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ZUSAMMENFASSUNG i

Zusammenfassung

Thermoelektrische Materialien werden als Energiewandler zur Erzeugung elektrischer Energie
aus Wärme und zur Peltierkühlung verwendet. In Peltierkühlern kommen bei Raumtemperatur
bevorzugt Bi2Te3 Volumenmaterialien zum Einsatz, weil sie sich durch ihren großen Seebeck-
Koeffizienten (S ≈ ±200 µV/K), ihre große elektrische Leitfähigkeit (σ ≈ 1000 1/Ω cm), ihre
geringe (elektronische und Gitter-) Wärmeleitfähigkeit (λ ≈ 1.5 W/m K) und ihren dementspre-
chend hohen thermoelektrischen Gütefaktor [ZT = (S2σ/λ) T ≈ 1] bei T = 300K auszeichnen.

Thermoelektrische Quantentrog-Strukturen aus Bi2Te3 wie z.B. Übergitterstrukturen
[künstliche Nanostrukturen (ans)] wurden von Hicks und Dresselhaus im Jahr 1993 vorge-
schlagen. Im Jahr 1999 wurden von Venkatasubramanian Bi2Te3/Sb2Te3 Übergitterstrukturen
(ans) mit spektakulären thermoelektrischen Gütefaktoren von ZT > 2 bei einer Periode von
6 nm hergestellt. Die ans zeigte im Vergleich zu den Volumenmaterialien einen erhöhten Wert
für das Produkt S2σ und eine geringere Gitterwärmeleitfähigkeit. Die reduzierte Gitterwärme-
leitfähigkeit wurde auf die durch die ans induzierte strukturelle Unordnung und damit einer
Reduktion der mittleren freien Weglänge der Phononen zurückgeführt. Die ans zeigte gegen-
über den Volumenmaterialien einen deutlich größeren ZT -Wert und löste eine Entwicklung zur
Herstellung von nanostrukturierten Materialien für thermoelektrische Anwendungen aus.

Bei der durch festkörperphysikalische Ansätze bestimmten Materialforschung an Thermo-
elektrika stellt man fest, dass die Verbesserung einer Transportgröße sich leicht nachteilig auf
die anderen Größen auswirkt, weil sich die Transportkoeffizienten aus den allen gemeinsamen
fundamentalen Parametern des Elektronen- und des Phononensystems ergeben. Der Seebeck-
Koeffizient und die elektrische Leitfähigkeit hängen vor allem von der Dotierung und der che-
mischen Zusammensetzung ab, dagegen wird die Gitterwärmeleitfähigkeit stark von struktu-
reller Unordnung auf der Nanometer-Skala bestimmt. Die Herausforderung besteht nun in der
Synthese thermoelektrischer Materialien mit elektrischen Eigenschaften wie bei Einkristallen
und, im Gegensatz dazu, thermische Eigenschaften wie bei amorphen Materialien. Kombinierte
Struktur- und Transportmessungen und eine Diskussion der Ergebnisse sind zum Auffinden des
Optimums zwischen diesen beiden Extremen, ”electron crystal/phonon glass“, nötig.

In der Literatur findet sich zu Bi2Te3 eine große Zahl an Transportmessungen, nur weni-
ge Strukturanalysen, jedoch keine kombinierten Messungen. Eine offene Frage ist, warum bei
Bi2Te3 Volumenmaterialien die Gitterwärmeleitfähigkeit so gering ist. Bei Voruntersuchungen
mittels Transmissionselektronenmikroskopie (TEM) wurde in Bi2Te3 Volumenmaterialien eine
Strukturmodulation [natürliche Nanostrukturen (nns)] mit einer Wellenlänge von 10 nm nachge-
wiesen. In dieser Arbeit wurde die nns auf ihre Natur hin untersucht und wird hinsichtlich ihrer
Auswirkungen auf die Transportgrößen, insbesondere der Gitterwärmeleitfähigkeit, diskutiert.

Die Transmissionselektronenmikroskopie in Kombination mit energiedispersiver Röntgen-
spektrometrie (EDX) ist wegen ihrer unerreichten Ortsauflösung und ihrer hervorragenden
Empfindlichkeit und Genauigkeit zur Messung mechanischer Spannungen und chemischer
Zusammensetzungen das Mittel der Wahl für die Untersuchung der Beziehung Struktur-
chemische Zusammensetzung-physikalische Eigenschaften von thermoelektrischen Materialien.
In dieser Arbeit werden erstmals methodische Arbeiten dargestellt, die eine genaue Quantifizie-
rung der chemischen Zusammensetzung und der mechanischen Spannungsfelder in Bi2Te3 und
strukturell und chemisch ähnlich beschaffenen Verbindungen liefern.

Diese Arbeit lässt sich wie folgt unterteilen: (I) Bi2(Te,Se)3 und (Bi,Sb)2Te3 Volumenmate-
rialien, die durch das Bridgman Verfahren synthetisiert wurden und in kommerziell erhältlichen
Peltierelementen verwendet werden. (II) Bi2Te3 Dünnfilme und Bi2Te3/Bi2(Te,Se)3 Übergitter-
strukturen, die am Fraunhofer-Institut für Physikalische Messtechnik (IPM) hergestellt wurden.
(III) Methodische Arbeiten zur TEM Probenpräparation, zur quantitativen chemischen Analy-
se mit hoher Genauigkeit durch EDX im TEM und zur Bildsimulation von Versetzungen und
der nns im Rahmen der dynamischen Beugungstheorie.

(Ia) N -leitende Bi2(Te0.91Se0.09)3 und p-leitende (Bi0.26Sb0.74)1.98(Te0.99Se0.01)3.02

Volumenmaterialien zeigten eine Textur mit Korngrößen von 1−10 µm, die Atomzahlanteile von
Te und Se im n-Typ Material betrugen 54.4 at.% bzw. 5.5 at.% und variierten um ±0.5 at.%.
Ein ähnliches Ergebnis ergab sich für das p-leitende Material bezüglich Sb und Bi. Die Stöchio-
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metrieschwankungen im n-leitenden und p-leitenden Bi2Te3 waren auf der Submikrometer-
Skala klein und nahmen bis auf ±2 at.% auf größerer Längenskala zu. Die Messungen be-
stätigten das Ergebnis der wellenlängendispersiven Röntgenspektrometrie einer inhomogenen
chemischen Zusammensetzung. Die Stöchiometrieschwankungen sind mit Schwankungen des
Seebeck-Koeffizienten von ±9 µV/K, gemessen in einer Seebeck-Mikrosonde, korreliert.

(Ib) Eine Strukturmodulation [natürliche Nanostruktur (nns)] wurde nachgewiesen und mit-
tels Stereomikroskopie und Bildsimulation detailiert untersucht. In Dünnfilmen und Übergitter-
strukturen wurde die nns ebenso nachgewiesen und ist daher ein allgemeines Charakteristikum
für Bi2Te3 Materialien. Die nns erwies sich als ein reines, sinusförmiges Verschiebungsfeld mit
(i) einem Verschiebungsfeldvektor in Richtung von 〈5,−5, 1〉 mit einer Amplitude von etwa
10 pm und (ii) einem Wellenvektor in Richtung von {1, 0, 10} mit einer Wellenlänge von 10 nm.
Bi2Te3 Proben, die unterschiedlichen Chargen bei vergleichbaren Herstellungsbedingungen ent-
nommen wurden, zeigten eine unterschiedliche Charakteristik bezüglich der nns: es wurde ent-
weder keine, eine oder zwei überlagerte nns beobachtet. Die nns ist in allen Teilen der Probe
mit derselben Orientierung gegenwärtig. Die Bildung der nns erfordert entweder eine betimmte
Stöchiometrie oder eine bestimmte thermische Vorgeschichte und ergibt sich aus der Neigung
von Telluriden zur Bildung von amorphen Phasen. Ein geordnetes Netzwerk von Versetzungen
mit Abständen von wenigen Nanometern und chemische Fluktuationen auf der Nanometerskala
schieden als Ursache für die nns aus. Das Verschiebungsfeld der nns ist der mittleren Mikro-
struktur überlagert und sollte die thermoelektrischen Eigenschaften wesentlich beeinflussen. Vor
allem die Gitterwärmeleitfähigkeit sollte eine Reduktion aufgrund der Streuung von Phononen
am Spannungsfeld der nns zeigen. Außerdem sollten infolge der nns ein- oder nulldimensiona-
les Verhalten und anisotrope Transporteigenschaften bezüglich der Basalebene auftreten. Die
Anzahl der nns und die thermoelektrischen Eigenschaften sollten sich durch die Wachstumspa-
rameter der Materialien kontrollieren lassen.

(Ic) Im Bi2Te3 wurden Versetzungen in der Basalebene mit einer hohen Beweglichkeit bei
Raumtemperatur beobachtet, was eine besondere physikalische Eigenschaft darstellt. Der Gleit-
prozess und die Wechselwirkungen der Versetzungen wurden erstmals analysiert und die Aus-
wirkungen auf die thermoelektrischen Eigenschaften werden diskutiert. Der Gleitprozess wurde
durch Heizen der Probe mit einem fokussierten Elektronenstrahl von 120 keV ausgelöst, äußere
mechanische Spannungen wurden nicht angelegt. Die Versetzungen waren in Bewegungsrichtung
ausgebäumt und nur an der Oberfläche der Proben gepinnt. Stereomikroskopische Untersuchun-
gen in Kombination mit Bildsimulationen ergaben Versetzungen in der Basalebene mit einer
Dichte von 109 cm−2 und Burgersvektoren vom Typ 〈1, 1, 0〉. Videosequenzen von einzelnen glei-
tenden Versetzungen und von Gruppen von Versetzungen wurden aufgenommen. Frei stehende
Versetzungen zeigten eine hohe Beweglichkeit in Richtung ±〈1, 1, 0〉 bei einer Geschwindigkeit
von 10−100 nm/s. Versetzungsdipole waren gepinnt und konnten nicht gleiten. Äquidistante, in
der gleichen Gleitebene angeordnete Versetzungen zeigten eine kollektive Bewegung. In unter-
schiedlichen Gleitebenen übereinander gestapelte Versetzungen waren unbeweglich und wirkten
als Hindernis für andere gleitende Versetzungen. Das Gleiten der Versetzungen wurde auf Rest-
scherspannungen von etwa 10MPa zurückgeführt, wobei die Bewegungsrichtung vom Vorzeichen
des Burgersvektors abhing. Die offensichtlichen anziehenden und abstoßenden Kräfte zwischen
den Versetzungen begründen sich in den Kräften verbunden mit den elastischen Spannungsfel-
dern der Versetzungen.

Die Bedeutung der Streuung der Phononen an Versetzungen in Bi2Te3, begünstigt durch
deren hohe Beweglichkeit und Dichte, wurde durch zwei Betrachtungen bestätigt. Zum einen
ist bekannt, dass die Gitterwärmeleitfähigkeit durch die Streuung der Phononen am elastischen
Spannungsfeld der Versetzungen reduziert wird. Die mittlere freie Weglänge der Phononen wur-
de auf etwa 800µm bei 3K abgeschätzt und stimmte mit publizierten Daten überein. Zum an-
deren sagt die Theorie der Versetzungs-Resonanz von Granato und Lücke eine Wechselwirkung
zwischen Phononen und oszillierenden Versetzungen vorher. Die Absorption von Ultraschall
durch Versetzungen wurde abgeschätzt und mit publizierten Daten verglichen.

(II) Bi2Te3 Dünnfilme und Bi2Te3/Bi2(Te0.88Se0.12)3 Übergitterstrukturen (SLs) wurden
mittels Molekularstrahlepitaxie (MBE) auf BaF2 mit einer Periode von 12 nm und 6 nm am
Fraunhofer IPM abgeschieden. Mittels der RHEED-Technik (reflection high-energy electron
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diffraction) wurde Lagenwachstum nachgewiesen, mittels der Röntgenbeugung (XRD) wurden
die Gitterparameter und SL-Perioden gemessen und ein epitaktisches Wachstum bestätigt. Die
Transportgrößen in der Basalebene wurden an den Dünnfilmen und den SLs gemessen und erga-
ben für das Produkt S2σ Werte zwischen 28 und 35 µW/cm K2. Für die Gitterwärmeleitfähig-
keiten wurden bei den Bi2Te3 Dünnfilmen 1.60 W/m K und bei einem 10 nm SL 1.01 W/m K
ermittelt. Die besten Gütefaktoren ZT wurden bei den SLs erzielt, wobei die Werte geringer
ausfielen als bei Volumenmaterialen. Für die Bi2Te3 Dünnfilme und die SLs ergaben sich Verset-
zungsdichten von etwa 2×1010 cm−2. Die SLs zeigten Verbiegungen mit Amplituden von 30 nm
(12 nm SL) and 15 nm (6 nm SL) bei einer Wellenlänge von 400 nm. Außerdem wurden Verset-
zungen in Wachstumsrichtung (threading dislocations) mit einer Versetzungsdichte größer als
2 × 109 cm−2 beobachtet. Die Grenzflächen der Übergitterstrukturen sind besonders stark im
Bereich dieser ”threading dislocations“ verbogen. Ungestörte Bereiche zeigten eine maximale
laterale Ausdehnung von 500 nm. Sowohl in Dünnfilmen als auch in den SLs wurden Struktur-
modulationen [natürliche Nanostrukturen (nns)] mit einer Wellenlänge von 10 nm und einem
Wellenvektor in Richtung (1, 0, 10) beobachtet.

Die Mikro-/Nanostruktur wird maßgeblich von den Übergitterstrukturen, der nns und den
Versetzungen in den Materialien bestimmt. Die hier erhaltenen Ergebnisse zeigen vielfältige
mechanische Spannungen infolge der nns und der Versetzungen in den Proben auf, die bisher
nicht erkannt und identifiziert wurden. Sie haben einen unmittelbaren Einfluss auf die Trans-
portgrößen, vor allem auf die Gitterwärmeleitfähigkeit. In Dünnfilmen zeigten der Seebeck-
Koeffizient und die elektrische Leitfähigkeit eine negative Korrelation, hingen von der Ladungs-
trägerdichte ab und zeigten keine klare Abhängigkeit dieser Größen von der Mikrostruktur.

(IIIa) Die TEM Probenpräparation der Volumenmaterialien und der Dünnfilme beinhaltete
mechanisches Polieren und konventionelle Ionenstrahlätzung und war eine große Herausfor-
derung. Bei den Dünnfilmen und Übergitterstrukturen schlugen die Standard-Präparations-
methoden aufgrund der Sprödigkeit des BaF2 Substrates und der schwachen Bindung zwischen
dem Bi2Te3 Dünnfilm und dem BaF2 Substrat fehl und mussten modifiziert werden.

(IIIb) Erste EDX Spektren, die im Zeiss 912Ω TEM aufgenommen wurden, zeigten Artefak-
te in Form von Bi Röntgenstreustrahlung bei Messungen im Vakuum neben der Probe (hole-
count). Eine Streustrahlungsblende wurde in die TEM Säule zur Absorption von Streustrahlung
eingebaut. Mit Hilfe dieser Blende konnte eine quantitative chemische Analyse mit hoher Genau-
igkeit verwirklicht werden, basierend auf der Cliff-Lorimer Methode ohne Absorptionskorrektur.
Durch diese Blende wurde die Zahl der Röntgenimpulse bei der ”hole-count“-Messung um einen
Faktor 5 und die Streuung der Daten um einen Faktor 4 reduziert. Die verbesserte Genauigkeit
ist auch für andere Materialien bei der quantitativen EDX Analyse von großer Bedeutung. Dies
wurde zum einen für den Hochtemperatur-Supraleiter Bi2Sr2CaCu2O8 und zum anderen für
das Mineralsalz Hydroxyapatit Ca10(PO4)6OH2 demonstriert.

(IIIc) Die Bildsimulation wurde (i) zur Burgersvektoranalyse der Versetzungen und (ii) zur
Analyse des Verschiebungsfeldvektors und des Wellenvektors der nns angewandt. Das Span-
nungsfeld der Versetzung wurde mit Hilfe des Integral-Formalismus von Barnett und Lothe
berechnet, der auch auf piezoelektrische Materialien wie BaTiO3 angewandt wurde. Die kom-
plexen Amplituden des direkten und des abgebeugten Strahls wurden mit Hilfe der dynamischen
Beugungstheorie von Howie and Whelan und unter Berücksichtigung von Absorptionseffekten
berechnet. Die Rechenzeit pro Bild einer Versetzung wurde auf weniger als 10 s reduziert, der
Programmiercode basierte auf MATLAB r©.

Aufgrund der Ergebnisse dieser Arbeit sind folgende weiterführende Untersuchungen an
Bi2Te3 Volumenmaterialien besonders wünschenswert: (a) Die Messung der Transportgrößen
in drei unterschiedlichen Richtungen über einen weiten Temperaturbereich an Proben mit und
ohne nns. (b) Die Berechnung der Transportgrößen, vor allem der Gitterwärmeleitfähigkeit,
unter Berücksichtigung der Streuung der Phononen am Spannungsfeld der nns. (c) Systema-
tische Untersuchungen zur Bildung der nns. Die Bildung der nns in den Bi2Te3 Materialien
könnte mit der Neigung von Telluriden zur Bildung amorpher Phasen korreliert sein. Tellu-
ride werden daher bevorzugt bei wiederbeschreibbaren optischen Speichermedien (DVD) als
Phasenwechsel-Materialien eingesetzt. In jüngster Zeit wurden in Bi2Te3-Sb2Te3 Verbindun-
gen thermisch induzierte, reversible Glas-Kristall Phasenübergänge nachgewiesen. Aus diesem
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Grund kann die nns auch als ein Zustand zwischen perfekt kristalliner und amorpher Phase
angesehen werden, und ihre Bildung läßt sich eventuell durch die thermische Vorgeschichte der
Probe steuern.

Auch andere thermoelektrische Materialien zeigen eine nns: In AgPbmSbTe2+m Volumenma-
terialien wurden chemische Modulationen auf der Nanometer-Skala (nns) mit einer Wellenlänge
von 20−30 nm, eine geringe Gitterwärmeleitfähigkeit und ein spektakulärer thermoelektrischer
Gütefaktor ZT > 2 nachgewiesen. AgPbmSbTe2+m und Bi2Te3 zeigen ähnliche strukturelle
Eigenschaften und demzufolge auch ähnliche Gitterwärmeleitfähigkeiten. Die methodischen
Verbesserungen, die in dieser Arbeit gewonnen wurden, können auch auf die AgPbmSbTe2+m

Volumenmaterialien übertragen werden. Insbesondere betrifft dies die strukturelle Analyse einer
nns im TEM und ihre quantitative chemische Analyse durch EDX im TEM.

Beide Arten von Nanostrukturen, künstliche (ans) und natürliche (nns) Nanostrukturen,
führten in einer großen Zahl von thermoelektrischen Materialien zu einer geringen Gitterwärme-
leitfähigkeit, was sich gewinnbringend auf den thermoelektrischen Gütefaktor ZT auswirkte.
Die Ursache ist die durch die ans und nns induzierte strukturelle Unordnung und die damit
verbundene Reduktion der mittleren freien Weglänge der Phononen. Die ans und die nns sind
der Schlüssel zur Erhöhung der ZT -Werte nach Jahrzehnten der Stagnation und stehen daher
aktuell bei der Forschung und bei den Anwendungen im Mittelpunkt.
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Summary

Thermoelectric materials are used for power-generation and solid-state refrigeration devices. At
room temperature, Bi2Te3 bulk materials are widely used Peltier materials since they are known
for their large thermopower (S ≈ ±200 µV/K), large electrical conductivity (σ ≈ 1000 1/Ω cm),
low (electronic and lattice) thermal conductivity (λ ≈ 1.5 W/m K), and thereby a high thermo-
electric figure of merit [ZT = (S2σ/λ) T ≈ 1] at T = 300 K.

Thermoelectric quantum well systems such as superlattices [artificial nanostructure (ans)]
based on Bi2Te3 were proposed by Hicks and Dresselhaus in 1993. In 1999, Venkatasubrama-
nian manufactured Bi2Te3/Sb2Te3 superlattices (ans) with a period of 6 nm and a spectacular
thermoelectric figure of merit of ZT > 2. The ans yielded an increased power factor S2σ and
a low lattice thermal conductivity compared to bulk materials. The reduced lattice thermal
conductivity was attributed to a reduction of the phonon mean free path due to the structural
disorder introduced by the ans. The ans showed a significantly increased ZT compared to
bulk materials and was a boost for the synthesis of nanostructured materials for thermoelectric
applications.

The research on thermoelectric materials is based on solid state physics which predicts that
it is difficult to improve one transport coefficient without changing the others in an unfavourable
way. The reason is that the transport coefficients are determined by common fundamental pa-
rameters of the electron and phonon systems. The thermopower and the electrical conductivity
particularly depend on the doping level and the chemical composition, whereas the lattice ther-
mal conductivity is sensitive to structural disorder on the nanometer scale. The challenge is
to synthesise thermoelectric materials with electrical properties of crystalline materials and,
in contradiction, thermal properties of amorphous materials. Combined measurements, i.e.,
transport and structural investigations on the same samples, and a discussion of the results are
required to find the optimum between these two extremes, i.e., electron crystal/phonon glass.

In Bi2Te3, in the literature there are a large number of published measurements of transport
properties, a small number of structural analyses, however no data of combined measurements.
It is still an open question, why the lattice thermal conductivity of bulk Bi2Te3 is so small.
Preliminary investigations by transmission electron microscopy (TEM) yielded a structural
modulation [natural nanostructure (nns)] with a wavelength of 10 nm in bulk Bi2Te3. In this
work, the nature of the nns was analysed and the correlations to the transport coefficients,
particularly the lattice thermal conductivity, is discussed.

Transmission electron microscopy combined with energy dispersive X-ray spectrometry
(EDX) is the method of choice for a study of the correlations between structure, chemical
composition, and physical properties in thermoelectric materials. Particularly, stress fields and
chemical compositions can be analysed at an unrivalled lateral resolution, a high sensitivity,
and a high accuracy. In this work, experimental methods will be presented for the first time,
yielding an accurate quantitative analysis of the chemical composition and of stress fields in
Bi2Te3 and in compounds with similar structural and chemical microstructures.

This work can be subdivided as follows: (I) Bi2(Te,Se)3 and (Bi,Sb)2Te3 bulk materials
synthesised by the Bridgman technique, which are used in commercially available Peltier devices.
(II) Bi2Te3 thin films and Bi2Te3/Bi2(Te,Se)3 superlattices manufactured at the Fraunhofer-
Institut für Physikalische Messtechnik (IPM). (III) Experimental methods, i.e., TEM specimen
preparation, high-accuracy quantitative chemical analysis by EDX in the TEM, and image
simulations of dislocations and the nns according to the two-beam dynamical diffraction theory.

(Ia) N -type Bi2(Te0.91Se0.09)3 and p-type (Bi0.26Sb0.74)1.98(Te0.99Se0.01)3.02 bulk materials
showed a texture and grain sizes of 1− 10 µm, the mole fractions of Te and Se were 54.4 at.%
and 5.5 at.% and varied by ±0.5 at.% for n-type material. A similar behaviour was found for
Sb and Bi in p-type material. The variation in stoichiometry was smaller on the sub-micro-
meter scale and increased to ±2 at.% with increasing length scale for both, n-type and p-type
Bi2Te3. Measurements in the TEM confirmed the inhomogeneous chemical composition found
by wavelength dispersive X-ray spectrometry. The variations in stoichiometry are correlated to
variations in the thermopower by ±9 µV/K measured in a Seebeck scanning microprobe.
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(Ib) A structural modulation [natural nanostructure (nns)] was found and was analysed in
detail by stereomicroscopy and by image simulation. This nns was also observed in thin films
and superlattices and turned out to be of general character for Bi2Te3 materials. The nns
was found to be a pure sinusoidal displacement field with (i) a displacement vector parallel to
〈5,−5, 1〉 and an amplitude of about 10 pm and (ii) a wave vector parallel to {1, 0, 10} and a
wavelength of 10 nm. Bi2Te3 samples from different batches produced under similar conditions
showed different characteristics with respect to the nns: none, one, or two superimposed nns
were observed. The nns is present in all parts of the sample with the same orientation. The
formation of the nns is either bound to a certain stoichiometry range or to the thermal history
and is related to the tendency of Te-compounds to form amorphous phases. An ordered network
of dislocations a few nanometers apart and chemical fluctuations on the nanometer scale as
origins of the nns were ruled out. The displacement field of the nns is superimposed to the
average structure and should significantly affect the thermoelectric properties. Particularly,
the lattice thermal conductivity should be decreased due to phonon scattering on the strain
field of the nns. Also, the nns should yield a one-dimensional or zero-dimensional behaviour
and anisotropic transport coefficients in the basal plane. The number of nns and thereby the
thermoelectric properties might be controlled by the growth parameters.

(Ic) In Bi2Te3, dislocations in the basal plane with a high mobility at room temperature
were found, which is a unique physical property. The motion and the interactions of the gliding
dislocation were analysed for the first time and the influence on the thermoelectric properties
is discussed. The motion was induced by heating with a focused electron beam at 120 keV.
External stresses were not applied. The dislocations were bowed out in the direction of motion
and were only pinned at the surface of the samples. Stereomicroscopy investigations combined
with image simulations yielded basal plane dislocations with a density of 109 cm−2 and Burgers
vectors 〈1, 1, 0〉. Video sequences showing the glide of single dislocations and of groups of
dislocations were recorded. Free standing dislocations showed a high mobility in ±〈1, 1, 0〉
direction at a velocity of 10 − 100 nm/s. Dislocation dipoles were pinned and did not glide.
Dislocations equidistantly arranged within the same glide plane showed a collective movement.
Dislocations piled up in different glide planes were fixed and acted as barriers for other gliding
dislocations. The motion of dislocations was attributed to residual shear stresses, estimated
to 10 MPa, and their directions depended on the sign of the Burgers vector. Attractive and
repulsive forces of dislocations directly visualise the forces due to the elastic strain fields of the
dislocations.

The relevance of phonon scattering on dislocations in Bi2Te3, particularly due to their
high mobility and density, was confirmed by two inspections. First, dislocations are known to
decrease the lattice thermal conductivity due to phonon scattering on the elastic strain field.
The phonon mean free path was estimated to about 800 µm at 3 K and agreed with published
data. Second, the dislocation resonance theory of Granato and Lücke predicts an interaction
between phonons and dislocations acting as oscillating strings. The attenuation of ultrasound
due to dislocations was estimated and was compared with published data.

(II) Bi2Te3 thin films and Bi2Te3/Bi2(Te0.88Se0.12)3 superlattices (SLs) were epitaxially
grown by molecular beam epitaxy (MBE) on BaF2 substrates with a period of 12 nm and
6 nm at the Fraunhofer IPM, respectively. Reflection high-energy electron diffraction (RHEED)
confirmed a layer-by-layer growth, X-ray diffraction (XRD) yielded the lattice parameters and
SL periods and proved epitaxial growth. The basal plane transport coefficients were measured
and the thin films and SL had power factors between 28 and 35µW/cm K2. The lattice thermal
conductivity varied between 1.60 W/m K for Bi2Te3 thin films and 1.01 W/m K for a 10 nm SL.
The best figures of merit ZT were achieved for the SL; however, the values are slightly smaller
than in bulk materials. In the Bi2Te3 thin film and SL the dislocation density was found to
be 2 × 1010 cm−2. Bending of the SL with amplitudes of 30 nm (12 nm SL) and 15 nm (6 nm
SL) and a wavelength of 400 nm was determined. Threading dislocations were found with a
density greater than 2 × 109 cm−2. The superlattice interfaces are strongly bent in the region
of the threading dislocations, undisturbed regions had a maximum lateral size of 500 nm. Thin
films and SL showed a structural modulation [natural nanostructure (nns)] with a wavelength
of 10 nm and a wave vector parallel to (1, 0, 10).
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The microstructure/nanostructure is governed by the superlattice, the nns, and the dislo-
cations that are present in the films. The results obtained here showed a significant amount
of stress in the samples, induced by the nns and the dislocations, which were still not noticed
and identified. The stress fields directly affect the transport coefficients, particularly the lattice
thermal conductivity. In thin films, the thermopower and the electrical conductivity were found
to be negatively correlated, depend on the charge carrier density, and no clear dependence of
the two quantities on the microstructure could be found.

(IIIa) TEM specimen preparation of the bulk materials and of the thin films included me-
chanical polishing and conventional ion milling and was a significant challenge. For thin films
and superlattices, the standard preparation procedure failed and had to be modified due to the
brittleness of the BaF2 substrate and the weak bonding between the Bi2Te3 thin film and the
BaF2 substrate.

(IIIb) Preliminary EDX spectra obtained in the Zeiss 912Ω TEM yielded artifacts due to Bi
spurious X-rays and hole-counts significantly beyond zero. A stray aperture was inserted in the
TEM to absorb the stray radiation. With this aperture inserted a high-accuracy quantitative
chemical analysis was established, based on the Cliff-Lorimer method without absorption cor-
rection. The hole-counts decreased by a factor of 5 and the scatter of data decreased by a factor
of 4 due to this aperture. The improved accuracy of the quantitative EDX analysis is also for
other compounds of great importance. This was demonstrated on the high-TC superconductor
Bi2Sr2CaCu2O8 and the mineral salt hydroxyapatite Ca10(PO4)6OH2.

(IIIc) Image simulation was used to analyse (i) the Burgers vector of dislocations and (ii) the
displacement vector and the wave vector of the nns. The strain field of the dislocations was
calculated according to the integral formalism of Barnett and Lothe and was also applied to
piezoelectric materials such as BaTiO3. The complex amplitudes of the direct beam and of
the diffracted beam were calculated according to the two-beam dynamical diffraction theory
of Howie and Whelan under consideration of absorption effects. The computing time for one
image of a dislocation could be reduced to less than 10 s, the simulation was implemented in
MATLAB r©.

On the basis of our experimental results following investigations on bulk Bi2Te3 are highly
recommended in future: (a) Transport measurements in three different directions over a wide
temperature range on samples with and without a nns. (b) Calculations of the transport
coefficients, particularly of the lattice thermal conductivity, under consideration of phonon
scattering on the strain field of the nns. (c) Systematic investigations of the formation of the
nns. The formation of the nns in Bi2Te3 could be related to the ability of Te-compounds
to easily form glasses. Therefore, Te-compounds are widely used for rewritable phase-change
optical recording applied in optical data storage systems like digital versatile disks (DVD).
Recently, thermally induced reversible glass-crystal phase changes were also found in Bi2Te3-
Sb2Te3 compounds. For this, the nns might be regarded as an intermediate state between pure
crystalline and amorphous and might be controlled by the thermal history of the sample.

Other thermoelectric materials also showed a nns: AgPbmSbTe2+m bulk materials showed
chemical modulations on the nanometer scale (nns) with a wavelength of 20−30 nm, a low lattice
thermal conductivity, and a spectacular thermoelectric figure of merit of ZT > 2. Therefore,
AgPbmSbTe2+m and Bi2Te3 have common structural features and their lattice thermal con-
ductivities are in a similar range. The improved experimental methods yielded in this work,
particularly structural analysis of a nns in a TEM and its quantitative chemical analysis by
EDX in the TEM, can also be transferred to AgPbmSbTe2+m bulk materials.

Both kinds of nanostructures, artificial (ans) and natural (nns) nanostructures, yielded in a
large number of thermoelectric materials a low lattice thermal conductivity which was beneficial
for the thermoelectric figure of merit ZT . The reason is a reduction of the phonon mean free
path due to the structural disorder introduced by the ans and the nns. The ans and the nns
are the key to an increased ZT after several decades of stagnancy, and therefore are currently
a main topic of research and application.
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Chapter preview

Chapter 1 is an introduction to macroscopic and microscopic thermoelectricity. The thermoelec-
tric figure of merit of a Peltier device will be given in dependence of the transport coefficients.
The advantages of microcoolers compared to conventional coolers will be explained. For bulk
semiconductors and for 2D quantum well systems, the dependence of the electronic transport
coefficients on fundamental parameters of the electron and phonon systems according to the
band theory of solids and the Boltzmann equation will be shown. General criteria for high-
performance thermoelectric materials will be given. Finally, general properties of bulk Bi2Te3

and preliminary results obtained in our samples will be presented.
Chapter 2 is dedicated to dislocations. The strain field of dislocations in elastically isotropic

crystals will be given and its influence on the lattice thermal conductivity and on diffraction
contrast observed in the TEM will be explained. Gliding and oscillating dislocations were
observed in bulk Bi2Te3. The motion of the dislocations is determined by forces which could
be due to (i) image forces close to free surfaces, (ii) residual shear stresses in the sample, and
(iii) due to the interaction between the dislocations. Finally, the Granato-Lücke theory of
dislocation resonance will be presented.

In Chapter 3 the structure and composition of the bulk samples will be specified and an
overview of the experimental techniques used in this work will be given.

In Chapter 4 first the improvements of the EDX analysis in the TEM will be presented
which were obtained by inserting a stray aperture for absorbing stray radiation in the column
of the TEM. Results of the quantitative chemical analysis by EDX in the TEM obtained in
bulk Bi2Te3 and other model materials will be shown and discussed.

Chapter 5 is dedicated to the structural modulations (nns) observed in bulk Bi2Te3. A
detailed model for the nns will be given and discussed. Possible reasons for the formation of
the nns and its influence on the thermoelectric properties will be discussed.

Chapter 6 shows the results obtained in Bi2Te3 based thin films and superlattices. First, the
structure and composition of the samples, the MBE growth parameters, and the experimental
techniques will be specified. Second, the preliminary measurements by RHEED and XRD, and
the measurements of the thermoelectric properties will be presented. TEM specimen prepara-
tion of thin films and superlattices was demanding and therefore was also included in this work.
Finally, the TEM results obtained on cross-sectional and plan view samples will be shown and
discussed.

Chapter 7 presents stereomicroscopy results and video sequences obtained on gliding dislo-
cations in bulk Bi2Te3. The results were analysed with respect to the Burgers vector and the
line direction of the dislocations, forces on dislocations, and residual shear stresses in the sam-
ple. An estimation for the phonon mean free path and ultrasound attenuation in dependence
of the measured dislocation density will given and discussed.

Chapter 8 is about image simulation of strain fields in crystals, implemented in MATLAB r©.
First, the equations for the strain field of dislocations in elastically anisotropic crystals according
to Barnett and Lothe will be given. Second, the basic principles used for a fast image simulation
will be explained. Results obtained on dislocations in aluminium and β-brass used as reference
materials will be shown. Finally, image simulation was applied to dislocations and the nns
found in bulk Bi2Te3.

Finally, in the Appendix new results obtained in bulk Bi2Te3 will be presented. The
MATLAB r© code for image simulation of dislocations will be presented in detail.

ix
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Chapter 1

Thermoelectricity

1.1 Macroscopic thermoelectricity and thermoelectric re-
frigerators

1.1.1 Conventional coolers and thermoelectric figure of merit

Thermoelectric materials are used for power-generation and solid-state refrigeration devices.
The challenge is to synthesise high-performance thermoelectric materials and to develop highly-
efficient devices through ingenious material engineering. The applications which are currently
in the field of interest are (i) direct conversion of waste heat into electrical energy, particularly
for the automotive industry, (ii) power generators for deep space missions, (iii) miniaturised
coolers for computers, infrared detectors, electronics, and optoelectronics. The main topics
of research are (a) high-temperature bulk materials such as skutterudites, clathrates, half-
Heusler alloys, complex chalcogenides, and ceramic oxides, (b) bulk materials with structural
and/or compositional modulations on the nanometer scale, (c) and nanoengineered quantum
well systems such as quantum dots, nanowires, and superlattices. An overview of state-of-the-
art applications and research is given in References [1–3].

Thermoelectric refrigerators based on isotropic solids were described in detail by Goldsmid
[4] and will be the central topic of this section. For an understanding of the basic function of
such devices several fundamental effects have to be considered; which are Ohm’s law (j = σ E),
the Seebeck effect (E = S dT

dx ), the Peltier effect (jQ = Π j), Fourier’s law (jQ = −λ dT
dx ),

and the Joule effect, where j is the electrical current density, jQ is the heat current density,
E is the electric field, T is the temperature, dT

dx is a temperature gradient, σ is the electrical
conductivity, λ is the thermal conductivity, S is the thermopower, and Π is the Peltier coefficient.
According to the Kelvin-Onsager relation the Peltier coefficient is related to the thermopower
by Π = S T . For semiconductors, the sign of the thermopower and of the Peltier coefficient
depend on the type of the majority charge carriers, being negative for n-type and positive for
p-type semiconductors.

A schematic drawing of a single-couple refrigerator with two branches which consist of a
p-type and a n-type semiconductor is shown in Figure 1.1(a). The bottom of the thermocouple
is kept to a constant temperature TH. In the p-type branch the electrical current I and the heat
current IQ due to the Peltier effect are parallel, whereas in the n-type branch both currents
are anti-parallel. Therefore, the top of the thermocouple is cooled to a temperature TC. A
commercially available conventional cooler is shown in Figure 1.1(b). In such modules many
single thermocouples are connected electrically in series and act thermally in parallel.

The potential of a material for thermoelectric application or the potential of thermoelectric
devices are determined by the thermoelectric figure of merit Z or by the related dimensionless
figure of merit ZT = Z · T [4, chap. 1.3]. The thermoelectric figure of merit Z determines in
a large part the maximum temperature difference ∆T = (TH − TC)max, the maximum cooling
power qC at the cold side, and the maximum coefficient of performance COP . The calculation

1
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Figure 1.1 (a) Model of a single-couple thermoelectric refrigerator. (b) Conventional cooler.
(c) Micropelt’s microcooler with a size of about 5mm × 5 mm × 0.5mm on top of a conventional
cooler.

of these quantities can be simplified by assuming that (i) there is no contact resistance between
the metal links and the thermoelements, (ii) the metal links have zero resistance, (iii) there is
no thermal resistance between the thermocouple and the heat source and heat sink, (iv) there
are no radiation effects, and (v) the transport coefficients are independent of the temperature.

∆T =
1
2

Z TC
2 =

1
2 Z

(√
2 Z TH + 1− 1

)2

, (1.1a)

qC = K

{
1
2

Z TC
2 − (TH − TC)

}
, (1.1b)

COP =
TC

TH − TC

√
1 + 1

2 Z (TH + TC)− TH
TC√

1 + 1
2 Z (TH + TC) + 1

. (1.1c)

The thermoelectric figure of merit Z of the thermocouple is given by

Z =
S2

K R
, (1.2a)

S = Sp − Sn , (1.2b)

R = ρp
Lp

Ap
+ ρn

Ln

An
, (1.2c)

K = λp
Ap

Lp
+ λn

An

Ln
, (1.2d)

where S is the total thermopower, R is the electrical resistance, and K is the thermal con-
ductance of the thermocouple. These quantities depend on the transport coefficients Sp,n,
ρp,n = 1/σp,n, λp,n, of the cross-section areas Ap,n, and of the lengths Lp,n of both branches.

1.1.2 Chip spot cooling by Bi2Te3 based microcoolers

Future microprocessors require a higher packaging density and a higher processor speed, which
leeds to an increased heat flux of up to 300W/cm2. Therefore, the thermal management issues
of power microelectronics has to be solved. One solution are Peltier microcoolers which were
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suggested and discussed with respect to the main technological problems by Fleurial [5]. Com-
plete microcoolers based on thin film technology in combination with microsystem technology
[6] are manufactured by Micropelt GmbH [7] in collaboration with the Fraunhofer Institut für
Physikalische Messtechnik (IPM) [8] and Infineon Technologies AG (Fig. 1.1(c)).

The cooling power density qC of an ideal Peltier refrigerator is proportional to the thermal
conductance K (Eq. 1.1) and thereby inversely proportional to the leg length L (Eq. 1.2). At
room temperature, current Bi2Te3 based coolers with a leg length of about 2 mm reach a cooling
power density of about 5 W/cm2. Microcoolors with a film thickness of 20 µm would reach a
cooling power density of about 500 W/cm2, which is sufficient for future demands. However,
for decreasing leg lengths the metal/semiconductor contact resistance can not be neglected and
should be about 10−10 Ωm2 [6] to preserve the cooling power density. Finally, due to the high
heat fluxes high thermal conductive substrates are necessary.

1.2 Microscopic thermoelectricity

1.2.1 Thermoelectric figure of merit for single materials

The criterion for the selection of a material for a thermocouple is to maximise the thermoelectric
figure of merit of the device. It is convenient to define the thermoelectric figure of merit for a
single material as

Z =
S2 σ

λ
=

S2 σ

λlatt + λel
. (1.3)

Therefore, a good thermoelectric material requires a large thermopower S, a large electrical
conductivity σ, and a low thermal conductivity λ, which is the sum of the lattice thermal
conductivity λlatt and the electronic thermal conductivity λel. Particularly, semiconductors
achieve these requirements, as will be shown. Also, the difference of the thermopowers should
be as large as possible (Eq. 1.2). Therefore, p-type and their n-type counterpart semiconductors
are used for the branches.

Only small increases of the thermoelectric figure of merit could be achieved in the last
decades. The reason is, that the thermopower S, the electrical conductivity σ, and the thermal
conductivity λ depend on each other and it is difficult to improve one transport coefficient
without significantly changing the others in an unfavourable way. The transport coefficients are
determined by more fundamental parameters of the electron and phonon systems; which are the
charge carrier density n, the electron mobility µ, the electron scattering rate or relaxation time
τ , the Debye temperature θD, and the phonon mean free path lph. In the next two sections
the calculation of the transport coefficients for isotropic crystals following the textbooks of
Goldsmid [4, chap. 2] and of Ziman [9], will be presented. General criteria for the selection or
the optimization of a thermoelectric material will be discussed [4, chap. 3].

1.2.2 Lattice thermal conductivity

The lattice thermal conductivity can be calculated as

λlatt = 1/3 C v lph (1.4)

according to transport theory for isotropic solids [9, page 259], where C is the total specific
heat, v is the velocity of sound, and lph is the phonon mean free path. The total specific heat
can be determined by the Debye model, where θD is the Debye temperature, z is the number
of atoms per unit cell, N

V is the number of unit cells per volume, and kB is the Boltzmann’s
constant [9, page 54],

C = 9 kB z
N

V

(
T

θD

)3

θD
T∫

0

y4ey

(ey − 1)2
dy . (1.5)



4 CHAPTER 1. THERMOELECTRICITY

At high temperatures T > θD, the specific heat tends to 3 kB z N
V [9, page 54] being constant,

and therefore the lattice thermal conductivity is determined by the phonon mean free path.
Phonon-phonon scattering is dominant at high temperatures, particularly due to Umklapp-
processes. Leibfried and Schlömann derived under consideration of the Lindemann melting
formula for the lattice thermal conductivity

λlatt ∝
(
T

3
2
M ρ

2
3 A− 7

6

) 1
T

, (1.6)

where TM is the melting point, ρ is the mass density, and A is the mean atomic weight (Ref. [9,
pages 58 and 296] and Ref. [4, chap. 3.4.1]). The phonon mean free path and thereby the lattice
thermal conductivity decreases inversely proportional to the temperature. The first factor is
determined by material parameters and decreases for increasing mean atomic weight.

At low temperatures T � θD, the specific heat increases with T 3 [9, page 54],

C =
12π4

5
kB z

N

V

(
T

θD

)3

. (1.7)

For an ideal crystal the phonon mean free path lph would be limited only by the size of the
sample, since phonon scattering on the crystal surfaces is the dominating scattering mechanism
[9, chap. 11]. Therefore, the lattice thermal conductivity would have the same temperature
dependence as the specific heat.

