells, expressing mPGES-1 and 

COX-2 [142], were incubated with the respective resins and precipitates were analyzed by WB 

using specific antibody against mPGES-1 and COX-2. As shown in Figure 4.15A, substantial 

amounts of mPGES-1 bound to BA-Seph beads but not to Seph beads without ligand. In contrast, 

attempts to identify COX-2 in the BA-Seph beads precipitates by WB failed. Furthermore, in 

vitro-translated mPGES-1 (200 ng purified protein) in the presence of 1000-fold excess of E. coli 

protein was precipitated by both KBA-Seph and β-BA-Seph, but not by Seph without ligand 

(Figure 4.15B).  
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Figure 4.15: BAs selectively bind mPGES-1.  
(A) Supernatants of A549 cell lysates were incubated over night at 4 °C with either β-BA-Seph, KBA-Seph, or with 
crude Seph, as indicated. Precipitated proteins were visualized by WB using specific antibodies against mPGES-1 or 
COX-2. An aliquot of the supernatant was used as positive control. (B) Purified mPGES-1 (200 ng) was incubated 
with β-BA-Seph, KBA-Seph or with Seph in the presence of 1000-fold excess of E. coli protein. Similar results 
were obtained in three additional experiments. 

 

To confirm the direct interaction of BAs with mPGES-1, SPR spectroscopy studies were carried 

out. SPR spectroscopy is a label-free optical detection method which allows to analyze the 

binding of soluble analyte to immobilized biomolecules (ligands) in real-time [261, 271]. The 

progress of interaction, binding of analyte (association), and dissociation of analyte from the 

immobilized ligand is monitored as a sensogram, expressing changes in binding responses as 

resonance units (RU). Unfortunately, no consistent binding patterns were obtained by using 

naturally occurring BAs as analyte (data not shown). Neither the addition of BSA as a carrier 

protein nor variation of commercial assay buffers (± detergent) or changes in temperature 

improved the quality of the recorded sensograms. Hence, the more hydrophilic synthetic derivate 
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3-O-oxaloyl-KBA (ox-KBA) was used. Indeed, more valuable and reproducible sensograms 

were obtained, which indicate specific reversible binding to mPGES-1 (Figure 4.16A) whereas 

α-amyrin (negative control) up to 30 µM failed in this respect (Figure 4.16A). In order to 

determine equilibrium binding constants, ox-KBA at different concentrations were sequentially 

injected over the two surfaces and the equilibrium response (Req) was calculated, and fitting the 

data to the 1:1 binding model (Eqn. 1) and Scatchard plot yielded KD values = 13 and 5.2 µM, 

respectively (Figure 4.16B). Kinetic data were estimated using BIAEVALUATION 3.1 

software, a general analysis in which the association and dissociation phases are fitted 

simultaneously [261]. The fit and the distribution of the residuals are presented in Figure 4.16C. 

Assuming the simple relationship ka/kd = KD for ox-KBA, a KD-value of 23 µM was calculated 

that essentially matches the KD obtained from the equilibrium binding data. 
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Figure 4.16: Analysis of the binding of BAs to mPGES-1 by SPR spectroscopy.   
In vitro translated mPGES-1 (ligand) and ox-KBA (analyte) were used. Specific binding profiles were obtained after 
subtracting the signal (response units, RU) from the untreated control cell. (A) The binding of ox-KBA (10 µM) and 
amyrin (30 µM) to mPGES-1. (B) Binding curves for ox-KBA. The equilibrium responses for ox-KBA at different 
concentrations were plotted vs. the concentration of the compound. The nonlinear fit to Eqn (1) and a Scatchard plot 
yield the dissociation constant KD. (C) Kinetic analysis of ox-KBA-binding to mPGES-1. Representative 
sensograms for the injection of 0.5 µM up to 25 µM ox-KBA are shown. A general analysis was applied to fit the 
data to a 1:1 binding model (solid lines), and the quality of the fit is displayed by the plots of the residuals. 
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4.3.2 BAs inhibit the catalytic activity of mPGES-1 in a cell-free assay  

Next, it was investigated whether the direct interference of BAs with mPGES-1 affects the 

catalytic activity of the enzyme. Isolated microsomes of IL-1β treated A549 cells (source of 

mPGES-1) were pre-incubated with BAs and PGE2 formation was induced by addition of 20 µM 

PGH2. The mPGES-1 inhibitor MK-886 was used as reference drug and concentration-

dependently blocked PGE2 formation with an IC50 = 2 µM (not shown) in agreement with the 

literature [272]. All BAs concentration-dependently suppressed PGE2 formation with IC50 values 

of 3, 5 and 10 µM for AKBA, β-BA and KBA, respectively, comparable to MK-886. As 

observed for other mPGES-1 inhibitors in previous studies [169], about 20% activity still 

remained even at high concentrations of BAs (100 µM, Figure 4.17A) or of MK-886 (30 µM, 

not shown). The synthetic derivative ox-KBA also suppressed PGE2 formation (IC50 = 5 µM). 

Aβ-BA was somewhat less potent and failed to suppress PGE2 formation by more than 50% up 

to 100 µM. Furthermore, the pentacyclic triterpene α-amyrin (lacking the 4-COOH-group) was 

entirely inactive up to 100 µM (not shown). To assess whether inhibition of mPGES-1 by BAs 

occurs in a reversible fashion, wash-out experiments were performed. Microsomal preparations 

of A549 cells were pre-incubated with AKBA or β-BA at 1 and 10 µM for 15 min. MK-886 at 

0.3 and 3 µM served as a control for a reversible mPGEs-1 inhibitor [169]. Whereas BAs at 1 

µM or MK-886 at 0.3 µM caused only minor inhibition of mPGES-1, incubations with MK-886 

at 3 µM or with BAs at 10 µM efficiently blocked PGE2 formation (Figure 4.17B). Upon 10-

fold dilution of the latter samples, a significant loss of potency was obvious. In order to 

determine if mPGEs-1 inhibition by BAs depends on the substrate concentration the 

concentration of PGH2 was varied from 20 µM to 1 µM in the assay. The efficacy of AKBA was 

not affected by variation of the substrate concentration (Figure 4.17C). Of interest, for β-BA a 

slight loss of potency was evident at lower PGH2 concentrations. 
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Figure 4.17: Effects of BAs on the activity of mPGES-1 in cell-free assays.  
(A) Concentration-response analysis of BAs. Microsomal preparations of IL-1β-stimulated A549 cells were pre-
incubated with BAs or vehicle (DMSO)and PGE2 formation was induced by the addition of 20 µM PGH2. (B) 
Reversibility of mPGES-1 inhibition by AKBA, β-BA and MK-886 using wash out experiments. One way ANOVA 
+ Tukey HSD post-hoc tests were performed;***P < 0.001. The 100% value corresponds to 944 ± 118 pmol PGE2. 
(C) The efficacy of AKBA and β-BA for mPGES-1 inhibition was compared at 1 and 20 µM PGH2 as substrate. 
PGE2 was quantified for 1 µM PGH2 by use of a PGE2 High Sensitivity EIA Kit. PGE2 production at 10 µM MK-
886 was set 0% of vehicle (DMSO) control in order to compare both data sets. Data are given as mean + S.E., n = 3-
4. 
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4.3.3 Effect of BAs on PGE2 synthesis in intact cells 

The capacity of BAs to inhibit PGE2 formation also in intact cells was determined. Since COX-2 

activity in cell-free or cellular experiments was not significantly inhibited by BAs stimulation of 

IL-1β-pretreated A549 cells with 2.5 µM A23187 plus 1 µM AA and 3[H]AA (18.4 kBq) were 

used as model to selectively assess modulation of COX-2-derived PGH2 transformation to PGE2 

via mPGES-1 by BAs. Again AKBA, β-BA and KBA suppressed PGE2 synthesis in 

concentration-dependent manner (IC50 = 20µM) whereas Aβ-BA and α-amyrin were hardly 

effective (Figure 4.18). Nevertheless, suppression of PGE2 formation by BAs was not complete, 

and also MK-886 (30 µM) caused only 47% inhibition under these assay conditions. On the 

other hand, the COX-1/2 inhibitor indomethacin (20 µM) and the COX-2 selective celecoxib (5 

µM), almost completely suppressed PGE2 formation as expected.  
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Figure 4.18: Effects of BAs on PGE2 formation in intact A549 cells.   
IL-1β-stimulated A549 cells (6 × 106/ml) were pre-incubated with BAs, α-amyrin (30 µM), indomethacin (indo, 20 
µM), celecoxib (cele, 5 µM), MK-886 (30 µM) or vehicle (DMSO) for 10 min, and then 2.5 µM A23187 plus 1 µM 
AA and [3H]AA (18.4 kBq) were added. After 15 min at 37 °C, formed [3H]PGE2 was analyzed by RP-HPLC and 
liquid scintillation counting as described in the method section. Data are given as mean + S.E., n = 3-5. One way 
ANOVA + Tukey HSD post-hoc tests were performed;**P < 0.01 ***P < 0.001 vs vehicle (DMSO) control. 
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4.3.4 Effects of BAs on the formation of PGE2 and 6-keto-PGF1αααα in human 

whole blood 

In order to estimate the efficacy of BAs to interfere with (COX-2/mPGES-1-derived) PGE2 

formation in vivo, human whole blood assays were performed. Aliquots of human heparinized 

blood were pre-incubated with BAs, prior stimulation with LPS (10 µg/ml). As shown in Figure 

4.19A, β-BA significantly reduced PGE2 synthesis (46.2% inhibition) at 10 µM comparable to 

MK-886 at 30 µM (45.4% inhibition) whereas the other BAs and the negative control α-amyrin 

failed in this respect. Concentration-response experiments revealed an IC50 value of 20 µM for β-

BA (Figure 4.19B), but even at high concentrations (100 µM) about 40% PGE2 still remained. 

In contrast, formation of 6-keto-PGF1α was not affected by β-BA and also not by AKBA (10 

µM, each) (Figure 4.19C). Indomethacin (50 µM) and celecoxib (20 µM) efficiently inhibited 

PGE2 and 6-keto-PGF1α synthesis as expected. 
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Figure 4.19: Effects of BAs on PGE2 and 6-keto-PGF1αααα biosynthesis in human whole blood.  
Heparinized human whole blood was pre-incubated with (A) BAs and amyrin (10 µM, each) or vehicle (DMSO) for 
10 min at RT and then, PGE2 formation was induced by addition of 10 µg/ml LPS. After 5 h at 37 °C, PGE2 was 
extracted from plasma, separated by RP-HPLC and quantified by ELISA as described. MK-886 (30 µM), 
indomethacin (indo, 50 µM), and celecoxib (cele, 20 µM) were used as controls. (B) Concentration-response of β-
BA. (C) Assessment of 6-keto-PGF1α formation. 6-keto-PGF1α was directly determined in blood plasma derived 
from samples from above incubated with 10 µM β-BA or AKBA, respectively, by ELISA. The 100% values 
correspond to 221.81 ± 19.69 pg/ml PGE2 and 382.5 ± 22.25 pg/ml 6-keto-PGF1α, respectively. Data are given as 
mean + S.E., n = 4-5. One way ANOVA + Tukey HSD post-hoc tests were performed; *P < 0.05; ***P < 0.001 vs 
vehicle (DMSO) control.  
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Notably, expression pattern of COX-2 and mPGES-1 were not essentially altered by β-BA in 

isolated monocytes (major source of mPGES-1) during a 5 h incubation phase (Figure 4.20) 

used to induce PGE2 formation in whole blood. 
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Figure 4.20: Expression of mPGES-1 and COX-2 in monocytes.  
Human monocytes (5 × 106/exp. in RPMI 1640 medium containing 2% FCS, P/S and 2 mM glutamine) were pre-
incubated with β-BA or vehicle (DMSO) for 10 min at RT prior stimulation with LPS (1 µg/ml) for 5 h at 37 °C or 
left untreated. After washing (3× PBS), cells were lysed (2× SDS-b.) and samples were subjected to SDS-PAGE and 
WB using specific antibodies against mPGES-1 and COX-2. Results shown are representative of two independent 
experiments.  



