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Erweiterte deutsche Zusammenfassung

Schönherr, Gabriele

Starke Magnetfelder akkretierender Neutronensterne
— Modellierung von Zyklotronlinien —

Akkretierende Neutronensterne in Röntgendoppelsternsystemen sind einzigartige
astrophysikalische Laboratorien für das Studium der Physik unter extremen Bedin-
gungen. Nicht nur bedingt ihre Kompaktheit ein Maß an Gravitation das nur noch von
Schwarzlochsystemen übertroffen wird; sie können auch extrem starke Magnetfelder,
millionenfach stärker als das stärkste bisher auf Erden erzeugte Magnetfeld, haben.
Diese Magnetfelder bestimmen die beobachtbaren Strahlungscharakteristika, darun-
ter das wohl auffälligste die Emission von Strahlungspulsen. Ursprung und Struktur
der Magnetfelder sind allerdings bis heute noch sehr rätselhaft.

Die einzig derzeit bekannte Methode, das Magnetfeld eines Neutronensterns zu
vermessen, basiert auf dem Studium von Zyklotronlinien. Diese Spektrallinien wur-
den erstmals für das Doppelsternsystem Hercules X-1 entdeckt. Seitdem sind Zyklo-
tronlinien für mehr als ein Dutzend Röntgenpulsare beobachtet worden. Sie entste-
hen durch resonante Streuprozesse von hochenergetischen Photonen mit quantisier-
ten Elektronen in der akkretierten Materie an den Polen des Neutronensterns. Die
Linienenergien sind nahezu proportional zum Oberflächenmagnetfeld des Neutronen-
sterns. Die Untersuchung ihrer Profile bietet einen mächtigen Zugang zu der faszinie-
renden jedoch nur schlecht verstandenen Physik der Akkretion.

Der Zugriff auf qualitativ hochwertige Daten von Satelliten wie BeppoSAX, RX-
TE, INTEGRAL undSuzaku, hat die diagnostische Bedeutung von Zyklotronlinien
heutzutage einerseits gesteigert. Andererseits gibt es bisher kein konkretes physikali-
sches Modell, um ihre komplexen Profile im Detail zu erklären. Stattdessen werden
die Linienparameter und die Magnetfeldstärke mit phänomenologischenModellen be-
stimmt. Mit solchen Ansätzen die zugrunde liegende Physik der Linienentstehung zu
erschließen ist extrem schwierig.

Im Rahmen dieser Arbeit werden Zyklotronlinien mit Monte Carlo Simulationen
berechnet. Die Linienprofile werden von Parametern wie dem Magnetfeld, der Akkre-
tionsgeometrie, der Plasmatemperatur und optischen Tiefe, und des Austrittswinkels
der Photonen abgeleitet. Darauf aufbauend wird ein neues Interpolations- und Fal-
tungsmodell zur Modellierung von Zyklotronlinien in den Spektren von Röntgenpul-
saren entwickelt. Dessen Implementierung als lokales Modell, genanntcyclomc, für
dieXSPECSpektralanalyse-Software ermöglicht einen direkten Vergleich mit Beob-
achtungsdaten. Fitresultate für die Beobachtungen dreierRöntgenpulsare, V0332+53,
Cen X-3 und 4U 1907+09, mitcyclomc erlauben einen ersten Blick auf die grund-
legende Physik über einen phänomenologischen Ansatz hinaus.



Abstract

Schönherr, Gabriele

Strong magnetic fields of accreting neutron stars
— Modeling cyclotron lines —

Accreting neutron stars in X-ray binaries are unique astrophysical laboratories for
studying the physics of matter under extreme conditions. Not only does their compact
nature lead to an amount of gravity only topped by black hole systems; they can
also possess extreme magnetic fields, exceeding the highestmagnetic field which has
ever been produced on Earth by a million times. These magnetic fields dominate the
observed radiation characteristics, the most prominent being pulsed emission. The
origin and structure of the magnetic fields, however, is still highly enigmatic.

The only direct method currently known for probing the magnetic field of a neutron
star is the study of cyclotron resonance scattering features. These features, first dis-
covered in the spectrum of the binary system Hercules X-1, have been observed as ab-
sorption lines in the spectra of more than a dozen accreting X-ray pulsars. They form
due to resonant scattering processes of high energy photonswith quantized electrons
in the accreted matter at the neutron star poles. Their line energies are approximately
proportional to the surface magnetic field strength of the neutron star. Moreover, the
analysis of their shapes is a powerful tool for assessing thefascinating but poorly
understood physics of accretion.

Today, with the access to data from satellites likeBeppoSAX, RXTE, INTEGRAL
andSuzaku, the diagnostic potential of cyclotron lines has grown anew: with these
instruments the observed cyclotron line features have beenenergetically resolved in
detail. On the other hand, explicit physical models to understand their complex ob-
served shapes are lacking. Phenomenological models are used to obtain their char-
acteristic parameters and to determine the magnetic field strength. The underlying
physics, however, are extremeley difficult to assess with such an approach.

In the scope of this work, cyclotron resonance scattering features are calculated
for typical neutron star spectra using Monte Carlo simulations. The line profiles are
inferred under the assumption of physical parameters such as the magnetic field, the
accretion geometry, the plasma temperature and optical depth, and the emergent angle
of radiation. Based on these simulations, a new interpolation and convolution model
is developed for modeling cyclotron lines in X-ray pulsar continua. This model is fur-
ther implemented as a local model, namedcyclomc, into the spectral fitting analysis
packageXSPEC to allow for a direct comparison with observational data. Results,
obtained from fitting cyclotron lines for observations of the X-ray pulsars V0332+53,
Cen X-3 and 4U 1907+09 with cyclomc allow for a first glimpse on the physics
beyond a phenomenological analysis.
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CHAPTER 1

Introduction

“I wonder why, I wonder why.
I wonder why I wonder...

I wonder why I wonder why,
I wonder why I wonder.”

[Richard Feynman]

X-ray astronomy

X-ray astronomers indeed have had a lot to wonder about during the last decades.
Since the first detection of extrasolar X-rays in the 1960s, an exciting new world has
been opening up in the X-ray waveband. Different from the optical sky, the X-ray sky
is a violent and constantly changing sight. The observed objects have temperatures
of 106 K and higher, hinting at the presence of extreme conditions.Strong magnetic
fields, very high gravity or explosive forces are often involved. Black holes and ac-
creting neutron stars are among the objects observed in thishot universe which has
long been inaccessible for observational astronomy. Contrary to other energy bands,
where ground-based observatories can be used, X- and gamma-ray observations re-
quire space-based technologies. The atmospheric absorption of high-energy photons
renders their detection from Earth impossible (Fig. 1.1). Although the challenge of
space technologies slowed down the progress in this field of research at first, it has
been a rapidly evolving area ever since.

The beginning of extrasolar X-ray astronomy dates back to the year 1962 when
a rocket-based X-ray detector (Giacconi et al., 1962) was flown in order to observe
fluorescence of the moon’s surface from the solar wind. It turned out that the X-ray
emission of the moon was below the detection limit of the detector. Instead, scanning
the sky with Geiger counters, the rocket experiment discovered the first strong source

1



2 Chapter 1: Introduction

Figure 1.1: Electromagnetic spectrum and atmospheric absorption. The depth of the pene-
tration (i.e. the depth at which the initial intensity has decreased by a factor 1/e) of light at
different frequencies into the Earth’s atmosphere is shown. The required observatories for the
different energy bands are indicated (Image courtesy NASA:http://chandra.harvard.
edu/xray_astro/absorption.html).

of X-ray emission in space outside the solar system. This source in the constellation
Scorpius was later called Scorpius X-1 (Sco X-1), which is a luminous X-ray binary.
Data from the discovery observation is shown in Fig. 1.2. Also, for the first time,
evidence for an X-ray background radiation in space was provided.

To date, about half a million X-ray sources have been discovered1. Most sources
were detected by virtue of satellite-based observatories.In 1970, 59 X-ray sources
were known from all previous rocket and balloon missions. In1980, thanks to the
Uhuru2 satellite, the British-US observatoryAriel-V , and the first High Energy As-
tronomy Observatory (HEAO-1), this number had grown to 700 known sources. An-
other ten years later, theEinstein (HEAO-2)observatory and the European Space
Agency’s X-ray Observatory (EXOSAT) established a list of 8000 sources. The
launch of the Roentgen Satellite (ROSAT) and its extensive survey program made this
number jump up again. In the year 2000, 220000 X-ray sources had been observed, a
number which doubled in the following years mainly thanks tosource detections by

1http://heasarc.nasa.gov/docs/heasarc/headates/how_many_xray.html
2the Swahili word for ‘freedom’; a list of past and present X- and gamma-ray missions is provided, e.g.,

by NASA athttp://heasarc.nasa.gov/docs/observatories.html
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Figure 1.2: Discovery observation of the first extrasolar X-ray source Sco X-1 (Giacconi et al.,
1962). The number of counts (accumulated in350 s in each6◦ interval) from two Geiger
counters grouped around the longitudinal rocket axis versus the azimuth angle is shown.

theChandra3 satellite and the X-ray Multi-Mirror Mission (XMM-Newton). In 2010,
estimates predict that the list of X-ray sources will encompass a million objects.

There is no sharply defined frontier in energy between gamma-rays and X-rays.
One commonly speaks of soft X-rays from∼ 0.1–3 keV, of intermediate X-rays from
0.3 –10 keV, and of hard or high-energy X-rays from10 keV to ∼ 0.5 MeV. For a
general introduction to observational X-ray astronomy, see Charles & Seward (1995).

The high-energy universe is a unique laboratory to observe physics under extreme
conditions which are not reproducible on Earth. The title ofthis thesis, “Strong mag-
netic fields of accreting neutron stars”, hints at some of them. The wording ‘strong’
refers to fields which are a million times stronger than the largest magnetic field which
has ever been produced in a laboratory on Earth. Also, gravitational fields so strong
that they bend the escaping light are characteristic for accreting neutron stars. Rela-
tivistic quantum electrodynamics is required to discuss the radiation processes in the
plasma. The extreme magnetic fields not only give rise to pulsar characteristics but
also manifest themselves in the spectra of accreting neutron stars in the form of cy-
clotron resonance scattering features. As will be explained in detail later in this thesis,
these features are formed in absorption due to resonant magnetic photon electron scat-
tering in a relativistic magnetized plasma of quantized electrons. They are observed
at energies directly linked to the magnetic field strength. Abetter understanding of

3named in honor of S. Chandrasekhar
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Figure 1.3: The galaxy in X-rays as seen by the Rossi X-ray Timing Explorer (RXTE). The
big dot above the galactic plane corresponds to Sco X-1. The figure is a snapshot taken from
a video released from a group of researchers at the Massachusetts Institute of Technology, led
by Hale Bradt.

those features can help to reveal the mysterious nature of magnetized accreting neu-
tron stars. This work is dedicated to the study of their formation in the spectra of
accreting X-ray pulsars.

Outline

The outline of the present work is as follows: the next chapter gives an overview over
the properties of accreting neutron stars, in particular ofthe class of accreting X-ray
pulsars. It involves the discussion of general neutron starproperties, binary dynamics,
mechanisms of accretion, timing and spectral properties ofthose objects. Chapter 3
introduces the focus of this thesis: cyclotron resonance scattering features (CRSFs)
in magnetized X-ray pulsar spectra. The basic theory of cyclotron line formation in
a strong magnetic field is discussed. Key results from past observations are reported,
and an overview of different numerical approaches to modeling cyclotron lines for
accreting neutron stars is given. Chapter 4 focuses on the development of a new mod-
eling approach, based on Monte Carlo simulations of the electron photon scattering
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processes. Theoretical models are often hard to link to observational results. The
precise steps of modeling are therefore motivated in particular from an observer’s
point of view. Theoretical predictions from the current model in chapter 5 are com-
plemented in chapter 6 by a comparison of the model with real observational data.
Finally, chapter 7 summarizes all results. Consequences ofthese results, relevant for
(modeling) X-ray pulsar physics are concluded. Future model developments are an-
ticipated, and an outlook on further approaches to understanding cyclotron resonance
scattering features for accreting neutron stars is presented.



CHAPTER 2

Accreting X-ray pulsars

To date, more than 100 accreting X-ray pulsars have been detected (Bildsten et al.,
1997; Liu, van Paradijs & van den Heuvel, 2005). X-ray pulsars are bright X-ray
sources which exhibit a pulsed luminosity profile. Their observational properties are
understood to arise from accretion powered, magnetized neutron stars in close binary
systems with a normal star as companion (Pringle & Rees, 1972; Davidson & Os-
triker, 1973; Lamb, Pethick & Pines, 1973). Sometimes, the term X-ray pulsar is also
used in the literature for isolated, rotationally powered neutron stars or magnetars.
Throughout the present work it always refers to accreting binary neutron stars which
are the objects of interest of this work. For reviews of observations of accreting X-
ray pulsars see, e.g., Nagase (1989), Bildsten et al. (1997)or di Salvo, Santangelo &
Segreto (2004).

The first observational discovery of an accreting neutron star binary pulsar took
place when regular pulsations in the X-ray energy band were observed from Cen-
taurus X-3 (Cen X-3) by theUhuru satellite (Giacconi et al., 1971a; Schreier et al.,
1972, see Fig. 2.1). Shortly after, the same phenomenon was observed byUhuru
for Hercules X-1 (Her X-1; Tananbaum et al., 1972). X-ray pulsations had already
been seen before in the spectrum of the Crab pulsar. However,Cen X-3 and Her
X-1 had comparably slow rotational periods at similar X-rayluminosities, ruling out
a rotationally-powered emission mechanism (Davidson & Ostriker, 1973; Ostriker &
Davidson, 1973). The findings of their spin-up characteristics (a shortening of their
rotation periods) confirmed this deduction. The observational identification1 of both
sources with binary systems instead pointed at accretion asthe dominant source of
energy. Following the interpretation of Pringle & Rees (1972) for Cen X-3, Davidson
& Ostriker (1973) proposed Cen X-3 and Her X-1 to be the prototypes for this new
class of accreting X-ray binary systems. Indeed, the high X-ray luminosities could be
explained by the liberation of gravitational energy from matter being accreted onto a
neutron star. Also, the spin-up rates were understood as a consequence of an angular
momentum transfer associated with the accretion of the infalling gas. Many more

1from direct observational evidence such at eclipses and Doppler shifts of the pulsation.

6
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Figure 2.1: Discovery of of pulsations in the light curve of Cen X-3 (Giacconi et al., 1971a).
Count histogram for2–6 keV flux, received on April 12, 1971 byUhuru. A sinusoidal fit to the
data is also shown.

observations of X-ray pulsars have strengthened this understanding and contributed
to a more complete picture of X-ray pulsars (Nagase, 1989). Accreting X-ray pulsars
are believed to have masses ofM ∼ 1.3–1.8M⊙, radii ofR ∼ 106 cm, luminosities
of 1034–1038 erg s−1, to be spinning with periods ofP = 10−2–103 s, and to possess
magnetic fields of the order of1012 Gauss. There are persistent and transient sources
which can only be observed (at high luminosities) during outburst events (see section
2.2).

Since the discovery of the first X-ray pulsar, through studies of their spectral and
temporal behaviour, the understanding of these sources hasincreased significantly.
In the following, the basic physics of accreting neutron stars is discussed. Different
classes of neutron stars, the ‘radio pulsars’ and ‘magnetars’ are only briefly touched
as a full-blown discussion of neutron star physics is far beyond the scope of this work.
This chapter instead aims at a self-contained elaboration of those aspects which are
most relevant for understanding the theory and the observational data of cyclotron res-
onance scattering features in the hard X-ray spectra of strongly magnetized, accreting
neutron stars. More general information about neutron stars and compact X-ray bi-
naries can be found for instance in the textbooks by Lewin, van Paradijs & van den
Heuvel (1995), Glendenning (1996) or Lewin & van der Klis (2006).

2.1 Neutron stars

“I could be bound in a nut shell and count myself a king of infinite space.”

[W. Shakespeare (Hamlet)]

Neutron stars are the compact remnants of massive normal stars with zero-age main
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Figure 2.2: Supernova classification. Figure from Turatto (2003). The classification scheme
is an extended version of the original spectroscopical distinction of class I (no hydrogen lines)
and class II (hydrogen lines) (Minkowski, 1941). SNe are also distinguished with respect to
the physical processes of the explosion in thermonuclear SNe and core-collapse SNe.

sequence masses of about8 to 20–30M⊙. They are believed to form during a core-
collapse supernova (SN) of type II, Ib or Ic (Fig. 2.2). For a review of the evolution
and explosion of massive stars, see, e.g., Woosley, Heger & Weaver (2002), for spec-
troscopical SN classification see Minkowski (1941) and Turatto (2003).

While only ∼2000 neutron stars have been detected so far (Lorimer, 2005), esti-
mates predict a number of about108 neutron stars in our galaxy (Timmes, Woosley
& Weaver, 1996). First important contributions to the theoretical conception of the
neutron star idea came from Chandrasekhar (1931), and Landau (1932), raising the
question about the ultimate fate of stars beyond white dwarfs. Shortly after the dis-
covery of the neutron as an elementary particle (Chadwick, 1934), Baade & Zwicky
(1934) proposed ‘neutron stars’ to be formed during a supernova event. First calcula-
tions of the neutron stars’ structure (Chandrasekhar, 1931; Oppenheimer & Volkoff,
1939) constrained their masses (see table 2.1). The physicsof neutron stars are dis-
cussed in various textbooks, e.g., Shapiro & Teukolsky (1983) or Lipunov (1992).

Neutron stars are characterized by very high densities, high gravity, fast rotation,
and strong magnetic fields. Typical masses are 1.3 to1.8M⊙ (see Fig. 2.3 for mea-
sured binary radio pulsar masses, Thorsett & Chakrabarty, 1999) compared to radii
of the order of10 km, yielding densities comparable to the densities of atomic nuclei.
The exact equation of state for neutron stars, however, remains unknown. The high
compactness of neutron stars leads to a surface gravity which is about1011 times
stronger than gravity on Earth. The fast rotation of neutronstars is traditionally ex-
plained by the conservation of the rotational angular momentum,L = Iω, during
the collapse of a normal star’s core, whereI is the moment of inertia andω is the
angular rotational velocity. The rotational energy increases with the compression as
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Figure 2.3: Mass measurements of radio pulsars in binary systems (Thorsett & Chakrabarty,
1999). The vertical lines indicate the regime ofM = 1.35 ± 0.04 M⊙.

Erot = Iω2/2 ∝ R−2 (R is the radius of the object; Lipunov, 1992). Recently,
Blondin & Mezzacappa (2007) have suggested that the spin could instead be a result
of the explosion itself, breaking with the hypothesis of a correlation of the neutron
stars’ spin to the spin of the progenitor stars. Similarly, the question whether the
strong magnetic fields are linked to the progenitor stars’ fields or whether they are
generated mainly after the SN explosion is not solved yet (see section 3.1). The sur-
face temperatures of neutron stars are believed to cool frominitially about1011 K to
temperatures of105–106 K on a time scale of less than 1000 years. The cooling is
believed to occur via neutrino emission from the whole stellar body and from heat
transport to the surface which results in thermal emission of photons. After cooling,
neutron stars still exceed the surface temperature of the Sun by three orders of magni-
tude. For NS cooling theories, see, e.g., Tsuruta & Cameron (1966), Pethick (1992),
Page (1998) and Yakovlev & Pethick (2004).

The real nature of the matter compressed within a neutron star and its interior are
still highly enigmatic. A simplified model is the picture of apossibly superfluid and
superconductive inner core, surrounded by a solid crust, which extends to about1 km
below the surface and contains atomic nuclei in an electron Fermi sea (Harding &
Lai, 2006; Jones, 2004). Its composition may be changed by accretion of matter.
Models for the interior further involve scenarios of free neutrons at the inner crust
(ρ > 4·1011 g cm−3), which may form Cooper pairs and turn superfluid below1 MeV
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Table 2.1: Mass constraints on the compact core of the progenitor star which assumes different
final evolutionary states (as a WD, NS or BH), after derivations by Chandrasekhar (1931) and
Oppenheimer & Volkoff (1939).

Mass . 1.4M⊙ 1.4M⊙ . M . 3–4M⊙ M & 4M⊙

Object White Dwarf (WD) Neutron star (NS) Black Hole (BH)

and the disappearance of nuclei and the presence of protons,electrons, muons, more
exotic particles and strange matter with progressing density in the inner core (ρ >
2·1014 g cm−3; Harding & Lai, 2006). In the framework of this work, the macroscopic
properties of neutron stars are more important than their inner structure. The observed
spectra are dominated by the structure of the atmosphere or outer envelope of the
neutron star. However, the inner structure is crucial for the mass-radius relation of
the neutron star, which in turn determines the gravitational redshift of the radiation
emerging from its surface (see section 2.6).

2.2 X-ray binaries

Accreting X-ray pulsars are neutron stars in binary systems, powering their X-ray
emission by the accretion of matter from the companion star (see section 2.3). X-
ray binaries contain a normal star and a compact object, orbiting each other. The
compact object can be a neutron star or a black hole. The mass function of the system
is calculated as a function of the orbital parameters as

f(MP,MC) =
Porbv

3

2πG
=

(MC sin i)3

(MC +MP)2
, (2.1)

whereMP,C are the masses of the pulsar and the companion star,x = a sin i is the
projected semi-major axis,Porb is the binary period,i is the system’s inclination and
v is the observed velocity projected on the sky. The orbital period is obtained from
the Doppler variations of the pulsar spin; the amplitude of the radial velocity curve
givesx. Orbital periods of hours to months have been observed for accreting X-ray
pulsars. For eclipsing systems, also the inclination can bemeasured (i ∼ 90◦). The
relative size of the components of X-ray binaries is illustrated in Fig. 2.4.

X-ray binaries are classified via the mass of the companion ordonor star as Low-
Mass X-ray Binaries (LMXBs: donor is a late-type star) and High-Mass X-ray Bi-
naries (HMXBs: donor is an early-type star; Shore & van den Heuvel, 1994). Most
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Figure 2.4: Sketch of an accreting X-ray binary. Figure by Dennerl (1991).

accreting X-ray pulsars belong to the class of HMXBs (Mereghetti & Stella, 1995,
Fig. 2.5).

Accreting HMXB pulsars contain a donor star of type O or B of a massM &

10M⊙. Due to their short lifetimes they contain a young neutron star, and have sig-
nificantly higher magnetic fields (∼1012 G) than LMXBs (∼108 G). HMXBs accrete
from wind accretion, or sometimes from Roche lobe overflow, with the eventual for-
mation of an accretion disk. Section 2.3 gives the details onaccretion mechanisms
for X-ray pulsars. The optical emission of the system mainlyoriginates from the mas-
sive companion star which dominates the energy balance of the system. HMXBs are
subdivided into systems containing evolved OB supergiantsand into those containing
main-sequence Be stars (Bildsten et al., 1997). More than half of the known accreting
pulsars belong to the sub-class of Be/X-ray binaries (Bildsten et al., 1997), where the
neutron star is in a highly eccentric orbit around its companion (Fig. 2.6). Be/X-ray
binaries are observed through transient phases of X-ray outbursts. Two classes of
outbursts have been observed: the periodically recurring type I (‘normal’) outbursts
which are associated with accretion during the periastron passage (see Fig. 2.6), and
the type II irregular activity with much higher luminosity (’giant outbursts’), observed
at arbitrary orbital phases (Bildsten et al., 1997). The first X-ray transient discov-
ered was Cen X-2 (Chodil et al., 1967; Francey et al., 1967). Examples for some
long known sources which have recently shown outbursts are the Be/X-ray binaries
V0332+53 and A0535+26 (see section 6.2). If the companion star in an evolved
HMXB explodes and if the binary system survives this explosion, a double neutron
star system may form. To date, there are five to eight detections of double neutron
star binaries, the first of them being PSR B1913+16 (Hulse & Taylor, 1975).

LMXBs have a lower magnetic field than HMXBs. With the exception of some
sources (Mereghetti & Stella, 1995) they are non-pulsatingsources. In LMXBs the
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Figure 2.5: Spin period distribution of X-ray binaries (Mereghetti & Stella, 1995) for HMXBs
and LMXBs.

companion star is of a type A or later and has a relatively small mass,M . 1.2M⊙,
except for some special cases like e.g. Her X-1 or GX 1+4. LMXBs are typically
powered by Roche lobe overflow. In X-rays, their phenomenology is dominated by
emission from the compact object and from the accretion diskaround it. In the opti-
cal waveband, the accretion disk and the X-ray heated surface of the donor star are
observed.

X-ray bursts and quasi-periodic oscillations (QPOs) have been observed for sev-
eral LMXBs (e.g., Lewin, van Paradijs & Taam, 1993; Wijnands, 2001; van der Klis,
2006). One scenario for the bursts are thermonuclear explosions, where accreted
hydrogen, helium and carbon accumulate on the neutron star and eventually reach
densities which trigger thermonuclear fusion processes, giving rise to a sudden huge
energy release (Bildsten, Chang & Paerels, 2003). X-ray bursts have been seen to last
from a few seconds to a few hours, exhibiting a peak luminosity of nearly105L⊙.
Low frequency QPOs (1–100Hz) and kHz QPOs (0.2–1.3 kHz) are observed as broad
peaks in the power density spectra of LMXBs, with centroid energies in the Hz to
kHz regime. Beat frequency models (BFMs; Alpar & Shaham, 1985; Lamb et al.,
1985; Lamb & Miller, 2001) assume the accretion of local diskinhomogeneities at
the magnetospheric radius (see 2.3) and at the sonic radius with a beat frequency to
explain QPO signals. In relativistic precession models (RPMs; Stella, 2001), funda-
mental frequencies of the motion of matter near the neutron star are held responsible
for QPOs.
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gaseous disk

eccentric orbit

neutron star

Figure 2.6: Be/X-ray binary system. Accretion with type I outbursts takes place when the
neutron star crosses the disk of matter surrounding the Be star during periastron passage
(Kretschmar, 1996).