However, in a real crystal the phonon mean free path lph would be limited also by phonon
scattering on point defects and on extended crystals defects such as grain boundaries and dis-
locations [9, chap. 6 and 8]. Particularly, the dependence of the lattice thermal conductivity
on the dislocation density will be discussed in more detail in Chapter 2.4.1. In solid solutions,
alloy scattering also offers the possibility to reduce the lattice thermal conductivity [9, chap. 6
and 8]. Finally, the dependence of the lattice thermal conductivity on structural disorder was
nicely demonstrated for single crystalline Si thin films and other model materials [10]. Partic-
ularly, hole-conducting Bi2Te3/Sb2Te3 superlattices with a period of 6 nm showed a decreased
lattice thermal conductivity and spectacular thermoelectric figure of merit of ZT = 2.4 at 300 K
[11–13].

In summary, some general criteria can be derived for high performance thermoelectric mate-
rials [4, chap. 3.4]. A low lattice thermal conductivity and thereby a large thermoelectric figure
of merit is found for

High-ZT criterion (i) bulk materials of high mean atomic weight (Eq. 1.6),

High-ZT criterion (ii) bulk materials with a high structural disorder,

High-ZT criterion (iii) alloyed bulk materials,

High-ZT criterion (iv) thin films and superlattices.

1.2.3 Electronic transport coefficients

Bulk semiconductors

The thermopower S, the electrical conductivity σ, and the electronic thermal conductivity λel

of crystalline solids can be determined by using the band theory of solids and the linearised
Boltzmann equation [9, chap. 7 and 10]. Only the expressions for an isotropic semiconductor
with a simple, parabolic band will be given here. For the calculation of the quantities the
carrier energy ε = E − EL (ε = EV − E) and the Fermi energy ζ = EF − EL (ζ = EV − EF)
are measured with respect to the bottom of the conduction band EL (with respect to the top
of the valence band EV).
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σ = n eµ , (1.8a)

S = ±kB

e

{
1

kB T

〈τ(ε) ε〉
〈τ(ε)〉

− ζ

kB T

} {
+ for holes
− for electrons

, (1.8b)

λel = LT σ , (1.8c)

n =

∞∫
0

D(ε) f0(ε) dε , (1.8d)

µ =
e

m
〈τ(ε)〉 , (1.8e)

〈τ(ε)〉 =

2
3

∞∫
0

τ(ε) ε
(
−∂f0

∂ε

)
D(ε) dε

∞∫
0

D(ε) f0(ε) dε

, (1.8f)

L =
1

(kB T )2

[
〈τ(ε) ε2〉
〈τ(ε)〉

−
{
〈τ(ε) ε〉
〈τ(ε)〉

}2
] (

kB

e

)2

, (1.8g)

〈τ(ε) εn〉 =

2
3

∞∫
0

τ(ε) εn+1
(
−∂f0

∂ε

)
D(ε) dε

∞∫
0

D(ε) f0(ε) dε

. (1.8h)

These expressions differ in their appearance from the expressions given in the textbooks of
Ziman [9, chap. 10] and Goldsmid [4, chap. 2.4], but are similar to the results of the Drude model
including the Wiedemann-Franz law. However, there are some differences to the Drude model:
(i) m is the effective mass of the conduction electrons. (ii) The carrier density n depends on
the density of states D(ε) and the Fermi energy ζ through the unperturbed Fermi distribution
function f0(ε). (iii) The carrier mobility µ depends on the average relaxation time 〈τ(ε)〉. (iv)
The thermopower S and the Lorenz number L depend on a weighted average of the total heat
energy 〈ε− ζ〉 transported by a carrier.

For a parabolic band the density of states is given by D(ε) = 1
2π2 ( 2m

h̄2 )
3
2
√

ε. In the simplest
case the relaxation time can be expressed by τ(ε) = τ0 εr, where τ0 and r are constants.
Particularly, the scattering exponent r depends on the electron scattering process and is equal
to − 1

2 for acoustic phonon scattering and equal to 3
2 for scattering on ionised impurities [4,

chap. 3.3.1]. Due to these simplifications all quantities are determined by the Fermi-Dirac
integrals Fm(η) [4, chap. 2.4], which can be expressed in terms of the reduced energy ξ =
ε/(kB T ) and reduced Fermi energy η = ζ/(kB T ).

Fm(η) =

∞∫
0

ξm f0(ξ, η) dξ , (1.9a)

f0(ξ, η) =
1

e(ξ−η) + 1
, (1.9b)

〈τ(ε) εn〉 = τ0 (kB T )r+n 2
3

(r + n + 3
2 ) Fr+n+ 1

2

F 1
2

. (1.9c)

The final result for an isotropic semiconductor with a simple, parabolic band is

σ = n eµ , (1.10a)

S = ±kB

e

{
(r + 5

2 )Fr+ 3
2

(r + 3
2 )Fr+ 1

2

− η

} {
+ for holes
− for electrons

, (1.10b)

λel = LT σ , (1.10c)
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Figure 1.2 (a) Schematic drawing of the thermopower α, the electrical conductivity σ, the power factor
α2σ, the lattice thermal conductivity λL, and the electronic thermal conductivity λe in dependence of
the carrier density [14, page 44]. (b) Thermoelectric figure of merit ZT in dependence of the temperature
for various bulk thermoelectric materials [1, page 190].

n =
1

2π2

(
2m

h̄2 kB T

) 3
2

F 1
2

, (1.10d)

µ =
e

m
〈τ(ε)〉 , (1.10e)

〈τ(ε)〉 = τ0 (kB T )r 2
3

(r + 3
2 ) Fr+ 1

2

F 1
2

, (1.10f)

L =

 (r + 7
2 ) Fr+ 5

2

(r + 3
2 ) Fr+ 1

2

−

{
(r + 5

2 ) Fr+ 3
2

(r + 3
2 ) Fr+ 1

2

}2
(

kB

e

)2

, (1.10g)

ZT =

(
S e

kB

)2

F 1
2

1
B + L

(
e

kB

)2

F 1
2

(r=0)
=

(
5 F 3

2
3 F 1

2

− η

)2

F 1
2

1
B +

[
7 F 5

2
3 F 1

2

−
{

5 F 3
2

3 F 1
2

}2
]

F 1
2

, (1.10h)

B =

(
kB
e

)2
T σ

λlatt F 1
2

=
1

2π2

(
2m

h̄2 kB T

) 3
2

(
kB

e

)2
T eµ

λlatt
. (1.10i)

All quantities depend on the reduced Fermi energy η through the Fermi-Dirac integrals
Fm(η). Therefore, the Fermi energy has to be altered for increasing the thermoelectric figure of
merit ZT . The Fermi energy itself depends on the temperature and the density of donors and
acceptors.

On the basis of these equations some general criteria can be derived for high performance
thermoelectric materials [4, chap. 3.1-3.3].

High-ZT criterion (v) The principal dependence of the transport coefficients on the car-
rier density is shown in Figure 1.2(a) for acoustic phonon scattering (r = − 1

2 ). The
thermopower S decreases with increasing carrier density n, whereas the electrical con-
ductivity σ increases with increasing carrier density n. Therefore, the power factor S2 σ
and the thermoelectric figure of merit ZT show a maximum for a carrier density of about
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1019 cm−3. This diagram also shows that only extrinsic semiconductors are suitable for
thermoelectric applications with large ZT , whereas for insulators the electrical conduc-
tivity σ and for metals the thermopower S would be too small.

High-ZT criterion (vi) Figure 1.2(b) shows the thermoelectric figure of merit ZT in depen-
dence of the temperature for various high-ZT bulk materials. This figure shows, that a
ZT value of about 1 usually is the highest observed value. Also, each material is only
suitable for a certain temperature range. Particularly, Bi2Te3 shows a high ZT at 300 K
and is therefore widely used for Peltier devices at room temperature .

High-ZT criterion (vii) The carrier density n can be altered by doping. The carrier density
depends on the impurity density and on the impurity level. The impurity level ED,A of the
donors (D) and acceptors (A) depends on the dielectric constant εr of the host material
according to ED,A ∝ ε−2

r . Therefore, doped materials with a high dielectric constant εr

yield a high carrier density.

High-ZT criterion (viii) The material should have a minimum thermopower of about
160 µV/K. This value can be derived by assuming a figure of merit ZT = 1, a van-
ishing lattice thermal conductivity λlatt = 0, and a Lorenz number L = L0 equal to that
of metals.

High-ZT criterion (ix) The figure of merit increases for an increasing dimensionless material
parameter B (∝ m

3
2 µ). Therefore, a high carrier mobility µ and a high effective mass

m would be favourable. However, for acoustic phonon scattering the carrier mobility
is proportional to T− 3

2 m− 5
2 , and thereby the material parameter B would be inversely

proportional to the effective mass m. Therefore, materials with small effective masses are
required.

High-ZT criterion (x) For isotropic crystals the material parameter B is in a large part
determined by intrinsic properties and offers no possibility for optimizing ZT . However,
for anisotropic crystals there might be differences of the carrier mobility µ and thereby
the material parameter B with respect to the current direction. Therefore, the current
should flow along the direction of highest mobility.

High-ZT criterion (xi) Material with more complex band structures offer additional possi-
bilities [4, chap. 3.3.2]. For multivalley semiconductors the material parameter B increases
linearly with the number of valleys NV. For materials with nonparabolic bands the ef-
fective mass m depends on the energy, yielding larger carrier mobilities for narrow-gap
semiconductors. However, if the band gap is too small, the thermoelectric figure of merit
decreases drastically due to minority carrier effects.

Multi-quantum-well systems

A new approach to an increased thermoelectric figure of merit are multi-quantum-well struc-
tures, which were proposed by Hicks and Dresselhaus in 1993 [15]. Particularly, low-dimensional
structures based on Bi2Te3 superlattices (SLs) are predicted to have an increased thermoelectric
figure of merit compared to bulk material [15]. The calculations of Hicks and Dresselhaus for 2D
thermoelectricity are based on several assumptions. (i) A simple-band, narrow-gap 2D quantum
well with layer thickness a is embedded in a wide-gap semiconductor. (ii) The electrons only oc-
cupy the lowest subband of the quantum well. (iii) There is no tunnelling through the wide-gap
semiconductor. (iv) The wide-gap semiconductor does not contribute to the conduction.

The calculations of the transport coefficients in a direction parallel to the multilayers are
analogous to the calculations for 3D bulk materials. The energy dispersion relation ε(k) and
thereby the density of states D(ε) are changed due to the reduced dimensions (Eq. 1.8). The
transport coefficients still depend on the Fermi-Dirac integrals Fm(η∗) (Eq. 1.9). However,
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Table 1.1 In-plane thermoelectric properties of n-type and p-type Bi2Te3 bulk materials at 300 K
[14]: carrier density n, carrier mobility µ, electrical conductivity σ, thermopower S, power factor
S2 σ, thermal conductivity λ, lattice thermal conductivity λlatt, thermoelectric figure of merit ZT =
(S2 σ/λ) T .

Composition n µ σ S S2 σ λ λlatt ZT
(1019 (cm2/ (1/Ω cm) (µV/K) (µW/ (W/m K) (W/m K)
cm−3) Vs) cm K2)

Bi2Te3 2.00 160 513 227 26 1.73 1.53 0.46
(Bi0.25Sb0.75)2Te3 3.34 177 781 225 40 1.37 1.07 0.87
Bi2(Te0.95Se0.05)3 4.00 150 901 -223 45 1.59 1.15 0.85

the reduced Fermi energy has to be redefined and Fermi-Dirac integrals Fm(η∗) with different
indices m have to be used compared to bulk material.

η∗ = η − 1
kB T

h̄2

2m

π2

a2
, (1.11a)

ZT
(r=0)
=

(
2 F1
F0

− η∗
)2

F0

1
B +

[
3 F2
F0

−
{

2 F1
F0

}2
]

F0

, (1.11b)

B =
1
2π

(
2m

h̄2 kB T

) (
kB

e

)2
T eµ

λlatt

1
a

. (1.11c)

The most significant difference between 2D quantum wells and 3D bulk materials is a re-
definition of the material parameter B (Eq. 1.10), which is additionally inversely proportional
to the layer thickness a [15]. Therefore, an additional general criterion can be derived for high
performance thermoelectric materials.

High-ZT criterion (xii) Thin 2D quantum wells show an increased material parameter B
and thereby an increased thermoelectric figure of merit compared to bulk materials.

1.3 Thermoelectricity in Bi2Te3, preliminary results, and
aim of this work

1.3.1 General and thermoelectric properties of bulk Bi2Te3

An overview of the thermoelectric properties and material parameters of Bi2Te3 is given in the
textbooks of Goldsmid [4], Rowe [2, 14] , and in Reference [16]. Bi2Te3 has a rhombohedral
crystal symmetry with space group R3̄m. The lattice parameters of the pseudo-hexagonal unit
cell are a = 0.438 nm and c = 3.05 nm [17]. The pseudo-hexagonal unit cell consists of a layered
structure with three five-layer-groups with the sequence Te1 − Bi− Te2 − Bi− Te1 with weak
Te1 − Te1 bondings [4, 14]. The band-structure can be described by a six-valley model [4] with a
band gap of EG = 0.16 eV [16]. The impurity levels are close to the conduction band or valence
band due to a large dielectric constant of εr = 85 [16]. The thermoelectric properties of n-type
and p-type bulk materials measured parallel to the basal plane (in-plane) are summarised in
Table 1.1. The thermoelectric figure of merit is by a factor of 2 higher for a current direction
parallel to the basal plane compared to a current direction parallel to the c axis [14, 18]. The
reasons are a smaller carrier mobility and a smaller thermal conductivity in a direction parallel
to the c axis, possibly due to the weak Te1 − Te1 bondings.

Bi2Te3 is known for its large thermopower (S ≈ 200 µV/K), large electrical conductivity
(σ ≈ ±1000 1/Ω cm), low thermal conductivity (λ ≈ 1.5 W/m K), and high thermoelectric
figure of merit (ZT ≈ 1) at room temperature. At higher temperatures, the thermopower
and thereby the figure of merit decreases drastically due to increasing minority carrier effects,
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particularly in a narrow-gap semiconductor such as Bi2Te3 (Fig. 1.2(b)). Since Bi2Te3 is a
compound of high mean atomic weight and low melting point TM = 858K [16], the lattice
thermal conductivity is also small (Eq. 1.6). The reason for the high thermopower is that pure
Bi2Te3 is an extrinsic p-type semiconductor with a nearly optimum high acceptor concentration
(Table 1.1). Tellurium diffuses out during growth, yielding (i) a nonstoichiometric maximum
melting composition and (ii) BiTe-anti-site defects which act as acceptors [4, 14, 18].

The thermoelectric figure of merit of Bi2Te3 was further improved by doping and alloying.
Particularly, electron-conducting Bi2(Te1−xSex )3 and hole-conducting (Bi1−xSbx )2Te3 alloys
yielded the highest ZT values at room temperature (Table 1.1). The effect of alloying is (i) an
increase of the carrier density and thereby electrical conductivity (Eq. 1.10) and (ii) a reduction
of the lattice thermal conductivity due to alloy scattering (Table 1.1). A simultaneous reduction
of the carrier mobility and thereby electrical conductivity due to impurity scattering is moderate
compared to the reduction of lattice thermal conductivity (Table 1.1). In summary, these solid
solutions show an increased thermoelectric figure of merit (Table 1.1).

1.3.2 Preliminary results in bulk Bi2Te3

It is still an open question, why the lattice thermal conductivity of Bi2Te3 bulk is so small. In the
literature there are a large number of published measurements of transport properties; however,
there are a small number of structural analyses and virtually no data of combined measure-
ments, i.e., transport and structural investigations on the same samples. In some publications,
particularly if ambiguous results are presented, assumptions on the possible microstructures are
given; e.g., it was concluded from lattice thermal conductivity measurements in bulk Bi2Te3

that there should be dislocations which scatter the phonons without proving their existence
[19]. There are a few measurements of the transport coefficients in dependence of the grain
size [20–22] and one measurement of the transport coefficients in dependence of the dislocation
density [23]. A direct proof for the absorption of phonons by dislocations in Bi2Te3 was given
by ultrasound absorption measurements depending on the dislocation density [23]. Only a few
TEM studies on extended defects in bulk Bi2Te3 [24–27] but no quantitative chemical analysis
by EDX in the TEM were reported in the literature. With respect to its chemical microstructure
Bi2Te3 was assumed to be a solid solution with homogeneous stoichiometry.

In general, Te compounds tend to be structurally highly complex on the nanometer scale. In
Bi2Te3Gex single crystals structural and/or compositional modulations with a wave length of
about 10− 20 nm were found [27]. Particularly, thermoelectric AgPbmSbTe2+m bulk materials
also showed chemical modulations with a wave length of 20 − 30 nm, a low lattice thermal
conductivity, and a spectacular thermoelectric figure of merit of of ZT = 2.2 at 800 K [28–31].
In the following, these intrinsic structural or chemical modulations on the nanometer scale are
referred to as natural nanostructures (nns), whereas the superlattice structure is referred to
as artificial nanostructure (ans). The structural disorder introduced by the ans and the nns
most likely yields a reduced phonon mean free path and thereby a reduced lattice thermal
conductivity, which is beneficial for the thermoelectric figure of merit.

The microstructure of n-type and p-type Bi2Te3 bulk materials was analysed. The samples
were synthesised by the Bridgman technique and were obtained from commercially available
Peltier devices of Peltron GmbH [32]. Quantitative chemical analysis by wavelength dispersive
X-ray spectrometry (WDX) in an electron probe microanalyser (EPMA) yielded a fairly large
variation in stoichiometry on the micrometer scale [33]. TEM investigations yielded gliding
dislocations with a dislocation density of 109 cm−2 and a structural modulation (nns) with a
wavelength of 10 nm [34]. It was suggested that the nns might be caused by chemical inhomo-
geneities on the nanometer scale [34]. One aim of this work was to find out more about the
nature of the nns. Three models were assumed and inspected by TEM on Bi2Te3 bulk materials
and will be discussed. The wavelength of the nns and the period of the ans are of the same
order of magnitude [35, 36]. Since the ans clearly reduced the lattice thermal conductivity, a
significant scattering of phonons on the strain field of the nns should occur and will be dis-
cussed. A second aim was to study the gliding dislocations in more detail. The high mobility
and density of the dislocations should be relevant for phonon scattering and will be discussed.
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1.3.3 Preliminary results in Bi2Te3 based thin films and superlattices

Hole-conducting Bi2Te3/Sb2Te3 suerlattices (SLs) epitaxially grown on GaAs substrates by
metallorganic chemical vapor deposition (MOCVD) with a period of 6 nm showed a spectacular
thermoelectric figure of merit of ZT = 2.4 at 300 K [11–13]. An also impressive figure of merit
of ZT = 3 at 550 K was achieved for PbSeTe/PbTe quantum-dot SLs epitaxially grown by
molecular beam epitaxy (MBE) [37]. The predictions of Hicks and Dresselhaus (Chap. 1.2.3)
and the increased ZT in SLs were a boost for the synthesis of nanostructured materials for
thermoelectric applications [10].

Electron-conducting Bi2(Te1−x ,Sex )3/Bi2(Te1−y ,Sey)3 SLs were epitaxially grown by MBE
on BaF2 substrates at the Fraunhofer-Institut für Physikalische Messtechnik (IPM) [8] in col-
laboration with Infineon Technologies AG. They yielded figures of merit close to those in bulk
materials [38–40]. Microstructural analyses are required to explain the poor enhancement of
ZT in thin films and SLs with respect to bulk. The aim is (1) to image directly the SL and
to study their structural quality, (2) to image dislocations by their strain contrast, and (3) to
study interactions of the SL with defects, particularly dislocations. The natural nanostructures
are also present in our samples. The superposition of the two nanostructures, the ans and the
nns, and their influence on the lattice thermal conductivity are of particular interest.



Chapter 2

Dislocations

2.1 Introduction

In this chapter the nature of dislocations, their influence on the transport coefficients, and their
analysis by diffraction contrast in the TEM will be discussed. The textbooks of Hirth and Lothe
about the theory of the dislocations [41], of Ziman about transport properties of solids [9], and
of Williams and Carter about transmission electron microscopy [42] were used as references.

A dislocation is a one dimensional crystal defect, yielding a bending of the lattice planes close
to the dislocation core. Therefore, the dislocation is surrounded by a strain field, which will
be given in this chapter for an elastically isotropic crystal. Other dislocation related properties
such as stress field, strain energy, and forces on dislocations will be discussed also.

The strain field of a dislocation is of crucial role for both, transport coefficients and imaging
by diffraction contrast in the TEM. Particularly at low temperatures, scattering of the phonons
on the strain field of the dislocation is dominant and determines the lattice thermal conductivity
and ultrasound attenuation. For a qualitative understanding, diffraction contrast in the TEM
observed on dislocations in elastically isotropic materials will be explained. In chapter 8, the
quantitative analysis of dislocations by diffraction contrast in the TEM will be presented. This
includes (i) the numerical calculation of the strain field of the dislocations under consideration
of the anisotropic elastic properties and (ii) the simulation of two-beam images.

2.2 Strain field, stress field, and line energy of dislocations

2.2.1 Elementary properties of dislocations treated in the continuum
theory

A model of an edge dislocation is shown in Figure 2.1(a) [41, chap. 1.3]. According to this model
the crystal was cut above the core of the dislocation into two pieces and an extra half-plane
of atoms was inserted. The unit vector parallel to the dislocation core is referred to as line
direction t. Close to the dislocation core the atoms are displaced from their lattice positions,
i.e., the lattice planes are bent (Fig. 2.1(a)). In general, the dislocation core represents a
boundary of a slipped region. The Burgers vector b is a lattice vector and describes the
strength of the displacements in the slipped region, or in other words, the deviation of the
disturbed crystal structure from an ideal crystal structure. For an edge dislocation the Burgers
vector is perpendicular to the line direction (b ⊥ t), for a screw dislocation these quantities
would be parallel (b ‖ t). For a mixed dislocation the Burgers vector can be resolved in an
edge component be and a screw component bs, which are given by

b = bs + be , (2.1a)
bs = (b · t) t , (2.1b)
be = t× (b× t) . (2.1c)

11
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The strain field and stress field of a dislocation beyond its core can be calculated by linear,
anisotropic elasticity theory (continuum theory) [41, chap. 2.2]. In the following the absence
of internal torques, net torques, and of body forces are assumed. According to Hooke’s law
the stresses σij depend linearly on the strains εkl, which are related to the derivatives of the
displacement field u(x).

σij = cijkl εkl = cijkl
∂uk

∂xl
(Hooke’s law) , (2.2a)

εkl =
1
2

(
∂uk

∂xl
+

∂ul

∂xk

)
. (2.2b)

Only 21 components of the 81 components of the tensor of the elastic constants cijkl are
independent due to the symmetry of the stress tensor and the strain tensor, and due to the
conservation of energy. Therefore, the elastic constants can be considered as components of
a symmetric 6 × 6 matrix cmn. The pairs of indices (i, j) and (k, l) were replaced by single
indices m and n, according to the transformation scheme (1, 1) → 1, (2, 2) → 2, (3, 3) → 3,
(2, 3) or (3, 2) → 4, (3, 1) or (1, 3) → 5, and (1, 2) or (2, 1) → 6. This transformation scheme can
be expressed mathematically compact by using the Kronecker’s delta function δij .

σij = σji , (2.3a)
εij = εji , (2.3b)

cijkl = cjikl = cijlk = cklij , (2.3c)
cmn = cnm , (2.3d)

m = 0.5 (i + j) δij + [9− (i + j)](1− δij) , (2.3e)
n = 0.5 (k + l) δkl + [9− (k + l)](1− δkl) . (2.3f)

The crystal symmetries further reduce the number of independent elastic components. For
isotropic and cubic crystals the matrices cmn have the same structure. However, for cubic crys-
tals the elastic constants c11, c12, and c44 are all independent constants, whereas for elastically
isotropic crystals c44 additionally equals to 1

2 (c11 − c12).

cmn =


c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

 . (2.4)

Some further important quantities are the shear modulus µ, the Poisson’s ratio ν, and the
anisotropy ratio A [41, chap. 2.4]. Particularly, the anisotropy ratio A equals to 1 for isotropic
crystals and might differ from 1 for anisotropic crystals.

µ = c44 , (2.5a)

ν =
c12

c12 + c12
, (2.5b)

A =
2c44

c12 − c12
. (2.5c)
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2.2.2 Plain strain solutions for isotropic crystals

The stress field, and thereby the displacement field and the strain field, is determined by an
equilibrium condition [41, chap. 2.2]. The differential equations for the stress fields have to be
solved under consideration of the Burgers circuit as boundary condition [41, chap. 1.3]. The
Burgers vector b is given by a line integral, taken in a right-handed sense relative to the line
direction t, of the displacement field u around the dislocation (Fig. 2.1(b)).

∂

∂xi
σij = cijkl

∂2uk

∂xi∂xl
= 0 , (2.6a)

b =
∮
C

∂u
∂l

dl . (2.6b)

This definition of the Burgers circuit corresponds to the SF/RH convention: A closed Burgers
circuit is first carried out in a right-handed sense (RH) in a perfect crystal. The same Burgers
circuit is then carried out in the disturbed crystal. The Burgers vector b is defined as the vector
SF from start S to finish F , which is required to close the latter circuit.

In the following paragraphs, the solutions for the displacement field u and the strain field
∂u
∂xl

of a dislocation in an elastically isotropic crystal will be presented, using more advanced
theories instead of the solutions usually presented in textbooks and lectures. For anisotropic
crystals the displacement field of a dislocation was calculated by Eshelby [43], Stroh [44, 45],
and by Barnett and Lothe [46]. Plane strain solutions are required for a dislocation; i.e., the
displacement field, the strain field, and the stress field, should not vary in line direction [41,
chap. 2.5]. For this, Stroh [45] introduced arbitrary orthonormal plane basis vectors m and n
defined by

t = m× n . (2.7)

Eshelby showed that the “Ansatz” for the displacement field has to be of the form

u = A f(m · x + pn · x) . (2.8)

The coefficient p and the vector A are determined by Equations 2.6. The numerical calculation
of the quantities p and A for anisotropic crystals was solved by Stroh [44] and by Barnett and
Lothe [46] and will be the main topic in Chapter 8.1. As mentioned above, the displacement field
should not vary in line direction, i.e., the displacement field should be invariant for translations
a t parallel to the line direction t, where a is an arbitrary factor. Since m · t = 0 and n · t = 0
holds, it can be easily shown that the plain strain property is valid, i.e.,

u(x) = u(x + a t) . (2.9)

At this point Barnett and Lothe [46] expressed the solutions in terms of cylinder coordinates
r and θ (Fig. 2.1(c)), which were defined as follows: (i) The radius r is the shortest distance of
the point x from the dislocation core (Fig. 2.1(c)). (ii) The plane basis vectors m and n were
chosen to fulfill the conditions m · x = r and n · x = 0. (iii) The azimuth angle θ was defined
by the rotation of arbitrary fixed orthonormal plane basis vectors m0 and n0 in a right-handed
sense around the dislocation core into the plane basis vectors m and n (Fig. 2.1(c)).

r =
√

(m0 · x)2 + (n0 · x)2 , (2.10a)

tan(θ) =
n0 · x
m0 · x

, (2.10b)

m = cos(θ)m0 + sin(θ)n0 , (2.10c)
n = − sin(θ)m0 + cos(θ)n0 . (2.10d)

For edge dislocations or mixed dislocations, the convenient choice for the fixed plane basis
vectors is given by

m0 =
be

|be|
, (2.11a)
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Figure 2.1 (a) Model of an edge dislocation with Burgers vector b and line direction t. (b) Definition
of the Burgers vector by a Burgers circuit according to the SF/RH convention. (c) Schematic drawing
of an edge dislocation. The line direction points out of the paper sheet. The characteristic quantities
for the calculation of the strain field ∂u

∂xl
and the line energy EL are the displacement vector u, the

cylinder coordinates r and θ, the plane basis vectors m0 and n0, the core radius r0, and R being half
the distance between two dislocations.

n0 = t×m0 , (2.11b)

where be is the edge component of the Burgers vector b (Eq. 2.1).
The displacement field u of a dislocation in an elastically isotropic crystal is well known

(Ref. [47, page 31] and Ref. [41, pages 60 and 78]),

u(r, θ) =
1
2π

[
b θ + be

sin(2θ)
4 (1− ν)

− (t× b)
{

1− 2ν

4 (1− ν)
ln

(
r2

)
+

cos(2θ)
4 (1− ν)

}]
. (2.12)

However, the strain field ∂u
∂xl

expressed in terms of the cylinder coordinates r and θ is
commonly not reported in textbooks.

∂u
∂xl

(r, θ) =
1
2π

1
r

(ml sm + nl sn) , (2.13a)

sm = −(t× b)
1− 2ν

2 (1− ν)
, (2.13b)

sn = b + be
cos(2θ)
2 (1− ν)

+ (t× b)
sin(2θ)

2 (1− ν)
. (2.13c)

This notation corresponds to the solutions of Barnett and Lothe [46]. The solution for the
strain field of a dislocation in an anisotropic crystal only differ with respect to the vectors sm

and sn, which have to be calculated numerically [46].
In summary, the displacement field, the strain field, and the stress field of a dislocation show

following fundamental properties:

Dislocation property (i) The displacement field, the strain field, and the stress field show
plain strain properties and are proportional to the Burgers vector.

Dislocation property (ii) The displacement field, the strain field, and the stress field can be
expressed in terms of cylinder coordinates r and θ.

Dislocation property (iii) The strain field and the stress field are inversely proportional to
the radius r.

Dislocation property (iv) The strain field and the stress field can be resolved in a factor
only depending on the radius r and a factor only depending on the azimuth angle θ.
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For a qualitative understanding of diffraction contrast in the TEM screw dislocations shall
only be considered. Simple, well known expressions are obtained [41, page 60]. For the calcu-
lations it was further assumed that the line direction is parallel to the z axis, i.e., b = [0, 0, b],
m0 = [1, 0, 0], and n0 = [0, 1, 0].

u(r, θ) = b
θ

2π
, (2.14a)

∂u
∂xl

(r, θ) = b
1
2π

nl

r
, (2.14b)

σ23 =
µ b

2π

cos(θ)
r

, (2.14c)

σ31 = −µ b

2π

sin(θ)
r

, (2.14d)

σ12 = σ11 = σ22 = σ33 = 0 . (2.14e)

2.2.3 Line energy

A unit volume element is deformed by a differential strain dεij [41, chap. 2.2], i.e., stresses σij

do a differential work on the cube faces by an amount

dw = σij dεij = cijkl εkl dεij . (2.15)

The line energy EL = W/L of an infinite dislocation is defined by the strain energy stored per
unit length, in a region bounded by cylinders of radius r0 and R, where r0 is core radius and
R is half the distance between the dislocations [41, page 63] (Fig. 2.1(c)). The line energy of a
dislocation in an isotropic crystal is given by

EL =
µ b2

4π

(
cos2 β +

sin2 β

1− ν

)
ln

(
R

r0

)
, (2.16)

where µ is the shear modulus (Eq. 2.5), ν is the Poisson’s ratio (Eq. 2.5), and β is the angle
between the line direction t and the Burgers vector b [41, page 91].

Dislocation property (v) The line energy increases with |b|2. Therefore, dislocations with
Burgers vectors b which correspond to shortest lattice vectors are energetically favourable.

Dislocation property (vi) The line energy depends on the line direction t and on the mate-
rial constants.

In face centred cubic structures and hexagonal structures Burgers vectors of the type b =
1
2 〈1, 1, 0〉 and b = 〈1, 0, 0〉 would be energetically favourable, respectively. However, the line
energy also depends on the line direction. Since the Poisson’s ratio ν (Eq. 2.5) is usually
smaller than one, the line energy of screw dislocations (β = 0◦) is smaller than the line energy
of edge dislocations (β = 90◦) or mixed dislocations (β < 90◦) for both, face centred cubic and
hexagonal structures. However, for trigonal crystals such as Bi2Te3 the line energy of screw
dislocations in the basal plane might not be the smallest one and will be discussed in Chapter
8.3.4.

2.3 Gliding dislocations and forces on dislocations

2.3.1 Gliding dislocations

In Bi2Te3 gliding dislocations can be easily observed in the TEM and were analysed in detail
with respect to the glide plane, velocity, forces due to residual stresses in the sample, and
interactions between dislocations.
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The glide plane normal G of a dislocation is given by b × t (Fig. 2.2(a)). For a screw
dislocation the glide plane normal would be indetermined. Any plane for which b is a zone
axis is a possible glide plane for screw dislocations [41, page 26]. The temperature T has
to be increased and/or an external shear stress σ has to be applied to start and maintain
gliding. Therefore, gliding is a thermally activated process. An activation energy U(σ) has to
be overcome and yields a dislocation velocity law v = v0 exp{−U(σ)/kB T} [48, page 261]. The
dislocation velocity depends strongly on the applied shear stress, which was nicely demonstrated
for LiF crystals [49] (Fig. 2.2(b)).

2.3.2 Images forces close to free surfaces

The elastic forces FL = F/L per unit length on dislocations are virtual forces representing the
change of free energy of the system with displacement of the dislocation [41, page 65]. This
forces could be due to (i) the attractive image forces close to free surfaces, (ii) applied shear
stresses, and (iii) the interaction between two dislocations. The following expressions for the
elastic forces were derived for infinite dislocations in isotropic crystals.

For the calculation of image forces on screw dislocation and edge dislocations the dislocations
are assumed to be in a distance R from the surface, the line direction being parallel to the
surface, and the slip plane being normal to the free surface (Fig. 2.2(c)) [41, pages 69 and 88].
The maximum radius of the strain field, and thereby the line energy, is limited by R. The line
energy decreases for decreasing distance R (Eq. 2.16). This corresponds to an attractive force
acting on the dislocation towards the free surface. The force per unit length is given by

FL =
µ b2

4π R
(screw dislocation) , (2.17a)

FL =
µ b2

4π (1− ν) R
(edge dislocation) . (2.17b)

2.3.3 Forces due to applied shear stresses

A shear stress σyz shall be externally applied to a sample with a screw or an edge dislocation
being parallel to the z axis (Fig. 2.2(d)) [41, pages 68 and 81]. The external shear stress works
on the dislocation, yielding a force parallel to the x direction. Particularly, the direction of the
force and thereby the direction of motion depends on the sign of the Burgers vector b.

(FL)x = σyz b . (2.18)

The effect of the external stress σ could also be, that the dislocations is bowed out if the
dislocation is pinned at its ends, e.g., pinned at the surface or at point defects (Fig. 2.2(a)).
The bending radius r of the dislocation is determined by the equilibrium of stretching due to
the external stress σ and shortening for minimizing the line energy EL of the dislocation [48,
pp. 249-250].

r =
EL

σ b
. (2.19)

2.3.4 Forces between two parallel straight dislocations

Forces between two parallel dislocations (b1, t) and (b2, t) are of interest. Attractive and
repulsive forces between the dislocations can be best explained for the simplest cases (a) b1 = b2

and (b) b1 = −b2, i.e., the Burgers vectors of the dislocations only differ in their signs. In
general, there is a superposition of the strain fields of both dislocations. At large distances,
there is effectively no overlap of both strain fields. Therefore, the total line energy would be
given by EL = EL1+EL2 = 2EL1, where EL1 and EL2 = EL1 are the line energies of both single
dislocations (Eq. 2.16). At short distances, there is a strong overlap of the strain fields of both
dislocations. Therefore, the dislocation system can be regarded as one single dislocation with a
total Burgers vector b = b1 + b2, yielding (a) b = 2b1 and (b) b = 0, respectively. The total
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Figure 2.2 (a) Model of a gliding dislocation, where G is the glide plane and d is the direction of
motion. (b) Dislocation velocity versus applied shear stress for LiF crystals [49]. (c) Attractive image
forces on dislocations close to a free surface. (d) Gliding of a dislocation induced by an externally
applied shear stress.

line energy would be given by (a) EL = 4EL1 and (b) EL = 0, respectively. In summary, the
total line energy (a) increases at short distances for Burgers vectors having the same signs and
(b) decreases at short distances for Burgers vectors having opposite signs. This corresponds to
repulsive and attractive forces between the dislocations, respectively.

The calculation of the force per unit length between two parallel dislocations is shown in
more detail in the textbook of Hirth and Lothe [41, chap. 5.2]. Cylinder coordinates were
introduced with the first dislocation as the origin and the second dislocation at (R, θ), where R
is the distance between the dislocations. The force per unit length can be resolved in a radial
component FR/L and an angle depended component Fθ/L, which are given by

FR/L =
µ

2π R
(b1 · t)(b2 · t) +

µ

2π (1− ν) R
[(b1 × t) · (b2 × t)] , (2.20a)

Fθ/L =
µ

2π (1− ν) R3
[(b1 ·R) {(b2 ×R) · t}+ (b2 ·R) {(b1 ×R) · t}] , (2.20b)

where R is the distance vector between the dislocations.
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2.4 Lattice thermal conductivity and ultrasound attenu-
ation

2.4.1 Lattice thermal conductivity

The lattice thermal conductivity depends on the phonon mean free path lph according to trans-
port theory for isotropic solids (Chap. 1.2.2). At low temperatures, in a real crystal the phonon
mean free path would be limited by phonon scattering on extended crystals defects. Particu-
larly, phonons can be scattered on the strain field of dislocations, which was concluded from
measurements on samples with different amount of cold work [9, page 325]. An overview of
the calculation of the phonon mean free path is given in the textbook of Ziman [9, chap. 6.4,
8.5, and 8.9]. For dislocations in isotropic crystals, the average phonon mean free path at low
temperatures [9, page 325] is given by

lph = 0.455 (γ2 b2 kD)−1 1
ND

θD

T
. (2.21)

The phonon mean free path is inversely proportional to the dislocation density ND, i.e., the
phonon mean free path decreases with increasing dislocation density ND. The other quantities
are the Debye temperature θD, the Grüneisen constant γ, the Burgers vector b, the Debye radius
kD =

(
6π2 N

V

) 1
3 , and the number of unit cells per volume N

V . Finally, under consideration of
Equations 1.4, 1.7, and 2.21 the lattice thermal conductivity at low temperatures is given by

λlatt = 0.599 kB z

(
kD

γ b

)2

v
1

ND

(
T

θD

)2

. (2.22)

2.4.2 Ultrasound attenuation

Phonons are scattered on the static strain field of the dislocations. However, dislocations are
also able to glide under applied shear stresses. Particularly, this motion can be induced by the
stress field correlated to phonons or ultrasonic waves. Besides a uniform motion, dislocations
can be bowed out and oscillate if they are pinned by impurities or at the surface. Elastic waves
will be generated by gliding or oscillating dislocations, and therefore an incident ultrasonic wave
will be inelastically scattered, i.e., elastic waves will be attenuated.

The attenuation of ultrasound by dislocations was described by Granato and Lücke [50–
52]. Their theory of dislocation resonance assumed a dislocation with Burgers vector b, being
fixed between pinning centres at a distance L, and exposured to a periodic external stress
σ(ω) = σ0 eiωt with angular frequency ω (Fig. 2.3(a)). The dislocations were considered as
damped vibrating strings and the equation of motion for the dislocation displacement y(x, t) is
given by

A
∂2y

∂t2
+ B

∂y

∂t
− C

∂2y

∂x2
= b σ(ω) . (2.23)

The effective dislocation mass per unit length A is determined by a rod at the dislocation core
with radius b and mass density ρ. The damping force per unit length B arises from drag due to
interaction with phonons, electrons, and due to re-radiation of elastic waves [51]. The damping
force depends on the number of atoms per unit cell z, the shear wave velocity vt, the lattice
constant a, the temperature T , and the Boltzmann’s constant kB [53]. Finally, the dislocation
line energy C in a bowed-out dislocation depends on the shear modulus µ and the Poisson’s
ratio ν (Eq. 2.5).

A = π ρ b2 , (2.24a)

B =
(

3 kB z

10 vt a2

)
T , (2.24b)

C =
2 µ b2

π(1− ν)
. (2.24c)
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Figure 2.3 (a) Model of an oscillating dislocation with resonance frequency ω0 and principle of ul-
trasound attenuation. The attenuation α(ω) is measured in dependence of the ultrasound frequency
ω. The dislocation configuration (density ND, length L) can be changed by application of a stress σij .
(b) Stress dependence of ultrasound attenuation measured on HgTe [54].

Ultrasound attenuation experiments measure the attenuation α(ω) and velocity of sound
v(ω) of the incident ultrasound in dependence of its frequency ω (Fig. 2.3(a)). A related
quantity is the decrement 4(ω) = 2πα(ω)v(ω)

ω which is given by

∆(ω) = Ω ∆0 ND L2 f

(
ω

ω0
, D

)
, (2.25a)

f

(
ω

ω0
, D

)
=

ω
ω0

/ D[
1−

(
ω
ω0

)2
]2

+
(

ω
ω0

/ D
)2

. (2.25b)

The decrement ∆ depends on (a) the dislocation density ND, (b) the length L of the dislocation
or of its oscillating segments, and (c) the frequency response f( ω

ω0
, D), determined by the

normalised damping constant D and the ratio of the frequency ω to the resonance frequency
ω0 of the dislocation. Ω is an orientation factor and ∆0 is a constant.

ω0 =
π

L

√
C

A
, (2.26a)

D = ω0
A

B
, (2.26b)

∆0 =
8 µ b2

π3 C
. (2.26c)

The effects of dislocations on ultrasound attenuation were nicely demonstrated on HgTe [54].
The attenuation was first measured on an annealed sample in a frequency range between 10 MHz
and 300MHz at a temperature of 4.2 K. The attenuation showed a maximum at 240 MHz and
its dependence on the frequency corresponded to the frequency response factor f

(
ω
ω0

, D
)
. In

a second experiment, the sample was compressed at right angles to the direction of sound
(Fig. 2.3(b)) in a stress range of 0− 1.4 MPa, the temperature was 290 K, and the ultrasound
frequency was 10 MHz. The attenuation showed a hysteresis in dependence of the applied stress
(Fig. 2.3(b)). The crystals were plastically deformed, i.e., the configuration of the dislocations
were changed. This confirmed the dependence of the attenuation on the dislocation density ND

and their lengths L, since an external stress field changes the microstructure.
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2.5 Diffraction contrast and image simulation

2.5.1 Diffraction contrast

Two-beam conditions are used for imaging of dislocations and other extended crystal defects
by diffraction contrast in a TEM [42, chap. 13], i.e., the direct beam is diffracted by one lattice
plane only with reciprocal lattice vector g. The complex amplitudes of the direct beam T and
the diffracted beam S can be calculated according to the two-beam dynamical diffraction theory
of Howie and Whelan [55, 56]. This theory is based on the column approximation, i.e., there
is no interaction of the electrons in neighboured columns [42, chap. 13]. In each column, the
amplitudes of the direct beam and the diffracted beam change simultaneously with specimen
thickness z since they are coupled according to a linear first-order differential equation [47,
chap. 2.3], (

dT
dz
dS
dz

)
=

π

ξg

(
−N [i−A]

[i−A] [−N + 2 i w′]

) (
T
S

)
. (2.27)

The intensities of the direct beam and diffracted beam are given by

IT(z) = T (z) T (z) , (2.28a)

IS(z) = S(z) S(z) . (2.28b)

Absorptions effects are considered by the absorption coefficients N (normal) and A (anoma-
lous). Diffraction effects are considered by the parameter w′(z) which is related to (i) the
extinction distance ξg corresponding to the Bragg reflection g, (ii) the excitation error s or the
dimensionless excitation error w, representing the deviation of the crystal orientation from the
exact Bragg position, (iii) the strain field ∂u

∂xl
of the extended crystal defect, and (iv) the dis-

placement function β(z), representing the bending of the diffracting lattice plane g in direction
of the plane normal.

w′ = w + ξg β(z) , (2.29a)
w = ξg s , (2.29b)

β(z) =
∂

∂z
(g · u) = g · ∂u

∂z
. (2.29c)

For an ideal crystal (β = 0) without absorption effects (A = N = 0) well known solutions
are obtained for the intensities [42, chap. 13],

IS(z) =
(

π z

ξg

)2 sin2(π z seff)
(π z seff)2

= 1− IT(z) , (2.30a)

seff =
√

s2 + ξ−2
g , (2.30b)

where seff is the effective excitation error. The wavelength is determined by the extinction
distance ξg. These solutions are also referred to as “Pendellösung” fringes or thickness fringes
observed in wedge-shaped TEM samples [42, chap. 23].