4  RESULTS 83 

4.3.5 Effects of β-BA on carrageenan-induced mouse paw edema and rat 

pleurisy 

The carrageenan-induced paw edema is considered as suitable model to assess a 

pathophysiological role of mPGES-1 in inflammation in vivo [273]. In mice treated (i.p.) with β-

BA (0.25 mg/kg) the response to carrageenan at 4 h was already reduced by almost 20% and 

pretreatment with 1 mg/kg β-BA, respectively resulted in 50% suppression. Indomethacin (5 

mg/kg) caused 56% inhibition of the carrageenan response (Table 4.4). The animal experiments 

were carried out at University of Naples by Drs Antonietta Rossi and Lidia Sautebin. 

Table 4.4: Effects of β-BA on carrageenan-induced mouse paw edema.  
Percentages of inhibition caused by the treatments of 0.25, 1 mg/kg β-BA and 5mg/kg indomethacin or vehicle 
DMSO 2%); n = 10 mice. One-way ANOVA and Tukey post hoc test were performed; ***P < 0.001 vs vehicle 
(DMSO).  

Treatment mg/kg Inhibition (%) 

β-BA 0.25 19.58 ± 9.2 

β-BA 1 49.48 ± 8.2*** 

indomethacin 5 56.70 ± 9.3*** 

 

Injection of carrageenan into the pleural cavity of rats elicited, at 4 h, an acute inflammatory 

response characterized by the accumulation of fluid that contained large numbers of 

inflammatory cells (Table 4.5). As observed in the paw edema model, β-BA (1 mg/kg i.p., 30 

min prior to carrageenan) significantly inhibited the inflammatory response, as demonstrated by 

the significant attenuation of exudate formation (75%) and cell infiltration (64%). Moreover, 

PGE2 level in the exudate were reduced by almost 50%, whereas the amounts of 6-keto-PGF1α  

and LTB4 in the exudate were not significantly altered. Indomethacin (5 mg/kg) reduced exudate 

formation and cell infiltration as well (77 and 65% respectively) without significant higher 

potency than β-BA (Table 4.5) but reduced almost completely PGE2. Of interest, pretreatment of 

AKBA (1 mg/kg i.p., 30 min prior to carrageenan) caused no significant decrease in exudate 

formation, cell-infiltration or PGE2 levels in this model. 
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Table 4.5: Effect of ββββ-BA on carrageenan-induced pleurisy in rats.  
Thirty min before intrapleural injection of carrageenan, rats (n=10 for each experimental group) were treated i.p. 
with 1 mg/kg β-BA, 5 mg/kg indomethacin, 1 mg/kg AKBA or vehicle (DMSO 4%). Exudate volume, PGE2, 6-
keto-PGF1α and LTB4 levels as well as inflammatory cell accumulation in pleural cavity were assessed 4 h after 
carrageenan injection. Data are expressed as mean ± S.E., n = 10. ANOVA + Tukey HSD post-hoc tests were 
performed, **P < 0.01; ***P < 0.01 vs vehicle (DMSO 4%), n.d. = not determined. 

 

Together, this data show that BAs bind to mPGES-1, interfere with the catalytic activity of 

mPGES-1 and in particular β-BA selectively inhibits PGE2 biosynthesis (without affecting 6-

keto-PGF1α formation) in human whole blood and in rat pleural exudates, accompanied by potent 

anti-inflammatory effectiveness. 

Treatment Exudate 

volume (ml) 

Inflammatory 

cells ×××× 106 

PGE2 

(ng/rat) 

6-keto-PGF1αααα 

(ng/rat) 

LTB 4 

(ng/rat) 

Vehicle 0.52 ± 0.03 49 ± 1.38 1.67 ± 0.11 5.46 ± 0.65 0.67 ± 0.16 

β-BA  
(1 mg/kg) 

0.13 ± 0.04***  17.80 ± 4.20***  

 

0.82 ± 0.19**  3.46 ± 0.87 0.33 ± 0.1 

AKBA  
(1 mg/kg) 

0.42 ± 0.06 42.6 ± 2.75 1.30 ± 0.15 n.d. n.d. 

Indomethacin  
(5 mg/kg) 

0.12 ± 0.03***  17.15 ± 3.25***  

 

0.17 ± 0.03***  0.033 ± 0.01***  n.d. 
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4.4 Boswellic acids differentially modulate platele t physiology 

4.4.1 Modulation of agonist-evoked Ca2+ mobilization in washed human 

platelets by BAs. 

Previous studies showed that 11-methylene-BAs (i.e. β-BA and Aβ-BA) induced a rapid and 

pronounced elevation of [Ca2+] i in human washed platelets at concentrations ≥ 3 µM, comparable 

to thrombin (0.5 U/ml, optimized concentration), whereas 11-keto-BAs (i.e. AKBA or KBA) 

were hardly effective [64]. This study investigated, whether BAs may have detrimental actions 

on agonist-evoked mobilization of Ca2+. Concentration-response studies in Fura-2-loaded 

washed human platelets revealed consistent effective concentrations of platelet agonists for Ca2+ 

mobilization as follows: 0.5 U/ml thrombin, 8 µg/ml collagen, and 1 µM U-46619 (data not 

shown). These concentrations were used for subsequent analysis of BA effects on [Ca2+] i 

mobilization. In agreement with previous studies [64], at a concentration of 10 µM, AKBA and 

KBA caused only a slight and delayed (and transient) elevation of [Ca2+] i, whereas β-BA and 

Aβ-BA (10 µM, each) led to substantial Ca2+ mobilization (Figure 4.21A). Of interest, pre-

incubation of platelets for 15 min with AKBA (10 µM) reduced the subsequent Ca2+ mobilization 

induced by U-46619 and collagen, but not so when thrombin was used as agonist (Figure 

4.21B). 
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Figure 4.21: Differential effects of BAs on [Ca2+] i in human washed platelets.   
To Fura-2 loaded platelets (108/ml PG buffer), CaCl2 (1 mM) was added 2 min prior determination of [Ca2+]i. (A) 
BAs (10 µM, each) were added after 30 s. (B) Fura-2 loaded platelets were pre-incubated with 10 µM AKBA or 
with vehicle (DMSO) as indicated. After 15 min CaCl2 (1 mM) was added, the measurement of [Ca2+]i was started 
and after additional 30 s, 0.5 U/ml thrombin, 8 µg/ml collagen, or 1 µM U-46619 were added. Curves are 
representative for at least 4 independent experiments.  
 

 

Next, the efficacy of all four BAs (10 µM, each) to prevent agonist-induced Ca2+ mobilization 

was compared. As shown in Figure 4.22, for platelets stimulated with collagen or U-46619, 

AKBA was most efficient, followed by β-BA and Aβ-BA (the latter was somewhat less potent) 

whereas KBA even enhanced Ca2+ mobilization. Notably, all BAs essentially failed to prevent 

Ca2+ mobilization induced by thrombin. 
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Figure 4.22: BAs selectively suppress agonist-induced Ca2+ mobilization in human washed platelets.  
Fura-2 loaded platelets (108/ml PG buffer) were pre-incubated with the indicated BAs (10 µM, each) or with vehicle 
(DMSO, negative control) for 15 min at RT as indicated. CaCl2 (1mM) was added 2 min prior the measurement of 
[Ca2+] i was started and 0.5 U/ml thrombin, 8 µg/ml collagen, or 1 µM U-46619 were added after 30 s. The maximal 
increase in [Ca2+] i determined within 100 s of measurement is expressed as percentage of control (DMSO). Values 
are given as mean + S.E., n = 4-6. One-way ANOVAs followed by Tukey HSD tests were applied to data related to 
unstimulated controls (DMSO);*P < 0.05 **P < 0.01. 
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Concentration-response studies for the most potent BA analogues revealed IC50 values for 

AKBA and β-BA at 6 and 23 µM for collagen-induced Ca2+ mobilization, respectively, and at 8 

and 18 µM for U-46619-induced Ca2+ mobilization, respectively (Figure 4.23). When thrombin 

was used as agonist, the IC50 values for AKBA and β-BA were > 30 µM. Pre-treatment of 

platelets with AKBA (10 µM) also partially prevented the elevation of [Ca2+] i induced by β-BA 

(43% ± 6.5) similar as observed for collagen or U-46619. 
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Figure 4.23: Concentration-response curves for AKBA and ββββ-BA.  
Fura-2 loaded platelets (108/ml PG buffer), were pre-incubated with the indicated concentrations of AKBA or β-BA 
and after 15 min CaCl2 (1mM) was added and the measurement of [Ca2+] i was started. After 30 s, 0.5 U/ml 
thrombin, 8 µg/ml collagen, or 1 µM U-46619 were added and the maximal increase in [Ca2+] i was determined 
within 100 s, expressed as percentage of control (DMSO). Values are given as mean + S.E., n = 4-5. One way 
ANOVA followed by Tukey HSD tests were applied to data related to unstimulated controls;*P < 0.05 or **P < 
0.01. 
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Since β-BA (≥ 3 µM), and to a minor degree also AKBA (≥ 10 µM), caused a transient elevation 

of [Ca2+] i returning to baseline after about 5 to 7 min, it appeared possible that such an unspecific 

increase in [Ca2+] i leading to desensitized platelets could be the reason for the subsequent failure 

in Ca2+ mobilization upon addition of other agonists. Accordingly, U-46619 which causes a 

transient Ca2+ mobilization similar as observed for 11-methylene-BAs, was first added to 

platelets and after 15 min, platelets were stimulated with either collagen or thrombin. In contrast 

to 11-methylene-BAs, preincubation with U-46619 do not substantially suppress elevation of 

[Ca2+] i evoked by either collagen or thrombin, although a slight and significant reduction of the 

signals were detectable (Figure 4.24).  
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Figure 4.24: Effect of U-46619 on collagen- and thrombin-induced [Ca2+] i mobilization.  
Fura-2 loaded platelets (108/ml PG buffer) were pre-incubated with 1 µM U-46619 or vehicle (DMSO) for 15 min at 
RT. CaCl2 was added and after 30 s platelets were stimulated with either 0.5 U/ml thrombin or 8 µg/ml collagen. 
The maximal increase in [Ca2+] i was determined within 100 s, expressed as percentage of control (DMSO). Values 
are given as mean + S.E., n = 3. Directed t-tests for correlated samples were applied to data related to unaltered 
control,*P < 0.05. 
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4.4.2 Suppression of agonist-evoked platelet aggregation by 11-keto-BAs 

Rapid and pronounced elevation of [Ca2+] i in platelets is a determinant for platelet aggregation in 

response to various stimuli [204, 205]. Since AKBA potently prevented the elevation of Ca2+ in 

platelets stimulated by collagen and U-46619 at rather low effective concentrations (≥ 3 µM) it 

seemed reasonable that BAs could inhibit aggregation induced by these agonists. First, the 

capacity of selected agonists and BAs themselves were analyzed for their ability to induce 

aggregation of washed platelets. As shown in Figure 4.25A, collagen, thrombin, and U-46619 

caused marked aggregation of platelets within seconds or few minutes. Differential effects for 

the BAs were observed: whereas both 11-methylene-BAs at 30 µM efficiently induced platelet 

aggregation, the 11-keto-BAs AKBA as well as KBA (30 µM, each) failed in this respect 

(Figure 4.25B). 
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Figure 4.25: Platelet aggregation induced by different agonists and by BAs.  
(A) Human washed platelets (2 × 108/ml) were resuspended in Tyrode´s buffer. Platelet aggregation was recorded 
for 5 min using a turbidimetric light-transmittance device. CaCl2 (1 mM) was added right before the start of the 
measurement. Cells were stimulated with 0.5 U/ml thrombin, 1 µM U-46619 or 0.6 µg/ml collagen. (B) Aggregation 
of platelets was determined under the same conditions as described above using AKBA, KBA, Aβ-BA or β-BA (30 
µM, each) as agonists. The aggregation response is given as percentage of the maximal light transmission Amax. 
Curves are representative for at least 5 independent determinations. 