Radio pulsars and magnetars

Accretion is just one of three known sources of energy for steady X-ray emission
from neutron stars, the others being rotational energy lossor magnetic field decay.
In this section the properties of two representative pulsarpopulations are discussed
briefly: the well-studied class of rotation powered radio pulsars and the very recently
established class of magnetars.

The first pulsar, discovered in 1967 by the astronomer Jocelyn Bell (Hewish et al.,
1968), was the radio pulsar PSR 1919+21. Remarkably, shortly before this first actual
pulsar discovery, Wheeler (1966) had already suggested that the Crab nebula might be
powered by the rotation of a central neutron star. Two years later the rotation powered
Crab pulsar was also discovered (Staelin & Reifenstein, 1968), supporting the rotating
neutron star hypothesis observationally (Gold, 1969), andfor the first time proving an
association of a pulsar with a SN remnant. To date, around 1700 pulsars are known,
biased in their concentration along the galactic plane. Fora review, see e.g. Lorimer
(2005). The rate of rotational energy loss by spin-down of a neutron star with mass
M , radiusR, and angular velocityΩ amounts to (Contopoulos & Spitkovsky, 2006)

L =
2

5
MR2ΩΩ̇ . (2.2)

Rotation powered pulsars have pulse profiles of a more clear-cut and stable shape
than the profiles of sources where accretion is involved. Theconnection between
radio pulsars and accreting X-ray pulsars becomes interesting when considering the
existence of two distinct populations of rotation powered pulsars: ‘Normal’ or ‘clas-
sical pulsars’ have observed periods of the order of one second, which increase as
Ṗ ∼ 10−15 ss−1. ‘Millisecond pulsars’, on the other hand, have been observed
spinning as fast as1.5 . P < 30 ms and to spin down slower (Ṗ ∼ 10−19ss−1).
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Figure 2.7: Period vs. period derivative diagram for different classes of rotation powered pul-
sars. Figure from Lorimer & Kramer (2004). The lines of constant magnetic field and age are
marked and the region where no radio emission is observed (’graveyard’) is indicated (compare
Fig. 2.8).

The P -Ṗ diagram including different classes of rotation powered neutron stars is
shown in figure 2.7. A possible scenario for the formation of millisecond pulsars
assumes that they are formed in binary systems where they arespun up by accre-
tion processes (compare Fig. 2.8 and Bildsten et al., 1997; Bhattacharya & van den
Heuvel, 1991; Lamb & Yu, 2005). However, large differences in the magnetic field
strengthsB ∝ (PṖ )1/2 (see below) compared to the normal pulsars or the accret-
ing X-ray pulsars still require a better understanding (e.g. Faucher-Giguère & Kaspi,
2006; Contopoulos & Spitkovsky, 2006).

A standard estimate of the magnetic fields of rotation powered, isolated pulsars is
obtained via the measurement of their pulse periods,P , and period derivatives,̇P ,
based on calculating the loss of rotational energydErot/dt ∝ −B2ω4, whereω =
2π/P is the angular frequency. The magnetic field is then given by (Bhattacharya &



Chapter 2.2: X-ray binaries 15

Figure 2.8: Evolutionary scenario for the formation of a millisecond pulsar (http://www.
astro.cornell.edu/academics/courses/astro201/pulsar_graph.htm).
An initially normal isolated pulsar, born as a fast rotator which powers its energy from rotation
is observed to slow down until it crosses the ‘death line’ andits radio emission faints. If
member of a binary system, it is spun up again by accretion once its companion has further
evolved and ultimately produces a millisecond pulsar.

van den Heuvel, 1991; Ostriker & Gunn, 1969):

Ṗ

P
=

8π

3c3
1

P 2

R4

M
B2 . (2.3)

Equation (2.3) implies magnetic field strengths of1011–1013 G for radio pulsars.
When accretion is involved, such derivations of theB-field are more complicated.

Torque theory must be considered as a cause for changes of theperiod (Ghosh &
Lamb, 1979b; Longair, 1981), and gives

− Ṗ
P

∝ PL6/7M−2/7R12/7B2/7
s , (2.4)

yielding approximate dipole magnetic field strengths of theorder of1012 G. Limits on
how much a pulsar can be spun up may be derived from accretion torques, magnetic
dipole radiation, and gravitational radiation (Chakrabarty, 2006). From gravitational
radiation a limiting frequency was proposed fromr-mode oscillation models (An-
dersson, 1998; Friedman & Morsink, 1998), asν < 700 Hz (Levin & Ushomirsky,
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Strömgren sphere

Figure 2.9: Accretion mechanisms in binary systems. Left: three-dimensional representa-
tion of the Roche potential of a binary system. Mass transferoccurs via the inner Lagrange
point L1. Figure fromhttp://www.astro.uu.nl/~sluys/Hemel/Informatie/
Sterren/hoofdstuk6.html. Right: Stellar wind accretion. Sketch of Vela X-1
(P. Kretschmar and J. Wilms, priv. com.).

2001). However the fastest spinning, securely detected pulsar presently known, which
is a pulsar in the Terzan 5 globular cluster named PSR J1748-2446ad (Hessels et al.,
2006), spins at716 Hz, exceeding this limit. Gravitational wave studies are expected
to shed more light, e.g., on ther-mode theories and on the possibility of the existence
of pulsars with even shorter pulse periods (Hessels et al., 2006). Very recently, Kaaret
et al. (2007) have even claimed the detection of1122 Hz oscillations during an X-ray
burst of the X-ray transient XTE J1739−285.

Magnetars are the most recently established class of neutron stars. The term ‘mag-
netar’ refers to a neutron star with an ultra-strong, supercritical2 magnetic field of the
order of1014–1015 G. The existence of magnetars was proposed by Duncan & Thomp-
son (1992). Meanwhile, various magnetar sources have been detected to confirm their
idea. A field strength of the order1015 Gauss was claimed from the detection of a
proton cyclotron scattering feature in the soft gamma ray repeater (SGR, Kouveliotou
et al., 1998, 1999) SGR 1806−20 (Ibrahim et al., 2002, see section 3.3). Two classes
of neutron stars, the anomalous X-ray pulsars (AXPs, see e.g., Mereghetti, 2001) and
the SGRs are today believed to belong to this one class of objects (Woods & Thomp-
son, 2006). AXPs were called this way because of their long not understood myste-
rious nature compared to X-ray pulsars. SGRs are gamma ray emitters believed to

2compared to the quantum critical field,Bcrit ∼ 44.14 · 1012 G (see later).
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Figure 2.10: Artist’s impression of an X-ray binary with theformation of an accretion disk
(http://hea-www.harvard.edu/~psr_snr/images/xrb.jpg).

have extremely soft spectra, although recently hard X-ray components were detected
in INTEGRAL data for both SGRs and AXPs (Mereghetti et al., 2005; Götz et al.,
2006, 2007). Meanwhile a scenario has evolved in which a magnetar is believed to
evolve from an initial SGR status to an AXP (Wilson, 2006).

2.3 Accretion mechanisms

“How is it that the sky feeds the stars?”

[Lucretius]

X-ray pulsars are literally fed by the accretion of matter from their companion star
which is transferred onto the neutron star. Accretion is a very efficient mechanism
of energy production, liberating an amount of energy (∆Eacc = GM∆Macc/R) of
typically 1020 ergs for each accreted gram of matter (forM = 1M⊙, R = 10 km).
The mass accretion rate,̇M , determines the luminosity of the system,

L =
GM

R
Ṁ ∼ 0.1Ṁ . (2.5)

Typical mass accretion rates are10−11–10−9M⊙ yr−1; an upper limit on the mass
accretion rate was estimated by Ostriker & Davidson (1973) as 10−7M⊙ yr−1. The
maximum luminosity by accretion is reached when the radiation pressure equals the
gravitational pressure of the star. For spherically symmetric accretion, one speaks of
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the Eddington luminosity,

LEdd =
4πGM(mp +me)c

σT
= 3.23 · 104 M

M⊙
L⊙ . (2.6)

X-ray pulsars with super-Eddington luminosities have beenobserved. This does not
violate the pressure balance if one considers non-spherical accretion, which is ex-
pected for strong magnetic fields (see below).

When modeling accretion, the relevant scale to consider is the distance from the
neutron star surface. At large distances, gravity dominates and magnetospheric stresses
may be neglected. The distance is parameterized by the magnetospheric or Alfvén ra-
dius, denominating the radial distance where the ram pressure of the accretion flow
equals the magnetic pressure. Inside the Alfvén surface magnetospheric effects dom-
inate accretion.

2.3.1 Distant accretion flow

The mass transfer from the donor star towards the neutron star obeys different mech-
anisms for distinct system properties. The basic type of mechanism is determined
by the distance at which gravitational capture of the matterby the neutron star takes
place, and by its mean specific angular momentum at that distance. Close binaries
are powered by Roche lobe overflow: matter directly streams from the companion
star towards the compact object by crossing the inner Lagrange point of the effective
gravitational potential (‘Roche potential’, see, e.g., Kopal, 1989, and Fig. 2.9, left),
once the donor star has filled its Roche lobe. Strictly speaking, the Roche potential
gives the effective potential of a binary containing two point masses in the corotating
frame

FRoche(~r) = −G M1

|~r − ~r1|
−G

M2

|~r − ~r2|
− 1

2

(

~Ω × ~r
)2

, (2.7)

whereM1,M2, ~r1 and~r2 are the masses and positions of the components and~Ω is the
angular velocity. Angular momentum is preserved and an accretion disk may form
(Fig. 2.10).

In systems where the companion star has a strong stellar wind, matter can be ac-
creted directly from this wind (Fig. 2.9, right). This mechanism was sometimes called
quasi-spherical accretion but is today believed to be mostly focused wind accretion
from a tidal stream. Observations of such systems are strongly influenced by absorp-
tion of radiation by this wind. Blondin (1994) and Blondin & Woo (1995) proposed a
shadow wind and an X-ray excited, thermally driven wind component and visualized
the complex velocity field structures of the binary systems.They simulated the stel-
lar wind hydrodynamics for the luminous X-ray binaries Cen X-3 and SMC X-3. An
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Figure 2.11: Accretion regimes (Ghosh & Lamb, 1978), schematically depicted for disk ac-
cretion. The corotation radius,rco, marking the distance where the angular velocity of the
magnetosphere is equal to the Keplerian gas velocity, and the magnetospheric radius,rm (see
text), are indicated.

example for a strong wind accretor is Vela X-1 (compare section 6.2). The wind struc-
ture can be inferred from a rapidly varying light curve whichis traced to variations of
the absorbing column along the line of sight.

2.3.2 Magnetospheric accretion

Close to the neutron star surface, regardless of the distantaccretion scenario assumed,
the flow of matter is dominated by the strong magnetic field of the neutron star
(Fig. 2.12). One speaks of magnetospheric accretion. For a far-field of a dipole
Br(r) = (R/r)3Bs, the magnetospheric pressure decreases with the distance from
the neutron star centerr as

Pmag∝
(

R

r

)6

B2
s , (2.8)

whereBs is the surface magnetic field atR = r. Inside the magnetosphere its value
becomes comparable to the ram pressure in the flow of matter. Lamb, Pethick &
Pines (1973) determined the inner magnetospheric radius orAlfvén radius,rA , for
radial infall from equating the energy densities of the magnetic field and the infalling
matter,

ρv2
r (rA) = B2

r (rA)/(8π) , (2.9)
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Figure 2.12: Magnetospheric accretion. Courtesy: I. Neguerela, based on Davidson & Ostriker
(1973).

where the density of accreting matter is given by the continuity equation

Ṁ = 4πr2ρvr . (2.10)

The mass accretion rate is obtained from the luminosity by equation (2.5). Assuming
that the velocity of the infalling matter equals the free-fall velocity

vff =
√

2GM/r , (2.11)

the Alfvén radius is obtained as

rA =

(

B4
sR

12

8Ṁ2MG

)1/7

∝ 108 ·B4/7
12 R

10/7
6 (M/M⊙)1/7L

−2/7
37 , (2.12)

whereB12 is the magnetic field in units of1012 G, R6 = R/106 cm andL37 =
L/1037 erg s−1. Typical neutron star parameters giverA ∼ 103 km ∼100R. For the
study of cyclotron lines it is important to stress that this value is far above the typi-
cally assumed height of the line forming region which is either placed at the surface
or below a radiative shock front (Basko & Sunyaev, 1976; Becker, 1998). Therefore
the mechanisms of accretion beyond the magnetosphere are less relevant for the study
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Figure 2.13: Scenarios of filling the accretion column. Filled column, hollow column, ‘blob’-
and ‘spaghetti’-like structures. Fig. 11 from Mészáros (1984).

of cyclotron lines later in this thesis. Primarily, the processes inside the Alfvén sur-
face have to be considered. Inside the Alfvén surface, the matter is funneled along
the field lines onto the magnetic poles (Basko & Sunyaev, 1976). Free-fall velocities
of the order of∼ 0.5 c can be reached. The concentration of the field lines towards
the magnetic poles results in the formation of ‘accretion columns’ above the magnetic
poles (‘polar caps’,‘hot spots’) of the neutron star. Simple estimates of the radial ex-
tension,rcap, of those hot spots for the case of dipolar magnetic fields (Davidson &

Ostriker, 1973) givercap = R3/2R
−1/2
A ∼ 0.8 km. However, those are only rough

estimates, and the real nature and dimensions of the accretion column or accretion
mound is still an unsolved mystery. Hollow funnels, filled columns, and partially hol-
low columns have been proposed by different theoreticians.Early work by Mészáros
(1984) on the filling geometry of the accretion column is shown in Figure 2.13. The
filling of the column may indeed by linked to the type of distant accretion which de-
cides on the way the matter couples to the field lines at the magnetospheric radius.
The gas which couples to the field lines is thought to have temperatures of a few keV
and to further cool down by radiation during its fast approach of the surface. Close
to the surface, the infalling gas is suddenly stopped. Inverse Comptonization of soft
photons in the decelerated plasma produces photons in the X-and gamma ray regime.



22 Chapter 2: Accreting X-ray pulsars

slowly sinking
      plasma

layer of
radiation

neutron star

free falling
plasma

shock

neutron star

"fan beam" "pencil beam"

Figure 2.14: Simplified emission patterns. Left: ‘fan beam’scenario. Right: ‘pencil beam’
scenario. Figure from Kretschmar (1996).

The emission characteristics of this radiation depends on the mass accretion rate,̇M .
For largeṀ , a shock front develops at some distance from the neutron star surface,
which does not permit the upscattered photons to escape vertically from the accre-
tion column, i.e., parallel to theB-field. As a result, a ‘fan beam’ emission pattern
forms (Fig. 2.14, left). As was first shown by Basko & Sunyaev (1976), the critical
luminosity for shock formation,L∗, is

L∗ = 2.72 · 1037

(

σT√
σ||σ⊥

)

(r0
R

)

(

M

M⊙

)

erg s−1 , (2.13)

wherer0 is the polar cap radius,σT is the Thomson scattering cross section andσ||
andσ⊥ are the energy averaged cross sections for the scattering ofphotons which
propagate in parallel and perpendicular to the magnetic field direction (see Becker,
1998, and section 3.4). For smallṀ , on the other hand, i.e., forL < L∗, the radiation
is emitted from an accretion mound such that most photons areemitted parallel to the
B-field in a ‘pencil beam’ pattern (Fig. 2.14, right).
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Figure 2.15: Lighthouse effect: when the rotation axis of a neutron star is not coaligned with
the magnetic axis, the observer sees ‘flashes’ or pulses of light.

2.4 Pulsar mechanism and pulse profiles

The timing analysis of astrophysical sources is based on theanalysis of their light
curves, i.e., the detected source flux in a chosen energy bandas a function of time.
Light curves of X-ray pulsars are of clearly periodic nature. The periodicity of their
flux variations, observed as pulsed emission, has initiallymotivated the term ‘pulsar’.
The emission characteristics of pulsars are caused by the neutron stars’ strong mag-
netic fields which induce a beaming of the emergent radiationalong or at a certain
angle to the magnetic field vector. For X-ray pulsars different accretion scenarios
inducing beamed emission have been described in section 2.3. An observer of a fast
spinning neutron star for which the magnetic axis is not coaligned with its rotational
axis (Wang & Welter, 1981), will detect pulses of radiation whenever one of the light
beams hits his line of sight. This mechanism is commonly named the ‘lighthouse
effect’ (Fig. 2.15).

Compared to isolated pulsars, accreting X-ray pulsars havea rather large duty cycle,
& 50%. Their pulses are relatively broad such that they are predominantly seen in a
high flux state. The pulse periods which have been determinedfor X-ray pulsars span
a broad range from10−2 to 103 s. Folding the light curve of a source with its pulse
period, one obtains a characteristic pulse profile for one period cycle. Its shape is
representative of the flux dependence on the phase of rotation. The spectral properties
may change dramatically with the phase. The pulse profile is the basic tool to perform
and to interpret phase resolved spectroscopy. The formation of the complex structures
and substructures of pulse profiles from accreting neutron stars, however, renders their
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Figure 2.16: Pulse profiles for Cen X-3, Her X-1 and Vela X-1 from classicalGinga results
(Nagase, 1989). The morphology of the pulse profiles varies for different sources and depends
on the energy band of the observed flux. For more recent results, see, e.g., La Barbera et al.
(2003), Kuster et al. (2002) and Bildsten et al. (1997).

interpretation a difficult task. The profiles vary significantly from source to source.
Their morphology usually is also strongly dependent on the energy band chosen (see
Fig. 2.16). They may change from one observation of a source to the next, possibly
indicating a change in the source’s geometry. Pulse shapes of quasi sinusoidal nature,
asymmetric character, double-peaked structure or even five-peaked pulses have been
found for various sources observed at different energy bands. A strong dependence
of the opacity of the X-ray emitting region on angle and frequency yields a strongly
anisotropic radiation pattern. The analysis of pulse profiles can probe the structure
of the magnetosphere and the beam pattern (Wang & Welter, 1981; Blum & Kraus,
2000). Mészáros & Nagel (1985a) tried to infer the geometry of the accretion column
from simulations of a set of pulse profiles. They pointed out that pulses simulated for
fan beam scenarios seem to be too broad when comparing them toobservational data
and concluded that the phase dependence of the observed spectra fitted better with a
pencil beam scenario. Mészáros & Riffert (1988) also pointed out, however, that a fan
beam might appear as a pencil beam to a distant observer due togravitational light
bending (see later).
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Figure 2.17: Light curve and orbital profiles for the stellarwind accretor Vela X-1. Left: Light
curve (3–10 keV) detected by ASM on RXTE of Vela X-1 observed during two months (Nov–
Dec 1997) is shown (J. Wilms, priv. com.) . Right: Orbitally and energy resolved profiles for
the same observation by ASM and BATSE. The shape of the profiles changes with the energy
range considered (J. Wilms, priv. com.).

Long-term history observations of X-ray pulsars have revealed the existence of
medium and long term periodicities. Furthermore, systematic, secular changes of
the pulse periods with the time are observed. On orbital timescales (typically days),
the change in the flux can be attributed to the orbital period (see Fig. 2.17). Addi-
tional long-period variations of the flux have been detectedfor Her X-1, LMC X-4,
and SMC X-1, among other sources (Levine & Jernigan, 1982; Staubert, Bezler &
Kendziorra, 1983; Levine et al., 1991; Boyd & Smale, 2000; Boyd & Still, 2004;
Boyd, Still & Corbet, 2004; Staubert et al., 2006; Klochkov et al., 2006). Secular
changes of the pulse period mark its long-term variability.An overall shortening of
the period (spin-up trend) is expected from the gain of angular momentum during
the accretion process, which is transferred from the infalling matter to the neutron
star. A disk-accreting pulsar experiences a spin-up torque, N ∼ Ṁ

√
GMrA (Bild-

sten et al., 1997), which is also an upper limit for wind accretion. However, also the
opposite effect, i.e., a lengthening of the period or spin-down trend has been observed
for some sources, and spin-down and spin-up trends have alsobeen found to alternate,
often with a slow overall spin-up trend superposed (Bildsten, Chang & Paerels, 2003).
Analyses of the spin-up and spin-down morphologies of X-raypulsars probe their ac-
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cretion mechanisms. While long-term spin-up/spin-down reversals are connected to
the accretion torques (e.g., Fritz et al., 2006), shorter stochastic alternations may be as-
sociated with internal torques from crust to core interactions of the neutron star. First
limiting frequencies were proposed from magnetospheric accretion analysis (Ghosh
& Lamb, 1979a). Another mechanism to arrest the accretion torque spin-up could be
angular momentum loss from gravitational rotation (Bildsten, 1998; Bildsten, Chang
& Paerels, 2003).

2.5 Spectral properties

The phenomenology of X-ray pulsar continua can be roughly described by a power
law (α ∼ 1) with an exponential high-energy rolloff (White, Swank & Holt, 1983;
Tanaka, 1986). At energies below a tenth to a few keV, the spectrum is absorbed by
the interstellar medium. At a few keV, most spectra exhibit also absorption features
from metals in the interstellar gas or accretion flow. A 6.4–6.8 keV iron emission line
is often observed. It indicates different ionization states of the matter, and is believed
to form due to iron fluorescence transitions (Ohashi et al., 1984) in parts of the plasma
which are probably located further out and which are cooler than the surface emission
region. At intermediate energies, harmonic absorption features are observed in more
than a dozen X-ray pulsars: cyclotron resonance scatteringfeatures. Being the focus
of this work, their formation and their shapes will be discussed in a fully dedicated
chapter (chapter 3) while this section focuses on the continuum component of X-ray
pulsar spectra. Some older spectra for some different X-raypulsars (Nagase, 1989)
are depicted in Fig. 2.18; an example of a more recent broad-band spectrum observed
by Beppo-SAX(A. Santangelo, priv. com., after dal Fiume et al., 2000) is shown in
Fig. 2.19.

There are different phenomenological models in use for the observational analysis
of X-ray pulsars. Neglecting, for the moment, low-energy absorption and any line
features, the most simple model which qualitatively describes X-ray pulsar spectra at
hard X-rays is an exponentially cutoff power law of the form

F (E) = A · E−α exp (−E/Efold) , (2.14)

with the free parameters giving the power law normalization, A, the photon index,
α, and the folding energy,Efold. Often, when considering real observational data,
however, more complex continuum models like, e.g. a power law with a Fermi-Dirac
cutoff (Tanaka, 1986),

F (E) = A · E−α

[

exp

(

E − Ecut

Efold

)

+ 1

]−1

, (2.15)



Chapter 2.5: Spectral properties 27

Figure 2.18: Phase-averaged energy spectra of five X-ray pulsars observed by Temma (Nagase,
1989) between April 1983 and April 1984.

a power law with a high-energy cutoff,

F (E) = AE−α ·
{

exp
(

Ecut−E
Efold

)

if E ≥ Ecut

1 otherwise
, (2.16)

or the ‘npex’ model (Mihara, 1995; Makishima et al., 1999), anegative and positive
power law with a common high-energy cutoff,

F (E) = A(E−α1 + f · E+α2) exp

(

− E

Efold

)

, (2.17)
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Figure 2.19: Broad-bandBeppoSAXphoton spectrum of Her X-1 (A. Santangelo, priv. com.,
based on dal Fiume et al. (2000). The colors indicate different spectral components.

are used. To date no model has been found to be favorable from asystematic study
and a physical interpretation of the phenomenological fit parameters remains difficult.
The necessity of a smooth transition between the power law and the exponential cutoff
to avoid line-like features in the fit has been discussed by Kretschmar et al. (1997) and
Kreykenbohm (2004).

Attempts to numerically or analytically derive the shape ofX-ray pulsar spectra
have been numerous (e.g. Mészáros, 1978; Nagel, 1980, 1981b,a; Mészáros et al.,
1983; Mészáros & Nagel, 1985a,b; Burnard, Klein & Arons, 1988; Burnard, Arons &
Klein, 1991; Becker, 1998; Becker & Wolff, 2005). However, no self-consistent, gen-
eral model could be established due to the uncertainty of thehighly complex underly-
ing physics and structure of the accretion column and magnetosphere. Observers are
therefore still restricted to interpret data with phenomenological approaches, like out-
lined above. There has been some renewed effort emerging recently for understanding
the continua from physical radiation processes (Becker & Wolff, 2005, 2007). The
state-of-art of modeling X-ray pulsar continua is represented by the work of Becker
& Wolff (2007). They discussed the formation of the continuum emission from an
accretion column accounting for bulk motion of the matter inthe line forming re-
gion and considering a Comptonization scenario. Becker & Wolff (2007) proposed a
velocity flow of the matter in the column which corresponds tostopping of the accre-
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Figure 2.20: Schematic depiction of the seed photon production in the accretion column. Pho-
tons are produced by bremsstrahlung and synchrotron emission throughout the column and
from a blackbody component from the surface of a thermal mound (Becker & Wolff, 2007).

tion flow in a radiation-dominated shock (Becker, 1998). This approach limits their
discussion to luminous X-ray sources where the formation ofthis type of shock is
expected. These authors calculated the response of the accretion column to the seed
photons through Green’s functions for the continuum formation. The seed photons
(i.e., up-scattered soft photons) were assumed to originate from bremsstrahlung and
synchrotron radiation from within the column, and from blackbody radiation from
the bottom of the column (see Fig. 2.20). The photons then diffuse spatially outwards
while undergoing thermal and bulk Comptonization processes. Folding the initial
seed components with the Green’s functions response, Becker & Wolff (2007) ob-
tained the final contributions from the different seed radiation processes to the total
spectrum. Fitting their model parameters to published phase-averaged spectra of the
three sources Cen X-3, LMC X-4 and Her X-1 (for Her X-1, see figure 2.21), they
obtained a qualitative agreement with the observational data. The authors found a
strong predominance of the bremsstrahlung component for all sources. The cyclotron
absorption features were only included in an approximate way.