For real crystals, diffraction contrast is determined by the strain field of the extended crystal
defect, i.e., the displacement function β(z) yields local changes of the excitation error s (Eq.
2.29) and thereby local changes of the amplitudes of the direct beam and the diffracted beam
(Eq. 2.27). For a screw dislocation in an isotropic crystal the displacement field is given by
b θ

2π (Eq. 2.14). Therefore, for two-beam conditions with g · b = 0 and thereby β(z) = 0 and
assuming an elastically isotropic crystal there would be no additional diffraction contrast. The
reason is, that for a screw dislocation lattice planes with the plane normal g being perpendicular
to the Burgers vector b are not bent.
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2.5.2 Image simulation of crystals having strain fields

The g · b = 0 criterion for dislocations being out of contrast can be used for determination
of the Burgers vector. However, this criterion is only partially valid for edge dislocations and
completely fails in elastically anisotropic crystals. Therefore, image simulation is required for
anisotropic crystals. Image simulation includes (i) the calculation of the strain field ∂u

∂xl
and

thereby the displacement function β(z) (Eq. 2.29) and (ii) the numerical integration of the
Howie-Whelan equations (Eq. 2.27).

The calculation of the strain field of a dislocation was solved by Stroh [44, 45] and by Barnett
and Lothe [46]. A fast calculation of electron micrographs based on the Stroh formalism and
implemented in FORTRAN was presented by Head [47]. The aim of this work was to compute
electron micrographs of dislocations based on the integral formalism of Barnett and Lothe
implemented in MATLAB r© and will be presented in Chapter 8. The advantage of the integral
formalism and of MATLAB r© is a reduction of the computing time compared to Head [47].
Finally, two-beam images of structural modulations (nns) found in Bi2Te3 were also simulated
(Chap. 8.3.3).

Usually, the Howie-Whelan equations (Eq. 2.27) can be solved only numerically due to the
local changes of the strain field (Eq. 2.29). For numerical integration the specimen has to be
separated in columns and slices, and the strain field is assumed to be constant within each
slice. For each column, the amplitudes (Tn+1, Sn+1) in slice (n+1) have to be calculated under
consideration of the Howie-Whelan equations (Eq. 2.27) and the boundary condition that the
amplitudes (Tn, Sn) in the previous slice (n) are already known. The boundary condition on
top of the sample is (T1, S1) = (1, 0). A high-precision numerical integration method is the
Runge-Kutta method, which was used by Head [47]. In this work, another method was used;
the differential equations were transformed by an “Ansatz” into algebraic equations and the
algebraic equations were solved (Eq. 2.30). For both methods, the amplitudes are transformed
from slice (n) to slice (n + 1) by matrices (Kn) according to(

Tn+1

Sn+1

)
= (Kn)

(
Tn

Sn

)
, (2.31a)(

T (z)
S(z)

)
= · · · (K3)(K2)(K1)

(
T1

S1

)
, (2.31b)

due to the linear character of the Howie-Whelan equations. The transformation matrices (Kn)
depend in a large part on the displacement function β(z), and particularly are independent of
the amplitudes (App. C.5).
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Chapter 3

Experimental for bulk materials

The samples were n-type Bi2(Te0.91Se0.09)3 and p-type (Bi0.26Sb0.74)1.98(Te0.99Se0.01)3.02 bulk
materials synthesised by the Bridgman technique (Table 3.1), which were obtained from com-
mercially available Peltier devices [32]. About 10 samples were conventionally prepared for
TEM analysis by grinding, polishing, or dimpling, and finally by Ar+-ion milling at 4 kV. The
c axis was lying in the plane of the TEM samples.

Variations in stoichiometry were analysed by energy dispersive X-ray spectrometry (EDX)
on two n-type samples (samples N1 and N2) and on two p-type samples (samples P1 and P2)
(Table 3.1). It will be shown that the TEM sample thickness, i.e., 100 µm for dimpled samples
and 30µm for polished samples, has a strong influence on the obtained hole-count spectra. The
structural modulations [natural nanostructure(nns)] were analysed by stereomicroscopy and
image simulation on three n-type samples (samples N3, N4, and N5) and one p-type sample
(sample P3) (Table 3.1). Finally, gliding dislocations were analysed by stereomicroscopy, video
analysis, and image simulation on sample P4 (Table 3.1).

A Zeiss 912Ω TEM was used with a LaB6 gun operated at 120 kV and with a point resolution
of 0.37 nm (Fig. 3.1). The microscope is equipped with (i) a Köhler illumination system, (ii)
an OMEGA filter, (iii) a side entry EDX detector of Oxford Instruments for chemical analysis
with an energy resolution of 132 eV at the Mn Kα line, (iv) a low-background, liquid nitrogen
cooling, double-tilt holder with a tilting range of ±60◦/±30◦, (v) a CCD-camera of SIS (14-bit,
1024 × 1024 pixel), and (vi) a video-CCD-camera of Sony (8-bit, 768 × 576 pixel).

The stereomicroscopy technique included: (i) tilting of the same specimen region by angles
up to±60◦ to various orientations and (ii) imaging of the strain fields by diffraction contrast with
strongly excited Bragg reflections g = {0, 0, 15}, {−1, 0, 5}, {1, 0, 10}, or {1, 1, 0}. Particularly,
the nns can be imaged with strongly excited {−1, 0, 5} reflections [34–36, 57]. Image simulation
was applied, which required two numerical calculations: (i) the strain field of the dislocations
and of the nns and (ii) the amplitudes of the direct beam and the diffracted beam according to
the two-beam dynamical diffraction theory (Ref. [42, chap. 13] and [55]).

For the stereomicroscopy experiments Kikuchi maps are indispensable and were constructed
for Bi2Te3 by stereographic projection [58, page 28] of the poles on the basal plane (Fig. 3.2).
Kikuchi maps are used as road maps and allow in combination with the analysis of the diffraction
patterns a precise determination of the beam direction and the foil normal, which have to be
known for image simulation. Figure 3.3 shows an overview Kikuchi map, the tilting experiments
for the analysis of the nns and of gliding dislocations are labelled by arrows. In Appendix B
more detailed Kikuchi maps are given (Fig. B.1 and B.2).

The dislocations were analysed with respect to dislocation density, Burgers vector, line
direction, glide plane, and line energy. The accuracy of the measurement of the line directions
is about ±10◦. The Burgers vectors b were determined according to the g · b = 0 criterion
for dislocations being out of contrast [56]. This method could be applied because Bi2Te3 has
almost isotropic elastic properties, the anisotropy ratio being A = 1.17 [41, chap. 2.4] calculated
from the elastic constants cij [59]. Image simulation was applied for a exact analysis of the
Burgers vectors. The strain field and the line energy were calculated under consideration of the

23



24 CHAPTER 3. EXPERIMENTAL FOR BULK MATERIALS

Table 3.1 Composition and TEM preparation of the investigated Bi2Te3 samples for the EDX analysis,
the analysis of the nns, and the analysis of gliding dislocations.

Sample Composition TEM preparation

EDX
N1 Bi2(Te0.91Se0.09)3 Dimpling (100 µm)
N2 Bi2(Te0.91Se0.09)3 Polishing (30 µm)
P1 (Bi0.26Sb0.74)1.98(Te0.99Se0.01)3.02 Dimpling (100 µm)
P2 (Bi0.26Sb0.74)1.98(Te0.99Se0.01)3.02 Polishing (30 µm)

nns
N3 Bi2(Te0.91Se0.09)3 Polishing (30 µm)
N4 Bi2(Te0.91Se0.09)3 Polishing (30 µm)
N5 Bi2(Te0.91Se0.09)3 Polishing (30 µm)
P3 (Bi0.26Sb0.74)1.98(Te0.99Se0.01)3.02 Dimpling (100 µm)

Gliding dislocations
P4 (Bi0.26Sb0.74)1.98(Te0.99Se0.01)3.02 Dimpling (100 µm)

Table 3.2 Cliff-Lorimer k factors as used by the software (INCA r©, Oxford Instruments) for 120 keV
electrons (“theoretical”) and after calibration by EPMA for Bi2Te3 and Bi-2212 samples (“calibrated”).
Te served as reference element.

Z X-ray Energy Theoretical Calibrated
line (keV)

Ca 20 Kα1 3.692 0.959 1.04± 0.11
Cu 29 Kα1 8.048 1.457 1.19± 0.05
Se 34 Kα1 11.222 2.071 2.15± 0.21
Sr 38 Kα1 14.165 2.629 2.23± 0.20
Sb 51 Lα1 3.605 1.890 2.02± 0.07
Te 52 Lα1 3.769 1.961 1.961
Bi 83 Lα1 10.839 3.083 2.17± 0.11

anisotropic elastic properties according to the integral formalism of Barnett and Lothe [46].
The characteristic quantities of the nns are the wave vector q and the displacement vector u.

The wavelength of the wave vector was obtained from the fringe spacing in the two-beam images
of the nns and its direction was determined in the corresponding diffraction patterns. The
direction of the displacement vector was calculated according to the g · u = 0 criterion for a
displacement field being out of contrast [56]. The exact amplitude of the displacement vector
was determined by comparison of experimental and simulated images with respect to their
diffraction contrast (Imax − Imin)/(Imax + Imin), where I is the intensity.

The chemical composition was first determined by wavelength dispersive X-ray spectrometry
(WDX) in an electron probe microanalyser (EPMA) [33] and then by EDX in the TEM [60, 61].
Additionally, electron energy-loss spectra (EELS) were acquired in the TEM to verify the local
thickness of the sample in terms of the electron mean free path (mfp). The Cliff-Lorimer method
[62] was applied for quantitative chemical analysis by EDX, and the Cliff-Lorimer k factors were
calibrated such that the mean values of the mole fractions corresponded to those of the EPMA
results [33] (Table 3.2).

The acquisition conditions for the EDX spectra were an acquisition time of 120 s, a spot
size of 63 nm, a detector take-off angle of 20◦, and a specimen tilt angle of 15◦. The integrated
counts N of the Bi Lα1, Te Lα1, and Sb Lα1 peaks were larger than 20 000 for EDX spectra
acquired in thick specimen regions (> 0.4 mfp), yielding a minimum statistical error of σN/N =
0.7% (Poisson statistics) for the determination of the local mole fractions. In thin specimen
regions (< 0.4 mfp) the integrated counts of the Bi Lα1 and Te Lα1 peaks were larger than 5000
and the statistical error was σN/N = 1.4%. For the determination of variations in stoichiometry
within individual grains and in the entire sample mean mole fractions c, standard deviations
σc, and relative errors σc/c were calculated.
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Figure 3.1 (a) The Zeiss 912Ω TEM and (b) a magnified image showing (i) the condenser aperture,
(ii) the objective aperture, (iii) the selected area aperture, and (iv) the stray aperture for elimination
of the “hole-count” artifact.

Figure 3.2 Construction of a Kikuchi map by stereographic projection [58, page 28]. The pole-direction
hP and its corresponding point P on the pole sphere is projected into the point P ′ in the basal plane.
In Bi2Te3, the pole N and the pole A correspond to the [0, 0, 1] and [1, 0, 0] directions, respectively.
For image simulation, the pole directions were specified by their Miller indices [u, v, w] or by polar
coordinates (ϕ, ρ).
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Figure 3.3 Overview Kikuchi map for Bi2Te3. The Kikuchi map was used as a road map for the tilting
experiments in the TEM. The [0, 0, 1] pole in the centre correspond to the North-Pole (Fig. 3.2). The
poles in the basal plane such as [1, 0, 0] are on the outer circle (equator line). The arrows show the
tilting experiments for samples N3, N4, N5, P3, and P4.



Chapter 4

Bulk: Quantitative EDX
microanalysis

4.1 Introduction

There are a few studies by transmission electron microscopy (TEM) on extended structural
defects in Bi2Te3 [24–26] but no quantitative chemical analysis by energy dispersive X-ray
spectrometry (EDX) in the TEM reported in the literature. With respect to its chemical
microstructure Bi2Te3 was assumed to be a solid solution with homogeneous stoichiometry.
However, quantitative chemical analysis by wavelength dispersive X-ray spectrometry (WDX) in
an electron probe microanalyser (EPMA) yielded a fairly large variation in stoichiometry on the
micrometer scale [33]. On the other hand, TEM investigations yielded a structural modulation
on the nanometer scale [34, 63]. It was suggested that the structural modulation might be
caused by chemical inhomogeneities on the nanometer scale [34]. The lateral resolution of the
WDX method is only 1 µm and too large for yielding meaningful results. EDX spectrometry
in the TEM is the method of choice due to its higher lateral resolution of less than 50 nm for a
TEM with a thermal emitter and about 1 nm for a TEM with a field emission gun.

Over the last years, EDX spectrometry has also emerged as a method for quantitative chem-
ical analysis of light elements found in, e.g., biological samples, since by introducing ultrathin
detector windows the analysis of light elements down to C, O, and B (Z = 5) is now pos-
sible [64–66]. The quantitative chemical analysis of heavy elements like Bi (Z = 83) is also
demanding. It is well known (Ref. [42, chap. 33] and Ref. [67–72]) that spurious X-rays are
generated at various sections of the microscope or sample and might reach the EDX detector
and yield artifacts. Spurious X-rays (characteristic and continuum X-rays) of the sample can
be generated by uncollimated electrons and by X-ray fluorescence, the latter being generated
by the electron beam. The artifact can be reduced by thick apertures of high atomic number
located at the second condenser lens [67] or at the anticontaminator [71], by preparation of thin
TEM samples [67], by design of the specimen holder [71, 72], and by limiting the field of view
of the X-ray detector [71]. These points were already implemented in the Zeiss 912Ω TEM,
however, did not solve the problem satisfactorily.

Materials such as Bi2Te3 or Bi203 [73] are particularly susceptible to stray radiation since
their heavy element Bi absorbs more strongly than the other elements of the compound. There-
fore, the hole-count artifact is stronger than in other systems and considerably reduces the
accuracy of the measurements below an acceptable and relevant level. In this chapter it will
be reported how this artifact was further suppressed yielding a quantitative chemical analysis
with high accuracy.

Chemical microanalysis of Bi compounds is of great interest because of (i) the outstanding
physical properties of these compounds and (ii) the stoichiometry range the crystal structures
of these compounds have. Considering the importance and outstanding properties of Bi2Te3 as
a thermoelectric material or the Bi2Sr2Can−1CunO4+2n compounds as a superconducting ma-
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terial, little is known and has been published on the chemical composition of these compounds.
Recently, new Te-phases such as AgPbmSbTe2+m bulk materials with outstanding thermoelec-
tric and structural properties were found [28, 29]. EDX in the TEM on such compounds will
be necessary to correlate physical properties with chemical composition.

4.2 Results

4.2.1 Elimination of stray radiation

Stray radiation in the TEM can be verified by hole-count measurements, for which the electron
beam is positioned in the vacuum close to the edge of the sample and an EDX spectrum is
acquired [67]. The X-ray counts obtained in such a spectrum are called “hole-counts” and are
artifacts. This is demonstrated for sample N1. The electron probe was positioned (1) at a hole
close to the edge of the specimen, (2) at a thin region 100 nm away from the edge of the sample,
and (3) at a thicker region at a distance 250 nm away from the edge (Fig. 4.1). The acquisition
time was the same for all three spectra. Note that the intensities of the X-ray lines are not
proportional to the specimen thickness. Therefore, the obtained mole fraction ratios depend
on the position of the measurements. In thick specimen regions the Te Lα1 peak is larger than
the Bi Lα1 peak, whereas in thin specimen region the Bi Lα1 peak is larger. The hole-count
spectrum shows strong Bi L X-ray peaks and the intensity of the Bi Lα1 line is 31% of the value
measured at a thin specimen region.

Uncollimated electrons might hit the specimen at thick outer parts of the sample and,
thereby, produce spurious X-rays. In sample P1 spectra were acquired (1) at a hole, (2) at
an electron transparent region at the edge of the sample, and (3) at a thick region, i.e., a
not transparent region (Fig. 4.2). The spectra were normalised with respect to the Bi Lα1

lines. Spectrum 2 is a conventional EDX/TEM spectrum whereas hole-count spectrum 1 and
spectrum 3 are almost identical and differ significantly from spectrum 2.

In hole-count spectra the Bi Lα1 peak was found to be larger than the Te Lα1 peak. It
is a characteristic feature of the artifact, that the peaks of high energy X-ray lines of the
heavy elements are larger than the low energy X-ray lines of the lighter elements. Therefore,
the quantitative analysis in thin specimen regions yielded a too large mole fraction of Bi, i.e.,
64 at.% instead of 40 at.% in spectrum 2 of sample N1. For improving the accuracy of the
analysis the Bi Lα1 spurious X-rays had to be reduced and the intensity of the Bi Lα1 hole-
count should decrease to 1% or less of the value measured at a thin specimen region. In the
following, the ratio of the Bi Lα1 counts measured less than 100 nm away from the edge of the
sample and at a hole under identical acquisition conditions is referred to as the Bi Lα1 hole-count
ratio. The Bi Lα1 hole-count ratio should be 100 or larger for a high-accuracy analysis.

A Mo stray aperture (Fig. 4.3(a)) with a diameter of 200µm was inserted close to and
above the anticontaminator, i.e., 5.6 mm above the specimen. This aperture can be inserted
and removed like the objective aperture. This aperture prevents stray radiation hitting the
specimen without limiting the field of view of the electron beam. Figure 4.3(b) shows two hole-
count spectra acquired in sample N1 without and with inserted stray aperture. With inserted
stray aperture the intensity of spurious X-rays was drastically reduced. For sample P1 the
Bi Lα1 spurious X-rays could be reduced by a factor of 8 yielding a Bi Lα1 hole-count ratio of
42 (Table 4.1).

Usually, to assess the amount of stray radiation in a an analytical TEM a NiO thin film
mounted on a 200-mesh Mo-grid is used [74, 75]. Two spectra were acquired under identical
acquisition conditions on a commercially available NiO test specimen (Plano GmbH). The
specimen was inserted with the film facing the electron beam, and the electron beam was
positioned at the centre of a mesh. The first spectrum was acquired on the NiO film and
the second at a hole of a nearby mesh without a film. The Ni Kα1 and Mo Kα1 integrated
counts were determined from both spectra. Two different Ni Kα1/Mo Kα1 count ratios were
determined that characterise the quality of the EDX measurements; (i) a film-count ratio, where
both counts were obtained from the first spectrum and (ii) a hole-count ratio, where the Ni Kα1
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and the Mo Kα1 counts were obtained from the first and second spectrum, respectively. The
Ni Kα1/Mo Kα1 film-count ratio increased from 3.0 without to 6.6 with inserted stray aperture
(Table 4.1). The Ni Kα1/Mo Kα1 hole-count ratio is a more sensitive performance figure for
column radiation and increased from 5.1 without to 45 with inserted stray aperture (Table 4.1).
The hole-count measurement also showed a reduction of the Mo Kα1 spurious X-rays by a factor
of 8.7 and a change of the Mo Kα1/Mo Lα1 count ratio from 4.3 without to 39.7 with inserted
stray aperture.

Hole-count artifacts can also be reduced by preparing thinner samples. The thickness of the
sample has to be expressed in terms of the electron and X-ray mean free paths [67]. The mean
free path in Bi2Te3 is estimated to 9µm for 120 keV electrons [76] and to 21 µm and 492µm for
20 keV and 120 keV X-rays, respectively [77, 78]. Up to now, only measurements on dimpled
samples were presented, which have a thickness of about 100 µm. Hole-count measurements
were carried out on sample N2, which was entirely polished to a thickness of 30 µm. Without
stray aperture a Bi Lα1 hole-count ratio of 9.3 was found, which is an improvement by a factor
of 3 compared to the dimpled sample P1 (Table 4.1). With the stray aperture inserted the
spurious X-rays were further decreased by a factor of 5 yielding a Bi Lα1 hole-count ratio of 43
(Table 4.1).

4.2.2 Quantitative chemical analysis of Bi2Te3

Bulk materials

First, the improved accuracy of the EDX analysis due to the stray aperture had to be verified.
Second, the goal of the EDX analysis was (i) to find the length scale of chemical inhomogeneities
and (ii) a possible correlation to a structural modulation (Fig. 4.4) [34, 63]. The results are
summarised in tables and are presented as Se-Te correlation diagrams for n-type Bi2(Te,Se)3
and as Bi-Sb correlation diagrams for p-type (Bi,Sb)2Te3. Particularly, the scatter of data is
of interest. All spectra were acquired in specimen regions thicker than 0.4 mfp but thin enough
such that absorption of the Te Lα1 and Sb Lα1 lines is still small. The reason is, that the mean
free path of X-rays in Bi2Te3 is estimated to 10µm for the Bi Lα1 line and 1 µm for the Te Lα1

line [77, 78], which is large compared to a typical specimen thickness of 100 nm.
Seven spectra were acquired within an area of 1 µm2 of a n-type sample without and with

inserted stray aperture (Table 4.2, Fig. 4.5). A mole fraction of 52.8 ± 0.8 at.% Te and of
53.9± 0.2 at.% Te was obtained without and with inserted stray aperture, respectively.

With inserted stray aperture at a different grain, seven spectra were acquired on n-type
Bi2(Te,Se)3 within an area of 1µm2 and yielded a mole fraction of 54.1 ± 0.5 at.% Te (Table
4.3). More than 60 spectra were acquired in an extended area larger than 100 µm2. An average
mole fraction of 54.4±1.3 at.% Te (Table 4.3) and a negative correlation between Te and Se (Fig.
4.6(a)) was obtained in large areas. The same type of measurements on p-type (Bi,Sb)2Te3

yielded a mole fraction of 29.6 ± 0.2 at.% Sb within an area of 1 µm2. In areas larger than
100 µm2 an average mole fraction of 29.8 ± 0.8 at.% Sb (Table 4.3) and a negative correlation
between Bi and Sb (Fig. 4.6(b)) was obtained.

Te-depletion in thin specimen areas

The stray aperture was inserted and EDX spectra were acquired on a freshly prepared n-type
Bi2(Te,Se)3 TEM sample. Spectra were acquired along a line perpendicular to the edge and the
specimen thickness was measured by EELS. Figure 4.7 shows the mole fraction in dependence
of the position (specimen thickness). The mole fraction of Te drops significantly at a thickness
of less than 0.4 mfp. More than 10 spectra were acquired in thin specimen regions of less than
0.4 mfp yielding a mole fraction of 48.4± 5.2 at.% Te (Table 4.4) and no correlation between Se
and Te (Fig. 4.8(a)). The same type of measurements on p-type (Bi,Sb)2Te3 yielded a mole
fraction of 53.6 ± 4.6 at.% Te (Table 4.4) and no correlation between Bi and Sb (Fig. 4.8(b)).
Therefore, a Te-depletion exists in both samples at thin specimen areas.
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Figure 4.1 EDX spectra of sample N1 acquired (1) as hole-count and (2,3) at electron transparent
regions with increasing specimen thickness. The insert shows the positions of the EDX measurements.

Figure 4.2 EDX spectra of sample P1 acquired (1) as hole-count, (2) at an electron transparent, and
(3) a non electron transparent region. The spectra were normalized with respect to the Bi Lα1 lines.

Figure 4.3 (a) Schematic drawing of the stray aperture configuration positioned slightly above the
sample. (b) Hole-count EDX spectra of sample N1 acquired (1) without and (2) with inserted stray
aperture. Identical acquisition conditions were used for both spectra.
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Table 4.1 Effect of the stray aperture and sample preparation on the film-count and hole-count ratio.
A high performance corresponds to a large ratio.

Sample Sample preparation Performance figure Without With
aperture aperture

NiO film 200-mesh Mo grid Ni Kα1/Mo Kα1 film-count ratio a 3.0 6.6
NiO film 200-mesh Mo grid Ni Kα1/Mo Kα1 hole-count ratio b 5.1 45
Sample P1 Dimpled Bi Lα1 hole-count ratio c 3.5 42
Sample N2 Polished Bi Lα1 hole-count ratio c 9.3 43
Bi-2212 Polished Bi Lα1 hole-count ratio c 25 127
HAP film 200-mesh Cu grid Ca Kα1/Cu Kα1 film-count ratio a 0.6 6.1

aBoth counts were measured on the film. bThe Ni Kα1 count was measured on the film and the
Mo Kα1 count was measured at a hole under identical acquisition conditions. cThe Bi Lα1 counts
were measured close to the edge of the sample and at a hole under identical acquisition conditions.

Figure 4.4 (1, 0,−5) dark field image for imaging a structural modulation (nns) with a wavelength of
10 nm in n-type Bi2Te3.

4.2.3 Quantitative chemical analysis of other systems

Quantitative chemical analysis by EDX in the TEM on TEM foils and on powders is a standard
technique. The improvement of the accuracy by using the stray aperture is demonstrated on
a high-TC superconductor Bi2Sr2CaCu2O8+δ (Bi-2212) and on nano hydroxyapatite (HAP)
Ca10(PO4)6OH2 powders on Cu-grids, HAP being a main component of bones and teeth.

Similar to Bi2Te3, Bi-2212 contains the heavy element Bi and shows large variations in stoi-
chiometry [79]. Although this compound has fascinating physical properties and is structurally
complex, only a few systematic studies have been published on the chemical composition of
these materials. First, hole-count measurements were carried out on a polished bulk TEM
sample. With inserted stray aperture the spurious X-rays could be decreased by a factor of 4
yielding an improvement of the Bi Lα1 hole-count ratio from 25 to 127 (Fig. 4.9(a), Table 4.1).
Variations in stoichiometry were determined by 3 measurements in an area smaller than 1 µm2

and 30 measurements in an area larger than 100 µm2 (Table 4.5) and are shown in a Ca-Cu
correlation diagram (Fig. 4.9(b)). Variations in stoichiometry are by a factor of 5 smaller on
the sub-micrometer scale.

A powder of nano HAP was dispersed on a holey carbon film on top of a 200-mesh Cu-grid.
EDX spectra of the nano powder particles at the centre of a mesh were acquired. Without
stray aperture the Cu Kα1 spurious peak is the largest peak in the spectrum (Fig. 4.10(a)).
With inserted stray aperture the Cu Kα1 spurious peak was reduced by a factor of 10 (Fig.
4.10(b)), i.e., the Ca Kα1/Cu Kα1 film-count ratio being 0.6 without and 6.1 with inserted stray
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Figure 4.5 Se-Te correlation diagrams obtained in a thicker region (> 0.4mfp) of n-type Bi2(Te, Se)3
within an area of 1 µm2 (a) without and (b) with inserted stray aperture.

Table 4.2 Mole fractions obtained in a thicker region (> 0.4 mfp) of n-type Bi2(Te, Se)3 within an area
of 1 µm2 with and without stray aperture.

Without aperture With aperture

Bi Te Se Bi Te Se

c (at. %) 40.8 52.8 6.4 39.9 53.9 6.2
σc (at. %) 0.8 0.8 0.2 0.2 0.2 0.3
σc/c (%) 1.9 1.5 2.7 0.6 0.4 5.5

aperture (Table 4.1). The quantitative chemical analysis yielded mole fractions of 63 at.% Ca
and 37 at.% P without stray aperture and of 59 at.% Ca and 41 at.% P with stray aperture
[80], which is very close the expected composition. Therefore, for chemical analysis of powders
on Cu grids, the effect of the stray aperture is most significant among the samples studied in
this paper.

4.3 Discussion

4.3.1 Quantitative EDX microanalysis of Bi2Te3 materials

No correlations between chemical inhomogeneities and the nns

The quantitative chemical analysis by EPMA on p-type (Bi,Sb)2Te3 yielded a negative corre-
lation between Sb and Bi with a variation in stoichiometry of about 1 − 1.5 at.% [33]. The
same behaviour was found for Se and Te in n-type Bi2(Te,Se)3 [33]. Therefore, Sb can be
substituted for Bi and Se for Te in p-type and n-type samples, respectively. Both samples are
inhomogeneous on the micrometer scale. Diffraction contrast experiments in the TEM yielded
in both samples a structural modulation with a wavelength of 10 nm (Fig. 4.4) [34, 63]. This
structural modulation is referred to as natural nanostructure (nns) [63].

With the stray aperture inserted the average Te mole fraction was found to be equal to
the nominal composition and the scatter of data could be reduced by a factor of 4 (Table 4.2).
Also, line scans at varying sample thickness yielded smaller variations of the determined mole
fractions. The relative error of σc/c = 1% for Te found on the sub-micrometer scale (Table 4.3)
is due to (i) a statistical error of σN/N = 0.7% and (ii) due to absorption of the low-energy
X-ray lines.

The effect of absorption of X-ray lines on the scatter of data will be discussed in detail
only for the material which is most strongly affected by absorption, i.e., n-type Bi2(Te,Se)3. A
line scan at distances between 200 nm and 800 nm away from the edge of the sample yielded
a maximum scatter of data of 1.6%. However, no clear absorption effect was observed, i.e., a
reduction of the Te mole fraction for increasing specimen thickness (Fig. 4.7). For a wedge-
shaped sample the specimen thickness should increase from 90 nm to 355 nm, respectively. On
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Figure 4.6 Se-Te and Sb-Bi correlation diagrams obtained in thick regions (> 0.4 mfp) of (a) n-type
Bi2(Te, Se)3 and (b) p-type (Bi, Sb)2Te3, within an area of 1 µm2 (black squares) and an area larger
than 100 µm2 (grey diamond). The stray aperture was inserted.

Table 4.3 Mole fractions obtained in thick regions (> 0.4mfp) of n-type Bi2(Te, Se)3 and p-type
(Bi, Sb)2Te3 within an area of 1 µm2 and an area larger than 100 µm2. The stray aperture was inserted.

Bi2(Te, Se)3 (Bi, Sb)2Te3

Area < 1 µm2 Area > 100 µm2 Area < 1 µm2 Area > 100 µm2

Bi Te Se Bi Te Se Bi Sb Te Bi Sb Te

c (at. %) 40.1 54.1 5.8 40.1 54.4 5.5 10.1 29.6 60.2 10.4 29.8 59.9
σc (at. %) 0.5 0.5 0.2 1.1 1.3 0.5 0.2 0.2 0.2 0.3 0.8 0.6
σc/c (%) 1.1 1.0 3.0 2.8 2.4 8.7 2.4 0.7 0.3 3.1 2.6 1.0

the basis of the mass absorption coefficients [77, 78] the absorption correction factors ACFTeBi

[42, chap. 35] for the k factor of the Te Lα1 line should be 5% and 23%, respectively. Therefore,
for the line scan shown in Figure 4.7 a reduction of the Te mole fraction was expected from
nominal 54.4 at.% to 53 at.% at a distance of 200 nm and to 49 at.% at a distance of 800 nm
away from the edge. The reason for the absence of absorption effects in this line scan might be
a deviation from the ideal wedge shape and thereby an overestimation of the sample thickness.
Line scans on the other Bi-based samples yielded similar results. Therefore, X-ray absorption
effects cannot account for the large scatter in stoichiometry found for these materials.

In n-type Bi2(Te,Se)3 in areas smaller than 1µm2 the variation in stoichiometry of Te and
Se was found to be about 0.5 at.% (Table 4.3), which is 2-3 times smaller compared to EPMA
results [33]. The variations in stoichiometry increased by a factor of 2 in areas larger than
100 µm2 (Table 4.3), which is in agreement with the EPMA results [33]. The negative correlation
between Te and Se is due to cross substitution of these two elements. A corresponding behaviour
was found in p-type (Bi,Sb)2Te3 with respect to Bi and Sb. Both, n-type Bi2(Te,Se)3 and p-type
(Bi,Sb)2Te3 are more homogeneous on the sub-micrometer scale.

A structural modulation (nns) was found in n-type Bi2(Te0.91Se0.09)3 and p-type
(Bi0.26Sb0.74)2Te3 bulk materials [34, 63], Bi2Te3 thin films and Bi2Te3/Bi2(Te0.88Se0.12)3 su-
perlattices epitaxially grown on BaF2 substrates [35, 36, 57]. Therefore, the nns is of general
character for Bi2Te3 materials. A main topic of the EDX analysis was to find a correlation
between the nns and chemical modulations on the nanometer scale. A spot size of 63 nm is
too large, and a microscope with a better lateral resolution would be required for this problem.
However, on the basis of our experimental findings a relation of the nns to chemical inhomo-
geneities is unlikely for several reasons. (i) The nns was also found in epitaxially grown pure
Bi2Te3 thin films [35, 36, 57]. Therefore, alloying and subsequent precipitation alone cannot
be the origin of the nns. (ii) The EDX measurements in the TEM on n-type and p-type bulk
materials yielded smaller variations in stoichiometry on the sub-micrometer scale, which is not
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Figure 4.7 (a) EDX line scan obtained in n-type Bi2(Te, Se)3 with increasing sample thickness t. The
stray aperture was inserted. (b) Illustration of a Te depletion layer (grey) in the wedge-shaped TEM
samples.

expected if the modulation with its 10 nm wavelength would be induced by chemical inhomo-
geneities. (iii) The crystallographic features (wavelength and direction of the wave vector) of the
nns were found to be independent of the chemical composition, i.e., the Se and Sb mole fraction
[35, 36, 57, 63]. This is in contradiction to natural nanostructures found in other Te-phases such
as AgPbmSbTe2+m (m = 6− 18) bulk materials [28, 29] and Bi2Te3Gex (x = 0.1− 0.88) crys-
tals [27]. In these materials the nns was related to compositional fluctuations on the nanometer
scale, since the direction and wavelengths of the wave vectors depended on the Te and Ge mole
fraction, respectively. A detailed analysis by diffraction contrast experiments and image sim-
ulation on n-type and p-type Bi2Te3 bulk materials yielded a pure structural modulation, i.e.,
a displacive modulation with a wavelength of 10 nm and an amplitude of about 10 pm, as the
origin of the nns [63].

Te-depletion in thin layers

With inserted stray aperture in specimen regions thinner than 0.4 mfp both, n-type and p-type
Bi2Te3, showed a relative Te-depletion of more than 10% (Table 4.4, Fig. 4.7(a)). No cor-
relations were found between Se and Te and between Bi and Sb, respectively (Fig. 4.8).
Te-depletion is about one order of magnitude larger than the statistical error of the mea-
surement of σN/N = 1.4%. It is known that in n-type and in p-type Bi2Te3 materials Te is
depleted at surfaces [22] and the results might be explained by a Te-depletion layer on surfaces
(Fig. 4.7(b)). In thin specimen regions this Te-depletion layer yields a larger fraction of the
volume analysed by EDX. Therefore, Te-depletion is strongest in thin specimen regions and less
significant in thicker regions.
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Figure 4.8 Se-Te and Sb-Bi correlation diagrams obtained in thin regions (< 0.4mfp) of (a) n-type
Bi2(Te, Se)3 and (b) p-type (Bi, Sb)2Te3. The stray aperture was inserted.

Table 4.4 Mole fractions obtained in thin regions (< 0.4 mfp) of (a) n-type Bi2(Te, Se)3 and (b) p-type
(Bi, Sb)2Te3. The stray aperture was inserted.

Bi2(Te, Se)3 (Bi, Sb)2Te3

Bi Te Se Bi Sb Te

c (at. %) 46.5 48.4 5.1 15.9 30.5 53.6
σc (at. %) 5.3 5.2 0.6 3.9 2.5 4.6
σc/c (%) 11.4 10.8 11.8 24.8 8.1 8.5

The TEM samples investigated here were freshly prepared, so Te-depletion is a fast process
and was completed when sample preparation, i.e., ion milling, was finished. EDX measurements
in the TEM on epitaxially grown thin films and superlattices yielded no Te-depletion in thin
specimen regions [35, 36, 57]. Therefore, Te-depletion is not a general character of Bi2Te3

materials but only appeared in bulk samples prepared as thin foils. However, Te-depletion has
to be checked and considered if present. Quantitative chemical analysis by EDX in the TEM
could only be performed in specimen regions thicker than 0.4 mfp (Fig. 4.7). Further, the
application of high-resolution TEM analysis is restricted since it is performed on thin specimen
regions. Finally, Te-depletion could be a limiting factor when going from bulk materials to
nanostructures, since the thermoelectric figure of merit sensitively depends on the chemical
composition.

Thin films and superlattices

EPMA combined with EDX in the TEM on p-type and n-type Bi2Te3 bulk materials served
for a recalibration of the Cliff-Lorimer k factors. Particularly, the k factor of the Bi Lα1 line
was too large by 30% (Table 3.2). These changes enabled direct EDX analysis in the TEM of
Bi2Te3 thin films and Bi2Te3/Bi2(Te,Se)3 superlattices epitaxially grown on BaF2 substrates
[35, 36, 57].

The stray aperture also preserves the lateral resolution of the EDX measurements. With
inserted stray aperture the acquired spectra only contain characteristic X-ray lines which were
generated at the position of the electron probe but no additional counts generated by uncolli-
mated electrons at other specimen regions. This was particularly import for the measurements,
since thin film and substrate differ in composition but contain elements with X-ray lines at
almost the same energy (Te Lβ1 at 4.30 keV, Ba Lα1 at 4.47 keV).
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Figure 4.9 EDX results of a high-TC superconductor Bi2Sr2CaCu2O8 (Bi-2212). (a) Hole-count spectra
acquired (1) without and (2) with inserted stray aperture. Identical acquisition conditions were used
for both spectra. (b) Ca-Cu correlation diagram obtained within an area of 1 µm2 (black squares) and
within an area larger than 100 µm2 (grey diamond). The stray aperture was inserted.

Table 4.5 Mole fractions obtained for Bi-2212 within an area of 1 µm2 and an area larger than 100 µm2.
The stray aperture was inserted.

Area < 1 µm2 Area > 100 µm2

Ca Cu Sr Bi Ca Cu Sr Bi

c (at. %) 16.6 27.1 23.7 32.6 17.3 26.4 24.7 31.6
σc (at. %) 0.2 0.4 0.2 0.2 1.1 1.3 1.2 1.2
σc/c (%) 1.3 1.4 0.9 0.6 6.5 4.8 4.9 3.9

4.3.2 Elimination of uncollimated electrons

EDX spectra of powder particles mounted on 200-mesh Cu-grids yielded Cu Kα1 spurious X-ray
peaks (Fig. 4.10). Therefore, the stray radiation hits the TEM sample at least 50 µm away
from the electron probe, particularly in the non electron transparent outer parts of the TEM
sample. With respect to Bi2Te3, hole-count spectra and spectra obtained in these non electron
transparent regions were almost identical (Fig. 4.2). Therefore, uncollimated electrons are the
reason for the observed spurious X-rays in the hole-count spectra. In Bi2Te3, the relatively
large Bi Lα1 peak in the hole-count is due to a stronger absorption of the lower energy Te Lα1

line in non electron transparent specimen regions.
The small Mo Kα1/Mo Lα1 count ratio of 4.3 obtained without stray aperture on a hole of

a mesh of the NiO test specimen indicates uncollimated electrons as the predominant origin of
column radiation. With inserted stray aperture the Mo Kα1 spurious X-rays were drastically
reduced by a factor of 8.7. Therefore, the stray aperture absorbs the uncollimated electrons.
The remaining Mo spurious X-ray peaks are due to stray X-rays, since the Mo Kα1/Mo Lα1

count ratio increased to about 40 which is a typical value for this type of column radiation
[74, 75].

The Ni Kα1/Mo Kα1 film-count ratios were found to be 3 without and 6.6 with inserted stray
aperture (Table 4.1). Typical analytical microscopes showed values lying in a range between
3 and 10 [75]. Therefore, on the basis of the Ni Kα1/Mo Kα1 film-count ratios, it is not clear
whether the improvement of the performance is good enough for Bi-based systems.

Bi2Te3 and Bi-2212, both systems contain Bi and are particularly susceptible to stray radia-
tion. For these materials the Bi Lα1 hole-count ratio is significant and was used as performance
figure for column radiation. For a quantitative chemical analysis the intensity of the Bi Lα1

hole-count should be less than 1% of the value measured at a thin specimen region, i.e., the
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Figure 4.10 EDX-Spectra of hydroxyapatite Ca10(PO4)6OH2 acquired (a) without and (b) with in-
serted stray aperture.

Bi Lα1 hole-count ratio should be larger than 100. For Bi-2212 the Bi Lα1 hole-count ratio was
larger than 100 (Table 4.1). For Bi2Te3 the Bi Lα1 hole-count ratio could only be increased to
42 (Table 4.1). In specimen regions thicker than 0.4 mfp, i.e., at distances larger than 200 nm
away from the edge (Fig. 4.7), the Bi Lα1 hole-count ratio increases to values larger than 100.
In summary, the stray aperture allows high-accuracy quantitative EDX analysis independent
of sample preparation, since the artifact could be reduced significantly also for dimpled TEM
samples and Cu-grids (Table 4.1).

In conclusion, the hole-count artifact in a Zeiss 912Ω TEM could be drastically reduced by
introducing a stray aperture. With the stray aperture inserted a high-accuracy EDX analysis in
the TEM combined with a sub-micrometer lateral resolution is available. These improvements
combined with an ultrathin detector window and a digital pulse processor enables a quantitative
chemical analysis on samples with elements distributed over a wide range in the periodic table.
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Chapter 5

Bulk: Structural modulations
(nns)

5.1 Results

5.1.1 Texture and gliding dislocations

The quantitative chemical analysis by EPMA yielded variations in stoichiometry in n-type and
p-type samples [33]. The p-type samples showed a substitution of Sb for Bi with a variation in
stoichiometry of about 1 − 1.5 at.%. The same behaviour was found for Se and Te in n-type
material [33]. EDX measurements in the TEM yielded a variation in stoichiometry of about
0.5 − 1 at.% on the submicrometer scale and of about 2 at.% in areas larger than 100µm2

[60, 61].
The lattice parameters were measured by X-ray diffraction (XRD) [22] and by analysis of

the TEM diffraction patterns (Table 5.1). All samples showed a strong texture and grain sizes
between 1 µm and 10 µm divided by small-angle grain boundaries. Investigations on n-type
and p-type samples yielded dislocation densities of about 109 cm−2 [33]. These dislocations
showed a high mobility of 10 − 100 nm/s when the sample was heated by an electron beam
with a large illumination angle. The gliding dislocations were analysed in detail in p-type
materials and results will be reported elsewhere [81]. Stereomicroscopy investigations yielded
edge dislocations with Burgers vector [1, 1, 0] and the basal plane being the glide plane [81].