 

Next, platelets were pre-incubated with BAs (3 µM or 30 µM, each) for 15 min and subsequently 

stimulated with collagen, thrombin, and U46619 and aggregation was analyzed. Among the four 

BAs, only AKBA (3 µM) efficiently prevented collagen-induced aggregation (Figure 4.26A). In 

contrast, thrombin-evoked aggregation was not prevented by AKBA (up to 30 µM) or any other 

BA (not shown). Of interest, for U-46619-induced aggregation AKBA (30 µM) was only 

moderate and KBA (30 µM) hardly efficient (Figure 4.26A).  



4  RESULTS 90 

Detailed concentration-response studies showed that AKBA prevented platelet aggregation 

induced by collagen with an IC50 value ≤ 1 µM, whereas for U-46619 the IC50 value was 

approximated at 25 µM (Figure 4.26B). Despite the robust inhibition of collagen-induced 

aggregation by AKBA, only a moderate effect was measured with KBA (IC50 = 23 µM) and 

thrombin-evoked aggregation was not impaired. 
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Figure 4.26: AKBA selectively and potently prevents collagen-induced platelet aggregation.   
(A) Human washed platelets (2 × 108/ml in Tyrode´s buffer) were pre-incubated with AKBA and KBA (3 µM, each) 
prior activation by collagen. Platelets treated with thrombin or U-46619 were pre-incubated with AKBA and KBA 
(30 µM, each). After 15 min at RT CaCl2 (1 mM) was added, cells were stimulated with 0.6 µg/ml collagen, 0.5 
U/ml thrombin or 1 µM U46619 and aggregation was recorded. Curves are representative for at least 4-5 
independent determinations. (B) Concentration-response curves for AKBA and KBA. Cells were pre-incubated with 
the indicated concentrations of AKBA and KBA or vehicle (DMSO) for 15 min at RT and aggregation was elicited 
in response to the agonists as indicated. The aggregation response is displayed as percentage of the maximal light 
transmission Amax. Values are given as mean + S.E., n = 3. ANOVAs followed by Tukey HSD tests were applied to 
data related to untreated controls; *P < 0.05 **P < 0.01. 



4  RESULTS 91 

Activation of platelets with collagen, via the GPVI receptor, involves phosphorylation of several 

non-receptor tyrosine including Src family kinases (Src, Fyn, Lyn Hck and Yes), Syk, Fak and 

Jak family kinases and finally leads to the activation of PLCγ2 [221]. To determine the effect of 

AKBA in the collagen signaling pathway, human platelets were pre-incubated with AKBA for 

10 min at RT prior activation by collagen. As shown in Figure 4.27A pretreatment with AKBA 

resulted in a marked reduction of collagen-induced tyrosine phosphorylation of a protein with an 

approx. molecular mass of 150 kDa comparable to the effect of the selective Src family kinase 

inhibitor PP2 [274]. Accordingly, experiments to elucidate a direct effect of AKBA on the 

collagen-related activation of PLCγ2 (phosphorylation at Tyr759) [222] and the upstream Src 

family kinases (phosphorylation at Tyr416) [275] were performed. Preincubation with PP2 

essentially decreased phosphorylation of PLCγ2 and Src family tyrosine kinases, whereas the 

effect obtained by AKBA was moderate. (Figure 4.27B). 
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Figure 4.27: Effect of AKBA on collagen-induced protein tyrosine phosphorylation.  
(A) Washed human platelets (5 × 108/ml in Tyrodes buffer) were pre-incubated with AKBA (30 µM), PP2 (3 µM) 
or vehicle (DMSO) for 10 min at RT. Then, platelets were supplemented with CaCl2 (1mM) and treated with or w/o 
collagen (10 µg/ml) at 37 °C for 3 min. WB analysis on whole platelet lysates were performed using a monoclonal 
anti-phosphotyrosine antibody (PY20). (B) Samples were treated as described above except detection by WB 
analysis, which was performed utilizing phospho-specific antibodies against the Tyr759 phosphorylated PLCγ2 or 
Tyr416 phosphorylated Src family kinases. 
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4.4.3 Platelet aggregation induced by 11-methylene-BAs is Src family kinase 

and PLC dependent. 

As already shown in 4.4.2 β-BA and Aβ-BA (30 µM, each) provoke aggregation of human 

washed platelets. Concentration-response studies revealed EC50 values ≤ 10 µM for both 11-

methylene-BAs (Figure 4.28). 
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Figure 4.28: Concentration-response studies for Aββββ-BA and ββββ-BA.  
Aggregation of platelets was determined under the same conditions as described above. The aggregation response is 
given as percentage of the maximal light transmission Amax and data are given as mean + S.E., n = 4. ANOVAs 
followed by Tukey HSD tests were applied to data related to untreated controls; **P < 0.01. 

 

Previously a partial involvement of Src family kinases and PLC was described for elevation of 

[Ca2+] i by 11-methylen BAs [64]. To examine the involvement of PLC and Src family kinases in 

BA-induced platelet aggregation, U-73122 as an inhibitor of PLC-dependent processes [276] and 

the selective Src family kinase inhibitors PP2 (and its inactive analogue PP3) and SU6656 [277] 

were used (Figure 4.29).  
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Figure 4.29: Modulation of ββββ-BA-induced platelet aggregation by PLC-and Src family kinases inhibitors. 
Platelets (2 × 108/ml) were pre-incubated with U-73122, PP2 (and its inactive analogue PP3), SU6656 or vehicle 
(DMSO) for 15 min at RT. CaCl2 (1 mM) was added and cells were stimulated with 30 µM β-BA. The aggregation 
response is displayed as percentage of the maximal light transmission Amax. Values are given as mean + S.E., n = 3. 
ANOVAs followed by Tukey HSD tests were applied to data related to untreated controls, ***P < 0.001. 
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Preincubation with U-73122 (3 µM) strongly suppressed β-BA-induced platelet aggregation 

comparable to experiments using thrombin or collagen as stimuli (not shown). SU5565 (5 µM) 

almost completely abolished aggregation response initiated by β-BA being equipotent with PP2 

(3µM), whereas its inactive analogue PP3 (3µM) was not active.  

Upon platelets stimulation multiple proteins become phosphorylated at tyrosine residues [278]. 

Treatment of platelets by β-BA (30 µM) induced marked protein tyrosine phosphorylation 

(Figure 4.30A) being equipotent with collagen (10 mg/ml) and both phosphorylation pattern 

were essentially reduced by preincubation with PP2. Hence, the capacity of β-BA to evoke PP2-

sensitive phosphorylation processes such as activation of Src family kinases and downstream 

PLCγ2 was investigated (Figure 4.30B). Both Src family kinases and PLCγ2 were slightly 

phosphorylated in response to β-BA and a weak suppression by PP2 preincubation was 

observed. The substantial tyrosine phosphorylation evoked by β-BA of proteins with approx. 

molecular weights of 120 and 60 kDa (Figure 4.30B) remains to be elucidated.  
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Figure 4.30: ββββ-BA induces tyrosine phosphorylation in washed human platelets.  
(A) Washed human platelets (5 x 108/ml in Tyrodes buffer) were supplemented with CaCl2 (1mM) and activated by 
β-BA, collagen (10 µg/ml) or vehicle (DMSO) at 37 °C for 3 min, as indicated. PP2 preincubation at RT was 10 min 
prior stimulation with the respective activators. WB analysis on whole platelet lysates were performed using a 
monoclonal anti-phosphotyrosine antibody (PY20). (B) Samples were treated as described above except detection 
by WB, which was performed utilizing phospho-specific antibodies against Tyr759 phosphorylated PLCγ2 or 
Tyr416 phosphorylated Src family kinases. 
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4.4.4 BAs differentially modulate thrombin generation  

Besides aggregation, formation of thrombin is considered an essential functional platelet 

response [202]. Recalcified PRP supplemented with β-BA, Aβ-BA, AKBA, KBA or vehicle 

(DMSO/HEPES) was analyzed for generation of thrombin, and as shown in Figure 4.31A, both 

11-methylene-BAs (i.e. β-BA, Aβ-BA) significantly evoked thrombin formation. In contrast, the 

effectiveness of AKBA and KBA up to 30 µM was only moderate compared to 11-methylene-

BAs and thrombin generation was in the range of vehicle (DMSO/HEPES) response. Further 

concentration-response studies revealed an effective concentration of 3 µM for both 11-

methylene-BAs to induce thrombin generation (Figure 4.31B and C). 
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Figure 4.31: Effects of BAs on thrombin generation.  
Thrombin generation was assessed in recalcified PRP. (A) Representative original traces of thrombin generation 
(given as [nM] thrombin). PRP and buffer containing BAs or vehicle (DMSO/HEPES) were tested for their ability 
to induce thrombin generation. (B, C) Concentration-response studies of BAs. Data are expressed as mean velocity 
index (increase over unstimulated cells) + S.E., n= 4. One way ANOVA and Tukey HSD were performed, *P < 0.05 
or ** P < 0.01. 
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To determine if BAs may exert detrimental effects on agonist-induced thrombin generation, 

recalcified PRP was pre-incubated with the indicated BAs for 15 min at RT and thrombin 

generation was initiated by collagen (2 µg/ml) or U-46619 (5 µM). Both agonists led to a 

substantial formation of thrombin (Figure 4.32A) as described in literature [279]. However, 

thrombin generation evoked by collagen or U-46619 remained unaffected by preincubation with 

AKBA or KBA ( Figure 4.32B). In contrast, preincubation with β-BA or Aβ-BA substantially 

potentiated generation of thrombin induced by collagen or U-46619.  
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Figure 4.32: Effects of BAs on agonist-induced thrombin generation.  
(A) Recalcified PRP was treated with collagen (2 µg/ml) or U-46619 (5 µM) to induce thrombin generation 
(representative original curves) PRP was pre-incubated with AKBA, KBA (B); BA, Aβ-BA (C) or vehicle 
(DMSO/HEPES) as indicated and thrombin generation (given as velocity index) was elicited by collagen (2 µg/ml) 
or U-46619 (5 µM). Data are expressed as mean + S.E., n= 3. One way ANOVA and Tukey HSD were applied to 
data related to unstimulated controls, *P < 0.05 or **P < 0.01. 
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4.4.5 Effects of B. serrata extracts on Ca2+ mobilization, platelet aggregation 

and thrombin generation. 

Extracts of B. serrata contain both 11-keto-BAs and 11-methylene-BAs. In the H15® extract, 

AKBA and KBA are sparsely present (approx. 3.7% and 6.1%), whereas the contents of β-BA 

and Aβ-BA (approx. 18.1% and 10.5%) are much higher [15]. In contrast, the extract VBSE 

(Pharmasan GmbH, Freiburg, Germany) is prepared based on a special manufacturing technique 

where 11-keto-BAs are enriched over 11-methylene-BAs. Due to the opposing effects of isolated 

11-keto-BAs and 11-methylene-BAs, the overall effects of the two B. serrata extracts on 

Ca2+mobilization, platelet aggregation and thrombin generation were assessed. In analogy to the 

results observed with isolated 11-methylene-BAs, the H15® extract rapidly (approx. 25 s after 

exposure) and significantly evoked release of [Ca2+] i in washed human platelets at concentrations 

≥ 3 µg/ml (Figure 4.33), whereas the VBSE extract caused only weak and rather slow (70-85 s 

after exposure) Ca2+mobilization at significantly higher concentrations (≥ 30 µg/ml).  
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Figure 4.33: Effects of B. serrata extracts on [Ca2+] i  mobilization in human washed platelets.   
To Fura-2 loaded platelets (108/ml PG buffer), CaCl2 (1 mM) was added 2 min prior determination of [Ca2+] i and 
H15® and VBSE extracts as indicated were added 30 s after the measurement was started. Data are expressed as 
mean + S.E., n= 4. One way ANOVA and Tukey HSD were applied to data related to unstimulated controls, *P < 
0.05 or **P < 0.01. 
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To assess if the extracts may exhibit inhibitory effects on agonist-induced intracellular 

Ca2+mobilization, as observed for isolated BAs (see 4.4.1), Fura-2 loaded platelets were pre-

incubated with H15® and VBSE extracts or vehicle for 15 min at RT and Ca2+mobilization was 

initiated by collagen (8 µg/ml). Interestingly neither H15® extract nor VBSE extract up to 10 

µg/ml altered the effect of collagen significantly, whereas both extracts at 30 µg/ml slightly 

enhanced [Ca2+] i mobilization elicited by collagen (Figure 4.34). 
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Figure 4.34: Effects of B. serrata extracts on collagen-induced [Ca2+] i  mobilization in human platelets.  
Fura-2 loaded platelets (108/ml PG buffer) were pre-incubated with VBSE extract (left panel) or H15® extract (right 
panel) for 15 min at RT. CaCl2 (1 mM) was added 2 min prior determination of [Ca2+] i and collagen (8 µg/ml) were 
added 30 s after the measurement was started. Curves are representative for at least 3 independent experiments.  