2.6 Gravity

“Do not bodies act upon light at a distance,
and by their action bend its rays;

and is not this action (caeteris paribus) strongest at the least distance?”

[I. Newton in Opticks, 1704]

The high compactness of neutron stars implies that relativistic effects are relevant.
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Figure 2.21: Theoretical X-ray pulsar spectrum fitted to HerX-1 by Becker & Wolff (2007).
The individual components of the continuum spectrum are shown, where a cyclotron line fea-
ture is approximately included. The bremsstrahlung component strongly dominates the total
spectrum. The component which is indicated as ‘cyclotron’ emission is most commonly called
synchrotron radiation; the latter terminology is the one adopted in this work.

Radiation from X-ray pulsars is therefore observed at gravitationally redshifted ener-
gies. A distant observer sees the light which is emitted at a certain wavelengthλ from
the neutron star’s surface at a longer wavelengthλ + ∆λ. The relative displacement
implicitly defines the gravitational redshift,3 z = ∆λ/λ. For neutron stars, the sur-
face gravitational redshift is usually approximated by theformula for a non-rotating,
uncharged, spherically symmetric mass in the Schwarzschild spacetime as

z =
1

√

1 −RS/R
− 1 . (2.18)

3More than two centuries ago, Michell (1784) already proposed that light from high-gravity stars would
be weakened, based on Newton’s conception of light deflection by gravity (Newton, 1704). Effects of
gravity on light were further discussed by Laplace (1796), who predicted the existence of Newtonian black
holes, which he named ‘dark stars’, Soldner (1804), who proposed that the gravitational effect on light
would introduce a bending of light by massive objects, and independently by Einstein (1911) as part of his
theory of general relativity. Today, with the confirmation of the existence of black holes, and with direct
observations of gravitational lensing, the gravitationalredshift and light deflection are well-established
phenomena in astronomy and cosmology.
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RS = 2GM/c2 is the Schwarzschild radius, given by the gravitational constantG,
the speed of lightc and the massM of the gravitational source with radiusR. For the
canonical NS mass (M = 1.4M⊙), RS ∼ 4.5 km. For X-ray pulsars,z is needed for
an unambiguous determination of their surface magnetic fields from cyclotron line
detections, as the observed energies of the CRSFs scale bothwith B and1/(1 + z)
(compare eq. 3.1, and see section 3.2). Unfortunately, different models for the interior
structure of neutron stars (see section 2.1) currently leadto very different equations of
stateM(R), corresponding to different values ofz, which observers are challenged to
measure from atomic or spectral lines4. As long as no uniqueM -R relation is known
for X-ray pulsars, a reasonable range for the redshift can beobtained by solving
equation (2.18) for typical neutron star massesM = 1.3–1.8M⊙ and radiiR ∼ 1–
1.5R6 (R6 = 106 cm). Eq. (2.18) yields the rather large range ofz = 0.16–0.46
for the gravitational redshift of neutron stars. Usually, observers assumeM/M⊙ =
1.4, R6 = 1, corresponding toz ∼ 0.3 for the spectral analysis of X-ray pulsars.

Light deflection bends the orbits of the photons radiated from the surface of a neu-
tron star and increases its surface visibility. This effectis important for the understand-
ing of its emission characteristics, in particular when analyzing pulse profiles which
result from gravitationally bent beam patterns (Blum & Kraus, 2000). The effect
of gravitational light bending can be assessed quantitatively by calculating the orbit
of a single photon. The Schwarzschild metric can be used for solving the geodesic
equations for a photon’s four momentum to obtain its trajectory in the Schwarzschild
coordinatest, r, θ, φ (Kraus, 1998). Choosing as convention the equatorial planefor

4For some sources, such measurements have been realized. Cottam, Paerels & Mendez (2002) deter-
mined the redshift from the energy displacement of photospheric absorption lines in the X-ray burst spectra
of the LMXB EXO 0748−676 asz = 0.35. However, this method premises that (a) spectral lines are re-
solved, and (b) that one knows for certain the nature and initial energy of those lines. Bildsten, Chang
& Paerels (2003) proposed to confirm this redshift measurement by also considering Fe abundances and
spallation. From a calculation of the exact line profiles, accounting for the star’s spin and full relativistic
effects, Bhattacharyya, Miller & Lamb (2006) predicted a theoretical accuracy of5 % for the determination
of M/R even for broad and skewed lines. If no suitable spectral lines are found, estimates ofM andR by
other means have to be sought to vice versa estimate the gravitational redshift of the star. Independent deter-
mination ofM andR in any case requires an approach beyond the redshift measurements. Recently, Zhang
et al. (2007) presented three approaches to access theM -R relation for neutron stars, including the redshift
determination. The other two methods are the determinationof the apparent radius from the blackbody lu-
minosity and blackbody temperature and the analysis of kHz quasi periodic oscillations. The authors point
out that any two of these three methods would in principle suffice to determineM andR independently for
sufficiently good measurements of the corresponding quantities. They propose approximate constraints for
the masses and radii of three sources: 1E 1207.4−5209, Aql X-1 and EXO 0748−676, implying redshifts
of z ∼ 0.1–0.4, and suggest possibly corresponding types of equations of state for the interior neutron
star structures. Approaches to measure neutron star massesand radii are manifold, extending from simple
considerations on binary dynamics to gravitational wave studies.
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Figure 2.22: Light deflection by a neutron star. The effect ona photon emitted perpendicular
to the magnetic axis of the neutron star at one pole is shown, as observed by an observer at a
large distance, forR/RS = 2.8. Figure from Blum & Kraus (2000).

the photon orbit (θ = 0) one obtains for(φ, r)

φ(r) = φ0 ±
∫ r

r0

b dr

r2
√

1 − b2/r2(1 −RS/r)
, (2.19)

whereb is the impact parameter of the trajectory. As this integral cannot be solved
by analytical means, numerical solutions are usually applied to study light deflection
(Kraus, 1998). Fig. 2.22 illustrates the deflection of a photon emitted perpendicular
to the neutron star surface.

Many investigations of the effect of light bending on the observational properties
of accreting X-ray pulsars have been carried out. Riffert etal. (1993) discussed the
effect of gravitational light bending by fitting simplified local emission models to the
pulse profiles of Cen X-3, IE 2259+586, and GS 1840+00. Like in non-relativistic
approaches (e.g., Leahy, 1991) these authors used non-symmetric magnetic poles to
account for the asymmetry in the pulse profiles. However, they found significant
differences in the pulse shapes compared to the non-relativistic case. Bulik et al.
(1995) applied relativistic model calculations of magnetized neutron star atmospheres
to fitting phase resolved spectra of 4U 1538−52 and Vela X-1. Similar to Riffert
et al. (1993), they suggested non-antipodally located magnetic poles either due to an
off-center or to a bent magnetic axis and alternatively proposed a strong non-dipole
component of the magnetic field. Kraus et al. (1996) and Blum &Kraus (2000) have
presented a decomposition method which they applied to reconstructing the basic
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features of the pulse profiles of Cen X-3 and Her X-1. However,no general model for
pulse profiles has so far emerged. From all theoretical models it has become evident
that gravitational bending can have a considerable influence on the shape of the pulse
profiles and on phase resolved spectra, in particular due to the mixing of contributions
to the radiation from both magnetic poles. Due to the enhanced surface visibility of
the neutron star, mixing may occur at practically all phasesof observations, especially
if one assumes a distorted dipole field with asymmetric pole locations.



CHAPTER 3

Cyclotron line formation in strong magnetic fields

“The present situation in physics is as if we know chess, but we don’t know one or
two rules.”

[Richard Feynman]

3.1 Neutron star magnetic fields

Accreting X-ray pulsars can have surface magnetic fields of the order of1012 Gauss.
These fields are a million times stronger than the maximum field strength which has
been produced in a laboratory on Earth (85 Tesla. 106 Gauss), which is in turn
about another million times larger than the magnetic field ofEarth (∼ 0.5 G) itself.
See, e.g., Harding & Lai (2006) for a review of the physics of strongly magnetized
neutron stars.

Those strong magnetic fields of accreting X-ray pulsars dominate their observa-
tional signatures, giving rise to their pulsar characteristics and governing the accretion
of matter which produces the energy radiation. Neutron starmagnetic fields measured
to date span a wide range of at least108 to 1015 Gauss (Reisenegger et al., 2005). The
strength of the magnetic field can be a distinctive feature ofphenomenologically dif-
ferent neutron star categories. Fig. 3.1 illustrates the differences of field strengths for
(classical and millisecond) radio pulsars, accreting X-ray pulsars and magnetars. The
magnetic field strengths can be derived either from pulsar timing or from the detec-
tion of cyclotron resonant scattering features by spectroscopical means. While pulsar
timing is restricted to the approximate calculation of a presumed dipolar field compo-
nent, it will be shown later that the analysis of cyclotron lines provides an elegant tool
to probe the magnetic field structure in the X-ray emitting region of a neutron star’s
magnetosphere.

The origin of the magnetic fields is still a matter of hot debate in the scientific
community. Two basic scenarios have been proposed for the formation of neutron

34
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Figure 3.1: Magnetic fields of different classes of pulsars.The dipole and surface magnetic
field strengths are estimated from timing (P ,Ṗ ) or from electron and ion cyclotron lines (see
text).

star magnetic fields (Reisenegger, 2003; Reisenegger et al., 2005; Harding & Lai,
2006):

• Fossil field hypothesis. The magnetic field results from an amplification of the
progenitor’s magnetic field during the collapse. Practically all stars are believed
to possess some magnetic field at all evolutionary stages, which persists on
very long time scales and with the magnetic field lines frozeninto the plasma.
The configuration of the magnetic field can thus be changed by changing the
macroscopic structure of the plasma. Due to magnetic flux conservation,Φ =
πR2B, the magnetic field of the progenitor star is expected to increase during
its collapse into a neutron star asB ∝ R−2. This theory is supported by the
fact that magnetic fluxes of neutron stars have been found to be very similar
to the ones of magnetic white dwarfs (Ruderman, 1972), hinting at a common
origin of the fields.

• Neutron star dynamos. Thompson & Duncan (1993) presented a scenario in
which neutron star magnetic fields are generated by a convective dynamo im-
mediately after the formation of the proto-neutron star. The authors claimed
that convection is inevitable due to entropy gradients which form during the
phase of rapid neutrino cooling (see section 2.1), holding this statement as an
argument against fossil field theories, as the fluid motions would change signifi-
cantly the lower moments of the field. Their model is based on magnetic dipole
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braking (Pacini, 1967; Gunn & Ostriker, 1969; Duncan & Thompson, 1992).
Other dynamo theories had been brought forward previously,e.g., by Flowers
& Ruderman (1977) and Blandford & Romani (1988).

While simplified models of neutron stars usually assume a dipolar magnetic field
structure (Gunn & Ostriker, 1969), pulse profile analysis (Shakura, Postnov & Pro-
khorov, 1991; Bulik et al., 1995; Blum & Kraus, 2000) and sometheories on the field
origin (e.g., Urpin, Levshakov & Iakovlev, 1986; Blandford, Applegate & Hernquist,
1983; Arons, 1993; Hankins & Eilek, 2006) hint at possibly more complicated struc-
tures like distorted dipoles, the presence of quadrupole moment components, or other
non-dipolar magnetic field gradients. As no unique understanding has evolved so far
from theory to shed light on the real origin and structure of neutron star magnetic
fields, good measurements of the field strength are of fundamental importance.

3.2 Line formation in magnetized accreting neutron stars

The only direct method to determine the magnetic field of neutron stars is the obser-
vation of cyclotron resonance scattering features (CRSFs). As opposed to estimates
from pulsar timing (compare section 2.4) this technique directly probes the surface
magnetic field strength without any a priori assumptions on the field structure. The
presence of electron cyclotron lines in X-ray pulsars was first predicted by Gnedin
& Sunyaev (1974) – a few years before their actual discovery (Trümper et al., 1978;
Wheaton et al., 1979, section 3.3). CRSFs are observed as absorption lines in the
spectra of many accreting X-ray binaries. Their line energies are directly related to
the magnetic field strength, and may be estimated from a simple expression (‘12-B-
12 rule’), relatingB12, the surface magnetic field strength in units of1012 G, to the
energy of the fundamental cyclotron line,Ecyc, as:

Ecyc =
~eB

mec
= 11.6 keVB12 . (3.1)

Analysis of their line shapes additionally can probe the local B-field structure and
the accretion geometry, rendering cyclotron line analysisan invaluable tool for under-
standing the physics of magnetized X-ray pulsars.

Cyclotron lines form as a result of scattering processes of high-energy photons dur-
ing their passage through the relativistic electron plasmain the accretion column. The
scattering cross section is resonant at energies corresponding to the separation of the
Landau levels, which are the discrete energy levels of the electrons: when the strength
of the magnetic field approaches the critical field strength,Bcrit = (m2c3)/(e~) =
44.14 · 1012 G, the de Broglie radius of a plasma electron becomes comparable to its
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Larmor radius. Quantum mechanical treatment (see section 3.4) of the electrons’ mo-
tion perpendicular to the magnetic field lines (Mészáros, 1992; Daugherty & Harding,
1986) reveals a quantization of the electron momentap⊥/(mec) = n(B/Bcrit). This
translates into discrete energy levels, where the fundamental Landau level is given
by the12-B-12 rule (Eq. 3.1) and the higher harmonics haven times this energy.
For photon-electron scattering, relativistic effects lead to a slightly anharmonic spac-
ing of the resonant photon energies. Due to the large scattering cross section at the
resonances and due to the quasi-harmonic spacing of the thermally broadened Lan-
dau levels, photons of energies close to the Landau level energies may not escape
the line-forming region unless inelastic scattering has slightly changed their energy.
Consequently, absorption features in the photon spectrum are observed at

En = mec
2

√

1 + 2n B
Bcrit

sin2 θ − 1

sin2 θ

1

1 + z
, (3.2)

whereme is the electron rest mass,c the speed of light,θ the angle between the
incident photon direction and the magnetic field vector, andz is the gravitational
redshift at the radius of the line-forming region. Note thatthe cyclotron lines are
enumerated, in the following, starting atn = 1, and are referred to as the first or
fundamental line at the energyEcyc = E1, followed by the second, third, fourth,
etc. harmonics (n = 2, 3, 4, · · · ). In the literature, they are sometimes also labeled
fundamental, first, second, third, etc. harmonic lines. Thethermal motion of the
electrons parallel to the magnetic field lines broadens the observed line features.

3.3 Observational data

Overview

In 1976, the first cyclotron line was detected in the X-ray spectrum of Her X-1 (Trüm-
per et al., 1977). First interpreted as an emission feature at 53 keV, the line was later
proposed to be in absorption with theoretical arguments by Nagel (1981b). Fig. 3.2
shows data from the discovery observation. Since the discovery of the Her X-1 cy-
clotron line, more sources exhibiting CRSFs have been observed (e.g., Heindl et al.,
2004; Staubert, 2003; Coburn et al., 2002; Santangelo et al., 2000). However, cy-
clotron lines are not seen for all accreting X-ray pulsars, the causes of which are not
clear. Different source geometries or magnetic field structure might render at least
the fundamental line not observable (O. Nishimura, priv. com.). At the time of writ-
ing, at least 15 accreting pulsars with securely detected cyclotron lines with magnetic
fields in the range of1–5 · 1012 G are known. Table 3.1 lists accreting X-ray pulsars
for which cyclotron line features have been observed to a good level of significance
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Figure 3.2: First cyclotron line detection in the spectrum of the accreting X-ray pulsar Her X-1
(Trümper et al., 1978). The cyclotron feature was interpreted as an emission feature at53 keV
at that time.

(Heindl et al., 2004; Kreykenbohm, 2004). For other sources, e.g., LMC X-4 or OAO
1657−415, speculations about cyclotron line features were so farnot corroborated
by recent observations (Tsygankov & Lutovinov, 2005; Barnstedt et al., 2007) by
the Rossi X-ray Timing Explorer (RXTE) and the International Gamma Ray Astro-
physics Laboratory (INTEGRAL ). For several sources, more than one feature has
been detected. The first source where more than two CRSFs weredetected was 4U
0115+63 (White, Swank & Holt, 1983), followed by the detection of multiple lines in
the spectra of Vela X-1, A0535+26, 4U 1907+09 and V0332+53. The record holder
with respect to the number of lines detected is 4U 0115+63 (Heindl et al., 1999;
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Figure 3.3: Detection of five CRSFs for 4U 0115+63. The data and the unfolded model are
shown. Figures from (Heindl et al., 2004)

Santangelo et al., 1999) where five CRSFs were found (Heindl et al., 2000, Fig. 3.3).
CRSF sources are regular targets of observations. The progress over the last decades

in energy resolution of instruments on satellites likeBeppoSAX1, RXTE and, more
recently,INTEGRAL has led to excellent observational data of many interestingob-
jects with complex cyclotron line features and has made high-quality phase resolved
spectroscopy possible. As a result, many interesting characteristics of CRSFs are
known today, awaiting a deeper explanation than given by thesimple picture of line
formation which was outlined in the previous section. More interesting results are
expected from the recently launched JapaneseSuzaku2 satellite in the future. Some
key results from observational studies are:

1. The profile of the fundamental line is resolved, is non-Gaussian, and exhibits a
complex shape (e.g., Pottschmidt et al., 2005).

2. The second harmonic appears deeper than the fundamental line (e.g., Nagase
et al., 1991; Cusumano et al., 1998; Santangelo et al., 1999).

3. Significant variations of the line parameters of the CRSFswith the pulse phase
are observed for some sources (e.g., for Vela X-1, Cen X-3, and GX 301-2

1Satellite per Astronomia X, "Beppo" in honor of Giuseppe Occhialini.
2Suzaku is a mythical, divine bird symbolizing renewal.
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Table 3.1: List of accreting X-ray pulsars with significantly observed cyclotron resonance scat-
tering features extended from Heindl et al. (2004); Kreykenbohm (2004).

Source En [keV] References

4U 0115+63 14, 24, 36, 48, 62 Wheaton et al. (1979,HEAO-1)
Heindl et al. (1999,RXTE)
Santangelo et al. (1999,BeppoSAX)

4U 1907+09 18, 38 Makishima & Mihara (1992)
Cusumano et al. (1998,BeppoSAX)

4U 1538−52 20 Clark et al. (1990,Ginga)
GS 1843+00 20 Mihara, Makishima & Nagase (1995,Ginga)
Vela X-1 24, 52 Kendziorra et al. (1992,Mir-HEXE )

Kreykenbohm et al. (2002,RXTE)
V0332+53 26, 49, 74 Makishima et al. (1990a,Ginga)
Cep X-4 30 Mihara et al. (1991,Ginga)
Cen X-3 28 Santangelo et al. (1998,BeppoSAX)

Heindl & Chakrabarty (1999,RXTE)
X Per 29 Coburn et al. (2001,RXTE)
MXB 0656−072 33 Heindl et al. (2003,RXTE)
XTE J1946+274 36 Heindl et al. (2001,RXTE)
4U 1626−67 37 Orlandini et al. (1998b,BeppoSAX)

Heindl & Chakrabarty (1999,RXTE)
GX 301−2 37 Mihara (1995,Ginga)
Her X-1 41 Trümper et al. (1978,Ballon-HEXE)
A 0535+26 46,102 Kendziorra et al. (1992, 1994,HEXE)

Maisack et al. (1997,CGRO)

La Barbera et al., 2003; Suchy et al., 2007, Fig. 3.4) while other sources have
relatively stable lines over the phase (e.g., V0332+53 ).

4. Correlations between observed line and continuum parameters have been pro-
posed, in particular, correlations between the cyclotron line energy and the cut-
off energy (Ecyc vs. Ecut) and a correlation of the fundamental line width and
depth (σcyc vs. τcyc) (Coburn et al., 2002; Heindl et al., 2004).

5. The line ratios are not necessarily harmonic. The deviations from the harmonic
energies in some spectra are too large to be explained only bythe basic rela-
tivistic corrections implied by Eq. (3.2) (e.g., 4U 0115+63, Santangelo et al.,
1999)

6. The line position of the fundamental CRSF can vary with thesource luminos-
ity. Negative (Mihara, 1995; Mowlavi et al., 2006; Nakajimaet al., 2006; Tsy-
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Figure 3.4: Pulse profile and the observed variation of the line position and line depth of the
fundamental cyclotron line from phase resolved spectroscopy of GX 301−2 (Heindl et al.,
2004).

gankov et al., 2006) and positive (La Barbera et al., 2005; Staubert et al., 2007)
linear energy-to-luminosity correlations have been found.

Although cyclotron lines are detected in many sources, a deeper understanding of
their shapes is lacking. At present there is no physical model applicable to the analysis
of CRSFs in X-ray pulsar spectra. The observations are therefore modeled with phe-
nomenological line shapes, generally by including a multiplicative absorption term

F (E) = CONT(E) · exp (−τ(E)) , (3.3)

where CONT is the continuum function, and where the most simplest approach to
modelτ(E) are Gaussian (gauabs, e.g. Soong et al., 1990) or Lorentzian (cyab,
Tanaka, 1986; Makishima et al., 1990b; Mihara et al., 1990) shapes:

GAUABS(E) = exp

(

1 − I exp

(

− (E − E0)
2

2σ2

))

, (3.4)

whereE0 is the line energy andσ the line width, or

CYAB(E) = exp

[

− D(WE/Ecyc)
2

(E − E0)2 +W 2

]

, (3.5)

whereD is the Thomson optical depth forE ≫ E0 andW gives an artificial line
broadening. Sometimes, analysis is also performed overlaying several Gaussians
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Figure 3.5: (a) Spectrum and best-fit model of V0332+53 from INTEGRAL observations
(Kreykenbohm et al., 2005). Three lines at∼26, 47 and72 keV are detected. The lower panels
show the residuals for (b) fitting only the continuum with a powerlaw and high energy rollof,
(c) including one Gaussian at26.6 keV, (d) another one at47.1 keV, (e) a third one at30 keV
to improve the fundamental shape, and (f) a fourth one at71 keV.

to reproduce the shape of the fundamental line (e.g., Kreykenbohm et al., 2005;
Pottschmidt et al., 2005, Fig. 3.5).

An additional difficulty for the analysis of CRSF is the uncertainty of the underly-
ing continuum shape. The physical processes of the continuum production have been
outlined before. Summarizing, the total spectral shape in the X-ray band is described
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Figure 3.6: Correlations of different line and continuum parameters as proposed e.g. by Coburn
et al. (2002) for a sample of accreting X-ray pulsars. Left: Plot of the high-energy cutoff versus
the position of the fundamental CRSF; middle: line width versus position; right: ratio of line
width to energy versus lide depth. Figures from Coburn et al.(2002).

by the continuum component, roughly a power law with an exponential cutoff, a usu-
ally strong Fe Kα line, low energy absorption by highNH and one or more CRSFs.
The Fe Kα line generally does not influence the observable propertiesof the CRSFs
because the observed line energies are well above its energy. The choice of continuum
can have a certain influence on the line components of the model, in particular if a line
is only detected at a low level of significance. Therefore, solid results from observa-
tional data are generally tested for different continua to ensure the significance of the
CRSF detections as well as the obtained constraints on the line parameters. Some ef-
fort has been made to link continuum parameters to line parameters for their physical
interpretation (Mihara, 1995; Coburn et al., 2002; Heindl et al., 2004). Fig. 3.6 shows
three plots suggesting a correlation of the cyclotron line energy to the high energy
cutoff of the continuum, a line-to-width correlation and a width-to-depth correlation
of the fundamental line (Coburn et al., 2002).

