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Abstract - 1 - 

The aim of this study was to examine the manufacturing process of an oil-in-water model 

cream and to elaborate the relation between critical process parameters and physical 

properties of the cream. In the past the model cream exhibited some deficiencies such as 

loss in consistency, separation of watery fluid, and re-crystallisation of drug substance. 

These instabilities have been directed to be explained and possibly resolved by means of 

modifying the manufacturing process parameters. Therefore the main emphasis was on pilot 

scale with batch sizes of 80 kg (placebo) and 40 kg (verum) where a profound knowledge 

about the process technology was achieved. In addition, placebo batches from lab scale (1.0 

kg) as well as verum and pacebo batches from industrial scale (1000 kg) have been the 

subject of investigation. 

For the structural characterisation of the cream, polarized light microscopy, wide and small 

angle X-ray diffraction, thermogravimetry, differential scanning calorimetry, rheology and 

physical test methods such as bleeding, electrical conductivity, spreadability and micro-

penetration as well as in vitro release were employed. Further, different storage programs 

(isothermal storage and stress test) provided a broad evaluation of the cream’s stability. 

Rheological measurements in rotational and oscillatory mode gave the most valuable and 

detailed results on cream properties and represented an appropriate tool in order to visualize 

changes in cream properties dependent of manufacturing process parameters. Furthermore, 

the easily performable physical test methods mentioned above have been proved as being 

adopted methods for a reasonable cream characterisation regarding the cost-benefit ratio. 

Regarding the cream properties and stability, the following as critical retained process 

parameters have to be investigated: melting time; melting temperature; cooling rate; 

temperature of API-addition; temperature and duration of final homogenisation; holding time 

of bulk and finished product as well as filling stress. 

The idea of the microstructure is the basis for a reasonable interpretation of the cream 

behaviour in dependence of the manufacturing process parameters. The structural 

characterisation of the model cream suggested a gel-matrix comprised by the viscous elastic 

hydrophilic gel-phase and the lipophilic gel-phase which crystallise separately from each 

other and intertwine to a fine and complex network immobilizing small oil droplets. This 

network forms a disordered liquid-crystalline structure of lamellar type, either surrounding the 

oil droplets or widespread towards the continuous phase. This deformable gel-framework is 

responsible for the predominantly elastic behaviour of the cream. The cream shows plastic 

thixotropic flow behaviour with a defined linear viscous elastic region. Water exists as inter-

lamellarly bonded water in between crystalline lipid bilayers or entrapped mechanically within 
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the lipophilic gel-phase or fixed between lipid-layers in the liquid-crystalline state or otherwise 

present as free bulk water. 

The impact from the final homogenisation arose to be the most critical parameter during the 

manufacturing process. It was proved to irreversibly disorganise already available cream 

structures formed by crystallisation after cooling. Altered divergence of separately 

crystallised hydrophilic and lipophilic phases caused water to squeeze out from the gel-

matrix and thus reduced the water binding capacity of the cream.  Furthermore, the 

temperature increase in the homogeniser could cause a partially re-melting of crystalline fatty 

phase components. Hence it was suggested to reduce the final homogenisation time to a 

minimum in order to alter the cream structure as less as possible but to be attentive to the 

already available micro textures. 

It was also possible to show that the well structured lipophilic gel-network of cetearyl alcohol 

crystals tolerates a certain mechanical stress as it is applied during tube filling. Rheological 

results evidenced that the time point of filling is not at all decisive for the final cream 

properties. Hence, from an economical point of view it is suggested to fill the cream as 

quickly as possible after manufacturing without a holding time of 10 days. Then the holding 

time should be applied on the finished product and can be reduced to 5 days. This was 

shown by rheological results on verum. The mainly suspended active pharmaceutical 

ingredient (API) azelaic acid (AzA) partially dissolves within the gel-matrix. This slowly 

dissolution process leads to a drastic decrease in viscosity which reaches its plateau value 

after approx. 5 days. 

Parameters during the melting of the fatty phase components were of secondary importance. 

This was shown by initial data obtained after 10 days after processing. In order to save 

energy and time and in order to minimize the instance of chemical decomposition the melting 

time should be kept short. Further it should be favourable to maintain the melting 

temperature at the upper limit (75°C) of the default melting range (65-75 °C) in order to avoid 

occurrence of solidification of lipids when melting near the solidification temperature of 

surfactant Arlatone 983S and amphiphile Cutina CBS. 

A cooling of the hot emulsion in non-linear fashion as generally performed in production may 

add to the risk of a ‘shock’-crystallisation which inhibits the formation of a well structured 

cream-network widespread towards the continuous phase or surrounding the oil droplets. As 

an alternative, a more moderate and in particular steady cooling process with a regular 

formation of both crystalline gel-structures and evenly in the gel-matrix distributed water in 

consequence, is suggested. 
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Different API-addition/ final homogenisation temperatures did not influence the physical 

cream properties in a long time comparison. 

Unexpectedly, stability data were in contrast to the storage recommendations (<30 °C). 

Namely, cream samples were more stable during storage at 40 °C/75 % RH and even more 

stable during stress test (CT) compared to the isotherm storage at room temperature. Cream 

samples stored at 25°C/60 % RH generally loss clearly in consistency. 

In conclusion of the results of this study an optimized manufacturing process with improved 

cream properties and with reduced processing times and energy was proposed. 
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Ziel dieser Arbeit war es, den Herstellungsprozess einer O/W Modell-Creme zu untersuchen 

und den Zusammenhang zwischen den verschiedenen kritischen Herstellungsparametern 

und den physikalischen Eigenschaften der Formulierung herauszuarbeiten. Die O/W Creme 

zeigte in der Vergangenheit in seltenen Fällen Qualitätsmängel wie Konsistenzverlust, 

Abscheidung von Wasserphase oder Rekristallisationserscheinungen. Aufgabe war es 

daher, diese Instabilitäten aufzuklären und durch Modifizierung des Herstellungsprozesses 

möglichst zu beheben. Der Schwerpunkt dieser Untersuchungen lag auf der Herstellung im 

Pilotmaßstab mit Chargengrößen von 80 kg (Placebo) und 40 kg (Verum). Zusätzlich zu den 

Pilotuntersuchungen wurden Placebochargen im Labormaßstab (1,0 kg) hergestellt, sowie 

Verum- und Placebochargen aus dem Produktionsbetrieb (1000 kg) untersucht. 

Für die Charakterisierung der Modell-Creme wurden hauptsächlich mikroskopische, 

röntgendiffraktometrische, thermoanalytische, rheologische und physikalische Methoden wie 

Synärese, elektrische Leitfähigkeit, Spreitbarkeit und Mikropenetration verwendet. Zudem 

wurde die Formulierung verschiedenen isothermen Lagerungsprogrammen (25 °C/60 % rF 

und 40 °C/75 % rF) und einem Schaukeltest (+5 °C/+40 °C/75 % rF) unterzogen, um 

Rückschlüsse auf deren Kurz- und Langzeitstabilität zu ziehen. 

Rheologische Messungen, sowohl im Rotationsexperiment als auch in Oszillation waren 

hinsichtlich der Beurteilung der Cremeeigenschaften am aussagekräftigsten. Mit beiden 

Methoden konnten Änderungen in den Produkteigenschaften in Abhängigkeit des 

Herstellungsprozesses deutlich aufgezeigt werden. Zudem erwiesen sich Methoden wie 

Synärese, elektrische Leitfähigkeit und Spreitbarkeit hinsichtlich des Aufwand-Nutzen 

Verhältnisses ebenfalls als gut geeignet für die Charakterisierung der Formulierung. 

Kritische Herstellungsparameter und damit Gegenstand der Untersuchung waren 

Schmelztemperatur/Schmelzzeit; Abkühlrate; Temperatur während der Wirkstoffzugabe; 

Temperatur und Dauer der Endhomogenisierung; Standzeit der Bulkware/ des 

Fertigproduktes sowie Abfüllstress. 

Die Strukturvorstellung der O/W-Creme bildet die Grundlage für eine rationale Interpretation 

der Cremeeigenschaften in Abhängigkeit von den Herstellungsfaktoren. Als Strukturmodell 

wird ein komplexes Gelgerüst, bestehend aus visko-elastischer hydrophiler Gelphase und 

lipophiler Gelphase angenommen. Die separat voneinander auskristallisierenden Gelgerüste 

bilden eine ungeordnete flüssig-kristalline lamellare Struktur, welche sowohl die Außenphase 

durchzieht als auch die Öltröpfchen immobilisiert. Dieses Gelgerüst ist verantwortlich für das 

vorwiegend elastische Verhalten der Creme. Die O/W-Creme zeigt plastisch thixotropes 

Verhalten mit einem definierten linear viskoelastischen Bereich (< 30 Pa). Das Wasser ist in 

diesem Gelgerüst interlamellar zwischen den kristallinen Lipid-Doppelschichten gebunden, 
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mechanisch im lipophilen Gelgerüst immobilisiert, zwischen den flüssig-kristallinen Lipid-

Doppelschichten fixiert oder aber liegt als freies Bulkwasser vor. 

Die Dauer der Kalthomogenisierung beeinflusst die Cremeeigenschaften am stärksten. 

Während des Abkühlens (vor der Endhomogenisierung) kommt es zu einer gleichmäßigen 

Auskristallisierung zweier separat voneinander vorliegenden Phasen, der hydrophilen und 

der lipophilen Gelphase. Die nachfolgende Kalthomogenisierung führt zumindest teilweise zu 

einer irreversiblen Zerstörung der bereits vorhandenen Cremestrukturen. Dies bewirkt ein 

Verdrängen von Wasser aus dem Gelgerüst, was zu einer erhöhten Synäreseneigung führt. 

Zudem kann der beachtliche Temperaturanstieg im Homogenisator ein teilweises Schmelzen 

der kristallinen Fettbestandteile auslösen. Deshalb ist zu empfehlen, die 

Endhomogenisierung auf ein Minimum zu reduzieren, um die kristallinen Gerüststrukturen 

der Creme so wenig wie möglich zu verändern. 

Es konnte allerdings gezeigt werden, dass das lipophile Kristallgerüst des 

Cetylstearylalkohols einen moderaten mechanischen Stress, wie er beim Abfüllen auftritt, 

durchaus zu tolerieren vermag. Die rheologischen Ergebnisse zeigten weiterhin, dass der 

Zeitpunkt der Abfüllung nicht entscheidend für die endgültigen Cremeeigenschaften ist. Aus 

Gründen der Zeitersparnis erscheint es daher empfehlenswert, die Creme direkt nach der 

Herstellung und ohne eine Standzeit von 10 Tagen in Tuben abzufüllen. Die Standzeit sollte 

dann am Endprodukt d.h. in der Tube erfolgen und kann auf 5 Tage reduziert werden. Das 

zeigten die rheologischen Ergebnisse am Verum. Der vorwiegend suspendiert vorliegende 

Wirkstoff Azelainsäure löst sich zu einem geringen Anteil in der Gelmatrix. Dieser langsam 

stattfindende Lösevorgang führt zu einer deutlichen Abnahme der Viskosität, die nach 5 

Tagen ein Plateau erreicht. 

Die Parameter während des Schmelzvorganges der Lipidphase zeigten sich von 

untergeordneter Bedeutung. Für eine zeit- und energiesparende Herstellung, aber auch um 

eine chemische Zersetzung der Fettbestandteile zu verhindern, wird daher empfohlen, die 

Schmelzzeit deutlich zu verkürzen. Um ein Erstarren von Emulgator Arlatone 983S und 

Konsistenzgeber Cutina CBS auszuschliessen, wird zudem eine Temperatur an der 

Obergrenze (75 °C) des vorgegebenen Schmelzintervalls (65 - 75 °C) empfohlen. 

Ein nicht linearer Abkühlvorgang, wie er generell während der industriellen Herstellung 

erfolgt, kann das Risiko einer schockartigen Kristallisation mit sich bringen. Diese kann 

wiederum den ungestörten Aufbau von Gelstrukturen verhindern. Alternativvorschlag ist ein 

moderater und vor allem gleichmäßiger Abkühlprozess (0,5 - 0,75 °C/min), der eine 

gleichmässige Ausbildung der kristallinen hydrophilen und lipophilen Gelphase erlaubt und 

damit zu einer gleichmässigen Wasserverteilung innerhalb der Gelmatrix beiträgt. 
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Unterschiedliche Temperaturen während der Wirkstoffeinbringung bzw. während der 

Endhomogenisierung beeinflussten kaum die physikalischen Cremeeigenschaften in einem 

Langzeitvergleich. 

Das Lagerverhalten der Creme steht unerwarteterweise im Gegensatz zu den 

Lagerempfehlungen (< 30 °C). Die Cremeproben zeigten sich stabiler während der Lagerung 

bei 40 °C/75 % rF bzw. nach Schaukeltest (+5/+40 °C/75 % rF) im Vergleich zur Lagerung 

bei Raumtemperatur (25 °C/60 % rF). Bei 25 °C/60 % rF gelagerte Cremeproben verlieren 

generell an Konsistenz. 

Für eine Optimierung der Cremeeigenschaften wird schlussfolgernd aus den Ergebnissen 

dieser Studie ein alternativer, Energie und Arbeitszeit einsparender Herstellungsprozess 

vorgeschlagen.
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Introduction and goal 1 

1 INTRODUCTION AND GOAL 

The purpose of a semisolid’s manufacturer is to consistently produce semisolid systems with 

long term stability that have a stable microstructure. Concerning this the manufacturing 

process plays an important role in the quality of a semisolid formulation. Variations in the 

manufacturing procedures can cause different microstructures and hence changes in the 

physical cream properties. An inhomogeneous quality of the finished product is therefore the 

consequence. 

The importance of the influence of the manufacturing process on the physical properties and 

stability of a semisolid formulation has already been showed by different authors. 

Alberg (1998) and Kudlek (1996) examined the influence of the manufacturing temperature 

on the colloidal structure of semisolids. Alberg for instance varied the manufacturing 

temperature of the model system ‘Wasserhaltige hydrophile Salbe DAB’ between 70 °C 

(according DAB), 50 °C and room temperature (RT) and compared the model creams with 

regard to structural changes. The creams prepared at RT showed an altered melting 

behaviour with a lower melting enthalpy compared to creams prepared according DAB. At 

lower temperatures fatty components are dispersed by mechanical energy, fat globules 

become visible by TEM. At 70 °C all lipophilic components are molten and because of the 

higher dispersion grade fat globules are not visible in the TEM-micrograph. Creams prepared 

at 50 °C led to similar results as creams prepared at RT. A lowering of the manufacturing 

temperature led indeed to stable creams though their micro structure changed. 

Kudlek (1996) demonstrated the temperature dependent distribution of an emulsifier between 

hydrophilic and lipophilic phase. As a consequence, preparation at 85 °C yielded a lotion 

whereas at 70 °C a cream was obtained. 

The influence of the cooling rate onto the product has been multiply investigated. Timmins 

(1990) clearly showed lower melting enthalpies of creams manufactured with faster cooling 

rates which had the same quantitative composition. He reasoned the phenomenon must 

arrive from a higher organisation of molecules at slow cooling. This in consequence requires 

more energy for the phase transition. Ecclestone (1990) revealed varying formation of gel-

structures dependant on the cooling and dispersing processes. Fast cooling together with 

low dispersing leads to more fluid systems. 

Nürnberg (1968) developed a non ionic o/w cream and obtained homogeneous stable 

systems by intensive homogenisation whereas manual stirring under cooling led to unstable 

non homogeneous systems. 

Rose (1999) explained the relevance of the manufacturing technology on the colloid structure 

and stability of a cream. 



Introduction and goal 2 

Brämer (2004), Lashmar (1995) and Asche (1984) pointed out that most semisolids shortly 

after manufacturing have not obtained their final structure yet, so rheological measurements 

can lead to less reproducible and representative data. 

Folger (1994) pointed out to process parameter changes with scaling up from lab-scale to 

pilot or industrial scale. 

Furthermore creams are influenced by storage temperatures and shear forces. The gel 

structure may stiffen at lower temperatures, or soften and fluidize at higher temperatures. 

Shear thinning due to mechanical stress may break down gel structure. Creams possess 

thixotropic properties that allow recovery of the gel structure upon storage after exposure to 

shear forces. General indications of instability are the inversion of the emulsion type, 

coalescence of dispersed phase, syneresis or drop of viscosity and consequently loss of 

consistency. 

Factors inherent to cream composition related to variability of excipients as well as external 

factors such as packaging, storage time, temperature conditions and shear forces may 

induce cream instabilities (Kallioinen, 1994). 

Various parameters and their interaction complicate the interpretation of physical properties 

of semisolid systems. Altogether there is a plurality of parameters to be considered 

influencing the colloidal structure and thus the physical properties of semisolids and also 

determining their storage stability. 

 

This PhD-thesis focuses on the influence of various process parameters on the physical 

properties of a model o/w cream containing 20 % (w/w) suspended azelaic acid (AzA) as 

active pharmaceutical ingredient (API). The o/w cream, used in the treatment of acne and 

rosacea, is always a marketed product. 

In the past, deficiencies in the cream stability occurred. These deficiencies concerned low 

consistency/viscosity, separation of watery fluid and re-crystallisation of drug substance. 

Data on critical aspects of the preparation has already been assessed in the past and 

investigations on manufacturing parameters have been performed in order to ensure the 

manufacturing of a high-quality product (chapter 2.2.6.). As far as they may originate from 

the manufacturing process aim of the current study was to identify the causes of the 

mentioned deficiencies by re-investigating the formulation. The purpose was to understand 

instability problems and to resolve them at best. Special emphasis was on the most critical 

manufacturing process parameters cooling rate, homogenisation temperature and number of 

circulations and their impact on the cream properties. Studies were mainly carried out on 

pilot scale (40 to 80 kg) on placebo and verum. In view of the study’s purpose suitable test 

methods and stability programs have been established (chapters 3.2 and 3.3). 
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2 GENERAL PART 

2.1 Creams (Ph. Eur. 5) 

Creams are multiphase preparations consisting of a lipophilic phase and an aqueous phase. 

They are formed by incorporation of water into a water-absorbing ointment. The European 

pharmacopoeia (Ph. Eur. 5) distinguishes between lipophilic and hydrophilic creams. 

2.1.1 Lipophilic creams (water-in-oil creams) 

The lipophilic gel (hydrocarbon gel, oleo gel, or lipogel) represents the continuous outer 

phase of lipophilic creams. The lipophilic gel phase gives these creams their spreadability. 

They contain water-in-oil emulsifying agents such as wool alcohols, sorbitan esters and 

monoglycerides (Ph. Eur. 5). A typical lipophilic cream is the ‘aqueous wool fat ointment’ 

(DAB). Its structure is shown in figure 2-1. In finished products, these are referred to as 

ointments or rich creams (Daniels and Knie, 2007). 

 

Figure 2-1: Colloidal structure of a water-in-oil cream (from Niedner, Ziegenmeyer, 1992) 

a) Water droplet stabilised by mixed emulsifiers 
b) Crystals of excess emulsifier 
c) Lipophilic liquid with dissolved emulsifier 
d) Lipophilic gel phase 
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2.1.2 Hydrophilic creams (oil-in-water creams) 

Hydrophilic creams have as the continuous phase the aqueous phase. They contain oil-in-

water emulsifying agents such as sodium or trolamine soaps, sulphated fatty alcohols, 

polysorbates and polyoxyl fatty acid and fatty alcohol esters combined, if necessary, with 

water-in-oil emulsifying agents (Ph. Eur. 5). 

Oil-in-water creams can generally be thought of as mixtures of a hydrogel and an emulsion. 

They are complex multiple-component preparations and only rarely simple two-phase 

preparations (Ecclestone, 1990). Although the hydrogel may be formed by a polymer, it is 

more frequently formed by a swollen, liquid crystal structure of a lamellar arrangement of 

surfactants. For this purpose, hydrophilic creams contain a mixture of at least two emulsifiers 

known as ‘complex emulsifiers’, which combine hydrophilic and lipophilic emulsifiers. The 

hydrophilic component determines the emulsion type and stabilizes the dispersed oil phase. 

The lipophilic component crystallizes on its own at room temperature or together with the 

hydrophilic component, forming a framework that makes the cream easy to spread and 

stabilizes it (Daniels and Knie, 2007). An example of a typical hydrophilic cream is the 

‘aqueous hydrophilic ointment DAB’ (figure 2-2). 

 
Figure 2-2: Colloidal structure of an oil-in-water cream (from Niedner, Ziegenmeyer, 1992) 

 a) Liquid crystal, lamellar gel structure of emulsifying cetearyl alcohol 
 b) Inter-lamellar fixed water 
 c) Cetearyl alcohol-semihydrate-gel structure 
 d) Bulk water phase 
 e) Lipophilic, disperse phase 
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They consist of a bulk water phase, a dispersed oil phase and in addition a hydrophilic and a 

lipophilic gel phase. The fatty amphiphile and the surfactant form a crystalline hydrophilic gel 

phase. Water molecules enclosed between the bilayers of the hydrophilic gel phase form 

inter-lamellar water layers. Water molecules available as bulk water are in equilibrium with 

inter-lamellarly fixed water in the hydrophilic gel phase. Inter-lamellarly fixed water and free 

bulk water form the continuous phase of the o/w cream. The fatty amphiphile, which doesn’t 

fall part of the bilayers, builds up a lipophilic matrix, the lipophilic gel phase. The dispersed oil 

phase is mainly immobilized mechanically by the lipophilic gel phase (Kallionen, 1995). 

The proportion of the above-described phases of creams depends on the composition of the 

mixed emulsifier (Kònya et al., 2003). Mixed emulsifiers are composed of an ionic or non-

ionic surfactant and fatty amphiphiles. The type of surfactant alters the water binding 

mechanism in o/w creams. As fatty amphiphiles occur fatty alcohols, fatty acids or 

monoglycerides. The proportion of surfactant and amphiphile usually varies between 1:2 and 

1:20 (Eccleston et al., 1989). These mixed emulsifiers are well-known as ideal stabilizers for 

semi-solid preparations. 

The quantity of bulk and fixed water mainly influence physical properties of creams but they 

are also important criteria for drug release from o/w creams. It was assumed that increasing 

the amount of water changes the microstructure of the cream, thus affecting its release 

properties. A high penetration of the vehicle into the skin is the basis for a high availability of 

incorporated drug substances. 

Oil-in-water creams are indicated for indifferent to fatty skin and can also have a drying effect 

(Daniels, 2007). In finished products, hydrophilic creams are considered as creams. 
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2.1.3 Amphiphilic creams 

Amphiphilic creams have a bi-coherent structure, meaning that the lipophilic and aqueous 

phases are continuous (figure 2-3). They thus do not entirely conform to the definition of 

either a lipophilic or hydrophilic cream, but fall somewhere in between the two. Internal and 

external phases cannot be discerned and, given their bi-coherence, amphiphilic creams can 

be diluted with water or lipids. Most such finished products are referred to as creams 

(Daniels and Knie, 2007). An example of an amphiphilic cream is the ‘Basiscreme DAC’. 

 

 

Figure 2-3: Colloidal structure of an amphiphilic cream (from Niedner, Ziegenmeyer, 1992) 

a) Partly swollen gel structure (emulsifier phase) 
b) Completely swollen gel structure (water phase) 
c) Coherent lipid phase 
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2.2 Manufacturing 

In the following chapter and subchapters the manufacturing of o/w creams in general and of 

the model cream in particular as well as the filling process of the model cream are described. 

Thereby the appropriate equipment in lab, the pilot and the industrial scale is illustrated. 

Thereafter the critical process parameters which are supposed to affect the cream quality will 

be discussed. 

 

2.2.1 Manufacturing procedure of o/w creams in general 

Firstly the fatty phase and aqueous phase are prepared separately in the melter and mixer 

vessels. The fatty phase consists of not only solid and liquid fatty components, but also the 

fat-soluble emulsifier. The fatty phase is completely melted by heating it up to about 75 °C. 

Thereafter the fatty phase is filtered through a filter or mesh into the hot mixer by vacuum, 

pumping or gravitational force. 

Similarly, the aqueous phase is heated up to about 75 °C and passed through a filter. 

Stirring, it is added to the fatty phase in the mixer, preferably directly into the homogeniser, 

for a fast dispersion. By operating a fast stirrer and homogeniser, the inner phase (oil) is 

finely dispersed into the outer phase (water). During the subsequent, moderate, and often 

stepwise cooling process the cream must be stirred to ensure a soft cream without lumps. 

Stirrer and blades should ensure a good horizontal and vertical circulation of the mass with 

an optimal heat exchange within the product. The cooling is supported by a double jacket 

containing hot or cold water. 

Of importance is the solidification temperature of the cream. The optimal effect is obtained 

with a homogenisation during solidification because the fineness of the emulsion may be 

retained by solidification. In particular the homogeniser should be used at the beginning of 

the emulsification and during solidification (Köhler, 1992). 

During this so called ‘continental’ or ‘inversion’ method, a w/o emulsion is formed at first 

which then inverts into a o/w cream because of the increasing water phase volume. In lab 

scale this method is often used since it leads to a fine dispersion of the inner phase. On 

industrial scale the continental method is less common. There is the so called ‘English 

method’ which is exclusively used. In this method the outer phase is provided and the inner 

phase is added proportionately while stirring the outer phase. 
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More recent procedures use a low-temperature emulsification. During this energy saving 

procedure, a cold aqueous phase is dispersed into the hot fatty phase directly through the 

homogeniser. According to Funke (1972) the processing time may be reduced from 2.5 h to 

0.5 h for a 500 kg batch size. Basically for this procedure there is a high fat fraction. If the fat 

fraction is too low the temperature can fall below the solidification temperature before the 

complete water phase is added. At higher fat portions on the other hand, saving of time and 

energy is lost. 

 

2.2.2 Manufacturing procedure of the model o/w cream 

Within this PhD-thesis the model o/w cream is manufactured in a Becomix plant where the 

inner phase is added through the upper part of the mixer into the outer phase i.e. the ‘english 

method’ is used. Subsequently the mixture is homogenised by the homogeniser placed at the 

bottom of the mixer (manufacturing process on pilot scale 2.3.4.3). This procedure was not 

changed within the scope of this study. 

 

The flow chart in figure 2-4 represents the manufacturing process of the model cream. 

Processing times are adapted depending on the manufacturing scale. However, the following 

general steps described are identical for lab, pilot and industrial scale. 

The manufacturing process starts with the melting of the fatty phase components at 70 °C 

and the heating of the aqueous phase up to 70 °C. Both phases have to be free of 

granulated matters. Then, the fatty phase is added to the aqueous phase and subsequently 

homogenised at 70 °C. The emulsion is cooled down to 28 °C before the API is added 

through a suction tube. Thereafter the cream is homogenised. A microscopic check as in 

process control (IPC) is performed in order to indicate the homogeneous dispersion of the 

API within the cream. After deaeration the cream is unloaded and stored for at least 10 days 

before being filled in tubes. 
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MELTING
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HOMOGENISATION

28 °C
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AGITATION
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HOLDING TIME
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DRUG 

PRODUCT

FINISHED 
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PRODUCT

IPC: microscopic check of homogeneity

IPC: microscopic check of homogeneity

ASPIRATION

IPC: check of filling weight

 

Figure 2-4:  Flow chart of the manufacturing process of the model cream 
 API active pharmaceutical ingredient 
 IPC in process control 
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2.2.3 Manufacturing on lab scale 

On lab scale, placebo batches with a batch size of 1 kg were prepared. Firstly fatty phase 

components PCL-Liquid, Cutina CBS and Arlatone 983S were weighed in an appropriate 

beaker and melted at the predetermined temperature for the predetermined time on a heater 

with magnetic stirrer. The aqueous phase was prepared in a separate beaker accordingly. 

The preservative was dissolved in hot water. Propylene glycol and glycerol 85 % were added 

to the limpid solution. 

Thereafter the aqueous phase was homogenised while continuously adding the fatty phase. 

The mixture was homogenised for 3 min at 6000 rpm by the Ultraturrax T50 (Janke & Kunkel 

IKA® Labortechnik, Staufen, Germany) (fig. 2-5, left). The emulsion was cooled down in an 

appropriate lab mixer (fig. 2-5, right) under continuous stirring at 1400 rpm at a vacuum of 76 

cm/Hg until deaeration. The mixer consists of a container (self-made) and a stirrer RW 25 

(Janke & Kunkel IKA® Labortechnik, Staufen, Germany). After deaeration the cream was 

cooled down to RT under stirring at 400 rpm. 

The cream was filled into tidy closed polyethylene jars (Lameplast S.p.a., Rovereto, Italy) 

and stored in the climatic cabinet at 25 °C/60 % RH. Each process parameter during the 

manufacturing process was monitored and documented precisely in a manufacturing batch 

record. An example record is shown in fig. 2-6. 

 

  

Figure 2-5:  Ultraturrax T50 (left), Lab mixer RW 25 (right) 
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SIGNATURE: DATE: 08.05.06

DATE OF PRODUCTION START: 08.05.06 DATE OF PRODUCTION END: 08.05.06
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(1905082)
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(1905116)
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(1905124)

37,503,7505601102637,60
PCL liquid
(1905090)
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(1905108)
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Arlatone 983S

(1905074)
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BATCH N°: SHT 292-P04 Target: Investigation of melting parameters

Intendis Manufacturing SpA Pharmaceutical development

MANUFACTURING BATCH RECORD
Page 1 of 2

Intendis Manufacturing SpA Pharmaceutical development

MANUFACTURING BATCH RECORD
Page 2 of 2

DATE : SIGNATURE : 

08.05.06

Cool down the emulsion under stirring with the mixer RW25 until the 
cream is deaerated.
Speed of stirring: 1400 RPM Final vacuum: 76 cm/Hg

Actual temperature: 42,0 °C Actual speed: 1400 RPM
Cool down the cream under stirring at 400 RPM to ambient temperature.

Actual speed of stirring: 400 RPM
Actual temperature: 26,0 °C

IPC: microscopic check for homogeneous appearance: corresponds

5

08.05.06
Proceed the homogenisation with Ultra-Turrax T50 for 3min at 6000 RPM.
Actual time: 3 min.
Actual speed of homogenisation: 6000 RPM 

4

08.05.06Homogenise the mixture from Pos.2 with the Ultra-Turrax T50 at 6000 
RPM while adding continuously Pos.1.3

08.05.06

• Weigh in a adequate beaker:
635,0 g PURIFIED WATER

• Heat on a hot plate with magnetic stirrer up to 65-75 °C. 
Actual temperature: 72 °C

• Add 2,5 g BENZOIC ACID under stirring.

IPC: visual check for the completeness of the dissolution: corresponds

Add 156,25 g PROPYLENE GLYCOL and
18,75 g GLYCEROL 85%

• Heat under stirring up to 65-75°C
Actual temperature: 72 °C

IPC: visual check for the completeness of the dissolution: corresponds

2

08.05.06

• Weigh in an adequate beaker:
62,5 g ARLATONE 983S
87,5 g CUTINA CBS
37,5 g PCL-LIQUID

• Melt on a hot plate with magnetic stirrer at 65°C for 30min. 
Actual temperature: 65 °C
Actual time: 30 min

IPC: visual check for the completeness of the melting: corresponds

1

SIGNDATEPROCEDUREPOS

DATE : SIGNATURE : 

08.05.06

Cool down the emulsion under stirring with the mixer RW25 until the 
cream is deaerated.
Speed of stirring: 1400 RPM Final vacuum: 76 cm/Hg

Actual temperature: 42,0 °C Actual speed: 1400 RPM
Cool down the cream under stirring at 400 RPM to ambient temperature.

Actual speed of stirring: 400 RPM
Actual temperature: 26,0 °C

IPC: microscopic check for homogeneous appearance: corresponds

5

08.05.06
Proceed the homogenisation with Ultra-Turrax T50 for 3min at 6000 RPM.
Actual time: 3 min.
Actual speed of homogenisation: 6000 RPM 

4

08.05.06Homogenise the mixture from Pos.2 with the Ultra-Turrax T50 at 6000 
RPM while adding continuously Pos.1.3

08.05.06

• Weigh in a adequate beaker:
635,0 g PURIFIED WATER

• Heat on a hot plate with magnetic stirrer up to 65-75 °C. 
Actual temperature: 72 °C

• Add 2,5 g BENZOIC ACID under stirring.