 

Next, the capacity of the extracts to evoke platelet aggregation was assessed. In agreement with 

the results obtained by isolated BAs (see Figure 4.28), the H15® extract rapidly and potently 

induced aggregation of washed human platelets with effective concentrations ≥ 10 µg/ml, 

comparable to 11-methylene-BAs. In contrast, the VBSE extract (up to 30 µg/ml) caused no 

aggregation (Figure 4.35A). Pre-treatment of platelets with H15® (up to 10 µg/ml) failed to 

inhibit aggregation induced by collagen but on the other hand, the VBSE potently suppressed the 

collagen-induced response (IC50 = 10 µg/ml). Again, in spite of the prominent prevention of 

collagen-induced aggregation by VBSE, only moderate inhibition at higher concentration of 

VBSE (30 µg/ml) was detectable for U-46619-evoked aggregation, and no effect was observed 

when thrombin was used as agonist (Figure 4.35B).  
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Figure 4.35: Differential effects of B. serrata extracts on platelet aggregation.  
(A) Human washed platelets (2 × 108/ml in Tyrode´s buffer) were supplemented with CaCl2 (1 mM) right before the 
start of the measurement and cells were stimulated with H15® extract or VBSE extract as indicated. Then, 
aggregation was recorded for 5 min using a turbidimetric light-transmittance device. (B) Concentration-response 
curves for extracts of B. serrata extracts on agonist-induced aggregation. Cells were pre-incubated with the 
indicated concentrations of H15®, VBSE extract or vehicle (DMSO) for 15 min at RT and aggregation was elicited 
in response to the agonists as indicated. The aggregation response is displayed as percentage of the maximal light 
transmission Amax. Values are given as mean + S.E., n = 3-4. ANOVAs followed by Tukey HSD tests were applied 
to data related to untreated controls, *P < 0.05 or **P < 0.01. 
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Finally, the effect of the B. serrata extracts on thrombin generation was investigated. H15® 

extract at concentrations ≥ 1 µg/ml potently induced thrombin formation in recalcified PRP 

(Figure 4.36A) and thus, acted in analogy to previous results observed for isolated 11-

methylene-BAs (Figure 4.31). In contrast, the VBSE extract (up to 30 µg/ml) was not active and 

also no effect was observed on collagen-induced thrombin generation which is in line with the 

previous findings for 11-keto-BAs (see 4.4.4). Notably, that H15® extract showed cumulative 

effects on collagen-induced formation of thrombin (Figure 4.36B).  
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Figure 4.36: Effects of B. serrata extracts on thrombin generation.  
Thrombin generation was assessed in recalcified PRP. (A) PRP and buffer containing H15®, VBSE extract or 
vehicle (DMSO/HEPES) as indicated were added to each well of a 96-well microtiter plate and were tested for their 
ability to induce thrombin generation. (B) Effects of H15® and VBSE extract on collagen-induced thrombin 
generation. PRP was pre-incubated with H15® extract, VBSE extract or vehicle for 15 min at RT and thrombin 
generation was induced by collagen (2 µg/ml).Data are expressed as mean (increase over unstimulated cells) + S.E., 
n= 3-4. One way ANOVA and Tukey HSD were performed, *P < 0.05 or **P < 0.01.  
 

In summary, this data show that BAs depending on the structure (e.g. the presence of the 11-

keto- and 3-O-acetyl moiety) differentially modulate platelet physiology which is further 

influenced by the nature of the platelet agonist and the relative content of 11-methylene- and 11-

keto-BAs in B. serrata extracts seemingly determines the overall effect on platelet functions. 

Nevertheless, there are additional experiments needed to define responsible molecular 

mechanisms in detail and to carefully evaluate the pharmacological relevance of these 

interactions. 
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5 DISCUSSION 

5.1 Identification and evaluation of molecular targ ets of boswellic acids 

within the arachidonic acid cascade 

5.1.1 Interaction of BAs with cyclooxygenases 

Initial attempts to elucidate the molecular mechanisms underlying the anti-inflammatory 

properties of B. spec. extracts proposed 5-LO as a target of BAs because LT formation was 

blocked in cellular as well as in cell free assays [52-55]. Together with the fact that LTs play 

pivotal roles in some inflammatory and allergic reactions, it was generally accepted at that time 

that inhibition of LT formation by interference with 5-LO is the molecular basis of the anti-

inflammatory effects of BAs. On the other hand, inhibition of the related enzymes COX-1 and 

p12-LO by BAs has been excluded for a long time [53]. In order to demonstrate the selectivity of 

BAs for 5-LO, the authors addressed the effects of BAs on COX-1 and p12-LO. However, 

instead of using AKBA, the Aβ-BA analogue lacking the 11-oxo moiety was utilized for this 

purpose [53, 280]. In fact, Aβ-BA is a poor inhibitor of COX-1 (this study) and also failed to 

inhibit p12-LO [8]. Additionally, previous studies reported BA-induced release of AA from 

human platelets but only 11-methylene-BAs (e.g. β-BA) caused further transformation to 12-

H(P)ETE [8] whereas 11-keto-BAs (AKBA) were hardly effective. Indeed, AA-metabolism 

forming the COX-1 product 12-HHT was neglected by AKBA. Hence, it is demonstrated that 

AKBA is a potent blocker of COX-1 in intact human platelets as well as of the isolated COX-1 

enzyme. Interestingly, the effects of BAs on cellular COX-2 product synthesis and isolated 

COX-2 activity were only modest (IC50 > 100 µM).At least in intact platelets, the 11-keto moiety 

plays a critical role for the interference with COX-1 product synthesis, but also the 3-O-acetyl 

group seemingly governs the potency, since KBA suppressed COX-1 activity less efficiently. 

Similar structure-activity relationships were observed before for other targets and biochemical 

actions [8-10, 56] designating AKBA as the most potent BA-analogue. Along these lines, 

Poeckel et al. showed that p12-LO is potently inhibited by AKBA, whereas the 11-methylene-

BAs rather stimulated this enzyme [8]. Interestingly, when the potencies of AKBA for inhibition 

of p12-LO (IC50 = 17 µM [8]), COX-1 (IC50 = 32 µM) and 5-LO (IC50 = 16 [54]) in cell-free 

assays are compared, there are actually only small differences apparent. 
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For COX-1 inhibition, the efficacy of AKBA in intact cells (IC50 = 6 to 23 µM) was somewhat 

higher than in cell free assays (IC50 = 32 µM). It is possible that AKBA, due to its high 

hydrophobicity accumulates in subcellular membrane compartments of platelets where activated 

COX-1 resides. Moreover, in intact platelets, the efficacy of AKBA depended on the stimulus 

(e.g. thrombin vs. A23187), and AKBA was most efficient to inhibit COX-1 when platelets were 

activated by A23187 (IC50 = 6 µM). It is not clear why BAs lacking the 11-keto moiety (β-BA 

and Aβ-BA) fail to potently block COX-1 activity under these conditions. Also for inhibition of 

5-LO, AKBA was most potent in cells challenged by A23187, whereas β-BA and Aβ-BA were 

hardly efficient [53, 63] and this thesis. Possibly, the prominent increase in [Ca2+] i evoked by 

A23187 or A23187-induced alterations of membrane characteristics may govern the cellular 

uptake and/or the interference of 11-keto-BAs with COX-1 (5-LO).   

Besides the inhibition of product synthesis, a direct interference of BAs with COX-1 (but not 

COX-2) could be visualized by the protein pull-down approach using immobilized β-BA or 

KBA. Since the binding was reversed by AA or ibuprofen, it is assumed that BAs bind to the 

active site of COX-1. In addition to COX-1, it was shown that p12-LO is efficiently precipitated 

by KBA-Seph [8]. Therefore, AKBA can not be regarded as a selective inhibitor of 5-LO, since 

it also almost equally well inhibits COX-1 and p12-LO, implying rather pleiotropic effects of 

BAs on enzymes within the AA cascade. Moreover, BAs were shown to inhibit the activity of 

various CYP450 enzymes [19] that can also metabolize AA, leading to EETs [281]. Since 

inhibition of COX-1 by AKBA was reduced by increasing the amount of AA, and since binding 

of COX-1 to immobilized KBA is prevented by AA, AKBA might be considered as a 

competitive COX-1 inhibitor. Regarding the chemical structure, AKBA represents a lipophilic 

(fatty) acid that may fit into AA-binding sites of respective enzymes. The docking results 

confirm the interaction of BAs with COX-1 (within the AA-binding pocket). All four BAs 

docked into the active site of COX-1, which might be achieved via van der Waals interactions 

complemented with hydrogen bonds formed by the hydroxyl or the acetyl-group with Tyr355 

and Arg120. The interference with Arg120 is regarded as a common feature of NSAIDs [127]. 

The positive Chemscore values for the BAs indicate favorable binding to the active site of COX-

1, even though they fail to explain the different IC50 values measured. Noteworthy, the obtained 

Chemscore values are smaller than for the co-crystallized structures BFL (and SC-558). 

Relatively higher Chemscores were obtained for binding of the BAs to COX-1 over COX-2, 

correlating with the rather poor inhibition of COX-2 activity by BAs (IC50 > 100 µM). 

Collectively, the docking study suggests favorable binding of BAs to COX-1.   

Finally, to estimate the pharmacological relevance of the interference of BAs with COX-1 a 

whole blood experiment reflecting in vitro conditions was applied. None of the BAs tested (50 

µM) essentially suppressed COX-1 product formation in human whole blood. It is widely 
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accepted that the potency of NSAIDs for COX inhibition is influenced by their plasma protein 

(mainly albumin) binding [282]. Since the amount of free drug is important for its inhibitory 

activity the impaired efficacy of BAs may be due to high albumin binding (also see 5.1.2). While 

AKBA is regarded as a competitive and reversible inhibitor of COX-1, competition between free 

drug (AKBA) and substrate (AA) for COX-1-binding might be influenced by unspecific protein 

binding. In contrast, irreversible (aspirin) and slow reversible (indomethacin) inhibition seems to 

be less affected by protein binding.  