5.1.2 N-type sample with one nns

In sample N3, a structural modulation [natural nanostructure (nns)] was imaged with the
sample close to the [5,−5, 1] orientation (Fig. 5.1(a)), which is at an intermediate projection
between the a and the c axis. A sinusoidal strain contrast appeared in two-beam cases with
strongly excited (−1, 0, 5) reflection (Fig. 5.2(a)) and disappeared with strongly excited (0, 1, 5)
reflection (Fig. 5.2(b)). The fringes showed a wavelength of about 10 nm (Fig. 5.2(a)) and a
wave vector parallel to (1, 0, 10) (Fig. 5.1(b)). Line scans obtained from images of the nns and a
Bi2Te3/Bi2(Te0.88Se0.12)3 superlattice [artificial nanostructure (ans)] [36] with a period of 12 nm
are shown in Figure 5.3(a). The intensity profile of the ans is of almost perfect sinusoidal shape,
whereas the intensity profile of the nns is irregularly sinusoidal with alternating amplitude and
wavelength. The nns yielded a diffraction contrast (Imax − Imin)/(Imax + Imin) of about 25%,
where I is the intensity. The Fourier transformed images (FT) of the two-beam images of the
nns and the ans are shown in Figures 5.3(b) and 5.3(c), respectively. The FT of the nns only
shows first order reflections with a full width at half maximum (FWHM) of 0.03 1/nm (Fig.
5.3(b)), whereas the FT of the ans also yields third order reflections with a FWHM of 0.01 1/nm
(Fig. 5.3(c)).

39
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Table 5.1 Lattice parameters of Bi2Te3 bulk materials measured by X-ray diffraction (XRD) and
transmission electron microscopy (TEM).

Method a c
(nm) (nm)

Bi2Te3 a

XRD a 0.43835 3.0487

Bi2(Te0.91Se0.09)3 (samples N3, N4, and N5)
XRD b 0.4366 3.0774
TEM c 0.436± 0.004 3.05± 0.02

(Bi0.26Sb0.74)1.98(Te0.99Se0.01)3.02 (sample P3)
XRD b 0.4254 3.0597
TEM c 0.430± 0.004 3.05± 0.01

aRef. [17]. bRef. [22]. cThis work.

Dislocations were found and analysed in structurally modulated Bi2Te3. Dislocations
marked by arrows can be seen in Figure 5.2(b), where the nns is out of contrast. The nns
shows no bending due to dislocations (Fig. 5.2(a)). These dislocations showed a high mobility
when the sample was heated by an focused electron beam and moved with a velocity of about
100 nm/s. The gliding dislocations are bowed out in the direction of motion and are pinned at
the surfaces (Fig. 5.2(b)).

5.1.3 N-type sample with two superimposed nns

In sample N4, the analysed grain was initially in a [5,−5, 1] orientation. A nns with a wavelength
of 10 ± 2 nm could be imaged with strongly excited (−1, 0, 5) reflection (Fig. 5.4(a)), which
is referred to as nns(1) (Table 5.2). The same specimen region was imaged with a strongly
excited (0, 1, 5) reflection (Fig. 5.4(b)). The nns(1) is out of contrast and a second structural
modulation appeared with a wavelength of 11±3 nm, which is referred to as nns(2) (Table 5.2).
The fringes of nns(2) are not as straight as the fringes of nns(1) (Fig. 5.4(a) and 5.4(b)). The
superposition of both structural modulations is shown in Figures 5.4(c) and 5.4(d).

Stereomicroscopy was then applied to analyse both structural modulations in more detail.
The sample was tilted towards an orientation parallel to the a axis and towards an orientation
closer to the c axis, i.e., towards the [0,−1, 0] and [−5,−10, 2] poles (Fig. 5.1(b) and 5.1(c)).
Both nanostructures, nns(1) and nns(2), were imaged at various tilt angles under (−1, 0, 5)
and (0, 1, 5) two-beam conditions, respectively. The wavelengths of both nns showed no strong
dependence on the relative tilt angle, e.g., the relative tilt angle between the images Fig. 5.4(a)
and 5.4(c) and between Fig. 5.4(b) and 5.4(c) were 34◦ and 47◦, respectively. This indicates
that the nns is a three-dimensional rather than a two-dimensional crystal defect. In a first
approximation the displacement field of the nns can be understood as u(r) = u0 sin(q · r),
where q is the wave vector and u0 is the direction of the displacement vector. Two-beam
images with other reflections were also acquired. Particularly, those reflections are of interest
for which the nns is out of contrast since they allow one to determine the direction of the
displacement field (Table 5.2). The wavelengths and directions of the wave vectors and the
direction of the displacement vectors of nns(1) and nns(2) are summarised in Table 5.2.

5.1.4 N-type sample without a nns

In sample N5, no nns was found at all. This sample was initially in a [5,−5, 1] orientation
and was then tilted in a [−10,−5, 1] orientation. These two poles contain all three equivalent
{−1, 0, 5} reflections, i.e., (−1, 0, 5), (0, 1, 5), and (−1, 1, 5). Two-beam images were acquired
with each of these three reflections, but no fringe contrast appeared. The analyses of 10 TEM
samples yielded a frequency of observation of 50% for none or one nns. Only in sample N4 were
two superimposed nns found.
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Figure 5.1 TEM diffraction patterns obtained in Bi2Te3 in the orientations (a) [5,−5, 1], (b) [0,−1, 0],
(c) [−5,−10, 2], and (d) [0, 0, 1].

Figure 5.2 Two beam images of an area of sample N3. (a) (−1, 0, 5) dark field image for imaging a
nns. (b) (0, 1, 5) bright field image, the nns is out of contrast and single dislocations (arrows) started
to glide when the sample was heated by an focused electron beam. The dislocation are bowed out in
the direction of motion.
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Figure 5.3 (a) Intensity profiles obtained from a dark field image of the nns and a bright field image
of a Bi2Te3/Bi2(Te0.88Se0.12)3 superlattice (SL) with a period of 12 nm. (b) FT of an image of a nns
and (c) FT of an image of a 12 nm SL (ans). (d) Intensity of a direct electron beam in dependence of
the dimensionless excitation error w = s · ξg.

5.1.5 P -type sample with one nns

In sample P3 a nns with a wavelength of 15 ± 4 nm was found. As usual, two-beam images
were primarily acquired with the sample close to the [5,−5, 1] orientation. In contradiction to
sample N4, the nns is out of contrast under g = (−1, 0, 5) two-beam condition (Fig. 5.5(a))
and shows strong contrast for g = (0, 1, 5) (Fig. 5.5(b)). Stereomicroscopy yielded the same
displacement vector and wave vector as for nns(2) in sample N4 (Table 5.2). The dislocations
visible in Figure 5.5(a) were found to be in the basal plane.

The specimen region shown in Figures 5.5(a) and 5.5(b) was then tilted to orientations
parallel to the c axis and parallel to the basal plane, i.e., parallel to [0, 0, 1] and [1,−1, 0]. The
wavelength of the nns showed no strong dependence on the relative tilt angle. The analysis of
the nns in an orientation parallel to the c axis is particularly important since the number of nns
can be directly determined. For this, in this orientation two-beam images and weak beam dark-
field images were acquired using all three equivalent {1, 1, 0} reflections, i.e., (1, 1, 0), (−2, 1, 0)
and (−1, 2, 0) (Fig. 5.1(d)).

The nns could be imaged under a g = (1, 1, 0) two-beam condition (Fig. 5.5(c)) and was
out of contrast for g = (−2, 1, 0) (Fig. 5.5(d)). Finally, (1,−2, 0) g/3g weak beam dark-field
images were acquired at a lower (Fig. 5.5(e)) and a higher magnification (Fig. 5.5(f)). For
this imaging condition two superimposed fringe contrast patterns were observed. The fringes
running in diagonal direction are due to the nns. The horizontal fringes are a new observation
and showed a wavelength of 9± 3 nm. These horizontally orientated fringes were not regarded
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as a second nns superimposed to the structure, since they could only be imaged (i) in certain
orientations such as [0, 0, 1] and [1,−1, 0] and (ii) by using the weak beam technique instead of
two-beam conditions. The stereomicroscopy results indicate that for the displacement field of
the nns a second wave vector has to be considered. In summary, the analysis of the sample P3
in [0, 0, 1] orientation yielded only one nns.

5.1.6 Formation, stability, and long-range order of the nns

Originally, sample P3 was a sample without a nns. However, after additional ion etching a nns
was present in the entire sample. Further experiments were carried out to analyse the stability
of the nns in sample P3. The structural modulation showed no changes due to electron beam
induced heating, even for a focused electron beam with a spot size of 100 nm and after a time of
15 min. Also, the nns showed no changes after in situ cooling with liquid nitrogen. Finally, the
sample was reanalysed after 5 months, the nns was still present and showed identical properties.
Our results indicate that Bi2Te3 exhibits properties of a phase change material. The nns can
be switched on and off reversibly depending on the thermal history of the sample.

For all samples, the structural modulations showed a uniform character in the entire sample:
(i) The nns is extended over the entire grain and (ii) could be observed in all sections of the
sample. (iii) The nns showed the same displacement vector and wave vector in adjacent grains
and in grains several 100µm apart from each other.

5.2 Discussion

5.2.1 Imaging by diffraction contrast and general character of the nns

A structural modulation (nns) was found in n-type Bi2(Te0.91Se0.09)3 and p-type
(Bi0.26Sb0.74)1.98(Te0.99Se0.01)3.02 bulk materials synthesised by the Bridgman technique [34]
and in epitaxially grown n-type Bi2Te3 thin films and in Bi2Te3/Bi2(Te0.88Se0.12)3 superlattices
[35, 36, 57]. The nns is of general character for Bi2Te3 materials, since in all these materials the
wavelength was found to be 10 nm and the wave vector parallel to {1, 0, 10}. The nns showed
no bending due to dislocations, superlattices, or a second nns in the sample. Therefore, the nns
is perfectly superimposed to the average structure and is structurally very stable.

The nns can be imaged by diffraction contrast, the contrast is due to the sinusoidal strain
field of the nns. Under {−1, 0, 5} two-beam conditions strong contrast is observed and the nns
is out of contrast for reflections perpendicular to {−1, 0, 5} (Table 5.2, Fig. 5.1). The contrast
can be explained by the two-beam dynamical diffraction theory of electron diffraction (Ref. [42,
chap. 13] and [55]) and the Howie-Whelan equations will be applied to simulate the contrast
for a crystal with a displacement field considering anomalous absorption. The intensity of the
direct beam at the exit surface was calculated for a perfect Bi2Te3 crystal in dependence of
the dimensionless excitation error w and is shown in Figure 5.3(d) (g = {−1, 0, 5}, extinction
distance ξg = 33.4 nm, anomalous absorption coefficient A = 0.1, specimen thickness 85 nm).
The imaging conditions used for the analysis of the nns and for standard analysis of dislocations
was identical, i.e., two-beam conditions with w ≈ 0.2−0.3 in bright field and w = 0 in dark field.
It is well known that for these imaging conditions the contrast changes sensitively if bending of
the lattice planes occurs. The strain field of the structural modulation yields local variations
of the dimensionless excitation error w through the product ξg · ∂

∂z (g · u) [56] (Fig. 5.3(d)), u
being the displacement field of the nns.
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Figure 5.4 Two-beam images acquired of an area of sample N4, showing the superposition of two
structural modulations, nns(1) and nns(2): (a) (−1, 0, 5) bright field image, (b) (0, 1, 5) bright field
image, (c) (0, 0, 15) dark field image, and (d) (1, 1, 0) bright field image.

Table 5.2 Wavelengths λ, direction of the wave vectors q, and direction of the displacement vectors
u0 of the nns observed in sample N4 and sample P3 according to sinusoidal model u(r) = u0 sin(q · r)
for its displacement field. The displacement vector u0 was calculated according g · u0 = 0 for the
displacement field being out of contrast.

λ q nns out of contrast for reflection g ? u0

(nm) (−1, 0, 5) (0, 1, 5) (1, 0, 10) (0,−1, 10)

nns(1) in sample N4 10± 2 (1, 0, 10) a No Yes Yes No [−10,−5, 1]
nns(2) in sample N4 11± 3 (0,−1, 10) b Yes No No Yes [5, 10, 1]
nns in sample P3 15± 4 (0,−1, 10) c Yes No No Yes [5, 10, 1]

a q = (1, 0, 10), b q = (3,−4, 25), and c q = (−1, 0, 5) determined by image simulation.
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Figure 5.5 Two-beam images of an area of sample P3 in orientations (a) - (b) close to [5,−5, 1] and
(c)-(f) close to the c axis:. (a) (1, 0,−5) bright field image. The nns is out of contrast. (b) (0, 1, 5) dark
field image for imaging a nns. (c) (−1,−1, 0) dark field image with diffraction contrast. (d) (2,−1, 0)
bright field image, the nns is out of contrast. (e) and (f): (−1, 2, 0) g/3g weak beam dark-field images
showing a superposition of two fringe contrast patterns.
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5.2.2 Model for the nns

The origin of the sinusoidal strain field of the nns could be due to (i) a pure displacive modulation
related to a thermodynamic structural instability, (ii) a chemical modulation, or (iii) an ordered
network of dislocations a few nanometers apart. These three models will be discussed.

The intensity profile of the nns is of approximately sinusoidal shape (Fig. 5.3(a)). There-
fore, the displacement field u(x) and thereby the strain field of the nns should also be of
approximately of sinusoidal shape. A simplified model for the displacement field is u(x) =
u0 sin(q · x + φ), u0 being the displacement vector, q being the wave vector, and φ being the
phase of the modulation (Fig. 5.6(a)). The wavelength and the direction of the wave vector
can be determined from the fringe spacing in the two-beam images and from the diffraction
patterns, respectively. The direction of the displacement vector u0 was calculated accord-
ing to the g · u = 0 criterion for displacement fields being out of contrast, values are given
in Table 5.2. As an example, in Figure 5.4 nns(1) was out of contrast for the reflections
g1 = (1, 0, 10) and g2 = (0, 1, 5) and the direction of the displacement vector u0 was calculated
as g1 × g2 = [−10,−5, 1] (Table 5.2). In general, the displacement vector was found to be
parallel to 〈5,−5, 1〉 (Table 5.2), the wave vector parallel to {1, 0, 10} (Table 5.2), and the wave
vectors being perpendicular to the displacement vectors. Therefore, the nns might be regarded
as a frozen transverse phonon mode.

For determining the amplitude of the displacement field of the nns it was assumed to be
given by u(x) = u0 sin(q · x). Without image simulation, an amplitude of |u0| ≈ 2 pm was
estimated as follows: The intensity of the direct beam is about 0.3 for an excitation error
w ≈ 0.2−0.3 (Fig. 5.3(d)). The local excitation error w is altered by ±0.1 through the product
ξg · ∂

∂z (g ·u), which has a maximum of 2π
λ ξg g ·u0, λ being the wavelength of the nns. Therefore,

the intensity of the direct beam varies between 0.2 and 0.4 (Fig. 5.3(d)). This corresponds to
a diffraction contrast of 33%, which is close to the value of 25% determined by line scans of
the nns (Fig. 5.3(a)). A detailed analysis by image simulation yielded higher amplitudes of
about 10 − 20 pm and refined values for the wave vectors (Table 5.2). Electron diffraction on
thicker samples yields an averaging of the displacement field, i.e., only a larger amplitude of
the displacement field could explain the observed contrast. Finally, the image simulations also
showed only small variations of the fringe spacing in dependence of the tilt angle, which is in
agreement with the experimental findings. This was surprising bat can also be explained as an
averaging effect of the electron diffraction.

The simple sinusoidal model for the displacement field is helpful but is oversimplifying the
displacement field for three reasons: (i) The line scans obtained on images of the nns yielded
intensity profiles only approximately of sinusoidal shape (Fig. 5.3(a)). (ii) The FT of the nns
yielded reflections which are smeared out (Fig. 5.3(b)), higher order reflections did not appear
in the FT (Fig. 5.3(c)). (iii) In sample P3 only one nns was found. However, in orientations
parallel to the c axis (Fig. 5.5(e) and 5.5(f)) or parallel to the basal plane a superposition of
two fringe contrast patterns was observed.

The FT of two-beam images of the nns indicate a spectrum of wave vectors rather than a
defined wave vector. The model of a sinusoidal displacement field can be extended by intro-
ducing local changes (i) of the phase φ, (ii) of the wavelength, and (iii) the direction of the
wave vector. Furthermore, the analysis of sample P3 gives strong evidence for the presence of
a second wave vector with a wavelength of approximately 10 nm (Fig. 5.5(e) and 5.5(f)). The
second fringe contrast pattern could be best imaged by weak beam dark-field images. This
indicates a smaller amplitude of the displacement field along the second wave vector.

Chemical modulations as the origin of the nns can be ruled out on the basis of our exper-
imental findings for several reasons: (i) The nns was found in epitaxially grown pure Bi2Te3

thin films [36, 57]. Therefore, alloying and subsequent precipitation alone cannot be the origin
of the nns. (ii) The nns was also found in n-type Se alloyed and p-type Sb alloyed bulk ma-
terials. The EDX measurements in the TEM on both type of bulk materials yielded smaller
variations in stoichiometry on the submicrometer scale than on the micrometer scale [60, 61].
(iii) The crystallographic features, wave vector and displacement vector, of the nns were found
to be independent of the chemical composition, i.e., the Se and Sb mole fractions. This is in
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Figure 5.6 (a) Simplified structure model of the nns shown in cross section with viewing direction
parallel to the (1, 0, 10) planes. A sinusoidal displacement field is superimposed to the crystal structure.
(b) Arrangement of the structural modulations (nns) and a superlattice structure (ans) in Bi2Te3

materials. (c) The superposition of three nns defines a 10 nm × 10 nm × 10 nm unit cell in which
phonons are localized.

contraction to natural nanostructures found in AgPbmSbTe2+m bulk materials [28, 29] and
Bi2Te3Gex crystals [27]. In these materials the nns was related to compositional fluctuations
on the nanometer scale since the direction and wave lengths of the wave vectors depended on
the composition.

Finally, also an ordered network of dislocations a few nanometer apart as the origin of the
displacement field can be ruled out for two reasons:

(i) Under the hypothesis of dislocations being the origin of the nns(1) and nns(2), their Burg-
ers vectors and line directions were determined from the experimental data and were found to
point out of the basal plane (Table 5.3). However, dislocations with Burgers vectors pointing
out of the basal plane are energetically unfavourable for this highly anisotropic structure with
a large lattice parameter c of 3.05 nm. Therefore, an ordered network of dislocations cannot
be the reason for the observed sinusoidal strain field and the nns in general. The line energies
for dislocations in the basal plane found by TEM in p-type Bi2Te3 bulk [81] were calculated
according to Barnett and Lothe [46]. Line energies were also calculated for hypothetical dislo-
cations forming the nns(1) and nns(2) in sample N4 and are summarised in (Table 5.3). The
line energies for the dislocations of the nns would be 10 times larger compared to dislocations
in the basal plane.
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Table 5.3 Elastic line energies of dislocations in the basal plane observed in Bi2Te3 and of hypothetical
dislocations forming nns(1) and nns(2) in sample N4. A dislocation distance of 10 µm and a dislocation
core radius equal to the lattice parameter a were assumed.

Network Burgers Line Line energy
vector b direction t (eV/nm)

Basal plane a [1, 1, 0] [2.7,−1, 0] 26
nns(1) 1/3[−10,−5, 1] [−9.9,−8.2, 1] 310
nns(2) 1/3[5, 10, 1] [27.0, 23.9, 1] 304

aRef. [81].

Table 5.4 TEM results with respect to the observation of a nns in Bi2Te3 materials in dependence of
the composition, structure, and growth technique.

Sample Growth technique nns Reference
observed ?

Bi2(Te0.91Se0.09)3, bulk Bridgman Yes This work
(Bi0.26Sb0.74)1.98(Te0.99Se0.01)3.02, bulk Bridgman Yes This work
Bi2Te3, thin film MBE Yes [36, 57]
Bi2Te3/Bi2(Te0.88Se0.12)3 superlattice MBE Yes [35, 36]
Bi2Te3, bulk Bridgman Yes [27]
Bi2Te3/Sb2Te3 superlattice MOCVD No [12]
Bi2Te3, bulk Normal crystallization No [24]
Bi2Te3, bulk Czochralski No [25]

(ii) In samples showing the characteristic contrast of the nns, individual dislocations were
gliding in situ in the basal plane when the samples were heated by a focused electron beam (Fig.
5.2(b)). No pinning of these dislocations by the nns was observed. Since the fringe contrast
of the nns is parallel to {1, 0, 10}, the dislocations generating the displacement field of the nns
should lie in these planes. The basal plane and the {1, 0, 10} planes intersect; therefore there
should be a reaction between the gliding dislocations in the basal plane and the dislocations of
the nns on the {1, 0, 10} planes, gliding should be blocked by dislocation reactions. However,
this was not observed.

Therefore, from all our experimental findings a pure displacive modulation was found to be
the most appropriate model for the nns. Its formation will be discussed in the next section.

5.2.3 Formation of the nns

Our investigations showed the presence of nns in n-type and p-type bulk materials [34] and in
epitaxially grown n-type thin films and superlattices [35, 36, 57]. There are several other TEM
investigations on bulk materials [24–27] and on epitaxially grown Bi2Te3/Sb2Te3 superlattices
[12] reported in the literature, but only one [27] also yielded a structural modulation. Since
the nns yields easily recognisable diffraction contrast for almost any strongly excited reflections
with g ·u 6= 0 it is assumed that in the samples reported in the literature the nns might not be
present. Table 5.4 gives an overview about the presence of a nns for the various samples and
their growth techniques studied in this paper.

Our results on bulk samples, thin films, and superlattices showed that the formation of the
nns is independent of the composition, structure, and growth technique (Table 5.4). However,
the frequency of observation of a nns in our samples was only 50%. In bulk materials, fairly large
variations in stoichiometry on the micrometer scale were found [33]. Therefore, the formation
of the nns could be bound to a certain stoichiometry range.

Another explanation could be that the formation of the nns depends on the thermal history
of the samples. The formation of the nns could also be related to the ability of Te-compounds
to form glasses. Therefore, they are widely used for rewritable phase-change optical recording
applied in optical data storage systems like digital versatile disks (DVD) [82]. These phase-
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changes were observed in situ by TEM induced by heating with the electron beam at an energy of
120 keV [83]. Recently, thermally induced reversible glass-crystal phase changes were also found
in Bi2Te3-Sb2Te3 compounds [84]. Therefore, the formation of the nns probably is sensitive
on the cooling rate. An indication for this assumption is the observation, that in sample P3 a
nns appeared after additional ion milling. The electron diffraction patterns gave no indication
for an amorphous state. However, the nns might be regarded as an intermediate state between
pure crystalline and amorphous and its presence might be controlled by the thermal history of
the sample.

The uniform structure of the nns, extending over the entire sample with the same orientation,
possibly corresponds to a configuration of minimum energy. Measurements of the enthalpy of
formation of the solid compound of Bi2Te3 yielded a large scatter of data in the literature with
values of about −6 kJ/mol, −16 kJ/mol, and −38 kJ/mol [85]. These three different values
probably correspond to the formation of none, one, and two nns.

5.2.4 Correlation between the nns and thermoelectric properties

The nns represents a significant structural disorder due to an amplitude of about 10 pm of the
displacement field and its wavelength of about 10 nm. Therefore, there should be a dominant
contribution of phonon scattering on the strain field of the nns.

The nns is a volume effect and breaks the trigonal symmetry of the crystal. This might also
affect the thermoelectric properties. In general, in Bi2Te3 materials the transport coefficients
are anisotropic with respect to the c axis and the basal plane. The presence of a nns might break
the isotropy in the basal plane. Measurements of the thermopower S, electrical conductivity
σ, and thermal conductivity λ in three different directions might yield three different values.
Such an effect was observed in Bi0.5Sb1.5Te3 bulk materials doped with 2 at.% I [18]. The
ratios of the transport coefficients at room temperature obtained by measurements in two
perpendicular directions along the basal plane were found to be S I

11/S
II
11 = 1.1, σI

11/σII
11 = 4.7,

and λI
11/λII

11 = 0.9.
In n-type and p-type superlattices (ans) [11–13, 38] the lattice thermal conductivity de-

creased most likely due to phonon scattering on SL interfaces. The superlattice layers were
parallel to the basal plane (Fig. 5.6(b)). Phonon propagation is particularly suppressed in the
direction perpendicular to the basal plane. The nns is superimposed to the average structure
with wave vector parallel to {1, 0, 10}. Schematic drawings of (a) the nns in a cross-sectional
view along the {1, 0, 10} planes and (b) the orientation of the ans and nns in the crystal are
shown in Figures 5.6(a) and 5.6(b). Phonons should be scattered on the strain field of the nns,
particularly at directions perpendicular to the {1, 0, 10} planes. Therefore, phonon transport
should be two-dimensional, favourably parallel to the {1, 0, 10} planes, if one nns is present.
If there are two nns, phonon transport should be one-dimensional. Finally, the superposi-
tion of three structural modulations restricts phonon propagation to unit cells with a size of
10 nm× 10 nm× 10 nm, yielding a localization of the phonons (Fig. 5.6(c)).

For Bi2Te3 the lattice thermal conductivity on samples with a nns and without a nns might
yield significant differences and could explain the scatter of data in the literature [86, 87]. Cubic
AgPbmSbTe2+m bulk materials also showed the presence of a nns, yielding a low lattice thermal
conductivity, and a high thermoelectric figure of merit ZT [28, 29].
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Chapter 6

Thin films and superlattices

6.1 Experimental

Bi2Te3 is a rhombohedral layered structure with three five-layer-groups with the sequence
Te1 − Bi− Te2 − Bi− Te1 and space group R3̄m . The pseudo-hexagonal lattice parameters
[17] are a = 0.438 nm and c = 3.05 nm (Table 6.1). Barium fluoride is a face centred cubic
structure [88] with space group Fm3̄m and lattice parameter a = 0.620 nm (Table 6.1). The
lattice mismatch between the (1, 1, 1)-planes of BaF2 and the basal plane of Bi2Te3 is 0.045%
at room temperature.

The investigated samples (Table 6.2) were Bi2Te3 thin films (samples TF01 and TF02) and
Bi2Te3/Bi2(Te0.88Se0.12)3 symmetric superlattices (SL) with periods of 12 nm (sample SL12)
and 6 nm (sample SL06). The film thicknesses were 1µm. The thin films and SL were epi-
taxially grown on single crystal (1, 1, 1)-BaF2 substrates by molecular beam epitaxy (MBE) at
substrate temperatures between 290 ◦C and 336 ◦C, a flux ratio Bi/(Te + Se) = 5/12, and a
growth rate of about 0.4 µm/h [39, 40]. MBE growth of Bi2Te3 thin films was carried out in a
custom built machine and a commercial one (EPI 930). The surface roughness was measured by
reflection high-energy electron diffraction (RHEED) and by atomic force microscopy (AFM).
The chemical composition was measured by energy dispersive X-ray spectrometry (EDX) in
a scanning electron microscope (SEM) [39, 40]. X-ray diffraction (XRD) and high resolution
XRD (HRXRD) were used for determination of the epitaxial relations, the lattice parameters,
and the SL periods.

The in-plane transport coefficients were measured at room temperature [38]. The van der
Pauw method was applied to measure the electrical conductivity, the carrier density, and carrier
mobility. Thermopower was measured by conventional methods. The thermal conductivity was
measured by a bridge method [89].

Table 6.1 Lattice parameters measured by XRD and TEM.

Sample Method a c
(nm) (nm)

Bulk materials
Bi2Te3 XRD a 0.43835 3.0487
BaF2 XRD b 0.61964

Thin films and superlattices
TF01 c XRD d 0.4375± 0.0005 3.0554± 0.0005
TF01/TF02 c TEM 0.437± 0.005 3.03± 0.04
SL12 c TEM 0.437± 0.007 3.05± 0.02
SL06 c TEM 0.444± 0.001 3.04± 0.01

aRef. [17]. bRef. [88]. cTable 6.2. dRef. [39, 40].
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Table 6.2 Structure, composition, and growth parameters of the epitaxially grown thin films and
superlattices (SLs).

Sample Composition Substrate Film SL period
temperature thickness (nm)

(◦C) (nm)

Thin films
TF01 Bi2Te3 290 1000
TF02 Bi2Te3 325 1000
TF03 Bi2(Te0.94Se0.06)3 290 1000
TF01 Bi2Te3 290 180

Symmetric Bi2(Te1−xSex )3/Bi2(Te1−ySey )3-SL
SL20 x = 0/y = 0.12 290 1000 20
SL12 x = 0/y = 0.12 336 1000 12
SL12/2 x = 0.06/y = 0.12 290 1000 12
SL10 x = 0/y = 0.12 290 1000 10
SL06 x = 0/y = 0.12 336 1000 6

Plan view samples and cross-sectional TEM samples were prepared. Specimen preparation
was demanding due to (i) the brittleness of the BaF2 substrate and (ii) the poor adhesion
between the epitaxially grown films and the BaF2 substrate. The standard procedure for TEM
sample preparation had to be modified [57]. Because of the delamination of the film, film
and substrate could be prepared only separately for TEM. The BaF2 substrates were glued
between Si and BaTiO3 dummies. For the films we glued a Si dummy on top of the film and
then removed the BaF2 substrate completely. The conventional thinning procedure was applied
to the Si‖BaF2‖BaTiO3 and Bi2Te3‖Si composites. This includes mechanical grinding and
polishing down to a thickness of 10− 15 µm followed by Ar+-ion milling in a Gatan Duo Mill r©
machine.

For a structural analysis at the different steps of the TEM sample preparation we used a
scanning electron microscope JEOL-JSM-6500F-FEG operated at 25 kV. A Zeiss 912Ω TEM at
120 kV having a point resolution of 0.37 nm was used for the structural and chemical analysis.
Two-beam images with strongly excited (0, 0, l) reflections and high-resolution images were
acquired to study the superlattice [artificial nanostructure (ans)]. Dislocations were imaged
under two-beam conditions by diffraction contrast in the TEM and image simulation was applied
for analysing the contrast. The same imaging conditions were used for imaging a structural
modulation [natural nanostructure (nns)], particularly useful are {−1, 0, 5} reflections for this
case [34, 57, 63]. The energy selecting aperture (∆E = 20 eV) of the OMEGA filter was used
to avoid background from inelastically scattered electrons.

The microscope is equipped with an EDX detector for chemical analysis with an energy
resolution of 132 eV at the Mn K line. The acquisition time for EDX was 120 s and a spot
size of 32 nm was used. The Cliff-Lorimer method [62] was applied for quantitative chemical
analysis. The Cliff-Lorimer k factors were user defined such that the mean values of the mole
fraction ratios of n-type Bi2(Te,Se)3 and p-type (Bi,Sb)2Te3 bulk materials measured by EDX
in the TEM corresponded to measurements by electron probe microanalysis (EPMA) [33, 60].
The intensities of the Bi L and Te L lines were at least 20 000 counts to yield a minimum
statistical error of 0.7%(Poisson statistics) for a quantitative analysis.

6.2 MBE growth and structural characterization

The RHEED measurements confirmed a layer-by-layer growth at substrate temperatures above
280 ◦C. In Bi2Te3 thin films a Te mole fraction of 60 at.% was found by EDX in a SEM. The
roughness of BaF2 substrates and Bi2Te3 thin films with a film thickness of 180 nm was analysed
by AFM in dependence of the substrate temperature. Freshly cleaved BaF2 substrates showed
monoatomic steps on the surface. Smooth Bi2Te3 surfaces were obtained at a substrate temper-
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Table 6.3 Surface and layer roughnesses of Bi2Te3 thin films and superlattices (SLs) measured by
AFM and TEM.

Sample Film Method Height Width
thickness (nm) (nm)

(nm)

TF04 180 AFM 9 1000
SL12 1000 TEM 30 400
SL06 1000 TEM 15 400

ature of 280 ◦C, whereas at 290 ◦C triangular pyramidal structures appeared. The pyramidal
structures were build up by layers with a step height of 1 nm, a total height of 9 nm, and a width
of 1µm (Table 6.3). The XRD measurements (Fig. 6.1(a)) yielded that the {0, 0, l} planes and
〈1, 0, 0〉 directions of the Bi2Te3 thin films were parallel to the {1, 1, 1} planes and 〈1, 1, 0〉 di-
rections of the BaF2 substrate. From the layer-by-layer growth and the orientation relationship
between substrate and film it was concluded that the growth is epitaxial. Thin films and SL
showed lattice parameters of about a = 0.4375 nm and c = 3.0554 nm (Fig. 6.1(a), Table 6.1).
The lines showed a full width at half maximum (FWHM) of 0.2◦. HRXRD on sample SL06
yielded a period of 6.3± 0.5 nm. HRXRD diffraction patterns of a sample with a SL period of
10 nm (sample SL10, Table 6.2) and sample SL06 are shown in Figure 6.1(b) and 6.1(c). The
(0, 0, 33) reflection is labelled as SLR0. Both spectra show first order SL reflections (SLR1).
The intensity ratio SLR1/SLR0 are 0.13 for sample SL10 and 0.05 for sample SL06. The second
order SL reflections SLR2 disappeared in sample SL06, indicating a poor long range order.

6.3 Thermoelectric properties

The in-plane transport coefficients at room temperature [38] are summarised in Table 6.4. The
electrical conductivity, carrier density, carrier mobility, thermopower, and thermal conductivity
λ were measured. The lattice thermal conductivity λlatt = λ−λel and the thermoelectric figure
of merit ZT were calculated. The electronic part of the thermal conductivity λel was calculated
according to the Wiedemann-Franz law with a Lorenz number of 1.3 × 10−8 W Ω K−2 [38,
90]. The properties of Bi2Te3+0.63 and Bi2(Te0.94Se0.06)3 bulk materials with maximum figure
of merit [14], Bi2Te3 and Bi2(Te0.94Se0.06)3 thin films and finally Bi2Te3/Bi2(Te0.88Se0.12)3-
SL with periods between 6 and 20 nm, are given for comparison. For the SL with a period
of 12 nm the average Se content was varied between 0.06 and 0.09. The thin films and SL
showed carrier densities between 2.8 × 1019 and 4.4 × 1019 cm−3, carrier mobilities of about
110 cm2/V s, electrical conductivities of 400 − 1000 1/Ω cm and power factors between 28 and
35 µW/cm K2. The lattice thermal conductivity varied between 1.60 W/m K for Bi2Te3 thin
films and 1.01 W/m K for a SL with a period of 10 nm.

6.4 TEM sample preparation

6.4.1 BaF2 cross-sectional samples

The conventional procedure of specimen preparation failed for BaF2 substrates. The sam-
ples disrupted completely into small pieces during polishing and grinding below a thickness of
100 µm. Thinning the samples by dimpling technique yielded similar results.

To overcome these problems, we sandwiched the BaF2 substrate between two stable dum-
mies and proceeded with cross-sectional preparation. Even if the BaF2 sample disrupts during
polishing, the pieces are held between the dummies and can further be polished and thinned.
We used a Si and a BaTiO3 dummy, Si is readily available from waver material and BaTiO3

is used as thermistor material (PTC devices) and comes as discs of 10mm in diameter and
3 mm thickness. The preparation consisted of three stages; (i) building the Si‖BaF2‖BaTiO3
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Table 6.4 In-plane thermoelectric properties of n-type Bi2Te3 bulk materials, thin films and symmetric
superlattices (SLs) at 300 K: average Se content xav, SL period dSL, carrier density n, carrier mobility
µ, electrical conductivity σ, thermopower S, power factor S2σ, thermal conductivity λ, lattice thermal
conductivity λlatt, and thermoelectric figure of merit ZT = (S2σ/λ) T .

Sample xav dSL n µ σ S S2σ λ λlatt ZT
(nm) (1019 (cm2/ (1/Ω cm) (µV/K) (µW/ (W/ (W/

cm−3) Vs) cm K2) m K) m K)

Bulk materials
Bulk1 a 0 2.3 212 1000 -240 58 2.02 1.70 0.87
Bulk1 b 0.05 4.0 150 901 -223 45 1.59 1.15 0.87

Thin films and superlattices
TF01 0 1008 -167 28 1.87 1.48 0.45
TF02 0 3.3 120 670 -201 27 1.87 1.67 0.44
TF03 0.06 3.4 444 -208 19 1.50 1.33 0.48
SL20 0.06 20 4.4 110 32 1.42 1.12 0.57
SL12/2 0.09 12 4.2 35 1.07 0.75
SL12 0.06 12 394 -251 25
SL10 0.06 10 4.0 100 639 -204 27 1.25 1.01 0.60
SL06 0.06 6 2.8 110 540 -219 26

aBi2Te3+0.63, Ref. [14]. bBi2(Te0.95Se0.05)3, Ref. [14].

composite structure, (ii) cutting pieces out of the composite suitable for the TEM holder with a
specimen diameter of 3 mm, and (iii) thinning the TEM sample to electron transparency. The
final sample thickness after mechanical grinding and polishing was 25 µm. Finally, the sample
was glued on a 3 mm diameter aluminium ring and was ion etched from both sides. We chose
4 kV, 0.25 mA, an angle of 12.5◦, and cooling with liquid nitrogen as operating parameters.
After 8 − 16 h ion etching a hole in the Si appeared and got larger with further ion etching
until it reached the BaF2 substrate. SEM images of the cross-sectional sample showed a hole
in the Si dummy whereas the BaTiO3 dummy retained its original shape (Fig. 6.2(a)). In the
middle of the sample to the left and right side the 200µm thick BaF2 substrate disrupted in
several small pieces but is still sandwiched between the two dummies (Fig. 6.2(b)). Electron
transparent regions are close to the hole in the Si dummy. All BaF2 pieces in the centre are
lost.

Two different dummies had to be used for the composite structure due to the differences
in ion etching rates. BaF2 is an insulating material. BaF2 charges up during ion milling so
that the ion beam is deflected, resulting in a low etching rate. We thinned the substrate to a
lateral thickness of at least 200 µm to keep the etching time as short as possible and to raise the
stability of the composite structure. The small thickness is also of advantage for TEM analysis
since this prevents charging effects during the examination. The BaTiO3 dummy has the lowest
etching rate and is therefore the backbone of our composite structure. The etching rate of Si is
the highest of all three materials which allows a controlled ion milling starting in the Si dummy
and extending towards the BaF2 substrate.

6.4.2 Bi2Te3 thin film cross-sectional and plan view samples

Bi2Te3 thin films were prepared in both, plan view and cross section. The brittleness of the BaF2

substrate turned out to be a severe obstacle, but also the adhesion of the film to the substrate
was poor and the films delaminated after cutting pieces with a wire saw. We observed a partial
separation of the Bi2Te3 thin film from the BaF2 substrate (Fig. 6.2(c)). The SEM image
shows that some fractions of the Bi2Te3 thin film are completely separated and bent away from
the substrate. We concluded that it is possible to remove larger and intact pieces of the thin
film from the substrate.
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Figure 6.1 (a) XRD spectrum of sample TF01. HRXRD spectra of the samples (b) SL10 and (c)
SL06. The (0, 0, 33) reflection labelled as SLR0, SLR1 and SLR2 are first order and second order SL
reflections. (d) TEM diffraction pattern of a cross section of sample SL12 and (e) line scan along the
(0, 0, l) reflections and SL reflections (SLR).
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Figure 6.2 SEM images: (a) and (b) BaF2 cross-sectional TEM sample. (a) Overview image and (b)
magnified image of the region marked by a white square. (c) BaF2 substrate partially covered with
Bi2Te3 thin film and some loose pieces. (d) Bi2Te3 cross-sectional TEM sample before ion etching.

For plan view preparation we glued a Si dummy onto the Bi2Te3 thin film and then removed
the BaF2 substrate completely. The procedure started by gluing a polished 450µm thick Si
dummy with M-Bond 610 r© on top of the film. The dummy should completely cover the thin
film. The dummy was pressed against the thin film between two brass pistons. This step
ensures a planar and close contact of the thin film to the dummy. Finally, the BaF2 substrate
was removed from the thin film in an ultrasonic bath or by tweezers. For the further preparation
it is crucial that the substrate and the glue are completely removed. The Bi2Te3‖Si composite
could now be used for plan view preparation. This was done by standard procedure as outlined
above. The electron transparent parts of the Bi2Te3 thin film were free of Si and glue and the
etching time of 1 h is quite short due to the similar high and etching rates of both materials.

Cross-sectional preparation was carried out by cutting the Bi2Te3‖Si composites into pieces
of 3 mm × 3 mm. A second polished Si dummy with the same dimensions was glued on top of
the thin film. The further preparation steps for this Si‖Bi2Te3‖Si composite were the same as
described for BaF2 cross-sectional samples. After ion etching from both sides for 4 h the sample
was ready for TEM investigations. It is also possible to glue two Bi2Te3‖Si composites with the
thin films facing against each other and to proceed with the cross-sectional preparation (Fig.
6.2(d)). For such a composite structure it is unambiguous at which side of the thin film the
substrate originally was.

In general, the BaF2 substrate was completely removed from the thin film. Only some
small pieces of BaF2 with a size of a few nanometer were found by EDX in the TEM. The
film thicknesses in the electron transparent regions were always found to be 1 µm, i.e., the
original film thickness. Therefore, we concluded that the delamination of the film occurs at the
interface or at the first atomic layers of the Bi2Te3 thin film. One drawback of our preparation
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Table 6.5 Statistics on dislocations in Bi2Te3 bulk materials, thin films, and superlattices.

Sample Dislocation Dislocation Dislocation Always Dislocation
type or plane density distance observed network

(cm−2) (nm)

Bulk materials
n/p-type Bi2Te3 a Basal plane 1×109 320 Yes Irregular
BaF2 substrate b (1, 1, 1) < 1×108 > 1000 Irregular

Thin films and superlattices
TF01/TF02 Basal plane 2×1010 70 Yes Irregular
TF01/TF02 Nonbasal plane 1×1011 30 No Parallel
TF01/TF02 b Threading dislocation 1×109 320 Yes
SL12 Basal plane 2×1010 70 Yes Irregular
SL12 Threading dislocation 2×109 220 Yes
SL06 Threading dislocation 2×109 220 Yes

aRef. [33, 81]. bRef. [57].

method is that it was not possible to study the interfaces between the substrate and the thin
film. Investigations on Bi2Te3 superlattices grown on GaAs [12] did not report problems during
preparation due to weak bondings between the substrate and the thin film or within the film.

6.5 Structural and chemical analysis by TEM

6.5.1 BaF2 substrates and Bi2Te3 thin films

The TEM investigations were carried out on (1, 1, 1) orientated BaF2 substrates. Figure 6.3(a)
shows a small-angle grain boundary between two grains. The grain boundary is inclined to the
electron beam so that individual dislocations 25 nm apart are visible. The grains had a size of
several micrometers. There were also individual dislocations within the grains with a density
of less than 108 cm−2 (Table 6.5).