An intriguing issue which recently has received renewed interest is the question if
there is a relation of the resonance energy of CRSFs with respect to the luminosity
of a source. First, an anti-correlation of the luminosity tothe energy of the funda-
mental feature,Ecyc, was observed for some sources (Mihara, Makishima & Nagase,
1998), which was confirmed from monitoring the flux variationduring an outburst
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Figure 3.7: Luminosity dependence of the fundamental CRSF.Left: Plot of the centroid cy-
clotron line energy of Her X-1 versus the maximum flux during the corresponding 35 day Main-
On from RXTE/ASM observations, fitted by a linear curve of slope0.66 ± 0.10 keV/(ASM
cts/s) (Staubert et al., 2007). Right: Cyclotron line energy versus source luminosity for
V0332+53, observed during its 2004/2005 outburst byRXTE (squares) andINTEGRAL (tri-
angles) (Tsygankov et al., 2006).

of V0332+53 by Mowlavi et al. (2006), Tsygankov et al. (2006, Fig. 3.7,right) and
Nakajima et al. (2006). On the other hand, Staubert et al. (2007) recently reported
a positive correlation ofEcyc with the luminosity from long-term observational data
analysis of Her X-1 (Fig. 3.7, left). Some other sources do not show any evidence for
any such correlation, an example being the transient sourceA0535+26 (Caballero
et al., 2007). Current explanations suggest a variation of the height of the X-ray
emitting region in the accretion column with a changing accretion rate (Mihara, Mak-
ishima & Nagase, 1998). Staubert et al. (2007) furthermore proposed that the positive
and negative correlations could be explained by distinct accretion regimes, namely
sub- and super-Eddington accretion, which imply physically different conditions in
the accretion column, in particular determining the presence or absence of a shock
(see section 2.3).

A note on cyclotron lines in GRBs and magnetars

At the beginning of cyclotron line studies, there were several claims of detections
of cyclotron line features not only in the spectra of accreting X-ray pulsars but also
for gamma-ray bursts (GRBs; Mazets et al., 1981). The accumulation of more obser-
vational data has, however, cast some doubt onto those detections; for instance the
BATSE observatory never detected any such feature in GRB spectra (R. Rothschild,
priv. com.). However, much of the theoretical work of cyclotron line formation which
is applicable to accreting X-ray pulsars was originally motivated by the analysis of
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spectral features in GRBs.
For X-ray pulsars, and also – if existent – for GRBs, the observed CRSFs arise from

resonant scattering of photons with electrons during the propagation of the radiation
through the electron plasma. In the last years, also a different class of CRSFs has been
claimed to be observed (Ibrahim et al., 2002): proton cyclotron lines in the spectra of
magnetars (e.g., Zane et al., 2001). The high magnetic fieldsof magnetars prevent the
detection of electron cyclotron lines in their spectra. Instead, as the line energy scales
also with the mass of the scattering partner asEcyc,ion = 0.635(Z/A)B14 keV, where
Z/A ∼ 1 for a proton-electron plasma (Potekhin & Lai, 2007), protoncyclotron lines
for magnetars can in principle be observed in the keV range. In the framework of this
thesis, exclusively electron cyclotron lines in X-ray binaries are discussed.

3.4 Theory of line formation

3.4.1 Quantization of electrons in a strong magnetic field

The motion of an electron in a constant magnetic field is derived. Early works on this
topic can be found, e.g., in publications by Kennard (1927),Fock (1928) and Landau
(1930) for the non-relativistic case, and by Rabi (1928), Plesset (1930), and Johnson
& Lippmann (1949) for a discussion of relativistic wave functions. The derivations
presented here follow Landau (1979), Rabi (1928) and Johnson & Lippmann (1949).

Non-relativistic, QM approach

The non-relativistic Landau states for the motion of a charged particle in an external
electromagnetic field may be derived as the stationary states (Ĥψ = Eψ) of the
Schrödinger equation for the Hamiltonian,

Ĥ =
1

2m

(

p̂− q

c
A
)2

− µ̂B + qφ , (3.6)

wherem andq are the rest mass and charge of the particle respectively,A andφ are
the vector and the scalar potential of the magnetic field of strengthB, and the corre-
sponding wave functionψ = ψ(x, y, z, σ, t) is a function of the particle’s coordinates,
spin and time. Equation (3.6) may be understood as the quantum mechanical limit of
the analogous classical Hamilton function, where the canonical momentum has been
replaced by the momentum operatorp̂ = i~∇ and where the extra term̂µB arises,
accounting for the magnetic moment of particles which possess a spin.

In the following, a constant magnetic field inz direction is assumed (Ax = −By
andAy = Az = 0). The operator for the magnetic moment is given byµ̂ = µ

s ŝz .
Thez-component of the spin operatorŝz commutes withĤ and can be replaced by
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its eigenvaluesz = σ, denoting the particles spin and−s ≤ σ ≤ s. For electrons,
s = 1/2. The Hamiltonian (3.6) then becomes

Ĥ =
1

2m

[

(

p̂x − qB

c
y

)2

+ p2
y + p2

z

]

− µ

s
σB . (3.7)

Thex andz components of̂p also commute with the Hamiltonian. The energy states
of the particle are calculated as eigenstates of the Hamiltonian with the ansatz:

ψ = exp

(

i

~
pxx+ pzz

)

χ(y) . (3.8)

From (3.7) follows

χ′′ +
2m

~2

[(

E +
µσ

s
B − p2

z

2m

)

− m

2
ω2

B(y − y0)
2

]

χ = 0 , (3.9)

with the abbreviationsy0 = −cpz/qB andωB = |q|B/mc. Formally, equation (3.9)
has the form of the Schrödinger equation for a harmonic oscillator with frequency
ωB, and with the term in the square brackets taking over the roleof the energy of
the oscillator with eigenstates(n + 1/2)ωB (n = 0, 1, 2, · · · ). Therefore, the energy
levels of a particle in a homogeneous magnetic field, (‘Landau levels’), are given by

En =

(

n+
1

2

)

~ωB +
p2

z

2m
− µσ

s
B . (3.10)

For electrons,q = e andµ/s = − |e| ~/mc. The Landau levels,

En =

(

n+
1

2
+ σ

)

~ωB +
p2

z

2m
, (3.11)

are degenerate in its quantum statesn, σ = 1/2 andn+ 1, σ = −1/2.

Relativistic approach

The relativistically correct relation for the Landau levels is obtained from the solution
of the Dirac equation in the presence of a magnetic field. The eigenfunctions,Φ, are
solutions of the Dirac Hamiltonian (Johnson & Lippmann, 1949)

H = cα · π + βmc2 , (3.12)

whereπ = p + eA/c is the generalized momentum operator, andα andβ may be
expressed in terms of the2×2 identity matrixI and the Pauli matricesσj (j = 1, 2, 3)
by substituting

β =

[

I 0
0 −I

]

, αj =

[

0 σj

σj 0

]

. (3.13)
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The corresponding energy eigenvalues (HΦ = EΦ) are (Johnson & Lippmann, 1949)

En = ±
(

c2p2 +m2c4 + 2ne~cB
)1/2

(3.14)

= ±
(

c2p2 +m2c4 +m2c42nB/Bcrit
)1/2

,

determined by the principal quantum numbern = l+1/2(s+1) = 0, 1, 2, · · · , where
l = 0, 1, 2, · · · is associated with the parallel momentum component to the field, and
s = ±1 denotes the spin (up/down) state of the electron in each Landau state. In the
ground state (n = 0), only the spin-down state is allowed.

3.4.2 Cross sections for magnetic Compton scattering

In the following, the scattering processes which photons may undergo with the quan-
tized Landau electrons are discussed. The calculation of the strongly frequency and
angle dependent cross sections, however, is a formidable task. Explicit derivations of
the full QED expressions for the relativistic magnetic Compton cross sections have
been performed independently by Daugherty & Harding (1986), Bussard, Alexan-
der & Mészáros (1986) and Mészáros (1992). The cross sectionmatrix elements
which are used by the Monte Carlo code and described later in chapter 4, are cal-
culated via a separate code by Sina (1996) which is based on the Sokolov-Ternov
formalism (Sokolov & Ternov, 1964, 1968). The total cross sections are calculated
from their integration over a one-dimensional thermal electron distribution (Alexan-
der & Mészáros, 1989; Harding & Daugherty, 1991; Araya & Harding, 1996, 1999;
Araya-Góchez & Harding, 2000). The resulting cross sectionprofiles will be further
discussed in chapter 4 when introducing the model setup. This section reviews some
general relevant properties of the magnetic cross sections, starting with a few words
about early and recent approximative work.

Early results on the cross-sections have been presented, e.g., by Canuto, Lodenquai
& Ruderman (1971) and Ventura (1979). Fig. 3.8 shows the strong frequency depen-
dence of the magnetic cross sections as obtained from a cold-plasma approximation
(Ventura, 1979). No higher harmonics occur due to the cold plasma limit, which Ven-
tura (1979) proposed to extend for an application to accreting X-ray pulsars. Fig. 3.8,
however, illustrates the dependence on the photon polarization: while the extraordi-
nary photons are highly resonant, the ordinary mode photonsare unaffected3. The
ordinary-mode photons and electrons undergo continuum scattering, approximated
by (Arons, Klein & Lea, 1987; Becker, 1998)

σord(E, θ) = σT
[

sin2 θ + k(E) cos2 θ
]

, (3.15)

3The ordinary and extraordinary modes are distinguished from the electric field vector: while for ordi-
nary photons, the electric field vector lies in the plane formed by the magnetic field vector and the photon
propagation direction, for extraordinary photons, it is orientated perpendicular to this plane (Becker &
Wolff, 2007).
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while both continuum and resonant interaction in the case ofthe extraordinary pho-
tons gives (Arons, Klein & Lea, 1987; Becker, 1998)

σext(E, θ) = σTk(E) + σlφl(E,Ecyc, θ) , (3.16)

whereσT is the Thomson cross section, and

k(E) =

{

1 E ≥ Ecyc

(E/Ecyc)
2 E ≤ Ecyc

, (3.17)

φl is the line profile function, normalized to unity, and

σl = 1.9 · 104σT B12 . (3.18)

The directional dependence of photon scattering with respect to the magnetic field
can be approximated for energy and mode-averaged cross sections if the mean energy
of the photons,〈E〉, is sufficiently small compared to the cyclotron energy (Wang &
Frank, 1981; Becker, 1998; Becker & Wolff, 2007) for photonsmoving in parallel or
perpendicular to the magnetic field vector as

σ|| ∼ σT

( 〈E〉
Ecyc

)2

, (3.19)

and
σ⊥ ∼ σT . (3.20)

A good approximation of the relativistic QED cross sectionsfor scattering pro-
cesses to the ground Landau state (l = 0) was given by Gonthier et al. (2000). Using
the Johnson & Lippmann (1949) wave functions they presentedspin-averaged ana-
lytical results for sub- and supercritical magnetic fields and compared them to exact
solutions and to other approximations (see Fig. 3.9).

Electron transition rates

The following derivation closely follows Harding & Preece (1987). As it was shown
in section 3.4.1, the state of an electron in a strong magnetic field is completely de-
scribed by the three quantities (n, s, p), wheren is the principal quantum number
denoting its Landau state (n = 0, 1, 2, · · · ), s = ±1 give the spin state of the electron,
andp is its parallel momentum component to the field. A photon is described by its
energyω and by its angle of propagationθ with respect to the magnetic field vector.

An electron in an initially excited Landau level (n > 0, s, p) can undergo a tran-
sition to a lower Landau state (n′ < n, s, p) by emission of a photon. The photon’s
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Figure 3.8: Fig. 2 from Ventura (1979). Frequency dependence of magnetic scattering cross
sections. The ordinary-mode photons are unaffected. No peaks at higher harmonics (cold
plasma limit), nor the temperature broadening is included.

energy and its angle of propagation with respect to the magnetic fields are given from
the kinematics by

ω =
(E − p cos θ) −

√

(p cos θ − E)2 − 2m2B/Bcrit(n− n′) sin2 θ

sin2 θ
. (3.21)

Emitting a photon under an angleθ with respect to the magnetic field, the electron
itself will change its parallel momentum suffering a recoilalong the field direction:

p′ = p− ω cos θ . (3.22)

The probability for an electron transition from a state (n, s, p) to another state (n′,
s′, p′) is calculated from the integration of its differential transition rate, i.e. the
probability to emit a photon of energyω and at angleθ (Harding & Preece, 1987),

Rs,s′

n,n′(θ) =
e2

2π

∫

(Φ‖ + Φ⊥)δ(E − E′ − ω)ωdω , (3.23)

over energy and angle. The integration over energies yields

Rs,s′

n,n′(θ) =
α

2π

ω(E − ω)(Φ‖ + Φ⊥)

(E − p cos θ − ω sin2 θ)
, (3.24)
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Figure 3.9: Analytic approximation of QED cross sections. The total cross section in Thomson
units as a function of the incident photon energy in units of the cyclotron energy is shown for
B/Bcrit = 1 · 10−1···2. Fig. 2 from Gonthier et al. (2000).

while the integration procedure over angles must be done numerically. Harding &
Preece (1987) have done extensive calculations of transition rates up to Landau states
n = 500. TheΦ denote the first-order matrix elements for photons which arepolar-
ized parallel and perpendicular to the plane ofB and the wave vectork. Expressions
for these matrix elements have been derived by different authors. Sokolov & Ternov
(1968) found that they are of the form (see appendix of Harding & Preece, 1987)

Φ‖ = α∗
1α1 (3.25)

Φ⊥ = |α2 cos θ − α3 sin θ|2 , (3.26)

with the star denoting the complex conjugate. The explicit expressions for transverse
polarization are the following:

α1 =
i

4
(A′

3A4 +A′
4A3)[B

′
3B4In,n′−1(x) −B3B

′
4In−1,n′(x)] ,

α2 =
1

4
(A′

3A4 +A′
4A3)[B

′
3B4In,n′−1(x) −B3B

′
4In−1,n′(x)] ,

α3 =
1

4
(A′

3A3 +A4A
′
4)[B

′
3B3In−1,n′−1(x) +B4B

′
4In,n′(x)] ,
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where

A3 =
(

1 +
p

E

)1/2

, A4 = s
(

1 − p

E

)1/2

,

B3 =

(

1 + s
m

p0

)1/2

, B4 = s

(

1 − s
m

p0

)1/2

,

p0 = (E2 − p2)1/2 , x =
ω2 sin2 θ

2m2B/Bcrit
,

and Im,l(x) =

√
l!√
m!
e−x/2x(m−l)/2Lm−l

l (x) .

Absorption versus scattering

Harding & Daugherty (1991) compared the cross sections for resonant scattering and
for absorption in order to find the conditions under which thefull complex scattering
cross section can be approximated well by the much more simple absorption cross
sections. Considering relativistic decay rates and near-critical magnetic fields, they
found the shape of the scattering cross sections to agree relatively well with their first
order absorption approximation at the resonance energies.However, the non-resonant
scattering terms were found to differ significantly, especially near higher harmonics
(compare Fig. 3.10). For the analysis of cyclotron line shapes, it is important to
understand how these scattering profiles give rise to the final line shapes, observed
“in absorption”. While the complex line shape of the fundamental line results from
complicated scattering between different Landau level states, the higher harmonics
are ‘almost’ absorption features as the electron transition rates at low fields are biased
preferring the decay in single perpendicular momentum quanta (Araya & Harding,
1999).

3.5 Numerical models

There are two very different approaches to modeling the radiative transfer in the accre-
tion column: solving finite difference equations and Monte Carlo simulations. Both
model types have to make assumptions on the basic geometry ofthe line-forming
region (compare section 2.3) and on (radiation processes yielding) the seed photon
spectrum (compare section 2.5). The emergent spectra afterthe propagation of the
seed photons through the line-forming region are then calculated for different view-
ing angles.

In section 2.3, different model approaches for the physics in the accretion column
were discussed. Although many attempts have been made to assess the structure of
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Figure 3.10: Scattering (solid line) and absorption (dashed line) cross sections. Fig. 1 from
Harding & Daugherty (1991)

the accretion column and the region of X-ray emission and line formation, most of
its properties remain rather enigmatic up to date. As a general scenario, the picture
of an accretion column or funnel is widely accepted, in whichthe matter from the
accretion flow is confined frozen to the magnetic field lines, while the radiation can
escape. The incident radiation or seed continuum (compare section 2.5) is believed to
result from up-scattered blackbody, synchrotron and predominantly bremsstrahlung
photons within the accretion mound and column (Becker & Wolff, 2005). For numer-
ical modeling, cylindrical and plane-parallel slab geometries are usually assumed to
model a line-forming region above or at the neutron star surface (compare Fig. 3.11).
The source of seed photons is generally placed either at the mid-axis of the cylinder
and at the mid-plane of the slab for internal illumination (’1-1 geometry’), or at the
bottom of the slab for external illumination (’slab 1-0 geometry’, Freeman et al., 1999;
Isenberg, Lamb & Wang, 1998b). While in the 1-0 geometry photons which return to
the source plane after scattering are absorbed (‘reflected photon flux’), in the 1-1 ge-
ometry photons may cross the source plane and the reflected and the transmitted flux
are symmetric. Those geometrical constraints will be further discussed in chapter 4
when introducing the model approach taken in this work.

Solving difference equations

Motivated by the Her X-1 line detection, Nagel (1980, 1981b)presented a solution of
the radiation transfer equation for static neutron star atmospheres, using a two-stream
approximation for just one angle of emergent radiation. Having first suggested a line-
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BB

θ
θ

Figure 3.11: Two simplified orthogonal cases to modeling theline-forming region in the accre-
tion column are shown. Left: cylindrical geometry. Right: slab geometry. Photons escape with
an angleθ with respect to the magnetic field vector.

formation mechanism for a cyclotron emission feature (Nagel, 1980), in their later pa-
per considering Comptonization effects, Nagel (1981b) then favored the Her X-1 line
to appear in absorption. Some years later, Mészáros & Nagel (1985a,b) employed re-
fined Feautrier methods to solve the radiative transfer for four and eight angles. They
performed two sets of calculations, treating effects of anisotropy and Comptonization
separately. For the combined effects of anisotropy and Comptonization, Mészáros &
Nagel (1985a) compared model predictions for different geometries (slab and cylin-
der geometry with internal or external illumination) and discussed variations with
the angle of the emergent spectra. Mészáros & Nagel (1985b) also modeled pulse
shapes. From both studies, they favored the slab geometry asan emission scenario.
Their approach was later refined by the inclusion of higher harmonics (Alexander &
Mészáros, 1991) and by including radiation pressure and temperature corrections in
the atmosphere (Bulik et al., 1992, 1995). Recently, the influence of a non-uniform
magnetic field in the line-forming region on the formation ofCRSFs has been investi-
gated with similar techniques by Nishimura, who predicted the variations of the line
ratios of the CRSFs for the case of a dipolar (Nishimura, 2003) and for a linearly
varying (Nishimura, 2005) magnetic field.

Monte Carlo simulations

Yahel (1979) was the first to use Monte Carlo simulations for simulating the CRSF for-
mation in the atmosphere of a magnetized neutron star. He considered the formation
of pulse profiles and X-ray spectra and found that the Her X-1 feature could indeed
be produced as a consequence of resonant scatterings of extraordinary polarized pho-
tons. Two years later, Pravdo & Bussard (1981) calculated angle-dependent pulsar
spectra, including relativistic corrections to the Compton cross section and consider-
ing polarization dependence. Focusing on the continuum spectral shape they found a
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Figure 3.12: Figs. 1, 7 and 19 from Isenberg, Lamb & Wang (1998b). Top: (a) Slab geometry
with magnetic field direction at an angle to the slab normal. The slab is infinite in extent.Ne

is the column depth between the source plane and the top surface; N ′
e is the column depth

between the bottom surface and the source plane. (b) Cylindrical geometry with magnetic field
parallel to cylinder axis. The cylinder is infinite in length. Ne is the column depth between the
photon source, located along the cylinder axis, and the surface. Bottom left: Spectra forΦ = 0
and several viewing angles.B12 = 1.7 andNe,21 = Ne/10

21 = 1.2. Monte Carlo spectra
for the 1-1 (solid lines) and 1-0 (dotted lines) geometries are shown, as well as relativistic
absorption spectra with finite natural line width (dashed lines). Bottom right: cylindrical line-
forming region with magnetic fieldB12 = 1.7 oriented along the cylinder axis. The column
density from the cylinder axis to the surface isNe,21 = 1.2. Monte Carlo spectra for scattering
(solid lines) and absorption (dashed lines) are shown.

hardening of the spectra towards the magnetic equator. Wanget al. (1989) performed
Monte Carlo simulations for the geometry of a plane-parallel slab with the slab normal
parallel to theB-field vector, and the plasma being illuminated from below. Results
from a generalized model, where the slab normal may have any direction with respect
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to theB-field were discussed by Isenberg, Lamb & Wang (1998a,b, Fig.3.12). For
the case where the slab normal is perpendicular to the magnetic field vector, their
results are comparable to assuming a cylinder geometry for the line-forming region.
Isenberg, Lamb & Wang (1998b) distinguished between line shapes of optically thin
and optically thick matter. As one key result these authors found that the line wings
disappear either for the 1-1 geometry and optically thick media or for the 1-0 geom-
etry and optically thin media. However, none of these scenarios could explain the
observed fundamental shallow and broad features due to the high equivalent width of
the fundamental in both cases.

Inspired by the detection of up to two cyclotron lines4 at45 and100 keV (Kendziorra
et al., 1994) and at100 keV (Grove et al., 1995) during subsequent outbursts of the
transient source A0535+26 in 1989 and 1994, Araya and Harding presented a new set
of Monte Carlo simulations for very hard spectra of X-ray pulsars with near-critical
fields (Araya & Harding, 1996, 1999; Araya-Góchez & Harding,2000) to model the
100 keV line (assumed to be the fundamental line). For a low-density plasma and
hence low continuum optical depths, they produced spectra for slab 1-1 and cylinder
geometry of a plasma threaded by near-critical magnetic fields and discussed the influ-
ence of parameters as geometry, optical depth and anisotropy of the photon source on
the line shapes. The results presented in this work are basedon their approach. The
development and improvements of the new model approach taken here are discussed
in the next chapter.

4Recently it was shown that both lines claimed by Kendziorra et al. (1994) are present in the source
data (Kretschmar et al., 2005; Wilson & Finger, 2005; Inoue et al., 2005; Caballero et al., 2007).



CHAPTER 4

Model design

4.1 Aims

The key objective of this work is to obtain a physically motivated model for CRSF for-
mation which is directly comparable to observational data.Firstly, such a comparison
is fundamental when testing and reconsidering the validityof the model. Secondly,
only an easy applicability of the final-stage model to real observational data provides
the means for a systematic investigation of the manifold properties of CRSF sources.

4.2 Methods

In order to achieve the desired flexibility, the CRSF model, presented in the following,
is based on Monte Carlo simulations. The Monte Carlo simulations are realized using
a revised, generalized version of a code which was originally developed by Araya &
Harding (1996, 1999) and Araya-Góchez & Harding (2000). A new key feature of
the current modeling is a Green’s functions approach to obtain independence from any
continuum model assumed. The original implementation of aninternally irradiated
slab geometry is generalized to include also the case of illumination from the bottom.
More information on the Monte Carlo implementation and details of the Green’s func-
tion approach are given in Sect. 4.4 and in the appendix. Due to the variety of sources
to be modeled and the uncertainty of the general physical picture, calculations are
performed on a large multidimensional parameter grid. All simulation results are
merged into archives in the form of FITS tables1 which are available to the scientific
community. Line features for X-ray pulsar spectra for different physical settings (as
outlined in the next section) within a preset parameter scope may be produced from
these tables with a special convolution and interpolation model, also implemented as

1Flexible Image Transport System: standard astronomical data format (see, e.g.,http://fits.
gsfc.nasa.gov).

56
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a local model for the spectral analysis software packageXSPEC(Arnaud, 1996) and
other analysis packages such as ISIS (Houck & Denicola, 2000).

4.3 Physical setting

The formation of cyclotron line features in a static neutronstar atmosphere is simu-
lated. Magnetospheric accretion is assumed to yield a line-forming region which is
spatially confined to a region at or above the neutron star surface. The seed pho-
tons are propagated through this medium, where they interact with the quantized
plasma electrons via resonant scattering processes. The physical conditions in the
line-forming region and its geometrical structure are prescribed by a set of parame-
ters (Araya & Harding, 1999), which are discussed in the nextparagraphs.

4.3.1 Magnetic field [B]

As a first approximation, the magnetic field is assumed to be uniform on the scale
of the line-forming region. The field strengths simulated are between1 · 1012 and
7 · 1012 Gauss, chosen to encompass the whole range ofB-fields found in accreting
X-ray pulsar spectra up to date. Sect. 5.3 describes a possible generalization to non-
uniform magnetic fields.

4.3.2 Plasma electrons [Te, f(pe), n]

A low-density thermal plasma is considered. While relatively low densities justify the
approach to neglect collisional interactions (ne ≪ 8 · 1027B

7/2
12 cm−3; Lamb, Wang

& Wasserman, 1990) and photon polarization (ne ≪ 1022B4
12 cm−3; Lamb, Wang &

Wasserman, 1990; Gnedin, Pavlov & Shibanov, 1978), the thermal plasma approxi-
mation is motivated by the strong photon-electron couplingat the resonances (Araya
& Harding, 1999). All electrons are assumed to be initially in their fundamental Lan-
dau staten = 0. This assumption is justified by the very high cyclotron radiative
decay rate (per electron) for sub-critical fields

rrad = 3 · 1015B2
12 s−1 (4.1)

compared to the collisional excitation rate

rcol = 5 · 108(ne/1021cm−3)B
−3/2
12 s−1 (4.2)

(Latal, 1986; Bonazzola, Heyvaerts & Puget, 1979). For their motion parallel to theB-
field vector, a thermal distribution of the electrons is assumed. Their parallel momenta
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pe are given by a relativistic Maxwellian distribution

f(pe)dpe ∝ exp









−
mec

2(

√

1 +
(

pe

mec

)2

− 1)

kTe









dpe , (4.3)

whereTe is the parallel electron temperature andk is the Boltzmann constant. In the
literature,Te is often linked to the strength of the magnetic field (e.g. Lamb, Wang &
Wasserman, 1990; Isenberg, Lamb & Wang, 1998b; Araya & Harding, 1996, 1999;
Araya-Góchez & Harding, 2000). Lamb, Wang & Wasserman (1990) inferred a value
of the equilibrium Compton temperature due to resonant scattering ofkTe ∼ 0.27 ·
Ecyc from the numerical analysis of detailed thermal balance in astrongly magnetized
atmosphere (τT ≪ 1 ≪ τcyc,Ne,21 < 6). This proposed relation is taken into account
in order to determine the order of magnitude of the parallel plasma temperature, but
Te is left as a free parameter in the simulations to keep the new model’s flexibility (see
also Sect. 5.4). A slowly sinking plasma where bulk plasma motion may be neglected
is assumed. If bulk motion contributes, a Doppler-shift of the resonance energies is
expected. The effects of bulk motion are discussed in detail, e.g., by Weth (2001).