In conclusion, despite the long appreciated opinion about AKBA and its selectivity for 5-LO, 

AKBA also interferes with COX-1, and as shown before, for other AA-metabolizing enzymes 

(i.e. p12-LO [8] and CYPs [19]. Comparative studies with well-recognized COX-1 inhibitors 

revealed that AKBA is about equipotent to ibuprofen and aspirin in COX-1 inhibition, at least in 

cell-free assays and isolated intact cells. The inhibitory effect of AKBA is reversible, and 

increased levels of AA as substrate for COX-1 impair the efficacy. Moreover, pull-down 

experiments using purified or COX-1 of cellular origin and docking studies indicate a favourable 

binding of AKBA into COX-1 active site. In contrast, COX-2 activity was less affected by BAs 

as compared to COX-1, and pull-down experiments as well as docking studies exclude strong 

affinities of BAs towards COX-2. However, the failure of AKBA to essentially inhibit COX-1 

activity under physiological mimicking conditions (whole blood assay) questions the 

pharmacological relevance of this interference regarding the anti-inflammatory potential of 

AKBA-containing preparations (i.e. frankincense). 
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5.1.2 Interference of BAs with 5-lipoxygenase 

As mentioned above, inhibition of 5-LO activity and formation of LTs was long proposed to be 

the major mechanism of BAs accounting for the anti-inflammatory properties of frankincense 

preparations [5, 53, 54]. The suppression of LT formation by BAs or frankincense extracts was 

analyzed so far only in cell-free assays or in isolated leukocytes from rats or guinea pigs but 

never in a physiological context (e.g. human whole blood assays or in humans in vivo) or under 

experimental conditions that consider pharmacologically relevant factors (i.e. plasma albumin-

binding). Therefore, the pharmacological relevance of the inhibition of 5-LO by BAs in vivo is 

unclear. This study provides a detailed analysis of the interference of the major natural occurring 

BAs with 5-LO regarding mechanistic aspects of 5-LO inhibition, and pharmacological 

relevance of 5-LO as molecular target applying physiologically relevant test systems. 5-LO 

activity is modulated by several co-factors (lipid hydroperoxides, substrate concentration, Ca2+ 

and phospholipids [268]) that often affect the potency of pharmacological 5-LO inhibitors [232, 

283]. 5-LO inhibitors are categorized as redox-type inhibitors, iron ligand-type inhibitors, and 

nonredox-type 5-LO inhibitors [268]. AKBA lacks antioxidant and iron-chelating properties [54] 

and was proposed to act directly on 5-LO at a regulatory and selective site for pentacyclic 

triterpenes that is different from the AA-binding site. Thus, binding of 4-azido-5-125iodo-

salicyloyl-β-alanyl-11-keto-boswellic acid to 5-LO was supported by Ca2+ (> 500 nM) but 

reduced by AA (10 - 50 µM), suggesting that AKBA binds 5-LO in an AA-competitive and 

Ca2+-depending manner [55]. However, attempts to selectively precipitate 5-LO from PMNL 

lysates using immobilized BAs failed [8].  

This study revealed that AKBA and KBA were the most potent β-configurated BA analogues 

(IC50 = 2.9 and 6.3, respectively) suppressing activity of human recombinant 5-LO but also the 

α-configurated αBA significantly reduced 5-LO catalysis (IC50 = 15.3 µM). Concerning 

essential factors regulating 5-LO activity, AKBA and KBA were more efficient at high AA 

concentrations (20 µM), and also in intact PMNL, supplementation of excess of AA (20 µM) 

rather improved the efficacy, excluding an AA-competitive mode of action and interference with 

FLAP. Moreover, Ca2+ did not enhance the potency against 5-LO activity but even slightly 

impaired it. Possibly, binding to 5-LO and inhibition of 5-LO catalytic activity is conferred by 

BAs at different sites of the enzyme. In fact, also classical nonredox-type 5-LO inhibitors (e.g. 

ZM230487) may act at two different (AA-binding) clefts on 5-LO with distinct affinities [283]. 

Finally, AKBA was less active in the presence of PC and when crude 5-LO in E. coli 

supernatants was analyzed, which is not readily understood but at least indicates an interference 

with the regulatory PC-binding C2-like domain or other putative regulatory sites [189]. When 

BAs were applied to cellular assays, using Ca2+-ionophore stimulated human PMNL IC50 values 
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(3.2 and 8.8 µM for AKBA and KBA, respectively) were slightly higher as observed in previous 

studies (IC50 = 1.5 and 2.8 µM) using PMNL from rats [53, 54]. Species-related differences in 

the susceptibility of 5-LO towards BAs are likely responsible, supported by the finding that 

AKBA was even less potent in PMNL from guinea pigs [30]. Also by using the human cell lines 

MM6 and HL-60 higher IC50 values for AKBA (12 and 15 µM, respectively, [57]) were 

determined. Parameters that influence the bioactivity of test compounds in vivo (i.e. albumin-

binding) or stimuli like LPS plus fMLP mimicking pathophysiological conditions in the body 

[284], were applied to estimate the efficacy of BAs as 5-LO inhibitors in vivo. In assays using 

human activated PMNL in the presence of albumin, BAs and frankincense extracts were hardly 

effective or completely failed to inhibit 5-LO activity. This property might account also for the 

failure of BAs (i.e. AKBA and KBA) to inhibit 5-LO activity in whole blood. Albumin is 

abundant in plasma (30-40 mg/ml), and lipophilic acids (e.g. acidic drugs such as NSAIDs, 

warfarin, tolbutamide) are known to be substantially bound to serum albumin [282]. Such 

(unspecific) protein-binding often impairs the pharmacological activity of the respective drug in 

whole blood assay as already shown for some LT synthesis inhibitors (e.g. MK-886) [186]. Also 

BAs are lipophilic acids explaining the tight binding of AKBA to albumin (> 95%) and the loss 

of potency in the presence of albumin. Conclusively, albumin-binding might be mainly 

responsible for the failure of AKBA and KBA to inhibit 5-LO product synthesis in whole blood, 

congruent with the lack of suppression for COX-1 product formation in this assay. Moreover, 

upon single administration of 800 mg frankincense extract to human volunteers the LTB4 plasma 

levels were not reduced [285]. Similarly, Wildfeuer et al. failed to demonstrate suppression of 

LTB4 and LTC4 ex-vivo in A23187-challenged PMNL from guinea pigs treated (i.p.) with 20 

mg/kg acetyl-BAs [30] which might be related also to the poor bioavailability of KBA and 

AKBA [16].  

It is unequivocal that BAs are direct inhibitors of 5-LO with a mechanistically unique mode of 

action, influenced by 5-LO-modulating co-factors and by experimental assay settings. 5-LO 

products play pivotal roles in certain inflammatory diseases but the benefits of frankincense 

preparations are unlikely based on the interference of 11-keto-BAs with 5-LO. The role of LTs 

in asthma and allergic rhinitis is well established and anti-LTs are successfully applied in 

therapy. However, accumulating evidence excludes a pivotal role of LT in arthritis and 

inflammatory bowel diseases [198, 286]. As high effectiveness of frankincense has been reported 

for the treatment of Crohn`s disease, colitis and osteoarthritis [5], it is rather unlikely that the 

interference with LT synthesis represents a responsible mode of action.  
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In particular, the fairly low plasma levels of 11-keto-BAs (≤ 0.3 µM) obtained after oral 

administration of frankincense accompanied by the lack of reduction of LTB4 plasma levels, and 

the failure of 11-keto BAs to inhibit 5-LO product formation in whole blood raises serious 

doubts about the pharmacological relevance of 5-LO inhibition by BAs as underlying molecular 

mechanism of the anti-inflammatory properties of frankincense.  

 

 

5.1.3 Interference of BAs with the microsomal Prostaglandin E2 synthase-1 

PGE2 is a key player in inflammation and pain, and the inducible, COX-2-coupled mPGES-1 is 

regarded as a potential target for the development of anti-inflammatory therapeutics [172]. The 

identification of mPGES-1 as a molecular target of BAs in this study provides evidence for a 

functional interaction of β-BA with mPGES-1 in vivo which may contribute to the potent anti-

inflammatory effectiveness of administered frankincense preparations.  

First of all, mPGES-1 selectively bound to immobilized BAs in a pull-down assay, and SPR 

spectroscopy data confirm such direct interaction. The pull-down approach using immobilized 

BAs selectively precipitate mPGES-1 from A549 lysates as well as captured purified mPGES-1 

from an incubation mixture containing E. coli proteins. This confirms the suitability of this 

experimental strategy for target identification of BAs as previously demonstrated. SPR-based 

biosensors such as BIAcore® are widely used to determine biomolecular interactions in real time 

without labeling requirements [287], including direct binding of small molecules (e.g. BAs) to 

macromolecular targets (e.g. mPGES-1) [252]. Unfortunately, inconsistent binding patterns were 

obtained by using naturally occurring BAs as analyte, presumably due to their high lipophilicity 

and thus, concentration-dependent aggregation or super-stoichiometric binding behavior [288]. 

Even extensive changes of assay conditions failed to improve the quality. Hence, BIAcore® 

experiments were conducted using the more hydrophilic synthetic BA analogue ox-KBA. The 

SPR-based ligand-analyte studies revealed KD values of 5.2 to 13 µM for ox-KBA, which fit 

well with the IC50 value (5 µM) of ox-KBA in the mPGES-1 cell-free assay, suggesting a direct 

relation between binding (measured by SPR) and interference with the catalytic activity of 

mPGES-1. It was demonstrated that natural occurring BAs (i.e. AKBA, KBA, and β-BA) at low 

micromolar concentrations inhibit mPGES-1-mediated PGE2 formation in cell-free assays. BAs 

concentration-dependently block PGE2 biosynthesis in intact cells as well but were somewhat 

less potent under these conditions. It should be noted that BAs (up to 100 µM) failed to reduce 

the formation of the COX-2-derived product 6-keto PGF1α in a cellular assay and hardly 

inhibited the activity of isolated COX-2. Conclusively, suppression of cellular PGE2 biosynthesis 

is the result of the interference with mPGES-1, rather then with COX-2. In particular β-BA, the 
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major BA present in frankincense reaching the highest plasma levels (up to 10 µM) among the 

BAs in frankincense-treated humans [7], suppressed PGE2 formation in human whole blood at 

physiological relevant concentrations. Importantly, generation of the COX-2 derived metabolite 

6-keto-PGF1α was not affected under the same conditions and detrimental effects on COX-2 or 

mPGES-1 expression patterns were also excluded. In this respect, the failure of 11-keto-BAs 

might be related to strong albumin-binding as observed before. Notably, complete suppression of 

PGE2 formation could not be achieved by β-BA up to 100 µM. Similar results were obtained for 

the mPGES-1 inhibitor MK-886. In contrast, the selective COX-2 blocker celecoxib was more 

efficient but also basal PGE2 levels remain detectable which is probably due to the contribution 

of COX-1 and other PGES [289].  

Moreover, at a dose of 1 mg/kg (i.p.), β-BA reduced the inflammatory reaction in two in vivo 

models of inflammation, carrageenan-induced mouse paw edema and rat pleurisy being 

equipotent to 5 mg/kg indomethacin. During carrageenan-induced edema formation, PGE2 levels 

are significantly elevated [273, 290], and COX-inhibitors prevented the inflammatory response 

[291]. Results from previous studies using the carrageenan-induced paw edema (rat or mouse) 

and i.p. application of undefined mixtures of BAs concur with data obtained in this study, 

although much higher doses (e.g. 125 mg/kg) were used in the studies performed by Singh et al. 

[4, 292]. Also in the early phase of carrageenan-induced pleurisy PGE2 plays a central role [293, 

294]. Intriguingly, in the pleurisy model, exudates from β-BA-treated animals showed significant 

lower PGE2 levels whereas the formation of 6-keto-PGF1α and LTB4 was not significantly 

altered. Moreover, eicosanoid formation in exudates from AKBA-treated animals remained 

unaffected reflecting the inability of AKBA to reduce PGE2 in human whole blood. Because 

suppression of PGE2 formation is the major anti-inflammatory mechanism of NSAIDs (like 

indomethacin), lowering PGE2 by inhibition of mPGES-1 may contribute to the anti-

inflammatory properties of β-BA. As observed in whole blood experiments, β-BA was less 

potent compared to indomethacin to reduce PGE2 levels, but still efficiently suppressed exudate 

formation and infiltration of inflammatory cells, supporting the idea that other anti-inflammatory 

features of β-BA in vivo such as inhibition of cat G [227] may still cooperate.  