The chemical composition of the films was measured by EDX in the TEM and yielded mole
fraction ratios of 39.4 at.% Bi and 60.6 at.% Te (Table 6.6). Images of a plan view sample TF02
(Fig. 6.3(b)) and a cross section of sample TF01 in [0,−1, 0] orientation (Fig. 6.3(c) and 6.3(d))
were acquired. The type of dislocations, the dislocation density and distance, the frequency of
observation, and the network type are summarised in Table 6.5. The plan view measurements
yielded two types of dislocation networks. The first network consists of dislocations crossing
at large angles forming an irregular network with a dislocation density of 2 × 1010 cm−2. The
second network consists of almost parallel dislocations running in diagonal direction of the image
(Fig. 6.3(b)). The dislocations are 30 nm apart, yielding a density of 1×1011 cm−2. Two-beam
images of the cross-sectional sample with strongly excited (1, 0, 10) reflection yielded v-shaped
threading dislocations with a dislocation density of 1 × 109 cm−2 (Fig. 6.3(c)) [57]. Figure
6.3(d) is a (−1, 0, 5) dark field image acquired close to the BaF2/Bi2Te3 interface. A sinusoidal
diffraction contrast appeared in the Bi2Te3 thin film with fringes inclined by an angle of about
30◦ to the growth direction. This contrast is due to a sinusoidal strain field referred to as a nns.
The nns has a wavelength of about 10±3 nm (Table 6.7) and a wave vector parallel to (1, 0, 10).
A line scan in the dark field image of the nns yielded a contrast (Imax − Imin)/(Imax + Imin)
equal to 0.15 (Table 6.7).
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Table 6.6 Chemical composition measured by EDX in the TEM.

Sample Bi Te Se
(at. %) (at. %) (at. %)

TF01/TF02 39.4± 1.1 60.6± 1.1
SL12 40.0± 1.2 56.3± 1.2 3.7± 0.9
SL06 39.3± 0.9 57.1± 1.0 3.5± 0.6

Table 6.7 Wavelengths of the nns, periods of the SL (ans), and contrast of the nns and ans.

Sample Modulation Period or Contrast
wavelength (Imax − Imin)/(Imax + Imin)

(nm)

TF01 nns 10±3 0.15
SL12 ans 12.0±0.5 0.25
SL12 nns 10±2 0.25
SL06 ans 6.2±0.5 0.15
SL06 nns 8±2 0.25

Figure 6.3 (a) (2,−2, 0) bright field image of BaF2. (b) (−2, 2, 5) bright field image of a plan view
sample TF02. (c) (1, 0, 10) bright field image and (d) (−1, 0, 5) dark field image of a cross section of
sample TF01.
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Figure 6.4 Images of sample SL12: (a) (1,−2, 0) g/3g weak beam image of a plan view sample.
(b)-(e) Cross sections with imaging conditions for imaging the ans and nns. (b) (0, 0, 15) bright field
image of the SL structure without threading dislocations. (c) (0, 0, 9) dark field image of the SL with
threading dislocations (arrows) and a region A without SL. (d) (−1, 0, 5) dark field image of the nns
with threading dislocations (arrows). (e) High resolution image of the ans with strongly excited (0, 0, l)
reflections. (f) High resolution image of the nns with strongly excited (−1, 0, 5) reflection.
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Figure 6.5 Cross sections of sample SL06 with imaging conditions for imaging the ans and nns: (a)
(0, 0, 15) bright field image of the SL structure ans. (b) (−1, 0, 5) dark field image of the nns. (c) High
resolution image of the ans with strongly excited (0, 0, l) reflections. (d) (−1, 0, 5) bright field image of
the (nns) at high magnification.

6.5.2 12 nm superlattice

The chemical composition of the films was investigated in cross section by EDX and yielded
mole fraction ratios of 40 at.% Bi, 56.3 at.% Te, and 3.7 at.% Se (Table 6.6). The images of a
plan view sample show a network of irregularly arranged dislocations with a dislocation density
of 2 × 1010 cm−2 (Fig. 6.4(a), Table 6.5). The bright spot in the upper left corner is a region
with a high dislocation density of 1011 cm−2. A diffraction pattern of a [0,−1, 0] orientated
cross-sectional sample was acquired (Fig. 6.1(d)). The fundamental (0, 0, l), (−1, 0, 5), and
(1, 0, 10) reflections can be seen. A line scan along the (0, 0, l) reflections yielded SL reflections
and a periodicity of 13± 1 nm (Fig. 6.1(e)). An overview of a dislocation-free region of the SL
structure is shown in Figure 6.4(b). A SL period of 12±0.5 nm and a contrast of 0.25 was found
(Table 6.7). The SL is slightly bent with an amplitude of 30 nm and a wavelength of 400 nm
(Table 6.3). Dislocation-free regions have a maximum lateral size of 500 nm. Strained regions
with threading dislocations parallel to the growth direction were also observed. The SL is bent
by several degrees close to threading dislocations (Fig. 6.4(c)). In regions close to threading
dislocations the contrast of the SL almost disappeared (region A in Fig. 6.4(c)). The density
of threading dislocations was about 2× 109 cm−2. The structural modulation (nns) is shown in
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Figure 6.4(d) within a region with threading dislocations. The fringes are inclined by an angle
of about 30◦ to the growth direction and have a wavelength of 10±2 nm and a contrast of 0.25.
The structural modulations (nns) is not bent due to threading dislocations. High resolution
images of the ans (Fig. 6.4(e)) and the nns (Fig. 6.4(f)) were acquired within regions without
threading dislocations. The (003) lattice fringes can be seen with a lattice spacing of about
1 nm. The fringe contrast of both nanostructures, the ans and nns, appears straight; there
is no bending of the ans due to the nns and vice versa. Finally, line scans across the images
of the ans and nns are shown in Figure 5.3(a). The intensity profile of the ans is of almost
perfect sinusoidal shape, whereas the intensity profile of the nns is irregularly sinusoidal with
alternating amplitude and wavelength.

6.5.3 6 nm superlattice

The chemical composition of the film measured in cross sections by EDX yielded mole fraction
ratios of 39.3 at.% Bi, 57.1 at.% Te, and 3.5 at.% Se (Table 6.6). Figures 6.5(a) and 6.5(b) show
an overview of the SL and of the structural modulation within a dislocation-free region. Both
images show a chessboardlike contrast pattern. The structural modulation (nns) is inclined by
an angle of about 35◦ to the growth direction. The intensity profiles yielded a SL period of
6.2 ± 0.5 nm and a contrast of 0.15 for the ans and a wavelength of 8 ± 2 nm and a contrast
of 0.25 for the nns. The SL is slightly bent with an amplitude of 15 nm and a wavelength of
400 nm (Table 6.3). However, strongly bent regions of the SL were observed when threading
dislocations were present. The density of threading dislocations was 2 × 109 cm−2. The high-
resolution images of the SL (ans) (Fig. 6.5(c)) and the structural modulation (nns) (Fig.
6.5(d)) were acquired within regions without threading dislocations. The fringe contrast of
both nanostructures appears straight; there is no bending of the ans due to the nns and vice
versa.

6.6 Discussion

6.6.1 Artificial (ans) and natural (nns) nanostructures

Images of the SL with strongly excited (0, 0, l) reflections showed strong contrast for the SL
layers. The contrast of the SL (ans) is due to interference of the fundamental reflections of
the Bi2Te3 and the SL reflections. The contrast depends on the local specimen thickness and
defocus. RHEED measurements confirmed an epitaxial layer-by-layer growth at a substrate
temperature above 280 ◦C. The SL period determined by HRXRD and TEM were in agreement
with each other. The EDX measurements in the TEM confirmed the nominal composition,
particularly the average Se content of the SL. However, the lateral resolution of the EDX in the
TEM was not sufficient to measure the chemical composition in separate SL layers.

The striking microstructural feature is the presence of a nns. The correlated sinusoidal strain
field could be imaged by diffraction contrast with strongly excited {−1, 0, 5} reflections. The
structural modulation (nns) was unambiguously identified in the epitaxially grown thin films and
SL and was also identified in p-type and n-type Bi2Te3 bulk materials [34, 63]. Therefore, the
nns is of general character for Bi2Te3 materials, independent of the growth technique and doping
level. In all samples the wavelength is about 10 nm and the wave vector is parallel to {1, 0, 10},
the fringes are tilted with respect to the (0, 0, l) planes by an angle of 30◦ − 35◦. However, the
diffraction contrast intensity profiles of the nns were only approximately of sinusoidal shape.
This indicates local changes of the amplitude, the wavelength, and the phase of the displacement
field. No bending of the nns due to dislocations or superlattices is observed, the nns is perfectly
superimposed to the average structure. The nature of the structural modulation was analysed in
detail in n-type and p-type bulk materials [63] and was found to be a pure structural modulation.
Chemical modulations due to alloying and subsequent precipitation can be ruled out, since the
nns was also found in pure Bi2Te3 thin films. A network of dislocations a few nanometers apart
as an origin of the strain field could also be ruled out by investigations on bulk materials.
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6.6.2 Bending and extended defects in the SL structure

Dislocation-free regions of the SL showed bending with a wavelength of 400 nm and amplitudes
of 30 nm for SL12 and 15 nm for SL06, respectively. For both SLs the bending amplitude is
2.5 times larger than the SL period. This slight bending is in agreement with AFM surface
roughness measurements (Table 6.3). The film and layer roughness is correlated with the
substrate temperature. Smooth surfaces were only found at 280 ◦C, whereas surface roughness
increased at higher temperature. However, the substrate temperature during thin film growth
was chosen to be 290 ◦C for optimizing the power factor S2σ and thereby the thermoelectric
figure of merit of the films [40]. Bending of the SL was most pronounced close to threading
dislocations.

TEM showed dislocation-free regions of the SL with a lateral size of less than 500 nm, which
is significantly smaller than the film thicknesses. In X-ray diffraction the (0, 0, l) reflections
showed a FWHM of 0.2◦. According to the Scherrer formula [91] a grain size of 80 nm parallel
to [0, 0, 1] can be calculated. This grain size (size of coherent scattering regions) is ten times
smaller than the film thicknesses. The nns contributes to the reflection broadening in X-ray
diffraction patterns and might explain the differences between TEM and XRD.

Threading dislocations were found in thin films and SL with the same density of about
109 cm−2. The cross-section images show strong bending of the SL close to threading disloca-
tions. Usually, the stress field of strained-layered SL cause bending of threading dislocations
[92]. Threading dislocations and bending of the SL was not reported for p-type SL [12]. The SL
disappeared close to one threading dislocation (Fig. 6.4(c)) and an alloyed region has formed.
Threading dislocations might be generated due to the lattice mismatch between the substrate
and the epitaxially grown film and should be of edge type. The line direction has a large
component parallel to the growth direction and the Burgers vector should be parallel to the
basal plane. Close to threading dislocation the planes are bent and therefore the local lattice
parameters change. Threading dislocations change the local growth rate and surface steps or
even a complete disorder will be introduced in the SL.

A lattice parameter misfit of 0.045% was calculated for Bi2Te3 thin films on BaF2 substrates.
The XRD measurements of Bi2Te3 thin film TF01 showed that lattice parameter a was 0.2%
smaller and lattice parameter c 0.2% larger with respect to Bi2Te3 bulk materials. This indi-
cates that the film is under compressive stress, which is in agreement with the positive lattice
parameter misfit. From the lattice parameter misfit a misfit dislocation density of 108 cm−2 and
a dislocation distance of 970 nm can be estimated. Misfit dislocations could not be analysed
due to the poor adhesion between the epitaxially grown films and the BaF2 substrate, the films
delaminated during TEM specimen preparation.

TEM of plan view samples yielded irregular arranged dislocations and parallel dislocations
with a density of 2× 1010 cm−2 (Table 6.5). Similar dislocations networks were found in n-type
and p-type bulk materials and analysed with respect to their Burgers vectors, line directions,
and line energy [33, 81]. It is assumed that they are identical with the networks observed in
the thin films and SL. The dislocation density is two orders of magnitude larger than that (i)
expected from the BaF2-Bi2Te3 misfit and (ii) the dislocation density in the BaF2 substrates.
Also, the dislocation density is one order of magnitude larger than in bulk samples.

Finally, the intensity ratios SLR1/SLR0 of SL reflections found by HRXRD is 2.6 times
smaller for sample SL06 compared to sample SL10. This indicates a reduced quality of the
short period superlattice, which might be due to three reasons: (i) The SL smeares out during
MBE growth due to diffusion, which is more significant in short period SL. (ii) TEM showed
in both SLs slightly bent SL layers. (iii) TEM showed a chessboardlike contrast pattern in
sample SL06 due to an either ordered demixing of Te and Se in the basal plane or an ordered
rearrangement of the structural modulation of the nns.
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Figure 6.6 Correlation diagram for the thermopower S and the electrical conductivity σ for the
epitaxially grown thin films and superlattices.

Table 6.8 Lattice thermal conductivity λlatt and phonon mean free path lph at 300 K for Bi2Te3 and
other model materials in dependence of structural disorder. (⊥ c)/(‖ c) indicate λlatt perpendicu-
lar/parallel to the c axis. lph was calculated as λlatt = 1/3ρ c v lph with mass density ρ, specific heat
c, and average velocity of sound v. The specific heat was determined by the Debye model: Debye
temperature θD and number of atoms N per unit cell with volume V .

Sample Structure λlatt lph

(W/m K) (nm)

Bi2Te3
Bi2Te3(2) a Bulk, single crystal, (⊥ c) 1.4 2.1
Bi2Te3 − 1500nm b Thin film, polycrystalline, film thickness 1.5 µm, 1.2 1.8

grain size 300 nm, (⊥ c)
Bi2Te3 − 1000nm Thin film, single crystal, film thickness 1 µm, 1.48 2.2
(Sample TF01 c) (nns), wavelength 10 nm, (⊥ c)
Bi2Te3 − SL10nm d 10 nm SL, single crystal, film thickness 1 µm, 0.81d 1.2
(Sample SL10 c) (nns), wavelength 10 nm, (⊥ c) 1.01c 1.5

Si
Si e Bulk, single crystal 155 43
Si-1600nm f Thin film, single crystal, film thickness 1.6 µm 95 26
Si-20nm g Thin film, single crystal, film thickness 20 nm 22 6.7

SiO2

SiO2 crystal h Bulk, single crystal, (‖ c) 3.8 1.3
SiO2 glass i Bulk, glass 1.7 0.7

Bi1.4Pb0.6Sr2Ca2Cu3O10

Bi-2223 j Bulk, polycrystalline, grain size 50 nm, 0.7 0.5
incommensurately modulated structure,
wavelength 5 nm

aRef. [19, 87, 93]. bRef. [93, 94]. cThis work and Ref. [93]. dThis work and Ref. [39, 93].
a−d(ρ = 7.86 g/cm3, c = 153 J/kg K, v = 1650 m/s, θD = 165K, N/V = 0.30× 1023 cm−3).
eRef. [95, 96]. fRef. [96, 97]. gRef. [96, 98].
e−g(ρ = 2.39 g/cm3, c = 710 J/kg K, v = 6400 m/s, θD = 640 K, N/V = 0.50× 1023 cm−3).
hRef. [99] (ρ = 2.65 g/cm3, c = 715 J/kg K, v = 4400 m/s, θD = 550 K, N/V = 0.80× 1023 cm−3).
iRef. [99] (ρ = 2.22 g/cm3, c = 715 J/kg K, v = 4160 m/s).
jRef. [100, 101] (ρ = 3.48 g/cm3, c = 442 J/kg K, v = 2930 m/s, θD = 220 K, N/V = 0.18 ×
1023 cm−3).
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Figure 6.7 Temperature dependence of (a) the lattice thermal conductivity λlatt and (b) the calculated
phonon mean free path lph for Bi2Te3, Si, and SiO2 materials with different amounts of structural
disorder (Table 6.8): Bi2Te3 bulk (Bi2Te3 (1) see Ref. [86, 93], Bi2Te3 (2) see Ref. [19, 87, 93]), Bi2Te3

thin film with a thickness of 1.5 µm (Bi2Te3-1500nm see Ref. [93, 94]), Bi2Te3/Bi2(Te0.88Se0.12)3 SL
with a period of 10 nm (Bi2Te3-SL-10nm see Ref. [39]), Si bulk (see Ref. [95, 96]), Si thin films with a
thickness of 1.6 µm (Si-1600nm see Ref. [96, 97]) and 20 nm (Si-20nm see Ref. [96, 98]), and crystalline
and amorphous SiO2 (see Ref. [99]).
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6.6.3 Correlation between structural and thermoelectric properties

At 300 K the thermal conductivity of Bi2Te3 thin films and SL were found to be 1.1− 1.7 times
smaller than in bulk (Table 6.4). However, also the power factors were reduced by factor of 2.
Therefore, the thermoelectric figure of merit ZT of the thin films and SL did not increase with
respect to bulk samples.

The electrical conductivity and thermopower in thin films and SL showed a negative corre-
lation (Table 6.4, Fig. 6.6). The reduction of the power factor can be correlated to a reduced
carrier mobility [38]. Our results do not show a clear dependence of these two quantities on
the microstructure. Possibly, the reduction of the power factor is correlated to the density of
threading dislocations. A reduction of the threading dislocation density by introducing buffer
layers could enhance ZT .

The lattice thermal conductivity is a transport quantity that sensitively reflects the struc-
tural disorder. Structural disorder particularly on the nanometer scale significantly decreases
the phonon mean free path and thereby the lattice thermal conductivity. In thin films in-
vestigated in this work the lattice thermal conductivity is reduced because of three reasons.
(1) Phonons are more strongly scattered on surfaces due to the small thicknesses of the films.
(2) The thermal conductivity of SL is reduced by a factor of 1.3 compared to single layer thin
films and bulk materials with the same average Se content. Also, the thermal conductivity
decreases with decreasing SL period; therefore, superlattices yield an enhanced scattering of
phonons. In SL the reduction of the thermal conductivity overcompensates the reduction of the
power factor and yields a better ZT compared to thin films [38]. For the 10 nm SL (thickness
1 µm) the lattice thermal conductivity was measured in a temperature range between 250K and
350 K [39]. The lattice thermal conductivity decreases with decreasing temperature (Fig. 6.7,
Bi2Te3-SL-10nm) which is a characteristic feature for materials with high structural disorder.
(3) Samples SL12 and SL12/2 only differed with respect to the average Se content, SL films with
higher average Se content show a reduced thermal conductivity [38]. This can be attributed to
an increased alloy scattering of the phonons.

Bi2Te3 is known for its low lattice thermal conductivity of about 1.5 W/m K. In this para-
graph we would like to discuss the possible reasons for the small lattice thermal conductivity
of bulk Bi2Te3. Bi2Te3 single crystals show lattice thermal conductivities such as materials
with high structural disorder (Table 6.8, Fig. 6.7). The nns represents a significant struc-
tural disorder and has to be considered as the most promising reason. Doped Si [95–98, 102],
SiO2 single crystals and glass [99], and the high-TC superconductor Bi1.4Pb0.6Sr2Ca2Cu3O10

(Bi-2223) [100, 101] serve as model materials to illustrate the effects of structural disorder. For
Bi-2223 only the normal state properties are considered in this work. For these materials the
lattice thermal conductivity λlatt and the corresponding phonon mean free path lph at room
temperature are given in Table 6.8, the temperature dependence can be seen in Figure 6.7.
Both values, λlatt and lph, depend on the microstructure of the materials, particularly at low
temperatures. The phonon mean free path was calculated as λlatt = 1/3ρ c v lph according to
transport theory for isotropic solids, where ρ is the mass density, c is the specific heat, and v is
the velocity of sound. The lattice thermal conductivity of single crystalline materials such as Si
and SiO2 (Fig. 6.7) shows a sharp peak at low temperatures and a phonon mean free path of
about 1mm; phonon scattering on the crystal surfaces is the dominating scattering mechanism.
The effect of structural disorder can best be seen when going from Si single crystals to single
crystalline thin films. The phonon mean free path decreases by one to four orders of magni-
tude depending on the film thickness and the peak of the lattice thermal conductivity decreases
by two orders of magnitude and shifts towards higher temperatures. This behaviour could be
explained by additional phonon scattering on surfaces and interfaces [98]. When going from
crystalline SiO2 to amorphous SiO2 a dramatic decrease of the lattice thermal conductivity is
found due to structural disorder. On the other hand, Bi-2223 is (i) a layered structure, (ii)
consists of Bi planes, (iii) exhibits an incommensurately modulated structure [103, 104], and
therefore has common structural features also found in Bi2Te3. The atomic positions of the
crystal can be described by an average structure, on which a sinusoidal displacement field is su-
perimposed with a wavelength of about 2− 5 nm. Bi-2223 and Bi2Te3 have common structural
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features and their lattice thermal conductivities are in a similar range. The incommensurately
modulated structure of Bi-2223 corresponds to the nns in Bi2Te3, yielding a decrease of the
lattice thermal conductivity.

In Bi2Te3 materials no systematic microstructural investigations can be found in the liter-
ature despite the importance of the material for thermoelectric applications. Also, only few
measurements of the lattice thermal conductivity cover a wide temperature range, i.e., single
crystals (Bi2Te3 (1) [86] and Bi2Te3 (2) [19, 87]) measured in the basal plane. In these measure-
ments the small phonon mean free paths could not be explained by phonon surface scattering,
Umklapp processes, and isotope scattering alone over the entire temperature range [19]. There-
fore, it was assumed that the increased phonon scattering was due to dislocations [19]. The
lattice thermal conductivity could be further decreased in polycrystalline Bi2Te3 thin films [94]
with a thickness of 1.5 µm (Bi2Te3-1500nm) and a grain size of about 300 nm due to additional
phonon scattering on grain boundaries.

However, in Bi2Te3 thin films the lattice thermal conductivity could only be reduced by
a factor of 2 with respect to bulk at room temperature. In other model materials artificially
introduced structural disorder yielded a reduction of one or several orders of magnitude. The
reason is most likely the structural modulation (nns) and the presence of dislocations in bulk
Bi2Te3. The displacement field of the nns is correlated to a sinusoidal strain field which should
significantly scatter phonons due to its amplitude and wavelength of 10 nm which is of the same
order of magnitude as the SL period. In a recent publication [28] a similar (nns) structure was
imaged by TEM in AgPbmSbTe2+m bulk materials. Also this material yields a small lattice
thermal conductivity and a high thermoelectric figure of merit ZT . A more detailed analysis
showed the structural complexity of other Te compounds [29]. Crystalline Te compounds are
known to be easily transferred in an amorphous state and are used in, e.g., phase change
materials for various applications [84]. The nns might be regarded as an intermediate state
between pure crystalline and amorphous and might be the key for the small thermal conductivity
and large thermoelectric figure of merit of Bi2Te3.



Chapter 7

Bulk: Gliding dislocations

7.1 Results

7.1.1 Stereomicroscopy (Tomography)

The microstructure of p-type (Bi,Sb)2Te3 was investigated by conventional TEM [33]. The
sample showed a strong texture with grain sizes of 1 − 10 µm divided by small-angle grain
boundaries. The dislocation density was found to be 109 cm−2 and dislocations in the basal
plane showed a high mobility. The motion was induced by heating the sample by an electron
beam with a large illumination angle. External stresses were not applied. The gliding disloca-
tions were also found in n-type Bi2(Te,Se)3 [63]. The stereomicroscopy technique (Fig. 3.3)
was applied to determine (a) the Burgers vector, line direction, glide plane, and the direction
of motion of individual dislocations, and (b) the spatial arrangement of groups of dislocations
in p-type Bi2Te3 (Table 3.1, sample P4). Figure 7.1 shows four two-beam images of the same
specimen region at various orientations. The sample was tilted by up to 90◦ from an orientation
close to the c axis (Fig. 7.1(a), 7.1(b), and 7.1(c)) to an orientation parallel to the a axis (Fig.
7.1(d)). Details of the sample orientations are given in Table 7.1. In this specimen region the
motion of (i) free standing dislocations, (ii) equidistant dislocations in the same glide plane,
and (iii) dislocation pileups were analysed.

(i) Figures 7.1(a) and 7.1(b) show the sample before and after 2 s of heating by a focused
electron beam, respectively. There are free standing dislocations with a high mobility of 20 −
50 nm/s. The stereomicroscopy investigations yielded mixed dislocations with Burgers vector
[1, 1, 0], line direction [2.7,−1, 0], and the basal plane as glide plane with direction of motion
−[1, 1, 0]. The Burgers vector was determined by using the g · b = 0 criterion for dislocations
being out of contrast and by image simulation. The dislocations first bowed out in the direction
of motion and then started to glide.

(ii) Figures 7.1(a) and 7.1(b) also yielded a group of equidistant dislocations which showed
a collective movement with the same direction of motion as the free standing dislocations. The
dislocations kept a minimum distance of 80 nm. In a sample orientation parallel to the a axis
the dislocations turned out to glide on the same (0, 0, l) plane (Fig. 7.1(d), Table 7.1).

(iii) Finally, Figures 7.1(c) and 7.1(d) show a second type of groups of dislocations, which
were not able to glide. In a sample orientation closer to the c axis these dislocations appear
as bundles of dislocations (Fig. 7.1(c), Table 7.1). In an orientation parallel to the a axis the
dislocations turned out to be piled up on different (0, 0, l) planes at a distance of 30 − 80 nm
(Fig. 7.1(d), Table 7.1).

7.1.2 Video sequences and analysis

The sample was in an orientation close to [5,−5, 1], which is at an intermediate projection
between the a axis and the c axis (Table 7.1). Video sequences of free standing dislocations,
of groups of dislocations, and of dislocation dipoles were recorded. The video sequences were
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analysed in slow motion, i.e., frame by frame at a frame rate of 25 frames per second. This
allowed the post-analysis of processes which were to fast or to complex for human eyes, and
therefore were not recognised during acquisition. Particularly, the interaction in groups of
dislocations were of interest. For this, distances between the dislocations and their velocities
(Table 7.2) were measured. The figures show a poor quality due to the low dynamical range of
the video camera. Also, optimised two-beam conditions could not be applied since most of the
dislocations glided away too fast.

Figure 7.2 shows free standing dislocations at various times. At the beginning dislocations
can be seen bowed out in opposite directions with a radius of about 100 nm (Fig. 7.2(0s)).
The dislocations started to move in opposite directions but with the same velocity of about
50 nm/s (Table 7.2) when the sample was heated by a focused electron beam. During the entire
glide process the dislocations were bowed out, therefore the dislocations are only pinned at the
surface. The motion is rather a hopping process than a continuous process. The following two
frames show the gliding dislocations after 19 s (Fig. 7.2(19s)) and at the end after 48 s (Fig.
7.2(48s)). In each frame the total length of the dislocations increased compared to the previous
frame. Therefore, the dislocations moved towards thick specimen regions. The dislocations
could glide until they reached a dislocation pileup (Fig. 7.2(48s)). The motion stopped at
distance of about 175 nm in front of the dislocation pileup and the free standing dislocations
got straight.

Figure 7.3 shows a group of equidistant dislocations gliding in the same plane. The disloca-
tions showed a collective movement with a velocity of less than 10 nm/s (Table 7.2), keeping a
minimum distance of about 50 nm between to neighboured dislocations.

The last video sequences show (a) the formation of a dislocation dipole (Fig. 7.4(0s),
7.4(0.6s), and 7.4(0.7s)) and (b) an oscillating dipole (Fig. 7.4(5.2s), 7.4(14.4s), and 7.4(14.6s)).
Both processes are very fast and required a frame by frame analysis.

At the beginning of the formation of a dislocation dipole a free standing dislocation (i) bowed
out at started to glide slowly at a velocity of 20 nm/s towards another free standing dislocation
(ii) (Fig. 7.4(0s) and 7.4(0.6s)). At a distance of 200 nm between both dislocations the velocity
of dislocation (i) accelerated to more than 1 µm/s (Table 7.2) and stopped its motion close to
dislocation (ii) (Fig. 7.4(0.7s)). The motion of the dislocation (i) during the last moments of
the formation of the dipole fast too fast to be recorded by the video camera. Only weak traces
are visible at the places where the dislocation was pinned at the surface (Fig. 7.4(0.7s)).

A few seconds later at the same specimen region an oscillating dipole (iii) could be ob-
served (Fig. 7.4(5.2s), 7.4(14.4s), and 7.4(14.6s)). The dipole (iii) bowed out slowly by 50 nm
within 6.8 s and kept its shape for 2.4 s (Fig. 7.4(5.2s) and 7.4(14.4s)). During this time of
maximum bending another nearby free standing dislocation (iv) glided away (Fig. 7.4(14.4s)).
Immediately after this, the dipole snapped back within 0.2 s (Fig. 7.4(14.6s)).

7.2 Discussion

7.2.1 Thermally induced gliding and elastic forces

The high mobility of the dislocations in Bi2Te3 at room temperature is a unique physical prop-
erty and was reported several times [24, 25, 33]. Stereomicroscopy yielded mixed dislocations
and the basal plane being the glide plane, which was expected for a hexagonal material such as
Bi2Te3. Free standing dislocations, dislocations in the same glide plane, and dislocation pileups
were unambiguously identified by stereomicroscopy. The motion had not to be induced by ex-
ternal shear stresses or by heating of the sample beyond room temperature. Only an activation
energy had thermally to be overcome by a focused electron beam to start and maintain motion.
The dislocation velocity increased for larger illumination angles and thereby higher tempera-
tures. The dislocations were bowed out in the direction of motion and were only pinned at the
surface. Obviously, there are no pinning centres such as impurities since the gliding dislocations
showed no zig-zag shape.
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Table 7.1 Sample orientations applied for the various micrographs and video sequences.

Micrograph Nearest Angle to
pole c axis

Fig. 7.1(a) and Fig. 7.1(b) [−5,−10, 2] 32◦

Fig. 7.1(c) [5,−5, 1] 51◦

Fig. 7.1(d) [1, 0, 0] 90◦

Fig. 7.2, Fig. 7.3, Fig. 7.4 [5,−5, 1] 51◦

Figure 7.1 (a) (1, 1, 0), (b) (1, 1, 0), (c) (−1, 0, 5), and (d) (0, 0,−15) bright field images of the same
specimen region. Images (a), (b), and (c) were acquired in a sample orientation close to the c axis,
and image (d) in an orientation parallel to the a axis (Table 7.1). Images (a) and (b) were recorded
before and after 2 s heating by a focused electron beam, respectively. (i) Free standing dislocations
with a high mobility. The dark arrows indicate the position of the dislocations before and after heating.
(ii) Equidistant dislocations in the same glide plane. (ii*) Dislocation bowed out by 15 nm after heating.
(iii) Dislocations piled up in different (0, 0, l) planes.
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Table 7.2 Velocity of the gliding dislocations for various processes.

Process Velocity (nm/s)

Formation of dipoles > 1000
Free standing dislocations 10− 100
Equidistant dislocations in the same glide plane < 10
Dislocation pileups and dipoles 0

Figure 7.2 Video sequences of free standing dislocations (i) and (ii) at different times, gliding in
opposite directions. The motion of dislocations (i) stopped in front of a dislocation pileup (iii).

Figure 7.3 Video sequences of equidistant gliding dislocations in the same plane. The arrows indicate
the positions of the dislocations (i)-(iv) before and after heating.

The direction of motion is determined by elastic forces acting on the dislocations. The
origin of these forces [41] could be (i) attractive image forces close to free surfaces, (ii) residual
or externally applied shear stress, and (iii) the interaction between two dislocations. The video
sequences visualised each type of these forces. (i) Dislocations were observed which moved
towards the edge of the sample until they disappeared. (ii) Figure 7.2(a) showed dislocations
moving in opposite directions. It is known that for residual or external shear stresses the
direction of motion depends on the sign of the Burgers vector [41]. Therefore, the dislocations
differed in the sign of their Burgers vectors. (iii) Attractive and repulsive forces between two
dislocations depend on the signs of their Burgers vectors [41]. The video sequences showing
equidistant dislocations in the same glide plane (Fig. 7.3) and dislocations moving towards
dislocation pileups (Fig. 7.2(b) and 7.2(c)) visualise repulsive forces between dislocations with
identical Burgers vectors. The repulsive forces reduced the mobility of dislocations in the same
glide plane (Table 7.2). Also, dislocation pileups acted as barriers for free standing dislocations
(Fig. 7.2(b) and 7.2(c)). The formation of the dipole (Fig. 7.4(0s), 7.4(0.6s), and 7.4(0.7s))
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Figure 7.4 Video sequences showing (a) the formation of a dislocation dipole from free standing
dislocations (i) and (ii) and (b) an oscillating dipole (iii). The oscillating dipole first bowed out slowly
by 50 nm within 6.8 s, kept its shape for 2.4 s, and snapped back after dislocation (iv) glided away.

can be explained by attractive forces between two dislocations which differed in the signs of
their Burgers vector. Particularly, the attraction between both dislocations explains the strong
increase of the dislocation velocity (Table 7.2). Finally, in regions of high dislocation density
the glide process depends on the local arrangement of all dislocations at the various times (Fig.
7.4). The glide process has similarity to the stop and go movement in a traffic jam.

7.2.2 Residual shear stresses

Forces due to residual shear stresses on dislocations are more dominant in Bi2Te3 than image
forces close to free surfaces because a large number of dislocations were observed, moving away
from the edge of the sample towards thick specimen regions (Fig. 7.2(b) and 7.2(c)). The
residual shear stresses σ can be estimated from dislocation configurations showing equilibrium
of forces. For elastically isotropic crystals expressions were derived for the elastic forces FL per
unit length [41]. The formulas given in Reference [41] can be applied because Bi2Te3 has almost
isotropic elastic properties, the anisotropy ratio being 1.17 [41, chap. 2.4] calculated from the
elastic constants cij [59]. The calculations assume a shear modulus µ = 2.74 × 1010 Pa and
a Poisson’s ratio ν = 0.24 [41, chap. 2.4], and finally edge dislocations with Burgers vector
b = [1, 1, 0], line direction l = [1,−1, 0], and direction of motion 〈1, 1, 0〉. Three examples will
be given.

(i) Figure 7.2(c) showed gliding dislocations stopped by a dislocation pileup at a distance
of R = 175 nm. The driving force is the residual shear stress given by FL = σ b [41, page 81],
whereas the repulsive force between two parallel straight edge dislocations is given by FL =

µ b2

2π (1−ν) R [41, page 123]. In equilibrium, a residual shear stress of σ = 14 × 106 Pa can be
calculated.

(ii) A dislocation was observed at a distance R = 300 nm away from the edge of the sample,
gliding very slowly “backwards” towards the edge of the sample. The bending of the dislocation
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Table 7.3 Lattice thermal conductivity λlatt of n-type Bi2Te3 measured at 3 K parallel to the basal
plane. The phonon mean free path lph was calculated as (a) λlatt = 1/3 C v lph and (b) lph =
0.455 (γ2 b2 kD)−1 1

ND

θD
T

for a dislocation density of ND = 109 cm−2. Material parameters [16]:

C = 574 J/K m3 at T = 3K, v = 1650 m/s, θD = 165K, z = 5, N
V

= 0.06 × 1023 cm−3, γ = 1.49,
b = 0.438 nm, and kD = 7.05 nm−1.

Reference λlatt lph
a lph

b

(W/mK) (µm) (µm)

Ref. [87] 15 48 832
Ref. [86] 230 729 832

indicated a force FL = σ b [41, page 81] due to residual shear stresses in a direction away from
the edge. However, obviously the image force FL = µ b2

4π (1−ν) R [41, page 88] close to the free
surface had the same strength in opposite direction. For this example a residual shear stress of
σ = 4× 106 Pa was determined.

(iii) Finally, the residual shear stresses can be estimated from the bending radius of the
dislocations. The bending radius r = EL

σ b [48, pp. 249-250] is determined by the equilibrium
of stretching due to the shear stress σ and shortening for minimizing the line energy EL. For
an edge dislocation the line energy is given by EL = µ b2

4π
1

1−ν ln( R
r0

) [48, pp. 249-250], where R
is half the distance between two dislocations and r0 ≈ b is the dislocation core radius. For a
dislocation density of 109 cm−2 the line energy is about 20 eV/nm. The bending radius of most
dislocations was larger than 100 nm. In summary, a residual shear stress of σ < 74× 106 Pa is
obtained.

All three examples showed that there is a significant amount of residual shear stress in the
sample. This explains, why external shear stresses had not to be applied to enable gliding. In
LiF crystals the dislocation velocity varied between 10 nm/s and 10 m/s for an applied shear
stress between 5×106 Pa and 40×106 Pa [49]. The typical dislocation velocities of free standing
dislocation in Bi2Te3 was about 10 − 100 nm/s (Table 7.2). Therefore, residual shear stresses
between 5× 106 Pa and 15× 106 Pa are a reasonable estimation.

7.2.3 Lattice thermal conductivity

Bi2Te3 is known for its high thermoelectric figure of merit ZT at room temperature. One
reason for this high ZT value is a low lattice thermal conductivity of about λlatt = 1.5 W/m K
at 300 K, which was attributed to a high structural disorder [19]. The dependence of the lattice
thermal conductivity on structural disorder was nicely demonstrated for single crystalline Si
thin films and other model materials [10]. Particularly, at low temperatures phonon scattering
on crystal surfaces, grain boundaries, and on the strain field of dislocations is dominant and
significantly reduces the lattice thermal conductivity. In single crystalline Bi2Te3, only a few
measurements of the lattice thermal conductivity cover a wide temperature range [19, 86, 87].
In these measurements the small phonon mean free paths could not be explained by phonon
surface-scattering, Umklapp-processes, and isotope scattering alone over the entire temperature
range [19]. Therefore, it was assumed that phonon scattering on dislocations should be dominant
without proving their existence [19].

The phonon mean free path in Bi2Te3 due to phonon scattering on the strain field of dislo-
cations will be estimated and discussed. The measurements of the lattice thermal conductivity
[86, 87] showed a peak at about 4 − 9 K, which is a typical feature for single crystals. For
the discussion only the measurements at the lowest temperatures are of interest, e.g., at a
temperature of 3 K the lattice thermal conductivities were found to be λlatt = 15 W/m K [87]
and λlatt = 230 W/m K [86] (Table 7.3). The phonon mean free path lph can be calculated as
λlatt = 1/3 C v lph according to transport theory for isotropic solids, where C is the total specific
heat and v is the velocity of sound. The specific heat was calculated as C = 12π4

5 kB z N
V ( T

θD
)3

according to the Debye model at low temperatures, where T is the temperature, θD is the Debye
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temperature, z is the number of atoms per unit cell, N
V is the number of unit cells per volume,

and kB is the Boltzmann’s constant. On the other hand, the phonon mean free path lph is
related to the dislocation density ND according to lph = 0.455 (γ2 b2 kD)−1 1

ND

θD
T [9, page 325],

where γ is the Grüneisen constant, b is the Burgers vector, and kD =
(
6π2 N

V

) 1
3 is the Debye

radius.
Table 7.3 shows the phonon mean free paths determined by transport theory for a dislocation

density of ND = 109 cm−2. Only for a lattice thermal conductivity of λlatt = 230W/m K at 3 K
[86] the dislocation density is large enough to explain the small phonon mean free path. For a
significantly smaller lattice thermal conductivity of λlatt = 15W/m K at 3 K [87] the dislocation
density should be one order of magnitude higher. However, in the literature only dislocation
densities of 109 cm−2 were reported in bulk Bi2Te3 [24, 25, 33].

There is no reason to assume a higher dislocation density to explain the low lattice ther-
mal conductivity of Bi2Te3 reported in Reference [87] without experimental proof. Instead,
other types of structural disorder found in n-type and p-type Bi2Te3 might explain the discrep-
ancy. (i) Diffraction contrast experiments in the TEM yielded a displacive modulation with
a wavelength of 10 nm, which was referred to as natural nanostructure (nns) [34, 63]. The
displacement field of the nns is correlated to a sinusoidal strain field which should significantly
scatter phonons. The nns is a more promising reason than the dislocations to explain the low
lattice thermal conductivity in Bi2Te3. (ii) Oscillating dislocations are also known to contribute
to phonon scattering and shall be discussed in more detail here.

7.2.4 Ultrasound attenuation

The dislocation resonance theory of Granato and Lücke predicts a strong interaction between
phonons and dislocations acting as damped vibrating strings [50–52]. Ultrasound attenuation
experiments measure the attenuation α(ω) and the velocity of sound v(ω) in dependence of the
frequency ω of the incident ultrasound. A related quantity is the decrement4(ω) = 2πα(ω)v(ω)

ω .
Granato and Lücke derived for the decrement ∆(ω) = Ω∆0 ND L2 f( ω

ω0
, D), where ND is the

dislocation density, L is the length of the dislocation or of its oscillating segments, f( ω
ω0

, D) =
{ ω

ω0
/D}/{[1 − ( ω

ω0
)2]2 + ( ω

ω0
/D)2} is the frequency response which depends on the damping

constant D and on the ratio of the frequency ω to the resonance frequency ω0 of the dislocation.
Ω is an orientation factor and ∆0 is a constant. Therefore, ultrasound attenuation is strong for
materials with a high density of dislocations.

The effects of dislocations on ultrasound attenuation were nicely demonstrated on HgTe
[54]. Measurements on annealed samples at a temperature of 4.2 K as a function of the fre-
quency showed a maximum at 240 MHz. A second experiment at room temperature and for
constant frequency showed a hysteresis for a stress applied at right angles to the propagation
of sound. Particularly, the latter measurement confirmed the dependence of the attenuation on
the dislocation configuration, since the dislocation microstructure was changed.

The relatively high density and mobility of the dislocations in Bi2Te3 should be relevant
for phonon scattering. A direct proof for the absorption of phonons by dislocations in Bi2Te3

was given by ultrasound absorption measurements reported by Esayan [23]. The ultrasound
attenuation and the dislocation density were measured on annealed and cold worked n-type and
p-type samples in a temperature range of 100− 300 K and at a frequency range of 40− 64 kHz.
The measurements showed an increased attenuation (i) at higher frequencies and (ii) at higher
dislocation densities. At a temperature between 180 K and 210K the absorption increased
exponentially on temperature, indicating a thermally activated process. Particularly, for cold
worked samples an absorption peak at about 230− 250 K has formed, which disappeared after
annealing. The predictions of Granato and Lücke about the decrement 4(ω) were also checked
and confirmed by Esayan. However, the calculations of the decrement 4(ω) were based on a
dislocation density of 105 − 106 cm−2 obtained from optical measurements on etched surfaces,
whereas the dislocation density found in the TEM is by several orders of magnitude higher.
Therefore, these calculations were reviewed here.

The decrement ∆(ω) is determined by a product of three fitting parameters, i.e., (i) the
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Table 7.4 Fundamental parameters of the Granato-Lücke theory of dislocation resonance [50, 53]
applied to Bi2Te3. The dislocation length was assumed to be L = 2.5 × 10−4 cm and the temperature
T = 240K.

A B C ω0 f0 D ∆0

(g/cm) (dyn s/cm2) (dyn) (1/s) (MHz)

Formula = π ρ b2 =
(

3 kB z
10 vt a2

)
T = 2 µ b2

π (1−ν)
= π

L

√
C
A

= ω0
2π

= ω0
A
B

= 8 µ b2

π3 C

Value 4.7× 10−14 1.6× 10−4 4.4× 10−4 1.21× 109 193 0.37 0.31

Ref. [16] for an overview of material parameters: Burgers vector b = [1, 1, 0] and b = 0.438 nm, mass
density ρ = 7.86 g/cm3, shear modulus µ = 2.74 × 1011 dyn, Poisson’s ratio ν = 0.24, number of
atoms per unit cell z = 5, shear wave velocity vt = 1650 m/s, lattice parameter a = 0.438 nm, and
Boltzmann’s constant kB.

dislocation length L, (ii) the dislocation density ND, and (iii) the frequency response f( ω
ω0

, D).
(i) Esayan used a dislocation length of L = 2.5 µm. Our results support this assumption. The
motion of the dislocation indicated no pinning centers and thereby a reduced length of the
oscillating segments of the dislocations. Therefore, the dislocation length is limited by the
grain size which was found to be 1− 10 µm. (ii) A dislocation density of ND = 109 cm−2 found
by TEM is significantly higher than a value of 105− 106 cm−2 reported by Esayan. (iii) Esayan
seems to have overestimated the frequency response f( ω

ω0
, D). The fundamental parameters

which determine the resonance frequency ω0 = 2πf0 and the normalised damping coefficient D
are the effective dislocation mass per unit length A, the damping force per unit length B, and
the dislocation line energy C [50, 53] (Table 7.4). The resonance frequency of dislocations in
Bi2Te3 should be about 217 MHz (Table 7.4). This is by orders of magnitude higher than the
frequencies used in the ultrasound experiments by Esayan. Therefore, in the low frequency
range the frequency response can be approximated by f( ω

ω0
, D) ≈ ω

ω0
/D = B ω

Aω2
0
. Esayan

assumed for the damping force a value of B ≈ 10−2 dyn s/cm2. We found a significantly smaller
value of B ≈ 10−4 dyn s/cm2 (Table 7.4), which is in the typical range of damping forces found
in other materials [52, 54].