4.3.3 Optical depth [τT]

The Thomson optical depthτT of the plasma is prescribed. The optical depth for
cyclotron scatteringτcyc relates to the Thomson optical depth as

τcyc =
σcyc

σT
τT , (4.4)

implying a scattering optical depthτcyc which is up to a factor of105 larger thanτT at
the resonances ofσcyc. Fig. 4.1 shows the thermally averaged cross section〈σcyc〉/σT

as a function of energy and angle, calculated as a second order QED process (Sina,
1996). Besides a highly resonant behavior of the cross section at the Landau ener-
gies, Fig. 4.1 also illustrates the angle-dependent relativistic shift in the resonances
as well as the thermal broadening of the profiles. Line features are calculated for
Thomson optical depths betweenτT = 1 · 10−4 andτT = 3 · 10−3 (Araya & Harding,
1999). Depending on the plasma geometry, the resulting meanfree path of a photon
in the line-forming region is different for the same trajectory. The simulated Thom-
son optical depths correspond to electron column densitiesNe = τT/σT between
1.5 · 1020 cm−2 and4.5 · 1021 cm−2. Unfortunately, the densities which describe the
accreted plasma are very poorly restricted (Isenberg, Lamb& Wang, 1998b). The
values assumed here are comparable to values suggested in other recent numerical
or analytical studies. For instance, column densities ofNe ∼ 1021–1022 cm−2 are
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assumed by Nishimura (2003, 2005), and values ofNe ∼ 1022 cm−2 are inferred by
Becker & Wolff (2007) for the sources Her X-1, LMC X-4, and CenX-3.

4.3.4 Geometry [cy, sl11, sl10]

Two basic geometries of the line-forming region are distinguished, motivated by the
complementary ‘standard’ pictures of accretion depicted in Fig. 2.14 (see also section
2.3 and Basko & Sunyaev, 1976): for the case of flow stopping through nuclear colli-
sions at the surface, the geometry of a thin, plane-parallelslab is adopted (Mészáros
et al., 1983; Harding et al., 1984). Radiative shocks or shocks from collisionless in-
stabilities, on the other hand require a cylindrical shape of the X-ray emitting region
(e.g., Becker & Wolff, 2007, and references therein). The heights of slab atmospheres
are expected to be significantly smaller (Lamb, Pethick & Pines, 1973; Wang, Wasser-
man & Salpeter, 1988) than typical radii,h ≪ r0, of the accretion mound (Ostriker
& Davidson, 1973; Becker & Wolff, 2007). For cylindrical geometries, Becker &
Wolff (2007), who investigated a more complicated shock structure with a velocity
flow gradient, found height to width ratios,h/r0, of the emitting region for several
X-ray pulsars of the order102. The simulations also suggest that practically all pho-
tons escape before reaching such boundaries, justifying the assumption of infinite
extended plane-parallel line-forming regions. For the cylinder, in agreement with pre-
vious studies, an internally irradiated plasma with the photon source located at the
cylinder axis (Araya & Harding, 1999; Araya-Góchez & Harding, 2000) is assumed,
being the most simple approach to the matter. Two locations of the source plane, are
considered for the slab. The scenario of a line formation region above an isotropically
emitting source is realized by a bottom-illuminated slab (Freeman et al., 1999; Isen-
berg, Lamb & Wang, 1998b; Wang, Wasserman & Salpeter, 1989).Slater, Salpeter
& Wasserman (1982) argued from Monte Carlo simulations thatplacing the photon
source at the midplane of a plane-parallel slab is representative of the scenario of line
formation in an isothermal, semi-infinite atmosphere. The two slab geometries will
be referred to as slab 1-1 and slab 1-0 geometry from now on, where the numbers
1 : x represent the ratios of the column densities,Ne, the photons see in the opposite
escape directions. The emergent radiation components are referred to as the ‘transmit-
ted flux’ and ’reflected flux’ (Freeman et al., 1999). For 1-0 geometry, the reflected
flux is absorbed at the neutron star surface. For the case of the photon source located
at a the slab midplane, the column densities are equal (x = 1) and transmitted and
reflected flux are symmetric (compare figure 3.12).

The optical depth which the photons see in directionθ when covering an optical
depth∆τT along the slab normal or perpendicular to the cylinder depends on the
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geometry as:

∆τT(θ) =
∆τT

sin θ
(cylinder geometry) (4.5)

∆τT(θ) =
∆τT

cos θ
(slab geometry) . (4.6)

4.4 Technical realization

The resonant scattering processes between incident photons and plasma electrons are
simulated using Monte Carlo simulations. The scattering processes lead to the forma-
tion of cyclotron line features. The current code like the original code by Araya &
Harding uses a separate code by Sina (1996) for the calculation of the relativistic cross
sections. Resonant scattering with electrons up to the fourth harmonic is included.

The current code comprises technical modifications such as an improved angular
and energy resolution and increased statistics. More important, the geometrical con-
straints are also relaxed to include the scenario of a bottomilluminated slab (1-0
geometry) which was not investigated by Araya & Harding (1996, 1999) and Araya-
Góchez & Harding (2000).

The key difference of the new code for the actual modeling of cyclotron lines in
X-ray pulsar spectra is a Green’s functions approach, i.e.,the calculation of the prob-
abilities for photon energy redistribution instead of the calculation of a total spectrum
of all photons for an initial seed photon spectrum. In each Monte Carlo run10000
photons of the same incident energy,Ein are inserted. For each photon a random
angleθin (cos(θin) ∈ (−1, 1)) with respect to the magnetic field direction is picked re-
peatedly, at which it is propagated through the plasma (see below). The probabilities
for the photon redistribution into different energy and angular bins after the passage
of the plasma are calculated from all final states of escaped photons. The initial angu-
lar distribution of the photons is assumed to be isotropic. The relevant energy range
{Ein} for cyclotron line formation is assessed as follows: using the 12-B-12 rule
and assuming quasi-harmonic spacing of the cyclotron lines(see eqs. 3.1 and 3.2),
the energy range containing the first four Landau levels can be fixed by applying a
normalization to the magnetic field,E/B12. Due to the link of resonant energy and
magnetic field, the choice of this scale is important. First of all, it gives an optimized
resolution of the CRSF features in the same way for differentmagnetic fields. Even
more important, the choice of this scale is fundamental for later interpolation of the
Green’s functions: as the resonant energies are directly linked to the magnetic field,
an interpolation of the line shapes inE/B12-space ensures consistent results. For
Ein[keV]/B12 ∈ [6, 48], a grid of Green’s functionsG(Ein → Eout, θout) was ob-
tained.Ein is sampled by 161 Monte Carlo runs, the resolution of the redistributed
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Figure 4.1: Cross sections forB/Bcrit = 0.05 andkTe = 3 keV, thermally averaged over
the sampled electron momenta, and in units of the Thompson cross sectionσT. The resulting
profiles are shown for different anglesθ of the photon’s direction with respect to the magnetic
field vector. Solid, dotted, dashed, dash-dotted and dash-and-triple-dotted lines:cos θ = 0.005,
0.200, 0.375, 0.625 and0.875. Figure based on Araya & Harding (1999).

energiesEout is given by an internal energy binning of 640 bins.
Each Monte Carlo photon is injected into the plasma with an initial energyEin and

at an initial directionθin. The photon is then propagated according to its mean free
path,1/(ne 〈σ(Ein, cos θin)〉 ), and an electron is picked as a scattering partner. The
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Table 4.1: Parameter grid.

parameter B/Bcrit kTe [keV] µ τT Ein/B12 geo
lower bound 0.03 2.5 0 1 · 10−4 6 -/-
upper bound 0.15 20 1 3 · 10−3 48 -/-
N(points) 10 5 8 4 161 3 (cy, sl11, sl10)

electron is characterized by its parallel momentum,pe (Eq. 4.3), and its Landau state
n. According to the scattering cross section (obtained from interpolation of previously
calculated and tabulated values as a function ofB), the state of the electron-photon
pair changes from its incident configuration(E(0), θ(0)) + (p

(0)
e , n(0)) to a different

state(E(1), θ(1)) + (p
(1)
e , n(1)). The new mean free path of the photon is calculated

and the photon is propagated further. If the electron remains in an excited Landau
staten′ > 0 after scattering (absorption and instantaneous radiativedecay), another
photon is emitted with(E(2), θ(2)) + (p

(2)
e , n(2)) and processed further. This photon

spawning can produce up to three secondary photons. Once a photon has escaped
from the plasma, its contribution to the output spectrum is stored. Fixing the input
angular distribution of the incident photons to be isotropic for a large part of the
present work is done for reasons of simplicity, and in order to keep the computational
expenses reasonable. However, a smaller grid inB andTe of angle dependent Green’s
functionsG(Ei, θm → Ej , θk) has also been calculated for selected geometries, to
discuss the generalization to arbitrary angular photon distributions (see section 5.2.2).
Polarization of the photons is not included, however, polarized photons should yield a
comparable picture (Wang, Wasserman & Salpeter, 1988) for the low-density regime
chosen.

Calculations were performed in six-dimensional parameterspace for a non-regular
grid of points[B/Bcrit, Te, µ, τT, Ein, geo] within the ranges listed in table 4.1. The
current parameter grid is resolved into∼ 6·106 grid points requiring a simulation time
of the order of105 CPU hours on2 GHz workstations. The resolution was chosen
such that the variation of the Green’s functions between twopoints is sufficiently
small to allow for interpolation. Hence, CRSFs can be predicted by the convolution
of a continuum spectrum for any parameter combination on this grid as follows: First,
the corresponding Green’s functions G∗ are obtained by linear interpolation in all
parameters except the geometry onE/B12. Sets of Green’s functions{G∗(Ei →
Ej , θk)}j for several different example input energiesEi and a fixed physical setting
are shown in Figs. 4.2 and 4.3. Second, the emergent photon flux F em(Ej , θk), i.e.,
the number of photons per keV in thejth energy bin andkth angular bin (binned
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Figure 4.2: Green’s functions plotted for one input energyEi/B12 = 31.6 keV (dashed lines)
against all output energies{Ej}j , and into four (of eight)cos θ bins (cos θ ∈ [0.125, 0.250),
[0.375, 0.500), [0.625, 0.750), [0.875, 1.0) from top to bottom). The physical setting is as
follows: slab geometry,B/Bcrit = 0.06, kTe = 5 keV, τT = 3 · 10−3 . Ei is chosen to simulate
photon input at the third harmonic line. Most photons are redistributed by photon spawning to
the wings of the fundamental line.

in cos θ) can be calculated, as a function of the (isotropic) incident continuum flux
F cont by convolvingFcont with this interpolated set of Green’s functions (compare
appendix)

F em(Ej , θk) =

∑

iG
∗(Ei → Ej , θk)F cont(Ei)∆Ei

∆Ej
. (4.7)

Note that because of this approach CRSFs for arbitrary continuum shapes can be cal-
culated without rerunning the simulations. For illustrative purposes, in the following
the most simple phenomenological continuum model, a power law with a high-energy
rolloff (Eq. 2.14), is used for folding spectra with the CRSFGreen’s functions.
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Figure 4.3: Same as figure 4.2 but for different input energies Ein/B12/keV = 8.1 (top left),
11.5 (top right),23.8 (bottom left), and31.6 keV (bottom right). The values ofEin correspond
to photon input below the first harmonic, and in the first, second and third CRSF features.

4.5 Consistency check and modeling progress

After the code revision and the development of the Green’s function convolution
model, the current predictions were compared to the resultsfrom the original code.
Fig. 4.4 shows a direct comparison of the line shapes obtained from the current model
version to the spectra obtained by Araya & Harding (1999); Araya-Góchez & Hard-
ing (2000). While the panels of reduced resolution confirm the internal consistency,
the high-resolution results clearly demonstrate the progress of modeling line shapes.
Technical improvements in this analysis with respect to theearlier results are the fol-
lowing: the line shapes were calculated with higher statistics of effectively1.6 · 106

Monte Carlo photons per folded spectrum (increased from5 · 104). They are better
resolved in energy, being calculated on a grid of 640 energy bins instead of 80 for
the relevant energy range. The angular resolution was increased from four to eight
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angular bins ofµ. The chosen statistics give a well resolved picture of the line shapes,
however, the centroid of the second harmonic would require even better statistics for
continuum optical depths ofτT ∼ 3 · 10−3. Theoretical predictions from the current
model status are discussed in the next chapter.
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Figure 4.4: Modeling progress. Line shapes obtained from the revised Green’s function model
and spectra produced by the original MC code (Araya & Harding, 1996, 1999; Araya-Góchez
& Harding, 2000) are plotted on the same scale. Left: The new data (black lines) is rebinned
to the angular and energy resolution of the original data (red lines). Regions of photon deple-
tion (Araya-Góchez & Harding, 2000) were connected by lines, accounting for the apparent
discrepancies, e.g., in the top left panel, second plot fromthe top, second harmonic. Top left:
slab geometry,B/Bcrit = 0.04, kTe = Ecyc/4, 80 energy, 4 angular bins. Setting corresponds
to Fig. 1, top left, in Araya-Góchez & Harding (2000). Top right: same setting with higher
resolution of new data. Bottom left:B/Bcrit = 0.1, kTe = Ecyc/4, 80 energy, 4 angular bins.
Setting corresponds to Fig. 5, top right, in Araya-Góchez & Harding (2000). Bottom right:
same setting with a higher angular and energy resolution (current model data).
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Theoretical predictions

In this section theoretical predictions from the Monte Carlo simulations are made
(Schönherr et al., 2007b). Their implications on observed properties of cyclotron
lines are discussed. Special emphasis is placed on the studyof the line parameters,
i.e. line position, line width and line depth, of the fundamental CRSF. The line shapes
are shown for full spectra, which were chosen to be of a simplified power law shape
with a high-energy rolloff (Eq. 2.14) with a power law index of α = 1–2 and a folding
energyEfold = 40 keV for illustrative purposes. The choice of this rather high folding
energy compared to observational results facilitates the investigation of emission wing
features (see later), as it leads to a pronounced contribution from high-energy photon
spawning to the CRSFs (see section 5.5). More realistic spectra for X-ray pulsars are
shown in chapter 6.

5.1 Geometry and optical depth

Figs. 5.1, 5.2 and 5.3 show full spectra folded with the convolution model for a fixed
magnetic field,B/Bcrit = 0.05, and parallel temperature,kTe = 3 keV, for slab and
cylinder geometries, for two different values ofτT and for different angular bins of the
emergent angleθ of the photons (see chapter 3, Fig. 3.11). Although the second har-
monic is not fully described in its core, the calculations clearly show that the second
harmonic is more pronounced than the fundamental one, in agreement with observa-
tional findings (Cusumano et al., 1998). The fundamental CRSF has a more complex,
broad and shallow shape, often with emission wings. The lineprofiles have distinct
shapes for different geometries, especially concerning the line wings of the funda-
mental feature which are strongest for the internally illuminated plasmas (see later).
Such strong wings are expected as a consequence of the injection of the source pho-
tons at the mid-plane of a slab (1-1 geometry) and at the mid-axis of a cylinder. For
slab geometry, e.g., Isenberg, Lamb & Wang (1998b) and Nishimura (2005) showed
comparisons of the slab 1-1 and the slab 1-0 geometry, and pointed out that these
wings can be understood as the leftovers of one strong emission feature forming from
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Figure 5.1: Line profiles for cylinder geometry as a functionof angle and optical depth.
Left: continuum optical depthτT = 3 · 10−4; right: τT = 3 · 10−3. The emergent spec-
tra from all eight angular bins are shown (bottom to top:µ = cos θ ∈ (0.000, 0.125),
[0.125, 0.250), [0.250, 0.375), [0.375, 0.500), [0.500, 0.625), [0.625, 0.750), [0.750, 0.875),
[0.875, 0.1000)). In both panels,B/Bcrit = 0.05 andkTe = 3.0 keV. The continuum photon
flux is assumed to have a power law distribution with photon indexα = 2.0 and an exponential
high energy cutoff at the folding energyEfold = 40 keV.

photons crossing the source plane, which then becomes an absorption feature from
scattering processes in the outer layers of the line-forming region. For very small op-
tical depths,τT = 10−4, this initial emission feature can be confirmed by the Monte
Carlo simulations presented here. Observations of sourceswith CRSFs have not been
seen to exhibit such strong emission wings. Fig. 5.4 illustrates the difference of the
line shapes when considering a slab illuminated at the midplane or at the bottom.
In Sect. 6.4, the observability of those features with modern instrumentation will be
further commented on.
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Figure 5.2: Same as Fig. 5.1 for slab 1-1 geometry.

5.2 Angular redistribution

5.2.1 Isotropic photon injection

Photons are injected isotropically into 20 angular bins1 in cos θ. Although the distri-
bution of the initial photon directions is isotropic, a highdegree of anisotropy arises
after the photons have been propagated through the plasma due to a highly anisotropic
scattering cross section (compare Fig. 4.1). Fig. 5.5 showsthe angular redistribution
of the photons for both geometries and for different values of the optical depth. Inter-
nally the code keeps track of twentycos θ bins. For illustration, the angular redistri-
bution resolved into eight final bins is shown. ForτT = 3 · 10−4 there is a trend of
an overall redistribution towards smallerθ for slab geometry and a reverse trend for
cylinder geometry. For a larger optical depth,τT = 3 · 10−3, these trends increase for

1The binning is chosen such that it resolves the angular redistribution fine enough while being compu-
tationally reasonable.
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Figure 5.3: Same as Fig. 5.1 for slab 1-0 geometry.

slab and decrease for cylinder geometry, where the curve in Fig. 5.5 flattens. Those
results are conform with the picture of the formation of a broader ‘fan’ and more
sharply beamed ‘pencil’ beam emergent radiation for cylinder and slab geometries.
This can be understood from the dependence of the scatteringcross sections on the
angle (see Fig. 4.1) which implies that there is a general trend of a photon redistri-
bution by scattering towards smaller angles, i.e. largercos θ, regardless of geometry.
The larger the optical depth a photon must pass, the more scatterings take place and
the more dominant this effect becomes. This fact can also account for a less promi-
nent trend in the slab 1-0 geometry compared to the 1-1 geometry, as photons which
experience many scatters by various crossings of the sourceplane are thermalized,
biasing the emerging radiation. For a fixed optical depthτT = 1 · 10−3 similar plots
were shown resolved into all twenty bins by Araya-Góchez & Harding (2000). For
τT ∼ 8 · 10−4, the angular photon redistribution of the line photons was discussed
by Isenberg, Lamb & Wang (1998b). Due to the redistribution of the photons with
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Figure 5.4: Comparison of slab 1-1 and 1-0 geometry. Left panel: folded spectra for 1-1
(dashed line) and 1-0 (solid line) geometry and for eight angular bins in double logarithmic
representation. Right panel: Difference of spectra (1-1)-(1-0) at energies around the fundamen-
tal line in linear representation. Note the strong emissionwings for the 1-1 geometry. In all
plots,B/Bcrit = 0.06, kTe = 5 keV, τT = 3 · 10−3, andµ increasing from bottom to top (see
Fig. 5.1).

respect to their angle, also the cyclotron line shapes vary significantly. Fitting the fun-
damental feature with the continuum spectral function multiplied with a Lorentzian
in absorption for the absorption feature and two Lorentzians in emission for the emis-
sion wings gives the line parameters. Fig. 5.6 shows the position, the line width and
the line depth of the fundamental CRSF versus the emergent angle of the photons, as
obtained from these phenomenological fits.

The line position of the fundamental CRSF varies little withthe viewing angle and
thus cannot account for the amount of change in line positions observed for some
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Figure 5.5: Angular redistribution of the photons. For isotropic photon injection, the percent-
age of the emitted photon flux into eight angular bins for the spectra in Figs. 5.1, 5.2 and 5.3 is
shown. Top: cylinder geometry, middle: slab 1-1 geometry, bottom: slab 1-0 geometry. Solid
lines: τT = 3 · 10−3, dashed lines:τT = 3 · 10−4.

sources with the phase. Therefore, different explanationshave to be sought. A possi-
ble explanation could be that the photons which escape the line-forming region into
the direction of the observer during different rotational phases of the system, have
passed through regions of different magnetic field strengths. These differences again
could be either due to small-scaleB-field gradients of a locally non-dipolar field (see
later), or possibly due to a change of the geometry of the system. The choice of a static
line-forming region, however, might also be a too simplifiedassumption. Weth (2001)
has proposed that the bulk motion of the plasma can Doppler-shift the fundamental
line considerably, yielding differences of up to 30% in minimum and maximum line
energies. However, from Becker & Wolff (2007), a slowly moving plasma beyond
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Figure 5.6: Variation of the line parameters of the fundamental CRSF with the angle of emis-
sion. Solid lines: cylinder geometry, dashed lines: slab 1-1 geometry, dash-dotted lines: slab
1-0 geometry. All values are obtained from fits of the line shapes depicted in Figs. 5.1, 5.2, and
5.3, and for a Thompson optical depth ofτT = 3 · 10−3.

the shock is expected.
The line depth increases withµ = cos θ in the case of cylinder geometry, and

decreases for slab geometry. This is understood from Eqs. (4.5) and (4.6), as they pre-
dict the largest optical depth for smallθ for cylinder, and for largeθ for slab geometry.
For cylinder geometry, the line width increases clearly with µ as expected from the
angle-dependence of relativistic Doppler broadening (seeEq. 5.2 below), which is
reinforced by the increasing optical depth withµ. The decreasing optical depth with
angle for slab geometry instead suppresses the trend of the line broadening withµ.
From observational studies (compare Fig. 3.6 in section 3.3), different intercorrela-
tions of the line parameters have been proposed. Among others, a positive correlation
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Figure 5.7: Angular redistribution of photons from monoenergetic and unidirectional injection.
(1) injection at energies outside the resonance, (2) injection at energies in the line core of the
fundamental, (3) injection in the second harmonic, near thewing. The matrix of input and
output angle is shown, where the height of the function indicates the percentage of photons
emerging from a certaincos θ bin.

of the line depth with the line width, scaled by the cyclotronenergy was proposed by
Heindl et al. (2004). If this suggestion holds true, the results from Fig. 5.6 support
the scenario of a cylindrical geometry of the line-forming region.

5.2.2 Non-isotropic photon injection

In the scope of this work, isotropic photon injection is assumed for the analysis of the
line shapes. The changes of the line-shapes for anisotropicphoton injection have been
studied by Araya-Góchez & Harding (2000) assuming simplified initial photon distri-
butions, e.g. an emission cone or fan beam, parallel or perpendicular to the magnetic
field vector. However, no unique understanding of the angular distribution of the seed
photons has been agreed on so far for the beam patterns (compare sections 2.4, 2.5 and
2.6) from theoretical modeling. Studies of the continuum processes like the one of
Becker & Wolff (2007) hopefully will help to shed more light on this matter. Consider-
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ing radiation processes in general (see section 2.5), however, anisotropy of the initial
photon distribution is expected to be a rather realistic assumption. To qualitatively
test the effects of beamed photon injection, therefore, theGreen’s functions, general-
ized to arbitrary angular photon distributions,G∗(Ein, µin → Eout, µout), have been
calculated for a small parameter sample (fixedB/Bcrit = 0.03 andkTe = 2.5 keV,
slab 1-1 geometry).

Figure 5.7 shows angular redistribution functions for monoenergetic and unidirec-
tional photon injection. The percentage of emergent radiation into different angular
bins is shown for photons which have been injected at different angular bins and at
different input energies in or near the lines. Photons whichare injected far outside the
resonance (E(1)

in ) do not undergo any scattering processes and, as expected, are not
redistributed into different angles. Photons which are injected at energies in the core
of the fundamental resonance (E

(2)
in ) suffer so many scatterings that their strong final

angular redistribution is independent from their initial angle of injection. The redis-
tribution of those resonance photons resembles the total photon redistribution shown
in Fig. 5.5 for isotropic photon injection and slab 1-1 geometry. Photons which are
injected at energies corresponding to the wing of the secondharmonic (E(3)

in ) are com-
pletely redistributed for largeµ but partly remain in their initial angular bin for small
µ. These results indicate that the change of the line featuresfor anisotropy should
be mainly seen due to contributions from the line wings whichis in agreement with
spectral features shown by Araya-Góchez & Harding (2000).