In contrast to others, this study proposes β-BA as the most relevant anti-inflammatory BA that 

may act via inhibition of PGE2 formation. Clinical studies with pilot character indicate 

therapeutic efficacy of frankincense mainly in OA and RA [5, 41]. As mentioned above, 

extensive studies using 5-LO inhibitors or FLAP-deficient mice exclude a role of LTs in OA or 

RA [198, 286]. On the other hand, in the pathophysiology of both OA and RA, PGE2 is a key 

mediator, accounting for typical symptoms of these inflammatory diseases [295], which also 

rationalizes the frequent therapeutic use of NSAIDs. mPGES-1 is a crucial enzyme in massive 

PGE2 formation from COX-2-derived PGH2 and both COX-2 and mPGES-1 are co-ordinately 
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unregulated at sites of inflammation [296]. In patients suffering from RA or OA, a pivotal role 

for mPGES-1 was demonstrated [148, 297, 298] and data from animal arthritis models support 

the functionality of mPGES-1 in inflammatory joint diseases [165, 272, 273]. The 

pharmacological intervention with mPGES-1 in the therapy of PGE2-mediated disorders is 

proposed to be a potential alternative for NSAIDs and coxibs [172, 299] supported by results 

from recent studies on mPGES-1 KO mice where an advantage of the gastric and cardiovascular 

safety versus mice lacking COX-1 or COX-2 (or mice treated with unselective NSAIDs or 

coxibs, respectively) was evident [166, 300]. In fact, the selective mPGES-1 inhibitor MF63 

(IC50 = 1 nM) [162] relieved fever and inflammatory pain in animal models but did not cause 

NSAID-like gastrointestinal toxic effects [301]. Interestingly, BAs showed gastric ulcer 

protective effects in different experimental models [31], and a 90-day double blind, randomized, 

placebo-controlled study supports evidence for the safety of a B. serrata extract in OA patients 

accompanied by significant improvement of the disease [41].   

Hence, one may speculate that the beneficial effects of frankincense preparations observed in 

clinical studies and animal models of OA and RA are related to the intervention of β-BA with 

PGE2 synthesis due to direct inhibition of mPGES-1. Such speculations are favored by the close 

correlation between steady-state plasma levels of β-BA (6.35 to 10.1 µM) in humans obtained 

after oral administration of frankincense preparations and the effective concentrations of β-BA 

(≥ 3 µM) to suppress PGE2 synthesis in human whole blood in vitro accompanied by its 

substantial anti-inflammatory potential in vivo.  
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5.2 Boswellic acids differentially modulate platele t physiology 

The functional properties and the potencies of the BAs depend on their structure, in particular on 

the absence or presence of the 11-keto group, and indeed, AKBA is frequently the most effective 

analogue [8-10, 56], although in some instances the 11-methylene-BAs possess superior 

efficacy, depending on the target/effect and cell type [8, 64, 77, 80]. Previously, it was shown 

that 11-methylene-BAs augmented [Ca2+] i in human platelets depending on IP3/PLC and Src 

kinase signaling pathways and initial analysis regarding functional platelet responses (platelet 

aggregation and thrombin generation) were undertaken, supporting rather agonistic properties of 

11-methylene-BAs [64]. In this respect, 11-keto-BAs were hardly effective. Because of the 

cardiovascular and inflammatory risk evoked by an alteration in the character and function of 

platelets [302], the present study addressed the effects of 11-keto- and 11-methylene-BAs as well 

as two different B. serrata extracts on agonist-induced platelet physiology.  

First of all, experiments using the typical platelet agonists collagen, U-46619 and thrombin [205] 

revealed that BAs, depending on their structure (11-keto group and/or 3-O-acetyl group), 

differentially modulate [Ca2+] i which is further influenced by the nature of agonist. AKBA 

suppressed Ca2+ mobilization induced by collagen or U-46619 with almost equal potencies (IC50 

= 6 and 8 µM), but not when thrombin was used as a stimulus. Since both agonists use rather 

distinct signaling pathways to elicit Ca2+ mobilization (see below) it is not immediately possible 

to relate the effects of AKBA towards one common target. Besides AKBA, also β-BA reduced 

U-46619- and collagen-induced Ca2+ mobilization, though less efficient (IC50 = 18 and 23 µM, 

respectively). This result was actually quite surprising, since 11-methylene-BAs themselves 

cause a transient increase of [Ca2+] i in platelets (this study and [64]). Such a transient increase of 

[Ca2+] i could probably desensitize platelets by unspecific actions (e.g. depletion of intracellular 

Ca2+ stores) and thus, be the reason for the subsequent failure of Ca2+ release evoked by a second 

agonist. In fact, elicitation of Ca2+ mobilization by U-46619 and subsequent stimulation of 

platelets with collagen or thrombin partially prevented the effects of these agonists but were 

slightly less pronounced as in the case of BAs. One would expect that KBA, containing an 11-

keto moiety or Aβ-BA, possessing a 3-O-acetyl-group should be more potent than β-BA. 

However, KBA caused no suppression at all but rather enhanced the signals induced by all 

agonists and Aβ-BA was less effective than AKBA or β-BA. Thus, it is conceivable that AKBA 

and β-BA act at different targets which both leading to suppression of Ca2+ mobilization. 

Together, BA-modulated Ca2+ homeostasis in platelets seems to be rather complex and so far the 

puzzling effects could not be related to a discrete molecular basis.  

Since elevation of [Ca2+] i is a determinant for aggregation of washed platelets [204, 205] the 

prominent antagonistic properties of AKBA were subjected to their impact on agonist-evoked 
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platelet aggregation. Effective concentrations of AKBA (≤ 1 µM) significantly antagonized 

collagen-induced platelet aggregation. AKBA was less potent to suppress platelet aggregation 

induced by U-46619, and when thrombin was used to evoke these responses, AKBA failed at all. 

KBA (30 µM) only marginally affected platelet aggregation elicited by collagen. Apparently, the 

3-O-acetly group and the 11-oxo moiety present in AKBA render this BA a potent inhibitor of 

collagen-evoked platelet aggregation implying that defined structure-activity relationships exist 

excluding unspecific effects of AKBA in this case. Along these lines, the effects of two separate 

B. serrata extracts, considered to contain distinct amounts of 11-keto- and 11-methylene-BAs on 

platelet activation were determined. The relative composition and content of 11-keto- and 11-

methylene-BAs in these extracts determine their overall beneficial (platelet suppressing) or 

detrimental (platelet activating) effectiveness. Lower concentrations of AKBA were sufficient to 

suppress collagen-evoked aggregation (IC50 ≤ 1 µM) as compared to those required to inhibit 

Ca2+ mobilization (IC50 = 6 µM). Moreover, AKBA was about equipotent for suppression of 

Ca2+ release in response to U-46619 as compared to collagen, but U-46619-evoked aggregation 

was hardly affected by AKBA (IC50 = 25 µM). Therefore, the inhibitory effects of ABKA on 

agonist-induced Ca2+ mobilization and on aggregation also might be separated. It is possible that 

already a minimal impairment of [Ca2+] i as in the case of collagen is sufficient to substantially 

affect aggregation. Presumably, AKBA targets a component(s) pivotal in the signal transduction 

of collagen (and U-46619), which apparently is dispensable for thrombin-induced pathways 

leading to Ca2+ mobilization and platelet aggregation. It should be noted that the signal 

transduction pathways of collagen and U-46619 are quite distinct and, at least in part, utilize 

different types of signaling molecules. U-46619 binds GPCRs and signals via Gi/q proteins and 

PLCβ to rapidly release of Ca2+ from IP3-sensitive stores and platelet aggregation depends on Gi 

stimulation by ADP an other released granule contents [218]. Collagen mainly binds 

glycoprotein VI and slowly allows Ca2+ entry via Src family kinase/PLCγ2-mediated pathway 

[223] and evokes full platelet activation. Preliminary analysis of the phosphorylation status of 

collagen-activated platelets showed that AKBA even at higher concentrations (30 µM) slightly 

suppressed collagen-induced phosphorylation of Src familiy kinase and PLCγ2 and was less 

active compared to the selective Src family kinase inhibitor PP2. Note that collagen-induced 

platelet activation through GPVI and subsequent activation of PLCγ2 is considered to depend 

also on bruton`s tyrosine kinase-mediated phosphorylation [303]. This might be one explanation 

for the rather moderate effect on collagen-induced PLCγ2-phosphorylation by AKBA in these 

experiments.   

In addition, the previously reported dependence of Ca2+ mobilization of 11-methylene-BAs on 

Src-family kinase-/PLC-mediated pathways [64] was extended to platelet aggregation. Both, β-

BA and Aβ-BA significantly (EC50 ≤ 10 µM) evoked platelet aggregation which was sensitive to 
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unselective PLC blockade (U-73121) as well as to selective Src family kinase inhibitors SU6656 

and PP2. In parallel to platelet activation an increase of tyrosine phosphorylation is apparent 

[278] and such effects were observed for β-BA, being equipotent to collagen. Preincubation with 

PP2 partially underlined the role of Src-family kinase for β-BA signaling but additional 

experiments remains to identify the accurate molecular basis.   

Because thrombin is the major trigger for stable plug formation and functions as a potent platelet 

activator it was challenging to examine the impact of platelet-modulating agents on thrombin 

formation [304]. 11-methylene-BAs themselves strongly and concentration-dependently induced 

thrombin generation which concurs with previous findings [64]. Moreover, they potentiate the 

effect of collagen- and U-46619-induced thrombin generation, accounting for a rather pro-

thrombotic potential [305]. In contrast, thrombin generation itself or agonist-induced thrombin 

formation was not essentially altered by 11-keto-BAs. Despite the prominent role of [Ca2+] i as an 

important signaling step modulating various platelet responses (aggregation, thrombin formation, 

granule secretion), also Ca2+-independent mechanisms in platelets exist. Thus, PKC pathways 

[306, 307] or PI3K transduction have been demonstrated to participate in platelet activation 

while [Ca2+] i was absence [308]. It is feasible that such mechanisms may account for the 

puzzling effects in BA platelet signaling.   

In summary, depending on their structurally variety BAs differentially modulate platelet 

physiology. While 11-metylene BAs (in particular β-BA) mainly mediated platelet activation 

reflected by pronounced Ca 2+ mobilization, platelet aggregation and thrombin generation, 11-

keto-BAs showed rather alleviative effects. In this regard, the efficient and selective inhibition 

on collagen-induced platelet aggregation by AKBA is of particular interest. At least some of the 

effects observed, were evoked by concentrations of BAs which could be physiologically relevant 

after oral intake of substantial amounts of adequate frankincense preparations. In this respect, the 

versatile properties of isolated BAs could be transferred to two distinct B. serrata extracts 

differing in their total amount of 11-methylene- and 11-keto-BAs. Conclusively, the overall 

pharmacological actions on platelets evoked by isolated BAs or frankincense preparations should 

be taken into account when administering them to patients. 
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6 SUMMARY 

Extracts of Boswellia species (B. spec.) gum resin have been traditionally used for centuries in 

the folk medicine of India and China to treat inflammatory disorders, and also immunmodulatory 

and anti-cancer properties were reported. Since there is a growing demand in the western society 

for natural- and especially plant-derived remedies, the scientific community initially focused on 

frankincense in the early seventies and expanded their studies in the late eighties until today. 

Promising beneficial results were obtained in pilot clinical trials, demonstrating efficacy of 

diverse frankincense preparations in asthma, osteoarthritis and inflammatory bowel diseases. 

Today, only one approved medicine derived from B. serrata gum resin is available on the market 

(H15® Gufic), and its distribution is restricted to India and a part of Switzerland. Based on the 

assumption that boswellic acids (BAs) are the main pharmacological principles of frankincense 

extracts, numerous studies were carried out to elucidate molecular and cellular mechanisms of 

BAs responsible for the anti-inflammatory potential of frankincense applied in humans. Most 

studies focused on AKBA or KBA as pharmacological principles and several targets including 5-

lipoxygenase (5-LO), platelet-type 12-LO, human leukocyte elastase, IκB kinases, cytochrome 

P450 enzymes and topoisomerases have been proposed, but their interaction in vivo has been 

largely neglected. Thus, the pharmacological relevance of the interference of BAs with these 

targets is still unclear.  

