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1.1. Introduction. 

Magnetic Resonance Imaging (MRI) is a valuable and versatile technique for 

visualizing internal structures first described in 19781. It is an extension of Nuclear 

Magnetic Resonance (NMR) spectroscopy used in chemistry. Molecular imaging 

using magnetic resonance techniques is a rapidly growing field in diagnostic medicine 

and basic neuroscience. The high spatial resolution and the undisputed capacity of 

differentiating soft tissues have highly contributed to the widespread use of this 

imaging modality. MRI offers the potential of realistic three dimensional imaging of 

biological structures, where the signal is based upon the resonance of water protons. 

With the advent of improved variety of technologies both in terms of 

hardware/software and the versatile techniques, it is possible to obtain detailed 

anatomical, physiological and metabolic/functional information with carefully 

designed experiments, which could address various intriguing questions concerning 

neural mechanisms of cognitive functions in the primate, which is the thrust area of 

our research.  

1.1.1. Advantages and Disadvantages of MR Techniques over non MR 

Techniques.  

The prime advantage of MR techniques is their non-invasiveness and 

flexibility. Both biochemical spectroscopy and spatial information (imaging) can be 

easily performed without destroying the sample, which is a great asset for biomedical 

and physiological research. An additional advantage of MR methods versus other 

comparable techniques is the lack of exposure to potentially damaging ionizing 

radiation. The majority of non-NMR-based techniques used for imaging or for in vivo 

studies of metabolism involve ionizing radiation in one form or another. For example, 

computer assisted tomography (CT) uses X-rays, and nuclear medicine based 

techniques like gamma scintigraphy and positron emission tomography (PET) 

involves the administration of radioactive tracers. Even traditional studies of 

metabolic processes in intact cells and organs use compounds labeled with radioactive 

isotopes of hydrogen and/or carbon. The ability of MR to obtain a wide range of 

information in a single experiment is not normally possible with any other modality. 

For example, PET can be effectively used to measure metabolism non-invasively; 
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however, the spatial resolution of the images (~3 mm) is relatively poor, so that 

correlation of the results with anatomy is difficult without the use of other 

supplementary techniques like CT etc. PET imaging can also detect activity-induced 

increases in blood flow. Even though nuclear medicine techniques have the advantage 

of high penetration and sensitivity and the ability to pick up micromolar tissue 

concentration, they usually lack chemical specificity. Similarly, while CT can provide 

rapid, relatively high-resolution cross-sectional images, it cannot provide soft-tissue 

details and metabolic or physiological information. On the other hand MR techniques 

can achieve high spatial resolution (pixel dimensions of 100 mm or better) but the 

spectral resolution concentrations are in millimolar range. 

The contrast resolution (visualization of low-density objects with similar soft 

tissue characteristics) of MR is ~10 times better than conventional radiography 

thereby making it a modality-of-choice with high diagnostic potentials. MR Imaging 

differs from other imaging modalities because signal and contrast are multiparametric 

in both the intrinsic MR properties of the tissue and the method of measurement (the 

sequence & scan parameters chosen). MR contrast depends on differences in proton-

spin density (local tissue water concentration), magnetic susceptibility (oxygenation 

state and presence of other magnetic ‘impurities’), molecular diffusion (directionally 

sensitive to diffusivity of water), perfusion (sensitive to capillary flow), and relaxation 

times. Bulk flow and magnetization transfer that provides indirect information about 

proton nuclei that are not in water, are other interesting determinants. 

As outlined above, the greatest disadvantage of MR techniques compared with 

other modalities is its intrinsic insensitivity. The signal that can be generated in the 

NMR experiment is small, and for practical purposes, most strongly coupled with the 

ubiquitous presence of tissue water (almost ~70%) resulting in a relatively large 

signal due to the 1H nucleus in water that is effectively at a concentration in the tens 

of molar range. It is possible to measure signals from cubes (voxels) of tissue as small 

as ~0.3 mm from the human brain, generating the high-quality images used in clinical 

MRI. Other nuclei of metabolites found in vivo are typically at much lower 

concentrations. 

For example, the 31P nucleus in ATP in tissues is at a typical tissue 

concentration of 1-10 mM (~104 to 105 orders of magnitude less than that of water), 
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which, when combined with lower sensitivity of the 31P nucleus (0.066 relative to 1H), 

results in a total decrease in sensitivity of ~106. The cubic volume needed to obtain 

the same signal will thus be approximately 100 times larger on each side (i.e., ~3cm) 

as a broad approximation as other factors also contribute to differences in sensitivity 

between different nuclei. For example, the use of higher field strengths and small 

surface coils placed closer to the tissue of interest, it is often the case in animal 

studies, will make it possible to sample much smaller volumes of tissue. Nevertheless, 

regardless of the field strength and size of the coil, the NMR signals from water will 

always be detectable at resolutions approximately two orders of magnitude greater 

than those of other NMR-sensitive nuclei. Thus, compounds present in submillimolar 

or micromolar concentrations cannot practically be detected directly in tissues. This 

problem has been addressed to some extent by developing stronger ‘magnets’ for MR.  

The stronger the magnetic field (B0), the more nuclei on average will align 

with this magnetic field. Thus, as B0 becomes stronger, a larger signal can be 

generated. This effect is the main reason for the current drive in NMR to build 

stronger magnets, in as much as more signals generally means that higher spatial 

resolution images and better spectra can be obtained. Recent advances in the 

development of high field magnets and low-noise probes optimized for microimaging 

have made possible MR imaging of small biological samples with resolutions of less 

than 10 μm. The development of miniaturized imaging equipment and reporter probes 

has improved the ability to perform MR studies in animal models of diseases, such as 

transgenic and knockout mice. The ability of MR technologies to encompass studies 

of cells, animals, and humans should therefore, greatly enhance the translation of 

knowledge obtained in basic biomedical research to humans2-7. 

1.1.2. Associated issues when working in a High-Magnetic-Field Environment. 

As seen above, an inevitable consequence of carrying out biomedical MR 

investigations is the need to work in a high-magnetic-field environment. Although no 

known intrinsic risks are known to be associated with high magnetic fields; however, 

the presence of the magnetic field can affect equipment/accessories routinely used in 

animal research. One of the very few dangers associated with NMR is the potential 

for ferromagnetic objects that are not held in place to be attracted to the magnet. 
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Fortunately, an increasing amount of monitoring equipment is now available that is 

designed to function in relatively close proximity to NMR magnets8-11. 

1.2. Background and Significance  

The spatial resolution of MR is high and it also offers physiological 

sensitivity, production of detailed images that provides an insight into how 

physiological functions occur in situ is a somewhat tricky affair. By the selection of 

appropriate pulse sequences the image contrast in MRI could be enhanced. It can also 

be made sensitive to diffusion, perfusion and macroscopic blood flow. The potential 

of MRI procedures can be further exploited when applied in concurrence with 

magnetopharmaceuticals [Contrast Agents (CAs)] in both clinical and experimental 

settings that can improve the ability to resolve different anatomical structures or 

pathologies on the MR image. The contrast media enhance the image quality by 

magnetically tickling the surrounding water protons, thereby altering the tissue 

response during MR measurements. This allows the organs and other tissue 

administered with the contrast agent to stand out from the surrounding organs or other 

nearby tissue. Using advanced categories of these agents it is now possible to obtain 

fairly detailed information on cellular events in addition to the anatomical data 

normally revealed by MRI12-16. 

1.2.1. Relaxation Parameters.  

Relaxation can be considered in two parts: recovery toward equilibrium 

(longitudinal) alignment and transverse decay. Both of these processes can be 

described mathematically by exponential terms, governed by time constants, T1 (for 

longitudinal recovery) and T2 (for transverse decay). It is these parameters, T1 and T2 

which are properties of the water microenvironment and thus of different tissue types, 

that lend MRI its inherent power to distinguish between different tissues (even of 

similar density). T1 and T2 differ between tissues because the physicochemical 

microenvironments of tissues differ (especially water mobility and the presence of 

microstructures, macromolecules and membranes). 

It is useful to consider the parameters that determine the relaxation rate 

(R=1/T) of a contrast agent in order to appreciate how modulation of these in response 
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to a biological event can produce the desired change in relaxivity of the activated 

system. 

R1p = R1p
IS + R1p

OS   (Equ. 1) 

R1p
IS = Cq/55.6 * 1/T1M + τm  (Equ. 2) 

The total paramagnetic relaxation rate enhancement of the free water protons 

(R1p) is made up of contributions (Equation 1) from the inner sphere (R1p
IS) and outer 

sphere (R1p
OS) relaxation mechanisms. The inner sphere mechanism consists of 

interactions between Gd3+ and directly bound water molecules, whereas the outer 

sphere mechanism consists of interactions with second sphere and closely diffusing 

water molecules. The greatest control can be exerted over the large inner sphere 

contribution (Equation 2), where C = molar concentration of paramagnetic compound, 

q = number of bound water molecules, T1M = longitudinal relaxation time of the 

bound water protons and τm = mean residence lifetime in coordination sites (Fig. 1). 

At the magnetic field strengths typically used in MR imaging, the longitudinal 

relaxation time of the bound water protons T1M is dominated by the molecular rotation 

(rotational correlation) time τR. The slower the Gd3+ complexe tumbles, the faster the 

relaxation rate.  

 

Gd3+

T1,2e

Inner Sphere, Hydration Number (q)

Metal Proton Distance (r)

Rate of Exchange with Bulk Water(kex)

Molecular Rotation Rate
              (τR)

Secondary and Outer Sphere Molecules
 

Figure 1: Schematic representation of a Gd3+ chelate with one inner-sphere 

water molecule, surrounded by bulk water, kex refers to the water/proton 

exchange rate and 1/T1,2e to the relaxation rate of the Gd3+ electron spin.  
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Thus, the parameters q, τm and τR are those that are the most amenable to modulation 

in response to a biological event to generate specific contrast agents15,17-19. 

1.2.2. Endogenous and Exogenous Contrast Agents.  

A particularly powerful paradigm for functional MRI of microvascular 

hemodynamic incorporates paramagnetic materials that create significant image 

contrast. These include exogenous (lanthanide/transition metal chelates) and 

endogenous (deoxygenated hemoglobin) agents for mapping cerebral blood 

volume/flow and neuronal activity. Accurate interpretation of these maps requires an 

understanding of the biophysics of susceptibility-based image contrast and its 

relationship with microscopic tissue parameters and NMR imaging parameters8-10,20-

23. 

1.2.3. Lanthanide Metal Chelates.  

The transition metal and paramagnetic lanthanide ions suitable as MR contrast 

agents are all potentially toxic at or near doses required for NMR relaxation changes. 

A major difficulty in the development of any of the paramagnetic metals as CAs has 

been to diminish this toxicity to administration. This toxicity can only be reduced by 

coordinating the metal to ligands that are too obstinate to be displaced by water, while 

leaving one coordination site open for a water molecule, to allow inner sphere spin 

transitions, or transitions between the nuclei metal and a ligand to which they are 

directly bound. With chelation of these ions, acute toxicity is reduced and elimination 

rate is increased thereby reducing the chance of long-term toxicity. CAs are primarily 

Gadolinium-based compounds, which are chelated (complexed with suitable ligands) 

to reduce toxicity. Choice of a proper ligand is very important to ensure that Gd3+ 

does not dissociate from the complex in the body in presence of phosphate, citrate, 

transferrin and other endogenous chelating substances. Gd3+ ion exhibits the strongest 

effect of all elements on longitudinal relaxation time. Commonly used CA are 

polyaminocarboxylate complexes of the highly paramagnetic Gd3+. 

Lanthanide metal chelates can enhance MR image quality by influencing the 

precession of surrounding water protons, thereby altering the tissue response during 

MR measurements. CAs are being used clinically to detect or characterize lesions, to 

delineate pathological structures or to indicate the status of organ function or blood 
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flow, thereby ultimately improving the accuracy of prognoses. The potentials of MR 

techniques have extended from routine clinical applications to exciting uses in 

developmental biology as a tool for the study of embryonic cell differentiation17,24-26. 

1.2.4. Evolution of Contrast Agents.  

The ligands of Gd-chelates belong to two different type of structures- Acyclic 

(open-chain compounds) and macrocyclic ligands. Owing to entropy considerations, 

chelating ligands are usually several orders of magnitude more strongly coordinating 

than their monodentate analogues. Most widely used chelators for the complexation of 

Gd3+ are diethylenetriaminepentaacetate (DTPA) and 1,4,7,10-tetraazacyclododecane-

1,4,7,10-tetraacetate (DOTA) (Fig. 2). DTPA is a readily available octadentate ligand. 

Non-specific acyclic probes like GdDTPA that accumulates nonspecifically and are 

excreted rapidly (t½=90 min), constitute the first generation of CAs. DTPA chelates 

are easily derivatized. Various complexes have been designed and evaluated using 

thermodynamic stability, rates of excretion, toxicity, lipophilicity, and biodistribution, 

percent change in MR signal intensity as criteria keeping GdDTPA as the gold 

standard. The complexes are anionic, and therefore, quite water-soluble (usually to 

about 0.5–1.0 M). They are marked by unselective biodistribution over the 

extracellular fluid and the resultant contrast is dependent on their tissue permeability 

versus the clearance rate. Stability of the majority of macrocyclic gadolinium chelates 

is higher than that of acyclic complexes.  

Macrocyclic ligands useful in MRI are derivatives of tetramine, cyclen 

(1,4,7,10-tetraazacyclododecane). 1,4,7,10-tetraazacyclododecane-1,4,7-tricarboxylic 

acid (DO3A) is itself not an ideal chelating agent for Gd3+ contrast agents because it 

is only heptacoordinate, but it serves as a starting point for the synthesis of numerous 

derivatives since a 12-atom ring appears to be ideal for MRI contrast agents. DO3A 

derivatives have been developed as neutral macrocyclic Gd chelates. 

GdDOTA was the first marketed product in this series. GdDOTA is as safe as 

GdDTPA and has similar diagnostic efficacy. It targets no specific anatomical site or 

physiological function. Owing to a lower entropy loss in chelation, it releases less free 

Gd3+ into their physiological surroundings than do their linear acyclic counterparts. 

The major distinct advantage of GdDOTA over GdDTPA lies in its lower relative 

viscosities that it diffuse faster and pass through the injection needle more quickly for 
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a given applied pressure, thereby minimizing patient discomfort because a burning 

sensation due to osmolality is felt otherwise.  
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Figure 2. Structures of DTPA, DOTA, DO3A 

New types of contrast agents are continually being developed to keep up with 

the request for more organ specific contrast media to be used in routine MR imaging 

as well as interventional MR to improve image quality. These constitute the 2nd 

generation of CAs which is also called as the affinity-targeted agents. They are 

directed to targets of interest more efficaciously, thereby achieving higher local 

concentrations at lower dosages. Increasing specificity (for organs, diseased tissue) by 

tagging to tissue-specific molecules by functionalization, altering lipophilicity, 

altering clearance properties by inducing reversible binding to circulating proteins, 

binding with macromolecular agents to affect the overall rotational correlation time 

and increasing the number of Gd3+ per unit molecule; use of MoAb and/or their 

associated fragmented; avidin as targeting vector; foliated Gd3+ are some glaring 

examples of this class. This concept has potential applications in imaging of important 

cellular and molecular moieties non-invasively in nano- and picomolar 

concentrations. 

Imaging of cellular activities or physiological function using bioresponsive 

CAs resulted in development of the third generation of CAs. They are 'turned on' only 

in the presence of a threshold concentration of a specific molecule. The concept is to 

utilize injectable compounds of high tissue specificity with the ability to provide 

information of the physicochemical environment, when activated in response to a 

change in some biochemical event. The choice of the biochemical target, the chelates 
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and the physiological/pathological situation are critical deterministic parameters in the 

designing, development and applications of such agents in imaging the biological 

functions. The numbers of molecules in the first coordination sphere, the water 

exchange rate and the rotational correlation time have a strong effect on their 

relaxivity. As their relaxivity can be dictated by these specific changes in critical 

parameters of the cellular/tissue microenvironment, they generate a signal dependent 

on vital variables in their immediate microenvironment due to the modulation of 

relaxivity, thereby resulting in conditional enhancement of contrast. Thus, these 

smart/bioactivated contrast agents can act as a reporter of their biochemical 

microenvironment where they are distributed through various parameters as outlined 

below. In the context of smart CAs, the percentage change in relaxivity rather than 

absolute relaxivity is more important27-32. 

From medicinal chemist’s point of view, many metallopharmaceuticals may 

be said to have been prepared on empirical ground taking mostly the analogy from 

designing of radiopharmaceutical for nuclear medicine, but research in certain 

instances in the designing of Smart Contrast Agents (SCAs) has been the result of 

sound reasoning based on theoretical concepts of drug design and molecular imaging. 

It is in order to look at depth on their development in particular. 
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Evolution of Contrast Agents 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schematic diagram of different generations of MR contrast agents 

1.2.5. Smart/Bioactivated Contrast Agents as Functional Biochemical Markers.  

The chemical structure of smart CAs could be tailored to respond to the 

changes in internal milieu by sensing the changes in biochemical environment upon 

specific activation. SCAs have been initially developed for applications in 

developmental biology to follow cell movements and lineages in developing frog 

embryos when injected at early stages of their development permitting the tracking of 

the labeled progeny cells in 3D MR images acquired from the embryo over several 

Contrast 
Agents 

Functional Structural 

Non-Specific Specific  

Acyclic Macrocyclic 

Targeted ““SSMMAARRTT””  

pH, Ca2+, enzyme sensitive
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days. CAs were subsequently used to track DNA delivery to specific cells, detect gene 

expression, and follow changes in the activity of enzymes beyond their value in basic 

research; all of these procedures have potential applications in clinical work in the 

area of gene therapy, etc. In principle, the relaxivity of these designer switchable 

magnetopharmaceuticals can be modified to be conditionally dependent on certain 

variables like enzymatic activities, signaling messenger, calcium ion concentration, 

ion channel functions, receptors systems, degree of glycation of proteins, temperature, 

pH, pO2, gene expression and molecular recognition involved33-40. 

1.2.5.1. pH-activated contrast agents. pH is one of the most important factors for 

designing SCAs. We all know that the external medium is slightly basic but the 

opposite situation is observed in tumor tissues. The intracellular pH, on the other hand 

is almost the same for both kind of cells due to homeostatic mechanism. Therefore 

triggering MRI contrast agents by pH variation seems like a promising method for 

highlighting tumors. Increased glycolytic activity may cause a significant pH decrease 

in the extracellular region of certain tumors relative to surrounding healthy tissue. 

Overall pH is an important physiological indicator; many research groups have 

designed pH-sensitive contrast agents41.  

Aime et al have developed a pH-sensitive contrast agent with 30 Gd3+ chelates 

and 114 ornithine residues (Fig. 3a)42.The chelates are conjugated to the amino acid 

chain via squaric esters, which readily react with amines. This agent is sensitive in the 

physiological range from pH 4.5 to 8.5. Hovland et al have developed a pH-sensitive 

CA which is a DO3A derivative with a tertiary amine containing side arm (Fig. 3b)43. 

The side arm amine contains two long alkyl chains. The Gd3+ complex of a DOTA-

tetramide derivative has been prepared by Sherry et al who observed an interesting 

behavior of the agent with change of pH35. The relaxivity of the pH-sensitive contrast 

agent increases when pH increases from 4 to 6, but decreases between pH 6 to 8.5 and 

is constant between 8.5 to 10.5 (Fig. 3c). Aime et al have introduced 

hydrogencarbonate as pH sensitive contrast agent (Fig. 3d)44. It has been a ternary 

complex between a Gd3+ chelate and carbonate ions. Lowe et al employed a 

toluenesulphonamide as a pH labile ligation group in a Gd(DO3A) chelates; as the pH 

of a solution is reduced, the sulphonamide becomes protonated and dissociates from 
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the metal center  (Fig. 3e)45. Later Woods et al observed a similar pH-sensitive 

dissociation in complexes with one p-nitrophenolic ligating group (Fig. 3f)46.  
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Figure 3. Reported ligands as pH sensitive CAs. 

1.2.5.2. Metal ion concentration activated contrast agents. Abundant metals ions are 

essential or beneficial to life, such as calcium, magnesium, iron, copper etc. Its 

deficiency and excess may cause several deceases. In vivo determination of metal ion 

distribution is thus highly desirable and progresses have been towards the design of 

MRI SCAs sensitive to the concentration of metal ions47.  

The use of MRI to detect fluctuations in the concentration of vital metal ions 

has recently received much attention. The pioneering work in this area was conferred 

by Meade and co-workers who focused on the important role played by intracellular 

calcium(II) in signal transduction (Fig. 4a)39,40. Zinc(II) is another significant metal 

ion that regulates synaptic transmission and cell death. Selectively sensing Zn2+ ions 
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with contrast agents had been previously discussed by Hanaoka et al and Trokowski 

et al (Fig. 4b and 4c)48,49. Desreux et al embarked on an innovative approach based on 

self-assembly towards the development of iron-activated GdDO3A-based CA (Fig. 

4d)50. Recently, Que et al introduced copper(II) sensitive SCA (Fig. 4e)51.  
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Figure 4. Reported ligands as metal sensitive CAs. 

1.2.5.3. Enzyme-activated contrast agents. The elaboration of enzyme responsive 

MRI contrast agents could provide a means of measuring enzyme activity and enzyme 

localization. The sensitivity of MRI contrast agents to specific enzymes depends on 

the mechanism of their interaction. Provided the interactions between a contrast agent 

and an enzyme are sufficiently strong, a large increase in relaxivity will be observed 

due to the increased rotational correlation time of the adduct52.  

The first enzyme activated macrocyclic MR contrast agents was reported by Li 

et al, and was developed in response to the need to correlate developmental biological 
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events with gene expression during an imaging experiment37,38.The mechanism of the 

inner sphere T1 relaxation phenomena (q) suggested a means to create a contrast agent 

with two distinct relaxation states, weak and strong (Fig. 5a). Anelli et al have 

synthesized a DTPA derivative which can detect carbonic anhydrase (Fig. 5b)53. The 

gadolinium complex contains a sulfonamide group in place of one of the carboxylic 

acid arms of the DTPA, helping it to selectively target the enzyme carbonic 

anhydrase. Perez et al have utilized the difference in relaxivity between solitary CLIO 

particles and that in close proximity to other CLIO particles to detect DNA cleaving 

agents (Fig. 5c)54.  
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Figure 5. Reported compounds as enzyme sensitive CAs. 
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1.3. Project Conceptulations 

The core project of the thesis deals with developing a MRI approach for 

detecting neuronal activity and to translate activity into changes in MR image 

contrast. A modulation of water relaxivity by contrast agents can be achieved by 

specific physiological or biochemical triggers that can be changes in pH, calcium ion, 

neurotransmitter concentration, or enzymatic activity. The purpose of this project was 

to design and synthesize a new class of gadolinium (Gd)-based calcium ion, pH, and 

enzyme sensitive “smart” contrast agents that are capable of reporting on the brain 

activity status by contrast change in MR images. The thesis also involves in 

development of Gd-based neuroanatomical tracers and some precursors towards 

targeted contrast agents which can be useful in MRI as well as optical imaging. 

1.3.1. Objective 

The broad objective of development and evaluation of the new exogenous smart 

contrast agents encompasses the following steps; 

• Designing and development of innovative novel & clever exogenous 

smart/bioresponsive contrast agents those are responsive to the change in 

microenvironment surroundings. 

• Fully characterization of those by NMR, mass spectrometry, elemental 

analysis, crystallography and HPLC. 

• In vitro MR relaxation measurements simulating different physiological 

conditions like different pH, calcium ion concentration and enzymatic 

activity, dependent on the type of contrast agents. 

• In vivo MR measurements in the rat and monkey to evaluate the exogenous 

contrast agents and its change upon functional activation. 

1.3.2. Specific Aim 

The specific aim in the proposed projects, we want to develop novel exogenous 

smart/bioresponsive contrast agents, which reflect-like hemoglobin in blood–changes 

of neuronal activity, but which are located in the extra-cellular space, independent of 

the hemodynamic and may reflect more directly changes in neuronal activity. 
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2.1. Introduction 

Targeted CAs localize to specific molecular targets with high affinity and 

specificity, thus enhancing the diversity of MR applications. They are able to 

recognize specific target molecules inducing an enhancement of water proton 

relaxation rate on binding with the target molecule17,55,56. A diverse variety of 

targeting ligands have been chemically coupled with CAs depending on the nature of 

final and specific application of the CA. Asialoglycoproteins have been used for liver-

specific application due to their high affinity for ASG receptors located uniquely on 

hepatocytes57,58. Tumor selective accumulation of porphyrin based CA is attributed to 

high affinity of these compounds to necrotic tissue59. DTPA-bisamide based ligands 

have been used for diagnosis of several types of malignancy on the basis of molecular 

recognition of sialic acid residues60. Monoclonal antibodies (MoAbs) and antibody 

fragments provide highly specific target recognition and binding for CAs. Breast 

cancer cells expressing Her-2/neu receptors were imaged in vivo with a two step 

labeling protocol using biotinylated Herceptin MoAb and avidin-GdDTPA 

conjugates61. 

Based on previous reports on the synthesis and applications of targeted CAs, 

we have developed straightforward synthetic routes for the preparation of targeted 

CAs derived from DO3A-ethylamine (DO3A-EA, 7), with potential for further 

conjugation with other molecules containing appropriate reactive groups (Fig. 6). 

In an effort to obtain a precursor that can enable noninvasive imaging of 

imperative processes in vivo using MRI, Gd loaded DO3A-ethylamido-biotin (Gd-9) 

has been synthesized by conjugating DO3A-EA with biotin. Similar systems based on 

DOTA after loading with metallic radionuclide’s like yttrium or indium are also being 

explored at in vivo level for application in radioimmunotherapy62-66. This technology 

has found useful application in the medical field to in vivo localize and image cancer 

cells and to pretarget drugs to tumors67 where MoAb-avidin/biotin act as targeting 

macromolecule/effecter molecule pairs68. Pretargeting approach takes advantage of 

the fact that biotin binds strongly to the proteins avidin and streptavidin resulting in 

signal amplification.  
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The second conjugate GdDO3A-ethylthiourea-FITC (Gd-12) possesses 

fluorophore fluorescein on one arm and is intended to obtain a precursor for bimodal 

imaging where the macrocyclic part serves for MR visualization and FITC part for 

optical imaging. CAs anticipated for cell labeling can be designed from this precursor 

for tracking cells in vivo by MR and/or fluorescence imaging. Cell therapies, in last 

few years, have reached new heights with some studies also entering into clinical 

trials. But the pace of development of an effective cell based therapy has been slowed 

down by the paucity of technology for tracking cells’ fate in vivo. Recently de Vries et 

al have reported the use of MRI for tracking transplanted cells and obtained detailed 

view of cells biodynamic in vivo69-71. Agents based on the use of bimodal imaging 

have been applied to disease detection by attaching a target-specific site72 or to 

observe cellular localization and migration73-75. This gives rise to the need for 

developing intracellular CAs that will help in obtaining improved contrast and our 

precursor can serve as a template for obtaining them. 
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Additionally, in order to encompass the complete range of chemical reactivity, 

the nucleophilic “arm” of DO3A-EA was exchanged with electrophile groups, and 

two new precursors were designed and synthesized. The amino group of DO3A-EA is 

transformed to isothiocyanate, resulting in the formation of DO3A-ethyl-

isothiocyanate (13). This molecule possesses selective reactivity towards amines, thus 

providing the possibility of using it as a precursor for conjugation with biomolecules 

like proteins, peptides and MoAbs76-79. The other precursor, DO3A-

ethylamidopropyl-maleimide (11), obtained by coupling of amine with 4-

maleimidobutyric acid, further enhances the diversity of application by exploiting its 

reactivity towards sulphydryl groups and therefore, prospects for combining with thiol 

containing peptides, dendrimers, oligonucleotides72,80-82. These precursors can serve 

as important building blocks in the designing of targeted CAs with desirable traits.  

2.2. Experimental Section 

2.2.1. In vitro Cell Studies of Gd-12  

Cell experiments were done in 96 well microplates by inoculation of NIH-3T3 

mouse fibroblasts (1 x 104 cells/well) cultured in Dulbecco’s Modified Eagle's 

Medium supplemented with 10% foetal bovine serum, 4 mM L-glutamine, 100 µg/mL 

streptomycin and 100 U/mL penicillin (all purchased from Biochrom AG, Germany). 

After 24 hours cells were incubated with various concentrations (up to 150 µM) of 

Gd-12 for additional 18 hours. After repeated cell washing with Hanks’ buffered 

saline (Biochrom AG, Germany), cell related FITC fluorescence (Ex 485 nm/Em 530 

nm) was evaluated in a multiplate reader (BMG Labtech, Germany). Subsequently, 

fluorescence microscopy was performed with the same cells on a Zeiss Axiovert 40 

CFL (Germany) to observe the cellular localization of Gd-12.  

Evaluation of cytotoxicity was done by addition of propidium iodide and a 

detergent with subsequent fluorescent reading (Ex 530 nm/Em 645 nm). In addition, 

by combination of the two fluorescence readings correlation is established between 

the FITC fluorescence and the total cell number per well. Experiments were run three 

times each with six replicates. Statistical analysis was performed by ANOVA with 

Dunnett’s post test. P values < 0.05 were considered significant. 
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2.2.2. Sample Preparation for Relaxivity Measurements 

 Different concentrations (0.8 mM, 0.6 mM, 0.4 mM, 0.1 mM) of Gd-9 and (1 

mM, 0.7 mM, 0.4 mM, 0.1 mM) of Gd-12 were prepared in phosphate buffer in 1.5 

mL Eppendorf tubes at physiological pH to measure relaxivity.  

The measurement of the relaxation rates R1 and R2 (longitudinal and transverse 

relaxation) of Gd-complexes were performed at 300 MHz (7T) on a vertical 7T/60 cm 

MRI Biospec system (Bruker Biospin, Germany)83. Up to 16 tubes could be measured 

simultaneously. The relaxation rate measurements of the samples were performed at 

room temperature (~21˚C). 

2.2.3. MR Study of Avidin-Gd-9 Interaction 

To measure the enhancement of R1 and R2, MRI experiments were performed 

with increasing concentrations of avidin (Fluka, Germany) proportional to constant 

concentration of Gd-9 (0.4 mM) incubated for 3 h at 37°C. The longitudinal relaxivity 

(r1) and transverse relaxivity (r2) was determined from concentration dependent 

measurements of relaxation rates (R1 and R2) of Gd-9.   

2.2.4. In vitro MR Studies of Gd-12 with Cells     

 For MR imaging of cells, exponentially growing 3T3 cells were labeled with 

80 and 150 µM Gd-12 in 175 cm2 tissue culture flasks for 18h. After repeated 

washing with Hanks’ buffered saline, cells were trypsinized, centrifuged and re-

suspended in 1.5 mL Eppendorf tubes at the rate of 1 x 107 cells in 500 µL complete 

DMEM. Cells were allowed to settle before making MR measurement. As control 

served tubes with only medium, cells without Gd-12, and cells re-suspended in 

medium containing the extracellular contrast agent Magnevist® (Schering, Germany) 

at 50 µM. 

MRI of the cell pellets was also performed at 300 MHz (7T) using T1- and T2-

weighted spin-echo sequences at room temperature (~21˚C), see above description.  

The axial slice of interest was positioned through the cell pellet. Experimental 

parameters for T1 were: field of view 17 x 6.9 cm2, matrix 512 x 256, slice thickness 

1.5 mm, SW 70 kHz, TE 14.6 ms, TR 40-6000 ms, 2 averages (logarithmic time steps, 

80 images). For T2, similar parameters were used, but TR = 8 s and TE = 15-675 ms 

(linear time steps, 45 echoes).   
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Sagittal images were obtained with field of view 11.3 x 6.9 cm2, matrix 256 x 

256, slice thickness 2 mm, SW 70 kHz, TE 10.9 ms, TR 1600 ms, 4 averages for T1 

weighted images, and field of view 12.5 x 6.8 cm2, matrix 256 x 256, slice thickness 2 

mm, SW 70 kHz, TE 90 ms, TR 8000 ms, 2 averages for T2 weighted images. 

2.3. Results and Discussions 

2.3.1. Synthesis of Ligands  

DO3A-EA (7) is a bifunctional ligand bearing amine group that is readily 

reactive towards most electrophiles such as aldehydes, carboxylic acids and 

isothiocyanates to form various molecules for the development of targeted CAs. 

Though DO3A-EA has already been part of several synthetic schemes84-86, we report 

here the application of DO3A-EA in a new context, as precursor for the synthesis of 

CAs to design relaxometric MRI as well as optical probes. We have developed dual 

synthetic routes to obtain 7 depending on the choice of protection and deprotection 

method (Scheme 1).  

In the first route 7 was obtained from cyclen in 39% yield over 3 steps, by the 

reaction with tert-butylbromoacetate to get the tri-substituted product 387. Alkylation 

with 188 gave 4 and the corresponding carboxylate derivative 7 was obtained by 

cleaving the tert-butyl groups by the treatment of neat TFA at room temperature. 

Attempts for the selective deprotection of Boc group in compound 4 led to 

deprotection of tert-butyl ester groups and the formation of a multi-product mixture. 

Thus, an alternative 3-step route was designed also starting from cyclen to form the 

methyl ester 6. After monoalkylation of cyclen86 with 1, 2 was isolated in 63% yield. 

By alkylation with methylbromoacetate, ligand 5 was obtained and the acid labile Boc 

protecting group of amine was cleaved with TFA to get methyl protected ligand 6 and 

subsequent treatment with LiOH gives 7.  