5.2.3 Mixing different angular contributions

For a distant observer at a viewing angleθ̃, gravitational light deflection may change
considerably the photons’ directions (compare section 2.6). The enhanced surface
visibility and possibly asymmetric magnetic pole geometries also render an observa-
tion of radiative contributions from both magnetic poles probable. The variation of
the viewing anglẽθ with respect to one magnetic pole (i=1,2) with the rotation of the
neutron star (rotation angleΦ) is (Kraus et al., 2003, see Fig. 5.8):

cos θ̃ = cos θ0 cos θi + sin θ0 sin θi cos(Φ − Φi) (5.1)

whereθ0 is the angle between the rotational axis and the line of sight, θ1,2 indicate
the polar angle locations of the two magnetic poles with respect to the rotational axis,
andΦi defines the rotational phase where the axis through polei passes closest to
the line of sight (Kraus et al., 2003). The corresponding change in flux generates
the observed pulse profile. When neglecting the effect of gravitational bending, this
angleθ̃ is identical to the intrinsic angleθ of the escaping photons with respect to the
magnetic field. Otherwise, photons which are observed underthis angle have intrinsi-
cally emerged the line-forming region at a different angle which has to be calculated
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Figure 5.8: Possible scenario of a neutron star geometry with a distorted dipole geometry. The
anglesθ0, θ1 andθ2 indicate the locations of the rotational axis and of the two magnetic poles.

numerically, and under the assumption of a geometry of the poles parameterizing the
system (e.g. Kraus et al., 1995; Blum & Kraus, 2000, Fig. 5.8). Numerical calcula-
tions of X-ray pulsar continua and cyclotron line shapes which take into account this
effect of gravitational light bending for simplified geometries have been realized, e.g.,
by Riffert & Mészáros (1988) and Mészáros & Riffert (1988). However, similar to
the issue of seed photon angular distribution, no general picture has emerged so far
for the geometry of beam patterns from both magnetic poles.

The MC model which is used here as introduced in chapter 4 doesnot include grav-
itational light deflection. Therefore a toy model approach was taken to illustrate the
qualitative effects of mixing radiation contributions from two magnetic poles on the
cyclotron line shapes. In Fig. 5.9, the effects of mixing twocontributions of radiation,
where the photons reaching the observer are governed by differently varying intrin-
sic escaping anglesµ1,2 with phase, are illustrated. For the calculation of the sum
of the observed spectra, it was assumed that both sources contribute equally into the
direction of the line of sight of the observer. The single contributions and the sum
of contributions is depicted for different phases of the observation. Clearly, mixing
spectra from different angles will change the initial shapes of the lines. It is most
interesting to note, however, that mixing two-pole spectramight effectively lead to
more broad and shallow lines and can smear out the emission wings.
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Figure 5.9: Effects of two-pole contributions. For a toy model geometry, the emerging spectra
from two magnetic poles (diamonds and triangles) into the direction of the line of sight of an
observer are shown together with the sum of both spectra (solid lines). The upper and lower
panels represent two different rotational phases of the neutron star. The assumed variation of
the observing angle with phase for both poles is illustratedin the small panels. The assumed
values of the phase are indicated by the horizontal lines.
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5.3 Line energies vs. magnetic field strengthB

5.3.1 Uniform magnetic field

Line profiles for different magnetic field strengths and otherwise fixed parameters are
shown in Fig. 5.10. The figure clearly shows the approximately linear progression
of the centroid line energies towards higher energies with increasing magnetic field
strength expected from equation (3.1). No significant change in the shape of the line
ratios, however, is observed for magnetic fields varying between 5% and 8% of the
critical magnetic field (Fig. 5.10). The relativistically correct line ratios for a uniform
field are implied by Eq. (3.2). For some sources, e.g., V0332+53 (Pottschmidt et al.,
2005) an agreement of the observed line ratios with the relativistic formula has been
found.

5.3.2 Non-uniform magnetic field

As mentioned above, there are also sources for which the lineenergies of the harmon-
ics are much less harmonically spaced than what can be accounted for by relativistic
effects. One possible explanation is a model in which the magnetic field is varying lo-
cally within the line-forming region. Estimates of the dipole magnetic field of pulsars
from torque theory and measurements of the surface magneticfield from CRSF detec-
tion hint at a magnetic field of more complex structure than a simple dipole. As the
exact nature of the magnetic field is unknown, different scenarios for non-dipole mag-
netic field structure have been investigated (Blandford, Applegate & Hernquist, 1983;
Urpin, Levshakov & Iakovlev, 1986; Arons, 1993). Besides magnetic field gradients
which arise due to dipole variations with the height of the magnetosphere, surface
field variations can result, e.g., from small-scale crustalfield structures (Blandford,
Applegate & Hernquist, 1983), or thermomagnetic field evolution effects (Urpin, Lev-
shakov & Iakovlev, 1986). Nishimura (2005) recently presented a study of the line
ratios for a line-forming region of slab geometry threaded by a magnetic field which
linearly varies with the height. His approach was based on a model by Gil, Melikidze
& Mitra (2002) who assumed the presence of a star-centered dipole from a fossil
field in the core superposed by a crust-anchored dipole anomaly. Applying Feautrier
methods to solve the radiative transfer, Nishimura (2005) found that the line ratios
significantly increase if theB-field decreases upwards, and decrease vice versa. This
toy model was adapted for a first study of magnetic field spreadwith the Monte Carlo
approach taken here.

With some simplifying assumptions considering the geometry and the angular re-
distribution for the case of a non-constantB-field, this model confirms the trend of
line ratio changes. An example is shown in Fig. 5.11, where cyclotron lines for a
constant, a linearly decreasing, and a linearly increasingmagnetic field are compared.
The line shapes for a field gradient are obtained by multiple folding of a seed pho-
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Figure 5.10: Line profiles for different values of the magnetic field strength. TheB-field
increases from bottom to top:B/Bcrit = 0.05, 0.06, 0.07, 0.08. We assume cylinder geometry,
a constant temperaturekTe = 3 keV, an optical depthτT = 3 · 10−3 and a viewing angleθ as
µ = cos θ = 0.25. The continuum spectrum has the shape of a power law with photon index
α = 2.0 and with an exponential cutoff at the energyEfold = 40 keV.

ton spectrum with the Green’s functions, corresponding to the assumption of discrete
steps of magnetic field variation for small∆τT (compare Fig. 5.12). This approach
of course implies an isotropic photon distribution again after each∆τT step, which is
not a correct physical assumption but still permits a qualitative assessment ofB-field
gradients. For the non-constant magnetic field, a linear variation of the field strength
in discrete steps within the line-forming region of up to 10%was assumed. The fun-
damental line appears widely unchanged in shape and position, as it is formed in the
upper scattering layers, where the non-constantB-field was set to have the same value
as the constant one. Line photons which have been scattered out of the line of sight
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Figure 5.11: Comparison of CRSFs for a uniform and a non-uniform magnetic field in a line-
forming region of slab geometry. Bottom:B/Bcrit = 0.05 → 0.055, Middle: B/Bcrit =
const.= 0.055, Top: B/Bcrit = 0.06 → 0.055. Results are shown forµ = cos θ = 0.6. Oth-
erwise the same setting as in Fig. 5.10 is used. The vertical dashed lines mark the line positions
obtained from a phenomenological fit (continuum multipliedby three Lorentzians in absorp-
tion for the lines and two Lorentzians in emission for the emission wings of the fundamental
line) of the first three CRSFs. The structure in the second line is assumed to be of statistical
nature.

or redistributed in energy in lower layers are replaced by spawned photons from scat-
tering in higher layers. By contrast, the higher harmonic lines change in position and
shape. Here, contributions from all layers of different depth are important for the final
line profile. Absorption features from photons at low layersare not refilled. Hence,
with the change of the resonant energies with the height of the line-forming region,
the lines become wider (proportional to the amount of variation inB) and their final
centroid energy is shifted. From fitting Lorentzians to the first three lines, the line
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Figure 5.12: Toy model for a magnetic field gradient. Discrete thin slabs of different mag-
netic field strength and a small optical depth∆τT are considered. The photons are propagated
through the first slab slice by folding the continuum spectrum with the Green’s functions for
energy redistribution andBbottom; the emergent spectrum is folded again for the next value of
B, and so on.

energies and line ratios for a constant, an increasing and a decreasing magnetic field
could be obtained. Table 5.1 lists the fitted line positions and the fitted line ratios.
The theoretical values of the line energies and line ratios after Eq. (3.2) are shown for
completeness. As expected, these values are similar to the fitted ones for a constant
magnetic field, although not identical, as the non-Gaussianand non-Lorentzian line
shapes especially of the fundamental restrict the fit quality.

Larger deviations of the line ratios can be accounted for by assumingB-field vari-
ations of more than 10%. Line ratios of strongly non-harmonic nature have been
observed. For 4U 0115+63, the observed spacing of the line energies is smaller than
expected, yielding line ratios of (2.8± 0.05 : 1.9 ± 0.05 : 1 , Santangelo et al., 1999)
or (2.71 ± 0.13 : 1.73 ± 0.08 : 1 , Heindl et al., 1999) for the first three harmonics.

Table 5.1: Comparison of line positions and line ratios fromthe fits of the spectra shown in
Fig. 5.11. The line energies are given in keV. For the case of aconstant magnetic field, the line
energies are also calculated from Eq. (3.2).

B/Bcrit 1st 2nd 3rd line ratios
0.050 → 0.055 27.20 51.76 77.16 2.84 : 1.90 : 1

0.055 27.20 52.87 80.14 2.95 : 1.94 : 1
0.060 → 0.055 27.49 55.45 83.61 3.04 : 2.02 : 1
0.055 (Eq. 3.2) 27.62 54.35 80.27 2.91 : 1.96 : 1



82 Chapter 5: Theoretical predictions

Te

      20       40       60       80     100
Energy [keV]

lo
g(

dN
/d

E
dµ

)

Figure 5.13: Variation of the line shapes with the plasma temperature (kTe = 5, 10, 15, 20 keV
from bottom to top). Spectra are shown for a magnetic fieldB/Bcrit = 0.07 and otherwise the
same parameters as in Fig. 5.10.

These deviations are comparable or slightly larger than theones obtained for an in-
creasing magnetic field in the example setting corresponding to Fig. 5.11. From the
observational results, the line ratio changes can be attributed solely to the position of
the fundamental line while the higher harmonics still obey aharmonic spacing. This
behavior is in accordance with the obtained values for the line ratios for both an in-
creasing or a decreasing magnetic field, due to the special role of the fundamental
CRSF outlined above. An example for a source where the line ratios may be larger
than what is expected from Eq. (3.2) is Vela X-1, where Kreykenbohm et al. (1999,
2002) have found a coupling of the first harmonic energy to thefundamental line
energy& 2 in RXTE data.
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5.4 Influence of the plasma temperature

The line width is determined by the energy and angle-dependent shape of the scatter-
ing cross section and smeared out due to thermal Doppler broadening. In Fig. 5.13,
cyclotron line shapes are depicted for a varying parallel electron temperature,Te, for
cylinder geometry and fixed parametersB and cos θ. The hotter the plasma, the
wider and the more asymmetric become the lines. The width of the lines results
from a combination of the natural line width and Doppler broadening (Harding &
Lai, 2006). Doppler broadening gives a Full Width Half Maximum of (Trümper et al.,
1977; Mészáros & Nagel, 1985a)

ΓFWHM =

√

8 ln(2)kTe

mec2
| cos θ|Ecyc . (5.2)

For increasingcos θ the line shapes become more asymmetric. In the simulations the
plasma temperature is a free parameter. The approximate relation from theory (Lamb,
Wang & Wasserman, 1990; Isenberg, Lamb & Wang, 1998b, compare chapter 4),

kTe = Ecyc/4 (τcyc ≫ 1) . (5.3)

would correspond to a temperature for the depicted setting (Ecyc ∼ 30 keV) of at least
6 keV, i.e., somewhere in between the bottom spectrum and the second spectrum from
the bottom in Fig. 5.13.

5.5 Continuum shape and photon spawning

The shape of the cyclotron lines is sensitive to the continuum shape. In particular,
the fundamental line shape and its emission features vary significantly. For better
illustration, the case of internally irradiated plasmas isinvestigated where the emis-
sion wings are strongest. The dependence of the line shapes on the continuum can
be understood when considering the photon redistribution in energy, especially due
to photon spawning. Figure 5.14 shows the change of the line profiles for a flat input
continuum spectrum, when allowing only for electron transitions between the ground
Landau state to the first Landau level, or for photon-electron scattering leading to up
to three harmonics. In the former case, a single absorption line forms. The more
harmonic scatterings are allowed for, the more lines form, while the fundamental and
lower harmonics become shallower with growing emission wings. Integrating the
photon flux only over the energy range including just the fundamental line and its
emission wings (E ≤ 18 keVB12), gives the percentage of spawned photons in the
spectra. The spawned photons account for as much as34, 64, 73 % (n ≤ 2, 3, 4) of
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Figure 5.14: Changes of the line profiles considering one to three harmonics for the scattering
processes (bottom to top). The bottom graph is overplotted in all cases as a dotted line to guide
the eye. The input continuum spectrum (dashed line) is flat and therefore overemphasizes the
effects of emission wings. Left panel: cylinder geometry; right panel: slab 1-1 geometry. In
both panels,kTe = 3 keV, cos θ ∈ [0.125, 0.250), τT = 3 · 10−3 andB/Bcrit = 0.05.

the flux for cylinder and for11, 32, 43 % of the flux for slab 1-1 geometry. Consid-
ering the whole energy range, the percentage of spawned photons is25, 52, 65 % of
the total flux for cylinder and3, 15, 25 % of the total flux for slab 1-1 geometry. It
is important to stress that these numbers are representative of the extreme and fairly
unrealistic case of a flat input continuum. However, they illustrate well that the line
shapes change with the spectral hardness of the incident continuum, where harder
spectra exhibit more emission features near shallower lines. Line profiles for a power
law with photon indexα = 1 with exponential rolloff at different folding energies
Efold = 5, 15 keV, and for a pure power law continuum spectrum are shown in Fig.
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Figure 5.15: Line profiles for different continua. All continua have the general form of a power
law with a photon indexα = 1.0 (top). In the middle and bottom plots, the spectra have
an additional high energy cutoff at the folding energiesEfold = 15 keV for the middle and
Efold = 5 keV for the bottom plot. We show the results for cylinder geometry, kTe = 3 keV,
cos θ ∈ [0.375, 0.500), τT = 3 · 10−3, andB/Bcrit = 0.05.

5.15. In this case, the number of photons around the first lineincreases by a factor of
1.1 and2.2 for the two harder spectra with respect to the softer one.



CHAPTER 6

Comparison with observations

A major aim of this work is a direct comparison of the simulated line features with
observational data beyond the theoretical predictions, which were discussed in the
last chapter. Such comparisons have been attempted before (e.g., Mészáros, 1984),
however, only for very restricted data sets, and not in a way such that they could be
generalized for observational applications.

The approach taken here is threefold: First, a short overview is given over some
current X- and gamma-ray observatories and instruments, which provide data of cy-
clotron line sources, and a selected sample of sources is introduced. Second, synthetic
spectra are calculated for these sources on the basis of their observational characteris-
tics. The issue of observability of the line features by today’s instruments is discussed.
Third, a general model application, based on the numerical simulations, is introduced
which allows for systematic fitting of real observed source data. This model can be
provided to the scientific community by its implementation for the fitting analysis
software packageXSPEC. Fit results from three sources out of the sample are ob-
tained and the implications of the obtained parameters for modeling cyclotron lines
are discussed.

6.1 Instruments

When comparing synthetic spectra to real observational data, one always encounters a
basic difficulty: the observed data points depend not only onthe physical source prop-
erties but also on the instrumental characteristics. The instrumental response function
and the source luminosity limit the detectability of less prominent features in spectral
data. For the case of accreting X-ray pulsars, in particularthe high-energy part of
the spectrum suffers from low statistics due to their high-energy roll-offs (compare
section 2.5). Background radiation affects the data. In order to compare the synthetic
spectra to real observed source data, it is therefore necessary to fold the theoretical
model spectrum with the corresponding instrumental response.

At present, three main X- and gamma-ray observatories are inoperation: the Rossi

86
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Table 6.1: Instrumental characteristics ofRXTE, INTEGRAL andSuzaku
(RXTE: http://heasarc.gsfc.nasa.gov/docs/xte/; INTEGRAL : http://
sci.esa.int; Suzaku: www.astro.isas.ac.jp/suzaku).

RXTE INTEGRAL Suzaku
energy PCA: 2–60 keV IBIS : 15 keV–10 MeV XIS : 0.2–12 keV
range HEXTE: 15–250 keV SPI: 20 keV–8 MeV HXD : 10–600 keV
∆E/E PCA: < 18%@6keV IBIS : 9 keV@100 keV XIS : 130 eV@6 keV

HEXTE: 15%@60keV SPI: 2.3 keV@1.3 MeV HXD :4 keV (< 60 keV)
effective PCA: ∼ 6500 cm2 IBIS : ∼ 3000 cm2 XIS : . 390 cm2

area HEXTE: 2×800 cm2 SPI:∼ 500 cm2 HXD : 160–260 cm2

FOV PCA: 1◦ IBIS : 9◦ × 9◦ XIS : 17.8′ × 17.8′

HEXTE: 1◦ SPI: 16◦ HXD : 34′ × 34′ (. 100 keV)
angular PCA: 1◦ IBIS : 12′ XIS : 2′

resolution HEXTE: 1◦ SPI: 2.5◦ HXD : 34′

timing PCA: 1µs IBIS : ∼ 1 ms XIS : 8 ms–8 s
accuracy HEXTE: 8µs SPI: 129µs HXD : 61µs

X-ray timing explorer (RXTE, launch date: 12-30-1995), the International Gamma
ray Astrophysics Laboratory (INTEGRAL, launch date: 10-17-2002), and the Japanese
high-energy observatorySuzaku1 (launch date: 07-10-2005). Accreting X-ray pul-
sars are regular targets of observation by the instruments of those satellites. Addi-
tional to new observational data, a large amount of archivaldata of accreting X-ray
pulsars has been accumulated during the last decades. Amongpast instruments and
satellites are the High Energy X-Ray Experiment (HEXE, on a balloon and on MIR
flights), Ginga2, the High-Energy Astronomy Observatories (HEAO), the Compton
Gamma-Ray Observatory (CGRO), and the Italian-Dutch satelliteBeppoSAX. In the
scope of this work, spectra extracted fromINTEGRAL, RXTE, andSuzakudata are
considered. Some basic properties of those satellites are summarized in table 6.1. The
listed instrument characteristics are nominal. Useful ranges have been obtained from
experience. For instance, considering the instruments onRXTE, the energy range
of the Proportional Counter Array (PCA) is given as2–60 keV. However, a useful
range turned out to be2 to 25 keV due to calibration problems of the Xenon K edge
structure (Rothschild et al., 2006). Hence for studies of cyclotron lines above25 keV,
the High-Energy X-ray Timing Experiment (HEXTE) should be the instrument of
choice. For theIBIS/ISGRI instrument onINTEGRAL there is some long ongoing
discussion on the validity of the response in the low-energyregime (< 20 keV). For
the cyclotron line energies discussed here, this should notinfluence the results.

1Suzaku is a mythical, divine bird symbolizing renewal.
2Japanese for ‘Galaxy’
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6.2 Source sample

All sources considered in the following are accreting X-raybinaries, for which one
or several cyclotron resonance scattering features have been firmly detected in their
spectral data, confirmed by several different investigators and different instruments.
From the seven objects presented below, three belong to the predominant class of
transient sources, which accrete mass via a Be mechanism andare only observable
during recurring outburst events (see chapter 1). Her X-1 isan example for a close
binary where Roche lobe overflow and disk accretion mechanisms prevail while Vela
X-1 is a typical example for a strong wind accretor. In general, the motivation behind
the choice of sources was to achieve a sample representativeof a variety of different
source properties (compare the ‘key results’ listed in the introductory chapter) and
to consider well-studied sources, for which several observations by different instru-
ments, and over a long time have been performed, and high-quality spectral data is
available. For each source, a short summary of its general characterstics is given, and
a set of synthetic spectra is shown.

Her X-1.

Her X-1 is not only the first accreting X-ray pulsar ever for which a spectral feature
was discovered and identified as a CRSF (Trümper et al., 1978)but also one of the
best-studied objects up to date (Staubert et al., 2007). Theclose X-ray binary contains
the 1.3M⊙ pulsar Her X-1 and its optical2.2M⊙ companion star HZ Her. The
binary system has an orbital period of1.7 days. Its inclination is believed to be
i > 80 deg (Klochkov et al., 2006). The close binary is thought to accrete via Roche
lobe overflow and under the formation of an accretion disk. The pulse period of
Her X-1 was determined toP = 1.24 s. A long-term variability with a 35 days
cycle (Deeter et al., 1998) is observed for Her X-1. This cycle is nowadays attributed
to a periodical obscuration of the neutron star and the innerdisk due to a warped
accretion disk (Shakura et al., 1999; Klochkov et al., 2006). The pulse profile of Her
X-1 is highly asymmetric, and varies not only with the choiceof energy band but also
with its 35 days cycle. Different explanations for its asymmetry have been sought in
form of an asymmetric fan beam pattern scenario or by the picture of non-antipodal
emission regions (distorted dipole model; Blum & Kraus, 2000). During its main-on
state, Her X-1 reaches an X-ray luminosity ofLX = 2.5 · 1037 ergs s−1, making it
one of the brightest LMXBs. Its magnetic field was measured via a cyclotron line at
∼41 keV (Gruber et al., 2001) asB ∼ 4.4 · 1012 Gauss. It is intriguing to note that
a sudden jump of the line position occurred around 1991. Before, the fundamental
CRSF was repeatedly measured around35 keV, indicating a weaker magnetic field
of B ∼ 3.8 · 1012 Gauss (Staubert et al., 2007). Recently, studies of the luminosity
dependence of the Her X-1 cyclotron line have been presented. Staubert et al. (2007)
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found an increase of the energy of the fundamental CRSF with the luminosity; this
detection was of special interest as it implied for the first time a positive correlation
of those parameters (compare section 3.3).

V0332+53.

The Be type high-mass X-ray binary V0332+53 is a transient X-ray pulsar which
consists of the O8-9Ve star BQ Cam and a neutron star. Discovered in 1983 (Tanaka,
1983), V0332+53 was the fourth accreting X-ray pulsar system where CRSFs were
found (Makishima et al., 1990a,b). It is also the second accreting X-ray pulsar af-
ter 4U 0115+63 with a detection of more than two cyclotron lines in its spectrum.
The third CRSF for V0332+53 was discovered inRXTE data (Coburn et al., 2005;
Pottschmidt et al., 2005) and confirmed by subsequentINTEGRAL observations
(Kreykenbohm et al., 2005). These data from its 2005 outburst exhibit very pro-
nounced cyclotron lines at 27, 51 and 74 keV, indicating a surface magnetic field
of ∼ 2.7 · 1012 Gauss for a redshiftz = 0.3. Studying the evolution of V0332+53
over the outburst, the fundamental CRSF was found to vary with the source luminos-
ity. With the decrease of the X-ray flux from a peak value of∼1 Crab to∼0.01 Crab
during the outburst decline, a clear increase of line energyand line depth along with
a decreasing line width was found (Tsygankov et al., 2006; Mowlavi et al., 2006).
The anticorrelation ofEcyc and the source flux had been interpreted before by Mihara,
Makishima & Nagase (1998) for 4U 0115+63, Cep X-4 and V0332+53 as due to a
change in the height of the shock and the X-ray emitting region with varying mass
accretion rate,Ṁ (compare section 3.3).

A 0535+26.

A 0535+26 is another example for a transient high-mass Be/X-ray binary. It was dis-
covered in 1975 during a giant outburst at a luminosityL(3−7)keV = 1.2 ·1037ergs s−1

(Rosenberg et al., 1975). During the last 30 years five more giant outbursts and
two normal outbursts have been observed. The X-ray pulsar has a pulse period of
P = 103 s. It is in a highly eccentric orbit (e = 0.47) of Porb = 111 days duration.
A magnetic field of4.9 · 1012 G (z = 0.3), inferred from the fundamental CRSF at
46 keV in the spectrum of the A0535+26 makes the source the accreting X-ray pul-
sar with the highest magnetic field so far determined. A long ongoing discussion has
taken place about the energy of its fundamental CRSF which started after the claims
of the detection of up to two lines (Kendziorra et al., 1994; Grove et al., 1995) in its
spectra data during outbursts in 1989 and 1994. After that, and after more than ten
years of quiescence, another series of outbursts was observed in between May 2005
and January 2006 (Kretschmar et al., 2005; Terada et al., 2006), allowing for a firm
detection of two lines at∼46 and∼100 keV in RXTE (Wilson & Finger, 2005) and
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INTEGRAL (Kretschmar et al., 2005; Caballero et al., 2007) data. Similar to other
sources like Vela X-1, a fainter fundamental CRSF and a more pronounced second
CRSF are observed for A0535+26. However the fundamental seems to be especially
shallow and broad for this source. Opposed to V0332+53, no variation inEcyc with
the luminosity was detected so far (Caballero et al., 2007),although there are first
hints at a sudden jump in the line energy from the pre-outburst peak to the main peak
(I. Caballero, priv. com.) in the 2005 spectra.

4U 0115+63.