IPC: visual check for the completeness of the dissolution: corresponds

Add 156,25 g PROPYLENE GLYCOL and
18,75 g GLYCEROL 85%

• Heat under stirring up to 65-75°C
Actual temperature: 72 °C

IPC: visual check for the completeness of the dissolution: corresponds

2

08.05.06

• Weigh in an adequate beaker:
62,5 g ARLATONE 983S
87,5 g CUTINA CBS
37,5 g PCL-LIQUID

• Melt on a hot plate with magnetic stirrer at 65°C for 30min. 
Actual temperature: 65 °C
Actual time: 30 min

IPC: visual check for the completeness of the melting: corresponds

1

SIGNDATEPROCEDUREPOS

 

Figure 2-6:  Example of a manufacturing batch record on lab scale 
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2.2.4 Manufacturing on pilot scale 

Lab scale conditions allow to control the process in wide limits in order to obtain a 

homogeneous quality product. If an investigation of the influences from single process 

parameters on physical, technological and stability of the cream’s properties is desired then 

manufacturing on lab scale as described before is not sufficient. 

The main focus of this PhD study was the manufacturing on pilot scale because of its 

possibility to vary process parameters under strict controlled conditions. For instance product 

temperature throughout the whole process, pressure and cooling rate were adjusted 

manually and kept in close limits. This was very important for a reliable assessment of a 

possible impact of the investigated parameter on the cream’s properties. The pilot plant is 

very similar to the industrial plant, hence close to practice. In case of changes to process 

parameters or raw materials the modified process can be scaled up easily without expecting 

significant changes in the product quality. 

Novel products usually first pass the pilot scale before industrial manufacturing starts in order 

to optimise the desired product characteristics developed previously on a smaller pilot scale 

or on lab scale. Manufacturing on pilot scale is more reasonable than industrial 

manufacturing but still near to the industrial product. Once reached the desired product 

quality and stability the product is ready for scaling up. But also at this final point difficulties 

can still occur due to changes in the product properties. 

Sometimes process parameters have to be once again adjusted. In the worst case, one must 

go back to lab scale in order to modify the composition or sequence of manufacturing. 

 

2.2.4.1 Pilot plant Becomix RW 125 

The pilot plant Becomix RW 125 (A. Berents GmbH & Co KG Mischtechnik, Stuhr, Germany) 

as shown in figure 2-7 consists of a premixing vessel B2 type MV 125 and a vacuum 

mixer/homogeniser M1 type RW 125 CD. The plant is semi-automatically operated by a 

touch screen provided by Berents captive software. All steps of the manufacturing process 

are started, terminated and controlled from there. Parameters as temperatures, pressures 

etc. are monitored and adjusted manually in order to keep the desired conditions in very 

close limits. Major specifications of the Becomix plant RW 125 are listed in table 2-1. 
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Figure 2-7:  Pilot scale plant Becomix RW 125 

 

 

Table 2-1:  Specifications of melter and mixer/homogeniser 

 Melter B2 MV 125 Mixer M1 RW 125 CD 

Batch capacity min [l] 20 30 

Batch capacity max [l] 125 125 

Stirrer diameter [mm] 150 638 

Stirrer velocity [m/s] / [rpm] 2-10 / 255-1274 0,6-3,6 / 18-108 

Homogeniser velocity [m/s] / [rpm] - 5-25 / 845-4227 
 

2.2.4.1.1 Melter 

Solid and liquid components are loaded manually into the melter through the top cover which 

is opened manually. A dissolver blade is placed non-centrically (fig. 2-8) on the bottom of the 

melter vessel. This shear tool assures an asymmetrical circulation of the product and heat 

exchange between jacket and product. Stir speed and stir direction are controllable by the 

control desk. 

Melter 

Mixer 

Control panel 
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Figure 2-8:  Melting vessel with dissolver blade 

 

2.2.4.1.2 Mixer 

The mixer vessel is equipped with a centrally placed horseshoe stirrer fixed on the top cover. 

The horseshoe stirrer ensures a homogeneous heat exchange by a mainly tangential 

movement of the high viscous mass. Its combination with blades (stainless steel) and wall 

scrapers (Teflon) facilitates the circulation of the product (fig. 2-9) by an additionally axial 

movement. This stirring mechanism assures an intensive circulation of the product in vertical 

and horizontal direction. Stirring speed and stirring direction (right, left or inversion) are 

controllable from the control panel. 

The vessel is provided with a circulation tube. Liquid excipients are added through this tube 

applying vacuum. The micronised API is added by aspiration through a suction device 

(Berents) fitted on the top cover. Mixer and melter vessels are surrounded by a double 

jacket. Heat exchange medium is hot and cold water. Melter and mixer have integrated 

temperature sensors at the bottom and in the middle of the vessels. It is possible to work with 

the jacket or with the product temperature or with both. Actual temperatures at the bottom 

and middle of the vessel can be displayed on the touch screen. Top covers are provided with 

a control window with wiper and light in order to visually control the process. 

Dissolver 
blade 
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Figure 2-9:  Mixer vessel with horseshoe stirrer, flow breakers and wall scrapers 

 

 

2.2.4.1.3 Homogeniser 

The homogeniser as generator of high shear forces serves to emulsify aqueous and fatty 

phases and to disperse the micronised API into the cream. Fineness of the emulsion and 

dispersion of solids primarily depend on the homogenisation technique and intensity. 

Normally, emulsions are homogenised in the vessel (in-line) while products having a higher 

viscosity such as ointments are homogenised in circulation by means of a circulation tube 

outside the boiler. The circulation tube connects the centred placed homogeniser at the 

bottom of the boiler with the upper part of the mixer (fig. 2-10 a). 

Starting the circulation tool of the homogenisation process the product circulates passing 

through homogeniser and circulation pipe before it comes back into the mixer. 

Homogenisation in circulation generates a particularly good rearrangement of the product. 

Flow 
breakers 

Wall 
scrapers 
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 (a) 

 (b) 

Figure 2-10: Mixer vessel with homogeniser (a); Rotor/stator system (b) 
 (from Becomix manual, Berents GmbH & Co KG) 

Homogeniser 
Rotor/Stator 

Circulation 
tube 

Mixing 
vessel 
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The homogeniser works according to the rotor-stator principle. Two different modes of 

operation are possible (fig. 2-10 b): 

 

(1) intensive homogenising during right-handed rotation with high shearing effect 

(2) intensive pump effect during left-handed rotation with low shearing effect. 

 

The cogs of the rotor are placed between two steel blades (stator). The product is directed 

centrally into the inner blade row of the rotor where flow breakers cause an intensive 

circulation. Here the product is subjected to high pressure, high shear and gravitational 

forces between rotor and stator blades. Products with low viscosity e.g. molten or aqueous 

phases pass through the annulus of 0.5 mm at a high speed creating an intensive mixing 

effect. Products with high viscosity adhere to the walls of the annulus, leading to a pressure 

increase and finally to a forced homogenisation via the circulation tube. 

Strong shear forces during the first operation mode are used to obtain the finest dispersion of 

the emulsion up to dimension smaller than 1 µm. This is fulfilled during the emulsification at 

70 °C (flow chart fig. 2-4). The second procedure is used in order to have a high throughput 

of products which are sensitive to shear force. This is the case of powdered drug substance 

which has to be dispersed homogeneously within the cream base during the final 

homogenisation step. 
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2.2.4.2 Standard procedure of manufacturing 40 kg bulk drug product 

General steps of the manufacturing process are illustrated in the flow chart in figure 2-4. 

Batch sizes of the produced pilot scale batches have been 80 kg for placebo and for 

economy reasons 40 kg for verum. 

First of all correctness of excipients, their net weight and batch numbers are checked and 

recorded. The fatty phase components are loaded manually into the melter. The melting is 

started by heating the jacket up to 75 °C in order to bring the fatty phase components 

continuously up to the desired temperature of 70 ± 1 °C. During the heating period a 

pressure of -0.7 bar (relative pressure) and a stirrer speed of 2.0 m/s are kept. When the 

fatty phase has achieved the desired temperature of 70 ± 1 °C the complete melting of all 

raw materials has to be checked. When the fatty phase is exempt from solid matters it is hold 

at 70 °C for 120 min. 

Thereupon the aqueous phase components (purified water, propylene glycol and glycerol   

85 %) are loaded into the mixer by a suction tube. During the loading phase the jacket is 

heated up to 70 °C whilst the stirrer is operated. Benzoic acid is added as powder through 

the open top cover. The aqueous phase is kept under stirring at 70 ± 1 °C until the fatty 

phase is ready to get transferred from the melter into the mixer. 

Before adding the fatty phase to the aqueous phase, the absence of undissolved product has 

to be checked. During the transfer from the melter to the mixer the fatty phase goes through 

a filter membrane of 100 µm before it reaches the aqueous phase through the upper part of 

the circulation tube. 

After mixing for 5 min at 70 °C, 1.3 m/s stirring speed, and -0.6 bar (relative pressure), the 

emulsion is homogenised in line for 10 min at the maximum speed (25.0 m/s). The vacuum is 

brought low in order to obtain a better mass flow towards the homogeniser located at the 

bottom. Thereafter the emulsion is cooled down step by step to the predetermined final 

temperature at the default cooling rate e.g. 1 °C/min. During the individual cooling steps, 

product temperature and jacket temperature must be controlled manually in order to keep the 

required parameters within close limits. Close to the final temperature the vacuum is 

increased to -1 bar (relative pressure) in order to deaerate the cream base. After halving the 

cream base (cream discharge by means of a balance) the micronised API is added by a 

special suction device made by Berents for this kind of powders. After the API-addition 

process the top cover is elevated and residues are removed carefully with a spatula from wall 

scrapers and flow breakers and added to the cream. 
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The cream is mixed for 5 min at maximum vacuum while stirring at 1.3 m/s by inversion. The 

deaerated cream circulates 8.1 times at maximum homogenisation speed of 25.0 m/s. This 

corresponds to 7.5 min of homogenisation time. During homogenisation, stirring is carried out 

in right direction and vacuum is reduced. This procedure facilitates the mass flow towards the 

homogeniser at the bottom of the mixer. Due to high shear forces during homogenisation the 

product tends to get heated. Therefore temperature has to be monitored carefully and the 

jacket of the mixer has to be cooled sufficiently to avoid a temperature rise above the 

tolerated limit. 

The cream is mixed for further 10 min at maximum vacuum - 1 bar (relative pressure) in 

order to remove residual air. Samples are taken from the mixer by homogenising in left 

direction pumping mode through the unloading tube. After a further cold homogenisation for 

5 min and further mixing for 10 min the residual cream is unloaded through the homogeniser 

and the yield is determined. Placebo and verum, sampled after different duration of 

homogenisation were filled into tidy closed polyethylene jars (Lameplast S.p.a., Rovereto, 

Italy) and stored at 25 °C/60 % RH until investigation. 

Indispensable for the manufacturing according to GMP is the manufacturing batch record. In 

the manufacturing batch record all parameters together with eventually deviations from the 

procedure during the manufacturing are acquired. Actual parameters recorded automatically 

during the entire operating process further are plotted by a chart recorder (q.v. chapter 

2.2.4.6 Logging of data). 

 

2.2.4.3 Sample testing 

Bulk product samples were analysed after 10 days storage at 25 °C/60 % RH by the 

methods described in chapter 3.2. This relaxation period of 10 days was kept uniformly for 

any bulk or finished product batch from lab, pilot and industrial scale. 

 

2.2.4.4 Logging of data 

Separately recorded protocols for melter and mixer include each activity carried out during 

the manufacturing process. The time-dependent course of process parameters during the 

whole manufacturing process for instance jacket temperature, temperature of the product in 

the middle and at the bottom of melter and mixer, pressures, speeds of stirrer and 

homogeniser is automatically plotted by a chart recorder. Figure 2-11 shows an example-

record which has been partially redrawn from the original. The product temperature on the 

bottom of the mixer was not redrawn. It ranged consistently 1 °C below the product 

temperature in the middle of the mixer. Also pressures in melter and mixer as well as speed 

of the dissolver blade in the melter were not redrawn. 



General part 20 

 

Figure 2-11: Partially redrawn chart record exemplarily for batch SHT056-P10 

 1 Product temperature in the middle of the mixer 
 2 Jacket temperature 
 3 Product temperature at the bottom of the mixer (not redrawn) 
 4 Stirrer speed (scale EIR 135) 
 5 Homogeniser speed (scale EIR 145) 

 

2.2.4.5 In process controls 

During the manufacturing process, In Process Controls (IPC) were conducted in order to 

guarantee that the process proceeds within defined limits. IPCs assure a homogeneous 

product quality which meets all GMP relevant requirements. 

IPCs are the control of temperatures, stirring and homogenising speeds, sequence of 

addition of excipients, times etc. Excipients are controlled by two people for labelling and 

quantity. Machines and tools are controlled regarding cleanliness by checking the 

corresponding label which are taken from the tool and added to the documentation of the 

batch. In this way the previous product is documented for each machine in case of cross 

contaminations. Results are signed manually in the batch documentation. Further, 

microbiological controls of manufacturing ambient are carried out. The microbiological 

requirements for rooms during manufacturing pharmaceuticals for topical use are maximal 

102 viable germs/m3. Ph. Eur 5 defines microbiological requirements for various 

pharmaceutical dosage forms. Dosage forms for topical application must fulfil the following 

requirements of microbial count: max. 102 aerobic bacteria and fungi, max. 10 

enterobacteriaceae, no pseudomonas aeruginosa and no staphylococcus aureus/g or ml. 

Also the personnel must fulfil the GMP requirements by wearing the appropriate clothes. 
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2.2.4.6 Filling into the primary packaging material 

Bulk batches from pilot and industrial manufacturing were filled into 30 g aluminium tubes 

(Linhardt Gmbh & Co. KG, Viechtach, Germany) on the fully automatic filler Tonazzi Colibri 

601 (V. Tonazzi & Co Srl, Milan, Italy). This filling line (fig. 2-12) consists of a stainless steel 

hopper with stirrer, auto tube loader, tube orientation station, stations of tube holders with 

injector unit, closure gripper for heat sealing, grippers for folding and batch number imprinting 

and ejector unit. The injector is fed by a piston via dosing pump. The filling station is 

enclosed by a perspex safety cabinet. 

 

 

Figure 2-12: Fully automatic filling line Tonazzi Colibri 601 

 

Figure 2-13 shows tube supply and tube filling (a), whereas tube sealing at 260 °C, double 

folding and batch number imprint is illustrated in (b). About 200 aluminium tubes (Linhardt) of 

each batch were filled and stored horizontal in cartons at 25 °C/60 % RH before analysing. 

Hopper with stirrer 

Control 
panel 

Auto 
tube 

loader 

Filling 
station 
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 (a) 

 

 (b) 

Figure 2-13: Filling process (a); Sealing, folding and imprint (b) 
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2.2.5 Manufacturing on industrial scale 

2.2.5.1 Scaling up 

The scaling up normally starts with small quantities of about 1 kg in lab and proceeds then 

via 50/100 kg batch size to the industrial batch sizes of usually 500 to 1000 kg. The utilised 

machines should be geometrically and energetically identical. Vessels, homogeniser and 

stirrer tools shall be identical in shape, type and dimension in order to apply the conditions to 

the next bigger scale and to assure identical product properties (Liebermann, 1998). 

At scaling up usually recipe and process are optimised and validated. This might include 

slight quantitative changes in the formulation, determination of critical parameters and 

optimal process times, temperatures, stirrer speeds and physical product properties. 

Difficulties might occur due to longer cooling times and in consequence longer stirring and 

homogenisation times especially if the formulation is shear sensitive. This may come along 

with a lower viscosity. Further the cooling rate influences cream structuring and hence can 

influence drug release (Köhler, 1992). Finally product and process have to be passed to the 

manufacturing department. Here the suitability of the product for manufacturing routine will 

be revealed. 

 

2.2.5.2 Scaling down from Becomix RW 1200 to RW 125 

The manufacturing procedure of the model cream was validated the first time in 1990 on a 

Becomix pilot scale plant. For the current study of the manufacturing process of the model 

cream, the validated manufacturing procedure on the industrial scale plant Becomix RW 

1200 has been adapted to the pilot scale plant Becomix RW 125. The Becomix RW 125 

corresponds as far as possible to the Becomix RW 1200 as far as geometry and dynamics 

are concerned. Instead of a batch size of 1000 kg, batch sizes of 40 kg and 80 kg have been 

produced. Assembling and functionality of the machines are rather identical. There are some 

differences regarding homogenisation and stirring speeds due to the different diameters of 

mixer vessel, stirrer and homogeniser. The technical specifications of both plants are listed in 

table 2-2. 

The possibility of the sequence control on the Becomix RW 125 is favourable for studying the 

manufacturing process because all process parameters can be set and adjusted manually. 

This operating mode allows keeping the desired manufacturing conditions at any time of the 

process. In comparison, the Becomix RW 1200 is controlled fully-automatically and a 

spontaneous parameter adjustment is not possible. 
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Table 2-2:  Technical specifications of RW125 and RW1200 

Parameter RW125 RW1200 

Diameter anchor stirrer [mm] 638 1236 

Diameter homogeniser [mm] 113 166 

Diameter agitator blade melter [mm] 150 150 

 

2.2.5.3 Optimization of manufacturing conditions on pilot scale RW 125 

In order to obtain a fine emulsion the homogenisation was carried out at the maximum speed 

possible (25.0 m/s pilot scale vs 26.0 m/s industrial scale). Stirrer speeds of melter and mixer 

were reduced on pilot scale because of the lower filling level. The homogenisation times 

during cold homogenisation were transferred 1:1 from RW 1200 with 1000 kg batch size to 

RW 125 with 80 kg batch size. Passing from 80 kg to 40 kg batch size on the same pilot 

scale homogenisation times have been halved. Temperatures and pressures were kept 

identical for both manufacturing scales. Whereas on pilot scale manufacturing temperatures 

and times were kept strictly in close limits due to investigation issues on industrial scale they 

range to much wider limits (table 2-3). The cooling rate on pilot scale was homogeneous 

whereas on industrial scale (chapter 4.4.3) a non-linear profile resulted. 

 

Table 2-3:  Manufacturing process parameters of pilot and industrial scale 

Parameter Pilot scale 
(80kg) 

Industrial scale 
(1000kg) 

Melting time [min] =120 120-210 

Melting temperature [°C] 70 ± 1 70 ± 5 

Stirrer speed melter [m/s] 2.0 7.5 

Mixing time before hot homog. [min] 5 10 

Homogenisation time [min] 
Homogenisation speed [m/s] 
Homogenisation temp. [°C] 

10 
25,0 

70 ± 1 

10 
26,0 

70 ± 5 

Deaeration time [min] 5 30 
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Continue Table 2-3: Manufacturing process parameters of pilot and industrial scale 

Stirrer speed mixer [m/s] 
during cooling and homog. 

during addition and discharge 

 
1.3 
0.6 

 
2.5 
1.0 

Homogenisator speed unload [m/s] 6.8 10.0 

Duration of homogenisation [min] 
1st (cold) 
2nd (cold) 

 
15 / 7.5 (40kg) 
10 / 5 (40kg) 

 
15 
10 

Cooling rate [°C/min] (std) 1.0 (linear) 0.85 (non-linear) 

Cooling steps [°C] 

Placebo 

70-60 
60-45 
45-40 
40-28 

Verum 

70-60 
60-50 
50-40 
40-30 

 

70-60 
60-45 
45-40 
40-28 

Unload temperature [°C] (std) 28 ± 1 30 ± 1 28 ± 2 

 

 

2.2.5.4 Determination of circulation times 

Within this experiment the respective final homogenisation conditions on pilot and industrial 

scale (table 2-4) were simulated. The number of circulations was determined on placebo 

(pilot scale) with a batch size of 80 kg at a product temperature of 28 °C. While 

homogenising in circulation at a speed of 25.0 m/s four samples were withdrawn from the 

circulation tube during a period of 10 s and weighted. The output weight/min was converted 

into the number of circulations/min (circulation times) applied to the batch size of 80 kg. A 

batch of 80 kg circulates 8.1 times during first homogenisation and 5.4 during second 

homogenisation (13.5 total circulation times). 

The determination of circulation times on RW 1200 was performed with 1000 kg purified 

water instead of the model cream. Density of the product was neglected. Usually 

homogenisation was operated under low pressure (0.3 bar below atmosphere pressure). For 

this purpose at atmosphere pressure (1.01 bar) was operated in order to guarantee that the 

circulation tube at each time was filled with the product. 
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Table 2-4:  Determination of circulation times on Becomix RW 125 and RW 1200 

Parameter Unit RW 125 RW 1200 

Product - Placebo Purified water 

Product temperature [°C] 28 28 

Over pressure [bar] 0 0 

Sampling time [s] 10 10 

Homogeniser circumferential speed 
 speed 
 direction 

[m/s] 
[rpm] 
[L/R] 

25.0 
4227 

R 

26.0 
2992 

R 

Stirrer circumferential speed 
 speed 
 direction 

[m/s] 
[rpm] 
[L/R] 

1.3 
39 
R 

2.5 
38 
R 

Batch size [kg] 80.0 1000.0 

1 [kg] 6.77 88.0 

2 [kg] 7.26 89.0 

3 [kg] 8.00 88.0 
Sample outload 

4 [kg] 6.86 87.0 

Mean [kg] 7.22 88.0 

sd [kg] 0.56 0.8 

Mean output/min [kg] 43.34 528.0 

Number of circulations /min (total batch) - 0.54 0.53 

Total time [min] 15 10 15 10 

Number of circulations (total batch) - 8.1 5.4 7.9 5.3 

 

The times of circulations on pilot and on industrial scale are almost identical. During the final 

homogenisation of 15 min the entire mass circulates about 8 times and additional 5 times 

during further 10 min of cold homogenisation. This experiment confirmed the equivalent 

conditions during final homogenisation between both manufacturing scales. Hence industrial 

and pilot scale can be considered as comparable. 
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2.2.6 Earlier investigations on the formulation 

Numerous factors during the life-cycle of a semisolid drug product can influence its 

physicochemical and stability properties. Different supplier’s excipients, active ingredients 

with different levels of micronisation, variations in the manufacturing techniques or storage 

conditions might alter the cream quality. Within the complex manufacturing process of a 

semisolid system there are a lot of parameters which might influence the properties of the 

final cream and which consequently must be considered as quality determiners. 

 

2.2.6.1 Critical parameters subject to investigation 

During the formulation development, several critical parameters have already been 

assessed. These investigations concerned: 

 

(1) Particle size and surface charge of the micronised azelaic acid 

(2) Influences from the consistency agent Cutina CBS and 

 the emulsifier Arlatone 983S on the cream consistency 

(3) Homogenisation temperature during hot homogenisation 

(4) Holding time of the bulk product 

(5) Final homogenisation time on verum regarding homogeneity of the API 

(6) Addition mode of the API and mode of unloading the cream 
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3 MATERIALS AND METHODS 

3.1 Materials 

3.1.1 Composition of the formulation 

The o/w cream is composed as shown in table 3-1. The outer aqueous phase of the cream 

besides purified water contains propylene glycol, glycerol 85 % and the water soluble 

preservative. The inner fatty phase consists of emulsifier, consistency agent and emollient. 

The micronized azelaic acid (AzA) is suspended within the oil in water cream base. 

 

Table 3-1:  Composition of the o/w cream (verum and placebo) 

Excipient Verum % (w/w) Placebo % (w/w) 

Azelaic acid micronized 20.0 - 

Benzoic acid 0.2 0.250 

PEG-5-glycerylstearate 
(Arlatone 983S) 5.0 6.250 

Mixture of glycerylstearate, 
cetearylalcohol, cetylpalmitate 

and cocoglycerides (Cutina CBS) 
7.0 8.750 

Cetearyl octanoate 
(PCL-liquid) 

3.0 3.750 

Propylene glycol 12.5 15.625 

Glycerol 85% 1.5 1.875 

Purified water 50.8 63.500 

 

3.1.2 Active pharmaceutical ingredient 

Micronized azelaic acid (Schering AG, D-Berlin), chemical name heptane-1,7-dicarboxylic 

acid (fig. 3-1) is a white crystalline powder. It is used in the treatment of acne and rosacea 

because it inhibits the growth of propioni bacteria. 

The main fraction is suspended in the formulation. The melting range according USP, class 

Ia is 105-110 °C. The polymorph azelaic acid is present in its α-modification, less than 5 % 

occur as β-modification. The solubility of azelaic acid in water is stated with 2.4 g/l at 20 °C 

(Aldrich). The bibasic acid dissociates in two steps, respective dissociation constants at 25 

°C are pk1 4.53 and pk2 5.33. 
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Figure 3-1:  Formula of azelaic acid (AzA) 

AzA shows notable surface activity. It lowers the surface tension of purified water by about 

12 mN/m. The surface tension of aqueous azelaic acid solution was measured with 60 mN/m 

(chapter 3.2.9). The surface tension of purified water is stated with 72.8 mN/m at 20 °C 

(Remington). The BET- surface of AzA crystals was measured with 2.4 m2/g (chapter 3.2.15). 

Particle size of the API in the cream matches requirements when no particle is bigger than 

60 µm and less than 30 particles between 40 and 60 µm (referred to one representative 

sample of 2x2 cm). 

 

3.1.3 Excipients 

 

Table 3-2: Excipients of the o/w cream, suppliers and function 

Substance Supplier Function 

Arlatone 983S Brenntag, D-Mühlheim/Ruhr Non-ionic emulsifier 

Cutina CBS Cognis, D-Düsseldorf Co-emulsifier 

PCL-liquid Symrise, D-Holzminden Emollient 

Propylene glycol BASF, D-Ludwigshafen Moisturizer 

Glycerol 85% Hedinger, D-Stuttgart Moisturizer 

Benzoic acid Merck, D-Darmstadt Preservative 

 

3.1.4 Packaging material 

3.1.4.1 Jars 

Bulk product samples (BP) were stored in tidy closed 500 g polypropylene jars (Lameplast 

S.p.a., Rovereto, Italy). 

 

3.1.4.2 Tubes 

Finished drug product samples (FP) were stored in 30 g aluminium tubes with a coating of 

non-porous epoxy resin (Linhardt Gmbh & Co. KG, Viechtach, Germany). 
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3.2 Methods 

3.2.1 Spreadability 

Spreadability measurements were performed at 25 °C (in triplicate). A plate with holes of 15 

mm diameter and 3 mm height was used. Samples were filled in the holes and smoothed out 

by means of a spatula. Thereafter the plate was removed. A round Plexiglas plate (∅ 80 mm; 

20 g) was placed centrically onto the cream and a weight of 200 g was placed onto the plate. 

After 3 minutes the diameter of the spread cream was measured by a ruler in two directions 

perpendicular to each other and accordingly the circular area [mm2] was calculated by A = 

π/4 d2. Typical values for creams as mentioned in the literature range from 500 to 4000 mm2. 

3.2.2 Syneresis (bleeding) 

Cream samples (in triplicate) with 15 mm diameter and 3 mm height were gently positioned 

onto a filter paper (Bench Guard Standard, Bibby Sterilin Ltd., Stone, Staffordshire, England) 

with a high absorbent upper surface, capacity 800 ml/m2. After 3 hours at 25 °C/60 % RH the 

diameter [mm] of the leaked fluid was measured and accordingly the circular area [mm2] was 

calculated by A = π/4 d2. 

By scattering water soluble methylene blue crystals onto the cream barrel they dissolved in 

the cream and coloured the leaked fluid blue. By scattering fat soluble sudan red crystals 

onto the cream they remained on the cream without colouring the leaked fluid. 

3.2.3 Electrical conductivity 

Electrical conductivity was measured in µS/cm (in triplicate) using a CDM80 conductivity 

meter equipped with the CDC241-9 glass conductivity cell for viscous media (Radiometer 

Copenhagen, Denmark) at a product temperature of 25 °C. 

3.2.4 Micropenetration 

By micro-cone penetrometry according to Klein (Ph. Eur. 5) the depth of immersion of a 

micro-cone during the runtime of 5 s was measured. The testing kit (‘Prüfsatz nach Klein’) 

consists of a micro-cone (7 g), a plunger (16.8 g, length 116 mm) and collecting vessels 

(volume 4 ml). The samples (in triplicate) were placed into the collecting vessels by means of 

a spatula without applying any significant shear. The cream was kept during 1 h at 25 °C in 

the collecting vessels in the thermostat Haake DC1 (Haake Mess-Technik GmbH u. Co, 

Karlsruhe, Germany). Afterwards the measurement was performed with the penetrometer 

Petrotest PNR 10 (Petrotest Instruments GmbH + Co. KG, Berlin, Germany). The immersion 

depth [mm] was tripled and expressed in mm*10-1. 
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3.2.5 Macroscopic test 

The macroscopic appearance was judged visually on the spread cream. 

3.2.6 Microscopy 

Samples were examined microscopically by the transmitted light microscope Zeiss Axioscop 

20 (Carl Zeiss, Oberkochen, Germany) equipped with a polarisation device and using a 

quartz red filter. The overall magnification was 200. Microscopic pictures were taken by the 

colour video camera JVC TK-1070E (JVC, Tokyo, Japan) and printed by the video printer 

Polaroid TX-1100-4 (Polaroid GmbH, Offenbach, Germany). 

3.2.7 Differential scanning calorimetry (DSC) 

DSC-analyses were performed with a DSC30 (Mettler Toledo GmbH, Giessen, Germany) in 

triplicate. Samples of 8-10 mg were filled in an aluminium pan using a 1 ml U-100 insulin 

syringe without needle (Terumo Europe N.V., Leuven, Belgium). The sealed aluminium pan 

(40 µl) was heated from 25 to 100 °C by 10 °C/min. Normalized melting enthalpies [J/g] and 

onset temperatures [°C] were evaluated with the Stare software (Mettler Toledo GmbH, 

Giessen, Germany). 

3.2.8 Thermogravimetric analysis (TGA) 

Thermo-gravimetric measurements were carried out in triplicate using a TG50 thermo 

balance in nitrogen atmosphere with a flow of 200 ml/min in an aluminium pan (40 µl) without 

lid. Samples of 8-10 mg were filled into the pan as for DSC-measurements and heated from 

25 to 100 °C by a heating rate of 5 °C/min. The mass loss [%] referring to the overall sample 

weight was calculated by means of Stare software using the 1st derivate (DTGA-curve) of the 

TGA-curve. 

3.2.9 Tensiometry  

The surface tension of aqueous azelaic acid solutions was measured with the ring-

tensiometer Krüss K12 (Krüss GmbH, Hamburg, Germany). About 500 mg azelaic acid were 

dissolved in 90 ml purified water and left for 4 hours in an ultrasonic bath. Then the surface 

tension was measured during 1000 s. Results are mean values from measurements which 

were performed in triplicate. Surface tension of purified water is 72.8 mN/m at 20 °C 

(Remington). 
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3.2.10 X-ray diffraction 

3.2.10.1 Wide angle X-ray diffraction (WAXD) 

Samples were placed into a sample carrier of aluminium and measured with the goniometer 

PW1050/25 (Philips, Kassel, Germany). The goniometer was pursued on the x-ray generator 

PW 1730 with the x-ray tube PW 1877/3 (Ni-filter; CuKα-radiation, λ = 0.154 nm; 45 kV; 

anode power 20 mA). The measurement was performed by automatic powder diffraction at a 

run time of 6 hours. From the diffraction angle theta (Θ 2-50 °) the inter-molecular distances 

were calculated according to Bragg’s law: nλ = 2 d sinθ (λ: wavelength of X-ray; Θ: half the 

scattering angle; d: distance; n: order of reflection). 

 

3.2.10.2 Small angle X-ray diffraction (SAXD) with Kiessig OED 

Samples were placed into a cubical sample carrier (TU Braunschweig, Germany) between 

two x-ray amorphous foils of Kapton (Krempel, Vaihingen, Germany). Interferences were 

detected by a Kiessig camera OED-50 (Braun, Munich, Germany). To avoid any effects of 

diffusion the measurement was performed at a pressure of 4 mbar, the measuring time was 

between 800 and 1000 s. From diffraction angle theta (Θ <2 °) the inter-layer spacings were 

calculated according to Bragg’s law. 

Devices: 

X-ray generator   : PW 1730 (Philips GmbH) 

X-ray tube    : PW 2253/11 (Philips GmbH) 

Acceleration voltage  : 40 kV; anode power 35 mA 

Radiation    : CuKα, (λ = 1.5418 Å) 

Detection    : OED-50 (Fa. M. Braun, D-München) 

Analysator    : MCA 8100 (Canberra Electronic, Frankfurt/M.) 