In summary, the decrement ∆(ω) in the low frequency range is determined by the product
of the dislocation density ND, the damping force B, and the dislocation length L. Esayan [23]
used a dislocation density being by two or three orders of magnitude too small and a damping
force being by two or three orders of magnitude too large. Therefore, the Granato-Lücke theory
of dislocation resonance seems still to be a good model to explain ultrasound attenuation in
Bi2Te3.

Both, the estimations of the lattice thermal conductivity and of the ultrasound attenuation
confirmed the relevance of phonon scattering on dislocations in Bi2Te3. However, this conclusion
is still something doubtful since the calculations are not based on combined measurements of
the microstructure and of the transport properties on the same sample, which would be highly
recommended in future.



Chapter 8

Image simulation of strain fields

8.1 Strain field and line energy of a dislocation

In Chapter 2.5 it was pointed out that the diffraction contrast in the TEM is determined by the
displacement function β(z) = ∂

∂z (g · u), where g is the diffracting plane, u is the displacement
field, and ∂u

∂xl
is the strain field of the extended crystal defect. In Chapter 2.2 the displacement

field and the strain field of a dislocation in an elastically isotropic crystal was given (Eq. 2.12
and 2.13). For elastically anisotropic crystals the displacement field, the strain field, and the
line energy of a dislocation with Burgers vector b and line direction t was calculated by Eshelby
[43], Stroh [44, 45], and by Barnett and Lothe [46]. An overview of these more advanced theories
was given in the textbook of Hirth and Lothe [41, chap. 13.7]

The displacement field u is determined by an equilibrium condition for the stress field (Eq.
2.6), the Burgers circuit (Eq. 2.6), and the plane strain property (Eq. 2.9). According to Stroh
[45] the solution for the displacement field can be expressed in terms of orthonormal plane basis
vectors m and n defined by t = m × n (Eq. 2.7, Fig. 2.1(c)). Eshelby proposed an “Ansatz”
for the displacement field of the form

u = A f(m · x + pn · x) , (8.1)

where the coefficient p and the vector A are determined by Equations 2.6. Using this “Ansatz”,
the equilibrium condition (Eq. 2.6) is transformed into a homogeneous linear equation system{

(mm) + p [(mn) + (nm)] + p2(nn)
}
A = 0 . (8.2)

The components of the 3× 3 matrices (mm), (mn), (nm), and (nn) are defined by

(mm)jk = mi cijkl ml , (8.3a)
(mn)jk = mi cijkl nl , (8.3b)
(nm)jk = ni cijkl ml , (8.3c)
(nn)jk = ni cijkl nl , (8.3d)

where cijkl are the tensor components of the elastic constants. The equation system (Eq. 8.2)
only yields non vanishing values for A for

det
{
(mm) + p [(mn) + (nm)] + p2 (nn)

}
= 0 , (8.4)

which is a six degree equation with respect to the coefficient p. Eshelby and Stroh showed,
that all six p values are distinct and occur in three complex conjugate pairs. The three roots
with positive imaginary part were denoted by p1, p2, and p3. The three roots with negative
imaginary part were denoted by p4 = p̄1, p5 = p̄2, and p6 = p̄3.

75
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It is possible to recast the equation system 8.2 into a six-dimensional eigenvalue problem
given by

Nξ = p ξ , (8.5a)

ξ =
{
A
L

}
, (8.5b)

L = −{(nm) + p (nn)}A , (8.5c)

N = −
(

s q
b sT

)
, (8.5d)

q = (nn)−1 , (8.5e)

s = (nn)−1(nm) , (8.5f)

b = (mn)(nn)−1(nm)− (mm) . (8.5g)

The eigenvalues pα (α = 1, 2, . . . , 6) are solutions of the determinental relation det(N−p I) = 0,
being identical with Equation 8.4. Particularly, the 3×3 matrices q, s, and b are of interest in the
following. According to Eshelby and Stroh, for normalised eigenvectors defined by 2Aα ·Lα = 1
(no sum on α) the displacement field and the strain field are given by

u =
1

2πi

6∑
α=1

±Aα (Lα · b) ln (m · x + pα n · x) , (8.6a)

∂u
∂xl

=
1

2πi

6∑
α=1

±Aα (Lα · b)
ml + pα nl

m · x + pα n · x
, (8.6b)

where the positive sign has to be used for α = (1, 2, 3) and the negative sign for α = (4, 5, 6).
At this point, Barnett and Lothe introduced cylinder coordinates r and θ (Eq. 2.10, Fig.

2.1(c)) and the integral formalism to further simplify the expression for the strain field. The
plane basis vectors m and n were expressed in terms of fixed orthonormal plane basis vectors
m0 and n0 rotated by an angle θ (Eq. 2.10, Fig. 2.1(c)). Therefore, the matrices (mm), (mn),
(nm), and (nn) (Eq. 8.3) and the related matrices q, s, and b (Eq. 8.5) depend on the azimuth
angle θ. The components of the latter matrices were integrated over θ, yielding 3× 3 matrices
Q, S, and B defined by

Qjk = − 1
2π

2π∫
0

qjk dθ , (8.7a)

Sjk = − 1
2π

2π∫
0

sjk dθ , (8.7b)

Bjk = − 1
2π

2π∫
0

bjk dθ . (8.7c)

Barnett and Lothe showed, that the combinations of the eigenvectors Aα and Lα in Equation
8.6 are related to these integrals. Particularly, the strain field can be expressed in terms of the
real matrices q, s, b, Q, S, and B, yielding

∂u
∂xl

(r, θ) =
1
2π

1
r

(ml sm + nl sn) , (8.8a)

sm = −S b , (8.8b)
sn = q (B b) + s (S b) . (8.8c)

This result is similar to the results obtained for isotropic crystals, only the vectors sm and sn

had to be redefined (Eq. 2.13).



8.2. PRINCIPLES OF PROGRAMMING 77

Finally, the line energy of the dislocation is given by

EL =
1
4π

b · (B b) ln
(

R

r0

)
, (8.9)

where r0 is the dislocation core radius and R is half the distance between the dislocations.
In summary, the displacement field, the strain field, the stress field, and the line energy of

dislocations in elastically anisotropic crystals show following fundamental properties:

Dislocation property (i) The displacement field, the strain field, and the stress field show
plain strain properties and are proportional to the Burgers vector.

Dislocation property (ii) The strain field and the stress field can be expressed in terms of
cylinder coordinates r and θ, and of real matrices. Particularly, the matrices Q, S, and
B only depend on the line direction and on the material constants.

Dislocation property (iii) The strain field and the stress field are inversely proportional to
the radius r.

Dislocation property (iv) The strain field and the stress field can be resolved in a factor
only depending on the radius r and a factor only depending on the azimuth angle θ.

Dislocation property (v) The line energy is proportional to |b|2. Therefore, dislocations
with Burgers vectors b which correspond to shortest lattice vectors are energetically
favourable.

Dislocation property (vi) The line energy depends on the line direction t and the material
constants.

8.2 Principles of programming

8.2.1 Aim of image simulation, geometry, and displacement function

Burgers vector, absorption coefficient, and computing time

In Chapter 2.5 an introduction in the two-beam dynamical diffraction theory of Howie and
Whelan [55, 56] and in the image simulation of strain fields was given. The diffraction contrast
in the TEM was described by the Howie-Whelan equations (Eq. 2.27) for the complex ampli-
tudes of the direct beam T and the diffracted beam S, which depend on a large part on the
displacement function β(z), the absorption coefficients A and N , the extinction distance ξg,
and the dimensionless excitation error w (Eq. 2.29).

The most import aim of the image simulation of dislocations is the determination of the
Burgers vector b. For anisotropic crystals the g · b = 0 criterion for dislocations being out of
contrast is not valid and useless, there will be a significant diffraction contrast also under this
condition.

The absorption coefficients A and N are fundamental material parameters, which are usually
assumed to be identical (A = N) [47, chap. 2.4]. Similar to the extinction distance ξg, the
absorption coefficients differ for each Bragg reflection g. The aim is to get a complete table,
which contains for each Bragg reflection the corresponding extinction distance and absorption
coefficients. This table can then be used for image simulation of other extended crystal defects
in the same material, e.g., the nns in Bi2Te3.

The limiting factor for the usefulness of image simulation is the computing time, which
is closely related to the number of columns and slices, the complexity of the displacement
function, and the efficiency of the programme and the software. For numerical integration of
the Howie-Whelan equations the volume was subdivided in cells with a size of (dx× dy× dz) ≈
(2 nm× 2 nm× 2 nm), yielding a total number of lattice sites of (Nx × Ny × Nz) ≈ (100 ×
50 × 100) = 500, 000 (Fig. 8.1(a)). Therefore, for one simulated image at least 4 × 500, 000
computations are necessary, since for each cell of the volume the displacement function β (Eq.
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Figure 8.1 Geometries for image simulation. The beam direction B is parallel to the z axis and in
opposite direction to the physical beam direction. (a) The line direction points towards the positive
x axis. (b) The x axis was chosen such that the diffracting vector g in the experimental and in the
simulated images have the same orientation (angle αg).

2.29), the transformation matrices (Kn) for the amplitudes (Eq. 2.31), the complex amplitudes
T and S (Eq. 2.31), and the intensities IT and IS (Eq. 2.28) of the direct beam and the
diffracted beam have to be calculated. Head achieved a computing time of about 40− 50 s for
one image of a dislocation [47].

The aim of this work was to further reduce the computing time for one image of a dislocation,
since a large number of simulations is required for stereomicroscopy experiments: In Bi2Te3

there are three energetically favourable Burgers vectors, which are [1, 0, 0], [0, 1, 0], and [1, 1, 0].
Fortunately, the diffraction contrast is very sensitive to the Burgers vector, so that only one two-
beam image might be enough to rule out the wrong Burgers vectors. However, approximately
five different values for the absorption coefficient (A = 0, . . . , 0.15) and five different values
for the excitation error (w = −1, . . . , 1) might be required for an unambiguous result, yielding
up to 25 image simulations for each two-beam image. In Chapter 8.3.2 a stereomicroscopy
experiment will be presented with 11 two-beam images of the same dislocation. Therefore,
about 275 image simulations would be required only for this experiment. The total computing
time for the entire experiment would be less than 1 h for a computing time of 10 s per image.
In summary, a complete stereomicroscopy experiment could be surely analysed within one day.

Geometry

A fast image simulation programme for dislocations was reported by Head [47]. Head used a
geometry similar to that shown in Figure 8.1 [47, chap. 4.4]. The beam direction B was chosen
in opposite direction to the physical beam direction and the z axis was chosen to be parallel
to the beam direction B. The orientation of the x axis was defined in two different ways. (a)
The line direction t points towards the positive x axis (Fig. 8.1(a)). Therefore, the projection
of the defect line runs from left to right in the micrograph. The defect is at the bottom of the
foil at the left-hand side and at the top on the right-hand side. (b) The x axis was chosen such
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that the orientation of the diffracting vector g, i.e., its angle αg to the x axis, are identical in
the experimental and in the simulated images (Fig. 8.1(b)). Particularly, experimental images
as acquired can be simulated by using this definition of the x axis.

Displacement function β(z) and singularities at the dislocation core

Two different axis systems have to be used for image simulation of dislocations. The first axis
system (axes Ox, Oy, and Oz) is related to the beam direction B and the line direction t
or to the diffracting vector g as shown in Figure 8.1, and is referred to as experimental axis
system in the following. The second axis system (axes Ox1, Ox2, and Ox3) is related to the
crystal structure, and is referred to as crystal axis system in the following. The Howie-Whelan
equations (Eq. 2.27) and particularly the displacement function β(z) = g · ∂u

∂z (Eq. 2.29) were
derived with respect to the experimental axis system. The elastic constants cmn and particularly
the strain field ∂u

∂xl
(Eq. 8.8) of the dislocation were derived with respect to the crystal axis

system. Therefore, ∂u
∂z is not identical to ∂u

∂x3
and has to be considered.

First, in the Howie-Whelan equations (Eq. 2.27) the physical beam direction is relevant,
which is in opposite direction to the beam direction B defined here (Fig. 8.1(a)). Therefore, for
the calculation of the displacement function β(z) (Eq. 2.29) an additional negative sign had to
be introduced, i.e., β(z) = − ∂

∂z (g ·u). Second, the matrix (RB) transforms vector components
xi and derivatives ∂

∂xi
from the crystal axis system into the experimental axis system according

to x′i = (RB)ij xj and ∂
∂x′

i
= (RB)ij

∂
∂xj

, and particularly ∂
∂z = (RB)3j

∂
∂xj

In summary, under
consideration of these transformation laws and Equation 8.8 the displacement function β(z) is
given by

β(r, θ) = − 1
2π

1
r

βθ(θ) , (8.10a)

βθ(θ) = g · [(Rz ·m) sm + (Rz · n) sn] , (8.10b)
sm = −S b , (8.10c)
sn = q (B b) + s (S b) , (8.10d)

(Rz)j = (RB)3j . (8.10e)

The transformation matrix RB and the related transformation vector Rz will be given in Ap-
pendix C.3.3.

In contradiction to Head, the number of lattice sites Nx, Ny, and Nz (Fig. 8.1(a)) were
chosen to be odd integer numbers in this work. Therefore, the strain field and thereby the
amplitudes at the dislocation core in the centre of the micrograph will also be calculated.
However, close to the dislocation core at distances r < |b| linear elasticity theory and also
numerical integration break down, since the strains and thereby the displacement function β
become large. Therefore, close to the dislocation core the radius r was replaced by |b| in
Equation 8.10 to avoid programme aborts due to the singular character of the strain field at
the dislocation core (Eq. 8.8 and 8.10). Also, at the centre of the dislocation core (r = 0)
the displacement function was assumed to be zero since the cylinder coordinates would be not
defined.

β(r, θ) =


− 1

2π
1
r βθ(θ) for r > |b|

− 1
2π

1
|b| βθ(θ) for 0 < r ≤ |b|

0 for r = 0
. (8.11)

8.2.2 Effective programming

Cylinder coordinates versus generalised cross section

In this section, the most significant differences between the software implementations of the
image simulation of dislocations in this work and of Head [47] will be discussed (Table 8.1).
Head achieved a computing time of 40−50 s per image by ingenious programming. Meanwhile,
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Table 8.1 Principles of effective programming for image simulation.

A.K. Head et al. a This work

Strain field according to the Stroh formalism b Strain field according to the integral formalism of
D.M. Barnett and J. Lothe c

Generalized cross section Cylinder coordinates
Runga-Kutta method “Pendellösung” method
FORTRAN MATLAB r©
Serial computing with “for”-loops Parallel computing with matrix algebra and multi-

dimensional arrays

aRef. [47]. bRef. [44, 45]. cRef. [46].

Figure 8.2 Dislocation in cross section and effective programming by using generalised cross sections
(planes E or F ) or cylinder coordinates (r, θ). The displacement field and the strain field are identical
at two points x and x′ = x + a · t, where t is the line direction and a is an arbitrary factor.

faster personal computer are available. However, even with modern computers the computing
time for one simulated image can exceed several hours for not optimised programmes. Therefore,
the computing time is determined in a large part by effective programming and by the use of
software specialised on solving mathematical problems.

Head used the Stroh formalism (Eq. 8.6) to calculate the strain field of the dislocation,
whereas in this work the integral formalism (Eq. 8.8) of Barnett and Lothe was used (Chap.
8.1, Table 8.1). Head could reduce the computing time drastically due to the plane strain
property of the strain field of the dislocation; ∂u

∂xl
(x) = ∂u

∂xl
(x + a · t) (Eq. 8.6) since m · t = 0

and n · t = 0 hold, where t is the line direction and a is an arbitrary factor. Figure 8.2 shows
a dislocation within the sample in cross section. Planes E and E′ are perpendicular to the line
direction t of the dislocation (Fig. 8.2). Due to the plane strain property, the strain fields at
a point x on plane E and at a point x′ = x + a · t on plane E′ have the same values. Head
showed, that for image simulation the strain field or the displacement function β(z) have only
to be precalculated on a plane E and these values can be transferred to the corresponding
points on the parallel plane E′. Plane E was referred to as generalised cross section by Head
[47, chap. 4.2.1]. It is also possible to choose a plane F , being parallel to the beam direction B,
as generalised cross section (Fig. 8.2) and to transfer the values to the parallel plane F ′ under
consideration of x′ = x + a · t.

According to Barnett and Lothe the strain field can be expressed in terms of cylinder co-
ordinates (r, θ) (Eq. 8.8). Obviously, the concept of the generalised cross section is also valid
when using cylinder coordinates; ∂u

∂xl
(r, θ) = ∂u

∂xl
(r′, θ′) (Eq. 8.8) since m0 · t = 0 and n0 · t = 0

and thereby (r, θ) = (r′, θ′) (Eq. 2.10) hold for x′ = x + a · t. It also turned out that the
strain field (Eq. 8.8) can be resolved in a factor only depending on the radius r and factor only
depending on the azimuth angle θ. The displacement function β(r, θ) = − 1

2π
1
r βθ(θ) (Eq. 8.10)

shows the same property. In this work, the latter factor βθ(θ) was precalculated to accelerate
image simulation, i.e, the strain field or the displacement function have only to be precalculated
on a unit circle around the dislocation core in the generalised cross-section plane E.
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“Pendellösung” method versus Runge-Kutta method

Head used the Runge-Kutta method for numerical integration of the Howie-Whelan equations
(Table 8.1), represented by the transformation matrices (Kn) (Eq. 2.31). In this work a simpler
method referred to as “Pendellösung” method was used for the calculation of the transforma-
tion matrices (Kn). In Appendix C.5 derivations for the transformation matrices (Kn) will be
given in detail. For both methods the transformation matrices (Kn) depend in a large part on
the displacement function. The “Pendellösung” method (i) assumes a constant displacement
function within each slice, (ii) the differential equations were transformed by an “Ansatz” into
algebraic equations which were solved, finally (iii) the transformation matrix is a mean value
of two matrices (Eq. C.25). The Runga-Kutta method is a more general method for numerical
integration of first-order differential equations ∂y

∂z = f(z,y). This method requires the calcula-
tion of the displacement function at the top, at the bottom, and in the center of each slice. The
transformation matrix (Kn) is a mean value of four matrices (Eq. C.26). The Runge-Kutta
method is slower than the “Pendellösung” method, since more calculations required.

Parallel computing versus serial computing

The calculation of multiple products of matrices and vectors are required for the strain field, the
displacement function, and also for the numerical integration of the Howie-Whelan equations.
Head used the programming language FORTRAN for the implementation of image simulation
(Table 8.1). However, programming languages like FORTRAN are not able do matrix algebra.
Products of matrices and vectors have to be solved by “for”-loops. E.g., the line energy in
Equation 8.9 contains the term b · (B b), which is identical with bi Bij bj in index notation.
With FORTRAN, two “for”-loops with respect to the indices i and j would be required to
calculate this sum of products element by element.

In this work MATLAB r© was used, which is a software specialised for mathematical problems
and particularly for matrix algebra. With MATLAB r©, expressions such as b · (B b) can be
solved with the slower “for”-loops or directly by matrix algebra. E.g., the MATALAB r© code
would be given by “ b’*(B*b) ”. The software automatically recognises the character of the
variables and adopts the operators between the variables to the problem. The operator “ ’ ”
transposes the column vector b into a row vector bT. The term in brackets will be treated
as a product of the matrix B with a column vector b and yields a column vector c. Finally,
the outer product will be treated as scalar product between the row vector bT and the column
vector c. Particularly, for the calculation of the Q, S, and B matrices (Eq. 8.7) and for the
angle depended term of the displacement function (Eq. 8.10) the matrix algebra is of advantage
and reduced drastically the computing time.

A second time saving feature of MATLAB r© is to use multi-dimensional arrays for functions
of several variables. Examples for simple arrays are vectors being one-dimensional arrays and
matrices being two-dimensional arrays. For basic functions such as sin(x), MATLAB r© will
return at once (i) a scalar f = sin(x) for x being a scalar, (ii) a vector with components
fj = sin(xj) for x being a vector, (iii) a matrix with components fjk = sin(xjk) for x being a
matrix, and finally (iv) a three-dimensional array with components fijk = sin(xijk) for x being
a three-dimensional array. Particularly, the time consuming “for”-loops can be avoided by
using multi-dimensional arrays. This property can also be extended to ordinary multiplication
operators “ * ” and division operators “ / ” by replacing them by the operators “ .* ” and “ ./ ”,
respectively. E.g., for two matrices A and B the expression “ C=A/B ” would yield an error and
“ C=A*B ” would yield a matrix multiplication according to Cij = Aik Bkj ; whereas “ C=A./B ”
and “ C=A.*B ” would yield a component by component division and multiplication according
to Cij = Aij/Bij and Cij = Aij/Bij (no sum on i and j), respectively. Finally, functions can
be defined which are compatible with multi-dimensional arrays by using combinations of basic
functions and the “ . ”-operator.

In this work, the coordinates X, Y , and Z which address the 500, 000 cells of the analysed
volume were stored in three-dimensional arrays. The definitions of the functions for the displace-
ment function β(X, Y, Z), the transformation matrices Kn(β), the amplitudes (T, S), and the
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Figure 8.3 Structure of the main programme and computing time for the various subroutines. The
volume was subdivided in 125× 47× 79 = 464, 125 lattice sites.

intensities (IT, IS) are compatible with three-dimensional arrays. Therefore, time consuming
“for”-loops could be avoided for the determination of these quantities .

8.2.3 Main programme and flow diagram

Throughout the entire programme subroutines and functions were used, which help to keep a
clear structure. The entire programme is kept as simple as possible. Even a user who is not
familiar with MATALB in detail can easily use the programme, since particularly only the input
parameters have to be changed.

The main programme “Start” is build up by following subroutines:

(i) Subroutine “Eingabe” for defining the input parameters, which are the acceleration volt-
age U of the microscope, the lattice parameters (a, c) and the basis vectors (a1,a2,a3)
of the crystal lattice, the elastic constants cmn, the diffracting vector g, the extinction
distance ξg, the Burgers vector b, the line direction t, the beam direction B, the foil nor-
mal F, the foil thickness dF, the size of the image (Lx, Ly), the size of the cells (dx, dy, dz),
the dimensionless excitation error w, and the absorption coefficient A. All lengths have
to entered in nanometers and all vectors in Miller indices. Particularly, the size of the
simulated image can be adopted to the experimental image.

(ii) Subroutine “Rechnung Koordinaten” for the transformation of the input parameters from
the crystal axis system into the experimental axis system.

(iii) Subroutine “Rechnung beta” for the calculation of the displacement function.

(iv) Subroutine “Rechnung Kn” for the calculation of the transformation matrices.

(v) Subroutine “Rechnung Amlituden” for the calculation of the amplitudes and intensities.

(vi) Subroutine “Ausgabe” for the presentation of the output parameters as contour maps and
diagrams. Examples for such diagrams are the displacement function and the intensities
of the direct beam and the diffracted beam in dependence of the specimen thickness at



8.3. RESULTS AND DISCUSSION 83

Table 8.2 Image simulation parameters for dislocations in aluminium and β-brass shown in Figures
8.4 and 8.5.

Micro- Diffracting Beam Extinction Excitation Absorption g · b
graph vector g direction B distance ξg (nm) error w coefficient A

aluminium a

(a) (−2, 0, 0) [0, 1, 3] 70.2 0.45 0.07 1
(b) (0, 2, 0) [1, 0, 3] 70.2 0.50 0.07 -1
(c) (−1, 1, 1) [10, 1, 11] 58.0 0.20 0.06 0
(d) (1, 1,−1) [1, 5, 6] 58.0 0.15 0.06 -1
(e) (−2, 0, 2) [8,−1, 8] 119.2 0.33 0.09 1
(f) (2,−2, 0) [1, 1, 8] 119.2 0.29 0.09 0
(g) (−3,−1, 1) [6,−1, 17] 147.8 0.97 0.11 2

β-brass b

(a) (0,−1, 1) [2, 3, 3] 32.4 0.12 0.07 2
(b) (1,−1, 0) [3, 3, 4] 32.4 0.57 0.07 2
(c) (1, 0,−1) [5, 3, 5] 32.4 0.20 0.07 0
(d) (0, 2, 0) [4, 0, 7] 44.6 0.18 0.08 -2
(e) (1,−2, 1) [6, 7, 8] 57.6 0.60 0.10 4
(f) (2,−1,−1) [6, 5, 7] 57.6 0.90 0.10 2

aRef. [47, chap. 5.2]: acceleration voltage U = 100 kV, lattice parameter a = 0.406 nm, Burgers vec-
tor b = 1

2
[−1,−1, 0], line direction t = [5, 2, 3], foil normal F = [5, 2, 8], foil thickness dF = 258 nm,

elastic constants c11 = 10.82×1010 Pa, c12 = 6.13×1010 Pa, and c44 = 2.85×1010 Pa, the extinction
lengths were reduced by a factor of 0.826 for consideration of n-beam systematic conditions.
bRef. [47, chap. 5.3]: acceleration voltage U = 100 kV, lattice parameter a = 0.294 nm, Burgers
vector b = [1,−1, 1], line direction t = [5,−4, 5], foil normal F = [2, 1, 3], foil thickness dF = 155 nm,
elastic constants c11 = 12.91× 1010 Pa, c12 = 10.97× 1010 Pa, and c44 = 8.24× 1010 Pa.

any column of the analysed volume. Examples of contour maps are the bright field and
the corresponding dark field images.

The flow diagramme, the corresponding subroutines at each step of the programme, and the
computing times are shown in Figure 8.3. The last three subroutines are embedded in loops
with respect to the dimensionless excitation error w and the absorption coefficient A.

8.3 Results and discussion

8.3.1 Dislocations in aluminium and β-brass

In the textbook of Head [47] image simulation was carried out on dislocations in the nearly
elastically isotropic aluminium (anisotropy ratio A = 1.2, Eq. 2.5) and the highly elastically
anisotropic β-brass (anisotropy ratio A = 8.5, Eq. 2.5). The input parameters for the simulation
of dislocations in both materials are summarised in Table 8.2. The experimental and simulated
images of Head are shown in Figures 8.4 and 8.5. The simulated images of this work are also
shown in these figures.

There is a good agreement between the experimental and simulated images. Particularly, the
positive test results for the highly anisotropic β-brass is important. However, image simulation
is also required for nearly isotropic materials such as aluminium. Dislocations were imaged with
strong diffraction contrast although the g ·b = 0 criterion for dislocations being out of contrast
was fulfilled (micrographs (c) and (f)).

The computing times were measured for a dislocation in aluminium (micrograph (d)). Head
achieved a computing time of 40−50 s for a volume subdivided in 7740 columns and each column
subdivided in 64 slices, yielding about 500, 000 cells [47, pp. 4, 317-318]. Our programme
achieved a computing time of less than 10 s (Fig. 8.3) which is a highly satisfactorily result.
Image simulation is no longer the most time consuming part of the entire stereomicroscopy
experiment.
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Figure 8.4 Experimental and simulated bright field images of dislocations in aluminium reported by
Head [47, page 132] and comparison with simulated images of this work. The simulation parameters
are given in Table 8.2.
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Figure 8.5 Experimental and simulated bright field images of dislocations in β-brass reported by Head
[47, page 142] and comparison with simulated images of this work. The simulation parameters are given
in Table 8.2.

8.3.2 Dislocations in Bi2Te3

Bi2Te3 is a nearly elastically isotropic material (anisotropy ratio A = 1.2, Eq. 2.5). The elastic
constants are given in Table 8.3 [59]. The 6× 6 matrix of the elastic constants of Bi2Te3 (point
symmetry 3̄m) differs significantly from isotropic materials (Eq. 2.4). There are 5 independent
elastic constants c11, c12, c13, c14, and c44, whereas c66 = 1

2 (c11 − c12) [59, 105].

cmn =


c11 c12 c13 c14 0 0
c12 c11 c13 −c14 0 0
c13 c13 c33 0 0 0
c14 −c14 0 c44 0 0
0 0 0 0 c44 c14

0 0 0 0 c14 c66

 . (8.12)

The experiments on gliding dislocations in p-type bulk Bi2Te3 (sample P4, Chap. 7) served
as basis for the image simulations. Stereomicroscopy was applied on one specific dislocation (Fig.
8.6 and 8.7). The sample was tilted from an orientation parallel to the a axis to an orientation
closer to the c axis (Table 8.3, Fig. 3.3). All quantities necessary for image simulation were
determined for this specific dislocation (Table 8.3), particularly yielding a dislocation in the
basal plane with line direction t = [2.7,−1, 0].
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Table 8.3 Image simulation parameters for a dislocation in p-type Bi2Te3 (sample P4) shown in Figures
8.6 and 8.7. The diffracting vectors g are specified by Miller indices (h, k, l) and an orientation angle
αg. The beam directions B are specified by Miller indices [u, v, w] and polar coordinates (φ, ρ).

Micro- Diffracting Beam direction B Extinction Excitation Nearest Relative g · b
graph vector g [u, v, w] / (φ, ρ) distance error w pole tilt angle

(h, k, l) / αg ξg (nm)

(a) (−1, 1, 10) / [6.84,−3.16, 1] / 44.4 0.7 [5,−5, 1] 44◦ 0
48◦ (342◦, 51.8◦)

(b) (−1, 0, 5) / [5,−3.02, 1] / 33.4 0.7 [5,−5, 1] 51◦ -1
99◦ (338◦, 45.3◦)

(c) (0, 1, 5) / [10.1,−5, 1] / 33.4 0.6 [5,−5, 1] 36◦ 1
3◦ (341◦, 62.4◦)

(d) (1, 1, 0) / [3.52,−3.52, 1] / 42.8 0.9 [5,−5, 1] 57◦ 2
322◦ (330◦, 41.2◦)

(e) (0, 0,−15) / [10.4, 1, 0] / 57.5 0.3 [1, 0, 0] 0◦ 0
238◦ (5◦, 90.0◦)

(f) (0, 1, 5) / [59.4,−5, 1] / 33.4 0.3 [1, 0, 0] 11◦ 1
0◦ (356◦, 83.6◦)

(g) (0, 1,−10) / [104, 10, 1] / 44.4 0.5 [1, 0, 0] 4◦ 1
286◦ (5◦, 86.0◦)

(h) (0,−1,−5) / [−1.18,−5, 1] / 33.4 0.6 [−5,−10, 2] 83◦ -1
179◦ (287◦, 33.1◦)

(i) (2,−1, 0) / [−1.41,−2.81, 1] / 42.8 0.3 [−5,−10, 2] 92◦ 1
267◦ (270◦, 19.3◦)

(j) (2, 0, 5) / [−2.5,−7.2, 1] / 52.0 0.5 [−5,−10, 2] 87◦ 2
308◦ (280◦, 42.3◦)

(k) (2,−2,−5) / [−3.61,−6.11, 1] / 52.0 0.5 [−5,−10, 2] 97◦ 0
239◦ (264◦, 37.4◦)

Acceleration voltage U = 120 kV, lattice parameters a = 0.43835 nm and c = 3.0487 nm, Burgers vector
b = [1, 1, 0], line direction t = [2.7,−1, 0], foil normal F = [5,−2, 1], foil thickness dF = 120 nm, absorption
coefficient A = 0.1, elastic constants c11 = 6.847 × 1010 Pa, c12 = 2.177 × 1010 Pa, c13 = 2.704 × 1010 Pa,
c14 = 1.325 × 1010 Pa, c33 = 4.768 × 1010 Pa, and c44 = 2.738 × 1010 Pa, see Ref. [16] for an overview of
material parameters.

Figure 8.6 Experimental and simulated g = (−1, 1, 10) bright field images of a dislocation in p-type
Bi2Te3 (sample P4) with Burgers vectors 〈1, 0, 0〉. The simulation parameters are given in Table 8.3,
micrograph (a).
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Figure 8.7 Experimental and simulated bright field images of a dislocation in p-type Bi2Te3 (sam-
ple P4) with Burgers vector [1, 1, 0]. The simulation parameters are given in Table 8.3.
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First, for micrograph (a) (Table 8.3) three simulated images were calculated for the en-
ergetically most favourable Burgers vectors 〈1, 0, 0〉. Only for a Burgers vector b = [1, 1, 0]
there is a good agreement in symmetry between the experimental and simulated image (Fig.
8.6). Second, the two-beam images of the dislocation acquired close to various poles and the
corresponding simulated images are shown in Figure 8.7. Most of the simulated images yielded
a fairly good agreement with the experimental images, although the dimensionless excitation
errors w and absorption coefficients A were not optimised.

The sample and also this dislocation were not ideal for image simulation with higher accuracy
for two reasons. (i) The dislocation was slightly bent (Fig. 8.6) since it was a dislocation which
was able to glide before the stereomicroscopy experiments were carried out. (ii) The sample
was contaminated since it was not freshly prepared. Therefore, the sample was ion-etched
once again for a few minutes and stereomicroscopy experiments on straight dislocations were
intended to carry out once again. However, after ion-etching a nns was found in the entire TEM
sample. Image simulation of dislocations failed due to the superposition of strain fields of the
dislocations and of the nns.

8.3.3 Image simulation of the nns in Bi2Te3

The n-type sample N4 (Chap. 5.1.3) and the p-type sample P3 (Chap. 5.1.5) were used for
image simulation of the structural modulations (nns) in bulk Bi2Te3. Sample N4 showed two
nns which were referred to as nns(1) and nns(2). Sample P3 is identical to sample P4, which
was used for studies on gliding dislocations (Table 3.1, Chap. 7). However, sample P4 showed a
nns in the entire sample after additional ion-etching and was therefore referred to as sample P3.

The simplest model for the nns is a sinusoidal displacement field u(r) = u0 sin(q · r) with
displacement vector u0 and wave vector q. On the basis of the experimental results the displace-
ment field of the nns was found to be approximately a frozen lattice wave in transverse mode,
i.e., the wave vector being perpendicular to the displacement vector. The direction and wave-
length of the wave vector were determined by analyses of the two-beam images and diffraction
patterns. The direction of the displacement vector was determined by using the g ·u = 0 crite-
rion for a displacement field being out of contrast. The aim of the image simulation was (i) to
determine the amplitude of the displacement vector by comparison of the diffraction contrast
of the experimental and the simulated images and (ii) to verify the validity of the sinusoidal
model by comparison of the orientations and wavelengths of the nns-fringes in the experimental
and the simulated images for various beam directions (tilt angles).

For the analysis of nns(1) in sample N4, g = (−1, 0, 5) bright field images were acquired
close to various poles (Table 8.4, Fig. 8.8, Fig. 3.3). Additionally, a g = (0,−1, 10) bright
field image was acquired close to the [10,−10, 1] pole. The directions of the displacement
vector and of the wave vector were found to be [−10,−5, 1] and (1, 0, 10), respectively (Table
8.4). For the simulations the amplitude of the displacement vector and the wavelength of
the wave vector were assumed to be 15 pm and 12 nm, respectively. All input parameters are
summarised in Table 8.4. The experimental and simulated images agree very well with respect
to the orientation and the wavelength of the nns-fringes at the various beam directions (tilt
angles) (Fig. 8.8). Even, at relatively large tilt angles of about 70◦ (Table 8.4) the differences
between the orientations of the nns-fringes in the experimental and simulated images are less
than 10◦. Finally, an amplitude of 10 − 20 pm for the displacements is evident to explain a
typical diffraction contrast (Imax − Imin)/(Imax + Imin) of about 25%, where I is the intensity.

For the analysis of nns(2) in sample N4, g = (0, 1, 5) bright field images were acquired close
to various poles (Table 8.4, Fig. 8.8, Fig. 3.3). Additionally, a g = (−1, 0,−10) bright field
image was acquired close to the [10,−10, 1] pole. The directions of the displacement vector and
of the wave vector were found to be [5, 10, 1] and (0,−1, 10), respectively (Table 8.4). For the
simulations the amplitude of the displacement vector and the wavelength of the wave vector
were assumed to be 15 pm and 12 nm, respectively. All input parameters are summarised in
Table 8.4. There was no agreement between experimental and simulated images with respect
to the orientation of the nns-fringes at the various beam directions (tilt angles) (Fig. 8.8). A
better agreement was obtained for a refined value q = (3,−4, 25) for the wave vector (Fig. 8.8).
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Table 8.4 Parameters used for image simulation of the structural modulations (nns) in n-type and
p-type Bi2Te3 (samples N4 and P3) shown in Figures 8.8 and 8.9. The diffracting vectors g are specified
by Miller indices (h, k, l) and an orientation angle αg. The beam directions B are specified by Miller
indices [u, v, w] and polar coordinates (φ, ρ).

Micro- Diffracting vector g Beam direction B Extinction Nearest Relative

graph (h, k, l) αg [u, v, w] (φ, ρ) distance pole tilt angle
ξg (nm)

nns(1) in sample N4 a

(a) (−1, 0, 5) 315◦ [5,−80.1, 1] (303◦, 85.2◦) 33.4 [0,−1, 0] 0◦

(b) (−1, 0, 5) 312◦ [5,−6.79, 1] (325◦, 55.8◦) 33.4 [5,−5, 1] 36◦

(c) (−1, 0, 5) 299◦ [5,−0.42, 3] (356◦, 36.9◦) 33.4 [10, 5, 2] 65◦

(d) (0,−1, 10) 290◦ [4.96,−10,−1] (319◦, 117.8◦) 44.4 [10,−10,−1] 36◦

nns(2) in sample N4 b

(a) (0, 1, 5) 210◦ [38.7,−5, 1] (354◦, 80.5◦) 33.4 [1, 0, 0] 0◦

(b) (0, 1, 5) 217◦ [1.98,−5, 1] (316◦, 41.9◦) 33.4 [5,−5, 1] 50◦

(c) (0, 1, 5) 230◦ [−1.66,−5, 3] (281◦, 32.4◦) 33.4 [−5,−10, 2] 73◦

(d) (−1, 0,−10) 45◦ [10,−21.7,−1] (318◦, 103.9◦) 44.4 [10,−10,−1] 43◦

nns in sample P3 c

(a) (0,−1,−5) 203◦ [121.5,−5, 1] (358◦, 86.8◦) 33.4 [1, 0, 0] 0◦

(b) (0,−1,−5) 197◦ [3.04,−5, 1] (322◦, 45.3◦) 33.4 [5,−5, 1] 52◦

(c) (0, 1, 5) 21◦ [−0.75,−5, 1] (292◦, 33.9◦) 33.4 [−5,−10, 2] 74◦

(d) (1, 1, 0) 334◦ [25.6,−25.6, 1] (330◦, 81.1◦) 42.8 [1,−1, 0] 28◦

(e) (−1,−1, 0) 155◦ [7.98,−7.98, 1] (330◦, 63.3◦) 42.8 [5,−5, 1] 36◦

(f) (−1,−1, 0) 151◦ [0.95,−0.95, 1] (330◦, 13.3◦) 42.8 [0, 0, 1] 75◦

aDisplacement vector u0 (direction [−10,−5, 1], amplitude 15 pm), wave vector q (directions (1, 0, 10), wave-
length 12 nm), foil normal F = [14,−22.5, 1], foil thickness dF = 70 nm, excitation error w = 0.3, absorption
coefficient A = 0.1.
bDisplacement vector u0 (direction [5, 10, 1], amplitude 15 pm), wave vector q (directions (0,−1, 10) or
(3,−4, 25), wavelength 12 nm), foil normal F = [14,−22.5, 1], foil thickness dF = 70 nm, excitation error
w = 0.3, absorption coefficient A = 0.1.
cDisplacement vector u0 (direction [5, 10, 1], amplitude 15 pm), wave vector q (directions (0,−1, 10) or
(−1, 0, 5), wavelength 17 nm), foil normal F = [7.81,−2.19, 1], foil thickness dF = 70 nm, excitation error
w = 0.3, absorption coefficient A = 0.1.

The wave vector q = (3,−4, 25) is also perpendicular to the displacement vector and differs by
33◦ with respect to its direction from q = (0,−1, 10) .

For the analysis of the nns in sample P3, g = (0, 1, 5) and g = (1, 1, 0) dark field images were
acquired close to various poles (Table 8.4, Fig. 8.9, Fig. 3.3). The displacement vector and wave
vector were found to be [5, 10, 1] and (0,−1, 10), respectively (Table 8.4). A second possible
direction for the wave vector would be (−1, 0, 5), which was determined by analysis of two-beam
images acquired close to the [5,−5, 1] pole (micrographs (b) and (e)). For the simulations the
amplitude of the displacement vector and the wavelength of the wave vector were assumed to
be 15 pm and 17 nm, respectively. All input parameters are summarised in Table 8.4. The
experimental and simulated images agree very well only for a wave vector (−1, 0, 5) (Fig. 8.9).
The wave vector q = (−1, 0, 5) is also perpendicular to the displacement vector and differs by
47◦ with respect to its direction from q = (0,−1, 10).

The simulations showed that the simple sinusoidal model for the displacement field is a
fairly good approximation. It explains the conditions for the nns being out of contrast, the
magnitude of the diffraction contrast, and the wavelength and the orientation of the nns-fringes
at various beam directions. The most striking result is the determination of the amplitude of
the displacement field of about 10− 20 pm, since it is a quantity beyond the lateral resolution
of the TEM.
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Figure 8.8 Experimental and simulated bright field images of nns(1) and nns(2) in n-type Bi2Te3 (sam-
ple N4). The simulation parameters are given in Table 8.4. The dashed lines indicate the orientation
and the wavelength of the nns-fringes in the experimental images.

Figure 8.9 Experimental and simulated dark field images of the nns in p-type Bi2Te3 (sample P3).
The simulation parameters are given in Table 8.4. The dashed lines indicate the orientation and the
wavelength of the nns-fringes in the experimental images.
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Figure 8.10 3D-Polar diagrams of the line energy EL of dislocations in Bi2Te3 in dependence of the
polar coordinates of the line direction t for (a) for hypothetical screw dislocations with Burgers vector
b = t and for (b) dislocations with Burgers vector b = [1, 0, 0].

8.3.4 Line energy of basal plane and nonbasal plane dislocations in
Bi2Te3

An ordered network of dislocations a few nanometer apart was assumed to be the origin of
the displacement field of the nns. An important reason to rule out this model was a closer
inspection of the line energy of such dislocations (Chap. 5.2.2). It is known that in hexagonal
structures dislocations with Burgers vectors b = 〈1, 0, 0〉 are energetically most favourable.
However, Bi2Te3 has a trigonal crystal structure and other dislocations might be energetically
more favourable. A systematic search was carried out to determine the energetically most
favourable combinations of Burger vectors and line directions in Bi2Te3. The line energy was
calculated according to the integral formalism of Barnett and Lothe (Eq. 8.9).