After the successful synthesis of precursors, the bioconjugate ligand 9 was 

synthesized in a two step reaction (Scheme 2). Biotin conjugated DO3A-EA 

compound 8 was obtained by the coupling of biotin with ligand 6 using 

EDC/HOBt/NMM in DMF. The choice of such mild conditions for the conjugation of 

biotin with DO3A-EA and amide bond formation was mandatory due to the 

sensitivity of biotin towards harsh conditions (temperature etc). In the following step, 
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ligand 9 was obtained in 77% yield by deprotection of methyl groups with LiOH in 

THF:MeOH:H2O (3:2:2).  

 

N

N HN

N

O
Ot-Bu

O Ot-Bu
O

Ot-Bu N

N N

N

O Ot-Bu
O

Ot-Bu

O

t-BuO

NHBoc

NH

NH N

HN

NHBoc

N

N N

N

O OMe
O

OMe

O

MeO

NHBoc

2

3 4

5

N

N N

N

O OH
O

OH

O

HO

NH2

7

N

N N

N

O OMe
O

OMe

O

MeO

NH2

6

(i)

(iii)

(iv)

(vi)

(v)

(viii) (vii)Cyclen

(ii)

 

Scheme 1. Reagents and conditions: (i) tert-butylbromoacetate, NaHCO3, 

MeCN, 71%; (ii) N-Boc-bromoethylamine (1), toluene, 68%; (iii) 1, K2CO3, 

DMF, 72%; (iv) methylbromoacetate, Na2CO3, MeCN, 82%; (v) MeOH, TFA, 

80%; (vi) TFA, 64%; (vii) LiOH;THF;MeOH (3:2:2), water, 64%; (viii) 

MeOH.HCl, 95%. 

In a similar manner, a novel precursor 11 bearing maleimide arm was 

synthesized when starting from 6 as described for biotin conjugates. It is well known 

that the maleimide group reacts selectively with sulphydryl groups to form 

macromolecules76-79. Two maleimide conjugates were synthesized, compound 10, 

obtained from compound 6 by using 4-maleimidobutyric acid and EDC/HOBt/NMM 

in DMF at room temperature, and ligand 11, obtained by deprotection of methyl 

groups in the presence of LiOH (Scheme 2). 

Two molecules were synthesized in single step reactions when starting from 7 

(Scheme 3). The first ligand 12 possessing two moieties, fluorescence unit, and the 

macrocycle which can complex with paramagnetic metals was synthesized by 

coupling of FITC with 7 at pH 8. During the reaction, pH was not allowed to exceed 
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8.5 since at pH > 9, a lactone cleavage on FITC part occurs, leading to the formation 

of a side product. The second molecule (13) was synthesized in one step by 

transforming the amino group into NCS with thiophosgene. The yield of the reaction 

was moderate (58%), although a molecule obtained this way provides possibility for 

further couplings with amine containing organic and bioorganic molecules to form the 

desirable product72,80-82. 
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Scheme 2. Reagents and conditions: (i) biotin, NMM, HOBt, EDC, DMF, 55%; 

(ii) LiOH, THF, MeOH, water, 77%; (iii) 4-maleimidobutyric acid, NMM, HOBt, 

EDC, DMF, 66%; (iv) LiOH, THF, MeOH (3:2:2), water, 86%. 

Finally, Gd3+ complexes were synthesized for ligands 9 and 12 (Fig. 7). 

During loading GdCl3.6H2O in biotin containing ligand 9 reaction temperature was 

kept under 60°C because of possible degradation of biotin moiety. For loading Gd3+ in 

FITC containing compound 12, pH of the solution was maintained in the range 7-8, as 

at lower pH the precipitation of the ligand was observed. 

As a summary of the synthetic schemes described above, we would like to 

point that the presented straightforward and facile synthesis, although not quite novel, 



Chapter 2: New Class of Gd-based Targeted Contrast Agents 
 

25 

 

is very suitable for the easy preparation of precursors in the design and preparation of 

targeted CAs. With the same methodology, it was possible to synthesize various 

targeted model probes, quite different in their behavior and potential application, 

which should actually be the major advantage of such approach. 
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Scheme 3. Reagents and conditions: (i) FITC, water, Na2CO3, 55%; (ii) 

CSCl2, water, CCl4, 59%. 

 

 

 

 

 

Figure 7.  Structures of Gd3+-complexes of 9 and 12. 
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2.3.2. Biochemical Applications  

2.3.2.1. In Vitro Relaxometry of Gd-9. The biotin-avidin association has found 

widespread applications in biomolecule detection, medical diagnostics, 

immunoassays, cytochemistry and nano-science89-93. This is primarily due to the 

strength of the interaction between the ligand and the tetrameric protein (Kd ≈ 1.3 x 

10-15 M) which in turn allows for the cross-linking of different biotinylated 

molecules93.  

To scrutinize the effect of binding on the longitudinal and transverse 

relaxivities, we performed MRI experiments with increasing concentrations of avidin 

proportional to constant concentration of Gd-9 (0.4 mM). A linear enhancement in 

relaxivity was observed demonstrating strong binding of Gd-9 in the biotin binding 

pocket of tetramer avidin (Fig. 8). This gain in relaxivity suggests a decrease in 

molecular rotational correlation time τR.  

 

Figure 8. In vitro MR measurement of transverse relaxivity, r2 Gd-9 with 

varying concentrations of avidin. MR experiment was performed at 300 MHz 

(7T) and 21°C with constant concentration of Gd-9 (400 µM) and increasing 

amount of avidin in different tubes. A linear relaxation enhancement was 

observed up to 100 µM (0.25 equivalents). At higher ratios relaxivity r2 

remained constant. [Error for all r2 values was less then (± 0.6) s-1mM-1 and is 

not displayed]. 
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Similar to literature reports, proposing that one avidin molecule strongly binds 

four equivalents of biotin94, we obtained saturation in relaxivity at ratios higher than 

4:1 between Gd-9 and avidin. MR longitudinal relaxivity, r1 = (3.32 ± 0.03) s-1mM-1 

and transverse relaxivity, r2 = (5.02 ± 0.14 s-1mM-1) of Gd-9 (0.4 mM) was observed 

at pH 7.4. The mixture of Gd-9 and avidin showed maximum relaxivity enhancement 

of 45% in r1 = (4.82 ± 0.09) s-1mM-1 and 423% in r2 = (26.24 ± 0.58) s-1mM-1 relative 

to the unbound biotinylated Gd3+ complex.  

In future applications, the MRI contrast sensitivity can be therefore improved 

by designing CAs using the above precursor, as the biotin-avidin association is 

expected to enhance the signal by means of in situ accumulation of the agent. Avidin 

has been already utilized for drug delivery through the blood brain barrier93. It is 

important for future non-invasive, e.g. human research applications, which do not 

afford intracranial injections. Additionally, there is possibility to utilize this precursor 

for diagnosis and imaging using MR, based on pretargeting approach in combination 

with avidin coupled MoAbs. Pretargeted delivery of radionuclides has shown 

promising results in treatment of lymphoma and solid tumors but remains as a 

sophisticated approach needing optimization of dose and administration schedules63-

65. Although our model precursor exhibits probability for use in MR imaging but 

translation to a system for in vivo application is hampered by certain drawbacks. 

Hydrolysis of DTPA-biotin and DOTA-biotin by endogenous biotinidase has been 

reported95. This problem has been successfully overcome by chemically modifying 

the structure in order to effectively block biotinidase66,96. In addition, endogenous 

biotin levels (10-8-10-7 mol/L), immunogenicity of avidin and high and prolonged 

renal uptake markedly affect efficacy of avidin and streptavidin based pretargeting 

strategies63,67,97. Efforts are being made to develop an appropriate delivery method to 

prevail over these predicaments98,99.  

2.3.2.2. In Vitro Cell Studies of Gd-12. MR relaxivity of Gd-12 at pH 7.4 was r1 = 

(5.36 ± 0.05) s-1mM-1 and r2 = (7.52 ± 0.16) s-1mM-1. In vitro studies of this Gd3+ 

loaded complex were done with NIH-3T3 mouse fibroblast cell cultures to 

demonstrate its potential for developing multifunctional CAs. Gd-12 up to 150 µM 

did not show significant cytotoxicity after 18 hours of incubation (propidium iodide 
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assay), although a decrease in number of cells was observed at concentrations above 

100 µM (Fig. 9).  

 

Figure 9. Cytotoxicity of Gd-12 at different concentrations. Calculated from 

same plates after addition of PI and a detergent followed by measurement of 

Pi fluorescence. At concentrations of Gd-12 higher than 100 µM, a decrease 

in cell number was observed which was not statically significant compared to 

control. Values are means ± SD (n = 3).  

 

Figure 10. Increase in fluorescence intensity of cells labeled with varying 

concentrations of Gd-12. Cells were incubated with various concentrations of 

Gd-12 for 18 h, given several washes followed by fluorescein fluorescence 

measurement. After the addition of propidium iodide (PI) and detergent, PI 
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fluorescence was measured to correlate the cell bound fluorescein 

fluorescence with cell number resulting in corrected cell fluorescence. Values 

are relative fluorescence units (rel. fu) displaying mean ± SD (n = 3); *p < 

0.05; **p < 0.01, statistically significant differences compared to control.  

However, a concentration dependent increase in cell related FITC fluorescence 

was observed indicating cell binding/internalization of the compound (Fig. 10). At 

concentrations higher than 50 µM this increase was statistically significant. 

Fluorescence microscopy of living cells displayed a faint but detectable uptake of the 

compound into cells at concentrations higher than 50 µM. Figure 11 shows examples 

of cellular localization of Gd-12 after incubation with 80 and 150 µM for 18 h and 

subsequent washing. Beside a faint diffused fluorescence (asterisks), vesicles showing 

brighter fluorescence (arrows), were located around the nuclear area of the cells 

indicating to an endosomal uptake mechanism.  

Figure 12 shows results of the MR study on 3T3 cells. The presence of 

Magnevist® in medium enhanced the contrast in T1-weighted images by increasing 

brightness of supernatant, whereas there is almost no difference in T2. Cells 

themselves induce only a minor change in T1-weighted images in comparison to 

medium only. In T1-weighted images, the cell pellet is distinguished by the darker 

image intensity at the bottom of the container which can be viewed also in the 

absence of any CA. Gd-12 labeled cells show a sufficient uptake of the compound to 

enhance contrast in T1- and, especially, T2-weighted images at concentrations above 

80 µM.  The corresponding relaxation rate R1 in the cell layer was significantly 

increased in comparison to control to 121% and 131% of control for 80 µM and 150 

µM, respectively. A more pronounced enhancement in R2 was observed; R2 increased 

to 144% and 152 % of control, respectively.  

Interestingly, contrast enhancement in T2-weighted images was found to be 

larger in comparison to T1. The pronounced T2 shortening may be caused by the 

accumulation of the compound in intracellular vesicles inducing local magnetic field 

in homogeneities due to compartmentalization. Such a behavior is generally observed 

in the presence of supraparamagnetic particles with large magnetic moment, which 

also show strong compartmentalization100.  
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Figure 11. Optical evidence for intracellular localization of Gd-12 in unfixed 

NIH 3T3 cells. Cells were incubated with 80 (A, B) and 150 µM (C, D) of Gd-
12 for 18 h as described in materials and methods. A and C show fluorescein 

fluorescence and B and D corresponding phase contrast pictures. The scale 

bars represent 20 µm. Arrows exemplarily point towards vesicles while 

asterisks indicate diffused fluorescence. 

 

Figure 12. T1- and T2-weighted images of control and NIH 3T3 cell pellets 

labeled with Gd-12 for 18 h. (A1-E1): T1-weighted images. (A1) Medium only. 

(B1) Pelleted cells in medium with 50 µM Magnevist®. (C1) Pelleted cells in 
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medium. (D1) Pelleted cells labeled with 80 µM Gd-12 in medium. (E1) 

Pelleted cells labeled with 150 µM Gd-12 in medium. (A2-E2): Respective T2-

weighted images. 

Our results indicate that this model agent is detectable inside cells by both MR 

and fluorescence methods. Thus, it can serve as a precursor to develop substances that 

can be used for bimodal (MR and fluorescence) imaging, as well as for development 

of intracellular contrast agents optimized for cellular internalization. In addition, this 

molecule can be further modulated for disease detection and diagnosis, gene/drug 

delivery, elucidating signaling pathways or to study biological and biochemical 

mechanisms100,101. For early disease detection, a bimodal contrast agent Gd3+-DTPA 

coupled with Oregon Green 488 containing an angiogenesis-specific site cNGR has 

been recently reported72. A similar dual mode approach was used by Modo et al. to 

investigate how neural stem cells migrated and integrated into various brain regions in 

the same individual over time73,74. Aime et al. used Gd-chelate of HP-DO3A as a T1-

agent for MRI visualization, with the corresponding Eu-chelate as a reporter in 

fluorescence microscopy to detect localization and migration of stem cells75. 

2.3.3. Conclusions  

In conclusion, we report the potential of the ligand DO3A-EA as a 

multipurpose precursor, from which various targeted CAs can be synthesized after 

single step conjugation with organic molecules/biomolecules. With such methodology 

two new targeted CAs and two new precursors were synthesized and characterized. 

MR experiments verified that the strong and specific interaction between biotin and 

avidin can be proved with the relaxivity of biotin functionalized DO3A-EA (Gd-9). 

Cell studies and relaxivity measurement indicate that FITC conjugated DO3A-EA 

(Gd-12) can serve as a model to develop agents that can be used for imaging both by 

MR and fluorescence methods. Maleimide functionalized DO3A-EA (11) and DO3A-

ethyl-isothiocyanate (13) precursors were synthesized having a potential for the 

specific binding with biomolecules via sulphydryl and amino groups, respectively. 

Additionally, the presented precursors 7, 11 and 13 cover the entire range of reactivity 

for the coupling to electrophilic and nucleophilic groups. They possess a great 

potential for coupling with biological molecules, proteins, vitamins and antibodies for 

the ease and facile synthesis of various kinds of targeted contrast agents. 
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3.1. Introduction 

The development of new DO3A based lanthanide(III) complexes with the 

potential application as contrast agents in MR imaging is currently a great challenge 

for many scientists, in particular for their use in the high field magnets. The special 

requirements for these contrast agents have to combine a fast water exchange rate 

with effective coupling of the gadolinium–water vector and the tumbling of the 

complex as outlined in the literature102-104. In addition, a greater contribution from the 

water molecules in the second coordination sphere is desirable103,105. Introduction of 

different functional groups such as alkylphosphonates at the fourth nitrogen of the 

DO3A molecule is shown to result in improved relaxivity properties of the 

complexes25,106. Gd3+ complexes of phosphonate-containing chelates, generally, have 

the advantage of a relatively fast water exchange rate due to a greater steric demand 

of the phosphonic acid moiety and the presence of a second-sphere water shell, which 

also contributes to the overall relaxivity107. It is also known that the 

phosphonic/phosphinic acid derivatives and their complexes differ in some properties 

(size and shape of the coordinating group, overall hydrophilicity or acidity/basicity of 

the ligands) when compared with their acetate analogs108,109. 

A number of phoshonate containing lanthanide complexes and comparisons 

with carboxylate analogues have been reported in previous years110-113. It has been 

shown that the presence of two phosphonate moieties decreases the number of water 

molecules in the inner sphere, but increases the second hydration sphere, thus 

enhancing the relaxivity properties of the complexes112. It has also been suggested 

that the relaxivity of the phosphonate containing derivatives increases at low pH, due 

to protonation of the phosphonate groups. This process was used by Sherry and co-

workers to prepare a molecule containing amidophosphonate groups exhibiting pH-

sensitivity close to the physiological range (pH 6-7)35. Recently, the possibility for in 

vivo application was demonstrated by the determination of the pH of tumour tissue. 

pH maps with improved spatial resolution were obtained compared to the MR 

spectroscopic methods used before114. 

A series of publications describes methylphosphonate derivatives of DO3A115-

117. The compounds exhibit a similar structure to those of DOTA lanthanide(III) 
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complexes and exist as a mixture of two isomers containing one water molecule in the 

inner sphere. The alteration of the distance between the phosphonate group and the 

DO3A core by appending aliphatic chains of various lengths could lead to different 

interactions between the lanthanide ions and the phosphonate side chain. This allows 

a controlled variation of the coordination environment of the lanthanide(III) centre 

leading to new properties of the complexes. 

Therefore, phosphonate complexes seem to be promising systems for the 

design and application of ligands and CAs, particulary for high-field MRI. Herein, we 

report the facile synthesis of two new DO3A based ligands (16 and 17, Fig. 13) and 

the physicochemical investigations of their Gd3+ and Eu3+ complexes. The studied 

compounds differ by the polarity/charge of the phosphonate groups, thereby defining 

the coordination properties of the compounds towards water and hence influencing 

relaxivity. 
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Figure 13. Studied phosphonate containing Complexes 

3.2. Experimental Section  

3.2.1. Luminescence studies 

Inductively coupled optical emission spectrometry for [Eu3+] analyses was 

performed using a Jobin-Yvon Ultima 2 spectrometer. Lifetime or emission spectral 

measurements were measured with  a Perkin-Elmer LS 55B or a Fluorolog-3 (Jobin-

Yvon/Instruments s.a.) following direct excitation of the Eu ion at 397 nm followed 

by monitoring the integrated intensity of light (620 nm for europium) emitted during a 

fixed gate time, tg, a delay time, td, later. At least 20 delay times were used covering 3 

or more lifetimes. A gate time of 0.1 ms was used, and excitation and emission slits 
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were set to 10 and 2.5 nm band-pass respectively. The obtained decay curves were 

fitted to the equation below using Microsoft Excel: 

I = A0 + A1exp(-kt)   (Equ. 3) 

Where I = intensity at time t after the flash, A0 = intensity after the decay has finished, 

A1= pre-exponential factor and k = rate constant for decay of the excited state. 

3.2.2. Sample Preparation for Relaxivity Measurements 

The measurement of the longitudinal and transverse relaxation rates (R1 and 

R2) of the complexes Gd-16 and Gd-17 were performed at 300 MHz (7T) on a 

vertical 7T/60 cm MRI Biospec system (Bruker Biospin, Germany), using a protocol 

described previously83. Up to 16 tubes could be measured simultaneously. The 

relaxation rate measurements of the samples were performed at room temperature (21 
oC). Different concentrations of Gd-16 and Gd-17 (1 mM, 0.7 mM, 0.4 mM, 0.1 mM) 

were prepared in 1.5 ml Eppendorf tubes. The pH of the solutions was adjusted by 

addition of small quantities of solid lithium hydroxide or paratoluenesulfonic acid.  

To study the interaction of the complexes with the proteins, the MRI 

experiments were performed with increasing concentrations of human serum albumin 

(HSA) (Aldrich, Germany) proportional to constant concentration of Gd-16 (0.5 mM) 

incubated for 2 h at 37 °C. 

3.3. Results and Discussions 

3.3.1. Synthesis of Ligands 

Ligand design was based on cyclen-type ligands. The macrocycle contains 

three carboxylate groups; along with the nitrogen atoms of the cyclen ring these form 

stable complexes with Ln3+ ions. One nitrogen atom was appended with a phosphonic 

acid linked via an ethyl chain which acts as a potentially responsive group by 

participating in the Ln3+ ion coordination with a differing affinity to the carboxylate. 

During the synthesis, compound 16 with the ethyl protected phosphonates was 

obtained and their Gd3+ and Eu3+ complexes were investigated as charge neutral 

systems. 
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Scheme 4. Reagents and conditions: i) diethyl-2-bromoethylphosphonate, 

LiOH, EtOH:H2O (9:1), 43%; ii) tert-butylbromoacetate, Na2CO3, MeCN, 76%; 

iii) TFA, 72%; iv) HBr (33% in CH3COOH), 69%. 

Ligand 17 was obtained starting from cyclen in a four-step procedure (Scheme 

4). For 17, the more convenient and logical route (alkylation of 3 with diethyl 2-

bromoethylphosphonate) was tried in the presence of several bases (Na2CO3, K2CO3, 

NaOH, NaH), solvents (CH3CN, DMF) and temperatures (r.t.→70 oC) in order to 

obtain 15. Even using harsher conditions and long reaction times, most of the reactant 

3 was still present in the reaction mixture, along with a maximum of 15% of the 

product 15. The reason for this was found to be an elimination of diethyl 2-

bromoethylphosphonate under basic conditions, which led to a small yield of the 

desired product. Instead, the first step in the synthesis of 17 was a monoalkylation of 

cyclen with diethyl 2-bromoethylphosphonate to get 14, leading to the double-

protected ligand 15 by further alkylation with tert-butyl bromoacetate and producing 

an overall yield of 33% when starting from cyclen. In the third step the corresponding 

carboxylate derivative 16 was obtained after cleavage of the tert-butyl groups by 

treatment of 15 with neat TFA at room temperature. The final synthetic step was 
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deprotection of the ethyl groups in a 33% HBr/acetic acid solution at 70 °C to give the 

ligand 17. 

All ligands were recrystallized from ethanol, purified by RP-HPLC and 

characterized with different physicochemical methods. The number of resonances and 

their corresponding multiplicities in the 1H and 13C{1H} NMR spectra are consistent 

with the structures displayed in Scheme 4. 

Complexes were prepared by mixing the ligands with the corresponding 

lanthanide chloride salts in aqueous solution which was kept at neutral pH during the 

complexation. All Ln3+ complexes were characterized by mass spectrometry and the 

appropriate isotope pattern distribution characteristic for Gd3+ and Eu3+ complexes 

was recorded. In addition to MS, each Eu3+ complexes was also characterized by 
31P{1H} NMR spectrometry. 

3.3.2. 31P{1H} NMR studies of Eu3+ loaded complexes of ligands 16 and 17 

The 31P{1H} NMR spectra of the Eu-17 complex were recorded in D2O at a 

pD range from 3 to 7 (Fig. 14). The phosphorus chemical shifts remained constant at 

pD 7 to 5 (29.7 - 29.8 ppm for Eu-17). A high field shift of about 5 ppm in Eu-17 was 

detected when the pD decreased from 5 to 3. This corresponds to the protonation of 

the –PO3
2- group. In each case, a broad line was observed which might be due either 

to the paramagnetic influence of the Eu3+ ion and/or to dynamic exchange processes. 

At pD below 3, complex decomposed.  

In the case of the ester protected phosphonates, the Eu-16 complex generates 

three sharp resonances in the 31P{1H} NMR spectrum consistent with the presence of 

stereoisomers107. It gave rise to broad resonances when the 31P{1H} NMR spectra 

were recorded at pD = 7 and it remain same until pD = 4. Consequently, because of 

the short ethyl chain forces the phosphonate group closer to the paramagnetic Eu3+ 

ion. 
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Figure 14. Dependence of δP of Eu-17 on the pD. 

3.3.3. In Vitro Relaxometric Experiments 

3.3.3.1. Longitudinal relaxivity of Gd-16 and Gd-17 at different pH. The 

paramagnetic properties of the complexes Gd-16 and Gd-17 were studied by 

relaxometry at 300 MHz (7T) and 21oC. The relaxivities of the compounds were 

calculated as the slope of the function shown in equation 4, where T1,obs is the 

measured T1, T1,d is the diamagnetic contribution of the solvent (calculated to be 

0.28 s-1) and [Gd-L] is the concentration in mmol of the appropriate Gd3+ complex. 

Changes in the relaxivity of Gd-17 was observed to occur in the pH range 4 to 7 

(Fig. 15b). The relaxivity values for the complex Gd-17 increased by 50 %, when 

the pH was adjusted to 4. This result is comparable with the data obtained from 
31P{1H} NMR spectroscopy of the analogous Eu3+ complex, suggesting that the 

change of the relaxivity is a result of the protonation/deprotonation processes of 

the phosphonate groups at different pH. 

1/T1,obs = 1/T1,d + r1*[GdLn] (Equ. 4)  

  Unlikely Gd-17, complex Gd-16 exhibit no relaxivity change in slightly 

acidic to neutral conditions, and the value was constant at about 4.3 mM-1s-1 for 

Gd-16. This relaxivity value is comparable to Gd-17, which indicates that 

complex have one inner-sphere water molecule. Nevertheless, a large decrease of 

the relaxivity was noticed at pH > 7 (Fig. 15a). This is probably a result of the 
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adduct formation with anions such as bicarbonate which can displace inner sphere 

water molecules. This phenomenon has already been observed on other DO3A 

type complexes and has been extensively studied in previous reports44,118,119. 

                                      a     b 

 

 

 

 

 

Figure 15. pH dependence of the longitudinal relaxivity (r1) of Gd-complexes. 

3.3.3.2. Binding of Gd-16 to HSA. Binding of neutral Gd3+ complexes to HSA has 

been shown markedly to promote the enhancement of relaxivity, mainly due to the 

change of molecular rotational correlation time (τR) in the studied complexes120-123. 

To investigate the interaction of the ester protected, neutral complex 16 with HSA 

on R1 and R2, relaxometric experiment with increasing concentration of HSA 

proportional to constant concentration of Gd-16 (0.5 mM) was performed. As 

expected, longitudinal relaxation rate R1 did not increase upon binding of the 

complex to HSA, but remained constant. This is in accordance to the Solomon–

Bloembergen–Morgan theory predicting that at high magnetic field (>4.7 T), the 

relaxivity changes with the inverse of τR suggesting that no relaxivity increase 

should be expected upon binding of the CA to a large molecule124. On the other 

hand, an enhancement in transverse relaxation rates, R2 of complex was observed 

consistent with non-covalent association of Gd-16 to HSA. Thus, at physiological 

pH and ambient temperature, the increase in R2 of the ternary adduct of Gd-16 

with HSA showed a maximum enhancement of 118 % relative to the unbound Gd-

16 complex (Table 1). This effect has already been observed with HSA-bound 

complexes123 and on different systems such as in the association of avidin with 
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biotinylated Gd3+ complexes, consistent with ternary complex formation; thus the 

decrease of τR leads to a stronger R2 enhancement at high magnetic field125,126. 

Table 1. R1 and R2 of the Gd3+ complex Gd-16 (0.5 mM) in the presence and 

absence of HSA 

Complex HSA (mM) R1 (s-1) R2 (s-1) 

Gd-16 
0

1

2.3

2.2

3.3

7.2

 

3.3.4. Luminescence studies  

  Luminescence lifetime measurements for the Eu3+ complexes of ligands 16 

and 17 were recorded at pH 4, pH 7 and pH 10 in H2O and D2O. The data obtained 

revealed some useful information concerning the europium coordination 

environment and the apparent number of coordinated water molecules, q (Table 

2)127. For the ester complex of 16, dominant mono-aqua species seem to form at 

both pH 7 and pH 4. When parallel experiments were undertaken at pH 10, the q 

value in both cases tended towards a value of less than 0.3, consistent with the 

dissociation of the phosphonate ester arm for 16 and the replacement with 

hydrogencarbonate. Such behaviour has been observed earlier for certain DO3A 

complexes of Tb3+ and Eu3+,44,127 and is consistent with the pH/relaxivity profiles 

obtained with the Gd3+ complexes. In contrast, the Eu3+ complexes of the 

phosphonate ligand 17 did not show any evidence for competitive bicarbonate 

binding, under the same conditions. 

  Addition of HSA (0.6mM) at pH 7.4 to the Eu3+ complex in water at pH 7.4 

lowered the apparent q value to unity for each complex examined (Fig. 16), except 

in the case of Eu-17, where the results were compromised by evidence of 

precipitation. The displacement of at least one water molecule by Asp and Glu 

side-chains of the protein has earlier been suggested to account for the lowering of 

relaxivity/q values in related lanthanide-DO3A complexes120. 

. 
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Table 2. Emission lifetimes and estimated q values of Eu3+ complexes at 

neutral and acidic pH/pD. 

pH/pD 7 

Complex 
τ (ms) 

D2O 

τ (ms) 

H2O 
q 

 

Eu-16 

 

1.35 

 

0.46 

 

1.42 

Eu-17 1.70 0.47 1.55 

pH/pD 4 

Complex 
τ (ms) 

D2O 

τ (ms) 

H2O 
q 

 

Eu-16 

 

1.36 

 

0.46 

 

1.42 

Eu-17 0.59 0.29 1.80 

   

  The analysis of the spectral form and relative band intensities of Eu3+ 

emission spectra in aqueous media allows a good deal of information to be gleaned 

concerning the local Eu3+ coordination environment35,127-129. For the Eu3+ complex 

of 17, the form of the emission spectrum (∆exc 397 nm) changed as the pH was 

reduced from 7 to 4 (Fig. 17a). The most significant change was the 100% 

decrease of the overall emission intensity and the lowering of the ratio of the ∆J = 

2 / ∆J = 1 at band intensities from 2.3:1 to 1.2:1. This parameter has been 

established to probe the nature and polarisability of the axial donor in such 

systems. Such behaviour is consistent with the onset of complex dissociation and 

the formation of a less emissive and more highly hydrated species. 

  The emission spectra of the phosphonate ester complex at pH 7 was also 

clearly different (Fig. 17b). In this case, there is a marked change in the ratio of 

the ΔJ = 2 / ΔJ = 1 at band intensities. This difference in emission spectral 

behaviour is consistent with the q value found for this charge neutral complexes, 

16 is predominantly a mono-aqua system. 
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Figure 16. Luminescence emission spectra of Eu-16 before and after addition 

of HSA (0.6 mM), pH 7 (λex=397 nm) 

 

  

 

 

 

 

Figure 17. a) Luminescence emission spectra of Eu-17 at pD 4 and pD 7 

(λex=397 nm); b) Luminescence emission spectra of Eu-16 at pH 7 

(λex=397 nm). 

3.3.5. Conclusions 

  The results obtained from the studies described above reveal several 

interesting and specific properties of the complexes under investigation.  

  The diester Gd3+ complexes display constant relaxivites in acidic and 
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hydroxide/ bicarbonate concentration. In addition, ester complex forms ternary 

complex with HSA, indicated by the change of the form of the luminescence 

emission spectra of their Eu3+ complex, as well as by the decrease of the apparent 

number of water molecule coordinated to the lanthanide ion. This did not 

dramatically affect the longitudinal relaxation rates of the Gd3+ complex, but as 

the relaxometric studies were performed in a high magnetic field their transverse 

relaxation rate did increase. Among the ester complex, a different number of 

coordinated inner-sphere water molecule was observed. Obviously the shorter 

ethyl chain in Gd-16/Eu-16 brings the hydrophobic ethyl groups closer to the Ln3+ 

ion and reduces the extent of complex hydration around the lanthanide ion. 

  The complex bearing acid exhibit different behaviour. Increase in the 

concentration of hydroxide/bicarbonates did not affect relaxivity, as the affinity 

toward the anions by the double negatively charged complexes is certainly 

minimised. Nevertheless, the monoprotonation of the phosphonate groups at 

slightly acidic media could be detected by all performed spectroscopic 

experiments. The slight low frequency shift observed in the 31P{1H} NMR spectra 

of Eu3+ complex is consistent with a pKa value between pD 4 and 5. To this end, 

the most pronounced r1 change in Gd3+ complex was observed in the same region 

(pH/pD 4-5) indicating that the process of (de)protonation of the phosphonate 

group is directly determining the local hydration environment of the Gd3+ 

complex. Luminescence studies on the Eu3+ complexes allowed hydration chnage 

to be assessed. The decomplexation of the ternary phosphonate anion from the 

lanthanide metal complex resulted in addition of a coordinated water molecule and 

thus an increase in the relaxivity by the Gd3+ complex. 

  The corresponding DO3A-methylphosphonate complex does not exhibit 

any pH sensitivity at all. The phosphonate group is strongly bound to the 

gadolinium ion and is not protonated in the pH range 3 to 8. Thus, by introducing 

one or two more carbon atoms into the alkyl chain leads to a reduced metal 

phosphonate interaction which becomes pH sensitive. This can now be exploited 

to prepare pH sensitive contrast agents. 
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4.1. Introduction 

Revealing the role of calcium in neural signalling is a hot field in neuroscience 

research. The extracellular concentrations of Ca2+ and Mg2+ play important roles in 

both physiological and pathological processes in the nervous system. Significant 

fluctuations in their concentrations occur in association with normal brain activity, as 

well as with a variety of pathological phenomena including ischemia, hypoglycaemia, 

and seizures130,131. Intracellular Ca2+ has an important role in muscular contraction, 

neural transduction, and hormonal secretion132. Changes in the cytosolic concentration 

of Ca2+ trigger changes in cellular metabolism and are responsible for cell signalling 

and regulation133. The development of selective fluorescent reporter molecules has 

helped in the understanding of multiple roles of calcium134.  

For the detection of neuronal activity by MRI, the central challenge lies in 

translating the activity into changes in MR image contrast. In an effort towards this 

objective, we designed Gd3+ based systems whose relaxivity is potentially influenced 

by the variations of Ca2+ concentration in the physiological range, in particular in the 

extracellular space. We report here the facile synthesis and physicochemical 

characterization of novel bismacrocyclic Gd3+ complexes, derived from DO3A-

ethylamine (DO3A-EA), DO3A-propylamine (DO3A-PA) and p-aminobenzyl-DO3A 

(pABn-DO3A). The fundamental in the design of 25-27, 31 and 36 is to keep most of 

the coordination properties of DO3A-type ligands for Ln3+. The macrocycle contains 

three carboxylate groups and four nitrogens from the cyclen ring to form a stable 

complex with Ln3+. The fourth nitrogen is appended with a potentially reactive group 

(aryl/alkyl amine) where anhydrates of DTPA/EDTA are reacted to form 

bismacrocyclic CAs through amide bonds. The two macrocyclic units hold a 

lanthanide ion each, while the EDTA-bisamide/DTPA-bisamide constitutes the 

calcium sensitive core (Fig. 18). We specifically aim at sensing the variation of Ca2+ 

concentration in the extracellular space, which is in the millimolar range. The 

common fluorescent Ca2+ indicators used in biological applications and based on 

BAPTA4- are adapted to assess the cytosolic free Ca2+ concentration in the 

micromolar range (H4BAPTA = 1,2-bis(o-aminophenoxy)ethane-N,N,N’,N’-

tetraacetic acid). The relaxivity response of a probe with a Ca2+ affinity of K ~ 106 M 

such as that of BAPTA4- would be already leveled off at the millimolar level. 
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Therefore, the Ca2+ binding moiety in the central part of our ligands was designed to 

have a reduced affinity towards Ca2+ in order to shift the range to higher Ca2+ 

concentrations where the probe is expected to have a relaxivity response. 