While A0535+26 marks the upper range ofEcyc detected for accreting X-ray pulsars,
the Be/X-ray binary transient pulsar 4U 0115+63, is the source with the so far lowest
cyclotron line energy which has been observed among those sources (compare section
3.3). An impressive number of five cyclotron resonance scattering features has been
detected in the spectra of this source (Heindl et al., 1999; Santangelo et al., 1999). It
is not surprising that the record in the number of CRSFs is held by the source with
the lowest determinedB-field. The higher the magnetic field, the higher are the en-
ergies of all harmonics, while a high-energy cutoff behavior seen for X-ray pulsars
limits severely the statistics at high energies. The first ofthe absorption features of
4U 0115+63 was discovered at20 keV by Wheaton et al. (1979) only shortly after
the first ever discovery of a CRSF in Her X-1. A more detailed analysis of the data
by White, Swank & Holt (1983) revealed the presence of in facttwo CRSFs at 11.5
and23 keV. An outburst of 4U 0115+63 sixteen years later increased this number
to a striking five CRSFs found in the spectral data obtained byinstruments on the
RXTE (Heindl et al., 1999) andBeppoSAX (Santangelo et al., 1999) observatories.
4U 0115+63 is hence the best candidate for probing intercorrelations of the line pa-
rameters of the harmonics, in particular concerning the quasi-harmonic ratios of the
lines. For 4U 0115+63, the observed line ratios (En : Ecyc) seem to deviate from the
predictions of Eq. (3.2). These deviations were ascribed toa change of the fundamen-
tal line position alone, as the higher harmonics still obey aquasi-linear spacing. A
possible explanation for line ratio changes is the scenarioof a magnetic field which
varies significantly within the line-forming region (compare section 5.3.2, and see
Nishimura, 2005). Furthermore, phase resolved spectroscopy reveals a significant
change of the line-energies with phase, indicating magnetic field changes of 20 %
during one period.

Vela X-1.

The close high-mass X-ray binary Vela X-1 is a typical example of a wind accretor.
It consists of a1.8M⊙ neutron star and a23M⊙ B0.5Ib supergiant, HD 77581 with
an orbital separation of only 1.7 neutron star radii and an orbital period of∼ 9 days
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(van Kerkwijk et al., 1995). This small separation of the twobinary partners implies
the exposure of the neutron star to a very strong stellar windwith a mass-loss rate
estimated as4 ·10−5M⊙yr−1 (Nagase et al., 1986). Vela X-1 has an X-ray luminosity
of 4 · 1036ergs s−1, which is a typical value for an X-ray pulsar. Vela X-1 shows high
variability in the flux as flares (Staubert et al., 2004; Kreykenbohm et al., 2006) and
intense outbursts (Krivonos et al., 2003). Changes in the luminosity are believed
to result either from absorption by clumps of matter around the neutron star, or by
a change in the mass accretion rate itself. Observations of the system are used to
further probe the circumstellar matter structure (Watanabe et al., 2006). The pulsar
spins with a period of about283 s. The spectrum of Vela X-1 exhibits two CRSFs at
25 and55 keV. Also for this source, the existence of the fundamental line at25 keV
was a matter of debate. Several studies claiming just one55 keV line (e.g. Kendziorra
et al., 1992; Orlandini et al., 1998a; La Barbera et al., 2003) or in favor of two lines
(e.g. Mihara, 1995; Kretschmar et al., 1997; Kreykenbohm etal., 2002) have been
published. Recent analyses ofINTEGRAL data strengthens the presence of two lines
at about23–27 and53 keV (Schanne et al., 2007, P. Kretschmar, priv. com.). A
fundamental line at25 keV would imply a surface magnetic field of2.7 · 1012 Gauss
(z = 0.3).

4U 1907+09.

4U 1907+09 is a wind-accreting HMXB system (Giacconi et al., 1971b; Fritz et al.,
2006), containing a neutron star of spin period∼ 440 s in an eccentric orbit ofPorb =
8.4 d (in’t Zand et al., 1998) around a type O8-O9 star (Cox, Kaper& Mokiem, 2005).
Initial speculations about a possible Be companion (Makishima et al., 1984; Cook &
Page, 1987) were ruled out by distance measurements exceeding by far the< 1.5 kpc
restriction required for a Be classification of this source (Fritz et al., 2006). A new
lower limit of its distance was set recently as5 kpc by Cox, Kaper & Mokiem (2005),
yielding a lower limit on its X-ray luminosity above1 keV of L = 2 · 1036 ergs s−1

(in’t Zand et al., 1998). A mass loss rate ofṀ ∼ 7 · 10−6M⊙ yr−1 was estimated for
the stellar wind of the companion (Cox, Kaper & Mokiem, 2005;van Kerkwijk, van
Oijen & van den Heuvel, 1989). Long-term studies of 4U 1907+09 have revealed a
torque reversal from a spin-up to a spin-down trend of this system (Fritz et al., 2006).
4U 1907+09 is one of the sources where multiple cyclotron lines have been observed:
Two CRSFs were detected for this source at19 and39 keV (Mihara, 1995; Cusumano
et al., 1998) byGinga andBeppoSAX, and confirmed byINTEGRAL (Fritz et al.,
2006).
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Cen X-3.

Cen X-3, the first accreting X-ray pulsar ever discovered (Giacconi et al., 1971a;
Schreier et al., 1972), is a high-mass X-ray binary with the O6-O8 supergiant com-
panion V779 Cen (Hutchings et al., 1979). The pulsar has a spin period ofP = 4.8 s
and an orbital period of2.1 d (Burderi et al., 2001; Nagase, 1989). Eclipses of 20 % of
the orbital period are seen in the X-ray light curve (Burderiet al., 2001). The system’s
luminosity is estimated as1037–1038 ergs s−1 (Nagase et al., 1992; White, Swank &
Holt, 1983), assuming a distance of8 kpc (Krzeminski, 1974). A cyclotron line was
detected at∼30 keV (Santangelo et al., 1998) which is highly variable with the spin
phase, varying from∼27 to ∼40 keV (Burderi et al., 2001; Suchy et al., 2007). Also,
the cyclotron line energy was observed to have a strong asymmetric dependence on
the pulse shape (Suchy et al., 2007; Burderi et al., 2001), with its maximum in the
rising pulse and decreasing along the pulse phase. Also, other line parameters like
the line width strongly vary with the pulse phase (Suchy et al., 2007).

6.3 Calculation of synthetic spectra

For the preparation of synthetic spectra for these sources,the input parameters for the
Green’s functions convolution model, i.e. the magnetic field strength,B, the parallel
electron temperaturekTe, the incident angle of the emerging photonsθ (µ = cos θ),
the basic geometry, and the gravitational redshift at the height of the line-forming
region,z, are required. The redshift is necessary to transfer the observed properties
to the initial neutron star system for which the Green’s functions were simulated. Un-
fortunately, there is no straightforward way to assess thiscomplete set of parameters
from observational results obtained from phenomenological data modeling. Some
general assumptions have to be made. To begin with, the magnetic field strength, the
value ofz, and the observed fundamental line energyEcyc are correlated. The gravi-
tational redshift is by no means well determined for X-ray pulsars. In order to yield
comparable results for all sources,z will be assumed to have a value of0.3, represen-
tative for typical neutron star parameters, in the following. The magnetic fieldB may
then be approximated by applying the 12-B-12 rule (3.1) to the energy of the fun-
damental CRSF, as determined from phenomenological fits of eligible spectral data.
A more precise determination ofB from observational studies using the relativistic
formula (3.2) is not considered advantageous for the following reasons: first of all,
the choice of one observational data set for each source introduces some randomness
to Ecyc andB, as these are known to vary for many different reasons for onesource.
Even if the synthetic spectra were meant to be tuned to this one eligible observational
data set, the cyclotron line energy obtained phenomenologically identifies not more
than the peak energy of a Gaussian line fitted to a more complexline shape. It is
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important to stress that it is not a precise measurement of the physicalEcyc. Also,
the lacking knowledge about the viewing geometryµ = cos θ renders the applica-
tion of equation (3.2) problematic. It is in principle possible to assess the range of
µ from measuring the line-ratios of the CRSFs, however, only under the simplifying
assumption of (a) a homogeneousB-field within the line-forming region, (b) an ideal
phase resolved spectrum and (c) assuming that the observed radiation has originated
from just one magnetic pole. This is a rather idealized scenario, in particular taking
studies into account which have shown that for some sources varyingB-fields are re-
quired to explain the observed line ratios, and that a line ratio change in this scenario
can be much more significant than the line ratio dependence onthe angle. Further-
more, even in phase-resolved spectroscopy, not only possible two-pole contributions
but also the size of the phase bins naturally introduces a mixing of photons emerging
from different angles with respect to the magnetic field. A similar problem arises for
the determination of the plasma temperature. Although desirable, there is no way so
far to obtain the plasma temperature unambiguously from thecontinuum parameters,
which, like the line parameters, are of phenomenological nature. The most straightfor-
ward approach would be the estimation of the plasma temperature from the effects of
Doppler broadening on the line widths. Again, this is complicated by the relativistic
angle dependency. In addition, the natural line width has tobe considered. Higher har-
monic features are also broadened for the case of variableB-fields. The geometrical
setting is another uncertainty of the picture. Theoreticalstudies promoting either the
fan or the pencil beam scenario or a mixture of both scenarioshave been suggested
for several sources.

For all these (and more) reasons, the following simple ansatz was chosen as a first
approach to assess the wealth of observational results: Foreach source, one observa-
tional study was chosen, in order to obtain the (order of the)fundamental line energy
and to get a typical continuum spectral shape from the corresponding phenomenolog-
ical best-fit parameters. The magnetic field strengths were estimated from eq. (3.1),
and forz = 0.3. The parallel electron temperatures were estimated similar to rela-
tion (5.3), and to previous studies (Araya & Harding, 1999) askTe = Ecyc/4. Table
6.2 lists the parameter details assumed for the eligible individual observational re-
sults for different sources along with the references to therelevant studies. Having
chosen three out of five input parameters (B, kTe, z = 0.3), a set of 24 spectra re-
solved into eight angular bins and assuming three differentgeometries was produced
for each individual source by convolution of the corresponding phenomenological
continuum spectrum. For the chosen source sample, the complete set of spectra is de-
picted in Figs. 6.1 to 6.5. Two interesting points catch the eye: first, emission wings
are indeed present in some cases. In chapter 5, a rather hard continuum was assumed
(Efold = 40 keV) in order to study the effect of emission wings and photonspawn-
ing. Figs. 6.1–6.7 extend the theoretical prediction of emission wings in hard spectra
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also to more realistic X-ray pulsar spectra. Second, in between the line features, the
continuum shape is always recovered, which so far cannot be clearly predicted from
observational analysis of cyclotron line sources (A. Santangelo, priv. com.). Also,
one notes that the position of the fundamental line in the synthetic spectra, calculated
for a magnetic field using Eq. (3.2) (for which the magnetic field was approximated
from observational results asB12 ∼ Ecyc/11.6 keV), is shifted with respect to the ob-
served centroid energy at all angles. The wiggles at higher energies, e.g., in Fig. 6.7,
are of statistical nature.

6.4 Observability of the predicted line features

The synthetic source spectra predict features which shouldbe present in the intrinsic
spectra of real sources. A different question, however, is the one of the observability
of those features in observed source data, due to restrictions, e.g., in the energy reso-
lution and error accuracy of the instruments. This questionhad already been posed by
Isenberg, Lamb & Wang (1998b) considering the prediction ofsignificant emission
wings for some geometries at intermediate optical depths. However, no such related
study has emerged up to date.

To assess the observability of the predicted shapes of cyclotron resonance scatter-
ing features, a source spectrum, folded with a real instrumental response function,
was simulated. This analysis was realized using the spectral fitting packageXSPEC
version 11 (Arnaud, 1996). Fig. 6.8 shows the simulated spectrum for a source which
was assigned an ideal spectrum of the form of thenpex model, a negative and pos-
itive power law with a common high-energy cutoff (see section 2.5), folded with
the Green’s functions for a chosen set of parameters,B12 = 3.0, kTe = 5.5 keV,
cos θ = 0.5, τT = 5 · 10−4, z = 0.3, and for slab 1-1 geometry. The flux is appropri-
ate for typical HMXB observations. For an assumed observation time of20 ks, this
spectrum was folded with theRXTE HEXTE response, and background was added.
Next, this fake spectrum was fitted with anpex component for the continuum. Two
Gaussian absorption lines (Coburn et al., 2002) were then included to model the sim-
ulated CRSFs. Fig. 6.8 shows the fake data and the model resulting from this fit of
continuum and lines, along with the corresponding residuals, compared to the resid-
uals from a fit of only the continuum component. The residualsfrom the continuum
shape represent the simulated line shapes as the same continuum component was used
for the simulated and for the model spectrum. Fitting the first two lines with Gaus-
sian absorption lines, the emission wings stay very pronounced in the residuals. For
the simulated spectrum, the resonance energy of the fundamental CRSF is calculated
from equation (3.2) asEobs

1 = 26.1 keV. The Gaussian fit of the fundamental line
gives a centroid energy of24.77 ± 0.03 keV instead. This results indicates that the
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Figure 6.1: Synthetic spectra for Her X-1. Line features areshown for three geometries and
eight angular bins (same as in Fig.5.1). The optical depth and redshift are prescribed asτT =
1 · 10−3 andz = 0.3. Continuum parameters and the fundamental line energy are taken from
Gruber et al. (2001). The dashed line marks the observational value ofEcyc used to calculate
B12 ∼ Ecyc/11.6.
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Figure 6.2: Synthetic spectra for V0332+53. The representation is the same as for Fig. 6.1.
Continuum parameters and the fundamental line energy are taken from Pottschmidt et al.
(2005).
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Figure 6.3: Synthetic spectra for A0535+26. The representation is the same as for Fig. 6.1.
Continuum parameters and the fundamental line energy are taken from Caballero et al. (2007).
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Figure 6.4: Synthetic spectra for 4U 0115+63. The representation is the same as for Fig. 6.1.
Continuum parameters and the fundamental line energy are taken from Santangelo et al. (1999).
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Figure 6.5: Synthetic spectra for Vela X-1. The representation is the same as for Fig. 6.1.
Continuum parameters and the fundamental line energy are taken from Kreykenbohm et al.
(2002).
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Figure 6.6: Synthetic spectra for 4U 1907+09. The representation is the same as for Fig. 6.1.
Continuum parameters and the fundamental line energy are adapted from Fritz et al. (2006).
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Figure 6.7: Synthetic spectra for Cen X-3. The representation is the same as for Fig. 6.1.
Continuum parameters and the fundamental line energy are adapted from Suchy et al. (2007).
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Table 6.2: Parameters used for adapting synthetic spectra to different sources. See Figs. 6.1 to
6.7.

object Ecyc [keV] continuum Ref.
Her X-1 41 fdcut(powerlaw), Eq. (2.15) Gruber et al. (2001)

α = 0.84 RXTE
Ecut = 19.6 keV
Efold = 10.8 keV

V0332+53 26 fdcut(powerlaw) Pottschmidt et al. (2005)
Γ = 0.42 RXTE
Ecut = 17.2 keV
Efold = 8 keV

A0535+26 46 cutoffpl, Eq. (2.14) Caballero et al. (2007)
α = 0.51 RXTE
Efold = 17.3 keV

4U 0115+63 10.4 npex, Eq. (2.17) Nakajima et al. (2006)
Γ1 = 1.27 RXTE
Γ2 = 2.
Efold = 5.76 keV
f = 0.016

Vela X-1 23 npex Kreykenbohm et al. (2002)
Γ1 = 0.58 RXTE
Γ2 = 2.
Efold = 6. keV
f = 5.5 · 10−3

4U 1907+09 18.9 fdcut(powerlaw) Fritz et al. (2006)
Γ = 1.67 INTEGRAL
Ecut = 30.0 keV
Efold = 7.0 keV

Cen X-3 30.3 fdcut(powerlaw) Suchy et al. (2007)
Γ = 0.93 RXTE
Ecut = 13.2 keV
Efold = 6.9 keV

asymmetric line shapes could introduce a systematic uncertainty in the line energy
when modeling observed data with Gaussian or Lorentzian shapes. Also, the lines
seem to be very prominent even for low values of the continuumoptical depth.
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Figure 6.8: HEXTE simulations. Upper panel: A simulated spectrum ofnpex continuum
shape (2.17), folded with the simulated Green’s functions (slab 1-1 geometry,B12 = 3.0,
kTe = 5.5 keV, τT = 5 · 10−4, cos θ = 0.5, z = 0.3, α1 = 1.5, α2 = 1.5, Efold = 6.16 keV,
A = 4.6 · 10−3, f = 1.17) is fitted with anpex continuum, multiplied with two Gaussians
(gauabs). Upper panel: data and fitted model. Middle panel: residuals for the simulated
spectrum fitted with anpex continuum. Bottom panel: residuals for the continuum and lines fit
shown in the upper panel. The strong emission wings of the fundamental line in the simulated
spectrum are clearly observable in the residuals.

6.5 cyclomc – anXSPECmodel for fitting cyclotron lines

A convolution and interpolation model for fitting CRSFs on the basis of the Monte
Carlo simulation results has been developed and was implemented as a local model
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for the spectral analysis fitting software packageXSPEC(Arnaud, 1996). This choice
of implementation facilitates the applicability of the model for the general observer.
Other user-supplied models, based on theoretical studies,have been accepted very
well in the past by the scientific community3. The technical details of the imple-
mentation of this model, calledcyclomc, are described in appendix A. This model
allows for the first time a physical approach to the analysis of cyclotron resonance
scattering features. Not only the magnetic field strength and the temperature, but
also the optical depth and the ratios of line positions, linewidths and line depths are
determined by the underlying physical picture. The qualityof the fit hence permits
conclusions on the accuracy of this picture. As shown in Sect. 5.3, the line ratios
could be a sensible indicator for instance for magnetic fieldvariations along the path
of photon propagation. The model is obviously restricted tothe physical assump-
tions and the parameter input chosen for the Monte Carlo simulations. During fitting,
it interpolates the results on the assumed input parameter grid which has been de-
scribed in Sect. 4.4. It also requires the independent choice of a continuum spectrum
to be folded. Lacking theoretical model applications for X-ray pulsar continua, phe-
nomenological models supplied by theXSPECsoftware are used at present (compare
chapter 1). Sincecyclomc is a convolution model, self-consistent line shapes are
obtained for any given continuum. In this section, the modeldevelopment from first
stages to the current status ofcyclomc is described. Spectral fits ofcyclomc to a
first sample of source data from different instruments is shown, and the model results
are analyzed.

6.5.1 The first candidate – ‘a long way down’: V0332+53

For the example of one data set, obtained from phase-averaged spectroscopy ofIN-
TEGRAL IBIS data (I. Kreykenbohm, priv. com.) during a 2005 observationof
V0332+53, the single steps in the process of the model design are followed-up chrono-
logically. V0332+53 is one of the few cyclotron line sources where more than onecy-
clotron line is detected at a high significance, which renders it a well-suited candidate
for testing both the modeling of the complex fundamental line and the simultaneous
modeling of several lines. Figure 6.9 shows early-stage attempts to fit this data set
with the first attempts toXSPEC implementations of the simulation results (Schön-
herr et al., 2005, 2007a). At that point, only low temperatures within the range of2.5
to 3.5 keV had been simulated, and the geometrical constraints only included inter-
nally illuminated plasmas (cylinder and slab 1-1). Apart from this, there is another
important difference between the upper and lower plot: the type of XSPEC model

3examples, among others, being theeqpair thermal and non-thermal continuum model for X-ray
binaries (Coppi, 2000), the relativistic accretion disk line modelsdiskline (Fabian et al., 1989, non-
rotating BHs) andlaor (Laor, 1991, rotating BHs), and thetbabs model for X-ray absorption by the
interstellar medium (Wilms, Allen & McCray, 2000).
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Figure 6.9: Early-stage fits of a user-builtXSPECtable model (top) and a local analytic model
(bottom) to the line features of a phase-averaged spectrum of V0332+53 from INTEGRAL
IBIS observations. Between slab 1-1 and cylinder geometry the best fit was obtained for cylin-
der geometry. The data and fitted model (large panels) along with the∆χ residuals (top) or the
model-to-data ratio (bottom) are shown (Schönherr et al., 2005, 2007a).

used. The first attempt to implement the model was done in formof a table model.
As outlined in appendix A, the usage of a table model does not account rightly for the
dependence of the line features on the continuum, and invokes artificial broadening of
the lines during the interpolation of the tabulated spectra. This issue initially triggered
the major revision of the simulation approach to calculate Green’s functions instead



106 Chapter 6: Comparison with observations

of full spectra, in order to develop a self-consistent, local XSPECmodel function of
formally analytic type in a second step (see appendix A). Theartificial line broad-
ening from the table model fits, however, was rather convenient for the fit quality:
the observed lines were broader than the ones which could be modeled in the scope
of the simulated spectra, indicating the need of higher temperatures: V0332+53 (and
nearly all other cyclotron line sources) is expected to require temperatures of the order
of ∼ Ecyc/4 & 6 keV. Consequently, the second attempt to fit the same data set, which
was performed with an early-stage implementation of the local modelcyclomc, for-
mally yielded a considerably worse fit quality than the one obtained with the table
model approach before. The discrepancy between the modeledtemperatures and the
expected ones was tried to take account of by the inclusion ofagsmooth component
of 3 keV to effectively broaden the lines. Still, the reducedχ2

red = 24 was absolutely
unacceptable. A ‘long way down’ began, involving numerous trial-and-error pro-
cesses in the model design and testing. As expected, an important step to progress
was the relaxation of the initial restriction to low temperatures after a major bug re-
moval in the Monte Carlo code. More realistic temperatures of up to 20 keV have
been simulated since then. The time-consuming simulationswere run in parallel to
further enlarge the parameter space also with respect to themagnetic field strength.
Also, the initial restriction to include onlyB, Te andµ as variable parameters was
extended to an interpolation scheme including also the optical depthτT. Incremen-
tal refinement of the basic interpolation and convolution routine was realized. The
analysis of the observability of emission wings triggered the implementation of the
bottom-illuminated slab geometry, which also turned out tobe an important step for
the model improvement.

With the current status of the model reasonable fits of the same data set are achieved,
which can be used to assess the physical parameters. Fig. 6.10 shows fits of the first
two CRSFs in theINTEGRAL data of V0332+53. The data is modeled with a power
law with a high-energy cutoff (eq. 2.16,highecut), folded with the CRSF Green’s
functions (cyclomc) for all geometries, and assuming 5% systematics for theIBIS
data. All geometries yielded a similar fit quality and similar ∆χ2 residuals; the best
fit was obtained for cylinder geometry, yielding aχ2

red = 4.1. Although some residual
features remain for all geometries, those fits serve as a proof of concept that CRSFs of
X-ray pulsars can be assessed for the first time with a physical model. The obtained
parameters are shown for all geometries in Fig. 6.12 (black symbols). Analysis of the
fit parameters and the residuals allows for conclusions on the physics of line forma-
tion beyond the simplified simulation setup which was taken in this first attempt to
model CRSFs.

As mentioned above (section 6.4), the largest discrepancy between numerically
predicted and observational line features seems to be the line depth. To assess this
issue, a scenario or partial covering was investigated. Partial coverage of radation
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Figure 6.10: Fit of the Green’s functions CRSF modelcyclomc for all geometries to the
line features of a phase-averaged spectrum of V0332+53 obtained fromINTEGRAL IBIS
observations. (a) The data and fitted model along with (b) the∆χ residuals for a continuum fit,
and the residuals for continuum and line fits assuming (c) cylinder, (d) slab 1-1, and (e) slab 1-0
geometry are shown. The continuum shape is taken as a power law with a high-energy rolloff
(2.16). The best fit was obtained for cylinder geometry (χ2

red = 4.1).

means that part of the incident radiation from a source is ‘covered’ into the direction
of the observer (e.g., by absorption in an intermediate layer of matter). In the present
context of cyclotron line formation, only part of the continuum seed photons are as-
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Figure 6.11: Same as Fig. 6.10 but including a scenario of partial covering. The best fit was
obtained for slab 1-0 geometry (χ2

red = 1.9).

sumed to pass the line-forming region and to be reprocessed by scattering events.
This assumption effectively reduces the observed line depths. Repeating the fits with
this new model approach (A1 · cyclomc · highecut + A2· highecut), the fit
quality was significantly improved; the best fit was obtainedfor slab 1-0 geometry,
yielding aχ2

red = 1.9. The results of the fit including the partial covering scenario are
shown in Fig. 6.11. The parameters obtained for slab 1-1 and slab 1-0 geometry are
rather similar, while the cylinder geometry yields comparably smaller angles, lower
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Figure 6.12: Fit parameters from modeling two CRSFs in V0332+53 data, corresponding to
the residuals shown in Figs. 6.10 and 6.11, with (red symbolsand error bars) and without
(black symbols and error bars) the consideration of partialcovering. The optical depth,τT is
least constrained because of the discrepancy in the simulated and observed line depths. The
dashed lines are included to guide the eye.

temperatures and lower magnetic field strengths. It was shown in chapter 5 that the
variation of the line shapes with the angle is different for slab and cylinder geome-
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Table 6.3: Best fit parameters for V0332+53. Data and model are shown in Fig. 6.11. Un-
certainties are at the 90% confidence level for one interesting parameter;χ2 = 27.57 for 14
d.o.f.

name [unit] fit value
B12 [B/(1012G)] 3.19+0.02

−0.03

kTe [keV] 9.99+0.15
−1.0

τT [10−3] 3.0+0
−0.4

cos θ 0.06+0.03
−0

z 0.3 frozen
α 1.00+0.04

−0.09

Ecut [keV] 14.4+7.0
−7.7

Efold [keV] 8.1+0.2
−0.08

A1 1.70.2
−0.09

A2 1.4+0.08
−0.09

tries and that both small angles and high temperatures can broaden the lines. The
best-fit parameters are given in table 6.3. A magnetic field strength of3.19 · 1012 G
was obtained. The fundamental cyclotron line energyEcyc was calculated from equa-
tion (3.2) as27.45 keV, the second line position atE2 = 53.22 keV, in agreement
with reported results. The obtained temperature,kTe = 9.99 keV exceeds the value
of Ecyc/4. = 6.86 keV by a few keV. Fit parameters ofcyclomc for all geome-
tries with and without including the partial covering scenario are shown in Fig. 6.12.
While the magnetic field and the average viewing angle stay rather stable for fits with
and without partial covering, the temperature and the optical depth jump to higher
values, withτT even pegging at its lower and upper boundaries. Both the values for
the plasma temperature (∼ 10 keV) and for the optical depth (& 10−3) seem more
realistic for the fits including partial covering (Fig. 6.11) than the values obtained
from the fits without reducing the line depths (Fig. 6.10). Also the fact that the best
fit was obtained for slab 1-0 geometry is conform with physical expectations, as it is
the geometry with the least emission wings among the modeledones, and as it was
shown before that strong emission wings cannot be present inreal source data.