Resolution    : 24.5 channels/mm 

Distance sample-detector : 29.5 mm 

Gas     : Argon/Methan 90:10 

3.2.11 In vitro release 

For in vitro release tests the MicroetteTM topical & transdermal diffusion cell system 57-6M 

(Hanson Research, Chatsworth, USA) consisting of a Franz’ cell system Variomag 

Telesystem of 6 cells, a magnetic stirrer Variomag Telemodul 40S (600 RPM) and a water 

bath Polyscience was used. 
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Test conditions: 

Membrane: Cuprophan® flat membrane Type 150M (Membrana GmbH, Wuppertal, 

Germany), regenerated cellulose, 11.5 µm thick, pore diameter 0.005 

µm 

Franz’ cell: acceptor volume 7 ml 

Matrix volume 282.7 mm3; area of release 176.7 mm2 

Acceptor medium: phosphate buffer 0.066M, pH 8.5 

9.0 g KH2PO4 and 2.5 g NaOH (Merck) were dissolved in 1 l purified 

water, degased in the ultrasonic heated water bath Bransonic 5200 

(Branson Ultrasonics corporation, Danbury, USA) and filtrated by a 0.45 

µm regenerated cellulose membrane filter 

The cream was filled into the matrix on the membrane of the Franz’s cell. In vitro release 

tests were conducted during 6 h at 32 °C. After 30, 60, 120, 180, 240, 300 and 360 min 0.5 

ml of acceptor medium were sampled by means of a 1 ml U-100 insulin syringe (Terumo 

Europe N.V., Leuven, Belgium) and replaced by buffer solution. 

Azelaic acid concentrations were analysed by HPLC 200LC and the UV-VIS detector series 

200 (Perkin Elmer, Shelton, USA). Peak identification and evaluation were performed by 

Turbochrom software Workstation 6.1 (Perkin Elmer Instruments, Norwalk, USA). 

Concentrations of azelaic acid were calculated using external standard solutions of azelaic 

acid in phosphate buffer solution 0.066 M; pH 8.5. The coefficient of regression was              

> 0.9999. Samples were acidified with ortho-phosphoric acid (Merck) in order to maintain a 

pH < 4. 

HPLC conditions: 

Stationary phase: Bondapak C18; 300 x 3.9 mm, 10 µm (Waters, Massachusetts, USA) 

Mobile phase: acetonitrile for chromatography (Merck) and sodium 

dihydrogenphosphate monohydrat aqueous solution 1.38 % (w/v); 

200:800 (v/v) 

13.8 g of NaH2PO4*H2O were dissolved in 1 l purified water, degased, 

filtrated and mixed with CH3CN 

Detector: UV/VIS detector series 200 (Perkin Elmer, Shelton, USA), 200 nm 

Flow rate: 2.0 ml/min 

Retention time: 6 min 

Injection volume: 20 µl (double injection) 

Wavelength: 200 nm 
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3.2.12 Rheology 

Rheological measurements were performed with a Haake RheoStress RS600 (Thermo 

Electron, Karlsruhe, Germany) using a plate/plate geometry (rotor diameter 35 mm). The gap 

between rotor and stator plate was generally set to 300 µm based on the biggest particles of 

about 80 µm found by microscopy. Product and measuring temperature were kept at 20 ± 0.5 

°C by the temperature device Haake DC50 (Thermo Electron, Karlsruhe, Germany) and the 

water bath Haake K10 (Thermo Electron, Karlsruhe, Germany). All parameters during 

rotation and oscillatory experiments were evaluated using Haake RheoWin 3.23 software 

(Thermo Electron, Karlsruhe, Germany). 

 

3.2.12.1 Rotation experiment 

3.2.12.1.1 Flow curve 

Flow curves were recorded in duplicate under controlled shear rate (CR) after pre-shearing 

at 100 1/s for 60 s. 

Upwards curve: CR, γ
•

 0-400 1/s, 120 s, 30 data, linear 

Downwards curve: CR, γ
•

 400-0 1/s, 120 s, 30 data, linear 

Hysteresis [Pa/s] between upwards and downwards curve and the apparent shear viscosity 

ηa [mPas] were calculated by the software at the apex of the flow curve at a shear rate of 400 

1/s. 

3.2.12.1.2 Yield point 

The yield point was recorded in duplicate under controlled shear stress (CS). During 

increasing shear stress τ the deformation γ [-] was measured. As corresponding yield point 

the bending point of the deformation was calculated by the software. 

CS, τ 0.03-200 Pa, 120 s, 120 data, linear 

 

3.2.12.2 Oscillatory measurements 

Oscillation measurements (single) were performed within the linear-viscous-elastic (LVE) 

range. After a waiting time of 300 s complex modulus G* [kPa], storage (elastic) modulus G’ 

[kPa], loss (viscous) modulus G’’ [kPa] and phase shift δ [°] were recorded during an 

oscillating period of 120 s. The respective averages were calculated from 10 data points. 

CS, waiting time 300 s, τ 10 Pa, f 1 Hz, 120 s, 10 data 
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3.2.13 Scanning electron microscopy (SEM) 

Samples of micronized azelaic acid were sputted fourfold with gold for 60 s by a sputter-

coater (BioRad, Munich, Germany) applying a current of 20 mA and an acceleration voltage 

of 2.1 kV. Samples were characterised by SEM with the Zeiss microscope DSM 940 (Zeiss, 

Oberkochen, Germany) using an acceleration voltage of 50 kV. SEM micrographs were 

taken at 1000-, 2000- and 5000-fold magnification with a frame grabber card Board version 

3.1 and the Orion software version 5.11 (E.L.I., Brussels, Belgium). 

3.2.14 Surface analysis according Brunauer, Emmet, and Teller (BET) 

The surface of micronised API was measured with a Beckman Coulter (Beckman Coulter 

GmbH, Krefeld, Germany). Measurements were carried out in nitrogen atmosphere at 40 °C 

for 360 min. Data were evaluated by SA3100 Results software, version 1.00 (Beckman 

Coulter, Krefeld, Germany). 

3.2.15 Storage conditions 

Long term and accelerated storage conditions were chosen according to International 

Conference for Harmonization (ICH) guidelines (EMEA, 2003). 

 

3.2.15.1 25 °C / 60 % RH (long term) 

Samples were stored at 25 °C / 60 % RH according ICH Guidelines for 6 months in a 

programmable climatic cabinet AS Biomedical division (Angelantoni Industrie SpA, Massa 

Martana, Italy). Samples were analysed after 1, 3 and 6 months. 

 

3.2.15.2 40 °C / 75 % RH (accelerated) 

Samples were stored according ICH Guidelines for 1 month, 3 and 6 months in a 

programmable climatic cabinet ACS (Angelantoni climatic systems, Massa Martana, Italy) at 

40 °C / 75 % RH. 

 

3.2.15.3 Stress test at +5 °C / +40 °C / 75 % RH 

Temperature during stress tests was changed from +5 °C to +40 °C/75 % RH every 24 hours 

performing 3 cycles overall (1 cycle takes 48 h). 

Bulk product samples were stored in tidy closed plastic containers and finished product 

samples in the appropriate tubes (chapter 3.1.4). Samples stored at 40 °C/75 % RH and 

samples from cycle test were stored for 24 hours at 25 °C/60 % RH before analysing. 

The typical temperature-time-curves during cycle test, long term and accelerated storage are 

shown in figure 3-2. 



Materials and methods 

 

36 

0

5

10

15

20

25

30

35

40

45

0 48 96hours

°C

148

 

 Figure 3-2: Temperature-time-curves during storage 

  --x-- 25 °C / 60 % RH up to 6 months 
 --o-- 40 °C / 75 % RH up to 6 months 
 -   -  stress test +5 °C / +40 °C/75 % RH 
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4 RESULTS AND DISCUSSION 

First of all, a structural characterisation of the model cream is provided. Afterwards, the main 

focus will be on the understanding of the influence of selected critical manufacturing 

parameters on the physical properties of the cream (chapter 4.4). Finally, the emphasis is on 

changes within the cream properties monitored while storage at different conditions (chapter 

4.5). 

 

4.1 Structural characterisation of the model cream 

In the following a general characterisation of the structure of the o/w cream is provided by 

means of X-ray diffraction, thermo-analytical, microscopic and rheological measurements. 

4.1.1 Characterisation by X-ray diffraction 

4.1.1.1 WAXD 

X-ray diffraction in the wide-angle region (2 theta=2-50°) provides information regarding the 

short-range ordering of molecules. WAXD techniques are able to distinguish between 

crystalline and liquid-crystalline structures. It is known that hydrocarbon chains in liquid state 

show a diffuse band termed as halo with its centre at 0.45 nm and additional patterns within 

the small-angle region. In contrast to the liquid crystalline phase, the α-crystalline gel phase 

(Lβ) is characterised by a single sharp reflection at 0.415-0.42 nm (Savic et al., 2005). 
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Figure 4-1:  WAXD pattern of placebo, batch # 41166 
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Figure 4-1 depicts the WAXD pattern of placebo exemplarily for the model cream (WAXD 

patterns of placebo and verum are identical). The halo, typical for liquid-crystalline phases, 

was detected in all samples. A weakly pronounced single reflection at 0.415 nm could be 

detected which could indicate the presence of α-crystalline gel-phase. 

Savic (2005) suggested that, during emulsification a certain insertion of alkyl chains of 

medium chain triglycerides from the oil phase between the alkyl chains of mixed 

surfactant/fatty alcohol occurs. This disordered liquid-crystalline structure of lamellar type is 

placed either at the border of the oil droplets or randomly widespread towards the continuous 

phase. 

In figure 4-2 the wide-angle X-ray diffractogram of verum is depicted. The halo and thus 

liquid crystalline structures are overlapped by interferences of azelaic acid at 2 theta [°]: 5.6 – 

8.5 – 19.1 – 22.1 – 23.6 – 28.3 which is mainly present in the α-modification (β-modification = 

5 %). 

 

Im
p

u
ls

e
[c

ts
]

0

1500

3000

4500

6000

0 5 10 15 20 25 30 35

2 Theta [°]
 

Figure 4-2:  WAXD pattern of verum, batch # 41166 
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4.1.1.2 SAXD 

X-ray diffraction in the small-angle region (2theta <2°) is able to detect the interlayer 

distances of the liquid-crystalline gel framework (Krischner, 1974, Führer, 1996, Kudlek, 

1996). Thereby the broadening of the primary interference on particle surfaces is analysed. 

SAXD patterns of verum and placebo are identical. The small angle X-ray pattern is 

exemplarily depicted for placebo batch # 41166 in figure 4-3. A clear interference (first order) 

occurs in channel 112 corresponding to the repeated distance of 9.60 nm. After the first order 

peak follow some sloping interferences between channel 150 and channel 225. They 

describe the drop of the primary peak. The second clear interference appears between 

channel 262 and channel 276 corresponding to the repeated distance of 4.62-5.05 nm. 
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Figure 4-3:  SAXD pattern of placebo, batch # 41166 

 

Literature describes typical orders of interferences for each kind of crystalline structure 

(Müller Goymann, 1981, Führer and Kudlek, 1996). Whereas the hexagonal phase I shows 

interferences in the order of 1:1/√3:1/√4:1/√7:1/√12, lamellar phases show interference 

maxima in the ratio of 1: 1/2: 1/3: 1/4: 1/5. The interference maxima 9.60 nm and 4.83 nm 

(averages) could be the hint for a lamellar structure of the o/w cream with the defined inter-

lamellar spacing d of 4.83 nm. 
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But compared to other o/w creams found in literature 4.83 nm would signify a quite small 

inter-lamellar spacing pointing to a limited water binding capacity in between the double 

layers (Kudlek, 1996, Bouwstra et. al, 1991). In addition, further order interferences in the 

ratio 1/3:1/4 etc. are missing and thus this model of colloidal structure alone is less 

reasonable. 

However, the first interference may be due to fully hydrated lamellar liquid crystals 

(hydrophilic gel-phase). The second interference could be due to cetearylalcohol semi -

hydrates within the lipophilic gel-phase (Eccleston et al., 2000). It may be expected that 

mainly the amphiphilic components PEG-5-glyceryl stearate, glyceryl stearate and cetearyl 

alcohol are responsible for the construction of the colloidal network (de Vringer, 1986). 

Table 4-1 describes main interference peaks and corresponding repeated distances d of 

various verum and placebo batches. 

 

Table 4-1: Interlayer spacing d (SAXD) 1st order peak channel 112 (= 9.60 nm) 
 finished drug product (FP) and bulk drug product (BP) 

Batch # Type of product 2nd peak [channel] Interlayer spacing d [nm] 

42171 Verum (FP) 267 4.89 

41166 Verum (BP) 270 4.79 

41166 Placebo (BP) 268 4.86 

42829 Verum (BP) 269 4.83 

42829 Placebo (BP) 270 4.79 

mean 269 4.83 

 

4.1.1.3 SAXD of placebo containing different amounts of water 

From SAXD patterns the dependency of the repeated distance from the water concentration 

and thus the water binding mechanism could be derived. 500 g placebo batches with 40, 50, 

60, 70, and 80 % water respectively were prepared in lab (chapter 2.3.3). Table 4-2 gives a 

summary of the interferences. The interlayer spacing d was between 4.93 nm and 4.99 nm. 

Although the water concentration in the cream rose up to double the interlayer spacing did 

not increase. This confirms the hypothesis that the model cream is not formed by a four 

phase system with lamellar structure as supposed by Junginger. Obviously the water is 

entrapped in various modes within the complex gel-matrix. 
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Table 4-2: Interlayer spacing d [nm]; placebo with different water amounts [%] 

 1st peak in channel 113 (= 9.80 nm) 

Water amount [%] 2nd peak [channel] Interlayer spacing d [nm] 

40 268 4.93 

50 268 4.93 

60 266 4.99 

70 269 4.90 

80 266 4.99 

mean 267 4.95 

 

4.1.1.4 Summary of X-ray diffraction 

By WAXD, the liquid-crystalline structure of the formulation with indices of lipid crystals was 

shown. The overlapping of the diffuse band (ordered lamellar gel matrix) by the interference 

of α-crystalline gel phase could mean stabilization by liquid crystals organized in the form of 

layers surrounding the oil droplets. Alkyl chains from cetearyl octanoat could be inserted in 

between the PEG-5-glycerol stearate/ cetearylalcohol crystals which could be placed at the 

border of the oil droplets as well as randomly widespread towards the continuous phase. 

Thus, together with the gel phase they form a disordered liquid-crystalline structure of 

lamellar type. 

SAXD was performed to elaborate in more detail the colloidal structure of the cream. It could 

be suggested that the model cream be formed by a complex gel matrix. In addition to the 

hydrophilic gel phase, the lipophilic gel phase is comprised by surplus of cetearyl alcohol 

semi-hydrates. That means that, along with bulk and inter-lamellar water from hydrophilic gel 

phase, water could be entrapped within the cetearylalcohol gel-network. It can also be 

assumed that, bulk oily phase is dispersed in form of oil droplets, whereas some oil, together 

with mixed crystals of PEG-5-glycerol stearate/ cetearylalcohol provoke lamellar liquid 

crystalline layers around the droplets. The gel phase could be stabilized predominantly either 

by electrostatic or steric repulsions. 

No distinguished correlation between interlayer spacing d and water concentration could be 

observed. This confirms a complex and disordered gel matrix comprising of two gel phases 

separated from each other, the hydrophilic and the lipophilic one. 
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4.1.2 Thermo analytical characterisation 

More and more novel studies about the characterisation of semisolids utilize thermo-

analytical methods in examining the structure of semisolids (Niemi et al., 1991, Kallionen et 

al., 1995; Rose, 1999). It is also known that TGA characterisation could be useful in 

investigation of water distribution within creams (Junginger et al., 1984). Kònya et al. (2003) 

studied microstructural changes during application with respect to the stability of the lamellar 

bilayer. He used TGA in order to study the water bond mechanism in o/w creams and the 

influence of mixed emulsifiers on the binding of water incorporated in the structure (inter-

lamellar or free bulk water). Junginger et al. (1984) assumed that inter-lamellarly fixed water 

molecules exhibit different physicochemical properties than those of the bulk water phase. 

 

4.1.2.1 TGA 

4.1.2.1.1 TGA of placebo 

A typical water loss profile of placebo is shown in figure 4-4. 

 

Figure 4-4: TGA and DTGA-curves of placebo, batch # SHT292-P02 
 mass loss (full line) 
 rate of mass loss (dashed line) 
 1 free water 
 2 bound water 
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Following the evaporation rate (DTGA-curve) two different types of water (two individual 

steps of water loss) can be differentiated. The evaporation rate of bulk water increases until 

about 40 °C. At approx. 38°C there is an inflection point in the DTGA-curve. After that 

temperature the evaporation rate increases strongly up to a temperature of approx. 70 °C 

responsible for the evaporation of fixed water. The end of the 2nd step is not always clearly 

detectable because of a missing peak maximum.  Thus, when speaking about water binding 

capacity in this study then the free bulk water is meant corresponding to the first water loss. 

 

4.1.2.1.2 TGA of verum 

In figure 4-5 TGA and DTGA curves of verum are shown. An evaluation of free and bound 

water according to placebo was not possible as far as there was no clear distinction of two 

peaks. 

 

Figure 4-5: TGA and DTGA-curves of verum 
 mass loss (full line) 
 rate of mass loss (dashed line) 
 1 free water 
 2 bound water 
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4.1.2.1.3 TGA of placebo with 40, 60, and 80 % (w/w) water 

In figure 4-6 TGA and DTGA-curves of placebo containing 40, 60 and 80 % water are shown. 

Increase of the water amount from 40 % to 60 % results in a change in detecting process 

(the steps become less distinctive). With increasing water amount, a shift to the higher 

temperatures (1st step: 38 - 42 - 49 °C; 2nd step: 65 - 71 - 76 °C) associated with a higher 

mass loss becomes evident. 

 

a) 
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b) 

c) 
Figure 4-6: TGA and DTGA-curves of placebo 

 a) containing 40 % water 
 b) containing 60 % water 
 c) containing 80 % water 
 1 free water 
 2 bound water 
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Table 4-3 shows free bulk (column 5) and bound water (column 6) in percent from the overall 

water amount as measured by DTGA. Up to water content of 60 % the ratio does not change 

significantly. About 20 % of the total water is bulk water. About 80 % is available as bound 

water. When the total water content exceeds 70 %, this ratio is shifted in favour of free bulk 

water and at the expense of bound water. Placebo containing 80 % water contains about 30 

% free bulk and 70 % bound water. 

 

Table 4-3:  Free, bound and total water of placebo with different water content [%] 

1 2 3 4 5 6 7 

40 6,77 ± 1,45 32,09 ± 0,93 38,86 ± 2,33 17,43 82,57 4,74 

50 10,99 ± 0,82 39,96 ± 1,03 50,94 ± 0,97 21,57 78,43 3,64 

60 12,04 ± 0,96 48,93 ± 1,92 60,96 ± 2,37 19,74 80,26 4,07 

70 18,14 ± 1,98 53,62 ± 2,05 71,76 ± 0,36 25,28 74,72 2,96 

80 24,75 ± 2,01 56,91 ± 2,43 81,66 ± 0,56 30,31 69,69 2,30 

 1 theoretical amount of water in the sample 

 2 1st mass loss and standard deviation (referred to sample weight) 

 3 2nd mass loss and standard deviation (referred to sample weight) 

 4 sum of 1st and 2nd mass loss and standard deviation 

 5 content of free bulk water (referred to the total amount of water) 

 6 fraction of bound water (referred to the total amount of water) 

 7 ratio between bound and free bulk water 

 

4.1.2.1.4 Conclusion of TGA 

The water in the cream can be differentiated in free bulk (first water loss) and water which is 

entrapped within the gel-matrix (second water loss). That the bound water is not only fixed 

inter-lamellar was shown by SAXD which showed constant inter-layer spacing of placebo 

containing different water amounts. A lamellar gel-network as proposed by Junginger, with 

increasing water amount would swell resulting in increasing interlayer distance. 

But in the case of the model cream with water amounts between 40 and 60 % the ratio 

between free and bound water (20:80) remains unchanged. This means that the bound water 

necessarily has to be entrapped in different ways. 
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In addition to the inter-lamellar fixed water between crystalline lipid bilayers of the hydrophilic 

gel, water is bonded within the lipophilic gel and a third part is immobilised by lipid layers in 

liquid-crystalline state around the oil droplets. 

The high water evaporation rate between 40 and 70 °C could be partially due to loss of water 

entrapped mechanically within the lipophilic gel-phase caused by the melting of cetearyl 

alcohol semi-hydrates as well as partially due to the melting of lipid layers in liquid-crystalline 

state and hydrophilic gel-phase and thus evaporation of water fixed between the lamellae 

(“depot” water).  

Shifting of the ratio in favour of free water and at the expense of bound water (from 20:80 to 

25:75 to 30:70) in creams with water contents of 70 and 80 % indicates that lamellae as well 

as lipophilic gel and liquid-crystalline lipid layers are saturated with water. Excess of water is 

loosely dispersed within the continuous phase. 

Although TGA can be considered useful to distinguish between different bound water in the 

cream, it could not provide a quantitative determination of free bulk and inter-lamellar bound 

water in the model formulation because the evaluation of the peak maxima is up to the 

observer’s eye. 

 

4.1.2.2 DSC 

DSC analyses provide information about the structural nature of single components and the 

complex formulation. In the following general characterisation melting temperatures and 

curve profiles will be considered to gain information about the melting behaviour. Later on, 

onset temperatures and melting enthalpies of phase transitions will be evaluated for the 

assessment of process parameters and storage behaviour. 

Figure 4-7 shows DSC curves of the fatty phase components responsible for the formation of 

the gel-structure. The pure emulsifier PEG-5-glycerylstearate shows two marked peaks at 45 

°C and at 62 °C. Cutina CBS as mixture of fatty ester and fatty alcohol shows a broad 

melting interval with a distinctive melting peak at 61 °C and a shoulder at 46 °C. Within the 

curve profile of the 7:5:3 mixture of the fatty phase components (Arlatone 983S; Cutina CBS; 

PCL-Liquid) the melting behaviour of Cutina CBS and Arlatone 983S is recognisable. A 

distinctive peak at 55 °C and a shoulder at 42 °C are visible. 
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The more complex the mixture (Arlatone 983S < Cutina CBS < fatty phase mixture), the 

lower the melting temperature of the second peak (62 > 61 > 55 °C). 

 

 Figure 4-7: DSC-curves of fatty phase components 
 Full line Arlatone 983S 
 Dotted line Cutina CBS 
 Dashed line Fatty phase mixture* 

* fatty phase mixture in the ratio 7:5:3 respectively Arlatone 983S; Cutina CBS; PCL-Liquid 

 

Pure API-crystals melt at 108.12 °C (fig. 4-8). Placebo (fig. 4-9), different from the fatty phase 

mixture in fig. 4-7, shows a single symmetrical peak with its melting point at 53 °C. Single 

fatty phase components can not be differentiated within placebo. 

The onset temperature of the phase transition of the API from the solid to the liquid state is 

shifted down from 108.12 °C (in the pure API)  to about 70 °C within verum (fig. 4-9). This 

peak is wider, flatter and less distinctive compared to the melting peak of the pure API. It 

seems that this endothermal peak is likely due to dissolution of the crystalline API within the 

hydrophilic and/or lipophilic gel-phase and not to a depression of the melting point by approx. 

30 °C. The melting of the fatty phase (first peak) in verum is reduced to a single and less 

pronounced peak between 43 and 55 °C similar to a plateau. Compared to placebo this 

melting peak is shifted to lower temperature by approx.5 °C. 
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Figure 4-8:  DSC-curve of micronized azelaic acid (AzA) 

 

Figure 4-9:  DSC-curves of verum (full line) and placebo (dashed line) 



Results and discussion 

 

50 

4.1.2.3 Summary of DSC 

The melting behaviour of the fatty phase components and the API depends on the qualitative 

and quantitative composition of the sample. 

The first shoulder of the fatty phase mixture may correspond to the transition of the free 

cetearyl alcohol from crystalline to α-crystalline form. Literature indicates two melting peaks 

for cetearyl alcohol, transformation from crystalline to α-crystalline form (36.5 °C) and 

transition from α-crystalline to molten form (49.5 °C) (Kudlek, 1996). 

Melting profiles of Arlatone 983 S, Cutina CBS and the fatty phase mixture show a 

pronounced peak between 55-62 °C. The more complex the mixture is, the higher is the 

depression of this melting peak. Compared to the single components, surfactant PEG-5-

glycerolstearate and amphiphile Cutina CBS obviously form a common structure 

consequently with an altered melting profile. The dominance of the cetearyl alcohol in the 

DSC curve is in line with WAXD/SAXD diffractograms. 

The two endotherm melting peaks in the fatty phase mixture are reduced to a single peak at 

53 °C within placebo whereas to a plateau peak with its maximum at about 48 °C in verum. 

The huge shift down from 108.12 °C (pure AzA-crystals) to 70 °C together with the 

broadening of the API’s melting peak clearly point to a solubilization of AzA-crystals within 

the gel matrix. 
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4.1.3 Macroscopic and Microscopic characterisation 

The verum is a white, opaque, and smooth cream with API-crystals distinguishable as white 

dots. The placebo is shiny and smooth and appears less white due to the absence of the 

API-crystals (fig. 4-10). 

a) b)

 

 Figure 4-10: a) verum b) placebo 

Figure 4-11 represents the microscopic picture of the placebo. The drops of the inner oily 

phase are distinguishable with a mean diameter of about 2 µm. Weakly formed red and blue 

coloured areas indicate hydrophilic and lipophilic gel phases. 

The polarized microscopic picture of the verum (fig. 4-12) shows API-crystals 

homogeneously dispersed in the cream. These acicular rods appear variously coloured due 

to polarisation on the crystal’s surfaces. Their single dimensions vary between less than 5 

µm for the smallest particles to about 20 to 30 µm for the biggest ones. 

  

Figure 4-11: placebo, 200x, bar 32 µm Figure 4-12: verum, 200x, bar 32 µm 
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Micronized API-crystals show moderate crystal growth after prolonged storage of the cream 

at 40 °C/ 75 % RH. The crystals that measure up to 80 µm get a rhomboidal shape. Figure 4-

13 shows an example. 

 
Figure 4-13: verum after 3 months at 40 °C, 200x, bar 32 µm 

 

The micronised API was characterised by SEM (chapter 3.2.14). Figure 4-14 shows the 

SEM-micrograph of azelaic acid crystals magnified by 5000. They show a monoclinic 

prismatic shape with a mean length of about 5 µm. The smallest crystals have dimensions 

smaller than 2 µm, bigger ones have dimensions of about 20 µm. Agglomerates are absent. 

 

Figure 4-14: SEM-micrograph of AZA; 500x 
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4.1.4 Rheological characterisation 

Rheological measurements are well suited for the structural characterisation of semisolid 

dosage forms. These measurements are recommended to be performed after a certain 

holding time after their preparation. This was pointed out by different authors. Lashmar et al. 

(1995) for instance noted that often shortly after manufacturing semisolid preparations have 

not formed their final structure yet, leading to less representative and less reproducible 

results. Creams show more complex flow behaviour than emulsions (Moore et al., 1986). 

Therefore the application of an adapted rheological method is very important in order to 

obtain good interpretable results. 

Rheology is also indicative for changes in flow behaviour and viscous-elastic properties and 

thus for structural changes in dependence on stability interacting factors (Rose, 1999). These 

results are the basis for stability tests and quality control (Kaiho et al., 1980). 

 

4.1.4.1 Flow behaviour 

Flow properties as apparent shear viscosity at the apex of the shear stress curve at 400 1/s, 

hysteresis between back and forth curve and yield point were investigated by rotational 

experiment. 

4.1.4.1.1 Yield point 

The yield point is defined as the minimum required shear force where a substance begins 

flowing. It can be determined by means of the bending point of the deformation curve 

increasing the shear stress τ. It provides information on elasticity and mechanical resistance 

of a sample. Figure 4-15 exemplifies the determination of the yield points of verum and 

placebo (pilot scale batch # SHT056-P02) with increasing shear stress. 

Typical to structural flow behaviour is that substances only start flowing after being subject to 

a certain shear stress (plastic). Up to the yield point the samples are elastic and the 

molecules are capable to follow the increasing shear without considerable flow. When the 

yield point is reached, samples begin to flow and the deformation rises abruptly. 

Placebo and verum show similar yield points. Measurements of samples of the same batch 

as well as measurements between samples of different batches show high relative standard 

deviations (cv > 10 %). The low reproducibility is a frequent disadvantage when the yield 

point is determined by rotational experiment. Further it should be mentioned that the 

measuring period can possibly influence the result. 
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Figure 4-15: Yield points [Pa], batch # SHT056-P02 (pilot scale std) 
 -p- placebo -r- verum 
 

4.1.4.1.2 Flow curve 

Figure 4-16 represents flow curves of verum and placebo (pilot scale std, # SHT056-P02) in 

CR mode (controlled shear rate). By a preset shear rate ramp the shear stress reaction of 

the sample is evaluated. Before increasing the shear rate a defined pre-shear is applied to 

the sample in order to smooth out the fluctuations at the beginning of the flow curve (chapter 

3.2.12.1.1). 

All samples, placebo and verum show plastic thixotropic flow behaviour as this is typical for 

semisolid preparations (Rose, 1999). Both samples are sensitive to shear. The build-up of 

structure after a shear strain occurs strictly as temporally delayed (hystereses values). Apart 

from the API verum distinguished from placebo by the final homogenisation. 

At the same shear rate placebo clearly shows higher response of the shear stress and hence 

higher mechanical resistance to shear. Upwards and downwards curves of placebo are a 

long distance from each other. Placebo curve rises steeply before it reaches its maximum 

shear stress of 300 Pa at a shear rate of 180 1/s. The shear stress remains at its maximum 
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between 180 1/s and 225 1/s. At shear rates higher than 225 1/s the shear stress regresses 

slightly up to the apex. 

Obviously, the behaviour is clearly determined by shear induced destruction of structural 

elements in the cream. This effect is less pronounced within the verum. This might be 

attributed to 20 % solid API-fraction in verum that gives the system mechanical stability and 

elasticity. At each time point the curve progression of verum rises and obtains at the apex its 

maximum shear stress of 200 Pa. 

 

 

Figure 4-16: Flow curves, batch # SHT056-P02 (pilot scale std) 
 -p- placebo -r- verum 

 

In order to compare shear viscosities between the two the apparent shear viscosity at the 

apex of each thixotropy loop (Eccleston, 1975) was considered. The apparent shear viscosity 

describes the ratio of shear stress and shear rate. Figure 4-17 shows viscosity curves of 

verum and corresponding placebo (pilot scale std batch # SHT056-P02). 
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Figure 4-17: Shear viscosity curves, batch # SHT056-P02 (pilot scale std) 

 -p- placebo -r- verum 
 

With increasing shear rate the verum and placebo viscosities decrease (‘shear thinning’). 

The apparent verum shear viscosity at 400 1/s is 474 mPas whereas placebo shows a shear 

viscosity at the apex of 709 mPas. By diminution of the shear rate the viscosity is regained 

only partially. Backward curves are clearly separated from forward curves. 

 

The formulation is very sensitive to shear. In order to clarify if the break down of structure is 

reversible, placebo and verum were subjected to repetitive shear cycles. Figure 4-18 shows 

flow curves of placebo (a) and verum (b) after multiple shear rate loops. With increasing 

number of shear cycles the hysteresis decreases. The most prominent difference is detected 

between first and second shear rate loop. Finally, after 10 shear rate loops the cream shows 

almost no hysteresis. Table 4-4 shows hystereses values of verum and placebo with 

increasing numbers of shear rate loops. 
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a) 

b) 
Figure 4-18: Flow curves, batch # 53179 (ind scale), a) placebo, b) verum 

 r 1st loop 
 p 2nd loop 
 Î 10th loop 

É loop after 10 loops + 3 h rest 
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After 10 shear rate loops, the cream was allowed a relaxation time of 3 hours. After 3 hours a 

further shear loop was applied. During the rest period of 3 hours the cream partially restores 

its micro structure. The cream might possibly regain its initial structure after several 

hours/days at rest. It would mean that a rheo-destruction occurs. 

Anyway, from figure 4-18 it becomes apparent that shearing destroys at least partially 

irreversibly micro structure as the cream is not able to regain its original structural viscosity. 