The proton relaxivities of the new Gd3+ complexes were studied by 

relaxometric titrations at variable Ca2+ concentrations. In the objective of relating the 

Ca2+ dependent relaxivity response to the microscopic parameters of the Gd3+ chelate, 

we carried out a detailed mechanistic study. We used UV-Vis absorbance and 

luminescence lifetime measurements on the corresponding Eu3+ complexes to assess 

the number of inner-sphere water molecules and their variation on Ca2+ addition. The 

Gd3+ complexes of 25-27 have been characterized by variable temperature 17O NMR 

spectroscopy and variable field relaxivity measurements (Nuclear Magnetic 

Relaxation Dispersion) which allowed us to calculate the parameters describing water 

exchange and rotational dynamics of the chelates. 

 

 

 

 

 

 

 

 

 

 

Figure 18. Structures of the ligands studied. 
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4.2. Experimental Section 

4.2.1. Relaxometeric Titrations 
1H relaxometric titrations were performed on a Bruker Avance 500 

spectrometer (11.75 T, 500 MHz) and at 300 MHz (7T) on a vertical 7T/60 cm MRI 

Biospec system (Bruker Biospin, Germany), at 25°C. The pH was maintained by 0.1 

M KMOPS buffer and solutions of CaCl2 and MgCl2 were used for the titrations. 

4.2.2. UV-Vis Measurements 

UV-Vis spectra of the europium(III) complexes of 25, 26 and 27 were 

obtained on a Perkin-Elmer Lambda 19 spectrometer, in thermostatizable cells with a 

10 cm optical length (λ = 577.0 – 581.5 nm) with data steps of 0.05 nm. The sample 

concentrations were about 0.01 M and the temperature dependence was measured for 

a large temperature range (typically between 280 and 360 K). The technique has been 

described in details in a previous publication135.  

4.2.3. Luminescence Measurements 

The luminescence measurements were performed on a Varian eclipse 

spectrofluorimeter, equipped with a 450 W xenon arc lamp, a microsecond flash lamp 

and a red-sensitive photomultiplier (300–850 nm). The luminescence spectra were 

obtained after excitation at 5L6←7F0 band (394 nm). All measurements were carried 

out in solutions containing 5 mM of Eu3+ complexes of 25, 26 and 27 in 30 mM 

KMOPS buffer (pH 7.20) at 25°C. The luminescence decay was recorded in the short 

phosphorescence lifetime mode and experiments were repeated at least 5 times under 

each condition. The luminescence lifetime was calculated from the monoexponential 

fitting of the average decay data.  

4.2.4. NMRD Measurements 

The 1H NMRD profiles were recorded on a Stelar Spinmaster FFC fast-field-

cycling relaxometer covering magnetic fields from 2.35×10-4 T to 0.47 T, which 

corresponds to a proton Larmor frequency range of 0.01-20 MHz. The temperature 

was controlled by a VTC90 temperature control unit and fixed by a gas flow. The 

relaxivity at higher fields was recorded using Bruker Minispecs mq30 (30 MHz), 

mq40 (40 MHz) and mq60 (60 MHz), and on a Bruker 4.7 T (200 MHz) cryomagnet 
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with a Bruker Avance-200 console and on a Bruker Avance 500 spectrometer (500 

MHz). The temperature was measured by a substitution technique136 or by a 

preliminary calibration using methanol and ethylene glycol standards137.  

4.2.5. 17O Relaxation Measurements 

The transverse 17O relaxation rates (1/T2) were measured in the temperature 

range 277–344 K, on a Bruker Avance 500 (11.75 T, 67.8 MHz) spectrometer. The 

temperature was calculated according to previous calibration with ethylene glycol and 

methanol137. The samples were contained in 5 mm NMR tubes and enriched with tert-

butanol to allow for the BMS correction138. The 1/T2-data were measured by the Carr–

Purcell–Meiboom–Gill spin-echo technique. Acidified water (HClO4, pH 3.8) was 

used as external reference. Analysis of the 17O NMR and 1H NMRD experimental 

data was performed with the Visualiseur/Optimiseur programs running on a Matlab 

platform version 6.5139,140.  

4.3. Results and Discussions 

4.3.1. Synthesis of Ligands 

Based on metal ions with different physical properties like paramagnetic or 

fluorescent for non-invasive imaging, DO3A is an eminent building block for the 

synthesis of macrocyclic Ln3+ complexes for MR or optical imaging. These types of 

chelating agents contain more than six coordinating sites on the macrocycle, which 

are essential to form a stable complex with Ln3+ under physiological conditions. One 

of the nitrogen of macrocycle was appended with a reactive group like ethylamine, 

propylamine/p-aminobenzyl to form known bifuctional precursors DO3A-EA, DO3A-

PA and pABn-DO3A. All ligands bearing an amine group that is readily reactive 

towards most electrophiles such as anhydrides, aldehydes, carboxylic acids and 

isothiocyanates84,86,125. 

The tri-substituted product 3 was synthesized by the reaction of tert-

butylbromoacetate on cyclen87. Alkylation on 3 with bromoacetonitrile gave cyano 

containing ligand 18 and the corresponding amine derivative 19 was obtained by the 

reduction of the cyano group in the presence of Ra-Ni, H2, and 7N NH3/MeOH by 

using Parr-apparatus at room temperature141,142. After the successful synthesis of 
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precursor 19, the bismacrocyclic ligands 22 and 23 were synthesized by conjugation 

of 2.5 equivalents of 19 with 1 equivalent of DTPA-bisanhydride/EDTA-bisanhydride 

respectively in dry DMF and purified by preparative RP-HPLC. Finally, ligands 25 

and 27 were obtained in 55-70% yield by deprotection of tert-butyl groups with neat 

TFA and were purified by RP-HPLC. (Scheme 5).  
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Scheme 5. Synthesis of ligands 25 and 27. Reagents and conditions: (i) 

bromoacetonitrile, MeCN, 78%; (ii) Ra-Ni, H2, NH3/MeOH (7N), 72%; (iii) 

DTPA-bisanhydride, DMF, 39%; (iv) EDTA-bisanhydride, DMF, 52%; (v) TFA, 

55-70%. 

In a similar manner, ligand 26 was synthesized in a 4-step synthesis starting 

from 3. Alkylation on 3 with p-nitrobenzylbromide gave p-nitrobenzyl containing 

ligand 20 and the corresponding p-aminobenzyl derivative 21 was obtained by the 

reduction of the nitro group in the presence of, H2, Pd/C (10%) and MeOH as a 

solvent in the Parr-apparatus at room temperature143. The bismacrocyclic ligand 24 

was synthesized by conjugation of 2.5 equivalents of 21 with 1 equivalent of DTPA-

bisanhydride in dry DMF and purified by preparative RP-HPLC. Finally, ligand 26 
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was obtained in 60-65% yield by deprotection of tert-butyl groups with TFA at room 

temperature and further on purified by preparative RP-HPLC (Scheme 6).  
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Scheme 6. Synthesis of ligand 26. Reagents and conditions: (i) 4-

nitrobenzylbromide, MeCN, 82%; (ii) Pd/C (10%), H2, MeOH, 90%; (iii) DTPA-

bisanhydride, DMF, 42%; (iv) TFA, 55-60%. 

Ligand 31 was also synthesized in a 4-step synthesis starting from 3. Michael 

addition on 3 with acrylonitrile gave cyano containing ligand 28 and the 

corresponding amine derivative 29 was obtained by the reduction of the cyano group 

in the presence of Ra-Ni, H2, and 7N NH3/MeOH by using Parr-apparatus at room 

temperature. After the successful synthesis of precursor 29, the bismacrocyclic ligand 

30 was synthesized by conjugation of 2.5 equivalents of 29 with 1 equivalent of 

DTPA-bisanhydride in dry DMF and purified by preparative RP-HPLC. Finally, 

ligand 31 was obtained in 55-60% yield by deprotection of tert-butyl groups with neat 

TFA and purified by RP-HPLC. (Scheme 7).  

Fifth bismacrocyclic ligand 36 was synthesized in a 5-step synthesis starting 

from N,N’-dibenzyldiaminoethane. Alkylation on N,N’-dibenzyldiaminoethane with 

tert-butylbromoacetate gave dibenzyl containing ligand 32 and the corresponding 

secondary diamine derivative 33 was obtained by the cleavage of the dibenzyl group 

in the presence of Pd/C (10%), and 7N NH3/MeOH by using Parr-apparatus at room 

temperature. Further alkylation of ligand 33 with bromoacetylbromide gave dibromo 

containing precursor 34. After the successful synthesis of precursor 34, the 
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bismacrocyclic ligand 35 was synthesized by alkylation of 2.5 equivalents of 3 with 1 

equivalent of 34 in dry DMF and purified by classical flash chromatography. Finally, 

ligand 36 was obtained in 65-70% yield by deprotection of tert-butyl groups with neat 

TFA and finally purified by RP-HPLC (Scheme 8).  
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Scheme 7. Synthesis of ligand 31. Reagents and conditions: (i) acrylonitrile, 

MeOH, TEA, 62%; (ii) Ra-Ni, H2, NH3/MeOH (7N), 78%; (iii) DTPA-

bisanhydride, DMF, 35%; (iv) TFA, 55-60%. 
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Scheme 8. Synthesis of ligand 36. Reagents and conditions: (i) tert-

butylbromoacetate, MeCN, 88%; (ii) Pd/C (10%), H2, MeOH, 90%; (iii) 

bromoacetylbromide, NaOH, H2O/CH2Cl2, 72%; (iv) 3, MeCN, 65%; (v) TFA, 

65-70%. 

4.3.2. Ca2+ relaxometric titrations of the Gd3+ complexes 

To investigate the sensitivity of the Gd3+ complexes towards Ca2+, we 

measured the longitudinal relaxation times, T1, of water protons as a function of the 

Ca2+ concentration. The relaxivity, r1, was calculated for each Ca2+ concentration 

from Equation 5. 

[ ]Gd11
1

,1,1

r
TT dobs

+=   (Equ. 5) 

Where T1,obs is the observed longitudinal relaxation time, T1,d is the diamagnetic 

relaxation time in the absence of the paramagnetic substance and [Gd] is the 

concentration of Gd3+. 

The titration curves were drawn by plotting the relaxivity as a function of the 

Ca2+/Gd2L molar ratio (Fig. 19). The effect of Ca2+ on the relaxivity is different for all 

the complexes. For Gd2-25 and Gd2-27, the relaxivity is increasing by 15 and 32 %, 
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respectively, upon addition of Ca2+. On the other hand, Gd2-26 is practically 

insensitive towards Ca2+ (~6% relaxivity change). In this molecule, the Ca2+ binding 

site is separated by a rigid and sterically demanding benzene ring from the Gd3+ 

chelating unit which renders the Gd3+ containing moiety insensitive to Ca2+ 

coordination. For Gd2-25 and Gd2-27, the effects of Mg2+ have also been tested. The 

relaxivity increases with increasing Mg2+ concentration, to reach a plateau at a 

slightly higher Mg2+/Gd2-25 molar ratio than that observed with Ca2+, however, the 

maximum relaxivity is identical in the two cases. By adding additional 1.2 equivalents 

of Ca2+ to this sample, no relaxivity change is observed. The relaxivity remain same 

while adding excess of Mg2+ concentration in Gd2-27. The titration curves for Gd2-25 

and Gd2-27 have been analysed to obtain the association constants, KA, for the Gd3+ 

complex – Ca2+ (or Mg2+) interaction:  

Gd2L + Ca  CaGd2L     where    [ ]
[ ][ ]CaLGd

LCaGd

2

2=AK                   (Equ. 6) 

The curves were fitted according to Equation 7, where r1
obs is the experimentally 

observed relaxivity, KA is the association constant between the Gd3+ complex and 

Ca2+ or Mg2+, cGd2L and cCa are the total concentrations of the Gd3+ complex and the 

Ca2+/Mg2+ ion, respectively, and r1
0 and r1

f are the initial and final relaxivities in the 

titration. In this fitting procedure, the association constant KA and the initial and final 

relaxivities r1
0 and r1

f were the adjustable parameters. Similarly to previously 

investigated bismacrocyclic complexes39,40,144, 1:1 binding stoichiometry was 

assumed. 

( ) ( ) ( ) 1000
2

411
2

222 0
1

0
11

22

1 ×+−−
−++−++

= LGd
f

A

CaLGdACaALGdACaALGdAobs crrr
K

ccKcKcKcKcK
r      (Equ. 7) 

The apparent association constants obtained from the fit are logKA = 3.6±0.1, 

3.4±0.1 and 2.7±0.1 for the Gd2-25-Ca, Gd2-27-Ca and Gd2-25-Mg systems, 

respectively. Ca2+ forms a less stable complex with Gd2-25 than with DTPA5- (the 

conditional stability constant of CaDTPA3- at pH 7.0 is log K = 6.65). Such a decrease 

in stability can be expected, since in the central part of Gd2-25 have only the three 

nitrogens and three carboxylates which are coordinated to Ca2+, in contrast to the 

three nitrogens and five carboxylates available in DTPA5-. Indeed, the hydration 
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numbers determined from the luminescence lifetime measurements on the 

corresponding Eu3+ complexes in the absence and presence of Ca2+ (see below) 

indicate that the amide function remains coordinated to the lanthanide even after Ca2+ 

binding. The association constant obtained for the Mg2+ adduct formed with Gd2-25 is 

slightly lower than that with Ca2+, in accordance with the general tendency of Mg2+ to 

form less stable complexes than Ca2+. 
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Figure 19: Relaxometric Ca2+ (full squares) and Mg2+ (empty triangles) 

titration curves of Gd2-25 (A), Gd2-26 (B) and Gd2-27 (C) performed at 25°C 

and 11.75 T. The lines correspond to the fit as explained in the text. 

 Nevertheless, the selectivity of the DTPA-bisamide unit towards Ca2+ vs. 

Mg2+ is much less important than that of BAPTA4- (selectivity over 105), a ligand 

which was specifically designed for Ca2+ complexation134. The value of the 
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association constant calculated for Gd2-27 is also considerably lower than the 

conditional stability constant of CaEDTA2- at pH 7.0 (log K = 7.79)145. For Gd2-31 

and Gd2-36, relaxivity did not change in the presence of high amount of Ca2+. 

4.3.3. Luminescence and HR-UV-Vis absorption studies to assess the hydration 

state of Eu3+ complexes  

In order to gain more insight into the factors that are responsible on the 

molecular level for the Ca2+ dependent relaxivity change of Gd2-25 and Gd2-27, first 

of all we have assessed the hydration state of the corresponding Eu3+ complexes 

before and after Ca2+ addition. The number of water molecules directly coordinated to 

Gd3+ is one of the fundamental parameters influencing the relaxivity. One of the 

widely used methods for the determination of the hydration number is to measure the 

luminescence lifetime decays on the corresponding europium(III) complexes146-148. 

This technique is based on relating the difference in luminescence lifetimes measured 

in H2O and D2O solutions to the hydration number. Hydration numbers were 

determined for Eu2-25, Eu2-26 and Eu2-27 complexes in the absence, and for Eu2-25 

and Eu2-27 also in the presence of 2 and 5 equivalents of Ca2+, respectively. These 

Ca2+/Ln2L complex ratios correspond to the saturation of the relaxometric titration 

curves obtained for the Gd3+ complexes. The hydration numbers were calculated 

according to the revised equation of Beeby et al.148 (equation 8): 

corrODOH kkAq )('
22

−Δ=    (Equ. 8) 

where A’ is 1.2 ms and the correction factor for the contribution of the second and 

outer sphere water molecules is -0.25 ms-1. The experimental luminescence lifetimes 

measured in H2O and D2O solutions and the corresponding hydration numbers q are 

listed in Table 3. 
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Table 3. Experimentally measured luminescence lifetimes and calculated 

hydration numbers of the Eu3+ complexes, and relaxivity values (25 °C, 500 

MHz) of the Gd3+ analogues. 

Complex τH2O [ms] τD2O [ms] q r1 [mmol-1s-1] 

Eu2-25 0.60 1.59 0.9 4.7 

Eu2-25 with 2 equiv. Ca2+ 0.62 1.57 0.9 5.4 

Eu2-26 0.51 0.91 0.7 4.6 

Eu2-27 0.54 1.84 1.3 5.4 

Eu2-27 with 5 equiv. Ca2+ 0.47 1.62 1.5 7.1 

 

The non-integer numbers of q often imply equilibrium between non-hydrated 

and monohydrated or between mono- and bishydrated species. Such hydration 

equilibrium can be investigated by high resolution UV-Vis measurements on the Eu3+ 

complexes. The Eu3+ ion has an absorption band in the visible spectrum (578 – 582 

nm) whose wavelength is very sensitive to even small changes in the coordination 

environment. Although the intensity of this 7F0 → 5D0 transition is low, the bands are 

relatively narrow which allows distinguishing different coordination states of the 

metal, except for the Eu3+ aqua ion, which is not observable due to its extremely low 

molar absorption. This transition has been previously used to determine the number of 

species present in solution, and, in particular, to characterize hydration equilibrium for 

Eu3+ complexes135,149-152. For Eu3+ complexes which have two differently hydrated 

forms in aqueous solution, one observes two absorption bands, separated by ~0.5 nm, 

belonging to the two species. The band at higher wavelength is attributed to the 

chelate with the higher hydration number and the band at lower wavelength to that 

with lower hydration number. In general, the total coordination number observed for 

Eu3+ complexes can be either 8 or 9, consequently the hydration equilibrium is 

between 8- and 9-coordinated complexes. 
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Figure 20: Representative UV-Vis spectra of Eu2-25 (A),  Eu2-26 (B) and Eu2-
27 (C) at 25°C (A, C) or as a function of temperature (B; T = 92 °C, 44 °C, 16 

°C and 5 °C).  

High resolution UV-Visible spectra were recorded in aqueous solutions of 

Eu2-25, Eu2-26 and Eu2-27 complexes. In the region of the 5D0←7F0 transition, the 

spectra of Eu2-25 and Eu2-27 show a temperature invariant absorption peak with a 

shoulder while that of Eu2-26 has two distinct, temperature dependent absorption 

bands (Fig. 20). The intensity ratio of these two bands changes with temperature: the 

band at shorter wavelengths is decreasing, while that at longer wavelengths is 

increasing with temperature. By analogy to previously studied systems150-152, we 

relate this temperature dependency to the existence of hydration equilibrium. The 

band at lower energy (579.7 nm) is assigned to the non-hydrated, while that at ca. 

579.2 nm is attributed to a monohydrated species (equation 9).  

Eu2L2 + 2 H2O   Eu2(H20)2 L2 (Equ. 9) 
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As the effective concentration of the solvent is constant, the equilibrium 

constant corresponding to Equation 10 may be written as: 

[ ]
[ ]2
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LOHEuK Eu =  (Equ. 10) 

The reaction enthalpy, ΔH0, and the reaction entropy, ΔS0, for the equilibrium 

may be obtained from the temperature dependence of KEu: 
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The ratio of the integrals of the two bands is related to the equilibrium 

constant, and its temperature dependence yields the reaction enthalpy and entropy 

(Fig. 21). The fit of the data in Fig. 21 to Equation 12 resulted in ΔH0 = -(7.8 ± 1) kJ 

mol-1, ΔS0 = -(25 ± 5) J mol-1 K-1 and KEu
298 = (1.2 ± 0.3).  
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Figure 21: Ratio of the integrals of the two absorption bands attributed to q = 

0 and q=1 species in the UV-Vis spectrum of Eu2-26 as a function of the 

inverse temperature. The straight line represents the linear least-squares fit to 

the data points as explained in the text. 



Chapter 4: Synthesis of Calcium Sensitive Contrast Agents 
 

59 

 

The average hydration number derived from the equilibrium constant is 0.55 at 

298 K, in acceptable accordance with q = 0.7 obtained from the luminescence decay 

measurements. If we assume that the overall coordination number of the lanthanide 

ion can be either 8 or 9, it implies that in both the non-hydrated (CN = 8) and 

monohydrated (CN = 9) species another donor atom from the central part of the ligand 

(an amide or a carboxylate oxygen) completes the coordination sphere. Given the 

important steric demand and rigidity that the benzyl group represents, this scenario 

seems rather unlikely. Moreover, the Ca2+ independency of the relaxivities for the 

Gd2-26 complex indicates that Ca2+ binding has no effect on the hydration state of the 

lanthanide ion. This would mean that if a donor group is bound to the lanthanide ion 

from the central part of the molecule, it will remain coordinated even after Ca2+ 

binding. The other, likely more probable coordination mode involves the binding of 

the macrocycle amines and carboxylates to the lanthanide, plus one water molecule in 

the monohydrated species. The bulky and highly hydrophobic benzyl group directly 

attached to the amine nitrogen prevents the coordination of another donor atom, thus 

in this case the coordination equilibrium observed in the UV-Vis spectrum would 

correspond to non-hydrated CN=7 and monohydrated CN=8 species. This hypothesis 

seems to be also supported by the high negative value of the activation entropy 

calculated for the water exchange on Gd2-26 (see below), indicative of the associative 

activation mode of the exchange process. This is indeed in contrast to the nine-

coordinated Gd3+ poly(aminocarboxylate) complexes which have, in the great 

majority of the cases, a dissociatively activated water exchange153.  

The temperature invariance of the UV-Vis spectrum for Eu2-25 and Eu2-27 

suggests that no hydration equilibrium exists in the sense as depicted for Eu2-26. 

Nevertheless, the presence of a shoulder next to the main band in the 7F0 → 5D0 

transition range implies that there are at least two different coordination 

environments. By taking into account all available experimental information from 

luminescence, UV-Vis absorption and relaxivity data, we can hypothesise the 

existence of two species as depicted in Fig. 22. In all cases, the macrocyclic 

carboxylates and nitrogens are coordinated to the lanthanide(III) ion. The inner 

coordination sphere is then completed in different manners: in Ln2-25 we expect the 

coordination of the amide oxygen, while the ninth coordination site can be occupied 

either by a water molecule or one of the central carboxylates. This hypothesis is in 



Chapter 4: Synthesis of Calcium Sensitive Contrast Agents 
 

60 

 

accordance with the hydration number of q = 0.9 determined by luminescence. It also 

explains the increase of the relaxivity of the Gd3+ complex on Ca2+ coordination in the 

central part of the ligand which will involve the carboxylate, coordinated to the 

lanthanide in the absence of Ca2+. We expect that on Ca2+ binding this carboxylate is 

replaced by an inner sphere water molecule leading to the relaxivity increase observed 

for Gd2-25. The luminescence lifetime measurements do not indicate a change in q on 

Ca2+ addition (Table 3), however, the uncertainty generally associated to the q values 

determined by this method is at least ±0.25 (certain authors estimate this uncertainty 

as high as ±0.5)148. By taking this into consideration, the luminescence measurements 

do not confute our hypothesis. An analogous scenario has been previously proposed 

for bismacrocyclic GdDO3A complexes with a BAPTA-bisamide central bridging 

unit144. 

For Ln2-27, we suggest that, in addition to the macrocycle nitrogens and 

carboxylates, the first coordination sphere of the lanthanide ion is completed by two 

water molecules in one species and one water and one amide in another species. It is 

supported by the hydration number q = 1.3 obtained for Eu2-27 by luminescence. On 

the other hand, the increase of q and of the relaxivity observed on Ca2+ addition 

evidences the transfer of the donor group from Ln3+ to Ca2+. The detachment of this 

amide from the Gd3+ then results in the entering of second inner sphere water. The 

higher hydration number determined for Ln2-27 as compared to Ln2-25 is also 

consistent with the respective structure of the two complexes: the shorter bridging unit 

in the EDTA-bisamide derivative bismacrocycle implies more steric constraint which 

then prevents the simultaneous coordination of the amide and a central carboxylate to 

the lanthanide ion, leading to a higher q. In contrast, such a coordination mode is 

more accessible in Ln2-25 possessing a longer, thus more flexible DTPA-bisamide 

bridging unit. For both Ln2-25 and Ln2-27, the overall coordination number remains 

CN = 9 before and after Ca2+ addition.  
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Figure 22. Proposed structures present in solutions of Ln2-25 and Ln2-27. In 

both cases, Ca2+ binding in the central part of the bismacrocycle favours the 

presence of the more hydrated species. For better understanding only half of 

complexes are shown.  

4.3.4. Evaluation of the parameters influencing relaxivity of the Gd3+ complexes  

For all the three systems, variable temperature 17O NMR and 1H NMRD 

relaxometric data have been acquired and analysed simultaneously on the basis of the 

Solomon-Bloembergen-Morgan approach. The experimentally measured 

paramagnetic 17O chemical shifts were considerably smaller than what would be 

expected for a Gd3+ complex with the given q value, therefore, they have not been 

included in the final fitting. A similar diminution of the chemical shifts has been 

previously reported in systems with a significant second sphere contribution to 17O 

and 1H relaxation107,144,154. An important second sphere effect has been proved to exist 

for bismacrocyclic Gd3+ complexes of analogous structure40,144. Therefore, the 

common Solomon-Bloembergen-Morgan model was extended with a second sphere 

contribution to proton relaxivity155, as it has been done for other systems115,156-159. 

Certain of the large number of parameters were fixed in the fit160. Namely, the number 
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of inner-sphere water molecules (q) was fixed to the values found from luminescence 

lifetimes measurements (0.9 and 1.3 for Gd2-25 and Gd2-27, respectively). For Gd2-

26, the actual q value was calculated for each temperature by using the reaction 

enthalpy and entropy of the hydration equilibrium as determined for the Eu3+ 

analogue from the variable temperature UV-Vis study. The distance of Gd3+ from the 

water proton (rGdH) was fixed to 3.1 Å; the distance of the closest approach of the 

outer sphere water molecules to Gd3+ (a) was fixed to 3.6 Å. The hyperfine coupling 

constant (A/ħ) was set to -3.8×106 rad·s-1, a value found previously for GdDOTA160. 

The activation energy EV had to be fixed to 1 kJ·mol-1, otherwise the fit converged to 

negative values. Parameters related to the second hydration sphere were fixed to the 

following values:107,154,161,162 the number of second-sphere water molecules (q2nd) was 

set to 1, the Gd-2nd sphere proton distance (rGdH
2nd) to 3.5 Å. The residence time of the 

second-sphere water (τm2nd) was set to 50 ps and its enthalpy of activation to 35 

kJ·mol-1. The parameters leading to the best least-squares fits are listed in Table 4 and 

compared with the parent GdDOTA. The simultaneous fits are depicted in Fig. 23. 

Table 4: Best-fit parameters obtained by the simultaneous analysis of 

transverse 17O relaxation rates and proton relaxivities for Gd2-25, Gd2-26 and 

Gd2-27 complexes in the absence of Ca2+. Parameters obtained from the fit of 

NMRD data for Gd2-25 in the presence of Ca2+ are also presented. Values in 

italics were fixed during the fit.  

Parameter Gd2-25 Gd2-26 Gd2-27 GdDOTAd

r1 [mmol-1s-1] 
20 MHz / 37 °C 6.22 8.19 6.05 3.83 

kex
298 [106 s-1] 0.52±0.06 0.8±0.1 80±20 4.1 

ΔH‡ [kJ mol-1] 39.3±1.4 20.1±2.2 20±4 49.8 
ΔS‡ [J mol-1K-1] -3.6±4.2 -64.5±6.6 -27±12 +49 

τRH
298 [ps] 390±8 

450±10c 1060±210 200±25 77 

ΕR [kJ mol-1] 30±6 
30±5 c 30±4 24±7 16.1 

τV
298 [ps] 20.6±1.1 25.0±0.9 20.5±3.1 11 

Δ2[1020 s-2] 0.43±0.03 0.26±0.02 0.6±0.1 0.16 
D298

GdH [10-10m2s-1] 28±2 21±1 25±8 22 
ΕDGdH [kJ mol-1] 19±2 18±3 25±9 20 

qa 0.9 
1.1±0.1 c 0.5b 1.3 1 

q2nd 1 1 1 - 
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a obtained from luminescence data on the Eu3+ complex 
b at 298 K; in the fit, q was calculated for each temperature from the UV-Vis measurements 
on the Eu3+ complex 
c from fitting the NMRD curves in the presence of Ca2+. The parameters describing water 
exchange, electron spin relaxation, and second and outer sphere relaxation were fixed to the 
values obtained without Ca2+. 
d from160 

 

With regard to the water exchange rate, the Gd2-25 and Gd2-26 complexes are 

considerably different from Gd2-27. The water exchange is remarkably fast on Gd2-

27 (kex
298 = 8×107 s-1), about 20 times faster than on GdDOTA. It is interesting to note 

that Congreve et al. reported a similarly fast water exchange (kex
298 = 11×107 s-1) for 

the Gd3+ complex of a DO3A ligand bearing an N-linked CH2-CH2NHCO-pyridyl 

moiety163. For the Eu3+ analogue of this chelate they found q = 1.1 by luminescence, a 

slightly lower value than q = 1.3 for Eu2-27. They interpreted the unexpectedly fast 

water exchange in terms of a steric destabilization of the Ln-water binding interaction 

by the coordination of the sterically demanding N-linked amide. The same 

explanation can be evoked in the case of Gd2-27. We should also note that the Gd2-27 

complex is present in an aqueous solution as a mixture of two differently hydrated 

species. Consequently, the water exchange rate calculated here represents an effective 

value which we cannot decompose to the individual kex values corresponding to each 

of the two species.  

In contrast to Gd2-27, in Gd2-25 the participation of a central carboxylate in 

the Gd3+ coordination creates a different coordination environment with less than one 

inner sphere water in average and results in a low exchange rate (kex
298 = 0.5×106 s-1). 

A kex
298 value in the same order of magnitude (kex

298 = 2.4×106 s-1) was found for the 

bismacrocyclic GdDO3A complex with a BAPTA-bisamide central unit144.    
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Figure 23. Simultaneous fitting of 17O NMR (ln(1/T2r) ) and 1H NMRD (25°C 

, 37°C ) data of Gd2-25 (A, B), Gd2-26 (C, D) and Gd2-27 (E, F) in the 

absence of Ca2+. 
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The rotational correlation time, τR, is influenced by the size and the rigidity of 

the complex. All three systems studied have higher molecular weight and therefore 

higher τR than GdDOTA, which is also reflected in the higher relaxivity values. We 

note the remarkably high relaxivity of Gd2-26 which is the most rigid among the three 

complexes due to the presence of the benzyl groups and, accordingly, has the highest 

τR. In spite of the size difference of the two other systems, Gd2-25 and Gd2-27, their 

relaxivities are comparable since the smaller τR of Gd2-27 is compensated by a higher 

hydration number. In all cases, we also expect an influence of second sphere water on 

the overall relaxivity due to the number of negatively charged carboxylate groups in 

the central part of the molecules. For all three complexes studied, the relaxivities 

exceed that of GdDOTA.  

The relaxivity of Gd2-26 is practically invariant upon Ca2+ addition (Fig. 

19B). Concerning the Ca2+ dependent systems, transverse 17O relaxation rates (for 

Gd2-25 and Gd2-27) and 1H NMRD profiles (for Gd2-27) have been measured in the 

presence of 3 and 4 equivalents of Ca2+, respectively. For both complexes, the 17O 

ln(1/T2r) data were identical with those obtained in the absence of Ca2+. It confirms 

that the water exchange rate, kex, is not affected by the presence of Ca2+. The NMRD 

profiles of Gd2-25 in the presence of Ca2+ have been fitted to the Solomon-

Bloembergen-Morgan theory by calculating the rotational correlation time and its 

activation energy and fixing the other parameters to the values found for the Ca2+-free 

system (Fig. 24). By fixing the hydration number to the value determined by 

luminescence, no acceptable fit of the NMRD curves could be obtained. Therefore q 

was also adjusted in the final fit. The value calculated in this way, q = 1.1, is slightly 

higher than that determined by luminescence (0.9). The rotational correlation time is 

also increased when Ca2+ is bound in the central part of the molecule (τR
298 = 390 and 

450 ps before and after Ca2+ binding, respectively). In overall, the relaxivity increase 

observed upon Ca2+ addition is mainly due to the increase of the hydration number of 

the Gd3+. In addition, Ca2+ binding also leads to a slightly more rigidity of the entire 

molecule, resulting in a longer rotational correlation time, τR. Gd2-31 have one 

methylene group extra in between calcium chelating part and macrocycle as compare 

to Gd2-25, and also relaxivity does not change by the addition of 5 equivalent of Ca2+, 

this prove that there is no amide coordination with Ln3+ because of high distance 
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between macrocycles and amide coordinated DTPA. Gd2-36 does also not show any 

relaxivity change in the presence of Ca2+, where we can conclude that with inverse 

amide we change coordination property of EDTA. EDTA normally has 6 coordination 

sites including 4 carboxylates and 2 amines, which is required for Ca2+ binding. In 

Gd2-36, the central part of system is now rigid due to the inverse amide as well as we 

loose two coordination sites. Additionally because of inverse amide complex showed 

DOTA type bismacrocycle, that’s why amide is tightly coordinated with Ln3+. 