 

Following this line, the present work describes the identification of novel molecular targets of 

BAs and evaluates the interference with important key players involved in inflammatory 

processes. The protein fishing technique, using a BA affinity matrix, identified cyclooxygenase 

(COX)-1 as a molecular target of BAs. Subsequent functional analysis revealed AKBA as a 

potent inhibitor of COX-1 product formation in human platelets (IC50 6 - 17 µM) as well as of 

the isolated enzyme. In contrast, 11-methylene-BAs (i.e. β-BA and Aβ-BA) and related 

pentacyclic triterpenes such as α-amyrin were virtually inactive. The mode of inhibition by 

AKBA was reversible and most likely competitive. Further characterizations favored direct 

binding of AKBA to the active side of COX-1 and excluded strong interference with COX-2. 

Interestingly, switching from cellular assays to more physiological conditions (i.e. whole blood 

experiments) strongly impaired COX-1 inhibition by AKBA, indicating a limited 

pharmacological relevance of this interaction. 
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The knowledge about the proposed interaction of 5-LO with BAs was incomplete and therefore 

suppression of leukotriene (LT) biosynthesis as a molecular basis for the anti-inflammatory 

potential of BA-containing preparations was re-evaluated. So far, studies analyzed suppression 

of LTs only in cell-free assays or in neutrophils from rats (but not human cells) and these studies 

partially ignored the complex regulation of 5-LO or the inclusion of important physiological 

parameters (i.e. albumin binding or whole blood assays). Among the natural occurring BAs 

tested, AKBA and KBA were most potent to suppress 5-LO product formation in human 

neutrophils as well as the activity of isolated 5-LO with IC50 values of 2.8 - 8.8 µM. Again, 11-

methylene-BAs were hardly effective (IC50 > 30 µM) but for the first time an inhibition of LT 

formation for α-BA (IC50 = 15.3 -23.1 µM) was demonstrated. Factors influencing 5-LO activity 

(i.e., Ca2+, phospholipids, substrate concentration) were shown to modulate the potency of 11-

keto-BAs to inhibit 5-LO. High substrate concentrations improved the efficacy of AKBA and 

KBA towards 5-LO, while the presence of Ca2+ seems to be negligible. An impaired potency of 

11-keto-BAs was observed when phospholipids (i.e. phosphatidylcholine) were present or crude 

5-LO in supernatants of E. coli was analyzed. The most interesting observation in this study was 

the failure of 11-keto-BAs to suppress 5-LO product formation in test systems that reflect 

physiological conditions in vivo such as inclusion of albumin in neutrophil incubations or in 

human whole blood assays, presumably caused by extensive binding of AKBA to albumin (> 

95%). Moreover, oral administration of frankincense extracts to human healthy volunteers failed 

to reduce LTB4 plasma levels. Together, this data show that BAs (in particular 11-keto-BAs) are 

direct 5-LO inhibitors that efficiently suppress 5-LO product synthesis in common in vitro test 

models but the pharmacological relevance of such interference in vivo seems questionable. 

Turning the focus again to prostanoids, it was demonstrated that BAs concentration-dependently 

blocked prostaglandin (PG)E2 synthesis in vitro and in vivo. PGE2 is a key player in the 

pathophysiology of many inflammatory disorders (e.g., rheumatoid arthritis, osteoarthritis, pain, 

fever) and the beneficial effects of NSAIDs are essentially due to suppression of PGE2 

formation. First of all, the suitable application of the fishing construct indicated an interaction of 

BAs with mPGES-1 derived from crude A549 cell lysates. Direct interference was confirmed by 

additional fishing experiments, using isolated mPGES-1 in surface plasmon resonance (SPR) 

analysis. The SPR-based ligand-analyte studies with the synthetic derivative 3-O-oxaloyl-KBA 

revealed a KD in the low micromolar range which fairly well correlates with the IC50 (5 µM) in 

the mPGES-1 cell-free assay. Potent concentration-dependent suppression of conversion of 

PGH2 to PGE2 in the cell-free assay was demonstrated for AKBA (IC50 = 3 µM), β-BA (IC50 = 5 

µM) and KBA (IC50 = 10 µM). Aβ-BA was less active and α-amyrin completely failed in this 

respect. BAs also reduced formation of PGE2 in cellular-based assays, although higher 
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concentration were needed as in cell-free experiments (IC50 = 20 µM). In human whole blood, β-

BA remarkably prevented lipopolysaccharide-induced PGE2 formation at 10 µM by almost 50%, 

whereas all other BAs tested were virtually inactive. Notably, the required concentration for β-

BA to provoke this effect is in the range of achievable steady-state plasma levels in humans (6.4 

to 10.1 µM) after oral administration of medical frankincense preparations, thus implying a 

physiological relevance of these findings. A detrimental effect on the formation of the COX-2-

derived metabolite 6-keto-PGF1α in human whole blood experiments by β-BA was excluded, 

underlying the selectivity of the interference with mPGES-1. Finally, intraperitoneal (i.p.) 

administration of low-dose β-BA (1 mg/kg, compared to 5 mg/kg indomethacin) reduced the 

development of carrageenan-induced paw edema in mice as well as pleurisy in rats, accompanied 

by substantially reduced PGE2 levels but without significant effects on 6-keto-PGF1α and LTB4 

formation. In this regard, no significant effects by AKBA (i.p. 1 mg/kg) were observed. 

Conclusively, the selective interference of β-BA, as a major ingredient of frankincense, with 

mPGES-1 is very likely to contribute to the anti-inflammatory effectiveness and provides a solid 

biochemical basis for the beneficial effects of frankincense in the treatment of inflammation. 

Since previous studies indicated that 11-methylene-BAs stimulate platelets, the effect on platelet 

physiology by all β-configurated BAs from frankincense was investigated in more detail. BAs 

lacking the 11-keto moiety (i.e. β-BA and Aβ-BA) were found to be platelet activators in a 

concentration-dependent manner, displayed by robust Ca2+ mobilization, platelet aggregation and 

thrombin generation. The effective concentrations were determined at 3-10 µM. Here, it is 

shown, that β-BA induces platelet aggregation which partially involves Src kinase familiy as 

putative signaling transducers towards phospholipase (PL)C and potentiates agonist-evoked 

thrombin formation. Surprisingly, β-BA was also able to impair Ca2+
 mobilization when U-

46619 was used as agonist and to a minor extent when platelets were challenged with collagen. 

In contrast, 11-keto analogues (i.e. AKBA and KBA) showed rather “silencing” effects on 

platelet physiology. They are poor inducers of Ca2+ mobilization and essentially failed to evoke 

platelet aggregation and thrombin formation. In fact, when collagen was used as a stimulus for 

platelet activation pronounced antagonistic properties of AKBA were demonstrated. 

Remarkably, AKBA exerted a prominent detrimental effect on collagen-induced platelet 

aggregation (IC50 ≤ 1 µM). Attempts to elucidate putative interaction partners or signaling 

pathways point to the Src kinase family/PLCγ2 route. In addition, the effects of two B. serrata 

extracts containing different amounts of BAs on platelet functions were investigated.  

Together, one may conclude that 11-methylene-BAs stimulate platelet biochemistry and induce 

select platelet functions whereas 11-keto-BAs prevent activation of human platelets. In view of 
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the low effective BA concentrations necessary to modulate platelet physiology, these findings 

might be of pharmacological relevance for patients applying frankincense preparations. 

In summary, the data presented in this work provide substantial additional information about 

BAs and their effects on molecular and cellular aspects of inflammatory processes. Therefore, 

the object of research was focused on enzymes within the arachidonic acid cascade and platelet 

physiology. Detailed investigations yielded new insights on the influence of BAs on intracellular 

signaling and functional characteristics of platelets. Application of the BA-fishing construct 

discovered two novel molecular targets of BAs, namely COX-1 and mPGES-1. Moreover, 

extensive functional analysis considering important physiological parameters critically examined 

the interference of BAs with COX enzymes, 5-LO and mPGES-1 in view of their in vivo 

relevance and the findings rather exclude suppression of COX and 5-LO product formation as 

responsible anti-inflammatory mechanisms. In fact, the interference of β-BA with mPGES-1, 

lowering pathophysiological PGE2 levels in vitro and in vivo represents a more reasonable 

molecular basis contributing to the anti-inflammatory potential of BA-containing frankincense 

preparations in humans. 
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7 ZUSAMMENFASSUNG 

Die traditionelle Phytomedizin in Indien und China verwendet bereits seit Jahrhunderten 

Extrakte verschiedener Weihrauchspezies (B. spec.) zur Behandlung entzündlicher 

Erkrankungen. Darüber hinaus finden sich Berichte, die eine immunmodulierende und 

anticancerogene Wirkung von B. spec. beschreiben. Nicht zuletzt wegen der stetig wachsenden 

Nachfrage und Akzeptanz hinsichtlich pflanzlicher Arzneimittel beschäftigen sich 

Wissenschaftler bereits seit über 30 Jahren mit Weihrauch. Neben den empirischen Daten 

lieferten initiale klinische Studien aussichtsreiche Ergebnisse, die eine Wirksamkeit 

verschiedener Weihrauchextrakte zur Behandlung von Asthma, Osteoarthritis und entzündlichen 

Darmerkrankungen indizieren. Bis heute ist jedoch nur ein aus B. serrata gewonnenes 

Weihrauchpräparat (H15® Gufic) als Arzneimittel erhältlich, dessen Zulassung sich allerdings 

auf Indien und einen Kanton in der Schweiz beschränkt.  

Auf der Annahme basierend, dass Boswelliasäuren (BAs) die pharmakologisch relevanten 

Wirkstoffe von Weihrauchextrakten darstellen, wurde eine Vielzahl pharmakologischer Studien 

zur Klärung molekularer bzw. zellulärer Wirkmechanismen von BAs durchgeführt. Mit Hilfe 

dieser Daten sollte eine rationale Basis für die heilsamen Effekte von Weihrauchextrakten im 

Menschen geschaffen werden, die eine effektive und sichere Therapie mit Weihrauchpräparaten 

oder einzelnen definierten BAs in Aussicht stellt. Die Mehrzahl der Untersuchungen fokussierte 

sich nahezu ausschließlich auf die Effekte von AKBA oder KBA und es wurden molekulare 

Wechselwirkungen mit 5-Lipoxygenase (5-LO), Plättchen-Typ 12-LO, humaner Leukozyten 

Elastase, IκB Kinasen, Topoisomerasen und Cytochrom P450 Enzymen postuliert. Eine 

Beurteilung dieser Interaktionen unter physiologisch relevanten Versuchsbedingungen ist bisher 

stark vernachlässigt worden und im Hinblick auf die z. T. sehr hohen benötigten 

Hemmkonzentrationen in vitro und den relativ niedrigen Plasmaspiegel von BAs erscheint eine 

pharmakologische Relevanz in vivo fraglich.  

Vor diesem Hintergrund beschreibt die vorliegende Arbeit die Identifizierung neuer molekularer 

Targets von BAs und untersucht die Beeinflussung zentraler Komponenten innerhalb 

entzündlicher Prozesse. Durch den Einsatz eines Pulldown-Verfahrens, welches sich eine BA- 

Affinitätsmatrix zu Nutze macht, gelang die Identifizierung der Cyclooxygenase (COX)-1 als 

molekularem Bindungspartner von BAs. Die sich anschließende funktionelle Charakterisierung 

dieser Interaktion bestätigt AKBA als einen potenten Inhibitor der zellulären COX-1 

Produktbildung (IC50 6-17 µM) sowie der katalytischen Aktivität des isolierten Enzyms. 11-

Methylen-BAs und strukturverwandte pentazyklische Triterpene wie z.B. α-Amyrin hingegen 

weisen keine oder eine nur äußerst geringe Aktivität auf (IC50 >> 50 µM). Mechanistische 
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Studien zeigen für AKBA eine reversible und von der Substratkonzentration abhängige 

Hemmung, die sich mit dem Profil des bekannten COX-1–Hemmers Ibuprofen vergleichen lässt. 

Zusätzliche Untersuchungen belegen eine direkte Bindung von AKBA im aktiven Zentrum der 

COX-1 und schließen eine maßgebliche Interferenz mit der COX-2 aus (IC50 >> 50 µM). Eine 

Variation der experimentellen Bedingungen von zellulären zu mehr physiologischen Systemen 

(wie .z.B. Vollblutassays) hat eine drastische Verminderung der COX-1 Inhibition durch AKBA 

zur Folge, was die pharmakologische Relevanz dieser molekularen Wechselwirkung limitiert. 