 
Table 4-4:  Hystereses [Pa/s], # 53179 (ind scale), placebo and verum 

Loop 1st 2nd 10th loop after 10 
loops + 3 h rest 

Placebo 2.03e+04 4898 1624 6560 

Verum 1.99e+04 6421 1902 4068 

 

 

4.1.4.2 Summary of flow behaviour 

The model cream (verum and placebo) shows plastic thixotropic flow behaviour. Shear 

viscosity decreases by shearing. This obtained ‘shear-thinning’ behaviour is a desirable 

property in creams, since they should be ‘thin’ during application and ‘thick’ otherwise. The 

model cream shows a stable gel structure. This was visible on the high shear stress values 

during the upwards curve. Thus, hystereses were interpreted as a measure of build-up of 

micro structure after applied shearing (thixotropy). But the cream is also shear-sensitive. By 

strong shearing it comes to a structure break-down. By repeatedly applying of shear the 

structure will be progressively disordered and hysteresis will be progressively lost. After rest 

the cream restores its structure only slowly and partially. It shows at least partially rheo-

destruction of the cream. In this case the resulting hystereses can be interpreted as measure 

of structure-loss during shearing (Barry, 1974, Martin et al., 1964). 

 

The yield point as a measure of visco-elastic properties of the system was a bad indicator of 

the physical stability as measurements showed low reproducibilities (cv >10 %). Hence, for 

the evaluation of critical manufacturing process parameters and assessment of the cream 

stability the yield point was not considered. 
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4.1.4.3 Oscillatory behaviour 

The oscillation test is capable to determine the visco-elastic properties of a sample 

simultaneously whereas shearing leads to an integrated characterisation only. In oscillation 

experiments a sinusoidal shear stress is applied to the sample. The sample will deform. 

Dependent on the relation of viscous and elastic properties the maximum amplitude of 

deformation γ0 is not necessarily reached at the same time as the stress amplitude τ0. After 

an applied shear a delay is occurred in the deformation for viscous-elastic compounds such 

as most semisolid preparations. Therefore viscous-elastic compounds show a phase shift δ 

between 0 and 90 °. When δ is below 45 ° elastic properties prevail, when δ is higher than 45 

° viscous properties have the overbalance. 

 

For the evaluation of an oscillation experiment the following basic equation is used: 

τ0 = G* γ0 

By setting the stress amplitude and measuring the deformation amplitude the complex 

modulus G* can be calculated. By knowing the frequency and measuring the time at which 

stress and deformation amplitudes are reached the phase shift δ between both can be 

calculated: 

G’ = G* cosδ 

G’ describes the storage modulus and is a representative for the elastic behaviour and hence 

for the energy which can be recovered from the system. Loss modulus G’’ stands for the 

dissipated energy and viscous properties. 

G’’ = G* sinδ 

One might be interested in the ratio of viscous and elastic properties. This is commonly done 

by looking at: 

G’’/G’ = sinδ/cosδ = tanδ 

 

The phase shift amounts to 45 ° when storage modulus and loss modulus are in equilibrium. 

Oscillatory parameters are a function of the frequency and consequently a function of the 

period of the applied shear. Oscillatory measurements have the benefit of maintaining the 

inner structure of the sample provided that the measurement is carried out within the linear 

visco-elastic region (Rose, 1999). Within this LVE-region the system is inherently stable, 

oscillatory characteristics as phase shift and oscillation modules are constant. 
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4.1.4.3.1 Strain stress sweep 

In order to determine the LVE-region a so called strain-stress sweep or amplitude sweep was 

carried out. Here the amplitude of oscillation is increased without steps keeping the 

frequency constant. Figure 4-19 shows exemplarily an amplitude sweep for verum and 

placebo (ind scale batch # 51177). The upper limit of the LVE-region is characterised by the 

decline of the elastic modulus G’. For both, placebo and verum this drop begins at shear 

stresses above 30 Pa. Exceeding 100 Pa the structure changes irreversibly and breaks down 

completely. At the same time phase shifts abruptly rise. The lower phase shifts of verum 

(18.32 ± 1.51 °) compared to placebo phase shifts (23.14 ± 0.60 °) evidence the higher 

elasticity of verum explicable with the solid API-fraction of 20 % (w/w). The semisolid cream 

character with predominantly elastic behaviour (G’ > G’’) passes over in a fluid system with 

predominantly viscous character (G’’ > G’). The ‘cross-over’ of G’ and G’’ occurs at a shear 

stress of 245 Pa (placebo) whereas at 280 Pa (verum). The ‘cross-over’ can be taken as 

yield stress. 

 
Figure 4-19: Strain stress sweep, τ = 1-350 Pa, f = 1 Hz, # 51177 (ind scale) 

 Placebo Verum 
 -p- -r- : Storage modulus G’ 
 -¢- -£- : Loss modulus G’’ 
 -�- -�- : Phase shift  δ 
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Table 4-5:  G’ [Pa], G’’ [Pa] and δ [°] (1-30 Pa) within the LVE-region, batch # 51177 

Product G’ [Pa] G’’[Pa] δ [°] 

Placebo 7683 ± 292 3282 ± 114 23.14 ± 0.60 

Verum 14352 ± 2670 4704 ± 553 18.32 ± 1.51 

 

4.1.4.3.2 Frequency sweep 

The frequency sweep was carried out in order to study the dependency of the frequency 

within the LVE-region. Therefore the frequency was increased continuously from 0.1 Hz to 30 

Hz keeping a constant shear stress of 10 Pa (fig. 4-20). 

 
Figure 4-20: Frequency sweep, τ= 10 Pa, batch # 51177 (ind scale) 

 Placebo Verum 
 -p- -r- : Storage modulus G’ 
 -¢- -£- : Loss modulus G’’ 
 -�- -�- : Phase shift  δ 
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As in figure 4-20 exemplarily shown for placebo and verum industrial scale at low 

frequencies (< 2 Hz) G’ and G’’ increase linear (G’ increases more than G’’). Above 2 Hz, G’ 

continues rising whereas G’’ remains constant. The elastic behaviour increases because of 

the incapability of the system to follow high frequencies. The system becomes increasingly 

stiff. The ‘zig-zag’ of δ at high frequencies (>10 Hz) is probably caused by API-crystals that 

are no longer able to follow the high frequency and thus become entangled in one another. 

 

4.1.4.4 Summary of oscillatory test 

Oscillatory analyses are designed to not destroy the structure (measurement within the linear 

visco-elastic region). Therefore it can provide information on the inter-molecular forces. 

Within the linear visco-elastic region (< 30 Pa) cream samples are inherently stable and the 

inner structure will not be destroyed. 

Based on the oscillatory characterisation test conditions of various samples from industrial, 

pilot and lab scale with varied manufacturing process parameters and at different storage 

conditions and storage times uniformly were set as follows: 

 

Parameters for the oscillation time curve 

Measuring mode CS* 

Waiting time 300 s 

Shear stress 10 Pa 

Frequency 1 Hz 

Measuring time 120 s 

Data 10 

*CS controlled shear stress 
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4.1.5 Concluding results of structural characterisation 

Cognitions obtained from the structural characterisation of the formulation are the base for 

investigations on the relevance of the manufacturing process. Based on the structural 

characterisation the following model can be described for the cream. The cream’s 

microstructure is formed by a complex gel-matrix comprised by the visco-elastic hydrophilic 

gel-phase and the lipophilic gel-network. Liquid lipid crystals in the form of layers surround 

and stabilize the oil droplets. Oily phase (PCL-liquid) is inserted between alkyl chains of 

PEG-5-glyceryl stearate/ cetearyl alcohol crystals forming a disordered liquid-crystalline 

structure of lamellar type, either at the border of oil droplets or widespread towards the 

continuous phase. Randomly oriented multilayer of complex visco-elastic gel-phase gives the 

structured continuous phase with increased viscosity, thus contributing to the oil droplets 

immobilization (Savic, 2005). 

The water is inter-lamellar bound between crystalline lipid bi-layer, entrapped mechanically 

within the lipophilic gel-phase as well as fixed between lipid-layers in liquid-crystalline state 

and present as free bulk water. With regards to the verum with water content of about 50 % 

(placebo 63.5 %), the water content of placebo was investigated in the range of 40-80 % 

(w/w). The ratio between free and ‘bound’ water is 20:80 up to a water content of 60 %. This 

is in agreement with SAXD analyses that show a fully hydrated gel-phase of limited swelling 

with increasing water concentration within the cream. Above 60 % the ratio changes in favour 

of bulk water to 30:70. 

Melting peaks between 55 and 62 °C of Arlatone 983 S, Cutina CBS and the fatty phase 

mixture (7:5:3 respectively Arlatone 983S: Cutina CBS: PCL-Liquid) show the dominance of 

the cetearyl alcohol. Placebo shows only a single peak at 53 °C compared to two endotherm 

melting peaks of the fatty phase mixture. The huge down shift of the melting peak of the API 

from 108.12 °C (pure API-crystals) to 70 °C (in verum) points to the dissolution of the API 

within hydrophilic and/or lipophilic gel-phases. 

The model cream, like all creams, combines viscous (liquid) and elastic (solid) properties at 

the same time. The investigated formulation shows predominantly elastic behaviour. 

Responsible therefore is the deformable gel-framework. Further, the high amount of solids in 

the verum gives the cream a high mechanical resistance. Structure build-up after an applied 

shear generally occurs temporally delayed for all investigated formulations (plastic-

thixotropic). All samples show a defined linear visco-elastic region (< 30 Pa). The yield point 

was less suitable as an indicator for visco-elastic stability because of its low reproducibility. 
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4.2 Investigated manufacturing process parameters 

The influence of single manufacturing process parameters on physical, thermo analytical and 

rheological cream properties as well as in vitro release will be assessed in the following. In 

addition, the impact on storage stability will be subject to evaluation. 

Investigations on the model cream focus on manufacturing process parameters which 

probably influence the physical properties of the cream. An explanation regarding the choice 

of the kind of parameter and the values of each single parameter is forwarded in the current 

chapter. For making a choice of parameters subject to investigations the manufacturing 

process was analysed at the beginning of this work. The most critical steps have been 

selected based on experiences and respective parameter values have been set. Mainly there 

are interests in clarifying regarding the cold homogenisation and the meaning of the holding 

time. 

Table 4-6 summarises critical manufacturing process parameters studied within the scope of 

this PhD-thesis. Investigations were partially performed on both, verum and corresponding 

placebo. Other parameters for instance, melting parameters of fatty phase and cooling rate 

have been studied exclusively on placebo neglecting the impact of the API. 

Melting parameters were easily controlled on placebo lab scale. Parameters as cooling rate, 

circulation times/homogenisation times, temperatures of API-addition/final homogenisation 

have been investigated on pilot scale trials. Only on pilot scale have parameters been 

subject to a strict control nonetheless close to production. All investigations were performed 

on the bulk product. Additionally, holding time investigations have been performed on 

finished product (30 g aluminium tube). 
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Table 4-6:  Investigated critical parameters 

Parameter Value Object Scale 

Manufacturing process parameters 

Melting temperature/ 
Melting time 

65 °C/ 30 min 
90 °C/ 210 min Placebo Lab 

Cooling rate 
1.0 – 0.5 °C/min * 

0.85 °C/min + Placebo Pilot 

Circulation times 0 – 8.1 – 13.5 † 
Verum/ corresp. 

Placebo 
Pilot 

Temp API-addition/ 
Temp final homogenisation 

20/20 – 30/30 – 40/40 
– 40/30 °C 

Verum/ corresp. 
Placebo Pilot 

Holding time (HT)# 
0 – 1 – 2 – 3 – 4 – 5 – 
6 – 7 – 8 – 9 – 10 d 

Verum/ corresp. 
Placebo 

Pilot/ 
Ind 

Batch size 40 kg / 80 kg 
Verum/ corresp. 

Placebo Pilot 

Raw materials 

Arlatone 983S 56023361 / 56027131 
Verum/ corresp. 

Placebo Pilot 

Cutina CBS 56023256 / 56028781 
Verum/ corresp. 

Placebo Pilot 

 * constant cooling rate 

 + non-homogeneous cooling gradient (production like) 

 † final homogenisation time: 80 kg: 0, 15, 25 min 40 kg: 7.5, 12.5 min 

 # performed with bulk and finished product (FP), FP filled after 0 d and 10 d HT 
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4.3 Impact of process parameters on the cream’s properties 

4.3.1 Melting time and melting temperature 

The melting process of the fatty phase can be expected to be less critical, supposed that all 

fatty components are completely molten before getting transferred to the aqueous phase. 

Melting temperatures might have some effect on cream properties in particular if the melting 

temperature is borderline with the solidification temperature of the fatty phase. If the melting 

temperature is near the solidification temperature problems might occur during addition of the 

fatty phase to the aqueous phase due to re-crystallisation of fatty phase components in the 

cream. Further a loss of fatty phase components in transfer tubes and thus a reduced 

quantity in the inner phase of the emulsion, emulsifier and consistency agent included are 

possible. These situations might lead to changed consistency (quality relevant). On the other 

hand high temperatures and long melting times should be considered for their possible effect 

on the chemical stability of the fatty phase components. 

 

Therefore two placebo batches, each of 1 kg, were prepared on lab scale simulating two 

extremes which might occur when preparing the fatty phase (table 4-7). On the one hand, an 

insufficient melting of fatty phase components has been simulated with a short melting at low 

temperature. On the other hand, a chemical decomposition of fatty phase components might 

be caused by a long term melting at high temperature. 

The upper limit of the melting time (210 min) and the lower limit of the melting temperature 

(65 °C) have been taken over by the master formula. Furthermore, 90 °C has been selected 

as upper temperature extreme and 30 min has been fixed as lower melting time limit 

respectively. 

 

Table 4-7:  Melting parameters of fatty phase, placebo lab scale, batch size 1 kg 

 Batch 
SHT292- 

Melting temperature 
[°C] 

Melting time 
[min] 

Possible Effect 

1 P04 65 30 Insufficient melting  

2 P06 90 210 Chemical decomposition 

 

The lab scale batches P04 and P06 were prepared according the manufacturing batch 

record in figure 2-6 (chapter 2.2.3). During addition of the fatty phase to the aqueous phase 

(batch P04) parts of the fatty phase solidify immediately in the beaker. 
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Thus it might be possible that portions of the fatty phase re-crystallise and form more or less 

small lipid aggregates while homogenising. 

In figure 4-21 the fine emulsion with drops of the inner oily phase of = 5 µm is shown 

exemplarily for batch # SHT292-P04. Both creams are homogeneous and show a white 

opaque and smooth appearance. 

 

 

Figure 4-21: SHT292-P04, 200 x, bar 32 µm 

 

Table 4-8 summarises physical, flow, oscillating and thermo analytical properties of the 

creams. The thermo analytical properties as melting enthalpy and onset temperature as well 

as the oscillating properties do not show significant differences. Also consistencies 

(spreadability and micro-penetration) of both creams are comparable with one other. 

Batch # P06 is more viscous compared to batch # P04. Batch # P06 with the higher shear 

viscosity and also shows slightly higher hystereses. Although they show identical electrical 

conductivities batch # P06 shows lower bleeding accompanied by a lower portion of free 

water. However, considering the standard deviation the difference in the free water amount is 

not significant. 

The melting temperature of 65 °C (batch # P04) is close to the solidification temperature of 

the fatty phase components Cutina CBS and Arlatone 983S. Phase transitions in both occur 

at approx. 60 °C. This was shown by DSC measurements (fig. 4-9 in chapter 4.1.2.2). 

However, it did not affect the melting enthalpy and onset temperature of batch # P04. 
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Table 4-8:  Comparison between different melting procedures 
 # SHT292-P04 vs # SHT292-P06, lab scale (1 kg) 

Method Unit 65 °C/30 min 
P04 

90 °C/210 min 
P06 

N° of 
measurements 

Bleeding mm2 568 ± 92 450 ± 30 3 

Conductivity µS/cm 18.5 ± 1.0 18.4 ± 0.5 3 

Free water % 11.36 ± 0.46 10.13 ± 1.28 2 

Spreadability mm2 1731 ± 157 1842 ± 67 3 

Micro-penetration mm*10-1 395 ± 42 357 ± 14 3 

Viscosity mPa*s 569.2 ± 86.3 713.9 ± 61.8 2 

Hysteresis Pa/s*104 1.84 ± 0.51 2.32 ± 0.07 2 

G’ Pa 7308 ± 155 7786 ± 138 10 data points 

G’’ Pa 3259 ± 96 3194 ± 121 10 data points 

Phase shift ° 24.05 ± 0.94 22.30 ± 0.66 10 data points 

Enthalpy J/g 13.66 ± 0.45 13.51 ± 0.44 2 

Tonset °C 46.22 ± 0.54 47.54 ± 1.17 2 

 

 

4.3.1.1 Summary and conclusion 

It can be summarised that the cream with the lower melting temperature tends to have lower 

viscosity/hysteresis, is contemporaneous less elastic and shows slightly higher tendency to 

bleeding. On the other hand, results of micro-penetration, spreadability, conductivity, 

oscillation and DSC do not show differences between both batches. 

These data indicate that melting time and melting temperature of the fatty phase do not have 

a major impact on the appearance and the physical properties of the placebo cream. In the 

light of this pilot scale trials on verum have not been performed. 
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4.3.2 Duration of final homogenisation 

Comparing hot and cold homogenisation, the later is undoubtedly the more critical step. This 

was revealed by experiences during manufacturing of semi-solid formulations in general. The 

final homogenisation step is primarily required to disperse homogeneously the micronised 

API within the cream base. 

The master batch record states that homogenisation for 15 min is performed. If IPC reveal 

that the API is not homogeneously dispersed homogenisation is performed for further 10 min. 

The impact of the homogenisation time was studied on pilot scale batches of placebo (80kg) 

and verum (40 kg). Homogenisation times of industrial scale have been applied accordingly 

to pilot scale with the aim to study the shearing effects during homogenisation, primarily on 

placebo. Secondarily, verum pilot scale batches were homogenised for 7.5 min respectively 

12.5 min (7.5 + 5 min). 

During the 1st homogenisation step the total cream circulates 8.1 times through the mixer 

whereas during the 2nd step 5.4 times. This corresponds to a total number of circulations of 

13.5. The number of circulations has been verified by batch # SHT292-P03 (table 2-4). It was 

identical in all investigated verum and placebo pilot scale batches. 

 

4.3.2.1 Placebo with cooling rate of 1.0 °C/min 

Samples of two batches were taken before (0 min), after 15 min, and after additional 10 min 

of homogenisation, respectively. Hence, the total bulk product in the mixer circulated 0, 8.1, 

and 13.5 times, respectively. The homogenisation was carried out at a product temperature 

of 28 ± 1 °C and at a homogeniser speed of 25.0 m/s in circulation. 

Due to the high shearing during homogenisation the cream heats up. Therefore the jacket 

temperature was lowered and the product temperature in the middle and at the bottom was 

controlled continuously (table 4-9). The actual temperatures during final homogenisation 

deviate not more than 1°C from the target temperature. After homogenisation the jacket 

temperature was reset immediately in order to avoid cooling below the desired product 

temperature of 28 °C. 
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Table 4-9:  Temperatures during final homogenisation (## SHT292-P02/-P03) 

Duration T theor Tactual MEAN* Tmin actual Tmax actual Batch 
# [min] [°C] [°C] [°C] [min] [°C] [min] 

15 28,7 28 4 29 11 
P02 

10 29,0 28 5 30 5 

15 29,3 28 1 30 6 
P03 

10 

28 ± 1 

29,0 - - 29 10 

 * temperature measurement every minute 

 

4.3.2.1.1 Consistency 

Final homogenisation slightly decreased the spreadability. The differences were not 

significant as they range within the standard deviations. Micro-penetration was not affected 

(table 4-10). 

 

Table 4-10: Spreadability and micro-penetration after different circulation times 
Means and relative standard deviations (n=2) 

Circulation times 
(Duration of homogenisation in min) 

Spreadability 
[mm2] 

Micro-penetration 
[mm*10-1] 

0 (= 0 min) 1833 ± 109 393 ± 31 

8.1 (= 15 min) 1780 ± 276 368 ± 1 

13.5 (= 25 min) 1661 ± 123 407 ± 20 

 

 

4.3.2.1.2 Water binding capacity 

In the following the impact of a cold homogenisation on the water binding capacity was 

assessed. Interestingly, the input of mechanical energy by final homogenisation clearly alters 

the distribution of bulk water in the cream. This could be determined indirectly by means of 

bleeding and electrical conductivity. This effect is summarised in fig. 4-22. 
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 Figure 4-22: White: bleeding [mm2] 
 Grey: electrical conductivity [µS/cm] 
 Black: free water loss [%] from total sample weight 

 

Both, bleeding and electrical conductivity increase when the fraction of free bulk water 

increases. In particular the increase of both parameters becomes visible when comparing not 

homogenised cream and cream homogenised for 15 min. By increasing the final 

homogenisation by further 10 min the water binding capacity decreases again. The 

separated fluid was confirmed as aqueous leakage by means of the ‘methylene blue method’ 

(chapter 3.2.2). 

Free bulk water in the formulation was determined directly through thermo gravimetric 

analysis. Thus the TGA result supports the results from bleeding and electrical conductivity. 

The portion of free bulk water increases from 10.3 % to 11.1 % to 12.0 % referred to total 

sample weight (table 4-11). Although the individual values of free water are not significantly 

different among creams homogenised for different times a trend for increasing bulk water 

with increasing homogenisation could be shown. 
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Table 4-11:  1st weight loss (= free bulk water) in % from total sample weight 

Duration of homogenisation/ 
Number of circulations 

0 min / - 15 min / 8.1 25 min / 13.5 

Sample P02 P03 P02 H P03 H P02 HH P03 HH 

1 9.1 10.8 9.7 11.7 11.4 10.7 

2 11.8 9.6 13.2 10.6 10.8 12.3 

3 10.2 10.0 9.8 11.3 13.2 13.9 

mean (n=3) 10.4 10.1 10.9 11.2 11.8 12.3 

sd 1.3 0.6 2.0 0.6 1.2 1.6 

mean ± sd (n=6) 10.3 ± 0.9 11.1 ± 1.3 12.0 ± 1.3 

 

These results demonstrate that the amount of unbound bulk water increases with increasing 

shearing of the cream. Obviously an extension of the homogenisation time leads to the 

worsening of the water binding capacity. The longer the time of final homogenisation the 

higher is the tendency to separate water from the system. The increasing fraction of free bulk 

water in turn might be the cause for the higher electrical conductivity. 

Obviously, final homogenisation provokes a disorganisation of the hydrophilic gel phase. This 

in turn can speed up the separation of water from the system. 

 

4.3.2.1.3 Melting behaviour 

Changes in the melting enthalpy with dependence to the homogenisation could be shown by 

DSC analysis. From figure 4-23 the notable increase of melting enthalpy when the cream 

was homogenised for the first 15 min becomes apparent. A supplementary homogenisation 

for 10 min does not further increase the melting enthalpy. Onset temperatures are aligned 

with the tendency of melting enthalpies. 
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 Figure 4-23: White: normalized melting enthalpy [J/g] 
 Grey: onset temperature [°C] 

 

4.3.2.1.4 Rheological properties 

Figure 4-24 represents the corresponding flow curves of the investigated creams. All 

samples show plastic thixotropic flow behaviour. The creams without final homogenisation 

show a high shear stress τ with increasing shear rate. The steep curve progression 

demonstrates a well structured and highly shear resistant cream. Upwards and downwards 

curves are clearly separated from each other. 

Recovery of the structure occurs in delay for all systems and evidences the sensitivity of the 

creams to shear. Curve progressions of homogenised creams are much more flat. At low 

shear rates the shear stress τ inclines gently while at higher shear rates it reaches a plateau. 

This clearly indicates that structure has been lost. This is typical for less ordered systems. 

The progressive curve flattening by extended homogenisation is well visible on the flow 

curves of batch # P02 (empty symbols). In contrast, curve progressions of batch # P03 

homogenised for 15 min and 25 min (filled symbols) are very similar. 

By prolonging the homogenisation time a grading is only allusively visible. Most notable is the 

break down of the structure by changing from 0 to 15 min of homogenisation. This is in 

accordance with the other parameter. 
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 Figure 4-24: Flow curves: without final homogenisation 
 r SHT292-P02 
 p SHT292-P03 
 15 min final homogenisation 
 £ SHT292-P02 
 ¢ SHT292-P03 
 25 min final homogenisation 
 � SHT292-P02 
 � SHT292-P03 
 

From the flow curves it is also evident that final homogenisation reduces the hysteresis. The 

hysteresis as attribute of thixotropic flow behaviour is often accounted as measure for 

texturing or for mechanical degradation of structure (Rose 1999, Martin 1964). Shear 

stresses of homogenised creams are much lower in comparison with not homogenised 

creams. These creams are less structured. Where initially less structure is available 

obviously less structure can be degraded. This results in reduced hystereses (table 4-12). 

Primarily the hysteresis is dependent on the cream structures available at the outset. 

Increased shearing during final homogenisation lowers the apparent shear viscosity (table 4-

12) of the creams. In comparison with creams which did not passed the final homogenisation 

step a considerable loss of viscosity was observed when the cream was homogenised for the 
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first 15 min. The decrease in viscosity was less distinct but noticeable if the homogenisation 

time was prolonged by further 10 min. 

 
Table 4-12: Shear viscosity and hysteresis after different circulation times; 

 Means and relative standard deviations (n=2) 

Number of circulations 
(= Duration of homogenisation) 

Viscosity 
[mPa*s] 

Hysteresis 
[kPa/s] 

0 (= 0 min) 555.6 ± 19.8 20.2 ± 2.7 

8.1 (= 15 min) 354.4 ± 114.2 18.4 ± 4.7 

13.5 (= 25 min) 287.6 ± 33.2 15.0 ± 2.3 

 

Oscillatory tests give more detailed information about the viscoelastic properties in 

dependence from the homogenisation time. Within the LVE-region all creams show 

predominantly elastic behaviour with G’ exceeding G’’ and the phase shift δ below 45° (table 

4-13). 

 

Table 4-13:  Storage and loss modulus, phase shift and deformation at 10 Pa, 1 Hz 

Number of circulations 
(= Duration of homog.) 

G’ 
[kPa] 

G’’ 
[kPa] 

δ 
[°] 

γ 
[%] 

0 (= 0 min) 5.34 ± 0.46 2.27 ± 0.32 23.00 ± 1.15 0.15 ± 0.01 

8.1 (= 15 min) 8.03 ± 0.43 2.94 ± 0.05 20.16 ± 0.64 0.12 ± 0.01 

13.5 (= 25 min) 6.32 ± 0.51 2.24 ± 0.15 19.54 ± 0.28 0.15 ± 0.01 

 

Final homogenisation leads to more elastic systems as shown by declining phase shift δ. 

From a declining phase shift a progressively increasing storage modulus is expected which is 

a measure for the elastic saved energy of the system. But as shown in table 4-13 the elastic 

modulus G’ firstly increases but with the second homogenisation relapses. 

The most prominent gain in elasticity occurs when going from no homogenisation to 

homogenisation in 15 min. A further extension of the final homogenisation time up to 25 min 

leads to a regression of both, elastic and viscous modulus. The phase shift δ (tanδ = G’’/G’) 

clearly decreases with increasing homogenisation time as the elastic modulus G’ increases 

more strongly than the viscous modulus G’’. 
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According G’ = (t/γ)*cos δ (Rose, 1999) the elastic modulus depends on phase shift and 

deformation. The cosine of δ hardly changes with increasing homogenisation time (0.92-

0.94-0.94). The firstly increasing and afterwards declining elastic modulus can be explained 

with changes of the deformation. 

 

4.3.2.2 Verum 

In the foregoing chapter the impact of the homogenisation shear on placebo was described. 

In the following the influence of the final homogenisation time on the API containing cream is 

discussed. Verum batches ## SHT056-P01/P02/P03/P05/P06/P07/P08 (40 kg) were 

homogenised at 25 ± 5 °C in circulation at the maximum speed (25.0 m/s) for 7.5 min, and 

12.5 min respectively. A comparison with not homogenised verum could not be performed 

(as carried out for placebo) as final homogenisation was indispensable for dispersing 

homogeneously the API in the cream. Table 4-14 gives a summary of the test results. 

 

Table 4-14:  Verum homogenised with respectively 8.1 or 13.5 circulation times (n=7) 

Method Unit 8.1 (= 7.5 min) 13.5 (= 12.5 min) 

Bleeding mm2 935 ± 123 979 ± 132 

Conductivity µS/cm 31.7 ± 1.7 33.5 ± 1.7 

Spreadability mm2 1531 ± 60 1666 ± 133 

Micro-penetration mm*10-1 378 ± 35 373 ± 44 

Viscosity mPa*s 459.9 ± 26.1 449.9 ± 36.7 

Hysteresis Pa/s*104 1.46 ± 0.25 1.34 ± 0.21 

Yield point Pa 73.6 ± 21.1 65.1 ± 17.2 

G’ Pa 9210 ± 1692 8384 ± 1566 

G’’ Pa 3400 ± 666 3074 ± 538 

Phase shift ° 20.24 ± 0.57 20.18 ± 0.76 

Enthalpy J/g 58.25 ± 1.07 60.25 ± 2.67 

Tonset °C 62.32 ± 0.51 61.23 ± 1.67 
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From the summarised results in table 4-14 it becomes evident that the prolongation of the 

homogenisation time from 7.5 to 12.5 min does not have any effect on physical, thermo 

analytical or rheological properties of verum. On the basis of the very homogeneous results 

and low standard deviations of 7 investigated pilot scale batches, a high reproducibility of the 

manufacturing process was demonstrated. 

 

4.3.2.3 Summary and concluding results 

Through the foregoing investigation an impact of the duration of the final homogenisation on 

the microstructure of placebo was shown. 

Water binding capacity of the hydrophilic/lipophilic gel lattice is markedly decreased and this 

in turn increases the amount of free bulk water. Homogenisation most likely induces an 

increased crystallisation of hydrophilic/lipophilic gel lattice. The more condensed matrix does 

not support water-binding, water gets squeezed out from it. This effect comes along with 

worse cream qualities. The longer the homogenisation time the more unstable the semisolid 

system becomes. 

Final homogenisation leads to notable changes in the rheological behaviour of the cream, 

too. Creams not subjected to the final homogenisation are well structured and resistant to 

mechanical shear forces. The shear applied during final homogenisation leads to loss of 

viscosity and reduction of mechanical resistance to shear although enhanced elastic 

behaviour is observed during oscillatory measurements (refined mesh of micro structure). 

Reason for these changes of physical and rheological cream properties most likely is a re-

organisation of hydrophilic and lipophilic gel lattice that are responsible for the flow properties 

and the water binding capacity. 

It can be supposed that during final homogenisation the fraction of crystalline lipids is 

increased. This was shown by increased melting enthalpy and increased onset 

temperatures. These fatty phase crystals might contribute to the formation of an elastic 

network, the reason for the higher elasticity of homogenised creams. This gel lattice formed 

during homogenisation is finer and more sensitive to shearing. Its lower robustness leads to 

lower viscosity and reduced hysteresis. However, it can be easily destroyed by shear forces 

and does not support water binding. 

Whereas a cold homogenisation affects directly physical, thermo analytical and rheological 

properties of placebo, a similar effect on verum by increasing the number of circulations was 

missing. Obviously, differences in the cream properties caused by different homogenisation 

shear get levelled by the strongly affecting amphiphilic API. 
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4.3.3 Cooling rate 

The cooling rate is one of the most critical process parameters during cream preparation. 

The cooling process of creams should be performed moderately and stepwise or 

continuously and not excessively rapid in order to avoid a solidification of fatty phase 

components on the vessel walls which can lead to a less homogeneous product (Köhler, 

1992). On the other hand, to slow cooling and insufficient stirring can favour the formation of 

large crystals of texture forming agents. 

Aim of the current investigation on the cooling rate was to evaluate the effect of different 

cooling procedures on the physical, rheological, and thermoanalytical properties of placebo. 

Three different cooling profiles have been realized (table 4-15). Cooling rates of 1.0 and 0.5 

°C/min have been chosen based on the abilities of the available cooling system and close to 

practice. Both represent an almost linear cooling process. 0.85 °C/min represents the 

average cooling profile (from 6 industrial scale batches) as depicted in table 4-16. 