Li et al reported a mechanistic study to assess the parameters that are 

responsible for the Ca2+ dependent relaxivity variation of GdDOPTA, a 

bismacrocyclic chelate of similar structure, possessing a Ca2+ binding BAPTA4- unit 

as bridging part between the two macrocycles40. They considered that the rotational 

correlation time does not vary on Ca2+ binding. We think that the binding of the Ca2+ 

will render the molecule more rigid, as it is indeed reflected by the increase of the 

rotational correlation time calculated from the NMRD data. On the other hand, for 

GdDOPTA a more important variation of q was reported on Ca2+ coordination. By 

luminescence on the Tb3+ analogue, a hydration number of q = 0.47 and 1.05 was 

determined before and after Ca2+ binding; in contrast, for the Gd3+ complex, the fit of 

the NMRD profiles suggested q = 0.7 and 2.3 without and with Ca2+, respectively. 

The relaxivity increase was also more significant (~80 % at 11.75T) for GdDOPTA, 

and was not sensitive to the presence of Mg2+. We should note that due to the high 

association constant between the BAPTA4- chelator and Ca2+ (Ka ~ 106 M-1), 

GdDOPTA might be adapted to report on the variation of Ca2+ concentration at the 

micromolar level (intracellular), but its relaxivity response will be levelled off at 

higher Ca2+ concentrations, such as those in the extracellular space (millimolar range). 

In order to probe variations at the millimolar level, the association constant should be 

decreased, as it is the case for our compounds. Unfortunately, the DTPA-bisamides do 

not have the great selectivity of BAPTA4- for Ca2+ with respect to Mg2+, which 

prevents practical application of this compound for Ca2+ sensing. But EDTA-bisamide 

is more selective towards Ca2+ with respect to Mg2+, though molecule can be useful 

for further in vitro or in vivo selective Ca2+ sensing studies.   
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Figure 24. Fitting of 1H NMRD (25°C , 37°C ) data of Gd2-25 in the 

presence of 3 equivalents of Ca2+. 

4.3.5. In vitro relaxation study of Gd2-27 in the extracellular matrix 

In view of the fact that we know Gd2-27 showed best relaxivity changes in the 

presence of Ca2+ but no changes observed in the presence of Mg2+, thus we conclude 

that this complex is good candidate for further in vivo studies. However before in vivo 

studies, complex should be measured with Ca2+ in in vivo matrix [extracellular matrix 

(ECM)]. This would tell us whether complex is showing same relaxivity changes in 

ECM as compare to normal buffer or not. We performed the relaxivity measurements 

at 37°C and 11.75 T in almost Ca2+ free ECM solution (0.3 mM Ca2+), rest all other 

anions, cations and proteins are comparable with body system. 

4.3.5.1. Sample Preparation of the extracellular matrix experiments. 36.1 mg of 

solid HEPES (1.5*10-4 mol) was dissolved in 1.5 ml of the ECM solution (the pink 

color changed into yellow). 400 μL of this buffered matrix solution, filtered via sterile 

0.2 μm filter, was added to a 5 mm NMR tube (non-sterile) which already contained 8 

μL of the stock complex solution. The resulting concentration of Gd3+ in the NMR 

tube was therefore 0.98 mM. In a sterile eppendorf, 1.47 mg of CaCl2·2H2O (1*10-5 

mol) was dissolved in 1 ml of the buffered extracellular matrix solution. The resulting 

Ca2+ concentration of this solution was 10 mM. The 101 mM solution of EDTA was 

prepared by dissolution of 22.63 mg of Na2H2EDTA·2H2O in 600 μL of the 

extracellular matrix containing 0.1 M HEPES buffer. 
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4.3.5.2. Relaxometric titrations with Ca2+ in ECM. The solution of Ca2+ was added 

by 10 μL until the overall Ca2+ concentration reached 2.4 mM. Then 11.8 μL of the 

EDTA solution was added, resulting in equivalent concentrations of EDTA and Ca2+. 

After the addition of EDTA solution, we supposed that all Ca2+ complexes with 

EDTA and the system should behave as Ca-free (first point in Fig. 25). The relaxivity 

measurement of the final solution was repeated in three days and a slight relaxivity 

increase was observed (from 3.38 mmol-1s-1 to 4.22 mmol-1s-1). However, it has to be 

taken into account that the non-sterile solution was measured after three days; so 

many processes could have taken place. The experimental data together with the 

approximate time from the beginning of the titration are listed in Table 5. When we 

plot the relaxivity vs. the ratio of the concentration of Ca/complex, we can see a 

decreasing trend in the relaxivity with the increasing Ca2+ concentration (Fig. 25(A)).  

 

Figure 25: (A) Dependence of the relaxivity of Gd2-27 in ECM on the Ca2+ 

concentration; (B) Dependence of the relaxivity of Gd2-27 in ECM on the time 

(37°C, 11.75 T). 

It is interesting to plot the relaxivity vs. the time from the beginning of the 

titration (Fig. 25(B)). We can see that the big step in relaxivity decrease 

(c(Ca)/n(complex) = 2.33) corresponds in fact to a longer pause between the 

measurements. It seems like if there was some mechanism initiated not only by the 

presence of Ca2+, but also time dependent. Maybe the complex is attached to a 

protein, which degrades or aggregates in presence of Ca2+, which changes its 
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conformation and terminates the protein-complex interaction or blocks the access of 

water to the first coordination sphere of the complex.  

Table 5: Experimental data from the relaxometric titration of Gd2-27 with Ca2+ 

at 37°C and 11.75 T. 

 
time / min Vtotal / μL r1 / mmol-1·s-1 c(CaII)/c(cmplx) 

0 408 8.24 0.3 
30 418 8.29 0.81 
60 428 7.68 1.32 
75 438 7.32 1.82 
170 448 5.41 2.33 
195 458 5.34 2.84 
210 468 4.94 3.35 
230 478 4.62 3.85 
245 488 4.35 4.36 
265 498 3.99 4.87 
282 508 3.75 5.88 
320 519.8 3.38 0 

3 days 519.8 4.22 0 
 

To investigate, if the decrease of the relaxivity was Ca2+ dependent, another 

titration was performed. The experimental set up was identical as in the previous case. 

At the beginning of the titration, the relaxivity of the sample with no Ca2+ added was 

measured four times during four hours. No relaxivity decrease was observed (Fig. 26). 

When Ca2+ was added, a relaxivity decrease occurred. We can conclude that the 

relaxivity decrease depends on the presence of Ca2+ and also on time (the relaxivity 

value is not the same at the same Ca2+ concentrations in the two titrations because the 

second titration was faster). This confirms that until Ca2+ is added, the complex has a 

high relaxivity (higher than in pure water, which indicates the possible interaction of 

the complex with a protein). Once Ca2+ is added, the relaxivity drops. The 

experimental data are listed in Table 6. 

A third essay was done by adding all the amount of Ca2+ at one time (100 μL 

of 10 mM Ca2+ solution) to the complex solution in extracellular matrix and 

measuring the relaxivity immediately after that (it was done at 25°C in order to save 

the time needed to temperate the sample). The aim was to see if there is a relaxivity 

increase caused by the interaction of Ca2+ with the complex before the degradation of 

the solution takes place. The relaxivity of the complex in extracellular matrix solution 

EDTA 
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at 25°C and 11.75 T before the addition of Ca2+ was 9.16 mmol-1s-1. The increase in 

the relaxivity with decreasing temperature (comparing to the value measured at 37°C, 

8.2 mmol-1s-1) is expected due to a longer rotational correlation time. Then, 100 μL of 

10 mM Ca2+ solution in  extracellular matrix / HEPES solution was added and the 

relaxivity was measured again. The time between the Ca2+ addition and the actual 

measurement was 6 minutes (experimental set up). The relaxivity dropped to a value 

6.82 mmol-1s-1. 

 

Figure 26: (A) Dependence of the relaxivity of Gd2-27 in ECM on the Ca2+ 

concentration; (B) Dependence of the relaxivity of Gd2-27 in ECM on the time 

(37°C, 11.75 T). 

Table 6: Experimental data from the second relaxometric titration of Gd2-27 

with Ca2+ at 37°C and 11.75 T in ECM. Time values correspond to the time 

passed from the preparation of the complex solution in the extracellular 

matrix. No EDTA was added in this titration. 

 
time / min Vtotal / μL r1 / mmol-1·s-1 c(Ca2+)/c(complex) 

35 408 8.20 0.3 
65 408 8.17 0.3 
190 408 8.23 0.3 
260 408 8.17 0.3 
292 418 8.07 0.81 
307 428 8.03 1.32
323 448 7.37 2.33 
345 508 5.64 5.88 
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4.3.6. Conclusion 

In this work, we report the straightforward synthesis of five novel 

bismacrocyclic DO3A-type ligands 25-27, 31 and 36. They have a DTPA- or EDTA-

bisamide moiety as the bridging part between the macrocycles representing a potential 

Ca2+ binding site. The relaxivities of the all Gd3+ complexes formed with 25-27, 31 

and 36 are considerably higher than that of currently used small-molecular-weight 

MRI contrast agents, in accordance with their larger size, increased rigidity or higher 

hydration number. The sensitivity of their relaxivity towards Ca2+ largely depends on 

the structure of the ligand. Upon Ca2+ addition, the relaxivities of Gd2-25 and Gd2-27 

increase by 15% and 32%, respectively, while Gd2-26, Gd2-31 and Gd2-36 are 

practically insensitive to Ca2+ binding. Hydration numbers were determined from 

luminescence lifetime measurements on the corresponding Eu3+ complexes in the 

absence and presence of Ca2+. High resolution UV-Vis spectra of the Eu3+ complexes 

of 25, 26 and 27 show a band with a shoulder, indicating at least two different 

coordination environments. This was related to differently hydrated species, in 

agreement with the non-integer q values obtained by luminescence. When Ca2+ is 

coordinated in the central part of the ligand, a donor group is removed from the 

coordination sphere of the lanthanide ion and is replaced by a water molecule which 

shifts the hydration equilibrium towards the more hydrated species. 

Water exchange is relatively slow on Gd2-25 and Gd2-26, while it is ~2 orders 

of magnitude faster on Gd2-27; in all cases, it is insensitive to Ca2+ binding. Due to 

the benzene linker between the macrocycles and the central DTPA-bisamide unit, the 

Gd2-25 complex is particularly rigid, hence has a high relaxivity. A detailed analysis 

of the luminescence, 17O NMR and NMRD data on the Eu3+ and Gd3+ complexes of 

25 and 27 in the absence and presence of Ca2+ proved that the relaxivity increase 

observed upon Ca2+ addition can be ascribed to the increase in the hydration number, 

q, and to the slight rigidification of the complex induced by Ca2+ binding. 

The complex Gd2-27 is then added to the extracellular matrix, it certainly 

interacts with some proteins because the resulting relaxivity is significantly higher 

than what was observed in only aqueous solutions. However, the addition of Ca2+ 

causes possibly a conformational change or an aggregation of the proteins, which 

terminate their interaction with the paramagnetic complex and the relaxivity 
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decreases. This relaxivity decrease is much more significant than the possible increase 

due to the interaction between the complex and Ca2+ and it happens at similar time 

schedule, so as a result, no relaxivity increase can be observed. 
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5.1. Introduction 

The advance of axonal tract-tracing and cell labeling methods has 

revolutionized neuroscience in the past three decades. The elementary purpose of 

neuronal tract-tracing is to chart anatomical connections within the nervous system 

providing useful information on afferent and efferent connectivity in the brain. 

Neuroanatomical tracers are used to ascertain the cells of origin that innervate a 

certain brain structure and/or the projection target of the axons of a given population 

of neurons (retrograde and anterograde tracers, respectively)164,165. Recent 

developments include the possibility to combine, for instance, different tracers 

allowing the comparison of multiple connections in the same animal, both 

quantitatively and qualitatively.   

Numerous investigations using these classical neuroanatomical techniques have 

contributed valuable descriptions of connectivity in the mammalian brain166-172. These 

studies, however, require fixed processed tissue for data analysis and therefore cannot 

be applied to an animal participating in longitudinal investigations, where consecutive 

studies examining an entire circuit could be carried out in the same subjects. It is 

therefore important to seek alternatives that can be used in longitudinal in vivo 

experiments. Paramagnetic anterograde or retrograde tracers that can be visualized 

with magnetic resonance imaging (MRI) are of obvious importance. In contrast to the 

studies using conventional techniques, volume imaging with MRI-visible neuronal 

tracers provides indeed complete descriptions of large-scale three-dimensional (3-D) 

networks. Furthermore, such noninvasive technique could be repeatedly applied in the 

same experimental animal to visualize different neuronal pathways, and generate 

individualized connectivity maps that could guide, for instance, multiple and targeted 

electrophysiological recordings. Last but not least the technique is invaluable for 

longitudinal studies, such as those of plasticity and reorganization, or of 

neurodegenerative processes. 

Manganese-enhanced MRI (MEMRI)173,174 is a recently introduced technique 

that represents the first effort in the direction of studying neuronal connectivity in vivo 

by means of MRI175. It is based on the paramagnetic properties of the manganese ion 

and on the fact that, once taken up by neurons, manganese is transported 

anterogradely in the axon175-183. However, the technique presents several drawbacks 
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that can challenge its applicability, the most important being the potential toxicity of 

the ion in the tissue. It is well known that excessive accumulation of Mn2+ decreases 

energy metabolism, increases the production of free radicals, and induces cell death of 

both, neurons and glia, in experimental models184,185. Perturbations of the neuronal 

circuits under study, due to such toxicity would eliminate the value of Mn2+ as an in 

vivo neuronal tracer, particularly for functional studies, for quantitative 3-D analysis 

of connectivity, or for repetitive applications investigating the same pathway 

dynamically in time. Additional disadvantages of the manganese technique are its 

high diffusion at the injection site, which challenge the specificity of the resulting 

projections, and its incompatibility with other visualization systems186-188. For 

instance, at the end of an in vivo connectivity experiment using a paramagnetic tracer, 

it could be very informative to analyze the laminar and subcellular distribution of the 

neuronal connections. Such an experiment can not be performed by using current 

MEMRI methods. 

Our aim was to develop non-toxic, efficient and multimodal neuronal tracers 

that allow both, in vivo brain connectivity studies by means of MRI and postmortem 

microscopic investigation in fixed tissue, in the same experimental animal. For this 

purpose we used biocytin189 (Fig. 27) as a model neuroanatomical tracer, which is 

taken up by neurons and transported in both antero- and retrograde directions. Some 

characteristics make biocytin a good tracer model. It has been used in numerous 

tracing studies, both after intracellular or extracellular application, and much is known 

about its biophysical properties190. Due to its high affinity to avidin, it can be 

visualized by using a host of avidin conjugated markers at the light- and electron 

microscopic level. Extracellular application of biocytin results in very well localized 

injection sites with no uptake by fibers of passage or glial cells. These two last 

characteristics result in a high specificity of biocytin tracings. Finally, some authors 

have described transynaptic transfer of the molecule, allowing polysynaptic networks 

to be studied191-193.  

Structurally, biocytin has a combination of D-biotin and L-lysine, where 

carboxylate of D-biotin is connected with Є-amine of L-lysine via amide linkage (Fig. 

27)189. It can be easily degraded in the presence of biotin-dependent carboxylase 

(biotinidase), a ubiquitous enzyme present in mammalian serum194-196. For this reason, 
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biocytin has relatively small half life in vivo, which forces short post injection 

survival times and increase the probability of partial reconstruction of neuronal 

projections. A number of strategies have been formulated to overcome this problem, 

including the use of sterically hindered amide bonds (either tert-amide or presence of 

α-kitone/carboxylate) to render the linkage stable to biotinadase197,198. We have first 

designed and synthesized a newly modified-biocytin, where propylamine is linked to 

amide of biocytin to make it tert-amide, which is more stable to biotinidase 

degradation, as compared to conventional biocytin. The presence of an additional 

amine group makes the modified biocytin a bifunctional neuroanatomical tracer, 

which can be attached to a fluorophore fluorescein to make it usable for optical 

imaging, or to a macrocycle to hold gadolinium and use it for MRI as potent 

noninvasive neuroanatomical tracers. 

We have developed three novel and structurally different gadolinium containing 

biocytin-based neuroanatomical tract-tracers (41, 45 and 50, Fig. 27). In the first 

tracer (41), GdDO3A-EA is connected with terminal end carboxylate of biocytin via 

amide bond. The second tracer (45), GdDOTA is connected with Є-amine of L-lysine 

via amide linkage. The third tracer (50) is derived from newly developed modified-

biocytin where GdDOTA was coupled with propylamine via amide. 45 and 50 carry 

the unmodified L-lysine residue as it is thought to be important for cell uptake, and 

biotin is available in compounds (41 and 50) for avidin binding. The fourth tracer (54) 

has GdDOTA in 50 replaced with fluorophore fluorescein and can be useful for 

optical imaging.  

The molecules we report in this study are a new class of biocytin-based and Gd-

containing molecules that represent a new strategy for neuroanatomical tracing, 

combining the powerful spatial resolution of the conventional microscopic techniques 

with the whole brain tri-dimensional coverage and in vivo applicability of the MRI. 
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Figure 27.  Structures of biocytin and other studied ligands. 

5.2. Experimental Section  

5.2.1. In Vitro MR Measurements  

5.2.1.1 Sample Preparation for Relaxivity Measurements. Different concentrations 

(1 mM, 0.75 mM, 0.5 mM, 0.25 mM) of Gd-41, Gd-45 and Gd-50 were prepared in 

phosphate buffer in 1.5 mL Eppendorf tubes at physiological pH to measure 

relaxivity.  

To examine the dependence of the relaxivity on the magnetic field, 

longitudinal and transverse relaxation rates (R1 and R2) of the Gd-41, Gd-45 and Gd-

50 were performed at magnetic fields of 1.5T, 3T and 7T, corresponding to a proton 

frequency of 64 MHz, 123 MHz and 300 MHz, respectively. For 7T measurements, a 

vertical 7T/60 cm MRI Biospec system (Bruker Biospin, Germany); 3T 

measurements, a Trio System (Siemens Medical Solutions, Germany) was used; the 

1.5T experiments were performed on a Siemens Avanto scanner.  
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5.2.1.2 MR Study of Avidin + Gd-41 and Gd-50 Interaction. To measure the 

enhancement of R1 and R2, MRI experiments were performed with increasing 

concentrations of avidin (Fluka, Germany) proportional to constant concentration of 

Gd-41 and Gd-50 (0.25 mM) incubated for 2 h at 37°C.  

5.2.2. Rat Experiments 

To test whether modified biocytin is more stable than conventional biocytin 

we performed iontophoretic injections of both compounds into the primary motor 

cortex of 4 albino rats (Sprague Dawley). Two rats (one with conventional and one 

with modified biocytin) were killed after a survival time of 24 hours and two rats 

(again one with conventional and one with modified biocytin) after a survival time of 

96 h.  

5.2.2.1. Injections. Rats were anaesthetized with 2% isoflurane. One injection per 

animal was made into the primary motor cortex at two or three different levels. In the 

animals with a survival time of 24 h, two injections were made, at a depth of 250 and 

500 µm. In case of the animals with a survival time of 4 days, a third injection was 

made at a depth of 750 µm. 

The tip diameter of the glass electrodes was 20 μm. Each injection was made 

over a period of 20 min, 7 sec on, 7 sec off, with 5 μA current in case of the animals 

with a survival time of 24 h, and 10 μA in case of the animals with a survival time of 

4 days.  

At the end of the procedure, the animals received an intra peritoneal injection 

of analgesics and antibiotics. The animals with a survival time of 96 h received 

another injection after 24 h. 

5.2.2.2. Perfusion. After 24 h and 96 h respiration, the animals were anaesthetized 

with Isofluran and received then a lethal intraperitoneal injection of Narcoren. After 

cessation of all reflexes, the chest of the animal was opened and 0.4 ml of Liquemin 

was injected into the heart in order to prevent coagulation of the blood. Then a canule 

was inserted and the animals was perfused with PBS (phosphate buffer saline) for 

about 5 minutes and then with the fixative (4% paraformaldehyde in PBS).  

After fixation in situ for 1 – 3 h, the brains were removed from the skull and 

kept in the fixative over night. During the next days, the brains were transferred 
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stepwise into 10%, 20% and then 30% sucrose, in each step until it has sunk. This 

took all together 96 h.  

The brains were then cut with a freezing microtome into serial sections at a 

thickness of 70 μm.   

5.2.2.3. Histological procedure. 

- collect sections in PBS (using 0.1 M buffer; pH 7.3) 

- 1% H2O2 in PBS (NaCl in 0.1m phosphate buffer) for 1 h to suppress endogen 

peroxidase activity 

- Rinse in PBS 

- 1 h treatment in Triton X-100 (0.5 % in 0.1 m PBS) (Triton makes it easier for 

the ABC-substances to enter the cell, since it cracks the membrane proteins). 

- Incubation in avidin-conjugated peroxidase (Vector Laboratories, 1% in PBS, 

Note that the ABC-mixture must stand for 30 min before use. 

- Rinse 1-3 x 10 min. in PBS 

- 2-3 x 10 min. in Tris/HCl (0.15M, pH 7.9) (Tris can be made more basic than 

PB and this is better for the DAB-reaction) 

- In DAB Fast Tablet Set-solution in water (contains diaminobenzidine 0.5% in 

Tris/HCl) and H2O2.  

- Wash 3 x 10 min. in Tris/HCl 

- Then mount sections on slices and air-dry overnight. 

Dehydration on the next day in graded ethanols (70%, 80%, 2 x 99%, 2 x 100% 

ethanol, 2 x terpineole and 2 x xylene, cover in Eukitt or DePeX  

5.2.3. In vitro Cell Study of 54  

Cell experiments were done in single channel Ibidi slides by inoculation of  

N18 neuroblastoma cells (3 x 105 cells/ml) cultured in Dulbecco’s Modified Eagle's 

Medium supplemented with 0.625% foetal bovine serum and 4 mM L-glutamine (all 

purchased from Biochrom AG, Germany). After 70-80% confluency, cells were 

incubated with 100 µM of 54 for 1 hour. Before washing cells were incubated with a 

nuclear stain Bisbenzimid 33342 (Hoechst 33342) for 5 mins. After repeated cell 

washings with Hanks’ buffered saline (Biochrom AG, Germany), fluorescence 

microscopy was performed with cells on a Zeiss Axiovert 40 CFL (Germany) to 
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observe the cellular localization of 54. The imaging conditions were kept constant for 

the observation of different samples. Cellular localization and distribution of 54 was 

observed by irradiating with blue light (470-/40 nm) and observing at 525/50 nm and 

nuclear labeling by Hoechst was observed at 460/50 nm. Also phase contrast images 

with DIC of the same area were made to observe if the cells maintain their normal 

morphology in the presence of compound. 

5.3. Results and Discussions 

5.3.1. Synthesis of Ligands 

Conventional biocytin is naturally occurring conjugate of D-biotin and L-

lysine and it has been acclaimed as an excellent classical neuroanatomical tracer. 

Previously biocytin has been synthesized efficiently by Wolf et al.189 in five steps 

starting from Є-N-carbobenzoxy-L-lysine and although it has been described by other 

many researchers. We report here four step convenient synthetic route for the 

synthesis of Є-N-biotinyl-L-lysine, 39 starting from α-N-carbobenzyloxy-L-lysine 

methyl ester. Compound 37 was obtained by coupling of Є-amine of α-N-

carbobenzyloxy-L-lysine methyl ester with carboxylate of D-biotin by using classical 

solution phase coupling reagents, NMM/EDC/HOBt in dry DMF at room 

temperature. Intermediate molecule 38 was obtained by deprotection of methyl group 

by LiOH and further α-N-carbobenzyloxy removal by Pd-C (10%), H2 in Parr-

apparatus at 50 psi yielded final ligand 39 (Scheme 9). 

Previously described amine containing macrocyclic precursor tris-tert-butyl-

DO3A-EA84-86,125, 19 was synthesized in two steps, starting from alkylation of 

bromoacetonitrile on well known ligand tris-tert-butyl-DO3A 387 to get cyano 

containing ligand 18141. Cyano reduction of 18 in the presence Ra-Ni, H2, 7N 

NH3/MeOH in Parr-apparatus at 50 psi provided amine containing precursor tris-tert-

butyl-DO3A-EA, 19142. Protected biocytin conjugated tris-tert-butyl-DO3A-EA 

ligand 40 was synthesized by coupling of carboxylate of 38 with amine of 19, in the 

presence of above described coupling reagents (NMM/EDC/HOBt). Corresponding 

carboxylate containing macrocyclic ligand 41 was obtained in two steps by 

deprotection of α-N-carbobenzyloxy in the presence of Pd-C (10%), H2 in Parr-
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apparatus at 50 psi and further acid labile tert-butyl groups were removed by neat 

TFA (Scheme 9).  
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Scheme 9. Reagents and conditions: (i) D-biotin, α-N-carbobenzyloxy-L-

lysine methyl ester, dry DMF, NMM, EDC, HOBt; (ii) LiOH [THF;MeOH;water 

(3:2:2)]; (iii) Pd-C (10%), H2, MeOH; (iv) bromoacetonitrile, K2CO3, MeCN; (v) 

Ra-Ni, H2, NH3/MeOH (7N); (vi) dry DMF, NMM, EDC, HOBt; (vii) Pd-C (10%), 

H2, MeOH; (viii) TFA. 

In the scheme 10, free carboxylate holding macrocyclic precursor tris-tert-

butyl-DOTA, 43 was obtained from cyclen in 52% yield over three steps, by the 

reaction with tert-butylbromoacetate to get the tri-substituted product 3 as reported 

previously87. Alkylation with benzylbromoacetate on fourth nitrogen gave 42 and the 
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corresponding carboxylate derivative 43 was obtained by deprotection of the benzyl 

group by the treatment of Pd-C (10%), H2 in Parr-apparatus at 50 psi at room 

temperature. This precursor is useful to design variety of stable targeted contrast 

agents. By using 43, we designed and synthesized lysine containing macrocyclic 

compound in 3 steps. Є-amine of α-N-carbobenzyloxy-L-lysine methyl ester coupled 

with carboxylate of 43 in the presence of NMM/EDC/HOBt in dry DMF at RT to give 

protected ligand 44. Further three steps deprotection of α-N-carbobenzyloxy with Pd-

C (10%), H2 in Parr-apparatus at 50 psi and methyl group removal with LiOH in 

THF:MeOH:H2O (3:2:2) and tert-butyl groups with neat TFA gives final lysine 

containing macrocyclic ligand 45 in good yield.  
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Scheme 10. Reagents and conditions: (i) benzylbromoacetate, K2CO3, 

MeCN; (ii) Pd-C (10%), H2, MeOH; (iii) 3, dry DMF, NMM, EDC, HOBt; (iv) 

LiOH [THF;MeOH;water (3:2:2)], TFA. 
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Scheme 11. Reagents and conditions: (i) acrylonitrile, TEA, MeOH; (ii) D-

Biotin, PyBroP, DIEA, dry CH2Cl2; (iii) Ra-Ni, H2, 7N NH3/MeOH; (iv) 43, 

NMM, EDC, HOBt, dry DMF; (v) Pd-C (10%), H2, MeOH; (vi) LiOH 

[THF;MeOH;water (3:2:2)], TFA. 

After the successful synthesis of macrocyclic precursor 43, the bioconjugate 

ligand 50 was synthesized in seven step reaction (Scheme 11). Starting with Micheal 

addition by using acrylonitrile on α-N-carbobenzyloxy-L-lysine methyl ester gives 

cyano containing compound 46. Cyano containing modified biocytin compound 47 

was obtained after coupling with carboxylate of biotin with secondary amine of 46 by 

using PyBroP as coupling reagent in dry dichloromethane solvent by the addition of 

diisopropylamine as base. Concurrently by the selective reduction of cyano group in 

the presence of Ra-Ni, H2, 7N NH3/MeOH yielded amine containing protected 

modified biocytin compound 48. Modified biotcytin conjugated tris-tert-butyl-DOTA 

compound 49 was obtained by the coupling of amine of 48 with ligand 43 using 



Chapter 5: Development of Gd-based New In Vivo Neuroanatomical Tracers  
 

84 

 

NMM/EDC/HOBt in dry DMF at Room Temperature (rt). In the following step, final 

ligand 50 was obtained in 77% yield by three steps deprotection of methyl group with 

LiOH in THF:MeOH:H2O (3:2:2), removal of α-N-carbobenzyloxy with Pd-C (10%), 

H2 in Parr-apparatus at 50 psi and tert-butyl groups with neat TFA.  

A novel amine bearing modified biocytin 52 was synthesized, starting from 48 

in two steps by deprotection of methyl group with LiOH in THF:MeOH:H2O (3:2:2) 

give compound 51 and removal of α-N-carbobenzyloxy with Pd-C (10%), H2 in Parr-

apparatus at 50 psi compound 52 was isolated. It is potential bifunctional 

neuroanatomical tracer, where either can be connected macrocyclic unit to make it a 

contrast agent for MRI as we described in previous scheme or by the coupling with 

fluorophore fluorescein can give tracer for optical imaging (Scheme 12). 

The fluorophore fluorescein containing modified biocytin compound 54 was 

attempt to synthesize as shown in scheme 12. The most logical route to synthesize 

compound 54 in two steps starting from compound 51, by coupling of FITC with 51 

at pH 8-8.5 yeilded compound 53. During the reaction we observed pH was not 

allowed to exceed 8.5 since at pH > 9, a lactone cleavage on FITC part occurs, 

leading to the formation of a side product. After getting protected FITC containing 

modified biocytin, we tried to cleave α-N-carbobenzyloxy with Pd-C (10%), H2 in 

Parr-apparatus and some other reported mild cleavable reagents. But some 

degradation was observed in all these conditions.  
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Scheme 12. Reagents and conditions: (i) LiOH, THF;MeOH;water (3:2:2); (ii) FITC, 

water, pH 8-8.5; (iii) Pd-C (10%), H2, MeOH. 

After unsuccessful attempt for the synthesis of FITC conjugated modified 

biocytin, 54, we designed second pathway to synthesize it in 5 steps starting from 

compound 47 (Scheme 13). By deprotection of α-N-carbobenzyloxy from 47 with Pd-

C (10%), H2 in Parr-apparatus give compound 55. Further protection with acid labile 

Boc group provided compound 56. After reduction of cyano group of 56 in the 

presence of Ra-Ni, H2, 7N NH3/MeOH in Parr-apparatus at 50 psi we obtained amine 

containing compound 57. Compound 58 was isolated in a same way as described in 

the previous scheme, where FITC coupled with amine of compound 57 via thiourea 

linkage in water at pH 8-8.5. Finally removal of Boc group in the presence of formic 

acid yielded FITC conjugated modified biocytin, which is useful for optical imaging. 

Modified biocytin, 52 was also obtained after removal of Boc group from 57 in neat 

formic acid.   
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Scheme 13. Reagents and conditions: (i) Pd-C (10%), H2, MeOH.; (ii) Bocanhydride, 

DCM, TEA; (iii) LiOH, THF;MeOH;water (3:2:2); Ra-Ni, H2, 7N NH3/MeOH; (iv) 

TFA; (v) FITC, water, pH 8-8.5. 

All intermediate compounds (38-40, 48, 49, 51-54, 57 and 58) were purified 

by RP-HPLC as described methods in experimental section by using 0.1% TFA in 

acetonitrile and 0.1% TFA in water as mobile phases. Final compounds (41, 45 and 

50) were also purified RP-HPLC by using MeOH and water as mobile phase as 

described in experimental section. 

Finally, Gd3+ complexes were synthesized for ligands 41, 45 and 50 (Fig. 28). 

During loading Gd3+ in biotin containing ligands reaction temperature was kept under 

60°C because of possible degradation of bioconjugate moiety. 
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Figure 28.  Structures of Gd3+-complexes of 41, 45 and 50. 

5.3.2. In Vivo Histological Applications 

 In order to test the stability and feasibility as neuronal tracer of the newly 

synthesized modified biocytin, 52, and compare it with the traditional biocytin, we 

perform a series of neuronal tract-tracing experiments in rats. We inject by means of 

iontophoresis a comparable amount of both tracers in the primary motor cortex of the 

rat. We divided the experimental animals in two groups with different survival times, 

24 h and 96 h, respectively. After that time we perfused the animals and analyzed 

both, the intensity of the staining, reflecting the number of nondegraded tracer 

molecules in the tissue at that particular time, and the presence of anterogradely 

stained fibers and retrogradely labeled cells, to demonstrate the feasibility of the new 

tracer. As can be seen in Fig. 29, the amount of intact molecule (or molecule with 

intact avidin binding capacity) remaining in the tissue after 24 h, is clearly higher for 

the new modified biocityn compare to the conventional. As would be expected, this 

effect is even more dramatic when the survival time and thus, the time of exposure to 

endogenous biotinidase activity, is increased from 24 h to one day (Fig. 30). 

Interestingly, positively labeled fibers and cell bodies were found as far as 3.5 mm 
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from the injection site (Fig. 31), unequivocally demonstrating that the new modified 

biocytin molecule retains extraordinary tracer capacities after the modification. 