The first step was to calculate the line energy for hypothetical screw dislocations
(b = t) in dependence of the polar coordinates (ϕ, ρ) of the line direction t =
[cos(ϕ) sin(ρ), sin(ϕ) sin(ρ), cos(ρ)]. The result is presented as a 3D-polar diagram (Fig.
8.10(a)). The energetically most favourable line directions for screw dislocations in Bi2Te3

are parallel to the 〈−7, 7, 1〉 directions, i.e., [−7, 7, 1], [14, 7, 1], and [−7,−14, 1] (Fig. 8.10(a)).
The second step was to calculate such a 3D-polar diagram of the line energy for a specific
Burgers vector, e.g., b = [1, 0, 0] (Fig. 8.10(b)). The smallest line energy was found for line
directions close to t = [14, 7, 1] and t = [−7, 7, 1], both having a small angle between the line
directions and the Burgers vector b = [1, 0, 0] compared to t = [−7,−14, 1] (Fig. 8.10(b), Table
8.5).

The line energy in dependence of the line direction was also calculated for other Burgers
vectors and yielded similar diagrams. It turned out as general rule for Bi2Te3 that dislocations
with (i) Burgers vectors b = 〈1, 0, 0〉, (ii) line directions t ≈ 〈−7, 7, 1〉, (iii) and a small angle
between the line directions and the Burgers vectors are energetically most favourable. Par-
ticularlry, mixed nonbasal plane dislocations with Burgers vector 〈1, 0, 0〉 and line directions
〈−7, 7, 1〉 are energetically more favourable than screw dislocations and edge dislocations in the
basal plane (Table 8.5). However, such nonbasal plane dislocations were still not unambiguously
identified by TEM in this work (App. A.2).
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Table 8.5 Line energies of dislocations in Bi2Te3 in dependence of the Burgers vector b, line direction
t, and angle β between them. The line energies were calculated assuming R = 10 µm and r0 = |b|,
where R is half the distance between the dislocations and r0 is the dislocation core radius.

Burgers Line direction t Angle β Line energy
vector b =W(b, t) (eV/nm)

[1, 0, 0] [1, 0, 0] 0◦ 20.7
[1, 0, 0] [1, 2, 0] 90◦ 26.8
[1, 0, 0] [14, 7, 1] 41◦ 20.2
[1, 0, 0] [−7, 7, 1] 41◦ 20.2
[1, 0, 0] [−7,−14, 1] 90◦ 29.9

Figure 8.11 (a) Stress tensor component σ22 and (b) electric field component (E)2 surrounding a
dislocation in BaTiO3 with Burgers vector [1, 0, 0] and line direction [0, 1, 0]. The Burgers vector is
parallel to the x axis and the line direction is parallel to the z axis, pointing out of the paper sheet.

8.3.5 Dislocations in BaTiO3

BaTiO3 is a ferroelectric model compound. Prepared as ceramics it reveals the Positive Tem-
perature Coefficient Resistivity (PTCR) effect used in a large number of devices. The tetragonal
phase is a multi-axes ferroelectric compound which reveals 180◦ and 90◦ domains. Imaging and
reconstructing of the ferroelectric domain structure at grain boundaries is of central importance
for an improved understanding of the PTCR effect. The domain boundaries can be imaged in
the TEM under two-beam conditions yielding the delta-fringe contrast. The simulation of the
fringe contrast by dynamical diffraction theory is used to determine the orientation of the c axis
in two adjacent domains close to the domain wall. The strain fields and the electric fields of
dislocations sitting at the grain boundaries can be calculated by continuum theory [106].

The integral formalism of Barnett and Lothe shown in Chapter 8.1 was also developed for
the piezoelectric case so that the strain field ∂u

∂xl
, the stress field σij , and the electrical field E

around a dislocation can be computed simultaneously [46]. Figure 8.11 shows the stress tensor
components σ22 and the electric field component (E)2 surrounding a dislocation with Burgers
vector [1, 0, 0] and line direction [0, 1, 0]. The material parameters of tetragonal BaTiO3 [107]
required for the calculations are (i) the lattice parameters a = 0.399 nm and c = 0.403 nm,
(ii) the elastic constants c11 = 27.5 × 1010 Pa, c12 = 17.9 × 1010 Pa, c13 = 15.3 × 1010 Pa,
c33 = 16.5 × 1010 Pa, c44 = 5.43 × 1010 Pa, and c66 = 11.3 × 1010 Pa, (iii) the piezoelectric
constants d15 = 392× 10−12 C/N, d31 = −34.5× 10−12 C/N, and d33 = 85.6× 10−12 C/N, and
(iv) the dielectric constants ε1 = 36.3× 10−9 F/m and ε3 = 1.42× 10−9 F/m.



Appendix A

New results in bulk Bi2Te3

A.1 CBED on the structural modulation (nns)

Convergent Electron Beam Diffraction (CBED) is a TEM imaging technique which is known
to be very sensitive to local changes of the lattice parameters and strain in the sample [42,
chap. 21]. The sample was cooled with liquid nitrogen to 77 K for the CBED measurements.
The energy selecting aperture (∆E = 20 eV) of the OMEGA filter was used to avoid background
from inelastically scattered electrons. A CBED pattern of the nns was acquired in p-type Bi2Te3

(sample P3, Table 3.1) under (0, 1, 5) two-beam condition at a spot size of 10 nm (Fig. A.1). For
an ideal crystal, within the diffraction disks parallel fringes should appear, which correspond
to the rocking-curve intensity oscillations, i.e., the intensities of the direct beam IT(w) and of
the diffracted beam IS(w) in dependence of the dimensionless excitation error w (Eq. 2.30 and
C.27). However, the fringes within the diffraction disks are strongly disturbed (Fig. A.1). This
indicates a strain field being correlated to the nns.

Figure A.1 CBED pattern obtained on the nns in p-type bulk Bi2Te3 (sample P3) under (0, 1, 5)
two-beam condition.
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Figure A.2 (2,−1, 0) two-beam images obtained in (a) n-type and (b) p-type Bi2Te3 bulk materials.
The samples show a superposition of two structural modulations with identical wavelengths and wave
vectors in both materials.

A.2 A further type of structural disorder and nonbasal
plane dislocations

The TEM measurements on n-type and p-type Bi2Te3 bulk materials yielded in both materials
gliding dislocations and the nns as common features of structural disorder. However, in both
materials one more variation of structural disorder was found. Dark field images were acquired
in a sample orientation close to the c axis (Fig. A.2). The images show the superposition of
two structural modulations, which could also be imaged separately with other Bragg reflections.
Stereomicroscopy yielded identical wavelengths λ, wave vectors q, and displacement vectors u
for both structural modulations in both samples, i.e., (i) λ = 30nm, q = (1, 1, 0), u = [1, 1, 0]
and (ii) λ = 10nm, q = (−1, 1, 0), u = [5,−5, 1]. The displacement vector was obtained
from the g · u = 0 criterion for displacement fields being out of contrast. Occasionally, gliding
dislocations were also observed.

This new type of structural disorder on the nanometer scale in Bi2Te3 materials is not
identical to the nns, since the two-beam images of the nns acquired in sample orientations
close to the c axis significantly differed (Fig. 5.5(c)-(f)). Particularly, there seems to be a
symbiotic relation between the 30 nm and the 10 nm structural modulations because they were
only simultaneously observed. In both samples, the reflections for these structural modulations
being out of contrast, their wavelengths, and their wave vectors were identical for both materials.
Therefore, this new type of structural disorder is of general character for Bi2Te3 materials.
Probably, the network of parallel “dislocations” observed in Bi2Te3 thin films (Fig. 6.3(b)) is
identical to the structural modulations shown here.

The origin of the modulation with a wavelength of 10 nm is most likely a pure displacive
modulation, because the displacement vector points out of the basal plane and dislocations
with such Burgers vectors are energetically unfavourable in the highly anisotropic Bi2Te3. The
origin of the modulation with a wavelength of 30 nm could be (i) a pure displacive modulation
or (ii) a network of parallel nonbasal plane dislocations with Burgers vector [1, 1, 0] and line
direction [10,−10, 3]. However, gliding dislocations were simultaneously observed which should
be blocked due to the intersection between basal plane and nonbasal plane dislocations.

Similar to the nns, this new type of structural disorder should significantly scatter phonons
and reduce the lattice thermal conductivity due to the amplitude and wavelength of its dis-
placement field. Nonbasal plane dislocations might also significantly change the thermoelec-
tric properties. In the literature, TEM measurements on Bi2Te3 were reported, also yielding



A.3. THERMOPOWER DISTRIBUTION 95

Figure A.3 (a) Thermopower distribution and (b) thermopower histogram obtained from SPM mea-
surements on n-type Bi2Te3 bulk material.

nonbasal plane dislocations with a dislocation density significantly smaller compared to the
dislocation density of basal plane dislocations [24]. Also, it was reported that bulk Bi2Te3

showed changes from p-type to n-type character and a reduction of the carrier mobility after
heavy plastic deformation [108]. A reduction of the carrier mobility in cold worked samples
with larger dislocation densities was also reported elsewhere [23]. These changes in cold worked
materials were attributed to gliding and intersection of basal plane and nonbasal dislocations,
generating an excess of electrically active Te vacancies [108].

A.3 Thermopower distribution

Recently, Seebeck scanning microprobes (SPM) are available, which are able to measure the
thermopower at a lateral resolution down to 20µm at a relative error of about 3% [109]. SPM
is a surface scan technique where a probe tip heats a small area around the point of interest
and the gradients of the temperature and the thermoelectric voltage are measured by two
thermocouples. This technique was also applied to several high-ZT Tellurides, i.e., n-type and
p-type bulk Bi2Te3 [110, 111] and to AgPbmSbTe2+m bulk materials [112].

Figure A.3 shows the thermopower distribution and a histogram obtained from SPM mea-
surements on our n-type Bi2Te3 bulk material. The measurements were carried out at the In-
stitute of Materials Research, German Aerospace Center (DLR) [113]. The thermopower shows
local changes on a length scale of 200 µm (Fig. A.3(a)) and a mean value of −192 ± 9 µV/K
(Fig. A.3(b)). The same sample was also used for the acquisition of chemical maps by EDX in
a SEM. However, the chemical maps yielded no contrast.

The local changes of the thermopower might be correlated to variations in stoichiometry
by 1 − 2 at.% found by WDX [33] and by EDX in the TEM (Chap. 4). The relative error
of the thermopower σS/S = 5% is only slightly larger than the error of 3% found in pure
homogeneous PbTe reference material [112]. Nevertheless, the SPM technique seems to be
more sensitive to chemical modulations and yields distribution maps with higher contrast than
the chemical maps obtained by EDX in the SEM. Therefore, SPM measurements are highly
recommended for combined measurements of the microstructure and thermoelectric properties
in future due its high sensitivity and lateral resolution.
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Appendix B

Detailed Kikuchi maps for Bi2Te3

Figure B.1 Detailed Kikuchi map for Bi2Te3. The most important poles and Kikuchi lines are labelled.
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Figure B.2 Detailed Kikuchi map for Bi2Te3. The most important poles and Kikuchi lines are labelled.



Appendix C

MATLAB code for image
simulation of dislocations

C.1 Main programme “Start”

The main programme“Start” is shown in the following. The operator “ % ” is used for comments
or to deactivate the programme sequence in that line. After each subroutine the computing
time spend so far is measured. The subroutine “Rechnung Zeit” at the end of the programme
calculates the total computing time and the computing time for the various subroutines. The
dimensionless excitation error w and the absorption factor A can be varied by “for”-loops, a
series of simulated two-beam images will be calculated and presented in separated windows
on the desktop. Each window will be labelled with an identity number “Figure No” and an
automatically generated title including the dimensionless excitation error w and the absorption
factor A.

%************************************************************************************************

%Hauptmenü Start

%************************************************************************************************

clear

time1=clock;

%Eingabe Geräte-, Material-, Versetzungs-, und Abbildungsparameter

Eingabe_Bi2Te3

time2=clock;

%Umrechnung aller Größen in experimentelles Achsensystem

Rechnung_Koordinaten

time3=clock;

%Berechnung der Gitterverbiegungsfunktion beta=g*du/dz

Rechnung_beta

time4=clock;

%Numerische Lösung der Howie-Whelan Gleichungen

global w A

Figure_No=0;

for A=A_min:A_delta:A_max %Schleife für Absorptionskooeffzienten A=N

for w=w_min:w_delta:w_max %Schleife für dimensionslosen Anregungsfehler w

Rechnung_Kn %Berechnung der Transformationmatrizen für die Amplituden

time5=clock;

Rechnung_Amplituden %Berechnung der Amplituden und Intensitäten

time6=clock;

Ausgabe %Darstellung als Linienplots oder Kontourplots

Figure_No=Figure_No+1;

end;

end;

time7=clock;

Rechnung_Zeit
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C.2 Input

C.2.1 Subroutine “Eingabe”

The subroutine “Eingabe Bi2Te3” is shown in the following. Some variables are declared
as “global” variables, since they are used in functions. An example of a function is
“Xig Bi2Te3(g hkl)”, which calculates the extinction distance ξg for a Bragg reflection “g hkl”.
Besides the input parameters, there are some further options which can be preset within the
subroutine “Eingabe”: (i) Line scans of the intensities parallel to the line direction and in beam
direction are specified by the column coordinates x0 and y0. The displacement field in the
z0 plane can be presented. (ii) The x axis of the experimental axis system can be defined
with respect to the line direction or with respect to the diffracting vector. (iii) The Runge-
Kutta method or the “Pendellösung” method can be chosen for numerical integration of the
Howie-Whelan equations. (iv) The simulation parameters can be additionally presented in the
simulated images. (v) The contrast of the images can be optimised and the number of grey scale
values can be preset. (vi) The bright field and dark field images can be saved automatically.

%************************************************************************************************

%subroutine Eingabe_Bi2Te3

%************************************************************************************************

% Beschleunigungsspannung U in kV

global U

U=120

% Gitterkonstanten in nm

a=0.43835

c=3.0487

%Basisvektoren des Realraums in nm

global a1 a2 a3

a1=[a; 0; 0]

a2=[-a/2; a/2*sqrt(3); 0]

a3=[0; 0; c]

%Eingabe der 6x6 Matrix der elastische Konstanten in 10GPa

global c_mn

c_mn=zeros(6,6);

c_mn(1,1)=6.847;

c_mn(1,2)=2.177; c_mn(2,1)=c_mn(1,2);

c_mn(1,3)=2.704; c_mn(3,1)=c_mn(1,3);

c_mn(1,4)=1.325; c_mn(4,1)=c_mn(1,4);

c_mn(2,2)=c_mn(1,1);

c_mn(2,3)=c_mn(1,3); c_mn(3,2)=c_mn(2,3);

c_mn(2,4)=-c_mn(1,4); c_mn(4,2)=c_mn(2,4);

c_mn(3,3)=4.768;

c_mn(4,4)=2.738;

c_mn(5,5)=c_mn(4,4);

c_mn(5,6)=c_mn(1,4); c_mn(6,5)=c_mn(5,6);

c_mn(6,6)=0.5*(c_mn(1,1)-c_mn(1,2));

c_mn

%Anisotropiefaktor

A_iso=c_mn(4,4)/(0.5*(c_mn(1,1)-c_mn(1,2)))

%Eingabe Versetzungs-Parameter

t_uvw=[2.7; -1; 0] %Linienrichtung t in Millerindizes, muss nicht Länge=1 haben

b_uvw=[1; 1; 0] %Burgersvektor b in Millerindizes

%Eingabe Abbildungs-Parameter

F_uvw=[5; -2; 1] %Flächennormale in Millerindizes, muss nicht Länge=1 haben

g_hkl=[-1; 1; 10] %Reflex g für Zweistrahlbedingung in Millerindizes

alpha_g=48 %Winkel des Reflexes g in grad zur x-Achse, gemessen im Bild gegen Uhrzeigersinn

B_phi=342, B_rho=51.8 %Strahlrichtung in Polarkordinaten jeweils in grad

B_uvw=[-1,0,5] %Strahlrichtung in Millerindizes,

polar=1 %rechnen mit Strahlrichtung in (1) in Polarkoordinaten oder (0) Millerindizes

%Eingabe zum Bildausschnitt und zur Probendicke

global d_F Lx Ly dx dy dz

d_F=120 %Probendicke in Richtung der Flächennormalen in nm

dz=2 %Rasterweite in Strahlrichtung=z-Richtung

Lx=200 %Bildbreite in x-Richtung in nm

dx=2 %Rasterweite in x-Richtung in nm

Ly=100 %Bildbreite in y-Richtung in nm

dy=2 %Rasterweite in y-Richtung in nm

x0=0, y0=0 %vertikalen Linescan bei (x0,y0) und für horizontalen Linescan durch y0
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z0=0 %Darstellung Gitterverbiegungsfunktion beta in der Ebene z0

%Eingabe Extinktionslänge in nm

global Xig

Xig=Xig_Bi2Te3(g_hkl)

%Eingabe Wertebereich dimensionsloser Anregungsfehler w

w_min=0.7

w_max=0.7

w_delta=0.1

%Eingabe Wertebereich Absorptionskooeffzienten A=N

A_min=0.1

A_max=0.1

A_delta=0.05

%Optionen

%Orientierung der x-Achse an (1) der Versetzungsrichtung oder (0) dem Bragg Reflex

X_Achse=1;

%Berechnung der Transformationsmatrizen (1) nach dem Runge-Kutta Verfahren

%oder (0) mit der Pendellösungs-Methode

Runge_Kutta=0;

%Automatische Bildbeschriftung (1) ein - und (0) ausschalten

Bild_Text=0;

%Einstellung des Kontrast bei den Bildern: (1) optimaler Kontrast, (0) reales Bild

Bild_Kontrast=0;

%Anzahl der Graustufen in den Bildern (20: Minimum; 50: gut; 256: sehr gut)

Graustufen=256;

%Automatische Bildspeicherung für Bilder ITxy, ISxy und ITxy_ISxy (1) ein- und (0) auschalten

Auto_Save=0;

%Bild-Formatierung

Font_Name=’times’;

Font_Size=10;

Line_Width=2;

C.2.2 Extinction distance ξg

The function is “Xig Bi2Te3(g hkl)” calculates the extinction distance ξg corresponding to the
Bragg reflection g. For centrosymmetric crystals, the extinction distance ξg is given by

ξg =
π Ve cos(θg)

λ Fg
, (C.1)

where Fg is the kinematical structure factor, θg is the Bragg angle, Ve is the volume of the
unit cell, and λ is the wavelength of the electrons [42, chap. 13.4]. The volume of the unit cell
Ve = a1 · (a2 × a3) is determined by the basis vectors a1, a2, and a3 of the crystal lattice. The
wavelength of the electrons including relativistic corrections is given by λ = 2.42 pm/

√
γ2 − 1,

where γ = 1+ U
512 kV is the relativistic correction factor and U is the acceleration voltage in units

of “kV”. The Bragg angle θg is determined by Bragg’s law sin(θg) = 1
2 λ |g|. The kinematical

structure factor Fg is given by

Fg =
∑

j

fj(g) exp[2πig · rj ] , (C.2)

where fj are the atomic scattering amplitudes and rj are the positions of the atoms in the
unit cell [42, chap. 16.2]. The atomic scattering amplitudes f were calculated by an analytical
approximation

f(g) = γ
∑

k

ak exp

[
−bk

(
1
2
|g|

)2
]

, (C.3)

where ak and bk are fitting parameters [114, 115]. Debye-Waller factors for consideration of
temperature effects were omitted.
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%************************************************************************************************

%function Xig_Bi2Te3(g_hkl)

%************************************************************************************************

%Berechnung des Extiktionslänge Xig_hkl für den reziproken Vektor g_hkl

function Xig=Xig_Bi2Te3(g_hkl);

%Beschleunigungsspannung U in keV und Basisvektoren des Realraums in nm

global U a1 a2 a3

%Volumen der Elementarzelle in nm^3

V_e=a1’*(cross(a2,a3));

%reziproke Basisvektoren in 1/nm

global a1_s a2_s a3_s

a1_s=cross(a2,a3)/V_e;

a2_s=cross(a3,a1)/V_e;

a3_s=cross(a1,a2)/V_e;

%Transformationsmatrix T_hkl

%für Transformation eines reziproken Vektors g_hkl mit Millerschen Indizes

%in einen reziproken Vektor g_car mit kartesischen Koordinaten

T_hkl=[a1_s(1), a2_s(1), a3_s(1); a1_s(2), a2_s(2), a3_s(2); a1_s(3), a2_s(3), a3_s(3)];

%relativistische Wellenlänge l_rel der Elektronen in nm

%und relativistischer Korrekturfaktor g_rel

g_rel=1+U/512;

l_rel=0.00242/sqrt(g_rel^2-1);

%Parameter a in nm und Parameter b in nm^2 zur Berechnung der atomaren Formfaktoren

a_Bi=[0.38412; 0.46784; 0.31924; 0.13625];

b_Bi=[0.502608; 0.119988; 0.025598; 0.003177];

a_Te=[0.4785; 0.3688; 0.1500; 0];

b_Te=[0.27999; 0.05083; 0.00581; 0];

%reziproker Vektor unter Zweistrahlbedingung in kartesischen Koordinaten in 1/nm

g_car=T_hkl*g_hkl;

%Streuparameter s in 1/nm, und Braggwinkel theta_Bragg in Radian,

s_hkl=0.5*norm(g_car);

theta_Bragg=asin(0.5*l_rel*norm(g_car));

%atomare Formfaktoren f_Bi und f_Te in nm,

f_Bi=g_rel*sum(a_Bi.*exp(-b_Bi*s_hkl^2));

f_Te=g_rel*sum(a_Te.*exp(-b_Te*s_hkl^2));

%Translationsvektoren bzgl. hexagonalem Gitter

R1=[0; 0; 0];

R2=[2/3; 1/3; 1/3];

R3=[1/3; 2/3; 2/3];

%Atompositionen x des Metalls M=Bi und der Nichtmetalle X=Te

M=[0; 0; 0.4];

X1=[0; 0; 0.212];

X2=[0; 0; 0];

Bi1=M+R1; Bi2=M+R2; Bi3=M+R3; Bi4=-M+R1; Bi5=-M+R2; Bi6=-M+R3;

Te1=X1+R1; Te2=X1+R2; Te3=X1+R3; Te4=-X1+R1; Te5=-X1+R2; Te6=-X1+R3;

Te7=X2+R1; Te8=X2+R2; Te9=X2+R3;

%kinematischer Strukturfaktor F in nm

g=g_hkl;

F_Bi=f_Bi*(exp(2*pi*i*(g’*Bi1))+exp(2*pi*i*(g’*Bi2))+exp(2*pi*i*(g’*Bi3))+exp(2*pi*i*(g’*Bi4))

+exp(2*pi*i*(g’*Bi5))+exp(2*pi*i*(g’*Bi6)));

F_Te1=f_Te*(exp(2*pi*i*(g’*Te1))+exp(2*pi*i*(g’*Te2))+exp(2*pi*i*(g’*Te3))+exp(2*pi*i*(g’*Te4))

+exp(2*pi*i*(g’*Te5))+exp(2*pi*i*(g’*Te6)));

F_Te2=f_Te*(exp(2*pi*i*(g’*Te7))+exp(2*pi*i*(g’*Te8))+exp(2*pi*i*(g’*Te9)));

F_hkl=F_Bi+F_Te1+F_Te2;

%Extinktionslänge in nm

Xig=(pi*V_e*cos(theta_Bragg))/(l_rel*abs(F_hkl));

C.3 Geometry

C.3.1 Subroutine “Rechnung Koordinaten”

In Chapter 8.2.1 it was mentioned that two different axis systems have to be used, the ex-
perimental axis system and the crystal axis system. With respect to the crystal axis system,
Miller indices, Cartesian coordinates, and polar coordinates were used for specifying the vec-
tors. Therefore, the names of the vector variables have suffixes “uvw” and “hkl” for indicating
Miller indices and a suffix “car” for indicating Cartesian coordinates. With respect to the ex-
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perimental axis system, the names of the vector variables have a suffix “B”. The subroutine
“Rechnung Koordinaten” calculates (i) the components of the vectors in both axis systems and
(ii) the lattice coordinates X, Y , and Z of the columns and cells. Table C.1 gives an overview
on the quantities used by the subroutines and their variables names with respect to the different
axis systems.

%************************************************************************************************

%subroutine Rechnung_Koordinaten

%************************************************************************************************

%------------------------------------------------------------------------------------------------

%Basisvektoren des reziproken Raumes

%------------------------------------------------------------------------------------------------

%Volumen der Elementarzelle in nm^3

V_e=a1’*(cross(a2,a3));

%reziproke Basisvektoren in 1/nm

global a1_s a2_s a3_s

a1_s=cross(a2,a3)/V_e;

a2_s=cross(a3,a1)/V_e;

a3_s=cross(a1,a2)/V_e;

%------------------------------------------------------------------------------------------------

%Transformationsmatrizen T_uvw und T_hkl

%------------------------------------------------------------------------------------------------

%Transformation eines Richtungsvektors B_uvw mit Millerschen Indizes

%in einen Richtungsvektor B_car mit kartesischen Koordinaten

T_uvw=[a1(1), a2(1), a3(1); a1(2), a2(2), a3(2); a1(3), a2(3), a3(3)];

%Transformation eines reziproken Vektors g_hkl mit Millerschen Indizes

%in einen reziproken Vektor g_car mit kartesischen Koordinaten

T_hkl=[a1_s(1), a2_s(1), a3_s(1); a1_s(2), a2_s(2), a3_s(2); a1_s(3), a2_s(3), a3_s(3)];

%------------------------------------------------------------------------------------------------

%Umrechnung der Abbildungsparameter in kartesische Koordinaten

%------------------------------------------------------------------------------------------------

%Flächennormale definieren mit Länge=1

F_car=T_uvw*F_uvw/norm(T_uvw*F_uvw)

[F_phi,F_rho,F_r]=car_to_spher(F_car)

%reziproker Vektor g für Zweistrahlbedingung

g_car=T_hkl*g_hkl

[g_phi,g_rho,g_r]=car_to_spher(g_car)

%Strahlrichtung B

if polar==1

B_car=spher_to_car(B_phi,B_rho)

[B_phi,B_rho,B_r]=car_to_spher(B_car)

B_uvw=inv(T_uvw)*B_car

else

B_car=T_uvw*B_uvw

[B_phi,B_rho,B_r]=car_to_spher(B_car)

end;

%Winkel zwischen Strahlrichtung und Reflex g

alpha_gB=subspace(g_car,B_car)*180/pi

%Programmabbruch, falls Strahlrichtung nicht bis auf 0.1◦ genau senkrecht zu Reflex g

if abs(alpha_gB-90)>0.1

break;

end;

%------------------------------------------------------------------------------------------------

%Umrechnung der Versetzungs-Parameter in kartesische Koordinaten

%------------------------------------------------------------------------------------------------

%Linienrichtung t mit Länge=1 definieren, t soll in Richtung der Flächennormale orientiert sein

global t_car

t_car=T_uvw*t_uvw/norm(T_uvw*t_uvw);

if (acos(t_car’*F_car)>=(pi/2))

t_uvw=-t_uvw

t_car=-t_car

end;

t_uvw

t_car

[t_phi,t_rho,t_r]=car_to_spher(t_car)

%Burgersvektor b

global b_car b_r

b_car=T_uvw*b_uvw
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[b_phi,b_rho,b_r]=car_to_spher(b_car)

%Schraubenkomponente bs des Burgersvoktor b

bs_car=(b_car’*t_car)*t_car

bs_uvw=inv(T_uvw)*bs_car

%Stufenkomponente be des Burgersvektors b

be_car=cross(t_car,cross(b_car,t_car))

be_uvw=inv(T_uvw)*be_car

%Orthonormalbasis bzgl. Linienrichtung t

global m0_car n0_car

if norm(be_car)>0

m0_car=be_car/norm(be_car) %Stufenkomponente des Burgers-Vektors gibt die x-Achse vor

n0_car=cross(t_car,m0_car)

else

t_phi_rad=t_phi*pi/180; t_rho_rad=t_rho*pi/180;

m0_car=[cos(t_phi_rad)*cos(t_rho_rad); sin(t_phi_rad)*cos(t_rho_rad); -sin(t_rho_rad)]

n0_car=[-sin(t_phi_rad); cos(t_phi_rad); 0]

end;

%------------------------------------------------------------------------------------------------

%Koordinatentransformationen von Kristallachsensystem in experimentelles Achsensystem

%------------------------------------------------------------------------------------------------

%Drehmatrix R_B

global R_B

if (X_Achse==1)

%Drehmatrix R_B für Strahlrichtung parallel z-Achse und t parallel x-Achse

ts_car=R_phi_rho(B_phi,B_rho)*t_car;

[ts_phi,ts_rho,ts_r]=car_to_spher(ts_car);

R_B=R_phi_rho(ts_phi,0)*R_phi_rho(B_phi,B_rho)

else

%Drehmatrix R_B für Strahlrichtung parallel z-Achse und Reflex g wie im Bild orientiert

gs_car=R_phi_rho(B_phi,B_rho)*g_car;

[gs_phi,gs_rho,gs_r]=car_to_spher(gs_car);

R_B=R_phi_rho(gs_phi-alpha_g,0)*R_phi_rho(B_phi,B_rho)

end;

%Transformationsvektor für Gitterverbiegungsfunktion beta

R_z=R_B(3,:)

%reziproker Vektor, Strahlrichtung, Flächennormale, Linienrichtung t und Burgersvektor b

%bzgl experimentellen Achsensystem

global g_B B_B F_B t_B b_B

g_B=R_B*g_car

B_B=R_B*B_car

F_B=R_B*F_car

t_B=R_B*t_car

b_B=R_B*b_car

%Orthonormalbasis bzgl. experimentellen Achsensystem

global m0_B n0_B

m0_B=R_B*m0_car

n0_B=R_B*n0_car

%------------------------------------------------------------------------------------------------

%Bildausschnitts Berechnungen in nm

%------------------------------------------------------------------------------------------------

%Probendicke in Strahlrichtung

d_B=d_F/F_B(3)

%Länge der Versetzung im Bild

L_d=d_F/(F_B’*t_B)*sqrt(t_B(1)^2+t_B(2)^2)

%x-Richtung

global Nx

Nx=2*ceil(Lx/dx/2)+1 %Gesamtanzahl der Rasterpunkte in x-Richtung

dx=Lx/(Nx-1) %Endgültige Rasterweite

%y-Richtung

global Ny

Ny=2*ceil(Ly/dy/2)+1 %Gesamtanzahl der Rasterpunkte in y-Richtung

dy=Ly/(Ny-1) %Endgültige Rasterweite

%z-Richtung

global Lz Nz

Lz=d_B

Nz=2*ceil(Lz/dz/2)+1 %Gesamtanzahl der Rasterpunkte in y-Richtung

dz=Lz/(Nz-1) %Endgültige Rasterweite

%Rasterpunkte in xy-Ebene

Nxy=Nx*Ny
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Table C.1 Quantities and their variable names used by the subroutines with respect to the crystal
axis system and the experimental axis system.

Quantity Symbol Crystal axis system Experimental

Miller Cartesian axis system
indices coordinates

Lattice parameters a, c a, c
Basis vectors of the real lattice a1, a2, a3, a1, a2, a3
Basic vectors of the reciprocal lattice a∗1, a∗2, a∗3, a1 s, a2 s, a3 s
Volume of a unit cell Ve V e
Elastic constants cmn c mn
Burgers vector b b uvw b car b B
Polar coordinates of b (ϕb, ρb, rb) (b phi, b rho, b r)
Screw component of b bs bs uvw bs car bs B
Edge component of b be be uvw be car be B
Line direction t t uvw t car t B
Polar coordinates of t (ϕt, ρt, rt) (t phi, t rho, t r)
Plane basis vectors m0, n0 m0 car, n0 car m0 B, n0 B
Beam direction B B uvw B car B B
Polar coordinates of B (ϕB, ρB, rB) (B phi, B rho, B r)
Foil normal F F uvw F car F B
Polar coordinates of F (ϕF, ρF, rF) (F phi, F rho, F r)
Bragg reflection g g hkl g car g B
Polar coordinates of g (ϕg, ρg, rg) (g phi, g rho, g r)
Foil thickness dF d F
Specimen thickness in beam direction dB d B
Dislocation length in the image Ld L d
Specimen size Lx, Ly, Lz Lx, Ly, Lz
Cell size dx, dy, dz dx, dy, dz
Number of lattice sites Nx, Ny, Nz Nx, Ny, Nz
Column coordinates for line scans x0, y0 x0, y0
Plane coordinate for imaging the strain
field

z0 z0

%Rasterpunkte im Volumen

Nxyz=Nx*Ny*Nz

%Raster erzeugen

ix=1:Nx;

iy=1:Ny;

iz=1:Nz;

[IX,IY,IZ]=ndgrid(ix,iy,iz);

%Koordinaten erzeugen

X=-Lx/2+dx*(IX-1);

Y=-Ly/2+dy*(IY-1);

Z=(d_F/2-F_B(1)*X-F_B(2)*Y)/F_B(3)-dz*(IZ-1);

%zusätzliche Stützpunkte für das Runge-Kutta Verfahren

if Runge_Kutta==1

Z2=(d_F/2-F_B(1)*X-F_B(2)*Y)/F_B(3)-dz*(IZ-1/2);

Z3=(d_F/2-F_B(1)*X-F_B(2)*Y)/F_B(3)-dz*(IZ);

end;

%Daten auslesen in der xy-Ebene an der Probenunterseite

X_xy=X(:,:,Nz);

Y_xy=Y(:,:,Nz);

%Koordinaten erzeugen für vertikalen Linescan bei (x0,y0)

%und für horizontalen Linescan durch y0

%und für Darstellung der Gitterverbiegungsfunktion beta in der Ebene z0

ix0=floor((x0+Lx/2)/dx+1);

iy0=floor((y0+Ly/2)/dy+1);

iz0=floor((z0+Lz/2)/dz+1);

Z_scan=dz*(iz’-1);

X_scan=-Lx/2+dx*(ix’-1);
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C.3.2 Transformation between Miller indices and Cartesian coordi-
nates

The basis vectors of the crystal lattice are referred to as a1, a2, and a3 and have to be entered
in Cartesian coordinates. The transformation matrix Tuvw which converts the Miller indices
(u, v, w) of a lattice vector B into Cartesian coordinates (B1, B2, B3) is given by

B = ua1 + v a2 + w a3 , (C.4a)B1

B2

B3

 = u

(a1)1
(a1)2
(a1)3

 + v

(a2)1
(a2)2
(a2)3

 + w

(a3)1
(a3)2
(a3)3

 = Tuvw

u
v
w

 , (C.4b)

Tuvw =

(a1)1 (a2)1 (a3)1
(a1)2 (a2)2 (a3)2
(a1)3 (a2)3 (a3)3

 . (C.4c)

The reciprocal basis vectors a∗1, a∗2, and a∗3 were calculated according to

a∗1 =
a2 × a3

Ve
, (C.5a)

a∗2 =
a3 × a1

Ve
, (C.5b)

a∗3 =
a1 × a2

Ve
, (C.5c)

where Ve = a1 · (a2 × a3) is the volume of the unit cell. The transformation matrix Thkl which
converts the Miller indices (h, k, l) of a reciprocal lattice vector g into Cartesian coordinates
(g1, g2, g3) is given by

g = ha∗1 + k a∗2 + l a∗3 , (C.6a)g1

g2

g3

 = h

(a∗1)1
(a∗1)2
(a∗1)3

 + k

(a∗2)1
(a∗2)2
(a∗2)3

 + l

(a∗3)1
(a∗3)2
(a∗3)3

 = Thkl

h
k
l

 , (C.6b)

Thkl =

(a∗1)1 (a∗2)1 (a∗3)1
(a∗1)2 (a∗2)2 (a∗3)2
(a∗1)3 (a∗2)3 (a∗3)3

 . (C.6c)

C.3.3 Polar coordinates and transformation between crystal axis sys-
tem and experimental axis system

With respect to the crystal axis system, polar coordinates (ϕx, ρx, rx = |x|) were introduced
(Fig. 3.2), such that a vector x with Cartesian coordinates (x1, x2, x3) is given byx1

x2

x3

 = rx

cos(ϕx) sin(ρx)
sin(ϕx) sin(ρx)

cos(ρx)

 . (C.7)

The plane basis vectors m0 and n0 of a mixed dislocation are given by m0 = be

|be| and
n0 = t ×m0, where be (Eqn. 2.1) is the edge component of the Burgers vector b. However,
for a screw dislocation be would be zero. Alternatively, the plane basis vectors can also be
expressed in terms of the polar coordinates (ϕt, ρt, rt) of the line direction t according to

m0 =

cos(ϕt) cos(ρt)
sin(ϕt) cos(ρt)
− sin(ρt)

 , (C.8a)

n0 =

− sin(ϕt)
cos(ϕt)

0

 . (C.8b)
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Finally, the matrix RB for the transformation of the components of a vector from the crystal
axis system into the experimental axis shall be derived. In general, the matrix Rϕρ(ϕ, ρ) for the
transformation of a unit vector [cos(ϕ) sin(ρ), sin(ϕ) sin(ρ), cos(ρ)] into a vector [0, 0, 1] being
parallel to the z axis is given by

Rϕρ(ϕ, ρ) =

cos(ϕ) cos(ρ) sin(ϕ) cos(ρ) − sin(ρ)
− sin(ϕ) cos(ϕ) 0

cos(ϕ) sin(ρ) sin(ϕ) sin(ρ) cos(ρ)

 . (C.9)

This transformation matrix corresponds to a rotation of the vector by an angle ϕ in a left-
handed sense around the z axis and a subsequent rotation by an angle ρ in a left-handed sense
around the y axis (Fig. 3.2).

The transformation matrix RB, for an experimental axis system where the beam direction B
is parallel to the z axis and the line direction t points towards the positive x axis (Fig. 8.1(a)),
is given by

RB = Rϕρ(ϕt′ , 0) Rϕρ(ϕB, ρB) , (C.10a)
t′ = Rϕρ(ϕB, ρB) t . (C.10b)

The first matrix Rϕρ(ϕB, ρB) yields the beam direction being parallel to the z-axis. The second
matrix Rϕρ(ϕt′ , 0) yields a line direction pointing towards the positive x axis.

The transformation matrix RB, for an experimental axis system where the beam direction
B is parallel to the z axis and the diffracting vector g deviates in its orientation by an angle
αg from the positive x axis (Fig. 8.1(b)), is given by

RB = Rϕρ(ϕg′ − αg, 0) Rϕρ(ϕB, ρB) , (C.11a)
g′ = Rϕρ(ϕB, ρB)g . (C.11b)

The first matrix Rϕρ(ϕB, ρB) yields the beam direction being parallel to the z-axis. The second
matrix Rϕρ(ϕg′ − αg, 0) yields an angle αg between the diffracting vector and the x axis.

%************************************************************************************************

%function car_to_spher(B_car)

%************************************************************************************************

%Berechnung der sphärischen Koordinaten phi (Winkel zur x-Achse in grad),

%rho (Winkel zur z-Achse in grad), und r (Betrag) für einen kartesischen Vektor B_car

function [phi_grad,rho_grad,r]=car_to_spher(B_car);

[phi,rho,r1]= cart2sph(B_car(1),B_car(2),B_car(3));

phi_grad=phi*180/pi;

rho_grad=90-rho*180/pi;

r=r1;

%************************************************************************************************

%function spher_to_car(B_car)

%************************************************************************************************

%Berechnung eines kartesischen Vektors B_car aus den sphärischen Koorinaten

%phi (Winkel zur x-Achse in grad) und rho (Winkel zur z-Achse in grad)

function [B_car]=spher_to_car(phi_grad,theta_grad);

phi=phi_grad*pi/180;

theta=theta_grad*pi/180;

B_car=[cos(phi)*sin(theta); sin(phi)*sin(theta); cos(theta)];

%************************************************************************************************

%function R_phi_rho(phi_grad,rho_grad)

%************************************************************************************************

%Drehmatrix, um eine Strahlrichtung B=(cos(phi)sin(rho),sin(phi)sin(rho),cos(rho))

%in einen kartesischen [0,0,1]-Vektor zu transformieren

function R=R_phi_rho(phi_grad,rho_grad);

phi=phi_grad*pi/180;

rho=rho_grad*pi/180;

R=[cos(phi)*cos(rho), sin(phi)*cos(rho), -sin(rho);

-sin(phi), cos(phi), 0;

cos(phi)*sin(rho), sin(phi)*sin(rho), cos(rho)];
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C.3.4 Coordinates

The sample widths Lx and Ly are constants, whereas the sample thickness in beam direction
dB = Lz depends on the foil thickness dF, the beam direction B, and the foil normal F. For
an untilted sample, the beam entrance surface and the beam exit surface are parallel to the
x-y plane. The foil thickness dF and the sample thickness in beam direction dB are identical.
The beam enters the sample at z+ = dF/2 and leaves the sample at z− = −dF/2, independent
of the x and y coordinates. However, for a tilted sample z± and thereby dB are determined by
±dF/2 = x · F, yielding

z±(x, y) =
1

(FB)3

[
±1

2
dF − x (FB)1 − y (FB)2

]
, (C.12a)

dB = z+(x, y)− z−(x, y) =
dF

(FB)3
, (C.12b)

where FB is the foil normal with respect to the experimental axis system. In a similar way the
length Ld of the dislocation in the image can be derived and is given by

Ld =
dF

FB · tB

√
[(tB)1]2 + [(tB)2]2 , (C.13)

where tB is the line direction with respect to the experimental axis system.

The number of lattice sites Nx, Ny, and Nz were chosen to be odd integers, e.g., Nx =
2 ceil

(
Lx
2 dx

)
+ 1, where Lx is the sample width and dx is width of the cells in x direction. The

function ceil(A) rounds the real number A to the nearest integer greater than or equal to A.
Finally, the width of the cells had to be redefined by dx = Lx

Nx−1 .

At this point the arrays for the coordinates were defined. First, simple one-dimensional
arrays ix = (1, . . . , Nx), iy = (1, . . . , Ny), and iz = (1, . . . , Nz) were generated to address the
lattice sites, e.g., by the programme sequence “ix=1:Nx”. The colon operator “ :” replaces the
slow“for”-loops. The second step is very crucial with respect to a short computing time. Three-
dimensional arrays IX, IY , and IZ were generated on the basis of the one-dimensional arrays ix,
iy, and iz by the programme sequence “[IX,IY,IZ]=ndgrid(ix,iy,iz)”. Functions of several
variables can be computed very fast by using such multi-dimensional arrays. The programming
code is very simple and requires no explicit “for”-loops. Finally, three-dimensional arrays X, Y ,
and Z were generated for the coordinates of the lattice points according to

X = −Lx

2
+ dx (IX − 1) , (C.14a)

Y = −Ly

2
+ dy (IY − 1) , (C.14b)

Z = z+(X, Y )− dz (IZ − 1) . (C.14c)

The X, Y , and Z coordinates lie in a range between −Lx
2 and +Lx

2 , −Ly
2 and +Ly

2 , and z+

and z−, respectively. For the Runge-Kutta method the Z coordinates at the centre and at the
bottom of each slice have also to be calculated. For the presentation of the intensities as contour
maps two-dimensional arrays Xxy and Yxy were generated, representing the X and Y coordinates
at the exit surface. For the presentation of the intensities as line scans in x-direction and in
beam direction one dimensional arrays Xscan and Zscan were generated for the coordinates,
respectively.
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C.4 Displacement function β

C.4.1 Subroutine “Rechnung beta”

In Chapter 8.2.1 it was shown that the displacement function β only depends on cylinder
coordinates (r, θ). Particularly, the displacement function β can be resolved in a factor only
depending on r and a factor only depending on θ and is given by

β = − 1
2π

1
r
βθ(θ) , (C.15)

where βθ(θ) represents the term only depending on the angle θ.
The subroutine “Rechnung beta” can be divided in two main sections. (i) First, βθ(θ)

is precalculated according to the integral formalism of Barnett and Lothe [46] (Chap. 8.1).
The numerical integrations were considered to be simple by Barnett and Lothe. However, the
effective and fast calculation of the strain field and thereby βθ(θ) by a programme is more
demanding than the numerical integration of the Howie-Whelan equations. Therefore, the
integral formalism had to be modified. The optimizations are shown in the following sections.
The number of individual calculations could be reduced by a factor of 100. (ii) The displacement
function β is determined by the function “beta xyz(x,y,z)”. This function accepts the three-
dimensional arrays X, Y , and Z for the coordinates as arguments, and therefore β is also a
three-dimensional array.