 

Table 4-15:  Actual cooling profiles of placebo pilot scale batches; 80 kg, n=2 

Step [°C] Cooling rate [°C/min] 

Batches ## P02/P03 P07/P08 P09/P10 

70 to 60 1,23 ± 0,05 0,49 ± 0,01 1,50 ± 0,24 

60 to 45 0,82 ± 0,00 0,46 ± 0,06 0,80 ± 0,03 

45 to 40 1,10 ± 0,14 0,75 ± 0,35 0,43 ± 0,10 

40 to 28 1,05 ± 0,18 0,43 ± 0,01 0,41 ± 0,06 

Mean: 70 to 28 1,05 ± 0,17 0,53 ± 0,15 0,79 ± 0,51 
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Table 4-16:  Average cooling profile from 6 industrial scale batches; n=6 

Cooling step [°C] Cooling rate [°C/min] 

70 to 60 1,7 ± 0,3 

60 to 45 0,9 ± 0,2 

45 to 40 0,4 ± 0,1 

40 to 28 0,4 ± 0,2 

Mean: 70 to 28 0,85 ± 0,61 

 

4.3.3.1 Influence of different cooling rates on the cream properties 

Independent from the cooling profile all creams appear smooth and homogeneous. They 

represent fine emulsions with globules of the internal phase = 5 µm (fig. 4-25). 

 

   

 a) b) c) 

Figure 4-25: Placebo with different cooling rates, 200 times magnified, bar 32 µm 

 a) 1.0 °C/min, linear 
 b) 0.5 °C/min, linear 
 c) 0.85 °C/min, non-linear 
 

4.3.3.1.1 Consistency 

Slowly cooled creams (0.5 °C/min) arise more consistent as determined just by visual 

inspection. This was confirmed by minor spreadability and micro-penetration values (fig. 4-

26a and b). Spreadability and micro-penetration are a direct measure of the cream’s 

consistency. Aligned with higher cream consistencies are higher shear viscosities depicted in 

figure 4-26c. 
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Figure 4-26: spreadability (a), micro-penetration (b), and viscosity at 400 s-1 (c) 

 grey: 1.0 °C/min, linear 
 white: 0.5 °C/min, linear 
 striped: 0.85 °C/min, non-linear 
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From the foregoing results on spreadability and micropenetration it could be expected that 

consistencies of creams with the mean cooling rate of 0.85 °C/min range in between those 

profiles with the cooling rates of 1.0 °C/min and 0.5 °C/min. Actually they are more similar to 

the creams which are cooled faster. Shear viscosities are even lower than those of fast 

cooled creams. 

 

4.3.3.1.2 Water binding capacity 

For an evaluation of the water binding capacity primarily bleeding and electrical conductivity 

were consulted (fig. 4-27a and b). 
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Figure 4-27: bleeding (a), and electrical conductivity (b) 

 grey: 1.0 °C/min, linear 
 white: 0.5 °C/min, linear 
 striped: 0.85 °C/min, non-linear 
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Slower cooled creams show both less bleeding and lower electrical conductivity. Obviously 

slower cooling enhances water binding within the microstructure. Lower electrical 

conductivity confirms the smaller portion of free water. The water binding capacity of creams 

with non-linear cooling rate ranges in between slow and fast cooling. 

Thermogravimetry was not capable to differentiate between different cooling rates as 

extractable from table 4-17. Independent from the cooling rate, individual free water loss 

varies between 7.4 and 14.1 % referring to total sample weight. This evidences the high 

variability of the method. 

 

Table 4-17: : free bulk water [%] from total sample weight; means ± sd [%] 

1.0 °C/min 0.5 °C/min 0.85 °C/min* 

P02 P03 P07 P08 P09 P10 

9,1 10,8 7,7 10,6 7,4 10,9 

11,8 9,6 14,1 10,0 7,4 12,1 

10,2 10,0 10,3 8,0 - - 

n=6 n=6 n=4 

10,3 ± 1,2 10,6 ± 2,6 9,5 ± 2,4 

 * production like, non-linear CR 

 

4.3.3.1.3 Melting behaviour 

Figure 4-28 shows melting curves of creams with different cooling rates. The curve shape of 

all creams is characterised by a single symmetric peak. The profound peak of the fast cooled 

cream (curve at the top) with the highest melting enthalpy flattens when the cream is cooled 

by 0.5 °C/min (curve in the middle). Non-linear cooling by 0.85 °C/min (curve at the bottom) 

leads to the least profound peak with the lowest melting enthalpy. 
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Figure 4-28: DSC curves of creams with different cooling rates 

 at the top (1): 1.0 °C/min, linear 
 in the middle (2): 0.5 °C/min, linear 
 at the bottom (3): 0.85 °C/min, non-linear 
 

DSC revealed a diminution of melting energy by slower cooling (fig. 4-29a). Melting enthalpy 

is the energy necessary to melt the crystalline gel framework. Consequently lower melting 

energy is associated with less solid cream properties. The lowest melting enthalpy was 

detected for non-linear cooled creams. 
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Figure 4-29: melting enthalpy (a), and onset temperature (b) 
 integration range: 40-65 °C 
 grey: 1.0 °C/min, linear 
 white: 0.5 °C/min, linear 
 striped: 0.85 °C/min, non-linear 
 

Indicator of the beginning phase transition is the onset temperature. Onset temperatures of 

creams with cooling profiles 1.0 and 0.5 °C/min are aligned with the respective melting 

enthalpies (fig. 4-29b). Creams with non-linear cooling which show the lowest melting 

enthalpies unexpectedly show high onset temperatures. 

 

4.3.3.1.4 Rheological properties 

Figure 4-30 exemplarily shows a shear stress curve for each cooling rate. Curve 

progressions of the shear stress τ with increasing shear rate (upwards curves) differ clearly 

from each other. The recover is in delay for all formulations due to their plastic thixotropic 

flow behaviour. At the same shear rate the cream cooled by 0.5 °C/min shows noticeable 

higher shear stress compared to the creams cooled by 1.0 and 0.85 °C/min. Further the 

progression of the upwards curve is much steeper. The shear stress plateau of the non-linear 

cooled cream is reached at 200 Pa while the maximum shear stress of the slower cooled 

cream is reached only above 300 Pa. This indicates the decrease of the structural viscosity 

of creams cooled non-linearly. Whereas curve progressions of 0.5 and 0.85 °C/min slightly 

regress above shear rates of 180 1/s, the shear stress of the cream cooled by 1.0 °C/min 

always rises. Slower cooled creams show higher hystereses. It points to a more pronounced 

rheodestruction. 



Results and discussion 

 

85 

 

Figure 4-30: Flow curves of placebo pilot scale with different cooling rates 
 -Í- 0.5 °C/min, linear (# SHT292-P07) 
 -r- 1.0 °C/min, linear (# SHT292-P03) 
 -�- 0.85 °C/min, non-linear (# SHT292-P09) 

 

Independent from the initial available framework, the structure breaks down during the shear 

loop resulting in almost identical downward curves when the cooling rate was linear. The 

downward curves of the cream cooled non-linearly shows much lower shear stresses with a 

much flatter upward curve. This indicates a rather low resistance to shear. The hysteresis is 

comparable with the hysteresis of the cream cooled by 1.0 °C/min. 

 

The average phase shift of the creams with different cooling rates increases in the order    

1.0 – 0.5 – 0.85 °C/min (table 4-18). The creams seem to loose in elasticity. However, 

considering the standard deviations the difference between the phase shifts is not significant. 
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Table 4-18: : Phase shift δ [°] 

Cooling rate 
[°C/min] 

Phase shift δ 
[°] 

1.0 23.0 ± 1.2 

0.5 24.0 ± 0.3 

0.85* 24.4 ± 0.7 

 * production like, not homogeneous CR 

 

The more structured network of slower cooled creams leads to higher storage modulus and 

higher loss modulus (fig. 4-31). 
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Figure 4-31: Storage modulus (left scale); Loss modulus (right scale) 

 grey: 1.0 °C/min, linear 
 white: 0.5 °C/min, linear 
 striped: 0.85 °C/min, non-linear 
 

Even though the batches of raw materials used for manufacturing of the creams cooled non-

linearly were not completely identical with those utilized for manufacturing of the other 

creams, the differences in the cream properties seem to be exclusively related to the cooling 

profiles but not to the raw material batches (chapter 4.4.5). 



Results and discussion 

 

87 

4.3.3.2 Cooling rate in combination with a final homogenisation 

In the foregoing chapter, a certain dependency of cream consistency from cooling rate could 

be shown. Slowly and homogeneously cooled creams are more consistent and show higher 

viscosity than fast cooled creams. 

In the following, the combined influence of cooling rate (0.5 and 1.0 °C/min) and terminal 

homogenisation are assessed. 

 

4.3.3.2.1 Consistency 

Figure 4-32 shows spreadability and micro-penetration of creams with the cooling rates 0.5 

and 1.0 °C/min after 0, 15 and 25 min homogenisation time. 
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Figure 4-32: spreadability (a), micro-penetration (b) 
 grey: 1.0 °C/min, linear 
 white: 0.5 °C/min, linear 
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Homogenisation reverses the effect of slow cooling. The longer the final homogenisation the 

more fluid the creams prepared at 0.5 °C/min CR become. This can be seen from increasing 

spreadability and micropenetration values. Creams cooled by 1.0 °C/min do not react to 

sensitivity to a homogenisation. The consistency remains almost unchanged. 

 

4.3.3.2.2 Water binding capacity 

Homogenisation in general enhances the separation of a watery fluid from the system. This 

can be clearly seen from figure 4-33a and b. Bleeding and electrical conductivity increase 

with increasing duration of homogenisation. This phenomenon was already observed and 

assessed in chapter 4.4.2 on placebo with the cooling profile of 1.0 °C/min. The longer the 

final homogenisation the higher the water separation becomes. This is again more 

pronounced when creams are prepared with moderate cooling. Moderate cooled creams 

show a better water binding capacity only without a terminal homogenisation step. After the 

first homogenisation (15 min) bleeding and electrical conductivity become almost the same. 

And after 25 min of homogenisation the result is the reverse. 

Free water loss seems to increase slightly with increasing homogenisation time. However, 

there is no significant difference between these values due to the high variation of the 

method (table 4-19). 

 

 

Table 4-19:  Free water loss [%] from total sample weight, mean and sd (n=2) 

Duration of homogenisation [min] 1.0 °C/min 0.5 °C/min 

0 10.26 ± 0.97 10.11 ± 2.28 

15 11.07 ± 1.28 9.98 ± 0.91 

25 12.04 ± 1.39 11.13 ± 0.91 
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Figure 4-33: bleeding (a), conductivity (b) 

 grey: 1.0 °C/min, linear 
 white: 0.5 °C/min, linear 

 

4.3.3.2.3 Melting behaviour 

Slower cooling leads to the diminution of melting enthalpy and the shift to the lower onset 

temperatures (chapter 4.4.3.1). This was explained with a minor solid character and thus 

better cream qualities. This effect persists despite homogenisation (fig. 4-34). 

An influence of the final homogenisation step on the melting behaviour of the formulation was 

already shown in chapter 4.4.2.1.3. The clearly noticeable effect of different cooling profiles 

on creams without homogenisation is not more significant between the same creams after a 

homogenisation time of 25 min. 
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Figure 4-34: melting enthalpy [J/g] (columns), onset temperature [°C] (lines) 

 grey/ -p-: 1.0 °C/min, linear 
 white/-r-: 0.5 °C/min, linear 

 

4.3.3.2.4 Rheological properties 

Without final homogenisation slower cooling leads to more viscous and more structured 

creams. The higher hysteresis, measure for a better structured cream, results from the 

higher resistance to shear force during the upward flow curve. From figure 4-35 the 

continuous diminution of both shear viscosity a) and hysteresis b) by increasing shearing 

(number of circulations: 0-8-13) becomes evident. Higher viscous and more resistant creams 

with 0.5 °C/min CR become more and more similar to creams with a CR of 1.0 °C/min. A well 

visible effect from the cooling rate on the not homogenised cream base is damped after 15 

min of homogenisation and even levelled after 25 min of homogenisation. 

The levelling of flow behaviour and the hysteresis in particular is depicted in figure 4-36. A 

different progressing shear stress during upward curves between creams with different CR is 

visible only when the creams were not homogenised. The high reply of the shear stress τ of 

the moderate cooled cream indicates a robust structure resistant to shear force. Shear stress 

curves of creams homogenised for 25 min show a congruent progression independent from 

the cooling rate. 
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Figure 4-35: shear viscosity (a), hysteresis (b) 
 grey: 1.0 °C/ min, linear 
 white: 0.5 °C/min, linear 

 

Oscillatory measurements are an indicator for revealing changes in the visco-elastic 

behaviour of a cream. As evaluated in chapter 4.4.2.1.4, homogenisation leads to 

predominantly elastic creams. The phase shift declines because the ratio of G’’ and G’ is 

shifted in favour of G’ (fig. 4-37). The phase shift as ratio between elastic and viscous parts 

in the cream do not differ significantly between creams with different cooling profiles and is 

almost identical after 25 min of homogenisation. 
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Figure 4-36: Flow curves of placebo pilot scale with different cooling rates and after 

 different duration of homogenisation 

 1.0 °C/min (# SHT292-P03) 0.5 °C/min (# SHT292-P07) 
 -p- 0 min -�- 0 min 
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 Figure 4-37: storage modulus [Pa] (columns), phase shift [°] (lines) 
 grey/ -p-: 1.0 °C/min, linear 
 white/-r- : 0.5 °C/min, linear 
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4.3.3.3 Summary and concluding discussion 

A slow and homogeneous cooling process alters consistency and water separation of the 

cream. With a moderate cooling profile the resulting creams are more consistent and display 

higher viscosities. Results obtained from spreadability and micro-penetration are in alignment 

with the rheological findings. Slowly cooled creams are very resistant to shear forces at low 

shear rates. This was demonstrated with a much steeper curve progression of the shear 

stress τ by increasing shear rate. Oscillatory modules indicated differences between different 

cooling rates. 

Cooling rate arose to be a critical parameter regarding cream quality. It seems to be likely 

that homogeneous and moderate cooling improve the cream qualities. Moderate cooling 

increases consistency and viscosity, leads to a structure which is resistant to shear force and 

which shows reduced water separation. Moreover, data on creams with a non-linear cooling 

profile as usually applied during bulk production do not fit in this scheme. 

It could be evidenced that a slow and linear cooling rate forms a more defined microstructure 

with improved galenical cream properties. Higher melting enthalpies of faster cooled creams 

are a hint for crystalline structures. Lower melting enthalpies of slower (0.5 °C/min) and non-

linear cooled creams on the other hand can be explained with a minor tendency to re-

crystallisation of fatty phase components. The lowest melting enthalpy was determined for 

the non-linear cooled creams. Slow cooling between 45 °C and 28 °C (~0.4 °C/min for non-

linear cooled creams compared to ~1.1 °C/min for fast cooled creams compared to ~0.6 

°C/min for slow cooled creams) seems to be determinant for the formation of fatty alcohol 

crystals. However, this is only evident if the creams are not terminally homogenised. Fatty 

alcohol crystals are diminished due to the mechanical stress during final homogenisation. 

Furthermore it can be assumed that due to the shear force of the homogeniser the cream 

temperature in the homogeniser rises considerably (at least 10 °C above the temperature in 

the mixer). This leads to a partly melting of fatty phase fractions in the cream. These molten 

fatty phase fractions re-crystallise when the cream reaches the mixer with the cooler cream. 

This melting and re-crystallisation process probably levels thermo analytical properties 

(melting enthalpy, onset temperature) of the creams. 

Thus, a careful control of the CR seems not to be necessary. Also the non-linear cooling 

process during production can be judged to be fully acceptable. 

The impact of crystalline fractions formed after homogenisation on bleeding, conductivity and 

rheological properties of the creams has already been discussed in chapter 4.3.2. 
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4.3.4 Temperature during API-addition and final homogenisation 

The temperature limit for API-addition and final homogenisation in commercial production is 

set to 28 ± 2 °C. In order to study the influence of this process step, cream batches were 

prepared where temperatures during API-addition and final homogenisation have been 

varied. Temperatures above 40 °C have not been considered because of the well-known 

crystal growth of the micronized API. The impact of these processing conditions was 

evaluated on samples of 4 groups of batches (table 4-20). A total of 12 batches was 

manufactured on pilot scale with a batch size of 40 kg. Each batch was sampled before final 

homogenisation (placebo) and respectively after 8.1 (= 7.5 min) and 13.5 (= 12.5 min) times 

of circulation (= duration of homogenisation). 

 

Table 4-20:  Verum bulk batches (pilot scale): temperatures during API-addition 
 and during final homogenisation, content of AzA (% w/w) 

SHT056- n T API-addition [°C] T homogenisation [°C] Content of AzA 
[% w/w] 

P03;P06;P08;P10 4 20 20 20.1 ± 0.3 

P02;P05;P07;P09 4 30 30 19.9 ± 0.5 

P12;P13 2 40 40 20.0 ± 0.2 

P14;P15 2 40 30 20.0 ± 0.9 

   Mean ± sd [%] 20.1 ± 0.5 

 

4.3.4.1 Manufacturing procedure 

The primary emulsion (chapter 2.2.4.3) was cooled down to the predetermined temperature 

(table 4-20). Half of the placebo was discharged. The micronized API was added by 

aspiration to the remainder in the mixer (~32 kg). Through this manufacturing procedure 

verum batches were produced with reproducible content of azelaic acid (table 4-20). The 

average content of all produced batches was 20.1 ± 0.5 %. 

After the API-addition, residues of the powdered API were removed carefully and manually 

and were added to the cream. During this procedure the cream temperature was always kept 

at the predetermined temperature. After a short mixing and deaeration time, the cream was 

homogenised the 1st time. During this 1st homogenisation the total batch (40 kg) circulated 

8.1 times through the homogeniser corresponding to 7.5 min of homogenisation. After 10 min 
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of stirring the cream was homogenised again. During this 2nd homogenisation the total batch 

(40 kg) circulated further 5.4 times (≡ 5 min) through the homogeniser. 

Thus, the total number of circulations was 13.5 and corresponds to the duration of the 

homogenisation of 12.5 min. After 10 min of stirring and deaeration the verum was unloaded 

through the pumping homogeniser. The manufactured creams were discharged at the 

respective homogenisation temperatures. Samples were withdrawn while directly unloaded 

from the circulation tube in the appropriate containers (0.5 kg). Without further treatment 

samples were analysed after a holding time of 10 days at 25 °C/60 % RH. 

Whereas batches # P12 and # P13 were kept at 40 °C during API-addition and final 

homogenisation, batches # P14 and # P15 were cooled to 30 °C after the API was added to 

the placebo at 40 °C. In this way a differentiation of the temperature effect during API-

addition and final homogenisation was possible. 

Table 4-21 summarises the actual average temperatures during API-addition, 1st, and 2nd 

final homogenisation respectively. Generally temperature rises slightly during 

homogenisation due to the enormous energy input of the homogeniser. Therefore the mixer 

jacket was cooled during homogenisation in order to meet the predetermined temperatures. 

This temperature shift can be considered as non-critical and occurs for all batches uniformly. 

 

Table 4-21:  Actual temperatures during API-addition and homogenisation (means ± sd) 
   n: number of batches 

T target [°C] n TAPI-addition [°C] T 1° homogenisation [°C] T 2° homogenisation [°C] 

20/20/20 4 19.8 ± 0.5 24.0 ± 1.4 22.3 ± 1.0 

30/30/30 4 30.4 ± 0.6 31.8 ± 1.3 31.4 ± 1.1 

40/40/40 2 41.0 ± 0.0 42.0 ± 0.0 42.0 ± 2.8 

40/30/30 2 40.5 ± 0.7 31.5 ± 0.7 30.0 ± 0.0 
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4.3.4.2 Verum after the 1st final homogenisation 

4.3.4.2.1 Macroscopic and microscopic appearance 

The manufactured verum creams are white and shiny. API-crystals show dimensions 

between 5 and 20 µm (fig. 4-38 a-d). Creams homogenised at 20 °C and 30 °C respectively 

are homogeneous whereas creams homogenised at 40 °C represent a lot of small or large 

lumps. In addition they appear more consistent than the others. 

 a)  b) 

 c)  d) 

Figure 4-38: Microscopic pictures of verum, 200x, bar 32 µm 
Temperatures during API-addition/final homogenisation: 

 a) 20/20 °C 
 b) 30/30 °C 
 c) 40/40 °C 
 d) 40/30 °C 
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4.3.4.2.2 Consistency 

Figure 4-39 depicts spreadability and micro-penetration data of the creams. It becomes 

evident that shifting the temperature from 20 to 30 °C does not affect the cream’s 

consistency. But it also becomes evident that an increase of the temperature during API-

addition or final homogenisation up to 40 °C clearly abases both, spreadability and micro-

penetration of the creams. A different image arises when the API was added at 40 °C but the 

homogenisation of the API was performed after cooling to 30 °C. Both, spreadability and 

micro-penetration increase, corresponding to lower consistencies in comparison to creams 

prepared at 20/20, 30/30, and 40/40 °C respectively. 
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Figure 4-39: spreadability (a), micro-penetration (b) 
 filled: 20/20 °C 
 empty: 30/30 °C 
 shaded: 40/40 °C 
 striped: 40/30 °C 
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4.3.4.2.3 Water binding capacity 

Homogenising the final cream at 40 °C seems to improve the water binding capacity. This is 

easily seen on the low bleeding and electrical conductivity values at t0 (t0 corresponds to a 

holding time of 10 days). Creams with the API-addition/final homogenisation temperatures 

20/20, 30/30, and 40/30 °C respectively show similar bleeding and electrical conductivity 

values right from the beginning (fig. 4-40). 

m
m

2

1001
851

459

876

0

500

1000

1500

T0

a) 

µS
/c

m

30,6 30,1

20,7
31,5

0

10

20

30

40

50

T0

b) 

Figure 4-40: bleeding (a), electrical conductivity (b) 
 filled: 20/20 °C 
 empty: 30/30 °C 
 shaded: 40/40 °C 
 striped: 40/30 °C 
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4.3.4.2.4 Melting behaviour 

DSC curve 1 in figure 4-41 shows exemplarily the melting profile of creams homogenised at 

20 or 30 °C. The melting peak of the fatty phase forms a plateau indicating a broad melting 

range. The 2nd peak is much more distinctive. It shows the melting point of the API. In curve 

2, representative for creams homogenised at 40 °C, the tendency of the 1st peak to form two 

shoulders is clearly visible. The melting peak of the API is broader and less profound 

compared to curve 1. 

 

 

Figure 4-41: DSC curves of verum with different homogenisation temperatures 
 1: curve example for verum homogenised at 20 °C or 30 °C 
 2: curve example for verum homogenised at 40 °C 
 

 

Table 4-22 shows that melting enthalpies and onset temperatures of creams with different 

processing temperatures vary less than 2 °C one from another. In addition, the peaks are not 

completely separated from each other (fig. 4-41). Thus there is no significant difference 

within the melting behaviour between creams with various processing temperatures. 
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Table 4-22:  Melting enthalpies [J/g] and onset temperatures [°C], means ± sd 

Ttarget [°C] Melting enthalpy [J/g] Onset temperature [°C] 

20/20 57.86 ± 0.42 62.32 ± 0.32 

30/30 58.60 ± 0.99 62.04 ± 0.83 

40/40 59.62 ± 1.26 60.99 ± 0.54 

40/30 59.88 ± 0.47 63.20 ± 0.29 

 

4.3.4.2.5 Rheological properties 

Flow curves exemplarily for each API-addition/ final homogenisation temperature at t0 are 

depicted in figure 4-42. 

 
Figure 4-42: Flow curves of verum (pilot scale) at t0 with different temperatures 

during API-addition/ final homogenisation 

 -£- 20/20 °C (# SHT056-P08) 
 -p- 30/30 °C (# SHT056-P02) 
 -�- 40/40 °C (# SHT056-P12) 
 -Î- 40/30 °C (# SHT056-P14) 
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Flow curves of 20/20, 30/30 and 40/30 °C creams are very similar to each other. They show 

a continuous increase of the shear stress by increasing shear rate up to a shear stress of 

about 175 Pa (at the apex). Further, the even curve shapes indicate stable systems. 

The shear stress of the 40/40 °C cream rises very steeply but unevenly up to approx. 500 

Pa. At shear rates above 180 1/s the shear stress drops to 350 Pa (at the apex at 400 1/s). 

From the different flow behaviour different hystereses and shear viscosities result (fig. 4-43a 

and b). 
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Figure 4-43: viscosity (a), hysteresis (b) 

 filled: 20/20 °C 
 empty: 30/30 °C 
 shaded: 40/40 °C 
 striped: 40/30 °C 
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Clearly visible and in accordance with spreadabilty and micro-penetration 40/40 °C creams 

show two fold shear viscosities compared to creams with lower homogenisation 

temperatures. The great gain in viscosity is retrieved in hystereses values. In comparison to 

the high hysteresis of approx. 70 kPa/s of 40/40 °C creams the very low hysteresis of about 9 

kPa/s of the 40/30 °C creams becomes even more conspicuous. 

 

Storage modulus and loss modulus as well as phase shift of 40/40 °C creams are 

significantly higher than those of the other creams (table 4-23). The low elastic and viscous 

properties of the 40/30 °C creams compared to the others are also evident whereas its phase 

shift is identical with the 20/20 and 30/30 °C creams. 

 

Table 4-23:  Storage modulus G’ [Pa], Loss modulus G’’ [Pa] and phase shift δ [°] 

Ttarget [°C] Storage modulus G’ [Pa] Loss modulus G’’ [Pa] Phase shift δ [°] 

20/20 9673 ± 2281 3652 ± 860 20.7 ± 0.2 

30/30 9120 ± 1330 3350 ± 514 20.2 ± 0.3 

40/40 14225 ± 1351 5928 ± 38 24.2 ± 0.3 

40/30 5392 ± 951 1998 ± 343 20.3 ± 0.1 

 

 

4.3.4.3 Verum after the 2nd final homogenisation 

As explained in the foregoing chapters, all creams have been subjected to two final 

homogenisation steps. In chapter 4.4.4.1 it has been verified on the once homogenised 

cream whether API-addition and homogenisation temperature have an influence on the 

properties of the final cream. This aspect has been verified on creams which passed the 2nd 

final homogenisation. Table 4-24 gives a summary of the results from the investigation on the 

different creams homogenised for a 2nd time. 

The results without exception are very similar to the results of the creams homogenised 

once. Whereas creams with homogenisation temperatures of 20 and 30 °C show very similar 

properties, creams homogenised at 40 °C are more consistent, show higher water binding 

capacity, are higher viscous and more thixotropic and show higher response of oscillating 

parameters (G’, G’’, δ). 
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Table 4-24:  Verum twice homogenised: comparison between different temperatures 
during API-addition and final homogenisation (means ± sd) 

Method 20/20 °C 
(n=4) 

30/30 °C 
(n=5) 

40/40 °C 
(n=2) 

40/30 °C 
(n=1) 

Consistency 

Spreadability [mm2] 1571 ± 115 1666 ± 161 1144 ± 60 1693 

Micro-penetration [mm*10-1] 362 ± 48 374 ± 46 299 ± 2 424 

Water binding capacity 

Bleeding [mm2] 1102 ± 131 877 ± 46 431 ± 21 808 

Conductivity [µS/cm] 33.2 ± 1.6 31.4 ± 2.3 20.5 ± 2.5 29.9 

Melting behaviour 

Enthalpy [J/g] 61.8 ± 2.5 56.7 ± 4.4 60.7 ± 1.1 59.1 

Tonset [°C] 60.7 ± 2.1 61.9 ± 0.3 60,8 ± 3.1 63.4 

Rheological properties 

Viscosity [mPa*s] 427 ± 9.5 490 ± 33.6 1056 ± 49.3 454 

Hysteresis [kPa/s] 12.4 ± 0.2 14.6 ± 0.2 49.9 ± 0 8.7 

G’ [Pa] 7870 ± 1585 8665 ± 1651 14320 ± 1146 4591 

G’’ [Pa] 3008 ± 571 3084 ± 537 5872 ± 16 1795 

δ [°] 21.0 ± 0.2 19.7 ± 0.5 22.4 ± 1.5 21.4 
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4.3.4.4 Summary and concluding results 

An alteration of the temperature where the API is added between 20 and 30 °C does not 

affect the properties of the bulk drug product neither of creams once homogenised nor of 

creams twice homogenised. 

Creams homogenised at 40 °C (once and twice homogenised likewise) are more viscous, 

and thixotropic, show higher elastic and viscous modules and higher phase shifts. Bleeding 

and conductivity are clearly decreased which indicates a better water binding capacity. They 

show a different melting behaviour (peak shape) of the fatty phase. Melting enthalpy and 

onset temperature are similar between creams with various temperatures during API-

addition/final homogenisation. Temperatures higher than 40 °C have not been subjected to 

the investigation because of the well known dissolution and re-crystallisation phenomenon of 

the API at higher temperatures. Further a manufacturing condition similar to production 

should be simulated. 

Creams homogenised and sampled at 40 °C formed numerous big lumps after approx. 24 

hours. This probably occurred because they have not been stirred while cooling to room 

temperature. 

During cooling the primary homogeneous lipid and water phase crystallise in hydrophilic and 

lipophilic gel-phase separately from each other. Water is most likely entrapped mechanically 

within this gel-matrix. The crystallisation process has not yet finished at 40 °C. The fat 

alcohols cetylalcohol and stearylalcohol crystallise because of their low solubility in both 

phases. Lumps in the following days are the consequence. The lumps obviously contain less 

water and are able to absorb water. This is shown in low bleeding and electrical conductivity. 

The low solubility and thus crystallisation of fatty components in both gel phases changes the 

melting behaviour seen on the DSC curves. 

Further, the uneven upwards flow curve of creams homogenised at 40 °C reflect the lumpy 

appearance of the creams. Crystallised fat alcohols become entangled in a manner that does 

not allow following the increasing shear rate. 

It can be concluded that although the homogenisation at 40 °C seems to improve cream 

properties (consistency, water binding capacity), this however is not desirable because of the 

bad macroscopic appearance. 
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4.3.5 Raw materials 

Changes of batches of raw materials should be taken into consideration when manufacturing 

semisolids. Problems due to the use of different batches of raw materials should possibly be 

excluded during development activities of the formulation or at least during scaling up to pilot 

scale. Target of this evaluation was to exclude the impact of the raw materials on the cream’s 

properties during the study of manufacturing process parameters. 

In table 4-25 the utilised raw materials are evaluated with respect to a possible impact on the 

cream’s properties. From this, the possible influence of the API and the excipients Arlatone 

983S and Cutina CBS was investigated. Two different batches of each of them (utilised for 

cream processing) did not show significant differences in their chemical-analytical properties 

(QC-Certificate of analysis). 

Table 4-25:  Evaluation of raw materials utilised for cream processing 

Raw material Quantity Fully completely chem. 
analyt. characterisation 

Evaluated as critical 

Azelaic acid high yes + 

Cutina CBS high no + 

Arlatone 983S high no + 

PCL-Liquid low no - 

Propylene glycol high yes - 

Glycerol 85 % low yes - 

Benzoic acid low yes - 

 

Propylene glycol can be considered as not critical as it dissolves completely in the aqueous 

phase whereas AzA is suspended in the lipid and in the aqueous phase and thus must be 

considered critical. For the evaluation of the possible influence from various batches of 

excipients on the cream properties the bulk drug product batches ## P01 - P10 with the API-

addition at 20, 25 and 30 °C were considered. Apart from the investigated raw materials 

(table 4-26), the batches of all other raw materials were identical. In chapter 4.4.4 the 

similarity of the cream batches ## P01 - P10 has already been shown. 
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Table 4-26:  Verum batches (pilot scale) manufactured with different batches of AzA, 

Cutina CBS and Arlatone 983S 

SHT056- AzA 1 AzA 2 Cutina 1 Cutina 2 Arlatone 1 Arlatone 2 

P01 - P04 X  X  X  

P05; P06 X  X   X 

P07; P08  X X   X 

P09; P10 X   X X  

 

 

4.3.5.1 Cutina CBS 

Cutina CBS is a complex mixture of fatty ester and fatty alcohol. It consists of 70 % 

glycerolmono- and distearate, 10 % cetylstearylalcohol, 10 % cetylpalmitate and 10 % 

cocoglycerides. The most critical property of Cutina CBS, the hydroxyl number, was 188 for 

both batches. 

Verum batches ## P01 - P04 containing Cutina CBS batch # 1 were compared with verum 

batches # P09 and # P10 containing Cutina CBS batch # 2. Table 4-27 summarises the 

results with regard to consistency, water binding capacity, melting behaviour and rheological 

properties. 