The combination of the following characteristics, tracer capability and greatly 

improved stability, makes the new modified biocytin and excellent alternative for 

conventional histological studies, as well as a promising molecule for in vivo imaging 

of neuronal networks. A common problem in conventional histological techniques is 

the partial reconstruction of connections at the network level, or the incomplete 

reconstruction of dendritic and axonic arbors at the cellular level. Such problems that 

are caused by the endogenous degradation of the tracer molecule before the sacrifice 

of the animal will be greatly reduced with the reported molecule. On the other hand, 

the possibility to stably accumulate a greater amount of tracer molecules in a target 

tissue will increase the signal to noise ratio and thus, the probability of detection in 

MRI, a technique with less spatial resolution and sensitivity than any other light, 

confocal or electronic microscopy approach. All in all, we believe that the modified 

biocytin molecule that we report here represents a new tool with a broad range of 

applications in the neuroscience field. 

  

 

 

 

 

 

39 

           39                      52 

Figure 29. Histological studies of conventional biocytin (39) and modified 

biocytin (52) with the survival time 24h. 
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    39               52 

Figure 30. Histological studies of conventional biocytin (39) and modified 

biocytin (52) with the survival time 96h. 

 

 

Figure 31. Histological studies of modified biocytin (52) with the survival time 

96h; shows some retrograde tracing 3.5 mm away from injection site. 

5.3.3. In Vitro Biochemical Applications  

5.3.3.1. In Vitro Relaxometry of Gd-41, Gd-45 and Gd-50. To examine the effect of 

binding on the longitudinal and transverse relaxation rates, we performed MRI 

experiments at different field strengths (7T, 3T and 1.5T) with increasing 

concentrations of avidin proportional to constant concentrations of Gd-41 (0.25 mM), 

Gd-45 (0.25 mM) and Gd-50 (0.25 mM). Gd-45 has no biotin, which has been used 

as control in these experiments. Gd-45 has no interaction with avidin that’s why 
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longitudinal and transverse relaxation rates were constant after adding excess of 

avidin protein. In contrast of Gd-45, Gd-41 and Gd-50 show a linear enhancement in 

relaxation rates which demonstrated strong binding of Gd-41 and Gd-50 in the biotin 

binding pocket of tetramer avidin (Fig. 32 and 33). This gain in relaxation rates 

suggest a decrease in molecular rotational correlation time τR. Similar to literature 

reports, proposing that one avidin molecule strongly binds four equivalents of 

biotin94, we obtained saturation in relaxation rates at ratios higher than 4:1 between 

Gd-41; Gd-50 and avidin. 

 As expected, MR longitudinal relaxation rate, R1 of Gd-41 slightly decreases, 

12% upon binding of the complex to avidin at 7T, but at 3T it start increasing up to 

31% and reaches 115% at 1.5T (Fig. 32, left side). This is in accordance to the 

Solomon–Bloembergen–Morgan theory predicting that at high magnetic field (>4.7 

T), the relaxivity changes with the inverse of τR suggesting that relaxivity decrease 

should be expected upon binding of the CAs to a large molecule124. On the other 

hand, an enhancement in transverse relaxation rates, R2 of complex was observed 

consistent with non-covalnet association of Gd-41 to avidin. Thus, at physiological 

pH and ambient temperature, the increase in R2 of the ternary adduct of Gd-41 with 

avidin showed a maximum enhancement of 296% at 7T, 332% at 3T and 338% at 

1.5T relative to the unbound Gd-41 complex (Fig. 32, right side). This effect has 

already been discussed in first chapter with avidin-bound complex (Gd-9) consistent 

with ternary complex formation; thus the decrease of τR leads to a stronger R2 

enhancement at high magnetic field125,126. 

MR longitudinal relaxation rate, R1 of Gd-50 is also slightly decreases, 8% 

upon binding of the complex to avidin at 7T, but at 3T it start increasing slightly up to 

8% and reaches 29% at 1.5T (Fig. 33, left side). On the other hand, an enhancement in 

transverse relaxation rates, R2 of complex was observed consistent with non-covalnet 

association of Gd-50 to avidin. Thus, at physiological pH and ambient temperature, 

the increase in R2 of the ternary adduct of Gd-50 with avidin showed a maximum 

enhancement of 103% at 7T, 97% at 3T and 93% at 1.5T relative to the unbound Gd-

50 complex (Fig. 33, right side).  
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Figure 32. In vitro MR measurement of longitudinal (R1) and transverse 

relaxation rate (R2), Gd-41 with varying concentrations of avidin. MR 

experiment was performed at different field strength 7T, 3T and 1.5T (≈ 21°C) 

with constant concentration of Gd-41 (0.25 mM) and increasing amount of 

avidin in different tubes. A linear relaxation enhancement was observed up to 

0.63 mM (0.25 equivalents). At higher ratios relaxation rates R1 and R2 

remained constant. [Error for all R1 and R2 values was less then (± 0.5) s-1 and 

is not displayed]. 

 
 
 

 

 

 

 

 

 

Figure 33. In vitro MR measurement of longitudinal (R1) and transverse 

relaxation rate (R2), Gd-50 with varying concentrations of avidin. MR 

experiment was performed at 7T, 3T and 1.5T (≈ 21°C) with constant 

concentration of Gd-50 (0.25 mM) and increasing amount of avidin in different 

tubes. A linear relaxation enhancement was observed up to 0.63 mM (0.25 
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equivalents). At higher ratios relaxation rates R1 and R2 remained constant. 

[Error for all R1 and R2 values was less then (± 0.6) s-1 and is not displayed]. 

In future applications, the MRI contrast sensitivity can be therefore improved 

by designing CAs using the above approach, as the biotin-avidin association is 

expected to enhance the signal by means of in situ accumulation of the agent. Avidin 

has been already utilized for drug delivery through the blood brain barrier93. It is 

important for future non-invasive, e.g. human research applications, which do not 

afford intracranial injections. There are several studies and reports regarding biotin-

avidin interaction in vitro and in vivo. Gruber et al presented few examples of biotin-

fluoresceine conjugates with an ethylene diamine spacer was found to be the first 

fluorescent biotin derivative which truly mimicked D-biotin in terms of high affinity, 

fast association, and non-cooperative binding to avidin and streptavidin tetramers. In 

these varieties of biotin-fluoresceine conjugates, they observed that steric hindered 

spacer conjugates showed less fluorescence quenching effect in contrast to small and 

flexible conjugates. Our in vitro MR results also showed different relaxivity 

enhancement with different molecules, which prove above descriptions. Gd-41 is 

more flexible as compared to Gd-50, and this was justified by 300% R2 enhancement 

in Gd-41 while Gd-50 showed only 100% enhancement. Although Gd-41 exhibits 

probability for use in MR imaging but translation to a system for in vivo application is 

hampered by certain drawbacks. Hydrolysis of DTPA-biotin and DOTA-biotin by 

endogenous biotinidase has been reported95. This problem has been successfully 

overcome by chemically modifying the structure in order to effectively block 

biotinidase66,96. In addition, endogenous biotin levels (10-8-10-7 mol/L), 

immunogenicity of avidin and high and prolonged renal uptake markedly affect 

efficacy of avidin and streptavidin based pretargeting strategies63,67,97. Our DOTA-

modified biocytin conjugate can be used for in vivo application because it has tert-

amide which is unaffected by biotinidase enzyme. Stability of Gd-50 has been 

compared by in vivo histological application of 52.  

5.3.3.2. In vitro cell study of 54. Fluorescence microscopy of living cells displayed a 

detectable uptake of the compound into N18 neuroblastoma cells. Figure 33 shows 

example of cellular localization of 54 after incubation with 100 µM for 1 h and 

subsequent washings. 54 was internalized very quickly up to the nucleus of the cells 
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with vesicular distribution in the cytoplasmic projections. Also very prominent 

binding to the cellular membrane was (Fig. 33).  

 

 

 

Figure 34. Optical evidence for intracellular localization of 54 in N18 

neuroblastoma cells. Cells were incubated with 100 µM of 54 for 1 h in 

HEPES buffer as described in materials and methods. 

5.3.4. Conclusions  

In this chapter, we described synthesis and in vitro and in vivo applications of 

a stable modified biocytin (52), three structurally different macrocycle-biocytin 

derivatives (Gd-41, Gd-45, Gd-50) and one modified biocytin-fluoresceine conjugate 

(54).   

Modified biocytin is designed and synthesized to be used as a stable classical 

anatomical neuroanatomical tracer in contrast to conventional biocytin. Stability and 

functionality of this molecule has been proved by in vivo histological studies, where a 

number of nondegraded tracer molecules were present in the tissue at that particular 

time, and the presence of anterogradely stained fibers and retrogradely labeled cells 

demonstrated feasibility of the new tracer.  
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Other macrocycle containing biocytin derivatives were designed to have 

neuroanatomical tracers to be used in MR imaging. As we proved in histological 

studies that our modified biocytin is more stable as compared to conventional 

biocytin, so compound Gd-50 is a more appropriate tracer compared to Gd-41. 

Significant relaxivity enhancements in the presence of avidin show the potential of 

these CAs to be used not only as neuroanatomical tracers but also as diagnostic agents 

for cancer MR imaging. These CAs have been designed as neuroanatomical tracers, 

but they all have higher molecular weight as compared to modified biocytin. So 

before doing in vivo studies we have to prove that compounds are up taken by 

neuronal cells or not. It is tricky to know by MR that compounds are up taken by 

neuroblastoma cells; so we designed and synthesized a modified biocytin-fluoresceine 

conjugate, which has almost similar molecular weight and charge as Gd-50 and it is 

easy to check by optical imaging. New biocytin-fluoresceine conjugate has been 

tested in neuroblast cell line and it shows efficient uptake after 1 h incubation in N18 

neuroblastoma cells.  

The above studies and results reveal several interesting and specific properties 

of these different conjugates. Presented molecules in this study are a new class of 

biocytin-based and Gd-containing molecules that represent a new strategy for 

neuroanatomical tracing, combining the powerful spatial resolution of the 

conventional microscopic techniques with the whole brain tri-dimensional coverage 

and in vivo applicability of the MRI. 



Chapter 6: Synthesis of Novel Macrocyclic Bifunctional Ligands 
 

95 

 

  

  

 
 

 

 
 
 
 
 
 

CHAPTER 6 

Synthesis of Novel Macrocyclic Bifunctional 
Ligand for Development of “Smart” and 

“targeted” Contrast Agents: 

 [4,7-Bis-carboxymethyl-10-(2-amino-2-
carboxyethyl)-1,4,7,10-tetraaza-cyclododec-1-

yl]-acetic acid 
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6.1. Introduction 

‘Smart’ MRI CAs exhibit dynamic and reversible modulation of their relaxivity 

by specific physiological or biochemical trigger events such as changes in pH41-46, 

calcium ion concentration47-51, enzymatic activity52-54, or the binding of an 

intracellular messenger. ‘Targeted’ CAs are able to recognize specific target 

molecules inducing an enhancement of water proton relaxation rate on binding with 

the target molecule17,55. Mostly ‘smart’ or ‘targeted’ CAs can possess bifunctionality: 

‘Bifunctional’ chelating agents have the ability to incorporate lanthanide ions to make 

strong and stable chelates and contain in addition a chemically highly reactive 

group199. 

In previous research, acyclic and macrocyclic polyaminocarboxylate chelating 

agents have gained considerable attention200-204. The most promising agents studied so 

far are the acyclic chelating agent diethylenetetraaminepentaacetic acid (DTPA) and 

macrocyclic chelating agent [4,7,10-tris-carboxymethyl-1,4,7,10-tetraaza-cyclododec-

1-yl]-acetic acid (DOTA). Since our interest is to develop new macrocyclic contrast 

agents, the in vivo stability of the derivatives is of prime importance. It has been 

shown that, compared to acyclic CAs-macrocyclic derivatives form extraordinarily 

stable complexes with a variety of paramagnetic metal ions under physiological 

conditions201,203,205,206.  

Derivatives of DOTA [for example DOTA-tris (tert-butyl) ester] emerged as a 

useful synthon for the synthesis of various ‘targeted’ CAs after conjugation with a 

variety of biomolecules like peptides, bile acid, and proteins35,79,207-211. [4,7-Bis-

carboxymethyl-1,4,7,10-tetraaza-cyclododec-1-yl]-acetic acid (DO3A) is a part of 

DOTA and which is more stable as compared to acyclic chelates but less stable as 

DOTA. Several DO3A derivatives were extensively investigated in the recent 

years35,39,43-45.  DOTA is most stable chelates for paramagnetic metal ions but due to 

compact structure it has less water exchange rate. [4,7,10-tris-carboxymethyl-

1,4,7,10-tetraaza-cyclododec-1-yl]-propionic acid (DO3A-N-PA) is alternate of 

DOTA, which has similar stability constant but 5 times fast water exchange rate as 

compare to DOTA. DO3A-N-PA has three arms as an acetic acid which can bind 

tightly with lanthanide ions but propionic acid as fourth arm which is weakly 
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associated with paramagnetic metal ions. It is a useful precursor to develop variety of 

“targeted” CAs. A major limitation of these ligands is that the carboxylate group 

allows the possibility only for amide or ester bond formation. That’s why they restrict 

to develop “smart” CAs. In contrast to above molecules amine containing synthon 

[4,7-bis-carboxymethyl-10-(2-aminoethyl)-1,4,7,10-tetraaza-cyclododec-1-yl]-acetic 

acid (DO3A-EA) is a bifunctional ligand, bearing amine group that is readily reactive 

towards most electrophiles such as aldehydes, carboxylic acids and isothiocyanates to 

form various molecules for the development of ‘smart’ and ‘targeted’ CAs. This 

synthon have similar kinetics like DTPA/DO3A derivatives. 

 

 

 

 

 

 

 

 

Figure 35. Novel precursor with all other discussed ligands 

In an effort to develop new ‘specific’ MRI contrast agents, we designed and 

developed a novel multipurpose bifunctional chelating agent [4,7-Bis-carboxymethyl-

10-(2-amino-2-carboxyethyl)-1,4,7,10-tetraaza-cyclododec-1-yl]-acetic acid; [DO3A-

α-aminopropionic acid (DO3A-αAPA)], which is based on DO3A, where the 

secondary nitrogen at position 10 in the macrocycle is alkylated by brominated serine 

molecule. This precursor is combination of DO3A-EA and DO3A-N-PA, where it has 

carboxylate free to hold lanthanide ions with extraordinary stability under 

physiological condition and highly reactive amine to reacts with any electrophiles. 
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This molecule serve as useful precursors for developing ‘smart’ or ‘targeted’ contrast 

agents based on lanthanide chelates in the design of relaxometric MRI probes as 

shown in Fig. 35. We also present in this chapter a variety of possible applications of 

this macrocyclic ligand after conjugation with diverse organic molecules. This 

demonstrates the significance and potential of these precursors in the design of 

‘smart’ as well as bifunctional ‘targeted’ CA.  

6.2. Results and Discussions 

6.2.1 Synthesis of Ligand 

We present here the synthesis of novel precursor DO3A-αAPA in a new 

context, as precursor for the synthesis of CAs to design relaxometric MRI as well as 

optical probes. We have design and developed a synthetic route to obtain 64 

depending on the choice of protection and deprotection method (Scheme 14).  

In this route final ligand 64 was obtained from cyclen in over 5 steps, by 

bromination on hydroxyl group of N-carbobenzyloxy-L-serine methyl ester gives 

compound 59. During reaction of compound 59, we have been observed that reaction 

should not heat more then 60ºC, after few hour compound should be extracted by 

diethyl ether and purified by flash chromatography by using hexane and ethyl acetate. 

The most logical route to synthesize ligand 61 in one step by alkylation of 59 on tri-

substituted product 3, but due to elimination of bromine group in high basic condition 

gives starting compound as well as lots of side products. Keeping all things in mind 

we design another approach to get desired product, in this way 59 was monoalkylated 

on cyclen by using toluene as solvent and without any additional base to give 

compound 60. Alkylation on 60 by tert-butylbromoacetate gives ligand 61 with good 

yield. This is a precursor where you can selectively deprotect methyl, Cbz groups and 

use them to develop variety of smart’ or ‘targeted’ CAs. Free acid containing 

protected ligand 62 was obtained by mild hydrolysis of methyl group in the presence 

of LiOH. Reactive amine containing protected precursor 63 was obtained by 

deprotection of Cbz group in the presence of (10%) Pd-C using methanol as solvent in 

Parr-apparatus at50 psi. By the treatment of cocktail TFA and 1N NaOH, final 

compound 64 was isolated after RP-HPLC purification in very good yield. 
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Scheme 14. Reagents and conditions: (i) NBS, PPh3, DMF; (ii) dry toluene; 

(iii) tert-butylbromoacetate, NaHCO3, CH3CN; (iv) LiOH [THF;MeOH;water 

(3:2:2)]; (v) Pd-C (10%), H2, MeOH; (vi) TFA, 1N NaOH. 

Ligands 62, 63 and 64 have all kind of possibility to react selectively with 

electrophiles and neucleophiles. Compound 62 has potential to react proteins/ 

peptides/oligoneuclides to develop targeted contrast agents. Compound 63 has 

possibility to react easily with Pyridoxy-5-phosphate to develop enzyme sensitive 

contrast agents and also easily modified with EGTA, EDTA, BAPTA etc to develop 

calcium sensitive contrast agents. By coupling with biomolecules it can easily convert 

in as CAs for pretargeted diagnosis and therapy. 
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Scheme 15: Possible applications of novel precursors   

6.2.3. Conclusion 

In conclusion, we report the potential of the ligand DO3A-αAPA as a 

multipurpose precursor, from which various targeted CAs can be synthesized after 

single step conjugation with organic molecules/biomolecules. Additionally, the 

presented precursors cover the entire range of reactivity for the coupling to 

electrophilic and nucleophilic groups. They possess a great potential for coupling with 

biological molecules, proteins, vitamins and antibodies for the ease and facile 

synthesis of various kinds of targeted contrast agents.  
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7. SUMMARY, CONCLUSIONS AND OUTLOOK 

The first part of thesis contained synthetic bifunctional probes based on 

DO3A-EA preloaded with gadolinium which were prepared for applications in 

targeted MRI and optical imaging. A convenient route of synthesis is reported, which 

allowed conjugation of this probe with biomolecules for the preparation of model MR 

contrast agents for targeted imaging.  
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The conjugated probes have the following interesting properties: 1) Gd-9 can 

be used for targeted imaging using an avidin-biotin system. 2) The fluorescent probe 

Gd-12 is a bimodal compound, which can be used for both MR and optical imaging. 

The precursors, 11 and 13 contain a highly reactive moiety, which can interact with 

free SH-terminal and N-terminals of biological molecules, respectively. In vitro MR 

relaxivity studies were performed at a 300 MHz using different concentrations and 

chemical environments. MR relaxivity for ligand Gd-9 at pH 7.4, r1 was (3.32 ± 0.03) 
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s-1mM-1 and r2 was (5.02 ± 0.14) s-1mM-1. For the mixture of Gd-9 with avidin, at pH 

7.4, relaxivity increased linearly with the avidin concentration. A relaxivity 

enhancement of 45% for r1 and more than 400% for r2 with respect to the unbound 

biotinylated Gd3+ complex was found at a ratio of 4:1. Fluorescence microscopy and 

spectroscopy of Gd-12-labeled 3T3 mouse fibroblasts showed a concentration-

dependent intracellular uptake, which however was concomitant to a slight increase in 

toxicity up to 150 µM. MR studies on labeled cells indicated a contrast enhancement 

in both T1- and T2-weighted images by the internalized compound, with the effect 

being more pronounced in T2-weighted images. Our results indicate that DO3A-

ethylamine is a multipurpose precursor, from which various targeted contrast agents 

can be synthesized after a single-step conjugation with organic/bioorganic molecules. 

In the second phase of work contained four DO3A-based lanthanide(III) 

complexes bearing ester protected and unprotected phosphonate groups which have 

been synthesized and analyzed. The ligands were made by four-step synthetic 

procedures and purified with preparative RP-HPLC, after which they were used to 

prepare gadolinium(III) and europium(III) complexes. Relaxometric experiments 

were performed on Gd3+ complexes at 300 MHz (7T), varying the pH of the solutions 

or the concentration of human serum albumin (HSA). It was found that when the pH 

of the medium was changed from neutral to pH 4 the longitudinal relaxivity of Gd-17 

complex increased by 50%. Diethyl ester of this complex Gd-16 did not change 

longitudinal relaxivity in the same pH range but their transverse relaxivity increased 

upon binding to HSA. 31P NMR experiments on Eu3+ complexes showed the change 

in the chemical shift of acid and diester complexes in the same region where the 

highest relaxivity changes were observed and proved the stability of the complexes in 

the investigated pH range. Luminescence studies on europium(III) complexes 

additionally supported observations obtained by NMR methods. The change in the 

form of the luminescence emission spectra, and the reduction in q value upon addition 

HSA proved the ternary adduct formation between the charge neutral diester complex 

and HSA. Similarly, the change in the emission spectra showing a phosphonate bound 

structure at pH 7 to a species where the phosphonate oxygen is not coordinated at pH 

4 in parallel to the increase of q value supporting the hypothesis that the deprotonation 

of phosphonates is the main reason for the distinct relaxivity change from slightly 

acidic to the neutral solution media. 
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The third part of this thesis described some novel GdDO3A-type 

bismacrocyclic complexes; conjugated to Ca2+ chelating moieties like EDTA- and 

DTPA-bisamides, were synthesized as potential ‘smart’ MRI contrast agents. Their 

sensitivity towards Ca2+ was studied by relaxometric titrations. A maximum relaxivity 

increase of 15, 6 and 32 % was observed upon Ca2+ binding for Gd2-25, Gd2-26 and 

Gd2-27, respectively.  
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The apparent association constants are logKA = 3.6±0.1 for Gd2-25 and logKA 

= 3.4±0.1 for Gd2-27. For the interaction between Mg2+ and Gd2-25, logKA = 2.7±0.1 

has been determined, while no relaxivity change was detected with Gd2-27. 

Luminescence lifetime measurements on the Eu3+ complexes in the absence of Ca2+ 

gave hydration numbers of q = 0.9 (Eu2-25), 0.7 (Eu2-26) and 1.3 (Eu2-27). The 

parameters influencing proton relaxivity of the Gd3+ complexes were assessed by a 

combined NMRD and 17O NMR study. Water exchange is relatively slow on Gd2-25 

and Gd2-26 (kex
298 = 0.5 and 0.8 x 106 s-1), while it is faster on Gd2-27 (kex

298 = 80 x 
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106 s-1); in any case, it is not sensitive to the presence of Ca2+. The rotational 

correlation time, τR
298, differs for the three complexes and reflects their rigidity. Due 

to the benzene linker, the Gd2-26 complex is remarkably rigid, with a correspondingly 

high relaxivity despite the low hydration number (r1 = 10.2 mM-1s-1 at 60 MHz, 298 

K). Based on all available experimental data from luminescence, 17O NMR and 

NMRD studies on the Eu3+ and Gd3+ complexes of 25 and 27 in the absence and 

presence of Ca2+, we conclude that the relaxivity increase observed upon Ca2+ 

addition can be mainly ascribed to the increase in the hydration number, and, to a 

smaller extent, to the Ca2+ induced rigidification of the complex. 

In the fourth phase, our aim was to synthesize multimodal neuronal tracer 

molecules that can be visualized not only by microscopic techniques in postmortem 

fixed tissue, but also by MRI in living animals, allowing in vivo brain connectivity 

studies to be performed. In order to achieve our goal, we designed and synthesized 

three novel and structurally different gadolinium containing biocytin-based 

neuroanatomical tract-tracers (41, 45, and 50).  
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In the first tracer (41), Gd-DO3A-EA is connected with biocytin via amide 

linkage. The second tracer (45) is based on Gd-DOTA precursor coupled to L-lysine 

via amide. The third tracer (50) is derived from newly developed modified-biocytin 

where propylamine is linked to amide of biocytin giving the possibility to couple Gd-

DOTA as MRI marker. In vitro MR experiments with increasing concentrations of 

avidin were performed at 7T. A linear enhancement in transverse relaxivity (r2) for 

Gd loaded 41, 45, and 50 (439-168% respectively) were observed demonstrating 

strong binding of  41 and 50 tracers in the pocket of tetrameric avidin. By replacing 

Gd-DOTA with FITC in 50, the efficiency of cell internalization was demonstrated 

microscopically with fluorescence methods with compound 54. Comparative 

histological results of 39 and 52 clearly showed that modified biocytin (54) is 

functionally same but more stable as compare to conventional biocytin. Our 

preliminary results suggest that the class of biolytic-based and Gd-containing 

molecules here described, represents a new strategy for neuroanatomical tracing that 

combines the powerful spatial resolution of the conventional microscopic techniques 

with the whole brain tri-dimensional coverage and in vivo applicability of the MRI. 

7.1. Comparative Relaxivity Data of Studied Complexes.  

  Relaxivity measurements were acquired by taking the slope of a plot of the (R1 

and R2) relaxation rate versus concentration, where relaxivity (r1 and r2) is a measure 

of the ability of a contrast agent to shorten T1 or T2 (Table 7). 

Contrast 
Agents r1  (mM-1S-1) r2  (mM-1S-1) 

Gd-9 3.32 ± 0.03 5.02 ± 0.14 
Gd-12 5.36 ± 0.05 8.57 ± 0.11 
Gd-16 4.30 ± 0.05 6.45 ± 0.10 
Gd-17 4.03 ± 0.05 6.10 ± 0.12 
Gd2-25 4.67 ± 0.03 7.01 ± 0.15 
Gd2-26 4.56 ± 0.04 6.84 ± 0.10 
Gd2-27 5.32 ± 0.03 8.51 ± 0.11 
Gd2-31 4.81 ± 0.05 7.69 ± 0.13 
Gd2-36 3.94 ± 0.02 5.91 ± 0.15 
Gd-41 4.69 ± 0.06 7.86 ± 0.02 
Gd-45 4.39 ± 0.09 6.84 ± 0.06 
Gd-50 4.05 ± 0.06 6.85 ± 0.02 

 
Table 7. MR measurements of the contrast agents in aqueous solution were 

performed at 7T at room temperature.
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8. MATERIALS AND METHODS 

8.1. Chemicals and Working Techniques  

The chemicals were purchased from the firms Acros, Aldrich, Fluka, Merck, 

Strem and VWR. All reagents were obtained from commercial suppliers, and were 

used without further purification unless otherwise stated. All solvents were distilled 

and/or dried prior to use by slandered methodology except for those, which were 

reagent grades. Anhydrous solvents were obtained as follows: dichloromethane and 

chloroform by distillation from calcium hydride; THF, diethyl ether and toluene by 

distillation from sodium and benzophenone. Absolute triethylamine and 

diisopropylamine were distilled over calcium hydride prior to use. Unless and 

otherwise mentioned, all the reactions were carried out under a nitrogen atmosphere 

and the reaction flasks were pre-dried by heat gun under vacuum. All the chemicals, 

which were air or water sensitive, were stored under inert atmosphere. Pure water (18 

MΩ cm-1) was used throughout. All glass lab ware was washed with a mixed acid 

solution and thoroughly rinsed with deionized, distilled water212. Compound that are 

not described in the experimental part were synthesized according to the literature. 

8.2. Reversed Phase High-Performance Liquid Chromatography (RP-HPLC) 

HPLC was performed at room temperature on a Varian PrepStar Instrument, 

Australia, equipped with PrepStar SD-1 pump heads. UV absorbance was measured 

using a ProStar 335 photodiode array detector at 214 nm and 254 nm. This detector is 

equipped with a dual-path length flow cell which enables measurement of absorption 

of analytical and preparative samples without changing the flow cell. Reversed-phase 

analytical HPLC was performed in a stainless steel Chromsep (length 250 mm, 

internal diameter 4.6 mm, outside diameter 3/8 inch and particle size 8 µm) C18 

column and preparative HPLC was performed in a stainless steel Chromsep (length 

250 mm, internal diameter 41.4 mm, outside diameter 2 inch and particle size 8 µm) 

C18 column (Varian, Advanced Chromatographic Solutions). The compounds were 

purified using one of the three methods.  
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Method A: the gradient was used with the mobile phase starting from 95% 

solvent A (water) and 5% of solvent B (MeOH) to 70% B in 10 min, 100% B in 

18min, 100% B isocratic till 24 min and decreased to 5% B in 28 min.  

Method B: isocratic mode was maintained with mobile phase starting from 

97% solvent A (water) and 3% of solvent B (MeOH) for 8 min.  

Method C: the gradient was used with the mobile phase starting from 90% 

solvent A (0.1% TFA in water) and 10% of solvent B (0.1% TFA in MeCN) to 70% B 

in 20 min, 100% B in 28min, 100% B isocratic till 34 min and decreased to 10% B in 

38 min.  

The flow rate generally used for analytical HPLC was 1 mL/min and for 

preparative HPLC was 41 mL/min. All the solvents for HPLC were filtered through a 

nylon-66 Millipore filter (0.45µm) prior to use. 

8.3. NMR-Spectroscopy 

Analytical 1H, 13C and 31P NMR spectra were recorded on a Bruker 250 MHz 

and 400 MHz spectrometer (1H; internal reference CDCl3 at 7.27 ppm, MeOH at 50 

ppm or D2O at 4.75 ppm); 62.9 MHz and 100 MHz spectrometer (13C; internal 

reference CDCl3 at 77.0 ppm, MeOH at 50 ppm or TMS at 0.0 ppm); 62.9 MHz and 

100 MHz spectrometer (31P; external reference 85% H3PO4 0.0 ppm). All experiments 

were performed at 25°C. Data are reported as follows: chemical shift (multipilicity: s 

= singlet, d = doublet, t = triplet, dd = doublet of doublet, m = multiplet, br = 

broadened, J = coupling constant (Hz), integration, peak assignment in italic form. 

8.4. Mass Spectrometry 

ESI low resolution mass spectra (ESI-MS) were recorded on SL 1100 system 

(Agilent, Germany) with ion-trap detection in positive and negative ion mode. HR-

FT-ICR mass spectra were measured on an APEX 2 spectrometer from Bruker 

Daltonic with electrospray ionization method (ESI). High resolution mass (HRMS) 

are reported as follows: (ESI): calcd mass for the related compound by found mass. 

8.5. Melting points 

Melting points were determined with a Büchi Melting point B-540 apparatus 

and were not corrected. 
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8.6. Chromatographic methods 

Flash column chromatography was performed using flash silica gel 60 (70-230 

mesh) from Merck. Analytical thin layer chromatography (TLC) was performed on 

aluminum sheet silica gel plates with 0.2 mm thick silica gel 60 F254 (E. Merck, 

Germany) using different mobile phase. The compounds were visualized by UV254 

light and TLC plates were developed in Iodine chamber. 

8.7. Relaxometric Measurement Parameters 

8.7.1. Relaxaometric Measurement Parameters at 7T.  

The measurement of the relaxation rates R1 and R2 (longitudinal and transverse 

relaxation) of the Gd-41 and Gd-50 were performed at 300 MHz (7T) on a vertical 

7T/60 cm MRI Biospec system (Bruker Biospin, Germany), which was described 

recently83,125. Up to 16 tubes could be measured simultaneously. The relaxation rate 

measurements of the samples were performed at room temperature (~21˚C). 

For R1, a spin echo saturation recovery sequence was used varying repetition 

time TR and keeping the echo time TE minimal and constant. Typical parameters 

were: field of view 17 x 6.9 cm2, matrix 512 x 256, slice thickness 4 mm, SW 70 kHz, 

TE 15 ms, TR 40-8000 ms (logarithmic time steps, 80 images). For R2, a multi-spin-

echo sequence was used with a long TR between excitations. Similar parameters were 

used, but TR = 8 s and TE = 17-850 ms (linear echo time steps, 50 echoes).  

Fitting of T1,2 values was done voxel wise on selected ROIs using the 

MATLAB program. The longitudinal relaxivity (r1) and transverse relaxivity (r2) was 

calculated from the slope of R1,2 versus the CA concentration by an error-weighted 

linear regression. The errors for all r1 values were less then 2% and are not displayed 

on graphs. The Gd(III) concentrations were determined by ICP-OES.   

8.7.2. Relaxaometric Measurement Parameters at 3T and 1.5T.  

For R1 measurements at field strengths 3T and 1.5T, an inversion recovery 

sequence was used to obtain images from a 2 mm thick slice through the samples. The 

inversion time was varied from 23 ms to 3000 ms in about 12 steps. The images were 

read out with a turbo spin echo technique, acquiring 5 echoes per scan. The repetition 

time TR was 10 s to ensure complete relaxation between the scans. A resolution of 

256 × 256 voxels over a Field-of-view of 110 × 110 mm2 was reached. Six averages 
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were acquired within less than 25 min. For the R2 measurements at low fields, a 

simple spin-echo sequence with varying echo time was used. With the same slice 

thickness, spatial resolution and Field-of-view as in the R1 measurements, about 10 

images with different TE, varying from 12 ms to 1 s, were acquired with a repetition 

time of 8s within 34 min each. 

8.7.3. Data analysis125.  

The fitting to relaxivity curves was performed with self-written routines under 

MATLAB 6.5 R13 (The Mathworks Inc.). The series of T1 and T2 relaxation data 

were fitted to the following equations: a) T1 series with varying t = TR:  S = S0 (1 - α ⋅ 

exp(−t / T1)). b) T2 series with varying t = TE:  S = S0 exp (−t / T2) + β. Nonlinear 

least-squares fitting of three parameters S0, T1/T2, and α/β was done for each voxel 

with the Gauss-Newton method (MATLAB function nlinfit). For each fitted 

parameter, the 95% confidence intervals were calculated (MATLAB functions 

nlparci, nlpredci) and used as an error estimate of the fitted relaxation times 

T1/T2 and S0 (initial signal at t = 0). The fit procedure resulted in parameter maps of 

T1, T2, S0 and corresponding error maps σT1, σT2, σS0.  