Die postulierte Interaktion der 5-LO mit BAs ist teilweise unvollständig untersucht worden. 

Deshalb wurde in dieser Arbeit die Hemmung der LT-Biosynthese als molekularer 

Wirkmechanismus BA-haltiger Präparationen re-evaluiert. Die bislang durchgeführten Studien 

analysierten die Suppression der LT-Bildung nur in zellfreien Systemen oder in isolierten 

Neutrophilen von Ratten (kaum jedoch in menschlichen Zellen). Weiterhin wurde die komplexe 

Regulation der 5-LO sowie die Berücksichtigung physiologischer Versuchsparameter 

(Proteinbindung oder Vollbluttestsysteme) in diesen Studien stark vernachlässigt. In der 

aktuellen Untersuchung wurde gezeigt, dass von den natürlich vorkommenden β-konfigurierten 

BAs vor allem AKBA und KBA (11-Keto-BAs) die 5-LO Produktbildung in menschlichen 

Neutrophilen sowie die Aktivität humaner rekombinanter 5-LO mit IC50 Werten von 2,8 - 8,8 

µM hemmen. BAs ohne 11-Keto-Funktion zeigen deutlich schwächere Wirksamkeit (IC50 > 30 

µM). Darüber hinaus konnte zum ersten Mal eine Hemmung der zellulären und zellfreien 5-LO 

Aktivität für eine α-konfigurierte BA, α-BA (IC50 = 15,3 - 23,1 µM) gezeigt werden. Des 

Weiteren wurde für Faktoren, welche die 5-LO Aktivität modulieren (Ca2+, Phospholipide, 

Substratkonzentrationen) eine Beeinflussung auf die 11-Keto-BA-vermittelte 5-LO Inhibition 

demonstriert. Hohe Substratkonzentrationen verbessern die Wirkstärke von AKBA und KBA, 

wobei die Anwesenheit von Ca2+ nur einen marginalen Einfluss ausübt. Eine deutlich 

verminderte Potenz für AKBA und KBA wurde in der Gegenwart von Phospholipiden 

(Phosphatidylcholin) und bei Aktivitätsbestimmungen in E. coli Überständen hinsichtlich der 5-

LO Produktbildung festgestellt. Die wohl auffälligste Beobachtung in dieser Studie war, dass 11-

Keto-BAs nicht in der Lage sind, die 5-LO Produktbildung unter physiologisch relevanten 

Testbedingungen (wie z.B. in der Anwesenheit von Albumin im zellulären System oder in 

Vollblutassays) zu vermindern. Eine hinreichende Erklärung für dieses Phänomen wurde in der 

starken Bindung von AKBA an Albumin (> 95%) gefunden. Außerdem konnte gezeigt werden, 

dass die orale Applikation eines definierten Weihrauchextraktes (800 mg/Tag) bei gesunden 

Probanden nicht zu einer Reduktion von LTB4-Plasmaspiegeln führt.  

Zusammenfassend liefern diese Ergebnisse klare Hinweise darauf, dass es sich bei BAs (im 

Besonderen 11-Keto-BAs) um direkte Inhibitoren der 5-LO handelt, die in standardisierten in 
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vitro Testmodellen eine effiziente Hemmung der 5-LO Produktbildung hervorrufen. Allerdings, 

ist eine pharmakologische Relevanz dieser Interaktion in vivo sehr fragwürdig. 

Interessanterweise konnte eine BA-vermittelte konzentrationsabhängige Hemmung der 

Prostaglandin (PG)E2 Synthese in vitro und in vivo ermittelt werden. PGE2 nimmt eine 

Schlüsselrolle in der Pathophysiologie vieler entzündlicher Zustände (wie z.B. rheumatoider 

Arthritis, Osteoarthritis, Schmerz und Fieber) ein und die nutzbringenden Effekte 

nichtsteroidaler Antiphlogistika in der Therapie solcher Krankheitszustände kommt im 

Wesentlichen durch eine Reduktion der PGE2 Bildung zustande. Zunächst indizierte die 

Anwendung der Pulldown-Methode in A549 Zelllysaten die mikrosomale PGE2 Synthase 

(mPGES)-1 als molekularen Bindungspartner von BAs, und die Bestätigung einer direkten 

Interaktion zwischen BAs und isolierter mPGES-1 gelang anschließend mittels Oberflächen-

Plasmon-Resonanz Spektroskopie (SPR). Die SPR-Bindungsstudien mit dem synthetischen 

Derivat 3-O-oxaloyl-KBA ergaben KD Werte im unteren mikromolaren Bereich (5-13 µM) und 

korrelieren mit dem IC50 Wert (5 µM) der in einem zellfreien mPGES-1 Aktivitätsassay ermittelt 

wurde. Eine potente konzentrationsabhängige Suppression der katalytischen mPGES-1 Aktivität 

in einem zellfreien Testsystem wurde für AKBA (IC50 = 3 µM), β-BA (IC50 = 5 µM) und KBA 

(IC50 = 10 µM) nachgewiesen, wohingegen Aβ-BA (IC50 > 30 µM) deutlich schwächer aktiv und 

das strukturverwandte pentazyklische Triterpen α-Amyrin (IC50 > 100 µM) praktisch unwirksam 

war. Die zelluläre PGE2 Bildung wird ebenfalls von BAs (AKBA, β-BA und KBA) reduziert 

(IC50 = 20 µM), obwohl höhere Konzentrationen zur Inhibition benötigt werden als im zellfreien 

System. In Vollblutexperimenten zeigt β-BA (10 µM) ein erhebliches inhibitorisches Potential 

und supprimiert die Lipopolysaccharid-vermittelte PGE2 Bildung um 50%. Alle anderen 

getesteten BAs waren praktisch unwirksam. Beachtenswert ist, dass die zur PGE2 Hemmung 

benötigte Konzentration von β-BA im Rahmen erreichbarer steady-state Plasmaspiegel in vivo 

(6,4 – 10 µM) liegt und der Befund der PGE2 Hemmung physiologische Relevanz aufweist. Wie 

bereits in zellfreien und zellulären Experimenten gezeigt, konnte auch im Vollblut ein Einfluss 

auf die COX-2-vermittelte 6-Keto-PGF1α-Synthese durch β-BA ausgeschlossen und dadurch die 

Selektivität der Wechselwirkung mit mPGES-1 unterstrichen werden. Schlussendlich reduziert 

die intraperitoneale (i.p.) Applikation von β-BA (1 mg/kg) die Entwicklung eines Carragenin-

induzierten Pfötchenödems in der Maus sowie eine Brustfellentzündung in der Ratte. Dabei 

wurden signifikant verminderte PGE2 Level im Brustfell-Exsudat der Ratte festgestellt, während 

eine wesentliche Veränderung der gebildeten 6-keto PGF1α- sowie LTB4-Mengen ausblieb. 

AKBA (i.p., 1mg/kg) war in diesem Zusammenhang nicht aktiv.  

Zusammenfassend implizieren diese Daten, dass die selektive Interaktion von β-BA mit der 

mPGES-1 eine signifikante entzündungshemmende Potenz aufweist und somit einen 
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molekularen und pharmakologisch relevanten Wirkmechanismus darstellt, der unter anderem 

einen wesentlichen Beitrag zur Klärung der Mechanismen der anti-inflammatorischen Effizienz 

von Weihrauchextrakten liefern kann. 

Da initiale Studien in Thrombozyten auf stimulierende Effekte von 11-Methylen-BAs hinwiesen, 

wurden in der vorliegenden Arbeit die Einflüsse der in Weihrauch vorkommender β-

konfigurierten BAs auf physiologische Prozesse humaner Thrombozyten im Detail analysiert. In 

diesen Experimenten konnte gezeigt werden, dass BAs ohne 11-Keto Funktion (β-BA und Aβ-

BA) grundsätzlich als Aktivatoren einzelner zellulärer Funktionen aufzufassen sind und 

konzentrationsabhängig eine Ca2+-Mobilisierung, Thrombozytenaggregation und 

Thrombinbildung induzieren (EC50 ≥ 3 µM). Mit Hilfe pharmakologischer Inhibitoren konnte bei 

der β-BA-vermittelten Aggregation humaner Thrombozyten eine partielle Beteiligung der 

intrazellulären Signaltransduktionskette Src Kinasen/PLC festgestellt werden. Interessanterweise 

war β-BA ebenfalls in der Lage, die U-46619- und Kollagen-induzierte Ca2+-Mobilisierung zu 

verringern. Im Gegensatz zu 11-Methylen-BAs verursachen 11-Keto-BAs (AKBA und KABA) 

eine äußerst schwache Ca2+-Mobilisierung und induzieren weder Thrombozytenaggregation noch 

Thrombingenerierung. Vielmehr lässt sich bei einer Vorbehandlung von Thrombozyten mit 11-

Keto-BAs eine hemmende Wirkung auf Agonist-stimulierte Zellen beobachten. So bewirkt die 

Vorinkubation mit AKBA eine potente Inhibition der Kollagen-induzierten Aggregation 

humaner Thrombozyten (IC50 ≤ 1 µM), wohingegen der Thrombin-vermittelte Effekt nicht 

moduliert wurde. Versuche, diesen markanten antagonistischen Effekt möglichen 

Interaktionspartnern bzw. Signaltransduktionswegen zu zuordnen, deuten auf eine Beteiligung 

der Src Kinasen-/PLCγ2-Route hin. Zusätzlich wurden die Einflüsse zweier unterschiedlicher B. 

serrata Extrakte hinsichtlich ihrer modulativen Eigenschaften auf Thrombozytenfunktionen 

getestet.  

Aufgrund dieser Resultate kann man schlussfolgern, dass 11-Methylen-BAs eine aktivierende 

Wirkung auf die Physiologie sowie auf einzelne funktionelle Eigenschaften humaner 

Thrombozyten ausüben, während 11-Keto-BAs diesbezüglich eher antagonistische Effekte 

vermitteln. Im Hinblick auf die zur Modulation benötigten effektiven Konzentration von BAs 

kann eine pharmakologische Relevanz dieser Interaktionen während einer Einnahme der 

Standarddosis von Weihrauchpräparaten nicht ausgeschlossen werden. 

Zusammenfassend liefert diese Arbeit wesentliche Erkenntnisse über BAs und ihre Effekte auf 

molekulare und zelluläre Aspekte entzündlicher Prozesse, erstmals auch unter dem Aspekt der 

pharmakologischen Relevanz. Der Forschungsschwerpunkt wurde diesbezüglich auf Enzyme der 

Arachidonsäurekaskade und Plättchenphysiologie gelegt. Die Untersuchungen ergaben neue 

Einblicke in die durch BAs beeinflussten intrazellulären Signalwege und funktionelle 
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Eigenschaften humaner Thrombozyten. Die Anwendung moderner Identifizierungsstrategien 

(Pulldown-Methode und SPR-Studien) führte zur Entdeckung von COX-1 und mPGES-1 als 

neue molekulare Targets von BAs. Durch detaillierte funktionelle Charakterisierung unter 

Berücksichtigung wesentlicher physiologischer Parameter wurde die Wechselwirkung von BAs 

mit COX-1/2, 5-LO und mPGES-1 hinsichtlich einer möglichen biologischen Relevanz in vivo 

überprüft. Bedingt durch diese Ergebnisse sind die Wechselwirkungen von BAs (im speziellen 

AKBA) mit COX-1 und 5-LO als verantwortliche anti-entzündliche Wirkprinzipien 

auszuschließen. Vielmehr repräsentiert die Hemmung der pathophysiologischen PGE2 Bildung 

in vitro und in vivo über die β-BA-vermittelte Inhibition der mPGES-1 einen adäquaten 

molekularen Mechanismus der mit großer Sicherheit zur anti-inflammatorischen Effektivität von 

BAs und Weihrauchpräparationen im Menschen beiträgt.  
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