Additionally, the subroutine calculates the line energy of the dislocation. The Burgers circuit
is also carried out to test if there are any errors in the code. Finally, the displacement function
at the column (x0, y0) and at the z0 plane are read out for presentation as line scans in beam
direction and as colour map, respectively. Table C.2 gives an overview of the quantities used
by the subroutines and their variables names or function names.

%************************************************************************************************

%subroutine Rechnung_beta

%************************************************************************************************

%Berechnung von Hilfmatrizen mn0, nm0, nn0 und mm0 nach Barnett und Lothe

global mm0 mn0 nm0 nn0

mm0=zeros(3,3); mn0=zeros(3,3); nm0=zeros(3,3); nn0=zeros(3,3);

for js=1:3

for ks=1:3

for is=1:3

for ls=1:3

mm0(js,ks)=mm0(js,ks)+m0_car(is)*c_mn_tensor(is,js,ks,ls)*m0_car(ls);

mn0(js,ks)=mn0(js,ks)+m0_car(is)*c_mn_tensor(is,js,ks,ls)*n0_car(ls);

nm0(js,ks)=nm0(js,ks)+n0_car(is)*c_mn_tensor(is,js,ks,ls)*m0_car(ls);

nn0(js,ks)=nn0(js,ks)+n0_car(is)*c_mn_tensor(is,js,ks,ls)*n0_car(ls);

end;

end;

end;

end;

mm0, mn0, nm0, nn0

%Q, S und B Matrizen jeweils durch Integration nach Simpson im Intervall [0,2*pi]

global Q_int S_int B_int

Q_int=-1/(2*pi)*quad_matrix(@q_theta,0,2*pi)

S_int=-1/(2*pi)*quad_matrix(@s_theta,0,2*pi)

B_int=-1/(2*pi)*quad_matrix(@b_theta,0,2*pi)

time4a=clock;

%Linienenergie in eV/nm für Versetzungsabstand R und core-Radius r0

R=10000; %halber Versetzungsabstand in nm

r0=b_r; %core Radius gleich Burgers-Vektor-Betrag

E_L=1/(4*pi)*log(R/r0)*b_car’*(B_int*b_car) %Linienenergie

%Burgers-Umlauf

b_circ=quad_matrix(@b_circ_theta,0,2*pi)

%Berechnung der reinen Winkelabhängigkeit der Gitterverbiegungsfunktion

%im Intervall [-180◦,180◦] mit Schrittweite dth_grad in grad und Anzahl der Schritte Nth

global dth_rad beta_theta

dth_grad=0.1

dth_rad=dth_grad*pi/180;
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Nth=2*ceil(pi/dth_rad)+1

beta_theta=zeros(1,Nth);

for ith=1:Nth

theta_rad=-pi+dth_rad*(ith-1);

m_theta=cos(theta_rad)*m0_car+sin(theta_rad)*n0_car;

n_theta=-sin(theta_rad)*m0_car+cos(theta_rad)*n0_car;

s_m=-S_int*b_car;

s_n=s_theta(theta_rad)*(S_int*b_car)+q_theta(theta_rad)*(B_int*b_car);

beta_theta(ith)=g_car’*((R_z*m_theta)*s_m + (R_z*n_theta)*s_n);

end;

time4b=clock;

%Gitterverbiegungsfunktion an den Stützpunkten (x,y,z)

beta=beta_xyz(X,Y,Z);

%Gitterverbiegungsfunktion an Stützpunkten (x,y,z+dz/2) und (x,y,z+dz) für Runge-Kutta Verfahren

if Runge_Kutta==1

beta2=beta_xyz(X,Y,Z2);

beta3=beta_xyz(X,Y,Z3);

end;

%Daten auslesen in der Ebene z0

beta_xy=beta(:,:,iz0);

%Daten auslesen für vertikalen Linescan bei (x0,y0)

for izh=1:Nz

beta_zhelp(izh)=beta(ix0,iy0,izh);

end;

beta_z=beta_zhelp’;

C.4.2 Redefinition of the matrices depending on the azimuth angle θ

The calculation of the matrices (mm), (mn), (nm), and (nn) (Eq. 8.3) first requires the
conversion of the matrix cmn of the elastic constants into the tensor of the elastic constants
cijkl. The function“c mn tensor(i,j,k,l)”determines the matrix suffices m and n from the tensor
suffices (i, j) and (k, l) according to Equation 2.3.

For the calculation of the matrices (mm), (mn), (nm), and (nn) a summation on the
components of the tensor of elastic constants is required. This is a time consuming process
and can be simplified as follows: In the definitions of these matrices (Eq. 8.3) the plane basis
vectors m and n were replaced by their appropriate definitions (Eq. 2.10), e.g.,

(nn)jk = ni cijkl nl

= [− sin(θ)(m0)i + cos(θ)(n0)i] cijkl [− sin(θ)(m0)l + cos(θ)(n0)l] . (C.16)

At this point new 3× 3 matrices (mm0), (mn0), (nm0), and (nn0) were defined.

(mm0)jk = (m0)i cijkl (m0)l , (C.17a)
(mn0)jk = (m0)i cijkl (n0)l , (C.17b)
(nm0)jk = (n0)i cijkl (m0)l , (C.17c)
(nn0)jk = (n0)i cijkl (n0)l . (C.17d)

Finally, the matrices (mm), (mn), (nm), and (nn) can be expressed in terms of these new
matrices and are given by

(mm) = sin(θ) cos(θ) [(mn0) + (nm0)] + cos2(θ) (mm0) + sin2(θ) (nn0) , (C.18a)

(mn) = − sin(θ) cos(θ) [(mm0)− (nn0)] + cos2(θ) (mn0)− sin2(θ) (nm0) , (C.18b)

(nm) = − sin(θ) cos(θ) [(mm0)− (nn0)] + cos2(θ) (nm0)− sin2(θ) (mn0) , (C.18c)

(nn) = − sin(θ) cos(θ) [(mn0) + (nm0)] + cos2(θ) (nn0) + sin2(θ) (mm0) . (C.18d)

For the calculation of the matrices (mm), (mn), (nm), and (nn) and their related matrices
q, s, and b the excessive and time consuming summations on the tensor components of elastic
constants cijkl were replaced by summations on the constant matrices (mm0), (mn0), (nm0),
and (nn0).
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%************************************************************************************************

%function c_mn_tensor(i,j,k,l)

%************************************************************************************************

%Berechnung der Tensorkomponeneten der elastischen Konstanten in eV/nm^3

function c_ijkl=c_mn_tensor(is,js,ks,ls);

global c_mn

im=0.5*(is+js)*(is==js)+(9-(is+js))*(is~=js);

jn=0.5*(ks+ls)*(ks==ls)+(9-(ks+ls))*(ks~=ls);

c_ijkl=c_mn(im,jn)*10^2/1.6022;

%************************************************************************************************

%function q_theta(theta)

%************************************************************************************************

%q-Matrix in Abhänggeit des Azimutwinkels nach Barnett und Lothe

function q=q_theta(theta_rad);

%nn-Matrix Komponenten nach Barnett-Lothe

global mm0 mn0 nm0 nn0

nn_theta=-cos(theta_rad)*sin(theta_rad)*(mn0+nm0)+cos(theta_rad)^2*nn0+sin(theta_rad)^2*mm0;

%q-Matrix

q=inv(nn_theta);

%************************************************************************************************

%function s_theta(theta)

%************************************************************************************************

%s-Matrix in Abhänggeit des Azimutwinkels nach Barnett und Lothe

function s=s_theta(theta_rad);

%nm und nn Matrix Komponenten nach Barnett-Lothe

global mm0 mn0 nm0 nn0

nm_theta=-cos(theta_rad)*sin(theta_rad)*(mm0-nn0)+cos(theta_rad)^2*nm0-sin(theta_rad)^2*mn0;

nn_theta=-cos(theta_rad)*sin(theta_rad)*(mn0+nm0)+cos(theta_rad)^2*nn0+sin(theta_rad)^2*mm0;

%s-Matrix

s=inv(nn_theta)*nm_theta;

%************************************************************************************************

%function b_theta(theta)

%************************************************************************************************

%b-Matrix in Abhänggeit des Azimutwinkels nach Barnett und Lothe

function b=b_theta(theta_rad);

%mm, mn, nm, und Matrix Komponenten nach Barnett-Lothe

global mm0 mn0 nm0 nn0

mm_theta=cos(theta_rad)*sin(theta_rad)*(mn0+nm0)+cos(theta_rad)^2*mm0+sin(theta_rad)^2*nn0;

mn_theta=-cos(theta_rad)*sin(theta_rad)*(mm0-nn0)+cos(theta_rad)^2*mn0-sin(theta_rad)^2*nm0;

nm_theta=-cos(theta_rad)*sin(theta_rad)*(mm0-nn0)+cos(theta_rad)^2*nm0-sin(theta_rad)^2*mn0;

nn_theta=-cos(theta_rad)*sin(theta_rad)*(mn0+nm0)+cos(theta_rad)^2*nn0+sin(theta_rad)^2*mm0;

%b-Matrix

b=mn_theta*(inv(nn_theta)*nm_theta) - mm_theta;

%************************************************************************************************

%function b_circ_theta(theta_rad)

%************************************************************************************************

%Displacement in Abhänggeit des Azimutwinkels für Burgers-Vektor-Umlauf

function b_th=b_circ_theta(theta_rad);

global Q_int S_int B_int b_car m0_car n0_car

m_theta=cos(theta_rad)*m0_car+sin(theta_rad)*n0_car;

n_theta=-sin(theta_rad)*m0_car+cos(theta_rad)*n0_car;

s_m=-S_int*b_car;

s_n=s_theta(theta_rad)*(S_int*b_car)+q_theta(theta_rad)*(B_int*b_car);

b_th=1/(2*pi)*((n_theta’*m_theta)*s_m + (n_theta’*n_theta)*s_n);

C.4.3 Numerical integration of the matrices Q, S, and B

The numerical integration for the matrices Q, S, and B (Eq. 8.7) since 3×9 numerical integrals
would be required, corresponding to the number of matrix elements. With MATLAB numerical
integrals can be solved by the function “quad(f,a,b)”, where “ f ” is a scalar function and “ a ”
and “ b ” are the limits. However, the integrands q, s, and b are matrices depending on the
azimuth angle θ, and therefore the function “quad(f,a,b)” can not be used. A new function
“quad_matrix(f,a,b)” was defined to overcome this problem. The numerical integration is
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carried out according to the “Simpson-1/3”-method

F =
b− a

3 N

f(a) + f(b) + 4
N/2∑
k=1

f(a + [2 k − 1]h) + 2
N/2−1∑

k=1

f(a + 2 k h)

 , (C.19)

where f is the integrand, a and b are the limits, N is an even number of intervals, and h = b−a
N

is the width of the intervals [116, chap. 15.4]. The integrals in Equation 8.7 were approximated
by this finite sum. The new function increases the number of intervals N by a factor of two
until the relative changes are less than 10−4 or the number of intervals N is larger than 1000.
Particularly, in Equation C.19 the integrand f can also be a matrix function. Therefore, all 9
components of the matrices Q, S, or B are calculated parallel and formally according to

Q = − 1
2π

2π∫
0

q dθ , (C.20a)

S = − 1
2π

2π∫
0

s dθ , (C.20b)

B = − 1
2π

2π∫
0

b dθ . (C.20c)

%************************************************************************************************

%function quad_matrix(f,a,b)

%************************************************************************************************

%Berechnung des Integrals für eine Matrix Funktion f(x)

%in den Integrationsgrenzen [a,b] mit Hilfe des Simpson 1/3 Verfahrens

function F_int=quad_matrix(f,a,b);

N1=50; %minimale Anzahl an Intervallen

N_max=500; %maximale Anzahl an Intervallen

precision=10^-4; %minimale Genauigkeit der Integration

F_int_N1=quad_matrix_simpson(f,a,b,N1); %grobes Integral

weiter=1;

while weiter

N2=2*N1; %Doppelte Anzahl an Intervallen

F_int_N2=quad_matrix_simpson(f,a,b,N2); %für verfeinertes Integral

delta=abs(F_int_N2-F_int_N1); %Differenz-Beträge der beiden Integrale

mean=1/2*(abs(F_int_N2)+abs(F_int_N2)); %Mittelwert-Beträge der beiden Integrale

abbruch=(delta<=precision*mean) | (N2>=N_max); %Abbruchbedingung

weiter=~all(all(abbruch));

N1=N2;

F_int_N1=F_int_N2;

end;

N2

F_int=F_int_N2;

%************************************************************************************************

%function quad_matrix_simpson(f,a,b)

%************************************************************************************************

%Berechnung des Integrals für eine Matrix Funktion f(x)

%in den Integrationsgrenzen [a,b] mit Hilfe des Simpson 1/3 Verfahrens

function F_int=quad_matrix_help(f,a,b,N);

N=floor(N/2)*2; %gewärleistet das mit gerader Anzahl von Intervallen gerechnet wird

h=(b-a)/N; %Schrittweite

F_int=0;

sum1=0;

for ks=1:N/2

x_ks=a+(2*ks-1)*h;

sum1=sum1+feval(f,x_ks);

end;

sum2=0;

for ks=1:N/2-1
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x_ks=a+2*ks*h;

sum2=sum2+feval(f,x_ks);

end;

f_a=feval(f,a);

f_b=feval(f,b);

F_int=h/3*(f_a+f_b+4*sum1+2*sum2);

C.4.4 Determination of the displacement function β

In Chapter 8.2.1 the displacement function β = − 1
2π

1
r βθ(θ) was given in Equation 8.10. The

subroutine “Rechnung beta”first calculated the angle depend term βθ(θ) in an interval between
−180◦ and 180◦ at an interval width of ∆θ = 0.1◦. A “for”-loop has to be used since the
equations contain matrix and vector products, which is not compatible with the technique using
multi-dimensional arrays. Second, the displacement function β was determined by the function
“beta (x,y,z)” in dependence of the coordinates x = (X, Y, Z). This function determines the
cylinder coordinates (r, θ) (Eq. 2.10) by using a complex number z.

z = m0B · x + i · n0B · x , (C.21a)

r =

{
|z| for |z| > |b|
|b| for |z| ≤ |b|

, (C.21b)

θ =

{
arg(z) for |z| > 0
0 for |z| = 0

. (C.21c)

The advantage of the complex number z is that the programme does not break down due to
the singularity of the tan(θ)-function in Equation 2.10. The singularities of the displacement
function at the centre of the dislocation core for r ≤ |b| (Eq. 8.11) and of the definition of the
cylinder coordinates (r, θ) at r = 0 were also considered. Finally, the fixed plane basis vectors
m0B = RB m0 and n0B = RB n0 (Eq. 2.11, C.8, and C.10) with respect to the experimental
axis system have to be used.

%************************************************************************************************

%function beta_xyz(x,y,z)

%************************************************************************************************

%Berechnung der Gitterverbiegungsfunktion beta

function beta=beta_xyz(x,y,z);

global dth_rad beta_theta m0_B n0_B b_r

m0_B_x=m0_B(1); m0_B_y=m0_B(2); m0_B_z=m0_B(3);

n0_B_x=n0_B(1); n0_B_y=n0_B(2); n0_B_z=n0_B(3);

m0x=m0_B_x.*x+m0_B_y.*y+m0_B_z.*z;

n0x=n0_B_x.*x+n0_B_y.*y+n0_B_z.*z;

%Übergang in komplexe Ebene

z=m0x+i*n0x;

%Abstand zum Versetzungscore mit Betrag des Burgersvektor b als Mindestwert

r=abs(z).*(abs(z)>b_r)+b_r.*(abs(z)<=b_r);

%Berechnung des Winkels theta, direkt am Versetzungscore wird theta auf 0 gesetzt

theta_rad=angle(z+(abs(z)==0));

%Zuordnung von Winkel theta zur Zelle ith in der beta_theta gespeichert ist

ith=round((theta_rad+pi)/dth_rad+1);

%Gitterverbiegungsfunktion beta, direkt am Versetzungscore wird beta auf 0 gesetzt

beta=-1./(2*pi*r).*beta_theta(ith).*(abs(z)~=0);
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C.5 Transformation matrices (Kn)

C.5.1 Subroutine “Rechnung Kn”

The amplitudes of the direct beam T and of the diffracted beam S are coupled by the Howie-
Whelan differential equations (Eq. 2.27). As will be shown, the numerical integration of these
equations, i.e., the calculation of the amplitudes in each slice, can be solved by subsequent
matrix multiplication from slice (n) to slice (n + 1). The subroutine “Rechnung Kn” calculates
these transformation matrices (Kn) (Eq. 2.30) either by using the “Pendellösung” method or
by the Runge-Kutta method. Both methods assume a constant displacement function β(z) and
thereby w′(z) within each slice (Eq. 2.29).

βn = β(zn) , (C.22a)
w′

n = w′(zn) = w + ξg βn . (C.22b)

%************************************************************************************************

%subroutine Rechnung_Kn

%************************************************************************************************

%Transformationsmatrizen zur numerische Lösung der Howie-Whelan-Gleichungen

%Amplituden des transmittierten Strahls T und abgebeugten Strahls S erfüllen:

%dT=(-N*T+(i-A)*S)*pi/Xig

%dS=((i-A)*T+(-N+2i*(w+Xig*beta))*S)*pi/Xig

if Runge_Kutta==0

%mit Hilfe des Pendellösungsverfahren

[Kn_11,Kn_12,Kn_21,Kn_22]=Kn_Pendel(beta);

else

%mit Hilfe des Runge-Kutta-Verfahrens

[Kn_11,Kn_12,Kn_21,Kn_22]=Kn_RungeKutta(beta,beta2,beta3);

end;

C.5.2 “Pendellösung” method

The Howie-Whelan equations (Eq. 2.27) can be numerically integrated by using a method,
which is referred to as “Pendellösung” method in the following. For an ideal crystal (β = 0) the
Howie-Whelan equations can be analytically solved since w′(z) = w (Eq. 2.27) is constant. The
solutions for the amplitudes are well known and are referred to as “Pendellösung” (Eq. 2.30 and
C.27). The “Pendellösung” method assumes a constant strain field within each slice, i.e, w′(z)
is replaced by w′

n (Eq. C.22) for each slice (n). Therefore, the differential equations can be
transformed by an “Ansatz” into algebraic equations and the algebraic equations can be solved.
The general solutions for the amplitudes in slice (n + 1) have to be of the form(

Tn+1

Sn+1

)
=

(
C1n

C3n

)
exp

{
α1n

π

ξg
dz

}
+

(
C2n

C4n

)
exp

{
α2n

π

ξg
dz

}
, (C.23)

since the Howie-Whelan equations are first-order differential equations. The constants C1n,
C2n, C3n and C4n are determined by the amplitudes (Tn, Sn) in slice (n). The dimensionless
factors α1n and α2n are determined by the roots

α1n = −N + i w′
n +

√
(i−A)2 − w′

n
2 , (C.24a)

α2n = −N + i w′
n −

√
(i−A)2 − w′

n
2 . (C.24b)

Finally, the transformation matrix is given by

(Kn) =
1

α1n − α2n

[
(M1n) exp

{
α1n

π

ξg
dz

}
+ (M2n) exp

{
α2n

π

ξg
dz

}]
, (C.25a)

(M1n) =
(
−[α2n + N ] [i−A]

[i−A] −[α2n + N − 2 i w′
n]

)
, (C.25b)

(M2n) =
(

[α1n + N ] −[i−A]
−[i−A] [α1n + N − 2 i w′

n]

)
. (C.25c)
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%************************************************************************************************

%function Kn_Pendel(beta)

%************************************************************************************************

%Transformationsmatrizen zur numerischen Lösung der Howie-Whelan-Gleichungen

%nach der Pendellösungsmethode

function [Kn_11,Kn_12,Kn_21,Kn_22]=Kn_Pendel(beta)

global w A Xig dz

%Absorptionskooeffzienten A=N

N=A;

dZ=pi/Xig*dz;

w_n=w+Xig*beta;

alpha1_n=-N+i.*w_n+((i-A)^2-w_n.^2).^0.5;

alpha2_n=-N+i.*w_n-((i-A)^2-w_n.^2).^0.5;

nenner=1./(alpha1_n-alpha2_n);

exp_1=nenner.*exp(alpha1_n*dZ);

exp_2=nenner.*exp(alpha2_n*dZ);

M1n_11=-(alpha2_n+N);

M1n_12=(i-A);

M1n_21=(i-A);

M1n_22=-(alpha2_n+N-2*i*w_n);

M2n_11=(alpha1_n+N);

M2n_12=-(i-A);

M2n_21=-(i-A);

M2n_22=(alpha1_n+N-2*i*w_n);

Kn_11=M1n_11.*exp_1+M2n_11.*exp_2;

Kn_12=M1n_12.*exp_1+M2n_12.*exp_2;

Kn_21=M1n_21.*exp_1+M2n_21.*exp_2;

Kn_22=M1n_22.*exp_1+M2n_22.*exp_2;

C.5.3 Runge-Kutta method

The Runga-Kutta method is a general method for numerical integration of first-order differential
equations ∂y

∂z = f(z,y), which was also used by Head [47]. Also for this method the amplitudes
can be calculated by using transformation matrices due to the linear character of the Howie-
Whelan equations.

To explain the principle it shall be assumed that y(z) is a scalar function. Also, the simpler
but less accurate Euler method shall be first explained instead of the Runge-Kutta method.
The principle of the Euler method is to assume a constant slope mn = y′ = f(x,yn) within
each slice (n) and to calculate iteratively yn+1 = yn + mn dz, where dz is the slice width (Fig.
C.1) [116, chap. 18.12]. For linear first-order differential equations y′ = a y the Euler method
can be further simplified. The slope is given by mn = a yn and therefore yn+1 = Kn · yn, where
Kn = 1 + a dz might be regarded as transformation factor. For a vector function y(z) whose
components are coupled by a linear first-order differential equation, e.g., the Howie-Whelan
equations, (Kn) would be a transformation matrix.

The principle of the Runge-Kutta method is to calculate a mean slope mn = 1
6 (m1n +

2 m2n + 2m3n + m4n) for each slice (n), where m1n and m4n represent the slopes at the top
and the bottom of the slice, and m2n and m3n represent the slopes at the centre of the slice
[116, chap. 18.12]. Finally, the transformation matrix for the Howie-Whelan equations 2.27 is
given by

(Kn) = I +
1
6
{(M1n) + 2 · (M2n) + 2 · (M3n) + (M4n)} , (C.26a)

I =
(

1 0
0 1

)
, (C.26b)

(Mn) =
(
−N [i−A]

[i−A] [−N + 2 i w′
n]

)
π

ξg
dz , (C.26c)

(M1n) = (Mn) , (C.26d)

(M2n) = (Mn+ 1
2
) +

1
2

(Mn+ 1
2
) (M1n) , (C.26e)
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Figure C.1 Principle of the Euler method for numerical integration of first order differential equations.

(M3n) = (Mn+ 1
2
) +

1
2

(Mn+ 1
2
) (M2n) , (C.26f)

(M4n) = (Mn+1) + (Mn+1) (M3n) . (C.26g)

%************************************************************************************************

%function Kn_RungeKutta(beta,beta2,beta3)

%************************************************************************************************

%Transformationsmatrizen zur numerischen Lösung der Howie-Whelan-Gleichungen

%nach dem Runge-Kutta Verfahren

function [Kn_11,Kn_12,Kn_21,Kn_22]=Kn_RungeKutta(beta,beta2,beta3)

global w A Xig dz

%Absorptionskooeffzienten A=N

N=A;

dZ=pi/Xig*dz;

w_n=w+Xig*beta;

w_n2=w+Xig*beta2;

w_n3=w+Xig*beta3;

M_11=-N*dZ;

M_12=(i-A)*dZ;

M_21=(i-A)*dZ;

M_22=(-N+2*i*w_n)*dZ;

M_22_2=(-N+2*i*w_n2)*dZ;

M_22_3=(-N+2*i*w_n3)*dZ;

M1n_11=M_11;

M1n_12=M_12;

M1n_21=M_21;

M1n_22=M_22;

M2n_11=M_11+1/2*(M_11*M1n_11+M_12*M1n_21);

M2n_12=M_12+1/2*(M_11*M1n_12+M_12*M1n_22);

M2n_21=M_21+1/2*(M_21*M1n_11+M_22_2.*M1n_21);

M2n_22=M_22_2+1/2*(M_21*M1n_12+M_22_2.*M1n_22);

M3n_11=M_11+1/2*(M_11*M2n_11+M_12*M2n_21);

M3n_12=M_12+1/2*(M_11*M2n_12+M_12*M2n_22);

M3n_21=M_21+1/2*(M_21*M2n_11+M_22_2.*M2n_21);

M3n_22=M_22_2+1/2*(M_21*M2n_12+M_22_2.*M2n_22);

M4n_11=M_11+(M_11*M3n_11+M_12*M3n_21);

M4n_12=M_12+(M_11*M3n_12+M_12*M3n_22);

M4n_21=M_21+(M_21*M3n_11+M_22_3.*M3n_21);

M4n_22=M_22_3+(M_21*M3n_12+M_22_3.*M3n_22);

Kn_11=1+1/6*(M1n_11+2*M2n_11+2*M3n_11+M4n_11);

Kn_12=1/6*(M1n_12+2*M2n_12+2*M3n_12+M4n_12);

Kn_21=1/6*(M1n_21+2*M2n_21+2*M3n_21+M4n_21);

Kn_22=1+1/6*(M1n_22+2*M2n_22+2*M3n_22+M4n_22);
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C.6 Amplitudes and intensities

C.6.1 Subroutine “Rechnung Amplituden”

The subroutine“Rechnung Amplituden”calculates the complex amplitudes of the direct beam T
and of the diffracted beam S according to Equation 2.31 and the related intensities IT and
IS according to Equations 2.28. The subroutine also calculates the mean intensity and the
diffraction contrast (Imax− Imin)/(Imax + Imin), where I is the intensity. Finally, the intensities
are read out at the exit surface, parallel to the line direction, and in beam directions for the
presentation in contour maps and diagrams.

%************************************************************************************************

%subroutine Rechnung_Amplituden

%************************************************************************************************

%Amplituden des direkten Strahls T und des abgebeugten Strahls S

T=1+0*IX;

S=0*IX;

for izh=2:Nz

T(:,:,izh)=(Kn_11(:,:,izh-1).*T(:,:,izh-1)+Kn_12(:,:,izh-1).*S(:,:,izh-1));

S(:,:,izh)=(Kn_21(:,:,izh-1).*T(:,:,izh-1)+Kn_22(:,:,izh-1).*S(:,:,izh-1));

end;

%Intensitäten des direkten Strahls T und des abgebeugten Strahls S

IT=real(T.*conj(T));

IS=real(S.*conj(S));

%Daten auslesen in der xy-Ebene

ITxy=IT(:,:,Nz);

ISxy=IS(:,:,Nz);

IT_max=max(max(ITxy));

IT_min=min(min(ITxy));

IT_Kontrast=(IT_max-IT_min)/(IT_max+IT_min)*100;

IT_mean=1/2*((IT_max+IT_min));

IS_max=max(max(ISxy));

IS_min=min(min(ISxy));

IS_Kontrast=(IS_max-IS_min)/(IS_max+IS_min)*100;

IS_mean=1/2*((IS_max+IS_min));

%Daten auslesen für linescan in Strahlrichtung

for izh=1:Nz

ITzhelp(izh)=IT(ix0,iy0,izh);

ISzhelp(izh)=IS(ix0,iy0,izh);

end;

ITz=ITzhelp’;

ISz=ISzhelp’;

%Daten auslesen für Linescan in x-Richtung

ITx=IT(:,iy0,Nz);

ISx=IS(:,iy0,Nz);

%Intensitäten des direkten Strahls T und des abgebeugten Strahls S im idealen Kristall

%in Abhängigkeit der Probendicke

[ITz_ideal,ISz_ideal]=I_ideal(w,Z_scan);

%in Abhängigkeit des dimensionslosen Anregungsfehlers w im Intervall [-Lw/2,+Lw/2]

Lw=3; %Intervallbreite

dw=0.05; %Schrittweite

Nw=2*ceil(Lw/dw/2+1) %Gesamtanzahl der Rasterpunkte in x-Richtung

dw=Lw/(Nw-1) %Endgültige Rasterweite

w_scan=-Lw/2+dw*((1:Nw)’-1);

[ITw_ideal,ISw_ideal]=I_ideal(w_scan,d_B);

C.6.2 Thickness fringes and rocking-curves in ideal crystals

The function “I ideal” in the subroutine “Rechnung Amplituden” is used to calculate the in-
tensities of the direct beam and the diffracted beam in an ideal crystal (i) in dependence of
the sample thickness z and (ii) in dependence of the dimensionless excitation error w, which
represents a rocking curve. The amplitudes for an ideal crystal (β = 0) can be determined by
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Equations C.24 and C.25, yielding(
T (w, z)
S(z, w)

)
=

1
α1− α2

[(
−[α2 + N ]

[i−A]

)
exp

{
α1

π

ξg
z

}
+

(
[α1 + N ]
−[i−A]

)
exp

{
α2

π

ξg
z

}]
,

(C.27a)

α1 = −N + i w +
√

(i−A)2 − w2 , (C.27b)

α2 = −N + i w −
√

(i−A)2 − w2 . (C.27c)

%************************************************************************************************

%function I_ideal(w,z)

%************************************************************************************************

%Amplituden und Intensitäten des direkten Strahls t und des abgebeugten Strahl S im idealen

%Kristall in Abhängigkeit der Probendicke t in nm und des dimensionslosen Anregungsfehlers

function [IT_ideal,IS_ideal]=I_ideal(w,z)

global A Xig

N=A;

Z=pi/Xig*z;

alpha1=-N+i*w+sqrt((i-A)^2-w.^2);

alpha2=-N+i*w-sqrt((i-A)^2-w.^2);

nenner=1./(alpha1-alpha2);

exp_1=nenner.*exp(alpha1.*Z);

exp_2=nenner.*exp(alpha2.*Z);

T=-(alpha2+N).*exp_1+(alpha1+N).*exp_2;

S=(i-A).*exp_1-(i-A).*exp_2;

IT_ideal=real(T.*conj(T));

IS_ideal=real(S.*conj(S));

C.7 Output

C.7.1 Subroutine “Ausgabe”

The subroutine “Rechnung titles” in the subroutine “Ausgabe” converts the input and out-
put parameters in “string” variables for the presentation in the contour maps and diagrams.
Various contour maps and diagrams are available, e.g., the bright field and dark field images
“Figure ITxy” and “Figure ISxy”,respectively. Each of the figures can be activated by removing
the comment symbol “% ” at the beginning of the line.

%************************************************************************************************

%subroutine Ausgabe

%************************************************************************************************

%Erzeugt Bildbeschriftungen

Rechnung_titles;

%Darstellung der Gitterverbiegungsfunktion beta

%Figure_beta_theta %Reine Winkelabhängkeit um den Versetzungskern

%Figure_beta_theta_polar %Reine Winkelabhängkeit um den Versetzungskern als Polardiagramm

%Figure_beta_xy %als contour map in der z0-Ebene

%Figure_beta_z %als Linescan in Abhängigkeit der Probendicke

%Darstellung der Intensitäten als Kontourplots

%Figure_ITxy_ISxy %Hellfeld-Bild und Dunkelfeld-Bild

Figure_ITxy %Hellfeld-Bild

%Figure_ISxy %Dunkelfeld-Bild

%Darstellung der Intensitäten als Linescans

%Figure_ITx_ISx %parallel zur Versetzungslinie

%Figure_ITz_ISz %in Abhängigkeit der Probendicke

%Figure_ITz_ISz_ideal %in Abhängigkeit der Probendicke für Ideal-Kristall

%Figure_ITz_ISz_Vergleich %in Abhängigkeit der Probendicke für idealen und gestörten Kristall

%Figure_ITw_ISw_ideal %in Abhängigkeit des Anregungsfehlers w für Ideal-Kristall
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C.7.2 Bright field image “Figure ITxy”

The bright field and dark field images are presented as undistorted contour maps. The area
between the contour isolines are filled with solid colour, whereas the isolines are shaded out.
The number of contour levels (grey levels) and their absolute values can be specified in the
subroutine “Eingabe”. For an image with optimised contrast the range of the contour levels is
identical to the range of the intensities. For an image with realistic contrast the range of the
contour levels is between 0 and the maximum intensity. A file name is automatically generated
and displayed in the heading of the window, specifying the dimensionless excitation error w
and the absorption coefficient A. Finally, all input and output parameters can be optionally
displayed in the figure.

%************************************************************************************************

%subroutine Figure_ITxy

%************************************************************************************************

%Darstellung des Hellfeld-Bildes

if Bild_Kontrast==0

contour_No_IT=[0:IT_max/Graustufen:IT_max];

else

contour_No_IT=Graustufen;

end;

%Bild erzeugen mit fortlaufender Nummer

figure_handle=figure(5000+Figure_No);

contourf(X_xy,Y_xy,ITxy,contour_No_IT);

colormap(gray);

shading flat;

axis image;

%Minimale Bildbeschriftung

title_string=’’;

title_string=strcat(’I_T: ’, IT_Kontrast_string, ’, ’, IT_mean_string);

title(title_string);

xlabel(’x (nm)’);

ylabel(’y (nm)’);

%Formatierung

Figure_File_Name=’’;

Figure_File_Name=strcat(’ITxy_’, w_str, ’_’, A_str);

set(figure_handle,’Name’, Figure_File_Name, ’FileName’, Figure_File_Name);

set(get(gca,’title’),’FontName’,Font_Name,’FontSize’,Font_Size);

set(get(gca,’xlabel’),’FontName’,Font_Name,’FontSize’,Font_Size);

set(get(gca,’ylabel’),’FontName’,Font_Name,’FontSize’,Font_Size);

set(get(gcf,’currentaxes’),’FontName’,Font_Name,’FontSize’,Font_Size);

%volle Bildbeschriftung

if Bild_Text==1

Bild_dim=axis;

text_x=Bild_dim(1);

text_y=Bild_dim(3)+0.9*(Bild_dim(4)-Bild_dim(3));

text_handle=text(text_x,text_y,Figure_Parameters);

set(text_handle,’FontName’,Font_Name,’FontSize’,Font_Size);

end;

%Bild automatisch speichern

if Auto_Save==1

saveas(figure_handle,Figure_File_Name,’tiffn’);

end;
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Table C.2 Quantities, their variable names, and their function names used for the integral formalism
of Barnett and Lothe and for numerical integration of the Howie-Whelan equations.

Quantities and their symbols Equation Variable or function name

Coordinates
Coordinates x, y, z C.14 X, Y, Z, X xy, Y xy, X scan,

Z scan
Coordinates zn, zn+ 1

2
, zn+1 C.22, C.26 Z, Z2, Z3

Integral formalism of Barnett and Lothe
Cylinder coordinates r and θ 2.10, C.21 r and theta
Transformation matrix (RB) 8.10, C.10, C.11 R B
Transformation vector Rz 8.10 R z
Elastic constants cmn and cijkl 2.2, 2.3 c mn, c mn tensor(i,j,k,l)
Plane basis vectors m and n 2.7, 2.10 m theta, n theta
Fixed plane basis vectors m0 and n0 2.10, 2.11, C.8 m0 car, m0 B, n0 car, n0 B
Matrices (mm), (mn), (nm), (nn) 8.3, C.18 mm theta, mn theta, nm theta,

nn theta
Matrices (mm0), (mn0), (nm0), (nn0) C.17 mm0, mn0, nm0, nn0
Matrices q, s, b 8.5 q theta(theta), s theta(theta),

b theta(theta)
Matrices Q, S, B 8.7, C.19, C.20 Q int, S int, B int
Vectors sm and sn 2.13, 8.8, 8.10 s m and s n
Displacement function β 2.29, 8.10, 8.11 beta, beta xy, beta z, beta xyz(x,

y, z)
Displacement function term βθ(θ) 8.10 beta theta
Displacement function βn, βn+ 1

2
, βn+1 C.22, C.26 beta, beta2, beta3

Line energy EL 2.16, 8.9 E L

Howie Whelan equations
Complex amplitudes T and S 2.27, 2.31, C.27 T, S
Intensity IT 2.28 IT, ITxy, ITx, ITz, IT max,

IT min, IT mean, IT Kontrast
Intensity IS 2.28 IS, ISxy, ISx, ISz, IS max, IS min,

IS mean, IS Kontrast
Intensities IT and IS for ideal crystal 2.30, C.27 ITz ideal, ISz ideal, ITw ideal,

ISw ideal, I ideal(w,z)
Slice thickness dz 2.31, C.25, C.26 dz
Absorption coefficients A and N 2.27 A, N
Dimensionless excitation error w 2.29 w
Effective excitation error w′

n, w′
n+ 1

2
, w′

n+1 C.22, C.26, C.26 w n, w n2, w n3

Components of transformation matrix (Kn) 2.31 Kn 11, Kn 12, Kn 21, Kn 22
(Kn) according Pendellösung method C.25 Kn Pendel(beta)
(Kn) according Runge-Kutta method C.26 Kn RungeKutta(beta,beta1,beta2)
Exponential factors α1n, α2n, α1, α2 C.24, C.27 alpha1 n, alpha2 n, alpha1, alpha2
Components of matrix (M1n) C.25, C.26 Mn1 11, Mn1 12, Mn1 21, Mn1 22
Components of matrix (M2n) C.25, C.26 Mn2 11, Mn2 12, Mn2 21, Mn2 22
Components of matrix (M3n) C.26 Mn3 11, Mn3 12, Mn3 21, Mn3 22
Components of matrix (M4n) C.26 Mn4 11, Mn4 12, Mn4 21, Mn4 22
Components of matrix (Mn) C.26 Mn 11, Mn 12, Mn 21, Mn 22
(2,2) components of (Mn), (Mn+ 1

2
), (Mn+1) C.26 Mn 22, Mn 22 1, Mn 22 2
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[78] G.H. Zschornack. Atomdaten für die Röntgenspektralanalyse. (Deutscher Verlag für Grundstoffindustrie,
Leipzig, Germany, 1989).

[79] O. Eibl. Micron, 30:527, 1999.

[80] X. Zhu, O. Eibl, L. Scheideler, and J. Geis-Gerstorfer. J. Biomed. Mater. Res., 79:114, 2006.

[81] N. Peranio and O. Eibl. “Gliding dislocations in Bi2Te3 materials”. (unpublished).

[82] L. van Pieterson, M.H.R. Lankhorst, M. van Schijndel, A.E. T. Kuiper, and J.H.J. Roosen. J. Appl. Phys.,
97:083520, 2005.

[83] M. Kaiser, L. van Pieterson, and M.A. Verheijen. J. Appl. Phys., 96:3193, 2004.

[84] O. Pages, Y. Feutelais, J.R. Didry, G. Keller, H. Jacquemin, and B. Legendre. Mater. Res. Bull., 34:1065,
1999.

[85] G. Morgant, Y. Feutelais, B. Legendre, R. Castanet, and A. Coulet. Z. Metallk., 81:44, 1990.

[86] A.D. Goletskaya, V.V. Sologub, and S.S. Shalyt. Sov. Phys. Semicond., 5:416, 1971.

[87] D.K.C. MacDonald, E. Mooser, W.B. Pearson, I.M. Templeton, and S.B. Woods. Philos. Mag., 4:433,
1959.

[88] H. Hahn, W. Seemann, and H.L. Kohn. Z. Anorg. Allg. Chem., 369:48, 1969.

[89] F. Völklein and E. Kessler. Measurement, 5:38, 1987.



124 BIBLIOGRAPHY

[90] C.M. Bhandari and D.M. Rowe. J. Phys. D., 18:873, 1985.

[91] A. Guinier. X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. (Dover, New
York, 1994).

[92] N. El-Masry and J.C.L. Tarn. Appl. Phys. Lett., 51:1608, 1987.

[93] G.E. Shoemake and J.A. Rayne. Phys. Rev., 185:1046, 1969.

[94] Yu.A. Boikov, B.M. Gol’tsman, and V.A. Kutasov. Sov. Phys. Solid State, 20:757, 1978.

[95] C.J. Glassbrenner and G.A. Slack. Phys. Rev., 134:A1058, 1964.

[96] P. Flubacher , A.J. Leadbetter, and J.A. Morrison. Philos. Mag., 4:273, 1959.

[97] M. Asheghi, Y.K. Leung, S.S. Wong, and K.E. Goodson. Appl. Phys. Lett., 71:1798, 1997.

[98] W. Liu and M. Asheghi. Appl. Phys. Lett., 84:3819, 2004.

[99] R.C. Zeller and R.O. Pohl. Phys. Rev. B, 4:2029, 1971.

[100] K. Mori, M. Sasakawa, T. Igarashi, Y. Isikawa, K. Sato, K. Noto, and Y. Muto. Physica C, 162-164:512,
1989.

[101] M. Anis-ur-Rehman and A. Maqsood. Physica C, 418:121, 2005.

[102] A.D. McConnel, S. Uma, and K.E. Goodson. J. Microelectromech. Syst., 10:360, 2001.

[103] O. Eibl. Physica C, 168:215, 1990.

[104] O. Eibl. Physica C, 175:419, 1991.

[105] J.F. Nye. Physical properties of crystals: their representation by tensors and matrices. (Clarendon Press,
Oxford, 1985).

[106] O. Eibl, P. Pongratz, P. Skalicky, and H. Schmelz. Phys. Status Solidi A, 108:495, 1988.

[107] D. Berlincourt and H. Jaffe. Phys. Rev., 111:143, 1958.

[108] J.M. Schultz, J.P. McHugh, and W.A. Tiller. J. Appl. Phys., 33:2443, 1962.

[109] H.K. Lyeo et al. Science, 303:816, 2004.

[110] T.E. Svechnikova et al. Inorg. Mater., 41:1043, 2005.

[111] T.E. Svechnikova et al. Inorg. Mater., 42:101, 2006.

[112] N. Chen et al. Appl. Phys. Lett., 87:171903, 2005.

[113] Institute of Materials Research, German Aerospace Center (DLR). D-51170 Köln, Germany.
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pert, Prof. Weddingen, Dr. Jüngst, Dr. Würfel, Prof. Schinde-
wolf, Prof. Heuser, Prof v. Renteln

10/1997-06/1999 Diploma thesis at the Laboratorium für Elektronen-
mikroskopie, Prof. D. Gerthsen
“Transmissionselektronenmikroskopische Untersuchung von
CdSe/CdS- und CdSe/ZnSe-Quantenpunktstrukturen”

Casual jobs
10/2000-10/2002 Casual jobs

Ph.D. thesis
10/2002-08/2007 Institute of Applied Physics, Prof. O. Eibl, Eberhard-Karls-

University of Tübingen
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