As Cutina CBS acts as consistency agent a change of the batch of Cutina CBS was 

suspected to vary the cream consistency. Apart from the lower electrical conductivity of 

creams containing Cutina CBS batch # 2 the creams do not show significant differences 

regarding water binding capacity, consistency, and melting behaviour. Viscometric 

parameters do not differ from each other as well comparing creams containing Cutina CBS 

batch # 1 with creams containing Cutina CBS batch # 2. Cream batches containing Cutina 

CBS batch # 1 show lower values of storage and loss modules at rather similar phase shifts. 
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Table 4-27:  Verum with Cutina CBS batches # 1 and # 2 (n: number of batches) 

Method Unit batch 1 (n=4) batch 2 (n=2) 

Consistency 

Spreadability mm2 1546 ± 81 1508 ± 102 

Micro-penetration mm*10-1 410 ± 21 321 ± 8 

Water binding capacity 

Bleeding mm2 843 ± 37 892 ± 146 

Conductivity µS/cm 32.0 ± 1.9 27.6 ± 0.8 

Melting behaviour 

Enthalpy J/g 57.61 ± 0.54 57.70 ± 0.28 

Tonset °C 62.06 ± 0.96 62.09 ± 0.26 

Rheological properties 

Apparant shear 
viscosity 

mPa*s 459.5 ± 24.5 471.4 ± 31.8 

Hysteresis Pa/s*104 1.33 ± 0.24 1.28 ± 0.09 

G’ Pa 7531 ± 919 10183 ± 1665 

G’’ Pa 2722 ± 281 3819 ± 643 

Phase shift ° 19.9 ± 0.6 20.5 ± 0.1 

 

 

4.3.5.2 Arlatone 983S 

This non-ionic emulsifier consists of ethoxylated fatty acid esters of vegetable origin. With its 

HLB of 8.7 it is particularly suitable as oil-in-water emulsifier in creams. Arlatone batches # 1 

and # 2 showed identical analytical results. Verum batches ## P01 - P04 containing Arlatone 

983S batch # 1 were compared with verum batches # P05 and # P06 containing Arlatone 

983S batch # 2 (table 4-28). 
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Table 4-28:  Verum with Arlatone 983S batches # 1 and # 2 (n= number of batches) 

Method Unit batch 1 (n=4) batch 2 (n=2) 

Consistency 

Spreadability mm2 1546 ± 81 1530 ± 61 

Micro-penetration mm*10-1 410 ± 21 356 ± 21 

Water binding capacity 

Bleeding mm2 843 ± 37 1044 ± 186 

Conductivity µS/cm 32.0 ± 1.9 30.7 ± 1.8 

Melting behaviour 

Enthalpy J/g 57.61 ± 0.54 59.27 ± 1.16 

Tonset °C 62.06 ± 0.96 62.25 ± 0.56 

Rheological properties 

Apparent shear 
viscosity 

mPa*s 459.5 ± 24.5 479.1 ± 44.4 

Hysteresis Pa/s*104 1.33 ± 0.24 1.61 ± 0.28 

G’ Pa 7531 ± 919 9907 ± 42 

G’’ Pa 2722 ± 281 3722 ± 120 

Phase shift ° 19.9 ± 0.6 20.6 ± 0.5 

 

 

Cream batches can be considered as not significantly different regarding water binding 

capacity, consistency (spreadability, micro-penetration), and melting behaviour using 

different batches of the emulsifier Arlatone 983S. As far as oscillating properties are 

concerned, different storage and loss modulus values can be observed. 
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4.3.5.3 Azelaic acid micronised 

Regarding chemical properties both azelaic acid batches can be considered as equal. Mean 

surface tensions of azelaic acid solutions (5 %) were almost identical (59.9 ± 0.1 vs 59.3 ± 

0.3 mN/m). Within the scanning electron micrographs (chapter 4.1.3) and the BET surface 

(2.38 ± 0.02 m2/g vs 2.40 ± 0.05 m2/g) there were no differences among the two azelaic acid 

batches. 

Table 4-29:  Verum with AzA batches # 1 and # 2 (n= number of batches) 

Method Unit AzA batch 1 (n=2) AzA batch 2 (n=2) 

Consistency 

Spreadability mm2 1530 ± 61 1543 ± 61 

Micro-penetration mm*10-1 356 ± 21 353 ± 15 

Water binding capacity 

Bleeding mm2 1044 ± 186 946 ± 103 

Conductivity µS/cm 30.7 ± 1.3 31.6 ± 0.1 

Melting behaviour 

Enthalpy J/g 59.27 ± 1.16 58.49 ± 0.88 

Tonset °C 62.25 ± 0.56 62.21 ± 0.39 

Rheological properties 

Apparent shear 
viscosity 

mPa*s 479.1 ± 44.4 455.6 ± 17.9 

Hysteresis Pa/s*104 1.61 ± 0.28 1.53 ± 0.05 

Yield point Pa 77.5 ± 3.6 87.0 ± 41.8 

G’ Pa 9907 ± 42 10930 ± 127 

G’’ Pa 3722 ± 120 4068 ± 88 

Phase shift ° 20.6 ± 0.5 20.4 ± 0.2 

As summarised in table 4-29, it could be shown that the two different azelaic acid batches 

used did not lead to differences in the cream properties. 
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4.3.5.4 Summary of investigations on raw materials 

The use of different batches of the most critical components of the formulation, the 

consistency agent Cutina CBS, the emulsifier Arlatone 983S, and the API did not lead to 

substantial changes in the cream properties during these studies. 

A critical review of the data acquired in this work revealed that it could be excluded that 

different batches of raw materials had an interference with the assessment of critical process 

parameters within this study. 

 

 

4.3.6 Batch size 

Amongst other factors also different batch sizes can influence the properties of a cream. This 

normally has to be considered during scaling up from pilot to industrial scale. During this 

study it has been verified whether different batch sizes influence the final cream properties 

when manufacture on the same plant (RW 125). Manufacturing of smaller quantities than 80-

100 kg on the RW 125 for instance is required for clinical trial studies. 

Therefore verum bulk batches # P02 (40 kg) and # P04 (80 kg) have been compared with 

each other. Respective results are summarised in table 4-30. 

Both batches were manufactured on the pilot plant Becomix RW 125 using identical batches 

of raw materials. The API was added at 30 °C. For batch # P02 placebo was halved before 

adding the API. Due to the halved batch size the homogenisation time of the final 

homogenisation was halved accordingly from 15 min to 7.5 min. The homogeniser speed 

remained unchanged at 25.0 m/s. Thus the circulation times for 80 kg were 0.54/min 

whereas 1.08/min for 40 kg. This guaranteed that in both cases the product was circulated 

approx. 8.1 times when the homogeniser speed was hold constant at 25 m/s. 

As far as consistency concerns a slightly better spreading cream was detected with the large 

batch size. This difference in spreadability is negligible considering the very similar 

viscosities of both batch sizes. As far as the result for just one batch can be considered as 

relevant and representative, all other cream parameters show very homogeneous results as 

well. 
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Table 4-30:  Verum batches # P02 (40 kg) and # P04 (80 kg) 

Method Unit P02 (40 kg) P04 (80 kg) 

Water binding capacity 

Bleeding mm2 873 809 

Conductivity µS/cm 31.5 31.1 

Consistency 

Spreadability mm2 1430 1610 

Micro-penetration mm*10-1 386 406 

Melting behaviour 

Enthalpy J/g 57.7 58.2 

Tonset °C 63.2 60.9 

Rheological properties 

Apparent shear 
viscosity 

mPa*s 470.3 488.1 

Hysteresis Pa/s*104 1.64 1.35 

G’ Pa 8550 7328 

G’’ Pa 3078 2665 

Phase shift ° 19.8 20.0 

 

 

4.3.6.1 Summary of investigations on the batch size 

Comparing the data from the manufacturing of 40 and 80 kg batch sizes respectively, results 

give clear hints that adapting the homogenisation time to the batch size and thus maintaining 

identical the number of circulations yields comparable products. 
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4.3.7 Holding time 

In previous chapters the shear sensitivity of the model formulation has already been shown. 

In case of the model cream shearing is necessary in order to disperse homogeneously the 

API after cooling was finished. This shear can considerably alter the colloidal structure of the 

vehicle especially when it is required after crystallisation of the molten lipid phase. The 

structural changes caused by this may be partly reversible and the structure might be 

restored after a certain period (HT) where the product is kept at rest. 

Based on previous studies on the model cream during development the holding time of the 

bulk cream was stated at 10 days. 

Usually, holding time before filling semisolids is limited in order to warrant an excellent 

microbiological quality of the pharmaceutical finished product. On the other hand a minimum 

holding time before filling might be recommended for shear sensitive products. In case of the 

model cream the holding time describes the recommended rest period of the bulk before 

filling into the primary packaging material. 

The objective within the course of this thesis was to reinvestigate this rest period immediately 

after manufacturing which is presumed to be critical for the physical properties of the model 

cream. Based on the structure findings of this study the target was to explain in more detail 

the cream behaviour and to verify the duration of this rest period. 

Rheological flow and oscillating properties of the model cream were assessed during the 

course of 10 days after cream preparation. The impact of the API on changes in flow 

behaviour and visco-elastic properties of verum during the holding time was assessed. Bulk 

creams from industrial and from pilot scale as well as finished product from pilot scale have 

been subject of this study (table 4-31). 

 

 

4.3.7.1 Sample preparation 

Samples were taken before the addition of the API (placebo), after the addition of the API 

and after the subsequent homogenisation (verum). Samples were gently filled into single 500 

g jars and stored in a climatic chamber at 25 °C/60 % RH. Analyses were carried out right 

after sampling and after every 10 days, using a different jar every day. 
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Table 4-31:  Bulk batches from pilot and industrial scale 

Manufacturing scale Batch # Temperature during API-addition/ 
final homogenisation [°C] 

Ind 53179, 53180, 53181 28 ± 2 

Pilot SHT056-P12/P13 40/40 

Pilot SHT056-P14/P15 40/30 

 

 

4.3.7.2 Bulk product from industrial manufacturing 

Placebo and verum bulk product of 3 industrial scale batches were subjected to this 

evaluation. 

 

4.3.7.2.1 Viscosimetry 

Figure 4-44 shows apparent shear viscosities of verum and placebo during a holding time of 

10 days after cream processing. 
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Figure 4-44: Apparent shear viscosity ηa [mPas] at 400 1/s (n=3), ind scale 

 -p- verum 
 -r- placebo 
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At first a much higher viscous verum is evident shortly after manufacturing and the huge drop 

of viscosity of verum compared to the stable viscosity of placebo during the overall holding 

time afterwards. After a remarkable drop of the verum’s viscosity during the first five days it 

reaches a stable plateau value comparable to the corresponding placebo’s viscosity. This 

behaviour of verum is rather particular. It shows the loss of consistency shortly after cream 

manufacturing although verum contains 20 % solid fraction. The varying standard deviations 

immediately after manufacturing are interesting. Verum viscosities in decrease show high 

standard deviations. With increasing holding time, shear viscosities become more 

reproducible and similar to placebo. 

Figure 4-45 shows viscosity curves of verum and placebo at different holding times. The 

apparent shear viscosities are determined at the apex of the flow curves at 400 1/s. 

 

 
Figure 4-45: Shear viscosities, # 61003 (ind scale) after different HT 

 Placebo Verum 
 -Î- 1 d -r- 1 d 
 -�- 10 d -p- 10 d 
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The section around the apex of the flow curves with linear plotted viscosity on the y-axis and 

linear plotted shear rate on the x-axis is depicted. During increasing shear rate viscosities 

drop. With decreasing shear rate during the backward curves viscosities are regained only 

partially. At the same shear rate viscosities of backward curves are distinctly lower compared 

to viscosities of the forward curves. This structure and viscosity break down is typical for 

creams that show plastic thixotropic behaviour. 

The almost congruent viscosity curves of placebo after 1 day and after 10 days holding time 

respectively with apparent shear viscosities at the apex of 682 mPa*s and 696 mPa*s are 

evident. The courses of upward and downward curves of verum after different holding times 

differ distinctively from each other. At the same shear rate verum after 1 day holding time 

shows markable higher shear viscosity compared to verum after 10 days of holding time. The 

apparent shear viscosities at the apex are 937 mPa*s and 510 mPa*s, respectively. 

Figure 4-46 shows hystereses of verum and placebo during the course of the holding time. 

Verum’s hysteresis increases within the first 3 days of holding time from approx. 15 kPa/s to 

30 kPa/s. Afterwards hysteresis falls below the placebo value and stabilises at approx. 20 

kPa/s. Placebo in comparison shows continuously increasing hysteresis up to 5 days. Then it 

remains constant on the plateau value of approx. 25 kPa/s. 
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Figure 4-46: Hystereses [Pa/s*104] (n=3), ind scale 

 -p- verum 
 -r- placebo 
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Figure 4-47: Flow curves of verum, # 53181 (ind scale) 

 -p- immediately after cream processing 
 -r- 3 days after cream processing 
 

The changed flow curve-profiles of verum in the initial period after manufacturing are shown 

in figure 4-47. Easily seen is the relative small hysteresis between the upward and downward 

curve immediately after manufacturing. Within the first three days of rest the hysteresis rises 

up to more than the double and the shear stress τ rises more steeply by increasing shear 

rate. It demonstrates the recovery of the microstructure of the cream. However, this structure 

seems to be very fragile and shear sensitive. 

Storage and loss modules (fig. 4-48) and the phase shift δ (table 4-32) are very sensitive 

parameters to visualise changes in the microstructure. Both, verum and placebo show 

predominantly elastic behaviour with G’ exceeding G’’. By incorporation of the API the 

microstructure clearly gains on elasticity (G’ of verum). Demonstrative is the varying storage 

modulus of verum accompanied by high standard deviations. In contrast, standard deviations 

of placebo are negligible. Placebo shows a stable structure (constant G’ and G”) right after 

manufacturing. 
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Figure 4-48: Storage modulus G’ [Pa] (n=3), ind scale 

 -p- verum 
 -r- placebo 
 Loss modulus G’’ [Pa] (n=3), ind scale 
 -   - verum 
 -   - placebo 

The verum phase shift (table 4-32) decreases during the first 4 days of holding time. After 4 

days the phase shift reaches a constant level corresponding to a stable and more elastic 

structure. Placebo on the contrary shows constant phase shifts and a high reproducibility just 

from the beginning and over the entire term of the holding time. 

Table 4-32:  Phase shifts δ during holding time (means ± sd [°]), n=3 

Phase shift? δ [°] ± sd [°] (n=3) 

days verum placebo 

0 21.20 ± 0.37 23.73 ± 0.07 

2 20.69 ± 0.91 23.37 ± 0.16 

4 18.92 ± 1.59 23.55 ± 0.23 

8 18.56 ± 0.81 23.68 ± 0.21 
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4.3.7.2.2 DSC 

The API’s influence on the cream properties was additionally checked by DSC as an additive 

method. The typical melting profile of verum is shown in figure 4-49. After a broad endotherm 

peak between 42 °C and 57 °C corresponding to the melting of the fatty phase, the phase 

transition of the API occurs with a melting point at approx. 70 °C. The pure API by 

comparison melts at 108.12 °C. 

 

 

Figure 4-49: DSC-curve of verum, # 63001 (ind scale) 

 

Figure 4-50 shows the melting enthalpies of the fatty phase and the API in the verum cream. 

It is obvious that the melting enthalpy measured for the API decreases constantly during the 

first 5 days of the holding time. After that a plateau value seems to be obtained. Otherwise, 

when drawing a line between 0 day and 10 days then it points to a continuous dissolution 

process. In contrast, the melting enthalpy of the fatty phase marginally increases before it 

reaches a stable plateau value likewise after 5 days. 
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Figure 4-50: Melting enthalpies [J/g] of verum (n=2) 
 -p- 1st melting peak (fatty phase), left scale 
 -r- 2nd melting peak (API), right scale 
 

 

4.3.7.2.3 Electrical conductivity of aqueous API solution 

The aqueous solution consisting of propylene glycol, glycerol 85 % and purified water is 

quantitatively composed as the aqueous phase in the cream. Table 4-33 shows the electrical 

conductivity of an API suspension during time under continuous stirring. From this the 

dissolution of the API in the cream is once again possible. The aqueous API-dissolution 

obtains its equilibrium under continuous stirring after approx. 5 hours. 

 

Table 4-33: Electrical conductivity [µS/cm] of an AzA-suspension (5 % w/w) at 25 °C 

Time 
[min] 

0 5 10 15 20 25 30 45 60 120 180 240 300 360 

Cond. 
[µS/cm] 

92.9 93.5 94.1 94.5 94.6 94.8 94.7 94.8 95.3 95.6 96.6 97.1 97.3 97.3 
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4.3.7.3 Holding time of homogenised placebo 

So far placebo and verum have been compared where only the verum was subjected to 

terminal homogenisation at 28 ± 2 °C. In order to clarify the influence from the final 

homogenisation on the cream properties during holding time two placebo pilot scale batches 

(# P09 and # P10) either not homogenised or homogenised respectively for 15 and 25 min 

were investigated by rheological methods during the first 10 days after manufacturing. 

Exemplarily for the rheological parameters the course of the average shear viscosities during 

holding time are depicted in figure 4-51. 
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Figure 4-51: Shear viscosities [mPas] of placebo (n=2), 3 days (n=1) 

 -£-   0 min homogenised 
 -r- 15 min homogenised 
 -�- 25 min homogenised 
 

Placebo creams homogenised for different durations show the same shear viscosities 

immediately after production. Shear viscosities of non-homogenised creams do not decrease 

during holding time whereas viscosities of homogenised creams decrease substantially and 

show high standard deviations after a holding time of 12 days (table 4-34). 
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Table 4-34: Mean shear viscosities ± sd [mPa*s], n=2 

Duration of homogenisation [min] Holding time 
[days] 

0 15 25 

0 496.3 ± 28.1 499.8 ± 32.0 489.1 ± 15.9 

12 453.7 ± 53.9 337.7 ± 217.4 283.0 ± 222.4 

 

 

4.3.7.4 Summary of holding time on the bulk cream (ind scale) 

The current investigation on the model cream revealed that amongst various parameters 

within the complex manufacturing process of a semisolid formulation the holding time of the 

bulk product must be considered as a critical parameter for the cream quality. 

The initial viscosity and hysteresis increase of verum clearly point to an impact of the shear 

applied during manufacturing. Increasing storage modules during the first days after 

manufacturing are in accordance with increasing hystereses. Obviously the cream needs a 

period of rest shortly after manufacturing in order to recover and re-organize its proper gel-

structure. Both indicate a re-organisation of the gel-structure. A possible explanation for the 

decreasing verum viscosity/hysteresis possibly is an interaction between API and 

hydrophilic/lipophilic gel-phase. This can be supported by decreasing melting enthalpy of the 

API in the cream. This lets assume a solubilization of the API in the gel-phase. After approx. 

5 days the saturation level was obtained. Slightly increasing melting enthalpy of the fatty 

phase can be explained with re-crystallisation processes. 

Placebo on the contrary, shows a stable plateau value which characterises a robust 

structure. As placebo is sampled before the final homogenisation the hysteresis increase is 

less significant and shear viscosity even remains constant. 

It has been further proven that the influencing factor is the API but not the final 

homogenisation. The only difference within the manufacturing process between verum and 

placebo is the final homogenisation step which is missing for placebo. Homogenisation time 

notably influences the cream properties. This was discussed in detail in chapter 4.4.2. On the 

other hand it has only a secondary effect on the cream properties during holding time. 
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4.3.7.5 Bulk product with API-addition at 40 °C 

Pilot scale batches with API-addition at 40 °C have been investigated on holding time. It 

should be assessed how creams manufactured at an elevated temperature (40 °C) show 

similar behaviour during holding time as creams manufactured close to production 

parameters. Compared to standard creams where the API was added and dispersed 

homogeneously at 28 ± 2 °C the here investigated creams were homogenised at 40 °C (# 

P12, # P13) or at 30 °C (# P14, # P15) respectively after the API was added at 40 °C. 

 

4.3.7.5.1 Viscosimetry 

Figure 4-52a shows viscosities and figure 4-52b shows hysteresis of 40/40 °C and 40/30 °C 

creams compared to standard creams (ind scale). Verum viscosity of standard creams 

immediately after manufacturing is twice as much compared to placebo viscosity. 40/40 °C 

creams show similar placebo and verum viscosities immediately after manufacturing and 

reach a plateau value after 3 day. Noteworthy is the drop in shear viscosities of 40/30 °C 

creams to the halve viscosities within two days (placebo) and within six days (verum). The 

verum viscosity declines clearly below the placebo viscosity. 

Placebo and verum hystereses (fig. 4-52 b) of creams homogenised at 30 °C show identical 

course during holding time. Their hysteresis values are similar to the standard creams. But 

they are clearly lower compared to the hysteresis values of creams homogenised at 40 °C. 

After a considerable initial drop, hysteresis values approach a plateau value after six days. In 

contrast thereto, creams homogenised at 40 °C show almost constant hystereses right from 

the start. Creams homogenised at 40 °C were unloaded at 40 °C and filled immediately in 

jars without cooling to ambient while stirring. These creams showed rather lumpy 

appearance after few days. 
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Figure 4-52: Shear viscosity [mPas] (a), hysteresis [Pa/s*104] (b) 

 -£- verum std -¢- placebo (n=3) 
 -r- 40/40 °C -p- placebo (n=2) 
 -�- 40/30 °C -�- placebo (n=2) 
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4.3.7.5.2 Oscillation 

Phase shifts (fig. 4-53) show rather different behaviour. Creams homogenised at 30 °C are 

more elastic whereas creams homogenised at 40 °C show lower elasticity with an initial drop 

up to 3 days followed by an increase to the initial value. Standard creams in comparison 

show continuously slightly decreasing phase shift during the first 5 days, afterwards almost 

stable values. 
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Figure 4-53: Phase shift δ [°] during holding time (n=2) 
 -r- 40/40 °C 
 -p- 40/30 °C 
 -Î- verum bulk std (ind scale) 
 

 

4.3.7.6 Summary of holding time on bulk with API-addition at 40 °C 

Different homogenisation temperatures caused different rheological behaviour during holding 

time. A loss in verum viscosity was detected for creams homogenised at 30 °C as well as for 

creams manufactured under standard conditions. But API-addition and homogenisation 

likewise at 40°C clearly lead to the levelling of verum and placebo properties as well as to 

stable rheological properties after a short holding time. Interactions between API and 

hydrophilic/lipophilic gel phase seem to be reduced to a minimum. From this point of view the 

addition of the API at 40 °C and following homogenisation at 40 °C might be favourable and 

might allow reduce the holding time to 3 days. 
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Creams of this type showed rather lumpy appearance after 1-2 days. These lumps probably 

formed by separately crystallised fat alcohols do not contribute to an elastic network and thus 

showed lower elastic properties. From esthetical point of view consequently API-addition and 

homogenisation at 40 °C is not recommended at least if the cream is unloaded without 

further stirring during cooling to ambient. 

 

4.3.7.7 Finished drug product 

Apart from the process parameters during the manufacturing of a semisolid cream also the 

filling process must be taken in consideration and in particular the shear effect which is 

applied to the cream from the pumping tool as well as from the filling injector. 30 g aluminium 

tubes were filled on the filling line Tonazzi Colibri (chapter 2.2.4.8) after transferring the bulk 

cream manually from the bin into the hopper of the filling machine (table 4-35). A pump 

transfer system as is usually used for the filling activities during industrial manufacturing was 

not utilised because of the small amount of bulk cream (15 kg each batch). Therefore an 

impact from the pumping stress to the cream during the transfer from the bin to the hopper 

was not subject of the current investigation. 

About 200 tubes of the pilot scale batch # P15 and the industrial scale batch # 64009 have 

been filled immediately after manufacturing and after 10 days holding time of the bulk drug 

product respectively. During manufacturing batch # P15 the API was added at 40 °C and the 

cream was homogenised at 30 °C whereas batch # 64009 was manufactured by the 

standard procedure (28 ± 2 °C). The actual temperatures were determined with 28.8 ± 0.1 °C 

during API-addition and with 29.1 ± 0.6 °C during final homogenisation. The creams were 

monitored rheologically during the first 10 days after filling and manufacturing. 

Table 4-35:  Finished drug product (FP) and corresponding bulk drug product (BP) 

FP batch # (30 g) BP batch # 
Temperature API-addition/final 

homogenisation [°C] 

CF058/06* 

CF059/06  ̂

SHT056-P15 
(pilot scale) 40 ± 1 

CF060/06* 

CF061/06  ̂

64009 
(ind scale) 28 ± 2 

 * filled immediately 

 ^ filled after 10 days HT 
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The result of viscometric and oscillatory parameters of finished products (30 g tubes) either 

filled immediately or filled after a holding time of the bulk product of 10 days during an 

analysing period of 10 days and the corresponding bulk drug product (batch # SHT056-P15) 

are depicted In figures (4-54, 4-55, 4-56 and 4-57). The shear viscosities of bulk as well as of 

FP filled immediately decrease in the first days half as much as before, they reach a stable 

plateau value after 5-6 days. In comparison, the FP filled after 10 days of rest (# CF059/06) 

shows stable viscosity and hysteresis results (fig. 4-54 and fig. 4-55) right after the filling 

activity. After 10 days analysing period its shear viscosity coincides with the viscosity values 

of bulk and FP filled after 0d HT. 
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Figure 4-54: Shear viscosity [mPas] during analysing period of 10 days 

 -r-   0 d HT (# CF058/06) 
 -£- 10 d HT (# CF059/06) 
 -Î- bulk (# SHT056-P15) 

 

The hysteresis of batch # CF059/06 is lower than terminal hystereses of batch # CF058/06 

and the bulk (fig. 4-55). Similar to viscosity tendency the hysteresis decreases half as much, 

up to 6 days when the cream had not had a rest period after manufacturing. Afterwards it 

reaches a stable plateau value. 
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Figure 4-55: Hysteresis [Pa/s*104] during analysing period of 10 days 

 -r-   0 d HT (# CF058/06) 
 -£- 10 d HT (# CF059/06) 
 -Î- bulk (# SHT056-P15) 
 

Figure 4-56 evidences the different flow behaviour of creams filled immediately after 

manufacturing, or maintaining a rest period of 10 days before filling respectively. Shear 

stress τ rises steeply up to almost 400 Pa (# CF058/06 and bulk) compared to 175 Pa (# 

CF059/06) measured each at the apex of the flow curve. Flow curve progressions of the 

finished products are even and always rising. In comparison, bulk shows uneven flow curve 

profile with regressing flow curve above shear rates of 180 1/s. The filling evidently has a 

light pre-shear effect (uneven vs even flow curve profile). But the shear applied during filling 

does not influence the reply of the shear stress. 

Flow curves of both batches (# CF058/06 and # CF059/06) recorded again after 10 days 

after first analysing are congruent to one other and identical to the flow curve of batch # 

CF059/06 recorded at filling date. 
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Figure 4-56: Flow curves, # SHT056-P15 (pilot scale), FP analysed at filling date 

 -r- FP filled after 0 d HT (# CF058/06) 
 -£- FP filled after 10 d HT (# CF059/06) 
 -Î- bulk immediately after manufacturing 
 

The progress of the storage modulus G’ confirms the foregoing results regarding the 

insensitivity of the cream properties to the filling stress. Easily noticeable is the decreasing 

elastic modulus during the first 3 days after filling or manufacturing respectively (fig. 4-57). 

During remaining holding time batch # CF058/06 and bulk show constant storage modulus 

G’. Worthwhile to mention, is the low elastic behaviour of batch # CF059/06 which is in line 

with the low hysteresis. 

Finally, fig. 4-58 shows the comparison of viscosities between pilot and industrial scale 

batches. The similarity in the flow behaviour between pilot and industrial scale batches is 

visible. After 10 days all samples of finished product approach a uniform viscosity value. 
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Figure 4-57: Storage modulus G’ [Pa], n=1 

 -r-   0 d HT (# CF058/06) 
 -£- 10 d HT (# CF059/06) 
 -Î- bulk (# SHT056-P15) 
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Figure 4-58: Shear viscosity [mPas] of FP samples from pilot and ind scale 

 -r-   0 d HT pilot (# CF058/06) -p-   0 d HT ind (# CF060/06) 
 -£- 10 d HT pilot (# CF059/06) -¢- 10 d HT ind (# CF061/06) 
 -Î- bulk (# SHT056-P15) -�- bulk (# 64009) 
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4.3.7.8 Summary of holding time of finished drug product 

Creams (pilot scale 40/30 °C) filled into final packaging material shortly after manufacturing 

show rheological behaviour similar to the corresponding bulk cream. After 3 to 6 days the 

microstructure and consequently the rheological parameters reach stable plateau values. 

The shear stress applied to the cream by the injector during the filling process showed no 

influence in the rheological cream properties. 

Creams (pilot scale 40/30 °C) filled after a holding time of 10 days showed stable rheological 

properties right from analysis start and different from bulk and finished product immediately 

filled. This underlines the changes taking place in the re-organisation of the microstructure 

during the first days. The found values coincide with the ones found after 3 to 6 days (when 

become stable) for bulk and finished product immediately filled. 

Investigations showed for pilot and industrial scale trials likewise that it is indifferent if the 

holding time is carried out on the bulk or directly in the tube. In light of this, immediately filling 

and 5 to 10 days rest afterwards appear recommendable. 
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4.3.7.9 In vitro release tests 

Drug release from semisolid dosage forms is highly influenced by vehicle properties 

(Benninger, 1977). Drug substances in diluted solutions are released according the 1st Ficks’ 

law of diffusion (equation 4-1). 

J = -D* ∆C/∆x (Eq. 4-1) J mass flux 

 D diffusion coefficient 

 C concentration of the solute 

 x distance into the substrate 

In case where the vehicle is a semisolid system the diffusion is hindered by interactions 

between vehicle and drug substance. For such semisolid systems an apparent diffusion 

coefficient can be determined. Release from ointments containing suspended drug 

substance can be described by the equation according to Higuchi (1967). 

 

Q = A* (2*Ds*C0*Cs*t)
½ (Eq. 4-2)  Q cumulative API-amount released [mg] 

  A diffusion area [cm2] 

  C0 initial concentration [mg/cm3] 

  Ds apparent diffusion coefficient [cm2/s] 

  t time [min] 

  Cs saturation concentration within donor [mg/cm3] 

The following prerequisites have to be met in order to apply Higuchi’s equation: 

• speed of diffusion changes only slightly after a initial phase 

• linear concentration gradient between vehicle and membrane 

• sufficient high speed of dissolution, the dissolution must not be speed determinant 

• particles of drug substance must be much smaller than the vehicle layer 

• there is only one diffusing drug substance 

• acceptor medium meets sink conditions, concentration of drug substance in the 

acceptor must not exceed 10 % of the saturation concentration 

• C0 of the donor is much higher than Cs 

Viscosity is one of the key attributes of semisolid dosage forms. As shown on 3 investigated 

bulk batches from production (Fig. 4-44 in chapter 4.4.7.2) the viscosity of the verum bulk 

decreases significantly during the first days after processing the cream. Target of the current 

in vitro release tests on the model cream was to verify, if the decrease of viscosity during 

holding time influences the release of the API from the cream. 
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Therefore in-vitro-release tests of a further bulk batch from production were carried out 1 day 

and 8 days after manufacturing respectively. After 1 day the cream showed its maximum 

viscosity. After 8 days the viscosity decreased by 400 mPa*s (table 4-36). 

Table 4-36:  Viscosities of # 61003 during HT (n=2 measurements) 

days η [mPa*s] 

1 962.3 

2 944.7 

5 832.3 

6 709.5 

7 612.6 

8 560.7 

9 523.7 

12 517.3 

 

The release profiles of the API from the o/w cream can be extracted from figure 4-59. Both 

curves show a linear release profile and almost identical slopes. The flux of the different 

viscous creams and the total amount released are shown in table 4-37. They do not show 

significant differences. The average flux of the API from the model cream is approx. 420 

µg/cm2/min1/2. 

 

Table 4-37:  Average flux for investigational cream at different viscosities 

η 
[mPa*s] 

flux* 
[µg/cm2/min1/2] 

Total amount released after 6 h 
[mg/cm2] 

962.3 426.6 7.36 

560.7 414.6 7.11 

* average slope of the line where square root of time [min1/2] is the x-axis and 
 cumulative amount released [µg/cm2] is the y-axis 
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 Figure 4-59: API-amount released from the bulk cream [µg/cm2] 

 -p- after 1 day HT, R2 0.9986 
 -�- after 8 day HT, R2 0.9994 
 

4.3.7.10 Summary of in vitro release tests 

A viscosity change of approx. 400 mPa*s does not affect the release rate of the API from the 

model cream. The decisive release factor is most likely the API amount. Within 6 hours 

approx. 7 mg/cm2 API were released from the model cream. Compared to other formulations 

with other sparingly water soluble API’s the released AzA amount is relatively high (Franke 

et. al, 1996, Frigoli, 2001). However, this was expectable because of the high API 

concentration of 20 % (w/w). Hence it can be presumed that the release rate is only 

marginally dependent on the cream’s microstructure. 