Image-regions around the tubes were defined as Regions Of Interest (ROIs), 

and the means and distribution width of the relaxation times of voxels in these regions 

were calculated: An iterative Gaussian fit was used to determine mean and standard 

deviation (SD) of a distribution with outliers. For this purpose, a distribution 

histogram was first fitted to a Gaussian to estimate mean and SD. The tails of the 

distribution were then discarded by using a threshold of three SDs. A repeated fit 

proved to be robust and converged to the 'true' Gaussian mean and width of the 

distribution barring the outliers, observed as a result of the non-linear fit of noisy 

voxels.  

The processing of the relaxation data thus resulted in specific R1,2 = 1/T1,2 

values for each tube sample including the standard deviation in the selected ROI 

ensemble. The ensemble error matched closely the errors of a single-voxel fit, which 

showed that no further systematic errors were introduced by the image encoding. 

Finally, the relaxivity r1,2 was calculated from the slope of R1,2(c) versus the 

concentration  c  of the contrast agent by an error-weighted linear regression.  
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8.8. Experimental Procedures  

All the experimental procedures are arranged in the ascending order of number 

of the compound. 

[4,7-Bis-butoxycarbonylmethyl-10-(N-Boc-2-aminoethyl)-1,4,7,10-tetraaza-

cyclododec-1-yl]-acetic acid tert-butyl ester (4).  

 

 

 

 

 

 

A solution of 3 (0.8 g, 1.5 mmol) and K2CO3 (0.43 g, 3.1 mmol) in 5 mL DMF 

was stirred at room temperature for 1 h. 1 (0.418 g, 1.9 mmol) was added in one 

aliquot to the above solution and the reaction mixture was heated at 70-80˚C for 7-8 h. 

The reaction was monitored by TLC and developed in an iodine chamber. After 

completion, the reaction mixture was poured into 150 mL water and extracted with 

CH2Cl2 (3x50 ml). The organic layer was evaporated under reduced pressure and 

purified by column chromatography (silica gel, 5% MeOH in CH2Cl2; Rf = 0.55) to 

give 1.49 g (72%) of 4 as off white solid.  

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.45 (s, 36H); 2.71-4.6 (m, 26H); 5.35 (s, 1H). 
13C NMR (CDCl3, 62.9 MHz), δ (ppm): 27.5; 47.7; 48.6; 49.2; 50.4; 51.4; 53.1; 54.3; 

78.8; 81.7; 84.0; 164.7; 169.7.  

ESI-HRMS (+): calcd C33H63N5O: m/z 658.47494 (M+H)+ and found 658.47418 

(M+H)+. 

[4,7-Bis-methoxycarbonylmethyl-10-(N-Boc-2-aminoethyl)-1,4,7,10-tetraaza-

cyclododec-1-yl]-acetic acid methyl ester (5).  

A solution of 2 (0.8 g, 2.5 mmol), Na2CO3 (2.08 g, 20.0 mmol) and 

methylbromoacetate (0.84 mL, 8.7 mmol) in MeCN (100 mL) was stirred at 60-70°C 

for 7-8 h. The reaction was monitored by TLC and developed in an iodine chamber. 
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After completion, the reaction mixture was filtered and washed with CH2Cl2 (2x20 

ml). The filtrate was evaporated under reduced pressure and purified by column 

chromatography (silica gel, 5% MeOH in CH2Cl2; Rf = 0.55) to give 1.08 g (82%) of 

5 as off white solid.  

 

 

 

 

 

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.24 (s, 9H); 2.23-2.71 (m, 18H); 3.06 (s, 2H); 

3.09 (s, 2H); 3.17 (s, 4H); 3.56 (s, 3H); 3.63 (s, 6H); 5.43 (s, 1H). 13C NMR (CDCl3, 

62.9 MHz), δ (ppm): 27.7; 36.9; 49.7; 51.0; 51.7; 51.98; 54.1; 54.6; 55.1; 78.3; 156.3; 

173.2; 173.5.  

ESI-HRMS (+): calcd C24H45N5O8: m/z 532.33409 (M+H)+ and found 532.33416 

(M+H)+. 

[4,7-Bis-methoxycarbonylmethyl-10-(2-aminoethyl)-1,4,7,10-tetraaza-

cyclododec-1-yl]-acetic acid methyl ester (6).  

 

 

 

 

 

 

Reaction 1: A solution of 5 (1.0 g, 1.9 mmol) in TFA (2 mL) and CH2Cl2 (8 

mL) was stirred at room temperature for 1-2 h. The solvent was evaporated under 

reduced pressure and the residue was dissolved in a minimum volume of MeOH (1 

mL), followed by addition of diethyl ether dropwise at 0-5˚C and stirr for 1 h at room 

temperature. The TFA salt of the compound was precipitated and filtered through a G-

4 sintered funnel under nitrogen. The precipitate was dissolved in water, neutralized 

N

N N

N

O OMe
O

OMe

O

MeO

NHBoc

N

N N

N

O OMe
O

OMe

O

MeO

NH2



Materials and Methods 
 

112 

 

by addition of 1M Na2CO3 and evaporated under reduced pressure at 50˚C for 2 h to 

give 0.65 g (80%) of 6 as off white solid. 

Reaction 2: A solution of 7 (0.4 g, 1.0 mmol) in MeOH (10 mL) and HCl gas 

was passed in reaction mixture for 3-4 h. Finally, the round bottom flask was tightly 

closed with a stopper and stirred overnight. The solvent was evaporated under 

reduced pressure and dissolved in a minimum volume of MeOH (1 mL), followed by 

addition of diethyl ether dropwise at 0-5˚C and stir for 1 h at room temperature. The 

compound was precipitated and filtered through a G-4 sintered funnel under nitrogen. 

The precipitate was dissolved in water, neutralized by adding 1 M Na2CO3 and 

evaporated under reduced pressure at 50˚C for 2 h to give 0.31g (95%) of 6 as white 

solid. 

1H NMR (MeOD, 250 MHz), δ (ppm): 2.46-2.80 (m, 20H); 3.32 (br. s, 6H); 3.65 (s, 

3H); 3.70 (s, 6H). 13C NMR (MeOD, 62.9 MHz), δ (ppm): 38.3; 46.7; 50.9; 52.0; 

52.2; 52.7; 52.9; 56.4; 57.5; 173.4; 174.5.  

ESI-HRMS (+): calcd C19H37N5O6: m/z 432.28166 (M+H)+ and found 432.28157 

(M+H)+. 

[4,7-Bis-carboxymethyl-10-(2-aminoethyl)-1,4,7,10-tetraaza-cyclododec-1-yl]-

acetic acid (7, DO3A-EA).  

 

 

 

 

 

 

Reaction 1: A solution of 4 (2.0 g, 3.0 mmol) in TFA (10 mL) was stirred at 

room temperature for 18-20 h. The reaction was monitored by ESI-MS. The solvent 

was evaporated under reduced pressure and dissolved in a minimum volume  of 

MeOH (1 mL) followed by addition of diethyl ether dropwise at 0-5˚C and stir for 1 h 

at room temperature. The compound was precipitated and filtered through a G-4 
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sintered funnel under nitrogen. The precipitate was dissolved in water and neutralized 

by adding 1 M Na2CO3.  

Reaction 2: A solution of 6 (0.5 g, 1.16 mmol) in 14 mL of THF:MeOH:water 

(3:2:2) was stirred at 0-5˚C for 15 min and then LiOH (0.06 g, 0.25 mmol) was added. 

The reaction mixture was stirred for 2-3 h at room temperature. The progress of the 

reaction was checked by ESI-MS. After completion, the reaction mixture was 

concentrated under reduced pressure. The compound was purified by preparative 

HPLC (condition B, λ = 214 nm, RT = 2.4 min). After lyophilization, 0.76 g (64%) of 

7 as white powder was obtained. 

1H NMR (D2O, 250 MHz), δ (ppm): 2.70 -3.20 (m, 12H); 3.30-3.7 (m, 10H); 3.89 

(br. s, 4H). 13C NMR (D2O, 62.9 MHz), δ (ppm): 36.5; 48.4; 48.6; 50.8; 52.5; 53.7; 

57.6; 170.7; 176.6.  

ESI-MS (+): calcd C16H31N5O6: m/z 390.2 (M+H)+; found 390.2 (M+H)+. 

 [4,7-Bis-methoxycarbonylmethyl-10-{2-[5-(2-oxo-hexahydro-thieno[3,4-

d]imidazol-4-yl)-pentanoylamino]-ethyl}-1,4,7,10-tetraaza-cyclododec-1-yl]-

methylacetate (8,).  

 

 

 

 

 

 

 

 

A solution of methyl protected DO3A-EA (6) (0.38 g, 0.88 mmol), biotin (0.2 

g, 0.82 mmol), NMM (0.18 mL, 1.7 mmol) and HOBt (0.13 g, 0.96 mmol) in DMF (5 

mL) was stirred at 0-5˚C for 15 min and then EDC (0.19 g, 0.99 mmol) was added. 

The reaction mixture was stirred overnight at room temperature. The reaction was 

monitored by TLC and developed in an iodine chamber. After completion, the 
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reaction mixture was poured in water, extracted with CH2Cl2 (3x100 mL), organic 

layer was dried over Na2SO4, filtered, filtrate was evaporated under reduced pressure 

and purified by column chromatography (silica gel, 10% MeOH in CH2Cl2; Rf=0.25) 

to give 0.32 g (55%) of 8 as dark yellow viscous oil. 

1H NMR (D2O, 250 MHz), δ (ppm): 1.35-1.67 (m, 6H); 2.25 (t, J=6.87 Hz, 2H); 

2.70-3.29 (m, 12H); 3.45-3.61 (m, 17H); 3.71 (s, 6H); 3.81 (s, 3H); 4.35-4.40 (m, 

1H); 4.54-4.59 (m, 1H). 13C NMR (D2O, 62.9 MHz), δ (ppm): 22.6; 25.5; 25.8; 31.7; 

33.1; 37.5; 46.6; 48.1; 49.8; 50.7; 51.4; 52.2; 53.2; 58.1; 59.9; 165.6; 171.1; 174.9.  

ESI-HRMS (+): calcd C29H51N7O8S: m/z 658.35926 (M+H)+; found 658.35913 

(M+H)+.  

[4,7-Bis-carboxymethyl-10-{2-[5-(2-oxo-hexahydro-thieno[3,4-d]imidazol-4-yl)-

pentanoylamino]-ethyl}-1,4,7,10-tetraaza-cyclododec-1-yl]-acetic acid (9, DO3A-

ethylamido-biotin).  

 

 

 

 

 

 

 

 

A solution of 8 (0.1 g, 0.15 mmol) in 10 mL of THF:MeOH:water (3:2:2) was 

stirred at 0-5˚C for 15 min and then LiOH (12 mg, 0.5 mmol) was added. The reaction 

mixture was stirred for 3 h at room temperature. The progress of the reaction was 

monitored by ESI-MS. After completion, the solvent was evaporated under reduced 

pressure and the residue was purified by preparative HPLC [method A, λ = 214 nm, 

retention time (RT) = 9.4 min]. After lyophilization, 72 mg (77%) of 9 as white solid 

compound was obtained. 
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 1H NMR (D2O, 250 MHz), δ (ppm): 1.37-1.45 (m, 2H); 1.61-1.68 (m, 4H); 2.27 (t, 

J=6.87 Hz, 2H); 2.74-3.23 (m, 14H); 3.32-3.38 (m, 9H); 3.48 (s, 3H); 3.75 (s, 3H); 

4.39-4.44 (m, 1H); 4.58-4.62 (m, 1H) . 13C NMR (D2O, 62.9 MHz), δ (ppm): 22.7; 

25.4; 25.7; 28.0; 33.0; 33.2; 37.5; 46.1; 46.8; 48.3; 49.1; 52.7; 53.1; 54.4; 58.0; 59.8; 

163.0; 169.3; 174.7.  

ESI-HRMS (+): calcd C26H45N7O8S: m/z 616.31231 (M+H)+, found 616.31194 

(M+H)+. 

[4,7-Bis-methoxycarbonylmethyl-10-{2-[4-(2,5-dioxo-2H-pyrrol-1(5H)-yl)-

butanamido]-ethyl}-1,4,7,10-tetraaza-cyclododec-1-yl]-methylacetate (10). A 

solution of 6 (0.2 g, 0.46 mmol), 4-maleimidobutyric acid (0.127 g, 0.69 mmol), 

NMM (0.15 mL, 1.38 mmol) and HOBt (0.103 g, 0.76 mmol) in DMF (5 mL) was 

stirred at 0-5˚C for 15 min and then EDC (0.147 g, 0.76 mmol) was added. The 

reaction mixture was stirred overnight at room temperature. The progress of reaction 

was monitored by TLC using CH2Cl2:MeOH, 9:1 and Rf of (10) was 0.2. After 

completion, the reaction mixture was poured in excess of water and extracted with 

CH2Cl2 (3x100 mL). Combined organic layers were dried over Na2SO4, filtered, 

filtrate was evaporated under reduced pressure and the residue was purified by 

column chromatography (silica gel, 10% MeOH in CH2Cl2) to give 0.14 g (66%) of 

10 as dark yellow viscous compound.  

 

 

 

 

 

 

 

1H NMR (D2O, 250 MHz), δ (ppm): 1.86-1.92 (m, 2H); 2.36 (t, J=7.32 Hz, 2H); 

2.42-2.80 (m, 18H); 3.25-3.38 (m, 6H); 3.51-3.57 (m, 4H); 3.73 (s, 3H); 3.80 (s, 6H); 

6.69 (s, 2H); 8.37 (br s, 1H). 13C NMR (CDCl3, 62.9 MHz), δ (ppm): 24.5; 32.9; 36.2; 

37.4; 50.2; 50.8; 51.7; 52.5; 54.9; 55.1; 55.4; 133.9; 170.5; 171.2; 173.4; 173.7.  
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ESI-HRMS (+): calcd C27H44N6O9: m/z 597.32425 (M+H)+, found 597.32421 

(M+H)+. 

[4,7-Bis-carboxymethyl-10-{2-[4-(2,5-dioxo-2H-pyrrol-1(5H)-yl)-butanamido]-

ethyl}-1,4,7,10-tetraaza-cyclododec-1-yl]-acetic acid (11, DO3A-

ethylamidopropyl-maleimide).  

A solution of 10 (0.1 g, 0.17 mmol) in 14 mL of THF:MeOH:water (3:2:2) 

was stirred at 0-5˚C for 15 min and then LiOH (20 mg, 0.83 mmol) was added. The 

reaction mixture was stirred for 3 h at room temperature. The progress of the reaction 

was monitored by ESI-MS. After completion, the solvent was evaporated under 

reduced pressure and the residue was purified by preparative HPLC (method A, λ = 

214 nm, RT = 5.8 min). After lyophilization, 72 mg (86%) of 11 as off-white solid 

compound was obtained. 

 

 

 

 

 

 

  

1H NMR (D2O, 250 MHz), δ (ppm): 1.80-1.94 (m, 2H); 2.37 (t, J=7.48 Hz, 2H); 3.03 

(t, J=6.10 Hz, 2H ); 3.20-3.31 (m, 10H); 3.40-3.51 (m, 15H); 3.83 (s, 4H). 13C NMR 

(D2O, 62.9 MHz), δ (ppm): 25.5; 35.4; 38.0; 41.0; 51.1; 51.6; 53.1; 53.7; 53.9; 54.9; 

56.8; 58.9; 137.1; 173.8; 175.8; 178.3.  

ESI-HRMS (+): calcd C24H38N6O9: m/z 555.27730 (M+H)+, found 555.27740 

(M+H)+. 
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[4,7-Bis-carboxymethyl-10-(2-fluoresceinthioureaethyl)-1,4,7,10-tetraaza-

cyclododec-1-yl]-acetic acid (12, DO3A-ethylthiourea-FITC).  

 

 

 

 

 

 

 

 

 

 

A solution of DO3A-EA (7) (0.1 g, 0.26 mmol) in 10 mL of water was stirred 

at room temperature and FITC (0.11 g, 0.28 mmol) was added at pH 8.5. During 

stirring, pH was maintained at 8.0-8.5 by addition of 1M Na2CO3. The reaction 

mixture was stirred for 18-20 h at room temperature in dark. The reaction was 

monitored by ESI-MS. The reaction mixture was evaporated under reduced pressure 

and the residue was purified by preparative HPLC (method A, λ = 254 nm, RT = 6.8 

min). After lyophilization, 0.11 g (55%) of 12 as dark orange solid compound was 

obtained.  

1H NMR (D2O, 250 MHz), δ (ppm): 2.86-2.99 (m, 18H); 3.38-3.42 (overlapped s, 

6H); 3.75 (bs, 2H); 6.52 (s, 1H); 6.53 (s, 1H); 6.55 (s, 1H); 6.59 (s, 1H); 7.16 (t, J = 4 

Hz, 2H); 7.20 (s, 1H); 7.49 (d, J = 6.4 Hz, 1H); 7.66 (s,1H). 13C NMR (D2O, 62.9 

MHz), δ (ppm): 43.5; 52.5; 53.2; 53.7; 53.9; 55.0; 59.9; 106.3; 115.1; 125.7; 127.7; 

128.9; 132.1; 133.7; 134.2; 143.5; 161.4; 161.4; 176.8; 179.5; 179.8 183.3.  

ESI-HRMS (+): calcd C37H42N6O11S: m/z 779.27050 (M+H)+, found 779.27051 

(M+H)+. 
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[4,7-Bis-carboxymethyl-10-(2-isothiocyanatoethyl)-1,4,7,10-tetraaza-cyclododec-

1-yl]-acetic acid (13, DO3A-ethyl-isothiocyanate).  

 

 

 

 

 

 

A solution of 7 (0.2 g, 0.5 mmol) in water (10 mL) was stirred at room 

temperature and thiophosgene (0.18 g, 1.5 mmol) in 5 mL CCl4 was added dropwise. 

The pH of the mixture maintained 7.5-8 using 1M Na2CO3. The reaction was 

monitored by ESI-MS. The reaction mixture was evaporated and the residue was 

purified by preparative HPLC (method B, λ = 214 nm, RT = 2.7 min). After 

lyophilization, 0.13 g (59%) of 13 as light yellow solid was obtained.  

1H NMR (D2O, 250 MHz), δ (ppm): 3.23-3.79 (m, 20H); 4.20 (br. s, 6H). 13C NMR 

(D2O, 62.9 MHz), δ (ppm): 42.8; 48.5; 51.4; 51.9; 52.8; 55.9; 57.9; 129.3; 178.1; 

179.0.  

ESI-HRMS (+): calcd C17H29N5O6S: m/z 449.21768 (M+NH4)+, found 449.21790 

(M+NH4)+. 

Preparation of Gd3+ Complexes of Ligands 9, 11-13. The Gd complexes of ligands 

9, 11-13 were prepared from respective solution of the ligand (1 eq) and solution of 

GdCl3.6H2O (1.1 eq). The reaction mixture was stirred at 50-60° C for 12-16 h. The 

pH was periodically checked and adjusted to 7.0-8.0 using a solution of Na2CO3 (1 

M) and HCl (1 N) as needed. After 12-16 h, the reaction mixture was passed through 

chelex-20 to trap free Gd3+ ions, and the Gd-loaded complex was eluted. The fractions 

were lyophilized and white solids were obtained. The absence of free Gd3+ was 

checked with xylenol orange indicator. 

Gd-9. ESI-MS (-): calcd C26H42GdN7O8S: m/z 770.2; found 769.1 (M-H)-. 

Gd-11. ESI-MS (-): calcd C24H35GdN6O9: m/z 709.2; found 708.1 (M-H)-. 

Gd-12. ESI-MS (-): calcd C37H39GdN6O11S: m/z 932.2; found 931.3 (M-H)-. 
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Gd-13. ESI-MS (-): calcd C17H26GdN5O6S: m/z 586.1; found 584.9 (M-H)-. 

diethyl 2-(1, 4, 7, 10-tetraazacyclododecane-1-yl)ethylphosphonate (14).  

 

 

 

 

 

A solution of LiOH (0.14 g, 5.8 mmol) and cyclen (4.00 g, 23.4 mmol) were 

dissolved in ethanol:water (20:2 ml) at room temperature and diethyl-2-

bromoethylphosphonate (0.85 ml, 4.7 mmol) was added dropwise. The reaction 

mixture was refluxed for 8 h. The product was concentrated under reduced pressure 

and extracted from the reaction mixture using CH2Cl2 (4x100 ml). The 

dichloromethane layers were combined, dried over sodium sulfate and then 

concentrated in vacuo to yield 0.68 g (2.0 mmol, 43%) of 14 as colorless oil.  

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.25 (t, J=7.0 Hz, 3H); 1.26 (t, J=7.0 Hz, 3H) 

2.03-1.80 (m, 2H); 2.89-2.59 (m, 21H); 4.12-3.94 (m, 4H). 13C{1H} NMR (CDCl3, 

62.9 MHz), δ (ppm): 16.3 (1JPC = 5.7 Hz); 23.3 (1JPC = 137.3 Hz); 45.1 (1JPC = 8.6 

Hz);  45.9; 48.0; 49.0; 50.5; 61.6 (1JPC = 6.7 Hz). 31P{1H} NMR (D2O, 62.9 MHz), δ 

(ppm): 32.6 (s).  

ESI-HRMS: for C14H33N4O3P: calcd. 337.2363 (M+H)+, found 337.2363 (M+H)+. 

[4,7-Bis-butoxycarbonylmethyl-10-(2-(diethoxyphosphoryl)ethyl)-1,4,7,10-

tetraaza-cyclododec-1-yl]-acetic acid tert-butyl ester (15).  
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A solution of 14 (0.60 g, 1.8 mmol), sodium carbonate (1.89 g, 17.8 mmol) 

and tert–butylbromoacetate (0.91 ml, 6.2 mmol) in acetonitrile (50 ml) was stirred at 

70°C for 6-7 h. The reaction was monitored by TLC. After completion, the reaction 

mixture was filtered and washed with CH2Cl2 (3x50 ml). The organic solvent was 

evaporated under reduced pressure and the residue was purified by column 

chromatography (silica gel, 5% MeOH in CH2Cl2) to give 0.93 g (76%) of 15 as a 

yellow gum. 

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.26-1.11 (t, J=7.0 Hz, 6H); 1.41 (s, 18H), 

1.37 (s, 9H); 1.92-1.78 (m, 2H); 2.44-2.18 (m, 8H); 2.93-2.56 (m, 10H); 3.02 (br.s, 

2H); 3.10 (br.s, 4H); 4.06-3.95 (m, 4H). 13C{1H} NMR (CDCl3, 62.9 MHz), δ (ppm): 

16.1 (1JPC = 5.9 Hz); 21.8 (1JPC = 138.5 Hz); 27.4; 27.6; 48.0; 49.9; 50.2; 50.7; 53.2; 

55.5; 56.3; 61.3 (1JPC = 6.3 Hz); 82.0; 82.2; 172.4; 172.8. 31P{1H} NMR (CDCl3, 100 

MHz), δ (ppm): 30.1 (s).  

ESI-HRMS for C32H63N4O9P: calcd. 679.4405(M+H)+, found 679.4418 (M+H)+. 

[4,7-Bis-carboxymethyl-10-(2-(diethoxyphosphoryl)ethyl)-1,4,7,10-tetraaza-

cyclododec-1-yl]-acetic acid (16).   

Compound 15 (0.90 g, 1.3 mmol) was dissolved in neat TFA (10 ml) with 

stirring at room temperature for 18 h. The reaction was monitored by ESI-LRMS. 

After completion, the pH was adjusted to 6 using 1N NaOH and the crude product 

was purified by preparative HPLC. After lyophilization, 0.49 g (74%) of 16 as yellow 

highly hygroscopic solid was obtained.  

 

 

 

 

 

 

1H NMR (D2O, 250 MHz), δ (ppm): 1.29 (t, J=7.2 Hz, 6H); 2.22-2.11 (m, 2H); 2.99 

(broad, 6H); 3.16 (broad, 4H); 3.36 (broad, 8H); 3.40 (s, 2H); 3.75 (s, 4H); 4.10 (q, 

J=7.2 Hz, 2H); 4.13 (q, J=7.2 Hz, 2H). 13C{1H} NMR (D2O, 62.9 MHz), δ (ppm): 
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13.4 (1JPC = 5.7 Hz); 17.3 (1JPC = 135.4 Hz); 43.6; 45.1; 46.3; 48.5; 49.4; 53.2; 54.5; 

61.4 (1JPC = 6.7 Hz); 168.4; 174.2. 31P{1H} NMR (D2O, 100 MHz), δ (ppm): 24.4 (s).  

ESI-HRMS for C20H39N4O9P: calcd. 511.2527 (M+H)+, found 511.2532 (M+H)+. 

[4,7-Bis-carboxymethyl-10-(2-phosphonoethyl)-1,4,7,10-tetraaza-cyclododec-1-

yl]-acetic acid (17).  

 

 

 

 

 

 

A solution of 16 (300 mg, 0.59 mmol) in 10 ml of 33% HBr in acetic acid was 

stirred at 60˚C for 18 h. The progress of the reaction was monitored by ESI-LRMS. 

After completion, the solvent was evaporated under reduced pressure and the residue 

was purified by preparative RP-HPLC. After lyophilization, 185 mg (69%) of 17 as 

white solid was obtained. m.p. 207-224 oC.  

1H NMR (D2O, 250 MHz), δ (ppm): 1.99-1.85 (m, 2H); 3.17 (br.s, 12H); 3.33-3.23 

(m, 6H); 3.54 (br.s, 4H); 3.65 (s, 2H). 13C{1H} NMR (D2O, 62.9 MHz), δ (ppm):  

20.2 (1JPC = 128.7 Hz); 46.6; 47.1; 47.2; 47.4; 48.3; 53.2; 169.3; 172.1. 31P{1H} NMR 

(D2O, 100 MHz), δ (ppm): 24.6 (s).  

ESI-LRMS (±): for C16H31N4O9P: calcd 455.5 (M+H)+, found 455.4 (M+H)+. 

Preparation of Ln3+ complexes of ligand 16 and 17. Ln3+ complexes 16 and 17 

were prepared from the respective solution of the ligand (1 eq) and the solution of 

LnCl3.6H2O (0.9-1 eq). The reaction mixture was stirred at 60-70° C for 18 h. pH of 

the solution was periodically checked and adjusted to 7.0-8.0 using a solution of 

NaOH (1 M) or HCl (1 N). Finally, the reaction mixture was passed through chelex-

100 to trap free Ln3+, and the Ln-loaded complex was eluted. The fractions were 

lyophilized and white solids were obtained. The absence of free Ln3+ ion was checked 

with xylenol orange indicator. 
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Gd-16. ESI-MS (±): calcd C20H36GdN4O9P: m/z 665.1; found 664.3 (M-H)-. 

Eu-16. ESI-MS (±): calcd C20H36EuN4O9P: m/z 660.1; found 659.1 (M-H)-. 

Gd-17. ESI-MS (±): calcd C16H26GdN4O9P2-: m/z 607.1; found 606.2 (M-H)-. 

Eu-17. ESI-MS (±): calcd C16H26GdN4O9P2-: m/z 602.1; found 601.5(M-H)-. 

[4,7-Bis-butoxycarbonylmethyl-10-(cyanomethyl)-1,4,7,10-tetraaza-cyclododec-1-

yl]-acetic acid tert-butyl ester (18).  

 

 

 

 

 

A solution of 3 (4.0 g, 7.8 mmol) and K2CO3 (4.3 g, 31.2 mmol) in 40 mL 

MeCN was stirred at room temperature for 1 h. Bromoacetonitrile (0.65 mL, 9.3 

mmol) was added in one aliquot to the above solution and the reaction mixture was 

refluxed for 8 h. The reaction was monitored by TLC. After completion, the reaction 

mixture was filtered through a G-4 sintered funnel, filtrate was evaporated under 

reduced pressure and the residue was purified by column chromatography (silica gel, 

5% MeOH in CH2Cl2, Rf = 0.55) to give 3.36 g (78%) of 18 as brownish gum.  

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.23 (s, 9H); 1.27 (s, 18H); 2.06-2.21 (m, 6H); 

2.39-2.78 (m, 10H); 2.89 (s, 4H); 3.01 (s, 2H); 3.63 (s, 2H). 13C NMR (CDCl3, 62.9 

MHz), δ (ppm): 27.7; 27.8; 42.7; 50.1; 50.4; 50.6; 50.7; 55.8; 56.2; 56.7; 82.4; 82.8; 

115.2; 172.9; 173.4.  

ESI-MS (±): calcd C28H51N5O6: m/z 554.3 (M+H)+; found 554.8 (M+H)+. 

[4,7-Bis-butoxycarbonylmethyl-10-(2-aminoethyl)-1,4,7,10-tetraaza-cyclododec-

1-yl]-acetic acid tert-butyl ester (19).  
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A solution of 18 (3.0 g, 5.4 mmol), Ra-Ni (1.5 g) and H2 (50 psi) in 7N 

NH3/MeOH (30 mL) was stirred at room temperature in Parr-apparatus for 6 h. The 

reaction was monitored by TLC. After completion, the reaction mixture was filtered 

through a G-4 sintered funnel, filtrate was evaporated under reduced pressure and the 

residue was purified by column chromatography (silica gel, 10% MeOH in CH2Cl2, Rf 

= 0.45) to give 2.17 g (72%) of 19 as off white solid.  

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.38 (s, 9H); 1.40 (s, 18H); 2.17-2.75 (m, 

18H); 2.84 (br s, 4H); 3.03 (s, 4H); 3.10 (s, 2H). 13C NMR (CDCl3, 62.9 MHz), δ 

(ppm): 27.2; 27.3; 38.0; 48.5; 48.8; 49.1; 49.6; 52.9; 54.9; 55.1; 81.3; 81.5; 171.5; 

171.9.  

ESI-MS (±): calcd C28H55N5O6: m/z 558.4 (M+H)+; found 558.5 (M+H)+. 

General method for the synthesis of compounds 22-24.  

The solutions of 19 (for compound 22-23) and 21 (for compound 24) (2.5 

equivalent) in dry DMF were added dropwise to the solution of DTPA-

bisanhydride/EDTA-bisanhydride (1 equivalent) in dry DMF (5 mL) at 0-5˚C for 30 

min under continuous nitrogen flow. The reaction mixtures were stirred overnight at 

50˚C. The progresses of reaction were monitored by ESI-MS. After completion, the 

solvent was evaporated under reduced pressure. The crude products were purified by 

preparative RP-HPLC.  

5,8-bis(carboxymethyl)-10-oxo-2-(2-oxo-2-(2-(4,7,10-tris(2-tert-butoxy-2-

oxoethyl)-1,4,7,10-tetraazacyclododecan-1-yl)ethylamino)ethyl)-13-(4,7,10-tris(2-

tert-butoxy-2-oxoethyl)-1,4,7,10-tetraazacyclododecan-1-yl)-2,5,8,11-

tetraazatridecane-1-carboxylic acid (22).  

RP-HPLC: method A, λ = 214 nm, RT = 21 min. Yield: 1.03 g (39%) of 22 as 

yellowish gum.  
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1H NMR (CDCl3, 250 MHz), δ (ppm): 1.52 (s, 36H); 1.54 (s, 18H); 2.76-3.17 (m, 

20H); 3.18-3.47 (m, 16H); 3.49-3.68 (m, 16H); 3.70-3.89 (m, 13H); 3.96 (br s, 6H); 

4.14 (br s, 4H). 13C NMR (CDCl3, 62.9 MHz), δ (ppm): 29.4; 29.5; 33.2; 47.9; 49.3; 

50.0; 51.3; 51.7; 52.2; 52.9; 54.9; 56.6; 57.7; 60.1; 60.8; 81.4; 81.6; 168.8; 170.2; 

170.3; 172.3; 176.2.  

ESI-MS (±): calcd C70H129N13O20: m/z 1470.9 (M-H)-; found 1471.3 (M-H)-.  

2,2'-(4,11-dioxo-1,14-bis(4,7,10-tris(2-tert-butoxy-2-oxoethyl)-1,4,7,10-

tetraazacyclododecan-1-yl)-3,6,9,12-tetraazatetradecane-6,9-diyl)diacetic acid 

(23).  

 RP-HPLC: method A, λ = 214 nm, RT = 24 min. Yield: 1.13 g (52%) of 23 as 

colorless gum.  
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1H NMR (CDCl3, 250 MHz), δ (ppm): 1.46 (s, 36H); 1.48 (s, 18H); 2.60 (br s, 4H); 

2.73-2.79 (m, 18H); 3.02-3.08 (m, 7H); 3.12 (s, 4H); 3.19 (br s, 3H); 3.27-3.31 (m, 

2H); 3.35 (s, 8H); 3.40 (s, 4H), 3.42 (s, 6H); 3.47 (br s, 6H); 3.54-3.61 (m, 2H); 3.66 

(d, J=5.33, 2H); 3.70 (d, J=2.66, 2H). 13C NMR (CDCl3, 62.9 MHz), δ (ppm): 27.6; 

27.7; 33.5; 47.8; 49.3; 49.9; 50.6; 52.8; 53.7; 55.0; 55.9; 59.7; 59.9; 80.9; 81.0; 169.7; 

169.9; 172.6; 175.1.  

ESI-MS (±): calcd C66H122N12O18: m/z 1371.9 (M+H)+; found1371.9 (M+H)+.  
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2,2'-2,2'-(carboxymethylazanediyl)bis(ethane-2,1-diyl)bis((2-oxo-2-(4-((4,7,10-

tris(2-tert-butoxy-2-oxoethyl)-1,4,7,10-tetraazacyclododecan-1-

yl)methyl)phenylamino)ethyl)azanediyl)diacetic acid (24).  