6.5.2 Going further – Do we observe a correlation of the temperature and the cy-
clotron resonance energy?

Having achieved a model scenario to fit observational data for one source, the natural
question to address next is its general applicability to more sources and the further
interpretation of the obtained physical parameters. Having discussed different geo-
metrical settings, and the issue of line depths previously,this section now focuses on
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Figure 6.13: Fit of the Green’s functions CRSF modelcyclomc for slab 1-0 geometry and
partial covering to the line features of a phase-averaged spectrum of 4U 1907+09 obtained
from Suzakuobservations. The data and fitted model (upper panel) along with ∆χ residuals
are shown. The residuals are depicted for the continuum fit (middle panel) and the continuum
and line fit (bottom panel). The continuum shape is taken as a power law with a Fermi-Dirac
cutoff (eq. 2.15,fdcut). For the best fit parameters (χ2

red = 0.97), see Table 6.4.
.

modeling the fundamental line. In particular, a correlation of its width and its position
in terms of the temperature versus the cyclotron resonance energy is assessed.

Two more test sources, Cen X-3 and 4U 1907+09, have been fitted withcyclomc.
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To exclude instrumental bias, the data sample was chosen from two different instru-
ments,RXTE andSuzaku, to complement theINTEGRAL results for V0332+53.
Results are shown forRXTE data of Cen X-3 andSuzakudata of 4U 1907+09. Both
sources are fit very well with the slab 1-0 and partial covering model setting which
gave the best-fit of the V0332+53 data.

Fig. 6.13 shows spectral data (K. Pottschmidt, priv. com) and the best fits to the
phase-averagedSuzakuspectrum of 4U 1907+09, using a power law with a Fermi-
Dirac cutoff (Eq. 2.15) as the continuum component. The bestfit, yielding aχ2

red =
0.97, gave a resonance energy calculated atEcyc = 18.7 keV from Eq. (3.2) and
would predict a second harmonic at38.6 keV. The temperaturekTe = 4.91 keV is
very similar toEcyc/4. = 4.83 keV. The best fit parameters are given in table 6.4.
A surface magnetic field of2.13 · 1012 G was obtained for 4U 1907+09 under the
assumption of a redshiftz = 0.3.

Fig. 6.14 shows spectral data (S. Suchy, priv. com.) and the best fit (χ2
red = 1.4)

from anRXTE observation of Cen X-3. A magnetic field strength ofB = 3.45 ·
1012 G was obtained from thecyclomc parameters. The energy of the resonance
features was calculated as a function ofB andµ asEcyc = 29.94 keV. The modeled
temperature,kTe = 6.97 keV is relatively similar toEcyc/4 = 7.5 keV.

All results forEcyc versuskTe from the best fits of V0332+53, 4U 1907+09 and
Cen X-3 are illustrated in Fig. 6.15. They strengthen the suggestion of a correlation of
the formkTe = Ecyc/4 (see chapter 4). Observationally, a line to width correlation of
the cyclotron lines was proposed (see section 3.3 and Coburnet al., 2002). Therefore
it is interesting to note that the temperature versus resonance cyclotron energy corre-
lation is obtained in spite of different best-fit viewing angles, which also influence the
line width, apart from Doppler-broadening due to the temperature.
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Figure 6.14: Fit of the Green’s functions CRSF modelcyclomc for slab 1-0 geometry and
partial covering to the line features of a phase-averaged spectrum of Cen X-3 obtained from
RXTE HEXTE observations. The data and fitted model (upper panel) along with ∆χ residuals
are shown. The residuals are depicted for the continuum fit (middle panel) and the continuum
and line fit (bottom panel). The continuum shape is taken as a power law with a Fermi-Dirac
cutoff (eq. 2.15,fdcut). For the best fit parameters (χ2

red = 1.4), see Table 6.5.
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Table 6.4: Best fit parameters for 4U 1907+09. Data and model are shown in Fig. 6.13. Un-
certainties are at the 90% confidence level for one interesting parameter;χ2 = 44.55 for 56
d.o.f.

name [unit] fit value
B12 [B/(1012G)] 2.13+0.2

−0.13

kTe [keV] 4.91+1.31
−0.54

τT [10−3] 3.0+0
−3.

cos θ 0.56+0.16
−0.06

z 0.3 frozen
α 1.82+0.07

−0.10

Ecut [keV] 10.08+3.5
−3.3

Efold [keV] 13.74+0.78
−0.72

A1 0.060.009
−0.008

A2 0.190.23
−0.007

Table 6.5: Best fit parameters for Cen X-3. Data and model shown in Fig. 6.14. Uncertainties
are at the 90% confidence level for one interesting parameter; χ2 = 54.7 for 40 d.o.f.

name [unit] fit value
B12 [B/(1012G)] 3.45+0.04

−0.03

kTe [keV] 6.97+0.29
−0.31

τT [10−3] 2.6+0.4
−0.4

cos θ 0.93+0.007
−0.01

z 0.3 frozen
α 1.08+0.05

−0.04

Ecut [keV] 7.26+0.09
−0.08

Efold [keV] 7.14+0.03
−7.1

A1 0.38+0.02
−0.02

A2 0.93+0.01
−0.01
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Figure 6.15: Plot of the plasma temperature,Te versus the cyclotron resonance energy,Ecyc

for the best-fit parameters obtained for V0332+53, 4U 1907+09 and Cen X-3. The relation
Ecyc = 0.27 · Ecyc (Lamb, Wang & Wasserman, 1990) is plotted as a dash-dotted line.



CHAPTER 7

Summary and conclusions

Summary

An in-depth study of the formation of cyclotron resonance scattering features in the
spectra of highly magnetized accreting neutron stars has been performed. Theoretical
predictions were drawn from Monte Carlo simulations and thephysical model as-
sumptions were tested on real observational data. The diagnostic potential of the mor-
phology of cyclotron lines was investigated to assess the underlying physical param-
eters. The influence of the magnetic field strength, the geometry of the line-forming
region, the plasma temperature, the angle of radiation and the seed continuum spectral
shape onto the shapes of cyclotron resonance scattering features was discussed.

Continuing the modeling progress from previous work (Araya& Harding, 1996,
1999; Araya-Góchez & Harding, 2000) several key results of those studies were con-
firmed. Examples are Figs. 5.1–5.3, where the optical depth progression is discussed,
matching these illustrations to Figs. 4–6 from Araya & Harding (1999), or Fig. 5.5 for
the study of angular redistribution similar to the illustrations used in Araya-Góchez &
Harding (2000). With respect to their previous code, the revised Monte Carlo model
is different in the following details: most importantly, itis not restricted to the study
of hard continua. Instead, a Green’s functions approach is chosen to gain indepen-
dence from a priori chosen forms of incident radiation. The geometrical constraints
on the line-forming region were relaxed to include the case of a bottom-illuminated
slab as it has been studied by, e.g., Isenberg, Lamb & Wang (1998b) and Nishimura
(2005). Moreover, the higher resolution in angle and energybinning permits to illu-
minate the complex form of the fundamental feature in detail. The time-consuming
calculations on a huge parameter grid allow for a systematiccomparison of our results
to observational data.

Several results from other authors obtained with differentnumerical approaches
were confirmed. In Fig. 5.5 (Chapter 5), the angular redistribution of the photons for

116
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cylinder and slab geometry and for two different values of the plasma optical depth
was shown. The percentage of redistributed photons per (cos θ)-bin increases with
the emergent angle of radiation,θ, for cylinder and decreases withθ for slab geom-
etry, as shown in a similar study of an internally irradiatedline-forming region by
Araya-Góchez & Harding (2000). For a higher optical depth and for cylinder geom-
etry, however, the photon distribution flattens, similar toresults shown by Isenberg,
Lamb & Wang (1998b) for the comparable case of1-1 slab geometry with the slab
normal perpendicular to the magnetic field vector (see chapter 3). The study of the
variation of the cyclotron line ratios for a non-uniform magnetic field picks up an idea
from Nishimura (2005), who investigated this case for aB-field which varies linearly
with height, slab geometry, and for similar optical depths.The trend of an increase
of the line ratios with a decreasing magnetic field and a decrease of the line ratios
with an increasing magnetic field within a line-forming region of slab 1-0 geometry
(Fig. 5.11) was confirmed.

In chapter 5, theoretical predictions of the model were reported independently from
observational data analysis. Except for the study of the line ratios, outlined above, all
analysis assumed a uniform magnetic field in the line-forming region. A key result of
this work is the study of the variation of the line parametersof the fundamental feature
with the magnetic field (Fig. 5.10), the optical depth and theangle (Figs. 5.1–5.3, 5.5,
and 5.6), and the temperature (Fig. 5.13). No significant variation of the fundamental
line energy,Ecyc, with angle is seen, and thus this simple scenario can be excluded
as an explanation for observed phase dependent variations of Ecyc. Omitting the
emission wings, the depth of the fundamental with respect tothe continuum flux is
rather stable over the emergent angle, whereas the line width varies significantly with
θ for cylinder and slab geometry. For both geometries the lines become wider towards
highercos θ; for slab geometry an initial decrease forcos θ < 0.25 is observed.

The variation of the line features for different magnetic field strengths and different
temperatures was investigated. Obviously, the positions of the CRSFs are directly
linked to theB-field strength (see Eqs. 3.1 and 3.2). However, Fig. 5.10 also shows
that changes withB as to the line shapes are rather small. On the other hand, the line
shapes vary strongly with increasing temperature, where more asymmetric, Doppler-
broadened lines arise for higher plasma temperatures.

Furthermore, variations of the line shapes with the incident continuum shape were
studied. In particular, the shape of the fundamental line changes with the continuum
shape, an effect which can be understood from photon redistribution, mainly due to
photon spawning in hard continua. As a result, for hard spectra for instance the emis-
sion wings are much more pronounced than for softer continua. This dependence of
the CRSFs on the continuum in principle also allows for conclusions on the contin-
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uum shape when modeling cyclotron resonance scattering features.

This work aims at meeting the interests of observers in analyzing cyclotron lines
beyond pure theoretical predictions. A considerable part of the work was therefore
dedicated to the comparison of the numerical to observational results, and to the de-
velopment and design of a model applicable to real observational data. The resulting
XSPEC implementation, namedcyclomc, is a self-consistent model for simultane-
ous fits of up to four cyclotron lines.

Before actually fitting observational data, synthetic spectra were produced for a
sample of sources, based on phenomenological observational results. The difficulties
in the interpretation of those parameters were outlined. Inparticular, the question of
the observability of the theoretically predicted line shapes was discussed in section
6.4. At the early stages of cyclotron line observations it was not clear whether emis-
sion features – if they were present in the data – would be observed or just smeared
out by the detectors. For instance Isenberg, Lamb & Wang (1998b) and Nishimura
(2005) observed that the scenario of a radiation source at the bottom of a slab as one
possible geometry for the line forming region leads to less emission features in the
spectra than an internally irradiated plasma. It was shown that such strong emission
features as predicted by the model scenario should indeed beobservable by the instru-
ments on todays’ observatories but are not seen in typical X-ray pulsar spectra. The
geometry of an internally irradiated plasma is therefore concluded to be no completely
valid physical assumption. Those results showed the importance of implementation
of the slab 1-0 geometry for the Monte Carlo simulations, as this geometry is known
to exhibit much less emission shoulders near the lines.

Testingcyclomc on observational data shows that CRSFs can indeed be assessed
in real source data with a physical model. V0332+53 was chosen as a first candidate
to test the model as it is one of the sources which exhibits several CRSFs with the
fundamental one at a moderate energy ofEcyc ∼ 27 keV. Fits of the first two lines as
seen inINTEGRAL data were analyzed. This is the first time a simultaneous fit of
several CRSFs with a realistic, physical model has been attempted.

Fitting the line shapes for V0332+53 data withcyclomc, however, pointed out
a general problem of the current model approach: The depthscyclomc yields for
rather lowτT are very deep compared to the observations. Fits for all three geometries
could therefore be realized only for rather highχ2

red ∼ 4. Within those errors, all fits
gave comparable results for the magnetic field, the temperature and the optical depth.
Different average viewing angles are predicted by the slab or cylindrical geometries,
which is expected from the analysis of the variation of the lines with the angle, which
was performed in chapter 5. The cylinder geometry yielded the best fit of the data.
However, the geometry and the physical parameters could notbe constrained unam-
biguously without finding a way to reduce the average line depths. Magnetic field
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gradients in an accretion column might greatly flatten the line shapes (O. Nishimura,
private communication). Also, one could imagine a scenarioof partial covering of the
emergent radiation, where only part of the radiation is assumed to pass the region of
line formation and is reprocessed withcyclomc. Applying this partial covering sce-
nario significantly improved the fits. The best fit was found for the 1-0 slab geometry,
yielding aχ2

red = 1.9.
The analysis of observational data was extended to fitting the fundamental line for

two more sources, yielding best fits withχ2
red = 1.4 andχ2

red = 0.97. The obtained
values for the magnetic field strength of the three modeled sources, V0332+53, 4U
1907+09, and Cen X-3 are in general agreement with results from previous, phe-
nomenological fits. It is important to stress that these values are based directly on a
physical model assumption, with the only uncertainty givenby the (fixed) redshift
and the errors of the fit. In contrast, magnetic field strengths inferred from phe-
nomenological modeling are calculated from the line centroids which can deviate
from the physical resonance energy,Ecyc. The obtained temperatures for all three
sources strengthen the assumption of a correlation betweenthe temperature and the
resonance energy,kTe = Ecyc/4. Again, the values of the temperatures are based
directly on physical assumptions, opposed to indirect attempts which have been made
to derive the temperature from the (phenomenologically obtained) line widths or from
the cutoff characteristics of the continuum.

Outlook

Modeling cyclotron lines is a highly intriguing task, and probably a lot of work will
be ongoing in this field of research in the future. While recent discussions of pro-
ton cyclotron lines in magnetars have been drawing renewed attention to this topic,
the electron cyclotron lines for accreting pulsars are still mysterious enough by them-
selves to demand further studies.

A better understanding of CRSFs will require further generalizations of simplified
model approaches like the CRSF model presented here. Angular anisotropy of the
continuum photon flux should be included into the discussion, possibly in connection
with the emerging theoretical results on the continuum formation (Becker & Wolff,
2007). The model approach taken could be easily generalizedto arbitrary angular
distributions by the calculation of our Green’s functions independently not only of
the continuum energy but also of the continuum angular distribution. Also, a combi-
nation of the theoretical investigations for X-ray pulsar continua and cyclotron line
features would be desirable. A bulk velocity component and velocity flow gradients
in the plasma might be necessary to account for the phase resolved variations of the
fundamental line energy. An internally irradiated plasma seems to be a too simplified
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approach; the consideration of the source photons to be injected at the bottom of the
slab (1-0 geometry) or according to a probably biased distribution of incident photon
production in a cylindrical plasma is possibly more realistic. Gravitational light bend-
ing should be assessed further as a possible mechanism to change the beam pattern
and to broaden and smoothen the line shapes due to two-pole contributions.

However, the probably most pressing issue to be investigated further is the reported
discrepancy in theoretical and observational line depths.More realisticB-field gradi-
ents could account for shallower lines. As the consideration of a scenario of partial
covering, which effectively reduces the line depths, significantly improves the fit qual-
ity of cyclomc to data, it follows that the consideration of non-constant magnetic
fields within the line-forming region could play a major rolein the process of better
modeling and understanding cyclotron lines. However, thismatter is difficult to judge
as long as no better constraints exist on the order of magnitude of the plasma density,
which is found in the literature at present to vary several orders of magnitude.

Systematic data analysis on the basis of a physical model like the one presented
here must be done in the future to further improve the understanding of the manifold
observational results. For instance, an extended analysisof parameter correlations
like the one predicted for the temperature and the resonanceenergy would be highly
interesting. The model presented here is foreseen to be madeavailable to the scien-
tific community after including a revised interpolation scheme to facilitate its usage
for data fitting. Modifications of the underlying physical scenario guided by system-
atic fits of observational data should help in further improving the comparison of the
model and real data.
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APPENDIX A

Model implementation in XSPEC

XSPECmodel types

There are two types of user-built models which may be included into theXSPEC
spectral fitting software (Arnaud, 1996):

• table models, and

• analytic models.

For the table model type (Arnaud, 1995) it suffices to supply aFITS table of a cer-
tain form, containing the user’s set of model spectra.XSPECintegrated interpolation
routines are used for the calculation of intermediate spectra when fitting the model to
data. The creator of the FITS table model can chose between linear or logarithmic
interpolation methods.

An analytic model inXSPECis supplied in form of aFortrancoded function. If the
model is an additive model, this function, for a given energygrid Ei, a given initial
number of photons per energy bin(N initial

E )j and a given set of model parameters,
returns the modeled number of photons per energy bin(N final

E )j . On the other hand, a
multiplicative model returns a factor(f final

E )j per energy bin.

cyclomc

cyclomc formally is implemented as an analyticXSPECmodel, although it is based
on a discrete set of Monte Carlo spectra which are stored in the form of FITS tables.
An implementation as a multiplicativeXSPEC table model, although most straight-
forward, was ruled out for two reasons: first, the line shapesare dependent on the
continuum. A multiplicative model, calculating the line features for arbitraryXSPEC
continua, would therefore necessarily bring about inconsistencies. Second, the po-
sitions of the lines depend strongly on the magnetic field strength, which is one of
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Figure A.1: FITS tables file. Various extensions include themodel parameter points (PARAM-
ETER) for B, Te, µ and Ein, the energy gridEout (ENERGY) and the calculated Green’s
functions (SPECTRA). SPECTRA contains two columns: the first column contains the param-
eter combinationB, Te, µ, andEin for which the simulations were run. The second column is
a vector of the 640 Green’s functions for all output energiesEout.

the fit parameters. Simple interpolation between spectra attwo grid points of differ-
entB implies a mixing ofB-fields with∆B linked to the grid spacing, broadening
the lines artificially. Hence, a self-consistent approach requires the implementation of
cyclomc as an analytic model function. Lacking a simple analytic expression for the
line shapes, it is based on a specific interpolation and convolution model. For a given
energy grid and continuum flux (model),cyclomc returns the final flux (continuum
and lines) for arbitrary fit parameter sets within preset bounds.

FITS tables

For runningcyclomc, the general user must obtain both the model function and
four to twelve FITS tables comprising the simulation results for one to three a priori
calculated geometries and for four values of the optical depth. One must then com-
pile cyclomc in a localXSPECmodel directory, and set the environment variables
accordingly, e.g.,

setenv LMODDIR /home/user/local.models
setenv LD_LIBRARY_PATH $LMODDIR:$LD_LIBRARY_PATH.

The user may then chose a geometry (cylinder, slab 1-1 or slab1-0) by setting the
environment variable,$CYCLOMOD, to point at a corresponding directory, e.g.,

setenv CYCLOMOD /home/user/cyl,

containing the model results for this geometry. The model code expects to find four
FITS tables (one for each optical depth), namedmc_taui.fits (i = 1, 2, 3, 4) in
$CYCLOMOD. For any spectral data inXSPEC the model can now be called with the
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Figure A.2: Illustration of Green’s functions storage in FITS tables.

syntax

model cyclomc · <continuum>.

If no FITS tables are found, an error message occurs. Each FITS table contains the
Green’s functions for all parameter combination ofB, kTe andµ for the redistri-
bution fromn(Ein) energies (monoenergetic photon injection) ton(Eout) different
energiesEout. The FITS tables’ structure, which formally follows the instructions for
XSPEC table models, is illustrated in Fig. A.1. Before the actual fit procedure, one
should check if the hard and soft bounds of the parametersB12 andTe correspond to
the ’MINIMUM’ and ’MAXIMUM’ column entries for B/Bcrit andkTe in the PA-
RAMETERS extension of the FITS tables, and to reset them withXSPEC’s ‘newpar’
command in case. The simulation results for the whole parameter grid are stored in
the second column of the extension, named SPECTRA. Each linecontains one ‘spec-
trum’ which effectively storesn(Eout) Green’s functions for the energy redistribution
G(Ein → Eout) of the continuum photons (see Fig. A.2).
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The concept of Green’s functions

“From the viewpoint of mathematics it allows one to generatesolutions to any inhomo-
geneous linear differential equation with boundary conditions. From the viewpoint of
radiation physics the Green’s function relates a disturbance to its measurable effect or
response. From the viewpoint of engineeringG(x; ξ) expresses those inner workings
of a linear system which relates its input to its output.1”

In linear algebra, an inverse operatorG = (Â− λB̂)−1 which solves

u = Gb for (Â− λB̂)u = b (A.1)

in infinite dimensional Hilbert space is called the Green’s function of (Â− λB̂). The
solution of a corresponding boundary problem

Lu(x) = −f(x) a < x < b

B1(u) = 0

B2(u) = 0

can be expressed by its Green’s function, which fulfills

LG(x; ξ) = −δ(x− ξ) a < x, ξ < b

B1(G) = 0

B2(G) = 0 ,

as

u(ξ) =

∫ b

a

G(ξ;x)f(x)dx (A.2)

In the framework of this work the ‘physicist’s and engineer’s approach’ is taken,
and the term ‘Green’s functions’ is adopted to describe the transition probabilities
from an initial photon state (E, θ) to its final state (E′, θ′) after propagation through
the plasma (compare, e.g., Kontar et al., 2006; Becker & Wolff, 2007). The final
energy distribution of the photons, their emergent spectrum, can be given as a function
of the initial one as

F em(E0, θ0) =

∫ +∞

−∞

F initial(E, θ)G(E → E0, θ → θ0)dEdθ . (A.3)

1from ‘Linear Mathematics in infinite dimensions’ by N. Drakos and R. Moore,http://www.math.
ohio-state.edu/~gerlach/math/BVtypset/node166.html
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The discretized Green’s functions obtained from the simulations give the transition
probabilities between discrete energy and angular intervals. They take the form of a
response matrix of the line-forming region to the seed photons. Under the condition of
initial isotropy, Eq. A.3 is therefore approximated by the discrete sum (see chapter 4,
eq. 4.7)

N final
Ej,θk

∆Ej
= F em(Ej , θk) =

∑

iG
(Ei → Ej , θk)F cont(Ei)∆Ei

∆Ej
. (A.4)

In the following, the angleθ is parameterized by its cosineµ, in accordance with the
simulation setup.

Convolution and interpolation procedure

During the actual fitting of the data, for each test parameterset duringXSPEC’s fitting
procedure, the flux is calculated internally from convolution of the chosen continuum
model with an interpolated set of Green’s functions from theMonte Carlo simulations
(compare chapter 4).

Technically, calculating
{

N final
Ej,µk

}

j,k
involves the following steps

• regridding of the input energy grid
{

EXSPEC
j

}

j
and photons per bin

{

N initial
Ej

}

j

to the internal energy resolution{Ei/B12}i of the stored Green’s functions.

• calculating the surface magnetic field, accounting for the redshift from the sup-
plied fit parameterB12

• association of allXPSECfit parameters with neighboring values ofB, Te,µ,
τ on the discrete parameter grid

• marking of all (24 × 161 × 640) relevant Green’s functions (stored in8 × 161
lines for each optical depth from two FITS tables)

• two-dimensional linear interpolation inTe andµ

• determination of the shifts in energy for the Green’s functions of both neighbor-
ingB values.

• linear interpolation inB of the shape of the Green’s functions, while accounting
for the shifts in energy on the energy grid.

• linear interpolation inτ
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• convolution of theXSPEC initial spectrum
{

N initial
Ej

}

i
with the interpolated

Green’s functions

• regridding of the convolved spectrum (flux) from{Ei/B12}i to
{

EXSPEC
j

}

j

The model code has been tested extensively, especially as tothe consistency of
the interpolated spectra with Monte Carlo spectra, calculated directly for the given
parameter set.
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