An effect of changes in process parameters and in viscosity on the release rate could be 

shown for other formulations by different authors. Thakker (2003) observed a significant 

impact of viscosity changes on the release of retinoic acid from semisolid formulations. He 

varied the viscosity builder between 0, 5 and 10 % and showed that the release of retinoic 

acid was inversely proportional to the amount of viscosity builder in the formulation. 

Franke (1996) showed increasing release rates of metylprednisolone aceponate (MPA) from 

Advantan in the sequence fatty ointment < ointment < cream corresponding to decreasing 

viscosity of the Advantan vehicles. Kaca (2007) showed on sparingly soluble corticosteroids 

that viscosity does not influence the release rate. 
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4.3.7.11 Concluding results of holding time 

A remarkable impact of the API on flow and oscillating properties of the formulation could be 

verified. The rheological monitoring of verum bulk product cream clearly points to structural 

changes taking place after processing the cream. Obviously, these changes are triggered by 

the API and might be attributed to an incorporation of the amphiphilic API into hydrophilic and 

/or lipophilic gel-phases. Results from this investigation suggested that the holding time 

before filling into primary packaging materials can be shorted to a minimum of 5 days. 

Further it could be shown that final homogenisation does not affect the cream properties 

during holding time. Actually it has no influence on placebo properties. 

API-addition and homogenisation likewise at 40°C clearly lead to the levelling of verum and 

placebo properties as well as to stable rheological properties after a short holding time 

(approx. 3 days). This processing condition (40 °C) seems to be favourable for the cream 

quality. On the other hand these samples exhibited unacceptable aesthetic properties (lumpy 

appearance). This proved that it is necessary to stir during cool down to room temperature 

for a homogeneous formation of hydrophilic and lipophilic gel-phases (disordered state). 

Investigations on pilot and industrial scale trials likewise showed that holding time is a critical 

parameter for verum but it is indifferent if this holding time is applied to the bulk or to the FP 

(tube). Thus immediately filling appears recommendable. The shear stress applied by the 

injector during the filling process does not influence the rheological cream properties. 

Finally it could be shown that the viscosity loss during holding time does not affect the API in-

vitro-release rate and thus it is hardly dependent on the cream’s microstructure. 
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4.4 Assessment of storage stability 

All produced batches (placebo and verum) were investigated on their macroscopic and 

microscopic appearance, consistency, water binding capacity, melting behaviour and 

rheological properties during different storage times and conditions. Samples were stored at 

25 °C/ 60 % RH and 40 °C/ 75 % RH for 1; 3, and 6 months respectively. Further a stress 

test comprising 3 cycles changing from +5 °C to +40 °C was performed as well. 

4.4.1 Placebo 

4.4.1.1 Placebo with different cooling rates 

4.4.1.1.1 25 °C/60 % RH 

Placebo samples with different cooling rates (table 4-38) showed a uniform tendency during 

storage at room temperature. The separation of water from the system increased with 

increasing storage time. This was visible on higher bleeding and conductivity values. All 

creams loss in consistency/viscosity and hysteresis independent from the performed cooling 

rate. The samples also lost in elasticity (increasing phase shift). Regarding the melting 

behaviour a general increase of melting enthalpy and onset temperature were observed, a 

hint for the formation of lipid crystals. Creams cooled by 0.5 °C/min showed improved 

properties shortly after manufacturing compared to the more rapidly cooled creams. This 

benefit of lower bleeding and spreadability, higher viscosity and hysteresis as well as lower 

melting enthalpy disappeared during storage. The cream properties of different placebo 

became similar on storage at 25 °C/60 % RH. 

4.4.1.1.2 40 °C/75 % RH 

Comparison of stability data of placebo with different cooling rates did not reveal significant 

differences during storage at 40 °C/75 % RH (table 4-39). The increasing phase shift became 

evident, and likewise viscosity for all batches whereas the batches with 0.5 °C/min and 0.85 

°C/min cooling rates showed a loss in hysteresis compared to increasing hysteresis of 

placebo cooled with 1.0 °C/min. Also the melting enthalpies could not be interpreted 

unambiguously. The homogeneously cooled cream batches showed increasing water binding 

capacity whereas electrical conductivity and bleeding values were constant for placebo 

cooled non-linearly. Spreadability and micro-penetration increased for both. 

4.4.1.1.3 Cycle test 

The cycle test (table 4-40) indicated few changes within the cream properties of the batches 

with linear cooling rates. In contrast, creams homogenised non-linearly showed clear 

worsening properties. These creams were less stable than the others. 
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Table 4-38:  Placebo pilot scale - different cooling rates - 25 °C/60 % RH 

Method 
CR 1.0 °C/min 

Mean (n=2) 
sd 

CR 0.5 °C/min 
Mean (n=2) 

sd 

CR 0.85 °C/min 
Mean (n=2) 

sd 

Months T0 1 3 6 T0 1 3 6 T0 1 3 6 

Conductivity 
µS/cm 

17.8 
0.7 

18.0 
6.7 

19.8 
1.2 

20.7 
1.5 

15.2 
0.4 

18.5 
0.3 

18.7 
1.7 

21.2 
0.8 

17.4 
2.1 

18.4 
2.1 

18.3 
0.6 

23.0 
4.6 

Bleeding 
mm2 

428 
115 

503 
69 

548 
14 

539 
58 

350 
28 

527 
51 

469 
48 

500 
25 

392 
33 

471 
34 

439 
96 

571 
127 

Spreadability 
mm2 

1833 
109 

1752 
194 

2526 
274 

2241 
190 

1487 
24 

2093 
51 

1845 
180 

2563 
180 

1870 
136 

2001 
21 

2286 
370 

2543 
189 

Micro-penetration 
mm*10-1 

393 
31 

450 
1 

489 
25 

528 
4 

356 
11 

499 
21 

472 
27 

443 
42 

379 
2 

392 
9 

415 
34 

498 
119 

Enthalpy 
J/g 

13.92 
0.34 

14.67 
0.33 

14.46 
0.37 

15.43 
0.25 

11.69 
0.26 

13.92 
0.93 

15.09 
0.38 

15.34 
0.24 

9.22 
0.30 

11.28 
0.94 

12.79 
0.94 

12.13 
1.87 

Tonset 
°C 

47.37 
0.89 

48.60 
0.74 

50.03 
0.13 

49.71 
0.05 

45.51 
0.32 

48.12 
1.10 

49.14 
0.09 

49.81 
0.21 

48.33 
1.14 

48.44 
0.34 

48.76 
0.20 

48.86 
1.00 

Viscosity 
mPa*s 

556 
20 

354 
30 

277 
3 

245 
9 

701 
9 

419 
68 

349 
161 

362 
68 

454 
54 

396 
110 

405 
52 

338 
56 

Hysteresis 
Pa/s 

2.02 
0.27 

1.39 
0.07 

1.23 
0.01 

1.25 
0.23 

3.66 
0.07 

2.08 
0.05 

1.65 
0.87 

1.54 
0.36 

2.62 
0.19 

1.94 
0.49 

1.95 
0.08 

1.52 
0.19 

Phase shift 
° 

23.0 
1.2 

24.3 
1.5 

24.3 
1.2 

31.2 
5.8 

24.0 
0.3 

25.0 
0.0 

25.5 
0.3 

26.6 
1.3 

24.4 
0.7 

25.4 
0.7 

25.8 
0.1 

26.5 
0.4 
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Table 4-39:  Placebo pilot scale - different cooling rates - 40 °C/75 % RH 

 
Method 

CR 1.0 °C/min 
Mean (n=2) 

sd 

CR 0.5 °C/min 
Mean (n=2) 

sd 

CR 0.85 °C/min 
Mean (n=2) 

sd 

Months Months 1 3 6 T0 1 3 6 T0 1 3 6 

Conductivity 
µS/cm 

17.8 
0.7 

16.3 
0.5 

11.5 
1.1 

11.0 
0.3 

15.2 
0.4 

14.5 
0.4 

13.1 
1.4 

11.5 
0.5 

17.4 
2.1 

15.4 
0.0 

17.3 
0.3 

17.2 
2.3 

Bleeding 
mm2 

428 
115 

416 
65 

248 
33 

259 
20 

350 
28 

303 
27 

312 
27 

251 
18 

392 
33 

330 
8 

442 
33 

351 
54 

Spreadability 
mm2 

1833 
109 

1773 
30 

1946 
179 

1843 
98 

1487 
82 

1801 
173 

1790 
91 

2073 
152 

1870 
136 

2167 
86 

2788 
235 

2403 
138 

Micro-penetration 
mm*10-1 

393 
31 

417 
10 

392 
6 

383 
24 

356 
11 

447 
11 

383 
8 

353 
13 

379 
2 

413 
64 

483 
8 

446 
27 

Enthalpy 
J/g 

13.92 
0.34 

12.47 
0.12 

13.64 
0.28 

11.07 
0.14 

11.69 
0.26 

12.80 
1.02 

12.83 
0.47 

11.24 
0.45 

9.22 
0.30 

10.58 
0.16 

10.18 
0.94 

10.55 
1.08 

Tonset 
°C 

47.37 
0.89 

47.38 
0.30 

48.56 
0.24 

48.81 
0.15 

45.51 
0.32 

47.39 
0.10 

47.65 
0.33 

49.29 
0.15 

48.33 
1.14 

49.00 
0.45 

49.19 
0.45 

49.04 
0.88 

Viscosity 
mPa*s 

556 
20 

728 
78 

858 
6 

898 
114 

701 
9 

787 
28 

793 
2 

849 
34 

454 
54 

549 
22 

446 
22 

530 
113 

Hysteresis 
Pa/s 

2.02 
0.27 

2.37 
0.49 

2.80 
0.27 

2.79 
0.23 

3.66 
0.07 

3.15 
0.06 

2.96 
0.06 

3.15 
0.01 

2.62 
0.19 

2.03 
0.05 

1.37 
0.10 

1.80 
0.49 

Phase shift 
° 

23.0 
1.2 

24.6 
1.2 

27.2 
0.3 

28.6 
0.3 

24.0 
0.3 

26.3 
0.2 

27.3 
0.1 

27.7 
0.2 

24.4 
0.7 

26.7 
0.6 

28.0 
0.1 

28.0 
0.1 
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Table 4-40:  Placebo pilot scale - different cooling rates – Cycle test 

 
Method 

CR 1.0 °C/min 
Mean (n=2) 

sd 

CR 0.5 °C/min 
Mean (n=2) 

sd 

CR 0.85 °C/min 
Mean (n=2) 

sd 

Cycle T0 1 2 3 T0 1 2 3 T0 1 2 3 

Conductivity 
µS/cm 

17.8 
0.7 

18.0 
1.5 

16.2 
0.1 

17.5 
0.8 

14.0 
0.8 

17.0 
4.4 

14.4 
0.7 

18.5 
0.4 

17.4 
2.1 

17.0 
2.5 

17.6 
1.2 

25.0 
0.0 

Bleeding 
mm2 

428 
115 

502 
42 

446 
71 

406 
91 

350 
7 

443 
12 

336 
69 

428 
12 

392 
33 

398 
43 

471 
93 

384 
28 

Spreadability 
mm2 

1833 
109 

1677 
64 

1523 
17 

1816 
266 

1942 
148 

1783 
21 

1630 
105 

2175 
54 

1870 
136 

2279 
209 

2747 
173 

2299 
296 

Micro-penetration 
mm*10-1 

393 
31 

392 
1 

360 
10 

369 
3 

356 
6 

370 
19 

359 
15 

360 
1 

379 
2 

427 
13 

480 
69 

677 
78 

Enthalpy 
J/g 

13.92 
0.34 

13.31 
0.10 

12.97 
0.40 

13.56 
0.18 

13.04 
0.04 

14.56 
0.02 

14.00 
1.43 

13.83 
1.11 

9.22 
0.30 

11.46 
0.09 

12.49 
0.83 

11.29 
0.44 

Tonset 
°C 

47.37 
0.89 

46.74 
0.57 

47.18 
0.02 

47.20 
0.07 

46.46 
0.19 

48.02 
0.25 

47.48 
0.72 

47.11 
0.39 

48.33 
1.14 

48.74 
0.01 

49.04 
0.41 

49.04 
0.20 

Viscosity 
mPa*s 

556 
20 

656 
23 

648 
12 

653 
39 

660 
43 

590 
136 

650 
91 

632 
18 

454 
54 

474 
22 

280 
55 

343 
69 

Hysteresis 
Pa/s 

2.02 
0.27 

3.11 
0.30 

2.76 
0.27 

2.56 
0.32 

3.66 
0.07 

2.80 
0.76 

3.08 
0.63 

3.17 
0.06 

2.62 
0.19 

2.60 
0.08 

1.29 
0.24 

1.77 
0.55 

Phase shift 
° 

23.0 
1.2 

22.9 
0.2 

22.6 
1.6 

24.3 
0.5 

24.9 
0.4 

24.2 
1.6 

24.7 
0.5 

23.5 
1.8 

24.4 
0.7 

25.4 
0.4 

26.1 
0.6 

28.1 
1.9 
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4.4.1.2 Placebo with different duration of final homogenisation 

4.4.1.2.1 25 °C/60 % RH 

Placebo with different homogenisation times (table 4-41) showed similar trends during 

storage at ambient temperature as placebo with different cooling rates (table 4-38). They lost 

in consistency/viscosity. The more fluid and less consistent appearance was visible by eye. 

Elastic properties decreased whereas melting enthalpies increased. The microscopic 

appearance of the creams remained unchanged. Creams without final homogenisation 

showed increasing bleeding and conductivity. The contrary could be observed for creams 

homogenised for 15 or 25 min respectively. Enthalpies of homogenised creams were 

constant. 

At t0 creams without final homogenisation clearly showed improved cream properties. They 

showed lower electrical conductivity and bleeding values as well as higher viscosities and 

hystereses. These differences disappeared during storage. The homogenised creams did not 

change their viscosities considerably. The final values of all samples converged to one other. 

The initial disadvantage of non- homogenisation got lost during storage. 

4.4.1.2.2 40 °C/75 % RH 

Initially, the better properties of the non homogenised creams became similar with the ones 

of the homogenised creams during storage at 40 °C/75 % RH (table 4-42). Non 

homogenised creams showed higher viscosities at t0 and during the entire storage program. 

Creams homogenised for 25 min showed the lowest initial values of hysteresis but highest 

gain in hysteresis during storage. In general a sandy appearance was typical for storage at 

higher temperature. 

4.4.1.2.3 Cycle test 

During cycle test, creams exhibited higher stability compared to isothermal storage. Creams 

remained smooth during temperature change. The comparison of different homogenisation 

durations revealed better storage stability for the not homogenised creams which showed 

only few changes in their properties (table 4-43). 
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Table 4-41:  Placebo pilot scale - different final homogenisation times - 25 °C/60 % RH 

Method 
0 min 

Mean (n=2) 
sd 

15 min 
Mean (n=2) 

sd 

25 min 
Mean (n=2) 

sd 

Months T0 1 3 6 T0 1 3 6 T0 1 3 6 

Conductivity 
µS/cm 

17.8 
0.7 

18.0 
6.7 

19.8 
1.2 

20.7 
1.5 

25.9 
1.6 

22.7 
2.3 

23.0 
0.4 

22.9 
0.5 

27.3 
0.6 

24.3 
1.0 

23.2 
0.5 

21.5 
1.4 

Bleeding 
mm2 

428 
115 

503 
69 

548 
14 

539 
58 

542 
29 

513 
36 

496 
16 

526 
12 

572 
38 

554 
32 

533 
63 

557 
17 

Spreadability 
mm2 

1833 
109 

1752 
194 

2526 
274 

2241 
190 

1780 
276 

1917 
31 

2509 
62 

2105 
124 

1661 
123 

2272 
281 

2757 
393 

2180 
161 

Micro-penetration 
mm*10-1 

393 
31 

450 
1 

489 
25 

528 
4 

368 
1 

458 
25 

486 
18 

535 
13 

407 
20 

486 
42 

510 
6 

538 
3 

Enthalpy 
J/g 

13.92 
0.34 

14.67 
0.33 

14.46 
0.37 

15.43 
0.25 

15.16 
0.12 

15.62 
0.25 

15.13 
0.57 

15.65 
0.72 

15.22 
0.39 

15.39 
1.00 

14.52 
0.09 

15.41 
0.45 

Tonset 
°C 

47.37 
0.89 

48.60 
0.74 

50.03 
0.13 

49.71 
0.05 

48.19 
0.45 

49.07 
0.30 

49.82 
0.17 

49.69 
0.08 

48.25 
0.25 

49.17 
0.18 

50.04 
0.10 

49.61 
0.11 

Viscosity 
mPa*s 

556 
20 

354 
30 

277 
3 

245 
9 

354 
114 

283 
9 

270 
10 

259 
3 

288 
33 

281 
23 

254 
26 

255 
9 

Hysteresis 
Pa/s 

2.02 
0.27 

1.39 
0.07 

1.23 
0.01 

1.25 
0.23 

1.84 
0.47 

1.44 
0.15 

1.28 
0.06 

1.15 
0.07 

1.50 
0.23 

1.13 
0.11 

1.41 
0.04 

1.15 
0.00 

Phase shift 
° 

23.0 
1.2 

24.3 
1.5 

24.3 
1.2 

31.2 
5.8 

20.2 
0.6 

22.9 
0.5 

24.8 
0.40 

31.6 
5.3 

19.5 
0.3 

23.3 
0.4 

24.2 
1.9 

33.2 
6.0 
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Table 4-42:  Placebo pilot scale - different final homogenisation times - 40 °C/75 % RH 

 
Method 

0 min 
Mean (n=2) 

sd 

15 min 
Mean (n=2) 

sd 

25 min 
Mean (n=2) 

sd 

Months T0 1 3 6 T0 1 3 6 T0 1 3 6 

Conductivity 
µS/cm 

17.8 
0.7 

16.3 
0.5 

11.5 
1.1 

11.0 
0.3 

25.9 
1.6 

19.8 
0.3 

16.3 
0.1 

10.8 
1.3 

27.3 
0.6 

20.0 
2.6 

17.9 
0.2 

10.9 
0.6 

Bleeding 
mm2 

428 
115 

416 
65 

248 
33 

259 
20 

542 
29 

475 
0 

299 
25 

236 
10 

572 
38 

452 
69 

325 
62 

218 
20 

Spreadability 
mm2 

1833 
109 

1773 
30 

1946 
179 

1843 
98 

1780 
276 

1792 
96 

1651 
129 

1738 
132 

1661 
123 

1820 
93 

1987 
134 

1730 
61 

Micro-penetration 
mm*10-1 

393 
31 

417 
10 

392 
6 

383 
24 

368 
1 

430 
33 

406 
0 

373 
5 

407 
20 

446 
13 

382 
19 

388 
25 

Enthalpy 
J/g 

13.92 
0.34 

12.47 
0.12 

13.64 
0.28 

11.07 
0.14 

15.16 
0.12 

13.62 
0.05 

13.77 
0.03 

11.05 
0.47 

15.22 
0.39 

13.83 
0.08 

14.04 
0.37 

11.38 
010 

Tonset 
°C 

47.37 
0.89 

47.38 
0.30 

48.56 
0.24 

48.81 
0.15 

48.19 
0.45 

47.29 
0.06 

48.16 
0.30 

48.54 
0.26 

48.25 
0.25 

47.23 
0.20 

48.52 
0.11 

48.83 
0.25 

Viscosity 
mPa*s 

556 
20 

728 
78 

858 
6 

898 
114 

354 
114 

356 
45 

550 
82 

597 
442 

288 
33 

345 
15 

496 
2 

550 
20 

Hysteresis 
Pa/s 

2.02 
0.27 

2.37 
0.49 

2.80 
0.27 

2.79 
0.23 

1.84 
0.47 

1.78 
0.11 

2.52 
0.29 

2.95 
0.44 

1.50 
0.23 

1.81 
0.01 

2.44 
0.02 

4.13 
0.22 

Phase shift 
° 

23.0 
1.2 

24.6 
1.2 

27.2 
0.3 

28.6 
0.3 

20.2 
0.6 

23.4 
0.9 

25.1 
0.0 

28.4 
0.2 

19.5 
0.3 

23.7 
0.4 

24.9 
1.8 

26.6 
3.6 
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Table 4-43:  Placebo pilot scale - different final homogenisation times – Cycle test 

 
Method 

0 min 
Mean (n=2) 

sd 

15 min 
Mean (n=2) 

sd 

25 min 
Mean (n=2) 

sd 

Cycle T0 1 2 3 T0 1 2 3 T0 1 2 3 

Conductivity 
µS/cm 

17.8 
0.7 

18.0 
1.5 

16.2 
0.1 

17.5 
0.8 

25.9 
1.6 

23.3 
0.3 

21.9 
0.2 

22.9 
0.7 

27.3 
0.6 

24.5 
1.0 

23.3 
1.7 

23.5 
1.5 

Bleeding 
mm2 

428 
115 

502 
42 

446 
71 

406 
91 

542 
29 

532 
18 

550 
58 

522 
76 

572 
38 

570 
60 

613 
110 

573 
14 

Spreadability 
mm2 

1833 
109 

1677 
64 

1523 
17 

1816 
266 

1780 
276 

1663 
266 

1451 
139 

1507 
61 

1661 
123 

1476 
115 

1338 
52 

1423 
174 

Micro-penetration 
mm*10-1 

393 
31 

392 
1 

360 
10 

369 
3 

368 
1 

368 
1 

366 
6 

339 
6 

407 
20 

368 
1 

365 
0 

350 
4 

Enthalpy 
J/g 

13.92 
0.34 

13.31 
0.10 

12.97 
0.40 

13.56 
0.18 

15.16 
0.12 

13.96 
0.19 

14.32 
0.07 

14.21 
0.11 

15.22 
0.39 

13.82 
0.01 

14.40 
0.07 

13.97 
0.17 

Tonset 
°C 

47.37 
0.89 

46.74 
0.57 

47.18 
0.02 

47.20 
0.07 

48.19 
0.45 

46.11 
0.31 

46.36 
0.32 

46.70 
0.26 

48.25 
0.25 

46.13 
0.33 

46.51 
0.21 

46.51 
0.91 

Viscosity 
mPa*s 

556 
20 

656 
23 

648 
12 

653 
39 

354 
114 

506 
133 

432 
36 

515 
50 

288 
33 

602 
25 

339 
105 

453 
47 

Hysteresis 
Pa/s 

2.02 
0.27 

3.11 
0.30 

2.76 
0.27 

2.56 
0.32 

1.84 
0.47 

4.45 
0.28 

2.93 
0.48 

3.27 
0.23 

1.50 
0.23 

4.41 
0.82 

3.03 
0.72 

3.28 
0.05 

Phase shift 
° 

23.0 
1.2 

22.9 
0.2 

22.6 
1.6 

24.3 
0.5 

20.2 
0.6 

22.0 
0.3 

20.9 
0.1 

21.3 
0.2 

19.5 
0.3 

22.0 
0.6 

20.6 
0.0 

21.3 
0.1 
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4.4.1.3 Placebo with different melting parameters 

4.4.1.3.1 25 °C/60 % RH 

At t0 both creams did not show significant differences in their physical properties (table 4-44). 

But stability data during storage at 25 °C/60 % RH showed that cream properties of both 

batches diverged from each other. The electrical conductivity of batch # P04 was rising at 

constant bleeding values compared to constant electrical conductivity of the cream melted at 

90 °C. Both creams lost in viscosity/consistency. This loss is clearly more pronounced for the 

cream melted for 30 min at 65 °C. Further it is accompanied by a huge loss in hysteresis. 

The very similar oscillating parameters of # P04 and # P06 at t0 become quite different during 

storage. The collapse of elastic and viscous modules of batch # P04 led to rising phase shift 

up to a value of 41 ° and the cream becomes rather fluid. Batch # P06 on the other hand 

conserved very well its elastic and viscous energies. 

4.4.1.3.2 40 °C/75 % RH 

Storage at 40 °C/75 % RH led to more stable creams than in storage at room temperature. 

Water binding capacity of the creams increased and batch P04 showed even increasing 

viscosity and hysteresis (table 4-45). 

4.4.1.3.3 Cycle test 

Cream properties of the creams with different melting temperatures showed an opposite 

behaviour as far as DSC and rheology results are concerned. The water binding capacity 

remained almost unchanged for both. But thermoanalytical and rheological data clearly 

pointed to worsening cream properties (increasing enthalpy and decreasing viscosity and 

hysteresis) for the cream with the lower melting temperature and time (table 4-46). 
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Table 4-44:  Placebo Lab - different melting parameters - 25 °C/60 % RH 

Method 
30 min/65 °C (# P04) 

Mean* 

sd 

210 min/90 °C (# P06) 
Mean* 

sd 

Months T0 1 3 6 T0 1 3 6 

Conductivity 
µS/cm 

18.5 
1.0 

25.3 
0.8 

24.5 
1.5 

23.9 
0.4 

21.5 
1.3 

19.2 
0.6 

21.7 
1.0 

18.8 
1.5 

Bleeding 
mm2 

568 
92 

669 
55 

594 
19 

528 
23 

450 
30 

595 
47 

521 
27 

404 
19 

Spreadability 
mm2 

1731 
157 

1556 
87 

2307 
179 

2717 
571 

1842 
67 

1797 
57 

2188 
182 

2215 
179 

Micro-penetration 
mm*10-1 

395 
42 

523 
19 

680 
41 

547 
20 

357 
14 

507 
18 

428 
11 

429 
23 

Enthalpy 
J/g 

13.66 
0.45 

16.69 
0.11 

14.56 
0.57 

16.08 
0.28 

13.51 
0.44 

16.11 
0.20 

15.43 
0.39 

16.09 
0.25 

Tonset 
°C 

46.22 
0.54 

49.09 
0.06 

49.03 
0.13 

49.55 
0.03 

47.54 
1.17 

49.17 
0.06 

48.57 
0.04 

49.76 
0.35 

Viscosity 
mPa*s 

569 
86 

316 
59 

232 
21 

221 
14 

714 
62 

406 
24 

300 
5 

351 
21 

Hysteresis 
Pa/s 

1.84 
0.51 

1.14 
0.13 

0.76 
0.09 

0.78 
0.04 

2.32 
0.07 

1.57 
0.13 

1.30 
0.03 

1.73 
0.12 

Phase shift 
° 

24.1 
0.9 

27.9 
0.6 

33.2 
0.7 

41.1 
2.0 

22.3 
0.7 

22.0 
1.3 

24.3 
0.4 

26.4 
0.3 

 * measurements of each batch in triplicate 
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Table 4-45:  Placebo Lab scale - different melting parameters - 40 °C/75 % RH 

 
Method 

30 min/65 °C (# P04) 
Mean* 

sd 

210 min/90 °C (# P06) 
Mean* 

sd 

Months T0 1 3 6 T0 1 3 6 

Conductivity 
µS/cm 

18.5 
1.0 

15.1 
0.6 

13.4 
1.2 

15.1 
0.6 

18.4 
0.5 

13.9 
0.3 

13.6 
0.1 

11.8 
0.4 

Bleeding 
mm2 

568 
92 

365 
59 

274 
18 

372 
34 

450 
30 

281 
4 

301 
12 

239 
20 

Spreadability 
mm2 

1731 
157 

2097 
77 

1991 
141 

1881 
157 

1842 
67 

1940 
164 

1699 
79 

1952 
120 

Micro-penetration 
mm*10-1 

395 
42 

354 
21 

397 
35 

373 
30 

357 
14 

429 
5 

366 
3 

355 
5 

Enthalpy 
J/g 

13.66 
0.45 

15.50 
0.54 

12.49 
0.45 

11.92 
0.06 

13.51 
0.44 

13.69 
0.11 

14.08 
0.67 

17.39 
1.22 

Tonset 
°C 

46.22 
0.54 

48.02 
0.66 

48.01 
0.42 

48.45 
0.01 

47.54 
1.17 

47.55 
0.30 

46.98 
0.65 

48.74 
0.00 

Viscosity 
mPa*s 

569 
86 

802 
1 

733 
4 

745 
3 

714 
62 

984 
9 

1020 
34 

985 
22 

Hysteresis 
Pa/s 

1.84 
0.51 

2.61 
0.00 

2.37 
0.17 

2.28 
0.04 

2.32 
0.07 

3.22 
0.02 

3.13 
0.18 

3.22 
0.05 

Phase shift 
° 

24.1 
0.9 

27.4 
1.3 

28.5 
0.5 

28.2 
0.1 

22.3 
0.7 

26.8 
0.6 

27.5 
0.5 

28.0 
0.1 

 * measurements of each batch in triplicate 
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Table 4-46:  Placebo Lab - different melting parameters – Cycle test 

 
Method 

30 min/65 °C (# P04) 
Mean* 

sd 

210 min/90 °C (# P06) 
Mean* 

sd 

Cycle T0 1 2 3 T0 1 2 3 

Conductivity 
µS/cm 

18.5 
1.0 

22.2 
0.5 

23.7 
0.5 

20.6 
2.1 

18.4 
0.5 

20.5 
1.1 

20.1 
0.2 

18.3 
0.1 

Bleeding 
mm2 

568 
92 

587 
38 

528 
27 

501 
26 

469 
58 

335 
32 

517 
6 

472 
35 

Spreadability 
mm2 

1731 
157 

2116 
259 

3172 
819 

2148 
220 

1605 
272 

1710 
238 

1733 
202 

1837 
149 

Micro-penetration 
mm*10-1 

395 
42 

497 
11 

382 
23 

608 
38 

377 
47 

326 
30 

376 
15 

327 
3 

Enthalpy 
J/g 

13.66 
0.45 

15.47 
0.12 

15.94 
0.13 

14.67 
0.04 

15.03 
0.14 

14.52 
0.25 

14.69 
0.78 

13.65 
0.64 

Tonset 
°C 

46.22 
0.54 

49.00 
0.12 

48.76 
0.06 

48.35 
0.24 

47.22 
0.07 

47.32 
0.55 

46.89 
0.34 

46.37 
0.25 

Viscosity 
mPa*s 

569 
86 

228 
14 

264 
1 

126 
143 

421 
8 

739 
55 

683 
6 

817 
12 

Hysteresis 
Pa/s 

1.84 
0.51 

1.23 
0.1 

0.96 
0.04 

1.09 
0.01 

1.64 
0 

3.02 
0.38 

2.64 
0.12 

3.40 
0.14 

Phase shift 
° 

24.1 
0.9 

27.8 
0.3 

30.0 
0.6 

25.8 
0.4 

21.6 
2.2 

22.7 
1.0 

22.5 
0.7 

23.7 
0.9 

 * measurements of each batch in triplicate 
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4.4.1.4 Summary of placebo stability testing 

Placebo with different cooling rates, different homogenisation times and different melting 

procedures were assessed regarding different storage conditions. In general, placebo 

creams loss in consistency/viscosity during long time storage at room temperature at 60 % 

RH. On the other hand, they became more consistent during storage at 40 °C and 75 % RH 

and they appeared sandy and matt compared to t0. Microscopic appearance remained 

unchanged for all samples. There was no coarsening of emulsion observed. 

Placebo showed the best properties of all during cycle test, whereas worst storage stability 

during storage at 25 °C and 60 % RH was observed. This rather unusual behaviour can be 

explained by dissolving hydrophilic and lipophilic microstructures at 40 °C which then re-

crystallize at 25 °C. Temperature changes from 25 °C to 40 °C and back led to a continuous 

swelling and regeneration of network structures separating more and more the two gel-

phases. This divergence resulted in a better water binding capacity. 

A temperature cycle (25-40-25 °C) also occured in the course of the storage program at 40 

°C/75 % RH and hence explains the better cream properties at the storage temperature of 

40°C. At room temperature more and more liquid gel-phase crystallised. Hydrophilic and 

lipophilic gel-phases became closer to each other and more compact, thus water binding 

capacity got reduced. None of the different cooling rates applied during cream processing 

showed any clear advantage over the others. 

A low and homogeneous cooling gradient as well as non-homogenising cold creams did not 

show advantages during long time storage and accelerated storage. 