RP-HPLC: method A, λ = 254 nm, RT = 22 min. Yield: 1.32 g (46%) of 24 as 

yellowish gum.  
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1H NMR (CDCl3, 250 MHz), δ (ppm): 1.44 (s, 36H); 1.46 (s, 18H); 2.71-2.89 (m, 

20H); 2.92-3.04 (m, 9H); 3.10 (br s, 5H); 3.20 (s, 4H); 3.28 (br s, 10H); 3.31-3.36 (m, 

4H); 3.38 (s, 2H); 3.44 (s, 8H); 3.48 (s, 4H); 3.81 (br s, 2H); 4.14 (br s, 3H); 6.88-7.25 

(m, 4H); 7.80-8.11 (m, 4H). 13C NMR (CDCl3, 62.9 MHz), δ (ppm): 27.9; 28.0; 48.8; 

48.9; 49.8; 50.7; 50.9; 51.7; 52.1; 52.7; 55.8; 56.2; 56.3; 61.4; 81.3; 81.4; 120.2; 

122.7; 124.9; 128.9; 139.4; 169.8; 169.9; 170.3; 170.6; 175.6.  

ESI-MS (±): calcd C80H133N13O20: m/z 1594.9 (M-H)-; found 1595.1 (M-H)-.  

General method for the synthesis of 25, 26 and 27.  

Neat TFA (20ml) was added to the previously obtained compounds 22-24 and 

the reactions were kept at rt for 18 h. TFA was then evaporated, dissolved in a 

minimum volume  of MeOH (1 mL) followed by dropwise addition of diethyl ether at 

0-5˚C and stir gently for 1 h at room temperature. The compounds were precipitated 

and precipitates were filtered through a G-4 sintered funnel under continuous nitrogen 

flow. The precipitates were dissolved in water, neutralized by adding 1M NaOH and 

the crude products were purified by preparative RP-HPLC.  

N,N-bis{1-[{[({1-[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-10-

yl]eth-2-yl}amino)carbonyl]methyl}-(carboxymethyl)amino]eth-2-yl}aminoacetic 

acid (25).  

RP-HPLC: method B, λ = 214 nm, RT = 2.8 min. Yield: 0.22 g (57%) of 25 as 

white solid. 
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1H NMR (D2O, 250 MHz), δ (ppm): 3.01 (br s, 8H); 3.04 -3.17 (m, 16H); 3.23-3.41 

(m, 18H); 3.46 (br s, 6H); 3.56 (br s, 8H); 3.62 (s, 4H); 4.08 (s, 10H). 13C NMR 

(D2O, 62.9 MHz), δ (ppm): 32.2; 46.8; 47.7; 47.8; 49.0; 49.1; 50.2; 50.8; 51.2; 51.8; 

52.2; 53.5; 54.1; 164.7; 167.2; 170.7; 171.2; 171.3.  

ESI-MS (±): calcd C46H81N13O20: m/z 1134.5 (M-H)-; found 1134.8 (M-H)-. 

N,N-bis[1-({[({alpha-[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-

10-yl]-p-tolylamino}carbonyl)methyl]-(carboxymethyl)}amino)eth-2-yl] 

aminoacetic acid (26).  

RP-HPLC: method B, λ = 254 nm, RT = 2.4 min. Yield: 0.22 g (58%) of 26 as 

white solid. 
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1H NMR (D2O, 250 MHz), δ (ppm): 2.87-2.99 (m, 8H); 3.12-3.22 (m, 12H); 3.24-

3.34 (m, 20H); 3.41 (t, J=5.97, 5H); 3.54 (br s, 8H); 3.58 ( s, 2H); 3.60 (s, 2H); 3.81 

(br s, 4H); 7.30-7.37 (m, 4H); 7.38-7.43 (m, 2H); 7.44-7.52 (m, 2H). 13C NMR (D2O, 

62.9 MHz), δ (ppm): 45.9; 46.8; 48.1; 48.2; 48.6; 50.6; 53.5; 54.2; 54.8; 56.2; 56.3; 

56.9; 119.4; 121.5; 124.9; 128.1; 134.6; 168.6; 169.5; 169.8; 173.0; 175.9.  

ESI-MS (±): calcd C56H86N13O20: m/z 1258.6 (M-H)-; found 1259.0 (M-H)-. 

1,2-bis[{[({1-[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-10-yl]eth-

2-yl}amino)carbonyl]methyl}-(carboxymethyl)amino]ethane (27).  

RP-HPLC: method B, λ = 214 nm, RT = 3.4 min. Yield: 0.26 g (68%) of 27 as 

off white solid.  
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1H NMR (D2O, 250 MHz), δ (ppm): 2.88 -2.97 (m, 4H); 2.98-3.17 (16, H); 3.21 (s, 

4H); 3.24 (br s, 2H); 3.26-3.47 (m, 23H); 3.52 (s, 4H); 3.70 (br s, 8H); 3.78 (br s, 4H). 
13C NMR (D2O, 62.9 MHz), δ (ppm): 37.9; 50.8; 51.5; 53.0; 53.4; 53.7; 53.9; 54.2; 

57.9; 59.2; 59.8; 172.3; 174.1; 176.6; 178.4.   

ESI-MS (±): calcd C42H75N12O18: m/z 1033.5 (M-H)-; found 1033.6 (M-H)-. 

Preparation of the Ln3+ Complexes of 25-27.  

The Ln3+ complexes of 26, 27 and 28 were prepared by mixing the ligand and 

the LnCl3. 6H2O solutions in 1:2 molar ratios. The reaction mixture was stirred at 50-

60° C for 18 h. The pH was periodically adjusted to 7.0-7.5 using a solution of NaOH 

(1 M). After 18 h, the reaction mixture was cooled down and passed through chelex-

100 at room temperature to trap eventual free Ln3+, and the Ln3+-loaded complex was 

recovered. The absence of free Ln3+ was checked with xylenol orange indicator. The 

fractions were lyophilized and white solids were obtained. 

Gd-25 ESI-MS (-): calcd C46H75Gd2N13O20: m/z 1443.6; found 1443.9 (M-H)-. 

Eu-25 ESI-MS (-): calcd C46H75Eu2N13O20: m/z 1433.1; found 1433.7 (M-H)-. 

Gd-26 ESI-MS (-): calcd C56H79Gd2N13O20: m/z 1567.8; found1566.8 (M-H)-. 

Eu-26 ESI-MS (-): calcd C56H79Eu2N13O20: m/z 1557.2; found 1556.6 (M-H)-. 

Gd-27 ESI-MS (-): calcd C42H68Gd2N12O18: m/z 1342.5; found 1341.9 (M-H)-. 

Eu-27 ESI-MS (-): calcd C42H68Eu2N12O18: m/z 1331.9; found 1332.2 (M-H)-. 

[4,7-Bis-butoxycarbonylmethyl-10-(2-cyanoethyl)-1,4,7,10-tetraaza-cyclododec-1-

yl]-acetic acid tert-butyl ester (28).  
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A solution of 3 (4.0 g, 7.8 mmol), TEA (1.57 g, 15.6 mmol) and acrylonitrile 

(0.83 g, 15.6 mmol) in 50 mL MeOH was stirred at room temperature for 24 h. The 

reaction was monitored by TLC. After completion, the solvent was evaporated under 

reduced pressure and the crude product was purified by flash column chromatography 

(silica gel, 5% MeOH in CH2Cl2, Rf = 0.55) to give 3.5 g (79%) of 28 as transparent 

gum.  

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.24 (s, 18H); 1.26 (s, 9H); 2.03-2.30 (m, 3H); 

2.40-2.74 (m, 7H); 2.76-3.12 (s, 12H); 3.42 (s, 2H); 3.51 (s, 2H). 13C NMR (CDCl3, 

62.9 MHz), δ (ppm) 14.5; 27.7; 27.8; 49.1; 50.2; 50.8; 50.9; 51.3; 55.6; 56.4; 82.22; 

82.6; 118.8; 172.5; 173.1.  

ESI-HRMS (+): calcd C29H53N5O6: m/z 568.40686 (M+H)+; found 568.40714 

(M+H)+. 

[4,7-Bis-butoxycarbonylmethyl-10-(3-aminopropyl)-1,4,7,10-tetraaza-

cyclododec-1-yl]-acetic acid tert-butyl ester (29).  

 

 

 

 

 

A solution of 28 (3.0 g, 5.3 mmol), Ra-Ni (1.5 g) and H2 (50 psi) in 7N 

NH3/MeOH (30 mL) was stirred at room temperature in Parr-apparatus for 6 h. The 

reaction was monitored by TLC. After completion, the reaction mixture was filtered 

through a G-4 sintered funnel, filtrate was evaporated under reduced pressure and the 

residue was purified by column chromatography (silica gel, 10% MeOH in CH2Cl2, Rf 

= 0.5) to give 2.41 g (80%) of 29 as off white solid.  

1H NMR (CDCl3, 400 MHz), δ (ppm): 1.41 (s, 27H); 1.61 (br s, 2H); 2.85–2.20 (m, 

16H); 3.42–2.99 (m, 8H); 8.19 (br s, 2H). 13C NMR (CDCl3, 100 MHz), δ (ppm): 

22.9; 27.1; 27.2; 38.5; 41.8; 48.9; 49.4; 50.1; 52.2; 55.9; 57.2; 81.1; 81.8; 169.8; 

172.0. 
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ESI-HRMS (+): calcd C29H57N5O6: m/z 572.43816 (M+H)+; found 572.43826 

(M+H)+. 

6,9-bis(carboxymethyl)-11-oxo-3-(2-oxo-2-(3-(4,7,10-tris(2-tert-butoxy-2-

oxoethyl)-1,4,7,10-tetraazacyclododecan-1-yl)propylamino)ethyl)-15-(4,7,10-

tris(2-tert-butoxy-2-oxoethyl)-1,4,7,10-tetraazacyclododecan-1-yl)-3,6,9,12-

tetraazapentadecan-1-oic acid (30).  
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The solutions of 29 (2.5 equivalent) in dry DMF were added dropwise to the 

solution of DTPA- bisanhydride (1 equivalent) in dry DMF (5 mL) at 0-5˚C for 30 

min under continuous nitrogen flow. The reaction mixtures were stirred overnight at 

50˚C. The progresses of reaction were monitored by ESI-MS. After completion, the 

solvent was evaporated under reduced pressure. The crude products were purified by 

preparative RP-HPLC. RP-HPLC: method A, λ = 214 nm, RT = 24 min. Yield: 0.8 g 

(32%) of 30 as yellowish gum.  

1H NMR (MeOD, 250 MHz), δ (ppm): 1.29 (s, 36H); 1.30 (s, 18H); 1.50-1.63 (m, 

2H); 1.83 (br s, 2H); 2.46-2.70 (m, 15H); 3.07-3.34 (m, 14H); 3.44 (s, 3H); 3.52 (s, 

2H); 3.62-3.70 (m, 4H). 13C NMR (MeOD, 62.9 MHz), δ (ppm) 24.2; 28.6; 28.9; 

37.4; 51.0; 51.1; 51.6; 52.6; 53.5; 54.4; 55.6; 56.4; 57.4; 58.4; 82.7; 83.1; 171.6; 

172.3; 174.4; 176.5; 177.7.  

ESI-MS (±): calcd C72H133N13O20: m/z 1499.9 (M-H)-; found 1499.3 (M-H)-. 

N,N-bis{1-[{[({1-[1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-10-

yl]prop-2-yl}amino)carbonyl]methyl}-(carboxymethyl)amino]prop-2-yl} 

aminoacetic acid (31).  
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Neat TFA (15ml) was added to the previously obtained compounds 30 and the 

reaction was kept at rt for 18 h. TFA was then evaporated, dissolved in a minimum 

volume  of MeOH (1 mL) followed by dropwise addition of diethyl ether at 0-5˚C and 

stir gently for 1 h at room temperature. The compounds were precipitated and 

precipitates were filtered through a G-4 sintered funnel under continuous nitrogen 

flow. The precipitates were dissolved in water, neutralized by adding 1M NaOH and 

the crude products were purified by preparative RP-HPLC. RP-HPLC: method B, λ = 

214 nm, RT = 2.9 min. Yield: 0.14 g (57%) of 31 as white solid. 

1H NMR (D2O, 250 MHz), δ (ppm): 1.82 (br s, 3H); 2.97 (br s, 2H); 3.03 -3.17 (m, 

21H); 3.18-3.38 (m, 21H); 3.62 (br s, 4H); 3.66 (br s, 4H); 3.77 (s, 2H); 3.80 (s, 2H). 
13C NMR (D2O, 62.9 MHz), δ (ppm): 23.3; 36.5; 48.8; 49.3; 49.6; 49.9; 51.2; 52.1; 

54.8; 55.4; 57.3; 57.5; 170.4; 172.0; 173.4; 174.2; 174.4.  

ESI-MS (±): calcd C48H85N13O20: m/z 1163.3 (M-H)-; found 1163.8 (M-H)-. 

di-tert-butyl 2,2'-(ethane-1,2-diylbis(benzylazanediyl))diacetate (32).  

 

 

 

 

 

A solution of dibenzylethylenediamine (5 g, 20.8 mmol) and K2CO3 (7.19 g, 

52.1 mmol) in 5 mL MeCN was stirred at room temperature for 1 h. tert-

butylbromoacetate (8.94 g, 45.8 mmol) was added in one aliquot to the above solution 

and the reaction mixture was refluxed for 3 h. The reaction was monitored by TLC, 

using CH2Cl2:MeOH, 9:1 as mobile phase. TLC plates were developed in an iodine 

chamber and Rf of (32) was 0.7. After completion, the reaction mixture was poured 
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into 50 mL water and extracted with CH2Cl2 (3x50 ml). The organic layer was 

evaporated under reduced pressure and purified by column chromatography (silica 

gel, 5% MeOH in CH2Cl2) to give 5.1 g (76%) of 32 as off white solid.  

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.45 (s, 18H); 2.71-2.92 (m, 4H); 3.4 (s, 4H); 

3.8 (s, 4H); 7.2-7.4 (m, 10H). 13C NMR (CDCl3, 62.9 MHz), δ (ppm): 28.2; 51.6; 

54.9; 58.5; 81.0; 127.3; 128.3; 129.2; 138.4; 170.6. 

ESI-MS (±): calcd C20H22N2O2: m/z 323.4 (M+H)+ and found 323.6 (M+H)+. 

di-tert-butyl 2,2'-(ethane-1,2-diylbis(azanediyl))diacetate (33).  

 

 

 

 

A solution of 32 (4.0 g, 12.4 mmol), (10%) Pd-C (1 g w/w) and H2 (50 psi) in 

MeOH (40 mL) was stirred at room temperature in Parr-apparatus for 8 h. The 

reaction was monitored by TLC. After completion, the reaction mixture was filtered 

through a G-4 sintered funnel, filtrate was evaporated under reduced pressure and the 

residue was purified by column chromatography (silica gel, 10% MeOH in CH2Cl2, Rf 

= 0.25) to give 1.41 g (80%) of 33 as transparent oil.  

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.47 (s, 18H); 2.8-3.2 (m, 4H); 3.6 (s, 4H). 13C 

NMR (CDCl3, 62.9 MHz), δ (ppm): 28.1; 48.7; 50.1; 82.4; 169.8.  

ESI-MS (±): calcd C6H10N2O2: m/z 143.1 (M+H)+; found 143.3 (M+H)+. 

tert-butyl 2-(2-bromo-N-(2-(2-bromo-N-(2-tert-butoxy-2-

oxoethyl)acetamido)ethyl)acetamido)acetate (34).  
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A solution of 33 (1.2 g, 8.5 mmol) in 50 mL CH2Cl2 and 50 mL water was 

stirred at room temperature and dropwise addition of bromo-acetylbromide (4.27 g, 

21.1 mmol) for 1 h. During addition of bromo-acetylbromide, 1M K2CO3 solution 

was also added to maintain the pH between 8-8.5. Reaction mixture was stirred for 

another 3 h at room temperature and the reaction was monitored by TLC, using 

CH2Cl2:MeOH, 9:1 as mobile phase. TLC plates were developed in an iodine 

chamber and Rf of (34) was 0.65. After completion, the organic layer was separated 

The solvent was evaporated under reduced pressure and purified by column 

chromatography (silica gel, 5% MeOH in CH2Cl2) to give 2.32 g (52%) of 34 as 

transparent oil.  

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.43 (s, 18H); 3.50 (s, 4H); 3.61-3.91 (m, 4H); 

4.06 (s, 4H). 13C NMR (CDCl3, 62.9 MHz), δ (ppm): 25.9; 26.2; 28.0; 45.2; 51.7; 

83.0; 167.6; 167.9.  

ESI-MS (±): calcd C18H30Br2N2O6: m/z 531.1 (M+H)+ and found 531.6 (M+H)+. 

(tris-tert-butyl-DO3A-methylamide)2-EDTA (35).  

 

 

 

 

 

 

A solution of 3 (5.15 g, 10.0 mmol) and K2CO3 (2.08 g, 15.1 mmol) in 5 mL 

DMF was stirred at room temperature for 1 h. 34 (2 g, 3.8 mmol) was added in one 

aliquot to the above solution and the reaction mixture was heated at 70-80˚C for 

overnight. The reaction progress was checked by TLC, using CH2Cl2:MeOH, 9:1 as 

mobile phase. TLC plates were developed in an iodine chamber and Rf of (35) was 

0.3. After completion, the reaction mixture was poured into 100 mL water and 

extracted with CH2Cl2 (3x50 ml). The organic layer was evaporated under reduced 

pressure and purified by column chromatography (silica gel, 10% MeOH in CH2Cl2) 

to give 2.53 g (48%) of 35 as off white solid.  
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1H NMR (CDCl3, 250 MHz), δ (ppm): 1.27 (s, 18H); 1.29 (s, 18H); 1.32 (s, 36H);  

1.85-3.59 (m, 52H); 4.01 (s, 4H). 13C NMR (CDCl3, 62.9 MHz), δ (ppm): 27.8; 28.2; 

44.7; 47.0; 47.1; 49.4; 50.2; 51.7; 53.5; 54.9; 55.7; 81.4; 81.6; 81.7; 82.3; 168.3; 

168.5; 169.1; 172.1; 172.6.  

ESI-MS (±): calcd C70H128N10O18: m/z 1398.8 (M+H)+ and found 1399.2 (M+H)+. 

(DO3A-methylamide)2-EDTA (36).  

 

 

 

 

 

 

A solution of 35 (2.0 g, 1.4 mmol) in TFA (20 mL) was stirred at room 

temperature for 18-20 h. The reaction was monitored by ESI-MS. The solvent was 

evaporated under reduced pressure and dissolved in a minimum volume  of MeOH (1 

mL) followed by addition of diethyl ether dropwise at 0-5˚C and stir for 1 h at room 

temperature. The compound was precipitated and filtered through a G-4 sintered 

funnel under nitrogen. The precipitate was dissolved in water and neutralized by 

adding 1 M Na2CO3 and the crude products were purified by preparative RP-HPLC. 

RP-HPLC: method B, λ = 214 nm, RT = 2.9 min. Yield: 0.43 g (31%) of 36 as white 

solid. 

1H NMR (D2O, 250 MHz), δ (ppm): 2.90-3.36 (m, 16H); 3.27-3.52 (m, 24H); 3.55-

3.63 (d, J=7.13 Hz, 3H); 3.67-3.82 (m, 9H); 3.83-3.92 (m, 4H). 13C NMR (D2O, 62.9 

MHz), δ (ppm): 45.2; 48.2; 51.4; 51.6; 52.6; 53.2; 55.4; 55.5; 55.9; 56.6; 170.7; ; 

175.4; 175.6; 176.2; 177.1.  

ESI-MS (±): calcd C38H64N10O18: m/z 947.9 (M-H)-; found 948.3 (M-H)-. 
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(S)-methyl 2-(benzyloxycarbonylamino)-6-(5-((3aS,4S,6aR)-2-oxo-hexahydro-

1H-thieno[3,4-d]imidazol-4-yl)pentanamido)hexanoate (37).  

 

 

 

 

 

 

A solution of α-N-carbobenzyloxy-L-lysine methyl ester (2 g, 6.8 mmol), 

biotin (1.7 g, 6.9 mmol), NMM (1.5 mL, 14.9 mmol) and HOBt (1.44 g, 7.5 mmol) in 

DMF (5 mL) was stirred at 0-5˚C for 15 min and then EDC (1.01 g, 7.5 mmol) was 

added. The reaction mixture was stirred overnight at room temperature. The progress 

of reaction was monitored by TLC using CH2Cl2:MeOH, 9:1 and Rf of (37) was 0.45. 

After completion, the reaction mixture was poured in water, extracted with EtOAc 

(3x100 mL), organic layer was dried over Na2SO4, filtered, filtrate was evaporated 

under reduced pressure and purified by column chromatography (silica gel, 10% 

MeOH in CH2Cl2) to give 2.19 g (62%) of 37 as off white solid. 

1H NMR (CDCl3, 400 MHz), δ (ppm): 1.25-1.36 (m, 4H); 1.37-1.47 (m, 2H); 1.50-

1.67 (m, 5H), 1.68-1.79 (m, 1H); 2.09 (t, J=7.43 Hz, 2H); 2.54-2.62 (m, 1H); 2.70-

2.80 (m, 1H); 2.97-3.04 (m, 1H); 3.05-3.18 (m, 2H); 3.65 (s, 3H); 4.11-4.18 (m, 1H); 

4.19-4.27 (m, 1H); 4.31-4.37 (m, 1H); 5.02 (s, 2H); 5.98 (s, 2H); 6.56 (t, J=6.83 Hz, 

1H); 6.73 (s, 1H); 7.19-7.32 (m, 5H). 13C NMR (CDCl3, 100 MHz), δ (ppm): 22.5; 

25.6; 27.9; 28.2; 28.8; 31.7; 35.8; 38.7; 40.4; 52.3; 53.7; 55.7; 60.1; 61.7; 66.8; 127.9; 

128.1; 128.4; 136.2; 156.2; 164.3; 173.2; 173.4.  

ESI-HRMS (+): calcd C25H36N4O6S: m/z 521.2428 (M+H)+; found 521.2429 

(M+H)+.  

(S)-2-(benzyloxycarbonylamino)-6-(5-((3aS,4S,6aR)-2-oxo-hexahydro-1H-

thieno[3,4-d]imidazol-4-yl)pentanamido)hexanoic acid (38). 
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 A solution of 37 (2 g, 3.8 mmol) in 50 mL of THF:MeOH:water (3:2:2) was 

stirred at 0-5˚C for 15 min and then LiOH (0.18 g, 7.7 mmol) was added. The reaction 

mixture was stirred for 2 h at room temperature. The progress of the reaction was  

 

 

 

 

 

 

checked by ESI-MS. After completion, the reaction mixture was concentrated under 

reduced pressure. The compound was purified by preparative RP-HPLC (method C, λ 

= 214 nm, RT = 14 min). After lyophilization, 1.3 g (67%) of 38 as white powder was 

obtained. 

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.22-1.34 (m, 4H); 1.35-1.45 (m, 2H); 1.50-

1.67 (m, 5H), 1.66-1.75 (m, 1H); 2.01 (t, J=7.43 Hz, 2H); 2.50-2.60 (m, 1H); 2.68-

2.78 (m, 2H); 2.94-3.00 (m, 1H); 3.01-3.12 (m, 2H); 4.06-4.12 (m, 1H); 4.14-4.22 (m, 

1H); 429-4.35 (m, 1H);  5.09 (s, 2H); 5.82 (s, 2H); 6.42-6.47 (m, 1H); 6.69 (s, 1H); 

7.16-7.32 (m, 5H). 13C NMR (CDCl3, 62.9 MHz), δ (ppm): 22.5; 25.6; 27.9; 28.2; 

28.8; 31.7; 35.8; 38.7; 40.4; 53.7; 55.7; 60.1; 61.7; 66.8; 127.9; 128.1; 128.4; 136.2; 

156.2; 164.3; 173.2; 173.4.  

ESI-HRMS (±): calcd C24H34N4O6S: m/z 507.2278 (M+H)+; found 507.2279 

(M+H)+. 

(S)-2-amino-6-(5-((3aS,4S,6aR)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-

yl)pentanamido)hexanoic acid (39).  
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A solution of 38 (0.2 g, 0.39 mmol), (10%) Pd-C (0.05 g) and H2 (50 psi) in 

MeOH (10 mL) was stirred at room temperature in Parr-apparatus for 6 h. The 

reaction was monitored by ESI-MS. After completion, the reaction mixture was 

filtered through a G-4 sintered funnel; filtrate was evaporated under reduced pressure. 

The compound was purified by preparative RP-HPLC (method C, λ = 214 nm, RT = 

9.5 min). After lyophilization, 0.09 g (66%) of 39 as white powder was obtained. 

1H NMR (D2O, 250 MHz), δ (ppm): 1.14-1.21 (m, 2H); 1.37-1.47 (m, 2H); 1.50-1.67 

(m, 5H), 1.68-1.79 (m, 1H); 2.09 (m, 2H); 2.54-2.62 (m, 1H); 2.70-2.80 (m, 2H); 

2.97-3.04 (m, 1H); 3.05-3.18 (m, 3H); 4.11-4.18 (m, 1H); 4.19-4.27 (m, 1H); 4.30-

4.36 (m, 1H). 13C NMR (D2O, 62.9 MHz), δ (ppm): 22.3; 25.4; 28.4; 29.2; 29.5; 34.0; 

35.6; 40.9; 41.5; 55.4; 55.8; 60.8; 62.3; 164.0; 174.2; 174.9.  

ESI-HRMS (+): calcd C16H28N4O4S: m/z 373.1904 (M+H)+; found 373.1903 

(M+H)+. 

tri-tert-butyl 2,2',2''-(10-(2-((S)-2-(benzyloxycarbonylamino)-6-(5-((3aS,4S,6aR)-

2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)hexanamido)ethyl) 

-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (40).  

 

 

 

 

 

 

 

 

A solution of 19 (0.88 g, 1.58 mmol), 38 (0.8 g, 1.58 mmol), NMM (0.35 mL, 

3.4 mmol) and HOBt (0.33 g, 1.74 mmol) in DMF (5 mL) was stirred at 0-5˚C for 15 

min and then EDC (0.23 g, 1.74 mmol) was added. The reaction mixture was stirred 

overnight at room temperature. The progress of reaction was monitored by ESI-MS. 

After completion of reaction DMF was evaporated under reduced pressure and 
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purified by preparative RP-HPLC (method C, λ = 214 nm, RT = 24.8 min). After 

lyophilization, 0.76 g (48%) of 40 as white powder was obtained. 

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.13-1.27 (m, 4H); 1.22 (s, 18H); 1.42 (s, 9H); 

1.51-1.89 (m, 8H); 1.98 (t, J=7.33 Hz, 2H); 2.10-2.38 (m, 1H); 2.42-3.18 (m, 19H); 

3.22-3.37 (m, 2H); 3.39-3.44 (m, 1H); 3.48-3.97 (m, 8H); 4.02-4.10 (m, 1H); 4.11-

4.20 (m, 1H); 427-4.31 (m, 1H);  5.04 (s, 2H); 5.27 (s, 2H); 5.57-5.67 (m, 1H); 6.30-

6.52 (m, 2H); 7.20-7.50 (m, 5H). 13C NMR (CDCl3, 62.9 MHz), δ (ppm): 17.9; 18.5; 

22.7; 23.3; 28.2; 29.4; 29.7; 31.9; 33.4; 33.5; 39.8; 41.1; 48.4; 50.2; 51.8; 52.3; 53.6; 

56.2; 56.3; 56.6; 56.7; 56.9; 60.1; 62.0; 66.6; 81.9; 82.1; 127.8; 128.1; 128.5, 135.6; 

155.6; 161.9; 169.7; 169.9; 170.4; 173.7.  

ESI-HRMS (±): calcd C52H87N9O11S: m/z 1046.6318 (M+H)+; found 1046.6320 

(M+H)+. 

2,2',2''-(10-(2-((S)-2-amino-6-(5-((3aS,4S,6aR)-2-oxo-hexahydro-1H-thieno[3,4-

d]imidazol-4-yl)pentanamido)hexanamido)ethyl)-1,4,7,10-

tetraazacyclododecane-1,4,7-triyl)triacetic acid (41).  

 

 

 

 

 

 

 

 

A solution of 40 (0.7 g, 0.67 mmol), (10%) Pd-C (0.18 g) and H2 (50 psi) in 

MeOH (20 mL) was stirred at room temperature in Parr-apparatus for 8 h. The 

reaction was monitored by ESI-MS. After completion, the reaction mixture was 

filtered through a G-4 sintered funnel; filtrate was evaporated under reduced pressure. 

This crude product was further dissolve in TFA (20 mL) and stirred at room 

temperature for 18-20 h. ESI-MS was confirmed the completion of reaction. The 

solvent was evaporated under reduced pressure and dissolved in a minimum volume  
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of MeOH (1 mL) followed by addition of diethyl ether dropwise at 0-5˚C and stir for 

1 h at room temperature. The compound was precipitated and filtered through a G-4 

sintered funnel under nitrogen. The precipitate was dissolved in water and neutralized 

by adding 1 M Na2CO3 and the crude product were purified by preparative RP-HPLC 

(method B, λ = 214 nm, RT = 2.9 min. Yield: 0.26 g (54%) of 41 as white solid). 

1H NMR (D2O, 250 MHz), δ (ppm): 1.31-2.08 (m, 12H); 2.24 (t, J=7.23 Hz, 2H); 

2.60-4.30 (m, 31H); 4.33-4.48 (m, 1H); 4.50-4.53 (m, 1H); 4.54-4.58 (m, 1H). 13C 

NMR (D2O, 62.9 MHz), δ (ppm): 19.4; 20.4; 22.9; 25.4; 25.6; 27.9; 33.3; 33.8; 34.2; 

34.5; 36.5; 37.4; 45.4; 46.7; 48.9; 50.9; 53.0; 54.2; 56.5; 58.0; 59.8; 162.7; 172.8; 

173.1; 173.5; 179.4.  

ESI-MS (±): calcd C32H57N9O9S: m/z 744.9 (M+H)+; found 744.6 (M+H)+. 

(S)-tri-tert-butyl 2,2',2''-(10-(2-(5-(benzyloxycarbonylamino)-6-methoxy-6-

oxohexylamino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate 

(44).  

 

 

 

 

 

 

 

 

 

A solution of 43 (1 g, 1.75 mmol), α-N-carbobenzyloxy-L-lysine methyl ester 

(0.565 g, 1.92 mmol), NMM (0.38 mL, 3.8 mmol) and HOBt (0.37 g, 1.92 mmol) in 

DMF (5 mL) was stirred at 0-5˚C for 15 min and then EDC (0.26 g, 1.92 mmol) was 

added. The reaction mixture was stirred overnight at room temperature. The progress 

of reaction was monitored by TLC using CH2Cl2:MeOH, 9:1 and Rf of (44) was 0.4. 

After completion, the reaction mixture was poured in excess of water and extracted 
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with EtOAc (3x100 mL). Combined organic layers were dried over Na2SO4, filtered, 

filtrate was evaporated under reduced pressure and the residue was purified by 

column chromatography (silica gel, 10% MeOH in CH2Cl2) to give 0.77 g (52%) of 

44 as off white solid.  

13C NMR (CDCl3, 62.9 MHz), δ (ppm): 21.9; 26.9; 27.0; 30.6; 37.6; 47.6; 49.2; 51.2; 

52.5; 53.3; 54.7; 55.1; 65.6; 80.7; 80.8; 126.8; 126.9; 127.4; 135.5; 155.4; 170.6; 

171.4; 172.2; 173.4.  

ESI-HRMS (+): calcd C43H72N6O11: m/z 871.5151 (M+Na)+; found 871.5160 

(M+Na)+. 

(S)-2,2',2''-(10-(2-(5-amino-5-carboxypentylamino)-2-oxoethyl)-1,4,7,10-

tetraazacyclododecane-1,4,7-triyl)triacetic acid (45).  

 

 

 

 

 

 

 

 

 

A solution of 44 (0.5 g, 0.59 mmol), (10%) Pd-C (0.13 g) and H2 (50 psi) in 

MeOH (20 mL) was stirred at room temperature in Parr-apparatus for 8 h. The 

reaction was monitored by ESI-MS. After completion, the reaction mixture was 

filtered through a G-4 sintered funnel; filtrate was evaporated under reduced pressure. 

This crude product was further dissolve in TFA (20 mL) and stirred at room 

temperature for overnight. TFA was evaporated under reduced pressure. A solution of 

crude product in 20 mL of THF:MeOH:water (3:2:2) was stirred at 0-5˚C for 15 min 

and then LiOH (0.11 g, 4.7 mmol) was added. The reaction mixture was stirred for 2 h 

at room temperature. The progress of the reaction was monitored by ESI-MS. After 
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completion, the solvent was evaporated under reduced pressure and the residue was 

purified by preparative HPLC (method B, λ = 214 nm, RT = 3.6 min). After 

lyophilization, 0.18 g (58%) of 45 as off-white solid was obtained.  

1H NMR (D2O, 250 MHz), δ (ppm): 1.34-1.51 (m, 2H); 1.53-1.63 (m, 2H); 2.92-3.36 

(m, 12H); 123.39-3.59 (m, 11H); 3.75-3.92 (m, 4H). 13C NMR (D2O, 62.9 MHz), δ 

(ppm): 21.2; 27.4; 29.0; 38.5; 48.4; 50.6; 51.7; 52.7; 53.5; 54.7; 56.5; 169.9; 170.9; 

172.0; 176.5.  

ESI-MS (±): calcd C22H40N6O9: m/z 533.6 (M+H)+; found 533.5 (M+H)+. 