The influence from melting time/temperature on the cream properties was shown by data 

from different stability programs whereas immediately after manufacturing a substantial 

difference between both creams could not be seen. The cream with the higher melting 

temperature and time showed better cream properties during isotherm storage and during 

cycle test. It seems to be likely that a melting temperature near the solidification point of the 

fatty phase components Cutina CBS and Arlatone 983S negatively affected the cream 

properties. On the other hand an impact from the effective melting time was unlikely. 
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4.4.2 Verum 

4.4.2.1 Different temperatures of API-addition/final homogenisation 

In the following the storage stability of verum creams with different temperatures of API-

addition/final homogenisation under different isotherm conditions and under stress conditions 

is evaluated. All creams loss elasticity during isotherm storage at 25 °C and 40 °C as well as 

during stress test. 

4.4.2.1.1 25 °C/60 % RH 

Macroscopically the creams were similar to each other. The different creams showed similar 

microscopic appearance which did not change during storage time. In general storage at 25 

°C/60 % RH led to less consistent and better spreadable creams even if the viscosity 

remained constant during time (table 4-47). Creams homogenised at 40 °C showed a 

remarkable loss in viscosity and hysteresis. The initially more consistent creams became 

similar to the others after several months. 

Creams where the API was added at 20 °C and 30 °C showed the same behaviour during 

long time storage at ambient temperature. As far as water binding capacity is concerned, 

these creams showed stable electrical conductivity and bleeding values. The very low initial 

bleeding and conductivity of creams homogenised at 40 °C increased considerably during 6 

months and finally reached values of the other creams. 

4.4.2.1.2 40 °C/75 % RH 

During storage at 40 °C the water binding capacity clearly increased visible on decreasing 

conductivity and bleeding results (table 4-48). Creams became more spreadable. This has 

already been described for the placebo with different cooling rates. Worth mentioning is the 

different behaviour in hysteresis. Creams homogenised at 20 and 30 °C showed a clear 

increase in hysteresis whereas creams homogenised at 40 °C loss about 70 % of hysteresis 

during 6 months and became similar to the others. 

4.4.2.1.3 Cycle test 

During stress test cream properties changed less than during isothermal storage (table 4-49). 

Contradictory were the slight increase in viscosity for creams homogenised at 20 and 30 °C 

and the clear decreasing viscosity and hysteresis of creams homogenised at 40 °C. The 

water binding capacity of 40 °C creams decreased (increasing electrical conductivity and 

bleeding) compared to increasing water binding capacity of 20 and 30 °C creams. DSC-

results and consistency/spreadability values showed less significant changes. 

 



 

 

 
 

 
 

 
 

R
esults and discussion

  
 

 
 

 
  149 

Table 4-47:  Verum pilot scale – different temperatures of API-addition - 25 °C/60 % RH 

Method 
20/20 °C (n=4) 

Mean 
sd 

30/30 °C (n=6) 
Mean 

sd 

40/40°C (n=2) 
Mean 

sd 

Months T0 1 3 6 T0 1 3 6 T0 1 3 6 

Conductivity 
[µS/cm] 

30.6 
1.7 

28.1 
2.4 

28.0 
0.6 

28.9 
2.7 

30.9 
2.6 

28.3 
1.7 

28.5 
1.3 

28.0 
1.3 

20.7 
1.1 

23.6 
1.7 

29.5 
1.3 

27.8 
0.2 

Bleeding 
[mm2] 

1001 
148 

831 
205 

815 
20 

911 
165 

856 
47 

810 
101 

813 
104 

818 
165 

459 
4 

820 
15 

869 
11 

953 
18 

Spreadability 
[mm2] 

1515 
61 

1874 
119 

1839 
57 

1947 
93 

1547 
72 

1729 
197 

1749 
91 

2023 
305 

1111 
63 

1531 
82 

1653 
194 

2072 
67 

Micro-penetration 
[mm*10-1] 

362 
36 

351 
57 

389 
16 

426 
28 

375 
44 

377 
49 

372 
22 

415 
16 

293 
7 

341 
31 

447 
8 

432 
54 

Enthalpy 
[J/g] 

57.86 
0.42 

58.78 
1.79 

59.62 
1.55 

59.78 
2.07 

58.32 
1.12 

60.00 
2.01 

61.31 
1.06 

60.80 
1.43 

59.62 
1.26 

59.01 
0.71 

59.93 
0.19 

58.87 
4.74 

Tonset 
[°C] 

62.32 
0.32 

61.88 
0.88 

61.65 
2.57 

61.32 
2.07 

62.00 
0.75 

61.66 
1.77 

62.79 
1.30 

61.75 
1.28 

60.99 
0.54 

61.74 
0.49 

61.09 
1.63 

62.25 
0.38 

Viscosity 
[mPa*s] 

453 
10 

468 
16 

477 
60 

431 
33 

464 
31 

473 
22 

473 
43 

453 
67 

947 
35 

633 
40 

421 
6 

345 
20 

Hysteresis 
[Pa/s] 

1.34 
0.21 

1.10 
0.19 

1.07 
0.37 

0.93 
0.10 

1.46 
0.23 

1.27 
0.22 

0.95 
0.13 

0.94 
0.09 

6.93 
0.64 

2.51 
0.52 

0.92 
0.02 

0.73 
0.01 

Phase shift 
[°] 

20.7 
0.2 

22.7 
0.5 

24.0 
0.4 

24.8 
1.8 

20.0 
0.4 

21.9 
0.6 

24.0 
0.4 

26.7 
1.4 

24.2 
0.3 

21.7 
0.3 

22.9 
0.1 

29.8 
0.1 

* 20 °C P03;P06;P08;P10  ̂30 °C P01;P02;P04;P05;P07;P09 # 40 °C P12;P13 



 

 

150 
 

 
 

 
 

R
esults and discussion

  
 

 
 

 
 

Table 4-48:  Verum pilot scale – different temperatures of API-addition - 40 °C/75 % RH 

 
Method 

20/20 °C (n=4) 
Mean 

sd 

30/30 °C (n=6) 
Mean 

sd 

40/40°C (n=2) 
Mean 

sd 

Months T0 1 3 6 T0 1 3 6 T0 1 3 6 

Conductivity 
[µS/cm] 

30.6 
1.7 

22.9 
1.1 

229 
1.5 

23.5 
1.6 

30.9 
2.6 

21.0 
1.2 

20.7 
0.6 

20.8 
2.5 

20.7 
1.1 

16.2 
1.1 

9.5 
11.3 

16.6 
1.5 

Bleeding 
[mm2] 

1001 
148 

852 
92 

653 
83 

617 
68 

856 
47 

784 
118 

580 
170 

517 
39 

459 
4 

431 
11 

508 
13 

509 
1 

Spreadability 
[mm2] 

1515 
61 

1779 
81 

1694 
133 

1702 
191 

1547 
72 

1819 
191 

1780 
144 

1751 
126 

1111 
63 

1600 
37 

1599 
133 

1900 
92 

Micro-penetration 
[mm*10-1] 

362 
36 

348 
38 

357 
14 

361 
32 

375 
44 

367 
30 

355 
29 

371 
17 

293 
7 

324 
11 

333 
6 

332 
6 

Enthalpy 
[J/g] 

57.86 
0.42 

59.12 
2.41 

59.21 
3.06 

55.80 
1.99 

58.32 
1.12 

58.12 
2.54 

57.84 
2.13 

55.82 
1.44 

59.62 
1.26 

56.51 
0.10 

55.69 
0.80 

56.41 
1.34 

Tonset 
[°C] 

62.32 
0.32 

60.08 
0.93 

60.49 
2.50 

58.31 
1.20 

62.00 
0.75 

59.68 
1.66 

60.31 
1.82 

58.68 
0.80 

60.99 
0.54 

59.18 
0.57 

59.98 
0.49 

59.44 
2.75 

Viscosity 
[mPa*s] 

453 
10 

576 
32 

527 
82 

450 
78 

464 
31 

548 
59 

517 
41 

568 
174 

947 
35 

591 
69 

448 
28 

539 
28 

Hysteresis 
[Pa/s] 

1.34 
0.21 

1.32 
0.19 

2.36 
0.71 

2.99 
1.32 

1.46 
0.23 

2.06 
1.11 

1.89 
0.52 

3.00 
1.02 

6.93 
0.64 

3.54 
1.75 

2,75 
0,42 

2.25 
0.39 

Phase shift 
[°] 

20.7 
0.2 

24.3 
0.5 

25.3 
0.6 

26.6 
0.4 

20.0 
0.4 

24.4 
1.9 

25.7 
0.6 

27.6 
1.0 

24.2 
0.3 

26.5 
0.5 

27.2 
1.3 

28.2 
0.3 

* 20 °C P03;P06;P08;P10  ̂30 °C P01;P02;P04;P05;P07;P09 # 40 °C P12;P13 
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Table 4-49:  Verum pilot scale – different temperatures of API-addition – Cycle test 

 
Method 

20/20 °C (n=4)* 
Mean 

sd 

30/30 °C (n=6)  ̂
Mean 

sd 

40/40°C (n=2)# 
Mean 

sd 

Cycle T0 1 2 3 T0 1 2 3 T0 1 2 3 

Conductivity 
[µS/cm] 

30.6 
1.7 

27.5 
2.0 

28.4 
1.2 

26.4 
1.1 

30.9 
2.6 

28.9 
1.9 

26.6 
1.8 

27.3 
2.0 

20.7 
1.1 

26.4 
4.1 

24.7 
0.9 

22.7 
2.9 

Bleeding 
[mm2] 

1001 
148 

1065 
301 

856 
39 

939 
145 

856 
47 

922 
101 

809 
77 

857 
141 

459 
4 

865 
68 

782 
81 

828 
3 

Spreadability 
[mm2] 

1515 
61 

1566 
71 

1623 
25 

1669 
126 

1547 
72 

1430 
53 

1454 
154 

1534 
74 

1111 
63 

1733 
250 

1235 
55 

1379 
88 

Micro-penetration 
[mm*10-1] 

362 
36 

379 
24 

375 
35 

371 
36 

375 
44 

372 
18 

375 
32 

372 
20 

293 
7 

347 
6 

352 
1 

346 
23 

Enthalpy 
[J/g] 

57.86 
0.42 

58.49 
0.87 

58.06 
0.90 

58.59 
0.48 

58.32 
1.12 

57.22 
1.34 

57.42 
1.42 

56.72 
1.22 

59.62 
1.26 

57.88 
0.76 

59.34 
3.75 

59.41 
0.66 

Tonset 
[°C] 

62.32 
0.32 

60.24 
2.61 

62.40 
1.93 

62.20 
0.74 

62.00 
0.75 

61.74 
1.07 

61.62 
0.90 

60.10 
1.30 

60.99 
0.54 

60.90 
0.45 

59.59 
1.40 

59.69 
0.41 

Viscosity 
[mPa*s] 

453 
10 

570 
100 

565 
96 

546 
85 

464 
31 

460 
42 

483 
56 

485 
57 

947 
35 

494 
6 

507 
7 

585 
196 

Hysteresis 
[Pa/s] 

1.34 
0.21 

1.53 
0.19 

1.45 
0.29 

1.30 
0.26 

1.46 
0.23 

1.98 
0.41 

1.77 
0.47 

1.68 
0.45 

6.93 
0.64 

1.39 
0.01 

3.02 
0.46 

3.67 
2.51 

Phase shift 
[°] 

20.7 
0.2 

22.8 
1.0 

21.7 
2.0 

23.3 
1.4 

20.0 
0.4 

22.0 
2.3 

22.1 
2.2 

22.1 
2.6 

24.2 
0.3 

21.7 
0.8 

23.5 
0.2 

23.6 
1.2 

* 20 °C P03;P06;P08;P10  ̂30 °C P01;P02;P04;P05;P07;P09 # 40 °C P12;P13 
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4.4.2.2 Verum with different duration of final homogenisation 

In general, creams with different final homogenisation times showed similar behaviour during 

isothermal storage and during stress test. 

4.4.2.2.1 25 °C/60 % RH 

The water binding capacity increased and the creams became easier to spread. The 

declining hysteresis for both types of creams (table 4-50) was evident. 

4.4.2.2.2 40 °C/75 % RH 

The cream behaviour with regard to water binding capacity and spreadability (table 4-51) 

during storage at 40 °C was similar to that during storage at 25 °C. Whereas the phase shift 

always increased the gain in hysteresis was different. The gain in hysteresis at a storage 

temperature of 40 °C is a typical observation for the cream (placebo and verum). 

4.4.2.2.3 Cycle test 

Creams are more stable when alternate the temperatures between +5 and +40 °C. Changes 

during storage are only visible in electrical conductivity and in hysteresis (table 4-52). 
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Table 4-50:  Verum pilot scale - different homogenisation times - 25 °C/60 % RH, n=10 

Method 
8.1 circulation times (7.5 min) 

Mean 
sd 

13.6 circulation times (12.5 min) 
Mean 

sd 

Months T0 1 3 6 T0 1 3 6 

Conductivity 
µS/cm 

38.8 
2.2 

28.2 
1.9 

28.3 
1.1 

28.3 
1.9 

32.5 
2.3 

29.0 
1.2 

29.5 
1.2 

27.9 
0.0 

Bleeding 
mm2 

914 
119 

818 
141 

814 
78 

855 
163 

954 
123 

890 
113 

952 
9 

780 
5 

Spreadability 
mm2 

1534 
66 

1787 
179 

1785 
89 

1992 
237 

1644 
150 

1938 
144 

1955 
79 

2154 
532 

Micro-penetration 
mm*10-1 

370 
40 

366 
51 

379 
21 

419 
21 

374 
46 

420 
8 

1955 
79 

453 
31 

Enthalpy 
J/g 

58.14 
0.91 

59.51 
1.92 

60.64 
1.48 

60.39 
1.49 

59.77 
2.32 

59.27 
1.36 

60.07 
0.78 

60.82 
1.97 

Tonset 
°C 

62.13 
0.61 

61.75 
1.42 

62.33 
1.87 

61.58 
1.49 

61.38 
1.37 

61.92 
0.55 

63.23 
0.22 

61.06 
1.03 

Viscosity 
mPa*s 

460 
25 

471 
19 

475 
47 

444 
55 

450 
34 

444 
32 

439 
47 

482 
28 

Hysteresis 
Pa/s 

1.41 
0.22 

1.20 
0.21 

1.00 
0.24 

0.93 
0.09 

1.32 
0.21 

1.05 
0.25 

0.93 
0.16 

0.99 
0.14 

Phase shift 
° 

20.3 
0.5 

22.2 
0.7 

24.0 
0.4 

26.0 
1.8 

20.2 
0.7 

22.5 
0.4 

23.4 
0.1 

27.4 
1.1 
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Table 4-51:  Verum pilot scale - different homogenisation times - 40 °C/75 % RH, n=10 

 
Method 

8.1 circulation times (7.5 min) 
Mean 

sd 

13.6 circulation times (12.5 min) 
Mean 

sd 

Months T0 1 3 6 T0 1 3 6 

Conductivity 
µS/cm 

38.8 
2.2 

21.8 
1.4 

21.6 
1.5 

21.9 
2.5 

32.5 
2.3 

21.9 
1.8 

19.8 
0.1 

20.1 
3.2 

Bleeding 
mm2 

914 
119 

811 
109 

609 
140 

557 
71 

954 
123 

911 
185 

664 
66 

517 
74 

Spreadability 
mm2 

1534 
66 

1803 
151 

1746 
140 

1731 
147 

1644 
150 

1749 
111 

1727 
23 

1627 
92 

Micro-penetration 
mm*10-1 

370 
40 

359 
33 

355 
23 

367 
23 

374 
46 

379 
26 

322 
8 

350 
15 

Enthalpy 
J/g 

58.14 
0.91 

58.52 
2.40 

58.39 
2.48 

55.81 
0.93 

59.77 
2.32 

58.78 
2.76 

54.88 
3.83 

57.09 
0.01 

Tonset 
°C 

62.13 
0.61 

59.84 
1.36 

60.38 
1.98 

58.54 
0.93 

61.38 
1.37 

60.93 
1.07 

61.27 
1.22 

58.74 
1.33 

Viscosity 
mPa*s 

460 
25 

559 
50 

521 
57 

521 
150 

450 
34 

489 
174 

538 
30 

493 
18 

Hysteresis 
Pa/s 

1.41 
0.22 

1.77 
0.61 

2.07 
0.61 

3.00 
1.08 

1.32 
0.21 

2.36 
1.85 

1.56 
0.21 

2.91 
0.25 

Phase shift 
° 

20.3 
0.5 

24.4 
1.5 

25.5 
0.6 

27.2 
1.0 

20.2 
0.7 

24.8 
0.6 

25.7 
0.1 

27.4 
1.4 



 

 

Table 4-52:  Verum pilot scale - different homogenisation times – Cycle test; n=10 

 
Method 

8.1 circulation times (7.5 min) 
Mean 

sd 

13.6 circulation times (12.5 min) 
Mean 

sd 

Cycle T0 1 2 3 T0 1 2 3 

Conductivity 
µS/cm 

38.8 
2.2 

28.3 
1.9 

27.3 
1.8 

26.9 
1.7 

32.5 
2.3 

30.1 
1.4 

29.6 
1.7 

28.3 
1.5 

Bleeding 
mm2 

914 
119 

976 
193 

827 
66 

888 
138 

954 
123 

872 
83 

943 
81 

983 
91 

Spreadability 
mm2 

1534 
66 

1481 
90 

1517 
146 

1585 
112 

1644 
150 

1501 
45 

1540 
91 

1548 
151 

Micro-penetration 
mm*10-1 

370 
40 

375 
20 

375 
32 

371 
26 

374 
46 

372 
21 

368 
16 

379 
25 

Enthalpy 
J/g 

58.14 
0.91 

57.73 
1.30 

57.67 
1.23 

57.47 
1.36 

59.77 
2.32 

57.23 
1.35 

57.89 
1.82 

57.73 
1.86 

Tonset 
°C 

62.13 
0.61 

61.14 
1.87 

61.93 
1.36 

60.94 
1.52 

61.38 
1.37 

62.31 
0.94 

61.22 
2.57 

61.09 
1.61 

Viscosity 
mPa*s 

460 
25 

504 
87 

516 
81 

509 
72 

450 
34 

449 
15 

462 
46 

456 
23 

Hysteresis 
Pa/s 

1.41 
0.22 

1.77 
0.92 

2.08 
0.61 

3.00 
1.08 

1.32 
0.21 

1.82 
0.48 

1.66 
0.31 

1.52 
0.14 

Phase shift 
° 

20.3 
0.5 

22.3 
1.9 

21.9 
2.0 

22.6 
2.2 

20.18 
0.70 

20.1 
0.9 

20.4 
0.6 

20.1 
0.9 
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4.4.2.3 Summary of verum stability testing  

Stability results could not be interpreted unambiguously and not always in analogy with 

previous conclusions about the impact of single process parameters on the cream properties. 

It could be observed, that cream properties changed only rarely during stress test compared 

to isothermal storage conditions. Actually, the worst stability was revealed at 25 °C/60 % RH, 

both for placebo and verum which was rather unexpected. Storage at 40 °C/75 % RH 

showed better stabilities than creams stored at 25 °C/60 % RH but lower stabilities than 

creams under cycle test. 

Whereas creams during storage at room temperature became more spreadable, at elevated 

temperature (40 °C) they showed decreasing spreadability. 

The water binding capacity during storage at 40 °C increased compared to storage at 25 °C. 

This rather unusual behaviour can be explained by the cream’s microstructure. At ambient 

temperature hydrophilic and lipophilic gel-phases continued to crystallise. Thus they got 

more compact/elastic exhibiting higher melting enthalpies. 

The water entrapped mechanical within the gel-phases was ‘squeezed out’, and water 

binding capacity is reduced. Samples stored at 40°C passed at least 1 cycle from 25 to 40 

and back to 25 °C. Structures renewed by dissolving and swelling processes at elevated 

temperature. Water is entrapped in between the gel-phases. Thus water binding capacity 

was improved. Back to 25 °C both gel-phases crystallised and turned to starting point. 

Stability data from 40 °C/75 % RH and cycle test showed even after 6 month and 3 cycles 

respectively an advantage for the 40/40 °C creams in particular in water binding capacity. 

Also rheological properties changed during storage. Whereas creams during storage at 

ambient temperature became less viscous and showed lower hystereses, at elevated 

temperature they tended to be more viscous showing increasing hystereses. However, the 

phase shift as an indicator for the elasticity of the system increased independently from the 

storage condition. The formulation lost in elasticity. At isotherm storage obviously the gel 

network looses its mechanical stability. Hydrophilic and lipophilic gel-phases were pressed 

together which resulted in the squeezing out of water. During cycle test rheological properties 

rarely changed. Dissolution and re-crystallisation processes which regenerated the gel 

structures most likely led to an improved mechanical stability. 
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API-addition/final homogenisation at 40 °C caused clearly different cream properties 

compared to API-addition /final homogenisation at 20 and 30 °C immediately after 

manufacturing. But as stability data showed, the supposedly improved consistency and 

robustness of the creams with API-addition/ homogenisation temperature of 40 °C were 

levelled out during storage. During storage, physical test results and macroscopic 

appearance became more and more similar to the other creams and even became identical 

after 3 months. These creams loss consistency and water binding capacity. 

The primary homogeneous lipid and water phases, during cooling crystallised in hydrophilic 

and lipophilic gel-phases separately from each other. In other words hydrophilic and lipophilic 

gel-phases segregate. This crystallisation process has not yet finished at 40 °C. Water is 

most likely is entrapped mechanically within this gel-matrix. Cetearyl alcohol crystallised 

because of its low solubility in either of the phases. Lumps in the following days were the 

consequence. Lumps obviously contained less water and thus led to a higher water binding 

capacity of the cream (less bleeding and electrical conductivity). With time these lumps 

swelled more and more by binding water and disappeared/dissolved. Finally, after 3 months 

the 40/40 °C creams appeared smooth and similar to the others. 

Different temperatures of API-addition and final homogenisation did not significantly influence 

the physical cream properties in a long-term comparison. The duration of final 

homogenisation in the comparison 8.1 vs 13.5 times of circulation was not critical, neither 

immediately after production nor after different storage programs. 
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5 CONCLUDING DISCUSSION 

The impact of the processing conditions on the properties of semi-solid preparations is well 

known. Deviations in the production scheme are frequently the reason for OOS results and 

stability problems. Very few studies, however, that address this challenging field were 

reported in literature. Thus the overall objective of this study was to evaluate systematically 

the influence of the different manufacturing steps on the resulting product quality. More 

specifically the goals of this study were to evaluate the effect of melting, cooling, 

homogenisation, filling procedure, and holding time after production on the properties of a 

hydrophilic cream which contains 20 % (w/w) azelaic acid as the active pharmaceutical 

ingredient. Characterisation of the model cream was accomplished by a series of methods. 

Hence, secondary aim of this study was to assess these methods in terms of their cost-

benefit ratio. 

The proper interpretation of the diverse test results requires at least a rough structural 

characterization of the semi-solid preparation. The o/w cream consists of a gel-matrix 

comprised by the visco-elastic hydrophilic gel-phase and the lipophilic gel-phase which 

crystallize separately from each other to a fine and complex network immobilizing small oil 

droplets. This network forms a disordered liquid-crystalline structure of lamellar type, placed 

either at the border of the oil droplets or widespread towards the continuous phase. The gel-

matrix comprises different water phases: inter-lamellarly bound water, water mechanically 

entrapped in the lipophilic gel phase, water fixed between lipid layers in liquid-crystalline 

state, and free bulk water. 

From literature it could be expected that the structure might be explained by the bi-lamellar 

four-phase system as described for the non-ionic hydrophilic cream DAC by Junginger et al. 

(1984) or by a complex gel-matrix model as described by Savic et al. (2005). WAXD, SAXD, 

DSC, DTG and microscopy revealed, that the cream can be most likely described as a 

complex gel-matrix of hydrophilic and lipophilic crystalline phases with randomly oriented 

multilayer that contributes to the oil droplets immobilization. 

The semi-solid character is largely provided by a lipohilic gel consisting predominantly of 

cetearyl alcohol hemi-hydrate as supported by the findings from SAXD and DSC. The oily 

phase forms small droplets surrounded by a lamellar liquid-crystalline layer of the emulsifier. 

It becomes visible in the polarized light microscope from the maltesian crosses which can be 

seen at the oil water inter-phase. Interestingly, there are no signals in the SAXD diagrams 

which give a hint for the existence of lamellar structures other than the fatty alcohol hemi -

hydrate crystals. 
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Obviously, the amount is not sufficient to give a signal or the inter-lamellar spacing in this 

complex mixture is not as well defined as to show sharp interferences in the SAXD. 

Due to the results from DTG measurements water seems to be incorporated as either free 

(unbound) water or water which is entrapped within the gel network. As SAXD 

measurements on model mixtures of emulsifier and lipid components with different water 

content gave no evidence for a swelling of a lamellar phase, it was not possible to further 

decide in which form - either inter-lamellarly or mechanically bound - water is entrapped 

within the gel network. Furthermore, in verum creams it was not possible to clearly 

differentiate between the fraction of bound and unbound water. 

The API is only partially soluble in the cream base and thus the main fraction is found as 

finely suspended crystals. With increasing temperature the solubility of azelaic acid in the 

cream increases dramatically. The onset temperature of the phase transition from solid to 

liquid was reached at approx. 70 °C in the cream formulation. This is 38 °C below the melting 

temperature of the pure API. 

The dominance of the cetearyl alcohol crystals in the framework of the cream is also visible 

in the mechanical properties of the cream. It is very shear sensitive when the shear stress 

exceeds a certain limit. At low shear stress the o/w cream behaves predominantly elastic. 

However, as soon as structural break down started, the cream showed profound shear 

thinning. As the recovery of the structure required at least hours and even when it was 

incomplete, the rheograms showed largely hysteresis during the first shear cycle. 

Subsequently, the creams show plastic flow behaviour with low yield stress, little shear 

thinning and negligible hysteresis. 

These general findings concerning the properties of the investigated cream were the starting 

point to analyse how changes in the processing conditions change the cream quality. The 

following steps were identified as to be eventually critical: the effect of melting, cooling, 

homogenisation, filling procedure, and holding time after production. 

The melting parameters of the fatty phase were expected to be of minor importance. 

Supposed the fatty phase was completely molten and no chemical decomposition occurs this 

should not have an impact on the cream properties. This was confirmed by the data obtained 

immediately after processing (t0). However, during storage creams prepared at a high melting 

temperature and melting time (90 °C and 210 min) became more often favourable regarding 

consistency, hysteresis, viscous/elastic properties and water binding capacity. Actually, a 

melting temperature of 65 °C for 30 min led to a considerable loss in consistency/viscosity 

with strongly increasing conductivity and even collapsing oscillatory parameters, not 
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immediately after manufacturing but after storage. Maintaining a melting temperature at the 

upper limit (75 °C) of the default range (65-75 °C) in order to avoid occurrence of 

solidification of lipids when melting near the solidification temperature of surfactant and 

amphiphile could be an advantage. On the other hand, the melting time should be kept short 

in order to save energy and time and in order to minimize the instance of chemical 

decomposition. 

From the rheological characterization it was seen that mild or moderate shear stress as 

applied during filling activities affected the structure of the cream only marginally. Evaluating 

the changes of the rheological behaviour the days after preparation showed that there was 

no difference if the cream was stored in bins before filling or if it was filled into tubes and 

stored afterwards. That means that the time point of filling is not decisive for the final cream 

properties and it does not matter if holding time is applied on the bulk cream or on the 

finished product. Hence, from an economical point of view (i.e. saving time for keeping of 

deadlines) it appears recommendable to fill the cream quickest possible after manufacturing. 

A holding time of the finished product (tube) of 5 days is necessary before a stable product is 

obtained and the maximum API-solubilization level is reached. 

Furthermore rheology impressively documented the sensitivity of the formulation to high 

shear forces after the gel network was established. This behaviour could be easily explained 

by the colloidal structure of the cream. By exceeded shearing, in particular after cold 

homogenisation the gel-network of the two separately crystallised gel-phases (the hydrophilic 

and the lipophilic one) becomes partially irreversibly destroyed. It takes at least several 

months to completely recover the gel-structure. Homogenisation is accompanied by strong 

temperature increase which most likely induces a partly melting of the lipophilic gel-lattice. It 

re-crystallises forming a more compact gel-lattice where water gets squeezed out from it. For 

this reason it is suggested to reduce the final homogenisation time in order to alter the 

cream-framework as less as possible but to conserve available microtextures formed by 

crystallisation after cooling. With reference to earlier investigations a high level of API-

homogeneity was shown just after a single total batch circulation. A security margin of 5 min 

appears to be sufficient for a homogeneous dispersion of the API. 

An alternative proposal to the cooling process which is generally performed in non-linear 

mode is a more moderate and in particular steady cool down which allows a regular 

formation of both crystalline gel-structures and consequently even in the gel-matrix 

distributed different water phases. A cooling in non-linear mode may add to the risk of a 

‘shock’-crystallisation which inhibits the unbothered build-up of a well structured network 

widespread towards the continuous phase or immobilizing the oil droplets. 
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A higher API-addition/ final homogenisation temperature (40 °C instead of 26-30 °C) was 

thought to improve applications (e.g. spreadability and viscosity increase) and physical 

cream properties (e.g. increase of water binding capacity). The API-dissolution process 

within the gel-matrix which slowly occurs after normal manufacturing may be accelerated at 

40 °C. As DSC results showed the API gets most likely solubilized within the gel-phases. 

Unfortunately, storage stability data showed that the initially improved cream properties do 

not last for a long time. 

The initially appeared lumps (caused by a final cooling without stirring) confirmed the idea of 

two gel-networks which organize separately from each other entrapping the water in the 

system in different modes. Homogeneously separation of hydrophilic and lipophilic gel 

phases (disordered system) is hindered when stirring during cool down to room temperature 

is absent. Namely, during storage these lumps swelled and formed a gel-network belatedly. 

For that reason, a temperature change between 20 and 30°C does not cause microstructural 

and hence physical changes because dissolution processes do not or occur rarely. 

In contrast to storage recommendations (< 30 °C) are stability data. Namely, cream samples 

have shown to be more stable during storage at temperatures above 30 °C as well as by 

applying temperature changes of 35 °C within the positive region. Cream samples stored at 

ambient temperature generally loss clearly in viscosity. Hydrophilic and lipophilic gel-phases 

crystallise squeezing out water with decreasing water binding capacity in consequence. 

 

From available data we suggest an alternative proposal for manufacturing the model cream: 

 

Melting time: ≤ 30 min; Melting temperature: ≥ 70 °C 

Steady cooling rate: 0.5 – 0.75 °C/min 

Temperature during API-addition: < 40 °C 

Temperature during final homogenisation: < 40 °C 

Duration of final homogenisation: 5 min (1st); 2 min (2nd if necessary) 

Filling: immediately after manufacturing 

Holding time: 5 days in the tube (no HT in bulk) 
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Concerning the suitability and relevance of the characterisation methods the following 

conclusions can be drawn: 

Water binding and phase separation within the cream can be easily evaluated by bleeding 

measurements and electrical conductivity measurements. In contrast, TGA measurements 

were less worthwhile. Here the cost-benefit ratio was less favourable because the 

information was sparse and the measurements were hardly reproducible. DSC on the other 

hand could provide valuable results on the stability of the formulation. 

Spreadability and micropenetration proved to be important clues for the application 

properties of the cream. In particular bleeding, electrical conductivity and spreadability 

provided the possibility of a quick and easy operation, gave reliable information on the cream 

quality immediately after manufacturing as well as stability data during storage. 

Rheology undoubtedly provided the most informative and detailed results. It was an 

indispensable tool to get valuable insight into the cream structure as well as to visualize 

changes in the flow and viscous/elastic cream behaviour as reaction on modification of 

process parameters for instance as consequence of increased shear force. Relevant 

parameters from shear measurements were flow curve with viscosity and hysteresis. 

Oscillatory rheology provided information about the visco-elastic properties expressed as 

elastic and viscous modulus, and phase shift. To determine the yield stress from shear 

rheology was less valuable as far as it was less reproducible. A better alternative might be to 

extract the yield stress from the cross over in stress sweep curves in the oscillatory mode. 

X-ray diffraction was the most sophisticated technique used in this study. This method is far 

away from routine and is only necessary where more detailed insights in the colloidal 

structure are required. 

However, even none of the other methods can be used as a real ‘In process control’ or is 

suited as process analytical technology (PAT), which gives continuous information about the 

process and can be integrated into control loops. 

Nevertheless, the selected methods were able to distinguish physical cream properties in 

dependency of the manufacturing process and allowed to explain possible causes of cream 

deficiencies. 
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