(S)-methyl 2-(benzyloxycarbonylamino)-6-(2-cyanoethylamino)hexanoate (46).  

 

 

 

 

 

A solution of α-N-carbobenzyloxy-L-lysine methyl ester (2 g, 6.8 mmol), TEA 

(1.9 mL, 13.6 mmol) and acrylonitrile (0.9 mL, 13.6 mmol) in 20 mL MeOH was 

stirred at room temperature for 18 h. The reaction was monitored by TLC using 

CH2Cl2:MeOH, 9.5:0.5 as mobile phase. TLC plate was developed in an iodine 

chamber and Rf of (46) was 0.6. After completion, the solvent was evaporated under 

reduced pressure and purified by column chromatography (silica gel, 5% MeOH in 

CH2Cl2) to give 1.77 g (75%) of 46 as yellowish gum.  

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.25-1.34 (m, 2H); 1.36-1.46 (m, 2H); 1.54-

1.64 (m, 2H); 1.70-1.82 (m, 1H); 2.40 (t, J=6.66 Hz, 2H); 2.53 (t, J=6.87 Hz, 2H); 

2.80 (t, J=6.62 Hz, 2H); 3.66 (s, 3H); 4.26-4.31 (m, 1H); 5.03 (s, 2H); 5.43-5.52 (m, 

1H); 7.21-7.3 (m, 5H). 13C NMR (CDCl3, 62.9 MHz), δ (ppm) 18.2; 22.4; 28.9; 31.9; 

44.6; 48.3; 52.0; 53.4; 66.6; 118.4; 127.7; 127.9; 128.2; 135.9; 155.6; 172.6.  

ESI-HRMS (+): calcd C18H25N3O4: m/z 348.1917 (M+H)+; found 348.1917 (M+H)+. 

(S)-methyl 2-(benzyloxycarbonylamino)-6-(N-(2-cyanoethyl)-5-((3aR,4R,6aS)-2-

oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)hexanoate (47).  
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A solution of 46 (1.5 g, 4.3 mmol), biotin (1.16 g, 4.8 mmol), N,N-

diisopropylethylamine (0.18 mL, 1.7 mmol) and PyBroP (4.03 g, 8.6 mmol) in 

CH2Cl2 (50 mL) was stirred overnight at room temperature. The progress of reaction 

was monitored by TLC using CH2Cl2:MeOH, 9:1 and Rf of (47) was 0.45. After 

completion, the reaction mixture was poured in water, extracted with CH2Cl2 (3x100 

mL), organic layer was dried over Na2SO4, filtered, filtrate was evaporated under 

reduced pressure and purified by column chromatography (silica gel, 10% MeOH in 

CH2Cl2) to give 1.54 g (62%) of 47 as off-white solid. 

 

 

 

 

 

 

 

 

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.16-1.42 (m, 6H); 1.43-1.70 (m, 7H); 1.72-

1.85 (m, 1H); 2.25 (t, J=6.64 Hz, 2H); 2.46-2.69 (m, 4H); 2.73-2.84 (m, 1H); 3.00-

3.11 (m, 1H); 3.20-3.30 (m, 2H); 3.37-3.53 (m, 2H); 3.67 (s, 3H); 4.14-4.22 (m, 1H); 

4.25-4.32 (m, 1H); 4.34-4.41 (m, 1H); 5.04 (s, 2H); 5.67 (br s, 1H); 5.77-5.93 (m, 

1H); 6.15 (br s, 1H); 7.21-7.31 (m, 5H). 13C NMR (CDCl3, 62.9 MHz), δ (ppm) 16.2; 

22.5; 24.9; 28.1; 28.3; 28.5; 32.0; 32.4; 40.4; 42.6; 48.9; 52.4; 53.5; 55.4; 60.1; 61.8; 

66.9; 118.4; 127.9; 128.1; 128.4; 136.2; 156.0; 163.9; 172.9; 173.4. 

ESI-HRMS (+): calcd C28H39N5O6S: m/z 574.2693 (M+H)+; found 574.2700 

(M+H)+. 

(S)-methyl 6-(N-(3-aminopropyl)-5-((3aR,4R,6aS)-2-oxo-hexahydro-1H-

thieno[3,4-d]imidazol-4-yl)pentanamido)-2-(benzyloxycarbonylamino)hexanoate 

(48).  
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A solution of 47 (0.8 g, 1.4 mmol), Ra-Ni (0.2 g) and H2 (50 psi) in 7N 

NH3/MeOH (20 mL) was stirred at room temperature in Parr-apparatus for 6 h. The 

progress of the reaction was monitored by ESI-MS. After completion, the solvent was 

evaporated under reduced pressure and the residue was purified by preparative HPLC 

(method C, λ = 214 nm, RT = 11.2 min). After lyophilization, 0.56 g (70%) of 48 as 

off-white solid was obtained.  

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.08-1.98 (m, 15H); 2.24 (br s, 2H); 2.47-3.44 

(m, 8H); 3.65 (s, 3H); 3.88-4.59 (m, 3H); 5.01 (s, 2H); 5.66-6.37 (m, 1H); 6.39-7.00 

(m, 1H); 7.16-7.33 (m, 5H); 8.02  (br s, 3H). 13C NMR (CDCl3, 62.9 MHz), δ (ppm) 

22.2; 24.9; 25.6; 27.8; 28.4; 31.0; 32.2; 36.8; 39.7; 42.2; 45.0; 47.7; 49.4; 52.7; 55.3; 

60.2; 62.1; 66.6; 127.5; 128.1; 128.5; 136.3; 157.2; 165.1; 174.2; 175.7.  

ESI-HRMS (+): calcd C28H43N5O6S: m/z 578.3006 (M+H)+; found 578.3010 

(M+H)+. 

tri-tert-butyl 2,2',2''-(10-((S)-5-(methoxycarbonyl)-3,15-dioxo-10-(5-

((3aR,4R,6aS)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoyl)-1-

phenyl-2-oxa-4,10,14-triazahexadecan-16-yl)-1,4,7,10-tetraazacyclododecane-

1,4,7-triyl)triacetate (49).  

A solution of 48 (0.3 g, 0.52 mmol), 43 (0.3 g, 0.52 mmol), NMM (0.12 mL, 1.0 

mmol) and HOBt (0.11 g, 0.57 mmol) in DMF (15 mL) was stirred at 0-5˚C for 15 

min and then EDC (0.08 g, 0.57 mmol) was added. The reaction mixture was stirred 

overnight at room temperature. The progress of the reaction was monitored by ESI-

MS. After completion, the solvent was evaporated under reduced pressure and the 

O
NH

OO

O

N

S

NH
HN

O

H

H
O

H2N



Materials and Methods 
 

143 

 

residue was purified by preparative HPLC (method C, λ = 214 nm, RT = 25.4 min). 

After lyophilization, 0.28 g (48%) of 49 as off-white solid was obtained.  

 

 

 

 

 

 

 

 

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.10-1.30 (m, 2H); 1.42 (s, 18H); 1.52 (s, 

10H); 1.60-1.95 (m, 12H); 2.03 (br s, 2H); 2.34 (br s, 3H); 2.62-2.99 (m, 6H); 3.32-

3.94 (m, 20H); 3.76 (br s, 6H); 3.94-3.98 (m, 2H); 4.23-4.43 (m, 2H); 4.47-4.63 (m, 

1H); 5.12 (s, 2H); 5.48-5.77 (m, 1H); 7.29-7.43 (m, 5H).  

ESI-MS (±): calcd C56H93N9O13S: m/z 1133.5 (M+H)+; found 1133.2 (M+H)+. 

2,2',2''-(10-(2-(3-(N-((S)-5-amino-5-carboxypentyl)-5-((3aR,4R,6aS)-2-oxo-

hexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)propylamino)-2-

oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (50).  

 

 

 

 

 

 

 

A solution of 49 (0.25 g, 0.22 mmol), (10%) Pd-C (0.07 g) and H2 (50 psi) in 

MeOH (20 mL) was stirred at room temperature in Parr-apparatus for 8 h. The 
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reaction was monitored by ESI-MS. After completion, the reaction mixture was 

filtered through a G-4 sintered funnel; filtrate was evaporated under reduced pressure. 

This crude product was further dissolve in TFA (20 mL) and stirred at room 

temperature for overnight. TFA was evaporated under reduced pressure. A solution of 

crude product in 20 mL of THF:MeOH:water (3:2:2) was stirred at 0-5˚C for 15 min 

and then LiOH (0.11 g, 4.7 mmol) was added. The reaction mixture was stirred for 2 h 

at room temperature. The progress of the reaction was monitored by ESI-MS. After 

completion, the solvent was evaporated under reduced pressure and the residue was 

purified by preparative HPLC (method B, λ = 214 nm, RT = 3.8 min). After 

lyophilization, 0.1 g (56%) of 50 as off-white solid was obtained.  

1H NMR (D2O, 250 MHz), δ (ppm): 1.20-2.16 (m, 16H); 2.47 (t, J=7.32 Hz, 2H); 

2.70-3.90 (m, 32H); 4.40-4.53 (m, 1H); 4.24-4.28 (m, 1H). 13C NMR (D2O, 62.9 

MHz), δ (ppm): 24.9; 27.8; 28.2; 30.9; 32.8; 35.0; 39.7; 42.4; 46.2; 47.9; 48.4; 50.7; 

50.9; 51.2; 53.2; 53.8; 57.1; 58.1; 58.6; 63.0; 64.8; 164.2; 165.3; 167.2; 177.1; 178.0; 

178.8.  

ESI-MS (±): calcd C35H61N9O11S: m/z 816.9 (M+H)+; found 817.1 (M+H)+. 

 (S)-6-(N-(3-aminopropyl)-5-((3aR,4R,6aS)-2-oxo-hexahydro-1H-thieno[3,4-

d]imidazol-4-yl)pentanamido)-2-(benzyloxycarbonylamino)hexanoic acid (51).  

 

 

 

 

 

 

 

 

A solution of 48 (0.25 g, 0.43 mmol) in 20 mL of THF:MeOH:water (3:2:2) 

was stirred at 0-5˚C for 15 min and then LiOH (0.02 g, 0.86 mmol) was added. The 

reaction mixture was stirred for 2 h at room temperature. The progress of the reaction 

was monitored by ESI-MS. After completion, the solvent was evaporated under 
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reduced pressure and the residue was purified by preparative HPLC (method C, λ = 

214 nm, RT = 9.4 min). After lyophilization, 0.2 g (82%) of 51 as off-white solid was 

obtained.  

1H NMR (D2O, 250 MHz), δ (ppm): 1.12-1.88 (m, 15H); 2.18-2.28 (m, 2H); 2.47-

3.44 (m, 8H); 3.88-4.59 (m, 3H); 5.01 (s, 2H); 7.16-7.33 (m, 5H). 13C NMR (D2O, 

62.9 MHz), δ (ppm) 25.1; 27.6; 29.3; 30.5; 34.4; 35.0; 39.9; 42.4; 45.5; 51.6; 56.9; 

58.0; 58.8; 59.9; 63.3; 64.7; 69.3; 72.5; 130.3; 130.9; 131.4; 139.3; 160.2; 167.8; 

173.7; 178.7.  

ESI-MS (±): calcd C27H41N5O6S: m/z 564.7 (M+H)+; found 564.5 (M+H)+. 

(S)-2-amino-6-(N-(3-aminopropyl)-5-((3aR,4R,6aS)-2-oxo-hexahydro-1H-

thieno[3,4-d]imidazol-4-yl)pentanamido)hexanoic acid (52).  

Reaction 1: A solution of 51 (0.09 g, 0.16 mmol), (10%) Pd-C (0.03 g) and H2 

(50 psi) in MeOH (10 mL) was stirred at room temperature in Parr-apparatus for 6 h. 

The reaction was monitored by ESI-MS. After completion, the reaction mixture was 

filtered through a G-4 sintered funnel; filtrate was evaporated under reduced pressure. 

 

 

 

 

 

 

Reaction 2: Compound 57 (0.1 g, 0.02 mmol) was dissolved in neat formic 

acid (5 ml) with stirring at room temperature for 2 h. The reaction was monitored by 

ESI-MS. After completion, the pH was adjusted to 7 using 1M Na2CO3. 

The residue was purified by preparative HPLC (method C, λ = 214 nm, RT = 8.2 

min). After lyophilization, 78% of 52 as off-white solid compound was obtained.  

1H NMR (D2O, 250 MHz), δ (ppm): 1.40-1.86 (m, 10H); 1.93-2.15 (m, 4H); 2.53 (t, 

J=7.02 Hz, 2H); 2.81-2.90 (m, 1H); 2.98-3.16 (m, 3H); 3.38-3.60 (m, 5H); 4.15-4.25 

(m, 1H); 4.46-4.54 (m, 1H); 4.66-4.72 (m, 1H). 13C NMR (D2O, 62.9 MHz), δ (ppm) 
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22.5; 24.0; 27.2; 27.3; 38.0; 41.0; 43.1; 48.5; 48.8; 49.1; 49.6; 52.9; 54.9; 55.1; 61.3; 

61.5; 161.2; 171.5; 171.9.  

ESI-MS (±): calcd C19H35N5O4S: m/z 430.2482 (M+H)+; found 430.2480 (M+H)+. 

(S)-6-(N-(3-fluoresceinthioureapropyl)-5-((3aR,4R,6aS)-2-oxo-hexahydro-1H-

thieno[3,4-d]imidazol-4-yl)pentanamido)-2-(benzyloxycarbonylamino)hexanoic 

acid (53).  

 

 

 

 

 

 

 

A solution of 51 (0.1 g, 0.18 mmol) in 10 mL of water was stirred at room 

temperature and FITC (0.08 g, 0.21 mmol) was added at pH 8.5. During stirring, pH 

was maintained at 8.0-8.5 by addition of 1M Na2CO3. The reaction mixture was 

stirred for 18-20 h at room temperature in dark. The reaction was monitored by ESI-

MS. The reaction mixture was evaporated under reduced pressure and the residue was 

purified by preparative HPLC (method C, λ = 254 nm, RT = 20.6 min). After 

lyophilization, 0.09 g (55%) of 53 as dark orange solid compound was obtained.  

1H NMR (D2O, 250 MHz), δ (ppm): 1.14-1.31 (m, 4H); 1.36-1.59 (m, 6H); 1.60-1.74 

(m, 2H); 2.13-2.29 (m, 2H); 2.40-2.73 (m, 1H); 2.82-3.02 (m, 1H); 3.11-3.14 (m, 4H); 

3.16 (s, 4H); 3.88-4.13 (m, 4H); 4.20-4.29 (m, 2H); 4.90 (m, 2H); 6.49-6.57 (m, 2H); 

6.61-6.79 (m, 4H); 6.96-7.18 (m, 7H); 7.57-8.14 (m, 1H). 13C NMR (D2O, 62.9 

MHz), δ (ppm) 24.2; 26.7; 28.3; 29.5; 29.7; 29.9; 32.6; 33.8; 41.2; 43.1; 44.3; 46.8; 

55.1; 57.1; 61.8; 63.5; 67.8; 85.7; 102.7; 103.4; 113.7; 115.7; 124.6; 126.9; 128.9; 

129.1; 129.6; 131.3; 131.5; 136.4; 138.4; 142.8; 156.0; 158.8; 164.3; 170.3; 175.5; 

175.8; 176.1; 179.9.  

ESI-MS (±): calcd C48H52N6O11S2: m/z 954.0 (M+H)+; found 954.2 (M+H)+. 
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(S)-2-amino-6-(N-(3-fluoresceinthioureapropyl)-5-((3aR,4R,6aS)-2-oxo-

hexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)hexanoic acid (54).  

 

 

 

 

 

 

Reaction 1: A solution of 53 (0.08 g, 0.10 mmol), (10%) Pd-C (0.02 g) and H2 

(50 psi) in MeOH (10 mL) was stirred at room temperature in Parr-apparatus for 2-6 

h. The reaction was monitored by ESI-MS and observed that under this condition 

compound was degrading.  

Reaction 2: Compound 58 (0.15 g, 0.16 mmol) was dissolved in neat formic 

acid (5 ml) with stirring at room temperature for 2 h. The reaction was monitored by 

ESI-MS. After completion, the pH was adjusted to 8 using 1M NaOH. 

The residue was purified by preparative HPLC (method C, λ = 214 nm, RT = 

18.4 min). After lyophilization, 0.11 g (88%) of 54 as dark orange solid compound 

was obtained.  

1H NMR (D2O, 250 MHz), δ (ppm): 1.23-1.36 (m, 1H); 1.53-1.75 (m, 4H); 1.79-2.01 

(m, 4H); 2.06-2.23 (m, 3H); 2.57-2.73 (m, 2H); 2.85-3.02 (m, 3H); 3.26-3.45 (m, 2H); 

3.71 (s, 4H); 3.80-3.94 (m, 2H); 4.02-4.10 (m, 1H); 4.48-4.86 (m, 3H); 6.89-7.04 (m, 

3H); 7.40-7.60 (m, 3H); 7.85-8.15 (m, 3H). 13C NMR (D2O, 62.9 MHz), δ (ppm) 

19.8; 22.9; 24.4; 25.7; 26.3; 28.0; 30.4; 37.5; 40.8; 43.6; 45.7; 46.7; 52.5; 53.2; 57.9; 

59.8; 101.5; 107.1; 110.2; 111.8; 116.4; 120.7; 127.0; 128.5; 129.1; 136.5; 138.6; 

156.3; 160.4; 162.9; 171.1; 173.1; 173.6; 177.9.  

ESI-MS (±): calcd C40H46N6O9S2: m/z 819.9 (M+H)+; found 820.4 (M+H)+. 

(S)-methyl 2-amino-6-(N-(2-cyanoethyl)-5-((3aR,4R,6aS)-2-oxo-hexahydro-1H-

thieno[3,4-d]imidazol-4-yl)pentanamido)hexanoate (55).  
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A solution of 47 (0.7 g, 1.2 mmol), (10%) Pd-C (0.18 g) and H2 (50 psi) in 10 

mL MeOH was stirred at room temperature in Parr-apparatus for 6 h. The reaction 

was monitored by ESI-MS. After completion, the reaction mixture was filtered 

through a G-4 sintered funnel; filtrate was evaporated under reduced pressure and the 

residue was purified by preparative RP-HPLC (method C, λ = 214 nm, RT = 12.5 

min). After lyophilization, 0.45 g (84%) of 55 as off-white solid was obtained.  

13C NMR (CDCl3, 62.9 MHz), δ (ppm) 16.3; 22.5; 23.6; 27.7; 28.5; 32.4; 34.5; 34.6; 

41.4; 45.5; 45.9; 51.4; 53.4; 54.9; 60.3; 62.0; 119.3; 163.3; 175.8; 176.1.  

ESI-HRMS (+): calcd C20H33N5O4S: m/z 440.2326 (M+H)+; found 440.2325 

(M+H)+. 

(S)-methyl 2-(tert-butoxycarbonylamino)-6-(N-(2-cyanoethyl)-5-((3aR,4R,6aS)-2-

oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)hexanoate (56).  

 

 

 

 

 

 

A solution of 55 (0.4 g, 0.91 mmol) and TEA (0.51 mL, 3.6 mmol) in 20 mL 

CH2Cl2 was stirred at 0-5°C for 15 min. Di-tert-butyl dicarbonate (0.51 mL, 3.6 

mmol) was dissolved in 5 mL CH2Cl2 and added dropwise in reaction mixture at 0-

5°C. After addition reaction mixture was stirred for 3 h at room temperature. The 

NH2

O

O

N

CN

S

NH
HN

O

H

H
O

H
N

O

O

N

CN

S

NH
HN

O

H

H
O

O

O



Materials and Methods 
 

149 

 

progress of reaction was monitored by TLC using CH2Cl2:MeOH, 9:1 and Rf of (56) 

was 0.3. After completion, the reaction mixture was poured in water, extracted with 

CH2Cl2 (3x100 mL), organic layer was dried over Na2SO4, filtered, filtrate was 

evaporated under reduced pressure and purified by column chromatography (silica 

gel, 10% MeOH in CH2Cl2) to give 0.43 g (88%) of 56 as light yellowish gum. 

13C NMR (CDCl3, 62.9 MHz), δ (ppm) 16.4; 22.5; 23.6; 27.7; 28.5; 28.7; 32.4; 34.5; 

34.6; 41.4; 45.5; 45.9; 51.4; 53.4; 54.9; 60.3; 62.0; 81.1; 119.3; 155.8; 163.3; 175.8; 

176.1.  

ESI-MS (±): calcd C25H41N5O6S: m/z 540.7 (M+H)+; found 540.5 (M+H)+. 

(S)-6-(N-(3-aminopropyl)-5-((3aR,4R,6aS)-2-oxo-hexahydro-1H-thieno[3,4-

d]imidazol-4-yl)pentanamido)-2-(tert-butoxycarbonylamino)hexanoic acid (57).  

A solution of 56 (0.4 g, 0.74 mmol), Ra-Ni (0.1 g) and H2 (50 psi) in 7N 

NH3/MeOH:water (10:1 mL) was stirred at room temperature in Parr-apparatus for 6 

h. The reaction was monitored by ESI-MS. After completion, the reaction mixture 

was filtered through a G-4 sintered funnel, filtrate was evaporated under reduced 

pressure and the residue was purified by preparative RP-HPLC (method C, λ = 214 

nm, RT = 10.2 min). After lyophilization, 0.23 g (58%) of 57 as off-white solid was 

obtained.  

 

 

 

 

 

 

1H NMR (MeOD, 250 MHz), δ (ppm): 1.24 (s, 9H); 1.28-1.36 (m, 2H); 1.39-1.61 (m, 

6H); 1.63-1.85 (m, 3H); 2.26 (t, J=7.32 Hz, 2H); 2.47-2.57 (m, 2H); 2.65-2.85 (m, 

3H); 2.99-3.08 (m, 1H); 3.11-3.16 (m, 2H); 3.17 (s, 3H); 3.28 (t, J=6.41 Hz, 1H); 

3.73-3.93 (m, 1H); 4.10-4.19 (m, 1H); 4.28-4.37 (m, 1H). 13C NMR (MeOD, 62.9 

MHz), δ (ppm). 22.4; 23.2; 25.5; 26.0; 27.2; 27.9; 28.7; 29.0; 30.4; 31.6; 32.6; 37.3; 

40.1; 42.5; 56.1; 60.8; 62.5; 79.7; 157.3; 165.3; 174.3; 175.5.  
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ESI-MS (±): calcd C24H43N5O6S: m/z 530.6 (M+H)+; found 530.7 (M+H)+. 

(S)-6-(N-(3-fluoresceinthioureapropyl)-5-((3aR,4R,6aS)-2-oxo-hexahydro-1H-

thieno[3,4-d]imidazol-4-yl)pentanamido)-2-(tert-butoxycarbonylamino)hexanoic 

acid (58).  

 

 

 

 

 

 

A solution of 57 (0.2 g, 0.38 mmol) in 10 mL of water was stirred at room 

temperature and FITC (0.18 g, 0.45 mmol) was added at pH 8.5. During stirring, pH 

was maintained at 8.0-8.5 by addition of 1M Na2CO3. The reaction mixture was 

stirred for 18-20 h at room temperature in dark. The reaction was monitored by ESI-

MS. The reaction mixture was evaporated under reduced pressure and the residue was 

purified by preparative HPLC (method C, λ = 254 nm, RT = 21.5 min). After 

lyophilization, 0.19 g (50%) of 58 as dark orange solid compound was obtained.  

1H NMR (D2O, 250 MHz), δ (ppm): 1.01-1.06 (m, 1H); 1.21 (s, 9H) 1.23-1.29 (m, 

2H); 1.34-1.54 (m, 5H); 1.58-1.85 (m, 2H); 2.13-2.25 (m, 1H); 2.38-2.74 (m, 1H); 

2.87-3.00 (m, 1H); 3.03-3.28 (m, 10H); 3.32-3.50 (m, 2H); 3.81-3.93 (m, 2H); 4.00-

4.29 (m, 1H); 6.48-6.60 (m, 2H); 6.63-6.83 (m, 5H); 6.96-7.05 (m, 1H); 7.57-8.14 (m, 

1H). 13C NMR (D2O, 62.9 MHz), δ (ppm) 24.2; 26.7; 28.3; 29.5; 29.7; 29.9; 32.6; 

33.8; 41.2; 43.1; 44.3; 46.8; 55.1; 57.1; 61.8; 63.5; 67.8; 80.4; 85.8; 103.4; 105.6; 

113.7; 115.7; 123.4; 128.9; 129.1; 129.6; 131.3; 131.5; 138.4; 142.8; 156.0; 158.8; 

164.3; 170.3; 175.5; 175.8.   

ESI-MS (±): calcd C45H54N6O11S2: m/z 920.0 (M+H)+; found 919.9 (M+H)+. 
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methyl 2-(benzyloxycarbonylamino)-3-bromopropanoate (59).  

 

 

 

 

N-bromosuccinimide (1.41 g, 7.9 mmol) was slowly added to a solution of N-

carbobenzyloxy-L-serine methyl ester (1.0 g, 3.95 mmol) and PPh3 (2.1 g, 7.9 mmol) 

in DMF (50 mL). The mixture was stirred at 50 °C for 30 min; MeOH (2 mL) was 

added to destroy the excess reagent. After 5 min, ether (200 mL) was added, the 

organic layer was washed with water (100 mL), saturated NaHCO3 (150 mL), brine 

(200 mL), and dried over Na2SO4. The progress of reaction was monitored by TLC 

using n-hexane:EtOAc, 7:3 and Rf of (59) was 0.45. The crude product was purified 

by flash column chromatography (silica gel, 30% EtOAc in n-hexane) to give 0.68 g 

(54%) of 59 as light yellowish gum. 

1H NMR (CDCl3, 400 MHz), δ (ppm): 3.4-3.7 (m, 5H); 4.57-4.62 (m, 1H); 4.91 (s, 

2H); 5.49-5.58 (m, 1H); 7.07-7.28 (m, 5H). 13C NMR (CDCl3, 100 MHz), δ (ppm) 

33.6; 53.0; 54.2; 67.2; 128.0; 128.2; 128.4; 139.5; 159.5; 169.2. 

 ESI-MS (+): calcd C12H14BrNO4: m/z 317.1 (M+H)+; found 317.3 (M+H)+. 

methyl 2-(benzyloxycarbonylamino)-3-(1,4,7,10-tetraazacyclododecan-1-

yl)propanoate (60).  

 

 

 

 

 

 

59 (0.6 g, 1.9 mmol) was added dropwise in a solution of cyclen (2.00 g, 11.6 

mmol) in toluene (100 mL) at room temperature. The reaction mixture was refluxed 

for 18 h. The reaction mixture was filtered through a G-4 sintered funnel; filtrate was 
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evaporated under reduced pressure, dissolved in 200 mL CH2Cl2, extracted from the 

water (4x100 ml). The organic layers were combined, dried over sodium sulfate and 

then concentrated in vacuum to yield 0.34 g (44%) of 60 as colorless oil.  

1H NMR (CDCl3, 250 MHz), δ (ppm): 2.20-3.02 (m, 18H); 3.69 (s, 3H); 4.36 (br s, 

1H); 5.02 (s, 2H); 5.07-5.25 (m, 4H); 7.25-7.40 (m, 5H). 13C NMR (CDCl3, 62.9 

MHz), δ (ppm) 43.5; 52.5; 53.2; 53.7; 53.9; 55.0; 59.9; 66.3; 127.7; 128.9; 132.1; 

134.2; 161.4; 176.8.  

ESI-HRMS (±): calcd C20H33N5O4: m/z 408.2605 (M+H)+; found 408.2607 (M+H)+. 

[4,7-Bis-butoxycarbonylmethyl-10-{2-(benzyloxycarbonylamino)-3-methoxy-3-

oxopropyl}-1,4,7,10-tetraaza-cyclododec-1-yl]-acetic acid tert-butyl ester (61).  

 

 

 

 

 

 

A solution of 60 (0.3 g, 0.74 mmol), sodium carbonate (0.49 g, 5.9 mmol) and 

tert–butylbromoacetate (0.35 mL, 2.4 mmol) in MeCN (100 ml) was stirred at 70°C 

for overnight. The reaction was monitored by TLC. After completion, the reaction 

mixture was filtered and washed with CH2Cl2 (3x50 ml). The organic solvent was 

evaporated under reduced pressure and the residue was purified by column 

chromatography (silica gel, 5% MeOH in CH2Cl2, Rf = 0.55) to give 0.45 g (82%) of 

61 as a yellow gum. 

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.32 (s, 9H); 1.39 (s, 18H); 1.83-2.56 (m, 8H); 

2.60-3.50 (m, 16H); 3.66 (s, 3H); 4.47 (br s, 1H); 4.71 (br s, 1H); 5.24 (s, 2H); 7.16-

7.42 (m, 5H). 13C NMR (CDCl3, 62.9 MHz), δ (ppm): 27.8; 28.0; 50.3; 50.5; 51.3; 

52.3; 52.6; 53.3; 55.5; 56.1; 56.5; 66.9; 82.1; 82.4; 127.7; 127.9; 128.3; 135.9; 157.0; 

171.8; 172.7; 173.1.  

ESI-HRMS (±): calcd C38H63N5O10: m/z 750.4647 (M+H)+; found 750.4641 (M+H)+. 
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2-(benzyloxycarbonylamino)-3-(4,7,10-tris(2-tert-butoxy-2-oxoethyl)-1,4,7,10-

tetraazacyclododecan-1-yl)propanoic acid (62).  

 

 

 

 

 

 

A solution of 6 (0.1 g, 0.13 mmol) in 7 mL of THF:MeOH:water (3:2:2) was 

stirred at 0-5˚C for 15 min and then LiOH (6.5 mg, 0.27 mmol) was added. The 

reaction mixture was stirred for 2 h at room temperature. The progress of the reaction 

was checked by ESI-MS. After completion, the reaction mixture was concentrated 

under reduced pressure, 0.76 g (64%) of 62 as white powder was obtained. 

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.35 (s, 9H); 1.41 (s, 18H); 1.90-2.72 (m, 8H); 

2.80-3.62 (m, 16H); 4.65 (br s, 1H); 4.89 (br s, 1H); 5.41 (s, 2H); 7.11-7.32 (m, 5H). 
13C NMR (CDCl3, 62.9 MHz), δ (ppm): 27.2; 27.3; 51.3; 51.5; 53.3; 53.6; 54.3; 56.5; 

567.1; 57.5; 66.6; 82.6; 82.8; 127.9; 130.1; 130.3; 136.9; 158.0; 171.3; 172.4; 173.5.  

ESI-MS (±): calcd  C37H61N5O10: m/z 736.9 (M+H)+; found 737.1 (M+H)+. 

[4,7-Bis-butoxycarbonylmethyl-10-(2-amino-3-methoxy-3-oxopropyl)-1,4,7,10-

tetraaza-cyclododec-1-yl]-acetic acid tert-butyl ester (63).   

 

 

 

 

 

 

A solution of 61 (0.3 g, 0.4 mmol), (10%) Pd-C (0.1 g) and H2 (50 psi) in 

MeOH (10 mL) was stirred at room temperature in Parr-apparatus for 6 h. The 
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reaction was monitored by ESI-MS. After completion, the reaction mixture was 

filtered through a G-4 sintered funnel; filtrate was evaporated under reduced pressure. 

The residue was purified by column chromatography (silica gel, 10% MeOH in 

CH2Cl2, Rf = 0.45) to give 0.2 g (80%) of 63 as an off white solid. 

1H NMR (CDCl3, 250 MHz), δ (ppm): 1.38 (s, 9H); 1.39 (s, 18H); 1.91-2.51 (m, 8H); 

2.52-2.96 (m, 10H); 3.02 (s, 2H); 3.10-3.42 (m, 7H); 3.49-3.37 (m, 3H). 13C NMR 

(CDCl3, 62.9 MHz), δ (ppm): 27.1; 27.7; 48.9; 50.5; 51.8; 52.3; 55.3; 55.7; 55.9; 56.2; 

60.3; 81.9; 82.3; 172.2; 172.8; 175.5.  

ESI-HRMS (±): calcd C30H57N5O8: m/z 616.4279 (M+H)+; found 616.4278 (M+H)+. 

[4,7-Bis-carboxymethyl-10-(2-amino-2-carboxyethyl)-1,4,7,10-tetraaza-

cyclododec-1-yl]-acetic acid (64).  

 

 

 

 

 

A solution of 63 (0.15 g, 0.24 mmol) in TFA (10 mL) was stirred at room 

temperature for 18-20 h. The reaction was monitored by ESI-MS. The solvent was 

evaporated under reduced pressure and dissolved in a minimum volume  of MeOH (1 

mL) followed by addition of diethyl ether dropwise at 0-5˚C and stir for 1 h at room 

temperature. The compound was precipitated and filtered through a G-4 sintered 

funnel under nitrogen. The precipitate was dissolved in water and neutralized by 

adding 1 M Na2CO3 and the crude products were purified by preparative RP-HPLC. 

RP-HPLC: method B, λ = 214 nm, RT = 2.4 min. Yield: 55 mg (52%) of 64 as white 

solid. 

1H NMR (D2O, 250 MHz), δ (ppm): 1.93-2.64 (m, 8H); 2.58-3.02 (m, 12H); 3.18-

3.52 (m, 3H); 3.59-3.47 (m, 2H). 13C NMR (D2O, 62.9 MHz), δ (ppm): 50.1; 56.1; 

56.4; 57.0; 57.2; 57.4; 57.6; 59.8; 174.2; 174.8; 177.5.  

ESI-HRMS (±): calcd C17H31N5O8: m/z 434.2245 (M+H)+; found 434.2281 (M+H)+. 
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